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DYNAMICS 1.

1. Recfilinewz, Motion of a Farticle :-

O —> .l:
S
2
v= 4ds4t ; a4 = d%{: = d%tz
(velocity) (accel.)

- =)
Also a = U‘i%s

Ynverse Problem: ( Important)
) \%— Q= f£(+) , then .
(= fdv faatt f:’(»(f)df-

or U-—V, =f f(f)d{:

i) a-= f(s) then
() => j vdU = fads

or -+ [U—— U_] f ;f@‘)cis




iy as= £(v), then
) => F(v) = dYat,or
at = d%Co,) - @)

Also,
:FCV)::U% or OIS-"—"- ?é;; —-'Cb)

Note tifui' the thi' hand ’s'ccles of-

e,yx.ahoms (@) and” (b) Can be
Lntegma/tao[

S}Deaa,( Cases: U= const. = A=0

i_g = QA = C_C_)F’\.Sf'.

Relative Motion of Two Ructicles
n  Rectilinear Motion :

SB-—— SA+SB/A A B
—

UB— U—A-i- V@/A Or—gx—ﬁ‘;s% —
Ap = Oa+08a Se |




De]}:eh dent Motion |

~LL

3

IOV Y Yy, Ll L elslrsr

Motwno one Farc‘hcle
ole.'bevxds onh the

ther SA

—= Since the {'ofai /engfh
of yz,o/ae s Constant

Sa + ZEE = Const. (atall ﬁ'@

or ASa+2ASs = 0O B[]
Then  [Ua+ 2V =0

o A -+ ZQQ =Q
- Cuxyilineae Motion ,
) fzectcwﬁulafa Coondinates

BE-::CX'.L'I"HJ ‘ Y‘,‘ i
\1=°“+al e l t-é,
4 =X +5(J ST —X— X 1




B Nowmal (1) asd Tangential (¢

Coordin(a‘t?es : 3 et e 4
4 e /%

f O

7s

xo pober N .
.'—-l Q; = a.-t-_'é + a«n.’l , i Qﬁeum{. vector
. in the tamgential
Qe = §F = & dirctiond
3 . 2l h s the wnit-
On = LE=V0 =16 | vector in the horml
f =- dl'r'e.ct‘:m"‘

special Case : p= comt. =

g (circular Motion)
P VP ézr @, é. =
then U= nw 2
An = )sz- = % = V&
no

A = .=




C) Polar. Coordinates : oo >

-F - r E.- \7@0
U= U €x + U &s o
Y . Eﬁ |
V=12, Ug=1n6 €
Q amer —}-Qg €o | Cr s the whit Vector
| im the dlutection of
{ax, =7 - )'(,9 % .
Lae =6 +276 Eo i ﬂve wnit vector
1 & . '

SfDeLLaL Cage @ k= Const. CCm:u.lat Mofzon)
U= Us ee = JZQ Ep =NWEs
— 4 = —r6” Cr + 26 €o |

= - o €r+)w<€e

Note ‘H»ai»‘ W»w@ Com/aone/(d: rrw®

b durected w~ —Ey direction,
Towards the center 06 rotation.
AND el wm the €o  dizection:




Also | o .

v, )/
Vdlr = j ady
), (Yo

oy Uf: 90,000 — 64-43— &« )
Hoxizontal ! -
(Ux)o = £00 Cos30 = 520 5%

Note that the accel. in the X
direction & zem.

Hence X = 5S20t. (v)
When tt hits the 9Jw(ma[ = —500
- -(v)

then (i) & V) = Qa Wm‘i‘:’c m
—> ¥ =201 sec. &—
QV> => L= (520)(20-1) =1/0,450 é—'b.
Now ywmx Canw be obtawned rom
(iti) , because ot Yimax 15:._0

—> Y = 1378 f£ ), (50t 298




Ex. P:t.QJ' ectile F zoblem :
} A 600 {5’5/5

Consider the Vertical and Hwe Horizontal
Motion Se/oamafe{y:

Vertical : (), = 600 sin30° = 300 b=
lg’:lg]‘-‘- a,y = —232.2 ‘;‘b/sz. —

V_y t
\J dv = JCLCH‘ = j(——32 2.>C£'f'
UH)O ° ’
o = U, = 300- 32.2T -@)
- yj = BOO‘Q‘.-—- 16+ t= ~ --()




Example 2-8 _
Experiments show that package P will
slide off the rotating table shown when
the magnitude of its acceleration equals

30 m/sz. The table starts from rest at
8 = Q0 and accelerates counterclockwise
1% .at a comstant angular acceleration of

8 = Z'réd/sz. Determine the angle ©
at which the packagg slides.

angular rate of 6§ = 2 _rad/s2
(constant). Integration yields

a 2
8=2t.and 8 = ¢ :
2,
bocorks

Since aZ = a2 + az

.29 s 2 3 )
n e = (07 + (x6)° = -

Co(30)% = {(3) 2622 {(3) (2)}?
Solving for t, £ = 1.5655

0 = (1.565)2 = 2.45 rad



2. Kinetics of Farticles :(— 8
Newtons Second Law: Zf =ma
=2 Three scalaz eﬁuvaéiohs

Z R =MGx , ZF =may
ad S R=mAr

From the eeviows _Cha,f:i'e)a we.
knhow how & calcwlate 'aecel..imn

all the three coordinate Sysfezm
(n-t) coovdinates :+ Z Fn= MQn N\t
| & 2 F‘L’ =MmAat ﬁ .
Polae  Coordinates (16) :
YA
> K =m0r
& S F9 ::W‘Lae V\Q’e

Pmocedwr,e for Amlys:s .




) Dreaw the = Ireee Bod;y di

Jtepresenting all +he rces.
@L{f: d,umectt,:)?s fo

i) AHJL_y 2F=ma
iiQ Use kinematic eWuofw“S LDL

S F = __m?smlso F=ma., @
& ZF = R- mchs s° =O
— R = Im?Cos s© (ON




Also F =/LL12 = O3 Vr\g cos 15° 1o

then (@) =>

— }'ng_ sin ‘_ISO-- (O-Z)rngcos 16° = MmQx
— Ox = ""5-“38 ’7/.52

Now use Kinematics G 26{: S:

we khow :  at t=0,6 §=0, Uo=9 s
" %:t,)s:S, U-‘—‘G%

UOLU’ = CLG{S
¢ s
oY f\)—du‘ = f<_538)dx
9 o
o _12,[6?:_92_']= 5.38 (s-0)




3, Work- Energy : H
t v

| U,.._,z = -1,
Where U, = work done é- m position
1 6.2 b all the

exteJan[ fomces
>

T = Kinetic Zn@ﬁy ot 2= .L m)f
T Kmefnc Energy ot} ..._Lm\)-'

U= ff'dﬁo ::f(/:;‘a/.x-f- Fj'ciy +Edz)

Vaxious Cases: F oo
@) Eore ot azb dir >
1
X, Y4 q
.U-l—'z— fodx = f(FCO.SOQd.I
X, X




2.

b) Gravity Work A
Y. o

o Ul—-vz = 7 mg (},‘z"’y I> >
Note that the work I Ve When
the boc{)/ moves down.

Q) work of force exexted by a, shring

Undeformed
~ Lineax Sfmimg: | |
\ = X | -

X2
Uiz = = [kxdx = L k(%= x2)
Xi

.. COW\}DJLeSSlOV\ —> Ve W‘O)’K
Tension — 5 —\e work




* 3.
Conservation of Energy: No é»)aicflbh

Then
T+V, = L+W )

K.E.ab 4 PE. at | K.E.at8 PE.atR

Bem UI-—’z: T;-"-T; =“<Vz_—VD

Collae. (& at yest ot A ‘
Find V at R

Ta+Va= To + Vs

| 2
oo 0++K|0.5-0.25
2 z[ d 2| Undeformed ehgth
= _zl_-mvz +Jik(o'B—0.?-5) Of the s,brcin?
— mg, (O-S) =(0:2S m

—_— Camge'[’: U-Z-




4., Imlbulse.- MOmemEum . k 14
2F = ma = %(mg} Y M = Const,
Herce

t2
LZfde = G "'Gl =mU—m_l_f,
| torﬁ)e two /:*oscﬁoms |

| 58— the cm]EuLse de,{: =0 =
Conservation Of Momentum =>

(W\U’)z = Z(mv)i
5. Plane Kinematics oé Eigiol Bodies

Velocity : Ve=Va+ U'E/A

A, B are the éwo fvomts Oh ﬁ)e. JLLng
bod.)/

Ve
“ - "*
| TE’ANS” /' ROTATION.

Vo= UA‘*’ U% = U"A-r-a)x Y‘B/A
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—
(0, B/t“))' = 607‘)’% |

(CL B/p)t = X YQ/A

-

the belocafy
Nogim?’/o;o e getdoa) T do the

&CCe{, a.haj,)/szs

Ve = Ya+P¥xl2s,
Ex. Y J
‘7[ B t'.'..z
w =W _— i
U"o_wx aJ
_L or W= U'/a,
Find Vb

w

Ua = Vo + Wx Yo, => VA km;e
Thew Up = Va + g% - U-A+&)A9X /e
~GET Was &U'Bo




xample 7-6
he velocity of point A is 16 m/s

. . . 2 <
md its acceleration is 3 m/s”, both

:0 the right as shown. Determine the’

(a) velocity and (b) acceleration of
che top of the ladder B as it
s5lides down the wall for the instant
shown. :

SOOI SN

a.=
-+ N -+ -+ -
= = X -
(a) Ve TV, + Va/a = Va + Wyp TR/A . 2 v:
- L - . :
where: vy = —ij (assumed downward) i
> .
’-3A= 161 (given)
@, = o,k d Tewd
mAB = @ gk (assumed counterclockwise)
To,, = —61 + 8

S Vg

~v_3 = 161 + (0,55 x (~61 + &)

Equating 1 components: O = 16 — 8w
e

Equating j components: -v, = -6(2)

B

"Plus" answers simply indicate the
~ for both.

| <+ + +
= 161 ~ 6@ABJ - 8mABl

AR or mAB = 42

g = H12

directions were assumed c

i



-+ - > -
W5 = 2k (rad/s)| and vy = -12] (m/s).

b + > -+ > + -+ « - +-a— < (& y -
(b) ag=a, +ag,, =ay *og X Ty + 0 X (@05 X Tp/)
, - > .
where: ap = aBj (assumed upward)
Z = 3—3').- (given)
A . '
- . -
ap = ak (assumed counterclockwise)
aB-J%'- = 3-3.- + (o _1—2) X (—6_1')_' + 83?) + (2’12) X {(212) X (_6_;;): 4 83-)}
or aB’j* = 3% - 603 - 8ai + 241 - 323
Equating i components: 0 = 27 - 8a or o = +3.38
Equating _5 components: ap = -6a - 32 or ap = —=52.3
EAB = +3.38% (rad/s®) | and ZB = -52.37 (m/s?

93



| ¢. Kinetics Of Rg«d Boil'_E_g_:
Froceduze :

1) Draw F B.D. and locate C.G.
(This shows all the force5>

Of the tree rigid body
Jce]b)wsemi‘m% )’n Ac and (I c_)

ac- accel. Oé' C G.

Ic = momeut © Sh%&’q’
obout z axis at C.

i) Use ZF;_.m(ac)x , 2K = m(ady

& Z Mc Zc°< |
‘Ibtmd Qe awd.od youma/ka»ez?‘

Use K meW\atzcs

17




Example 8-7

Cable unwinds from a 2 ft radius spool
as the 500 1b weight is allowed to )
freely fall. The mass of the spool and
cable is 50 slugs and its radius of

gyration i% ko = 1.5 ft. ©Neglecting

, .w
friction, determine the angular accelera-
tion of the spool as it unwinds and the
tension in the cable.

. |W| s00b ~

—_— ' .¢W=500!b
_ 500 ' , N
T=37.7 @, @

where a = 20 (kinematics)

:;,géyﬂna(&),-_ 500 -

2 F P ) C == . -
(2) From *FBD(II), IM, = I (+9)

T(2) = (50)(i.5)2a = 112.5a (b)

2
Fﬁi;;:’;; = ka;}

Solving Eqs. (a) and (b) simultaneocusly yields:

o o = 2
*FBD(I) means Free—Body o = 5.73 rad/sQ
. Diagram (7).

il

T 322 1b°




Ex et S 8

string (s cub ; W=0

Fond a) Force ot © —
b) Accel 06» Ibt' A

AVJ ZF—E ”‘?,—-h\«ac. - -(2)
| 3»» (D2@) R, and Qe are unknowns

Kihew\(u’:l'cs ! =0 =0
Qo= g5+ oo% ) + DX,

Qe = o((%_ y—,> Cz)
From (1) @) 2 (2), we caw solve for
R ond o.




Example 9-2 -

A long slender log weighing 1610 1b is
used as a battering ram to knock down
a stone wall. The log is suspended by
two cables of length 10 ft attached
to the ends of the log. Determine the
speed at which the log strikes the wall

at Q 4if it is released from rest at
30° as shown. |

: 1
oo rayeaNnd

U, =T A" 1

where: U

12 W(bh) = 1610{10(1 - cos30°)} = 2157(£ft-1b)

1.2 _1
I, =5 m™W."73

l610'v2
2 C

2.
325 = 25v° (£t°1b)

9.29 ft/s

2157 = 25v> or | v




7 _Work- Ene}cg_,'y Methods toe Rigid
Rodles : 0 ’

u-rz =12~ T,
where U, = Work done m position
2 T e o P

To= k.E. at Ibcslhw 2,
T, = KE at /vosth'o*w 1.

’ | 3-<sr,/,:;4,-;'.
But Remember — Tre S AT L onos

o7 5%@@%\/
— - 2. LS
T= 'IJZ-MU‘—: T 'é_" L\ @otetion
. énefo;y
where Ue = \elocity 08- Centerr 53- mass 0o

For Fu___rg_n- rotation about a . é—txea[, ’
«

nwt O.
EOLW T= -}ZIQCO?’ holds

where T, is the moment Of Jnertia
about Z oOxis at f:ofmf' 0.




U = ff-alr : duets q.force_(o.s [)efom) 2

b2
U=[Mds = M(0-p):duera
> Moment .

Conservation oé— Snazgﬁ_
‘TI+V.='I}.+V; holds [ there

X No 6-)LLC‘[:COPL . "

tvom rest. (). | ° |

Find Velocity at 2 NG

Uiea = '“op'!” , Note that F &

o= 2, | T R do no work

TZ'-JZ--MUC+ .7..1“"6Q I, = —ZLMYZ'
o -;-,Wc?é:(-é@.@?{-‘é) - Uy
= ke




VIBRATION

/

A

/

A

/

/ F(H
/-—/\/\/\N\— N\ -
/

1

y

’ .

A J 171 7 17T 1777 7 T 77

%__.x

M + Kx = F(t)

e =n ()

W =3 (2)
" For vibration problems, we are typically concerned
with small amplitude motion and with free vibration.
For the case of free vibration, F'(t) = 0. The primary
parameter of concern for such cases is typically the
natural frequency of the system, w

n L



EXAMPLE — SIMPLE PENDULUM

Assume 8 is a small angle. Apply the relation,
> (moments) = I

Two moments are applied to the structure. The first
is due to the spring force and can be described as

T = —Krf

- The second is due to gravity and can be described
as

T. = —mglsin(6) ~ —mgll
Note: I = ml* |

Thus the equation of motion is

m!’ § + Kr6 + mglf = 0



or

0 —
+(m12+ )9 0

Comparison of the above equation with equations 1
and 2 yields: |
Kr g

W, = (

Springs in Parallel

Ky K, o
ANV AN

, K +K,)
=)

Springs in Series

LA WA N




DYNAMICS

KINEMATICS

Vector representation of motion in space: Let r(f) be the
position vector of a particle. Then the velocity is

v = dr/dt, where

<
I

the instantaneous velocity of the particle,
(length/time), and
t = time.
The acceleration is
a = dvidt = d'ridf*, where

the instantaneous acceleration of the particle,
(length/time/time). ‘

a:

Rectangular Coordinates
r=xi+yj+zk
v=dr/dt=%i+ yj+ zk
a=d*r/dt* =i+ jj+ ik, where
x=dx/dt =v,_,etc.
i=d*x[di* =a,,etc.

Transverse and Radial Components for Planar
Problems

y

PATH

0 X

Unit vectors e, and eg4 are, respectivelyv, colinear with and
normal to the position vector.

r=re,

v=re, + rfe,

a= (r ~r8? ) e, + (ré + 2fé) ey, where
r = the radius,
0 = the angle between the x-axis and 7,
F=dr/dt, etc., and
F= d2r/dt2, etc.

24

Tangential and Normal Componénts
y et

en

r PATH

Unit vectors e, and e, are, respectively, normal and tangen
to the path.

V=ve
a = (dv,/df) e, + (v/Ip) e,, where

instantaneous radius of curvature, and
tangential velocity.

p:

Vi

Plane Circular Motion

y Vi

0 X
Rotation about the origin with constant radius: The un
vectors are e, = egand e, = — e,,.

Angular velocity
0=0=v,/r
Angular acceleration

a=0=0=a,/r
s=r0
Vi =r®

Tangential acceleration
a, =roa=avl/dt

Normal acceleration

2 p)
Ca,=vilr=ro



Straight Line Motion
Constant acceleration equations:
=5, + vt + (aotz) /2
V =V, +a,t

2 2
Vo=, + 2a,(s —s,), Where

s = distance along the line traveled,

S, = aninitial distance from origin (constant),
Vo = aninitial velocity (constant),

a, = aconstant acceleration,

t = time,and

v = velocity at time z.

For a free-falling body, a, =g (downward)

Using variable velocity, v(¢)
s=s,+ [yv(t)dt
Using variable acceleration, a(f)

v=v, + [ alt)dt

PROJECTILE MOTION
y
VO

D!

0 X

(ax =0; g=-g

Ve = Vo =V, €COS O

Vy=Vyo— gt =V, sin 0 — gt

X = Vol = Vot COS O

V=Vt — g’/ 2=v,tsin B — g2
CONCEPT OF WEIGHT

W = mg, where
W =weight, N (1bf),
m = mass, kg (Ibf-sec’/ft), and

g = local acceleration of gravity, m/sec? (ft/secz).

KINETICS

Newtpﬁ's second law for a particle
Il, ( 2F = d(mv)/dt, whete

IF = the sum of the applied forces acting on the particle,

N (1bf).

For a constant mass,

2 F = mdvldt = ma

25

'DYNAMICS (continued)
One-Dimensional Motion of Particle
When referring to motion in the x-direction,
a, = F,/m, where

F, = the resultant of the applied forces in the x-direction.

F can depend on ¢, x and v, in general.

If F, depends only on ¢, then
vx (t) = va + ."8 [Fx (t,)/m] dt,
x(t)=x, +v ot +[iv () dt’

If the force is constant (independent of time, displacement,
or velocity),

a,=F,/m
V=V + (F,/mt = v,y + apt
x=Xxq + vt + F2/(2m)

=Xy + vt + at?/2

Tangential and Normal Kinetics for Planar Problems
Working with the tangential and normal directions,
2F;=ma,= mdv,/dt and
2F,=ma,=m (v,z/p)
Impulse and Momentum
Assuming the mass is constant, the equation of motion is
mdv, [dt =F,
mdv, =F dr
€)=, (0)]= [P )ar

The left side of the equation represents the change in linear
momentum of a body or particle. The right side is termed
the impulse of the force F(¢) between ¥ =0 and ¢ = ¢.

Work and Energy
Work Wis defined as
W= /Fdr
(For particle flow, see FLUID MECHANICS section.)

Kinetic Energy
The kinetic energy of a particle is the work done by an
external agent in accelerating the particle from rest to a
velocity v.

T=m?/2
In changing the velocity from v; to v,, the change in kinetic
energy is

To—Ti=mvy? /2 —mvi®/2

Potential Energy

The work done by an external agent in the presence of a
conservative field is termed the change in potential energy.




Potential Energy in Gravity Field
U= mgh, where
h = the elevation above a specified datum.

Elastic Potential Energy

For a linear elastic spring with modulus, stiffness, or spring
constant %, the force is

F,=kx, where
x = the change in length of the spring from the undeformed
length of the spring.

The potential energy stored in the spring when compressed
or extended by an amount x is

U=kx'/2
The change of potential energy in deforming a spring from
position x; to position x, is _

U,~U, =kx}[2—kx}/2

Principle of Work and Energy

If 7; and U, are kinetic energy and potential energy at state i,
then for conservative systems (no energy dissipation), the
law of conservation of energy is

U+Ti=U+ 1.

If nonconservative forces are present, then the work done by
these forces must be accounted for. \

U+Ti+Win=Up+1,
(Care must be exercised during computations to correctly
compute the algebraic sign of the work term).

Impact

Momentum is conserved while energy may or may not be
conserved. For direct central impact with no external forces

my, +m,v, =my) +m,v,, where
m,, m, = the masses of the two bodies,
v,,v, =their velocities before impact, and
v;,v5 =their velocities after impact.

For impact with dissipation of energy, the relative velocity
expression is

’ ’

v2ﬂ - vl"
e=—"—-=% where

V1, ~ V2,

e = the coefficient of restitution for the materials, and the
subscript # denotes the components normal to the plane
of impact.

Knowing e, the velocities after rebound are

»

_ myv, (1 + e)+ (m1 —em, )v1"
| =

" my +m,

= mwv, (1+¢)—(em, —m, )"2,,
;=

my +m2

26

DYNAMICS (continued)
where 0<e<],
e =1, perfectly elastic, and

e = 0, perfectly plastic (no rebound).

FRICTION
The Laws of Friction are

1. The total friction force F that can be developed is
independent of the magnitude of the area of contact.

2. The total friction force F that can be developed is
proportional to the normal force N.

3. For low velocities of sliding, the total friction force that
can be developed is practically independent of the
velocity, although experiments show that the force F
necessary to start sliding is greater than that necessary
to maintain sliding.

The formula expressing the laws of friction is
F =N, where
u = the coefficient of friction.

Static friction will be less than or equal to [, N, where [, is
the coefficient of static friction. At the point of impending
motion,

F=y Vv
When motion is present
F=u; N, where

the coefficient of kinetic friction. The value of [ is
often taken to be 75% of ;.

Belt friction is discussed in the STATICS section.

e =

MASS MOMENT OF INERTIA

L=/(+y") dm
A table listing moment of inertia formulas is available at the
end of this section for some standard shapes.

Parallel Axis Theorem
L =1.+md? where

I, = the mass moment of inertia about a specific axis (in
this case, the z-axis),

I, = the mass moment of inertia about the body's mass
center (in this case, parallel to the z-axis),

m = the mass of the body, and

d = the normal distance from the mass center to the

specific axis desired (in this case, the z-axis).

L= mrzz, where
the total mass of the body, and

the radius of gyration (in this case, about the z-
axis).



PLANE MOTION OF A RIGID BODY
For arigid body in plane motion in the x-y plane

LFy = may
XF, = may
IM, = Lo, where
¢ = the center of gravity, and
o = angular acceleration of the body.

Rotation About a Fixed Axis
XMoo= It , where
O denotes the axis about which rotation occurs.

For rotation about a fixed axis caused by a constant applied
moment M

o =M/
0w =0+ M/t
0 =0p+wpt+(M/2D)7F

The change in kinetic energy of rotation is the work done in
accelerating the rigid body from @y to @.

Iy 02— 1o 0 /2= Md®

Kinetic Energy
The kinetic energy of a body in plane motion is

T=m(% +v2,)2+1, 0?2

Instantaneous Center of Rotation

The instantaneous center of rotation for a body in plane
motion is defined as that position about which all portions of
that body are rotating.

ACH =ro, and
: v, =BCH, where
C= the instantaneous center of rotation,
0= ihe rotational velocity about C, and
AC,BC =radii determined by the geometry of the situation.

27

DYNAMICS (continued)
CENTRIFUGAL FORCE

For a rigid body (of mass m) rotating about a fixed axis, the
centrifugal force of the body at the point of rotation is

F. = mrey* = mv*/r, where

# = the distance from the center of rotation to the center

of the mass of the body.

BANKING OF CURVES (WITHOUT FRICTION)
tan @ =1*/(gr), where

@ = . the angle between the roadway surface and the
horizontal,

v = the velocity of the vehicle, and

r = the radius of the curve.

FREE VIBRATION

POSITION OF STATIC_
EQUILIBRIUM

The equation of motion is
mi = mg - k(x+6,,)

From static equilibrium

mg = kO,
where
k = the spring constant, and
0y = the static deflection of the spring supporting the

weight (mg).
The above equation of motion may now be rewritten as
mi+ kx = 0, or
i+ (k/m)x = 0.
The solution to this differential equation is
x(t)=C, cos Mt +C, sin /(k/m) ¢, where
x(®)= the displacerhent in the x-direction, and

C}, C;=constants of integration whose values depend on the
initial conditions of the problem.

The quantity /k/m is called the undamped natural

frequency w, or m, =+/k/m
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From the static deflection relation

0, =\/g/8st

The period of vibration is

1=2n/0, = 2m/m/k =2n./8,, /g

If the initial conditions are x(0) = xo and %(0)=1v,, then

x(8) = x0 o8 W, + (Vo /,) sin W,
If the initial conditions are x(0) = xo and %(0)=0, then
x(£) = xp cOS Wz,
which is the equation for simple harmonic motion where the

amplitude of vibration is xo.

Torsional Free Vibration

8+ w20=0, where

o, =k /1 =\JGJ]IL,

k. = the torsional spring constant = GJ/L,

I = the mass moment of inertia of the body,
G = the shear modulus,
J

= the area polar moment of inertia of the round shaft
cross section, and

L = the length of the round shaft.
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DYNAMICS (continued)
The solution to the equation of motion is
0 = 0,cosm, f + (éo / , ) sin®, ¢ , where

8
H

Il

the initial angle of rotation and

the initial angular velocity.

The undamped circular natural frequency of torsional
vibration is

®, =+/GJ/IL

The period of torsional vibration is

1=2n/0, = 2n\/IL/GJ



