Hydrates plug No hydrate

(A) No inhibitor Thermodynamic inhibitors
Nohydrates ~ Hydrates plug Dispersed hydrates
inshorttime  inlongtime

(C) Kinetic inhibitors (D) A-As inhjbitors

Figure 20.10 Mechanism of hydrate inhibition.
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20.4 Hydrate Remediation

Like the kinetics of hydrate formation, hydrate dissociation is a poorly understood subject and
applying laboratory observations to field predictions has proven difficult. Part of the reason is
the complicated interplay of flow, heat transfer, and phase equilibria. The dissociation
behaviour of hydrate depends on the hydrate size, porosity, permeability, volume of occluded

water, “age” of the deposit, and local conditions such as temperature, pressure, fluids in
contact with the plug, and insulation layers over the pipeline.
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Hydrate remediation techniques are similar to hydrate prevention techniques, which include,

Depressurization from two sides or one side, by reducing pressure below hydrate
pressure at ambient temperature, the hydrate will become thermodynamically unstable.

Thermodynamic inhibitors; the inhibitors can essentially melt blockages with direct
hydrate contact.

Active heating; by increasing temperature to above the hydrate dissociation temperature
and providing significant heat flow to relatively quickly dissociate a blockage.

Mechanical methods; drilling, pigging or scraping have been attempted, but are
generally not recommended. thruster or pig inserted from surface vessel with coiled
tubing through a work-over riser at launchers. Melting by jetting with MEG.

Pipeline segment replacement.

274



20.4.1 Depressurization

Depressurization is the most common technique used to remediate hydrate blockages in
production systems. Rapid depressurization should be avoided because it can result in JT
cooling, which can worsen the hydrate problem and form ice. From both safety and technical
standpoints, the preferred method to dissociate hydrates is to depressurize from both sides of
the blockage. If only one side of a blockage is depressurized, then a large pressure differential
will result across the plug, which can potentially create a high speed projectile.

When pressure surrounding a hydrate is reduced below dissociation pressure, hydrate surface
temperature will cool below seabed temperature, and heat influx from the surrounding ocean
will slowly melt the hydrate at the pipe boundary. Lowering pressure also drops hydrate
formation temperature and helps prevent more hydrates from forming in the rest of the line.
Because most gas flowlines are not insulated, hydrate dissociation can be relatively fast due to
higher heat flux from pipeline surface, as compared to an insulated or buried flowline.
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20.4.2 Thermodynamic Inhibitors

Thermodynamic inhibitors can be used to melt hydrate blockages. The difficulty of applying
inhibitors lies in getting the inhibitor in contact with the blockage. If the injection point is
located relatively close to the blockage, as may be the case in a tree or manifold, then simply
injecting the inhibitor can be effective. Injecting inhibitor may not always help with
dissociating a hydrate blockage, but it may prevent other hydrate blockages from occurring
during remediation and restart.

If the blockage can be accessed with coiled tubing, then methanol can be pumped down the
coiled tubing to the blockage. In field applications, coiled tubing has reached as far as 14800 fi
in remediation operations, and industry is currently targeting lengths of 10 miles.
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20.4.3 Active Heating

Active heating can remediate hydrate plugs by increasing temperature and heat flow to the
blockage; however, safety concerns arise when applying heat to a hydrate blockage. During
the dissociation process, gas will be released from the plug. If the gas is trapped within the
plug, then the pressure can build and potentially rupture the flowline. Heating evenly applied
to a flowline can provide a safe, effective remediation.

Active heating can remediate a block age within hours, whereas depressurization can take
days or weeks. The ability to quickly remediate hydrate blockages can enable less
conservative designs for hydrate prevention.
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20.4.4 Mechanical Methods

Pigging is not recommended for removing a hydrate plug because they can compress the plug,
which will compound the problem. If the blockage is complete, it will not be possible to drive
a pig. For a partial blockage, pigging may create a more severe blockage.
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20.4.5 Safety Considerations

Knowledge of the location and length of a hydrate blockage is very important in determining
the best approach to remediation, although the methodology is not well defined, This
information facilitates both safety considerations in terms of distance from the platform and
time necessary to dissociate the blockage.

When dissociating a hydrate blockage, operators should assume that multiple plugs may exist
both from safety and technical standpoints. The following two important safety issues shoulid
be kept in mind:

e Single sided depressurization can potentially launch a plug like a high-speed projectile

and result in ruptured flowlines, damaged equipment, release of hydrocarbons to the
environment, and/or risk to personnel.

e Actively heating a hydrate blockage needs to be done such that any gas released from
the hydrate is not trapped.
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Applications

.  Multiphase 1. Multiphase 1. Multiphase
2. Gas & Condensate 2. Gas & Condensate 2. Condensate
3. Crude Oil 3. Crmude Oil? 3. Crude Oil
Benefits

1. Robust & cffective 1. Lower OPEX/CAPEX l. Lower OPEX/CAPEX
2.  Well understood 2.  Low volumes (< 1wit%) 2,  Low volumes (< 1wt%)
3. Predictable 3. Environmentally friendly 3. Environmentally friendly
4. Proven track-record 4,  Non-toxic 4.  Non-toxic

5. Tested in gas systems 5. Wide range of subcooling

Limitations

1. Higher OPEX/CAPEX 1. Limited subcoolings (<10°C) | 1. Time dependency?
2. High volumes (10-60 wt%) 2. Time dependency 2. Shutdowns?
3. Toxic / hazardous 3.  Shutdowns 3.  Restricted to lower watercuts
4. Environmentally harmful 4 System specific — testing 4. System specific - testing
5. Volatle - losses to vapour 5.  Compatibility 5. Compatibility
6. ‘Salting out’ 6. Precipitation at higher temps | 6. Limited experience

7. Limited exp. in oil systems 7. No prediciive models

8. No predictive models
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Hydrate in the Solar system

e Ubiquitous presence in the Universe?
— CO, and CH, clathrates on Mars
— CH, clathrates on Titan

— Source of plumes on Saturn’s moon

Enceladus

— Clathrates in Halley’'s comet

W. L. Mao Stanford University
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Figure 3. Proposed progression of hydrate formation. [Modified from Brooks et al. (1986).]
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Production test of Mallik 2002 as hydrate
production research well program

March 17, 2002
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How can we recover natural gas hydrate ?

We do not yet know how to recover gas from natural hydrate. We are not aware of a
really practical proposal for how to recover methane from natural hydrate. We do know
that there are formidable technical difficulties: (a) Although the total gas amounts are
huge, most natural hydrate represents a quite low energy density; (b} substantial latent
heat must be provided for dissociation; {c) the sediments are often fine grained,
unconsolidated, and low permeability silts.

There are four main possibilities:

1. add heat and raise the temperature to out of the stahbility field

2. depressurize the section by pumping, especially within the free gas below the
BSR. The hydrate may then dissociate downward into the low pressure gas layer.
Howewver, the dissociation latent heat still must be provided

3. add antifreeze such as methanol; it may be possible to recover the methanal with
the gas for re-use

4. replace the methane in the hydrate with CO,. An intriguing possibility is to inject
the unwanted greenhouse gas CO, into natural methane hydrate deposits where it
farms CO. hydrate in exchange for methane gas which, in turn, is recovered. CO,

hydrate appears to be more energetically favourable than methane hydrate so
such a replacement should occur, This an attractive way to get rid of troublesome
CO, and recover valuable methane,

Although there are no clear answers today, it is waorth remembering that many years
were required to develop the technology for economic recovery of many other
resources; tar sands are an example. Sometimes the answers come very guickly,
sometimes only after many years. Gas hydrate is a very large potential resource, it just
needs some very bright people with new ideas to find the solutions.
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Liquid Hydrocarbons

The K-factor method is designed for calculations involving a gas and a
hydrate. In order to extend this method to liquid hydrocarbons, the vapor-
liquid K-factor should be incorporated. For the purposes of this book, these
K-factors will be denoted Ky to distinguish them from the K-factor defined
earlier. Therefore

_Ji .
K"‘xi (3-8)

¥l

where x; is the mole fraction of component i in the nonaqueous liquid.
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56 Nartural Gas Hydrates: A Guide for Engineers

Input the temperature, T.

Input the vapor compeosition, v,

Assume a value for the pressure, P.

Sat the E-factors for all nonformeras to infinity.

Given P and T, obtain K-factors from the Katz charts (or
from correlations) for the hydrate-forming components

in the mixture.

Calculate the summaticn:

Y v,

Note for nonformers the expression y/K, is zero.

7. Does the summation equal unity?
That is, does Ey,ﬂq-l?

Ta. Yes - Go to Step 10.
Tb. Ho - Go to Step B.

8. Update the pressure estimate.

Ba. If the sum is greater than 1, reduce the pressure.

Bb. If the sum is less than 1, increase the pressure.

Bc. Use caution if the sum is significantly different from 1.
9. Go to Step 4.
10. Conwvergence! Current P is the hydrate pressure.

11. sStop.

Figure 3-3. Pseudocode for performing a hydrate pressure estimation
using the Katz K-factor method
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From a thermodynamic point of view, the hydrate formation process can
be modeled as taking place in two steps. The first step 1s from pure water to
an empty hydrate cage. This first step is hypothetical, but it is useful for cal-
culation purposes. The second step is filling the hydrate lattice. The process
is as follows:

pure water (o) — empty hydrate lattice () — filled hydrate lattice (H)

The change in chemical potential for this process is given as:

H

pt = = (- pP)+ (- p®) (4-1)

where | is the chemical potential and the superscripts refer to the various
phases. The first term after the equals sign represents the stabilization of the
hydrate lattice. The variation in the models used to estimate this term sepa-
rates the various models. The second term represents a phase change for the
water and can be calculated by regular thermodynamic means. This term is
evaluated as follows:

p_,=
il S AW(T,P) _ ATy, Fo) _L: M_i dT+r ﬁ—IdP (4-2)
RT RT RT, T o RT

where R is the universal gas constant, T is the absolute temperature, P is the
pressure, H is the enthalpy, v is the molar volume, the subscript O represents
a reference state, and the A terms represent the change from a pure water
phase (either liquid or ice) to a hydrate phase (either Type I or II). The bar
over the temperature in the last term indicates that this is an average
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The first model for calculating hydrate formation was that of van der Waals
and Platteeuw (1959). They postulated a statistical model for hydrate for-
mation. The concentration of the nonwater species in the hydrate was treated
in a manner similar to the adsorption of a gas onto a solid. For a single guest
molecule, this term is evaluated as follows:

pt —pPf = RTz vin(l—Y,) (4-3)

where v, is the number of cavities of type i and Y is a probability function.
The Y is the probability that a cavity of type i is occupied by a guest mole-
cule and is given by:

_ cP
l+¢c,P

(4-4)

The c; in this equation is a function of the guest molecule and the cage occu-
pied, and P is the pressure. Although it is not obvious from this discussion,
the ¢;’s are also functions of the temperature.

