Part 1: Equilibrium
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1 The properties of gases

Solutions to exercises
Discussion questions

The partial pressure of a gas in a mixture of gases is the pressure the gas would exert if it occupied
alone the same container as the mixture at the same temperature. It is a limiting law because it holds
exactly only under conditions where the gases have no effect upon each other. This can only be true
in the limit of zero pressure where the molecules of the gas are very far apart. Hence, Dalton’s law
holds exactly only for a mixture of perfect gases; for real gases, the law is only an approximation.

The critical constants represent the state of a system at which the distinction between the liquid
and vapour phases disappears. We usually describe this situation by saying that above the critical
temperature the liquid phase cannot be produced by the application of pressure alone. The liquid and
vapour phases can no longer coexist, though fluids in the so-called supercritical region have both
liquid and vapour characteristics. (See Box 6.1 for a more thorough discussion of the supercritical
state.)

The van der Waals equation is a cubic equation in the volume, V. Any cubic equation has certain
properties, one of which is that there are some values of the coefficients of the variable where the
number of real roots passes from three to one. In fact, any equation of state of odd degree higher
than 1 can in principle account for critical behavior because for equations of odd degree in V there
are necessarily some values of temperature and pressure for which the number of real roots of V
passes from n(odd) to 1. That is, the multiple values of V converge from n to 1 as T — T¢. This
mathematical result is consistent with passing from a two phase region (more than one volume for a
given T and p) to a one phase region (only one V for a given T and p and this corresponds to the
observed experimental result as the critical point is reached.

Numerical exercises

Boyle’s law applies.

pV =constant so prVy = piV;

Vi 104 kP 2000 cm?
pe =21 _{ (2;)5;(3) M) _[§32kPa
cm

Vi

(a) The perfect gas law is
pV =nRT
implying that the pressure would be

nRT
\%

All quantities on the right are given to us except n, which can be computed from the given mass
of Ar.

p:

25¢g —
n=——=_ =0.626mol
39.95 gmol ™!

0.626mol) x (8.31 x 1072 LbarK—! mol~! 30 + 273K =
SOPZ( mol) x ( x ISEE mol” ) x 0+ ):10.5bar
not 2.0 bar. '
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(b) The van der Waals equation is

RT a

T Vm—b VR

p

(831 x 102LbarK~"mol™") x (30 4+ 273) K
~ (1.5L/0.626mol) — 3.20 x 10~2Lmol ™!

(1.337L2 atmmol’2) x (1.013 baratm’l)
— =110.4 bar

(1.5L,/0.626 mol)2

(a) Boyle’s law applies.

pV =constant so pfVr = piV;

V, 1.48 x 103 T 2.14dm?
and p; = Ve _ (148 x 107 Torn) x ( S ™) _[$.04 x 102 Torr
Vi (2.14 + 1.80) dm

(b) The original pressure in bar is

1 at 1.013b
pi = (8.04 x 102 Torr) x (%) x <—ar) —[1.07 bar
orr

1 atm

Charles’s law applies.

Vi W
VxT so —=—
i Ty
Vi T 150 cm? 35+ 273)K
and Ty = ‘f/‘:( Cm;(;;( 3+ K ook
i cm

The relation between pressure and temperature at constant volume can be derived from the perfect
gas law

pi _ Df
V =nRT SO xT and — = —
p p T, Tr

The final pressure, then, ought to be
pils  (125kPa) x (11 +273)K
pr="F K

According to the perfect gas law, one can compute the amount of gas from pressure, temperature,
and volume. Once this is done, the mass of the gas can be computed from the amount and the molar
mass using

pV =nRT

pV _ (1.00atm) x (1.013 x 10° Paatm™') x (4.00 x 10> m?)

1 = 1.66 x 10° mol
RT (8.3145J K mol™1) x (20 +273) K

and m = (1.66 x 10° mol) x (16.04 gmol™!) =2.67 x 10®g =|2.67 x 103 kg

All gases are perfect in the limit of zero pressure. Therefore the extrapolated value of pVy, /T will
give the best value of R.
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m
The molar mass is obtained from pV = nRT = —RT

. . m RT RT
which upon rearrangement gives M = — — = p—
Vop p
The best value of M is obtained from an extrapolation of p/p versus p to p = 0; the intercept is

M/RT.
Draw up the following table

p/am  (pVn/T)/(LatmK 'mol™) (po/p)/(gL"'atm™")

0.750000 0.0820014 1.42859

0.500 000 0.0820227 1.42822

0.250 000 0.082 0414 1.42790

|%
From Fig. 1.1(a), (me) = ’ 0.0820615LatmK ™! mol™!
p=0
From Fig. 1.1(b), (ﬁ) =1.42755gL " atm™!
p p=0

Figure 1.1(a)

Figure 1.1(b)
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M = RT (3) = (0.0820615Latmmol ' K™!) x (273.15K) x (1.42755gL ™" atm™")
P p:O

={31.9987 gmol !

The value obtained for R deviates from the accepted value by 0.005 per cent. The error results from
the fact that only three data points are available and that a linear extrapolation was employed. The
molar mass, however, agrees exactly with the accepted value, probably because of compensating
plotting errors.

E1.11(b) The mass density p is related to the molar volume Vp, by

M
Vm = —
P
where M is the molar mass. Putting this relation into the perfect gas law yields
pM
pVm =RT so — =RT
)

Rearranging this result gives an expression for M; once we know the molar mass, we can divide by
the molar mass of phosphorus atoms to determine the number of atoms per gas molecule

RTp (62364 L Torr K~ mol™") x [(100 + 273) K] x (0.6388 gL™")

M= = 124gm01_1.
p 120 Torr
The number of atoms per molecule is
124 gmol ™!
——— =4.00
31.0gmol ™!

suggesting a formula of

E1.12(b) Use the perfect gas equation to compute the amount; then convert to mass.
pV

pV =nRT so n=—

RT

We need the partial pressure of water, which is 53 per cent of the equilibrium vapour pressure at the
given temperature and standard pressure.

p = (0.53) x (2.69 x 10° Pa) = 1.43 x 10> Pa

(1.43 x 10° Pa) x (250 m3)
n —=
(8.3145JK ' mol™!) x (23 +273)K

orm = (1.45 x 10> mol) x (18.0gmol ") = 2.61 x 103 g =|2.61kg

= 1.45 x 10?2 mol

E1.13(b) (a) The volume occupied by each gas is the same, since each completely fills the container. Thus
solving for V from eqn 14 we have (assuming a perfect gas)
nyRT 0.225¢g

= nN = —-—
P © 7 20.18gmol !

=1.115 x 102 mol, pNe = 66.5 Torr, T =300K

1.115 x 10~2 mol 62.36 L Torr K~ ! mol~! 300K _
y = ! x 1077 mol) x ( p— oK™ mol ) x BOK) _ 541391 _314L
. orr
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(b) The total pressure is determined from the total amount of gas, n = nch, + nar + nNe.

new, = &g_l =1.995 x 1072 mol np, = Lg_l =4.38 x 1073 mol
16.04 g mol 39.95 gmol
n = (1.995 + 0.438 + 1.115) x 10~2 mol = 3.548 x 10~ mol
b= nRT ] — (3.548 x 102 mol) x (62.36L_TorrK—1 mol~!) x (300K)
4 3.137L

- [2i2Ton]

E1.14(b) This is similar to Exercise 1.14(a) with the exception that the density is first calculated.

RT .
M = p— [Exercise 1.11(a)]
p

33.5 =
0= ne =0.1340gL~!, p = 152Torr, T =298K
250 mL
Y (0.1340gL~1) x (62.36 LTorr K~ mol™!) x (298 K) —|16.4gmol™!
152 Torr

E1.15(b) This exercise is similar to Exercise 1.15(a) in that it uses the definition of absolute zero as that
temperature at which the volume of a sample of gas would become zero if the substance remained a

gas at low temperatures. The solution uses the experimental fact that the volume is a linear function
of the Celsius temperature.

Thus V = Vo +aVpd = Vy + bO, b =a'V)
At absolute zero, V = 0, or 0 = 20.00L + 0.0741 Lec! x 6 (abs. zero)

20.00L
f(abs. zero) = ———— =| —270°C
( )=

which is close to the accepted value of —273°C.

RT
E1.16(b) (a) p=”V
n = 1.0mol

T = (i) 273.15K; (i) S00K
V = (@) 22.414L; (ii) 150cm?3

(1.0mol) x (8.206 x 10~2Latm K~ ! mol~!) x (273.15K)
p =

22.414L
 [10un]

. (1.0mol) x (8.206 x 102 Latm K~ ! mol~!) x (500K)
@ p= 0.150L
= (2 significant figures)
(b) From Table (1.6) for H>S
a = 4.4841.% atm mol ! b=434x10"2Lmol !
nRT an’
V—nb W

®

p:
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_ (1.0mol) x (8.206 x 10~ LatmK~! mol™!) x (273.15K)

22.414L — (1.0mol) x (4.34 x 10~2L mol™ 1)
(4.484 L2 atmmol™!) x (1.0 mol)?

(22.4141)2
= -0.99 atm

_ (1.0mol) x (8.206 x 10~ LatmK~! mol™!) x (500K)

0.150L — (1.0mol) x (4.34 x 10~2Lmol 1)
(4.484 L2atmmol~!) x (1.0 mol)?

(0.150L)2

= 185.6atm ~ (2 significant figures).

E1.17(b)  The critical constants of a van der Waals gas are

Ve = 3b = 3(0.0436 Lmol ') ={0.131 Lmol ™!
1.32 atm L% mol 2
pe= oo o Y =[257am]

T 2762 27(0.0436 Lmol 1)

8 8(1.32 atm L2 mol 2
and T, = —or (1.32atm L7 mol 7 =[109K

27Rb 27(0.08206 L atm K~ ! mol™!) x (0.0436 Lmol™!)
E1.18(b) The compression factor is

®

(i)

Vi Vi
Z=Pm m

RT B Vm,perfect

(a) Because Vim = Vi perfect + 0-12 Viy perfect = (1.12) Vi perfect, we have Z =

forces dominate.

(b) The molar volume is

RT
V = (1.12) Viy perfect = (1.12) x 7

0.08206 L atm K—! mol~1) x (350 K
V = (1.12) x <( am = tmo ) x ( )> =|2.7L mol™!
atm

E119b) @ vo— KT _ B3147K7Tmol™h) x (298.15K)

mp (200 bar) x (103 Pabar™!)

=124 x 10~ *m3mol ™! =[0.124 L mol~!

(b) The van der Waals equation is a cubic equation in Vy,. The most direct way of obtaining the
molar volume would be to solve the cubic analytically. However, this approach is cumbersome,
so we proceed as in Example 1.6. The van der Waals equation is rearranged to the cubic form

3 RT 2 a ab 3 RT ) a ab
V3 b+ )2 (L) v L =0 or 3= [+ )22+ (L) =L =0
p p p p p p

with x = Vi /(Lmol ™).
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The coefficients in the equation are evaluated as

(8.206 x 1072 Latm K~ mol~!) x (298.15K)
(200 bar) x (1.013 atmbar_l)

RT -2 -1
b+ — =(3.183 x 107“Lmol™ ") +
p

= (3.183 x 1072 +0.1208) Lmol ™! = 0.1526 L mol ™!

a 1.360 L2 atm mol —2 3 1o
- = —- =671 x 107" (L mol™")
P (200bar) x (1.013 atmbar™")

b 1.360 L% at 172) x (3.183 x 1072 L mol ! _
ab _{ atmmol 7) x (3.183 x mol ) 5137 x 10~*+(L mol~1)3

(200 bar) x (1.013 atmbar~!)

Thus, the equation to be solved is x> — 0.1526x2 + (6.71 x 10™2)x — (2.137 x 107%) = 0.

Calculators and computer software for the solution of polynomials are readily available. In this case

we find

x=0.112 or Vy=|0.112Lmol™!

The difference is about 15 per cent.

M 18.015 1! -
E1.20(b) (a) V= — = —"28MO 131 7587 mol~!

p 0.5678 g L1

v 1.00b 31.728 Lmol ! =
_ PVm _ (1.00ban) x ( o ) _[0.9963
RT (0.083 145LbarK™" mol™") x (383 K)
. RT a . .
(b) Using p = — — and substituting into the expression for Z above we get
Vm—b V2
7 Vi a

Vin—b  VmRT
31.728 Lmol ™!
31728 L mol ! — 0.03049 L mol "
5.464 1.2 atm mol 2
© (31.728Lmol~ 1) x (0.08206 Latm K~ mol~1) x (383K)

=[090s2]

Comment. Both values of Z are very close to the perfect gas value of 1.000, indicating that water

vapour is essentially perfect at 1.00 bar pressure.

V
E1.21(b) The molar volume is obtained by solving Z = I;—;l [1.200], for Vi, which yields

ZRT _ (0.86) x (0.08206 Latm K~ mol™!) x (300K)
p 20 atm

Vin = = 1.059 L mol !

(a) Then, V = nViy = (8.2 x 1073 mol) x (1.059Lmol ™) =8.7 x 107 L =
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(b) An approximate value of B can be obtained from eqn 1.22 by truncation of the series expansion
after the second term, B/ Vp,, in the series. Then,

Vm(&—1>=VmX(Z—1)

B
RT

(1.059Lmol 1) x (0.86 — 1) = | —0.15Lmol !

(a) Mole fractions are

nN 2.5mol
= = =10.63
N Notal (2.5 + 1.5) mol -

Similarly, xy =

(¢) According to the perfect gas law

ProtalV = Notal RT

Niotal RT
SO Ptotal = v
4.0 mol 0.08206 L at 1-1K-! 273.15K
:( mol) x ( atm mo ) X ( ):4.0atm

22.4L
(b) The partial pressures are

PN = XN Prot = (0.63) x (4.0atm) =
and pg = (0.37) x (4.0 atm) =

The critical volume of a van der Waals gas is
Ve =3b

sob =1V = 1(148cm? mol™!) = 49.3cm® mol~! = | 0.0493 L mol ™!

By interpreting b as the excluded volume of a mole of spherical molecules, we can obtain an estimate
of molecular size. The centres of spherical particles are excluded from a sphere whose radius is
the diameter of those spherical particles (i.e., twice their radius); that volume times the Avogadro
constant is the molar excluded volume b

4 (2r) 1/ 3 \'°
b=Na|—3 0 "=354zn,

1/3
1 3(49.3 cm? mol !
P (49.3 cm” mol ™) —1.94x108cm=194x10"""m
2\ 47(6.022 x 1023 mol 1)

The critical pressure is

a

Pe = 5712

50 a = 27 pcb? = 27(48.20 atm) x (0.0493 L mol™")? =|{3.16 L2 atm mol —2
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But this problem is overdetermined. We have another piece of information

_ 8a
T 27Rb

T.
According to the constants we have already determined, 7 should be

_ 8(3.16 L2 atm mol —2)
€ 27(0.08206 L atm K—! mol~!) x (0.0493 L mol~!)

=231K

However, the reported Tt is 305.4 K, suggesting our computed a/b is about 25 per cent lower than it
should be.

E1.24(b) (a) The Boyle temperature is the temperature at which lim vanishes. According to the

dz
Vm—oo d(1 / Vi)
van der Waals equation

RT
Z_me_(vm—b_an%)Vm_ Vi a
~ RT RT " Vm—b  VmRT
dz ( dz ) ( dVim )
SO = X
d(1/Vm) dVm d(1/Vm)
dz -V 1 a
=-V2|—=)=-v2 o
m(de> m((Vm—b)2+Vm—b+Vn%RT>
V2b a

~ (Vm—b)2 RT
In the limit of large molar volume, we have

. dZz a a
im ——=b——=0 so —=b>
Vm—o0 d(1/Vin) RT RT

4.484 1.2 at 12
andT:Ribz ( atm mol 7) =[1259K

(0.08206 Latm K~ mol~!) x (0.0434L mol™!)

(b) By interpreting b as the excluded volume of a mole of spherical molecules, we can obtain an
estimate of molecular size. The centres of spherical particles are excluded from a sphere whose
radius is the diameter of those spherical particles (i.e. twice their radius); the Avogadro constant
times the volume is the molar excluded volume b

47 (2r3) 1/ 3 \'?
b=Na\73 "= \4n N,

1

1/3
3(0.0434 dm?> mol !
( m” mol” ) ) —1.286 x 10~ 2dm = 1.29 x 10~'"m =[0.129 nm

r =
2 <4n(6.022 x 1023 mol 1)

E1.25(b) States that have the same reduced pressure, temperature, and volume are said to correspond. The
reduced pressure and temperature for Ny at 1.0 atm and 25°C are

1.0at T  (25+273)K
P M 0030 and T, = L = BFZIK_,

Pr= T 3354am T, 1263K
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The corresponding states are

(a) For HyS

p = prpe = (0.030) x (88.3 atm) =
T = TT. = (2.36) x (373.2K) = [881K

(Critical constants of H;S obtained from Handbook of Chemistry and Physics.)
(b) For CO,

p = prpe = (0.030) x (72.85 atm) =
T = T;Te = (2.36) x (304.2K) =[718K

(¢) For Ar

P = prpe = (0.030) x (48.00atm) =
T =TT, = (2.36) x (150.72K) =

The van der Waals equation is

RT a

T Ve—b V2

p

which can be solved for b

RT 8.3145J K~ ! mol~! 288K
= = 4.00 x 1074 m3 mol~! — ( mol™ ) x ( )

p+Z 6 ( 0.76 m5 Pa mol 2 )
Via 40> 107 Pa 4 | G300, 10 m* mor 12

b=Vm_

=113 x10"*m3>mol~!

The compression factor is

. PVm _ (4.0 x 10° Pa) x (4.00 ><1 10~%m3 mol™ 1) _
RT (8.3145J K mol™1) x (288K)

Solutions to problems
Solutions to numerical problems

Identifying pex in the equation p = pex + pgh [1.4] as the pressure at the top of the straw and p as
the atmospheric pressure on the liquid, the pressure difference is

p— pex = pgh = (1.0 x 10°kgm ™) x (9.81ms™2) x (0.15m)
=[1.5x 103Pa|(= 1.5 x 1072 atm)

Vi Vi
pV =nRT [1.12] implies that, with # constant, pr f_ plT !
f i

Vi
Solving for py, the pressure at its maximum altitude, yields py = 71 X T X pi
f i
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Substituting V; = %nrf and Vy = %nr?
o (G T (ﬁ)3 VL IO
@3er}) n T e T, =

P1.6

P1.7

1.0m\> (253K
- (302) x (293 K) x (1.0atm) =|3.2 x 10~2 atm
The value of absolute zero can be expressed in terms of « by using the requirement that the volume

of a perfect gas becomes zero at the absolute zero of temperature. Hence

0 = W[l + ab(abs. zero)]

1
Then 6 (abs. zero) = ——
o
All gases become perfect in the limit of zero pressure, so the best value of o and, hence, 6 (abs. zero)

is obtained by extrapolating « to zero pressure. This is done in Fig. 1.2. Using the extrapolated value,
@ =3.6637 x 107°C™ 1, or

1 o
6 (abs. zero) = T 36637 x 10301 = —272.95°C

which is close to the accepted value of —273.15°C.

Figure 1.2

The mass of displaced gas is pV, where V is the volume of the bulb and p is the density of the gas.
The balance condition for the two gases is m(bulb) = pV (bulb), m (bulb) = o'V (bulb)

M
which implies that p = p’. Because [Problem 1.5] p = IIJQ_T

the balance condition is pM = p'M’

which implies that M' = ﬂ/ x M
p

This relation is valid in the limit of zero pressure (for a gas behaving perfectly).
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In experiment 1, p = 423.22 Torr, p/ = 327.10 Torr; hence

, _ 423.22Torr

-1 _ -1
= 32710 Tort x 70.014 g mol 90.59 g mol

In experiment 2, p = 427.22 Torr, p/ = 293.22 Torr; hence

, _ 427.22Torr

=_— " x70.014gmol~! =102.0 gmol ™!
293.22 Torr

In a proper series of experiments one should reduce the pressure (e.g. by adjusting the balanced
weight). Experiment 2 is closer to zero pressure than experiment 1; it may be safe to conclude that

M ~ 102 gmol_1 . The molecules | CH,FCF3 ‘or’ CHF,CHF, ‘have M ~ 102 gmol_l.

P1.9 We assume that no Hy remains after the reaction has gone to completion. The balanced equation is
N> + 3Hp, — 2NHj3

We can draw up the following table

N2 Hz NH3 Total
Initial amount n n' 0 n+n
Final amount n— %n’ 0 gn’ n+ %n’
Specifically 0.33 mol 0 1.33mol  1.66 mol
Mole fraction 0.20 0 0.80 1.00

nRT (8.206 x 10~ 2Latm K~ ! mol~!) x (273.15K)

_ (166 mol) x ( K ) _ [L66am]
p(Ha) = x(Hy)p =[0]

p(N2) = x(Na)p = (0.20 x (1.66atm)) =
p(NH3) = x(NH3)p = (0.80) x (1.66atm) =

RT (8206 x 10~ 2Latm K1 mol~!) x (350K
P1.10 @ V= XL _ X atm K™ mol ) X G50K) _ 15 51 mol !
p 2.30 atm

RT a . RT
— — [1.25b], we obtain Vi, = —  + b [rearrange 1.25b]

_ 2
b (r+3%)
Then, with a and b from Table 1.6

p:

(b) From p =

 (8.206 x 1072 Latm K~ mol~!) x (350K)

Vi ~
6.260 L% atm mol—2
(2.30am) + (SFPLTmng)

28.72 L mol ™! s 1 .
N 342X 107 Lmol ™) ~ 123 L mol !

Substitution of 12.3 L mol ™! into the denominator of the first expression again results in Vy, =
12.3L mol !, so the cycle of approximation may be terminated.

+(5.42 x 1072 Lmol™ ")
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P1.13 (a)  Since B'(Tg) = 0 at the Boyle temperature (section 1.3b):  B'(Tg) = a + be /g2 =

) —c —(1131K?)
Solving for Tg : Tg = — = —— = 501.0K
ln(T) ln[7(70.1993bar )]
(0.2002 bar™ 1)

RT
(b)  Perfect Gas Equation: Vyp(p,T) = —
4

0.083145L bar K~ mol~! (298.15K)

Vi (50 bar, 298.15K) = = 0.496L mol ™!
50 bar
0.083145L bar K~ ! mol~! (373.15K) .
Vm (50 bar, 373.15K) = ot =0.621 L mol
ar

RT
Virial Equation (eqn 1.21 to firstorder): Vi (p, T) = — (14+B'(T) p) = Vpertect (1+B'(T) p)
P

c

B (T)=a+be

1131K2

B'(298.15K) = —0.1993 bar ' 4 0.2002bar ! e~ @8.15K7 = —(0.00163 bar

1131K2

B'(373.15K) = —0.1993 bar ' +0.2002 bar ! e 67157 = —0.000720 bar !

Vin (50 bar, 298.15K) = 0.496 L mol ! (1 —0.00163 bar ! 50 bar) = 0.456 L mol !

Vi (50 bar, 373.15K) = 0.621 L mol ™! (1 —0.000720 bar ! 50 bar) =0.599 L mol ™!

The perfect gas law predicts a molar volume that is 9% too large at 298 K and 4% too large at 373 K.
The negative value of the second virial coefficient at both temperatures indicates the dominance of
very weak intermolecular attractive forces over repulsive forces.

P1.15 From Table 1.6 T, — [ 2 2a \'? ! 2aR\ 1
. rom Table 1. =|=) x| — , =|—=)x|—
<=3 3bR Pe=1\13 33

2a \'/? _ _ 12bpe
IR may be solved for from the expression for p. and yields = ) Thus

2 12pch 8 peVe
Tc=\|=] X == )x|——
3 R 3 R
8 (40 atm) x (160 x 1073 L mol~1) =
== =[210K
<3> X ( 8.206 x 10~2L atm K~ ! mol~!

1 1 107 m?3 mol~!
Um01=i=<—>x Ye) o160 10" 7m” mo —8.86 x 10722 m®
Na  \3 Na) ~ () x (6.022 x 103 mol-1)

4 3
Umol = T

3

3 1/3
<4— x (8.86 x 10727 m3)> =10.28 nm
T

r
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a
P1.16 Ve = 2b, T. = R [Table 1.6]

Hence, with V; and T, from Table 1.5, b = %Vc = % x (118.8 cm3 mol_l) =159.4cm3 mol ™!

a = 4bRT, = 2RT.V,
= (2) x (8.206 x 107 2Latm K~ ' mol™!) x (289.75K) x (118.8 x 10> L mol™ 1)

= [5.649 L% atm mol 2

Hence

p = Le_a/RTVm — nRT e—na/RTV
Vm -b V —nb
(1.0mol) x (8.206 x 1072 Latm K~ ! mol~!) x (298 K)

(1.0L) — (1.0mol) x (59.4 x 103 L mol~1)

—(1.0mol) x (5.649 L2 atm mol—2)
X exp
(8.206 x 102 Latm K—! mol—!) x (298K) x (1.0L2 atm mol—1)

26.0 atm x e_o'23T =

Solutions to theoretical problems

P1.18 This expansion has already been given in the solutions to Exercise 1.24(a) and Problem 1.17; the
result is
_RT l—i-[b a]1+b2+
P = RT1Vy T V2

. . . RT B C
Compare this expansion with p = — (1 4+ — + — 4 --- ) [1.22]
Vi Vm V2

m
and hence find| B = b — % and
Since C = 1200cm® mol 2, b = C'/? =|34.6cm> mol !

a = RT(b— B) = (8206 x 1072) x (273Latmmol ™) x (34.6 + 21.7) cm> mol !

= (22.40Latmmol™!) x (56.3 x 103 L mol™}) =] 1.26 L% atm mol 2

P1.22 For a real gas we may use the virial expansion in terms of p [1.21]

nRT
\%

RT
p=—(+Bp+-)=pr(+Bpt-)

RT RTB
which rearranges to r = +
1% M M
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B/
Therefore, the limiting slope of a plot of L against p is

. From Fig. 1.2 in the Student’s
Solutions Manual, the limiting slope is

B'RT (441 —5.27) x 10*m?s~2
M

— =-97x%x10"2kg ' m?
(10.132 — 1.223) x 10*Pa

. RT 4 2 2

From Fig. 1.2, ﬁ =5.39 x 10" m“ s~ “; hence

9.7 x 10 2kg~ ! m3 -
’_ _ e
B=- 539 x 104 m2s—2 =—1.80 x 107°Pa

B = (—1.80 x 107%Pa~!) x (1.0133 x 10° Paatm™!) = | —0.182 atm ™!
B = RT B’ [Problem 1.21]

= (8.206 x 10 2LatmK ' mol™") x (298 K) x (—0.182atm™})

—4.4Lmol ™!

P1.23

. oVm oVm
Write Vin = f(T, p);thendVyy = — | dT +(—— ) dp
or /, ap Jr

Restricting the variations of 7" and p to those which leave Vy, constant, that is dVy, = 0, we obtain

() () (), (), < (), -

ap )
= N
OVm Jr oT ( ap )
Vi )y
From the equation of state

9 RT 3 R b
(_”> = 2@reryv? (—p>
OVm )7 V2 aT Jy._

+ —_
Vm V2

m

Substituting

R b
Vi) _ (£ + )
oT Jp (_H_M>
V2 V3

(= + (%))

RT 2(a+bT)
(V_+ Wz )

m m

. (a+bT) RT
From the equation of state — s =P
Vi Vi

Then (an> = (R+VL'") — (R+VL"‘> _
p

RV +b
RT — —
oT %+2<p_%) 2p — 3L 2pVim — RT

P1.25

Vi
Z = —, where V4 = the molar volume of a perfect gas
m

From the given equation of state
RT b+ Vg b
Vm=b+—=>b+Vy then Z= =14+ —
" P m & Vi

For Vin = 10b, 10b = b + V3 or Vo = 9b

106 1
thenZ:iz —O=1.11
9b 9
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P1.27 The two masses represent the same volume of gas under identical conditions, and therefore, the same
number of molecules (Avogadro’s principle) and moles, n. Thus, the masses can be expressed as

nMn = 2.2990 g
for ‘chemical nitrogen’ and
narMar + nNMN = nlxarMar + (1 — xar) MN] = 2.3102 g

for ‘atmospheric nitrogen’. Dividing the latter expression by the former yields

XArMar L ) 2.3102 M, ] 2.3102
—XAr) = ———— SO X — 1) = —
My Ar) = 52990 At My 2.2990
-1 BB
and xa, = M_l = 39.95'gm01_1 ] =10.011
My 28.013 gmol !
Comment. This value for the mole fraction of argon in air is close to the modern value.
Vi T Vi V!
P1.29 z=P0m _ (Ze) o (L) x (22 ) = 2o 1y 20p, 1.28]
RT T De RT, T;
%4 8T; 3
==L — — ¢ [1.29]
Ty [3Vi—1 V2
Vv RT, 14 8 pcV 8
But Vi = — = —% x (222 ) = 222 1o = vy
Ve o pcVe RT, 3 RT: 3
¢ 8T, 3
Therefore Z = —L d —
T, SVr’ sV’ 2
(%) - (%)
3
. v/ T; 27
T |V —-1/8  64(V))?
, 1 27
=V -
"LV —1/8 64T (V)2
%4 27
Z= — — (2)
Vi—1/8 64T V/

To derive the alternative form, solve eqn 1 for V;, substitute the result into eqn 2, and simplify
into polynomial form.

Vr/ _ ZT;
Pr
ZT:/pr 27 Dr
Z = —— | ==
ZL _ 1 64T, \ ZT:
Pr 8
8ZT; 27 pr

8ZT; — pr GAZT?

5127322 — 27pr x (8T:Z — pr)
- 64T2 x (8ZT; — pr)Z
2

64T>(8ZT; — pr)Z% = 512T3 7% — 2161y pi Z + 27}

51277373 — (64Tr2pr + 512Tr3) 72 4 216Tp;Z — 27p2 =0
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27 27 p?
z3—(ﬁ+1>zz+ Pz =P _o
8T; 64T 5127

At T = 1.2 and p; = 3 eqn 3 predicts that Z is the root of

27(3 27(3)2
Z3_<_+)3+ 3, 276° _
8(1.2) 64(1.2)2 512(1.2)3
73 —1.31252% 4+ 0.8789Z — 0.2747 = 0

The real rootis| Z = 0.611 | and this prediction is independent of the specific gas.

Figure 1.27 indicates that the experimental result for the listed gases is closer to 0.55.

Solutions to applications

19

3)

P1.31 Refer to Fig. 1.3.

F top

;T_ Air
l (environment)

I

Fi bottom

Ground

Figure 1.3

The buoyant force on the cylinder is
R buoy = Fpottom — Fi top
= A(Pbottom — Ptop)

according to the barometric formula.

—Mgh/RT
Ptop = Pbottom® gh/

where M is the molar mass of the environment (air). Since 4 is small, the exponential can be expanded

1
in a Taylor series around 27 = 0 {e™* =1 —x + —xZ ). Keeping the first-order term only

2!
yields

Mgh
Ptop = Pbottom | 1 — RT
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The buoyant force becomes

Mgh Poottom M
Fbuoy = APbottom (1 -1+ W) = Ah (ﬂ g

RT
_( Pvottom VM _ __ Pbottom V
RT RT

n is the number of moles of the environment (air) displaced by the balloon, and nM = m, the mass
of the displaced environment. Thus Fyyoy = mg. The net force is the difference between the buoyant
force and the weight of the balloon. Thus

Fret = mg — Myalioong = (M — NMpalloon)&

This is Archimedes’ principle.



E2.1(b)

E2.2(b)

E2.3(b)

E2.4(b)

E2.5(b)

E2.6(b)

2 The First Law: the concepts

Solutions to exercises
Discussion questions

Work is a transfer of energy that results in orderly motion of the atoms and molecules in a system;
heat is a transfer of energy that results in disorderly motion. See Molecular Interpretation 2.1 for a
more detailed discussion.

Rewrite the two expressions as follows:
(1) adiabatic p o< 1/ V7 (2) isothermal p o< 1/V

The physical reason for the difference is that, in the isothermal expansion, energy flows into the
system as heat and maintains the temperature despite the fact that energy is lost as work, whereas in
the adiabatic case, where no heat flows into the system, the temperature must fall as the system does
work. Therefore, the pressure must fall faster in the adiabatic process than in the isothermal case.
Mathematically this corresponds to y > 1.

Standard reaction enthalpies can be calculated from a knowledge of the standard enthalpies of forma-
tion of all the substances (reactants and products) participating in the reaction. This is an exact method
which involves no approximations. The only disadvantage is that standard enthalpies of formation
are not known for all substances.

Approximate values can be obtained from mean bond enthalpies. See almost any general chemistry
text, for example, Chemical Principles, by Atkins and Jones, Section 6.21, for an illustration of the
method of calculation. This method is often quite inaccurate, though, because the average values of
the bond enthalpies used may not be close to the actual values in the compounds of interest.

Another somewhat more reliable approximate method is based on thermochemical groups which
mimic more closely the bonding situations in the compounds of interest. See Example 2.6 for an
illustration of this kind of calculation. Though better, this method suffers from the same kind of
defects as the average bond enthalpy approach, since the group values used are also averages.

Computer aided molecular modeling is now the method of choice for estimating standard reaction
enthalpies, especially for large molecules with complex three-dimensional structures, but accurate
numerical values are still difficult to obtain.

Numerical exercises

Work done against a uniform gravitational field is

w =mgh

(@ w=(5.0kg) x (100m) x (9.81ms~2) =|4.9 x 10°J
(b) w=(5.0kg) x (100m) x 3.73ms %) =|1.9 x 10°J

Work done against a uniform gravitational field is
w=mgh = (120 x 1072 kg) x (50m) x (9.81ms™2) =

Work done by a system expanding against a constant external pressure is

_ _ 3 (15cm) x (50cm?) |
w = —pexAV = —(121 x 10° Pa) x ( (100 emm=T)? —
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For a perfect gas at constant temperature

AU = @ SO g =-—w
For a perfect gas at constant temperature, A H is also
dH = d(U + pV)

we have already noted that U does not change at constant temperature; nor does pV if the gas obeys
Boyle’s law. These apply to all three cases below.

(a) Isothermal reversible expansion

Vi
w = —nRTln—f
\%

1

31.7L
= —(2.00mol) x (8.3145JK ' mol™!) x (22 +273)K x In TrsL =162 x 1037
g=-w=|1.62x10]J

(b) Expansion against a constant external pressure
W = —pexAV
where pex in this case can be computed from the perfect gas law
pV =nRT
_ (2.00mol) x (8.3145JK~! mol™!) x (22 +273)K
31.7L

—(1.55x 10°P 31.7—22.8)L
and w = — 93 X 107Pa) X ( L 38 10°)
1000 L m—3
g=-w=|138x10%J

(c) Free expansion is expansion against no force, so w = @, andg = —w = @ as well.

x (1000Lm™3) = 1.55 x 10° Pa

SO p

The perfect gas law leads to

mV  nRTy mT  (111kPa) x 356K)
nV nRT, O 2T 277K

There is no change in volume, so w = @ The heat flow is

q= f CydT ~ CyAT = (2.5) x (8.3145J K~ mol™!) x (2.00mol) x (356 — 277) K

=[3.28 x 10%J
AU =q+w=|[328x10]
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E2.9(b)

E2.10(b)

E2.11(b)

E2.12(b)

E2.13(b)

E2.14(b)

—(7.7 x 103 Pa) x (2.5L)
@ w=padV = 1000L m—3 =[=19]

V.
(b) w=—nRTIn—
Vi

1

(2.5+18.5)L

6.56
= (2% ) (83145JK 'mol~!) x (305K) x In
18.5L

39.95 gmol !

[

Isothermal reversible work is

V,
w = —nRTlnvf = —(1.77 x 103> mol) x (8.3145JK ' mol™") x (273K) x In0.224

1

+6.017
g = AH =n(—AvwpH®) = (2.00mol) x (—35.3kImol~!) =[ —70.6kJ

Because the condensation also occurs at constant pressure, the work is

wz—/peXde—pAV

The change in volume from a gas to a condensed phase is approximately equal in magnitude to the
volume of the gas

w ~ —p(—Vyapor) = nRT = (2.00mol) x (8.3145kJ K~ mol™!) x (64 +273)K

=15.60 x 10°7J
AU =g +w = (=70.6 + 5.60) k] =| —65.0kJ

The reaction is
Zn+ 201t — Zn®t + H,

so it liberates 1 mol H(g) for every 1 mol Zn used. Work at constant pressure is

AV v, RT >:0¢
w = — = — = —nNn = — _—
P Pleas 65.4 gmol—!

x(8.3145JK 'mol™!) x (23 +273)K

—[Z188]
500k
g =nApHS = ( g ) x (2.35kI mol™!) =|3.01 x 10%KJ
39.1 x 103 kg mol !

(a) At constant pressure

100+273 K
q :/cp dr =/ [20.17 4 (0.4001)T/K]dT JK !
0+273K

373K
= [(20.17)T + $(0.4001) x (T?/K)]JK ™"

273K

= [(20.17) x (373 — 273) + £(0.4001) x (373% —273%)]J =149 x 10°J | = AH
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w=—pAV = —nRAT = —(1.00mol) x (8.3145JK~ ' mol~") x (100K) =|—831J
AU =qg+w= (149 —0.831)kJ] =| 14.1kJ

(b) AU and AH depend only on temperature in perfect gases. Thus, AH =|14.9kJ |and AU =

as above. At constant volume, w = @ and AU =¢g,s0qg =

E2.15(b) For reversible adiabatic expansion

Vi 1/c
c _ y.7¢€ T 1
vfzf = ‘/111 SO Zf— Zl —f

Cym Cpm—R  (37.11 —8.3145) JK~ ! mol ™!
R R B 8.3145JK—! mol~!
So the final temperature is

1/3.463
500 x 1073 L
T; = (298.15K) x <2X0T> —[200K

E2.16(b) Reversible adiabatic work is

where ¢ = = 3.463

w=CyAT =n(Cpm — R) x (Ty — T)

where the temperatures are related by [solution to Exercise 2.15b]

Vi 1/c
Iy =T | -
Vi

Cymm _ Cpm—R _ (29.125—8.3145)JK~ ' mol !
R R 8.3145J K~ mol~!

400 x 10-3L\ /7"
- - = 156K

where ¢ = =2.503

So Tt = [(23.0 +273.15) K
o Ty = [(23.0+273.15) ]x( 00T

3.12¢g 1 -1
dw=|—"— 29.125 — 8.3145)J K 1 156 —296) K =| —3251]
and w (28.0gmoll> X ( ) mo X ( ) -

E2.17(b) For reversible adiabatic expansion

Vi =nV] so

y 37\ 13
Vi 500 x 107°L
Pf = Pi v =@73Torr) X | ———

f 3.0L
85 Tor]

E2.18(b) For reversible adiabatic expansion

14 14 Vi 7
peVy = piVy so  pr = pi Ve
We need pj, which we can obtain from the perfect gas law

nRT
%4

pV =nRT so p=
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(ﬁ) % (0.08206 L atm K~ mol~!) x (300 K)

-1
pim e ToT ~[19am]
1oL "2
pr = (1.9atm) x 30L =|0.46 atm

E2.19(b) The reaction is
n-CeHig + 205 — 6CO, + TH20

AH® = AH®
= 6AtH® (COy) + TAtH © (Hp0) — ArH © (n-CHig) — P ArH® (02)
so  AfH® (n-CeHyg) = 6A¢H® (COp) + TAfH® (H0) — AcH® — DA HS (0y)

AfH® (n-CgHig) = [6 x (—393.51) 4+ 7 x (—285.83) + 4163 — (0)] kJ mol !

AtH® (n-CgHis) = | —199 kJ mol !

E2.20(b) g, =nCpmAT

1o 782
Pm = UAT T 1.9mol x 178K =
Cym=Cpm—R=(53-83)JK 'mol™! =[45JK " mol~!
E2.21(b) AH =g, =|—2.3kJ|, the energy extracted from the sample.

ap —23kJ -
=CAT C=—=——""——=|018KIK

E2.22(b) AH =g, = CpAT =nCpmAT = (2.0mol) x (37.11JK " mol™!) x (277 — 250)K

=120 x 10 Jmol ! |
AH =AU + A(pV) = AU + nRAT so AU = AH —nRAT
AU =2.0 x 103 Tmol~! — (2.0mol) x (8.3145J K~ mol™") x (277 — 250)K

=11.6 x 103 Jmol ™~
16 10° T mol” |

E2.23(b) In an adiabatic process, g = @ Work against a constant external pressure is

—(78.5 x 10°Pa) x (4 x 15— 15)L

— —p AV = —35x10%]
W= TP 1000 L m—3 X
AU =q+w=|-35x10%]

w

=CyAT =n(Cpm — R)AT AT = ———

w=Cy n(Cpm — R) S0 "(Cpm—B)
—3.5x 1037
x —[-24K

T =
(5.0mol) x (37.11 — 8.3145) JK—! mol—!
AH =AU + A(pV) = AU + nRAT,

= —3.5x 1037 + (5.0mol) x (8.3145JK 1 mol™!) x (=24K) =|—4.5 x 10°J

25
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E2.24(b) For adiabatic compression, g = @ and

w=CyAT = (2.5mol) x 27.6J K "mol™!) x (255 —220)K =|2.4 x 10°J
AU =qg+w=|24x10%]

AH = AU + A(pV) = AU + nRAT

=24 %1037+ (2.5mol) x (8.3145JK " mol™!) x (255 — 220)K = (3.1 x 10°J

The initial and final states are related by

Tvi C
VfoC = ViTiC so Vi=V; (E)
C 27.6J K~ mol~!
where ¢ = —/0 — e 33
R 8.314JK~! mol~!
-1 -1
Vi = nRT; _ 2.5mol x 8.3145J K™ mol™" x 220K — 0.0229 m?
Di 200 x 103 Pa
Vi = (0.0229m?) x (ﬁ) =0.014m® =
RTy  2.5mol x 8.3145J K~ mol~! x 255K
pp = T 2-omol x mor X —13.8 x 103 Pa
Ve 0.014 m3
E2.25(b) For reversible adiabatic expansion
pi\"”
peVy =pV] so V=V (—)
pr
o) 20.8 7K~ mol~!
where y = AL o = 1.67
Cpm— R (20.8 —8.3145)JK—! mol~!
RT;  (1.5mol) x (8.3145J K 'mol~1) x (315K —
and v; = MG _ (1.5 mob) x € mol ) x GISK) _ 4 0177 m?

Di 230 x 103 Pa
AN\/Y _ 230 kPa\ /1-67 —
soVi=Vi(Z) = 0.0171m3) x a —10.020T m3
e 170 kPa
eV (170 x 103 Pa) x (0.0201 m3) =
F= %R~ (1.,5mol) x (8.3145JK— L mol-1)
w=CyAT = (1.5mol) x (20.8 — 8.3145) JK ' mol~! x (275 — 315K) = [ —7.5 x 10%J

E2.26(b) The expansion coefficient is defined as

1 <8V> (amv)
o= — —_— =
vV \oT ), or ),

so for a small change in temperature (see Exercise 2.26a),

AV = Via AT = (5.0cm’) x (0.354 x 1074 K1) x (10.0K) =| 1.8 x 103 cm?
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E2.27(b) In an adiabatic process, g = @ Work against a constant external pressure is

15 22 cm?
w = —pexAV = —(110 x 10° Pa) x (15em) x (22 cm?) =1-36J

(100cmm—1)3

w=CyAT =n(Cpm — R)AT so

w
AT = ———
n(Cpm — R)

~36J
- =[-0.57K
(3.0mol) x (29.355 — 8.3145) JK~1 mol~!
AH = AU + A(pV) = AU +nRAT
= —36J + (3.0mol) x (8.3145JK~"mol™!) x (—0.57K) =

E2.28(b) The amount of N; in the sample is

150¢g
n=-------——
28.013 gmol !

(a) For reversible adiabatic expansion

ANV
peVy = piV] so V=V <&)
Pt

= 0.535 mol

_ Cp,m _ —1 -1 _ -1 —1
where y = c where Cy ,m = (29.125 — 8.3145) JK™ " mol™ " =20.811J K™ mol
V,m

29.125J K~ ! mol~!

soy = = 1.3995
20.811JK—" mol-!

RT;  (0.535mol) x (8.3145JK~ 1 mol~1) x (200K
and v; = "RE _ (0-335mol) x ¢ mol 1) x QO0K) _ 4 04 x 103 m?

i 220 x 103 Pa

1y 220 103 P 1/1.3995
soVi=Vi () = @04x103md) x 2221 —6.63 x 1073 m>.
P 110 x 103 Pa

peVe (110 x 10° Pa) x (6.63 x 1073 m?)
Ty = = =[164K]
f nR (0.535mol) x (8.3145J K~ mol—1)

(b) For adiabatic expansion against a constant external pressure
W= —pexAV = CyAT so —pex(Vit — Vi) =Cy(Tt — T))
In addition, the perfect gas law holds
ptVi = nRT;
Solve the latter for 77 in terms of Vf, and insert into the previous relationship to solve for V¢

_riVr

T
f nR

e Ve
s0 —pex(Vf = V) =Cy (— - T1>
nR

Collecting terms gives
CyvTi + pex Vi

Cy pt
CyTi+ pexVi = V¢ <Pex+— so Vf= -
nR Cv.mpr
Dex + ( R )
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~ (20.811TK~" mol™!) x (0.535mol) x (200K) + (110 x 10% Pa) x (4.04 x 10~ m?)

f
3 (20.811 JK—! mol—!)x (110x 103 Pa)
110 x 10° Pa + [ 831451 K- mol !

Vi =693 x 107> m3

Finally, the temperature is

peVe (110 x 103 Pa) x (6.93 x 1073 m?)
= = =|171K

=20
nR (0.535mol) x (8.3145J K~ mol—1)

E2.29(b) At constant pressure

q=AH=nAypH® = (0.75mol) x (32.0kImol~') =|24.0kJ
and w = —pAV & —pVyapor = —nRT = —(0.75mol) x (8.3145J K~ mol~!) x (260K)

=16 x 10°) =[~1.6KJ |
AU =w+q =240 1.6kl =|224KI |

Comment. Because the vapor is here treated as a perfect gas, the specific value of the external
pressure provided in the statement of the exercise does not affect the numerical value of the answer.
E2.30(b) The reaction is

CgHsOH + 70, — 6CO; + 3H,0
AH® = 6A:HZ (COy) 4+ 3A¢HE (Hy0) — AfHE (CeHsOH) — 7A¢H© (05)

= [6(=393.51) + 3(—285.83) — (—165.0) — 7(0)] kI mol !

— [ —3053.6kJ mol !

E2.31(b) The hydrogenation reaction is

C4Hg + Hy, — C4Hjg
AnyaH® = AtH® (C4Hi0) — ArH® (C4Hg) — ArH© (Hp)

The enthalpies of formation of all of these compounds are available in Table 2.5. Therefore
ApyaH® = [~126.15 — (=0.13)] K mol ™' = —126.02 kI mol !

If we had to, we could find A¢H © (C4Hg) from information about another of its reactions

C4Hg + 60, — 4CO; + 4H,0,
AcH® =4A;H® (CO,) + 4A¢H® (Hy0) — AfH® (C4Hg) — 6ArH © (07)

so AfH© (C4Hg) = 4A¢H© (COy) + 4A¢H® (Hy0) — 6A¢HE (0)) — AcH®
= [4(—393.51) + 4(—285.83) — 6(0) — (—2717)] kJ mol !

= 0.kJ mol ™!
Ahdee = —126.15—-(0.) — (O)KkJ mol~! =| =126 kJ mol~!

This value compares favourably to that calculated above.
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E2.32(b) We need AfH © for the reaction
(4) 2B(s) + 3H2(g) — B2Hg(2)

reaction (4) = reaction (2) + 3 x reaction (3) — reaction (1)

Thus, AfH® = A H © {reaction (2)} + 3 x AH © {reaction (3)} — A, H © {reaction (1)}

= {—2368 + 3 x (—241.8) — (—1941)} kI mol ™' =| —1152kJ mol ™"
E2.33(b) The formation reaction is

C + 2Hy(g) + 302(g) + Na(g) — CO(NH,)1(s)
AH = AU+ A(pV) ~ AU + RT Angas so AfU® = AfH® — RT Angys
AsUC = —333.51 kI mol ™! — (8.3145 x 103 kJ K" mol™") x (298.15K) x (—7/2)

—|—324.83kJmol !

E2.34(b) The energy supplied to the calorimeter equals CAT, where C is the calorimeter constant. That

energy is
E = (2.86A) x (22.55) x (12.0V) =772]

E 7723
So C = T = TR = 451 7K1

E2.35(b) For anthracene the reaction is

33
Ci4Hyo(s) + Eoz(g) — 14CO5(g) + SH20(1)

5
AU® = AcH® — AngRT[26] Ang = —Emol

AcH®S = —7163kI mol~! (Handbook of Chemistry and Physics)
AU® = -T7163kImol™" — (=3 x 8.3 x 1073 kI K~  mol~! x 298K) (assume 7 = 298K)
= —7157kJ mol ™!

225x1073g

= = nAU | = [~ ©
lgl = lgv| = InAc | (172.23gmol—1

) x (7157 kI mol™ 1)

= 0.0935kJ
0.0935kJ
C = % =TEr = 0.0693kI K~ ! =|69.3JK™!

When phenol is used the reaction is C¢HsOH(s) + %02 (g) = 6CO»(g) + 3H,O()
AcH®S = —3054kI mol~! (Table 2.5)
AU® = AcH® — AngRT, Ang = —3 mol

= (—3054kImol 1) + (3) x (8.314 x 103 KIK~ ' mol™!) x (298K)
= —3050kJ mol !
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al = 135 x 1077 ¢
N=\94.12gmol!

) x (3050kI mol~!) = 4.375kJ

lq] 4.375k]
AT =2 =_—""" _—|463.1K
C = 5063 K

Comment. In this case A.U© and AcH® differed by & 0.1 per cent. Thus, to within 3 significant
figures, it would not have mattered if we had used AcH ® instead of AU, but for very precise
work it would.

E2.36(b) The reaction is
AgBr(s) - Ag*(aq) + Br™ (aq)
AlH® = AfH® (Agh) + AfH® (Br™) — AfH® (AgBr)

— [105.58 + (—121.55) — (—100.37)] KJ mol ! = ] +84.40kJ mol ™! \

E2.37(b) The difference of the equations is C(gr) — C(d)

Agans HE = [=393.51 — (=395.41)]kJmol ™! =| +1.90kJ mol ™!

E2.38(b) Combustion of liquid butane can be considered as a two-step process: vaporization of the liquid
followed by combustion of the butane gas. Hess’s law states that the enthalpy of the overall process
is the sum of the enthalpies of the steps

(@ AH® =[21.0+ (—2878)]kImol~! =| —2857kJ mol™!

() AH® =AU® +A(pV)=AU® +RTAng so AU® =AH® — RT Any
The reaction is

C4Hipo(M + %Oz(g) — 4CO;(g) + 5H0()
$0 Ang = —2.5 and

AU = —2857kImol ™! — (8.3145 x 10 3 kKI K "mol™!) x (298 K) x (—2.5)

= |—2851 Ky mol ™! |

E2.39(b) (a) AH® = A¢H® (propene, g) — AsH (cyclopropane, g) = [(20.42) — (53.30)] kJ mol !
= | -32.88 kI mol ! |

(b) The net ionic reaction is obtained from

H*(aq) + Cl™(aq) + Na™ (aq) + OH™ (aq) — Na™ (aq) + Cl~ (aq) + H,O(1)
and is HY (aq) + OH™ (aq) — H,0(1)

ArH® = AfHP (H20,1) — AfHE (HY, aq) — AfH® (OH™, aq)
= [(—285.83) — (0) — (—229.99)] kJ mol ™!

—|—55.84 kI mol !
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E2.40(b) reaction (3) = reaction (2) — 2(reaction (1))

(@ AH®3)=AHTQ) —2(AH® (1)
= —483.64kImol~! —2(52.96 kI mol™!)

=|—589.56kJ mol !

AU® = AtH® — AngRT
= —589.56kImol ™! — (=3) x (8.314J K~ mol™!) x (298 K)

— —589.56 kI mol~! +7.43 kI mol~! =| —582.13kJ mol ! |

(b) AH®(HD = (52.96kI mol~!) =|26.48 kI mol '

AfH® (Hy0) = —$(483.64 kI mol 1) = ] —241.82kJ mol ! \

E2.41(b) ArH® = AU® + A(pV) = AU® + RT Ang
= 7727k mol ™! + (8.3145 x 10 3 KJK ' mol™") x (298K) x (5)

=[—-760.3kJmol~!

E2.42(b)
(1) 3N2(9) + $02(2) + 5Cla(g) - NOCl(p)  AH® =?
(2) 2NOCI(g) — 2NO(g) + Cla(g) AHE = +75.5kImol™!
3) INa(2) + 102(2) = NO(g)  AfH® =90.25kI mol ™!
M =03 -3
ArH® (NOCI, g) = (90.25kImol ') — 1 (75.5kI mol~1)

=[52.5kJ mol~!

100°C /9 A H© 100°C
E2.43(b) ArH® (100°C) — ALH® (25°C) = / (—) dT = / ArCpmdT
25°C oT 25°C
Because Cp m can frequently be parametrized as
Cpm=a+bT +c/T?

the indefinite integral of Cp m has the form
/C,,,m dT = aT + 3bT% —¢/T

Combining this expression with our original integral, we have

373K

ArH® (100°C) = ArH® (25°C) + (T Ava + ST?*Arb — Arc/T) 2;8](
Now for the pieces

ArH®© (25°C) = 2(—285.83kJ mol ™) — 2(0) — 0 = —571.66 kJ mol !

Ara = [2(75.29) — 2(27.28) — (29.96)] K~ mol~! = 0.06606kJ K~! mol~!

Arb = [2(0) — 2(3.29) — (4.18)] x 1073 JK 2 mol~! = —10.76 x 107 kJ K2 mol~!

Are = [2(0) — 2(0.50) x (—1.67)] x 10’ JK mol ' = 67kJ K mol "
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ArH® (100°C) = [—571.66 + (373 — 298) x (0.06606) + 3 (373% — 298%)

1 1
x(—10.76 x 1070 — (67) x [ — — — ) | kI mol™!
373 298

= | —566.93KkI mol~! |

The hydrogenation reaction is

(1) CoHa(g) + Ha(g) — CoHa(g) AHE(T) =?

The reactions and accompanying data which are to be combined in order to yield reaction (1) and
AcH® (T) are

(2) Ha(g) + $02(2) = Ha0()  AcH® (2) = —285.83kJ mol !
(3) CaH4(g) + 30,2(g) — 2H,0(l) +2C0s(g) AcH S (3) = —1411kI mol !
(4) CoHa(g) + %Oz(g) — HyO(l) +2C0O5(g) AHE (4) = —1300kJ mol ™!
reaction (1) = reaction (2) — reaction (3) + reaction (4)
Hence,
(@ AHS(® =AHCQ2)—AHCQB)+ AH® @)
= {(—285.83) — (—1411) + (—1300)} kJ mol !

=|—175kJmol~!

AUS(T) = AH®(T) — AngRT [26] Ang = —1

= (—=175kImol ™" + 2.48 kI mol~!) =| —173 kJ mol ™!

(b) AH®(348K) = AH® (298K) + A;C, (348K — 298 K)  [Example 2.7]
ArCp = 1Cpm()[47] = Cpm(C2Hs, 8) — Cp.m(C2Ha. @) — Cp m(Ha. 2)
J

= (43.56 —43.93 —28.82) x 10 KK 'mol™' = —29.19 x 103 KJ K~ mol ™!
ArH®E (348K) = (—175kImol 1) — (29.19 x 103 KIK ' mol™!) x (50K)

=[—176kImol !

The cycle is shown in Fig. 2.1.
—AnyaH® (Ca*™) = —AgoinH © (CaBry) — ArH ® (CaBry, s) + Agan H ® (Ca)
+AvapH ® (Bra) + Agiss H® (Bra) + Ajon H® (Ca)

+Aion H® (Ca™) + 2A¢g HE (Br) + 2Ahya H® (Br™)

[—(—103.1) — (—682.8) + 178.2 4+ 30.91 + 192.9
+589.7 4 1145 + 2(—331.0) + 2(—337)] kJ mol

= | 1587 kJ mol !

and ApygH® (Ca*™) = ] —1587 kJ mol ™! \
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E2.46

P2.4

Ca®*(g) + 2~ + 2Br(g)

Tonization Ca(g) + 2Br(g)

Dissociation | Ca(g) + Bra(g)

Electron
gain Br

Vaporization | ¢a(g) + Bry(1) Ca>"(g) + 2Br (g) Y

Br -

gzbhmatlon Ca(s) + Bry(1) Hydration Br~

Ca’"(g) + 2Br~(aq) Y
—Formation
Hydration catt
—Soluti
olution \J Figure 2.1

(a) 2,2,4-trimethylpentane has five C(H)3(C) groups, one C(H),(C), group, one C(H)(C)3 group,
and one C(C)4 group.

(b) 2,2-dimethylpropane has four C(H3)(C) groups and one C(C)4 group.
Using data from Table 2.7

(@) [5x (=42.17) +1 x (=20.7) + 1 x (=6.91) + 1 x 8.16] kI mol ' = ] —230.3kJ mol ™!

(B) [4x (—42.17) + 1 x 8.16] kI mol ! =| —160.5kJ mol ™" |

Solutions to problems

Assume all gases are perfect unless stated otherwise. Unless otherwise stated, thermochemical data
are for 298 K.

Solutions to numerical problems

We assume that the solid carbon dioxide has already evaporated and is contained within a closed
vessel of 100 cm® which is its initial volume. It then expands to a final volume which is determined
by the perfect gas equation.

(@)  w=—pexAV
Vi = 100cm® = 1.00 x 10™*m?, p =1.0atm = 1.013 x 10’ Pa

Vi = nRT _ ( 50¢g ) 5 <(8.206 x 1072 Latm K~ ! mol~1) x (298K)> 5 TBL

p 44.01 gmol~! 1.0 atm
=278 x 10> m?

Therefore, w = (—1.013 x 10° Pa) x [(2.78 x 1073) — (1.00 x 10~%)]m>

— —272Pam’ =
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v,
b) w= —nRTlnvf [2.13]

1

-5.0¢g o 2.78 x 1073 m?
=(— ") x 8314JK ' mol™!) x (298K) x In

44.01 gmol~! 1.00 x 104 m3
— (=282) x (In27.8) = —0.94KJ
RT
P2.5 w=—pexAV[2.10] V=" Vi so AVAV
Pex

RT
Hence w & (— pex) X (” ) = —nRT ~ (—1.0mol) x (8.314JK " mol™!) x (1073K)

Pex
<590

Even if there is no physical piston, the gas drives back the atmosphere, so the work is also

P2.7 The virial expression for pressure up to the second coefficient is

—(E) (1+£)[122]
P=\v, Vi )

f f /RT B Vi 1
w=— pdV =—n — ) x |14+ — ) dViw=—nRTIn | — | +nBRT | — —
i i Vi Vi Vi Vint Vini

From the data,
nRT = (70 x 10> mol) x (8.314JK ' mol™!) x (373K) = 217]J

5.25cm? — 3 6.29 cm? — 5
Vmi= ——=750cm”mol™", Vyur=——— =289.9cm” mol
70 mmol 70 mmol
1 1 3 . 1 1
andso B| — — — | = (—28.7cm” mol ™ ") X T — i
Vint Vi 89.9cm3mol™!  75.0cm3 mol™

=634 x 1072

_ 6.29 _ o, _
Therefore, w = (—2177J) x In <ﬁ) +177) x (6.3¢ x 1072) = (=39.27) + (13.8]) =

Since AU =g +wand AU = +83.5J, ¢ =AU —w = (83.5J) + (25]) =[+109J

B
AH = AU + A(pV) with pV =nRT (1 + v_>

m

1 1
A(pV) = nRTBA ( — | = nRTB | — —
v, %

m

1
), as AT =0

mf mi

= (217]) x (6.34 x 1072) = 13.8J

Therefore, AH = (83.5]) + (13.8]) =

18.02 g mol !
P2.8 Gp = AH =nAypH =[+222KI|  AvpH = %” = (%) x (22.2K)

— | +40kJ mol !
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P2.11

P2.14

10g
18.02 gmol !

Hence AU = (22.2kJ) — (0.555 mol) x (8.314J K~ ' mol™") x (373K) = (22.2kJ) — (1.72kJ) =

w=AU —q[asAU = g + w] = (20.5kJ —22.2kJ) = [~ 1.7KJ|

This is constant-pressure process; hence g, (object) + g, (methane) = 0.
qp(object) = —32.5k] qp(methane) = nAyap H = 32.5k]

qp(methane)
n=-—————
AvapH

AU = AH — AngRT, Ang = = 0.555 mol

AvapH = 8.18 kI mol ™! (Table 2.3)
. . nRT
The volume occupied by the methane gas at a pressure p is V = ——; therefore
p

_ gRT  (32.5k)) x (8.314JK~'mol™!) x (112K)
T pAwpH  (1.013 x 105 Pa) x (8.18 kI mol—1)

=3.65x1072m’® =

Cr(CgHg)2(s) — Cr(s) +2C¢Hg(g) Ang = +2mol
AH® = AU® +2RT, from[26]

= 8.0k mol™) + (2) x (8.314JK ' mol™!) x (583K) =| +17.7kJ mol ™!

In terms of enthalpies of formation
ArH® = (2) x AfH® (benzene, 583 K) — AfH © (metallocene, 583 K)
or ArH © (metallocene, 583 K) = 2A¢H € (CgHg, g, 583 K) — 17.7kJ mol ™!
The enthalpy of formation of benzene gas at 583 K is related to its value at 298 K by

ArH® (benzene, 583K) = A;H® (benzene, 298 K) + (T;, — 298 K)Cp(D) + (583K — T)Cp(g)
—FAvapHe — 6 x (583K — 298 K)C, (graphite)
-3 x (583K —298K)Cp(Hp, g)
where Ty, is the boiling temperature of benzene (353 K). We shall assume that the heat capacities of

graphite and hydrogen are approximately constant in the range of interest, and use their values from
Table 2.6

ArH © (benzene, 583 K) = (49.0kJmol™") + (353 — 298) K x (136.1J K~ mol™")
+ (583 — 353)K x (81.67J K~ ' mol™!) + (30.8 ki mol 1)
—(6) x (583 —298)K x (8.53JK ' mol™')
— (3) x (583 —298)K x (28.82J K ' mol™1)
= {(49.0) + (7.49) + (18.78) + (30.8) — (14.59) — (24.64)} kJ mol !
= +66.8kJ mol ™!

Therefore, for the metallocene, AfH © (583K) = (2 x 66.8 — 17.7)kJ mol~! =| +116.0kJ mol~! ‘
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We must relate the formation of DyClj to the three reactions for which we have information
Dy(s) + 1.5Cl(g) — DyCl3(s)

This reaction can be seen as a sequence of reaction (2), three times reaction (3), and the reverse of
reaction (1), so

AfH® (DyClz, s) = ALHE (2) +3AHC (3) — ALHE (1),

A¢H® (DyCls, s) = [—699.43 + 3(—158.31) — (—180.06)] kJ mol !

99430 k) mol~! |
@@ AH® = AfH® (SiH;0H) — A¢H ® (SiHy) — SArH® (02)

=[-67.5-343 - J(O)]kImol ! = ] —101.8kJ mol~! \
(b)  AH® = A¢H® (SiH,0) — AfH® (H,0) — AfH® (SiHy) — AfH® (0y)
=[-23.5+ (—285.83) —34.3 — 0] kJmol ! = ] —344.2kJ mol ™! \
(¢©) AH® = AfH® (SiH,0) — AfH © (SiH30H) — AfH © (H))

=[-=23.5— (=67.5) — 0]kJmol " = |44.0kJ mol~!

When necessary we assume perfect gas behaviour, also, the symbols w, V, g, U, etc. will represent
molar quantities in all cases.

dv
w = /pdV— /—dV——C Ve

For n # 1, this becomes (we treat the case n = 1 later)

C final state, V¢ C 1 1
1y w=—ytl = — - =
n—1 initial state,V; n—1 an Vln
VI 1 1
. X{ =i nl} [because pV" = C]
=TTy,

pivivi! 1 1
= X —
n—1 Vn—l Vn—l

1

. \ n—1
R G R OR
n—l n—1 Vi

1/n
But pV"=CorV = ( ) for n # 0 (we treat n = 0 as a special case below). So,

vi\""' (P
o () =(5)7 ae

Substitution of eqn 3 into eqn 2 and using ‘1’ and ‘2’ to represent the initial and final states,
respectively, yields

RT, p\ "
@ |w= x| = —1¢|forn#0Oandn # 1
n—1 P1
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In the case for which n = 0, eqn 1 gives

C 1 1 c )
= X — — _ A
w 0_1 - i - Vi — V;

1

= _(pVO)any state X (V¢ — Vi) = —(p)any state (VF — V1)

5) for n = 0, isobaric case

In the case for whichn =1

C C Vi
yn \% Vi
Vi Vi
w = (pV”)any state In — )= (PV)any state In —
Ve Ve
Vi
= (RT)any state In| —
Vi

Vv
©6) |w= RTln(—1> = RT1n<Q> for n = 1, isothermal case
V2 P1

To derive the equation for heat, note that, for a perfect gas, AU = g +w = Cy (Tf — T;). So

T vV,
T riVi

n—1

f
=CyT; ((%)n — 1) [using eqn 3 (n # 0)]

qzcvn<<ﬂ)"—1)— RT ((ﬁ)"—l) [using eqn 4 (n # 0, n # 1)]
Di n—1 Di

V.nfl
=CyT; (Vl - 1) [because pV" = C]

ﬁ)"—1}[2.37]
pi
n—1
:(n—l)—(y—l)RTi <ﬂ> "
m—1Dx@y-1 Di
n—1

[tz |(3)7
n-=Dx({y-D "1\ pi
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Using the symbols ‘1’ and ‘2’ this becomes

n=1
_ n—y p\ "
® "_[m—ux(y—u}”l[(m) l}for"’éo’”;“

In the case for which n = 1, (the isothermal case) eqns 7 and 6 yield

1%
©) g=—-w=RTIn 2 _Rrmt for n = 1, isothermal case
Vi P2

In the case for which n = 0 (the isobaric case) eqns 7 and 5 yield

q =AU —-w=Cy(T;—T) + p(Vy = V)
=Cy(Tt —T)+R(Tt - T))
= (Cv +R) x (Tt — T)) = Cp(T; — T}

(10) g = Cp AT |for n = 0, isobaric case

A summary of the equations for the process pV" = C is given below

n w q Process type
0 —pAV C,AT Isobaric [2.29]
1 RT ln<&> RT 1n<ﬂ> Isothermal [2.13]
P1 D2

y CyAT* 0 Adiabatic [2.33]
00 0 CyATT Tsochoric [2.22]
Any n n-1 ne1

RT, n n— n
o SE ) [l {(2)
andn = 1 n P n Y D1

* Equation 8 gives this result whenn = y

y-1
q:[#}RT] <B>y —1{=0
y-Dx@-01 P1

Therefore, w = AU —q = AU = CyAT.

T Equation 8 gives this result in the limit as n — oo

1
lim ¢ = <7> RT {& —1}
n—o00 y—l )41

C
= (Cp 7VCV> Vi(p2 — p1)

. . C C
However, lim V = lim —Im = o
n—o0o n—oo p /n pO

Vo, =V; =V and

. Cy Cy
1 = — Vo — p1Vi) = —(RT, — RT)) = Cy AT
im 4= _CV(Pz 2= piVi) R( 2 1) %

n—o00
P

= C. So in this limit an isochoric process is being discussed and
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Solutions to theoretical problems
P2.23 dw = —F(x)dx [2.6], withz = x

Hence to move the mass from x; to x;

w:—/ ’ F(x)dx

1

X
Inserting F(x) = F sin (—) [F = constant]
a

X2 mx Fa TX) TX]
w=—F sin (—) dx = — (cos —= —cos —)
x a T a a

1

Fa —2Fa
@ xx=a, x1=0, w = — (cosmT —cos0) =
T

T

F
(b) xp =2a, x1 =0, wz—a(COSZN—COSO)Z@
g

The work done by the machine in the first part of the cycle is regained by the machine in the second
part of the cycle, and hence no net work is done by the machine.

P2.25 (a) The amount is a constant; therefore, it can be calculated from the data for any state. In state A,
Va = 10L, pp = latm, To = 313 K. Hence

vV 1.0at 10L —
n=PAYA _ (1.0atm) x (10L) —10.389 mol

RTA ~ (0.0821Latm K~ mol™!) x (313K)

Since T is a constant along the isotherm, Boyle’s law applies

1.0at
pAVa = ppVe: Vg =PAvy, = (20 atm> % (10L) =[050L] Vo= Vg =[0.50L
atm

PB

(b) Along ACB, there is work only from A — C; hence
W = —pext AV[10] = (—=1.0 x 10° Pa) x (0.50 — 10)L x (10> m3L~") = 9.5 x 10%J

Along ADB, there is work only from D — B; hence

W = —pext AV[10] = (=20 x 10° Pa) x (0.50 — 10)L x (10>m3L~1) ={1.9 x 10*7J
1% _ 0.5
(0 w=-nRTh V—B[IS] = (—0.389) x (8.314JK "mol™!) x (313K) x <ln 1—0)
A

=[+3.0x 10°J

The work along each of these three paths is different, illustrating the fact that work is not a state
property.

(d) Since the initial and final states of all three paths are the same, AU for all three paths is the same.
Path AB is isothermal; hence , since the gas is assumed to be perfect. Therefore,

for paths ACB and ADB as well and the fact that Cy 1, = %R is not needed for the
solution.
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In each case, g = AU — w = —w, thus for
pathACB, g =|—9.5x 10>J|  pathADB,g =|—1.9 x 10*J |
pathAB, g =| —3.0 x 10°J
The heat is different for all three paths; heat is not a state property.
P2.27 Since AU is independent of path AU (A — B) = g(ACB) + w(ACB) = 80J —30J =501]
(a) AU =50]=¢g(ADB)+w(ADB)
q(ADB) =50J — (—10J) =|+607J
b)) gB—>A) =AUB—> A)—wB —> A)=-50] — (+20]) =
The system liberates heat.
(¢) AU(ADB) = AU(A — D)+ AU — B); 50J =40J+ AU — B)
AUD - B)=10J=¢9g(D - B)+w(D — B); wD — B) =0,
henceg(D — B) =|+10J
q(ADB) = 60]J[parta] = g(A — D) + q(D — B)
60J =q(A—-D)+10J; ¢g(A— D)=|+50]
V2 V»av V2 av
P2.29 w:—/ pdV:—nRT/ —}—nza/ =5
Vi v, V—nb v, V

= —nRT In —n“a|l—— —
Vi—nb \%) Vi
By multiplying and dividing the value of each variable by its critical value we obtain
T % - r\l/—b n’a Ve, W
w=-nRx|—|T. xIn| = cl-l— ) x|—=-—
T. i nb Ve Vo Wi
Ve Ve
Ve = 3nb [Table 1.6]
8 Vio— % 1 1
27b Vil — % 3b Vin Vit
The van der Waals constants a and b can be eliminated by defining w;
8 Vio—1/3 1 1
wr=|—=—nTyIn| —— ) —n —
9 Vr,l —1/3 Vr,2 Vr,l

Along the critical isotherm, 7, = 1 and V;; =1, V; 2 = x. Hence

Wy 81 3x—1 l—i—l
— = ——=1n —_
n 9 2 X

Wr

3bw a
= ——,thenw =
a

and
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P2.30

P2.35

Solutions to applications

15¢g _
_ S _ 1\ _
@ g=nAcHY = —342.3g 3 X (=5645kJmol™ ") =| —25k]J

(b) Effective work available is ~ 25kJ x 0.25 = 6.2kJ
Because w = mgh, and m ~ 65kg

6.2 x 103]
h~ =19.7
65kg x 9.81 ms—2

(¢) The energy released as heat is

2.5
g=—AH=—-nAH® =— (—g> x (—2808 kI mol~!) =|39kJ

180 g mol !

(d) If one-quarter of this energy were available as work a 65 kg person could climb to a height &
given by

14 N P 39 x 10°7
= wW=m SO = = = m
4 § 4mg  4(65K)) x (9.8ms—2)

(a) and (b). The table displays computed enthalpies of formation (semi-empirical, PM3 level, PC
Spartan Pro™), enthalpies of combustion based on them (and on experimental enthalpies of formation
of H,O(l) and CO;(g), —285.83 and —393.51kJ mol ™! respectively), experimental enthalpies of
combustion from Table 2.5, and the relative error in enthalpy of combustion.

Compound A¢H®/kImol™' A H®/kImol™' (calc.) A HT/kImol™' (expt.) % error

CH.(g) —54.45 —910.72 —890 2.33
C,Hy(g) —75.88 —1568.63 —1560 0.55
C3Hs(g) —98.84 —2225.01 —2220 0.23
C4Hio(2) —121.60 —2881.59 —2878 0.12
CsHpx(g) —142.11 —3540.42 —3537 0.10

The combustion reactions can be expressed as:

3n+1

CnHopy2(g) + (T) 0O2(g) — nCO2(g) + (n + 1) HLO(1).

The enthalpy of combustion, in terms of enthalpies of reaction, is
AcH® =nAtH® (COp) + (n + DATH © (H20) — AtH© (CoHaon),
where we have left out A¢ H© (0,) = 0. The % error is defined as:

AcH® (cale.) — AfH® (expt.)

x 100%
A¢H© (expt.)

% error =

The agreement is quite good.

(c) If the enthalpy of combustion is related to the molar mass by
AcH® = k[M/(gmol™)]"
then one can take the natural log of both sides to obtain:

In|AcHE|=1n |k| +nln M/(gmol™").
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Thus, if one plots In |AcH© | vs. In [M(g mol™!)], then one ought to obtain a straight line with slope
n and y-intercept In |k|. Draw up the following table:

Compound M/(gmol™") AHS/kImol™' InM(gmol™") In|A.HS/kImol™!|

CHi(g) 16.04 —890 2.775 6.81

C,Hy(g) 30.07 —1560 3.404 7.358
C3Hs(g) 44.10 2220 3.786 7.708
C4Hyo(g) 58.12 —2878 4.063 7.966
CsHpx(g) 72.15 —3537 4279 8.172

The plot is shown below in Fig 2.2.

9

188 7
=

=
< 7
= o

6

2 3 4 5

In M/(g mol™") Figure 2.2

The linear least-squares fit equation is:
In|AcH® /kImol ™| = 4.30 +0.093 In M/(gmol~1) r? = 1.00

These compounds support the proposed relationships, with
n = 0.903
and k = —e*3 kI mol ™! =| =73.7kImol™" |

The aggreement of these theoretical values of k and n with the experimental values obtained in P2.34
is rather good.

In general, the reaction
RH— R+H
has a standard enthalpy (the bond dissociation enthalpy) of
AH®R—H) = AfH® (R) + AH® (H) — AfH® (RH)
so A;FHO (R) = AH® (R—H) — A¢H® (H) + A¢H® (RH)
Since we are provided with bond dissociation energies, we need

AH = AU + A(pV) = AU + RT Ang

So AtH® (R—H) = A,U® (R—H) + RT
and A HO(R) = A HE (R—H) + RT — AfH® (H) + AtH © (RH)
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Inserting the bond dissociation energies and enthalpies of formation from Tables 2.5 and 2.6, we
obtain

ArH© (CoHs) = (420.5 + 2.48 — 217.97 — 84.68) kI mol ™' =|120.3kJ mol ™!

ApH® (sec-C4Ho) = (410.5 + 2.48 — 217.97 — 126.15) kJ mol ™!

=168.9kImol~!
AsH® (tert-C4Hg) = (398.3 +2.48 — 217.97 — 134.2) ki mol ™! =|48.1 kJ mol™!

+



E3.1(b)

E3.2(b)

E3.3(b)

E3.4(b)

E3.5(b)

E3.6(b)

3 The First Law: the machinery

Solutions to exercises
Discussion questions

The following list includes only those state functions that we have encountered in the first three
chapters. More will be encountered in later chapters.

Temperature, pressure, volume, amount, energy, enthalpy, heat capacity, expansion coefficient,
isothermal compressibility, and Joule—Thomson coefficient.

One can use the general expression for w7 given in Justification 3.3 to derive its specific form for
a van der Waals gas as given in Exercise 3.14(a), that is, i = a/ Vrfl. (The derivation is carried
out in Example 5.1.) For an isothermal expansion in a van der Waals gas dUpy = (a/ Vin)?. Hence
AUm = —a(l/Vm 2 —1/Vmn 1). See this derivation in the solution to Exercise 3.14(a). This formula
corresponds to what one would expect for a real gas. As the molecules get closer and closer the molar
volume gets smaller and smaller and the energy of attraction gets larger and larger.

The solution to Problem 3.23 shows that the Joule-Thomson coefficient can be expressed in terms
of the parameters representing the attractive and repulsive interactions in a real gas. If the attractive
forces predominate then expanding the gas will reduce its energy and hence its temperature. This
reduction in temperature could continue until the temperature of the gas falls below its condensation
point. This is the principle underlying the liquefaction of gases with the Linde Refrigerator which
utilizes the Joule-Thomson effect. See Section 3.4 for a more complete discussion.

Numerical exercises

A function has an exact differential if its mixed partial derivatives are equal. That is, f(x, y) has an
exact differential if

9 (af\ 8 (of
()= (52)

0 da ([0
(a) i _ 3x%y* and — N 6x2y
ax dy \ 0x
0 da (0
—f = 2x3y and — —f = 6x2y Therefore, exact.
ay dx \ dy
af 3 (of
b — =t +1 d — (= )=¢
B gy=e at(as) ¢
0 d [0
—f =2t+e’ and — —f =& Therefore, exact.
ot as t
d 0 d 2xd
dz= det ody=| ——— — 22
dx 0 a+y 14+
d d
() dz=Zdv4+ Zdy=|Gx2 =2y} dx — 4xydy
ox ay
322 d 2 2
b =—0Bx“=2 =—4
(b) Byox 8y( X 9 y
92 B
an < = —(—4xy) = -4y
0x

0x0dy



THE FIRST LAW: THE MACHINERY 45

E3.7(b)

E3.8(b)

E3.9(b)

E3.10(b)

E3.11(b)

E3.12(b)

90z 0z 2 2
dz=adx+5dy= 2xy + y°)dx + (x~ 4+ 2xy)dy

3%z
dyox

3%z
0xdy

(ac,,) _[a <8H>i| _ 9’H [a <8H>]
op Jr ap E)TPT opaT| | oT \ 9op 71y
oH . L
Because | — | = 0 for a perfect gas, its temperature derivative also equals zero; thus
T

(BCP) _0
op Jr

d
= —Q2xy+y>) =2x+2y
dy

a
and = a—()c2 4+ 2xy) = 2x + 2y
X

(8(U+pV)>
(8_H) _H/V), W), @U/IV)p+p 1+ p
U p_ @U/IV),  @U/IV),  QU/AV), @U/aV),

d]np:d_p:l<8_p> dv+l(8_p) dT
p  p\dV)r p \oT )y

ad
We express (%) in terms of the isothermal compressibility «7
T

(=@ - ()4
kr=——=|—) =—|V|—= o) — ) =-

0 1 /oV
We express (%) in terms of x7 and the expansion coefficient o« = (—)
14 P

v \ar
(ap> (E)T) <av> e (31)) @V,  «
ot )y \ov ), \op )y T )y @OV/ap)r  kr
1 1 dv
sodlnp = — —i—iz—(adT——)
pVkr — pkr DKT 14

3 oUu
U=\|=|nRT so — ) = @ by direct differentiation
2 op Jr

H=U+pV =(3)nRT +nRT = (3) nRT,

oH
SO (8_> = @ by direct differentiation
PJr

(1)(8V> v nRT (8V> nR 'V
o = —_— —_— = —_— = — = —
Vv oT p )4 oT » p T
1 \% 1
o =\— X\ ===
Vv T T
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<1> <8V> <8V> nRT
kr=—(—=)— — ) =——
V) \ap Jr op Jr p
<1>x< nRT) 1
K‘T:— —_ - | —
14 p? p

E3.13(b) The Joule-Thomson coefficient w is the ratio of temperature change to pressure change under
conditions of isenthalpic expansion. So

aT AT —10K )
u=|l—]) ~—=———=|048Katm
H Ap (1.00 — 22) atm

op

3.14(b) Um = Un(T, Vi) dUnm < 5T >v daT + <8Vm> dVm

dT = 0 in an isothermal process, so

aU
AU = (S22} dVip = —= dVpy
3V Jr V2
Vim2 V2 22.1 L mol ™! dv. 22.1 L mol ™!
AUm=/ dUm=/ izdvm=a/ W __ o
Vi Vmi Vm 1.00Lmol-! Vi Vi 11.00L mol-!
a a 21.1a

= + = =0.95475a L™ " mol
22.1Lmol=! = 1.00Lmol=!  22.1Lmol-!

a = 1.337 atm L2 mol 2

AU = (0.95475mol L™!) x (1.337 atm L? mol ~2)

_ 1 3
= (1.2765atm L mol™") x (1.01325 x 10° Paatm™!) x (ﬁ>

103L
= 129Pam’>mol ™! =[129Tmol~!

w=— / PexdVy and p = anfi 5 Vir% for a van der Waals gas
sow:—/( RT )dvm+/idvm=—q+AUm
Vim —b V2
Thus
2.1Lmol™" / pT 22.1Lmol~!
g= +/1.00Lm01—1 (Vm . b) dVim = +RT In(Vyy — b)‘l.oomol—l

+(8.314TJK "mol™") x (298 K)

{22.1 —3.20 x 1072 ]
x In

1.00 — 3.20 x 102

| +7.7465 kI mol ! |

w = —7747 Jmol ™! + 129 T mol~! =| —7618mol~! | =| —7.62kI mol~! |
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E3.15(b) The expansion coefficient is
1 /oV V/37x 104K +2x1.52 x 1070 T K~2)
“=v <8_T)p - %
V/[3.7 x 1074 4+2 x 1.52 x 107%(T/K)] K~!
V'[0.77 + 3.7 x 10~4(T/K) + 1.52 x 10~%(T /K)?]
[3.7x 1074 +2 x 1.52 x 107°(310)] K !

= =127 x 1073 K™!
0.77 + 3.7 x 10~4(310) + 1.52 x 10~6(310)2
E3.16(b) Isothermal compressibility is
1 [0V AV AV
kr=——|—| ®——— so Ap=-—
V\op)r VAp Vir
A density increase 0.08 percent means AV /V = —0.0008. So the additional pressure that must be

applied is

0.0008 2
Ap = =13.6 x 10” atm
2.21 x 10~%atm—!

E3.17(b) The isothermal Joule-Thomson coefficient is

(ﬁ) =—uCp,=—(1.11Katm™ " x 37.11JK 'mol™") =| —41.2Jatm™ " mol ™!
op T— uCp = . . = .

If this coefficient is constant in an isothermal Joule-Thomson experiment, then the heat which must
be supplied to maintain constant temperature is A H in the following relationship
AH/n
Ap

AH = —41.2Jatm ' mol™") x (12.0mol) x (—55atm) =|27.2 x 10°]

E3.18(b) The Joule-Thomson coefficient is

oT AT AT ~45K ;
nw=|— A— s0 Ap=—= =|—-3.4 x 10° kPa
ap Jy  Ap u 13.3 x 10-3 K kPa~!

=—412Jatm 'mol™! so AH =—@412Jatm ' mol"HnAp

Solutions to problems
Assume that all gases are perfect and that all data refer to 298 K unless stated otherwise.

Solutions to numerical problems

1 atm
1.013 x 105 Pa
For the change of volume with pressure, we use

P3.1 Kt = (221 x 10~ ®atm™") x < ) =[218x 10711 pa! |

oV 1 [0V
dV = | — ) dp[constant temperature] = —k7V dp Kk = —— | —
ap Jr vV \op)r

AV = —k7V Ap [If change in V is small compared to V']
Ap = (1.03 x 10°kgm™>) x (9.81ms~2) x (1000m) = 1.010 x 107 Pa.
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Consequently, since V = 1000 em® = 1.0 x 1073 m? R
AV ~ (=2.18 x 1071 Pa™!) x (1.0 x 1073 m?) x (1.010 x 107 Pa)

=-22x10"" m3, or |—0.220cm?> |

For the change of volume with temperature, we use

A% 1 [0V
dV = | — ) dT[constant pressure] = oV dT 0a=—|—
aoT » vV \oT »

AV =aV AT [if change in V is small compared to V]
~ (8.61 x 1072 K1) x (1.0 x 107 m?) x (=30K)
~—2.6x107° m3, or —2.6cm’

Overall, AV ~ —2.8 em? |V =997.2cm?

Comment. A more exact calculation of the change of volume as a result of simultaneous pressure
and temperature changes would be based on the relationship

A% A%
dV:(—) dp—l—(—) dT = —krVdp +aVdT
p Jr ap /p

This would require information not given in the problem statement.

Use the formula derived in Problem 3.25.

1 BV, — 1)?
Com—Cym=AR -—=1-—
pmmm A AVAT,
C C AR AR
which gives y = pm _ ~V.m + =1+
CV,m CV,m CV,m

In conjunction with Cy n = %R for a monatomic, perfect gas, this gives
V Vi T 27RbT

For a van der Waals gas V; = RALI —m, T, = — = (Table 1.6) with a =
Ve 3b 1. 8a

4.137L%atmmol 2 and b = 5.16 x 1072 Lmol~! (Table 1.6). Hence, at 100°C and 1.00 atm,

RT
where Vi & — = 30.6 L mol ™!
p

30.6 Lmol !

~ — 198
(3) x (5.16 x 10~2Lmol~1)

T

7~ 27 X (8206 x 1072 Latm K" mol™!) x (5.16 x 1072 L mol~!) x (373K) _

¢ 1.29
(8) x (4.317L2 atm mol—2)
Hence
1 3) x (198) — (1)]?
—=1- [(3) > (198) = (D] =1-—0.0088 = 0.9912, A = 1.009
A 4) x (198)3 x (1.29)

y~ )+ (3) x (1.009) =
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P3.7

Comment. At 100°C and 1.00 atm xenon is expected to be close to perfect, so it is not surprising
that y differs only slightly from the perfect gas value of %

See the solution to Problem 3.6. It does not matter whether the piston between chambers 2 and 3 is
diathermic or adiabatic as long as the piston between chambers 1 and 2 is adiabatic. The answers
are the same as for Problem 3.6. However, if both pistons are diathermic, the result is different. The
solution for both pistons being diathermic follows.

See Fig. 3.1.
T q#0 S
l Diathermic piston
Sy
1 ¢#0
l Diathermic piston
S5
Figure 3.1

Initial equilibrium state.
n = 1.00 mol diatomic gas in each section
pi = 1.00 bar
T; = 298K
For each section
nRT; _ (1mol) x (0.083 145 L bar K~! mol™!) x (298 K)

Di 1.00 bar
=248L

Viotal = 3Vj = 74.3 L = constant

Vi =

Final equilibrium state. The diathermic walls allow the passage of heat. Consequently, at equlibrium
all chambers will have the same temperature T = 7, = T3 = 348 K. The chambers will also be at
mechanical equlibrium so

_ (np+n2+n3)RTy

p1=p2=p3
Vtotal
_ (3mol) x (0.083 145Lbar K~ mol~!) x (348K)
N 743L

= 1.17bar = pr = p3

The chambers will have equal volume.
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V,
Vl:%tal:\/i:’24.8L=V1=V2=V3‘

AU; = n,Cy AT, = ny (%R) ATy

= (1 mol) x (%) x (8.31451J K" mol™!) x (348 K — 298 K)
AU = 1.04K) = AU, = AU;
AUtotal — 3AU1 e 3121(] - AUtotal

Solutions to theoretical problems

9 3 9
P3.11 dw = (—w> dx + (—w> dy + (—w> dz
0x vz dy .z az e,y

dw=’(y+z)dx+(x+z)dy+(x+y)dz‘

This is the total differential of the function w, and a total differential is necessarily exact, but here
we will demonstrate its exactness showing that its integral is independent of path.

Path a
dw =2xdx +2ydy 4+ 2zdz = 6x dx

(1,1,1) 1
/ dw = / 6xdx =3
(0,0,0) 0

Path b
dw =2x2dx + ('? + y)dy + /2 + 2)dz = @x? 4+ 2x + 2x/?) dx

(1,1,1) 1 2 4
/ dw:/(2x2+2x+2x1/2)dx:—+1+—:3
(0,0,0) 0 3 3

Therefore, dw is exact.
P3.12 U=UT,V)

U U U
U=(—) dT+ (=) dv=cCydT +(—) dv
T )y v )y v Jr

For U = constant, dU = 0, and

aU U dv aU av
CydT=—|—) dV o Cy=—-|— /) = (= 7y
v Jr vV Jp \dT Jy oV Jp \aT Jy

This relationship is essentially the permuter [Relation 3, Further information 1.7].
P3.13 H = H(T, p)

dH = of dT + oH dp=C,dT + oH d
~\ar), op Jp TP op Jr "

For H = constant, dH = 0, and

oH
<_) dp = —CpdT
ap Jr

OH ar aT
<3p)r p(dp)H p<8P>H b

This relationship is essentially the permuter [Relation 3, Further information 1.7].
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P3.16

P3.18

The reasoning here is that an exact differential is always exact. If the differential of heat can be shown
to be inexact in one instance, then its differential is in general inexact, and heat is not a state function.
Consider the cycle shown in Fig. 3.2.

pP1

Isotherm at 7"

Isotherm at T’

——————— Isotherm at T’

V1 Vs

Vv — Figure 3.2

The following perfect gas relations apply at points labelled 1, 2, 3 and 4 in Fig. 3.2.
(1) p1tVi = p2Vo =nRT, (2) p2Vi =nRT', (3) piVo =nRT"

Define AT =T —T', AT"=T"-T

Subtract (2) from (1)

—nRT' +nRT = —poVi + p1 V)

Vi(p1 — p2)
RT
Subtracting (1) from (3) we obtain

giving AT =

Va(p1 — p2)
RT

Since V} # Vo, AT  # AT”

AT// —

ga = C,AT" — CyAT" = (C, — Cy)AT"
g = —CyAT 4+ C,AT' = (Cp — Cy)AT’

giving ga # gp and g(cycle) = ga — g # 0.
Therefore 55 dg # 0 and dgq is not exact.

RT a
Vm—b V2

9 9
p=(2) ar+ (2] av
T ), av ),

p=pT, V)=
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In what follows adopt the notation Vi, = V.
op\ R ip\ _ RT n 2a
3T ), V—-b’ V) (V-b? V3

then, d R Var4 {2 KT 14y
en,dp =|| —— —
P=I\v >y V3V —b)2

oV

Because the van der Waals equation is a cubic in V, <8_T) is more readily evaluated with the use
p

of the permuter.

ap
(BV) B (a_T)V B 5 | RV -p)
aTr )~ (a\  (__RT 2\ | RTV3 =2a(V — b)2
v (#), T B) V=
For path a
sz’Vz L R V2 RT, 2a
dp:/ dT+/ [——+—]dV
T, V1 Ti Vl - b Vi (V - b)2 V3
Ty — T)) + RT, RT, 1 1
= — — —al|l— - —
vi—b 2 VT =) =k C\v2 W2

RT n RT, 1 1
Vi-b b \vZ2T V2
For path b
f2. 12 V2 RT 2 L R
/ dp=/ [——12+—‘;}dv+/ dr
T,V Vi (V-0 14 , Va—b>b
RT RT 1 1 n R T o
= — —al|l — - — _
Va=b  Vi—b v2ovE) vt

RT, RT, 1 1
=" + —a\vzT 2
Vi—-b Vy—b 5 Vi

Thus, they are the same and d p satisfies the condition of an exact differential, namely, that its integral
between limits is independent of path.

P3.20 p=pV,T)
Therefore,
B] 9 RT 2
dp = o dv + o9 dT  with p = n _ra [Table 1.6]

ap —nRT 2n2a —p nla V —2nb
< = 7 + 3 = + 3 X\ ——
oV ) (V —nb) V- V —nb 1% V —nb
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Therefore, upon substitution

dp — —pdV n’a V — onb dv pdT n’a dr
p_<V—nb)+ 2 ”)X<V—nb>+( T )+ vz X(T)

B ((n2a) x (V —nb)/ V3 —p> v <p+n2a/V2)dT

V —nb T

(W =B/Va =P\ 4y (PFaVa )y
B Vin — b m T

Comment. This result may be compared to the expression for dp obtained in Problem 3.18.

nRT n2a

P3.21 Pp=y Tl (Table 1.6)
—n

p na
Hence | T = (ﬁ) x (V —nb) + (RVZ) x (V — nb)

(8T) _V—=nb| Vmn—-b 1
0 o o T (9
p )y nR R (8_$>V

oT

0 A%
For Euler’s chain relation, we need to show that (—) (_p) (—) =-—1

. .. oT ap oV 1
Hence, in additionto { — | and | — ) [Problem 3.20] weneed | — | = —
4

oT 2
which can be found from | — | = (i) + L Y (i x (V — nb)
A% » nR RV? RV3

T 2na v b
= — X —_
V —nb RV3 "
Therefore,

(), (2), (), - B

(vfnb) - (,%’(,”a) x (V —nb) (V,T,,b) - (R’;;z) x (V — nb)
1

A% T
P3.23 uCp =T <ﬁ> -V = Ty V [Relation 2, Further information 1.7]
v (W)
14
oT T 2
) = —— — Z22(V — ub) [Problem 3.21]
v ), V-—nb RV3
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Introduction of this expression followed by rearrangement leads to

_ (2na) x (V —nb)*> — nbRTV?

C
HEp RTV3 — 2na(V — nb)?
. , RTV? o .
Then, introducing { = ————— = to simplify the appearance of the expression
2na(V — nb)?

1 — ¢ 1—€—§
C,= Vivi=(—2)v
For xenon, Vi = 24.6 L mol ™}, T = 298K, a = 4.137L2 atmmol 2, b = 5.16 x 102 L mol !,

b b 5.16 x 1072 L mol ™!
no_ b _ X Mo 2.09x 1073
V. Vn 24.6 L mol—!

~ (8206 x 1072 Latm K~ mol™!) x (298K) x (24.6L mol~!)?
"~ (2) x (4.137L2 atm mol—2) x (24.6Lmol~! —5.16 x 10~2 L mol—1)2

1 — (73.0) x (2.09 x 10~3)
72.0

Cp =20.79T K~ mol~![Table 2.6], so

=73.0

Therefore, nCp, = x (24.6Lmol™") = 0.290 L mol !

0.290Lmol™!  0.290 x 10~ m® mol !
20.79JK—'mol-! ~  20.79J K~ mol~!
=1393x10°Km?J ' =1.393 x 1077KPa~!

= (1.393 x 1075) x (1.013 x 10° Katm™~!) =

b
The value of u changes at T = T7 and when the sign of the numerator 1 — % changes sign (¢ — 1

is positive). Hence

b RTbV? 2a(Vin — b)?
L =1latT =Ty or — 7 implying that 77 = M
Vi 2na(V — nb)?Vpy RbV?Z

, 2a b\*> |27 b \?
thatis, 1 = — | x|(1—— ) =|—Tc|{1— —
Rb Vi 4 Vi

2a (2) x (4.137L2 atm mol~2)
For xenon, — =
Rb  (8.206 x 102 LatmK~! mol~!) x (5.16 x 10~2 L mol~!)

2
5.16 x 1072
and so Tj = (1954K) x (1—;:—6) —[1946K

Question. An approximate relationship for x of a van der Waals gas was obtained in Problem 3.17.
Use it to obtain an expression for the inversion temperature, calculate it for xenon, and compare to
the result above.

= 1954K
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2
TV 9
P3.25 Cpm—Cym = aKT [3.21] = aTV (a—l;) Lustification 3.3]
1%
9 R
2P — " [Problem 3.20]
(av) 1

aV=—) =

™)

2

Substituting,

(V — nb) [Problem 3.21]

T (22
(aT)V <8T> T 2na
o\ SO =

Copm— Cym = L _ 2na
pm = Vm (_T) ov),” V—nb RV3
V
P
Substituting,
nRT |

Cpm = Cvom = — (;"”b) — AR with i = .

(&%) < (v —nb) 1= () x (v = nb)?

For molar quantities,

1 2a(Vim — b)?
C -C =AR with—-=1— ——-——
pom = m P RTVZ
. . 8a
Now introduce the reduced variables and use T, = RE Ve = 3b.

After rearrangement,

) e Vs

A AT,V

For xenon, V, = 118.1cm® mol ™!, 7. = 289.8 K. The perfect gas value for V, may be used as any

. . L . . 1
error introduced by this approximation occurs only in the correction term for T

Hence, Vi, ~ 2.45Lmol !, V. = 118.8cm> mol ™!, T, = 289.8K, and V; = 20.6 and T, = 1.03;

therefore
1 (61.8 —1)2 .
—=1- =0.90, givingA ~ 1.1
A 4) x (1.03) x (20.6)3

and

Cpm — Cym ~ LIR =| 927K~ mol !

1 (0H 1 v,
P3.27 (@ pu=-—— <—> =—1r <—m> — Vi ¢ [Justification 3.1 and Problem 3.24]
Cp 3p T Cp aT P

RT 5
Vin=—+aT
4

aV R
(—m> =—+2aT
aT b P
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v, ]
-or(52),(3)
or ), \oT )y
RT
Vi —aT?
(ap> 3 R RT (—2aT)
Ty Vm —aT? (Vi —aT?)2
R 2aRT?
= + 5
(RT/p)  (RT/p)
2ap?
p  2ap

But, p =

T R

Therefore

R e P, 2’
= — —_— X Ja—
v=>5r p T R
RT 2apT 2apT
=Cp—— (1+ == ) x (1+ =22 ) x (£)
) R R T

2apT 2
Cy=Cp,—R|1+ R

Solutions to additional problems

P3.29 (a) The Joule-Thomson coefficient is related to the given data by

p=—(1/Cp)@H/3p)r = —(—3.29 x 10> Jmol~! MPa~1)/(110.0J K~ mol )

29.9 K MPa~!

(b) The Joule-Thomson coefficient is defined as
w=0T/dp)y ~ (AT/Ap)u

Assuming that the expansion is a Joule-Thomson constant-enthalpy process, we have

AT = uAp = (29.9KMPa~!) x [(0.5 — 1.5) x 107 MPa] = —2.99K



E4.1(b)

E4.2(b)

4 The Second Law: the concepts

Solutions to exercises
Discussion questions

Trouton’s rule is that the ratio of the enthalpy of vaporization of a liquid to its boiling point is a
constant. Energy in the form of heat (enthalpy) supplied to a liquid manifests itself as turbulent
motion (kinetic energy) of the molecules. When the kinetic energy of the molecules is sufficient
to overcome the attractive energy that holds them together the liquid vaporizes. The enthalpy of
vaporization is the heat energy (enthalpy) required to accomplish this at constant pressure. It seems
reasonable that the greater the enthalpy of vaporization, the greater the kinetic energy required, and
the greater the temperature needed to achieve this kinetic energy. Hence, we expect that Ayap H o Ty,
which implies that their ratio is a constant.

The device proposed uses geothermal heat (energy) and appears to be similar to devices currently in
existence for heating and lighting homes. As long as the amount of heat extracted from the hot source
(the ground) is not less than the sum of the amount of heat discarded to the surroundings (by heating
the home and operating the steam engine) and of the amount of work done by the engine to operate
the heat pump, this device is possible; at least, it does not violate the first law of thermodynamics.
However, the feasability of the device needs to be tested from the point of view of the second law as
well. There are various equivalent versions of the second law, some are more directly useful in this
case than others. Upon first analysis, it might seem that the net result of the operation of this device
is the complete conversion of heat into the work done by the heat pump. This work is the difference
between the heat absorbed from the surroundings and the heat discharged to the surroundings, and all
of that difference has been converted to work. We might, then, conclude that this device violates the
second law in the form stated in the introduction to Chapter 4; and therefore, that it cannot operate
as described. However, we must carefully examine the exact wording of the second law. The key
words are “sole result.” Another slightly different, though equivalent, wording of Kelvin’s statement
is the following: “It is impossible by a cyclic process to take heat from a reservoir and convert it into
work without at the same time transferring heat from a hot to a cold reservoir.” So as long as some
heat is discharged to surroundings colder than the geothermal source during its operation, there is no
reason why this device should not work. A detailed analysis of the entropy changes associated with
this device follows.

Environment at 7,

Pump

Flow

“ground” water at 7},

Figure 4.1 Cy and C), are the temperature dependent heat capacities of water
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E4.3(b)

E4.4(b)

E4.5(b)
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Three things must be considered in an analysis of the geothermal heat pump: Is it forbidden by the
first law? Is it forbidden by the second law? Is it efficient?

AEwot = AEwater + AEground + A Eenvironment
AEwater =0

AEground = —Cy (Tyh){Th — Tc}

AEenyironment = —Cv (Tn){Th — Tc}

adding terms, we find that A Eyo; = 0 which means that the first law is satisfied for any value of Ty,
and T¢.

ASiot = ASwater + ASground + A Senvironment

ASwater =0
AS, __ Yground —Cp(Tp){Th — Tc}
ground = T = T
AS. _ Yenvironment __ Cp(T{Th — T¢}
environment — -
T, I,

adding terms and estimating that C,(T,) ~ Cp(T¢) = C), we find that

ASiot = Cp{Th — T¢} {Tlc - Tih}

This expression satisfies the second law (A Si¢ > 0) only when 7;, > T.. We can conclude that, if
the proposal involves collecting heat from environmentally cool ground water and using the energy
to heat a home or to perform work, the proposal cannot succeed no matter what level of sophisticated
technology is applied. Should the “ground” water be collected from deep within the Earth so that
Ty, > T¢, the resultant geothermal pump is feasible. However, the efficiency, given by eqn 4.11, must
be high to compete with fossil fuels because high installation costs must be recovered during the
lifetime of the apparatus.

with 7, ~ 273 K and Ty, = 373 K (the highest value possible at 1 bar), Erey = 0.268. At most, about
27% of the extracted heat is available to do work, including driving the heat pump. The concept
works especially well in Iceland where geothermal springs bring boiling water to the surface.

See the solution to exercises 4.3 (a).

Numerical exercises

sso [l g

T T
50 x 1033
(@) =X 18 x 125K
273K
50 x 103J
(b) = 22X 15 x 102K
(70 +273)K

At 250K, the entropy is equal to its entropy at 298 K plus AS where

d CymdT T
AS = / qrev = / V.m = CV m In —f
T ’ T;

+
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250K
298K

50 S = 154.84JK ' mol™! + [(20.786 — 8.3145) JK ' mol™!] x In

S =[152.65TK " mol™'|

dgrev _/Cp,de Tt
T =

5 1 -1 (100 +273) K 1
AS = (1.00 mol) x <§ + 1) X (8.3145J K™ " mol™ ") x IHW ={9.08J K

E4.7(b) However the change occurred, A S has the same value as if the change happened by reversible heating
at constant pressure (step 1) followed by reversible isothermal compression (step 2)

E46(b)  AS= /

AS = AS| + AS,

For the first step

d CpmdT T,
Asl=/ qr“:/ p.1 =Cp,m1n%

T

7 1354+273)K
AS; = (2.00mol) x [ = | x (8.3145J K ' mol™!) x p B2k
2 254+ 273)K
and for the second
AS) = / dgrev _ drev
T T
Vi Pi
where grey = —w = [ pdV =nRTIn — =nRT In —
Vi Dt
i 1 4 1.50 atm 1
so ASy =nRIn — = (2.00mol) x (8.3145JK™ "mol™ ') x In—— = —-25.6JK
123 7.00 atm

AS=(183-256JK ! =

The heat lost in step 2 was more than the heat gained in step 1, resulting in a net loss of entropy. Or the
ordering represented by confining the sample to a smaller volume in step 2 overcame the disordering
represented by the temperature rise in step 1. A negative entropy change is allowed for a system as
long as an increase in entropy elsewhere results in A Siota; > O.

E4.8(b) q = qrev = @ (adiabatic reversible process)

fd
qrev
AS=| ===
/i 7 =10]
AU =nCy n AT = (2.00mol) x (27.5J K~ mol~!) x (300 — 250) K

w=AU—q =275k —0=|[2.75kJ]

AH =nCpmAT
Cpm=Cym+R=@27.5IK 'mol™! +8314JK ' mol™!) = 35814 K~ mol™!
So AH = (2.00mol) x (35.814J K~ ' mol™1) x (+50K)

=3581.4) =
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E4.9(b) However the change occurred, A S has the same value as if the change happened by reversible heating

at constant volume (step 1) followed by reversible isothermal expansion (step 2)
AS=AS1+AS

For the first step

dgrev CV, dT Ty
AS) =/ T =/+=CV,mln?i [Cvm=Cpm—R]

3 700 K
= (3.50mol) x (=) x (8.3145JK ' mol™") x In =449JK!
2 250K
and for the second

ASzzqurev _ Grev

T T

Vi
where grey = —w = /pdV =nRT In Vf

1

Di 1 1 60.0L
SO ASy =nRIn — = (3.50mol) x (8.3145JK™ "mol™ ") x In
bt 20.0L

AS =449 +320JK ' =[76.97K™!

E4.10(b) AS = qr% If reversible ¢ = grey

=320JK!

grev = TAS = (5.51 7K™ 1) x (350K)
=1928.5]
g = 1.50kJ # 19.3kJ = grey

q # qrev; therefore the process is

E4.11(b) (a) The heat flow is

g = CpAT =nCpmAT

275k
- g x (24.447K""mol~) x (275 — 330)K
63.54 x 103 kgmol~!

