Chapter 1 - Section A - Mathcad Solutions

1.4 The equation that relates deg F to deg C is: t(F) = 1.8 t(C) + 32. Solve this
equation by setting t(F) = t(C).

Guess solution: t:=0
Given t= 1.8t+ 32 Find(t) = —40
" F
1.5 By definition: P= " F = mass-g
T 2
P := 3000bar D = 4mm A= ZD
F
F =P-A g= 9.807E mass = —
s
" F
1.6 By definition: P=— F = mass-g
A
. T 2
P := 3000atm D :=0.17in A = Z-D
ft F
F:=P-A g=32174— mass = —
2 g
sec
L7 Paps = prg-h+ Paim
p = 1353555 8= 9832=
cm s

18 p= 13.535-‘%—1113
cm

Pabs == p-gh + Paym

ft
2
s

g = 32.243.

Pabs = p-g-h +Patm

Ans.

Note: Pressures are in
gauge pressure.

A = 12.566mm>

mass = 384.4kg Ans.
A = 0.023in’

mass = 1000.71b,, Ans.
h := 56.38cm

P.ps = 176.808kPa Ans.
h := 25.62in

Paps = 27.22psia  Ans.



1.10

1.11

1.12

Assume the following: p := 13580 g = 98—
cm3 s2
P := 400b h = P
= ar - h =3023m Ans.
p-g
The force on a spring is described by: F = K, x where K is the spring
constant. First calculate K based on the earth measurement then gy, ..
based on spring measurement on Mars.
On Earth:
m
F = mass-g = K-x mass := 0.40kg g = 9.81 > x := 1.08cm
s
F N
F := mass-g F = 3.924N Kg:=— Kg = 363.333 —
X m
On Mars:
X = 0.40CITI FMarS = KX FMarS = 4 X 10_3mK
FMars mK
gMars = ZMars — 0.01 — Ans.
mass kg
Given: d_P =-—p-g and: p= M-P Substituting: d_P = —E‘g
dz R-T dz R-T

PDenver | ZDenver M \
Separating variables and integrating: E dP = J —(R—f ] dz

Psea 0

P M-
After integrating: In Denver\ = M g-zDenver
Psea j RT
Taking the exponential of both sides (‘ Mg ZDenver
f o R-T
and rearranging: PDenver = Psea-e )
m m
Pgeq ;= latm M = 29g_ g:=98—
mol Sz



3
cm -atm

mol-K

M-g

——ZDenver = 0.194

R-T

R-T
Ppenver := Psea‘€

-Mg
*ZDenver )

PDCI’IVCI' = (0.823 atm Ans.

PDenver = 0.834bar  Ans.

1.13 The same proportionality applies as in Pb. 1.11.

ft
Zearth = 32.1 86—2

S

Zearth
Alearth = Alpoon——
gmoon

M := Algyrh:Ibm

Wmoon = M-Zmoon

5.00dollars' 10 hr

P eostou = = 0 Gy

dollars

yr

costpylp = 18.262

COSttota]l := COSthylh + COStelec

1.15 D = 1.25ft

ft
Zmoon = 5-32'—2 Alpoon = 18.76

S

Al = 113.498

M = 113.4981by, Ans.

Wmoon = 18.767 lbf AIIS.

0.1dollars 10 hr

cost = -T0W
clec kW-hr day
doll
yr
doll
costrotal = 43.8290 ——— |
yr )
ft
mass := 2501lby, g = 32.169—2

S



Patm = 30.12in_Hg A= %Dz A = 12271
(@ F :=PymA+massg _ Ans.
F
() Paps = — Paps = 16.208psia Ans.
() Al:= 174t Work := F-Al _ Ans.
APg := mass-§ 1 _ Ans.
1.16 D := 0.47m mass := 150kg g = 9.81332
S
Paim = 101.57kPa A= %-Dz A=0173m>
(@) F := Py A + mass-g _ Ans.
F
0 Faet = 05 A

() Al:=083m  Work:=FAl ‘Work = 15.848kJ Ans.
AEp = mass-§- 1 _ Ans.

1.18 mass = 1250kg u = 40Ill

Ex = Emass-u2 Ans.

S

A h
1.19 Wdot= 258 1 661002
time
m
Wdot := 200W g = 9.8—2 Ah = 50m

S



Wdot

-: k
mdot : AB091.092 mdot = 0.488~2  Ans.
) . s
25.00
a) ¢ | = ton -1
cost_coal = M cost _coal = 0.95GJ
29.~
kg
200
. line = &4 -1
cost_gasolne .= GJ cost_gasoline = 14.28 GJ
37.—
3
m
ety o 01000 |
cost_electricity := — cost_electricity = 27.778 GJ~

b) The electrical energy can directly be converted to other forms of energy

whereas the coal and gasoline would typically need to be converted to heat
and then into some other form of energy before being useful.

The obvious advantage of coal is that it is cheap if it is used as a heat
source. Otherwise it is messy to handle and bulky for tranport and
storage.

Gasoline is an important transportation fuel. It is more convenient to
transport and store than coal. It can be used to generate electricity by
burning it but the efficiency is limited. However, fuel cells are currently
being developed which will allow for the conversion of gasoline to electricity
by chemical means, a more efficient process.

Electricity has the most uses though it is expensive. It is easy to transport
but expensive to store. As a transportation fuel it is clean but batteries to
store it on-board have limited capacity and are heavy.



1.24 Use the Matcad genfit function to fit the data to Antoine's equation.

The genfit function requires the first derivatives of the function with
respect to the parameters being fitted.

B )

Function being fit: {(T,A,B,C) = e( T+C)

First derivative of the function with respect to parameter A

B
d—f(T,A,B,C)—)exp A - \
dA T+C)

First derivative of the function with respect to parameter B

“1 B
4 fT.A.B,C)> exp[A— B
dB T+C T+C)

First derivative of the function with respect to parameter C

4 fT.A.B,C)> L~exp(A __B )
dc (T+C)> T+C)
~18.5) 3.18)
9.5 5.48
0.2 9.45
11.8 16.9
23.1 28.2
t:= Psat :=
32.7 41.9
44.4 66.6
52.1 89.5
63.3 129
75.5 ) 187 )



T :=1t+273.15

InPsat := In(Psat)

Array of functions used by Mathcad. In this case, a, = A, a; =B and a, = C.

exp (a() -
exp (a() -

F(T,a) =

a]
——exp

(r+a®

Apply the genfit function

-1
-€Xp| a
T+ ay p( 0

a] )

T+a2)

aj

T+a2)

a] )

T+a2)

ap )

(aO_T-i-azj

Guess values of parameters

15 )

guess = | 3000 |
-50 )

AN A) 13.421
B | := genfit(T,Psat, guess, F) B|=|229x10° | Ans.
c) c) | -69.053 )
Compare fit with data.
200
150 [~ 7]
Psat
000 100 - _
f(T,A,B,C)
50 - 7
0 | | |
240 260 280 300 320 340 360
T

To find the normal boiling point, find the value of T for which Psat =1 atm.



T B
np = | ———— —
Psat
A_ln[ﬂ\

kPa ) )

Psat := latm C\K Thp = 329.154K

Top — 273.15K = 56.004degC 1
1.25
doll
a) t| = 1970 t := 2000 Cy = 03528 i = 5%
gal
to—t doll
Cy=Cpr-(1+i)> ! Cy = 151328
gal
The increase in price of gasoline over this period kept pace with the rate of
inflation.
doll doll
b) t; = 1970 t := 2000 Cp = 1600020 ¢y 1= 80000-——>
yr yr
, C2 -t . i B
Given e =(1+1) 1:=Find(i) 1=5511%
1

The salary of a Ph. D. engineer over this period increased at a rate of 5.5%,
slightly higher than the rate of inflation.

¢) This is an open-ended problem. The strategy depends on age of the child,
and on such unpredictable items as possible financial aid, monies earned
by the child, and length of time spent in earning a degree.



Chapter 2 - Section A - Mathcad Solutions

2.1 (a) Myt = 35-kg g = 9.8-22 Az :=5m
Work := My¢& z S Work = 1.715kJ Ans.
(b) AUjpta1 := Work AUjoal = 1.715k]  Ans.
(¢c) By Egs. (2.14) and (2.21): dU + d(PV) = Cp-dT

Since P is constant, this can be written:
Mp20:Cp-dT = My20-dU + Mpg20-P-dV

Take Cp and V constant and integrate: MHQO-CP-.@Q —t1 = Ustal
kJ

t1 ;= 20-degC Cp =418 — M = 30-k
1 g P kg dogC H20 g
AU¢otal
h=tj+—— 5 =20014degC Ans.
Mp20-Cp

(d) For the restoration process, the change in internal energy is equal but of
opposite sign to that of the initial process. Thus

Q = —AUjptq1 Q =-1.715k] Ans.

(e) In all cases the total internal energy change of the universe is zero.

2.2 Similar to Pb. 2.1 with mass of water = 30 kg.

Answers are: (a) W=1715kJ

(b) Internal energy change of
the water = 1.429 kJ

(¢) Final temp. =20.014 deg C
d Q=-1.715kJ

9



24

2.5

The electric power supplied to the motor must equal the work done by the
motor plus the heat generated by the motor.

1:= 9.7amp E =110V Wdotmech = 1.25hp
Wdotejeer = iE Wdoteleet = 1.067 x 10° W

Eq.(23): AU'= Q+ W

Step 1to2:  AUtjp = —200] Wiz :=-6000J

Q2= AUt~ Wi2 Q2 =58x10"J Ans.
Step3tod: Q34 := —800J W3y := 300J

AUtz4 == Q34+ W34 AUtzy = =5007] Ans.

Step 1 to 2 to 3 to 4 to 1: Since AUt is a state function, AUt for a series of steps
that leads back to the initial state must be zero. Therefore, the sum of the

AUt values for all of the steps must sum to zero.
AUty == 4700] AUty3 := =AUt{p —A Utzy — Uty
AUty3 = —4000J Ans.

Step2to3: AUty = -4x 10°] Qo3 = —3800J

W33 = AUty — Q23 Wp3 = —2001] Ans.

For a series of steps, the total work done is the sum of the work done for each
step.

Wi2341 = —1400]

10



Wa1 = Wi12341 — W12 — Wo3 - W3y Wy1 = 4.5x 10°]  Ans.

Step4tol: AUty == 4700] Wy1 = 4.5%10°]
Q41 = AUy - Wy Q41 = 2007 Ans.
Note: Q12341 = -W12341

2.11 The enthalpy change of the water = work done.

kJ
M := 20-kg Cp=418—— At := 10-degC
kg-degC
M-&p- t
Wdot := 0.25-kW At = —— At = 0.929hr  Ans.
Wdot

212 Q := 7.5:k] AU = —-12-k] W =AU-Q
W =-195k] Ans.
AU := —-12-k] Q: =AU Q=-12kJ Ans.

2.13 Subscripts: c, casting; w, water; t, tank. Then
mg- AU + my- AUy, + me AU = 0
Let C represent specific heat, C=Cp=Cy
Then by Eq. (2.18)

me Q¢ to+my By ty+mpe& =0

m; = 2-kg my, = 40-kg my = 5-kg

Ce = O.SO-kg.l;ﬁ Ci = O'S.IQg-l:i—ngC Cw = 4'18‘1(g-lc(1—ngC
te := 500-degC t; == 25-degC t) := 30-degC (guess)
Given —rnc~CC‘02 -t = ()nW-CW + my¢ Gy ()2 -t

t2 := Find(}2 =27.78degC  Ans.

11



2.15

(@)

(b)

(©)

2.17

2.18 (a)

(b)

mass := 1-kg

AT = 1K
~ 9.8
g:=7°07
S
AEp
Az =
mass- g
AEg = AUt
Az := 50m
D :=2m
mdot = p-u-A

AUt := mass-&y- T

kJ

Cyi=4.18——

kg-K

AEp := AUt

—-mass
2
k
~1000-8 = 4.=52
3 S
m
A = %Dz A = 3.142m>
4kg

mdot = 1.571 x 10 —
S

Wt = mdot-g 2 Wt = 69T 10°KW  Ans.

kJ

Uy :=762.0-—
k

Hy=U;1+P1-Vy

kJ

Up = 2784.4-k—

Hy := Uy + P2 Vo

3
Vi = 11285

P; := 1002.7-kPa

gm
- Ans.
cm’
Py := 1500-kPa Vy :=169.7.—
gm
AU = Uy - Uy AH = Hy - H;

Ans.

- Ans.



2.22

2.23

Dq :=2.5cm up = 2E D7 := 5cm
S

(a) For an incompressible fluid, p=constant. By a mass balance,
mdot = constant = u,A,p = u,A,p.

2
Di
uz ==ur —\ uy = 0.5E Ans.
D) s
1 1 J
(b)  AEg = —uw’ — —uj’ AEg = —1.875—  Ans.
2 2 kg

Energy balance: mdot3-Hz — ()ﬂdotl-Hl + mdoty-Hy = Qdot
Mass balance: mdot3z — mdot; — mdoty = 0
Therefore: mdotl-(}l3 -H; + mdotz-()—h —Hy = Qdot

or mdot-Cp-()T3 -T1 + mdotz-Cp-()1‘3 — Ty = Qdot

T3~Cp~()nd0t1 + mdoty = Qdot + mdot;-Cp-T1 + mdoty-Cp-To

k k
mdot; := 1.0—g T := 25degC mdoty := 0.8—g Ty := 75degC
S S

KJ
KJ L
Quot := 30 Cr=a187K

Qdot + mdot;-Cp-T] + mdoty-Cp-T>

T3 = 43.235degC  Ans.
()‘ndotl + mdotp -Cp

T3 =

2

A
2.25 By Eq. (2.32a): AH + Tu =0  AH= CpAT

By continuity, W= u ﬁ Cp = 4.18- kJ
incompressibility 2= Ar P kg-degC

13



2 2 (Al\z 2 2 (2\41

Au = u — -1 Au = u;
Az) D2)
. m
SI units: uj = 14— D; =25-cm Dj; := 3.8-cm
]
2 4
uj D1 )
AT = J =] — AT = 0.019degC  Ans.
2-Cp D2)
Dy = 7.5cm
4
up D1
AT = | 1= — AT = 0.023 degC Ans.
2-Cp D2)
Maximum T change occurrs for infinite D2:
Dy = oo-cm
4
up D1)
AT = | 1T-|— AT = 0.023 degC Ans.
2-Cp D2)
k
226 T = 300K Tp:= 520K =102 wp:=352  molwt:=20—2
s S kmol
kmol 7
Wsdot := 98.8kW ndot := 50 o Cp:=—R
hr 2
3 kJ
AH := Cp- -T AH = 6.402 x 10
P ()Fz : kmol
By Eq. (2.30):
2)
up uj
Qdot :=| AH + - 5 )-molwt -ndot — Wsdot |Qdot = —9.904kW Ans.
Au Vo Tz Py
2.27 By Eq. (2.32b): AH = — also ——=_—._
2-g¢ Vi T1 P2
By continunity, _ V2 _ Tz Py 2_ 2
uy = upr— uy = up—-— Au =upy —up
constant area Vi T; Py

14




2 2 (Tz 2\2_1

AH = Cp-AT = ;ROTZ ~Ty

Au =up || —-
Ty sz
. : ft ,
Py := 100-psi Py = 20-psi up = 20-— Ty := 579.67-rankine
S
ft-1bg
R=3407— molwt == 28 2=
mol-rankine mol
T := 578-rankine (guess)
2 2
7 ur | (T2 Py
Given —~R~()T2—T1 = — ——\ — 1 [-molwt
2 2 T Pz}
T := Find()2 T, = 578.9rankine Ans.
(119.15-degF)
kJ kJ
228 up == 3= Uy = 200-= Hy = 3349—  Hy = 27265 —
s s kg kg
2 2
u —uj kJ
By Eq. (2.32a): Q=H)-H{+ — Q= 2411_6k_ Ans.
g
kJ kJ
229 u; = 30-2 Hp :=3112.5-— Hy :=2945.7-—
s kg kg
u = 500-E (guess)
S
2
up —uz
By Eq. (2.322):  Given Hy,-H; = > up := Find(ji2
W = 57836—  Ans.
S
3 3
cm cm
Dp :=5-cm V1 :=388.61-— Vj = 667.75-—
gm gm

15



ur-Vp

Continuity: Dy :=Dy- Dy = 1.493cm Ans.
uy-Vi
230 (a) t1 := 30-degC ty = 250-degC n = 3-mol
J
Cy =208——
mol-degC
ByEq.(2.19):  Q:=nCy(h-1t Q = 13.728k]  Ans.

Take into account the heat capacity of the vessel; then

kJ
my, = 100-kg cy =05———
kg-degC
Q = (Jny-ey+nCy (-t Q = 11014kJ Ans.
(b)  t; :=200-degC ty := 40-degC n := 4-mol
joul
Cp = 29.1.—322° _
mol-degC
ByEq.(2.23):  Q:=nCp(p-t Q = -18.62kJ Ans.
231 (a) t; := 70-degF ty := 350-degF n := 3-mol
BTU
Cy =5—- By Eq. (2.19):
mol-degF
Q:=nCy(p-t Q = 4200BTU  Ans.
Take account of the heat capacity of the vessel:
BTU
Ibyy,-degF
Q = (Jny-cy +n-Cy (2 -1 Q = 10920BTU  Ans.
(b) t; :=400-degF ty := 150-degF n := 4-mol

16



2.33

2.34

BTU

Cp=7T—— By Eq. (2.23):
F mol-degF
Q:=nCp(-1t Q = ~7000BTU Ans,
BTU BTU ft
Hy :=1322.6.—— Hy = 1148.6-—— uy = 10-—
m m S
3 3
ft ft
Vi :=3.058— Vy = 78.14— Dy :=3in D3 :=10-in
by, Ibm
T 2
- mdot = 3.463 x 10 —
mdot := sec
1
Va ft
uyp := mdot- uy = 22997 —
T 2 sec
-.D
7 D2
u22 - u12 BTU
Eq. (2.32a): Wy:=H,-H{+ ——— Wy =-173.99——
2 1b
Wdot := —Wg-mdot Wdot = 39.52hp Ans.
BTU BTU ft
Hj = 307——  Hp:=330——  u:=20—  molwt := 44. 55
by Iby S mol
3 3
ft ft
Vi:=9.25— Vy :=0.28—— D; =4in Dy == 1-in
by b
For Ib
mdot := mdot = 679.263 —
1 hr
V2 ft BTU
up := mdot- uy = 9.686 — Wg = 5360-
T2 sec Ibmol
_-D2
4
2 2
u —up W, BT
Eq.(2.32a): Q :=Hy-Hj + - : Q= —98.82—U
2 molwt b,

17



BTU

Qdot := mdot:Q  Qdot = —-67128 - Ans.
r
1-kg
236 Tp:=300-K P := 1-bar n=—— n = 34.602 mol
28.9. £
mol
3 3
bar- T
Vi = 83142 Vi = 24942 M
mol-K P mol

Vi
Whence W = —n-P-2-V; W =-172.61kJ Ans.
. Va
Given: Ty = Tl-V— =T-3 Whence Ty :=3-Ty
1
joule kJ
Cp = 29- AH = Cp- -T AH = 174——  Ans.
P e p-(Jr2— T —
Q :=n-AH Q = 602.08kJ Ans.
+ W kJ
AU := Q AU = 12,41 — Ans.
n mol

2.37 Work exactly like Ex. 2.10: 2 steps, (a) & (b). A value is required for PV/T,

namely R.
Ty = 293.15-K T := 333.15K
R =8.314
mol-K Py := 1000-kPa P, := 100-kPa
(a) Cool at const V1 to P2 _ 7 _3
(b) Heat at const P2 to T2 G = ) Cv := 7 =
P

2
Ta = Tl-P— Tap = 29.315K
1

18



ATy =Ty - Ty

AT, = 303.835K AT, :=Tas—T; AT, =—-263.835K

J
AHy = Cp-ATy, AHp, = 8.841 x 10° ——
mol
3 J
AU, = Cy-AT, AU, = —5.484 x 10° ——
mol
R-T) A m R-T 3
Vi=—— Vi =2437x10 "2 Vo= —2 vV, = 0028
Py mol Py mol

AH, := AU, + V1i-(P2 = Py

J
AH, = ~7.677 x 10° —

mol
J
AUy, := AHy — P2 (V2 - Vi AUy = 6.315x 10° ——
mol
kJ
AU := AU, + AU, AU = 0.831——  Ans.
mol
KJ
AH := AH, + AHy,  |AH = 1.164——  Ans.
mol
k 4k
— 9962 w=9010 "<&  ¢D = 0.0001 Note:cD=e/D
e LLLEE in this solution
2) N
5 1 |m
D = cm u = —
2 51s
5) 5)
22133 )
—
Do 55333
Re = pru Re = ‘
W 110667
276667 )

19



Re)

—
mdot := (p-u z Dz)
)
APAL = | == -u
(D )
K kJ
2.42 mdot == 4.5-2 Hy = 761.1—

S

v

0.00452
0.0039 )

0.00635 )
0.00517
=

Ans.

Ans.

Hp = 536.9-E

kg

Assume that the compressor is adiabatic (Qdot = 0). Neglect changes in

KE and PE.

Wdot := mdot-()—[z - H;

|Wd0t| \0.573

W)

Cost := 15200-(

20

Widot = —1.009 x 10°kW



3.1

3.4

3.5

Chapter 3 - Section A - Mathcad Solutions

B=—_1.(d_\ K=l.(d_\

p P
p\dT ) p\dP )

At constant T, the 2nd equation can be written:

d p2) e
P = dp Inf— =«xAP K = 44.18-10" C.bar ! pr = 1.01-p4
p P1)
In(1.01
AP := n(1.00) AP = 225.2bar Py = 226.2-bar  Ans.
K
cm’
b := 2700-bar c:=0.125-— Py := 1-bar P> := 500-bar
gm
Va
Since Work = —J PdV  abit of algebra leads to
Vi
Py
Work := P J
R Work = 0.516—  Ans.
Py gm

Alternatively, formal integration leads to

Py + b\\ J
Work := ¢:| Pp =P —b-In Work = 0.516— Ans.
P+ b]} gm
K=a+bP a:=39.10 %atm ! b:=—01.10 -atm >
P := 1-atm P> := 3000-atm V = l-ft3 (assume const.)
Combine Egs. (1.3) and (3.3) for const. T:
Py
Work := V-J (a+ b-P)-PdP Work = 16.65atm-ft©  Ans.
Py

21



3.6

3.8

_ _ kJ
B=1210 >-degC |  Cp:= 0.84—— M := 5-kg
kg-degC
3
Vi = LE P := 1-bar t1 := 0-degC ty := 20-degC
© 1590 kg ' : :

With beta independent of T and with P=constant,

dv

< = B-dT Vo= Viexp[B(a—t1 | AV =V, -V

AVioial = M-AV AV = 7.638x 107 °m’ Ans.

Work := —B- Vioa  (Const. P) Work = —7.638 joule ~ Ans.
Q:=MCp(p-t1 |Q=84kl Ans.
AHyota1 = Q AHyota) = 84kJ Ans.

AUpgpa = Q + Work  AUjgga) = 83.99k]  Ans.

7 5
Py := 8-bar P> := 1-bar T = 600-K Cp = E-R Cy = Bl
(a) Constant V: wW=20 and AU = Q = Cy-AT
Py
Ty = Tl-P— AT =Ty —-T, AT = -525K
1
kJ
AU = Cy-AT Qand AU =-1091— Ans.
mol
kJ
AH := Cp-AT AH = —1528——  Ans.
mol
(b) Constant T: AU = AH =0 and Q=W
Py
Work := R-T1-1In —\ Q and Work = —10.37£ Ans.
Pl] mol
(c¢) Adiabatic: Q=0 and AU = W = Cy-AT

22



v—1

Cp PZ\ !
v T oy T2 =T p_lj T, = 331.227K AT =Ty -T
AU := Cy-AT AH := Cp-AT
kJ kJ
W  and AU = —-5.586—— Ans. AH = -7.821 — Ans.
mol mol
7 5
3.9 P4 :=2bar Cp:=—-R Cy =—-R
2 2
Py := 10bar Tq := 600K Vi=—— Vi =4988x10 ~—
Py mol
R
Cp
o Py
Step 41: Adiabatic Tq =T | — T4 = 378.831K
P]j
3 J
AUy == Cy-(l1-T4 AUy =4597x 10" —
mol
= . — J
AHgp = Co(T1-Ta Ay~ 6436x 10°——
mol
J J
Q41 =0— Q41 =0—
mol mol
3 J
W41 = AUy W41 =4.597%x 107 —
mol
R-T, it
Py := 3bar Ty := 600K Vyi=—— V=0017—
Py mol
J J
Step 12: Isothermal AUy = 0— AUy = 0—
mol mol
AH 5 = 0-— J
2= mol AHpp = 0—
mol

23



)
Q12 :=-R-Ty:-In —\
Pl/
Wi2 =-Q12
P3-V3
P3 := 2bar V3=V, T3 = =

Step 23: Isochoric AUy3 := CV-()Tg -Th

AHp3 = Cp-(Jl3 -T2

Q23 = Cy-(J3 -T2

J
Wo3 i=0——
mol

v R-Ty
4= ——
P4

P4 = 2bar T4 = 378.831K

Step 34: Isobaric AUszy := CV-()1‘4 -T3

AH3y = CP-()1'4 - T3

Q34 = CP-()F4 - T3

W34 = —R-()T4 -T3

3.10 For all parts of this problem: T, = T; and

AU=AH =0 Also

J
Q12 = 6.006x 10° ——
mol

J
Wio = —6.006 x 10° ——
mol

T3 = 400K
I
AUps = —4.157x 10° ——

mol

J
AH,; = —5.82 1o3m—Ol

J
Qa3 = —4.157x 10° ——

mol
J

W23 =0—
mol

3

m
V4 =0.016—
mol

J
AUz, = —439.997 ——

mol
J
AH3z4 = —615.996 —
mol
J
Q34 = —615.996 —
mol
J
W34 = 175.999 —
mol

Q = —Work and all that remains is

to calculate Work. Symbol V is used for total volume in this problem.

Py = I-bar Py = 12-bar

24
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(a) Work = n-R-T- ln(—

Work := Pl-Vl-ln(—

Pz\
Pl)

Work = 2982k]J Ans.

(b) Step 1: adiabatic compression to P,

5 P . 3
Y == Vi=Vy|— (intermediate V)  V; = 2.702m
Pz)
P>-V;-P1-Vy
W = ’ Wi = 3063kJ
y—1
Step 2: cool at const P, to V,
Wy = —Pp(V2-V; Wy = 2042kJ

Work := W1 + W»

(c) Step 1: adiabatic compression to V,

v . .
P; = P|:| — (intermediate P)
Vz}
P;-Vo —P1-Vy
Wi =
y—1
Step 2: No work. Work = W,
(d) Step 1: heat atconst V,toP, W; =0
Step 2: cool at const P, to V,
Wy = —Pz-()\/z -Vi Work := W»

(e) Step 1: cool at const P, to V,

Wi = —Pl-()\lz -Vj

25

Work = 5106k]  Ans.

P; = 62.898 bar

W1 = 7635kJ

Work = 7635k]  Ans.

Work = 13200kJ Ans.

W; = 1100kJ



Step 2: heat at const V, to P, Wy =0

Work := W Work = 1100k]J Ans.

3.17 (a) No work is done; no heat is transferred.

AU'= AT = 0 Ty = Ty = 100-degC Not reversible

(b) The gas is returned to its initial state by isothermal compression.

Vl\
Work = n-R-T-In| — but n-R-T = Py-Vy
Vz}
4
Vi = 4-m3 Vy = §-m3 Py := 6-bar
Vl\
Work := P>-Vo-In| — Work = 878.9k] Ans.
Vz)
3.18 (a) Py := 100-kPa P, := 500-kPa Ty :=303.15-K
7 5 Cp
Cp:=—R Cy:=—R Yy =—
2 2 Cv
Adiabatic compression from point 1 to point 2: y—1
Y
kI P2)
Q12 :=0— AUy = Wip = Cy:ATp T =T | —
mol Pl]
AUjp == Cy-(2-Ty  AHyp = Cp(Jl2 - T) Wiz = AUjp
kJ kJ kJ
AUqp = 3.679— AHp = 5.15— Wiz = 3.679— Ans.
mol mol mol

Cool at P, from point 2 to point 3:
T3 =T AHy3 := Cp-(Jl3 - T2 Q23 = AHp3

AUpz := Cy-(Jl3 - T2 W23 = AUz3 - Q23
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kJ
AHyy = =5.15——

mol Ans.
kJ
=-515—
Q23 ol Ans.
Isothermal expansion from point 3 to point 1:
Pl\
AU31 = AH31 =0 P3:=Pp W31 := R-T3.In[| —
3)
Q31 = -W3
Ans.

FOR THE CYCLE: AU=AH=0

Q:=0Q12+Q23+Q3; Work := Wi + Wa3 + W3

(b) If each step that is 80% efficient accomplishes the same change of state,
all property values are unchanged, and the delta H and delta U values
are the same as in part (a). However, the Q and W values change.

Wiz
0.8

Step 12: Wy, =

Q12 =AU, - Wy2

Step 23:  W»y3 = W3
237708

Q23 := AUp3 — Wp3

Step 31: W3 := W31-0.8

Q31 = -W3;
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FOR THE CYCLE:

Q=Q2+0Q23+Q3 Work := Wi + Wp3 + W3
kJ kJ
Q=-3.192—— Work = 3.192 ——
mol mol

3.19 Here, V represents total volume.
3

Py := 1000-kPa Vi=1m Vo =5V, T; = 600-K
joule Cp
Cp =21 Cyv:=Cp-R =
£ mol-K M F ! Cv
V1) Vi
(a) Isothermal: Work = n-R-Tq.In| — Py =P —
V2) Va
Ty =T Ty = 600K P, = 200kPa Ans.
Vl\
Work := P{-V-In| — Work = —1609kJ  Ans.
Vz)
vy Py V3
(b) Adiabatic: Py := P;-| — Ty =T ——
V2) P1 Vi

Ty = 208.96K P = 69.65kPa Ans.

P2-Vo —P1-Vy
Work := 1 Work = —994.4k] Ans,
'Y —_—
(c) Restrained adiabatic: Work = AU = —Bext+ V
Pext := 100-kPa Work := —Pext-()\lz -V Work = —400kJ Ans.
P1-Vi
n:= AU =nly- T
R-Ty
Work
Ty = — 2% Ty T, = 442.71K Ans.
n-Cy
Vi Ty
Py =P —— Py = 147.57kPa Ans.
Vo Ty
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3.20

T; :=423.15-K Py := 8-bar P3 := 3-bar
7 5
Cp = E-R Cy = E-R Ty =Ty T3 := 323.15-K
kJ kJ
Step 12: AHyj := 0-— AUy = 0-—
mol mol
Vi Vi Ty P3
If r= — = Then r:=— — Wiz := R-Tq:In(1)
Vo V3 T3 Py
kJ kJ
Wi2 = -2.502 — Q2 :=-Wp2 Q2 = 2.502—
mol mol
kJ
Step 23: Wp3 = 0-—— AUy3 = CV'()T3 T
mol
Q23 = AUp3 AHy3 = Cp-(Jl3 - T2
kJ kJ kJ
Qy3 = -2.079— AUp3 = -2.079 — AHp3 = -2.91 —
mol mol mol
kJ
Process: Work := Wip + Wa3 Work = —2.502—— Ans.
mol
kJ
Q:=0Q12+Q23 Q =0.424— Ans.
mol
kJ
AH = AH12 + AH23 AH = 291 — Ans.
mol
kJ
AU = AUlz + AU23 AU = -2.079 — Ans.
mol
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321 By Eq. (2.32a), unit-mass basis:  molwt := 28 2t AH + é-AuZ =0

mol
2 2
o? - uy
But AH = Cp-AT Whence AT= ——
2-Cp
7 R
Cp:=— uj = 2.5~E up = 50-E t1 := 150-degC
2 molwt s s
u —u
=t t) = 148.8degC  Ans.
2-Cp
7 5
3.22 Cp = E-R Cy = E-R T := 303.15-K T3 := 403.15-K
P := 1-bar P3 := 10-bar
AU := Cy-(Jl3 - T} AH := Cp-(Jr3 - T}
k
AU = 2.079—J Ans. AH =291 X Ans.
mol mol
Each part consists of two steps, 12 & 23.
T2
(@) Ty:=Ts Py :=Pp-—
T
P3\
W73 := R-Ty-In| — Work := W3
sz kJ
Work = 6.762——  Ans.
mol
Q := AU — Work
kJ
Q =-4.684— Ans.
mol
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(b)

(c)

Py i=P; Ty =
AHypp = CP-()Tz -T

Wiz =AU - Q12

P
W33 := R-Ty:-In —3\
sz

Work := W17 + Wo3

Q = AU — Work

Ty =T Py

AHp3 = Cp-(Jl3 -T2
AUjyj3 = Cv-()l‘g -Tr
Work := Wiy + Wa3

Q = AU — Work

P3

AUy, = Cv-()Tz -T

Q12 = AHyp
kJ
Wiz = -0.831 —
mol
kJ
Woz = 7.718 —
mol
kJ
Work = 6.886——  Ans.
mol
k
Q= —4.808—J Ans.
mol
%)
Wi2 = R-Ty:In —\
Pl]
Q23 := AHp3

W3 = AUp3 — Q23

k
Work = 4.972 —J Ans.
mol

k
Q = -2.894 X Ans.

mol

For the second set of heat-capacity values, answers are (kJ/mol):

AU = 1.247

(a) Work = 6.762

(b) Work = 6.886

(0 Work = 4.972
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AU = 2.079

= 5515
Q = -5.639
Q = -3.725



3.23

3.24

Ty :=303.15-K

Py := 1-bar

For the process:

kJ kJ
AU = 1.871 — AH = 2.619—— Ans.
mol mol
Ty Py)
Step 12: Py := P3-— W17 := R-Ty-In| —
T3 Pl)
kJ kJ
Wiz = 5.608 — Q2 =-Wp2 Q2 = -5.608 —
mol mol
kJ
Step 23: Wo3 = 0-— Q23 =AU
mol
For the process: Work := W12 + W3
kJ kJ
Q=0Q12+0Q23 Work = 5.608 — Q=-3737—  Ans.
mol mol
Wi2=0 Work= Wp3 = —Pz()\/_o, -Vp = —R-()F3 - Ty
But T3 = Ty So... Work = R-(Jl2 - T}
P)
Also W= R-TyIn| — Therefore
Pl]
P Tr-T,
In —\ = Ty :=350-K T := 800-K Py := 4-bar
Pl} Ty
Ty -Tp)
P := P1-exp - P = 2.279bar Ans.
1

Ty =Ty T3 =
P3 := 12-bar Cp =

AU := Cv-()T3 -Th
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‘R Cy =—R

5
2

N

AH := Cp-(Jl3 - T}



325 Vp = 256-cm’ Define: 2o r=-0.0639
Assume ideal gas; let V represent total volume:

P;-Vp = Pz'()\/A + VR From this one finds:

AP —VA ~Va-(r+1)
= — Vpi= —————= Vg = 37503cm’  Ans.
Py VA+Vp r

326 T;:=300-K Pj:=1-atm Cp:=—R Cy:=Cp-R Y= —

Do |
(@)
<

The process occurring in section B is a reversible, adiabatic compression. Let

P(final) = Py Ta(final) = Ta Tg(final) = Tg
na = npg Since the total volume is constant,
2.np-R-T na-R- +T 2-T Ta+T
ARTL_ naR(Fa+Ts or =22
P P, P Py
-1
Pz\ v
(a) Py :=1.25atm Tp=T1| — @
P1)
Py
TaA=2T—-T = na-(AUp + AU
A g, 1B Q=np ()ﬁ A B
Define a=L  qecy(a+Tp-2T; O
na
kJ
T = 319.75K Ta =430.25K q= 3.118—l Ans.
mo
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(b) Combine Egs. (1) & (2) to eliminate the ratio of pressures:

Tp i=425-K (guess) Tg := 300-K
jinld
Ta+ TB\ v
Given Tg= Ty | — Tg := Find
p= 1) e i
Tg = 319.02K Ans.
Ta+Tg
Py =Py —\ @ P, = 1.24atm Ans.
2-Ty j
kJ
q:=Cy-(Ja+Tp-2T; q=2993——  Ans.
mol
(¢) Tp:=325K By Eq. (2),
L
y—1
TB\
Py =P | — P, = 1.323atm  Auns.
le
P>
Ta = 2'TI'P— -Tg e)) T = 469K Ans.
1
kJ
q = Cy-(Ja+Tp—-2T; q=4032— Ans.
mol
(d) Eliminate Tao+Tg from Egs. (1) & (3):
kJ q-P
q:=3— P =—+P; P, = 1.24latm  Ans.
mol 2.T1-Cy
il
Pz\ v
Tp =Ty | — (2) Tg = 319.06K  Ans.
P1)
P>
Ta = 2-T1-P— - T (1) Ta = 42528K  Ans.
1



6
330 B = 24252 C = 25200 sz T 23735 K

mol
Py := I-bar Py := 55-bar
B' := B 3 1
T R-T B'=-7817x10 ~—
bar
2
C-B
v -5 1
Ci=— C'= 3492x 10 > ——
R 'T b
ar
(a) Solve virial eqn. for initial V.
Guess: Vq = RT
P
Pi-Vy B C 3
Given =+ — Vi=Find(V1  Vq = 30780
R-T Vioy 2 mol
1
Solve virial eqn. for final V.
Guess: Vy = RT
Py
P2-V2 B C 3
Given =1y Vy = Find(Vy V)= 24133
R-T Vo sz mol

Eliminate P from Eq. (1.3) by the virial equation:
Va
Cc) 1
= —RK-]- J— [ — kJ
Work := -R-T 1+ - = v dv Work = 12.62 —— Ans.
V) mol
Vi

(b) Eliminate dV from Eq. (1.3) by the virial equation in P:

1 $)
-1 -1
dv = R-T-(—2 + C'\-dP W = —R-T-J (? + C'-P\ dP

P ) )

W = 12.596£ Ans.
mol
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Note: The answers to (a) & (b) differ because the relations between the two
sets of parameters are exact only for infinite series.