296



{ Parrish and Prausnitz ]

The approach of the original van der Waals and Platteeuw (1959) method
provided a good basis for performing hydrate calculations, but it was not suf-

94  Natural Gas Hydrates: A Guide for Engineers

ficiently accurate for engineering calculations. One of the first models with
the rigor required for engineering calculations was that of Parrish and Praus-
nitz (1972). There are two major differences between the original van der
Waals and Platteeuw (1959) model and that proposed by Parrish and Praus-
nitz (1972). First, they extended the model to multicomponent mixtures of
hydrate formers, This is done as follows:

pH—pf =RTY, vifn[l -y Ym) (4-5)
i K

where the second sum is over all components. The probability function for
a component becomes:

Y. = ok (4-6)

ST+ Yo,
;
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Second, Parrish and Prausnitz (1972) replaced the partial pressure in
Equation 4-6 with the fugacity. There is no simple definition for the ther-
modynamic concept of fugacity. Usual definitions given in thermodynamics
textbooks rely on the chemical potential, which is an equally abstract
quantity. For our purposes, we can consider the fugacity as a “corrected”
pressure, which accounts for nonidealities. Substituting the fugacity
into Equation 4-6 results in:

f
- _ Gl (4-7)

Y, =
. 1+ cyf;
j

where £, is the fugacity of component i in the gaseous mixture. This allowed
their model to account for nonidealities in the gas phase and thus to extend
the model to higher pressures. In addition, some of the parameters in the
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NE and Robinson

The next major advance was the model of Ng and Robinson (1977). Their
model could be used to calculate the hydrate formation in equilibria with a
hydrocarbon liquid. First this required an evaluation of the change in enthalpy
and change in volume in Equation 4-2, or at least an equivalent version of
this equation.

In the model of Ng and Robinson (1977), the fugacities were calculated
using the equation of state of Peng and Robinson (1976). This equation of
state is applicable to both gases and the nonaqueous liquid. Again, small
adjustments were made to the parameters in the model to reflect the switch
to the Peng-Robinson equation. Similarly, the Soave (1972) or any other
equation of state applicable to both the gas and liquid could be used; however,
the Soave and Peng-Robinson equations (or modifications of them) have
become the workhorses of this industry.

It is important to note that later versions of the Parrish and Prausnitz
method were also designed to be applicable to systems containing liquid
formers.
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| Calculations I

Now that one has these equations, how does the calculation proceed? For
now we only consider the conditions for incipient solid formation. For
example, given the temperature, at what pressure will a hydrate form for a
given mixture?

96 Natural Gas Hydrates: A Guide for Engineers

First you perform the calculations assuming the type of hydrate formed.
Use the equations outlined previously to calculate the free energy change for

this process. This is an iterative procedure that continues until the following
is satisfied:

].ln_l.-l-“=ﬂ'
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Commercial Software Packages

Several software packages that are dedicated to hydrate calculations are
available. Two of these are EQUI-PHASE Hydrate from D.B. Robinson and

98 Natural Gas Hydrates: A Guide for Engineers

Associates in Edmonton, Alberta, and a program by INFOCHEM in London,
England. Also, the package CSMHYD is available with the book by Profes-
sor E.D. Sloan (Sloan, 1998) or by contacting him directly at the Colorado
School of Mines in Golden, Colorado.

Most of the popular, general-purpose process simulation programs
include the capability to predict hydrate formation. This often includes warn-
mgs about streams where hydrate formation is possible. These include Hysys
from Hyprotech (Calgary, Alberta), Prosim from Bryan Research & Engi-
neering (Bryan, Texas), and Aspen from Aspen Technology (Cambridge,
Massachusetts).
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Figure 4-2. Hydrate locus for methane (points from correlation)
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At pressure greater than 10MPa, none of the three software packages is
highly accurate. EQUI-PHASE Hydrate predicts a hydrate temperature that
is consistently less than the correlation. At extreme pressures, the error is as
much as 1°C. On the other hand, both Prosim and CSMHYD predict that the
hydrate forms at higher temperatures than the correlation. At very high pres-
sure, the errors from Prosim become quite large. For example, at 50 MPa
(7,250 psia), the difference is larger than 2°C. With CSMHYD, for pressure
up to 50MPa, the errors are less than 2°C; however, as the pressure contin-
ues to increase, so does the observed error.
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Ethane

Figure 4-3 shows the hydrate locus for pure ethane. This figure demon-
strates that this locus is different from that of methane. First, ethane tends to
form a hydrate at a lower pressure than methane. More significantly,

] ]
[4] 2 4 -] 8 10 12 14 16 18 20
Temperature (*C)

Figure 4-3. Hydrate loci of ethane (points from correlation)
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104 Natural Gas Hydrates: A Guide for Engineers
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Figure 4-6. Hydrate locus for a synthetic natural gas mixture

(CH_.q. 9?.25 ll]ﬂl%, C:H‘ 1.42—3"’&, CQHI l.ﬂﬂ".-"’n, I"C.;H[ﬁ ﬂ.25%}

305



306



Table 8-1

Molar Masses of Some Hydrates at 0°C

Saturation

Hydrate Molar Mass
Type Small | Large (g/mol)
Methane I 0.8723 | 0.9730 17.74
Ethane I 0.0000 | 0.9864 19.39
Propane i 0.0000 | 0.9987 19.46
Isobutane 11 0.0000 | 0.9987 20.24
CO, I 0.7295 | 0.9813 21.59
H,S I 0.9075 | 0.9707 20.87

Note: Calculated using Equation 8-1.

The saturation values were calculated using
CSMHYD.
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A i

M

[ 5]
Ny+2 3 Y,V
1 i=1

where Ny is the number of water molecules per unit cell (46 for Type |
and 136 for Type II), My is the molar mass of water, Y;; is the fractional
occupancy of cavities of type i by component j, v; is the number of type i
cavities, n is the number of cavity types (2 for both Type I and II, but 3 for
Type H), and c is the number of components in the cell.
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I Density I

The density of a hydrate, p, can be calculated using the following formula;

NuMy + 3 3 Vv M,
_ i1 il )
- Y (8-2)

cell

P

where Ny, 1s the number of water molecules per unit cell (46 for Type 1 and
136 for Type II), N, is Avogadro’s number (6.023 x 10 molecules/mole),
My 15 the melar mass of water, Y;; is the fractional occupancy of cavities of
type i by component j, v; is the number of type i cavities, V.. is the volume
of the unit cell (see Table 2-1), n is the number of cavity types (2 for both
Types I and II, but 3 for Type H), and c is the number of components in the
cell.

Equation 8-2 can be reduced for a single component in either a Type I
or Type Il hydrate to:

_ NgMy +(Yv, + Y,v, )M,

(8-3)
NA. vnnll
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Table 8-2
Densities of Some Hydrates at 0°C

Hydrate | Density | Density

Type | (g/fem®) | (Ib/ft)
Methane I 0.913 57.0
Ethane I 0.967 60.3
Propane Il 0.899 56.1
Isobutane Il 0.934 58.3
CO, I 1.107 69.1
H.S I 1.046 65.3
Ice — 0.917 57.2
Water — 1.000 62.4

Note: Calculated using Equation 8-3.
The saturation values were calcu-
lated using CSMHYD.
Properties of ice and water from
Keenan et al. (1978).
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Table 8-3
Enthalpies of Fusion for Some Gas Hydrates

Hydrate | Enthalpy | Enthalpy | Enthalpy of
Type | of Fusion | of Fusion Fusion

&Jg) | (k¥mol) | (MBtub)

Methane I 3.06 54.2 233
Ethane I 3.70 71.8 30.9
Propane 11 6.64 12%.2 55.5
Isobutane 11 6.58 133.2 573
Ice - 0.333 6.01 143

Note: Original values from Sloan (1998). Molar enthalpies of
fusion converted to specific values (i.e., per unit mass) using
the molar masses from Table 8-1.

Properties of ice and water from Keenan et al. (1978).

to a gas). For water, this is 2,83 kJ/g or 51.0kJ/mol. This process is prob-
ably more comparable to the formation of a hydrate than the simple melting
of ice.

One method for estimating the effect of temperature on the heat of
fusion is the so-called Clapeyron approach. A Clapeyron-type equation is
applied to the three-phase locus. The Clapeyron-type equation used in this
application is:

dinP _ AH

—= 8-4
d)T =zR &4
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[ Heat Capacity |

Limited experimental data are available for the heat capacity of hydrates.
Table 8-4 lists some values. For comparison, ice is also included in this table.
Ower the narrow range of temperatures that hydrates can exist, it is probably
safe to assume that these values are constants.

| Thermal Conductivity |

There have been limited studies into the thermal conductivity of hydrates;
however, they show that hydrates are much less conductive than ice. The
thermal conductivity of ice is 2.2 W/m K, whereas the thermal conductivities
of hydrates of hydrocarbons are in the range 0.50 £ 0,01 W/m-K.

| Mechanical Properties _l

[n general, the mechanical properties of hydrates are comparable to those of
ice, In the absence of additional information, it is safe to assume that the
mechanical properties of the hydrate equal those of ice. One should not

Table 8-4
Heat Capacities for Some Gas Hydrates
Hydrate Heat Heat Heat
Type | Capacity | Capacity | Capacity
(J/g-°C) | (J/mol-°C) | (Btw/h-*F)
Methane 1 225 40 0.54
Ethane 1 2.2 43 0.53
Propane I 22 43 0.53
Isobutane Il 22 45 0.53
lce - 2.06 371 0.492
Note: Original values from Makogon {15997).
Properties of ice and water from Keenan et al. (1978).
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| Volume of Gas in Hydrate |

The purpose of this section 1s to demonstrate the volume of gas encaged in
a hydrate. Therefore, we examine only the methane hydrate.

The following are the properties of the methane hydrate at 0°C: the
density is #13kg/m’, the molar mass (molecular weight) is 17,74 kg/kmol,
and methane concentration is 14.]1 mole percent; this means there are 141
molecules of methane per 859 molecules of water in the methane hydrate.
The density and the molar mass are from earlier in this chapter and the
concentration is from Chapter 2,

This information can be used to determine the volume of gas in the
methane hydrate, From the density, 1 m® of hydrate has a mass of 913 kg,
Converting this to moles 913/17.74 = 51.45kmol of hydrate, of which
7.257 kmol are methane,

The ideal gas law can be used to calculate the volume of gas when
expanded to standard conditions (15°C and 1atm or 101.325kPa).

V =nRT/P = (7.257)(8.314)(15+273)/101.325 =171.55m’

Therefore 1m* of hydrate containg about 1708m’ of methane gas. Or in
American Engineering Units, this converts to 1 ft' of hydrate contains 170
SCF of gas—not a difficult conversion. And 1 ft* of hydrate weighs about
14.61b, so 11b of hydrate contains 11.6 SCF of methane.

By comparison, 1m’ of liquid methane (at its boiling point 111.7K
or =161.5°C) contains 26.33kmol, which converts to 622m’ of gas at
standard conditions. Alternately, 1m’ compressed methane at 7MPa and
300K (27°C) (1,015psia and 80°F) contains 3.15kmol or 74.45m’ of
methane gas. The properties of pure methane are from Wagner and de Reuck
(1996),

To leok at this another way, to store 25,0008m® (0.88 MMSCF) of
methane requires about 150m® (5,300 ft") of hydrates. This compares with
40m’ (14004 of liquefied methane or 335m’ (11,900 f) of compressed
methane,
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Session 15:
Pigging and Slug Catchers
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Different flow pattern in a vertical flow
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Fig. 4.21—Flow patterns in upward two-phase flow.3? {Repro-
duced with permission of the American Inst. of Chemical Engi-
neers.)

