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Chapter 1 Introduction and Basic Concepts

Introduction, Classification, and System

1-1C
Solution We are to define internal, external, and open-channel flows.
Analysis External flow is the flow of an unbounded fluid over a surface such as a plate, a wire, or a pipe. The flow

in a pipe or duct is internal flow if the fluid is completely bounded by solid surfaces. The flow of liquids in a pipe is
called open-channel flow if the pipe is partially filled with the liquid and there is a free surface, such as the flow of
water in rivers and irrigation ditches.

Discussion  As we shall see in later chapters, there different approximations are used in the analysis of fluid flows based
on their classification.

1-2C
Solution We are to define incompressible and compressible flow, and discuss fluid compressibility.
Analysis A fluid flow during which the density of the fluid remains nearly constant is called incompressible flow.

A flow in which density varies significantly is called compressible flow. A fluid whose density is practically independent
of pressure (such as a liquid) is commonly referred to as an “incompressible fluid,” although it is more proper to refer to
incompressible flow. The flow of compressible fluid (such as air) does not necessarily need to be treated as compressible
since the density of a compressible fluid may still remain nearly constant during flow — especially flow at low speeds.

Discussion It turns out that the Mach number is the critical parameter to determine whether the flow of a gas can be
approximated as an incompressible flow. If Ma is less than about 0.3, the incompressible approximation yields results that
are in error by less than a couple percent.

1-3C
Solution We are to define the no-slip condition and its cause.
Analysis A fluid in direct contact with a solid surface sticks to the surface and there is no slip. This is known as

the no-slip condition, and it is due to the viscosity of the fluid.

Discussion  There is no such thing as an inviscid fluid, since all fluids have viscosity.

1-4C
Solution We are to define forced flow and discuss the difference between forced and natural flow. We are also to
discuss whether wind-driven flows are forced or natural.

Analysis In forced flow, the fluid is forced to flow over a surface or in a tube by external means such as a pump or a
fan. In natural flow, any fluid motion is caused by natural means such as the buoyancy effect that manifests itself as the rise
of the warmer fluid and the fall of the cooler fluid. The flow caused by winds is natural flow for the earth, but it is
forced flow for bodies subjected to the winds since for the body it makes no difference whether the air motion is caused
by a fan or by the winds.

Discussion  As seen here, the classification of forced vs. natural flow may depend on your frame of reference.
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Chapter 1 Introduction and Basic Concepts

1-5C
Solution We are to define a boundary layer, and discuss its cause.
Analysis When a fluid stream encounters a solid surface that is at rest, the fluid velocity assumes a value of zero at

that surface. The velocity then varies from zero at the surface to the freestream value sufficiently far from the surface. The
region of flow in which the velocity gradients are significant and frictional effects are important is called the
boundary layer. The development of a boundary layer is caused by the no-slip condition.

Discussion  As we shall see later, flow within a boundary layer is rotational (individual fluid particles rotate), while that
outside the boundary layer is typically irrotational (individual fluid particles move, but do not rotate).

1-6C
Solution We are to discuss the differences between classical and statistical approaches.
Analysis The classical approach is a macroscopic approach, based on experiments or analysis of the gross behavior

of a fluid, without knowledge of individual molecules, whereas the statistical approach is a microscopic approach based
on the average behavior of large groups of individual molecules.

Discussion  The classical approach is easier and much more common in fluid flow analysis.

1-7C
Solution We are to define a steady-flow process.
Analysis A process is said to be steady if it involves no changes with time anywhere within the system or at the

system boundaries.

Discussion  The opposite of steady flow is unsteady flow, which involves changes with time.

1-8C
Solution We are to define stress, normal stress, shear stress, and pressure.
Analysis Stress is defined as force per unit area, and is determined by dividing the force by the area upon which it

acts. The normal component of a force acting on a surface per unit area is called the normal stress, and the tangential
component of a force acting on a surface per unit area is called shear stress. In a fluid at rest, the normal stress is called
pressure.

Discussion Fluids in motion may have additional normal stresses, but when a fluid is at rest, the only normal stress is
the pressure.

1-9C
Solution We are to define system, surroundings, and boundary.
Analysis A system is defined as a quantity of matter or a region in space chosen for study. The mass or region

outside the system is called the surroundings. The real or imaginary surface that separates the system from its
surroundings is called the boundary.

Discussion Some authors like to define closed systems and open systems, while others use the notation “system” to
mean a closed system and “control volume” to mean an open system. This has been a source of confusion for students for
many years. [See the next question for further discussion about this.]
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Chapter 1 Introduction and Basic Concepts

1-10C
Solution We are to discuss when a system is considered closed or open.
Analysis Systems may be considered to be closed or open, depending on whether a fixed mass or a volume in space

is chosen for study. A closed system (also known as a control mass or simply a system) consists of a fixed amount of
mass, and no mass can cross its boundary. An open system, or a control volume, is a properly selected region in space.

Discussion In thermodynamics, it is more common to use the terms open system and closed system, but in fluid
mechanics, it is more common to use the terms system and control volume to mean the same things, respectively.

Mass, Force, and Units

1-11C
Solution We are to discuss the difference between pound-mass and pound-force.
Analysis Pound-mass lbm is the mass unit in English system whereas pound-force Ibf is the force unit in the

English system. One pound-force is the force required to accelerate a mass of 32.174 Ibm by 1 ft/s°. In other words, the
weight of a 1-Ibm mass at sea level on earth is 1 Ibf.

Discussion It is not proper to say that one lbm is equal to one Ibf since the two units have different dimensions.

1-12C
Solution We are to discuss the difference between kg-mass and kg-force.
Analysis The unit kilogram (kg) is the mass unit in the SI system, and it is sometimes called kg-mass, whereas kg-

force (kgf) is a force unit. One kg-force is the force required to accelerate a 1-kg mass by 9.807 m/s?. In other words, the
weight of 1-kg mass at sea level on earth is 1 kg-force.

Discussion It is not proper to say that one kg-mass is equal to one kg-force since the two units have different
dimensions.

1-13C
Solution We are to calculate the net force on a car cruising at constant velocity.
Analysis There is no acceleration, thus the net force is zero in both cases.

Discussion By Newton’s second law, the force on an object is directly proportional to its acceleration. If there is zero
acceleration, there must be zero net force.
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Chapter 1 Introduction and Basic Concepts
1-14
Solution A plastic tank is filled with water. The weight of the combined system is to be determined.

Assumptions The density of water is constant throughout.

Properties The density of water is given to be p = 1000 kg/m?®.

Analysis The mass of the water in the tank and the total mass are Man=3 kg

my,, =p V=(1000 kg/m?)(0.2 m®) = 200 kg e
Meotal = My + Megnk = 200 + 3 = 203 kg

Thus,

W =mg = (203 kg)(9.81 m/sz)[lkl—sz =1991 N =1990 N
9

m/s
where we give the final answer to three significant digits.

Discussion Note the unity conversion factor in the above equation.

1-15
Solution The interior dimensions of a room are given. The mass and weight of the air in the room are to be
determined.

Assumptions The density of air is constant throughout the room.

Properties The density of air is given to be p = 1.16 kg/m®, ROOM
Analysis The mass of the air in the room is AR
m=pV =(1.16 kg/m*)(6x6x8 m®)=334.1kg=334 kg 6X6X8 m’
Thus,
2 1N
W =mg =(334.1 kg)(9.81 m/s")| ————— |=3277 N=3280 N
1 kg-m/s

Discussion Note that we round our final answers to three significant digits, but use extra digit(s) in intermediate
calculations. Considering that the mass of an average man is about 70 to 90 kg, the mass of air in the room is probably
larger than you might have expected.

égleution The variation of gravitational acceleration above sea level is given as a function of altitude. The height at
which the weight of a body decreases by 1% is to be determined. Za
Analysis The weight of a body at the elevation z can be expressed as

W =mg =m(9.807 —3.32 x10-62)
In our case,

W = 0.99W, = 0.99mg, = 0.99(m)(9.807)
Substituting,

0.99(9.807) = (9.807 -3.32x10°° z) —> 2=29,540 m=29,500 m —0—

Sea level

where we have rounded off the final answer to three significant digits.

Discussion  This is more than three times higher than the altitude at which a typical commercial jet flies, which is about
30,000 ft (9140 m). So, flying in a jet is not a good way to lose weight — diet and exercise are always the best bet.
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1-17E
Solution An astronaut takes his scales with him to the moon. It is to be determined how much he weighs on the
spring and beam scales on the moon.

Analysis
(a) A spring scale measures weight, which is the local gravitational force applied on a body:
1 Ibf

W =mg = (150 Ibm)(5.48 ft/s?)) ———
9= X )(32.2|bm-ft/s2

] =25.5 Ibf

(b) A beam scale compares masses and thus is not affected by the variations in gravitational acceleration. The beam scale
reads what it reads on earth,

W =150 Ibf

Discussion  The beam scale may be marked in units of weight (Ibf), but it really compares mass, not weight. Which
scale would you consider to be more accurate?

1-18

Solution The acceleration of an aircraft is given in g’s. The net upward force acting on a man in the aircraft is to be
determined.

Analysis From Newton's second law, the applied force is

F=ma=m(6g)=(90 kg)(6x9.81 m/s?®) iz =5297 N=5300 N
1 kg-mfs
where we have rounded off the final answer to three significant digits.

Discussion  The man feels like he is six times heavier than normal. You get a similar feeling when riding an elevator to
the top of a tall building, although to a much lesser extent.

1-19 [Also solved by EES on enclosed CD]

Solution A rock is thrown upward with a specified force. The acceleration of the rock is to be determined.
Analysis The weight of the rock is
1N
W =mg =(5 kg)(9.79 m/s’)) ———— |=48.95N=49.0 N
1 kg-m/s

Then the net force that acts on the rock is
Fret = Fup — Faown =150-48.95=101.05 N

Rock
From Newton's second law, the acceleration of the rock becomes .
2
252101.05 N | 1kg-m/s = 20.2 m/s2
m 5kg 1IN

Discussion  This acceleration is more than twice the acceleration at which it would fall (due to gravity) if dropped.
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1-20 E?},

Solution The previous problem is recalculated using EES. The entire EES solution is to be printed out, including the
numerical results with proper units.

Analysis The EES Equations window is printed below, followed by the Solution window.

W=mrg'[N]"

m=5"Tkg]"

0=9.79"[m/s"2]"

"The force balance on the rock yields the net force acting on the rock as”

F net=F_up-F_down"[N]"

F_up=150"[N]"

F_down=W"[N]"

"The acceleration of the rock is determined from Newton's second law."

F_net=a*m

"To Run the program, press F2 or click on the calculator icon from the Calculate menu”

SOLUTION
Variables in Main
a=20.21 [m/s"2]
F_down=48.95 [N]
F _net=101.1 [N]
F_up=150 [N]
0=9.79 [m/s"2]
m=5 [kg]
W=48.95 [N]

The final results are W = 49.0 N and a = 20.2 m/s?, to three significant digits, which agree with the results of the previous
problem.

Discussion Items in quotation marks in the EES Equation window are comments. Units are in square brackets.

1-21
Solution Gravitational acceleration g and thus the weight of bodies decreases with increasing elevation. The percent
reduction in the weight of an airplane cruising at 13,000 m is to be determined.

Properties The gravitational acceleration g is 9.807 m/s* at sea level and 9.767 m/s? at an altitude of 13,000 m.

Analysis Weight is proportional to the gravitational acceleration g, and thus the percent reduction in weight is
equivalent to the percent reduction in the gravitational acceleration, which is determined from

% Reduction in weight = % Reduction ing = ﬂ><1OO = %xmo =0.41%
g .

Therefore, the airplane and the people in it will weigh 0.41% less at 13,000 m altitude.

Discussion Note that the weight loss at cruising altitudes is negligible. Sorry, but flying in an airplane is not a good
way to lose weight. The best way to lose weight is to carefully control your diet, and to exercise.
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Chapter 1 Introduction and Basic Concepts

Modeling and Solving Problems, and Precision

1-22C
Solution We are to discuss the difference between accuracy and precision.
Analysis Accuracy refers to the closeness of the measured or calculated value to the true value whereas precision

represents the number of significant digits or the closeness of different measurements of the same quantity to each
other. A measurement or calculation can be very precise without being very accurate, and vice-versa. When
measuring the boiling temperature of pure water at standard atmospheric conditions, for example, a temperature
measurement of 97.861°C is very precise, but not as accurate as the less precise measurement of 99.0°C.

Discussion  Accuracy and precision are often confused; both are important for quality engineering measurements.

1-23C
Solution We are to discuss the difference between analytical and experimental approaches.
Analysis The experimental approach (testing and taking measurements) has the advantage of dealing with the

actual physical system, and getting a physical value within the limits of experimental error. However, this approach is
expensive, time consuming, and often impractical. The analytical approach (analysis or calculations) has the advantage
that it is fast and inexpensive, but the results obtained are subject to the accuracy of the assumptions and idealizations made
in the analysis.

Discussion Most engineering designs require both analytical and experimental components, and both are important.
Nowadays, computational fluid dynamics (CFD) is often used in place of pencil-and-paper analysis and/or experiments.

1-24C
Solution We are to discuss the importance of modeling in engineering.
Analysis Modeling makes it possible to predict the course of an event before it actually occurs, or to study

various aspects of an event mathematically without actually running expensive and time-consuming experiments.
When preparing a mathematical model, all the variables that affect the phenomena are identified, reasonable assumptions
and approximations are made, and the interdependence of these variables are studied. The relevant physical laws and
principles are invoked, and the problem is formulated mathematically. Finally, the problem is solved using an appropriate
approach, and the results are interpreted.

Discussion In most cases of actual engineering design, the results are verified by experiment — usually by building a
prototype. CFD is also being used more and more in the design process.

1-25C
Solution We are to discuss choosing a model.
Analysis The right choice between a crude and complex model is usually the simplest model that yields adequate

results. Preparing very accurate but complex models is not necessarily a better choice since such models are not much use
to an analyst if they are very difficult and time consuming to solve. At a minimum, the model should reflect the essential
features of the physical problem it represents.

Discussion Cost is always an issue in engineering design, and “adequate” is often determined by cost.
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1-26C
Solution We are to discuss how differential equations arise in the study of a physical problem.
Analysis The description of most scientific problems involves equations that relate the changes in some key

variables to each other, and the smaller the increment chosen in the changing variables, the more accurate the description.
In the limiting case of infinitesimal changes in variables, we obtain differential equations, which provide precise
mathematical formulations for the physical principles and laws by representing the rates of changes as derivatives.

Discussion  As we shall see in later chapters, the differential equations of fluid mechanics are known, but very difficult
to solve except for very simple geometries. Computers are extremely helpful in this area.

1-27C
Solution We are to discuss the value of engineering software packages.
Analysis Software packages are of great value in engineering practice, and engineers today rely on software

packages to solve large and complex problems quickly, and to perform optimization studies efficiently. Despite the
convenience and capability that engineering software packages offer, they are still just tools, and they cannot replace
traditional engineering courses. They simply cause a shift in emphasis in the course material from mathematics to physics.

Discussion  While software packages save us time by reducing the amount of number-crunching, we must be careful to
understand how they work and what they are doing, or else incorrect results can occur.

1-28

&
Solution We are to determine a positive real root of the following equation using EES: 2x* — 10x%° - 3x = -3.
Analysis Using EES software, copy the following lines and paste on a blank EES screen to verify the solution:;

2*x"3-10*x"0.5-3*x = -3
Answer: x =2.063 (using an initial guess of x = 2)

Discussion To obtain the solution in EES, click on the icon that looks like a calculator, or Calculate-Solve.

1-29 @F

Solution We are to solve a system of 2 equations and 2 unknowns using EES.

Analysis Using EES software, copy the following lines and paste on a blank EES screen to verify the solution:
x"3-y"2=7.75
3*x*y+y=3.5

Answers: x=2.0,y=0.50.

Discussion To obtain the solution in EES, click on the icon that looks like a calculator, or Calculate-Solve.
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1-30
&
Solution We are to solve a system of 3 equations with 3 unknowns using EES.
Analysis Using EES software, copy the following lines and paste on a blank EES screen to verify the solution:
2*X-y+z=5
3xN2+2%y=2+2
X*y+2*z=8

Answers: x = 1.141, y =0.8159, z=3.535.

Discussion To obtain the solution in EES, click on the icon that looks like a calculator, or Calculate-Solve.

1-31
&
Solution We are to solve a system of 3 equations with 3 unknowns using EES.
Analysis Using EES software, copy the following lines and paste on a blank EES screen to verify the solution:
x"2*y-z=1
X-3*y"0.5+x*z=-2
X+y-z=2

Answers: x=1, y=1, z=0.

Discussion To obtain the solution in EES, click on the icon that looks like a calculator, or Calculate-Solve.

Review Problems

1-32

Solution The gravitational acceleration changes with altitude. Accounting for this variation, the weights of a body at
different locations are to be determined.

Analysis The weight of an 80-kg man at various locations is obtained by substituting the altitude z (values in m) into
the relation

W =mg = (80 kg)(9.807 —3.32x10 % zm/s?) _ N
1kg-m/s?

Sea level: (z=0m): W = 80x(9.807-3.32x10°x0) = 80x9.807 = 784.6 N
Denver: (z= 1610 m): W = 80x(9.807-3.32x10°x1610) = 80x9.802 = 784.2 N
Mt. Ev.: (z = 8848 m): W = 80x(9.807-3.32x10°x8848) = 80x9.778 = 782.2 N

Discussion ~ We report 4 significant digits since the values are so close to each other. The percentage difference in
weight from sea level to Mt. Everest is only about -0.3%, which is negligible for most engineering calculations.
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1-33
Solution A man is considering buying a 12-0z steak for $3.15, or a 320-g steak for $2.80. The steak that is a better
buy is to be determined.

Assumptions The steaks are of identical quality.

Analysis To make a comparison possible, we need to express the cost of each steak on a common basis. We choose 1
kg as the basis for comparison. Using proper conversion factors, the unit cost of each steak is determined to be

12 ounce steak:  Unit Cost = $315)(16 0z 1lbm =$9.26/kg
120z )\ 11bm /| 0.45359 kg

320 gram steak:

25

vvvvvv
A2

Unit Cost =| 2280 1(10008 1 _ g5 75, AR
3209 )\ 1kg ' R ety _1;
SRS R T EREN NN

Therefore, the steak at the international market is a better buy. TR

Discussion Notice the unity conversion factors in the above equations.

1-34
Solution The thrust developed by the jet engine of a Boeing 777 is given to be
85,000 pounds. This thrust is to be expressed in N and kgf.

Analysis Noting that 1 Ibf = 4.448 N and 1 kgf = 9.81 N, the thrust developed is
expressed in two other units as

Thrust in N: Thrust = (85,000 Ibf)( 4';4; N ) =3.78x10° N
; . 5 1kgf 4
Thrust in kgf: Thrust = (37.8x10” N) 98N~ 3.85x10" kgf

Discussion Because the gravitational acceleration on earth is close to 10 m/s?, it turns out that the two force units N and
kgf differ by nearly a factor of 10. This can lead to confusion, and we recommend that you do not use the unit kgf.

Design and Essay Problem

1-35
Solution We are to write an essay on mass- and volume-measurement devices.

Discussion Students’ essays should be unique and will differ from each other.

C
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Chapter 2 Properties of Fluids

Density and Specific Gravity

2-1C
Solution We are to discuss the difference between intensive and extensive properties.
Analysis Intensive properties do not depend on the size (extent) of the system but extensive properties do depend

on the size (extent) of the system.

Discussion  An example of an intensive property is temperature. An example of an extensive property is mass.

2-2C
Solution We are to define specific gravity and discuss its relationship to density.
Analysis The specific gravity, or relative density, is defined as the ratio of the density of a substance to the density

of some standard substance at a specified temperature (the standard is water at 4°C, for which py,0 = 1000 kg/m®). That

is,|SG = p/ poo|. When specific gravity is known, density is determined from | p = SGx p0|.

Discussion  Specific gravity is dimensionless and unitless [it is just a number without dimensions or units].

2-3C
Solution We are to discuss the applicability of the ideal gas law.
Analysis A gas can be treated as an ideal gas when it is at a high temperature and/or a low pressure relative to its

critical temperature and pressure.

Discussion  Air and many other gases at room temperature and pressure can be approximated as ideal gases without any
significant loss of accuracy.

2-4C
Solution We are to discuss the difference between R and R,,.
Analysis R, is the universal gas constant that is the same for all gases, whereas R is the specific gas constant that is

different for different gases. These two are related to each other by |R =R, / M |, where M is the molar mass (also called
the molecular weight) of the gas.

Discussion Since molar mass has dimensions of mass per mole, R and R, do not have the same dimensions or units.
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2-5
Solution A balloon is filled with helium gas. The number of moles and the mass of helium are to be determined.

Assumptions At specified conditions, helium behaves as an ideal gas.

Properties The universal gas constant is R, = 8.314 kPa.m*kmol.K. The molar mass of helium is 4.0 kg/kmol.

Analysis The volume of the sphere is
v =2 =f7z(3 m)® =113.1m*

3 3

Assuming ideal gas behavior, the number of moles of He is determined from He
D=6m
200 kPa)(113.1m?
LA i)( M) 9286 kmol 20°C
RyT  (8.314 kPa-m*/kmol - K)(293 K) 200 kPa

Then the mass of He is determined from
m=NM = (9.286 kmol)(4.0kg/kmol)=37.1 kg

Discussion  Although the helium mass may seem large (about half the mass of an adult man!), it is much smaller than
that of the air it displaces, and that is why helium balloons rise in the air.

R
Solution A balloon is filled with helium gas. The effect of the balloon diameter on the mass of helium is to be
investigated, and the results are to be tabulated and plotted.
Analysis The EES Equations window is shown below, followed by the Solution window and the parametric table.
"Given Data"
{D:6"[m]"} 500 T T T T T T T T T T T T T
P=200"[kPa]" L

{T=20"[C5" h 400 P =200 kPa —0—
P=100"[kPa]" i P =100 kPa —*— ]
R_u=8.314"[kJ/kmol*K]" m [kg]
"Solution” 300
P*V=N*R_u*(T+273)
V=4*pi*(D/2)"3/3"[m"3]"
m=N*MOLARMASS(Helium)"[kg] 200

D [m] m [kg]

0.5 0.01075 100

2.111 0.8095

3.722 4.437

5.333 13.05 0

6.944 28.81

8.556 53.88 D [m]

10.17 90.41 Mass of Helium in Balloon as function of Diameter

11.78 140.6

13.39 206.5

15 290.4

Discussion Mass increases with diameter as expected, but not linearly since volume is proportional to D®.
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Solution An automobile tire is inflated with air. The pressure rise of air in the tire when the tire is heated and the
amount of air that must be bled off to reduce the temperature to the original value are to be determined.

Assumptions 1 At specified conditions, air behaves as an ideal gas. 2 The volume of the tire remains constant.
Properties The gas constant of air is R = 0.287 kPa-m*/kg-K.
Analysis Initially, the absolute pressure in the tire is

R = R, + Pyn = 210+100 = 310 kPa

Treating air as an ideal gas and assuming the volume of the tire to remain
constant, the final pressure in the tire is determined from

PV, PV T 323K
171272 P, =—2 P, =— (310kPa) = 336kPa
T, T, T, 298K
Thus the pressure rise is Tire
25°C
AP =P,-PB =336-310=26.0 kPa 210 kPa
The amount of air that needs to be bled off to restore pressure to its original value is
PV : 3
m, = Vo (310kPa)§0 025m*~) _ 0.0906kg
RT,  (0.287kPa-m*/kg-K)(298K)
3
My = PV (310kPa)(0.025m*~) 6kg

- =0.0
RT, (0.287kPa-m®/kg-K)(323K)
Am=m, —m, =0.0906 —0.0836 = 0.0070 kg

Discussion Notice that absolute rather than gage pressure must be used in calculations with the ideal gas law.

2-8E
Solution An automobile tire is under-inflated with air. The amount of air that needs to be added to the tire to raise its
pressure to the recommended value is to be determined.

Assumptions 1 At specified conditions, air behaves as an ideal gas. 2 The volume of the tire remains constant.

Properties The gas constant of air is R = 0.3704 psia-ft*/Ibm-R.

Analysis The initial and final absolute pressures in the tire are Ogl?,r?"t?’
P1=Pg + Pam = 20 + 14.6 = 34.6 psia 90°F
P, = Py + Pa = 30 + 14.6 = 44.6 psia 20 psia
Treating air as an ideal gas, the initial mass in the tire is
34.6 psia)(0.53 ft*
m, = (34.6 psia)( ) _009001bm

LTRT, ~ (0.3704 psia-ft°/lom-R)(550 R)

Noting that the temperature and the volume of the tire remain constant, the final mass in the tire becomes
PV (44.6 psia)(0.53 ft*)
RT, (0.3704 psia-ft3/lbm-R)(550 R)

m, = =0.1160 Ibm

Thus the amount of air that needs to be added is Am=m, —m; =0.1160-0.0900=0.0260 [bm

Discussion Notice that absolute rather than gage pressure must be used in calculations with the ideal gas law.
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Chapter 2 Properties of Fluids
2-9E
Solution A rigid tank contains slightly pressurized air. The amount of air that needs to be added to the tank to raise
its pressure and temperature to the recommended values is to be determined.

Assumptions 1 At specified conditions, air behaves as an ideal gas. 2 The volume of the tank remains constant.

Properties The gas constant of air is R = 0.3704 psia-ft*/lbm-R.

Analysis Treating air as an ideal gas, the initial volume and the final mass in the tank are determined to be
20 Ibm)(0.3704 psia - ft*/Ibm-R)(530 R
v - MiRTy _ (201bm)(0.3704 psia- f JE0R) o e
P 20 psia
P,V 35 psia)(196.3 ft*
m, = RZT = ( P )g ) =33.73Ibm Air, 20 Ibm
> (0.3704 psia-ft°/Ibm-R)(550 R) 20 psia
Thus the amount of air added is 70°F

Am=m, —m; =33.73-20.0=13.7 lbm

Discussion  As the temperature slowly decreases due to heat transfer, the pressure will also decrease.

2-5
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc. Limited distribution permitted only to
teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.




Chapter 2 Properties of Fluids
210 K

Solution A relation for the variation of density with elevation is to be obtained, the density at 7 km elevation is to be
calculated, and the mass of the atmosphere using the correlation is to be estimated.

Assumptions 1 Atmospheric air behaves as an ideal gas. 2 The earth is perfectly spherical with a radius of 6377 km at sea
level, and the thickness of the atmosphere is 25 km.

Properties The density data are given in tabular form as a function of radius and elevation, where r = z + 6377 km:

r, km z, km 2 kg/m3 1.4 : . . - T - T
6377 0 1.225
6378 1 1.112
6379 2 1.007
6380 3 0.9093
6381 4 0.8194
6382 5 0.7364
6383 6 0.6601
6385 8 0.5258
6387 10 0.4135
6392 15 0.1948
6397 20 0.08891
6402 25 0.04008 z, km
Analysis Using EES, (1) Define a trivial function “rho= a+z” in the Equation window, (2) select new parametric table

from Tables, and type the data in a two-column table, (3) select Plot and plot the data, and (4) select Plot and click on curve
fit to get curve fit window. Then specify 2" order polynomial and enter/edit equation. The results are:

p(z) = a+ bz +cz® = 1.20252 — 0.101674z + 0.0022375z* for the unit of kg/m®,
(or, p(z) = (1.20252 — 0.101674z + 0.00223752%)x10° for the unit of kg/km®)

where z is the vertical distance from the earth surface at sea level. At z = 7 km, the equation gives p = 0.600 kg/m®.

(b) The mass of atmosphere is evaluated by integration to be

(a+bz+cz?)(ré +2ryz+22)dz
0

h h
m:J. pdV :j (a+bz+cz?)4zn(ry +2)°dz :47z'|.
z=0
Vv

— 4zfar2h+ 1 (2a-+bry)h? 12+ (a+2br, +cr2)h® /3+ (b +2cr, ) /4+ch® /5]
where ry = 6377 km is the radius of the earth, h = 25 km is the thickness of the atmosphere. Also, a = 1.20252,
b = -0.101674, and ¢ = 0.0022375 are the constants in the density function. Substituting and multiplying by the factor 10° to
convert the density from units of kg/km® to kg/m?, the mass of the atmosphere is determined to be approximately

m = 5.09x10"® kg

EES Solution for final result:

a=1.2025166
b=-0.10167

¢=0.0022375

r=6377

h=25
M=4*pi*(@*TA2*h+r*(2*a+b*r)*h"2/2+(a+2*b*r+CATA2)*hA3/3+(b+24C*r) 4/ 4+c*h"5/5)* LE+9

Discussion At 7 km, the density of the air is approximately half of its value at sea level.
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Chapter 2 Properties of Fluids

Vapor Pressure and Cavitation

2-11C
Solution We are to define vapor pressure and discuss its relationship to saturation pressure.
Analysis The vapor pressure P, of a pure substance is defined as the pressure exerted by a vapor in phase

equilibrium with its liquid at a given temperature. In general, the pressure of a vapor or gas, whether it exists alone or in
a mixture with other gases, is called the partial pressure. During phase change processes between the liquid and vapor
phases of a pure substance, the saturation pressure and the vapor pressure are equivalent since the vapor is pure.

Discussion Partial pressure is not necessarily equal to vapor pressure. For example, on a dry day (low relative
humidity), the partial pressure of water vapor in the air is less than the vapor pressure of water. If, however, the relative
humidity is 100%, the partial pressure and the vapor pressure are equal.

2-12C
Solution We are to discuss whether the boiling temperature of water increases as pressure increases.
Analysis Yes. The saturation temperature of a pure substance depends on pressure; in fact, it increases with pressure.

The higher the pressure, the higher the saturation or boiling temperature.

Discussion  This fact is easily seen by looking at the saturated water property tables. Note that boiling temperature and
saturation pressure at a given pressure are equivalent.

2-13C

Solution We are to determine if temperature increases or remains constant when the pressure of a boiling substance
increases.

Analysis If the pressure of a substance increases during a boiling process, the temperature also increases since the

boiling (or saturation) temperature of a pure substance depends on pressure and increases with it.

Discussion ~ We are assuming that the liquid will continue to boil. If the pressure is increased fast enough, boiling may
stop until the temperature has time to reach its new (higher) boiling temperature. A pressure cooker uses this principle.

2-14C
Solution We are to define and discuss cavitation.
Analysis In the flow of a liquid, cavitation is the vaporization that may occur at locations where the pressure

drops below the vapor pressure. The vapor bubbles collapse as they are swept away from the low pressure regions,
generating highly destructive, extremely high-pressure waves. This phenomenon is a common cause for drop in
performance and even the erosion of impeller blades.

Discussion  The word “cavitation” comes from the fact that a vapor bubble or “cavity” appears in the liquid. Not all
cavitation is undesirable. It turns out that some underwater vehicles employ “super cavitation” on purpose to reduce drag.
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Chapter 2 Properties of Fluids
2-15
Solution The minimum pressure in a piping system to avoid cavitation is to be determined.

Properties The vapor pressure of water at 40°C is 7.38 kPa.

Analysis To avoid cavitation, the pressure anywhere in the flow should not be allowed to drop below the vapor (or
saturation) pressure at the given temperature. That is,
P. =P =7.38 kPa

min sat @40°C
Therefore, the pressure should be maintained above 7.38 kPa everywhere in flow.

Discussion Note that the vapor pressure increases with increasing temperature, and thus the risk of cavitation is greater
at higher fluid temperatures.

2-16
Solution The minimum pressure in a pump is given. It is to be determined if there is a danger of cavitation.

Properties The vapor pressure of water at 20°C is 2.339 kPa.

Analysis To avoid cavitation, the pressure everywhere in the flow should remain above the vapor (or saturation)
pressure at the given temperature, which is

P, =P, @xc = 2-339 kPa
The minimum pressure in the pump is 2 kPa, which is less than the vapor pressure. Therefore, a there is danger of
cavitation in the pump.

Discussion Note that the vapor pressure increases with increasing temperature, and thus there is a greater danger of
cavitation at higher fluid temperatures.

2-17E
Solution The minimum pressure in a pump is given. It is to be determined if there is a danger of cavitation.

Properties The vapor pressure of water at 70°F is 0.3632 psia.

Analysis To avoid cavitation, the pressure everywhere in the flow should remain above the vapor (or saturation)
pressure at the given temperature, which is

P, =P, @ = 0.3632 psia
The minimum pressure in the pump is 0.1 psia, which is less than the vapor pressure. Therefore, there is danger of
cavitation in the pump.

Discussion Note that the vapor pressure increases with increasing temperature, and the danger of cavitation increases at
higher fluid temperatures.

2-18
Solution The minimum pressure in a pump to avoid cavitation is to be determined.

Properties The vapor pressure of water at 25°C is 3.17 kPa.

Analysis To avoid cavitation, the pressure anywhere in the system should not be allowed to drop below the vapor (or
saturation) pressure at the given temperature. That is,
Puin = Pa@osec =3-17 kPa

Therefore, the lowest pressure that can exist in the pump is 3.17 kPa.

Discussion Note that the vapor pressure increases with increasing temperature, and thus the risk of cavitation is greater
at higher fluid temperatures.
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Chapter 2 Properties of Fluids

Energy and Specific Heats

2-19C
Solution We are to discuss the difference between macroscopic and microscopic forms of energy.
Analysis The macroscopic forms of energy are those a system possesses as a whole with respect to some outside

reference frame. The microscopic forms of energy, on the other hand, are those related to the molecular structure of a
system and the degree of the molecular activity, and are independent of outside reference frames.

Discussion ~ We mostly deal with macroscopic forms of energy in fluid mechanics.

2-20C
Solution We are to define total energy and identify its constituents.
Analysis The sum of all forms of the energy a system possesses is called total energy. In the absence of magnetic,

electrical, and surface tension effects, the total energy of a system consists of the Kkinetic, potential, and internal
energies.

Discussion  All three constituents of total energy (kinetic, potential, and internal) need to be considered in an analysis of
a general fluid flow.

2-21C
Solution We are to list the forms of energy that contribute to the internal energy of a system.
Analysis The internal energy of a system is made up of sensible, latent, chemical, and nuclear energies. The

sensible internal energy is due to translational, rotational, and vibrational effects.

Discussion  We deal with the flow of a single phase fluid in most problems in this textbook; therefore, latent, chemical,
and nuclear energies do not need to be considered.

2-22C
Solution We are to discuss the relationship between heat, internal energy, and thermal energy.
Analysis Thermal energy is the sensible and latent forms of internal energy. It does not include chemical or

nuclear forms of energy. In common terminology, thermal energy is referred to as heat. However, like work, heat is not a
property, whereas thermal energy is a property.

Discussion  Technically speaking, “heat” is defined only when there is heat transfer, whereas the energy state of a
substance can always be defined, even if no heat transfer is taking place.

2-23C
Solution We are to define and discuss flow energy.
Analysis Flow energy or flow work is the energy needed to push a fluid into or out of a control volume. Fluids at

rest do not possess any flow energy.

Discussion Flow energy is not a fundamental quantity, like kinetic or potential energy. However, it is a useful concept
in fluid mechanics since fluids are often forced into and out of control volumes in practice.
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Chapter 2 Properties of Fluids

2-24C
Solution We are to compare the energies of flowing and non-flowing fluids.
Analysis A flowing fluid possesses flow energy, which is the energy needed to push a fluid into or out of a

control volume, in addition to the forms of energy possessed by a non-flowing fluid. The total energy of a non-flowing
fluid consists of internal and potential energies. If the fluid is moving as a rigid body, but not flowing, it may also have
Kinetic energy (e.g., gasoline in a tank truck moving down the highway at constant speed with no sloshing). The total
energy of a flowing fluid consists of internal, kinetic, potential, and flow energies.

Discussion Flow energy is not to be confused with kinetic energy, even though both are zero when the fluid is at rest.

2-25C
Solution We are to explain how changes in internal energy can be determined.
Analysis Using specific heat values at the average temperature, the changes in the specific internal energy of ideal

gases can be determined from |Au =c, ., AT | For incompressible substances, ¢, = ¢, = ¢ and AU = C, AT |

Discussion If the fluid can be treated as neither incompressible nor an ideal gas, property tables must be used.

2-26C

Solution We are to explain how changes in enthalpy can be determined.

Analysis Using specific heat values at the average temperature, the changes in specific enthalpy of ideal gases can be
determined from|Ah=c, ., AT | For incompressible substances, ¢, = ¢, = ¢ and | Ah = AU +VAP = C,, AT +VAP|,

Discussion If the fluid can be treated as neither incompressible nor an ideal gas, property tables must be used.

Coefficient of Compressibility

2-27C
Solution We are to discuss the coefficient of compressibility and the isothermal compressibility.
Analysis The coefficient of compressibility represents the variation of pressure of a fluid with volume or density

at constant temperature. Isothermal compressibility is the inverse of the coefficient of compressibility, and it represents
the fractional change in volume or density corresponding to a change in pressure.

Discussion  The coefficient of compressibility of an ideal gas is equal to its absolute pressure.

2-28C
Solution We are to define the coefficient of volume expansion.
Analysis The coefficient of volume expansion represents the variation of the density of a fluid with temperature at

constant pressure. It differs from the coefficient of compressibility in that the latter represents the variation of pressure of
a fluid with density at constant temperature.

Discussion  The coefficient of volume expansion of an ideal gas is equal to the inverse of its absolute temperature.
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Chapter 2 Properties of Fluids

2-29C
Solution We are to discuss the sign of the coefficient of compressibility and the coefficient of volume expansion.
Analysis The coefficient of compressibility of a fluid cannot be negative, but the coefficient of volume expansion can

be negative (e.g., liquid water below 4°C).

Discussion This is the reason that ice floats on water.

2-30
Solution The percent increase in the density of an ideal gas is given for a moderate pressure. The percent increase in
density of the gas when compressed at a higher pressure is to be determined.

Assumptions The gas behaves an ideal gas.

Analysis For an ideal gas, P = pRT and (0P /0p); =RT =P/ p , and thus &igeq gas = P - Therefore, the coefficient

of compressibility of an ideal gas is equal to its absolute pressure, and the coefficient of compressibility of the gas increases
with increasing pressure.

Substituting x = P into the definition of the coefficient of compressibility « = — AP = AP and rearranging
Aviv  Aplp
gives
Ap_ AP
P P

Therefore, the percent increase of density of an ideal gas during isothermal compression is equal to the percent
increase in pressure.

Ap AP 11-10
p P 10
Ap AP 101-100
p P 100

At 10 atm: =10%

At 100 atm: =1%

Therefore, a pressure change of 1 atm causes a density change of 10% at 10 atm and a density change of 1% at 100 atm.

Discussion If temperature were also allowed to change, the relationship would not be so simple.

2-31
Solution Using the definition of the coefficient of volume expansion and the expression Bigeaigas =1/T , it is to be

shown that the percent increase in the specific volume of an ideal gas during isobaric expansion is equal to the percent
increase in absolute temperature.

Assumptions The gas behaves an ideal gas.

Analysis The coefficient of volume expansion g can be expressed as g = i(%) ~ AZ{_V .
v P

Noting that Bigeagas =1/T for an ideal gas and rearranging give

Av AT
Y T

Therefore, the percent increase in the specific volume of an ideal gas during isobaric expansion is equal to the
percent increase in absolute temperature.

Discussion ~ We must be careful to use absolute temperature (K or R), not relative temperature (°C or °F).
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Chapter 2 Properties of Fluids
2-32
Solution Water at a given temperature and pressure is compressed to a high pressure isothermally. The increase in
the density of water is to be determined.

Assumptions 1 The isothermal compressibility is constant in the given pressure range. 2 An approximate analysis is
performed by replacing differential changes by finite changes.

Properties The density of water at 20°C and 1 atm pressure is p; = 998 kg/m?>. The isothermal compressibility of water
is given to be o = 4.80 x 10° atm™.

Analysis When differential quantities are replaced by differences and the properties « and £ are assumed to be
constant, the change in density in terms of the changes in pressure and temperature is expressed approximately as

Ap = apAP — BpAT
The change in density due to a change of pressure from 1 atm to 800 atm at constant temperature is
Ap = apAP = (4.80x107° atm™)(998 kg/m*)(800—1)atm = 38.3 kg/m?

Discussion Note that the density of water increases from 998 to 1036.3 kg/m® while being compressed, as expected.
This problem can be solved more accurately using differential analysis when functional forms of properties are available.

2-33
Solution Water at a given temperature and pressure is heated to a higher temperature at constant pressure. The
change in the density of water is to be determined.

Assumptions 1 The coefficient of volume expansion is constant in the given temperature range. 2 An approximate
analysis is performed by replacing differential changes in quantities by finite changes.

Properties The density of water at 15°C and 1 atm pressure is p, = 999.1 kg/m®. The coefficient of volume expansion
at the average temperature of (15+95)/2 = 55°C is #= 0.484 x 10° K™.

Analysis When differential quantities are replaced by differences and the properties « and £ are assumed to be
constant, the change in density in terms of the changes in pressure and temperature is expressed approximately as

Ap = apAP — SpAT
The change in density due to the change of temperature from 15°C to 95°C at constant pressure is
Ap = —PpAT =—(0.484x107° K1)(999.1kg/m?)(95-15)K = -38.7 kg/m?
Discussion Noting that Ap = p, — p;, the density of water at 95°C and 1 atm is
Do = py+Ap =999.1+(-38.7) = 960.4 kg/m*

which is very close to the listed value of 961.5 kg/m® at 95°C in water table in the Appendix. This is mostly due to g
varying with temperature almost linearly. Note that the density of water decreases while being heated, as expected. This
problem can be solved more accurately using differential analysis when functional forms of properties are available.
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Chapter 2 Properties of Fluids
2-34
Solution Saturated refrigerant-134a at a given temperature is cooled at constant pressure. The change in the density
of the refrigerant is to be determined.

Assumptions 1 The coefficient of volume expansion is constant in the given temperature range. 2 An approximate
analysis is performed by replacing differential changes in quantities by finite changes.

Properties The density of saturated liquid R-134a at 10°C is p; =1261 kg/m®. The coefficient of volume expansion at
the average temperature of (10+0)/2 = 5°C is #= 0.00269 K.

Analysis When differential quantities are replaced by differences and the properties « and S are assumed to be
constant, the change in density in terms of the changes in pressure and temperature is expressed approximately as

Ap = apAP — BoAT

The change in density due to the change of temperature from 10°C to 0°C at constant pressure is
Ap =—BpAT =—(0.00269K 1)(1261kg/m*)(0-10)K =33.9 kg/m?

Discussion Noting that Ap = p, — p;, the density of R-134a at 0°C is
Py = pp +Ap =1261+33.9=1294.9 kg/m?

which is almost identical to the listed value of 1295 kg/m? at 0°C in R-134a table in the Appendix. This is mostly due to
varying with temperature almost linearly. Note that the density increases during cooling, as expected.

2-35
Solution A water tank completely filled with water can withstand tension caused by a volume expansion of 2%. The
maximum temperature rise allowed in the tank without jeopardizing safety is to be determined.

Assumptions 1 The coefficient of volume expansion is constant. 2 An approximate analysis is performed by replacing
differential changes in quantities by finite changes. 3 The effect of pressure is disregarded.

Properties The average volume expansion coefficient is given to be = 0.377 x 10° K™,

Analysis When differential quantities are replaced by differences and the properties « and £ are assumed to be
constant, the change in density in terms of the changes in pressure and temperature is expressed approximately as

Ap = apAP — SpAT
A volume increase of 2% corresponds to a density decrease of 2%, which can be expressed as Ap=-0.02p . Then the
decrease in density due to a temperature rise of AT at constant pressure is

—0.02p =—fpAT

Solving for AT and substituting, the maximum temperature rise is determined to be

002 0.02
L 0377x10°K™*

AT =53.0K =53.0°C

Discussion  This result is conservative since in reality the increasing pressure will tend to compress the water and
increase its density.
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Chapter 2 Properties of Fluids
2-36
Solution A water tank completely filled with water can withstand tension caused by a volume expansion of 1%. The
maximum temperature rise allowed in the tank without jeopardizing safety is to be determined.

Assumptions 1 The coefficient of volume expansion is constant. 2 An approximate analysis is performed by replacing
differential changes in quantities by finite changes. 3 The effect of pressure is disregarded.

Properties The average volume expansion coefficient is given to be 4= 0.377 x 10° K™,

Analysis When differential quantities are replaced by differences and the properties « and S are assumed to be
constant, the change in density in terms of the changes in pressure and temperature is expressed approximately as

Ap = apAP — BoAT
A volume increase of 1% corresponds to a density decrease of 1%, which can be expressed as Ap =-0.01p . Then the
decrease in density due to a temperature rise of AT at constant pressure is

—0.01p = —FoAT

Solving for AT and substituting, the maximum temperature rise is determined to be

001 0.01

AT = o1
p 0377x107° K~

=26.5K =26.5°C

Discussion  This result is conservative since in reality the increasing pressure will tend to compress the water and
increase its density. The change in temperature is exactly half of that of the previous problem, as expected.
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Chapter 2 Properties of Fluids
2-37
Solution The density of seawater at the free surface and the bulk modulus of elasticity are given. The density and
pressure at a depth of 2500 m are to be determined.

Assumptions 1 The temperature and the bulk modulus of elasticity of seawater is constant. 2 The gravitational
acceleration remains constant.

Properties The density of seawater at free surface where the pressure is given to be 1030 kg/m®, and the bulk modulus
of elasticity of seawater is given to be 2.34 x 10° N/m?.

Analysis The coefficient of compressibility or the bulk modulus of elasticity of fluids is expressed as

K= p(EJ or K= pd—P (at constant T)

P ) dp

The differential pressure change across a differential fluid height of dz is given as 720

dP = pgdz —_—

z
Combining the two relations above and rearranging,
dz dz d dz
k=pBY _g2 ™ _/;:9_ 2500 m
do dp P K

Integrating from z = 0 where p = p, =1030 kg/m® toz =z where p=p gives

P dp g 1 1 gz
[[ .9 o L lo —
Po P K 90

Solving for p gives the variation of density with depth as
e 1
(17 py)—(9z/ &)

Substituting into the pressure change relation dP = pgdz and integrating from z = 0 where P = P, = 98 kPa to z = z where
P =P gives

P z gdZ 1
P=[ —F 5 P=Ptxln|—
ko=l @ : (1—<pogz/f«>j

which is the desired relation for the variation of pressure in seawater with depth. At z = 2500 m, the values of density and
pressure are determined by substitution to be

1

p= - - ————=1041kg/m®
1/(1030 kg/m?®) — (9.81m/s?)(2500 m) /(2.34x10° N/m?)
P = (98,000 Pa) +(2.34x10° N/m?)In 5 - L 5 >
1— (1030 kg/m*)(9.81m/s?)(2500 m) /(2.34x10° N/m?)

=2.550x10" Pa
=25.50 MPa

since 1 Pa=1 N/m? =1 kg/m-s? and 1 kPa = 1000 Pa.

Discussion Note that if we assumed p = p, = constant at 1030 kg/m?, the pressure at 2500 m would be P =Py + pgz =
0.098 + 25.26 = 25.36 MPa. Then the density at 2500 m is estimated to be

Ap = paAP = (1030)(2340 MPa)(25.26 MPa) =11.1kg/m* and thus p = 1041 kg/m?
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Chapter 2 Properties of Fluids

Viscosity

2-38C

Solution We are to define and discuss viscosity.

Analysis Viscosity is a measure of the “stickiness” or “resistance to deformation” of a fluid. It is due to the

internal frictional force that develops between different layers of fluids as they are forced to move relative to each other.
Viscosity is caused by the cohesive forces between the molecules in liquids, and by the molecular collisions in gases. In
general, liquids have higher dynamic viscosities than gases.

Discussion  The ratio of viscosity y to density p often appears in the equations of fluid mechanics, and is defined as the
kinematic viscosity, v=u/p.

2-39C
Solution We are to discuss Newtonian fluids.
Analysis Fluids whose shear stress is linearly proportional to the velocity gradient (shear strain) are called

Newtonian fluids. Most common fluids such as water, air, gasoline, and oils are Newtonian fluids.

Discussion In the differential analysis of fluid flow, only Newtonian fluids are considered in this textbook.

2-40C
Solution We are to compare the settling speed of balls dropped in water and oil; namely, we are to determine which
will reach the bottom of the container first.

Analysis When two identical small glass balls are dropped into two identical containers, one filled with water and the
other with oil, the ball dropped in water will reach the bottom of the container first because of the much lower
viscosity of water relative to oil.

Discussion Oil is very viscous, with typical values of viscosity approximately 800 times greater than that of water at
room temperature.

2-41C
Solution We are to discuss how dynamic viscosity varies with temperature in liquids and gases.
Analysis (a) The dynamic viscosity of liquids decreases with temperature. (b) The dynamic viscosity of gases

increases with temperature.

Discussion A good way to remember this is that a car engine is much harder to start in the winter because the oil in the
engine has a higher viscosity at low temperatures.

2-42C
Solution We are to discuss how kinematic viscosity varies with temperature in liquids and gases.
Analysis (a) For liquids, the kinematic viscosity decreases with temperature. (b) For gases, the kinematic

viscosity increases with temperature.

Discussion You can easily verify this by looking at the appendices.
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Chapter 2 Properties of Fluids
2-43
Solution A block is moved at constant velocity on an inclined surface. The force that needs to be applied in the
horizontal direction when the block is dry, and the percent reduction in the required force when an oil film is applied on the
surface are to be determined.

Assumptions 1 The inclined surface is plane (perfectly flat, although tilted). 2 The friction coefficient and the oil film
thickness are uniform. 3 The weight of the oil layer is negligible.

Properties The absolute viscosity of oil is given to be 2= 0.012 Pa-s = 0.012 N-s/m?.

Analysis (@) The velocity of the block is constant, and thus its
acceleration and the net force acting on it are zero. A free body diagram of the /V= 0.8 m/s
block is given. Then the force balance gives

DR =0: F—Fc0os20°~Fy;sin20°=0 (1)
D Fy =0 Fyc0s20°-F;sin20°-W =0 (2)
Friction force: F; = fFy; 3

Substituting Eq. (3) into Eq. (2) and solving for Fy; gives

= W - = 150N - =1770N
c0s 20°— f sin20°  cos 20°-0.27sin 20°

Then from Eq. (1):

F, = F; c0s20°+ Fy; sin 20° = (0.27x177 N) cos 20°+ (177 N) sin 20°=105.5 N

(b) In this case, the friction force is replaced by the shear force
applied on the bottom surface of the block due to the oil. Because
of the no-slip condition, the oil film sticks to the inclined surface
at the bottom and the lower surface of the block at the top. Then
the shear force is expressed as

I:shear = z-wAs

V
—/JASF

FNl

0.8 m/s
=(0.012 N-s/m*)(0.5x0.2 mz)m

=24 N
Replacing the friction force by the shear force in part (a),
D F =01 Fp—Fyeq C0s20°—Fy,sin20°=0  (4)
D Fy=0:  Fyp0820°—Fype sin20°-W =0 (5)

Eq. (5) gives Fy, = (Fgpear SiN20°+W)/ cos20° =[(2.4 N)sin 20° + (150 N)]/ cos 20° =160.5N
Substituting into Eq. (4), the required horizontal force is determined to be

F, = Fgear €0520°+ Fy5 Sin 20° = (2.4 N) cos 20°+ (160.5 N)sin 20°=57.2 N

Then, our final result is expressed as

F-F, 105.5-57.2

Percentage reduction in required force = x100% = leOO% =45.8%

1
Discussion Note that the force required to push the block on the inclined surface reduces significantly by oiling the
surface.
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Chapter 2 Properties of Fluids
2-44
Solution The velocity profile of a fluid flowing though a circular pipe is given. The friction drag force exerted on the
pipe by the fluid in the flow direction per unit length of the pipe is to be determined.

Assumptions The viscosity of the fluid is constant.

Analysis The wall shear stress is determined from its definition to be
du d r" —nr"t nuu
Tw :_;ud_ = —MUax d_(l__nJ :_/Jumax—n :%
lr-r r R™ s R r=R u(r) = Upax(1-r"/R"

Note that the quantity du /dr is negative in pipe flow, and the negative sign
is added to the 7, relation for pipes to make shear stress in the positive
(flow) direction a positive quantity. (Or, du /dr =-du /dysincey=R-r).
Then the friction drag force exerted by the fluid on the inner surface of the g

==
pipe becomes i 0
—>

nuu
F=TWAW=-£§Eﬁ(wﬂ)L=2nmmmML

Therefore, the drag force per unit length of the pipe is

F/L=2n718 |

Discussion Note that the drag force acting on the pipe in this case is independent of the pipe diameter.

2-18
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc. Limited distribution permitted only to
teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.




Chapter 2 Properties of Fluids
2-45
Solution A thin flat plate is pulled horizontally through an oil layer sandwiched between two plates, one stationary
and the other moving at a constant velocity. The location in oil where the velocity is zero and the force that needs to be
applied on the plate are to be determined.

Assumptions 1 The thickness of the plate is negligible. 2 The velocity profile in each oil layer is linear.
Properties The absolute viscosity of oil is given to be 2= 0.027 Pa-s = 0.027 N-s/m*.

Analysis (a) The velocity profile in each oil layer relative to the fixed wall is as shown in the figure below. The point
of zero velocity is indicated by point A, and its distance from the lower plate is determined from geometric considerations
(the similarity of the two triangles in the lower oil layer) to be

26—y,

1
=— — =0.60 mm
Ya 0.3 Ia

Fixed wall

Moving wall

(b) The magnitudes of shear forces acting on the upper and lower surfaces of the plate are

du V-0 1m/s
Forarpper = Fuupper s = HAS[0) = iy = == (0.027N :s/m?)(0.2x0.2 mz)m =1.08N
i .
du V-V 1-(-0.3)] m/s
Fshear, lower = Tw, lower As = 1A E = UA h = =(0.027 N-s/m 2)(0-2X0-2 mz)% =0.54N
2 .

Noting that both shear forces are in the opposite direction of motion of the plate, the force F is determined from a force
balance on the plate to be

F = Fonear,upper + Fshear, lower =1.08+0.54=1.62 N

Discussion Note that wall shear is a friction force between a solid and a liquid, and it acts in the opposite direction of
motion.
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Chapter 2 Properties of Fluids
2-46
Solution A frustum shaped body is rotating at a constant
angular speed in an oil container. The power required to
maintain this motion and the reduction in the required power

input when the oil temperature rises are to be determined. :
Assumptions  The thickness of the oil layer remains constant. ! / Case
Properties The absolute viscosity of oil is given to be = i
0.1 Pa-s = 0.1 N-s/m? at 20°C and 0.0078 Pa-s at 80°C. i ; 7
Analysis The velocity gradient anywhere in the oil of D=12cm
film thickness h is V/h where V. = ar is the tangential :
velocity. Then the wall shear stress anywhere on the surface of L=12cm i
the frustum at a distance r from the axis of rotation is d='4cm )
- SAE 10W oil of
S N L E film thickness h
v T R T v .
The shear force acting on differential area dA on the surface, : r
the torque it generates, and the shaft power associated with it .
are expressed as | i |
2 i
dF=rWdA=,u%rdA dT=rdF=y%dA ,
) !
T:”—“’Irsz Wsh:mTzﬂJ'rsz
h Ja h Ja
Top surface: For the top surface, dA = 2ardr . Substituting and integrating,
. uw® (P12, 27uw® (P12 4 2rnuw® rt oIz uw’D?
W, top =—— re(2zr)dr = redr=——— ="
, h r=0 h r=0 r=0 32h
. . . . . ruw?d?
Bottom surface: A relation for the bottom surface is obtained by replacing D by d, Wy, poom = BT
Side surface: The differential area for the side surface can be expressed as dA = 2ardz . From geometric considerations, the
variation of radius with axial distance is expressed as r = %+ DZ_Ld z.
Differentiating gives dr = D-d dz or dz= 2Ld dr. Therefore, dA=27dz = 47ZLd rdr . Substituting and integrating,
D/2
W uw® DI2 5 Ark . _ Azuw®L P12 Sdr Amue®L r*| _ muo®L(D? -d?)
shioe = o D-d h(D—d) Jr=d/2 h(D-d) 4| __, 16h(D—d)
Then the total power required becomes
214 4
. . . . 7w D 2L[1-(d/D)™)]
Wsh,total :Wsh,top +Wsh, bottom +Wsh,side = T|:1+ (d/ D)4 +T )

where d/D = 4/12 = 1/3. Substituting,

7(0.1N-s/m?)(200/s)? (0.12 m)* {1+ w9)* 4 2012miL- (1/3)4)]}( 1W
32(0.0012 m) (0.12-0.04) m 1Nm/s

Wsh, total = j =270 W

Noting that power is proportional to viscosity, the power required at 80°C is

. Loy o 0.0078 N -s/m?
Wsh,total,80°C = Lopc Wsh,totaI,ZO"C :W

Therefore, the reduction in the requires power input at 80°C is Reduction = 'Sh‘ total, 20°C —V\'lsh' total, 80°C
which is about 92%.

(270 W) = 21.1W

=270-21.1=249 W,

Discussion Note that the power required to overcome shear forces in a viscous fluid greatly depends on temperature.
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Chapter 2 Properties of Fluids
2-47
Solution A clutch system is used to transmit torque through an oil film between two identical disks. For specified
rotational speeds, the transmitted torque is to be determined.

Assumptions 1 The thickness of the oil film is uniform. 2 The rotational speeds of the disks remain constant.

Properties The absolute viscosity of oil is given to be 2= 0.38 N-s/m?.

Wz

Driving
shaft

Driven

shaft

Wi/ (Y

SAE 30W oil

V2272
Analysis The disks are rotting in the same direction at different angular speeds of @, and of @, . Therefore, we can
assume one of the disks to be stationary and the other to be rotating at an angular speed of @; —®,. The velocity gradient

anywhere in the oil of film thickness h is V /h where V = (@, —w,)r is the tangential velocity. Then the wall shear stress

anywhere on the surface of the faster disk at a distance r from the axis of rotation can be expressed as
_odu V(o —@p)r
ey TR T h
Then the shear force acting on a differential area dA on the surface and the h
torque generation associated with it can be expressed as

_ ol
oF =7, dA= =2 5 g y

o1l

A
\ 4

- 2 _
dT =rdF = lu—(a)l :Z)r (27r)dr = Zﬁﬂ(a’rl] ;) r3dr
Integrating,

(o, _a’z)D4

/
_ Zﬂ;u(wl_wz)J-D/ZrSdr_ 2mp(o) — w,) r o
r=0 32h

h h 4

T

r=0

Noting that @ =27 1, the relative angular speed is
1 min

o, —w, =27 (", —n,) = (27 rad/rev)| (1450 -1398) rev/min]( 50

) =5.445 rad/s ,
Substituting, the torque transmitted is determined to be

1 _7(038N -s/m?)(5.445 /s)(0.30 m)*
32(0.003m)

=0.55N-m

Discussion Note that the torque transmitted is proportional to the fourth power of disk diameter, and is inversely
proportional to the thickness of the oil film.
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Chapter 2 Properties of Fluids

2-48
=
Solution We are to investigate the effect of oil film thickness on the transmitted torque.
Analysis The previous problem is reconsidered. Using EES software, the effect of oil film thickness on the

torque transmitted is investigated. Film thickness varied from 0.1 mm to 10 mm, and the results are tabulated and
mu(w, — o, )D*

plotted. The relationusedis T =
32h

. The EES Equations window is printed below, followed by the

tabulated and plotted results.

mu=0.38

n1=1450 "rpm"

w1=2*pi*n1/60 "rad/s"

n2=1398 "rpm"

w2=2*pi*n2/60 "rad/s"

D=0.3 "m"
Tg=pi*mu*(wl-w2)*(D"4)/(32*h)

18
- - - 16
Film thickness Torque transmitted |
h, mm T, Nm 14
0.1 16.46 i
0.2 8.23 120
0.4 411 T 10
0.6 2.74 =S |
0.8 2.06 — 8
1 1.65 o0
2 0.82 =g
4 0.41 4
6 0.27 - \

8 0.21 2

10 0.16 o P .

0 0.002 0.004 0.006 0.008 0.01

h [m]
Conclusion Torque transmitted is inversely proportional to oil film thickness, and the film thickness should be as small as
possible to maximize the transmitted torque.

Discussion  To obtain the solution in EES, we set up a parametric table, specify h, and let EES calculate T for each
value of h.
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Chapter 2 Properties of Fluids
2-49
Solution A multi-disk Electro-rheological “ER” clutch is considered. The ER fluid has a shear stress that is expressed
as =7, +u(du/dy) . A relationship for the torque transmitted by the clutch is to be obtained, and the numerical value of

the torque is to be calculated.

Assumptions 1 The thickness of the oil layer between the disks is constant. 2 The Bingham plastic model for shear stress
expressed as 7 =7, + u(du/dy) is valid.

Properties The constants in shear stress relation are given to be x#= 0.1 Pa-s and 7, = 2.5 kPa.
h=12mm

Output shaft

Input shaft

i1 i Plates mounted on shell
Plates mounted on input shaft v v v

Variable magnetic field

Analysis (a) The velocity gradient anywhere in the oil of film thickness h is V/h where V. = ar is the tangential velocity
relative to plates mounted on the shell. Then the wall shear stress anywhere on the surface of a plate mounted on the input
shaft at a distance r from the axis of rotation is expressed as
Tyw=T +,ud—u=T +,ulzr +,ua)—r
v dar 7 h 7 h
Then the shear force acting on a differential area dA on the surface of a disk and the torque generation associated with it are
expressed as

dF =7, dA= (ry +lu%rj(2ﬂf)dr

3
dT =rdF = r(ry +y%rj(27zr)dr = Zﬁ[fyl’z +y%r ]dr

Integrating,
4

R
R, wr® r3  port | Ty U@
T=2j r24 0 Adr =247, —+ — 27| 2L (RE-R3)+ X2 (R4 _R4
s, [TV "h J ’{TV T 3 (R ~RO+5 7 (Re =Ry
-1

This is the torque transmitted by one surface of a plate mounted on the input shaft. Then the torque transmitted by both
surfaces of N plates attached to input shaft in the clutch becomes

T (0]
T=4MN| L (R?-R})+E2 (RS - R}
[3(2 $)+47 (R —R)
(b) Noting that @ = 211 = 27(2400 rev/min) = 15,080 rad/min = 251.3rad/s and substituting,

(0.1N-s/m?)(251.3/s)
4(0.0012 m)

T=(47)(11)

{M [(0.20m)* —(0.05m)3]+

[(0.20m)* —(0.05 m)4]} =2060N-m

Discussion Can you think of some other potential applications for this kind of fluid?
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Chapter 2 Properties of Fluids
2-50
Solution A multi-disk magnetorheological “MR” clutch is considered The MR fluid has a shear stress that is
expressed as 7 =7, + K(du/dy)™. A relationship for the torque transmitted by the clutch is to be obtained, and the

numerical value of the torque is to be calculated.

