Review of Heat Transfer 熱傳回顧

Reference:

1. Incropera, DeWitt, Bergmann, and Lavine, Fundamentals of Heat and Mass Transfer, 6th Ed., 2007.

2. Çengel, Y.A., Heat Transfer, 2nd Ed., 2003

Three modes of heat transfer: conduction, convection and radiation

FIGURE 1.1 Conduction, convection, and radiation heat transfer modes.

Conduction Mechanisms in Different Phases

Thermal Conductivities of Various Materials

Temperature Effect on the Thermal Conductivities of Various Materials

Source: Y.A. Cengel

Thermal Conductivities of Some Materials

TABLE 1-1

The thermal	conductivities of some
materials at	room temperature

Material	k, W/m · °C	
Diamond	2300	
Silver	429	
Copper	401	
Gold	317	
Aluminum	237	
Iron	80.2	
Mercury (I)	8.54	
Glass	0.78	
Brick	0.72	
Water (I)	0.613	
Human skin	0.37	
Wood (oak)	0.17	
Helium (g)	0.152	
Soft rubber	0.13	
Glass fiber	0.043	
Air (g)	0.026	
Urethane, rigid foam	0.026	

Source: Y.A. Cengel

The Heat Diffusion Equation of Conduction In Cartesian coordinates:

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \dot{q} = \rho c_p \frac{\partial T}{\partial t}$$

If k = constant,

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial x^2} + \frac{\dot{q}}{\dot{k}} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

If steady-state,

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \dot{q} = 0$$

If one-dimensional with no energy generation,

$$\frac{d}{dx}\left(k\frac{dT}{dx}\right) = 0$$

Under steady-state, 1-D conditions with no energy generation,

$$dq_x''/dx = 0$$

Steady-State, 1-D Conduction with No Heat Source $T(x) = C_1 x + C_2$

where C_1 and C_2 are to be determined by boundary conditions.

FIGURE 3.1 Heat transfer through a plane wall. (*a*) Temperature distribution. (*b*) Equivalent thermal circuit.

Thermal Resistance

S

With the analogy between the diffusion of heat and electrical charge, the **thermal resistance** for conduction is

 h_1A

(b)

$$R_{t,\text{cond}} = \frac{T_{s,1} - T_{s,2}}{q_x} = \frac{L}{kA}$$

Similar for convection
$$R_{t,\text{conv}} = \frac{T_s - T_\infty}{q} = \frac{1}{hA}$$

FIGURE 3.1 Heat transfer through a plane wall. (*a*) Temperature distribution. (*b*) Equivalent thermal circuit.

kA

 $T_{s,2}$

 $T_{\infty,2}$

Cold fluid $T_{\infty,2}, h_2$

In Fig. 3.1, the total thermal resistance, R_{tot} , is

$$R_{\text{tot}} = \frac{1}{h_1 A} + \frac{L}{kA} + \frac{1}{h_2 A}$$

The Composite Wall (Fig. 3.2; Fig. 3.3)

$$R_{\rm tot} = \sum R_t = \frac{\Delta T}{q} = \frac{1}{UA}$$

where U is the **overall heat transfer coefficient**, defined by analogy to Newton's law of cooling as

FIGURE 3.2 Equivalent thermal circuit for a series composite wall.

Examples of The Composite Wall

 $R_1 = 0.5^{\circ}C/W, R_2 = 1.0^{\circ}C/W$

Series composite wall R=R₁+R₂=0.5+1.0=1.5 °C/W Parallel composite wall $R = 1/(1/R_1+1/R_2) = 1/3 \text{ °C/W}$

If R_1 is halved to become 0.25 °C/W $\rightarrow R = R_1 + R_2 = 0.25 + 1.0 = 1.25 \text{ °C/W}$ $R = 1/(1/R_1 + 1/R_2) = 1/5 \text{ °C/W}$ If R₂ is halved to become 0.5 °C/W \rightarrow R=R₁+R₂=0.5+0.5=1.0 °C/W R = 1/(1/R₁+1/R₂) = 1/4 °C/W The more efficient way is to: improve the largest R in series but improve the smallest R in parallel.

The Problem of Convection

Determination of heat convection coefficients (local h and average \overline{h}) is viewed as *the problem of convection*.