T
332 T, :=2823K T:i=20815K  Tyi= — T, = 1.056
C
P := 50.4-bar P := 12-bar P, = > P, = 0.238
C
o = 0.087 (guess)
3 6 3
R-T
(@) Bi= 140 C = 72002 Vi =V = 2066—%
mol m012 P mol
; PV B C
Given T-V _ 1+_+_2
R-T Voy
cm3 PV
V := Find(V) V= 1919— Z=— Z=0929 Ans.
mol R-T
0.422
(b) Bg:=0.083 - —= Bg = —0.304
1.6
T;
0.172 _
By = 0.139 - —= By = 2262x 10 >
4.2
T;
P ZR-T >
z=1+(Bo+o-Bl — 220982 V=" V=1924"" Ans.
T, P mol
(c) For Redlich/Kwong EOS:
c =1 g:=0 Q := 0.08664 V= 0.42748 Table 3.1
_ Ye
a(Tr) =T, 2 Table 3.1 a(rr = Fo (Fr Eq. (3.54)
Q‘Tr
Q'Pr
BN Py = - Eq. (3.53)
iy
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Calculate Z Guess:

Given Eq. (3.52)

z-B();.P

z=1+B(lr.Pr —q(Jr -B()r.Pr '()z+gs ()rr,I:r

(f+ o (re.Pr

3
ZR-T
7 = Find(Z) Z = 0928 vi=221 V= 191652  Ans.
P mol
(d) For SRK EOS:
c =1 £:=0 Q := 0.08664 ¥ .= 0.42748 Table 3.1
N
) 5 Table 3.1
a(Jfr.0 =] 1+ ()J.480+ 15740 - 0.1760" -(1-T;"
Ve (Jr.o Q-P;
= VDU Eq.(3.54) P Eq. (3.53)
Q()rr OT, B()rr T T,
Calculate Z Guess: Z =09
Given Eq. (3.52)

Z-p

T Pr

7= 1+B()fr,Pr —q()I‘r 'B()Fr’Pr .(¥+SB ()TraPr

Z-R-T
Z = Flnd(Z) Z = 0.928 V = T
(e) For Peng/Robinson EOS:
6= 1+4/2 e=1-4/2 Q:=0.07779

o(rr,0 := { 1+ ()).37464 1 1.542260 — 0.269920)° (

q()Tr ~ Yel ()l"r,oo

Q'Tr

Eq. (3.54)
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1-T,%)

[3()1},Pr =

(E+ 0B (Fr.Pr

3
V= 1918 %
mol

1

T;

Ans.

Y = 0.45724 Table 3.1

2
:| Table 3.1

Eq. (3.53)



Calculate Z Guess: Z =09
Given Eq. (3.52)

2= B(FrPr

r>P ( +of ()Tr,Pr

7 = 1+[3()Tr,Pr —q()Tr 'B()Tr’Pr .()Z+SB ()T

3
ZR-T
Z:=Find(Z) Z =092 v=2"" Vv =19006" Ans.
P mol
T
333 T, :=3053-K T:=32315K T;=— T, = 1.058
C
P
P := 48.72-bar P := 15-bar P, = > P, = 0.308
C
® = 0.100 (guess)
3 6 3
R-T
(@) B =-15672% = 96502 Vi — v=1791 9L
mol m012 P mol
- PV B C
Given IV _ 1+_+_2
R-T Voy
P-V
V := Find(V) vot6sZ oz Y 7=0907 Ans.
mol R-T
0.422
(b) Bp:=0.083 - —— Bg = —0.302
1.6
Ty
0.172 _
By == 0.139 - —= By =3517x10 °
4.2
T;
Py ZRT cm’
Z=1+(Bo+oB; — Z=0912 V:=="—— |V=1634— Ans.
T, P mol
(c) For Redlich/Kwong EOS:
c:=1 e:=0 Q = 0.08664 Y = 0.42748 Table 3.1
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_ Ye
a(Tr) =T, 2 Table 3.1 q()rr = ()rr Eq. 3.54)
Q'Tr
Q'Pr
B(r.Pr = Eq. 3.53)
Tr
Calculate Z Guess: 7 :=0.9

Given Eq. (3.52)

Z=1+ P, — . P. . Z—B()Tr,Pr
BOrePr —a(Je -B(r.Pr (Vv B (FePr (E+oB (FerP:

3

Z-R-T
7 = Find(Z) Z = 0.906 v=220 NV =162272E  Ans.
P mol
(d) For SRK EOS:
c =1 €:=0 Q = 0.08664 Y = 0.42748 Table 3.1

N7
= Table 3.1

(o = { 1+ (h480 1 1.5740 — 017602 -(1 -T,°)

Ye ,® Q-P
q(re = Q(—)rTrr Eq.3.54) PPy = T . Eq. (3.53)
Calculate Z Guess: Z:=09
Given Eq. (3.52)
Z- B ()TI'JPI'
Z=1 P — . P, -
+B()rr r Q()I‘r B()rr r ()Z+8B ()Tr,Pr '(¥+GB ()Tr,Pr
3
Z = Find(Z) Z = 0907 v ZRT N 16048 Ans.
P mol

(e) For Peng/Robinson EOS:
o :=1+42 e=1-2 Q:=007779 ¥ :=045724 Table3.1
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N
ot o | 1+ (h37464 + 1542260 — 02699202 | 1 - T, g Tavledd
Ye ()l'r,oa Q-P;
——_ V7 Eq.(3.54 P, = Eq. (3.53
q(Jrr ot a- 354 B()rr.Pr T q. (3.53)
Calculate Z Guess: Z =09

Given Eq. (3.52)

Z- B()FraPr
Z=1+B(J,Pr —q(Jr -B(Jr,Pr -
N 2 N R (0
Z-R-T
7 = Find(Z) Z = 0.896 vi=2"" V¥ =16055— Ans.
P mol
T
3.34 T, := 318.7-K T := 348.15-K T, = T T, = 1.092
C
P
P := 37.6-bar P := 15-bar P, = > P; = 0.399
C
o = 0.286
(guess)
cm3 cm6 R-T cm
(a) B :=-194.—— C := 15300- 3 Vi=— V=1930—
mol mol P mol
i P-V B C
Given IV _ 1+_+_2
R-T Vv
em’ PV
V = Find(V) V=1722— 7 =— Z = 0.893 Ans.
mol R-T
0.422
(b) Bgp:=0.083 - —— Bop = —0.283
T 1.6
r
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0.172

By =0.139 - —— By =0.02
4.2
Tr
P ZRT >
Z=1+(Bo+oB; — [Z=089 V=" V= 17342 Ans.
T P mol
(©) For Redlich/Kwong EOS:
c:=1 e:=0 Q = 0.08664 Y = 0.42748 Table 3.1
_ Ye
a(Tr) =T, 2 Table 3.1 q()rr = ﬁ Eq. (3.54)
Q'Tr
Q-P
B(Je.Pr = — Eq. (3.53)
T,
Calculate Z Guess: 7Z =09
Given Eq. (3.52)

Z- B()rraPI'

A R Y | (2 D

Z := Find(Z)

(d) For SRK EOS:

o =1 e =0

N
a(Jfr.0 = 1+()J.480+1.574o3—0.176c02- 1—Tr2)

Z = 0.888

3

Z-R-T
v 2 V= 171412 Ans.
P mol
Q := 0.08664 Y — 042748 Table 3.1
Table 3.1
Q‘Pr
Eq. (3.54) B( P o= - Eq. (3.53)
T
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Calculate Z Guess: Z =09
Given Eq. (3.52)

=1+ P, - . Py - Z_BOTr’Pr
z=1+p(Jr.Pr —q(JFr -B(Fr.Pr ()Z+SB (. P ( +oB (Jr.Pr

3

Z-R-T

Z = Find(Z) Z = 0.895 v 20 V = 17269~ Ans.
P mol

(e) For Peng/Robinson EOS:

¢ = 1+42 e=1-y2 Q:=007779 ¥ :=045724 Table3.l

NP
a(r,o =] 1+ ()).37464 + 1542260 — 0269920 | 1 - T, ) Table 3.1
Ve (Jr.o Q-P;
=_—_ V7 Eq.(3.54) P = Eq. (3.53)
Q()rr QT, B( r>tr T,
Calculate Z Guess: Z:=09
Given Eq. (3.52)
Z - B()rraPr
Z=1+B(N.Pr —q()lr -B(Jr,Pr -
( ()r ()F ()Z + &P ()TraPr ()Z +op ()FI':»PI'
ZRT
Z = Find(Z) Z = 0.882 v=2"" W=170152E  Ans.
P mol
335  T:=523.15K P := 1800-kPa
3 6
R-T
(@) B i=-1525 C = —5800-—= V= —~ (guess)
mol mol P
PV B C
Given —=1l+—4+— V = Find(V)
R-T Vo2
P-V cm3
Z:=— V = 2250 — Z = 0931 Ans.
R-T mol
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3.37

(b) T, :=647.1-K P, := 220.55-bar
T, = P, e
r Te r- P,
T, = 0.808 P, = 0.082
0.172
By =0.139-——= B =-0.281
4.2
T;
ZR-T
V=" Z = 0.939
P
(¢) Table F.2: molwt := 18.015. 22
mol
or
Cm3 Crn6
B = —53.4.— C := 2620 D
mol mol
T :=273.15-K
P-V B C D
Given —=1+—+—2+—3
i=0.10  Pio= (00104 20 -bar
L= b Eq. (3.12)
R-T
-Pj 1
Z1; =1+ Eq. (3.38) 72i = — +
R-T 2

43

o = 0.345
0.422
BO = 0083 — 7
T,
Bgp = -0.51
P
Z =1 +()30+0)~B1 —
iy
cm3
V = 2268—— Ans.
mol
cm3
V = 124.99.—— -molwt
gm
cm3
V =2252—— Ans.
mol
cm9
= 5000-—— n := mol
mol
f(P,V) = Find(V)
R-T
Vi = (guess)
P;
l N B-Pj Eq. (3.39)
4 R.T



1:10-10

20

40

60

80

100

120

140

160

180

200

bar

0.953

0.906

0.861

0.819

0.784

0.757

0.74

0.733

0.735

0.743

Z1; =

1

0.953

0.906

0.859

0.812

0.765

0.718

0.671

0.624

0.577

0.53

0.951

0.895

0.83

0.749

0.622

0.5+0.179i

0.5+0.281i

0.5+0.355i

0.5+0.416i

0.5+0.469i

Note that values of Z from Eq. (3.39) are not physically meaningful for
pressures above 100 bar.

Z1;

72;

1
0.9 [ AN —
\ N
0.8 - AN N n
AN
N
or k- v i
\ N
\ .
0.6 - —
N
| | |
03¢ 50 100 150 200
P;-bar
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3.38 (a) Propane: Tc := 369.8-K P. := 42.48-bar o = 0.152

T :=313.15-K P := 13.71 -bar

T P

Te Pc
For Redlich/Kwong EOS:
c =1 g:=0 Q = 0.08664 Y = 0.42748 Table 3.1

Ye ()1'
-0.5 r
oa(Tr) =T Table 3.1 =——~ Eq.((3.549)
(Tr) =T, a(Jrr o
Q‘Pr
B(rr.Pr = Eq. (3.53)
T

Calculate Z for liquid by Eq. (3.56) Guess: Z =0.01
Given

R Y e

3
Z-R-T
Z = Find(Z) Z = 0.057 v=2""  V=1081—= Ans.
P mol
Calculate Z for vapor by Eq. (3.52)  Guess: Z =09
Given
Z - B ()I‘IWPI'
Z=1+B(,Pr —q(Jlr -B(Jr,Pr -
(Fere =alpe Dl
ZRT em’
Z =Find(Z) Z =0.789 Vi=—— V = 1499.2—— Ans.
P mol
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Rackett equation for saturated liquid: T, = T, = 0.847
cm3
V¢ :=200.0-— Z;:=0.276
mol
()T 0.2857] O
Vi=VezZd Ut V= 94.17— Ans.
mol
For saturated vapor, use Pitzer correlation:
Bo < 0.083 0.422
0=V = By = —0.468
T;
0.172
By =0.139 - —0 By = —0.207
T;
R-T T 3 .
Vi=—+R(Bo+oBj ~— V =1538x10°0—  Ans.
P P. mol
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Parts (b) through (t) are worked exactly the same way. All results are
summarized as follows. Volume units are cu.cm./mole.

R/K, Vap. Rackett Pitzer

R/K, Liq.

(a) 108.1
(b) 114.5
() 1227
(d) 133.6
(e) 148.9
(f) 158.3
(g 170.4
(h) 187.1
(i) 153.2
() 164.2
k) 179.1
a1 201.4
(m) 61.7
() 64.1
(0) 66.9
(p) 703
(q) 64.4
(r) 67.4
(s) 70.8

(t) 74.8

1499.2

1174.7

920.3

717.0

1516.2

1216.1

971.1

768.8

1330.3

1057.9

835.3

645.8

1252.5

1006.9

814.5

661.2

1318.7

1046.6

835.6

669.5

94.2

98.1

102.8

109.0

125.4

130.7

137.4

146.4

133.9

140.3

148.6

160.6

53.5

55.1

57.0

59.1

54.6

56.3

58.3

60.6

1537.8

1228.7

990.4

805.0

1577.0

1296.8

1074.0

896.0

1405.7

1154.3

955.4

795.8

1276.9

1038.5

853.4

707.8

1319.0

1057.2

856.4

700.5
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3.39 (a) Propane T. :=369.8-K P. := 42.48-bar o = 0.152

T = (40 + 273.15)-K T = 313.15K P := 13.71-bar
T P
Te Pc

From Table 3.1 for SRK:

o =1 e=0 Q = 0.08664 Y = 0.42748

NP
a( " ::{1+<}).480+1.5740)—0.176032- 1—TIZJ

Ve (Jr.o Q-P;
=V Eq.(3.54) P = Eq. (3.53)
Q()rr QT, B( r>fr T,
Calculate Z for liquid by Eq. (3.56) Guess: Z =0.01

Given

Z=B(JePe +(F+ep (FrPe (£ + 0B (Fe.Pr '(lqz)rﬁ(ir(’;l;rzj

Z:R-T
Z:=Find(Z) Z=0055 V=2"" V=10472 Ans.
P mol
Calculate Z for vapor by Eq. (3.52)  Guess: 7Z =0.9

Given
Z - B( r:Pr

S A vy R ey o

3

ZR-T

Z = Find(Z) Z=078 v 22 V = 1480.7—> Ans.
P mol
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Parts (b) through (t) are worked exactly the same way. All results are
summarized as follows. Volume units are cu.cm./mole.
SRK, Liq. SRK, Vap. Rackett Pitzer

(a) 104.7
(b) 110.6
(c) 118.2
(d) 1285
(&) 142.1
) 150.7
() 161.8
(h) 177.1
(i) 146.7
() 156.9
k) 170.7
@ 191.3
(m) 61.2
(n) 63.5
(0) 66.3
(p) 69.5
(q) 61.4
(r) 63.9
(s) 66.9

) 70.5

1480.7

1157.8

904.9

703.3

1487.1

1189.9

947.8

747.8

1305.3

1035.2

815.1

628.5

1248.9

1003.2

810.7

657.4

1296.8

1026.3

817.0

652.5

94.2

98.1

102.8

109.0

1254

130.7

137.4

146.4

133.9

140.3

148.6

160.6

53.5

55.1

57.0

59.1

54.6

56.3

58.3

60.6

1537.8

1228.7

990.4

805.0

1577.0

1296.8

1074.0

896.0

1405.7

1154.3

955.4

795.8

1276.9

1038.5

853.4

707.8

1319.0

1057.2

856.4

700.5
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3.40 (a) Propane Tc := 369.8-K P := 42.48-bar o = 0.152

T = (40 + 273.15)-K T = 313.15K P := 13.71.bar
T P
Te P¢

From Table 3.1 for PR:

N
a( PO = 1+()J.37464+1.54226@—0.26992@2- l—Trzj

ci=1+2 e=1-y2 Q:=007779 ¥ :=0.45724

\I]a T (& QPI'
q(Jrr = Yo (o Eq.3.54)  B(Ir.Pr = Eq. (3.53)
Q- Ty Ty
Calculate Z for liquid by Eq. (3.56) Guess: Z =0.01

Given

R Y e

3
ZR-T
Z:=FindZ) Z=0049 Vv=2"" y=022  Ans.
P mol

Calculate Z for vapor by Eq. (3.52)  Guess: Z:=0.6

Given
Z - B( r:Pr

S e ey (R e

3

ZR-T

7 = Find(Z) Z = 0.766 v 22 V = 145452 Ans.
P mol
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Parts (b) through (t) are worked exactly the same way. All results are
summarized as follows. Volume units are cu.cm./mole.

PR, Vap. Rackett Pitzer

PR, Ligq.
(a) 92.2

(b) 97.6
(c) 104.4
(d) 113.7
(&) 125.2
) 132.9
() 143.0
(h) 157.1
(i) 129.4
() 138.6
(k) 151.2
a 170.2
(m) 54.0
() 56.0
(0) 58.4
(p) 61.4
(@ 54.1
(r) 563
(s) 589

t) 622

1454.5

1131.8

879.2

678.1

1453.5

1156.3

915.0

715.8

1271.9

1002.3

782.8

597.3

1233.0

987.3

794.8

641.6

1280.2

1009.7

800.5

636.1

94.2

98.1

102.8

109.0

1254

130.7

137.4

146.4

133.9

140.3

148.6

160.6

53.5

55.1

57.0

59.1

54.6

56.3

58.3

60.6

1537.8

1228.7

990.4

805.0

1577.0

1296.8

1074.0

896.0

1405.7

1154.3

955.4

795.8

1276.9

1038.5

853.4

707.8

1319.0

1057.2

856.4

700.5
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3.41 (a) For ethylene,  molwt == 28.054“=”—m1 T.:=2823K P, := 50.40-bar
mo
o = 0.087 T :=328.15-K P := 35-bar
T P
T, = — P, = — T, = 1.162 P, = 0.694
T Pc
From Tables E.1 & E.2: Zy :=0.838 Zy :=0.033
Z =70+ w71 Z = 0.841
18-k Z-n-R-T
ni=——5 Viotal = ———  Viotal = 0421m’ Ans.
molwt P
(b) T :=323.15K P = 115-bar Vioal = 0.25-m>
T P
T, = — T, = 1.145 Py = — P, = 2.282
Te c
From Tables E3 & E.4: Z := 0.482 Z1:=0.126
P-Viotal
Z=70+w7Z Z = 0.493 n:= = n = 2171 mol
Z-R-T

mass = n-molwt

3.42 Assume validity of Eq. (3.38).

3
Py := lbar Tq := 300K Vi = 23000—l
P1-Vy R-Ty
71 = z1=0922 B=—0:f( -1 B=-1942x10" 2L
R-Tq Py mol
With this B, recalculate at P, Py = Sbar
B-P, R-T{-Zy 3
Zy=1+ Zy=0611 Vyi=——° Vp=3046x10°—= Ans.
R-Tq mol

mass = 60.898kg =~ Ans.



343 T .= 753.15-K T :=513.9-K
P := 6000-kPa P. := 61.48-bar
= 0.422
o = 0.645 Bp := 0.083 — o
T,
0.172
B] = 0.139 - T
T,
R T
Vi=—F+H+ +o-By ‘R-—
(Bo+oB1 Ry
For an ideal gas: V = E
P
3.44 T := 320-K P := 16-bar
cm3
o = 0.152 V¢ :=200-——
mol
T
Tr = — TI' = 0.865
Tc
0.2857
[0-1. 02
Vliiq :== Ve Ze
0.8-Viank
Viank = O.35-m3 myjq = 2
Vliq
molwt
0.422
Bp:=0.083 -—— By =-0.449
1.6
Ty
0.172
By :=0.139-—— B; =-0.177
42
Ty
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T, := 369.8-K

Zo = 0.276

Pr:z_

cm3
Viig = 96.769—

T, = 1.466

P, = 0.976

Bo = —0.146

B =0.104

=080 —— Ans.

P := 42.48-bar

gm

mol

molwt := 44.097

P, = 0.377

mol

miiq = 127.594kg ~ Ans.



3
R-T T 3 cm
\Y =—+ +®-B1 ‘R-— Vyap = 1.318 x 107 —
vap P ()30 1 P. vap mol
0.2-Viank
Mygp =
Vvap myap = 2.341kg Ans.
molwt
345 T := 298.15-K T. := 425.1-.K T, = — T, = 0.701
C
P := 2.43-bar P := 37.96-bar P = — P, = 0.064
C
® = 0.200 Vyap = 16:m° molwt = 58.123- 2%
mol
0.422
Bp := 0.083 - —— Bo = —0.661
1.6
Ty
0.172
B;:=0.139 - —— B = -0.624
4.2
Ty
R-T T 3 o
V= — + ()30+ B ‘-R— V = 9.469 x 10° —
P P mol
Vvap
Myap = v Myap = 98.213kg Ans.
molwt
T
346 (a) T :=333.15K T. :=305.3-K T, = T T, = 1.091
C
P
P := 14000-kPa P := 48.72-bar Py = — P, =2.874
C
® = 0.100 Viotal = 0.15-m>  molwt := 30,072
mol
From tables E3 & E.4: Z := 0.463 Zy = -0.037
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3
ZR-T
7 =70+ 07 Z = 0.459 vi=220 0 voogogr L
P mol
Viotal
Methane = v Methane = 49.64kg  Ans.
molwt

b Viotal

= P := 20000-kPa PV=ZRT=ZRT,T,
40-kg
or  T,=2 where g= v o = 29.548 0%
Z R- T kg
0.889 P
Whence T, = at P, = — P, = 4.105
z P

This equation giving T, as a function of Z and Eq. (3.57) in conjunction with

Tables E.3 & E.4 are two relations in the same variables which must be
satisfied at the given reduced pressure. The intersection of these two
relations can be found by one means or another to occur at about:

Ty :=1.283 and Z :=0.693

Whence T :=TT¢

T=391.7K or [118.5.degC Ans.

347 Vgl = 0.15-m> T := 298.15-K

Te = 282.3.K Pe = 50.40-bar  ® := 0.087  molwt := 28.054 S~
mol
Viotal
Vi=—e— P-V=P.P.V=ZRT
40-kg
molwt]
R-T
or P, = a-Z where o= o = 4.675
Pc'V
T
Whence Py =4.6757Z at T,:= I T, = 1.056
C
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This equation giving P as a function of Z and Eq. (3.57) in conjunction with

Tables E.3 & E.4 are two relations in the same variables which must be
satisfied at the given reduced temperature. The intersection of these two
relations can be found by one means or another to occur at about:

P,:= 1582 and Z:=0338 P:=P.P, P=7973bar  Ans.
Viotal 3
3.48 myater == 15-ke Viota] = 0.4-m> v v - 26667
Myyater gm

Interpolate in Table F.2 at 400 degC to find: P = 9920-kPa Ans.

Ty
3.49 T; := 298.15-K T. :=305.3-K Ty = T Ty = 0.977
C
Py
Py :=2200-kPa P := 48.72-bar Py = 5 Py = 0.452
C
Vioal = 0.35-m° ® = 0.100
From Tables E.1 & E.2: Z; := .8105 Z1 :=-0.0479
Z-R-T; it
Z=70+w-7Z Z = 0.806 Vi = Vi =908—-
P mo
Tz
Ty :=493.15-K Ty = — T = 1.615
C
Assume Eq. (3.38) applies at the final state.
0.422
Bg := 0.083 — Bg = —0.113
1.6
T2
0.172
B :=0.139 - B =0.116
4.2
T2
R-T»
Py = Te P) = 42.68bar Ans.

\ ()3() +m-Bj -R-P—

C
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3.50 T :=303.15K Tc :=304.2.K Ty = — T = 0.997
C
3 gm
Viotal := 0.5-m P, :=73.83-bar o :=0.224 molwt :=44.01-—
mol
0.422
Bp :=0.083 - —— Bg = —0.341
1.6
Tr
0.172
B; :=0.139 - —— By = -0.036
42
Tr
3 Viotal : Cm3
- ) V=22x10—
10-kg ol
molwt}
p . R-T
- T, P = 10.863bar  Ans.
V- +®-B1 -R-—
(Bo+oB1 Ry
3.51 Basis: 1 mole of LIQUID nitrogen
Tn
Tp=773-K Te:=126.2:K T, = T T; = 0.613
C
P
P = l-atm P := 34.0-bar P, = > P =0.03
C
— o gm
o = 0.038 molwt := 28.014 T Viig = 34.7.om’
0.422
B() = 0.083 — —]6 BO — —0.842
Tr
0.172
By =0.139 - —— By =-1.209
42
Ty
1+(B o 0.9
Z:=1+ +o-B) -— Z = 0.957
0 1 T,
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P-Viiq
Z-R-Ty

Nyapor =

Final conditions:

2'Vliq crn3
ntotal = l'mOI + nvapor V = V = 69.005_
Ntotal mol
T
T := 298.15-K T, = — T, = 2.363
Tc
R-T
Pig = ~ Pig = 359.2bar
Use Redlich/Kwong at so high a P.
Q = 0.08664 Y = 0.42748 o(Tr) = Tr ~ a(f; =0.651
2 .2
Ye -R™-T Q-R-T
a = OF °  Eq.(342) b= ¢ Eq.(3.43)
PC C
3
_ 0,901 > 28T e cm’
a=>u b = 26.737—
mol mol
R-T
= - a Eq. (3.44) P = 450.1bar Ans.
V-b V(V+b)
cm’
3.52 For isobutane: T, := 408.1- K P; = 36.48-bar Vi = 1.824.—
gm
T :=300-K Py := 4-bar Ty :=415-K P := 75-bar
T p Py T i) P P>
Tr = — rl = — 2= 2 =
C C TC PC
Ty = 0.735 Py = 0.11 Ty = 1.017 Py = 2.056
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From Fig. (3.17):

pr1 =245

The final T > T¢, and Fig. 3.16 probably should not be used. One can easily

show that
- P-Ve with Z from Eq. (3.57) and
Pr= o RoT Tables E.3 and E.4. Thus
cm
Ve i=262.7— o = 0.181 Zo = 0.3356 Z1 = —-0.0756
mol
Z = 0322 PV 1774
Z=720+0-7Z = 0. = ~ 1.
0 1 Pr2 ZRT, Pr2
Prl cm3
Eq. (3.75): Vo = Vi— Vi = 2519—  Ans.
Pr2 Sl
3.53 For n-pentane: T, = 469.7-K P, := 33.7-bar o= 0.63-g—m3
cm
Tp :=291.15-K Py := 1-bar Ty :=413.15-K P> := 120-bar
T I P Pl T 12 P F2
1 =— =— =— = —

r . rl - r2 Te r2 Pe
T,q = 0.62 P, = 0.03 Ty = 0.88 P,y = 3.561
From Fig. 3.16): p,; = 2.69 pr2 =227

Pr2 gm
By Eq. 3.75), pp:=p|— py = 0.532=— Ans.
Pr1 cm
T
3.54 For ethanol: T, :=513.9-K T:=453.15K T;:= I T, = 0.882
C
P
P.:=61.48-bar P := 200-bar P, = — P = 3.253
C
Cm3 m
Vo= 16722 molwt := 46.069- 2
mol mol

59



From Fig. 3.16:

3.55 For ammonia:

T :=405.7-K

P, := 112.8-bar
crn3

Vei=72.5——
mol

Eq. (3.72): Vliquid = V¢

0.422
B() = 0.083 — —16
T,
0.172
Bl =0.139 - T
T

Vvapor ‘= % + ()3() + -Bq -R-P—

AV := Vyapor — Vliquid

pr=2.28

molwt

T :=293.15-K

P := 857-kPa

Ze = 0242

P P = 70
o= O.629g—n; Ans.
cm
T
T, = — T, = 0.723
T
p
Pr = — Pr = 0.076
Pc
® = 0253

0.2857 3
zc[()_Tr ] Viiquid = 27.11 —

By = —0.627

By =-0.534

Te

C
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3
Vvapor = 26 1 6 ﬂ
mol

3
AV = 2580 Ans.
mol



Alternatively, use Tables E.1 & E.2 to get the vapor volume:

Zo = 0.929 Z1 = -0.071 Z =70+ 0Z Z=0911
3
Vyapor = 21 Vyapor = 2591 —
vapor -— P vapor mol
3
cm
mol

3.58 10 gal. of gasoline is equivalent to 1400 cu ft. of methane at 60 degF and 1
atm. Assume at these conditions that methane is an ideal gas:

3
ft™-at
R =07300 — 21 T = 5 i 1 = il

Ibmol-rankine

P
V = 1400-ft° =¥ n = 3.689 Ibmol
R-T
For methane at 3000 psi and 60 degF:
T
T¢ := 190.6-1.8-rankine T := 519.67-rankine Ty = = T, = 1.515
C
. P
P. := 45.99-bar P := 3000-psi P, = > P, = 4.498
C
o = 0.012
From Tables E.3 & E.4:
Zgy :=0.819 Z1:=0.234 Z:=7Zp+ w7 Z = 0.822
Z-n-R-T
Viank = —nP Viank = 5.636 ft3 Ans.
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3.59 T = 25K

P :=3.213bar

Calculate the effective critical parameters for hydrogen by equations (3.58)

and (3.56)
43.6
Tei=—K Te = 30.435K
21.8K
1+
2.016T
20.5
P, := ———bar P. = 10.922bar
44.2K
1+
2.016T
o =0
P T
Py = — P, =0.294 T = — Ty = 0.821
Pc Te
R-T cm3
Initial guess of volume: Vi=—0 V = 646.903 —
P mol
Use the generalized Pitzer correlation
0.422 0.172
Bp = 0.083 — —— Bgp=-0495 B;:=0139-—— B] =-0.254
1.6 4.2
T; T;
P; .
Z =1+ ()30 + o-Bj T Z = 0.823 Ans.  Experimental: Z = 0.7757
r
For Redlich/Kwong EOS:
c =1 e:=0 Q = 0.08664 Y = 0.42748 Table 3.1
Ye
~-05 r
a(Jfr =T Table 3.1 a(rr == Q—Qf Eq. (3.54)
Q-P
B(Fr.Pr = Eg. (3.53)
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Calculate Z Guess: Z =09

Given

Z=1+ B()Tr,Pr - q()l“r 'B()rf’Pr ,ny_fé)(rr flr)r

Experimental: Z = 0.7757

Eq. (3.52)

Z = Find(Z) Z =0.791 Ans.

