

Hydrate Remediation

20.4 Hydrate Remediation

Like the kinetics of hydrate formation, hydrate dissociation is a poorly understood subject and applying laboratory observations to field predictions has proven difficult. Part of the reason is the complicated interplay of flow, heat transfer, and phase equilibria. The dissociation behaviour of hydrate depends on the hydrate size, porosity, permeability, volume of occluded water, "age" of the deposit, and local conditions such as temperature, pressure, fluids in contact with the plug, and insulation layers over the pipeline. Hydrate remediation techniques are similar to hydrate prevention techniques, which include,

- Depressurization from two sides or one side, by reducing pressure below hydrate pressure at ambient temperature, the hydrate will become thermodynamically unstable.
- Thermodynamic inhibitors; the inhibitors can essentially melt blockages with direct hydrate contact.
- Active heating; by increasing temperature to above the hydrate dissociation temperature and providing significant heat flow to relatively quickly dissociate a blockage.
- Mechanical methods; drilling, pigging or scraping have been attempted, but are generally not recommended. thruster or pig inserted from surface vessel with coiled tubing through a work-over riser at launchers. Melting by jetting with MEG.
- Pipeline segment replacement.

20.4.1 Depressurization

Depressurization is the most common technique used to remediate hydrate blockages in production systems. Rapid depressurization should be avoided because it can result in JT cooling, which can worsen the hydrate problem and form ice. From both safety and technical standpoints, the preferred method to dissociate hydrates is to depressurize from both sides of the blockage. If only one side of a blockage is depressurized, then a large pressure differential will result across the plug, which can potentially create a high speed projectile.

When pressure surrounding a hydrate is reduced below dissociation pressure, hydrate surface temperature will cool below seabed temperature, and heat influx from the surrounding ocean will slowly melt the hydrate at the pipe boundary. Lowering pressure also drops hydrate formation temperature and helps prevent more hydrates from forming in the rest of the line. Because most gas flowlines are not insulated, hydrate dissociation can be relatively fast due to higher heat flux from pipeline surface, as compared to an insulated or buried flowline.

20.4.2 Thermodynamic Inhibitors

Thermodynamic inhibitors can be used to melt hydrate blockages. The difficulty of applying inhibitors lies in getting the inhibitor in contact with the blockage. If the injection point is located relatively close to the blockage, as may be the case in a tree or manifold, then simply injecting the inhibitor can be effective. Injecting inhibitor may not always help with dissociating a hydrate blockage, but it may prevent other hydrate blockages from occurring during remediation and restart.

If the blockage can be accessed with coiled tubing, then methanol can be pumped down the coiled tubing to the blockage. In field applications, coiled tubing has reached as far as 14800 ft in remediation operations, and industry is currently targeting lengths of 10 miles.

20.4.3 Active Heating

Active heating can remediate hydrate plugs by increasing temperature and heat flow to the blockage; however, safety concerns arise when applying heat to a hydrate blockage. During the dissociation process, gas will be released from the plug. If the gas is trapped within the plug, then the pressure can build and potentially rupture the flowline. Heating evenly applied to a flowline can provide a safe, effective remediation.

Active heating can remediate a block age within hours, whereas depressurization can take days or weeks. The ability to quickly remediate hydrate blockages can enable less conservative designs for hydrate prevention.

20.4.4 Mechanical Methods

Pigging is not recommended for removing a hydrate plug because they can compress the plug, which will compound the problem. If the blockage is complete, it will not be possible to drive a pig. For a partial blockage, pigging may create a more severe blockage.

20.4.5 Safety Considerations

Knowledge of the location and length of a hydrate blockage is very important in determining the best approach to remediation, although the methodology is not well defined, This information facilitates both safety considerations in terms of distance from the platform and time necessary to dissociate the blockage.

When dissociating a hydrate blockage, operators should assume that multiple plugs may exist both from safety and technical standpoints. The following two important safety issues should be kept in mind:

- Single sided depressurization can potentially launch a plug like a high-speed projectile and result in ruptured flowlines, damaged equipment, release of hydrocarbons to the environment, and/or risk to personnel.
- Actively heating a hydrate blockage needs to be done such that any gas released from the hydrate is not trapped.

Thermodynamic Hydrate Inhibitors			Kinetic Hydrate Inhibitors		Anti-Agglomerant Inhibitors	
Applications						
1.	Multiphase	1.	Multiphase	1.	Multiphase	
2.	Gas & Condensate	2.	Gas & Condensate	2.	Condensate	
3.	Crude Oil	3.	Crude Oil?	3.	Crude Oil	
			Benefits			
1.	Robust & effective	1.	Lower OPEX/CAPEX	1.	Lower OPEX/CAPEX	
2.	Well understood	2.	Low volumes (< 1 wt%)	2.	Low volumes (< 1wt%)	
3.	Predictable	3.	Environmentally friendly	3.	Environmentally friendly	
4.	Proven track-record	4.	Non-toxic	4.	Non-toxic	
		5.	Tested in gas systems	5.	Wide range of subcooling	
			Limitations			
1.	Higher OPEX/CAPEX	1.	Limited subcoolings (<10°C)	1.	Time dependency?	
2.	High volumes (10-60 wt%)	2.	Time dependency	2.	Shutdowns?	
3.	Toxic / hazardous	3.	Shutdowns	3.	Restricted to lower watercuts	
4.	Environmentally harmful	4.	System specific - testing	4.	System specific - testing	
5.	Volatile - losses to vapour	5.	Compatibility	5.	Compatibility	
6.	'Salting out'	6.	Precipitation at higher temps	6.	Limited experience	
		7.	Limited exp. in oil systems	7.	No predictive models	
		8.	No predictive models			

Table 20.3 Summary of applications, benefits & limitations of chemical Inhibitors (Pickering et al.).

E.D. Sloan, C.A. Koh 2008 283

Hydrate in the Solar system

- Ubiquitous presence in the Universe?
 - CO₂ and CH₄ clathrates on Mars
 - CH₄ clathrates on Titan
 - Source of plumes on Saturn's moon
 Enceladus
 - Clathrates in Halley's comet

W. L. Mao Stanford University

Figure 3. Proposed progression of hydrate formation. [Modified from Brooks et al. (1986).]

Production test of Mallik 2002 as hydrate production research well program

How can we recover natural gas hydrate?

We do not yet know how to recover gas from natural hydrate. We are not aware of a really practical proposal for how to recover methane from natural hydrate. We do know that there are formidable technical difficulties: (a) Although the total gas amounts are huge, most natural hydrate represents a quite low energy density; (b) substantial latent heat must be provided for dissociation; (c) the sediments are often fine grained, unconsolidated, and low permeability silts.

There are four main possibilities:

- 1. add heat and raise the temperature to out of the stability field
- depressurize the section by pumping, especially within the free gas below the BSR. The hydrate may then dissociate downward into the low pressure gas layer. However, the dissociation latent heat still must be provided
- 3. add antifreeze such as methanol; it may be possible to recover the methanol with the gas for re-use
- 4. replace the methane in the hydrate with CO_2 . An intriguing possibility is to inject the unwanted greenhouse gas CO_2 into natural methane hydrate deposits where it forms CO_2 hydrate in exchange for methane gas which, in turn, is recovered. CO_2 hydrate appears to be more energetically favourable than methane hydrate so such a replacement should occur. This an attractive way to get rid of troublesome CO_2 and recover valuable methane.

Although there are no clear answers today, it is worth remembering that many years were required to develop the technology for economic recovery of many other resources; tar sands are an example. Sometimes the answers come very quickly, sometimes only after many years. Gas hydrate is a very large potential resource, it just needs some very bright people with new ideas to find the solutions.

Liquid Hydrocarbons

The K-factor method is designed for calculations involving a gas and a hydrate. In order to extend this method to liquid hydrocarbons, the vapor-liquid K-factor should be incorporated. For the purposes of this book, these K-factors will be denoted K_V to distinguish them from the K-factor defined earlier. Therefore

$$K_{vi} = \frac{y_i}{x_i}$$
(3-8)

where x_i is the mole fraction of component i in the nonaqueous liquid.

56 Natural Gas Hydrates: A Guide for Engineers

1.	Input the temperature, T.
2.	Input the vapor composition, yi.
з.	Assume a value for the pressure, P.
4.	Set the K-factors for all nonformers to infinity.
5.	Given P and T, obtain K-factors from the Katz charts (or from correlations) for the hydrate-forming components in the mixture.
6.	Calculate the summation:
	$\sum y_i/K_i$
	Note for nonformers the expression $\boldsymbol{y}_i/\boldsymbol{K}_i$ is zero.
7.	Does the summation equal unity?
	That is, does $\sum y_i/K_i = 1$?
	7a. Yes - Go to Step 10. 7b. No - Go to Step 8.
8.	Update the pressure estimate.
	8a. If the sum is greater than 1, reduce the pressure. 8b. If the sum is less than 1, increase the pressure. 8c. Use caution if the sum is significantly different from 1.
9.	Go to Step 4.
10.	Convergence! Current P is the hydrate pressure.
11.	Stop.

Figure 3-3. Pseudocode for performing a hydrate pressure estimation using the Katz K-factor method

Computer methods

From a thermodynamic point of view, the hydrate formation process can be modeled as taking place in two steps. The first step is from pure water to an empty hydrate cage. This first step is hypothetical, but it is useful for calculation purposes. The second step is filling the hydrate lattice. The process is as follows:

pure water (α) \rightarrow empty hydrate lattice (β) \rightarrow filled hydrate lattice (H)

The change in chemical potential for this process is given as:

$$\mu^{H} - \mu^{\alpha} = (\mu^{H} - \mu^{\beta}) + (\mu^{\beta} - \mu^{\alpha})$$
(4-1)

where μ is the chemical potential and the superscripts refer to the various phases. The first term after the equals sign represents the stabilization of the hydrate lattice. The variation in the models used to estimate this term separates the various models. The second term represents a phase change for the water and can be calculated by regular thermodynamic means. This term is evaluated as follows:

$$\frac{\mu^{\beta} - \mu^{\alpha}}{RT} = \frac{\Delta\mu(T, P)}{RT} = \frac{\Delta\mu(T_{O}, P_{O})}{RT_{O}} - \int_{T_{O}}^{T} \frac{\Delta H}{RT^{2}} dT + \int_{P_{O}}^{P} \frac{\Delta v}{R\overline{T}} dP \qquad (4-2)$$

where R is the universal gas constant, T is the absolute temperature, P is the pressure, H is the enthalpy, v is the molar volume, the subscript O represents a reference state, and the Δ terms represent the change from a pure water phase (either liquid or ice) to a hydrate phase (either Type I or II). The bar over the temperature in the last term indicates that this is an average

The first model for calculating hydrate formation was that of van der Waals and Platteeuw (1959). They postulated a statistical model for hydrate formation. The concentration of the nonwater species in the hydrate was treated in a manner similar to the adsorption of a gas onto a solid. For a single guest molecule, this term is evaluated as follows:

$$\mu^{H} - \mu^{\beta} = RT \sum_{i} v_{i} ln(1 - Y_{i})$$
(4-3)

where v_i is the number of cavities of type i and Y is a probability function. The Y is the probability that a cavity of type i is occupied by a guest molecule and is given by:

$$Y_i = \frac{c_i P}{1 + c_i P} \tag{4-4}$$

The c_i in this equation is a function of the guest molecule and the cage occupied, and P is the pressure. Although it is not obvious from this discussion, the c_i 's are also functions of the temperature.