However, the problem is not a simple one, as

h or $\overline{h} = f$ (fluid properties, surface geometry, flow conditions) \uparrow i.e., $\rho, \mu, k_f, c_{p,f}$ Once *h* or \overline{h} is known, then Local Convection

 $q'' = h(T_s - T_\infty)$

Global Convection

$$q = \overline{h}A(T_s - T_\infty)$$

Nusselt No.—Dimensionless heat transfer coeff.

$$Nu_x \equiv \frac{h_x x}{k}, \quad \overline{Nu_L} \equiv \frac{\overline{hL}}{k}$$

In general, $Nu_x = CRe_x^m Pr^n$ or $\overline{Nu}_L = CRe_L^m Pr^n$

Representative Ranges of Convection Thermal Resistance

	$h (W/m^2K)$	Areal $R_{th,conv}$ (Kcm ² /W)
Natural Convection		
Air	2~25	5,000~400
Oils	20~200	500~50
Water	100~1,000	100~10
Forced Convection		
Air	20~200	5,000~500
Oils	200~2,000	500~50
Water	1,000~10,000	10~1
Microchannel Cooling	40,000	0.25
Impinging Jet Cooling	2,400~49,300	4.1~0.20
Heat Pipe		0.049*

* based on THERMACORE 5 mm heat pipe having capacity of 20W with ΔT =5K.

Laminar and Turbulent Flow

Critical Reynolds no. where transition from laminar boundary layer

to turbulent occurs:

2-D Governing Equations for Heat Convection

• Continuity equation:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

momentum eq. (incompressible):

x-dir.
$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}\right) = -\frac{\partial p}{\partial x} + \mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + X$$

y-dir. $\rho\left(\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y}\right) = -\frac{\partial p}{\partial y} + \mu\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right) + Y$

energy equation:

usually negligible

$$\rho c_p \left(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + \frac{v}{c_p} \left(\frac{\partial u}{\partial y} \right)^2$$

energy transport thru convection heat transport thru conduction

Boundary Layer Equations for Heat Convection

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$
$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{dp_{\infty}}{dx} + v\frac{\partial^2 u}{\partial y^2}$$
$$u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} = \alpha\frac{\partial^2 T}{\partial y^2}$$

energy transport thru convection

heat transport thru conduction

In non-dimensional forms,

$$\frac{\partial u^*}{\partial x^*} + \frac{\partial v^*}{\partial y^*} = 0$$
$$u^* \frac{\partial u^*}{\partial x^*} + v^* \frac{\partial u^*}{\partial y^*} = -\frac{dp^*}{dx^*} + \frac{1}{\operatorname{Re}_L} \frac{\partial^2 u^*}{\partial y^{*2}}$$
$$u^* \frac{\partial T^*}{\partial x^*} + v^* \frac{\partial T^*}{\partial y^*} = \frac{1}{\operatorname{Re}_L} \operatorname{Pr} \frac{\partial^2 T^*}{\partial y^{*2}}$$

Functional Form of the Solutions

From the non-dimensional momentum equation

$$u^* = f\left(x^*, y^*, Re_L, \frac{dp^*}{dx^*}\right)$$

where *dp*/dx** depends on the surface geometry.For a prescribed geometry, the shear stress and the friction coefficient at the surface are

$$\tau_{s} = \mu \frac{\partial u}{\partial y}\Big|_{y=0} = \left(\frac{\mu V}{L}\right) \frac{\partial u^{*}}{\partial y^{*}}\Big|_{y^{*}=0}$$

$$C_{f} = \frac{\tau_{s}}{\rho V^{2}/2} = \frac{2}{\operatorname{Re}_{L}} \frac{\partial u^{*}}{\partial y^{*}} \bigg|_{y^{*}=0} = \frac{2}{\operatorname{Re}_{L}} f(x^{*}, \operatorname{Re}_{L})$$

From the non-dimensional energy equation

$$T^* = f\left(x^*, y^*, Re_L, Pr, \frac{dp^*}{dx^*}\right)$$
$$h = -\frac{k_f}{L} \frac{(T_\infty - T_s)}{(T_s - T_\infty)} \frac{\partial T^*}{\partial y^*} \bigg|_{y^* = 0} = +\frac{k_f}{L} \frac{\partial T^*}{\partial y^*} \bigg|_{y^* = 0}$$

Nusselt number can be defined as

$$Nu \equiv \frac{hL}{k_f} = + \frac{\partial T^*}{\partial y^*} \bigg|_{y^* = 0}$$

For a prescribed geometry,

$$Nu = f(x^*, Re_L, Pr)$$

The spatially average Nusselt number is then

$$\overline{Nu} = \frac{\overline{h}L}{k_f} = f(Re_L, Pr)$$

Forced Convection over a Flat Plate

• <u>Constant-Temperature Plate</u>

Local laminar convection (analytic solution)

$$Nu_x \equiv \frac{h_x x}{k} = 0.332 Re_x^{1/2} Pr^{1/3}$$
 $Pr \ge 0.6$

Local turbulent convection

$$Nu_x = St \ Re_x Pr = 0.0296 Re_x^{4/5} Pr^{1/3}, \qquad 0.6 < \Pr < 60$$

Constant-Heat-Flux Plate

Local laminar convection (analytic solution)

$$Nu_x \equiv \frac{h_x x}{k} = 0.453 Re_x^{1/2} Pr^{1/3}$$
 $Pr \ge 0.6$

Local turbulent convection

$$Nu_x = St \ Re_x Pr = 0.0308 Re_x^{4/5} Pr^{1/3}, \qquad 0.6 < \Pr < 60$$

Global convection of a mixed boundary layer

$$\overline{h}_{L} = \frac{1}{L} \left(\int_{0}^{x_{c}} h_{\text{lam}} dx + \int_{x_{c}}^{L} h_{\text{turb}} dx \right)$$

$$\rightarrow \overline{Nu}_{L} = (0.037 Re_{L}^{4/5} - A) Pr^{1/3}, \ A = 0.037 Re_{x,c}^{4/5} - 0.664 Re_{x,c}^{1/2}$$

Average plate temperature with constant heat flux

$$\overline{(T_s - T_\infty)} = \frac{1}{L} \int_0^L (T_s - T_\infty) dx = \frac{q_s''}{L} \int_0^L \frac{x}{kNu_x} dx = \frac{q_s''L}{kNu_L}$$

where Nu_L can be relevant correlations for constant-temperature plates.

Limitations on Use of Convection Coefficients

Errors as large as 25% may be incurred by using the expressions due to varying free stream turbulence and surface roughness.

Boundary Layer Flow over a Flat Plate Global Nu (h) and $C_f(\tau_s)$

Laminar

$$Nu_{L} \equiv \frac{hL}{k} = 0.664 Re_{L}^{1/2} Pr^{1/3} \qquad C_{f} = 1.328 / Re_{L}^{1/2}$$

et $Nu_{L} \equiv \frac{\bar{h}L}{k} = 0.037 Re_{L}^{4/5} Pr^{1/3} \qquad C_{f} = 0.074 / Re_{L}^{1/5}$
Chilton-Colburn analogy:

Turbulent

$$\tau_s = C_f \, \frac{\rho V^2}{2}$$

Chilton-Colburn analogy: $\frac{C_f}{2} = \frac{Nu}{RePr^{1/3}}, \quad 0.6 < Pr < 60$

V	Laminar		Turb	ulent
1	h = 1	$\Delta P = 1$	h = 1	$\Delta P = 1$
2	1.414	2.828	1.741	3.480
3	1.732	5.196	2.408	7.225

 Increasing flow velocity would increase both heat transfer and drag, with a stronger effect for drag.

Internal Flow Conditions

$$\operatorname{Re}_{D} \equiv \frac{\rho u_{m} D}{\mu} \qquad \operatorname{Re}_{D,c} \approx 2300$$

where u_m is the *mean fluid velocity* over the tube cross section.

Entrance length

 $\left(\frac{x_{fd,h}}{D}\right)_{\text{lam}} \approx 0.05 \,\text{Re}_D$ •For laminar flow is $10 \leq \left(\frac{x_{fd,h}}{D}\right)$ •For turbulent flow ≤ 60 Inviscid flow region Boundary layer region -u(r, x) r_o S δ Fully developed region Hydrodynamic entrance region ► X Xfd. h

Thermal entrance length

FIGURE 8.4 Thermal boundary layer development in a heated circular tube.

Newton's Law of Cooling

$$q_s'' = h(T_s - T_m)$$

Fully Developed Conditions

The *thermally fully developed* condition is when the *relative* shape of the profile no longer changes and is stated as

$$\frac{\partial}{\partial x} \left[\frac{T_s(x) - T(r, x)}{T_s(x) - T_m(x)} \right]_{\text{fd}, t} = 0$$

for cases with either a *uniform surface heat flux* or a *uniform surface temperature*.

$$\frac{\partial}{\partial r} \left(\frac{T_s - T}{T_s - T_m} \right) \bigg|_{r=r_0} = \frac{-\partial T / \partial r \bigg|_{r=r_0}}{T_s - T_m} = -\frac{h}{k} \neq f(x)$$

Hence, in the *thermally fully developed flow* of a fluid with constant properties, the *local convection coefficient is a constant*.

The Energy Balance General Considerations Energy conservation for a differential control volume leads to

$$dq_{\rm conv} = \dot{m}c_p dT_m$$

Constant surface heat flux

$$\frac{dT_m}{dx} = \frac{q_s^{"}P}{\dot{m}c_p} = \frac{P}{\dot{m}c_p}h(T_s - T_m)$$
$$\rightarrow T_m(x) = T_{m,i} + \frac{q_s^{"}P}{\dot{m}c_p}x$$

Constant surface temperature

 $q_{\rm conv} = \overline{h} A_s \Delta T_{\rm lm}$ where $\Delta T_{\rm lm} \equiv \frac{\Delta T_o - \Delta T_i}{\ln(\Delta T_o / \Delta T_i)}$

FIGURE 8.7 Axial temperature variations for heat transfer in a tube. (a) Constant surface heat flux. (b) Constant surface temperature.

This means for constant T_s , the total q_{conv} is proportional to \overline{h} and the log mean temperature difference ΔT_{lm} .

Fully Developed Laminar Flow in Noncircular Tubes Hydraulic diameter:

$$D_{h} \equiv \frac{4A_{c}}{P}$$

$$Nu = \frac{hD_{h}}{k} = \text{constant}$$

$$f \operatorname{Re}_{D_{h}} = \text{constant}$$

$$f \operatorname{Re}_{D} \equiv \frac{-(dp/dx)D}{\rho u_{m}^{2}/2} \frac{\rho u_{m}D}{\mu}$$

$$= \frac{-2(dp/dx)D^{2}}{\mu u_{m}} = C$$

$$\rightarrow h \propto 1/D_{h}$$

 $\Delta P \propto 1/D_h^2$

TABLE 8.1 Nusselt numbers and friction factors for fully developed laminar flow in tubes of differing cross section

		$Nu_D \equiv \frac{hD_h}{k}$		
Cross Section	$\frac{b}{a}$	(Uniform q_s'')	(Uniform T _s)	$f Re_{D_h}$
\bigcirc	-	4.36	3.66	64
$a \bigsqcup_{b}$	1.0	3.61	2.98	57
a b	1.43	3.73	3.08	59
a b	2.0	4.12	3.39	62
a	3.0	4.79	3.96	69
a	4.0	5.33	4.44	73
b	8.0	6.49	5.60	82
	00	8.23	7.54	96
Heated CARCANCARANACC Insulated	œ	5.39	4.86	96
\bigtriangleup		3.11	2.49	53

Used with permission from W. M. Kays and M. E. Crawford, *Convection Heat and Mass Transfer*, 3rd ed. McGraw-Hill, New York, 1993.

To induce secondary flow or turbulence

FIGURE 8.13 Schematic of helically coiled tube and secondary flow in enlarged cross-sectional view.

- Boundary layer regrowth
- Flow transition or turbulence

d. Offset Strip Fin

e. Perforated

f. Louvered

b.Triangular

c.Wavy

平板型

百葉窗型

裂口型

Natural Convection

Natural convection is due to buoyancy from density difference as a result of temperature and/or concentration variations.

 $Gr_L^{1/2}$ plays the same role in free convection that the *Re* plays in forced convection.

$$Gr_L = \frac{g\beta(T_s - T_\infty)L}{u_0^2} \left(\frac{u_0L}{v}\right)^2 = \frac{g\beta(T_s - T_\infty)L^3}{v^2}$$

In general,

 $Nu_L = f(\operatorname{Re}_L, Gr_L, \operatorname{Pr})$

If $(Gr_L / \operatorname{Re}_L^2) \approx 1$ both free & forced convection to be considered If $(Gr_L / \operatorname{Re}_L^2) << 1 \rightarrow Nu_L = f(\operatorname{Re}_L, \operatorname{Pr})$ forced convection If $(Gr_L / \operatorname{Re}_L^2) >> 1 \rightarrow Nu_L = f(Gr_L, \operatorname{Pr})$ free convection

The Effects of Turbulence

For vertical plates the transition occurs at

$$Ra_{x,c} = Gr_{x,c} \operatorname{Pr} = \frac{g\beta(T_s - T_{\infty})x^3}{v\alpha} \approx 10^9$$

Empirical Correlations External Free Convection Flows Generally,

$$\overline{Nu}_L = \frac{\overline{h}L}{k} = CRa_L^n$$

n = 1/4, for laminar flow n = 1/3, for turbulent flow

F Kreith & MS Bohn, Principles of Heat Transfer, 2001

Flow Pattern

FIGURE 9.6 Buoyancy-driven flows on an inclined plate: (a) side view of flows at top and bottom surfaces of a cold plate $(T_s < T_{\infty})$, (b) end view of flow at bottom surface of cold plate, (c) side view of flows at top and bottom surfaces of a hot plate $(T_s > T_{\infty})$, and (d) end view of flow at top surface of hot plate.

Flow Pattern

FIGURE 9.7

Buoyancy-driven flows on horizontal cold $(T_s < T_{\infty})$ and hot $(T_s > T_{\infty})$ plates: (a) top surface of cold plate, (b) bottom surface of cold plate, (c) top surface of hot plate, and (d) bottom surface of hot plate.

Example of Natural Convection

Chassis Material 1 k=0.2W/mK, R=0.1K/W

Chassis Material 2 k=100W/Mk, R=0.0002K/W

Thermal Radiation

FIGURE 12.3 Spectrum of electromagnetic radiation.

Black-Body Emission

FIGURE 12.12 Spectral blackbody emissive power.

Real Surface vs Black Surface

FIGURE 12.15 Comparison of blackbody and real surface emission. (*a*) Spectral distribution. (*b*) Directional distribution.

Emissivities of Some Real Surfaces

FIGURE 12.19 Representative values of the total, normal emissivity ε_n .

Radiation Heat Transfer

The radiative heat transfer rate of an object in a very large environment can be calculated with

Stefan-Boltzmann constant = 5.67×10^{-8} W/m²K⁴ $Q_{rad} = \varepsilon \sigma A_s F_{s-sur} (T_s^4 - T_{sur}^4)$ Emissivity View Factor (Shape Factor)

Emissivity ε

Al, Polished 0.05Al, Anodized 0.7-0.95Cu, Polished 0.06Cu, Oxidized 0.78

Example of Natural Convection and Radiation

Calculate *Q* under natural convection and radiation

$$T_f = \frac{T_s + T_\infty}{2} = 55^{\circ} \mathrm{C}$$

K = 0.0277W/Mk, Pr=0.72, $v=1.846\times10^{-5}$ m²/s $\beta = 1/T_f = 1/328$ K, $\rho = 1.07$ kg/m³, $\varepsilon = 0.95$

$$Ra_L = \frac{g\beta(T_s - T_\infty)L^3}{v^2} P_1$$

 $=\frac{(9.8 \,\mathrm{lm^2/s})[1/(328 \mathrm{K})][(80-30) \mathrm{K}](0.18 \mathrm{m})^3}{(1.846 \times 10^{-5} \mathrm{m^2/s})^2} (0.72) = 1.8 \times 10^7 < 10^9, \,\mathrm{laminar}$

$$Nu = \left\{ 0.825 + \frac{0.387Ra_L^{1/6}}{\left[1 + (0.492/\operatorname{Pr})^{9/16}\right]^{8/27}} \right\}^2$$

cf. Incropera et al. (9.26)

$$= \left\{ 0.825 + \frac{0.387(1.846 \times 10^7)^{1/6}}{\left[1 + (0.492/0.7)^{9/16}\right]^{8/27}} \right\}^2 = 37.1$$

$$h = \frac{Nu \times k}{L} = 5.7 \,\text{W/m}^{20} \text{C}$$
$$Q = hA_s \left(T_s - T_\infty\right)$$

 $= (5.7 \text{W/m}^{20}\text{C})[(0.18m)(0.12m)](80 - 30)^{\circ}\text{C} = 6.156\text{W}$

$$Q_{\rm rad} = \varepsilon \sigma A (T_s^4 - T_{\rm sur}^4)$$

= 0.95 × 5.67 × 10⁻⁸ × (0.18 × 0.12) × (353⁴ - 300⁴) = 8.64 W

IR Thermal Imager or Thermometer

Air invisible

Not for covered objects

♦ For relative temperature measurement only, because the surface emissivities are different for different materials. To obtain the precise temperature, the surface emissivity is required.