3.61 For methane: @ := 0.012 T := 190.6K P; := 45.99bar

.. 5
At standard condition: T := l:(60 - 32)-5 + 273.15:|K T = 288.706 K
Pitzer correlations: P := latm
T P
Tr = — Tr = 1.515 Pr = — PI' = 0.022
Te P¢
0.422 0.172
Bgp :=0.083 - —— Bgp =-0.134 Bj:=0.139-—— B1 =0.109
1.6 4.2
T T;
Zo = 14 Byt Zo= 0998 7| =Bt
=1+Bg— = 0. =B —
0 0 ) 0 1 1 T, Z1 = 0.00158
ZR-T m’
7 =70+ m-7 Z = 0.998 Vi=—— Vi =0.024—
P mol
.. 5 .
(a) At actual condition: T := I:(SO — 32).6 4 273,15:|K P := 300psi
Pitzer correlations: T = 283.15K
T P
Ty = — T, = 1.486 Py = — P, = 0.45
Te Pe
0.422
Bg :=0.083 - —— Bg = —0.141
1.6
T;
0.172
By :=0.139 - —— B1 = 0.106
4.2
Ty
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Zy:=1+Bp—

T

Z =70+ w7
3
fit
q = 150-10° =—
day
1
M) n; = L
Vi

(¢) D :=22.624in

Zo = 0.957 71 =B — Z1 = 0.0322
r
ZR-T m
Z = 0.958 Vy=— V5 =0.00109—
P mol

2 A
= - —_— ns.
a2 = ary
- Ans.
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3.62 0'012\ 0'286\ Use the first 29 components in Table B.1
0.087 0.281 sorted so that © values are in ascending
order. This is required for the Mathcad
0.1 0.279 . .
slope and intercept functions.
0.140 0.289
0.152 0.276
0.181 0.282
0.187 0.271
0.19 0.267
0.191 0.277
0.194 0.275
0.196 0.273
0.2 0.274
0.205 0.273
0.21 0.273
o= 021 Zc :=10.271
= sl Zc = (-0.091
0.212 paro)| == slope(jo;Za = (C009)
0.218 0.275 | b= intercept(}p,Zc = (0.291)
0.23 0.272
ri= corr()n,ZC = (-0.878) r2 = 0.771
0.235 0.269
0.252 0.27
0.262 0.264 —
0.28 0.265 _
0.297 0.256 ]
0.301 0.266
0.302 0.266 ]
0.303 0.263 0.4
0.31 0.263 o)
0.322 0.26 The equation of the line is: Ans
Ze= 0.291 - 0.0910 )
0.326 ) 0.261 )

65



7 5

T1 = 298.15K Py := lbar
Py := Sbar
T3:=T P3 := Sbar

Step 1->2 Adiabatic compression

mol

Wiz =AUy,

Step 2->3 Isobaric cooling
AUps = Cy-(Jr3 - T2
AHp3 := Cp:(Jl3 - T2
Q23 := AHp3

W23 = -R- ()Ts -Ts

Step 3->1 Isothermal expansion
AUz = Cv'()Tl -T3
AH3; = Cp(J1 - T3

66

Ty =472.216K

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.



Pl\
Q31 := —R-T3:In| — Ans.
P3}
W3 = -Q31 Ans.
For the cycle

Qcycle == Q12+ Q23 + Q31 Ans.

Weycle = W12+ Wa3 + W3y Ans.

Now assume that each step is irreversible with efficiency: 1 := 80%

Step 1->2 Adiabatic compression

12 = AnS.
n ns
Step 2->3 Isobaric cooling
23 = Ans.
n ns
Step 3->1 Isothermal expansion
For the cycle
Qcycle = Q12+ Q23 + Q31 - Ans.
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3.67 a) PV data are taken from Table F.2 at pressures above 1atm.

125 2109.7)
150 1757.0
175 1505.1
200 13162 | cm>
P = kPa V= —_— T := (300 + 273.15)K
225 1169.2 | gm
250 1051.6
M = 18.01 2L
275 955.45 mol
300 ) 875.29 )
—> —>
P-V-M 1
Z = v pi=— 1:=0..7
R-T V-M

If a linear equation is fit to the points then the value of B is the y-intercept.
Use the Mathcad intercept function to find the y-intercept and hence, the

value of B
Zi—1 ) cm3
Y= Xi:=pi B :=intercept(X,Y) B=-12842—— Ans.
Pi mol
A = slope(X,Y) A = 1.567 10532
mol
1 - 1 - 1
X = 028 17202 gy 0.2
3 3 3
cm cm cm

Below is a plot of the data along with the linear fit and the extrapolation to
the y-intercept.
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-115

-120

(Z-1)/p

—125

-130

0 210 ° 410 ° 6-10 810 °
p
Hoo (z-1yp
Linear fit

b) Repeat part a) for T =350 C

PV data are taken from Table F.2 at pressures above 1atm.

125
150
175
200
225
250
275
300 )

kPa

—

P-V-M
7 =

R-T

p:

2295.6)
1912.2
1638.3
1432.8
1273.1
1145.2
1040.7

953.52 )
—
1

VM

3
T (350 +273.15)K
gm
M = 18.01 22
mol
1:=0..7

If a linear equation is fit to the points then the value of B is the y-intercept.
Use the Mathcad intercept function to find the y-intercept and hence, the
value of B

Y =

Zi—1

Pi

Xi = pj

3
B = intercept(X,Y) B = —105.899 % Ans.
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6
5 cm

A = slope(X,Y) A =1.784x%x10 —
mol
| I 1 - 1
X = 0% o709 g0 2%
3 3 3
cm cm cm

Below is a plot of the data along with the linear fit and the extrapolation to
the y-intercept.

—90

—-100

(Z-1)/p

—-105

—-110

0 210 ° 410 ° 6-10 810 °
p

Hoo (z-1yp

— Linear fit

¢) Repeat part a) for T =400 C
PV data are taken from Table F.2 at pressures above 1atm.

125 2481.2))
150 2066.9
175 1771.1
200 15492 | om>
P:= kPa V= —— T := (400 +273.15)K
225 1376.6 | gm
250 1238.5
M = 18.01 2%
275 1125.5 mol
300 ) 1031.4 )
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— —>
P-V-M 1
= pi=— 1:=0..7
R-T V-M

If a linear equation is fit to the points then the value of B is the

y-intercept.
Use the Mathcad intercept function to find the y-intercept and hence,

the value of B

Zi—1 . cm
Y = Xi:=pi B :=intercept(X,Y) B =-89.902—— Ans.
Pi mol
A = slope(X,Y) A = 2.044 x 10532
mol
| R 1 - 1
X = 022 197209 g2 0%
3 3 3
cm cm cm

Below is a plot of the data along with the linear fit and the extrapolation to
the y-intercept.

=70
=75 1~ -
g-
:]; =80 1 - 3 —
|
O
=85 1 0 -
O
0 | =5 I -5 I —5 -5
0 2-10 4-10 6-10 8-10
p
R VA )
— Linear fit
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(Z - 1)'Z'Tr Pr
3.70 Create a plot of Vs
r Z-Ty
Data from Appendix E at T, =1
0.01) 0.9967 )
0.05 0.9832
0.10 0.9659
Py :=10.20 Z :=|0.9300 Ty =1
0.40 0.8509
0.60 0.7574
0.80 ) 0.6355 )
—> —_
Pr (Z - 1)'Z'Tr
= Y =—"—
Z'Tr Pr
Create a linear fit of Y vs X
Slope := slope(X,Y) Slope = 0.033
Intercept := intercept(X,Y) Intercept = —0.332
Rsquare := corr(X,Y) Rsquare = 0.9965
-0.28 |
.o
v 03 -
ooo /,/"’E'
Slope-
“_o_pe X+Intercept_0.32 B ’—”’_’,ﬂ' |
.-
Her O
034 | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4
X
The second virial coefficient (Bhat) is the value when X -> 0
Bhat := Intercept Bhat = —0.332  Ans.
0.422
By Eqgns. (3.65) and (3.66) B0 := 0.083 — —0 B0 = —0.339 Ans.
T,

These values differ by 2%.
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3.71 Use the SRK equation to calculate Z

T
T; = 150.9-K T :=(30+273.15) T; = T T, = 2.009
C
P
P. := 48.98-bar P := 300-bar P, = > P, = 6.125
C
o = 0.0
c =1 e =0 Q = 0.08664 Y = 0.42748 Table 3.1
N
) 3 Table 3.1
a( o =] I+ ()).480+ 1.5740 — 0.1760  -{ 1 — Ty j
Ye ,® Q-pP
q(re = L Eq. (3.54) B(re.Pr = - Eq. (3.53)
Q-Ty r
Calculate Z Guess: Z =09
Given Eq. (3.52)
Z- B()rrapr

e Y | PN (g o

ZR-T
7 = Find(Z) 7 = 1.025 v=221 V=861 Ans.
P mol

This volume is within 2.5% of the ideal gas value.

3.72 After the reaction is complete, there will be S moles of C,H, and 5 moles of
Ca(OH),.

First calculate the volume available for the gas.

n:=>5mol Vt:= 0.4-1800-cm3 - 5-m01-33.0-£ Vt = 555 crn3
mol

Vt cm3

Vi=— V=111—

n mol
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Use SRK equation to calculate pressure.

T
T := 308.3-K T:=(125+273.15)-K Ty = T T, = 1.291
C
P. := 61.39-bar o = 0.0
c =1 e=0 Q = 0.08664 Y = 0.42748 Table 3.1
NP
) 3 Table 3.1
oc( O = l+()).480+1.5740)—0.1760) A1-T; j
Ye ()l'r,oa
= Eq. (3.54)
a(x o
a( Q) -RZ-TC2 R-T¢
a:=W¥- Eq. (3.45) b:=Q- Eq. (3.46)
Pc Pe
3 bar- cm3 3
a=399m b=36.175£
mol mol
R-T
P = 2 P=197.8bat  Ans.

" V-b V(V+b)

3.73 mass := 35000kg T := (10 +273.15)K

® = 0.152 T, == 369.8K P, = 42.48bar M = 44.097 -2
mol
Zo = 0276 Ve:=20002L 4 12 n = 7.937 x 10° mol
mol M
a) Estimate the volume of gas using the truncated virial equation
T P
T = — T, = 0.766 P := latm P, = —
Te Pe
0.422 0.172
BO = 0.083 — ——= Eq.(3-65) Bl :=0.139- —= Eq. (3-66)
1.6 4.2
Ty T;
B0 = —0.564 B1 = -0.389

74



p
Z:=1+(B0+ 0Bl ?r Z = 0.981

T

3 Z-n-R-T 3

P

3
This would require a very large tank. If the _ |6 3
tank were spherical the diameter would be: D= T Vi

Vit : Vt = —2.379 x 107m3m

b) Calculate the molar volume of the liquid with the Rackett equation(3.72)

0.2857
lig = Vetce Vliq = 85.444 —
mol
P
P := 6.294atm P, = — P, = 0.15
Pc
Py
Z=1+\B0+»-Bl -—
(B T Z = 0.878
v, . ZRT o
T p Viap = 3.24x 10" —

Guess: Vi := 90%: Vijg'n

Vitank L 10% Vitank -

Vliq VVap

Given  90%: n Vtank = Find()‘/tank

Viank = 75.133m’°
This would require a small tank. If the tank 3 6
were spherical, the diameter would be: D = [—Viank D =5235m
\I T

Although the tank is smaller, it would need to accomodate a pressure of 6.294
atm (92.5 psi). Also, refrigeration would be required to liquify the gaseous
propane stream.
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Chapter 4 - Section A - Mathcad Solutions

4.1 (a) Ty :=473.15-K T :=1373.15-K n := 10-mol

ForSO2: A =569 B:=0801-10° C=00 D :=-101510

AH := R-ICPH(),T,A,B,C,D
kJ

AH = 47.007 — Q = n-AH
mol
Q = 470.073k]  Ans.
(b) Tp := 523.15-K T = 1473.15-K n := 12-mol
For propane A = 1213 B = 28.785:10 ° C := 882410 ° D =0
AH := R-ICPH(JFp,T,A,B,C,0.0
k
AH = 161.834— Q = n-AH
mol :
Q =1942x10"kJ Ans.
4.2 (a) Tp:=473.15-K n := 10-mol Q = 800-kJ
14.394.10° —4392.10"°
For ethylene: A=1424 B:=— Ci ="
K 2
K
T := 2 (guess) Given
B C
Q= n-R-|:[A-ﬁ"o~() -1 + ?iroz-() 1 } ?%ro:‘-() o1 }
t := Find(X T = 2.905 T:=1To T = 13745K | Ans.
(b) Tg := 533.15-K n := 15-mol Q :=2500-kJ
31.630-10° 987310 °
For 1-butene: A =1967 B=—~— ~ Ci =" ""
K 2
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1:=3 (guess) Given

: 201 ] S
Q=nR||ATy() -1 MR I EEE RV
t := Find(X T = 2.652 T:=1Tp T=1413.8K Ans.

(€) T := 500-degF n := 40-Ibmol Q = 10%BTU

Values converted to SI units

To == 533.15K n = 1.814 % 10 mol Q = 1.055x 10°kJ

14.394.10"° —4392.10" %

For ethylene: A = 1424 B=—" "~  (C=-——"""
K 2

T := 2 (guess) Given

Q= n-R-HA-TO-() -1 +§-ﬁ"02-()2—1 }%-mﬁ-()tl }

t := Find(X T = 2256 T:=1Ty T = 1202.8K

Ans.
T = 1705.4degF

4.3 Assume air at the given conditions an ideal gas. Basis of calculation is 1 second.

P = 1-atm To := 122-degF V= 250-ft3 T := 932-degF
Convert given values to SI units V =7.079 m3
T := (T — 32degF) + 273.15K To := (Jfo — 32degF +273.15K
T =773.15K To = 323.15K
P
n = 2V n = 266.985mol
R- Ty
Forair: A :=3355 B:=057510° C:=00 D :=-001610

AH = R-ICPH()TO,T,A,B,C,D
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k
AH = 13.707—J Q :=n-AH

mol :
Q = 3.469 x 100 BTU Ans.

4.4 molwt := 100.1.- 2= To = 323.15K T := 1153.15K
mol
o o 10000-ke n = 9.99 x 10*mol
molwt
For CaCO3: A = 12572 B :=263710° C:=00 D :=-3.120-10°
AH := R-ICPH(),T,A,B,C,D
4 J ) 6
AH = 9.441 x 10* —— Q := n-AH Q =94315x 10°k]  Ans.

mol

4.7 Let step 12 represent the initial reversible adiabatic expansion, and step 23
the final constant-volume heating.

T; := 298.15-K T3 := 298.15-K Py == 121.3-kPa
P>
P :=101.3-kPa P3 := 104.0-kPa Ty = T3-P—
3
CP = 30 (glleSS) T2 = 29041K
mol-
R
Cp
Given  Tp = Ty 2\ Cp := Find(C Cp = 56.95 Ans
P1) b ’ . " mol-K
4.9 a) Acetone: T := 508.2K P;:=47.0lbar Ty :=329.4K
kJ T
AH,, = 29.10 — Ty = — Tpy = 0.648
mol Te
Use Eq. (4.12) to calculate AH at T  (AH, ,,)
P
1.092| In Pel)_ 1.013\
AH, .1 == R- Ty bar) ) kJ
neale = 0.930 — Try AHpcale = 30.108— Ans.
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To compare with the value listed in Table B.2, calculate the % error.

AHyca1c — AH
Yoerror 1= ———— - %error = 3.464 %
AH,
Values for other components in Table B.2 are given below. Except for
acetic acid, acetonitrile. methanol and nitromethane, agreement is within
5% of the reported value.

AH,, (kJ/mol) % error
Acetone 30.1 3.4%
Acetic Acid 40.1 69.4%
Acetonitrile 33.0 9.3%
Benzene 30.6 -0.5%
iso-Butane 21.1 -0.7%
n-Butane 22.5 0.3%
1-Butanol 41.7 -3.6%
Carbon tetrachloride 29.6 -0.8%
Chlorobenzene 355 0.8%
Chloroform 29.6 1.1%
Cyclohexane 29.7 -0.9%
Cyclopentane 27.2 -0.2%
n-Decane 40.1 3.6%
Dichloromethane 27.8 -1.0%
Diethyl ether 26.6 0.3%
Ethanol 40.2 4.3%
Ethylbenzene 35.8 0.7%
Ethylene glycol 51.5 1.5%
n-Heptane 32.0 0.7%
n-Hexane 29.0 0.5%
Methanol 38.3 8.7%
Methyl acetate 30.6 1.1%
Methyl ethyl ketone 32.0 2.3%
Nitromethane 36.3 6.7%
n-Nonane 37.2 0.8%
iso-Octane 30.7 -0.2%
n-Octane 34.8 1.2%
n-Pentane 259 0.3%
Phenol 46.6 1.0%
1-Propanol 41.1 -0.9%
2-Propanol 39.8 -0.1%
Toluene 334 0.8%
Water 42.0 3.3%
0-Xylene 36.9 1.9%
m-Xylene 36.5 2.3%
p-Xylene 36.3 1.6%
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b) 469.7) 33.70)) 25.79))
507.6 30.25 28.85 | kJ
Te = K P; = bar AH,, = ——
562.2 48.98 30.72 | mol
560.4 ) 43.50 ) 29.97)
[(36.0) i 366.3 ) 72.150
68.7 366.1 | J 86.177 | gm
Tp = +273.15|K  AHps = — M= =
80.0 4333 lgm 78.114 |mol
1180.7 ) | 392.5 ) 82.145 )
Tn (25 +273.15)K N
Tr=—  Tp:= AHy = (AHpsM  AHj := AH,
Te Te
0.658 ) 26.429)
0.673 31.549 | kJ
0.628 33.847 | mol
0.631 ) 32242 )
0.38 >
1-Tp AHpcalc — AHp
AHyea1c == | AHy- 2 Eq. (4.13) %error = — >
=T ) AH,
26.448) 26.429") 0.072
31.533 | kJ 31.549 | kJ ~0.052
AHpcqlc = —— Ans. AH; = ——  %etror = %
33.571 | mol 33.847 | mol ~0.814
32.816 ) 32.242 ) 1.781 )

The values calculated with Eq. (4.13) are within 2% of the handbook values.

4.10 The In P vs. 1/T relation over a short range is very nearly linear. Our
procedure is therefore to take 5 points, including the point at the
temperature of interest and two points on either side, and to do a linear
least-squares fit, from which the required derivative in Eq. (4.11) can be
found. Temperatures are in rankines, pressures in psia, volumes in cu
ft/lbm, and enthalpies in Btu/lbm. The molar mass M of tetrafluoroethane is
102.04. The factor 5.4039 converts energy units from (psia)(cu ft) to Btu.
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(@) T:=459.67+5 AV :=1.934-0.012 i=1.5

18.787)) -5)
21.162 0
1
Data: P :=| 23.767 ti= 5 Xj = ——— i .= In( P;
LT 45067 (P
26.617 10
29.726 ) 15 )

slope := slope(x,y) slope = —4952

(=P)

dPdT := 23 slop.dPdT = 0.545

T

o T-AV-dPdT
' 5.4039

AH = 90.078 Ans.

The remaining parts of the problem are worked in exactly the same
way. All answers are as follows, with the Table 9.1 value in ():

(a) AH = 90.078 (90.111)
(b) AH = 85.817 (85.834)
(c) AH = 81.034 (81.136)
(d) AH = 76.007 (75.902)

(e) AH = 69.863 (69.969)

4.11 119.377) 536.4") 5472 334.3)
M = | 32.042 I-g—m1 Te = | 512.6 |- K P := | 80.97 |-bar Ty :=|337.9 | K
mo
153.822 ) 556.4 ) 45.60 ) 349.8 )
. . H
AH is the value at AHeXP is the given PO T
273.15K n
0 degC. value at the normal T = —— Ty = —
boiling point. Te Te
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270.9 246.9 0.509 0.623
J J
AH :=| 1189.5 | — AHgyp = |[1099.5 [ — Ty =|0533 | Tp=|0.659 |
gm gm
217.8 ) 194.2 ) 0.491 ) 0.629 )
0.38
1-Te)
(a) By Eq. (4.13) AH,, :=| AH-
1 - Trl)
AH, - AH
PCE := —e"p 100<y\ This is the % error
Hexp )
P
1.092| In Pl 1.013\
R-Ty bar ) )
(b) By Eq. (4.12): AH,, := :
M 0.930 — Tpo
AH, — AH A
PCE := —e"p 100%
AHey,
4.12 Acetone
o := 0.307 T, := 508.2K P, := 47.01bar Z. = 0233
cm3 kJ
V¢ =209 — Ty = 329.4K P := latm AH, = 29.1—
mol mol
T P
T, = — T, = 0.648 P, = — P, = 0.022
Te Pc
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Generalized Correlations to estimate volumes

Vapor Volume

0.422
Bo = 0.083 - ——= By = —0.762 Eq. (3.65)
Tr
0.172
By :=0.139 - —— B1 =-0.924 Eq. (3.66)
4.2
Ty
Py Py
Z:=1+d8Bp—+ ‘-B;-— Z =0.965 (Pg. 102)
Ty Ty
ZR-T, 4cm’
V= V =2.609%x 10 —
P mol
Liquid Volume
2
(=T om’
Vsat == VeZe Eq. 3.72) Vgat = 70.917 —
mol
Combining the Clapyeron equation (4.11) AH = T-AV-d— Pgat
dT
B
with Antoine's Equation Py, = ¢ T+C
B
B [A_ T+C J
gives AH = T-AV-———-¢ (T+0)
(T+0O)

4 cm3
AV =V -=Vgt AV =2.602x 10 —
mol

A = 143145 B = 2756.22 C =228.060
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_ . _
Tp—273.15K )
B K e ) | kPa
AH.,c := Tp-AV- e iy
calc > K
Tp—273.15K )
——+C
i K ) ]
k AH gy — AH
AH g1 = 20.662— Ans. Yperror = — ¢ N orarror = 1.9%
mol AH,

The table below shows the values for other components in Table B.2. Values
agree within 5% except for acetic acid.

AH, (kJ/mol) % error

Acetone 29.7 1.9%
Acetic Acid 37.6 58.7%
Acetonitrile 31.3 3.5%

Benzene 30.8 0.2%
iso-Butane 21.2 -0.7%

n-Butane 22.4 0.0%

1-Butanol 43.5 0.6%
Carbon tetrachloride 299 0.3%
Chlorobenzene 353 0.3%
Chloroform 29.3 0.1%
Cyclohexane 29.9 -0.1%
Cyclopentane 27.4 0.4%
n-Decane 39.6 2.2%
Dichloromethane 28.1 0.2%
Diethyl ether 26.8 0.9%
Ethanol 39.6 2.8%
Ethylbenzene 35.7 0.5%
Ethylene glycol 53.2 4.9%
n-Heptane 31.9 0.4%
n-Hexane 29.0 0.4%
Methanol 36.5 3.6%
Methyl acetate 30.4 0.2%
Methyl ethyl ketone 31.7 1.3%
Nitromethane 34.9 2.6%
n-Nonane 37.2 0.7%
iso-Octane 30.8 -0.1%
n-Octane 34.6 0.6%
n-Pentane 259 0.2%
Phenol 45.9 -0.6%
1-Propanol 41.9 1.1%
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2-Propanol 40.5 1.7%

Toluene 33.3 0.5%
Water 41.5 2.0%
0-Xylene 36.7 1.2%
m-Xylene 36.2 1.4%
p-Xylene 35.9 0.8%

4.13 Let P represent the vapor pressure.

T := 348.15-K P := 100-kPa (guess)
P 5622.7-K T
Given In —\ = 48.157543 — ——— — 4.70504-1n —\
kPa] K)
5622.7-K  4.70504 b
P = Find(P) dPdT := P- _ 1 apar = 0,029
TZ T j K
joule cm3
P = 87.396kPa AH = 31600-J Vliq = 96.49-—
mol mol
Clapeyron equation: dPdT = L
T()" ~ Vliq
AH
V = vapor molar volume. V := Vjjq +
T-dPdT
P-V \ cm3
Eq. (3.39) B:=V|—- B = -1369.5—  Ans.
R-T } mol

4.14 (a) Methanol: T, := 512.6K P. := 80.97bar T, = 3379K

Ap = 13431 By :==-512810 >  Cp:= 131.13.10"°
BL CL
CpL(T) = | AL + —-T + —Z-Tz\-R
K K )
-3 -6
Ay = 2211 By := 12.216-10 Cy = ~3.450-10
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By Cv

K )
P := 3bar Tgat := 368.0K Tp:=300K Tp:=500K

Estimate AHv using Riedel equation (4.12) and Watson correction (4.13)

T Tsat
Tpy = — Ty = 0.659 Trat = ——  Tyeat = 0.718
Te Tc
P
1.092-(1n(b—c) - 1.013} .
AH, = ad R-Ty AH, = 38.301 —
0.930 — Ty mol
0.38
1 - Trsat\ kJ
AH, = AH, | ——— AH, = 35.645——
1 - ij mol
Tsat T2 Kl
AH := J CppL(T)dT + AHy, + J Cpy(T)dT AH = 49.38 —
mol
T Tsat
kmol
n = 100—2 Q := n-AH Q=1372x10°kW  Ans.
KJ kJ
(b) Benzene: AH, = 28273 —— AH = 55296 ——  1Q = 1.536-10°kW
mol mol
k k
() Toluene  AH, = 30.625—— AH = 65.586—— Q= 1.822-10°kW
mol mol

4.15 Benzene T := 562.2K P := 48.98bar Ty == 353.2K

J
mol-K

Tlsat = 451.7K TZSat = 358.7K Cp = 162'
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Estimate AHv using Riedel equation (4.12) and Watson correction (4.13)

T Tosat
T = — Tn = 0.628 Trosat == = Tr2sat = 0.638
Te Tc
P
1.092-(1n(b—c) - 1.013} .
AH, = z R-Ty AH, = 30.588 ——
0.930 — Ty mol
0.38
1- Tr2sat\ kJ
AH, = AH:| —— AH, = 30.28 —
1 -Tm j mol

Assume the throttling process is adiabatic and isenthalpic.

Guess vapor fraction (x): x := 0.5

Given Cp(JFisat—T2sat = x-AH,  x:=Find(x) x=0498 Ans.

4.16 (a) For acetylene: T, :=308.3-K P := 61.39-bar T, = 189.4-K

T = 298.15-K
Th T
Ty = — T = 0.614 T, = — T, = 0.967
m TC m T Tc T
P
h{b—c) ~1.013 .
AH, = R-Tp-1.092- — AH, = 16.91 —
0.930 - Ty mol
0.38
1-T; ) kJ
AH,, := AH,- AH, = 6.638 —
J kJ
AHf = 227480 —— AH298 = AHf— AHV AH298 = 220.8— Ans.
mol mol

87



(b) For 1,3-butadiene: AH,gg = 88.5£

mol
kJ
(c) For ethylbenzene: AH)gg = —12.3-——
mol
kJ
(d) For n-hexane: AHygg = —198.6-—
mol
kJ
(e) For styrene: AHjgg = 103.9-—
mol

417  1stlaw: dQ = dU — dW = Cy-dT + P-dV A)
Ideal gas: P-V=RT and P-dV + V-dP = R-dT
Whence V-dP = R.dT - P-dV (B)

Since  P.-vV® = const  then p-5-voLav = —vO.qp

from which V-dP = -B- -dV
Combines with (B) to yield: P-dV = R—dT
1-0
Combines with (A) to give: dQ = Cy-dT + R-dT
R-dT
or dQ = Cp-dT —R-dT + d
1-98
which reduces to dQ = Cp-dT + -R-dT
Cp 3
or dQ=|—+ —\-R-dT ©
R 1-3)

Since C, is linear in T, the mean heat capacity is the value of
Cyp at the arithmetic mean temperature. Thus Tam = 675
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4.18

4.19

Cppy = R-()S.SS +0.57-10 Ty

Integrate (C): Ty := 950-K T1 := 400-K o :=1.55
Chm & ) ]
= —+—— R(T2-T = 6477.5— Auns.
Q (R =y (r2- Ty Q ol
o
o-1
Tz\
Py := 1-bar Py =Py | — Py = 11.45bar  Ans.
le

For the combustion of methanol:
CH3OH(g) + (3/2)02(g) = CO2(g) + 2H20(g)

AHygg = —393509 + 2-(—241818) — (=200660)
AHygg = —676485

For 6 MeOH: AHygg = —4,058,910-]  Ans.

For the combustion of 1-hexene:

C6H12(g) + 902(g) = 6CO2(g) + 6H20(g)

AH»ygg = 6-(=393509) + 6-(-241818) — (—41950)

AHjgg = —3770012 AHygg = —3,770,012-J Ans.

Comparison is on the basis of equal numbers of C atoms.

C2H4 + 302 =2CO02 + 2H20(g)

J
Ao i= [2:(-241818) + 2:(-393509) - 52510]-—
mo

Parts (a) - (d) can be worked exactly as Example 4.7. However, with
Mathcad capable of doing the iteration, it is simpler to proceed differently.
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Index the product species with the numbers:
1 = oxygen

2 = carbon dioxide

3 = water (g)

4 = nitrogen

(a) For the product species, no excess air:

0 ) 3.639) 0.506 ) —0.227))
2 5.457 1.045 | 1073 ~1.157
n = ‘ A= ‘ - O ‘-105K2
2 3.470 1450 | K 0.121
11.286 ) 3.280 ) 0.593 ) 0.040 )
i=1.4 A = Z (hi-AiB := Z (hi'Bi D = Z (hi' D
i i i
1 5.2
A=54872 B =0012— D = -1.621 x 10°K
T
Cp
For the products, AHp = R- Y dT Tp:=298.15K
To

The integral is given by Eq. (4.7). Moreover, by an energy balance,

AH298 + AHP =0

T:=2 (guess)

Given  —AHsog= R| ATo() —1 + 2221 + 222 1
2 To T ]
t := Find(X T = 8.497 T = Tot T =25335K  Ans.

Parts (b), (¢), and (d) are worked the same way, the only change being in the
numbers of moles of products.

(b) no, = 0.75 N, = 14.107 T = 2198.6-:K Ans.
(c) no, =15 N, = 16.929 T = 1950.9-K Ans.
(d) no, =3.0 N, = 22.571 T =1609.2-K Ans.
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(e) 50% xs air preheated to 500 degC. For this process,

AHair +&H298 + HP =0

AH,;, = MCPH-(298.15 — 773.15)

For one mole of air:

MCPH()773.15,298.15,3.355,0.575~10_3,0.0,—0.016105 = 3.65606

For 4.5/0.21 = 21.429 moles of air:

AH,;, = n-R-MCPH. T

J
AH,j, == 21.429-8.314-3.65606-(298.15 — 773.15)-—1
mo

J
AHgjr = 309399 —

The energy balance here gives:  AH,gg +MH,;;+ Hp =0

1.5 ) 3.639 ) 0.506 ) -0.227)
2 5.457 1.045 | 103 ~1.157
‘ A= ‘ - 0 po ‘-IOS-KZ
2 3.470 1450 | K 0.121
16.929 ) 3.280 ) 0.593 ) 0.040 )
A = Z ()11-Ai B = Z ()11-Bi D := Z ()11-Di
i 1 1
1 5.2
A =78.84 B = 0016 D =-1.735x 10°K
T :=2 (guess)
Given ~AHpgg — Hyir = Re| ATo-() =1 + ?-iroz-()z -1
LD (- 1)
To T }
t := Find(X T = 7.656 T:=ToK-  T=22825KK Ans.
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420 n-CS5H12 +802=5CO02 + 6H20(])
By Eq. (4.15) with data from Table C.4:
AHjygg := 5-(=393509) + 6-(—285830) — (—146760)

AH298 = —3,535,765-] Ans.

4.21 The following answers are found by application of Eq. (4.15) with
data from Table C.4.

(a) -92,220 J
(b) -905,468 J
(¢) 71,660 J
(d) -61,980 J
(¢) -367,582 J
() -2,732,016 J
(2) -105,140 J
(h) -38,292 J
(i) 164,647 J
(j) 48,969 J
(k) -149,728 J
@) -1,036,036 J

(m) 207,436 J
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(n) 180,500 J
(0) 178,321J
(p) -132,439J
(q) -44,370 J
(r) -68,910 J
(s) 492,640 J
(t) 109,780 J
(u) 235,030J
(v) -132,038 J
(W) -1,807,968 J
(x) 42,720 )
(y) 117,440 J

(z) 175,305 J



4.22 The solution to each of these problems is exactly like that shown in
Example 4.6. In each case the value of AH"298 is calculated in Problem
4.21. Results are given in the following table. In the first column the

letter in () indicates the part of problem 4.21 appropriate to the AH®, .

value.
T/K AA 103AB | 106 AC | 10-5 AD | IDCPH/J AHOT/J
(a) | 873.15 -5.871 4.181 | 0.000 -0.661 -17,575 | -109,795
(b) | 773.15 1.861 -3.394 | 0.000 2.661 4,729 | -900,739
¢ |923.15 6.048 -9.779 | 0.000 7.972 15,635 | -2,716,381
(i) |973.15 9.811 -9.248 | 2.106 -1.067 25,229 189,876
G) | 583.15 -9.523 11.355 | -3.450 1.029 -10,949 -59,918
(1) |683.15 -0.441 0.004 | 0.000 -0.643 -2,416 | -1,038,452
(m) | 850.00 4.575 -2.323 { 0.000 -0.776 13,467 220,903
(n) | 1350.00 -0.145 0.159 | 0.000 0.215 345 180,845
(o) | 1073.15 -1.011 -1.149 | 0.000 0.916 -9,743 168,578
(r) |723.15 -1.424 1.601 | 0.156 -0.083 -2,127 -71,037
(t) |733.15 4.016 -4.422 1 0.991 0.083 7,424 117,204
(u) | 750.00 7.297 -9.285 | 2.520 0.166 12,172 247,202
(v) | 900.00 2.418 -3.647 1 0.991 0.235 3,534 | -128,504
(w) | 673.15 2.586 -4.189 1 0.000 1.586 4,184 | -1,803,784
(x) | 648.15 0.060 0.173 1 0.000 -0.191 125 42,845
(v) | 1083.15 4.175 -4.766 | 1.814 0.083 12,188 129,628

4.23 This is a simple application of a combination of Eqs. (4.18) & (4.19) with
evaluated parameters. In each case the value of AH®,  is calculated in Pb.

4.21. The values of AA, AB, AC and AD are given for all cases except for
Parts (e), (g), (h), (k), and (z) in the preceding table. Those missing are as

follows:

Part No. | AA | 103AB| 106 AC | 10-5AD
(e) -7.425] 20.778| 0.000| 3.737
(2) -3.629| 8.816| -4.904] 0.114
(h) -9.987 [ 20.061| -9.296] 1.178
(k) 1.704 | -3.997] 1.573| 0.234
(2) -3.858| -1.042] o0.180] 0.919

93



3

ft 5
4.24 q = 150-1o6d— T = (60-32)-0K+273.15K T =28871K P = lam
ay

The higher heating value is the negative of the heat of combustion with water

as liquid product.