=[-582x%x10%J

d C,dT T
(b) ASZ/ frev :/ d =”lcp,m ln?f

T
B ( 2.75kg

275K
24.44TK ' mol 1) x 1 =|-193JK™!
63.54 x 103 kgmol—l) <! mol ) xIn 330k

d Vi ;
E4.12(b) AS = / q]{ev = q;:v where grey = —w = nRT In —f =nRT In P

i pr

pi 35¢g 11 21.1atm 1
SOAS =nRIn— = ——— ) x (8.3145J K™ " mol X In :__17JK
T <28.013gmol_1> ( ) m
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V‘
where grey = —w = nRT In M
i

d
E4.13(b) AS= / Lrev _ Grev
T T

Vs AS
s0 AS =nRIn — and V; = Vijexp| —
Vi nR

We need to compute the amount of gas from the perfect gas law

rvV _ (1.20atm) x (11.0L)
RT  (0.08206 L atm K—! mol—1) x (270K)

—3.0JK™!
So Vs = (11.0L —[6.00L
oVr={( )eXp<(O.596mol) x (8.3145JK—1m01—1)>

E4.14(b) Find the final temperature by equating the heat lost by the hot sample to the heat gained by the cold
sample.

= 0.596 mol

pV =nRT so n=

—n1Cpm (Tt — Ti1) = n2Cpm (Tt — Tip)

_nmiTiy+nTip %('anil +myTp)

T¢ 1
ny+ny 27 (m1 +m2)

_ m Ty +maTip

B mi +my

~ (252) x (323K) + (70 ) x (293K)
N 25g+70g

=3009K

il i2

25g 300.9 70g 300.9
= In + xIn Cpm
46.07 gmol~! 323 46.07 g mol~! 293 ’

= {3886 x 1024408 x 1072} Cp.m

Ty Tt
AS=AS1+AS =n1Cpmln T +n2Cpmln T

= (0.196 x 102 mol) x (111.5JK" ' mol™1)

=02JK!
E4.15(b) in an isolated container.

Since the masses are equal and the heat capacity is assumed constant, the final temperature will be
the average of the two initial temperatures

Ty = $(200°C +25°C) = 112.5°C

nCy, = mCs where Cg is the specific heat capacity

T - —
AS = mCs ln(%) 200°C = 473.2K; 25°C =298.2K; 112.5°C = 385.7K

1

3 o 385.7 -
AS; = (1.00 x 103 g) x (0.449JK 'g™!) x In =1155JK
298.2
385.7 _
AS> = (1.00 x 103 g) x (0.449TK ' g71) x ln<473 2) =-91.802JK !

ASioral = AS) + ASy =|24TK ™!
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E4.16(b) (a) [adiabatic]

1.01 x 10° Pa » 1m?
(b) W= —pexAV = —(1.5atm) X [ ———— | x (100.0cm”) x (I15cm) X | ———=
atm 106 cm?3

= 22721 =[-230]]
© AU=g+w=0-230]=[-230]]

d) AU =nCy AT

AU —227.27
AT = =
nCy m (1.5mol) x (28.8JK—! mol—1)

- [=53K]

Tt Vi
(e) AS ZHCV’m 1H<f) +I’ZR11'1(71>
Ty = 288.15K — 5.26 K = 282.9K

nRT _ (1.5mol) x (8.206 x 107> Latm K~ mol™!) x (288.2K)
pi B 9.0 atm

=3.942L

Vi =

_ 1L
Vi =3.942L + (100cm?) x (15 i
f + (100em™) > (15 cm) x (10000m3)

=3942L+ 1.5L =5.44L

288.2

44
+(8.314JK "mol™!) x In > —
3.942

= 1.5mol(—0.5346 JK " mol ™! +2.678JK ' mol™!) =[3.2JK~!

AvapHS 3527 x 10° Jmol ! _
E4.17(b) (a) AwpS© = Va; - 11273 T;‘)’K — +104.58JK~! =|104.6JK™!
b . .

(b) If vaporization occurs reversibly, as is generally assumed

ASsys + ASsur =0 50 ASqyr =| —104.6J K™

E4.18(b) (a) A8 =S82@n%", aq) + ST (Cu,s) — S (Zn,s) — §2 (Cu**, aq)
=[—112.1 +33.15 — 41.63 +99.6] JK 'mol™! = ] —21.0JK 'mol™!
()  AS® =1255(COy, ) + 118 (H20, 1) — 5§ (C12Hp2011, 5) — 1255 (02, g)
=[(12 x 213.74) + (11 x 69.91) — 360.2 — (12 x 205.14)] JK~ ! mol™!

11 282.9
AS = (1.5mol) x { (28.8J K™ " mol™") x In

=[+512.0JK ' mol!

E4.19(b) (a) AH® = AfHe(Zn2+, aq) — AfHe(Cu2+, aq)
= —153.89 — 64.77kImol ™! = —218.66kJ mol !

AGE = —218.66kImol ™! — (298.15K) x (—=21.0J K~ ' mol™") =| —212.40kJ mol !
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(b) AH® =AH® = —5645kImol ™
ArG® = —5645kI mol ™! — (298.15K) x (512.0JK~! mol~!) =| —5798 kJ mol~!
E4.20(b) (a) AG® = A;GOZn®t, aq) — A;GE (Cu>T, aq)
= —147.06 — 65.49 kI mol ! =| 212,55k mol~! |
b)  AG® =12A;G®(COy, g) + 11A:G® (Hy0,1) — A;G® (C1aH» 011, 5)
= [12 x (=394.36) + 11 x (—237.13) — (—1543)] kK mol~! =| 5798 kJ mol !

Comment. In each case these values of A;G© agree closely with the calculated values in Exercise
4.19(b).

E4.21(b)  CO(g) + CH30H(l) — CH3COOH(l)

AH® =) vAtH® ()
—484.5kI mol ! — (—=238.66 kI mol~!) — (=110.53kImol 1)
—135.3TkJ mol !

ASE =) uSe0)
=159.8JK "mol™! — 126.8J K ' mol™' — 197.67JK~! mol™!
= —164.67JK " mol™!

AG® = AL H® —TAS®

= —1353TkImol~! — (298K) x (—164.67J K~ mol™1)

—135.3TkJ mol ! 4+ 49.072kJ mol ! =| —86.2kJ mol~!

E4.22(b) The formation reaction of urea is
Cgr) + %Oz(g) + Na(g) + 2Ha(g) — CO(NH2)2(s)
The combustion reaction is

CO(NH2)2(s) + %02(g) — CO,(g) + 2H,0(1) + Ny (g)

AcH = AfH® (CO,, g) + 2A¢H® (H20,1) — AfH© (CO(NH»)5, s)

AtH® (CO(NHp)2, s) = AfH® (COy, g) + 2A¢H® (Hy0, 1) — AcH(CO(NHy)s, s)
= —393.51kImol™" + (2) x (—285.83kJmol™!) — (—632kI mol™ 1)
= —333.17kJ mol !

AS© = 8T (CONHa)y, 5) — S, (C. gr) — 355 (02, 2) — 57 (N2, @) — 25,7 (Hy, g)

=104.60JK ' mol™! — 5.740J K~  mol ™! — 1(205.138 T K~ mol ™)
—191.61 7K™ " mol ™' — 2(130.684 K~ mol™")
= —456.687JK ! mol~!
AfG® = AfH® —TA:S©
= —333.17kImol™! — (298 K) x (—456.687J K" mol™")
= —333.17 kI mol ! + 136.093 kJ mol !

—[—197kJmol ™!
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E4.23(b) (a) AS(gas) = ann(E) = (

E4.24(b)

E4.25(b)

E4.26(b)

INSTRUCTOR'S MANUAL

21g
Vi 39.95 gmol !

=3.029JK~' =[3.0JK™!
AS(surroundings) = —AS(gas) =| —3.0J K~! [reversible]

AS(total) = [0]

(b) (Free expansion)

AS(gas) =|+3.0J K~! [S is a state function]

A S (surroundings) = @ [no change in surroundings]

AS(total) =

©  grv=0 so AS(gas)=|0]
A S (surroundings) = @ [No heat is transfered to the surroundings]
AS(total) =[0]

Because entropy is a state function, we can choose any convenient path between the initial and final
states.

) x (8.314JK ' mol~!)In2

Choose isothermal compression followed by constant-volume heating

Vi Tt

AS =nRIn| — C In{ —

" “<Vi>+” Vom “(n)
=—-nRIn3+nCy ynln3

=n(Cy,m —R)In3 Cyn= %R for a diatomic perfect gas

AS=3nRIn3
C3Hg(g) +502(g) — 3CO2(g) +4H0(1)
AG® =3AtGE(COy, @) +4A;G® (Hy0,1) — AfG© (C3Hg, ) — 0
= 3(—394.36 kI mol™ ") + 4(—237.13 kI mol ™) — 1(—23.49kI mol ™)
= —2108.11kJ mol ™!
The maximum non-expansion work is ’ 2108.11 kJ mol~! | since |lwe| = |AG|
Tc
=1--=
(a) ¢ T

(b)  Maximum work = &|gy| = (0.500) x (1.0kJ) =] 0.50kJ

(© Emax = €rev  and  |wmax| = |gn| — |5]c,min|
|QC,min| = |gn| — |Wmax]|
=1.0kJ — 0.50kJ

~[051]
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P4.1

Solutions to problems
Assume that all gases are perfect and that data refer to 298 K unless otherwise stated.

Solutions to numerical problems

(a) Because entropy is a state function AysS(1 — s, —5°C) may be determined indirectly from the
following cycle

AysS(1—5,0°C)
—_— 5

H,0(1, 0°C) H,0(s, 0°C)
ASlT lASS
AusS(1—>5,—5°C .

H,0(1, —5°C) 2nSU=s 756 i 0, —5°0)

AgsSA — s, =5°C) = AS] + Ays S — 5, 0°C) + AS

T,
AS; = Cpm()In % [6f = 0°C, 6 = —5°C]

T
ASs=Cpm(s)In —

Tt
T
ASi+ ASs=—ACpIn— With AC) = Cpm() = Cpm(s) = +37.3J K mol™!
f
—ApsH
AusSA — s, Ty) = ——
Tt
—AgusH T
Thus, AysS(1— s, T) = ———— — ACpIn —
T¢ T¢
—6.01 x 103 Jmol ™! o 268
= —(373JK " "mol™ ") X In —
273K 273

=[—21.3JK ' mol™!

At H(T) = —AH + Ay H (Ty) — AH;
AH + AHs = Cpm()(Ty = T) + Cpm($)(T — T) = ACy(Ty — T)
At H(T) = Ay H(T) — ACp(Ty = T)

AfusH(T)  ApusH (Tt T —T,
Thus, ASgy = fusT( ) _ fus H (Tt) + ACP( f)
6.01kJ mol~! o 268 — 273
= +(37.3JK 'mol ™) x [
268K 268

=[421.7JK ' mol™!

ASioal = (21.7—=21.3)JK ' mol™! = +0.4TK ™" mol™!
Since ASioa1 > 0, the transition I — s is spontaneous at —5°C

(b) A similar cycle and analysis can be set up for the transition liquid — vapour at 95°C. However,
since the transformation here is to the high temperature state (vapour) from the low temperature
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state (liquid), which is the opposite of part (a), we can expect that the analogous equations will
occur with a change of sign.

T
AusS(1— g, T) = AusS( — g Tp) + ACpIn
b

AvapH T 1 -1
= +ACpln—, ACp=-41.9JK™ ‘mol
Ty Ty
40.7 kJ mol ! 368
AgsSU1— g, T) = TIII;O — @1.9JK "mol™!) x In T

= +109.7J K~ " mol~!
. _AvapH(T) _ _AvapH(Tb) _ ACp(T —Ty)

ASeur = T T T
—40.7kJmol~! R 368 — 373
= ———— ] - (=41.9JK " mol ) x | ————
368K 368
—|—111.27K " mol !

ASiotal = (109.7 — 111.2)JK ' mol ™! = ] —1.5JK " mol™! \

Since ASioa < 0, the reverse transition, g — 1, is spontaneous at 95°C.

L C,nmdl I bT T
P4.2 ASy = / Zrm@ 9] = / (“ + ) dT = aln<—2> + (T —T))
T T T T T

a=9147JK ' mol™ !, h=75x10"2JK Zmol~!

300K
ASy = (91.47JK Tmol™!) x 1
m = ( mol ) x n(273K

) +(0.075JK 2mol™ 1) x (27K)

=107JK ' mol~!

Therefore, for 1.00mol, | AS = +11 JK! ‘
P4.8
AS ASqr AH AT AA AG
Process (a) +5.8JK™! —5.8JK™! 0 0 —17k] —1.7KJ
Process (b) +5.8JK™! —1.7JK! 0 0 —17k] —1.7kJ
Process (¢) +3.9JK™! 0 -84 x10°J —41K ? ?

Process (a)

AH = AT =0/ [isothermal process in a perfect gas]

ASIOt = 0 = AS + ASSUIT

Vf -1 -1 2OL 1
AS:ann(v) [4.17] = (1.00mol) x (8.314J K~ mol )xln(lO—L =|+5.8JK

1

A = A8 =

AA =AU —TAS[36] AU = 0 [isothermal process in perfect gas]

AA=0-(298K) x (5.76JK 1) =| 1.7 x 10°]J
AG=AH -TAS=0—TAS =|—-1.7x10°]
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Process (b)

AH = AT = 0| [isothermal process in perfect gas]
AS=|+58JK"| [Sameas process (a); S is a state function]

ASqur = BUT i = —q = —(—w) = w [First Law with AU = 0]
surr
w = —pexAV
s 1 103 m3 _ 5
= —(0.50atm) x (1.01 x 10° Paatm™ ") x (20L — 10L) x - = —5.05 x10J
= {surr

—5.05 x 10?J -
ASqurr = —298K =|—1.7JK
AA =|—-1.7x10°]

AG =|—1.7x103] [same as process (a); A and G are state functions]
Process (c)

AU = w [adiabatic process]
W= —pexAV = —5.05 x 10?7 [same as process (b)]

AU —5.05 x 1027 -
AU =nCy mAT AT = x —|—406K

"Cvm (1.00mol) x (3) x (83147K~" mol~1)

Ty = T, — 40.6 K = 298 K — 40.6K = 257K

Tt Vi
AS =nCy mln T [20] + nR In 7 [17]

1

1

298K

20L
8314JK 'mol™) x In[ =— ) =|+3.9TK"!
sk mor an( L)

ASsurr = @ [adiabatic process]

3 1 1 257K
= (1.00 mol) x > X (8.314J K" "mol™ ") x In + (1.00 mol)

AA and AG cannot be determined from the information provided without use of additional relations
developed in Chapters 5 and 19.

AH = nCpmAT Cpm=Cym+R=3R

(1.00mol) x (3) x (8.314IK " mol™!) x (—40.6K) =| —8.4 x 10°J

P4.9 SE(T) = 85 (298K) + AS
£ dr o a c T, 1 (1 1
AS= [ Cpm—= —4b+—=)dT =aln = 4+b(T—T) — =c| — — —
le pm le (T+ +T3) aln 22 +b(Ty = 1) = 3¢ =

+
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373
(@ SZ(B373K) = (192.45JK 'mol™!) 4+ (29.751 K~ mol ') x ln<ﬁ)

+(25.10 x 1073 JK 2 mol™ ") x (75.0K)

1 5 -1 -1 1 1
+ (1) x (1.5 x 105 TK~" mol 1) x ((373.15)2 - (298.15)2)

= ] 200.7J K~ mol™!

773
(b) S (773K) = (192.45JK ' mol™!) + (29.75 K~ mol™) x ln<ﬁ)

+(25.10 x 1073 JK 2 mol™") x (475K)

+ () x (155 x 105 TK~" mol 1) x (ﬁ — ﬁ)

—[232.0JK" ol

T
P4.10 AS depends on only the initial and final states, so we can use AS = nCp n In ?f [4.20]
i
_ q I?Rt )
Since g =nCpm(Ty — T;), Ty =T, + =T+ (gq=1tV =1"Ry)
nCp.m ntp,m

Thatis, AS = nCpmIn| 1+ I*Rt
at 1s, =n n _—
p-m nCpmT;

500 g

Since n

(1.00 A)2 x (1000 Q) x (15.0 s)>

AS = (7.87mol) x 24.4JK 'mol™") x In{ 1 +
(7.87) x (24.4TJK-1) x (293K)

= (192JK™ ") x (In1.27) = | +45.4JK~!

For the second experiment, no change in state occurs for the copper; hence, AS(copper) = 0.
However, for the water, considered as a large heat sink

I’R 1.00 A)Z x (1000 £ 15.
AS(water)z%z Tt _ (1.004) ngg?{ ) x 1509) _ +51.2JK!

[1J=1AVs=1A%Qs]

P4.12 (a) Calculate the final temperature as in Exercise 4.14(a)
n1 Ty +noT; 1
Tp = 122 = (T + Tp) = 318K [n) = ny)]
ny 4+ np 2

2

Ty Ty Ty
AS=n1Cpmln — +n2CpmIn — =n1Cpmln
Ti Tip i1T2

200 3182
—(— 8 ) 753K Tmol™Y) xIn[ ——— ) =|+17.0JK"!
18.02 gmol ! 273 x 363

[n1 =ny]
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(b) Heat required for melting is
niApsH = (11.1mol) x (6.01 kI mol~!) = 66.7kJ

The decrease in temperature of the hot water as a result of heat transfer to the ice is

q 66.7kJ
nCpm  (11.1mol) x (75.3JK~!mol~1)

AT = =79.8K

At this stage the system consists of 200 g water at 0°C and 200 g water at (90°C — 79.8°C) =
10°C (283 K). The entropy change so far is therefore

AS nAHfus+ c o 283K
= — n n——
Ty P 363 K

11.1 mol) x (6.01 kJ mol~! 283K

_ ((LImob x ¢ MOl ) ) 4 (11,1 mol) x (7537 K=" mol=!) x In[ 22X

273K 363K

— 244JK ' —2081JK ! = +3531K!

The final temperature is Ty = %(273 K+ 283 K) = 278 K, and the entropy change in this step is

AS =nCpml Ty (11.1) x (753K 1 x 1 278" +0.27JK !
=n n = . X . XM\ —————— = .

P T T 273 x 283
Therefore, overall, AS = 35.3JK~' +0.27JK~ ! =| +36JK!

P4.15 AcH® =) v AfH® (1) [2.41]
J

ArH®(298K) =1 x AfH® (CO, g) + 1 x AfH® (Hy0,2) — 1 x AfH® (CO,, g)

= {—110.53 — 241.82 — (—393.51)} kimol ™! = ] +41.16 kJ mol ™!
AS© = Z V1SS () [4.22]
J

ArST(298K) =1 x ST (CO, g) + 1 x ST (Hy0,2) — 1 x §(COz,2) — 1 x ST (Hy, g)

= (197.67 + 188.83 — 213.74 — 130.684) ki mol ~! =| +42.08J K~ mol~!
398K
ArH® (398K) = A H® (298K) + / AcCp dT [2.44]
298 K

= ArH® (298K) + ArCp AT [heat capacities constant]
ArCp=1xCpm(CO,g) +1xCpmH20,8) —1x Cpm(CO2,8 —1xCpm(Hy, g
= (29.14 4 33.58 — 37.11 — 28.824)JK ' mol~! = =3.21 7K~ " mol ™!

AHO (398K) = (41.16 kI mol ™) + (=3.21JK ' mol™1) x (100K) = | +40.84kJ mol !

For each substance in the reaction

AS=Cpml It =Cpml 398 [4.20]
= n|— | = n\ —— .
p-m T; p-m 298K
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Thus
T
ArSC (398K) = ArSC (298K) + D vyCpm() ln(%)
7 i
398 K
= ArST(298K) + AC) ln<m)

(42.01TK "mol™) + (=321 TK ' mol™!) = (42.01 — 0.93) JK~' mol™!

— | +41.08J K" mol ! |

Comment. Both A;H® and A.S© changed little over 100K for this reaction. This is not an
uncommon result.

Sm(T) = Sm(0) +f
0

Perform a graphical integration by plotting C /7T against T and determining the area under the
curve.

T cC,mdl
—PM " 14.19]

Draw up the following table

T/K 10 20 30 40 50 60 70 80
(Cpm/T)/AK ' mol™) 0209 0722 1215 1564 1.741 1.850 1.877 1.868

T/K 90 100 110 120 130 140 150 160
(Cpm/T)/TK 'mol™) 1.837 1.796 1.753 1.708 1.665 1.624 1.584 1.546

T/K 170 180 190 200
(Cpm/T)/TK ' mol™) 1508 1.473 1.437 1.403

Plot Cp m/T against T (Fig. 4.2(a)). Extrapolate to T = O using Cp m = aT?3 fitted to the point at

T = 10K, which gives a = 2.09mJ K2 mol~!. Determine the area under the graph up to each T
and plot Sy, against T (Fig. 4.2(b)).

T/K 25 50 75 100 125 150 175 200
{ST— S5}/ 925 4350 8850 13500 178.25 219.0 257.3 2935
(K 'mol™h

The molar enthalpy is determined in a similar manner from a plot of Cj, i against T by determining
the area under the curve (Fig. 4.3)

200K
H (200K) — HE (0) = f CpmdT =|32.00kJ mol !
0

Solutions to theoretical problems

Refer to Fig. 4.5 of the text for a description of the Carnot cycle and the heat terms accompanying
each step of the cycle. Labelling the steps (a), (b), (c), and (d) going clockwise around the cycle
starting from state A, the four episodes of heat transfer are
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(Com/T)/(JK > mol ")

i
200

r
150

Figure 4.2

Figure 4.3
V V]
(a) qhanThln—B Ih —nRIn—=
Va Ty Va
(b) 0 [adiabatic]
\% \%
(c) qcanTcln—D i :ann—D
Ve Tc Ve
(d) O [adiabatic]
d VBV
Therefore fl e = KL =nRIn B*D
T T, T. VaVe
VBV VBV T \¢ T \ €
However, B> _'B'D _ (¢ x (=2 [2.34 of Section 2.6] =1
VaVc  VcVa Th Tc

dg
Therefore T =0

If the first stage is replaced by isothermal, irreversible expansion against a constant external pressure,
g = —w = pex(VB — Va) (AU = 0, since this is an isothermal process in a perfect gas)

. N
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4dh Pex
Theref — == Vg -V,
erefore, T (Th>x( B 'A)

% . . . . .
However, pex (VB — VA) < nRTj In V_B because less work is done in the irreversible expansion, so
A

Vo d
7§—<nR1n—+nR1 D _ 0. Thatis, ¢ 2L <0
Ve T

Comment. Whenever an irreversible step is included in the cycle the above result will be obtained.
Question. Can you provide a general proof of this result?

The isotherms correspond to 7 = constant, and the reversibly traversed adiabats correspond to
S = constant. Thus we can represent the cycle as in Fig. 4.4.

Temperature

M S>
Entropy Figure 4.4

In this figure, paths 1, 2, 3, and 4 correspond to the four stages of the Carnot cycle listed in the text
following eqn 4.7

The area within the rectangle is

Vi
Area = yg TdS = (T, — Te) x (Sy — S1) = (Ty, — T)AS = (Ty, — T)nR1n V—B
A

(isothermal expansion from Vj to Vg, stage 1)

_Tc

T v 1%
But, w(cycle) = eq = [ — nRTyIn — [Fig. 4.5] = nR(Ty, — Te) In —
Va Va

Therefore, the area is equal to the net work done in the cycle.

T T
AS =|nCpmin Ff +nCpmln Tf [4.20] [T is the final temperature, T = %(T}1 + To)]
h

C

In the present case, Ty = %(500 K +250K) =375K

T2 (Ty + To)? 500 g
AS =nCpmln —— = nCpml = 24.4JK ' mol™!
"pm Mg TP UL T (63.54gmL1> x mol )
3752
xIn| ——— | =[4+22.6JK!
500 x 250
g=f+yz

dg=df +ydz+zdy=adx —zdy+ ydz+zdy =adx + ydz
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Comment. This procedure is referred to as a Legendre transformation and is essentially the method
used in Chapter 5 to express the differentials of H, G, and A in terms of the differential of U.

P4.27 (a) According to eqns 2.43, 4.19, and 4.39:

30K )
AHw(T) = Hn(T) — Hp(0) = / Cp(T)dT  where Cp(T) = aT> (1 _e BT )
0K

30K
Sm(T) = /()K @ dT and AGu(T)=Gn(T)—Gn0) = AHn(T) — TSn(T)

The integral computations are easily performed with the built-in numerical integration capabil-
ities of a scientific calculator or computer software spreadsheet. Computations at ten or more
equally spaced temperatures between 0 K and 30 K will produce smooth-looking plots.

150 6
T 100 - Sk
e}
£ —.E
~ &
T 5o - S Eln _
0 L 0 L
0 10 20 30 0 10 20 30
TIK K
0
n
5
£
= 20 .
=]
S
3
—40 ' '
0 10 20 30
TIK

(b) According to the law of Dulong and Petit the constant pressure heat capacity of Ce;SirO7
(11 moles of atoms per mole of compound) is approximately equal to 11 x 3 x R =
274TK " mol™!. The experimental value at 900 K equals 287] K~ ! mol~!. The law of Dulong
and Petit gives a reasonable estimate of the heat capacity at very high temperature.

Solutions to applications
P4.29 @ AG® =AH® —TAS®
ArH® = AfH® (sec-C4Hy) — AfH ® (tert-C4Ho)
= (67.5—51.3)kJmol~! = 16.2kJ mol ™!
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ArS®E = 8T (sec-C4Hy) — S5 (tert-C4Ho)
= (336.6 —314.6)JK ' mol™! =22.0J K~ mol™!
AGE =162k mol™! — (700K) x (22.0 x 103 kJ K~ mol™ 1)

=[0.8kJmol ™!

(b)) AH® = ArH® (C3Hg) + AfH® (CH3) — AfH © (tert-C4Hog)
AHE = (2042 4+ 145.49 — 51.3) kI mol~! = 114.6 kI mol !
ArS€ = (267.05+ 194.2 — 314.6) JK ' mol ™! = 146.7J K~ mol~!
AGE =114.6kImol~! — (700K) x (0.1467kJ K~ ' mol™1)

=|11.9kJ mol~!

(¢) AH® = AfH® (CoHy) + AfH © (CoHs) — A¢H© (tert-C4Ho)
AHE = (5226 4+ 121.0 — 51.3) kI mol ~! = 122.0kJ mol !
ArS© = (219.56 + 247.8 — 314.6) JK ' mol ™! = 152.8J K~ mol~!
AGE =122.0kImol~! — (700K) x (0.1528 kKJ K~ ' mol™!)

=[15.0kJmol~!

The minimum power output that is needed to maintain the temperature difference 7y, — T occurs
whendp/dT; =0

dlw| d

= = - —11
p o & (Ignl — Igcl) [9-11]

= 2 (gl P10 1) = & (e | T
dr \™ {gel de \" | Te
Ti d Ti

(B el (T are
T dr T

At constant T},

dp Ty 4 3 Th

= = (== ) (kATY) + 4kAT3 (2 —1

dT, <Tc2>< c)+ c\T.

This is a minimum when equal to zero. Simplifying yields
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5 The Second Law: the machinery

Solutions to exercises
Discussion questions

See the solution to Exercise 3.14(a) and Example 5.1, where it is demonstrated that 77 = a/ Vnz1 for
a van der Waals gas. Therefore, there is no dependence on b for a van der Waals gas. The internal
pressure results from attractive interactions alone. For van der Waals gases and liquids with strong
attractive forces (large a) at small volumes, the internal pressure can be very large.

The relation (dG/0T), = —S shows that the Gibbs function of a system decreases with T at
constant p in proportion to the magnitude of its entropy. This makes good sense when one considers
the definition of G, which is G = U + pV — TS. Hence, G is expected to decrease with T in
proportion to S when p is constant. Furthermore, an increase in temperature causes entropy to
increase according to

f
AS =/ dgrev/T
i

The corresponding increase in molecular disorder causes a decline in th Gibbs energy. (Entropy is
always positive.)

The fugacity coefficient, ¢, can be expressed in terms of an integral involving the compression factor,
specifically an integral of Z — 1 (see eqn 5.20). Therefore, we expect that the variation with pressure
of the fugacity coefficient should be similar, in a very qualitative sense, to the variation with pressure
of the compression factor itself. Comparison of figures 1.27 and 5.8 of the text shows this to be roughly
the case, though the detailed shapes of the curves are necessarily different because ¢ is an integral
function of Z — 1 over a range of pressures. So we expect no simple proportionality between ¢ and Z.
But we find ¢ < 1 in pressure regions where attractive forces are expected to predominate and ¢ > 1
when repulsive forces predominate, which in behavior is similar to that of Z. See Section 5.5(b) for
a more complete discussion.

Numerical exercises

1 (8V) <1) (8V>
od=—X —_— KT =—|\— X _—
v - \ar ), % )y
<8S) <8V>
2) = (%) =[-av
op )t oT /,

bt

Pi

=nRT ln(ﬁ)
Vi

72
= (2.5 x 1073 mol) x (8.314J K" mol™") x (298 K) x ln(—>

100
— 2035 =

pi _ Vi
at constant temperature, — = —

AG = nRTln(
ri W
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0G G 0G;
E5.6(b) (—) =-S5 (—f) = —S¢ and ( 1> = -5
oT » oT » oT »
0Gt 0Gj
AS=85—-8i=——| +
oT » oT »

|G =Gy IAG
__{ aT }p__( aT ),,

9
=——{-7314+428T/K}J
aT{ + /K}

=|—42.8JK!

E5.7(b) See the solution to Exercise 5.7(a). Without knowledge of the compressibility of methanol we can
only assume that V = V(1 — k7 p) & V. Then

AG=VAp

3

m 25g
p = — SO V =
v p  0.791gcm—3

3

=31.61cm’

1m
106 cm3

AG = (31.61cm?) x (

[+52u]

) x (99.9 x 10° Pa)

V .
E5.8(b) (a) AS= ann(7f> = nR1n<ﬂ> [Boyle’s Law]
i Pt
Taking inverse logarithms

pr = pie” 25/"R = (150kPa) exp — <

— [z74ed]

—(=15.0JK™
(3.00mol) x (8.314JK—! mol—1)

ri

(b)) AG =nRT1n(
pi

) =—-TAS [AH =0, constant temperature, perfect gas]

= —(230K) x (=15.0JK™ 1

= +3450] =

E5.9(b) Ap = puf — pj = RT ln<ﬁ>
pi

= (8.314JK 'mol™!) x (323K) x 1n<

=[2.71kJmol~!

E5.10(b) 10 =u® + RT1n<ie)
p

252.0
92.0

_ o e
n=pu +RT1n<pe>

+
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u—uo = RTln<£> [i E¢:|
4 p

nw—p’=RTh¢
= (8.314JK 'mol™!) x (290K) x In(0.68)

= —929.8Jmol !
=-930Jmol~! or |—0.93kImol™!
3 —1 1m3
B (16000m mol ) X\ 1h6 .3
E5.11(b) B = — —— <10 Cm)
RT (8.314TK~!'mol~!) x (100K)
=|-1922 x 1077 Pa~!|
¢ = eBrt

~o o (1:924x1077 Pa~) x (62x10° Pa)

~ o 1193
—7x107® or of the order of

E5.12(b)  AG =nVpAp =VAp

3

) Im ) 3

= 200Pam® =

E5.13(b)  AG, = Rﬂn(ﬁ)
Di

= (8.314JK ' mol™1) x (500K) x ln<

=[+2.88kJ mol !

G RT
E5.14(b) V= (—) [510]=| — + B +C'p+ D’p2
ap Jr P

100.0 kPa
50.0kPa

which is the virial equation of state.

S a
E5.15(b) (—) - (—p>
v /) r oT )y

For a Dieterici gas

RTe—a/RTVm
Vm _b

) [
Vi

p:

Vm_b

77
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Vit _
AS:/ Tas = R (14 -4 e-a/RVar (Yms=b
Voot RV T Vini — b

Vm,f
For a perfect gas AS = R In

m,i
AS for a Dieterici gas may be greater or lesser than AS for a perfect gas depending on T and the
magnitudes of @ and b. At very high T, AS is greater. At very low T, AS is less.

Solutions to problems
Solutions to numerical problem

For the reaction

Na(g) +3Ha(g) — 2NH3(2) A:G® =2A¢G® (NH3, g)

T
@ AGZ(B00K) =TtAG®(T) + (1 —1)AH® (T) |:Problem 51,7 = T]

C

_( 500K

- _ —1
298'15K>x(2)x( 16.45kI mol 1)

500K »
1= 220 ) o (2) x (—46.11kJ mol
+( 298.15K>X()X( 6-11kJmol )

= 5517+ 62.43kImol~! =| +7kImol~!

1000 K
298.15K
(1 1000K

()  AG®(1000K) = ( > x (2) x (—16.45kJ mol~ 1)

~ 298.15K

= (—110.35 +217.09) kI mol ™! =| +107kJ mol~!

Solutions to theoretical problems

) x (2) x (—46.11kJmol™ 1)

We start from the fundamental relation
dU =TdS — pdV [2]

But, since U = U (S, V), we may also write

U U
U = (— dS+(— dv
s )y v )

Comparing the two expressions, we see that

oU oUu
— ) =T and — | =—-p
S Jy aV Jg

These relations are true in general and hence hold for the perfect gas. We can demonstrate this
more explicitly for the perfect gas as follows. For the perfect gas at constant volume

dU = Cy dT
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and

_erev_CVdT
T T

du U CydT
Then| —< ) =|\—=) =———~=T
T

For a reversible adiabatic (constant-entropy) change in a perfect gas

ds

dU =dw = —pdV

oU
Therefore, | — ) = —p
v )
0 oT
P5.8 _p) = —( — | [Maxwell relation]
S )y v )

! (),

= ——————[chain relation] =
: as
(5),

[inversion]

” [chain relation]

(), (%), e ] ppau
_ W—P [inversion twice] = |:<_> - i|
T(au) Y

T
oH oH 0S oH
P5.10 <—> = (—) (—) +<—> [Relation 1, Further information 1.7]
op Jr a8 /, \op Jr ap Js

dH =T dS + V dp [Problem 5.6]

aH OH
dH=(—) dS+(—=—) dp (H = H(p, ) ompare

oH oH
Thus, | — ) =T, | — | = V [dH exact]
0S » op Js

o . oH as 0% .
Substitution yields, | — | =T | — ) +V =|-T | — ) + V |[Maxwell relation]
op T ap T p

(@) For pV =nRT

A% R oH —nRT
— | = n—, hence ar) +V =@
or /), p op Jr

p
(b) F nRT _an ke 6]
or p = — — [Table 1.
P V —nb V2
T — p(V —nb) N na(V — nb)

nR RV?

79
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oT p na 2na(V — nb)
R = — + —
v ), nR  RV? RV3
Theref d T Vi Lo -T v
erefore, 5 A =y + V[inversion] = o Tna(V—nb) +
v ), nR T RV?2 RV3
which yields after algebraic manipulation
2 2
<8H> B "b—(%)A L_q_nb
3 B 2 AT
Plr 1= (%)

b
Whenv— <1, A~ 1and

m

2na 2na 1 2na p 2pa
= — X =~ — X =
RTV ~RT =V RT  nRT R2T?

b — (2na
Therefore, <8—H> ~ n—(zRaT)
ap r 1 - (R2PT2)

For argon, a = 1.337 L% atm mol_z, b =3.20 x 10_2Lmol_1,

2na () x (1.0mol) x (1.337L%atmmol~2) 0111
RT (8206 x 10-2LatmK~!mol—!) x (298K) =

2) x (10.0at 1.337L2 at 12

2) x ( atm) x ( atm mol™ <) 0045

2pa
R2T? 18206 x 10-2Latm K~ mol-1) x (298 K)]*

o 20 x 1072) — (0.11)}L
oHY\ {320 x 1077 — (0.11)} :-0.0817L=

Hence, | —
( ap )T 1 —0.045

oH
(a_) Ap ~ (—=8.3Jatm™") x (1atm) =
pr

AH =~

ap
P5.12 =T|—) —p[5.38
T ( 3T )V p [5.8]
RT BRT .. . .
+ 5 [The virial expansion, Table 1.6, truncated after the term in B]

T Ve V2

dp R  BR  RT (9B p  RT (3B

=) =0t >+t =) ==+

oT )y Vm VZ  VE\OT ), T VZ\oT),

RT? <8B) _ RT?AB
Vv

Hence, 7 = — | —
"= vz \or VZAT
Since 7 represents a (usually) small deviation from perfect gas behaviour, we may approximate Vp,

RT p> AB
Vin & — AR X —
p R = AT
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From the data AB = ((—15.6) — (—28.0)) cm® mol ™! = +12.4 cm? mol ™!

Hence,
1.0atm)% x (12.4 x 1073 L mol~!
@ oy = —oam” x {24 x mol ) _[30 % 103 atm
(8.206 x 102 L atm K—! mol~!) x (50K)
(b) T X p2; soat p = 10.0atm, 7 =

Comment. In (a) w7 is 0.3 per cent of p; in (b) it is 3 per cent. Hence at these pressures the
approximation for Vy, is justified. At 100 atm it would not be.

Question. How would you obtain a reliable estimate of 77 for argon at 100 atm?

oU oH
P5.13 Cy = (—) and Cp = (—
T )y aT ),

aC 92U 92U 9 [oU
vV Jp T avaT — aTaVv T \aV J; )y
1%

P)
aCy\ 22U U (9 (93U
ap Jr dpdT  dTap \dT \dp Jr )y
d (dU\ [0V
-G (). (55),), =0 =0

oC oC
Since Cp = Cy + R, <—p> = (—V> forx =porV

0x T 0x T
dCy d*U dCy

T~ dr?’ dT

T through a nonlinear relation. See Chapter 20 for further discussion of this point. However, for
a perfect monatomic gas, U is a linear function of T'; hence Cy is independent of 7. A similar
argument applies to Cp.

Cy and Cj, may depend on temperature. Since is nonzero if U depends on

(b) This equation of state is the same as that of Problem 5.12.
aC 32U 9
L = (2L} [Part ()]
oV Jr 0TV aT )y
d RT? (0B
=\ | 5 [Problem 5.12]
oT Vg \0T )y v
_ 2RT (8B> N RT? (9’B
Vr% oT Jy Vn% T2 v

_ | RT (9*(BT)
vz \ or? v

9
P5.15 ar =T (8—;’,) — p[5.8]
14
RT
p= V” - x e /KT [Table 1.6]

—n
T 8_p _ nRT « o= an/RTV | na y nRT w e—a/RTV _ nap
aT ), ~ V —nb RTV =V —nb RTV
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__ nap
T RTV

ar — O0asp - 0, V- o0, a > 0,and T — oo. The fact that 77 > 0 (because a > 0)

Hence, | 71

. . . . . oo e oU
is consistent with a representing attractive contributions, since it implies that (W) > 0 and the

T
internal energy rises as the gas expands (so decreasing the average attractive interactions).

G
P5.17 dG = (—) dp=Vdp

pt
G(pr) — G(pi) = f Vdp
pi
In order to complete the integration, V as a function of p is required.

oV
(—) = —krV (given), so dlnV = —«dp
ap Jr

Hence, the volume varies with pressure as

14 b4
/ dinV = —KT/ dp
Yo Di

or V.= Ve “T(P=P) (V =V when p = p))

pr pr
Hence, / dG = / Vdp = VO/ e—kr(p=pi) dp
p pi

i

KT

1 — e—*r(Pe—pi) 1 — e kTAP
Glpp) =G(p)+ Vo) x| ———— ] = G(p) + (Vo) X Ter

IfkpAp <1, 1 —e *T4P x~ ] — (1—krAp+ %K%Apz) =Kk Ap — %K%Apz

1
Hence, |G’ = G + VyAp <1 — EKTAP)

For the compression of copper, the change in molar Gibbs function is

1 MAp 1
AGpm = VmAp |1 — EKTAP =l—)x|1- EKTAP
)

B ( 63.54 g mol ™!

1
_O2OREMOL ) (500 x (1.013 x 105 P 1= kA
8.93x106gm3)x( ) x (1013 x a)><< 2T p)

(360.33) x (1 3erap)
If we take k7 = 0 (incompressible), AG, = +3601J. For its actual value

LkerAp = () x (0.8 x 107 atm™") x (500atm) = 2 x 10~
1 — k7 Ap = 0.9998

Hence, AG, differs from the simpler version by only 2 parts in 104 (0.02 per cent)
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1 A% 1
P5.1 == B
n e ()
N

Vv

The only constant-entropy changes of state for a perfect gas are reversible adiabatic changes, for
which

pVY = const

Then, a_p _ iconst — ) x const _rp
v Jg av vv J v+l 14

-1 +1
Therefore, kg = ——— = —
v (—_Vp) yp
14
Hence, | pyks = +1
P5.21 S =S(T, p)

a8 a8
ds = (—) dT + (—) dp
aS N
TdS:T(—> dT+T(—> dp
aT p ap J)r
aS aS oH 1 oH
Use|— ) = — — | ==xCp —— | =T, Problem 5.6
oT b oH p aT » T a5 p

0S8 1%
<_) = — <—> [Maxwell relation]
op Jr oT »

v
Hence, TdS = C,dT — T (ﬁ) dp =’deT —aTVdp
p

For reversible, isothermal compression, 7 dS = dgrey, dT = 0; hence

dgrev = —aTV dp

pr
Grev = / —aTVdp =|—aTVAp| [« and V assumed constant]
Pi

For mercury
grev = (—1.82 x 1074 K1) x (273K) x (1.00 x 107*m™3) x (1.0 x 108 Pa) =|—0.50kJ

P5.25 When we neglect b in the van der Waals equation we have

_ RT a
P= Vi Vr%
and hence

a
RT Vi

Z=1-

Then substituting into eqn 5.20 we get

wo= |55 )or= [ e
n = _— p: —p
0 p 0 pRTVm
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In order to perform this integration we must eliminate the variable Vi, by solving for it in terms of p.
Rewriting the expression for p in the form of a quadratic we have

RT a

Ve Vn+-—=0
p p

m

The solution is

1 1
Vin = 3 (RT/p + ;,/(RT)2 - 4ap>

applying the approximation (R T)? > 4ap we obtain
1 ( RT RT )
Vm==z|—=£—
2\p p
Choosing the + sign we get

RT
Vmm = —— which is the perfect volume
p

Then

p a ap
1 = ——d =| -
ne /0 RT2 P T | T (RT2

For ammonia a = 4.169 atm L2 mol 2
4.169 atm L2 mol—2 x 10.00 atm

Ingp = —
(0.08206 L atm K—'mol~! x 298.15K)?2
= —0.06965
¢ = 0.9237 = !
P

f =¢p =0.9237 x 10.00 atm =

v, T RT 4pg\'/?
P5.27 The equation of state Prm _ 1+ ar issolvedfor Vp={— ) |1+ 1+ =P o}
RT Vin 2p

[\

Z—1 D1 4T .

R
p p pVm 1+(1_|_4pq>”2

R

PrzZ—1 2g [P dp
Ing = o= | ——
o\ P 0 14 (14 %2)

4pg\'? R(a—1
Defining,a =1 + 1+ﬂ ,dp:M
R 2q

4 /fa—1
lnqb:/ ( >da [a =2, when p = 0]
2

da, gives

a

1 4pq 172 1 4pq 172
=a—2-In-a=(14+— —1—In{ =1+ — —
a n2a ( + R) n 3 + R +2

2el(1+4pg/R)7~1)

(14 42)

Hence, | ¢ =

172

+
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P5.28

4
This function is plotted in Fig. 5.1(a) when % « 1, and using the approximations

Figure 5.1(a)

X A~ 1/2 1 -1 o1 _
e ~1+x, (14+x) ~1+§x, and (I14+x)" ~1—-x [x<k1]

pPq
~ 1 —
¢ + %

When ¢ is plotted against x = 4 pg /R on alinear rather than exponential scale, the apparent curvature
seen in Fig. 5.1(a) is diminished and the curve seems almost linear. See Fig. 5.1(b).

2

—

-2 2
fx) = 2609004 (14217 Figure 5.1(b)

Solution to applications
Wadd,max = ArG [4.38]

T
AGE(37°C) = tAGC (T + (1 — 1) ALHC (T)) |:Problem 51, 7= 7}

C

310K -1 310K 1
= |z ) x(—6333kJmol" ")+ {1 — ———— ) x (—=5797kImol™ ")
298.15K 298.15K

= —6354kImol !

The difference is A;G© (37°C) — A;GE (T,) = {—6354 — (—6333)} kImol ™! =| —21 kI mol !

Therefore, an additional 21 kJ mol ™! of non-expansion work may be done at the higher temperature.
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P5.31

P5.32
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Comment. As shown by Problem 5.1, increasing the temperature does not necessarily increase the
maximum non-expansion work. The relative magnitude of A;G® and A, H© is the determining
factor.

The Gibbs—Helmbholtz equation is
d (AG AH
()=

so for a small temperature change

AG®E AH® AGE AGE AHS
A(r>—rATandr2=rl r

T ) 12 B T,  T2AT
AG® AH® AT AGR AGE 1 1
SO/d r :_/ r 5 and r~190 — r~220 +ArHe< _ >
T T T190 1220 Tioo  Tx0

- o T - T
_ 190 190
MGy = AeGrg 7~ + AcH (1 - %>

For the monohydrate

190K 190K
S -1 —1
ArG19O = (462kJmol ) X (m) + (127kJm01 ) X (1 — m) s
ArG 3y =[57.2kI mol !
For the dihydrate
190K 190K
S -1 -1
ArGl90 = (694k]m01 ) X <m> + (ISSkJmol ) X (1 — m) ,
ArG 5y =|85.6kI mol !
For the monohydrate
190K 190K
S -1 —1
ArGl90 = (932kJm01 ) X (m) + (237kJm01 ) X (1 — m) ,

ArG o =|112.8kI mol

The change in the Helmholtz energy equals the maximum work associated with stretching the polymer.

Then
dwmax =dA = —fdl

For stretching at constant T

__(PAY _ (U (S
f== <W>T T <W)T - (E)T

assuming that (dU/dl)7 = 0 (valid for rubbers)
3S 3 3kpl?

=7(—=) =7(=) {- c

=1 (5 =7 (i) | ve]

3k
[ 3kl =_<3kBT>l
Na? Na?

This tensile force has the Hooke’s law form f = —kyl with kg = 3k T/Naz.

+
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E6.4(b)

6 Physical transformations of
pure substances

Solutions to exercises
Discussion questions

Referto Fig. 6.8. The white lines represent the regions of superheating and supercooling. The chemical
potentials along these lines are higher than the chemical potentials of the stable phases represented by
the colored lines. Though thermodynamically unstable, these so-called metastable phases may persist
for a long time if the system remains undisturbed, but will eventually transform into the thermo-
dynamically stable phase having the lower chemical potential. Transformation to the condensed
phases usually requires nucleation centers. In the absence of such centers, the metastable regions are
said to be kinetically stable.

At 298 K and 1.0 atm, the sample of carbon dioxide is a gas. (a) After heating to 320K at constant
pressure, the system is still gaseous. (b) Isothermal compression at 320 K to 100 atm pressure brings
the sample into the supercritical region. The sample is now not much different in appearance from
ordinary carbon dioxide, but some of its properties are (see Box 6.1). (c) After cooling the sample to
210K at constant pressure, the carbon dioxide sample solidifies. (d) Upon reducing the pressure to
1.0 atm at 210 K, the sample vapourizes (sublimes); and finally (e) upon heating to 298 K at 1.0 atm,
the system has resumed its initial conditions in the gaseous state. Note the lack of a sharp gas to liquid
transition in steps (b) and (c). This process illustrates the continuity of the gaseous and liquid states.

First-order phase transitions show discontinuities in the first derivative of the Gibbs energy with
respect to temperature. They are recognized by finite discontinuities in plots of H, U, S, and V
against temperature and by an infinite discontinuity in Cj. Second-order phase transitions show
discontinuities in the second derivatives of the Gibbs energy with respect to temperature, but the first
derivatives are continuous. The second-order transitions are recognized by kinks in plots of H, U, S,
and V against temperature, but most easily by a finite discontinuity in a plot of C, against temperature.
A X-transition shows characteristics of both first and second-order transitions and, hence, is difficult
to classify by the Ehrenfest scheme. It resembles a first-order transition in a plot of C, against 7', but
appears to be a higher-order transition with respect to other properties. See the book by H. E. Stanley
listed under Further reading for more details.

Numerical exercises

Assume vapour is a perfect gas and Ayap H is independent of temperature

o AwpH (11
R Sl R

p R T T*
1 1 R *
P p— + ln p_
T T* AwpH p
1 8.314JK ! mol! 58.0
= =+ X In
2932K = 32.7 x 103 Jmol—! 66.0

=3378 x 1073 K™!

! — 296K = [23°C]

T=——=
3.378 x 1073 K~!
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d AS
E6.5(b) P _ 2om
dT AVp
dp Ap
AfysS = AV (ﬁ) ~ AVmE

assuming AgysS and AV, independent of temperature.

_ _ (1.2 x 10°Pa) — (1.01 x 107 Pa)
AgusS = (152.6 cm® mol™! — 142.0 cm® mol !
fus = (152.0cm™mo cm” mol ™) 42926K —427.15K

3

1
— (10.6cm® mol™ 1) x (%) x (521 x 109 PaK™!)
cm-

—552Pam’ K~ mol~! =[5.57K~ mol~!|

AusH = TAS = (427.15K) x (5.52J K" ' mol™!)

=[2.4kImol ™!

AvapH
E6.6(b U dlnp = dT
(b) se/ np / RT3

AvapH
In p = constant — —Yp

RT

1
Terms with T dependence must be equal, so

3036.8K  AypH
T/K —  RT

AvapH = (3036.8 K)R = (8.314T K~ ' mol™!) x (3036.8 K)

=125.25kI mol !

AvapH

E6.7(b)  (a) RT(2.303)

log p = constant —

Thus

AvapH = (1625K) x (8.314JK ™" mol™!) x (2.303)

= |31.11kJmol~!

(b) Normal boiling point corresponds to p = 1.000 atm = 760 Torr

log(760) = 8.750 — 92
0 =8.750 — ——
g T/K
1625
2222 _ 8750 — 1og(760)
T/K
1625 _
T/K — 276.87

~ 8.750 — log(760)
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AgysV Te AfysV TsApM 1

E6.8(b) AT = 21 ap = HEMu T p,y = 22D xA(—)
ApysS ApsH Aps H P

[Tt = —3.65 4+ 273.15 = 269.50K]

_ (269.50K) x (99.9 MPa)M ( 1 1 )

AT —
8.68 kJ mol—! 0.789gcm~3  0.801 gcm—3

3
— (3.1017 x 106 K PaJ~" mol) x (M) x (4.01899 cm/g) x [ ——
109 cm3

= (+5.889 x 107 2KPam?J ™' g ' mol)M = (+5.889 x 102K g~ mol) M
AT = (46.07gmol_1) X (+5.889 x 10_2Kg_1 mol)

=+271K
Ty = 269.50K +2.71K =|272K
dm dn
E6.9(b — =—x M, h =
(b) 3 = q < Mmo wheren AvHl

dn _ dq/dt  (0.87 x 10>Wm™2) x (10*m?)

dt  AvpH 44.0 x 103 Jmol !
=197.77s~ 137 mol
= 200mols~!

dm Y BRI -1

’r = (197.7mols™ ") x (18.02gmol™ ")

=|3.6kg s7!

E6.10(b) The vapour pressure of ice at —5°C is 3.9 x 1073 atm, or 3 Torr. Therefore, the frost will sublime.
A partial pressure of 3 Torr or more will ensure that the frost remains.

E6.11(b) (a) According to Trouton’s rule (Section 4.3, eqn 4.16)

AvapH = 85K ' mol™) x T}, = 85JK ' mol™!) x (342.2K) = | 29.TkJ mol !

Pressure

Temperature Figure 6.1
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(b) Use the Clausius—Clapeyron equation [Exercise 6.11(a)]

P2 AvapH 1 1
In(£22) =207 o (- —
p1 R n N

At T» = 342.2K, pr = 1.000 atm; thus at 25°C

29.1 x 103 Jmol~! 1 1 _
lnp1=—< X o )x( ):—1.509

8.314JK—1 mol~! 2082K 342.2K

p1 = = 168 Torr

At 60°C,

29.1 x 103 I mol~! 1 1 _
Inp; =— X — = —0.276
8.314TK—! mol—! 3332K 342.2K

p1= = 576 Torr

TiApM (1
E6.12(b) AT = T;(10MPa) — T;(0.1 MPa) = ——~F_ A (-)
Agys H 1Y

Agys H = 6.01kJ mol ™!

AT =

(273.15K) x (9.9 x 10°Pa) x (18 x 1073 kgmol 1)
6.01 x 103 Jmol—!

1 1
x {9.98 x 102kgm=3  9.15 x 102 kgm—3}
= —0.74K

Tr(10MPa) = 273.15K — 0.74K =
E6.13(b) AvapH = AvapU + Avap(pV)
AvapH = 43.5kI mol ™!
Avap(pV) = pAvapV = p(Vgas — Viig) = pVgas = RT [per mole, perfect gas]
Avap(pV) = (8.314J K~ mol™!) x (352K) = 2927 J mol~!

Avap(pV) _ 2.927kImol ™!

Fraction = =
AvapH 43.5kJ mol~!
=16.73 x 1072 |=6.73 per cent
M 18.02 gmol !

=1.803 x 107> m3 mol !

E6.14(b Vip = — =
(b) T 0 79994 x 103 gm—3

2yVm _ 2(7.275 x 1072Nm~!) x (1.803 x 10~ m> mol )
rRT ~ (20.0 x 102m) x (8.314JK—! mol—!) x (308.2K)
=5.119 x 1072

p = (5.623kPa)e® 05119 _[592kpa

+
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E6.15(b) y = Loghr = £(0.9956 gem ™) x (9.807ms™%) x (9.11 x 107> m)

-3
% (0.16 x 1073 m) x (M>
gcm—3

~7.12x 102Nm™!|

2y 22239 x 103 Nm™ 1)
E6.16(b in — ==L =
b} Pin = pou (220 x 109 m)

=204 x 10°Nm 2 ={2.04 x 10’ Pa

Solutions to problems
Solutions to numerical problems
d_P _ AvapS _ AvapH

P6.3 = = 6.6, Cl ti
(a) T AvapV ToAvapV [ apeyron equation]
14.4 x 103 Jmol !
— X 0o — | +5.56kPaK"!
(180K) x (14.5 x 1073 — 1.15 x 10~4) m3 mol~!
d AvapH d
(b) _p: vap x p |11, with dlnp=—p
dTr RT? P

(144 x 103 Tmol 1) x (1.013 x 10° Pa)
- (8.314J K~ mol—1) x (180K)2

The percentage error is | 2.5 per cent

P6.5 (a) (8“—(1)) — (a“(s)> = V(D) — Vi ()[6.13] = MA (l>
op Jr op Jr 1Y

1 1
= (18.02gmol ") x ( - )
1.000gecm=3  0.917gem—3

= +5.42kPaK !

—|-1.63cm’mol™! |

9 on(l
o ( M(g)> _( m)) = Vin(2) — Vin (D)
T T

ap ap
1 1 1
= (18.02gmol™ ") x —

0.598gL-!  0.958 x 103 gL~!
=[+30.1Lmol™!

At1.0atm and 100°C, (1) = u(g); therefore, at 1.2 atm and 100°C p(g) — (1) &~ A Vvap Ap =
(as in Problem 6.4)

(30.1 x 10> m> mol™ 1) x (0.2) x (1.013 x 10° Pa) ~ |+ 0.6 kJ mol !

Since u(g) > w(l), the gas tends to condense into a liquid.

Vv
P6.7 The amount (moles) of water evaporated is ng = p]{%
The heat leaving the water is ¢ = nAyap H
—9q

The temperature change of the water is AT =

, n = amount of liquid water
nCpm
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P6.9

P6.11

—PH,0V AvapH

Therefore, AT =
RTnCpm

—(23.8 Torr) x (50.0L) x (44.0 x 103 Jmol™ 1)

INSTRUCTOR'S MANUAL

250 ¢ >

(62.364 L Torr K1 mol~1) x (298.15K) x (75.5 )K=} mol~1) x (220t

=-2.7K

The final temperature will be about

(a) Follow the procedure in Problem 6.8, but note that T, = | 227.5°C | is obvious from the data.

(b) Draw up the following table

0/°C 574 1004 133.0 1573 203.5 2275
T/K 330.6 373.6 406.2 430.5 476.7 500.7
1000K/T 3.02 268 246 232 210 2.00
Inp/Torr  0.00 230 369 461 599 6.63

The points are plotted in Fig. 6.2. The slope is —6.4 x 10K, so R

implying that AyapH = | +53kJ mol !

In(p/ Torr)

2.4 2.6 2.8 3.0

(10°/T)K

(a) The phase diagram is shown in Fig. 6.3.

-6

—8 H N H
300 400 500 600
T/K

0 100 200

— Ay H
Y _ 6.4 x 10°K,

Figure 6.2

| @ Liquid—Vapour
® Solid-Liquid

Figure 6.3
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(b) The standard melting point is the temperature at which solid and liquid are in equilibrium at
1 bar. That temperature can be found by solving the equation of the solid—liquid coexistence
curve for the temperature

1 = p3/bar + 1000(5.60 + 11.727x)x,

So 11727x% +5600x + (4.362 x 107/ = 1) =0
The quadratic formula yields

411721 |'?
L _ =560+ ((S600)? —4(11727) x (=D} _ Tl E {1 + 756007 }

2(11727) - ) ( 151670207)

The square root is rewritten to make it clear that the square root is of the form {1 + a}l/ 2 with

a < 1; thus the numerator is approximately —1 + (1 + %a) = %a, and the whole expression
reduces to

x A~ 1/5600 = 1.79 x 1074

Thus, the melting point is

T =(14x)T3 = (1.000179) x (178.15K) =|178.18K

(¢) The standard boiling point is the temperature at which the liquid and vapour are in equilibrium
at 1 bar. That temperature can be found by solving the equation of the liquid—vapour coexistence
curve for the temperature. This equation is too complicated to solve analytically, but not difficult

to solve numerically with a spreadsheet. The calculated answer is |7 = 383.6 K

(d) The slope of the liquid—vapour coexistence curve is given by
dp _ AwpH

dp
dT — TAypV®©

0 AvpH® = TAvapvedT

The slope can be obtained by differentiating the equation for the coexistence curve.
dp dlnp  dlnpdy
ar ~ Par T P74y ar
dp (10418
ar y2
p
X —
(%)

At the boiling point, y = 0.6458, so

— 15.996 + 2(14.015)y — 3(5.0120)y? — (1.70) x (4.7224) x (1 — y)0‘70>

d
P 2851 x 10 2barK~! = 2.851 kPaK~!

daT
30.3 — 0.12) Lmol ™!
and AvpHE = (383.6K) x [ YLmol™ ) ) gs1kPak ") = [33.0k mol !
1000 L m—3
P6.12 The slope of the solid—vapour coexistence curve is given by

d A H® d
e _ L@ so AgpH® = TAsubVe—p
dT  TAgpV dTr

The slope can be obtained by differentiating the coexistence curve graphically (Fig. 6.4).
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P6.16
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60 1_26593“0]%07378[\ ................................
50 5 .":..1.,999... ;
P SR SN S
< H H B
& - : -
—~ . H H
y : H H
E U e RS
20 b
10 b i, Lo PRI T Jeveiens o
144 146 148 150 152 154 156
T/K Figure 6.4
d
EP _ 441Pak!
dT

according to the exponential best fit of the data. The change in volume is the volume of the vapour

RT 8.3145J K~ ! mol~! 150K
vy = XL _ mol ) x (130K) _ 47 g3
p 26.1Pa

So

AabHE = (150K) x (47.8m>) x (4.41PaK 1) =3.16 x 10*Jmol ™! =|31.6kJ mol~!

Solutions to theoretical problems

0AG 0Gg 3Gy
— ) =—) - =Vg—Vyu
p Jr ap Jr op Jr
Therefore, if Vg = Vi, AG is independent of pressure. In general, Vg # Vg, so that AG is nonzero,
though small, since Vg — Vy is small.

1%
Amount of gas bubbled through liquid = I’;_T
(p = initial pressure of gas and emerging gaseous mixture)

Amount of vapour carried away = —

m
Mole fraction of vapour in gaseous mixture = — M oV
M T RT
. Wi mPA RT
Partial pressure of vapour = p = —=— = , =
mo PV ( ) C mA+1 PVM
M " RT PVM

For geraniol, M = 154.2gm01_1, T =383K,V =5.00L, p=1.00atm, and m = 0.32 g, so

(8206 x 1072 LatmK ™" mol™!) x (383K)
~ (1.00atm) x (5.00L) x (154.2 x 10=3 kgmol—1)

Therefore

(0.32 x 1073kg) x (760 Torr) x (40.76 kg™ 1)
= =9.8 Torr
g (0.32 x 10-3kg) x (40.76kg=1) + 1

=40.76 kg ™!

+



PHYSICAL TRANSFORMATIONS OF PURE SUBSTANCES 95

P6.17 p = poe M&MRT [Box 1.1]
_ AvapH 11
p=pre " X R <T T*> [6.12]

Let T* = Ty the normal boiling point; then p* = latm. Let T = Ty, the boiling point at the
altitude &. Take pp = 1 atm. Boiling occurs when the vapour (p) is equal to the ambient pressure,
that is, when p(T) = p(h), and when this is so, T = Tj,. Therefore, since pg = p*, p(T) = p(h)
implies that

R T Ty

1 1 Mgh

It follows that| — = — + —=>—
Ty Ty TAvapH

where T is the ambient temperature and M the molar mass of the air. For water at 3000 m, using

M = 29gmol_1
11 (29 x 103 kgmol 1) x (9.81 ms~2) x (3.000 x 103 m)
T, ~ 373K (293K) x (40.7 x 103 Jmol—1)
1 1

373K * 1.397 x 104K

Hence, Ty, = (90°C)

P6.20 Sm = Sm (T, p)

as 3S
dSm=—=) a7 + (=2 dp

98 C 08 A%
om ) _ 2P proplem 5.7 ) = —(=—=) [Maxwell relation]
or ), =T o )y T ),

v
dgrey = TdSm = CpmdT — T <—m) dp
P

oT
aq ap AHp
cyzg?lzqm—rma67l=@m—M%xAwnmﬂ
P6.22 C(graphite) = C(diamond) A;G® = 2.8678kJ mol ! at T,

We want the pressure at which A G = 0; above that pressure the reaction will be spontaneous.
Equation 5.10 determines the rate of change of A;G with p at constant T'.

0A:G
9] — ) =AV=(Vpb-Ve)M
p Jr
where M is the molar mas of carbon; Vp and Vg are the specific volumes of diamond and
graphite, respectively.

A+G(T, p) may be expanded in a Taylor series around the pressure p© = 100kPa at T.

NGO (T, p©
#) (p — pe)
T

2)  AG(E, p)=AGE (T, p©) + < op

1 32A Ge(T, pG)
+- [ — (p—p=)Y+06(p—p©)
2 ap -
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We will neglect the third and higher-order terms; the derivative of the first-order term can be
calculated with eqn 1. An expression for the derivative of the second-order term can be derived
with eqn 1.

2A.G Vb Vg
@) _ K_) _ <_) } M = (Vo7 (G) — Vpkr (D)} M [3.13]
i |, i Jr v Jr

Calculating the derivatives of eqns 1 and 2 at Tand p©

( G(T, p )> = (0.284 — 0.444) x om- X ( g) = —1.92cm’ mol ™!
ap T g mol

(azArG(r, o)

= ) = {0.444(3.04 x 10~%) — 0.284(0.187 x 1078)}
p
T

cm3 kPa~! 12.01g
X X
g mol
=156 x 10~ cm? (kPa)_1 mol !
It is convenient to convert the value of A;G < to the units cm? kPamol !

o _1 {8315 x 1072 LbarK~ ! mol™! 103 cm? 10° Pa
ArG® = 2.8678 kI mol - x x
8.315JK~! mol™ L bar

AGE =2.8678 x 10% cm? kPamol ™!
Setting x = p — p©, eqns 2 and 36 give
2.8678 x 10% cm? kPamol ! — (1.92 cm? mol_l)x =+ (7.80 x 10~8 cm? kpa~! mol_l))(2 =0
when A;G(T, p) = 0. One real root of this equation is

x = 1.60 x 10°kPa = p — p© or
p = 1.60 x 10®kPa — 10? kPa

= 1.60 x 10°kPa = | 1.60 x 10* bar

Above this pressure the reaction is spontaneous. The other real root is much higher: 2.3 x 107 kPa.

Question. What interpretation might you give to the other real root?



E7.1(b)

E7.2(b)

E7.3(b)

E7.4(b)

E7.5(b)

7 Simple mixtures

Solutions to exercises
Discussion questions

For a component in an ideal solution, Raoult’s law is: p = xp™. For real solutions, the activity, a,
replaces the mole fraction, x, and Raoult’s law becomes p = ap™.

All the colligative properties are a result of the lowering of the chemical potential of the solvent
due to the presence of the solute. This reduction takes the form pup = ua™ + RT Inxp or pua =
ua® + RT Inap, depending on whether or not the solution can be considered ideal. The lowering of
the chemical potential results in a freezing point depression and a boiling point elevation as illustrated
in Fig. 7.20 of the text. Both of these effects can be explained by the lowering of the vapour pressure
of the solvent in solution due to the presence of the solute. The solute molecules get in the way of
the solvent molecules, reducing their escaping tendency.

The activity of a solute is that property which determines how the chemical potential of the solute
varies from its value in a specified reference state. This is seen from the relation u = w® +RT Ina,
where 11 © is the value of the chemical potential in the reference state. The reference state is either the
hypothetical state where the pure solute obeys Henry’s law (if the solute is volatile) or the hypothetical
state where the solute at unit molality obeys Henry’s law (if the solute is involatile). The activity of
the solute can then be defined as that physical property which makes the above relation true. It can
be interpreted as an effective concentration.

Numerical exercises

Total volume V = npVa +ngVe = n(xaVa + xgVB)
Total mass m = npaMa + ngMp
=n(xaMa + (1 —xa)Mp) wheren =np + np
m
XAMa + (1= xaA)Mp
1.000kg(10° g/kg)

"= (0.3713) x (241.1 g/mol) + (1 — 0.3713) x (198.2 g/mol)
V =n(xaVa +xgVB)

= (4.6701 mol) x [(0.3713) x (188.2cm>mol™") + (1 — 0.3713) x (176.14cm> mol ™ 1)]

~[s3.50m’|

Let A denote water and B ethanol. The total volume of the solution is V = na Va + ngVy

n

= 4.6701 mol

We know Vg; we need to determine n5 and np in order to solve for V4.

Assume we have 100 cm? of solution; then the mass is
m=pV = (0.9687 gcm ™) x (100cm?) = 96.87 g

of which (0.20) x (96.87 g) = 19.374 g is ethanol and (0.80) x (96.87 g) = 77.496 g is water.

77.296 _
np = ——28 430 mol HyO
18.02 gmol !
19.374 _
np & _ 0.4205 mol ethanol

~ 46.07 gmol !
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V —ngVg 100 cm? — (0.4205 mol) x (52.2 cm3 mol 1)
= 2 =V = -
na 4.30 mol

= 18.15cm’>

=[18em’]

Check that pg/xp = a constant (Kp)

XB 0.010 0.015 0.020
(pe/xB)/kPa 82 x 10> 8.1 x 10° 8.3 x 103

KB = p/x, average value is | 8.2 x 10% kPa

In exercise 7.6(b), the Henry’s law constant was determined for concentrations expressed in mole
fractions. Thus the concentration in molality must be converted to mole fraction.

m(A) =1000g, corresponding to

1000 _
nA) = ———8  _1350mol  n(B)=0.25mol
74.1 gmol—!
Therefore,
0.25 mol i
B o = 00182

= 0.25mol + 13.50 mol

using K = 8.2 x 107 kPa [exercise 7.6(b)]

p=0.0182 x 8.2 x 103kPa = 1.5 x 10> kPa

RT*>M  8314JK~'mol™! x (354K)? x 0.12818 kgmol !

K; = -
E = ApH 18.80 x 103 J mol~!

=|7.1Kkgmol ™!

_ RT**M  8314JK ' mol™! x (490.9K)? x 0.12818 kg mol !
 AwpH 51.51 x 103 Jmol~!

=14.99K kg mol !

We assume that the solvent, 2-propanol, is ideal and obeys Raoult’s law.

49.62

~ 50.00

M (C3HgO) = 60.096 g mol ™!

_ 250g

~ 60.096 g mol—!
na n

A
XA = ——— nA +ng = —
nA + np XA

xa(solvent) = p/p* = 0.9924

nA = 4.1600 mol



SIMPLE MIXTURES

1
won ()

= 4.1600 mol <

—1) =3.186 x 1072 mol
0.9924

8.69¢

= =273 1=! =|270 g mol !
3.186 x 10-2 mol gmo £mo

My

E7.10(b) K¢ = 6.94 for naphthalene

mass of B
B =
np

ng = mass of naphthalene - bg

AT (mass of B) x Ky
b= — so Mp=
Ks (mass of naphthalene) x AT

(5.002) x (6.94K kgmol 1) -
= =|178 gmol
(0.250kg) x (0.780K)
np np

E7.11(b) AT =K¢pg and bpp=———— = —
mass of water  Vp

o= 10° kg m™3 (density of solution ~ density of water)

nv I 1
ng = — T =Ki—— K¢ =1.86Kmol " kg

RT RTp

1.86 Kkgmol~!) x (99 x 103 P
- ¢ gmol’ ) x 0 x 10" Fa) =77 x 102K

(8.314JK~1mol~!) x (288 K) x (103 kgm—3)

T; =| —0.077°C
E7.12(b) AmixG =nRT (xpInxa + xp Inxp)
pvV

NAr = NNe, XAr = XNe = 0.5, n=MArFNe = oo

AmixG = pV(3Int+Iinl)=—pvin2

1 3
— (100 x 103Pa) x (0.250L) [ —= ) 1n2
10°L

—AmixG 1731
T T 273K

E7.13(b) AmixG =nRT Y xylnxy [7.18]  ApixS=-nR Y xylnxy [7.19] =
J J

n = 1.00mol + 1.00 mol = 2.00 mol
x(Hex) = x(Hep) = 0.500

= —173Pam® = —17.3]  ApiS = =634 x 1072JK!

—AmixG

Therefore,

AmixG = (2.00mol) x (8.314JK ' mol™") x (298 K) x (0.5001n0.500 + 0.500 In 0.500)

- [z
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ol
AmixS = ————— =|+11.5JK
mx 298 K +

Anix H for anideal solution is zero as it is for a solution of perfect gases [7.20]. It can be demonstrated
from

AmixH = AmixG + T AixS = (=3.43 x 1033) + (298K) x (11.5JK~ 1) = 0]

Benzene and ethylbenzene form nearly ideal solutions, so
AnixS = —nR(xp Inxp + xg Inxp)

To find maximum A xS, differentiate with respect to xa and find value of x o at which the derivative
is zero.

Note that xg = 1 — x so

ApixS = —nR(xalnxpa + (1 —xa) In(l — xp))

dlnx 1
use = -
X
d XA
—(ApixS) = —nR(Inxp +1—In(l —xp) — 1) = —nR1In
dx 1 —xa

=0 WhenxAz%

Thus the maximum entropy of mixing is attained by mixing equal molar amounts of two components.

M Mg 106.169
”_B==’”B/ B ME_YE_ = 1.3591
ng mg/MEg mp Mgy 78.115

"B _T0.7358

mg

Assume Henry’s law [7.26] applies; therefore, with K (N3) = 6.51 x 107 Torr and K (0p) =3.30 x
107 Torr, as in Exercise 7.14, the amount of dissolved gas in 1 kg of water is

103 g p(N2) —7
N,) = = (8.52 x 107 mol T
n(N2) (18.02gm01—1) x (6.51 % 107 Torr) (8.52> 107" mol) x (p/Torr)

For p(Ny) = xp and p = 760 Torr

n(Ny) = (8.52 x 10~ " mol) x (x) x (760) = x(6.48 x 10~ mol)
and, with x = 0.78

n(Np) = (0.78) x (6.48 x 1074 mol) = 5.1 x 10~*mol = 0.51 mmol

The molality of the solution is therefore approximately| 0.51 mmol kg_1 in N». Similarly, for oxygen,

10° g P(02) 6
0,) = — (1.68 x 10~ mol T
n(O2) (18.02gm01—1) x (3.30>< 107Torr> (1.68 > 10" mol) x (p/Torr)

For p(O3) = xp and p = 760 Torr
n(0y) = (1.68 x 107° mol) x (x) x (760) = x(1.28 mmol)

and when x = 0.21, n(O3) ~ 0.27 mmol. Hence the solution will be | 0.27 mmol kgf1 in O).
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E7.16(b)

E7.17(b)

E7.18(b)

E7.19(b)

Use n(COp) = (4.4 x 107 mol) x (p/Torr), p = 2.0(760 Torr) = 1520 Torr
n(COy) = (4.4 x 1072 mol) x (1520) = 0.067 mol

The molality will be about 0.067 mol kg(1 and, since molalities and molar concentration for dilute

aqueous solutions are approximately equal, the molar concentration is about | 0.067 mol L!

M (glucose) = 180.16gm0171
AT = Kibg K¢ = 1.86 K kgmol ™!

10 : -1
2/180.16 gmol 050K
0.200kg

Freezing point will be 0°C — 0.52°C = —0.52°C

The procedure here is identical to Exercise 7.18(a).

A H 1 1 .
Inxg = ——— x| =— — =) [7.39; B, the solute, is lead]
R T* T

5.2 x 10° Tmol ™! 1 1
el X —
8.314J K—! mol~! 600K 553K
—0.0886, implying that xg = 0.92
n(Pb) xpn(Bi)

=" implying that n(Pb) =
n(Pb) T (B mplying thatn(Pb) = ==

AT = (1.86 Kkgmol ') x (

XB

1000 g
208.98 gmol !
Hence, the amount of lead that dissolves in 1 kg of bismuth is

0.92 4.785 mol
n(Pb)=( )1X (092 mo)=55mol, or |llkg

For 1kg of bismuth, n(Bi) = = 4.785 mol

Comment. It is highly unlikely that a solution of 11kg of lead and 1kg of bismuth could in any
sense be considered ideal. The assumptions upon which eqn 7.39 is based are not likely to apply. The
answer above must then be considered an order of magnitude result only.

Proceed as in Exercise 7.19(a). The data are plotted in Fig. 7.1, and the slope of the line is 1.78 cm/
(mgem ™) = 1.78cm/(gL™") = 1.78 x 10 > m* kg~ .

h/cm

Figure 7.1
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Therefore,

(8.314JK ' mol™!) x (293.15K) .
M= =| 14.0 kg mol
(1.000 x 103kgm—3) x (9.81ms~2) x (1.78 x 1072 m*kg~1)

E7.20(b) Let A = water and B = solute.

PA 0.02239 atm
= PA gy = 27T T 9701

= e = 502308 am

aa na
va=— and xp = ——-—

XA na +np

0.920k _ 0.122k
E  _51.05mol  mp=——8 _ _0.506mol

A = 0.01802 kg mol—1 = 0.241 kgmol !

51.05 0.9701
=0.990 yp = =10.980

*A = 5105 +0.506 0.990

E7.21(b) B = Benzene u() = uf () + RT Inxp [7.50, ideal solution]

RT Inxg = (8.314JK ' mol™!) x (353.3K) x (In0.30) =| —3536J mol~!

Thus, its chemical potential is lowered by this amount.
pB = ap ppl42] = yexppp = (0.93) x (0.30) x (760 Torr) = | 212 Torr

Question. What is the lowering of the chemical potential in the nonideal solution with y = 0.93?

PA__ _ _PA (34
pa+ps 760 Torr
pa = (760 Torr) x (0.314) = 238.64 Torr

pB = 760 Torr — 238.64 Torr = 521.36 Torr

as = p_A 238.64 Torr _

PA  (73.0 x 103 Pa) x (101133?1:&) y (76;){30“)

ap = B 521.36 Torr _

PB  (92.1 x 103 Pa) x (101135?1»3) N (762[;()“)

Can 0436
VA= T 0220 [1.98]

E7.22(b)  ys =

XA
ag 0755
=5 _ = _T0968]
VB = s T 0780

Solutions to problems
Solutions to numerical problems

av

P7.3 Vealt = (-) mol ™! [Problem 7.2]
b )0

= 69.38(b — 0.070) cm® mol~!  with b = b/(molkg™})

Therefore, at b = 0.050 mol kg_l, Vet = | —1.4 cm? mol ™!

+
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P7.5

The total volume at this molality is
V = (1001.21) + (34.69) x (0.02)?> cm> = 1001.22 cm?

Hence, as in Problem 7.2,

1001.22 cm3) — (0.050 mol —1.4cm3 mol !
V(H,0) = ¢ em”) = (0.050mol) x (=l.4em mol ) _ ooy m3 mol~!
55.49 mol

Question. What meaning can be ascribed to a negative partial molar volume?

Let E denote ethanol and W denote water; then
V =ngVg + nwVw [7.3]

For a 50 per cent mixture by mass, mg = myy, implying that

ngMg
ngMg = nwMw, or nwy =
Mw
ng Mg Wy
Hence, V = ng Vg + ETETW
Mw
\%4 MgV

which solvestong = —————, nw = ——————
Ve + —MA‘E,X/W VEMw + MgV

ng 1
Furthermore, xg =

ng+nw 1 + Aﬂj—fv
. -1 1 Mg
Since Mg = 46.07 gmol ™" and Mw = 18.02gmol™ ", Mo = 2.557. Therefore
A

xg = 0.2811, xw =1—xg =0.7189
At this composition
VE =56.0 cm> mol ™! Vw =175 cm> mol ™! [Fig.7.1 of the text]

100 cm?
Therefore, ng = = 0.993 mol
(56.0cm3 mol—1) + (2.557) x (17.5cm3 mol—1)

nw = (2.557) x (0.993 mol) = 2.54 mol

The fact that these amounts correspond to a mixture containing 50 per cent by mass of both components
is easily checked as follows

mg = ngMg = (0.993mol) x (46.07 gmol™!) = 45.7 g ethanol
mw = nwMw = (2.54 mol) x (18.02gmol_1) = 45.7 g water

At 20°C the densities of ethanol and water are, pg = 0.789 g cm_3, pw =0.997¢g em 3. Hence,

45.7
Vg = ME_ '8 = of ethanol

oE  0.789gcm—3

45.7
Vw = mwo_ 8 =ofwater

ow  0.997gcm—3
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The change in volume upon adding a small amount of ethanol can be approximated by

AVZ/\dV‘%/VEdnE%VEAnE

where we have assumed that both Vg and Viyy are constant over this small range of ng. Hence

1.00 cm? 0.789 -3
AV ~ (56.Ocm3 mol_l) X (( om?) X ( gcm )) =140.96cm’

(46.07 gmol~1)

AT 0.0703 K
Ki  1.86K/(molkg™!)
Since the solution molality is nominally 0.0096 mol kg_1 in Th(NO3)4, each formula unit supplies

0.0378
0,009 ~ (More careful data, as described in the original reference gives v &~ 5 to 6.)
The data are plotted in Figure 7.2. The regions where the vapor pressure curves show approximate

straight lines are denoted R for Raoult and H for Henry. A and B denote acetic acid and benzene

= 0.0378 mol kg™

P7.7 mp =

P7.9

respectively.

;Extrabolate

5
H
=
XA Figure 7.2
. PA PB » ..
As in Problem 7.8, we need to form yp = —and yg = — for the Raoult’s law activity
XAPA XBPDg
coefficients and yg = p—lz for the activity coefficient of benzene on a Henry’s law basis, with K

determined by extrapolation. We use p} = 55 Torr, pj = 264 Torr and K ;; = 600 Torr to draw up
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the following table:

105

XA 0 0.2 0.4 0.6 0.8 1.0
pa/Torr 0 20 30 38 50 55
ps/Torr 264 228 190 150 93 0

aa(R) 0 036 055 0.69 0091 1.00[pa/pil
ag(R) 1.00 086 072 057 0.35 Olps/pgl
ya(R) — 1.82 136 115 1.14 1.00[pa/xapil
v8(R) 1.00 1.08 120 142 1.76 —I[pr/x8pgl
ag(H) 044 038 032 025 0.16 O[pe/Kz]
ys(H) 044 048 053 063 078 1.00[ps/xsKz]

GE is defined as [Section 7.4]:
GE = Anix G (actual) — AixG(ideal) = nRT (xa Inap +xg Inag) —nRT (xa Inxp + xg In xB)

and witha = yx

GE = nRT (xaInys + xa Inyp).

For n = 1, we can draw up the following table from the information above and RT = 2.69 kJ mol ™!

XA 0 02 04 06 08 10
X Inya 0 012 0.12 0.08 010 O
xgInyp 0 006 011 0.14 o011 O
G®/(kImol™) 0 048 062 059 056 0

P7.11 (a) The volume of an ideal mixture is

Videal = 11 Vm,1 +n2Vm 2

so the volume of a real mixture is

V = Vigea + VE

We have an expression for excess molar volume in terms of mole fractions. To compute partial
molar volumes, we need an expression for the actual excess volume as a function of moles

niny ay(ny —ny)
(n1 +n2)Vy . 0 .

nin aj(ny —n
soV =n1Vmi1+n2Vmo+ 172 (cqﬁ-u)

ny+ny ny+n3
The partial molar volume of propionic acid is
2 _ 2
A% aopns aj(3ny —np)n;
Vi= P = Vm,1+ 5 3
n1)p. T ns (ny +n2) (n1 +n2)

Vi=Vm1+ aoxg +a;(3x; — X2)X§

That of oxane is

Vo=Vmo+ a0x12 +aj(x) — 3x2)x12
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106
(b) We need the molar volumes of the pure liquids
My  74.08 gmol~! 3
Vmi=—=——"———=76.23cm” mol
’ £1 0.97174 gcm*3
86.13 gmol !
and Vi, o = S0 IO 99.69 cm> mol !
“0.86398 gcm 3
In an equimolar mixture, the partial molar volume of propionic acid is
Vi =76.23 + (—2.4697) x (0.500)% + (0.0608) x [3(0.5) — 0.5] x (0.5)> cm?> mol ™!
=175.63 cm> mol !
and that of oxane is
Va = 99.69 + (—2.4697) x (0.500) + (0.0608) x [0.5 — 3(0.5)] x (0.5)% cm? mol~!
=199.06 cm> mol !
P7.13 Henry’s law constant is the slope of a plot of pg versus xp in the limit of zero xg (Fig. 7.3). The

partial pressures of CO; are almost but not quite equal to the total pressures reported above

PCO, = PYco, = p(1 — Yeye)

Linear regression of the low-pressure points gives Ky = | 371 bar

80 : : : e
60
=
5
=
& 40
9
[S8
20 : { :
.y =22603e -2+ 371 .03x
R* =1.000
0 : : :
0.0 0.1 0.2 0.3
X(CO,) Figure 7.3

The activity of a solute is

a _p—B_X)/B
B Ky B

so the activity coefficient is

PB__ YBP
xg Ky xBKy
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P7.16

P7.18

where the last equality applies Dalton’s law of partial pressures to the vapour phase. A spreadsheet
applied this equation to the above data to yield

p/bar ycyc xcyc Yco,
10.0 0.0267 0.9741 1.01
20.0 0.0149 0.9464  0.99
30.0 0.0112 0.9204 1.00

40.0 0.009 47 0.892 0.99
60.0 0.008 35 0.836 0.98
80.0 0.00921 0.773 0.94

GE = RTx(1 — x){0.4857 — 0.1077(2x — 1) + 0.0191(2x — 1)?}
with x = 0.25 gives GF = 0.1021RT. Therefore, since
Anmix G (actual) = Apix G (ideal) + nGF
AmixG = nRT (xpaInxp + xg Inxg) + nGF = nRT(0.251n0.25 + 0.751n 0.75) + nGE
= —0.562nRT +0.1021nRT = —0.460nRT
Since n = 4mol and RT = (8.314JK71 molfl) x (303.15K) = 2.52kJ molfl,

AmixG = (—0.460) x (4mol) x (2.52kImol™!) =[ —4.6kJ

Solutions to theoretical problems

xa dua + xgdug = 0 [7.11, Gibbs—Duhem equation]
Therefore, after dividing through by dxa

0 0
XA (—;LA) + xB (—MB> =0
XA p,T 3XA p,T

or, since dxg = —dxp,as xpo +xg = 1

(3MA) <3MB>
XAl — —xg| — =0
axA p,T axB p,T

GIION _( 9uB _dx
or, = dlnx = —
dlnxa /1 dlnxg/, 7 X

al al
Then,sinceu=u9+RTlnL ( an) —( nfB)
p.T

p©’ \dlnxa b.T " \dlnxp
. BlnpA 3lan
On replacing f by p, (81 ) = (81
XA /p.T B /p.1

If A satisfies Raoult’s law, we can write pp = x4 p, which implies that

d1n pa zalnxA 81an=1+0
dlnxp . T dlnxpy  Odlnxp

a1
Therefore, ( P8 ) =1
ln XB P, T

which is satisfied if pg = xg pg (by integration, or inspection). Hence, if A satisfies Raoult’s law, so
does B.
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—ApisG
Inxa = % (Section 7.5 analogous to equation for In xg used in derivation of eqn 7.39)

dIn 1 d (AgnsG A H
SOA _ DB | Dfus [Gibbs—Helmholtz equation]

dT R dT \ T RT?
/XAdlnxA = /T ArusH AT ArasH ' ar

| 7+ RT? R Jp« T2

—ApsH 1 1
Inxp=———x|=— —
R T T*

The approximations In xpo &~ —xp and T ~ T then lead to eqns 33 and 36, as in the text.

Retrace the argument leading to eqn 7.40 of the text. Exactly the same process applies with aa in
place of xa. At equilibrium

wa(p) = palxa, p+1I0)

which implies that, with & = 1™ + RT In a for a real solution,

p+I1
MZ(p)=uZ(p+H)+RT1naA=uZ(p)+/ Vmdp + RT Inau
p
p+II
and hence that/ Vmdp = —RT Inap
p
For an incompressible solution, the integral evaluates to [TV, so [TV, = —RT Inap
In terms of the osmotic coefficient ¢p (Problem 7.21)
1
HVm:r¢RT r:x—an—B ¢=—x—AlnaA=——lnaA
XA RA XB r

For a dilute solution, np Vi, & V

Hence, I1V = ng¢RT

and therefore, with [B] = "VB M = ¢[BIRT

Solutions to applications

By the van’t Hoff equation [7.40]

cRT

I1=[B]RT =
Division by the standard acceleration of free fall, g, gives

I _ c(R/®T

8 M
(a) This expression may be written in the form

., CcR'T
M

which has the same form as the van’t Hoff equation, but the unit of osmotic pressure (IT) is now
force/area (mass length) /(area time2)  mass
length/ time? length/ time? area
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This ratio can be specified in g cm™2. Likewise, the constant of proportionality (R") would have
the units of R/g

energy K~ mol~! _ (mass lengthz/timez) K~ mol~!

—— = — = mass length K~ 'mol !
length /time length /time

This result may be specified in | gcm K 'mol™!

o R_ 8.31451JK ! mol~!
g 9.80665ms2

1 (10%g 102 cm
0.847844kgm K™ mol — ) x [ ——
kg m

R =84784.4gcm K™ mol™!
In the following we will drop the primes giving
cRT

M
and use the 7 units of g cm™2 and the R units gcm K~ mol™!.

(b) By extrapolating the low concentration plot of IT/c versus ¢ (Fig. 7.4 (a)) to ¢ = 0 we find the
intercept 230 g cm™2/ g cm™>. In this limit van’t Hoff equation is valid so

RT . — RT
—— =intercept or M= ——
n Intercept

7 (84784.4gcm K mol™!) x (298.15K)
" (230gem=2)/(gem—3)

M, =11 x 1052mol”’

Polyisobutylene in chlorobenzene
at low concentrations

500

Intercept: 230 gecm 2 /gem 3

450

{.\ 400

350

(IT/c)/(gem™2/gcm

250

200 1 | 1 | 1 | 1
0.000 0.010 0.020 0.030 0.040

¢/(gem™) Figure 7.4(a)

+
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(¢) The plot of IT/c versus c for the full concentration range (Fig. 7.4(b)) is very nonlinear. We may
conclude that the solvent is . This may be due to the nonpolar nature of both solvent and
solute.

CH3
I

Cl CH, — C

Polyisobutylene in chlorobenzene

7000

6000 —

5000

4000

(I1/¢)/em

3000

2000

1000

0 111 I 111 I 111 I 111 I 111 I 111
0.00 0.050 0.100 0.150 0.200 0.250  0.300
¢/(gem™) Figure 7.4(b)

(d) I/c = (RT/My)(1+ B'c+C'c?

Since RT /M, has been determined in part (b) by extrapolation to ¢ = 0, it is best to determine
the second and third virial coefficients with the linear regression fit

(IT/c)/(RT /My) — 1
C
R =0.9791

=B +C'c

B’ =2l.4cm’ gfl, standard deviation = 2.4 cm> gf1
C' =211cm® g_z, standard deviation = 15 cm® g_2

(e) Using 1/4 for g and neglecting terms beyond the second power, we may write

T\ /2 RT\ 1/2
<?> z(ﬁ_) (1+1B'c)

n
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We can solve for B, then g(B')*> = C'.

)"

—1=1ip%e

ERE
My

RT /M, has been determined above as 230 g crn*z/g cm 3. We may analytically solve for B’
from one of the data points, say, [1/c = 430g cm_2/g cm ™ at ¢ = 0.033 g cm ™.

430 gcm—2/gem ™3
<23Ogcm—2/g cm—3
B — 2 x (1.367 - 1)

0.033gcm—3

1/2
) —1=4B" x (0.033gcm™)

=222cm’ g_1

C = g(B/)Z =0.25 x (22.20m3 g—l)z — 123 cm® g_2

is shown in Fig. 7.4(c). The slope is 14.03 cm? g

196 cm® g_2

1/2 RT
Better values of B and C’ can be obtained by plotting (—) / <_
c

1. B =2 x slope =

n

111

172
) against c¢. This plot

28.0cm> g~ ! [ C’ is then

The intercept of this plot should thereotically be 1.00, but it is in fact 0.916 with a
standard deviation of 0.066. The overall consistency of the values of the parameters confirms that g
is roughly 1/4 as assumed.

6.0

5.0

0.05 0.10 0.15 0.20 0.25
¢/(gem™)

Figure 7.4(c)
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8 Phase diagrams

Solutions to exercises
Discussion questions

What factors determine the number of theoretical plates required to achieve a desired degree of
separation in fractional distillation?

The principal factor is the shape of the two-phase liquid-vapor region in the phase diagram (usually
atemperature-composition diagram). The closer the liquid and vapour lines are to each other, the more
theoretical plates needed. See Fig. 8.15 of the text. But the presence of an azeotrope could prevent
the desired degree of separation from being achieved. Incomplete miscibility of the components at
specific concentrations could also affect the number of plates required.

See Figs 8.1(a) and 8.1(b).

p = constant
Ty
Liquid A and B
T Liquid d 2
T A&B
, Liquid
/_5"‘ Solid B A&B
Tas, Liquid A & B
Solid B Solid AB, Solid A °
and _/1 4_% T,
Solid AB, Eutectic
Solid AB, and Solid A
f
B 0.33 Xe A

XA —> Figure 8.1(a)

p = constant

Xy —> Figure 8.1(b)



PHASE DIAGRAMS

E8.3(b)  See Fig. 8.2.

Liquid
A&B

Liquid (A &B)

Solid B
’ Solid B
Solid B,A

Two solid phases

Solid A
Solid A Solid A,B
Solid A,B
oA Solid B,A

Two solid phases
WO SOTC phiases Two solid phases

A 0.333 X —> 0.666 B
A>B B,A Figure 8.2

Numerical exercises

E8.4(b) P =pa+pB=2xapx+ (1 —xA)pg
P — PR
]
Pan — PB

19kPa — 18 kP
XA = m = A is 1,2-dimethylbenzene

xapk (0.5) x (20kPa) — 0576 ~

YA L bk — ph)xa  18KkPa+ (20kPa — 18kPa)0.5

yg =1—10.526=0.474 ~ 0.5
E8.5(b) pA =yap = 0.612p = xpApx = xa(68.8kPa)
pB=yBp =(1—ya)p =0.388p =xppg = (1 —xa) x 82.1kPa

YAPD xApZ d 0.612 68.8x4
—_— = an =
YBP  XBPp 0.388  82.1(1 — xp)

(0.388) x (68.8)xp = (0.612) x (82.1) — (0.612) x (82.1)xa
26.694xp = 50.245 — 50.245x

50245 xp = 1— 0653 =

XA = T ————
26.694 + 50.245
p= xApZ + xgpg = (0.653) x (68.8kPa) + (0.347) x (82.1kPa) =|73.4kPa
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(a) If Raoult’s law holds, the solution is ideal.
pA = xapx = (0.4217) x (110.1kPa) = 46.43 kPa
pB = xppp = (1 —0.4217) x (94.93kPa) = 54.90 kPa
p = pa + pB = (46.43 + 54.90) kPa = 101.33 kPa = 1.000 atm

Therefore, Raoult’s law correctly predicts the pressure of the boiling liquid and

’ the solution is ideal ‘
DA 46.43 kPa
b =—=————=/04582
®) A== {01 33kPa
yg =1 —ya = 1.000 — 0.4582 =|0.5418

Let B = benzene and T = toluene. Since the solution is equimolar zg = zT = 0.500

(a) Initially xg = zg and xT = zT; thus
p= prE + pr% [8.3] = (0.500) x (74 Torr) + (0.500) x (22 Torr)

=37T0rr+11Torr=
b)  yp= %B[4]= fﬁgi =[077]  yr=1-077=[023]

(¢) Near the end of the distillation
yg =z =0.500 and yT =z =0.500

Equation 5 may be solved for xp [A = benzene = B here]

_ YBPT _ (0.500) x (22 Torr) B
pp + (p7r — pg)ys  (75Torr) + (22 — 74) Torr x (0.500)

xr=1-0.23=0.77

0.23

XB

This result for the special case of zg = zT = 0.500 could have been obtained directly by realizing
that

yg (initial) = xT(final) yr(initial) = xp (final)
p(final) = xp pfs + x1pt = (0.23) x (74 Torr) + (0.77) x (22 Torr) =
Thus in the course of the distillation the vapour pressure fell from 48 Torr to 34 Torr.

See the phase diagram in Fig. 8.3.

(@ ya=
b) xp= VA =
AI¥* HT, AICI3, AI(OH)3, OH™, CI~, H,O giving seven species. There are also three equilibria
AICl; + 3H,0 = AI(OH)3 + 3HCI
AICl; = APt 4301
H,O0 = H' + OH™
and one condition of electrical neutrality
[HT]+ 3[A1*F] = [OH™] 4 [CI ]

Hence, the number of independent components is

C=7-G+1)=[3]
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E8.10(b)

E8.11(b)

E8.12(b)
E8.13(b)

E8.14(b)

E8.15(b)

155

150

145

140

135

130

125

120 A : L !
0 0.2 0.4 0.6 0.8 1.0
XA

Figure 8.3

NH4Cl(s) = NH3(g) + HCl(g)

(a) For this system [Example 8.1] and (s and g).
(b) If ammonia is added before heating, (because NH4Cl, NH3 are now independent) and

(sand g).
(a) Still (NazS0O4, H>O), but now there is no solid phase present, so (liquid solution,

vapour).

(b) The varianceis F =2 —2+4+2 = . We are free to change any two of the three variables,
amount of dissolved salt, pressure, or temperature, but not the third. If we change the amount
of dissolved salt and the pressure, the temperature is fixed by the equilibrium condition between
the two phases.

See Fig. 8.4.

See Fig. 8.5. The phase diagram should be labelled as in Fig. 8.5. (a) Solid Ag with dissolved Sn
begins to precipitate at a1, and the sample solidifies completely at a;. (b) Solid Ag with dissolved Sn
begins to precipitate at b1, and the liquid becomes richer in Sn. The peritectic reaction occurs at by,
and as cooling continues Ag;Sn is precipitated and the liquid becomes richer in Sn. At b3 the system
has its eutectic composition (e) and freezes without further change.

See Fig. 8.6. The feature denoting incongruent melting is circled. Arrows on the tie line indicate
the decomposition products. There are two eutectics: one at xg = , T = ; another at

w =[082) 7 =[75]

The cooling curves corresponding to the phase diagram in Fig. 8.7(a) are shown in Fig. 8.7(b). Note the
breaks (abrupt change in slope) at temperatures corresponding to points a, b, and b;. Also note the
eutectic halts at a; and b3.
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—130
o i e
. : R :
> :
-50 &
~70 &
: SOhd NH? + Nzih
— 00 e e [ S S A E.
0 x(N>Hy) I Figure 8.4
(a) b B (b)
P S
a N ]
800 - Liqud | 7 |/ L______1
.. b a
L + Ag solid 5 miiniainininiuint
contaminated b
O with Sn - 460°C
<6 o971 |
> b2
- AgSn+Ag
L+ Sn L+ Ag;Sn contaminated
sohd\\ solid by with Sn
O o— | | -
200 4 Sn -+ AgzSn solids
Sn Ag;Sn Ag

Temperature, 7'

I

0 0.33 0.67
A XB B  Figure 8.6

Time
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Figure 8.5
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E8.16(b)

E8.17(b)

(a)

Temperature, T’

117

T;

> o

0.33
XB

1
B

Figure 8.7

Rough estimates based on Fig. 8.37 of the text are

(a) xp ~ (b) xaB, ~ (¢) XAB, ~

The phase diagram is shown in Fig. 8.8. The given data points are circled. The lines are schematic

at best.

1000

900

9/°C

800

700

Liquid
Liquid
+
Solid
Liquid
+
Solid
Solid .
1 1 1 1 1 1
0.2 0.4 0.6 0.8
X(ZI‘F4)

Figure 8.8

A solid solution with x (ZrF4) = 0.24 appears at 855°C. The solid solution continues to form, and

its ZrF4 content increases until it reaches x (ZrF,4) = 0.40 and 820° C. At that temperature, the entire
sample is solid.
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The phase diagram for this system (Fig. 8.9) is very similar to that for the system methyl ethyl ether
and diborane of Exercise 8.12(a). (See the Student’s Solutions Manual.) The regions of the diagram
contain analogous substances. The solid compound begins to crystallize at 120 K. The liquid becomes
progressively richer in diborane until the liquid composition reaches 0.90 at 104 K. At that point the
liquid disappears as heat is removed. Below 104 K the system is a mixture of solid compound and
solid diborane.

140 —eeveese

130 ............

120 -

T/K

110 4

100 <

0 x(B>Hg) 1 Figure 8.9

Refer to the phase diagram in the solution to Exercise 8.17(a). (See the Student’s Solutions Manual.)
The cooling curves are sketched in Fig. 8.10.

(a) (b) () (d) (e)
95
93 +
91 |
N
= 89 |-
87 |
85 |
L P

(a) When x4 falls to 0.47, a second liquid phase appears. The amount of new phase increases as xz
falls and the amount of original phase decreases until, at xo = 0.314, only one liquid remains.

Figure 8.10

(b) The mixture has a single liquid phase at all compositions.
The phase diagram is sketched in Fig. 8.11.

Solutions to problems
Solutions to numerical problems

(a) The phase diagram is shown in Fig. 8.12.

(b) We need not interpolate data, for 296.0 K is a temperature for which we have experimental data.
The mole fraction of N, N-dimethylacetamide in the heptane-rich phase (¢, at the left of the phase
diagram) is 0.168 and in the acetamide-rich phase (8, at right) 0.804. The proportions of the two
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P8.6

P8.8

52 F

50 R

9/°C

46

4

40

01 02 03 04 05 06 07 08 09 1.0
XA Figure 8.11

310

305

300

T/K

295

290

0.0 0.2 0.4 0.6 0.8 1.0
x Figure 8.12

phases are in an inverse ratio of the distance their mole fractions are from the composition point
in question, according to the lever rule. That is

na/npg = lg/ly = (0.804 — 0.750)/(0.750 — 0.168) =[0.093

The smooth curve through the data crosses x = 0.750 at|302.5 K |, the temperature point at which
the heptane-rich phase will vanish.

See Fig. 8.13(a). The number of distinct chemical species (as opposed to components) and phases
present at the indicated points are, respectively

b3,2), d2,2), e(4,3), f4,3), g4,3), k(2,2)
[Liquid A and solid A are here considered distinct species.]
The cooling curves are shown in Fig. 8.13(b).
The information has been used to construct the phase diagram in Fig. 8.14(a). In MgCu, the mass

24.3 48.6
t f Mg is (100) x —————— =16, and in MgrCu itis (100) x ———— =43 |
percentage of Mg is (100) x %3+ 127 and in Mg, Cu it is (100) x 1865635

The initial point is a;, corresponding to a liquid single-phase system. At a; (at 720°C) MgCu, begins
to come out of solution and the liquid becomes richer in Mg, moving toward e;. At a3 there is solid
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Liquid A & B
Liquid A & B
Solid B
Liquid A & B
Solid A
Liquid A & B
Solid AB,
° ® Lk
e
Solid A i
®J and 'SOlld AB,
Solid AB, and
Solid B
A
A tot t t B
16% 23% 57%  67% 84%
Yp—> Figure 8.13(a)
T 0.16 023
T
0.57 0.67
0.84
t —> Figure 8.13(b)

MgCu; + liquid of composition e (33 per cent by mass of Mg). This solution freezes without further
change. The cooling curve will resemble that shown in Fig. 8.14(b).

| eutectic: 69.4 at % Si at 1030°C | [8.6]

P8.10  (a) 40.2 at % Si at 1268°C

congruent melting compounds:

CapSi
CaSi

mp = 1314°C

mp = 1324°C [8.7]

’ incongruent melting compound: CaSi,

mp = 1040°C | melts into CaSi(s) and liquid

(68 at % Si)
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() (b)
1200
a
1 ?
800 - bay
3 A
> | 61 :a3 ______
e
400 ! Y
i e3
Cu MgCu, Mg,Cu Mg Time Figure 8.14
(b) At 1000°C the ’phases at equilibrium will be Ca(s) and liquid (13 at % Si). | The lever rule

(c)

gives the relative amounts:
nca g 02-0
Nliq lcn 02-0.13

When an 80 at % Si melt it cooled in a manner that maintains equilibrium, Si(s) begins to appear
at about 1250°C. Further cooling causes more Si(s) to freeze out of the melt so that the melt
becomes more concentrated in Ca. There is a 69.4 at % Si eutectic at 1030°C. Just before the
eutectic is reached, the lever rule says that the relative amounts of the Si(s) and liquid (69.4%
Si) phases are:

nsi _ hig _ 0.80 —0.694

= = =10.53 = relative amounts at T slightly higher than 1030°C
niqg s 1.0 - 0.80

Just before 1030°C, the Si(s) is 34.6 mol% of the total heterogeneous mixture; the eutectic
liquid is 65.4 mol%.

At the eutectic temperature a third phase appears - CaSis (s). As the melt cools at this temperature
both Si(s) and CaSi, (s) freeze out of the melt while the concentration of the melt remains constant.

At a temperature slightly below 1030°C all the melt will have frozen to Si(s) and CaSi;(s) with
the relative amounts:

N Icasi, _ 0.80 — 0.667
NCaSi, lSi 1.0 —0.80

0.665 = relative amounts at T slightly higher than 1030°C

Just under 1030°C, the Si(s) is 39.9 mol% of the total heterogeneous mixture; the CaSi, (s) is
60.1 mol%.

A graph of mol% Si(s) and mol% CaSi;(s) vs. mol% eutectic liquid is a convenient way to show
relative amounts of the three phases as the eutectic liquid freezes. Equations for the graph are
derived with the law of conservation of mass. For the silicon mass,

n - ZSi = Nlig * Wsi + 18i * XSi + NCaSiy * YSi

where n = total number of moles.



122 INSTRUCTOR'S MANUAL

wsj = Si fraction in eutectic liquid = 0.694
xsi = Si fraction in Si(s) = 1.000

ysi = Si fraction in CaSi, (s) = 0.667

zsi = Si fraction in melt = 0.800

This equation may be rewritten in mole fractions of each phase by dividing by n:
zsi = (mol fraction liq) - wg; + (mol fraction Si) - xs; + (mol fraction CaSiy) - ys;

Since, (mol fraction liq) + (mol fraction Si) + (mol fraction CaSiy) = 1
or (mol fraction CaSip) = 1 — (mol fraction liq 4+ mol fraction Si), we may write :

zsi = (mol fraction liq) - wsj + (mol fraction Si) - xg;j
-+[1 — (mol fraction liq 4+ mol fraction Si)] - ys;
Solving for mol fraction Si:
(zsi — ysi) — (wsi — ysi) (mol fraction liq)

XSi — VSi
mol fraction CaSij := 1 — (mol fraction liq + mol fraction Si)

mol fraction Si :=

These two eqns are used to prepare plots of the mol fraction of Si and the mol fraction of CaSi;
against the mol fraction of the melt in the range 0-0.65.

Freezing of Eutectic Melt at 1030°C
0.7 T T T T

—— mol fraction CaSi,
»»»»»»»» mol fraction Si

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

mol fraction liq
Freezing Proceeds toward Left

Figure 8.15

Solutions to theoretical problems

P8.12 The general condition of equilibrium in an isolated system is dS = 0. Hence, if « and § constitute
an isolated system, which are in thermal contact with each other

dS =dSq +dSg =0 (a)
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P8.14

P8.16

Entropy is an additive property and may be expressed in terms of U and V.
S=SWU,V)

The implication of this problem is that energy in the form of heat may be transferred from one phase
to another, but that the phases are mechanically rigid, and hence their volumes are constant. Thus,
dV =0, and

2, 2S 1 1
dS = (22) U+ (=L ) dUp = — dUy + — dUg [5.4]

1 1
But, dUy = —dUpg; therefore T = T_ﬂ or

o

Solutions to applications

C=1; hence, F=C—-P+2=3-P

Since the tube is sealed there will always be some gaseous compound in equilibrium with the con-
densed phases. Thus when liquid begins to form upon melting, P = 3 (s, |, and g) and F = 0,
corresponding to a definite melting temperature. At the transition to a normal liquid, P = 3 (I, [’,
and g) as well, so again F = 0.

The temperature-composition lines can be calculated from the formula for the depression of freezing
point [7.33].

RT*2xg
AT ~ ———
AfusH

For bismuth

RT*2  (8.314JK 'mol™!) x (544.5K)?

=227K
A H 10.88 x 103 Tmol—!
For cadmium
RT*? 314TK ' mol™! 4K)?2
=(83 J mol™') x (594 K) _ 483K

AfusH 6.07 x 103 Jmol !

We can use these constants to construct the following tables

x(Cd) 01 02 03 04
AT/K 227 454 68.1 908 (AT = x(Cd) x 227K)
/K 522 499 476 454  (T; =T; — AT)

xBi) 01 02 03 04
AT/K 483 966 145 193 (AT = x(Bi) x 483K)
T,/K 546 497 449 401 (T =Ty — AT)

These points are plotted in Fig. 8.16(a).

The eutectic temperature and concentration are located by extrapolation of the plotted freezing
point lines until they intersect at e, which corresponds to 7g ~ 400 K and xg(Cd) ~ 0.60.

Liquid at a cools without separation of a solid until a” is reached (at 476 K). Solid Bi then seperates,
and the liquid becomes richer in Cd. At a”’(400K) the composition is pure solid Bi + liquid of
composition x(Bi) = 0.4. The whole mass then solidfies to solid Bi + solid Cd.

+
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Figure 8.16

1 l
(a) At460K (pointa”), % = l((_i; ~ |5 | by the lever rule.
n(s

(b) At375K (point a””) there is . The cooling curve is shown in Fig. 8.16(b).

Comment. The experimental values of 7g and xg(Cd) are 417 K and 0.55. The extrapolated
values can be considered to be remarkably close to the experimental ones when one considers
that the formulas employed apply only to dilute (ideal) solutions.

(a) The data are plotted in Fig. 8.17.

10

8
S °x
g oy
~
59

x (0.500,6.02 MPa)

0.2 0.4 0.6 0.8 1.0
xory Figure 8.17

(b) We need not interpolate data, for 6.02 MPa is a pressure for which we have experimental data.
The mole fraction of CO, in the liquid phase is 0.4541 and in the vapour phase 0.9980. The
proportions of the two phases are in an inverse ratio of the distance their mole fractions are from
the composition point in question, according to the lever rule. That is

nig v 0.9980 — 0.5000

=-=———=1/10.85
nyvap I 0.5000 —0.4541

(a) As the solutions become either pure methanol (xXpethanol = 1) or pure TAME (Xmethanol = 0),
the activity coefficients should become equal to 1 (Table 7.3). This means that the extremes in
the range of In y (x) curves should approach zero as they do in the above plot (Fig. 8.18(a)).
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methanol

0.5 ]
0 0 1
Xmethanol Figure 8.18(a)
1000 i | I I
800 1
=+ 600 1
S
=)
=
% 400 — i
200 1
0 | | | |
0 0.2 0.4 0.6 0.8 1
Xmethanol Figure 8.18(b)
(b) The large positive deviation of GF from the ideal mixture (G}:Zieal = 0, Section 7.4) indicates

(o)

()

that the mixing process is unfavorable. This may originate from the breakage of relatively strong
methanol hydrogen bonding upon solution formation.

GE fora regular solution is expected to be symmetrical about the point Xyethanol = 0.5. Visual
inspection of the GE(xmetham]) plot reveals that methanol/TAME solutions are approximately
“regular”. The symmetry expectation can be demonstrated by remembering that HIE = WxaxB
and S¥ = Ofora regular solution (Section 7.4b). Then, for aregular solution Gf‘n = HIE — TSE] =
HE = Wxaxg, which is symmetrical about x = 0.5 in the sense that Gg atx = 0.5 — § equals
GE atx =0.5+3.

Azeotrope composition and vapor pressure:

Xmethanol = Ymethanol = 0.682
P =11.59kPa

when Xpehanol = 0.2, P = 10.00 kPa.

The vapor pressure plot shows positive deviations from ideality. The escaping tendency is stronger
than that of an ideal solution.
To get the Henry’s law constants, estimate values for the targets of Ppethanol at Xmethanol = 0
and PraME at Xmethanol = 1.

+
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Soln composition (Xpeihanol)

" Vapor composition (Ymethanol)

Total Vapor Pressure/kPa

1 1 1
0.4 0.6 0.8 1

Methanol Mole Fraction (X,eqhanol ©F Ymethanol) Figure 8.18(c)

P = Pethanot + Prame

Vapor Pressure /kPa

Xmethanol Figure 8.18(d)

For methanol in TAME (eqn 7.26):

dpP,
Kmethanol = <—d methanol) =45.1kPa
*methanol Xmethanol =0
For TAME in methanol:

Koane = (dPTAME> _ < d PramE
xtaME=0

—) = 25.3kPa
dxTAME dXmethanol Xmethanol =1
(e) According to eqn 6.3, the vapor pressure should increase when the applied pressure is increased.
For TAME:
P — p* ¢VmAP/RT
(6.09 kPa) (131,78 e rmot ™) (2.0bar) /[(83.145 1 e bar kT mot ™) (288.15K]]

= 6.16kPa

The applied pressure increases the vapor pressure by about 1%, molecules have been “squeezed”
out of the liquid phase and into the gas phase but only to a slight extent.
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9 Chemical equilibrium

Solutions to exercises
Discussion questions

The thermodynamic equilibrium constant involves activities rather than pressures. See eqn 9.18 and
Example 9.1. For systems involving gases, the activities are the dimensionless fugacities. At low
pressures, the fugacity may be replaced with pressures with little error, but at high pressures that is
not a good approximation. The difference between the equilibrium constant expressed in activities and
the constant expressed in pressures is dependent upon two factors: the stoichiometry of the reaction
and the magnitude of the partial pressures. Thus there is no one answer to this question. For the
example of the ammonia synthesis reaction, in a range of pressures where the fugacity coefficients
are greater than one, an increase in pressure results in a greater shift to the product side than would
be predicted by the constant expressed in partial pressures. For an exothermic reaction, such as the
ammonia synthesis, an increase in temperature will shift the reaction to the reactant side, but the
relative shift is independent of the fugacity coefficients. The ratio In(K»> /K1) depends only on A H.
See eqn 6.26.

The physical basis of the dependence of the equilibrium constant on temperature as predicted by the
van’t Hoff equation can be seen when the expression AG® = ALH® — TA,S® is written in the
form RInK = —AH® /T + A:S®. When the reaction is exothermic and the temperature is
raised, In K and hence K decrease, since T occurs in the denominator, and the reaction shifts to favor
the reactants. When the reaction is endothermic, increasing 7 makes In K less negative, or K more
positive, and products are favored. Another factor of importance when the reaction is endothermic is
the increasing entropy of the reacting system resulting in a more positive In K, favoring products.

A typical pH curve for the titration of a weak base with a strong acid is shown in Figure 9.1. The
stoichiometric point S occurs on the acidic side of pH = 7 because the salt formed by the neutralization
reaction has an acid cation.

Buffers work best when § & A’, that is when the concentrations of the salt and acid are not widely
different. An abundant supply of A~ ions can remove by reaction any H3O™ supplied by the addition
of an acid; likewise an abundant supply of HA can remove by reaction any OH™ supplied by addition
of base.

Indicators are weak acids which in their undissociated acid form have one colour, and in their
dissociated anion form, another. In acidic solution, the indicator exists in the predominantly acid
form (one colour), in basic solution in the predominantly anion form (the other colour). The ratio of
the two forms is very pH sensitive because of the small value of pK, of the indicator, so the colour
change can occur very rapidly with change in pH.

Numerical exercises
AGE = —RTInK = —(8.314JK ' mol™1) x (1600K) x 1n(0.255)

= 18,177k mol~! = | +18.18 kI mol " |

A/G® = —RTInK

K — o—(AGE/RT) _ | (0178 x 103 Jmol 1)
= = exp
(8.314JK~Imol~!) x (1173K)

=0.982 =
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12 Strong
acid

[ S 5
Weak
4 base
! &
0 | | !
0 10 20 30
Volume of acid added (mL) Figure 9.1
E9.7(b) N,04(g) = 2NOy(g)
Amount at equilibrium (1 —a)n 2an
. 1l -« 20
Mole fraction
14+«
. d—wp 2ap
Partial pressure
| 1+«
Assuming that the gases are perfect, ay = p—é
p
(Pn0,/P©)? 4o?p
K= o) — 2y,
(PN04/PF) (1 —a)p
42
For p = pe’, K =
R

(a) at equilibrium
4(0.201)2 —
(b) o =0201 K = ﬁ =10.16841

(© AG® =—RTIhK =—(8314JK ' mol™!) x (298K) x In(0.16841)

= [4.41kJmol ™!

E9.8(b) (a) Br,(g) = 2Br(g) o =024
Amount at equilibrium (1 —a)n 2an
i l—«o 20
Mole fraction
1+« 1+«
) (1-—a)p 2ap
Partial pressure
1+« 1+«
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E9.9(b)

E9.10(b)

Assuming both gases are perfect ay = p—é
p

(pB:/p©)? 4a? 4o
_ (pBe/P _ P _ p = p°]

PBrn,/PS  (1—a?)p® 1-—a2
4(0.24)2 —
= — = _0.2445=(0.24
1 — (0.24)2

) AG® =—RTIhK =—(8314JK 'mol™!) x (1600K) x In(0.2445)
=|19kJ mol ™!

ArHe( 1 1 )
(©0 InK(@2273K) =InK(1600K) —

R 273K  1600K
112 x 10% Jmol~!
8.314JK—1 mol-!

= In(0.2445) — ( ) x (—1.851 x 1074

= 1.084

K(2273K) = ' 0% =

VW(CHCly) =1, v(HCl) =3, v(CHy) =—1, v(Cl)=-3

(@ AG® = A;G®(CHCl, 1) +3A:GE (HCL, g) — AfG© (CHy, 2)
= (=73.66kImol™") + (3) x (=95.30kJmol™") — (=50.72kJ mol ™)

— | —308.84 Ky mol~!

AG® —(—308.84 x 10° Jmol ™)
InkK =— (8] =
RT (8.3145J K~ mol—1) x (298.15K)

K =[1310%]

(b) AH® = A;H®(CHCl3,1) +3A¢H® (HCl, g) — AfH® (CHy, g)
= (—134.47K mol™ ) + (3) x (—92.31 kI mol™!) — (—=74.81 kI mol™ ")
= —336.59kJ mol ™!

= 124.584

1

3232K 298.2K

—336.59 x 10° Jmol~!
8.3145JK—1 mol—!

. 5 AH®
In K (50°C) = In K (25°C) — 2 ( > [9.28]

= 124.584 — (

K(50°C) =

ArG®(50°C) = —RT In K (50°C)[18] = —(8.3145 K~ " mol ') x (323.15K) x (114.083)
= |—306.52kI mol™! |

) x (=2.594 x 1074 K1) = 114.083

Draw up the following table

A + B = C + 2D Total
Initial amounts/mol 2.00 1.00 0 3.00 6.00
Stated change/mol +0.79
Implied change/mol -0.79 -0.79 +0.79 +1.58
Equilibrium amounts/mol 1.21 0.21 0.79 4.58 6.79
Mole fractions 0.1782 0.0309 0.1163 0.6745 0.9999
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(a) Mole fractions are given in the table.

b) K= ]_[xJ”J
J

0.1163) x (0.6745)%
Kx_( ) X ( ) _

"~ (0.1782) x (0.0309)

(¢) pj = xjp. Assuming the gases are perfect, aj = p_é’ SO
p

= Ky when p = 1.00bar

©_ pc/p®) x (p/p©)? _ (L)
(Pa/P®) x (pB/P®) “\pe

k = K, =[56]

d AG® =—RThhK =—(8314JK " mol™!) x (298 K) x 1n(9.609)
=|—-5.6kImol™!

E9.11(b) At 1120K, A,G® = +22 x 10° Jmol ™!

—AG© 22 x 103 Jmol ™! —
InK(1120K) = >~ — — _ (22 x 10" Jmol ) — —2.363
RT (8.314J K1 mol~1) x (1120K)
K =e 2363 — 927 x 1072
AH® (1 1
nK)=Ink; - —[— - —
R n T
Solve for T atln K =0 (K = 1)
1 Rk 1 8.314J K1 mol~! —2.363 1 _
L _ Rk 1 _( mol™) x ( ) 4 =736 x 1074
T AH®S Ty (125 x 103 Tmol—1) 1120K

7= [14x 10°K]

dnK) —AH®
“a1/T) - R

E9.12(b) Us
1 2 a1
We have In K = ~2.04 — 176K ( - ) +2.1x 10K

ArH® 713 1\?
_T:—1176K+3x(2.1x10 K°) x T

T = 450K so

AH®

1 \? _
=—1176 K +3 x (2.1 x 10’ K3 —— ] =-865K
F3x21x ) x <450K>

ArH® = +(865K) x (8.314Jmol 'K~!) = |7.19T kI mol !
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Find A;S® from A,G®
AG® = —RTInK

= —(8.314JK 'mol™!) x (450K) x | —2.04 —

1176 K N 2.1 x 107 K3
450K (450K)3

= 16.55k) mol !
AGE = AtH® — TAS®
s  AH® —AG® 7191k mol ! —16.55k) mol ™!

= —-20.79JK ' mol~!
T 450K 0-79TK~"mo

ArS

= —21K " mol™!

E9.13(b) U(s) + 3Ha(g) = UH3(s), AG® = —-RTIhK

At this low pressure, hydrogen is nearly a perfect gas, a(Hp) = < P > The activities of the

pe
solids are 1.

—3/2
Hence, In K =ln<%> = —%lni

p pe

e _3 P
AGS = 3RTIn -5

1.04T.
(%) % (8314TK~ ' mol™) x (500K) x In[ ot
750 Torr

[p9 = 1bar ~ 750 Torr]

= | —41.0kJ mol !

E9.14(b) Ky = l—[ x}” [analogous to 17]
J
The relation of K to K is established in lllustration 9.4

vy
1—[ 12 . 12
K = (p_e> |:9]8 with ay = p_ei|

J
ZJ vy v
9 () ==k () =]
J J

p

—v
Therefore, Ky, = K (—e> , Ky o« p7" [K and pe are constants]
p

p=14+1-1—-1=0, thus ’Kx(Zbar) = Kx(lbar)\

E9.15(b) Na(g) + 02(2) = 2NO(g) K = 1.69 x 1073 at 2300K
50¢g
28.01 gmol~!
20¢g
32.00 gmol !

Initial moles N, = = 0.2380 mol N,

Initial moles O = =6.250 x 1072 mol (0]
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N2 02 NO Total
Initial amount/mol 0.2380 0.0625 0 0.300
Change/mol -z -z +2z 0

Equilibrium amount/mol  0.2380 —z  0.0625—z 2z  0.300

, 0.2380 —z  0.0625 — 7 2z
Mole fractions (@)
0.300 0.300 0.300

v
p

K=K.|— V= vy =0, then

! (pe > [ XJ: ]

22/0.300)2

K=K, = (22/0.300)

0.2380—z % 0.0625—z

( 0.300 ) ( 0.300 )
. 472
"~ (0.2380 — z) x (0.0625 — 7)

422 = 1.69 x 1073 {0.014@ — 0.3005z + zz}

=1.69 x 1073

=2.514 x 107> — (5.078 x 107 %)z + (1.69 x 1073)z?
4.00 —1.69 x 1073 =4.00 so
472 + (5.078 x 1074z —2.514 x 107> =0

—5.078 x 1074+ {(5.078 x 1074)2 — 4 x (4) x (—2.514 x 10~5)}'/?

8
= 1(=5.078 x 107* £ 2.006 x 1072)

7> 0 [z < 0is physically impossible] so
7 =2.444 x 1073

2z 2(2.444 x 1073) )
o = oo S

ArG® = —RT InK [9.8]
Hence, a value of ArGe < 0 at 298 K corresponds to K > 1.

(@) AGE/(KImol™!) = (2) x (=33.56) — (—166.9) = +99.8, K <1
M)  AGE/KImol™) = (—=690.00) — (—33.56) — (2) x (—120.35) = —415.74,

Le Chatelier’s principle in the form of the rules in the first paragraph of Section 9.4 is employed.
Thus we determine whether A H© is positive or negative using the A¢ H*® values of Table 2.6.

(@ AH®/(kImol™!) = (2) x (=20.63) — (—178.2) = +136.9
)  AHE/Imol™!) = (—813.99) — (—20.63) — (2) x (—187.78) = —417.80

Since (a) is endothermic, an increase in temperature favours the products, which implies that a

reduction in temperature favours the reactants; since is exothermic, an increase in temperature
favours the reactants, which implies that a reduction in temperature favours the products (in the sense
of K increasing).
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’

K

K AHS (11 Rin{ %
E9.18(b)  In— — -F ) so ArHezﬂ
K R T T (L_L>
T T’

/

K
T =310K, T' =325K; let?:/c

(8.314JK ' mol™1)

Now AH® = x Ink = 55.84kJmol ! Ink

1 1
(_310K - _3251()
(@ k=2, AHE = (55.84kImol™") x (In2) =|39kJ mol ™!
b k=1 AH® =(5584kImol™") x (1n %) —| —39 kI mol~!

E9.19(b) NH4Cl(s) = NH3(g) + HCl(g)
p = p(NH3) + p(HC]) = 2p(NH3) [p(NH3) = p(HCD)]

@ K=[JaP07:  algases) = 2 a(NH,ClLs) = 1
P
J
o (PONH3)\ (pHCD)  p(NH3? 1 p \?
e pe )T per T 4 o
1 (608kPa\>
At427°C (100K), K = - x (WJ) =
a

4
. 1 (1115kPa)\?
At459°C (132K), K =-x (———— ) =31.08
4~ \ ' 100kPa

) AG® =—RTIK[8] = (-8.314JK 'mol™") x (700K) x (In9.24)
=|—12.9kImol~!| (at427°C)
K/
Rln?

(¢ AH® =~ m [26]

-1 -1 31.08
 (83143K " mol™!) x In( 34

) =|+161 kI mol~!
ok — 7

_ AtH® — AG®  (161kImol™!) — (—12.9kImol 1)
o T - 700K

d AS© = ] +248JK ' mol~!

E9.20(b) The reaction is
CuSOy - 5SHyO(s) = CuSOq4(s) + SH,O(g)

For the purposes of this exercise we may assume that the required temperature is that temperature
at which the K = 1 which corresponds to a pressure of 1 bar for the gaseous products. For K = 1,
InK =0,and A;G® =0.

AGE =AH® —TAS® =0 when ALH® =TAS®
Therefore, the decomposition temperature (when K = 1) is

AH®
T =
AS©
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CuSOy4 - 5HyO(s) = CuSO4(s) + 5H,O(g)
ArHE =[(=771.36) + (5) x (—241.82) — (—=2279.7)] kI mol ™' = +299.2 kJ mol !
ArSE =[(109) + (5) x (188.83) — (300.4)]JK ' mol™! =752.8TK~! mol™!

299.2 x 103 Jmol~!
Therefore, T = =(397K
75287 Tmor T~ 2K
Question. What would the decomposition temperature be for decomposition defined as the state at
which K = 12
2

E9.21(b) (a) The half-way point corresponds to the condition

[acid] = [salt], for which pH = pK,

Thus pK, = 4.82 and K, = 107482 =| 1.5 x 1073

(b) When [acid] = 0.025M
pH = 1pK, — % log[acid] = 1(4.82) — 1(~1.60) =
E9.22(b) (a) The HCO, ion acts as a weak base.
HCO, (aq) + H>0(l) = HCOOH(aq) + OH™ (aq)
Then, since [HCOOH] ~ [OH ] and [HCO, 1~ §, the nominal concentration of the salt,

-2
~ O] and [OH™] = (SKp)!/?

b

Therefore pOH = %pr - %log S

However, pH + pOH = pKy,, so pH = pKy, — pOH

and pKy + pKp = pKw, 80 pKy, = pKw — pKa

Thus pH = pKy — %(pKW —pKa) + %logS = %pKW + %pKa + %logS

= 1(14.00) + £(3.75) + L 10g(0.10) =

(b) The same expression is obtained
pH = pKy + 3pKa + 3 log s
= 1(14.00) + 1 (4.19) + L 10g(0.20) =
(¢) 0.150M HCN(aq)

[H307][CN~]

HCN H,O(l) = H30" CN™ K, =
(aq) + H20(D) 30" (aq) + (aq) Ka [HCN]
Since we can ignore water autoprotolysis, [H30+] =[CN7], so

_ [H;01P

K, 2

where A = [HCN], the nominal acid concentration.
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E9.23(b)

E9.24(b)

E9.25(b)

Thus [H307] ~ (AK,)"/? and pH ~ JpK, — 1log A

pH = $(9.31) — 3 10g(0.150) =

The pH of a solution in which the nominal salt concentration is S is
pH = IpKy + 1pKa + Llog s
The volume of solution at the stoichiometric point is

0.100M
0.175M

V = (25.00mL) + (25.00mL) x ( ) = 39.286 mL

25.00mL

S =(0.100M) x <T
39.286 mL

) =6.364 x 10°2M

pK, = 1.96 for chlorous acid.
pH = £(14.00) + 3(1.96) + 1 log(6.364 x 1072)
=
When only the salt is present, use pH = %pKa + %pKW + %log S
pH = %(4.19) + %(14.00) + %log(O.IS) = 8.68 (a)
When A ~ §, use the Henderson—Hasselbalch equation
H = pKy — log & = 4.19 — log —— — 3366 — log A (b)
= —log—=4.19—-1o = 3. —1lo
p pKa g S g 015 g
When so much acid has been added that A >> S, use
pH = 1pK, — S log A (©

We can make up a table of values

A/(mol L™ 0 006 008 0.10 0.12 0.14 0.6 0.8 1.0
pH 8.68 4.59 446 436 429 421 221 214 2.09

Formula (a) (b) (©)

These values are plotted in Fig. 9.2.

According to the Henderson—Hasselbalch equation the pH of a buffer varies about a central value given
[acid]

[salt

by pK,. For the ratio to be neither very large nor very small we require pK, ~ pH (buffer)

(a) ForpH = 4.6, use’ aniline and anilinium ion |, pK, = 4.63.

(b) For pH = 10.8, use ’ ethylammonium ion and ethylamine |, pK, = 10.81
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é
8.00 [ HA = benzoic acid
6.00
an
a
4.00 |
2.00 1 1 1) ®
0 0.2 0.4 0.6 0.8 1.0
miya/(molkg™") Figure 9.2

Solutions to problems
Solutions to numerical problems
P9.2 CHy4(g) = C(s) + 2H,(2)

This reaction is the reverse of the formation reaction.

@ AG® =—-AG®
AfG® = AfH® —TA:S®
= —74850Jmol ™! — 298K x (—80.67J K~ mol™1)
= —5.08 x 10* Jmol ™!
AGE 5.08 x 10* Jmol~!

[9.8] = = —20.508
—RT —8.314JK- I mol-! x 298K

K =[1.24x107°

b) AH® =—-A;H® =74.85kImol~!

InK =

AH® [ 1 1
In K (50°C) = In K (298 K) — rR (3231{ — 298K> [9.28]

7.4850 x 104 Jmol !
8.3145JK—1 mol—!

= —20.508 — (

K(50°C) =[1.29 x 1073

(c) Draw up the equilibrium table

) x (—=2.597 x 107%) = —18.170

CH,(2) H(g)
Amounts (1 —a)n 2an
l—« 2u

1+« 14+«

. l -« 2ap
Partial pressures p —
1+« 1+«

Mole fractions
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o Q% [ p )
124 x 1077 = £ )~y a1
o2 \po a’p | |
1.24 x 1079 )
X U.

(d) Le Chatelier’s principle provides the answers:

As pressure increases, o decreases, since the more compact state (less moles of gas) is favoured
at high pressures. As temperature increases the side of the reaction which can absorb heat is
favoured. Since A H S s positive, that is the right-hand side, hence « increases. This can also
be seen from the results of parts (a) and (b), K increased from 25°C to 50°C, implying that «
increased.

P9.3 U(s) + 3Ha(g) = UH3(s) K = (p/p©)~3/? [Exercise 9.13(b)]

dln K d
S _ p72 _ pr2 _3 e
AfH® = RT?==9.26] = RT dT( 3Sinp/p )

dl
= _3pr22L
dr
3.0 (1464 x 10°K  5.65
= —3RT > -
T T

= —3R(14.64 x 10K — 5.657)

=|—(2.196 x 10*K — 8.48T)R
| |

d(AfH®) = A;CZdT [from 2.44]

IAFH®
)

P9.5 CaCl, - NH3(s) = CaClo(s) + NHz(g) K = %
p
AGS = —RTInK = —RT In -
o

12.8 Torr

= —(8314JK 'mol™) x (400K) x In[ ——
( mol %) x { ) x n(750Torr

) [p© = 1bar = 750.3 Torr]

= +13.5kmol~!  at400K

Since ArGe and In K are related as above, the dependence of ArGe on temperature can be
determined from the dependence of In K on temperature.

AGE(T AGE(T! 1 1
1GE(T)  AGE( )=ArH9 [26]
T T’ T T
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Therefore, taking 7" = 400K,

T T
S(T) = -1 -1 1—
AGE(T) (400K> x (13.5kJmol™") + (78 kJmol™ ") x ( 4OOK>
8k mol-1) + (13.5 — 78) kJ mol ! T
= X —
o 400 K

That is, A;G© (T)/ (kI mol~!) = ] 78 — 0.161(T/K) \

The equilibrium we need to consider is A;(g) = 2A(g). A = acetic acid

It is convenient to express the equilibrium constant in terms of «, the degree of dissociation of the
dimer, which is the predominant species at low temperatures.

A A, Total
At equilibrium 2an (1 —a)n (14+a)n
. 20 1l -«
Mole fraction 1
14+« 14+«
Partial 2ap l—«
artial pressure
P 1+a \1+a)? 7

The equilibrium constant for the dissociation is

)
A 2(
_ (pe) R M (pe)

p% PAzl’e 1 —a?

We also know that

. . pV m
V= RT = (1 RT, 1 that o =——1 and n=—
p Ntotal (I+oa)n implying that o = = n=

In the first experiment,

_pYM | (1643Tom) x (21.45 x 1073L) x (120.1 gmol™ 1)

= — 1= —1=0.392
mRT (0.0519 g) x (62.364 L Torr K- mol—1) x (437K)
(4) x (0.392)2 x (%)
Hence, K = —Z =10.740
enee 1= (0.392)2
In the second experiment,
_PVM | _ (7643 Torm) x (21.45 x 1073 L) x (120.1 gmol ™) | — 0764
T mRT T (0.0382) x (62.364L Torr K= mol—!) x (471 K) o
() x (0.764)% x (%)
Hence, K = =|5.71
1 — (0.764)2

The enthalpy of dissociation is
5.71
Rln R ln(m)
-9 (ehe =)
T 37K ~ 471K

The enthalpy of dimerization is the negative of this value, or| —103 kJ mol ™! |(i.e. per mole of dimer).

ArH6 = [9.28, Exercise 9.18(a)] = = +103kJmol ™!

-~
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P9.9 Draw up the following equilibrium table
A B C D Total
Initial amounts/mol 1.00 2.00 0 1.00 4.00
Stated change/mol +0.90
Implied change/mol —0.60 —0.30 +0.90 +0.60
Equilibrium amounts/mol 0.40 1.70 0.90 1.60 4.60
Mole fractions 0.087 0.370 0.196 0.348 1.001

The mole fractions are given in the table.

K, = l_[ xJUJ [analogous to eqn 9.18 and lllustration 9.4]
J

(0.196)3 x (0.348)?2 _
K, = =0.326 =(0.33
© 7 (0.087)2 x (0.370)
pr=xip, p=lbar, p© =lbar
Assuming that the gases are perfect, ay = —pé , hence
p

_ (pe/p®)’ x (pp/p©)?
(pa/p®)* x (pB/P®)

3.2 2
_XoXp p _ _ _
=5 X (p_e) =K, whenp = 1.00bar—

A'B

P9.10 The equilibrium I (g) = 21(g) is described by the equilibrium constant

_)Ll)zxi_““z(%)

K = =
x(Ip)  p®© 1—a?

[Problem 9.7]

RT
It p° = ”T then p = (1 + ) p°, implying that

We therefore draw up the following table

973K 073K 73K
pjam 006244 0.07500 0.09181
10m; 24709 24555 24366

RT
p°/atm 0.05757 0.06309 0.06844 |:p0 = "V ]
o 0.08459 0.1888 03415
K 11800 x 10| | 1.109 x 102] [4.848 x 102 |

AHS — rT? x (410K
ar

) = (8.314JK 'mol™1) x (1073 K)? x (

= [+158kJ mol !

—3.027 — (—6.320)
200K
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The reaction is
Si(s) + Ha(g) = SiHz(g)

The equilibrium constant is

—AG® —AH® —AS©
K=exp| ———— | =exp| ——— | exp
RT RT R

Let & be the uncertainty in A¢H <, so that the high value is 4+ the low value. The K based on the
low value is

K —AHS, A S© _Athiegh h AcS©
=X ex =X — | €X — ] €X
low H p RT p R p RT p RT p R
h
=eXp\ 27 Khigh H

S Kiow 1 < h >
0o— =exp| —
Khigh H RT

K 289 — 243) kJ mol !

(@) At298K, 7 _ exp ( ) K mo 1 —12x 108
KhighH (8.3145 x 103 kJ K~ mol™ 1) x (298 K)
K 289 — 243) kJ mol !

()  At700K, V7 _ exp ( ) ki mo —12.7 x 103
KhighH (8.3145 x 103 kI K~ 1 mol~!) x (700K)

Solutions to theoretical problems
__p(NOy?

p(N204) p©

Since p(NO2)* + p(NO)K — pK =01[p = p/p®]

(1+ %)
(%)

We choose the root with the positive sign because p must be positive.

with p(NO2) + p(N204) = p

p(NOy) =

For equal absorptions
[1p1(NO2) = lppa(NO2), or pp1=p2 [p=1/]]

Therefore

4 12
p (1 + %) —p=(+4p/K)* =1

4p1 1/2 4172 1/2
1+2) =p—1+(1+22
p( + K) p—1+ {1+

4py 4py 4py\ 72
2 2
p<+K) (p )+(+ )+(p )><<+K
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K

2
2p1p2 - p)\ ) 4p)
(p—l—i—T) —(p—1 x<1+7>

2(p1p? — 4py\1/?

(p1p® = p2)* | (o= x(p1p* —p2)—(p— D?*py
+ =
K2 K
(P1p* — p2)?
p(p—1) x (p2— p1p)p®
395 _
M _ 507
75 mm
o _ (18p1—py)?
22.5(py — 5.27p1)

We can therefore draw up the following table

0

Hence, K = [reinstating pe]

Since p =

Absorbance p;/Torr  p,/Torr  p®K /Torr

0.05 1.00 5.47 110.8

0.10 2.10 12.00 102.5

0.15 3.15 18.65 103.0
Mean: 105

Hence, since pe’ = 750 Torr (1bar), K =|0.140

The five conditions are:
(a) Electrical neutrality: [BHT]+ [H307] = [A~]+ [OH ]

BoV]

(b) Conservation of B groups: [B] + [BH'] = o8B

Va + VB
where Vj is the (fixed) initial volume of base and V) is the volume of titrant (acid) added.

AoV

Va+ VB
(d) Protonation equilibrium of B: [B]Kp, = [BHT][OH™]
(e) Autoprotolysis equilibrium: Ky, = [H3O+][OH_]

(c) Concentration of A~ groups : [A7] =

First we express condition (b) in terms of [BH*] and [OH™] by using condition (d) to eliminate
[B]

Bo Ky VB
(Va + VB)(IOH™] + Ky)

Next we use this relation and condition (c), and at the same time we use condition (e) to eliminate
[H307]

[BH'] =

BoKpWi K AoV,
oAb B_ + w_ _ o VA +[OH™]
(VA+ VB)(IOH™]1+ Kp)  [OHT] VA + VB
V % V. %
Now we multiply through by (%) [OH™], expand the fraction <$), and collect
B B
: Va . BoKp[OH ] + (Ky — [OH 1*)([OH™] + Ky)
terms in v = — and obtain | v = — — —
VB ([OH™] + Kp)([OH™]* + Ao[OH™] — Kv)
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the definition pH = — log[H307], or [H301] = 107PH

Solutions to applications

Refer to Box 9.2 for information necessary to the solution of this problem. The biological standard
value of the Gibbs energy for ATP hydrolysis is ~ —30kJ mol ™!, The standard Gibbs energy of

combustion of glucose is —2880 kJ mol !

(a)

(b)

If we assume that each mole of ATP formed during the aerobic breakdown of glucose produces

—30kJmol ™!, then

38 x (—30kJ mol~!
efficiency = x( o 1 ) x 100% ~
—2880 kJ mol~

For the oxidation of glucose under the biological conditions of pco, = 5.3 x 102 atm, PO,

0.132 atm, and [glucose] = 5.6 x 102 mol L~! we have

AG = AG® +RTInQ

(Pco,/p™)° (5.3 x 10726
where Q = =
[glucose] X (po,/p©)° 5.6 x 1072 x (0.132)?
=325
Then
ArG' = —2880kImol~! +8.314TJ K" mol™! x 310K x In(32.5)

= | —2871kJmol ! \

which is not much different from the standard value.

For the ATP — ADP conversion under the given conditions

/
AG = AG® + RTn <—)

QGB
ADP][Pi][H307] 1x1x 1077
where 0@ — IADPIPIHO™] _ 1x1x 1077 oy
[ATP] 1
, 10X 107 x 1.0 x 107% x 10774 114
and Q' = =10
1.0 x 10—4
then
A:G' = —30kImol™' + RT In(10~*%)

= —30kImol ™! +8.314JK ' mol~! x 310K x (—10.1)

= | —-56kJmol™!

With this value for A;G’, the efficiency becomes

38 x (=56 kJ mol~!
efficiency = x( mol ) =

—2871 kI mol~!
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(¢) The theoretical limit of the diesel engine is

(a)

InK

(b)

20

T ! 873K

T, 1923 K
75% of the theoretical limit is 41%.
We see that the biological efficiency under the conditions given is greater than that of the diesel
engine. What limits the efficiency of the diesel engine, or any heat engine, is that heat engines
must convert heat (g ~ A H) into useful work (Wyd4 max = ArG). Because of the second law,
a substantial fraction of that heat is wasted. The biological process involves A;G directly and
does not go through a heat step.

= 55%

The equilibrium constant is given by

—AG® —AH® A S©
K=exp| ———— ) =exp| ——— ) exp
RT RT R

AH® N AS©

RT R
A plot of In K against 1/ T should be a straight line with a slope of —A;H © /R and a y-intercept
of A;S© /R (Fig.9.3).

solnK = —

)= —17.321 +8.7119x

3.2 34 3.6 3.8 4.0 4.2 4.4
1000/(T/K) Figure 9.3

So AtH® = —R x slope = —(8.3145 x 10> kImol "' K1) x (8.71 x 10°K)
=
and A;S© = R x intercept = (8.3145JK ' mol™!) x (=17.3) = ] —144JK " mol ™!
AcH® = ArH® ((C10),) — 2A¢HE (Cl0) so A H© ((C10),) = At H® +2A¢H© (ClO),

AfH® ((Cl0),) = [-72.4 +2(101.8) kI mol ~* = | 131.2 kI mol "

S ((CIO)) = [~ 144 +2(226.6)] JK ™" mol ™! =|309.2J K~ mol~! |

A reaction proceeds spontaneously if its reaction Gibbs function is negative.

AG =AG® +RTInQ

Note that under the given conditions, RT = 1.58kJ mol .

ey
@)

ArG/(kKImol™") = A,G® (1) — RT In pp,0 = —23.6 — 1.58In 1.3 x 107/ = +1.5
ArG/(KImol™") = A;G® (2) — RT In pu,0 prNo,
= —57.2—1.58In[(1.3 x 1077) x (4.1 x 107191 =+42.0
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(3) A:G/(KImol™") = A;G® (3) — RT In pfy o PHNoO;

= —85.6 —1.581n[(1.3 x 1077)? x 4.1 x 107191 =—1.3
@) AG/(KImol™") = A;G® (4) — RT In p}; o prNoO,

= —85.6—1.581n[(1.3 x 1077)3 x (4.1 x 107191 = -3.5

So both the dihydrate and trihydrate form spontaneously from the vapour. Does one convert
spontaneously into the other? Consider the reaction

HNO3 - 2H>0(s) + H,O(g) = HNO3 - 3H70(s)
which may be considered as reaction (4) — reaction (3). Therefore A;G for this reaction is
AG = AG@) — A/G3) = —2.2kI mol ™!

We conclude that the dihydrate converts spontaneously to the , the most stable solid
(at least of the four we considered).

(a) The following four equilibria are needed for the construction of the Ellingham diagram for the
smelting reduction of silica with graphite (Box 9.1).

€)) %Si(s orl)+ %Oz(g) — %SiOz(s orl)
A1G(T) = 0.5[GHsio,0)(T) — GHsi1y(T) — GHo,(T)] if T > mpSiO;
= 0.5 [GHsi0,(s)(T) — GHsiqy(T) — GHo,(T)] if mpSi < T < mpSiO,
= 0.5 [GHsi0,(s)(T) — GHsis)(T) — GHo,(T)] if T < mpSi

2)  3C(s) + 302(9) — 1COx(»)

A2G(T) = 0.5[GHco,(g)(T) — GHcs)(T) — GHo,(T)]
3)  C(s) + 502(2) > CO(g)

A3G(T) = GHog)(T) — GHc(s)(T) — 3GHo, (T)
4 CO(g) + 302(g) — COx(g)

A4G(T) = GHco,(g)(T) — GHcog) (T) — 3GHo,(T)

A3G(T) alone lies above A1 G(T) and then only above 1900 K. Thus, the smelting reaction.

(5)  3Si0; + 3C(s) — 3Si+CO(g)

(AsG(T) = A3G(T) — A1G(T))

will have an equilibrium that lies to the right at temperatures higher than the temperature for
which A5G (T) = 0. Algebra or the root function can be used to show that this temperature equals
1892 K. The minimum smelting temperature of silica is about 1892 K. Furthermore, A, G never
lies above A1G so we do not expect appreciable amounts of CO» is formed during smelting of
silica.

(b) This problem is related to P8.18. Begin by making the definition GH(T) = G(T) — Hsgr =
a + b T. Write the important equilibria and calculate equilibrium contents at 2000 K. Silica and
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Ellingham Diagram: Reduction of Silica

-350

-250

-150

1600 1800 2000 2200 2400
Temperature /K Figure 9.4

silicon are molten at this temperature. We assume that carbon forms an ideal solution with molten
silicon and make the initial estimate:

{initial estimate of carbon mole function in molten Si} = xeg = 0.02
according to eqn 7.27,
AmixG(C) = RTxest Inxest  and  Apix G(Si) = RT (1 — Xegt) In(1 — Xest)

There are three unknowns (xc, Pco, Psio) so we select three independent equilibria that involve
the silicon melt and solve them self-consistently with the ideal solution estimate. The estimate
is used to calculate the small mixing Gibbs energy only.

GHC in melt = Gngaphite + AnixG(C) = GHc

GHs; in melt = GHsi(1) + AmixG(S1) = GH;
The independent equilibria are used to calculate a new estimate for the mole fraction of carbon
in silicon, xc. The new value is used in a repeat calculation in order to have a better estimate for

Xest- This iteration procedure is repeated until the estimate and the calculated value of xc agree
to within 1%.

With the initial estimate:

(1) SiOy(l) + 2C(Si melt) — Si(melt) + 2CO(g)

A1G = GHsj + ZGHCO(g) — GHsio,() — 2GH¢c = —37.69k] mol ™!

Ky =e M6/RT = 9646 and xgiP3o = Kixg
(2)  SiOx(1) + 3C(Si melt) — SiC(s) + 2CO(g)

ArG = GHsic(s) + 2GHco(g) — GHsio,(e) —3GHc = —85.72kJ mol !

Ky =e ®20/RT = 17326 and P2y = Kaxl
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Dividing the equilibrium constant expression of Reaction (1) by the one for Reaction (2),
and using xc = 1 — xgj, gives

(I = xsi)(xsi) = K1/K>
Solving for xg; gives:

%{Hm]:ogms

Xc = 1-— XSp = 0.0592

XSi

The initial estimate of xc (0.02) and the calculated value do not agree to within 1%, so the
calculation is repeated (iterated) with the new estimate: xest = 0.0592. After several addi-
tional iterations, it is found that with xegt = 0.0695 the calculated value is .
Since these do agree to within 1%, the calculation is self-consistent and further iteration is
unnecessary.

The equilibrium expression for reaction (2) gives:

Pco =/ Kax bar = \/ (125.66)(0.0698)3 bar

] Pco = 0.207 bar \

The third equilibrium is used to acquire Pg;, it is:
Si0; (1) + C(Si melt) — SiO(g) + CO(g)
A3G = GHsio(e) + GHcoe) — GHsio,1) — GHe = —8.415KJ mol ™!
K3 = e AG/RT — 1 659

K 1.659(0.0698
Psio = < 3XC) bar? = 1.659(0.0698)
Pco 0.207

’ Psio = 0.559 bar‘
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10 Equilibrium electrochemistry

Solutions to exercises
Discussion questions

The Debye—Hiickel theory is a theory of the activity coefficients of ions in solution. It is the coulombic
(electrostatic) interaction of the ions in solution with each other and also the interaction of the ions
with the solvent that is responsible for the deviation of their activity coefficients from the ideal value
of 1. The electrostatic ion—ion interaction is the stronger of the two and is fundamentally responsible
for the deviation. Because of this interaction there is a build up of charge of opposite sign around any
given ion in the overall electrically neutral solution. The energy, and hence, the chemical potential
of any given ion is lowered as a result of the existence of this ionic atmosphere. The lowering of the
chemical potential below its ideal value is identified with a non-zero value of RT In y+. This non-zero
value implies that y4 will have a value different from unity which is its ideal value. The role of the
solvent is more indirect. The solvent determines the dielectric constant, €, of the solution. Looking
at the details of the theory as outlined in Justification 10.2 we see that € enters into a number of the
basic equations, in particular, Coulomb’s law, Poisson’s equation, and the equation for the Debye
length. The larger the dielectric constant, the smaller (in magnitude) is In y+.

The potential difference between the electrodes in a working electrochemical cell is called the cell
potential. The cell potential is not a constant and changes with time as the cell reaction proceeds.
Thus the cell potential is a potential difference measured under non-equilibrium conditions as electric
current is drawn from the cell. Electromotive force is the zero-current cell potential and corresponds
to the potential difference of the cell when the cell (not the cell reaction) is at equilibrium.

The pH of an aqueous solution can in principle be measured with any electrode having an emf that is
sensitive to H' (aq) concentration (activity). In principle, the hydrogen gas electrode is the simplest
and most fundamental. A cell is constructed with the hydrogen electrode being the right-hand electrode
and any reference electrode with known potential as the left-hand electrode. A common choice is
the saturated calomel electrode. The pH can then be obtained from eqn 10.43 by measuring the emf
(zero-current potential difference), E, of the cell. The hydrogen gas electrode is not convenient to
use, so in practice glass electrodes are used because of ease of handling.

Numerical exercises

NaCl(aq) + AgNO3(aq) — AgCl(s) + NaNO3(aq)
NaCl, AgNO5 and NaNOs are strong electrolytes; therefore the net ionic equation is

Agt(aq) + Cl™ (aq) — AgCl(s)
ArH® = AfH® (AgCl,s) — AfH® (AgT, aq) — AfHE (CI™, aq)
= (—=127.07kJ mol™ 1) — (105.58 kI mol ™) — (—167.16 kI mol 1)

— | —65.49 k) mol™!

PbS(s) = Pb** (aq) + S>~ (aq)
Kg = l_[ a}”
J
Since the solubility is expected to be low, we may (initially) ignore activity coefficients. Hence

2+ 2-
Ks — b®b>)  b(S™)

= 5 b(Pb2H) =bh(S*) =S
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SZ
>T ey

-AG® .
Use In Kg = —RT to obtain Kg

AGE = ArGO(S¥,aq) + AGE (Pb*, aq) — A,G© (PbS, s)
= (+85.8kJmol™!) + (—24.43kI mol™!) — (—98.7 kI mol 1)
= 160.07 kJ mol !

—160.07 x 103 Jmol~!
InKg = x 7 Tmo = —64.61
(8.314J K~ mol™1) x (298 K)

Kg =e 0461 =87 x107%°

S = (Kg)'/?b® = (8.735 x 1072%)1/2 =19.3 x 10719 mol kg~!

E10.6(b) The ratio of hydration Gibbs energies is

ApyaGE(NO37)  r(CI7)  181pm
ApaGe(ClI7)  r(NO7)  189pm

We have Ahdee(Cl_) = —379kJ mol ! [Exercise 10.6a]

S0 AnydG® (NOJ) = (0.958) x (—379kJmol ') = | —363kImol !

E10.7(b) I=3Y (bi/b®)z} [10.18]

and for an M, X, salt, by /b® = pb/b®,b_/b® = qb/b®, s0
I =%(pz% +qz2)b/b®

@@ IMgClh) = 11 x22+2 x Db/b® =3b/b®

(b)  I(Aly(SOs)3) = 12 x 32 +3 x 22)b/b® = 15b/b®

(€  I(Fex(SO4)3) = 1(2x 32 4+3 x2%)b/b® = 15b/b®

b(K3[Fe(CN)g]) b(KCl)  b(NaBr)
b t e TTpe

E10.8(b) 7 = I(K;3[Fe(CN)g]) + I (KCI) + I (NaBr) = (3 +3%)
— (6) x (0.040) + (0.030) + (0.050) =

Question. Can you establish that the statement in the comment following the solution to Exercise
10.8a (in the Student’s Solutions Manual) holds for the solution of this exercise?

b
E10.9(b) I = 1(KNO3) = = (KNO3) = 0.110

Therefore, the ionic strengths of the added salts must be 0.890.

(@) I(KNO3) = so  b(KNO3) = 0.890 mol kg~

b’
and (0.890 mol kg ') x (0.500kg) = 0.445 mol KNO;

So (0.445mol) x (101.11 gmolfl) =145.0 g KNO3 | must be added.
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(b) I1(Ba(NO3),) = 122 +2 x 12)i 3 _o 890
320 =12 pe ~ Tpe T

0.890 _
b= Tbe =0.2967 mol kg ™!

and (0.2967 mol kg_l) x (0.500kg) = 0.1484 mol Ba(NO3)»
So (0.1484 mol) x (261.32 gmol ™ !) = ] 38.8 g Ba(NO3)» \

E10.10(b)  /(A(SO4)3) = $((2 x 3*) + 3 x 29)b/b® = 15b/b®
1(Ca(NO3)p) = 1(2% +2)b/b® =3b/b®
3(0.500 molkg™") = 15(b(Al2(SO4)3))

b(Aly(SO4)3) = 75(0.500 mol kg™') =|0.100 mol kg™’

E10.11(b)  yr=(LyDHY s=p+gq
For A,(SO4)3 p=2,g=3,5s =5

ye = (yiyH

E10.12(b) Since the solutions are dilute, use the Debye—Hiickel limiting law
log vz = —|z4z—|AI"?
I= %Zz%(b,’/be) = %{1 x (0.020) 4+ 1 x (0.020) + 4 x (0.035) + 2 x (0.035)}
i

=0.125
logy+ = —1 x 1 x 0.509 x (0.125)1/? = —0.17996

(For NaCl) y+ = 10017996

(061

E10.13(b)  I(CaCly) = L(4 +2)b/b® =3b/b®
logy+ = —2 x 1 x 0.509 x (0.300)!/? = —0.5576
ye = 107035576 — 02770 = 0.277

0.524 — 0.277
Error = ————— x 100 per cent = | 47.1 per cent
0.524

A|Z-|-Z_|Il/2

E10.14(b) The extended Debye—Hiickel law is 1 =
(b) e extended Debye—Hiickel law is log y+ L B

Solving for B

B (1 +A|z+z|)_ ( 1 +0.509>
- \12 7 dogys )T \/b®)12 7 logys
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Draw up the following table

b/(molkg™") 5.0x 107 10.0x 107> 50.0 x 1073

Vi 0.927 0.902 0.816
B 1.32 1.36 1.29

E10.15(b)  Pbly(s) = Pblr(aq)  Kg=1.4x 1078
AG® = —RTInKg = —(8.314JK ' mol™!) x (298.15K) x In(1.4 x 107%)
= 44.83kImol !
AG® = A;G® (Pbly, aq) — AtG© (Pbl,, s)
AtG® (Pbly, aq) = A;G® + A;G® (Pbly, s)
= 44.83kImol~! — 173.64 kI mol !

=|—128.8kJmol~!
E10.16(b) The Nernst equation may be applied to half-cell potentials as well as to overall cell potentials.

EM/Hy) = 2L aH™)
2) = —F/—Ihn——F—7"—7pr
F o (fu,/po)Y/?
RT Ht RT b
AE=E)—Ej=—1In M[szis constant] = —ln&
F  aj(HM) y+bi

(0.830) x (5.0 x 1072)
= (25.7mV) x 1 =|4+56.3mV
(25.7mV) x In [(0.929) < (5.0 x 10-3)
E10.17(b) Identify electrodes using species with the desired oxidation states.

L: Cd(s) +20H (aq) — Cd(OH),(s) + 2e~
R: Ni(OH)3(s) + e~ — Ni(OH),(s) + OH™ (aq)
Cd(s)|Cd(OH),(s)|OH™ (aq) INi(OH), (s)INi(OH)3(s) [Pt

E10.18(b) The cell notation specifies the right and left electrodes. Note that for proper cancellation we must
equalize the number of electrons in half-reactions being combined.

(@) R: AgyCrO4(s) +2e~ — 2Ag(s) + CrOy (aq) +0.45V
L: Cl(g) +2¢ — 2Cl (aq) +1.36V
Overall (R —L): Ag,CrO4(s) + 2C1™ (aq) — 2Ag(s) + CrOi_ (aq) +Clp(g) —091V

(b) R: Sn*'(aq) +2e~ — Sn’T(aq) +0.15V
L: 2Fe’t(aq) 4+ 2e~ — 2Fe’*t(aq) +0.77V
Overall (R — L): Sn*t (aq) + 2Fe?t (aq) — Sn?t (aq) + 2Fe3+(aq) —-0.62V

(¢©) R: MnOs(s) +4H(aq) + 2¢~ — Mn’*(aq) + 2H,0(1) +1.23V
L: Cu’t(aq) 4+ 2¢~ — Cu(s) +0.34V
Overall R —L): Cu(s) + MnO,(s) + 4H" (aq) — Cu>" (aq) + Mn** (aq)

+ 2H,0()) +0.89V
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E10.19(b)

E10.20(b)

E10.21(b)

E10.22(b)

Comment. Those cells for which E® > 0 may operate as spontaneous galvanic cells under standard
conditions. Those for which E® < 0 may operate as nonspontaneous electrolytic cells. Recall that
E®© informs us of the spontaneity of a cell under standard conditions only. For other conditions we
require E.

The conditions (concentrations, etc.) under which these reactions occur are not given. For the purposes
of this exercise we assume standard conditions. The specification of the right and left electrodes is
determined by the direction of the reaction as written. As always, in combining half-reactions to form
an overall cell reaction we must write half-reactions with equal number of electrons to ensure proper
cancellation. We first identify the half-reactions, and then set up the corresponding cell.

(@ R: 2H,O0()+2e¢~ — 20H (aq) + Ha(g) —0.83V
L: 2Na'(aq) 4+ 2e~ — 2Na(s) —271V
and the cell is

Na(s)[Na* (ag), OH™ (aq)[Ha(g) Pt

or more simply

| Na(s)NaOH (aq) | Ha (g) Pt |

(b) R: Ip(s)+2e~ — 21" (aq) +0.54V
L: 2H'(ag)+2e~ — Ha(g) O
and the cell is

Pt|Ha(¢)[H (aq), I~ (aq) L2 () Pt

or more simply

| Pt/Hy (g)[HI(aq) [T (s) [Pt

(¢0 R: 2H"(aq) +2¢~ — Hy(g) 0.00V
L: 2H,0() +2e~ — Hy(g) +20H (aq) —0.083V
and the cell is

Pt|H(g)|H" (aq), OH™ (aq)|Ha(g)[Pt [0.083V

or more simply

| Pt/H2 (2)[H20() [Ha (2) [Pt |

Comment. All of these cells have E© > 0, corresponding to a spontaneous cell reaction under
standard conditions. If £ had turned out to be negative, the spontaneous reaction would have been
the reverse of the one given, with the right and left electrodes of the cell also reversed.

See the solutions for Exercise 10.18(b), where we have used E g ERe — EL9 , with standard
electrode potentials from Table 10.7.

See the solutions for Exercise 10.19(b), where we have used E © = ERe — ELe , with standard
electrode potentials from Table 10.7.

In each case find E€ = ER9 — ELe from the data in Table 10.7, then use
AG® = —vFE® [10.32]

(a R: Szoé_(aq) +2e — ZSOZ_(aq) 4+2.05V
L: Ip(s)+2e~ — 21" (aq) +0.54V

AGE = (=2) x (96.485kCmol ™) x (1.51 V) =| —291kImol !

}—l— 1.51V
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() Zn’>*T(ag) +2e” — Zn(s) —0.76V
Pb’T(aq) +2¢~ — Pb(s) —0.13V

A:GE = (=2) x (96.485kCmol ™) x (—0.63V) = | +122kImol !

E10.23(b) (a) A new half-cell may be obtained by the process (3) = (1) — (2), that is
(3) 2H,0() + Ag(s) + e~ — Hp(g) +20H (aq) + AgjL (aq)

}EG —0.63V

But, E3e #* E le — E2e , for the reason that the reduction potentials are intensive, as opposed to
extensive, quantities. Only extensive quantities are additive. However, the A,G© values of the
half-reactions are extensive properties, and thus

AGY = AGP — AGY
—3FEY = - FEP — (- FEyY)

Solving for E3e we obtain

< <
o VIEZ —wmEY  (2) x (~0.828V) — (1) x (0.799V) _
ES = = 1 =[—2455v

V3

(b) The complete cell reactions is obtained in the usual manner. We take (2) x (2) — (1) to obtain

2Ag " (aq) + Hao(g) + 20H (aq) — 2Ag(s) + 2H,0(1)
E®(cel) = Eg —E° =Ey —ES =(0.799V) — (—0.828 V) = | +1.627V

Comment. The general relation for E of a new half-cell obtained from two others is
WEP £ wnEY

V3

S _
E3 =

E10.24(b) (a) E:EG—EInQ =2

Q

HaJ = aH*‘lCl* [all other activities = 1]

b
aia = (y4b)? x (y_b_)? |:b =5 here and below:|

= (yry_)? x (byb_)* = yib* [16, by =b,b_ =b]

RT T
Hence, E = E© — 57 In(yip* =| E® — In(y+b)

() AG = —vFE[10.32] = —(2) x (9.6485x 10* Cmol ') x (0.4658 V) = | —89.89 kJ mol

(© logy+ = —|z4z_|AI'Y? [19] = —(0.509) x (0.010)'/% [I = b for HCl(aq)] = —0.0509
y+ = 0.889

In(y+b) = (0.4658 V) + (2) x (25.693 x 1073 V) x In(0.889 x 0.010)

 [025V]

The value compares favourably to that given in Table 10.7.

2RT
E©® = E+
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E10.25(b) R: Fe’(aq) +2e~ — Fe(s)
L: 2AgT(aq) +2e~ — 2Ag(s)
R—-L: 2Ag(s) + Fet (aq) — 2Ag+ (aq) + Fe(s)

E® =EY —EP =(-0.44V) — (0.80V) =| —1.24V

AGE = —VFE® = -2 % (9.65 x 10*Cmol ™) x (—1.24V)

= | +239kJ mol !

AH® =2AtH® (AgT, aq) — AfHE (Fe?t, aq) = [(2) x (105.58) — (—89.1)] kJ mol !

= | +300.3 K ol |
(8ArG9> __ASO = AG® — AH®
p

o7 - [A;G® = ALH — TA,S]

(239 —300.3) kJ mol !
N 298.15K

Therefore, A;G© (308 K) &~ (239) + (10K) x (—0.206 K~") kI mol~! ~ | +237 kJ mol~!

E©

= —0.206kJmol ' K~!

F
E10.26(b) Ineachcaseln K = Y

[10.36]

(@)  Sn(s) + CuSOy4(aq) = Cu(s) + SnSO4(aq)
R: Cu’t(ag) +2e~ — Cu(s) +0.34V
L: Sn’t(aq) +2¢~ — Sn(s) —0.14V

() x (0.48V) _ T
InK=-—~——""""=4374  K=[17x10
K= S =

(b)  Cu’T(aq) 4 Cu(s) = 2Cu*(aq)

) 2+ - +
R: Cu""(aq) +e~ — Cu™(aq) +0'16V}—0.36V

} +0.48V

L: CuT(aq) +e~ — Cu(s) +0.52V

—0.36V _ —
InK =——— =—14. K=|82x1
n 25.693 mV 0’

E10.27(b) We need to obtain E for the couple
3) Co3+(aq) + 3¢~ — Co(s)
from the values of E© for the couples

(1) Co’F(ag) +e~ — Co*t(aq) EP =181V
(2) Co**(ag) + 2~ — Co(s) EY =-028V

We see that (3) = (1) + (2); therefore (see the solution to Exercise 10.23(b))

VES +wEY (1) x (1.81V) + (2) x (=0.28 V)
V3 - 3

s = =042V
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Then,
R: Co’t(aq) + 3¢~ — Co(s) EZ =042V
L: 3AgCl(s) +3e~ — 3Ag(s) + 3Cl~ (aq) EF =022V

R —-L: C03+(aq) + 3C1™ (aq) + 3Ag(s) — 3AgCI(s) 4+ Co(s)
E® =EY —EP =(0.42V) — (0.22V) = | +0.20V

E10.28(b) First assume all activity coefficients are 1 and calculate K, the ideal solubility product constant.

(1) Agl(s) = Ag*(aq) + 17 (aq)
S(Agl) = b(Ag+) = b(I™) because all stoichiometric coefficients are 1.

Thus Kg = b(Agbglz’(I_) = bse22 = (12x 10782 =
(2)  BirS3(s) = 2Bi’T(aq) + 3S% (aq)
b(Bi’T) = 25(BiyS3)
b(S*7) = 35(Bi»S3)

o (B2 x (ST (29?2 x (35)° s\’
Kg= = = =E = 108 <_>

be
=[1.13 x 1077

For Agl, Ks = y1K§

logys = —|z4z_|AIY? A =0.509

[ =5Sb®, |z4+z—| =1 so
log y+ = —(0.509) x (1.2 x 10~%)1/2 = —5.58 x 107>
Y+ = 0.9999

Ks = (0.9999)?K¢ = 0.9997K g
For BixS3, I = 15b/b° = 158b°, |z42_| =6
sology+ = —(0.509) x (6) x [15(1.6 x 10720)]1/2 = —1.496 x 107°
y+ = 1.0
Ks = yiK$ = K§
Neglect of activity coefficients is not significant for Agl and Bi»Ss3.
E10.29(b) The Nernst equation applies to half-reactions as well as whole reactions; thus for
8HT + MnO] (ag) + Se~ — Mn*" (aq) + 4H,0
RT | a(Mn?t)

E=E® —-— —
SE a(MnO, Ya(HH)8

E10.30(b) R: 2Agl(s) +2e~ — 2Ag(s) +2I " (aq) —0.15V
L: 2H%(aq) +2¢~ — Ha(g) oV
Overall(R —L):  2Agl(s) + Ha(g) — 2Ag(s) + 2H" (aq) + 21~ (aq)
Q0 =aMlM?a()? v=2
Assume a(HT) = a(I7), Q = a(HH)*
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2R
F

RT T RT
E=E®° — ﬁlna(H+)4 —ES _ Ina(HT) = E® +2 x (2.303) x (T) x pH

F E+0.15V 115V
H=(-—" ) x(E-E®) = - —[9.72
P <2x (2.303RT)) x( )= sy = omy - 22

E10.31(b) The electrode reactions are
L: Agt(aq) +e= — Ag(s)
R: Agl(s) +e= — Ag(s) +1 (aq)
Overall(R —L):  Agl(s) — AgT(aq) + I (aq)

Since the cell reaction is a solubility equilibrium, for a saturated solution there is no further tendency
to dissolve and so E =

E10.32(b) R: 2Bi’T(aq) + 6e~ — 2Bi(s)
L: BiyS3(s) + 6e~ — 2Bi(s) + 35°~(aq)
OverallR —L):  2Bi**(aq) + 38>~ (aq) — BiS3(s) v =6

K — vFE®
RT
B 6(0.96 V)
© (25693 x 1073 V)
=224
K = e221

It is convenient to give the solution for (b) first.
(b) Ks =K' =e2% ~|107%8 | since the cell reaction is the reverse of the solubility equilibrium.

2 3
(@ Ks~107%= [%(Bi”)} x [b%(sz)] = (2972 x (35)% = 1088°

1/5
10—98
S=( 108 ) ~[107 2 molL~!

Solutions to problems
Solutions to numerical problems

P10.1 We require two half-cell reactions, which upon subtracting one (left) from the other (right), yields the
given overall reaction (Section 10.4). The half-reaction at the right electrode corresponds to reduction,
that at the left electrode to oxidation, though all half-reactions are listed in Table 10.7 as reduction

reactions.

Ee
R:  Hg,SO4(s) +2e~ — 2Hg() + SO?[ (aq) +0.62V
L:  PbSO4(s) +2e~ — Pb(s) + SO~ (aq) —0.36V

R —L: Pb(s) +Hgy,SO4(s) — PbSO4(s) + 2Hg() +0.98V
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Hence, a suitable cell would be
Pb(s)[PbSO4(s)[H2S04(aq) [HgSO4(s) [Hg (1)
or, alternatively,
Pb(s)[PbSO4(s) [H2SO4(aq) [[H2504(aq) [[Hg>SO4(s) [Hg(D)

For the cell in which the only sources of electrolyte are the slightly soluble salts, PbSO4 and Hg,SO4,
the cell would be

Pb(s)[PbSO4(s)[PbSO4(aq) [Hg, SO4(aq)[HE, SO4(s) [Hg (D)
The potential of this cell is given by the Nernst equation [10.34].
RT
E=E® - "—1InQ[1034]; v=2
vF
dpp2+dgn2- _ Ks(PbSOy)
aHg%*'aSOi_ Ks(HgrSO4)

RT  Ks(PbSOy)
E=(0.98V)— — In —>— >4
2F  Ks(HgSOq4)

25.693 x 1073V 1.6 x 1078
=098V)— [ ") xIn|——
2 6.6 x 10~7

[Table 10.6, 4th Edition, or CRC Handbook]

=(098V) +(0.05V) =[+1.03V

P10.6 Pt|H,(g)|[NaOH(aq), NaCl(aq)|AgClI(s)|Ag(s)
H>(s) + 2AgClI(s) — 2Ag(s) + 2C1™ (aq) + 2H+(aq) v=2

RT B
E=E®———nQ, Q=aM")’aC)? [f/p®=1]
RT RT  Kya(Cl™ RT  Kyy+b(Cl~
=E® — —Inal")a(Cl") =E® — —1n Kwalcl) — ) _pe _ BT Kurzb(C - )
F F " a(OH") F  yxb(OH")
RT . Kyb(Cl~ RT RT _ b(CI~
:Ee——lnL_):Ee__anW__ln ( _)
F b(OH™) F F  b(OH™)
ES + 230 XL o ok — B, PED) K log Ky = LKW
= . — X — —In = —]0 _ —
F oY T M yony  \ PR 88w = 75303
b(Cl7)
E—_E®© In = E_E©
Hence, pKy = n <b(OH )> - 1£0.05114

2.303RT/F 2303  2.303RT/F
E® = EY — EF = E®(AgCl, Ag) — E® (H'/Hy) = +0.22V — 0 [Table 10.7]

We then draw up the following table with the more precise value for E® = +0.2223 V [Problem 10.8]

0/°C 20.0 25.0 30.0
E/V 1.04774  1.04864  1.04942
2303RT

\F/ 0.05819  0.05918  0.06018

pK., 14.01 13.79
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dlnKy AH®
= 9.26
dr RT? [9-26]

d
Hence, A/H®S = —(2.303)RTZﬁ(pKW)

dpKy _ ApKy

then with ~
dT AT

13.79 — 14.23

AHS ~ —(2.303) x (8.314JK " mol™!) x (298.15K)? x 0K

=|474.9kJ mol~!
A:G® = —RT InKy, = 2.303RT x pKy =|+80.0kJmol~!

AH® — ALG®
T

See the original reference for a careful analysis of the precise data.

AS® = —|—17.11K " mol ™! |

P10.7 The cells described in the problem are back-to-back pairs of cells each of the type
Ag(s)|AgX(s)IMX(b1) M Hg(s)

H
R: MT(b))+e” £ M,Hg(s) (Reduction of M and formation of amalgam)
L: AgX(s)+e™ — Ag(s) + X (by)

R—-L: Ag(s)+ M+(b1) + X" (by) E) M Hg(s) + AgX(s) v=1
a(MyHg)
aMH)a(X™)

RT
E=E® ——h
7o

Q:

For a pair of such cells back to back,
Ag()|AgX(s)IMX(b1)[MxHg(s)IMX (b2)|AgX(s)|Ag(s)
RT RT
ER:EG—TIHQR EL:EG—TIHQL

—RT . QL RT  (aMHaX))L
E=—h—=—h—7——"———
F Or F  (@MHaX7)r

(Note that the unknown quantity a(M, Hg) drops out of the expression for E.)

b _b_ b \?
o= (52) (55) = () 0n=0)

With L = (1) and R = (2) we have

2RT . b 2RT 1
E = —ln—1+—ln re()
F by F y+£(2)

b
Take b, = 0.09141 mol kg_1 (the reference value), and write b = L

)
2RT b
E = (1 +In s )

F 1009141 Ty (reh)
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For b = 0.09141, the extended Debye—Hiickel law gives

(—1.461) x (0.09141)!/2
(1) + (1.70) x (0.09141)!/2

y+ (ref) = 0.5328

+ (0.20) x (0.09141) = —0.2735

log y (ref) =

10.00141 " " 05328

E b
—1
0.05139V (0.09141) x (0.05328)
We then draw up the following table

b Y+
then £ = (0.05139V) x (1 +In

Inyy =

b/(mol/kg™") 0.0555 0.09141 0.1652 0.2171 1.040 1.350
E/V —0.0220  0.0000 0.0263 0.0379 0.1156 0.1336

y 0.572 0.533 0492 0469 0444 0.486

A more precise procedure is described in the original references for the temperature dependence of
E®© (Ag, AgCl, CI7), see Problem 10.10.

The method of the solution is first to determine ArGe, ArH e’ and ArSe for the cell reaction

1Hy () + AgCl(s) — Ag(s) + HCl(aq)

and then, from the values of these quantities and the known values of A¢GE, AfH® , and S for
all the species other than C1™ (aq), to calculate A¢G®, AfH®  and §© for C1~ (aq).

AG® = —VFE®
At 298.15K(25.00°C)
E€/V = (0.23659) — (4.8564 x 10™%) x (25.00) — (3.4205 x 107%) x (25.00)>
+ (5.869 x 107?) x (25.00)> = 40.22240V
Therefore, AGS = —(96.485kCmol ) x (0.22240 V) = —21.46 kI mol !

< (S] =9 o
ASE = — (aAfG ) = (BE—> x VF =vF (aE—) < [d9/°C = dT /K] (a)
T ), aT ), 0 ), K
(%~
v P — (—4.8564 x 1074/°C) — (2) x (3.4205 x 107%9/(°C)?)
+ (3) x (5.869 x 107262 /(°C)?)

IES

(T)p 4 6., /0 —8 1 o2

Ve = (—4.8564 x 10™%) — (6.8410 x 1075(8/°C)) + (1.7607 x 1073(8/°C)?%)

Therefore, at 25.00°C,
IE® —4 o
— ] = —-6.4566 x 107" V/°C
06 b
and

IE® —4 o ) —4 -1
=7 ) = (—=6.4566 x 107" V/°C) x (°C/K) = —6.4566 x 107" VK
p
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P10.12

Hence, from equation (a)

A+S€ = (—96.485kCmol 1) x (6.4566 x 1074 VK1) = —62.30J K~ mol ™!

and A;H® = A,G® +TAS®
= —(21.46 kI mol™") + (298.15K) x (—62.30J K~ mol™!) = —40.03 kJ mol !
For the cell reaction
$Ha(g) + AgCl(s) — Ag(s) + HCl(aq)
AGE = A¢GEPHT) 4+ ArGE(CIT) — AGE (AgCD)
= AtGT(ClI7) — AfG® (AgC) [A;GEHT) =0]
Hence, AfGE (C17) = A,G® + A;G© (AgCl) = [(—21.46) — (109.79)] kJ mol !

—|—131.25kI mol~! |
Similarly, A;HE (C17) = AtHE + ArH© (AgCl) = (—40.03) — (127.07 kI mol™ 1)

= |-167.10KI mol ! |

For the entropy of C1™ in solution we use

AS® = 5% (Ag) + ST HT) +ST(C17) — 5% (Hy) — ST (AgCD
with $© (HT) = 0. Then,

SOCI7) = AS® — ST (Ag) + $5° (Ha) + S© (AgCl)

= (—62.30) — (42.55) + (%) x (130.68) + (96.2) =|+56.7TJ K~ mol~!

(a) From (E) =V [5.10]
op Jr

. (NG
we obtain =AV
op Jr
Substituting A;G = —vFE [10.32] yields

oE AV
p Jr.n ~ VF
(b) The plot (Fig. 10.1) of E against p appears to fit a straight line very closely. A linear regression
analysis yields

Slope = ’ 2.840 x 103 mV atm™! R standard deviation = 3 x 10~°®mV atm ™!

Intercept = 8.5583 mV, standard deviation = 2.8 x 10> mV
R =0.99999701 (an extremely good fit)

From AV

(BE) _(=2.666 x 107®m3 mol )
p Jrn 1 x9.6485 x 104Cmol ™!

Pam3 m3 A\
A\ C Pa

Since ] = VC = Pam?,C =
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8 L 1 | 1 1 11 | 1 11 1
0 500 1000 1500
p/atm Figure 10.1
Therefore
AE 2,666 x 1070\ V  1.01325 x 10°P
<—> = _; — X SO X TR 2.80 x 100 Vatm™!
P Jrn 9.6485 x 104 ) Pa atm

=12.80 x 10> mVatm~!

This compares closely to the result from the potential measurements.

(c) A fit to a second-order polynomial of the form

E:a—i—bp+cp2

yields
a = 8.5592mV, standard deviation = 0.0039 mV
bh=12.835x10"mVatm~!,  standard deviation = 0.012 x 107> mV atm™"
¢ =3.02x 107" mV atm 2, standard deviation = 7.89 x 10™° mV atm™!

R =0.999997 11
This regression coefficient is only marginally better than that for the linear fit, but the uncertainty
in the quadratic term is > 200 per cent.

JIE
<—> =b+2cp
ap Jr

J0E
The slope changes from <—> =b=2.835x%x 10" mVatm™!
3p min

IE
to <—> = b+ 2¢(1500 atm) = 2.836 x 10> mV atm ™!
8p max

oE
We conclude that the linear fit and constancy of (8_) are very good.
p



EQUILIBRIUM ELECTROCHEMISTRY 161

(d) We can obtain an order of magnitude value for the isothermal compressibility from the value of c.

I’E 1 <aArV)
= =% =2c
ap vF op Jr
(1) 1 [0AV 2vcF
K = —— =
T Jcell v ap - v
2(1) x (3.02 x 10712 Vatm™=2) x (9.6485 x 10 Cmol 1) x (E2458enam )
(KT )cell = ( Lem3 ) N (13,016g)
0.996 g I mol
=[3.2x 107" atm™! ‘ standard deviation & 200 per cent

where we have assumed the density of the cell to be approximately that of water at 30°C.

Comment. It is evident from these calculations that the effect of pressure on the potentials of
cells involving only liquids and solids is not important; for this reaction the change is only
~3x107% Vatm™!. The effective isothermal compressibility of the cell is of the order of magnitude
typical of solids rather than liquids; other than that, little significance can be attached to the calculated
numerical value.

P10.15 The equilibrium is
_ a0)*a(V401™h _ y(V4012~Hb(V4012 ™)
a(HyVO4 ™) y (HaVO,7)*b(Ha VO )4

Let x be b(H,VO47); then b(V4012_4) = (0.010 — x)/4. Then the equilibrium equation can be
expressed as

4 Ky V047

y (V4012
which can be solved numerically once the constants are determined. The activity coefficients are
0.5373

) = (0.010 — x)/4

log y (HyVO4 ™) = —

=—-0269 so y(HyVO, ) =0.538

0.5373(42)

> =—1.075 so y(V4012™% =0.0842

and log y (V401,™%) = —
The equation is
x*(2.5 x 10%) = (0.010 — x)/4

Its solution is

x =10.0048 molkg~! | = b(HVO,47)

and b(V401,™%) = 0.010 — (0.010 — 0.0048)/4 =|0.0013 molkgfl

P10.18 The reduction reaction is
Sby03(s) + 3H,0() + 6e~ — 2Sb(s) + 60H™ (aq) 0= a(OHf)6 V==~6

Therefore

RT RT 2.303RT
(a9 E=E®°— 6—Flna(OH_)6 =E® — Tlna(OH_) =|E® + TpOH

[Ina(OH™) = 2.303loga(OH ™) = —2.303pOH]
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(b) Since pOH + pH = pKy

2.303RT
F

E=E® + (pKw — pH)

(¢) The change in potential is
_ 2.303RT
~ F

pOH; = —log(0.050y+) = —10g0.050 — log y+ = —10g0.050 + A/(0.050) = 1.415
pOH; = —10g(0.010y+) = —10g0.010 — log y+ = —10g0.010 + A,/(0.010) = 2.051
Hence, AE = (59.17mV) x (1.415 — 2.051) =
We need to obtain A H © for the reaction

1Hy(g) + Uup* (aq) — Uup(s) + H* (aq)

AE (pOH; — pOH;) = (59.17mV) x (pOH; — pOH;,)

We draw up the thermodynamic cycle shown in Fig. 10.2.

Data are obtained from Table 13.4, 14.3, 2.6, and 2.6b. The conversion factor between eV and
kJmol ! is

leV = 96.485kJ mol !

The distance from A to B in the cycle is given by
AHS = x = (3.22¢eV) + (%) x (4.5¢eV) + (13.6eV) — (11.3eV) — (5.52eV) — (1.5¢V)

=0.75eV
ArS® = 59 Uup,s) + ST HT, aq) — $5° (Hz, g) — S (Uup™, aq)

= (0.69) + (0) — (%) x (1.354) — (1.34)meVK ™' = —1.33meVK ™!

H"(g) + Uup*(g)

E;(H) 2 13.6eV —11.3eV
H(g) + Uup*(g) ApaH® (HY)
A +(a +
JAH® (H—H) 245V M e
2 %Hz + Uup*(g) —5.52eV
3.22eV H"(aq)+ Uup(g)
N %H2 + Uup* (aq) —1.5eV
A ) H' (ag) + Uup(s)
Top Y v Figure 10.2

AGE = AHS —TAS© =(0.75¢eV) + (298.15K) x (1.33meVK™!) = +1.15¢V

which corresponds to | +111kJ mol ™!
—AG® =
The electrode potential is therefore ————, withv =1, 0r| —1.15V
b S with v

+
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P10.21 MX(s) = M*(aq) + X~ (aq), Ky~ bM1T)b(X™) [b

I
S)
ol =
| I

b(M™T) = 8§, X )=85+C
Ki=S(S+C), or S2+CS—Ks=0

4K, 172
which solves to | S = %(C2 +4KS)1/2 - %C orS = %C (1 + ) - %C

CZ
If 4K, < C2,
2K K
~ 1 S 1 172 1 ~ S
S~§C<1+F)—7C[(l+x) / ~1+§x+...]~ =
P10.22 Ky =aMMa(X") = bMH)b(X7)y2; bMH =8, bX)=85+C

logys = —AI'Y? = —ACY?  Inyy = —2.303AC"/?

ya = o—2303AC'/? y2 = o—4-606AC'2

K= S'(S' +C) x e—4.606AC1/2

K
WesolveS’2+S’C——2s =0

Y+
1/2
;1 5 4K / 1 K .
togetS =-|C”+ 5 ——C~x 5 [as in Problem 10.21]
2 Yi 2 Cyi

_ 12
N Kge 4.606AC

i _ 172
Therefore, since y7 = e 4.606AC" | ¢ e

P10.25 The half-reactions involved are:
R: cytyx +€ — Cyleq Eceyt
L: Dox+e  — Dpq ES
The overall cell reaction is:

R — L = Cytoy + Dred = CYteg + Dox  E€T = E5 — ES

(a) The Nernst equation for the cell reaction is

o p_ RT | [eyteqlDox]
F  [cytox][Dred]
at equilibrium, £ = 0; therefore
[cytieqleq[Doxleq _ F = =
ln— Y cyt - ED
[cytoxleq[Dredleq  RT

[Doxleq . [cyt]ox i e  po
" <[Dred]eq> =i <[cyt]red) T RT (Ecyt Ep )

D t
Therefore a plot of In < Doxleq ) against In < [eytlox ) is linear with a slope of one and an

[Dredleq [cytlred

F
intercept of T (Eceyt - EDe )
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(b) Draw up the following table:

Doxe
ln<%> —5.882 | —4.776 | —3.661 | —3.002 | —2.593 | —1.436 | —0.6274

red leq

Cox e
ln<M) —4.547 | =3.772 | —=2.415 | —1.625 | —1.094 | —0.2120 | —0.3293

[Cytred]eq

D t
The plot of In <m> against In <M) is shown in Fig. 10.3. The intercept is

redleq [cytredleq

—1.2124. Hence

RT
Egt = 5 % (—1.2124) +0.237V

= 0.0257V x (—1.2124) 4 0.237V

 [+0206V]

0 L T T T T I T T T T I T T T T I T T T T I T T T T l T T T T i

- : o 7

B ORI AR SRRV SRR SN SRR -

~ _25. .......................................................................................................... ..E
3 C ]
g 3¢ -
3 C .
~ r .
8 4r .
E r .
SE -

_6 C 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 l 1 1 1 1 ]

-5 4 3 ) -1 0 1

ln([CytuxJeq/ [CytredJeq) Figure 10.3

Solutions to application

(@  molalityy,go, = b(d) = a(d — das) + c(d — das)*

where d is density in g em ™ at 25°C, a = 14.523 mol kg_1 (g em™3) 7!,
¢ =25.031 molkg ™' (zem™3)72, and das = 0.99707 gem .
For 1kg solvent (mp,0 = 1kg):

_ MH,S04 N b x 100
mas s, = (0 ) 100 = e
2 : MH, S04 b0
100 x b(d
mass %H,s0,(d) = X—(l) where mp,s0, = 0.09807 kg mol ™!
b(d) + MH,S0,

an equation for the solution molarity is deduced with a unit analysis.

mass %sto4(d)> . (}o“fcm3> (

100 L

molarityy,so, (d) = b(d) x (1 —

kg

165

)
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Sulfuric Acid Solutions

10
8
=
£ 6
2 44
<
S
= 2
0 r r :
1.1 1.2 1.3 1.4
Density/(g/mL) Figure 10.4(a)
Sulfuric Acid Solutions
50
o 40
g
5 <30
2 o
O 'g
< £ 204
Swn
= 101
0 r r :
1.1 1.2 1.3 1.4
Density/(g/mL) Figure 10.4(b)
Sulfuric Acid Solutions
7
—~ 6 1
2 5]
=)
£ 4]
23
<
S 2
=
14
0 r r r
1 1.1 1.2 1.3 1.4

Density/(g/mL) Figure 10.4(c)

(b) cell: Pb(s) | PbSO4(s) | H2SO4(aq) | PbO,(s) | PbSO4(s) | Pb(s)
cathode: PbO;(s) + 3H+(aq) + HSO, (aq) + 2™ — PbSO4(s) + 2H,0(1)

© —
E Jihode = 16913V
anode: PbSO4(s) + HT (aq) +2e~ — Pb(s) + HSO,
ES .. =—03588V

net:  PbO(s) + Pb(s) + 2H™ (aq) + 2HSO; (aq) — 2PbSO4(s) + 2H,0(1)
E® =ES, i — Edode =|2:0501V (eqn 10.38)

cathode
AGE = —VFE® = —(2)(9.64853 x 10* C mol~1)(2.0501 V)

—3.956 x 10°CVmol ' = —3.956 x 10° Jmol~! =| —395.6kJ mol !
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A¢H® values of Table 2.6 and the CRC Handbook of Chemistry and Physics are used in the
ArH© calculation.

ArH® = 2A;H® (PbSOy) + 2A¢H® (H,0(1)) — AfH © (PbO,) — A H © (Pb)
—2A¢H® H") — 2A¢H© (HSO])
= 2(—919.94 kI mol~!) + 2(—285.83kJ mol ™) — (—277.4kJ mol 1)
—2(—887.34 kI mol 1)

AH® =|=359.5K mol ! |

AtH® — A,G®  —359.5kImol~! — (=395.6kImol~")
T B 298.15K

AS©

[1207K " mol™! | (eqn 4.39)

AS©
v

E®(15°C) = E®(25°C) + AE® = E®(25°C) +
(121 1 K Teot™T)
2(96485 Cmot™T) (10K)

2.0501V + 0.006V =|2.0507V

The temperature difference makes a negligibly small difference in the cell potential.
When Q = 6.0 x 1072,

AT (eqn 10.45)

= 2.0501V +

_po_RT
E=E 7 InQ (eqn 10.34)
v

(8.31451 T K~ Tmot1)(298.15 K)

In(6.0 x 1072
2(96485 Cmol 1) n(6.0 x 1077

= 2.0501V —

- 20750V

(c) The general form of the reduction half-reaction is: ox + ve™ 4+ vgH™ + aA — red 4 xX using
eqn 10.34,

RT RT Ared
E=E®° - —mQ=E% - —n|—2
vF vF Qox A+ Ay

(all species other than acids are at unit activity in a Pourboix diagram)

RT RT In(10)
—go4 M Inag+ = E® + mE log ay+
vF
RT n1
—pe_ M (Tn pH  (eqn 9.29)
vV

E=E® —(0.05916V) (VTH) pH
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For the PbO, | PbSO4 couple,

PbO,(s) + 4HT + SOZ ™ (ag) + 2e~ — PbSO4(s) + 2H0(1)
E® =1.6913V,vy=4,v=2
E =1.6913V — (0.11832V)pH

ForpH =5,| E =1.0997 V
ForpH=S8,|E =0.7447V
For the PbSO4/Pb couple,

PbSO4(s) + 2e~ — Pb(s) + SO3 ™ (aq)

Since vy = O, | E = E® = —0.3588 V |at all pH values in the Pourboix diagram.




Part 2: Structure






E11.1(b)

E11.2(b)

E11.3(b)

E11.4(b)

E11.5(b)

E11.6(b)

11  Quantum theory: introduction and
principles

Solutions to exercises

Discussion questions

A successful theory of black-body radiation must be able to explain the energy density distribution of
the radiation as a function of wavelength, in particular, the observed drop to zero as A — 0. Classical
theory predicts the opposite. However, if we assume, as did Planck, that the energy of the oscillators
that constitute electromagnetic radiation are quantized according to the relation £ = nhv = nhc/A,
we see that at short wavelengths the energy of the oscillators is very large. This energy is too large for
the walls to supply it, so the short-wavelength oscillators remain unexcited. The effect of quantization
is to reduce the contribution to the total energy emitted by the black-body from the high-energy
short-wavelength oscillators, for they cannot be sufficiently excited with the energy available.

In quantum mechanics all dynamical properties of a physical system have associated with them a
corresponding operator. The system itself is described by a wavefunction. The observable properties
of the system can be obtained in one of two ways from the wavefunction depending upon whether or
not the wavefunction is an eigenfunction of the operator.

When the function representing the state of the system is an eigenfunction of the operator €2, we
solve the eigenvalue equation (eqn 11.30)

QY = V¥

in order to obtain the observable values, w, of the dynamical properties.
When the function is not an eigenfunction of €2, we can only find the average or expectation value
of dynamical properties by performing the integration shown in eqn 11.39

(2) =/‘I’*Q\Il dr.
No answer.

Numerical exercises

The power is equal to the excitance M times the emitting area
P =MA=0oT*Qnrl)
=(5.67 x 107 Wm2K™*) x (3300K)* x (27) x (0.12 x 10> m) x (5.0 x 1072 m)

=[25x%x 10°W

Comment. This could be a 250 W incandescent light bulb.

Wien’s displacement law is

¢y 144 x102mK 6
TAmaX:CQ/S SO Amﬂzﬁzwzllsxlo m = 115um

The de Broglie relation is

h h h 6.626 x 10734Js
A =—=— 80 v=—=
p mv mi (1.675 x 1027 kg) x (3.0 x 102 m)

v =[13x 10 ms !
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The de Broglie relation is

h  h h 6.626 x 107347Js
A =—=— 80 Vv=—=

p mv mi 9.11 x 10*31kg) x (0.45 x 1079 m)
v =[1.6x 10°ms!

The momentum of a photon is

h  6.626 x 107375

p==

= =11.89x 107" kgms™!
A 350 x 10~9m

The momentum of a particle is

p 1.89 x 107?" kgms~!
p =mv SO vV=—

m - 2(1.0078 x 10~3 kgmol—1/6.022 x 1023 mol—1)
v =[0.565ms~!

The energy of the photon is equal to the ionization energy plus the kinetic energy of the ejected
electron

hc

1 2
Ephoton = Eionize + Eelectron SO Y = Ejonize + 7mv

he _ (6.626 x 10734 J5) x (2.998 x 103 ms ™)
Eionize + 3mv? 512 x 107187 4+ 1(9.11 x 1073 kg) x (345 x 10> ms~1)?

=348 x 108 m =[38.4nm]|

The uncertainty principle is

and A =

ApAx > %h

so the minimum uncertainty in position is

A h h 1.0546 x 1073475
X = = =
2Ap  2mAv  2(9.11 x 10—31 kg) x (0.000 010) x (995 x 103 ms—1!)
=[58%x10°m
h Nah
E=hv= —c; E(per mole) = NAE = AlC

A A

he = (6.62608 x 1073*Ts) x (2.99792 x 108 ms™") = 1.986 x 107> Jm

Nahe = (6.02214 x 1023 mol™!) x (1.986 x 1072 Jm) = 0.1196 Jm mol !

1.986 x 1073 Im 0.1196J m mol~!
Thus, E = . ; E(per mole) = —

We can therefore draw up the following table
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E11.12(b)

E11.13(b)

E11.14(b)

A E/1 E/(kJmol™")
(a)200nm  9.93 x 107" 598

(b) 150pm 1.32x 1075 7.98 x 10
(¢) 1.00cm 1.99 x 1072 0.012

Assuming that the “He atom is free and stationary, if a photon is absorbed, the atom acquires its
momentum p, achieving a speed v such that p = muv.

v=L"" =400 x1.6605 x 1072 kg = 6.642 x 10~ kg
m
_h
P=3
6.626 x 107375 . 27 1
a =——— =3313x 107°'k -
@ = 0% 10 m x gms
p 3313x 107 kgms~! )
v m 6.642 x 10—27 kg
6.626 x 107347 .
b p=-2 X TS 4417 % 10 P kgms™!
150 x 1012 m
p 4417 x 107 kgms™! 1
=—= =|665
YT m 6.642 x 102 kg
6.626 x 10734 7Js
¢ = —6.626x 102 kgms!
© P =T 00x102m % gme
-32 -1
v:£=6.626x10 kgms :’9.98x10_6ms_1‘
m 6.642 x 1027 kg
Each emitted photon increases the momentum of the rocket by #/A. The final momentum of the
Nh
rocket will be Nh/A, where N is the number of photons emitted, so the final speed will be
Mrocket

The rate of photon emission is the power (rate of energy emission) divided by the energy per photon
(hc/A), so

tPA <tPA> ( h ) tP
=—— and v=—|) X =
hc he AMyocket CMlrocket

_(10.0yr) x (365dayyr—!) x (24hday~!) x (3600sh™") x (1.50 x 103 W)

(2.998 x 108 ms—1) x (10.0kg)
=

Rate of photon emission is rate of energy emission (power) divided by energy per photon (hc/X)

P 0.10W) x (700 x 10~°

(a) rate=-— = ( ) % X m) =[3.52 x 107 ¢!
he  (6.626 x 107347T5s) x (2.998 x 108 ms—1)

(b)  rate = (LOW) x (700 x 107 m) —[3.52x 101857
(6.626 x 10734 Js) x (2.998 x 108 ms—1!) '

E11.15(b) Wien’s displacement law is

1.44 x 102 mK
Thmax =2/5 so T =—2 = X 0 MR _[1800K

5Amax  5(1600 x 10~9 m)
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E11.16(b) Conservation of energy requires

E11.17(b)

E11.18(b)

Ephoton = @ + Ex = hv = he/h so  Eg = hc/r — @

2E 1/2
and Ex = %mev2 sov = ( K)
ne
(6.626 x 10734Js) x (2.998 x 103 ms™—!)
650 x 10~9m

But this expression is negative, which is unphysical. There is no kinetic energy or velocity
because the photon does not have enough energy to dislodge the electron.

(@) Eg= —(2.09eV) x (1.60 x 107 2Jev™1

_(6.626 x 1073 T5) x (2.998 x 103ms™)
a 195 x 10=m

=16.84 x 10717

2(3.20 x 10719)) 12
and v = ( : ) —11.23 x 10°ms~!

—(2.09eV) x (1.60 x 107 2Jev™1

(b) Ex

9.11 x 1031 kg

E=hv="h/t, so

(@ E=6.626x10"%7s/2.50x 107 = ] 2.65 x 107197 = 160 kJ mol ! \

(B)  E=6626x 10775221 x 107155 =|3.00 x 1079 = 181 kI mol ! |

(©0 E=6626x10"*Is/1.0x 10 3s= ] 6.62 x 107317 =4.0 x 10719k mol~! \

The de Broglie wavelength is
h
A=—
p

The momentum is related to the kinetic energy by

p2
Ex = — so p=(QmEg)'/?
2m

The kinetic energy of an electron accelerated through 1 Vis 1eV = 1.60 x 107127, so

h
A=—
(2mEx)!/2
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6.626 x 1073475

a A=
@ (2(9.11 x 10~31 kg) x (100eV) x (1.60 x 10~19JeV—1))1/2
=(1.23x107%m
6.626 x 1073475
b) A=
(2(9.11 x 10~31 kg) x (1.0 x 103eV) x (1.60 x 1019 JevV—1))1/2
=139x10""'m
6.626 x 1073475
(0

A=
(2(9.11 x 10~31kg) x (100 x 103eV) x (1.60 x 10-19JevV—1))1/2

=388 x 107 2m

E11.19(b) The minimum uncertainty in position is | 100 pm |. Therefore, since AxAp > 17
ho 1.0546 x 107347 s
Ap > =
2Ax  2(100 x 10~12m)
_Ap  53x 107X kgms™
T om 9.11x 10731 kg

=53x 10" P kgms™!

1
Av =]5.8 x 10 ms™!

E11.20(b) Conservation of energy requires

1 2 1 2
Ephoton = Ebinding + 3Mev” = hv = hc/A 80 Epinding = hc/A — 3mev

(6.626 x 10734 7s) x (2.998 x 103 ms™1)
121 x 10—12m
— $9.11 x 1073 kg) x (5.69 x 10" ms™1)?

=[1.67x 107197

Comment. This calculation uses the non-relativistic kinetic energy, which is only about 3 per cent
less than the accurate (relativistic) value of 1.52 x 10~13J. In this exercise, however, Ebinding is a
small difference of two larger numbers, so a small error in the kinetic energy results in a larger error
in Epinding: the accurate value is Epinding = 1.26 X 107167,

and Epinding =

Solutions to problems

Solutions to numerical problems

hv Jsxs~!
P11.3 = —, =— =K
g = [oe] =~ =

In terms of 6g the Einstein equation [11.9] for the heat capacity of solids is

2

Or \ 2 0 /2T

Cy =3R (%) X (;Tl , classical value = 3R
e J—

h
It reverts to the classical value when T >> 6 or when k—; <« 1 as demonstrated in the text
(Section 11.1). The criterion for classical behaviour is therefore that | T >> 0 |.

hv  (6.626 x 10734 JHz™ 1) x v T
Tk 1.381 x 1023 K1 X (v/Hz)
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(@) Forv =4.65x 103 Hz, 6 = (4.798 x 107'1) x (4.65 x 10*K) =[2231K
(b) Forv =17.15x 10"2Hz, 6g = (4.798 x 10~!") x (7.15 x 10'?K) = 343K

Hence
7 2

Cy 2231 K\ 2 e2231/(2%298)

@ 3% = ( 298K ) x (32231/298 — ) =003l
2

Cy 343K\ 2 £343/(2x298)
& 3k = (298K> X <e343/298 — | =087
Comment. For many metals the classical value is approached at room temperature; consequently,

the failure of classical theory became apparent only after methods for achieving temperatures well
below 25°C were developed in the latter part of the nineteenth century.

The hydrogen atom wavefunctions are obtained from the solution of the Schrédinger equation in
Chapter 13. Here we need only the wavefunction which is provided. Itis the square of the wavefunction
that is related to the probability (Section 11.4).

1 4
y? = —36_2’/“0, st = gnr3, ro = 1.0pm
ma
0

If we assume that the volume 87 is so small that ¢ does not vary within it, the probability is given by

3
3a] 53

4 (1.0\°
—_0- 2 _ _ -6
(@ r=0: war_—(§> =19.0 x 10
4 (1.0\°
b r=ap: Y28t = 3 <§) e 2=12x10"°

Question. If there is a nonzero probability that the electron can be found at r = 0 how does it avoid
destruction at the nucleus? (Hint. See Chapter 13 for part of the solution to this difficult question.)

3 3
Iﬁzﬁt — 4&372"/&0 — g X <E> eizr/ao

According to the uncertainty principle,
ApAg > h,

where Ag and Ap are root-mean-square deviations:
Ag = (&%) = (@D and  Ap=(p*) - (p)H'2.

To verify whether the relationship holds for the particle in a state whose wavefunction is
W = (a/m)4eax’,

We need the quantum-mechanical averages (x), (xz), (p), and ( pz).

% 1/4 1/4
<X> = / \If*xz\ll dr = / (2—a> e—axzx <2—a) e—axzd-X7
T T
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by 1/4 1/4 12
(x2> = / (2_a> / ax2x2 <2_a> / e—axzdx — (2_a> / /XZe Zaxzdx’
g T T
% o

so Aq =——=

T /naw T 2w
(p) =/\y* —— )dx and (pz)z/lll* —h?— ) dx.
1 dx dx2

We need to evaluate the derivatives:

dv  [2a\'*
_— = <—a> (—2ax)e_ax2

dx T
2w 2\ 1/4 20\ /4
and —2=<—a> [(—2ax)2e“”‘2+(—2a)e_‘”‘2]=<—a> (4a’x® — 2a)e= .
dx b4 T
o0
2a\ /4 AN\ /2a\ /4
so = [ () e (5)(%) craneear
T 1 T

12 ¥ ,
= ( ) fxefz‘” dx =0;
—0oQ
< 1/4 1/4
2a
(p?) /(-") e (—h )( > (4a2x? — 2a)e~* dx,
T

o0

1/2
> / 2ax? — 1)e =2 dx,

1/2 1/2 1/2
) 2a il _ = ahz;
22a)3/?2  (2a)l/2

:||g’

(p?) = (—2an?)

(p?) = (=2an?) <

SR

and Ap =a'/?n.

Finally, AgAp = x a'’h = 1/2n,

1
2al/2

which is the minimum product consistent with the uncertainty principle.



178

P11.9

P11.10

INSTRUCTOR'S MANUAL

Solutions to theoretical problems

We look for the value of A at which p is a maximum, using (as appropriate) the short-wavelength
(high-frequency) approximation

8mhe 1
p=—5 \ ghepar —7) 1]

dp 5 he ehc/)»kT
@ = T \Gemrr —y | £ =0 A= A
he he/AkT
Then, —5 + T S T 1 = 0

Hence, 5 — 5eM¢/*T he /KT _
AT

h
If ﬁ > 1 [short wavelengths, high frequencies], this expression simplifies. We neglect the initial 5,

cancel the two exponents, and obtain

hc
he = 5AkT  f A=A d — 1
c or max an T >

h
or | Amax I = i = 2.88mm K |, in accord with observation.

Comment. Most experimental studies of black-body radiation have been done over a wavelength
range of a factor of 10 to 100 of the wavelength of visible light and over a temperature range of 300 K
to 10000 K.

Question. Does the short-wavelength approximation apply over all of these ranges? Would it apply
to the cosmic background radiation of the universe at 2.7 K where Apax =~ 0.2cm?

8mwhe 1
p=—5 \Geprr —7 ) 11

h
As A increases, )Jc_CT decreases, and at very long wavelength hc/AkT <« 1. Hence we can expand

the exponential in a power series. Let x = hc/AkT, then

1 1
F=1+x+—x>4-—x4--

2! 3!
8mwhe 1
p =
Aol lhx+ g2+ g+ -1
. 8mhc 1 8mwhe 1

lim p = =
A—00 Ao l+x—1 A5 \hc/AkT

_ 87kT

==

This is the Rayleigh—Jeans law [11.3].
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_ 8xhe 1
P="35 X ghe/mkT _

P11.12 1 [11.5]

he/3kT o, (_ _he
dp 407 he 1 8whc\ © x ( m)
—_— = — X — X
o G ohe/AkT _ | 25 (ehe/MeT — 1)2
87 he 1 5 he  ehe/MT

=5 “N\ehemr —1 ) X | Tx T kT ehelkT — 1

= > X 1 he !

“\TR) P T SakT 1 = e helikT
a
8—i = 0 When A= )\.max and

he 1 _1
5hmaxkT | 1 — e=c/mmaxkT |

Skmaka (l — e_hc/)‘manT> = 1
hc

5 5 1
Letx:—c; then —(l—efx)zl or — =
AmaxkT X X 1]—e*
The solution of this equation is x = 4.965.
4.965 maxk T

Then h = —— 27~ (1)

c
However

273k4
M=oT*= T 2

’ (15c2h3> @

Substituting (1) into (2) yields

275k4 c .
M =~ X T
15¢2 4.965 maxkT
2m3ckT

1835.943 x
L~ 1835.923 , M

max
275¢T
1835.9(1.451 x 107°m)? x (904.48 x 103 W)

- 275(2.998 x 103 ms—1) x (2000K) x (1.000 m?2)

k~ 1382 x 10783 JK! 3)
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Substituting (3) into (1)

I~ 5(1.451 x 107%m) x (1.382 x 10723 JK~!) x (2000 K)
2.998 x 108 ms—!

h~669x103*]s

Comment. These calculated values are very close to the currently accepted values for these constants.

P11.14 In each case form N ; integrate

/(Nw)*(Nlp) dz

set the integral equal to 1 and solve for N.

@ Y=N <2 - i) e~"/240

aop
2 2 r\

yr=N?(2—-—) e/

agp

00 4r3 r4 T 2w

/Wdr :sz 4r*— —+ — e*’/“Odr/ sin@d@/ d¢

0 a  ag 0 0

6ag  24a)

=N2<4xza3—4x—+
ao

: 12
hence | N =
3R2ra]

where we have used

) x (2) x (2m) = 327ai N?
ao

o0 n!
/ x"e ™ dx = — [Problem 11.13]
0 a

(b) ¢ = Nrsin6 cos¢e /(2

b4 2
/1// dr—NZ/ r e_r/“odr/ sin29sin9d9/ cos” ¢ d¢p
0 0

1
= N24!a3/ (1 —cos?0)dcosf x 7
-1

12
2 1

= N%41a] <2 - —> 7 =327a3Ng; hence |N = -
3 32may

1

-1
where we have used / cos" fsinfdf = — / cos” @dcosf = / x"dx
0 1 -1

and the relations at the end of the solution to Problem 11.8. [See Student’s solutions manual.]

Y

+
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P11.16 Operate on each function with i; if the function is regenerated multiplied by a constant, it is an
eigenfunction of i and the constant is the eigenvalue.
@ f= x3 —kx
i —kx)=—-x4+kx=—f
Therefore, f is an eigenfunction with eigenvalue,
(b) f = coskx
i coskx = cos(—kx) = coskx = f
Therefore, f is an eigenfunction with eigenvalue,
(© f=x>+3x-1
i(x2+3x — 1) = x> —3x — 1  constant x f
Therefore, f is not an eigenfunction of i.

P11.19 The kinetic energy operator, T, is obtained from the operator analogue of the classical equation
2
p
Ex = —
K= om
that is,
V)
7o P
2m
., _hd . o , d? . n? d?
Px = T [11.32]; hence p;=—h @ and T = —%@
Then
22
A fl/f* 2’; I/fdf 1
(T>=N2/w* bx wdrz—(m) A —
2m [ vy dr [y*ydr
E—fnz [y* %(eik’“ cos x + e *¥sin ) dr
- [y de
B S [y (—k2) x (¥ cos x + e~ ¥ sin y) dr R [yryde B2
N [ y*yde C2m [yrydr | 2m
nd
P11.20 px = —— [11.32]
idx
1
=N? [ y*pepdx; NP = ———
() = N [ 0 povran T
n h dy
_ [¥*pyydx _ Tfl/f* (E) dx
- [yryde  [yrydx
; d
@ v=et. Loy
dx
Hence,
h : *
=ik [t dx
=-————=\|kh
(Px) ST

+



+

182 INSTRUCTOR’S MANUAL
d
® v =coskr. W _ksink
dx
o d o
/ w*—w dx = —k/ coskx sinkxdx =0
PN dx PN
Therefore, ( @
(c) = e_"‘xz, i — Daxe ¥’
dx
e 2
/ ¢ = 2« / xe 2% dx =0 [by symmetry, since x is an odd function]
—o0

Therefore, (py) = @
P11.23 No solution.

Solution to applications

P11.27 (a) Consider any infinitesimal volume element dx dy dz within the hemisphere (Figure 11.1) that
has a radius equal to the distance traveled by light in the time dz (c dt). The objective is to find the
total radiation flux perpendicular to the hemisphere face at its center. Imagine an infinitesimal
area A at that point. Let r be the distance from dx dy dz to A and imagine the infinitesimal
area A’ perpendicular to 7. E is the total isotropic energy density in dx dy dz. E dx dydz is
the energy emitted in dz. A/ 47772 is the fraction of this radiation that passes through A’. The
radiation flux that originates from dx dy dz and passes through A’ in d¢ is given by:

s (I%)dedydz B E dx dy dz
A= A dt T 4mr2de
The contribution of Jy4’ to the radiation flux through A, Jy4, is given by the expression J4/ X
(A cos6) //( = Jys cos 6. The integration of this expression over the whole hemisphere gives an

dxdydz

Figure 11.1
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expression for J4 . Spherical coordinates facilitate to integration: dx dy dz = r2sin6 dd dp dr =
—r2d(c0s 0)de dr where 0 <0 <2mand 0 <6 < m/2.

7 / ©) Edxdydz
= cos _
A 4r? dt
hemisphere
— f cos(0) { } {—/2d(cos 0) d¢ dr}
. 4y de
hemisphere
cos(r[/Z) 2 cdt
( ) cos(6) d(cos@)/dd) / dr
cos(0) 0 0
< > wdw | 2n) (c4f)
cE
Ja = -7 ( 7 ) (%) {Subscript “A” has been a bookkeeping device. It may be dropped.}
E
J=220 o |dJ=SdE
4 4
8mwhc dA
dE = __omhcdr [eqn 11.5]

A5 (ehc/ART -1

By eqn 16.1 v = 1/A. Taking differentials to be positive, dv = da/a% orda = A% dv = di/p?.
The substitution of v for A gives:

dE — 8 hci’ &
= eheojkt —1 &Y
Thus, dJ = £(5) db where | £(5) = —217"
us, dJ = f(v) dv where (v)—m

The value of the Stefan—Boltzmann constant o is defined by the low n = fooo dJ(v) = oT* n
is called the total exitance. Let x = hcv/kT (or v = kT x/ hc), substitute the above equation for
dJ (v) into the Stefan—Boltzmann low, and integrate.

o0
/Znhc 2534y 2nk4T4/' x3dx
n =

eheV/kT _ 1~ p3¢2 eX — 1
0 0
kAT [t 209k \
= === = T

h3c2 15 15 h3c2

23kt

Thus, |0 = 2~ — 56704 x 103 Wm 2K 4

15h3¢2

The function f (V) gives radiation density in units that are compatible with those often used in
discussions of infrared radiation which lies between about 33 cm ™! and 12 800 cm ™! (Fig. 11.2).
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Blackbody radiation density at 288.16 K.
T T T T

R
W
T

w
T

0 I I I I
0 500 1000 1500 2000 2500 3000

Wavenumber, 7/cm™! Figure 11.2

By graphing f (V) at the observed average temperature of the Earth’s surface (288.16 K) we easily
see that the Earth’s black-body emissions are in the infrared with a maximum at about 600 em ™!,
Let R represent the radius of the Earth. Assuming an average balance between the Earth’s
absorption of solar radiation and Earth’s emission of black-body radiation into space gives:
Solar energy absorbed = black-body energy lost

JTR2(1 — albedo)(solar energy flux) = (47 R2)(o T4)

Solving for T gives:

o [(1 — albedo)(solar energy flux) i| 1/4
o 4o

B [ (1 —0.29)(0.1353 W cm—2)

1/4
=[255K
4(5.67 x 10-12Wcem—2 K—4:|

This is an estimate of what the Earth’s temperature would be in the absence of the greenhouse
effect.

+
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E12.3(b)

12 Quantum theory: techniques and
applications

Solutions to exercises

Discussion questions

The correspondence principle states that in the limit of very large quantum numbers quantum
mechanics merges with classical mechanics. An example is a molecule of a gas in a box. At room
temperature, the particle-in-a-box quantum numbers corresponding to the average energy of the gas
molecules (% kT per degree of freedom) are extremely large; consequently the separation between the
levels is relatively so small (z is always small compared to n?, compare eqn 12.10 to eqn 12.4) that
the energy of the particle is effectively continuous, just as in classical mechanics. We may also look at
these equations from the point of view of the mass of the particle. As the mass of the particle increases
to macroscopic values, the separation between the energy levels approaches zero. The quantization
disappears as we know it must. Tennis balls do not show quantum mechanical effects. (Except those
served by Pete Sampras.) We can also see the correspondence principle operating when we examine
the wavefunctions for large values of the quantum numbers. The probability density becomes uniform
over the path of motion, which is again the classical result. This aspect is discussed in more detail in
Section 12.1(c).

The harmonic oscillator provides another example of the correspondence principle. The same
effects mentioned above are observed. We see from Fig. 12.22 of the text that probability distribution
for large values on n approaches the classical picture of the motion. (Look at the graph for n = 20.)

The physical origin of tunnelling is related to the probability density of the particle which according to
the Born interpretation is the square of the wavefunction that represents the particle. This interpretation
requires that the wavefunction of the system be everywhere continuous, event at barriers. Therefore,
if the wavefunction is non-zero on one side of a barrier it must be non-zero on the other side of the
barrier and this implies that the particle has tunnelled through the barrier. The transmission probability
depends upon the mass of the particle (specifically m'/2, through eqns 12.24 and 12.28): the greater
the mass the smaller the probability of tunnelling. Electrons and protons have small masses, molecular
groups large masses; therefore, tunnelling effects are more observable in process involving electrons
and protons.

The essential features of the derivation are:

(1) The separation of the hamiltonian into large (unperturbed) and small (perturbed) parts which are
independent of each other.

(2) The expansion of the wavefunctions and energies as a power series in an unspecified parameters,
A, which in the end effectively cancels or is set equal to 1.

(3) The calculation of the first-order correction to the energies by an integration of the perturbation
over the zero-order wavefunctions.

(4) The expansion of the first-order correction to the wavefunction in terms of the complete set of
functions which are a solution of the unperturbed Schrodinger equation.

(5) The calculation of the second-order correction to the energies with use of the corrected first order
wavefunctions.

See Justification 12.7 and Further reading for a more complete discussion of the method.
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E12.5(b)

E12.6(b)
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Numerical exercises

n2n?
~ 8meL?
h? (6.626 x 10734 J 5)2
8meL? ~ 8(9.109 x 10-31 kg) x (1.50 x 10~9 m)2

=2678x 107205

Conversion factors

B _Nap,

kJ mol™! 103
leV=1.602x 10°17J
lem™ ' =1.986 x 10737

h? ~20
@  Ey—Ei= 00— = 82678 x 1072))

e

=214 x 10723 | = | 129KkI mol! | = [134eV ] =| 1.08 x 10*cm™!

h2
(b) E7—Eg=49-36)——

8me L2
=13(2.678 x 107207)
— 1348 x 10"°3] = | 210k mo1~! | =[2.17eV] =| 175 x 10* cm~!
The probability is
2 2A
P=[vrvar=2 [am (M) ar = 200 G (1)
L L L L
where Ax = 0.02L and the function is evaluated at x = 0.66L.
(a) Forn =1
2(0.02L -
P = % sin%(0.667) = | 0.031
(b) Forn =2

2(0.02L —
P = % sin%[2(0.667)] = | 0.029

The expectation value is
= [vipvar
but first we need pyr

R .d /2 1/2~ nmwx . 2\ Y2 ur nmwx
P = ﬂha(z) sin(=) = =i (z) 7o)

+
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—2ih. L
so (p) = T /0 sin(%) cos(%) dx = @for all n

A h2n?
p°y =2m(H) =2mE, = —
(5°) = 2m(H) = 2mEy = -

for all n. So forn =2

A

Py =|—

E12.7(b) n=>5
_ 2\ /2 . [ Smx
Vs = <Z> Sm( L )
2 .2 57Tx
P(x) x5 o sin -
dP(x) _0

Maxima and minima in P (x) correspond to

d dlpZ . (57x Smx . (10mx . .
— P(x) « — o sin[ — ) cos - o sin < (2sino cosa = sin2w)

dx dx L
sind =0 when6=0,72n,...=n'nr W' =0,1,2,...)
10
T =n'mr n <10
L
n'L

10
Minimaatx =0, x =L

Maxima and minima alternate: maxima correspond to

L ||3L||L||7L||9L
n=13579 x=|—=|l=—L 5} =}
10 [|2[] 10|10

E12.8(b) The energy levels are

(n% + n% + n%)h2
8mL2

2 2 2
Enynyns = = E{(n] +n5 +n3)

where E| combines all constants besides quantum numbers. The minimum value for all the quantum
numbers is 1, so the lowest energy is

Ei 1,1 =3E;

The question asks about an energy 14/3 times this amount, namely 14E. This energy level can be
obtained by any combination of allowed quantum numbers such that

n?+nd+ni=14=3 42241

The degeneracy, then, is @, corresponding to (n1, na, n3) = (1,2, 3), (2, 1,3), (1,3,2), (2,3, 1),
(3,1,2), or (3,2, 1).
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E12.9(b) E = 3kT is the average translational energy of a gaseous molecule (see Chapter 20).

_ (n% + n% + n%)h2 . n2h?

E = 3kT =
2 8mL2 8mL2
E = (%) x (1.381 x 1073 JK ™) x (300K) = 6.214 x 1072']
2 8mL>
n° = E
h2

If L3 = 1.00m3, L2 = 1.00m?

h? (6.626 x 107347 5)2

2 = 0.02802 kg mol—!
SmL ®) (6.022><102g31:1(z)1*1> x (1.00m?)

,  6214x 10721

=~ _5265x 10%!; =17.26 x 1010
n 1.180 x 10—42J X n

AE = Eyny1 — En = E756x10104+1 — E7.26x1010

) 10 ( W2 ) 14.52 x 101042
= [(2) x (7.26 x 100 4 1)] x _

=1.180 x 107427

2

AE=(2n+l)x<

8mL?2 sml2 | SmL2

= (14.52 x 10'%) x (1.180 x 107%?J) =|1.71 x 10731J

The de Broglie wavelength is obtained from

h
A = — = — [Section 11.2]
p mv

The velocity is obtained from

Ex = 1mv? = 3kT = 6214 x 10721

5 6.214 x 10721J

_ o
VT )« (L Ty — 20T XA v =alTme
2 6.022x 102> mol T

6.626 x 1073475

A= =275x10"""m ={27.5pm
(4.65 x 10726kg) x (517ms~1)

The conclusion to be drawn from all of these calculations is that the translational motion of the
nitrogen molecule can be described classically. The energy of the molecule is essentially continuous,
— XK 1.

E

E12.10(b) The zero-point energy is

Q!
=)

Il
=
>t
S
I
| —
>t
7N

| =
~—
~
[\)

Il

$(1.0546 x 1074 Ts) x (

3.92 x 10721]

1/2
285N m~! /
5.16 x 1020 kg
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E12.11(b) The difference in adjacent energy levels is

m
e =[260Nm! |

E12.12(b) The difference in adjacent energy levels, which is equal to the energy of the photon, is

k\/? AE)? (288 x 1075k 3.17 x 10721 J)2
AE=hw=n(—> o ko MAE? (288 x g) x 317 x 107217
h? (1.0546 x 10~34J5)2

kN2
AE =hw=hv so h(—) =2
m A
he [k \/? mnl/2
andA=E<Z> =27TC<E)

1/2
(15.9949 u) x (1.66 x 10~27 kgu—l))/

=27(2.998 x 108 ms™!) x
544N m—!

A =132 x 10_5m=

E12.13(b) The difference in adjacent energy levels, which is equal to the energy of the photon, is

1/2
AE = hw=hv so h(—) = —
m

he [ k\/? 12
and A = (L =2mc (ﬂ)/
h k

m

Doubling the mass, then, increases the wavelength by 2172 S0 taking the result from Ex. 12.12(b),
the new wavelength is

A =2"2(132um) =
1/2
E12.14(b) o= (?) [elementary physics]
AE = ho = hv

(@ AE=hv=(6.626x1073*JHz"!) x 33 x 10°Hz) =(2.2 x 1072°J

k \/? 1 1 1
(b) AE=hw=h< ) [ =—+—withm1=m2]

Meff Meff mi my
For a two-particle oscillator m¢f, replaces m in the expression for w. (See Chapter 16 for a more
complete discussion of the vibration of a diatomic molecule.)

2k \!/? () x (1177Nm~1H /2
AE = h(—) = (1.055 x 1073 J 5) x ( )
m

(16.00) x (1.6605 x 10~27 kg)
=13.14x 107205
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E12.15(b)

E12.16(b)

E12.17(b)
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The first excited-state wavefunction has the form
¥ =2Nyy eXp(—%yz)

. . mw\l/2 e . .
where N is a collection of constants and y = x (—) . To see if it satisfies Schrodinger’s equation,

we see what happens when we apply the energy operator to this function

h2 d%y

HYy =————
v 2m dx?

+ %ma)zlep
We need derivatives of ¢

dzw dzw dy 2 mo 3 1 2 mo 5

. K2
So Hyr = ~5m X (m_;)) X (y2 -3y + %ma)zx2
= —Jho x (v* = 3) x ¥ + Lhwy?y = 3hoy

Thus, v is an eigenfunction of H (ie. it obeys the Schrodinger equation) with eigenvalue

E = %ha)

The zero-point energy is

: . k 1/2

For a homonuclear diatomic molecule, the effective mass is half the mass of an atom, so

1/2
2293.8Nm™~! )/

Eo = 1(1.0546 x 10734 5) x
0T 1(14.0031u) x (1.66054 x 1027 kgu~1)

Eo=]23421 x 107207

Orthogonality requires that

/w:;x/fndr =0

if m # n.
Performing the integration

2 . . 2r .
Ne—1m¢Neln¢ d¢ = NZ/ el(n—m)(;b d¢
0

/‘[’rﬁl/fn dr =
0
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If m # n, then

) 2

N : N?
* dr = i(n—m)¢ —
/ Ym¥n d7 i(n — m)e 0 i(n —m)

(1-1)=0

Therefore, they are orthogonal.

E12.18(b) The magnitude of angular momentum is

(LAHY2 = (1 +1)"?h = 2(3)/%(1.0546 x 10734 Js) ={2.58 x 107 3*7Js

Possible projections on to an arbitrary axis are
(Lz) =mh

where m; = 0 or £1 or +2. So possible projections include

0, +1.0546 x 1073*Jsand 2.1109 x 107347 s

E12.19(b) The cones are constructed as described in Section 12.7(c) and Fig. 12.36 of the text; their edges are
of length {6(6 + 1)}1/2 = 6.48 and their projections are m; = +6, +5, ..., —6. See Fig. 12.1(a).

The vectors follow, in units of A. From the highest-pointing to the lowest-pointing vectors
(Fig. 12.1(b)), the values of m; are 6, 5,4,3,2,1,0, —1, -2, =3, —4, —5, and —6.

Figure 12.1(a)

Figure 12.1(b)
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Solutions to problems

Solutions to numerical problems

I(I + A? (I + HA? 2 :
P12.4 E=—"—[1265]=——= [I= R-, 1 f
7L ] I R [/ = meff R”, megr in place of m]
B I+ 1) x (1.055 x 10734 5)2 5 1 N 1
Q) x (1.6605 x 10=27kg) x (160 x 10~12m)2 1.008  126.90
|: 1 1 1 }
= — 4+ —
Meff mi mj
. : . N E 33
The energies may be expressed in terms of equivalent frequencies with v = w = 1.509 x 10°° E.
Therefore,
E=10+1)x (131 x 1072J) = (I + 1) x (198 GHz)
Hence, the energies and equivalent frequencies are
l 0 1 2 3
102£/1 [o] [262] [7.86] [15.72]
v/GHz 0 396 1188 2376
P12.6 Treat the gravitational potential energy as a perturbation in the energy operator:

HY = mgx.

The first-order correction to the ground-state energy, E1, is:

Not surprisingly, this amounts to the energy perturbation evaluated at the midpoint of the box. For
m=me, E{V/L =447 %1070 m™L.
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Solutions to theoretical problems

h2 92 9z 32
P12.8 i Y O Ny Eu V=0
<2m> X (8x2+8y2+822 v==Ey V=0l

We try the solution ¥ = X(x)Y (y)Z(2)

h2
—Z—(X”YZ +XY'Z+XYZ"Y=EXYZ
m

h2 x” y” 7z
- <— +—+ —) —E

/!
5 depends only on x; therefore, when x changes only this term changes, but the sum of the three
1
terms is constant. Therefore, 5 must also be constant. We write

m2 X"
_ X ;
o X E~<, with analogous terms for y, z
m

Hence we solve

h2

—2—X”=EXX
m
2 Y X p¥, pZ
_2_y~=E yVE=EX4+EY +EZ, y=XvZ
m
2
—2FL—Z”_EZZ
m

The three-dimensional equation has therefore separated into three one-dimensional equations, and
we can write

2 2 2 2
E=:—<n—12+n—%+n—;> ny,np,n3=1,2,3,...
m Ll LZ L3

8 12 max\ . (nymy\ . [(n3mz
v=——r sin sin sin
LiLyrL3 L Lo Ls

For a cubic box

2

E—(n24n?tn
(it n3)8mL2

P12.10 The wavefunctions in each region (see Fig. 12.2(a)) are (eqns 12.22-12.25):
V1(x) = k¥ 4 Bk
Ya(x) = Azl 4 Bpe o
Y3(x) = Az

with the above choice of A; = 1 the transmission probability is simply 7 = |A3 |?. The wavefunction
coefficients are determined by the criteria that both the wavefunctions and their first derivatives w/r/t
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x be continuous at potential boundaries

V1(0) = ¥2(0);  ¥a(L) = ¥3(L)
dy1(0)  dyo(0) dya(L)  dys(L)
d« — dx dx  dx
These criteria establish the algebraic relationships:

1+B—A—B,=0
(—iky — ko) Ay + (—iky + kp) By + 2ik1 =0
Apekel 4 ookl _ preilil —

AgkzekzL — szge_kzL — iA3k3eik3L =0

A

Vi

: X
0 L Figure 12.2(a)

Solving the simultaneous equations for A3z gives
3 4k ky eiksLl
(ia + b) ek2L — (ia — b) e—koL
where a = k3 — kikz and b = kiky + koks.
since sinh(z) = (e —e™?)/2 ore” = 2 sinh(z) +e™ 7, substitute ekl — 2sinh(kyL) +e k2L giving:
B 2k kpelk3L
"~ (ia + b) sinh(ky L) + b e—koL

Az

A3

4k2 k3
(a® + b2) sinh? (ko L) + b2
where a” + b* = (k% + k%)(k% + k%) and b* = k%(kl + k3)2

T = A3l = A3A3 =

(b) In the special case for which V| = V3 = 0, eqns 12.22 and 12.25 require that k; = k3.

Additionally,
ky 2 E £
— ) = = where ¢ = E/ Vj.
ko Vo — FE 1—¢
Nk
A+ =3+ =k {1+ <k—‘) }
2

+
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2 212
2 2
2 ky
a2+b2_k2{1+<k2)} 1
p2 43 T 4e(1 —e)
_— b* 1

b2 + (@ + b?)sinh® (kL) | 4 (ﬂzb;zbz) sinh?(ky L)

-1 -1
B sinh2(ky L) B (el — e=kaly2
= { Moo | 'Y e

This proves eqn 12.28a where Vi = V3 =0

In the high wide barrier limit kL >> 1. This implies both that e™ ">~ is negligibly small
compared to e’ and that 1 is negligibly small compared to e? fol /{16¢(1 — ¢)}. The previous
equation simplifies to

koL

T =161 —e)e 2Rl [eqn12.28b]

(c) E=10kJ/mol, V;=V;=0, L=50pm
025 , : , ,

0.2

0.15 _|
T
0.1 —
0.05 —
0 I I I
1 1.2 1.4 1.6 1.8 2
Ve (ie., V,/E) Figure 12.2(b)
h2 d?
P12.12 The Schrodinger equation is P dy + %kx21// =Ey
2m dx?
d
and we write ¥ = e_gxz, SO d—l/f = —nge_g)‘2
X
a2y

e —de_gx2 + 4(gzxze_15"‘2 = —2gy +4g° x>y
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2 2,2
(h_g) v— <2hmg )xzw + iy = By

m

2 2,2
m m

This equation is satisfied if

hzg mk\'/?
T T
Therefore,
K \/2 K \/2
E=1h (-) =lho ifo= (-)
m m
+o00o +00
P12.14 (") = a" (y") = " Yy dx =a”+1/ Y2yhdy [x = ay]
—00 —00
+00
(x3> (o' / w2y3 dy = @ by symmetry [y3 is an odd function of y]
oo
() = vyt dy

o
v =y N Hye
¥ Hy = 3 (Hori +0Ho1) =32 [§ (Hos2 + 0+ DH) +v (JHo + 0 = DH,2) |
= [§Hura+ (v +3) Ho+ v = DH, ]
=y [% (%HU+3 + (v + 2)Hv+1> + (v + %) X (%HUH + vHU_l)
fo( —1) x (%Hv_l F - 2)HU_3>]

=y (§Hos3 + 30+ DHypr + 302 Hyo + 00 = 1) x (0 = 2)Hy3)

Only yHy41 and yH,_ lead to H, and contribute to the expectation value (since H, is orthogonal
to all except Hy) [Table 12.1]; hence

Y Hy = 3y{(v+ DHypq + 207 Hy_1} + -
=3 [(v 1) (%HM F o+ l)Hv) + 202 (%Hv F— 1)HU_2)] T
= A+ D?Hy + vV*H} + - -
=3 +2v0+ DHy +- -

Therefore
oo 4 37,2 2 oo 2 —y? 3 2
y y=32v"+2v+ e y=—QCv"+2v+
vy d 4(2 2 1N H; —d 2 2 1)
—0o0 —00 4o
and so

xh = (@) x (41) x (2v* +2v+1) =| 320> +2v + Do
o

+
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P12.17 V=-

2
1

i B5withZ=1]=ax? withb=—1 [x— r]

drey 1

Since 2(T) = b(V) [12.45, (T) = Ex]

Therefore, | (T) = —3(V)

P12.18 In each case, if the function is an eigenfunction of the operator, the eigenvalue is also the expectation
value; if it is not an eigenfunction we form

(a)

(b)

()

()

) = / v*Qy dr [11.39]

a hd . i
e = £ oe? = hel®s hence ;=
1

o2 — hd i _ 2.

i d¢ ’

; 21 (’ji >d E 21 ) 4 _@
(Z>o</(; cos ¢ id¢cos¢ ¢>o<—i/0 cos¢sing dg =

2 os v o (B d . |
) =N° / (cos xe'? + sin ye™')* ( _> x (cos xe'? + sin ye %) dg
0

idg

hence J, =|-2h

h 2 . . . .
= 7N2[ (cos xe % +sin xe'?) x (icos xe' — isin xe'?) d¢
1 0

2 . .
= hNZ/ (cos2 X — sin? X =+ cos x sin X[ezl¢ — e_21¢]) do
0
= 771N2(cos2 X — sin? x) X 2m) = 27hN? cos 2x

27-[ . . . .
NZ/ (cos xe? + sin xe )" (cos xe'? + sin xe ) d¢
0
2 . .
= N2/ (cos? x + sin® x + cos x sin x[eZ? + e~ 29]) do
0

1
=27 N?(cos? x +sin x) =2xN* =1 ifN?>= o
T

Therefore

{I;) = [x is a parameter]

72 2 42

A . he d

For the kinetic energy we use T = Ex = 2—;[12.47] = _EW [12.52]

. o, h2 . 72
(a) Te = ——(i%%) = —el?: hence (T)=|—

21 21 21

N o 2 o ARr . 2h2

b) Te 2P =_—_(2i)e 2 = e 29 hence (T)=|-—
21 21 1

. h? h? h?

(¢ Tcosgp= —ﬁ(—cos ¢) = 27 cos¢; hence (T)= 27
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. . . K2 . ) K2 ) )
(d)  T(cos xe'? +sin xe %) = —ﬁ(—cos xe'? — sin xe %) = Z(COS xe'? + sin xe '?)

h2

and hence (T') = 37

Comment. All of these functions are eigenfunctions of the kinetic energy operator, which is also the
total energy or Hamiltonian operator, since the potential energy is zero for this system.
2

T p2n T 35
P12.20 / / Y} 4¥3.3sin 0 d dgp =/ (61—4) x (-) sin6951n9d9/ db [Table 12.3]
0 0 ’ 0 T 0

1
= (é) x (%5) X (2n)£1(1 — cos?6)>dcos 6

[sinf df = dcos0, sin0 =1 — cos29]
1
= g_;f (1=3x% +3x* = x%dx [x = cos ]
-1

1 35 32
:%(x—xs—i—%xs—%)ﬂ)‘_l:ng:

R LR
P12.22 Vie — 44—
ax2  9yr 972
92 5 92 ) 92 5
mf —a’ f mf—— f 8_y2f__cf

and f is an eigenfunction with eigenvalue —@*+b*+c*)

P12.25 (a) Suppose that a particle moves classically at the constant speed v. It starts at x = 0 at + = 0 and

. . L
att = tisatpositionx = L. v = — and x = vt.
T

1 [F 1 [T
(x):—/ xdt:—/ vt dt
T Ji=0 T Ji=0

T

= t=0
vt VT L
2t 2 2
1 T 2 T
(x2) =—/ xzdtzv—/ 2 dt
T Jt=0 T Ji=0
_ v2t3 _ (vr)2 _ L?
3t 33
1=l
L
201/2 _
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b (p = —_ sm\\ —— for X L [12.7

/ xlﬂndx——/ x sin® nz )dx
=0 x=L
7| x2 xsin 2"’”) cos (—zngx)

L| 4

4(nm/L) 8(nm/L)?
L J—
E = (X)n

This agrees with the classical result.

x=

hlw

x=L

2 _ﬁ B x2 B 1 ) <2nnx> B xcos(%)
116 \4wr/) " 3mr/n3 )" \L 8(n/L)2

_2e L
T L | 6 8(nm/L)?
Lo
3 4(nn/L)?

1/2
<x2>1/2 — L_2 _ ;
" 3 4(nmw/L)?

. 212 _ L
A O = 317

This agrees with the classical result.
P12.27 (a) The energy levels are given by:
h%n?
8mL2’
and we are looking for the energy difference betweenn = 6 andn = 7:

n =

h2(7% — 62)
8mlL2

Since there are 12 atoms on the conjugated backbone, the length of the box is 11 times the bond
length:

AE =

L=11(140 x 1072 m) = 1.54 x 107 m,

(6.626 x 10734 75)2(49 — 36) 19
so AE = =1330x107197|
8(9.11 x 10731 kg)(1.54 x 10~9m)2

(b) The relationship between energy and frequency is:

AE  330x 107"

_ —14 —1
h T 6.626x 10T 495 x 107157

AE = hv SO V=
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(¢) The frequency computed in this problem is about twice that computed in problem 12.26b,
suggesting that the absorption spectrum of a linear polyene shifts to frequency as the

number of conjugated atoms . The reason for this is apparent if we look at the terms
in the energy expression (which is proportional to the frequency) that change with the number
of conjugated atoms, N. The energy and frequency are inversely proportional to L?*and directly
proportional to (n + 1)? —n? =2n+ 1, where n is the quantum number of the highest occupied
state. Since n is proportional to N (equal to N/2) and L is approximately proportional to N
(strictly to N — 1), the energy and frequency are approximately proportional to N -1

In effect, we are looking for the vibrational frequency of an O atom bound, with a force constant equal
to that of free CO, to an infinitely massive and immobile protein complex. The angular frequency is

L\ 172
oK
m
where m is the mass of the O atom.

m = (16.0u)(1.66 x 10~ kgu™!) = 2.66 x 107 * kg,

and k is the same force constant as in problem 12.2, namely 1902 N m L

1902Nm-1 \'"?

m

o=——— =1[2.68 x 101571 |,
2.66 x 1020 kg
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13 Atomic structure and atomic spectra

Solutions to exercises

Discussion questions

(1) The principal quantum number, 7, determines the energy of a hydrogenic atomic orbital through
eqn 13.13.

(2) The azimuthal quantum number, [/, determines the magnitude of the angular momentum of a
hydrogenic atomic orbital through the relation {/(I + 1)}1/ Zh.

(3) The magnetic quantum number, m;, determines the z-component of the angular momentum of a
hydrogenic orbital through the relation m;h.

(4) The spin quantum number, s, determines the magnitude of the spin angular momentum through
the relation {s(s + 1)}1/ ’h. For a hydrogenic atomic orbitals, s can only be 1/2.

(5) The spin quantum number, mg, determines the z-component of the spin angular momentum
through the relation mgh. For hydrogenic atomic orbitals, mg can only be =1/2.

(a) A boundary surface for a hydrogenic orbital is drawn so as to contain most (say 90%) of the
probability density of an electron in that orbital. Its shape varies from orbital to orbital because
the electron density distribution is different for different orbitals.

(b) The radial distribution function gives the probability that the electron will be found anywhere
within a shell of radius r around the nucleus. It gives a better picture of where the electron is
likely to be found with respect to the nucleus than the probability density which is the square of
the wavefunction.

The first ionization energies increase markedly from Li to Be, decrease slightly from Be to B, again
increase markedly from B to N, again decrease slightly from N to O, and finally increase markedly
from N to Ne. The general trend is an overall increase of /] with atomic number across the period.
That is to be expected since the principal quantum number (electron shell) of the outer electron
remains the same, while its attraction to the nucleus increases. The slight decrease from Be to B is
a reflection of the outer electron being in a higher energy subshell (larger [ value) in B than in Be.
The slight decrease from N to O is due to the half-filled subshell effect; half-filled sub-shells have
increased stability. O has one electron outside of the half-filled p subshell and that electron must pair
with another resulting in strong electron—electron repulsions between them.

An electron has a magnetic moment and magnetic field due to its orbital angular momentum. It also
has a magnetic moment and magnetic field due to its spin angular momentum. There is an interaction
energy between magnetic moments and magnetic fields. That between the spin magnetic moment
and the magnetic field generated by the orbital motion is called spin—orbit coupling. The energy of
interaction is proportional to the scalar product of the two vectors representing the spin and orbital
angular momenta and hence depends upon the orientation of the two vectors. See Fig. 13.29. The
total angular momentum of an electron in an atom is the vector sum of the orbital and spin angular
momenta as illustrated in Fig. 13.30 and expressed in eqn 13.46. The spin—orbit coupling results in
a splitting of the energy levels associated with atomic terms as shown in Figs 13.31 and 13.32. This
splitting shows up in atomic spectra as a fine structure as illustrated in Fig. 13.32.
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Numerical exercises

The energy of the photon that struck the Xe atom goes into liberating the bound electron and giving
it any kinetic energy it now possesses

Ephoton = I + Ekinetic I = ionization energy

The energy of a photon is related to its frequency and wavelength

hc
Ephoton = hv = N
and the kinetic energy of an electron is related to its mass and speed

1 2
Exinetic = FMeS

hc 1

2 he 1 2
SOT=I+§meS =>I=7—§mes

_(6.626 x 1073 T5) x (2.998 x 103ms~)
584 x 10~ %m

—19.11 x 1073 kg) x (1.79 x 10°ms™)?

=194 x10718)|=12.1ev

The radial wavefunction is [Table 13.1]

27

Rigp=A (6 —2p+ é ,02) e P/ where p= —r, and A is a collection of constants. Differentiating
ap

with respect to p yields

dR3 _

0
dp

AG=20+50) x (—4)e 0+ (<24 3p) Ae™?/°
2
= A0 (<L +3p - 3)
This is a quadratic equation

1 5
0:ap2+bp+c where a:—5—4, b:§, and ¢ = 3.

The solution is

—b + (b* — 4ac)'/?
- ( 9 151307

2a
15 1/2
sor = —i3(7 ) a_O.
2 2 VA

Numerically, this works out to p = 7.65 and 2.35, sor = ’ 11.5a9/Z ‘ and’ 3.53a¢/Z ‘ Substituting
Z=1landag=5292x10""'m,r = 607 pm and 187 pm.

The other maximum in the wavefunction is at . It is a physical maximum, but not a calculus
maximum: the first derivative of the wavefunction does not vanish there, so it cannot be found by
differentiation.



ATOMIC STRUCTURE AND ATOMIC SPECTRA

203
E13.7(b) The radial wavefunction is [Table 13.1]
2Z
R31=A (4 — %p) pe /% where p= el
ag
The radial nodes occur where the radial wavefunction vanishes. This occurs at
o =0, r=0
and when
(4_%,0) =0, or 2—4, or p=12
12
thenr:ﬂ—@z 40

_ _ —10
27 > 2 =318 x 10 m
E13.8(b)

Normalization requires

00 T 2T
/|¢|2dr =1 :/O /0 /O [NQ — r/ag)e”"?%12 d¢ sin6 dO r? dr

00 i1 2
1= N2/ e 7102 — r/ag)*r* dr / sin® d@/
0 0

0

do

Integrating over angles yields
oo
1= 4nN2/ e ™19 2 — r/ag)*r* dr
0
oo
= 47 N? / e/ 4 — 4r/ag + r*/ad)r? dr = 4w N*(8a)
0

o0 o o0
In the last step, weusedf e k2 ar = 2k3,/ e k3 dr = 6k, and/
0 0
1

0
4./2mad

The average kinetic energy is

(Ex) = f v Exy de

ekt dr = 24k°
So| N =

E13.9(b)

1/2
)2 1 22\ Zr
where y = N2 — p)e” #/~ with N = - — and p = — here
4\ 27ag ap
. n2 a3 p?sind dpdo d
Be=—3-V>  dr=r’sin0drdodg = 0P pavds
m

73

In spherical polar coordinates, three of the derivatives in V2 are derivatives with respect to angles, so
those parts of Vzw vanish. Thus

v2y = 32y L2000 32y (8,0 )2+ 27 (aw) o (z)2X 32y 29y
T o2 ror 9p2 \ or?2 pag \ dp / or - ap 9p2 p 0p
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0

8_’: =NQ2-p) x (-%) e P2 _Ne =N (%p - 2) e P2

9% 1 1\ .=p/2 | 1 ara—p/2 3 1.\ .—p/2
P (302« () e (- )

2
V2y = (f) Ne P2 (—4/p +5/2 — p/4)
0

2m

and
oo pm 2w 2 312
(Ex) :/ / NQ2 — p)e?/? (E) X ( h )
0 0 0 ag

3 H 2
ayd¢ sinf do p~d
x NeP/2(=4/p+5/2 - p/h DL 73 —

The integrals over angles give a factor of 47, so

. ag n? o0 _
(Ex) = 47N () x <—%>/0 @=p)x (4+3p = 10?) pe™ dp

o
The integral in this last expression works out to —2, using/ e Pp"dp =n!forn =1,2,and 3. So
0

. 73 ao n? n?z?
Ex) =4 | ——=—— = i R
e ”<3zw3>x<z)x(m)

Sma(%
The average potential energy is
VA 2 Z2 2
(V)=/W*V1pdr where V=_-2% _ _ ¢
4regr 4rrepapp
o pmw 2w 22 39 .
z a’p”sinfdpdod
and (V> = / / N(2 — ,())e_'o/2 _—e N(2 _ p)e—p/Z O'O Y ¢
0 0 Jo 4meoapp 73

The integrals over angles give a factor of 47, so

Z2 2 613 o0
(V) = 47 N? (—4 ¢ ) X (—%)/ 2 — p)?pe " dp
T EQA) VA 0

o0
The integral in this last expression works out to 2, using/ e Pp"dp =n!forn =1,2,3,and4. So
0

73 722 a3 z2e?
(V) = 4x x [ — x[2)x@)=|-—2°"_
327ra(3) 4mepag Z3

The radial distribution function is defined as

E13.10(b)

P = 47'[}’21//2 so Pz = 47Tr2(Y0’0R370)2,

! 1 AN 22 —p
Py, = 4mr o X 13 X % X (6—6p+ p°)°e

nag 3ag



+

ATOMIC STRUCTURE AND ATOMIC SPECTRA 205

E13.11(b)

E13.12(b)

E13.13(b)

But we want to find the most likely radius, so it would help to simplify the function by expressing it
in terms either of r or p, but not both. To find the most likely radius, we could set the derivative of
P35, equal to zero; therefore, we can collect all multiplicative constants together (including the factors
of ag/Z needed to turn the initial r? into ,02) since they will eventually be divided into zero

Py, = C?p*(6 — 6p + p?)2e™"

Note that not all the extrema of P are maxima; some are minima. But all the extrema of (P3S)1/ 2

correspond to maxima of Pszg. So let us find the extrema of (P3s)1/ 2

d(Ps,)!/? d
W) _ o= L ep6—6p+ pHer)?
dp dp

= C[p(6 = 6p + p*) X (—3) + (6 — 12p + 3p*)]e ™"/
0=C(6— 150 +6p> — 1pHe ™/ so 12-30p+ 120> —p* =0
Numerical solution of this cubic equation yields

p =0.49, 2.79, and 8.72

corresponding to

r= ] 0.74ay/Z, 4.19a9/Z, and 13.08a9/Z \

Comment. If numerical methods are to be used to locate the roots of the equation which locates
the extrema, then graphical/numerical methods might as well be used to locate the maxima directly.
That is, the student may simply have a spreadsheet compute P3; and examine or manipulate the
spreadsheet to locate the maxima.

Orbital angular momentum is
(LA =naa+ 1)

There are / angular nodes and n — [ — 1 radial nodes

(@ n=4,1=2, so (lA,z)l/2 =6/%n = ’ 2.45 x 10_34Js‘ angularnodes radial node

b)) n=2,1=1, so (lA,Z)l/2 =21/ :’ 1.49 x 10_34Js‘ angularnode @radial nodes

(¢) n=3,1=1, so (I:Z)]/2 =21/2 :’ 1.49 x 10_34Js‘ angular node radial node
Forl >0,j=14+1/2,s0

@ 121 s j=[Ew)
 1=5 s j=[Eeir]

Use the Clebsch—Gordan series in the form

J=jg+j.n+p-L....0j— jl
Then, with j; =5 and j, =3

J=18,7,6,5,4,3,2
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The degeneracy g of a hydrogenic atom with principal quantum number n is g = n’. The energy E
of hydrogenic atoms is

hcZ?Ruy _ heZ*Ruy
n2 g

so the degeneracy is

_ heZ?Ry
&= E
he(2)?*Ry
= —_-—-——= 1

R T
he(4)?*R

W g=MORu e
_ZhCRH

he(5)*Ry
= " 25
© ¢ heRn

The letter F indicates that the total orbital angular momentum quantum number L is 3; the superscript
3 is the multiplicity of the term, 25 + 1, related to the spin quantum number S = 1; and the subscript
4 indicates the total angular momentum quantum number J.

The radial distribution function varies as

4
P =4nriy? = —3726_2r/a0
4o

The maximum value of P occurs at r = ag since

dp 2r2 4
— X <2r - L) e 2/ =0 at r=ay and Ppax = —e >
dr ap apn

P falls to a fraction f of its maximum given by

42—

r3 e 2r/ag r2

f _ 9 _ 2 .—2r/agp
= —— = —¢"¢

4 -2 a2

aop 0

and hence we must solve for 7 in

M —rfan

e ag
(@ f=0.50
_ I —r/ao — — — —
0.260 = aoe solves to » = 2.08ag = | 110pm |and to r = 0.380ay = | 20.1 pm
b)) f=0.75

!
0.319 = —e~"/% solves to r = 1.63ag = | 86 dtor = 0.555ap =|29.4
Ler10 soves 07 = 1,630 = [86pm and t0r = 0,550

In each case the equation is solved numerically (or graphically) with readily available personal
computer software. The solutions above are easily checked by substitution into the equation for f.
The radial distribution function is readily plotted and is shown in Fig. 13.1.

+
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E13.17(b)

E13.18(b)

E13.19(b)

E13.20(b)

E13.21(b)

0.15

0.10 |-

P/(47N?)

0.05

0.00 k

Figure 13.1

(@) 5d — 2sis an allowed transition, for Al = —2 (Al must equal £1).

(b) 5p — 3sis , since Al = —1.
(¢) 5p— 3fis allowed, for Al = +2 (Al must equal £1).

For each [, there are 2/ 4 1 values of m; and hence 2/ + 1 orbitals—each of which can be occupied
by two electrons, so maximum occupancy is 2(2/ + 1)

(a) 2s:/ = 0; maximum occupancy =
(b) 4d:] = 2; maximum occupancy =
(¢) 6f:1 =3; maximum occupancy =
(d) 6h:] =5; maximum occupancy =
V2Tt 1522522 p%3523 p03d3 = [Ar34°

The only unpaired electrons are those in the 3d subshell. There are three. S = and % —-1= .

For S = 3, Mg =|=+5 and +3

for§ =1, Mg=|+

Nf—

(a) Possible values of S for four electrons in different orbitals are | 2, 1, and 0 |; the multiplicity is

2S + 1, so multiplicities are | 5, 3, and 1 | respectively.

(b) Possible values of S for five electrons in different orbitals are’ 5/2,3/2,and 1/2

is 28 + 1, so multiplicities are | 6, 4, and 2 | respectively.

The coupling of a p electron (I = 1) and a d electron (I = 2) givesriseto L = 3 (F), 2 (D), and 1 (P)
terms. Possible values of S include 0 and 1. Possible values of J (using Russell-Saunders coupling)
are 3,2,and 1 (S =0)and 4, 3,2, 1, and 0 (S = 1). The term symbols are

; the multiplicity

'F3; 3Ky, 3F3, 3Fa; 'Dy; *Ds, 3Dy, °Dy; Py 3Py, 3Py, 3Py |

Hund’s rules state that the lowest energy level has maximum multiplicity. Consideration of spin—orbit
coupling says the lowest energy level has the lowest value of J(J + 1) — L(L + 1) — S(S + 1). So

the lowest energy level is 3F,
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(a) ‘Dhas S =1and L = 2,s0J =13,2,and 1 |are present. J = 3 has states, with M; = 0,

+1, £2, or £3; J = 2 has states, with My = 0, £1, or £2; J = 1 has states, with
Mj; =0,or 1.

() “Dhas S =3/2and L = 2,50 J = ]7/2, 5/2,3/2,and 1/2 \ are present. J = 7/2 has
possible states, with Mj = £7/2, £5/2, £3/2 or £1/2; J = 5/2 has E possible states, with
M; = £5/2 £3/2 or £1/2; J = 3/2 has possible states, with M; = £3/2 or £1/2;
J = 1/2 has 2] possible states, with M; = £1/2.

(¢) >G has § = 1/2and L = 4, s0J =|9/2and 7/2 | are present. / = 9/2 had possible

states, with My = £9/2, £7/2, +5/2, £3/2 or +1/2; J = 7/2 has possible states, with
Mj;==+7/2,4+5/2,4+3/2 or £1/2.

Closed shells and subshells do not contribute to either L or S and thus are ignored in what follows.

(a) Sc[Ar]3d14s2: S = %, L=2,J= %, %, so the terms are 2D5/2 and 2D3/2

(b) Br[Ar]3d 104524 p5. We treat the missing electron in the 4 p subshell as equivalent to a single
“electron” with [ = 1, s = % Hence L =1, § = %, and J = %, %, so the terms are

2P3/2 and 2P1/2

Solutions to problems

Solutions to numerical problems

All lines in the hydrogen spectrum fit the Rydberg formula

2 2

1 11 1
—=Rul=-—= 13.1, with v = — Ry = 109677 cm ™!
A n? 2 A

Find n from the value of Ay ,x, Which arises from the transition n; + 1 — n;
1 1 1 2ny +1

AmaxRH B E a (ny + 1)2 B I’l%(l’ll + 1)2

n3(ny + 12

AmaxRH = = (656.46 x 1072 m) x (109677 x 10°m~") = 7.20
2n1 + 1
and hence ny = 2, as determined by trial and error substitution. Therefore, the transitions are given by
.1 . 1 1
v=—=(109677Tcm” )x |-——=], np=3,4,5,6
A 4 n%

The next line has np, = 7, and occurs at

1 11
p=o= (109677 cm™ 1) x (Z - E) =[397.13nm

The energy required to ionize the atom is obtained by letting ny — oo. Then

1 1
Doo = = (109677 cm™ 1) x <Z - 0) =27419cm™!, or [3.40eV

o0
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(The answer, 3.40 eV, is the ionization energy of an H atom that is already in an excited state, with

n=2)
Comment. The series with n; = 2 is the Balmer series.
P13.4 The lowest possible value of n in 1s2nd'is 3; thus the series of 2D terms correspond to 1s23d, 1s24d,

etc. Figure 13.2 is a description consistent with the data in the problem statement.

A , — 155
R'/9 1s24d}2D
15?3d
E| §| &
o) gl
1 I 2 G
1s22p 2P
=)
a
(=
[
O
15225 28 Figure 13.2

If we assume that the energies of the d orbitals are hydrogenic we may write

heR/
E(1s’nd",?D) = - 27 [n=3,4,5....]
n
Then for the 2D — 2P transitions
1 E(1s22p!, 2P R AE
5 L_1EAs2p, "D R AE =hv = -5 = hep, b = ——
A he n2 he
from which we can write
1 R/
61036 x 10 7em | 9 @
|[E(1s%2p',?P)] 1 R 1 N R/ b
he T xr on?2 |46029x10~7cm | 16 ®)
1 R/

(©)

41323 x107em T 25

(b) — (a) solves to R’ = 109 886 cm ™!

Then (a) — (c) solves to R’ = 109910 em~ 'Y Mean = 109920 cm™!
(b) — (c) solves to R’ = 109963 cm ™!

The binding energies are therefore

!
E(15%3d",%D) = % =—12213cm™!
1
610.36 x 107 cm
1
670.78 x 107 cm

—12213cm~ ! = —28597cm ™!

E(1s%2p,%P) = —

—28597cm™! = —43505cm™!

E(1s%2s',28) =
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Therefore, the ionization energy is

I1(1s%2s',2S) = 43505cm™!, or [539eV

The 7 p configuration has just one electron outside a closed subshell. That electronhas! = 1,5 = 1/2,
and j = 1/2 or3/2, sothe atomhas L = 1, S = 1/2, and J = 1/2 or 3/2. The term symbols are

p, /2 and ’p; /2 |» of which the former has the lower energy. The 6d configuration also has just one

electron outside a closed subshell; that electron has/ = 2, s = 1/2,and j = 3/2 or 5/2, so the atom
has L =2, S = 1/2,and J = 3/2 or 5/2. The term symbols are 2D3/2 and 2D5/2 , of which the

former has the lower energy. According to the simple treatment of spin—orbit coupling, the energy is
given by

Epsj=sheAlj(+1) =10+ 1) = s(s + 1]
where A is the spin—orbit coupling constant. So
ECPip) = theAl (124D — 100+ 1) = L(1/24+ D] = —hcA

and E(D3p0) = 1heA[33/2+ 1) =22+ 1) — 5(1/2+ )] = —3hcA

This approach would predict the ground state to be ’D; /2

Comment. The computational study cited above finds the 2P1 /2 level to be lowest, but the authors
caution that the error of similar calculations on Y and Lu is comparable to the computed difference
between levels.

Ry = kpu, Rp=kup, R =kul[l8]

where R corresponds to an infinitely heavy nucleus, with & = me.

. memN
Since y = —— [N =pord]
me + mnN
kme R
RH = k“’H = . = N
I+ 145
Likewise, Rp = l—l-—me where mp is the mass of the proton and my the mass of the deuteron. The
mq
two lines in question lie at
LZRH(l—l)zgnH L:RD(I—l):éRD
Al 4 4 AD 4 4
and hence

Ru _Ap _ VH

RD_KH_ﬁD

Then, since
Ry  L+5¢ Me
—_— = TR md =
e L\ R
Rp 1—"_mp (1+z:—p>R—g—l
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and we can calculate m4 from

Me ne
Md = m A - m VH
e D e
(i) -1 (+p)m—
9.10939 x 1073'k
- o £ =|3.3429 x 107 kg
1+ 9.10939x10—"" kg 82259.098 cm~! —1
1.67262x 1027 kg 82281.476cm™!
Since I = Rhe,
In Rp Tp 82281.476cm™!
Iy Ry g 82259.098cm~!
P13.10 If we assume that the innermost electron is a hydrogen-like 1s orbital we may write

) _52.92pm
rt = g[Example 13.3] = T 0.420 pm

Solutions to theoretical problems

P13.12 Consider ¥, = 2 1,0 which extends along the z-axis. The most probable point along the z-axis

is where the radial function has its maximum value (for wz is also a maximum at that point). From
Table 13.1 we know that

Ry ,oe_'o/4

dR 1\ a—p/4
andsoa:(l—‘—‘p)e o/ = 0 when p = 4.

2ay } i e 2ay
* — —
Therefore, r™ = , and the point of maximum probability lies at z = =+ =|£106 pm

Comment. Since the radial portion of a 2p function is the same, the same result would have been
obtained for all of them. The direction of the most probable point would, however, be different.

P13.13 In each case we need to show that

/ Yivndr =0
all space

oo pm 2w )
@) / / Yis¥sr? drsind do dg = 0
o Jo Jo

12
Y1s = R1,0Y0,0 _( L
Vo = Ryovool 100 = (27 [Table 12.3]

Since Yy o is a constant, the integral over the radial functions determines the orthogonality of
the functions.

00
/ R110R2y0r2 dr
0

Ri,0 x e P12 = g~ Zrla |:Io = _ZZ}’]
ap

z 27
Rog o (2 — p/2)e P/ = (2 _ —r> e~ Zr/240 |:,0 = —r]
ag ag
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Oo o Zr
/ R1,0R2’0r2 dr o« / e~ Zr/ao <2 _ _> e Zr/2a0,2 4,
0 0 ag

o0 o0 Z
_ / re—G/DZr/an,2 4 _ / Z ~G/)zZr/as,3 g,
0 0 ao

:2x2!_<£> 3! :@
)

Hence, the functions are orthogonal.
(b) We use the p, and p, orbitals in the form given in Section 13.2(f), eqn 25

px X x, py Xy

Thus

+o0 p4o0  pto00
/ pxpydxdydza/ / / xydxdydz
all space —00 J—oo J—0o0

This is an integral of an odd function of x and y over the entire range of variable from —oo to
+o00, therefore, the . More explicitly we may perform the integration using the
orbitals in the form (Section 13.2(f), eqn 13.25)

px = f(r)sinf cos¢ py = f(r)sinfsing
2w

[e.9] b3
f pxpyrtdrsing do de = f F(r)?r*dr / sin” 6 do / cos ¢ sin ¢ d¢p
all space 0 0 0

. . . . . . T
The first factor is nonzero since the radial functions are normalized. The second factor is —.

The third factor is zero. Therefore, the product of the integrals is and the functions are

orthogonal.
n? (d* 2d
P13.14 — =+ - Vet | R = ER [13.11 1
[2u<dr2+rdr)+ eff:| [ ] ey

R R [
4w egr 2ur2  pagr 2ur?

where Ve = —

Using p = Zr/ayg, the derivative term of the Hamiltonian can be written in the form
d2+2d Z\? d2+2d b @
_— e —_— X —_— _— =
dr2  rdr ag dp?2  pdp op

To determine Ey and E5 ), we will evaluate the left side of (1) and compare the result to the right side.

2s orbital. Ry = Nyg (2 — ,o)efp/2 where p = Zr/ag here
dRy,

— p—=4l _,n p—4
=N [—1—12— ] P2 = Ny § 5= PR=_ " R
dp 2s 2( pe 2s ) € 20— p) 2s
d Ry 11 2 P > 6-p
=N l——— —4} /2= N ié——] 22— —_ L R
dp2 2513 — 7(p )re 25 13 2 € 42— p) 2s
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2 2 6-—p o—4 Z\?
———DopRys = —— + X | — ) Ry
2u 2u 142 —-p) p2—p)
n? p—28
=|l—-—— ] x[— ) x
21 4p
Zh? Z\?> [(n?\1
Vet Ros = — Ryy=—|—) x|— ] =Ras
pagr ao w)p
% b + Vigr | Ry = sz AN =8 2lp
2% op eff 2s = a0 21 4p 0 2s

72 (1) R
- Zﬂag 4 2s

z’n?
Therefore | Epy = —‘—1‘ ( 2) 3)
2uay

2p orbital. Ry, = sz,oefp/2 where p = Zr/ag here

dR; Pl — 2—p
P:sz{l——}e o= Rap
dp 2 2p
d"Rap 1 _1 P\) o—ps2 _ P =4
d,02 = 21’{_7_2(1_5)}6 = 4p Ryp
n? n?
__DOPRZP__Z_

NAS R [Z(p—l)}R
_<%> L N7 el e 2

| [ 2?1
Therefore | Bz, = —3 Yid? “4)
nagy

Comparison of eqns (3) and (4) reveals that Ey; = Ep).
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P13.15 (a) We must show that / [¥3p, |2 dr = 1. The integrations are most easily performed in spherical
coordinate (Fig. 11).

2w T 00
2 2 2 .
/|¢3px dr = ///|1ﬂ3px| r* sin(0) dr d6 d¢
000
2w T 00
Yi_1—-Tn .
= R31(p) «/E r 51n(9)drd9d¢ (Table 13.1, eqn 13.25)
000

where p = 2r/ag, r = pag/2,dr = (ag/2) dp.

12n7rooa03 1 1 3/2 1 /6
_ 2 @0 _ _ - -p
=3/ [[(3) [(2%6)1/2) (ao> (4 3p>pe }
000
3\ 1/2 2
X |:<g> 25in(9)cos(¢):| pzsin(G)ddedq&
2r T 00 2
= 4665671///‘(4__'0) pe 'O/6s1n(9)cos(¢) ,0 sin(0) dp d6 d¢
00 0
2

_ 2 [ 3 i 1 2 o
= T6estn / (@) d¢/s1n @) d9/ (4 3,0) p'e dp
0 0 0

™ 4/3 34992
= 1 Thus, ¥3, is normalized to 1.

We must also show that / V3p, ¥3d,, dT =0
Using Tables 12.3 and 13.1, we find that

1 1\3/? 1
v S (e (4 — —p) pe P/%sin() cos(¢)
3 = s40m 12 \q 3
Yo—Y -
V3d,, = R32{ V2i }

1

1\3/2
= B <%> p2e P/ 5in’(0) sin(2¢)

where p = 2r/ag, r = pag/2, dr = (ap/2)dp.

00 2w T
/ ¥3p, V3d,,dT = constant x f pde PRdp / cos(¢) sin(2¢p)d¢ / sin*(6)do
0 0

0

Since the integral equals zero, /3, and V3q,, are orthogonal.
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(b) Radial nodes are determined by finding the p values (p = 2r/ag) for which the radial wave-
function equals zero. These values are the roots of the polynomial portion of the wavefunction.

For the 3s orbital 6 — 6p 4+ p> = 0 when| pnoge = 3 + V3 and  ppode = 3 — V3 |.

The 3s orbital has these two spherically symmetrical modes. There is no node at p = 0 so we
conclude that there is a finite probability of finding a 3s electron at the nucleus.

For the 3p; orbital (4 — p)(p) = 0 when| ppoge =0 and  ppoge = 4},
There is a zero probability of finding a 3 p, electron at the nucleus.

For the 3d,y orbital is the only radial node.

© () = / IR10Yool? r dr = f IR10Yo0l? 3 sin(8) dr d6 do

00 2r
= [ R},3dr |Yo0l* sin(9) dé d
= 10 00|~ sin(0) 0]
0 00
1
00
ao ( 2,0\ 3.—p/3
= 6—2p+p?/9) ple
3888 / p+p°/9) p o
0
524388
27ag
(r)zs = )
(d) Radial distribution functions of atomic hydrogen
0.12 T T T T T
3dy, »7 3py
0.1 |- ; A |
,'I \'\ 3s
/ ) N R
i H \
0.08 |- i : \ _
] ; \
] ! \
/
= ! \
Na ! A
% 0.06 ! \ —
(‘\lk 1 '\
1 "
! .\
1 ‘\
! : \
0.04 | . : .
Ve i iy
L ! .
I N
; i ; .
: " : 3
002 i [t ; -
: [ : .
! M N,
'II .\\\
0 L [ I I LTl R e
0 5 10 15 20 25 30
rlay Figure 13.3(a)

The plot shows that the 3s orbital has larger values of the radial distribution function for r <
ap. This penetration of inner core electrons of multi-electron atoms means that a 3s electron

+



216 INSTRUCTOR'S MANUAL

experiences a larger effective nuclear charge and, consequently, has a lower energy than either a
3pyx or 3dyy electron. This reasoning also lead us to conclude that a 3 p, electron has less energy
than a 3d, electron.

E3 < E3Px < E3dxy’

(e) Polar plots with § = 90°

The s Orbital
90
120 60
15
180
2 1
240
270
¢
The p Orbital
90
120 60
1 50/\" 30
180 U T T 0
210 4 330
240 300
270
¢
The d Orbital
90
120 60
]50 Q 30
180 — f f f 0
0 0. 04
210 330
240 300
270
¢ Figure 13.3(b)



ATOMIC STRUCTURE AND ATOMIC SPECTRA

Boundary surface plots

s-Orbital boundary surface p-Orbital boundary surface

d-Orbital boundary surface f-Orbital boundary surface

Figure 13.3(c)

e 1

P13.20 The attractive Coulomb force =

4meg 2
(angular momentum)? _ (nh)?

The repulsive centrifugal force = 3 3 [postulated]
Mer™ Mmer
The two forces balance when
Ze? 1 n2n? . . 47m2h280
X — = ——=, implying that r = ————
4meg  r2 mer3 Ze2me
The total energy is
(angular momentum)2 Ze? 1 nn? Ze?
E=FEx+V= — X — = —— — — [postulated]
21 dmweg  r  2mer?  Amegr

2
n’h? Zezme Ze? Zezme Z2<34me 1
= X - X =|— X —
2me 4rrn2h3e 4eg 4mrn2h3eg 327‘[28%712 n2
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(a) The trajectory is defined, which is not allowed according to quantum mechanics.

(b) The angular momentum of a three-dimensional system is given by {/(/ + D}Y2n, not by nf. In
the Bohr model, the ground state possesses orbital angular momentum (n#, with n = 1), but
the actual ground state has no angular momentum (! = 0). Moreover, the distribution of the
electron is quite different in the two cases. The two models can be distinguished experimentally
by (a) showing that there is zero orbital angular momentum in the ground state (by examining
its magnetic properties) and (b) examining the electron distribution (such as by showing that the
electron and the nucleus do come into contact, Chapter 18).

Justification 13.5 noted that the transition dipole moment, ;14 had to be non-zero for a transition to
be allowed. The Justification examined conditions that allowed the z component of this quantity to
be non-zero; now examine the x and y components.

Ux.fi = —€ / Uf*xWidr and pyf = —e/ Wi*yw; dr
As in the Justification, express the relevant Cartesian variables in terms of the spherical harmonics,
Y ;. Start by expressing them in spherical polar coordinates:

x =rsinfcos¢ and y =rsin0sing.

Note that Y7 1 and Y7 _1 have factors of sin 6. They also contain complex exponentials that can be
related to the sine and cosine of ¢ through the identities (eqns FI1.20 and FI1.21)

cos¢p = 1/2(ei¢ + e_i¢) and sin¢ =1/2i(e?—e").

These relations motivate us to try linear combinations Y7 1 +Y1,—1 and Y7 1+ Y7 _1 (form Table 12.3;
note ¢ here corresponds to the normalization constant in the table):

Yih1+Y1,.1=—c sin@(eid) + efi‘p) = —2csinf cos¢p = —2cx/r,
so x=—11+Y,-1)r/2c;
Yi.1 — Y11 = csinf(e' — e %) = 2icsin 6 sin ¢ = 2icy/r,
so y= (1,1 —Y1,-1r/2ic.
Now we can express the integrals in terms of radial wavefunctions R, ; and spherical harmonics ¥} ,,,

00 T 2
e .
[y = chR”f”"rR”i’“ rzdr//Y*,,,mlf(YM + Y1 )Yy, sin6 d6 do.
0 0 0

The angular integral can be broken into two, one of which contains Y; | and the other Y1 _;. According
to the “triple integral” relation below Table 12.3, the integral

T 2w
//Y*lf,m;le,lYli,mli sin 6 d6 d¢
00

vanishes unless /f = [; £ 1 and my = m; &= 1. The integral that contains Y _; introduces no further
constraints; it vanishes unless Iy = [; &= 1 and m;; = my, & 1. Similarly, the y component introduces
no further constraints, for it involves the same spherical harmonics as the x component. The whole
set of selection rules, then, is that transitions are allowed only if

Al =+1land Am; =0or £1].
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P13.26 (a) The speed distribution in the molecular beam is related to the speed distribution within the
chamber by a factor of v cos8 as shown in Fig. 13.4. Since an integration over all possible 6
must be performed, the cos 6 factor may be absorbed into the constant of proportionality.

Joeam (V) = Cvfchamber (v)  where C is to be determined

vcosf

Chamber

» Molecular beam

Figure 13.4

By normalization over the possible beam speeds (0 < vpeam < 00)

Soeam = Cv (UZe—(mvz/ZkT))

_ Cv3e—(mv2/2kT)

o 3 (/2T 1
dv=1=C - dv=C{——
/v:o Joeamdv /v:o” © 0 {2<m/2kT)2}

C =2(m/2kT)?

o0
<v2> = / szbeam(v) dv = C/USe—(mvz/ZkT) dv
v

{ 1 } (m/2kT)?
=2
(m/2kT)3 (m/2kT)3

4T

m

4kT
rot = (50) =27

m
2ugl?\ dB
) Ax=|ZHBZ )2
4Ex dz

o 4B _ 4EkAx _ 4QKT)Ax
I — — =
dz 2upL? 2upL?
_ 4kT Ax
~ puplL?
4(1.3807 x 1073 TK™1) x (1000K) x (1.00 x 1073 m)
B (9.27402 x 1024 JT~1) x (50 x 10~2m)>2

(Ek) =

+
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E14.2(b)

E14.3(b)

E14.4(b)

E14.5(b)

14 Molecular structure

Solutions to exercises

Discussion questions

Consider the case of the carbon atom. Mentally we break the process of hybridization into two
major steps. The first is promotion, in which we imagine that one of the electrons in the 2s orbital
of carbon (2s22p2) is promoted to the empty 2p orbital giving the configuration 252p3 . In the
second step we mathematically mix the four orbitals by way of the specific linear combinations in
eqn 14.3 corresponding to the sp3 hybrid orbitals. There is a principle of conservation of orbitals
that enters here. If we mix four unhybridized atomic orbitals we must end up four hybrid orbitals. In
the construction of the sp2 hybrids we start with the 2s orbital and two of the 2 p orbitals, and after
mixing we end up with three s p2 hybrid orbitals. In the sp case we start with the 2s orbital and one of
the 2 p orbitals. The justification for all of this is in a sense the first law of thermodynamics. Energy
is a property and therefore its value is determined only by the final state of the system, not by the
path taken to achieve that state, and the path can even be imaginary.

It can be proven that if an arbitrary wavefunction is used to calculate the energy of a system, the value
calculated is never less than the true energy. This is the variation principle. This principle allows
us an enormous amount of latitude in constructing wavefunctions. We can continue modifying the
wavefunctions in any arbitrary manner until we find a set that we feel provide an energy close to
the true minimum in energy. Thus we can construct wavefunctions containing many parameters and
then minimize the energy with respect to those parameters. These parameters may or may not have
some chemical or physical significance. Of course, we might strive to construct trial wavefunctions
that provide some chemical and physical insight and interpretation that we can perhaps visualize, but
that is not essential. Examples of the mathematical steps involved are illustrated in Sections 14.6(c)
and (d), Justification 14.3, and Section 14.7.

These are all terms originally associated with the Huckel approximation used in the treatment of con-
jugated mr -electron molecules, in which the r-electrons are considered independent of the o -electrons.
m-electron binding energy is the sum the energies of each r-electron in the molecule. The delocaliza-
tion energy is the difference in energy between the conjugated molecule with n double bonds and the
energy of n ethene molecules, each of which has one double bond. The -bond formation energy is
the energy released when a  bond is formed. It is obtained from the total -electron binding energy
by subtracting the contribution from the Coulomb integrals, «.

In ab initio methods an attempt is made to evaluate all integrals that appear in the secular determinant.
Approximations are still employed, but these are mainly associated with the construction of the wave-
functions involved in the integrals. In semi-empirical methods, many of the integrals are expressed
in terms of spectroscopic data or physical properties. Semi-empirical methods exist at several levels.
At some levels, in order to simplify the calculations, many of the integrals are set equal to zero.
The Hartree-Fock and DFT methods are similar in that they are both regarded as ab initio methods.
In HF the central focus is the wavefunction whereas in DFT it is the electron density. They are both
iterative self consistent methods in that the process are repeated until the energy and wavefunctions
(HF) or energy and electron density (DFT) are unchanged to within some acceptable tolerance.

Numerical exercises
Use Fig. 14.23 for Hz_, 14.30 for N, and 14.28 for O,.

(a) H, (3 electrons): b=0.5
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E14.6(b)

E14.7(b)

E14.8(b)

E14.9(b)

(b) N> (10 electrons): ’ 102202 174302 ‘ b=3

(¢) O, (12 electrons): ] 102202302 17%27*2 | b =2
CIF is isoelectronic with F,, CS with Nj.
(a) CIF (14 electrons): ] 1022023017274 | b =1

() CS (10 electrons): | 162202174302 | b=3

b=15

(¢) O, (13 electrons): ’10220*230217(4271*3

Decide whether the electron added or removed increases or decreases the bond order. The simplest
procedure is to decide whether the electron occupies or is removed from a bonding or antibonding
orbital. We can draw up the following table, which denotes the orbital involved

Ny NO O, Cy F> CN

(a) AB~ 2r*  2@*  2n* 30 40* 30
Change in bond order —1/2 —1/2 —1/2 +1/2 —-1/2 +1/2
(b) ABT 300 2n* 2n*  Im  27* 3o

Change in bond order —1/2 +1/2 +1/2 —-1/2 +1/2 —-1/2

(a) Therefore, | Cy and CN | are stabilized (have lower energy) by anion formation.
(b) |NO, O; and F; | are stabilized by cation formation; in each of these cases the bond order

increases.

Figure 14.1 is based on Fig. 14.28 of the text but with Cl orbitals lower than Br orbitals. BrCl is likely
to have a shorter bond length than BrCl™; it has a bond order of 1, while BrCl ™ has a bond order of %

O;r (11 electrons) :  16226*23c1x* 27" b =52
0, (12 electrons) :  16220*230217%27*? b =2
O, (13 electrons) : 10226*2362 15 27*3 b =3)2

05~ (l4electrons) 1 16220*230 % 1n*27** b =1

4p

4s

Figure 14.1
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E14.10(b)

E14.11(b)

E14.12(b)

E14.13(b)
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Each electron added to O; is added to an antibonding orbital, thus increasing the length. So the

sequence O;r 02,0, O%_ has progressively longer bonds.

fwzdz =N2/(1/IA+M//B)2dt =1 =N2/(w§+xzw§+2ww3)dr =1

= N2(1+ 1> +219) [/ Yaypdr = S}

1 1/2
Hence| N = ——
<1+2xs+x2)

We seek an orbital of the form aA + bB, where a and b are constants, which is orthogonal to the
orbital N(0.145A + 0.844 B). Orthogonality implies

f(aA +bB)N(0.145A +0.844B)dt =0

0=N /[0.145aA2 + (0.145b + 0.844a) AB + 0.844bB*] dt

The integrals of squares of orbitals are 1 and the integral / AB dr is the overlap integral S, so

0.145S + 0.844

0 = (0.145 + 0.8448)a + (0.145S + 0.844)b o 2w T .o
(0.145 + Ja+( +0844)b so a 0.145 + 0.844S

This would make the orbitals orthogonal, but not necessarily normalized. If S = 0, the expression
simplifies to

_ . 0.844
T0.145

and the new orbital would be normalized if a = 0.844N and b = —0.145N. That is
] N(0.844A — 0.145B) \

The trial function ¥ = x2(L — 2x) does not obey the boundary conditions of a particle in a box, so

it is | not appropriate |. In particular, the function does not vanish at x = L.

The variational principle says that the minimum energy is obtained by taking the derivate of the trial
energy with respect to adjustable parameters, setting it equal to zero, and solving for the parameters:

3an? &2 [ a \'/? dEyia 302 €2 1 \'/? 0
— | — 0 ——— = — — — =0.
2 gp \ 273 da 2 2g0 \273a

trial =

Solving for a yields:

2
3n2 &2 < 1 ) 172 ne? < 1 ) w2et
—=—|— so0 a=|— — )| =
2u  2e9 \273a 3n2e 273 187304

Substituting this back into the trial energy yields the minium energy:

1/2
. 37,2 26t o2 26t / et
jal = — —_— _ — _— =|———== |
T o \18m3nted | e0 \ 1873062 - 2n3 1273e2n?
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E14.14(b) The molecular orbitals of the fragments and the molecular oribitals that they form are shown in
Fig. 14.2.

Figure 14.2

E14.15(b) We use the molecular orbital energy level diagram in Fig. 14.38. As usual, we fill the orbitals starting
with the lowest energy orbital, obeying the Pauli principle and Hund’s rule. We then write

(a) CgHg (7 electrons): a%ue‘fge;u

E:2(a+2ﬁ)+4(a+ﬂ)+(a—ﬁ):

(b) Cﬁng (5 electrons): a%ue? o

E =2(a+2p)+3(+p) =[5a + 78]

E14.16(b) The secular determinants from E14.16(a) can be diagonalized with the assistance of general-
purpose mathematical software. Alternatively, programs specifically designed of Hiickel calcula-
tions (such as the one at Austrialia’s Northern Territory University, http://www.smps.ntu.edu.au/
modules/mod3/interface.html) can be used. In both molecules, 14 m-electrons fill seven
orbitals.

(a) Inanthracene, the energies of the filled orbitals are o +2.414218, «+2.000008, o+ 1.414218
(doubly degenerate), o + 1.000008 (doubly degenerate), and o + 0.41421p, so the total energy

is 14 + 19.31368 and the 7 energy is | 19.313688 |.

(b) For phenanthrene, the energies of the filled orbitals are o + 2.434768, o + 1.950638, o +
1.516278, o + 1.305808, o + 1.142388, o + 0.769058, « + 0.60523, so the total energy is

14 + 19.448248 and the 7 energy is | 19.44824p |.
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Solutions to problems

Solutions to numerical problems

YA = cos kx measured from A, g = cosk’(x — R) measuring x from A.
Then, with ¢ = ¥ + VB
Y = coskx + cosk’(x — R) = coskx + cosk’R cosk’x + sink’R sink’x

[cos(a — b) = cosa cosb + sina sin b]

— 1 — n. / — 7.[_ . 1 / — Q1 7T_

(a) k=k = 5% coskR_cosE_O, smkR_smi_l
" nx+_ TX
= c0S — -+ sin —
2R 2R

For the midpoint, x = %R, SO ¥ (%R) = CoSs ‘1171 + sin }Ln = 21/2 and there is constructive
interference (Y > YA, ¥B).

3 3
(b) k:l, ,:_n; cosk’R:cos—JT:O, sink’R = —1.
2R 2R 2
. 3mx
Y = cos — — sin ——
2R 2R

For the midpoint, x = %R, so ¥ (%R) = CoS ‘l‘n — sin 43'1” = 0 and there is destructive

interference (¥ < Y, ¥B).

We obtain the electron densities from p; = 1/52r and p_ = w% with ¥4 and ¥_ as given in
Problem 14.4

1
pi=N? (_3) fe= I3/ 1 o~Ii=Ri/agy2
7Ta0

We evaluate the factors preceding the exponentials in ¥4 and ¥

| 1/2 | 1,2 |
N [—) =oseix(— - ) =1
* <7Ta8) x (n x (52.9pm)3> 1216 pm3/2

1\ 1
Likewise, N_ [ — | = —_
1KEw1Se ( 3> 621 pm3/2

mwag
; {e—lzl/ao + e—\Z—R\/aO}Z

Then =
P+ = 12162 pm

and p— = {e—|Z\/do + e—‘Z—R|/a0}2

1
(622)2 pm3
The “atomic” density is

%{‘/fls(A)z + ¥15(B)?) = % X (#) {e72rala0 4 o= 2rB/d0y

I() =
0
e—(Q2rajao) 4 o=@rp/a0)  o—Qlzl/a0) 4 ¢—Q2lz—Rl/ao)
930 x109pm3 9.30 x 103 pm?3

The difference density is §o+ = p+ — p
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Draw up the following table using the information in Problem 14.4

Z/pm —100 —80 —60 —40 —20 0 20 40

oy x 107 /pm™3 020 042 090 192  4.09 8.72 527  3.88
o— x 10" /pm~™3 044 094 201 427 911 1940 617 085
p x 107 /pm ™3 025 053 113 241 515 1093 547 326
spy x 107/pm™  —0.05 —0.11 —023 —049 —1.05 —220 —020  0.62
sp_ x107/pm™> 019 041 087 18 396 847 070 —2.40
Z/pm 60 80 100 120 140 160 180 200

o+ x 107 /pm™3 373 471 742 510 239 112 053 025
p— x 10" /pm~™3 025 402 1441 1134 532 250 1.17 055
p x 107 /pm~3 301 458 88 640 300 141 066 031
spy x 107/pm™ 071 013 —146 —129 —0.61 —029 —0.14 —0.06
sp— x 107 /pm™> —2.76 —0.56 554 495 233 109 051 024

The densities are plotted in Fig. 14.3(a) and the difference densities are plotted in Fig. 14.3(b).

8p x 107 pm?

Z/pm Figure 14.3(a)

100 o
Z/pm Figure 14.3(b)
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P R/2 - R/2 =
A Z=0 B
@ @ @ > 7
P14.6 (a) With spatial dimensions in units (multiples) of ag, the atomic arbitals of atom A and atom B

may be written in the form (eqn 13.24):

1 2402 R/2)2]1/2/2
A= (z+R/2)e [2+y*+(z+
Peh = 4 om /
1 _[+2 2 7R/2)2]1/2/2
B= (z—R/2) e [x +y +(z
PeB = o /
according to eqn 14.98, the LCAO-MO’s have the form:
Vo = Pz,A + DzB V. = Dz,A + DzB
T 20+ ) % 20 —s)

[c SN ClENe o]
where s:/ / / Dz APzB dx dydz (eqnl4.17)
—00 —00 —O0

computations and plots are readily prepared with mathematical software such as mathcad.

Probability densities along internuclear axis (x=y=0) with R=3.
(all distances in units of a)
0.02 | | |

0.015 o i i -

WP 0.01 _

0.005 .

10
z Figure 14.4(a)

(b) With spatial dimensions in units of ag, the atomic orbitals for the construction of 7 molecular
orbitals are:

1 —[x2+y2+(z+R/2)2]1/2/2
A = xe
Px 427
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R=3

Amplitude of Sigma Antibonding MO in xz Probability Density of Sigma Antibonding MO

Amplitude of Sigma bonding MO in xz Probability Density of Sigma Bonding MO

Amplitude of Sigma Antibonding MO in xz Amplitude of Sigma bonding MO in xz

9

Figure 14.4(b)
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2p Pi Bonding Amplitude Surface 2p Pi Bonding Probability Density Surface

2p Pi Antibonding Amplitude Surface 2p Pi Antibonding Probability Density Surface

2p Pi Bonding 2p Pi Antibonding

—

/

—

N

Figure 14.4(c)

N
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1 2,2 271/2
R B e e
Px 427
The 7-MO’s are:
o Px,A+ Px,B and Y, = Px,A — Px,B
™ 20 +s) e 20 —s)

P14.7

(o, ol OlNNe e)

where s = / / / Dx.A Dx,B dx dydz
—00 —00 —00

o0

The various plot clearly show the constructive interference that makes a bonding molecular
orbital. Nodal planes created by destructive interference are clearly seen in the antibonding
molecular orbitals. When calculations and plots are produced for the R = 10 case, constructive
and destructive interference is seen to be much weaker because of the weak atomic orbital
overlap.

P = |y>dr ~ |y[*st, 8t = 1.00pm>
(a) From Problem 14.5
Y2(z=0)=pi(z=0)=87x 1077 pm 3

Therefore, the probability of finding the electron in the volume §7 at nucleus A is

P=86x10""pm™> x 1.00pm> ={8.6 x 107’

(b) By symmetry (or by taking z = 106 pm) P =|8.6 x 1077
(c) From Fig. 14.4(a), y2 (%R) —37x 10 pm~3,50 P =|3.7 x 10~

(d) From Fig. 14.5, the point referred to lies at 22.4 pm from A and 86.6 pm from B.

B Figure 14.5

e—22.4/52.9 +e—86.6/52,9 B 0.654+0.19
1216 pm3/2 ~ 1216 pm3/2

wz =4.9x 10~ pm_3, so P =
For the antibonding orbital, we proceed similarly.
(@ Y2(z=0)=19.6x 10" pm~> [Problem 14.5], so P =
(b) By symmetry, P =

(c) 1//3 (%R) =0, so P =@

Therefore, ¥ = =698 x 1074 pm_3/2
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(d) We evaluate ¥_ at the point specified in Fig. 14.5
0.65 —0.19
= 7 =741 x 10" pm~3/?
621 pm3/2
w% =549 x 1077 pm_3, so P=[55x%x10"
P14.10 (a) To simplify the mathematical expressions, atomic units (a.u.) are used for which all distances

are in units of ag and e’ /(4megagp) is the energy unit.

(%,,2)

A B
* > > >
R/2 R/2 Figure 14.6(a)
U 1 T2t R2?
A= ﬁ e = ﬁ e : (eqn 14.8)
B L oom_ L T R2?
JT JT
v o1 1 1
H:-T—a—g+; (eqn 14.6)

o= / AHAdt (coulomb integral, eqn 14.24)
Vi1 o1 1
=[A|l-————-—— —+ — ) Adr
2 ran 8 R
v oo A? 1 5
= [A|l-————-—]Adt— | —dt+ — | A%dr
2 rA B R
b\./—/ ———
J

1/R
(Born—Oppenheimer approx.)

Ejg=—1/2
(eqns 13.13,13.15)

TR

B = / AHB dr (Resonance integral, eqn 14.24)

2R | 11
=[A|l-—-———4+—|Bdr
2 ran 8 R

+
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+8

according to eqn 14.28, E5, = a—. In order to numerically calculate E as a function of

R we must devise a method by which S, j, and k are evaluated with numerical integrations at
specified R values. In the cartesian coordinate system drawn above, dt = dx dy dz and triple
integrals are required. Numerical integration may proceed slowly with this coordinate system.

However, the symmetry of the wavefunction may be utilized to reduce the problem to double
integrals by using the spherical coordinate system of Fig. 14.15 and eqn 14.9. The numerical
integration will proceed more rapidly.

1 1 | TR R s
A = —= e’ and B= W e B = W e VPRI R cost (g 14.9)
2

=///A(r)B(r,e,R)rzsin(e)dedrdqs
0 —oo 0

=2 / / A(r)B(r, 0, R)r sin(6) d6 dr
—o0 0

=2
Z
Il
—
>
>
o

rg=V\ +R2-2rR cos(0)

® » 2

A

z=0
Nl v
R Figure 14.6(b)

The numerical integration, Shumerical (R), may be performed with mathematical software (math-
cad, TOL=0.001) and compared with the exact analytic solution (eqn 14.12), Sexact(R). As
shown in the following plot, the percentage deviation of the numerical integration is never more
than 0.01% below R = L/a,. This is satisfactory.

The numerical integrals of j and k are setup in the same way.

2.2
iRy =21 / /A(r) r<sin(0) 40 dr
rg(r,0, R)

-0 0
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0.005 , , ,
o
=
@ 0
7|2
ikl
2| -0.005 |- e
g
V}=
~0.01 | | |
0 1 2 3 4
R Figure 14.7(a)

k(R) =27 / / A(r)B(r, 0, R)r sin(0) o dr

—00 0

The coulomb and resonance integrals are:

1 1 1 1
Ol(R)=—§—j(R)+E and B(R) = <E_§> S(R) — k(R)
a(R) + B(R)

This orbital energy is: Eig,(R) = 1SR

This numerical calculation of the energy, Enymerical (R), may be performed and compared with
the exact analytic solution (eqns 14.11 and 14.12), Eexact(R). The following plot shows that

the numerical integration method correctly gives energy values within about 0.06% of the exact
value in the range ag < R < 4ay.

(b) The minimum energy, as determined by a numerical computation, may be evaluated with sev-
eral techniques. When the computations do not consume excessive lengths of time, E(R)

0.02 ,

100

-0.02

-0.04

Enumerical (R)_Eexact (R)
Eexact (R)

—-0.06

R Figure 14.7(b)
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-0.2 T T T T

-0.3

[e Xl

04+ o -

E, numerical

~05 | o 7

o 0000(
[o) o000
©0000000000000000°

| | | | |
1 1.5 2 2.5 3 35 4

R Figure 14.7(c)

may be calculated at many R values as is done in the above figure. The minimum energy
and corresponding R may be read from a table of calculated values. Values of the figure
give: | Emin = —0.5647(a.u.) = —15.367e\ and ] Re = 2.4801(a.u.) = 131.24 pm \ Alterna-
tively, lengthy computations necessitate a small number of numerical calculations near the
minimum after which an interpolation equation is devised for calculating E at any value of

R. The minimum is determined by the criteria that iR Einterpolation (R) = 0.

The spectroscopic dissociation constant, De, for H;‘ is referenced to a zero electronic energy
when a hydrogen atom and a proton are at infinite separation.

1
De = Emin — (EH + Eproton) = |:—0~5647 - <_E + 0)i| (a.u.)

De = —0.0647 (a.u.) = 1.76 ev\

P14.12 The internuclear distance (r), ~ nzao, would be about twice the average distance (= 1.06 x 100 pm)
of a hydrogenic electron from the nucleus when in the state n = 100. This distance is so large that
each of the following estimates are applicable.

Resonance integral, 8 &~ —§ (where § ~ 0)
Overlap integral, S = ¢ (where ¢ ~ 0)

Coulomb integral, o =~ E,_1qg for atomic hydrogen

Binding energy = 2{E+ — E,,—100}
a+p
= 2{ T—s _En:lOO}
= 2{a — Ey—100}
~ 0

Vibrational force constant, k =~ 0 because of the weak binding energy. Rotational constant, B =
n? n?
2hel thuriB

~ 25
~ 0 because rjy is so large.
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The binding energy is so small that thermal energies would easily cause the Rydberg molecule to
break apart. It is not likely to exist for much longer than a vibrational period.

P14.13 In the simple Hiickel approximation

:0: - 1O - O
Il [ 4 I
WA VRN /NN
‘0. .0: (0] (6] o (0}
: : 2 3
ao — E 0 0 B
0 a0 — E 0 B 0
0 0 a0 — E B |
B B B aNy — E

(E = a0)? x [ (E = a0) x (E = ay) =367} =0
Therefore, the roots are
E —oap =0 (twice) and (E —ag) X (E —aN) — 3,82 =0

Each equation is easily solved (Fig. 14.8(a)) for the permitted values of E in terms of g, @N, and 8.
The quadratic equation is applicable in the second case.

A
2 21/2

o E, (Y()+O¢N+{(O¢()—(YN) +12[3}
] 2
<
[=}
Q
g
: — —
2z
>
=11]
5}
5 2 12
& 1 aotan—{(ao—an) +1282}/*

12 2

E_ Figure 14.8(a)

In contrast, the 7 energies in the absence of resonance are derived for N=0, that is, just one of the
three

oo — E B
B aNy — E

Expanding the determinant and solving for E gives the result in Fig.14.8(b).

=0

Delocalization energy = 2 { E_ (with resonance) — E_ (without resonance)}

/2

- {(ao o)+ 12;32}1/2 — {((xo —an)? +4,92}l

If B < (ao — an)?, then
482

Delocalization energy ~ ——— .
(0o —an)
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P14.17

P14.19

172

E, ao+aN+{(aofaN)2+4ﬂz}
2

7 energy without resonance

ap+an—{(ao—an )2+4ﬁ2}l/2
2
E_ Figure 14.8(b)

<—

In all of the molecules considered in P14.16, the HOMO was bonding with respect to the carbon
atoms connected by double bonds, but antibonding with respect to the carbon atoms connected by
single bonds. (The bond lengths returned by the modeling software suggest that it makes sense to talk
about double bonds and single bonds. Despite the electron delocalization, the nominal double bonds
are consistently shorter than the nominal single bonds.) The LUMO had just the opposite character,
tending to weaken the C=C bonds but strengthen the C— C bonds. To arrive at this conclusion,
examine the nodal surfaces of the orbitals. An orbital has an antibonding effect on atoms between
which nodes occur, and it has a binding effect on atoms that lie within regions in which the orbital
does not change sign. The 7* <« 7 transition, then, would lengthen and weaken the double bonds
and shorten and strengthen the single bonds, bringing the different kinds of polyene bonds closer to
each other in length and strength. Since each molecule has more double bonds than single bonds,
there is an overall weakening of bonds.

‘Q&z&%

HOMO LUMO

y v M
(™) Y LUMO

Figure 14.9(a)
Solutions to theoretical problems
Since
|/ 7\32 o 1\ 12
= = — —_ —_ = 7p/4 R
Vs = RaoYoo = 5= <a0> x (2 2) x <4n) [Tables 13.1, 12.3]

1\ 12 7\3/2 P
_1({_> il _F)ea0n/4
() (&) =C-3)
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HOMO

LUMO
Figure 14.9(b)
1 .
Vap, = ERzl(YL] — Y1) [Section 13.2]
ALY 3\ 1/2 ' .
=—(Z) Ze (=) sin6(?+e ) [Tables 13.1, 12.3]
V12 (ao) 2 (871)
1 /z\? 3\ /2
==\ Berid (2 sin 6 cos ¢
/12 \ao 2 8w

1/ 1\ Z\3/2
=3 (E) X (—) ge_p/4 sin 0 cos ¢
ao

1
Y2p, = 7 Ro1(Y1,1 + Y1-1) [Section 13.2]
Y20

1/ 1\!/2 7\3/2
=—-— x | — Pe=pltsing sin ¢ [Tables 13.1, 12.3]
4 \2n ap 2

Therefore,

1 3
X (—2 (2— E) — Egsinecosgb—i- %gsine sin(p) e P4

1 1/2 7 3/2 1 3
§> x<%> x 2—§—E§sinecos¢+ Egsinesind} e P4
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1/71\1/2 7\3/2 o | \/?
=7 (67r> X <a0> X :2 > 1+ ﬁsmecomj) 251n9s1n¢ e
=l<i>l/zx(£>3/2 2__ 1+[cos¢ \/§sm¢ /4

4 \ 6 agp 2 V2

The maximum value of ¥y occurs when sin 6 has its maximum value (+1), and the term multiplying
0/2 has its maximum negative value, which is —1, when ¢ = 120°.

P14.21 The normalization constants are obtained from
/wzdr =1, ¥ =N(®a=£yp)

NZ/(wA 4+ yp)ldr = sz(wi +yd +2yayp)dr = N2(1+14£285) =1

Therefore, N 2 -

2(1 +9)
n?_, e? 1 e? 1 e? 1
H=——V " —. — — — —
2m 4mweg ra 4meg rg 4meyg R

n? VZW &2 1 2 1 LIV 2 1// Ey
2m deg ra 47‘[80 B 4meg R
Multiply through by v *(= ) and integrate using
hz 2 62 1
—5=VYa— - —YA = Enva
2m 47‘[80 rA
n? e? 1
——V?yp — - —VYB = Enys
2m drey 1B
Then for ¢ = N (YA + ¥B)
&2 1 &2 1 2

B —
dmwey ra drey 1B

henceEH/w dr+ /w dr——N/ (—+—)dr—

2|
/(I/fA—I//BerB—thBJrI/fA—I/fAerB—wA) =E

1
fo/x(EHx/fﬁEHwB— -—¢A+4€—-—(wA+wB>) dr =
weg R

e?
4meg ‘R 4 eg

and so Eg +
1

Then use / Ya—ypdr = / lﬁB—WA dt [by symmetry] = Vz/(ez/4n50)
A 'B

/wAiwA dr = / WBLWB dr [by symmetry] = Vl/(€2/47'[8())
B A

2

e 1 1
hich gi E == — Vi+ W) =E
which gives H+4nso I <1+S>X( 1+ V2)
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Vi + V- 21
1 2+

or E =|Ey — -
1+ S 4dmrey R

as in Problem 14.8.

The analogous expression for E_ is obtained by starting from

¥ =NWa —¥B)
1
2(1-9)
and the following through the step-wise procedure above. The result is

with N2 =

Vi—W &2

E=E _ =
H™TTS 7 4neoR

as in Problem 14.9.

K2 e?
P1422 () v=c ¥ H=_-_v2_
21 dmegr
00 T 2w T
/1#2 dr :/ rre2kr dr/ siné‘d@/ d¢ = —~
0 0 0 k
1 00 T 2w T
/l//—l/fd‘L’:/ re_zk’dr/ sin@d@/ dp = —
r 0 0 0 k2
1 d? 2k
/wvzwdr :/w-—(re—k’)dr :/w K- )ydr
r dr2 r
iy 21 7
kK kK k
Therefore
wder—hzx” ¢ .
C2u ko 4mey k2
and

hZ 2
. (ﬁ) - (4;331(2) Rk %k

w/k3 2u 4me
dE h2 2 2
() k- £ —0 when k= H
dk 21 47 g 4 egh?®

The optimum energy is therefore

4
e
E = ——— =| —hcRy | the exact value

) v = efkrz, H as before.

5 00 2kr? 2 T 2 T
/I/I dt:/ e—’”rdr/ sin@d@/ dp = =
0 0 0 2

1 00 r? T 2w T
Y- dr =/ re” %" dr/ sin9d9/ dgp = —
r 0 0 0 k
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P14.23

(a)

/wvzw dr = —2/ W (3k — 2k*r?)yr dt

o0 ) T 2
=2 / (Bkr? = 2k*r*ye 2" ar / sin@ do / d¢
0 0 0

g 3k  \'? 3k [/ 7 \'/?
=87 =) x| == —— | ==
8 2k3 16 \ 2k3

3wk k12

Therefore

E _
2 eo2n)l2

dE e

—~ =0 when k=

dk when 1873¢2n4

and the optimum energy is therefore

4
_ e . 8
= _—127'[38(2)712 =|"3 X h¢Ry

Since 8/3m < 1, the energy in (a) is lower than in (b), and so the exponential wavefunction is
better than the Gaussian.

The variation principle selects parameters so that energy is minimized. We begin by finding the
cirteria for selecting npeg at constant R(w = nR)
dEe1(Mpest) -0
dn
dw dF; dw dF>
= 2nF I _——
M e T g
=2nFi+n"R— + K, +nR—
dw dw
—F(w) — w—difj)‘”)
Nbest (@) =

2F) () — 3@

We must now select R so as to minimize the total energy, E. Using Hartree atomic units for
which length is in units of a¢ and energy is in units of e2 /4mepag, the total energy equation is:

1 Nbest (@)
E@) = Ea(@) + g = e F1 (@) + oo (@) F2(0) + =
where R(w) = w/npegt (). Mathematical software provides numerical methods for easy eval-
uation of derivatives within npest(@). We need only setup the software to calculate E(w) and
R(w) over a range of w values. The value of R for which E is a minimum is the solution.
The following plot is generated with 1.5 < w < 8.0

The plots indicates an energy minimum at about —0.58 au and an R, value of about 2.0 au.
More precise values can be determined by generating a plot over a more restricted w range, say,
2.478 < w < 2.481. A table of w, R(w), and E (w) may be examined for the minimum energy
and corresponding @ and R values.
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Total energy vs internuclear distance

| | | | | | |
~045 | _
-05 =
-0.55 B
_06 ! ! ! ! ! ! !
0 1 2 3 4 5 6 7 8
Riay Figure 14.10

(b)

Wpest = 2.4802a

Re = 2.0033ay = 106.011 pm
E(Re) = —0.5865au = —15.960 eV
Mbest = 1.2380

D, for HT is referenced to a zero electronic energy when a hydrogen atom and a proton are at
rest at infinite separation.

De = — [E(Re) - E; - Eproton]
= —[—0.5865au + 0.5au — O au]
| De =0.0865au = 2.35¢V |

The experimental value of D, is 2.78 eV and that of R. is 2.00ag. The equilibrium internuclear
distance is in excellent agreement with the experimental value but the spectroscopic dissociation
energy is off by 15.3%.

The virial theorem (Atkins Eq. 12.46) states that the potential energy is twice the negative of the
kinetic energy. In the electronic energy equation,

Eeq = n*Fi(0) + nFa(w)

the term nzF 1(w) is the electron kinetic energy and, consequently, the total kinetic energy
because the nuclei do not move the Born-Oppenheimer approximation. The term 1 F> (w) is the
electron potential energy only so the nuclear potential (1/ R in au) must be added to get the total
potential energy. The wavefunction approximation satisfies the virial theorem when

S = Nbest F2(@pest) + 1/Re + 277%estF1 (@pest) =0

+
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Since numerology has been used, we will calculate the fraction | f/ E(Re)|. If the fraction is very
small the virial theorem is satisfied.

2nl2)est F1 (wpest) + NMbest F2 (Wbest) + RLe
E(Re)

=4.996 x 10°°

The fraction is so small that we conclude that the virial theorem is satisfied.

3 2
(© Ya= n 36*77VA/00; VB = " ge*an/ao
mag ma

3

S = /wAwB dr = n—3/e_n("A+VB)/ao dt
TTag

2

1 o0

773 R3 ) )

= —3//-/e_”R“/“° —(u” —v%) ¢ dudv deo
ma 8
0
0 —-11

2 1 00
/ d¢ / dv f wre MR/ g,
_ 1 (nR o I TR
7 \2aq 27 1 00
/dq&/dev/e_”R“/aO du
0 1

4
( nao> <2a0+2nRao+n2R2>e nR/ag

- () ()

2 p2
4LR+U R )e—ﬂR/ao

4+
(nR >3 27m(3) < aop ag
2aq 7R3 2 <02R2> o 1R/ao

S

N —

2
3 ag
- }L (4 + 4w + %wz) e ® where = nR/ay

S = (l+a)+%a)2)e_“’

P14.25 The secular determinant for a cyclic species Hy has the form
1 2 3 .N—-1 N
x 1 0 0 1
1 x 1 ... 0 0
01 x 1 0 0
00 1 x 1 0 0

—_
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o
where x = or E =o— Bx

Expanding the determinant, finding the roots of the polynomial, and solving for the total binding energy yields
the following table. Note that « < 0 and 8 < 0.

Species Number of e~ Permitted x Total binding energy
H, 4 72,002 Ao + 4P

HY 4 —2,%(1—ﬁ),%(1—6),%(1+f5),%(1+ﬁ) 401—}—(3-{—«/5)/3
H, 5 —2,%(1—«@),%(1—\/5),%(1+f5),%(1+ﬁ) 5a+%<5+3«@)ﬂ
H; 6 —2,%(1—«/5),%(1—«/5),%(1—!—\/3),%(14—«/5) 60+ (2+2V5)
Hs 6 211112 6o + 88

HE 6 2, 1.248,—1.248,—1.248,— 1.248,0.445,0.445,0.445 6 + 8.992

Hy —2Hy, AU =4(@+B)—@a+48) =0
HY - HHT AU = 2(a + B) + Qo + 4B) — (4 + 5.236B)
= 0.7648 < 0

The above AU values indicate that Hy and H;‘ are unstable.

Hy > Hy+H; AU = 2(a + B) — (4o +28) — (60 + 6.472)

= 24728 >0
Hg — 3H» AU = 6(a + B) — (6 + 8B)
=-26>0
HY — 2H, + HI AU = 4(a + B) + Qo +4B) — (6 + 8.992)
= —0.9928 > 0

The AU values for Hg , He, and H7Jr indicate that they are stable.

Statisfies Hiickel’s 4n + 2 low energy rule

Species  Correct number of e~ Stable
Hy, 4e™ No No
HI, 4e” No No
HS, 6e” Yes Yes
Hg, 6e~ Yes Yes
HI, 6e” Yes Yes

Hiickel’s 4n + 2 rule successfully predicts the stability of hydrogen rings.



E15.1(b)

E15.2(b)

E15.3(b)
E15.4(b)

E15.5(b)

E15.6(b)

E15.7(b)

E15.8(b)

15 Molecular symmetry

Solutions to exercises

Discussion questions

Symmetry operations Symmetry elements

1. Identity, E 1. The entire object

2. n-fold rotation 2. n-fold axis of symmetry, C,
3. Reflection 3. Mirror plane, o

4. Inversion 4. Centre of symmetry, i

5. n-fold improper rotation 5. n-fold improper rotation axis, S,

A molecule may be chiral, and therefore optically active, only if it does not posses an axis of improper
rotation, S,. An improper rotation is a rotation followed by a reflection and this combination of
operations always converts a right-handed object into a left-handed object and vice-versa; hence an
Sy axis guarantees that a molecule cannot exist in chiral forms.

See Sections 15.4(a) and (b).

The direct sum is the decomposition of the direct product. The procedure for the decomposition is
the set of steps outlined in Section 15.5(a) on p. 471 and demonstrated in lllustration 15.1.

Numerical exercises

CCly has (each C—Cl axis), (bisecting CI-C—Cl angles), (the same

as the C; axes), and ’ 6 dihedral mirror planes ‘ (each CI-C—Cl plane).

Only molecules belonging to Cs, Cy,, and C,y groups may be polar, so . ..

(a) CH3Cl (Csy) | may be polar | along the C—Cl bond;
(b) HW;(CO) ¢ (Dg4p) ’ may not be polar‘

(¢) SnCly(Ty) ’ may not be polar ‘

The factors of the integrand have the following characters under the operations of Dgp

E 2C6 2Cg C2 3Cé 3Cé/ i 253 ZSG Op 30‘d 30‘v
Dx 2 1 -1 =2 0 0o -2 -1 1 2 0 0
z 1 1 1 !l -1 -1 -1 -1 -1 -1 1 1
D 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1
Integrand 2 1 -1 -2 0 0 -2 -1 1 2 0 0

The integrand has the same set of characters as species Ey,,, so it does not include A1; therefore the

integral | vanishes

We need to evaluate the character sets for the product A ¢Eoug., where g = x, y, or z

E 2C6 2C3 Cz 3Cé 3C£/ i 2S3 2S6 Oh 3Ud 30\,
A, 1 1 1 1 1 1 1 1 1 1 1 1
Es, 2 -1 -1 2 0 0 -2 1 1 =2 0 0
(x, y) 2 I -1 =2 0 0 -2 -1 1 2 0 0
Integrand 4 —1 1 —4 0 0 4 -1 1 —4 0 0
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E15.11(b)

E15.12(b)

E15.13(b)
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To see whether the totally symmetric species Ajg is present, we form the sum over classes of the
number of operations times the character of the integrand

c(Arg) = D +2(=1) +2(1) + (=4) +3(0) +3(0) + 4)
+2(=1) +2(1) + (=4) +3(0) +3(0) =0

Since the species Ay is absent, the transition is | forbidden | for x- or y-polarized light. A similar
analysis leads to the conclusion that Ay, is absent from the product A¢E3,z; therefore the transition
is forbidden.

The classes of operations for D5 are: E, Ca(x), C2(y), and C3(z). How does the function xyz behave
under each kind of operation? E leaves it unchanged. C»(x) leaves x unchanged and takes y to —y
and z to —z, leaving the product xyz unchanged. C>(y) and C»(z) have similar effects, leaving one
axis unchanged and taking the other two into their negatives. These observations are summarized as
follows

E GKx GO G
xyz 1 1 1 1

A look at the character table shows that this set of characters belong to symmetry species

A molecule cannot be chiral if it has an axis of improper rotation. The point group 7 has

’ Sy axes‘ and ’mirror planes (= S1)

, which preclude chirality. The 7, group has, in addition, a

’ centre of inversion (= Sy) ‘

The group multiplication table of group Cyy is

E ct o C, o, (x) ov(y)  oalxy) oa(=xy)
E E cf Cy G, oy (x) ov(y)  oalxy) oa(—xy)
c cl C, E C, oa(xy) o(=xy) o,(y) oy(x)
o C, E C, cf oa(—xy) o(xy)  oy(x) ov(y)
C, C, Cy cr E ov(y) oy(x) og(—xy) oalxy)
oy(x) oy(x)  oq(—xy) oq(xy) ov(y) E C, C, cf
oy (y) o(y)  oaxy)  oa(—xy)  ov(x) G, E cl Cy
oalxy)  oalxy)  oy(x) ov(y)  oa(—xy) cl o E C,
og(—xy) og(—=xy)  oy(y) oy(x) 0q(xy) Cy cy C, E

See Fig. 15.1.

(a) Sharpened pencil: E, Co, ovy; therefore

(b) Propellor: E, C3z, 3C,; therefore

(¢) Square table: E, Cy4, 40v; therefore ; Rectangular table: E, C», 20y; therefore Cpy
(d) Person: E, o, (approximately); therefore

We follow the flow chart in the text (Fig. 15.14). The symmetry elements found in order as we proceed
down the chart and the point groups are

(a) Naphthalene: E, Cy, Cj, C5, 3oy, i;
(b) Anthracene: E, Ca, Cy, CY, 3on, i;
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Cxo
@ 43" o)

(© G (d)

Figure 15.1

(¢) Dichlorobenzenes:

(i) 1,2-dichlorobenzene: E, Cy, oy, o;
(ii) 1,3-dichlorobenzene: E, Cy, oy, oy;

(iii) 1,4-dichlorobenzene: E, Cz, C5, C5, 30n, i | Dan |
E15.14(b) (a) u-fr c.,

(b) (© (@) Dy

(e) ® T, ocC CO

r————fe -

—_——te— -

The following responses refer to the text flow chart (Fig. 15.14) for assigning point groups.

(a) HF: linear, no i, so

(b) IF7: nonlinear, fewer than 2C,, with n > 2, Cs, SCé perpendicular to Cs, o, SO
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(c)

(d)
(e)
®
E15.15(b) (a)

(b)
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XeO;F,: nonlinear, fewer than 2C,, with n > 2, Cp, no Cé perpendicular to C», no oy, 20y,

o[Ca]

Fe; (CO)g: nonlinear, fewer than 2C, with n > 2, C3, 3C, perpendicular to C3, oy, SO
cubane (CgHg): nonlinear, more than 2C,, withn > 2, i, no Cs, so

tetrafluorocubane (23): nonlinear, more than 2C,, withn > 2, no i, so

Only molecules belonging to Cs, C,, and C,y groups may be polar. In Exercise 15.13b
’ ortho-dichlorobenzene ‘ and ’ meta-dichlorobenzene ‘ belong to C,, and so may be polar; in

Exercise 15.10b,

HF and XeO,F, ‘ belong to C,y groups, so they may be polar.

A molecule cannot be chiral if it has an axis of improper rotation—including disguised or
degenerate axes such as an inversion centre (S) or a mirror plane (S7). In Exercises 15.9b and
15.10b, all the molecules have mirror planes, so can be chiral.

E15.16(b) In order to have nonzero overlap with a combination of orbitals that spans E, an orbital on the
central atom must itself have some E character, for only E can multiply E to give an overlap inte-
gral with a totally symmetric part. A glance at the character table shows that orbitals

available to a bonding N atom have the proper symmetry. If d orbitals are available (as in SO3),

all d orbitals except d} could have nonzero overlap.

E15.17(b) The product I'f x I'(u) x I'; must contain A; (Example 15.7). Then, since I'; = By, I'(u) = T'(y) =
B; (Cyy character table), we can draw up the following table of characters

!
C, o, o,

E

B, 1 -1 -1 1
1
1

-1 1 -1
1 -1 -1 =A,

Hence, the upper state is , because Ay x Ay = Aj.

E15.18(b) (a)

(b)

Anthracene
H H H
H H
QQQL,
H H
H H H

The components of w span B3y, (x), Boy(y), and By, (z). The totally symmetric ground state is
A,.
Since Ag x I' = TI' in this group, the accessible upper terms are (x-polarized),

(y-polarized), and (z-polarized).

Coronene, like benzene, belongs to the Dg}, group. The integrand of the transition dipole moment
must be or contain the A, symmetry species. That integrand for transitions from the ground state
is A1gqf,whereqisx, y,orzand f is the symmetry species of the upper state. Since the ground
state is already totally symmetric, the product g f must also have Ay symmetry for the entire
integrand to have A|; symmetry. Since the different symmetry species are orthogonal, the only
way qf can have A, symmetry is if g and f have the same symmetry. Such combinations
include zA»y, xE1y, and yEy. Therefore, we conclude that transitions are allowed to states with

symmeny



+

MOLECULAR SYMMETRY 247
E15.19(b)
E 2C3 30'\,
A 1 1 1
A 1 1 —1
E 2 -1 0
sin 0 1 Linear combinations of 1
cos 6 1 sin @ and cos 0 -1
Product 1 1 -1

P15.3

P15.6

P15.8

The product does not contain Ay, so the integral vanishes.

Solutions to problems

Consider Fig. 15.2. The effect of o, on a point P is to generate oy, P, and the effect of C; on oy, P is
to generate the point Crop P. The same point is generated from P by the inversion i, so Cyon P = iP

for all points P. Hence, , and i must be a member of the group.

Figure 15.2

Representation 1
D(C3)D(Cy) =1 x 1 =1=D(Cg)
and from the character table is either A{ or Ay. Hence, either D(oy) = D(ogq) =

respectively.

Representation 2
D(C3)D(C2) =1 x (—=1) = =1 =D(Cp)

and from the character table is either B; or B,. Hence, either D(oy) = —D(0yg) = or D(oy) =

—D(og) = respectively.

A quick rule for determining the character without first having to set up the matrix representation is
to count 1 each time a basis function is left unchanged by the operation, because only these functions
give a nonzero entry on the diagonal of the matrix representative. In some cases there is a sign change,
(c..—f..) < (...f ...;then —1 occurs on the diagonal, and so count —1. The character of the
identity is always equal to the dimension of the basis since each function contributes 1 to the trace.

+
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E': all four orbitals are left unchanged; hence x = 4
C3: One orbital is left unchanged; hence y = 1

C>: No orbitals are left unchanged; hence x =0
S4: No orbitals are left unchanged; hence x = 0
oq: Two orbitals are left unchanged; hence x = 2

The character set4, 1, 0, 0, 2 spans Inspection of the character table of the group Ty shows
that s spans A and that the three p orbitals on the C atom span T,. Hence, the orbitals
of the C atom may form molecular orbitals with the four Hls orbitals. In Tq, the d orbitals of the

central atom span E + T (character table, final column), and so only the T set| (dyy, dyz, dzx) | may

contribute to molecular orbital formation with the H orbitals.

(a) In C3, symmetry the Hls orbitals span the same irreducible representations as in NH3, which is
A1 4+ A1 + E. There is an additional A orbital because a fourth H atom lies on the C3 axis. In
C3y, the d orbitals span A1 + E + E [see the final column of the C3, character table]. Therefore,
’ all five d orbitals | may contribute to the bonding.

(b) In Cy, symmetry the Hls orbitals span the same irreducible representations as in H>O, but
one “HpO” fragment is rotated by 90° with respect to the other. Therefore, whereas in HyO
the H1s orbitals span A + B, [Hy + Hp, H; — H3], in the distorted CH4 molecule they span
A1 + B> + Ay + By [H; + Hy, Hy — Hy, H3 + Hy, H3 — Hy]. In Cy, the d orbitals span
2A1 + B + By + Ay [Cyy character table]; therefore,
bonding.

all except Aj(dxy) ‘ may participate in

The most distinctive symmetry operation is the m axis through the central atom and aromatic

nitrogens on both ligands. That axis is also a axis. The group is .

(a) Working through the flow diagram (Fig. 15.14) in the text, we note that there are no C, axes
with n > 2 (for the C3 axes present in a tetrahedron are not symmetry axes any longer), but it
does have C» axes; in fact it has 2C, axes perpendicular to whichever C, we call principal; it

has no oy, but it has 20y4. So the point group is .

(b) Within this point group, the distortion belongs to the fully symmetric species , for its motion
is unchanged by the S4 operation, either class of C», or oyg.

(¢) The resulting structure is a square bipyramid, but with one pyramid’s apex farther from the base
than the other’s. Working through the flow diagram in Fig. 15.14, we note that there is only one
C, axis with n > 2, namely a C4 axis; it has no Cj axes perpendicular to the Cy4, and it has no

oh, but it has 40y. So the point group is .

(d) Within this point group, the distortion belongs to the fully symmetric species . The translation
of atoms along the given axis is unchanged by any symmetry operation for the motion is contained
within each of the group’s symmetry elements.

(a) xyzchanges sign under the inversion operation (one of the symmetry elements of a cube); hence

it does not span Ay, and its integral

(b) xyz spans Aj in Ty [Problem 15.13] and so its integral ’ need not be zero ‘

(¢) xyz = —xyzunder z — —z (the oy, operation in Dgp,), and so its integral

+
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P15.16 We shall adapt the simpler subgroup Cgy of the full D¢} point group. The six m-orbitals span
A1+ B +E; 4+ Ej, and are

1
a) = —= (1 + 7y + 73 + 74 + 75 + 76)

v
by = —=(my —m + 73 — 74 + 75 — 76)
V6
1
——Qm —my — 3 + 24 — 5 — 7TE)
_lvi2 >

e
1
(w2 — 73 + 75 — 76)

1
——Qm + 7 — 73 — 274 — 75 + 76)
el = V12

1
5 (12 + 73 — 75 — 76)

The hamiltonian transforms as Aj; therefore all integrals of the form / Y’ Hyr dt vanish unless ¢’

and ¥ belong to the same symmetry species. It follows that the secular determinant factorizes into
four determinants

A1 Hga =%/(771 +-Fme)H(my + -+ mg)dt =a + 28

Bii Hpoy = § [n —m 49 Hm =) de =0 =28

Ei: Hej@yeia =@ =B, Heyyeyp) =« — B, Hey(ayey ) =0

P15.17

a—pB—c¢

Hence 0

Ex: Heya)e,(a) = @ + B,

a+p—¢

Hence 0

0
a—pB—¢

0

= 0 solvesto ¢ = o — B (twice)
He,(byer(0) = & + B, Hey(a)er(v) = 0

= 0 solves to ¢ = o + B (twice)

a+pB—c¢

Consider phenanthrene with carbon atoms as labeled in the figure below

(a) The 2p orbitals involved in the 7 system are the basis we are interested in. To find the irrepro-
ducible representations spanned by this basis, consider how each basis is transformed under the
symmetry operations of the Cj, group. To find the character of an operation in this basis, sum
the coefficients of the basis terms that are unchanged by the operation.

a’ b b’ J d d € ! f f’ g g X
E a’ b b’ / d d e ! f f’ g g 14
C|-a —-a - -b ¢ —¢ —-d —-d —-€ —--e - —f —g -—g 0
o, | a a b’ b J c d d e e il f g g 0
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To find the irreproducible representations that these orbitals span, multiply the characters in the
representation of the orbitals by the characters of the irreproducible representations, sum those
products, and divide the sum by the order % of the group (as in Section 15.5(a)). The table below
illustrates the procedure, beginning at left with the C;, character table.

E C o, o, | product E C, o, o, | sum/h
A1 1 1 1 14 0 0 -—-14 0
A, | 1 1 -1 -1 14 0 0 14 7
B, 1 -1 1 -1 14 0 0 14 7
B, |1 -1 -1 1 14 0 0o -—-14 0

The orbitals span | 7Ay + B |.

To find symmetry-adapted linear combinations (SALCs), follow the procedure described in
Section 15.5(c). Refer to the table above that displays the transformations of the original basis
orbitals. To find SALCs of a given symmetry species, take a column of the table, multiply each
entry by the character of the species’ irreproducible representation, sum the terms in the column,
and divide by the order of the group. For example, the characters of species Aj are 1, 1, 1, 1, so
the columns to be summed are identical to the columns in the table above. Each column sums to
zero, so we conclude that there are no SALCs of A; symmetry. (No surprise here: the orbitals
span only Ay and B1.) An Ay SALC is obtained by multiplying the characters 1, 1, —1, —1 by
the first column:

fa—a' —a' +a)=1@-a).
The A, combination from the second column is the same. There are seven distinct Ay combi-

nations in all: | 1/2(a — a’), 1/2(b — 1), ..., 1/2(g — g') | The B combination from the first
column is:

la+a +a +a)=Lta+a)

The B; combination from the second column is the same. There are seven distinct B| com-

binations in all: %(a +a’), %(b +b), ..., %(g + g’) |. There are no B, combinations, as the

columns sum to zero.
The structure is labeled to match the row and column numbers shown in the determinant. The
Hiickel secular determinant of phenanthrene is:

f

I
e

coococococococoomeAE™OO
|
™
CoOo0O0cocOocOoCOoOT™MRATIOOO G
|
™

|
o1
COoOO0OOoOTWRWOOOOOODO
\
o
CoOoOTHMRARMOOoOOoOOOCOOCOCOO0
|
3
CoOmRAIIOOOOOOOOO A

|
|
CTHTRIOOOOODODO OO O 6,

|
=
MR HIOOOWIOOOoOO O O O T

QOO DO DO Oo™ ™

[eNoNoNoNoNoNok - Y-Nh s Sell oo
COO0OOCOOW™WRWIOOO™®™ OMm
|
&5}
OCTHWOOOHLRA H/IODDODODO O O

This determinant has the same eigenvalues as as in exercise 14.16(b)b.
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P15.21

(©)

(a)

(b)

The ground state of the molecule has A; symmetry by virtue of the fact that its wavefunction is
the product of doubly occupied orbitals, and the product of any two orbitals of the same symmetry
has A1 character. If a transition is to be allowed, the transition dipole must be non-zero, which in
turn can only happen if the representation of the product W u\¥; includes the totally symmetric
species Aj. Consider first transitions to another A; wavefunction, in which case we need the
product AjpnA1. Now AjA; = Aj, and the only character that returns A; when multiplied by
A is Aq itself. The z component of the dipole operator belongs to species Aj, so z-polarized
A1 < Aj transitions are allowed. (Note: transitions from the A ground state to an A excited
state are transitions from an orbital occupied in the ground state to an excited-state orbital of the
same symmetry.) The other possibility is a transition from an orbital of one symmetry (A; or
B1) to the other; in that case, the excited-state wavefunction will have symmetry of A|B; = B
from the two singly occupied orbitals in the excited state. The symmetry of the transition dipole,
then, is AjuB> = uB,, and the only species that yields A; when multiplied by B; is B itself.
Now the y component of the dipole operator belongs to species B, so these transitions are also
allowed (y-polarized).

Following the flow chart in Fig. 15.14, not that the molecule is not linear (at least not in the
mathematical sense); there is only one Cj, axis (a C;), and there is a o},. The point group, then,

b d f h j k' i’ g’ e c’ a’
/ aCaC/ aCalalaC AV aNa
a c e g i k i h' ' d’ b’

The 2 p, orbitals are transformed under the symmetry operations of the C,y, group as follows.

a a b b ¢ ¢ i i kK| o x

E a a b b’ c ¢ o] i k K 22

C, a  a b’ b J c ... ] j K k 0

i —-a —a -b -b - —¢ ... - - -k -k 0

ohn | -a - -b -b - ¢ ... - - -k —k'|-22

To find the irreproducible representations that these orbitals span, we multiply the characters of
orbitals by the characters of the irreproducible representations, sum those products, and divide
the sum by the order 4 of the group (as in Section 15.5(a)). The table below illustrates the
procedure, beginning at left with the Cy;, character table.

E C i Oh | product E C, i oh | sum/h
A, | 1 1 1 1 2 0 0 =22 0
A, | 1 1 -1 -1 2 0 0 22 11
B, |1 -1 1 -1 2 0 0 22 11
B 1 -1 -1 1 2 0 0 =22 0

=

The orbitals span | 11A, + 11Bg |

To find symmetry-adapted linear combinations (SALCs), follow the procedure described in
Section 15.5(c). Refer to the above that displays the transformations of the original basis orbitals.
To find SALCs of a given symmetry species, take a column of the table, multiply each entry
by the character of the species’ irreproducible representation, sum the terms in the column, and
divide by the order of the group. For example, the characters of species Ay are 1, 1, 1, 1, so the

+
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columns to be summed are identical to the columns in the table above. Each column sums to
zero, so we conclude that there are no SALCs of Ag symmetry. (No surprise: the orbitals span
only Ay and Bg). An Ay SALC is obtained by multiplying the characters 1, 1, —1, —1 by the
first column:

%(a+a/+a/+a) = %(a+a/).

The Ay combination from the second column is the same. There are 11 distinct A, combinations
1/2(a+4a’),1/2(b+1b),...1/2(k + k")

in all: . The By combination from the first column is:

}T(a—a’—a’+a) = %(a—a’).

The By combination from the second column is the same. There are 11 distinct Bg combinations
in all:’ 1/2(a —a’), 1/2(b—=b"),...1/2(k = k)

. There are no B, combinations, as the columns

sum to zero.
The structure is labeled to match the row and column numbers shown in the determinant. The
Hiickel secular determinant is:

b c i j k K i i ¢ b’ a

B 0 0 0 0 0 0 0 0 0 0

- F B 0 0 0 0 0 0 0 0 0

B oa—E 0 0 0 0 0 0 0 0 0

0 0 a—E B 0 0 0 0 0 0 0

0 0 g a—E B 0 0 0 0 0 0

0 0 0 B o—E B 0 0 0 0 0

0 0 0 0 B a—E B 0 0 0 0

0 0 0 0 0 g a—E B 0 0 0

0 0 0 0 0 0 g a—E 0 0 0

0 0 ... 0 0 0 0 0 0 ... a—E B 0

0 0 ... 0 0 0 0 0 0 .. B a—E B

0 0 0 0 0 0 0 0 0 B a—FE
The energies of the filled orbitals are o + 1.981378, o +1.92583 8, v +1.83442 8, e + 1.70884 8,
o+ 1551428, a +1.365118, a + 1.153368, o + 0.920138, o + 0.669768, o + 0.40691 8, and
a + 0.136488. The m energy is 27.307298.
The ground state of the molecule has Ag symmetry by virtue of the fact that its wavefunction

is the product of doubly occupied orbitals, and the product of any two orbitals of the same
symmetry has A, character. If a transition is to be allowed, the transition dipole must be non-
zero, which in turn can only happen if the representation of the product Wf*uW; includes the
totally symmetric species Ag. Consider first transitions to another Ag wavefunction, in which
case we need the product AguAg. Now AgAg; = Ag, and the only character that returns Ag
when multiplied by Ag is Ay itself. No component of the dipole operator belongs to species
Ag, sono Ay < A, transitions are allowed. (Note: such transitions are transitions from an
orbital occupied in the ground state to an excited-state orbital of the same symmetry.) The other
possibility is a transition from an orbital of one symmetry (Ay or Byg) to the other; in that case,
the excited-state wavefunction will have symmetry of AyBg = By from the two singly occupied
orbitals in the excited state. The symmetry of the transition dipole, then, is AguBy = uBy, and
the only species that yields Ag when multiplied by By, is By itself. The x and y components of
the dipole operator belongs to species By, so these transitions are allowed.
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16 Spectroscopy 1: rotational and

vibrational spectroscopy

Solutions to exercises

Discussion questions

ey

@

3

ey

@)

Doppler broadening. This contribution to the linewidth is due to the Doppler effect which shifts
the frequency of the radiation emitted or absorbed when the atoms or molecules involved are
moving towards or away from the detecting device. Molecules have a wide range of speeds in all
directions in a gas and the detected spectral line is the absorption or emission profile arising from
all the resulting Doppler shifts. As shown in Justification 16.3, the profile reflects the distribution
of molecular velocities parallel to the line of sight which is a bell-shaped Gaussian curve.

Lifetime broadening. The Doppler broadening is significant in gas phase samples, but lifetime
broadening occurs in all states of matter. This kind of broadening is a quantum mechanical effect
related to the uncertainty principle in the form of eqn 16.25 and is due to the finite lifetimes of
the states involved in the transition. When 7 is finite, the energy of the states is smeared out and
hence the transition frequency is broadened as shown in eqn 16.26.

Pressure broadening or collisional broadening. The actual mechanism affecting the lifetime of
energy states depends on various processes one of which is collisional deactivation and another is
spontaneous emission. The first of these contributions can be reduced by lowering the pressure,
the second cannot be changed and results in a natural linewidth.

Rotational Raman spectroscopy. The gross selection rule is that the molecule must be anisotrop-
ically polarizable, which is to say that its polarizability, «, depends upon the direction of the
electric field relative to the molecule. Non-spherical rotors satisfy this condition. Therefore,
linear and symmetric rotors are rotationally Raman active.

Vibrational Raman spectroscopy. The gross selection rule is that the polarizability of the molecule
must change as the molecule vibrates. All diatomic molecules satisfy this condition as the
molecules swell and contract during a vibration, the control of the nuclei over the electrons
varies, and the molecular polarizability changes. Hence both homonuclear and heteronuclear
diatomics are vibrationally Raman active. In polyatomic molecules it is usually quite difficult
to judge by inspection whether or not the molecule is anisotropically polarizable; hence group
theoretical methods are relied on for judging the Raman activity of the various normal modes of
vibration. The procedure is discussed in Section 16.17(b) and demonstrated in Illustration 16.7.

The exclusion rule applies to the benzene molecule because it has a center of symmetry. Consequently,
none of the normal modes of vibration of benzene can be both infrared and Raman active. If we wish
to characterize all the normal modes we must obtain both kinds of spectra. See the solutions to
Exercises 16.29(a) and 16.29(b) for specified illustrations of which modes are IR active and which
are Raman active.

Numerical exercises

The ratio of coefficients A/B is

(a)

_ 8mhv3 8m(6.626 x 1073 Ts) x (500 x 106s71)3

=773 x 10732 m 35
c3 (2.998 x 108 ms—1)3

A
B
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(b) The frequency is

A 8th _ 8m(6.626 x 1073*Js)

2220 =162x107 8 m 3¢
B~ A3 (3.0 x 1072 m)3

V= SO

c
A

A source approaching an observer appears to be emitting light of frequency
v
Vapproaching = 1= [16.22, Section 16.3]
c

1
Since v & —,  Aghs = (1 - E) A
A c

For the light to appear green the speed would have to be

A 520
s = (1 - ;bs> c=(2.998 x 108 ms~1) x (1 - 66022) - ] 6.36 x 10’ ms~!

or about 1.4 x 10% m.p.h.

(Since s = c, the relativistic expression

145\
Vobs = 1= v
c

should really be used. It gives s = 7.02 x 10" ms™! D

The linewidth is related to the lifetime t by

531cm™! 531cm™!
=22 626] so T=229m

1) =
T/ps 8V

<

ps

(a) We are given a frequency rather than a wavenumber

~ (5.31em™1) x (2.998 x 10'%cms™)

100 x 106 s—1 ps = 1.59 x 107 ps

Vv=v/c so T

or[159m]
531cm™!
B v s =248

The linewidth is related to the lifetime t by

_ 53lcm™! (5.31cm™He
W=—-—"— s0 fy=—-— "
T/ps T/ps

(a) Ifevery collision is effective, then the lifetimeis 1/(1.0x 10° s™1) = 1.0x 1077 s = 1.0x 10° ps

5.31cm™! 2.998 x 1010¢cms~!
5y = 2lem ) X1(0 10;( mS ) _ 16 x 1085~ =160 MHz
.U X ~

(b) If only one collision in 10 is effective, then the lifetime is a factor of 10 greater, 1.0 x 104 ps

531cm™ 1) x (2.998 x 1019 cms!
sp = O3lem ) x( x107ems ™) 6 1075~ =[16 MHZ

1.0 x 104
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E16.8(b) The frequency of the transition is related to the rotational constant by
hv = AE = hcAF = heB[J(J+1)—(J —1)J] =2hcBJ

where J refers to the upper state (J = 3). The rotational constant is related to molecular structure by

o h
" dmel  AmemesR?

where I is moment of inertia, m.ys is effective mass, and R is the bond length. Putting these expressions
together yields

nJ

Vv=2cBJ = ——
2 mefr R 2
The reciprocal of the effective mass is

1 A (12u)~! 4 (15.9949 u)~!
m =m m =
eff — € O 7 166054 x 10-27kgu!

= 8.78348 x 10X kg~!

_(8.78348 x 105 kg™") x (1.0546 x 1073 7Ts) x (3)
N 27(112.81 x 1012 m)2
E16.9(b) (a) The wavenumber of the transition is related to the rotational constant by

So v —[3.4754 x 101 ¢!

hev = AE = hcAF =heB[J(J +1)—(J — 1)J]=2hcBJ

where J refers to the upper state (/ = 1). The rotational constant is related to molecular
structure by

n
B =
drel

where / is moment of inertia. Putting these expressions together yields

hJ _hI (1.0546 x 10734 Js) x (1)

V=2BJ = SO = — =
2mcl e 2m(2.998 x 1019cms—!) x (16.93cm™1)

3.307 x 10~* kgm?

~
Il

(b) The moment of inertia is related to the bond length by

7\ 12
I:meffR2 SO R:( )

Meff
~p_ (1.0078w)~! + (80.9163u) !

1 —1
=m +m =
H Br 1.66054 x 10~27kgu~!

m = 6.0494 x 10%°kg ™!

1/2
and R = {(6.0494 x 10%kg™!) x (3.307 x 1074 kg mz)}

—1.414x 107 0m =
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E16.10(b) The wavenumber of the transition is related to the rotational constant by
hcv = AE = hcAF = heB[J(J +1)—(J —1)J] =2hcBJ
where J refers to the upper state. So wavenumbers of adjacent transitions (transitions whose upper
states differ by 1) differ by
[/
= so I = —
2rcl 2w cAv
where I is moment of inertia, m¢f is effective mass, and R is the bond length.
(1.0546 x 107347s)

T 27(2.9979 x 100 ¢cms—1) x (1.033ecm—1)
The moment of inertia is related to the bond length by

B 5 B I 1/2
I =meggR® so R =
Meff

L et et (189984071 4 34.9688u) !
m =m m =
off —7F T 1.66054 x 1027 kgu~!

AV =2B

So I 5.420 x 1040 kgm?

=4.89196 x 10® kg~!

12
and R = {(4.89196 x 1055 kg™ 1) x (5.420 x 10746 kgmz)}

—1.628 x 107 10m =

E16.11(b) The rotational constant is

h h h 172
B = = so R=|———
dwel  4mc(moR?) (87‘[cmoB)

where [ is moment of inertia, m.¢f is effective mass, and R is the bond length.

1/2
. ( (1.0546 x 1073*J5) >/

87(2.9979 x 1010 cms—1) x (15.9949u) x (1.66054 x 10-27kgu~!) x (0.39021)

=1.1621 x 107'%m = 116.21 pm

E16.12(b) This exercise is analogous to Exercise 16.12(a), but here our solution will employ a slightly different
algebraic technique. Let R = Roc, R’ = Rcs, O = 160, c = 2.

I = % [Footnote 6, p. 466]

1.05457 x 10734 J s
(47) x (6.0815 x 109 s~ 1)
1.05457 x 10734 J s
(4) x (5.9328 x 1095~ 1)

1(0C3%S) = = 1.3799 x 10~¥ kgm? = 8.3101 x 10™!° um?

1(0C*s) = = 14145 x 10 * kgm? = 8.5184 x 10~ um?

The expression for the moment of inertia given in Table 16.1 may be rearranged as follows.
Im = mAmR2 + mCmR’2 — (maR — mcR/)2
= mAmR2 + mcmR/2 — miR2 +2mamcRR' — m%R/2

= mp(mp + mC)R2 + mc(ma + m]:g,)R/2 + 2mamcRR’
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Let mc = mang and me = mag

Im ma 2 n” ’
— = m—C(mB +mc)R” + (mp +mB)R= 4+ 2maARR @
C
I'm’ ma ) ” ’
m/ = m—/(l’l’lB —I—mC)R +(mA+mB)R +2mARR (b)
C C
Subtracting
Im I'm ma ma
v~ = | () ey = () | 2
C C
Solving for R?
(1_"1 _ M) ’ 1
&2 e A _ melm —mcl'm

[(22) mp +mc) — (2 ) (mg +mpy] - mmAGC = me)

Substituting the masses, with ma = mg, mg = mc, mc = msg, and m/C = M3ag

m = (15.9949 + 12.0000 + 31.9721) u = 59.9670u
m' = (15.9949 + 12.0000 + 33.9679) u = 61.9628 u

2 (33.9679u) x (8.3101 x 107" um?) x (59.9670u)

(12.000u) x (15.9949u) x (33.9679u — 31.9721 u)

(31.9721u) x (8.5184 x 10~ um?) x (61.9628 u)
(12.000u) x (15.9949u) x (33.9679u — 31.9721 u)

_51.6446 x 10719 m?
B 383.071

R=1.1611x 10""m =[116.1 pm | = Roc

Because the numerator of the expression for R? involves the difference between two rather large
numbers of nearly the same magnitude, the number of significant figures in the answer for R is
certainly no greater than 4. Having solved for R, either equation (a) or (b) above can be solved for
R’. The result is

R '=1559 % 107%m = 155.9pm |= Rcs

E16.13(b) The wavenumber of a Stokes line in rotational Raman is

= 1.3482 x 107 m?

VStokes = Vi — 2B(2J + 3) [16.49a]

where J is the initial (lower) rotational state. So

Dstokes = 20623 cm™' — 2(1.4457cm™ 1) x [2(2) 4+ 3] = /20603 cm ™!

E16.14(b) The separation of lines is 4B, so B = % x (3.5312cm™1) = 0.88280cm ™!

nh

1/2
D — [Exercisel6.11(a)]
AnmegrcB

Then we use R = (



258 INSTRUCTOR'S MANUAL

with mer = ym(F) =  x (18.9984 1) x (1.6605 x 10727 kgu™!) = 1.577342 x 100 kg

_34 12
R — 1.0546 x 10 Js
~ \47(1.577342 x 1026 kg) x (2.998 x 1019 cms—1) x (0.88280cm—1)

= 1.41785 x 107 '%m = | 141.78 pm

E16.15(b) Polar molecules show a pure rotational absorption spectrum. Therefore, select the polar molecules
based on their well-known structures. Alternatively, determine the point groups of the molecules and
use the rule that only molecules belonging to C,,, Cpy, and Cs may be polar, and in the case of Cj,
and Cpy, that dipole must lie along the rotation axis. Hence all are polar molecules.

Their point group symmetries are
(@) Ho0, Cay, (b) H2O02, C2, () NH3, C3y, (d) N2O, Cooy

show a pure rotational spectrum.

E16.16(b) A molecule must be anisotropically polarizable to show a rotational Raman spectrum; all molecules
except spherical rotors have this property. So’ CH,Cl, |,| CH3CH3 |, and’ N>O ‘ can display rotational
Raman spectra; SFg cannot.

>

E16.17(b) The angular frequency is

1/2
— E /_ _ 2 2 —1\2 -3
w = =2nv so k= QQav)'m=Q2mr)" x 3.0s )" x (2.0 x 107" kg)
m

c=[071Nm!|

E16.18(b) a):( ) a/z( - ) [prime = 2H>7Cl]

Meff Mg

The force constant, k, is assumed to be the same for both molecules. The fractional difference is

S S S

w X 1/2 1 1/2 m/eff
Meff Meff

1/2
o —w _ (meff)/ 1= { mygmcy o (mayg + m31c)) }1/2 _

me my +mcy (moy - myicy)

_ [(10078u) x (34.9688w)  (2.0140u) + (36.9651 ) 172
| (1.0078 u) + (34.9688u) ~ (2.0140u) x (36.9651 u)

= —0.284

Thus the difference is | 28.4 per cent

+
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E16.19(b)

E16.20(b)

E16.21(b)

The fundamental vibrational frequency is

O\ 12
w= < > =2y =2mcv so k= (27rcf))2meff

Meff

We need the effective mass
myt =my +my' = (78.9183w) 7! + (80.9163u) " = 0.0250298u~!
L [27(2.998 x 1019 cms™!) x (323.2ecm™1)]? x (1.66054 x 10727 kgu™!)

0.025029 8 u~!
=1[2459Nm~!

The ratio of the population of the ground state (Ny) to the first excited state (Ny) is

No . —hv . —hcv
— = €X —_— = X
N P\t P\ "%t

N (1.381 x 1023 JK~1) x (298K)

N, —(6.626 x 107347 2.998 x 1010 -1 321cm™!
(a) —O:exp< ( . o . cms ) x (2lem ) =0.212

Ni (1.381 x 10-23JK~ 1) x (800K)

N, —(6.626 x 107347 2.998 x 1019 -1 321cm™!

The relation between vibrational frequency and wavenumber is

_\1/2

k o\ - - 1 k2 (kmeff>
w= =2nv=2mcY SO V=— =7
Mmeff meff 2me

The reduced masses of the hydrogen halides are very similar, but not identical

1 -1 -1
My = Mp~ +my

We assume that the force constants as calculated in Exercise 16.21(a) are identical for the deuterium

halide and the hydrogen halide.
For DF

_; (2.0140u)~! 4 (18.9984u)~!
m =
eff 1.66054 x 10-27 kgu~!

1/2
{(3.3071 x 1020 kg™1) x (967.04kg 5—2)}
= =13002.3cm™!

27(2.9979 x 1019 cms—1)

=3.3071 x 10%°kg~!

For DCI1

_1 (2.0140u)~! + (34.9688 u)~!
m =
eff 1.66054 x 10~27 kgu~!

12
{(3.1624 % 100 kg=1) x (515.59kgs—2)]
b= =|2143.7cm™!

27(2.9979 x 1010 cms—1)

=3.1624 x 100 kg™!
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For DBr

_p_ (20140uw)~" 4 (80.9163u) !

moa = = 3.0646 x 10%0kg~!
eff 1.66054 x 10-27 kgu™! £

12
{(3.0646 x 1020kg~1) x (411.75ke s_z)]
VYV =

—|1885.8cm™!
277(2.9979 x 1010 cms—1)

For DI

_, (2.0140w)~! + (126.9045u) !
m =
eff 1.66054 x 1027 kgu™!

=3.0376 x 10*6kg~!

1/2
{(3.0376 x 100 kg~1) x (314.21 ke s*Z)} /

b= =|1640.1cm™!
27(2.9979 x 1010 cms—1)

Data on three transitions are provided. Only two are necessary to obtain the value of v and xe. The
third datum can then be used to check the accuracy of the calculated values.

AG(w =1« 0) =D — 20xe = 2345.15cm ™! [16.64]
AG(v =2 « 0) =20 — 6Vxe = 4661.40cm ™! [16.65]

Multiply the first equation by 3, then subtract the second.

b= (3) x (2345.15cm™ ") — (4661.40cm™ ") =|2374.05cm™!

Then from the first equation

U —2345.15cm™!  (2374.05 —2345.15) cm ™! 6.087 x 1073
Xe = = L
e 2% (2) x (2374.05cm~)

Xe data are usually reported as xe v which is

xeb = 14.45cm™!
AG(w =3 < 0) =30 — 12vxe = (3) x (2374.05cm™ 1) — (12) x (14.45cm™ 1)
= 6948.74cm ™!

which is close to the experimental value.
AGyy12 =V =2+ Dxeb [16.64] where AGyi12 =G+ 1) — G(v)
Therefore, since

AGU+]/2 = (1 — 2xe)V — 2vxeD

aplot of AG, 12 against v should give a straight line which gives (1 — 2x¢) from the intercept at
v = 0 and —2x,v from the slope. We draw up the following table

v 0 1 2 3 4

G(v)/cm™! 1144.83 337490 5525.51 7596.66 9588.35
AGUH/Z/cm’1 2230.07 2150.61 2071.15 1991.69
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E16.24(b)

E16.25(b)

2200

-1
AGv+l/2/crn
8]
—_
(=
o

2000

v Figure 16.1

The points are plotted in Fig. 16.1.

The intercept lies at 2230.51 and the slope = —79.65 em™!; hence Xe¥ =39.83cm ™.
Since ¥ — 2xed = 2230.51 cm™ !, it follows that § = 2310.16cm ™"

The dissociation energy may be obtained by assuming that the molecule is described by a Morse
potential and that the constant De in the expression for the potential is an adequate first approximation
for it. Then

D P2 (2310.16cm—1)2

De= - [1662] = L = —33.50 x 103 em™! = 4.15eV
dxe dx.v (4) x (39.83cm—1)

However, the depth of the potential well D, differs from Dy, the dissociation energy of the bond, by
the zero-point energy; hence

Do = De — 45 = (33.50 x 103 cm~1) — (%) % (2310.16cm™1)

= 13235 x 10 em™! | =[2.01eV

The wavenumber of an R-branch IR transition is
VR =V +2B(J + 1) [16.69¢]

where J is the initial (lower) rotational state. So

PR = 2308.09cm™! +2(6.511em™ 1) x 2+ 1) =[2347.16cm ™!

See Section 16.10. Select those molecules in which a vibration gives rise to a change in dipole
moment. It is helpful to write down the structural formulas of the compounds. The infrared active
compounds are

(a) CH3CH;  (b) CHu(g) (c) CH3Cl

Comment. A more powerful method for determining infrared activity based on symmetry
considerations is described in Section 16.15.
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E16.26(b) A nonlinear molecule has 3N — 6 normal modes of vibration, where N is the number of atoms in the
molecule; a linear molecule has 3N — 5.

(a) CgHg has 3(12) — 6 = normal modes.

(b) CgHgCH3 has 3(16) — 6 = normal modes.
(¢) HC=C— C=CH is linear; it has 3(6) — 5 = | 13 | normal modes.

E16.27(b) (a) A planar AB3 molecule belongs to the D3}, group. Its four atoms have a total of 12 displace-

(b)

E16.28(b) (b)

(a)

ments, of which 6 are vibrations. We determine the symmetry species of the vibrations by first
determining the characters of the reducible representation of the molecule formed from all 12
displacements and then subtracting from these characters the characters corresponding to trans-
lation and rotation. This latter information is directly available in the character table for the
group Dj3p. The resulting set of characters are the characters of the reducible representation of
the vibrations. This representation can be reduced to the symmetry species of the vibrations by
inspection or by use of the little orthogonality theorem.

D3h E Op 2C3 253 3C£ 3UV
x (translation) 3 1 0 -2 -1 1
Unmoved atoms 4 1 1 2 2
x (total, product) 12 4 0 -2 =2

x (rotation) 3 -1 0 2 -1 -1
x (vibration) 6 4 0 -2 0 2

x (vibration) corresponds to A} + A + 2E'.
Again referring to the character table of D3y, we see that E’ corresponds to x and y, A’z’ to z;

hence| A} and E’ are IR active. | We also see from the character table that E’ and A correspond

to the quadratic terms; hence A’l and E’ are Raman active |.

A trigonal pyramidal AB3 molecule belongs to the group C3y. In a manner similar to the analysis
in part (a) we obtain

C3v E 2C3 30\/

X (total) 12 0 2
X (vibration) 6 =2 2

x (vibration) corresponds to 2A| + 2E. We see from the character table that are

IR active and that are also Raman active. Thus all modes are observable in both the IR
and the Raman spectra.

The boat-like bending of a benzene ring clearly changes the dipole moment of the ring, for the
moving of the C— H bonds out of the plane will give rise to a non-cancelling component of their

dipole moments. So the vibration is .

Since benzene has a centre of inversion, the exclusion rule applies: a mode which is IR active

(such as this one) must be .

E16.29(b) The displacements span Ajg + Ay + Azg +2Ey + Ejg. The rotations R, and Ry span Ejg, and the
translations span E1, + Apy. So the vibrations span ’ Ajg + A2g + Equ
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P16.1

P16.3

Solutions to problems

Solutions to numerical problems

Use the energy density expression in terms of wavelengths (eqn 11.5)

8mhc

E:,Od)\. Wherepzm.

Evaluate

700x10~° m
8mhe

E= / )LS(ehc/)\kT _ l)dk

400x10=9m

at three different temperatures. Compare those results to the classical, Rayleigh—Jeans expression
(eqn 11.3):

8nkT
Eclass = Pelassdr  where pelass = a4
70010~ m
E SndeA 8 kT [700x10™°m
SO = REREYER '
class / 24 323 1400x10~9m
400x 10~ m
T/K E/J m73 Eclass/J m73

(a) 1500 2.136 x 107° 2.206
(b) 2500 9.884 x 10~* 3.676
(c) 5800 3.151 x 107! 8.528

The classical values are very different from the accurate Planck values! Try integrating the expressions
over 400-700 um or mm to see that the expressions agree reasonably well at longer wavelengths.

On the assumption that every collision deactivates the molecule we may write

1 kT (J'rm)l/2
T=-—=|—\| —
z 4dop \ kT

For HCI, with m ~ 36 u,

~ (1.381 x 10723 JK~ 1) x (298K)
(4) x (0.30 x 10~18m2) x (1.013 x 105 Pa)

(1.381 x 1023 7K~ 1) x (298K)
~23x 107105

1/2
5 < 7 % (36) x (1.661 x 10727 kg) >/

h
SE =~ hév = — [24]
T
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The width of the collision-broadened line is therefore approximately

1 1

- = ~ | 700 MHz
2rt (2m) x (2.3 x 10~105)

The Doppler width is approximately 1.3 MHz (Problem 16.2). Since the collision width is proportional

Sy &

1.3
to p [6v ox 1/T and T o 1/ p], the pressure must be reduced by a factor of about 700 = 0.002 before

Doppler broadening begins to dominate collision broadening. Hence, the pressure must be reduced

to below (0.002) x (760 Torr) =

n 2 5 h
B=——1[1631]; I=mexR*; R " =——
drcl 4w cmegs B

mcmo  ((12.0000u) x (15.9949 u)
mc +mo  \(12.0000u) + (15.9949 u)

=1.13852 x 10~ 20 kg

Meff =

) x (1.66054 x 1072 kgu™")

ho —44
— =2.79932 x 107" kgm
4mc

R 2.79932 x 10~* kgm
0™ (1.13852 x 10~20kg) x (1.9314 x 102m~1)

Ro=1.1283x 107'%m =|112.83pm

R 2.79932 x 10~* kgm
P (1.13852 x 10~20kg) x (1.6116 x 102m~)

R =12352x 1071%m =|123.52pm

Comment. The change in internuclear distance is roughly 10 per cent, indicating that the rotations
and vibrations of molecules are strongly coupled and that it is an oversimplification to consider them
independently of each other.

b =2B(J + 1)[16.44] = 2B
Hence, B('HCI) = 10.4392cm™!, B(HCl) = 5.3920cm ™!

= 1.27303 x 107292

= 1.52565 x 10720 m?

n
B =——130] I = meffR2 [Table 16.1]
drel

h h
RP=———— — =279927 x 107*kgm
4w cmess B 4rc

e = (007825 ) x (3496885 )
M eff =

off (1.007825u) + (34.96885 u)
= 1.62665 x 107" kg

e = (0140w x (3496885 )
m =
off (2.0140u) + (34.96885 u)

=3.1622 x 107%" kg
2.79927 x 10~* kgm
(1.62665 x 1027 kg) x (1.04392 x 103 m~1)

R(HCI) = 1.28393 x 107'%m ={128.393 pm

) x (1.66054 x 10727 kgu™1)

) x (1.66054 x 1072 kgu™")

R2(HC)) = = 1.64848 x 10720 m?
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2.79927 x 10~* kgm
(3.1622 x 10727 kg) x (5.3920 x 102m~1)

R(CHCI) = 1.2813 x 1071%m ={128.13pm

The difference between these values of R is small but measurable.

R%2(PHC)) = = 1.6417 x 10720 m?

Comment. Since the effects of centrifugal distortion have not been taken into account, the number
of significant figures in the calculated values of R above should be no greater than 4, despite the fact
that the data is precise to 6 figures.

From the equation for a linear rotor in Table 16.1 it is possible to show that Iy = mamc(R + R’ )2 +
mamsz + mbmchz.

x (R+R)> +

Thus, 7(16012C32s) = m(°0)m(?s) m(12C){m(1°0)R? +m(3ZS)R’2}>

‘m(10012C325 m(16012C323)
16 34 12 16 2 34 2]
,(16012C34S)=<m( Oym( s>> x(R+R’)2+<m( C)m(0)R? + m(*S)R })

m(16012c34s m(16012C34S)
m(1°0) = 15.9949 u, m(12C) = 12.0000 u, m(>2S) = 31.9721 u, and m(**S) = 33.9679 u. Hence,

1(1%0"2C328) /u = (8.5279) x (R + R")* + (0.20011) x (15.9949R? + 31.9721R"?)
1(1%0"2C3*S)/u = (8.7684) x (R + R")? + (0.19366) x (15.9949R? + 33.9679R"?)

The spectral data provides the experimental values of the moments of inertia based on the relation
h

v=2cB(J+1)[16.44] with B = v [16.31]. These values are set equal to the above equations
e

which are then solved for R and R’. The mean values of I obtained from the data are

1(1%0"2C*28) = 1.37998 x 10~ kg m?
1(1°012C3*s) = 1.41460 x 107 kg m?

Therefore, after conversion of the atomic mass units to kg, the equations we must solve are

137998 x 1079 m? = (1.4161 x 107%6) x (R + R')* + (5.3150 x 102" R?)
+(1.0624 x 1072°R"?)

141460 x 1079 m? = (1.4560 x 107%%) x (R + R')* + (5.1437 x 10"2"R?)
+(1.0923 x 10726R"?)

These two equations may be solved for R and R’. They are tedious to solve, but straightforward.

Exercise 16.6(b) illustrates the details of the solution. The outcome is R = | 116.28 pm |and R’ =

155.97 pm |. These values may be checked by direct substitution into the equations.

Comment. The starting point of this problem is the actual experimental data on spectral line positions.
Exercise 16.12(b) is similar to this problem; its starting points is, however, given values of the
rotational constants B, which were themselves obtained from the spectral line positions. So the
results for R and R’ are expected to be essentially identical and they are.

Question. What are the rotational constants calculated from the data on the positions of the absorption
lines?
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P16.12 The wavenumbers of the transitions with Av = +1 are

~2
AGyypin =9 — 20+ Dx [16.64] and D, = —— [16.62]
XeV

A plot of AG12 against v + 1 should give a straight line with intercept U at v + 1 = 0 and slope
—2XxeV.

Draw up the following table

v+ 1 1 2 3

AG,y1pp/cm™ 28450 283.00 281.50

The points are plotted in Fig. 16.2.

286

285

AGy.ypp/em™!

282

281

v+ 1 Figure 16.2

The intercept is at 286.0, so v = 286 em™ L. The slope is —1.50, so x¢v = 0.750 em~ L. Tt follows
that

_ (286cm™1)2
T 4) x (0.750cm™)

€

=27300cm™!, or 3.38eV

The zero-point level lies at| 142.81 cm ™! |and so Dy =|3.36eV |. Since

(22.99) x (126.90)
(22.99) + (126.90)

Meff = u=19.464u

the force constant of the molecule is

k = 47%megrc?v? [Exercise 16.19(a)]

= (472) x (19.464) x (1.6605 x 10727 kg) x [(2.998 x 10" cms™!) x (286cm™1)]?

= 938N m~!]
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The set of peaks to the left of center are the P branch, those to the right are the R branch. Within the
rigid rotor approximation the two sets are separated by 4B. The effects of the interactions between
vibration and rotation and of centrifugal distortion are least important for transitions with small J
values hence the separation between the peaks immediately to the left and right of center will give
good approximate values of B and bond length.

(@ QW) = ol46 bl =[2143.26cm " |

(b) The zero-point energy is %\7 = 1071.63 cm ™. The molar zero-point energy in J mol ™! is

Nahe x (1071.63cm™) = Nahe x (1.07163 x 10°m™ 1)

— 128195 x 10*Tmol ! = | 12.8195kJ mol~!

(c) k= 4712,uc2172

u(2¢10) =

memo  ((12.0000u) x (15.9949u)
me+mo  \(12.0000u) + (15.9949 u)

= 1.13852 x 1026 kg

> x (1.66054 x 10~% kgu™!)

k =4m2c? x (1.13852 x 107 20kg) x (2.14326 x 10°m™1)? :] 1.85563 x 103N m~!
(d 4B ~7.655cm~!
B~ [4 significant figures not justified]

h h
B=—[1631] = —— [Table 16.1
© 471c1[ I 4mcuR? [Table I
h n )
R? = 1.287 x 10720 2

dmwcuB - (4me) x (1.13852 x 10~26kg) x (191 m~1)
R=113x10"""m ={113pm
Do =D — ¥ with i = 1§ — LxeD [Section 16.11]
@ 'HCL i = {(1494.9) — (%) x (52.05)} cem~ ! =1481.8cm~!, or 0.184eV
Hence, Dy = 5.33 —0.18 =|5.15eV

2Meff WX P2
(b) 2HCI: eff®e _ a? [16.62], so Vxe as a is a constant. We also have D, = -~
Mmeff dxev
[Exercise 16.23(a)]; so 52 o , implying v 15 Reduced masses were calculated in
eff m
eff

Exercises 16.21(a) and 16.21(b), and we can write

megr("HC)

1/2
< x 9(VHCI) = (0.7172) x (2989.7cm™ ') = 2144.2cm™!
mefr (PCHCI)

5(CHC)) = (

megr ("HCI)

~ 2 _
xeV(“HC]) = <—meff(2HC1)

) x xeD(VHCI) = (0.5144) x (52.05cm™}) = 26.77 cm™!

VCHCD = (3) x 21442) = (§) x 26.77em™") = 1065.4em™", 0.132¢V

Hence, Dy(*HCl) = (5.33 — 0.132)eV =|5.20eV
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Vibrational wavenumbers (V/ em™!) computed by PC Spartan Pro™ at several levels of theory
are tabulated below, along with experimental values:

A A B,
Semi-empirical PM3 412 801 896

SCF 6-316G*™* 592 1359 1569
Density functional 502 1152 1359
Experimental 525 1151 1336

The vibrational modes are shown graphically below.

o e 8

(b)

B,
\ Figure 16.3

The wavenumbers computed by density functional theory agree quite well with experiment.
Agreement of the semi-empirical and SCF values with experiment is not so good. In this molecule,
experimental wavenumbers can be correlated rather easily to computed vibrational modes even
where the experimental and computed wavenumbers disagree substantially. Often, as in this
case, computational methods that do a poor job of computing absolute transition wavenumbers
still put transitions in proper order by wavenumber. That is, the modeling software systemat-
ically overestimates (as in this SCF computation) or underestimates (as in this semi-empirical
computation) the wavenumbers, thus keeping them in the correct order. Group theory is another
aid in the assignment of tansitions: it can classify modes as forbidden, allowed only in parti-
cular polarizations, etc. Also, visual examination of the modes of motion can help to classify
many modes as predominantly bond-stretching, bond-bending, or internal rotation; these dif-
ferent modes of vibration can be correlated to quite different ranges of wavenumbers (stretches
highest, especially stretches involving hydrogen atoms, and internal rotations lowest.).

Summarize the six observed vibrations according to their wavenumbers (V/ em™1):

IR 870 1370 2869 3417
Raman 877 1408 1435 3407.

(a)
(b)

If HyO, were linear, it would have 3N — 5 = vibrational modes.

Follow the flow chart in Fig. 15.14. Structure 2 is not linear, there is only one Cj, axis (a C3), and
there is a oy ; the point group is . Structure 3 is not linear, there is only one C;, axis (a C»),
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P16.22

P16.23

(o)

no oy, but two oy; the point group is . Structure 4 is not linear, there is only one C, axis
(a C3), no oy, no ov; the point group is .

The exclusion rule applies to structure 2 because it has a center of inversion: no vibrational
modes can be both IR and Raman active. So structure 2 is inconsistent with observation. The
vibrational modes of structure 3 span 3A| + A +2B5. (The full basis of 12 cartesian coordinates
spans 4A| +2A; + 2B +4B,; remove translations and rotations.) The C»,, character table says
that five of these modes are IR active (3A] + 2B,) and all are Raman active. All of the modes
of structure 4 are both IR and Raman active. (A look at the character table shows that both
symmetry species are IR and Raman active, so determining the symmetry species of the normal
modes does not help here.) Both structures 3 and 4 have more active modes than were observed.
This is consistent with the observations. After all, group theory can only tell us whether the
transition moment rmust be zero by symmetry; it does not tell us whether the transition moment
is sufficiently strong to be observed under experimental conditions.

Solutions to theoretical problems

The centre of mass of a diatomic molecule lies at a distance x from atom A and is such that the masses
on either side of it balance

max = mp(R — x)

and hence it is at

mp
XxX=—R m=mp+mp
m

The moment of inertia of the molecule is

mAm%R2 mBmiR2 MAMB 5

I = max®+mp(R — x)[26] =

m? m2 om
. mamap
= meffR2 Since Meff = ———
ma + mp

Because the centrifugal force and the restoring force balance,

we

k(re —re) = szrc,

can solve for the distorted bond length as a function of the equilibrium bond length:
Te
VYo = ————
T — pw?/k

Classically, then, the energy would be the rotational energy plus the energy of the stretched bond:

2 kre—re)? TP KRre—r)? TP (uotr)?
21 2 21 2k 21 2k

How is the energy different form the rigid-rotor energy? Besides the energy of stretching of the bond,

the

larger moment of inertia alters the strictly rotational piece of the energy. Substitute urcz for I and

substitute for r¢ in terms of re throughtout:

So

B 12(1 _ sz/k)z M2w4r62

E .
2ure? 2k(1 — pw?/k)?




270

P16.26

INSTRUCTOR'S MANUAL

Assuming that pw’ /k is small (a reasonable assumption for most molecules), we can expand the
expression and discard squares or higher powers of ,uwz /k:
b J2(1 = 2pw?/k) N ;ﬁw“rg_
2ure? 2k

(Note that the entire second term has a factor of i’ /k even before squaring and expanding the
denominator, so we discard all terms of that expansion after the first.) Begin to clean up the expression
by using classical definitions of angular momentum:

J:Iw:urza) SO a):J/urez,

which allows us to substitute expressions involving J for all ws:

J? J4 J*
E~ — + .
2ure?  ulrebk  2ulreSk
(At the same time, we have expanded the first term, part of which we can now combine with the last

term.) Continue to clean up the expression by substituting //u for r2, and then carry the expression
over to its quantum mechanical equivalent by substituting J (J + 1)7’12 for J2:

J2 Tt J(J+ DRz J2J + D
N ———— = = —
21  205% 21 213k

Dividing by kc gives the rotational term, F(J):

JUHDR?  PU+DR  JU DR U+ DR

F(J)~ =
) 2hcl 2hel3k drrel drel3k

where we have used » = h/2m to eliminate a common divisor of 4. Now use the definition of the
rotational constant,

B=—— = FU)~J(J+DB—J*J+ 12221
4rel

Finally, use the relationship between the force constant and vibrational wavenumber:

kN2 5 e " 1
— = wyjp =27V =27cV SO0 — = ————
% vib k 4m2e292
. 4B3 ) ) ) 4B3
leavmgF(J)%BJ(J—i—l)—TJ J+1D)*“=BJ(J+1)—DJ“(J+1)° where DZT'
D D

S, )= (v+3)5+BIU +1)[1668]
ASO =5 -2BQJ—1) [Av=1,AJ=-2]
ASS =D +2BQ2J +3) [Av=1,AJ =+2]

The transition of maximum intensity corresponds, approximately, to the transition with the most
probable value of J, which was calculated in Problem 16.25

_ kT \'? 1
M=\ 2heB 2
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The peak-to-peak separation is then

AS = ASS —ASQ = 2B(2Umax +3) — (~2B(2Jmax — 1)} = 8B (Jmax + %)

kT \'/? 32BkT\ /2
2hcB he

To analyse the data we rearrange the relation to

_ he(AS)?
32T

h
and convert to a bond length using B = Tl with I = 2m, R? (Table 16.1) for a linear rotor. This
e

gives

(srmm) = (ems) < (5
R=|——- = X
8mcmy B wcAS My

We can now draw up the following table

HgCl, HgBr, Hgl,

T/K 555 565 565
m/u 3545 791 126.90
AS/em™' 238 152 11.4

R/pm 227.6 2407 2534

Hence, the three bond lengths are approximately ’ 230, 240, and 250 pm ‘

P16.28 The energy levels of a Morse oscillator, expressed as wavenumbers, are given by:
1) 5 1\ . - 1) ~ 1\? 5
G(v) = (v+§)v—<v~|—§> Xel = <v+§)v—<v+7) V2/4De.
States are bound only if the energy is less than the well depth, D, also expressed as a wavenumber:
1) 5 1)2 -2
G(v) < De or (v—l—z)v—(v—l—j) V°/4De < De.
Solve for the maximum value of v by making the inequality into an equality:
1)2 -2 1) -
(v+§) v /4De—(v+7>v+De=0.

Multiplying through by 4 D, results in an expression that can be factored by inspection into:

2
[<v+%)f)—2De] =0 so v+%:2De/\7 and \}:2De/1~)_%'

Of course, v is an integer, so its maximum value is really the greatest integer less than this quantity.
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Solutions to applications

(a)

(b)

(c)

(d)

(e)

(a)

(b)

Resonance Raman spectroscopy is preferable to vibrational spectroscopy for studying the O— O
stretching mode because such a mode would be | infrared inactive |, or at best only weakly active.
(The mode is sure to be inactive in free O,, because it would not change the molecule’s dipole
moment. In a complex in which O3 is bound, the O— O stretch may change the dipole moment,
but it is not certain to do so at all, let alone strongly enough to provide a good signal.)

The vibrational wavenumber is proportional to the frequency, and it depends on the effective
mass as follows,

1/2

5 K \/? 5(180,) Mmegr (10,) / 16.0u\ /2

D X , SO = = = = 0.943,
Mef 5(160y)  \ mefr(1802) 18.0u

and 7('%0,) = (0.943)(844cm™ ) = .

Note the assumption that the effective masses are proportional to the isotopic masses. This
assumption is valid in the free molecule, where the effective mass of O is equal to half the mass
of the O atom; it is also valid if the O3 is strongly bound at one end, such that one atom is free
and the other is essentially fixed to a very massive unit.

The vibrational wavenumber is proportional to the square root of the force constant. The force
constant is itself a measure of the strength of the bond (technically of its stiffness, which correlates
with strength), which in turn is characterized by bond order. Simple molecule orbital analysis of

0,, O-, and 0227 results in bond orders of| 2, 1.5, and 1 respectively |. Given decreasing bond

order, one would expect decreasing vibrational wavenumbers (and vice versa).

The wavenumber of the O— O stretch is very similar to that of the peroxide anion, suggesting

Fe3+20227 .

The detection of two bands due to 1080 implies that the two O atoms occupy non-equivalent
positions in the complex. Structures 7 and 8 are consistent with this observation, but structures
5 and 6 are not.

The molar absorption coefficient (V) is given by
_ A@)  RTA®W)
~l[COz]  Ixco,p

where T = 298K,/ = 10cm, p = 1bar, and xcp, = 0.021.

The absorption band originates with the 001 < 000 transition of the antisymmetric stretch
vibrational mode at 2349 cm ™! (Fig. 16.48). The band is very broad because of accompanying
rotational transitions and lifetime broadening of each individual absorption (also called colli-
sional broadening or pressure broadening, Section 16.3). The spectra reveals that the Q branch
is missing so we conclude that the transition’ AJ = 0is forbidden ‘ (Section 16.12) for the Dyop
point group of CO;. The P-branch (AJ = —1) is evident at lower energies and the R-branch
(AJ = +1) is evident at higher energies.

e()

(eqns 16.11, 1.15, and 1.18)

160—12Cc— 160 has two identical nuclei of zero spin so the CO, wavefunction must be sym-
metric w/r/t nuclear interchange and it must obey Bose—Einstein nuclear statistics (Section 16.8).
Consequently, J takes on even values only for the v = O vibrational state and odd values only
for the v = 1 state. The (v, J) states for this absorption band are (1, J + 1) « (0, J) for
J=0,2,4,.... According to eqn 16.68, the energy of the (0, J) state is

50,J)=3v+BJU + 1),
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Carbon dioxide IR band

Absorption

0 | | |
2280 2300 2320 2340 2360 2380 2400
Wavenumber/cm™ Figure 16.4(a)
Molar absorption coefficient
20 | | | | |

1 1
2280 2300 2320 2340 2360 2380 2400

Wavenumber /cm™! Figure 16.4(b)

0 1 1 1

where v = 2349 cm ™!
2moR%  2(0.01600kgmol )(116.2 x 10712 m)?

i =
Na 6.022 x 1023 mol~!
=7.175x 10"*kgm?  (Table 16.1)
h
B = (eqn 16.31)

- 8x2cl
B 6.626 x 10735
© 872(2.998 x 108 ms—1)(7.175 x 10~46 kg m?2)

=39.02m~! =0.3902cm™!

The transitions of the P and R branches occur at

vp =V —2BJ [16.69b]
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and
VR =V+2B(J +1) [16.69c]

where J =0,2,4,6...

The highest energy transition of the P branch is at v — 4 B; the lowest energy transition of the
R branch is at v + 2B. Transitions are separated by 4B(1.5608 cm™!) within each branch. The
probability of each transition is proportional to the lower state population, which we assume to
be given by the Boltzman distribution with a degeneracy of 2J + 1. The transition probability is
also proportional to both a nuclear degeneracy factor (eqn 16.50) and a transition dipole moment,
which is approximately independent of J. The former factors are absorbed into the constant of
proportionality.

transition probability o< (2J + 1)e SO Dhe/kT

A plot of the right-hand-side of this equation, Fig. 16.4(c), against J at 298K indicates a
maximum transition probability at Jyax = 16. We “normalize” the maximum in the predicted
structure, and eliminate the constant of proportionality by examining the transition probability

ratio:
transition probability for Jthstate — (2J + e S©.Dhe/kT
transition probability forJpaxstate ~ 33e—S(0,16)hc/RT
_ <21 + 1) o~ (47 —-272) Bhe/kT
33

A plot Fig. 16.4(c) of the above ratio against predicted wavenumbers can be compared to the
ratio A(V)/Amax Where A is the observed spectrum maximum (1.677). It shows a fair degree
of agreement between the experimental and simple theoretical band shapes.

Simple theoretical and exp. spectra

1 T AR T TAN~ T

(

max

o nnnnnﬂﬂHH LT Hﬂﬂﬂnnnnn

2300 2320 2340 2360 2380 2400
F/em™ Figure 16.4(c)

+
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mMHMnu

l mum

I

:

'! mm
l 1

Transmittance

2400 Figure 16.4(d)

(¢) Using the equations of justificant 16.1, we may write the relationship

h
A= 8(\7)/ [COz]1dh
0

The strong absorption of the band suggests that 4 should not be a very great length and that
[CO;] should be constant between the Earth’s surface and /. Consequently, the integration gives

A

e()[COz]A

X
e(W)h { %;p } Dalton’s law of partial pressures

p and T are not expected to change much for modest values of 4 so we estimate that p = 1 bar
and 7 = 288 K.

(3.3 x 1074 (1 x 10° Pa)
(8.31451 J}?/rmol_l) (288 X))

= (0.0138m > mol) e(V)h

A =¢e®h

Transmittance = 10~ = 10~ (00138m ™ mol)e®h 116 10

The transmittance surface plot clearly shows that before a height of about 30 m has been reached
all of the Earth’s IR radiation in the 2320cm™' — 2380 cm™! range has been absorbed by
atmospheric carbon dioxide.

See C.A. Meserole, EM. Mulcalry, J. Lutz, and H.A. Yousif, J. Chem. Ed., 74, 316 (1997).
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P16.34 (a) The H;r molecule is held together by a two-electron, three-center bond, and hence its structure
is expected to be an equilateral triangle. Looking at Fig. 16.5 and using the Law of cosines

R* = 2R — 2RZ cos(180° — 26)
= 2RE(1 — cos(120°)) = 3RZ
Therefore
Rc=R/V3
Ic =3mR% = 3m(R/v3)* = mR?
Ig = 2mRy = 2m(R/2)*> = mR*/2
Therefore

Ic =21

B R Figure 16.5

noooam
"~ 4melg 4wemR2 T 2memR?

n 1/2 ANy \!/2
R = = _—
<2ncmB) <27TCMHB>

[16.37]

_ 172
(10546 x 10734 J'5) x (60221 x 10% mol 1) x (102m)
- 2m(2.998 x 108 ms—!) x (0.001 008 kgmol_l) x (43.55cm™1)
= 8.764 x 10~ "' m ={87.64pm
Alternatively the rotational constant C can be used to calculate R.
h n
C = = [36]
dwelc  4mwemR?
5 172 ANA 1/2
R = = —_—
<4ncmC> <4T[CMHC>
172

(1.0546 x 10734 7s) x (6.0221 x 1023 mol™!) x (_10—2m)

cm

477(2.998 x 108 ms—!) x (0.001 008 kgmol_l) x (20.71cm™1)

8.986 x 107 '!'m =
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The values of R calculated with either the rotational constant C or the rotational constant B
differ slightly. We approximate the bond length as the average of these two.

(R) % (87.64 + 289.86) pm _
M)

© B-= oo (1.0546 x 10734 Ts) x (6.0221 x 102> mol™!) x ( 2
- 2memR? 27(2.998 x 108 ms—1) x (0.001 OOSkgmol_l) (8732 x 10-12m)2

= [B87em™!|

C =L1B=2193cm

Il
(]

1 3
(d) = — O Meff = %m
m

Meff

Since mp = 2my, Mmeff,p = 2mu /3

r(Hy)\ /2
52<D3+>=<’”ff—(3)> 55(Ha) [57]

metr (D3)
mu/3 \"* . 72 (Hp)
=<2mH/3> ) = =

22L0em ]
= 172 =1{1783.0cm
. 1
Since B and C o« —, where m = mass of H or D

m

T I My 1 1.008 ]

B(D3)=B(H3)X M—=43550m X m =|21.80cm
D .
=/10.37cm™!

My _ 1.008
+ + 1
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E17.4(b)

17 Spectroscopy 2: electronic transitions

Solutions to exercises

Discussion questions

The Franck—Condon principle states that because electrons are so much lighter than nuclei an
electronic transition occurs so rapidly compared to vibrational motions that the internuclear distance
is relatively unchanged as a result of the transition. This implies that the most probable transitions
vg < vj are vertical. This vertical line will, however, intersect any number of vibrational levels vf in
the upper electronic state. Hence transitions to many vibrational states of the excited state will occur
with transition probabilities proportional to the Frank—Condon factors which are in turn proportional
to the overlap integral of the wavefunctions of the initial and final vibrational states. A vibrational
progression is observed, the shape of which is determined by the relative horizontal positions of the
two electronic potential energy curves. The most probable transitions are those to excited vibrational
states with wavefunctions having a large amplitude at the internuclear position Re.

Question. You might check the validity of the assumption that electronic transitions are so much
faster than vibrational transitions by calculating the time scale of the two kinds of transitions. How
much faster is the electronic transition, and is the assumption behind the Franck—Condon principle
justified?

Color can arise by emission, absorption, or scattering of electromagnetic radiation by an object.
Many molecules have electronic transitions that have wavelengths in the visible portion of the elec-
tromagnetic spectrum. When a substance emits radiation the perceived color of the object will be
that of the emitted radiation and it may be an additive color resulting from the emission of more
than one wavelength of radiation. When a substance absorbs radiation its color is determined by the
subtraction of those wavelengths from white light. For example, absorption of red light results in the
object being perceived as green. Color may also be formed by scattering, including the diffraction
that occurs when light falls on a material with a grid of variation in texture of refractive index having
dimensions comparable to the wavelength of light, for example, a bird’s plumage.

The characteristics of fluorescence which are consistent with the accepted mechanism are: (1) it
ceases as soon as the source of illumination is removed; (2) the time scale of fluorescence, ~ 107° S,
is typical of a process in which the rate determining step is a spontaneous radiative transition between
states of the same multiplicity; slower than a stimulated transition, but faster than phosphores-
cence; (3) it occurs at longer wavelength (higher frequency) than the inducing radiation; (4) its
vibrational structure is characteristic of that of a transition from the ground vibrational level of the
excited electronic state to the vibrational levels of the ground electronic state; and (5), the observed
shifting and in some instances quenching of the fluorescence spectrum by interactions with the
solvent.

See Table 17.4 for a summary of the characteristics of laser radiation that result in its many advantages
for chemical and biochemical investigations. Two important applications of lasers in chemistry have
been to Raman spectroscopy and to the development of time resolved spectroscopy. Prior to the
invention of lasers the source of intense monochromatic radiation required for Raman spectroscopy
was a large spiral discharge tube with liquid mercury electrodes. The intense heat generated by the
large current required to produce the radiation had to be dissipated by clumsy water cooled jackets
and exposures of several weeks were sometimes necessary to observe the weaker Raman lines.
These problems have been eliminated with the introduction of lasers as the source of the required
monochromatic radiation. As a consequence, Raman spectroscopy has been revitalized and is now
almost as routine as infrared spectroscopy. See Section 17.7(b). Time resolved laser spectroscopy can
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E17.5(b)

E17.6(b)

E17.7(b)

E17.8(b)

E17.9(b)

be used to study the dynamics of chemical reactions. Laser pulses are used to obtain the absorption,
emission, and Raman spectrum of reactants, intermediates, products, and even transition states of
reactions. When we want to study the rates at which energy is transferred from one mode to another
in a molecule, we need femotosecond and picosecond pulses. These time scales are available from
mode-locked lasers and their development has opened up the possibility of examining the details of
chemical reactions at a level which would have been unimaginable before.

Numerical exercises

To obtain the parities of Fig. 14.38 of the text we recognize that what is shown in the figure are the
signs (light = positive, dark = negative) of the upper (positive z-direction) lobe of the p, orbitals.
The lower lobes (not shown) have opposite signs. Inversion through the centre changes + to — for
the p; lobes of ap and e;, but the e and b, lobes do not change sign. Therefore a; and e; are u, e;
and b, are g.

According to Hund’s rule, we expect one 1y electron and one 27g electron to be unpaired. Hence
S = 1 and the multiplicity of the spectroscopic term is . The overall parity isu x g = since
(apart from the complete core), one electron occupies a u orbital another occupies a g orbital.

Use the Beer—Lambert law
7
log — = —lJll = (=327Lmol " em™) x (2.22 x 1073 molL™") x (0.15cm)
0
= —0.10889

I —
L _ 10010889 _ 778
7

The reduction in intensity is | 22.2 per cent

L 1o 21169, 16.10]
g = ———log —[16.9, 16.
ol %7,

—1 _
= log0.655 = 787Lmol ' cm™!
(6.67 x 104 molL~1) x (0.35cm)

= 787dm’> mol 'em ™! = 787 x 103 cm® mol ™! em™! [1dm = 10cm]

=17.9 x 10° cm?mol ™!

The Beer—Lambert law is

log = [ 1 g L
og — = —¢ SO = —log —
£7, d 27,

—1

= 1 log(1 — 0.523) =[1.33 x 10> mol L™
(323Lmol~ ' em~! x (0.750 cm)

]

E17.10(b) Note. A parabolic lineshape is symmetrical, extending an equal distance on either side of its peak.

The given data are not consistent with a parabolic lineshape when plotted as a function of either
wavelength or wavenumber, for the peak does not fall at the centre of either the wavelength or the
wavenumber range. The exercise will be solved with the given data assuming a triangular lineshape
as a function of wavenumber.

+



280

E17.11(b)

E17.12(b)

INSTRUCTOR'S MANUAL

The integrated absorption coefficient is the area under an absorption peak

A:/sdf)

If the peak is triangular, this area is
A = %(base) x (height)
_ 1 -9 -1 -9 —1 4 —1 —1
= Q[(199 x1077m)” — 275 x 107" m)” '] x (225 x 10" Lmol™ "cm™ ")

1 (1.55 x 10°Lm™! mol_lcm_l) X (IOOcmm_l)

1.56 x 10'°°Lm~ mol~! cm™
103Lm—3

1.56 x 10° mmol ™! =|1.56 x 108 L mol~! cm—2

Modelling the 7 electrons of 1,3,5-hexatriene as free electrons in a linear box yields non-degenerate
energy levels of

n?h?

"= 8me L2

The molecule has six 7 electrons, so the lowest-energy transition is from n = 3 to n = 4. The length
of the box is 5 times the C— C bond distance R. So

(42 _ 33)h2

AEjinear = SmeGR?Z
€

Modelling the 7 electrons of benzene as free electrons on a ring of radius R yields energy levels of

mlzh2

Em = 21

where 1 is the moment of inertia: / = m¢R>. These energy levels are doubly degenerate, except for
the non-degenerate m; = 0. The six 7 electrons fill the m; = 0 and 1 levels, so the lowest-energy
transition is fromm; = 1 tom; =2

22— 1Hp% (22— 12)n?
2meR?  8m2mcR2

AEring =

Comparing the two shows

7 ( 3 ( n?
AElinear = E 8me R2 < AEring = ? W

Therefore, the lowest-energy absorption will in energy.

The Beer—Lambert law is
1 [J)l =logT
0g — = —¢ = 10
g 7 g

so a plot (Fig. 17.1) of log T versus [J] should give a straight line through the origin with a slope m
of —¢l.Soe = —m/l.
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E17.13(b)

E17.14(b)

The data follow
[dye]/(mol L) T log T
0.0010 0.73 —0.1367
0.0050 0.21 —0.6778
0.0100 0.042 —1.3768
0.0500 133 x 1077 —6.8761
0

fy = 3.5384x 1073 £ 137.60)

............................... F O PO

0.00 0.01 0.02 0.03 0.04 0.05 0.06
[dye]/(mol L") Figure 17.1

The molar absorptivity is

—138 L mol ! ]
e 2L 1~ -
¢ 0.250 cm 552Lmol " cm

The Beer—Lambert law is

-1
logT = —¢[J]l so 8=ﬁ10gT

—1

&= log0.32 = 128 Lmol ™' em™! ‘
(0.0155mol L—1) x (0.250 cm)

Now that we have ¢, we can compute T of this solution with any size of cell

T = 10~¢00 — 10—{(12§Lmor‘ em™")x(0.0155 mol L™") x (0.450 cm)} _ 0.13

The Beer—Lambert law is

1 z [J17 [ ! 1 z
0g — = —¢ SO = —— 10g —
£ 7o TR

1
B (30Lmol ' em~1) x (1.0mol L—1)

xlog 3 =[0.020cm]
(b) [ = : x 10g0.10 = [0.033 cm |

© (30Lmol'em—1) x (1.0mol L—1)

281



+

282

INSTRUCTOR'S MANUAL

E17.15(b) The integrated absorption coefficient is the area under an absorption peak

E17.16(b)

P17.3

A:/sdf)

We are told that ¢ is a Gaussian function, i.e. a function of the form

—x2
€ = Emax exp _2
a

where x = ¥ — Dpax and a is a parameter related to the width of the peak. The integrated absorption
coefficient, then, is

—00

00 _x2
A :/ £max EXP — dx = emaxav/T

We must relate a to the half-width at half-height, x1/»

—x2 _2
le = Emax €XP M2 so Inl= /2 and a= A2
7 €max max a2 2 a2 m
1/2 1/2
So A = emaxX1,2 (L) = (1.54 x 10* L mol ™! cm_l) X (4233 cm_l) X (l)
In2 In2

= ’ 1.39 x 103 Lmol™! em ™2 ‘

In SI base units

(1.39 x 108 Lmol~! cm~2) x (1000 cm3 L~1)

A =
100cmm™!

=11.39 x 10° mmol !

F; is formed when F; loses an antibonding electron, so we would expect F;r to have a shorter bond
than F;. The difference in equilibrium bond length between the ground state (F,) and excited state
(Fzr + e7) of the photoionization experiment leads us to expect some vibrational excitation in the
upper state. The vertical transition of the photoionization will leave the molecular ion with a stretched
bond relative to its equilibrium bond length. A stretched bond means a vibrationally excited molecular
ion, hence a transition to a vibrationally excited state than to the vibrational ground state

of the cation.

Solutions to problems

Solutions to numerical problems

Initially we cannot decide whether the dissociation products are produced in their ground atomic

states or excited states. But we note that the two convergence limits are separated by an
amount of energy exactly equal to the excitation energy of the bromine atom: 18345 em™! —
14660cm™" = 3685cm™!. Consequently, dissociation at 14 660 cm ™! must yield bromine atoms

in their ground state. Therefore, the possibilities for the dissociation energy are 14 660 cm ™! or

+
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14660 cm™"' — 7598 cm™! = 7062 cm™! depending upon whether the iodine atoms produced are in
their ground or excited electronic state.

In order to decide which of these two possibilities is correct we can set up the following Born—Haber

cycle

(1) IBr® — 1h(+3Br() AHE=—AH(IBr,g)

@ b = ih AHy = 3 AuH (Lo, 5)

3) 1Bnd) — 1Bn( AHT = 3 Avup HE(Bry, 1)

@ ih@ - 1@ AHZ = 3AHI—T)

(5) 1B — Br( AHS = 3 AH(Br—Br)
IBr(g) — I(g) +Br(g) AH®

AH® = —AfH® (IBr, &) + 5 Aab HE (12, 8) + 3 Avap H © (Bra, )
+ $AH(I—1) + 1 AH(Br—Br)
= {—40.79 + 1 x 6244+ 1 % 30907 + 1 x 151.24 + 1 x 192.85]kJmor1

[Table 2.6 and data provided]

=177.93kJmol~! =| 14874 cm™!
Comparison to the possibilities | 14 660 cm ™! |and 7062 cm ™! shows that it is the former that is the

correct dissociation energy.

P17.5 We write ¢ = amaxe_xz = amaxe_f)z/ 2I" the variable being v and I" being a constant. ¥ is measured
from the band centre, at which v = 0. ¢ = %Emax when 72 = 2" In?2. Therefore, the width at
half-height is

AD?
APy =2x (2I'n2)"2,  implying that T = Tl/zz
n

Now we carry out the intregration

~ * _@r - 1/2 ® e 1/2
A:/sdu:smaxf e V2N 4D = epax 20 m) Y / e Vdx=m
—o0 —0oQ0

~ 1/2
—e G TAN = (4 )1/28 AByp = 106456 may AT
= €max SIn2 =2 max2 V12 = 1. max 2 V1/2

A = 1.0645emax AV /2, with ¥ centred on 1

Since 7 = +. AD A2 1 xal
ince D = —, Abyp & ~
V=, Aby 2 0
A
A = 1.06458 max ( L 2)
y
0

From Fig. 17.52 of the text, we find ALy = 38nm with A9 = 290nm and emax ~
235 L mol ! cm_l; hence

+
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e 1.0645 x (235Lmol ! em™!) x (38 x 1077 cm)

=[1.1 x 10°Lmol~' em™2
(290 x 10~7 cm)2

Since the dipole moment components transform as Aj(z), B{(x), and B, (y), excitations from A to
A1, By, and B, terms are allowed.

Draw up a table like the following:

Hydrocarbon  hvpax/eV Enomo/eV*

Benzene 4.184 —9.7506
Biphenyl 3.654 —8.9169
Naphthalene 3.452 —8.8352
Phenanthrene 3.288 —8.7397
Pyrene 2.989 —8.2489
Anthracene 2.890 —8.2477

*Semi-empirical, PM3 level, PC Spartan Pro™

Figure 17.2 shows a good correlation: r? =0.972.

-10.0 : : : :
2.5 3.0 35 4.0 45  Figure 17.2

Refer to Fig. 14.30 of the text. The lowest binding energy corresponds to the highest occupied orbital,
the next lowest to next highest orbital, and so on.

We draw up the following table

LineEx/eV Binding energy/eV  Assignment

N, 5.6 15.6 30
4.5 16.7 Im
24 18.8 20"
Cco 7.2 14.0 3o
4.9 16.3 I
1.7 19.5 20"

The spacing of the 4.5¢eV lines in N» is 0.24 eV, or about 1940 cm™!. The spacing of the 4.9eV
lines in COis 0.23 eV, or about 1860 cm ™. These are estimates from the illustrations of the separation
of the vibrational levels of the N;r and CO™ ions in their excited states.

0.125 eV corresponds to 1010 em ™!, markedly less than the 1596 cm ™! of the bending mode. This
suggests that the ejected electron tended to bond between the two hydrogens of the water molecule.

+
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P17.14

P17.16

Solutions to theoretical problems

We need to establish whether the transition dipole moments

ng = / W pW; dr [16.20]

connecting the states 1 and 2 and the states 1 and 3 are zero or nonzero. The particle in a box
nTx

. 2\
wavefunctions are ¥,, = (Z) mn(T) [12.8]
. (27mx L (TX TX 3mx
Thus uy,1 « / sm(T) xsm(f) dx /x [COS(T> — cos(T)} dx
3 2 4
andu3lo</sin 2 xsin(n—x)dxa/x cos o — cos ik dx
’ L L L L

having used sina sin 8 = %cos(oz - B) — %cos(a + ). Both of these integrals can be evaluated
using the standard form

1 X .
x(cosax)dx = — cosax + — sinax
a? a

[ renlF)a= el )y =2()

0 3mx 1 3nx\ |L X . (3mx\ |L L\?2
ﬁ xcos(T) dx = WCOS<T> )0 + ﬁ sm(T) ’0 =-2 (E) #0

L

Thus uy,1 # 0.
In a similar manner pu3,; = 0.

Comment. A general formula for g applicable to all possible particle in a box transitions may be
derived. The resultis (n =f,m = 1)

el [cos(n —m)m — 1 B cos(n +m)mw — 1i|

Hnm = x2 (n —m)? (n +m)?

For m and n both even or both odd numbers, (,;,; = 0; if one is even and the other odd, w,;, # 0.
See also Problem 17.18.
Question. Can you establish the general relation for w,;,, above?

We need to determine how the oscillator strength (Problem 17.17) depends on the length of the chain.
We assume that wavefunctions of the conjugated electrons in the linear polyene can be approximated
by the wavefunctions of a particle in a one-dimensional box. Then

8772mev 2
f= 3hel |1z| [Problem 17.17]
L I\ /2
Uy = —e/ U, (x)x¥,(x)dx, ¥, = (—) sin(m—x>
0 L L

2e L [n'mx\ . /nmx
= —— X sin sm(—) dx
LJo L L
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0 ifn =n+2
= 8L\ n(n+1)
H— )| ——= ifn =n+1
(n2)(2n+1>2 e

The integral is standard, but may also be evaluated using 2 sin A sin B = cos(A — B) — cos(A + B)
as in Problem 17.14

2

h
hv = En+] — En = (21’1 + I)W

Therefore, for the transition n + 1 < n,

872\ [ me h 8eL\? n%(n + 1)2 64 \ | n2(n +1)2
f= (T) <W) <8meL2> @n+1) <7) Qn+ DF (371_2> Qn+1)3
nz(n + 1)2
@2n+1)3

The value of n depends on the number of bonds: each 7 bond supplies two 7 electrons and so n
increases by 1. For large n,

Therefore, f o

nt

fX— —

o %and fxn
n

Therefore, for the longest wavelength transitions f increases as the chain length is increased. The

2 1 1
energy of the transition is proportional to %; but as n o« L, this energy is proportional to I
Since £ nZh? (2n + 1)h? An =)
ince £, = ——, =—F[An=
" 8meL2 8meL?

but L = 2nd is the length of the chain (Exercise 17.11(a)), with d the carbon—carbon interatomic
distance. Hence

L 2

AE =

~ X
8me L2 16medL ~ L

Therefore, the transition moves toward the red as and the apparent color of the dye

shifts towards blue ‘

u= —e/\llv/xlllvdx

n 12
From Problem 12.15, 19 = —e/ YixWodx = —e [W]

Hence, f 8 mev X e ! 2 k)2
y = = | — TV = —_—
3he? 2(mek)1/2 3 Me

(a) Vibrational energy spacings of the state are determined by the spacing of the peaks of

A. From the spectrum, v ~ 1800 em L

(b) Nothing can be said about the spacing of the upper state levels (without a detailed analysis of the
intensities of the lines). For the second part of the question, we note that after some vibrational
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decay the benzophenone (which does absorb near 360 nm) can transfer its energy to naphthalene.
The latter then emits the energy radiatively.

P17.21 (a) The Beer—Lambert Law is:
Iy
A =log — = ¢[J]l.
1
The absorbed intensity is:
Lips=1Io—1 so I =1Ip— Ips.
Substitute this expression into the Beer—Lambert law and solve for I pg:

i
log —2— —¢[Jl so Iy — Ipps = Ip x 10701,

Iy — Iaps

and I =| Iy x (1 — 107601y |

(b) The problem states that It (vr) is proportional to ¢¢ and to I pg(V), so:
I () o ¢ lo(P) x (1 — 10°DV),
If the exponent is small, we can expand 1 — 1070 i a power series:

107e0 — (e 10y=ell ~ | — e[ In 10+ - -,
and Ir (Vf) oc| pelo(V)e[J]1In 10 |.

P17.22 Use the Clebsch—Gordan series [Chapter 13] to compound the two resultant angular momenta, and
impose the conservation of angular momentum on the composite system.

(a) Oy has S = 1 [it is a spin triplet]. The configuration of an O atom is [He]2s22p4, which is
equivalent to a Ne atom with two electron-like “holes”. The atom may therefore exist as a spin
singlet or as a spin triplet. Since S1 = 1 and S = 0 or S = 1 and S, = 1 may each combine
to give a resultant with § = 1, both may be the products of the reaction. Hence multiplicities
’ 3+1 ‘and’ 3+3 ‘may be expected.

3 1
(b) Nj, S = 0. The configuration of an N atom is [He] 2s22p3. The atoms may have S = 2 or 5
3 3 1 1
Then we note that S| = 3 and S| = 7 can combine to give S = 0; S| = 7 and $p = 2 can

3 1
also combine to give S = 0 (but §1 = 3 and $, = 7 cannot). Hence, the multiplicities

and may be expected.

Solutions to applications

P17.24 The integrated absorption coefficient is
A= /8(\7) dv [16.12]

If we can express ¢ as an analytical function of ¥, we can carry out the integration analytically.
Following the hint in the problem, we seek to fit & to an exponential function, which means that a
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plot of In & versus U ought to be a straight line (Fig. 17.3). So if

Ine =mv+b then & =exp(mv)exp(b)

b
and A = il exp(mv) (evaluated at the limits integration). We draw up the following table and find

m
the best-fit line

A/nm 5/(Lmol_1cm_l) f)/cm_l lns/(Lmol_lcm_l)

292.0 1512 34248 4.69
296.3 865 33748 4.13
300.8 477 33248 3.54
305.4 257 32748 292
310.1 135.9 32248 2.28
315.0 69.5 31746 1.61
320.0 34.5 31250 0.912

5

4

3
w
=

2

1

0 H . : : b B B

31000 32000 33000 34000 35 000

7/(em™") Figure 17.3
e~ 38:383 1.26 x 1073 cm 1.26 x 1073 cm 1 1
SoA=——————|expl ——————— ] —expl —————— ] |[Lmol™ " cm
1.26 x 103 cm 290 x 10~7 cm 320 x 10~7 cm

=124 x 10°Lmol ™! em~2|

The concentration of the hypothetical pure layer is

1 at
P atm — 446 x 102 mol L™

[03] = = 1w—1
RT (0.08206 Latmmol~' K—') x (273 K)

n
%
So for 300 DU

A=c¢ecl =@76Lmol "em™") x (0.300cm) x (4.46 x 10 2>mol L") =
and for 100 DU

A =¢ecl = (@476Lmol ' em™) x (0.100cm) x (4.46 x 10 2mol L) =

+
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P17.27 The reaction enthalpy for process (2) is
ArH® = AfH® (Cl) + AfH® (OCIO™) + AfH® (e7) — AfH© (CL0,)
so AfHE (CL0,) = AfHE (Cl) + AfHE (OCIOT) + AfH®O (e7) — ALH®
ArHE (CL,0,) = (121.68 + 1096 + 0) kI mol ™' — (10.95eV) x (96.485kJ eV 1)
= 161 kJmol ™!

We see that the Cl,O; in process (2) is different from that in process (1), for its heat of formation

is [28 kI mol ! greater. This is consistent with the computations, which say that CIOOCI is likely

to be the lowest-energy isomer. Experimentally we see that the Cl,O; of process (2), which is not
CIOOCI, is not very much greater in energy than the lowest-energy isomer.
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18 Spectroscopy 3: magnetic resonance

Solutions to exercises

Discussion questions

Before the application of a pulse the magnetization vector, M, points along the direction of the static
external magnetic field By. There are more « spins than 8 spins. When we apply a rotating magnetic
field B, at right angles to the static field, the magnetization vector as seen in the rotating frame begins
to precess about the B field with angular frequency w; = y Bj. The angle through which M rotates is
0 = y B¢, where t is the time for which the B pulse is applied. Whent = 7 /2y B, 0 = 7/2 = 90°,
and M has rotated into the xy plane. Now there are equal numbers of & and 8 spins. A 180° pulse
applied for a time 7r/y By, rotates M antiparallel to the static field. Now there are more 8 spins than
o spins. A population inversion has occurred.

The basic COSY experiment uses the simplest of all two-dimensional pulse sequences: a single
90° pulse to excite the spins at the end of the preparation period, and a mixing period containing just
a second 90° pulse (see Fig. 18.44 of the text).

The key to the COSY technique is the effect of the second 90° pulse, which can be illustrated
by consideration of the four energy levels of an AX system (as shown in Fig. 18.12). At thermal
equilibrium, the population of the « AaX level is the greatest, and that of BASX level is the smallest;
the other two levels have the same energy and an intermediate population. After the first 90° pulse,
the spins are no longer at thermal equilibrium. If a second 90° pulse is applied at a time t; that is short
compared to the spin-lattice relaxation time T the extra input of energy causes further changes in
the populations of the four states. The changes in populations will depend on how far the individual
magnetizations have precessed during the evolution period.

For simplicity, let us consider a COSY experiment in which the second 90° pulse is split into two
selective pulses, one applied to X and one to A. Depending on the evolution time #1, the 90° pulse
that excites X may leave the population differences across each of the two X transitions unchanged,
inverted, or somewhere in between. Consider the extreme case in which one population difference
is inverted and the other unchanged (Fig. 18.45). The 90° pulse that excites A will now generate an
FID in which one of the two A transitions has increased in intensity, and the other has decreased. The
overall effect is that precession of the X spins during the evolution period determines the amplitudes
of the signals from the A spins obtained during the detection period. As the evolution time t; is
increased, the intensities of the signals from A spins oscillate at rates determined by the frequencies
of the two X transitions.

This transfer of information between spins is at the heart of two-dimensional NMR spectroscopy
and leads to the correlation of different signals in a spectrum. In this case, information transfer tells
us that there is a scalar coupling between A and X. If we conduct a series of experiments in which
t1 is incremented, Fourier transformation of the FIDs on t, yields a set of spectra I (v, v2) in which
the A signal amplitudes oscillate as a function of t;. A second Fourier transformation, this time on
t1, converts these oscillations into a two-dimensional spectrum / (vq, v2). The signals are spread out
in vy according to their precession frequencies during the detection period. Thus, if we apply the
COSY pulse sequence to our AX spin system (Fig. 18.44), the result is a two-dimensional spectrum
that contains four groups of signals centred on the two chemical shifts in v and v,. Each group will
show fine structure, consisting of a block of four signals separated by Jax. The diagonal peaks are
signals centerd on (6485) and (6x8x) and lie along the diagonal v; = v,. They arise from signals
that did not change chemical shift between #; and #,. The cross peaks (or off-diagonal peaks) are
signals centred on (550x) and (§x8a) and owe their existence to the coupling between A and X.

+
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E18.3(b)

E18.4(b)

E18.5(b)

E18.6(b)

E18.7(b)

Consequently, cross peaks in COSY spectra allow us to map the couplings between spins and to trace
out the bonding network in complex molecules. Figure 18.46 shows a simple example of a proton
COSY spectrum of 1-nitropropane.

The molecular orbital occupied by the unpaired electron in an organic radical can be identified
through the observation of hyperfine splitting in the EPR spectrum of the radical. The magnitude
of this splitting is proportional to the spin density of the unpaired electron at those positions in the
radical having atoms with nuclear moments. In addition, the spin density on carbon atoms adjacent to
the magnetic nuclei can be determined indirectly through the McConnell relation. Thus, for example,
in the benzene negative ion, unpaired spin densities on both the carbon atoms and hydrogen atoms
can be determined from the EPR hyperfine splittings. The next step then is to construct a molecular
orbital which will theoretically reproduce these experimentally determined spin densities. A good
match indicates that we have found a good molecular orbital for the radical.

Numerical exercises

For 9F 2£ — 2.62835, ¢ = 5.2567

UN
yB . 81N
L=y WY n
grunB  (5.2567) x (5.0508 x 10727 3T~ 1) x (16.2T)
Hence, v = =
h (6.626 x 10~347J5)

=649 x 103571 =

Ep, = —yhBm; = —gjunBm;

m;=1,0,—1

Ep, = —(0.404) x (5.0508 x 10727 JT~1) x (11.50 T)m;
= —(2.3466 x 1072 )m;

—2.35x 107207,0, +2.35 x 10—261\

The energy separation between the two levels is

Tr—1—1
AE — hv  where v — ﬂ _ (1.93 x 10T s7 ) x (15.47T)
2 21

= 473 x 107 57! =[47.3 MHz |

A 600 MHz NMR spectrometer means 600 MHz is the resonance field for protons for which the
magnetic field is 14.1 T as shown in Exercise 18.4(a). In high-field NMR it is the field not the
frequency that is fixed.

(a A 4N nucleus has three energy states in a magnetic field corresponding to m; = +1,0, —1.
But AE(+1 —- 0) = AE(0 — —1)

AE = EmrI —Ey, = —yth/l — (—yhBmy)
= —yhB(m/I —my) = —yhBAm;
The allowed transitions correspond to Am; = %1; hence

AE =hv = yhB = giunB = (0.4036) x (5.051 x 10727 JT™1) x (14.17T)

—=12.88x10720]
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(b) We assume that the electron g-value in the radical is equal to the free electron g-value, g. =
2.0023. Then

AE = hv = geupB[37] = (2.0023) x (9.274 x 107**JT™1) x (0.300T)
=|5.57 x 107247

Comment. The energy level separation for the electron in a free radical in an ESR spectrometer is
far greater than that of nuclei in an NMR spectrometer, despite the fact that NMR spectrometers
normally operate at much higher magnetic fields.

AE =hv =yhB = gjunB [Exercise 18.4(a)]

hv (6.626 x 1073 JHz 1) x (150.0 x 10° Hz)
Hence, B = = =[3.523T
e 81N (5.586) x (5.051 x 10~27JT-1)

In all cases the selection rule Am; = %1 is applied; hence (Exercise 18.7(b)(a))

hv 6.626 x 10734 JHz"! v
= xX —
griy  5.0508 x 10727711 ~ g4

B =

&+ v
= (1.3119 x 1077) x @T = (0.13119) x _(MHz)T
81 g7

We can draw up the following table

B/T l4N 19F 31P
g1 0.40356 5.2567 2.2634

(a) 300MHz 97.5 7.49 17.4
(b) 750MHz 244 18.7 43.5

Comment. Magnetic fields above 20 T have not yet been obtained for use in NMR spectrometers.
As discussed in the solution to Exercise 18.7(b), it is the field, not the frequency, that is fixed in
high-field NMR spectrometers. Thus an NMR spectrometer that is called a 300 MHz spectrometer
refers to the resonance frequency for protons and has a magnetic field fixed at 7.05 T.

The relative population difference for spin —1 nuclei is given by

SN Ny —N nB B
— =2 Y — 8I/N [Justification 18.1]
N No + Ng  2kT 2kT

1.405(5.05 x 10727 31-HB
= (5.05 x B _ 562 x10775/T)
2(1.381 x 10~23JK—1) x (298 K)

SN
For0.50T — = (8.62 x 1077) x (0.50) =|4.3 x 10~/
@) For = (8:62x 107) x (0.50)
SN
b) For25T — = (8.62x 1077) x (2.5) =|2.2 x 107°
(b) For25T 7 = (662 107) x 2.5)
o 7 134 10|
For15.5T — = (8.62 x 10 15.5) =|1.34 x 10
(©) For = (8:62x 107) x (15.5)
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E18.11(b) The ground state has

m1=+%=cxspin, mlz—%zﬁspin
Hence, with
ON = Ny — Ng

SN Ny —Ng Ny — Nye AE/KT
N ~ No+Ng Ny -+ Nye DE/RT

1—e 2B/ | —(1— AE/KT) AE _ giunB

[Justification 18.1]

- ~ ~ 22 for AE < kT
| + o—AE/KT 1+1 T = okr [orAE <AT]
Nh
SN — NgrunB _ Nhv
2T 2T
Thus, N x v

SN(B800MHz) 800MHz
= = -13
SN (60 MHz) 60 MHz -

This ratio is not dependent on the nuclide as long as the approximation AE < kT holds.

v —v°

(a) &= x 100 [18.25]

v
Since both v and v° depend upon the magnetic field in the same manner, namely

B B
p = 8IMND and 1° = % [Exercise 18.4(a)]

h

8 1is of both B and v.

(b) Rearranging [10] v — v° = v°§ x 10°°
and we see that the relative chemical shift is

v —v°(800MHz) 800MHz
v —1°(60MHz)  60MHz

Comment. This direct proportionality between v —v° and v° is one of the major reasons for operating
an NMR spectrometer at the highest frequencies possible.

E18.12(b) B = (1 —0)B
[ABjoc| = [(Ao)|B ~ |[6(CH3) — §(CH2)]|B
=|1.16 — 3.36| x 107°B =12.20 x 107°B

(@ B=19T,|ABj| = (220 x 1070 x (1.9T) =42 x 10°°T
b) B=165T, |AB| = (2.20 x 107%) x (16.5T) =|3.63 x 107> T

E18.13(b) p—v° =18 x 107
|Av| = (v = v°)(CHy) — (v — v°)(CH3) = v(CH3) — v(CH3)
= 1°[§(CH,) — 8(CH3)] x 107°
= (3.36 — 1.16) x 107%1° =2.20 x 1070°
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— 6.97Hz

1] N

.~ 697Hz

770Hz .
at 350MHz Figure 18.1

(@ v°=350MHz |Av|=(2.20 x 107%) x (350 MHz) = 770Hz [Fig. 18.1]
() v =650MHz  |Av| = (2.20 x 107%) x (650 MHz) = 1.43kHz

At 650 MHz, the spin—spin splitting remains the same at 6.97 Hz, but as Av has increased to 1.43 kHz,
the splitting appears narrower on the § scale.

The difference in resonance frequencies is
Av = (° x 1079 A8 = 3505 1) x (6.8 —5.5) = 4.6 x 10>s~!

The signals will be resolvable as long as the conformations have lifetimes greater than
T =Q2rA8)"!

The interconversion rate is the reciprocal of the lifetime, so a resolvable signal requires an
interconversion rate less than

rate = 27 A8) = 2 (4.6 x 10%s™ 1) =[2.9 x 103s7!

gIuNB
Vv =
h
vC'P)  ¢C'P)
"v('H)  g('H)

2.2634
orv(lP) = 555 % 500 MHz = | 203 MHz

The proton resonance consists of 2 lines (2 X % + 1) and the 3! P resonance of 5 lines [2 X (4 X %) + 1].

[Exercise 18.4(a)]

Hence

The intensities are in the ratio 1:4:6:4:1 (Pascal’s triangle for four equivalent spin % nuclei,

5.5857
Section 18.6). The lines are spaced ——— = 2.47 times greater in the phosphorus region than the

proton region. The spectrum is sketched in Fig. 18.2.

Proton
resonance

Phosphorus
resonance

J 1 Figure 18.2
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E18.16(b) Look first at A and M, since they have the largest splitting. The A resonance will be split into a widely
spaced triplet (by the two M protons); each peak of that triplet will be split into a less widely spaced
sextet (by the five X protons). The M resonance will be split into a widely spaced triplet (by the two
A protons); each peak of that triplet will be split into a narrowly spaced sextet (by the five X protons).
The X resonance will be split into a less widely spaced triplet (by the two A protons); each peak of
that triplet will be split into a narrowly spaced triplet (by the two M protons). (See Fig. 18.3.)

Only the splitting of the central peak of Fig. 18.3(a) is shown in Fig. 18.3(b).

Ay M X Jam > Jax > Jmx
A protons M protons X protons

— — Jax

@ ‘1 T j — Jam
||| ||| |||

(b) 4‘ rJAX 4‘ rJMX I
|| || || || | Figure 18.3

E18.17(b) (a) Since all JyF are equal in this molecule (the CH; group is perpendicular to the CF, group), the
H and F nuclei are both chemically and magnetically equivalent.

(b) Rapid rotation of the PH3 groups about the Mo—P axes makes the P and H nuclei chemically and
magnetically equivalent in both the cis- and trans-forms.

E18.18(b) Precession in the rotating frame follows

B
sz—y L or w1 = yB
2
Since w is an angular frequency, the angle through which the magnetization vector rotates is
0 =yBit = gl:NBﬂ

on 1.0546 x 10734
So B = - () x € X ) —{9.40 x 1074 T
gIuNt  (5.586) x (5.0508 x 10~27JT—1) x (12.5 x 10~©5)
a90° pulse requires 1 x 12.5ps =|6.25 ps

h h

E18.19(b) B= -~ = "¢
8eMB ZeUBA

_(6.626 x 1073 J5) x (2.998 x 105ms~!) 37

T Q) x (9274 x 107224JT- 1) x 8 x 103 m) —

E18.20(b) The g factor is given by

hv  h 662608 x 10734 ] s
upB’  up  9.2740 x 10—24)yT-!

71.448 mT GHz~! x 9.2482 GHz
- =12.0022
& 330.02mT

=7.1448 x 10" THz™! = 71.448 mT GHz ™!
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The hyperfine coupling constant for each proton is , the difference between adjacent lines
in the spectrum. The g value is given by

hv  (71.448mT GHz™!) x (9.332 GHz)
8= nB 334.7mT

If the spectrometer has sufficient resolution, it will see a signal split into eight equal parts at +=1.445 +
1.435 £ 1.055 mT from the centre, namely

328.865, 330.975, 331.735, 331.755, 333.845, 333.865, 334.625, and 336.735 mT

If the spectrometer can only resolve to the nearest 0.1 mT, then the spectrum will appear as a sextet
with intensity ratios of 1 : 1:2:2:1: 1. The four central peaks of the more highly resolved spectrum
would be the two central peaks of the less resolved spectrum.

(a) If the CH; protons have the larger splitting there will be a triplet (1:2: 1) of quartets (1:3:3: 1).
Altogether there will be 12 lines with relative intensities 1(4 lines), 2(2 lines), 3(4 lines),
and 6(2 lines). Their positions in the spectrum will be determined by the magnitudes of the
two proton splittings which are not given.

(b) If the CD, deuterons have the larger splitting there will be a quintet (1:2:3:2:1) of septets
(1:3:6:7:6:3:1). Altogether there will be 35 lines with relative intensities 1(4 lines),
2(4 lines), 3(6 lines), 6(8 lines), 7(2 lines), 9(2 lines), 12(4 lines), 14(2 lines), 18(2 lines),
and 21(1 line). Their positions in the spectrum will be determined by the magnitude of the two
deuteron splittings which are not given.

The hyperfine coupling constant for each proton is , the difference between adjacent lines
in the spectrum. The g value is given by

hv hv h 1
= so B=——, — =71.448mT GHz
usB UBE IB

71.448 mT GHz™ ) x (9.312 GH

@ B=" o 2Z002) 4X( 2 _3323mT
71.448 mT GHz ! 33.88 GH

b B= o 2Z002)4X( %) _ 1209 mT

Two nuclei of spin give five lines in the intensity ratio 1:2:3:2: 1 (Fig. 18.4).

8

| | | First nucleus with 7= 1

| || ||| || | second nucleus with /=1
| i 3 ’ : Figure 18.4
The X nucleus produces four lines of equal intensity. The three H nuclei split each intoa 1:3:3:1

quartet. The three D nuclei split each line into a septet with relative intensities 1 : 3:6:7:6:3: 1 (see
Exercise 18.23(a)). (See Fig. 18.5.)
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XH; IHI IHI IHI IHI
XD; |“H‘| |“H‘| |“H‘| |“H‘|Figure]8,5

Solutions to problems

Solutions to numerical problems

1 1
T 28y (21) x ((5.2 — 4.0) x 10-6) x (60 x 106 Hz)

P18.2 Ty

~ 2.2 ms, corresponding to a rate of jumping of 450 sL.

When v = 300 MHz

1
T 2m) x {(5.2 — 4.0) x 105} x (300 x 106 Hz)

Ty = 0.44ms

corresponding to a jump rate of 2.3 x 10°s~!. Assume an Arrhenius-like jumping process

(Chapter 25)

rate efE“/RT

T’ —E 1 1
Then, In rate(T”) = =-=
rate(T) R T T

RIn(’ 8.314J K~ mol~! x In 23X10°
and therefore E, = 1n(r /1r) — : 1 50 _[5719 mol-!

T T 280K = 300K
P18.5 It seems reasonable to assume that only staggered conformations can occur. Therefore the
equilibria are

H H H
Rg: : Ry H : :Rg R4: :H
—_\ —_\
~ ~
R] H R2 R1 R4 R2 Rl R3 R2

When R3 = R4 = H, all three of the above conformations occur with equal probability; hence

3 (methyl) = % (i +2%) [t = trans, g = gauche; CHR3R4 = methyl]
Additional methyl groups will avoid being staggered between both Ry and R,. Therefore

Jun(ethyl) = S(Ji +Jg) [R3 = H, Ry = CH3]
un (isopropyl) = J; [R3 = R4 = CH3]
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We then have three simultaneous equations in two unknowns J; and Jg.

1CI +2%,) =7.3Hz (1
LG +3Y,) =8.0Hz 2)
3, =11.2Hz

The two unknowns are overdetermined. The first two equations yield 3, = 10.1, 3Jg = 5.0.

However, if we assume that 3J; = 11.2 as measured directly in the ethyl case then 3Jg =54 (eqnl)
or 4.8 (eqn 2), with an average value of 5.1.

Using the original form of the Karplus equation

3, = Acos?(180°) + B = 11.2
3y = Acos?(60°) + B = 5.1

or

112=A+B
51=025A+B
These simultaneous equations yield A = 6.8 Hz and B = 4.8 Hz. With these values of A and B, the

original form of the Karplus equation fits the data exactly (at least to within the error in the values of
3Jt and 3Jg and in the measured values reported).

From the form of the Karplus equation in the text [21] we see that those values of A, B, and C
cannot be determined from the data given, as there are three constants to be determined from only
two values of J. However, if we use the values of A, B, and C given in the text, then

Ji = THz — 1 Hz(cos 180°) + 5Hz(cos 360°) = 11 Hz
Jg = THz — 1 Hz(cos 60°) + 5Hz(cos 120°) = 5Hz

The agreement with the modern form of the Karplus equation is excellent, but not better than the

original version. ’Both fit the data equally well. | But the modern version is preferred as it is more
generally applicable.

Refer to the figure in the solution to Exercise 18.23(a). The width of the CH3 spectrum is 3ay =

. The width of the CD3 spectrum is 6ap. It seems reasonable to assume, since the hyperfine
interaction is an interaction of the magnetic moments of the nuclei with the magnetic moment of the
electron, that the strength of the interactions is proportional to the nuclear moments.

u=giunl or u,=grunmy [18.14,18.15]
and thus nuclear magnetic moments are proportional to the nuclear g-values; hence

0.85745
9D 5 5857

Therefore, the overall width is 6ap =

5.7mT
We write P(N2s) = 55 2m T = (10 percent of its time)
.2m

1.3mT
P(N2p,) = ﬁ - (38 percent of its time)

x ag = 0.1535ag = 0.35mT
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The total probability is

(a) P(N) =0.10+0.38 = (48 percent of its time).
(b) PO)=1-P(N) = (52 percent of its time).

The hybridization ratio is

P(N2p) 0.38
=— =38
P(B2s) 0.10 -
The unpaired electron therefore occupies an orbital that resembles as s p3 hybrid on N, in accord with

the radical’s nonlinear shape.
From the discussion in Section 14.3 we can write

2 l+cos®
a“-=—
1 —cos®d
—2cos ®

P=l-a*= """
1 —cos®
A

N b2 —lcos® | Ivine that cos &

= — = ——, implying thatcos ® = ——
@2 Ttcosp | PYME 2+¢

Then, since A = 3.8, cos ® = —0.66, so ® =

P18.11 For CgHg ,a = Qp with O = 2.25mT [18.52]. If we assume that the value of Q does not change

from this value (a good assumption in view of the similarity of the anions), we may write

_a _ a

P=0 7 225mT

Hence, we can construct the following maps

NO, NO, NO,
NO,

0.005 0.200 0.121  0.050 0.050

0.048 NO, 0.050 0.050

0.076 0.005
0.076 0.200
NO,

Solutions to theoretical problems
N IO 1
BIENEO =+§,9=0, yh = giuN]

_ Yhuomyp 2 _
P18.14 Bnuc = —47_[7(1 — 3cos 9) [1836] = 4jTR3

which rearranges to
1/3
(5.5857) x (5.0508 x 10~27JT~1) x (47 x 10—7T2J—1m3)) /

_ <8IMNMO)]/3 _
(47) % (0.715 x 10-3T)

47T Bnuc

(3.946 x 10739 m?)1/3 =] 158 pm
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1

We have seen (Problem 18.16) that, if G o cos wpt, then I (w)
[1+ (wp — w)272]

which peaks

at w ~ wy. Therefore, if
G(t) x acoswit + bcoswrt

we can anticipate that

a n b
l+w; —w)?t2 14 (w0 —w)?c?

(@)

and explicit calculation shows this to be so. Therefore, I (w) consists of two absorption lines, one
peaking at @ ~ w; and the other at  ~ w;.

The desired result is the linear equation:

[EloAv
Sv ’

(Mo =

so the first task is to express quantities in terms of [I]y, [Elp, Av, dv, and K, eliminating terms
such as [I], [EI], [E], vi, vgl, and v. (Note: symbolic mathematical software is helpful here.) Begin
with v:

(1] (EI] _ Mo —[ET] [EI]

tmrEn T mrEn ™ T T me T me

where we have used the fact that total I (i.e., free I plus bound I) is the same as intitial I. Solve this
expression for [EI]:

[EI] = {lo(v —vp) _ [1]051),

VEI — V] Av

where in the second equality we notice that the frequency differences that appear are the ones defined
in the problem. Now take the equilibrium constant:

_ [El _ ((Elo — [EID([To — [EID _ ([Elo — [EID(Io
T O[E [EI] [EI] '

We have used the fact that total I is much greater than total E (from the condition that [I]g > [E]p),
so it must also be much greater than [EI], even if all E binds 1. Now solve this for [E]p:

K + [ (EI] — (K + [I]o> <[I]or3\}) _ (K +[1]p)dv
Mo - [Ilo Av ) Av :

The expression contains the desired terms and only those terms. Solving for [I]g yields:

[Elo =

[I]0=[E]80$—K,
1%

which would result in a straight line with slope [E]o Av and y-intercept K if one plots [I]o against 1/v.
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19 Statistical thermodynamics:
the concepts

Solutions to exercises

Discussion questions

Consider the value of the partition function at the extremes of temperature. The limit of g as T
approaches zero, is simply go, the degeneracy of the ground state. As T approaches infinity, each
term in the sum is simply the degeneracy of the energy level. If the number of levels is infinite, the
partition function is infinite as well. In some special cases where we can effectively limit the number
of states, the upper limit of the partition function is just the number of states. In general, we see
that the molecular partition function gives an indication of the average number of states thermally
accessible to a molecule at the temperature of the system.

The statistical entropy may be defined in terms of the Boltzmann formula, S = k In W, where W is the
statistical weight of the most probable configuration of the system. The relation between the entropy
and the partition function is developed in two stages. In the first stage, we justify Boltzmann’s formula,
in the second, we express W in terms of the partition function. The justification for Boltzmann’s
formula is presented in Justification 19.6. Without repeating the details of this justification, we can
see that the entropy defined through the formula has the properties we expect of the entropy. W
can be thought of as a measure of disorder, hence the greater W, the greater the entropy; and the
logarithmic form is consistent with the additive properties of the entropy. We expect the total disorder
of a combined system to be the product of the individual disorders and S = kIn W = kIn W W, =
kInWi +kln Wy = S§1 + 5.

In the second stage the formula relating entropy and the partition function is derived. This derivation
is presented in Justification 19.7. The expression for W, eqn 19.1, is recast in terms of probabilities,
which in turn are expressed in terms of the partition function through eqn 10. The final expression
which is eqn 19.34 then follows immediately.

Since  and temperature are inversely related, strictly speaking one can never replace the other. The
concept of temperature is useful in indicating the direction of the spontaneous transfer of energy in
the form of heat. It seems natural to us to think of the spontaneous direction for this transfer to be
from a body at high T to one at low T'. In terms of §, the spontaneous direction would be from low
to high and this has an unnatural feel.

On the other hand, g has a direct connection to the energy level pattern of systems of atoms and
molecules. It arises in a natural, purely mathematical, manner from our knowledge of how energy
is distributed amongst the particles of our atomic/molecular system. We would not have to invoke
the abstract laws of thermodynamics, namely the zeroth and second laws in order to define our
concept of temperature if we used B as the property to indicate the natural direction of heat flow.
We can easily demonstrate that § is directly related to the statistical weight W through the relation
B=@InW/oU)y. W, U, and N are all concrete properties of an atomic/molecular system.

Identical particles can be regarded as distinguishable when they are localized as in a crystal lattice
where we can assign a set of coordinates to each particle. Strictly speaking it is the lattice site that
carries the set of coordinates, but as long as the particle is fixed to the site, it too can be considered
distinguishable.
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E19.5(b)

E19.6(b)

E19.7(b)
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Numerical exercises

Ne_ﬂgi ,
ni = where g = Ze—ﬂf.z
1 j
Thus
"2 = e~fe — e Blea—e) _ —BAs _ —Ag/kT
ni e— Bl

1
Given "2 = —, Ae =300 cm™!
ni 2

lem™!

k= (138066 x 1072 JK ) x [ ————
1.9864 x 10-23]

) =0.69506cm ™~ K~!

ny _
n2 _ —Ae/kT
ni

np
ln<—) = —A¢e/kT
ni

T —Ae . Ae
~ kln(ny/ny)  kln(ny/ny)

300 cm ™! —
= =622.7K ~| 623K
(0.69506 cm—! K—1)1n(2) -

1/2 172
(a) A=h<2i) [19.22]=h< ! >

Tm 2nmkT

= (6.626 x 107347 s)

12
y 1
((271) x (39.95) x (1.6605 x 10=27kg) x (1.381 x 10~23JK~1) x T>
_ 276pm
- (T/K)1/2

Vo (100 x 107°m?) x (T/K)3/?
b= = T e 1010 m)

(i) T =300K, A=1.59x10—“m=, q=
(i) 7 =3000K, A=[504pm] g =|7.82x107]

Question. At what temperature does the thermal wavelength of an argon atom become comparable
to its diameter?

= 4.76 x 10**(T /K)>/?

The translational partition function is

\%
G = h—3<2anm>3/2

32 713130\ %2
SO 9Xe — (%) — (4003u> —=1187.9
. u

dHe MHe
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E19.8(b) q= Z gje P =2 4 3e7F81 4 e Pe
levels
p hev 1.4388(v/cm~1)
==~
kT T/K
Thus g =2 + 3¢~ (1:4388x1250/2000) | o, —(1.4388x1300/2000)

=2+ 1.2207 + 0.7850 = | 4.006
Nd N d
E19.9(b) E=U—-U©0) =——2L - _ 2% 04 30b0 422
q dg q dg
Nhc

N -
_ __ (—38167’351 _ 2826*,3&) — (3"}16*/3}!6‘!)1 + zﬁzefﬁhcvz)
q q

_ (NAhC) y {3(1250cm*1) y (ef(1.4388><1250/2000))

4.006

+2(1300 Cm—l) % (e—(1.4388><1300/2000))}

NAhC —1
- 254
(4.006) x (2546cm ™)

= (6.022 x 108 mol™!) x (6.626 x 1073*7Ts) x (2.9979 x 10%°cms™!) x (2546cm™)

=[7.605kJ mol ™!

E19.10(b) In fact there are two upper states, but one upper level. And of course the answer is different if the
question asks when 15 per cent of the molecules are in the upper level, or if it asks when 15 per cent
of the molecules are in each upper state. The solution below assumes the former.

The relative population of states is given by the Boltzmann distribution

ny —AE —hcv ny  —hcv
— =exp| —— ) =exp so In— =
ni kT kT ni kT

—hcv
Thus T = ———
kln(ny/ny)

Having 15 per cent of the molecules in the upper level means

2 0.15

o 22 0 Z2=0.088

ni 1-0.15 ni

—(6.626 x 1073%Js) x (2.998 x 101%cms~!) x (360cm—1)

and T =

(1.381 x 10-23JK—1) x (In0.088)

=213k

E19.11(b) The energies of the states relative to the energy of the state with m; = 0 are —ynN2B3, 0, + YN 5,
where ynit = 2.04 x 1072737, With respect to the lowest level they are 0, yn7i, 2ynNTi.

The partition function is

q — Z eiESlalC/kT

states

where the energies are measured with respect to the lowest energy. So in this case

—yNhB —2yNhB
=1 " -
¢=1+ eXp( kT ) + exP( kT

As B is increased at any given T, g decays from g = 3 toward ¢ = 1 as shown in Fig. 19.1(a).
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Figure 19.1(a)

The average energy (measured with respect to the lowest state) is

> tates Estaee™ e/ KT 1+ ynhB eXp( VNhB) + 2yNhB exp( ZVNhB>

) ool )

The expression for the mean energy measured based on zero spin having zero energy becomes
yNiB — ynhB exp( 2VNhB> yNhB (1 — exp( 2yNhB))

) + exp( 2yNhB> 1+ exp( ) + exp( 2VNhB>

As B is increased at constant 7', the mean energy varies as shown in Fig. 19.1(b).

(E) =

q 1+exp(

(E) =

1+exp<

Figure 19.1(b)

The relative populations (with respect to that of the lowest state) are given by the Boltzmann factor

—AE —yNiB —2yNhB
exp W = exXp T or exXp T

wWhB (204 x 10727 JT71) x (20.0T)
ko 1.381 x 10-23 JK—!
so the populations are

—2.95x 103K - 2(=2.95 x 1073 K) =
(a) exp(m—K> =10.997| and exp( T0K =10.994

—2.95 x 103K
b ) =|1-1x107°
(b) exp( 203 ) X
2(-2. 1 K
and exp (=295 x 107K) 1-2x107°
298

Note that =295x 103K

+
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E19.12(b) (a) The ratio of populations is given by the Boltzmann factor
ny exp<—AE> _ e 250K/T g M3 500K/T

ni

n]_

(1) At1.00K
250K
P2 _exp( 2222 ) =] 1.39 x 1071
- 1.00K
e
A% —exp( Z222) =11.93 x 10
e exP( 1.00K -
(2) At25.0K
ny 250K n3 ~50.0K
- [0368] and 2 =exp( ) =[0.135]
y eXp( SOK ) an y eXp( ZSOK
(3) At100K
ny —25.0K n3 —50.0K
n_ [0779] and 2 =exp( —— ) =[0.607]
n ( 100K ) e exP( 100K

(b) The molecular partition function is
g= Z e~ Esuwe/kT _ | 4 o=250K/T | o~50.0K/T
states
At 25.0 K, we note that e BOK/T _ o1 gnd ¢ 200K/T _ =2

g=1+e+e2=[1503

(¢) The molar internal energy is

Un = Un(0) — Na (8—q) where g = (kT)~!
q \9B

N
S0 Unn = Un(0) = =2 (=25.0K)k (e 230K/T 4 2e=S00K/T)
q
At25.0K

(6.022 x 1083 mol™!) x (—=25.0K) x (1.381 x 10~ JK~1)
1.503

Un —Unm(0) = -

X (e_1 +2e72)

—(88.37mol”!

(d) The molar heat capacity is

U d 1
Cym=Z2) = NAQR5.0K)k— = (e—zs.OK/T Jrze—so.oK/T)
25.0K
= Na(25.0K)k x (—2 (e—25-°K/ T 4 4¢=500K/ T)

qT

L osox/T _50. 0K/T>

q? ( 2 aT

dg 250K / osox/7 —50.0K/T
where a7 = 72 (e + 2e )
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5 Cy o = Na(25.0 K)Zk 6_25.0 KT N 46_50.0 KT (e—ZS.OK/T 4 26_50'0 K/T)2
" T2q q
At25.0K
o (6.022 x 1023 mol~1) x (25.0K)% x (1.381 x 1072 K1)
v.m = (25.0K)2 x (1.503)
-1 —252
1 o (e +2e7)
4 = = 7
x <e e 1.503
—[3.531K " mol™!
(e) The molar entropy is
Un — U (0
S = Um = Um©) Naklng
T
At25.0K
88.3 Jmol !
Sp o= w02 MO 6,022 x 1023 mol~ 1) x (1.381 x 10~ TK~") In 1.503
25.0K
=6.92JK ' mol™!
—e1/kT
E19.13(b) n_l — 81¢€ gl/k _ gle—As/kT — 3e—hCB/kT
no  goe *o/kT
ni 1
Set — = — and solve for T.
no (S
(1) =34 (1B
n{ — = 1n
e kT
hcB
T=—
k(1+41n3)

6.626 x 107375 x 2.998 x 10!%cms™! x 10.593 cm ™!
B +1.381 x 10723 JK~1 x (1 4 1.0986)

 [126K]

E19.14(b) The Sackur-Tetrode equation gives the entropy of a monoatomic gas as

§ = nrm| KT here A h
=n n where = —
pA3 V2kTm
(a) At 100K
6.626 x 1073475
A =

{2(1.381 x 10~ JK~1) x (100K) x 7(131.3u) x (1.66054 x 10~27 kgu—1)}'/?

=152x10""Um
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and Sy, = (8.3145J K™ mor‘)ln( e¥/2(1.381 x 1072 JK™!) x (100K) )

(1.013 x 105 Pa) x (1.52 x 1011 m)3

= 1477K " mol!|
(b) At298.15K

6.626 x 10734Js

A =
{2(1.381 x 1023 JK—1) x (298.15K) x 7 (131.3u) x (1.66054 x 10-27kgu=1)}'/?

=882 x 1072 m

5/2(1.381 x 10723 JK ! 208.15K
andSm:(8.3145JK_1mol_1)1n(e ( X ) x( )

(1.013 x 105 Pa) x (8.822 x 10~12m)3

=|169.6JK " mol!|
I 1

E19.15(b) ¢ = g
_ (1.4388cmK) x (321em™h) —
hcBv = = 0.76976
By 600K
1 _
Thus g = ———— = 1.863
1 — ¢—0.76976

The internal energy due to vibrational excitation is

Nee Pe
U-U(Q©) = T Fe
_ Nhcve hevp _ Nhev - b 2 em=]
= e iF — ghf ] (0.863) x (Nhc) x (321cm™ )
S U-U(@ h _
and hence N;nk = NAkY(” ) +1Ing = (0.863) x <k—;) x (321 cmfl) + In(1.863)
_ (0.863) x (1.4388 K cm) x (321cm™")

In(1.863
S00K + In( )

= 0.664 + 0.62199 = 1.286

and Sp = 1.286R = | 10.77K " mol ! |

E19.16(b) Inclusion of a factor of (N!)~! is necessary when considering indistinguishable particles. Because
of their translational freedom, gases are collections of indistinguishable particles. The factor, then,

must be included in calculations on | (a) CO; gas |

Solutions to problems

Solutions to numerical problems
P19.4 S=klnW or W =e5%[19.30]

oW W (35S
WV Jrn  k\dV )y
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s=nrm Y _ ozl V41 e
= n = n n—-s
TR T NAS

(5), e (), =
oV Jrn OV Jrny V. NaV
AW NRW NW
(W)T,N T NAV VO
AW AV _ pV AV
w Vv kT V
_ (1x10°Pa) x (20m?) x (1 x 107)
T (1381 x 1023 JK- 1) x (300K)

~[as 0]

Notice that the value of W is much larger than that of AW/ W. For example, at the conventional
temperature the molar entropy of helium is 126 J K~ mol™!. Therefore,

(pV) ¢ _ (1 x 10°Pa) x 20m3) x (126 J K~ ' mol™1)
RT)™ (8.315J K~ mol™!) x (298 K)

S:nsz

=1.02x 100JK !
S 1.02 x 103 JK™!

- = 27
k1381 x 103K~ 7.36 x 10

27 27
W = oS/k — ¢736x107 _ 13.20x10

P19.6

=—F7=s==-Xe¢

—e1/kT
m _gie”" 4 oD/ _ % hel/KT _ 5 —((14388x450)/300) _ (93
ng  goe f/kT 2 2 '

.30
The observed ratio is 070 = 0.43. Hence the populations are | not at equilibrium |.

P19.8 First we evaluate the partition function

g=> gje P9[19.12] = ) " gje PV

J J

1.43877cm K
3560K

g = 5 4 7e—1(4.041x107 em)x (170em™ ")} 4 g —{(4.041x107* cm) x (387 em ™)}

At 3287°C = 3560K, hcf = =4.041 x 10”*cm

1 3¢ {(4.041x107* cm) x (6557 em ™)

= (5) 4+ (7) x (0.934) 4+ (9) x (0.855) + (3) x (0.0707) = 19.445

The fractions of molecules in the various states are

. —,38/' . —hcﬁﬁj
pj= L[lg.m] _8c 7
q q

5 (7) x (0.934)
pCFy) = =[0.257 pCFy) = 2" —[0.336
19.445 19.445
9) x (0.855) (3) x (0.0707)
pCFy) = ———"=2 —10.39 p(*F)) = oS =Looul

19.445
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Comment. > j pj = 1. Note that the most highly populated level is not the ground state.
P19.10 The partition function is the sum over states of the Boltzmann factor

e ) Zel ) el )

states states levels

where g is the degeneracy. So, at 298 K

1 sexp( 802601079 x (2998 x 1010ems ) x (557.1em D) ) |
' ' (1381 x 10-BIK 1) x (298K)

- (120

At 1000 K
L+ 3exp<_(6'626 X 10775) x 2998 x 108ems) x (557.1 cm—1)> "

7= (1381 x 10-2TK-1) x (1000K)
= [3.004
P19.11 g=> e Pi=""ehPV1911]
i i
1 1
At 100K, hcf = ——— and at 298 K, hcf = ——— . Therefore, at 100K
69.50 cm™! 207.22cm™!

(@) q=14c 21330/69.50 4 o—43539/69.50  .—636.27/69.50 | ,—~84593/69.50 _ [ 49

and at 298 K

(b) g=1+ 67213.30/207.22 + 67425.39/207.22 + 67636.27/207.22 + 67845.93/207.22 =11.55

e—hcﬂf),’
In each case, p; = [19.10]
q

po= - —@[0553) o [06%5]
—hcp

=" —@[00ma] w[0230]
—hcpv

= —@[o0n] w008

For the molar entropy we need to form Uy, — U, (0) by explicit summation
Na

N,
Un = Un(0) = =2 Y gePei =
q % q

> " heiie PV [19.25,19.26]
i

=|123Jmol~! (at 100K) |, | 1348 Jmol ! (at 298 K)

Un — Un(0
Sy = m#m() 4 Rlng [19.34]
@  Spe 2IMOT 1049 = [1.637K mol ! |
= ni. = . m
™= TI00K 2
1348 J mol ! R
B  Sm= ot RIN1.55=|8.17IK mol"!|

298K
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Solutions to theoretical problems

a1
P19.13 p=kT <LQ> [20.4]
BV T.N

N
—kT (—aln(" /N!)> [19.46]
9V
T,N

d[NIng —InN! al
=kT w = NkT ng

3
NiT (M)
T,N

av

_ 3
— NKT d[InV —In A°] — NKT dlnV
oV N vV Jrn

)

NkT
=~ o |pV = NKT =nRT |

P19.15 We draw up the following table

o
o
w
&
~
)
W
®
™
»
<
o
0
&
Ne)
o

72
72
72
72
252
252
84
252
504
504
504
504
504
1512
1512
1512
1512
630
2520
1260
3780
504
2520
252
756
72

O = NN WWEAEREAREREOUMUUULLULUUUAADANDDND NN I I XX O
O 1IN PR UNNDWWERREF P NDNNDNOWO ==L OONOOO—=O ™
O =, NDNO R, OO, O, MNO—R,WO—RLOROONODODODO—=OO
S OO = PO~ NODODNO—RL O~ O, P, OOWOoODOoOOoO~OOoOOo
[N elBeolelBel ol N elNell i elelell jlelell S oo ol S =l=lele)
S OO DO DDODOOR OO OO, OOO RO —=OOOoO0o
[=NeoloBoBoBololoNoNeoNoNoloBRoRel ol =R Nelelelelell el
ecNoBoBoNoNoBoloNeoloBoloNoloBoloRololoNeoReoRoll o == el
[eNeoloBoBolololoNoloNololhoholh o oo NoNoBohoheoho oo Relh =)
[=NeoloBoBoBololoNeoNeoloRohoholo oo NoNoloRohoRohohoRo ol 5

The most probable configuration is the “almost exponential”

(4,2,2,1,0,0,0,0,0, 0} |
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nj .
P19.16 L = ePEi=¢0) —e7Pi¢ which implies that —jBe =Inn; —Inng
no ’
je
and therefore that|Inn; = Inng — T

e
Therefore, a plot of Inn; against j should be a straight line with slope YT Alternatively, plot
In p; against j, since

1 L
np; =const — —
bi kT

We draw up the following table using the information in Problem 19.8

Jj 0 1 2 3
n; 4 2 2 1 [most probable configuration]
Inn; 139 069 069 0

These are points plotted in Fig. 19.2 (full line). The slope is —0.46, and since hi = 50cm™!, the
c
slope corresponds to a temperature

(50cm™1) x (2.998 x 101%cms™1) x (6.626 x 10734 Js)
T = =[160K
(0.46) x (1.381 x 1023 JK—1)

(A better estimate, 104 K represented by the dashed line in Fig. 19.2, is found in Problem 19.18.)

Inn;

~~e Figure19.2

(b) Choose one of the weight 2520 configurations and one of the weight 504 configurations, and
draw up the following table

j 0 1 2 3 4
W=2520 n;, 4 3 1 0 1
Inn; 139 110 0 —oco O

W=54 n; 6 0 1 1 1
Inn; 179 —c0 0 0 0

Inspection confirms that these data give very crooked lines.
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The form of Stirling’s approximation used in the text in the derivation of the Boltzmann
distribution is

Inx!=xInx —x[192] or InN!=NInN - N

and Inn;! = n; Inn; — n; which then leads to [N is cancelled by — Y, n;]

InW=NInN — Zn,- Inn; [19.3]
i

If N!' =NV, InN! = NInN, likewise In n;! = n; Inn; and eqn 3 is again obtained.
Forlnx!= (x + %)lnx —x+ %ln 27 [Marginal note, p. 631],

Since the method of undetermined multipliers requires only (Justification 19.3) dIn W, only the
terms d In ;! survive. The constant term, % In 27, drops out, as do all terms in N. The difference,
then, is in terms arising from Inn;! We need to compare n; Inn; to % In n;, as both these terms
survive the differentiation. The derivatives are

0
W(n; Inn;) =1+ Inn; =~ Inn; [large n;]
l

9 (1 1
— | =zInn; | = —
an; \ 2 2n;

Whereas In n; increases as n; increases, — decreases and in the limit becomes negligible. For
nj
1 .. .
nj=1x 106, Inn; = 13.8, o =5x 10_7; the ratio is about 2 x 108 which could probably not
ni
be seen in experiments. However, for experiments on, say, 1000 molecules, such as molecular
dynamics simulations, there could be a measurable difference.

Solutions to applications

312
P19.19 (a)

(b)
P19.21

p(h) _ NV — o (e —e(ho))/kT} [19.6]

ptho) ~ N(ho)/V

— e—mg(h—ho)/kT

For p(0) = po,
p(h) — o—mgh/kT

Po

N (8.0km) N(@8.0km)/V —M(ROTZW

= =
N(0) N@O)/V
(0.032kgmol ~1)x(9.81 ms™2)x(8.0x 103 m)

N(S-O km) [0,] = e_{ %sslsuflmorl)x(zf)sx) }

N(0) B
—[0.36] for 0

N (8.0k | ©0.018kgmol— 1) x(9.81 ms~2)x(8.0x103 m)
(8.0km) [H,0] = e (8.315JK— ! mol—1)x (298 K)
N(0)

= for H,O
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P19.23

(a)

(b)

The electronic partition function, gg, of a perfect, atomic hydrogen gas consists of the electronic

energies Ej, that can be written in the form:
E, = (1 ——)thH, n=1,2,3,..., 0o,

where we have used the state n = 1 as the zero of energy (in contrast to the usual zero being

at infinite separation of the proton and electron, eqn 13.13). The degeneracy of each level is

gn = 2n® where the n? factor is the orbital degeneracy of each shell and the factor of 2 accounts
for spin degeneracy.

00 o 1— 1
gE = Zgne_E"/kT = ZZn e_( _W)C,
n=1

n=1
where C = hcRy/kTphotosphere = 27.301. gg, when written as an infinite sum, is infinitely

. —(1-LHe . _ _C . . .
large because lim {nze (1=22) } = lim {n%e C] =¢ ¢ lim (n%) = oo. The inclusion
n—oo n—oo n—oo

of partition function terms corresponding to large n values is clearly an error.

States corresponding to large n values have very large average radii and most certainly interact
with other atoms, thereby, blurring the distinct energy level of the state. Blurring interaction
most likely occurs during the collision between an atom in state n and an atom in the ground
state n = 1. Collisional lifetime broadening (eqn 16.25) is given by:

h Znh

SE) = — = —,
2nt 2

where z,, = collisional frequency of nth state of atomic perfect gas

. V20,ép _ 20,EpNa
T kT My

(eqn 24.12)

8RT

: 4 1
> =1.106 x 10" ms™" (eqn 24.7)
b4

¢ = mean speed = <

o = collisional cross-section of nth state (Fig. 24.9)

= 7 ((r)n + ap)?

3242
=7m(%< ";_

Any quantum state within § E of the continuum of an isolated atom will have its energy blurred
by collisions so as to be indistinguishable from the continuum. Only states having energies in
the range 0 < E < E — § E will be a distinct atomic quantum state.

The maximum term, nmayx, that should be retained in the partition function of a hydrogen atom
is given by

) (Example 13.2)

En = Eoo —8E

Mmax Mmax

2 2
ﬁna% (M) cpNah
2w My

1
(1 -3 >hCRH = hcRyg —
n
max

with p = 1.99 x 10™*kgm ™ and My = 0.001 kgmol .
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(c)

log (p,)
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The root function of a calculator or mathematical software may be used to solve this equation
for nmax.

for atomic hydrogen of the photosphere

Furthermore, examination of the partition function terms n = 2, 3, ..., npnax indicates that they

are negligibly small and may be discarded. The point is that very large n values should not be
included in gg because they do not reflect reality.

22 o~ En/kT
pon=——— where T =5780K (eqn 19.6)
qE
0 T T T T T
5 _
10 1 1 1
0 5 10 15 20 25 30

n Figure 19.3

Even at the high temperature of the Sun’s photosphere only the ground electronic state is sig-
nificantly populated. This leads us to expect that at more ordinary temperatures only the ground
state of atom and molecules are populated at equilibrium. It would be a mistake to thoughtlessly
apply equilibrium populations to a study of the Sun’s photosphere, however, it is bombarded
with extremely high energy radiation from the direction of the Sun’s core while radiating at a
much low energy. The photosphere may show significant deviations from equilibrium.

See S. J. Strickler, J. Chem. Ed., 43, 364 (1966).



E20.1(b)

E20.2(b)

20 Statistical thermodynamics:
the machinery

Solutions to exercises

Discussion questions

The symmetry number, o, is a correction factor to prevent the over-counting of rotational states when
computing the high temperature form of the rotational partition function. An elementary interpretation
of o is that it recognizes that in a homonuclear diatomic molecule AA the orientations AA” and A’A
are indistinguishable, and should not be counted twice, so the quantity g = kT /hcB is replaced by
q = kT /ohcB with o = 2. A more sophisticated interpretation is that the Pauli principle allows only
certain rotational states to be occupied, and the symmetry factor adjusts the high temperature form of
the partition function (which is derived by taking a sum over all states), to account for this restriction.
In either case the symmetry number is equal to the number of indistinguishable orientations of the
molecule. More formally, it is equal to the order of the rotational subgroup of the molecule.

The temperature is always high enough (provided the gas is above its condensation temperature) for
the mean translational energy to be %kT. The equipartition value. Therefore, the molar constant-
volume heat capacity for translation is C ‘T,’m = %R.

Translation is the only mode of motion for a monatomic gas, so for such a gas Cy , = % R =
12.47JK~ " mol~!: This result is very reliable: helium, for example has this value over a range of
2000 K.

When the temperature is high enough for the rotations of the molecules to be highly excited (when
T > 6r) we can use the equipartition value kT for the mean rotational energy (for a linear rotor) to
obtain Cy n = R. For nonlinear molecules, the mean rotational energy rises to % kT, so the molar

rotational heat capacity rises to % R when T > 6. Only the lowest rotational state is occupied
when the temperature is very low, and then rotation does not contribute to the heat capacity. We can
calculate the rotational heat capacity at intermediate temperatures by differentiating the equation for
the mean rotational energy (eqn 20.29). The resulting expression, which is plotted in Fig. 20.9 of
the text shows that the contribution rises from zero (when 7" = 0) to the equipartition value (when
T > 6r). Because the translational contribution is always present, we can expect the molar heat
capacity of a gas of diatomic molecules (C ‘T/ m+C ‘l}’m) to rise from %R to %R as the temperature is
increased above 6R.

Molecular vibrations contribute to the heat capacity, but only when the temperature is high enough
for them to be significantly excited. The equipartition mean energy is kT for each mode, so the
maximum contribution to the molar heat capacity is R. However, it is very unusual for the vibrations
to be so highly excited that equipartition is valid and it is more appropriate to use the full expression for
the vibrational heat capacity which is obtained by differentiating eqn 20.32. The curve in Fig. 20.10
of the text shows how the vibrational heat capacity depends on temperature. Note that even when
the temperature is only slightly above the vibrational temperature, the heat capacity is close to its
equipartition value.

The total heat capacity of a molecular substance is the sum of each contribution (Fig. 20.11 of the
text). When equipartition is valid (when the temperature is well above the characteristic temperature
of the mode T >> 6)1) we can estimate the heat capacity by counting the numbers of modes that are
active. In gases, all three translational modes are always active and contribute 3/2 R to the molar
heat capacity. If we denote the number of active rotational modes by vg (so for most molecules at
normal temperatures vl’{ = 2 for linear molecules, and 3 for nonlinear molecules), then the rotational
contribution is 1/2 vg R. If the temperature is high enough for v5; vibrational modes to be active the
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vibrational contribution to the molar heat capacity is vg R. In most cases vy ~ 0. It follows that the
total molar heat capacity is

Cym=% G+ +205)R

See Justification 20.4 for a derivation of the general expression (eqn 20.54) for the equilibrium
constant in terms of the partition functions and difference in molar energy, A Eg, of the products and
reactants in a chemical reaction. The partition functions are functions of temperature and the ratio
of partition functions in eqn 20.54 will therefore vary with temperature. However, the most direct
effect of temperature on the equilibrium constant is through the exponential term ¢~ ArEo/RT e
manner in which both factors affect the magnitudes of the equilibrium constant and its variation with
temperature is described in detail for a simple R = P gas phase equilibrium in Section 20.7(c) and
Justification 20.5.

Numerical exercises

Cvm = 33+ vl +2v5) R [20.40]

with a mode active if T > 6y. At low temperatures, the vibrational modes are not active, that is,
vy = 0; at high temperatures they are active and approach the equipartition value. Therefore

(@ O3 Cym=3R or 6R (3 x3— 6)vibrational modes
(b) CyHg: Cym=3R or 21R (3 x 8 — 6) vibrational modes
(© CO: Cym= %R or 6.5R (3 x 3 —5) vibrational modes

where the first value applies to low temperatures and the second to high.

The equipartition theorem would predict a contribution to molar heat capacity of %R for every
translational and rotational degree of freedom and R for each vibrational mode. For an ideal gas,
Cpm = R+ Cy m. So for CO,

With vibrations ~ Cym/R=3(3)+2(3)+3x4-6) =65 and y= >

6.5
3.5
Without vibrations Cym/R= 3(%) + 2(%) =25 and y= 75 =
37.11Jmol ! K~!
Experimental y mo =

 37.11 — 8.3145Jmol ' K—!
The experimental result is closer to that obtained by neglecting vibrations, but not so close that
vibrations can be neglected entirely.

The rotational partition function of a linear molecule is

R kT (1381 x 1072 JK™ )T _0.6952(T/K)
T = GheB ~ 5(6.626 x 10-3475) x (2.998 x 1000cms—1)B o B/om-]

@ ALSC gf 0.6952(25 +273) _

1.4457
6952(250 + 2
(b) AL250°C R = 200 1(439; B _

The symmetry number is the order of the rotational subgroup of the group to which a molecule
belongs (except for linear molecules, for which o = 2 if the molecule has inversion symmetry and 1
otherwise).
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(a) COj;: Full group Dop; subgroup Cp (d) SFg: Oy
(b) Oj3: Full group Cyy; subgroup C» (e) Al Clg: Dyq
(¢) SO3: Full group Dsy; subgroup {E, C3, C%, 30y}

E20.8(b) The rotational partition function of nonlinear molecule is given by

R (ALY
T = 5\ he ABC

3/2
1 ( (1.381 x 108 JK~1) x (298 K) ) /
~2

(6.626 x 107347Ts) x (2.998 x 1019 cms—1)

1/2
T
=[5.84 x 10°
x ((2.02736) x (0.34417) x (0.293535) cm_3>

This high-temperature approximation is valid if 7 >> 6r, where 6R, the rotational temperature, is

he(ABC)Y/3
k
(6.626 x 10734 ) x (2.998 x 1019 cms1)
1.381 x 1023 JK~!

x[(2.02736) x (0.34417) x (0.293535) cm—>]'/3

 [o8479K]

E20.9(b) gR = 5837 [Exercise 20.8(b)]

All rotational modes of SO are active at 25°C; therefore

R =

UR —UR©0) = ER = 3RT
ER
Srlli = ? + Rlan

— 3R + RIn(5836.9) = | 84.57 1K' mol~!

E20.10(b) (a) The partition function is

q= Z e_Estate/kT — Z ge—Elevel/kT

states levels

where g is the degeneracy of the level. For rotations of a symmetric rotor such as CH3CN, the
energy levelsare E; = hc[BJ(J+ 1)+ (A— B)Kz] and the degeneracies are g7 x = 2(2J +1)
if K #0and 2J 4 1 if K = 0. The partition function, then, is

0 J
J=1 K=1

To evaluate this sum explicitly, we set up the following columns in a spreadsheet (values for
B =52412cm™ ! and T = 298.15K)
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J JU+1) 2741 e heBIUED/ATE g term e heA=BK/KT) g qum  J sum

0 0 1 1 1 1 1 1
1 2 3 0.997 8.832 0.976 2953  9.832
2 6 5 0.991 23.64 0.908 4770 3347
3 12 7 0.982 43.88 0.808 6.381  77.35
82 6806 165 418 x 1073 0.079 8 x 107" 11.442  7498.95
83 6972 167 3.27 x 1073 0.062 2 x 1077 11.442  7499.01

The column labelled K sum is the term in large parentheses, which includes the inner summation.
The J sum converges (to 4 significant figures) only at about J = 80; the K sum converges much
more quickly. But the sum fails to take into account nuclear statistics, so it must be divided by the

symmetry number. At 298 K, qR =12.50 x 10> |. A similar computation at 7 = 500K yields
R=1543x10°|

The rotational partition function of a nonlinear molecule is given by

R LAYy
T =5\ he ABC

23 1 3/2
(1381 x 1023 TK~1) x (298K)
(6.626 x 107347 s) x (2.998 x 1010 cms—1)

1
At298K ¢R = 3<

X

12
< (5.28) x (0. 307)2 cm—3>
2.50 x 103

( (1.381 x 10" JK~1) x (500K) )3/2

At500K ¢R

(.»Jl»—t

(6.626 x 107347 5s) x (2.998 x 1010cms—!)

X

12
(5.28) x (0. 3»07)2 cm—3>

=[s.4310

E20.11(b) The rotational partition function of a nonlinear molecule is given by

R _ 1 (kT 3/2<_” )”2
T =5 \he ABC

(a) At25°C

B3 -1 3/2
R_1 (1.381 x 10723 JK~1) x (298K)
T 1\ (6.626 x 10734J5) x (2.998 x 1010 cms—1)

1/2
T
X ((3.1252) x (0.3951) x (0.3505) cm_3>

= 18.03 x 10°
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(b) At100°C
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(1.381 x 10723 JK 1) x (373K)

T

1 Y
1 <(6.626 x 10734 J5) x (2.998 x 1010 cm s—1)>

1/2
x ((3.1252) x (0.3951) x (0.3505) cm—3)

E20.12(b) The molar entropy of a collection of oscillators is given by

N
Sm ale) + RlIng
h B hcv .
where {¢) = Bhcv _ 1 Nef/T _1

1 1

and g =

| —eBhcv | —e0/T

where 6 is the vibrational temperature hcv/k. Thus

Sm—

R©O/T)
= T eO/T

— RIn(1 —e~9/T)

A plot of Sy, /R versus T/0 is shown in Fig. 20.1.

2.5

S/R

Figure 20.1

The vibrational entropy of ethyne is the sum of contributions of this form from each of its seven
normal modes. The table below shows results from a spreadsheet programmed to compute Sy, /R at
a given temperature for the normal-mode wavenumbers of ethyne.

T = 298K T = 500K
p/em™ 6/K T T/6 Sm/R T/6  Sa/R
612 880 0336 0.208 0.568 0.491
729 1049 0284 0.134 0.479 0.389
1974 2839 0.105  0.000766 0.176  0.0228
3287 4728 0.0630 0.00000217  0.106 0.000818
3374 4853 0.0614 0.00000146  0.103 0.000652

The total vibrational heat capacity is obtained by summing the last column (twice for the first two
entries, since they represent doubly degenerate modes).
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() At298K Sy = 0.685R =|5.70Jmol~' K~!]

(b) AtS00K Sy = 1.784R =| 14.83Tmol ' K|

E20.13(b) The contributions of rotational and vibrational modes of motion to the molar Gibbs energy depend
on the molecular partition functions

Gm — Gm(0) = —RT Ing

The rotational partition function of a nonlinear molecule is given by

1/2
R 1 (kT 3/2< n )1/2_ 1270 (/Ky} \
R ABc) T & \aBC/em—3

and the vibrational partition function for each vibrational mode is given by

1
gV = ———  where § = hcv/k = 1.4388(v/em™ ) /(T /K)
1 —e 0T
1.0270 2983 12
At298K ¢R == =3.35x 10°
2\ (3.553) x (0.4452) x (0.3948)

and GR — GR(0) = —(8.3145Tmol ' K™1) x (298K) In3.35 x 10°

= —20.1 x 10> Tmol~! =| —20.1kJ mol~!

The vibrational partition functions are so small that we are better off taking

IngY = —In(1 —e /Ty ~e /7
IngY ~ (1438801110298} _ 4 70 , 10-3

In q;/ ~ 67{1.4388(705)/298} =332 x 1072

In q;/ o o—(14388(1042)/298) _ ¢ 53 . 103

50 GY —GY (0) = —(8.3145 mol "' K™!) x (298 K) x (4.70 x 1072 +3.32 x 1072 +6.53 x 1073)

= —110Jmol~! =]—o.110kJmor1

1 for X states

2forIT, A, ... states [Section 17.1]

E20.14(b) q=) gje#, ¢=(@25+1)x {
j

Hence
q=3+ 2¢ P [the 3T term is triply degenerate, and the 'A term is doubly (orbitally)
degenerate]
At 400K
1.4388cm K) x (7918.1cm™!
o= cmk) x ¢ M) _ og.48
400K

Therefore, the contribution to G, is
Gm — Gm(0) = —RT Ing [Table 20.1, n = 1]
—RTIng = (—8.314TK "mol™!) x (400K) x In(3 + 2 x e~ 2848)

= (=8.314JK 'mol™1) x (400K) x (In3) = | —3.65 kI mol !



STATISTICAL THERMODYNAMICS: THE MACHINERY 321

E20.15(b)

E20.16(b)

E20.17(b)

P20.2

The degeneracy of a species with S = % is 6. The electronic contribution to molar entropy is

Un — Un(0
Sm:mfm()+Rlnq:Rlnq

(The term involving the internal energy is proportional to a temperature-derivative of the parti-
tion function, which in turn depends on excited state contributions to the partition function; those
contributions are negligible.)

Sm = (8.3145Jmol ' K™ In6 ={14.9T mol ' K~!

Use Sm = RlIns [20.52]
Draw up the following table

n: 0 1 2 3 4 5 6
o m p a b c o m p
s 1 6 6 6 3 6 6 2 6 6 3 6 1

S»/R 0 18 1.8 18 1.1 1.8 1.8 0.7 1.8 18 1.1 18 0

where a is the 1, 2, 3 isomer, b the 1, 2, 4 isomer, and c the 1, 3, 5 isomer.

We need to calculate

K

Tm )
1_[ m x e "AE/RT [Justification 20.4]
7\ Na

_ 613(79Br2)61§(8113r2)e_AEO/RT
g ("Br8!Br)2

Each of these partition functions is a product

ama®qY q"

with all gF = 1.
The ratio of the translational partition functions is virtually 1 (because the masses nearly cancel,;
explicit calculation gives 0.999). The same is true of the vibrational partition functions. Although

the moments of inertia cancel in the rotational partition functions, the two homonuclear species each
have o0 = 2, so

gR(Br2)¢R (' Bra)
qR (79Br81Br)2

=0.25

The value of AEy is also very small compared with RT, so
K~
Solutions to problems

Solutions to numerical problems

Ae = ¢ = gupB [18.48, Section 18.14]
g=1 +ePe

x2e™*
Cym/R = 3 [Problem 20.1], x =2ugBp [g =2]

T (14e %)
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Therefore, if B=5.0T,
@) x (9274 x107#ITH) x (5.0T)  6.72
B (1381 x 10-BJK- ) x T - T/K

(@ T = 50K, x = 0.134, Cy = 4.47 x 107>R, implying that Cy = 3.7 x 1072JK " mol~".
Since the equipartition value is about 3R [Vﬁ =3, v{“, ~ (], the field brings about a change of

(b) T =298K, x =2.26 x 1072, Cy = 1.3 x 107*R, implying that Cy = 1.1mJK ™' mol™!, a
change of about| 4 x 1073 per cent

Question. What percentage change would a magnetic field of 1kT cause?

P20.4 g=1+577% [g;=2J+1]

e=E(J =2)—E(J =0)=6hcB [E=hcBJ(J+1)]
U-U©O)  1dg  See ¢

N g 145 bt
8Um
Cvom=—kg* =21 [2035
V,m ,3 ( 3,3 )V [ ]

Cy /R = 5¢2p%ePe 180(hcBp)2eOheBP
VI T (14 5eBe)2 (1 + SeOhcBp)?

hcB 1
= 1.4388cm K x 60.864cm™ " = 87.571K

Hence,

1.380 x 100e—5254K/T
Cvm/R = —525.4K/T 2
(1 + 5e=3254K/Ty » (T/K)

We draw up the following table

T/K 50 100 150 200 250 300 350 400 450 500
Cym/R 002 068 140 135 1.04 076 056 042 032 0.26

These points are plotted in Fig. 20.2.

0 100 200 300 400 500
T/K Figure 20.2
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P20.6

P20.9

T
Im _ 5561 x 1072 x (T/K)>/? x (M /gmol~1)3/2 [Table 20.3]
A

(2.561 x 1072) x (298)%/2 x (28.02)%/2 = 5.823 x 10°

R 1 298
q = x 0.6950 x ————[Table 20.3] = 51.81
2 1.9987

1
V = —_—
9" = sz Table 20.3] = 1.00

Therefore

& _ —
]‘{/—m = (5.823 x 10°) x (51.81) x (1.00) = 3.02 x 10°
A

Un — Un(0) = 3RT + RT = 3RT [T > 6r,6R]

Hence
Un — Un(0) am
§ = — " 4+ R(In= 41
m T + nNA +

SR+ R{In3.02 x 108 + 1} = 23.03R = ] 191.4JK ' mol™!

The difference between the experimental and calculated values is negligible, indicating that the
residual entropy is negligible.

(a) Rotational state probability distribution,

QJ + 1)efthJ(]+l)/kT

S (27 + 1)e heBIU+D/AT
J=0

PR(T) = [20.14]

is conveniently plotted against J at several temperatures using mathematical software. This
distribution at 100 K is shown below as both a bar plot and a line plot.

Rotational distributions
0.15 T T T T T T T

0.1

PE(T)

0.05

0 s 10 15 20 25 30 35 40
J Figure 20.3(a)
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Percentage deviation
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The plots show that higher rotational states become more heavily populated at higher temperature.
Even at 100 K the most populated state has 4 quanta of rotational energy; it is elevated to 13
quanta at 1000 K.

Values of the vibrational state probability distribution,

PVV(T) — e—l)hClj/kT(l _ e—hClj/kT)—l’ [2021]

are conveniently tabulated against v at several temperatures. Computations may be discontinued
when values drop below some small number like 1077,

PY(T)

v 100K 300K 600K 1000K
0 1 1 0.995 0.956

1 277x107™ 3.02x107° 547x107°  0.042

2 9.15x 1071 3.01 x 107 1.86x 1073
3 1.65x 1077 8.19 x 1073
4 3.61 x 107°
5 1.59 x 1077

Only the state v = 0 is appreciably populated below 1000 K and even at 1000 K only 4% of the
molecules have 1 quanta of vibrational energy.
heB (6626 x 1073475) (3.000 x 103 ms~!) (193.1m™!)

"= - Section 20.2b
¢ k 1.381 x 10-23JK~! (Section )

Or =2.779K

Since Or < T where T is the lowest temperature of current interest (100 K), we expect that the
classical rotational partition function,

R T
9 classical (T) = ﬁ . [20.15a]

Classical partition function error
0 T T T T

|
o
o
I

|
o
~
I

|
©
o
I

-0.8 -

- I I I I
0 200 400 600 800 1000

Temperature / K Figure 20.3(a)
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should agree well with the rotational partition function calculated with the discrete energy
distribution,

g% =) @7 + 1)e hBIUFD/ET 20.14]
J=0

A plotof the percentage deviation (q?lassi cal —qR) 100/ qR confirms that they agree. The maximum
deviation is about —0.9% at 100 K and the magnitude decreases with increasing temperature.

(¢) The translational, rotational, and vibrational contributions to the total energy are specified by
eqns 20.28, 20.30, and 20.32. As molar quantities, they are:

Nahcv
T_3 R _ vV _ A
U’ = 2RT, U™ =RT, U" = /KT ]

The contributions to the energy change from 100 K are AUT(T) = UT(T) — UT(100 K), etc.
The following graph shows the individual contributions to the total molar internal energy change
from 100 K. Translational motion contributes 50% more than the rotational motion because it
has 3 quadratic degrees of freedom compared to 2 quadratic degrees of freedom for rotation.
Very little change occurs in the vibration energy because very high temperatures are required to
populate v = 1, 2, .. .. states (see Part a).

_ (UMY _ (8 T, R,V
CV,m(T)—< 3T )v_<3T>v(U +US+UY) [2.19]

duV
dr

= 3R+R+dUV—5R+
2 dr 2

Energy change contributions

15 T T T T T T
10
Translational
AU .
R 1
7 moLl otational
5 -
Vibrational
0 ! ! .
100 200 300 400 500 600 700 800 900 1000
T/K Figure 20.3(c)

+
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The derivative dU"Y /dT may be evaluated numerically with numerical software (we advise
exploration of the technique) or it may be calculated with the analytical function of eqn 20.39:

o auV . oy [ e—tv/2T 2
Vim ™ ogr T T \1—e/T

where 0y = hcv/k = 3122 K. The following graph shows the ratio of the vibrational contribu-
tion to the sum of translational and rotational contributions. Below 300 K, vibrational motions
makes a small, perhaps negligible, contribution to the heat capacity. The contribution is about
10% at 600 K and grows with increasing temperature.

Relative contributions to the heat capacity

0.2 T T T T
C'm 0.1 |- .
cT 4cR 7
v,m v,m
0 1 L 1 1
0 200 400 600 800 1000

T/K Figure 20.3(d)

The molar entropy change with temperature may be evaluated by numerical integration with
mathematical software.

AS(T) — _fT Cpm(T)dT
(T) = S(T) — S(100K) = DL [4.19]

100K T

= /T Md]" [3.20]

100K T

T IR+Cy (T)
_/ 2 vt o

100K T

T Cy (D)
AS(T) = 2RIn(—L_ +/ —vm gy
2 100K wok T

ASTHR(T) ASV(T)

Even at the highest temperature the vibrational contribution to the entropy change is less than
2.5% of the contributions from translational and rotational motion.
The vibrational contribution is negligible at low temperature.
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Relative contributions to the entropy change

0.03 T T T T
0.02 |
ASY
AS T+R

0.01 _

0 | | |
0 200 400 600 800 1000
T/K Figure 20.3(e)
= (CHD3)g 2 (DCI
P20.10 K = qmé 3)61;1( )e_ﬂAE" [20.54, N factors cancel]

qm (CD4)gm (HCI)

The ratio of translational partition functions is

gy (CHD3)g L (DCl)  ( M(CHD3)M(DCH\*?  /19.06 x 37.46)3/2 0,964
gl (CDg)gL(HCl) — \ M (CD4)M(HCI) ~\20.07 x 36.46 o

The ratio of rotational partition functions is

gR(CHD3)¢R(DCl)  o(CDy) (B(CDy)/cm™13/2B(HCI) /ecm ™!
gR(CDy)¢R(HCI) ~ o (CHD3) (A(CHD3)B(CHD3)2/cm—3)1/2B(DCl)/cm—!
12 2.633/2 x 10.59

x = 6.24
3 7 (2.63 x 3.282)1/2 x 5.445

The ratio of vibrational partition functions is

q" (CHD3)q" (DCI)  ¢(2993)q(2142)¢(1003)3q(1291)%¢(1036)%4(2145)
gV (CDy)gV(HC) ~— ¢(2109)¢(1092)2¢(2259)3¢(996)3¢(2991)

1
o 1.4388x/(T/K)

where g (x) = 7

We also require A E(, which is equal to the difference in zero point energies

% = %{(2993 + 2142 + 3 x 1003 + 2 x 1291 4 2 x 1036 4 2145)
— (2109 + 2 x 1092 + 3 x 2259 + 3 x 996 4 2991)} cm ™!
= —1053cm™!
Hence,

K = 0.964 x 6.24 x Qe+1‘4388X990/(T/K) — 6.02Qe+1424/(T/K)
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where Q is the ratio of vibrational partition functions. We can now evaluate K (on a computer), and
obtain the following values

T/K 300 400 500 600 700 800 900 1000
K 698 217 110 72 54 44 38 34

The values of K are plotted in Fig. 20.4.

Figure 20.4

Solutions to theoretical problems

(a) 6y and OR are the constant factors in the numerators of the negative exponents in the sums that
are the partition functions for vibration and rotation. They have the dimensions of temperature
which occurs in the denominator of the exponents. So high temperature means 7 > 6y or g
and only then does the exponential become substantial. Thus fy is a measure of the temperature
at which higher vibrational and rotational states become populated.

_ hep (2998 x 108 ms™!) x (6.626 x 10734 T 5) x (60.864 cm™ 1)
ok (1.381 x 10-23JK~1) x (1 m/100 cm)

 [755K]

o — hed  (6.626 x 10734 Ts) x (4400.39cm™!) x (2.998 x 103 ms™)
VT T (1.381 x 1023 JK~1) x (1 m/100 cm)

— [e530K]

(b) and (¢) These parts of the solution were performed with Mathcad 7.0 and are reproduced on the
following pages.

OrR

Objective: To calculate the equilibrium constant K (7') and C, (T') for dihydrogen at high temperature
for a system made with » mol H; at 1 bar.

Hy(g) = 2H(g)

At equilibrium the degree of dissociation, «, and the equilibrium amounts of H; and atomic hydrogen
are related by the expressions

ng, = (1 —o)n and ng=2an
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The equilibrium mole fractions are

xp, =0 —an/{(d —a)n +2an} = (1 —a)/(1 + )
xg =2on/{(1 —a)n + 2an} =2a/(1 + a)

The partial pressures are
pH, = (1 —a)p/(I+a) and py =2ap/(1+a)
The equilibrium constant is
K(T) = (pu/p=)?/(pny/ ) = 4*(p/p©)/(1 = o)
= 40[2/(1 —otz) where p = p© = 1 bar

The above equation is easily solved for «

a=(K/(K+4)1/?

The heat capacity at constant volume for the equilibrium mixture is
Cy (mixture) = ngCy m(H) + np,Cy,.m(Ha)
The heat capacity at constant volume per mole of dihydrogen used to prepare the equilibrium mixture is
Cy = Cy(mixture)/n = {(ngCy mH) + nu,Cy m(H2)}/n
= |20Cy,m(H) + (1 —a)Cy,m(H2)

The formula for the heat capacity at constant pressure per mole of dihydrogen used to prepare the
equilibrium mixture (Cp) can be deduced from the molar relationship

Cp7m - CV’m + R
Cp = {nuCpm(H) + np,Cp m(Ha)} /n
nH nH
= —{Cvm) + R} + == {Cym(Ho) + R}

nuCy .mM) + nyg, Cy m(Ha) 4R (nH + nH2>
n

n
=Cy+R(+w
Calculations
J = joule s = second kJ = 100017
mol = mole g = gram bar = 1 x 10° Pa
h=6.62608 x 1073*Js  ¢=2.9979 x 108 ms™! k = 138066 x 10" JK !

R =831451JK "mol™! Np =6.02214 x 10 mol~!  p® = 1 bar

Molecular properties of Hy
v =440039cm™' B =60.864cm™' D =432.1kJmol™!

lgmol_1
mygy= — my, = 2my
Na
0o — hcv e — hcB
VT % R= 7%
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Computation of K(T) and o(T')

[ % 5500K
N=200 i=0,....N T =50K¢ >"%
Ag = h A = h
T Qampkt) 2 T T Qamp k)12
1 T;

W= vty R~ g0

3

kT; (AHzi) e—(D/RT)) Keq[ 1/2

Keq; = 6 “i=\% 4
Pef]V,-CIRi (AHI) €q; +

See Fig. 20.5(a) and (b).

(a) 1 T T T T T

O 1 | 1 1 1
0 1000 2000 3000 4000 5000 6000
T,/K

(b) 100 T T T T T

80

60
)
40 +

20

0 1 1 1 1
0 1000 2000 3000 4000 5000 6000

Ti/K Figure 20.5
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Heat capacity at constant volume per mole of dihydrogen used to prepare equilibrium mixture (see
Fig. 20.6(a))

27

25 1

23

Cy,/(JK"mol™)

22 F

20

0 1000 2000 3000 4000 5000 6000
T,/K Figure 20.6(a)

Cyih) =

2
N N TRl Cy = 20y ) + (1 —anCy(H
Cy(Hp) =[2.5R+ Tixm v, =20;Cy(H) + (1 — ;)Cy (Hy,)

The heat capacity at constant pressure per mole of dihydrogen used to prepare the equilibrium
mixture is (see Fig. 20.6(b))

Cpi =CV1 +R(1+O{l)

42 T T T T T

40 |

36

34

C,, /UK "mol™")

32

30

28 L L L L L
0 1000 2000 3000 4000 5000 6000

T;/K Figure 20.6(b)
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1 0
P20.14 q=1— ¥=hop=hcip= % [Table 20.3]
— €
N (9 d
U—-U@0) =—— (—q) = N(l—e)—(1—e*)"!
g \9B/y dg
_ Nhwe™ _ Nhw
T l—e X |ex—1
U aU U
Cy=(—) =-kB>— = —kB*ho—
aT ), op ox

X 2.x
_ 2 (&3 _ X-e
= k(Bhw)*N {—(ex — 1)2} kN {—(ex — 1)2}

o Nhowe™™ Nhw
H — H(Q) =U — U(0)[q is independent of V] = =
1 —e* er —1

U—-U@© Nkxe ™
_UZYO L Rimg = Y Nk — e )
T 1—e*

S

e¥ —1

—| Nk <L —In(l — e—X)>

A—A@0)=G—G(0) = -nRT Ing

— | NATIn(1 — ™)

The functions are plotted in Fig. 20.7.

& . gJe—Sj/kT . gJe—Sj/kT
N Y gge e kT q

For a linear molecule g; = 2J + 1 and ¢; = hcBJ(J + 1). Therefore,

P20.15 (a)

(b) Jmax occurs when dny/dJ = 0.

dN N d _( heBJ(J+D)
T s+ e ( kT ) =0
dJ qg dJ

hcB

2— (2Jmax + 1) (ﬁ) (2Jmax + 1) =0

2%T\ /2
th)

o kT \?* 1
M=\ 2hceB 2

(¢) Jmax = 3 because the R branch J = 3 — 4 transition has the least transmittance. Solving the
previous equation for 7 provides the desired temperature estimate.

2Jmax +1 = <
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[U - U(0)]/ Niiw

0.01 0.1 1 10 100
X

Figure 20.7
T~ B g 1)
~ 2k max

(6.626 x 10734 T's) x (3.000 x 108 ms~1) x (10.593 cm™") x (102%) x (7)2
~ 2(1.38066 x 10-23JK-1)

All partition functions other than the electronic partition function are unaffected by a magnetic field;
hence the relative change in K is the relative change in qE.

E - BM 3 1 1 3. 4
gt = et My = =3, ) 4y 4 g =3
My

P20.17

Since gup BB < 1 for normally attainable fields,

1
q" =) {1 —gusBBM; + ~(guppBMy)* + -
My 2
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1 10 4
=4+ E(gMBISB)ZZM3 |:ZMJ =0:| =4<1+?(MB/38)2) |:8= §i|

M, M;
Therefore, if K is the actual equilibrium constant and K 0 is its value when B = 0, we write

K

20
KO 9

10 2
= (1 + ngﬂBﬁ) ~ 1+ B
For a shift of 1 per cent, we require
Dugp* B> ~0.01, or uppB~0.067
Hence

0.067kT  (0.067) x (1.381 x 10723 JK~1) x (1000K)
KB 9.274 x 10~24JT1!

Solutions to applications

P20.20 The standard molar Gibbs energy is given by

< =

q q 9m,r R V E
G® —GS2(0)=RTIn™™ where - = &1
o m (0 N w N A q°q
A kT 2 5/2 1,32
Translation: = =2561 x 1072(T/K)>?(M/gmol™ 13/
Na pOA3

= (2.561 x 1072) x (2000)°/% x (38.90)3/2

=1.111 x 10°

Rotation of a linear molecule:

R kT 0.6950 T/K
= = X
ohcB o B/cm~1

q

The rotational constant is

h h mBms;
= = where meff = ———
el 4memes R? mp + ms;j
_(10.81) x (28.09) 10~3 kg mol !

10.81 +28.09  6.022 x 1083 mol—!
megr = 1.296 x 10720 kg

1.0546 x 107347
B =
47(2.998 x 1010 cms—1) x (1.296 x 10=26kg) x (190.5 x 10~12m)?

=0.5952cm ™!

R 0.6950 2000
= X
1 0.5952

S0 ¢
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Vibration: qV = ! = = ! o = !
1 —e~heV/kT — | _ exp(—1.4388(v/cm*1)) | — eXp(—1.4388(772)>

T/K 2000
= 2.467
The Boltzmann factor for the lowest-lying electronic excited state is

(—(1.4388) x (8000)
2000

) =32x1073

The degeneracy of the ground level is 4 (spin degeneracy = 4, orbital degeneracy = 1), and that of
the excited level is also 4 (spin degeneracy = 2, orbital degeneracy = 2), so
¢F =4(1+32x1073) =4.013
Putting it all together yields
GS -GS (0) = (8.3145Jmol~ ' K™!) x (2000K) In(1.111 x 10%) x (2335)
x (2.467) x (4.013)

= 5.135x 10°Tmol~ ! =|513.5kI mol !

P20.22 The standard molar Gibbs energy is given by

GS —GZ(0)=RTIn ﬁ where ie = qm_G:UqRqVqE
m m Na A A
First, at 10.00 K
qe
Translation: ;—tr = 2.561 x 10~2(T/K)>/2(M /g mol~1)3/2
A

= (2.561 x 1072) x (10.00)>/? x (36.033)3/2

= 1752

Rotation of a nonlinear molecule:

R L (kT 3/2< e )1/2_ 10270 (T/K)3/2
T =5 e ABC) T~ & T (ABC/em—3)1/2

o
The rotational constants are

h i\ 1
B=— so ABC=—] ——,
drcl dre ) IaIglc

—34 3
1.0546 x 10 Js
ABC =

47(2.998 x 1010 cms—1)
(1010 Am ™16
X )
(39.340) x (39.032) x (0.3082) x (uA2)3 x (1.66054 x 10~27 kgu~1)3
=101.2c¢m ™3

R _ 10270 (10.00)3/2
2 (101.2)1/2

= 1.614

SO0 g
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L v 1 1 1
Vibration: ¢~ = —hev/kT — 14388G/em )\ —1.4388(63.4)
l—e 1— exp(—' T/K ) 1-— exp(—' 000 )

= 1.0001

Even the lowest-frequency mode has a vibrational partition function of 1; so the stiffer vibrations
have qV even closer to 1. The degeneracy of the electronic ground state is 1, so qE = 1. Putting it all
together yields

GS —G2(0) = (8.3145Jmol" K1) x (10.00K) In(1752) x (1.614) x (1) x (1)

= [660.8J mol ™!

Now at 1000 K

©
Translation: Ml (2.561 x 1072) x (1000)°/% x (36.033)%/2 = 1.752 x 108
A
, R 1.0270  (1000)%/2
Rotation: q" = X = 1614
2 (101.2)1/2
oo V() ! _
Vibration: q = BB 11.47
. X .
1 —exp <_—1000 )
1
qV(Z) - (1.4388) x(1224.5) = 1.207
1 —exp (_—' 1000 )
1
qg¥® = = 1.056

1.4388) x (2040
| o (00
g = (11.47) x (1.207) x (1.056) = 14.62
Putting it all together yields
GS -GS (0) = (8.3145Jmol ' K™!) x (1000K) x In(1.752 x 10%) x (1614)
x(14.62) x (1)

= 2.415x 10°Jmol~! ={241.5kI mol~!

+



E21.1(b)

E21.2(b)

E21.3(b)

21 Molecular interactions

Solutions to exercises

Discussion questions

When the applied field changes direction slowly, the permanent dipole moment has time to
reorientate—the whole molecule rotates into a new direction—and follow the field. However, when
the frequency of the field is high, a molecule cannot change direction fast enough to follow the change
in direction of the applied field and the dipole moment then makes no contribution to the polarization
of the sample. Because a molecule takes about 1 ps to turn through about 1 radian in a fluid, the loss of
this contribution to the polarization occurs when measurements are made at frequencies greater than
about 10! Hz (in the microwave region). We say that the orientation polarization, the polarization
arising from the permanent dipole moments, is lost at such high frequencies.

The next contribution to the polarization to be lost as the frequency is raised is the distortion polar-
ization, the polarization that arises from the distortion of the positions of the nuclei by the applied field.
The molecule is bent and stretched by the applied field, and the molecular dipole moment changes
accordingly. The time taken for a molecule to bend is approximately the inverse of the molecular
vibrational frequency, so the distortion polarization disappears when the frequency of the radiation
is increased through the infrared. The disappearance of polarization occurs in stages: as shown in
Justification 21.3, each successive stage occurs as the incident frequency rises above the frequency
of a particular mode of vibration.

At even higher frequencies, in the visible region, only the electrons are mobile enough to respond
to the rapidly changing direction of the applied field. The polarization that remains is now due
entirely to the distortion of the electron distribution, and the surviving contribution to the molecular
polarizability is called the electronic polarizability.

There are three van der Waals type interactions that depend upon distance as 1/ r0; they are the Keesom
interaction between rotating permanent dipoles, the permanent-dipole—induced dipole-interaction,
and the induced-dipole—induced-dipole, or London dispersion, interaction. In each case, we can
visualize the distance dependence of the potential energy as arising from the 1/ r3 dependence of
the field (and hence the magnitude of the induced dipole) and the 1/ r dependence of the potential
energy of interaction of the dipoles (either permanent or induced).

The goal is to construct the radial distribution function, g(r), which gives the relative locations of the
particles in the liquid (eqn 21.35). Once g(r) is known it can be used to calculate the thermodynamic
properties of the liquid. This expression is nothing more than the Boltzmann distribution of statistical
thermodynamics for two molecules in a field generated by all the other molecules in the system.

There are several ways of building the intermolecular potential into the calculation of g(r). Numeri-
cal methods take a box of about 10 particles (the number increases as computers grow more powerful),
and the rest of the liquid is simulated by surrounding the box with replications of the original box
(Fig. 21.29 of the text). Then, whenever a particle leaves the box through one of its faces, its image
arrives through the opposite face. When calculating the interactions of a molecule in a box, it interacts
with all the molecules in the box and all the periodic replications of those molecules and itself in
the other boxes. Once g(r) is known it can be used to calculate the thermodynamic properties of
liquids.

(a) Monte Carlo methods

In the Monte Carlo method, the particles in the box are moved through small but otherwise random
distances, and the change in total potential energy of the N particles in the box, AVy, is calculated
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using one of the intermolecular potentials discussed in Sections 21.5 and 21.6. Whether or not this
new configuration is accepted is then judged from the following rules:

1 If the potential energy is not greater than before the change, then the configuration is accepted.

2 Ifthe potential energy is greater than before change, the Boltzmann factor e~ AVN/KT i compared

with a random number between 0 and 1; if the factor is larger than the random number, the
configuration is accepted; if the factor is not larger, the configuration is rejected. This procedure
ensures that at equilibrium the probability of occurrence of any configuration is proportional to
the Boltzmann factor. The configurations generated in this way can then be used to construct
g(r) simply by counting the number of pairs of particles with a separation r and averaging the
result over the whole collection of configurations.

(b) Molecular dynamics

In the molecular dynamics approach, the history of an initial arrangement is followed by calculating
the trajectories of all the particles under the influence of the intermolecular potentials. Newton’s laws
are used to predict where each particle will be after a short time interval (about 1 fs. which is shorter
than the average time between collisions), and then the calculation is repeated for tens of thousands
of such steps. The time-consuming part of the calculation is the evaluation of the net force on the
molecule arising from all the other molecules present in the system.

A molecular dynamics calculation gives a series of snapshots of the liquid, and g(r) can be
calculated as before. The temperature of the system is inferred by computing the mean kinetic energy
of the particles and using the equipartition result that (1,2 mvé y = 1/2kT for each coordinate gq.

Describe how molecular beams are used to investigate intermolecular potentials.

A molecular beam is a narrow stream of molecules with a narrow spread of velocities and, in some
cases, in specific internal states or orientations. Molecular beam studies of non-reactive collisions
are used to explore the details of intermolecular interactions with a view to determining the shape of
the intermolecular potential.

The primary experimental information from a molecular beam experiment is the fraction of the
molecules in the incident beam that are scattered into a particular direction. The fraction is normally
expressed in terms of d/, the rate at which molecules are scattered into a cone that represents the area
covered by the “eye” of the detector (Fig. 21.21 of the text). This rate is reported as the differential
scattering cross-section, o, the constant of proportionality between the value of d/ and the intensity,
I, of the incident beam, the number density of target molecules, N, and the infinitesimal path length
dx through the sample:

dl =oINdx.

The value of o (which has the dimensions of area) depends on the impact parameter, b, the initial
perpendicular separation of the paths of the colliding molecules (Fig. 21.22), and the details of the
intermolecular potential.

The scattering pattern of real molecules, which are not hard spheres, depends on the details of
the intermolecular potential, including the anisotropy that is present when the molecules are non-
spherical. The scattering also depends on the relative speed of approach of the two particles: a very
fast particle might pass through the interaction region without much deflection, whereas a slower one
on the same path might be temporarily captured and undergo considerable deflection (Fig. 21.24). The
variation of the scattering cross-section with the relative speed of approach therefore gives information
about the strength and range of the intermolecular potential.

Another phenomenon that can occur in certain beams is the capturing of one species by another. The
vibrational temperature in supersonic beams is so low that van der Waals molecules may be formed,
which are complexes of the form AB in which A and B are held together by van der Waals forces or
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hydrogen bonds. Large numbers of such molecules have been studied spectroscopically, including
ArHCI, (HCI);ArCO;, and (H>O),. More recently, van der Waals clusters of water molecules have
been pursued as far as (HyO)¢. The study of their spectroscopic properties gives detailed information
about the intermolecular potentials involved.

Numerical exercises

E21.5(b) A molecule that has a centre of symmetry cannot be polar. SO3(D3p,) and XeF4(Dgyp) cannot be polar.

(see-saw, Cpy) may be polar.

E21.6(b) The molar polarization depends on the polarizability through

Na u?
Py = A £
™ 3 (“+ 3kT>

This is a linear equation in T~ with slope

Nap? 9eokm \ /2
m=AE o = () Z (4275 x 10722 Cm) x (m/(m3 mol 1 K)) /2
9¢eok Na
and with y-intercept
N 3eob
b="A% o 0 =27 _ (4411 x 107352 m? 1 Hb/(m3 mol ™)
3eg Na

Since the molar polarization is linearly dependent on T~!', we can obtain the slope m and
the intercept b

Pn2— P (75.74 —71.43) cm® mol ™!
77 -1, T (320.0K)~! — 421.7K)"!

=572 x 103 cm®> mol ' K

andb = Py —mT ™' =75.74cm3 mol ™! — (5.72 x 10° cm® mol ™! K) x (320.0K)~!
=57.9cm?> mol~!

It follows that

w=(4275x 1072 Cm) x (5.72 x 107 H1/2 = ] 303 x 10—30cm\

ando = 4411 x 107PC?2m? I 1 x (579 x 107%) = ] 255 x 107 2 m? ! \
E21.7(b) The relative permittivity is related to the molar polarization through

e — 1 o Pm 2C+1
=——=C s0 &=
&+ 2 M 1-C

’

_ (1.92gcm_3) x (32.16 cm?® mol 1)

C
85.0 gmol~!

=0.726

8_2x(0.726)+1_897
T1-0726 &
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E21.8(b) If the permanent dipole moment is negligible, the polarizability can be computed from the molar

polarization
Nao 3e0 Pm
= o o=
m RN Na

and the molar polarization from the refractive index

0 Pm er—l_n%—l 380M<n%—1>

= = SO o =
M &+2 ni+2 Nap \nZ+2

3% (8.854x 10712771 C2m~!) x (65.5gmol ™) 1.6222 — 1
T (6.022 x 1023 mol—!) x (2.99 x 106 gm~3) 1.6222 42

=1[3.40 x 10740 CZm?J!

E21.9(b) uw=gqR [q = be, b =bond order]
For example, ionic (C—F) = (1.602x 10712 C) x (1.41 x 1071%m) = 22.6 x 1073°Cm = 6.77D

Mobs

Then, per cent ionic character = x 100

Hionic
Ax values are based on Pauling electronegativities as found in any general chemistry text.

We draw up the following table

Bond  pops/D Mionic/D  Percent Ay
C—F 14 677 1.5
c—0 12 687 1.0

The | correlation is at best qualitative ‘

Comment. There are other contributions to the observed dipole moment besides the term gR. These
are a result of the delocalization of the charge distribution in the bond orbitals.

Question. Is the correlation mentioned in the text [21.2] any better?

E21.10(b)  u = (uf + 43 + 2uipzcos )/ [21.3a]
=[(1.5)% + (0.80)2 + (2) x (1.5) x (0.80) x (cos 109.5°)]'/2D =
E21.11(b) The components of the dipole moment vector are
e =Y qixi = (4€) x (0) + (—2¢) x (162 pm)
i + (—2e) x (143 pm) x (cos30°) = (=572 pm)e
and puy = Zqiyi = (4e) x (0) + (—2¢) x (0) + (—2¢) x (143 pm) x (sin30°) = (—143 pm)e
i

The magnitude is

w= (2 +u)"? = ((=570)% + (= 143)*)? pme = (590 pm)e

= (590 x 1072 m) x (1.602 x 10712 C) ={9.45 x 107* Cm
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, —143
and the direction is § = tan~! By _ tan~! Tpme =194.0° | from the x-axis (i.e., 14.0° below
I —572pme

the negative x-axis).
E21.12(b) The induced dipole moment is

W =af =4mepad’ €
= 47(8.854 x 10712771 C?2m™ 1) x 2.22 x 1073%m?) x (15.0 x 103 Vvm~h)

=371 x 107 Cm]|

E21.13(b) The solution to Exercise 21.8(a) showed that

3egM n?—1 , 3M n?—1
o = X or o = X
pNa nZ+2 4rpNa nz+2
which may be solved for n; to yield

' 20"\ 3M
nr=<’;,+—“,> with g =
—

B (3) x (72.3gmol ™)
© (47) x (0.865 x 100 gm—3) x (6.022 x 1023 mol—1)

_ 172
. (33.14+2 x 2.2) _[T0]

33.14 — 2.2

B =3314 x 107 m3

E21.14(b) The relative permittivity is related to the molar polarization through

e — 1 0 Pn 2C +1
=——=C s0 &=
e +2 M 1-C

The molar polarization depends on the polarizability through

Na M2 PNa , ,uz
P, =— L C = 4 e
™= 30 (“ + 3kT> 50 3eoM \ Y T3y
B (1491 kgm™3) x (6.022 x 1083 mol™ 1)
©3(8.854 x 10-12J-1C2m—1) x (157.01 x 10-3 kgmol—1)

x <4n(8.854 x 1072771 C2m ) x (1.5 x 1072 m?)

N (5.17 x 10739 Cm)?
3(1.381 x 1023 JK—1) x (298 K)

2(0.83) + 1
C =083 and 81:%:

+
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E21.15(b) The rotation of plane-polarized light is described by

A= ( )2711 AAO
= (R —nL)—/ SO NR — AL = —
R=ALTS R™AL =500

(450 x 10~ m) x (2 x 192°) ( 2
= X
272(15 x 10-2m) 360°

== (32107

Solutions to problems

Solutions to numerical problems

P21.2 The energy of the dipole —u €. To flip it over requires a change in energy of 241 £. This will occur
when the energy of interaction of the dipole with the induced dipole of the Ar atom equals 241 €.
The magnitude of the dipole—induced dipole interaction is

2./
n1%sy ..
V= 3 [21.26] = 2 & [after flipping over]
mEer
6 Miah (6.17 x 10739Cm) x (1.66 x 10730 m3)

C 2mepE (27) x (8.854 x 10~ 12J-1C2m~1) x (1.0 x 103 Vm—1)

=1.84x107?m°
r=24x10"m=[24nm|

Comment. This distance is about 24 times the radius of the Ar atom.

M e —1 4 NA,u2 .

P21.4 Pn=|—)x and Py = —Nad 21.15and 21.16 witha = 4megpa’

m <p> <8r+2) m= g At gk | o =dreod
The data have been corrected for the variation in methanol density, so use p = 0.791 g cm ™3 for all
entries. Obtain 1 and o from the liquid range (9 > —95°C) results, but note that some molecular
rotation occurs even below the freezing point (thus the —110°C value is close to the —80°C value).
Draw up the following table using M = 32.0g mol ™!,

6/°C —-80 =50 20 0 20
T/K 193 223 253 273 293
1000

T 5.18 448 395 3.66 341
T/K

& 57 49 42 38 34
&1 0.949 0.941 0932 0925 0917
& +2

P,/(cm*mol™") 384 381 377 374 371
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P21.6

1
Py, is plotted against T in Fig. 21.1.

P, /(cm*mol™})

4.0 4.4 4.8 5.2
1000 7/K Figure 21.1

1
The extrapolated intercept at T= 0 is 34.8 (not shown in the figure) and the slope is 721 (from a

least-squares analysis). It follows that

,  3Pp(at intercept) (3) x (35.0cm3 mol™ 1)
o = —
4 Na (47) x (6.022 x 1023 mol—!)

=138 x 1073 cm®

w=(1.282 x 1072 D) x (721)'/? [from Problem 21.3] =|0.34D

The jump in &; which occurs below the melting temperature suggests that the molecules can rotate
while the sample is still solid.

4 Nap?
P = —Nad
m = S NAC kT

Draw up the following table

[21.16, witha = 4 ege’]

T/K 3843 420.1 444.7 484.1 522.0
1000
T/K
Pm/(cm®mol™!) 574 535 50.1 468 43.1

2.602 2380 2249 2.066 10916

The points are plotted in Fig. 21.2.
The extrapolated (least-squares) intercept is 3.44 cm® mol™!; the slope is 2.084 x 10*.

= (1.282 x 1072 D) x (slope)'/? [Problem 21.3] ={1.85D

; 3 Py (at intercept) _ 3) x (3.44 cm? mol_l)
- 4w N - (4m) x (6.022 x 1023 mol—1)

=136 x 1072 cm®

Comment. The agreement of the value of u with Table 22.1 is exact, but the polarizability volumes
differ by about 8 per cent.
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If there is a simple group-additivity relationship, then a®l oy ght to be a linear function of the number

of SipHy groups. That is, a plot of ' versus N ought to be a straight line. The plot is shown in
Fig. 21.3 and a table shows values of &' computed from the best fit of the data and their deviations
from the reported values. The equation of the best-fit line is

/(107417 'Cm?) = 4.8008N — 1.7816

so the average contribution per SipH, unit is | 4.80 x 10740171 ¢ m?

N 1 2 3 4 5 6 7 8 9

Reported ol 3495 7766 1240 17.18 22.04 26.92 31.82  36.74 41.63
Best fit o°1° 3.019 7.820 12.62 17.42 2222 27.02 31.82  36.62 4143
Deviation 0476 —-0.054 -0.22 -0.24 -—-0.18 —-0.098 —-0.002 0.110 0.21

1y =17816+4.8008x :

/(107917 Cm?)

N Figure 21.3

The root-mean-square deviation is | 0.26 x 107451 cm?
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P21.9

P21.11

Dy can be obtained by adding together all the vibrational transitions; then
De=Do+ 1} (1= 1x;) =D+ G0

The potential obviously has some anharmonicity, for no two transitions have the same or nearly the
same energy. But we cannot compute x, without knowing D, for

_ v
T 4D,

Xe

For that matter, we do not know v exactly either. Our best estimate at the moment is G(1) — G (0),
which would equal v if the vibration were harmonic, but in general it is

G =GO = (1+4) 7= (1+ 1) xed = (47 = 12x7) = 5(1 - 2xe)

Our solution is first to compute De as if the potential were harmonic, then to compute x. based
on the harmonic D, and to recompute v from G(1) — G(0) and xe. D, can then be recomputed
based on the improved v and x. and the process repeated until the values stop changing in successive
approximations. In the harmonic approximation

De = 1909.3 + 1060.3 + 386.3 + 1(1909.3) m~! =4310.6m™!

and the parameter a is given by

mege \/? 2megre\ V2
a = w = Y
2hcDe hD.
_[2(2.2128 x 107% kg) x (2.998 x 10°ms™)
N (6.626 x 10~34Ts) x (4310.6m—1)

1/2
) x 7(1909.3m™ ")

= 1293 x 1019m~!

The anharmonicity constant is substantial

1909.3m™!

=2 01107
4(4310.6m—1)

Xe

A spreadsheet may be used to recompute the parameters, which converge to

Xe = 0.1466, 7 =2701m~ !, D.=4607m~!, and a=1.769 x 1019m™!

or De = anda =] 1.769 x 108 cm™!

An electric dipole moment may be considered as charge +¢ and —¢g separated by a distance [/ such
that

(1.77D) x (3.336 x 10730 Cm/D)

=197 x020C
299 x 10—12m

w=ql so qg=p/l=

In units of the electron charge

g/e=(1.97x 10720C)/(1.602 x 1071 C) ={0.123
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P21.12 Neglecting the permanent dipole moment contribution
N
P, = 2%21.16]
380

(6.022 x 1023 mol™!) x (3.59 x 10740J-1C2 m?)
3(8.854 x 10~12J-1C2m—1)

=814 x 107 °m?>mol~! =|8.14cm> mol ™!

P,
= P
M

e — 1
e +2

7914 gem 3 .14cm? mol !
_ (0.7914gcm ™) x (8.14cm” mol™ ") — 0201
32.04 gmol ™!

gr — 1 =0.201g; + 0.402;
ne = e/* = (1.76)1/2 = [21.19]

The neglect of the permanent dipole moment contribution means that the results are applicable only
to the case for which the applied field has a much larger frequency than the rotational frequency. Since
red light has a frequency of 4.3 x 10'*Hz and a typical rotational frequency is about 1 x 102 Hz,
the results apply in the visible.

Answers to theoretical problems

1
P21.15 The timescale of the oscillations is about 055G, = 2 x 1077 s for benzene and toluene, and
. z

2.5 x 1077 s for the additional oscillations in toluene. Toluene has a permanent dipole moment;
benzene does not. Both have dipole moments induced by fluctuations in the solvent. Both have
anisotropic polarizabilities (so that the refractive index is modulated by molecular reorientation).
Both benzene and toluene have rotational constants of 0.2 cm ™!, which correspond to the energies
of microwaves in this frequency range. Pure rotational absorption can occur for toluene, but not for
benzene.

P21.18 An ‘exponential-6’ Lennard—Jones potential has the form

V= de [Ae—r/a _ (g)é]

and is sketched in Fig. 21.4.

The minimum occurs where

dv —A 60°

— =A4¢ (-e_r/a —+ i) =0
dr o

which occurs at the solution of

ol A
r! 6

—r/o

Solve this equation numerically. As an example, when A = o = 1, a minimum occurs at r = .
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P21.19

P21.21

Figure 21.4

The number of molecules in a volume element dt is

T
= Ndz. The energy of interaction of

these molecules with one at a distance r is VN dr. The total interaction energy, taking into account
the entire sample volume, is therefore

u= / VNdt =N / Vdr [V is the interaction, not the volume]

The total interaction energy of a sample of N molecules is $ Nu (the ; is included to avoid double
counting), and so the cohesive energy density is

1
U —5Nu =
U=—3 = 2v :_%j\/uz_%NZ/Vdr
— C
ForV = ——66 and dt = 4rr? dr
r
U ®dr 2w  N?Cq
—— =2 NZC/ - ==
\% 4 6 a r4 3 - d3

N .
However, N = %’O, where M is the molar mass; therefore

1= (5) - (5) (%)

Once again (as in Problem 21.20) we can write

7w — 2arcsin| —— b<R|+R(v
(R1+R2(v)) = it Ro)
0 b > R+ Ry(v)

0(v) =

but R, depends on v
Ry(v) = Rpe /Y

Therefore, with R; = 1Ry and b = 1R,
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1
a 0(v) = — 2arcsin| ————
@ 0@ <1+ze—v/v*>
(The restriction b < R; + Rz (v) transforms into 1Ry < 1Ry + Rge_”/”*, which is valid for

all v.) This function is plotted as curve a in Fig. 21.5.
The kinetic energy of approach is E = Im v2, and so

120

0/deg

40 i

Figure 21.5

(a) v/v* and (b) E/E*

i 1
(b) Q(E) =T — 231'0811’1(W>
with E* = %mv*z. This function is plotted as curve b in Fig. 21.5.
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22 Macromolecules and aggregates

Solutions to exercises

Discussion questions

(a) AS is the change in conformational entropy of a random coil of a polymer chain. It is the
statistical entropy arising from the arrangement of bonds, when a coil containing N bonds of
length [ is stretched or compressed by n/, where n is a numerical factor giving the amount of
stretching in units of /. The amount of stretching relative to the number of monomer units in the
chainisv =n/N.

(b) Rims is one of several measures of the size of a random coil. For a polymer of N monomer units
each of length /, the root mean square separation, Ry, is a measure of the average separation
of the ends of a random coil. It is the square root of the average value of R?, calculated by
weighting each possible value of R? with the probability that R occurs.

(¢) Ryg, the radius of gyration, is another measure of the size of a random coil. It is the radius of a
thin hollow spherical shell of the same mass and moment of inertia as the polymer molecule.

All of these expressions are derived for the freely jointed random coil model of polymer chains which
is the simplest possibility for the conformation of identical units not capable of forming hydrogen
bonds or any other type of specific bond. In this model, any bond is free to make any angle with
respect to the preceding one (Fig. 22.3 of the text). We assume that the residues occupy zero volume,
so different parts of the chain can occupy the same region of space. We also assume in the derivation
of the expression for the probability of the ends of the chain being a distance nl apart, that the chain
is compact in the sense that n < N. This model is obviously an oversimplification because a bond is
actually constrained to a cone of angles around a direction defined by its neighbour (Fig. 22.4). In a
hypothetical one-dimensional freely jointed chain all the residues lie in a straight line, and the angle
between neighbours is either 0° or 180°. The residues in a three-dimensional freely jointed chain are
not restricted to lie in a line or a plane.

The random coil model ignores the role of the solvent: a poor solvent will tend to cause the coil
to tighten; a good solvent does the opposite. Therefore, calculations based on this model are best
regarded as lower bounds to the dimensions of a polymer in a good solvent and as an upper bound for
a polymer in a poor solvent. The model is most reliable for a polymer in a bulk solid sample, where
the coil is likely to have its natural dimensions.

No solution.

The formation of micelles is favored by the interaction between hydrocarbon tails and is opposed by
charge repulsion of the polar groups which are placed close together at the micelle surface. As salt
concentration is increased, the repulsion of head groups is reduced because their charges are partly
shielded by the ions of the salt. This favors micelle formation causing the micelles to be larger and
the critical micelle concentration to be smaller.

A surfactant is a species that is active at the interface of two phases or substances, such as the interface
between hydrophilic and hydrophobic phases. A surfactant accumulates at the interface and modifies
the properties of the surface, in particular, decreasing its surface tension. A typical surfactant consists
of a long hydrocarbon tail and other non-polar materials, and a hydrophilic head group, such as
the carboxylate group, —CO, , that dissolves in a polar solvent, typically water. In other words, a
surfactant is an amphipathic substance, meaning that it has both hydrophobic and hydrophilic regions.

How does the surfactant decrease the surface tension? Surface tension is a result of cohesive forces and
the solute molecules must weaken the attractive forces between solvent molecules. Thus molecules
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with bulky hydrophobic regions such as fatty acids can decrease the surface tension because they
attract solvent molecules less strongly than solvent molecules attract each other. See Section 22.15(b)

for an analysis of the thermodynamics involved in this process.

Numerical Exercises

E22.5(b) For a random coil, the r.m.s. separation is

Roms = [(N)'/? = (1.125nm) x (1200)'/%? =|38.97 nm

E22.6(b) Polypropylene is — (CH(CH3)CH,)—,, where n is given by

_ Mpolymer _ 174kg mol~!

= - =4.13 x 10?
Mmonomer ~ 42.1 x 1073 kg mol !

The repeat length is the length of two C— C bonds. The contour length is

Re=nl=413x10>) x 2x 153 x 107'%m) =[1.26 x 10 ®m

The r.m.s. separation is

Rims = In'? = (2 x 1.53 x 10719m) x (4.13 x 101)1/?2 ={1.97 x 108 m | = 19.7nm

E22.7(b) The number-average molar mass is

— 1 [3 x (62) +2 x (78)] kgmol ! =
My = NIZNiMi = < =|68kgmol !

The mass-average molar mass is

—  YUNiME 3% (62)2 42 x (78)?
VTUSUNIM T 3% (62) +2 x (78)

kg mol ™! =69 kg mol ™!

E22.8(b) For a random coil, the radius of gyration is

Ry =I(N/6)!/? so N =6(Re/1)*> =6 x (18.9nm/0.450nm)? =|1.06 x 10*

E22.9(b) (a) Osmometry gives the number-average molar mass, so

T — NiM;+ NoMp (T/I_ll) My + (Tl_i) M) . ompt+mp
L= = =
() () @)

. 100 g
- ( 25¢ ) + ( 75¢ )
22 kgmol ™! 7.33 kgmol ™!

(b) Light-scattering gives the mass-average molar mass, so

[assume 100 g of solution] = | 8.8 kg mol ™!

_ M M
i miMy + maM>

w=————2"2 = [(0.25) x (22) + (0.75) x (7.33)]kgmol ™' =] 11kgmol !

mi +my

+
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3

E22.10(b) ¢ = T4
3T

[see E22.10(a)]

n(H,0, 20°C) = 1.00 x 10> kgm ™! s~! [Handbook of Chemistry and Physics, 81st Edition]

47 x (4.5 x 1072 m)3 x 1.00 x 1073 kgm’1 g1
3% 1.381 x 10723 JK~! x 293K

9.4 x 10785

E22.11(b) The rate of sedimentation is proportional to the sedimentation constant S

_ bM,y
SN

The frictional coefficient f is proportional to the radius a of the sedimenting substance. The buoyancy
b is the same for both of our substances because the density of the polymers, and therefore their specific
volumes, are the same. The mass of a particle varies with its volume, and therefore with the cube of
its radius. Thus

2
t
So<a3/a:a2 SO raelz(a_1> :(8.4)2:

ratep ap

with the larger particle sedimenting faster.

E22.12(b) The molar mass is related to the sedimentation constant

_ SRT SRT
M, = =
bD (1 — pwaterVsolute) D

where we have assumed the data refer to aqueous solution at 298 K.

7 (7.46 x 10713 5) x (8.3145J K ' mol™!) x (298 K)
"7 — (1000kgm—3) x (8.01 x 10~4m3kg~1)] x (7.72 x 10~ m2s—1)

= | 120 kg mol ™!

E22.13(b) The drift speed is the speed s at which the frictional force fs precisely balances the gravitational
force megr g

_ Meff§ (1 = psolution/ Psolute) Mg
f 67T ansoly

The mass of the particle is

m = peoluteV = 47 psoluted” /3 = 41 x (1250kgm ™) x (15.5 x (10~°m)3/3
=1.95x10""kg
[1 — (1000kgm~3)/(1250kgm™3)] x (1.95 x 10~ kg) x (9.81 ms~2)

Sos =
6 x (15.5 x 1076 m) x (8.9 x 10~4kgm~!s—1)

=147 x 10 *ms~!
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E22.14(b) The molar mass is related to the sedimentation constant
SRT SRT

bD (1 — psolution Ysolute) D
where we have assumed the data refer to aqueous solution at 298 K.

— (5.1 x 10713 ¢) x (8.3145J K~ mol~1) x (293K)

Wy =

INSTRUCTOR'S MANUAL

n

E22.15(b) In a sedimentation experiment, the mass-average molar mass is given by

M, = =|56kg mol ™!
[1 — (0.997gcm™3) x (0.721cm3 g=1)] x (7.9 x 10~ m2s~1)

— 2RT c 1653 Mw(rz2 - r12)ba)2
w= —S——>———In—="so0 In—=-=—*%———
(ry —rbow=  c1 cl 2RT
This implies that
erzba)2
Inc = ———— + constant
2RT
so the plot of In ¢ versus r? has a slope m equal to
Mybw? —  2RTm
m = and My =
2RT bw?
- 2 x (8.3145JK ' mol™!) x (293K) x (821 cm™2) x (100 cmm™1)?2
w =

=13.1x10° kgmol_l

E22.16(b) The centrifugal acceleration is

a=rw* so a/g = ra)z/g

(5.5cm) x [27 x (1.32 x 103s71)]? 5
a/8 (100cmm~1) x (9.8 ms™2)

Solutions to problems

Solutions to numerical problems

©[1—(1000kgm™3) x (7.2 x 10~4m3kg~1)] x [(1080s~1) x (27)]2

P22.1 For a rigid rod, Rg o [ [Problem 22.15] o< M, but for a random coil Ry N1/2 [22.7] x M2,
Therefore, poly (y-benzyl-L-glutamate) is rod-like whereas polystyrene is a random coil (in butanol).

c mba)z(r]2 — r22) ZJTZMvaZ(rl2 — r22)

P22.3 In—=——L 2212242]= [w = 27v]
e 2kT RT
and hence
1/2
RTIn (g—;)
V= —
2m2Myb(r? — 1)
1/2

B (8.314T K mol™1) x (298K) x (In5) /
— \ 272 x (1 x 102kgmol™!) x (1 = 0.75) x (7.02 — 5.02) x 10~4m?

= 58Hz, or

+
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Question. What would the concentration gradient be in this system with a speed of operation of
70000 r.p.m. in an ultracentrifuge?

P22.4 b=1—-pvg=1-— (0.765gcm_3) x (0.93 Cm3g—1) — 0.289:
T =308.15K
D/(em?s™!) = (1.3 x 107%) x (My,/gmol~1) =047

b i(l +2B'c +3gB%c* + 1)

SRT My

or

b 1 2B’ 3gB? ,

= + c+ c

SRT  MyD MyD MyD
c/(mgcm™) 20 30 40 50 60 70
5/(107Bs) 148 139 131 124 118 112

(b/SRT)/(g 'em™?smol) 7.62 8.11 861 9.10 9.56 10.07

The regression fit of the form
(b/SRT)

(2~ lem~2smol)
A = 6.639, standard deviation = 0.040

= A+ Bc+Cc? yields

B = 0.494 mg_1 cm’,  standard deviation = 0.019 mg_1 cm?
C = —0.000697 mg_2 cm6, standard deviation = 0.002 112 mg_zcm(’
R = 0.999 940 (Note that the standard deviation of C is greater than its value.)
1 _ —1 -2
— = A(g” cm™ “smol)
My D
1 -2
- DU T\ 0497 =6.639cm™ "5
(g/mol) x (1.3 x 10~*cm~s~ 1) x (g/mol)
! 8.631 x 107*
——— = 8. X
M, 0.503
g/mol

My =123 x 10° gmol ™!

2B’ 1 2
— = B(g~ cm “smol)
Mw D
B(g*1 cem~2s mol) (0.494 mg*1 cm3) X (g*1 cm~Zs mol)
B = - =
2(1/My, D) 2 x (6.639 g~ 1 cm~2 s mol)

B =372 x 10> mg~ ! cm?

We might test the significance of the form of the third term in the expression, namely

3 B/2
c=22
My D




354

P22.11

INSTRUCTOR'S MANUAL

by using the value of C obtained by the fitting process to calculate the value of g. But we must note
again that the standard deviation of C is greater than C itself; hence the value of g obtained by this
calculation could not be considered significant. g is about 1/4 for a good solvent, but cyclohexane is
a theta solvent for polystyrene. There is no reason for them to agree; they are different samples; there
is no fixed value of M for polystyrene.

IT RT B

— = (:) X [1 + (:) c:| [Example 7.5]
c My My

IT = pgh; so

h RT BRT
¢ * '

— — ¢
PEMn  peM;

h
and we should plot — against c. Draw up the following table
c

¢/(g/100cm®) 0.200 0.400 0.600 0.800 1.00
h/cm 048 1.12 1.86 276 3.88

ﬁ 4 -1
(100cm™g™") 24 280 3.10 345 3388
c

The points are plotted in Fig. 22.1, and give a least-squares intercept at 2.043 and a slope 1.805

(h/cp)/(100g™" em*)

0 02 04 0.6 0.8 10
¢p/(g/100cm?) Figure 22.1

RT Y 4 -1 3 .
Therefore, ——— = (2.043) x (100cm™ g™ ") =2.043 x 10" m™~ kg
pgMn
and hence
— (8.314JK~'mol™!) x (298K) B
"7 (0798 x 103kgm3) x (9.81 ms~2) x (2.043 x 103 mtke~ )
From the slope

155 kg mol !

BRT _ 100cm? g~ ! _ _
= (1.803) x [ ——— £ ) — 1,805 x 10*cm” g% = 1.805 x 10~ m” kg >
pgM; g/(100 cm>)
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and hence

M, _ _
B — ("i;) x My x (1.805 x 1074 m” kg™2)

(155kgmol ) x (1.805 x 1074 m” kg=2)
2.043 x 103 m4 kg™!

= [13.7m> mol~!

Solutions to theoretical problems

P22.12 AN oce=M=M*/2y qpq

We write the constant of proportionality as K, and evaluate it by requiring that / dN = N. Put

M—M=2»"%x, so dM = Q2y)"?dx

AN = K2 )1/2f°° 7y -M
an = e X a = ———=
S a2

&

o0
K(Zy)l/zfo e dx[a ~ 0] = K@) 2 Lx'2

7\ 1/2
Hence, K = (—) N. It then follows that
Ty

o 2 \1/2 poo .
M, = <_) / Me—M=M)/2y 4pr
Ty 0
2 1/2 o0 2 M 2
S el 2 —X X d
() [ (e e o
gy \ 1/2 1 12 o\ 12
() x|+ (Z) m|=lm+ (2
T 2 8y T

P22.14 A simple procedure is to generate numbers in the range 1 to 8, and to step north 1 or 2, east 3 or 4,
south for 5 or 6, and west for 7 or 8 on a uniform grid. One such walk is shown in Fig. 22.2.

12

Roughly, they would appear to vary as N
P22.15 We use the definition of the radius of gyration given in Footnote 4 and Problem 22.17, namely

1
2 2
Rg_—N;Rj

(a) For asphere of uniform density, the centre of mass is at the centre of the sphere. We may visualize
the sphere as a collection of a very large number, N. of small particles distributed with equal

+
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(b)
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Figure 22.2

number density throughout the sphere. Then the summation above may be replaced with an
integration.

2 _ %fg NriP(r)dr
£ Jo P(r)dr

P (r) is the probability per unit distance that a small particle will be found at distance r from
the centre, that is, within a spherical shell of volume 4mr?dr. Hence, P(r) = 4mr? dr. The
denominator ensures normalization. Hence

) f(;l r2P(r)dr B foa4nr4dr B i B Eaz R (E)l/za
& Jo P(r)dr Jo 4mr2dr %a3 57 & 5

For a long straight rod of uniform density the centre of mass is at the centre of the rod and P (r)
is constant for a rod of uniform radius; hence,

3
a1 1 (l )
R2=2f0 r2dr:3 L _1p Re l
g zfoa/z)z o Iy 12

For a spherical macromolecule
3V \'? [ 3usM '
a = =
4w Ny 4w Ny
and so
3\2  (3um\!/3
Ry = | < X
5 A Np
1/3
(3)1/2 (Bvs/em3 g=1) x em3 g~ x (M/gmol™!) x gmol ™! /
== X
5 (47) x (6.022 x 1083 mol™1)

= (5.690 x 107%) x (vs/em> gH1/3 x (M/gmol™1)/3 cm
= (5.690 x 10~"'m) x {(vs/cm> g~ 1) x (M/gmol~1)}'/3 cm

Thatis, Rg/nm =|0.05690 x {(vs/cm® g~ x (M/gmol~1)}1/3
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When M = 100kg mol ™! and vy = 0.750 cm?® g_],
Rg/nm = (0.05690) x {0.750 x 1.00 x 10°}!/3 =

For a rod, vy = ma’l, so
VUmol veM 1
Ry = = X
2ma?/3 Na  2ma2V3
(0.750cm> g~ 1) x (1.00 x 105 gmol 1)
(6.022 x 1023 mol~ 1) x (27) x (0.5 x 10~7 cm)2 x +/3

= 46x10%m =

Comment. R; may also be defined through the relation
R2 — D mir, 12
§ 2imi

Question. Does this definition lead to the same formulas for the radii of gyration of the sphere and
the rod as those derived above?

P22.17 Refer to Fig. 22.3.

Figure 22.3
Since R; = R + hiandZ R, =0,
i

NRy+) hi=0
i

1
and hence R| = N Xi:hi

1 1
R%:m;hi‘hj’ Rl'Xi:hiZ_ﬁlXj:hi'hj

1 ) 1
Ré ~ Z Rl-2 [new defintion] = m Z{(R1 + h;)- (Ry + h;)}
l 1

1 2 2 N_ 1 21 .
N(NR1+thi+2R1-Zi:h,>_N thi N;h, h;

1
Since h; - hj = E(hlz + h% — hizj) [cosine rule]
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1 1 1 1
Re= oy | 2hitay 20 =5 20 =320
i ij 1 J

I
= | 337 2 1, | lthe original definition]
i

(In the last two terms, the summation over the second index contributes a factor N.)

(a) We seek an expression for a ratio of scattering intensities of a macromolecule in two different

conformations, a rigid rod or a closed circle. The dependence on scattering angle 6 is contained
in the Rayleigh ratio Rg. The definition of this quantity, in eqn 22.25, may be inverted to give
an expression for the scattering intensity at scattering angle 6:

sin2¢

lp = Ry 1| ,
6= Rolo—7

where ¢ is an angle related to the polarization of the incident light and r the distance between
sample and detector. Thus, for any given scattering angle, the ratio of scattered intensity of two
conformations is the same as the ratio of their Rayleigh ratios:

Irod _ Prod _ Prod
Iec Rec Pec

The last equality, stems from eqn 22.28, which related the Rayleigh ratios to a number of
angle- independent factors that would be the same for both conformations and the structure
factor (Pp) that depends on both conformation and scattering angle. Finally, eqn 22.30 gives an
approximate value of the structure factor as a function of the macromolecule’s radius of gyration
Ry, the wavelength of light, and the scattering angle:

_ 16n?Rgsin®(30) 347 — 1677 R sin’(36)

Py~ 1 -
v 322 322

The radius of gyration of a rod of length / is
Riod = 1/12(3)'?].

For a closed circle, the radius of gyration, which is the rms distance from the center of mass, is
simply the radius of a circle whose circumference is /:

| =27Rec SO Ree= —.
2
The intensity ratio is:
Loa 332 — 37212sin*(16)

Iee 322 —di2sin?(10)

Putting the numbers in yields:

0/° 20 45 90
Ir(,d/lCC 0976 0.876 0.514
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P22.22

P22.24

(b) I would work at a detection angle at which the ratio is smallest, i.e., most different from unity,
provided I had sufficient intensity to make accurate measurements. Of the angles considered in

parta, is the best choice. With the help of a spreadsheet or symbolic mathematical program,
the ratio can be computed for a large range of scattering angles and plotted:

1.0

0.5

Imd/Icc

0.0

PO S RO AU R
0 45 90 135 180

or Figure 22.4

A look at the results of such a calculation shows that both the intensity ratio and the intensities
themselves decrease with increasing scattering angle from 0° through 180°, that of the closed
circle conformation changing much more slowly than that of the rod. Note: the approximation
used above yields negative numbers for P,q at large scattering angles; this is because the
approximation, which depends on the molecule being much smaller than the wavelength, is
shaky at best, particularly at large angles.

M b 2.2
Inc = const. + V;Tc;r [22.42, rearranged] and a plot of In ¢ against r? should be a straight line
b
of slope RVJV" . We draw up the following table
ricm 5.0 5.1 52 53 54
¢/(mg cm™) 0.536  0.284  0.148  0.077  0.039
r%/(cm?) 250 260 270 28.1 29.2

ln(c/mgcm_3) —-0.624 —-1.259 —-1911 -2.564 -3.244

The points are plotted in Fig. 22.5. The least-squares slope is —0.623. Therefore

My (1 — pvs)w?

= —0.623cm ™2 = —0.623 x 10* m 2
2RT

It follows that

= (—0.623 x 10*m~2) x (2) x (8.314JK ' mol~!) x (293K)

w

_ _ —1
= 1) = (1001 gem=3) x (1.112em? g1} x [@m) x 325D _ [0>-Okemol

The sedimentation constant S must first be calculated from the experimental data.

S 1 dlnr
S = —[11] = — ——— [Problem 22.2]
ro? w? dt

Therefore, a plot of In r against ¢ will give S. We draw up the following table
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In(c/(gdm™?))

Figure 22.5

t/s 0 300 600 900 1200 1500 1800
ricm 6.127 6.153 6.179 6.206 6.232 6.258 6.284
In(r/cm) 1.813 1.817 1.821 1.826 1.830 1.834 1.838

The least-squares slope is 1.408 x 1079571,

1.408 x 1079571
X i —5.14x 1013 s=[5.148y

~ 127) x (50 x 103/605)]2

SO

—  SRT (5.14 x 10713 5) x (8.314JK ' mol™1) x (293K)
Then My = —— [22.41] = =
bD (1 —0.9981 x 0.728) x (7.62 x 10~11m2 )2

60.1kg mol ™!

We need to determine the ratio of the actual frictional coefficient, f, of the macromolecule to that
of the frictional coefficient, f{, of a sphere of the same volume, so that by interpolating in Table 23.1
we can obtain the dimensions of the molecular ellipsoid.

Fo kT (1.381 x 107237K 1 x (293K)
D 7.62 x 10~ 11 m2g-!
Vim = (0.728 cm® g71) x (60.1 x 10>gmol™") = 43.8 x 10 cm® mol~!
=4.38 x 1072 m? mol ™!

=531 x10"kgs™!

1/3

< 3Vm )”3 (3) x (4.38 x 10-2m3mol~ 1)

Then, a = = =2.59nm
47 Na (47) x (6.022 x 1083 mol™!)

fo = 6man = (6m) x (2.59 x 1077 m) x (1.00 x 10 3 kgm™'s™!) =4.89 x 107 kgs~!

. 5.31
which gives — = =1.09

fo 489
Therefore, the molecule is either prolate or oblate, with an axial ratio of about 2.8 (Table 22.3).

The peaks are separated by 104 gmolfl, so this is the molar mass of the repeating unit of the
polymer. This peak separation is consistent with the identification of the polymer as polystyrene,
for the repeating group of CH,CH(CgHs) (8 C atoms and 8 H atoms) has a molar mass of 8 x
(12+1) gmol_1 = 104 gmol_l. A consistent difference between peaks suggests a pure system
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and against different numbers of subunits (of different molecular weight) being incorporated into the
polymer molecules. The most intense peak has a molar mass equal to that of n repeating groups plus
that of a silver cation plus that of terminal groups:

M (peak) = nM (repeat) + M (Ag+) + M (terminal).
If the both ends of the polymer have terminal ¢-butyl groups, then

M (terminal) = 2M (t-butyl) = 2(4 x 12 +9) gmol ™' = 114 gmol ",

M (peak) — M (Ag™) — M (terminal) _ 25578 — 108 — 114
M (repeat) n 104
Obviously this is not an integer. Revisit the assumption of two 7-butyl groups on the ends:

and n = = 243.8.
M (terminal) = M (peak) — nM (repeat) — M (Ag+).

If n = 243, then
M (terminal) = (25578 — 243 x 104 — 108) gmol ! = 198 gmol !,

which does not correspond to a whole number of #-butyl groups! Try again, supposing this time that
there is a single 7-butyl group at one end and a hydrogen atom at the other. Then:
M (peak) — M(Ag™) — M (terminal) 25578 — 108 — 58
n = =
M (repeat) 104

= 244 3.

This is not an integer either. If n = 244, then
M (terminal) = (25578 — 244 x 104 — 108) gmol ™! = 94 gmol ™!,

not a whole number of butyl or butane groups.

t

P2226 (1) L =1+ [gle+k Pt ==
rl* t*

A linear regression of F against ¢ yields an intercept equal to [n] and a slope equal to k’[n]z.

(1) In toluene: Linear regression (R = 0.999 54) yields

[7] = 0.08566Lg~! =]0.086Lg~!|; standard deviation = 0.00020L g~

k/[n]2 = 0.002 6@L2g72; standard deviation = 0.000 057 ngf2

Then

QT 252

 (0.08566L g 1)2

(2) In cyclohexane: Linear regression (R = 0.981 98) yields

[7] =0.04150Lg~! =|0.042Lg~'|; standard deviation = 0.000 18 Lg~!

K'[n? =0.000600 1 L>g~%; standard deviation = 0.000 116 L>g >
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Then

01T 262
k,_0.000600lL g :

©(0.04150L g~ 1)2

1/a
(b) [nl=KM; or _V=<—>

(1) In toluene

— /072
_ ( 0.08566L g ) 4
My = gmol

1.15x 10-5Lg™!

(2) In cyclohexane

=(2.4x 10’ gmol_1

INSTRUCTOR'S MANUAL

= IIlOl_1 =
82x 10-5Lg™! &

v =

2.6 x 10° gmol_1

= 1\ (1h)
" ( 0.04150Lg )
(© [nl/Lg™") = ®rms/m)>/M, & =284 x 10%

M1/
F'rms = (%) m, where ryms = (rz)l/2

2.84 x 1026

_ _ 1/3
0.08566 x 2.39 x 10°
(1) In toluene: rims = ( x - ) m =

@ In cycloh 0.04150 x 2.56 x 10°
n cyctonexane: r; =
4 rms 2.84 x 1026

(d) M(styrene) = 104 ¢ mol ™!
average number of monomeric units, (n) is
M
n)=—"+—
M (styrene)

(1) In toluene

2.39 x 103 -1
(ny = 22X BT 1535103

104 g mol !

(2) In cyclohexane

2.56 x 10° 1!
(ny = 222X BT 1555103

104gmol’1

(e) Consider the geometry in Fig. 22.6.

1/3
= [Fam]

For a polymer molecule consisting of (rn) monomers, the maximum molecular length, Lpax, is

Lmax = 2l{(n)cos®
2(0.154 nm)(n) cos 35°
— (0.2507 nm) (n)

+
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— —(n) Figure 22.6

(1) In toluene: Lpax = (0.2507 nm) x (2.30 x 103) =15.8 x 102nm
(2) In cyclohexane: Limax = (0.2507nm) x (2.46 x 10%) =|6.2 x 10> nm

(I’l) 1/2
) Rg=<T) [ = (0.0889 nm)(n)'/2

M\ /3 M 1/3
Kirkwood—Riseman : rrlfnlg = ﬁ) = <L
P 2.84 x 1026

rms = ) Y239] or  (n)'/?1

Solvent (n) Ry/nm 758 /nm Fems /M

Toluene 2.30 x 10° 42
Cyclohexane 2.46 x 10° 33

(g) There is no reason for them to agree; they are different samples; there is no fixed value of M for
polystyrene. The manufacturer’s claim appears to be valid.
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23 The solid state

Solutions to exercises

Discussion questions

We can use the Debye—Scherrer powder diffraction method, follow the procedure of Example 23.3,
and in particular look for systematic absences in the diffraction patterns. We can proceed through the
following sequence

Measure distances of the lines in the diffraction pattern from the centre.

From the known radius of the camera, convert the distances to angles.

Calculate sin? 6.

Find the common factor A = )\2/4212 insin?9 = ()\,2/4612)(}12 + K2+ 12).

Index the lines using sin?0/A = h> + k* + 12,

Look for the systematic absences in (hkl). See Fig. 23.22 of the text. For body-centred cubic,

diffraction lines corresponding to & + k 4+ [ that are odd will be absent. For face-centred cubic,
only lines for which £, k, and / are either all even or all odd will be present, other will be absent.

7. Solve A = )»2/4512 for a.

A i

The phase problem arises with the analysis of data in X-ray diffraction when seeking to perform a
Fourier synthesis of the electron density. In order to carry out the sum it is necessary to know the signs
of the structure factors; however, because diffraction intensities are proportional to the square of the
structure factors, the intensities do not provide information on the sign. For non-centrosymmetric
crystals, the structure factors may be complex, and the phase « in the expression Fj; = | Fpile'®
is indeterminate. The phase problem may be evaded by the use of a Patterson synthesis or tackled
directly by using the so-called direct methods of phase allocation.

The Patterson synthesis is a technique of data analysis in X-ray diffraction which helps to circum-
vent the phase problem. In it, a function P is formed by calculating the Fourier transform of the
squares of the structure factors (which are proportional to the intensities):

1 i )
P(r)= — Z |Fhkl |2 e 2ri(hx+ky—+1z)
4 hkl

The outcome is a map of the separations of the atoms in the unit cell of the crystal. If some atoms
are heavy (perhaps because they have been introduced by isomorphous replacement), they dominate
the Patterson function, and their locations can be deduced quite simply. Their locations can then be
used in the determination of the locations of lighter atoms.

In a face-centred cubic close-packed lattice, there is an octahedral hole in the centre. The rock-salt
structure can be thought of as being derived from an fcc structure of C1~ ions in which Na™ ions
have filled the octahedral holes.

The caesium-chloride structure can be considered to be derived from the ccp structure by having C1™
ions occupy all the primitive lattice points and octahedral sites, with all tetrahedral sites occupied by
Cs ions. This is exceedingly difficult to visualize and describe without carefully constructed figures
or models. Refer to S.-M. Ho and B. E. Douglas, J. Chem. Educ. 46, 208, 1969, for the appropriate
diagrams.

A metallic conductor is a substance with a conductivity that decreases as the temperature is raised.
A semiconductor is a substance with a conductivity that increases as the temperature is raised. A
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semiconductor generally has a lower conductivity than that typical of metals, but the magnitude of
the conductivity is not the criterion of the distinction. It is conventional to classify semiconductors
with very low electrical conductivities, such as most synthetic polymers, as insulators. We shall use
this term. But it should be appreciated that it is one of convenience rather than one of fundamental
significance.

The conductivity of these three kinds of materials is explained by band theory. When each of N
atoms of a metallic element contributes one atomic orbital to the formation of molecular orbitals, the
resulting N molecular orbitals form an almost continuous band of levels. The orbital at the bottom
of the band is fully bonding between all neighbours, and the orbital at the top of the band is fully
antibonding between all immediate neighbours. If the atomic orbitals are s-orbitals, then the resulting
band is called an s-band; if the original orbitals are p-orbitals, then they form a p-band. In a typical
case, there is so large an energy difference between the s and p atomic orbitals that the resulting
s- and p-bands are separated by a region of energy in which there are no orbitals. This region is called
the band gap, and its whidth is denoted Eg.

When electrons occupy the orbitals in the bands, they do so in accord with the Pauli principle. If
insufficient electrons are present to fill the band, the electrons close to the top of the band are mobile
and the solid is a metallic conductor. An unfilled band is called a conduction band and the energy
of the highest occupied orbital at 7 = 0 K is called the Fermi level. Only the electrons close to the
Fermi level can contribute to conduction and to the heat capacity of a metal. If the band is full, then
the electrons cannot transport a current readily, and the solid is an insulator; more formally, it is a
species of semiconductor with a large band gap. A full band is called a valence band. The detailed
population of the levels in a band taking into account the role of temperature is expressed by the
Fermi-Dirac distribution.

The distinction between metallic conductors and semiconductors can be traced to their band struc-
ture: a metallic conductor has an incomplete band, its conductance band, and a semiconductor has
full bands, and hence lacks a conductance band. The decreasing conductance of a metallic conductor
with temperature stems from the scattering of electrons by the vibrating atoms of the metal lattice.
The increasing conductance of a semiconductor arises from the increasing population of an upper
empty band as the temperature is increased. Many substances, however, have such large band gaps
that their ability to conduct an electric current remains very low at all temperatures: it is conventional
to refer to such solids as insulators. The ability of a semiconductor to transport charge is enhanced by
doping it, or adding substances in controlled quantities. If the dopant provides additional electrons,
then the semiconductor is classified as n-type. If it removes electrons from the valence band and
thereby increases the number of positive holes, it is classified as p-type.

The Fermi—Dirac distribution is a version of the Boltzmann distribution that takes into account the
effect of the Pauli exclusion principle. It can therefore be used to calculate the population, P, of a
state of given energy in a many-electron system at a temperature 7':

1
P = eE—W)/kT 4 q
In this expression, u is the Fermi energy, or chemical potential, the energy of the level for which
P = 1/2. The Fermi energy should be distinguished from the Fermi level, which is the energy of the
highest occupied state at T = 0. See Fig. 23.53 of the text.

From thermodynamics (Chapter 5) we know thatdU = —p dV +T dS+ u dn for a one-component
system. This may also be written dU = —pdV + T dS + ndN, and this p is the chemical potential
per particle that appears in the F-D distribution law. The term in dU containing w is the chemical
work and gives the change in internal energy with change in the number of particles. Thus, u has a
wider significance than its interpretation as a partial molar Gibbs energy and it is not surprising that
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it occurs in the F-D expression in comparision to the energy of the particle. The Helmholtz energy,
A, and p are related through dA = —pdV — SdT + wdN, and so u also gives the change in the
Helmholtz energy with change in number of particles. To fully understand how the chemical potential
w enters into the F-D expression for P, we must examine its derivation (see Further reading) which
makes use of the relation between 1 and A and of that between A and the partition function for F-D
particles.

Numerical exercises

(% 0, %) is the midpoint of a face. All face midpoints are alike, including (% % O) and (O, % %) .

There are six faces to each cube, but each face is shared by two cubes. So other face midpoints can
be described by one of these three sets of coordinates on an adjacent unit cell.

Taking reciprocals of the coordinates yields (l, %, —1) and (%, % %) respectively. Clearing the
fractions yields the Miller indices (313) and (643)
The distance between planes in a cubic lattice is

a

dhg = ——————
M)

This is the distance between the origin and the plane which intersects coordinate axes at
(h/a,k/a,l/a).

523 pm

dot = G i 2
523 pm

dy) = —(22 TR DR =|174pm
523 pm

drgg = R R RWENTE =[87.2pm

The Bragg law is

ni =2dsin6

Assuming the angle given is for a first-order reflection, the wavelength must be

A =2(128.2pm) sin 19.76° = | 86.7 pm

Combining the Bragg law with Miller indices yields, for a cubic cell
A
sin O = 2—(/’12 +k2+ 12)1/2
a

In a face-centred cubic lattice, i, k, and [ must be all odd or all even. So the first three reflections
would be from the (11 1), (200), and (22 0) planes. In an fcc cell, the face diagonal of the cube is
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E23.12(b)
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4R, where R is the atomic radius. The relationship of the side of the unit cell to R is therefore

4R
(4R)2 —a’+a*> =2 so a=—
V2
Now we evaluate
A A 154 pm
= = 0.189

2a  4J2R  4v2(144pm)

We set up the following table

hki sin® 6/° 20/°
111 0327 19.1 382
200 0378 222 44.4
220 0.535 323 64.6

In a circular camera, the distance between adjacent lines is D = RA(26), where R is the radius of
the camera (distance from sample to film) and 6 is the diffraction angle. Combining these quantities
with the Bragg law (A = 2d sin 6, relating the glancing angle to the wavelength and separation of
planes), we get

D

2d
. 1 96.035 . _1 95401 pm

2(5.74 P2 ! 220 P [ 054

(74 em) x <Sm 2823pm) 2823 pm)>

The volume of a hexagonal unit cell is the area of the base times the height c. The base is equivalent
to two equilateral triangles of side a. The altitude of such a triangle is a sin 60°. So the volume is

A
2RAO = 2RA <sin—‘ —>

Vv

2 (%a X a'sin 600) ¢ = a2esin60° = (1692.9 pm)? x (506.96 pm) x sin 60°
= 1.2582 x 10° pm> =|1.2582nm’

The volume of an orthorhombic unit cell is

3.86 x 108 pm?3

e —386x 1072 cm?
(1010 pm cm—1)3

V =abc = (589pm) x (822pm) x (798 pm) =

The mass per formula unit is

135.01 1!
m= A —224x 102y
6.022 x 1023 mol™

The density is related to the mass m per formula unit, the volume V of the unit cell, and the number
N of formula units per unit cell as follows

Nm dV  (29gcm™3) x (3.86 x 10722 cm?)
50 m 224 % 1022 ¢

A more accurate density, then, is

5224 x 10722 g) -
= =(2.90gcm
3.86 x 1022 cm> g
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The distance between the origin and the plane which intersects coordinate axes at (h/a, k/b,1/c) is
given by

h2 k2 12 1/2 32 22 22 =172
dnkl = | 5+ 3+ —3 = + +
MEZ\2 T T2 679pm)2 | (879pm)2 ' (860 pm)?
dzpp = |182pm

The fact that the 111 reflection is the third one implies that the cubic lattice is simple, where all
indices give reflections. The 111 reflection would be the first reflection in a face-centred cubic cell
and would be absent from a body-centred cubic

The Bragg law
A
sinBpp = 2—(h2 + k21212
a

can be used to compute the cell length

B2k + )2 = 137pm

A T 1241241112 =390
“ 2 sin Oppg 2sin17.70( +1I+ 19 b

With the cell length, we can predict the glancing angles for the other reflections expected from a
simple cubic

A
Opit = sin”! (2—<h2 +k2+z2>1/2> = sin~ 1 (0.176(h% + k* + 11)!/?)
a

0100 = sin~1(0.176(1% + 0 + 0)1/?) = 10.1° (checks)
0110 = sin~ 1 (0.176(1% + 1% + 0)!/2) = 14.4° (checks)
0200 = sin~1(0.176(2% 4+ 0 + 0)!/?) = 20.6° (checks)

These angles predicted for a simple cubic fit those observed, confirming the hypothesis of a simple
lattice; the reflections are due to the | (100), (110), (111), and (200) |planes.

The Bragg law relates the glancing angle to the separation of planes and the wavelength of radiation
A =2dsinf so 6 =sin"! —

2d

The distance between the orgin and plane which intersects coordinate axes at (h/a,k/b,l/c) is

given by

A AN
dpky = 2 + 2 + )
So we can draw up the following table

hkl  dpi/pm Opp/°
100 574.1 4.166
010 796.8 3.000
111 339.5 7.057
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E23.17(b) All of the reflections present have & + k 4/ even, and all of the even & + k + [ are present. The unit
cell, then, is ’ body-centred cubic ‘

E23.18(b) The structure factor is given by

Fpp = Z fie'% where ¢; = 2m(hx; + ky; +1z;)
i

All eight of the vertices of the cube are shared by eight cubes, so each vertex has a scattering factor

of f/8.

The coordinates of all vertices are integers, so the phase ¢ is a multiple of 27 and ¢'® = 1. The
body-centre point belongs exclusively to one unit cell, so its scattering factor is f. The phase is

¢ =27 (Sh+ Sk+ 3) =m(h+k+D)
When & + k +1 is even, ¢ is a multiple of 277 and el — 1; when h +k +1 is odd, ¢ is 7w + a multiple

of 277 and el = —1. So e!? = (—1)"T**+ and

8(f/8)(1) + f(—1)h+kH
’2ff0rh+k+leven and 0f0rh+k+lodd‘

Fnii

E23.19(b) There are two smaller (white) triangles to each larger (grey) triangle. Let the area of the larger triangle
be A and the area of the smaller triangle be a. Since b = %B(base) and h = %H (height), a = %A.

The white space is then 2N A /4, for N of the larger triangles. The total space is then (N A+ #) =

3N A/2. Therefore the fraction filledis NA/(3NA/2) =
E23.20(b) See Fig. 23.1.

Figure 23.1

The body diagonal of a cube is a+/3. Hence

av3=2R+2r or V3R=R+r [a=2R]

L (o]
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The ionic radius of K is 138 pm when it is 6-fold coordinated, 151 pm when it is 8-fold coordinated.

(a) The smallestion that can have 6-fold coordination with it has a radius of («/E — 1) x (138 pm) =

o]

(b) The smallest ion that can have 8-fold coordination with it has a radius of («/5 — 1) x (151 pm) =

[TTpm]

The diagonal of the face that has a lattice point in its centre is equal to 4r, where r is the radius of
the atom. The relationship between this diagonal and the edge length a is

dr=av?2 so a=2vV2r

The volume of the unit cell is a3, and each cell contains 2 atoms. (Each of the 8 vertices is shared
among 8§ cells; each of the 2 face points is shared by 2 cells.) So the packing fraction is

2@/t ow
T o@v2)d 303 =[0370]

2 Vatom
Vcell

The volume of an atomic crystal is proportional to the cube of the atomic radius divided by the packing
fraction. The packing fractions for hcp, a close-packed structure, is 0.740; for bec, it is 0.680. So for
titanium

Vhee  0.740 (122pm° 0.99
Vhep  0.680 \126pm /)

The bcc structure has a smaller volume, so the transition involves a . (Actually, the data
are not precise enough to be sure of this. 122 could mean 122.49 and 126 could mean 125.51, in
which case an expansion would occur.)

Draw points corresponding to the vectors joining each pair of atoms. Heavier atoms give more intense

—

contributions than light atoms. Remember that there are two vectors joining any pair of atoms (AB
—

and A B); don’t forget the AA zero vectors for the centre point of the diagram. See Fig. 23.2 for C¢Hg.

O

C(JHf,

O

Figure 23.2
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Combine E = %kT and £ = %mv2 = 2 to obtain

 2mA%’
h 6.626 x 107347Js
(mkT)Y/2  [(1.675 x 10727 kg) x (1.381 x 10-23 JK~!) x (300K)]!/2
h h
)\, = — =
p mev
1/2
Imev? =eA¢ so v= (—anAf)
1/2
h? / 6.626 x 107347Js
and A= ——— =
2mee A [(2) x (9.109 x 10—31 kg) x (1.602 x 10~19C) x (A¢)]}/2
_ 1.227 nm
C(Ag/W)1/2

1.227 nm

(a) A¢p =1.0kV, A= TOX 1057 =
1.227 nm

() A¢p =10KV, r= G0 1007 =
1.227 nm

© 8¢ 40KV, = G onim = 61om]

The lattice enthalpy is the difference in enthalpy between an ionic solid and the corresponding isolated
ions. In this exercise, it is the enthalpy corresponding to the process

MgBr,(s) — Mg? () + 2Br™(g)

The standard lattice enthalpy can be computed from the standard enthalpies given in the exercise by

considering the formation of MgBr,(s) from its elements as occuring through the following steps:

sublimation of Mg(s), removing two electrons from Mg(g), vaporization of Br, (1), atomization of

Br(g), electron attachment to Br(g), and formation of the solid MgBr, lattice from gaseous ions
AfH® (MgBry,s) = AunH © (Mg, s) + Aion H © (Mg, ) + AvapH © (Br2, 1)

+AaH® (Bra, g) +2Aeg HE (Br, g) — ALH® (MgBr,, 5)
So the lattice enthalpy is

ALH® (MgBry,s) = AqpH® Mg, s) + Aion HE (Mg, g) + AvapH® (Bra, 1)
+AaH® (Bra, @) + 2Acg HE (Br, g) — AtH© (MgBr, s)

AL H® (MgBry,s) = [148 + 2187 + 31 + 193 — 2(331) + 524] kI mol~! =| 2421 kI mol !

Tension reduces the disorder in the rubber chains; hence, if the rubber is sufficiently stretched,
crystallization may occur at temperatures above the normal crystallization temperature. In unstretched
rubber the random thermal motion of the chain segments prevents crystallization. In stretched rubber
these random thermal motions are drastically reduced. At higher temperatures the random motions
may still have been sufficient to prevent crystallization even in the stretched rubber, but lowering the
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temperature to 0°C may have resulted in a transition to the crystalline form. Since it is random motion
of the chains that resists the stretching force and allows the rubber to respond to forced dimensional
changes, this ability ceases when the motion ceases. Hence, the seals failed.

Comment. The solution to the problem of the cause of the Challenger disaster was the final achieve-
ment, just before his death, of Richard Feynman, a Nobel prize winner in physics and a person who
loved to solve problems. He was an outspoken person who abhorred sham, especially in science
and technology. Feynman concluded his personal report on the disaster by saying, ‘For a successful
technology, reality must take precedence over public relations, for nature cannot be fooled’ (James
Gleick, Genius: the life and science of Richard Feynman. Pantheon Books, New York (1992).)

Young’s modulus is defined as:

normal stress

normal strain
where stress is deforming force per unit area and strain is a fractional deformation. Here the deforming

force is gravitational, mg, acting across the cross-sectional area of the wire, 7r2. So the strain induced
in the exercise is

. stress mg 4mg 4(10.0 kg)(9.8ms_2) )
S = T T L @/2)2E  7d’E  7(0.10 x 10-3m)2(215 x 10° Pa)

The wire would stretch by 5.8%.

Poisson’s ratio is defined as:

transverse strain
V§p=—""———
normal strain

where normal strain is the fractional deformation along the direction of the deforming force and
transverse strain is the fractional deformation in the directions transverse to the deforming force.
Here the length of a cube of lead is stretched by 2.0 per cent, resulting in a contraction by 0.41 x 2.0
per cent, or 0.82 per cent, in the width and height of the cube. The relative change in volume is:

V+ AV

v = (1.020)(0.9918)(0.9918) = 1.003

and the absolute change is:

AV = (1.003 — 1)(1.0dm>) = | 0.003 dm?

m = go{S(S+ D}/?up  [23.34, with S in place of s]

Therefore, since m = 4.00up

S(S+ 1) = (;{) x (4.00)> = 4.00, implying that S = 1.56

Since § ~ % implying three unpaired spins.

In actuality most Mn”t compounds have | 5 | unpaired spins.
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M (=7.9 x 107%) x (84.15gmol !
E23.32(b) = x Vi = XM = (5791077 x 84.15gmol )
0.811gem—3

= -82x 10"*cm? mol™!

E23.33(b) The molar susceptibility is given by

_ Nag2rougS(S+1)
Km = KT

NO; is an odd-electron species, so it must contain at least one unpaired spin; in its ground state it
has one unpaired spin, so S = % Therefore,

xm = (6.022 x 102 mol™1) x (2.0023)? x (47 x 1077 T2 'm?3)
(9.274 x 10~2JT-1)2 x (%) x (% + 1)
3(1.381 x 10~23JK—1) x (298K)

=11.58 x 10~ m*mol ™! ‘

The expression above does not indicate any pressure-dependence in the molar susceptibility. However,
the observed decrease in susceptibility with increased pressure is consistent with the fact that NO,
has a tendency to dimerize, and that dimerization is favoured by higher pressure. The dimer has

no unpaired electrons, so the dimerization reaction effectively reduced the number of paramagnetic
species.

E23.34(b) The molar susceptibility is given by

Nag2opnsS(S + 1 3kT
= AgeMo;cBT( ) 0 S(S+1)= Xm

Nagluond

3(1.381 x 10723 K1) x (298 K)
(6.022 x 10283 mol™1) x (2.0023)2
5 (6.00 x 10~8 m3 mol™1)
(47 x 1077 T2J-1m3) x (9.274 x 10~24JT~1)2

—14+14+42.84
=284 so S= + + 4 )=1.26

2

S(S+1) =

corresponding to effective unpaired spins. The theoretical number is . The magnetic

moments in a crystal are close together, and the interact rather strongly. The discrepancy is most
likely due to an interaction among the magnetic moments.

E23.35(b) The molar susceptibility is given by

_ NagpomugS(S+1)
Xm = KT
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Mn?* has five unpaired spins, so S = 2.5 and

(6.022 x 108 mol™1) x (2.0023)2 x (47 x 1077 T2J" 1 m3)
3(1.381 x 10~23JK—1)
(9274 x 1072 IT " H2 x 2.5) x 2.5+ 1)
(298 K)

Xm =

X

1.85 x 10~ m? mol !

E23.36(b) The orientational energy of an electron spin system in a magnetic field is

P23.1

E = geupMsB
The Boltzmann distribution says that the population ratio r of the various states is proportional to
—AE
r=exp|———
P\Tkr

where AE is the difference between them. For a system with § = 1, the M states are 0 and 1. So
between adjacent states

B (—ge,uBMSB) B —(2.0023) x (9.274 x 107241 T1) x (1) x (15.07T)
r=exp|\ ————— ) = exp
kT (1.381 x 1023 JK-1) x (298K)

~ (093]

The population of the highest-energy state is r? times that of the lowest; r> =|0.873

Solutions to problems

Solutions to numerical problems
2a sin Oy

In an NaCl unit cell (Fig. 23.3) the number of formula units is 4 (each corner ion is shared by 8 cells,

each edge ion by 4, and each face ion by 2).

A = 2dpp; Sin Oy = [eqn 23.5, inserting eqn 23.2] = 2a sin 6.0° = 0.209a

Figure 23.3
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Therefore,

4M
PN

NM  4M <
p = —— =——, implyingthat a =

1/3
Exercise 23.13(a
VNA ~ a*Na ) [ (@]

1/3
(4) x (58.44gmol ™) / _
a = = 563.5pm
217 x 1016gm—3) x (6.022 x 1023 mol_l)

and hence A = (0.209) x (563.§pm) =|118pm

D 180

P23.4 Note that since R = 28.7mm, 6/deg = (ﬁ) X (—) = D/mm. Then proceed through the
i

following sequence:

1. Measure the distances from the figure.
2. Convert from distances to angle using 6/deg = D/mm.

3. Calculate sin2 6.

22 e
4. Find the common factor A = —— in sin® 6 = (ﬁ) (h% + k% +1%).
a

4a?
2
sin< 6
5. Index the lines using =h>+ k> 412
32
6. Solve A = — fora.
4a2
@  D/mm 22 30 36 44 50 58 67 77
0/deg 22 30 36 44 50 58 67 77

10°sin?9 140 250 345 482 587 719 847 949

Analysis of face-centred cubic possibility
(hkl) (111) (200 (211) (311 (222) 4000 (331) 420
10*'A 467 625 431 438 489 449 446 475

Analysis of body-centred cubic possibility
(hkl) (110) (200) (211) (2200 (310) (222) (321) (400
104 700 625 575 603 587 599 605 593

Begin by performing steps 1-3 in order to determine D, 6, and sin” 6 and place them in tabular form as
above. Itis now possible to reject the primitive (simple) cubic cell possibility immediately because the
separation between the sixth and seventh lines is not significantly larger than the separation between
the fifth and sixth lines (see Problem 23.2 and Fig. 23.22).

The relatively large uncertainties of the separation measurements force the modification of steps 4
and 5 for the identification of the unit cell as being either face-centred cubic or body-centred cubic.
We analyse both possibilities by calculating the common factor A = sin” 6 / h* + k% + %) for each
datum in each case. Comparison of the standard deviations of the average of A determines the unit
cell type.
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The analysis of both the face-centred cubic and body-centred cubic possibilities is found in the
above table. Successive reflective planes are determined with the rules found in Fig. 23.22.

fce possibility: Aay. = 0.0478, oa = 0.0063 (13 per cent)
bce possibility: Aay. = 0.0611, oa = 0.0016 (6 per cent)

These standard deviations (o4 ) indicate that the cell type is ’ body-centred cubic ‘

The Q test of the (1 1 0) reflection datum for A yields Q = 0.6. Consequently this datum may be
rejected with better than 95 per cent confidence. This yields a better average value for A.

Agy. = 0.0598, oa = 0.0016 (3 per cent)

A 154 pm
Then a = = = -315
NE= 542 7 (2) x (0.0598)1/2 pm
4R =~3a, so |R = 136pm |[Fig.23.1 above with r = R]

(b) D/mm 21 25 37 45 47 59 67 72
0/deg 21 25 37 45 47 59 61 72
10%sin®0 128 179 362 500 535 735 847 905

Analysis of face-centred cubic possibility
(hkl) (111) (200) (2200 @311) (222) (4000 (331) 420
10°A 427 448 453 455 446 459 446 453

Analysis of body-centred cubic possibility
(hkl) (110) (2000 (11) (2200 (310) (222) (321) (400
10*A 640 448 603 625 535 613 605 566

Following the procedure established in part (a), the above table is constructed.

fce possibility: Aay. = 0.0448, oa = 0.0010 (2 per cent)
bec possibility: Agy. = 0.0579, o = 0.0063 (11 per cent)

The standard deviations indicate that the cell type is ’ face-centred cubic ‘

A 154 pm
Th = = =364
Y (2) x (0.0448)1/2
4R = \/Ea, so R =|129pm

P23.6 When a very narrow X-ray beam (with a spread of wavelenths) is directed on the centre of a genuine
pearl, all the crystallites are irradiated parallel to a trigonal axis and the result is a Laue photograph
with sixfold symmetry. In a cultured pearl the narrow beam will have an arbitrary orientation with
respect to the crystallite axes (of the central core) and an unsymmetrical Laue photograph will result.
(See J. Bijvoet et al., X-ray analysis of crystals. Butterworth (1951).)
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P23.8 V = abcsin B
and the information given tells us that a = 1.377b, ¢ = 1.436b, and 8 = 122°49'; hence

V = (1.377) x (1.436b%) sin 122°49’ = 1.662b°

NM 2M
VNA  1.662b3N4

) M 1/3
~ \1.662pN4

1/3

(2) x (128.18 g mol™ 1) /

= — = 605.8 pm
(1.662) x (1.152 x 106 g m—3) x (6.022 x 1023 mol™ 1)

Since p = we find that

Therefore, a = ’ 834 pm

,b=|606pm

,c=’870pm‘

P23.10 In a monoclinic cell, the area of parallelogram faces whose sides are a and c is
A = cacos(B —90°)
so the volume of the unit cell is
V = abccos(B —90°) = (1.0427nm) x (0.8876nm) x (1.3777 nm) x c0s(93.254° — 90°)
= 1.2730nm?
The mass per unit cell is
m=pV =2.024¢g cm_3) x (1.2730 nm3) X (10_7cm nm_l)3 =2.577 x 107! g
The monomer is CuC7H13N50gS, so its molar mass is
M = 63.546 4+ 7(12.011) + 13(1.008) + 5(14.007) + 8(15.999) + 32.066 g mol ™!
= 390.82 g mol ™!

The number of monomer units, then, is the mass of the unit cell divided by the mass of the monomer

N =

N 2.577 x 10721 6.022 x 103 mol !
mNa _ ( X g) X ( 1>< mol ™) _ 54y or [4]
M 390.82 g mol ™~

P23.12 The problem asks for an estimate of A H © (CaCl). A Born—Haber cycle would envision formation
of CaCl(s) from its elements as sublimation of Ca(s), ionization of Ca(g), atomization of Cl,(g)
electrom gain of Cl(g), and formation of CaCl(s) from gaseous ions. Therefore

AfH® (CaCl,s) = AgpH© (Ca,s) + Ajon H (Ca, g) + 2AHE (Cl, g)
+2Aeg H® (Cl, g) — ALH® (CaCl, s)
Before we can estimate the lattice enthalpy of CaCl, we select a lattice with the aid of the radius-ratio
rule. The ionic radius for C1™ is 181 pm; use the ionic radius of K™ (138 pm) for Ca™
138 pm
|4 lr-ra—
181 pm
suggesting the CsCl structure. We can interpret the Born—Mayer equation (eqn 23.15) as giving the
negative of the lattice enthalpy

A 2
ALHS ~ AR122INae” () dx
4megd d

=0.762
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The distance d is

d =138+ 181 pm = 319pm

oA HE ~ (1.763) (D) (= 1)[(6.022 x 102 mol~1)(1.602 x 10719 C)2 ( 34.5pm)
L 47(8.854 x 10~ 12J-1C2m—1)(319 x 10~ 12 m) 319pm
ALH® ~ 6.85 x 10°J mol~! = 685kJ mol~!

The enthalpy of formation, then, is

AfH S (CaCl,'s) ~ [176 + 589.7 + 2(121.7 — 348.7) — 685] kJ mol ! =| —373kJ mol ! |.

Although formation of CaCl(s) from its elements is exothermic, formation of CaCl;(s) is still more
favoured energetically. Consider the reaction

\S]

CaCl(s) — Ca(s) + CaCly(s)

A¢H® (Ca) + A¢H® (CaCly) — 2A¢ H© (CaCl)
[0 — 795.8 — 2(—373)]kJ mol !

—50kJ mol !

for which AH®

%

AH®

%

Note: Using the tabulated ionic radius of Ca (i.e., that of Ca2+) would be less valid than using the
atomic radius of a neighbouring monovalent ion, for the problem asks about a hypothetical compound
of monovalent calcium. Predictions with the smaller Ca>™ radius (100 pm) differ substantially from
those listed above: the expected structure changes to rock-salt, the lattice enthalpy to 758 kJ mol ™!,
A¢H© (CaCl) to —446 kJ mol ™! and the final reaction enthalpy to +96 kJ mol .

Solutions to theoretical problems

If the sides of the unit cell define the vectors a, b, and ¢, then its volume is V = a - b x ¢ [given].
Introduce the orthogonal set of unit vectors Z, j, k so that

a= axf—i—ayj—i—azic
b = byi+byj + bk
c= cxf—l— c}f—i— czlg

ax ay a

ThenV =a-bxc=|by by b,

Therefore

ax ay a
by by by

Cx Cy g

ax ay a
by by by

Cx Cy

V2 =

ax ay a
by by by

Cx Cy

ay ay da
by by b,

cx Cy €

[interchange rows and columns, no change in value]
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P23.18

P23.20

axax +ayay +aza; axby +ayby +azb; axcy +aycy +azc;
byax + byay +bza; byby + byby +b;b; bycx +bycy + b,
Cxay +cyay +cza;  cxby +cyby + b, cxcx +cycy + e

a> a'b a-c a’ abcosy accospf
=lb-a b b-c|= abcosy b? bccosa
c-a ¢cb accos B bccosa ?

= a’b*c*(1 — cos® a — cos® B — cos? ¥y + 2 cos o cos B cos )/)1/2

Hence |V = abc(1 — cos® o — cos? B — cos? Yy + 2cosa cos f cos y)l/2

For a monoclinic cell, @ = y = 90°

V = abe(l — cos? B)1/2 =

For an orthorhombic cell, « = B = y = 90°, and

Fhkl — Z fi627ri(hx,'+ky,'lz,') [237]
i

For each A atom use é fa (each A atom shared by eight cells) but use fg for the central atom (since
it contributes solely to the cell).

Fni = %fA {1 +62nih +e27rik + eZnil +62ni(h+k) +e27ri(h+l) +62ni(k+l) 4 e277i(h-i—k—0—l)}
+ f8 e27ri(h-i—k—&-l)

= fa 4+ (=)D g5 [h, k, 1 are all integers, el = —1]

@ fa=/f =0 Fupu=f ’ no systematic absences‘

(b) fB= %fA; Fui = fa [1 + %(_1)(h+k+l):|
1

Therefore, when h + k + [ is odd, Fpx = fa (1 — 7) = %fA, and when & + k + [ is even,

3
Fpii = 5 fA-

Thatis, thereis an’ alternation of intensity ‘(1 x F?) according to’ whether # + k + [ is odd or even |.

© fa=fa=f Frorri=Ff {1 + (—1)”“‘“} —0 ifh+k+17isodd.
Thus,

all 4 + k 4 [ odd lines are missing ‘

Write t = aT, then

ot U
— | =a, <— =1t —aT [Problem 23.19] =0
oT ), ol Jr

and the internal energy is independent of the extension. Therefore

0S
t=-T|— [Problem 23.19]
ol Jr

and the tension is proportional to the variation of entropy with extension. The extension reduces the
disorder of the chains, and they tend to revert to their disorderly (nonextended) state.
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P23.22 (a) The density of energy levels is:

-8 ()
PEI=4E = Uk

2B . kw
— sin
N+1 N+1

dk  dk
N+1 (.  kr \7!
so p(E) = — sin
2np N +1
Unlike the expression just derived, the relationship the problem asks us to derive has no trigono-
metric functions and it contains £ and « within a square root. This comparison suggests that the
trigonometric identity sin? 6 + cos? 0 = 1 will be of use here. Let § = k7 /(N + 1); then

here dE d + 2B cos km
W _—=— o =
N+1

sinf = 1(1 — cos20)/2
however, cos 6 is related to the energy

EF—«o

o + 28 cos SO cos 28

2
and sinf = |:1 — (E_a) :|
28
N

_ N+l
2P
|:1 ~ (Ez_?)2i| 1/2

(b) The denominator of this expression vanishes as the energy approaches o &2 8. Near those limits,
E —a becomes £28, making the quantity under the square root zero, and p (E) approach infinity.

1/2

Finally, | p(E) =

—e

P23.23 £ = r?)

" 6me

1/2
o0 1
r?) =/ rry?dr with y = (—3> e~"/a
0

7'[(10

o0
47t / Ayl dr [dt = 4mr?dr]
0

i oor4e—2r/ao dr = 3(1(2) |:/ooxne—ax dr = n! :|
0

3 n+1
aO 0 a

2.2
—e ao

Therefore, | £ =

2me

Then, since ym = Napoé [23.32,m = 0]

2.2
_| ~Naroe?a]

2me
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P23.25

P23.29

If the proportion of molecules in the upper level is P, where they have a magnetic moment of 2up
(which replaces {S(S + 1)}1/ 2 uB in eqn 23.35), the molar susceptibility

(6.3001) x [S(S+1)] 5
— cm

Xm T/K mol ! [Mlustration 23.1]

is changed to

6.3001) x (4) x P 25.2p
Y = ( )T;<K( ) % cm? mol ™! [2%replaces S(S + 1)] = T7K :

The proportion of molecules in the upper state is

—hcb/kT 1

€ .. .
[Boltzmann distribution] = W

= 14 e hev/kT

hcv (1.4388cm K) x (121 cm_l) 174

*T T ~T/K
25.2cm3 mol !

(T/K) X (1 + e174/(T/]())

This function is plotted in Fig. 23.4

an

Therefore, xm =

1001 /(cm’ mol™")

Figure 23.4

Comment. The explanation of the magnetic properties of NO is more complicated and subtle than
indicated by the solution here. In fact the full solution for this case was one of the important triumphs
of the quantum theory of magnetism which was developed about 1930. See J. H. van Vleck, The
theory of electric and magnetic susceptibilities. Oxford University Press (1932).

Solutions to applications
6(100K) = 22°2'25", 6(300K) = 21°57'59”

sin@(100K) = 0.37526, sin#(300K) = 0.37406

in 6(300K 100K
W—) — 0.99681 = a(—)[see Problem 21.7]
sin 6 (100 K) a(300K)
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A3 (154.062 pm) x /3
2sinf  (2) x (0.37406)
a(100K) = (0.99681) x (356.67 pm) = 355.53 pm
Sa _ 356.67 — 355.53

a(300K) =

= 356.67 pm

o0a _ =3.206 x 1073
a 355.53
sV 356.67° —355.533
— = =9.650 x 1073
% 355.533
18V 9.560 x 1073 o1
Oyolume = Vﬁ = —200K = ’4.8 x 107° K ‘
18a  3.206x 1073 ’ L6 x 105K ‘
o =—-——=——————=|1.6X
volume = 5T 200K
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24 Molecules in motion

Solutions to exercises

Discussion questions

Diffusion is the migration of particles (molecules) down a concentration gradient. Diffusion can be
interpreted at the molecular level as being the result of the random jostling of the molecules in a fluid.
The motion of the molecules is the result of a series of short jumps in random directions, a so-called
random walk.

In the random walk model of diffusion, although a molecule may take many steps in a given time,
it has only a small probability of being found far from its starting point because some of the steps lead
it away from the starting point but others lead it back. As a result, the net distance traveled increases
only as the square root of the time. There is no net flow of molecules unless there is a concentration
gradient in the fluid, alse there are just as many molecules moving in one direction as another. The
rate at which the molecules spread out is proportional to the concentration gradient. The constant of
proportionality is called the diffusion coefficient.

On the molecular level in a gas, thermal conduction occurs because of random molecular motions
in the presence of a temperature gradient. Across any plane in the gas, there is a net flux of energy
from the high temperature side, because molecules coming from that side carry a higher average
energy per molecule across the plane than those coming from the low temperature side. In solids, the
situation is more complex as energy transport occurs through quantized elastic waves (phonons) and,
in metals, also by electrons. Conduction in liquids can occur by all the mechanisms mentioned.

At the molecular (ionic) level, electrical conduction in an electrolytic solution is the net migration
of ions in any given direction. When a gradient in electrical potential exists in a conductivity cell there
will be a greater flow of positive ions in the direction of the negative electrode than in the direction of
the positive electrode, hence there is a net flow of positive charge toward the region of low electrical
potential. Likewise a net flow of negative ions in the direction of the positive electrode will occur. In
metals, only negatively charged electrons contribute to the current.

To see the connection between the flux of momentum and the viscosity, consider a fluid in a
state of Newtonian flow, which can be imagined as occurring by a series of layers moving past one
another (Fig. 24.11 of the text). The layer next to the wall of the vessel is stationary, and the velocity of
successive layers varies linearly with distance, z, from the wall. Molecules ceaselessly move between
the layers and bring with them the x-component of linear momentum they possessed in their original
layer. A layer is retarded by molecules arriving from a more slowly moving layer because they have
a low momentum in the x-direction. A layer is accelerated by molecules arriving from a more rapidly
moving layer. We interpret the net retarding effect as the fluid’s viscosity.

According to the Grotthuss mechanism, there is an effective motion of a proton that involves the
rearrangement of bonds in a group of water molecules. However, the actual mechanism is still highly
contentious. Attention now focuses on the HgO4 ™ unit in which the nearly trigonal planar H30™
ion is linked to three strongly solvating H>O molecules. This cluster of atoms is itself hydrated, but
the hydrogen bonds in the secondary sphere are weaker than in the primary sphere. It is envisaged
that the rate-determining step is the cleavage of one of the weaker hydrogen bonds of this secondary
sphere (Fig. 24.19a of the text). After this bond cleavage has taken place, and the released molecule
has rotated through a few degrees (a process that takes about 1 ps), there is a rapid adjustment of bond
lengths and angles in the remaining cluster, to form an HsO, ™ cation of structure H,O - - - HT - . . OH»
(Fig. 24.19b). Shortly after this reorganization has occurred, a new HyO4 ™ cluster forms as other
molecules rotate into a position where they can become members of a secondary hydration sphere,



386

E24.3(b)

E24.4(b)

E24.5(b)

INSTRUCTOR'S MANUAL

but now the positive charge is located one molecule to the right of its initial location (Fig. 24.19c).
According to this model, there is no coordinated motion of a proton along a chain of molecules,
simply a very rapid hopping between neighbouring sites, with a low activation energy. The model
is consistent with the observation that the molar conductivity of protons increases as the pressure is
raised, for increasing pressure ruptures the hydrogen bonds in water.

Because the drift speed governs the rate at which charge is transported, we might expect the conductiv-
ity to decrease with increasing solution viscosity and ion size. Experiments confirm these predictions
for bulky ions, but not for small ions. For example, the molar conductivities of the alkali metal ions
increase from Li™ to Cs™ (Table 24.6) even though the ionic radii increase. The paradox is resolved
when we realize that the radius a in the Stokes formula is the hydrodynamic radius (or “Stokes
radius”) of the ion, its effective radius in the solution taking into account all the HyO molecules it
carries in its hydration sphere. Small ions give rise to stronger electric fields than large ones, so small
ions are more extensively solvated than big ions. Thus, an ion of small ionic radius may have a large
hydrodynamic radius because it drags many solvent molecules through the solution as it migrates.
The hydrating H>O molecules are often very labile, however, and NMR and isotope studies have
shown that the exchange between the coordination sphere of the ion and the bulk solvent is very
rapid.

The proton, although it is very small, has a very high molar conductivity (Table 24.6)! Proton and
70-NMR show that the times characteristic of protons hopping from one molecule to the next are
about 1.5 ps, which is comparable to the time that inelastic neutron scattering shows it takes a water
molecule to reorientate through about 1 rad (1-2 ps).

Numerical exercises

(a) The mean speed of a gas molecule is
8RT\ /2
c=|——
(%)
C(He) MMH\'?  [200.59\'/?
= = =|7.079
© Z(Hg) (M(He) 4.003
(b) The mean kinetic energy of a gas molecule is %mcz, where c is the root mean square speed

3RT\!/?
c=|——
(%)

2

So % mc* is independent of mass, and the ratio of mean kinetic energies of He and Hg is m

(a) The mean speed can be calculated from the formula derived in Example 24.1.

12 111 1/2

_ 8 RT 8 x (8.314J K™ 'mol™ ") x (298 K) 5

c=|—— = =14.75 x 10“°ms
M 7 x (28.02 x 10~3kgmol ™)

kT
(b) The mean free path is calculated from A = ——— [24.14]
2126p

witho = 7d*> = 7 x (3.95 x 1071%m)? = 4.90 x 1071 m?
(1.381 x 10723 JK~ 1) x (298K)

2172 5 (490 x 10719 m2) x (1 x 1070 Torr) x (ki) x (L0110 )

760 Torr 1 atm
=4 x10*m

Then, A =
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E24.6(b)

E24.7(b)

E24.8(b)

E24.9(b)

(¢) The collision frequency could be calculated from eqn 31, but is most easily obtained from eqn 32,
_ B ¢ 475%x10?ms™! > 1
since A and ¢ have already been calculated 7 = - = ————— =

A 4.46 x 10*m
Thus there are 100 s between collisions, which is a very long time compared to the usual timescale
of molecular events. The mean free path is much larger than the dimensions of the pumping
apparatus used to generate the very low pressure.
kT

p

T T
1.381 x 10723 K1 298 K
p= ( . ) X (298K) =12.4 x 10" Pa
(21/2) x (0.36 x 10718 m?2) x (0.34 x 10~ m)

This pressure corresponds to about 240 atm, which is comparable to the pressure in a compressed
gas cylinder in which argon gas is normally stored.

1/2
1/2 2
o a=(2)" = (M) ot

The mean free path is
kT 1.381 x 10723 7K~ 1) x (217K
a = - ( X ) x Q17K) —14.1x10"m
2126p  21/2[0.43 x (10~9m)2] x (12.1 x 103 Paatm™!)

Obtain data from Exercise 24.7(b)

16 1/2
The expression for z obtained in Exercise 24.8(a) is z = op
amkT

Substituting o = 0.43nm?, p = 12.1 x 10° Pa, m = (28.02u), and T = 217 K we obtain

4 % (0.43 x 10718 m?) x (12.1 x 103 Pa)
[ x (28.02) x (1.6605 x 10~27kg) x (1.381 x 10~23 JK~!) x (217K)]!/2

=19.9x108s7!

The mean free path is

kT (1381 x 107X JK ') x (254+273) K 5.50 x 10 °mPa
- 2126p 21721052 x (10~9m)2]p N p

@) A= 5.50 x 10*mPa Py ———
"~ (15atm) x (1.013 x 105Paatm—!) =
®) A= 550 x 10°mPa S5 x10-°m
~ (1.0bar) x (105Pabar~!) =
5.50 x 107> mPa —
(© A= ———— =[41x10"m
1.013x 10 Pa atm

B (1.0 Torr) x ( 760 Torr atm ™1 )

A
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E24.10(b) The fraction F of molecules in the speed range from 200 to 250 m s™lis

250ms~!
F = / f)dv
2

00ms~!

where f(v) is the Maxwell distribution. This can be approximated by

M o\, —Mv?
fAv o4 (ZnRT) v exp SRT v,

with f(v) evaluated in the middle of the range

-3 -1 3/2
44.0 x 107 kg mol 1.2
F ~ 47 x (225ms™ ")

27(8.3145J K~ mol~!) x (300K)

—(44.0 x 103 kgmol 1) x (225 ms1)?2
X ex
P 2(8.3145JK'mol~!) x (300K)

P [06x107)

Comment. The approximation we have employed, taking f(v) to be nearly constant over a narrow
range of speeds, may not be accurate enough, for that range of speeds includes about 10 per cent of
the molecules.

) x (50ms™ 1,

Numerical exercises
E24.11(b) The number of collisions is

pAt
QamkT)1/2
(111Pa) x (3.5 x 1073 m) x (4.0 x 1073 m) x (10s)
{27 x (4.00u) x (1.66 x 10~27kgu~1) x (1.381 x 10-23JK~1) x (1500 K)}!/2

= (11107

E24.12(b) The mass of the sample in the effusion cell decreases by the mass of the gas which effuses out of it.
That mass is the molecular mass times the number of molecules that effuse out

A N = mZwAt mp At At( n )1/2 ar (M v
m =m =m = — = - —
w Qremkr)y 172~ P \opkr PE\ 2w RT

N ZwAt =

(0.224Pa) x 7 x (L x 3.00 x 1073 m)? x (24.00h) x (3600sh™")

1/2
300 x 1073 kgmol ™! /
27 x (8.3145J K~ mol~!) x (450K)

=14.89 x 107*kg

+
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E24.13(b) The flux is

where the minus sign indicates flow toward lower temperature and

N 1 o) skT\'/?  [(8RT\'/? 4 M =n/V=N/N
= s = _— = _— , an = =
V2No v Tm M " A

2C RT\'/?dr
SoJ=_——Vm (T —
M dz

2 x (28.832 — 8.3145) JK—! mol !
3 x [0.27 x (1079 m)2] x (6.022 x 103 mol™!)

1/2

(8.3145J K mol~ 1) x (260K) / O

X 1 X 3.5Km™")
7 x (2.016 x 10~3 kgmol ™)

=10.17Jm 25!

E24.14(b) The thermal conductivity is

1 2C RT \ /2 2C RT\'/?
Kk = =ACym()[X] = = ( == 0 o 2Cvm (RT
3 ’ 30Ny \ M 3k Nay \ M

= (0.240mlcm_2 s_]) X (Kcm_l)_1 =0.240 x 107 ' ym~ s K!

2 x (29.125 — 8.3145) JK~! mol~!
S0 0 =
3 x (0.240 x 10~1Jm~1s—1 K1) x (6.022 x 1023 mol~ 1)

1=l 1/2
 (8:3145JK""mol™!) x (298K)
7 % (28.013 x 10~3 kgmol 1)

= 161 x 10717 m?

E24.15(b) Assuming the space between sheets is filled with air, the flux is

J dr
= —K—
dz

[(0241 x 103 Tem 257 x Kem™H 1] x (w)

10.0cm

145 x 103 Jem 2571,

So the rate of energy transfer and energy loss is

JA=(145%x10Jem 2571 x (1.50m?) x (100cmm™ )2 =
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E24.16(b) The time dependence of the pressure of a gas effusing without replenishment is
p=poe /" where T x /m

The time ¢ it takes for the pressure to go from any initial pressure pq to a prescribed fraction of that
pressure fpg is

fpo

t=tlhh—=1Inf
20]

so the time is proportional to T and therefore also to +/m. Therefore, the ratio of times it takes two
different gases to go from the same initial pressure to the same final pressure is related to their molar
masses as follows

t M\ 2 t\>2
1 (—l) and M, = M, (—2>
o} M 1

. 82352 -
So Mfyorocarbon = (28.01 gmol™") x 185 =554 gmol
DS

E24.17(b) The time dependence of the pressure of a gas effusion without replenishment is

p=poe /" so t=tInpy/p

V (2am 172 V (2aM 1/2
where 1 = — | —— —- (==
Ag \ kT Ag \ RT

3 -3 -1, \ /2

22.0m 27 x (28.0 x 107° kgmol ™) 5

= X = 24 X 10 S
7 x (0.50 x 10~3 m)?2 (8.3145J K ' mol™!) x (293K)

122kPa

105kPa
E24.18(b) The coefficient of viscosity is

' 2 (mkT\'? 2 (mkT\'/?
n=zimN{)=_—(— so 0=—|——
30 T 3n b4

= 1.66 uP = 166 x 10~ kgm ™' s~!

sot = (8.6 x 10°s)In 1.5 x 10*s

2
o0 = ( )
3 x (166 x 10~ 7kgm~!s=1)

-3 —1 23 -1 172
y (28.01 x 107" kgmol™") x (1.381 x 107 JK™") x (273K)
7 x (6.022 x 1023 mol™ 1)

= ]3.00 x 10717 m?

E24.19(b) The rate of fluid flow through a tube is described by
v (p3 — pRomr 16lnpg AV, \'/?
= 1. S in = 4 3, T Pout
dr 16/npo ard  dt
Several of the parameters need to be converted to MKS units

r=3015x10"m)=75%x10"m

av
and — - = 8.70cm® x (10> mem™ 13 s =870 x 107 m3 s !,
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172

Also, we have the viscosity at 293 K from the table. According to the 7"/~ temperature dependence,

the viscosity at 300 K ought to be

300K
293K

1.78 x 10~ " kgm ™! s7!
) (16(10.5m) x (178 x 10~ "kgm~"'s™!) x (1.00 x 10° Pa)
Pin = 7 % (15 x 10-3 m)?

300)1/2

172 7 1 1
= (176 x 10" "kgm™ " s~ —
) ( X gm” s ) X (293

n(300K) = n(293K) x (

1/2
x(8.70 x 107°m3 s~ 1) + (1.00 x 10° Pa)2}

=11.00 x 10° Pa

Comment. For the exercise as stated the answer is not sensitive to the viscosity. The flow rate is so
low that the inlet pressure would equal the outlet pressure (to the precision of the data) whether the
viscosity were that of Ny at 300 K or 293 K—or even liquid water at 293 K!

E24.20(b) The coefficient of viscosity is

' 2 (mkT\'?
n = iamN@) = — (—
30 b4

-3 -1 2311 172
( 2 ) (78.12 x 10" kgmol ") x (1.381 x 107> JK~ )T
3[0.88 x (10~2m)2] 7 x (6.022 x 1083 mol™ 1)

=572x 1077 x (T/K)'/? kgm~!s7!

(@ At273K n=(.72x10"") x 273’ kgm s =[0.95 x 107 kgm~' s~

() At298K n=(572x1077) x (298)'?kgm~'s™! ={0.99 x 107 kgm~'s7!

(¢) At1000K 5= (5.72x 1077) x (1000)"/?kgm~'s™' =[1.81 x 107 kgm ! s~!

E24.21(b) The thermal conductivity is

2Cy.m (RT )‘/2

1
= zAC X] = —
= 3 Cym{v)IX] 30Ny \ M

@ B 2 x [(20.786 — 8.3145) JK ! mol~!]
~ \3[0.24 x (109 m)2] x (6.022 x 1023 mol™1)

1 172
L (83145TK " mol™!) x (300K)
7(20.18 x 10~3 kgmol 1)

=10.01171m~' s K!
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The flux is

dT _
J = —Kd— = (0.0114Jm_1 g~ ! K_l) X

4

(305 —295) K
0.15m

) =0.76Jm 257!

so the rate of energy loss is

JA=(0.76Jm 25" x (0.15m)> =|0.017Js~!

) 2 x [(29.125 — 8.3145) JK~ mol 1]
K =
3[0.43 x (10~9m)2] x (6.022 x 1023 mol™ 1)

a1 1/2
8.3145J K~ mol™1) x (300K)
7(28.013 x 10~3kgmol 1)

=190x 103 m~! s~ K|
The flux is

dT

305 — 295) K
J =k = 00x 107 Im IR X (;
v4

=0.60Jm 25!
0.15m

so the rate of energy loss is

JA=(0.60Jm2s1) x (0.15m)? =]0.0147s!

E24.22(b) The rate of fluid flow through a tube is described by
d_V _ (plzn - pgut)nr4
dr 161npo

so the rate is inversely proportional to the viscosity, and the time required for a given volume of
gas to flow through the same tube under identical pressure conditions is directly proportional to the

viscosity
n N1 it
—_ = — SO ;72 [ —
L m 1

_ (208 pP) x (18.0s) _ 7 1 -1
NCEC = 505 =|52.0pP|=520x10""kgm™ s

The coefficient of viscosity is

Lo = () x (T V22 ), (mhT'?
=3 =5, b2 - \3rd? b2

so the molecular diameter is
( 2 >l/2 <ka)l/4
d=(-—"- o (ML
3y T

2 12
B (37‘[(52.0 x 10~ 7kgm™! sl))

-3 —1 2311 1/4

(200 x 103 kgmol ™) x (1.381 x 1072 JK~!) x (298 K)

X
7 x (6.022 x 1023 mol ™)

=923x100m =
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E24.23(b)  « = JACy m(V)[X]

_ 2Cym (RT\'?
" 30Np \nM

1/2

2 % (29.125 — 8.3145) J K~ mol~! (8.3145T K~ mol~1) x (300K) /

= X
3[0.43 x (10~2m)2] x (6.022 x 1023 mol™ 1) 7 x (28.013 x 10~3 kgmol 1)

—19.0x 103 m~ s K|
E24.24(b) The diffusion constant is

2(RT)3/?
Ay = ——————
30pNa(TM)1/2
2[(8.3145J K mol™!) x (298 K)]?/2

D =

W=

12
3[0.43 x (10~9 m)2]p(6.022 x 1023 mol~1) x {n(28.013 x 1073 kgmorl)}

1.07m2s!
p/Pa
The flux due to diffusion is

X D
J=_DM:_D1(£):_ D\ dp
dx dx \V RT /] dx

where the minus sign indicates flow from high pressure to low. So for a pressure gradient of
0.10 atm cm ™!

. < D/m?s™h

o x (0.20 x 10°Pam™)
(8.3145J K7  mol™") x (298 K)

= 8.1molm2s™ ) x (D/(m?s™1))

1.07m2s™!
@ D= % —10.107m2s~!

and J = (8.1molm~2s™1) x (0.107) = ]0.87 molm 25!

1.07m2s7!
® D=-"C_ _]107x 10 m?s7!|
100 x 103
and J = (8.1molm~2s™1) x (1.07 x 1079) = ] 8.7 x 10 > molm 25! \
1.07m2s7!
© D=-10_ _[713x108m?s7!|
15.0 x 106

and J = (8.1molm2s™!) x (7.13 x 107%) = ] 58 x 107" molm~2s~! \

E24.25(b) Molar ionic conductivity is related to mobility by
A=zuF = (1) x (424 x 1078 m?s™'V™!) x (96485 Cmol ™)

= 4.09 x 1072 Sm? mol ! |

E24.26(b) The drift speed is given by

uA¢p  (4.01 x 1078 m?s~!v=h) x (12.0V)

s =uf = =481 x 109 ms™!
l 1.00 x 102 m
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E24.27(b) The limiting transport number for C1™ in aqueous NaCl at 25° C is

u_ 7.91
12 = = =10.604
ST ST T U

(The mobilities are in 108 m?s~1v~1)

E24.28(b) The limiting molar conductivity of a dissolved salt is the sum of that of its ions, so

Aj(Mgly) = A(Mg?h) +24(17) = Aj,(Mg(C2H30,)2) + 2A7, (Nal) — 2A%, (NaCoH30,)

= (18.78 + 2(12.69) — 2(9.10)) mS m”* mol ~' =|25.96 mS m? mol ™!

E24.29(b) Molar ionic conductivity is related to mobility by

A
A=zuF so u=—
zF

_ 5.54 x 1073 S m2 mol~! e 2u1 1
F: u= — :’5.74x10 m-V s ‘
(1) x (96485Cmol 1)
7.635 x 1073 Sm? mol~!
am: u= 02X e =]7913x 108 m2 v 157! |
(1) x (96485Cmol 1)
7.81 x 1073 Sm? mol~!
u =
(1) x (96485C mol~ 1)

E24.30(b) The diffusion constant is related to the mobility by

Br: = 1800 x 108 m2y—1 5! |

uRT (424 x 108 m?s™! V1) x (8.3145J K~ mol™") x (298K)

D =
zF (1) x (96485Cmol ™)

=109 x 10" m?s~!

E24.31(b) The mean square displacement for diffusion in one dimension is
(x%) = 2Dt

In fact, this is also the mean square displacement in any direction in two- or three-dimensional
diffusion from a concentrated source. In three dimensions

P2 =x2 +y2 +72 so (”2> = <x2> + <y2> + (Zz> = 3(x2) = 6Dt

So the time it takes to travel a distance |/ (r2) is
r?) (1.0 x 1072 m)? 3
t=——= =|4.1x10"s
6D 6(4.05 x 10—9 m2 s_l)

E24.32(b) The diffusion constant is related to the viscosity of the medium and the size of the diffusing molecule
as follows

kT kT (1.381 x 10723 7K~ 1) x (298K)
= SO a= =
6 na 6D 67(1.00 x 103 kgm~!s~1) x (1.055 x 109 m2s~1)

a=207x10"%m =

D
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E24.33(b)

E24.34(b)

P24.3

P24.4

P24.7

The Einstein—Smoluchowski equation related the diffusion constant to the unit jump distance and
time
A2 22
D = o SO T = D
If the jump distance is about one molecular diameter, or two effective molecular radii, then the jump
distance can be obtained by use of the Stokes—Einstein equation

kT kT kT
D = =—— S0 A=
6rna  3mnA 3nnD
(kT)? [(1.381 x 10723 JK~1) x (298 K)]?
and T = =

18(n)2D3  18[7(0.387 x 10~3kgm ' s 1)]2 x (3.17 x 10~9m2s~1)3

=2.00x 107""s|=20ps

The mean square displacement is (from Exercise 24.31(b))

2 —6 2
1.0 x 10
(r2> = 6Dt SO = ﬂ = ( X m) = 17 X 10_25
6D  6(1.0 x 10~ m2s—1)

Solutions to problems

Solutions to numerical problems

1
(X) =~ XL: N; X; [See Problem 24.2]

(@) (h) = %{1.801114—2 x (1.82m) + - - - + 1.98 m}
(b) (h2) = % {(1.80m)2 F2x(1.82m)% + -+ (1.98m)2} —3.57m2

V (n?) =[1.89m]

Kk = $AcCy m[A][24.28]

8kT\ /2
5:(—) [24.7] oc T2
am

(TN (G
Hence, « Tl/sz,m, SO — = (—) X V,m
K

T Cy.m
At300K,Cym 3R+ R=3R  At10K, Cym ~ 3R [rotation not excited]

K (300\'* /5
Therefore, < = (W) X (§> =
The atomic current is the number of atoms emerging from the slit per second, which is Zw A with
A=1x10""m? We use

Zw = m [24.15]
p/Pa
[(27) x (M/gmol™") x (1.6605 x 10-27kg) x (1.381 x 10~23JK~1) x (380K)]!/2
p/Pa

(M/gm01—1)1/2>

(1.35 x 103 m—2 s_]) X (
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P24.10

P24.12

P24.14
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(a) Cadmium:

0.13
ZwA = (135x 103 m 2571 x (1 x 1077 m?) x <W> —

(b) Mercury:

152
ZwA = (135 x 102 m 2571 x (1 x 107" m?) x <—>= 1x 10771
W ( ) X ( ) 200.6)1/2

c= L[24.98] ~ LO [c small, conductivity of water allowed for in the data]
m m

1.887 x 107°Scm ™!
Cc~
138.3S cm? mol !

~ 1.36 x 10" molem ™3 = solubility ={1.36 x 107> M

[Exercise 24.28(a)]

HT 3.623
u(HT) +u(Cl7) 3.623 +0.791
When a third ion is present we use
I(H*
t(HY) = (H") [24.58]

I(HY) + I(Nat) + I(ClM)

Foreach I, I = zuvcFAE = constant x cu. Hence, when NaCl is added

() — c(H )u(HY)
© c(HHu(H?) + c(NaT)u(Na™) + ¢(Cl17)u(Cl7)
B (1.0 x 1073) x (3.623) B

(1.0 x 1073) x (3.623) + (1.0) x (0.519) + (1.001) x (0.791)

AF
=% % () [Problem 24.13]
+ At

1

The density of the solution is 0.682 g cm™; the concentration c is related to the molality m by
¢/molL™") = p/(kgL™!) x m/(molkg™")
which holds for dilute solutions such as these.

A=7mr =7 x (2.073 x 107 m)? = 1.350 x 107> m?
czAF (1350 x 107 m?) x (9.6485 x 10* Cmol ")
IAt (5.000 x 103 A) x (2500's)

x ¢ = (0.1042m?>mol™ 1) x ¢
= (0.1042m? mol™ 1) x p x m = (0.1042m? mol™") x (682kgm™>) x m
= (71.06kgm ™" mol™") x m = (0.07106 kgmm ™! mol™") x m

and so r, = (0.07106kg mm ™! mol ™) x x xm

In the first solution 74 = (0.07106kgmm ™' mol™!) x (286.9mm) x (0.01365molkg™!) =

In the second solution £y = (0.07106kg mm_lmol_l) X (92.03 mm) x (0.04255 mol kg_l) =

+
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P24.17

P24.19

P24.21

Therefore, r(H") = 0.28, a value much less than in pure water where t(H™) = 0.63. Hence, the
mobility is much less relative to its counterion, NH, .

If diffusion is analogous to viscosity [Section 24.5, eqn 24.36] in that it is also an activation energy

controlled process, then we expect
D o e—Ea/RT

Therefore, if the diffusion constantis D at T and D" at T’,

Rln(%) 341K moi™!) x 1n(%

W

E, = ) =9.3kImol ™!

1 1 1 _ 1
T 298K ~ 273K

That is, the activation energy for diffusion is|9.3kJ mol !

kT
(x?) =2D1 [2491], D= —— [24.83]
6ran

kT kTt 1381 x 1072 JK™1) x (298.15K) x 1
6rDa  3ma(x?) (3m) x (2.12 x 1077 m) x (x2)

Hence, n =

_ —15 7, —1 R
= (2.06 x 10" Jm )X<(x2))

2.06 x 107 (z/s)

and therefore n/(kg mflsfl) =

((x2)/cm?)

We draw up the following table
tls 30 60 90 120
10% (x?) /cm? 882 1134 128 144

10°y/(kgm™"'s™h) 0701 1.09 145 1.72

Hence, the mean value is | 1.2 x 1073kg m~ 7!

The viscosity of a perfect gas is

L oome 2 (mkT\'Y? 2 (mkT\'?
77=§Nm)LC= = — | — sO o =—|——
30642 30\ = In\ =«

The mass is
17.03 x 1073 kg mol !
m =
6.022 x 1023 mol~!
2
o= =
3(9.08 x 10~6kgm™' s~ 1)

1/2

((2.828 x 10726 kg) x (1.381 x 10" JK 1) x (270K)> /

X
T

=12.828 x 1070 kg

(a)

12
4.25 x 10719 m?
=425x10°9m? = 7d% so d= (M) —13.68x10""m

T

+

+
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2
o =
3(17.49 x 10~6kgm~!'s=1)
—26 23 —1 1/2
5 ((2.828 x 10726 kg) x (1.381 x 10"BJK 1) x (490K)>

(b)

T

T

12
2.97 x 10719 m?
=297x10°9m2 =7d® so d= (M —13.07x10"10m

Comment. The change in diameter with temperature can be interpreted in two ways. First, it shows
the approximate nature of the concept of molecular diameter, with different values resulting from
measurements of different quantities. Second, itis consistent with the idea that, at higher temperatures,
more forceful collisions contract a molecule’s perimeter.

P24.22 The diffusion constant of an ion in solution is related to the mobility of the ion and to its radius in
separate relations

uRT kT Fk  ze
zF 67 na 6rnuR ~ 6mnu

(1) x (1.602 x 10712 C) 10
a = =83x10 m = | 830 pm
6(0.93 x 10-3kgm ™' s=1) x (1.1 x 108 m2V—1s-1)

Solutions to theoretical problems

a
P24.25 Write the mean velocity initially as a; then in the emerging beam (v,) = K / vy f (vy) duy where

0
K is a constant which ensures that the distribution in the emergent beam is also normalized. That is,

“ m_ \1/2 [4 —mv2/2kT
1_K/0 f(vx)dvx_K<m) /Oe dvy

This integral cannot be evaluated analytically but it can be related to the error function by defining

2
2 muvy

= kT

o 26T\ /2
which gives dvy = | — dx. Then
m

m \1/2 (2kT\'? b > |
= —_— - = /2
1=K (27rkT> < - ) /0 e " dx [b=m/2kT)/~ x a]

- % T = 1 Kerf(b)
T 0

2 Z
where erf (z) is the error function [Table 12.2]: erf(z) = =y / e_xzdx
T 0

2
erf (b)
The mean velocity of the emerging beam is

moNV2 [ 2kt m \V2 (KT (¢ d 2yt
<”")_K<2nkr) /vae ' dvx_K(anT> m /0 @, dvz

Therefore, K =
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P24.27

P24.28

1/2
— —K kT / (e—maz/ZkT _ 1)
2mm

2kT\'/?
Now use a = (Vx )initial = <_>
mm

This expression for the average magnitude of the one-dimensional velocity in the x direction may be

obtained from
m 1/2 2
vy ( ) e~ MUL/2KT gy

(v) =2 /0 vy f vy = 2 /0 =

3 ( m )1/2 2T\ (2kT\'?
~ \2xkT m ) \mn
It may also be obtained very quickly by setting @ = oo in the expression for (v, ) in the emergent

beam with erf (b) = erf(oc0) = 1.

2%kT\ /2
Substituting a = (—) into (vy) in the emergent beam e~ma? /2K _ o=1/7 4n4 erf(b) =

mi
1
erf (m)

Therefore, (v,) = (

o0

AUT\V? 1 —elUm
)

"ot (2h2)

From tables of the error function (expanded version of Table 12.2), or from readily available software,
or by interpolating Table 12.2.

1
erf (1—) = erf(0.56) = 0.57 and e~ /™ = 0.73
al/2

Therefore, (vy) =|0.47{vx )initial

The most probable speed, ¢*, was evaluated in Problem 24.23 and is

2kT\/?
¢* = v(most probable) = <—>
m

Consider a range of speeds Av around ¢* and nc*, then with v = ¢*

2 .—mn?c*? J2kT
fnc*)  (nc*)7e™mmc / [24.4] = n2e—(n2=Dmc*? /2T _

f(c*) — *¥2e—mc?/2kT

3 * 4 *
Therefore, J;(( C*)) —9xe8=[3.02x103 ];(( C*)) —16xe 15 =49 %1070
C C

The current /; carried by an ion j is proportional to its concentration c¢;, mobility u;, and charge
number |z;|. [Justification 24.9] Therefore

Ij = Acjujzj
where A is a constant. The total current passing through a solution is

]:Z[j:AZCijZj
J J
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The transport number of the ion j is therefore

Lj _ _Acjujzj iz

I AYjcjujzj  Xjcjujz;

lj =

If there are two cations in the mixture

LA DK D
t// C//u//Z// c//u//
9 52 —x%/4Dt
2 DT 484] withe =" " __[24.88]
ot 0x2 A( Dt)1/2
orc = ﬂ%e*bxz/t

de  ( a —2bx\ _p2y
o= i) < (57
9%c 2b a b2 a 26x\* ;2 2b 2bx\?
e _ (22 B W B ZOX N b _ (20 “bx
= (F) < () ()« () == (F) e+ () «
_ 1 n bx?
~ " \2p ) "\ D2

dc .
= — — as required
D ot

Initially the material is concentrated at x = (. Note that c = O for x > 0 when ¢ = 0 on
—bx2 1

bx"/t 5 0 more strongly than T i 00). When
x =0,e = 1. We confirm the correct behaviour by noting that (x) = 0 and (x2) =0at
t = 0[24.90], and so all the material must be at x = 0 att = 0.

account of the very strong exponential factor (e
—x2/4Dt

Draw up the following table based on the third and last equations of Justification 24.12

N 4 6 8 10 20
P (6A)Bxact 0 0.016 0.0313 0.0439 0.0739
P(6A)approx.  0.004 0.162  0.0297 0.0417 0.0725

N 30 40 60 100
P (6)) Exact 0.0806 0.0807 0.0763 0.0666
P (6X) aApprox.  0.0799  0.0804 0.0763  0.0666

The points are plotted in Fig. 24.1.

The discrepancy is less than 0.1 per cent when
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P24.33

Figure 24.1

Solutions to applications

The work required for a mass, m, to go from a distance r from the centre of a planet of mass m’ to
infinity is

o0
w:/ F dr
r

where F is the force of gravity and is given by Newton’s law of universal gravitation, which is

_ Gmm'
F= 2

r

G is the gravitational constant (not to be confused with g). Then

w =

, ®© Gmm' Gmm'
5—dr
r r r

Since according to Newton’s second law of motion, F' = mg, we may make the identification

_Gm/
§="3

Thus, w = grm. This is the kinetic energy that the particle must have in order to escape the planet’s
gravitational attraction at a distance r from the planet’s centre; hence w = Imv~ = mgr

ve = (2g Rp)l/2 [Rp = radius of planet]
which is the escape velocity.

(@) ve =1[(2) x (9.81ms~2) x (637 x 10°m)]"/2 =|11.2kms !

_ m(Mars) _ R(Earth)? B 6.37\\> L
(b) g(Mars) = o1 (Earth) X R (Mars)? x g(Earth) = (0.108) x <ﬁ> X (9.81ms™ )

=3.76ms 2

Hence, ve = [(2) x (3.76ms~2) x (3.38 x 106 m)]1/? =
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M 8R

and we can draw up the following table

. _  (8RT\'? T Mc?
Sincec = — , T =

10°7T/K H, He O,
Earth 11.9 237 190 [c¢=11.2kms™"]
Mars 24 48 38 [¢=5.0kms™']

In order to calculate the proportion of molecules that have speeds exceeding the escape velocity,
Ve, We must integrate the Maxwell distribution [24.4] from ve to infinity.

*© *© m N\32 o _prkr, [Mo_m
P—/ve f(v)dv—/ve 4n<27‘rkT) v°e dv i

This integral cannot be evaluated analytically and must be expressed in terms of the error function.
We proceed as follows.

Defining 8 = 2/{% and y2 = ,8v2 gives v = ,B_I/Zy, v = ﬁ_lyz, Ve = ,B_I/Zye,
e = B'7ve, and dv=p""2dy
B 2 o 2 4 o 2
4 (; p=lp=1/? yre V' dy = Yl y2e ™ dy
B B

124, 124,

P

4 ® 5, 2 B v
m[/o yzeydy—fo e dy

The first integral can be evaluated analytically; the second cannot.

00 172
/ yze_yzdy = 7[_ hence
0 4

’BI/ZUe o 2 ﬂl/zve o

This integral may be evaluated by parts

,Bl/zve ,B]/zve 5
- / (=e7¥)dy
0 0

1/2 ) B2, 172
Pet142(B) et _ —/ ey =14+2(2) 7 et — et (8 20)
i 72 Jy /4

2 —y2
P=1—m y(=e )

B\ /2 R
= erfc(ﬂl/zve) +2 <;> vee P [erfe(z) = 1 — erf(2)]

and ve = (2ng)1/2

From g = o
2kT  2RT

1/2
¢ RT

+
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For H, on Earth at 240K

1/2
g1y, — (0.002016 kgmol~!) x (9.807 ms™2) x (6.37 x 10%m) / 704
(8.314T K~ mol~!) x (240K)

7.94
P = erfe(7.94) +2 (1—/2> T = 29 %107 + (3.7 x 1077) =[3.7 x 1077
s

at 1500K

1/2
412y, — (0.002016 kg mol 1) x (9.807ms~2) x (6.37 x 10°m) / g
(8.314T K mol™!) x (1500K)

3.18 _
P = erfc(3.18) +2 <T/2> e~ (6.9 % 1076) + (146 x 1074 =| 1.5 x 1074
T

For Hy on Mars at 240K

1/2
12y, — (0.002016 kg mol 1) x (3.76 ms™2) x (3.38 x 10°m) / _3sg
(8.314T K~ mol™!) x (240K)

I

3.58 _
P = erfc(3.58) + 2 <W) e~ 33" = 413 % 1077) + (1.10 x 1075) =| 1.1 x 10~
T

at 1500K, B'/?ve = 1.43

P = erfc(1.43) + (1.128) x (1.43) x e~(14)” — 0.0431 + 0.209 =
For He on Earth at 240 K

(8.314JK ' mol™!) x (240K)

P =erfc(11.2) + (1.128) x (11.2) x e~112* — 0 4 (4 x 10754 =

at 1500K, g'/%v, = 4.48

_ _ 12
g1/2y, _ ((0.004003kgm01 1Y % (9.807ms™2) x (6.37 x 106m)> .

P = erfc(4.48) + (1.128) x (4.48) x e~@4” — (236 x 10719) + (9.71 x 1079)

=[10x107?]

For He on Mars at 240 K

1/2
412y — (0.004003 kgmol ') x (3.76ms™2) x (3.38 x 10°m) / 505
(8.314JK~'mol~!) x (240K)

P = erfc(5.05) + (1.128) x (5.05) x e~G09% = (921 x 10713) + (4.79 x 1011

=[a9 107"

at 1500K, g%y, = 2.02

P = erfe(2.02) 4+ (1.128) x (2.02) x e~02% — (4.28 x 1073) 4 (0.0401) =[0.044

For O, on Earth it is clear that P = 0 at both temperatures.
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For O, on Mars at 240K, ﬂl/zve =143

P = erfc(14.3) + (1.128) x (14.3) x e~ 143 — 04 (2.5 x 10788) = (2.5 x 10788 [~ 0

at 1500K, g'/?ve = 5.71

P =erfe(5.71) 4 (1.128) x (5.71) x e~ G7D* = (6.7 x 1076) + (4.46 x 10~ 14

=[45107]

Based on these numbers alone, it would appear that Hy and He would be depleted from the
atmosphere of both Earth and Mars only after many (millions?) years; that the rate on Mars, though
still slow, would be many orders of magnitude larger than on Earth; that O, would be retained on
Earth indefinitely; and that the rate of O, depletion on Mars would be very slow (billions of years?),
though not totally negligible. The temperatures of both planets may have been higher in past times
than they are now.

In the analysis of the data, we must remember that the proportions, P, are not rates of depletion,
though the rates should be roughly proportional to P.

The results of the calculations are summarized in the following table

240K 1500K
H, He 0O, H, He 0,
P(Barth) 3.7x107% 4x107* 0 1.5x10™* 1.0x 107 0

PMars) 1.1x107° 49x107" 0 0.25 0.044 45 %1071
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25 The rates of chemical reactions

Solutions to exercises

Discussion questions

The determination of a rate law is simplified by the isolation method in which the concentrations of
all the reactants except one are in large excess. If B is in large excess, for example, then to a good
approximation its concentration is constant throughout the reaction. Although the true rate law might
be v = k[A][B], we can approximate [B] by [B]g and write

v=Fk[A] Kk = k[B]o[25.8]

which has the form of a first-order rate law. Because the true rate law has been forced into first-order
form by assuming that the concentration of B is constant, it is called a pseudofirst-order rate law. The
dependence of the rate on the concentration of each of the reactants may be found by isolating them
in turn (by having all the other substances present in large excess), and so constructing a picture of
the overall rate law.

In the method of initial rates, which is often used in conjunction with the isolation method, the rate
is measured at the beginning of the reaction for several different initial concentrations of reactants.
We shall suppose that the rate law for a reaction with A isolated is v = k[A]“; then its initial rate, vg
is given by the initial values of the concentration of A, and we write vy = k[A](. Taking logarithms
gives:

log vo = log k + alog[A]y [25.9]

For a series of initial concentrations, a plot of the logarithms of the initial rates against the logarithms
of the initial concentrations of A should be a straight lime with slope a.

The method of initial rates might not reveal the full rate law, for the products may participate
in the reaction and affect the rate. For example, products participate in the synthesis of HBr, where
the full rate law depends on the concentration of HBr. To avoid this difficulty, the rate law should be
fitted to the data throughout the reaction. The fitting may be done, in simple cases at least, by using a
proposed rate law to predict the concentration of any component at any time, and comparing it with
the data.

Because rate laws are differential equations, we must integrate them if we want to find the
concentrations as a function of time. Even the most complex rate laws may be integrated numerically.
However, in a number of simple cases analytical solutions are easily obtained, and prove to be very
useful. These are summarized in Table 25.3. In order to determine the rate law, one plots the right
hand side of the integrated rate laws shown in the table against ¢ in order to see which of them results
in a straight line through the origin. The one that does is the correct rate law.

The rate-determining step is not just the slowest step: it must be slow and be a crucial gateway
for the formation of products. If a faster reaction can also lead to products, then the slowest step is
irrelevant because the slow reaction can then be side-stepped. The rate-determining step is like a slow
ferry crossing between two fast highways: the overall rate at which traffic can reach its destination is
determined by the rate at which it can make the ferry crossing.

If the first step in a mechanism is the slowest step with the highest activation energy, then it is rate-
determining, and the overall reaction rate is equal to the rate of the first step because all subsequent
steps are so fast that once the first intermediate is formed it results immediately in the formation
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of products. Once over the initial barrier, the intermediates cascade into products. However, a rate-
determining step may also stem from the low concentration of a crucial reactant or catalyst and need
not correspond to the step with highest activation barrier. A rate-determining step arising from the low
activity of a crucial enzyme can sometimes be identified by determining whether or not the reactants
and products for that step are in equilibrium: if the reaction is not at equilibrium it suggests that the
step may be slow enough to be rate-determining.

The parameter A, which corresponds to the intercept of the line at 1/7 = O (at infinite temperature),
is called the pre-exponential factor or the frequency factor. The parameter E,, which is obtained from
the slope of the line (—E,/R), is called the activation energy. Collectively, the two quantities are
called the Arrhenius parameters.

The temperature dependence of some reactions is not Arrhenius-like, in the sense that a straight
line is not obtained when In k is plotted against 1/ T. However, it is still possible to define an activation
energy as

dTr

This definition reduces to the earlier one (as the slope of a straight line) for a temperature-independent
activation energy. However, this latter definition is more general, because it allows E, to be obtained
from the slope (at the temperature of interest) of a plot of In k against 1/7T even if the Arrhenius
plot is not a straight line. Non-Arrhenius behaviour is sometimes a sign that quantum mechanical
tunnelling is playing a significant role in the reaction.

The expression k = kyky, [A]/ (ky + k; [A]) for the effective rate constant of a unimolecular reaction
A — P is based on the validity of the assumption of the existence of the pre-equilibrium A + A &=
A* + Alk,, k;). This can be a good assumption if both k,; and ké are much larger than ky. The
expression for the effective rate-constant, k, can be rearranged to

1 K 1
I +
k ~ kakp = kalAl

Hence, a test of the theory is to plot 1/k against 1/[A], and to expect a straight line. Another test
is based on the prediction from the Lindemann—Hinshelwood mechanism that as the concentration
(and therefore the partial pressure) of A is reduced, the reaction should switch to overall second
order kinetics. Whereas the mechanism agrees in general with the switch in order of unimolecular
reactions, it does not agree in detail. A typical graph of 1/k against 1/[A] has a pronounced curvature,
corresponding to a larger value of k (a smaller value of 1/k) at high pressures (low 1/[A]) than would
be expected by extrapolation of the reasonably linear low pressure (high 1/[A]) data.

Numerical exercises

. d[A] 1d[B] d[C] 1 d[D]
Rate of reaction = —— = —— = = —
dt 3 dr dr 2 dt

= 1.00molL"!'s ! 5o

Rate of consumption of A = ’ 1.0molL™!s™! ‘

Rate of consumption of B =| 3.0 mol L ls!
Rate of formation of C =|1.0mol L™} s~

Rate of formation of D = ’ 2.0mol L~ ts™! ‘
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E25.6(b)

E25.7(b)

E25.8(b)

E25.9(b)

E25.10(b)

d[B]

Rate of consumption of B = BT 1.00mol L™ s~ 1.
d[B d[C 1d[D d[A
Rateofreactlon———g—’033 -1 _1‘ €] _ 1dl ]=_ [A]
3 dt e 2 dr dr

Rate of formation of C = ’ 0.33mol L~ !s7! ‘

Rate of formation of D = ’ 0.66mol L1 s7! ‘

Rate of consumption of A = ’ 0.33mol L™ ! s~} ‘

The dimensions of k are

dim of v amount x length_3 x time ™!

(dim of [A]) x (dim of [B])2 (amount X length73)3

= length6 x amount 2 x time ™!

In mol, L, s units, the units of k are LZmol 257!

_d[A] _ 2 diA] _ )
(@) v= o = k[A][B]® so - = k[A][B]
(b) v= dicl S0 dict _ k[A][B]?
dr dr

The dimensions of k are

dim of v amount x length ™3 x time ™! 1

: - - = = time™
dim of [A] x dim of [B] x (dim of [C] )~! (amount x length_3)

The units of k are
d[C] _
=~ = HAIBIC] !

The rate law is

v =kp® =kpo(l — f)*

where a is the reaction order, and f the fraction reacted (so that 1 — f is the fraction remaining).
Thus

v _kpoQ = f)f _ (1=fi\* o Ini/vy) _ In@.71/7.67) _ [700]
1=/ (= In(1=0100) =
)\ oy | 1=0.200

v2  kpo(1 — f2)4
The half-life changes with concentration, so we know the reaction order is not 1. That the half-life
increases with decreasing concentration indicates a reaction order < 1. Inspection of the data shows the
half-life roughly proportional to concentration, which would indicate a reaction order of 0 according
to Table 25.3.
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More quantitatively, if the reaction order is 0, then

1)

t
typ X p and —lé2 = a1
12

We check to see if this relationship holds

1
ﬁ _ 340s

(@ 1785
1/2

p1 55.5kPa

p»  289kPa

=1.91 and

so the reaction order is @
E25.11(b) The rate law is

V= _l@ = k[A]
2 dr

The half-life formula in the text, however, is based on a rate constant for the rate of change of the
reactant. That is, it would be accurate to say

In2

e =r

provided the &’ here referred to a rate law

d[A] , In2 -6
dr [Al=2KAL S0tz = 5 oo 07T =0

The concentration of our reactant (pressure in this case) is

[A] = [Alge™
(a) Therefore, after 10 h, we have
[A] = (32.1kPa) exp[—2 x (2.78 x 1077 s7) x (3.6 x 10*s)] =
(b) and after 50 h, we have
[A] = (32.1kPa) exp[—2 x (2.78 x 1077 s71) x (1.8 x 107 5)] =
E25.12(b) From Table 25.3, we see that for A + 2B — P the integrated rate law is

_ 1 I [[A]o([B]o - ZX)}
[Blo — 2[Alp ([Alo — x)[Blo

kt

(a) Substituting the data after solving for k

. 1 [ 0:075 x (0.080 —0.060)
T (3.6 x 103s) x (0.080 — 2 x 0.075) x (molL—1) (0.075 — 0.030) x 0.080

=[3.47 x 103 Lmol !s~!
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(b) The half-life in terms of A is

| [Alo([Blo — 25%)
k([Bly — 2[Al) " Em

t12(A) =

which reduces to

2[A]o>

128 = 1 (Blo = 2[Al0) “( ~ Bl

1 ( 0.150)
(3.47 x 10-3Lmol~!s~1) x (—=0.070mol L~ 1) 0.080
— 8561s =
The half-life in terms of B is

| [[1alo (810 — 152
n
k([Blo — 2[Alp) ([A]O - %) [Blo

t12(B) =

which reduces to

11/2(B) = : n( e )
/ k(IBlo — 2[Alo) ~ \[Alo — [Blo/4

_ 1 « ln( 0.075/2 )
"~ (3.47 x 10-3Lmol~! s~ 1) x (=0.070 mol L—1) 0.075 — (0.080/4)
=1576s =|0.44h

E25.13(b) The dimensions of a second-order rate constant are

dimofv ~  amount x length’3 X time_1
(dim of [A] )2 N (amount x length_3)2

= length3 x amount ™! x time ™!

In molecule, m, s units, the units of k are m> molecule ! s~!

The dimensions of a second-order rate constant in pressure units are

dim of v pressure x time ™!

(dimof p)2  (pressure)?

In SI units, the pressure unit is N m 2 = Pa, so the units of k are

The dimensions of a third-order rate constant are

= pressure_1 x time™!

dim of v amount X length_3 x time ™!

(dimof [A])> ~ (amount x length—3)3

1

= length6 x amount ™2 x time ™~

In molecule, m, s units, the units of k£ are m® molecule 2 s~
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The dimensions of a third-order rate constant in pressure units are

dim of v pressure x time ™!

2 1

= pressure” - X time~

(dim of p)3 - (pressure)3
In ST units, the pressure unit is N m 2= Pa, so the units of k are m

E25.14(b) The integrated rate law is

Kt — 1 1 [AJo([Blo — 2[C)
[Blo —2[Alo  ([Alo — [CD[Blo

Solving this for [C] yields

_ [Alo[Blotexplk ([Blo — 2[Alo)] — 1}
[Blo explkz ([Blo — 2[Alo)] — 2[A]o

[C]

(0.025) x (0.150)
(0.150) x exp[(0.21s~1) x (10s) x (0.150 — 2 x 0.025)] — 2(0.025)
x {exp[(0.21s™1) x (10s) x (0.150 — 2 x 0.025)] — 1}

[Cl=|6.5x 10 mol L~!|

(@ [Cl/(molL™") =

(0.025) x (0.150)
(0.150) x exp[(0.21s~1) x (6005s) x (0.150 — 2 x 0.025)] — 2(0.025)
x {exp[(0.21 sfl) x (600s) x (0.150 — 2 x 0.025)] — 1}

[C] =|0.025mol L~}

E25.15(b) The rate law is

(b) [Cl/(molL™!) =

y= —LdA] = k[A]®
2 dt

which integrates to

YV (LSRN S RPN B DL

“2\[AR (AR 4k \[A? (AL
= l ) * (Gt ~ GorrmaiT)
~ \4(3.50 x 104 L2 mol 25~ 1) (0.021molL=1)2  (0.077mol L—1)2

=15 x 10°%]

E25.16(b) The rate constant is given by

_Ea
k= Aexp(ﬁ>

so at 30°C it is

—E
1.70 x 102 Lmol ' s7! = Aexp( 2 )
(8.3145T K~ mol~1) x [(24 + 273) K]

+
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and at 50°C it is

—E
2.01 x 1072Lmol~!s™! = Aexp( 2 )
(8.3145J K~ mol~1) x [(37 + 273) K]

Dividing the two rate constants yields

1.70 x 1072 —E, 1 1
— =X X -
2.01 x 1072 PI\ 831457 K Tmol-! 297K 310K
| 1.70 x 1072 ( —E, ) ( 1 1 )
solnf| ———— | = X _
2.01 x 102 8.3145JK—1 mol—! 297K 310K

1 1 \! [170x 1072 o
andEy=—[—————] In|———] x (8.3145JK ' mol™})
297K 310K 2.01 x 102

=99 x 103 Tmol ™! =[9.9kI mol !

With the activation energy in hand, the prefactor can be computed from either rate constant value

9.9 x 103 Jmol ™!
(8.3145J K~ mol—1) x (297K)

E
A= kexp(R—;> = (1.70 x 1072Lmol~'s71) x exp(

= 0.94Lmol~! 5!

E25.17(b) (a) Assuming that the rate-determining step is the scission of a C— H bond, the ratio of rate constants
for the tritiated versus protonated reactant should be

ko, i (1 1
= =e where A = T 72" T3
H Hcg  McT

The reduced masses will be roughly 1 u and 3 u respectively, for the protons and 3H nuclei are
far lighter than the rest of the molecule to which they are attached. So

(1.0546 x 1073*Js) x (450N m~1)1/2 1 1
T 2% (1381 x 10-BIK 1) x (298K) | <(1u)1/2 B (3u)1/2)
x(1.66 x 1072 kgu~1)~1/2
kt

=28 so |—=006~1/16
ku

(b) The analogous expression for 160 and 180 requires reduced masses for C'%0 and C'®0 bonds.
These reduced masses could vary widely depending on the size of the whole molecule. I will
use 12C16O, for example

(16.0u) x (12.0u) (18.0u) x (12.0u)

- — 6.86u and = =7.20
H16="160 + 12.0)u 4ot M8 = T80 + 12.0)u 4

(1.0546 x 10734 Js) x (1750Nm—1)1/2
2 x (1.381 x 10~ JK1) x (298K)

1 ! —27 —1\—1/2
) ((6.86u)1/2 - (7.20u)1/2) x (166 x 107" kgu™")

k
=012 so kﬁ=0.89

16
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E25.18(b) A reaction nth-order in A has the following rate law

—M:k[A]n SO d[A]
dt [A]?

= —kdr = [A]T"d[A]

Integration yields

A]—n_Al—Vl
[A] 1 N
—n

Let 713 be the time at which [A] = %[A]O, SO

(31a10) " = 1A (Al () T -1

—kty )3 =
173 1—n 1—n

and ty/3 = —[A]

E25.19(b) The effective rate constant is related to the individual steps by
1 K 1 1 1 1 ( 1 1 )
=4+ — 50 ———=—(—-—

k  kaky  kap ki ka  ka\p1  p2
( 11 ) < 11 >—1
k=(—-—)(—-—
pr p2) \ki ko

( 1 1 ) < 1 1 )1
= — X —
1.09 x 103Pa  25Pa 1.7 x1073s—1 22 x 10~4s—!

~199x 105~ pa~! |

E25.20(b) The equilibrium constant of the reaction is

K=-1 so kf = Kk
ke

The relaxation time for the temperature jump is
T = f{ki +k(BI+[CD) ™" so k=1~ —ke([B]+[C])

Setting these two expressions for k¢ equal yields

1
(K + [B] + [C)])
B 1
T (3.0x10765) x (2.0 x 10716 42.0 x 104 +2.0 x 10~4) mol L—!

Kk =1 —ke([BI+[C]) so k =

kr

=83 x 1085Lmol~'s!

and ks = (2.0 x 107 molL™) x (8.3 x 108 Lmol ™ !'s™1) =|1.7 x 1077 s7!
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P25.2

P25.4

Solutions to problems

Solutions to numerical problems

The procedure is that described in solution to Problem 25.1. Visual inspection of the data seems to
indicate that the half-life is roughly independent of the concentration. Therefore, we first try to fit

A
the data to eqn 10b. As in Example 25.3 we plot ln(%> against time to see if a straight line is
0
obtained. We draw up the following table (A = (CH3)3CBr)

t/h 0 3.15 6.20 10.00 18.30 30.80

[Al/(102molL™Y)  10.39 8.96 7.76 6.39 3.53 2.07

A

% 1 0.862 0.747 0.615 0.340 0.199
0

[A]

In Al 0 —0.148 —0292 —048 —1.080 —1.613
0

1

<m>/(Lm0rl) 9.62 11.16 12.89 15.65 28.3 48.3

The data are plotted in Fig. 25.1. The fit to a straight line is only fair. The least squares value of k

is 0.0542h7 ! = ’ 1.51 x 107> s~ ! | with a correlation coefficient of 0.996. If we try to fit the data
to eqn 12b, which corresponds to a second-order reaction, the fit is not as good. The correlation

coefficient is 0.985. Thus we conclude that the reaction is most likely . A more complex
order, which is neither first nor second, is possible, but not likely. At 43.8h

ln<ﬂ) = —2.359
[Alo

(Al =|9.82 x 103 mol L~!

0 -

—-1.0

In([A]/[A]y)

t/h Figure 25.1

Examination of the data shows that the half-life remains constant at about 2 minutes. Therefore,
the reaction is . This can be confirmed by fitting any two pairs of data to the integrated
first-order rate law, solving for k from each pair, and checking to see that they are the same to
within experimental error.

+
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ln(ﬂ> = —kt [10b, A =N,Os5]
[Alo
Solving for k,
In @>
k= ( (Al
t
att = 1.00 min, [A] = 0.705 mol L™
m( 1.000)
0.705
=— 2 =0350min"' =5.83 x 107357}
1.00 min
att = 3.00min, [A] = 0.399 mol L™!
1.000
= ln<0'349> =0.351min"! =5.85x 1073571
© 3.00min T
Values of k may be determined in a similar manner at all other times. The average value of k obtained
is ’5.84 x 1073571 ‘ The constancy of k, which varies only between 5.83 and 5.85 x 107371
confirms that the reaction is . A linear regression of In[A] against ¢ yields the same result.
In2 0.693 =
tip=—[11]= —————— = 118.7s = | 1.98 min
2= = S o35
P25.7 [Blg = %[A]o; hence [A]p = 0.624 mol L. For the reaction 2A — B, [A] = [Alp — 2[B]. We can

therefore draw up the following table

t/s 0 600 1200 1800 2400

[B]/(mol L") 0 0.089 0.153 0.200 0.230
[A]/(molL™") 0.624 0446 0.318 0.224 0.164

The data are plotted in Fig. 25.2(a).

0.6 ;.

04 i

[A]/(mol L)

0.2 ,

Figure 25.2(a)

We see that the half-life of A from its initial concentration is approximately 1200 s, and that its half-
life from the concentration at 1200 s is also 1200 s. This indicates a first-order reaction. We confirm
this conclusion by plotting the data accordingly, using

[Alo cdlA]
In ot =kar i == = —kalA]
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P25.8

First, draw up the table

t/s 0 600 1200 1800 2400
In [Alo 4 and plot the points (Fig. 25.2(b)).
[A]

0 034 067 102 13

14

[Aly/[A

In(

0 1200 " 2400
t/s Figure 25.2(b)

The points lie as a straight line, which confirms kinetics. Since the slope of the line is
5.6 x 10_4, we conclude that kp = 5.6 x 107%s7 . To express the rate law in the form

v =k[A]

__adial _ 1
we note that v = 2q = (7) X (—kalA]D) = 3kalA]

and hence k = %kA =128x10%s7!

The data do not extend much beyond one half-life; therefore, we cannot see whether the half-life
is constant over the course of the reaction as a preliminary step in guessing a reaction order. In a
first-order reaction, however, not only the half-life but any other similarly-defined fractional lifetime
remains constant. (That is a property of the exponential function.) In this problem, we can see that
the 2/3-1ife is not constant. (It takes less than 1.6 ms for [CIO] to drop from the first recorded value

(8.49 pmolLfl) by more than 1/3 of that value (to 5.79 pumol Lfl); it takes more than 4.0 more

ms for the concentration to drop by not even 1/3 of that value (to 3.95 umol L™). So our working
assumption is that the reaction is not first-order but second-order. Draw up the following table

t/ms [CIO]/(umol L™")  (1/[CLO])/(L umol™")

0.12 8.49 0.118
0.62 8.09 0.124
096 7.10 0.141
1.60 5.79 0.173
320 5.20 0.192
4.00 4.77 0.210
575 395 0.253

The plot of (1/[Cl1O])/(L pmolfl) vs. t/ms yields a good straight line; the linear least squares fit is:

(1/[C10]/(L pmol ") = 0.118 + 0.0237(t/ms) r* = 0.974
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4|)

[C10] (L pmol

Figure 25.3

The rate constant is equal to the slope

k =0.0237L pmol ' ms™! ={2.37 x 10’ Lmol ™' s~!

The lifetime or time constant is the time required for the concentration to drop to 1/e of its initial
value. Use the integrated second-order rate law

L _ # =kt
[CIO] [ClO]y

to solve for the time when [ClO] = [ClO]j/e

e 1
[CIO)y  [CIOly

—1 —1
So  t=— ¢ =856 x 1035,

T K[CIOly  (2.37 x 10~7 Lmol ! s—1)(8.47 x 10-6mol L")

=kt

Note: [ClO] was taken from the intercept of the best-fit equation

(1/[C10]o)/(Lumol 1) = 0.118  so  [ClO]y = 8.47 umol L™

Using spreadsheet software to evaluate eqn 25.36, one can draw up a plot like the following. The
curves in this plot represent the concentration of the intermediate [I] as a function of time. They
are labeled with the ratio ky/kp, where k» = 1 s~! for all curves and ki varies. The thickest curve,
labeled 10, corresponds to k1 = 10s7!, as specified in part a of the problem. As the ratio k1/k»
gets smaller (or, as the problem puts it, the ratio k> /k; gets larger), the concentration profile for I
becomes lower, broader, and flatter; that is, [I] becomes more nearly constant over a longer period of
. which becomes more and more valid as

time. This is the nature of the | steady-state approximation

consumption of the intermediate becomes fast compared with its formation.

+
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P25.13

P25.15

[1]/ (mol/L)
(=]
~

Figure 25.4

R1n ke
(keff) . RIn3 -1
E, = ————=[Exercise 25.16(a) from eqn 25.25] = 1 = —18kJ mol

11 11
(T - F) 343K ~ 292K

But keff = kK| K> [Problem 25.12]

Inkegf =Ink +1In Ky + In K»
d1In kegr

E,=—R
d(1/T)

[25.26] = E} + A H) + AcH

dlnK —ArH

since = [van’t Hoff equation, Chapter 9] Therefore,
d(1/T) R
EQ =E,— AtH| — ArHy = [—(18) + (14) + (14)]1<Jm01_1 = [+10kJ mol~!
| k;

+ [25.63]

k— kakp  ka[A]
or, in terms of pressure of A
| k} 1

K~ kako | Kap

1 1
and we expect a straight line when % is plotted against —. We draw up the following table
p

p/Torr 84.1 110 289 0.569 0.120 0.067
1/(p/Torr) 0.012 0.091 0346 1776 833 149
107%/(k/s™") 0336 0448 0629 1.17 255 3.30

These points are plotted in Fig. 25.5. There are marked deviations at low pressures, indicating that
the Lindemann theory is deficient in that region.
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T
Figure 25.5
Solutions to theoretical problems
P25.18 We assume a pre-equilibrium (as the initial step is fast), and write
A 2
K = Q, implying that [A] = K '/?[A,]'/?
[A2]
The rate-determining step then gives
v =T o [AlB) = kK 21A01 B | = kerrlA2] 2B
T 2 =|k2 2 = Keff A2
where kegr = szl/z.
d[p
P25.20 % = k[A][B]

Let the initial concentrations be Ag, By, and [P]y = 0. Then, when an amount x of P is formed, the
amount of A changes to Ag — 2x and that of B changes to By — 3x. Therefore

arp) _ dx

dr dr
t X
f kdr :/ dx
0 0o (Aog—2x) x (Bp — 3x)
X 6 1 1
-, (@=m) oo ~ 7o)
o \ 2By — 34, 3(Ag — 2x)  2(Bo — 3x)
_ ( -1 ) » (/x dx 3 f" dx )
~ \(2By — 34) o x—1/2)A0 Jo x—(1/3)By
_1 _1
(2By — 3A¢) —%Ao —%Bo
< -1 )1 ((ZX—A())B())
2By — 34 ) "\ Ay(3x — Bo)

1 | (2x = A0)Bo
<(3A0 — 2B0)> n(AO(3x — B0)>

=k(Ag —2x)(Byg —3x) withx =0 atr =0.
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P25.23 kt = ( ! ) X 1_1 - 1_1 [Exercise 25.18(a), n # 1]
n—1 [A]" [AlG

Att =t ktip = ! 2\ Ly
=112, kt12 = 1 A_o A_o

Att =134, [A] = 3[Alo

ktyy = —— ) | ( — —(—
i (”—1>[<3A0> (Ao) }
np_ 2ol

4 (g)”* 1

P25.24 Let the forward rates be written as

Hence,

r1 = ki[Al, r2 = k2[B], r3 = k3[C]
and the reverse rates as
ri = k{[B], ry = k5[Cl], ry = k5[D]
The net rates are then
Ry = ki[A] — k;[B], Ry = ka[B] — k[Cl, R3 = k3[C] — k3[D]
But [A] = [A]p and [D] = 0, so that the steady-state equations for the rates of the intermediates are
ki[Alo — K} [B] = k2[B] — k5 [C] = k3[C]
From the second of these equations we find

ko [B]

Cl =
1 ké+k3

After inserting this expression for [C] into the first of the steady-state equations we obtain
ki
/ Kk
b+ K - (i

Thus, at the steady state

[B] = [A]o x

k

’ khko
kot = (k§+k3>

Ri=Ry=R3=[Alpk; x | 1 —
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P25.25 v = k([Alo — x)([Blo + x)

EE=MMh—m—HBh+ﬂ
X

dv
The extrema correspond to d_ =0, or

Alo — [B
[Alg—x =[Blo+x or 2x=[Alp—[Blp or x= w
Substitute into v to obtain

%u:kCMo+Bb>XCHq+Mh):k(Mb+Bby
2 2 2 2 2

Since v and x cannot be negative in the reaction,

[Blp < [Alp

To see the variation of v with x, let [B]g = [A]p. The rate equation becomes

v=k([Alo —x)([Alp +x) = k([A]g —xY = k[A]% k2

or 0 (1o _(1+L)(1_L)
N A2 [Alo [Alo

2
Thus we plot Lz against | 1 — a from B 0
k[A] [Alo

0 (AT
The plot is shown in Fig. 25.6 in which X = L L <1 corresponds to reality
[Alo | [Alo

Figure 25.6

+
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P25.26 ForA - B — C

(1 = kl)k%k(e—ka’ — e Mh[A]g [25.36]

Al ke
dt  kpy — ka

(kbe—kbt . kae_kat)

[1] reaches a maximum when d[I]/d¢=0. This occurs when ¢ satisfies the equation

kbe_kbtmax _ kae_katmax — 0

— (ka—kb)tmax
kbefkbtmax 1 _ kae ’ — 0
ky

1 — k_ae_(ka_kb)tmax =0
kp

e_(ka_kb)tmax — kb/ka

—(ka — kp)tmax = In(kp/ ka)

_ InGkn/ka) _ (ka/ko)In(ka/ky)
(o —k) gy (B 1)

max

Fork, =1.0 min_l, the times at which [I] is a maximum are

ka/ ko 5 1

05
finay /min

The evaluation for #3x when k, / kyp, = 1 requires special care. Imagine k, / k, > 0 and take /lllcm .
a/ Kb—>
k
(tmax)- In this limit the value of k—a — 1) in the denominator becomes very small (call this value x)
b

and can be viewed as being part of the Taylor series expansion of In (1 + x)

x2 i3
n(l+x)=x 2 + 3 + X
. 1 (ka/kp) In(ka/ ky)
Iim  (ftmax) = — im _
ka/kp—>1 ka ky/kp—1 In(ka/kp)
ka

I
Plots of ﬁ for ka/ ky = 5, 1, and 0.5 are shown in Fig. 25.6.
0
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[1] for [A], = 1.0mol L™" and k, = 1.0min""
0.7

5
0.6

0.5

0.4

(11/[Alp

0.3

02 0.5

0.1

0.0 1 ] 1 ] 1 ] 1

Time/min Figure 25.6(a)

ForA+B — P

d
v = d_’: = k[A][B] = k([Alp — x)([Blo — x)

fx dx = fl kdr = ki
x=0 ([Alp — x)([Blp — x) 1=0

fx dx k
=0 [Alo[Blo — ([Alp + [Blo)x + x2

The integral on the left may be found in standard mathematics handbooks.

/ dz 1 I 2ax + b — /b? — dac
= n
az? +bz+c Vb? —dac 2ax 4+ b+ /b? — 4ac

The transformations to our working equation are

a—1 b — —([Alo + [Blo)
¢ — [Alo[Blo Vb* —4ac — [A]p — [Blo

b —+/b? —dac — —2[A]o
b+ +/b*—4ac - —2[B]

! m("‘woﬂ — ki
[Alo— Bl \x — Bl /],

! {m([A]O_x)—ln(@)} =kt
[Alo — [Blo [Blo — x [Blo

1 ln([B]o([A]o — X)>
[Alp — [Blo [AJo([Blp — x)

=kt

This can also be written in the form

1 ln([A]o([B]o - X))
(Blo —[Alo  \[Blo([Alo — x)
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We will now solve this for x

Bl — B
Blo =x _ Blo —(qal-Biokn — ¢

[Alo—x  [Alo

[Blo — x = [Alof(t) — f()x

(1= f@)x = [Blo — [Alof (1)

[Blo — [Alof (1) | [Blo — [Bloe™ {([Alo—Blo)kr)
1—f(@) 1 — ([Blo/[Alp)e~{([Alo=[Blokr)

Solutions to applications

423

P25.28 The first-order half-life is related to the rate constant by

In2 In2 In2
t1/2=— sO0 k=—=
k tip 281y

=247 x 1072y~ !

The integrated rate law tells us
[°Sr] = [Srloe ¥ so m =mpe ¥

where m is the mass of *°Sr.

(a) After 18y: m = (1.00 nug) x exp[—(2.47 x 1072 y_l) x (18y)] =|0.642 pg
(b) After 70y: m = (1.00 ug) x exp[—(2.47 x 1072y~ 1) x (70y)] =[0.177 pug

P25.30 We assume a pre-equilibrium (as the initial step is fast), and write

_ [unstable helix]

, implying that [unstable helix] = K[A][B]
[AI[B] puing

The rate-determining step then gives

d[double helix]

v=——— = kolunstable helix] = kK [AI[B] = [KIAI[B] | [k = k2K]

The equilibrium constant is the outcome of the two processes

ky . ki
A + B & unstable helix, K = —
k' kl
1
kik
Therefore, with v = k[A][B], | k = ]]C/z
1

P25.33 (a) The rate of reaction is

v = k[CH4][OH]

B 9 1 —1 —14.1 x 103 Jmol~!
= (1.13 x 10" Lmol™ " s ") x exp

(8.3145TK—mol~1) x (263K)

x (4.0 x 1078 molL™!) x (1.5 x 107 P molL™") =[1.1 x 107 ¥ mol L~ s~ ! \
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(b) The mass is the amount consumed (in moles) times the molar mass; the amount consumed is the
rate of consumption times the volume of the “reaction vessel” times the time

m = MvVi = (0.01604kgmol ™) x (1.1 x 10”19 moIL~!s71)
x (4 x 1021 L) x (365 x 24 x 3600's)

=122 x 10" kgor220Tg

The initial rate is

vo = (3.6 x 10°L3mol3s71) x (5 x 107*mol L™ 12 x (107*3 mol L™ 1)?

=19x 107 9mo1L" 15!

The half-life for a second-order reaction is

1

t = ——
V27 KHSO; o

where k' is the rate constant in the expression

d[HSO3 |

— k'[HSOZ ?
o [ 3]

Comparison to the given rate law and rate constant shows
k' = 2k[HT]> = 2(3.6 x 10° L3 mol 3 s 1) x (107*> molL~1)?
=72x 1073 Lmol~!'s™!

1
(7.2 x 1073 Lmol~!s~1) x (5 x 10~#molL—1)

2.8 x 10° s = 3 days

and 1=

+
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26 The kinetics of complex reactions

Solutions to exercises

Discussion questions

In the analysis of stepwise polymerization, the rate constant for the second-order condensation is
assumed to be independent of the chain length and to remain constant throughout the reaction. It
follows, then, that the degree of polymerization is given by

(n) = 1+ ki[Alo

Therefore, the average molar mas can be controlled by adjusting the initial concentration of monomer
and the length of time that the polymerization is allowed to proceed.

Chain polymerization is a complicated radical chain mechanism involving initiation, propagation,
and termination steps (see Section 26.4 for the details of this mechanism). The derivation of the
overall rate equation utilizes the steady state approximation and leads to the following expression for
the average number of monomer units in the polymer chain:

(n) = 2k[M][1]~1/2,

where k =1/2 kp(fkik,)~'/?, with kp, ki, and k¢, being the rate constants for the propagation, initiation,
and termination steps, and f is the fraction of radicals that successfully initiate a chain. We see that
the average molar mass of the polymer is directly proportional to the monomer concentration, and
inversely proportional to the square root of the initiator concentration and to the rate constant for
initiation. Therefore, the slower the initiation of the chain, the higher the average molar mass of the
polymer.

Refer to eqns 26.26 and 26.27, which are the analogues of the Michaelis—Menten and Lineweaver—
Burk equations (26.21 and 26.22), as well as to Fig. 26.12. There are three major modes of inhibition
that give rise to distinctly different kinetic behaviour (Fig. 26.12). In competitive inhibition the
inhibitor binds only to the active site of the enzyme and thereby inhibits the attachment of the
substrate. This condition corresponds to @ > 1 and &’ = 1 (because ESI does not form). The slope of
the Lineweaver—Burk plot increases by a factor of « relative to the slope for data on the uninhibited
enzyme (@ = o' = 1). The y-intercept does not change as a result of competitive inhibition. In
uncompetitive inhibition, the inhibitor binds to a site of the enzyme that is removed from the active
site, but only if the substrate is already present. The inhibition occurs because ESI reduces the
concentration of ES, the active type of the complex. In this case « = 1 (because EI does not form)
and o’ > 1. The y- intercept of the Lineweaver—Burk plot increases by a factor of o’ relative to the
y-intercept for data on the uninhibited enzyme, but the slope does not change. In non-competitive
inhibition, the inhibitor binds to a site other than the active site, and its presence reduces the ability
of the substrate to bind to the active site. Inhibition occurs at both the E and ES sites. This condition
correspondstoo > 1anda’ > 1.Both the slope and y-intercept of the Lineweaver-Burk plot increase
upon addition of the inhibitor. Figure 26.12c shows the special case of K| = K|’ and @ = ', which
results in intersection of the lines at the x-axis.

In all cases, the efficiency of the inhibitor may be obtained by determining Ky and vpax from a
control experiment with uninhibited enzyme and then repeating the experiment with a known con-
centration of inhibitor. From the slope and y-intercept of the Lineweaver—Burk plot for the inhibited
enzyme (eqn 26.27), the mode of inhibition, the values of o or &', and the values of Ky, or K|’ may
be obtained.
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The steady-state approximation is applied to reactive intermediates in consecutive reactions and is
the assumption that their concentrations do not change much with time. It is a good approximation
if the rate constant for the reaction of the intermediate, in either the forward or backward direction,
is large compared to the rate constant in the other direction. This approximation is applicable when
chemical production and chemical consumption are closely balanced.

In the steady-state condition of a chemical reaction, a reactant or product is maintained at a
constant concentration throughout the course of the reaction by supplying it to or withdrawing it
from the reaction vessel. Steady-states are not equilibrium states in the thermodynamic sense and in
fact are the other extreme from equilibrium.

Bistability is a condition in which two distinct, far from equilibrium, steady-states are chemically
available to the reacting system. In some systems, bistability is a necessary condition for chemical
oscillation to occur. Under the right conditions, the system may jump periodically between the two
steady states as the reaction progresses. Refer to Figs 26.19 and 26.20 of the text for an illustration of
the process. However, bistability alone is not a sufficient condition to achieve oscillation in an auto-
catalytic reaction. In order for the oscillation to occur, it is necessary to have a feedback mechanism
involving a third species Z that reacts with the intermediates X and Y according to: Y +Z — X and
X +Z — Y. Thus Z reacts with X to produce Y and with Y to produce X. As a result the system can
switch periodically between the upper and lower steady states.

The shortening of the lifetime of an excited state is called quenching. Quenching effects may be
studied by monitoring the emission from the excited state that is involved in the photochemical
process. The addition of a quencher opens up an additional channel for the deactivation of the excited
singlet state.

Three common mechanisms for bimolecular quenching of an excited singlet (or triplet) state are:

Collisional deactivation: S* +Q — S+ Q
Energy transfer: S*+Q— S+QF
Electron transfer: S*+Q—>ST+Q or S™+QF

Collisional quenching is particularly efficient when Q is a heavy species, such as iodide ion, which
receives energy from S* and then decays primarily by internal conversion to the ground state. Pure
collisional quenching can be detected by the appearance of vibrational and rotational excitation in
the spectrum of the acceptor.

In many cases, it is possible to prove that energy transfer is the predominant mechanism of quench-
ing if the excited state of the acceptor fluoresces or phosphoresces at a characteristic wavelength. In a
pulsed laser experiment, the rise in fluorescence intensity from Q™ with a characteristic time which is
the same as that for the decay of the fluorescence of S* is often taken as indication of energy transfer
from S to Q.

Electron transfer can be studied by time-resolved spectroscopy (Section 17.7¢). The oxidized and
reduced products often have electronic absorption spectra distinct from those of their neutral parent
compounds. Therefore, the rapid appearance of such known features in the absorption spectrum after
excitation by a laser pulse may be taken as indication of quenching by electron transfer.

Numerical exercises

In the following exercises and problems, it is recommended that rate constants are labelled with
the number of the step in the proposed reaction mechanism and that any reverse steps are labelled
similarly but with a prime.
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E26.5(b) The intermediates are NO and NO3 and we apply the steady-state approximation to each of their
concentrations

k2[NO3][NO3] — k3[NO][N,05] = 0
k1[N205] — k1 [NO2][NO3] — k2 [NO7][NO3] = 0

1d
Rate — __M
2 dr
d[N>Os5]
# = —k1[N20s] + k| [NO,][NO3] — k3[NOJ[N,05s]

From the steady state equations

k3[NO][N20s] = k2[NO2][NO3]

k1[N, Os]
NO»][NO3] = —————
[NO,][NOs] ¥t ko
Substituting,

d[N,Os] k' ky koky 2kiky

———— = —k[N,O ——[N»O5] — N>Os] = — N->O
i 1[25]+k,1+k2[25] k/1+k2[25] k/1+k2[25]
kiko

Rate = ————[N»Os5] = k[N»,O

ate k’1+k2[25] [N20Os]
d[R

E26.6(b) % = 2k1[Rz] — k2[R][R,] + k3[R"] — 2k4[R]2

d[R’]

Fra ka[R][R2] — k3[R’]
Apply the steady-state approximation to both equations
2k1[Ry] — ko[RI[R2] + K3[R'] — 2k4[R]* = 0

ka[R][R2] — k3[R'] =0

k
The second solves to [R'] = é[R][Rg]

k 172
and then the first solves to [R] = (k—l[R2]>
4

d[R>]
Therefore, pra —k1[R2] — k2 [R2][R] =

kl 1/2 "™
—k1[Ra] — ky (k—) [Ry]%/
4

E26.7(b) (a) The figure suggests that a chain-branching explosion at temperatures as low as

700 K. There may, however, be a thermal explosion regime at pressures in excess of 10° Pa.

(b) The lower limit seems to occur when

log(p/Pa) =2.1 so p=10>'Pa=|13x10’Pa

There does not seem to be a pressure above which a steady reaction occurs. Rather the chain-
branching explosion range seems to run into the thermal explosion range around

log(p/Pa) =45 so p=10">Pa=|3 x 10*Pa
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E26.8(b)

E26.9(b)

E26.10(b)

E26.11(b)

E26.12(b)

INSTRUCTOR'S MANUAL

The rate of production of the product is

d[BH™]

- +
& = ko[HAH™][B]

HAH™ is an intermediate involved in a rapid pre-equilibrium

[HAH'] _ ki © [H AH+]=k1[HA][H+]
[HAIH'] k] ki
d[BH+] _ kiko +

and QO = k_i[HA][H 1[B]

This rate law can be made independent of [H] if the source of H™ is the acid HA, for then H is
given by another equilibrium

A 2
w = a = [H ] SO [H+] = (Ka[HA])1/2
[HA] [HA]
" 1/2
and d[B;I 1 _ k1k2{(a [HA]*/2[B]
1

A, appears in the initiation step only.
d[Az]
dr

Consequently, the rate of consumption of [A] is first order in A, and the rate is independent of
intermediate concentrations.

= —k[A2]

The maximum velocity is ky[E]o and the velocity in general is

ku[S1[E]p Kwm + [S]
v=k[El]p=————— so v =k[Elp= —v
[ ]O Ky + [S] max b[ ]0 [S]
0.042 + 0.890) mol L™!
Umax = ( + ) mo (2.45 x 10~ *mol L ! s_l) =[2.57 x 10" *mol L~ ! s~!

0.890 mol L ™!

The quantum yield tells us that each mole of photons absorbed causes 1.2 x 102 moles of A to
react; the stoichiometry tells us that 1 mole of B is formed for every mole of A which reacts. From
the yield of 1.77 mmol B, we infer that 1.77 mmol A reacted, caused by the absorption of 1.77 x

1073 mol/(1.2 x 10? mol Einstein ') =| 1.5 x 107> moles of photons

The quantum efficiency is defined as the amount of reacting molecules n 5 divided by the amount of
photons absorbed n,ps. The fraction of photons absorbed fp¢ is one minus the fraction transmitted
ftrans; and the amount of photons emitted nphoton can be inferred from the energy of the light source
(power P times time ¢) and the energy of the photons (hc/X).

nahcNp
(1 = firans)A Pt
(0.324 mol) x (6.626 x 10734 s) x (2.998 x 108 ms~!) x (6.022 x 1023 mol~1)
(1 —0.257) x (320 x 10=9m) x (87.5W) x (28.0min) x (60s min_l)
1.11

b =
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P26.2

P26.5

Solutions to problems

Solutions to numerical problems

O+ Clp - ClIO+Cl p(Clp) = constant [Cl, at high pressure]
Therefore, the reaction is probably pseudo-first order, and
[0] ~ [Olge ™"

. [Olo , d
That being so, In ﬁ =k't = k[Clh]t = k[Clp] x —
v

where k' = [Cl ]k, v is the flow rate, and d is the distance along the tube. We draw up the following
table

d/cm 0 2 4 6 8 10 12 14 16 18

(6]
ln% 0.27 031 034 038 045 046 0.50 055 056 0.60

The points are plotted in Fig. 26.1.

Figure 26.1

[Cly]

k
The slope is 0.0189, and so =0.0189cm L.

(0.0189cm™!) x v
[Cl2]
_ (0.0189cm™) x (6.66 x 10 cms™!)

2.54 x 10~ " mol L~!
(There is a very fast O 4 CIO — Cl + O reaction, and so the answer given here is actually twice
the true value.)

Therefore, k =

=15.0x 10’ Lmol!s!

H, — 2H- initiation, U = Vjnit

H-+ 0, — -OH + -O- branching, v = kj[H-][O;]
.0-+H, - -OH + H- branching, v = kp[-O-][H]
H. + O, — HOy- propagation, v = k3[H-][O3]

HO;- + Hy — H,O + -OH  propagation, v = k4[HO»-][H>]
HO;- + wall — destruction termination, v = k5[HO3-]
H- + M — destruction termination, v = kg[H-][M]
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We identify the onset of explosion with the rapid increase in the concentration of radicals which we
initially identify with [H-]. Then

Urad = Vinit — K1[H-1[02] + k2[-O-1[H2] — k3[H-][O2] — kg[H-][M]
Intermediates are examined with the steady-state approximation.

d[-O-
% — k1[HA[02] — k2[-O-][Ha] ~ 0
__ ki[H-][O7]

[O]ss ~
58 k> [Hz]
Therefore,

- (0]
Vrad = Vinit — k1 [H-1[02] + k2 ( Jo[Ha ]

= Vjnit — (k3[02] + k¢[M]D[H-]

) [(Hz] — k3[H-][O2] — ke[H-][M]

The factor (k3[O>] + kg[M]) is always positive and, therefore, v;,q always decreases for all values
of [H-]. No explosion is possible according to this mechanism, or at least no exponential growth of
[H-] is observed.

Let us try a second approach for which the concentration of radicals is identified with [-O-].
Urad = k1[H-][O2] — k2[-O-][H2]
Using the steady-state approximation to describe [H-], we find that

Vinit + k2[H2][-O-]
(k1 + k3)[O2] + k6[M]
o = Vinitk1[02] { k1ka[H2][O;]
(k1 + k3)[02] + ks[M] (k1 + k3)[O2] + k6[M]

[H-]ss =

- kz[Hz]} [-O-]

This has the form

d[-O-]
Vrad = g = C1 +{C2 = G3}[-01]
where C1, C,, and C3 are always positive. This means that the mechanism predicts exponential growth
k1[O
of radicals, and explosion, when C, > C3. This will occur when 1[02] > 1. But

o _ ) (k1 + k3)[O2] + kg[M]
this is not possible. So no exponential growth of [-O-] can occur. The proposed mechanism is incon-

sistent with the existence of an explosion on the assumption that the steady-state approximation can
be applied to the intermediates H- and -O-. It is, however, unlikely that the steady-state approximation
can be applied to explosive reactions, and this is where the analysis breaks down.

M + hy; — M*, I, [M = benzophenone]

M +Q—>M+Q, kg

M* — M + hvy, ke

d[M*]
dt

= Iy — kf[M*] — kq[Q][M*] ~ 0 [steady state]

Iy

and hence [M*] = —————
ke + kq[QI
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P26.11

* kfla
Then If = kf[M ] =
ke +kq[Q]
1 1k
andso| — = — + LQ]
If Ia kfIa

If the exciting light is extinguished, [M*], and hence I, decays as ek in the absence of a quencher.

Therefore we can measure kq/ k¢l from the slope of 1/If plotted against [Q], and then use k¢ to
determine kq.

We draw up the following table

10°[QI/M 1 5 10
1

I

24 40 63

The points are plotted in Fig. 26.2.

Figure 26.2

1

The intercept lies at 2.0, and so I, = = 0.50. The slope is 430, and so

2.0
k
4 — 430Lmol ™!
kel
. In 2
Then, since I; = 0.50 and kf = —,
12
-1 In 2 6 11
kq =(0.50) x 430Lmol™ ") x [ =———+— ) =|5.1 x 10°Lmol™ s
29 x 1065

Solutions to theoretical problems

d[CH3CH3]
— 4 = —ka[CH3CH3] — kp[CH3][CH3CH3] — kg[CH3CH3][H] + ke [CH3CH,][H]
We apply the steady-state approximation to the three intermediates CH3, CH3CH>, and H.
d[CH3]

< = 2ka[CH3CH3] — &y [CH3CH3J[CH3] = 0

C 2k,
which implies that [CH3] = "
b
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% = kp[CH3][CH3CH3] — kc[CH3CH;]
+ kq[CH3CH3][H] — k.[CH3CH,][H] = 0
% = kc[CH3CH,] — kq[CH3CH3][H] — ke¢[CH3CH2][H] = 0

These three equations give

ke

[CH3CH3;]

[H] =
ke + kd [CH,CH ]

k kak,
[CH3CH,]? — (k—a) [CH3CH3][CH3CH,] — <kakd) [CH3CH3]> = 0
C

che

ka ka \°> ([ kaka\ 72
or [CH3CH;,] = (i) + [ <E> + (W)} [CH3CH3]

which implies that

k k kN2 (kg \ 17
m- =)+ [(8) ()
ke + X 2k 2k keke

If k, is small in the sense that only the lowest order need be retained,

[CH3CH,] ~ (29)  [CH3CH3)
kcke

A~ ke ((kake \'?
HI~ e\ 2 \kgke
ke ko (£52)

The rate of production of ethene is therefore

kakckd

€

d[CH;CH;]

172
CH3;CH
” > [CH3CH3]

= ke[CH3CH2] = (

The rate of production of ethene is equal to the rate of consumption of ethane (the intermediates all
have low concentrations), so

d[CH;CH kakckg \ /%
[CH3CH3] _ _K[CH;CHs], & = ( Fakekd
dt ke

Different orders may arise if the reaction is sensitized so that k, is increased.

CH;CHO — -CHj + -CHO, ka
.CH; + CH; - CHO — CHy + -CH,CHO, Ky,
.CH,CHO — CO + -CHj, ke
-CH3 + -CH3 — CH3CHs, kq
d[CH

[dt 4] _ 4 [CHA][CH3CHO]
d[CH3CHO]

- — —ka[CH3;CHO] — ky[CH3;CHO][CH3]
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d[CH

[dt 3] _ . [CHsCHO] — ky[CH3CHOJ[CH;] + ke[CHoCHO] — 2k4[CH3]? = 0
d[CH,CHO
% = ky[CH3][CH3CHO] — ko[CH,CHO] = 0

Adding the last two equations gives

ke \ 172
ka[CH3CHO] — 2kq[CH3]> =0, or [CH3]= (i) [CH;CHO]'/?
d

Therefore
d[CH ko \ /2
dICH4] _ ko [ —~) [CH;CHOJ/2
dr 2kq
d[CH3CHO] ka \ '/ 32
— - —ka[CH3CHO] — &y, (i) [CH3CHO] /
d

Note that, to lowest-order in k,,

d[CH3CHO ka \ /2
# ~ —kp [ —— [CH3CHO]3/2
dr 2kg

and the reaction is three-halves order in CH3CHO.

P26.14 (a) M, =M> Y ndPy =M1 =p)Y n?p" ! [Py =p""'(1 - p). Problem 26.13]
n n

d d d d
=M1 —p)— > n?p"=MUA—-p)—p—p—) p"
den: dp dp dp 4
d d d o MP(+4p+phH)
=M= p)—p—p—(1-p~' = 3
dp  dp” dp (I-p)
—_» M3
- Lf) [Problem 26.13]
(I-p)

—3

Therefore —_n _ w

2 _ 2
n 1 p
1 1
M (n)=-—[268], so p=1——
1—-p (n)
M, ;
— =[(6n)” —6(n) + 1)(n)
M[l
d[A] 2 3
P26.16 7 = —k[A]°[OH] = —k[A]° because [A] = [OH].
3 [A] t
d[A] = —kdtr and / d[—A3] = —k/ dt = —kt
[A] [Alo [A] 0
‘ f e _ -1 tion b
since — = —= € equation becomes
x3 2x2’ 4
1 1

— — —— =2kt or [A]=[Alp 1+ 2kt[Alp)" /2
[A]?  [AJZ
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By eqn 26.8a the degree of polymerization, (n), is given by

[Alp

_ _ 12
() = = =0+ k1AL
P26.18 diPl _ Ay
dr
dx 2
5 =KAo =P +x)° [x =P — P

* dx
- 2
0o (Ao —x)(Po+x)
Integrate by partial fractions (as in Problem 26.17)

= (AoJero)fox {(Pol+x>2+ (AoJero) |:P01+x * Aol_x” &
- () & m) + G () (2]
- (Gor) [(mmes) * G ) (s 259

Therefore, with y = o and p = —,
[Alo A

y 1 p+y
Ao(Ag + Py)kt = 1
0o+ Pk (p(p+y)>+<l+p> n<p(l—y)>

As in Problem 26.6, the rate is maximum when

P
% = 2k[A][P]<d[ ]> +k< A ])[P]

= 2k[A][P]vp — k[P]*vp = k[P](2[A] — [P))vp =0

That is, at [A] = 3[P]

On substitution of this condition into the integrated rate law, we find

2 1 2
Ao(Ag + Po)ktmax = <—p> + <—) In=

2p(1+ p) l1+p p
) 2 — 2
or (Ag + Po)“ktmax =| —— + In —
2p p
. d[X] 5
P26.20 () o kalAITY] — kp[XI[Y] + kc[AT[X] — 2kq[X]
... d[Y]
(i) TR —ka[AN[Y] — kp[XI[Y] — ke[Z]

+
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Express these differential equations as finite-difference equations
() X(tip1) = X(5) + (kal AIY (1) — ko X (1) Y (1) + ke[ AIX (1) — 2k X (1)} At
() Y(tip1) = Y(#6) + {kelZ] — ka[A]Y () — ko X(1) Y ()} At

Solve these equations by iteration.

B
P26.21 A—B % =7,

aB) _

B— A = —k[B]?

In the photostationary state Z, — k[B]2 = 0. Hence,

T\ 1/2
[B] = (f) o [A]'/2  [because T o [A]]

The illumination may increase the rate of the forward reaction without affecting the reverse reaction.
Hence the position of equilibrium may be shifted toward products.

P26.23 Cly + hv — 2CI Ta
Cl + CHCl; — CCl; + HCl &y
CCl3 +Cly — CCly +Cl ks

2CCl3 + Cly — 2CCl, kg
d[CCl1
i & ; 4 ok [CC PICL] + K[CCl1[CL]
. d[CCls] ,
(>i1) o = kp[C1][CHCI3] — k3[CCI3][Cly] — 2k4[CCI3]°[Cl2] =0
e
(i) =5 = 2Ta — kolCUICHCL,] + k5 CCl31[Cla] = 0
d[Cl
i 4 df] = —T, — k3[CCL3][Cly] — k4[CCL312[Cly]

Therefore, Z, = k4[CCI31*[Cly] [(ii) + (iii)]
which implies that

INV2 /7 N2
CChl=|( — e
. <k4> <[0121>

Then, with (i),

dicCly] _ kT2 [cn/?
ar =21, + ki/z

When the pressure of chlorine is high, and the initiation rate is slow (in the sense that the lowest
powers of 7, dominate), the second term dominates the first, giving

12
d[CCl k3Z,
el B2 = ey i) 2

172
dr k,
. k3 - . .
withk = VR It seems necessary to suppose that C1 4 CI recombination (which needs a third body)
k
4

is unimportant.
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Solutions to applications

P26.26 The mechanism considered is

ka ka
E+S<=(ES)=P+E
We apply the steady-state approximation to [(ES)].
d[ES]

4 = kalElST— ky[(ES)] — kp[(ES)] + Ay [E][P] = 0

Substituting [E] = [E]g — [(ES)] we obtain
ka([Elo — [((ES)DIS] — k4 [(ES)] — kp[(ES)] + &y ([Elo — [(ES)D[P] = 0
(—ka[S] — k — ky — ki [PDI(ES)] + ka[E]o[S] — ki [Elo[P] = 0

(Es)] = alEDIS] + ki [Elo[P] _ [ElolSI+ (7’?) [ElolP] [ oo Rt kb}
 kalS1+ kL +kp +K[[P] K+ [S] + (;%) 7] M=
aiPl , [ElolS] + (72 ) [ElolP]

Then, ——= = kp[(ES)] — Ky [PI[E] = ky — ki [P]

K+ [S1+ () [P

[ElolS] + (2 ) [ElolP]

K+ 151+ () [P]

x| [E]o —

’

ko [[Elo[S] + () [Elo[P1] — K [EloL P1Kn

v+ 181+ () 7]

Substituting for Ky in the numerator and rearranging

apy_ k[EIS] + (%52) [El[P]
I Ku+IsT+ () P

For large concentrations of substrate, such that [S] 3> Ky and [S] > [P],

d[P]
—— =kp[E
P b[Elo
which is the same as the unmodified mechanism. For [S] 3> Kz, but [S] ~ [P]
d[P — (k/ky)[P kK k!
[ ]=k [E]O{[S] (k/kp)[ ]} = fa%
dt [S]+ (k/k})[P] ky
P —k} k! [E]o[P —k:[E]o[P
For [S] — 0. d[]: akpl ]0/[] _ k,[Elo[P]
dr kj + kp + k [P] kp + [P]
k., + ki
where kp = 2 _’; b
k
b
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P26.28

P26.32

S . d[p . .
Comment. The negative sign in the expression for g for the case [S] — 0 is to be interpreted
to mean that the mechanism in this case is the reverse of the mechanism for the case [P] — 0.
The roles of P and S are interchanged.
Question. Can you demonstrate the last statement in the comment above?

N Vmax
14+ K [Slo
Taking the inverse and multiplying by vmax v, we find that

v [26.21]

v
Vmax =V + KM——

[Slo
Thus,
K v v Vmax v
V=1 —KM—— or |—/—= - —
ma [Slo [Slo  Km Kwum

The regression slope and intercept of the Eadie—Hofstee data plot of v against v/[S]g gives — Ky and
Vmax, respectively. Alternatively, the regression slope and intercept of an Eadie—Hofstee data plot of
v/[S]p against v gives —1/ K, and viax / KM, respectively. The slope and intercept of the latter plot
can be used to in the calculation of K and vpax.

The rate of reaction is the rate at which ozone absorbs photons times the quantum yield. The rate at
which ozone absorbs photons is the rate at which photons impinge on the ozone times the fraction of
photons absorbed. That fraction is 1 — 7', where T is the transmittance. 7 is related to the absorbance
A by

A=—logT =¢cl so 1—T=1-10"
1—T=1— 10—{(260Lmol—1cm—l)x(sxlo—"molL—')x(105 em)} _ ()38

If we let F stand for the flux of photons (the rate at which photons impinge on our sample of ozone),
then the rate of reaction is

(1 x 10 em=2s71) x (1000cm3 L~
(6.022 x 1023 mol~!) x (103 cm)

v=>o(1 -T)F = (0.94) x (0.38) x

=159 %x 10 B molL"!s7!




E27.1(b)

E27.2(b)

E27.3(b)

27 Molecular reaction dynamics

Solutions to exercises

Discussion questions

A reaction in solution can be regarded as the outcome of two stages: one is the encounter of two
reactant species, which is followed by their reaction, the second stage, if they acquire their activation
energy. If the rate-determining step is the former, then the reaction is said to be diffusion-controlled.
If the rate-determining step is the latter, then the reaction is activation controlled. For a reaction of
the form A + B — P that obeys the second-order rate law v = k»[A][B], in the diffusion-controlled
regime,

ky = 4T R* DN

where D is the sum of the diffusion coefficients of the two reactant species and R* is the distance
at which reaction occurs. A further approximation is that each molecule obeys the Stokes—Einstein
relation and Stokes’ law, and then

8RT
2%—

3n

where 7 is the viscosity of the medium. The result suggests that k5 is independent of the radii of the
reactants.

In the kinetic salt effect, the rate of a reaction in solution is changed by modification of the ionic
strength of the medium. If the reactant ions have the same sign of charge (as in cation/cation or
anion/anion reactions), then an increase in ionic strength increases the rate constant. If the reactant
ions have opposite signs (as in cation/anion reactions), then an increase in ionic strength decreases
the rate constant. In the former case, the effect can be traced to the denser ionic atmosphere (see the
Debye—Huckel theory) that forms round the newly formed and highly charged ion that constitutes
the activated complex and the stronger interaction of that ion with the atmosphere. In the latter case,
the ion corresponding to the activated complex has a lower charge than the reactants and hence it has
a more diffuse ionic atmosphere and interacts with it more weakly. In the limit of low ionic strength
the rate constant can be expected to follow the relation

logk = logk® + 2Azazgl'/?

Refer to Figs 27.21 and 27.22 of the text. The first of these figures shows an attractive potential energy
surface, the second, a repulsive surface.

(a) Consider Fig. 27.21. If the original molecule is vibrationally excited, then a collision with an
incoming molecule takes the system along the floor of the potential energy valley (trajectory C).
This path is bottled up in the region of the reactants, and does not take the system to the saddle
point. If, however, the same amount of energy is present solely as translational kinetic energy, then
the system moves along a successful encounter trajectory C* and travels smoothly over the saddle
point into products. We can therefore conclude that reactions with attractive potential energy
surfaces proceed more efficiently if the energy is in relative translational motion. Moreover, the
potential surface shows that once past the saddle point the trajectory runs up the steep wall of the
product valley, and then rolls from side to side as it falls to the foot of the valley as the products
separate. In other words, the products emerge in a vibrationally excited state.
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(b) Now consider the repulsive surface (Fig. 27.22). On trajectory C the collisional energy is largely
in translation. As the reactants approach, the potential energy rises. Their path takes them up
the opposing face of the valley, and they are reflected back into the reactant region. This path
corresponds to an unsuccessful encounter, even though the energy is sufficient for reaction. On
a successful trajectory C*, some of the energy is in the vibration of the reactant molecule and
the motion causes the trajectory to weave from side to side up the valley as it approaches the
saddle point. This motion may be sufficient to tip the system round the corner to the saddle point
and then on to products. In this case, the product molecule is expected to be in an unexcited
vibrational state. Reactions with repulsive potential surfaces can therefore be expected to proceed
more efficiently if the excess is present as vibrations.

Numerical exercises

E27.4(b) The collision frequency is

71/2 SRT\ /2
z = ﬂ where o = wd? = 47 r? and (v)y=|——
kT M

21/2 SRT\Y? 16pNarin!/?
50z P anr?) <_> _ 16pNar“z /7

M (RT M)1/2
16 x (100 x 103 Pa) x (6.022 x 1023 mol~1) x (180 x 10712 m)? x (7)/2
[(8.3145J K" mol™!) x (298 K) x (28.01 x 10—3 kgmol~1)]1/2

= 16.64 x 10°s7!

The collision density is
_zp (664 x10%s71) x (100 x 103 Pa)
C2kT T 2(1.381 x 10023JK 1) x (298K)

1
Zan = 5N/V 8.07 x 10**m 357!

Raising the temperature at constant volume means raising the pressure in proportion to the temperature

ZAan X VT
so the per cent increase in z and Zaa due to a 10 K increase in temperature is | 1.6 per cent |, same as
Exercise 27.4(a).

E27.5(b) The appropriate fraction is given by

—E,
f=exp (ﬁ)

The values in question are
—15 x 10% Jmol ™!
(8.3145J K~ mol™1) x (300K)
—15 x 10% Jmol ™!

((8.3145JK1 mol™!) x (800K)

—150 x 103 Jmol~! 7
=[7.7x 10~
(8.3145J K ' mol™!) x (3001())

@ @ f=exp

(i) f = exp

(b) @) f=exp

—150 x 10° Jmol ™!

il =ex
w P (8.3145J K mol™!) x (800K)
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E27.6(b) A straightforward approach would be to compute f = exp <R_Ta> at the new temperature and
compare it to that at the old temperature. An approximate approach would be to note that f changes

—E —
from fy = exp (R_Ta> to f = exp <W—akx) , where x is the fractional increase in the

— —E
temperature. If x is small, the exponent changes from R_Ta to approximately R_Ta(l —x) and f
—E, —E,(1 —x) —E, —E\1 _
changes from exp (ﬁ) to exp (T = exp RT exp RT = fofy "
Thus the new Boltzmann factor is the old one times a factor of fo_x. The factor of increase is
@ () f3" = (2.4x107%)710/300 =

E27.7(b) The reaction rate is given by

8kpT \ '/?
V= PG( - ) Na exp(—E,/RT)[D3][Br3]

s0, in the absence of any estimate of the reaction probability P, the rate constant is

8kpT \'/?
k = 0( B > Npexp(—E,/RT)
T

12

) 1073 7K 1) x (450K

[0.30 x (10_9 m)z] y 8(1.381 x 10 J ) x (450 1)
7(3.930u) x (1.66 x 10727 kgu™")

s —200 x 103 Jmol~!
X (6.022 x 10" mol™ ") exp

(8.3145J K1 mol~1) x (450K)

=171 x 107" m3mol~ s ! = ’ 1.7x 1072 L mol~!s~! ‘

E27.8(b) The rate constant is
kg =47 R*DNx
where D is the sum of two diffusion constants. So

kg = 47(0.50 x 1072 m) x (2 x 4.2 x 1072 m?s™ ) x (6.022 x 10> mol™!)

= ’3.2 x 10’ m> mol~!s~! ‘

In more common units, this is

ka =132 x 10" Lmol~!s!|

E27.9(b) (a) A diffusion-controlled rate constant in decylbenzene is

8RT 8 x (8.3145JK ! mol! 208 K
kq = = x ( mol” ) ><1( ) =197 x 10°m3>mol ! s~!
3n 3x (336 x1073kgm~' s~ 1)
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(b) In concentrated sulfuric acid

8RT 8 x (8.3145JK'mol™!) x (298K)

i = ’ 2.4 x 10°m>mol~'s~! ‘
3n 3x (27 x 103kgm~ts—1)

kg =

E27.10(b) The diffusion-controlled rate constant is

8RT 8 x (8.3145JK " mol™!) x (298K)
3 3x(0.601 x 10-3kgm~!s1)

kg = =110 x 10" m3 mol~' 5!

In more common units, kg = | 1.10 x 10'°L mol~!s~! ‘

The recombination reaction has a rate of
v = kq[A][B] with [A] = [B]

so the half-life is given by
1 1
tyy = = — — =|5.05 x 10785
k[Alo  (1.10 x 1010Lmol™' s=1) x (1.8 x 10=3molL™")

E27.11(b) The reactive cross-section o™ is related to the collision cross-section o by

0c*=Pos so P=0c"/0.
The collision cross-section o is related to effective molecular diameters by
oc=nd* so d= (0/71)1/2

2 12, _1/2\?
Now oA = rrdﬁB = n[%(a’A +dB)] = % (UAQ +0B1/3)

O_*

1 (12 1/2\2
Z(UAA +GBB>

8.7 x 10722
x m —12.22 x 1073

- }‘[((0.88)1/2 + (0.40)1/2) x 10=9 m]?
E27.12(b) The diffusion-controlled rate constant is

so P =

8RT 8 x (8.3145JK'mol™!) x (293K)

: =5.12 x 10°m3 mol ' s~!
3n 3% (1.27 x 1073kgm~1s~1)

kg =

In more common units, kg = 5.12 x 10° Lmol ! 7!

The recombination reaction has a rate of

v = kg[A][B] = (5.12 x 10° Lmol™'s™1) x (0.200molL™") x (0.150mol L™ 1)

— 154 x 108 molL !5~ !
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E27.13(b) The enthalpy of activation for a reaction in solution is

AYH = E, — RT = (8.3145JK ' mol™") x (6134K) — (8.3145J K~ ' mol™") x (298 K)

4.852 x 10* Jmol ! = [48.52 kI mol !

The entropy of activation is

kRT?
hp©

+ A
A*S =R lnE—l where B =

(1381 x 1073 TK 1) x (831457 K~ mol ') x (298K)?
- (6.626 x 10734 Ts) x (1.00 x 103 Pa)

=154 x 10" m3mol~!s~!

B

. 8.72 x 1012 L mol~!s~!
soA*S=(8.31451Klmoll)x<1n x mo” 3

-1
(1000Lm™3) x (1.54 x 10! m3 mol~! s~ 1)

=|=322JK " mol”!|

Comment. In this connection, the enthalpy of activation is often referred to as ‘energy’ of activation.

E27.14(b) The Gibbs energy of activation is related to the rate constant by

—A*G kRT? : ko
ko = Bexp where B = so A*G=—RTIn—
RT hp© B

ky = (6.45 x 1013 Lmol ™! s71)e~{G3373K)/@8K)} _ 9 47 » 107 Lmol ' s~ !
= 947m3 mol~!s!

Using the value of B computed in Exercise 27.13(b), we obtain

ATG = —(8.3145 x 103 KK ' mol™!) x (298K) x ln<

—=146.8kJmol !

E27.15(b) The entropy of activation for a bimolecular reaction in the gas phase is

947 m3 mol~!s~!
1.54 x 101! m3 mol~! s—!

kRT?
hp©

P A
A*S =R IHE_Z where B =

(1381 x 1073 TK™!) x (8.3145T K~ mol™!) x [(55 + 273) K]?
- (6.626 x 1034 Ts) x (1.00 x 103 Pa)

—1.86 x 10" m3mo1~ 157!

B

The rate constant is

—E, E,
Aexp T so A =kyexp RT

49.6 x 103 Tmol ™! )

ko

A = (0.23 m> mol™! sfl) X exp 1
(8.3145TJK ' mol~1) x (328K)

1.8 x 10’ m3> mol ! s~!

+
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1.8 x 107 m3 mol ! s~!
and A*S = (8.3145J K™ ' mol™!) x [ In O mimol 8 )y
1.86 x 10" m3 mol~" s~!

—|-937K~" mol!|
E27.16(b) The entropy of activation for a bimolecular reaction in the gas phase is
: A kRT?
A*S=R|In— -2 where B =
B hp©

For the collision of structureless particles, the rate constant is

o — no (BT 172 —AE,
= _— O €X
2 A — p RT

so the prefactor is

8kT\ /2 RT\'/?
A=Na|Z=) o=4Na(—) o
T M

where we have used the fact that u = %m for identical particles and k/m = R/M. So

(8.3145J K ' mol~1) x (500K)
7 x (78 x 10~3 kgmol 1)

1/2
A = 4x(6.022 x 102 mol™1) x < ) « (0.68 x 10718 m2)

=213 x 108 m?> mol~!s~!
(1.381 x 10723 JK1) x (8.3145J K~ mol™1) x (500K)?
(6.626 x 107347 ) x (1.00 x 103 Pa)

=433 x 101 m3mol 1 7!

2.13 x 108 m3 mol~!s~!
andAiS=(8.3145JK—1mor1)X(1n< x 10°m’mol 1571 )

4.33 x 101 m3mol ! s—!

=|—80.0JK~" mol!|

E27.17(b) (a) The entropy of activation for a unimolecular gas-phase reaction is

A
A¥S =R <ln = 1) where B = 1.54 x 10" m? mol~!' s~! [See Exercise 27.17(a)]

23 x 1083 Lmol~ 15!
soAis=(8.31451K—1mor1)x<1n< X o’ s _ 1

(1000Lm~3) x (1.54 x 10! m3 mol~1 s~ 1)

=|—24.11K " mol!|
(b) The enthalpy of activation is

AYH = E, — RT =30.0 x 10 Jmol™! — (8.3145J K " mol™!) x (298 K)

27.5 x 10° Tmol ™! ={27.5kI mol !

(¢) The Gibbs energy of activation is
A*G = ATH —TA*S =275k mol™! — (298K) x (—24.1 x 103 kI K~ ' mol™1)

= [34.7kJ mol~!
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E27.18(b) The dependence of a rate constant on ionic strength is given by

P27.1

P27.3

logky = logkS +2Azazpl!/?
At infinite dilution, / = 0 and k, = k; , so we must find

logkS = loghky — 2Azazpl/? =log(1.55) — 2 x (0.509) x (+1) x (41) x (0.0241)!/2

=0.323 and |k5 = 1.08L%mol > min~!

Solutions to problems

Solutions to numerical problems

8kT
A = Npc* <—) [Section 27.1 and Exercise 27.16(a); u = %m(CH3)]
T

1/2
(8) x (1.381 x 1072 JK—1) x (298 K) ) /

= (0*) x (6.022 x 102 mol™!) x
() x (1/2) x (15.03u) x (1.6605 x 1027 kg/u)

= (5.52 x 10%®) x (6*mol™' ms™1)

10 —1 3.1 7 —-1...3.—1
@) oF — 24 x 10" mol™ " dm” s 24 x 10" mol™" m” s = 44 % 10-20 m2

552 x 1020mol 'ms=!  5.52 x 1020 mol ! ms—
(b) Take o ~ 7d?* and estimate d as 2 x bond length; therefore

o=()x (154 x2x 1072m)? =3.0 x 1079 m?
o*  435x10720
o 3.0x10"19

For radical recombination it has been found experimentally that £, =~ 0. The maximum rate of
recombination is obtained when P = 1 (or more), and then

* 8kT 12 * kT 12 1
I Tm

o*~mwd* =7 x (308 x 1072 m)? =3.0 x 1079 m?

Hence P = 0.15

Hence

ky = (4) x 3.0 x 107 m?) x (6.022 x 102 mol™!)

23 11 —1 1/2

(1381 x 10-B TK~1) x (298K)

X
(1) % (15.03u) x (1.6605 x 10~27 kg/u)

=1.7x108m3mol 's~ ! =[1.7 x 101! Mm~! s—‘\

The rate constant is for the rate law
v = kp[CH3]?

d[CH3] 2
Therefore a = —2ky[CH3]
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1
[CH3] [CHslo
For 90 per cent recombination, [CH3] = 0.10 x [CH3], which occurs when
9
or t=——
[CH3]o 2k>[CHs]o
The mole fractions of CH3 radicals in which 10 mol% of ethane is dissociated is
2 0.10
@ x©.10) _ e
14+0.10

The initial partial pressure of CH3 radicals is thus

and its solution is 2kot

2kot =

po=0.18p =18 x 10*Pa

1.8 x 10*Pa
RT
9RT (9 x (8.314TK " "mol™!) x (298K)
(2ky) x (1.8 x 104Pa) (1.7 x 108 m3mol~' s~1) x (3.6 x 10% Pa)

~[6m)

P27.6 Figure 27.1 shows that log k is proportional to the ionic strength for neutral molecules.

and [CH3]g =

Therefore t =

— log{k/(L mol~! min~1)}

I Figure 27.1

From the graph, the intercept at I = 0 is —0.182, so

K° = ] 0.658 L mol ™! min~! \

Comment. In comparison to the effect of ionic strength on reactions in which two or more reactants
are ions, the effect when only one is an ion is slight, in rough qualitative agreement with eqn 27.69.

o* 2 ?
P27.7 — ~ | —— | [Example 27.2]
o 4meqd(l — Egy)

Taking o = nd? gives

. e’ 65 nm?
7 T\ dreolI M) — Ea(X2)]) (I — Eea)/eV
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Thus, o* is predicted to increase as I — Ee, decreases. The data let us construct the following table

o*/om*  Cl, Br, I,

Na 045 042 056
K 0.72 0.68 0.97
Rb 0.77 0.72 1.05
Cs 097 090 1.34

All values of ¢* in the table are smaller than the experimental ones, but they do show the correct
trends down the columns. The variation with E¢, across the table is not so good, possibly because
the electron affinities used here are poor estimates.

Question. Can you find better values of electron affinities and do they improve the horizontal trends

in the table?

A+A— A

ATS = R

Av = —1

—(8.3145JK "mol™!) x [ In

+2 [27.63]

3

407 x 105 M~1s~! ( m’ )

103L
(1.381x 10~ JK ) x (300 K)2 x (8.3145J K~ mol™ 1)
(6.626x 10734 T 5) x (1.013x 105 Pa)

(8.3145JK "mol™") x [In(2.631 x 107%) + 2]

A%S = —148 K~ mol~! |

A*H = E, —2RT = 65.43kJmol ™' — 2 x (8.3145J K~ mol™!) x (300K)

g

A*H = 60.44 KT mol ! |

A*H = ATU + A*(pV)

1073k
[27.60, 27.61]

AU = AYH — A¥(pV) = A*H — AvRT

| A*U = 629K mol~!|

A*G = A*H — TA*S = 60.44kI mol~! — (300K) x (—148 J K~ ' mol~!) x (

1073k
(60.441<Jm01—1)—(—1)x(8.3145JK—1m01—1)x(300K)x( ; )

1073kJ
J

| A*G = 104.8KI mol~! |[27.59]

)

+2
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P27.12 (a) The multilinear hypothesis is

(b)

Ey =c1AGy 4+ ol 4¢3

where the constants cq, ¢2, and c3 are independent of temperature. The substitutions E, =
—RT In(k/A) and AGyp, = —RT In(Ky,) (eqns 25.25 and 9.19) give

k
—RTIn <Z> = —c1RT In(Ky) + 21 4+ ¢3

c3 may be eliminated by subtracting the analogous equation for the methylbenzene reference.
Assuming that the pre-exponential A values for the reference and members of the series are
comparable, the working equation becomes

k Ky
—RTIn =—c;RTIn | ——— ) 4+ c2(I = Lojuene)
ktoluene Kb,toluene

K
) , ApKp = —log <—b> » Al = I — Iglyene gives

b,toluene

substituting A ,k = —log (

toluene

ApkzclApkb—l—ﬂ (1)
RT In(10)

The temperature dependence of A,k depends upon A, Ky,

RT In(10)A, Ky,
RT In(10)A, Ky,

AGy=AH, —TAS,
AAH, — TAAS
= (cT — 1)AAH, (assuming that AASy, = CAAHy) 2)

Evaluating the above equation at T = Ty = 273.15K gives

—RTyIn(10)A, Ky
cly—1

AAHY = 3)
where AAHy(To) = AAHy and A,Ky(Ty) = ApKy. Assuming that AHj, is approxi-
mately independent of temperature gives AAH, = AAHI? . Substitute equation (3) into (2)
and substitute the result into equation (1) to get

a To(cT — DALKL bAI

Ak
P T(cTy — 1) + RT In(10)

where the symbols ¢ and ¢, have been replaced with the symbols a and b.

The activation parameters for the ring destruction of p-xylene are determined with a linear
regression analysis of the experimental data plotted as In(k) versus 1/ T (eqn 25.25 and Example
25.5). The regression first gives:

slope = —8.875 x 103K
intercept = 25.53
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Ey = —R x slope = 73.8kJ mol ™!
A = emereept [ o1~ 1s—1 — 1,223 x 10 L mol s~}

A*H and A*S values for solution reactions may be calculated with the following equation (k is
the Boltzmann constant in these equations).

3 " hA
A"H=E,— RT and A*S=R In
KekT

where the transmission coefficient K is assumed to equal 1. These equations may be deduced
by modification of Sections 27.4 and 27.5 concepts to the solution phase. Eqn 27.42 becomes
[C*] = K*[A][B]; eqn 27.44 becomes k» = k*K* = kvK* (eqn 27.45). Eqns 27.5 and 27.53

become ky = Kv(kT K" /hv) = KKTK" / h.
Eqn 27.58 becomes ky = (KkT/h) e AG/RT gng eqn 27.60 becomes
ko = (K kT/h) eAiS/Re_AiH/RT. According to the last equation,

dlnky\ 1 N 1 [dA*S N A*H 1 [oA*H
T T R\ ar RT2 RT \ aT
p p p

= 71% (eqn 4.16)
1 N AYH
" T  RT2

Substitution into the formal definition of activation energy (eqn 25.26) E, = R T2 (0Inky/0T)p,
gives £, = A*H 4+ RT or A*H = E, — RT. Subtitution of this condusion into the k» equation
gives

kr = (K RT/h)eAiS/RefAiH/RT _ (KkT/h)eAiS/Ref(EafRT)/RT
= (KekT/h)eA'S/R
Substituting of ky = Ae Ea/RT (eqn 25.25) and solving for A*S gives the final result.

P hA
A*S =RlIn
KekT

T/K  k/1072Lmol™'s™ A*H/kJmol™' A*S/TK 'mol™!

293.15 0.86 71.4 —40.8

303.15 2.5 71.3 —41.1

313.15 54 71.2 —41.4

323.15 13 71.1 —41.6

333.15 47 71.0 —41.9

343.15 59 70.9 —42.1

Entropy decreases upon formation of the transition state.

The 6 temperatures at which rate constants are measured may be indexedasi =0, 1,2, ..., 5.

The 7 arenes studied may be indexed as j =0,1,2,..., 6. A,K, Ang, and AT values may
be calculated for each arene at each temperature. Methybenzene (toluene is the reference arene).
The values for A kexp(T') are calcluated with the arrhenius parameters. The constants a, b, and
c that appear in the equation deduced in part (a) are determined by systematically altering their
values so that the sum of the squares of errors (SSE) between A pkexp and the fitted equation
A pkfi is minimized.
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6 5 5
|: (Apkexp(Ti) - Apkﬁt(av b,c, Tz)) i|
J

SSE(a.b.o)=) >

=0 Li=0
Mathematical software like mathcad’s given/minerr solve block easily perform the minimization.

We find a best fit when
a=0413 b=-0.192 ¢c=139x 103K} ‘

The goodness of the fit may be graphically evaluated by plotting the ratio A ,kf/ A pkexp against
ApKexp for the 7 arenes at a temperature of choice. A good fit gives a ratio of 1 to within

experimental error. The following plot gives the ratio at 293.15 K.

T T T T T T T
1.05 - m
o
o
z| g °
E N RS I o) -
< :Q o © °
095 - T
0.9 | | | | | | |
-5 -4 -3 -2 -1 0 1 2 3
Ap k Xp F'
e igure 27.2
A pkfe volumes are within about +3% of the experimental values. This is a good fit, which
confirms that the activation energy for arene distinction is multilinear in the basicity constant
and the ionization energy. This is also evidence for the proposed arene ring oxidation mechanism.
Solutions to theoretical problems
P27.14 Programs for numerical integration using, for example, Simpson’s rule are readily available for
personal computers and hand-held calculators. Simplify the form of eqn 27.40 by writing
2 kx? it . A nD\ /2 07"
7 = — , T = , = —_— —_—
4D T =\ ) Uk

Then evaluate
1/2
1) / eizz/ref‘[

TN2
j= f (—) e ¥ /Te T dr + (—
0 T T

for various values of k.
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_ AT 5 HPAT Ty

K, = an
*= HAmA [HA]
HA]K,
Therefore, [HT] = %
[A”]yf

n [HA] [HA] 1/2
and log[H™] = log K, + log —2log y+ = log K, + log + 2A1

[A7] [A~]

Write v = ko [HT][B]

then log v = log(ks[B] + log[H™]

) [HA] 12
= log(k2[B]) + log AT +2AI1'* +1og K,
[BI[HA]Kq
= logv® + 2412, ° =kp— 1
® (A~
That is, the logarithm of the rate should depend linearly on the square root of the ionic strength,
logv 172
kT ¢*
ky = = x L e=BAE [problem 27.17]
h g
2
vV iV kT
=g g, R ~ (ﬁ) g

R 1027  (T/K)3?
~ X
o (B/cm—1)3/2

kT \?
V.V V
qququX N(E)

q [Table 20.4, A = B = C] =~ 80

3
Therefore, ki ~ 80 x —cze P20 ~ 80 x 5.4 x 10* 5™ [Problem 27.15] = 4 x 10°s™"!
v

Consequently, D ~ (80) x (2.7 x 107 m?s™!) = [2x 107 Bm?s7 | if v¥ = v and

9x 107 B m2s!ifvt = %v.

It follows that, since A and [ are the same for the two experiments,

o (CHyF,) _ In0.6
o(Ar)  In0.9

[Problem 27.17] =

CH,F, is a polar molecule; Ar is not. CsCl is a polar ion pair and is scattered more strongly by the
polar CH,F».

Solutions to applications

Collision theory gives for a rate constant with no energy barrier

8kT\ /2 k 1/2
k=Po (Z2) 7 No so P=—(”—“)
T oNa \8kT
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_ k/(Lmol_1 s_l) X (10_3 m3 L_l)
"~ (o/nm?) x (10~9m)2 x (6.022 x 103 mol™ ")

—27 1/2
y T X (u/u) x (1.66 x 107~ kg)
8 x (1.381 x 10~23JK~1) x (298 K)

_(6.61 x 10713)k/(Lmol~!s™h)
B (o/nm?) x (u/u)!/?

The collision cross-section is
1/2 1/2 1/2 1/2
(TA/ +0B/ _ (GA/ +O’B/ )2
SO Opp = ————

1
OAB = ”dzsz where dag = E(dA +dp) = Coogl2 4

The collision cross-section for O is listed in the Data Section. We would not be far wrong if we took
that of the ethyl radical to equal that of ethene; similarly, we will take that of cyclohexyl to equal that
of benzene. For O, with ethyl

0.40'/2 4+ 0.641/2)2
o = ( —Z ) nm? = 0.51 nm?

monie (32.0u) x (29.1u)
mo + me (32.04+29.1)u

(6.61 x 10713) x (4.7 x 10%) 3
P= =11.6 x 10
sO 0.51) x (15_2)1/2 —

For O, with cyclohexyl

(0.40'/2 4+ 0.881/2)2
o= 4
momc _ (32.0u) x (77.1u)
mo + mc ~ (32.0+77.D)u

nm? = 0.62 nm?

=22.6u

_(6.61 x 10713) x (8.4 x 10°)

so P —=[1.8x 1073
(0.62) x (22.6)1/2
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28 Processes at solid surfaces

Solutions to exercises

Discussion questions

The motion of one section of a crystal past another (a dislocation) results in steps and terraces. See
Figures 28.2 and 28.3 of the text. A special kind of dislocation is the screw dislocation shown in Fig.
28.3. Imagine a cut in the crystal, with the atoms to the left of the cut pushed up through a distance of
one unit cell. The surface defect formed by a screw dislocation is a step, possibly with kinks, where
growth can occur. The incoming particles lie in ranks on the ramp, and successive ranks reform the
step at an angle to its initial position. As deposition continues the step rotates around the screw axis,
and is not eliminated. Growth may therefore continue indefinitely. Several layers of deposition may
occur, and the edges of the spirals might be cliffs several atoms high (Fig. 28.4).

Propagating spiral edges can also give rise to flat terraces (Fig. 28.5). Terraces are formed if
growth occurs simultaneously at neighbouring left- and right-handed screw dislocations (Fig. 28.6).
Successive tables of atoms may form as counter-rotating defects collide on successive circuits, and
the terraces formed may then fill up by further deposition at their edges to give flat crystal planes.

Consult the appropriate sections of the textbook (listed below) for the advantages and limitations of
each technique.

AFM: 28.2(h) and Box 28.1; FIM: 28.5(c); LEED: 28.2(g); MBRS: 28.6(c); MBS: 28.2(i); SAM:
28.2(e); SEM: 28.2(h); and STM: 28.2(h).
In the Langmuir—Hinshelwood mechanism of surface catalysed reactions, the reaction takes place by

encounters between molecular fragments and atoms already adsorbed on the surface. We therefore
expect the rate law to be second-order in the extent of surface coverage:

A+B—P v = k6A0p

Insertion of the appropriate isotherms for A and B then gives the reaction rate in terms of the partial
pressures of the reactants. For example, if A and B follow Langmuir isotherms (eqn 28.5), and adsorb
without dissociation, then it follows that the rate law is

b kKAKgpapB
(14 Kapa + Kppp)?

The parameters K in the isotherms and the rate constant k are all temperature dependent, so the overall
temperature dependence of the rate may be strongly non-Arrhenius (in the sense that the reaction rate
is unlikely to be proportional to exp(—E,/RT).

In the Eley-Rideal mechanism (ER mechanism) of a surface-catalysed reaction, a gas-phase
molecule collides with another molecule already adsorbed on the surface. The rate of formation
of product is expected to be proportional to the partial pressure, pg of the non-adsorbed gas B and
the extent of surface coverage, 6, of the adsorbed gas A. It follows that the rate law should be

A+B—P v =kpaOB

The rate constant, k, might be much larger than for the uncatalysed gas-phase reaction because the
reaction on the surface has a low activation energy and the adsorption itself is often not activated.

If we know the adsorption isotherm for A, we can express the rate law in terms of its partial
pressure, pa. For example, if the adsorption of A follows a Langmuir isotherm in the pressure range
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E28.4(b)

E28.5(b)

of interest, then the rate law would be

_ kKpapg
14+ Kpa~

If A were a diatomic molecule that adsorbed as atoms, we would substitute the isotherm given in
eqn 28.8 instead.

According to eqn 28.24, when the partial pressure of A is high (in the sense Kpa > [, there
is almost complete surface coverage, and the rate is equal to kpg. Now the rate-determining step is
the collision of B with the adsorbed fragments. When the pressure of A is low (Kpa < 1), perhaps
because of its reaction, the rate is equal to kK pa pg; and now the extent of surface coverage is
important in the determination of the rate.

In the Mars van Krevelen mechanism of catalytic oxidation, for example in the partial oxidation
of propene to propenal, the first stage is the adsorption of the propene molecule with loss of a hydrogen
to form the allyl radical, CH=CHCH;. An O atom in the surface can now transfer to this radical,
leading to the formation of acrolein (propenal, CH=CHCHO) and its desorption from the surface.
The H atom also escapes with a surface O atom, and goes on to form HO, which leaves the surface.
The surface is left with vacancies and metal ions in lower oxidation states. These vacancies are
attacked by Oy molecules in the overlying gas, which then chemisorb as O, ions, so reforming the
catalyst. This sequence of events involves great upheavals of the surface, and some materials break
up under the stress.

Zeolites are microporous aluminosilictes, in which the surface effectively extends deep inside the
solid. M™* cations and H>O molecules can bind inside the cavities, or pores, of the Al-O-Si frame-
work (see Fig. 28.31 of the text). Small neutral molecules, such as CO,, NH3, and hydrocarbons
(including aromatic compounds), can also adsorb to the internal surfaces and this partially accounts
for the utility of zeolites as catalysts.

Like enzymes, a zeolite catalyst with a specific composition and structure is very selective toward
certain reactants and products because only molecules of certain sizes can enter and exit the pores in
which catalysis occurs. It is also possible that zeolites derive their selectivity from the ability to bind
to stabilize only transition states that fit properly in the pores.

Numerical exercises

The number collisions of gas molecules per unit surface area is

T — Nap
VT QxMRT)2
(a) For Np
G Zw = (6.022 x 10% mol™!) x (10.0 Pa)
W' T 27 x (28.013 x 103 kgmol—1) x (8.3145J K- mol—1) x (298K))1/2
=288 x 103 m 25!
=288 x 101 cm 257! |
) z (6.022 x 1023 mol~1) x (0.150 x 1070 Torr) x (1.01 x 10 Pa/760 Torr)
W =

(27 x (28.013 x 10-3kgmol—!) x (8.3145J K~ mol—1) x (298 K))!/2
=575x 107 m 257!
= ’ 575 x 1083 ecm 257! ‘
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(b) For methane
(6.022 x 1023 mol~!) x (10.0 Pa)

N 7w —
0 Zw (2m x (16.04 x 103 kgmol—1) x (8.3145J K~ 1 mol—1) x (298 K))!/2
=3.81 x 10%*m2s7!
=(3.81 x 100 cm25!
i Z (6.022 x 1023 mol~1) x (0.150 x 1076 Torr) x (1.01 x 10° Pa/760 Torr)
11 W =

(27 x (16.04 x 103 kgmol—1) x (8.3145J K~ mol—1) x (298 K))!/2
=7.60 x 10" m=257!

=17.60 x 1013 cm—2571

E28.6(b) The number of collisions of gas molecules per unit surface area is

Nap _ ZwAQmMRT)'/?

Zw = — AP
W= QxMRT)1/2 P NAA

B (5.00 x 101971
N (6.022 x 10283 mol~!) x 7 x (1/2 x 2.0 x 10=3 m)2

x (27 x (28.013 x 102 kgmol ™) x (8.3145Tmol ™' K1) x (525K))!/?

=[73 x 10%Pa

E28.7(b) The number of collisions of gas molecules per unit surface area is

p

Nap

Zw= — AP
VT 2xMRT)12

so the rate of collision per Fe atom will be Zyw A where A is the area per Fe atom. The exposed surface
consists of faces of the bce unit cell, with one atom per face. So the area per Fe is

NAp62

A=c? and rate=ZwA= —-——
W 2aMRT)12
where c is the length of the unit cell. So

(6.022 x 102 mol™!) x (24 Pa) x (145 x 10712 m)?
(27 x (4.003 x 10~3 kgmol~1) x (8.3145J K~ mol~!) x (100K))!/2

=16.6 x 10*s!

E28.8(b) The number of CO molecules adsorbed on the catalyst is

rate =

pVNA  (1.00atm) x (4.25 x 1073 L) x (6.022 x 1023 mol~1)
N =nNp = =
RT (0.08206 L atm K—! mol—1) x (273K)

= 1.14 x 102

The area of the surface must be the same as that of the molecules spread into a monolayer, namely,
the number of molecules times each one’s effective area

A= Na=(1.14 x 10°%) x (0.165 x 1078 m?) =
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E28.9(b)

E28.10(b)

E28.11(b)

E28.12(b)

E28.13(b)

If the adsorption follows the Langmuir isotherm, then
Kp 0 V/Vmon
= so K= =
1+ Kp p(1—=10) p(1 = V/Vinon)
Setting this expression at one pressure equal to that at another pressure allows solution for Viyon

V1/ Vmon N V2/ Vimon 5o P1(Vmon — V1) . P2(Vmon — V2)
p1(1 =Vi/Vmon) ~ p2(1 = V2/Vimon) Vi Va

P1— P2 (52.4 — 104) kPa 3
V = = = 97 cm
MO Vi — pa/ Vo (52.4/1.60 — 104/2.73) kPacm—3

The mean lifetime of a chemisorbed molecule is comparable to its half life:
Eq T 155 x 10° Jmol~!
iy =texp| == )~ 10" "s)e =-20()s
/2= Xp(RT) ( ) Xp<(8.3145JK—1 mol-1) x (500K) [200]

The desorption rate constant is related to the mean lifetime (half-life) by

t=(Un2)/kq so kq=(In2)/t

The desorption rate constant is related to its Arrhenius parameters by

—E E
kq = Aexp(R—Td> so Inkg=InA-— R_;"

_ (nk; —Inkp))R _ (In1.35—1n0) x (8.3145J K~ mol™")

dEg= _
and £d T (600 K)~! — (1000K)~!

Eq=|37x 103 Jmol™! |

The Langmuir isotherm is

Kp 0

SO p=—F—r
K(1-0)

0.20
_ —[0.32kPa]
@ P = 0777kPaT) x (1 —0.20) [0.32kPa
0.75
b - —[3.9kPa]
® P = 0777k ) x (1= 0.75) [3.9KPa

The Langmuir isotherm is
Kp
1 + Kp
We are looking for 6, so we must first find K or mpyen

0=

_ 0 _ m/Mmon
p(1—10) p(1 —m/mmon)
Setting this expression at one pressure equal to that at another pressure allows solution for 70,

m1/Mmon _ m3/Mmon . P1(Mmon — m1) _ D2 (Mmon — m2)
p1(1 —my/mmon) p2(1 —my/Mmmon) mji my
— 36.0 —4.0) kP
Mmon = PLZ P2 { ) KPa = 0.84 mg

pi/mi — pa/my  (36.0/0.63 —4.0/0.21) kPamg !

So 6; = 0.63/0.84 = and 6, = 0.21/0.84 =
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E28.14(b) The mean lifetime of a chemisorbed molecule is comparable to its half-life

Eq
12 = T €Xp ﬁ

20 x 103 Jmol™!

At400K: 115 = (0.12 x 10712
@ 172 = (012 S eXP| © 31457 KT mol-T) x (400K)

=149 x 1071

I

20 x 103 Jmol™!

At800K: f15 = (0.12 x 10712
172 = (012 S eXP| 831457 KT mol-T) x (800K)

I

200 x 103 JTmol™!
(8.3145J K~ mol~1) x (400K)

(b) At400K: 11,5 = (0.12 x 10712 s) exp

=11.6 x 10135

200 x 103 Jmol ™!
(8.3145J K~ I'mol~1) x (800K)

At800K: 112 = (0.12 x 1072 s)exp

< |
e |
e |
< |

=|14s
E28.15(b) The Langmuir isotherm is

_ Kp _ %
T 14+Kp T K(1—-6)

=

For constant fractional adsorption

K
pK =constant so p1Kj; = prK; and pr = PIK—1
2

—ApgH® K —AgH® (1 1
But K cxexp| ———|)so — =exp|l — [ =— — —
RT K- R T, T

(—AadHe < 1 1 ))
Pp=p1expl — | 7= —
R n T,

—12.2 x 103 Jmol~! 1 1 [6.50kPa |
— (8.86 kP a S
( a) X exp(( 831451 K- mol—1 ) X (298K 318K)) a

E28.16(b) The Langmuir isotherm would be

_ _Kp

(@) 1+ Kp
__&p'”
® 14+ (Kp)'/2
Kml/3

© (Kp)

T 1+ (Kp)'h3
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E28.17(b)

E28.18(b)

A plot of 6 versus p at low pressures (where the denominator is approximately 1) would show
progressively weaker dependence on p for dissociation into two or three fragments.

The Langmuir isotherm is

B Kp _ 0
1+ Kp P=ka =0

For constant fractional adsorption

P2 K
pK =constant so p1K;=p,Ky, and — = —
r1 Ks

—ApgH® P2 —AgH® (1 1
But K ccexp| —————|so = =exp[ — | — — —
RT P1 R T T

1 1\!
and AjgH® =R (— — —) In ﬁ,
n n D2

1 1 \! 350 kPa
AH® = (8.3145JK ' mol™! - In—————
ad ( mol D> 150k ~230k) " To2x 105kpa

= —6.40 x 10*Jmol~! =| —6.40kJ mol~!

The time required for a given quantity of gas to desorb is related to the activation energy for desorption

by
Eg4 n Eq /1 1
toxexp[—=—) so —=exp[— (= - =
RT 1) R \T; T

1 1\ g

andEq=R|—— — In —

n T, t
Eyq=(831451K mol~!) x [ — ! _lx n 1808
d =1 873K 1012K 844 s

—|2.85 % 10° ymol~! |

(a) The same desorption at 298 K would take
2.85 x 103 Jmol ™! 1 1 26
t = (185655) x exp X — ={1.48 x 107" s
8.3145J K~ ! mol—! 208K 873K

(b) The same desorption at 1500 K would take
2.85 x 103 Jmol ! 1 1
t = (8.445s) x exp X o X —
8.3145JK~! mol—! 1500K 1012K

=138 x 107 %s
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Solutions to problems

Solutions to numerical problems

Refer to Fig. 28.1.

ay/(3/2)

.

Figure 28.1

The (100) and (110) faces each expose two atoms, and the (111) face exposes four. The areas of the
faces of each cell are (a) (352 pm)2 =1.24x 10" B cm?, (b) V2 x (352 pm)2 =175x 10" P cm?,
and (c¢) V3 x (352 pm)2 = 2.15 x 10~ cm?. The numbers of atoms exposed per square centimetre
are therefore

2
=[1.61 x 105 ecm™2
@ T X0 Ben? (161 x 10 em 2|
2
b ={1.14 x 105 cm ™2
(b 1.75 x 10—15 ¢cm2 ’ ‘
4
() —] 1.86 x 10" cm—z\

215 x 10-15cm2

For the collision frequencies calculated in Exercise 28.5(a), the frequency of collision per atom is
calculated by dividing the values given there by the number densities just calculated. We can therefore
draw up the following table

Hydrogen Propane
Z/(atom's™!)  100Pa 1077 Torr 100 Pa 1077 Torr
(100) 6.8 x10° 8.7 x 1072 14x10° 1.9x1072
(110) 9.6x 10° 1.2x 107! 20x10° 2.7x 1072
(11D 59%x10° 7.5%x 1072 1.2x10° 1.7x1072
|4 cz .
= |:28.10, BET isotherm, z = ﬁ*]
Vimon 1-2{1-01-0)z} P

This rearranges to

Z _ 1 n (c— 1)z
(1-2V ¢Vmon ¢Vmon

Therefore a plot of the left-hand side against z should result in a straight line if the data obeys the
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(a)

(b)

1000z/(1 — z)(V/cm?)

459
BET isotherm. We draw up the following tables
0°C, p* = 3222 Torr
p/Torr 105 282 492 594 620 755 798
10’z 32.6 87.5 1527 1844 1924 2343 247.7
3
L 3.04 7.10 12.1 14.1 154 17.7  20.0
(1 —z)(V/em?)
18°C, p* = 6148 Torr
p/Torr 395 627 108 219 466 555 601 765
10’z 64 102 176 356 758 903 978 1244
3
1072 0.70 1.05 1.74 3.27 6.36 7.58 8.09 10.08
(1 —z)(V/cm?)
The points are plotted in Fig. 28.2, but we analyse the data by a least-squares procedure.
The intercepts are at (a) 0.466 and (b) 0.303. Hence
= (2) 0.466 x 103 ecm™3, (b) 0.303 x 10 3 cm ™3
¢Vmon
The slopes of the lines are (a) 76.10 and (b) 79.54. Hence
-1
C —(@)76.10 x 10 3 cm™3, (b) 79.54 x 103 cm ™3
¢Vmon
Solving the equations gives
c—1=(a) 163.3, (b) 262.5
and hence
¢ = (a)] 164}, (b) Vinon = @) 13.1cm3 |, ()| 12.5em? |
10 ;
5
S
h
005 2 Figure 28.2

+
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We assume that the Langmuir isotherm applies.

K
0=—- 1285] and 1—6=
1+Kp

1+Kp

1
For a strongly adsorbed species, Kp > land 1 — 60 = s Since the reaction rate is proportional to

the pressure of ammonia and the fraction of sites left uncovered by the strongly adsorbed hydrogen
product, we can write

d pNH; ke PNH;
— = —k 1—-0)~| ———
” ¢ PNH; ( ) Kp,

To solve the rate law, we write

PH, = %{PONH3 — pNH;) [NH3 — %Nz + %Hz]

from which it follows that, with p = pNH,

—dp  kp k_2kC
dt ~ po—p’ T 3K

This equation integrates as follows

p 1
/ (1—@>dp=k/ dt
Po p 0

or P—Po :k+@1n£
t  po
WewriteF':?lnﬂ, G = p—tpo
0

and obtain G = k + F' = poF

Hence, a plot of G against F’ should give a straight line with intercept k at F/ = 0. Alternatively, the
difference G — F’ should be a constant, k. We draw up the following table

1/s 0 30 60 100 160 200 250
p/Torr 100 88 84 80 77 74 72
G/(Torrs™) —040 —027 —020 —0.14 —0.13 —0.11
F'/(Torrs™") —043 —029 —022 -—0.16 -0.15 -0.13
(G — F')/(Torrs™") 0.03 002 002 002 002 0.02

Thus, the data fit the rate law, and we find | k = 0.02 Torr s,

Taking the log of the isotherm gives
Incpgs = In K + (Incgo))/n

so aplot of In cyqg4 versus In cgo) would have a slope of 1 /1 and a y-intercept of In K. The transformed
data and plot are shown in Fig. 28.3.
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P28.11

T B T B
» = —1.9838 + 1.7106x
2=0.981 :

In cqqs
w

2.0 25 3.0 3.5 40
In ¢go1 Figure 28.3

co/(mgg™h) 826 1565 2543 31.74 40.00
Cas/(mgg™)) 44 192 352 520 672

In ¢ 2.11 275 324 346 3.69
In Cyqs 148 295 356 395 421

and n=1/1.71 =[0.58]

In order to express this information in terms of fractional coverage, the amount of adsorbate
corresponding to monolayer coverage must be known. This saturation point, however, has no special
significance in the Freundlich isotherm (i.e. it does not correspond to any limiting case).

0.138mgg~!

Ko=e 1983 mo gl =

The Langmuir isotherm is

Kp__ (1+Kp)=nookp and L= 4 !
= = — SO n =n an _— =
14+ Kp  neo P oRP no N  Kneo

So a plot of p/n against p should be a straight line with slope 1/ns, and y-intercept 1/Kn. The
transformed data and plot (Fig. 28.4) follow

182.41 205.75 21991

p/kPa 31.00 38.22 53.03 76.38 101.97 130.47 165.06

n/(molkg™") 1.00 1.17 154 2.04 2.49 2.90 3.22 3.30 3.35 3.36
__p/n__ 31.00 32.67 34.44 3744 4095 4499 5126 5528 6142 6545
kPa mol~! kg

70 T T T T T T T T
l y= 24.641 + 0.17313x i

— R?=0982 : : :
iﬂ 60 | ............ ............. ............. ............
T : : : : :
= - ]
g
D_? 50 ........
-~
< - -
\S 40 ............ ............. ............. ............

30 L

0 50 100 150 200 250 300
Figure 28.4
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1
"~ 0.17313mol kg

5.78 molkg ™!

Noo

The y-intercept is

1 1

b= so K= =
Knso bnso  (24.641kPamol—!kg) x (5.78 molkg—!)
K=7.02x103kPa~! =|7.02Pa"!
P28.12 For the Langmuir adsorption isotherm we must alter eqn 5 so that it describes adsorption from solution.

This can be done with the transforms

p — concentration, ¢

V — amount adsorbed per gram adsorbent, s

Langmuir isotherm and regression analysis

c c 1

s Soo K soo

1
— =0.163 gmmolfl, standard deviation = 0.017 gmmolf1
Soo

1
Ksoo

R (Langmuir) = 0.973

=35.6 (mmolLfl) x (g mmolfl), standard deviation = 5.9 (mmol Lfl) x (g mmolfl)

0.163 gmmol !

K= = 0.0046 L mmol !
35.6 (mmol L—1) x (gmmol—1)

Freundlich isotherm and regression analysis

s =cjcl/e

c; = 0.139, standard deviation = 0.012
1

— =0.539, standard deviation = 0.003
1)

] R (Freundlich) = 0.999 94

Temkin isotherm and regression analysis
s = ¢y In(cyc)
cy = 1.08, standard deviation = 0.14
c» = 0.074, standard deviation = 0.023
R (Temkin) = 0.9590 |

The correlation coefficients and standard deviations indicate that the | Freundlich isotherm | provides
the best fit of the data.

+
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Solutions to theoretical problems

K \%
P28.17 p=—P gL
14+ Kp Voo
9 14
p

dp 1

TK1-0 KWVe-_V)

Vv Voo

dV  K(Ve —V) +

K(Voo— V)2 K(Veo — V)2

;. RT _ —RT
du'=—|—)Vdlnp=——Vdp
o

po

(D)5 o)
o % K (Voo — V)2

P28.18

_ RT Voo dV
- o Voo — V
Therefore, we can adopt any of several forms,

(1), (), ()
d /__U—oodv__Ldv—_ 7 do = RTVOOdln(l—@)
e A e T T R

For the Langmuir and BET isotherm tests we draw up the following table (using p* = 200kPa =
1500 Torr) [Examples 28.1 and 28.3]

p/Torr 100 200 300 400 500 600

%/(Torr cm™) 559 6.06 638 6.58 6.64 6.57

10°z 67 133 200 267 333 400
103z

——— 401 466 532 598 6.64 730
(1 —z)(V/cm?)

3

P . . N
— is plotted against p in Fig. 28.5(a), and ———
v ISP gainst p in Fig. 28.5(a) Y%

is plotted against z in Fig. 28.5(b).

7.0

Figure 28.5(a)
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We see that the | BET isotherm is a much better representation | of the data than the Langmuir

=333 x 10 3cm ™. The

isotherm. The intercept in Fig. 28.5(b) is at 3.33 x 1073, and so

C Vmon

slope of the graph is 9.93, and so

_1
- 993x10 3cm 3

¢Vmon

Therefore, c — 1 = 2.98, and hence ,

Vinon = 75.4cm?

1000z/((1 — z)(¥/em?))

. kK 4
z Figure 28.5(b)

P28.22 (a) Kunit: (gr L_l)_1 [gr = mass (grams) of rubber]
K F unit: (mg)(l_l/")gﬁ1 L=ln
K1 unit: (mgL_l)_1
M unit: (mg gl;l)
(b) Linear sorption isotherm

q = Kceq

K = 4 so K is best determined as an average of all g /ceq data pairs.
Ceq

Kay = 0.126(gr L™ 7! | standard deviation = 0.041(gg L™ ~!

95 per cent confidence limit: (0.083 — 0.169)(gr L_l)_1
If this is done as a linear regression, the result is significantly different.

K (linear) = 0.0813(gr L™ ™!,  standard deviation = 0.0092(gr L™")~!

| R (linear) = 0.9612|

Freundlich sorption isotherm: ¢ = K Fcelén, using a power regression analysis, we find that

Kr =0.164|, standard deviation = 0.317
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1
— =0.877, standard deviation = 0.113;
n

] R (Freundlich) = 0.9682

Langmuir sorption isotherm

. KipMceq
1= 1 + Kpceq

1 1 1 +1
g \KLM ) \ceq M

=8.089gr L™, standard deviation = 1.031; K = —0.00053(grL~")~!

KiM

1
= 00043 gr mg~!, standard deviation = 0.1985; M =|—233mggg"

R (Langmuir) = 0.9690

All regression fits have nearly the same correlation coefficient so that cannot be used to
determine which is the best fit. However, the Langmuir isotherm give a negative value for
Kp. If K, is to represent an equilibrium constant, which must be positive, the Langmuir
description must be rejected. The standard deviation of the slope of the Freundlich
isotherm is twice as large as the slope itself. This would seem to be unfavourable. Thus,
the ’ linear description seems to be the best ‘, but not excellent choice. However, the Freundlich
isotherm is usually preferred for this kind of system, even though that choice is not supported
by the data in this case.

1.14
drubber 0.164 Ceq

© - =10.164 ¢; 046
4 charcoal Cel(']6 *

The sorption efficiency of ground rubber is much less than that of activated charcoal and drops
significantly with increasing concentration. The only advantage of the ground rubber is its
exceedingly low cost relative to activated charcoal, which might convert to a lower cost per gram
of contaminant adsorbed.
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29 Dynamics of electron transfer

Solutions to exercises

Discussion questions

No solution.

The net current density at an electrode is j; jo is the exchange current density; « is the transfer
coefficient; f is the ratio F/RT; and 7 is the overpotential.

(a) j = jofn is the current density in the low overpotential limit.
b)) j= joe“*“)f " applies when the overpotential is large and positive.

(¢) j = —joe %" applies when the overpotential is large and negative.

In cyclic voltammetry, the current at a working electrode is monitored as the applied potential differ-
ence is changed back and forth at a constant rate between pre-set limits (Figs 29.20 and 29.21). As the
potential difference approaches E© (Ox, Red) for a solution that contains the reduced component
(Red), current begins to flow as Red is oxidized. When the potential difference is swept beyond E ©
(Ox, Red), the current passes through a maximum and then falls as all the Red near the electrode is
consumed and converted to Ox, the oxidized form. When the direction of the sweep is reversed and the
potential difference passes through E© (Ox, Red), current flows in the reverse direction. This current
is caused by the reduction of the Ox formed near the electrode on the forward sweep. It passes through
the maximum as Ox near the electrode is consumed. The forward and reverse current maxima bracket
E® (Ox, Red), so the species present can be identified. Furthermore, the forward and reverse peak
currents are proportional to the concentration of the couple in the solution, and vary with the sweep
rate. If the electron transfer at the electrode is rapid, so that the ratio of the concentrations of Ox and
Red at the electrode surface have their equilibrium values for the applied potential (that is, their relative
concentrations are given by the Nernst equation), the voltammetry is said to be reversible. In this case,
the peak separation is independent of the sweep rate and equal to (59 mV)/n at room temperature,
where n is the number of electrons transferred. If the rate of electron transfer is low, the voltammetry
is said to be irreversible. Now, the peak separation is greater than (59 mV)/n and increases with
increasing sweep rate. If homogeneous chemical reactions accompany the oxidation or reduction of
the couple at the electrode, the shape of the voltammogram changes, and the observed changes give
valuable information about the kinetics of the reactions as well as the identities of the species present.

Corrosion is an electrochemical process. We will illustrate it with the example of the rusting of iron,
but the same principles apply to other corrosive processes. The electrochemical basis of corrosion
in the presence of water and oxygen is revealed by comparing the standard potentials of the metal
reduction, such as

Fe’t(ag) +2¢~ — Fe(s) E© =—0.44V
with the values for one of the following half-reactions
In acidic solution

(@ 2HT(aq) +2e~ — Ha(g) E® =0V
(b) 4H"(aq) + O2(g) +4e~ — 2H0(1) E© = 4123V

In basic solution:

(¢©) 2H,O(l) + Ox(g) +4e~ — 40H (aq) E© =+0.40V
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Because all three redox couples have standard potentials more positive than E © (Fe? T /Fe), all three
can drive the oxidation of iron to iron(II). The electrode potentials we have quoted are standard values,
and they change with the pH of the medium. For the first two

E(a) = E®(a)+ (RT/F)Ina(H") = —(0.059 V)pH
E(b) = E®(b) + (RT/F)Ina(H") = 1.23V — (0.059 V)pH

These expressions let us judge at what pH the iron will have a tendency to oxidize (see Chapter 10).
A thermodynamic discussion of corrosion, however, only indicates whether a tendency to corrode
exists. If there is a thermodynamic tendency, we must examine the kinetics of the processes involved
to see whether the process occurs at a significant rate. The effect of the exchange current density on
the corrosion rate can be seen by considering the specific case of iron in contact with acidified water.
Thermodynamically, either the hydrogen or oxygen reduction reaction (a) or (b) is effective. However,
the exchange current density of reaction (b) on iron is only about 1074 A cmfz, whereas for (a) it is
107% A cm™2. The latter therefore dominates kinetically, and iron corrodes by hydrogen evolution in
acidic solution. For corrosion reactions with similar exchange current densities, eqn 29.62 predicts
that the rate of corrosion is high when F is large. That is, rapid corrosion can be expected when the
oxidizing and reducing couples have widely differing electrode potentials.

Several techniques for inhibiting corrosion are available. First, from eqn 62 we see that the rate
of corrosion depends on the surfaces exposed: if either A or A’ is zero, then the corrosion current is
zero. This interpretation points to a trivial, yet often effective, method of slowing corrosion: cover
the surface with some impermeable layer, such as paint, which prevents access of damp air. Paint
also increases the effective solution resistance between the cathode and anode patches on the surface.

Another form of surface coating is provided by galvanizing, the coating of an iron object with
zinc. Because the latter’s standard potential is —0.76 V, which is more negative than that of the iron
couple, the corrosion of zinc is thermodynamically favoured and the iron survives (the zinc survives
because it is protected by a hydrated oxide layer).

Another method of protection is to change the electric potential of the object by pumping in electrons
that can be used to satisfy the demands of the oxygen reduction without involving the oxidation of
the metal. In cathodic protection, the object is connected to a metal with a more negative standard
potential (such as magnesium, —2.36 V). The magnesium acts as a sacrificial anode, supplying its
own electrons to the iron and becoming oxidized to Mg2Jr in the process.

Numerical exercises

E29.5(b) Equation 29.14 holds for a donor-acceptor pair separated by a constant distance, assuming that the
reorganization energy is constant:

(MG AGE

Inke = — RT SRT + constant,
or equivalently
(AGO)*  AG®E
Inket = — — + constant,

41T 2kT

if energies are expressed as molecular rather than molar quantities. Two sets of rate constants and
reaction Gibbs energies can be used to generate two equation (eqn 29.14 applied to the two sets) in

. N
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two unknowns: A and the constant.
(MG AGY
40T 2kT

(AGE)? AGY
4AKT 2kT

In ket, 1 =+

= constant = In kg 2 +

o AGT? — (AGE) ke N AGY — AGY
4r\kT T ket 2kT

(AGT)? = (AGS)?
Aﬁ?—A,G?“) '
2

and 1 =
4 (kT In o2 4
et,1

(—0.665eV)? — (—0.975eV)?
h= 4(01.381x10-2 J K- H(298 K) |- 3.33x10° =]1.531eV

1.602x10-19 J eV—! Yoax105 — 2(0.975 —0.665) eV

If we knew the activation Gibbs energy, we could use eqn 29.12 to compute (Hpp ) from either rate
constant, and we can compute the activation Gibbs energy from eqn 29.4:

_ (AG® +1)?  [(=0.665 + 1.53D)eV]?
- 4) B 4(1.531 eV)

12
Now k, =M 7 ex —ATG
et h AAKT P\%r )
hket \ /2 [ d0kT\ 4 AfG
o o ={5%7) ) lur )

1/2
(6.626 x 10734 J$)(2.02 x 105 s~ 1) /
(Hpa) =

ATG =0.122¢eV.

2

I — 23 -1 174

(4(1.53leV)(1.602x10 Jev—1)(1.381 x 10723 JK )(298K)>

X

3
T

0.122eV)(1.602 x 10719 Jev~!
xp (& 1226V)1.602 x V) _[930 x 10241
2(1.381 x 1023 JK—1)(298 K)
E29.6(b) Equation 29.13 applies. In E29.6(a), we found the parameter § to equal 12 nm ™!, so:

In ket/s_1 = —fBr + constant so constant = In ke[/s_1 + Br,

and constant = 1n2.02 x 10° + (12nm~!)(1.11nm) = 25.

Taking the exponential of eqn 29.13 yields:

ket = e—,Br—i—constant S—l — e—(12/nm)(1.48nm)+25 S—l =114 x 103 S—l )

E29.7(b) Disregarding signs, the electric field is the gradient of the electrical potential

P dAp Ap o o 0.12Cm~2

dx  d &  eey  (48) x (8.854 x 10-12J-1C2m—

- —[28x 105V m™!
)
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E29.8(b) In the high overpotential limit

= e g0 U g-afem) ghere o £ !

i RT ~ 25.69mV

The overpotential 7; is

1 2 25.69mV 7255 mA cm 2
m=m+———7h—==105mV+| — | xIn| ——
fd—a) ji 1-0.42 17.0 mA cm—2

= [373mv]

E29.9(b) In the high overpotential limit
j= joe(lfa)f'] S0 Jjo = je(cxfl)fn

jo = (17.0mA cm™2) x e{(0:42-Dx105mV)/25.69mV)} _

E29.10(b) In the high overpotential limit

(=afn g I _gU=arfn—m) ang j, = jell=—aftn=m)
2

So the current density at 0.60V is

o = (1.22mA cm™2) x el(1-050)x(0.60 V=050 V)/(0.02569V)} _

Note. The exercise says the data refer to the same material and at the same temperature as the previous
exercise (29.10(a)), yet the results for the current density at the same overpotential differ by a factor
of over 5!

E29.11(b) (a) The Butler—Volmer equation gives
j = jo(e(l—a)fﬂ _ e—ﬂlfﬂ)

J = Joe

= (2.5 x 1073 Acm72) % (e{(170458)><(O‘3OV)/(O.O2569V)} _ ef{(O‘SS)X(OSOV)/(0.02569V)})

=1034Acm™2

(b) According to the Tafel equation
j= joe(l—ﬂl)fﬂ

= (2.5 % 10—3ACm—Z)e{(l—0.58)><(0.3OV)/(0.02569V)} — O.34Acm_2

The validity of the Tafel equation improves as the overpotential increases.

E29.12(b) The limiting current density is

. zFDc
Jtim = —
but the diffusivity is related to the ionic conductivity (Chapter 24)
ART . cA
= W SO Jlim = Tf
. (1.5molm™3) x (10.60 x 1073 Sm? mol~1) x (0.02569 V)
m —

(0.32 x 1073 m) x (+1)

=[13am=2]
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E29.15(b)
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For the iron electrode E€ = —0.44V (Table 10.7) and the Nernst equation for this electrode
(Section 10.5) is

o RT 1
E=E¥ — —In| —— v=2
vF [Fe2t]
Since the hydrogen overpotential is 0.60 V evolution of H, will begin when the potential of the Fe
electrode reaches —0.60 V. Thus

0.02569 V
—0.60V = —0.44V + — In[Fe?t]

—0.16V _
In[Fe?t] = ——— = —125
0.0128 V

[Fe?t] = |4 x 10 ®mol L~}

Comment. Essentially all Fe?T has been removed by deposition before evolution of H, begins.

The zero-current potential of the electrode is given by the Nernst equation

RT 1 Fe2t 1 Fe2t
=g Rl po—pe _LpdE D) gy LaEe)
vF f  a(Fe3t) f a(Fe3t)

The Butler—Volmer equation gives

j = joe=0/m _e=afny — o042 /n _ o=0.58fm)

where 7 is the overpotential, defined as the working potential E’ minus the zero-current potential E.

, 1. a(Fe*h) , 1
n=E —07TV+—-In————=E —077V+ —1Inr,
[ a(Fe3t) f
where r is the ratio of activities; so
j — jo(e(0.42)E//fe{(0,42)><(—0.77V)/(0.02569V)}r0.42
— e(FOS8)E'/f o[(=0.58)x(=0.77V)/(0.02569 V)} . —0.58

Specializing to the condition that the ions have equal activities yields

j=|@.5mAcm %) x [eCDE/ « (34T x 1070) — e OOE/f « (3,55 x 107)]

Note. The exercise did not supply values for jj or o. Assuming o = 0.5, only j/jg is calculated.
From Exercise 29.14(b)

j= jo(e(o.SO)E’/fe—(0.50)E9/fr0.50 _ e(—O.SO)E’/fe(O.SO)Ee/fr—0.50)
= 2jo sinh[%fE/ - %fE9 + %lnr],
so, if the working potential is set at 0.50 V, then
Jj = 2josinh[1(0.91V)/(0.02569 V) + L 1n 7]

jljo = 2sinh(8.48 + L1nr)

Atr =0.1: j/jo=2sinh(8.48 + $1n0.10) = 1.5 x 103 mAcm™2 =

+
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E29.16(b)

E29.17(b)

E29.18(b)

Atr=1: j/jo=2sinh(8.484+0.0) = 4.8 x 10> mAcm ™2 =
Atr =10: j/jo=2sinh(8.48 + $1n10) = 1.5 x 10*mAcm™2 =

The potential needed to sustain a given current depends on the activities of the reactants, but the
overpotential does not. The Butler—Volmer equation says

. . 1— _

j= joefm _gmafm

This cannot be solved analytically for #, but in the high-overpotential limit, it reduces to the Tafel
equation

1 i 0.02569V 15mA cm 2
——In— = n
d-a)f o 1-0.75  4.0x10~2mAcm—2

J=qoe! TN so =

This is a sufficiently large overpotential to justify use of the Tafel equation.

The number of singly charged particles transported per unit time per unit area at equilibrium is the
exchange current density divided by the charge

N=2
e
The frequency f of participation per atom on an electrode is
f = Na

where a is the effective area of an atom on the electrode surface.
For the Cu, Ho|[H™ electrode

jo 1.0x107®Acm™
e 1.602x10-19C
f=Na=(62x 1012571 cm_z) x (260 x 10_10cm)2

=[42x 103571

For the Pt|Ce4+, Ce3 7 electrode

2
= ’ 6.2 x 101251 em™2

o 40x105Acm™2
N = ]—0 = X ‘m :’25 X 1014571 Cmiz‘
e 1.602 x 10-19C

The frequency f of participation per atom on an electrode is

f=Na=@25x10"s7Tem™2) x (260 x 10710 cm)? =

The resistance R of an ohmic resistor is

R— potential 7
~ current  jA

where A is the surface area of the electrode. The overpotential in the low overpotential limit is
j 1
n= L. so R=—
fio fioA
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E29.20(b)

E29.21(b)

E29.22(b)

E29.23(b)

INSTRUCTOR'S MANUAL

0.02569 V .
@ R= X102 Am ) x (10em2) > ¥ 0@ =[2169

0.02569 V
b R = =102
®) (2.5 x 1073 Acm—2) x (1.0cm?)

No reduction of cations to metal will occur until the cathode potential is dropped below the zero-
current potential for the reduction of Ni%* (—0.23 V at unit activity). Deposition of Ni will occur at
an appreciable rate after the potential drops significantly below this value; however, the deposition of
Fe will begin (albeit slowly) after the potential is brought below —0.44 V. If the goal is to deposit pure
Ni, then the Ni will be deposited rather slowly at just above —0.44 V; then the Fe can be deposited
rapidly by dropping the potential well below —0.44 V.

As was noted in Exercise 29.10(a), an overpotential of 0.6 V or so is necessary to obtain significant
deposition or evolution, so H» is evolved from acid solution at a potential of about —0.6 V. The
reduction potential of Cd?* is more positive than this (—0.40 V), so Cd will deposit (albeit slowly)
from Cd** before H; evolution.

Zn can be deposited if the HT discharge current is less than about 1 mA cm 2. The exchange current,
according to the high negative overpotential limit, is

j = joe™*I"
At the standard potential for reduction of Zn2+(—0.76 V)

j = (0.79mA cm™?) x e~ {(0)x(=0.76V)/(0.02569V)} _ 5 1 % 10° mA cm ™2

much too large to allow deposition |. (That is, Hy would begin being evolved, and fast, long before

Zn began to deposit.)

Fe can be deposited if the H discharge current is less than about 1 mA cm~2. The exchange current,
according to the high negative overpotential limit, is

j = Joe™"
At the standard potential for reduction of Fet (—0.44V)

ji=0x 1076Acm72) x ef{(O.S)x(70.44V)/(0.02569V)} =52 % 1073Acm72

a bit too large to allow deposition |. (That is, Hy would begin being evolved at a moderate rate before

Fe began to deposit.)
The lead acid battery half-cells are

Pb*t +2¢~ — Pb*t  1.67V

and Pb>T +2¢~ > Pb  —0.13V,

for a total of E® =|1.80V |. Power is
P=1V =00 x 1073 A) x (1.80V) ={0.180 W

if the cell were operating at its zero-current potential yet producing 100 mA.
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E29.24(b)

E29.25(b)

P29.3

P29.8

The thermodynamic limit to the zero-current potential under standard conditions is the standard

potential £, which is related to the standard Gibbs energy by

“AG©

AG® = —vFE® so E=———
vF

The reaction is

C3Hg(g) 4+ 702(g) — 3C0s(g) + 4H,0(1) withv = 14
A:G® =3A;G® (COy) +4A;G® (Hy0) — ArG® (C3Hg) — TA:G® (0)
= (3 x (=394.36) + 4 x (=237.13) — (—=23.49) — 0) kI mol~! = —1319.4kJ mol !

o 131939103 Jmol~!

O 96485 Cmol )

Two electrons are lost in the corrosion of each zinc atom, so the number of zinc atoms lost is half the
number of electrons which flow per unit time, i.e. half the current divided by the electron charge. The
volume taken up by those zinc atoms is their number divided by their number density; their number
density is their mass density divided by molar mass times Avogadro’s number. Dividing the volume
of the corroded zinc over the surface from which they are corroded gives the linear corrosion rate;
this affects the calculation by changing the current to the current density. So the rate of corrosion is

M (1.0Am™2) x (65.39 x 1073 kgmol~!)
2epNp  2(1.602 x 10~19C) x (7133kgm—3) x (6.022 x 1023 mol—!)
=48x 10 " ms7!
= 48 x 107" ms™) x 10 mmm™") x (3600 x 24 x 365sy~")

1

rate =

=|1.5mmy"

Solutions to problems

Solutions to numerical problems

RT
E=E® + —InaM")
zF

Deposition may occur when the potential falls to below E and so simultaneous deposition will occur
if the two potentials are the same; hence the relative activities are given by

RT RT
E®©(Sn, Sn*T) + 37 Ina(Sn*t) = E© (Pb, Pb*T) + 57 Ina(Pb>T)

24y — (2) x (=0.126 +0.136) V
N 0.0257V -

2+ 2F
an") _ ( 0.78

= T — (== ) {E® ®Pb,Pb*t)— ES(Sn, S
T RT>{ ( ) (Sn, Sn

That is, we require a(Sn2+) ~ 2.2a (Pb2+)

eRT \'/?
—(—2 ) 2250
D (2pF21b6) [22.50]

1 2 -1
where I = - Xi:zi (bi/b©), b = 1molkg~! [10.18]
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For NaCl: 1b® = bn,c) &~ [NaCl] assuming 100 per cent dissociation.
For NazSOy: 16 = % ((1)*(2bNays50,) + (2)*bNays0,)

= 3bNa,s0, ~ 3[NaySOy4] assuming 100 per cent dissociation.

1/2
78.54 x (8.854 x 10712771 C2m~!) x (8.315J K~ mol~!) x (298.15K) ( 1 )1/2
X

2x (100 gem=3) x (LK) (18e0) (96485 Cmol—1)2 be

3.043 x 10719 m mol!/2 kg=1/2
(1b9)1/2

__ 304.3pm mol!/2kg=1/2

- (1bS)1/2

%

These equations can be used to produce the graph of rp against by, shown in Fig. 29.1. Note the
contraction of the double layer with increasing ionic strength.

Gouy-Chapman diffuse double layer

5000
4000
NaCl(aq)

3000 |
=)
(:' Na,S04(aq)

2000

1000

0 1 I 1 I 1 I 1 I 1
0 20 40 60 80 100
b/(mmol kg™") Figure 29.1
P29.9 This problem differs somewhat from the simpler one-electron transfers considered in the text. In

place of Ox + e~ — Red we have here

In3t +3¢” — In

namely, a three-electron transfer. Therefore eqns 29.25, 29.26, and all subsequent equations including
the Butler—Volmer equation [29.35] and the Tafel equations [29.38-29.41] need to be modified by
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including the factor z (in this case 3) in the equation. Thus, in place of eqn 29.26, we have

A*G. = A*Ge(0) + za FA¢
and in place of eqns 29.39 and 29.41

Inj=1Injo+z(1 —a)fn anode

In(—j) =1In jo — zafn cathode

We draw up the following table
j/Am™) —E/N _u/V_ In(/(Am™?))

0 0.388 0
0.590 0.365 0.023 —0.5276
1.438 0.350 0.038 0.3633
3.507 0.335 0.053 1.255

We now do a linear regression of In j against  with the following results (see Fig. 29.2)

1.5

In(j/(Am?))

-1.0 L
0020  0.025 0.030 0.035
n/V

z(1 —a)f =59.42 V_], standard deviation = 0.0154
In jo = —1.894, standard deviation = 0.0006

R = 1 (almost exact)

0.040 0.045 0.050

0.055
Figure 29.2

Thus, although there are only three data points, the fit to the Tafel equation is almost exact. Solving

for o from z(1 — &) f = 59.42 V™!, we obtain
59.42V~1 59.42V~1
a=1-"""=1- (T) x (0.025262'V)

3f
= 0.4996 =
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which matches the usual value of « exactly.

jo=e"1%* =10.150Am™?2

The cathodic current density is obtained from

In(—j.) =1Injo—zafn n=0.023V at — E/V = 0.365
= —1.894 — (3 x 0.4996 x 0.023)/(0.025262)
= —3.259

—je=e 329 — 0,038 Am2

je=|—0.038 Am™>

P29.12 At large positive values of the overpotential the current density is anodic.
j=o [e““”f n—ef ’7] [29.35]
~ joe! 0N = ju [29.34]
Inj =Injo+0—-a)fn
Performing a linear regression analysis of In j against n, we find

In(jo/(mA m_z)) = —10.826, standard deviation = 0.287
(1 —a)f =19.550 v~ standard deviation = 0.355

R =0.999 01

jo = e~ 19820mA m=2 =200 x 10~ mA m—>

 _lossovTt o 19.550v7!
f (0.025693V)~!

o =

The linear regression explains 99.90 per cent of the variation in a In j against 1 plot and standard
deviations are low. There are deviations from the Tafel equation/plot.

Solutions to theoretical problems

P29.14 (a) First, assume that eqn 4 applies to the bimolecular processes under consideration in this problem.
(Cf. P29.1.) Thus,

(MG + M1)?
411

A Ge +)»22)2
. AGy = rzj)LT A*Gyy

% (MG + 112)?
A G = =
Y

Because the standard free energy for elctron self-exchange is zero, these simplify to:

2
AiGll = i =X11/4 and AiGzz =Ap/4
4x1 '
(ArG ) + 243, + 2412A:G 5

4h12

A'Gpp =
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P29.16

(b) If ArGg <« A12, then we may drop the quadratic term in the numerator, leaving:
A*Gl & Ap/d+ MG /2.
Assume that Ao = (A1 + A22)/2, so
M2/4 = Oa1/4+An/4)/2 = (A*Gy1 + A*G) /2.
Thus, we have:
A*Gpp ~ (ATG + A* Gy + A:G D) /2.
(¢) According to activated complex theory, we can write for the self-exchange reactions:

—AiGll —AiGzz)

RT

) and k22 = K22V22 €Xp ( RT

k11 =K11V116XP(

(d) According to activated complex theory, we can write:

—A*Gyy —A*Gy — A*Gy — AG
k12 = kppvizexp | ——=— ] & k12vi2€xp .

RT 2RT

(e) Finally, we simplify by assuming that all kv terms are identical, so:

- 1
—A*Gyy —A*Gyp —AGH
klz ~ [ kvexp T KV eXp T exp T /2

The final exponential is the equilibrium constant; the first two exponentials with their factors of kv
are electron self-exchange rate constants, so:

’klz ~ (ki1knK)'/? ‘

Let n oscillate between 14+ and n— around a mean value ng. Then n_ is large and positive (and
n+ > n-),
i~ joe(l—a)nf — joe(l/Z)nf [a = 0.5]

and n varies as depicted in Fig. 29.3(a).

Figure 29.3(a)

Therefore, j is a chain of increasing and decreasing exponential functions,

j= joe(n7+yt)f/2 xe /T

2RT
during the increasing phase of 1, where t = 5 y a constant, and
14

J = joeYDIN2 o gl
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P29.17

P29.19
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during the decreasing phase. This is depicted in Fig. 29.3(b).

| | " Figure 29.3(b)

-

cFD
8

) x (1 —e/M)29.51; 7 = 1] =| jL(1 — eF"*/RT)

The form of this expression is illustrated in Fig. 29.4.

For the anion current, the sign of 1 is changed, and the current of anions approaches its limiting
value as n° becomes more positive (Fig. 29.4).

Cations

)

Does eqn

29.13

Anions  Figure 29.4

In ket = —Br + constant

apply to these data? Draw the follwing table:

rinm ke /s In ke /s~
048 1.58 x 10" 28.1
095 3.98x10° 221
096 1.00 x 10° 20.7
123 158 x10® 189
135 3.98x107 175
224 631 x10'  4.14

and plot In ket vs. r

30

In (ke/s™")

rinm Figure 29.5
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P29.20

P29.21

The data fall on a good straight line, so the equation | appears to apply | The least squares linear fit

equation is:

Inkey/s = 34.7 — 13.4r /nm r2(correlati0n coefficient) = 0.991

so we identify | 8 = 13.4nm~" |

The theoretical treatment of section 29.1 applies only at relatively high temperatures. At temperatures
above 130K, the reaction in question is observed to follow a temperature dependence consistent
with eqn 29.12, namely increasing rate with increasing temperature. Below 130 K, the temperature-
dependent terms in eqn 29.12 are replaced by Frank—Condon factors; that is, temperature-dependent
terms are replaced by temperature-independent wavefunction overlap integrals.

(a) The electrode potentials of half-reactions (a), (b), and (c¢) are (Section 29.8)
(@) E(Hy,HT) = —0.059 VpH = (=7) x (0.059V) = —0.14V
(b) E(Op,H") = (1.23V) — (0.059 V)pH = +0.82V
(¢) E(O,0H7) =(0.40V) 4+ (0.059 V)pOH = 0.81V
0.059V
4

035V
4

EM,MY =E®M,M") + ( >10g 1070 = ES M, MT) —

Corrosion will occur if E(a), E(b), or E(c) > E(M,M™)
(i) E® (Fe, Fe*t) = —044V, 7, =2
E(Fe, Fe’t) = (—0.44 —0.18) V= —0.62V < E(a, b, and ¢)

. B B > E(a)
(i) E(Cu,Cu™)=(0.52-035)V =017V {< E(band )

2 B . > E(a)
E(Cu, Cu®t) = (0.34 0.18)V_0.16V{<E(bandc)
24\ _ = — > E@)
(iii) E(Pb,Pb*") =(-0.13-0.18)V = 0-31V{<E(bandc)

(iv) E(Al APY) = (—=1.66 —0.12) V = —1.78 V < E(a, b, and ¢)

e B B > E(a)
(v) E(Ag,Ag™) =(0.80—-0.35)V =045V {< E(band c)

(vi) E(Cr, Cr3+) =(—-0.74 - 0.12) V=—-0.86V < E(a, b, and ¢)
(vii) E(Co, C02+) =(—0.28 —0.15)V=—-043V < E(a, b, and ¢)

Therefore, the metals with a thermodynamic tendency to corrode in moist conditions at pH = 7

are | Fe, Al, Co, Cr | if oxygen is absent, but, if oxygen is present, all seven elements have a
tendency to corrode.

(b) A metal has a thermodynamic tendency to corrosion in moist air if the zero-current potential for
the reduction of the metal ion is more negative than the reduction potential of the half-reaction

4HT + 0y +4e~ - 2H,0 E© =123V
The zero-current cell potential is given by the Nernst equation
RT RT MaFH]v/z
E:Ee——an:Ee——HL
vF vF  [HF]Vp(0y)V/4

We are asked if a tendency to corrode exists at pH 7 (H'] = 10_7) in moist air (p(0p) ~
0.2 bar), and are to answer yes if E > 0 for a metal ion concentration of 10_6, so forv = 4
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and 2+ cations

0.02569 V (1079)2

E=123V—-ES —
M v U x 101 x (0.2)

— <
—0.983V — ES

In the following, z = 2
ForNi: E€ =0.983V — (=0.23V) > 0

ForCd: E© =0.983V — (—0.40V) > 0
For Mg: E€ =0.983V — (—2.36 V) > 0
ForTi: E€ =0.983V — (—1.63V) > 0
ForMn: E€ =0.983V — (—1.18V) > 0

P29.22 Leorr = Ajoe! E/* [29.62]

with E = —0.62 — (=0.94) V = 0.32'V [as in Problem 29.21]