Parrish and Prausnitz

The approach of the original van der Waals and Platteeuw (1959) method provided a good basis for performing hydrate calculations, but it was not suf-

94 Natural Gas Hydrates: A Guide for Engineers

ficiently accurate for engineering calculations. One of the first models with the rigor required for engineering calculations was that of Parrish and Prausnitz (1972). There are two major differences between the original van der Waals and Platteeuw (1959) model and that proposed by Parrish and Prausnitz (1972). First, they extended the model to multicomponent mixtures of hydrate formers. This is done as follows:

$$\mu^{\mathrm{H}} - \mu^{\beta} = \mathrm{RT}\sum_{i} \nu_{i} ln \left(1 - \sum_{\mathrm{K}} Y_{\mathrm{K}i}\right)$$
(4-5)

where the second sum is over all components. The probability function for a component becomes:

$$Y_{Ki} = \frac{c_i P_K}{1 + \sum_i c_{ij} P_j}$$
(4-6)

Second, Parrish and Prausnitz (1972) replaced the partial pressure in Equation 4-6 with the fugacity. There is no simple definition for the thermodynamic concept of fugacity. Usual definitions given in thermodynamics textbooks rely on the chemical potential, which is an equally abstract quantity. For our purposes, we can consider the fugacity as a "corrected" pressure, which accounts for nonidealities. Substituting the fugacity into Equation 4-6 results in:

$$Y_{Ki} = \frac{c_i \hat{f}_K}{1 + \sum_i c_{ij} \hat{f}_j}$$
(4-7)

where \hat{f}_1 is the fugacity of component i in the gaseous mixture. This allowed their model to account for nonidealities in the gas phase and thus to extend the model to higher pressures. In addition, some of the parameters in the

Ng and Robinson

The next major advance was the model of Ng and Robinson (1977). Their model could be used to calculate the hydrate formation in equilibria with a hydrocarbon liquid. First this required an evaluation of the change in enthalpy and change in volume in Equation 4-2, or at least an equivalent version of this equation.

In the model of Ng and Robinson (1977), the fugacities were calculated using the equation of state of Peng and Robinson (1976). This equation of state is applicable to both gases and the nonaqueous liquid. Again, small adjustments were made to the parameters in the model to reflect the switch to the Peng-Robinson equation. Similarly, the Soave (1972) or any other equation of state applicable to both the gas and liquid could be used; however, the Soave and Peng-Robinson equations (or modifications of them) have become the workhorses of this industry.

It is important to note that later versions of the Parrish and Prausnitz method were also designed to be applicable to systems containing liquid formers.

Calculations

Now that one has these equations, how does the calculation proceed? For now we only consider the conditions for incipient solid formation. For example, given the temperature, at what pressure will a hydrate form for a given mixture?

96 Natural Gas Hydrates: A Guide for Engineers

First you perform the calculations assuming the type of hydrate formed. Use the equations outlined previously to calculate the free energy change for this process. This is an iterative procedure that continues until the following is satisfied:

$$\mu^{H} - \mu^{\alpha} = 0$$

Commercial Software Packages

Several software packages that are dedicated to hydrate calculations are available. Two of these are EQUI-PHASE Hydrate from D.B. Robinson and

98 Natural Gas Hydrates: A Guide for Engineers

Associates in Edmonton, Alberta, and a program by INFOCHEM in London, England. Also, the package *CSMHYD* is available with the book by Professor E.D. Sloan (Sloan, 1998) or by contacting him directly at the Colorado School of Mines in Golden, Colorado.

Most of the popular, general-purpose process simulation programs include the capability to predict hydrate formation. This often includes warnings about streams where hydrate formation is possible. These include *Hysys* from Hyprotech (Calgary, Alberta), *Prosim* from Bryan Research & Engineering (Bryan, Texas), and *Aspen* from Aspen Technology (Cambridge, Massachusetts).

At pressure greater than 10 MPa, none of the three software packages is highly accurate. *EQUI-PHASE Hydrate* predicts a hydrate temperature that is consistently less than the correlation. At extreme pressures, the error is as much as 1°C. On the other hand, both *Prosim* and *CSMHYD* predict that the hydrate forms at higher temperatures than the correlation. At very high pressure, the errors from *Prosim* become quite large. For example, at 50 MPa (7,250 psia), the difference is larger than 2°C. With *CSMHYD*, for pressure up to 50 MPa, the errors are less than 2°C; however, as the pressure continues to increase, so does the observed error.

Ethane

Figure 4-3 shows the hydrate locus for pure ethane. This figure demonstrates that this locus is different from that of methane. First, ethane tends to form a hydrate at a lower pressure than methane. More significantly,

Figure 4-3. Hydrate loci of ethane (points from correlation)

104 Natural Gas Hydrates: A Guide for Engineers

Physical properties
Molar Masses of Some Hydrates at 0°C				
	Hydrate	Satu	ration	Molar Mass
	Туре	Small	Large	(g/mol)
Methane	Ι	0.8723	0.9730	17.74
Ethane	Ι	0.0000	0.9864	19.39
Propane	П	0.0000	0.9987	19.46
Isobutane	II	0.0000	0.9987	20.24
CO ₂	Ι	0.7295	0.9813	21.59
H ₂ S	Ι	0.9075	0.9707	20.87
Note: Calculated using Equation 8-1.				
The saturation values were calculated using				
CSMHYD.				

 Table 8-1

 Molar Masses of Some Hydrates at 0°C

$$M = \frac{N_{w}M_{w} + \sum_{j=1}^{c} \sum_{i=1}^{n} Y_{ij}v_{i}M_{j}}{N_{w} + \sum_{j=1}^{c} \sum_{i=1}^{n} Y_{ij}v_{i}}$$
(8-1)

where N_w is the number of water molecules per unit cell (46 for Type I and 136 for Type II), M_w is the molar mass of water, Y_{ij} is the fractional occupancy of cavities of type i by component j, v_i is the number of type i cavities, n is the number of cavity types (2 for both Type I and II, but 3 for Type H), and c is the number of components in the cell.

Density

The density of a hydrate, ρ , can be calculated using the following formula:

$$p = \frac{N_{w}M_{w} + \sum_{j=1}^{c} \sum_{i=1}^{n} Y_{ij}v_{i}M_{j}}{N_{A}V_{cell}}$$
(8-2)

where N_w is the number of water molecules per unit cell (46 for Type I and 136 for Type II), N_A is Avogadro's number (6.023 × 10²³ molecules/mole), M_w is the molar mass of water, Y_{ij} is the fractional occupancy of cavities of type i by component j, v_i is the number of type i cavities, V_{cell} is the volume of the unit cell (see Table 2-1), n is the number of cavity types (2 for both Types I and II, but 3 for Type H), and c is the number of components in the cell.

Equation 8-2 can be reduced for a single component in either a Type I or Type II hydrate to:

$$\rho = \frac{N_{W}M_{W} + (Y_{I}v_{1} + Y_{2}v_{2})M_{j}}{N_{A}V_{cell}}$$
(8-3)

Densities of Some Hydrates at 0 C					
	Hydrate Type	Density (g/cm³)	Density (lb/ft ³)		
Methane	I	0.913	57.0		
Ethane	I	0.967	60.3		
Propane	П	0.899	56.1		
Isobutane	II	0.934	58.3		
CO ₂	Ι	1.107	69.1		
H_2S	Ι	1.046	65.3		
Ice	— 0.917 57.2				
Water	— 1.000 62.4		62.4		
Note: Calculated using Equation 8-3. The saturation values were calcu- lated using CSMHYD. Properties of ice and water from Keenan et al. (1978).					

		Table	8-2		
Densities	of	Some	Hydrates	at	0°C

Enthalples of Fusion for Some Gas Hydrates				
	Hydrate Type	Enthalpy of Fusion (kJ/g)	Enthalpy of Fusion (kJ/mol)	Enthalpy of Fusion (MBtu/lb)
Methane	I	3.06	54.2	23.3
Ethane	Ι	3.70	71.8	30.9
Propane	п	6.64	129.2	55.5
Isobutane	п	6.58	133.2	57.3
Ice		0.333	6.01	143

Table 8-3						
Enthalpies	of Fusion	for Some	Gas	Hvdrates		

Note: Original values from Sloan (1998). Molar enthalpies of fusion converted to specific values (i.e., per unit mass) using the molar masses from Table 8-1.

Properties of ice and water from Keenan et al. (1978).

to a gas). For water, this is 2.83 kJ/g or 51.0 kJ/mol. This process is probably more comparable to the formation of a hydrate than the simple melting of ice.

One method for estimating the effect of temperature on the heat of fusion is the so-called Clapeyron approach. A Clapeyron-type equation is applied to the three-phase locus. The Clapeyron-type equation used in this application is:

$$\frac{\mathrm{d}\ln\mathrm{P}}{\mathrm{d}1/\mathrm{T}} = \frac{\Delta\mathrm{H}}{\mathrm{zR}} \tag{8-4}$$

Heat Capacity

Limited experimental data are available for the heat capacity of hydrates. Table 8-4 lists some values. For comparison, ice is also included in this table. Over the narrow range of temperatures that hydrates can exist, it is probably safe to assume that these values are constants.

Thermal Conductivity

There have been limited studies into the thermal conductivity of hydrates; however, they show that hydrates are much less conductive than ice. The thermal conductivity of ice is 2.2 W/m·K, whereas the thermal conductivities of hydrates of hydrocarbons are in the range 0.50 ± 0.01 W/m·K.

Mechanical Properties

In general, the mechanical properties of hydrates are comparable to those of ice. In the absence of additional information, it is safe to assume that the mechanical properties of the hydrate equal those of ice. One should not

Heat Capacities for Some Gas Hydrates						
	Hydrate Type	Heat Capacity (J/g.°C)	Heat Capacity (J/mol·°C)	Heat Capacity (Btu/lb.°F)		
Methane	I	2.25	40	0.54		
Ethane	I	2.2	43	0.53		
Propane	п	II 2.2 43 0.53				
Isobutane	п	2.2	45	0.53		
Ice		2.06	37.1	0.492		
Note: Original values from Makogon (1997). Properties of ice and water from Keenan et al. (1978).						

Table 8-4

Volume of Gas in Hydrate

The purpose of this section is to demonstrate the volume of gas encaged in a hydrate. Therefore, we examine only the methane hydrate.

The following are the properties of the methane hydrate at 0°C: the density is 913 kg/m^3 , the molar mass (molecular weight) is 17.74 kg/kmol, and methane concentration is 14.1 mole percent; this means there are 141 molecules of methane per 859 molecules of water in the methane hydrate. The density and the molar mass are from earlier in this chapter and the concentration is from Chapter 2.

This information can be used to determine the volume of gas in the methane hydrate. From the density, 1 m^3 of hydrate has a mass of 913 kg. Converting this to moles 913/17.74 = 51.45 kmol of hydrate, of which 7.257 kmol are methane.

The ideal gas law can be used to calculate the volume of gas when expanded to standard conditions (15°C and 1 atm or 101.325 kPa).

 $V = nRT/P = (7.257)(8.314)(15 + 273)/101.325 = 171.5Sm^3$

Therefore 1 m^3 of hydrate contains about 170 Sm^3 of methane gas. Or in American Engineering Units, this converts to 1 ft^3 of hydrate contains 170 SCF of gas—not a difficult conversion. And 1 ft^3 of hydrate weighs about 14.6 lb, so 11b of hydrate contains 11.6 SCF of methane.

By comparison, 1 m³ of liquid methane (at its boiling point 111.7K or -161.5°C) contains 26.33 kmol, which converts to 622 m³ of gas at standard conditions. Alternately, 1 m³ compressed methane at 7 MPa and 300K (27°C) (1,015 psia and 80°F) contains 3.15 kmol or 74.4 Sm³ of methane gas. The properties of pure methane are from Wagner and de Reuck (1996).

To look at this another way, to store $25,000 \text{ Sm}^3$ (0.88 MMSCF) of methane requires about 150 m^3 (5,300 ft³) of hydrates. This compares with 40 m^3 (1,400 ft³) of liquefied methane or 335 m^3 (11,900 ft³) of compressed methane.

Session 15: Pigging and Slug Catchers

Different flow pattern in a vertical flow

Different flow pattern in a horizontal flow

Hydrodynamic parameters in a slug flow

Total pressure gradient as a function of slug parameters.

$$\left(\frac{\mathrm{d}p}{\mathrm{d}L}\right)_{el} = \rho_{LS}g\left(\frac{L_{LS}}{L_{SU}}\right), \qquad (4.298)$$

where the slip density for the gas/liquid mixture in the liquid slug is

$$\rho_{LS} = \rho_L H_{LLS} + \rho_s (1 - H_{LLS}). \quad (4.299)$$

The acceleration pressure-gradient component is related to the amount of energy required to accelerate the liquid film, which is initially flowing downward, to the existing upward in-situ liquid velocity in the liquid slug.

$$\left(\frac{\mathrm{d}p}{\mathrm{d}L}\right)_{acc} = \rho_L \frac{H_{LTB}}{L_{SU}} (v_{LTB} + v_{TB}) (v_{LTB} + v_{LLS}). \quad \dots \quad (4.300)$$

For a fully developed Taylor bubble, H_{LTB} and v_{LTB} are the average liquid holdup and film velocity in the entire film zone, respectively. The friction pressure gradient is obtained from

where the Fanning friction factor, f', is determined by the method presented in Chap. 2. The corresponding Reynolds number for the slug body is determined by Eq. 4.280, where ρ_{TP} is replaced by ρ_{LS} , the slug-body slip density given by Eq. 4.299.

The total pressure gradient for the slug-flow pattern then can be expressed by combining Eqs. 4.298 through 4.301 to obtain

Various types of slugs

- Terrain slugs
- Hydrodynamic slugs
- Riser based slugs
- Pigging slugs

Why slug flow?

- Frequently observed
- Leads to higher pressure gradient
- Causes Mechanical damage
- Can decrease the production rate
- Leads to a chaotic and intermittent flow

At Low Flow Rates Liquid Accumulates in the Flowline Increasing the Pressure Drop

Liquid Holdup Depends on Flowline Geometry and Flowrate

322

Liquid Holdup Can Lead to Liquid Slugging

- There are two types of slugging:
 - Hydrodynamic: Induced by the holdup and superficial velocities
 - Terrain: Induced by geometry changes in which liquid can accumulate
- In Real Flowlines, Hydrodynamic and Terrain Slugs Can Interact:
 - Difficult to predict slug length and frequency
- Slugging can lead to surges of liquid that can overwhelm slugcatchers
- Liquid holdup leads to increased pressure drops and reduced flow
- Pigs can be used to periodically remove liquid from the flowline

Hydrodynamic Slugging is Predicted by a Flow Map

Hydrodynamic Slugging Depends on the Inclination of the Flowline

Hydrodynamic Slugging is Well Understood

• The frequency of hydrodynamic slugging can be estimated from the Shea correlation:

$$F_{sL} = \frac{0.68 \cdot U_{SL}}{D^{1.2} \cdot L^{0.6}}$$

 $F_{sL} = slug frequency$ (1/s) (= no of slugs/observation time period)

D = pipeline diameter (m)

L = pipeline length (m)

- U_{sL} = superficial liquid velocity (m/s)
- Mild terrain effects can be accounted for with a fudge factor "Delay Constant"

Shea, R.H., Rasmussen, J., Hedne, P. and Malnes, D.: Holdup predictions for wet-gas pipelines compared. Oil & Gas Journal, May 19, 1997

Terrain Slugging is More Complex

Terrain or "severe" slugging causes large surges in pressure and liquid

- A: Liquid bridges a low spot in the flowline
- B: Upstream pressure builds up
- C: Pressure pushes liquid accumulation out of the low spot
- D: The pressure accumulation is released

Terrain Slugging is often Periodic

• Often characterized by a buildup and release of the liquid

Hydrodynamic Slugs Can Interact with the Terrain Slugs

Slugging can be Induced by Transient Operations

Rate Changes:

• Increasing flowrate reduces holdup

Restart:

During shutin, liquid settles in dips

A-Liquid Distribution After Shutdown

Modeling Slug Flow

- Accurate modeling slug formation and behavior is complex
- Requires tracking of the slug front and tail of each slug
- Slugs grow in inclined flow and shrink in declined flow

Without "Slugtracking" OLGA is Poor at Predicting Slug Length and Frequency

Slug catches: a simple multiphase separator

Slug Catchers Can be Huge

- Often the largest part of a gas terminal.
- Must be able to catch the largest slugs from the pipeline and allow time for the liquid to be processed.

Horizontal Slug Catcher Vessel

- Can give small particle separation (10 microns) where there is more liquid and lower gas flow.
- Useful as three phase separator.
- Becomes expensive and heavy when large sizes are required.
- Good separation up to 5 700 bbls. slug size.

Vertical Slug Catcher Vessel

- Useful where small particle separation (10 microns) is required and gas flow is large in relation to liquid slug size.
- Equipment is expensive and heavy when large sizes are required.
- Good separation -- useful up to 5 700 bbls. slug size.

- Very economical where small liquid slugs are to be caught.
- Particle separation is poor and relatively unpredictable.
- Catches slugs up to 150 200 bbls.

Pipe Fitting Type Slug Catcher

This type of separation equipment typically has an impingement plate to knock out bulk liquids and a vertical column to form a gravity type separator, but it usually has insufficient area to effectively remove small particles. Normally, it is just used to catch the slugs of liquid and hold them. For economic reasons, these slug catchers are usually designed as pipe and fittings, rather than as pressure vessels.

The pipe fitting type slug catcher provides good slug separation and slug storage volume at a reasonable cost. Small particle separation is poor, but it improves at low flow rates. A slug catcher of this type can be used to protect a centrifugal type separator and the combination will give separation and slug storage capacity.

Harp type slug catcher

Slug Catcher Anatomy

The separator/slug catcher consists of several modules — distribution header, separation chambers, dry gas risers, storage harps, and liquids and sludge manifolds.

The **distribution manifold** takes the incoming gas/liquid stream, slows it down, and splits it into several smaller streams to allow uniform flow into the separation chambers.

In the **separation chambers**, the majority of the gas liquid separation is accomplished. The required length, size and number of these chambers is a combined function of gas flow, gas chemistry and other known conditions.

The Slug catcher for Troll has a Capacity of 2400 m³

Pigging

- Gas lines in particular are periodically pigged to remove accumulated liquid
- The large liquid slug is caught in a large separator called a "Slug Catcher"

Types of Pigs

- Spheres:
 - Easy to handle.
 - Can be re-inflated to compensate for wear.
 - Negotiate irregular bends.
 - Little energy for movement < 2psi.
- Foam Pigs:
 - Inexpensive and versatile.
 - Can be fitted with brushes to remove deposits.
- Steel Pigs:
 - Durable with replaceable sealing elements.
 - Can also be equipped with brushes and blades.
- Solid-Cast Pigs:
 - Light in weight, allow for longer and more efficient sealing.

Pigging a way to keep the pipeline hygienic

Double pigging system

Session 16 PIPEPHSE and OLGA

PIPEPHASE provides engineers with a graphical environment for developing and executing oil & gas production network models.

h

PIPEPHASE benefits:

Analysis of Multiphase Flow Systems Field-Wide Network Simulation Time-Dependent Production Planning

	Edit	View	Seneral	imulation Sciences	Inc. PIPER	PHASE	27 25 8 34	
	<u>- an</u>						▣▣▣∠⊪	
								+
*								+

🛥 Sir	mulation Sciences	Inc. PIPER	PHASE	27 26 8 2 20
<u>File E</u> dit <u>V</u> iew <u>G</u> eneral	Special Features	<u>R</u> esults	<u>H</u> elp	
Ct&ate <u>N</u> ew Simulation Open Existing Simulation <u>C</u> lose	<u>s x</u> eex	QË.		ABRL <mark></mark> [6
<u>S</u> ave Save <u>A</u> s				•
Edit <u>K</u> eyword File <u>I</u> mport Keyword File <u>E</u> xport Keyword File				
<u>R</u> un <u>R</u> un Remote				
<u>C</u> opy Simulation Delete <u>S</u> imulation				
View Output File				
•				*

Eile E	Simulation Sciences Inc. F dit <u>V</u> iew <u>G</u> eneral <u>S</u> pecial Features <u>R</u> es Create New Simulation	PIPEPHASE Provide State ults Help D D D D
	Create New Simulation Current Directory: Existing Simulations: applib demo ras demo1 [-a-] demo1 Create Directory C:\SIMSCI\PPHASE\USER Simulation Name:	To create a new simulation, enter the name of the simulation file.
+		*

	urrent Directory	Existing Simulations:	
	applib as -a-] -c-]	demo demo1	
[(Create Directory :\SIMSCI\PPHASE imulation Name:) ENUSER DEMO2	PIPEPHASE will take a few seconds to configure a database for a new project file.
	OKCa	ncel Help	

		Si	mSci PIPEPHA	SE Simulati	on: DEMO2	W 🛛 🗃 🛸 🕸	-
<u>F</u> ile	<u>E</u> dit <u>V</u> iev	v <u>G</u> eneral	Special Feat	ures <u>R</u> esu	lts <u>H</u> elp	52 74 DA CARACTER	5-5E 1.153
	बिविद	- > 	A M	Description]6
	Project User			Date 0 Site	4/30/96		
	Description				PIPEP few sec a date	HASE will take a onds to configure abase for a new project file.	
		OK	Car	ncel	<u> </u>]
+							*

	Si	mSci PIPEPHASE Simu	Ilation: DEMO2	207 🛂 🗄 强 🕸 🔻 🔺
<u>File_Edit</u> <u>V</u> iev	w <u>G</u> eneral	<u>Special Features</u> <u>R</u>	esults <u>H</u> elp	
	- > 	A 🔛 🖂 🚍 😪 6 Simulation Descript	ion	
Project	DEMO	Date	04/30/96	
User	SIMSCI	Site	BREA, CA	
Description		R DECLINE OF A TWO V	VELL FIELD	
2	OK	Cancel	Help	
*				*

🛥 SimS	ci PIPEPHASE Simulation: D	EM02 🔤 🖼 😰 💌 🔺
<u>File Edit View General S</u>	pecial Features <u>R</u> esults	Help
		▶◐▨▨▨◢▫▫▯◙
Sin	ulation Definition	+
Simulation Type	Single Link	
Fluid Type	Blackoil ±	
Phase Designation	Mixed	
	Input Check Only	
	input check only	
		•
		+

Eile E	SimSo dit <u>V</u> iew <u>G</u> eneral <u>Sp</u> Let let let let let let let let let let l	ci PIPEPHASE Simulation Decial Features <u>R</u> esults	: DEM02 2 8 8 8 • • Help
	Sim	ulation Definition	
	Simulation Type Fluid Type	Single Link 🛃	Set up the simulation model and fluid type. For example: * Single-Link Model * Network Model or
	Phase Designation	Mixed Mixed	* Single-Well Gas-Lift Analysis
	OK	Cancel Help	
+			*

😑 SimSc	i PIPEPHASE Simulation:	DEMO2 🌌 📓 🚍 🅸 🔻 🔺
<u>File Edit Yiew G</u> eneral <u>S</u> p	ecial Features <u>R</u> esults	<u>H</u> elp
Sim	ulation Definition	*
Simulation Type	Single Link	Set up the simulation model and fluid type. For example:
Fluid Type	Network Model Gas Lift Analysis	* Single-Link Model * Network Model or * Single-Well Gas-Lift Analysis
Fnase Designation	Input Check Only	
OK	Cancel Help	
3		
*		*

► SimS File Edit Yiew General Sin □ □ □ □ □ □ □ □ □ □ Sin	ci PIPEPHASE Simulation: pecial Features <u>R</u> esults	DEMO2 22 28 2 20 1 4 Help 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Simulation Type Fluid Type Phase Designation OK	Network Model	PIPEPHASE is able to model a wide wide variety of fluid types such as: * Black Oil, * Condensate, or * Compositional.
+		+

➡ SimS <u>File Edit Yiew General S</u> □ ➡ ➡ ➡ ➡ ➡ <u>▲</u>	ci PIPEPHASE Simulation: pecial Features <u>R</u> esults	
Simulation Type Fluid Type Phase Designation	Network Model	PIPEPHASE is able to model a wide wide variety of fluid types such as: * Black Oil, * Condensate, or * Compositional.
1		+

Image: Simple state Simple state Eile Edit Yiew General Simple state Image: State Image: State Image: State State State	ci PIPEPHASE Simulation: D pecial Features <u>R</u> esults	DEMO2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Sin	nulation Definition	•
Simulation Type Fluid Type Phase Designation OK	Network Model	PIPEPHASE is able to model a wide wide variety of fluid types such as: * Black Oil, * Condensate, or * Compositional.
		+

SimSci PIPEPHASE Simulation: DEMO2 2015 Simul	-
	5
Simulation Definition	+
Simulation Type Network Model 🛨	
Phase Designation Mixed *	
Cancel Help	
	•

nan kale andare ngana	Input Din	nensions	ngan 20	
System	Petroleum	Fine Length	in	
Temperature	F 🛨	Coarse Length	ft	±
Pressure	psig 🛓	Pipe Length	ft	±
Molar Rate	lb-mol/hr	Water Density	sp gr	±
Weight Rate	lb/hr	Oil Density	API	*
Liquid Volume Rate	bbl/day 🛃	Gas Density	sp gr	±
Gas Volume Rate	MM ft3/day	Power	hp	±
Default Basis	Liquid Volume 🛓	Duty	MM Btu/hr	*
Conductivity	Btu/hr-ft-F 🛨	Viscosity	сР	±
Heat Transfer Coefficient	Btu/hr-ft2-F	Velocity	mi/hr	±

	mpac Din	IGHSIONS		
System	Petroleum 🛃	Fine Length	in	±
Temperature	F	Coarse Length	ft	±
Pressure	psig 🛓	Pipe Length	ft	±
Molar Rate	lb-mol/hr	Water Density	sp gr	*
Weight Rate	lb/hr	Oil Density	API	±
Liquid Volume Rate	bbl/day 🛃	Gas Density	sp gr	±
Gas Volume Rate	MM ft3/day	Power	hp	±
Default Basis	Liquid Volume 🜸	Duty	MM Btu/hr	1
Conductivity	Btu/hr-ft-F	Viscosity	сР	±
, Heat Transfer Coefficient	Btu/hr-ft2-F	Velocity	mi/hr	ŧ
	DK Can	cel Help		
PEHASE has flexit he units of measure data can be ente	pility in e that red.			

	Input Di	mensions			
System	Petroleum	Fine Lenath	lin		◢▯▫▯▯।
Temperature	English Metric	Coarse Length	 [ft	±	
Pressure	SI parg =	Pipe Length	ft	±	
Molar Rate	lb-mol/hr !	Water Density	sp gr	*	
Weight Rate	lb/hr 🐰	Oil Density	API	*	
Liquid Volume Rate	bbl/day 🛓	Gas Density	sp gr	±	
Gas Volume Rate	MM ft3/day 🔮	Power	hp	±	
Default Basis	Liquid Volume 🔮	Duty	MM Btu/hr	±	
Conductivity	Btu/hr-ft-F 🛃	Viscosity	сР	±	
Heat Transfer Coefficient	Btu/hr-ft2-F	Velocity	mi/hr	±	
IPEHASE has flexit the units of measure data can be ente	OK Ca Dility in e that red.	ncel Help			5

	Input Dir	nensions		
System	Petroleum ±	Fine Length	in 🛓	
Temperature	F 🛓	Coarse Length	ft 🛃	
Pressure	psig 🛓	Pipe Length	ft 🔳	
Molar Rate	lb-mol/hr 📃	Water Density	sp gr 🛨	
Weight Rate	lb/hr !	Oil Density	API N 🛃	
Liquid Volume Rate	bbl/day 🛓	Gas Density	lb/ft3 🕅 kg/m3	
Gas Volume Rate	MM ft3/day !	Power	API sp. gr	
Default Basis	Liquid Volume 🖹	Duty	MM Btu/hr 🛨	
Conductivity	Btu/hr-ft-F 👲	Viscosity	cP 👲	
Heat Transfer Coefficient	Btu/hr-ft2-F	Velocity	mi/hr 🛃	
	OK Car	ncel Help		
PEHASE has flexit	pility in e that			
data can be ente	red.			

Input Di	mensions			
Petroleum 生	Fine Length	in		
F 🛓	Coarse Length	ft	±	
psig 🛓	Pipe Length	ft	±	
lb-mol/hr	Water Density	sp gr	±	
lb/hr	Oil Density	API	*	
bbl/day 🛓	Gas Density	sp gr	±	
MM ft3/day	Power	hp	±	
Liquid Volume 🜸	Duty	MM Btu/hr	*	
Btu/hr-ft-F 🛃	Viscosity	сР	*	
Btu/hr-ft2-F	Velocity	mi/hr	±	
OK	ncel Help			
	(22) NS	257		
changes				
	Petroleum F psig bil/day bbl/day bbl/day Liquid Volume Btu/hr-ft-F Btu/hr-ft2-F	Input Dimensions Petroleum Fine Length F Coarse Length psig Pipe Length Ib-mol/hr Water Density Ib/hr Oil Density bbl/day Gas Density MM ft3/day Power Liquid Volume Duty Btu/hr-ft-F Viscosity Btu/hr-ft2-F Velocity OK Cancel Help	Petroleum F Coarse Length ft psig Pipe Length ft lb-mol/hr Water Density sp gr lb/hr Oil Density API bbl/day Gas Density sp gr MM ft3/day Duty MM ft3/day Duty MM ft3/day Duty MM ft3/cay OK Cancel Help	Petroleum F E Coarse Length ft psig Pipe Length ft bl/nn Water Density spgr Ib/hr Oil Density API Ib/hr Ib/hr Ib/hr </td

	Input Di	imensions			
System	- VG	PIPEPHASE			19
Temperature Pressure Molar Rate Weight Rate	Warning: Any the PIPEPHA Default, Calo Network Met User-defined values must as needed.	y changes will conver ASE defined Global culation Method, and hod values. defaults and other be changed manually	t <u>(0K</u>		
Liquid Volume Frate	bbl/day 🔮	Gas Density	sp gr	•	
Gas Volume Rate	MM ft3/day !	Power	hp	±	
Default Basis	Liquid Volume 📓	Duty	MM Btu/hr	±	
Conductivity	Btu/hr-ft-F 🛃	Viscosity	сР	±	
Heat Transfer Coefficient	Btu/hr-ft2-F	- Velocity	mi/hr	±	
PIPEPHASE users of any of Global D	OK Ca will warn changes efaults.	ncel Help)		

Set Number 1 Gravities Oil API	Enter fluid properties: for black oil fluids, this includes gravities and sour gas fractions.
Water sp gr	Hydrogen Sulfide 0 Mole %
Antoine Viscosity Data Temperature Viscosity	F CP
OK	Cancel Help

Set Number 1	roperty Data Black	coil PVT Data	2 6 , D (é
Set Number 1			
Gravities Oil 35.2 Gas .654 Water 1.01	API sp gr sp gr	Contaminants Nitrogen Carbon Dioxide Hydrogen Sulfide	2 2 3 Mole %
Antoine Viscosity Data Temperature Viscosity	эк [F cP CP Cancel	sity data if - internal used when specified.
<u>File</u> dit	SimSci PIPEPHASE Simu <u>V</u> iew <u>G</u> eneral <u>S</u> pecial Features <u>R</u> Fluid Property Data Blacko	ilation: DEMO2 22 2 esults <u>H</u> elp IPVT Data	sessor. Dec:
-----------------	--	--	---
	Set Number 1 Gravities Oil 35.2 API Gas .654 sp gr Water 1.01 sp gr	Contaminants Nitrogen Carbon Dioxide Hydrogen Sulfide	0 Mole % 0 Mole % 0 Mole %
	Antoine Viscosity Data Temperature Viscosity OK	F CP CP Correlations data is no	osity data if e - internal s used when it specified.
			•

-	SimSci PIPEPHASE Sim	ulation: DEMO2	
<u>File</u> Edit	View General Special Features E	Results Help	24505
	Black Set Number 1	oil PVT Data	
	Gravities Oil 35.2 API Gas .654 sp gr Water 1.01 sp gr	Contaminants Nitrogen Carbon Dioxide Hydrogen Sulfide	0 Mole % 0 Mole % 0 Mole %
	Antoine Viscosity Data Temperature Viscosity		just Standing Data Tabular Data
		Cancel Help	merate PVT Table
L		25	
+			•

SimSci PIPEPHASE Simulation: DEMO2 🔤 🖼 🕸 💌 🔺
<u>File Edit View General Special Features Results H</u> elp
D 🖆 Filia levil 🛆 🕞 B Fluid Property Data
Property Sets Property Set 1 A range of fluid correlations, black oil or empirical.
Image: New Image: Image

SimSci PIPEPHASE Simulation: DEMO2 🔤 🖼 🕸 💌	•
<u>F</u> ile <u>E</u> dit <u>Y</u> iew <u>G</u> eneral <u>S</u> pecial Features <u>R</u> esults <u>H</u> elp	A42 -
	3
Blackoil PVT Correlations Data	-
Gas/Oil Ratio Vazquez	
	+

😑 SimSci PIPEPHASE Simulation: DEMO2 🔤 🖼 🕸 💌	•
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>G</u> eneral <u>S</u> pecial Features <u>R</u> esults <u>H</u> elp	
	ר
Blackoil PVT Correlations Data	1
Gas/Oil Ratio Oil FVF Z-Factor Oil Viscosity Vazquez Gas Viscosity Lee Viscosity Mixing Volumetric Oil/Water Mixing Average Addpast Oil/Water Mixing OK Cancel Help Help	+
+	+

= SimSci PIPEPHASE Simulation: DEMO2 🌌 🖼 🗟 💌 🖌
<u>File Edit View General Special Features Results Help</u>
Blackoil PVT Correlations Data
Gas/Oil Ratio Standing Oil FVF Vazquez Z-Factor Standing Oil Viscosity Vazquez Gas Viscosity Lee Viscosity Mixing Volumetric Oil/Water Mixing Average OK Cancel Help Help
•

Sim:	nSci PIPEPHASE Simulation: DEMO2 🛛 🌌 🔀	8 3 0
<u>File Edit Yiew G</u> eneral <u>S</u>	<u>Special Features</u> <u>R</u> esults <u>H</u> elp	
	A CALARA A A A A A A A A A A A A A A A A A	2 6 0 6
Blackoil PVT Co	Correlations Data	
Gas/Oil Ratio Oil FVF Z-Factor Oil Viscosity Gas Viscosity Viscosity Mixing Oil/Water Mixing Adjust Oil/Water OK Can	Standing Vazquez Standing Standing Standing Glaso Glaso Lee Volumetric Volumetric Average Average Average Help	es
		*

Sim	Sci PIPEPHASE Simulation: DEMO2	S 🗄 🔜 🌆 🔽 🔺
<u>F</u> ile <u>E</u> dit ⊻iew <u>G</u> eneral <u>S</u>	<u>Special Features</u> <u>R</u> esults <u>H</u> elp	a ta ko an taki inika i
Blackoil PVT Co	orrelations Data	
Gas/Oil Ratio Oil FVF Z-Factor Oil Viscosity Gas Viscosity Viscosity Mixing Oil/Water Mixing Adjust Oil/Water OK Can	Standing Vazquez Standing Glaso Lee Volumetric Volumetric Woelflin Ater Mixing ncel Help Help	urves or ed.
		+

File Edit View General	nSci PIPEPHASE Simulation: DEMO2 🔤 🖼 🕸 💌 🔺 Special Features Results Help
Blackoil PVT	Adjust Oil/Water Mixing
Gas/Oil Rati Oil FV	Inversion Point Water Fraction
Z-Facto	Water Viscosity Fraction Multiplier
Oil Viscosit	
Gas Viscosit	
Viscosity Mixin	
Oil/Water Mixin	
Adjust OilA	
	Cancel Help
l l	
L+	*

SimSci PIPEPHASE Simulation: DEMO2	227 25 8 2 10
<u>File E</u> dit <u>V</u> iew <u>G</u> eneral <u>S</u> pecial Features <u>R</u> esults <u>H</u> elp	
Blackoil PVT Correlations Data	
Gas/Oil Ratio Standing 👱	+
Oil FVF Vazquez 🛨	
Z-Factor Standing	
Oil Viscosity Glaso 🛨 💂	
Gas Viscosity Lee 🛨	
Viscosity Mixing Volumetric ± ations Data	
Oil/Water Mixing TWoelflin 🛨 Gas Data	
Adjust Oil/We MWoelflin	
	+
	+

😑 SimSci PIPEPHASE Simulation: DEMO2 🛛 🌌 🖼 😫	
<u>File Edit View General Special Features Results Help</u>	
] 6
Blackoil PVI Correlations Data	(++
Gas/Oil Ratio Standing 👱 Oil FVF Vazquez 👱	+
Z-Factor Standing	
Oil Viscosity Glaso 👱	
Gas Viscosity Lee 👱	
Viscosity Mixing Volumetric 🛨 ations Data	
Oil/Water Mixing Average 🛃 Gas Data	
Adjust Oil/Water Mixing	
OK Cancel Help Help	
	-
	+

= SimSci PIPEPHASE Simulation: DEMO2 🔤 🖼 🕸 💌 🔺
<u>File E</u> dit <u>V</u> iew <u>G</u> eneral <u>S</u> pecial Features <u>R</u> esults <u>H</u> elp
D & Fluid Property Data
Property Sets
Edit Delete
Retrieve Data from File: Correlations Data DEM02 Litt Gas Data
Cancel Help
•

— <u>F</u> ile <u>E</u> dit	SimSci Pl View <u>G</u> eneral Specia	PEPHASE Sim al Features – <u>F</u>	ulation: DEMO2 2 Results <u>H</u> elp	" <mark>%</mark> 8 <u>%</u> %	•
	Fluid Pr	roperty Data Black	oil PVT Data		6
	Set Number 2		Contaminants		-
	Gas Water	sp ⁵ gr sp gr	Nitrogen Carbon Dioxide Hydrogen Sulfide	0 Mole % 0 Mole % 0 Mole %	
	Antoine Viscosity Data Temperature Viscosity	1 1 1 1 1 1		idjust Standing Data Tabulai Data	
		DK	Cancel Help	ienerate PVT Table.	
	The user is allowed multiple PVT sets. each well (source have unique flu characteristic	to enter Usually) will iid s.			
+	1				+

	SimSci PIPEPHASE Simu	Ilation: DEMO2	
	View General Special Features R Fluid Property Data Blacko	esults <u>H</u> elp	⁄₽∠ ⊾ □ 5
	Set Number 2 Gravities Oil 35.4 API Gas .710 sp gr Water 1.012 sp gr	Contaminants Nitrogen Carbon Dioxide Hydrogen Sulfide	0 Mole % 0 Mole % 0 Mole %
	Antoine Viscosity Data Temperature Viscosity	F CP 68	post Standing Data Tabular Data nerate PVT Table
		Cancel Help	
+			•

SimSci PIPEPHASE Simulation: DEMO2 🏧 🖼 😫 💌 💌
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>G</u> eneral <u>S</u> pecial Features <u>R</u> esults <u>H</u> elp
□ 🖆 🔽 les et les et les
Property Sets
Property Set 2
Delete
Retrieve Data from File: Correlations Data DEM02 Lift Gas Data
OK Cancel Help

😑 Sir	nSci PIPEPHASE Si	imulation: [DEM02	w 🛛 🖯 🚔 🕴	<u></u>
<u>File E</u> dit <u>V</u> iew <u>G</u> eneral	Special Features	<u>R</u> esults	<u>H</u> elp		_
━━━━━	8 - 2 - *				05
	ß		Su press limits	itable defaults for sure and temperat and segment opt are provided.	ture ions
					+
					+

SimSci PIPEPHASE Simulation: [DEMO2 🌌 🖾 🗑 🚖 🕸 🔻 🔺
<u>File E</u> dit <u>V</u> iew <u>G</u> eneral <u>S</u> pecial Features <u>R</u> esults	Help
◧▰▰◈▰◈▥◬▯◪◪▨▨៙◧	
Enter Calculation Methods	(
	Suitable defaults for pressure and temperature limits and segment options are provided.
	•
	*

nter Ca	Maximum Number	of Segments	بر تتعا	-1	
11101 0.2	Sphering Time In	crement	10	sec	Suitable defaults for
	Segments		1	-	pressure and temperature
	Segmenting Sp	ecification b	y Length	<u>*</u>	limits and segment options
	Horizontal	2000	ft		
	Vertical	500	ft		
		000			
	Limits	Minimum	Maximum	1	
	Pressure	-12.69	25000	Disig	
	Temperature		800	 	
		-00	000		22
			Boa Cohoio	na Anatonia	
		<i>"</i>	. 19 10 O DARS	37 222 22	
	OK	Cane			
		Conc			
8					E.

Enter Ca	Maximum Number	of Segments	20	7		╜┝╝┝╝╡╱╴╔╬╵╽]6
	Sphering Time Inc Segments Segmenting Sp Horizontal Vertical Limits Pressure	ecification by 2000 500 Minimum -12.69	10 y Length ft ft Maximum 25000	sec	Su press limits	itable defaults for sure and temperatu and segment optic are provided.	re
	Temperature	-60	800 Use Spherin el	F Ing Analysis Help			

PRAL Algorithm		The formation steps
low Allocation	Diameter 🛃	Number of Preliminary 1
low Loops	No detection	and a second sec
Fluid Properties	Evaluate Once per Link 📓	The experienced user can
aximum Iterations	20	set parameters to help
Number of Interval Halvings	3	convergence - suitable defaults are pre-set for the paviso user
Slip Angle Towrate Damping	0 bbl/day	Use Blasius Approximation
Pressure Damping	0 psi	
] No Flow Reversa] Use Small Backw] Prevent Below M	ıls vard Flow through Regulator inimum Well Flowrates	Broadening of Critical Flow Regime in Chokes Exponential
	OK Cancel	
	OK Cancel	

	PBAL	Enter Solution Tolerances
BAL Algorithm	Diameter 🛃	Number of Preliminary
low Loops	No detection 🛃	Steps
luid Properties	Evaluate Once per Link 📓	The experienced user can
aximum Iterations	20	set parameters to help
lumber of Interval Ialvings	3	convergence - suitable defaults are pre-set for
Slip Angle	5 Deg	the novice user.
lowrate Damping	0 bbl/day	Use Blasius Approximation
Pressure Damping	0 psi	
No Flow Reversa Use Small Backy Prevent Below M	als ward Flow through Regulator finimum Well Flowrates	Broadening of Critical Flow Regime in Chokes Exponential
	OK Cancel	Help

	SimSci PIPE	PHASE Simulation:	DEMO2 🔤	S 🗄 🚖 🕸 🔽
<u>File E</u> dit <u>V</u> iew <u>G</u> e	neral <u>S</u> pecial F	eatures <u>R</u> esults	<u>H</u> elp	
D 🚔 🖬 🗗 🚽 📢	≻ <u> </u>	1 🗖 🕺 🖉 🛑		9 🖉 o , D 🗳
Enter Network Methor	ls		a na anta na se	
		N		
		3		
Global dofault	values are			
used througho	ut the entire			
simulation for	the devices.			
]				

	SimSci DI	EDHASE Simul	ation: DEM02	227 23 9 4	
File Edit View	General Snecia	Features Be	sults Heln		
	₩� <u></u>				
Enter Global Def	aults	0			
					+
		1			
Global de	efault values are				
used thro	ughout the entire				
simulation	1 for the devices.				
		8			
					•

🛥 SimSci PIF File Edit View General Specia	PEPHASE Simulation: DEMO2 🔤 🖼 🕸 💌 🔺
Glo	bal Defaults
Pressure Drop Method Defaults Flow Correlations Palmer Corrections Inside Diameters Flow Device Inside Roughness Absolute 1.8000e-003 in Relative 4.4709e-004 Flow Efficiency 100 % HW Coefficient 150 Transition Re 3000 Global default values are used throughout the entire simulation for the devices.	Thermal Defaults Heat Transfer Defaults Heat Transfer Coefficients Soil Heat Transfer Water Heat Transfer Air Heat Transfer Pipe Heat Transfer
•	*

	Edit \	/iew	S General	imSci PIF Snecia	PEPHASE Simulation: DEMO2 🔤 🖾 🕼 🔽
		Record on the		Glo	bal Defaults
	Pressure D F Pa Pa Ir Flow Dev Abso Rela Flow Efficient HW Coeffic Transition	rop Me low Co lmer C nside D vice In vice In v	ethod Defa mrelations Corrections. Diameters side Rough 1.8000e-00 4.4709e-00 4.4709e-00 100 150 3000 fault valu ighout the for the de	alts	Thermal Defaults Heat Transfer Defaults Heat Transfer Coefficients Soil Heat Transfer Water Heat Transfer Air Heat Transfer Pipe Heat Transfer OK Cancel
+					*

SimSci F	PIPEPHASE Simulation: DEMO2	227 25 8 5 10
G	ilobal Defaults	
Pressure Drop Method Defaults Flow Correlations Palmer Corrections Inside Diameters Flow Device Inside Roughness Absolute 1.8000e-003 in Relative 4.4709e-004 Flow Efficiency 100 X HW Coefficient 150 Transition Re 3000 A wide selection of empirical correlations and mechanistic methods.	Pressure Drop Flow Correlations Pipe BBM Image: Construction of the second se	
*		+

🛥 SimSci F	PIPEPHASE Simulation: DEMO2	27 23 8 3 10
<u>File Edit View General Spec</u>	cial Features <u>R</u> esults <u>H</u> elp	
G	lobal Defaults	R[] <i>[</i>]
G Pressure Drop Method Defaults Flow Correlations Palmer Corrections Inside Diameters Flow Device Inside Roughness Absolute 1.8000e-003 in Relative 4.4709e-004 Flow Efficiency 100 % HW Coefficient 150 Transition Re 3000 A wide selection of	Pressure Drop Flow Correlations Pipe BBM	
empirical correlations and mechanistic methods.		4
+		*

SimSci PII File Edit View General Specia	PEPHASE Simulation: DEMO2 🔤 🖼 🕸 💌 🔺
Gla	bal Defaults
Pressure Drop Method Defaults Flow Correlations Palmer Corrections Inside Diameters Flow Device Inside Roughness Absolute 1.8000e-003 in Relative 4.4709e-004 Flow Efficiency 100 % HW Coefficient 150 Transition Re 3000 Pipe and tubing schedule information are taken from industry - standard databases.	Thermal Defaults Heat Transfer Defaults Heat Transfer Coefficients Soil Heat Transfer Water Heat Transfer Air Heat Transfer Pipe Heat Transfer OK Cancel Help
+	+

Cuit view deneral opecia	
Dia	meter Defaults
Pipe Inside Diameter Default • Actual • Nomingl Schedule Schedule Tubing Diameter Defaults • Actual Inside • Nominal Schedule • Nominal Schedule • Nominal Actual Outside Pipe and tubing Schedule Pipe and tubing Schedule Pipe and tubing Schedule Schedule Schedule	n Actual 4.026 n Nominal 8.000 Nominal 8.000 Schedule 40 Annulus Inside Diameter Default Actual 6.065 n OK Cancel Help

	East Linn Fou	Diamet	er Defaulte		
20		Diamet	er Delaults		
	⊤Pipe Inside Diamet ○ Actual ● Nominal	er Default 4.026 in 8.000 ± in	Riser Inside Dia Actual Nominal	meter Default 4.026 in 8.000 in	
	Schedule	4.000 4.500 5.000 6.000 +	Schedule	40	
	Tubing Diameter D	etaults	Annulus Inside I	Diameter Default	
	• Actual Inside • Nominal	4.020 in		0.005 III	
	Schedule Actual Outside	TB01 ! 4.339 in	ОКС	Cancel Help	
	Pipe and tub schedule inforr are taken from in standard datab	nation dustry - bases.			
1					

Diam	eter Defaults 🛛 👘 📋			
Pipe Inside Diameter Default ○ Actual 4.026 ● Nominal 4.000 € Schedule 40 € Tubing Diameter Defaults • ○ Actual Inside 4.026 in ● Nominal 4.000 € in Schedule 100 € in Schedule 100 € in ● Nominal 4.000 € in Schedule TB01 € in Actual Outside 4.339 in	Riser Inside Diameter Default Actual Nominal Schedule 40 Annulus Inside Diameter Default Actual 6.065 in OK Cancel			
Pipe and tubing schedule information are taken from industry - standard databases.				
	Diameter	Defaults		
--	--	---	--	--
Pipe Inside Diameter Do Actual Nominal Schedule	efault 4.026 in .000 ± in 0 ±	Riser Inside Dia Actual Nominal Schedule	meter Default 4.026 in 8.000 in 40 in	
Tubing Diameter Defau O Actual Inside	lts 4.026 in 875 🗶 in	Annulus Inside I Actual	Diameter Default 6.065 in	
Schedule TB Actual Outside	01 ± 4.339 in		Cancel Help	

<u> </u>	<u>E</u> dit <u>V</u> iew	Sii <u>G</u> eneral	nSci PIPI <u>S</u> pecial	EPHASE Simulatio Features <u>R</u> esul	on: DEMO2 🔤 🔤 I ts <u>H</u> elp	
	ssure Drop Mel Flow Cor Palmer Co Inside D ow Device Ins Absolute 1 Relative 4 w Efficiency / Coefficient ansition Re	thod Defau relations iameters ide Roughr .8000e-003 .4709e-004 100 150 3000	Glob	Thermal Defaults	ansfer Defaults The user can set the default surrounding heat transfer for flow devices. Heat Transfer Cancel Help	
+						+

<u>-ile E</u> dit <u>V</u> ie [,]	w <u>G</u> eneral	<u>Special Features</u> Global Defaults	sults <u>H</u> elp
Pressure Drop Flow	Method Default: Heat	Transfer Defaults	ults
Palm Insi Flow Device Absolut Relativ Flow Efficient HW Coefficie Transition Re	Default Heat Pipe Tubing Riser Annulus Ambient Tempe Temperature G Calculate P	Transfer U-Value Pipe in Air Pipe in Water U-Value erature 80 F radient 1 F/1 randtl Number Cancel Help	The user can set the default surrounding heat transfer for flow devices. t Transfer 00ft ancel Help

□ Pressure Drop	Global Defaults	s
Flow	Heat Transfer Defaults	fer Defaults
Palm Insi Flow Device Absolul Relativ Flow Efficient HW Coefficie Transition Re	Default Heat Transfer Pipe U-Value Tubing U-Value #Riser U-Value Annulus U-Value Annulus U-Value * <	The user can set the default surrounding heat transfer for flow devices.

<mark>→ SimSciP</mark> <u>File E</u> dit <u>V</u> iew <u>G</u> eneral <u>S</u> peci	IPEPHASE Simulation: DEMO2 🛛 💯 🖾 😰 💌 🔺
GI	obal Defaults
Pressure Drop Method Defaults	Thermal Defaults
Palmer Corrections	Heat Transfer Coefficients
Inside Diameters	Soil Heat Transfer
Flow Device Inside Roughness	Water Heat Transfer
Absolute 1.8000e-003 in Relative 4.4709e-004	Air Heat Transfer
Flow Efficiency 100 %	
Transition Re 3000	OK Cancel Help
	<i>.u</i> ,

-	SimSci PIPEPHASE Simulat	tion: DEMO2 🛛 🜌 🖼 🗐 🚘 🅸 🔻 🔺
<u>File Edit View</u> □ 🚔 🔲 ⊷ ∼	<u>General</u> <u>Special Features</u> <u>Res</u> <u>Straulation Description</u> Simulation <u>Definition</u> Input Units of Measurement	ults Help
	<u>P</u> VI Data <u>C</u> omponent Library <u>T</u> hermodynamic Method	The level of detail on the output report can be
	P <u>r</u> int Options <u>O</u> utput Units of Measurement Calculation <u>M</u> ethods <u>N</u> etwork Methods Global Defaults	controlled.

	SimSci PIPEPHASE Simulat	ion: DEMO2 🛛 🜌 🚨 🚘 🅸 🔽 🔺
Eile Edit View	<u>General</u> <u>Special Features</u> <u>Rest</u> <u>Simulation Description</u> Simulation <u>Definition</u>	ults Help
	<u>PVT Data</u> <u>Component Library</u> Thermodynamic Method	The level of detail on the output report can be
	P <u>r</u> int options Output Units of Measurement Calculation <u>M</u> ethods <u>N</u> etwork Methods <u>G</u> lobal Defaults	controlled.
		-

ile <u>E</u> dit ⊻iew <u>G</u>	eneral <u>S</u> pecial Fe	atures <u>R</u> esults <u>H</u> elp	6
RAS Database		Iteration Printout	
Input Reprint	FULL	Connectivity Plot	
Device Detail	SUMMARY ±	Taitel Dukler Flow Pattern Map	
Device Style	BOTH ±	The RESULTS ACCESS	
Property Data	NONE	SYSTEM (RAS) allows users to transfer data	
Plots	NONE	between PIPEPHASE and Windows spreadsheet	
Flash Report	FULL	programs	
Slug Report	NONE		
	OK Cano	el Help	

	5 1% VI	Si	imSci PIPEF	PHASE Sim	ulation: [DEMO2	227 S	3 8 2	
File	<u>Edit View</u>	General	Special F	eatures j	Results	Help			
	╧┃╟╍┥╴	≫ ∲ □□□	Print 0	ptions			Ø		<u>,</u> 0 5
	RAS Datab	ase FUL		🗌 🗌 İter	ation Printe	out	13		1
	Input Rep	vint FUL	L 🛓	Con	nectivity F	Plot			
	Device De	etail SUM	MARY ±		tel Dukler I	Flow Pattern	Мар		
	Device S	tyle BOT	TH 🛃] Тт	ne RESU	LTS ACCE	SS		
	Property D	lata NON	IE 🛓] S	YSTEM (users to t	(RAS) allo ransfer da	ws ita		
	P	lots NON	ŧE 🛃	bet	tween PIF Vindows	PEPHASE spreadshe	and et		
	Flash Reg	port FUL	L 🛓		pro	igrams			
	Slug Rep	port NON	1E !						
	22	OK	Can	icel	Help				
	0		20 20000000000000000000000000000000000						

Ш

SimSci PIPEPHASE Simulation: D	DEMO2 🌌 🖼 🗐 🚘 🅸 💌 🔺
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>G</u> eneral <u>S</u> pecial Features <u>R</u> esults	<u>H</u> elp
□ё▣⊵୶� ▥◬▯◪▯≈๏๏	
Add SOURCE to flowsheet	
	Lay down the nodes on the flow diagram by selecting the appropriate icon from the tool bar.
	-
*	

Source Name S001 Mandatory Data Pressure Fixed psig Estimated psig	Enthalpy Temperat In the mandatory section
Oil Flow Rate O Fixed Fixed Estimated Bas / Oil Ratio Water Cut	Properties PVT Property Set 1 Use Reference Source
Disable Source	Cancel Help

Mandatory Data Pressure	Source Name S001	
Oil Flow Rate O Fixed E stimated 7000 bbl/day Itse Reference Source	Mandatory Data Pressure Fixed 2100 psig Estimated psig	Temperature 105 F
Gas / Oil Ratio 450 ft3/bbl Water Cut 10 %	Oil Flow Rate O Fixed bbl/day © Estimated 7000 bbl/day	Properties PVT Property Set 1 Use Reference Source
	Gas / Oil Ratio 450 ft3/bbl Water Cut 10 %	

Source Name SOO2	[When a pressure is
Pressure Image: Strength of the stimated	Enthalpy Tempera	is estimated. Better estimates enable rapid convergence for large networks.
Oil Flow Rate O Fixed bbl/day Image: Stimated bbl/day	Properties PVT Pro Use B	operty Set 1 👤 oference Source
Gas / Oil Ratio ft3/bbl Water Cut %		
Disable Source	Cancel	Halp
	Lancei	нер

Pressure	Enthalpy
C Estimated psig	Temperature 125 F
Oil Flow Rate Fixed bbl/day Estimated 11000 bbl/day	Properties PVT Property Set 1 Ise Reference Source
Gas / Oil Ratio 455 ft3/bbl Water Cut 11.1 %	
Well Test Data Disable Source OK	Cancel Help

Reservoir Namo	e / Descripti Ri	on eservoir D	ata				
Reservoir D Production Cumulative Reservoir © Decline	escription Basis Production Decline e Curve	DEMO Oil and W O	/ater Standard	Volume ± Cun wa	nulative puld be new	e production zero for a field.	
0 672 04 0 6as in 0K		Cancel	MM ft3			D884	

		Reservoir Do	ecline Curve	207 🝱 🖯 🚖 🚳 😂 💠
WorkSh	eet <u>M</u> odify	<u>A</u> dd <u>∧</u> tter	100	F1=Help
	Res	ervoir Pressure (psig)	Cumul	lative Production (bbl)
1	2600.000		0	
		Enter rese decline as cumulativ	rvoir pressure s a function of e production.	

	Reservoir De	ecline Curve 🏧 🌌 😫 😹 🌚	\$
WerkSh	eet <u>M</u> odify <u>A</u> dd After	F1=H	elp
45	Reservoir Pressure (psig)	Cumulative Production (bbl)	
1	2600.000	0.000	
2	1800.000	5000000	

	Reservoir D	ecline Curve	27 26 🗉 🚖 🌚 🗢
<u>W</u> orkShe	et <u>M</u> odify <u>A</u> dd After	100	F1=Help
Sive	Reservoir Pressure (psig)	Cumula	tive Production (bbl)
Delete	2600.000	0.000	
<u>C</u> ancel	1800.000	5000000	
<u>I</u> nfo			

	Reservoir De	ecline Curve 🏧 🖾 🗐 🚎 🅸 🗘
WorkShe	et <u>M</u> odify <u>A</u> dd After	F1=Help
Sive	Reservoir Pressure (psig)	Cumulative Production (bbl)
<u>D</u> elete	2600.000	0.000
<u>C</u> ancel	1800.000	5000000
<u>I</u> nfo		

		Link <l001> Device Data</l001>	22 25 8 25 00 0
<u>O</u> K Ca <u>n</u> cel <u>E</u> dit Delete Copy Paste Link Help		Click o icon window pe autor	IPR Device and a data entry for reservoir inflow enformance data matically pops up.
From N	ode Typ	e: SOURCE Desc:	

	Link <l001> De</l001>	vice Data 🏾 🌌 📓	😫 🕸 😫
<u>OK</u> Cancel Edit <u>E</u> dit Delete <u>C</u> opy Paste Link <u>H</u> elp	Inflow Performance Relationship PR Name EOOI PR Model Vogel Deliverability Basis Oil IPR Model Data Decline Data Advanced IPR Options OK Cancel Help	Click on the "IPR" device icon and a data entry window for reservoir inflow performance data automatically pops up.	
Device#=1	Name: E001 Type: IPR DEVICE	Desc: INCOMPLETE	

	Ti	ubing	20 25 🖻 🚉 🕸	
Tubing Name E002 Mandatory Data Measured Wireline Depth True Vertical Depth Inside Diameter Actual Nominal Schedule	1500 ft ft Default 4.026 in 2.875 in TB01	Thermal Calculations Heat Transfer Default Changing tubing pro or angle can be simulated with multij tubing devices.	file	
Tubing Inside Rough Absolute Relative	ness 1.8000e-003 in 4.4709e-004	Pressure Drop Meth		₹ *
	OK Ca	ancel Help		
evice#=2 Name:	E002 Type: TUBING	Desc: INCOMP	LETE	₽

	1	Tubing	🏧 🏧 🕰 🖪 🔁 🎕	2
ubing Name E002			u bii	
Mandatory Data Measured Wireline Depth	1500 ft	Thermal Calculations Heat Transfer Default	<u> </u>	
True Vertical Depth	1450 ft	Covenide Global Defaults	Btu/hr-ft2-F	
Actual	4.026 în	Temperature Gradient	F/100ft	
Nominal Schedule	2.875 👷 in TB01 🚊	Heat Transfer Dat		
Tubing Inside Rough Absolute	iness	Pressure Drop Met	hod	, <u>*</u> ∲
O Relative	4.4709e-004		€ ,r	
	ОК	Cancel Help		
	~~~~			
vice#=2 Name:	E002 Type: TUBIN	G Desc: INCOMF	<del>د ا</del> LETE	<b>→</b>



Link <l001> Devic</l001>	ce Data	w 🛛 🗄	3. 12	\$
Choke Name E003 Choke in Well Mandatory Data Choke Specification Calculate Pressure Drop	Well-head choke o	liameter.		
Inside Diameter       4.026       in         Resistance Coefficient       1.03         Specific Heat Ratio       1         Calculation Method       Fortunati			<b>₽</b> & *	☆ ☆
OK Cancel Help Link Help				
Device#=3 Name: E003 Type: CHOKE	Desc: INCOMPLET	E		

Link <l001> Devi</l001>	ce Data 🛛 🖉 😫 🗐	*
Link <l001> Devia</l001>	ve Data	
Device#=3 Name: E003 Type: CHOKE	Desc: INCOMPLETE	



	Pipe	20 25 🖯 🔁 🕸	4
Pipe Name E004 Mandatory Data Length ft	Thermal Surfact Heat Tra	e flow line data - ote defaults.	
Elevation Change0ftInside DiameterDefault1Actual4.026inNominal4.0001	n Heat Trans	aufts Btu/hr-ft2-F	
Pipe Inside Roughness            • Absolute             • Relative	in Sphere Inside Diameter	op Method	
ОК	Cancel Help		
Device#=4 Name: E004 Type: Pl	PE Desc: IN	ICOMPLETE	<mark>}</mark> →

		Pipe	207 25 🗄	
Pipe Name E004 Mandatory Data	L 201 ft	Thermal I Heat Tra	Surface flow line data - note defaults.	
Elevation Change Inside Diameter Actual Nominal	-5 ft Default 4.026 in 4.000 in	Override U Value Ambient Tempera	Global Defaults Btu/hr-ft2-F F Heat Transfer Data	
Fipe Inside Roughner Absolute Relative	40 ***	Sphere Insid	e Diameter in	
	ОК	Cancel	Help	
Device#=4 Name:	E004 Type: PIPE		Desc: INCOMPLETE	























	Link •	<l002> Device Data</l002>	207 🕰 🗄 🔁 🏡
Tubing Name E006			
Mandatory Data Measured Wireline Depth True Vertical Depth Inside Diameter Actual	1631 ft 1515 ft Default ★ 4.026 in 2 875 ⊯ in	Thermal Calculations Heat Transfer Default Overside Global Defaults U Value Temperature Gradient	Image: Second secon
Schedule Tubing Inside Rough Absolute Relative	TB01	Heat Transfer Data Pressure Drop Meth	
		Cancel Help	
evice#=2 Name:	E006 Type: TUBIN	G Desc: INCOMP	LETE



	Link <l002> Device Data</l002>	207 23 🕑 📴 🏠
Choke Name E007 Choke Mandatory Data Choke Specification Calculate Inside Diameter 4.025 Resistance Coefficient 1.03 Specific Heat Ratio 1 Calculation Method Fortunati OK Cancel	in Well  Pressure Drop  in  Help	
Device#=3 Name: E007 Type: 0	HOKE Desc: II	NCOMPLETE

Link <l002> Dev</l002>	rice Data 💴 🔀 🗐 🚖 🎼 💠
Link <l002> Dev Choke Choke Name E007 Choke in Well Mandatory Data Choke Specification Inside Diameter 2 in Resistance Coefficient 1.03 Specific Heat Ratio Calculation Method Fortunati</l002>	rice Data
OK     Cancel     Help       Link     Help       Help       Device#=3     Name: E007 Type: CHOKE	Desc' INCOMPLETE






		Pipe	7 🛰 🗐 💈		¢
Pipe Name E00	8			pe	RA 1
Mandatory Data —		Thermal Calculations			Ac.
Length	4070 ft	Heat Transfer Default 👤		Ľ	
Elevation Change	207 ft	C Ovenide Global Defaults	1	PR	2
Inside Diameter	Default	U Value Btu/I	nt-ft2-F		
Astual	1.026 in	Ambient		XIZ)	-17-
Nominal	4.000 * in	l'emperature		्री	¥1
Schedule	4.000	Heat Transfer Data		*	*
Seriedate	40		2	1-5	100
⁻ Pipe Inside Roughn	iess	Sphere Inside Diameter	ົ່າກ	••••	***
Absolute	1.8000e-003 in	Barrier Dara Mathad		<b>a</b>	<u></u>
⊖ Relative	4.4709e-004	Pressure Drop Method			2
				<b>₽</b>	<b>₫</b>
		Cancel Help		6	
20 20	1042752				
				DPDT	P
				<u></u>	
evice#=1 Name:	E008 Type: PIPE	Desc: INCOMPLETE			





S S	imSci PIPEPHASE Simulation: DEMO2	S 8 3 0
<u> </u>	Sink	
▫��⊌ਙ	Sink Name D004 Injection Well	22 605
	Pressure	*
5001	Oil Flow Rate       O Fixed       Bbl/day       Estimated       20000	
	Disable Sink	•
5002	UK Lancel Help	•
<b>.</b>		+







Time Stepping Changes         Time (day)       Data         365	<u>F</u> ile	Edit	<u>V</u> iew form Tin	Sir <u>G</u> eneral ne Steppina	nSci PIPEPHASE Simulation: DEMO2 2015 2015 2015 2015 2015 2015 2015 201
	P	Time 365 730 IPEPH fea fin	(day) HASE ti ture is	Data	Time Stepping Changes          Reservoir/Device Name         Reservoir Production Decline         Link Name         Device Type         Device Type         Perice Name         Parameter         W         OK       Cancel

Image: Stepping Charges         Time (day)       Data         365         730         1096         Image: Stepping Charges         Image: Stepping Charges         Stepping Charges         Reservoir/Device Name         Image: Stepping Charges         Image: Stepping Charges <tr< th=""><th><u>F</u>ile</th><th><u>E</u>dit <u>V</u></th><th>iew</th><th><u>G</u>eneral</th><th>Special Features <u>R</u>esults <u>H</u>elp</th></tr<>	<u>F</u> ile	<u>E</u> dit <u>V</u>	iew	<u>G</u> eneral	Special Features <u>R</u> esults <u>H</u> elp
Time (day) Data   365   730   1096   1096   1096   Device Type   All Types   Device Name   Parameter   V   Parameter   V     OK     Cancel   Help   Notice, reservoir decline   characteristics will   cause production   decline with time.		Perfor	m Tin	e Steppina	Calculations Time Stepping Changes
		Time (da 365 730 1096 	rese racte se pr	Data	Reservoir/Device Name Reservoir Production Decline Link Name Device Type All Types Device Name Parameter OK Cancel Help



Sin <u>File Edit ⊻iew G</u> eneral	nSci PIPEPHASE Simulation: DEMO2 2018 2018 2019 2019 2019 2019 2019 2019 2019 2019
Perform Time Stepping I	Time Stepping Changes
Time (day)       Data         365	Reservoir/Device Name Reservoir Production Decline Link Name L002 Device Type All Types Device Name E006 Parameter Inside Diameter UK Cancel Help
+	•

— <u>F</u> ile	<u>E</u> dit	<u>V</u> iew	Sir <u>G</u> eneral	nSci PIPEF <u>S</u> pecial F	PHASE Simula eatures <u>R</u> es	tion: DEMO2 ults <u>H</u> elp	207 25 (	
	Pe	form Tin	ne Steppina	Time St Calculations	tepping		4	2 D 6
	Time 365 730 1096 	examp rface f ned; t mulate	Data Data	Time Step	ping Changes servoir/Device I Reservoir Prod Link Name Device Typ Device Nar Parameter Insi OK C.	Name uction Decline L002 All Types me E006 de Diameter ancel Ho		
+								4

Parform	Time Steening	Time Stepping		906
	Thire Stepping	Time Stepping Changes		
Time (day) 365 730 1096	Data	Reservoir/Device N Reservoir Produ Link Name Device Typ Device Nar Parameter Insid OK	Name uction Decline LOO2 All Types EOO6	















	<u>ile E</u> dit	Option	<u>s 1</u> еп	nplate E <u>x</u>	ecute	Mac	ro <u>y</u>	Wind	0W	Help	p				ę
		8		V 4 D		<b>8</b>	5	2 1A							
Ê.	· •								1		_			-1	Ŀ
	PPPP	III	PPPP	EEEEE	PPPP	H	Н	1		÷.					
	P I	ΡI	ΡI	ΡE	PF	Р Н	H	A	n	he r	esu	Its sum	mary is	5	Γ
	P I	ΡI	PI	ΡE	ΡF	νн	Н	A		g	ene	erated in	nan		
	PPPP	Ι	PPPP	EEEE	PPPP	HH	HHH	A			0	utput file	9.		
	Р	I	Р	E	Р	н	Н	AAI							
	Р	I	Р	E	Р	н	H	A	A	S	S	E			
	Р	III	Р	EEEEE	Р	н	H	A	A	SS	S	EEEEE			
				VE	RSION	7.01	B2								
**	*******	******	<del></del>	********	*****	*****	****	***	****	****	***	******	******	***	
×														¥	
* *				SIMULA	TION S	SCIEN	CES	INC						* *	
* * *				SIMULA	TION	SCIEN	CES	INC						* * *	
* * *				SIMULA	TION S	SCIEN	CES	INC	-					* * *	
* * * *	INTERNA	TIONAL	CORP.	SIMULA 	TION S	SCIEN MI	CES 	INC	- IRGI	N IS	LAN	DS		* * * *	
* * * * *	INTERNA	TIONAL	CORP.	SIMULA 	TION S	SCIEN MI	D-US	INC A/V	. RG I	N IS	LAN	DS		* * * * *	
* * * * *	INTERNA BREA,	TIONAL Ca 926	CORP.	SIMULA  Headquar Sa	TION S	SCIEN MI	D-US HOUS	INC A/V Ton	IRGI	N IS  770	LAN 	DS  USA		* * * * *	
* * * * * *	INTERNA BREA, PHONE	TIONAL Ca 920 (714)	CORP. 521, U	SIMULA  Headquar Sa 0412	TION S	MI	D-US Hous Phon	INC (A/V) (TON	 , TX (713	N IS  770 ) 68	LAN  192, 3-1	DS  USA 710		* * * * * *	
* * * * * * *	INTERNA BREA, PHONE	TIONAL Ca 926 (714) (800)	CORP. 521, U3 579-1 827-3	SIMULA Headquar Sa 0412 7999 (USA	TION STERS	SCIEN MI	D-US Hous Phon	INC A/U Ton	IRGI , TX (713	N IS  770 ) 68 ) 23	LAN  192, 3-1 1-2	DS  USA 710 754 (U:	SA)	* * * * * * *	
* * * * * * * *	INTERNA BREA, PHONE	FIONAL Ca 926 (714) (800) (800)	CORP.	SIMULA Headquar Sa 0412 7999 (USA 4672 (Cal	TION STERS	SCIEN  MI 	D-US Hous Phon Fax	INC (A/V) (TON	IRGI , TX (713 (800	N IS  770 ) 68 ) 23 ) 68	LAN  192, 3-1 1-2 3-6	DS  USA 710 754 (U: 613	SA)	* * * * * * *	
* * * * * * * * * *	INTERNA BREA, PHONE	FIONAL Ca 926 (714) (800) (800) (800)	CORP. 521, U3 579-1 827-3 427-3 443-3	SIMULA  Headquar Sa 0412 7999 (USA 4672 (Cal 4418 (Can	TION STERS	SCIEN 	D-US Hous Phon Fax	INC A/V TON	, TX (713 (800 (713	N IS  770 ) 68 ) 23 ) 68	LAN  92, 3-1 1-2 3-6	DS  USA 710 754 (U! 613	SA)	* * * * * * * *	
* * * * * * * * * *	INTERNA BREA, Phone Fax	TIONAL Ca 926 (714) (800) (800) (800) (714)	CORP. 521, U3 579-1 827-1 427-1 443-1 579-1	SIMULA  Headquar Sa 0412 7999 (USA 4672 (Cal 4418 (Can 0236	TION STERS	SCIEN MI 	D-US Hous Phon Fax Lora	INC A/U TON E	IRGI , TX (713 (800 (713	N IS 770) 68) 23) 68	LAN  192, 3-1 1-2 3-6	DS  USA 710 754 (U: 613	SA)	* * * * * * * * *	
* * * * * * * * * * *	INTERNA Brea, Phone Fax PC BB	TIONAL CA 926 (714) (800) (800) (800) (714) S (714)	CORP. 521, U3 579-1 827-3 827-3 427-3 579-1 579-1	SIMULA  Headquar Sa 0412 7999 (USA 4672 (Cal 4418 (Can 0236 7415	TION STERS	SCIEN MI  C0	D-US Hous Phon Fax Lora	INC A/U TON IE	IRGI , TX (713 (800 (713	N IS  770 ) 68 ) 23 ) 68	LAN 92, 3-1 1-2 3-6	DS  USA 710 754 (U: 613	SA)	* * * * * * * * * *	
* * * * * * * * * * * *	INTERNA Brea, Phone Fax PC BB:	TIONAL CA 926 (714) (800) (800) (800) (714) S (714)	CORP. 521, U3 579-1 827-3 427-3 443-3 579-1 579-3	SIMULA  Headquar Sa 0412 7999 (USA 4672 (Cal 4418 (Can 0236 7415	TION STERS	SCIEN MI  C0 	D-US Hous Phon Fax Lora Auro	INC A/U TON E IDO IRA,	IRGI , TX (713 (800 (713	N IS 770 ) 68 ) 23 ) 68 8001	LAN  92, 3-1 1-2 3-6	DS  710 754 (US 613 USA	SA)	* * * * * * * * * * *	
* * * * * * * * * * * * *	INTERNA Brea, Phone Fax PC BB: Eastern	TIONAL CA 926 (714) (800) (800) (800) (800) (714) S (714) USA/EA	CORP. 521, U3 579-1 827-3 827-3 827-3 827-3 827-3 827-3 579-3 579-3	SIMULA HEADQUAR 5A 0412 7999 (USA 4672 (CAL 4418 (CAN 0236 7415 CANADA	TION STERS	SCIEN MI  C0 	D-US HOUS Phon Fax Lora Auro Phon	INC A/V TON E IDO IRA, E	IRGI , TX (713 (800 (713 (713 (713	N IS 770 ) 68 ) 23 ) 68 8001 ) 75	LAN 92, 3-1 1-2 3-6 4, 0-1	DS  10 710 754 (U 613 USA 000	SA)	* * * * * * * * * * * *	

<u>F</u> ile	<u>E</u> dit	<u>Options</u>	Template	E <u>x</u> ecute	<u>Macro W</u> i	ndow <u>H</u> elp	492¥
		8	Q 🔍 🛛	4 🗈 🐖	🏙 🖭 🖌	100 G	
• • PAC • • B • P	REA, HONE	RIM/WES1 CA 92621 (714) 5 (800) 5	ERN CAN , USA 79-0412	ADA	FAX JAPAN  Minato Phone	The results summary generated in an output file.	′ is
• • • F	AX	(800) 4 (800) 4 (714) 9	27-4672 43-4418	(CALIF.) (CANADA)	FAX South an	81-3-3432-4633	* *
	00.001720		and count T.		CARACA Phone Phone	 IS, 1060, VENEZUELA 58-2-993-2506 58-2-993-8725	* * *
e e					FAX	58-2-993-2717	* * *
****	(SM (R)	******** ) SIMSCI PIPEPH	IS I	*********** A SERVICE   A TRADEMAR	********************** 1ARK OF SIM ( OF SIM	WLATION SCIENCES INC.	****
		(c) COF	YRIGHT 1990, S	1985, UPDA 1991, 1993 (MULATION 3 ALL RIGHT3	TED 1986, 1 2, 1993 AND Sciences in S Reserved	987, 1988, 1989, 1994 MC.	
	(R)						

```
Programmer's File Editor - [demo2.out]
                                                           207 🔉 😑 🔼 🕵
                                                                             $
-
- File Edit
            Options
                     Template Execute Macro Window Help
                                                                             $
                                      1 12 CE
                       -
B
                    Q
                            Æ
                                                                              +
     SIMSCI PIPEPHASE Version 7.01 B2 keyword file
    S
                                                     The results summary is
                                                        generated in an
       General Data Section
                                                           output file.
    TITLE PROJECT=DEMO, USER=SIMSCI, DATE=04/30/96,
    SITE=BREACA
         $----$
    ** WARNING ** STRING HAS MORE THAN 4 CHARACTERS
                  EXCESS TRUNCATED
    $
    DESCRIPTION THREE YEAR DECLINE OF A TWO WELL FIELD
    DESCRIPTION
    DESCRIPTION
    DESCRIPTION
    Ś
    DIMENSION RATE(LU)=BPD
    PRINT INPUT=FULL, DATABASE=FULL
    CALCULATION NETWORK, BLACKOIL
                                        , PRANDTL
    DEFAULT NOMD=4, SCHE= 40, NOMT=2.875, *
    SCHT=TB01, IDRISER=4.026, IDANNULUS=6.065
    SEGMENT DLHORIZ(FT)=2000, DLVERT(FT)=500
+
                                                                            +
```



		Program	mer's File	Editor - [	demo2.out]		207 🛂 🗄 😫 🔽 🦷	+ +
Restore		nplate	Execute	Macro	Window	Help	a se de la capita de	\$
<u>M</u> ove Size <b>Mi<u>n</u>imize</b> Ma <u>x</u> imize		AR DEC	LINE OF	A TWO W	🖌 🏦 🖨 ELL FIELD	)		•
Clase	Alt+F4							
S <u>w</u> itch To.	Ctrl+Esc	PD						
Save Scre <u>E</u> xit Windo CHLCOL \$ DEFAUL	en )ws HTTUM METWURK T NOMD=4, SCH	TABASE , Black IE= 40,	E=FULL Koil Nomt=2.	, PR 875, *	ANDTL			
SCHT= \$ SEGMEN \$ \$ Ne \$	TB01, IDRISER T DLHORIZ(FT) twork Data Se	=4.026, =2000, ection	, IDANNUL DLVERT(F	US=6.06 T)=500	5			
NETWOR \$ Soluti \$	K DATA ON PBALANCE T Data Soctio							
SET SE	OPERTY DATA	Π 11 ΔΡΤΙ	-35 2 0	ROULCOS	SPCD)=0	654	¥	+
• <b>SET SE</b>	THE L. BRAULT		-17.7. 1	NHOL NHY				+









File	<u>E</u> dit <u>V</u> iew	<u>G</u> eneral	mSci PIPE <u>S</u> pecial F	PHASE SI	mulation <u>R</u> esults	: DEMOZ : <u>H</u> elp			21
	=			RAS Plot (	Options				6
	Title	•				174	🔵 🖲 Nor	malized Length	
	X-Axis Labe Y-Axis Labe					Th ir	e results 1 a table	may be view or plot form	wed at.
							🗌 Nor	malized Y-Axis	
	Plot Definition	8						Edit Delete View	
	51. 			10		10			2
			ОК	Canc	el	Help			

Title	RA	S Plot Data Options	The secults of	
Time Step 0.00	¥	X-Variable Total Leng	in a table or	plot format.
Device Selection		Y-Variable		
Link Name	±	O Device Variable		*
Device Type	*	State Variable	Pressure	±
Device Name		O Fluid Property		
All Devices in the	Link	O Hydraulic Variable		*
		O Distance Variable		
		a		_
Add Selec	tion	Done	el Help	

Time Step 0.00 🛨		The results ma in a table or p	y be viewed lot format.
Device Selection Link Name L001	(-Variable Total Leng -Variable ) Device Variable ) State Variable ) Fluid Property ) Hydraulic Variable ) Distance Variable	Pressure	***

	Tial-	RAS Plot Data Op	otions	dtano L borile
Time Ste	p 0.00 0.00 365.00	X-Variable To	tal Lengt	nay be viewed ir plot format.
CDevice S	ele ^{730.00}	Y-Variable		
Link Na	me LOO1		iable	<u>*</u>
Devic	е Туре	🔹 🔍 🖲 State Varia	ble Pressure	<b>±</b>
Devic	e Name	💿 🛛 🔿 Fluid Prope	rty	
🛛 All De	vices in the Link	O Hydraulic V	ariable	*
		O Distance V	ariable	
-				

Time Step 730.00   Time Step 730.00  The results may be vie in a table or plot form X-Variable Total Leng  Device Selection Link Name L001
X-Variable Total Leng Device Selection Link Name L001 N N N N N N N N N
Device Selection     Y-Variable       Link Name     L001       •
N
Device Type State Variable Pressure
Device Name Similar Stuid Property
All Devices in the Link
O Distance Variable
----
PI





	_			RAS Plot	Options		The	user can	view
4	Title						the resu	Its from	several
X-4	xis Label	1					time : stud	steps or lies at a f	case time.
Y-(	vis Label								
Plot	Definitions								
Plot Time Time	Definition: 0.00: Pre 365.00: 1 730.00: 1	s Sssure vs. Pressure Pressure	. Total Lengl vs. Total Len vs. Total Len	h in Link L( ìgth in Link ìgth in Link	001, All D L001, Al L001, Al	)evices II Device II Device	S S		Add E dit Delete View







— <u>F</u> ile	<u>E</u> dit <u>V</u> iew	Si <u>G</u> eneral	mSci PIPEPH/ <u>S</u> pecial Feat	ASE Simulati Tures <u>R</u> esu	on: DEMO Its <u>H</u> elp	02 🌌 🍱 🗎 🚘 🕸	<b>*</b>
			RAS	Plot Option	6		6
	Title					Normalized Length	
	Y-Axis Labe					I he user can export or save the data.	
	Note					Normelized Y-Axiv	
	Plot Definitior Time 0.00: Pr	is essure vs. 7	Total Length in	Link L001, All	Devices	<b>Add</b>	
	Time 365.00: Time 730.00	Pressure v: Pressure v:	s. Total Length s. Total Length	in Link L001, . in Link L001	All Devices All Devices	Edit	
						Delete View	
			OK	Cancel	Hel	р	
8		_					
+							+









		Microsoft Excel 24	* 😂 🗄 😫 🐿 🔹 🗘
Restore			
Move			🛨 💡 🍋
5120 Minimize			
Maximize	2 2		
Close	Alt+F4		
Switch To			
	0.00		

le	<u>E</u> dit	⊻iew	<u>G</u> eneral	<u>Special Fea</u>	tures <u>R</u> esults <u>H</u> el	р Р
]		Res	sults Acces	RA ss System	S Plot Options	<u></u>
			Table Op Plot Opt	tions ions		Normalized Length Actual Length X-Variable Total Length
			Special ( Other Op	Plots tions		Normalized Y-Asis
_					1, All Devices D01, All Device D01, All Device	S Add Edit Delete
	2 <b>1</b>			ок Ц	Cancel	elp