315



Different flow pattern in a horizontal flow
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Hydrodynamic parameters in a slug flow
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vgL = superficial liquid velocity
Vvgg = superficial gas velocity
v s = in-situ liquid velocity in liquid slug
vgLs = in-situ gas velocity in liquid slug
virae = in-situ liguid velocity in liguid film
vgra = in-situ gas velocity in Taylor bubble
vrg = Taylor-bubble transitional velocity
Hus = liguid holdup in liquid siug
Lis = length of liquid slug
Ly = length of liquid film
Lgy = length of slug unit

Fig. 4.25—Fully developed slug flow.57
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Total pressure gradient as a function of slug
parameters.

E] = p,. (5'5) 4,208
(dL . Poisg Loy ® "ot (&, )

where the slip density for the gas/liquid mixture in the liguid slug is
Pis = pHpys +pdl — Hyg). oo (4.299)

The acceleration pressure-gradient component is related o the
amount of energy required to accelerate the liquid film, which is ini-
tially flowing downward, to the existing upward in-situ liquid ve-
locity in the liquid slug.

H
(:PL] = LT wury + violvam + vus) - (4.300)

For a fully developed Taylor bubble, Hy rg and v; 7 are the average
liquid holdup and film velocity in the entire film zone, respectively.
The friction pressure gradient is obtained from

dp 2 2L,
[E)J’ = Tmpi_g[psar + vl (}-ﬁ) ............. (4.301)

where the Fanning friction factor, f', is determined by the method
presented in Chap. 2. The corresponding Reynolds number for the
slug body is determined by Eq. 4.280, where p4pis replaced by p, .
the slug-body slip density given by Eq. 4,299,

The total pressure gradient for the slug-flow pattern then can be
expressed by combining Eqgs. 4.298 through 4,301 to obtain

2 2
(%‘E)r = [_d,, Pus\vsg + Vﬂ] Lig + pisglys

; 1
+ o g(vigs + viglvem + "u.s}]faw-

................... (4.302)
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Various types of slugs

Terrain slugs
Hydrodynamic slugs
Riser based slugs

Pigging slugs
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Why slug flow?
Frequently observed
Leads to higher pressure gradient
Causes Mechanical damage
Can decrease the production rate

Leads to a chaotic and intermittent flow
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At Low How Rates Liquid Accumulates in the Flowline Increasing the

Pressure Drop
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Liquid Holdup Depends on Flowline Geometry and Flowrate

0.80
sesee Flowrate = 16 kg/s
0.50 eese0 Flowrate = 32 kg/s
46440 Flowrate = 65 kg/s
0.40
A - \
~
= 0.30
o N
0.20
J %
0.10 Pt
- :
J/ 1
0-00 T I T | 1 1 T | L | !
-5.00 0.00 5.00 10.00 15.00 20.00 25.00

Inclination of Pipe, Deg
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Liquid Holdup Can Lead to Liquid Slugging

There are two types of slugging:
— Hydrodynamic: Induced by the holdup and superficial velocities
— Terrain: Induced by geometry changes in which liquid can accumulate

* In Real Flowlines, Hydrodynamic and Terrain Slugs Can Interact:
— Difficult to predict slug length and frequency

« Slugging can lead to surges of liquid that can overwhelm slugcatchers
« Liquid holdup leads to increased pressure drops and reduced flow

» Pigs can be used to periodically remove liquid from the flowline
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Hydrodynamic Slugging is Predicted by a Flow Map

Slug flow region
shrinks with

T increasing
R pressure
|
{m;’ssec}
S
.
~ ™
2 |— ‘" S
Y
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Bind =y J‘-—. Y
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A Y
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1} \
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/ Bl |
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N r : | : | \ | : |
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Hydrodynamic Slugging Depends on the Inclination of the Howline

Upward flow
increases slug
flow region

| ! L
6 8 10
Usg(m/sec) ——>

P = 45 bar
Visc = medium
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Hydrodynamic Slugging is Well Understood

The frequency of hydrodynamic slugging can be estimated from the Shea
correlation:

0.68-UsL
FsL = N
FsL = slug frequency (1/s) (= no of slugs/observation time

period)
D = pipeline diameter (m)
L = pipeline length (m)

UsL = superficial liquid velocity (m/s)

Mild terrain effects can be accounted for with a fudge factor “Delay Constant”

Shea, R.H., Rasmussen, J., Hedne, P. and Malnes, D.: Holdup predictions for wet-gas pipelines compared.
Oil & Gas Journal, May 19, 1997
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Terrain Slugging is More Complex

Terrain or “severe” slugging causes large surges in pressure and liquid
A: Liquid bridges a low spot in the flowline
B: Upstream pressure builds up

C: Pressure pushes liquid accumulation out of the low spot

D: The pressure accumulation is released

A. Slug formation B.Slug production  C. Gas penetration  D. Gas blow-down

SIS N )
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Terrain Slugging is often Periodic

Often characterized by a buildup and release of the liquid

150

[y
=
=

Liquid Flow Rate (m3/h)

TOTAL LIQUID VOLUME FLOW FLOWLINE-RISER, PIPE 7,3 [m3/h]

| Rellease | | |
v
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UJ L
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5.
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Hydrodynamic Slugs Can Interact with the Terrain Slugs

pipe | N pipe 2 pipc 3

Ty
o D

a.-terrain effect and slueg-slug interaction

N

Slug Length

b.-slug distribution

Frequency
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Slugging can be Induced by Transient Operations

Rate Changes: Restart:
» Increasing flowrate reduces holdup e During shutin, liquid settles in dips
[nitial

O/ Ao
—

Liquid Inventory

A-Liqud Distribution After Sltdown
Amount
removed Final
amount . . g8
: Liquid licuid
o) Slug

Flowrate

Gas Production Rate

B-(zas and Liquid Outlct Flow




Modeling Slug Flow

* Accurate modeling slug formation and behavior is complex
» Requires tracking of the slug front and tail of each slug

e Slugs grow in inclined flow and shrink in declined flow

Front Tall Front

o o ® /I o ° ) O
' (] =
. - = o ] o

L

Separated flow :Dispersed bubble:
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Without “Slugtracking” OLGA is Poor at Predicting Slug Length and
Frequency

1 (250m) 2 (280m) 3 (420m)
1.0 — 1.0
R
0.8} ! 0.8
0.6} EE 0.6
o 0.4 = ,::":'\ %Illﬂ.
o2 TN T o] 02
I i I L L i I [
D'Dﬂ 20 s.lu slu 80 00 20 40 60 80

Time (s) Time (s] Time (s)

t=0 12 3

Slug tracking Standad OLGA Exp. SINTEF
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Slug catches: a simple multiphase
separator
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Often the largest
part of a gas
terminal.

Must be able to
catch the largest
slugs from the
pipeline and allow
time for the liquid to
be processed.

el g II.‘;IILI'
/ Slugeatch
oy U atgh

h'ﬂ

O '-'}_:a'.l C




Horizontal
Slug Catcher Vessel

Can give small particle separation (10

microns) where there is more liquid and

lower gas flow.

« Useful as three phase separator.

« Becomes expensive and heavy when
large sizes are required.

« Good separation up to 5- 700 bbls. slug

Size.
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GAS OUT

COALESCER

IMPINGEMENT

__LEVEL
CONTROLS

LiQuo out

Vertical
Slug Catcher Vessel

« Useful where small particle separation
(10 microns) is required and gas flow is
large in relation to liquid slug size.

« Equipment is expensive and heavy when
large sizes are required.

« Good separation — usefulup to 5 - 700
bbls. slug size.
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GAS OUT

GAS - IMPINGEMENT LEVEL CONT
N > BAFFLE I VEL SNk

TF

e

LigunD ouT

« Very economical where small liquid slugs
are to be caught.

« Particle separation is poor and relatively
unpredictable.

« (Catches slugs up to 150 - 200 bbls.

Pipe Fitting Type
Slug Catcher

This type of separation equipment typically has
an impingement plate to knock out bulk liquids
and a vertical column to form a gravity type
separator, but it usually has insufficient area to
effectively remove small particles. Narmally, it
15 just used to catch the slugs of liquid and hold
them. For economic reasons, these slug
catchers are usually designed as pipe and
fittings, rather than as pressure vessels.

The pipe fitting type slug catcher provides
good slug separation and slug storage volume
at a reasonable cost. Small particle separation
IS poor, but it improves at low flow rates. A slug
catcher of this type can be used to protect a
centrifugal type separator and the combination
will give separation and slug storage capacity.
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Harp type slug catcher

Slug Catcher Anatomy

Dry Gas Risers

Dry Gas Out The separator/slug catcher consists of several

I modules — distribution header, separation
s storage Chambers, dry gas risers, storage harps, and
Manifold  iquids and sludge manifolds.

Separation
Chambers

The distribution manifold takes the incoming
gas/liquid stream, slows it down, and splits it
into several smaller streams to allow uniform
B it flow into the separation chambers.

Two Phase In
In the separation chambers, the majority of

the gas liquid separation is accomplished. The required length, size and number of these
chambers is a combined function of gas flow, gas chemistry and other known conditions.
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The Slug catcher for Troll has a Capacity of 2400 m3
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Pigging
» Gas lines in particular are periodically pigged to remove accumulated liquid

« The large liquid slug is caught in a large separator called a “Slug Catcher”

Flow

Pig
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Types of Pigs

Spheres:
— Easy to handle.
— Can be re-inflated to compensate for wear.
— Negotiate irregular bends.
— Little energy for movement < 2psi.

Foam Pigs:
— Inexpensive and versatile.
— Can be fitted with brushes to remove deposits.

Steel Pigs:

— Durable with replaceable sealing elements.
— Can also be equipped with brushes and blades.

Solid-Cast Pigs:
— Light in weight, allow for longer and more efficient sealing.
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Simulation Sciences Inc.

PRESENTS

PIPEPHASE
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PIPEPHASE provides engineers
with a graphical environment for
developing and executing

oil & gas production

hetwork models.
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PIPEPHASE benefits:

Analysis of Multiphase Flow Systems
Field-Wide Network Simulation

Time-Dependent Production Planning
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Wword Excel
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B Simulation Sciences ine, PIpEPHase GAEIEUENES BN

File Edit View General Special Features Results Help
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Simulation Sciences Inc. PIPEPHASE
|SI/-8 Edit View General Special Features Hesults Help

el s 2 [ B ] ] 20 [ = e [ [

Open Existing Simulation...

Edit Keyword File...
Import Keyword File...