Calculate methane standard heat of combustion with water as liquid product:
CH, + 20, --> CO, +2H,0

Standard Heats of Formation:

J J
J J
AHgcop = _393509m—01 AHfHZO]iq = —285830—m01

AH¢ = AHgcop +&-AHpppoliq = Hecna — 2-AHpop

J
HigherHeatingValue := —~AH_ AH. = —8.906 x 105—1
mo

Assuming methane is an ideal gas at standard conditions:

P 1
n:= g n=1793x10° =
R-T day
5doll doll
n-HigherHeatingValue- Ol 2 085% 100 Ans

day

4.25 Calculate methane standard heat of combustion with water as liquid produci
Standard Heats of Formation: CH, + 20, --> CO, +2H,0

J J
AHgcpy = —74520m—01 AHgpy = Om_ol
J J

AHccng = AHgcop +2-AHgpoliq = Hecpa — 2-AHpop

J
AHlecpg = 890649 —
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Calculate ethane standard heat of combustion with water as liquid product:
Standard Heats of Formation: C,H, + 7/20, --> 2CO, +3H,0

J
AHfC2H6 = _83820E

7
AHccone = 2AHgco2 +8-AHfp01iqg — Hecons — E'AHfoz

J
AH.cope = —1560688 —
mol
Calculate propane standard heat of combustion with water as liquid product

Standard Heats of Formation: C;Hg + 50, --> 3CO, +4H,0

J
AHfC3H8 = —104680m—01

AHccsng = 3AHfcoz +4-AHpoliq — Hecsns — 3-AHpop
kJ

Calculate the standard heat of combustion for the mixtures

kJ
a) 0.95-AH.cpag + 0.02-AH.cope + 0.02-AH 38 = —921.714m—Ol
kJ
b) 0-90'AHCCH4 + O-OS'AHCC2H6 + 0'03'AHCC3H8 = —946.194m—01
kJ
C) 0'85'AHCCH4 + 0'07'AHCC2H6 + 0'03'AHCC3H8 = —932.875 E
Gas b) has the highest standard heat of combustion. Ans.
4.26 2H2 + 02 =2H20()) AHy = 2-(-285830)-J
C+02=C02%(g) AHg, := -393509-J)

N2(g)+2H20(1)+CO2(2)=(NH2)2CO(5)+3/202 AH = 631660-]

N2(g)+2H2(g)+C(s)+1/202(g)=(NH2)2CO(s)
AHy9g = AHg +MHp + H AHjgg = —333509] Ans.
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4.28 On the basis of 1 mole of C10H18
(molar mass = 162.27)

Q :=-43960-162.27-] Q =-7.133x 106J

This value is for the constant-volume reaction:

C10H18(1) + 14.502(g) = 10CO2(g) + 9H20(1)

Assuming ideal gases and with symbols representing total properties,
Q=AU = AH-A(PV) = AH - R-&- ngy

T :=298.15-K Angyg = (10 - 14.5)-mol

AH := Q +RA ngg  AH = -7.145x 10°J

This value is for the constant-V reaction, whereas the STANDARD
reaction is at const. P.However, for ideal gases H = f(T), and for liquids H

is a very weak function of P. We therefore take the above value as the
standard value, and for the specified reaction:

C10H18(I) + 14.502(g) = 10CO2(g) + 9H20(1)  AH

9H20(I) = 9H20(g) AHyp = 9-44012-]

C10H18(l) + 14.502(g) = 10CO2(g) + 9H20(g)

AH298 = AH + AHvap AH298 = —6748436] Ans.
4.29 FURNACE: Basis is 1 mole of methane burned with 30% excess air.

CH4 + 202 = CO2 + 2H20(g)

Entering: Moles methane np =1
Moles oxygen ny :=2-1.3 np = 2.6
. 79
Moles nitrogen n3 = 2.6-— n3 = 9.781
21
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Total moles of dry gases entering

n:=njp+ny+n3

At 30 degC the vapor pressure of water is
4.241 kPa. Moles of water vapor entering:

4.241
ng = .
101.325 - 4.241
Leaving: CO2 -- 1 mol

H20 -- 2.585 mol

02 --2.6-2=0.6 mol

N2 --9.781 mol

By an energy balance on the furnace:

Q=AH= AH298 + AHP

13.381

For evaluation of AH, we number species as above.

1) 5.457)
2.585 3.470
0.6 3.639
9.781 ) 3.280 )
i=1.4 R = 8314
mol-K

1.045))

1450 | _
‘- 1077

0.506

0.593 )

A = Z ()li-Ai B = Z ()’i'Bi

A = 48.692 B = 10.896983 10 °

C:=0

The TOTAL value for MCPH of the product stream:

n = 13.381

ng = 0.585

)
2
3
C))

~1.157))
0.121

~0.227
0.040 )

‘-10

D = Z ()’li‘Di

i

D = —5.892 x 10*

AHp := R-MCPH(303.15K ,1773.15K A, B, C, D)-(1773.15 — 303.15)K

kJ
AHp = 732.013 —
mol
From Example 4.7: AHygg = —802625 L

Q = AHP + AH298
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HEAT EXCHANGER: Flue gases cool from 1500 degC to
50 degC. The partial pressure of the water in the flue gases leaving the
furnace (in kPa) is

np
pp = -101.325 pp = 18.754

np+np+n3+ng

The vapor pressure of water at 50 degC (exit of heat exchanger) is 12.34
kPa, and water must condense to lower its partial pressure to this value.

Moles of dry flue gases: n:=nj+n3+ng n = 11.381

Moles of water vapor leaving the heat exchanger:

12.34
ny = ‘n ny = 1.578
101.325 -12.34
Moles water condensing: An = 2.585—-1.578

Latent heat of water at 50 degC in J/mol:

J
AHs( = 2382.9-18.015 —

mol

Sensible heat of cooling the flue gases to 50 degC with all the water as
vapor (we assumed condensation at 50 degC):

Q := R-MCPH(323.15-K,1773.15-K,A,B,C,D)-0323.15 — 1773.15)K — n-AHs

4.30

Q= -766,677-1 Ans.

4NH3(g) + 502(g) = 4NO(g) + 6H20(g)

BASIS: 4 moles ammonia entering reactor

Moles O2 entering = (5)(1.3) = 6.5

Moles N2 entering = (6.5)(79/21) = 24.45

Moles NH3 reacting = moles NO formed = (4)(0.8) = 3.2
Moles O2 reacting = (5)(0.8) = 4.0

Moles water formed = (6)(0.8) = 4.8
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ENERGY BALANCE:
AH = AHR +&H298 + HP =0
REACTANTS: 1=NH3; 2=02; 3=N2

4 ) 3.578) 3.020) ~0.186 )
n:=| 65 | A=|3639] B:=|0506]10"° D:=|-0227]10°
24.45 ) 3.280 ) 0.593 ) 0.040 )

Z ()H'Bi D: Z ()li'Di

1 1

i=1.3 A:ZZ()li-Ai B:
1

A =118.161 B = 0.02987 C = 0.0 D=-1242x10

TOTAL mean heat capacity of reactant stream:

AHR := R-MCPH(348.15K,298.15K ,A,B,C,D)-(298.15K — 348.15K)

kJ
AHR = —52.635—
mol

The result of Pb. 4.21(b) is used to get

I
AHgg := 0.8:(~905468) —

PRODUCTS1=NH3; 2=02; 3=NO; 4=H20; 5=N2

0.8 3.578) 3.020) ~0.186)
2.5 3.639 0.506 | . ~0.227
=] 32 | A:=|3387| B:=|0.629 % D:=| 0014 |-10°K*
4.8 3.470 1.450 0.121
24.45 ) 3.280 ) 0.593 ) 0.040 )
1:=1..5 A = Z ()li-Ai B = Z ()’i'Bi D := Z ()’li‘Di
i i i
1 4.2
A = 119.65 B = 0.027— D =8873x10'K

By the energy balance and Eq. (4.7), we can write:
Tp :=298.15K 1 :=2 (guess)
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4.31

i=1.2 n::(l\

A =4.8%4 B =0.01584 C=-4392x10

]
AHR = —2.727 x 10* —

Given ~AHy9g— Hg = R{ ATo() —1 + %ﬂ"oz-()z -1

t:=Find(} 1 =3283 T =Tyt T =9789K  Ans.
C2H4(g) + H20(g) = C2H50H(1)
BASIS: 1 mole ethanol produced n := Imol

Energy balance: AH = Q = AHR + AHjygg

J J
AHpgg := [-277690 — (52510 — 241818)]-——  AHpgg = —8.838 x 104—
mol mol

Reactant stream consists of 1 mole each of C2H4 and H2O.

1)

10

1.424 14.394 _4392 0.0
A:=[ \B':( \10‘3c:=( ) _6D::( \105

3470) | 1450 ) 00 ) 0.121)

A = Z ()]i'AjB = Z ()]i-Bi C:= Z ()11-Ci D= Z ()‘li'Di

i

6 p-121x10*

AHp := R-MCPH(298.15K ,593.15K ,A,B, C,D)-(298.15K — 593.15K)

mol

Q= ()SHR+ AHjpgg -1mol Q = -115653]  Ans.
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4.32 One way to proceed is as in Example 4.8 with the alternative pair of reactions

CH4 + H20=CO + 3H2 AH298a = 205813
CH4 +2H20 = CO2 + 4H2 AH298b = 164647

BASIS: 1 mole of product gases containing 0.0275 mol CO2; 0.1725 mol CO;
& H20 0.6275 mol H2

Entering gas, by carbon & oxygen balances:

0.0275 + 0.1725 = 0.2000 mol CH4
0.1725 + 0.1725 + 2(0.0275) = 0.4000 mol H20

J J
AH298 = ()).1725-AH2983+ 0.0275-AH298b — AH298 = 4003 X 104—
mol mol
The energy balance is written
Q = AHR +&H298 + Hp
0.2
REACTANTS: 1=CH4; 2=H20 i=1.2 K=
0.4 )
1.702 9.081 N —2.164) _ 0.0
A = ) B = \-10 3 c= \-10 6 p.- \-105
3.470 ) 1.450 ) 0.0 ) 0.121)
A = Z ()]i'AjB = Z ()’i'Bi C:= Z ()’i'ci D = Z ()‘li'Di
i i i i
A=1728 B=239%x10"°> C=-4328x10/ D=484x10
AHR := R-ICPH(773.15K ,298.15K ,A,B,C,D)
AHp = —1.145 x 10° ——
mol
PRODUCTS: 1=C02; 2=CO; 3=H20; 4=H2
0.0275") 5.457) 1.045)) ~1.157))
0.1725 3.376 0.557 | _3 —0.031 5
n:= A = B = -10 D = -10
0.1725 3.470 1.450 0.121

0.6275 ) 3.249 ) 0.422 ) 0.083 )
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i:=1.4 A= Z ()11-Ai B = Z ()11-Bi D = Z ()11-Di

A=337 B=6397x10% C=00 D =3.579x 10°

AHp = R-ICPH(298.15K , 1123.15K ,A,B,C, D)
I
AHp = 2.63x 10" —

mol
Q := (AHR +MHj9g + Hp -mol Q = 54881]  Ans.
4.33 CH4 +202=C02 +2H20(g) AHjygg, = —802625
C2H6 + 3.502 =2CO02 + 3H20(g) AHsogyp, = —1428652

BASIS: 1 mole fuel (0.75 mol CH4; 0.25 mol C2H6) burned completely with
80% xs. air.
02 in = 1.8[(0.75)(2) + (0.25)(3.5)] = 4.275 mol
N2 in = 4.275(79/21) = 16.082 mol
Product gases: CO2 =0.75 + 2(0.25) = 1.25 mol
H20 =2(0.75) + 3(0.25) = 2.25 mol
02 =(0.8/1.8)(4.275) = 1.9 mol

N2 =16.082 mol

J J
AH298 = ()).75-AH2983+ 0-25'AH298b — Q = —8-105-—
mol mol
Energy balance: Q = AH = AH298 + AHP AHP = Q - AH298
PRODUCTS: 1=C02; 2=H20; 3=02; 4=N2
1.25 ) 5.457) 1.045)) ~1.157))
2.25 3.470 1.450 | 1073 0.121 5 o
n = = B = -—— D= -107-K
1.9 3.639 0.506 | K ~0.227
16.082 ) 3.280 ) 0.593 ) 0.040 )

i=1.4 A= Z (hi-Ai B = Z (hi'Bj D := Z (hi Di

A=74292 B= 0.015% C:=00 D=-962x10"K>
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4.34

By the energy balance and Eq. (4.7), we can write:

To := 303.15K T:=2 (guess)

Given Q —AHj9g= R- A-ﬂ"()'() -1 + §~ﬂ"02~() 2 1 .| t:= Find():
D fi- 1)
To T ]
T =1.788 T:=Tor T =542.2K Ans.

BASIS: 1 mole of entering gases containing 0.15 mol SO2; 0.20 mol
02; 0.65 mol N2

SO2 +0.502=S0O3 Conversion = 86%
SO2 reacted = SO3 formed = (0.15)(0.86) = 0.129 mol
02 reacted = (0.5)(0.129) = 0.0645 mol

Energy balance: AH773 = AHR +MHy9g + Hp

Since AHy and AH|, cancel for the gas that passes through the converter

unreacted, we need consider only those species that react or are formed.
Moreover, the reactants and products experience the same temperature
change, and can therefore be considered together. We simply take the
number of moles of reactants as being negative. The energy balance is
then written: AH773 = AH298 + AHnet

J
AH,gg := [~395720 — (=296830)]-0.129- —

mol
1: SO2; 2: 02; 3:SO3
—0.129 5.699 ) 0.801) -1.015Y)
ni=|-00645| A:=|3639| B:=|0506]10"> D:=|-0227]10°
0.129 ) 8.060 ) 1.056 ) ~2.028 )

D (hiDi

1

1:=1.3 A= Z ()’li‘Ai B = Z ()11-Bi D:

A=00698 B=258x100" C:=0 D=-1.16x10"
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AH, := R-MCPH(298.15K ,773.15K ,A,B,C,D)-(773.15K — 298.15K)

J
AHpey = 77.617—

J
AH773 = ()3H298 + AHnet AH773 = —12679m—01 Ans.

4.35 CO(g) + H20(g) = CO2(g) + H2(g)

BASIS: 1 mole of feed consisting of 0.5 mol CO and 0.5 mol H20.

Moles CO reacted = moles H20 reacted = moles CO2 formed = moles H2
formed = (0.6)(0.5) = 0.3

Product stream: moles CO = moles H20 = 0.2
moles CO2 = moles H2 = 0.3

Energy balance: Q = AH = AHR +M\Hy9g + Hp

J J
AHjgg := 0.3-[-393509 — (110525 — 214818)] — AHj9g = —2.045 x 104—
mol mol

Reactants: 1: CO 2: H20

. (0.5\ N [3.376\ 5. (0.557\ 0} D (—0.031\ c

5 -10
0.5) 3.470 ) 1.450 ) 0.121 )

i=1.2 A= Z (hi-Ai B = Z (hi'B; D := Z (hi Di

3

A =3.423 B=1004x10 ° C:=0 D=45x 103

AHp := R-MCPH(298.15K ,398.15K ,A,B,C,D)-(298.15K — 398.15K)

AHg = —3.168 x 10° ——
mol

Products: 1: CO 2: H20 3:CO2 4: H2

0.2) 3.376 ) 0.557) ~0.031")

0.2 3.470 1450 | 4 0.121 5
n:= A = B = -10 D := -10

0.3 5.457 1.045 ~1.157

0.3) 3.249 ) 0.422 ) 0.083 )
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1:=1.4 A= Z ()1i'Ai B = Z ()11-Bi D := Z ()11-Di

i

4

A =3.981 B =8415x10 C=0 D=-3.042x 104

AHp := R-MCPH(298.15K ,698.15K , A, B, C,D)-(698.15K — 298.15K)

AHp = 1.415x 10%——
mol
Q := (AHR +MHjgg + Hp -mol Q = —9470] Ans.

4.36 BASIS: 100 lbmol DRY flue gases containing 3.00 Ibmol CO2 and 11.80
Ibmol CO x Ibmol O2 and 100-(14.8-x)= 85.2-x Ibmol N2. The oil therefore
contains 14.80 Ibmol carbon;a carbon balance gives the mass of oil burned:

14.8. 12.011
0.85

by = 209.1331byy,

The oil also contains H2O:
209.133-0.01
18.015

-lbmol = 0.1161bmol

Also H20 is formed by combustion of H2 in the oil in the amount

209.133-0.12
2.016

-lbmol = 12.448 Ibmol

Find amount of air entering by N2 & O2 balances.

N2 entering in oil:

209.133-0.02
28.013

-lbmol = 0.149 Ibmol

Ibmol N2 entering in the air=(85.2-x)-0.149 =85.051-x

Ibmol O2 in flue gas entering with dry air =
3.00+11.8/2+x+12.448/2 = 15.124 + x lbmol
(CO2) (CO) (02) (H20 from combustion)

Total dry air = N2 in air + O2 in air = 85.051 - x + 15.124 + x = 100.175 Ibmol
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Since air is 21 mol % 02,

15.124 +
021= 7% x = (0.21-100.175 — 15.124)-lbmol ~ x = 5.913 Ibmol

100.175

02 in air = 15.124 + x = 21.037 Ibmols
N2 in air = 85.051 - x = 79.138 Ibmoles
N2 in flue gas = 79.138 + 0.149 = 79.287 lbmols

[CHECK: Total dry flue gas
=3.00 + 11.80 + 5.913 + 79.287
=100.00 Ibmol]

Humidity of entering air, sat. at 77 degF in lbmol H20O/lbmol dry air,
P(sat)=0.4594(psia)

0.4594
14.696 — 0.4594

Ibmol H2O entering in air:

= 0.03227

0.03227-100.175-1bmol = 3.233 Ibmol

If y =1bmol H2O evaporated in the drier, then
Ibmol H2O in flue gas = 0.116+12.448+3.233+y
=15.797 +y

Entering the process are oil, moist air, and the wet material to be dried, all at
77 degF. The "products' at 400 degF consist of:

3.00 Ibmol CO2

11.80 Ibmol CO

5.913 Ibmol O2

79.287 lbmol N2

(15.797 + y) Ibmol H20(g)

Energy balance:  Q = AH = AHj,9g + AHp

where Q = 30% of net heating value of the oil:

BTU
Q := —0.3-19000- ——-209.13Iby, Q = -1.192x 10°BTU

m

Reaction upon which net heating value is based:
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n(y) :

OIL + (21.024)02 = (14.8)CO2 + (12.448 + 0.116)H20(g) + (0.149)N2

AHoog, := —19000-209.13-BTU AHpog, = —3.973 x 10°BTU
To get the "reaction" in the drier, we add to this the following:

(11.8)CO2 = (11.8)CO + (5.9)02

AHjyggp = 11.8:(=110525 + 393509)-0.42993-BTU

(y)H20(l) = (y)H20(g)  Guess: y := 50

AHygg.(y) := 44012-0.42993-y-BTU

[The factor 0.42993 converts from joules on the basis of moles to Btu on the
basis of Ibmol.]

Addition of these three reactions gives the "reaction" in the drier, except for
some 02, N2, and H2O that pass through unchanged. Addition of the
corresponding delta H values gives the standard heat of reaction at 298 K:

AHj9g(y) := AHp9gq +MHp9g, + Hggce(y)

For the product stream we need MCPH:
1: CO2 2: CO 3:02 4:N2 5: H20
400 +459.67

T = 298.15 r:= 1.986 T: T T = 477.594
3 5.457) 1.045)) ~1.157)
11.8 3.376 0.557 ~0.031
=| 5913 A=|3639| B:=|0506[10° D:=|-0227]10
79.278 3.280 0.593 0.040
15.797 +y ) 3.470 ) 1.450 ) 0.121 )

—

= 1.5 A =" (hirai Bo) =Y (h0)iBi DO) =" (h)iDi

1 1 1

tm 1= 1602 Cp(y) = r-|:A(y) +?-ﬂ“0-() +1 +l’q

t-To
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4.37

4.38

Given Cp(y)-(400 - 77)-BTU = Q — AHy9g(y) y := Find(y)

y = 49.782 (Ibmol H20 evaporated)

y-18.015 — 4088 (Ib H2O evap. per 1b oil burned)
209.13 Ans.

Whence

BASIS: One mole of product gas containing 0.242 mol HCN, and
(1-0.242)/2 = 0.379 mol each of N2 and C2H2. The energy balance is

Q=AH= AH298 + AHP

AHygg = (2-135100—227480)-%-] Alyeg = 5.169 10°]
Products:
0.242 4.736) 1.359)) —0.725)
n:=[0379| A:=[3280] B:=[0593]10° D:=| 0040 |-10°
0.379 ) 6.132 ) 1.952 ) -1.299 )

1=1.3 A:= Z ()11-Ai B = Z ()’i'Bi D= Z ()11-Di

1

3

A =47133 B =1.2934x 10 C=0 D=-6526x 104

AHp := R-MCPH(298.15K ,873.15K ,A, B, C,D)-(873.15K — 298.15K)-mol

AHp = 2.495 x 10°J A
AHp = 2.495x 10*]

Q = AH298 + AHP Q =30124] Ans.

BASIS: 1 mole gas entering reactor, containing 0.6 mol HCl, 0.36 mol O2,
and 0.04 mol N2.

HCl reacted = (0.6)(0.75) = 0.45 mol
4HCI(g) + 02(g) = 2H20(g) + 2CI2(g)
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For this reaction,

J J
AHjgg = [ 2(~241818) — 4-(=92307) ] — AHpog = —1.144 x 10° —
mol mol
Evaluate AHgy3 by Eq. (4.21) with
To := 298.15K T := 823.15K
1: H20 2:CI2 3: HCl 4=02
2) 3.470) 1.45 ) 0.121 )
2 4.442 0.089 | ;4 —0.344 | &
n:= A = = -10 D := -10
—4 3.156 0.623 0.151
-1) 3.639 ) 0.506 ) -0.227 )

i=1.4 AA:= Z (hiAi AB = Z (hi'Bj AD := Z (hi'Di

5

AA = -0.439 AB = 8x 10 AC =0 AD = -8.23 x 104

AHg)3 := AHp9g + MCPH(JTo. X AA AB,AC, D -R-(JF - To

J
AHgp = ~117592—

Heat transferred per mol of entering gas mixture:

AHg)3
Q= -0.45-mol Q =-13229]J Ans.
J
439 CO2+C=2CO AHjogg, = 172459—  (a)
mol
2C +02=2CO J
AHjggp, := —221050— (b)
mol
Eq. (4.21) applies to each reaction:
For (a):
2 3.376) 0.557) ~0.031))
ni=|-1| A=|1771] B:=|0771|10° D:=|-0867]10°
-1) 5.457 ) 1.045 ) ~1.157 )
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i:=1.3 AA:= Z (hiAi AB:= Z (hiBi

AA = —0476  AB = -7.02x 10"

AH {1484 = AHpog, -

AD := Z (hi' D

AC:=0 AD = 1.962x 10’

+R-MCPH()Z98.15K ,A148.15K ,AA,AB,AC, D -(1148.15K —298.15K)

J
AH1148a = 1696)( 105—

mol
For (b):
2 3.376)) 0.557)
ni=|-1] A:=|3639| B:=|0506 |10
-2) 1.771 ) 0.771 )

1:=1..3 AA = Z ()11~Ai AB = Z ()11-Bi

AA = —0.429 AB = -934x 10" 4

AH{148p = AHpogp .-

3

AC =0

~0.031)
D :=|-0227 |-10°
—0.867 )
AD := Z (hi'Di
i

AD = 1.899 x 10°

+R-MCPH()Z98.15K,A148.15K,AA,AB,AC, D -(1148.15K —298.15K)

J
AH{q48p = —2.249 x 105m—01

The combined heats of reaction must be zero:

nco, AH1148a + 00, AH1148p = 0

Define: r= r=

no, AH 11484
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For 100 mol flue gas and x mol air, moles are:

Flue gas Air Feed mix

co2 128 0 12.8

CcO 3.7 0 3.7

02 5.4 0.21x 5.4 +0.21x

N2 78.1 0.79x 78.1 + 0.79x

Whence in the feed mix: r= L

54+0.21-x
12.5
— =54
X = ————mol x = 19.155mol
0.21
Flue gas to air ratio = 100 = 5.221 Ans.
19.155

Product composition:

nco = 3.7+ 2-(12.8 + 5.4 + 0.21-19.155) nco = 48.145
nN, = 78.1 +0.79-19.155 N, = 93.232

n
Mole % CO= ——2 100 = 34.054
nco+ nNz Ans.
Mole % N2 = 100 — 34.054 = 65.946
4.40 CH4+202=C02 +2H20(g) AHjygg, := —802625 Ll
mo

CH4 + (3/2)02 = CO + 2H20(g)

J
AH298b = —-519641 m_ol

BASIS: 1 mole of fuel gas consisting of 0.94 mol CH4 and 0.06 mol N2
Air entering contains:

1.35:2:0.94 = 2.538  mol O2

2.538;—? = 9.548 mol N2
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Moles CO2 formed by reaction= 0.94-0.7 = 0.658
Moles CO formed by reaction=  (0.94.0.3 = 0.282

J
AHygg = (].658 AHyog, + 0.282-AHog, AHyog = —6.747 x 10° —

Moles H20 formed by reaction = 0.94-2.0 = 1.88

Moles O2 consumed by reaction= 2.0.658 + %-0.282 = 1.739

Product gases contain the following numbers of moles:

(1) CO2: 0.658
(2) CO: 0.282
(3) H20: 1.880
4) 02: 2.538-1.739=0.799
(5) N2: 9.548 + 0.060 = 9.608

0.658) 5.457) 1.045)) ~1.157)

0.282 3.376 0.557 ~0.031
n:=|1880| A:=|3470| B:=|1450 10"> D= 0121 |-10°

0.799 3.639 0.506 ~-0.227

9.608 ) 3.280 ) 0.593 ) 0.040 )
i=1.5A:= Z (hi A B = Z (hiBi D := Z (hiDi

1 1 i
A =454881 B =96725x10 > C:=0 D=-339x 10"

AHp = R-MCPH(298.15K,483.15K,A ,B,C,D)-(483.15K - 298.15K)

J
AHp = 7.541 x 10* -
mol

kJ
Energy balance: AH;y = AHj9g + AHp AH;y = —599.252 —

mol

kg

AHpo-tadotgpo + Hpx-ndotgye; = 0 mdotipQ = 34.0-—
sec

112



kJ

From Table C.1: AHypo = (398.0 - 104.8)-k—
g
q _ _AHHZO'metHZO mol
n Otfuel T AHI‘X IldOtfue] = 166355
Volumetric flow rate of fuel, assuming ideal gas:
ndotgyel-R-298.15-K 3
= m
101325-Pa V =0407— Ans.
sec
J
4.41 C4HS8(g) = C4H6(g) + H2(g) AHjgg = 109780-—

mol
BASIS: 1 mole C4H8 entering, of which 33% reacts.

The unreacted C4H8 and the diluent H20O pass throught the reactor
unchanged, and need not be included in the energy balance. Thus

1) To = 298.15-K T := 798.15-K
ni=| 1| Evaluate AH79g by Eq. (4.21):
-1) 1: C4H6 2: H2 3: C4HS
2.734) 26.786 ) ~8.882)) 0.0 )
A:=[3249| B:=| 0422 |10 c:=| 00 |107® D:=|0.083 |10’
1.967 ) 31.630 ) —9.873 ) 0.0 )
i=1.3
AA = Z (hi-:AB = Z (hiBi  AC = Z (hiCi  AD:= Z (hi-Di
i i i 1
AA = 4016 AB=-442x10°> AC=991x10"/  AD =83x10°

AH7gg := AH,9g + MCPH(R98.15K ,898.15K AA AB.AC, D -R-(J - Ty

J
AHrgg = 1.179 x 105m—Ol

Q := 0.33-ol- Hygg Q =38896] Ans.
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4.42 Assume Ideal Gas and P =1 atm

_3 BT
P latm R=788x10 227
mol-K
. ; BTU
a) TO := (70 + 459.67)rankine T := TO + 20rankine Q=12
sec
TO = 294.261 K T = 305.372K
-3 5
ICPH()I'O,T,3.355,0.575-10 ,0,-0.016-10" = 38.995K
_ Q 1
ndot := " — = ndot = 39.051 2%
R-ICPH\II0,T,3.355,0.575-10 7,0,-0.016-10 S
ndot-R-TO m3 ft3
Vdot := ——— Vdot = 0.943 — Vdot = 33.298——  Ans.
P S sec
kJ
b) TO := (24 +273.15)K T :=T0+ 13K Q:=12—
s
R=8314x10 5%
mol-K
-3 5
ICPH(}FO,T,3.355,0.575-10 ,0,-0.016-100 = 45.659K
_ Q 1
ndot := " — = ndot = 31.611 2%
R-ICPH\I0,T,3.355,0.575-10 7,0,-0.016-10 S
ndot-R-T0 m
Vdot ;= ——8 Vdot = 0.7707—  Ans.
P S
4.43 Assume Ideal Gas and P =1 atm P := latm
a) TO := (94 + 459.67)rankine T := (68 + 459.67)rankine
3
R = 1.61x 10 32mft
mol-rankine
ft3 P-Vdot mol
Vdot := 50-— ndot := ndot = 56.097 —

sec R-TO S
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T0 = 307.594K T =293.15K

ICPH()I'O,T,3.355,0.575~10_3,0,—0.016~105 = -50.7K
-3 BTU

mol-K

R = 7.88x 10

0 = RICPH0.T.3.355.0.575-1073,0.-0.016.10° -ndot

BTU
Q =-224121 Ans.

S€C

b) TO := (35+273.15)K T :=(25+273.15)K
atm-m3
R = 8205x 10 °
mol-K
m3 P-Vdot mol
Vdot := 1.5-— ndot := ndot = 59.325 —
sec R-TO S

ICPH()FO,T,3.355,0.575-10_3,0,—0.016-105 = -35.119K
3 kJ

mol-K

R =8314x10

0 = RICPH(0.T.3.355.0.575-1073.0.-0.016.10° -ndot

kJ
Q = -17.3216— Ans.
S

4.44 First calculate the standard heat of combustion of propane

AHjgg = 3- —393509-L\ + 4. —241818L\ - —104680L\
mol} mol) mol)

I
AHyog = —2.043 x 1o6m—01

dollars

gal

Cost := 2.20 n = 80%
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Estimate the density of propane using the Rackett equation

a) Acetylene

3
T, == 369.8K Z. = 0276 Ve 1= 200.0
mol
T
T = (25 + 273.15)K Ty = — T, = 0.806
C
0.2857 3
1-T; cm
Vsat = VC'ZC Vsat = 89373_
mol
Vgat-Cost doll
Heating_cost := S Heating_cost = 0.032 oo
nAI H298| Ans.
doll
Heating cost = 33.528%
10 BTU
445 TO := (25 +273.15)K T := (500 + 273.15)K
-3 5
Q= R-ICPH()I‘O,T,6.132,1.952-10 ,0,-1.299-10
J
Q =2612x 10" —
mol

The calculations are repeated and the answers are in the following table:

a)
b)
©)
d)
e)
f)
g)
h)
i)
),
k)
)
m)
n)
0)

Acetylene
Ammonia
n-butane

Carbon dioxide
Carbon monoxide
Ethane

Hydrogen
Hydrogen chloride
Methane

Nitric oxide
Nitrogen
Nitrogen dioxide
Nitrous oxide

Oxygen
Propylene

116

J/mol
26,120
20,200
71,964
21,779
14,457
38,420
13,866
14,040
23,318
14,730
14,276
20,846
22,019

15,052
46,147



4.46 TO := (25 +273.15)K T := (500 + 273.15)K

J
Q = 30000—
mol
. _ -3 5
a) Acetylene Given Q = R-ICPH()FO,T,6.132,1.952-10 ,0,-1.299-10
T := Find(T) T = 835.369K T —273.15K = 562.2degC

The calculations are repeated and the answers are in the following table:

TK) T(C)

a) Acetylene 835.4 562.3
b) Ammonia 964.0 690.9
¢) n-butane 534.4 261.3
d) Carbon dioxide 932.9 659.8
e) Carbon monoxide 1248.0 974.9
f) Ethane 690.2 4171
g) Hydrogen 1298.4 1025.3
h) Hydrogen chloride 1277.0 1003.9
i) Methane 8717.3 604.2
j) Nitric oxide 1230.2 957.1
k) Nitrogen 1259.7 986.6
I) Nitrogen dioxide 959.4 686.3
m) Nitrous oxide 927.2 654.1
n) Oxygen 1209.9 936.8
0) Propylene 636.3 363.2
4.47 TO := (25 +273.15)K T := (250 + 273.15)-K Q= IISOOL

mol

a) Guess mole fraction of methane: y :=0.5

Given

3 216410 %0 R ..

3 556110 %,0 -R

y-ICPH()ro ,T,1.702,9.081-10"
+(1- y)~ICPH<)l'O,T, 1.131,19.225-10~

I
o

y := Find(y) |y = 0.637 Ans.
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J
b) TO := (100 + 273.15)K T := (400 + 273.15)-K Q= 54000—l
mo

Guess mole fraction of benzene  y := 0.5

Given
h < s :

y-ICPH\JI0,T,-0.206,39.064-10 ~,-13.301-10 ~,0 ‘R ... =Q

+(1—yy1cPH(r0. T.-3.876.63.249-107%,-20.928- 107 6.0 -R

y := Find(y) |y = 0.245 Ans.

J
¢) TO := (150 + 273.15)K T := (250 + 273.15)-K Q = 17500
mo
Guess mole fraction of toluene y:=0.5
Given
-3 -6 _
y-ICPH()FO,T,O.290,47.052-10 ,—15.716-10 ~,0 ‘R ... =Q
3 6

+(1 —y)-ICPH )ro,T,1.124,55.380-10‘ ,—18.476:10° °,0 ‘R

y := Find(y) y = 0.512 Ans.

4.48 Temperature profiles for the air and water are shown in the figures below.
There are two possible situations. In the first case the minimum
temperature difference, or '"pinch' point occurs at an intermediate location
in the exchanger. In the second case, the pinch occurs at one end of the
exchanger. There is no way to know a priori which case applies.

4 Intermediate Pinch T A Pinch at End
H1
Section | Section Il
T
Hi Section] LW  Section Il

THi
i
'AT

TC1 TH2 TC1 THZ
Tei T, AT

Te, T
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To solve the problem, apply an energy balance around each section of the
exchanger.

rTHI

Section I balance: mdotc-(){C] —Hci = ndoty: CpdT
“Thi
f‘THl

Section II balance: mdotc-()—ICi —Hcp = ndoty: CpdT
“TH2

If the pinch is intermediate, then Ty, = T, + AT. If the pinch is at the end,
then Ty, = T, + AT.