Assumptions 1 The thickness of the oil layer between the disks is constant. 2 The Herschel-Bulkley model for shear stress
expressed as z =z, + K(du/dy)™ is valid.

Properties The constants in shear stress relation are given to be z,= 900 Pa, K = 58 Pa-s™ , and m = 0.82.
h=12mm

Output shaft

Input shaft

.1 i Plates mounted on shell
Plates mounted on input shaft v v v

Variable magnetic field
Analysis (a) The velocity gradient anywhere in the oil of film thickness h is V/h where V. = ar is the tangential velocity

relative to plates mounted on the shell. Then the wall shear stress anywhere on the surface of a plate mounted on the input
shaft at a distance r from the axis of rotation is expressed as

du)" VAR or\"
Tw =Ty+K(E) =Ty+K(Fj =Ty+K(Tj

Then the shear force acting on a differential area dA on the surface of a disk and the torque generation associated with it are
expressed as

m m m. m+2
dF =z, dA=| 7z, + K| L) |@ar)dr and dT=rdF =r| z, + K| L) |@ar)dr =24 c,r2+k 21 ar
w y h y h y

hm
Integrating,
R m . m+2 3 m_ m+3 Rz T m
TZZHIZ o2 a k2 droog p D KO o T (RE_Rdy KO gmea_pgmedy
Ry h™ 3 (m+3)h" R 3 (m+3)h™

This is the torque transmitted by one surface of a plate mounted on the input shaft. Then the torque transmitted by both
surfaces of N plates attached to input shaft in the clutch becomes

T Ko™
T=4MN|-L(RS-R})+——— (RIS _R™3
{3(2 1) (m+3)hm(2 1)

(b) Noting that @ = 2711 = 27(2400 rev/min) = 15,080 rad/min= 251.3rad/s and substituting,

58 N-s°#/m?)(251.3 /s)%
( I 08)2 [(020m)*** ~(0.05 m)"™ |
(0.82+3)(0.0012 m)”

2
M[(0.20 m)’ —(0.05 m)’ |+

T= (4;;)(11)[

=103.4 N =103 KN-m

Discussion Can you think of some other potential applications for this kind of fluid?
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Chapter 2 Properties of Fluids
2-51
Solution The torque and the rpm of a double cylinder viscometer are given. The viscosity of the fluid is to be
determined.

Assumptions 1 The inner cylinder is completely submerged in oil. 2 The
viscous effects on the two ends of the inner cylinder are negligible. 3 The fluid
is Newtonian.

Analysis Substituting the given values, the viscosity of the fluid is
determined to be
T/ (0.8 N-m)(0.0012 m)

U= = =0.0231 N -s/m?
47%R3AL  472(0.075m)3(200/605™)(0.75 m)

Discussion  This is the viscosity value at the temperature that existed during
the experiment. Viscosity is a strong function of temperature, and the values
can be significantly different at different temperatures.

2-52E
Solution The torque and the rpm of a double cylinder viscometer are
given. The viscosity of the fluid is to be determined.

Assumptions 1 The inner cylinder is completely submerged in the fluid. 2
The viscous effects on the two ends of the inner cylinder are negligible. 3 The
fluid is Newtonian.

Analysis Substituting the given values, the viscosity of the fluid is determined
to be

1=0.05in

T/ (1.2 Ibf - t)(0.05/12 ft) fluid

[>= - =9.97x10"° Ibf - s/ft?
472R3AL  472(5.6/12ft)%(250/60s1)(3 ft)

Discussion  This is the viscosity value at temperature that existed during
the experiment. Viscosity is a strong function of temperature, and the values can be significantly different at different
temperatures.
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Chapter 2 Properties of Fluids
2-53
Solution The velocity profile for laminar one-dimensional flow through a circular pipe is given. A relation for
friction drag force exerted on the pipe and its numerical value for water are to be determined.

Assumptions 1 The flow through the circular pipe is one-dimensional. 2 The fluid is Newtonian.

Properties  The viscosity of water at 20°C is given to be 0.0010 kg/m:s. u(r) = Unax(1-r/R?)

2
Analysis The velocity profile is given by u(r) = U« (1—%}

where R is the radius of the pipe, r is the radial distance from the center of
the pipe, and U,y is the maximum flow velocity, which occurs at the

=
=

center, r = 0. The shear stress at the pipe surface is expressed as Unmax
du d r2 ] —2r| 240 oy
Ty = —H— =—/JU —_ ]__— :—/JU =
w drl,_q max dr( R2 . max - o2 |r:R R

Note that the quantity du/dr is negative in pipe flow, and the negative sign is added to the 7, relation for pipes to make
shear stress in the positive (flow) direction a positive quantity. (Or, du/dr = —du/dy since y = R —r). Then the friction drag
force exerted by the fluid on the inner surface of the pipe becomes

2
Fo =7, A = %(Zﬂu — 4z,

Az}om

Substituting we get Fp =4zl u ., =47(0.0010 kg/m -s)(15 m)(3 m/s)
1kg-m/s

Discussion In the entrance region and during turbulent flow, the velocity gradient is greater near the wall, and thus the
drag force in such cases will be greater.

2-54

Solution The velocity profile for laminar one-dimensional flow through a circular pipe is given. A relation for
friction drag force exerted on the pipe and its numerical value for water are to be determined.

Assumptions 1 The flow through the circular pipe is one-dimensional. 2 The fluid is Newtonian.

Properties  The viscosity of water at 20°C is given to be 0.0010 kg/m-s. U(r) = Unax(1-1/R?)

2
Analysis The velocity profile is given by u(r) = U (1—%}

where R is the radius of the pipe, r is the radial distance from the center of J
the pipe, and Uy is the maximum flow velocity, which occurs at the
center, r = 0. The shear stress at the pipe surface can be expressed as

du d r2 —2r 2
= — MU nax _(1__] = — MU nax | = e
r=R

Ty = —H—]
" dr r=R dr RZ RZ |r:R R

0y

Note that the quantity du/dr is negative in pipe flow, and the negative sign is added to the , relation for pipes to make
shear stress in the positive (flow) direction a positive quantity. (Or, du/dr = —du/dy since y = R — r). Then the friction drag
force exerted by the fluid on the inner surface of the pipe becomes

2
Fo =7, A = %(Zﬂu — 4z,

Substituting, we get Fp =4zulu,,, =47(0.0010 kg/m-s)(15m)(5 m/s)[%} =0.942N
g-m/s

Discussion In the entrance region and during turbulent flow, the velocity gradient is greater near the wall, and thus the
drag force in such cases will be larger.
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Chapter 2 Properties of Fluids

Surface Tension and Capillary Effect

2-55C
Solution We are to define and discuss surface tension.
Analysis The magnitude of the pulling force at the surface of a liquid per unit length is called surface tension o.

It is caused by the attractive forces between the molecules. The surface tension is also surface energy (per unit area) since it
represents the stretching work that needs to be done to increase the surface area of the liquid by a unit amount.

Discussion Surface tension is the cause of some very interesting phenomena such as capillary rise and insects that can
walk on water.

2-56C

Solution We are to analyze the pressure difference between inside and outside of a soap bubble.

Analysis The pressure inside a soap bubble is greater than the pressure outside, as evidenced by the stretch of
the soap film.

Discussion You can make an analogy between the soap film and the skin of a balloon.

2-57C
Solution We are to define and discuss the capillary effect.
Analysis The capillary effect is the rise or fall of a liquid in a small-diameter tube inserted into the liquid. It is

caused by the net effect of the cohesive forces (the forces between like molecules, like water) and adhesive forces (the
forces between unlike molecules, like water and glass). The capillary effect is proportional to the cosine of the contact
angle, which is the angle that the tangent to the liquid surface makes with the solid surface at the point of contact.

Discussion ~ The contact angle determines whether the meniscus at the top of the column is concave or convex.

2-58C
Solution We are to determine whether the level of liquid in a tube will rise or fall due to the capillary effect.
Analysis The liquid level in the tube will drop since the contact angle is greater than 90°, and cos(110°) < 0.

Discussion  This liquid must be a non-wetting liquid when in contact with the tube material. Mercury is an example of a
non-wetting liquid with a contact angle (with glass) that is greater than 90°.

2-59C
Solution We are to compare the capillary rise in small and large diameter tubes.
Analysis The capillary rise is inversely proportional to the diameter of the tube, and thus capillary rise is greater in

the smaller-diameter tube.

Discussion Note however, that if the tube diameter is large enough, there is no capillary rise (or fall) at all. Rather, the
upward (or downward) rise of the liquid occurs only near the tube walls; the elevation of the middle portion of the liquid in
the tube does not change for large diameter tubes.
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Chapter 2 Properties of Fluids

2-60E
Solution A slender glass tube is inserted into kerosene. The capillary rise of kerosene in the tube is to be determined.
Assumptions 1 There are no impurities in the kerosene, and no contamination on the -
surfaces of the glass tube. 2 The kerosene is open to the atmospheric air. — e— 003 in
Properties The surface tension of kerosene-glass at 68°F (20°C) is oy = [—1 T
0.028x0.06852 = 0.00192 Ibf/ft. The density of kerosene at 68°F is p = 51.2 Ibm/ft’. h
The contact angle of kerosene with the glass surface is given to be 26°. A 4
Analysis Substituting the numerical values, the capillary rise is determined to be SIS
he 20,C05¢ 2(0.00192 Ibffft)(cos26°) 32.2 |bm - ft/s?
PR (512 lom/ft*)(32.2 ft/s”)(0.015/12 ft) | 1Ibf
=0.0539 ft =0.650 in
Discussion  The capillary rise in this case more than half of an inch, and thus it is clearly noticeable.
2-61
Solution A glass tube is inserted into a liquid, and the capillary rise is measured.

The surface tension of the liquid is to be determined. .

Assumptions

surfaces of the glass tube. 2 The liquid is open to the atmospheric air. Air h

Properties

given to be 15°.

Analysis

1 There are no impurities in the liquid, and no contamination on the

The density of the liquid is given to be 960 kg/m®. The contact angle is Liquid

Substituting the numerical values, the surface tension is determined from

the capillary rise relation to be

3 2
poRh _ (960 kg/m*)(9.81m/s )(0.0019/2m)(0.005m)[ 1N ]: 0.0232 N/

Ogs =
2cos ¢ 2(cos15°) 1kg-m/s?
Discussion Since surface tension depends on temperature, the value determined is valid at the liquid’s temperature.
2-62
Solution The diameter of a soap bubble is given. The gage pressure inside the bubble is to be determined.

Assumptions
Properties

Analysis

bubble is given by
APypre = P =Py =

In the open atmosphere Py = Pym, and thus AP, pe 1S equivalent to the gage
pressure. Substituting,

P

Pi,gage = APy e =

Discussion

,gage bubble 0.002/2 m

The soap bubble is in atmospheric air.
The surface tension of soap water at 20°C is o, = 0.025 N/m.

The pressure difference between the inside and the outside of a

4o

4(0.025 N/m) =100 N/m? =100 Pa

4(0.025 N/m)
0.05/2m

=4N/m? =4Pa

Note that the gage pressure in a soap bubble is inversely proportional to the radius. Therefore, the excess

pressure is larger in smaller bubbles.
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Chapter 2 Properties of Fluids
2-63
Solution Nutrients dissolved in water are carried to upper parts of plants. The
height to which the water solution rises in a tree as a result of the capillary effect is to
be determined.

Assumptions 1 The solution can be treated as water with a contact angle of 15°. 2
The diameter of the tube is constant. 3 The temperature of the water solution is 20°C.

Properties The surface tension of water at 20°C is oy = 0.073 N/m. The density of
water solution can be taken to be 1000 kg/m®. The contact angle is given to be 15°.

Analysis Substituting the numerical values, the capillary rise is determined to be
he 20 COS ¢ _ 2(0.073 N/m)(cos15°) 1kg-m/s? _575m 0.005 mm
PIR (1000 kg/m*)(9.81m/s?)(25x10° m){ 1IN Water solutio

Discussion  Other effects such as the chemical potential difference also cause the
fluid to rise in trees.

2-64
Solution The force acting on the movable wire of a liquid film suspended on a U-shaped wire frame is measured. The
surface tension of the liquid in the air is to be determined.

Assumptions 1 There are no impurities in the liquid, and no contamination on the surfaces of the wire frame. 2 The liquid
is open to the atmospheric air.

Analysis Substituting the numerical values, the surface tension is determined from the surface tension force relation
to be
o :%:%:0.075 N/m iquid
(0.08m) b film F

Discussion  The surface tension depends on temperature. Therefore, the value
determined is valid at the temperature of the liquid.
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Chapter 2 Properties of Fluids

2-65
Solution A steel ball floats on water due to the surface tension effect. The maximum diameter of the ball is to be

(o2

Assumptions 1 The water is pure, and its
temperature is constant. 2 The ball is dropped on
water slowly so that the inertial effects are negligible.
3 The contact angle is taken to be 0° for maximum
diameter.

determined, and the calculations are to be repeated for aluminum. A A A

Properties The surface tension of water at 20°C
is o, = 0.073 N/m. The contact angle is taken to be
0°. The densities of steel and aluminum are given to
be pueer = 7800 kg/m? and pa = 2700 kg/m®.

Analysis The surface tension force and the
weight of the ball can be expressed as

F,=Do, and W =mg=pgV = pgzD>/6
When the ball floats, the net force acting on the ball in the vertical direction is zero. Therefore, setting F;, =W and solving

for diameter D gives D = O Substititing the known quantities, the maximum diameters for the steel and aluminum
9

balls become

D

steel =

60, J 6(0.073 N/m) [1kg-m/32

=24x102 m=2.4mm
9 (7800 kg/m*)(9.81m/s?) 1IN J

N 6(0.073 N/m) 1kg-m/s?
MV g\ 700kgim®)©@.81mis?)| LN

Discussion Note that the ball diameter is inversely proportional to the square root of density, and thus for a given
material, the smaller balls are more likely to float.

] =41x10° m=4.1mm

Review Problems

2-66
Solution The pressure in an automobile tire increases during a trip while its volume remains constant. The percent
increase in the absolute temperature of the air in the tire is to be determined.

Assumptions 1 The volume of the tire remains constant. 2 Air is an ideal gas.

Analysis Noting that air is an ideal gas and the volume is constant, the ratio of absolute temperatures after and before
the trip are
PV, PV, _)Tz _ P, _310kPa _

= 069
T, T, T, P, 290kPa

Therefore, the absolute temperature of air in the tire will increase by 6.9% during this trip.

Discussion  This may not seem like a large temperature increase, but if the tire is originally at 20°C (293.15 K), the
temperature increases to 1.069(293.15 K) = 313.38 K or about 40.2°C.
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Chapter 2 Properties of Fluids
2-67
Solution A large tank contains nitrogen at a specified temperature and pressure. Now some nitrogen is allowed to
escape, and the temperature and pressure of nitrogen drop to new values. The amount of nitrogen that has escaped is to be
determined.

Assumptions The tank is insulated so that no heat is transferred.

Analysis Treating N, as an ideal gas, the initial and the final masses in the tank are determined to be
PV 800kPa)(20m*® %
my =——= ( Z( ) =180.9kg
RT, (0.2968kPa-m?3/kg- K)(298K) |
N
PV (600kPa)(20m?) 800 kPa
m2 &S RT B 3 :13 Okg 250C
2 (0.2968kPa-m~/kg - K)(293K) 20 m?

Thus the amount of N, that escaped is Am=m; —m, =180.9-138.0=42.9kg

Discussion ~ Gas expansion generally causes the temperature to drop. This principle is used in some types of
refrigeration.

2-68
Solution Suspended solid particles in water are considered. A relation is to be developed for the specific gravity of
the suspension in terms of the mass fraction C_ ... and volume fraction C;  of the particles.

Assumptions 1 The solid particles are distributed uniformly in water so that the solution is homogeneous. 2 The effect of
dissimilar molecules on each other is negligible.

Analysis Consider solid particles of mass ms and volume V dissolved in a fluid of mass m; and volume 14,. The total
volume of the suspension (or mixture) is
Vi, =V +V;

Dividing by V£, and using the definition Cg o =V /V,, give

Vi Vi
1:Cs,vol +\K - \Kzl_cs,vol (1)
The total mass of the suspension (or mixture) is

My, =Mg +M;

Dividing by my, and using the definition Cg s = Mg /M, give

1= Cs,mass +$_; = Cs,mass +% - i_; = (1_Cs,mass )\\;_T (2)
Combining equations 1 and 2 gives

p_f: 1_Cs,mass

Pm 1_Cs,vol

When the fluid is water, the ratio p; / p,, is the inverse of the definition of specific gravity. Therefore, the desired relation
for the specific gravity of the mixture is

1-C
SGm =P_m= s,vol
py 1-C

S,mass

which is the desired result.

Discussion  As a quick check, if there were no particles at all, SG,, = 0, as expected.
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2-69
Solution The specific gravities of solid particles and carrier fluids of a slurry are given. The relation for the specific
gravity of the slurry is to be obtained in terms of the mass fraction C and the specific gravity SG; of solid particles.

S, mass

Assumptions 1 The solid particles are distributed uniformly in water so that the solution is homogeneous. 2 The effect of
dissimilar molecules on each other is negligible.

Analysis Consider solid particles of mass mg and volume V4 dissolved in a fluid of mass m; and volume V.. The total
volume of the suspension (or mixture) is V,, =V +V; .

Dividing by V, gives

SGn 1)

:V_S+\/_f - Vf V. _—ms /'05
W Mlp, o myp T SG,

LA B
V., Vg Vv

1 1M P _q_

since ratio of densities is equal two the ratio of specific gravities, and mg /m,, =Cg ... The total mass of the suspension
(or mixture) is m, =mg +m, . Dividing by m;, and using the definition Cg . .s =M /M, give

m \% \%
lzcs,mass +_f:Cs,mass +h - p_m:—f (2)
m, pme P (1_ Cs,mass )Vm
Taking the fluid to be water so that p,, / p; =SG,, and combining equations 1 and 2 give
1-C,,..SG,, /SG,
SG,, = :
1- Cs,ma'.as
Solving for SG,, and rearranging gives
SG,, = 1
1+Cs, mass(l/SGs _1)
which is the desired result.
Discussion  As a quick check, if there were no particles at all, SG,,, = 0, as expected.
2-70E
Solution The minimum pressure on the suction side of a water pump is given. The maximum water temperature to
avoid the danger of cavitation is to be determined.
Properties The saturation temperature of water at 0.95 psia is 100°F.
Analysis To avoid cavitation at a specified pressure, the fluid temperature everywhere in the flow should remain
below the saturation temperature at the given pressure, which is
T.=T =100°F

max sat @ 0.95 psia

Therefore, T must remain below 100°F to avoid the possibility of cavitation.

Discussion Note that saturation temperature increases with pressure, and thus cavitation may occur at higher pressure at
locations with higher fluid temperatures.
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2-71
Solution Air in a partially filled closed water tank is evacuated. The absolute pressure in the evacuated space is to be
determined.

Properties The saturation pressure of water at 60°C is 19.94 kPa.

Analysis When air is completely evacuated, the vacated space is filled with water vapor, and the tank contains a
saturated water-vapor mixture at the given pressure. Since we have a two-phase mixture of a pure substance at a specified
temperature, the vapor pressure must be the saturation pressure at this temperature. That is,

P=P =19.94 kPa =19.9 kPa

v sat @ 60°C

Discussion If there is any air left in the container, the vapor pressure will be less. In that case the sum of the component
pressures of vapor and air would equal 19.94 kPa.

2-72 E:%"

Solution The variation of the dynamic viscosity of water with absolute temperature is given. Using tabular data, a
relation is to be obtained for viscosity as a 4™-order polynomial. The result is to be compared to Andrade’s equation in the

formof u=D-eB'T.
Properties The viscosity data are given in tabular form as

T(K) w (Pa-s) 0.0018 .
273.15  1.787x10° \

0.0016

278.15 1.519x10° I \
283.15  1.307x10° 0.0014
293.15  1.002x10° i \

303.15 7.975x10™ 0.0012
313.15 6.529x10™ -

333.15  4.665x10™ = 0004 \

353.15  3.547x10™ 0.0008

37315 2.828x10™ . \

0.0006

Analysis Using EES, (1) Define a trivial : \
function “a=mu+T” in the equation window, (2) 0.0004 ~
select new parametric table from Tables, and - I
type the data in a two-column table, (3) select 0.0002 : : : : :
Plot and plot the data, and (4) select plot and 270 292 314 336 358 380
click on “curve fit” to get curve fit window. T

Then specify polynomial and enter/edit equation. The equations and plot are shown here.

1= 0.489291758 - 0.00568904387T + 0.0000249152104T? - 4.86155745x10°T> + 3.56198079x10™'T*
4 =0.000001475*EXP(1926.5/T) [used initial guess of a0=1.8x10"° and a1=1800 in mu=a0*exp(al/T)]

At T = 323.15 K, the polynomial and exponential curve fits give
Polynomial: £4(323.15 K) = 0.0005529 Pa-s (1.1% error, relative to 0.0005468 Pa-s)
Exponential: £(323.15 K) = 0.0005726 Pa:s (4.7% error, relative to 0.0005468 Pa-s)

Discussion  This problem can also be solved using an Excel worksheet, with the following results:
Polynomial: A =0.4893, B =-0.005689, C = 0.00002492, D =-0.000000048612, and E = 0.00000000003562

Andrade’s equation: ‘,u =1.807952E —6* '®4% |
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2-73
Solution The velocity profile for laminar one-dimensional flow between two parallel plates is given. A relation for
friction drag force exerted on the plates per unit area of the plates is to be obtained.
Assumptions 1 The flow between the plates is one-dimensional. 2 The ulv) = 4u h—(v/h)
fluid is Newtonian. ) max [y/ (y/ ) ]
Analysis The velocity profile is given by u(y) = 4u ., [y/h —(y/h)z] —
where h is the distance between the two plates, y is the vertical distance i Unnax h
from the bottom plate, and U, is the maximum flow velocity that occurs at y 4+ >
midplane. The shear stress at the bottom surface can be expressed as T —
du d(y y° 1 2y 440
Tw = H— :4/uumax_[___2 :4ﬂumax L2 =T
dy y=0 dy h h y=0 h h y=0 h

Because of symmetry, the wall shear stress is identical at both bottom and top plates. Then the friction drag force exerted by
the fluid on the inner surface of the plates becomes

8uu
Fp = 2TwApIate = — Aplate

Therefore, the friction drag per unit plate area is

8uu
Fo /Aplate = hmax

Discussion Note that the friction drag force acting on the plates is inversely proportional to the distance between plates.

2-74

Solution The laminar flow of a Bingham plastic fluid in a horizontal pipe
of radius R is considered. The shear stress at the pipe wall and the friction drag
force acting on a pipe section of length L are to be determined.

R

Tr

0y

Assumptions 1 The fluid is a Bingham plastic with 7 =z, + x(du/dr) where ] 0
7, is the yield stress. 2 The flow through the pipe is one-dimensional. u(r)
T
Analysis The velocity profile is given by u(r) :4A—I:I>_(r2 —R%)+—L(r—R) where AP/L is the pressure drop along
u U
the pipe per unit length, « is the dynamic viscosity, r is the radial distance from the centerline. Its gradient at the pipe wall
(r=R)is
T T
d_u :i(A_P(rZ_R2)+_y(r_R)J Z(er—P-‘r—yj :i(A_PR+Z-y)
dri,_g drl4uL 7 - b ) o w\2L

Substituing into 7 =z, + x(du/dr), the wall shear stress at the pipe surface becomes

du
Ty =Ty +'HE

=7y +A—PR+Ty =2z, +£R
L 2L

r=R

Then the friction drag force exerted by the fluid on the inner surface of the pipe becomes

AP AP 2
Fo =7,A = [Zry +I Rj(ZzzRL) = ZﬂRL(ny +Z Rj =4rRLz, +2R“AP
Discussion Note that the total friction drag is proportional to yield shear stress and the pressure drop.
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Chapter 2 Properties of Fluids
2-75
Solution A circular disk immersed in oil is used as a damper, as shown in the figure. It is to be shown that the
damping torque is Tyamping = C where C :0.57r,u(1/a+]/b)R4 . I
Assumptions 1 The thickness of the oil layer on each
side remains constant. 2 The velocity profiles are linear
on both sides of the disk. 3 The tip effects are negligible. I
4 The effect of the shaft is negligible.

Analysis The velocity gradient anywhere in the oil
of film thickness a is V/a where V = or is the tangential a l

|
|
|
!
|
velocity. Then the wall shear stress anywhere on the I
upper surface of the disk at a distance r from the axis of [_ | ﬁ
!
!
!
!
I

rotation can be expressed as !

I Disk
Then the shear force acting on a differential area dA on

the surface and the torque it generates can be expressed as Damping oil

L.l

dF =7, dA= 1L dA |
a .
wr?
dT =rdF = u——dA
a
Noting that dA = 2zrdr and integrating, the torque on the top surface is determined to be

R
B 7r,uaR4
2a

R R 4
Ttop:ﬂw‘[rsz:ﬂ_a)I rz(zm,)erZﬁ_,ua) r3dr:2”/”a)r
a A a =0 a r=0 a 4

The torque on the bottom surface is obtained by replaying a by b,

_ muaR 4
bottom 2b

r=0

The total torque acting on the disk is the sum of the torques acting on the top and bottom surfaces,

4
TR 1 1
Tdamping, total — Tbottom + Ttop = > (E + Ej

or,

4
gR™ (1 1
Tdamping, total =C@ ~ where C :T(EJrgj

This completes the proof.

Discussion Note that the damping torque (and thus damping power) is inversely proportional to the thickness of oil
films on either side, and it is proportional to the 4™ power of the radius of the damper disk.
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Chapter 2 Properties of Fluids
2-76E
Solution A glass tube is inserted into mercury. The capillary drop of mercury in the tube is to be determined.

Assumptions 1 There are no impurities in mercury, and no contamination on the surfaces of the glass tube. 2 The mercury
is open to the atmospheric air.

Properties The surface tension of mercury-glass in atmospheric air at 68°F (20°C) is oy = 0.440x0.06852 = 0.03015
Ibf/ft. The density of mercury is p = 847 lom/ft® at 77°F, but we can also use this value at 68°F. The contact angle is given
to be 140°.

Analysis Substituting the numerical values, the capillary drop is determined to be
Air
20,C0S¢ 2(0.03015 Ibf/ft)(cos140°) 32.2 lom - ft/s?
h= = 3 2 Mercury h
pYR (847 Ibmft*)(32.2 ft/s*)(0.45/12 ft)|  1lbf -
=-0.00145 ft =-0.0175 in
Discussion ~ The negative sign indicates capillary drop instead of rise. The drop is
very small in this case because of the large diameter of the tube.
2-77
Solution A relation is to be derived for the capillary rise of a liquid between two large parallel plates a distance t

apart inserted into a liquid vertically. The contact angle is given to be ¢.
Assumptions There are no impurities in the liquid, and no contamination on the surfaces of the plates.

Analysis The magnitude of the capillary rise between two large parallel plates can be determined from a force
balance on the rectangular liquid column of height h and width w between the plates. The bottom of the liquid column is at
the same level as the free surface of the liquid reservoir, and thus the pressure there must be atmospheric pressure. This will
balance the atmospheric pressure acting from the top surface, and thus these two effects will cancel each other. The weight

of the liquid column is ¢

W =mg = ogV = pg(wxtxh)
Equating the vertical component of the surface tension force to the weight gives

W = Furface - PO(Wxtxh)=2wo, Cos¢g

Air h
Canceling w and solving for h gives the capillary rise to be Liquid i
. . 2
Capillary rise: h= 20, C0s¢ é
POt

Discussion  The relation above is also valid for non-wetting liquids (such as mercury in glass), and gives a capillary
drop instead of a capillary rise.
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2-78
Solution A journal bearing is lubricated with oil whose viscosity is
known. The torques needed to overcome the bearing friction during start-up
and steady operation are to be determined.

Assumptions 1 The gap is uniform, and is completely filled with oil. 2 The
end effects on the sides of the bearing are negligible. 3 The fluid is
Newtonian.

Properties The viscosity of oil is given to be 0.1 kg/m-s at 20°C, and
0.008 kg/m:-s at 80°C.

Analysis The radius of the shaft is R = 0.04 m. Substituting the given
values, the torque is determined to be

1=0.08cm
fluid

At start up at 20°C:
2p3, 2 3 -1
T:#M: (0.1kg/m-s) 47°(0.04 m)*(500/60s)(0.30m) —079N-m
1 0.0008 m
During steady operation at 80°C:
2p3, 2 3 -1
T ﬂm: (0.008 kg/m-s) 47%(0.04 m)*(500/60s)(0.30 m) —0.063N-m
1 0.0008 m

Discussion Note that the torque needed to overcome friction reduces considerably due to the decrease in the viscosity
of oil at higher temperature.

Design and Essay Problems

2-79 to 2-81
Solution Students’ essays and designs should be unique and will differ from each other.
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Chapter 3 Pressure and Fluid Statics

Pressure, Manometer, and Barometer

3-1C
Solution We are to discuss the difference between gage pressure and absolute pressure.
Analysis The pressure relative to the atmospheric pressure is called the gage pressure, and the pressure relative

to an absolute vacuum is called absolute pressure.

Discussion Most pressure gages (like your bicycle tire gage) read relative to atmospheric pressure, and therefore read
the gage pressure.

3-2C
Solution We are to explain nose bleeding and shortness of breath at high elevation.
Analysis Atmospheric air pressure which is the external pressure exerted on the skin decreases with increasing

elevation. Therefore, the pressure is lower at higher elevations. As a result, the difference between the blood pressure
in the veins and the air pressure outside increases. This pressure imbalance may cause some thin-walled veins such
as the ones in the nose to burst, causing bleeding. The shortness of breath is caused by the lower air density at higher
elevations, and thus lower amount of oxygen per unit volume.

Discussion People who climb high mountains like Mt. Everest suffer other physical problems due to the low pressure.

3-3C
Solution We are to examine a claim about absolute pressure.
Analysis No, the absolute pressure in a liquid of constant density does not double when the depth is doubled. It

is the gage pressure that doubles when the depth is doubled.

Discussion  This is analogous to temperature scales — when performing analysis using something like the ideal gas law,
you must use absolute temperature (K), not relative temperature (°C), or you will run into the same kind of problem.

3-4C
Solution We are to compare the pressure on the surfaces of a cube.
Analysis Since pressure increases with depth, the pressure on the bottom face of the cube is higher than that on

the top. The pressure varies linearly along the side faces. However, if the lengths of the sides of the tiny cube suspended
in water by a string are very small, the magnitudes of the pressures on all sides of the cube are nearly the same.

Discussion In the limit of an “infinitesimal cube”, we have a fluid particle, with pressure P defined at a “point”.

3-5C
Solution We are to define Pascal’s law and give an example.
Analysis Pascal’s law states that the pressure applied to a confined fluid increases the pressure throughout by

the same amount. This is a consequence of the pressure in a fluid remaining constant in the horizontal direction. An
example of Pascal’s principle is the operation of the hydraulic car jack.

Discussion  The above discussion applies to fluids at rest (hydrostatics). When fluids are in motion, Pascal’s principle
does not necessarily apply. However, as we shall see in later chapters, the differential equations of incompressible fluid
flow contain only pressure gradients, and thus an increase in pressure in the whole system does not affect fluid motion.
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Chapter 3 Pressure and Fluid Statics

3-6C
Solution We are to compare the volume and mass flow rates of two fans at different elevations.
Analysis The density of air at sea level is higher than the density of air on top of a high mountain. Therefore, the

volume flow rates of the two fans running at identical speeds will be the same, but the mass flow rate of the fan at sea level
will be higher.

Discussion In reality, the fan blades on the high mountain would experience less frictional drag, and hence the fan
motor would not have as much resistance — the rotational speed of the fan on the mountain would be slightly higher than
that at sea level.

3-7
Solution The pressure in a vacuum chamber is measured by a vacuum gage. The
absolute pressure in the chamber is to be determined. p 24 kPa
abs
Analysis The absolute pressure in the chamber is determined from
Paps = Patm — Puac =92-24=68 kPa Pam = 92 kPa

Discussion  We must remember that “vacuum pressure” is the negative of gage pressure — hence the negative sign.

3-8E

Solution The pressure in a tank is measured with a manometer by measuring the differential height of the manometer
fluid. The absolute pressure in the tank is to be determined for two cases: the manometer arm with the («) higher and (5)
lower fluid level being attached to the tank.

Assumptions  The fluid in the manometer is incompressible.

Properties The specific gravity of the fluid is given to be SG = 1.25. The density of water at 32°F is 62.4 Ibm/ft’.

Analysis The density of the fluid is obtained by multiplying its specific gravity by the density of water,
p=SGxp, , =(1.25)(62.4 lom/ft’) =78.0 Ibm/ft*

The pressure difference corresponding to a differential height of 28 in between the two arms of the manometer is

2
AP = pgh = (78lbm/ft3)(32.174ft/s?)(28/12ft) LIbf - il ~ | =1.26psia
32.1741bm-ft/s< )\ 144in

Then the absolute pressures in the tank for the two cases become:
¢ Pam

(@) The fluid level in the arm attached to the tank is higher (vacuum):

P.=P

abs atm

. . Ai _
~ P, =127-126=1144 psia =11.4psia " sglin

(b) The fluid level in the arm attached to the tank is lower: SG=1.25

P =P _+P =127+1.26=13.96 psia=14.0 psia

abs gage atm

Pym = 12.7 psia
Discussion  The final results are reported to three significant digits. Note
that we can determine whether the pressure in a tank is above or below
atmospheric pressure by simply observing the side of the manometer arm
with the higher fluid level.
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Chapter 3 Pressure and Fluid Statics
3-9
Solution The pressure in a pressurized water tank is measured by a multi-fluid manometer. The gage pressure of air
in the tank is to be determined.

Assumptions The air pressure in the tank is uniform (i.e., its variation with elevation is negligible due to its low density),
and thus we can determine the pressure at the air-water interface.

Properties The densities of mercury, water, and oil are given to be 13,600, 1000, and 850 kg/m?®, respectively.

Analysis Starting with the pressure at point 1 at the air-water interface, and moving along the tube by adding (as we
go down) or subtracting (as we go up) the pgh terms until we reach point 2, and setting the result equal to Py, since the

tube is open to the atmosphere gives

Pl + pwaterghl + poilghz _pmercurygh3 = Pazm Air
Solving for Py, 1

P = Py = Pwater 81 — Poil 8y + pmercurygh3
or, h
P — Py = g(pmercuryh3 ~ Pwater . = Poith2)

Noting that Py gage = Py - Pam and substituting, Water . ha
2
P, gage = (9.81m/s?)[(13,600 kg/m*)(0.46 m) — (1000 kg/m*)(0.2 m) i y
1N 1kPa
- (850 kg/m*3)(0.3m)] ( j \_/
1kg-m/s? 1000 N/m? \/

=56.9kPa

Discussion Note that jumping horizontally from one tube to the next and realizing that pressure remains the same in the
same fluid simplifies the analysis greatly.

3-10
Solution The barometric reading at a location is given in height of mercury column. The atmospheric pressure is to
be determined.

Properties The density of mercury is given to be 13,600 kg/m®.

Analysis The atmospheric pressure is determined directly from

Fun = pgh = (13,600 kgim*)(9.81 m/s*)(0.750 m)(1 k; e j(loéokzjmzj

=100.1 kPa =100 kPa

Discussion  We round off the final answer to three significant digits. 100 kPa is a fairly typical value of atmospheric
pressure on land slightly above sea level.
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Chapter 3 Pressure and Fluid Statics
3-11
Solution The gage pressure in a liquid at a certain depth is given. The gage pressure in the same liquid at a different
depth is to be determined.

Assumptions The variation of the density of the liquid with depth is negligible.

Analysis The gage pressure at two different depths of a liquid can be expressed as P, = pghy and P, = pgh, .
Taking their ratio,
Po _pehy _ha
P opghy h
Solving for P, and substituting gives 1 hy
h 12m ==
P, =—2P1 =——(28 kPa) =112 kPa 2
hy 3m

Discussion Note that the gage pressure in a given fluid is proportional to depth.

3-12
Solution The absolute pressure in water at a specified depth is given. The local atmospheric pressure and the
absolute pressure at the same depth in a different liquid are to be determined.

Assumptions The liquid and water are incompressible.

Properties The specific gravity of the fluid is given to be SG = 0.85. We take the density of water to be 1000 kg/m®.
Then density of the liquid is obtained by multiplying its specific gravity by the density of water,

p=SGxpy o =(0.85)(1000 kg/m®) =850 kg/m*

Analysis (a) Knowing the absolute pressure, the atmospheric pressure can be determined from
Patm =P- pgh Patm
_ (145 KPa)— (1000 kg/m*)(9.81 m/s?)(5 m)| —— -2 __|_96.0 kPa
1000 N/m A
(b) The absolute pressure at a depth of 5 m in the other liquid is —5

P=F,, +pgh

=(96.0 kPa) + (850 kg/m®)(9.81 m/s?)(5 m) Laz
1000 N/m
=137.7 kPa = 138 kPa

Discussion Note that at a given depth, the pressure in the lighter fluid is lower, as expected.

3-13E
Solution It is to be shown that 1 kgf/cm? = 14.223 psi.
Analysis Noting that 1 kgf = 9.80665 N, 1 N = 0.22481 Ibf, and 1 in = 2.54 cm, we have

=2.20463 Ibf

1 kgf =9.80665 N = (9.80665 N )(WJ

2.54 cm

2
and 1 kgflcm? = 2.20463 Ibflcm? = (2.20463 Ibf/cmz)( J =14.223 Ibf/in? =14.223 psi

Discussion  This relationship may be used as a conversion factor.
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Chapter 3 Pressure and Fluid Statics
3-14E
Solution The weight and the foot imprint area of a person are given. The pressures this man exerts on the ground
when he stands on one and on both feet are to be determined.

Assumptions The weight of the person is distributed uniformly on foot imprint area. "“.

Analysis The weight of the man is given to be 200 Ibf. Noting that
pressure is force per unit area, the pressure this man exerts on the ground is

() On one foot: p _20 Ibzf =5.56 Ibf/in® =5.56 psi
4 36in

(a) On both feet: _ W _200F ) 2gibtiin? = 2.78 psi
24  2x36in?

Discussion Note that the pressure exerted on the ground (and on the feet) is reduced by half when the person stands on
both feet.

3-15
Solution The mass of a woman is given. The minimum imprint area per shoe needed to enable her to walk on the
snow without sinking is to be determined.

Assumptions 1 The weight of the person is distributed uniformly on the imprint area of the shoes. 2 One foot carries the
entire weight of a person during walking, and the shoe is sized for walking conditions (rather than standing). 3 The weight
of the shoes is negligible.

Analysis The mass of the woman is given to be 70 kg. For a pressure of 0.5 kPa on the
snow, the imprint area of one shoe must be

2
W _mg _(10kg)(9.81m/s?)( 1N ( 1kPa ):1_37m2
P P 0.5kPa 1kg-m/s? 1000 N/m?

Discussion  This is a very large area for a shoe, and such shoes would be impractical to use. Therefore, some sinking of
the snow should be allowed to have shoes of reasonable size.

golleution The vacuum pressure reading of a tank is given. The absolute pressure in the tank is to be determined.
Properties The density of mercury is given to be p = 13,590 kg/m®.
Analysis The atmospheric (or barometric) pressure can be expressed as - 30kPa
By = pgh
— (13,590 kg/m®)(9.807 m/s2)(0.755 m)( 1N j( LkPa J
1kg-m/s® )\ 1000 N/m? Paim = 755mmHg

=100.6 kPa
Then the absolute pressure in the tank becomes

P, =P P, =100.6-30=70.6 kPa

abs atm — L vac

Discussion  The gage pressure in the tank is the negative of the vacuum pressure, i.e., Pgage = —30.0 kPa.
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Chapter 3 Pressure and Fluid Statics

3-17E
Solution A pressure gage connected to a tank reads 50 psi. The absolute pressure in the tank is to be determined.
Properties The density of mercury is given to be p = 848.4 lom/ft®.
. . : -®
Analysis The atmospheric (or barometric) pressure can be expressed as .
Pabs 50 psia
B =pgh ,
3 2 11Ibf 1ft
=(848.4 Iom/ft*)(32.174 ft/s")(29.1/12 ft) > —
. 32.174 Iom - ft/s® J{ 144 in
=14.29 psia
Then the absolute pressure in the tank is
P, =P, +P, =50+14.29=64.29 psia = 64.3 psia
Discussion  This pressure is more than four times as much as standard atmospheric pressure.
3-18
Solution A pressure gage connected to a tank reads 500 kPa. The absolute pressure
in the tank is to be determined. b 500 kPa
Analysis The absolute pressure in the tank is determined from e
Pyps = Pyage + Pam =500+94 =594 kPa P.m = 94 kPa
Discussion  This pressure is almost six times greater than standard atmospheric pressure.
3-19
Solution A mountain hiker records the barometric reading before and after a hiking trip. The vertical distance
climbed is to be determined.
Assumptions The variation of air density and the gravitational acceleration with
altitude is negligible. 780 mbar

Properties The density of air is given to be p = 1.20 kg/m®.

Analysis Taking an air column between the top and the bottom of the mountain
and writing a force balance per unit base area, we obtain

Wair 1 4= Poottom — Ptop
(2gh) air = Poottom _Ptop

930 mbar

1IN 1 bar
(1.20 kg/m*)(9.81 m/s?)(h) = (0.930-0.780) bar
1kg-m/s? ) 100,000 N/m?

Ityields 42 =1274 m= 1270 m (to 3 significant digits), which is also the distance climbed.

Discussion A similar principle is used in some aircraft instruments to measure elevation.
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Chapter 3 Pressure and Fluid Statics
3-20
Solution A barometer is used to measure the height of a building by recording reading at the bottom and at the top of
the building. The height of the building is to be determined.

Assumptions The variation of air density with altitude is negligible.
Properties  The density of air is given to be p = 1.18 kg/m?®. The density of mercury is 13,600 kg/m°.

Analysis Atmospheric pressures at the top and at the bottom of the building are 730 mmHg

Ptop = (pgh)top T

= (13,600 kg/m®)(9.807 m/s*)(0.730 m) 1N 5 L kPa 5
1 kg-m/s” )L 1000 N/m
=97.36 kPa

R)ottom = (pg h)bottom

_ (13,600 kg/m*)(9.807 m/s?)(0.755 m)| —— N || _LkPa_
1kg-m/s® )| 1000 N/m
~100.70 KkPa

4755 mmHg

Taking an air column between the top and the bottom of the building, we write a force balance per unit base area,

I/Vair /A= R)ottom - Ptop and (pgh)air = Raottom - Ptop

(118 kg/m*)(9.807 m/sz)(h)(1 k; ":'nlszJ[logokg;‘mz}(100.70—97.36) kPa

which yields # = 288.6 m = 289 m, which is also the height of the building.

Discussion ~ There are more accurate ways to measure the height of a building, but this method is quite simple.

6!

321 e

Solution The previous problem is reconsidered. The EES solution is to be printed out, including proper units.

Analysis The EES Equations window is printed below, followed by the Solution window.

P_bottom=755"[mmHg]"

P_top=730"[mmHg]"

g=9.807 "[m/s"2]" “local acceleration of gravity at sea level"

rho=1.18"[kg/m"3]"

DELTAP_abs=(P_bottom-P_top)*CONVERT('mmHg','kPa")"[kPa]" "Delta P reading from the
barometers, converted from mmHg to kPa."

DELTAP_h =rho*g*h/1000 "[kPa]" "Equ. 1-16. Delta P due to the air fluid column height, h,
between the top and bottom of the building."

"Instead of dividing by 1000 Pa/kPa we could have multiplied rho*g*h by the EES function,
CONVERT('Pa','kPa’)"

DELTAP_abs=DELTAP_h

SOLUTION
Variables in Main
DELTAP_abs=3.333 [kPa] DELTAP_h=3.333 [kPa]
0=9.807 [m/s"2] h=288 [m]
P_bottom=755 [mmHg] P_top=730 [mmHg]

rho=1.18 [kg/m"3]

Discussion  To obtain the solution in EES, simply click on the icon that looks like a calculator, or Calculate-Solve.
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3-22
Solution A diver is moving at a specified depth from the water surface. The pressure exerted on the surface of the
diver by the water is to be determined.

Assumptions The variation of the density of water with depth is negligible.

Properties The specific gravity of sea water is given to be SG = 1.03. We take the density of water to be 1000 kg/m°.

Analysis The density of the sea water is obtained by multiplying its specific gravity p
by the density of water which is taken to be 1000 kg/m®: atm
p=SCxp,,= (1.03)(1000 kg/m®) =1030 kg/m® i Sea
The pressure exerted on a diver at 30 m below the free surface of the sea is
the absolute pressure at that location: P
P=P,  +pgh
_ (101 kPa) + (1030 kg/m*)(9.807 m/s?)(30 m)| ——KP&__
' 1000 N/m?
=404 kPa
Discussion  This is about 4 times the normal sea level value of atmospheric pressure.
3-23E
Solution A submarine is cruising at a specified depth from the water
surface. The pressure exerted on the surface of the submarine by water is to be P
determined. ar
Assumptions The variation of the density of water with depth is negligible. Sea
h
Properties The specific gravity of sea water is given to be SG = 1.03. The
density of water at 32°F is 62.4 lbm/ft’. — i

Analysis The density of the seawater is obtained by multiplying its specific
gravity by the density of water,

p=SGxpy o = (1.03)(62.41bm/ft*) = 64.27 Ibm/ft

The pressure exerted on the surface of the submarine cruising 300 ft below the free surface of the sea is the absolute
pressure at that location:

P=P_ + pgh

atm

. 1 Ibf 1 ft?
= (14.7 psia) + (64.27 lbm/ft*)(32.174 ft/s*)(300 ft

(14.7 psia) + (64.27 Iom/I) X )(32.174 Ibm-ft/szj[l44 inzj
=148.6 psia =149 psia

where we have rounded the final answer to three significant digits.

Discussion  This is more than 10 times the value of atmospheric pressure at sea level.
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Chapter 3 Pressure and Fluid Statics

3-24
Solution A gas contained in a vertical piston-cylinder device is pressurized by a spring and by the weight of the
piston. The pressure of the gas is to be determined.
Analysis Drawing the free body diagram of the piston and balancing the vertical forces yields Fispring

P4 = Path +W+ Fspring Patm
Thus,

mg+F,_.
p= f;[m i g spring 1
A
2
— (95 kpa) + A KQOB07T i) +60 N _ 1 kPa | _)55 ) kpa=123 kpPa P
35x10™" m 1000 N/m
W=mg

Discussion  This setup represents a crude but functional way to control the pressure in a tank.
3-25 E%"
Solution The previous problem is reconsidered. The effect of the spring force in the range of 0 to 500 N on the

pressure inside the cylinder is to be investigated. The pressure against the spring force is to be plotted, and results are to be
discussed.

Analysis The EES Equations window is printed below, followed by the tabulated and plotted results.

9=9.807"[m/s"2]"

P_atm= 95"[kPa]"

m_piston=4"[kg]"

{F_spring=60"[N]"}

A=35*CONVERT('cm”2','m”2")"[m~"2]"

W_piston=m_piston*g"[N]"

F_atm=P_atm*A*CONVERT('kPa','N/m~2")"[N]"

"From the free body diagram of the piston, the balancing vertical forces yield:"
F_gas=F_atm+F_spring+W_piston"[N]"
P_gas=F_gas/A*CONVERT('N/m~2','kPa")"[kPa]"

Results: 260 T T T T T T T T T
240 d
I:spring [N] Pgas [kPa] 1
220 4
0 106.2 |
55.56 122.1 __ 200 4
111.1 138 nﬂj 1
166.7 153.8 ~ 180 ]
222.2 169.7 » 160 i
277.8 185.6 g 1
333.3 201.4 o 140 T
388.9 217.3 120 ]
444.4 233.2 ]
500 249.1 100 L 1 . L . I . L \
0 100 200 300 400 500
Fspring [N]
Discussion  The relationship is linear, as expected.
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Chapter 3 Pressure and Fluid Statics
3-26 [Also solved using EES on enclosed DVD]
Solution Both a pressure gage and a manometer are attached to a tank of gas to measure its pressure. For a specified
reading of gage pressure, the difference between the fluid levels of the two arms of the manometer is to be determined for
mercury and water.

Properties The densities of water and mercury are given to be pyae = 1000 kg/m® and be Prg = 13,600 kg/m?.

Analysis The gage pressure is related to the vertical distance 4 between the two fluid levels by
Pa e
})gage:pgh h = 99 80 kPa
Pg Q)

(@) For mercury, H

AIR
he Prage 80 kPa 1kN/m? ) 1000 kg/m-s2
P (13600 kg/m*)(9.807 m/s®) | 1kPa 1kN

J:O.GO m

(b) For water,

Prage 80 kPa 1kN/m? ) 1000 kg/m-s2
1kPa 1kN

h = =
Pu,0€ (1000 kg/m®)(9.807m/s?)

J=8.16 m

Discussion ~ The manometer with water is more precise since the column height is bigger (better resolution). However, a
column of water more than 8 meters high would be impractical, so mercury is the better choice of manometer fluid here.
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3-27 @P

Solution The previous problem is reconsidered. The effect of the manometer fluid density in the range of 800 to
13,000 kg/m? on the differential fluid height of the manometer is to be investigated. Differential fluid height is to be plotted
as a function of the density, and the results are to be discussed.

Analysis The EES Equations window is printed below, followed by the tabulated and plotted results.
Function fluid_density(Fluid$)

If fluid$="Mercury' then fluid_density=13600 else fluid_density=1000
end
{Input from the diagram window. If the diagram window is hidden, then all of the input must come from the
equations window. Also note that brackets can also denote comments - but these comments do not appear
in the formatted equations window.}

{Fluid$="Mercury'

P_atm = 101.325 "kpa"
DELTAP=80 "kPa Note how DELTAP is displayed on the Formatted Equations Window."}
0=9.807 "m/s2, local acceleration of gravity at sea level"

rho=Fluid_density(Fluid$) "Get the fluid density, either Hg or H20, from the function”

"To plot fluid height against density place {} around the above equation. Then set up the parametric table
and solve."

DELTAP = RHO*g*h/1000

"Instead of dividing by 1000 Pa/kPa we could have multiplied by the EES function, CONVERT('Pa’,’kPa’)"
h_mm=h*convert('m','mm") "The fluid height in mm is found using the built-in CONVERT function."
P_abs=P_atm + DELTAP

"To make the graph, hide the diagram window and remove the {}brackets from Fluid$ and from P_atm.
Select New Parametric Table from the Tables menu. Choose P_abs, DELTAP and h to be in the table.
Choose Alter Values from the Tables menu. Set values of h to range from 0 to 1 in steps of 0.2. Choose
Solve Table (or press F3) from the Calculate menu. Choose New Plot Window from the Plot menu.
Choose to plot P_abs vs h and then choose Overlay Plot from the Plot menu and plot DELTAP on the same
scale."

Tank Fluid Gage and Absolute Pressures vs Manometer Fluid Height

Results: 240 | | | | | | | | |

h [mm] p [kg/mB] 220__ Manometer Fluid: Mercury ]
mm

10197 800 200k ]
3784 2156 - _
2323 3511 c 180_‘ Absolute Pressure .
1676 4867 2 160} ]
1311 6222 < 140l ]
1076 7578 5 L ]
913.1 8933 o 1201 ]
;ggg 1224812 E 100._ Gage Pressure ]
- 80} ]
627.5 13000 L i
60} ]
a0l ]
20[ ]
0- 1 1 1 1 1 | ! | . ]

0.00 0.20 0.40 0.60 0.80 1.00

Manometer Fluid Height, m
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Manometer Fluid Height vs Manometer Fluid Density

11000 T T T T T T T T T T T T T

8800} 4

6600 4

44001 -

hmm [mm]

2200} 4

0 I 1 I 1 I 1 I 1 I 1 I 1 I
0 2000 4000 6000 8000 10000 12000 14000

p [kg/m~3]

Discussion Many comments are provided in the Equation window above to help you learn some of the features of EES.

3-28
Solution The air pressure in a tank is measured by an oil manometer. For a
given oil-level difference between the two columns, the absolute pressure in the

tank is to be determined.
Properti Th ity of oil is gi = 850 kg/m”. ] ]
roperties e density of oil is given to be p (o AR 0.45Im

Analysis The absolute pressure in the tank is determined from

P = Patm + pgh

3 ) 1 kPa
= (98 kPa)+ (850 kg/m”)(9.81 m/s?)(0.45m)| ————
1000 N/m P, = 98 kPa

=101.75 kPa =102 kPa

Discussion If a heavier liquid, such as water, were used for the manometer fluid, the column height would be smaller,
and thus the reading would be less precise (lower resolution).
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3-29
Solution The air pressure in a duct is measured by a mercury manometer. For a given mercury-level difference
between the two columns, the absolute pressure in the duct is to be determined.

Properties The density of mercury is given to be p = 13,600 kg/m®.

Analysis (@) The pressure in the duct is above atmospheric pressure since the fluid T
column on the duct side is at a lower level. ]

Air 15|mm|
(b) The absolute pressure in the duct is determined from

P

P=F,, +pgh

1N 1 kPa
= (100 kPa)+ (13,600 kg/m*)(9.81 m/s?)(0.015 m

( )+ g 4 )£1 kg-m/szj(looo N/mzj
=102.00 kPa =102 kPa

Discussion ~ When measuring pressures in a fluid flow, the difference between two pressures is usually desired. In this
case, the difference is between the measurement point and atmospheric pressure.

3-30

Solution The air pressure in a duct is measured by a mercury manometer. For a given mercury-level difference
between the two columns, the absolute pressure in the duct is to be determined.

Properties The density of mercury is given to be p = 13,600 kg/m®.

Analysis (a) The pressure in the duct is above atmospheric pressure since the fluid column on the duct side is at a
lower level.

(b) The absolute pressure in the duct is determined from

P:Patm+pgh

= (100 kPa)+ (13,600 kg/m®)(9.81 m/s*)(0.030 m) 1 N > L kPa >
1 kg-m/s® )L 1000 N/m
=104.00 kPa =104 kPa

Discussion  The final result is given to three significant digits.
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3-31
Solution The systolic and diastolic pressures of a healthy person are given in mm of Hg. These pressures are to be
expressed in kPa, psi, and meters of water column.

Assumptions  Both mercury and water are incompressible substances.
Properties We take the densities of water and mercury to be 1000 kg/m® and 13,600 kg/m?, respectively.

Analysis Using the relation P = pgh for gage pressure, the high and low pressures are expressed as

1N 1 kPa
Piigh = pghnian = (13,600 kg/m3)(9.81 m/s2)(0.12 m) =16.0 kPa
high = P&Mign 1kg-m/s? )| 1000N/m?

3 2 1N 1 kPa
Pow = P2hiow = (13,600 kg/m~)(9.81 m/s<)(0.08 m){1 - J(looo U2 ] =10.7 kPa
Noting that 1 psi = 6.895 kPa,
1 psi 1psi
6.895kPa 6.895kPa
For a given pressure, the relation P = pgh is expressed for mercury and water as P = pyater water and _

P = Prercury & mercury - SeLtINg these two relations equal to each other and solving for water height gives

Phign = (160 kPa)( J: 2.32psi and P, =(10.7 kPa)( j:1.55 psi

P mercury
pP= pwaterghwater = pmercuryghmercury - hwater = hmercury
water h
Therefore,
Prmercury 13,600 kg/m ’
hwater,high = hmercury,high = (0.12m)=1.63 m

pwater 1000 kg/m 3

Pmercury 13,600 kg/m ’ M
Y _ Pmeraury =—————(0.08m)=1.09 m
water, low 0 mercury, low 1000 kg/m 3

water

Discussion Note that measuring blood pressure with a water monometer would involve water column heights higher
than the person’s height, and thus it is impractical. This problem shows why mercury is a suitable fluid for blood pressure
measurement devices.

3-32
Solution A vertical tube open to the atmosphere is connected to the vein in the arm of a person. The height that the
blood rises in the tube is to be determined.

Assumptions 1 The density of blood is constant. 2 The gage pressure of blood is 120 mmHg.
Properties The density of blood is given to be p = 1050 kg/m°.

Analysis For a given gage pressure, the relation P = pgh can be expressed for Blood
mercury and blood as P = ppeq&hpioos ANd P = Prmercury &/ mercury - SELING these two h
relations equal to each other we get

P = Phiood &Mbiood = pmercuryghmercury
Solving for blood height and substituting gives
Pmercury h _ 13,600 kg/m3

oiood = mercury —

Phlood 1050 kg/m?®

(0.12m)=1.55m

Discussion Note that the blood can rise about one and a half meters in a tube connected to the vein. This explains why
IV tubes must be placed high to force a fluid into the vein of a patient.
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3-33
Solution A man is standing in water vertically while being completely submerged. The difference between the
pressure acting on his head and the pressure acting on his toes is to be determined.

Assumptions  Water is an incompressible substance, and thus the density does not change with depth.

Properties We take the density of water to be p=1000 kg/m°. ”
head
Analysis The pressures at the head and toes of the person can be expressed as
Pread = Parm + P8hhead and Pioe = Pam + P8h1oe

where £ is the vertical distance of the location in water from the free surface. The pressure
difference between the toes and the head is determined by subtracting the first relation
above from the second, Toe

Proe = Pread = PEM10e = PLhnead = £ (Pige — Piead)
Substituting,

1IN 1kPa
Py, — P...q = (1000 kg/m®)(9.81 m/s?)(1.80 m - 0) =17.7 kPa
toe ~ £'head 1kg- m/s? | 1000N/m?

Discussion  This problem can also be solved by noting that the atmospheric pressure (1 atm = 101.325 kPa) is
equivalent to 10.3-m of water height, and finding the pressure that corresponds to a water height of 1.8 m.

3-34

Solution Water is poured into the U-tube from one arm and oil from the other arm. The water column height in one
arm and the ratio of the heights of the two fluids in the other arm are given. The height of each fluid in that arm is to be
determined.

Assumptions Both water and oil are incompressible substances.
Properties The density of oil is given to be py; = 790 kg/m?. We take the density of water to be p,, =1000 kg/m®.

Analysis The height of water column in the left arm of the manometer is given to be 4,; = 0.70 m. We let the height
of water and oil in the right arm to be A,, and #,, respectively. Then, i, = 6A,,. Noting that both arms are open to the
atmosphere, the pressure at the bottom of the U-tube can be expressed as

Pootiom = Patm + Pw &hwa and Poottom = Patm + Pw 8wz + Pagha
Setting them equal to each other and simplifying,

Pw&hwi = Pw&huwz + Paghy - Pwhyr = Pwhwz + Paha g Iy = hyy +(pa /pw)ha

Noting that 4, = 64, and we take p, =p,;, the water and oil column heights in the Water oil
second arm are determined to be —
0.7m=h,, +(790/1000)6%,, —  h,, =0.122m ha
0.7m=0.122m+(790/1000)h, —  h, =0.732m I =+,
w2
Discussion Note that the fluid height in the arm that contains oil is higher. This is

expected since oil is lighter than water.
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3-35
Solution The hydraulic lift in a car repair shop is to lift cars. The fluid gage pressure that must be maintained in the
reservoir is to be determined.

. . : o . W=mg
Assumptions  The weight of the piston of the lift is negligible.
Analysis Pressure is force per unit area, and thus the gage pressure required is simply the Pam
ratio of the weight of the car to the area of the lift,

2

Prage == e (2000 kg)(9'821 m/s”) LkN | = 278kN/m? =278 kPa

A #zD° /4 7(0.30m)“ /4 1000 kg - m/s p
Discussion Note that the pressure level in the reservoir can be reduced by using a piston with a larger area.
3-36
Solution Fresh and seawater flowing in parallel horizontal pipelines are connected to each other by a double U-tube

manometer. The pressure difference between the two pipelines is to be determined.

Assumptions 1 All the liquids are incompressible. 2 The effect
of air column on pressure is negligible.

Properties The densities of seawater and mercury are given to
be psea = 1035 kg/m® and pyy = 13,600 kg/m?®. We take the density
of water to be p, =1000 kg/m®.

Analysis Starting with the pressure in the fresh water pipe
(point 1) and moving along the tube by adding (as we go down) or
subtracting (as we go up) the pgh terms until we reach the sea

water pipe (point 2), and setting the result equal to P, gives

P +pygh, ~ PHg thg = Pair&Mair + Psea hsea = P> hng

Rearranging and neglecting the effect of air column on pressure, Mercury

P -P,=-pygh, + pHgthg ~ Psea8hsea = g(pthHg = Puwhy = Psealisea)
Substituting,
P, — P, =(9.81m/s%)[(13600 kg/m*)(0.1m)

1kN
— (1000 kg/m*)(0.6 m) — (1035 kg/m3)(0.4 m)] ————
( g/m*)( )—( g/m*)( H(lOOOkg-m/szJ

=3.39kN/m? =3.39kPa

Therefore, the pressure in the fresh water pipe is 3.39 kPa higher than the pressure in the sea water pipe.

Discussion A 0.70-m high air column with a density of 1.2 kg/m® corresponds to a pressure difference of 0.008 kPa.
Therefore, its effect on the pressure difference between the two pipes is negligible.
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3-37
Solution Fresh and seawater flowing in parallel horizontal pipelines are connected to each other by a double U-tube
manometer. The pressure difference between the two pipelines is to be determined.

Assumptions  All the liquids are incompressible.

Properties The densities of seawater and mercury are given to be p, = 1035 kg/m?® and PHg = 13,600 kg/m®. We take
the density of water to be g, =1000 kg/m?®. The specific gravity of oil is given to be 0.72, and thus its density is 720 kg/m®.

Analysis Starting with the pressure in the fresh water pipe (point 1) and moving along the tube by adding (as we go
down) or subtracting (as we go up) the pgh terms until we reach the sea water pipe (point 2), and setting the result equal

to P, gives
P+ pygh, _pHgthg = Poit &hoit + Psea&hsea = Ps
Rearranging,

P =P, =-pygh, +pHgthg + Poit &hoil — Psea &hsea
= g(pthHg + Poithoit = Pwhyy — Psealisea)
Substituting,

P, — P, =(9.81m/s%)[(13600 kg/m?>)(0.1m) + (720 kg/m*)(0.7 m) — (1000 kg/m>)(0.6 m)
~ (1035 kg/m®)(0.4m)] — N
1000 kg - m/s
=8.34kN/m? =8.34 kPa

Therefore, the pressure in the fresh water pipe is 8.34 kPa higher than the pressure in the sea water pipe.

hig

Mercury

Discussion  The result is greater than that of the previous problem since the oil is heavier than the air.
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3-38E
Solution The pressure in a natural gas pipeline is measured by a double U-tube manometer with one of the arms
open to the atmosphere. The absolute pressure in the pipeline is to be determined.

Assumptions 1 All the liquids are incompressible. 2 The effect of air column on pressure is negligible. 3 The pressure
throughout the natural gas (including the tube) is uniform since its density is low.

Properties We take the density of water to be p, = 62.4 Ibm/ft®. The specific gravity of mercury is given to be 13.6,
and thus its density is png = 13.6x62.4 = 848.6 lom/ft’.

Analysis Starting with the pressure at point 1 in the natural gas pipeline, and moving along the tube by adding (as we
go down) or subtracting (as we go up) the pgh terms until we reach the free surface of oil where the oil tube is exposed to

the atmosphere, and setting the result equal to Py, gives
A - PHg thg = Pwater &water = Pam
Solving for Py,

P =Py + pHgthg + Pwater &M
Substituting,

2
P =142 psia+(32.2 ft/s?)[(848.6 Ibm/ft3)(6/12 ft) + (62.41bm/ft3)(27/12 ft)] L 1bf Lt
32.2 Ibm-ft/s? )| 144 in?

=18.1psia

Water

Natural :
gas

Mercury

Discussion Note that jumping horizontally from one tube to the next and realizing that pressure remains the same in the
same fluid simplifies the analysis greatly. Also, it can be shown that the 15-in high air column with a density of 0.075
Ibm/ft® corresponds to a pressure difference of 0.00065 psi. Therefore, its effect on the pressure difference between the two
pipes is negligible.
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3-39E
Solution The pressure in a natural gas pipeline is measured by a double U-tube manometer with one of the arms
open to the atmosphere. The absolute pressure in the pipeline is to be determined.

Assumptions 1 All the liquids are incompressible. 2 The pressure throughout the natural gas (including the tube) is
uniform since its density is low.

Properties We take the density of water to be p, = 62.4 Ibm/ft*. The specific gravity of mercury is given to be 13.6,
and thus its density is png = 13.6x62.4 = 848.6 Ibm/ft®. The specific gravity of oil is given to be 0.69, and thus its density is
poil = 0.69x62.4 = 43.1 Ibm/ft*.

Analysis Starting with the pressure at point 1 in the natural gas pipeline, and moving along the tube by adding (as we
go down) or subtracting (as we go up) the pgh terms until we reach the free surface of oil where the oil tube is exposed to

the atmosphere, and setting the result equal to Py, gives
Pl - pHgthg + poilghoil _pwaterghwater = Patm
Solving for Py,
P =Pyy + pHgthg + Pwater 81 — Poit &hoit
Substituting,

P, =14.2psia + (32.2 ft/s?)[(848.6Ibm/ft®)(6/12 ft) + (62.41bm/ft3)(27/12 ft)

1Ibf 1ft?
— (43.11bm/ft3)(15/12 ft)]
32.21bm-ft/s® )\ 144in?

=17.7psia

Water

Natural
gas

Mercury

Discussion Note that jumping horizontally from one tube to the next and realizing that pressure remains the same in the
same fluid simplifies the analysis greatly.
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3-40
Solution The gage pressure of air in a pressurized water tank is measured simultaneously by both a pressure gage
and a manometer. The differential height / of the mercury column is to be determined.

Assumptions The air pressure in the tank is uniform (i.e., its variation with elevation is negligible due to its low density),
and thus the pressure at the air-water interface is the same as the indicated gage pressure.

Properties We take the density of water to be g, =1000 kg/m®. The specific gravities of oil and mercury are given to
be 0.72 and 13.6, respectively.

Analysis Starting with the pressure of air in the tank (point 1), and moving along the tube by adding (as we go down)
or subtracting (as we go up) the pgh terms until we reach the free surface of oil where the oil tube is exposed to the

atmosphere, and setting the result equal to Py, gives

P +pwgh, _pHgthg = Poit&hoit = Loy 65 kPa
Rearranging, =0
Al B
P, = Pam = Poit &hoir + pHgthg - Pw&h, " |
or, oi
P, gage Water
' = Ps il ot + Ps, thHg —h, Iy
Pug h ’
Substituting,
1000 kg-m/s?
]G — 9% | = 0.72%(0.75 M) +13.6x hyyy —0.3m
(1000 kg/m~)(9.81m/s<) 1kPa.-m

Solving for g gives hug = 0.47 m. Therefore, the differential height of the mercury column must be 47 cm.

Discussion Double instrumentation like this allows one to verify the measurement of one of the instruments by the
measurement of another instrument.
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3-41
Solution The gage pressure of air in a pressurized water tank is measured simultaneously by both a pressure gage
and a manometer. The differential height / of the mercury column is to be determined.

Assumptions The air pressure in the tank is uniform (i.e., its variation with elevation is negligible due to its low density),
and thus the pressure at the air-water interface is the same as the indicated gage pressure.

Properties We take the density of water to be g, =1000 kg/m®. The specific gravities of oil and mercury are given to
be 0.72 and 13.6, respectively.

Analysis Starting with the pressure of air in the tank (point 1), and moving along the tube by adding (as we go down)
or subtracting (as we go up) the pgh terms until we reach the free surface of oil where the oil tube is exposed to the

atmosphere, and setting the result equal to Py, gives

P+ pwghy, — Prg&hg — Poit&hoit = Lamm

45 kPa

Rearranging, -®

P = Pam = Poit &hoir + pHgthg - Pw&h, Alr B
or,

P Water

e SGoiIhoiI +5G thHg _hw

Pw8
Substituting,

1000 kg-m/s?
453"Pa . g 1=0.72x(0.75m) +13.6x g —0.3m
(1000 kg/m*~)(9.81m/s“) 1kPa.-m

Solving for g gives hng = 0.32 m. Therefore, the differential height of the mercury column must be 32 cm.

Discussion Double instrumentation like this allows one to verify the measurement of one of the instruments by the
measurement of another instrument.

3-42
Solution The top part of a water tank is divided into two compartments, and a fluid with an unknown density is
poured into one side. The levels of the water and the liquid are measured. The density of the fluid is to be determined.

Assumptions 1 Both water and the added liquid are incompressible substances. 2 The added liquid does not mix with
water.

Properties We take the density of water to be p =1000 kg/m°.

. . . Fluid
Analysis Both fluids are open to the atmosphere. Noting that the pressure u

of both water and the added fluid is the same at the contact surface, the pressure Water

at this surface can be expressed as A -
f

Peontact = Patm + P58t = Pam + P &hwy Py

Simplifying, we have p, gh, = p, gh, . Solving for p; gives

h, 45cm

W

n, " " 80cm

p, = (1000 kg/m*) =562.5 kg/m’® = 563 kg/m®

Discussion Note that the added fluid is lighter than water as expected (a heavier fluid would sink in water).
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3-43
Solution A load on a hydraulic lift is to be raised by pouring oil from a thin tube. The height of oil in the tube
required in order to raise that weight is to be determined.

Assumptions 1 The cylinders of the lift are vertical. 2 There are no leaks. 3 Atmospheric pressure act on both sides, and
thus it can be disregarded.

Properties The density of oil is given to be p =780 kg/m°.

Analysis Noting that pressure is force per unit area, the gage pressure in the fluid under the load is simply the ratio of
the weight to the area of the lift,

bW __mg _(500kg)(9.81m/52)( 1kN

Gage = =5 = > ~ |=4.34kN/m? = 4.34 kPa
A zD* /4 7(1.20m)~ /4 {1000 kg-m/s

The required oil height that will cause 4.34 kPa of pressure rise is

Pgagengh - h=

Poage _ 4.34 kN/m? {1000 kg - m/s?

=0.567m
pg (780 kg/m®)(9.81m/s?) | 1kN/m? ]

Therefore, a 500 kg load can be raised by this hydraulic lift by simply raising the oil level in the tube by 56.7 cm.

LOAD
500 kg h

1.2m lcm

Discussion Note that large weights can be raised by little effort in hydraulic lift by making use of Pascal’s principle.
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3-44E
Solution Two oil tanks are connected to each other through a mercury manometer. For a given differential height,
the pressure difference between the two tanks is to be determined.

Assumptions 1 Both the oil and mercury are incompressible fluids. 2
The oils in both tanks have the same density.

Properties The densities of oil and mercury are given to be p,; =
45 lom/ft® and puq = 848 Ibm/ft’.

Analysis Starting with the pressure at the bottom of tank 1

(where pressure is P;) and moving along the tube by adding (as we go R 10in
down) or subtracting (as we go up) the pgh terms until we reach the _
bottom of tank 2 (where pressure is P,) gives 32in
P+ poin&(hy +hy) — prgghs — poilgh = P [ ]
where /; = 10 in and 4, = 32 in. Rearranging and simplifying,
Mercury

hA-P= pHgth = Poitg&hy = (pHg = Poil)ghy

Substituting,

1lbf 1ft? )
AP =P, — P, =(848- 45 lbm/ft®)(32.2 ft/s?)(32/12 ft =14.9 psia
i F=( s 4 )(32.2Ibm-ft/szj£144in2j P

Therefore, the pressure in the left oil tank is 14.9 psia higher than the pressure in the right oil tank.

Discussion Note that large pressure differences can be measured conveniently by mercury manometers. If a water
manometer were used in this case, the differential height would be over 30 ft.

3-45
Solution The standard atmospheric pressure is expressed in terms of mercury, water, and glycerin columns.

Assumptions The densities of fluids are constant.

Properties The specific gravities are given to be SG = 13.6 for mercury, SG = 1.0 for water, and SG = 1.26 for
glycerin. The standard density of water is 1000 kg/m?, and the standard atmospheric pressure is 101,325 Pa.

Analysis The atmospheric pressure is expressed in terms of a fluid column height as
P
P, =pgh=SGp,gh — h=—0"
atm ,Og pwg SGpwg
Substituting,
2 2
() Mercury:  h=—tam _ 101,325 N/m _[LkomS 6 750m
SGp,g 13.6(1000 kg/m”)(9.81 m/s“){ 1 N/m
2 2
(b) Water: potam _  10L3BNMT (1 kg-mis)_ o4 50,
SGp,g 1(1000 kg/m?)(9.81 m/s®){ 1 N/m
2 2
(¢) Glycerin: h= fam  _ 101,3253N/m > 1 kg m/zs =8.20m
SGp,g 1.26(1000 kg/m”)(9.81 m/s®){ 1 N/m

Discussion Using water or glycerin to measure atmospheric pressure requires very long vertical tubes (over 10 m for
water), which is not practical. This explains why mercury is used instead of water or a light fluid.
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3-46
Solution A glass filled with water and covered with a thin paper is inverted. The pressure at the bottom of the glass
is to be determined.

Assumptions 1 Water is an incompressible substance. 2 The weight of the paper is negligible. 3 The atmospheric

pressure is 100 kPa.
. . 3 Phottom
Properties We take the density of water to be o =1000 kg/m”.

Analysis The paper is in equilibrium, and thus the net force acting on the
paper must be zero. A vertical force balance on the paper involves the pressure
forces on both sides, and yields

PlAgIass = Pam Aglass - P = Py

That is, the pressures on both sides of the paper must be the same.
The pressure at the bottom of the glass is determined from the hydrostatic Py
pressure relation to be

Pam = Poottom + pghglass - Poottom = Patm — pghglass

Substituting,

P atm

P = (100 kPa) — (1000 kg/m?*)(9.81 m/s%)(0.1m) N kPa_|_ 99.0 kPa

bottom ' 7l 1kg-m/s? )| 1000N/m? '
Discussion Note that there is a vacuum of 1 kPa at the bottom of the glass, and thus there is an upward pressure force
acting on the water body, which balanced by the weight of water. As a result, the net downward force on water is zero, and
thus water does not flow down.
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3-47
Solution Two chambers with the same fluid at their base are separated by a piston. The gage pressure in each air
chamber is to be determined. Piston
Assumptions 1 Water is an incompressible substance. 2 The
variation of pressure with elevation in each air chamber is A )
negligible because of the low density of air. . air B
air
Properties We take the density of water to be p =1000 » | -
kg/m®.
50[cm
Analysis The piston is in equilibrium, and thus the net 30 cm C
force acting on the piston must be zero. A vertical force 25/cm
balance on the piston involves the pressure force exerted by oem 4 -
water on the piston face, the atmospheric pressure force, and E
the piston weight, and yields
Wpiston
PCApiston = Pam Apiston + Wpiston = Po =Py + water
piston
90 cm
The pressure at the bottom of each air chamber is determined
from the hydrostatic pressure relation to be
_ W, _ W, _
Poira =P = Pc + pgCE = Py + e +pgCE = Py A gage — e +pgCE
piston piston
I W N W N
piston piston
Pirg = Pp =P — pgCD = Py + -pgCD - PairB,gage: -pgCD
piston piston

Substituting,
25N

=— " 1(1000 kg/m*)(9.81 m/s*)(0.25 m) AZ =2806 N/m*=2.81 kPa
1kg-m/s

P.
arAeee - 200.3m)? /4
25 N

=—— (1000 kg/m*)(9.81 m/s*)(0.25 m) _IN =-2099 N/m*=-2.10 kPa
1kg-m/s’

P.
air B, gage ”(03 m)2 /4

Discussion Note that there is a vacuum of about 2 kPa in tank B which pulls the water up.
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3-48
Solution A double-fluid manometer attached to an air pipe is considered. The specific gravity of one fluid is known,
and the specific gravity of the other fluid is to be determined.

Assumptions 1 Densities of liquids are constant. 2 The air pressure in the tank is uniform (i.e., its variation with elevation
is negligible due to its low density), and thus the pressure at the air-water interface is the same as the indicated gage
pressure.

Properties The specific gravity of one fluid is given to be 13.55. We take the standard density of water to be 1000
kg/m?,

Analysis Starting with the pressure of air in the tank, and moving along the tube by adding (as we go down) or
subtracting (as we go up) the pgh terms until we reach the free surface where the oil tube is exposed to the atmosphere,

and setting the result equal to Py, give
Py + p18hy — paghy = Py - B — By, =SG,p,gh, —SG,p,gh

Rearranging and solving for SG,

o 76-100) kPa .m/s?
SG, =SGlﬂ+M=13.55O'22m+[ ( - ) i ][1000 kg-ms J=1.34
h,  p.gh, 0.40 m { (1000 kg/m*)(9.81 m/s“)(0.40 m) 1 kPa-m
Air
P =76 kPa
40|cm
Fluid 2
22|cm SGe
Fluid 1
SG;

Discussion Note that the right fluid column is higher than the left, and this would imply above atmospheric pressure in

the pipe for a single-fluid manometer.
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3-49
Solution The pressure difference between two pipes is measured by a double-fluid manometer. For given fluid
heights and specific gravities, the pressure difference between the pipes is to be calculated.

Assumptions  All the liquids are incompressible.

Properties The specific gravities are given to be 13.5 for mercury, 1.26 for glycerin, and 0.88 for oil. We take the
standard density of water to be p,, =1000 kg/m°.

Analysis Starting with the pressure in the water pipe (point A) and moving along the tube by adding (as we go down)
or subtracting (as we go up) the pgh terms until we reach the oil pipe (point B), and setting the result equal to Pz give
Py +pwghy, + Prg&hug — Pgiy 8hgly + Ppit &hoit = Pp
Rearranging and using the definition of specific gravity,
P,—-P,=SG, p gh, +SG 1Py thg -SG P ghg,y +SG ,p, gh,
=gp,(SG,h, +SG , hy, —SG , hy, +SG,, /iy )

gly""gly oil

Substituting,

Py — P, =(9.81m/s?)(1000 kg/m*)[1(0.6 m) +13.5(0.2 m) —1.26(0.45 m) + 0.88(0.1m)] L
1000 kg - m/s

=27.7kN/m? =27.7kPa

Therefore, the pressure in the oil pipe is 27.7 kPa higher than the pressure in the water pipe.

A -
\SAQEEI '0 Glycerin,
o SG=1.26
Qil
60 cm || SG=0.88
10 cm
-y B
15cm
20 cm
Mercury,
SG=13.56 - N

Discussion Using a manometer between two pipes is not recommended unless the pressures in the two pipes are
relatively constant. Otherwise, an over-rise of pressure in one pipe can push the manometer fluid into the other pipe,
creating a short circuit.
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3-50
Solution The fluid levels in a multi-fluid U-tube manometer change as a result of a pressure drop in the trapped air
space. For a given pressure drop and brine level change, the area ratio is to be determined.

Assumptions 1 All the liquids are incompressible. 2 Pressure in the brine pipe remains constant. 3 The variation of
pressure in the trapped air space is negligible.

Properties The specific gravities are given to be 13.56 for mercury and 1.1 for brine. We take the standard density of
water to be p,, =1000 kg/m®.

Analysis It is clear from the problem statement and the figure that the brine pressure is much higher than the air
pressure, and when the air pressure drops by 0.7 kPa, the pressure difference between the brine and the air space also
increases by the same amount. Starting with the air pressure (point A) and moving along the tube by adding (as we go
down) or subtracting (as we go up) the pgh terms until we reach the brine pipe (point B), and setting the result equal to Pg

before and after the pressure change of air give
Before: Py + pyghy, + pPrg&hng 1 — Por&hory = Pp

Afier: Py + pwgh,, + Prg&hng 2 — Por&hor2 = P

Subtracting,
PAl — PAZ

Pug
where Ahy, and Ahy, are the changes in the differential mercury and brine column heights, respectively, due to the drop

Pyp =Py + prg8Ahug — por 8Dy =0 — =38G,,, Ay, —SG, Ah, =0 1)

in air pressure. Both of these are positive quantities since as the mercury-brine interface drops, the differential fluid heights
for both mercury and brine increase. Noting also that the volume of mercury is constant, we have A4;Ahyg jeq = A Ahyg rignt

and

P,, — P, =—0.7kPa =-700 N/m? = —700 kg/m -s?

Ahy, =0.005m

Ahpig = Mg right + Mg et = My + Ay, Ao IA; = Ahy, (1+ A,1A,)
Substituting,

2
700 kg/m S ——=[13.56x0.005(1+ 4,/4;)-.1.1x0.005] m
(1000 kg/m*=)(9.81 m/s*)
It gives
AZ/Al =0.134 A
Air
/ Water
Area, 4; SG=1.1
Mercury Ahy =5 mm
SG=13.56 =
/ Area, 4,

Discussion In addition to the equations of hydrostatics, we also utilize conservation of mass in this problem.
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Chapter 3 Pressure and Fluid Statics
3-51
Solution Two water tanks are connected to each other through a mercury manometer with inclined tubes. For a given
pressure difference between the two tanks, the parameters a and & are to be determined.

Assumptions Both water and mercury are incompressible liquids.
Properties The specific gravity of mercury is given to be 13.6. We take the standard density of water to be p, =1000
kg/m?.

Analysis Starting with the pressure in the tank A and moving along the tube by adding (as we go down) or
subtracting (as we go up) the pgh terms until we reach tank B, and setting the result equal to Py give

Py+puga+pug2a—pyga=P;  —  2pygga=Pz—P,

Rearranging and substituting the known values,

Py —P 2 -m/s2
PP _ 20kN/n; i 1000 kg - m/s 0.0750m =750 cm
2p,8  2(13.6)(1000 kg/m®)(9.81m/s?%) 1kN
From geometric considerations,
26.8sin0@=2a (cm)
Therefore,
sing =24 _2x750 _ 569 > 0=34.0°
26.8 26.8
Water

Discussion Note that vertical distances are used in manometer analysis. Horizontal distances are of no consequence.
e —

3-30
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc. Limited distribution permitted only to
teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.




Chapter 3 Pressure and Fluid Statics
3-52
Solution A multi-fluid container is connected to a U-tube. For the given specific gravities and fluid column heights,
the gage pressure at A and the height of a mercury column that would create the same pressure at A are to be determined.

Assumptions 1 All the liquids are incompressible. 2 The multi-fluid container is open to the atmosphere.

Properties The specific gravities are given to be 1.26 for glycerin and 0.90 for oil. We take the standard density of
water to be p,, =1000 kg/m?, and the specific gravity of mercury to be 13.6.

Analysis Starting with the atmospheric pressure on the top surface
of the container and moving along the tube by adding (as we go down) or
; ; ; . A) A
subtracting (as we go up) the pgh terms until we reach point 4, and 70 em oil
setting the result equal to P, give SG=0.90
P + Poit 8hoit + Pw &hyy — Pgiy &hgy = Py

Rearranging and using the definition of specific gravity, 30cm B 90 cm

PA - Pazm = SGm’/pwghOil + SG wpwghw - SGg/ypwghgly Glycerln
or 20 cm SG=1.26

PA,gage =8p, (SGOilhoil +SGwhw _SGegthy) | 15 cm

Substituting,

1kN
P = (9.81m/s?)(1000 kg/m3)[0.90(0.70 m) +1(0.3m) —1.26(0.70 m)]] —————
. gage = ( X 9/m*)[0.90( )+1(0.3m) ( H(lOOOkg-m/sz]

=0.471kN/m? =0.471kPa
The equivalent mercury column height is

hy, = -
" pueg  (13.6)(1000 kg/m®)(9.81m/s?)

P 0.471kN/m? [1000 kg - m/s?
1kN

J =0.00353m=0.353cm

Discussion Note that the high density of mercury makes it a very suitable fluid for measuring high pressures in
manometers.
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Chapter 3 Pressure and Fluid Statics

Fluid Statics: Hydrostatic Forces on Plane and Curved Surfaces

3-53C
Solution We are to define resultant force and center of pressure.
Analysis The resultant hydrostatic force acting on a submerged surface is the resultant of the pressure forces

acting on the surface. The point of application of this resultant force is called the center of pressure.

Discussion  The center of pressure is generally not at the center of the body, due to hydrostatic pressure variation.

3-54C
Solution We are to examine a claim about hydrostatic force.
Analysis Yes, because the magnitude of the resultant force acting on a plane surface of a completely submerged

body in a homogeneous fluid is equal to the product of the pressure P at the centroid of the surface and the area 4 of the
surface. The pressure at the centroid of the surface is P. = P + pgh Where h. is the vertical distance of the centroid

from the free surface of the liquid.

Discussion ~ We have assumed that we also know the pressure at the liquid surface.

3-55C
Solution We are to consider the effect of plate rotation on the hydrostatic force on the plate surface.
Analysis There will be no change on the hydrostatic force acting on the top surface of this submerged horizontal flat

plate as a result of this rotation since the magnitude of the resultant force acting on a plane surface of a completely
submerged body in a homogeneous fluid is equal to the product of the pressure P. at the centroid of the surface and the
area A4 of the surface.

Discussion If the rotation were not around the centroid, there would be a change in the force.

3-56C
Solution We are to explain why dams are bigger at the bottom than at the top.
Analysis Dams are built much thicker at the bottom because the pressure force increases with depth, and the

bottom part of dams are subjected to largest forces.

Discussion Dam construction requires an enormous amount of concrete, so tapering the dam in this way saves a lot of
concrete, and therefore a lot of money.

3-57C
Solution We are to explain how to determine the horizontal component of hydrostatic force on a curved surface.
Analysis The horizontal component of the hydrostatic force acting on a curved surface is equal (in both magnitude

and the line of action) to the hydrostatic force acting on the vertical projection of the curved surface.

Discussion ~ We could also integrate pressure along the surface, but the method discussed here is much simpler and
yields the same answer.
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Chapter 3 Pressure and Fluid Statics

3-58C
Solution We are to explain how to determine the vertical component of hydrostatic force on a curved surface.
Analysis The vertical component of the hydrostatic force acting on a curved surface is equal to the hydrostatic

force acting on the horizontal projection of the curved surface, plus (minus, if acting in the opposite direction) the
weight of the fluid block.

Discussion ~ We could also integrate pressure along the surface, but the method discussed here is much simpler and
yields the same answer.

3-59C
Solution We are to explain how to determine the line of action on a circular surface.
Analysis The resultant hydrostatic force acting on a circular surface always passes through the center of the circle

since the pressure forces are normal to the surface, and all lines normal to the surface of a circle pass through the center of
the circle. Thus the pressure forces form a concurrent force system at the center, which can be reduced to a single
equivalent force at that point. If the magnitudes of the horizontal and vertical components of the resultant hydrostatic force

are known, the tangent of the angle the resultant hydrostatic force makes with the horizontal is|tana = F), | Fpy|.

Discussion  This fact makes analysis of circular-shaped surfaces simple. There is no corresponding simplification for
shapes other than circular, unfortunately.

3-60
Solution A car is submerged in water. The hydrostatic force on the door and its line of action are to be determined
for the cases of the car containing atmospheric air and the car is filled with water.

Assumptions 1 The bottom surface of the lake is horizontal. 2 The door can be approximated as a vertical rectangular
plate. 3 The pressure in the car remains at atmospheric value since there is no water leaking in, and thus no compression of
the air inside. Therefore, we can ignore the atmospheric pressure in calculations since it acts on both sides of the door.

Properties We take the density of lake water to be 1000 kg/m? throughout.

Analysis (a) When the car is well-sealed and thus the pressure inside the car is the atmospheric pressure, the average
pressure on the outer surface of the door is the pressure at the centroid (midpoint) of the surface, and is determined to be

Py, =P.=pgh.=pg(s+b/2)

avg
1kN

= (1000 kg/m*)(9.81 m/s* ) (8+1.1/2 m)(m

] =83.88 kN/m?

Then the resultant hydrostatic force on the door becomes s=8m

Fr=P,,A=(83.88kN/m?)(0.9 mx1.1m)=83.0 kN

The pressure center is directly under the midpoint of the plate, and its distance
from the surface of the lake is determined to be

2 2
b 8 11 11 6m

yp=S+t—Ft———=8+"+—""— =8 N
2 12(s+b/2) 2 12(8+1.1/2) Door, 1.1 m x 0.9 m

(b) When the car is filled with water, the net force normal to the surface of the door is zero since the pressure on both sides
of the door will be the same.

Discussion Note that it is impossible for a person to open the door of the car when it is filled with atmospheric air. But
it takes little effort to open the door when car is filled with water, because then the pressure on each side of the door is the
same.
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Chapter 3 Pressure and Fluid Statics
3-61E
Solution The height of a water reservoir is controlled by a cylindrical gate hinged to the reservoir. The hydrostatic
force on the cylinder and the weight of the cylinder per ft length are to be determined.

Assumptions 1 The hinge is frictionless. 2 Atmospheric pressure acts on both sides of the gate, and thus it can be ignored
in calculations for convenience.

Properties We take the density of water to be 62.4 Ibm/ft® throughout.

Analysis (@) We consider the free body diagram of the liquid block enclosed by the circular surface of the cylinder
and its vertical and horizontal projections. The hydrostatic forces acting on the vertical and horizontal plane surfaces as
well as the weight of the liquid block per ft length of the cylinder are:

Horizontal force on vertical surface:

Fy=F., =P, A= pghA=pg(s+R/2)4

= (62.4 1bm/ft®)(32.2 ft/s?)(13+ 2/ 2 ft)(2 ft x1ﬂ)(LJ
32.2 Ibm-ft/s?

=1747 Ibf

Vertical force on horizontal surface (upward): B
S =

F, =P A= pgh.4= pghy,A

avg

— (62.4 Ibm/ft° ) (32.2 ft/s?) (15 ft)(2 ft x 1ft)[ L1bf j i

ot =2 ft
32.2 Ibm - ft/s®

~1872 Ibf K

Weight of fluid block per ft length (downward): ”T T T T T
F
W =mg = pgV = pg(R? —7R? | 4)(LFt) = peR? (1— | 4)(Lt) (A

11bf
= (62.4 1bm/ft3)(32.2 ft/s? ) (2 ft) 2 (1- A/4) (LTt (—]
( X )21t ( )(Lft) T

=54 Ibf
Therefore, the net upward vertical force is
Fy =F, —W =1872-54 =1818 Ibf

Then the magnitude and direction of the hydrostatic force acting on the cylindrical surface become

Fy =\JF + F? =\[1747? +1818? = 2521 Ibf = 2520 Ibf

Fy _18181bf
Fy 1747 1bf

tan @ = =1.041 — 66=46.1°

Therefore, the magnitude of the hydrostatic force acting on the cylinder is 2521 Ibf per ft length of the cylinder, and its line
of action passes through the center of the cylinder making an angle 46.1° upwards from the horizontal.

(b) When the water level is 15-ft high, the gate opens and the reaction force at the bottom of the cylinder becomes zero.
Then the forces other than those at the hinge acting on the cylinder are its weight, acting through the center, and the
hydrostatic force exerted by water. Taking a moment about the point 4 where the hinge is and equating it to zero gives

FyRsinO-W,_R=0 — W, =Fsing=(2521 Ibf)sin46.1°=1817 Ibf = 1820 Ibf (per ft)

eyl

Discussion  The weight of the cylinder per ft length is determined to be 1820 Ibf, which corresponds to a mass of 1820
Ibm, and to a density of 145 Ibm/ft® for the material of the cylinder.
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Chapter 3 Pressure and Fluid Statics
3-62
Solution An above the ground swimming pool is filled with water. The hydrostatic force on each wall and the
distance of the line of action from the ground are to be determined, and the effect of doubling the wall height on the
hydrostatic force is to be assessed.

Assumptions Atmospheric pressure acts on both sides of the wall of the pool, and thus it can be ignored in calculations
for convenience.

Properties We take the density of water to be 1000 kg/m? throughout.

Analysis The average pressure on a surface is the pressure at the centroid
(midpoint) of the surface, and is determined to be
f;vg :PC :pghc :pg(h/z)
1N 2h/3
= (1000 kg/m®)(9.81 m/s*)(1.5/2 m)| ——— Fr h=15m
1kg-m/s ——
=7357.5 N/m* hl3

Then the resultant hydrostatic force on each wall becomes

Fy =P, A=(7357.5 N/m*)(4 mx15m)=44145 N = 44.1 kN

avg

The line of action of the force passes through the pressure center, which is 24/3 from the free surface and //3 from the
bottom of the pool. Therefore, the distance of the line of action from the ground is

Vp = % = ? =0.50 m (from the bottom)

If the height of the walls of the pool is doubled, the hydrostatic force quadruples since
Fr = pgheA= pg(hl2)(hxw) = pgwh? |2

and thus the hydrostatic force is proportional to the square of the wall height, /2.

Discussion  This is one reason why above-ground swimming pools are not very deep, whereas in-ground swimming
pools can be quite deep.
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Chapter 3 Pressure and Fluid Statics
3-63E
Solution A dam is filled to capacity. The total hydrostatic force on the dam, and the pressures at the top and the
bottom are to be determined.

Assumptions  Atmospheric pressure acts on both sides of the dam, and thus it can be ignored in calculations for
convenience.

Properties We take the density of water to be 62.4 lbm/ft® throughout.

Analysis The average pressure on a surface is the pressure at the centroid
(midpoint) of the surface, and is determined to be

Py = pghe = pg(h/2)

=(62.4 |bm/ft3)(32.2ft/sﬂ(ZOO/th)(%] - L .
2 Ibm- ; -

= 6240 Ibf/ft?

—> W3

Then the resultant hydrostatic force acting on the dam becomes

Fy = P, 4 =(6240 Ibf/ft* )(200 ftx1200 ft) =1.50x 10° Ibf

ave

Resultant force per unit area is pressure, and its value at the top and the bottom of the dam becomes

Pyp = pghygy =01bf/ft?
1 Ibf

32.2 Ibm - ft/s?

Discussion  The values above are gave pressures, of course. The gage pressure at the bottom of the dam is about 86.6
psig, or 101.4 psia, which is almost seven times greater than standard atmospheric pressure.

P

bottom

= P &hyoom = (62.4 Tom/ft* )(32.2 ft/s ) (200 ft)[ j =12,480 Ibf/ft? = 12,500 Ibf/ft?

3-64
Solution A room in the lower level of a cruise ship is considered. The hydrostatic force acting on the window and
the pressure center are to be determined.

Assumptions Atmospheric pressure acts on both sides of the window, and thus it can be ignored in calculations for
convenience.

Properties The specific gravity of sea water is given to be 1.025, and thus its density is 1025 kg/m®.

Analysis The average pressure on a surface is the pressure at the centroid
(midpoint) of the surface, and is determined to be
=P. = pgh. = (1025 kg/m®)(9.81 m/s*)(5 1N =50,276 N/m?
avg_C_ng_< gm)(. ms)( m)lkg-—m/sz_ ) m 5m
Then the resultant hydrostatic force on each wall becomes _
F,=PR,A=P,, [7zD? /4] = (50,276 N/m*)[z(0.3 m)® /4] = 3554 N = 3550 N
Fr
The line of action of the force passes through the pressure center, whose vertical — | D=0.3m
distance from the free surface is determined from
I 4 2 . 2
Vp = Ve + =y + 7R /f =Y +R—: 5+M:5.0011 m=5.00m
veA Vo7 R 4y, 4(5m)

Discussion For small surfaces deep in a liquid, the pressure center nearly coincides with the centroid of the surface.
Here, in fact, to three significant digits in the final answer, the center of pressure and centroid are coincident.
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Chapter 3 Pressure and Fluid Statics
3-65
Solution The cross-section of a dam is a quarter-circle. The hydrostatic force on the dam and its line of action are to
be determined.

Assumptions  Atmospheric pressure acts on both sides of the dam, and thus it can be ignored in calculations for
convenience.

Properties We take the density of water to be 1000 kg/m? throughout.

Analysis We consider the free body diagram of the liquid block enclosed by the circular surface of the dam and its
vertical and horizontal projections. The hydrostatic forces acting on the vertical and horizontal plane surfaces as well as the
weight of the liquid block are:

Horizontal force on vertical surface:

Fy=F =F,A=pgh.A=pg(R/2)A

= (1000 kg/m®)(9.81 m/s* )(10/2 m)(10 m x 100 m)(izj

=4.905x10" N

Vertical force on horizontal surface is zero since it coincides with the free
surface of water. The weight of fluid block per m length is

Fy =W = pgV = pg[wxR? | 4]

= (1000 kg/m*)(9.81m/s?)[(100 m)z(10 m)? /4] %
1kg-m/s
=7.705x10" N

Then the magnitude and direction of the hydrostatic force acting on the surface of the dam become

Fy =JF;+F7 = (4905x10" N’ +(7.705x10" N’ =9.134x10" N=9.13x10" N

F i !
tng=Lr P10 N 4590, pos7se
F, 4.905x10" N

Therefore, the line of action of the hydrostatic force passes through the center of the curvature of the dam, making 57.5°
downwards from the horizontal.

Discussion If the shape were not circular, it would be more difficult to determine the line of action.
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Chapter 3 Pressure and Fluid Statics
3-66
Solution A rectangular plate hinged about a horizontal axis along its upper edge blocks a fresh water channel. The
plate is restrained from opening by a fixed ridge at a point B. The force exerted to the plate by the ridge is to be determined.

Assumptions  Atmospheric pressure acts on both sides of the plate, and thus it can be ignored in calculations for
convenience.

Properties We take the density of water to be 1000 kg/m? throughout.

Analysis The average pressure on a surface is the pressure at the centroid +—
(midpoint) of the surface, and is determined to be

Py =F. = pgh. = pg(h/2) s=1m

1 kN
1000 kg - m/s*

= (1000 kg/m*)(9.81 m/s* ) (4/2 m)[ ]=19.62 kN/m?

Then the resultant hydrostatic force on each wall becomes
Fr _
Fy = P, A=(19.62 kN/m”)(4 mx5 m) =392 kN h=am

avg

The line of action of the force passes through the pressure center, which is 24/3
from the free surface, B

_2h _ 2x(4m)
3 3

yp =2.667m

Taking the moment about point 4 and setting it equal to zero gives
DM, =0 >  Fp(s+yp)=FigeAB

Solving for Fiigge and substituting, the reaction force is determined to be
s+yp (1+2.667) m
Fiige =——Fp = 392 kN) =288 kN
ridge 1B R 5m ( )

Discussion The difference between F and Figqe is the force acting on the hinge at point 4.
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Chapter 3 Pressure and Fluid Statics

Solution The previous problem is reconsidered. The effect of water depth on the force exerted on the plate by the
ridge as the water depth varies from 0 to 5 m in increments of 0.5 m is to be investigated.

Analysis The EES Equations window is printed below, followed by the tabulated and plotted results.

0=9.81 "m/s2"
rho=1000 "kg/m3"
s=1"m"

w=5"m"

A=w*h
P_ave=rho*g*h/2000 "kPa"
F_R=P_ave*A "kN"

y_p=2*h/3
F_ridge=(s+y_p)*F_R/(s+h)
Dept Pyye, Fpr Yo Fridge
h, m kPa kN m kN
0.0 0 0.0 0.00 0
0.5 2.453 6.1 0.33 5
1.0 4,905 24.5 0.67 20
15 7.358 55.2 1.00 44
2.0 9.81 98.1 1.33 76
2.5 12.26 153.3 1.67 117
3.0 14.72 220.7 2.00 166
35 17.17 300.4 2.33 223
4.0 19.62 392.4 2.67 288
45 22.07 496.6 3.00 361
5.0 24.53 613.1 3.33 443
450
400
350
300_ /)/
250 /
> I
~ 200
g L
2 150
L 100 /O/
50 ///
0 n

Discussion  The force on the ridge does not increase linearly, as we may have suspected.
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Chapter 3 Pressure and Fluid Statics
3-68E
Solution The flow of water from a reservoir is controlled by an L-shaped gate hinged at a point 4. The required
weight W for the gate to open at a specified water height is to be determined.

Assumptions 1 Atmospheric pressure acts on both sides of the gate, and thus it can be ignored in calculations for
convenience. 2 The weight of the gate is negligible.

Properties We take the density of water to be 62.4 lbm/ft® throughout.

Analysis The average pressure on a surface is the pressure at the centroid
(midpoint) of the surface, and is determined to be

Py =pgh. = pg(h/2)

=(62.4 Ibm/ft®)(32.2 ft/s” ) (12/ 2 ﬁ)[%j

= 374.4 Ibf/ft?

Then the resultant hydrostatic force acting on the dam becomes

Fy = B,,A=(374.4 Ibf/ft’ ) (12 ftx5 ft) = 22,464 Ibf

The line of action of the force passes through the pressure center, which is 24/3
from the free surface,

2h _2x(12f1)
3 3

yp= =8ft

Taking the moment about point 4 and setting it equal to zero gives
D M,;=0 > Fp(s+yp)=WAB

Solving for W and substituting, the required weight is determined to be

w=S2e g GO o) 464 b =30,900 I

AB 8ft

Discussion Note that the required weight is inversely proportional to the distance of the weight from the hinge.
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Chapter 3 Pressure and Fluid Statics
3-69E
Solution The flow of water from a reservoir is controlled by an L-shaped gate hinged at a point 4. The required
weight W for the gate to open at a specified water height is to be determined.

Assumptions 1 Atmospheric pressure acts on both sides of the gate, and thus it can be ignored in calculations for
convenience. 2 The weight of the gate is negligible.

Properties We take the density of water to be 62.4 lbm/ft® throughout.

Analysis The average pressure on a surface is the pressure at the centroid
(midpoint) of the surface, and is determined to be

Py =pgh. = pg(h/2)

=(62.4 Ibm/ft*)(32.2 ft/s” ) (8/ 2 ﬁ)(%)

= 249.6 Ibf/ft®

Then the resultant hydrostatic force acting on the dam becomes

F, = P, A=(249.6 Ibf/ft* )(8 ftx5 ft) = 9984 Ibf

avg
The line of action of the force passes through the pressure center, which is 24/3
from the free surface,

_2h_ 2x(8fY)
==

v =5.333t

Taking the moment about point 4 and setting it equal to zero gives
D M,;=0 > Fp(s+yp)=WAB
Solving for W and substituting, the required weight is determined to be

7+5.333) ft
e g _ ) (9984 Ibf ) =15,390 Ibf = 15,400 Ibf
AB 8 ft

Discussion Note that the required weight is inversely proportional to the distance of the weight from the hinge.

w
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Chapter 3 Pressure and Fluid Statics
3-70
Solution Two parts of a water trough of semi-circular cross-section are held together by cables placed along the
length of the trough. The tension T in each cable when the trough is full is to be determined.

Assumptions 1 Atmospheric pressure acts on both sides of the trough wall, and thus it can be ignored in calculations for
convenience. 2 The weight of the trough is negligible.

Properties We take the density of water to be 1000 kg/m? throughout.

Analysis To expose the cable tension, we consider half of the trough whose cross-section is quarter-circle. The
hydrostatic forces acting on the vertical and horizontal plane surfaces as well as the weight of the liquid block are:
Horizontal force on vertical surface:

Fy,=F =F,A=pgh.A=pg(R/2)A4

1N
= (1000 kg/m®)(9.81 m/s?}(0.5/2 0.5 3 _
( g/m )( m/s )( m)(0.5m x m)(1 kg~m/szj

=3679 N

The vertical force on the horizontal surface is zero, since it coincides with the
free surface of water. The weight of fluid block per 3-m length is

Fy =W = pgV = pg[wxaR? | 4]

— (1000 kg/m 3)(9.81m/s?)[(3m) (0.5 m)2 /4](%]
1kg-m/s

=5779N

Then the magnitude and direction of the hydrostatic force acting on the surface of the 3-m long section of the trough
become

Fy =+[F2 + F? =/(3679N)? + (5779 N)? = 6851 N
F, 5779N

tan @ = =
Fy 3679N

=1571 —» @=575°

Therefore, the line of action passes through the center of the curvature of the trough, making 57.5° downwards from the
horizontal. Taking the moment about point 4 where the two parts are hinged and setting it equal to zero gives

d>M,=0 >  FyRsin(90-57.5)°=TR
Solving for T and substituting, the tension in the cable is determined to be
T = F,sin(90-57.5)° = (6851 N )sin (90-57.5)° = 3681 N = 3680 N

Discussion  This problem can also be solved without finding F by finding the lines of action of the horizontal
hydrostatic force and the weight.
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Chapter 3 Pressure and Fluid Statics
3-71
Solution Two parts of a water trough of triangular cross-section are held together by cables placed along the length
of the trough. The tension T in each cable when the trough is filled to the rim is to be determined.

Assumptions 1 Atmospheric pressure acts on both sides of the trough wall, and thus it can be ignored in calculations for
convenience. 2 The weight of the trough is negligible.

Properties We take the density of water to be 1000 kg/m? throughout.

Analysis To expose the cable tension, we consider half of the trough whose cross-section is triangular. The water
height /4 at the midsection of the trough and width of the free surface are

h=Lsin @ = (0.75m)sin45° = 0.530 m
b= Lcosd =(0.75m)cos45° = 0.530 m

The hydrostatic forces acting on the vertical and horizontal plane surfaces as
well as the weight of the liquid block are determined as follows: F,

Horizontal force on vertical surface:

F, =F,=PyA=pgh.A=pg(h/2)4

1N
= (1000 kg/m*)(9.81 m/s*)(0.530/2 m)(0.530 m x 6 m)| ———
(1000 kg/m?)(9.81 mis* ( m)(©530m x m)[lkg-mlszj

=8267 N

The vertical force on the horizontal surface is zero since it coincides with the free surface
of water. The weight of fluid block per 6-m length is

Fy =W = pgV = pg[wxbh 2]
= (1000 kg/m*)(9.81m/s?)[(6 m)(0.530 m)(0.530 m)/2] %
1kg-m/s
=8267 N
The distance of the centroid of a triangle from a side is 1/3 of the height of the triangle for that side. Taking the moment
about point 4 where the two parts are hinged and setting it equal to zero gives
b h
dYM,=0 > W_+F,-=Th
3 3
Solving for 7 and substituting, and noting that z = b, the tension in the cable is determined to be
_F,+W (8267+8267) N
3 3

Discussion  The analysis is simplified because of the symmetry of the trough.

T =5511 N =5510N
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3-72
Solution Two parts of a water trough of triangular cross-section are held together by cables placed along the length
of the trough. The tension T in each cable when the trough is filled to the rim is to be determined.

Assumptions 1 Atmospheric pressure acts on both sides of the trough wall, and thus it can be ignored in calculations for
convenience. 2 The weight of the trough is negligible.

Properties We take the density of water to be 1000 kg/m? throughout.

Analysis To expose the cable tension, we consider half of the trough whose cross-section is triangular. The water
height is given to be 2 = 0.4 m at the midsection of the trough, which is equivalent to the width of the free surface 5 since
tan 45° = b/h = 1. The hydrostatic forces acting on the vertical and horizontal plane surfaces as well as the weight of the
liquid block are determined as follows:

b T
Horizontal force on vertical surface:
F, =F, =PyA=pgh.A=pg(h/2)4
= (1000 kg/m®)(9.81 m/s*)(0.4/2 m)(0.4 m x 3 m) _IN Fu
1 kg - m/s?
=2354 N

The vertical force on the horizontal surface is zero since it coincides with the free surface
of water. The weight of fluid block per 3-m length is

Fy, =W = pgV = pg[wxbhl2]
= (1000 kg/m?3)(9.81m/s?)[(3m)(0.4 m)(0.4 m)/z](LZJ
1kg-ml/s

=2354 N

The distance of the centroid of a triangle from a side is 1/3 of the height of the triangle for that side. Taking the moment
about point 4 where the two parts are hinged and setting it equal to zero gives

dYM,=0 - WLFHﬁzTh
3 3
Solving for T and substituting, and noting that = b, the tension in the cable is determined to be
_F,+W (2354+2354) N
3 3

T =1569 N =1570N

Discussion  The tension force here is a factor of about 3.5 smaller than that of the previous problem, even though the
trough is more than half full.
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Chapter 3 Pressure and Fluid Statics
3-73
Solution A retaining wall against mud slide is to be constructed by rectangular concrete blocks. The mud height at
which the blocks will start sliding, and the blocks will tip over are to be determined.

Assumptions  Atmospheric pressure acts on both sides of the wall, and thus it can be ignored in calculations for
convenience.

Properties The density is given to be 1800 kg/m® for the mud, and 2700 kg/m? for concrete blocks.

Analysis (@) The weight of the concrete wall per unit length (Z = 1 m) and the friction force between the wall and the
ground are

1kg-m/s?
Ffriction = /qu|OCk = 03(4238 N) =1271N t=0.2m

Wik = P2V = (2700 kg/m*®)(9.81m/s?)[0.2x 0.8><1m3)( J =4238N

The hydrostatic force exerted by the mud to the wall is

FHIFXZPangZpghCA:pg(h/Z)A 0.8
8m

3 ) 1N '
= (1800 kg/m®)(9.81 m/s® ) (h/ 2) (1x h )[m—m,sz) l

=88294" N

Setting the hydrostatic and friction forces equal to each other gives Friction

Fy =Friion  — 882942 =1271 — h=0.38 m

(b) The line of action of the hydrostatic force passes through the pressure center, which is 24/3 from the free surface. The
line of action of the weight of the wall passes through the midplane of the wall. Taking the moment about point 4 and
setting it equal to zero gives

DM,=0 5 Wyo(t/2)=Fy(h13) > Wyoq(t/2)=88294° /3
Solving for 4 and substituting, the mud height for tip over is determined to be

. (SWbbckt]m ~ (3><4238>< 0.2

1/3
j =0.52m
2x8829 2x8829

Discussion  The concrete wall will slide before tipping. Therefore, sliding is more critical than tipping in this case.

3-45
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc. Limited distribution permitted only to
teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.




Chapter 3 Pressure and Fluid Statics
3-74
Solution A retaining wall against mud slide is to be constructed by rectangular concrete blocks. The mud height at
which the blocks will start sliding, and the blocks will tip over are to be determined.

Assumptions  Atmospheric pressure acts on both sides of the wall, and thus it can be ignored in calculations for
convenience.

Properties The density is given to be 1800 kg/m® for the mud, and 2700 kg/m? for concrete blocks.

Analysis (@) The weight of the concrete wall per unit length (Z = 1 m) and the friction force between the wall and the
ground are
Wik = P2V = (2700 kg/m®)(9.81m/s?)[0.4x0.8x1m?) ~ |=8476 N
1kg-m/s
t=0.4m
Ffriction = /UWblock = 0'3(8476 N) =2543N
The hydrostatic force exerted by the mud to the wall is
F, =F, =R, A=pgh.A=pg(h/2)4 0.8m
h
1N
=(1800 kg/m®)(9.81 m/s*)(h/2)(1xh )| —— l
130 k)0 1) 4 210y | "
=88294> N W
) . Lo ) Ffriction
Setting the hydrostatic and friction forces equal to each other gives -

Fy = Fyiion ~ —> 8829h°=2543 — h=054m

() The line of action of the hydrostatic force passes through the pressure center, which is 24/3 from the free surface. The
line of action of the weight of the wall passes through the midplane of the wall. Taking the moment about point 4 and
setting it equal to zero gives

DM,=0 5> Wyoa(t/2)=Fy(h13) > Wyoq(t/2)=88294° /3

Solving for 4 and substituting, the mud height for tip over is determined to be

. (SWbbckt]m ~ (3x8476x0.3

1/3
j =0.76 m
2x8829 2x8829

Discussion Note that the concrete wall will slide before tipping. Therefore, sliding is more critical than tipping in this
case.
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Chapter 3 Pressure and Fluid Statics
3-75 [Also solved using EES on enclosed DVD]
Solution A quarter-circular gate hinged about its upper edge controls the flow of water over the ledge at B where the
gate is pressed by a spring. The minimum spring force required to keep the gate closed when the water level rises to 4 at
the upper edge of the gate is to be determined.

Assumptions 1 The hinge is frictionless. 2 Atmospheric pressure acts on both sides of the gate, and thus it can be ignored
in calculations for convenience. 3 The weight of the gate is negligible.

Properties We take the density of water to be 1000 kg/m? throughout.

Analysis We consider the free body diagram of the liquid block enclosed by the circular surface of the gate and its
vertical and horizontal projections. The hydrostatic forces acting on the vertical and horizontal plane surfaces as well as the
weight of the liquid block are determined as follows: 4
Horizontal force on vertical surface:
Fy =F, = Pp A= pghcA=pg(R12)4 - "
1kN - f=3m
= (1000 kg/m*)(9.81m/s*)(3/ 2m)(4mx3m)l —————— £
1000 kg - m/s
=176.6 kN §
Vertical force on horizontal surface (upward): F
¥y
F;f = ljang = pghCA = pghhottomA

1 kN

— (1000 kg/m®)(9.81 m/s? ) (3 m)(4 m x 3m)| ——N___
(1000 kgim*) (.81 mis* ) (3 m) (4 m m){loookg.mlsz

) =353.2 kN

The weight of fluid block per 4-m length (downwards):
W =pgV = pg[wx;rRz /4}

= (1000 kg/m®)(9.81 m/s* )[ (4 m) (3 m)2/4][ LN - j =277.4 kN

1000 kg -m/s
Therefore, the net upward vertical force is

Fy =F,-W =353.2-277.4=T75.8KkN

Then the magnitude and direction of the hydrostatic force acting on the surface of the 4-m long quarter-circular section of
the gate become

Fyp =[F2 +F? =\/176.6 kN)2 + (75.8kN)2 =192.2 kN
Fy  758KkN

=22 _0429 - 0=232°
F, 176.6kN

tan @ =

Therefore, the magnitude of the hydrostatic force acting on the gate is 192.2 kN, and its line of action passes through the
center of the quarter-circular gate making an angle 23.2° upwards from the horizontal.

The minimum spring force needed is determined by taking a moment about the point 4 where the hinge is, and
setting it equal to zero,

DM, =0 > FgRsin(90-0)FypqR =0
Solving for Fyyring and substituting, the spring force is determined to be

F

S|

oring = FxSIN(90-0) = (192.2 kN) sin(90° - 23.2°) = 177 kN

Discussion Several variations of this design are possible. Can you think of some of them?
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Chapter 3 Pressure and Fluid Statics
3-76
Solution A quarter-circular gate hinged about its upper edge controls the flow of water over the ledge at B where the
gate is pressed by a spring. The minimum spring force required to keep the gate closed when the water level rises to 4 at
the upper edge of the gate is to be determined.

Assumptions 1 The hinge is frictionless. 2 Atmospheric pressure acts on both sides of the gate, and thus it can be ignored
in calculations for convenience. 3 The weight of the gate is negligible.

Properties We take the density of water to be 1000 kg/m? throughout.

Analysis We consider the free body diagram of the liquid block enclosed by the circular surface of the gate and its
vertical and horizontal projections. The hydrostatic forces acting on the vertical and horizontal plane surfaces as well as the
weight of the liquid block are determined as follows:

Horizontal force on vertical surface:

FH:Fx:PaveA:pghCA:pg(R/Z)A A
3 2 1kN
= (1000 kg/m~)(9.81m/s<)(4/2m)(4 mx 4 m) P p— W
1000 kg - m/s 7
=313.9kN R=4m .
Vertical force on horizontal surface (upward): ’
Fy = PaveA = pghCA = pghbottomA &
F,
~ (1000 kg/m*)(@.8Lm/s)(4 m)(4m x4 m) ——< )
1000 kg - m/s

=627.8 kN
The weight of fluid block per 4-m length (downwards):

W = pgV = pg[wxaR? | 4]

1kN
= (1000 kg/m®)(9.81m/s?)[(4 m)zz(4 m)? /4] ——————
( g/m=)( )[(4m)z(4m)“/4] 1000 kg mis?

=493.1kN

Therefore, the net upward vertical force is
Fy, =F,-W =627.8-493.1=134.7kN

Then the magnitude and direction of the hydrostatic force acting on the surface of the 4-m long quarter-circular section of
the gate become

Fr =y F2 +F2 =(313.9kN)? + (134.7kN)? =341.6 kN

i:wzoﬂg 5 0=232°
F, 313.9kN
Therefore, the magnitude of the hydrostatic force acting on the gate is 341.6 kN, and its line of action passes through the

center of the quarter-circular gate making an angle 23.2° upwards from the horizontal.

tan @ =

The minimum spring force needed is determined by taking a moment about the point 4 where the hinge is, and
setting it equal to zero,

D M, =0 > FgRsiN(©0-0)—FyyingR =0
Solving for Fyying and substituting, the spring force is determined to be

Flymg = F3Sin(90-6) = (341.6 kN)sin (90° - 23.2°) = 314 kN

spring

Discussion If the previous problem is solved using a program like EES, it is simple to repeat with different values.
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Chapter 3 Pressure and Fluid Statics

Buoyancy

3-77C

Solution We are to define and discuss the buoyant force.

Analysis The upward force a fluid exerts on an immersed body is called the buoyant force. The buoyant force is

caused by the increase of pressure in a fluid with depth. The magnitude of the buoyant force acting on a submerged
body whose volume is Vis expressed as . The direction of the buoyant force is upwards, and its line of

action passes through the centroid of the displaced volume.

Discussion If the buoyant force is greater than the body’s weight, it floats.

3-78C
Solution We are to compare the buoyant force on two spheres.
Analysis The magnitude of the buoyant force acting on a submerged body whose volume is V'is expressed as

Fy =p, gV, which is independent of depth. Therefore, the buoyant forces acting on two identical spherical balls
submerged in water at different depths is the same.

Discussion Buoyant force depends only on the volume of the object, not its density.

3-79C
Solution We are to compare the buoyant force on two spheres.
Analysis The magnitude of the buoyant force acting on a submerged body whose volume is V'is expressed as

Fg =p,gV , which is independent of the density of the body ( o is the fluid density). Therefore, the buoyant forces
acting on the 5-cm diameter aluminum and iron balls submerged in water is the same.

Discussion Buoyant force depends only on the volume of the object, not its density.

3-80C
Solution We are to compare the buoyant forces on a cube and a sphere.
Analysis The magnitude of the buoyant force acting on a submerged body whose volume is V'is expressed as

Fyp =p gV , which is independent of the shape of the body. Therefore, the buoyant forces acting on the cube and
sphere made of copper submerged in water are the same since they have the same volume.

Discussion  The two objects have the same volume because they have the same mass and density.
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Chapter 3 Pressure and Fluid Statics

3-81C
Solution We are to discuss the stability of a submerged and a floating body.
Analysis A submerged body whose center of gravity G is above the center of buoyancy B, which is the centroid

of the displaced volume, is unstable. But a floating body may still be stable when G is above B since the centroid of
the displaced volume shifts to the side to a point B’ during a rotational disturbance while the center of gravity G of
the body remains unchanged. If the point B’ is sufficiently far, these two forces create a restoring moment, and return the
body to the original position.

Discussion Stability analysis like this is critical in the design of ship hulls, so that they are least likely to capsize.

3-82
Solution The density of a liquid is to be determined by a hydrometer by establishing division marks in water and in
the liquid, and measuring the distance between these marks.

Properties We take the density of pure water to be 1000 kg/m®.

Analysis A hydrometer floating in water is in static equilibrium, and the buoyant force F exerted by the liquid must
always be equal to the weight W of the hydrometer, Fz = W.

Fg = pgVsw = pghA,

Y
where £ is the height of the submerged portion of the hydrometer and 4. is the s mark for water
cross-sectional area which is constant. — 0.5cm
In pure water: W=p,gh,A,
In the liquid: W = Piiquia 8Miquid Ac 10em "
Liquid
Setting the relations above equal to each other (since both equal the weight of
the hydrometer) gives _Yy '

Pw&hA. = Piiquia 8Miquia Ac Fp

Solving for the liquid density and substituting,

h It 10 cm 3 3 3
i = = 1000 kg/m*) =1053 kg/m* = 1050 kg/m
pllquld h pwater (10 _ 05) cm ( g ) g g

liquid

Discussion Note that for a given cylindrical hydrometer, the product of the fluid density and the height of the
submerged portion of the hydrometer is constant in any fluid.
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Chapter 3 Pressure and Fluid Statics
3-83E
Solution A concrete block is lowered into the sea. The tension in the rope is to be determined before and after the
block is immersed in water.

Assumptions 1 The buoyancy force in air is negligible. 2 The weight of the rope is negligible.
Properties The density of steel block is given to be 494 Ibm/ft®.

Analysis (@) The forces acting on the concrete block in air are its downward weight and the upward pull action
(tension) by the rope. These two forces must balance each other, and thus the tension in the rope must be equal to the
weight of the block:

V =47R° /3= 47 (15 ft)° /3=14.137 ft° Fr
FT = W = pconcretegv

1 Ibf
32.2 Ibm - ft/s?

(b) When the block is immersed in water, there is the additional force of buoyancy
acting upwards. The force balance in this case gives

= (494 Ibm/ft* ) (32.2 ft/s” ) (14.137 ft3)[ j = 6984 Ibf = 6980 Ibf

1 Ibf
F, = p,gV =(62.4 lom/ft*)(32.2 ft/s* )(14.137 ft*)| ———— | =882 Ibf
=y =(o24 ) sz s aa 237 ) y
Fr e =W — F, =6984-882 = 6102 Ibf =~ 6100 Ibf
Fp
Discussion Note that the weight of the concrete block and thus the tension of the rope
decreases by (6984 — 6102)/6984 = 12.6% in water.
3-84
Solution An irregularly shaped body is weighed in air and then in water with a spring scale. The volume and the

average density of the body are to be determined.
Properties We take the density of water to be 1000 kg/m®.

Assumptions 1 The buoyancy force in air is negligible. 2 The body is completely submerged in water.

Analysis The mass of the body is
2
_ War _ 7200 N2 lkg-mis® | o0 g kg water | Air
g 9.81mis 1IN

The difference between the weights in air and in water is due to the buoyancy
force in water,

Fy =Wy —Wyaer = 7200—4790 = 2410 N

>,

Waater = 4790 N Wair=6800 N

Noting that Fz = pyaer gV , the volume of the body is determined to be

v b 2410 N

- = S~ 3
- Pwater & - (1000 kg/m3)(981 m/SZ) 0.2457 m® = 0.246 m

Then the density of the body becomes

m 7339 kg

_m_ — 2987 kg/m® = 2990 kg/m®
P=V " 02457 m° g g

Discussion  The volume of the body can also be measured by observing the change in the volume of the container when
the body is dropped in it (assuming the body is not porous).
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Chapter 3 Pressure and Fluid Statics
3-85
Solution The height of the portion of a cubic ice block that extends above the water surface is measured. The height
of the ice block below the surface is to be determined.

Assumptions 1 The buoyancy force in air is negligible. 2 The top surface of the ice block is parallel to the surface of the
sea.

Properties The specific gravities of ice and seawater are given to be 0.92 and 1.025, respectively, and thus the
corresponding densities are 920 kg/m® and 1025 kg/m®.

Analysis The weight of a body floating in a fluid is equal to the buoyant force acting on it (a consequence of vertical
force balance from static equilibrium). Therefore, in this case the average density of the body must be equal to the density
of the fluid since

W=Fy — pbodygvtotal = Pfluid gvsubmerged

10cm
Vsubmerged Phbody Ice block _)
= Sea r
Viotal Pftluid
w
The cross-sectional of a cube is constant, and thus the “volume ratio” can be h
replaced by “height ratio”. Then,
h P h i h 0.92
submerged _ body N _ Pice N _ j_
htotal Pfluid h+0.10 Pwater h+0.10 1.025
Fp
where 4 is the height of the ice block below the surface. Solving for 4 gives

h =0.876 m=87.6cm

Discussion Note that the 0.92/1.025 = 90% of the volume of an ice block remains under water. For symmetrical ice
blocks this also represents the fraction of height that remains under water.

3-86
Solution A man dives into a lake and tries to lift a large rock. The force that the man needs to apply to lift it from the
bottom of the lake is to be determined.

Assumptions 1 The rock is ¢ completely submerged in water. 2 The buoyancy force in air is negligible.

Properties The density of granite rock is given to be 2700 kg/m®. We take the density of water to be 1000 kg/m®.

Analysis The weight and volume of the rock are
IN
W =mg = (170 kg)(9.81m/s® )| ——— [=1668 N
g = a)( ){1kg s J Water P
m__110K3___ 06206 m?

" p 2700kg/m?

The buoyancy force acting on the rock is
w Fnet =W - FB

3 2 3 1 N
Fy = P8V = (1000 kg/m*)(9.81 m/s* )(0.06296 m )(w—mlsz
The weight of a body submerged in water is equal to the weigh of the body in air
minus the buoyancy force,

w. w. F, =1668-618=1050 N

inwater — "Vinair

]=618N

VVin water __ 1050 N 1 N
g 9.81 m/s*\ 1 kg - m/s*

person who can lift 107 kg on earth can lift this rock in water.

Discussion  This force corresponds to a mass of m = ] =107 Kg . Therefore, a
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Chapter 3 Pressure and Fluid Statics
3-87
Solution An irregularly shaped crown is weighed in air and then in water with a spring scale. It is to be determined if
the crown is made of pure gold.

Assumptions 1 The buoyancy force in air is negligible. 2 The crown is completely submerged in water.
Properties  We take the density of water to be 1000 kg/m®. The density of gold is given to be 19300 kg/m°.

Analysis The mass of the crown is

W _ 314N [1kg~m/sz

=3.20kg
g 98lmis*( 1IN ]

The difference between the weights in air and in water is due to the buoyancy
force in water, and thus

Fg =Wir =Waer =31.4-28.9=250N water |, Al
Noting that 75 = pyaer gV the volume of the crown is determined to be WA, WA, Crown
F 250N b (8 ).
V=—"t£8 - = —=2548x10"* m®
Pwater & (1000 kg/m )(9.81 m/s )
Then the density of the crown becomes Woer = 2.95 kg Woir = 3.20 kgf
3.20k
p="_ 9 12560 kg/m®

V  2548x1074 m?

which is considerably less than the density of gold. Therefore, the crown is NOT made of pure gold.

Discussion  This problem can also be solved without doing any under-water weighing as follows: We would weigh a
bucket half-filled with water, and drop the crown into it. After marking the new water level, we would take the crown out,
and add water to the bucket until the water level rises to the mark. We would weigh the bucket again. Dividing the weight
difference by the density of water and g will give the volume of the crown. Knowing both the weight and the volume of the
crown, the density can easily be determined.
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Chapter 3 Pressure and Fluid Statics
3-88
Solution The average density of a person is determined by weighing the person in air and then in water. A relation is
to be obtained for the volume fraction of body fat in terms of densities.

Assumptions 1 The buoyancy force in air is negligible. 2 The body is considered to consist of fat and muscle only. 3 The
body is completely submerged in water, and the air volume in the lungs is negligible.

Analysis The difference between the weights of the person in air and in
water is due to the buoyancy force in water. Therefore,

Fg =Wair ~Woater = Pwater &Y = Wair =W ater

Knowing the weights and the density of water, the relation above gives the volume of

the person. Then the average density of the person can be determined from

_m W air /g

Pave v V;

Under assumption #2, the total mass of a person is equal to the sum of the masses of the fat and muscle tissues, and the
total volume of a person is equal to the sum of the volumes of the fat and muscle tissues. The volume fraction of body fat is
the ratio of the fat volume to the total volume of the person. Therefore,

V =Vi +Viuscle Where Vi =xgV o and Ve = XmuscieV = (1= X5 )V

m = Mgy + Myyscle

Water Air
Noting that mass is density times volume, the last relation can be written as
paveV = pfatvfat + pmusclevmuscle
PaveV = PratXtatY + Prmuscle (1= Xgat V Person,
m,V

Canceling the Vand solving for xs; gives the desired relation,

_ Pruscle ~ pavg ' l
KXot =

muscle — Pfat
Wwater Wair

Discussion  Weighing a person in water in order to determine its volume is
not practical. A more practical way is to use a large container, and measuring
the change in volume when the person is completely submerged in it.
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Chapter 3 Pressure and Fluid Statics
3-89
Solution The volume of the hull of a boat is given. The amounts of load the boat can carry in a lake and in the sea
are to be determined.
Assumptions 1 The dynamic effects of the waves are disregarded. 2 The buoyancy force in air is negligible.

Properties The density of sea water is given to be 1.03x1000 = 1030 kg/m®. We take the density of water to be 1000
kg/m?.

Analysis The weight of the unloaded boat is

1kN

W, =mg = (8560kg)(9.81m/s?) ———
boat = 718 1000 kg - m/s?

] =84.0kN

The buoyancy force becomes a maximum when the entire hull of the boat is submerged
in water, and is determined to be

1kN
Fpie = V = (1000 kg/m®)(9.81m/s?)(150 m3) ——— | =1472kN
B,lake Plake & ( g )( )( )1000kg'm/82 ) N .
Fgon = V = (1030 kg/m*>)(9.81m/s?)(150 m?) __IKN | isikNT ' l '
Bsea — Psea8V = g . 1000kg-m/32 = B FBW
load boat

he total weight of a floating boat (load + boat itself) is equal to the buoyancy
force. Therefore, the weight of the maximum load is

VV|0&d, lake — FB ) Iake - Wboat = 1472 - 84 = 1388 kN
VVIoad,sea = FB,sea - Wboat =1516-84=1432kN

The corresponding masses of load are

 Wigame 1388 kN [1000 kg - m/s?

_ _ ~141,500 kg = 142,000k
Moaiae =77 7 9 81 mis? 1KkN j 9 g

W mfs?
My, = otz 1432 KN [1000kg-MIS” ) _ 45 970 kg = 146,000kg
: ¢ 9.8Lmis TKN

Discussion Note that this boat can carry nearly 4500 kg more load in the sea than it can in fresh water. Fully-loaded
boats in sea water should expect to sink into water deeper when they enter fresh water, such as a river where the port may
be.
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Chapter 3 Pressure and Fluid Statics

Fluids in Rigid-Body Motion

3-90C
Solution We are to discuss when a fluid can be treated as a rigid body.
Analysis A moving body of fluid can be treated as a rigid body when there are no shear stresses (i.e., no motion

between fluid layers relative to each other) in the fluid body.

Discussion ~ When there is no relative motion between fluid particles, there are no viscous stresses, and pressure (normal
stress) is the only stress.

3-91C

Solution We are to compare the pressure at the bottom of a glass of water moving at various velocities.

Analysis The water pressure at the bottom surface is the same for all cases since the acceleration for all four cases is
zZero.

Discussion ~ When any body, fluid or solid, moves at constant velocity, there is no acceleration, regardless of the
direction of the movement.

3-92C
Solution We are to compare the pressure in a glass of water for stationary and accelerating conditions.
Analysis The pressure at the bottom surface is constant when the glass is stationary. For a glass moving on a

horizontal plane with constant acceleration, water will collect at the back but the water depth will remain constant at the
center. Therefore, the pressure at the midpoint will be the same for both glasses. But the bottom pressure will be low at
the front relative to the stationary glass, and high at the back (again relative to the stationary glass). Note that the
pressure in all cases is the hydrostatic pressure, which is directly proportional to the fluid height.

Discussion ~ We ignore any sloshing of the water.

3-93C
Solution We are to analyze the pressure in a glass of water that is rotating.
Analysis When a vertical cylindrical container partially filled with water is rotated about its axis and rigid body

motion is established, the fluid level will drop at the center and rise towards the edges. Noting that hydrostatic pressure is
proportional to fluid depth, the pressure at the mid point will drop and the pressure at the edges of the bottom surface
will rise due to the rotation.

Discussion  The highest pressure occurs at the bottom corners of the container.

3-56
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc. Limited distribution permitted only to
teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.




Chapter 3 Pressure and Fluid Statics

3-94
Solution A water tank is being towed by a truck on a level road, and the angle the free surface makes with the
horizontal is measured. The acceleration of the truck is to be determined.
Assumptions 1 The road is horizontal so that acceleration has no vertical component (a, = 0). &,
2 Effects of splashing, breaking, driving over bumps, and climbing hills are assumed to be
secondary, and are not considered. 3 The acceleration remains constant. 9= 15°
| T ]
Analysis We take the x-axis to be the direction of motion, the z-axis to be the upward
vertical direction. The tangent of the angle the free surface makes with the horizontal is
a Water
tand =—= tank
gta,

Solving for a, and substituting,

a, =(g+a.)tand=(9.81m/s? +0)tan15° = 2.63 m/s?

Discussion Note that the analysis is valid for any fluid with constant density since we used no information that pertains
to fluid properties in the solution.

3-95

Solution Two water tanks filled with Tank A Tank B

water, one stationary and the other moving .

upwards at constant acceleration. The tank with T =5
the higher pressure at the bottom is to be :
determined. 8

Assumptions 1 The acceleration remains z 2
constant. 2 Water is an incompressible = l
substance. Water 2 T Water o
Properties We take the density of water to = 1 0 T

be 1000 kg/m?.

Analysis The pressure difference between two points 1 and 2 in an incompressible fluid is given by

Py =P =—pa,(x; —x;)—p(g+a,)z; —z;) or P-P,=p(g+a,)(z;—2)

since a, = 0. Taking point 2 at the free surface and point 1 at the tank bottom, we have P, = P,

atm

and z, —z; = h and thus
Pl,gage = Ppottom = p(g +a,)h
Tank A: We have a. = 0, and thus the pressure at the bottom is

1kN

P = peh , = (1000 kg/m3)(9.81m/s?)@m)| ——
A, bottom P8 4 ( g )( )( )[1000 kg~m/52

] =78.5kN/m?

Tank B: We have a. = +5 m/s?, and thus the pressure at the bottom is

1kN

P = p(g+a.)hy = (1000 kg/m®)(9.81+5m/s?)(2m)| ———
B, bottom = P(g +a,)hp = g/m*)( X )[1000kg.m/32

J =29.6 kN/m?

Therefore, tank A has a higher pressure at the bottom.

Discussion ~ We can also solve this problem quickly by examining the relation Pygiom = 0(g +a,)h . Acceleration for
tank B is about 1.5 times that of Tank A (14.81 vs 9.81 m/s?), but the fluid depth for tank A is 4 times that of tank B (8 m

vs 2 m). Therefore, the tank with the larger acceleration-fluid height product (tank A in this case) will have a higher
pressure at the bottom.
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Chapter 3 Pressure and Fluid Statics
3-96
Solution A water tank is being towed on an uphill road at constant acceleration. The angle the free surface of water
makes with the horizontal is to be determined, and the solution is to be repeated for the downhill motion case.

Uphill ~ Downhill lé
motion lg motion

Horizontal

a=20°

Assumptions 1 Effects of splashing, breaking, driving over bumps, and climbing hills are assumed to be secondary, and
are not considered. 2 The acceleration remains constant.

Analysis We take the x- and z-axes as shown in the figure. From geometrical considerations, the horizontal and
vertical components of acceleration are

a, =acosa

a, =asina

The tangent of the angle the free surface makes with the horizontal is

2 o
tango_Yr __@4c0sa __ (5m/s?)cos20 —04078 — 0=22.2°

g+a, g+asina 9.81m/s? +(5m/s?)sin 20°

When the direction of motion is reversed, both a, and a, are in negative x- and z-direction, respectively, and thus become
negative quantities,

a,=-acosa
a,=—asina

Then the tangent of the angle the free surface makes with the horizontal becomes

a, _ acosa —(5m/s?)cos 20°

tan @ = = = 5 I
g+a, g+asina 9.81m/s*—(5m/s°)sin20°

=-05801 —» 6=-30.1°

Discussion Note that the analysis is valid for any fluid with constant density, not just water, since we used no
information that pertains to water in the solution.
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Chapter 3 Pressure and Fluid Statics
3-97E
Solution A vertical cylindrical tank open to the atmosphere is rotated about the centerline. The angular velocity at
which the bottom of the tank will first be exposed, and the maximum water height at this moment are to be determined.

0l r

Assumptions 1 The increase in the rotational speed is very slow so that the liquid in the container always acts as a rigid
body. 2 Water is an incompressible fluid.
Analysis Taking the center of the bottom surface of the rotating vertical cylinder as the origin (» = 0, z = 0), the
equation for the free surface of the liquid is given as
2
2, (r) = hy -2 (R? - 2r%)
4g

where i, = 1 ft is the original height of the liquid before rotation. Just before dry spot appear at the center of bottom
surface, the height of the liquid at the center equals zero, and thus z,(0) = 0. Solving the equation above for ® and
substituting,

_ [azhy :\/4(32.2ft/52)(1ft)

=11.35rad/s=11.4rad/s

RZ (l ft)z
Noting that one complete revolution corresponds to 2 radians, the rotational speed of the container can also be expressed

in terms of revolutions per minute (rpm) as

‘@ _11.35rad/s ( 60s
27 27 rad/rev \ 1min

): 108 rpm

Therefore, the rotational speed of this container should be limited to 108 rpm to avoid any dry spots at the bottom surface
of the tank.
The maximum vertical height of the liquid occurs a the edges of the tank (r = R = 1 ft), and it is

»’R? (11.35 rad/s)? (1ft)?

= (Lft) + - =2.00 ft
4(32.2 ft/s?)

Discussion Note that the analysis is valid for any liquid since the result is independent of density or any other fluid
property.
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Chapter 3 Pressure and Fluid Statics
3-98
Solution A cylindrical tank is being transported on a level road at constant acceleration. The allowable water height
to avoid spill of water during acceleration is to be determined.

5]

Water hiahk =60 cm
tank

D=40cm

Assumptions 1 The road is horizontal during acceleration so that acceleration has no vertical component (a, = 0). 2
Effects of splashing, breaking, driving over bumps, and climbing hills are assumed to be secondary, and are not considered.
3 The acceleration remains constant.

Analysis We take the x-axis to be the direction of motion, the z-axis to be the upward vertical direction, and the
origin to be the midpoint of the tank bottom. The tangent of the angle the free surface makes with the horizontal is

ang=—2x - 4
g+a, 9.81+0

The maximum vertical rise of the free surface occurs at the back of the tank, and the vertical midplane experiences no rise
or drop during acceleration. Then the maximum vertical rise at the back of the tank relative to the midplane is

Az = (D12)tan 8 =[(0.40 m)/2] x0.4077 =0.082m =8.2¢cm

=0.4077 (and thus 6 = 22.2°)

Therefore, the maximum initial water height in the tank to avoid spilling is
hmax = htank _AZmaX = 60_8.2 = 51.8 cm

Discussion  Note that the analysis is valid for any fluid with constant density, not just water, since we used no
information that pertains to water in the solution.
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Chapter 3 Pressure and Fluid Statics
3-99
Solution A vertical cylindrical container partially filled with a liquid is rotated at constant speed. The drop in the
liquid level at the center of the cylinder is to be determined.

bt

|
Free I
surface —

h, = 60 cm

|
i
|
Zo |

z

| r

le o

Assumptions 1 The increase in the rotational speed is very slow so that the liquid in the container always acts as a rigid
body. 2 The bottom surface of the container remains covered with liquid during rotation (no dry spots).

Analysis Taking the center of the bottom surface of the rotating vertical cylinder as the origin (» = 0, z = 0), the
equation for the free surface of the liquid is given as

2
2,(r) = hy —2—(R? - 2r%)
4g
where &, = 0.6 m is the original height of the liquid before rotation, and

o = 21 = 27(120 rev/min)(lmm
60s

j =12.57 rad/s

Then the vertical height of the liquid at the center of the container where » = 0 becomes

@’R? (12.57 rad/s)? (0.20 m)?
4

2,(0)=ho - = (0.60m)- 4(9.81m/s?)

=0.44m

Therefore, the drop in the liquid level at the center of the cylinder is
Ahgrop, center = o —2(0) =0.60-0.44=0.16 m

Discussion Note that the analysis is valid for any liquid since the result is independent of density or any other fluid
property. Also, our assumption of no dry spots is validated since zo(0) is positive.
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Chapter 3 Pressure and Fluid Statics
3-100
Solution The motion of a fish tank in the cabin of an elevator is considered. The pressure at the bottom of the tank
when the elevator is stationary, moving up with a specified acceleration, and moving down with a specified acceleration is
to be determined.

Fish Tank
2
P o
l T a, =3 mls?
h=40cm
: !
Water g
0 T

Assumptions 1 The acceleration remains constant. 2 Water is an incompressible substance.
Properties We take the density of water to be 1000 kg/m®.

Analysis The pressure difference between two points 1 and 2 in an incompressible fluid is given by
Py—P =-pa,(x;—x)-p(g+a.)(z,—2z;) oOr P-P,=p(g+a.)(z; —z1)

since a, = 0. Taking point 2 at the free surface and point 1 at the tank bottom, we have P, = P,

atm

and z, —z; = h and thus
Pl,gage = Ppottom = p(g +a,)h

(a) Tank stationary: We have a, = 0, and thus the gage pressure at the tank bottom is

1kN

P = pgh = (1000 kg/m3)(9.81m/s?)(0.4 m)| ———
bottom = P& ( g )( )( )(IOOOKQ-m/SZ

J =3.92kN/m? =3.92kPa

(b) Tank moving up: We have a. = +3 m/s?, and thus the gage pressure at the tank bottom is

1kN

P = p(g+a.)h, = (1000 kg/m>)(9.81+3m/s?)(0.4 M) ————
bottom = P(g+a)hg =( g/m=)( X )(1000kg-m/52

J =5.12kN/m? =5.12kPa

(c) Tank moving down: We have a. = -3 m/s?, and thus the gage pressure at the tank bottom is

1kN

P = p(g+a.)h, = (1000 kg/m>)(9.81-3m/s?)(0.4 m) ————
bottom = P(g+a)hg =( g/m=)( ) )(1000kg-m/52

J =2.72kN/m? =2.72kPa

Discussion Note that the pressure at the tank bottom while moving up in an elevator is almost twice that while moving
down, and thus the tank is under much greater stress during upward acceleration.
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Chapter 3 Pressure and Fluid Statics
3-101
Solution A vertical cylindrical milk tank is rotated at constant speed, and the pressure at the center of the bottom
surface is measured. The pressure at the edge of the bottom surface is to be determined.

bt

Free !
|
surface —
|
!
|
Zs i ho
g
0! r
lg iRzl.SO;L

Assumptions 1 The increase in the rotational speed is very slow so that the liquid in the container always acts as a rigid
body. 2 Milk is an incompressible substance.

Properties The density of the milk is given to be 1030 kg/m®.
Analysis Taking the center of the bottom surface of the rotating vertical cylinder as the origin (» = 0, z = 0), the
equation for the free surface of the liquid is given as

2
zs(r)zho—i)—g(Rz—Zrz)

where R = 1.5 m is the radius, and

o = 21 = 27(12 revimin) LM
60s

] =1.2566 rad/s
The fluid rise at the edge relative to the center of the tank is

=1.1811m

2p2 2p2 2p2 2 2
Ah:ZS(R)_ZS(O):[hO+w R )—(ho—w R J:w R® _ (L2566 rad/s)?(1.50 m)

4g 2g 2(9.81m/s?)

The pressure difference corresponding to this fluid height difference is

1kN

AP = pgAh = (1030 kg/m®)(9.81m/s?)(1.1811m) —————
bottom 1000 kg - m/s?

]:1.83 kN/m? =1.83 kPa

Then the pressure at the edge of the bottom surface becomes

P, =P +AP, =130+1.83=131.83 kPa =132 kPa

bottom, edge bottom, center bottom

Discussion Note that the pressure is 1.4% higher at the edge relative to the center of the tank, and there is a fluid level
difference of 1.18 m between the edge and center of the tank, and these differences should be considered when designing
rotating fluid tanks.
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Chapter 3 Pressure and Fluid Statics

3-102
Solution Milk is transported in a completely filled horizontal cylindrical tank accelerating at a specified rate. The
maximum pressure difference in the tanker is to be determined.

a,=-3mls?

-

=1 Tm -
[ |
z T l
3m
X 2 o

Assumptions 1 The acceleration remains constant. 2 Milk is an incompressible substance.
Properties The density of the milk is given to be 1020 kg/m®.

Analysis We take the x- and z- axes as shown. The horizontal acceleration is in the negative x direction, and thus a,
is negative. Also, there is no acceleration in the vertical direction, and thus a. = 0. The pressure difference between two
points 1 and 2 in an incompressible fluid in linear rigid body motion is given by

Py =P =-pa,(x,-x1)-p(g+a,)z;-21) —> P-P=-pa,(x;—x)-pg(z;—2)

The first term is due to acceleration in the horizontal direction and the resulting compression effect towards the back of the
tanker, while the second term is simply the hydrostatic pressure that increases with depth. Therefore, we reason that the
lowest pressure in the tank will occur at point 1 (upper front corner), and the higher pressure at point 2 (the lower rear
corner). Therefore, the maximum pressure difference in the tank is

APpax =P, =P =—pa,(x; —x1)— pg(z, —z1) =—[a, (x; —x1) + g(z, — 21)]
1kN
= —(1020 kg/m*)|(=2.5m/s?)(7 m) + (9.81m/s®)(-3m)| —————
(1020 kgim ) )7 M)+ ( X ){mochg.m/SZJ
= (17.9+30.0) kN/m? = 47.9 kPa

sincex; =0, x,=7m, zz=3m,and z, = 0.

Discussion Note that the variation of pressure along a horizontal line is due to acceleration in the horizontal direction
while the variation of pressure in the vertical direction is due to the effects of gravity and acceleration in the vertical
direction (which is zero in this case).
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Chapter 3 Pressure and Fluid Statics
3-103
Solution Milk is transported in a completely filled horizontal cylindrical tank decelerating at a specified rate. The
maximum pressure difference in the tanker is to be determined.

Assumptions 1 The acceleration remains constant. 2 Milk is an incompressible substance.

Properties The density of the milk is given to be a, =3 m/s?

1020 kg/m?®. l .

Analysis We take the x- and z- axes as shown. g N Tm "1
The horizontal deceleration is in the x direction, and 2 . : T

thus a, is positive. Also, there is no acceleration in 3

the vertical direction, and thus @, = 0. The pressure _ 2 : -1

difference between two points 1 and 2 in an
incompressible fluid in linear rigid body motion is
given by

Py=P =-pa,(x;—x;)-plg+a.)z;-21) —> P-P=-pa(x;-x1)-pg(z;-z)
The first term is due to deceleration in the horizontal direction and the resulting compression effect towards the front of the
tanker, while the second term is simply the hydrostatic pressure that increases with depth. Therefore, we reason that the

lowest pressure in the tank will occur at point 1 (upper front corner), and the higher pressure at point 2 (the lower rear
corner). Therefore, the maximum pressure difference in the tank is

APrax =P, =Py =—pa, (x; —x1) = pg(z, —z1) = —[a, (x, —x1) + g(z5 — z1)]
= —(1020 kg/m 3)[(2.5 m/s?)(=7 m) +(9.81m/s?)(-3 m){%}
1000 kg - m/s
= (17.9+30.0) kN/m? = 47.9 kPa
sincex;=7m, x,=0, zz=3m,and z, = 0.
Discussion Note that the variation of pressure along a horizontal line is due to acceleration in the horizontal direction

while the variation of pressure in the vertical direction is due to the effects of gravity and acceleration in the vertical
direction (which is zero in this case).

3-104
Solution A vertical U-tube partially filled with |
alcohol is rotated at a specified rate about one of its arms. ( : )

The elevation difference between the fluid levels in the two
arms is to be determined.

Assumptions 1 Alcohol is an incompressible fluid. l\\ ] ) 2R
Analysis Taking the base of the left arm of the U-tube IS || SOl

as the origin (» = 0, z = 0), the equation for the free surface I ho =
of the liquid is given as 20 cm

2
z,(r) = h —f—g(RZ ~2r?)

where 4, = 0.20 m is the original height of the liquid before rotation, i R=25cm |
and o = 4.2 rad/s. The fluid rise at the right arm relative to the fluid |
level in the left arm (the center of rotation) is

0?R?) [, _@PR?)_wPR® _(42radis)?(025m)?
0 4g 2g 2(9.81m/s?)

Discussion  The analysis is valid for any liquid since the result is independent of density or any other fluid property.

Ah=z,(R)-z,(0) = [ho + =0.056 m
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Chapter 3 Pressure and Fluid Statics
3-105
Solution A vertical cylindrical tank is completely filled with gasoline, and the tank is rotated about its vertical axis at
a specified rate. The pressures difference between the centers of the bottom and top surfaces, and the pressures difference
between the center and the edge of the bottom surface are to be determined.

Assumptions 1 The increase in the rotational speed is very slow so that the liquid in the container always acts as a rigid
body. 2 Gasoline is an incompressible substance.

Properties The density of the gasoline is given to be 740 kg/m®.

Analysis The pressure difference between two points 1 and 2 in an incompressible fluid rotating in rigid body motion
is given by
2
[0
Py =P =E0(rf 1)~ pe(zs )

where R = 0.60 m is the radius, and

=21 = 27(70 rev/min)[lmm
60s

] =7.330rad/s

(@) Taking points 1 and 2 to be the centers of the bottom and top surfaces, respectively, we have r, =, =0 and
z,—z; =h=3m. Then,

Pcenter,top ~ Lcenter, bottom = 0-pg(z; —z1) =—pgh

1kN

= —(740 kg/m3)(9.81m/s®)Em)| ——————
(740kg/m)( X )[1000kg-m/sz

j =21.8kN/m? =21.8 kPa

(b) Taking points 1 and 2 to be the center and edge of the bottom surface, respectively, we have n =0, », =R, and
z, =z, =0. Then,

pa)zR2

2
_pe 2 _
Pedge, bottom — Pcenter, bottom — 2 (RZ - 0) -0=

_ (740 kg/m®)(7.33rad/s)? (0.60 m)*
2

1kN . =7.16 KN/m? =7.16 kPa
1000 kg - m/s

Discussion Note that the rotation of the tank does not affect the pressure difference along the axis of the tank. But the
pressure difference between the edge and the center of the bottom surface (or any other horizontal plane) is due entirely to
the rotation of the tank.
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Chapter 3 Pressure and Fluid Statics

O

3-106 —

Solution The previous problem is reconsidered. The effect of rotational speed on the pressure difference between the
center and the edge of the bottom surface of the cylinder as the rotational speed varies from 0 to 500 rpm in increments of
50 rpm is to be investigated.

Analysis The EES Equations window is printed below, followed by the tabulated and plotted results.

0=9.81 "m/s2"

rho=740 "kg/m3"

R=0.6 "m"

h=3 "m"

omega=2*pi*n_dot/60 "rad/s"
DeltaP_axis=rho*g*h/1000 "kPa"
DeltaP_bottom=rho*omega”"2*R"2/2000 "kPa"

Rotation rate Angular speed AP enter-edge
n, rpm o, rad/s kPa
0 0.0 0.0
50 5.2 3.7
100 10.5 14.6
150 15.7 32.9
200 20.9 58.4
250 26.2 91.3
300 31.4 131.5
350 36.7 178.9
400 41.9 233.7
450 47.1 295.8
500 52.4 365.2

400

350 ///
300 ////

250_ V4

200 ’//
150- ’////
100- ’///
~

0 100 200 300 400 500

.

n, rpm

AP, kPa

50

Discussion  The pressure rise with rotation rate is not linear, but rather quadratic.
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Chapter 3 Pressure and Fluid Statics

3-107
Solution A water tank partially filled with water is being towed by a truck on a level road. The maximum
acceleration (or deceleration) of the truck to avoid spilling is to be determined. a,
_—
Assumptions 1 The road is horizontal so that acceleration has no
vertical component (a. = 0). 2 Effects of splashing, breaking, driving A =2 ft
over bumps, and climbing hills are assumed to be secondary, and are 0 ] -
not considered. 3 The acceleration remains constant.
Analysis We take the x-axis to be the direction of motion, the z- z Water hu =61t
axis to be the upward vertical direction. The shape of the free surface tank
just before spilling is shown in figure. The tangent of the angle the free
surface makes with the horizontal is given by 0 X
a
tang=—-= - a,=gtand L=20 ft
gta,

. . . . A I
where a, = 0 and, from geometric considerations, tané is tan 6 = L_/h?_ . Substituting, we get

a, - gtand =g _ (3221452

= 2t 6.44 m/s?
L2

= m/s
(20ft)/2

The solution can be repeated for deceleration by replacing ay by — a,. We obtain ay = -6.44 m/s”.

Discussion Note that the analysis is valid for any fluid with constant density since we used no information that pertains
to fluid properties in the solution.

3-108E
Solution A water tank partially filled with water is being towed by a truck on a level road. The maximum
acceleration (or deceleration) of the truck to avoid spilling is to be determined.

Assumptions 1 The road is horizontal so that deceleration has no vertical component (o, = 0). 2 Effects of splashing and
driving over bumps are assumed to be secondary, and are not considered. 3 The deceleration remains constant.

Analysis We take the x-axis to be the direction of motion, a,
the z-axis to be the upward vertical direction. The shape of the -
free surface just before spilling is shown in figure. The tangent
of the angle the free surface makes with the horizontal is given P Ah=05ft
by e \_ O _| v
fan g = —x - a,=-gtané Water hl=3 ft
g+a: z tank
where a, = 0 and, from geometric considerations, tan@ is
Ah
tand =——
L2 0 x
Substituting, T-8f
4. ——gtan0——g- M _ _322f152)-22T _ 4 0 fuis?
L/2 (8ft)/2

Discussion Note that the analysis is valid for any fluid with constant density since we used no information that pertains
to fluid properties in the solution.

3-68
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc. Limited distribution permitted only to
teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.




Chapter 3 Pressure and Fluid Statics
3-109
Solution Water is transported in a completely filled horizontal cylindrical tanker accelerating at a specified rate. The
pressure difference between the front and back ends of the tank along a horizontal line when the truck accelerates and
decelerates at specified rates.

a,=-3mls?

Assumptions 1 The acceleration remains constant. 2 Water is an incompressible substance.
Properties We take the density of the water to be 1000 kg/m®.

Analysis (a) We take the x- and z- axes as shown. The horizontal acceleration is in the negative x direction, and thus
a, is negative. Also, there is no acceleration in the vertical direction, and thus a, = 0. The pressure difference between two
points 1 and 2 in an incompressible fluid in linear rigid body motion is given by

Py—P =-pa,(x;—x;)-plg+a,)z;-2;) — Py =P =-pa, (x; —x;)

since z - z; = 0 along a horizontal line. Therefore, the pressure difference between the front and back of the tank is due to
acceleration in the horizontal direction and the resulting compression effect towards the back of the tank. Then the pressure
difference along a horizontal line becomes

1kN

AP=P, - P, =—pa_ (x, —x;)=—(1000 kg/m*)(=3m/s?)(7 m) —————
» =P =—pa,(x; —x1)=—( g/m=)( ) )(1000kg-m/32

J: 21kN/m? =21 kPa

sincex;=0and x,=7m.

(b) The pressure difference during deceleration is determined the way, but a, = 4 m/s? in this case,

AP =P, —P, =—pa,(x, —x;) = —(1000 kg/m*)(4 m/s?)(7 m) LZ =-28kN/m? =-28 kPa
1000 kg - m/s

Discussion Note that the pressure is higher at the back end of the tank during acceleration, but at the front end during
deceleration (during breaking, for example) as expected.
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Review Problems

3-110
Solution One section of the duct of an air-conditioning system is laid underwater. The upward force the water
exerts on the duct is to be determined.

Assumptions 1 The diameter given is the outer diameter of the duct (or, the thickness of the duct material is negligible). 2
The weight of the duct and the air in is negligible.

Properties The density of air is given to be p = 1.30 kg/m®. We take the density of water to be 1000 kg/m®.

Analysis Noting that the weight of the duct and the air in it is negligible, the net upward force acting on the duct is
the buoyancy force exerted by water. The volume of the underground section of the duct is

V = AL = (zD? | 4)L =[7(0.15m)?/4](20 m) = 0.3534 m*

Then the buoyancy force becomes ? —> $D =15cm 3
L=20m

1kN Fy

Fg = pgV = (1000 kg/m3)(9.81 m/s?)(0.3534 m®) ——
g 1000 kg - m/s?

) =3.47kN

Discussion  The upward force exerted by water on the duct is 3.47 kN, which is equivalent to the weight of a mass of
354 kg. Therefore, this force must be treated seriously.

3-111
Solution A helium balloon tied to the ground carries 2 people. The acceleration of the balloon when it is first
released is to be determined.

Assumptions The weight of the cage and the ropes of the balloon is negligible.
Properties The density of air is given to be p = 1.16 kg/m®. The density of helium gas is 1/7th of this.

Analysis The buoyancy force acting on the balloon is
Voso = 47r°/3=4z(5 m)’ /3=523.6 m’

balloon

Fy = pu Voo = (116 kg/m®)(9.81 m/s®)(523.6 m3)( N 2)=5958.4 N Helium

_1IN
1 kg-m/s balloon
The total mass is

m, = puNV = (@ kg/m3j(523.6 m®) =86.8 kg

My = My + Mo, =86.8+2x70 =226.8 kg

The total weight is

W = myg = (226.8 kg)(9.81 m/sz)[ ! N/ 2j:2224.9 N

1 kg-m/s
Thus the net force acting on the balloon is

F,, =F, -W =5958.6-2224.9=37335 N

Then the acceleration becomes -
_F, 37335 N (1 kg - m/s? m=140kg [AAA
o 226.8 kg 1N

Discussion  This is almost twice the acceleration of gravity — aerodynamic drag on the balloon acts quickly to slow
down the acceleration.

j =16.5 m/s?®
m
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®

3-112 -

Solution The previous problem is reconsidered. The effect of the number of people carried in the balloon on
acceleration is to be investigated. Acceleration is to be plotted against the number of people, and the results are to be
discussed.

Analysis The EES Equations window is printed below, followed by the tabulated and plotted results.

"Given Data:"

rho_air=1.16"[kg/m”3]" "density of air"
0=9.807"[m/s"2]"

d_balloon=10"[m]"

m_1person=70"[kg]"

{NoPeople = 2} "Data suppied in Parametric Table"

"Calculated values:"

rho_He=rho_air/7"[kg/m~3]" "density of helium"

r_balloon=d_balloon/2"[m]"

V_balloon=4*pi*r_balloon"3/3"[m"3]"

m_people=NoPeople*m_1person"[kg]"

m_He=rho_He*V_balloon"[kg]"

m_total=m_He+m_people"[kg]"

"The total weight of balloon and people is:"

W_total=m_total*g"[N]"

"The buoyancy force acting on the balloon, F_b, is equal to the weight of the air displaced by the
balloon."

F_b=rho_air*v_balloon*g"[N]"

"From the free body diagram of the balloon, the balancing vertical forces must equal the product of the
total mass and the vertical acceleration:"

F_b- W_total=m_total*a_up

77777

Ay [M/s?] No. People
28.19
16.46
10.26
6.434
3.831
1.947

0.5204
-0.5973
-1.497
-2.236

Blo|o|~N|o|o|n|w|N|-

ayp [m/s~2]

1 2 3 4 5 6 7 8 9 10
NoPeople

Discussion  As expected, the more people, the slower the acceleration. In fact, if more than 7 people are on board, the
balloon does not rise at all.
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3-113
Solution
determined.

A balloon is filled with helium gas. The maximum amount of load the balloon can carry is to be

Assumptions The weight of the cage and the ropes of the balloon is negligible.

Properties The density of air is given to be p = 1.16 kg/m®. The density of
helium gas is 1/7th of this.

Analysis In the limiting case, the net force acting on the balloon will be zero.
That is, the buoyancy force and the weight will balance each other:
W=mg=Fpg
Fp 59584 N
My = —== ————=607.4kg Helium
g 9.81m/s balloon
Thus,
Mot = Mgy — My, = 607.4—86.8 =520.6 kg = 521 kg
Discussion ~ When the net weight of the balloon and its cargo exceeds the weight of the "o

air it displaces, the balloon/cargo is no longer “lighter than air”, and therefore cannot rise.

3-114E
Solution The pressure in a steam boiler is given in kgf/cm?. It is to be expressed in psi, kPa, atm, and bars.
Analysis We note that 1 atm = 1.03323 kgf/cm?, 1 atm = 14.696 psi, 1 atm = 101.325 kPa, and 1 atm = 1.01325 bar

(inner cover page of text). Then the desired conversions become:

In atm: P = (75 kgflcm?) 1a¢2 =72.6atm
1.03323 kgf/cm
In psi: P = (75 kgflom?)| =M | 14696 PST)_ 1067 i~ 1070 psi
1.03323 kgf/cm 1 atm
In kPa: P = (75 kgfiem?)| =M |[10L325KPA ) 7a55 5s = 7360 KPa
1.03323 kgficm 1 atm
In bars: P = (75 kgf/cm?) 1 atm - 1.01325 bar | _ 73.55 bar = 73.6 bar
1.03323 kgf/icm 1 atm
Discussion Note that the units atm, kgf/cm? and bar are almost identical to each other. All final results are given to

three significant digits, but conversion ratios are typically precise to at least five significant digits.
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3-115
Solution A barometer is used to measure the altitude of a plane relative to the ground. The barometric readings at the
ground and in the plane are given. The altitude of the plane is to be determined.

Assumptions The variation of air density with altitude is negligible.
Properties The densities of air and mercury are given to be p,;, = 1.20 kg/m® and Prercury = 13,600 kg/m®.

Analysis Atmospheric pressures at the location of the plane and the ground level are
Pplane =(pgh) plane

_ (13,600 kg/m®)(9.81 m/s?)(0.690 m)| — 1 . 1kPa :
1kg-m/s | 1000 N/m
— 92,06 kPa

Pground = (pgh)ground

= (13,600 kg/m*)(9.8.m/s?)(0.753 m) N 5 LkPa 5
1kg-m/s | 1000 N/m
=100.46 kPa

Taking an air column between the airplane and the ground and writing a force h
balance per unit base area, we obtain

Wair I 4= Pground _Pplane

(ogh)air = Pground - Pplane

(1.20 kg/m3)(9.81m/sz)(h)[1k1N/ ZJ{molokr:j zj:(100.46—92.06) kPa 0 Sea level
g-m/s m

It yields # =714 m, which is also the altitude of the airplane.

Discussion Obviously, a mercury barometer is not practical on an airplane — an electronic barometer is used instead.

3-116
Solution A 10-m high cylindrical container is filled with equal volumes of water and oil. The pressure difference
between the top and the bottom of the container is to be determined.

Properties The density of water is given to be p = 1000 kg/m®. The
specific gravity of oil is given to be 0.85.

Analysis The density of the oil is obtained by multiplying its specific il
gravity by the density of water, SG =0.85

p =5Gxp, , = (0.85)(1000 kg/m*) = 850 kg/m’ N A |r=10m

The pressure difference between the top and the bottom of the cylinder Water
is the sum of the pressure differences across the two fluids,

APtotal = APuil + prater = (pgh)on + (pgh)water

~[(850 kg/m*)(©.81 mis?)(5 m)+(1000 kg/m*)(©.81 mis)(5 m)]| ——— o2
1000 N/m
=90.7 kPa

Discussion  The pressure at the interface must be the same in the oil and the water. Therefore, we can use the rules for
hydrostatics across the two fluids, since they are at rest and there are no appreciable surface tension effects.
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3-117
Solution The pressure of a gas contained in a vertical piston-cylinder device is measured to be 500 kPa. The mass of
the piston is to be determined.

Assumptions There is no friction between the piston and the cylinder. P
Analysis Drawing the free body diagram of the piston and balancing the vertical 1
forces yield

W =PA-P, A

P
mg =(P—Py,)4 -
\ ‘ (1000 kg/m-s W= mg
(m)(9.81 m/s*)=(500-100 kPa)(30x10* m?)| ——=——"-
1 kPa

Solution of the above equation yields m =122 kg.

Discussion ~ The gas cannot distinguish between pressure due to the piston weight and atmospheric pressure — both
“feel” like a higher pressure acting on the top of the gas in the cylinder.

3-118
Solution The gage pressure in a pressure cooker is maintained constant at 100 kPa by a petcock. The mass of the
petcock is to be determined.

Assumptions  There is no blockage of the pressure release valve.

Analysis Atmospheric pressure is acting on all surfaces of the petcock, which balances itself out. Therefore, it can
be disregarded in calculations if we use the gage pressure as the cooker pressure. A force balance on the petcock (XF, = 0)
yields

- P,
W=P,.A atm
. PugeA (100 kPa)(4x10° m?)( 1000 kg/m-s? Y
g 9.81 m/s’ 1 kPa
=0.0408 kg =40.8¢ P
W=mg
Discussion  The higher pressure causes water in the cooker to boil at a higher temperature.
3-119
Solution A glass tube open to the atmosphere is attached to a water pipe, and the pressure at the bottom of the tube is
measured. It is to be determined how high the water will rise in the tube.
Properties The density of water is given to be p = 1000 kg/m®.
Analysis The pressure at the bottom of the tube can be expressed as
P= Patm +(pgh)tube 1 ~ A
Solving for 4, h
P-P,. Pam= 92 atm
PrE
_ (115-92) kPa (1 kg-m/s? )(1000 N/m’ Water —>
(1000 kg/m*)(9.8 m/s?®) 1N 1 kPa
=235m

Discussion Even though the water is flowing, the water in the tube itself is at rest. If the pressure at the tube bottom had
been given in terms of gage pressure, we would not have had to take into account the atmospheric pressure term.
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3-120
Solution The average atmospheric pressure is given as P, =10l.325(1—0.02256 z)5'256 where z is the altitude in
km. The atmospheric pressures at various locations are to be determined.
Analysis Atmospheric pressure at various locations is obtained by substituting the altitude z values in km into the
relation P, =101325(1-0.022562)52% . The results are tabulated below.

Atlanta: (z = 0.306 km): Pym = 101.325(1 - 0.02256x0.306)°%*° = 97.7 kPa

Denver: (z = 1.610 km): Pym = 101.325(1 - 0.02256x1.610)°%*® = 83.4 kPa

M. City: (z =2.309 km): P, = 101.325(1 - 0.02256x2.309)>**° = 76.5 kPa

Mt. Ev.: (z = 8.848 km): Pum = 101.325(1 - 0.02256x8.848)°%*° = 31.4 kPa

Discussion It may be surprising, but the atmospheric pressure on Mt. Everest is less than 1/3 that at sea level!

3-121
Solution The air pressure in a duct is measured by an inclined manometer. For a given vertical level difference, the
gage pressure in the duct and the length of the differential fluid column are to be determined.

Assumptions  The manometer fluid is an incompressible substance.

Properties The density of the liquid is given to be p = 0.81 kg/L = 810 kg/m®,

Analysis The gage pressure in the duct is determined from
Pae:Pas_Pam:pgh H
oS Tam , 1N 1Pa Air
= (810kg/m~)(9.81 m/s*)(0.08m) 5 5
1kg-m/s® )l IN/m
=636 Pa I __
The length of the differential fluid column is 8cm
L=h/sind=(8cm)/sin35°=13.9 cm —//<35°

Discussion Note that the length of the differential fluid column is extended considerably by inclining the manometer
arm for better readability (and therefore higher precision).

3-122E

Solution Equal volumes of water and oil are poured into a U-tube from different arms, and the oil side is pressurized
until the contact surface of the two fluids moves to the bottom and the liquid levels in both arms become the same. The
excess pressure applied on the oil side is to be determined.

Assumptions 1 Both water and oil are incompressible substances. 2 Oil does not mix with water. 3 The cross-sectional
area of the U-tube is constant.

Properties The density of oil is given to be py; = 49.3 Ibm/ft®. We take the density of water to be p, = 62.4 Ibm/ft®,

Analysis Noting that the pressure of both the water and the oil is the same /
at the contact surface, the pressure at this surface can be expressed as Water Blown
Peontact = Potow + Pa8ha = Pam + Puw &hw, air
Noting that 4, = h,, and rearranging,
oil
Pgage, blow — F,

=(62.4-49.3 lom/ft*)(32.2 ft/s® ) (30/12 ft) . —
. 32.2 Ibm-ft/s® J{ 144 in
=0.227 psi

Discussion ~ When the person stops blowing, the oil rises and some water flows into the right arm. It can be shown that
when the curvature effects of the tube are disregarded, the differential height of water is 23.7 in to balance 30-in of oil.

blow_Pmm:(pw_poil)gh ( 1 Ibf J( 1 ft2 j 30in
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3-123
Solution It is given that an IV fluid and the blood pressures balance each other when the bottle is at a certain height,
and a certain gage pressure at the arm level is needed for sufficient flow rate. The gage pressure of the blood and elevation
of the bottle required to maintain flow at the desired rate are to be determined.

Assumptions 1 The IV fluid is incompressible. 2 The IV bottle is open to the atmosphere.

Properties The density of the IV fluid is given to be p = 1020 kg/m°.

Analysis (@) Noting that the IV fluid and the blood pressures balance each other when the bottle is 1.2 m above the
arm level, the gage pressure of the blood in the arm is simply equal to the gage pressure of the 1V fluid at a depth of 1.2 m,
Pgage, am = Labs — Pam = PZharm-bottle 1kN 1 kP " Pam _
— (1020 kg/m®)(9.81 m/s2)(1.20 m) a Bottle
1000 kg - m/s? )\ 1 kN/m?
=12.0 kPa
(b) To provide a gage pressure of 20 kPa at the arm level, the height of the bottle from 1.2m

the arm level is again determined from Py,ge arm = P2ham-bottie O bE

P,

h _ " gage,arm
arm-bottle —

g ~—1
B 20 kPa 1000 kg-mis? Y LkN/m? | W
(1020 kg/m*)(9.81 m/s?) 1kN 1kPa '

Discussion Note that the height of the reservoir can be used to control flow rates in gravity driven flows. When there is
flow, the pressure drop in the tube due to friction should also be considered. This will result in raising the bottle a little
higher to overcome pressure drop.
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3-124
Solution A gasoline line is connected to a pressure gage through a double-U manometer. For a given reading of the
pressure gage, the gage pressure of the gasoline line is to be determined.

Assumptions 1 All the liquids are incompressible. 2 The effect of air column on pressure is negligible.

Properties The specific gravities of oil, mercury, and gasoline are given to be 0.79, 13.6, and 0.70, respectively. We
take the density of water to be p,, = 1000 kg/m®.

Analysis Starting with the pressure indicated by the pressure gage and moving along the tube by adding (as we go
down) or subtracting (as we go up) the pgh terms until we reach the gasoline pipe, and setting the result equal t0 Pgasoline

gives
Pgage - pwghw + poilghoil - pHgthg - pgasolineghgasoline = Pgasoline

Rearranging,

[E)asoline = %age - pwg(hw - SGoiIhoil + SGHg hHg + SGgasoIinehgasoline)
Substituting,
Poine =370 kPa (1000 kg/m* )(9.81 m/s*)[(0.45 m) - 0.79¢0.5 m) +13.6(0.1 m) +0.70(0.22 m)]

o 1 kN ( 1 kPa j
1000 kg -m/s® )\ 1 kKN/m?
=354.6 kPa = 355 kPa

Therefore, the pressure in the gasoline pipe is 15.4 kPa lower than the pressure reading of the pressure gage.

Pyage = 370 kPa

~

Air

Water

Mercury

Discussion Note that sometimes the use of specific gravity offers great convenience in the solution of problems that
involve several fluids.
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3-125
Solution A gasoline line is connected to a pressure gage through a double-U manometer. For a given reading of the
pressure gage, the gage pressure of the gasoline line is to be determined.

Assumptions 1 All the liquids are incompressible. 2 The effect of air column on pressure is negligible.

Properties The specific gravities of oil, mercury, and gasoline are given to be 0.79, 13.6, and 0.70, respectively. We
take the density of water to be p,, = 1000 kg/m®.

Analysis Starting with the pressure indicated by the pressure gage and moving along the tube by adding (as we go
down) or subtracting (as we go up) the pgh terms until we reach the gasoline pipe, and setting the result equal t0 Pgasoline

gives
Pgage — Pw &My + Paiconol &haconol ~PHg thg - pgasolineghgasoline = Lgasoline

Rearranging,
Pgasoline = Pgage - pwg(hw - SGaIcohoI hs,alcohol + SGthHg + SGgasoIine hs,gasoline)
Substituting,

= 240 kPa -(1000 kg/m* )(9.81 m/s?)[(0.45 m) —0.79¢0.5 m) +13.6¢0.1 m) + 0.700.22 m)]

“ 1 kN ( 1 kPa ]
1000 kg-m/s®> J\1 kN/m?

=224.6 kPa = 225 kPa

Pgasoline

Therefore, the pressure in the gasoline pipe is 15.4 kPa lower than the pressure reading of the pressure gage.

Pyge = 240 kPa

A

Air

Water

Mercury

Discussion Note that sometimes the use of specific gravity offers great convenience in the solution of problems that
involve several fluids.
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3-126E
Solution A water pipe is connected to a double-U manometer whose free arm is open to the atmosphere. The
absolute pressure at the center of the pipe is to be determined.

Assumptions 1 All the liquids are incompressible. 2 The solubility of the liquids in each other is negligible.

Properties The specific gravities of mercury and oil are given to be 13.6 and 0.80, respectively. We take the density of
water to be p,, = 62.4 Ibm/ft®,

Analysis Starting with the pressure at the center of the water pipe, and moving along the tube by adding (as we go
down) or subtracting (as we go up) the pgh terms until we reach the free surface of oil where the oil tube is exposed to the

atmosphere, and setting the result equal to Py, gives
Pater pipe — Pwater water T Paiconol EMatconol — Prg &rg — Poit&hMoit = Lamm
Solving for Pyater pipe,
Puater pipe = Laim + Pwater & Mwater = SGoithaicohot T SG g g +SG it hgir )
Substituting,
Pater pipe = 14.2psia +(62.41bm/ft*)(32.2 fu/s?)[(35/12 ft) - 0.80(60/12 ft) +13.6(15/12 ft)

2
+0.8(40/12 ft)] x L Ibf 5 11 >

i 32.2 Ibm-ft/s< )\ 144 in
=22.3 psia

Therefore, the absolute pressure in the water pipe is 22.3 psia.

oil
35/in

60| in

F |

@
&
=

v Mercury

Discussion Note that jumping horizontally from one tube to the next and realizing that pressure remains the same in the
same fluid simplifies the analysis greatly.
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3-127
Solution The pressure of water flowing through a pipe is measured by an arrangement that involves both a pressure
gage and a manometer. For the values given, the pressure in the pipe is to be determined.

Assumptions 1 All the liquids are incompressible. 2 The effect of air column on pressure is negligible.

Properties The specific gravity of gage fluid is given to be 2.4. We take the standard density of water to be p,, = 1000
kg/m?.

Analysis Starting with the pressure indicated by the pressure gage and moving along the tube by adding (as we go
down) or subtracting (as we go up) the pgh terms until we reach the water pipe, and setting the result equal to P give
Pgage +Ppwghy — pgageghgage = Pw&hwz = Puater

Rearranging,
P

water — Pgage + pwg(hwl _SGgagehgage - hwz) = Pgage + pwg(hz _SGgageLlSing_LZSinH)
Noting that sin8=8/12 =0.6667 and substituting,
Pyater = 30 kPa + (1000 kg/m*)(9.81m/s?)[(0.50 m) — 2.4(0.06 m)0.6667 — (0.06 m)0.6667]
o 1kN ( 1kPa j
1000 kg -m/s? \ 1kN/m?

=33.6 kPa

Therefore, the pressure in the gasoline pipe is 3.6 kPa over the reading of the pressure gage.

Py=30 kPa

Air

Pipe

Water

15°C

Gage fluid
SG=2.4

Discussion Note that even without a manometer, the reading of a pressure gage can be in error if it is not placed at the
same level as the pipe when the fluid is a liquid.
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3-128
Solution A U-tube filled with mercury except the 18-cm high portion at the top. Oil is poured into the left arm,
forcing some mercury from the left arm into the right one. The maximum amount of oil that can be added into the left arm
is to be determined.

Assumptions 1 Both liquids are incompressible. 2 The U-tube is perfectly vertical.
Properties The specific gravities are given to be 2.72 for oil and 13.6 for mercury.

Analysis Initially, the mercury levels in both tubes are the same. When oil is poured into the left arm, it will push the
mercury in the left down, which will cause the mercury level in the right arm to rise. Noting that the volume of mercury is
constant, the decrease in the mercury volume in left column must be equal to the increase in the mercury volume in the
right arm. Therefore, if the drop in mercury level in the left arm is x, the rise in the mercury level in the right arm 4
corresponding to a drop of x in the left arm is

Viett =Viign — 72'(2d)2x=72'd2h - h=4x
The pressures at points 4 and B are equal P, = Py and thus

Patm +p0i|g(hoil + )C) = Patm + pHgthg - SGoinwg(hoil +x) = SGngwg(Sx)
Solving for x and substituting,

SGuhy  272(18cm)

55G,, -SG,, 5x13.6-2.72

=0.75¢cm

Therefore, the maximum amount of oil that can be added into the left arm is

Vil max = 7(2d 1 2)? (hgyy +x) = 7(2cm)® (18+0.75¢cm) =236 cm® =0.236 L

Oil
SG=2.72 ||
N hoii =18 cm
l h=A4x
XT A B
2d d=2cm
D .
: Mercury
SG=13.6

Discussion Note that the fluid levels in the two arms of a U-tube can be different when two different fluids are
involved.

3-81
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc. Limited distribution permitted only to
teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.




Chapter 3 Pressure and Fluid Statics
3-129
Solution The pressure buildup in a teapot may cause the water to overflow through the service tube. The maximum
cold-water height to avoid overflow under a specified gage pressure is to be determined.

Assumptions 1 Water is incompressible. 2 Thermal expansion and the amount of water in the service tube are negligible.
3 The cold water temperature is 20°C.

Properties The density of water at 20°C is p,, = 998.0 kg/m®.

Analysis From geometric considerations, the vertical distance between the bottom of the teapot and the tip of the
service tube is

hiip =4+12c0s40°=13.2cm

This would be the maximum water height if there were no pressure build-up inside by the steam. The steam pressure inside
the teapot above the atmospheric pressure must be balanced by the water column inside the service tube,

P, gage — P, 8Ah,,
or,
P, . 2 2
Ahw _ Tvgage _ 0323 kPa . 1000 kg m/s 1kN/m —0.033m=3.3cm
Pwg  (998.0kg/m=)(9.81m/s*) 1kN 1kPa

Therefore, the water level inside the teapot must be 3.3 cm below the tip of the service tube. Then the maximum initial
water height inside the teapot to avoid overflow becomes

h -Ah, =132-33=9.9cm

w, max — htip

12 cm

4cm

Heat

Discussion ~ We can obtain the same result formally by starting with the vapor pressure in the teapot and moving along
the service tube by adding (as we go down) or subtracting (as we go up) the pgh terms until we reach the atmosphere, and

setting the result equal to Py

Patm +Pv,gage _pwghw = Patm - Pv,gage = pwghw
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Chapter 3 Pressure and Fluid Statics
3-130
Solution The pressure buildup in a teapot may cause the water to overflow through the service tube. The maximum
cold-water height to avoid overflow under a specified gage pressure is to be determined by considering the effect of
thermal expansion.

Assumptions 1 The amount of water in the service tube is negligible. 3 The cold water temperature is 20°C.
Properties The density of water is p, = 998.0 kg/m?® at 20°C, and p,, = 957.9 kg/m? at 100°C

Analysis From geometric considerations, the vertical distance between the bottom of the teapot and the tip of the
service tube is

hi, =4+12c0s40°=13.2cm

tip

This would be the maximum water height if there were no pressure build-up inside by the steam. The steam pressure inside
the teapot above the atmospheric pressure must be balanced by the water column inside the service tube,

' gage — p.,8Ah,,

or,

Ah,, =

w

Py goge 0.32kPa {1000 kg - m/s? ]{ 1kN/m?

= 5 =0.033m=3.3cm
Pwg  (998.0kg/m?®)(9.81m/s?) 1kN 1kPa

Therefore, the water level inside the teapot must be 3.4 cm below the tip of the service tube. Then the height of hot water
inside the teapot to avoid overflow becomes

hy, = hg, —Ah,, =13.2-3.4=9.8cm

tip
The specific volume of water is 1/998 m®kg at 20°C and 1/957.9 m®kg at 100°C. Then the percent drop in the volume of
water as it cools from 100°C to 20°C is

Vigre ~Vape _ 1/957.9-1/998.0
Viooec 1/957.9

Volume reduction = =0.040 or4.0%

Volume is proportional to water height, and to allow for thermal ==
expansion, the volume of cold water should be 4% less. @

Therefore, the maximum initial water height to avoid overflow
should be

By, max = (1—0.040)h,, =0.96x9.8cm =9.4cm

12 cm

4cm

Heat

Discussion Note that the effect of thermal expansion can be quite significant.
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Chapter 3 Pressure and Fluid Statics
3-131
Solution The temperature of the atmosphere varies with altitude z as T =T, -, while the gravitational
acceleration varies by g(z) =g, I(1+2/6,370,320) . Relations for the variation of pressure in atmosphere are to be
obtained (@) by ignoring and () by considering the variation of g with altitude.
Assumptions The air in the troposphere behaves as an ideal gas.
Analysis (a) Pressure change across a differential fluid layer of thickness dz in the vertical z direction is

dP =—pgdz
P P

—_— Then,
RT  R(T, - f)

From the ideal gas relation, the air density can be expressed as o =

P
-———gdz
R(Ty - fz)
Separating variables and integrating from z = 0 where P = P, toz =z where P= P,

Pdp gdz
Lo 7 R(Ty - )
Performing the integrations.
In i — i In Lﬂz
PO RIH TO
Rearranging, the desired relation for atmospheric pressure for the case of constant g becomes
g

rf2)

0

(b) When the variation of g with altitude is considered, the procedure remains the same but the expressions become more
complicated,

P &o d
_ > dz
R(Ty - pz) (1+2/6,370,320)
Separating variables and integrating from z = 0 where P =P, toz =z where P= P,

Pd_P 3 _J-z godZ
R P 0 R(T, - fz)(1+216,370,320)2
Performing the integrations,

z

P g 1 1 14kz
- - n
B RB|U+kTy | B)L+ks) (4kTy I f)2 T Ty —f|,

where R = 287 J/kg-K = 287 m?/s>K is the gas constant of air. After some manipulations, we obtain

P=P,exp| —— 20 : 1 n_itke
0 R(B+KT)\1+1/kz  1+kTy /B 1- 1T,

where 7, = 288.15 K, p = 0.0065 K/m, g, = 9.807 m/s?, k = 1/6,370,320 m™, and z is the elevation in m..

Discussion  When performing the integration in part (), the following expression from integral tables is used, together
with a transformation of variable x =T, — 5z,

J‘ dx 1 1 | a+bx

x(a+bx)?  ala+bx) a? X

Also, for z = 11,000 m, for example, the relations in (a) and (b) give 22.62 and 22.69 kPa, respectively.
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Chapter 3 Pressure and Fluid Statics
3-132
Solution The variation of pressure with density in a thick gas layer is given. A relation is to be obtained for pressure
as a function of elevation z.
Assumptions The property relation P =Cp" is valid over the entire region considered.
Analysis The pressure change across a differential fluid layer of thickness dz in the vertical z direction is given as,
dP = —pgdz

Also, the relation P =Cp" can be expressedas C = P/ p" = P,/ pg , and thus

p=po(Pl )"
Substituting,

dP =—gpo (P P,)Y" dz

Separating variables and integrating from z = 0 where P =Py =Cp; t0z=zwhere P=P,

P -1/n z
J' (P Py) dP:—pogj dz
R o

Performing the integrations.

P n-1)/n
(P/PO)—l/n+1 [PJ( 1)/ n-1 Dogz
| =-pogz — — -1=-
Solving for P,
nl(n-1)
p=py|1- "1 P&
0 n B

which is the desired relation.

Discussion  The final result could be expressed in various forms. The form given is very convenient for calculations as
it facilitates unit cancellations and reduces the chance of error.
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Chapter 3 Pressure and Fluid Statics
3-133
Solution A pressure transducer is used to measure pressure by generating analogue signals, and it is to be calibrated
by measuring both the pressure and the electric current simultaneously for various settings, and the results are to be
tabulated. A calibration curve in the form of P = al + b is to be obtained, and the pressure corresponding to a signal of 10
mA is to be calculated.

Assumptions  Mercury is an incompressible liquid.
Properties The specific gravity of mercury is given to be 13.56, and thus its density is 13,560 kg/m®.
Analysis For a given differential height, the pressure can be calculated from

P = pgAh

For Ah = 28.0 mm = 0.0280 m, for example,

P =13.56(1000 kg/m*)(9.81m/s?)(0.0280 m)| — <1 ( 1"Pa2j:3.72 kPa
1000 kg-m/s= N\1kN/m

Repeating the calculations and tabulating, we have

Ah(mm) | 28.0 1815 | 297.8 | 413.1 | 7659 | 1027 1149 1362 1458 1536
P(kPa) | 3.72 24,14 | 39.61 | 54.95 | 1019 | 136.6 | 152.8 181.2 193.9 204.3
I(mA) [4.21 5.78 6.97 8.15 11.76 | 1443 | 15.68 17.86 18.84 19.64

A plot of P versus [ is given below. It is clear that the pressure varies linearly with the current, and using EES, the best
curve fit is obtained to be

Multimeter
P=13.00/-51.00 (kPa) for 4.21<71<19.64.
L]
For 7=10 mA, for example, we would get P = 79.0 kPa.
Pressure
225— . . . . . . . transducer

180 / Valve

:ﬁ:’ -
135

Pressurized
g / 1 Air, P
z_ 90
] _ ) Ah
N / Rigid container Manometer
-
0 / ‘ ‘ ‘ ‘ ‘ ‘ ‘ Y~ Mercury
4 6 8 100 12 14 16 18 20 SG=135
|, mA r

Discussion Note that the calibration relation is valid in the specified range of currents or pressures.
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Chapter 3 Pressure and Fluid Statics
3-134
Solution A system is equipped with two pressure gages and a manometer. For a given differential fluid height, the
pressure difference AP = P,- Py is to be determined.

Assumptions 1 All the liquids are incompressible. 2 The effect of air column on pressure is negligible.

Properties The specific gravities are given tone 2.67 for the gage fluid and 0.87 for oil. We take the standard density
of water to be p,, = 1000 kg/m®.

Analysis Starting with the pressure indicated by the pressure gage 2 and moving along the tube by adding (as we go
down) or subtracting (as we go up) the pgh terms and ignoring the air spaces until we reach the pressure gage 1, and
setting the result equal to P; give

P, _pgageghgage + Poit 8hoit =P
Rearranging,

Pz_Pl:pwg(SG Pyage —SG hoil)

gage ' "gage oil
Substituting,

P, - P, = (1000 kg/m3)(9.81m/52)[2.67(0.08m)—0.87(0.65m)]( LKN J( 1kPa j

1000 kg - m/s® \ 1kN/m?
=-3.45 kPa
Therefore, the pressure reading of the left gage is 3.45 kPa lower than that of the right gage.
Air
Manometer \/1
fluid, SG=2.67 l —
\ Qil
N | SG=0.87
PZ/ P1/

Discussion  The negative pressure difference indicates that the pressure differential across the oil level is greater than
the pressure differential corresponding to the differential height of the manometer fluid.
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Chapter 3 Pressure and Fluid Statics
3-135
Solution An oil pipeline and a rigid air tank are connected to each other by a manometer. The pressure in the
pipeline and the change in the level of manometer fluid due to a air temperature drop are to be determined.

Assumptions 1 All the liquids are incompressible. 2 The effect of air column on pressure is negligible. 3 The air volume
in the manometer is negligible compared with the volume of the tank.

Properties The specific gravities are given to be 2.68 for oil and 13.6 for mercury. We take the standard density of
water to be p,, = 1000 kg/m®. The gas constant of air is 0.287 kPa-m*/kg-K.

Analysis (a) Starting with the oil pipe and moving along the tube by adding (as we go down) or subtracting (as we
go up) the pgh terms until we reach the air tank, and setting the result equal to P,; give
Poil +poilghoil *+ Pug thg = Pair
The absolute pressure in the air tank is determined from the ideal-gas relation P V= mRT to be
3

P - mRT _ (15kg)(0.287 kPa-m /l(g K)(80+273)K _ 1169 kPa

\ 1.3m
Then the absolute pressure in the oil pipe becomes

Fy = By = Poi&hyy = Prig&hg

1 kN 1 kPa
=1169 kPa —(1000 kg/m*)(9.81 m/s®)| 2.68(0.75 m) +13.6(0.20 m
( J )( )[268( ) ( )}(1000 kg - m/s? J(l kN/mzj

=1123 kPa = 1120 kPa
(b) The pressure in the air tank when the temperature drops to 20°C becomes
_ mRT _ (15kg)(0.287 kPa - m3/kg - K)(20 + 273)K

@y 1.3m?
When the mercury level in the left arm drops a distance x, the rise in the mercury level in the right arm y becomes

Viw =Viign —  73d)’x=m’y >  y=9x and y,,, =9xsin50°

=970 kPa

and the mercury fluid height will change by x +9xsin50° or 7.894x. Then,

P —-P,
Pt + Poit € (hyy +X)+ prigg g —7.894x) = Py, — SG (hyy +x)+SG (hy, —7.894x) = a"p—gm'
Substituting,
_ . 2 2
2.68(0.75-+ x) +13.6(0.20 — 7.894x) = — /0 13123) kPa . 1000kg - m/s” | 1kN/m
(1000 kg/m*®)(9.81m/s<) 1kN 1kPa
which vyields x=0.194m=19.4cm. Therefore, the oil-mercury
interface will drop 19.4 cm as a result of the temperature drop of air.
B
Air, 80 °C

Discussion Note that the pressure in constant-volume gas chambers is very sensitive to temperature changes.
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Chapter 3 Pressure and Fluid Statics
3-136
Solution The density of a wood log is to be measured by tying lead weights to it until both the log and the weights
are completely submerged, and then weighing them separately in air. The average density of a given log is to be determined
by this approach.

Properties The density of lead weights is given to be 11,300 kg/m®. We take the density of water to be 1000 kg/m®.

Analysis The weight of a body is equal to the buoyant force when the body is floating in a fluid while being
completely submerged in it (a consequence of vertical force balance from static equilibrium). In this case the average
density of the body must be equal to the density of the fluid since

W=Fg = Proy&Y =Piic&Y > Phody = Priuid

Lead, 34 kg
Therefore, -
Miotal _ Milead + Miog Migag + Mg
Dove = = = puaer = Viog =Vieag +— Log, 1540 N
e Vtotal Vlead +Vlog e % « Pwater
where lFB
Water
Vigyg = eas ___ 34K ~=301x10° m®
Plead 11,300 kg/m
o Mg _ 1540N 1kg-m/s® _157.0kg
0T 9.81mis? 1N '

Substituting, the volume and density of the log are determined to be

m +m
Viog =Viead + —o——% ~3,01x10° m* +w =0.194m3
Pwater 1000 kg/m
Myog 157 kg 3
Prog =—2 =L __ 809 kg/m
9" Vig  0.194m3

Discussion Note that the log must be completely submerged for this analysis to be valid. Ideally, the lead weights must
also be completely submerged, but this is not very critical because of the small volume of the lead weights.
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Chapter 3 Pressure and Fluid Statics
3-137 [Also solved using EES on enclosed DVD]
Solution A rectangular gate that leans against the floor with an angle of 45° with the horizontal is to be opened from
its lower edge by applying a normal force at its center. The minimum force F required to open the water gate is to be
determined.

Assumptions 1 Atmospheric pressure acts on both sides of the gate, and thus it can be ignored in calculations for
convenience. 2 Friction at the hinge is negligible.

Properties We take the density of water to be 1000 kg/m? throughout.

Analysis The length of the gate and the distance of the upper edge of the gate (point B) from the free surface in the
plane of the gate are

3m 0.5m
g =

=— =4.243m and =— =0.7071m
sin 45° sin 45°

The average pressure on a surface is the pressure at the centroid (midpoint) of Fr
the surface, and multiplying it by the plate area gives the resultant hydrostatic 0.5m
on the surface,

F,=P, A= pgh.A4

avg
3m

1kN
= (1000 kg/m*)(9.81 m/s* )(2 m)(5x4.243 mz)(w} a5

A =

=416 kN

The distance of the pressure center from the free surface of water along the plane of
the gate is

b b? 4.243 4.243%

s+—+——=0.7071+ + =3.359m
2 12(s+b/2) 2 12(0.7071+4.243/ 2)

yp =

The distance of the pressure center from the hinge at point B is
Lp=yp—-5s=3.359-0.7071=2.652 m

Taking the moment about point B and setting it equal to zero gives
D My=0 > Fpl,=Fbl2
Solving for F and substituting, the required force is determined to be

_2FgLp _ 2(416kN)@2652m) _ o0
b 4.243m

F

Discussion  The applied force is inversely proportional to the distance of the point of application from the hinge, and
the required force can be reduced by applying the force at a lower point on the gate.
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Chapter 3 Pressure and Fluid Statics
3-138
Solution A rectangular gate that leans against the floor with an angle of 45° with the horizontal is to be opened from
its lower edge by applying a normal force at its center. The minimum force F required to open the water gate is to be
determined.

Assumptions 1 Atmospheric pressure acts on both sides of the gate, and thus it can be ignored in calculations for
convenience. 2 Friction at the hinge is negligible.

Properties We take the density of water to be 1000 kg/m? throughout.

Analysis The length of the gate and the distance of the upper edge of the gate
(point B) from the free surface in the plane of the gate are
3m 1.2m
S =

b=— =4243m and - =1.697m F
sin 45° sin 45° R

12m

The average pressure on a surface is the pressure at the centroid (midpoint) of the
surface, and multiplying it by the plate area gives the resultant hydrostatic on the B

surface,
3m

|

F, =P, A= pgh.A e

avg
1 kN J 4 \

1000 kg - m/s®

= (1000 kg/m*)(9.81 m/s* )(2.7 m)(5x 4.243 m2)£

=562 kN
The distance of the pressure center from the free surface of water along the plane of
the gate is
2 2
Vp :s+—+b—:1.697+4'243+ 4.243 =4211m
2 12(s+b/2) 2 12(1.697+4.243/2)

The distance of the pressure center from the hinge at point B is
Lp=yp—s=4211-1697=2514m

Taking the moment about point B and setting it equal to zero gives
Y My=0 > Fpl,=Fbl2

Solving for F and substituting, the required force is determined to be

5 2Falp _ 2(562N)(2.514 m)
b 4.243m

=666 kN

Discussion  The applied force is inversely proportional to the distance of the point of application from the hinge, and
the required force can be reduced by applying the force at a lower point on the gate.
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Chapter 3 Pressure and Fluid Statics
3-139
Solution A rectangular gate hinged about a horizontal axis along its upper edge is restrained by a fixed ridge at point
B. The force exerted to the plate by the ridge is to be determined.

Assumptions  Atmospheric pressure acts on both sides of the gate, and thus it can be ignored in calculations for
convenience.

Properties We take the density of water to be 1000 kg/m?® throughout.

Analysis The average pressure on a surface is the pressure at the centroid
(midpoint) of the surface, and multiplying it by the plate area gives the resultant
hydrostatic force on the gate,

F, =P, A= pgh.A

avg

= (1000 kg/m?® )(9.81 m/s? )(3.5 ) (3x6 mz)( 1kN ] b

1000 kg - m/s?

=618 kN

The vertical distance of the pressure center from the free surface of water is
Fr
2 2
spby 07 5.3, ¥ _34m -
2 12(s+b/2) 2 12(2+3/2)

Yp =

Discussion You can calculate the force at point B required to hold back the gate by setting the net moment around
hinge point 4 to zero.

3-140
Solution A rectangular gate hinged about a horizontal axis along its upper edge is restrained by a fixed ridge at point
B. The force exerted to the plate by the ridge is to be determined.

Assumptions Atmospheric pressure acts on both sides of the gate, and thus it can be ignored in calculations for
convenience.

Properties We take the density of water to be 1000 kg/m? throughout.

Analysis The average pressure on a surface is the pressure at the centroid
(midpoint) of the surface, and multiplying it by the wetted plate area gives the resultant
hydrostatic force on the gate,

Fy =P, A= pgh. A

ave

1KN
= (1000 kg/m®)(9.81m/s?)(Lm)[2x6m? ]| ———
( g/m=)( YAm)[ ](1000kg~m/szj

=118 kN

The vertical distance of the pressure center from the free surface of water is

_2h_2(2m)
yp = 3 3

=133 m

Discussion Compared to the previous problem (with higher water depth), the force is much smaller, as expected. Also,
the center of pressure on the gate is much lower (closer to the ground) for the case with the lower water depth.
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Chapter 3 Pressure and Fluid Statics

3-141E

Solution A semicircular tunnel is to be built under a lake. The total hydrostatic force acting on the roof of the tunnel
is to be determined.

Assumptions  Atmospheric pressure acts on both sides of the F,

tunnel, and thus it can be ignored in calculations for convenience.

Properties We take the density of water to be 62.4 lom/ft® l l l l l l
throughout. 3 > <
Analysis We consider the free body diagram of the liquid F. — » F,
block enclosed by the circular surface of the tunnel and its vertical = >/ B <
(on both sides) and horizontal projections. The hydrostatic forces ,’ k=151t 1(5

acting on the vertical and horizontal plane surfaces as well as the ;

weight of the liquid block are determined as follows:

Horizontal force on vertical surface (each side):

Fy=F, =P,A=pgh.A=pg(s+R/2)4
= (62.4 Ibm/ft*)(32.2 ft/s” ) (135+15/2 ft)(15 ft x800 ft) LZ
32.2 Ibm-ft/s
=1.067x10° Ibf (on each side of the tunnel)

Vertical force on horizontal surface (downward):
F,=R,A=pgh.A=pghyA
= (62.4 Ibm/ft* )(32.2 ft/s” ) (135 ft)(30 ft x800 ﬁ)(L)

32.2 Ibm - ft/s®
=2.022x10° Ibf

Weight of fluid block on each side within the control volume (downward):
W =mg = pgV = pg(R? - zR? | 4)(2000 ft)
11bf
= (62.4 Ibm/ft3)(32.2 ft/s?)(15 ft) > (1- 2/4)(800 ft (—j
( ) (A5 “( ) ) 322 o fU<2
=2.410x10° Ibf (on eachside)

Therefore, the net downward vertical force is
F, = F,+2W =2.022x10° + 2x 0.02410x10° = 2.07 x 10° |bf

This is also the net force acting on the tunnel since the horizontal forces acting on the right and left side of the tunnel
cancel each other since they are equal and opposite.

Discussion  The weight of the two water bocks on the sides represents only about 2.4% of the total vertical force on the
tunnel. Therefore, to obtain a reasonable first approximation for deep tunnels, these volumes can be neglected, yielding F)
=2.02 x 10° Ibf. A more conservative approximation would be to estimate the force on the bottom of the lake if the tunnel
were not there. This yields F; = 2.25 x 108 Ibf. The actual force is between these two estimates, as expected.
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Chapter 3 Pressure and Fluid Statics
3-142
Solution A hemispherical dome on a level surface filled with water is to be lifted by attaching a long tube to the top
and filling it with water. The required height of water in the tube to lift the dome is to be determined.

Assumptions 1 Atmospheric pressure acts on both sides of the dome, and thus it can be ignored in calculations for
convenience. 2 The weight of the tube and the water in it is negligible.

Properties We take the density of water to be 1000 kg/m? throughout.

Analysis We take the dome and the water in it as the system. When the dome is about to rise, the reaction force
between the dome and the ground becomes zero. Then the free body diagram of this system involves the weights of the
dome and the water, balanced by the hydrostatic pressure force from below. Setting these forces equal to each other gives

ZFy:O: FV:Wd017ze+W

water

,Og(h +R)7ZR2 =Mgome8 +mwaterg

Solving for 4 gives h

h= M Gome +mwater —R= M dome +p[47[R3 /6] —R

,oer2 ,o;zR2
R=3m
Substituting,
3 3
e (50,000 kg) +47r(10030 kg/m )2(3 m°/6 (3m)=0.77m I
(1000 kg/m*)z(3 m) T T' T T T T

Therefore, this dome can be lifted by attaching a tube which is 77 cm long. Fy

Discussion Note that the water pressure in the dome can be changed greatly
by a small amount of water in the vertical tube.
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Chapter 3 Pressure and Fluid Statics
3-143
Solution The water in a reservoir is restrained by a triangular wall. The total force (hydrostatic + atmospheric) acting
on the inner surface of the wall and the horizontal component of this force are to be determined.

Assumptions 1 Atmospheric pressure acts on both sides of the gate, and thus it can be ignored in calculations for
convenience. 2 Friction at the hinge is negligible.

Properties We take the density of water to be 1000 kg/m?
throughout.

Analysis The length of the wall surface underwater is

p=22" _r887m

sin 60° h=l25m

The average pressure on a surface is the pressure at the centroid
(midpoint) of the surface, and multiplying it by the plate area gives
the resultant hydrostatic force on the surface,

Fy = Pyyd=(Pyy + peh. ) 4

avg

= [100,000 N/m” +(1000 kg/m® )(9.81 m/s*)(12.5 m) | (150 28.87 mz)[iz]

1 kg-m/s
=9.64x10° N
Noting that
2 2
}_’0 _ 102,000 N/m : 1kg-m/s 11.77m
pgsin60° (1000 kg/m*)(9.81m/s*)sin 60° 1IN

the distance of the pressure center from the free surface of water along the wall surface is

b b2 28.87m (28.87 m)?
Yy =s+_+ =0+

+
s 2, T 2 12(0+ 2887TM 1177 m)
2 pgsing 2

=17.1m

The magnitude of the horizontal component of the hydrostatic force is simply Fsin 0,
Fy = Fpsin@ = (9.64x10% N)sin60° = 8.35x10% N

Discussion  Atmospheric pressure is usually ignored in the analysis for convenience since it acts on both sides of the
walls.
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3-144
Solution A U-tube that contains water in its right arm and another liquid in its left arm is rotated about an axis closer
to the left arm. For a known rotation rate at which the liquid levels in both arms are the same, the density of the fluid in the
left arm is to be determined. |

Assumptions 1 Both the fluid and the water are incompressible fluids. 2 The @
two fluids meet at the axis of rotation, and thus there is only water to the right of :
the axis of rotation. i
Fluid! Water| |1*
Properties We take the density of water to be 1000 kg/m®. ™

Analysis The pressure difference between two points 1 and 2 in an
incompressible fluid rotating in rigid body motion (the same fluid) is given by

h=[10 cm

2
[0}
PO —r2)-pglz, —21)

P,-P =
2 2 z

where ;

PRI

=21 = 27(30 rev/min)(lmm
60s

j =3.14 rad/s -
R1|=5cm R,=15¢cm !

(for both arms of the U-tube).

The pressure at point 2 is the same for both fluids, so are the pressures at points 1 and 1* (P; = P;* = Pyy). Therefore,

P, — P, is the same for both fluids. Noting that z, —z; = —A for both fluids and expressing P, — P, for each fluid,

Py
2
2

P r@
o (0=RE)=p gl-h) = p; (-0 R] 12+ gh)

Water: P, —P*= (0-R2)—p, g(-h) = p,, (~w*R3 | 2+ gh)

Fluid: P, —P, =

Setting them equal to each other and solving for o, gives

- —'R:/2+gh _ —(314radis)’ (0.15 m)*+(9.81 m/s*)(0.10 m)
" ~w’RI/2+gh”" —(3.14 radfs)’ (0.05 m)° +(9.81m/s* )(0.10 m)

(1000 kg/m*) =794 kg/m®

Discussion Note that this device can be used to determine relative densities, though it wouldn’t be very practical.
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3-145
Solution A vertical cylindrical tank is completely filled with gasoline, and the tank is rotated about its vertical axis at
a specified rate while being accelerated upward. The pressures difference between the centers of the bottom and top
surfaces, and the pressures difference between the center and the edge of the bottom surface are to be determined.

Assumptions 1 The increase in the rotational speed is very slow so
that the liquid in the container always acts as a rigid body. 2 Gasoline
is an incompressible substance.

Properties The density of the gasoline is given to be 740 kg/m®.

Analysis The pressure difference between two points 1 and 2 in 5 m/s?

an incompressible fluid rotating in rigid body motion is given by

po’
2

acceleration in the vertical direction is accounted for by replacing g by

g+a,.Then,

P,—P, = (r -r2)-pg(zy—z). The effect of linear

pw’
2

where R = 0.50 m is the radius, and

P -P = (rf —r’)-plg+a.)(z, —2)

o= 271 = 272(90 rev/min)(lmm
60s

j =9.425rad/s

(@) Taking points 1 and 2 to be the centers of the bottom and top surfaces, respectively, we have r, =r, =0 and
z,—zy =h=3m. Then,

Pcenter,top ~ Lcenter, bottom = O_p(g+az)(22 _Zl) = —p(g+az)h
1kN

= —(740 kg/m*)(9.81m/s? +5)(2 m)| ————
(740 kg/m™X 4 )(IOOOkg-m/sz

J =21.8kN/m? =21.9 kPa

(b) Taking points 1 and 2 to be the center and edge of the bottom surface, respectively, we have » =0, », =R, and
Zzzzl:O.Then,
p ,oa)zR2

edge, bottom

-P,

center, bottom

(740 kg/m®)(9.425 rad/s)® (0.50 m)? 1kN
2 1000 kg - m/s?

2
=%(R22 ~0)-0=

J =8.22kN/m? =8.22 kPa

Discussion Note that the rotation of the tank does not affect the pressure difference along the axis of the tank.
Likewise, the vertical acceleration does not affect the pressure difference between the edge and the center of the bottom
surface (or any other horizontal plane).
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3-146
Solution A rectangular water tank open to the atmosphere is accelerated to the right on a level surface at a specified
rate. The maximum pressure in the tank above the atmospheric level is to be determined.

Vent
15 =~
T~ 2
~
S - - >
ho=2.5(m Water S~J a=2ms
tank
1

L=5m

Assumptions 1 The road is horizontal during acceleration so that acceleration has no vertical component (a, = 0). 2
Effects of splashing, breaking and driving over bumps are assumed to be secondary, and are not considered. 3 The vent is
never blocked, and thus the minimum pressure is the atmospheric pressure.

Properties We take the density of water to be 1000 kg/m®.

Analysis We take the x-axis to be the direction of motion, the z-axis to be the upward vertical direction. The tangent
of the angle the free surface makes with the horizontal is
a 2
tang=—>=—= =0.2039 (and thus 6 = 11.5°)
g+a, 9.81+0

The maximum vertical rise of the free surface occurs at the back of the tank, and the vertical midsection experiences no rise
or drop during acceleration. Then the maximum vertical rise at the back of the tank relative to the neutral midplane is

Az e = (L12) tan @ = [(5m)/2]x 0.2039 = 0.510 m

which is less than 1.5 m high air space. Therefore, water never reaches the ceiling, and the maximum water height and the
corresponding maximum pressure are

By = ho + Az ;= 2.50+0.510 =3.01m
1kN
1000 kg - m/s?

Discussion It can be shown that the gage pressure at the bottom of the tank varies from 29.5 kPa at the back of the tank
to 24.5 kPa at the midsection and 19.5 kPa at the front of the tank.

Prax = P, = pghys, = (1000 kg/m®)(9.81m/s?)(3.01 m){ ] =29.5kN/m? =29.5kPa
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3-147 E%r
Solution The previous problem is reconsidered. The effect of acceleration on the slope of the free surface of water in

the tank as the acceleration varies from 0 to 5 m/s” in increments of 0.5 m/s? is to be investigated.

Analysis The EES Equations window is printed below, followed by the tabulated and plotted results.

0=9.81 "m/s2"
rho=1000 "kg/m3"
L=5 "m"
h0=2.5"m"

a z=0

tan(theta)=a_x/(g+a_2)
h_max=h0+(L/2)*tan(theta)
P_max=rho*g*h_max/1000 "kPa"

Acceleration Free surface Maximum height | Maximum pressure
Ay, m/32 angle, & Hmax, M Praxs kPa
0.0 0.0 2.50 24.5
0.5 2.9 2.63 25.8
1.0 5.8 2.75 27.0
15 8.7 2.88 28.3
2.0 115 3.01 29.5
2.5 14.3 3.14 30.8
3.0 17.0 3.26 32.0
3.5 19.6 3.39 333
4.0 22.2 3.52 345
45 24.6 3.65 35.8
5.0 27.0 3.77 37.0

30

25| A
_ /

| e

10 //
5 /1
0 L L L L L
0 1 2 3 4 5

2
ay , m/s

Discussion Note that water never reaches the ceiling, and a full free surface is formed in the tank.
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3-148
Solution An elastic air balloon submerged in water is attached to the base of the tank. The change in the tension
force of the cable is to be determined when the tank pressure is increased and the balloon diameter is decreased in
accordance with the relation P = CD™.

Assumptions 1 Atmospheric pressure acts on all surfaces, and thus it can be P;=100 kPa
ignored in calculations for convenience. 2 Water is an incompressible fluid. 3
The weight of the balloon and the air in it is negligible.

Properties We take the density of water to be 1000 kg/m®.

Analysis The tension force on the cable holding the balloon is determined
from a force balance on the balloon to be
Water

Fcable = FB _Wballoon = FB

The buoyancy force acting on the balloon initially is
DS 0.30m)?
Fa = PV st = P8 ot = (1000 kgim?)(@.81mis?) ZOXM) N ) _1567
: ’ 6 6 1kg-m/s

The variation of pressure with diameter is given as P = CD 2, which is equivalent to D =+/C/ P . Then the final diameter
of the ball becomes

JCTP,
Do NOT% 1A p_p, [ (030m) [9MPR 6 675m
D, [C] P, P, P, 1.6 MPa

The buoyancy force acting on the balloon in this case is

3 3
Fiz = PV stz = Pug o2 = (1000 kg/m?®)(@.81mis2) ZOOM [ IN |55y
6 6 1kg-m/s

Then the percent change in the cable for becomes

F —
*100 = 52 %100 = %*100 =98.4%.

cable,1 FB,l

Fcable,l _Fcable,Z FB,l -

Change% =

Therefore, increasing the tank pressure in this case results in 98.4% reduction in cable tension.

Discussion ~ We can obtain a relation for the change in cable tension as follows:

Pw gvballoon,l ~Pw ngaIIoon,Z

Fp —F
Change% = —21~ 52 x100 =

Bl pwgvballoon,l

Vv D3 p 32
=100 1- 202 | 100(1—-@} =100 1- [—1J
Vballoon,l D1 PZ

*100
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3-149 @F
Solution The previous problem is reconsidered. The effect of the air pressure above the water on the cable force as
the pressure varies from 0.1 MPa to 10 MPa is to be investigated.
Analysis The EES Equations window is printed below, followed by the tabulated and plotted results.
P1=0.1 "MPa"
Change=100*(1-(P1/P2)*1.5)
100
Tank pressure %Change in
P,, MPa cable tension
0.1 0.0 80
0.2 64.6
0.3 80.8
0.4 87.5 © 60
0.6 93.2 S
v a6 &
' c 40
2 98.9 o
3 99.4 ?
4 99.6
©
5 99.7 c 20
6 99.8 o
7 99.8 0
g ggg 0 2 4 6 8 10
10 99.9 P2, MPa

Discussion  The change in cable tension is at first very rapid, but levels off as the balloon shrinks to nearly zero
diameter at high pressure.

3-150
Solution An iceberg floating in seawater is considered. The volume fraction of the iceberg submerged in seawater is
to be determined, and the reason for their turnover is to be explained.

Assumptions 1 The buoyancy force in air is negligible. 2 The density of iceberg and seawater are uniform.

Properties The densities of iceberg and seawater are given to be 917 kg/m? and 1042 kg/m?, respectively.

Analysis (a) The weight of a body floating in a fluid is equal to the buoyant force acting on it (a consequence of
vertical force balance from static equilibrium). Therefore,
W = FB
vV _ oV Iceberg
Phbody &V total = Piuid &V submerged Sea

\V .
submerged _ pbody _ plceberg _ 917 —0.880 or 88% w

Vtotal Prluid Pseawater 1042

Therefore, 88% of the volume of the iceberg is submerged in this case.

(b) Heat transfer to the iceberg due to the temperature difference between the
seawater and an iceberg causes uneven melting of the irregularly shaped iceberg.

The resulting shift in the center of mass causes the iceberg to turn over. s

Discussion  The submerged fraction depends on the density of seawater, and this fraction can differ in different seas.
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3-151
Solution A cylindrical container equipped with a manometer is inverted and pressed into water. The differential
height of the manometer and the force needed to hold the container in place are to be determined.

F

L .
h Manometer fluid
/ SG=2.1
Air “
D=30cm
20cm Water
4, B,

Assumptions 1 Atmospheric pressure acts on all surfaces, and thus it can be ignored in calculations for convenience. 2
The variation of air pressure inside cylinder is negligible.

Properties We take the density of water to be 1000 kg/m®. The density of the manometer fluid is

Prano =SG x p,, = 2.1(1000 kg/m® ) = 2100 kg/m’

Analysis The pressures at point 4 and B must be the same since they are on the same horizontal line in the same
fluid. Then the gage pressure in the cylinder becomes

AN} 1962 N/m? 1962 Pa
1kg-m/s

The manometer also indicates the gage pressure in the cylinder. Therefore,

P

air, gage

= p,gh, =(1000 kg/m®)(9.81 m/s>)(0.20 m)(

Bague = (P& )y = 1= imggg " (2100 i:/GrEJ)\I(/gme:l mis?) (11 IT?N/mrn/fz j =00950m=9.50cm
A force balance on the cylinder in the vertical direction yields
F+W =P g4,
Solving for F and substituting,
F =Py e ”TDZ—W = (1962 N/mz)M—m N =59.7N

Discussion ~ We could also solve this problem by considering the atmospheric pressure, but we would obtain the same
result since atmospheric pressure would cancel out.
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Design and Essay Problems

3-152
Solution We are to discuss the design of shoes that enable people to walk on water.

Discussion Students’ discussions should be unique and will differ from each other.

3-153
Solution We are to discuss how to measure the volume of a rock without using any volume measurement devices.
Analysis The volume of a rock can be determined without using any volume measurement devices as follows: We

weigh the rock in the air and then in the water. The difference between the two weights is due to the buoyancy force, which
isequal to Fg = Pyater &Y pogy - SOIVING this relation for Ve gives the volume of the rock.

Discussion Since this is an open-ended design problem, students may come up with different, but equally valid
techniques.
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Chapter 4 Fluid Kinematics

Introductory Problems

4-1C
Solution We are to define and explain kinematics and fluid kinematics.
Analysis Kinematics means the study of motion. Fluid kinematics is the study of how fluids flow and how to

describe fluid motion. Fluid kinematics deals with describing the motion of fluids without considering (or even
understanding) the forces and moments that cause the motion.

Discussion Fluid kinematics deals with such things as describing how a fluid particle translates, distorts, and rotates,
and how to visualize flow fields.

4-2
Solution We are to write an equation for centerline speed through a nozzle, given that the flow speed increases
parabolically.

Assumptions 1 The flow is steady. 2 The flow is axisymmetric. 3 The water is incompressible.
Analysis A general equation for a parabola in the x direction is
General parabolic equation: u= a+b(x—c)2 Q)

We have two boundary conditions, namely at X = 0, U = Uengance @aNd at X = L, U = Ugyit. By inspection, Eq. 1 is satisfied by
setting ¢ = 0, & = Uengrance aNA b = (Ueit - Uentrance)/L2. Thus, Eq. 1 becomes

U, —U
Parabolic speed: u=u +(ex"—e”‘””°e)x2 (2

— “entrance Lz

Discussion  You can verify Eq. 2 by plugging in x =0 and x = L.

4-3
Solution For a given velocity field we are to find out if there is a stagnation point. If so, we are to calculate its
location.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is

V =(u,v)=(05+1.2x)i +(-2.0-1.2y) @)
At a stagnation point, both u and v must equal zero. At any point (x,y) in the flow field, the velocity components u and v are
obtained from Eq. 1,

Velocity components: u=0.5+1.2x v=-2.0-1.2y 2

Setting these to zero yields
0=0.5+1.2x x =-0.4167

Stagnation point:
gnation pol 0=-20-12y  y=-1667 ©)

So, yes there is a stagnation point; its location is x =-0.417, y = -1.67 (to 3 digits).

Discussion If the flow were three-dimensional, we would have to set w = 0 as well to determine the location of the
stagnation point. In some flow fields there is more than one stagnation point.
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4-4
Solution For a given velocity field we are to find out if there is a stagnation point. If so, we are to calculate its
location.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is

V:(u,v):(az—(b—cx)2)7+(—2cby+202xy)J (1)

At a stagnation point, both u and v must equal zero. At any point (x,y) in the flow field, the velocity components u and v are
obtained from Eq. 1,

Velocity components: u=a’—(b- cx)2 v = —2cby + 2¢*xy )

Setting these to zero and solving simultaneously yields

. . O:az—(b—cx)2 X=—
Stagnation point: c 3)

v=-2cby+2c’xy y=0
So, yes there is a stagnation point; its location is x = (b —a)/c,y = 0.

Discussion If the flow were three-dimensional, we would have to set w = 0 as well to determine the location of the
stagnation point. In some flow fields there is more than one stagnation point.

Lagrangian and Eulerian Descriptions

4-5C
Solution We are to define the Lagrangian description of fluid motion.
Analysis In the Lagrangian description of fluid motion, individual fluid particles (fluid elements composed of a

fixed, identifiable mass of fluid) are followed.

Discussion  The Lagrangian method of studying fluid motion is similar to that of studying billiard balls and other solid
objects in physics.

4-6C
Solution We are to compare the Lagrangian method to the study of systems and control volumes and determine to
which of these it is most similar.

Analysis The Lagrangian method is more similar to system analysis (i.e., closed system analysis). In both cases,
we follow a mass of fixed identity as it moves in a flow. In a control volume analysis, on the other hand, mass moves into
and out of the control volume, and we don’t follow any particular chunk of fluid. Instead we analyze whatever fluid
happens to be inside the control volume at the time.

Discussion In fact, the Lagrangian analysis is the same as a system analysis in the limit as the size of the system shrinks
to a point.
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4-7C

Solution We are to define the Eulerian description of fluid motion, and explain how it differs from the Lagrangian
description.

Analysis In the Eulerian description of fluid motion, we are concerned with field variables, such as velocity,

pressure, temperature, etc., as functions of space and time within a flow domain or control volume. In contrast to the
Lagrangian method, fluid flows into and out of the Eulerian flow domain, and we do not keep track of the motion of
particular identifiable fluid particles.

Discussion ~ The Eulerian method of studying fluid motion is not as “natural” as the Lagrangian method since the
fundamental conservation laws apply to moving particles, not to fields.

4-8C
Solution We are to determine whether a measurement is Lagrangian or Eulerian.
Analysis Since the probe is fixed in space and the fluid flows around it, we are not following individual fluid

particles as they move. Instead, we are measuring a field variable at a particular location in space. Thus this is an Eulerian
measurement.

Discussion If a neutrally buoyant probe were to move with the flow, its results would be Lagrangian measurements —
following fluid particles.

4-9C
Solution We are to determine whether a measurement is Lagrangian or Eulerian.
Analysis Since the probe moves with the flow and is neutrally buoyant, we are following individual fluid particles as

they move through the pump. Thus this is a Lagrangian measurement.

Discussion If the probe were instead fixed at one location in the flow, its results would be Eulerian measurements.

4-10C
Solution We are to determine whether a measurement is Lagrangian or Eulerian.
Analysis Since the weather balloon moves with the air and is neutrally buoyant, we are following individual “fluid

particles” as they move through the atmosphere. Thus this is a Lagrangian measurement. Note that in this case the “fluid
particle” is huge, and can follow gross features of the flow — the balloon obviously cannot follow small scale turbulent
fluctuations in the atmosphere.

Discussion ~ When weather monitoring instruments are mounted on the roof of a building, the results are Eulerian
measurements.

4-11C
Solution We are to determine whether a measurement is Lagrangian or Eulerian.
Analysis Relative to the airplane, the probe is fixed and the air flows around it. We are not following individual fluid

particles as they move. Instead, we are measuring a field variable at a particular location in space relative to the moving
airplane. Thus this is an Eulerian measurement.

Discussion  The airplane is moving, but it is not moving with the flow.
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4-12C
Solution We are to compare the Eulerian method to the study of systems and control volumes and determine to
which of these it is most similar.

Analysis The Eulerian method is more similar to control volume analysis. In both cases, mass moves into and out
of the flow domain or control volume, and we don’t follow any particular chunk of fluid. Instead we analyze whatever fluid
happens to be inside the control volume at the time.

Discussion In fact, the Eulerian analysis is the same as a control volume analysis except that Eulerian analysis is
usually applied to infinitesimal volumes and differential equations of fluid flow, whereas control volume analysis usually
refers to finite volumes and integral equations of fluid flow.

4-13C

Solution We are to define a steady flow field in the Eulerian description, and discuss particle acceleration in such a
flow.

Analysis A flow field is defined as steady in the Eulerian frame of reference when properties at any point in the

flow field do not change with respect to time. In such a flow field, individual fluid particles may still experience non-zero
acceleration — the answer to the question is yes.

Discussion  Although velocity is not a function of time in a steady flow field, its total derivative with respect to time
(é = d\7/dt) is not necessarily zero since the acceleration is composed of a local (unsteady) part which is zero and an

advective part which is not necessarily zero.

4-14C
Solution We are to list three alternate names for material derivative.
Analysis The material derivative is also called total derivative, particle derivative, Eulerian derivative,

Lagrangian derivative, and substantial derivative. “Total” is appropriate because the material derivative includes both
local (unsteady) and convective parts. “Particle” is appropriate because it stresses that the material derivative is one
following fluid particles as they move about in the flow field. “Eulerian” is appropriate since the material derivative is used
to transform from Lagrangian to Eulerian reference frames. “Lagrangian” is appropriate since the material derivative is
used to transform from Lagrangian to Eulerian reference frames. Finally, “substantial” is not as clear of a term for the
material derivative, and we are not sure of its origin.

Discussion  All of these names emphasize that we are following a fluid particle as it moves through a flow field.
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4-15
Solution We are to calculate the material acceleration for a given velocity field.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is
V=(uv)=(U,+bx)i —byj (1)
The acceleration field components are obtained from its definition (the material acceleration) in Cartesian coordinates,
ou ou ou ou
=—tU—+V—+W—
ot OX oy oz
o oV oV ov

a, :E+u&+va—y+W5:0+(U0 +bx)0+(-by)(~b)+0

a =0+(U, +bx)b+(-by)0+0

O]

where the unsteady terms are zero since this is a steady flow, and the terms with w are zero since the flow is two-
dimensional. Eq. 2 simplifies to

Material acceleration components: a, =b(U, +bx) a, =b’y ‘ ®3)

In terms of a vector,

Material acceleration vector: ‘é =h(U, +bx)i +b*yj ‘ 4)

Discussion For positive x and b, fluid particles accelerate in the positive x direction. Even though this flow is steady,
there is still a non-zero acceleration field.

4-16
Solution For a given pressure and velocity field, we are to calculate the rate of change of pressure following a fluid
particle.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.

Analysis The pressure field is
inld- _p_P 2(y2 2
Pressure field: P=PR -3 [Zuobx+b (x*+y )] 1)

By definition, the material derivative, when applied to pressure, produces the rate of change of pressure following a fluid
particle. Using Eq. 1 and the velocity components from the previous problem,

DP 0 oP  oP o)
—= +U—+V—+ W
Dt OX oy oz
ey by 0]
eady Two-dimensional

=(U,+ bX)(—pUOb - pbzx)+(—by)(—pb2y)

where the unsteady term is zero since this is a steady flow, and the term with w is zero since the flow is two-dimensional.
Eq. 2 simplifies to the following rate of change of pressure following a fluid particle:

Discussion  The material derivative can be applied to any flow property, scalar or vector. Here we apply it to the
pressure, a scalar quantity.
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Chapter 4 Fluid Kinematics

4-17
Solution For a given velocity field we are to calculate the acceleration.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.
Analysis The velocity components are
Velocity components: u=11+2.8x+0.65y v=0.98-2.1x-2.8y (1)

The acceleration field components are obtained from its definition (the material acceleration) in Cartesian coordinates,

= Zt—u+u2—i+v%+wg—;J =0+(1.1+2.8x+0.65y)(2.8)+(0.98—2.1x— 2.8y)(0.65)+0

a, = %4— u%+v%+ W% =0+(1.1+2.8x+0.65y)(-2.1)+(0.98— 2.1x— 2.8y ) (-2.8) +0

a

()

where the unsteady terms are zero since this is a steady flow, and the terms with w are zero since the flow is two-
dimensional. Eqg. 2 simplifies to

Acceleration components:

a,=3.717+6475x  a, =-5054+6.475y] @A)

At the point (x,y) = (-2,3), the acceleration components of Eq. 3 are
Acceleration components at (-2,3): a, =-9.233=-9.23 a, =14.371=144

Discussion  The final answers are given to three significant digits. No units are given in either the problem statement or
the answers. We assume that the coefficients have appropriate units.

4-18
Solution For a given velocity field we are to calculate the acceleration.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity components are
Velocity components: u=0.20+1.3x+0.85y v=-0.50+0.95x-1.3y (1)

The acceleration field components are obtained from its definition (the material acceleration) in Cartesian coordinates,

a, = 6_u+ u 6_u+ va—u+ WZ—LZJ =0+(0.20+1.3x+0.85y)(1.3) +(-0.50+0.95x—1.3y)(0.85) +0

et ox oy

a, = ﬂ+ u ﬂ+ vﬂ+ W(;_O\Z/ =0+(0.20+1.3x+0.85y)(0.95)+(—0.50+0.95x —1.3y)(-1.3) +0

YT et X dy

()

where the unsteady terms are zero since this is a steady flow, and the terms with w are zero since the flow is two-
dimensional. Eq. 2 simplifies to

Acceleration components:

a, =-0.165+24975x @, =0.84+24975y| @3)

At the point (x,y) = (1,2), the acceleration components of Eq. 3 are
Acceleration components at (1,2): a, =2.3325=2.33 a, =5.835=5.84

Discussion  The final answers are given to three significant digits. No units are given in either the problem statement or
the answers. We assume that the coefficients have appropriate units.
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Chapter 4 Fluid Kinematics
4-19
Solution We are to generate an expression for the fluid acceleration for a given velocity.

Assumptions 1 The flow is steady. 2 The flow is axisymmetric. 3 The water is incompressible.

Analysis In Problem 4-2 we found that along the centerline,

(uexit - uentrance) XZ

Speed along centerline of nozzle: U= Uy +T (1)

To find the acceleration in the x-direction, we use the material acceleration,

. . 15 ou 0 o)
Acceleration along centerline of nozzle: a, = +U—+ VA& + W, 2
OX oy oz

The first term in Eq. 2 is zero because the flow is steady. The last two terms are zero because the flow is axisymmetric,
which means that along the centerline there can be no v or w velocity component. We substitute Eq. 1 for u to obtain

. . au Ugie — U Ugir —U
Acceleration along centerline of nozzle: A =U—=| Uy e Jr(“”"—z‘*”"a””)x2 (2)(“"—;"“"”)x (3)
OX L L
or
a =2 (uexit - uentrance) 2 (uexit ~ Uentrance )2 3 (4)
X l"Ientrance Lz X+ L4 X

Discussion Fluid particles are accelerated along the centerline of the nozzle, even though the flow is steady.

4-20
Solution We are to write an equation for centerline speed through a diffuser, given that the flow speed decreases
parabolically.

Assumptions 1 The flow is steady. 2 The flow is axisymmetric.
Analysis A general equation for a parabola in x is
General parabolic equation: u= a+b(x—c)2 (1)

We have two boundary conditions, namely at X = 0, U = Ugnyrance @Nd at X = L, U = Ueir. By inspection, Eq. 1 is satisfied by
setting ¢ = 0, @ = Ugntrance @Nd b = (Ugyit - Uentrance)/L2. Thus, Eq. 1 becomes

(uexit ~ Uentrance ) x2 (2)

Parabolic speed: U = Ugnirance T E

Discussion You can verify Eq. 2 by plugging inx=0and x = L.
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Chapter 4 Fluid Kinematics
4-21
Solution We are to generate an expression for the fluid acceleration for a given velocity, and then calculate its value
at two x locations.

Assumptions 1 The flow is steady. 2 The flow is axisymmetric.

Analysis In the previous problem, we found that along the centerline,
Speed al terli £ diff . _ (uexil _uentrance) 2 (1)
peed along centerline of diffuser: U = Ugyrance TX

To find the acceleration in the x-direction, we use the material acceleration,

Acceleration along centerline of diffuser: a, = g +u6_u+ % 9 + wa 2
OX oy oz

The first term in Eq. 2 is zero because the flow is steady. The last two terms are zero because the flow is axisymmetric,
which means that along the centerline there can be no v or w velocity component. We substitute Eq. 1 for u to obtain

Acceleration along centerline of diffuser:

a_u _ (uemrame 4 (uexit B uentrance ) XZJ(Z) (uexit - uentrance) X

a =u =
g OX L’ L?
or
(uexit ~ Uenirance ) (uexit ~ Uentrance )2 3
a'X = Zuentrance L2 X + 2 L4 X (3)
At the given locations, we substitute the given values. At x =0,

Acceleration along centerline of diffuser at x = 0: a,(x=0)=0 (4)
Atx=1.0m,

Acceleration along centerline of diffuser at x = 1.0 m;
~25.0 m/ ~25.0 m/s)’
ﬂ(m m)+ 2&(

om)’ (20 m)’

a, (x=1.0 m)=2(30.0 m/s) m’ @)

=-297m/s’
Discussion  ay is negative implying that fluid particles are decelerated along the centerline of the diffuser, even though

the flow is steady. Because of the parabolic nature of the velocity field, the acceleration is zero at the entrance of the
diffuser, but its magnitude increases rapidly downstream.
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Chapter 4 Fluid Kinematics

Flow Patterns and Flow Visualization

4-22C
Solution We are to define streamline and discuss what streamlines indicate.
Analysis A streamline is a curve that is everywhere tangent to the instantaneous local velocity vector. It

indicates the instantaneous direction of fluid motion throughout the flow field.

Discussion If a flow field is steady, streamlines, pathlines, and streaklines are identical.

4-23
Solution For a given velocity field we are to generate an equation for the streamlines.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.
Analysis The steady, two-dimensional velocity field of Problem 4-15 is

Velocity field: V=(uv)=(U,+bx)i —=byj (1)
For two-dimensional flow in the x-y plane, streamlines are given by

dy)
dX along a streamline

We substitute the u and v components of Eg. 1 into Eq. 2 and rearrange to get

Streamlines in the x-y plane: Al 2
u

dy by
dx U, +bx

We solve the above differential equation by separation of variables:

dy o dx
_-[b_y_-[uo+bx

Integration yields

1 1 1
—=In(by)==In(U, +bx)+=InC 3
b ( Y) b ( 0 ) b 1 (3)
where we have set the constant of integration as the natural logarithm of some constant Cy, with a constant in front in order
to simplify the algebra (notice that the factor of 1/b can be removed from each term in Eq. 3). When we recall that In(ab) =
Ina + Inb, and that —Ina = In(1/a), Eq. 3 simplifies to

C
Equation for streamlines: y= (U, +bx) “)
0

The new constant C is related to Cy, and is introduced for simplicity.

Discussion Each value of constant C yields a unique streamline of the flow.
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Chapter 4 Fluid Kinematics
4-24E
Solution For a given velocity field we are to plot several
streamlines for a given range of x and y values.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in
the x-y plane.

Analysis From the solution to the previous problem, an equation
for the streamlines is
Streamlines in the x-y plane: y= _c 1

' (U, +bx) 1)

Constant C is set to various values in order to plot the streamlines.
Several streamlines in the given range of x and y are plotted in Fig. 1.
The direction of the flow is found by calculating u and v at
some point in the flow field. We choose x =1 ft, y = 1 ft. At this point u
= 9.6 ft/s and v = -4.6 ft/s. The direction of the velocity at this point is
obviously to the lower right. This sets the direction of all the
streamlines. The arrows in Fig. 1 indicate the direction of flow.

Discussion  The flow is type of converging channel flow.
FIGURE 1

Streamlines (solid blue curves) for the given
velocity field; x and y are in units of ft.

4-25C
Solution We are to determine what kind of flow visualization is seen in a photograph.
Analysis Since the picture is a snapshot of dye streaks in water, each streak shows the time history of dye that was

introduced earlier from a port in the body. Thus these are streaklines. Since the flow appears to be steady, these streaklines
are the same as pathlines and streamlines.

Discussion It is assumed that the dye follows the flow of the water. If the dye is of nearly the same density as the water,
this is a reasonable assumption.

4-26C
Solution We are to define pathline and discuss what pathlines indicate.
Analysis A pathline is the actual path traveled by an individual fluid particle over some time period. It indicates

the exact route along which a fluid particle travels from its starting point to its ending point. Unlike streamlines, pathlines
are not instantaneous, but involve a finite time period.

Discussion If a flow field is steady, streamlines, pathlines, and streaklines are identical.

4-27C
Solution We are to define streakline and discuss the difference between streaklines and streamlines.
Analysis A streakline is the locus of fluid particles that have passed sequentially through a prescribed point in

the flow. Streaklines are very different than streamlines. Streamlines are instantaneous curves, everywhere tangent to the
local velocity, while streaklines are produced over a finite time period. In an unsteady flow, streaklines distort and then
retain features of that distorted shape even as the flow field changes, whereas streamlines change instantaneously with the
flow field.

Discussion If a flow field is steady, streamlines and streaklines are identical.

4-11
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc. Limited distribution permitted only to
teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.




Chapter 4 Fluid Kinematics

4-28C
Solution We are to determine what kind of flow visualization is seen in a photograph.
Analysis Since the picture is a snapshot of dye streaks in water, each streak shows the time history of dye that was

introduced earlier from a port in the body. Thus these are streaklines. Since the flow appears to be unsteady, these
streaklines are not the same as pathlines or streamlines.

Discussion It is assumed that the dye follows the flow of the water. If the dye is of nearly the same density as the water,
this is a reasonable assumption.

4-29C
Solution We are to determine what kind of flow visualization is seen in a photograph.
Analysis Since the picture is a snapshot of smoke streaks in air, each streak shows the time history of smoke that was

introduced earlier from the smoke wire. Thus these are streaklines. Since the flow appears to be unsteady, these streaklines
are not the same as pathlines or streamlines.

Discussion It is assumed that the smoke follows the flow of the air. If the smoke is neutrally buoyant, this is a
reasonable assumption. In actuality, the smoke rises a bit since it is hot; however, the air speeds are high enough that this
effect is negligible.

4-30C
Solution We are to determine what kind of flow visualization is seen in a photograph.
Analysis Since the picture is a time exposure of air bubbles in water, each white streak shows the path of an

individual air bubble. Thus these are pathlines. Since the outer flow (top and bottom portions of the photograph) appears to
be steady, these pathlines are the same as streaklines and streamlines.

Discussion It is assumed that the air bubbles follow the flow of the water. If the bubbles are small enough, this is a
reasonable assumption.

4-31C
Solution We are to define timeline and discuss how timelines can be produced in a water channel. We are also to
describe an application where timelines are more useful than streaklines.

Analysis A timeline is a set of adjacent fluid particles that were marked at the same instant of time. Timelines
can be produced in a water flow by using a hydrogen bubble wire. There are also techniques in which a chemical reaction is
initiated by applying current to the wire, changing the fluid color along the wire. Timelines are more useful than streaklines
when the uniformity of a flow is to be visualized. Another application is to visualize the velocity profile of a boundary layer
or a channel flow.

Discussion  Timelines differ from streamlines, streaklines, and pathlines even if the flow is steady.

4-32C
Solution For each case we are to decide whether a vector plot or contour plot is most appropriate, and we are to
explain our choice.

Analysis In general, contour plots are most appropriate for scalars, while vector plots are necessary when vectors are
to be visualized.
(a) A contour plot of speed is most appropriate since fluid speed is a scalar.
(b) A vector plot of velocity vectors would clearly show where the flow separates. Alternatively, a vorticity contour
plot of vorticity normal to the plane would also show the separation region clearly.
(c) A contour plot of temperature is most appropriate since temperature is a scalar.
(d) A contour plot of this component of vorticity is most appropriate since one component of a vector is a scalar.

Discussion ~ There are other options for case (b) — temperature contours can also sometimes be used to identify a
separation zone.
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Chapter 4 Fluid Kinematics

Solution For a given velocity field we are to generate an equation for the streamlines and sketch several streamlines

in the first quadrant.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is given by
V =(u,v)=(05+1.2x)i +(-2.0-1.2y) j
For two-dimensional flow in the x-y plane, streamlines are given by
dy
We substitute the u and v components of Eq. 1 into Eq. 2 and rearrange to get

ﬂ _—2.0-12y
dx 0.5+1.2x

v

Streamlines in the x-y plane:

We solve the above differential equation by separation of variables:

dy X N J- dy _.[ dx
-2.0-1.2y 05+1.2x -2.0-1.2y 705+1.2x

Integration yields

1 1 1
-15M(-20-12y)= = In(05+1.2x) -~ InC, (3)

where we have set the constant of integration as the natural logarithm of
some constant C;, with a constant in front in order to simplify the
algebra. When we recall that In(ab) = Ina + Inb, and that —Ina = In(1/a),
Eq. 3 simplifies to

C

= 1667
1.2(05+1.2x)

Equation for streamlines: y

The new constant C is related to C,, and is introduced for simplicity. C
can be set to various values in order to plot the streamlines. Several
streamlines in the upper right quadrant of the given flow field are shown
in Fig. 1.

The direction of the flow is found by calculating u and v at some
point in the flow field. We choose x = 3, y = 3. At this pointu = 4.1 and v
= -5.6. The direction of the velocity at this point is obviously to the lower
right. This sets the direction of all the streamlines. The arrows in Fig. 1
indicate the direction of flow.

@

O]

FIGURE 1
Streamlines (solid black curves) for the
given velocity field.

Discussion  The flow appears to be a counterclockwise turning flow in the upper right quadrant.
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Chapter 4 Fluid Kinematics
4-34
Solution For a given velocity field we are to generate a velocity Scale: 10 m/s
vector plot in the first quadrant. —

64 | 2
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in §
the x-y plane. 54- W\ \
Analysis The velocity field is given by y 4% § % \
= 3 Y
2 - N
At any point (x,y) in the flow field, the velocity components u and v are \
obtained from Eq. 1, 13- \

V=(uv)=(05+1.2x) +(-2.0-1.2y)] (1) NN \:

AN

Velocity components: u=0.5+1.2x v=-20-12y (2) 0 e
o 1 2 3 4 5

To plot velocity vectors, we simply pick an (x,y) point, calculate u and v X

from Eq. 2, and plot an arrow with its tail at (x,y), and its tip at FIGURE 1

(x+Su,y+Sv) where S is some scale factor for the vector plot. For t_he Velocity vectors for the given velocity field.

vector plot shown in Fig. 1, we chose S = 0.2, and plot velocity The scale is shown by the top arrow.

vectors at several locations in the first quadrant.

Discussion  The flow appears to be a counterclockwise turning flow in the upper right quadrant.

4-35
Solution For a given velocity field we are to generate an acceleration vector plot in the first quadrant.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.
Analysis The velocity field is given by

V =(u,v)=(05+1.2x)i +(-2.0-1.2y) ] @)

At any point (x,y) in the flow field, the velocity components u and v are
obtained from Eq. 1,

Velocity components: u=0.5+1.2x v=-20-1.2y ) 6
The acceleration field is obtained from its definition (the material 5
acceleration), 4
Acceleration components: y 3
ou ou aou ou
a, =—+U—+V—+W—=0+(05+1.2x)(1.2)+0+0 2
ot ox oy oz (3)
1
a, LT L 0+0+(-2.0-1.2y)(-1.2)+0
ot ox oy oz 0
where the unsteady terms are zero since this is a steady flow, and the terms X
with w are zero since the flow is two-dimensional. Eq. 3 simplifies to
FIGURE 1
Acceleration components:  a, = 0.6 +1.44x a, =2.4+1.44y 4 Acceleration vectors for the velocity field.

) ) ) ) The scale is shown by the top arrow.
To plot the acceleration vectors, we simply pick an (x,y) point, calculate a,

and a, from Eq. 4, and plot an arrow with its tail at (x,y), and its tip at (x+Sa,,y+Sa,) where S is some scale factor for
the vector plot. For the vector plot shown in Fig. 1, we chose S = 0.15, and plot acceleration vectors at several
locations in the first quadrant.

Discussion  Since the flow is a counterclockwise turning flow in the upper right quadrant, the acceleration vectors point
to the upper right (centripetal acceleration).
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Solution For the given velocity field, the location(s) of stagnation point(s) are to be determined. Several velocity

vectors are to be sketched and the velocity field is to be described.

Assumptions 1 The flow is steady and incompressible. 2 The flow is two-dimensional, implying no z-component of

velocity and no variation of u or v with z.

Analysis (a) The velocity field is

V =(u,v)=(1+25x+y)i +(-05-15x-25y)] (1)

Since V is a vector, all its components must equal zero in order for V
itself to be zero. Setting each component of Eq. 1 to zero,

u= 1+25x+ y=0

Simultaneous equations:
v=-05-15x-25y=0

We can easily solve this set of two equations and two unknowns
simultaneously. Yes, there is one stagnation point, and it is located at

Stagnation point: x=-0.421m y=0.0526 m

(b) The x and y components of velocity are calculated from Eq. 1 for
several (x,y) locations in the specified range. For example, at the point (x =
2m,y=3m), u=9.00 m/sandv=-11 m/s. The magnitude of velocity (the
speed) at that point is 14.21 m/s. At this and at an array of other locations,
the velocity vector is constructed from its two components, the results of
which are shown in Fig. 1. The flow can be described as a
counterclockwise turning, accelerating flow from the upper left to the lower
right. The stagnation point of Part (a) does not lie in the upper right
quadrant, and therefore does not appear on the sketch.

.10 m/s
Scale: —>

FIGURE 1
Velocity vectors in the upper right quadrant
for the given velocity field.

Discussion  The stagnation point location is given to three significant digits. It will be verified in Chap. 9 that this flow
field is physically valid because it satisfies the differential equation for conservation of mass.
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Chapter 4 Fluid Kinematics
4-37
Solution For the given velocity field, the material acceleration is to be calculated at a particular point and plotted at
several locations in the upper right quadrant.

Assumptions 1 The flow is steady and incompressible. 2 The flow is two-dimensional, implying no z-component of
velocity and no variation of u or v with z.

Analysis (a) The velocity field is

V =(uv)=(1+25x+y)i +(-05-15x-25y)] (1)

Using the velocity field of Eq. 1 and the equation for material acceleration in Cartesian coordinates, we write expressions
for the two non-zero components of the acceleration vector:

10 m/s?
a, :8_u+u8_u +Va_u +Wa_u Scale: —
ot ox oy 0z
= 0 +(1+25x+ y)(2.5)+(—0.5—1.5x—2.5y)(1)+ 0 5 ?‘ @
and 4 # 74
a, =X W swd ’
Tt ox oy o v, 5
=0 +(1+25 -1.5)+(-0.5-1.5x-2.5y)(-2.5)+ 0 ]
+(1+25x+y)(-15) +( x-25y)(-2.5)+ 1 .
At(x=2m,y=3m),a,=115m/s’and a, = 14.0 m/s*.
(b) The above equations are applied to an array of x and y values in the ] > >
upper right quadrant, and the acceleration vectors are plotted in Fig. 1. 1]

Discussion  The acceleration vectors plotted in Fig. 1 point to the upper
right, increasing in magnitude away from the origin. This agrees
qualitatively with the velocity vectors of Fig. 1 of the previous problem;
namely, fluid particles are accelerated to the right and are turned in the
counterclockwise direction due to centripetal acceleration towards the
upper right. Note that the acceleration field is non-zero, even though the
flow is steady.

FIGURE 1
Acceleration vectors in the upper right
quadrant for the given velocity field.
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Chapter 4 Fluid Kinematics
4-38
Solution For a given velocity field we are to plot a velocity magnitude contour plot at five given values of speed.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-&plane.

Analysis Since u; = 0, and since w is positive, the speed is equal to
the magnitude of the &-component of velocity,

Speed: V= /y{{+u92 =|u,| = @r
RE 1

Thus, contour lines of constant speed are simply circles of constant radius
given by

N

~—~~
S <
2
o

Contour line of constant speed: r=—
w

'
[y

For example, at V = 2.0 m/s, the corresponding contour line is a circle
of radius 2.0 m,

1
N

2.0 m/s -2 -1 0 1 2

o0ws oM X (m) 25

FIGURE 1
We plot a circle at a radius of 2.0 m and repeat this simple calculation for Contour plot of velocity magnitude for solid

the four other values of V. We plot the contours in Fig. 1. The speed body rotation. Values of speed are labeled in
increases linearly from the center of rotation (the origin). units of m/s.

Contour line at constant speed V = 2.0 m/s: r=

Discussion  The contours are equidistant apart because of the linear nature of the velocity field.

4-39
Solution For a given velocity field we are to plot a velocity magnitude contour plot at five given values of speed.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-&plane.

Analysis Since u; = 0, and since K is positive, the speed is equal to
the magnitude of the é-component of velocity, )
Speed: /yz/+u =|u, |_ ] 15
1 4
, . , . 1/ 20

Thus, contour lines of constant speed are simply circles of constant radius y .
given by 0

(m)° ]
Contour line of constant speed: . 1\ 25 1.0

\Y -1 4 '
For example, at V = 2.0 m/s, the corresponding contour line is a circle ] 0.5
of radius 0.50 m, 5 Y A S G A—
. 1.0 m?/ 2 1 0 1 2
Contour line at constant speed V=2.0m/s: r=———=0.50m X (m)
2.0 m/s
FIGURE 1

We plot a circle at a radius of 0.50 m and repeat this simple calculation for Contour plot of velocity magnitude for a line
the four other values of V. We plot the contours in Fig. 1. The speed near vortex. Values of speed are labeled in units
the center is faster than that further away from the center. of m/s.

Discussion  The contours are not equidistant apart because of the nonlinear nature of the velocity field.
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4-40
Solution For a given velocity field we are to plot a velocity magnitude contour plot at five given values of speed.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-&plane.

Analysis The velocity field is
Line source: U =—— u,=0 1)
Since uy =0, and since m is positive, the speed is equal to the magnitude of the r-component of velocity,

. m
Speed: N e )
0

Thus, contour lines of constant speed are simply circles of constant radius

given by 2
[mj ] 15
Contour line of constant speed: r=—1 - \2z) @) 1] 20
27V \ 1 '

For example, at V = 2.0 m/s, the corresponding contour line is a circle (r)r/1)0:
of radius 0.50 m, ]

I\ 25

. _ _ 1.0 m?/s -1 1 10
Contour line at speed V = 2.0 m/s: r=———=050m 4 .
2.0 m/s ] 05
We plot a circle at a radius of 0.50 m and repeat this simple calculation for 2
the four other values of V. We plot the contours in Fig. 1. The flow slows 2 1 0 1 2
down as it travels further from the origin. x (m)
FIGURE 1

Discussion ~ The contours are not equidistant apart because of the

. T Contour plot of velocity magnitude for a line
nonlinear nature of the velocity field. P y mag

source. Values of speed are labeled in units
of m/s.
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Chapter 4 Fluid Kinematics

Motion and Deformation of Fluid Elements

4-41C
Solution We are to name and describe the four fundamental types of motion or deformation of fluid particles.

Analysis
1. Translation - a fluid particle moves from one location to another.
2. Rotation —a fluid particle rotates about an axis drawn through the particle.
3. Linear strain or extensional strain — a fluid particle stretches in a direction such that a line segment in that
direction is elongated at some later time.
4. Shear strain — a fluid particle distorts in such a way that two lines through the fluid particle that are initially
perpendicular are not perpendicular at some later time.

Discussion In a complex fluid flow, all four of these occur simultaneously.
4-42
Solution For a given velocity field, we are to determine whether the flow is rotational or irrotational.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is

V=(uv)=(U,+bx)i —byj (1)
By definition, the flow is rotational if the vorticity is non-zero. So, we calculate the vorticity. In a 2-D flow in the x-y plane,
the only non-zero component of vorticity is in the z direction, i.e. ¢,

Vorticity component in the z direction: g, = N_u =0-0=0 (1)

ox oy

Since the vorticity is zero, this flow is irrotational.

Discussion ~ We shall see in Chap. 10 that the fluid very close to the walls is rotational due to important viscous effects
near the wall (a boundary layer). However, in the majority of the flow field, the irrotational approximation is reasonable.
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Chapter 4 Fluid Kinematics

4-43
Solution For a given velocity field we are to generate an equation for the x location of a fluid particle along the x-axis
as a function of time.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.
Analysis The velocity field is

Velocity field: V=(uv)=(U,+bx)i —=byj (1)
We start with the definition of u following a fluid particle,

Xparticle

x-component of velocity of a fluid particle: ot

=u= UO + bXpanicle (2)

where we have substituted u from Eq. 1. We rearrange and separate variables, dropping the “particle” subscript for
convenience,

dx
=dt
U, +bx ®)

Integration yields
%In(U0+bx):t—%lnCl 4)

where we have set the constant of integration as the natural logarithm of some constant C,, with a constant in front in order
to simplify the algebra. When we recall that In(ab) = Ina + Inb, Eq. 4 simplifies to
In (Cl (Up+ bx)) =t
from which
U, +bx =C,e” (5)

where C, is a new constant defined for convenience. We now plug in the known initial condition that at t = 0, X = x4 to find
constant C, in Eq. 5. After some algebra,

. . . . 1
Fluid particle’s x location at time t: X=X = E[(UO +bx, )e” —UOJ (6)

Discussion  We verify thatatt =0, x = X, in Eq. 6.
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Chapter 4 Fluid Kinematics
4-44

Solution For a given velocity field we are to generate an equation for the change in length of a line segment moving
with the flow along the x-axis.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis Using the results of the previous problem,

Location of particle A at time t: Xy = %[(UO +bxg )e™ —UOJ (1)
and

Location of particle B at time t: Xg = %[(UO +bxg )€™ —Uo] 2

Since length £ = xg — xa and length &+ A& = Xg — Xa, We Write an expression for A&,

Change in length of the line segment:
A& =(Xg = Xp )= (Xg =X )

1 1 3
= [(Us bt )& U = [(Up +bx)e™ Uy (x5 -x,)
= )(Bebl _ XAebt _ XB + XA

Eq. 3 simplifies to

Change in length of the line segment: A& =(Xg =X, )(e" 1) (4)

Discussion  We verify from Eq. 4 that whent =0, Aé=0.
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Chapter 4 Fluid Kinematics
4-45
Solution By examining the increase in length of a line segment along the axis of a converging duct, we are to
generate an equation for linear strain rate in the x direction and compare to the exact equation given in this chapter.
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.
Analysis From the previous problem, we have an expression for the change in length of the line segment AB,
Change in length of the line segment: AE=(%-x)(e"-1) (1)

The fundamental definition of linear strain rate is the rate of increase in length of a line segment per unit length of the line
segment. For the case at hand,

d(E+A8)-¢ dAs_d_as

Linear strain rate in x direction: ¢,, = = (2
dt & dt & dt xg—X,
We substitute Eq. 1 into Eq. 2 to obtain
bt

Xg — X, )(e” -1

Linear strain rate in x direction: Ep = iw = i( & —1) (3)
dt Xg — X dt
In the limit as t — 0, we apply the first two terms of the series expansion for e,
: : o ' (bt)°
Series expansion for e e™ =1+bt+ > +...~1+bt 4
Finally, for small t we approximate the time derivative as 1/, yielding
1
Linear strain rate in x direction: £y > ¥(1+ bt—-1)=b 5)
Comparing to the equation for &,
. . . L au

Linear strain rate in x direction: Ey = ™ =b (6)
Equations 5 and 6 agree, verifying our algebra.
Discussion Although we considered a line segment on the x-axis, it turns out that &, = b everywhere in the flow, as

seen from Eq. 6. We could also have taken the analytical time derivative of Eq. 3, yielding &, = be™. Then, ast — 0, &y —
b.
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Chapter 4 Fluid Kinematics
4-46

Solution For a given velocity field we are to generate an equation for the y location of a fluid particle as a function of
time.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is
Velocity field: V=(uv)=(U,+bx)i —=byj (1)
We start with the definition of v following a fluid particle,
dy .
y-component of velocity of a fluid particle: % =V =-bY icke 2

where we have substituted v from Eq. 1. We and rearrange and separate variables, dropping the “particle” subscript for
convenience,

dy
— =—hdt 3
y @)
Integration yields
In(y)=-bt-InC, (4)

where we have set the constant of integration as the natural logarithm of some constant Cy, with a constant in front in order
to simplify the algebra. When we recall that In(ab) = Ina + Inb, Eq. 4 simplifies to

In(C,y)=-t
from which
y=Ce™ )

where C, is a new constant defined for convenience. We now plug in the known initial condition that att = 0, y = y to find
constant C, in Eq. 5. After some algebra,

Fluid particle’s y location at time t: Y=Yu =y, (6)
Discussion  The fluid particle approaches the x-axis exponentially with time. The fluid particle also moves downstream

in the x direction during this time period. However, in this particular problem v is not a function of x, so the streamwise
movement is irrelevant (u and v act independently of each other).
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4-47
Solution For a given velocity field we are to generate an equation for the change in length of a line segment in the y
direction.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis Using the results of the previous problem,

Location of particle A at time t: Yo =Y ™" Q)
and

Location of particle B at time t: Yo = Vg€ 2

Since length 77 =yg —ya and length 77+ An =y — ya, We write an expression for Az,
Change in length of the line segment:
A77 = (yB’ - yA’)_(yB - yA) = YBeibt - YAeibt _(YB - YA) = yseibt - yAerbt —YetVYa

which simplifies to

Change in length of the line segment: An=(Ys—Ya )(e‘bt —1) )]

Discussion  We verify from Eq. 3 that whent=0, A =0.
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Chapter 4 Fluid Kinematics

4-48
Solution By examining the increase in length of a line segment as it moves down a converging duct, we are to
generate an equation for linear strain rate in the y direction and compare to the exact equation given in this chapter.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis From the previous problem we have an expression for the change in length of the line segment AB,

Change in length of the line segment; An=(Ys—ya)(e™-1) (@

The fundamental definition of linear strain rate is the rate of increase in length of a line segment per unit length of the line
segment. For the case at hand,

Linear strain rate in y direction:

. _d(+dn)-n _dAg_d_Ag )
Yoodt n dt 7 dt yg—Vy,

We substitute Eq. 1 into Eq. 2 to obtain

y _ y efbt _1
Linear strain rate iny direction: &, = %( = A )( ) = %(e’bl —l) ©))
Ys = Ya

In the limit as t — 0, we apply the first two terms of the series expansion for e,
: ; bt b (_ t)z
Series expansion for e™: e = 1+(—bt)+T+... ~1-bt 4)

Finally, for small t we approximate the time derivative as 1/, yielding

. . . L 1
Linear strain rate in y direction: £, ;(1—bt -1)=-b (5)

Comparing to the equation for &,

. . . N ov
Linear strain rate in y direction: &y = 5 =-b (6)
Equations 5 and 6 agree, verifying our algebra.
Discussion Since v does not depend on x location in this particular problem, the algebra is simple. In a more general

case, both u and v depend on both x and y, and a numerical integration scheme is required. We could also have taken the
analytical time derivative of Eq. 3, yielding &y = —be™. Then, ast — 0, &, — —b.
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Chapter 4 Fluid Kinematics

Solution For a given velocity field and an initially square fluid particle, we are to calculate and plot its location and

shape after a given time period.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the
X-y plane. 3 1

Analysis Using the results of Problems 4-43 and 4-46, we can |

calculate the location of any point on the fluid particle after the elapsed ] Timet=0

time. We pick 6 points along each edge of the fluid particle, and plot their x ] Timet=0.2s
and y locations at t = 0 and at t = 0.2 s. For example, the point at the lower 11 ‘
left corner of the particle is initially at x =0.25 ftand y = 0.75 ft at t = 0. At ]
t=0.25s, y

x-location of lower left corner of the fluid particle at timet =0.2 s:

1 (46 15)(025) _
o1 [(5.0ft/s +(4.6 1/5)(0.25 t))e 5.0 ftls | = 2.268 ft

and

y-location of lower left corner of the fluid particle at timet= 0.2 s:
y =(0.75 ft)e ***)°? = 0.2089 ft

We repeat the above calculations at all the points along the edges of the

fluid particle, and plot both their initial and final positions in Fig. 1 as dots. FIGURE 1

Finally, we connect the dots to draw the fluid particle shape. It is clear Movement and distortion of an initially
from the results that the fluid particle shrinks in the y direction and square fluid particle in a converging duct; x
stretches in the x direction. However, it does not shear or rotate. and y are in units of ft. Streamlines (solid

. . . . . . . blue curves) are also shown for reference.
Discussion  The flow is irrotational since fluid particles do not rotate.

4-50E
Solution By analyzing the shape of a fluid particle, we are to verify that the given flow field is incompressible.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis Since the flow is two-dimensional, we assume unit depth (1 ft) in the z direction (into the page in the
figure). In the previous problem, we calculated the initial and final locations of several points on the perimeter of an
initially square fluid particle. At t =0, the particle volume is

Fluid particle volume att =0s: vV =(0.50 ft)(0.50 ft)(1.0 ft) =0.25 ft’ 1)

Att=0.2s, the lower left corner of the fluid particle has moved to x = 2.2679 ft, y = 0.29889 ft, and the upper right corner
has moved to x = 3.5225 ft, y = 0.49815 ft. Since the fluid particle remains rectangular, we can calculate the fluid particle
volume from these two corner locations,

Fluid particle volume att = 0.2 s:
V = (35225 ft - 2.2679 ft)(0.49815 ft —0.29889 ft)(1.0 ft)=0.2500 ft* (9

Thus, to at least four significant digits, the fluid particle volume has not changed, and the flow is therefore
incompressible.

Discussion ~ The fluid particle stretches in the horizontal direction and shrinks in the vertical direction, but the net
volume of the fluid particle does not change.

4-26
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc. Limited distribution permitted only to
teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.




Chapter 4 Fluid Kinematics
4-51
Solution For a given velocity field we are to use volumetric strain rate to verify that the flow field is incompressible..

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is
Velocity field: V=(uv)=(U,+bx)i —byj (1)
We use the equation for volumetric strain rate in Cartesian coordinates, and apply Eq. 1,

Volumetric strain rate:

lm:gxx+gyy+gzz=6—u+@+@=b+(—b)+0=0 @
V Dt ox oy oz

Where &, = 0 since the flow is two-dimensional. Since the volumetric strain rate is zero everywhere, the flow is
incompressible.

Discussion  The fluid particle stretches in the horizontal direction and shrinks in the vertical direction, but the net
volume of the fluid particle does not change.

4-52
Solution For a given steady two-dimensional velocity field, we are to calculate the x and y components of the
acceleration field.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is

V=(u,v)=(U+ax+by)i +(V+ax+by)] (1)
The acceleration field is obtained from its definition (the material acceleration). The x-component is

x-component of material acceleration:

0 ou ou 0
a = +U—+V—+ W, =(U+ax+ +(V +a,x+b 2
\ % x % (U+ax+by)a +(V+ax+by)b| (2
—_ —_
Steady Two-D

The y-component is

y-component of material acceleration:

ov oV
ay:%{+u&+v5+yg=(U +ax+by)a, +(V+ax+b,y)b,|  (3)
L

Steady Two-D

Discussion If there were a z-component, it would be treated in the same fashion.
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4-53
Solution We are to find a relationship among the coefficients that causes the flow field to be incompressible.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis We use the equation for volumetric strain rate in Cartesian coordinates, and apply Eqg. 1 of the previous
problem,
Volumetric strain rate: 1bv =g tEytE, = 6_u+@+ =a +h,

V Dt x oy Sz @)

Two-D

We recognize that when the volumetric strain rate is zero everywhere, the flow is incompressible. Thus, the desired
relationship is

Relationship to ensure incompressibility: 2

Discussion If Eq. 2 is satisfied, the flow is incompressible, regardless of the values of the other coefficients.

4-54
Solution For a given velocity field we are to calculate the linear strain rates in the x and y directions.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis We use the equations for linear strain rates in Cartesian coordinates, and apply Eq. 1 of Problem 4-52,
Linear strain rates: £, = d_ a & = o b 1
. XX 8X yy ay 2 ( )

Discussion In general, since coefficients a; and b, are non-zero, fluid particles stretch (or shrink) in the x and y
directions.

4-55
Solution For a given velocity field we are to calculate the shear strain rate in the x-y plane.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis We use the equation for shear strain rate &,, in Cartesian coordinates, and apply Eq. 1 of Problem 4-52,
1fou ov) 1
Shear strain rate in x-y plane: Ey=6,=—| —+— |=—(b +a 1
y p Xy yX 2 ( ay aX\J 2 (bl 2) ( )

Note that by symmetry &, = &.

Discussion In general, since coefficients b; and a, are non-zero, fluid particles distort via shear strain in the x and y
directions.
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Chapter 4 Fluid Kinematics
4-56
Solution For a given velocity field we are to form the 2-D strain rate tensor and determine the conditions necessary
for the x and y axes to be principal axes.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The two-dimensional form of the strain rate tensor is
. Ex  Exy
2-D strain rate tensor: & = (1)
gyx gyy

We use the linear strain rates and the shear strain rate from the previous two problems to generate the tensor,

= O]

] a  Z(hva)
%(bl+a2) b,

&
2-D strain rate tensor: & = (8

If the x and y axes were principal axes, the diagonals of &; would be non-zero, and the off-diagonals would be zero. Here
the off-diagonals go to zero when

Condition for x and y axes to be principal axes: 3

Discussion For the more general case in which Eq. 3 is not satisfied, the principal axes can be calculated using tensor
algebra.

4-57
Solution For a given velocity field we are to calculate the vorticity vector and discuss its orientation.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis We use the equation for vorticity vector ¢ in Cartesian coordinates, and apply Eq. 1 of Problem 4-52,

Vorticity vector:

Twop TwoD Two-D  Two-D

The only non-zero component of vorticity is in the z (or —z) direction.

Discussion For any two-dimensional flow in the x-y plane, the vorticity vector must point in the z (or —z) direction. The
sign of the z-component of vorticity in Eqg. 1 obviously depends on the sign of a, — b;.
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4-58
Solution For the given velocity field we are to calculate the two-dimensional linear strain rates from fundamental
principles and compare with the given equation.

Assumptions 1 The flow is incompressible. 2 The flow is steady. 3 The flow is two-dimensional.

Analysis First, for convenience, we number the equations in the problem statement:
Velocity field: V=(uv)=(a+by)i+0] (1)
Lower left corner at t + dt: (x+(a+by)dt,y) )
. . . . . ou ov
Linear strain rate in Cartesian coordinates: & = 6_ £y = 5 (3)
X
(@) The lower right corner of the fluid particle moves the same amount as the lower left corner since u does not

depend on y position. Thus,

Lower right corner at t + dt: <x+dx+(a+by)dt, y) 4

Similarly, the top two corners of the fluid particle move to the right at speed a + b(y+dy)dt. Thus,

Upper left corner at t + dt; (x+(a+b(y+dy))dt, y+dy) (5)
and
Upper right corner at t + dt: (x+dx+(a+b(y+dy))dt,y+dy) (6)
(b) From the fundamental definition of linear strain rate in the x-direction, we consider the lower edge of the fluid

particle. Its rate of increase in length divided by its original length is found by using Egs. 2 and 4,

Length of lower edge at t-+dt Length of lower edge at t

1| x+dx+(a+by)dt—(x+(a+by)dt)- dx
o =gt dx

-0 (6)

We get the same result by considering the upper edge of the fluid particle. Similarly, using the left edge of the fluid particle
and Egs. 2 and 5 we get

Length of leftedge at t+dt  Length of left edge at t
— ~=
1 y+dy-y - dy 0
dt dy

U]

Eyy- Syy =

We get the same result by considering the right edge of the fluid particle. Thus both the x- and y-components of linear strain
rate are zero for this flow field.

(© From Eq. 3 we calculate

Linear strain rates: &, = 6_ ”
X

ou ov
=0 ===-0
=% ®)

Discussion  Although the algebra in this problem is rather straight-forward, it is good practice for the more general case
(a later problem).
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4-59
Solution We are to verify that the given flow field is incompressible using two different methods.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional.

Analysis
(@) The volume of the fluid particle at time t is.
Volume at time t: V (t) = dxdydz (1)

where dz is the length of the fluid particle in the z direction. At time t + dt, we assume that the fluid particle’s dimension dz
remains fixed since the flow is two-dimensional. Thus its volume is dz times the area of the rhombus shown in Fig. P4-58,
as illustrated in Fig. 1,

Volume at time t + dt: V (t+dt) = dxdydz )

Since Egs. 1 and 2 are equal, the volume of the fluid particle has not
changed, and the flow is therefore incompressible.

(b) We use the equation for volumetric strain rate in Cartesian I‘_ q
coordinates, and apply the results of the previous problem, x

Volumetric strain rate:  —2Y — £y t+Ey+E,=0+0+0=0 (3) FIGURE 1
V D The area of a rhombus is equal to its base

Where g, = 0 since the flow is two-dimensional. Since the volumetric times its height, which here is dxdy.

strain rate is zero everywhere, the flow is incompressible.

Discussion  Although the fluid particle deforms with time, its height, its depth, and the length of its horizontal edges
remain constant.
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4-60
Solution For the given velocity field we are to calculate the two-dimensional shear strain rate in the x-y plane from
fundamental principles and compare with the given equation.

Assumptions 1 The flow is incompressible. 2 The flow is steady. 3 The

flow is two-dimensional. (x+(a+b(y+dy))dt,y+dy)
Analysis
(@) The shear strain rate is
Shear strain rate in Cartesian coordinates: ¢, _L 8_u+@ 1)
2\ oy ox

From the fundamental definition of shear strain rate in the x-y plane, we
consider the bottom edge and the left edge of the fluid particle, which
intersect at 90° at the lower left corner at time t. We define angle « between

the lower edge and the left edge of the fluid particle, and angle g, the |<—dx
complement of « (Fig. 1). The rate of decrease of angle « over time

interval dt is obtained from application of trigonometry. First, we calculate (x+(a+by)dt, y)

angle (x+dx+(a+by)dt,y)

FIGURE 1
A magnified view of the deformed fluid
The approximation is valid for very small angles. As the time interval dt —  Particle at time t + dt, with the location of

0, Eq. 2 is correct. At time t + dt, angle « is three corners indicated, and angles ¢ and S
defined.

Angle Battimet +dt: S =arctan ( b?jydtj =arctan (bdt) ~ bdt )
y

Angle ¢ at time t + dt: a:%—/)’z%—bdt @)

During this time interval, « changes from 90° (/2 radians) to the expression given by Eq. 2. Thus the rate of change of « is

da 1|(7x T
Rate of change of angle o —=—||=-bdt|- = |=-b
geotangie dt dt (2 j 2 @

o att+dt aat

Finally, since shear strain rate is defined as half of the rate of decrease of angle ¢,

Shear strain rate: &y = _1da = b (5)
2.dt |2
(b) From Eq. 1 we calculate
Shear strain rate: £, _lfou, o :l(b+0) _|2 (6)
Y o2ley ox) 2 2

Both methods for obtaining the shear strain rate agree (Eq. 5 and Eq. 6).

Discussion  Although the algebra in this problem is rather straight-forward, it is good practice for the more general case
(a later problem).
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Solution
fundamental principles and compare with the given equation.

Assumptions

Analysis

(a)

The rate of rotation in Cartesian coordinates is

1({ov ou
w,=—| ———

2(6x ayj
From the fundamental definition of rate of rotation in the x-y plane, we
consider the bottom edge and the left edge of the fluid particle, which
intersect at 90° at the lower left corner at time t. We define angle g in Fig.
1, where g is the negative of the angle of rotation of the left edge of the

fluid particle (negative because rotation is mathematically positive in the
counterclockwise direction). We calculate angle £ using trigonometry,

Rate of rotation in Cartesian coordinates:

o))

Angle pattimet+dt: g =arctan ( b(jjydt 2
y

J =arctan (bdt) ~ bdt

The approximation is valid for very small angles. As the time interval dt —
0, Eq. 2 is correct. Meanwhile, the bottom edge of the fluid particle has not
rotated at all. Thus, the average angle of rotation of the two line segments
(lower and left edges) at time t + dt is

1 b
AVG =5(o—ﬂ)z_5dt 3)

Thus the average rotation rate during time interval dt is

L d(AVG) 1( b
Rate of rotation in x-y plane: w,=——->="= ——dt |=

’ dt

(b)

From Eq. 1 we calculate

Rate of rotation: o, _ljv_ou =l(0_b)=
2{ox oy) 2
Both methods for obtaining the rate of rotation agree (Eqg. 4 and Eq. 5).

Discussion

Chapter 4 Fluid Kinematics

For the given velocity field we are to calculate the two-dimensional rate of rotation in the x-y plane from

1 The flow is incompressible. 2 The flow is steady. 3 The flow is two-dimensional.

(x+(a+b(y+dy))dt, y+dy)

bdydt

I(—dX—)
(x+(a+by)dt,y)
(x+dx+(a+by)dt, y)

FIGURE 1

A magnified view of the deformed fluid
particle at time t + dt, with the location of
three corners indicated, and angle S defined.

b
-l @
b

;| ©

The rotation rate is negative, indicating clockwise rotation about the z-axis. This agrees with our intuition as

we follow the fluid particle.

4-62
Solution
calculate the vorticity in the z direction.

Analysis
(@)
(b)

Vorticity component:

b
¢, =20, = 2(7} =-b

Discussion

We are to determine whether the shear flow of Problem 4-22 is rotational or irrotational, and we are to

Since the rate of rotation is non-zero, it means that the flow is rotational.
Vorticity is defined as twice the rate of rotation, or twice the angular velocity. In the z direction,

o))

Vorticity is negative, indicating clockwise rotation about the z-axis.
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4-63
Solution We are to prove the given expression for flow in the xy-plane.

Assumptions 1 The flow is incompressible and two-dimensional.
Analysis For flow in the xy-plane, we are to show that:

Rate of rotation: w=0,= v a 1)
2\ 0x oy

By definition, the rate of rotation (angular velocity) at a point is the average rotation rate of two initially perpendicular lines
that intersect at the point. In this particular problem, Line a (PA) and Line b (PB) are initially perpendicular, and intersect at
point P. Line a rotates by angle «,, and Line b rotates by angle o, Thus, the average angle of rotation is

a, + a,

2

During time increment dt, point P moves a distance udt to the right and vdt up (to first order, assuming dt is very small).

Average angle of rotation:

O]

Similarly, point A moves a distance (u +2—udxjdt to the right and (v+;ﬂdxjdt up, and point B moves a distance
X X

1
[u +Z—udyj dt to the right and [v+@dy] dt up. Since point A is initially ‘}—»: \ Fluid element
y oy \ 14 attimet
at distance dx to the right of point P, the horizontal distance from point P’ \ |/ \
to point A’ at the later time t, is k v
p 2 N 2! Lineb
ou v 7 \ i
dx + —dxdt B' M /i \ R
oX ™ 1 ,
1 A,\n.(,
On the other hand, point A is at the same vertical level as point P at time ov :
t,. Thus, the vertical distance from point P’ to point A’ at time t, is dy +—dydt I Linea ov
oy : a—dxdt
ov 1 X
— dxdt \
x 3 \;.. “:E
Similarly, point B !s Iocateq at distance dy_vertically gbove poi.nt P at. time ; / pT \
t;, and thus the horizontal distance from point P’ to point B’ at time t, is ——udydt dx+a—udxdt
au oy OX
——dydt (4)
2 FIGURE 1
and A close-up view of the distorted fluid element
at time t,.
Vertical distance from point P “to point B “at time t,: dy +ﬂdydt (5)
oy

We mark the horizontal and vertical distances between point A’ and point P’ and between point B’ and point P’ at time t; in
Fig. 1. From the figure we see that

N iyt N iyt NN
Angle «, in terms of velocity components:  a, =tan™ axau ~tant| X |—tan! (— dtj ~—dt  (6)
e Lot ox ) ox

The first approximation in Eq. 6 is due to the fact that as the size of the fluid element shrinks to a point, dx — 0, and at the
same time dt — 0. Thus, the second term in the denominator is second-order compared to the first-order term dx and can be
neglected. The second approximation in Eq. 6 is because as dt — 0 angle «; is very small, and tana, — «,. Similarly, angle
oy is written in terms of velocity components as
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-%“ dydt ~ M Gyt ; ;
a, =tan™ + ~tant| ——— | = tanl(——udtJ ~~Hdt @)
dy +—dydt dy 2 %
oy
Finally then, the average rotation angle (Eq. 2) becomes
Average angle of rotation: %ty 1 @dt —a—udt _dtfov_ (8)
2 2\ ox oy 2\ ox oy
and the average rate of rotation (angular velocity) of the fluid element about point P in the x-y plane becomes
d(ea,+a, 1(ov ou
=0, =—| 2| = ——— )
dt 2 2{ox oy

Discussion Eg. 9 can be extended to three dimensions by performing a similar analysis in the x-z and y-z planes.
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4-64
Solution We are to prove the given expression.
Assumptions 1 The flow is incompressible and two-dimensional. e ! .
P P ‘\“/b—ﬂ N Fluid element
Analysis We are to prove the following: \ / ‘\ attime t,
\
au k ‘ )
Linear strain rate in x-direction: E = v (1) N\ \
X \
B’ :_\._-/ \ ,/
By definition, the rate of linear strain is the rate of increase in length of a

line segment in a given direction divided by the original length of the line
segment in that direction. During time increment dt, point P moves a

N
e et T
”

distance udt to the right and vdt up (to first order, assuming dt is very ﬂdxdt
OX
small). Similarly, point A moves a distance [u +Z—udxj dt to the right and \
X \
(v+%dxjdt up. Since point A is initially at distance dx to the right of P’ N
. . . . . . . dx +—udxdt
point P, its position to the right of point P’ at the later time t, is OX
ou
dx + —dxdt 2 FIGURE 1
2 A close-up view of the distorted fluid element
On the other hand, point A is at the same vertical level as point P at time ~ attime .
t;. Thus, the vertical distance from point P’ to point A’ at time t; is
Vertical distance from point P “to point A’at time t,: ;ﬂdxdt (3)
X

We mark the horizontal and vertical distances between point A’ and point P’ at time t; in Fig. 1. From the figure we see that

Linear strain rate in the x direction as line PA changesto PA”:

Length of P’A"in x direction
—— Length of PA in x direction
—~=

ou
. d dx+&dxdt - dx d a_udt a @)
O dt dx dt \ ox ox

——
Length of PA in x direction

Thus Eqg. 1 is verified.

Discussion  The distortion of the fluid element is exaggerated in Fig. 1. As time increment dt and fluid element length
dx approach zero, the first-order approximations become exact.
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4-65
Solution We are to prove the given expression.
Assumptions 1 The flow is incompressible and two-dimensional. ‘\4/\\ Olapy
\ 1 4 \
. . Vs

Analysis We are to prove the following: \ a,_>,b ', \

Vol Lineb Y

. . ine
Shear strain rate in xy-plane: £y L a—u+ﬂ (1) Vo \ ’
2 6y OX B’ :,L:/ \ ,/,
1Y .

By definition, the shear strain rate at a point is half of the rate of decrease A v'

of the angle between two initially perpendicular lines that intersect at the ov
point. In Fig. P4-63, Line a (PA) and Line b (PB) are initially dy+5dydt
perpendicular, and intersect at point P. Line a rotates by angle «,, and

Line b rotates by angle «,. The angle between these two lines changes

from /2 at time t; to ., at time t, as sketched in Fig. 1. The shear strain -

e =
c
>
@
f<5)
jo)
<

rate at point P for initially perpendicular lines in the x and y directions is / p' \
thus au ou
——dydt dx +—dxdt
oy ox
1d
&y = _Eaaa-b (2
FIGURE 1

During time increment dt, point P moves a distance udt to the right and vdt A close-up view of the distorted fluid element
up (to first order, assuming dt is very small). Similarly, point A moves a  at time t,.

distance (u +2—udxjdt to the right and (v+?dx]dt up, and point B
X X

moves a distance (u +%udy]dt to the right and (v+%dyj dt up. Since point A is initially at distance dx to the right of

point P, its position to the right of point P’ at the later time t, is

Horizontal distance from point P “to point A’at time t,: dx+g—udxdt 3)
X

On the other hand, point A is at the same vertical level as point P at time t;. Thus, the vertical distance from point P’ to
point A’ at time t; is

Vertical distance from point P “to point A”at time t,: ;ﬂdxdt 3)
X

Similarly, point B is located at distance dy vertically above point P at time t;, and thus we write

Horizontal distance from point P “to point B “at time t;: _%u dydt (4)
and
Vertical distance from point P“to point B “at time t;: dy +%dydt (5)

We mark the horizontal and vertical distances between point A’ and point P’ and between point B’ and point P’ at time t, in
Fig. 1. From the figure we see that

Angle «; in terms of velocity components:
ov ov

—dxdt — dxdt
a, =tant| —X | stant| X =tan‘1(@dtjzﬂdt ©)
b+ Y dxat dx ox ) o
OoX
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The first approximation in Eq. 6 is due to the fact that as the size of the fluid element shrinks to a point, dx — 0, and at the
same time dt — 0. Thus, the second term in the denominator is second-order compared to the first-order term dx and can be
neglected. The second approximation in Eq. 6 is because as dt — 0 angle «, is very small, and tanc, — a,. Similarly,

Angle o, in terms of velocity components:

~ M Gyt —Z—udydt ; ;
a, =tan™ — ~tant| - =tan1(——udt]z——udt Y
dy+5dydt dy 2 2

Angle o, at time t; is calculated from Fig. 1 as
Angle . at time t, in terms of velocity components:
T ou

Xap =%+ab -a, :E_Edt_%\:dt )

where we have used Egs. 6 and 7. Finally then, the shear strain rate (Eq. 2) becomes

Shear strain rate, initially perpendicular lines in the x and y directions:

Gy att, G Y
P — —~—
gxy:_liaa_bz_ll T My Ny |_ifou v (9)
2 dt 2dt| 2 oy ox 2 | 2lay ox

which agrees with Eq. 1. Thus, Eq. 1 is proven.

Discussion Eq. 9 can be easily extended to three dimensions by performing a similar analysis in the x-z plane and in the
y-z plane.

4-66
Solution For a given linear strain rate in the x-direction, we are to calculate the linear strain rate in the y-direction.
Analysis Since the flow is incompressible, the volumetric strain rate must be zero. In two dimensions,

Volumetric strain rate in the x-y plane: 1oV EqtEy = a—u+ﬂ =0 (1)
V Dt ox oy

Thus, the linear strain rate in the y-direction is the negative of that in the x-direction,

Linear strain rate in y-direction: &, = XN = el =-2.51/s )

Yooy ox

Discussion The fluid element stretches in the x-direction since g is positive. Because the flow is incompressible, the
fluid element must shrink in the y-direction, yielding a value of &, that is negative.
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4-67
Solution We are to calculate the vorticity of fluid particles in a tank rotating in solid body rotation about its vertical
axis.

Assumptions 1 The flow is steady. 2 The z-axis is in the vertical direction.

Analysis Vorticity ¢ is twice the angular velocity @ . Here,
Angular velocity: =360 (1 min J( 27 rad j k =37.70k rad/s 1)
min{ 60 s rot

where K is the unit vector in the vertical () direction. The vorticity is thus

Vorticity: & =26 =2x37.70K rad/s = 75.4k rad/s )

Discussion Because the water rotates as a solid body, the vorticity is constant throughout the tank, and points vertically
upward.

4-68
Solution We are to calculate the angular speed of a tank rotating about its vertical axis.

Assumptions 1 The flow is steady. 2 The z-axis is in the vertical direction.

Analysis Vorticity ¢ is twice the angular velocity @ . Thus,
Angular velocity: = % = M =277k radls (1)

where Kk is the unit vector in the vertical (z) direction. The angular velocity is negative, which by definition is in the
clockwise direction about the vertical axis. We express the rate of rotation in units of rpm,

Rate of rotation: n= —27.7@ 60_S rot = —265r—c?t =-265rpm (2
s {1 min )\ 27 rad min

Discussion Because the vorticity is constant throughout the tank, the water rotates as a solid body.

4-69
Solution For a tank of given rim radius and speed, we are to calculate the magnitude of the component of vorticity in
the vertical direction.

Assumptions 1 The flow is steady. 2 The z-axis is in the vertical direction.

Analysis The linear speed at the rim is equal to rjm@,. Thus,
Component of angular velocity in z-direction: w, = Vi = 2.6 m/s =7.429 rad/s (1)
r, 035m
Vorticity £ is twice the angular velocity @ . Thus,
z-component of vorticity: ¢, =20, =2(7.429 rad/s) =14.86 rad/s = 15.0 rad/s )

Discussion Radian is a non-dimensional unit, so we can insert it into Eq. 1. The final answer is given to two significant
digits for consistency with the given information.
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4-70C
Solution We are to explain the relationship between vorticity and rotationality.
Analysis Vorticity is a measure of the rotationality of a fluid particle. If a particle rotates, its vorticity is non-zero.

Mathematically, the vorticity vector is twice the angular velocity vector.

Discussion If the vorticity is zero, the flow is called irrotational.

4-71
Solution For a given deformation of a fluid particle in one direction, we are to calculate its deformation in the other
direction.

Assumptions 1 The flow is incompressible. 2 The flow is two-dimensional in the x-y plane.

Analysis Since the flow is incompressible and two-dimensional, the area of the fluid element must remain constant
(volumetric strain rate must be zero in an incompressible flow). The area of the original fluid particle is a’. Hence, the
vertical dimension of the fluid particle at the later time must be a%/2a = a/2.

Discussion Since the particle stretches by a factor of two in the x-direction, it shrinks by a factor of two in the y-
direction.

4-72
Solution We are to calculate the percentage change in fluid density for a fluid particle undergoing two-dimensional
deformation.

Assumptions 1 The flow is two-dimensional in the x-y plane.

Analysis The area of the original fluid particle is a®. Assuming that the mass of the fluid particle is m and its
dimension in the z-direction is also a, the initial density is p = m/\ = m/a®. As the particle moves and deforms, its mass
must remain constant. If its dimension in the z-direction remains equal to a, the density at the later time is

Density at the later time: p= g = M 06a)((;n931a)(a) =1-013§ (1)

Compared to the original density, the density has increased by about 1.3%.

Discussion  The fluid particle has stretched in the x-direction and shrunk in the y-direction, but there is nevertheless a
net decrease in volume, corresponding to a net increase in density.

4-73
Solution For a given velocity field we are to calculate the vorticity.
Analysis The velocity field is

V = (u,v,w) = (3.0+2.0x-y)i +(2.0x-2.0y)  +(0.5xy)k (1)

In Cartesian coordinates, the vorticity vector is

Vorticity vector in Cartesian coordinates: | T+(a—u—%]]+ y_dlg )
oy oz oz oX ox oy

We substitute the velocity components u = 3.0 + 2.0x -y, v = 2.0x — 2.0y, and w = 0.5xy from Eqg. 1 into Eq. 2 to obtain

Vorticity vector: £ =(0.5x-0)i +(0-0.5y) j+(2.0—(-1))k = (0.5x)i -(0.5y) j+(3.0)k |  (3)

Discussion  The vorticity is non-zero implying that this flow field is rotational.
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4-74
Solution We are to determine if the flow is rotational, and if so calculate the z-component of vorticity.
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is given by
Velocity field, Couette flow: V =(u,v) :[V %JT+O] (1)

If the vorticity is non-zero, the flow is rotational. So, we calculate the z-component of vorticity,

z-component of vorticity: {=—-—=0-—=—— @)

Since vorticity is non-zero, this flow is rotational. Furthermore, the vorticity is negative, implying that particles rotate in
the clockwise direction.

Discussion  The vorticity is constant at every location in this flow.

4-75
Solution For the given velocity field for Couette flow, we are to calculate the two-dimensional linear strain rates and
the shear strain rate.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.

Analysis The linear strain rates in the x direction and in the y direction are
Linear strain rates: Ey = N _ 0 £y = XN 0 (1)
OX oy
The shear strain rate in the x-y plane is
. 1({ou ov 1(V V
Shear strain rate: Ey==| —+—|=Z|—+0|=— )
2oy ox) 2Q(h 2h

Fluid particles in this flow have non-zero shear strain rate.

Discussion Since the linear strain rates are zero, fluid particles deform (shear), but do not stretch in either the horizontal
or vertical directions.
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4-76
Solution For the Couette flow velocity field we are to form the 2-D strain rate tensor and determine if the x and y
axes are principal axes.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.

Analysis The two-dimensional strain rate tensor, &;, is

. . gxx gxy
2-D strain rate tensor: & = (1)

yX gyy

We use the linear strain rates and the shear strain rate from the previous problem to generate the tensor,

v
. gxx gxy 2h
2-D strain rate tensor: & = = 2
Vole, e \Y
yx yy 0
2h

Note that by symmetry g, = &. If the x and y axes were principal axes, the diagonals of &; would be non-zero, and the off-
diagonals would be zero. Here we have the opposite case, so the x and y axes are not principal axes.

Discussion  The principal axes can be calculated using tensor algebra.
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Reynolds Transport Theorem

4-77C

Solution

(a) False: The statement is backwards, since the conservation laws are naturally occurring in the system form.

(b) False: The RTT can be applied to any control volume, fixed, moving, or deforming.

(c) True: The RTT has an unsteady term and can be applied to unsteady problems.

(d) True: The extensive property B (or its intensive form b) in the RTT can be any property of the fluid — scalar, vector, or
even tensor.

4-78
Solution For the case in which By is the mass m of a system, we are to use the RTT to derive the equation of
conservation of mass for a control volume.

Analysis The general form of the Reynolds transport theorem is given by

dB,,

General form of the RTT: — J'
dt dt cv

pbdV + j PbV. - fidA (1)

Setting Bgys = m means that b = m/m = 1. Plugging these and dm/dt = 0 into Eq. 1 yields

. ) _d -
Conservation of mass for a CV: 0= ELV pdV + J.CS pV, -NdA (2)

Discussion Eq. 2 is general and applies to any control volume — fixed, moving, or even deforming.

4-79
Solution For the case in which B is the linear momentum mV of a system, we are to use the RTT to derive the
equation of conservation of linear momentum for a control volume.

AnalysisNewton’s second law is

Newton’s second law for a system: z F=mad= (jj\t/ c?t (m\7) (1)
sys

Setting Bgys = mV means that b = m\7/m =V . Plugging these and Eq. 1 into the equation of the previous problem yields

Z'E :%(m\i)sys :%J‘cvp\idv +.[csp\7(\7' .ﬁ)dA
or simply

Conservation of linear momentum for a CV:

ZF_—j AV + [V (V)| @)

Discussion Eqg. 2 is general and applies to any control volume — fixed, moving, or even deforming.
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4-80
Solution For the case in which By is the angular momentum H of a system, we are to use the RTT to derive the
equation of conservation of angular momentum for a control volume.

Analysis The conservation of angular momentum is expressed as

Conservation of angular momentum for a system: Z M = % I:ISys 1)

Setting Byys = H means that b = (Fx m\7)/m =T xV , noting that m = constant for a system. Plugging these and Eq. 1 into
the equation of Problem 4-78 yields

ZM_ dt SVS j’[ cvp( )dV+I (F V)(\Z.ﬁ)dA
or simply

Conservation of angular momentum for a CV:

S0 = 2ol [olrei)v a)os] @

Discussion Eq. 2 is general and applies to any control volume — fixed, moving, or even deforming.

4-81
Solution F(t) is to be evaluated from the given expression.
Analysis The integral is

d prest e
F(t):ax:f:ezdx )

We could try integrating first, and then differentiating, but we can instead use the 1-D Leibnitz theorem. Here,
G(x,t) —e? (G is not a function of time in this simple example). The limits of integration are a(t) = At and b(t) = Bt.
Thus,

F(1)- [ Sax+ 26 (b:)- 26 (a)

= 0 +Be?® —pAe™

O]

or

F(t)=Be ™ —Ae"™| (3)

Discussion You are welcome to try to obtain the same solution without using the Leibnitz theorem.
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Review Problems

4-82
Solution We are to determine if the flow is rotational, and if so calculate the z-component of vorticity.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.
Analysis The velocity components are given by
. - 1dP, ,
Velocity components, 2-D Poiseuille flow: u= 2——( —hy)  v=0 (1)
7]

If the vorticity is non-zero, the flow is rotational. So, we calculate the z-component of vorticity,

z-component of vorticity:

g’z:———:0———(2y—h):—iz—z(Zy—h) @

Since vorticity is non-zero, this flow is rotational. Furthermore, in the lower half of the flow (y < h/2) the vorticity is
negative (note that dP/dx is negative). Thus, particles rotate in the clockwise direction in the lower half of the flow.
Similarly, particles rotate in the counterclockwise direction in the upper half of the flow.

Discussion  The vorticity varies linearly across the channel.

4-83
Solution For the given velocity field for 2-D Poiseuille flow, we are to calculate the two-dimensional linear strain
rates and the shear strain rate.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.

Analysis The linear strain rates in the x direction and in the y direction are

Linear strain rates: Ey = u_ 0 &y v
OX oy
The shear strain rate in the x-y plane is

Shear strain rate:

_lfou ov)_1f 1 dP ., _ _ L AP 2
gxy—z( J ( (2y h)+0) ™ (2y-h)

_+_ —_ —
oy ox) 2\ 2u dx

Fluid particles in this flow have non-zero shear strain rate.

Discussion Since the linear strain rates are zero, fluid particles deform (shear), but do not stretch in either the horizontal
or vertical directions.

4-45
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc. Limited distribution permitted only to
teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.




Chapter 4 Fluid Kinematics
4-84
Solution For the 2-D Poiseuille flow velocity field we are to form the 2-D strain rate tensor and determine if the x
and y axes are principal axes.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.

Analysis The two-dimensional strain rate tensor, &;, in the x-y plane,
H gXX gx
2-D strain rate tensor: & = [ y} )
& &
yX yy
We use the linear strain rates and the shear strain rate from the previous problem to generate the tensor,
0 id_P(zy _ h)
Exx gxy 4/1 dx
R P 1 dP )
e ——(2y -h) 0
4y dx

Note that by symmetry &, = &y. If the x and y axes were principal axes, the diagonals of &; would be non-zero, and the off-
diagonals would be zero. Here we have the opposite case, so the x and y axes are not principal axes.

Discussion  The principal axes can be calculated using tensor algebra.

4-85 @F
Solution For a given velocity field we are to plot several pathlines
for fluid particles released from various locations and over a specified time
period. 15 ] ;
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The ] |
flow is two-dimensional in the x-y plane. :
Properties For water at 40°C, = 6.53x10™ kg/m:s. 17 .
y 1
Analysis Since the flow is steady, pathlines, streamlines, and (mm) A ;
streaklines are all straight horizontal lines. We simply need to integrate ;
velocity component u with respect to time over the specified time period. 0.5 7 1
The horizontal velocity component is . ;
1 dp ]
U=——2—h -||||:||||||||l
2 o (v*—hy) 1) 0
0 05 1 15
We integrate as follows: X (m)
teng os( 1 dP/ , FIGURE 1
X = Xt +Lm udt =0+ J.o (Z&(y - hy)jdt Pathlines for the given velocity field at t =
d (2 12 s. Note that the vertical scale is greatly
=L_P(y2 — hy)(lO 5) expanded for clarity (x is in m, buty isin
2u dx mm).

We substitute the given values of y and the values of x and dP/dx into Eq. 2 to calculate the ending x position of each
pathline. We plot the pathlines in Fig. 1.

Discussion Streaklines introduced at the same locations and developed over the same time period would look identical
to the pathlines of Fig. 1.
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Chapter 4 Fluid Kinematics
4-86 [Also solved using EES on enclosed DVD]
Solution For a given velocity field we are to plot several streaklines at a given time for dye released from various
locations over a specified time period.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.

Properties  For water at 40°C, x = 6.53x10™ kg/m:s.

Analysis Since the flow is steady, pathlines, streamlines, and
streaklines are all straight horizontal lines. We simply need to integrate ]
. . . e . . 15
velocity component u with respect to time over the specified time period. .
The horizontal velocity component is ]
1 dP, , ]
2u dx (y y) 1) v ]
We integrate as follows to obtain the final x location of the first dye (mm) 1
particle released: 05
end 10s 1 dP 2 4
X = Xy +J' . udt=0 . (2—&()/ - y)j dt o —
Ollllllllllllll
1 dP
x=_—(y*=hy)x(105) 0 05 1 15
u dx
X (m)
We substitute the given values of y and the values of x and dP/dx into Eq.
FIGURE 1

2 to calculate the ending x position of the first released dye particle of each
streakline. The last released dye particle is at X = Xga = 0, because it hasn’t
had a chance to go anywhere. We connect the beginning and ending points
to plot the streaklines (Fig. 1).

Streaklines for the given velocity field at t =
10 s. Note that the vertical scale is greatly
expanded for clarity (x is in m, buty is in
mm).

Discussion These streaklines are introduced at the same locations and
are developed over the same time period as the pathlines of the previous problem. They are identical since the flow is
steady.
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Chapter 4 Fluid Kinematics

4-87 )
Solution For a given velocity field we are to plot several streaklines at a given time for dye released from various

locations over a specified time period.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The
flow is two-dimensional in the x-y plane.

15 1 |
Properties For water at 40°C, 2= 6.53x10™ kg/m:s. ] l
Analysis Since the flow is steady, pathlines, streamlines, and ] ;
streaklines are all straight horizontal lines. The horizontal velocity 11-- ‘ -
component is y !
mm) 7 l
1 dP 2 ( T T
R — - h — !
2 o (v*-hy) 1) 05 - :
In the previous problem we generated streaklines at t = 10 s. Imagine the 11—
dye at the source being suddenly cut off at that time, but the streaklines are o+
observed 2 seconds later, at t = 12 s. The dye streaks will not stretch any 0 05 1 15
further, but will simply move at the same horizontal speed for 2 more ' X (M) '
seconds. At each y location, the x locations of the first and last dye particle
are thus FIGURE 1
1 dp Streaklines for the given velocity field at t =
first dye particle of streakline:  x= ——(y2 - hy)(12 s) 2 12 s. Note that the vertical scale is greatly
2p dx expanded for clarity (x is in m, buty is in
and mm).
. . 1 dP, ,
last dye particle of streakline:  x = Z_d_(y ~hy)(25s) ©)
X

We substitute the given values of y and the values of & and dP/dx into Egs. 2 and 3 to calculate the ending and beginning x
positions of the first released dye particle and the last released dye particle of each streakline. We connect the beginning
and ending points to plot the streaklines (Fig. 1).

Discussion Both the left and right ends of each dye streak have moved by the same amount compared to those of the
previous problem.

wes
Solution For a given velocity field we are to compare streaklines at two different times and comment about linear

strain rate in the x direction.
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.
Properties  For water at 40°C, x = 6.53x10™ kg/m:s.

Analysis Comparing the results of the previous two problems we see that the streaklines have not stretched at all —
they have simply convected downstream. Thus, based on the fundamental definition of linear strain rate, it is zero:

Linear strain rate in the x direction: e, =0 Q)

XX

Discussion Our result agrees with that of Problem 4-83.
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e
Solution For a given velocity field we are to plot several timelines

at a specified time. The timelines are created by hydrogen bubbles
released from a vertical wire at x = 0.

=
3

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The
flow is two-dimensional in the x-y plane.

Properties For water at 40°C, = 6.53x10™ kg/m:s. 1
ts ty t3 t t

Analysis Since the flow is steady, pathlines, streamlines, and (mm) 1
streaklines are all straight horizontal lines, but timelines are completely ]
different from any of the others. To simulate a timeline, we integrate
velocity component u with respect to time over the specified time period -
fromt =0 to t = teng. We introduce the bubbles at x = 0 and at many values .
of y (we used 50 in our simulation). By connecting these x locations with 0 ] ="

a line, we simulate a timeline. The horizontal velocity component is T

0 0.5 1 15
X (m
x-velocity component: u= %Z—P(yz —hy) (1) m)
X
FIGURE 1
We integrate as follows to find the x position on the timeline at teg: Timelines for the given velocity field at t =
12.5 s, generated by a simulated hydrogen
B toa tu[ 1 dP/ , bubble wire at x = 0. Timelines created at ts
X=X + [, "udt =0+ [ (Z&(y - hy)) at =1005 t, =755 =505t =25s, and
1 dp t; = 0 s. Note that the vertical scale is greatly
X = __(y2 - hy)tend expanded for clarity (x is in m, buty is in
21 dx mm).

We substitute the values of y and the values of x and dP/dx into the above equation to calculate the ending x position of
each point in the timeline. We repeat for the five values of t.,q. We plot the timelines in Fig. 1.

Discussion Each timeline has the exact shape of the velocity profile.

4-90
Solution We are to determine if the flow is rotational, and if so calculate the -component of vorticity.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is axisymmetric about the x axis.

Analysis The velocity components are given by
1 dP,, _,
u=——i r°-R u =0 u,=0
o R ’ (2)

If the vorticity is non-zero, the flow is rotational. So, we calculate the 8-component of vorticity,

ou, ou 1 dpP r dP
=—r——=0-——2r=——-— 2)
oz or 4u dx 21 dx

¢-component of vorticity: <,

Since the vorticity is non-zero, this flow is rotational. The vorticity is positive since dP/dx is negative. In this coordinate
system, positive vorticity is counterclockwise with respect to the positive @direction. This agrees with our intuition since in
the top half of the flow, @ points out of the page, and the rotation is counterclockwise. Similarly, in the bottom half of the
flow, @points into the page, and the rotation is clockwise.

Discussion  The vorticity varies linearly across the pipe from zero at the centerline to a maximum at the pipe wall.
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4-91
Solution For the given velocity field for axisymmetric Poiseuille flow, we are to calculate the linear strain rates and
the shear strain rate.
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is axisymmetric about the x axis.
Analysis The linear strain rates in the x direction and in the r direction are

_au=0 _aur_o

Linear strain rates: Eg =— E = =
OX or

o)

Thus there is no linear strain rate in either the x or the r direction. The shear strain rate in the x-r plane is

. 1(ou, ou) 1 1 dpP r dP
Shear strain rate: Eg == +—|==|0+——2r |=—— 2
2\ 0x or) 2 44 dx 4 dx

Fluid particles in this flow have non-zero shear strain rate.

Discussion Since the linear strain rates are zero, fluid particles deform (shear), but do not stretch in either the horizontal
or radial directions.

4-92

Solution For the axisymmetric Poiseuille flow velocity field we are to form the axisymmetric strain rate tensor and
determine if the x and r axes are principal axes.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is axisymmetric about the x axis.

Analysis The axisymmetric strain rate tensor, &, is
- . . grr gl'X
Axisymmetric strain rate tensor: & :[ J (1)

We use the linear strain rates and the shear strain rate from the previous problem to generate the tensor,

o _dr
H - H grr EI'X 4# dX
Axisymmetric strain rate tensor: & = = 2
Colae el | AP

4 dx

Note that by symmetry &, = . If the x and r axes were principal axes, the diagonals of &; would be non-zero, and the off-
diagonals would be zero. Here we have the opposite case, so the x and r axes are not principal axes.

Discussion  The principal axes can be calculated using tensor algebra.
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4-93
Solution We are to determine the location of stagnation point(s) in a given velocity field.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity components are
) -V x X2 +y? +b’
x-component of velocity: u= 1
P y L x* +2x%y? +2x°b% + y* —2y*b® +b* @)
and
\/ 2 2 _p2
y-component of velocity: V= vy X +y b )

C oL x4+ 2x%y2 +2x%0% + yt —2y%h? +b?

Both u and v must be zero at a stagnation point. From Eqg. 1, u can be zero only when x = 0. From Eq. 2, v can be zero either
when y = 0 or when x? + y? —-b? = 0. Combining the former with the result from Eq. 1, we see that there is a stagnation
point at (x,y) = (0,0), i.e. at the origin,

Stagnation point: u=0andv=0at(x,y)=(0,0) ‘ 3)

Combining the latter with the result from Eq. 1, there appears to be another stagnation point at (x,y) = (0,b). However, at
that location, Eq. 2 becomes

Vb 0 0
V= =— 4
7L b* —20%0% +b* 0 @

y-component of velocity:

This point turns out to be a singularity point in the flow. Thus, the location (0,b) is not a stagnation point after all.

Discussion  There is only one stagnation point in this flow, and it is at the origin.
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4-94
Solution We are to draw a velocity vector plot for a given velocity field.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.
Analysis We generate an array of x and y values in the given range and calculate u and v from Egs. 1 and 2

respectively at each location. We choose an appropriate scale factor for the vectors and then draw arrows to form the
velocity vector plot (Fig. 1).

Scale: 10 m/s

FIGURE 1 . .
Velocity vector plot for the ] v
vacuum cleaner; the scale 0.023 N F
factor for the velocity vectors .
is shown on the Iege?:d. x and y I~ - T __— ]
y values are in meters. The ]
vacuum cleaner inlet is at the 0.01 — — —
pointx =0,y =0.02 m. .

E*) — — r ~ —~— —

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
X

It is clear from the velocity vector plot how the air gets sucked into the vacuum cleaner from all directions. We also see that
there is no flow through the floor.

Discussion ~ We discuss this problem in more detail in Chap. 10.

4-95
Solution We are to calculate the speed of air along the floor due to a vacuum cleaner, and find the location of
maximum speed.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis At the floor, y = 0. Setting y = 0 in Eq. 2 of Problem 4-93 shows that v = 0, as expected — no flow through
the floor. Setting y = 0 in Eq. 1 of Problem 4-93 results in the speed along the floor,
Speed on the floor:
CVx o xXP+b? Vx xE+b? VX )
7L x*+2x°h° +b*  xL (XZ +b2)2 7rL(x2 +b2)

We find the maximum speed be differentiating Eq. 1 and setting the result to zero,

du V| -2x 1

Maximum speed on the floor: —=— 2t o2
dx 7L (Xz+b2) X“+b

-0 @

After some algebraic manipulation, we find that Eq. 2 has solutions at x = b and x = -b. It is at x = b and x = -b where we
expect the best performance. At the origin, directly below the vacuum cleaner inlet, the flow is stagnant. Thus, despite our
intuition, the vacuum cleaner will work poorly directly below the inlet.

Discussion  Try some experiments at home to verify these results!
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4-96
Solution For a given expression for u, we are to find an expression for v such that the flow field is incompressible.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The x-component of velocity is given as
x-component of velocity: u= a+b(x—c)2 €))

In order for the flow field to be incompressible, the volumetric strain rate must be zero,

Volumetric strain rate: =g, tE, e, =
V Dt x oy Sz )
Co

This gives us a necessary condition for v,

Necessary condition for v: — =
y oy OX )
We substitute Eqg. 1 into Eq. 3 and integrate to solve for v,
y_ -2b(x—c)
oy OX

Expression for v:
V= I%dy = .[(—Zb(x—c))dy+ f(x)

Note that we must add an arbitrary function of x rather than a simple constant of integration since this is a partial integration
with respect to y. v is a function of both x and y. The result of the integration is

Expression for v: ‘v= -2b(x—c)y+ f(x)‘ (4)

Discussion  We verify by plugging Egs. 1 and 4 into Eq. 2,

Volumetric strain rate: iﬂ=a—u+ﬂ: 2b(x—c)—2b(x—c)=0 (5)
V Dt ox oy

Since the volumetric strain rate is zero for any function f(x), Egs. 1 and 4 represent an incompressible flow field.
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4-97
Solution For a given velocity field we are to determine if the flow is rotational or irrotational.
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-&plane.

Analysis The velocity components for flow over a circular cylinder of radius r are
a’ a’
u, =V cose(l—r—zJ u, =-Vsin 9(1+r—2j 1)

Since the flow is assumed to be two-dimensional in the r-@ plane, the only non-zero component of vorticity is in the z
direction. In cylindrical coordinates,

Vorticity component in the z direction: ¢, =

z

()

rl or 00

i[ o(ru,) ﬂj
We plug in the velocity components of Eg. 1 into Eq. 2 to solve for &,

2 2 2 2
¢, = 1[ﬁ[—v sin H[r +""—D+v sin 9[1—5‘—2)] - 3{-v sing+v 2 _sing+Vsing-v Lsin 9} =0 (3
rior r r r r r

Hence, since the vorticity is everywhere zero, this flow is irrotational.

Discussion Fluid particles distort as they flow around the cylinder, but their net rotation is zero.

4-98
Solution For a given velocity field we are to find the location of the stagnation point.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-&plane.

Analysis The stagnation point occurs when both components of
velocity are zero. We set u, = 0 and uy, = 0 in Eg. 1 of the previous \Yj
problem, ——» Stagnation
—> point
a’ . >
u =V cosH[l——Z]:O Either cos@ =0 orr* =a’ —>
r -
. a’ . . ) ) @ >
u, =-Vsin 6(1+r—2):0 Either sin@=0o0rr°=-a FIGURE 1

The stagnation point on the upstream half of
The second part of the u, condition in Eq. 1 is obviously impossible since  the flow field is located at the nose of the
cylinder radius a is a real number. Thus sing = 0, which means that 9= 0°  cylinder at r = a and = 180°.
or 180°. We are restricted to the left half of the flow (x < 0); therefore we
choose &= 180°. Now we look at the u, condition in Eq. 1. At 6= 180° cosd= -1, and thus we conclude that r must equal
a. Summarizing,

Stagnation point: ‘r =a 0= —180"‘ 2

Or, in Cartesian coordinates,
Stagnation point: x=-a y=0 3
The stagnation point is located at the nose of the cylinder (Fig. 1).

Discussion  This result agrees with our intuition, since the fluid must divert around the cylinder at the nose.
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o [

Solution For a given stream function we are to generate an equation

for streamlines, and then plot several streamlines in the upstream half of 0.2
the flow field. 1
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the 01 _
r-dplane. ]
Analysis y (M)o0 1

(a) The stream function is

W=Vsin9[r—a—:) (1)

O
N

First we multiply both sides of Eqg. 1 by r, and then solve the quadratic 04 03 02 01 0

equation for r using the quadratic rule. This gives us an equation for r as a

function of 6, with y, a, and V as parameters, X (m)
FIGURE 1
. . vt \/y/z +4a*V?%sin? 6 Streamlines corresponding to flow over a
Equation for a streamline: r= N singd (2) circular cylinder. Only the upstream half of

the flow field is plotted.

(b) For the particular case in which V = 1.00 m/s and cylinder radius a = 10.0 cm, we choose various values of win Eq. 2,
and plot streamlines in the upstream half of the flow (Fig. 1). Each value of w corresponds to a unique streamline.

Discussion ~ The stream function is discussed in greater detail in Chap. 9.

4-100
Solution For a given velocity field we are to calculate the linear strain rates &, and &4 in the r-@plane.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-&plane.

Analysis We substitute the equation of Problem 4-97 into that of Problem 4-91,

: . o au, a’
Linear strain rate in r direction: Ep = o 2V cos HF (1)
and

. . . N 1|0 1 2 2 2
Linear strain rate in @direction: Egp ——{ﬁ+u,} :—{—V cose[1+ a ]+V cose[l—?—zﬂ =-2V cose% 2

T r| 66 r r2

The linear strain rates are non-zero, implying that fluid line segments do stretch (or shrink) as they move about in
the flow field.

Discussion  The linear strain rates decrease rapidly with distance from the cylinder.
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4-101
Solution We are to discuss whether the flow field of the previous problem is incompressible or compressible.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-&plane.

Analysis For two-dimensional flow we know that a flow is incompressible if its volumetric strain rate is zero. In that
case,
Volumetric strain rate, incompressible 2-D flow in the x-y plane: 1oV =&y té, = 8—U+Q =0 (1)
V Dt ox oy
We can extend Eq. 1 to cylindrical coordinates by writing
. . . . . ou ou
Volumetric strain rate, incompressible 2-D flow in the r-@plane: 1oV Ep +Ey =" +1 —%+u, |=0 2
V Dt or r| o6
Plugging in the results of the previous problem we see that
. ) . . 1 DV a’ a’
Volumetric strain rate for flow over a circular cylinder: vV Dt =2V cosd—-—2V cosd—-=0 3)
r r

Since the volumetric strain rate is zero everywhere, the flow is incompressible.

Discussion In Chap. 9 we show that Eq. 2 can be obtained from the differential equation for conservation of mass.

4-102
Solution For a given velocity field we are to calculate the shear strain rate &

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-&plane.

Analysis We substitute the equation of Problem 4-97 into that of Problem 4-91,

Shear strain rate in r-@plane:

1| o0(u,) 1laou,
Ep=—|I—| = |+—
2| orr r o6

H 2 2
_1 ri —Vsme—Vsinea—3 +l -Vsing 1—6‘—2 @
2| or r r r r

2 2 2
- v sin 9{1+3a—3—1+a—3} = singd
2 rrrr r

which reduces to

, . .l
Shear strain rate in r-@plane: & =2V sin Hr—3 (2

The shear strain rate is non-zero, implying that fluid line segments do deform with shear as they move about in the
flow field.

Discussion  The shear strain rate decreases rapidly (as r) with distance from the cylinder.

CHT
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Chapter 5 Mass, Bernoulli, and Energy Equations

Conservation of Mass

5-1C
Solution We are to name some conserved and non-conserved quantities.
Analysis Mass, energy, momentum, and electric charge are conserved, and volume and entropy are not

conserved during a process.

Discussion Students may think of other answers that may be equally valid.

5-2C
Solution We are to discuss mass and volume flow rates and their relationship.
Analysis Mass flow rate is the amount of mass flowing through a cross-section per unit time whereas volume flow

rate is the amount of volume flowing through a cross-section per unit time.

Discussion Mass flow rate has dimensions of mass/time while volume flow rate has dimensions of volume/time.

5-3C
Solution We are to discuss the mass flow rate entering and leaving a control volume.
Analysis The amount of mass or energy entering a control volume does not have to be equal to the amount of mass

or energy leaving during an unsteady-flow process.

Discussion If the process is steady, however, the two mass flow rates must be equal; otherwise the amount of mass
would have to increase or decrease inside the control volume, which would make it unsteady.

5-4C
Solution We are to discuss steady flow through a control volume.
Analysis Flow through a control volume is steady when it involves no changes with time at any specified position.

Discussion  This applies to any variable we might consider — pressure, velocity, density, temperature, etc.

5-5C
Solution We are to discuss whether the flow is steady through a given control volume.
Analysis No, a flow with the same volume flow rate at the inlet and the exit is not necessarily steady (unless the

density is constant). To be steady, the mass flow rate through the device must remain constant.

Discussion If the question had stated that the two mass flow rates were equal, then the answer would be yes.
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5-6E
Solution A garden hose is used to fill a water bucket. The volume and mass flow rates of water, the filling time, and
the discharge velocity are to be determined.

Assumptions 1 Water is an incompressible substance. 2 Flow through the hose is steady. 3 There is no waste of water by
splashing.

Properties We take the density of water to be 62.4 Ibm/ft®.

Analysis (a) The volume and mass flow rates of water are

V = AV =(zD?/ 4V = [z(1/12 ft)*  4](8 ft/s) = 0.04363 ft’/s = 0.0436 ft°/s

m=pV =(62.4 Ibm/ft*)(0.04363 ft3/s) =2.72 Ibm/s

(b) The time it takes to fill a 20-gallon bucket is %

3
=l= 20 gal 3 1t =61.3s
V  0.04363ft3/s | 7.4804 gal

(c) The average discharge velocity of water at the nozzle exit is

Vv V. 0.04363ft%/s

—=— = > =32 ft/s
Ae DI 14 [x(0.5/12ft)° /4]

e

Discussion Note that for a given flow rate, the average velocity is inversely proportional to the square of the velocity.
Therefore, when the diameter is reduced by half, the velocity quadruples.

5-7
Solution Air is accelerated in a nozzle. The mass flow rate and the exit area of the nozzle are to be determined.

Assumptions  Flow through the nozzle is steady.
Properties The density of air is given to be 2.21 kg/m? at the inlet, and 0.762 kg/m?® at the exit.

Analysis (a) The mass flow rate of air is determined from the inlet conditions to be

= p AV, = (221 kg/m®)(0.008 m2)(30 mis) = 0.530 kg/s \

V=30 m/s AIR

A, =80cm* ——> Vo,=180m/s
(b) There is only one inlet and one exit, and thus m, =m, =m.

Then the exit area of the nozzle is determined to be /

m 0.530 kg/s

= = - =0.00387m? =38.7cm?
P2V, (0.762 kg/m*®)(180 m/s)

m=py AV, Ay

Discussion Since this is a compressible flow, we must equate mass flow rates, not volume flow rates.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-8
Solution Air is expanded and is accelerated as it is heated by a hair dryer of constant diameter. The percent increase
in the velocity of air as it flows through the drier is to be determined.
Assumptions Flow through the nozzle is steady.

Properties  The density of air is given to be 1.20 kg/m® at the inlet, and 1.05 kg/m?® at the exit.

Analysis There is only one inlet and one exit, and thus m, =m, =m. Then,
. N e}
ml = m2 <«
PAV; = p, AV, vz Vi

3
Vs P M =1.14  (or, an increase of 14%)
V, p, 1.05kg/m

Therefore, the air velocity increases 14% as it flows through the hair drier.

Discussion It makes sense that the velocity increases since the density decreases, but the mass flow rate is constant.

5-9E
Solution The ducts of an air-conditioning system pass through an open area. The inlet velocity and the mass flow rate
of air are to be determined.

Assumptions  Flow through the air conditioning duct is steady.

Properties The density of air is given to be 0.078 Ibm/ft® at the inlet.

Analysis The inlet velocity of air and the mass flow rate through the duct are
Y % 450 ft*/mi :
Vy=—lo L T _825ftmin=138ft/s 450 fe/min AIR b=10in
A zD%14 #1012 ft)* /4 —_—>

m = pV; = (0.078 Ibm/ft*)(450 ft* / min) = 35.1 Ibm/min = 0.585 Ibm/s

Discussion ~ The mass flow rate though a duct must remain constant in steady flow; however, the volume flow rate
varies since the density varies with the temperature and pressure in the duct.

5-10

Solution A rigid tank initially contains air at atmospheric conditions. The tank is connected to a supply line, and air
is allowed to enter the tank until the density rises to a specified level. The mass of air that entered the tank is to be
determined.

Properties The density of air is given to be 1.18 kg/m? at the beginning, and 7.20 kg/m® at the end.

Analysis We take the tank as the system, which is a control volume since mass crosses the boundary. The mass
balance for this system can be expressed as
Mass balance: Mip = Moyt = AMggen —> My =My =My = p,V — pV 5 5
Substituting, m; = (p, — o,V =[(7.20-1.18) kg/m3]@m?3) = 6.02 kg ;

Vi=1m®
Therefore, 6.02 kg of mass entered the tank. p1=1.18 kg/m®

Discussion  Tank temperature and pressure do not enter into the calculations.
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Chapter 5 Mass, Bernoulli, and Energy Equations

Zgllution The ventilating fan of the bathroom of a building runs continuously. The mass of air “vented out” per day is
to be determined.

Assumptions  Flow through the fan is steady. .,
Properties The density of air in the building is given to be 1.20 kg/m®. <

Analysis The mass flow rate of air vented out is -

My = PV = (1.20 kg/m*)(0.030 m*/s) = 0.036 kg/s
Then the mass of air vented out in 24 h becomes

m = my;, At = (0.036 kg/s)(24x3600s) = 3110 kg
Discussion Note that more than 3 tons of air is vented out by a bathroom fan in one day.

5-12
Solution A desktop computer is to be cooled by a fan at a high elevation where the air density is low. The mass flow
rate of air through the fan and the diameter of the casing for a given velocity are to be determined.

Assumptions Flow through the fan is steady.

Properties The density of air at a high elevation is given to be 0.7 kg/m®.

Analysis The mass flow rate of air is
My = PV = (0.7 kg/m®)(0.34 m3/min) = 0.238 kg/min = 0.0040 kg/s
If the mean velocity is 110 m/min, the diameter of the casing is /— —
) . . =
Veoav-Py o po A A03AmIMIN G pes e,
4 (110 m/min) ol =

Therefore, the diameter of the casing must be at least 6.3 cm to ensure that the mean velocity does not exceed 110 m/min.

Discussion  This problem shows that engineering systems are sized to satisfy given imposed constraints.

5-13
Solution A smoking lounge that can accommodate 15 smokers is considered. The required minimum flow rate of air
that needs to be supplied to the lounge and the diameter of the duct are to be determined.

Assumptions Infiltration of air into the smoking lounge is negligible.

Properties The minimum fresh air requirements for a smoking lounge is given to be 30 L/s per person.

Analysis The required minimum flow rate of air that needs to be supplied to the lounge is determined directly from
Vair =Vair per person (No. of persons)
= (30 L/s- person)(15 persons) = 450 L/s = 0.45 m?3/s Smoking Lounge
The volume flow rate of fresh air can be expressed as
V =VA=V (7zD2 /4) 15 smokers
Solving for the diameter D and substituting, 30 L/s person
3
w =0.268 m
(8 m/s)

Therefore, the diameter of the fresh air duct should be at least 26.8 cm if the velocity of air is not to exceed 8 m/s.

Discussion Fresh air requirements in buildings must be taken seriously to avoid health problems.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-14
Solution The minimum fresh air requirements of a residential building is specified to be 0.35 air changes per hour.
The size of the fan that needs to be installed and the diameter of the duct are to be determined.

Analysis The volume of the building and the required minimum volume flow rate of fresh air are

Voom = (2.7 M)(200m?) =540 m?

V =V,,om ¥ ACH = (540 m*)(0.35/h) =189 m* / h =189,000 L/h = 3150 L/min /\
The volume flow rate of fresh air can be expressed as / \

V =VA=V (aD?/4) House

Solving for the diameter D and substituting, 0.35 ACH == 200 m*

/ 3
D= /ﬁ: 4(189/3600 m*°/s) 0106 m
pa%l (6 m/s)

Therefore, the diameter of the fresh air duct should be at least 10.6 cm if the velocity of air is not to exceed 6 m/s.

Discussion Fresh air requirements in buildings must be taken seriously to avoid health problems.
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Chapter 5 Mass, Bernoulli, and Energy Equations

Mechanical Energy and Pump Efficiency

5-15C
Solution We are to discuss mechanical energy and how it differs from thermal energy.
Analysis Mechanical energy is the form of energy that can be converted to mechanical work completely and

directly by a mechanical device such as a propeller. It differs from thermal energy in that thermal energy cannot be
converted to work directly and completely. The forms of mechanical energy of a fluid stream are kinetic, potential, and
flow energies.

Discussion It would be nice if we could convert thermal energy completely into work. However, this would violate the
second law of thermodynamics.

5-16C
Solution We are to define and discuss mechanical efficiency.
Analysis Mechanical efficiency is defined as the ratio of the mechanical energy output to the mechanical energy

input. A mechanical efficiency of 100% for a hydraulic turbine means that the entire mechanical energy of the fluid is
converted to mechanical (shaft) work.

Discussion No real fluid machine is 100% efficient, due to frictional losses, etc. — the second law of thermodynamics.

5-17C
Solution We are to define and discuss pump-motor efficiency.
Analysis The combined pump-motor efficiency of a pump/motor system is defined as the ratio of the increase in the

mechanical energy of the fluid to the electrical power consumption of the motor,

Emech,out - Emech,in _ AEmech,fluid _ Wpump

npump-motor = 77pump77motor -

Welect,in Welect,in Welect,in

The combined pump-motor efficiency cannot be greater than either of the pump or motor efficiency since both pump and
motor efficiencies are less than 1, and the product of two numbers that are less than one is less than either of the numbers.

Discussion Since many pumps are supplied with an integrated motor, pump-motor efficiency is a useful parameter.

5-18C
Solution We are to define and discuss turbine, generator, and turbine-generator efficiency.
Analysis Turbine efficiency, generator efficiency, and combined turbine-generator efficiency are defined as follows:
3 Mechanical energy output B Wohatt,out
Turbine = Mechanical energy extracted from the fluid | AE pmech fiuid |
_ Electrical power output Welect,out
Taeneraor ="\ echanical power input Wopattin

Welect,out Welect,out

Mturbine-gen = Mturbine generaor = : = :
Emech,in - Emech,out | AEmech,fluid |

Discussion Most turbines are connected directly to a generator, so the combined efficiency is a useful parameter.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-19
Solution A river is flowing at a specified velocity, flow rate, and elevation. The total mechanical energy of the river
water per unit mass, and the power generation potential of the entire river are to be determined.

Assumptions 1 The elevation given is the elevation of the free surface of the river. 2 The velocity given is the average
velocity. 3 The mechanical energy of water at the turbine exit is negligible.

Properties We take the density of water to be p = 1000 kg/m®.

Analysis Noting that the sum of the flow energy and the potential energy is constant for a given fluid body, we can
take the elevation of the entire river water to be the elevation of the free surface, and ignore the flow energy. Then the total

mechanical energy of the river water per unit mass becomes
2

€mech = Pe+ke=gh +VT

:((9.81m/52)(90m)+(3m/s)2J( 1kd/kg j o __:>:

2 1000 m?/s?

= 0.887 ki/kg

The power generation potential of the river water is obtained by multiplying the total
mechanical energy by the mass flow rate,

m = pV = (1000 kg/m>)(500 m*/s) = 500,000 kg/s
Winax = Emech = Memecn = (500,000 kg/s)(0.887 kg/s) = 444,000 KW = 444 MW

Therefore, 444 MW of power can be generated from this river as it discharges into the lake if its power potential can be
recovered completely.

Discussion Note that the Kinetic energy of water is negligible compared to the potential energy, and it can be ignored in
the analysis. Also, the power output of an actual turbine will be less than 444 MW because of losses and inefficiencies.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-20
Solution A hydraulic turbine-generator is generating electricity from the water of a large reservoir. The combined
turbine-generator efficiency and the turbine efficiency are to be determined.

Assumptions 1 The elevation of the reservoir remains constant. 2 The mechanical energy of water at the turbine exit is
negligible.

Analysis We take the free surface of the reservoir to be point 1 and the turbine exit to be point 2. We also take the
turbine exit as the reference level (z, = 0), and thus the potential energy at points 1 and 2 are pe; = gz; and pe, = 0. The flow
energy P/p at both points is zero since both 1 and 2 are open to the atmosphere (P, = P, = Py,). Further, the kinetic energy
at both points is zero (ke; = ke, = 0) since the water at point 1 is essentially motionless, and the kinetic energy of water at
turbine exit is assumed to be negligible. The potential energy of water at point 1 is

pe; = gz, = (9.81m/s2)(70 m)(Lkzgzj =0.687 ki/kg
1000 m2/s ®)

Then the rate at which the mechanical energy of the fluid is supplied ——~7x——
to the turbine become _ -

|AEmech,ﬂuid| = m(emech,in _emech,out) = m( pe; _0) = mpel — 750 kW
— (1500 Kg/s)(0.687 ki/kg) _
=1031kwW — —

The combined turbine-generator and the turbine efficiency are
determined from their definitions,

Turbine Generator

®

_ Welect,out _ 750 KW

. _ =0.727 or 72.7%
T turbine-gen | AE echsiuid | 1031kw

Wshaft,out _ 800 kW
| AE pechfivig | 1031KW

Therefore, the reservoir supplies 1031 kW of mechanical energy to the turbine, which converts 800 kW of it to shaft work
that drives the generator, which generates 750 kW of electric power.

77t[,|rbim-} = 20776 or 776%

Discussion  This problem can also be solved by taking point 1 to be at the turbine inlet, and using flow energy instead of
potential energy. It would give the same result since the flow energy at the turbine inlet is equal to the potential energy at
the free surface of the reservoir.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-21
Solution Wind is blowing steadily at a certain velocity. The mechanical energy of air per unit mass, the power
generation potential, and the actual electric power generation are to be determined.

Assumptions 1 The wind is blowing steadily at a constant uniform velocity. 2 The efficiency of the wind turbine is
independent of the wind speed.

Properties  The density of air is given to be p = 1.25 kg/m®.

Analysis Kinetic energy is the only form of mechanical energy the wind possesses, and it can be converted to work

entirely. Therefore, the power potential of the wind is its kinetic energy, which is V42 per unit mass, and mv 2 /2 for a
given mass flow rate:

V2 (12m/s)? ( 1kikg
€mech = ke=—= 2, 2
2 2 1000 m?/s

] =0.072 ki/kg

aD? 2
m= pVA = pV e = (1.25 kg/m*)(12 m/s) @ = 29,452 kg/s

Wiiax = Epecn = Mepeey = (29,452 Kg/s)(0.072 ki/kg) = 2121 kW = 2120 kW

mech
The actual electric power generation is determined by multiplying the power generation potential by the efficiency,
Welect = Twind turbinewmax =(0.30)(2121kW) = 636 kW

Therefore, 636 kW of actual power can be generated by this wind turbine at the stated conditions.

> Wind
Wind turbine
—_—>
12 m/s ()

Discussion ~ The power generation of a wind turbine is proportional to the cube of the wind velocity, and thus the power
generation will change strongly with the wind conditions.
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Chapter 5 Mass, Bernoulli, and Energy Equations

s
Solution The previous problem is reconsidered. The effect of wind velocity and the blade span diameter on wind

power generation as the velocity varies from 5 m/s to 20 m/s in increments of 5 m/s, and the diameter varies from 20 m to
80 m in increments of 20 m is to be investigated.

Analysis The EES Equations window is printed below, followed by the tabulated and plotted results.

D1=20"m"

D2=40 "m"

D3=60 "m"

D4=80 "m"

Eta=0.30

rho=1.25 "kg/m3"

m1l_dot=rho*V*(pi*D1"2/4); W1_Elect=Eta*m1_dot*(V"2/2)/1000 "kW"
m2_dot=rho*V*(pi*D2"2/4); W2_Elect=Eta*m2_dot*(V"2/2)/1000 "kW"
m3_dot=rho*V*(pi*D3"2/4); W3_Elect=Eta*m3_dot*(V"2/2)/1000 "kW"
m4_dot=rho*V*(pi*D4"2/4); W4_Elect=Eta*m4_dot*(V*2/2)/1000 "kW"

D, m V, m/s m, kg/S Weleer, KW
20 5 1,963 7
10 3,927 59
15 5,890 199
20 7,854 471
40 5 7,854 29
10 15,708 236
15 23,562 795
20 31,416 1885
60 5 17,671 66
10 35,343 530
15 53,014 1789
20 70,686 4241
80 5 31,416 118
10 62,832 942
15 94,248 3181
20 125,664 7540
8000 ‘
7000 D=80m/]
600()- /
5000 /

4000 /D =

5 60m
(]
w I / / 1
= 3000- P / / _
A = i
e
100(). — 4/ D=20m
L ———
4 6 8 10 12 14 16 18 20

V, m/s

Discussion  Wind turbine power output is obviously nonlinear with respect to both velocity and diameter.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-23E
Solution A differential thermocouple indicates that the temperature of water rises a certain amount as it flows
through a pump at a specified rate. The mechanical efficiency of the pump is to be determined.

Assumptions 1 The pump is adiabatic so that there is no heat transfer with the surroundings, and the temperature rise of
water is completely due to frictional heating. 2 Water is an incompressible substance.

Properties We take the density of water to be p = 62.4 lom/ft® and its specific heat to be C = 1.0 Btu/lbm-°F.

Analysis The increase in the temperature of water is due to the conversion of mechanical energy to thermal energy,
and the amount of mechanical energy converted to thermal energy is equal to the increase in the internal energy of water,

= pV = (62.4 Ibm/ft®)(1.5ft’/s) = 93.6 Iom/s AT =0.072°F
Emech,loss = AU = mcAT

0.7068 Btu/s

The mechanical efficiency of the pump is determined from the general
definition of mechanical efficiency,

— (93.6 Ibm/s)(1.0 Btu/lbm- °F)(0.072°F)[$J ~9.53hp .

— ‘ Pump
27 hp

E
g meenoss g 9930 _ 607 o 64.79
Wmech,in 27 hp

Mpump =

Discussion Note that despite the conversion of more than one-third of the mechanical power input into thermal energy,
the temperature of water rises by only a small fraction of a degree. Therefore, the temperature rise of a fluid due to
frictional heating is usually negligible in heat transfer analysis.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-24
Solution Water is pumped from a lake to a storage tank at a specified rate. The overall efficiency of the pump-motor
unit and the pressure difference between the inlet and the exit of the pump are to be determined.

Assumptions 1 The elevations of the tank and the lake remain constant. 2 Frictional losses in the pipes are negligible. 3
The changes in kinetic energy are negligible. 4 The elevation difference across the pump is negligible.

Properties We take the density of water to be p = 1000 kg/m®.

Analysis (a) We take the free surface of the lake to be point 1 and the free surfaces of the storage tank to be point 2.
We also take the lake surface as the reference level (z; = 0), and thus the potential energy at points 1 and 2 are pe; = 0 and
pe, = gz,. The flow energy at both points is zero since both 1 and 2 are open to the atmosphere (P, = P, = P4y,). Further, the
kinetic energy at both points is zero (ke; = ke, = 0) since the water at both locations is essentially stationary. The mass flow
rate of water and its potential energy at point 2 are

M= pV = (1000 kg/m®)(0.070 m®/s) = 70 kg/s

1kJ/kg

1000 m?/s?
Then the rate of increase of the mechanical energy of water becomes

pe; = gz, = (9.81m/s2)(20 m)( j =0.196 kJ/kg
AE.mech,fluid = rh(emech,out _emech,in) = m(pez _0) = mpez = (70 kg/s)(0.196 k\]/kg) =13.7kW
The overall efficiency of the combined pump-motor unit is determined from its definition,

AE mech fuid _187kw
w 20.4 kW

7 pump-motor =

=0.672 or 67.2%
elect,in
(b) Now we consider the pump. The change in the mechanical energy of

water as it flows through the pump consists of the change in the flow @
energy only since the elevation difference across the pump and the

change in the kinetic energy are negligible. Also, this change must be Storage
equal to the useful mechanical energy supplied by the pump, which is tank
13.7 kw:
- . . P,—-P
AEmech,ﬂuid = m(emech,out _emech,in) = m% =VAP

Solving for AP and substituting,

 AEjecnuis | 13.7 ks (1kPa-m3

AP = . =196 kPa
1kJ

V ©0.070m%s

Therefore, the pump must boost the pressure of water by 196 kPa in
order to raise its elevation by 20 m.

Discussion Note that only two-thirds of the electric energy consumed by the pump-motor is converted to the
mechanical energy of water; the remaining one-third is wasted because of the inefficiencies of the pump and the motor.

5-13
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc. Limited distribution permitted only to
teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.




Chapter 5 Mass, Bernoulli, and Energy Equations

Bernoulli Equation

5-25C
Solution We are to define streamwise acceleration and discuss how it differs from normal acceleration.
Analysis The acceleration of a fluid particle along a streamline is called streamwise acceleration, and it is due to a

change in speed along a streamline. Normal acceleration (or centrifugal acceleration), on the other hand, is the
acceleration of a fluid particle in the direction normal to the streamline, and it is due to a change in direction.

Discussion In a general fluid flow problem, both streamwise and normal acceleration are present.

5-26C
Solution We are to express the Bernoulli equation in three different ways.
Analysis The Bernoulli equation is expressed in three different ways as follows:
2
(@) Interms of energies: _+T+ gz = constant
Yo

V 2
(b) In terms of pressures: |P+ p7+ gz = constant

2

(c) interms of heads: —+—+12z =H =constant
A 29

Discussion You could, of course, express it in other ways, but these three are the most useful.

5-27C
Solution We are to discuss the three major assumptions used in the derivation of the Bernoulli equation.
Analysis The three major assumptions used in the derivation of the Bernoulli equation are that the flow is steady,

there is negligible frictional effects, and the flow is incompressible.

Discussion If any one of these assumptions is not valid, the Bernoulli equation should not be used. Unfortunately, many
people use it anyway, leading to errors.

5-28C
Solution We are to define and discuss static, dynamic, and hydrostatic pressure.
Analysis Static pressure P is the actual pressure of the fluid. Dynamic pressure pV %/2 is the pressure rise when

the fluid in motion is brought to a stop isentropically. Hydrostatic pressure pgz is not pressure in a real sense since its
value depends on the reference level selected, and it accounts for the effects of fluid weight on pressure. The sum of
static, dynamic, and hydrostatic pressures is constant when flow is steady and incompressible, and when frictional effects
are negligible.

Discussion ~ The incompressible Bernoulli equation states that the sum of these three pressures is constant along a
streamline; this approximation is valid only for steady and incompressible flow with negligible frictional effects.
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Chapter 5 Mass, Bernoulli, and Energy Equations

5-29C

Solution We are to define and discuss pressure head, velocity head, and elevation head.

Analysis The sum of the static and dynamic pressures is called the stagnation pressure, and it is expressed as
Pug =P+ pV? 12| The stagnation pressure can be measured by a Pitot tube whose inlet is normal to the flow.

Discussion Stagnation pressure, as its name implies, is the pressure obtained when a flowing fluid is brought to rest
isentropically, at a so-called stagnation point.

5-30C
Solution We are to define and discuss pressure head, velocity head, and elevation head.
Analysis The pressure head P/pqg is the height of a fluid column that produces the static pressure P. The velocity

head V /2 is the elevation needed for a fluid to reach the velocity V during frictionless free fall. The elevation head z is
the height of a fluid relative to a reference level.

Discussion It is often convenient in fluid mechanics to work with head — pressure expressed as an equivalent column
height of fluid.

5-31C
Solution We are to define hydraulic grade line and compare it to energy grade line.
Analysis The curve that represents the sum of the static pressure and the elevation heads, P/pg + z, is called the

hydraulic grade line or HGL. The curve that represents the total head of the fluid, P/pg + V %/2g + z, is called the energy
line or EGL. Thus, in comparison, the energy grade line contains an extra kinetic-energy-type term. For stationary bodies
such as reservoirs or lakes, the EL and HGL coincide with the free surface of the liquid.

Discussion  The hydraulic grade line can rise or fall along flow in a pipe or duct as the cross-sectional area increases or
decreases, whereas the energy grade line always decreases unless energy is added to the fluid (like with a pump).

5-32C
Solution We are to discuss the hydraulic grade line in open-channel flow and at the outlet of a pipe.
Analysis For open-channel flow, the hydraulic grade line (HGL) coincides with the free surface of the liquid. At

the exit of a pipe discharging to the atmosphere, HGL coincides with the elevation of the pipe outlet.

Discussion  We are assuming incompressible flow, and the pressure at the pipe outlet is atmospheric.

5-33C
Solution We are to discuss the maximum rise of a jet of water from a tank.
Analysis With no losses and a 100% efficient nozzle, the water stream could reach to the water level in the tank, or

20 meters. In reality, friction losses in the hose, nozzle inefficiencies, orifice losses, and air drag would prevent attainment
of the maximum theoretical height.

Discussion In fact, the actual maximum obtainable height is much smaller than this ideal theoretical limit.
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5-34C
Solution We are to discuss the effect of liquid density on the operation of a siphon.
Analysis The lower density liquid can go over a higher wall, provided that cavitation pressure is not reached.

Therefore, oil may be able to go over a higher wall than water.

Discussion However, frictional losses in the flow of oil in a pipe or tube are much greater than those of water since the
viscosity of oil is much greater than that of water. When frictional losses are considered, the water may actually be able to
be siphoned over a higher wall than the oil, depending on the tube diameter and length, etc.

5-35C
Solution We are to explain how and why a siphon works, and its limitations.
Analysis Siphoning works because of the elevation and thus pressure difference between the inlet and exit of a tube.

The pressure at the tube exit and at the free surface of a liquid is the atmospheric pressure. When the tube exit is below the
free surface of the liquid, the elevation head difference drives the flow through the tube. At sea level, 1 atm pressure can
support about 10.3 m of cold water (cold water has a low vapor pressure). Therefore, siphoning cold water over a 7 m wall
is theoretically feasible.

Discussion In actual practice, siphoning is also limited by frictional effects in the tube, and by cavitation.

5-36C
Solution We are to compare siphoning at sea level and on a mountain.
Analysis At sea level, a person can theoretically siphon water over a wall as high as 10.3 m. At the top of a high

mountain where the pressure is about half of the atmospheric pressure at sea level, a person can theoretically siphon water
over a wall that is only half as high. An atmospheric pressure of 58.5 kPa is insufficient to support a 8.5 meter high
siphon.

Discussion In actual practice, siphoning is also limited by frictional effects in the tube, and by cavitation.

5-37C
Solution We are to analyze the pressure change in a converging duct.
Analysis As the duct converges to a smaller cross-sectional area, the velocity increases. By Bernoulli’s equation, the

pressure therefore decreases. Thus Manometer A is correct since the pressure on the right side of the manometer is
obviously smaller. According to the Bernoulli approximation, the fluid levels in the manometer are independent of the flow
direction, and reversing the flow direction would have no effect on the manometer levels. Manometer A is still correct if
the flow is reversed.

Discussion In reality, it is hard for a fluid to expand without the flow separating from the walls. Thus, reverse flow with
such a sharp expansion would not produce as much of a pressure rise as that predicted by the Bernoulli approximation.
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5-38C
Solution We are to discuss and compare two different types of manometer arrangements in a flow.
Analysis Arrangement 1 consists of a Pitot probe that measures the stagnation pressure at the pipe centerline, along

with a static pressure tap that measures static pressure at the bottom of the pipe. Arrangement 2 is a Pitot-static probe that
measures both stagnation pressure and static pressure at nearly the same location at the pipe centerline. Because of this,
arrangement 2 is more accurate. However, it turns out that static pressure in a pipe varies with elevation across the pipe
cross section in much the same way as in hydrostatics. Therefore, arrangement 1 is also very accurate, and the elevation
difference between the Pitot probe and the static pressure tap is nearly compensated by the change in hydrostatic pressure.
Since elevation changes are not important in either arrangement, there is no change in our analysis when the water is
replaced by air.

Discussion Ignoring the effects of gravity, the pressure at the centerline of a turbulent pipe flow is actually somewhat
smaller than that at the wall due to the turbulent eddies in the flow, but this effect is small.

5-39
Solution A water pipe bursts as a result of freezing, and water shoots up into the air a certain height. The gage
pressure of water in the pipe is to be determined.

Assumptions 1 The flow is steady, incompressible, and irrotational with negligible frictional effects (so that the Bernoulli
equation is applicable). 2 The water pressure in the pipe at the burst section is equal to the water main pressure. 3 Friction
between the water and air is negligible. 4 The irreversibilities that may occur at the burst section of the pipe due to abrupt
expansion are negligible.

Properties We take the density of water to be 1000 kg/m?®. @ u

Analysis This problem involves the conversion of flow, Kinetic,
and potential energies to each other without involving any pumps,
turbines, and wasteful components with large frictional losses, and thus 34m
it is suitable for the use of the Bernoulli equation. The water height

will be maximum under the stated assumptions. The velocity inside the @
hose is relatively low (V; = 0) and we take the burst section of the pipe ) |
as the reference level (z; = 0). At the top of the water trajectory V, = 0, —> —>
and atmospheric pressure pertains. Then the Bernoulli equation Water Pipe

simplifies to

RV P, V7 R P P-P R

P9 29 P9 29 LR e ey ey

Solving for Py gage and substituting,

PLgage = P07, = (1000 kg/m®)(9.81m/s2)(34 m)( 1kPa j[ LkN

5 5 | =334 kPa
1kN/m“ ) 1000 kg - m/s

Therefore, the pressure in the main must be at least 334 kPa above the atmospheric pressure.

Discussion  The result obtained by the Bernoulli equation represents a limit, since frictional losses are neglected, and
should be interpreted accordingly. It tells us that the water pressure (gage) cannot possibly be less than 334 kPa (giving us a
lower limit), and in all likelihood, the pressure will be much higher.
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5-40
Solution The velocity of an aircraft is to be measured by a Pitot-static probe. For a given differential pressure
reading, the velocity of the aircraft is to be determined.

Pitot-static probe

Assumptions 1 The air flow over the aircraft is steady, incompressible, %
and irrotational with negligible frictional effects (so that the Bernoulli
equation is applicable). 2 Standard atmospheric conditions exist. 3 The

wind effects are negligible. Stagnation Static
pressure pressure

Properties The density of the atmosphere at an elevation of 3000 m is p

=0.909 kg/m>.

Analysis We take point 1 at the entrance of the tube whose opening is

parallel to flow, and point 2 at the entrance of the tube whose entrance is To static pressure meter +——

normal to flow. Noting that point 2 is a stagnation point and thus V, = 0 and

Z; = 1, the application of the Bernoulli equation between points 1 and 2 To stagnation pressure meter
gives
M 29 M 29 29 9 2 P

Solving for V, and substituting,

2(Pyag —P)  [2(3000 N/m?)( 1kg - m/s®
P 0.909 kg/m?® iN

since 1 Pa=1 N/m?and 1 m/s = 3.6 km/h.

V= J =81.2m/s =292km/h

Discussion Note that the velocity of an aircraft can be determined by simply measuring the differential pressure on a
Pitot-static probe.

5-41

Solution The bottom of a car hits a sharp rock and a small hole develops at the bottom of its gas tank. For a given
height of gasoline, the initial velocity of the gasoline out of the hole is to be determined. Also, the variation of velocity with
time and the effect of the tightness of the lid on flow rate are to be discussed.

Assumptions 1 The flow is steady, incompressible, and irrotational with negligible frictional effects (so that the Bernoulli
equation is applicable). 2 The air space in the tank is at atmospheric pressure. 3 The splashing of the gasoline in the tank
during travel is not considered.

Analysis This problem involves the conversion of flow, kinetic, and potential energies to each other without
involving any pumps, turbines, and wasteful components with large frictional losses, and thus it is suitable for the use of the
Bernoulli equation. We take point 1 to be at the free surface of gasoline in the tank so that P; = Py, (open to the
atmosphere) V; = 0 (the tank is large relative to the outlet), and z; = 0.3 m and z, = 0 (we take the reference level at the
hole. Also, P, = P4, (gasoline discharges into the atmosphere). Then the Bernoulli equation simplifies to

P V2 P, V2 V.2 Gas Tank

AL 4z ="24247 5 z=-2

M 29 A 29 29

Solving for V, and substituting,

V, =207, =+/2(9.81m/s?)(0.3m) =2.43m/s

Therefore, the gasoline will initially leave the tank with a velocity of 2.43 m/s.

Discussion  The Bernoulli equation applies along a streamline, and streamlines generally do not make sharp turns. The
velocity will be less than 2.43 m/s since the hole is probably sharp-edged and it will cause some head loss. As the gasoline
level is reduced, the velocity will decrease since velocity is proportional to the square root of liquid height. If the lid is
tightly closed and no air can replace the lost gasoline volume, the pressure above the gasoline level will be reduced, and the
velocity will be decreased.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-42E [Also solved using EES on enclosed DVD]
Solution The drinking water needs of an office are met by large water bottles with a plastic hose inserted in it. The
minimum filling time of an 8-0z glass is to be determined when the bottle is full and when it is near empty.

Assumptions 1 The flow is steady, incompressible, and irrotational with negligible frictional effects (so that the Bernoulli
equation is applicable). 2 All losses are neglected to obtain the minimum filling time.

Analysis We take point 1 to be at the free surface of water in the bottle and point 2 at the exit of the tube so that P; =
P, = P,m (the bottle is open to the atmosphere and water discharges into the atmosphere), V; = 0 (the bottle is large relative
to the tube diameter), and z, = 0 (we take point 2 as the reference level). Then the Bernoulli equation simplifies to

2 2 2
i+Vi+zlzi+v—2+z2 - zlzv—z - V,=,/2g97
M 29 A 29 29
Substituting, the discharge velocity of water and the filling time are determined as follows:
(a) Full bottle (z; = 3.5 ft):

V, =/2(32.2 ft/s?)(3.5ft) =15.0 /s
A=7D?/4=7(0.25/12ft)?/ 4 = 3.41x107* ft?
VAR, 0.00835 ft*
TV A, (341x10 “RO)sfUs) o
(b) Empty bottle (z; = 2 ft):

V, = /2(32.2ft/s?)(2 ft) =11.3ft/s

vV oV 0.00835 ft°

-=—— = 3 =2.2s
V. AV, (3.41x107" ft°)(11.3ft/s)

Discussion  The siphoning time is determined assuming frictionless flow, and
thus this is the minimum time required. In reality, the time will be longer because of
friction between water and the tube surface.

5-43
Solution The static and stagnation pressures in a horizontal pipe are measured. The velocity at the center of the pipe
is to be determined.

Assumptions The flow is steady, incompressible, and irrotational with negligible frictional effects in the short distance
between the two pressure measurement locations (so that the Bernoulli equation is applicable).

Analysis We take points 1 and 2 along the centerline of the pipe, with point 1 directly under the piezometer and
point 2 at the entrance of the Pitot-static probe (the stagnation point).

This is a steady flow with straight and parallel streamlines, and thus the
static pressure at any point is equal to the hydrostatic pressure at that
point. Noting that point 2 is a stagnation point and thus V, = 0 and z; = _ 35 cm
2, the application of the Bernoulli equation between points 1 and 2 gives 20cm

RV, RV VW PR-R Water _@@_ v
P29 A 29 29 ~9 —
Substituting the P, and P, expressions give
ﬁ _ Pz - Pl _ pg(hpitot + R) _Pg(hpiezo + R) _ pg(hpitot - hpiezo) -h
29 9 ot 9
Solving for V, and substituting,

Vi =29 (Mgitor = Npiezo) = \/2(9.81m/sz)[(0.35—0.20) m] =1.72m/s

Discussion Note that to determine the flow velocity, all we need is to measure the height of the excess fluid column in
the Pitot-static probe.

h

pitot — ' 'piezo
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-44
Solution A water tank of diameter D, and height H open to the atmosphere is initially filled with water. An orifice of
diameter D with a smooth entrance (no losses) at the bottom drains to the atmosphere. Relations are to be developed for the
time required for the tank to empty completely and half-way.

Assumptions 1 The orifice has a smooth entrance, and thus the frictional losses are negligible. 2 The flow is steady,
incompressible, and irrotational with negligible frictional effects (so that the Bernoulli equation is applicable).

Analysis We take point 1 at the free surface of the tank, and point 2 at the exit of orifice. We take the reference level
at the orifice (z, = 0), and take the positive direction of z to be upwards. Noting that the fluid at both points is open to the
atmosphere (and thus P; = P, = Pyy,) and that the fluid velocity at the free surface is very low (V; = 0), the Bernoulli
equation between these two points simplifies to

2 2 2
i+VL+zlzi+v—2+zz — zlzv—2 - V,=,204
P9 29 929 29

For generality, we express the water height in the tank at any time t by z, and the discharge velocity by V, =.,/2gz . Note

that water surface in the tank moves down as the tank drains, and thus z is a variable whose value changes from H at the
beginning to 0 when the tank is emptied completely.

We denote the diameter of the orifice by D, and the diameter of the tank by D,. The flow rate of water from the
tank is obtained by multiplying the discharge velocity by the orifice cross-sectional area,

2
720z

: 7D
V = AgificeV2 =

Then the amount of water that flows through the orifice during a differential time

interval dt is
2

dV =Vt =”% 2gzdt (1)
which, from conservation of mass, must be equal to the decrease in the volume of

Do
D
water in the tank, \'ﬁ/ —_—
ﬂDZ
4V = Ay (-d2) === -z 2 ! @

where dz is the change in the water level in the tank during dt. (Note that dz is a negative quantity since the positive
direction of z is upwards. Therefore, we used —dz to get a positive quantity for the amount of water discharged). Setting
Egs. (1) and (2) equal to each other and rearranging,

2 2 2 2

7D D D 1
0 2gzdt =——Ldz Sod=-20 | LoD g

4 2\ 29z D229
The last relation can be integrated easily since the variables are separated. Letting t; be the discharge time and integrating it
fromt=0whenz =z =Htot=t;when z =z gives

ZZ

Zg
RIS ) D¢ |zf| _ 2§ (- )\_Dof 2z |2z
Lodt_ D2 D229 |1 D229 (\/Z_' Zf)_Dz gl g
]

Then the discharging time for the two cases becomes as follows:

(a) The tank empties halfway: =Hand z; = H/2: ( IZ—H _\/:J

DO

D%\ g
Discussion Note that the discharging time is inversely proportional to the square of the orifice diameter. Therefore, the
discharging time can be reduced to one-fourth by doubling the diameter of the orifice.

1

Zf .
I VAR VRN
=7

(b) The tank empties completely: z;=Hand z=0: t; =
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5-45

Solution Water discharges to the atmosphere from the orifice at the bottom of a pressurized tank. Assuming
frictionless flow, the discharge rate of water from the tank is to be determined.

Assumptions 1 The orifice has a smooth entrance, and thus the frictional losses are /®\
negligible. 2 The flow is steady, incompressible, and irrotational with negligible frictional w

effects (so that the Bernoulli equation is applicable).

Properties We take the density of water to be 1000 kg/m?®.

Water 3m
Analysis We take point 1 at the free surface of the tank, and point 2 at the exit of Tank
orifice, which is also taken to be the reference level (z, = 0). Noting that the fluid velocity @
at the free surface is very low (V; = 0) and water discharges into the atmosphere (and v —
thus P, = P4m), the Bernoulli equation simplifies to \_/_ —
2 2 2 10 cm
BL Vl I:)2 V2 V2 Pl _ PZ
— =+ =—+"=+2, > S=—-=4+7
P9 29 P9 29 29 A

Solving for V, and substituting, the discharge velocity is determined to

V, :\/Z(Pl P2) |, 9ga, :Jz(soo 100) kPa[lOOO N/m J(lkg m/s j+2(9.81m/52)(3m)

P 1000 kg/m?® 1kPa 1N
=21.4m/s

Then the initial rate of discharge of water becomes

D? z(0.10m)?

V = AgiticeVs = Ve (21.4m/s) = 0.168 m®/s

Discussion Note that this is the maximum flow rate since the frictional effects are ignored. Also, the velocity and the
flow rate will decrease as the water level in the tank decreases.
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sa6 P
Solution The previous problem is reconsidered. The effect of water height in the tank on the discharge velocity as the

water height varies from 0 to 5 m in increments of 0.5 m is to be investigated.
Analysis The EES Equations window is printed below, followed by the tabulated and plotted results.
0=9.81 "m/s2"
rho=1000 "kg/m3"
d=0.10 "m"
P1=300 "kPa"
P_atm=100 "kPa"

V=SQRT(2*(P1-P_atm)*1000/rho+2*g*h)
Ac=pi*D"2/4 22.5

V_dot=Ac*V » /
22

h, m V, m/s vV, mds | /

0.00 20.0 0.157 215

0.50 20.2 0.159

1.00 20.5 0.161 i /

1.50 20.7 0.163 21

2.00 21.0 0.165

2.50 21.2 0.166 I

3.00 21.4 0.168 20.5

V, m/s

350 216 0170
4.00 219 0172 "

450 22.1 0174 | | | | |
5.00 22.3 0.175 ° ! 2 hm ! >

Discussion  Velocity appears to change nearly linearly with h in this range of data, but the relationship is not linear.

5-22
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc. Limited distribution permitted only to
teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.




Chapter 5 Mass, Bernoulli, and Energy Equations
5-47E
Solution A siphon pumps water from a large reservoir to a lower tank which is initially empty. Water leaves the tank
through an orifice. The height the water will rise in the tank at equilibrium is to be determined.

Assumptions 1 The flow is steady, incompressible, and irrotational
with negligible frictional effects (so that the Bernoulli equation is
applicable). 2 Both the tank and the reservoir are open to the
atmosphere. 3 The water level of the reservoir remains constant. ~ —————

Analysis We take the reference level to be at the bottom of the z
tank, and the water height in the tank at any time to be h. We take point ~ Reservoir - 2in
1 to be at the free surface of reservoir, point 2 at the exit of the siphon, = =
which is placed at the bottom of the tank, and point 3 at the free surface
of the tank, and point 4 at the exit of the orifice at the bottom of the

tank. Then z; =20 ft, z, =24 =0, z3=h, P; = P3 = P4 = Py, (the

reservoir is open to the atmosphere and water discharges into the
atmosphere) P, = Pymt+pgh (the hydrostatic pressure at the bottom of Water
the tank where the siphon discharges), and V; = V3 = 0 (the free - Tank
surfaces of reservoir and the tank are large relative to the tube
diameter). Then the Bernoulli equation between 1-2 and 3-4 simplifies @
to
2 2 2
i+VL+21=&+V—2+Z2 - h+21=P""tL’Dgh+v—2 -V, =./29z, - 2gh = ,/2¢(z, - h)
P 29 P9 29 ~ ~ 29
2 2 2
&+V—3+23=&+V—4+z4 - h=v—4 - V,=,2gh
P9 29 P9 29 29

Noting that the diameters of the tube and the orifice are the same, the flow rates of water into and out of the tank will be the
same when the water velocities in the tube and the orifice are equal since

V,=V, = AV,=AV, > V,=V,

Setting the two velocities equal to each other gives

V,=V, > J29(z-h)=y20h - z-h=h - h:%:%:?.sft
Therefore, the water level in the tank will stabilize when the water level rises to
7.5 ft.

Discussion  This result is obtained assuming negligible friction. The result would be somewhat different if the friction in
the pipe and orifice were considered.
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5-48
Solution Water enters an empty tank steadily at a specified rate. An orifice at the bottom allows water to escape.
The maximum water level in the tank is to be determined, and a relation for water height z as a function of time is to be
obtained.

Assumptions 1 The orifice has a smooth entrance, and thus the frictional losses are negligible. 2 The flow through the
orifice is steady, incompressible, and irrotational with negligible frictional effects (so that the Bernoulli equation is
applicable).

Analysis (a) We take point 1 at the free surface of the tank, and point 2 at the exit of orifice. We take the reference
level at the orifice (z, = 0), and take the positive direction of z to be upwards. Noting that the fluid at both points is open to
the atmosphere (and thus P; = P, = P,,) and that the fluid velocity at the free surface is very low (V; = 0) (it becomes zero
when the water in the tank reaches its maximum level), the Bernoulli equation between these two points simplifies to

R V12 P sz V22 m
bty =—=+=+7, > == > V,=,20z
pg 29 pgo29 17 2g 2 =0 %
Then the mass flow rate through the orifice for a water height of z becomes N
D5 1 amg )
Mout = AVout = PPorificeV2 = P 40 V292 - z= Z(p—m;uéj Dy
Setting z = hya and My, =, (the incoming flow rate) gives the desired relation for the L/"’ T

maximum height the water will reach in the tank, W
=

2
h _i 4min
max 29 pﬂDg

(b) The amount of water that flows through the orifice and the increase in the amount of water in the tank during a

differential time interval dt are
2

7D
dmgy, = Mgy dt = 'DTO 2gzdt

7ZD2
dMge = PAEdZ = p 4T dz

The amount of water that enters the tank during dt is dm;, = m;,dt (Recall that m;, = constant). Substituting them into the
conservation of mass relation dmy,,, =dm;, —dm,, gives

2 2
dmgn = My dt—mgdt - — pﬂZT dz=(min -p ”20 2gz]dt

Separating the variables, and integrating it fromz=0att=0toz=z attime t = t gives
1 paDidz Lt o 1 paDfdz ey
My, -1 paDE /292 =0y, —4 paD{ 29z =0

Performing the integration, the desired relation between the water height z and time t is obtained to be

1 paD?f my, —+ prD§ /202

zp—T lpﬂ'Dz IZQZ_m In n 4p. 0 g =t
1 2 21 4 0 in

(3 PADG29) m

Discussion Note that this relation is implicit in z, and thus we can’t obtain a relation in the form z = f(t). Substituting a z

value in the left side gives the time it takes for the fluid level in the tank to reach that level. Equation solvers such as EES
can easily solve implicit equations like this.

in

5-24
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc. Limited distribution permitted only to
teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.




Chapter 5 Mass, Bernoulli, and Energy Equations
5-49E
Solution Water flows through a horizontal pipe that consists of two sections at a specified rate. The differential
height of a mercury manometer placed between the two pipe sections is to be determined.

Assumptions 1The flow through the pipe is steady, incompressible, and irrotational with negligible frictional effects (so
that the Bernoulli equation is applicable). 2 The losses in the reducing section are negligible.

Properties The densities of mercury and water are p, = 847 lbom/ft® and p, = 62.4 lom/ft®.

Analysis We take points 1 and 2 along the centerline of the pipe over the two tubes of the manometer. Noting that z;
= 2,, the Bernoulli equation between points 1 and 2 gives
2 2 2 _\y2
i-{-VL+Z:L:&+V_2_|_ZZ N P]._PZZM (]_)
P, 29 M 29 2

We let the differential height of the mercury manometer be h and the distance between the centerline and the mercury level
in the tube where mercury is raised be s. Then the pressure difference P, — P can also be expressed as

P1+pwg(5+h)=P2+prS+,0Hggh - Pl_PZZ(pHg_pw)gh (2)
Combining Egs. (1) and (2) and solving for h,

Pw (\/22 _Vlz )
2

h=Pw V7 -Vi) _ Vg -V
2g(pHg _pw) 2g(IOHg/pw _1)

=(pHg _pw)gh -

Calculating the velocities and substituting,

vV vV 1galls 0.13368 ft*
Vi=—= = = 1.53ft/s .
YA D214 n(al12ft)2 /4[ 1gal J 2in —»
: . ,
v, = Vv o_ \2 _ 1ga|/s2 0.13368ft° | _ oo
A, D514 z(2112ft)° /4 1gal

b (613 ft/s)2 — (1.53 ft/s)>

a =0.0435ft = 0.52in
2(32.2ft/s%)(847 1 62.4-1)

Therefore, the differential height of the mercury column will be 0.52 in.

Discussion In reality, there are frictional losses in the pipe, and the pressure at location 2 will actually be smaller than
that estimated here, and therefore h will be larger than that calculated here.
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5-50
Solution An airplane is flying at a certain altitude at a given speed. The pressure on the stagnation point on the nose
of the plane is to be determined, and the approach to be used at high velocities is to be discussed.

Assumptions 1 The air flow over the aircraft is steady, incompressible, and irrotational with negligible frictional effects
(so that the Bernoulli equation is applicable). 2 Standard atmospheric conditions exist. 3 The wind effects are negligible.

Properties The density of the atmospheric air at an elevation of 12,000 m is p = 0.312 kg/m°.

Analysis We take point 1 well ahead of the plane at the level of the nose, and point 2 at the nose where the flow
comes to a stop. Noting that point 2 is a stagnation point and thus V, = 0 and z; = z,, the application of the Bernoulli
equation between points 1 and 2 gives

L P
M 29 ~9

Solving for Pgag, gage @nd substituting,

2 2 2
+\2/—2+Zz N VL: P,-R N VL: Pstag = Pim _ Pstag,gage

29 9 2 P P

+21:

P _ pVZ  (0.312kg/m*)(200/3.6 m/s)®( 1N
stag, gage - 2 - 2 1 kg . m/SZ

J =481N/m? = 481 Pa

since 1 Pa=1 N/m?and 1 m/s = 3.6 km/h.

Altitude
12,000 m

200 km/h

—_—

Discussion A flight velocity of 1050 km/h = 292 m/s corresponds to a Mach number much greater than 0.3 (the speed
of sound is about 340 m/s at room conditions, and lower at higher altitudes, and thus a Mach number of 292/340 = 0.86).
Therefore, the flow can no longer be assumed to be incompressible, and the Bernoulli equation given above cannot be used.
This problem can be solved using the modified Bernoulli equation that accounts for the effects of compressibility, assuming
isentropic flow.
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5-51
Solution A Pitot-static probe is inserted into the duct of an air heating system parallel to flow, and the differential
height of the water column is measured. The flow velocity and the pressure rise at the tip of the Pitot-static probe are to be
determined.

Assumptions 1 The flow through the duct is steady, incompressible, and irrotational with negligible frictional effects (so
that the Bernoulli equation is applicable). 2 Air is an ideal gas.

Properties We take the density of water to be p = 1000 kg/m?®. The gas constant of air is R = 0.287 kPa-m*/kg-K.

Analysis We take point 1 on the side of the probe where the entrance is parallel to flow and is connected to the static
arm of the Pitot-static probe, and point 2 at the tip of the probe where the entrance is normal to flow and is connected to the
dynamic arm of the Pitot-static probe. Noting that point 2 is a stagnation point and thus V, = 0 and z; = z,, the application
of the Bernoulli equation between points 1 and 2 gives

2 2 2
i+VL+21:i+V_2+ZZ RN i.kVL:i — V = M
A 29 M 29 M 29 P9 V' Puir

where the pressure rise at the tip of the Pitot-static probe is

P, —P, = p,,gh = (1000 kg/m?)(9.81m/s%)(0.024 m) %
1kg-m/s

=235N/m? =235 Pa

Also, i L 98 kpa =1.074kg/m?
RT  (0.287 kPa-m®/kg-K)(45+ 273 K)
Substituting,
2 2
v, - 2(235N/m<) [ 1kg-m/s 20.9m/s
1.074 kg/m?® 1N

Discussion Note that the flow velocity in a pipe or duct can be measured easily by a Pitot-static probe by inserting the
probe into the pipe or duct parallel to flow, and reading the differential pressure height. Also note that this is the velocity at
the location of the tube. Several readings at several locations in a cross-section may be required to determine the mean flow
velocity.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-52
Solution The water in an above the ground swimming pool is to be emptied by unplugging the orifice of a horizontal
pipe attached to the bottom of the pool. The maximum discharge rate of water is to be determined.

Assumptions 1 The orifice has a smooth entrance, and all frictional losses are negligible. 2 The flow is steady,
incompressible, and irrotational with negligible frictional effects (so that the Bernoulli equation is applicable).

Analysis We take point 1 at the free surface of the pool, and point 2 at the exit of pipe. We take the reference level at
the pipe exit (z, = 0). Noting that the fluid at both points is open to the atmosphere (and thus P; = P, = P,,) and that the
fluid velocity at the free surface is very low (V; = 0), the Bernoulli equation between these two points simplifies to

2 2 2
i+VL+zl:i+V—2+zz - zlzv—2 - V,=,204
m 29 M 29 29

The maximum discharge rate occurs when the water height in the pool is a maximum, which is the case at the beginning
and thus z; = h. Substituting, the maximum flow velocity and discharge rate become

Vi max = /200 =+/2(9.81m/s2)(2 m) =6.26 m/s

: D2 7(0.03m)?
Vmax = ApipeVZ,maX = TVZ,max =0

O

(6.26 m/s) = 0.00443 m%/s = 4.43 L/s

/I\ Swimming pool
2
m 0m \1/3 cm @
m
—> J¢—
N
25m

Discussion  The result above is obtained by disregarding all frictional effects. The actual flow rate will be less because
of frictional effects during flow and the resulting pressure drop. Also, the flow rate will gradually decrease as the water
level in the pipe decreases.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-53
Solution The water in an above the ground swimming pool is to be emptied by unplugging the orifice of a horizontal
pipe attached to the bottom of the pool. The time it will take to empty the tank is to be determined.

Assumptions 1 The orifice has a smooth entrance, and all frictional losses are negligible. 2 The flow is steady,
incompressible, and irrotational with negligible frictional effects (so that the Bernoulli equation is applicable).

Analysis We take point 1 at the free surface of water in the pool, and point 2 at the exit of pipe. We take the reference
level at the pipe exit (z, = 0). Noting that the fluid at both points is open to the atmosphere (and thus P; = P, = Py,) and that
the fluid velocity at the free surface is very low (V; = 0), the Bernoulli equation between these two points simplifies to

2 2 2
i+Vi+zl:&+v—2+z2 - 21:V_2 -V, =,20y
A 29 P 29 29
For generality, we express the water height in the pool at any time t by z, and the discharge velocity by V, =,/2gz . Note

that water surface in the pool moves down as the pool drains, and thus z is a variable whose value changes from h at the
beginning to 0 when the pool is emptied completely.

We denote the diameter of the orifice by D, and the diameter of the pool by D,. The flow rate of water from the pool is
obtained by multiplying the discharge velocity by the orifice cross-sectional area,

2
720z

Then the amount of water that flows through the orifice during a differential time interval dt is
2

dVv =Vdt :”% 2gzdt (1)

. 7D
V = AgificeV2 =

which, from conservation of mass, must be equal to the decrease in the volume of water in the pool,
2

7D
0V = Ay (-02) = - =0z ()

where dz is the change in the water level in the pool during dt. (Note that dz is a negative quantity since the positive
direction of z is upwards. Therefore, we used —dz to get a positive quantity for the amount of water discharged). Setting
Egs. (1) and (2) equal to each other and rearranging,

2 D¢ D2 DZ2 1
2gzdt =——Ldz - dt=—— ! rao 20 g,
4 D*\29z D2./2g

The last relation can be integrated easily since the variables are separated. Letting t; be the discharge time and integrating it
fromt=0when z=htot=twhenz =0 (completely drained pool) gives

0
t 2 0 2 2 2
Ifdt:— ZDO I 7%z > tfz-zD—o zfi\/ﬁ:D_% 2
t=0 D?,2g J=1 D“,/2g D“4/2g DV g
)

Substituting, the draining time of the pool will be
- (10 m)? 2(2m) /TF

1
ZZ
1

2

= 5 > =170,9505=19.7h
(0.03m)" V9.81 m/s Swimming pool
2m D=3 cm @
Discussion  This is the minimum discharging time l m
since it is obtained by neglecting all friction; the — > —
actual discharging time will be longer. Note that the f
discharging time is inversely proportional to the 25m

square of the orifice diameter. Therefore, the
discharging time can be reduced to one-fourth by
doubling the diameter of the orifice.
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Chapter 5 Mass, Bernoulli, and Energy Equations

5-54 @F
Solution The previous problem is reconsidered. The effect of the discharge pipe diameter on the time required to
empty the pool completely as the diameter varies from 1 to 10 cm in increments of 1 cm is to be investigated.
Analysis The EES Equations window is printed below, followed by the tabulated and plotted results.
0=9.81 "m/s2"
rho=1000 "kg/m3"
h=2"m"
D=d_pipe/100 "m"
D_pool=10 "m"
V_initial=SQRT(2*g*h) "m/s" 180
Ac=pi*D"2/4
V_dot=Ac*V_initial*1000 "m3/s" 160
t=(D_pool/D)"2*SQRT(2*h/g)/3600 -
"hour" 140 \
Pipe diameter | Discharge time 120_ \
D, m t, h _ 100
1 1774 5 \
2 44.3 2 80
3 19.7 - I \
4 11.1 60
5 7.1 40 \
6 4.9 I
7 3.6 20
8 2.8 o- —
9 2.2 ' ' ' ' ' ' ' '
10 18 1 2 3 4 5 6 7 8 9 10

D, cm

Discussion  As you can see from the plot, the discharge time is drastically reduced by increasing the pipe diameter.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-55
Solution Air flows upward at a specified rate through an inclined pipe whose diameter is reduced through a reducer.
The differential height between fluid levels of the two arms of a water manometer attached across the reducer is to be
determined.

Assumptions 1 The flow through the duct is steady, incompressible and irrotational with negligible frictional effects (so
that the Bernoulli equation is applicable). 2 Air is an ideal gas. 3 The effect of air column on the pressure change is
negligible because of its low density. 4 The air flow is parallel to the entrance of each arm of the manometer, and thus no
dynamic effects are involved.

Properties We take the density of water to be p = 1000 kg/m®. The gas constant of air is R = 0.287 kPa-m*/kg-K.

Analysis We take points 1 and 2 at the lower and upper connection points, respectively, of the two arms of the
manometer, and take the lower connection point as the reference level. Noting that the effect of elevation on the pressure
change of a gas is negligible, the application of the Bernoulli equation between points 1 and 2 gives

2 2 2 2
i.}.vi_f_zl:i_f_v_z_;’_zz RN Pl_PZZPairu
M 29 M 29 2
Air@
where  pgi = P 1310 kPa =1.19 kg/m?
RT  (0.287 kPa-m°/kg-K)(50 + 273 K)
. ) 2
v =Y \g - 0'045m2/5 ~15.9mls
A D214 z(0.06m)’/4
: . s
V, = v = \2 = 0.045m 2/3 =35.8m/s
A, D214 7(0.04m)?/4

Substituting,

2 _ 2
PP, = (L19kgm?) 28 MS)” ~(159m/s)

( IN ] =612 N/m? =612Pa The differential height of

2 1kg-m/s®
water in the manometer corresponding to this pressure change is determined from AP = p, ., gh to0 be
P,—P 2 .m/s?
h=—1"72 _ BL2NMm~___ [1K§-MS" ) 0624m =624 cm
Pwater 9 (1000 kg/m~)(9.81m/s<) 1IN

Discussion  When the effect of air column on pressure change is considered, the pressure change becomes

2 2
Pair V3 =V7°)
Pl_PZZ%"'pairg(zz_zl)

2 2
— (119 kg/m?)| B28MS)T —USIMS)T | g 61 rys2y02m) | —2N
2 1kg-m/s?

=(612+2) N/m? =614 N/m? = 614 Pa
This difference between the two results (612 and 614 Pa) is less than 1%. Therefore, the effect of air column on pressure
change is, indeed, negligible as assumed. In other words, the pressure change of air in the duct is almost entirely due to
velocity change, and the effect of elevation change is negligible. Also, if we were to account for the Az of air flow, then it
would be more proper to account for the Az of air in the manometer by uSing Pyater - Oair iNStead of pyqeer When calculating h.
The additional air column in the manometer tends to cancel out the change in pressure due to the elevation difference in the
flow in this case.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-56E
Solution Air is flowing through a venturi meter with known diameters and measured pressures. A relation for the
flow rate is to be obtained, and its numerical value is to be determined.

Assumptions 1The flow through the venturi is steady, incompressible, and irrotational with negligible frictional effects
(so that the Bernoulli equation is applicable). 2 The effect of air column on the pressure change is negligible because of its
low density, and thus the pressure can be assumed to be uniform at a given cross-section of the venturi meter (independent
of elevation change). 3 The flow is horizontal (this assumption is usually unnecessary for gas flow.).

Properties The density of air is given to be p = 0.075 Ibm/ft’.

Analysis We take point 1 at the main flow section and point 2 at the throat along the centerline of the venturi meter.
Noting that z, = z,, the application of the Bernoulli equation between points 1 and 2 gives
P V2 P, V2 V2 VP2
_1+L+Zl:_2+_2+22 RN Pl_PZZp#
A3 29 P 29 2

The flow is assumed to be incompressible and thus the density is constant. Then the conservation of mass relation for this
single stream steady flow device can be expressed as

(1)

V,=V,=V -5 AV, =AV,=V > vl:V— and VZ:L )
A Ay

Substituting into Eq. (1),

; ; . 12.2 psi
VA -0 I V2 A PP nspsia
2 2A; Af
Solving for V gives the desired relation for the flow rate, Air @

- 2(P —P,)
V=A|l— =2~ 3
2\ pli- (A, 1 A)?] ©

The flow rate for the given case can be determined by substituting the given values into this relation to be

D2 2R -P,)  7(1.8/12ft) 2(12.2—-11.8) psi 144 Ibf/ft? \( 32.2 Ibm - ft/s?
4\ p[1-(D,/D;)*] 4 (0.075 Ibm/ft3)[1- (1.8/2.6)*]\  1psi 11bf

=4.48ft3/s

Discussion  Venturi meters are commonly used as flow meters to measure the flow rate of gases and liquids by simply
measuring the pressure difference P, - P, by a manometer or pressure transducers. The actual flow rate will be less than the
value obtained from Eq. (3) because of the friction losses along the wall surfaces in actual flow. But this difference can be
as little as 1% in a well-designed venturi meter. The effects of deviation from the idealized Bernoulli flow can be accounted
for by expressing Eq. (3) as

v —CA, f 2(P,-P,) -
pR-(A 1 A)7]

where C. is the venturi discharge coefficient whose value is less than 1 (it is as large as 0.99 for well-designed venturi
meters in certain ranges of flow). For Re > 10°, the value of venturi discharge coefficient is usually greater than 0.96.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-57
Solution The gage pressure in the water mains of a city at a particular location is given. It is to be determined if this
main can serve water to neighborhoods that are at a given elevation relative to this location.

Assumptions Water is incompressible and thus its density is constant.

Properties We take the density of water to be p = 1000 kg/m®.

Analysis Noting that the gage pressure at a dept of h in a fluid is given by Py.se = pyaeer gh , the height of a fluid
column corresponding to a gage pressure of 400 kPa is determined to be
2 2
h — Pgage — 400,000 N/m 1 kg : m/S _ 408 m Water Main, 400 kPa —
Pwaerd (1000 kg/m3)(9.81m/s?)| 1IN

which is less than 50 m. Therefore, this main cannot serve water to
neighborhoods that are 50 m above this location.

Discussion Note that h must be much greater than 50 m for water to have enough pressure to serve the water needs of
the neighborhood.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-58
Solution A hand-held bicycle pump with a liquid reservoir is used as an atomizer by forcing air at a high velocity
through a small hole. The minimum speed that the piston must be moved in the cylinder to initiate the atomizing effect is to
be determined.

Assumptions 1The flows of air and water are steady, incompressible, and irrotational with negligible frictional effects (so
that the Bernoulli equation is applicable). 2 Air is an ideal gas. 3 The liquid reservoir is open to the atmosphere. 4 The
device is held horizontal. 5 The water velocity through the tube is low.

Properties We take the density of water to be p = 1000 kg/m®. The -+ @

gas constant of air is R = 0.287 kPa-m*/kg-K. 8: Air @lé g
Liqui

Analysis We take point 1 at the exit of the hole, point 2 in air far | 3 T rising

from the hole on a horizontal line, point 3 at the exit of the tube in air
stream (so that points 1 and 3 coincide), and point 4 at the free surface
of the liquid in the reservoir (P, = P, = P, and P; = P3). We also take
the level of the hole to be the reference level (so that z; = z, = z3 =0 and
2, = -h). Noting that V, = V3 = V, = 0, the Bernoulli equation for the air
and water streams becomes

P, V P, V P P
Water (3-4): —+—=24z,=—44+ 447, » L-"aM . (h) S5 PPy =—Puaerdh (1)
M 29 A 29 A9
. P VP P, V7 P VS P [2(Pyn —P
All‘(l—2)l _1+L+Zl:_2+_2+22 - _l_;,_izﬂ - Vl: M (2)
£ 29 A9 29 M~ 29 A Pair
where
P 95 kPa

=1.13kg/m®

Pt S RT (0287 kPa- m®/kg-K)(20+ 273K)

Combining Egs. (1) and (2) and substituting the numerical values,

" =\/2(patm —P) =\/2pwatergh =\/2(1000 kg/m3)(9.81r2/sz)(0.lm) LTS
Dair Dair 1.13kg/m

Taking the flow of air to be steady and incompressible, the conservation of mass for air can be expressed as

2
/ 1 Ahole 7D hole /4
Vpiston =Viole = Vpiston Apiston =Vhote Anole = Vpiston = A Viole = 2 \%

piston ”Dpiston 14

1

Simplifying and substituting, the piston velocity is determined to be

2
D 0.3cm)?
Viston :(ﬂJ Vi :( 5em j (41.7m/s) =0.15m/s

piston

Discussion In reality, the piston velocity must be higher to overcome the losses. Also, a lower piston velocity will do the
job if the diameter of the hole is reduced.
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Chapter 5 Mass, Bernoulli, and Energy Equations

5-59

Solution The water height in an airtight pressurized tank is given. A hose pointing straight up is connected to the
bottom of the tank. The maximum height to which the water stream could rise is to be determined.

Assumptions 1 The flow is steady, incompressible, and irrotational with @fﬂ__

negligible frictional effects (so that the Bernoulli equation is applicable). 2 The
friction between the water and air is negligible.

Properties We take the density of water to be 1000 kg/m?®.

Analysis We take point 1 at the free surface of water in the tank, and point
2 at the top of the water trajectory. Also, we take the reference level at the
bottom of the tank. At the top of the water trajectory V, = 0, and atmospheric
pressure pertains. Noting that z; = 20 m, Py gge = 2 atm, P, = Py, and that the
fluid velocity at the free surface of the tank is very low (V; = 0), the Bernoulli
equation between these two points simplifies to

PV P, V72 P P
Ll i =242 47, 5 Liz ="y, 5 z,=
A 29 P9 29 A9
Substituting,
2 2
2, = Zztm i 101,325 N/m< | 1kg-m/s +20-407m
(1000 kg/m®)(9.81m/s?)(  latm 1N

Therefore, the water jet can rise as high as 40.7 m into the sky from the ground.

Discussion  The result obtained by the Bernoulli equation represents the upper limit, and should be interpreted
accordingly. It tells us that the water cannot possibly rise more than 40.7 m (giving us an upper limit), and in all likelihood,
the rise will be much less because of frictional losses.
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5-60
Solution A Pitot-static probe equipped with a water manometer is held parallel to air flow, and the differential height
of the water column is measured. The flow velocity of air is to be determined.

Assumptions 1The flow of air is steady, incompressible, and irrotational with negligible frictional effects (so that the
Bernoulli equation is applicable). 2 The effect of air column on the pressure change is negligible because of its low density,
and thus the air column in the manometer can be ignored.

Properties  We take the density of water to be p = 1000 kg/m°. The density of air is given to be 1.25 kg/m°.

Analysis We take point 1 on the side of the probe where the entrance is parallel to flow and is connected to the static
arm of the Pitot-static probe, and point 2 at the tip of the probe where the entrance is normal to flow and is connected to the
dynamic arm of the Pitot-static probe. Noting that point 2 is a stagnation point and thus V, = 0 and z; = z,, the application
of the Bernoulli equation between points 1 and 2 gives

2 2 2 —
i-i-vi-i-zl:&-f-v—z-i-zz RN i.{.VL:i N Vl — M (l)
P9 29 P9 29 M 209 P9 V' Pair

The pressure rise at the tip of the Pitot-static probe is simply the pressure change indicated by the differential water column
of the manometer,

P2 - Pl = Pwater gh (2)

Combining Egs. (1) and (2) and substituting, the flow velocity is determined to be

3 2
V)= 2Pwater 9 - 2(1000 kg/m"~)(9.81m/s7)(0.073m) =33.8m/s
Da 1.25kg/m?®

Pitot
tube

Manometer

Discussion Note that flow velocity in a pipe or duct can be measured easily by a Pitot-static probe by inserting the
probe into the pipe or duct parallel to flow, and reading the differential height. Also note that this is the velocity at the
location of the tube. Several readings at several locations in a cross-section may be required to determine the mean flow
velocity.
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5-61E
Solution A Pitot-static probe equipped with a differential pressure gage is used to measure the air velocity in a duct.

For a given differential pressure reading, the flow velocity of air is to be determined.

Assumptions The flow of air is steady, incompressible,
and irrotational with negligible frictional effects (so that the
Bernoulli equation is applicable).

Properties The gas constant of air is R = 0.3704 {’
psia-ft*/lbm-R.
Analysis We take point 1 on the side of the probe Air .

. . Pitot
where the entrance is parallel to flow and is connected to the S tube
static arm of the Pitot-static probe, and point 2 at the tip of  70°F @
the probe where the entrance is normal to flow and is 13.4 psia E( 2 )<

\Y

connected to the dynamic arm of the Pitot-static probe. -
Noting that point 2 is a stagnation point and thus V, = 0 and

Z; = 1, the application of the Bernoulli equation between

points 1 and 2 gives

2 2 2 —
i+i+21:&+vi+zz N i_{_VL:i RN Vl = M
M 29 M 29 M 20 pg \ P
where
p=—r 134 psia — 0.0683 Ibm/ft°

" RT  (0.3704 psia-ft3/lom-R)(70 + 460 R)

Substituting the given values, the flow velocity is determined to be

y _J 2(0.15 psi) (144Ibf/ft2][32.2Ibm-ft/sz
-

=143 ft/s
0.0683Ibm/ft® | 1psi 1lbf ]

Discussion Note that flow velocity in a pipe or duct can be measured easily by a Pitot-static probe by inserting the
probe into the pipe or duct parallel to flow, and reading the pressure differential. Also note that this is the velocity at the
location of the tube. Several readings at several locations in a cross-section may be required to determine the mean flow
velocity.
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5-62
Solution In a power plant, water enters the nozzles of a hydraulic turbine at a specified pressure. The maximum
velocity water can be accelerated to by the nozzles is to be determined.

Assumptions 1The flow of water is steady, incompressible, and irrotational with negligible frictional effects (so that the
Bernoulli equation is applicable). 2 Water enters the nozzle with a low velocity.

Properties We take the density of water to be p = 1000 kg/m®.

Analysis We take points 1 and 2 at the inlet and exit of the nozzle, respectively. Noting that V; = 0 and z; = z,, the
application of the Bernoulli equation between points 1 and 2 gives

i+ﬁ—{—zlzi+ﬁ—',-z2 - i:h_kﬁ N V2: M
A 29 A 29 M P9 29 \ P

Water
Substituting the given values, the nozzle exit velocity is determined to be @
700 kPa

100 kPa
\Y

> Turbine
nozzzle

v J2(700—100) kPa (1000 N/mz){lkg-m/sz
-

3 =34.6m/s
1000 kg/m 1kPa 1IN

Discussion  This is the maximum nozzle exit velocity, and the actual
velocity will be less because of friction between water and the walls of the
nozzle.

Energy Equation

5-63C

Solution We are to analyze whether temperature can decrease during steady adiabatic flow of an incompressible
fluid.

Analysis It is impossible for the fluid temperature to decrease during steady, incompressible, adiabatic flow of an

incompressible fluid, since this would require the entropy of an adiabatic system to decrease, which would be a violation of
the 2" law of thermodynamics.

Discussion  The entropy of a fluid can decrease, but only if we remove heat.

5-64C
Solution We are to determine if frictional effects are negligible in the steady adiabatic flow of an incompressible
fluid if the temperature remains constant.

Analysis Yes, the frictional effects are negligible if the fluid temperature remains constant during steady,
incompressible flow since any irreversibility such as friction would cause the entropy and thus temperature of the fluid to
increase during adiabatic flow.

Discussion Thus, this scenario would never occur in real life since all fluid flows have frictional effects.
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5-65C

Solution We are to define and discuss irreversible head loss.

Analysis Irreversible head loss is the loss of mechanical energy due to irreversible processes (such as friction) in
piping expressed as an equivalent column height of fluid, i.e., head. Irreversible head loss is related to the mechanical

€mech loss, piping E

g - mg

mech loss, piping

energy loss in piping by |h, =

Discussion h, is always positive. It can never be negative, since this would violate the second law of thermodynamics.

5-66C

Solution We are to define and discuss useful pump head.

Analysis Useful pump head is the useful power input to the pump expressed as an equivalent column height of
w w

fluid. It is related to the useful pumping power input by |y = pu;p’u = prl;]";]p’u .

Discussion Part of the power supplied to the pump is not useful, but rather is wasted because of irreversible losses in
the pump. This is the reason that pumps have a pump efficiency that is always less than one.

5-67C
Solution We are to define and discuss the kinetic energy correction factor.
Analysis The kinetic energy correction factor is a correction factor to account for the fact that Kinetic energy

using average velocity is not the same as the actual kinetic energy using the actual velocity profile (the square of a
sum is not equal to the sum of the squares of its components). The effect of kinetic energy factor is usually negligible,
especially for turbulent pipe flows. However, for laminar pipe flows, the effect of « is sometimes significant.

Discussion Even though the effect of ignoring « is usually insignificant, it is wise to keep « in our analyses to increase
accuracy and so that we do not forget about it in situations where it is significant, such as in some laminar pipe flows.

5-68C
Solution We are to analyze the cause of some strange behavior of a water jet.
Analysis The problem does not state whether the water in the tank is open to the atmosphere or not. Let’s assume that

the water surface is exposed to atmospheric pressure. By the Bernoulli equation, the maximum theoretical height to which
the water stream could rise is the tank water level, which is 20 meters above the ground. Since the water rises above the
tank level, the tank cover must be airtight, containing pressurized air above the water surface. In other words, the water in
the tank is not exposed to atmospheric pressure.

Discussion  Alternatively, a pump would have to pressurize the water somewhere in the hose.
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5-69
Solution Underground water is pumped to a pool at a given elevation. The maximum flow rate and the pressures at
the inlet and outlet of the pump are to be determined.

Assumptions 1 The flow is steady and incompressible. 2 The elevation difference between the inlet and the outlet of the
pump is negligible. 3 We assume the frictional effects in piping to be negligible since the maximum flow rate is to be
determined, Emechm& vipping = 0 4 The effect of the kinetic energy correction factors is negligible, o= 1.

Properties We take the density of water to be 1 kg/L = 1000 kg/m®.

Analysis (a) The pump-motor draws 3-kW of power, and is 70% efficient. Then the useful mechanical (shaft) power
it delivers to the fluid is

V\./pump, u= ’7pump—motorWeIectric = (0-70)(3 kW) =2.1kW

We take point 1 at the free surface of underground water, which is also taken as the reference level (z; = 0), and point 2 at
the free surface of the pool. Also, both 1 and 2 are open to the atmosphere (P; = P, = Pyn), the velocities are negligible at
both points (V; =z V, = 0), and frictional losses in piping are disregarded. Then the energy equation for steady
incompressible flow through a control volume between these two points that includes the pump and the pipes reduces to

(P V2 - (P V7 : :
m(—l+0!1 L"' gzlJ"’Wpump = m[_2+ 2%) _2+ gZZJ"’Wturbine + Emech,loss
P 2 P 2

In the absence of a turbine, Eech 10ss = Emech toss, pump + Emech loss, piping @Nd
V\'/pump,u :Wpump - E.mech loss, pump * 30
. ) m
Thus, Wyymp,y =Mgz, .
Then the mass and volume flow rates of water become @
W 2 /g2 = —
= __Pump.u_ 2.1k2J/s 1000m* /s _7.14 kgls - Pump\ _
gz, (9.81m/s“)(30 m) 1kJ . —_—

:m:Lkg/SB:7.14x10_3m3/S - a
£ 1000 kg/m

(b) We take points 3 and 4 at the inlet and the exit of the pump, respectively, where the flow velocities are
\Y; Y, 7.14x107% m®/s Y, Y, 7.14x107° m®/s
=—=———= > =186mfs, Vy=—=—3—= >
A; D3 /4  z(0.07Tm)°/4 Ay aDj 14 z(0.05m)“/4
We take the pump as the control volume. Noting that zz = z,, the energy equation for this control volume reduces to

(P V2 . (P V2 . . pa(VE-V2) Woum.
m(f"_a:% 73"‘ 923]+Wpump = m(%+a4 74"' gz4j+wturbine + Emech loss, pump - I:,4 - I:,3 = 32 ! + p\u/r.ﬂp -

=3.64m/s

Vs

Substituting,
2 2
(1000 kg/m*)(1.0)| (186 mis)” (364 s)" | gy L 21k (1 KN mj
2 1000 kg-m/s® ) 7.14x10° m*/s\ 1kJ
= (~4.9+294.1) kN/m? = 289.2 kPa = 289 kPa

P,—P,

Discussion In an actual system, the flow rate of water will be less because of friction in the pipes. Also, the effect of
flow velocities on the pressure change across the pump is negligible in this case (under 2%) and can be ignored.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-70
Solution Underground water is pumped to a pool at a given elevation. For a given head loss, the flow rate and the
pressures at the inlet and outlet of the pump are to be determined.

Assumptions 1 The flow is steady and incompressible. 2 The elevation difference between the inlet and the outlet of the
pump is negligible. 3 The effect of the kinetic energy correction factors is negligible, & = 1.

Properties We take the density of water to be 1 kg/L = 1000 kg/m®.

Analysis (a) The pump-motor draws 3-kW of power, and is 70% efficient. Then the useful mechanical (shaft) power
it delivers to the fluid is

Wpump, u= npump-motorWelectric = (0-70)(3 kW) =2.1kw

We take point 1 at the free surface of underground water, which is also taken as the reference level (z; = 0), and point 2 at
the free surface of the pool. Also, both 1 and 2 are open to the atmosphere (P, = P, = Pyn), and the velocities are negligible
at both points (V; = V, = 0). Then the energy equation for steady incompressible flow through a control volume between
these two points that includes the pump and the pipes reduces to

2 2

- Pl Vl Y : PZ VZ Y -
m +oy +07; +Wpump =m ta, +092y [+ Wiypine + Emech,loss
P 2 P 2
In the absence of a turbine' Emech, loss — Emech loss, pump + Emech loss, piping and Wpump,u =\Npump - Emech loss, pump and thus

Wpump, u= mgzz + Emech loss, piping

Noting that Emech’,OSS =mgh, , the mass and volume flow rates of water become A
M = Wpump,u _ Wpump,u
9z, +gh.  9(zz +hy) 30 m
2 o2
_ 2.12les 1000 m* /s 6116 kgls @
(9.81m/s*)(30+5m) 1kJ -
_m_ 6.116kgSs —__ [(Pume) — _

= :—3:6.116m3/s;6.12><10’3m3/s _— —
£ 1000 kg/m e — —

(b) We take points 3 and 4 at the inlet and the exit of the pump, respectively, where the flow velocities are
: : 3 .3 / / -3 M3

VvV _ \2 _ 6.116x10 2m Is _1.589mis, V, _V _ \2 _ 6.116x10 2m Is

A; D514 z(0.07m)° /4 Ay Dy 14 7(0.05m)“ /4

We take the pump as the control volume. Noting that z; = z,, the energy equation for this control volume reduces to

(P V2 . (P V2 . . pa(VZ-V2) Woum.
m _3+a3 _3+ 073 +Wpump =m —4+a4 _4+ 0z, +Wturbine + Emech loss, pump — I:)4 - P3 = 3 2 + pu.mp .
Yol 2 P 2 2 V

Vs =3.115m/s

Substituting,
2 2
(1000 kg/m*)(1.0)| (1589 mis)” ~(3.015 mis)* | 4y 21k (1 KN mj
2 1000 kg -mis? ) 6.116x10° m*s\ 1kJ
— (-3.6+343.4) KN/m? = 339.8 kPa = 340kPa

P-P

Discussion Note that frictional losses in the pipes causes the flow rate of water to decrease. Also, the effect of flow
velocities on the pressure change across the pump is negligible in this case (about 1%) and can be ignored.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-71E
Solution In a hydroelectric power plant, the elevation difference, the power generation, and the overall turbine-
generator efficiency are given. The minimum flow rate required is to be determined.

Assumptions 1 The flow is steady and incompressible. 2 The
water levels at the reservoir and the discharge site remain
constant. 3 We assume the flow to be frictionless since the

minimum flow rate is to be determined, EmemIOSS =0.

Properties We take the density of water to be p = 62.4
lom/ft3,

Analysis We take point 1 at the free surface of the
reservoir and point 2 at the free surface of the discharge water N

stream, which is also taken as the reference level (z, = 0). Also, — — @
both 1 and 2 are open to the atmosphere (P, = P, = Pyy), the —

velocities are negligible at both points (V; = V, = 0), and =
frictional losses are disregarded. Then the energy equation in

terms of heads for steady incompressible flow through a control

volume between these two points that includes the turbine and

the pipes reduces to

Generator

P1 V12 P2 V22

—to 2_+ )+ hpump,u =—+a,; E*‘ Z,+ hturbine,e + hL - h’[urbine,e =7

Substituting and noting that Wy pine etect = Zturbine-genM3Nuurbine, e » the extracted turbine head and the mass and volume flow
rates of water are determined to be

hturbine,e =7 = 240 ft

. V\'/turbine,elect 100 kW 25,037 ft2/s? ) 0.9478 Btu/s
TTturbine-gen INturbine 0.83(32.2ft/s“)(240ft) 1Btu/lbm 1kwW
_M_ S0 g o313
P 62.41bm/ft

Therefore, the flow rate of water must be at least 5.93 ft*/s to generate the desired electric power while overcoming friction
losses in pipes.

Discussion In an actual system, the flow rate of water will be more because of frictional losses in pipes.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-72E
Solution In a hydroelectric power plant, the elevation difference, the head loss, the power generation, and the overall
turbine-generator efficiency are given. The flow rate required is to be determined.

Assumptions 1 The flow is steady and incompressible. 2 The
water levels at the reservoir and the discharge site remain
constant.

Properties We take the density of water to be p = 62.4
lom/ft3,

Analysis We take point 1 at the free surface of the —
reservoir and point 2 at the free surface of the discharge water
stream, which is also taken as the reference level (z, = 0). Also, — —
both 1 and 2 are open to the atmosphere (P = P, = Pyy), the —
velocities are negligible at both points (V; = V, = 0). Then the
energy equation in terms of heads for steady incompressible
flow through a control volume between these two points that
includes the turbine and the pipes reduces to

Turbine —1 Generator

2 2
Pl Vl P2 V2
20 +ay 2 +Zl+hpump,u = ta, 2 +22+hturbine,e+hL - hturbine,e :Zl_hL

Substituting and noting that Wiine, elect = MOhywine, ¢ » the extracted turbine head and the mass and volume flow

TTurbine-gen
rates of water are determined to be

hturbine,e =7 - hL =240-36 =204 ft

M = _
TTturbine-gen Ihrbine  0.83(32.2 ft/sz)(204 ft)

V\./turbine,elect 100 kKW ( 25,037 ft % \J( 0.9478 Btu/s

)=435Ibm/s
1Btu/lbm 1kwW

m  435lbm/s

== 2 _6.98f1t%/s
P 62.41bm/ft3

Therefore, the flow rate of water must be at least 6.98 ft*/s to generate the desired electric power while overcoming friction
losses in pipes.

Discussion Note that the effect of frictional losses in the pipes is to increase the required flow rate of water to generate a
specified amount of electric power.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-73 [Also solved using EES on enclosed DVD]

Solution A fan is to ventilate a bathroom by replacing the entire volume of air once every 10 minutes while air
velocity remains below a specified value. The wattage of the fan-motor unit, the diameter of the fan casing, and the pressure
difference across the fan are to be determined.

Assumptions 1 The flow is steady and incompressible. 2 Frictional losses

along the flow (other than those due to the fan-motor inefficiency) are Air
negligible. 3 The fan unit is horizontal so that z = constant along the flow (or, @ 8 mis D @
the elevation effects are negligible because of the low density of air). 4 The -
effect of the kinetic energy correction factors is negligible, o = 1.
Properties The density of air is given to be 1.25 kg/m®.
Analysis (a) The volume of air in the bathroom is V=2m x3mx3m=18 m’.
Then the volume and mass flow rates of air through the casing must be
3
v oY 18M 6 03ms
At 10x60s

M= pV = (1.25kg/m®)(0.03m3/s) = 0.0375 kg/s

We take points 1 and 2 on the inlet and exit sides of the fan, respectively. Point 1 is sufficiently far from the fan so that P ;
= P.m and the flow velocity is negligible (V; = 0). Also, P, = P,m. Then the energy equation for this control volume
between the points 1 and 2 reduces to

(P V2 . (P V.2 . . . V2
m[;l"'al %"' gzl}"'wpump = m[f"'az 72"' gzz}"'wturbine +Emechioss = Wran,y =Ma, 72

SiNce Epmech, loss = Emech loss, pump 1N this case and Woump,u =Wpump — Emech loss, pump - Substituting,

. V2 (8mis)? 1N 1w
W, . =mMa, —= = (0.0375kg/s)(1.0 =12W
fan,u [2%) 2 ( g )( ) 2 1kgm/82 (le/S)

V\./fan, v 12W
0.5

Therefore, the electric power rating of the fan/motor unit must be 2.4 W.

=24W

and Wfan, elect —
77 fan-motor

(b) For air mean velocity to remain below the specified value, the diameter of the fan casing should be

] 3
V=AV,=(Di/4V, —> D,= & [4(0.03m"fs)
ap 7(8 m/s)

=0.069m=6.9cm

(c) To determine the pressure difference across the fan unit, we take points 3 and 4 to be on the two sides of the fan on a
horizontal line. Noting that z; = z, and V3 = V, since the fan is a narrow cross-section and neglecting flow loses (other than
the loses of the fan unit, which is accounted for by the efficiency), the energy equation for the fan section reduces to
P, . P w w
M—=+W, , =M-—% — P, —Py=—20u __fanu
’ 0 m/ p \Y

Substituting , P, - P, 12W (1N~m/s

S 0.03m¥s\ 1W
Therefore, the fan will raise the pressure of air by 40 Pa before discharging it.

j=4o N/m? = 40 Pa

Discussion Note that only half of the electric energy consumed by the fan-motor unit is converted to the mechanical
energy of air while the remaining half is converted to heat because of imperfections.
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Chapter 5 Mass, Bernoulli, and Energy Equations

5-74

Solution Water is pumped from a large lake to a higher reservoir. The head loss of the piping system is given. The
mechanical efficiency of the pump is to be determined.

Assumptions 1 The flow is steady and incompressible. 2 The @

elevation difference between the lake and the reservoir is constant. A |- ------

| Reservoir

_

Properties We take the density of water to be p = 1000 kg/m?®.

Analysis We choose points 1 and 2 at the free surfaces of the
lake and the reservoir, respectively, and take the surface of the lake as
the reference level (z; = 0). Both points are open to the atmosphere (P
= P, = P4m) and the velocities at both locations are negligible (V, =V,
= 0). Then the energy equation for steady incompressible flow through
a control volume between these two points that includes the pump and
the pipes reduces to

P V12 y Py V22 y - y : -
m{;_"al 2 +0z; +Wpump =m 7"'“2 2 +0z; +Wturbine + Emech,loss - Wpump,u =mgz; + Emech loss, piping

since, in the absence of a turbine, E

mech, loss mech loss, pump + Emech loss, piping and Wpump,u :Wpump - Emechloss, pump * NOtmg

that E pecn foss, piping = MG, the useful pump power is

V\'/pump,u =mgz, +mgh, =p\/g(22 +hy)

= (1000 kg/m*)(0.025 m*/s)(9.81m / s?)[(25+ 7) m] _ kN
1000 kg - m/s?

=7.85kNm/s = 7.85 kW

Then the mechanical efficiency of the pump becomes

Wpump,u _ 7.85kw
Wenare  10kW

Moump = =0.785 = 78.5%

Discussion A more practical measure of performance of the pump is the overall efficiency, which can be obtained by
multiplying the pump efficiency by the motor efficiency.
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Chapter 5 Mass, Bernoulli, and Energy Equations

O

5-75 ]

Solution The previous problem is reconsidered. The effect of head loss on mechanical efficiency of the pump. as the
head loss varies 0 to 20 m in increments of 2 m is to be investigated.

Analysis The EES Equations window is printed below, followed by the tabulated and plotted results.

g=9.81 "m/s2"

rho=1000 "kg/m3"

z2=25"m"

W_shaft=10 "kW"

V_dot=0.025 "m3/s"
W_pump_u=rho*V_dot*g*(z2+h_L)/1000 "kW"
Eta_pump=W_pump_u/W_shaft

Head Loss, Pumping power Efficiency 1— : : : : : ; :

h,, m Woump, u Tpump i

0 6.13 0.613 0.95 ~
1 6.38 0.638 i /

2 6.62 0.662 0.9 g

3 6.87 0.687 i /

4 7.11 0.711 0.85 /’

5 7.36 0.736 o o8 y

6 7.60 0.760 S| /

7 7.85 0.785 075 P

8 8.09 0.809 _ /

9 8.34 0.834 07 y

10 8.58 0.858 -7

11 8.83 0.883 0,65~

12 9.07 0.907 e

13 9.32 0.932 0.60— . . . . . . .
14 9.56 0.956 0 2 4 6 8 10 12 14 16
15 9.81 0.981 h. m

Discussion Note that the useful pumping power is used to raise the fluid and to overcome head losses. For a given
power input, the pump that overcomes more head loss is more efficient.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-76
Solution A pump with a specified shaft power and efficiency is used to raise water to a higher elevation. The
maximum flow rate of water is to be determined.

Assumptions 1 The flow is steady and incompressible. 2 The elevation difference between the reservoirs is constant. 3
We assume the flow in the pipes to be frictionless since the maximum flow rate is to be determined, E, o loss, piping = O-

Properties We take the density of water to be p = 1000 kg/m®.

Analysis We choose points 1 and 2 at the free surfaces of the lower and upper reservoirs, respectively, and take the
surface of the lower reservoir as the reference level (z; = 0). Both points are open to the atmosphere (P; = P, = P,y,) and the
velocities at both locations are negligible (V; = V, = 0). Then the energy equation for steady incompressible flow through a
control volume between these two points that includes the pump and the pipes reduces to

(P V2 . (P, V2 . : . _ :
m ?"’al 7"' 9z, +Wpump =m 7"’“2 T"’ 925 |+Wiubine + Emech,loss - Wpump,u =mgz, = pVoz,

since E = Epmecn loss, pump 1N this case and Wpump,u :Wpump - Emechloss, pump *

mech, loss

The useful pumping power is

Wpump,u = npumprump,shaﬁ =(0.82)(7 hp) =5.74 hp

A
Substituting, the volume flow rate of water is determined to be
v = Woump _ 5.74 hp 745.7W (1N-m/sj 1kg - m/s?
P9z, (1000 kg/m?®)(9.81m/s?)(15m) | 1hp 1W 1N
=0.0291m°%/s

Discussion  This is the maximum flow rate since the frictional effects are ignored.
In an actual system, the flow rate of water will be less because of friction in pipes.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-77
Solution Water flows at a specified rate in a horizontal pipe whose diameter is decreased by a reducer. The pressures
are measured before and after the reducer. The head loss in the reducer is to be determined.

Assumptions 1 The flow is steady and incompressible. 2 The pipe is horizontal. 3 The kinetic energy correction factors
are giventobe og = op = a = 1.05.

Properties We take the density of water to be p = 1000 kg/m®.

Analysis We take points 1 and 2 along the centerline of the pipe before and after the reducer, respectively. Noting
that z; = z,, the energy equation for steady incompressible flow through a control volume between these two points reduces
to

P V2 P. v P-P, a(VZ-V3)
Loy otz Ay =+ @y~ + 25 +Nypinee + N1 - h =241 2
A9 29 A9 29 A9 29
where
j / 3 -x
V1 _ V_ _ \g _ 0.035m 2/S —1.98m/s 470 kPa Water _
A aD{ /4 x(0.15m)° /4 @ 15cm » 440 kPa @ 8.cm
. . 3 —
YLV 00w o, —_—
A, D514 x(0.08m)-/4 Reducer

Substituting, the head loss in the reducer is determined to be

L (1000 kg/m?)(9.81mis?) | LkPa 1kN 2(9.81m/s?)

=3.06-2.38=0.68m

(470 - 440) kPa (1 kN/m? J(looo kg-m/s? ]+ 1.05[(1.98 m/s)? — (6.96 m/s)?]

Discussion Note that the 0.79 m of the head loss is due to frictional effects and 2.27 m is due to the increase in velocity.
This head loss corresponds to a power potential loss of

- — N\ _ 3 3 2 IN 1w
E mech loss, piping = pVgh, = (1000 kg/m*)(0.035m*/s)(9.81m/s)(0.79 m)[lkg.mlsz TN =271W
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-78
Solution A hose connected to the bottom of a tank is equipped with a nozzle at the end pointing straight up. The
water is pressurized by a pump, and the height of the water jet is measured. The minimum pressure rise supplied by the
pump is to be determined.

Assumptions 1 The flow is steady and incompressible. 2 Friction between the water and air as well as friction in the hose
is negligible. 3 The water surface is open to the atmosphere.

Properties We take the density of water to be p = 1000 kg/m®.

Analysis We take point 1 at the free surface of water in the tank, and point 2 at the top of the water trajectory where
V, =0 and P, = P, = Py, Also, we take the reference level at the bottom of the tank. Noting that z, = 20 m and z, = 27 m,
h,. =0 (to get the minimum value for required pressure rise), and that the fluid velocity at the free surface of the tank is very
low (V; = 0), the energy equation for steady incompressible flow through a control volume between these two points that
includes the pump and the water stream reduces to

P V2 P, V.2
— 4o —+7;+ hpump,u

A9 29 :E"‘Oﬂ i—i_zz"‘hturbine,e +h @f&__

- hpump,u =2 -1
Substituting,

h =27-20=7m

pump, u

A water column height of 7 m corresponds to a pressure rise of

1N
APy min = PWMoump,w = (1000 kg/m®)(9.81m/s%)(7 m)[—]

1000 kg - m/s?

=68.7kN/m? = 68.7 kPa

Therefore, the pump must supply a minimum pressure rise of 68.7 kPa.

Discussion  The result obtained above represents the minimum value, and should be interpreted accordingly. In reality, a
larger pressure rise will need to be supplied to overcome friction.

5-79
Solution The available head of a hydraulic turbine and its overall efficiency are given. The electric power output of
this turbine is to be determined.

Assumptions 1 The flow is steady and incompressible. 2 The available head remains constant.

Properties We take the density of water to be p = 1000 kg/m®.

Analysis When the turbine head is available, the corresponding power output is Eff.=78%

determined from

Generator

Wiirbine = Mturbine mghturbine = nturbinepVghturbine

Substituting,

- 1N 1kW
W, ... =0.78(1000 kg/m>)(0.25 m3/5)(9.81m/s?)(85m ( ) =163 kW
turbine ( g )( )( )( )[1kg-m/sz J 1000 N -m/s

Discussion  The power output of a hydraulic turbine is proportional to the available turbine head and the flow rate.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-80
Solution An entrepreneur is to build a large reservoir above the lake level, and pump water from the lake to the
reservoir at night using cheap power, and let the water flow from the reservoir back to the lake during the day, producing
power. The potential revenue this system can generate per year is to be determined.

Assumptions 1 The flow in each direction is steady and
incompressible. 2 The elevation difference between the lake
and the reservoir can be taken to be constant, and the elevation v
change of reservoir during charging and discharging is Reservoir

disregarded. 3 The given unit prices remain constant. 4 The

system operates every day of the year for 10 hours in each
mode.

Pump-  40m

turbine Lake ° 0

Properties We take the density of water to be p = 1000
kg/m?.

Analysis We choose points 1 and 2 at the free surfaces of the lake and the reservoir, respectively, and take the surface
of the lake as the reference level. Both points are open to the atmosphere (P; = P, = P,y,) and the velocities at both locations
are negligible (V; = V, = 0). Then the energy equation in terms of heads for steady incompressible flow through a control
volume between these two points that includes the pump (or the turbine) and the pipes reduces to

SIAVE: P Vi
Pump mode: $+al i"’ 7 +hpump,u =_2"'0‘2 i"'zz +hturbine,e +h —

Poump.u =22 +h, =40+4=44m
Turbine mode: (switch points 1 and 2 so that 1 ison inletside) —  hyinee =23 —h. =40-4=36m
The pump and turbine power corresponding to these heads are

W V\./pump, u_ p\/ghpump, u

pump, elect =
pump-motor /7 pump-motor

3 3 2
_ (1000 kg/m~)(2m*"/s)(9.81m/s)(44 m) 1N ( 1kw j _1151KW
0.75 1kg-m/s® 1000 N-m/s

Wturbine = TNturbine-gen mghturbine,e = TNturbine-gen pVghturbine,e

= 0.75(1000 kg/m?)(2 m/s)(9.81m/s?)(36 m)| — ( 1kw jzsso W
1kg-m/s= A\ 1000 N-m/s

Then the power cost of the pump, the revenue generated by the turbine, and the net income (revenue minus cost) per year
become

Cost = V\'/pump’ elect AL Unit price = (1151 kW)(365x 10 h/year)($0.03/kWh) = $126,035/year

Revenue =W,y At x Unit price = (530 kW)(365x10 h/year)($0.08/kWh) = $154,760/year

Net income = Revenue — Cost = 154,760 —-126,035 = $28,725/year =~ $28,700/year

Discussion It appears that this pump-turbine system has a potential annual income of about $29,000. A decision on
such a system will depend on the initial cost of the system, its life, the operating and maintenance costs, the interest rate,
and the length of the contract period, among other things.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-81
Solution Water flows through a horizontal pipe at a specified rate. The pressure drop across a valve in the pipe is
measured. The corresponding head loss and the power needed to overcome it are to be determined.

Assumptions 1 The flow is steady and incompressible. 2 The pipe is given to be horizontal (otherwise the elevation
difference across the valve is negligible). 3 The mean flow velocities at the inlet and the exit of the valve are equal since
the pipe diameter is constant.

Properties We take the density of water to be p = 1000 kg/m®.

Analysis We take the valve as the control volume, and points 1 and 2 at the inlet and exit of the valve, respectively.
Noting that z; =z, and V; = V,, the energy equation for steady incompressible flow through this control volume reduces to
P V2 P V7 PP
_1+ali+zl+hpump,u =_2+a2_2+22+hturbine,e+hL - hL =1z

yo!| 29 o] 29 A
Substituting, Valve
Water @ @
. 2 KN/m? 1000kg-m/s? | o, A
L= 1000 kg/m®)(@.81m/s) | 1KN ' i (s >

20 L/s

The useful pumping power needed to overcome this head loss is AP=2 kPa

Wpump,u = mgh, :p\/ghL

_ (1000 kg/m®)(0.020 m3/s)(9.81m/s2)(0.204 m)| — 2( 1w ):4ow
1kg-m/s® \1N-m/s

Therefore, this valve would cause a head loss of 0.204 m, and it would take 40 W of useful pumping power to overcome it.
Discussion  The required useful pumping power could also be determined from
1w

=VAP = (0.020 m®/s)(2000 Pa)| ———
( X )(1Pa-m3/s

W ):4OW

pump
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-82E
Solution A hose connected to the bottom of a pressurized tank is equipped with a nozzle at the end pointing straight
up. The minimum tank air pressure (gage) corresponding to a given height of water jet is to be determined.

Assumptions 1 The flow is steady and incompressible. 2 Friction between water and air as well as friction in the hose is
negligible. 3 The water surface is open to the atmosphere. @/\

A1

Properties We take the density of water to be p = 62.4 lom/ft®.

Analysis We take point 1 at the free surface of water in the tank, and point
2 at the top of the water trajectory where V, = 0 and Py = P, = Py, Also, we
take the reference level at the bottom of the tank. Noting that z, = 66 ft and z, =
90 ft, h, = 0 (to get the minimum value for the required air pressure), and that
the fluid velocity at the free surface of the tank is very low (V; = 0), the energy
equation for steady incompressible flow through a control volume between these
two points reduces to

90 ft

P V2 P, V7
—ta 2 +Zl+hpump,u =—+a; 2 +Z; +hturbine,e +hL
yo!) g ~ g
P -P PL gage
or ﬂ:zz_zl _)ﬂ:ZZ_Zl
~

Rearranging and substituting, the gage pressure of pressurized air in the tank is determined to be

P

1, gage

1 Ibf 1 psi .
= —2,)=(62.4 Ibm/ft*)(32.2 ft/s*) (90— 66 ft =10.4
P9(z-2) ( m )( S)( )(32.2|bm-ft/szj(144|bf/ﬁ2j ps!

Therefore, the gage air pressure on top of the water tank must be at least 10.4 psi.

Discussion  The result obtained above represents the minimum value, and should be interpreted accordingly. In reality, a
larger pressure will be needed to overcome friction.

5-83
Solution A water tank open to the atmosphere is initially filled with water. A sharp-edged orifice at the bottom drains
to the atmosphere. The initial discharge velocity from the tank is to be determined.

Assumptions 1 The flow is steady and incompressible. 2 The tank is open to the atmosphere. 3 The Kinetic energy
correction factor at the orifice is givento be o, = = 1.2.

Analysis We take point 1 at the free surface of the tank, and point 2 at the exit of the orifice. Noting that the fluid at
both points is open to the atmosphere (and thus P; = P, = P4,,) and that the fluid velocity at the free surface of the tank is
very low (V; = 0), the energy equation between these two points (in terms of heads) simplifies to

P V2 P V.2
Eﬁ""h i"' Z+ hpump,u :Ei"'az i"' Zy + hturbine,e + hL
which yields

V2

Solving for V, and substituting,

V, = \/2g(zl -2,-h )/ e =\/2(9.81m/32)(2—0.3m)/1.2 =5.27m/s

Discussion  This is the velocity that will prevail at the beginning. The mean flow velocity will decrease as the water
level in the tank decreases.

5-52
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc. Limited distribution permitted only to
teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.




Chapter 5 Mass, Bernoulli, and Energy Equations
5-84
Solution Water enters a hydraulic turbine-generator system with a known flow rate, pressure drop, and efficiency.
The net electric power output is to be determined.

Assumptions 1 The flow is steady and incompressible. 2 All losses in the turbine are accounted for by turbine efficiency
and thus h. = 0. 3 The elevation difference across the turbine is negligible. 4 The effect of the kinetic energy correction
factors is negligible, &y = o = @ = 1.

Properties We take the density of water to be 1000 kg/m® and the density of mercury to be 13,560 kg/m®.

Analysis We choose points 1 and 2 at the inlet and the exit of the turbine, respectively. Noting that the elevation
effects are negligible, the energy equation in terms of heads for the turbine reduces to
P V2 P. & P-P, a(V?-V})
_1+ali+zl+hpump,u :_2+a2 _2+22 +hturbine,e +hL - hturbine,e =—1 24 ! 2 ()
yo!) 29 A 29 Pwater 9 29
where
. . 3
V=Yoo Y 00M g gy
A aD{ /4 z(0.30m)“ /4
. , 3
vV._ Vv 08m™S 15 5mis

2"A, mDZI4 x(025m)?/4

The pressure drop corresponding to a differential height of 1.2 m in the mercury
manometer is

PP, = (pHg = Pwater )9D

1kN
=[(13,560 —1000) kg/m31(9.81m/s?)(1.2m)| ———
[( ) kg/m>]( X )(1000kg.m/szj

=148 kN/m? =148 kPa
Substituting into Eq. (1), the turbine head is determined to be

=151-39=112m

hturbine,e =

148 kN/m? 1000 kg - m/s? +(L0) (8.49m/s)? — (12.2 m/s)?
(1000 kg/m*3)(9.81m/s?) 1kN ' 2(9.81m/s?)

Then the net electric power output of this hydroelectric turbine becomes

Wturbine = Tturbine-gen mghturbine,e = turbine-gen pVghturbine,e

~ 0.83(1000 kg/m?)(0.6 m/s)(9.81m/s?)(1L.2m)| — ( Lkw jzss kw
1kg-m/s< A\ 1000 N-m/s

Discussion It appears that this hydroelectric turbine will generate 55 kW of electric power under given conditions. Note
that almost half of the available pressure head is discarded as kinetic energy. This demonstrates the need for a larger turbine
exit area and better recovery. For example, the power output can be increased to 74 kW by redesigning the turbine and
making the exit diameter of the pipe equal to the inlet diameter, D, = D,. Further, if a much larger exit diameter is used and
the exit velocity is reduced to a very low level, the power generation can increase to as much as 92 kW.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-85
Solution The velocity profile for turbulent flow in a circular pipe is given. The kinetic energy correction factor for
this flow is to be determined.
Analysis The velocity profile is given by u(r) =u@-r/ R)Y™ with n = 7 The kinetic energy correction factor is
then expressed as

3 3 3
1 ¢ (u(r) 1 3 1 R, ( r)n 2ud.. (R ( r\r
=— dA= r)’dA=—, —— 1-—| (2ar)dr = 1-—| rdr
“ A.[A[VMJ INVE J.AU( ) R23 J‘r=oum‘3‘X R (27) R23 Lo R

avg avg avg

where the average velocity is

1 1 (R r\Y" 2u R r\Y"
Ve = (1A= jr_oumax(l—ﬁ) (@) = 2o jr_o(l-ﬁj dr

From integral tables,

J'(a +b%)" xdx = (a+bx)"? a(a+bx)"! 7<T> } u(r) $ 2r 4%)—>

b2(n+2) b2(n+1)

Then,
R
R R 1/n _ L1+2 _ in 2p2
Juér)rdrzj 0@_% rdr:(llr/R) _(11r/R) _ nlz 1
- ] G2 SGay | (rRenHD
R R r=0
R
R R 3/n _ 242 _ 241 2p2
'[ u(r)Brdrz'[ (1_%) rdrz(llr/R) _(1lr/R) _ r; z 3
=0 =0
G Gy | (1IN
r=0
Substituting,
2 2p2 2 2
Vavg = un12ax nR = N Umax :0'8167umax
R (n+D)(2n+1) (n+1)(2n+1)
and
-3
L5 [ 20U n?R2 (+D)%@n+1)°  (7+D)3(2x7+1)°
RZ | (n+D@n+D) ) (n+3)2n+3) 4n*(n+3)(2n+3) 4x7*(7+3)2x7+3)

Discussion Note that ignoring the kinetic energy correction factor results in an error of just 6% in this case in the
kinetic energy term (which may be small itself). Considering that the uncertainties in some terms are usually more that 6%,
we can usually ignore this correction factor in turbulent pipe flow analyses. However, for laminar pipe flow analyses, « is
equal to 2.0 for fully developed laminar pipe flow, and ignoring o may lead to significant errors.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-86
Solution A pump is pumping oil at a specified rate. The pressure rise of oil in the pump is measured, and the motor
efficiency is specified. The mechanical efficiency of the pump is to be determined.

Assumptions 1 The flow is steady and incompressible. 2 The elevation difference across the pump is negligible. 3 All the
losses in the pump are accounted for by the pump efficiency and thus h. = 0. 4 The kinetic energy correction factors are
giventobe oy = o = a = 1.05.

Properties The density of oil is given to be p = 860 kg/m®.

Analysis We take points 1 and 2 at the inlet and the exit of the pump, respectively. Noting that z; = z,, the energy
equation for the pump reduces to
P V2 P V.2 P,—P,  a(Vs-V?)
_1+ali+zl+hpump,u :_2+a2_2+22+hturbine,e+hL - hpump,u =2 14 2 !
A 29 A 29 ot 29
where 18 kW
o 3 @,
V=Yoo Y OIM g9y
A aD{ /4 7x(0.08m)°/4
. . 3
\Y, \Y 0.1m°/s _8.84m/s

2TA, mDZI4 z(012m)?/4

Substituting, the useful pump head and the corresponding useful pumping power
are determined to be

=474-17.0=304m

hpump, u=

400,000 N/m? 1kg-m/s? , 1.05[(8.84 m/s)? —(19.9m/s)?]
(860 kg/m>)(9.81m/s?) 1N 2(9.81m/s?)

Woumpw = AY3Noump,w = (860 kg/m*)(0.1m%/s)(9.81m/s?)(30.4 m)( LkN ]( LkW

=25.6 kW
1000 kg-m/s? \1kN- m/s)

Then the shaft pumping power and the mechanical efficiency of the pump become

Wpump,shaft = ﬂmotorWeIectric =(0.90)(35kW) =31.5kW

Wompe  25.6 KW
Moump = =
LY 315 kW

pump, shaft

=0.813=81.3%

Discussion  The overall efficiency of this pump/motor unit is the product of the mechanical and motor efficiencies,
which is 0.9 x 0.813 = 0.73.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-87E
Solution Water is pumped from a lake to a nearby pool by a pump with specified power and efficiency. The head
loss of the piping system and the mechanical power used to overcome it are to be determined.

Assumptions 1 The flow is steady and incompressible. 2 The elevation difference between the lake and the free surface of
the pool is constant. 3 All the losses in the pump are accounted for by the pump efficiency and thus h,_ represents the losses

in piping.
Properties We take the density of water to be p = 62.4 Ibm/ft*.

Analysis The useful pumping power and the corresponding useful pumping head are

Woump.u = pumpWpump = (0.73)(12 hp) = 8.76 hp

hpump = Wpomp,u _ WPUTT]PYU
’ mg Vg
_ 8.76 hp (32.2 lbm - ft/s ](550 Ibf ~ft/sJ _eaaft
(62.4 Ibm/ft3)(1.2 ft3/s)(32.2 ft/s?) LIbf 1hp

We choose points 1 and 2 at the free surfaces of the lake and the pool, respectively. Both points are open to the atmosphere
(P1 = P, = P4m) and the velocities at both locations are negligible (V; = V, = 0). Then the energy equation for steady
incompressible flow through a control volume between these two points that includes the pump and the pipes reduces to

P V2 P, V.2

E"'ali_’_zl"_hpump,u :Eﬂlz £+Zz+hturbine,e+hL - hL :hpump,u+zl_22
Substituting, the head loss is determined to be Pool ( 2
M. =Ny — (22 — 21) = 64.3-35 = 29.3 ft e )

Then the power used to overcome it becomes

E mech loss, piping — p\/ghL

:(62.4|bm/ft3)(1.2ﬁ3/s)(32.2ﬂ/s2)(29.3ﬁ)( Llbf j( Lhp )
32.21bm-ft/s? )\ 550 Ibf - ft/s

=4.0hp

Discussion Note that the pump must raise the water an additional height of 29.3 ft to overcome the frictional losses in
pipes, which requires an additional useful pumping power of about 4 hp.

5-56
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc. Limited distribution permitted only to
teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.




Chapter 5 Mass, Bernoulli, and Energy Equations
5-88
Solution A fireboat is fighting fires by drawing sea water and discharging it through a nozzle. The head loss of the
system and the elevation of the nozzle are given. The shaft power input to the pump and the water discharge velocity are to
be determined.

Assumptions 1 The flow is steady and incompressible. 2 The effect of the kinetic energy correction factors is negligible,
a=1.

Properties The density of sea water is given to be p =1030 kg/m®. @
N T——

Analysis We take point 1 at the free surface of the sea and point T am
2 at the nozzle exit. Noting that P; = P, = Py, and Vi = 0 (point 1 is at @ 7
the free surface; not at the pipe inlet), the energy equation for the T
control volume between 1 and 2 that includes the pump and the piping — ~
system reduces to ——= -

P V2 P, V7 V7

1 -
E+alz—+ 2y +Noymp,u =—=

where the water discharge velocity is

2 _ 2
+a, 2 +Z; +hturbine,e +hL - hpump,u =1 -11tQ 29 +hL

Y, Y 0.1m3/s

—_—= — = >—=50.93 m/s =50.9 m/s
A, zD, 14 7(0.05m)°/4

V, =

Substituting, the useful pump head and the corresponding useful pump power are
determined to be

(50.93m/s)?

20.81mIs?) +(3m)=139.2m
.81ml/s

hpump, u= (4 m) + (1)

. - 1kN 1kW
w = pVigh = (1030 kg/m®)(0.1m®/)(9.81m/s%)(139.2m
pumpu = PV9Npump, u ( g X )( X ){1000 kg-m/52 J(lkN-m/sj

=140.7 kW

Then the required shaft power input to the pump becomes

W pump, u _ 140.7 kW
0.70

W =201kW

pump, shaft —
pump

Discussion Note that the pump power is used primarily to increase the kinetic energy of water.
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Chapter 5 Mass, Bernoulli, and Energy Equations

Review Problems

5-89

Solution A water tank open to the atmosphere is initially filled with water. The tank discharges to the atmosphere
through a long pipe connected to a valve. The initial discharge velocity from the tank and the time required to empty the
tank are to be determined.

Assumptions 1 The flow is incompressible. 2 The draining pipe is horizontal. 3 The tank is considered to be empty when
the water level drops to the center of the valve.

Analysis (a) Substituting the known quantities, the discharge velocity can be expressed as

:J 292 :J 292 _ Jo1212gz

15+ fL/D |1.5+0.015(100 m)/(0.10 m)

Then the initial discharge velocity becomes

=,/0.12129z, :\/0.1212(9.81m/sz)(2 m) =1.54 m/s z

where z is the water height relative to the center of the orifice at that time.

Do

N

(b) The flow rate of water from the tank can be obtained by multiplying the
discharge velocity by the pipe cross-sectional area,

. ﬂDZ
Then the amount of water that flows through the pipe during a differential time interval dt is
2
dVv =Vdt = ”'Z /0.1212gzdt (1)

which, from conservation of mass, must be equal to the decrease in the volume of water in the tank,
2

dVv = A, (-dz) =

()

where dz is the change in the water level in the tank during dt. (Note that dz is a negative quantity since the positive
direction of z is upwards. Therefore, we used —dz to get a positive quantity for the amount of water discharged). Setting
Egs. (1) and (2) equal to each other and rearranging,
D 0.1212gzdt = - dz - dt=——2 gz =- 0
4 D? J0.1212gz  D?,/0.1212g
The last relation can be integrated easily since the variables are separated. Letting t; be the discharge time and integrating it

fromt =0 when z = z; to t = t; when z = 0 (completely drained tank) gives
0

_1
Z 2dz

f s D2 27 2D2 2
. S LIRS S
t=0 D2,/0.1212g Jz=u

2 1 2 1
D°,0.1212g | 5 . D“,/0.1212g

Simplifying and substituting the values given, the draining time is determined to be

2D2 2
tp =220 | n_200m) 2M___ _559405-7.21h
D% V0.1212g  (0.1m)? | 0.1212(9.81m/s?)

Discussion  The draining time can be shortened considerably by installing a pump in the pipe.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-90
Solution The rate of accumulation of water in a pool and the rate of discharge are given. The rate supply of water to
the pool is to be determined.

Assumptions 1 Water is supplied and discharged steadily. 2 The rate of
evaporation of water is negligible. 3 No water is supplied or removed
through other means.

Analysis The conservation of mass principle applied to the pool
requires that the rate of increase in the amount of water in the pool be equal
to the difference between the rate of supply of water and the rate of
discharge. That is,

ho— dmpool 5 dV

dm . .
ol —m -, - m, +m, >V =—y
dt dt dt

since the density of water is constant and thus the conservation of mass is equivalent to conservation of volume. The rate of
discharge of water is

V, = AV, = (2D ?/4)\V, = [#(0.05m)?/4](5 m/s) = 0.00982 m?/s

The rate of accumulation of water in the pool is equal to the cross-section of the pool times the rate at which the water level
rises,
deooI
dt

Substituting, the rate at which water is supplied to the pool is determined to be

= Agross.sectionVievel = (3M x4 m)(0.015 m/min) = 0.18 m*/min =0.00300 m*/s

I |V A . s
V, = d—'°t+ve =0.003+0.00982 = 0.01282 m*/s = 0.0128 m*/s
Therefore, water is supplied at a rate of 0.01282 m%/s = 12.82 L/s.

Discussion  This is a very simple application of the conservation of mass equations.

5-91
Solution A fluid is flowing in a circular pipe. A relation is to be obtained for the average fluid velocity in terms of
V(r),R,andr.
Analysis Choosing a circular ring of area dA = 2znrdr as our differential area, the mass flow rate through a cross-
sectional area can be expressed as

R dr

m:J'pv(r)dA:jpv(r)zzzrdr X
0
A

Setting this equal to and solving for Va,

2 R
Vag :?J‘O V(r)rdr

Discussion If V were a function of both r and 6, we would also need to integrate with respect to 6.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-92
Solution Air is accelerated in a nozzle. The density of air at the nozzle exit is to be determined.

Assumptions  Flow through the nozzle is steady.

Properties The density of air is given to be 4.18 kg/m? at the inlet.

Analysis There is only one inlet and one exit, and thus m, =m, =m. Then,
My =M, \
P1AN = pr AV, 1 AIR 2
AV, 120 m/s 3 3
=——p; =2 4.18kg/m?) =2.64 kg/m
P2 AV, PL= 2500 m/s( g/m*) g /

Discussion Note that the density of air decreases considerably despite a decrease in the cross-sectional area of the
nozzle.

5-93
Solution The air in a hospital room is to be replaced every 20 minutes. The minimum diameter of the duct is to be
determined if the air velocity is not to exceed a certain value.

Assumptions 1 The volume occupied by the furniture etc in the room is negligible. 2 The incoming conditioned air does
not mix with the air in the room.

Analysis The volume of the room is

V= (6 m)(5m)(4 m) =120 m*®

To empty this air in 20 min, the volume flow rate must be Hospital Room

6x5x4 m

=0.10m3/s 10 bulbs

vV 120m®
At 20x60s

If the mean velocity is 5 m/s, the diameter of the duct is

2 / 3
V:AV:ﬂ';V - D= ﬁ: wzo_]ﬁm
4 \ v z(5m/s)

Therefore, the diameter of the duct must be at least 0.16 m to ensure that the air in the room is exchanged completely within
20 min while the mean velocity does not exceed 5 m/s.

Discussion  This problem shows that engineering systems are sized to satisfy certain constraints imposed by certain
considerations.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-94
Solution Water discharges from the orifice at the bottom of a pressurized tank. The time it will take for half of the
water in the tank to be discharged and the water level after 10 s are to be determined.

Assumptions 1 The flow is incompressible, and the frictional effects are negligible. 2 The tank air pressure above the
water level is maintained constant.

Properties We take the density of water to be 1000 kg/m®.

Analysis We take point 1 at the free surface of the tank, and point 2 at the exit of orifice. We take the positive
direction of z to be upwards with reference level at the orifice (z, = 0). Fluid at point 2 is open to the atmosphere (and thus
P, = Pa4m) and the velocity at the free surface is very low (Vy = 0). Then,

2 2 2
i+VL+21:&+V_2+22 — i+21=—Patm +V—2 - V,= 2921+2p1,gage/p

P9 29 P29 A9 M 29
or, V, = /202 + 2P, ;... / p Where z is the water height in the tank at any time t. Water surface moves down as the tank

drains, and the value of z changes from H initially to 0 when the tank is emptied completely.

We denote the diameter of the orifice by D, and the diameter of the tank by D,. The flow rate of water from the
tank is obtained by multiplying the discharge velocity by the orifice cross-sectional area,

2
1292 + 2Py goge |

Then the amount of water that flows through the orifice during a differential time interval dt is
2

dV =Vt = ”% 207+ 2P, gge | plt @

: D
V = AgificeV2 =

which, from conservation of mass, must be equal to the decrease in the volume of water in the tank,
2

AV = A (-2) =~ 222 @)

where dz is the change in the water level in the tank during dt. (Note that dz is a negative quantity since the positive
direction of z is upwards. Therefore, we used —dz to get a positive quantity for the amount of water discharged). Setting
Egs. (1) and (2) equal to each other and rearranging,

2 7[D2 DZ
7D 29z + 2Pl,gage | pdt = _20 4z N dt = __(; ;dz
4 4 D2 | 202+ 2P, gpge | p

The last relation can be integrated since the variables are separated. Letting t; be the discharge time and integrating it from t
=0whenz =2, tot=twhenz=1zgives

\/220 2Py gage \/22 2Py gage Dgt qr,%

Ty - _+ ’ 2 \\_//
9  pg? g m? D?
2 2
where 2Pigage _ 2(450-100) kN/m 1000kg-m/s” | _ ., 2 Water tank 3
pg% (1000 kg/m®3)(9.81m/s2)? 1kN Do
C  mmmmmmm—
The time for half of the water in the tank to be discharged (z = zy/2) is v

2@3m) 2(L5m) (0.1m)? TDZlO_C'"
\/—2+7.27452 —\/'—2+7.27432 ===t — t=220s
9.81m/s 9.81m/s (2m)

2
(b) Water level after 10s is \/Lm)zn.z?m2 - \/Lﬁ?.zmsz =%(103) —2=2.31m
9.81m/s 9.81m/s (2m)

Discussion Note that the discharging time is inversely proportional to the square of the orifice diameter. Therefore, the
discharging time can be reduced to one-fourth by doubling the diameter of the orifice.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-95
Solution Air flows through a pipe that consists of two sections at a specified rate. The differential height of a water
manometer placed between the two pipe sections is to be determined.

Assumptions 1The flow through the pipe is steady, incompressible, and irrotational with negligible friction (so that the
Bernoulli equation is applicable). 2 The losses in the reducing section are negligible. 3 The pressure difference across an air
column is negligible because of the low density of air, and thus the air column in the manometer can be ignored.

Properties The density of air is given to be p.i; = 1.20 kg/m?®. We take the density of water to be p,, = 1000 kg/m®.

Analysis We take points 1 and 2 along the centerline of the pipe over the two tubes of the manometer. Noting that z;
= 7, (or, the elevation effects are negligible for gases), the Bernoulli equation between points 1 and 2 gives
2 2 2 _\y2
i+VA+21=i+V—2+zz N P]-_Pzzw (]_)
M 29 P9 29 2

We let the differential height of the water manometer be h. Then the pressure difference P, — P, can also be expressed as
PL-P,=pygh (2)
Combining Egs. (1) and (2) and solving for h, I

20 cm T~
Pair (Vz2 —V12) _ h h= Pair (Vz2 —V12) _ V22 _V12 i @ 10 cm
—>=p,0 - = = Air —»
2 2gpw ngw /pair 200 L/s —
Calculating the velocities and substituting,
. . 3
V, = V. \2 __02m ZS =6.37m/s Water
A D14 z(02m)“ /4
. . 3
v, Vv v 02m’s _255mls

A, D214 2(01m)2/4

b (255 m/s)® —(6.37m/s)?

5 =0.037m=3.7cm
2(9.81m/s“)(1000/1.20)

Therefore, the differential height of the water column will be 3.7 cm.

Discussion Note that the differential height of the manometer is inversely proportional to the density of the manometer
fluid. Therefore, heavy fluids such as mercury are used when measuring large pressure differences.
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Chapter 5 Mass, Bernoulli, and Energy Equations
5-96 [Also solved using EES on enclosed DVD]

Solution Air flows through a horizontal duct of variable cross-section. For a given differential height of a water
manometer placed between the two pipe sections, the downstream velocity of air is to be determined, and an error analysis
is to be conducted.

Assumptions 1 The flow through the duct is steady, incompressible, and irrotational with negligible friction (so that the
Bernoulli equation is applicable). 2 The losses in this section of the duct are negligible. 3 The pressure difference across an
air column is negligible because of the low density of air, and thus the air column in the manometer can be ignored.

Properties The gas constant of air is R = 0.287 kPa-m*/kg-K. We take the density of water to be g, = 1000 kg/m®,

Analysis We take points 1 and 2 along the centerline of the duct over the two tubes of the manometer. Noting that z;
= 7, (or, the elevation effects are negligible for gases) and V,; = 0, the Bernoulli equation between points 1 and 2 gives

P V2 P, V7 PR P, VS 2(P, P
AV, SRRV oy 2RER) g
M 29 P9 29 P M 29 Pair

where P, -P, = p,gh
w«N

Air —» @ @ V2

P 100 kPa

— = - =1.17 kg/m*®
RT  (0.287 kPa-m*/kg - K)(298 K)

and Pair =

Substituting into (1), the downstream velocity of air V, is determined to be

3 2
v, = 2p,9h0 _ 2(1000 kg/m )(9.81m3/s )(0.08 m) _366mis (2)
Pair 1.17 kg/m

Therefore, the velocity of air increases from a low level in the first section to 36.6
m/s in the second section.

Error Analysis We observe from Eq. (2) that the velocity is proportional to the square root of the differential height of the
manometer fluid. That is, V, = k+/h .

. . . dh

Taking the differential: dV, =1k —

g 2 2 \/F
Dividing by V: Vo gy dn 1 av, _dn_ #£2mm__ . 013

—_ —_— —> —_— =
V, 2 Jhkh V, 2h 2x80mm
Therefore, the uncertainty in the velocity corresponding to an uncertainty of 2 mm in the differential height of water is
1.3%, which corresponds to 0.013x(36.6 m/s) = 0.5m/s. Then the discharge velocity can be expressed as

V,=36.6x0.5m/s

Discussion ~ The error analysis does not include the effects of friction in the duct; the error due to frictional losses is
most likely more severe than the error calculated here.
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Chapter 5 Mass, Bernoulli, and Energy Equations
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Solution A tap is opened on the wall of a very large tank that contains air. The maximum flow rate of air through the
tap is to be determined, and the effect of a larger diameter lead section is to be assessed.

Assumptions Flow through the tap is steady, incompressible, and irrotational with negligible friction (so that the flow rate
is maximum, and the Bernoulli equation is applicable).

Properties The gas constant of air is R = 0.287 kPa-m*/kg-K.
Analysis The density of air in the tank is

P 102 kPa
RT  (0.287 kPa-m®/kg - K)(293K)

Dair = =1.21kg/m®

We take point 1 in the tank, and point 2 at the exit of the tap along the same horizontal line. Noting that z; = z, (or, the
elevation effects are negligible for gases) and V; = 0, the Bernoulli equation 