Copy Simulation...
Delete Simulation...
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=] “Simulation Sciences Inc. PIPEPHASE  |2Z|=8| B |& e T-]=]

File Edit Yiew General Special Features BResults Help
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Create Mew Simulation

Cumrent Directory: Exizting Simulations:

demol

L Create Directory ]

To create a new

CASIMSCIVPPHASEAUSER simulation, enter
: : the name of the
Simulation Name: || | simulation file.

|. 1] 4 J | Cancel J | Help ]
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=] Simulation Sciences Inc. PIPEPHASE 2z |=8| B = e [ ]2 ]
Eileﬁ.ﬁdit View General Special Features Hesults Help
iy
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Current Directory: Exizting Simulations: hi

demol

L Create Directory |

FIFEPHASE will take a

CASIMSCIAPPHASEAUSER few seconds to confiqure
a database for a new
Simulation Name:  [DEM02 | project file.

I DK I |Ean-::e| ] | Help I
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File
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Project ||

User |
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Site |

Dezcrption
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|. Cancel I

PIPEPHASE will take a
few seconds to configure
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project file.

i

B |
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Input Check Only
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=] SimSci PIPEPHASE Simulation: DEMO2 e BN EN =R
File Edit Yiew General Special Features Hesults Help
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Simulation Definition +
Simulation Type [T RN E Set up the simulation model B
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Fluid Type |Blackuil lt- * Single-Link Model
* Network Model or
|Hiued [@, * single-Well Gas-Lift Analysis

L] Input Check Only
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System Petoleun |}

Temperature | F I i]
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Suitable defaults for

% pressure and temperature

limits and segment options
are provided.
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The experienced user can
set parameters to help
convergence - suitable
defaults are pre-set for

the novice user.
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Global default values are
used throughout the entire
simulation for the devices.
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Global default values are
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Global Defaults
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i 131 =1

{® Absolute |1_8000e-003 |in

Flow Efficiency %
Tranzition Re | 0K l |Ean-::e| l | Help ]

Air Heat Transfer...

~ Preszure Drop Method Defaults = |[" Thermal Delaults
{Flow Correlations._ | _ I Heat Transfer Defaults._ .. | =1
| Palmer Cormrections. .. l Heat Transfer Coefficients... | —
| Ingide Diameters... ] Soil Heat Transfer... J

|
|
Flow Device Inside Roughness = | I Water Heat Transfer...
|
|

Pipe Heat Transfer...

Global default values are
used throughout the entire
simulation for the devices.
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I Palmer Comrections... J | Heat Transfer Coefficients. .. ] |
| Inside Diameters... 1 | Soil Heat Transfer... ,|
Flow Device Inside Roughness — [ Water Heat Transfer._. ]
® Absolute [1.8000e-003 |in : -
| Air Heat Transfer._. J
| Pipe Heat Transfer... ]
Flow Efficiency %
Transition Re 3000 | 0K ] | Cancel ] | Help 1
Global default values are
used throughout the entire
simulation for the devices.
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A wide selection of
empirical correlations and
mechanistic methods.
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A wide selection of
empirical correlations and
mechanistic methods.
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A wide selection of
empirical correlations and
mechanistic methods.

410



= SimSci PIPEPHASE Simulation: DEM02 |22 |58 @&t [=[=]

Global Defaults

File Edit Y¥Yiew General S5pecial Features PBesults Help
R[S

[ Pressure Drop Method Defaults = |[” Thermal Defaults
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|
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Air Heat Transfer...

Pipe Heat Transfer...

Fipe and tubing
schedule information
are taken from industry -
standard databases.
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Fipe and tubing
schedule information
are taken from industry -
standard databases.
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Fipe and tubing
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Pipe and tubing
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are taken from industry -
standard databases.
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Global Defaults...

The level of detail on the
output report can be
controlled.
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Glohal Defaults...

The level of detail on the
output report can be
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| Lay down the nodes on the |}
" flow diagram by selecting
the appropriate icon from
the tool bar.
]
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Add SOURCE to flowsheet

SEA]

' Lay down the nodes on the
flow diagram by selecting

the appropriate icon from
the tool bar.
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Add JUNCTION to flowsheet
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| Lay down the nodes on the

. flow diagram by selecting
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the tool bar.
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Add SINK to flowsheet

Awell is a "source”, while
a delivery is a "sink".
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Connect the links |

by clicking on the inlet
node and dragging
to the outlet.
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Connect the links -
by clicking on the inlet
node and dragging
to the outlet.
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Connect the links
by clicking on the inlet
node and dragging
to the outlet.
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Connect the links
by clicking on the inlet
node and dragging
to the outlet.
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Gaz / Oil Ratio ft3/bbl

I

Water Cut F4

L] | Well Tosh Baba ]

[] Dizable Source ]84
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5imSci PIPEPHASE Simulation: DEMO2

Source Hame

Black Qil Source

™ Mandatory Data

Gaz / 0il Ratio
W ater Cut

ft3/bbl
%

 Pressure ™ Enthalpy
{® Fixed 2100 psig Temperature F
) Estimated I:I

~ Oil Flow R ate [~ Properties
* Fized |:| ® PYT Property Set
® Estimated |7000 bbl/day e, [%Em Hutwonos Somos 1

[} | wWhed Feat Data

] Disable Source

AR

Cancel |

B |
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SimSci PIPEPHASE Simulation: DEMOZ2

File Edit View General 3Special Features Hesults Help

] (3 = R R I 5 ] S [ = =
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SimSci PIPEPHASE Simulation: DEMO2 |27 28] B |2 |8 ]+ [ <]
Black D-il Source

Source Name S002

When a pressure is
™ Mandatory Data

specified. the flowrate

F'IES_SUIE _ Enthalpy is estimated. Better E
® Fized psig Temper: estimates enable I

rapid convergence
for large networks.

) Estimated

[~ 01l Flow Rate ™ Properties
) Fixed ® PYT Property Set
@ Estimated bbl/day ) |§.§<m Hodaonne oo 1

GGas / Oil Ratio ft3/bbl

L

Water Cut .4

O | Wil faak Srata ~]

[] Disable Source

=
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3im5ci PIPEPHASE Simulation: DEMOZ

2|5 &=

o

L=eaE

Source Hame

Black Qil Source

- Mandatory Data

Gas / 0il Ratwo

Water Cut

ft3/bbl
-4

~ Pressure ~ Enthalpy
® Fixed 2600 psig Temperature 125 F
) Estimated I:I

 Oil Flow R ate [ Properties
() Fixed |:| {® PVT Property Set _i_i
@ E ztimated bbl/day {::) | fiow Habemnes Sonies j

[] | Whed Feat Data

|:| Dizable 5ource

=
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Cancel |
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SimSci PIPEPHASE Simulation: DEM02  pap il BN

-E“E Edit View General 5pecial Features Results Help

mEFEE R E R E E E F e ErE E E A E R E

Enter reservoir decline
data for time stepping.
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=
et

B |
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| File

Edit Yiew General necial Feature Besults  Help

; zd e ENEN S B

CREEERE -

Time Stepping...

2] |z o=l = P 5 [

Beservoir Database...
Flow Ik ice Size Database...

Enter reservoir decline
data for time stepping.

l

B |
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File Edit Yiew General

I =3 =150 ] R |

Case Study...

Results Help

Time Stepping...

Besersoir Database...
Elow Ik ice Size Database...

Ll ]

1 =

18873

Enter reservoir decline
data for time stepping.
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=] SimSci PIPEPHASE Simulation: DEM02 |2 |28] B & |t=] - [ <]

File Edit View General Special Features Hesults Help .

B ReserwoirDawbase ______|=)jm A | ]

Rezervonr Mame / Deszcrphion

Ii
LI+

Edr |

Dedate |

DB+

I K="

Enter reservoir decline
data for time stepping.
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=] SimSci PIPEPHASE Simulation: DEM02 22|28 Bl = (e |- [4]

File Edit VYiew General Special Features Results Help

.D Reservoir Database ] Iﬁ”@l ]gl

Reszservoir Mame / Description

Heservoir Data +|

Rezervonr Hame RCO1

= I
m
x
=]
|

Rezervoir Dezcription

Production Basis |l]i| and Water Standard \Fulumelt_]
Cumulative Production III bbl
Reservoir Decline Cumulative production
@ Decline Curve Ei*er Data.__ would be zero for a
| mﬂ | new field.
'D PR Bachnes Hade

R

oA+

L] 3 fias e Place

ok ]| | _cencel |

1]
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Reservoir Decline Curve

| WorkSheet Modify Add {ﬁer Help
Reservoir ﬁremure ipsigl Cumulative Production {bblj
1 2600.000 0|

Enter reservoir pressure
decline as a function of
cumulative production.
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Reservoir Decline Curve Br | 25| B = | _
ﬂﬂkﬂhﬂﬂt Modify Add After F1=Help
i Reservoir Pressure (psig) Cumulative Production {bhl)
1 2600.000 0.000
2 1800.000 5I]I]I]I]I]I]I]|
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Reservoir Decline Curve | = | ]
prpLeldAl Modify  Add After F1=Help

Reservoir Pressure {psig) Cumulative Production {bbl)
Delete | 2600.000 0.000
Cancel |1800.000 50000000
Info
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WorkSheet

Modity Add After

Reservoir Decline Curve

Reservoir Pressure [psig)

Cumulative Production {bhl)

Delete | 2600.000 0.000
Cancel |1800.000 Lo000000
Info
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= SimSci PIPEPHASE Simulation: DEMO2

zrizsl e = e - 1]

File Edit Yiew General Special Features Hesults Help

T N = = 2 | 5]

Heservonr Hame / Descrnption

RCO1-DEMO

Delete |
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| SimSci PIPEPHASE Simulation: DEMO?2
File Edit View General Special Features RBesults Help

D= |Gl =] A |- |Sl-] 2]E| ]e][2{E]E] 2 0] 0]S)]

Double-click on a link -
to enter device data
for that link.

Ll
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Link <L001> Device Data
OK ! | [
— > Click on the "IPR" device
ancel| S8 S S icon and a data entry
S window for reservoir inflow
Edit performance data
= automatically pops up.
Delete
Copy
Paste
|
Link
Help
| =
From Node Type: SOURCE Desc:
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Link |

Help |

Link <L001> Device Data EAEAEIE

Inflow Performance Relationship
IPR Name

IPR Model |Vogel

el =

|
Deliverability Basis  [oil |

|_ PR Model Data... J

| Decline Data... ]

| Advanced IPR Options.__ l

|1 (1] 4 J |_Ean-::el_:| | Help |

Click on the "IPR" device
icon and a data entry
window for reservoir inflow
performance data
automatically pops up.

llae| Banlicy] © 1672

8 ] el M L | R Py Py

Device#=1 MName: E0D01 Type: IPR DEVICE

Desc: INCOMPLETE
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Link <L001> Device Data

0K Inflow Performance Relationship
ancell | PR Name
IPR Model [Vogel ¥ Mote the choice of IPR
Edit ' A aduck it T +1 methods. IPR data is for
Deliverabili = the connected well.
; Fetkovich Gas Flow =
e Lamina Inertil Turbulent ¥
.Qﬂp‘y’ | | Declim_a Data... J| {@ Q
Paste | | Advanced IPR Options... ] -T::[: -Tf“i%
*ip
DK | | Cancel ] | Help ] .’@,
Link Eal] a5
Help . G_'E’. [}
DPDT:
e
ke’ B
Device#=1 Name: E001 Type: IPR DEVICE Desc: INCOMPLETE
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Link <LD01> Device Data

SIS

oK | Inflow Performance Relationship
1| wanN FrTTE -

ancel] IPR - Productivity Index Data

— || IPRM

Edit IPR Name EOO1

= Delive

Productivity Index bbl/day/pzig

Delete]
—
Lopy
Paste

;‘ | T i |

| Cancel ] | Help ]

IFR Devica

Link |

Help |

Device#=1 MName: E001 Type: IPR DEVICE

Desc: INCOMPLETE
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Link <L001> Device Data

Link |

Help |

| Inflow Performance Relationship

IPR Name

IPR Model |Productivity Index

|4

=l el
4= |
e iR

Deliverability Basis  [0il

2 |2

IFE Devicz

PR Model Data._.j_

| Decline Data... ]

r

| Advanced IPR Optiohs... |

|1 oK J |_Ean-::ell:| | Help |

PIPEPHASE has the
capacity to simulate
production decline with
the time stepping feature.

SEEREEER

Gl | Buanli] & |ar

n

Devicet=1 MName: E001 Twype: IPH DEVICE

Desc: INCOMPLETE
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Link <L001> Device Data EdE T E e
IPF Devica

Inflow Performance Belationship
IPR - Decline Data

oK
al‘l[:t:|; IFE:N.
Fiiicti] IPRE HName EOO1

IPR W

Edit - Production Decline E one ;
i —— Delive
Delete] I

— PIPEPHASE has the

0 capacity to simulate
nﬂu None production decline with {ﬂ :E:l:
Paste the time stepping feature. _T:': 'Tl_"':lv'

Q i | | |
z
=

Link @ 0:‘6

ﬂelp_ CE’ []'

|

t?
=

(o | [Comwa] [Hew | R [

Device#=1 MName: E001 Type: IPR DEVICE Desc: INCOMPLETE
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| Link <L001> Device Data |z 28| J%ﬁ’j =
2
0K Inflow Performance Relationship R .
e IPR - Decline Data Ar
ancel IR I
=] IPR Hame EODO] %
1| IPEM
Edit . _— Production Decline |Emup Decline Model |i] ﬂ%
Delete. Reservoinr Group |11 ]
- - [ Abandonment Pregsure Em :I psig
Lopy | [ Fluid Decline Basis o] ol 'tl'
Eﬂste; [ Production Basis is 0il and Water Standard Yolume .T:l.l.TEq:':
e 1 Cumulative Production = 0.000 bbl
*p
T i*@*
Link *@} c':é
Help 0:61 [}
DPDT
ok_] [ coneet | [ Heb | ay I
G‘E‘) 1=t
.{.-:
Device#=1 MName: E001 Type: IPR DEVICE Desc: INCOMPLETE

455



Link <LD01> Device Data

- - - PR Devis
0K Inflow Performance Helationship
I IPR - Decline Data
ancel IREN
s IPRE Hame EOO1
i IPR M
Edit Production Decline |Eruup Decline Model |1]
— Delive
Delete| Rezervor Group E
— [ Abandonment Prezsure T pEig
Copy | [ Fluid Decline Basis [None B
Paste [ Production Basiz iz 0il and Water Standard ¥olume = =
1 Cumulative Production = 0.000 bbl : :
Decline basis may be
oM reservoir pressure or
cumulative production.
Link _ *@;’ EE’
Help CE’ [}
DPOT
] (o] [ by s
& i<t
Device#=1 MName: E001 Type: IPR DEVICE Desc: INCOMPLETE
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Link <L001> Device Data

|2 |25| 8| |02

] - - PR Devica
0K Inflow Performance Relationship
e IPR - Decline Data
an-::el:i AEEhR
i IPR Hame EDO1
IPE M
Edit Production Decline |Emup Decline Model |1:]
Delive;
Delete Reszervoir Group E
—_ [ Abandonment Prezsure 1200 pEig
Lopy | [ Fluid Decline Basis None ry
Paste [ Production Basis is Oil and = =
e Cumulative Production = 0.0| Cymulative Production Decline basis may be
oK resensoir pressure or
cumulative production.
Link Lhlco
Help . 0:6. [}
DPOT
Ok | Cancel ] | Help ‘ Il [?
af‘:;l{x& =
Devicelt=1 MName: E001 Type: IPR DEVICE Desc: INCOMPLETE
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Link <L0O01> Device Data

=] |+

=
-~

Eaﬂce[

Edit

Delete!

Copy

Paste

Link

Help

. Inflow Perdformance Belationship
IPR - Decline Data T

IPF Dewice

&=

)

=
&

IPR M

IPRE Mame EDO1
IPR W

Production Decline
Delive

|Eruup Decline Model |i1

Mt
e
g

Rezervoir Group

Abandonment Pressure

EIE

Fluid Decline Basis |Reservoir

Prezsure | ¥ 1

Cumulative Production = ﬂ.wﬂ bbl

Heservoir Gasz/0il

Q Y N [

Production Basiz iz Oil and W ater Standard Yolume

&l

EEE

Decline basis may be

reservoir pressure or
W ater p

Pressure Ratio Cut cumulative production.
[ps=ig) [fr3/bbl) (4]
2600
18 @ Gﬁ
oLk
Lt
ok | | Concet | [ Hew | N
G‘E‘) =

Devicelf=1

Name: E001 Type: IPR DEVICE

Desc: INCOMPLETE
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Link <L001> Device Data

[zr[=s] 8 |5 2]

-
it |

| I Tnflow Pert Relationshi Rl
OK nmow Ferormance Relatonsnip R +
e IPR - Decline Data - & ™
1| IPRH = |
ABEE] IPR Name EO0O01 ﬂ oﬂ]?
i IPR W
Edit Production Decline |Emup Decline Model |i1 (i ﬂ%
Delive j
ﬂﬂlﬂtﬂ:_ Reservon Group a4
- [ Abandonment Pressure peig
.QDP? | [ Fluid Decline Basis |Hesewuil Pressure |!1 -Dgl- Q
EEISIE. [ Production Bazis 1z Oil and Water Standard ¥olume .T:‘_l. 'TE&,"
- Cumulative Production = 0.000 bbl
ik
0K I;esewuir G lgs{_l]il "IuluE:atter ’@;’
ressure atio ul
[pzig) [ft3/hbl) (%] Q g
j 2600 450 101 _)@
e 1800 550 10.1| 5
Help é. [}
=
DPDT:
imor) | Concel | | Hew | [
! f=) 7
Device#=1 MName: E001 Type: IPH DEVICE Desc: INCOMPLETE
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Link <L001> Device Data

|25 2o

0K Inflow Performance Helationship

Cancel| | PR Name
=1 | IPR Model [Productivity Index %]
Edit

; Deliverability Basis [0l E
Delete
—1|  [_iPAModeinae ]
A

Paste |_Advanced IPR Options... |

| oK ‘K?J |_Eancel | | Help |

Link _

Help

IPR Device

REEEEE
AREEEE

¥| 0
|5

(=]l

X |9

Device#t=1 MName: E001 Type: IPR DEVICE

Desc: INCOMPLETE
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Link <LD01> Device Data

Link |

Help |

- IFJE —

= LT

EOC

Next device is the tubing.

Gl 7sl5] B ]y & |&r

8 ] el G L R P

Device##=2 MName: E002 Type: TUBING

Desc: INCOMPLETE
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Tubing Hame |(EOD2

 Mandatory Data

Measured Wireline
Depth

True ¥Yertuical Depth

Inside Diameter

T M~ (=5 | = |

[~ Thermal Calculations

Heat Transfer |Default | tJ

Changing tubing profile
or angle can be
simulated with multiple
tubing devices.

[~ Tubing Inside Roughneszs

) Relative

Prpseure BvapMeihod -

® Absolute 1.8000e-003 | in

|. Cancel | | Help J

Device}=2 MName: E002 Type: TUBING

Desc: INCOMPLETE
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Tubing Hame |[EDD2

- Twing____________ EdlEIIEEE

ubing

~ Mandatory Data

Measzured Wireline
Depth i
True Yertical Depth ft

Inside Diameter

~ Thermal Calculations
Heat Transfer |Default | 1_1

[ Eiveaiie Blobad Dobaulls

[ ]
A

| el Tranvioy Dada

.1

@ Absolute
) Relative

1.8000e-003 | in

| Pirssuse o Mothod -

|. Cancel J | Help 1

Device=2 MName: EDDZ2 Type: TUBING

Desc: INCOMPLETE
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ANce I‘ = LT ELLT ECOC IO

Edit

Delete

Copy

Paste

Link

Help |

Lk L0 Device Data AP E

B

3

Well-head choke diameter.

e

) B2 G e P [0 el ) L 5 ) = e
S ] ] el G L ] i P Py ) e 5 (L=

Device##=2 Name: E002 Type: TUBING

Desc: L=1500, Default 1D, Depth=1450
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Link <L001> Device Data

[2r|=s] = s ]

|

Well-head choke diameter.
Choke Name |EDD3 [] Choke in Well | ]

Chliz

= Pi’

T

Mandatory Data

| | Choke Specification |Ealculate Pressure Drop |i§
L | Inside Diameter in
Resistance Coefficient 1.03

Specific Heat Ratio

[ e | &

i

Calculation Method Fortunah 4

| LS | Ean-::e_:l J

Help |

Link

Help |

=

=)

Z|>

:
-

b=l )

ARE
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| B © [

=
o
=
=

2|

R

Device#=3 HName: EDD3 Type: CHOKE

Desc: INCOMPLETE
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Link <LD01> Device Data

ped = RN

Well-head choke diameter.
Choke Name [] Choke in Well .

Chiohe

E ES [I

M andatory Data

Choke Specification |Ealculate Pressure Drop [!1

in

I

Inside Diameter

M| ¢

Resistance Coefficient 1.03

S5pecific Heat Ratio

| R

i

Calculation Method Fortunah

ﬂ I Cancel J | Help J
Link
Help |

=il

Fal
i L1
=

K&

G755 B ]l & |or ] B

il ] L= s O L ] el B Py I

Device#=3 Name: E003 Type: CHOKE Desc: INCOMPLETE
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an [:E|:
Edit

Delete!

Copy

Paste |

Fo>

i

N/

Link <L0O01> Device Data zr|z3| @)

o

Link

Help

| B i

EL

ELLLS

P

O

JULS

Surface flow line data -
note defaults.

N [1§

Device#=3 Name: EOD3 Type: CHOKE

Desc: Diameter=2
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Pipe Hame

" Mandatory Data
Length

Elevation Change

Inside Diameter

il

R3ES

I

1

4.000

~ Thermal
Heat Tra

T T~ |5 | = | = |

Surface flow line data -
note defaults.