Tygp := 1000degC T := 100degC Tcj := 100degC Ty := 25degC
kJ kJ kJ
AT := 10degC Hcp :=2676.0—  Hgj:=419.1— Hcp = 104.8—
kg kg kg
For air from Table C.1/A := 3.355 B == 0.575-10 > C := 0 D := —0.016-10°
Assume as a basis ndot =1 mol/s. ndotyg = 1 kmol
S
Assume pinch at end: THo := Teo + AT
kg
Guess:  mdotc :=1— Ty := 110degC
S
Given

mdotc-(Hei - Hej = ndotyR-ICPH( Iy, Thi, A, B,C,D Energy balances

on Section I and
ndotyy-R-ICPH(J'H2, Thi, A,B,C,D II

mdotc-()-l(ji —He

me‘[C\ kg
= Find(Jndotc, Ty; T = 170.261degC mdotc = 11.255—=
THi ) S
mdotc k
— 0.011—-2  Ans.
ndotyy mol

Thi— Tcj = 70.261 degC Ty — T = 10degC
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Since the intermediate temperature difference, Ty; - Tc; is greater than
the temperature difference at the end point, Ty, - T,, the assumption of a
pinch at the end is correct.

b) Ty := 500degC Tcq := 100degC Tcj == 100degC  Tcp := 25degC

kJ kJ kJ
AT := 10degC Hcyp = 2676.0k— Hcgj :=419.1— Hceo = 104.8k—

g kg g

kmol

Assume as a basis ndot =1 mol/s. ndoty = 1
S

Assume pinch is intermediate: Tyi = Tei+ AT
kg

Guess:  mdotc = 1—= THp := 110degC
S

Given

mdotc-()iCl —-Hgi = ndotH-R-ICPH()FHi,THl,A,B,C,D Energy balances
on Section I and

ndoty-R-ICPH(J'H2. Thi, A,B,C,D II

metC'()'lCi - Heo

metC\ kg
= Find(ndotc, Tz Th2 = 48.695degC  mdotc = 5.03—=
THo ) S
mdotc _2 k
— 503x10 "—= Ans.
ndotyy mol
Tyhi— Tcj = 10degC Ty — Teo = 23.695degC

Since the intermediate temperature difference, Ty; - T; is less than the
temperature difference at the end point, Ty, - T(,, the assumption of an
intermediate pinch is correct.

4508) CH,;04(5) + 6 Os(g)= 6 COX(®) + 6 HyO()

KJ KJ
AHOp = —1274.4 —— AHOp == 0—— M = 180 2=
fl mol 2 mol mol
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kJ k]
AHOg3 = —393.509 —— AHOg = -285830——  M;3 := 44 55
B mol 5 mol mol

kJ
AHOp := 6:AHOg +4-AHOgy — HOp ~ 6:AHOp AHOp = =2801.634—=  Ans.

kJ
b) energy per kg := 150k— mass_person := 57kg
g

mass_person-energy per kg
—AHO,

mass_glucose =

M; | mass glucose = 0.549kg Ans.

¢) 6 moles of CO, are produced for every mole of glucose consumed. Use
molecular mass to get ratio of mass CO, produced per mass of glucose.

6 6-M3 ]
275-10 -mass_glucose- - =2216x 10 kg Ans.
1
4.51 Assume as a basis, 1 mole of fuel.

0.85 (CHy(g) + 20,(8)= CO,(g) +2H,0(g)
0.10(C,Hg (g) + 3.5 O5(g) = 2 CO,(g) + 3 H,0(g))

0.85 CH,(g) + 0.10 C,H,(g) + 2.05 O,(g) = 1.05 CO,(g) + 2 H,0(g)

kJ kJ kJ
AHO¢ = -74.520 — AHOgp, := —83.820 — AHOg3 == 0—
mol mol mol
kJ kJ
AHOgy := -393.509 — AHOg5 := —241.818 —
mol mol

a) AHO, := 1.05-AHOg + 2-AHOg5 — 0.85-AHOg; — 0.10-AHOg, — 1.05-AHOg

kJ
AHO, = ~825.096—  Ans.
mo

b) For complete combustion of 1 mole of fuel and 50% excess air, the exit
gas will contain the following numbers of moles:

n3 := 0.5-2.05mol n3 = 1.025mol  Excess O,
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ng = 1.05mol
ns := 2mol
79
ng := 0.05mol + E-l.S-Z.OSmol ng = 11.618mol Total N,

Air and fuel enter at 25 C and combustion products leave at 600 C.

Ty == (25 +273.15)K Ty = (600 + 273.15)K

()3:3.639 + ng-6.311 + n5:3.470 + ng-3.280

mol

()3:0.506 + ng-0.805 + ns-1.450 + ng-0.593 -10° 3

mol

.. (h3-0 + n4-0 + n5-0 + ng-0 -10~°
mol
' [13:(=0.227) + n4:(=0.906) + n5-0.121 + n-0.040 | 10°
mol
Q := AHO_ + ICPH(J1,T2,A,B,C,D -R Q= 529,889 L

mol
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Chapter S - Section A - Mathcad Solutions

5.2 Let the symbols Q and Work represent rates in kJ/s. Then by Eq. (5.8)

| Work| Tc
n= =1 -—
|QH| TH
kJ
Tc = 323.15K Ty := 798.15-K Qy := 250-—
S
Work := QH-(I ——C\ |Work| = 14878
TH) s
or |Work| = 148.78kW which is the power. Ans.
kJ
By Eq. (5.1), Qc = |Qu| - [Work] Qc = 101.22—=  Ans.
s

5.3 (a) Letsymbols Q and Work represent rates in kJ/s

Ty = 750-K Tc = 300-K
Tc
By Eq. (5.8): n=1-—
TH
But = |Work| Whence
Q4

Qc := |Qu| — |Work]

— |Work|
oo
Qc = |Qu| - [Work]

(b) n:=035 Qu

Work := —95000-kW
n = 0.6

. |W0rk|
n

Qu

Qp = 1.583 x 10°kW Ans.
Qc = 6.333 % 104kW Ans.
Qp = 2.714x 10°kW Ans.

Qc = 1.764x 10°kW Ans.

54 (a) Tc:=303.15K Ty = 623.15-K
Tc
NCarnot = 1 — p N = 0.55M Carnot n = 0.282 Ans.
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n
(b) n:=035 MNCarnot = - NCarnot = 0.636
0.55
Tc
By Eq. (5.8), T = —— Ty = 833.66K Ans.
1 =M carnot

5.7 Let the symbols represent rates where appropriate. Calculate mass rate of

LNG evaporation:
m3
V = 9000-— P := 1.0133-bar T :=298.15-K
]
P-V k
molwt = 17g mpNG = —— -molwt mpNG = 6254—g
mol R-T s

Maximum power is generated by a Carnot engine, for which

|Work] _ |Qu| - |Qc| _ |QH] | = TH .
Q¢ Q¢ Q| Tc
Ty = 303.15-K Tc:=113.7.K
kJ 6
Qc = 512-k—-mLNG Qc = 3.202 x 10" kW
g
Th ) 6
Work := Qc:| — -1 Work = 5.336 x 10" kW Ans.
Tc )
Qn = Qc + Work Qp = 8.538 x 10°kW Ans.
. kJ
5.8 Take the heat capacity of water to be constant at the valu Cp := 4,184-k—
gk
kJ
(a) Ty =273.15K T:=373.15K Q:=Cp(J2-T; Q= 418.4k—
g
T2 kJ
AS = Cp-In| — AS =1.305——
H20 P (T1 ) H20 kg K
- kJ
ASyo = 2 AS;es = —1.121——  Auns.
Ty kg K
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ASiotal := ASH20 + AStes ASiota] = 0.184i Ans.

kg-K

(b) The entropy change of the water is the same as in (a), and the total
heat transfer is the same, but divided into two halves.

— 1 1 kJ
ASye = = + ) ASpes = —1.208 ——
2 (323.15K 373.15K) kg K
kJ
AStotal = ASres + ASH20 AStotal = 0.097kg—-K Ans.

(c) The reversible heating of the water requires an infinite number of heat
reservoirs covering the range of temperatures from 273.15 to 373.15 K,
each one exchanging an infinitesimal quantity of heat with the water and
raising its temperature by a differential increment.

59 Py = l-bar T} == 500-K V = 0.06-m°
PV 5
n.=—— n = 1.443mol Cy:=—R Q = 15000-J
R- Ty 2

(a) Const.-V heating; AU=Q+W=Q= n-Cv-()Tz -T

Ty = Ty + T, = 1x 10°K
n-Cy
T2 Py
By Eq. (5.18), AS = n:| Cp:In —\ - R:In —\\
Ti) P1))
P, T» T
But — =—  Whence AS:=nCyln —\ AS = 20.794l Ans.
P T le K

(b) The entropy change of the gas is the same as in (a). The entropy
change of the surroundings is zero. Whence

J
AStOtal = 10.794.-— Ans.
K
The stirring process is irreversible.
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5.10 (a) The temperature drop of the second stream (B) in either 7
case is the same as the temperature rise of the first stream Cp = —R
(A), i.e., 120 degC. The exit temperature of the second 2
stream is therefore 200 degC. In both cases we therefore

have:

463.15)
343.15)

ASp = Cp-ln(

J

AS A = 8.726
A mol-K

(b) For both cases:

AStOtal = ASA + ASB

473.15)
ASR = Cp-In
B= P (593.15 )
J
ASg = —-6.577 Ans.
mol-K
J
ASiota] = 2.149 Ans.

mol-K

(c) In this case the final temperature of steam B is 80 degC, i.e., there is
a 10-degC driving force for heat transfer throughout the exchanger.

Now
463.15) 353.15)
ASp = Cp-ln ASg = Cp-In
AT (343-15] B (473.15)
J J
ASp = 8.726 ASg = —8.512 Ans.
mol-K mol-K
o J
AStotal := ASA + ASp ASiora] = 0.214 Ans.
mol-K
5.16 By Eq. (5.8) d—w—l—E dW=dQ-T Q
: dQ T °T
Since dQ/T = dS, dW = dQ - To-dS
Integration gives the required result.
T1 := 600-K Ty :=400-K Ts :=300-K

Q= —582x10°——
mol

Q:=Cp(J2-Ty
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Tz\
AS := Cp-In| — AS = -11.799
T ) mol-K
J
Work := Q — T5-AS Work = -2280 — Ans.
mol
Qo = |Qf ~ |Work Qo = 3540——
G or Ol mol Ans.
Qs
AS = — AS i = 11.8 Ans.
reservoir TG reservoir mol- K
J . .
AS + AS;eservoir = 0——— Process is reversible.
mol-K

517 Ty := 600K Tcp:=300K  Tpp:=300K Tco = 250-K

For the Carnot engine, use Eq. (5.8): |W| _ Th1 - Tcq

|Qui| TH1
The Carnot refrigerator is a reverse Carnot engine. |W| T2 — Teo
Combine Egs. (5.8) & (5.7) to get: =
Q| Tc2

Equate the two work quantities and solve for the required ratio of the heat

quantities: \
Tc2 (TH1—Tc1
ri= . r=25 Ans.
Thi \ Th2 - Tc2)

7
5.18 (a) T; := 300K P := 1.2bar Ty := 450K  Pp:=6bar Cp:= ER

J
AH = Cp(Jl2 - Ty AH = 4365 x 103m—01 Ans.
T2 Py J
AS := Cpln —\ —R-ln —\ AS = -1.582 Ans
Ti) P1) mol-K
(b) AH = 5.82-IO:SL AS = 1.484
mol mol-K
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J
© AH = -3.118-10°——  AS = 4.953

mol mol-K
J
(d) AH = —3.741.10° —— AS = 2.618
mol mol-K
@) AH = 6651100 AS = -3.607
mol mol-K

5.19 This cycle is the same as is shown in Fig. 8.10 on p. 305. The equivalent states
are A=3, B=4, C=1, and D=2. The efficiency is given by Eq. (A) on p. 305.

Temperature T, is not given and must be calaculated. The following equations
are used to derive and expression for T,.

For adiabatic steps 1 to 2 and 3 to 4:

TV = vy T3y = vy
For constant-volume step 4 to 1: Vi=Vy
Py P3
For isobaric step 2 to 3: — = —
T, T3
Tz\_y
Solving these 4 equations for T, yields: T4 = T;-| —
T3j
7 5 Cp
C, =—-R Cy=— =— =14
P M) URaaren !

Ty == (200 +273.15)K T, := (1000 +273.15)K T3 := (1700 + 273.15)K

Tz\_y
Ty = Ty — T, = 873.759K
T3)
1 (T4-T
Eq.(A)p.306 1 :=1-—. ) = 0.591 Ans.
n
vy \T3-T2)
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521 Cy:=Cp—-R Py := 2-bar Py := 7-bar Ty :=298.15-K

Cp
= v
With the reversible work given by Eq. (3.34), we get for the actual W:

Y y=14

-1
RTy|(Py) "
Work = 1.35—. P2) -1 Work = 3.6x 10°——
y—1 Pl] mol
Work
But Q=0,and W = AU = CV'()TZ ~T;  Whence Ty:=Tp+ o
Cv
T, = 471.374K
Ty P> J
AS := Cp-In T2)_ R-In P2) AS = 2914 Ans.
Tl) Pl} mol-K
525 P:=4 T := 800

Step 1-2: Volume decreases at constant P.
Heat flows out of the system. Work is done on the system.

Wiz = JP(V2=Vi = {R(F2-T1 ]

Step 2-3: Isothermal compression. Work is done on the system. Heat flows
out of the system.

P P
Wo3 = R-Tz-ln(—3\ = R-Tz-ln(i\

Pz} Pl)

Step 3-1: Expansion process that produces work. Heat flows into the
system. Since the PT product is constant,

dP
P-dT+T-dP =10 T-? = —dT (A)
P-V=R-T P-dV +V.dP = R.dT

P-dV = R.dT - V.dP = R-dT - R-T-d—;
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In combination with (A) this becomes

P-dV = R-dT + R-dT = 2-R-dT

Moreover, P3=P;— =P —
T3 T2

Vi
W31 = —J PdV = 2.R-(J'; - T3 = -2R(J1 - T2
V3

Q31 = AUz — W31 = Cy+(l1 - T3 +2-R(J1 - T3

Q31 = (Lv+2R (1 -T3 = (Lp+R (1 -T2

_ |We _ | W12+ Wa3 + W3y

n
Qin Q31
7
Cp = E-R T; = 700-K Ty := 350-K
T,
Py := 1.5-bar P3 :=P-—
Tz
3 J
Wi2 =R -T Wi =291 x 100 —
12:=-R(F2-Ty | 12 p—
P3 J
Ws3 :=R-Ty:In —\ Wo3 =2.017 x 103—
Pl] mol
J
Wit = 2R - T2 Wip = —5.82x 10° —
mol
4 J
Q31 = (Fp+R (I -T2 Q31 = 1.309x 10 —
mol
Wiz + Wa3 + W3y
n:= | | n = 0.068 Ans.

Q31
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526 T :=403.15K  Pj:=2.5bar Py = 6.5bar  Treg i= 298.15-K

P2) J
By Eq. (5.18), AS := —R.In| — AS = -7.944
Py ) mol-K

Ans.

With the reversible work given by Eq. (3.27), we get for the actual W:

Py J
Work := 1.3-R-T-In —\ (Isothermal compresion) Work = 4.163 x 103—
P ) mol

Q := —Work Q here is with respect to the system.

So for the heat reservoir, we have

- J
ASres = _Q ASreS = 13.96 Ans.
Tres mol-K
J
AStotal = AS + ASyeq ASiota] = 6.02 Ans.
mol-K

5.27 (a) By Eq. (5.14) with P = const. and Eq. (5.15), we get for the entropy change
of 10 moles

n := 10-mol
AS = n-RICPS(173.15K . 1373.15K . 5.699.0.640- 10~ >,0.0,-1.015-10°

AS = 536.ll Ans.
K

(b) By Eq. (5.14) with P = const. and Eq. (5.15), we get for the entropy
change of 12 moles

n = 12-mol

3 6

AS = n-R-ICPS()523.15K,1473.15K,1.213,28.785-10_ ,—8.824-10 ~,0.0

AS = 2018.7i Ans.
K
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5.28 (a) The final temperature for this process was found in Pb. 4.2a to be 1374.5 K.
The entropy change for 10 moles is then found as follows

n := 10-mol
AS = n-RICPS(173.15K | 1374.5K . 1.424.14.394-107 %, —4.392-10~ . 0.0

AS = 900.86i Ans.
K

(b) The final temperature for this process was found in Pb. 4.2b to be 1413.8 K.
The entropy change for 15 moles is then found as follows:

n := 15-mol

3 6

AS = n-R-ICPS()533.15K,1413.8K,1.967,31.630-10_ ,—9.873-10 ~,0.0

AS = 2657.5i Ans.
K

(¢) The final temperature for this process was found in Pb. 4.2¢ to be 1202.9 K.
The entropy change for 18.14 kg moles is then found as follows

n := 18140-mol

AS == n-RICPS(533.15K . 1202.9K 1424, 14.394-1073,-4.392-10~ 0.0

AS = 1.2436 x 106% Ans.

5.29 The relative amounts of the two streams are determined by an energy
balance. Since Q =W = (), the enthalpy changes of the two streams must
cancel. Take a basis of 1 mole of air entering, and let x = moles of chilled air.
Then 1 - x = the moles of warm air.

Tp :=298.15-K Temperature of entering air
T = 248.15-K Temperature of chilled air
Ty := 348.15-K Temperature of warm air

x-Cp-(J1 =T +(1-x)-Cp-(J2-Top =0
x:=03 (guess)
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5.30

Given x = Find(x) x =0.5

x _ (T2=To)
X

TI_TOj

Thus x = 0.5, and the process produces equal amounts of chilled and warmed
air. The only remaining question is whether the process violates the second
law. On the basis of 1 mole of entering air, the total entropy change is as
follows.

CP = %.R PO = 5~ba1‘ P = l.bar
T T

ASita1 = Xx-Cp-In —1\ + (1 -x)-Cp-In —2\ —R-In 3\
To) To)) P )
J

AStOtal = 1297

mOlK Ans.

Since this is positive, there is no violation of the second law.

Ty = 523.15-K Ty :=353.15:K Py :=3-bar Py := 1-bar
J 7
Tres := 303.15-K Work := —1800-——  Cp := —R
mol 2
Cy:=Cp-R Q = AU — Work Q = Cy-(f2-T; — Work
— J J
ASoq = —2 AS;es = 5.718 Q=-1733x 10—
Tres mol-K mol
T> P2 J
AS := Cp-In —\ —R:In —\ AS = -2.301
le Pl) mol-K
J
ASiotal = AS + AS,eq ASiotal = 3.42 K PROCESS IS POSSIBLE.
mol-
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5.33 For the process of cooling the brine:

5.34

Cp:=35—7
P kg-K

Ty = (273.15 + 25)-K
Ty == (273.15 - 15)-K
To := (273.15 + 30)-K

AH := Cp-AT

T
AS = Cp:In —2\
le

k
AT = —40-K mdot := 20 -2
SeC
T = 298.15K
T, = 258.15K
Ts = 303.15K
AH = —140&
kg
k
AS = —0.504
kg-K

n¢ = 0.27

Eq.(5.26):  Wdotigeql := mdot-(AH — Tg-AS  Wdotigeal = 256.938kW

By Eq. (5.28): . Wdotigeal

E = 110-volt

Wdotmech = _1.25'hp

Nt

i:=9.7-amp Ts :=300-K

Wdot = 951.6kW  Ans.

Wdotejeer = i'E Wdoteleet = 1.067 x 10° W

At steady state: Qdot + Wdotgject + Wdotmech = iUt =0
dt

Qdot

(&}

d .t

+Sdotg=—=-S" =0

dt

Sdotg = —Qdot

(&}

W
Sdotg = 0.45E Ans.
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5.35 Q :=25-0ohm i:= 10-amp Ts := 300-K

Wdotejeet = i2-Q Wdotejeet = 2.5 % 10° W
At steady state: Qdot + Wdotgject = iUt =0 Qdot := —Wdotg]ect
dt
dot —Qdot
Qot | Sgotg = 48t = 0 Sdotg = —2%°
c dt c
tt
Qdot = —2.5 x 10° watt Sdotg = 8. 333% Ans.
5.38 mdo Ty :=(25+273.15K  Pjp := 10bar Py = 1.2bar
7 Cp 7
Ch, = —R Cy:=Ch—R = = —
p 7 v P Y C, Y

(a) Assuming an isenthalpic process: T, := T Ty = 298.15K Ans.

T2
A Cp 1 Py
(b) AS P 4T - —\ Eq. (5.14)
R RT P,
Ty
2 Py
AS = —R-l —\ —R:In —\ AS = 17.628 ] Ans.
2 T4 Pl) mol-K
\\%
(¢) Sdotg := mdot-AS Sdotg = 48.966E Ans.

J
(d) Tg == (20+273.155 K Wioet := To'AS  Wiost = 5.168 x 103_1 Ans.
mo

7
539(@) Ty := 500K Py:=6bar  Tp:=37IK  Pp:=12bar  Cpi= R
To :=300K  pBasis: 1mol  'n:= 1mol

AH := n-Cp(Jr2 - Ty W, == AH W, = —3753.8] Ans.
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T P

T1) P1))
Eq. (5.27) Wideal = (NH - To-AS Wideal = —51637 Ans.
Eq. (5.30) Wiost := |Wideal = Wy Wiost = 1409.37 Ans.
Wi
Eq.(539)  Sgi= —= SG = 4698 Ans.
Ts K
Ws Wideal Wlost SG
J
(a) —3753.8J ~5163] 1409.37 4.698E
]
(b) —2460.9] —2953.9] 493] 1.643E
J
(¢) —3063.7J —4193.7J 11307 3.767E
]
(d) -3853.5) —4952.4] 1098.87 3.663E
J
(€) —3055.4] —4119.2) 1063.87 3.546E
mol
5.41 Pj = 2500kPa P, := 150kPa Ts := 300K mdot := 20—
secC
P> kJ
AS := —R-In —\ AS = 0.023
Py ) mol-K
kJ
Sdotg = mdot-AS Sdotg = 0.468 Ans.
sec-K

Wdotiost = To-SdolG  Ryqofoq = 140.344kW ~ Ans.

542 Qp:=1k] W :=045kJ Ty = (250 + 273.15)K Ty = 523.15K

Tc := (25 + 273.15)K Tc = 298.15K
W]

m Nactual = 0.45

Nactual =
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Tc

-— =0.43
Ty N max

Nmax = |

Since 1, yar” Nmaye the process is impossible.

543 Qp:=-150k]  Qp:=50kJ Q; := 100-kJ

Ty := 550-K Tq := 350-K Ty := 250-K  Tg := 300-K
Qu Q1 Q2 kJ
(@ Sg=—+—+— SGg = 027— Ans.
Ty Ty Tr K
(b)) Wit := Ts-Sg Wiost = 81.039kJ Ans.

544  Wdot := —750-MW Ty = (315 +273.15) K Tc := (20 + 273.15)-K

Ty = 588.15K Tc = 293.15K
Tc
(@) Npax =1 —— Nmax = 0.502 Ans.
Th
Wdot
Qdotyy = [Wdot Qdotc = Qdotyy — |Wdot]
MNmax
Qdotc = 745.297MW  (minimum value)
Wdot
(b) N = 0.6:Nmax Qdoty = M Qdoty = 2.492 x 10°W
n

Qdotc = Qdotyy — |Wdof]  Qdote = 1.742x 10°MW  (actual value)
3

River temperature rise: Vdot := 165-— p = 1-—gm
S cm3
1 Qdotc
Cp =1 = AT = ———— AT = 2.522K  Ans.
gm-K Vdot-p-Cp
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546 Ty = (20+273.15K  Tp:= (27+273.15)0K Tz := (-22+273.15K

Py := Sbar P := latm

First check the First Law using Eqn. (2.33) neglect changes in kinetic and
potential energy.

6 .
AH = 7-R-ICPH()rl,T2,3.355,0.575-1o 3.0,-0.016-10°

1 )
+ 7ICPH()rl "T3,3.355,0.575-10° °,0,-0.016-10° -R

AH = 8.797 x 10 4 ﬁ AH is essentially zero so the first law is satisfied.

mol

Calculate the rate of entropy generation using Eqn. (5.23)

6 .
SG = 7-R-ICPS()rl,T2,3.355,0.575-1o 3,0,-0.016-10° ...

1 -3 5 P2)
+—-RICPS|J1,T3,3355,0.575:107°,0,-0016:10" —ReIn P—)
1

Sg = 0.013 Since S > 0, this process is possible.

mol-K

5.47
£

a) Vdot := 100000 - T1 := (70 + 459.67)rankine Ty := (20 + 459.67)rankine

P = latm Ts = (70 + 459.67)rankine
Assume air is an Ideal Gas

P-Vdot Gl
Vdo ndot = 258,555 .00

R-Ty hr
Calculate ideal work using Eqn. (5.26)

ndot :=

Wideal := ndot R-ICPH()rl T5,3.355,0.575-10" >,0,-0.016-10°

+To-(R1cps(iry.2.3355,0575.1073,0,-0016.10°

Wideal = 1.776 hp
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3
b) Vdot := 3000% T1 = (25+273.15K Ty := (-8 +273.15)K
P := latm Ts = (25+273.15)K
Assume air is an Ideal Gas

P-Vdot 1
do ndot = 34.064 2>

R- Ty S

ndot :=

Calculate ideal work using Eqn. (5.26)

Wideal := ndot- R-ICPH()I‘l .T5,3.355,0.575-10° >,0,-0.016-10°
+—TG~()R-ICPS()1‘1 T>,3.355,0.575-10° >,0,-0.016-10°

Wideal = 1.952kW

5.48 Ty := (2000 + 459.67)rankine Ty := (300 + 459.67)rankine
BTU
Cp(T) := | 3.83 +0.000306: —— TR AH, = 970—— M := 2920
rankine ) by, mol
Ts = (70 + 459.67)rankine Tsteam = (212 + 459.67)rankine

a) First apply an energy balance on the boiler to get the ratio of steam flow
rate to gas flow rate.:

T2
ndotgas'J Cp(T) dT + mdotsteam'AHV = O

T
Ty
—J Cp(T)dT

T b
mdotndot := mdotndot = 15.043

AH,, Ibmol

Calculate the rate of entropy generation in the boiler. This is the sum of the
entropy generation of the steam and the gas.

Sdotg = SdotGsteam + SdotGgas
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Calculate entropy generation per lbmol of gas:

SdOtG mdotsteam

‘Bdgteam T Sgas

ndotgyg ndotgag
AH,, BTU
AS = AS = 1.444
steam Tsteam steam Ib-rankine
T2
Cp(T)
" p 3k BTU
ASgas = dT ASgas = ~9.969 x 10> =% :
mol 1b-rankine
Ty
BTU
Sdotg := mdotndot-ASgteam +  Sgas Sdotg = 11.756 ——
Ibmol-rankine
Calculate lost work by Eq. (5.34)
BTU
Wiost := Sdotg T Wiost = 6227 Ans.
Ibmol
—AHy BTU
b) AHgieam = —AHy, ASgteam = ——  ASgeam = —1.444 ——
steam Ib-rankine
BTU

Wideal = ()XHsteam — T ASgteam

Calculate Ibs of steam generated per Ibmol of gas cooled.
J )
Ty

Use ratio to calculate ideal work of steam per Ibmol of gas

Cp(T)dT
Ib

Ibmol

mn = 15.043

~AH,

3 BTU

Ibmol

Ans.

Widealrmn = —3.085 x 10

Tz
c) AHgyg = J
T

Cp(T) dT

3 BTU
Ibmol

Wideal = —9.312 x 10

Wideal := - Ts-AS gas

gas
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5.49 T; = (1100 + 273.15)K Ty = (150 + 273.15)K

T kJ
Cp(T) := | 3.83 + 0000551 L\ R AH, = 2256.9— M :=29 2%
K) kg mol
Ty = (25 + 273.15)K Teteam := (100 + 273.15)K

a) First apply an energy balance on the boiler to get the ratio of steam flow rate tc
gas flow rate.:

T2

T
Ts
—J Cp(T)dT

T
mdotndot := ! mdotndot = 15.135 £m
AH,, mol

Calculate the rate of entropy generation in the boiler. This is the sum of the
entropy generation of the steam and the gas.

Sdotg = SdotGsteam + SdotGgas

Calculate entropy generation per Ibmol of gas:

SdOtG mdotsteam

‘ASgteam + S
ndotgas ndotgas steam gas

AS Aty AS 6.048 x 10° —
= = . X -
steam Tsteam steam kg~ K
T2
Cp(T)
. p
ASgas = dT ASgas = —41.835
mol-K
T
Sdotg := mdotndot-ASgteam +  Sgas Sdotg = 49.708
mol-K
Calculate lost work by Eq. (5.34)
kJ
Wlost = SdOtGTG WIOst = ].4.8_ Ans.

mol
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~AH,

]
b) AHgieqm = ~AHy,  ASgeam = ASgieqm = —6.048 x 10° ——

steam kg-K
kJ
Wideal = (%Hsteam — T ASgteam Wideal = _453.618k_g
Calculate 1bs of steam generated per lbmol of gas cooled.
T2
J Cp(T)dT
T
mn = — mn = 15.135 £
—AH, mol
Use ratio to calculate ideal work of steam per lbmol of gas
kJ
Wideal'mn = —6.866 — Ans.
mol
T>
c) AHgyg = J Cp(T)dT
T
kJ
Wideal = AHgas - TGASgaS Wldeal = _21.686_ Ans'
mol
5.50 Ty := (830 + 273.15)K Ty := (35+273.15)K Ts = (25+273.15K
2) ASethylene = R~ICPS()1‘1 ,T»,1.424,14.394-10°,-4.392.10" °,0
kJ
AS = -0.09
ethylene mol-K
Qethylene = R-ICPH()I‘l Ty,1.424,14394-107 °,-4.392.10" .0
kJ
Qethylene = —60.563 —
mol
Wiost = TG'ASethylene - Qethylene Wiost = 33.803k_‘11
mo

Now place a heat engine between the ethylene and the surroundings. This
would constitute a reversible process, therefore, the total entropy generated
must be zero. calculate the heat released to the surroundings for AS, = 0.
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Qc

ASethylene ~ — =0 Solving for Q- gives: Q¢ = TG'ASethylene
(e}
kJ
= -26.76 —
QC mol

Now apply an energy balance around the heat engine to find the work
produced. Note that the heat gained by the heat engine is the heat lost by
the ethylene.

kJ

QH = —Qethylene WHE = Qu + Qc WHE = 33803@

The lost work is exactly equal to the work that could be produced by the heat
engine
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Chapter 6 - Section A - Mathcad Solutions

6.7 At constant temperature Eqs. (6.25) and (6.26) can be written:

dS = —B-V-dP and dH= () -B-T -V-dP
For an estimate, assume properties independent
of pressure.
T :=270-K Py := 381-kPa P> := 1200-kPa
3 m’ |
V :=1551-10 - — B :=2.09510 K
kg
AS = —B-V-(P2- Py AH = () = B-T -V-(P2- P,
J J
AS = —2.661 —— Ans. AH = 551.7—  Ans.
kg-K kg
J
6.8  Isobutane: T; := 408.1-K Z.:=0.282 Cp = 2.78-—K
P| := 4000-kPa gm'3
P, := 2000-kPa molwt := 58.123.- 2% v, = 262.7. 5%
mol mol

Eq. (3.63) for volume of a saturated liquid may be used for the volume of a
compressed liquid if the effect of pressure on liquid volume is neglected.

359 0.88
T
T :=|360 | K T, = — T, = | 0.882 |
361 ) ¢ 0.885 )
(The elements are denoted by subscripts 1, 2, & 3
2
> 131.604
()_Tr cm
Vi=| VeZe V =|132.138 | —
mol
132.683 )

Assume that changes in T and V are negligible during throtling. Then Eq.
(6.8) is integrated to yield:
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AH = T-AS + V-AP but AH = 0 Then at 360 K,

B —V1~()’2 - P

AS = AS = 0.733 Ans.

Ty mol-K

We use the additional values of T and V to estimate the volume expansivity:

3

AV = V3-V, AV =109 AT:=T3-T; AT =2K
mol
1 AV 5
- .2Y B = 4.098835x 10 "K'
Vi AT

Assuming properties independent of pressure,
Eq. (6.29) may be integrated to give

T
AS = Cp-@T— - N- P AP := P, — Py AP = —2x 10°kPa
Ty (pS+pB-Ay- P
Whence AT .= —- AT = -0.768K Ans.
Cp molwt
T :=298.15-K Py := 1-bar Py := 1500-bar
6,1 6 1 cm’
B :=250-10 -K = 1« :=4510 -bar Vi = 1003-k—
g
cm3
By Eq. (3.5), Vy := Vy-exp| —k-(P2 — P Vj = 937.574—
2 1-exp| —k-(P2 =Py ] 2 ke
Vi+Va cm3
Vave = ———  Vaye = 970.287 — By Eqs. (6.28) & (6.29),
2 kg
AH = Vaye- (N = B-T (P2 - Py AU := AH — (Py: V2 - P1-Vy
kJ kJ
AH = 134.6— Ans. AU = -593—  Ans.
kg kg
AS = —B-Vaye: (P2 - P Q :=T-AS Work := AU - Q
k k
AS = —0.03636—_ Ans. Q= _10.84=2 Ans. Work = 491> Ans.
kg-K kg kg
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6.10 For a constant-volume change, by Eq. (3.5),

B'(<)T2—T1 - -()’2—P1 =0 Tp:=298.15K Ty := 323.15-K
B =36.2:10 K ' K = 442.10 2bar | F13=Tbar
B-(2—Ti
Py = ()T— + P P> = 205.75bar Ans.
K

6.14 --- 6.16 Vectors containing T, P, Tc, Pc, and o for Parts (a) through (n):

300 40" 308.3 ) 61.39) 187
175 75 150.9 48.98 .000
575 30 562.2 48.98 210
500 50 425.1 37.96 200
325 60 304.2 73.83 224
175 60 132.9 34.99 048
575 35 556.4 45.60 193
T := K P:= bar Tc = ‘K Pc:= bar o =

650 50 553.6 40.73 210
300 35 282.3 50.40 087
400 70 373.5 89.63 094
150 50 126.2 34.00 038
575 15 568.7 24.90 400
375 25 369.8 42.48 152
475 ) 75 ) 365.6 ) 46.65 ) 140 )

—> —

T P
TI‘ = — Pr = —

Tc Pc
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6.14 Redlich/Kwong equation: Q) := 0.08664 Y = 0.42748

R —_—

Bfk( o) Eq.(3.33) q:= _¥ ) Eq. (3.54)
Tl‘) Q'TI‘I'S)
Guess: z:=1

Given z=1+B-q 3-% Eq. (3.52)
z(p+

Z()3 ,q = Find(z)

Z .’ . + .
=114 I == In Z(Biai +Bi) Eq. (6.65b)
Z( i>di

HR; = R-Ti-[(y( iqi —1 — 1.5-qi-Ii] Eq. (6.67) The derivative in these

SR; = R()n(y( a4 —PBi —0.5-q;-; Eq.(6.68) equations equals -0.5

Ans.
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6.15 Soave/Redlich/Kwong equation:

N
7

(480 + 1.574-0 - 0.176.0>

Q :=0.08664 Y = 0.42748 c =
o (e
0.5 Pr Ve
=1 AN=T O= .— ' Eq.((3.53 = Eq. (3.54
o |: +c() r ] B ( Tr) q.(3.53) q (Q-Tr) q. (3.54)

Guess: z:=1

Given z=1+B - q-B-(Z):;BB Eq.(3.52)  Z(B,q :=Find(2)
z(p+
Tri\O.S

The derivative in the following equations equals: —c;-| —

o )
ZPiai #BiY g6 6shy
Z( i>di

0.5
Tri\
HR; = R-Ti~|:Z( 9 —1- |:ci-(—} + 1:|-qi-Ii:| Eq. (6.67)

~qi-Iij| Eq. (6.68)

i:=1..14 I = ln[

Ans.
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6.16 Peng/Robinson equation: o := 1 +4/2 g:=1-4/2

—>
7

Q:=0.07779 ¥ :=045724 c:= ()).37464 +1.54226-0 — 0.26992-0°

o o
0.5 Pr Yeu
= 1+cA-T Q= -— Eq.(353) q:= Eq. (3.54
a=l1rell-15 T ( =) e g (Q.Tr) 0. 659
Guess: z:=1
Given z= 1+ —-qp- 2= P Eq. (3.52) Z(B,q := Find(2)
(k+ep (h+op
TI"\O'S
The derivative in the following equations equals: —ci-(—lj
031
Z ., . .
=114 A -ln( (Biai + i) Eq. (6.65b)
24/2 \ Z(Bi.ai +2B i)

.\0.5
St Llaik Eq. (6.67
} q. (6.67)

Eq. (6.68)

Ans.
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Lee/Kesler Correlation --- By linear interpolation in Tables E.1--E.12:

0 1
h0 equals (HR) h1 equals (HR) h equals E
RTc RTc RTc
(SR)" (SR)! SR
s0 equals sl equals s equals —
R R R
686 ~.093 ") ~.950 ~1.003
.590 155 —-1.709 -471
174 —-.024 —-.705 -.591
.675 118 -1.319 —.437
725 .008 —-.993 —.635
744 165 —1.265 —.184
705 -.019 -.962 -.751
70 = Z1 = hO := hl =
.699 102 —-1.200 —.444
770 —-.001 —-.770 —-.550
742 .007 -.875 —-.598
.651 144 —1.466 —.405
767 —-.034 —-.723 —.631
776 —-.032 -.701 —.604
746 ) 154 ) -1.216 ) -211 )

Z=¥0+wZl Eq.357) h:=(ho+ohl (685 HR:=(hTcR)
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— —>
s:=(}0+wsl  SR:=(sR) Eq.(6.86)
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T
6.17 T :=323.15K t:= P 273.15 t=50

The pressure is the vapor pressure given by the Antoine equation:

2788.51
P(t) = expl 13.8858 273851 ) P(50) = 36.166
t+220.79 )
kP
%P(t) - 1375 P = 36.166kPa  dPdt:= 1.375-?al
t

(a) The entropy change of vaporization is equal to the latent heat divided by
the temperature. For the Clapeyron equation, Eq. (6.69), we need the
volume change of vaporization. For this we estimate the liquid volume by
Eq. (3.63) and the vapor volume by the generalized virial correlation. For

benzene:
o = 0.210 T :=562.2-K P. := 48.98-bar Zq:=0.271
cm T P
Ve =259 —— T, = — T, = 0.575 P =— Py =0.007
mol Te P

By Egs. (3.65), (3.66), (3.61), & (3.63)

0.422 0.172
Bp :=0.083 ——— By = —0.941 B; =0.139-—— Bj =-1.621
1.6 4.2
Ty T;
Veap = —t| 1+ (Bo+ B o Vyap = 7306 x 101 2
= —_— - —_ — . X -
vap P 0 1 T, vap ol
2/7
=T
By Eq. 3.72), Viiq = VC-ZC[() ) Viiq = 93.151 —
mol
Solve Eq. (6.72) for the latent heat and divide by T to get the entropy change
of vaporization:
AS := dPdt — Vi AS = 100.34 Ans.
()\lvap liq mol K
(b) Here for the entropy change of vaporization:
R-T J
AS := —-dPdt AS = 102.14 Ans.
P mol-K
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6.20 The process may be assumed to occur adiabatically and at constant
pressure. It is therefore isenthalpic, and may for calculational purposes be
considered to occur in two steps:

(1) Heating of the water from -6 degC to the final equilibrium temperature
of 0 degC.

(2) Freezing of a fraction x of the water at the equilibrium T.

Enthalpy changes for these two steps sum to zero:

J
Cp-At+ x-AHfyg50n = 0 Cp :=42260—— At := 6-K
gm-K
joul —Op- t
AHgysion = _333-4'J0u - Xi=———— x = 0.076 Ans.
il AHfysion
The entropy change for the two steps is:
Ty :=273.15-K Ty = (273.15-6)-K
T2 X~AHf i _ J
AS = Cp-In T2) b AS = 1.034709x 10 °——— Ans.
le Ty gm-K

The freezing process itself is irreversible, because it does not occur at the
equilibrium temperature of 0 degC.

6.21 Data, Table F.4: Hj = 1156.3-@ Hy = 1533.4,@
m by
BTU BTU
S1:=173200—— S, :=19977 ——
by rankine by, rankine
AH := Hy — H;y AS =Sy -5
BT BT
AH = 377.1 —U AS = 0.266—U‘ Ans.
Ibm by, rankine

For steam as an ideal gas, apply Eqs. (4.9) and (5.18). [t in degF]

Ty := (227.96 + 459.67)rankine To := (1000 + 459.67)rankine
Py := 20-psi Py := 50-psi
Ty = 382.017K Ty = 810.928K
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molwt = 18 Ib

Ibmol
-3 5
R-MCPH()I‘l ,T2,3.470,1.450-10" ~,0.0,0.121-10° (2 - T}
AH =
molwt
BTU
AH = 372.536 —— Ans.
lbm
_ Ty P
R. MCPS()Fl,T2,3.470,1.450-10 3,0.0,0.121-105 -In —\—ln —2\\
) "))
AS =
molwt
BT
AS = O.259—U_ Ans.
by, rankine
6.22 Data, Table F.2 at 8000 kPa:
cm’ J J
Viig == 1.384-— Hijq == 1317.1-— Stiq = 3.2076-——
gm gm gm-K
cm3 J J
Vyap = 23.525-—— Hyap = 2759.9-— Syap = 5.7471-——
vap . vap - vap T
0.1510° 3 0.1510° 3
——-cm ——-cm
2 2
mjg = —————— Myap 1=
1 Vliq P VVap
Hiotal := miig-Hlig + myap-Hvap Hiotal = 80173.5k]  Ans.
Stotal := Mliq-Sliq + Myap* Svap kJ
Stotal = 192.145_ AnS.
K
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6.23 Data, Table F.2 at 1000 kPa:

3
] ]
Viig = 1.127- 2= Hijq = 762.605-—— S} i= 2.1382——
gm gm gm-K
Vo = 194.29. 22 Hopo = 27762 Suss = 6.5828—
vap - . o vap - . . vap = 0. e

Let x = fraction of mass that is vapor (quality) x := 0.5 (Guess)

x-V 70
Given S L x := Find(x)
(I-x)-Viiq 30
x = 0.013
J J
H = 789.495 — S=2198——— Ans.
gm gm-K
6.24 Data, Table F.3 at 350 degF:
3 3
ft ft
Vliq :=0.01799-— Vvap = 3342 —
m by,
BTU BTU
Hliq = 321.76-—— Hvap =1192.3.——
m m
_ _ 50'mliq'Vliq _
vap
mijq == ————— myjqg = 2.3641b
50-Viiq
1+
VVap

mvap = 3'lbm - mhq

Hiotal := miiq-Hliq + Myap-Hvap

Myap = 0.6361b

Hiotal = 1519.1BTU  Ans.
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6.25

6.26

1 cm3

V = .
0.025 gm

Viiq = 1'209';%

3
Vyap = 71.45."g£m

x = 0.552

H = 1991

Data, Table F.1 at 230 degC:

J J
Hiiq := 990.3— St i= 2:6102-——
gm gm-

J J
Hvap = 2802.0_ Svap = 6.2107'—

gm gm-K

V = Viig
X=—
Vvap - Vliq

S = 4.599L Ans.
gm gm-K

Viotal = Myotal’ Vlig + MyapAV]y

Viotal := 0.15-m°

Table F.1,
30 degC:

Viotal

Mypta] =
vap

mtotal = O.382kg
Mmjjq = Mtotal — Myap

myjq = 377.72gm

Table F.1 cm
’ Vvyap = 392.4-——

150 degC: vap gm
cm’ cm’
Viig = 1.004- 2 AVy, = 32930-
gm gm

Viotal — Meotal Vliq
AVyy

mVap =

Myap = 4.543x 107 kg
Viot.lig = Miiq- Vliq

Viotliq = 379-23cm’ Ans.
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J J
6.27 Table F.2, 1100 kPa: Hiiq == 781.124-— Hyap = 2779.7-—
gm gm

Interpolate @101.325 kPa & 105 degC: Hy = 2686.1-i

gm

Const.-H throttling: Hp = Hjjq + x-(){vap — Hiigq
H> — Hijq
X=—— =

Hvap _ Hliq x = 0.953 Ans.

6.28 Data, Table F.2 at 2100 kPa and 260 degC, by interpolation:

J J
Hi = 2923.5— S| = 6.5640 —— molwt := 18.015 2=
gm gm-K mol
Hy := 2923,5.i Final state is at this enthalpy and a pressure of 125

gm kPa.
By interpolation at these conditions, the final temperature is 224.80 degC and

J J
Sy i=7.8316-—— AS =Sy -S4 AS = 1.268——  Ans.
gm-K gm-K

For steam as an ideal gas, there would be no temperature change and the
entropy change would be given by:

P; := 2100-kPa

-R Py
Py := 125-kPa AS = ‘In —\ AS = 1.302L Ans.
molwt Pl) gm-K

6.29 Data, Table F.4 at 300(psia) and 500 degF:

BTU BTU
Hy = 12577 —— Sp:= 15703 —
by by, rankine
BTU . . .
Hy = 12577 —— Final state is at this enthalpy and a pressure of
Ibm 20(psia).
By interpolation at these conditions, the final temperature is 438.87 degF and
BTU BTU
Sy == 1.8606: ——— AS =Sy -5 AS =029 ——
by, rankine by, - rankine
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6.30

6.31

For steam as an ideal gas, there would be no temperature change and the
entropy change would be given by:

b
P1 := 300-psi Py := 20-psi molwt := 18
Ibmol
P>
-R- IH(P—\

1 BTU .
asm AP AS = 0299— = ADS
molwt by, - rankine

Data, Table F.2 at 500 kPa and 300 degC
Sy = 7.4614.L The final state is at this entropy and a pressure of
gm-K 50 kPa. This is a state of wet steam, for which
Stig == 1.0912 ! Syap = 7.5947 !
lig -== 1- e K vap -= /- gm K
J J
Hiiq := 340.564-— Hyap = 2646.9-—
gm gm
= = Q.. : S1-Sj
S2=S1 = Siig + X‘()gvap — Sliq X = 217 Oliq x = 0.98
SVap - S1iq
gm

Vapor pressures of water from Table F.1:

At 25 degC: Pgat := 3.166-kPa
Psat
P = 101.33kPa Xwater = P Xwater = 0.031 Ans'
At 50 degC: Pgat := 12.34-kPa
Psat
Xwater -= 7 Xwater = 0.122 Ans.
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6.32 Process occurs at constant total volume:

6.33

Viotal == (0.014 + 0.021)-m°

Data, Table F.1 at 100 degC:
cm’
th = 1.044'g_m VVap =
3
0.021'm m
mjjq == ———— vap =
q Vliq p
_ Mvap
X T hass x = 4.158x 10
Viotal 3
=2 Vy = 1739 %
mass gm

For this state, P = 16,500.1 kPa, and

J J
Up = 1641.7-— Uq = Ujjg + x — Uy Uj = 419.868 —
2 om 1 lig ()Jvap liq 1 om
J
Q:=U,-U; Q=1221.8— Ans.
gm
3
Vtotal = 0.25-11’1
Data, Table F.2, sat. vapor at 1500 kPa:
Crn3 J Viotal
Vi :=131.66-—— Uqp :=25924.-— mass :=
gm gm Vi
Of this total mass, 25% condenses making the quality 0.75 x :=0.75

Uliq == 419.0-—

Vvap

1673.0-——

0.014-m’

J J
Uvap = 2506.5'_
gm gm
3
cm
gm
(initial quality)

This state is first reached as
saturated liquid at 349.83 degC

Since the total volume and mass don't change,

we have for the final state:
V2= V1 = Vijg + X'()\lvap — Vliq
V1-"Viiq

x=————  (A)
VVap - V1iq
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6.34

Since the liquid volume is much smaller than the vapor volume, we make a
preliminary calculation to estimate:

Vi 3

Vvap = — Vyap = 175'547;%

This value occurs at a pressure a bit above 1100 kPa. Evaluate x at 1100
and 1150 kPa by (A). Interpolate on x to find P =1114.5 kPa and

J J
Uliq = 782.41-— Uyap = 2584.9-—
gm gm
J
Uy := Ujig + x-(Pvap — Uliq Uy = 21343 —
gm
Q= mass-(pz - U Q = —869.9kJ Ans.
cm3 Cl’Il3
Table F.2,101.325 kPa: Viiq = 1.044-— Vyap = 1673.0-—
gm gm
J J 0.02-m>
Uliq == 418.959-— Uyap = 2506.5-— myjq = :
gm gm Vlig
1.98-m° . Myap
Myap = Mypta] -= Mjq T Myga X =
P Vvap 1 P Myotal
Vi = Vig+x(Vyap— Viig Vi = 98.326—— X = 0.058

gm

Ut = Utig+x(Pvap—Ulia y; = s40.421 -
gm
Since the total volume and the total mass do not change during the process,
the initial and final specific volumes are the same. The final state is
therefore the state for which the specific volume of saturated vapor is
98.326 cu cm/gm. By interpolation in Table F.1, we find t = 213.0 degC and

J
Uj := 2598.4.— Q = meotal(P2 - Ui Q = 41860.5k]  Ans.
gm
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6.35

6.36

Data, Table F.2 at 800 kPa and 350 degC:

3
J
V) = 35434 5 Uj = 2878.9-— Viotal = 0.4-m°

gm gm

The final state at 200 degC has the same specific volume as the initial
state, and this occurs for superheated steam at a pressure between 575 and
600 kPa. By interpolation, we find P = 596.4 kPa and

Also:

J

Ujp = 2656.3-—

gm

Q= mass-T-()Sz -$

J
Stiq = 14336 ——
gm:

J
Uliq = 444.224-—

J
Sy = 7.6439- ——

Work = mass-()Jz -U; -Q

J Viotal
Up:=26387— Q:=——(P2-U; Q= 271.15k]  Ans.
gm Vi
Data, Table F.2 at 800 kPa and 200 degC:
J J
Uq :=2629.9-— S1 = 6.8148-—— mass = 1-kg
gm gm-K

(a) Isothermal expansion to 150 kPa and 200 degC

gm-K

Q =392.29kJ Ans.

(b) Constant-entropy expansion to 150 kPa. The final state is wet steam:

J
Svap = 7.2234. ——
vap il

J
Uvap = 2513.4'_

gm gm
S1-Sj
Xi=— x = 0.929
SVap - Sliq
U3 := Uliq + x-(Pvap — Ut Uj = 2.367 x 1001
. 1q vap 1q . om

W = mass-()Jz - Uj

W = -262.527k] Ans.

T :=473.15-K

Work = —365.89k]J



6.37 Data, Table F.2 at 2000 kPa:

6.38

x :=0.94

Hj = Hjiq + X'()'Ivap — Hiiq

J
Hvap = 2797.2' g_m

J
Hy = 2.684x 10° ——
gm

J
Hijiq == 908.589- —
q om

mass = 1-kg

For superheated vapor at 2000 kPa and 575 degC, by interpolation:

J
Hy = 3633.4—
gm

First step:
Second step:

For process:

Table F.2,
2700 kPa:

x1:=09

Table F.2, 400 kPa:

Q= mass-()ﬂlz - H;

Q12=0
W3 =0
Q=U3-Up

J
Uliq := 977.968-—
q gm

J
Stiq = 2.5924-—K
gm-

Uy = Ujjiq + Xl'()jvap — Uliq

S1 = Sjiq + Xl'(Fvap — Sliq

J
Sliq = 1.7764-—K
gm-

J
Uliq := 604.237-—
gm

Viiq = 1.084-;%

162

Q = 949.52k]  Ans.

Wi =Upy-Uj
Q23=U3-0Up
W=U,-U;

J
Uvap = 2601 .8'g_m

J
Svap = 6.2244. ——
vap il

J

U = 2439 x 10° ——
gm

3 m2

s K

J
Svap = 6.8943'grn—'K

J
Uvap = 2552.7' g_m

Vyap i= 462.22;&m



Since step 1 is isentropic,

S1 - Siiq
S2=S1 = Sjig + X2~()3vap - Sliq Xy ;= —— x2 = 0.798
Svap - Sliq
3 J
cm
V2 = Viig + x2:(Mvap — Viiq Vs = 369.135 .
V3=V, and the final state is sat. vapor with this specific volume.
Interpolate to find that this V occurs at T =509.23 degC and
J
U3 := 2560.7-— Whence Q:=U3-0Uy Work = Uy — Uj
gm
J J
Q = 401.317—  Ans. Work = —280.034—  Ans.
gm gm
6.39 Table F.2,400 kPa & Uy = 2605.8-i Sy = 7.0548-L
175 degC: Sl gm-K
Table F.1,sat. vapor, J J
175 degC Up = 2578.8-— Sy :=6.6221.-——
gm gm-K
mass = 4-kg T:=(175+273.15)-K
Q:= mass-T-()S‘z -5 W = mass-(pz -U; -Q

Q = -775.66k] Ans. W = 667.66k]  Ans.

6.40 (a) Table F.2, 3000 kPa and 450 degC:

J J
Hj :=3344.6-— Sy = 7.0854-——
gm gm-K
Table F.2, interpolate 235 kPa and 140 degC:
J J
Hjp :=2744.5-— Sy = 7.2003- ——
gm gm-K
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J

AH = Hy — H; AH = —600.1—  Ans.
gm
AS =52-51 AS = 0.115——  Ans.
gm-K
(b) Ty := (450 + 273.15)-K T, := (140 + 273.15)-K
T; = 723.15K T, = 413.15K
Py := 3000-kPa Py := 235-kPa

Egs. (6.95) & (6.96) for an ideal gas:  molwt = 18-S

mr\]

R-ICPH()r1.T2.3.470,1.450-1072,0.0,0.121-10°
AH

ig = molwt
_ )
R-(ICPS()rl,T2,3.470,1.450~10 300,0.121-10° _IH(P_D
1
AS:, =
‘8 molwt
J J
AHjg = —620.6— ASig = 0.0605 —— Ans.
gm gm-K

(¢) T, :=647.1.K P. := 220.55-bar  ® := 0.345

Ty P Py T Ty P Py
Te rl P 2 Te ! P

Ty = 1.11752 P, = 0.13602 Ty = 0.63846 P,y = 0.01066

T :

The generalized virial-coefficient correlation is suitable here

AH := AH;g + R'TC'(FRB ()Frz "szn’l Olw: HRB ()rrl Brl
AH = —593.95i Ans.

gm
15 e a5+ RURRFR B2, SRE(Fo 80,

AS = 0.078L Ans.
gm-K
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6.41 Data, Table F.2 superheated steam at 550 kPa and 200 degC:

3
cm

J J
V1 :=385.19-— Uj = 2640.6-— Sy :=7.0108 ——
gm gm gm-K
Step 1--2: Const.-V heating to 800 kPa. At the initial specific volume
and this P, interpolation gives t = 401.74 degC, and

J J
Uy :=2963.1.-— Sy :=7.5782-—— Q2 :=Ur-U;y
gm gm-K
J
Q2 =3225—
Step 2--3: Isentropic expansion to initial T. gm
J
Q=0 S3=S, S3 :=7.5782-——
gm-K
Step 3--1: Constant-T compression to initial P.
J
T := 473.15-K Q31 = T-(B1 - S3 Q31 = —268.465—
gm
For the cycle, the internal energy change = 0.
_chcle
Weyele = —Qcycle = —Q12 — Q31 n=s—
Q12
Q31
n=1+— n = 0.1675  Ans.
Q12
6.42 Table F.4, sat.vapor, 300(psi):
BTU
Tq := (417.35 + 459.67)-rankine H; = 1202.9-1—
T1 = 877.02rankine BTU
Sy == 1.5105- -
by, - rankine
Superheated steam at 300(psi) & 900 degF
BTU BTU
Hyp := 1473.6.—— Sy == 1.7591 — S3 =S,
by by - rankine
BTU
Q2 :=Hz-H Q31 = T1-(B1 - S3 Q31 = —218-027T

m
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For the cycle, the internal energy change = 0.

_chcle
Weycle = —Qcycle = —Q12 — Q31 n=——— Whence
Q12
Q31
n=1l+— n = 0.1946  Ans.
Q12

6.43 Data, Table F.2, superheated steam at 4000 kPa and 400 degC:

Sy = 6_7733.; For both parts of the problem: S, := S;

gm-K

(a) So we are looking for the pressure at which saturated vapor has the given
entropy. This occurs at a pressure just below 575 kPa. By interpolation,

P> = 572.83-kPa Ans.
(b) For the wet vapor the entropy is given by

x = 0.95 S2 = Siiq + x-(Bvap — Siq

So we must find the presure for which this equation is satisfied. This
occurs at a pressure just above 250 kPa. At 250 kPa:

J J
Stig := 1.6071-—— Svap = 7.0520-——
liq e vap e

Sz = Siig + X-()Svap — Sliq

Sy = 6.7798L Slightly > 6.7733
gm-K
By interpolation Py = 250.16-kPa Ans.

6.44 (a) Table F.2 at the final conditions of saturated vapor at 50 kPa:
kJ kJ
Sy :=7.5947 —— Hy := 2646.0-— S1 =S,
kg-K kg
Find the temperature of superheated vapor at 2000 kPa with this
entropy. It occurs between 550 and 600 degC. By interpolation
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kJ
t] = 559.16 (degC) Hj := 3598.0-—

kg
Superheat: At := (559.16 — 212.37)-K At = 346.79K  Ans.

k
(b) mdot = 5-—g Wdot := |md0t-()12 - H; | Wdot = 4760kW Ans.
sec

6.45 Table F.2 for superheated vapor at the initial conditions, 1350 kPa and 375

6.46

degC, and for the final condition of sat. vapor at 10 kPa:

kJ kJ kJ
Hp =32054-— Sy :=7.2410-—— Hp = 2584.8-—
kg kg-K kg
If the turbine were to operate isentropically, the final entropy would be

Sy =53
Table F.2 for sat. liquid and vapor at 10 kPa:

kJ kJ
kg-K kg-K
kJ kJ
Hiiq == 191.832-k— Hyap = 2584.8-k—
g g
S2 = Siig
XQ = x7 = 0.879 H' = Hiiq + XZ'()'lvap — Hiiq
SVap - Shq
H' = 2294% 1072
= . X B —
Hp - Hj kg
ns=—— n = 0.681 Ans.

H-H,

Table F.2 for superheated vapor at the initial conditions, 1300 kPa and 400
degC, and for the final condition of 40 kPa and 100 degC:

kJ kJ kJ
Hp =3259.7-— Sy = 7.3404- —— Hp = 2683.8-—
kg kg-K kg
If the turbine were to operate isentropically, the final entropy would be

Sy, =85
Table F.2 for sat. liquid and vapor at 40 kPa:
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kJ kJ

Siig == 1.0261-—— Svap = 7.6709- ——
liq ke K vap ke K
kJ kJ
Hjjq == 317.16-— Hyap = 2636.9-—
kg kg
S2 = Siig
Xy = —— x7 = 0.95 H' = Hiiq + XZ‘(Fvap — Hiig
Svap - S1iq W
3
H =2522x10"—
_ Ha-Hy kg
n = H'——Hl n = 0.78 Ans.
6.47 Table F.2 at 1600 kPa and 225 degC: P := 1600-kPa
cm3 J J
V =132.85-— H := 2856.3-— S :=6.5503-——
gm gm gm-K
Table F.2 (ideal-gas values, 1 kPa and 225 degC)
J J
Hjg = 2928.7-— Sig == 10.0681- —— Py := 1-kPa
gm gm-K
R T
T :=(225+273.15)-K T =498.15K VR =V- —
molwt P

The enthalpy of an ideal gas is independent of pressure, but the entropy

DOES depend on P:
-R P
Hr := H-H;j AS;, = In| — SR := S —( Big + AS;
R ‘6 7 molwt (Po j R ()Slg '8
cm3 J J
Vg = -10.96 — Hr = -724— SR = —0.11—— Ans.
gm gm gm-K

Reduced conditions: @ := 0.345 T. := 647.1-.K P := 220.55-bar

T P
Tr = Tr = 0.76982 Pr = Pr = 0.072546
Te P¢
The generalized virial-coefficient correlation is suitable here
0.422 0.172
Bgp:=0083 -—— Bp=-0558 B;:=0139-—— B] =-0377
1.6 4.2
T Ty
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By Eqgs. (3.61) + (3.62) & (3.63) along with Eq. (6.40)

Pr R-T
Z =1+ +w-B1 -— Z = 0.935 VR i=——(Z -1
030 ! T, R P-molwt ( )
R-T¢ R
Hp = -HRB(I;,B;, Sgp = -SRB|( I;,B,,
R molwt ()Tr g R molwt ()Tr g
cm3 J J
Vg = 933 — Hgr = —-53.4— Sgp = —0.077——
R gm R gm R gm-K Ans.
6.48 P := 1000-kPa T:=(179.88 + 273.15)-K T = 453.03K
(Table F.2) molwt := 18.015 2%
mol
3 3
cm cm
Vy:=1.127— Vy =194.29.—— AV}, = Vy =V
gm gm
J J
Hj := 762.605-— Hy = 2776.2-— AH}, == Hy - Hj
gm gm
J J
Sp:=2.1382.—— Sy = 6.5828 —— AS|y =Sy -8
gm-K gm-K
cm3 3 J J
AV}, = 193.163 — AHpy = 2.014x 10— AS|y = 4445 ——
gm gm gm-K

J
(@ Gy:=H;-T-S| G| =-206.06—

J
Gy :=Hy-T-Sy Gy = —206.01 —

gm gm
(b) AS}, =4.445—— ro= v f= 4445
gm-K T gm-K
R T cm3
(©) VgR:=Vy- — VR = —14.785——  Ans.
molwt P gm

For enthalpy and entropy, assume that steam at 179.88 degC and 1 kPa
is an ideal gas. By interpolation in Table F.2 at 1 kPa:
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J J
Hig := 2841.1-— Sig 1= 9.8834 —— Py = 1-kPa
gm gm-

The enthalpy of an ideal gas is independent of pressure; the entropy
DOES depend on P:

-R P J
HR = HV - ng ASlg = .In —\ ASlg =-3188——
molwt Poj gm-K

] J
Sk =Sy~ (Pig+AS;y  HR = —64.9g—m Ans. S = —0.1126@17 Ans.

(d) Assume In P vs. 1/T linear and fit three data pts @ 975, 1000, & 1050 kPa.

975 178.79)
Data:  pp:=| 1000 |-kPa t:=|179.88 | (degC) i:=1.3
1050 ) 182.02 )
1 Ppi )
Xj = ——— yj:=In| — Slope := slope(x, Slope = —4717
T ir23s (kPa) P pe(x.y) Slop
—P kP
dPdT = —-Slope-K dPdT = 22.984—2
2 K
T
J
AS}y = AV},-dPdT ASp, = 444——  Ans.
gm-K

Reduced conditions: o := 0.345 T¢ := 647.1-K P := 220.55-bar

T P
Ty = — T, = 0.7001 P, := — P, = 0.0453

C C

The generalized virial-coefficient correlation is suitable here

0.422 0.172
Bo:=0.083-—— Bg=-0664 Bj:=0.139-—= Bj=-0.63

T, Tr4.
By Egs. (3.61) + (3.62) & (3.63) along with Eq. (6.40)

Py R-T
Z =1+ +m-B1 -— Z = 0.943 Vg =
()30 1 T, R

=— (Z-1
P-molwt ( )
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R-T, R
Hg = -HRB|( I, B;, SR := -SRB(I;,B;,
R molwt ()l'r ' R molwt ()Tr '

cm3 J J
VR = -11.93 — HR = —43.18— SR = —0.069—— Ans.

gm gm gm-K

6.49 T :=(358.43 +459.67)-rankine T = 818.1rankine P := 150-psi
(Table F.4) molwt = 18.015 22
mol
3 3

ft ft
Vi:=0.0181-— Vy :=3.014— AV}, =V, -V]

1 m m

BTU BTU
Hj := 330.65-—— Hy := 1194.1-—— AH}, = Hy — Hj

lbm m

BTU BTU

Sy :=0.5141- . Sy == 1.5695- - ASpy =Sy —S1

by, - rankine by, - rankine

f° BTU

AVi, = 2.996 —
Iv b

m

@ G :=H-T-S

AHp, = 863.45——
Iv b

m

GV = HV - TSV

BTU BTU
Gy = -89.94 —— Gy = 8991 ——
m m
BTU AHj BTU
(b) ASp, = 1.055 : ri= — r = 1.055 :
by, - rankine T by, - rankine
R T t
(©) VR:=Vy- — VR = —0.235— Ans.
molwt P by,

For enthalpy and entropy, assume that steam at 358.43 degF and 1 psi is
an ideal gas. By interpolation in Table F.4 at 1 psi:

BTU
Hig := 1222.6 ——

m

BTU

Sig := 2.1492. -
by - rankine

Py := 1-psi
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The enthalpy of an ideal gas is independent of pressure; the entropy DOES
depend on P:

BTU
HR = Hy — Hijg Hp = —28.5T Ans
m
—R P BTU
ASig = -In —\ ASig = 0.552——
molwt | Po ) 1by,-rankine
BTU

(d) Assume In P vs. 1/T linear and fit threedata points (@ 145, 150, & 155
psia)

145 355.77)
Data:  pp:=|150 |psi  t:=|35843 |  (degF) i=1.3
155 ) 361.02 )
1 pp; )
Xj = ———— i = In| — Slope := slope(x,
T 45967 (psi ) P pe(x.¥)
Slope = —8.501 x 10°
—P 1
dPdT := —-Slope-rankine dPdT = 1.905 ps%
T2 rankine
BTU
ASyy = AVy,-dPdT ASjy = 1.056————— Ans.
by, rankine

Reduced conditions: o := 0.345 T, := 647.1-:K P¢ := 220.55-bar

T P
Tp = — T, = 0.7024 Pri=— P = 0.0469
TC PC
The generalized virial-coefficient correlation is suitable here
0.422 0.172
Bgp:=0083~-—— Bgp=-066 B|:=0139-—— Bj=-0.62
1.6 4.2
Ty Ty
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By Eqgs. (3.61) + (3.62) & (3.63) along with Eq. (6.40)

Py R-T
Z =1+ +®-B; -— Z =0.942 VRi=———(Z-1
()30 ! T, R P-molwt ( )
T, R
Hr = R- -HRB(T;,8;, SR = -SRB(T;,B;,
R molwt ()l"r ! R molwt ()l'r '
# BTU BTU
VR = —0.1894 — Hp = -19.024—— Sg = -0.0168 ——— Ans.
by, Iby, by, - rankine
6.50 For propane: Tc:=369.8-.K P, :=42.48-bar o = 0.152
T :=(195+273.15)-K T =468.15K P := 135-bar Py := 1-bar
T P
Tr = — Tr = 1-266 Pr = Pr = 3178
Tc P¢
Use the Lee/Kesler correlation; by interpolation,
Zo :=0.6141 Z1 :=0.1636 Z:=7Zp+m7Z1 Z = 0.639
ZRT em’
Vi=—— V =1842—— Ans.
P mol
Hrp := -2.496-R- T, Hpri :=-0.586-R- T,
J J
Hpo = —7.674 x 10° —— Hpy = —1.802 x 10° ——
mol mol
Sro := —1.463-R Sr1 :=-0.717-R
J
Sro = —12.163 Sr1 = -5.961
RO mol-K R mol-K
Hgr := Hro + ®-HR SR := Sro + ®-SR1
3 J
HRr = -7.948 x 10” — SR = —13.069
mol mol-K

3

AH = R-ICPH();os.wK,T,1.213,28.785-10‘ -8.824-10°°,00 +Hg
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) _ p
AS = R-(ICPS()%OS.ISK,T,1.213,28.785-10 3 _8.824-107°,0.0 —h{—m + SR

Po))

J
AH = 67349—  Ans. AS = -159
mol mol-K

Ans.

6.51 For propane: Te:=369.8-.K  P;:=4248bar o :=0.152

T:=(70+273.15)-K T =343.15K Pp :=101.33-kPa P := 1500-kPa

T P

Ty = — T, = 0.92793 P, = — P, = 0.35311
Tc Pc

Assume propane an ideal gas at the initial conditions. Use
generalized virial correlation at final conditions.

J

AH := R-ToHRB(Jl; @, AH = 14313 — Ans.
mol
P )
AS = R'(SRB()“ B, - IH(P_O ))  AS=-25287 Ans.
mol-K
6.52 For propane: o = 0.152 g
To:=369.8K  Pe:=4248bar  Zc:=0276 V= 2oo.o-c—m1
mo

If the final state is a two-phase mixture, it must exist at its saturation
temperature at 1 bar. This temperature is found from the vapor pressure

equation:

P := 1-bar A :=-6.72219 B :=1.33236 C = -2.13868
T

D := -1.38551 (T)y =1-— Guess: T :=200-K

Given ¢

P= Pc-exp{A.T(T) -2l 11.5:;((:%())5 (m *+D-(m °

T := Find(T) T = 230.703K
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The latent heat of vaporization at the final conditions will be needed for an
energy balance. It is found by the Clapeyron equation. We proceed
exactly as in Pb. 6.17.

1.5 3 6
P(T) :_Pc-exp{A"(T“B'(}(T) +C(k(m) "+ D:(k(T) }

1 -1(T)
kP kP
T := 230.703-K 9 p(r) = 442822 dPAT := 4.428124-—
dT K K
P T
P := l-bar P, = — P,=0024 T,:=— T, =0.624
C C
0.422 0.172
Bg = 0.083 - —— Bg=-0815 Bj:=0139-—— Bj=-1.109
.16 742
r T z:|
-
Vvap = ——| 1+ ()30 +0-Bp -— Viiq == Ve'Ze () )
P T,
Vyap = 1.847 x 10152 em’
vap = 1.64/ X mol Vliiq = 75.546 —
mol
4 J
AH}y := T+(Vyap — Viig -dPdT AHjy = 1879 10—

ENERGY BALANCE: For the throttling process there is no enthalpy
change. The calculational path from the initial state to the final is made up
of the following steps:

(1) Transform the initial gas into an ideal gas at the initial T & P.

(2) Carry out the temperature and pressure changes to the final T & P in
the ideal-gas state.

(3) Transform the ideal gas into a real gas at the final T & P.

(4) Partially condense the gas at the final T & P.

The sum of the enthalpy changes for these steps is set equal to zero, and
the resulting equation is solved for the fraction of the stream that is liquid.

For Step (1), use the generalized correlation of Tables E.7 & E.8, and let
0 1
[ R ) ( R )

and =
R-T. ) R-T. )

o =
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6.53

T; :=370-K Py := 200-bar

Ty Py
Tr = — Tr = 1.001 PI' = — Pr = 4.708

Tc Pc
By interpolation, find: rg = —3.773 r] = -3.568

4 ]
By Eq. (6.85) AH| = -R-T(Jo + 110 AH; = 1.327x 10—
mol
For Step (2) the enthalpy change is given by Eq. (6.95), for which
aH, = R(JepH(lr; . T,1213,28.785.107% -8.824-107%,0.0
J
AH, = —1.048 x 10* —
mol

For Step (3) the enthalpy change is given by Eq. (6.87), for which

230.703-K 1-b
T, = 22 T, = 0.6239 p, = 2 P, = 0.0235

T¢ P¢
AHj := R-TC-HRB()]‘I,(BD For Step (4), AH4 = & Hj,
J
AH3 = -232.729 —
mol
For the process, AH; +AH> + H3—-x-AHj, =0
AHI +&H2 + H3
X = x =0.136 Ans.
AHpy
For 1,3-butadiene: © := 0.190 T, := 425.2.K
cm
P. := 42.77-bar Z. = 0.267 Ve :=2204—— T, :=268.7-K
mol

T := 380-K P:=1919.4-kPa Tg:=273.15K  Pg:= 101.33-kPa

T P
Tr = — Tr = 0.894 Pr = Pr = 0.449

Tc P¢
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Use Lee/Kesler correlation. HOWEVER, the values for a saturated vapor lie
on the very edge of the vapor region, and some adjacent numbers are for the
liquid phase. These must NOT be used for interpolation. Rather,
EXTRAPOLATIONS must be made from the vapor side. There may be
some choice in how this is done, but the following values are as good as any:

Zo = 0.7442 771 = —0.1366 7 :=7p+ w07 Z =0.718
ZR-T i
\Y/ = — Vv =1182.2—— Ans.
Vap P Vap mol
Hgo := —0.689-R-T, Hgj := —0.892-R-T,
J J
Hpo = —2.436 x 10° — Hpj = —3.153 x 10° ——
mol mol
SRo = —0.540-R Sry = —0.888-R
Sro = —4.49 ] Srp1 = —7.383 J
RO " mol-K R ' mol-K
Hgr := Hro + ®-HR SR := Sro + ®-SR1
J J
Hp = -3.035x 10°—— SR = —5.892
mol mol-K

3

Hyap = R-ICPH()FO,T,2.734,26.786-10_ ,—8.882-10_6,0.0 + HR

_ - P
Syap = R-| ICPS( [Ty, T,2.734,26.786-10"°,~8.882:10~°,0.0 —In P + SR
P P
0))
Hyap = 6315 9L Syap = —1.624 Ans
vap "~ mol Ans. vap . mol-K )
For saturated vapor, by Egs. (3.63) & (4.12)
2
L)_Tr 7 i
Vliq == Ve Zc Viiq = 109.89 — Ans.
mol
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6.54

_ P _
1.092.| In Pel 1.013\
bar ) )
AH, = R-Ty- -
0.930 — —
L C
By Eq. (4.13) AH = AH,
AH
Sliq = Svap -
For n-butane: o = 0.200
P := 37.96-bar Z:.:=0.274
T := 370-K P := 1435-kPa
T
T¢

AH,, = 22449L
mol
0.38
1-T
a AH = 14003 ——
n ‘ mol
TC]
J
th = —-7687.4—— Ans.
mol
Stig = —38.475 Ans.
liq mol-K
T.:=425.1-K
cm3
V. = 255—— T, == 272.7-K
mol
T :=273.15- K Pg := 101.33-kPa
P
Py = — P, = 0.378
Pc

Use Lee/Kesler correlation. HOWEVER, the values for a saturated vapor lie
on the very edge of the vapor region, and some adjacent numbers are for the
liquid phase. These must NOT be used for interpolation. Rather,

EXTRAPOLATIONS must be made from the vapor side. There may be
some choice in how this is done, but the following values are as good as any:

Zy = 0.7692 Z1:=-0.1372
Z-R-T
Vi=——
P

Hgrp := —0.607-R-T,

Hpo = —2.145x 10° ——
mol

178

7 =70+ m-7Z Z =0.742
V = 1590.12  Ans.
mol

Hgry = —0.831-R- T,

J
Hpj = —2.937 x 10°——
mol



Sro = —0.485-R Srj = —0.835-R

J J
Sro = —4.032 Sr1 = —6.942
RO mol-K RI mol-K
Hgr := Hro + ®-Hp SR := Sro + ®-SR1
J J
Hp = —2.733 x 10° — Sg = —5.421
mol mol-K

3

Hyap = R-ICPH()rO,T,1.935,36.915-10‘ ,—11.402-10"%,0.0 +Hg

Svap = R-(ICPS()I‘O,T, 1.935,36.915-107°,-11.402-10" °,0.0 — m(PED + SR
0

For saturated vapor, by Eqgs. (3.72) & (4.12)

I 2/7

) , _
1.092.(111(—"\ - 1.013\

b J

AH, = R-Ty ar) J AH, = 22514——
n n
Th mol
0.930 — —
— C -
0.38

1Ty ) J
By Eq. (4.13) AH = AH,- AH = 15295.2——
Th | mol

T¢ )
AH
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6.55 Under the stated conditions the worst possible cycling of demand can be
represented as follows:

10,000 kg/hr

Demand 2/3 hr 1/3 hr
(kg/hr) - —|-«—>
< 1 hr
6,000 P time
4,000 kg/hr

|

net storage net depletion
of steam of steam

This situation is also represented by the equation:

40000 + 10000-(1 =6 = 6000
where 0 = time of storage liquid

Solution gives 0 := Ehr

The steam stored during this leg is: myjme == (6000§ - 4000 kg\

~=lp
hr hr)
Mprime = 1333.3kg

We consider this storage leg, and for this process of steam addition to
a tank the equation developed in Problem 6-74 is applicable:

Hfg2\
ml'(){prime —Hp ~ Viank (Pz -P1- W}
g2
m» =
? Hfg2
Hprime —Hp + ViR ——
fg2

We can replace V,,, by m,V,, and rearrange to get

my Hfgo Hfg )
—| Hprime —~Hp2 + Vipr —— + V2:| P2 =P — —— | = Hprime — Hi
mj Vig2 Vg )

my
However Mj-vi = mp-Vy = Vi and therefore — =

1
—  Eq.(A)
m;p  V
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Making this substitution and rearranging we get

H Hp + Vi 2
rime — 2 2
P Vng Hfg2 Hprime - Hj
+Py—-P1 - =
V2 Vg2 Vi

In this equation we can determine from the given information everything

except Hy ;e and V.. These quantities are expressed by

Hj = Hf +x1-Hegg and Vi = Vi +x1-Vigl

Therefore our equation becomes (with H, ;... = H,,)

0 -Hp +Vp|——
(}I Vg2 ) Hggo  Hgo — Hfl — x1-Heg
+Py-P - =

V2 Vig Vi1 + X1 Vgl

Eq. (B)

In this equation only x, is unknown and we can solve for it as follows. First
we need V,:

From the given information we can write:

0.95V2 = () —x2 -Vp 0.05V2 = x2- Vg2

-Xx2 -V \%
therefore 19 = u or Xy = R
X2:Vg2 19Vgr + Vp
A% A%
Then Vy = of)z'(w R 5 20 1 Eq. (O)
.05 Voo +V 1
e+tVp) 19 1

Now we need property values:
Initial state in accumulator is wet steam at 700 kPa. Py := 700kPa

We find from the steam tables

kJ kJ kJ
Hp 1= 697.061 -~ Hgj = 2762.0- = Hpg) i= Hg) = Hiy Higt = 2064939~

kg g kg
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3 3 3

Vil = 1108 Vg i= 272.68—— Vio1 i= Vg1 — Vii Vil = 271,572
gm gm gm
Final state in accumulator is wet steam at 1000 kPa. P, := 1000kPa
From the steam tables
kJ kJ kJ
Hp := 762.605— Hyp := 2776.2—  Hfyo := Hyp — Hpp Hop = 2013.595—
2 ke g2 s fg2 g2 2 Hfg2 e
cm’ cm’ cm’
Vi = 1.127—— Vg := 19429—— Vip = Vg — Vpp Vo = 193.163—
gm gm gm
Solve Eq. (C) for V,
Va2 Vi 3m’
Vo = —o. ) Vo = 1.18595x 107 °
0.05 | 19V + VQ) kg
Next solve Eq. (B) for x, Guess: x| := 0.1
Given
Hfgo
(He2—Hp + Vi g
Vg2 ) D Hrgo  Hgo —Hfr —x1-Hegl
2— 1= =
V2 Vig Vi1 + X1 Vgl
x1 = Find(k x] = 4279x 104
cm’
Thus  Vj:= Vg +x1- Vgl Vi =122419—
gm
. m2 Vi .
Eq. (A) gives — = — and mprime = mp — m| = 2667kg
ml  Vj
Solve for m1 and m2 using a Mathcad Solve Block:
M
Guess: mp = p;me mp = mj
my Vi ml\
Given @ —=— my — mj = 26671b = Find(jn; ,m;
m; Vp mz)
my = 3.752 x 10*kg my = 3.873 x 10*kg
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Finally, find the tank volume Vi, .= my-Vo Viank = 45.9 m3 Ans.

Note that just to store 1333.3 kg of saturated vapor at 1000 kPa would
require a volume of:

1333.3kg: Vg = 259m’

One can work this problem very simply and almost correctly by ignoring the
vapor present. By first equation of problem 3-15

my Hprime — U} _ Hprime — U1 _ Hprime — Hfl

mj Hprime — Uj Hprime — U2 Hprime — Hp2

3 kJ
Hprime = Hg2 Hprime = 2.776 X 10 -

kg
Given

my  Hprime — Hfy ml\

B e my —m; = 26671b = Find(jn; ,mp

m;  Hprime — Hp mp )
4

my = 3.837 x 10 kg

mp- Vi
Vo= V =455m° Ans.
0.95
6.56 Propylene: @ :=0.140 T := 365.6-K P. := 46.65-bar

T :=400.15-K P := 38-bar Pg := 1-bar

The throttling process, occurring at constant enthalpy, may be split into two
steps:

(1) Transform into an ideal gas at the initial conditions, evaluating property
changes from a generalized correlation.

(2) Change T and P in the ideal-gas state to the

final conditions, evaluating property changes by equations for an ideal gas.
Property changes for the two steps sum to the property change for the
process. For the initial conditions:
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T P
Ty = — T, = 1.095 P, = — P, = 0.815
T¢ Pc

Step (1): Use the Lee/Kesler correlation, interpolate.

Hp := -0.863-R- T, Hp :=-0.534-R- T, Hr = Hp+ o-H;

J J J
Hp= —2.623x10°—  Hy=-1.623x10°—— Hg = —2.85x 10°——
mol mol mol

Sg := —0.565-R S1 = -0.496-R SR = Sp+ ®-S;

J J J
S1=-4.124 Sr = -5.275

Sog = —4.697
mol-K mol-K mol-K

Step (2): For the heat capacity of propylene,

-3 -6
22.706-1 ~6.915-1
K K
Solve energy balance for final T. See Eq. (4.7).
T:=1 (guess) Given
B C
Hp = R-HA-E-() 1 +?ﬁ"2-()2— 1 } ?iﬁ-() S }
t := Find(X T = 0.908 Te=1T Tf = 363.27K Ans.
_ _ Po
ASjq = R-(ICPS()I‘,Tf, 1.637,22.706-10°,~6.915-10~ °,0.0 - h{—\\
P))
ASjg = 22.774
mol-K
AS = -8R+ Sig AS = 28.048 Ans.

mol-K
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6.57 Propane: @ :=0.152 T¢ = 369.8-K P¢ := 42.48-bar

T :=423-K P := 22-bar Po := 1-bar
The throttling process, occurring at constant enthalpy, may be split into
two steps:
(1) Transform into an ideal gas at the initial conditions, evaluating property
changes from a generalized correlation.
(2) Change T and P in the ideal-gas state to the
final conditions, evaluating property changes by equations for an ideal gas.
Property changes for the two steps sum to the property change for the
process. For the initial conditions:

T P

T, = — T, = 1.144 Py = — P; = 0.518

r T, T T P. r
Step (1): Use the generalized virial correlation

J
HR = R-T¢ HRB()y.8;, HR = —1.366 x 103—1
mo
SR := R-SRB()I; 8., SR = —2.284 !
mol-K
Step (2): For the heat capacity of propane,
-3 -6
28.785-10 —-8.824-10
A = 1213 Bi=——" C=—m—"
K K2
Solve energy balance for final T. See Eq. (4.7).
t:=1 (guess) Given
B C
Hpg = R-HA-T-() 1 +E-ﬂ“2-()2— 1 } ?iﬁ() S }
t := Find(X T = 0.967 Te=1T Tf= 40891K  Ans.
_ _ Po
ASjg = R-(ICPS()]‘,Tf, 1.213,28.785-10°,~8.824-10~ °,0.0 — h{—\\
P))
ASig = 22.415
mol-K
AS = -8r+ S AS = 24.699 .
= 7OR ig - oK Ans.
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6.58 For propane: T¢ := 369.8-K P.:=4248bar o :=0.152

T := (100 + 273.15)-K T =373.15K Py := 1-bar P := 10-bar
T P

Tr = — Tr = 1.009 Pr = — Pr = 0235
Te Pc

Assume ideal gas at initial conditions. Use virial correlation at final conditions.

J
AH := R-T¢-HRB(JI;.8;, AH = -801.9— Ans.
mol
P
AS := R SRB(JI;.8;, ~—In P AS = —-20.639 Ans.
PO]} mol-K
6.59 H,S: o = 0.094 T, =373.5K P. := 89.63-bar
Ty :=400-K Py := 5-bar Ty = 600-K Py := 25-bar
T T4 P Py T Ty P Py
rl = Te rl == P, 2 = T, 2 <= P_c
Ty = 1.071 P, = 0.056 Tp = 1.606 P,y = 0.279

Use generalized virial-coefficient correlation for both sets of conditions.

Egs. (6.91) & (6.92) are written

AH = R-ICPH()Fl ,T2,3.931,1.490-10 3 ,0.0,-0.232- 105

+R-Te-(HRB(Jr2.82,  — HRB(Jlr1 .81,
AS = R- ICPS()rl,T2,3.931 1490107 ,0.0,-0.232:10° - h{?}j
1
+R-(BRB(J'r2.8Br2.  — SRB(Jr1 .81
J J
AH = 7407.3 — AS = 1.828 Ans.
mol mol-K
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6.60 Carbon dioxide: © :=0.224 Te :=304.2-K P = 73.83-bar

T :=318.15-K P := 1600-kPa Py := 101.33-kPa
Throttling process, constant enthalpy, may be split into two steps:
(1) Transform to ideal gas at initial conditions, generalized correlation
for property changes.
(2) Change T and P of ideal gas to final T & P.
Property changes by equations for an ideal gas.
Assume ideal gas at final T & P. Sum property changes for the process.
For the initial T & P:

T P
=— T, = 1.046 P, = —
T Pc

Step (1): Use the generalized virial correlation

T, : P, = 0.217

J
HR = R- T HRB()I;. 8, HR = —587.999 —
mol
SR = R'SRB r,(Br, J
(r SR = —-1.313
mol-K

Step (2): For the heat capacity of carbon dioxide,

-3
1.045-10
A=5457 Bi=—""_ D=-1157100K
K
Solve energy balance for final T. See Eq. (4.7).
t:=1 (guess) Given
B D(1-1
Hr = R| AT-() — 1 +—-ﬂ“2-()2—1 LD =1
2 T T )
t := Find(X T = 0.951 Te=1T Te=302.71K  Ans.
_ Py
ASjq = R-(ICPS()]‘,Tf,5.457, 1.045-107°,0.0,-1.157-10° — h{—“
P))
ASjg = 21.047
mol-K

AS:=—Br+ Sj,  AS=2236——r L
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6.61  Tp:=523.15K Po := 3800-kPa P := 120-kPa

AS = 0- J For the heat capacity of ethylene:
mol-K
14.394.10° 4392107 °
A = 1.424 B=—o —— C;:'—2
K K
(a) For the entropy change of an ideal gas, combine Eqs. (5.14) & (5.15)
with D =0:
1:=04  (guess) Given
T+ 1 P
AS = R A-In(X +[B-To+ C-Toz-( \:|-(): w2
2 ) Py )
t := Find(X T = 0.589 Te:=1Ty | Tg=308.19K Ans.
AHjq = R-ICPH()rO,Tf, 1.424,14394-10 >,-4.392-10~%,0.0
J
AHjg = ~1.185 x 10—
mol
J
W = AHjo Ws = -11852—— Ans.
mol
(b) Ethylene: o = 0.087 To:=282.3-K P :=50.40-bar
To Py
Tyo = — Tro = 1.85317 Pyo = — Pyo = 0.75397
C C
At final conditions as calculated in (a)
T P
T = — T, = 1.12699 Py = — Py = 0.02381
TC PC

Use virial-coefficient correlation.
The entropy change is now given by Eq. (6.92):

1 :=0.5 (guess) Given
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AS = R A-In(} +[B-T0+ C-Toz-(T ; 1\}(} 1 - 1{%}

)

T-To 3
_+ SRB (T— ,(Br 5 ) - SRB ()I‘I‘O 5(BI‘0 )

C

t := Find(X T:=1To T=303.11K Ans.

T
Te

The work is given by Eq. (6.91):

AHjq = R~ICPH()1‘0,T, 1.424,14.394-10°,-4.392.10" °,0.0
J
AHjg = 1208 x 10* —
mol
Wy = AHjg + R-Te-(HRB(JIr.8;,  — HRB(J10.8r0.
J
W= -11567—  Ans.
mol
6.62 T(:=493.15-K Pg := 30-bar P := 2.6-bar
AS = 0- J For the heat capacity of ethane:
mol-K
19.225-10° ~5.561-10" °
A= 1.131 Bi= Co=——
K K
(a) For the entropy change of an ideal gas, combine Egs. (5.14) & (5.15)
with D =0:
T:=04  (guess) Given
+ 1 P
AS = R A-In(X +[B-T0+ C-Toz-(T \:|-(): IEENE A
2 ) Po )
t := Find(X T = 0.745 T:=1To T =367.59K  Ans.
A, = RICPH(Jo. T,1.131,19.225.107%,~5.561-10~%,0.0
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J
AHj = ~8.735 x 10° ——

mol
J
Ws == AHj, Wy = —8735— Ans.
mol
(b) Ethane: o = 0.100 T :==305.3-K P. := 48.72-bar
To Po
Tyo = — Tyo = 1.6153 Py = — Pyo = 0.61576
Tc Pc

At final conditions as calculated in (a)

T
T(T) = Te(T) = 120404 P, = — P, = 0.05337

C C

Use virial-coefficient correlation.

The entropy change is now given by Eq. (6.83):

T:=05 (guess) Given
i +1 P |
AS = R:| A-In(X +[B-T0+ C-Toz-(T \:|-(): ~1 -In P
2 j P()j
- Ty \
+SRB| — 8,  — SRB(Jlr0.B0,
| Tc ) il
1 := Find(} T :=1.To T =362.73K Ans.
T
Ty = — T, = 1.188
T
The work is given by Eq. (6.91):
A, = RICPH(Jo. T,1.131,19.225.1073,~5.561-10~%,0.0
J
AHjg = —9.034x 10° —
mol
Wy := AHjq + R-Te:(HRB(Jlr. 8,  — HRB(Jl10.8r0.
J
Ws = —8476—
mo Ans.
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6.63 n-Butane: o = 0.200 Te i=425.1:K P := 37.96-bar

Tp := 323.15-K Po := 1-bar P := 7.8-bar
AS = 0- ! For the heat capacity of n-butane:
mol-K
-3 -6
36.915-10 —-11.402-10
A :=1.935 B=——— C::—2
K K
To Py
Te Pc
P P
r= P_c Py = 0.205

HRB()]‘rO B, =-0.05679 HRB( := —0.05679

The entropy change is given by Eq. (6.92) combined with Eq. (5.15) with D = 0:

(guess) t:=04

Given AS = R|A-In(} +[B-T0+ C-Toz-(T ; IH-(} 1 —h{%} N

Tot 3
_+ SRB (T— ,(Br 5 ) - SRB ()I‘I‘O 5(BI‘0 )

C

t := Find(X T =118 T:=1To T = 38143K Ans.
T

Ty = — T, = 0.89726
T

The work is given by Eq. (6.91):

AHijg = R'ICPH()FO,T, 1.935,36.915-10°,-11.402-10" °,0.0
J
AHjg = 6.551x 10° —
mol
WS = Ang + RTC()—IRB ()rr ’(Bl'o - HRB ()I‘I‘O 7(BI'O s

J
Ws = 5680——  Ans.
mol
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6.64 The maximum work results when the 1 kg of steam is reduced in a
completely reversible process to the conditions of the surroundings,
where it is liquid at 300 K (26.85 deg(C). This is the ideal work.

From Table F.2 for the initial state of superheated steam:

kJ kJ
Hjp :=3344.6-— Sy := 7.0854.——
kg kg-K
From Table F.1, the state of sat. liquid at 300 K is essentially correct:
kJ kJ
Hp =112.5-— Sy :=0.3928-—— Ts = 300-K
kg kg-K
By Eq. (5.27),
kJ

6.65 Sat. liquid at 325 K (51.85 degC), Table F.1:

3
kJ kJ
Hijq = 217.0-— Sliq = 0.7274-—— Viiq = 1.013- 2=
kg kg-K gm
Pgat == 12.87-kPa For the compressed liquid at
325 K and 8000 kPa, apply
Py := 8000-kPa Eqs. (6.28) and (6.29) with
T :=325K B = 460-10° 61
kJ
Hj = Hiiq + ViigOL = B-T +(P1 - Psat H = 223.881k—g
S1 = Sliq — B-Viig:(P1 - P S = 07242
1 = Sliq lig'\ F1 sat 1 . ke K
For sat. vapor at 8000 kPa, from Table F.2:
kJ kJ
Hjp :=2759.9-— Sy =5.7471- —— Ts :=300-K
kg kg-K
. . kJ
Heat added in boiler: Q:=Hp-H; Q= 2536k—
g
Maximum work from steam, by Eq. (5.27):
kJ
Wideal = (H1 - Hy - To+(B1 - S2 Wideal = —10291{—g
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6.66

6.67

Work as a fraction of heat added:

Wideal
Frac := % Frac = 0.4058 Ans.

The heat not converted to work ends up in the surroundings.

Q+ Wideal  k kW
To sec K
kg kW
Sdotg.system = ()31 -5y -10-; SdotG system = _50-234?

Obviously the TOTAL rate of entropy generation is zero. This is because
the ideal work is for a completely reversible process.

Treat the furnace as a heat reservoir, for which

kJ k
Qdot := 2536.—.10--2 T := (600 + 273.15)-K T = 873.15K
kg sec
Qdot kW kW

Sdotg = +50.234-—  Sdotg = 21.19— Ans.
‘G K ‘G K
By Eq. (5.34)

Ts :=300-K  Wdotgst := T Sdotg Wdotjost = 6356.9kW  Ans.

For sat. liquid water at 20 degC, Table F.1:

kJ kJ
Hp = 83.86-— S1:=0.2963- ——
kg kg-K
For sat. liquid water at 0 degC, Table F.1:
kJ kJ
Hg := -0.04-— So = 0.0000-——
kg kg-K
For ice at at 0 degC:
kJ 3334 kJ
Hy := Hop—333.4.-— Sy :=Sp - S ——
kg 273.15 kg-K
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6.68

kJ kJ

Hy = -333.44 — Sy =-1.221——
kg kg-K
kg
Ts :=293.15-K mdot := 0.5-— n¢ = 0.32
sec

By Egs. (5.26) and (5.28):

Wdotigeql := mdot| Hy - Hi - To+(B2 - S1 | Wdotigea] = 13.686 kW

Wdotideal
Wdot = — % Wdot = 42.77kW  Ans.

Mt

This is a variation on Example 5.6., pp. 175-177, where all property values
are given. We approach it here from the point of view that if the process
is completely reversible then the ideal work is zero. We use the notation of
Example 5.6:

kJ kJ kJ
Hi :=2676.0-— Sp:=7.3554—— Hjp := 0.0-—
kg kg-K kg
kJ kJ
Sy =0.0-—— Q' :=-2000-— Tg :=273.15-K
kg-K kg

The system consists of two parts: the apparatus and the heat reservoir at
elevated temperature, and in the equation for ideal work, terms must be
included for each part.

Wideal = AHapparatus.reservoir - TG'ASapparatus.reservoir

AHapparatus.reservoir =H-H;-Q

kJ
' Wideal = O-O-k—
ASapparatus.reservoir = 52 = S1 — T g
T := 450-K (Guess)
kJ '
Given 0-— = HQ—HI—Q'—TG- Sz—sl—g\
kg T')
T' := Find(T") T = 409.79K Ans.

(136.64 degC)
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6.69

6.70

From Table F.4 at 200(psi):

BT
Hj = 12226219

m

BTU
Hiig := 355.51-——

m

BTU

Siig := 0.5438-:
tiq by, - rankine

Hj = Hijjq + X'()'lvap — Hiiq

BT
Hy = 1.165x 100202

m

BTU
Sy = 1.5737- - (at 420 degF)
by, - rankine
BTU (Sat. llq.
by,
BTU
Svap = 1.5454- x = 0.96

by rankine

S2 = Siiq + X'(Fvap — Slig

BTU
S, = 1.505 .
by - rankine

Neglecting kinetic- and potential-energy changes,
on the basis of 1 pound mass of steam after mixing, Eq. (2.30) yields for

the exit stream:

H:= 0.5-H; +0.5-H,

H - Hijq
Xi=—
Hvap - Hliq

S = Sjiq + x-()Svap — Sliq

H = 1193.6@ (wet steam)
by

x = 0.994 Ans.

S =1.54 BTU

by, - rankine

By Eq. (5.22) on the basis of 1 pound mass of exit steam,

Sg=S-0.5S1-0.5S,

From Table F.3 at 430 degF (sat. liq. and vapor):

3

ft
Vliq = 0.01909-—
Ibm
BTU
Uliq == 406.70-——
m

VOLjiq := miiq- Vliq

_ BT
SG=2895x 1074 — BTV Aps.
by, rankine
3
ft
Vyap = 13496 — Viank = 80-ft°
m
BTU
m

VOLjjq = 79.796 ft°
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VOLyap = Viank — VOLiiq VOLygp = 0.204 "

VOLyap
mvap = V mvap = 0151 lbm
vap
Uy = myjq-Uliq + Myap Uvap Uy = 406.726 BTU
myjq + Myap by

By Eq. (2.29) multiplied through by dt, we can write,

(Subscript t denotes the contents of the tank.
d()‘ﬂt'Ut +H-dm= 0 H and m refer to the exit stream.)

m
Integration gives: my-Uy —mj-Up + J Hdm=0

0
From Table F.3 we see that the enthalpy of saturated vapor changes
from 1203.9 to 1203.1(Btu/lb) as the temperature drops from 430 to 420
degF. This change is so small that use of an average value for H of
1203.5(Btu/lb) is fully justified. Then

BTU
my-Upy —mj-Uj + Hgyem = 0 Haye := 1203.5-——
m

mp = Miiq *+ Myap my(mass) := mj — mass

Property values below are for sat. liq. and vap. at 420 degF

3 3
ft ft
Vliq := 0.01894-— Vyap = 14997 —
m m
BTU BTU
Uhq = 395.81'— Uvap = 1117.4'—
m lbm
Viank V7 (mass) — Vj;
Vo (mass) = - x(mass) := a
m) (mass) Vvap — Vliq

Uz (mass) := Uliq + x(mass)-(pvap — Uliq
mass := 50-1b,, (Guess)
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ml-()Jl — Uy (mass)
Have — Uz(mass)

Given mass =

mass := Find(mass) mass = 55.361by, Ans.

6.71 The steam remaining in the tank is assumed to have expanded isentropically.

6.72

Data from Table F.2 at 4500 kPa and 400 degC:

J

3
S = 6.7093 ——— vy = 64721 2L Viank = 50-m°

gm-K gm

J By interpolation in Table F.2

Sy, =851 =6.7093- ——

gm-K  at this entropy and 3500 kPa:

3
vy = 78.726- 2L = 36246:C Ans.
gm
Vitank Vtank
mp = my = Am:=mj—-mp Am = 137.43kg Ans.
Vi Va

This problem is similar to Example 6.8, where it is shown that

Q= A(jneH; — H-Amy

Here, the symbols with subscript t refer to the contents of the tank,
whereas H refers to the entering stream.

We illustrate here development of a simple expression for the first term on
the right. Thel500 kg of liquid initially in the tank is unchanged during the
process. Similarly, the vapor initially in the tank that does NOT condense
is unchanged. The only two enthalpy changes within the tank result from:

. Addition of 1000 kg of liquid water. This contributes an enthalpy change of

Hiigq-Amy

. Condensation of y kg of sat. vapor to sat. liq.

This contributes an enthalpy change of

y: ()'Iliq —Hyap = - Hyy

Thus  A(jneH; = Hijq-Amg—y-AHj,
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6.73

Similarly, A(Jne Ve = Vijg-Amg - y-AVy, = 0

Whence Q = Hijiq-Am¢ — y-AH}y, — H-Amy
Am; = 1000-kg Required data from Table F.1 are:
At 50 degC: H = 209.3-E
kg
kJ cm3
At 250 degC: Hiigq == 1085.8- — Viig == 1.251-—
kg gm
kJ
AHy, = 1714.7— AV}, = 48.79- 20
kg gm
Vliq-Amy
yi=— y = 25.641kg
AV}
Q = Am¢(Hiig - H —y-AHy, Q = 832534kl  Ans.
. kJ
Given: Viank = 0.5-m> Hjy 1= —120.8-—
kg
kJ
C:=043—— T :=295-K Meank = 30-kg
kg-K
Data for saturated nitrogen vapor:
80 1.396 ) 0.1640
85 2.287 0.1017
90 3.600 0.06628 3
T:=| 95 [[K P :=]5.398 |-bar V = 0.04487 Ilzl—
g
100 7.775 0.03126
105 10.83 0.02223
110 ) 14.67 ) 0.01598 )
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78.9)

82.3 At the point when liquid nitrogen starts to
25.0 accumulate in the tank, it is filled with saturated
’ KJ vapor nitrogen at the final temperature and having
H:=|86.8 |- — properties
kg
877 Tyap, Vvap»Hvap, U
Myap, Lvap, Vvap,Hvap, Vva
874 p p p p p
85.6 )

By Eq. (2.29) multiplied through by dt,d()1t-Ut —H-dm = dQ

Subscript t denotes the contents of the tank; H and m refer to the inlet
stream. Since the tank is initially evacuated, integration gives

Myap Uyap — Hin'Myap = Q = mtank‘c'()rvap -T A)
A%
Also, Mygp = — ok (B)
VVap
Calculate internal-energy values for saturated vapor nitrogen at the given
values of T: 56.006\
—_
U= (H=P-V) 59.041
61.139
kJ
U =|62579 |—
kg
63.395
63.325
62.157 )
Fit tabulated data with cubic spline:
Us := Ispline(T, U) Vs := Ispline(T, V)
Uyap(t) := interp(Us, T, U, t) Vyap(t) := interp(Vs, T, V1)

Combining Egs. (A) & (B) gives:

199



Given
mtank'c'()rl — Tvap 'Vvap()rvap

Uvap<)rvap —Hin =

Viank
Viank
mVa = —
p Vvap ()rvap mvap = 1 3 . 82 1 kg Ans'

6.74 The result of Part (a) of Pb. 3.15 applies, with m replacing n:
mz-()Jz—H —ml-()Jl -H =Q=0

Whence mz(){ -Up = ml()i -Uj
Also Uz = Ulig.2 + x2:AUyy 2
= Viank
V2 = Vijg2 + x2:AV}y 2 V) =
m)
Eliminating x, from these equations gives
Viank
- Vliq.2
my |
mp-| H - Ujig2 - AUy, = mp(H-U)
AViv2
which is later solved for m,
Vitank
Viank = 50-m° my = 16000-kg V)= 2
mj
3 m3
Vi =3.125x10 ~—
kg
Data from Table F.1 @ 25 degC:
cm3 cm3
Vlig.1 := 1.003-— AV]y 1 = 43400-—
gm gm
kJ kJ
Uliq.1 == 104.8-— AU}y 1 = 2305.1-—
kg ' kg
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6.75

_ V1-Viig.1

X1 Uy = Ulig.1 + X1-AUjy 1
AViv.i
—5 kJ
x1 = 4.889 % 10 U; = 104913 —
kg
Data from Table F.2 @ 800 kPa:
Cm3 Ulig.2 == 720.043 J
Viig2 = 1.115-— fig.2 = e
gm
crn3 kJ
AV}y o = (24026 - 1.115)-— AU}y 2 = (2575.3 = 720.043)- —
' gm ' kg
m3 3 kJ
AV} 2 = 0239 — AUy = 1.855x 10" —
' kg kg
kJ
Data from Table F.2 @ 1500 kPa: H = 2789.9-k—
g

AU )
AVlV.2)

ml'()’l -Up + Vtank'[

my = 2.086 x 10" kg

my ;=
AUIV.2\
H - Ujig.2 + Viig.2:
AVlv.Z}
Mggeam = M) — M| Msteam = 4.855x 10°kg  Ans.

The result of Part (a) of Pb. 3.15 applies, with n=Q=0
Whence Uy =H
From Table F.2 at 400 kPa and 240 degC

H = 2943 9_£ Interpolation in Table F.2 will produce values of t
" kg andV for a given P where U = 2943.9 kJ/kg.
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1) 384.09 ) 303316 )

100 384.82 3032.17 3
Py := | 200 t = | 385.57 V, = | 151561 |-
m
300 386.31 1010.08
400 ) 387.08 ) 757.34 )
Viank
i=1.5 Viank := 1.75-rn3 mass; := a0
Vo,
1
577%x 10~ 3\ T rises very slowly as P increases
0.577
mass = 1.155  |kg .
1.733 2 - =
2311 A
) | ]
0 |
0 200 400
Pzi
6.76  Vigny == 2-m° Data from Table F.2 @ 3000 kPa:
cm’ cm’
Vijq = 1.216-—— Vyap = 66.626-—
gm gm
kJ kJ
Hijq := 1008.4-— Hyap = 2802.3-—
kg kg
Vitank
1
3
—3m
Vi =7757x 10 = m; = 257.832kg
g

The process is the same as that of Example 6.8, except that the stream
flows out rather than in. The energy balance is the same, except for a sign:

Q= A(jneHp +H-Amgy
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where subscript t denotes conditions in the tank, and H is the enthalpy of
the stream flowing out of the tank. The only changes affecting the
enthalpy of the contents of the tank are:

1. Evaporation of y kg of sat. liq.:

Y'(Fvap — Hiiq

2. Exit of 0.6-mj-kg  of liquid from the tank:

—0.6-m1-Hiiq

Thus

A()W'Ht = }"()'lvap — Hjig —0.6-m-Hjjq

Similarly, since the volume of the tank is constant, we can write,
A()nt'vt = Y'()\lvap — Viig —0.6mj-Vijq =0

0.6-m1-Viig

Whence y =
VVap - Vliq

0.6-m1-Viig
= —'()'Ivap —Hiiq — O~6'ml'Hliq + H-Amgyp

Vvap - Vliq
But H = Hijjq and 0.6t = My

and therefore the last two terms of the energy equation cancel:

0.6-m1-Vliq
= ———(Hvap — Hll Q = 5159kJ Ans.
VVap - vliq ()—I P 1

6.77 Data from Table F.1 for sat. liq.:

kJ kJ
Hp = 100.6-k— (24 degC) H3 :=355.9-— (85 degC)

g kg
Data from Table F.2 for sat. vapor @ 400 kPa:

kJ
Hy = 2737.6-—

kg
By Eq. (2.30), neglecting kinetic and potential energies and setting the
heat and work terms equal to zero:

Hz-mdotz — Hi-mdot] — Hy-mdoty = 0
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Also mdot| = mdot3 — mdoty mdot3 == 5-—=
sec
mdot3-( H; — H3
Whence mdoty ‘= (){
Hj-H

mdot] := mdot3 — mdoty

K %
mdoty = 0.484—2  Ans. mdot] = 4.516—~2 Ans.

S€C S€C

6.78 Data from Table F.2 for sat. vapor @ 2900 kPa:

kJ kJ k
Hj :=2802.2-— S3 :=6.1969- —— mdotz ;= 15-—
kg kg-K sec
Table F.2, superheated vap., 3000 kPa, 375 degC:
kJ kJ
Hp = 3175.6-— Sy := 6.8385-——
kg kg-K
Table F.1, sat. liq. @ 50 degC:
cm3 kJ
Vliq == 1.012-— Hijq := 209.3-— Stiq = 0.7035- ——
gm kg k
Pgat := 12.34-kPa T :=323.15-K

Find changes in H and S caused by pressure increase from 12.34 to 3100

kPa. First estimate the volume expansivity from sat. liq, data at 45 and 55

degC:
cm3
AV = (1.015-1.010)-— AT = 10-K P := 3100-kPa
gm
3em’ 1 AV 4
AV =5x10 ~— = — B=4941x10 'K
gm Viig AT
Apply Egs. (6.28) & (6.29) at constant T:
kJ
Hy = Hiig + Viig Ol = B-T (P - Psat H| = 211.9261(—g
kJ
S1 := Stig—B-Viig'(P—-P S1=0.702——
1 liq B liq ()) sat 1 ke K
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By Eq. (2.30), neglecting kinetic and potential energies and setting the heat
and work terms equal to zero:

Hz-mdotz — Hi-mdot] — Hy-mdoty = 0

Also mdoty = mdot3z — mdot;
mdot3-( H3 — Hp k
Whence mdot] = (}I mdot| = 1.89—g Ans.
H;-Hj sec
kg
mdoty := mdot3z — mdot; mdoty = 13.11—
sec

For adiabatic conditions, Eq. (5.22) becomes
Sdotg := S3-mdot3z — S1-mdot; — So-mdoty
kJ
sec-K

Sdotg = 1.973 Ans.

The mixing of two streams at different temperatures is irreversible.

6.79 Table F.2, superheated vap. @ 700 kPa, 200 degC:
kJ kJ
Hj3 := 2844.2-— S3 := 6.8859.- ——
kg kg-K

Table F.2, superheated vap. @ 700 kPa, 280 degC:

kJ kJ k
Hy = 3017.7-— Sy = 7.2250- —— mdot| = 50 —2

kg kg-K sec
Table F.1, sat. liq. @ 40 degC:

kJ kJ
Hjjq := 167.5-— Stiq = 0.5721- ——

kg kg-K

By Eq. (2.30), neglecting kinetic and potential energies and setting the heat
and work terms equal to zero:

H) := Hijq Hz-mdotz — Hi-mdot] — Hy-mdoty = 0
Also mdot3z = mdoty + mdot;
mdot;-(H; — Hz k
mdot) = (){ mdoty = 3.241 el Ans.
H3z -Hp sec

For adiabatic conditions, Eq. (5.22) becomes
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Sz == Siiq mdot3 := mdoty + mdot;
Sdotg = S3-mdotz — S1-mdot] — Sp-mdoty
kJ

sec-K

Sdotg = 3.508 Ans.

The mixing of two streams at different temperatures is irreversible.

6.80 Basis: 1 mol air at 12 bar and 900 K (1)

+ 2.5 mol air at 2 bar and 400 K (2)

=3.5 mol air at T and P.
T1 :=900-K Ty = 400-K Py := 12-bar P> := 2-bar
7
ny := 1-mol ny := 2.5-mol Cp:=—-R Cp = 29.099
2 mol-K
Istlaw: T := 600-K (guess)
Given  ny-Cp-(J - Ty +npCp:(f -T2 = 0]
T := Find(T) T = 542.857K Ans.
2nd law: P := 5-bar  (guess)
Given T P J
ni-| Cp-In —\ —R:In —\\ e | =0-—
T Pl}j K
T P
+ny-| Cp-In —\ —R:In —\\
T2) P2))
P := Find(P) P=4319bar Ans.
b 7 R BTU
6.81 molwt := 28.014- pi=— Cp=0248———
Ibmol 2 molwt by, rankine
Mg = steam rate in Ibm/sec
1b
M, = nitrogen rate in lbm/sec M, = 40 —2
sec
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(1) = sat. liq. water @ 212 degF entering

(2) = exit steam at 1 atm and 300 degF

(3) = nitrogen in at 750 degF T3 := 1209.67-rankine

(4) = nitrogen out at 325 degF T4 := 784.67-rankine
BTU BTU

Hj :=180.17-—— S1:=0.3121-————  (Table F.3)
by, by, rankine
BTU BTU

Hy :=1192.6-—— Sy := 1.8158.—————— (Table F.4)
by, Ibyy,- rankine

Eq. (2.30) applies with negligible kinetic and potential energies and with the
work term equal to zero and with the heat transfer rate given by

Ib BTU
Mg = 3 —2 (guess) Q= —60-—— M
sec by
BTU
Given Mg -H; + My Cp: -T3 =-60-——M
s ()‘12 1 n" “P ()F4 3 T s
. lbm
M := Find( M M = 3.933 — Ans.
sec
Eq. (5.22) here becomes
= Q
Sdotg = Ms-()§2 -S; + Mn-()54 -S3 - T
(e}
T4 BTU BTU
S4—S3 = Cp:In —\ Q = —-60-—— Mg Q = -235.967
T3 ) by sec
Ts = 529.67-rankine
Ty
Sdotg = Mg(P2 - S1 +My:| Cp:In —\\ _Q
T3)} Ts
BTU
Sdotg = 2.064 —— Ans.
sec-rankine
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7 R J
6.82 molwt := 28.014- 2= Cp = — Cp = 1.039——
mol 2 molwt gm-K
M, = steam rate in kg/sec
M, = nitrogen rate in kg/sec M; = 20-§
sec
(1) = sat. liq. water @ 101.33 kPa entering
(2) = exit steam at 101.33 kPa and 150 degC
(3) = nitrogen in @ 400 degC T3 :=673.15-K
(4) = nitrogen out at 170 degC Ty := 443.15-K
kJ kJ
Hp := 419.064-— St :=1.3069-——
1 ke 1 kg K (Table F.2)
kJ kJ
Hjp :=2776.2-— Sy :=7.6075-——
. ke . ke K (Table F.2)

By Eq. (2.30), neglecting kinetic and potential energies and setting
the work term to zero and with the heat transfer rate given by

k k
Mg = 1-—g (guess) = —80-—J-MS
sec kg
Given MS-()—IQ ~H; + Mn'CP'<)T4 ~T3 = —SO-E-MS
kg
) kg
M := Find( Mg M = 1.961 —= Ans.
sec

Eq. (5.22) here becomes

SdOtG=MS~(>2—Sl +Mn'()34—s3 _g

Ts
T4 KJ
S4—S3= Cp-In _\ Ts = 298.15-K Q = —80-— M
T3) kg
Ty
Sdotg = MS-()Sz -S{ +Mp| CpIn _\\ _ &
T3)} Ts
kJ
Sdotg = 4.194 Ans.
sec-K
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6.86

Methane = 1; propane =2
T :=363.15-K P := 5500-kPa y1 := 0.5 y2:=1-yp
oq :=0.012 0y = 0.152 Zc1 = 0.286 Zc = 0.276

Te1:=190.6K  Tep:=3698K 5 ' 45099.bar Pyy := 42.48-bar
The elevated pressure here requires use of either an equation of state or
the Lee/Kesler correlation with pseudocritical parameters. We choose the
latter.

Tpe =y1-Te1 +y2:Te2 Ppc == y1-Pc1 +y2-Pe2
Tpe = 280.2K Ppc = 44.235bar
Ty = — Tpr = 1.296 P, =
pr - Tpc pr . pr - Ppc Ppr _ 1.243

By interpolation in Tables E.3 and E.4:
Z0 := 0.8010 Z1 :=0.1100

O :=y|r0]+yrm o = 0.082 Z:=720+w-Z1 Z = 0.81

For the molar mass of the mixture, we have:

molwt := (J1-16.043 +y-44.097 - 2% molwt = 30.07 ==
mol mol
Z-R-T cm3 k m
Vi 280 v= 14788 mdot = 1.4-2  y:= 30—
P-molwt gm sec sec
4 cm3 Vdot 2
Vdot := V-mdot Vdot=207x10 — A = A = 6901cm
SeC u
4A
D= |— D =2.964cm Ans.
T
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6.87 Vectors containing T, P, Tc, and Pc for the calculation of Tr and Pr:

500
400
450
600
620
250
150
500
450
400 )

1.176
1.315
0.815
0.971
1.005
1.312

0.97
1.065
1.045
1.069

Tr =

425.2"
304.2
552.0
617.7
617.2
190.6
154.6
469.7
430.8
3742 )

Tc =

0.468
2.709
0.759
0.948
0.555
1.957
0.397
0.297
0.444
0.369

Pr =

20 )
200
60
20
20
90
20
10
35

15 )

Pc =

4277
73.83
79.00
21.10
36.06
45.99
50.43
33.70
78.84
40.60 )

Parts (a), (g), (h), (i), and (j) --- By virial equation:

500

150

500 |-K P :=
450

400 )

Tr:

20"
20
10 |-bar Tc :=
35
15)
__)
P
Pr:= —
Pc

425.2")
154.6
469.7
430.8
3742 )
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-K Pc =

4277

50.43

33.70 |-bar o :=
78.84

40.6 )

190"
022
252
245
327)



1.176 ) 0.468 )
0.97 0.397
Tr = | 1.065 Pr=|0.297
1.045 0.444
1.069 ) 0.369 )
0.422 0.172
BO := | 0.07 —T\ Eq.(3.65) BI := 0.139—1\ Eq. (3.66)
Tr ) Tr )
— —
0.675 0.722
DB0 ;= —— Eq. (6.89) DBl .= —=2  Eq.(6.90)
2.6 5.2
Tr Tr
~0.253") 0052 1} 0.443 ") 0.311)
-0.37 ~0.056 0.73 0.845
-3
BO =|-0309 | Bl =| 6.718x10 DBO = | 0.574 | DBI = | 0.522
—0.321 4217x10°° 0.603 0.576
—0.306 _ 0.568 0.51
J 9.009x 107> J J

Combine Egs. (3.61) + (3.62), (3.63), and (6.40) and the definitions of Tr and
Pr to get:

AN
7

VR = | RA5.(B0 + o-B1
R (001 |

Pc

HR :=[ R-Te-Pr[ BO-@rDBO+ (Bl -TrDB)]]  Ed (687

SR :=[-R-Pr-(DBO0 + ©-DBI1 ] Eq. (6.88)

211



1377%x10°)

—200.647
~559.501
—94.593
VR = | -355.907 |2~ HR=
mol 3
~146.1 ~1.746 x 10
—232.454 ) _1.251x 10°

L1026x10° |- SR -

mol

Parts (b), (¢), (d), (e), and (f) --- By Lee/Kesler correlation:
By linear interpolation in Tables E.1--E.12:

DEFINE: h0 equals (HR)O h1l equals
RTc
s0 equals (SR)O sl equals
R
663 0.208
124 —.050
70 = | .278 Z1 = —-.088 hO :=
783 —.036
707 ) 0.138 )
~1.137)) ~0.405")
—4.381 ~5.274
s0 :=| -2.675 sl :=|-2.910
—0.473 —0.557
~0.824 ) ~0.289 )
400 200
450 60
T:=]1600 [K P:=| 20 |-bar Tc :=
620 20
250 ) 90 )

212

(HR)'
RTc

(SR)'
R

~2.008
—4.445
~3.049
~0.671
~1.486 )

304.2))
552.0
617.7 |- K
617.2
190.6 )

h equals

~1.952)
~2.469
~1.74
~2.745
~2.256 )

J
mol-K

HR
RTc

SR

s equals —

hl :

(C I

R

~0.233)
-5.121
~2.970
~0.596
~0.169 )

224
111
492
303
012 )



N SN
z:=()0+w2zl EqG57) h:=(ho+ohl Eq. (685

——
s = ();0 +m-sl  (6.86)

> —
HR := (h-Tc-R) SR = (s'R)

0.71 )
0.118
Z =10235
0.772
0.709 )

s

VR = [R-I-(Z - 1)}
P And.

The Lee/Kesler tables indicate that the state in Part (c) is liquid.

6.88 Vectors containing T, P, Tcl, Tc2, Pcl, Pc2, w1, and ®2 for Parts (a) through (h)
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48.98") 40.73 ) 210 210
73.83 34.99 224 048
73.83 24.90 224 400
48.72 50.40 100 087
Pcl = -bar  Pc2 = ‘bar ol = 02 =
89.63 45.99 094 012
45.99 34.00 012 038
45.99 33.70 012 252
34.00 ) 50.43 ) 038 ) 022 )

N N

Tpe := (.5-Tcl +.5:Tc2)  Ppe := (.5-Pcl +.5Pc2) o = ()50l +.5 02

—> —>
Tpr = i Ppr .= —
Tpc Ppc

557.9 ) 44.855 0.21 )
218.55 54.41 0.136
436.45 49.365 0.312
293.8 49.56 0.094

Tpe = K Ppc = bar 0 =
282.05 67.81 0.053
158.4 39.995 0.025
330.15 39.845 0.132
140.4 ) 42215 ) 0.03 )
1.165)) 1.338)
1.373 1.838
1.375 2.026
1.191 1.513

= 1.418 = 2.212
1.263 1.875
1.363 2.008
1.781 ) 2.369 )
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Lee/Kesler Correlation --- By linear interpolation in Tables E.1--E.12:

70 =

sO =

h0 equals

s0 equals

6543
7706
7527
6434
7744
6631
7436
9168 )

~.890")
~.658
~.729
—.944
~.704
~.965
~.750
-.361)

(HR)"
RTpc

(SR)”
R

—
Z:=(¥0+wZzl Eq.(3.57) h =

S —
S = ();0+ o-sl

Z1 :

sl :

12191
1749
1929
1501
1990
1853
1933
1839 )

—466)
-.235
~242
—.430
~.224
—.348
~.250
—.095 )

h1l equals

sl equals

Eq. (6.86)
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~1.395)
-1.217
~1.346
~1.510
~1.340
~1.623
~1.372
~0.820 )

hoO :=

(HR)'
RTpc

(SR)'
R

—>
(h0 + ©-hl1

hl :

s equals

Eq. (6.85)

h equals

—461")
~.116
~.097
~.400
—.049
~.254
~.110
0.172 )

RTpc



—

—>

HR = (0 Tpe ) SR = ()

6.95 T, = 647.1K P¢ = 220.55bar
AtTr=0.7: T:=0.7-T, T = 452.97K

Find Psat in the Saturated Steam Tables at T = 452.97 K

T1:=451.15K  P1:=95736kPa T2 :=453.15K P2 :=1002.7kPa

P2 - Pl

Psat := «(T-T1)+P1 Psat =998.619kPa  Psat = 9.986bar
T2 - Tl
Psat

Psat; = >

This is very close to the value reported in Table B.1 (o = 0.345).

6.96 T, := 374.2K P = 40.60bar
AtTr=0.7: T :=0.7-T, T = 471.492rankine
T := T — 459.67rankine T = 11.822degF

Find Psat in Table 9.1 at T=11.822 F

T1 := 10degF P1 := 26.617psi T2 := 15degF P2 :=29.726psi
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«(T—-T1)+P1 Psat = 27.75psi Psat = 1.913 bar
T2 -Tl

Psat

Psat; := Psat, = 0.047 o:=-1- log()Dsatr o = 0327 Ans.

C

This is exactly the same as the value reported in Table B.1.

6.101 For benzene

a) ® := 0.210 T, = 562.2K P, :=4898bar Z . :=0271 T, :=353.2K

Th atm
Ty = — Ty = 0628  Psaty = 1 Psaty = 0.021
Te Pc
6.09648
InPrO(Tr) := 5.92714 — T —1.28862-In(Tr) + 0.169347-Tr6 Eqn. (6.79)
T
15.6875
InPrI (Tr) := 15,2518 - === — 13.4721-In(T) 1043577 Tr°  Eqn. (6.80)
r

o o (Psaten_—InPrO () Eqn. (6.81). o = 0.207

InPr1 ()1"m

InPsatr(Tr) := InPrO(Tr) + -InPr1(Tr) Eqn. (6.78)

Psatm_zin()_m !

} Eqn. 3.73)  Zsatjjq = 0.00334

Zsatljq =
m

0.422 Psat

BO = 0.083 — Eqn. (3.65) 70 := 1+B0— = Eqn. (3.64)
16 T

Ten m
B0 = —0.805 70 = 0.974

0.172 Psat Equation
Bl :=0139-——=  Equ.(.66) ZI =Bl = following

T Tm  Eqn. (3.64)
Bl = —1.073 Z1 = —0.035
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Zsatyap = Z0 + ©-Z1 Eqn. (3.57)

AZyy = Zsatyap — Zsatyiq

AHhaty, = d—lnPsatr()Tm -Zmz- Zyy
dTin

AHj, := R-A.- Hhaty,

Zsatyap = 0.966

AZy, = 0.963
AHhath =6.59

k
AHy, = 30.802—J Ans.
mol

This compares well with the value in Table B.2 of 30.19 kJ/mol

The results for the other species are given in the table below.

Estimated Value (kJ/mol) Table B.2 (kJ/mol)

Benzene 30.80 30.72
iso-Butane 21.39 21.30
Carbon tetrachloride 29.81 29.82
Cyclohexane 30.03 29.97
n-Decane 39.97 38.75
n-Hexane 29.27 28.85
n-Octane 34.70 34.41
Toluene 33.72 33.18
0-Xylene 37.23 36.24
6.103 For CO,: o = 0.224 Tc = 304.2K P := 73.83bar
At the triple point: Tt := 216.55K P := 5.170bar
a) AtT =07 T :=0.7T; T =212.94K
Tt Py
Te c
6.09648
InPrO(Tr) := 5.92714 - T —1.28862-In(Tr) + 0.169347-Tr6 Eqn. (6.79)
T
15.6875
InPr1(Tr) := 15.2518 - T —13.4721-In(Tr) + 0.43577-Tr6 Eqn. (6.80)
r

® = In(Pir_— InPrO () Eqn. (6.81). o = 0224 Ans.

InPrl ()Ftr
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This is exactly the same value as given in Table B.1

lat
b) Psat; := o Psat; = 0.014 Guess: T, = 0.7
C
Given ln(}>satr = lnPrO()l"m + ®-InPrl ()Tm T = Find()l"rn
T = 0.609 Ty = Tin- Te T, = 1853K Ans.

This seems reasonable; a T, of about 0.6 is common for triatomic species.
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7.1

7.4

7.5

Chapter 7 - Section A - Mathcad Solutions

7 R
U = 325—= R :=8314 molwt == 289 2% Cp = .
sec mol-K mol 2 molwt

With the heat, work, and potential-energy terms set equal to zero and
with the initial velocity equal to zero, Eq. (2.32a) reduces to

2

up
AH + T =0 But AH = CPAT

Whence AT = AT = =52.45K  Ans.

From Table F.2 at 800 kPa and 280 degC:

kJ kJ
Hj :=3014.9-— Sy :=7.1595-——

kg kg-K
Interpolation in Table F.2 at P =525 kPa and S =7.1595 kJ/(kg*K) yields:

kJ cm3 k
H, = 2855.2.— Vo = 531.21. 2 mdot = 0.75-~2

kg gm sec
With the heat, work, and potential-energy terms set equal to zero and

with the initial velocity equal to zero, Eq. (2.32a) reduces to:

2
uz
AH + - =0 Whence up :=,/-2-(Hy—Hj

= 565.2E Ans.

sec

mdot- V> 2
By Eq. (2.27), Ay = —— Ay =7.05cm Ans.

uz

The calculations of the preceding problem may be carried out for a

series of exit pressures until a minimum cross-sectional area is found.
The corresponding pressure is the minimum obtainable in the converging
nozzle. Initial property values are as in the preceding problem.
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kJ kJ
Hy :=3014.9-— Sy =7.1595-—— S =S4

kg kg K
Interpolations in Table F.2 at several pressures and at the given
entropy yield the following values:

400 2855.2) 531.21)
425 2868.2 507.12
kJ
P = | 450 |-kPa H, = | 2880.7 |== Vy = | 485.45 |
kg gm
475 2892.5 465.69
500 ) 2903.9 ) 447.72 )
N
k z mdot- V>
mdot = 0.75-—g w =,/-2-{Hy - H; Ay = —
sec w
5652 7.05 )
541.7 7.022
w = 5181 |2 Ay = | 7.028 |cm?
S€C
494.8 7.059
471.2) 7.127 )

Fit the P vs. A2 data with cubic spline and find
the minimum P at the point where the first
derivative of the spline is zero.

i:=1.5 pi :=Pj ay, = Azi

S = cspline()?,Az A(P) = interp(},p,ag,P

Pmin = 400-kPa (guess)

Given A()Jmin = O-ﬂ Pmin = Find())min
dpmin kPa

Pmin = 431.78kPa Ans.  A(pmin = 7.02lem’  Ans.
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Show spline fit graphically:  p := 400-kPa,401-kPa.. 500-kPa

7.13 I

7.11

Ar. 7.09
cm
ooo  7.07
A(p)

2
m - 705

7.03

701 ] ] ] ]

7400 420 44() 460 480 500

kPa’ kPa

7.9 From Table F.2 at 1400 kPa and 325 degC:

kJ kJ
Hj := 3096.5-— Sy = 7.0499- —— Sy =8y

kg kg-K

Interpolate in Table F.2 at a series of downstream pressures and at S =
7.0499 kJ/(kg*K) to find the minimum cross-sectional area.

800 2956.0 294.81)
775 2948.5 30212 |,
kJ cm
P :=| 750 |-kPa Hy :=12940.8 |-— Vo :=|309.82 | —
kg gm
725 2932.8 317.97
700 ) 2924.9 ) 326.69 )
> V>
u =./-2-(H» — Hj Ay = | — -mdot
uz
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Since mdot is constant, 5.561)
the quotient V2/u2is a

- 5.553
measure of the area. Its Vz\

. . cm -sec
minimum value occurs very — =[5.552
close to the value at uz)

. . 5.557
vector index i = 3.
5.577)
At the throat, Ap = 6~cm2
Ar-un
k
mdot := & mdot = 1.081—=  Ans.

AV sec
23

At the nozzle exit, P = 140 kPa and S = S1, the initial value. From
Table F.2 we see that steam at these conditions is wet. By

interpolation,
kJ kJ
Sliq := 1.4098- —— Svap = 7.2479-——
kg-K kg-K
_ S1-Siiq =
X =— x = 0.966
Svap - Sliq
ft ft
710  up = 230-— up = 2000-—
sec sec

From Table F.4 at 130(psi) and 420 degF:

Btu Bt
Hy = 1233.6-— Sy = 1.6310- —
by by, - rankine
u12 - u22 Bt
By Eq. (2.32a), AH = AH = _78.8 24
2 Ibm
Bt
H, = Hy + AH Hy = 1154.8 0~
m

From Table F.4 at 35(psi), we see that the final state is wet steam:

Btu Bt
Hijq := 228.03-— Hyap == 1167.1-—

m Ibm

Bt Btu
Sliq = 0.3809- ————— Sy = 1.6872—————

by, rankine by, - rankine
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7.11

7.12

H»> — Hiig

X =— x = 0.987 (quality)
Hvap - Hliq
BTU
Sy = Sjjg + x - Sii Sy =1.67T————
2 liq (ﬁvap liq 2 by, rankine
Btu
Sdotg := Sp — S Sdotg = 0.039 —— Ans.

by, rankine

7 R
Uy == 580 % T, = (273.15 + 15)-K molwt := 28.9 2% Cp := —.
sec mol 2 molwt
2 2 2
u; —uw —up
By Eq. (2.32a), AH = =
2 2
But AH = Cp-AT Whence
2
AT := AT = -167.05K Ans.

Initial t =15+ 167.05 = 182.05 degC Ans.

Values from the steam tables for saturated-liquid water:

3
At 15 degC: V == 1,001+ T = 288.15-K
gm

Enthalpy difference for saturated liquid for a temperature change from
14 to 15 degC:

J AH
AH := (67.13 — 58.75)-— At = 2-K Cp=—
gm At
—4 J
1.5-10 Cp=419——
= — = AP = —4-atm p gm-K

Apply Eq. (7.25) to the constant-enthalpy throttling process. Assumes
very small temperature change and property values independent of P.
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AT

- VR-BT-P( 1 joule ) AT = 0.093K
Cp 9.86923

cm’-atm )
The entropy change for this process is given by Eq. (7.26):
T+ AT) 3

- J
AS := Cp-fn - N- P AS = 1408x 10 ~——
T ) gm-K

Apply Eq. (5.36) with Q=0:  To := 293.15-K

k
Wlost := ToA S Wlost = 0.413i or Wlost = 0.413—J Ans.

gm kg
7.13--7.15 P2 := 1.2bar
350 80
350 60
Tl := ‘K P1 = bar
250 60
400 ) 20 )
304.2) 73.83) 224
282.3 50.40 087
Tc = K Pc:= bar o =
126.2 34.00 038
369.8 ) 42.48 ) 152 )
5.457) 1.045
| 1 ‘ 14.394 | 1073
" | 3.280 | 593 | K
1.213) 28.785 )
0.0 ~1.157))
—4392 | 10~ 0.0
C = — D = ‘-IOS-KZ
00 | g2 0.040
-8.824 ) 00 )
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7.13

As in Example 7.4, Eq. (6.93) is applied to this constant-enthalpy
process. If the final state at 1.2 bar is assumed an ideal gas, then Eq.
(A) of Example 7.4 (pg. 265) applies. Its use requires expressions for HR
and Cp at the initial conditions.

1.151) 1.084 )
— —
T1 1.24 P1 1.19
Tr = — Tr = Pr .= — Pr =
Tc 1.981 Pc 1.765
1.082 ) 0.471 )
Redlich/Kwong equation: Q = 0.08664 Y = (0.42748
— —>
mk(.ﬂﬂ Eq.(3.53) q=|—0 Vg 3.59)
Tr) Q'TI‘I.SJ
Guess: z:=1

Given z=1+B—qB_£;%r Eq. (3.52)

z(k+
Z(B,q := Find(z)

Z .’ . .
i=1.4 h:h{—LLﬁ—i&\meaﬁm
Z( i»di

HR; := R-T1i[(E(Bi.gi —1 - 1.5-qi1i] Eq. (6.67) The derivative in these

SRj := R()n(y( .4 —PBi—-0.5q;-; Eq.(6.68) equations equals-0.5

The simplest procedure here is to iterate by guessing T2, and then
calculating it.

280
302‘
K
232
385 )

Guesses T2 =

226



7.14

z(Bi.ai = ~2.681) ~5.177)
o 2.253 4.346
0778|  pro| kI Ro| | J
0.956 —-0.521 | mol -1.59 Imol-K
0.802 ~1.396 ) 233 )
H N
T2 B D
1=— Cp:= R-A+—-Tl()+1 + —11 () +t+1 +
T1 2 2
t-T1
N >
HR T2 P2
T2 = —+T1\ AS :=| Cp-In —\—Rl —\—SR\
o) T1) PL) )
279.971) 31.545)
29.947 J
| 30202 ‘K . e ‘ Ans.
232.062 31.953 I mol-K
384.941 ) 22.163)
Soave/Redlich/Kwong equation: Q := 0.08664 ¥ = 0.42748
’ 2
c:= ()).480 +1.574-0 — 0.176-032 o= [ 1+ c()l - TrO'5 ]
— —
BO- P g 653) |2 ) Eq. (3.54)
Tr) Q-Tr)
Guess: z:=1
: z- .
Given 5 Eq. (3.52) Z()3 ,q := Find(2)

Z\Bi,qi +
1:=1..4 [ = ln(M

Z( i i
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z= 1+B_q.B.Z-(%+

i)
)

Eq. (6.65b)

s 1}11-11} Eq. (6.67)



Tr_\O.S
1
SR; = R In(E(Bi,qi -Bi—ci|—, -ali| Eq.(6.68)
)
P . Tr )
The derivative in these equations equals: —Ccjr| —
)
Now iterate for T2:
273
300
Guesses T2 =
232
384 )
Z(ﬁi,qi 3
575 -2.936 ) -6.126 )
0.79 —2.356 | kJ —4769 |
0975 HR= — SR = ‘
—0.526 | mol —1.789 I mol-K
0.866
~1.523 ) ~2.679 )
— >
T2 B C D
2 o R{ABa0 11 + S (2 cht 4
T1 2 3 2
t-T1
—>
HR
T2 = (— + Tl\ Ans.
cp )

Ans.
T1) Pl )

5= (e 2) - 2] - )
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7.15

Peng/Robinson equation:

6 =1+42 g:=1-4/2 Q = 0.07779 ¥ = 0.45724
? 2
¢ = (h.37464 + 154226.0 - 02699202 o =] 14l =05 ]
—
Mk( Pr) Eq.(353) q-= Yo ) Eq. (3.54)
Tr) Q-Tr)
Guess: z=1
Given z=1+p—qp- z— B Eq. (3.52)
(k+ep -(k+oB
Z(B,q := Find(z)
i=1.4 e — -h{z( i-qi +0P i) Eq. (6.65b)
24/2 \ Z(Bi.ai +2B i)

Trj
HR; := R'Tli'|:z i.qi —1- |:C1 ( + 1:|‘(1i'lij| Eq. (6.67)

TI‘INO 5
SR; :=R- ln(y( i»qi —Pi—ci ( -qi- L Eq. (6.68)

Trl\

)

The derivative in these equations equals: —; (

Now iterate for T2:

270
297
229
383 )

Guesses T2 =
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7.18

Z(Bi.qi ~3.041) ~6.152))
oz 2.459 4.784
0.76 HR =| i R=| | !
0.95 —-0.6 | mol —1.847 | mol-K
085 ~1.581 ) 2,689 )
H N
T2 B C D
1i=— Cp:= R-A+—-Tl-()+1 +—-ﬂ"12-()2+r+1 +
Tl 2 3 T12
‘E.
269.735 )
—_—>
HR ) 297.366
T2 =| —+TI1 T2 = K Ans.
o )
382911 )
31.2 )
T2 P2
AS = (Cp ln(—\ ~R'l (—\ ~ SR A — 29.694 ‘ J Ans.
T1) P1) 31.865 | mol-K
22.04 )
Wdot := -3500-kW Data from Table F.2:
kJ kJ kJ
Hp = 3462.9-— Hjp = 2609.9-— St :=7.3439-——
kg kg kg-K
By Eq. (7.13),
dot k
mdot := _Wdot mdot = 4.103—=  Ans.
H, - H; sec
For isentropic expansion, exhaust is wet steam:
kJ kJ
Slig == 0.8321.—— Svap = 7.9094. —— Sy =S
lig ke K vap ke K 2 1
S2 = Sy .
= i 0 x = 0.92 (quality)
SVap - S1iq
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kJ
Hijig := 251.453-—

kg

H' := Hjjq + X’()'lvap — