I Cilylio ooj! ?

دكتر مnمد مولوىا

Subject:
Year. Month. 4 Date. Y4

跎 $L \cong \frac{c}{l_{0} f} \Leftarrow 1=\frac{\lambda}{10} \stackrel{\nu}{\Delta>1}$
$\left.\begin{array}{l}f=100 \\ C=r_{00000} \mathrm{~km} / \mathrm{sec}\end{array}\right\} \Rightarrow 1 \cong r_{00} \mathrm{~km}$ foot
 10
.
 - Kt كِّ
\qquad Shanmugan: Digital and analog Comm if
\qquad

$$
P_{t}=v(t) u(t) \quad: \quad \text { ابرُبا }
$$

$$
\stackrel{v}{t}(t)\left\{_{1}^{\Omega} P_{t}=v(t) i(t)=v^{r}(t) \quad\left\{_{1}^{\Omega} P_{t}=i(t) i^{\prime}(t)=i^{r}(t)\right.\right.
$$

$P_{t} \triangleq m^{r}(t) \quad$:

\qquad

Subject:
Year. Month. Date. ()
-
\qquad

10
\qquad
\qquad
\qquad
\qquad

15 \qquad
\qquad
\qquad
\qquad
\qquad

20
\qquad
\qquad
\qquad
\qquad

25 \qquad

Subject: $\Gamma \gg$ ه
Year. Month. 4 Date. ψ_{1}
mh_abbasi2003@yahoo.com

 : ${ }_{\sim}^{c}$

$$
\begin{aligned}
& x(t) \longleftrightarrow x(f) \\
& { }_{5} E=\int_{-\infty}^{\infty}|x(t)|^{r} d t=\int_{-\infty}^{\infty}|x(f)|^{r} d f
\end{aligned}
$$

Energy Spectral Function
.

 .

$$
\begin{aligned}
& Y(f)=X(f) H(f)
\end{aligned}
$$

$$
\begin{aligned}
& G(f)=|X(f)|^{\prime} \cdot{ }^{\prime}
\end{aligned}
$$

-

$$
\begin{align*}
& x_{T}(t)=x(t) p\left(\frac{t}{T}\right) \tag{1}\\
& x_{T}(t) \longleftrightarrow x_{T}(f)
\end{align*} \quad \Rightarrow G(f)=\operatorname{Lim}_{T \rightarrow \infty} \frac{\left|X_{T}(f)\right|^{Y}}{T}
$$

$$
\begin{aligned}
& E_{f_{0}}=\int_{f_{0} d f}^{f_{0}+\frac{d f}{r}} G(f) d f \simeq G\left(f_{0}\right) d f
\end{aligned}
$$

$$
\begin{aligned}
& x(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{j n \omega \cdot t} \quad \omega_{0}=\frac{\gamma^{\pi}}{T_{0}} \\
& x_{T}(t)=p\left(\frac{t}{T}\right) x(t) \longleftrightarrow X_{T}(f) \\
& P(t / \tau) \Longleftrightarrow T \sin f T \\
& x(t) \longleftrightarrow \sum c_{n} \delta\left(f-n f_{0}\right) \\
& X_{T}(f)=\sum_{n=-\infty}^{\infty} T C_{n} \operatorname{sinc} T\left(f_{-n} f_{0}\right), f_{0}=\frac{1}{T_{0}} \\
& \left|x_{T}(f)\right|=\sum_{n=-\infty}^{\infty} T\left|c_{n}\right|\left|\operatorname{Sin} c T\left(f_{-n} f_{0}\right)\right| \\
& \lim _{T \rightarrow \infty} \frac{\left|X_{T}(f)\right|^{r}}{T}=\lim _{T \rightarrow \infty} \sum_{n=-\infty}^{\infty} T\left|c_{n}\right|^{r} \sin c^{r} T\left(f_{-} n f_{0}\right)+\lim _{T \rightarrow \infty} \sum_{\substack{n=-\infty \\
n \neq m}}^{\infty} \sum_{n=-\infty}^{\infty} T\left|c_{n}\right|+c_{m} \|\left|\sin c T\left(c_{n} n\right)\right|
\end{aligned}
$$

Subject:
Year. Month. Date.

$$
\operatorname{Lim}_{T \rightarrow \infty} \frac{\left|x_{T}(f)\right|^{r}}{T}=\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{r} \delta\left(f_{-n} f_{e}\right)
$$

$$
\begin{aligned}
& =x(t) \\
& \hat{x}(t) \triangleq x(t) * \frac{1}{\pi t} \\
& x(t) \longrightarrow \frac{1}{\pi t} \longrightarrow \hat{x}(t)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 10. } x(t) \longleftrightarrow X(f) \\
& \hat{x}(t) \longleftrightarrow x_{h}(f) \\
& \frac{1}{r t} \longleftrightarrow-j \operatorname{sign}(f) \\
& x_{n}(f)=-j \operatorname{sign}(f) x(f) \\
& { }_{15} X(f)=|x(f)| e^{j \varangle x(f)} \\
& x_{n}(f)=\left|x_{n}(f)\right| e^{j\left\{x_{n}(f)\right.} \\
& \left\{\begin{array}{l}
-j \operatorname{sign}(f)=\left\{\begin{array}{cc}
-j & f>0=e^{-j / F} \\
j & f<0 \\
1-j \operatorname{sign}(f) \mid=1
\end{array}\right.
\end{array}\right.
\end{aligned}
$$

 . Édugimmum
: نَّ

Subject:

$$
\begin{aligned}
& x(t)=a_{1} \cos \omega_{1} t+a_{r} \cos \omega_{r} t-a_{\mu} \omega_{\mu} t \\
& \hat{x}(t)=a_{1} \cos \left(\omega_{1} t-\pi / r\right)+a_{r} \cos \left(\omega_{\mu} t-\pi / r\right)-a_{\mu} \sin \left(\omega_{\mu} t-\pi / r\right) \\
& \Rightarrow \hat{x}(t)=a_{1} \cos \omega_{1}\left(t-\frac{\pi}{r \omega_{1}}\right)+a_{r} \cos \left(\omega_{r}\left(t-\frac{\pi}{r \omega_{r}}\right)-a_{\mu} \sin \omega_{\mu}\left(t-\frac{\pi}{r \omega_{\mu}}\right)\right.
\end{aligned}
$$

\qquad

 .

- $\frac{f}{B} \gg 1 \quad \frac{B}{f} \ll 1$

$$
S_{L}(f)=S\left(f+f_{c}\right)
$$

$$
\begin{align*}
& \left.\begin{array}{l}
S_{+}(f)=S(f) u(f) \\
S(f) \longleftrightarrow s(t) \\
u(f) \longleftrightarrow \frac{1}{r} \delta(t)+\frac{J}{r \pi t}
\end{array}\right\} \Rightarrow \begin{array}{l}
S_{+}(t)=s(t) *\left[\frac{1}{r} \delta(t)+\frac{J}{r \pi t}\right] \\
\left.\Rightarrow S_{+}(t)=1 / r s(t)+\frac{J}{r} \hat{S}(t)\right] \text { (1) }
\end{array} \\
& { }^{25} \quad S_{L}(f)=S_{+}\left(f+f_{c}\right) \rightarrow S_{L}(t)=S_{+}(t) e^{-j r \pi f_{c} t} \rightarrow S_{+}(t)=S_{L}(t) e^{j r \pi f_{c} t} \tag{1}\\
& \left.\begin{array}{l}
1 \\
r
\end{array}\right\} \Rightarrow Y_{r} S(t)+\frac{J}{T} \hat{S}(t)=S_{2}(t) e^{j r \pi f_{c} t} \longrightarrow\left\{\begin{array}{l}
S(t)=r \operatorname{Re}\left[S_{L}(t) e^{j r \pi f_{c} t}\right][a d s \\
\hat{S}(t)=r \operatorname{Im}\left[S_{L}(t) e^{j r \pi f_{1}}\right.
\end{array}\right.
\end{align*}
$$

Subject:
Year. Month. Date. ()

$$
\begin{aligned}
& S_{i}(t)=1 / 4 S_{i}(t)+J / 1, S_{q}(t) \Rightarrow \begin{cases}S_{i}(t): & S_{q}(t): \\
S_{q}\end{cases} \\
& S(t)=r \operatorname{Re}\left[\left(\frac{1}{r} S_{i}(t)+\frac{1}{r} S_{q}(t)\right)\left(\cos Y \pi f_{c} t+j \sin r \pi f_{c} t\right)\right] \\
& \left.\begin{array}{l}
\Rightarrow S(t)=S_{i}(t) \cos r \pi f_{c} t-S_{q}(t) \sin r \pi f_{c} t \\
\Rightarrow \hat{S}(t)=S_{i}(t) \sin r \pi f_{c} t+S_{q}(t) \cos r \pi f_{c} t
\end{array}\right\} \quad b \quad j u \pi \\
& \begin{array}{l}
S_{L}(t)=1 / r S_{i}(t)+\frac{j}{r} S_{q}(t)=1 / r R(t) e^{j \phi(t)} \\
R(t)=\sqrt{S_{i}^{r}(t)+S_{q}^{r}(t)} \\
S(t)=\tan ^{-1} \frac{S_{q}(t)}{S_{1}(t)} \\
S(t)=\operatorname{rRe}\left[\frac{1 / r}{r}(t) e^{j \varphi(t)} e^{j r \pi f_{c} t}\right] \Rightarrow S(t)=R(t) \operatorname{Cos}\left(Y \pi f_{c} t+\varphi(t)\right) C \text { dis }
\end{array}
\end{aligned}
$$

no $\Phi(t), R(t), S_{q}(t), S_{1}(t)$ (C loo

$$
S(f)=1 / r\left[S_{l}\left(f-f_{c}\right)+S_{L}^{*}\left(-f-f_{c}\right)\right] \quad=\operatorname{Lus}\left(1 L_{i n} \leftarrow\right.
$$

$$
\begin{aligned}
& \Rightarrow Q_{t}(f)=H_{l}(f) S_{2}(f) \Rightarrow Q_{L}(t)=H_{2}(t) * S_{1}(t)
\end{aligned}
$$

$15 \ldots$
位 \leftarrow

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left\{\begin{array}{l}
S(t)=S_{i}(t) \cos r \pi f_{c} t-S_{q}(t) \sin r \pi f_{c} t \\
\hat{S}(t)=S_{i}(t) \sin \pi \pi f_{c} t+S_{q}(t) \cos r \pi f_{c} t
\end{array}\right. \\
\longrightarrow\left\{\begin{array}{l}
S_{i}(t)=S(t) \cos r \pi f_{c} t+\hat{S}(t) \sin r \pi f_{c} t \\
S_{q}(t)=\hat{S}(t) \cos r \pi f_{c} t-S(t) \sin r \pi f_{c} t
\end{array}\right.
\end{array}\right. \\
& R(t)=\sqrt{S_{c}^{r}(t)+s_{q}^{\zeta}(t)}=\sqrt{S^{r}(t) \cos ^{r} \omega_{c} t+\hat{S}^{r}(t) \sin ^{r} \omega_{c} t+\hat{S}^{\gamma}(t) \cos ^{\gamma} \omega_{c} t+s^{r}(t) \sin ^{r} \omega_{c} t} \\
& 25 \\
& \Rightarrow R(t)=\sqrt{S^{\gamma}(t)+S^{\gamma}(t)}
\end{aligned}
$$

انَوركا

Subject:

$$
\begin{aligned}
& \text { Year. Month. Date. } \\
& \left.\begin{array}{l}
E=\int_{-\infty}^{\infty} S^{r}(t) d t=\int_{-\infty}^{\infty}|S(f)|^{r} d f \\
E_{l}=\int_{-\infty}^{\infty}\left|S_{l}(t)\right|^{r} d t=\int_{-\infty}^{\infty}\left|S_{l}(f)\right|^{r} d f
\end{array}\right\} \Rightarrow E=r E_{l}
\end{aligned}
$$

\qquad

$$
\begin{aligned}
& { }_{5} x_{L P}(t)=\frac{1}{r} x_{I}(t)+\frac{j}{r} x_{Q}(t)
\end{aligned}
$$

Cr $\mathrm{C}=(t)=A_{c}$ cos rift
$\rightarrow x(t)$ خ خبر
$X(f) \underline{w}$ 它 \Rightarrow

$15 \quad S_{x} \ll 1$

$$
\langle x\rangle=0
$$

20

$$
\begin{aligned}
& A_{\text {max }}=A_{c}(1+\mu) \\
& A_{\text {min }}=A_{c}(1-\mu)
\end{aligned}
$$

$$
=A_{\min }<0 \quad \pi
$$

باسشَاب ain

$$
A_{\min }>0 \Rightarrow \mu<1
$$

$$
\begin{aligned}
& x_{c}(t)=A_{c} \cos M \pi f_{c} t+A_{c} \mu x(t) \cos \pi \pi f_{c} t \\
& \left.X_{c}(f)=1 / \mu A C_{c} \delta\left(f-f_{c}\right)+\delta\left(f+f_{c}\right)\right]+1 / r A_{c} \mu\left[X\left(f-f_{c}\right)+X\left(f_{+} f_{c}\right)\right]
\end{aligned}
$$

جرسى

$$
\begin{aligned}
& S_{T}=\left\langle x_{c}^{r}(t)\right\rangle \\
& =\frac{1}{r} A_{c}^{r}\left\langle 1+\mu^{r} x^{r}+r \mu x\right\rangle+Y A_{c}^{r}\left\langle(1+\mu x(t))^{r} \cos r r f_{0} f_{0} t\right\rangle \\
& \Rightarrow S_{T}=1 / r A_{c}^{r}+1 / A_{c}^{r} \mu^{r} S_{x}+0+0=1 / r A_{c}^{r}\left(1+\mu^{r} S_{x}\right)
\end{aligned}
$$

$$
S_{T}=\frac{1}{r} A_{c}^{r}+\frac{1}{r} A_{c}^{r} \mu^{r} S_{x}=P_{c}+r P_{S b}
$$

$$
\begin{aligned}
& \left.\begin{array}{c}
|x(t)|<1 \\
\mu<1
\end{array}\right\} \Rightarrow\left|\mu_{x(t)}\right|<1 \rightarrow \mu^{\mu} S_{x}\left\langle 1 \Rightarrow \frac{1}{} \mu^{r} P_{c} S_{x} \leqslant \frac{1}{r_{c}} P_{c}\right. \\
& \Rightarrow\left\{\begin{array}{l}
P_{S b} \leqslant \frac{1}{F} P_{c} \\
P_{c}=S_{T}-P_{S b}
\end{array}\right\} \Rightarrow P_{\text {Sb }} \leqslant k_{k} S_{t} \\
& \text { 0 } \\
& \text { بسِّ } \\
& \text { حا }
\end{aligned}
$$

(Double side band-suppresid carrier) DSB_SC AM (J)

$$
x_{c}(t)=A_{c} x(t) \cos r \pi f_{c} t
$$

$$
X_{c}(f)=K_{c} X\left(f-f_{c}\right)+\frac{1}{M} A_{c} X\left(f+f_{c}\right)
$$

$$
\begin{aligned}
& B_{T}=r W \\
& S_{T}=\left\langle x_{c}^{r}(t)\right\rangle=1 / T C^{r}\left\langle x^{r}(t)\right\rangle \Rightarrow S_{T}=1 / r A_{c}^{r} S_{x}=r P_{s b}
\end{aligned}
$$

$$
\begin{aligned}
\text { D.SB Us, } \quad & x_{c}(t)=A_{c} x(t) \text { cosirft } \\
& S_{T}=Y P_{S b} \quad B_{T}=r W
\end{aligned}
$$

$$
\begin{aligned}
& 10 \Longrightarrow A_{\text {max }}=\left\{\begin{array}{ll}
A_{c} & D S B \\
Y A_{c} & A M, \mu=1
\end{array}\right\} \Rightarrow \begin{cases}D S B: \frac{P_{s b}}{A_{\text {max }}^{s}}=1 / 4 S_{x} \\
A M: \frac{P_{s b}}{A_{\text {max }}^{r}}=1 / 14 S_{x}\end{cases} \\
& \Longrightarrow P_{s b}=\left\{\begin{array}{ll}
\frac{1}{r} A_{c}^{r} S_{x} & D S B \\
\frac{1}{4} \mu^{\mu} A_{c}^{r} S_{x} & A M
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
S_{x}=1 / r A_{m}^{r}=1 / r \quad A_{\text {max }}^{r} \leqslant \Delta k \omega \\
P_{s b}=1 / 4 S_{x}^{r} A_{\text {max }}^{r}=1 / A_{\text {max }}^{r}
\end{array}\right\} \Rightarrow P_{S b} \leqslant \mid k \omega
\end{aligned}
$$

$$
\begin{aligned}
& \text { 25. } P_{S b}=1 / \% S_{T} \leqslant \frac{\mu}{4} \Rightarrow P_{S b} \leqslant I_{k w}
\end{aligned}
$$

$$
\begin{aligned}
& S_{T}=P_{C+} Y P_{S b}
\end{aligned}
$$

Subject:
Year. Month.
Date.

$$
\left.\begin{array}{l}
P_{S b}=\frac{1}{14} S_{x} A_{\max }^{r} \leqslant 1 / 4 \\
S_{T}=P_{c}+r P_{s b}=4 P_{s b} \\
P_{S b}=1 / 4 P_{c} \\
P_{S b}=1 / q S_{T} \leqslant \frac{1}{r} k \omega
\end{array}\right\} \Rightarrow P_{S b} \leqslant 1 r 0 \mathrm{kw}
$$

Tone Modulation : DSB:

$$
x(t)=A_{m} \cos \pi r f_{m} t
$$

$$
S_{x}=1 / y A_{m}^{Y} \leqslant 1
$$

$$
x_{c}(t)=A_{A} A_{m} \cos Y \pi f_{m} t \cos M \pi f_{c} t=1 / r A_{c} A_{m} \cos \left(f_{c}+f_{m}\right) t+1 / Y A_{c} A_{m} \cos \left(f_{c}-f_{m}\right)
$$

AM:

$$
u_{c}(t)=A_{c}\left(1+\mu A_{m} \cos \gamma \pi f_{m} t\right) \operatorname{cosin} f_{c} t
$$

Subject:

$$
\begin{aligned}
v_{\text {out }}(t)= & a_{1}\left(x(t)+\cos r \pi f_{c} t\right)+a_{r}\left(x(t)+\cos r \pi f_{c} t\right)^{r} \\
= & a_{1} x(t)+a_{r} x^{r}(t) \\
& +a_{r} \cos ^{r} r r f_{c} t+a_{1}\left[1+\frac{r a_{r}}{a_{1}} x(t)\right] \cos r \pi f_{c} t,
\end{aligned},\left\{\begin{array}{l}
a_{1}=A_{c} \\
\frac{r a_{r}}{a}=r
\end{array}\right.
$$

$$
\Rightarrow\left\{\begin{array}{l}
r w<f_{c}-B<f_{c}-w \\
f_{c^{+}} w<f_{c}+B<r f_{c}
\end{array}\right.
$$

20

- (Singl e-sideband) S.SB (ugwly,

$$
\begin{aligned}
& x(t)=A_{m} \cos r \pi f_{t} \\
& \text { D.SB:rk} A_{c} A_{m} \cos r \pi\left(f_{c}-f_{m}\right) t+\frac{1}{r} A_{c} A_{m} \cos r \pi\left(f_{c}+f_{m}\right) t \\
& \Rightarrow S S B:\left\{\begin{array}{l}
u, S B: 1 / r A_{c} A_{m} \cos r \pi\left(f_{c}+f_{m}\right) t \\
L S S B: \frac{1}{r} A_{c} A_{m} \cos r \pi\left(f-f_{m}\right) t
\end{array}\right.
\end{aligned}
$$

$x_{b p}(t)=A_{c} x(t) \operatorname{Cosin} f_{c} t$

$$
y_{L p}(f)=x_{L p}(f) H_{L p}(f)
$$

$$
H_{L p}(f)=u(f)-u\left(f_{-}\right)=-p\left(1+\operatorname{sign}\left(f_{1}\right) \quad|f| \leqslant w\right.
$$

$$
x_{L p}(t)=k A_{c} x(t)
$$

$$
x_{L P}(t)=1 / A_{c} x(t)
$$

$$
y_{L}(f)=1 / L A_{c} x(f)(1+\operatorname{sign}(f))
$$

$$
X_{L p}(f)=1 / A_{c} X(f)
$$

$$
\Rightarrow y_{L p}(f)=1 / 4 A_{c} X(f)+\gamma_{f} A_{c} X(f) \operatorname{sign}(f)
$$

$$
\Rightarrow y_{L P}(t)=1 / 4 A_{c} x(t)+\frac{j}{F} A_{c} \hat{x}(t) \Rightarrow y_{b p}(t)=1 /{ }_{p} A_{c}\left[x(t) \cdot \cos \gamma \pi f_{c} t-\hat{x}(t) \sin r \pi f_{c} t\right]
$$

Year. Month. V Date. Yo ()
\qquad

$$
\begin{aligned}
& \begin{array}{l}
\text { USSB } \\
\text { LSSB }
\end{array} \Rightarrow\left\{\begin{array}{l}
y_{i}(t)=1 / r A_{C} x(t) \\
y_{Q}(t)= \pm 1 / r A_{c} \hat{x}(t)
\end{array}\right. \\
& y_{b P}^{(t)}=1 / r A_{C}\left[x(t) \cos Y \pi f_{C} t=\hat{x}(t) \sin r \pi f_{c} t\right]
\end{aligned}
$$

(̂), $A(t)=1 / r A C \sqrt{x^{r}(t)+\hat{x}^{r}(t)}$

phase-shift Method
20

$$
\begin{equation*}
m(t)=\cos \mu \pi f_{m} t \tag{n}
\end{equation*}
$$

©

$$
\begin{aligned}
& \left.x_{a}(t)=m(t) \cos r \pi f_{1} t=\cos r \pi f_{m} t \cos r \pi f_{1} t=1 / r \cos \mu \pi\left(f_{1}+f_{m}\right) t+\cos \mu \pi\left(f_{1}-f_{m}\right) t\right] \\
& x_{l}(t)=m(t) \sin r \pi f_{1} t=\cos r \pi f_{m} t \sin \pi \pi f_{1} t=k\left[\sin \pi \pi\left(f_{1}+f_{m}\right) t+\sin r \pi\left(f_{1}-f_{m}\right) t\right] \\
& \text { pil }\left\{\begin{array} { l }
{ | f _ { 1 } - f _ { m } | < w } \\
{ f _ { 1 } + f _ { m } \rangle w }
\end{array} \Rightarrow \left\{\begin{array}{l}
y_{u}(t)=1 / r \cos r r\left(f_{1}-f_{m}\right) t \\
y_{2}(t)=1 / r \sin r \pi\left(f_{1}-f_{m}\right) t
\end{array}\right.\right. \\
& x_{c}(t)=1 / r \cos r \pi\left(f_{1}-f_{m}\right) t \cos Y \pi f_{r} t-1 / r \sin Y \pi\left(f_{1}-f_{m}\right) t \sin Y \pi f_{r} t=\cos r \pi\left(f_{1}+f_{r}-f_{m}\right) t
\end{aligned}
$$

S.SB.

$$
\left.\begin{array}{l}
u x_{c}(t)=\cos r \pi f_{m} t \cos r \pi f_{c} t-\sin r \pi f_{m} t \sin r \pi f_{c} t=\cos r \pi\left(f_{c}+f_{m}\right) t \Rightarrow f_{c}=-f_{1} f_{m} \\
L x_{c}(t)=\cos r \pi\left(f_{c}-f_{m}\right) t \Rightarrow f_{c}=f_{1}+f_{r}
\end{array}\right\}
$$

$y(f)$ مu, kil
 $v(t)=m(t) A \cos M \pi f_{C} t$

.

-Un

(x

$$
\begin{aligned}
& x_{c}(t)=\left[\begin{array}{lll}
\left.k_{c}+k \mu x(t)\right] \operatorname{Cos} \mu_{r} f_{c} t-k_{\mu} x_{q}(t) \operatorname{Sin} \mu f_{c} t \\
A M: x_{q}(t)=0 & k_{c}=A_{c} & k_{p}=\mu A_{c} \\
{ }_{3} D S B: x_{q}(t)=0 & k_{c}=0 & k_{\mu=} A_{c} \\
S S B: x_{q}(t)=\hat{M}(t) k_{c}=0 & k_{\mu}=k_{k} A_{c}
\end{array}\right.
\end{aligned}
$$

$$
{ }_{20} \hat{x}(t)=1_{\gamma} A_{L 0}\left(k_{c}+k_{\mu} x(t)\right) \quad \hat{x}(t) \xrightarrow{D C} \models_{\gamma} A_{L O} k_{\mu} x(t)
$$

 . ديحِ

$$
\begin{aligned}
& x_{c}(t)=A_{c} \operatorname{Cos}\left(Y \pi f_{c} t+\varphi(t)\right) \\
& s\left\{\begin{array}{l}
A_{1}(t)=A_{c}=c t e \\
S_{T}=\frac{1}{r} A_{c}^{r}
\end{array}\right.
\end{aligned}
$$

$P M=\phi(t)=\varphi_{\Delta} x(t) \quad . \quad$.

$$
|x(t)| \leqslant 1
$$

$$
{ }_{10} P M: x_{c}(t)=A_{c} \cos \left(\pi \pi f_{c} t+\varphi_{\Delta} x(t)\right)
$$

$$
\begin{aligned}
f_{c}(t) & =\frac{1}{Y \pi} \dot{\theta}_{c}(t)=f_{c}+\frac{1}{Y \pi} \dot{c}(t) \\
F M: f_{c}(t) & =f_{c}+f_{\Delta} x(t)
\end{aligned}
$$

$$
\begin{aligned}
& f_{\Delta x(t)=\frac{1}{r \pi} \dot{\varphi}(t) \rightarrow \varphi(t)=r \pi f_{\Delta} \int_{-\infty}^{t} x(r) d r}^{x_{c}(t)=A_{c} \cos \left[r \pi f_{c} t+\pi f_{\Delta} \int_{-\infty}^{t} x(r) d r\right]}
\end{aligned}
$$

 ivs, FM Q PM, '

	$\phi(t)$	$f(t)$
$P M$	$\varphi_{\Delta} x(t)$	$f_{c}+\frac{\varphi_{\Delta}}{\gamma \pi}(t)$
$F M$	$\pi f_{\Delta} \int_{-\infty}^{t} x(r d d y$	$f_{c}+f_{\Delta} x(t)$

位

:

.

$$
\Longrightarrow x_{c}(t)=A_{c} \cos \pi \pi f_{c} t-A_{c} \varphi(t) \sin \pi f_{c} t
$$

$$
\Rightarrow X_{c}(f)=1 / r A_{c} \delta\left(f-f_{c}\right)+\frac{1}{r} A_{c} \delta\left(f_{+} f_{c}\right)+\frac{j}{r} A_{c} \varphi\left(f-f_{c}\right)-\frac{j}{r} A_{c} \varphi\left(f+f_{c}\right)
$$

رانيها
 25

$$
\begin{aligned}
& \left.\begin{array}{rl}
x_{c}(t) & =A_{c} \cos \varphi(t) \cos Y \pi f_{c} t-A_{c} \sin \varphi(t) \sin Y R f_{c} t \\
\dot{u} x_{c}(t) & =x_{i}(t) \cos Y \pi f_{c} t-x_{q}(t) \sin Y \pi f_{c} t
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
x_{i}(t)=A_{c} \cos \varphi(t) \\
x_{q}(t)=A_{c} \sin \varphi(t)
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { oj }|\varphi(t)| \ll 1 \Rightarrow\left\{\begin{array}{l}
x_{i}(t)=A_{c} \\
x_{q}(t)=A_{c} \varphi(t)
\end{array}\right.
\end{aligned}
$$

Tone Modulation:

$$
|\varphi(t)| \ll 1 \Rightarrow\left|\beta \sin K \pi f_{m} t\right| \ll 1 \stackrel{\mid \sin \pi f_{m}+k!}{\Longrightarrow}|\beta| \ll 1
$$

$$
\Rightarrow x_{c}(t)=A_{c} \cos \left(\beta \sin Y r f_{m} t\right) \cos r r f_{c} t-A_{c} \sin \left(\beta \sin r f_{m} t\right) \sin r r f_{c} t
$$

$$
{ }_{15} \rightarrow x_{c}(t)=A_{c} \cos Y \pi f_{c} t-A_{c} \beta \sin Y \pi f_{m} t \sin Y \pi f_{c} t
$$

$$
\Rightarrow x_{c}(t)=A_{c} \cos r \pi f_{c} t+\frac{1}{r} A_{c} \beta \cos \gamma \pi\left(f_{c}+f_{m}\right) t-1 / r A_{c} \beta \cos \gamma r\left(f_{c}-f_{m}\right) t
$$

$20 \ldots$

$$
\cos \left(\beta \sin r R f_{m} t\right)=J_{0}(\beta)+\sum_{\operatorname{con}^{n}} r J_{n}(\beta) \cos \left(r_{n} n f_{m} t\right)
$$

 [uTulual,

$$
\begin{aligned}
& { }_{25} \cdot \sin \left(\beta \sin r f_{m} t\right)=\sum_{\partial_{2 n}} r J_{n}(\beta) \sin \left(r_{n} f_{m} t\right)
\end{aligned}
$$

$$
\begin{aligned}
& \& \quad \text { \& } \quad \text { au } x(t)=\left\{\begin{array}{l}
A_{m} \sin Y \Omega f_{m} t \quad P M \\
A_{m} \text { OSYK } f_{m} t \quad F M
\end{array} \quad W=f_{m} \ll f_{C}\right.
\end{aligned}
$$

Subject:

$$
\begin{aligned}
& x_{c}(t)=A_{c}\left[J_{0}(\beta)+\sum_{\operatorname{lin}}^{r} J_{n}(\beta) \cos n \omega_{m} t\right] \cos \omega_{c} t \\
& -A_{c}\left[\sum_{2 \dot{j 1}} r J_{n}(\beta) \sin n \omega_{m} t\right] \sin \omega_{c} t \\
& \Rightarrow x_{c}(t)=A_{c} J_{0}(\beta) \cos \omega_{c} t+A_{c} \sum_{e ; ; n} J_{n}(\beta)\left[\cos \left(\omega_{c}-n \omega_{m}\right) t+\cos \left(\omega_{c}+n \omega_{m}\right) t\right] \\
& -A_{c} \sum_{\partial \operatorname{} n} J_{n}(\beta)\left[\cos \left(\omega_{c}+n \omega_{m}\right) t-\cos \left(\omega_{c}-n \omega_{m}\right) t\right] \\
& J_{-n}(\beta)=(-1)^{n} J_{n}(\beta): ~ \Gamma \underline{\omega l} \\
& \Rightarrow x_{c}(t)=A_{c} \sum_{n=-\infty}^{\infty} J_{n}(\beta) \cos \left(\omega_{c}+n \omega_{m}\right) t \\
& \Rightarrow X_{c}(f)=1 / r A_{c} \sum_{n} J_{n}(\beta)\left[\delta\left(f-f_{c}-n f_{m}\right)+\delta\left(f_{+} f_{c}+n f_{m}\right)\right]
\end{aligned}
$$

\qquad

$$
x_{c}(t)=A \cos \left(r \pi f_{c} t+\varphi(t)\right) \rightarrow\left\{\begin{array}{l}
\varphi(t)=\varphi_{\Delta} x(t) \quad P M \\
\varphi(t)=r \pi f_{\Delta} \int_{-\infty}^{t} u(r) d e F M
\end{array}\right.
$$

\qquad
\qquad
\qquad

$$
\begin{aligned}
& \left.\left|\frac{n}{\beta}\right| \gg|\Rightarrow| J_{n}(\beta) \right\rvert\, \rightarrow 0 \\
& |n / \beta|<1 \Longrightarrow n_{\max }=\beta
\end{aligned}
$$

$$
\begin{aligned}
& B_{T}=Y n f_{m}=Y \beta f_{m}: \quad F M
\end{aligned}
$$

$$
\begin{aligned}
& B_{T}=r(\beta+1) f_{m}^{w} \\
& 20 \text {. } \\
& x_{c}(t)=100 \cos (\underbrace{\left(r \pi f_{c} t+100 \int m(l) d t\right.}_{\theta_{c}}), \\
& f(t)=\frac{1}{Y \pi} \dot{\theta}_{c}=f_{c}+\frac{100}{Y \pi} m(t)
\end{aligned}
$$

Subject:
Year. Month. Date. ()

$$
\begin{aligned}
& m(t)=10 \cos 14 \Omega t \\
& x_{c}(t)=10 \cos \left[f_{000} \pi t+r \Omega f_{\Delta} \int_{-\infty}^{t} m(x) d x\right], f_{\Delta}=10
\end{aligned}
$$

- Ely
$B P F: \quad f_{c}=$ Fo. $\quad B W=4 r \mathrm{~Hz}$

$$
\beta=\frac{f_{\Delta} A_{m}}{f_{m}}=\frac{\text { (ox) }}{x_{c}(\hat{f})}=1,00
$$

\qquad

\qquad

$$
\omega_{0}=\frac{1}{\sqrt{L C}} \quad\left|C^{C} x(t)\right| \ll 1
$$

$$
\dot{\theta}_{c}^{(t)}=\omega \cdot\left(1+\frac{C}{Y C_{0}} x(t)\right) \quad f_{\Delta}=\frac{c}{K C} f_{0} \quad f_{\Delta}<01004 f_{c}
$$

. مرولآور بانزباري́كِ

15

Af هِ هَُاسِم

20
Flip-Flop जis
\qquad
\qquad
\qquad
\qquad
\qquad

- FM Ff

\qquad

$$
\begin{aligned}
& \theta_{1}(t)=v \pi f_{c 1} t+\frac{\Phi_{\Delta}}{T} \int x(x) d x \\
& f_{1}(t)=\frac{1}{k \pi} \dot{\theta}_{1}(t)=f_{c}+\frac{\varphi_{\Delta}}{r \pi T} x(t)
\end{aligned}
$$

$$
\begin{aligned}
& \left.x_{c}(t)=A_{c} \cos \left(\theta_{c}(t)\right) \Rightarrow \dot{x}_{c}(t)=-A_{c} \dot{\theta}_{c}(t) \sin \left(\theta_{c}(t)\right): A M \& A_{1}\right) \\
& \dot{\theta}_{c}(t)=\operatorname{Kr}\left(f_{c}+f_{\Delta x}(t)\right) \\
& \dot{x}_{c}(t)=-\operatorname{Mr} A_{c}\left(f_{c}+f_{\Delta x} x(t)\right) \sin \left(\theta_{c}(t)\right)
\end{aligned}
$$

Phase- Shift discriminator ${ }^{\prime}$ (15

$$
\begin{aligned}
& F M: \dot{P}(t)=Y R f_{\Delta} x(t) \quad, x_{c}(t)=A_{c} \operatorname{Cos}\left(Y \pi f_{c} t+\varphi(t)\right)
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}(t): \sin \left(Y \omega_{c} t+\varphi(t)+\varphi\left(t-t_{1}\right)\right), \sin \left(\varphi(t)-\varphi\left(t-t_{1}\right)\right) \simeq \varphi(t)-\varphi \text { ! } \\
& y_{D}(t) \alpha r r f_{\Delta} t_{1} x(t) \Rightarrow y_{D}(t)=k_{D} f_{\Delta x}(t)
\end{aligned}
$$

Subject:
Year. Month. Date.
Zero -Crossing
$=$ =

$$
\frac{1}{T} \int_{T} v(e) d e=\frac{1}{T} n_{T} A l=\frac{1}{T} T f(t) A l=A \ell f(t)=A l\left(f_{C}+f_{\Delta} x(t)\right) \Rightarrow y(t)=k_{D} x(t)
$$

15
.

$\beta_{F M} \quad A \cos \gamma \pi f_{0} t$

$$
\begin{aligned}
& W=10 \mathrm{kHz} \\
& n_{1}=\text { ? }, n_{r}=\text { ? } \\
& \left.\begin{array}{rl}
u(t) & =A \cos \left(Y \pi f_{0} t+\varphi(t)\right) \\
{ }_{25} \begin{array}{l}
u_{1}(t)
\end{array} & =A \cos \left(Y \pi n_{1} f_{0} t+n_{1} \varphi(t)\right) \\
u_{Y}(t) & =A \cos \left(Y \Omega n_{Y} f_{0} t\right)
\end{array}\right\} \Rightarrow y(t)=A_{Y}^{r} \cos \left(Y \pi\left(n_{1}+n_{r} f_{0} t+n_{1} \varphi(t)\right)\right. \\
& \text { uss: } y(t)=A \cos \left(\left(\pi f_{c t} t+f_{\Delta} \varphi_{1}(t)\right)\right.
\end{aligned}
$$

Subject,
Year. Month. Date. ()

$$
\begin{aligned}
& \left.V_{\Delta}=n_{1} x\right)_{1}^{\infty} \Rightarrow n_{1}=\infty . \\
& \text { rn }\left(n_{1}+n_{Y}\right) f_{0}=K \pi f_{C} \Rightarrow n_{r}=99 \text { 。 }
\end{aligned}
$$

$$
\left(n_{1}+n_{r}\right) \Delta f_{0}=\Delta f_{j b} \Rightarrow \Delta f_{0}=.1 \ldots 19 \mathrm{~Hz}
$$

:
.

$$
\begin{aligned}
& f_{c=}=f_{D}-f_{T R} \rightarrow f_{I E}=f_{b}-f_{c}
\end{aligned}
$$

 تراه

Subject:

$$
f_{\text {IF }}<f_{\text {Lo }} \text { - 11-l. } 1 \text { MHz: }
$$

$$
\Lambda \Lambda<f_{c}<1_{0} \Lambda^{M H z}
$$

$$
\begin{aligned}
& f_{c}^{\prime} \notin[M, 101] \Rightarrow M+Y f_{I F}>10 \Lambda \rightarrow f_{\text {IF }}>10 M H z \\
& f_{L 0}=f_{C}+f_{I F} \Rightarrow M+10<f_{L 0}<1 \cdot \Lambda+10 \rightarrow M^{M+1}<f_{10}<M^{M H z}
\end{aligned}
$$

Subject:

بِيّْا

Event - بِيّْاسر (

$$
\begin{aligned}
& S=\left\{S_{i}^{\uparrow}\right\} \\
& \text { 20 Lo b } \quad \text { b } \quad\left\{\begin{array}{l}
\text { 1) } P\left(S_{1}\right)>0 \\
\text { r) } P(S)=1 \\
\text { r) } P\left(A_{1}+A_{r}\right)=P\left(A_{1}\right)+P\left(A_{\gamma}\right) \quad
\end{array}\right.
\end{aligned}
$$

: شَ

\qquad

Subject:
Year. Month. Date. (1)

\qquad

$$
\begin{aligned}
& P(x>x)=1-F_{x}(x) \\
& P(a<x<b)=F_{x}(b)-F_{x}(a)
\end{aligned}
$$

$$
\begin{aligned}
& P(x=0)=(r / \Delta)^{r} \\
& P(x=1)=r \times r / \Delta \times\left(\frac{\omega}{\alpha}\right)^{r} \\
& P(x=r)=r \times(r / \omega)^{r} \times r / \omega \\
& P(x=r)=(r / \omega)^{r}
\end{aligned}
$$

$$
\begin{aligned}
& F_{x}(\cdot)=P(X \leqslant 0)=P(x=0)=\left(\frac{1}{0}\right)^{r} \\
& F_{x}(1)=P(x \leqslant 1)=P(x=0)+P(X=1) \\
& F_{x}(r)=P(x \leqslant r)=P(x=0)+P(X=1)+P(X=r)=1-P\left(x=r^{r}\right) \\
& F_{x}(r)=1
\end{aligned}
$$

$$
\begin{aligned}
& F_{X}(x)=P(X \leqslant x) \\
& { }_{5} P(X=a)=0 \\
& f_{X}(x)=\frac{d F_{X}(x)}{d x}
\end{aligned}
$$

: PDF fid of ar ar

$$
\begin{aligned}
& \text { 1. } P(X \leqslant x)=\int_{-\infty}^{x} f_{x}(\lambda) d \lambda \\
& \text { r. } f_{x}(x) \geqslant 0 \\
& { }_{15} r_{-} P(a \leqslant x \leqslant b)=\int_{a}^{b} f_{x}(\lambda) d \lambda \\
& 1-\int_{-\infty}^{\infty} f_{x}(\lambda) d \lambda=1
\end{aligned}
$$

$$
\begin{aligned}
& 20 \quad \frac{1}{b-a}
\end{aligned}
$$

$$
\begin{aligned}
& { }_{25} f_{x y}(x, y)=\frac{\partial^{r} F_{x y}(x, y)}{\partial x \partial y} \\
& P(a \leqslant x \leqslant b, c \leqslant y \leqslant d)=\int_{c}^{d} \int_{a}^{b} f_{x y}(\lambda, y) d \lambda d x
\end{aligned}
$$

Subject,

$$
f_{x y}=f_{x}(x) f_{y}(y)
$$

$$
\begin{aligned}
& f_{Y \mid X}(y \mid x)= \begin{cases}\frac{f_{x y}(x, y)}{f_{x}(x)} & f_{x}(x) \neq 0 \\
0 & f_{X}(x)=0\end{cases} \\
& F_{X}(x)=F_{x y}(x,+\infty) \\
& F_{y}(y)=F_{x y}(+\infty, y) \\
& f_{x}(x)=\int_{-\infty}^{\infty} f_{x y}(x, \lambda) d \lambda, \\
& \int_{-\infty}^{\infty} \int_{x y}(x, y) d x d y=1 \\
& x, f_{x}(x) \\
& E(x)=\int_{-\infty}^{\infty} x f_{x}(x) d x \\
& E\left(X^{n}\right)=\int_{-\infty}^{\infty} x^{n} f_{x}(x) d x \\
& \operatorname{Var}(x)=E\left((x-E(x))^{r}\right)=E\left(x^{r}\right)-E^{r}(x) \\
& E(g(x))=\int_{-\infty}^{\infty} g(x) f_{x}(x) d x \\
& E(C X)=C E(x) \quad E(C+x)=C+E(x) \\
& \operatorname{Var}(c x)=c^{r} \operatorname{Var}(x) \quad \operatorname{Var}(c+x)=\operatorname{Var}(x)
\end{aligned}
$$

Subject:

$$
\left.\begin{array}{l}
\phi_{x}(v)=E\left(e^{j v x}\right)=\int_{-\infty}^{\infty} e^{j v x} f_{x}(x) d x \\
x=f
\end{array}\right\} \Longrightarrow \Phi_{x}(Y \pi t)=F^{-1}\left\{f_{x}(f)\right\}
$$

 $z=x+y, f_{y}(y), f_{x}(x)$ po; feins y, x

$$
\begin{aligned}
& \Phi_{z}(v)=E\left(e^{j v z}\right)=E\left(e^{j v x} e^{j v y}\right) \frac{b, v v v_{v j} b}{(v i v i t} E\left(e^{j v x}\right) E\left(e^{j v y}\right) \rightarrow \\
& { }_{10} \Phi_{z}(v)=\Phi_{x}(v) \Phi_{y}(v) \Rightarrow f_{z}(\lambda)=f_{x}(\lambda) * f_{y}(\lambda)
\end{aligned}
$$

$$
\begin{aligned}
& E(x)=m_{x} \\
& E(y)=m_{y}
\end{aligned} \Rightarrow \operatorname{Cov}(x, y)=E\left[\left(x-m_{m}\right)\left(y-m_{y}\right)\right]
$$

$$
\text { (fسñocis } P_{x y}=\frac{\operatorname{Cov}(x, y)}{\sigma_{x} \sigma_{y}} \quad\left\{\begin{array}{l}
\sigma_{x}^{r}=\operatorname{var}(x) \\
\sigma_{y}^{r}=\operatorname{Var}(y)
\end{array}\right.
$$

Funob $y, x \rightarrow \operatorname{Cov}(x, y)=0 \rightarrow E(x y)=E(x) E(y)$
(0) بi

$$
f_{x y}(x, y)=f_{x}(x) f_{y}(y)
$$

(1)

$$
f_{y}(y)=f_{x}(x)\left|\frac{d x}{d y}\right| \Longrightarrow f_{y}(y)=f_{x}\left(g^{-1}(y)\right)\left|\frac{d g^{-1}(y)}{d y}\right|
$$

~~'
 on on
 - par flís frocrococr
10.

- (Uniform PDF) cidú PDF (I

1)

20

$$
\left.\begin{array}{rl}
x= & x_{1}+x_{r} \\
P_{1}\left(x_{1}\right) & P_{r}\left(x_{r}\right)
\end{array}\right\} \rightarrow P(x)=P_{1}(x) * P_{r}(x)
$$

Central limit theorem

$$
P(x)=\frac{1}{\sigma \sqrt{r \pi}} e^{-\frac{(x-\bar{\pi})^{r}}{r \sigma^{r}}} \quad:\left(\operatorname{seg}^{\prime} P D F\right.
$$

$$
x=\bar{x}_{1}+x_{r}+\cdots
$$

L. mon

To: mean, media mode Nus' PDF,

mode: PDF مقعةر

mean.

$=(3), P D F \quad-\mu$
هض
\qquad

= نرْ
 (س夭́s,

$$
P\left(x_{1}, x_{r}\right) d x, d x_{r}=P(r, \theta) d r d \theta: \quad \text { بِسرطانِ }
$$

$$
d x_{1} d x_{r}=r d r d \theta
$$

$$
\begin{aligned}
& d x_{1} d x_{r}=r d r d \theta \\
& p\left(x_{1}, x_{r}\right)=p\left(x_{1}\right) p\left(x_{r}\right) \\
& \Rightarrow p\left(x_{1}, x_{r}\right)=\frac{1}{\sigma \sqrt{r \pi}} e^{-\frac{x^{r}}{r \sigma^{r}}} \frac{1}{\sigma \sqrt{r \pi}} e^{-\frac{x_{r}^{r}}{r^{r}}}=\frac{1}{\sigma^{r} r \pi} e^{-\frac{1}{r \sigma^{r}}\left(x_{1}^{r}+x_{r}^{r}\right)} \\
& \Rightarrow \frac{1}{r \pi \sigma^{r}} e^{-\frac{r^{r}}{\sigma^{r}}} r d r d \theta=p(r, \theta) d r d \theta \Rightarrow p(r, \theta)=\frac{r}{r \pi \sigma^{r}} e^{-\frac{r^{r}}{r \sigma^{r}}} \\
& p(\theta)=\int_{0}^{\infty} p(r, \theta) d r=\frac{1}{r \pi} \\
& p(r)=\int_{0}^{r \pi} p(r, \theta) d \theta=\int^{r \pi} \frac{r}{r \pi \sigma^{r}} e^{-\frac{r^{r}}{r \sigma^{r}}} d \theta=\frac{r}{\sigma^{r}} e^{-\frac{r^{r}}{r \sigma^{r}}}
\end{aligned}
$$

升
 .
 20 .

 .
 sur u victor

$$
\operatorname{Cov}(x, y) \xlongequal{\triangle} E\{(x-\bar{x})(y-\bar{y})\}=\overline{x y}-\bar{x} \bar{y}
$$

-

-
.

$$
\begin{aligned}
& 20 \text {. } \\
& \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& { }_{25} E\{(x-\bar{x})(y-\bar{y})\}<0 \\
& E\{(x-\bar{x})(y-\bar{y})\}=0
\end{aligned}
$$

亿َسْ باسْز ．

$$
\begin{aligned}
& \bar{x}=E\{\cos \theta\}=\int_{\theta=.}^{M Z} \cos \theta p(\theta)^{\frac{1}{1+}} d \theta=0 \\
& { }_{10} \bar{y}=E\{\sin \theta\}=\int_{\theta=0}^{\mu \pi} \sin \theta p(\theta) d \theta=0 \\
& \Rightarrow \overline{x y}=\bar{x}-\bar{y} \\
& \Rightarrow \operatorname{cov}(x, y)=0 \\
& \left.\overline{x y}=E\{\sin \theta \cos \theta\}=1 / Y E\{\sin r \theta\}=1 / Y \int_{\theta=.}^{Y \pi} \sin ^{r} \theta p(\theta) d \theta=0 \quad\right\}
\end{aligned}
$$

 $f(x, y) \neq f(x) f(y) \quad$ र́p，0s GOC）

20

$$
\begin{aligned}
& -1 \leqslant P=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}} \leqslant 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { 位 }
\end{aligned}
$$

－
$\cos (\omega, t+\theta)$

都 θ
（S）كَ
 －تِّ
－Ensemble
（C）Cos（ 10 ． 10 ．
010
．
：
．
 ．

「品
[ur
.
. p. p (s)

$$
\begin{array}{lll}
10 \text { Uhit } & d c, j \bar{m}^{2} \\
P\left(S_{1}\right) d S & x\left(t, S_{1}\right) & \left\langle x\left(t, S_{1}\right)\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / r}^{T / r} x\left(t, S_{1}\right) d t
\end{array}
$$

$$
p\left(s_{r}\right) d s \quad x\left(t, s_{r}\right) \quad\left\langle x\left(t, s_{r}\right)\right\rangle
$$

\qquad

$$
{ }_{20} \overline{d \cdot c} \triangleq E\{\underbrace{\langle x(t, s)\rangle}_{\tilde{c}_{\omega 1} \mid s c^{J}}\}=E\left\{\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / r}^{T / r} x(t, s) d t\right\}=\int\left[\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / r}^{T / r} x(t, s) d t\right] p(s) d s
$$

 بَا
$\int \operatorname{lin}^{-1} d c$.

$$
\begin{aligned}
& \langle g(t)\rangle=\operatorname{Lim}_{T \rightarrow \infty} \frac{1}{T} \int_{-T / r}^{T / r} g(t) d t \\
& \text { 苋 }
\end{aligned}
$$

$$
\begin{aligned}
& E\left\{\lim _{1 \rightarrow \infty} \frac{1}{T} \int_{-T / r}^{T / r} x(t, s) d t\right\}=\lim _{T \rightarrow-} \frac{1}{T} \int_{-T / r}^{T / r}\left[\int_{t \infty} x(t, s) p(s) d s\right] d t \\
& =\langle E\{x(t, s)\rangle\rangle
\end{aligned}
$$

$$
E\{\langle x(t, s)\rangle\}=\langle E\{x(t, s)\}\rangle
$$

.
.

 .

$$
\begin{aligned}
& E\{x(t)\}=\int_{\operatorname{los}} \cos (\omega \cdot t+\theta) p(\theta) d \theta \\
& \theta \in[0, \pi] \Rightarrow \int_{0}^{\pi} \cos (\omega, t+\theta) \times \frac{1}{k} d \theta=. \\
& \left.\theta \in[0, \pi] \Rightarrow \frac{1}{\pi}\right)^{\pi} \cos (\omega, t+\theta) d \theta=-\frac{1}{\pi} \sin \omega \cdot t
\end{aligned}
$$

$$
\begin{aligned}
& d \cdot c=\langle E\{x\}\rangle= \begin{cases}0 & \text { गुс्य } \\
0 & \text { p, こ̈l }\end{cases}
\end{aligned}
$$

Subject:

$$
G(f)=E\{G(f, s)\}=E\left\{\lim _{T \rightarrow \infty} \frac{\left|X_{T}(f, s)\right|^{r}}{T}\right\}
$$

 طِفْتراهم

$$
\begin{aligned}
& { }_{s} E\{x(t, s)\}=\int_{\text {Ls }} x(t, s) p(s) d s \\
& \langle x(t, s)\rangle=\operatorname{Lim}_{T \rightarrow \infty} \frac{1}{T} \int_{-T / T}^{T / T} x(t, s) d t
\end{aligned}
$$

strong

$$
\left.\overline{d c} \Delta E\left\{(d c)_{s}\right\}=E\{\langle x(t, s)\rangle\rangle\right\}=\langle E\{x(t, s)\}\rangle
$$

$$
x(t, s) \quad G(f, s)=\lim _{T \rightarrow \infty} \frac{\left|x_{T}(f, s)\right|^{r}}{T}
$$

$$
\begin{aligned}
& G(f)=E\{G(f, s)\}=E\left\{\operatorname{Lim}_{T \rightarrow \infty} \frac{1}{T}\left|x_{T}(f, s)\right|^{*}\right\} \\
& \bar{p}=\int_{=-\infty}^{\infty} G(f) d f
\end{aligned}
$$

$$
\begin{aligned}
& \bar{P}=\int_{t=\infty}^{\infty} G(f) d f=\int_{t-\infty}^{\infty}\left(E\left\{\lim _{T \rightarrow \infty} \frac{1}{T}\left|x_{T}(f)\right|^{r}\right\}\right) d f \\
& s \Rightarrow \bar{P}^{\bar{P}}=E\left\{\lim _{T \rightarrow \infty} \frac{1}{T} \frac{\left.\int_{f+\infty}^{\infty}\left|x_{T}(f, s)\right|^{r} d f\right\}=E\left\{\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / T}^{T / r} x_{T}^{r}(t, s) d t\right\}=E\left\{P_{s}\right\}}{\int_{-\infty}^{\infty} x_{T}^{r}(t, s) d t}\right.
\end{aligned}
$$

$$
\begin{aligned}
P^{\prime}= & E\{x(t, s)\} \quad \int_{\underline{W} / 2} 0^{\prime} \bar{y}=\operatorname{Lim}_{T \rightarrow \infty} \frac{1}{T} \int_{-T / r}^{T / r}(E\{x(t, s)\})^{r} d t \\
& \neq\left\langle E\left\{x^{r}(t, s)\right\}\right\rangle
\end{aligned}
$$

 .

$$
\begin{aligned}
& D, S B(t)=A_{c} m(t) \cos r \pi f_{c} t \\
& P_{D S B}=\left\langle E\left\{A_{c}^{r} m^{r}(t) \cos ^{r} \pi f_{c} t\right\}\right\rangle=\left\langle A_{c}^{r} \cos ^{r} r \pi \pi_{c} f_{c} E\left\{m^{r}(t)\right\}\right\rangle
\end{aligned}
$$

Stationary $\quad f^{\text {tum }}$ chis

$$
E\left\{f\left(x\left(t_{1}\right), x\left(t_{r}\right), x\left(t_{r}\right), \ldots, x\left(t_{N}\right)\right)\right\}=E\left\{f\left(x\left(t_{1}+\lambda\right), \ldots ; x\left(t_{N}+\lambda_{1}\right)\right\}\right.
$$

$$
\begin{aligned}
& E\{x(t)\}=c t e \\
& E\left\{x^{r}(t)\right\}=c t e \\
& E\left\{x\left(t_{1}\right) x\left(t_{r}\right)\right\}=E\left\{x\left(t_{r}+\Delta\right) x\left(t_{r}+\Delta\right)\right\}
\end{aligned}
$$

WSS : Wide Sense Stationary
$\xrightarrow{\text { loup }}\left\{\begin{array}{l}E\{x(t)\}=c t e \\ E\left\{x\left(t_{1}\right) x\left(t_{r}\right)\right\}=f\left(t_{1}-t_{r}\right)\end{array}\right.$

au : CuD

$$
\begin{aligned}
& x(t)=A_{0} \cos \left(\omega_{0} t+\theta\right) \\
& E\{x(t)\}=\int_{b \theta} x(t, \theta) P(\theta) d \theta=\int_{0}^{\pi} A_{0} \cos \left(\omega_{0} t+\theta\right) \times \frac{1}{\pi} d \theta=0 \text { 位 } \\
& E\left\{x\left(t_{1}\right) x\left(t_{r}\right)\right\}=E\left\{A_{0}^{r} \cos \left(\omega, t_{1}+\theta\right) \cos \left(\omega, t_{r}+\theta\right)\right\}
\end{aligned}
$$

$$
{ }_{20} E\{x(t)\}=\int_{0}^{\pi} A_{0} \cos \left(\omega_{0} t+\theta\right) \frac{1}{\pi}=-\frac{A_{0}}{\pi} \sin \omega_{0} t
$$

.

$$
E\left\{x\left(t_{1}\right) y\left(t_{r}\right)\right\}=R_{x y}\left(t_{1}, t_{r}\right)
$$

$$
R_{x y}\left(t_{1}, t_{r}\right)=\iint_{\operatorname{lov}^{2} \beta} P(\alpha, \beta) \alpha\left(t_{1}\right) \beta\left(t_{r}\right) d x d \beta
$$

Year. Month. 4 Date. I.

$$
E\left\{x\left(t_{1}\right), y\left(t_{x}\right)\right\}=R_{x y}\left(t_{1}, t_{r}\right) \quad: t_{r}, t,\left(s w_{0} a_{2}, \int_{\text {, }}\right.
$$

5.

.

$$
\begin{aligned}
& \text { Auto Correlation Function }
\end{aligned}
$$

 .
.

$$
E\{x(t+t) x(t)\}=R_{x x}(t+t, t)
$$

$$
R_{x x}(t+l, t)=R_{x x}(l)
$$

$20 \quad . \quad$. اسْ 2

جرْ ج ,
.
 :

- \cos
:

$$
R_{x x}(\varphi)=E\left\{\widetilde{x}_{x(t+t+\varphi)}(t+t)\right\}=R_{x x}(\varphi+T) \Rightarrow
$$

T. v

$$
\begin{aligned}
(E\{P q\})^{r} \leqslant & E\left\{P \eta E\left\{q^{r}\right\} \rightarrow q\right) \\
P=x(t+e) & \Rightarrow\left[E\{x(t+p) x(t)]^{r} \leqslant E\left\{x^{r}(t)\right\} E\left\{x^{r}(t+e)\right\}\right. \\
q=x(t) & \Rightarrow R_{x x}^{r}(x) \leqslant R_{x x}^{r}(\cdot) \Rightarrow\left|R_{x x}(r)\right| \leqslant\left|R_{x x}(\cdot)\right|
\end{aligned}
$$

$$
\begin{aligned}
& P=R_{x x}(\cdot) \quad-F_{x}
\end{aligned}
$$

$$
\operatorname{Lim}_{t \rightarrow \infty} R_{\text {max }}(t)=(d c)^{r} \quad=\text { OT }
$$

$$
E\{x(t+\varphi) x(t)\}=R_{x x}(\varphi)
$$

$R_{\text {Rl }}(t) \rightarrow G(f):$: 4

 هè
: ها ها

$$
G(f)=E\left\{\lim _{T \rightarrow \infty} \frac{1}{T}\left|X_{T}(f, s)\right|^{v}\right\}=\lim _{T \rightarrow \infty} \frac{1}{T} E\left\{\left|X_{T}(f, s)\right|^{v} \rightarrow(s, 0, c)\right.
$$

 $x_{T}(f, s) \longrightarrow x_{T}(t, s) \quad$.

$$
\begin{aligned}
& x_{T}(f, s)=\int_{-\infty}^{\infty} x_{T}(t, s) e^{-j \pi f t} d t=\int_{-T / T}^{T / T} x(t, s) e^{-j i \pi f t} d t \\
& { }_{20} X_{T}^{*}(f, s)=\int_{-\infty}^{\infty} x_{T}(\lambda, s) e^{j r \pi f t} d \lambda=\int_{-T}^{T / T} x(\lambda, s) e^{j r \pi f t} d \lambda \\
& \left|x_{T}(f, s)\right|^{r}=\int_{t=-T / r}^{T / r} \int_{\lambda=-T / r}^{T / r} x(t, s) x(\lambda, s) e^{-j \mu r f(t-\lambda)} d t d \lambda \\
& { }_{2 s} \Rightarrow G(f)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{t=-T / r}^{T / T} \int_{\lambda_{0}-T / r}^{T / r} R_{x x}(t-\lambda) e^{-j r x f(t-\lambda)} d t d \lambda \\
& \xrightarrow{t-\lambda=1} G(f)=\lim _{T \rightarrow \infty} \frac{1}{T}\left[\int_{t=-T / T}^{T / T} \int_{t=-T}^{T} R_{x x}(x) e^{-j r x f} d t d(t-x)\right]
\end{aligned}
$$

Subject:

$$
\begin{aligned}
& \Rightarrow G(f)=\int_{-\infty}^{\infty} R_{x x}(x) e^{-j \pi f t} d t \Rightarrow R_{x x}(v)=\int_{-\infty}^{\infty} G(f) e^{j \pi f x} d t
\end{aligned}
$$

$$
\begin{aligned}
& x(t) \\
& R_{x x}(t+r, t)=f(t, r) \\
& R_{x x}(r)
\end{aligned}=\lim \frac{1}{T} \int_{-T / p}^{T / r} R_{x x}(t+r, t) d t \longleftrightarrow G(f),
$$

$$
T \rightarrow \infty
$$

$$
G_{x}(f)
$$

$$
R_{x x}(\tau) \quad L T I
$$

: LTI - Gas Cueg (s, tot darlg

$$
\begin{aligned}
& R_{y x}(t+z, t)=E\{\phi y(t+z) x(t)\}=? \\
& R_{y y}(t+z, t)=E\{y(t+z) y(t)\}=?
\end{aligned}
$$

$$
E\{y(t)\}=?
$$

$$
G_{y}(f)=?
$$

$$
y(t)=\int_{\lambda=-\infty}^{+\infty} h(\lambda) x(t-\lambda) d \lambda
$$

$$
* R y_{x}(t+z, t)=E\{y(t+z) x(t)\}=E\left\{x(t) \int_{-\infty}^{+\infty} h(\lambda) x(t+z-\lambda) d \lambda\right\}
$$

$$
=\int_{-\infty}^{+\infty} E\{x(t+z-\lambda) x(t)\} h(\lambda) d \lambda=R x x(z) * h(z)
$$

$$
\begin{aligned}
& \text { * } E\{y(t+z) y(t)\}=E\left\{y(t+z) \int_{-\infty}^{+\infty} x(t-\lambda) h(\lambda) d \lambda\right\} \\
& =\int_{-\infty}^{+\infty} E \underbrace{\{y(t+r) x(t-\lambda)}_{R_{y_{x}}(r+\lambda)}\} h(\lambda) d \lambda \\
& R_{x x}(r) * h(r) \\
& \uparrow \\
& \lambda_{\rightarrow-\lambda}=\int_{-\infty}^{+\infty} R g_{x}(z-\lambda) h(-\lambda) d \lambda=R y_{x}(\tau) * h(-\tau) \\
& \Rightarrow R_{y y}(r)=R_{x x}(r) * h(r) * h(-r)
\end{aligned}
$$

$$
\text { * } \begin{aligned}
E\{y(t)\}=E\left\{\int_{-\infty}^{+\infty} h(\lambda) x(t-\lambda) d \lambda\right\}=\bar{x} \int_{-\infty}^{+\infty} h(\lambda) d \lambda=c t e \\
E\{x(t-\lambda)\}=\bar{x} \\
\bar{y}=H(0) \bar{x}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore R_{\hat{x} \hat{x}}(r)=R_{x x}(r) \\
& R_{\hat{x} x}(z)=R_{x x}(z) * \frac{1}{r t}=R_{x x}(r) \\
& R_{x \hat{x}}(\tau)=R_{\hat{x} x}(-x)=-R_{\hat{x} x}(z)
\end{aligned}
$$

$\therefore \quad \therefore \quad$-siget $R_{x \hat{x}}(\tau)$

$$
R_{\hat{x} x}(0)=0 \quad \Longrightarrow \quad E\{x(t) \hat{x}(t)\}=0
$$

$$
\Rightarrow G_{y x}(f)=G_{x}(f) H(f)
$$

o(s) $R y_{x}(0)=E\{x(t) y(t)\}=\int_{-\infty}^{+\infty} G_{y_{x}}(f) d f$

$$
\begin{aligned}
& \therefore R_{y x}(0)=\int_{-\infty}^{+\infty} G_{x}(f) H(f) d f \\
& E\{\hat{x}(t)\}=E\left\{x(t) * \frac{1}{\pi t}\right\}=E\left\{\int_{-\infty}^{+\infty} \frac{1}{\pi \lambda} x(t-\lambda) d \lambda\right\} \\
& =\bar{x} \int_{-\infty}^{+\infty} \frac{1}{\pi \lambda} d \lambda=0
\end{aligned}
$$

$$
\bar{p}=\left\{\left\langle x^{r}(t)\right\rangle\right\}
$$

$$
p=\int_{-\infty}^{+\infty} \operatorname{dn} \frac{2}{3}
$$

-

Gr

$$
y(t)=x(t) \cos \left(\omega_{0} t+\theta\right)
$$

θ (0.00 $\rightarrow p(\theta)$ (d)

$$
A M(t)=A_{c}(1+\mu m(t)) \cos \mu \pi f_{c} t
$$

$$
P_{A M}=\frac{1}{\mu} P_{g} \Rightarrow P_{g}=\left\langle E\left\{A_{c}^{\mu}\left[1+\mu_{\mu m}(t)+\mu^{\mu} m^{\mu}(t)\right]\right\}\right\rangle
$$

$$
=\left\langle A_{c}^{r}+A_{c}^{r} \mu^{\mu} \rho_{m}\right\rangle=A_{c}^{\mu}\left(1+\mu^{\mu} P_{m}\right)
$$

$$
\underset{\text { Scholar. } 1 \text { ill }}{\Rightarrow} P_{A M}=\frac{A_{C}^{r}\left(1+R^{\nu} P_{m}\right)}{P}
$$

$$
\begin{aligned}
& D . S B(t)=A_{c} m(t) \operatorname{Cos} r r_{c} t \\
& \bar{p}=\left\langle E\left\{A_{c}^{r} m^{r}(t) \cos ^{r} r \pi f_{c} t\right\}\right\rangle=\langle A_{c}^{\mu} \cos ^{r} \mu \pi f_{c} t \underset{\underbrace{}_{m}}{E\left\{m^{p}(t)\right\}}\rangle \\
& =P_{m}\left\langle A_{C}^{r} \cos ^{p} w_{c} t\right\rangle \Rightarrow P_{D S B}=\frac{A_{C}^{p}}{p} P_{m}
\end{aligned}
$$

\qquad

$$
\begin{equation*}
P_{S S B}=\frac{A_{c}^{r}}{F} P_{m} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
S S B(t)=\frac{A c}{r}\left[m(t) \cos P_{r} f_{c} t \mp \hat{m}(t) \sin r f_{c} t\right] \tag{P}
\end{equation*}
$$

$$
P_{S S B}=\left\langle E\left\{m^{\prime \prime} \cos ^{r} \psi r f_{c} t+\hat{m}^{r}(t) \sin ^{\gamma} \mu r f_{c} t \mp r \sin \gamma_{n} f_{c}+m(t) \hat{m}(t)\right\}\right\rangle
$$

$$
\times \frac{A c^{r}}{r}
$$

$$
\Rightarrow P_{S S B}=\frac{A_{c}^{r}}{F}\left\langle\cos ^{p} p^{\mu} f_{c}+p_{m}+\sin ^{\mu} \mu \pi f_{c}+p_{m}\right\rangle
$$

$$
=\frac{A_{c}^{\prime}}{F} P_{m}
$$

$$
\begin{aligned}
f_{\Delta}=v_{\Delta k H} \quad f_{c}=1.0 M H & : \dot{\sigma} F M \\
F M & =A_{C} \operatorname{Cos}\left(P n f_{C} t+\phi(t)\right)
\end{aligned}
$$

$$
P_{F M}=P_{P M}=\frac{A_{c}^{p}}{P} \quad \longleftarrow-\dot{q}
$$

$$
\begin{aligned}
& P_{A M}=A_{c}^{r}\left(1+\mu^{\mu} P_{m}\right) / \mu=\frac{A_{c}^{r}}{\mu}+\mu^{\mu} P_{m} \frac{A_{c}^{r}}{\mu} \\
& =P_{c}+a \frac{A_{c}^{r}}{P}=P_{c}+a P_{c} \quad \circ<a \leqslant 1
\end{aligned}
$$

\qquad

$$
\begin{aligned}
& \longrightarrow \text { Embencterom } \\
& \text { (} \sim 1 \text { : }
\end{aligned}
$$

$$
P=\sigma^{r}=\int_{-\infty}^{\infty} G(f) d f=\frac{r}{r} \frac{(\pi k T)^{r}}{h} R
$$

 -

)
 100

$$
G(f)=r R K T=\frac{N_{c}}{r}
$$

Subject:
Year. Month. Date. ()

 $y(t)$ (1)

 S

$$
\begin{aligned}
& G_{y}(t)=|H(f)|^{r} G_{x}(t) \\
& H(f)=\frac{1}{1+j \pi R f} \Rightarrow|H(f)|^{r}=\frac{1}{1+f r^{r} R^{r} C^{r} f^{r}}
\end{aligned}
$$

$$
\Longrightarrow G_{y}(t)=\frac{Y R k T}{1+广 r^{r} R^{r} C^{r} f^{r}}
$$

9,

$$
\begin{aligned}
& R_{y y}(\varphi) \longleftrightarrow G_{y}(f) \\
& \Rightarrow R_{y y}(y)=\frac{k T}{c} e^{-\frac{k e)}{R C}}
\end{aligned}
$$

$$
P_{y}=R_{y y}(\cdot)=\frac{k T}{c}
$$

 .

.

$$
\begin{aligned}
& P(y)=\frac{1}{\sigma_{y} \sqrt{r_{k}}} e^{-\frac{y^{r}}{\sigma_{y}^{\prime}}} \\
& \sigma_{y}^{r}=E\left\{y^{\prime}\right\}-\left(E x-f^{\prime}\right)^{r}=P_{y}=\frac{k T}{c}
\end{aligned}
$$ －动

$$
\sigma_{y}=\sqrt{\frac{k T}{c}}
$$

$$
P\left\{y<0^{-+}\right\}=\int_{-\infty}^{i^{-+}} p(y) d y=f(T, c)
$$

 －

院 ． ：

$$
=E\left\{\left\langle\frac{v_{j}^{s}(t)}{t R}\right\rangle\right\}=\frac{1}{K R} E\left\{v_{j}^{v}(t)\right\}>P_{a}=\frac{1}{K R} \int_{!}^{!} r R k T d f=\int \frac{k T}{r} d f
$$

－ام
范

بالْ

Subject:
Year.

\qquad

5 هصضرسِكِ

10

$$
\left.\frac{\left(\frac{S}{N}\right)_{i}}{\left(\frac{S}{N}\right)_{0}}=F \Rightarrow\left(\frac{S}{N}\right)_{0}=\frac{1}{F}\left(\frac{S}{N}\right)_{i} \quad: \quad \text { pherevio }\left(\frac{S}{N}\right)_{i}\right\rangle\left(\frac{S}{N}\right)_{0}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Noise Equivalent Bandwidth

$$
\begin{aligned}
& { }_{5} N_{1}=\int_{-\infty}^{\infty} \frac{N_{0}}{r}|H(j f)|^{r} d f
\end{aligned}
$$

 O. باسَخ

15

$$
\begin{aligned}
& N_{r}=\int_{-\infty}^{\infty} \frac{N_{0}}{r}|H(j f)|_{\text {max }}^{r} d f=N_{c}|H(j f)|_{\max }^{r} B_{N} \\
& N_{1}=N_{r} \Rightarrow N_{0} \int^{+\infty}|H(j f)|^{r} d f=N_{\cdot}|H(j f)|_{\text {max }}^{r} B_{N} \Rightarrow B_{N}=\frac{\int_{\mid}^{+\infty}|H(j f)|^{r} d f}{|H(j f)|_{\text {max }}^{r}}
\end{aligned}
$$

 . راراست

Subject :
Year. Month. Date. (1)
;

$$
\begin{aligned}
& \substack{\frac{N_{0}}{r}=\frac{k T}{r} \\
S_{i}+N_{i}} \\
& \frac{N_{0}}{r}=\frac{k T}{r} \Rightarrow N_{1}=k T \Rightarrow N_{1}=k T G B_{N} \Rightarrow N_{i}=k T B_{N}
\end{aligned}
$$

$$
\left(\frac{S}{N}\right)_{0}=\frac{S_{0}}{N_{0}}=\frac{G S_{i}}{k T G B_{N}+N_{r}}=\frac{G S_{i}}{G\left(K T B_{N}+\frac{N_{Y}}{G}\right)}=\frac{\& S_{i}}{K B_{N}\left(T\left(T+\frac{N_{r}}{K B_{N} G}\right)\right.}
$$

$$
\Rightarrow\left(\frac{S}{N}\right)_{0}=\frac{S_{i}}{\frac{{ }_{K} B_{N} T}{N_{i}}\left(1+\frac{N_{r}}{K B_{N} G T}\right)} \Rightarrow\left(\frac{S}{N}\right)_{0}=\left(\frac{S}{N}\right)_{i} \times \frac{1}{1+\frac{N_{r}}{K B_{N} G T}}
$$

$$
\Rightarrow \frac{\left(\frac{S}{N}\right)_{i}}{\left(\frac{S}{N}\right)_{0}}=1+\frac{N_{r}}{k B_{N} G T}
$$

25

$$
\begin{aligned}
& B_{N}=\frac{\int^{\infty} \frac{d f}{1+4 \pi^{4} f_{R^{\prime} C} C^{2}}}{1}=\frac{1}{Y R C} \\
& r d B \text { jusher }=\frac{1}{\text { RRRC }} \\
& \text { Sioviourobsher }=\frac{1}{4 R C}
\end{aligned}
$$

$$
T_{N}=T+\frac{N_{r}}{k G B_{N}}
$$

 ？Jinoc chinll $n_{q}(t)$ ，$n_{i}(t)$ UT

$$
\begin{aligned}
& E\left\{n_{i}(t)\right\}=? \quad E\left\{n_{q}(t)\right\}=\text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - Simus \&umul } n_{q}(t), n_{i}(t) \text { 比 }
\end{aligned}
$$

$$
\begin{aligned}
& 10 n_{i}(t)=n(t) \cos r \pi f_{c} t+\hat{n}(t) \sin r \pi f_{c} t \\
& n_{q}(t)=\hat{n}(t) \cos r \pi f_{c} t-n(t) \sin r \pi f_{c} t \\
& E\left\{n_{i}(t)\right\}=\cos r \pi f_{c} t E\{n(t)\}+\sin r \pi f_{c} t E\{\hat{n}(t)\}=0
\end{aligned}
$$

Hoveros

$$
E\left\{n_{q}(t)\right\}=.
$$

位
垪 $\hat{n}(t)$ ，，位
：

$$
\begin{aligned}
{ }_{20} E\left\{n_{i}(t) n_{i}(t-e)\right\}= & E\left\{\left[n(t) \cos r \pi f_{c} t+\hat{n}(t) \sin \mu r f_{c} t\right][n(t-e) \cos) \pi f_{c}(t-t)\right. \\
\left.\left.+\hat{n}(t-r) \sin r \pi f_{c}(t-e)\right]\right\}= & \cos r \pi f_{c} t \cos r \pi f_{c}(t-v) \underbrace{R_{n n}(r)}_{n n} \\
& E\{n(t) \hat{n}(t-r)\}
\end{aligned}
$$

$+\cos \mu f_{c} t \sin r \pi f_{c}(t-l) \widetilde{R}_{n \hat{n}}(\varphi)+\sin \mu f_{c} t \cos \mu \pi f_{c}(t-l) R_{\hat{A n}}(t)$
$+\sin \pi f_{c} t \sin \pi f_{c}(t-t) R_{\hat{n} \hat{n}}(\varphi)$

Subject,

$$
E\left\{n_{i}(t) n_{i}(t-\varphi)\right\}=R_{n n}(\tau) \cos \mu \pi f_{c} l+R_{n n}(\varphi) \sin r \pi f_{c} l
$$

. اسِسَ

$$
\begin{aligned}
\Rightarrow & R_{n_{i} n_{i}}(\tau)=R_{n n}(\tau) \cos r r f_{c} \tau+\hat{R_{n n}}(\tau) \sin r r f_{c} \tau \\
& R_{n_{q} n_{q}}(\tau)=R_{n_{i} n_{i}}(l) \\
& P_{n_{i}}=R_{n}(\cdot)=P_{n}=P_{n_{q}}
\end{aligned}
$$

$$
\begin{aligned}
& G_{n_{i}}(f)=1 / r G\left(f+f_{c}\right)+\frac{1}{r} G\left(f-f_{c}\right)+F\left\{R_{n n}(r) \sin r r f_{c} r\right\} \\
& R_{n n}(l) \longleftrightarrow G(f)\{-j \operatorname{Sgn}(f)\} \Rightarrow \hat{R_{n n}(v)} \sin r \pi f_{c} t \leftrightarrow \frac{1}{c} G\left(f_{+} f_{c}\right) \operatorname{Sgn}\left(f+f_{c}\right) \\
& -1 / 5 G\left(f-f_{c}\right) \operatorname{syn}\left(f-f_{c}\right) \\
& G_{n_{1}}(f)=\left[1 / r+1 / r \operatorname{Sgn}\left(f+f_{c}\right)\right] G_{n}\left(f+f_{0}+\left[1 / r-1 / r \operatorname{Sgn}\left(f-f_{c}\right)\right] G_{n}\left(f-f_{c}\right)\right. \\
& \left.\begin{array}{l}
1 / r+\frac{1}{r} \operatorname{sgn}(x)=u(x) \\
1 / r-1 / r \operatorname{sgn}(x)=u(-x)
\end{array}\right\} \Rightarrow \\
& \Rightarrow G_{n_{i}}(f)=G\left(f+f_{c}\right){\underset{c}{b(f)}}_{u\left(f+f_{c}\right)}+G\left(f-f_{c}\right) \overbrace{u\left(-\left(f-f_{c}\right)\right.}^{u\left(-f+f_{c}\right)=u(-f)}
\end{aligned}
$$

$$
\begin{aligned}
& E\left\{n_{i}(t) n_{q}(t-r)\right\} \underset{v i n}{J \dot{\omega}} f(t)=R_{n_{i n q}}(x) \\
& { }_{5} R_{n, \text { nq }}{ }_{\text {re }} \longleftrightarrow G_{n_{i n q}}(f) \\
& G_{\text {ninq }}(f)=j\left[G_{n}\left(f+f_{c}\right) u\left(f_{+} f_{c}\right)-G_{n}\left(f f_{c}\right) u\left(f-f_{c}\right)\right]
\end{aligned}
$$

 ارامالا .

 هex,

 .

$$
\begin{aligned}
& z(t)=x(t)+y(t) \\
& R_{z z}\left(t_{v}, t_{r}\right)=E\left\{\left(x\left(t_{r}\right)+y\left(t_{1}\right)\right)\left(x\left(t_{r}\right)+y\left(t_{r}\right)\right)\right\}=R_{x x}\left(t_{v}, t_{r}\right)+R_{y y}\left(t_{v}, t_{r}\right)+R_{x y}\left(t_{v}, t_{v}\right) \\
&+R_{y x}\left(t_{,}, t_{r}\right)
\end{aligned}
$$

©' (')

. . ${ }^{15}$
: AWGN ,, ier,

號

 0.
 Tr e
D.SB:

$$
\begin{aligned}
& \text { DSB: } \\
& A_{c} m(t) \cos \mu \pi f_{c} t \longrightarrow A_{r} m(t) \cos r \pi f_{c} t \Rightarrow\left\{\begin{array}{l}
S_{T}=\frac{A_{c}^{r} P_{m}}{r} P_{0}^{r} \Rightarrow L=\frac{A_{c}^{r}}{A_{r}^{r}} \Rightarrow A_{r}^{r}=\frac{A_{c}^{r}}{L} \\
S_{R}=\frac{A_{r}^{r} P_{m}}{r} \\
N_{R}=r N_{0} W
\end{array}\right. \\
& { }_{5} \cdot V(t)=m_{c}(t)+n(t)=A_{R} m(t) \cos r \pi f_{c} t+n(t) \quad A_{c}^{G}(f)
\end{aligned}
$$

~ .

$$
\left(\frac{S}{N}\right)_{R}=\frac{A_{R}^{r} P_{m}}{F N, W}
$$

「ر, D,SB ,

$$
\begin{aligned}
& n(t)=n_{i} \cos \pi \pi f_{c} t-n_{q}(t) \sin \mu \pi f_{c} t \\
& v(t)=\left[A_{R^{m}}^{m}(t)+n_{i}(t)\right] \cos s \pi f_{c} t-n g(t) \sin r \pi f_{c} t
\end{aligned}
$$

$$
\begin{aligned}
& x y(t)=\left[A_{R} m(t)+n_{i}(t)\right] \cos ^{r} \pi \pi f_{C} t-n g(t) \overbrace{\sin \pi f_{c} t \cos \pi f_{C} t}
\end{aligned}
$$

位

$$
y_{D}(t)=1_{Y} A_{R} m(t)+1_{Y} n_{i}(t)
$$

$$
\left.\begin{array}{l}
S_{D}=\frac{A_{R}^{r} P_{m}}{r} \\
N_{D}=1 / r P_{n_{1}}=1 / f P_{n} \cdot \frac{r N_{0} W}{r}=\frac{N_{0} W}{r}
\end{array}\right\} \Rightarrow\left(\frac{S}{N}\right)_{D, D, B}=\frac{\frac{A_{R}^{r}}{r} P_{m}}{\frac{N_{0} W}{r}}
$$

Subject:

$$
\Rightarrow\left(\frac{S}{N}\right)_{D, D, S B}=\frac{A_{R}^{*} P_{m}}{r_{N_{e} W}}
$$

(

- .
\qquad

Year. Month. 10 Date. \& is

$$
\begin{aligned}
& E\left\{n_{i}(t) n_{q}(t)\right\}=R_{n n}(\tau) \sin r \pi f_{c} \tau-R_{n n}(\tau) \cos r \pi f_{c} t=R_{n i n q}(\tau) \\
& E\left\{n_{i}(t) n_{q}(t)\right\}=0 \\
& \left.\hat{R}_{n}(\tau)\right|_{r=0}=0 \quad R_{n n}(\tau)=R_{n n}(\tau) * \frac{1}{\pi \epsilon} \longleftrightarrow G_{n}(f)\left(-j \operatorname{sgn}\left(f_{1}\right)\right. \\
& \hat{R}_{n n}(0)=\int_{-\infty}^{\infty} \underbrace{G_{n}(f)\left(-j \operatorname{sgn}\left(f_{1}\right)\right.}_{\Delta \dot{s}}=0 \\
& \left(\frac{S}{N}\right)_{D, D S B}=\frac{A_{R}^{r} P_{m}}{r N_{0} W}=\frac{S_{R}}{N_{0} W} \triangleq \gamma
\end{aligned}
$$

10 .

F-

$$
\begin{aligned}
& v(t)= \frac{A_{R}}{r}\left[m(t) \cos r \pi f_{C} t-m(t) \sin \pi f_{c} t\right] \\
&+n_{i}(t) \cos \pi f_{C} t-n_{g}(t) \sin \pi f_{C} t \\
& y(t)= {\left[A_{R} m(t)+n_{i}(t)\right] \cos r r f_{c} t-\left[A_{R} \hat{m}(t)+n_{C}(t)\right] \sin \pi f_{C} t } \\
& \cos r f_{c} t
\end{aligned}
$$

$$
\Rightarrow y_{D}(t)=1 / 4 A_{R} m(t)+1 / r n_{1}(t)
$$

Subject :
Year. Month. Date. ()

$$
\begin{gathered}
\left(\frac{S}{N}\right)_{D, S S B B}=\frac{\frac{1}{14} A_{R}^{r} P_{m}}{\frac{1}{r} N_{0} W}=\gamma \\
S_{R}=\frac{A_{R}^{r} P_{m}}{F}
\end{gathered}
$$

$$
\begin{aligned}
& y_{r}(t)=\frac{1}{Y} A_{R}\left[1+\mu_{m}(t)\right]+\frac{1}{r} n_{i}(t) \\
& y_{D}(t)=1 / A_{R} \mu_{m}(t)+1 / n_{i}(t)
\end{aligned}
$$

. D.SB

$$
\begin{aligned}
& D, S B(t)=A_{c} m(t) \cos r \pi f_{c} t \Rightarrow P(t)=A_{c}^{r} m^{r}(t) \cos ^{r} r \pi f_{c} t \Rightarrow P_{p}=A_{c}^{r} \\
& \frac{A_{c}^{r}}{A_{R}^{r}}=L \Rightarrow A_{R}^{r}=\frac{A_{c}^{r}}{L}=\frac{P_{p}}{L}
\end{aligned}
$$

$$
\left(\frac{S}{N}\right)_{D, D S B}=\frac{A_{c}^{r} P_{m}}{Y L N_{0} W}=\frac{P_{P} P_{m}}{Y L N_{0} W}
$$

$$
\text { 10. } A M: A M(t)=A_{c}\left(1+\mu_{m}(t)\right) \operatorname{Cos} r \pi f_{c} t \rightarrow P(t)=A_{c}^{r}\left(1+\mu_{m(t)}\right)^{r} C_{0}^{r} r^{r} f_{c} t \Rightarrow P_{p}+A_{c}^{r}
$$

$$
\left(\frac{s}{N}\right)_{D_{,}, 2 \sin A M}=\frac{\mu^{r} P_{P} P_{m}}{\Lambda L_{N_{0} W}}
$$

$$
\Rightarrow A_{c}^{r}=\frac{P_{p}}{f}
$$

$$
\Rightarrow A_{R}^{r}=\frac{P_{p}}{4 l}
$$

 .)

SS. $B=\frac{A_{c}}{r}\left[m(t) \cos i \pi f_{c} t-\hat{m}(t) \sin r \pi f_{c} t\right]$

20

Subject:

$$
v(t)=A_{R}\left[I_{+} \mu_{m}(t)\right] \cos Y \pi f_{c} t+R_{n}(t) \cos \left(r \pi f_{c} t+\varphi_{n}(t)\right)=R_{U}(t) \cos \left[r \Omega f_{c} t+\varphi_{U}(t)\right]
$$

(

$$
R_{v}(t)=\sqrt{\left[A_{R}\left(1+\mu_{m}(t)\right)+n_{i}(t)\right]^{r}+n_{q^{r}}^{r}(t)}
$$

1) $\left.\left(\frac{S}{N}\right)_{R}^{\rightarrow \alpha}\right\rangle_{R_{n}} A_{R} \quad P\left\{A_{R}>R_{n}\right\} \approx 1$

$$
\begin{aligned}
& R_{V}(t) \cong A_{R}\left[1+\mu_{m}(t)\right]+n_{i}(t) \\
& \Rightarrow y_{D}(t)=\mu A_{R} m(t)+n_{i}(t) \Rightarrow\left(\frac{S}{N}\right)_{\left.\left(\frac{S}{N}\right)\right\rangle>1,(U, S), A M}=\frac{\mu^{r} A_{R}^{r} P_{m}}{r N_{0} W}
\end{aligned}
$$

-

.)

Subject:

$$
\begin{aligned}
& P\left\{R_{n}>A_{R}\right\} \leqslant \cdot 1.1 \\
& =\left[\text { ر) } R_{n}\right. \text { (PDF (ing) }
\end{aligned}
$$

$$
\begin{aligned}
& P\left\{R_{n}>A_{R}\right\} \leqslant \% 1 \Rightarrow \int_{A_{R}}^{\infty} P\left(R_{n}\right) d R_{n} \leqslant 0101 \Rightarrow e^{-\frac{A_{R}^{r}}{r N R}} \leqslant 0101 \\
& 10 \Rightarrow \frac{A_{R}^{r}}{Y N R} \geqslant 10 \Rightarrow\left(\frac{S}{N}\right)_{R} \geqslant 10 \Rightarrow\left(\frac{S}{N}\right)_{+h}=1 .
\end{aligned}
$$

15 \qquad
\qquad
\qquad
\qquad
\qquad

20
\qquad
\qquad
\qquad
\qquad

25 \qquad

$$
\begin{aligned}
& R_{v}\left(+1 \cos \left[x_{2} f_{c}+\varphi_{v}(t)\right]\right. \\
& v(t)=\varphi_{V}(t) \\
& A_{R} \operatorname{Cos}\left[Y \pi f_{C} t+\varphi(t)\right]+R_{n}(t) \operatorname{Cos}\left[\gamma \pi f_{c} t+\varphi_{n}(t)\right]=R_{v}(t) \operatorname{Cos}\left[Y R f_{c} t_{t}+\varphi_{v}(t)\right]
\end{aligned}
$$

10.

15.
.

$$
\alpha(t)=\arctan \frac{R_{n}(t) \sin \left[\varphi_{0}(t)-\varphi(t)\right]}{A_{R}+R_{n}(t) \cos \left[\varphi_{n}^{(t)}-\varphi^{(t)}\right]}
$$

$$
\Longrightarrow \alpha(t)=\arctan \frac{R_{n}(t) \sin \left[\varphi_{n}(t)-\varphi(t)\right]}{A_{R}} \cong \frac{R_{n}(t) \sin \left[\varphi_{n}(t)-\varphi(t)\right]}{A_{R}}
$$

$$
\Rightarrow \alpha(t)=\frac{1}{A_{R}} R_{n}(t) \sin \left[\varphi_{n}(t)-\varphi(t)\right]
$$

25.

C $\varphi(t) \simeq \varphi$

Subject:
Year. Month. Date.

$$
\begin{aligned}
& \alpha(t)=\frac{1}{A_{R}}\left[R_{n}(t) \sin \varphi_{n}(t) \cos \varphi-R_{n}(t) \cos \varphi_{n}(t) \sin \varphi(t)\right] \\
& \Rightarrow \alpha(t)=\frac{1}{A_{R}}\left[n_{\varphi}(t) \cos \varphi-n_{i}(t) \sin \varphi\right] \\
& \Rightarrow \alpha(t)=\frac{\cos \varphi}{A_{R}} n_{q}(t)-\frac{\sin \varphi}{A_{R}} n_{i}(t)
\end{aligned}
$$

保 $G_{\alpha} f$,

$$
G_{\alpha}(f)=\frac{\cos ^{r} \varphi}{A_{R}^{r}} G_{q}(f)+\frac{\sin ^{r} \varphi}{A_{R}^{r}} G_{q}(f) \rightarrow G_{\alpha}(f)=\frac{1}{A_{R}^{r}} G_{q}(f)
$$

 ,
\qquad

\qquad
$-\varphi(t)=\varphi_{\Delta} m(t)$
$: P M$

$$
\begin{align*}
& y(t)=\varphi_{v}(t) \\
& y(t)=\varphi_{\Delta} m(t)+\alpha(t) \tag{20}
\end{align*}
$$

$$
\begin{aligned}
& y_{D}(t)=\varphi_{\Delta} m(t)+\beta(t) \\
& \text { ils. }
\end{aligned}
$$

$$
F M=\varphi(t)=r r f_{\Delta} \int^{t} m(\lambda) d \lambda
$$

10

促

$$
\left.\begin{array}{l}
N_{D}=\int_{-w}^{+W} \frac{N_{0}}{r S_{R}} f^{r} d f=\frac{N_{0}}{S_{R}} \frac{W^{r}}{r^{r}}=\frac{w^{r}}{r_{\gamma}} \\
S_{D}=f_{\Delta}^{r} P_{m}
\end{array}\right\} \Rightarrow\left(\frac{S}{N}\right)_{b}=\frac{f_{\Delta}^{r} P_{m} r \gamma}{W^{r}}=r \beta^{r} P_{m} \gamma
$$

$$
\beta_{T}=r w(1+\beta)
$$

حراسته سِّدِال

$$
\left(\frac{S}{N}\right)_{F M}=r \beta^{r} P_{m} \frac{S_{R}}{N_{c} W}
$$

 . Y M

Subject:
Year. Month. Date. ()

$$
\begin{aligned}
& \quad \frac{S_{R}}{N_{R}} \geqslant 10 \\
& N_{R}=N_{0} B_{T}=Y_{0} W(1+\beta) \\
& \therefore S_{R / N_{R}}=\left(\frac{S_{R}}{Y_{0} W(I+\beta)}\right) \geqslant 10 \Rightarrow r_{R}(1+B) \Rightarrow \gamma_{t h}=Y_{0}(1+\beta) \\
& \Rightarrow\left(\frac{S}{N}\right)_{D} \geqslant 40 \beta^{r}(1+\beta) P_{m}
\end{aligned}
$$

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Year．Month．Io Date．Λ

\qquad
\qquad

$10 \cdots$
［㞔犯位

ضراهربّ

 NT

${ }_{15}$ Pulse Code Modulation

 25 . ${ }_{2}$
 (ارلين

Subject :

 ;) .د
 . سُg of

$0,1 \rightarrow 00 k=0$ off keging

T_{5} : سَ
AWGN باسُّ

理

$$
\Gamma
$$

 25

Year. Month. 1. Date. IN

जَ

Match Filter

$$
\begin{aligned}
& S_{0}(t) \stackrel{F}{\longleftrightarrow} S_{0}(f)=S(f) H_{R}(f) \\
& \Longrightarrow S_{0}(t)=\int_{-\infty}^{\infty} S(f) H_{R}(f) e^{j \mu r f_{t}} d f \Rightarrow S_{1}\left(t_{0}\right)=\int_{-\infty}^{\infty} S(f) H_{R}(f) e^{j \mu r f_{0}} d f \\
& { }_{20} E\left\{n_{0}^{\gamma}\left(t_{0}\right)\right\}=\int_{-\infty}^{\infty} G_{n}(f)\left|H_{R}(f)\right|^{\gamma} d f
\end{aligned}
$$

Year. Month. Date.

$$
\begin{aligned}
& V(f)=H_{R}(f) G_{n}^{1 / M}(f) \\
& W(f)=\frac{S^{*}\left(f, e^{-j r r f t}\right.}{G_{n}^{1 /}(f)}
\end{aligned}
$$

$$
\Rightarrow H_{R}(f) G_{n}^{1 / r}(f)=k \frac{S^{*}(f) e^{-j r r f t}}{G_{n}^{1 / r}(f)} \Rightarrow H_{R}(f)=k \frac{S^{*}(f) e^{-j r r f t}}{G_{n}(f)}
$$

$$
(S N R)_{M A X}=\int_{-\infty}^{\infty}|w(f)|^{r} d f=\int_{-\infty}^{\infty} \frac{|S(f)|^{r}}{G_{n}(f)} d f
$$

. $2 x \times 5$

$$
G_{n}(f)=\frac{N_{0}}{r} \Rightarrow H_{R}(f)=\frac{r_{k}}{N_{0}} S^{*}(f) e^{-j r r t_{0}}
$$

: AWGN مسِرَسازكا,

$$
\therefore h_{R}(t)=\frac{r k}{N_{0}} \underbrace{s(t .-t)}_{s(-t) \rightarrow t \rightarrow t-t}
$$

 - Γ

$$
\left.\begin{array}{l}
(S N R)_{\text {max }_{1}}=\int_{-\infty}^{\infty} \frac{|S(f)|^{r}}{G_{n}(f)} d f=r / N_{0} \int_{-\infty}^{\infty}|S(f)|^{r} d f \\
S_{5}^{r}\left(t_{0}\right)=? \\
S_{0}\left(t_{0}\right)=\int_{-\infty}^{\infty} S(f) H_{R}(f) e^{r r f t} d f \Rightarrow S_{0}(t .)=\int \frac{r k}{N_{0}} S^{*}(f) S(f) d f=\frac{r k}{N_{0}} E \\
\left.S_{0}^{r}(t)=\frac{r k^{r} E^{r}}{N_{0}^{r}}\right\} \\
{ }_{10} E\left\{n_{0}^{r}(t)\right\}=\int \frac{N_{0}}{r} \frac{f k^{r}}{N_{0}^{r}}|S(f)|^{r} d f=\frac{r k^{r}}{N_{0}} E
\end{array}\right\} \Rightarrow(S N R)_{\max }=\frac{r E}{N_{0}}
$$

 .

 (س) , Match Filter

 UT),

Subject：

 Tr，T

Error Control Coding ：flüsusíchorglo
1，با با ．
：AWGN ： 20

bowtupa

W⿵⿰丿⺄⿱㇒⿱中⿰㇀丶冂土

ن,

$$
A_{0}=E \quad S_{0}(t .)=\left.\frac{Y K E}{N_{0}}\right|_{k=\frac{N}{r}} ^{r}=E
$$

$$
\Longrightarrow r_{k}=N\left(\pm A_{0}, \frac{N \cdot E}{r}\right)
$$

D

$$
{ }_{20}^{20} \underset{\substack{0,0}}{\Longrightarrow} P\left(A \mid r_{k}\right) \gtrless_{-A}^{A} P\left(-A \mid r_{k}\right)
$$

$$
\frac{P\left(A, r_{k}\right)}{P\left(r_{k}\right)} \gtrless_{-A}^{A} \frac{P\left(-A, r_{k}\right)}{P\left(r_{(c)}\right.} \Rightarrow P(A) P\left(r_{k} \mid A\right) \sum_{-A}^{A} P(-A) P\left(r_{k} \mid-A\right)
$$

25

$$
\begin{aligned}
& P\left(r_{k} \mid A\right)=P\left(r_{k} \mid A_{R}\right)=P\left(r_{k} \mid A_{0}\right) \\
& \Rightarrow P\left(r_{k} \mid A R\right)=\frac{1}{\sigma \sqrt{r_{Z}}} e^{-\left(r_{k}-A_{0} \frac{x_{0}}{k \sigma^{+}}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& P\left(A_{R} \mid r_{k}\right)>P\left(-A_{R} \mid r_{k}\right) \Rightarrow \\
& P\left(-A_{R} \mid r_{k}\right)>P\left(A_{R} \mid r_{k}\right) \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& r_{k}^{J}=\underbrace{ \pm A_{0}}_{S_{0}(k T)}+n_{k} \\
& n_{k}=N\left(0, \psi^{*}\right)
\end{aligned}
$$

Subject:
Year. Month. Date. ()

$$
\begin{aligned}
& P\left(r_{k} /-A_{0}\right)=\frac{1}{\sigma \sqrt{r}} e^{-\frac{\left(r_{c c}+A_{0}\right)^{r}}{\sigma^{r}}} \\
& \frac{P(A)}{\sigma \sqrt{r \Omega}} e^{-\frac{\left(r_{k}-A \cdot\right)^{r}}{r \sigma^{r}}}>\frac{P(+A)}{\sigma \sqrt{r \Omega}} e^{-\frac{\left(r_{k}+A\right)^{r}}{r \sigma^{r}}} \\
& \Rightarrow \operatorname{Ln} P(A)-\frac{\left(r_{k}-A_{c}\right)^{r}}{r \sigma^{r}}>\operatorname{Ln} P(-A)-\frac{\left(r_{k}+A\right)^{r}}{r \sigma^{r}} \\
& \text { - [رِّ }
\end{aligned}
$$

前
\qquad

Equ

$$
x(f) \xrightarrow{\sqrt{ } \cdot p 1} J L_{5}\left(y(f)=k x(f) e^{-j r \pi t_{d}} \Rightarrow H_{1}(j f)=k e^{-j r \pi f t_{d}}\right.
$$

ح，حرانیِيَ

．
 مإِ⿱一土r
, هيمكسر

隹
证
 . $\cos \dot{C}$,

$$
\begin{aligned}
& V_{0}(t)=C_{-M} U_{i}(t)+C_{-M+1} V_{i}(t-\Delta)+\cdots+C_{0} V_{i}(t-M \Delta)+\cdots+C_{M} U_{i}(t-Y M \Delta) \\
& \stackrel{F}{\Longrightarrow} V_{0}(f)=c_{-\mu} V_{i}(f)+c_{-M_{+1}} V_{i}(f) e^{-j r f \Delta}+\cdots \\
& \Longrightarrow H_{e q}(f)=C_{-M}+C_{-M+1} e^{-j r \lambda \Delta}+C_{-M+r} e^{-j \mu \pi f(i \Delta)}+\cdots+C^{-j \mu \pi f_{M} \Delta}+\cdots+c_{M} e^{-j \mu f r \mu \Delta} \\
& \Rightarrow e^{-j M \omega \Delta} \sum_{m=-M}^{M} c_{m} e^{-j m \Delta \omega}
\end{aligned}
$$

>

$$
y(t)=k_{1} x\left(t-t_{1}\right)+k_{p} x\left(t-t_{\mu}\right) \neq k x\left(t-t_{d}\right)
$$

- .

$10 \ldots$

$$
H_{c}(t)=\frac{y(f)}{x(f)}=k_{1} e^{-j r \pi f t_{1}}+k_{p} e^{-j r \pi f t_{r}}
$$

$$
H_{e q}(f)=\frac{k^{\cdots} e^{-j r \pi f /}}{k_{1} e^{-j j \pi f t_{1}} k_{k} e^{-j k \pi f t_{r}}}
$$

$$
H_{e q}(f)=\frac{k e^{-j \mu r f t_{d}}}{k_{1} e^{-j r f t_{1}}\left(1+\frac{k_{r}}{k_{1}} e^{-j \pi \pi f\left(t_{r}-t_{1}\right)}\right)}
$$

20 .

$$
\Rightarrow H_{\text {eq }}(f) \simeq \frac{1}{1+\epsilon} \simeq 1-\epsilon+\epsilon^{y}
$$

$$
\Rightarrow H_{e q}(f)=1-\frac{k_{r}}{k_{1}} e^{-j r f\left(t_{r}-t_{1}\right)}+\left(\frac{k_{r}}{k_{1}}\right)^{r} e^{-j r f_{r}\left(t_{r}-t_{1}\right)}
$$

$$
\begin{aligned}
& M=1 \\
& \Delta=t_{r}-t_{1}
\end{aligned}
$$

$$
\begin{aligned}
& C_{-1}=1 \\
& C_{0}=-\frac{k_{r}}{k_{1}} \\
& c_{1}=\left(\frac{k_{r}}{k_{1}}\right)^{r}
\end{aligned}
$$

$$
\frac{P_{\text {in }}}{P_{\text {out }}}=\frac{\frac{A_{i}^{r}}{r}}{\frac{A_{0}^{r}}{r}}=\left(\frac{A_{i}}{A_{0}}\right)^{r}=L(f)
$$

عَابن (制

.
\qquad

. ${ }^{\prime}{ }^{\prime \prime}$
 , رانَسْار ,

- ${ }^{\text {Luntroñ }}$ 20 . >
 Collectivity $\rightarrow 0,0$,
(
 25

Subject:
 gi

\qquad