[ Ehveside Blobal Debaulls

[ |
[ ]

Meat Toanefer Dala I

 Pipe Inside Roughnessz
{® Absolute 1

{} Relative

-8000e-003 |in

|

[ ]

Prezzure Drop Method. .

| Cancel J

| Help |

A

SN D 2 e e
SRERREEEE

=
X

% |

Device}=4 Name: E0D4 Type: PIPE

Desc: INCOMPLETE
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Pipe Hame

~ Mandatory Data

Length ft
[5 ]

Elevation Change

Inside Diameter

e LIS

™ Thermal

Heat Tra

Surface flow line data -

note defaults.

™ fiwade Bhbal Delaulic

[ ]
A

l

feat §ranvier Dala J

[ Pipe Inside Roughness

@ Absolute 1.8000e-003 | in

{} Relative

[ ]

Pressure Drop Method. .. |

| Help '|

[4-4703e-004 |
| ok | [ cancel |

Device#=4 MName: E004 Type: PIPE

Desc: INCOMPLETE
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Delete

Copy

Paste

Link

Help |

it
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= LT

ELL

ELLLS
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Ty
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JUL=

Data for this link is
complete; enter data for
remaining links.

'
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DPD

5

=

o
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Device#=4 MName: E004 Type: PIPE

Desc: L=201, Default ID, Echg=-h
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Link <L002> Device Data

v .d [&g,:

TR Devie
| o & =
- A 7
Edit TR ﬂQ__}
Delete | a1
<oy S
Paste L3l
o2
39 [2
Link | @ é'
ety SlLF
N0
o S t=<t 0
From Node Type: SOURCE Desc:
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Link <L002> Device Data

Zlzs|@lEte] <]

oK | Inflow Performance Relationship

oncel IPR Name
1| IPR Model [Vogel
Edit Mo
T Fetkovich Gas Flow
Delete Laminar-lnertial-Turbulent
— [ e o
QDP?‘ | | Decline Data.__. J
Paste | | Advanced IPR Options...
- Ok | | Cancel | | Help |
Link
Help '

IFE Devic=

Device#=1 MName: E005 Type: IPR DEVICE

Desc: INCOMPLETE
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Link <LD02> Device Data lzr|zs|e =] |2

| T nflow Pert Relationshi —
nflow Performance Relationshi
_ 0K ] P = R& B
ancel] | PR Name 7w
| | 'PR Model [Productivity Index 2
Edit RS e : - [opuf ﬂ%
Deliverability Basiz |I]|I | i']
Delete| : Tl
-: ___ PR Model Data.._ |\ |
.QDP? | | I Decline Data.__. J .@. tl-
Easte. | Advanced IPR DOptions... | 'T:I: .TE':
| 1] 4 J | Cancel | | Help | b ’é’
Link | *@;’ 5
Help | é.[}
[IF[IT.
N0
! (2]
Device#=1 MName: E005 Type: IPH DEVICE Desc: INCOMPLETE
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Link <LD02> Device Data EdEEIE

=

Inflow Performance Helationship

oK
— 1| IPR NesacEaie—
ancel IPR - Productivity Index Data

i IPA M
Edit IPR HName EDO05

i —— Delive

| Productivity Index bbl/dayfpzig
Delete]

| Fangsi 1 | Help J

Q | | [ |

Link

|

Help |

IPR Device

|| B © |83 B

AR EEEERE

Device#=1 MName: E005 Type: IPR DEVICE Desc: INCOMPLETE
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Link <LD02> Device Data EEIEIEE e

=3
IPR Devic=

o :
Eﬂﬂﬁl‘-'i' IPR Name
IPR Model |Productivity Index EX
Edit L
— Deliverability Basiz |l]i| |_t]
Delete]
— |____IPR ModelData. .. |
Copy | Decline Dat% ] {;@ Q
s o g
Paste| | | _Advanced IPR Options . _| 2] k2
| Ok J | Cancel :| | Help :] 2 )@
Link | *@;’ E‘é
Help CBII}
IIIPIIIT-
N I
& L=<t
Device##=1 MName: E005 Type: IPR DEVICE Desc: INCOMPLETE
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Link <L002> Device

Data zrls|@lele] s

] IPR M
ancell
1 IPR M
Edit

e | Delivey

Delete!

0 | .—r

Paste | [
T

_I__ink..

.ﬂelp |

- - - IPF Devica
0K Inflow Performance Helationship
e IPR - Decline Data
IPR Hame EO0D5
Production Decline Hone | *|
Mone
aroup De-::lilka Model
|Hune |*§1
| ]84 J | Cancel 1 | Help 1

Device#=1 MName: EODS Type: IPR DEVICE

Desc: INCOMPLETE
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Link <L002> Device Data EZE IR P IE
[ IPR Device
0K Inflow Performance Helationship
I IPR - Decline Data
ancel IREN
o] IPR Hame EO05
l| IPBH
Edit - Production Decline |Eruup Decline Model |1]
] elive
Delete| Rezervor Group g
— [ Abandonment Prezsure pzig
E“"""_ [ Fluid Decline Basis [None B 4;@ Q
Paste [ Production Basiz 1z il and Water Standard ¥olume .T:l. .TE%
| Cumulative Production = 0.000 bbl
1B
o o
9 [
Link _ *@;’ E‘é
Help CE’ [}
5
DPOT
o] (G [ Y /5
el Kt
Device#=1 MName: E005 Type: IPR DEVICE Desc: INCOMPLETE
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Link <L002> Device Data

e IE]

ale] 3

0K Inflow Performance Relationship
gagcelﬁ IPR Name
' IPR Model |Productivity Index Ed
Edit
— 1| Deliverability Basis [0l E
Delete
m— | IPR ModelData.. |
feitiaal __ DeclinoData. |
Paste | | Advanced IPR Options... ]
DH; | | Cancel | | Help ]
Link
Help |

PR Devics

Device#=1 MName: E005 Type: IPR DEVICE

Desc: INCOMPLETE
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Link <L002> Device Data

Devicet=1 MName: E005 Type: IPH DEVICE Desc: MODEL = PI
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" Mandatory Data

Meakured Wireline
Depth

True Yertical Depth

Inside Diameter

i

ol

2875 [¢]

TBO1 o

Link <L002> Device Data zr|zE @]
Tubing Hame

sleille

™ Thermal Calculations

Heat Transfer |Default

E

[ iivensude Blohal Dodadiy

[ ]
[ ]

I Heal Franeior Baba

1

@ Absolute
{3 Aelative

[~ Tubing Inzide Roughness

1.8000e-003 |in

fiessuic Brop Melhod

ol

| Cancel ]

| Help 1

Device#=2 MName: E006 Type: TUBING

Desc: INCOMPLETE
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Link <L002> Device Data

EOCG

Device##=2 MName: E006 Type: TUBING Desc: L=1631, Default ID, Depth=1515

482



Link <L0O02> Device

Data

Choke Name |E0OD7 [ Choke in Well

Mandatory Data

Choke Specification |Eal-::ulate Pressure Drop |i5]

Inside Diameter in

EE ¥

Resistance Coefficient

-
=
P

T

Specific Heat Ratio

oo B

Calculation Method

ok ] [ Cancel | | Hep |

Link

Help

N [1F

Device#=3 Name: EOD7 Type: CHOKE

Desc: INCOMPLETE
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Link <L0D02> Device

Data |Mﬂ%] t&ﬂ_@';

Choke Name |EO007 ] Choke in Well

Mandatory Data

L Choke Specification |Ealculate Pressure Drop [t]
I Inside Diameter in
Resistance Coefficient 1.03

Specific Heat Ratio

[ e | BT

i

Calculation Method Fortunati
. DK&I I Cancel _| | Help J
Link
Help |

Devicet=3 MName: E00¥ Type: CHOKE

Desc: INCOMPLETE
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Link <L002> Device Data

L9 A8 i
= I -!
B e B0k EO0Y oD — ,:

Help .
DPDT
N0
Device#=3 MName: E007 Type: CHOKE Desc: Diameter=2
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| SimSci PIPEPHASE Simulation: DEM02  bed NN RARN
File Edit Yiew General Special Features RHResults Help

I 223 (=058 R e = Y S 1 [ 8 3 (| =2 e e P 5 e 5

| +]
J 11 B |

486



I YT S 5=
1 ot s
b ™ B
Qelete:_ ol e
Copy | vl
past| 5%
o
51 2
Link *@;’Iﬁé
= =i
I FiiZ
N0
GE':I{K}T
From Node JUNCTION Desc:
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e LdeiCIE K
Pipe Hame

I+

~ Mandatory Data ~ Thermal Calculations

Length 070 Heat Transfer |Defau|[ |_t§]
Elevation Change 207

I
— -
—

]I

™ Eivansde Blobal Dodauliy ol

[ ]
[ ]

Inside Diameter

4
e
=a Sl
| float {ranvier Data j 1!::i("l%Et
ll:- i -

[ Pipe Inzide Roughness i %@*
@ Absolute in [ I:I | Q): g
) Relative |:| Pressure Drop Method. ..

) (e
| D[‘% I | Cancel ] | Hl_alp_ J EE’I [}
DPDT.
N0
GE)]{}{} o
Device#=1 MName: E008 Type: PIPE Desc: INCOMPLETE
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Link <L003> Device Data

=[EEE

Edit |

Delete

Copy

Paste |

Link

Help

B 1
s o

Deviceft=1 MName: ED08 Type: PIPE Desc: L=4070, Default ID, Echg=207
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S5imSci PIPEPHASE Simulation: DEMO2

-Eile Edit ¥Yiew General 5Special Features Hesults Help

z|=s| gl -]

I =3 =103 R e Y S (S ) e 3 ) 2 | 2 o) o PR ) i 5

Sink data: note the

delivery pressure is known.

Saa]

=aag

1283

OB+

+
o
e

B |
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5imSci PIPEPHASE Simulation: DEMO2

e b =T A L | R

File

Edit

Yiew Gener

1 3 =1 I RS E

!

alfjils

SaA]

)

saaz

Sink Name Doo4 L] Injection Well

™ Mandatory Data

~ Pressure
@ Fixed

) Estimated

psig

il Flow Rate
 Fixed

{#® Estimated 0000

bbl/day

[] Disable Sink

[hon_|

_ELLRL |_Cancel |

2 P2 |5 W1 1
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_ SimSci PIPEPHASE Simulation: DEMO2 |58 B = el -«
File Edit View General S5pecial Features Results Help

R ERNEEE R R R EEE EE

+]
W

Saa]

.}|

18873

PIPEPHASE time stepping
feature is used for
field planning.
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S — ation: DEMC d PNl B

| File Edit Yiew General necial Feature Results Help
s 3 ] [ ] e S EEEZ]EES]
E [ (] -f__‘
Beservoir Database...
Elow Device Size Database...
FIPEPHASE time stepping
feature is used for
field planning.
| +]
o 11 -
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|

SimSci PIPEPHASE Simulation: DEMO2 |z 25| Bl = s T«
File Edit Yiew General Special Features Results Help
. Time Stepping & | E‘

= [<Perform Time Stepping Calculations:

Time Stepping D escnption

[+

[ Cancel | | Hew |
- T ﬂ/ 1887
FPIPEPHASE time stepping

feature is used for
field planning.
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S5imSci PIPEPHASE Simulation: DEMO2

File Edit Yiew General Special Features

Results Help

I

Time Stepping

Time [day]

365

730

3 3hig 5
Time Stepping Changes

FIPEPHASE time stepping
feature is used for
field planning.

~ Rezervoir/Device Name Pl-«.\g
{® Reservoir Production Decline
{_ Link Name | |‘§j
| 4]
| B
| B
]84 | Cancel I | Help I

B |
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|

File Edit

I

SimSci PIPEPHASE Simulation: DEMO?Z
¥Yiew General Special Features

Besults

Help

Time Stepping

Time [day]

3 atio 15
Time Stepping Changes

Dat
365 2 ~ Beservoir/Device Hame
730 "+ Reservoir Production Decline
1096 @ Link Name L 002 4]
Device Type |A,|| Types | !]
Device Name | " 1]
Parameter | | 1]
)4 ' | Cancel | | Help |

Motice, reservoir decline
characteristics will
cause production

decline with time.

B |
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File

SimSci PIPEPHASE Simulation: DEMO2

= |=5| Bz

Bj=")

|21~ ]4]

Edit Yiew General

Special Features HResu

Ilts Help

I

Time Stepping

Time [day] Data

3 atio 15
Time Stepping Changes

365

730

1096

® Link Name

Device Type

Device Hame

~ Beservoir/Device Hame

"+ Reservoir Production Decline

|Loo2

|

Parameter

E

All Types *
] L

Pipe E
Rizer =
Tubing |
Annulus h _*":

oK

| Cancel |

| Hel_p |

Notice. reservoir decline
characteristics will
cause production
decline with time.

B |
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3imSci PIPEPHASE Simulation: DEMO2

[ [=8] & |zt - -]

File

Edit ¥Yiew General 5Special Features Hesults Help

I

Time Stepping

Al E

Time [day] Data

365

730

1096

! b Tk
Time Stepping Changes

 Reservoir/Device Mame

{_? Reservoir Production Decline

@ Link Name ||-l--“]2 |tl
Device Type |All Types E

Device Nome (AN <]

Parameter |Inside Diameter E-g |!I

oK | |Ean-::e| I | Help I

MNotice. reservoir decline
characteristics will
cause production
decline with time.

B |
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S5imSci PIPEPHASE Simulation: DEMO2

File Edit Yiew General Special Features

Results Help

I

Time Stepping

Time [day]
365
730

1096

3 3hig 5
Time Stepping Changes

 Reservoir/Device M ame

{#® Reservoir Production Decline!

C}Unéﬁame |Loo2

|A.II Tvpes

|E00G

| Inzide Diameter

0ok

|_Ean-::e| I | Help I

In this example, no change
in surface facilities are
planned: this could be

simulated as well.

B |
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S5imSci PIPEPHASE Simulation: DEMO2

File Edit Yiew General Special Features RHResults Help
L Time Stepping _@j ey (Bl =
o] H H 3 SHOns
Time Stepping Changes |+
3;;“& [day)  Reservoir/Device M ame
730 {#® Reservoir Production Decline!
1096 () Link Name |Loo2 2]
[All Types |#]
[Fooe ]
L] |Inside Diameter L@f]
]84 % | Cancel I | Help I
Taaz
I +]
11 D |
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SimSci PIPEPHASE Simulation: DEMOZ

|zl @ = lee ][+ -]

File

Edit ¥Yiew General Special Features Hesults Help

Time Stepping Z RS

B4 Perform Time Stepping Calculations

Time Stepping Dezcription

g for Heservonr Production Decline

Delete

Copy |

|. Eafeal ] | Help ]

1887

sAnz

| &
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_ SimSci PIPEPHASE Simulation: DEMO2
File Edit ¥iew General Special Features Hesults Help

A EIEE B

=3 (=023 RS | VY S 8 1 5 3 1 [0 2= (= P =

Pun Simulation

4+
—

Run the simulation. =

sa8]

18873

saag
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= SimSci PIPEPHASE Simulation: DEMO2

zrizsl e = e - 1]

File Edit Yiew General Special Features Hesults Help

Ml =3 1 ] R | e Y S I [ ESS D ] 22 =2 ) PR |5 vl =

Pun Simulation

+!
fad

Run the simulation. =

1983
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=] SimSci PIPEPHASE Simulation: DEMO2 22|28 Bl |=[8a (] [+

File Edit VYiew General Special Features RHResults Help
I o o 3 P = B 23 2 2 P P s [

Bun Simulation

PIPEPHASE CALCULATIONS '
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=| S5imSci PIPEPHASE Simulation: DEMO2

[2r|=s] @ |zt - -]

File Edit Yiew General

Special Features Results Help

I =23 1 ] | e I (s P, 20 2 o2 o P

Bun Simulation

Saa]

This example illustrates

key features for a simple
two well application.
PIPEPHASE can be

used for field-wide models.

H |

=aag

+

B |
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=| SimSci PIPEPHASE Simulation: DEMO2 EdE =R

File Edit Yiew General

Special Features Results Help

I R =105 ] e 1 Y S ] s (T V| 2 o oz P [

Bun Simulation

4]
PIPEPHASE can perform
detailed sensitivity analysis
bz (nodal analysis) for a single
well and flow line. |
i -b
+]
A 1] - il
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SimSci PIPEPHASE Simulation: DEM02 22| =8| Bl [&.[8=]T-T-]

File

Edit Yiew General

Special Features Hesults Help

e 23 = ] e | [

1B FIE]]

BEEEARENE

Pun Simulation

]
Convergence is based on a
proprietary pressure
balance algorithm. Good
8 estimates result in better
convergence. )
saag

| =+l
o 11 B
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Programmer's File Editor - [demo2.out] B?]%] 1%1@'" |

=| File Edit Options Template Execute Macro Window Help

[ 40 |40

|

4|
PPPP IIT PPPP EEEEE PFPPP H H F EE : Tﬁ
P P I P P E P P H H o he results summary is =
p p I p P E P P H H a generated in an
PPPP I PPPP  EEEE PPPP  HHHHH A output file.
P I P E P H H AAA
P I P E P H H A A 5 5 E
P IIT P EEEEE P H H A A 588 EEEEE
UERSIOHN 7.81 B2
36 36 36 3 36 3 36 36 36 3 363636 3 3336 I 333 36 I3 I I I I I I I I I I I I I I I I I I I I I I I I I IEIE I I IE I I I IE I I I I I I I I I I I I
* *
* SIMULATION SCIENCES INC. *
¥ e o e e e e e e *
* *
* INTERNATIONAL CORF. HEADQUARTERS MID-USA/UIRGIN ISLANDS *
¥ e e e *
* BREA, CA 92621, USA HOUSTON, TX 77892, USA *
* PHONE ({714) 579-8412 PHOHE (713) 683-1710 *
* (800) 827-7999 (USA) (800) 231-2754 (USA) *
* (800) 427-4672 (CALIF.) FAxX {713) 683-6613 *
* (800) 443-4418 (CANADA) *
* FAX (714) 579-8236 COLORADD *
* PC BBS (714) 579-¥445 ———————- *
* AURORA, CO 86614, USA *
* EASTERH USASEASTERH CAHADA PHOHE (383) 750-1868 ¥* - |-
e EAx f3A3Y 75A0-193% x | *
] [#]
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Programmer's File Editor - [demoZ.out] wﬂ%] jﬁﬁi@'.'
=| File Edit Options Template Execute Macro Window Help

e

FAX B
* PACIFIC RIM/WESTERM CANADA : —
g S NS S R JaPaM The results summary is —
BREA, CA 92621, USA  ————- generated in an
PHONE (714) 579-8412 HINATO- output file.
(808) 827-7999 (USA) PHONE
(808) 427-4672 (CALIF.) FAX  81-3-3432-4533
(808) 443-4418 (CANADA)
FAX (714) 579-7468 SOUTH AMERICA

CARACAS, 1868, UENHEZUELA
PHOHE 58-2-993-25086
PHOME 58-2-993-872%
FAX C8-2-993-2717

oK K % ok % ok o K O ok ok %

oK K % ok % K N K %

3636 3 3636 36 3 36 I I I I 36 36 36 36 36 36 I 3636 36 I 3 I I I I I I IEIE I I 363636 IE I3 I I I I I I -IEIEIE 36363636 IE I3 I I IE I I I I I3 363636 I

{3M) SIMSCI IS A SERVICE MARK OF SIMULATION SCIEHCES IHC.
(R} PIPEFHASE IS A TRADEMARK OF SIMULATION SCIEHCES IHC.

{c) COPYRIGHT 1985, UPDATED 19846, 1987, 1988, 1989,
1990, 1991, 1992, 1993 AHD 1994
SIMULATION SCIEHMCES INC.
ALL RIGHTS RESERUED

(RY

[+ m
v
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| =| File

.Prugrammer.'.s.F-il.ﬂ Editor - [df:mu:Z.uut]_

Options

Template Execute Macro Window Help

AEIEIENE B

BT ETS

Edit

+
4 SIMSCI PIPEPHASE Version 7.81 B2 keyword filg : |
$ The results summary is j
4 General Data Section generated in an
4 output file.
TITLE PROJECT=DEHO, USER=S5IMSCI, DATE=84/38/94
SITE=BREACA
$----3
*% WARHIHWG ** STRING HAS MORE THAHM 4% CHARACTERS
EXGCESS TRUMCATED
$
DESCRIPTION THREE YEAR DECLIME OF A TW0 WELL FIELD
DESCRIPTION
| DESCRIPTIOHN
DESCRIPTIOH
$
[ DIMENSION RATE(LU)}=BPD
3
PRIHNT IWPUT=FULL, DATABASE=FULL
$
CALCULATION HETWORK, BLACKOIL . PRAMDTL
%
DEFAULT HOMD=4, SCHE= A48, HOWT=2_875, =
SCHT=TBB1, IDRISER=4.826, IDAHHULUS=O6.0865
$
SEGMENHT DLHORIZ(FT)=28080, DLUERT(FT)=504a [
4 il
EIN (=]
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= F‘rugrammer'é File Editor - [dEI‘I‘IDZ.DU]-
Template Execute Macro Window Help

File Edit Options

eI s B

M

i

DESCRIPTION THREE YEAR DECLIME OF A TWd WELL F
DESCRIPTIOHN
DESCRIPTION
DESCRIPTION

$
DIMENSION RATE{LU}=BPD

The results summary is
generated in an
output file.

%
PRINT IHPUT=FULL, DATABASE=FULL

$
CALCULATION HETWORK, BLACKOIL » PRAHDTL

$
DEFAULT HOMD=%, SCHE= 48, HOHWT=2.875, =
SCHT=TBEA1, IDRISER=4.0626, IDANMULUS=6.8465

gEGMEHT DLHORIZ{FT)=2808, DLUERT(FT)=588
g Hetwork Data Section

3ETHDHH DATA

gDLUTIDH PBALAMCE

§ PUT Data Section

PUT PROPERTY DATA

|»
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=

Bestore nplate Execute Macro Window Help

:4}

T

i N 0 = P =

s AR DECLIME OF A TWO WELL FIELD

Minimize
E|l:1§t: Alt+F4
Syﬁbch To... Ctrl+Esc |PD
Save Screen TABASE=FULL
Exit Windows...

GHLLULHIIUN nciwonk, BLACKOIL , PRAMDTL

$

DEFAULT MOMD=%4, SCHE= 48, HOMT=2_875, =
SCHT=TB@1, IDRISER=4.826, IDAHHULUS=6.865

%
SEGHEHT DLHORIZ(FT}=26888, DLUERT(FT}=5060

g Hetwork Data Section
EIET'.-.'I]FIH DATA

gl]LI.ITII]N PEALANCE

g PUT Data Section
EUT PROPERTY DATA

[ T+

*|

e
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=1

| File Edit

Yiew General

Special Features Q&G Help

02 d =N R

3 = [ e

Load Existing Plot File...

Access System...

sA8]

Ll

1883

[IE
The user can access the .
results for every device
in a link through the
Results Access System.
4 N
-

B |
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-Eile Edit View General Special Features QEl3H01je:

|D]@IE”|'°"I'°*|I'QHW1&I] II " ﬂur‘kﬂesults Access System... El'

Saa]

a3

sanz

The user can access the
resulis for every device
in a link through the
Results Access System.

B |
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|

SimSci PIPEPHASE Simulation: DEMO?2

[z [=s| B =t - ]

File Edit Yiew General

Special Features

Results Help

LR s RBDICEEE 2 EO]S]

The user can access the
resulis for every device
in a link through the
Results Access System.

[

L

B |
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= SimSci PIPEPHASE Simulation: DEMO2 |22 =8| B [=. (=]~

File Edit View General Special Features RHesults Help

]| 2 P2 =] e P | ) ] (5

+|
The results may be viewed (=
in a table or plot format.

| Plot I]ptiunxl\

My
| Spwoiad Fota

I Other Options J

D

@/

Taaz

516



|

SimSci PIPEPHASE Simulation: DEM02 |22 |25 Bl [& (e T-[~]

File

Edit V¥iew General Special Features Results Help

RAS Plot Options .

Title |

| #® Hormalized Length

. P-.r.'

*-Axis Label |

|

The results may be viewed

Y-Axiz Label |

in a table or plot format.

Plot Definitions

[ sormabzad ¥ofuis

Dadnte |

Wiga |

1] 4 Cancel | Help
| | | ]
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SimSci PIPEPHASE Simulation: DEMO2 |22 |28 B[ &

Edit View General Special Features

Hesults Help

RAS Plot Options

RAS Plot Data Options

Time Step [0.00 E

~Device Selection - Y-Variable

Link Mame O Device Variable | 1]

Device Type | [#] ||® State Variable  [Pressure ]

Device Name | [2] || Fuid Property | |
[ All Devices in the Link ) Hydraulic Variable | |
|

The results may be viewed
in a table or plot format.

D Distance Yariable |

Add Selection | |

Done |

[ cancel |

B |
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|

SimSci PIPEPHASE Simulation: DEMO2 |z |=8] B = el -] <]

File

Edit View General

Special Features

Besults Help

1]

RAS Plot Options |§

Time Step |n_uu

™ Device Selection

Link Name  [L0O1

Device Type |

Device Hame |

B Al Devices in the Link:

RAS Plot Data Options

l-.-r'.

i

The results may be viewed

Add Sele-:;ti_un |

|i] in a table or plot format.
~Y-¥anable
|!i O Dovice Yaiahle | |‘§*1
|‘¥"| {#® State Variable |Pressure |t|
[#] || Fiuid Property | B
) Hydraulic Yariable | |“§'1
) Distance Variable | |‘¥‘]
[Done | [ concel ]

b

B |
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=] SimSci PIPEPHASE Simulation: DEMO2 |22 28] B[ & |82 [T+ [4]
File Edit View General Special Features Results Help
E | RAS Plot Options |§
RAS Plot Data Options ][+
The results may be viewed ||—
Time Step (0,00 ¥ in a table or plot format.
365.00 %
~Device Sele #30.00 -V ariable
Link Mame [LOO7 [E4) ) Brovvion Yasiabls | |“§’1
Device Type | |‘¥‘;| {® State Variable |Pressure |t|
Device Mame | |‘§‘] D Fluid Property | Iﬁ"]
[<] All Devices in the Link O Hydraulic Variable | L]
) Distance Variable | |‘§‘]
Add Self_:-:;ti_un | Done l | Cancel |
|
4]
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|

SimSci PIPEPHASE Simulation: DEMO?2

File

Edit View General Special Features RHesults Help

RAS Plot Options

]

Time Step [FETNT

™ Device Selection ™ Y-¥anable
Link Name (L0071

Device Mame |

< All Devices in the Link

RAS Plot Data Options

The results may be viewed
in a table or plot format.

|t-] O Pevics Yastablo |
Device Type | I\L@ |‘¥*ﬂ {® State Variable
|

@'1 ) Fluid Property |

| Pressure

O Hydraulic Yanable |

) Distance Variable |

 Add Selection | | T ]

|_Cancel |

B |
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=] SimSci PIPEPHASE Simulation: DEMO2  |22|58] 8 |& e[ =[]

File Edit View General Special Features Results Help

I_m RAS Plot Options Jﬁ]

The results may be viewed

Time Step |?3I]_I]I] [i] in a table or plot format.
 Device Selection [ ¥-Variable
Link Name  [L001 [#] || © peviee vasiabie | 4]
Device Type | |2] || ® State Variable  |Pressure E3
Device Name | [#] || Fluid Property | B
[J ANl Devices in the Link ) Hydraulic Variable | k2
() Distance Variable | ]

| ! Pune{%—] E_a_n-::_el_
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|

3imSci PIPEPHASE Simulation: DEMO2

[ |=s] e T[]

File

Edit View General

Special Features

RAS Plot Options

Besults

Help

Title |

*-Axis Label |

Y-Axis Label |

The user can view

the results from several

time steps or case
studies at a time.

.=T=T?Eﬁﬁﬁﬁ'i=ﬁ‘

Plot Definitions

] stommatizesd ¥oduie

Time 0.00: Pressure vs. Total Length in Link LO01, All Devices
Time 365.00: Pressure vs_ Total Length in Link LO01, All Devices
iTime Z30.00: Pressure vz Total Lenagth in Link LODT . All Devices

Add

Delete

oK

| Cancel |

|. Help

B |
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Save As...

The user can view

Export... RAS Plot the results from several

time steps or case
studies at a time.

i

0 Tima '."EIII.I:IIII; Presaurs
in Limk LOOY, Al Dawvices
1Bl]l].l]1

B

"]

=

o

= 1500.0

]

W

't}

[

=
1200.0

900.0
0 400.0 8§00.0 1200.0 1600.0 2000.0

Total Length {ft)
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File

Open...
Save As... The user can view
Export... RAS Plot the results from several
Print time s_teps or case

. studies at a time.
Printeipsetup...
Close - -

X R A e
1800.0
L.

=)
0
il
z
= 1500.0
th
th
'}
[
=

1200.0

900.0

1] 400.0 S00.0 1200.0 1600.0 2000.0
Total Length {ft)
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=] SimSci PIPEPHASE Simulation: DEMO2 |27 |25] Bl = e T+ T4 ]
File Edit Yiew General Special Features Hesults Help

RAS Plot Options

The user can view
Title | the results from several =
time steps or case L+
X-Axis Label | studies at a time. .
r-Axiz Label | W

|:| Hommadrad Yduw

Plot Defimtions

Time 0.00: Pressure vz. Total Length in Link LO01 . All Devices
Time 365.00: Pressure vz. Total Length in Link LOD1 . All Devices
Time 730.00: Preszure vz. Total Length in Link LO01, All Devices

| EI]% | | Cancel | | Help I
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|

SimSci PIPEPHASE Simulation: DEMO?2

[ |=s] B el T[]

File Edit

View General 3Special Features Results Help

[B/IL]

EEER

t:
The user can export e
or save the data.

| Spmerad Pnks ]

I Other ijuns
b

@//

sanz

[ "-.'.-
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2|58 8 | 0[]

=| SimSci PIPEPHASE Simulation: DEMO?Z
File Edit Yiew General Special Features Hesults Help
Ol ol el B esl2l e (@) ] 10][EEE] 2 |5 OS]

Hesults Access System

AAS Other Options

Plotter Setup
 Provision Plot Viewer

@ Excel 5.0/7.0 Plotter:
|
L\

I]K | | Cancel ] | Help ]

The user can export
or save the data.

@//

sAaz

=
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=] SimSci PIPEPHASE Simulation: DEMOZ |22 =8| Bl [&. ]2 T-T~]

File Edit VYiew General Special Features Hesults Help

mECeEEErE AR EE

5 f

The user can export o
or save the data.

Lo
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= SimSci PIPEPHASE Simulation: DEM02 |22 56| B [&[& - T<]
File Edit View General Special Features HResults Help
E RAS Plot Options -
Title | — 1 ® Wormalized | enath
| kil
X-Axis Label | The user can export -
i or save the data.
Y-Axis Label |
Motes

[ stormatres Yofus

Plot Definitions

Time 0.00: Pressure ¥s. Total Length in Link L0001, All Devices Add
| Time 365.00: Pressure vs. Total Length in Link LI]I]1 AII Devices

Delete

=

oK | | Cancel ] | He_lp ]
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SimSci PIPEPHASE Simulation: DEMO?2

(2 |=35] @ =t T - T4

Edit View General Special Features RHesults Help

RAS Plot Options

Title

h

=]

H-Axis L

Y-Axis L

Plot Defin

Time 0.0
Time 365

Time 730}

Thiz copy of Microzof
SIMULATION SCIEH

Microsof

The user can export
or save the data.

[+

Copyrighti@
Microzoft Co

Speling Checker Coppright@ 1934-1953
SoftArt, Inc. All nghts reserved

 Excel

Version 5.0

1985-1993
rporatior

Thiz program iz protected by US and international copyright laws as deseribed in Help About.

| 1] 4 | Cancel

Help
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: A IEIENE MR
|= EiIR Edit View Insert Format Tools ‘Window Help &

Cl=R ERIE] B[] o~ EA] 2R SE)  [=[C)]

4

| E Eelz]u] EEEE Bl R 2l [l )]
L |

RAS Plot Chart

Frassurs [prig)

-zl L] il Ll B0 &l 1ogd 1z 1didd 1600 1200

4] 4] » | M, BASPlot ¢ RAS Raw Data / [«] |
Ready | [CAPS [NUM | ==

+
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Edit Yiew

Microsoft Excel - "RASS.
Inset Format Tools Window Help

pen... Ctrl+0

EREERRREERRRE LI Bl

RAS Flot

Eavg‘b Ctrl+5
Save As...
Save Workspace...
Find File...

Summary Info...

Page Setup...
Print Preview
Print... Ctrl+P

Send...
Add Bouting Slip...

1 BAS\DEMO2.XLS
Exit

f Cloge l[Blz]u] EEIEIE [#]s] [H]E] (] (a1 [T tl.
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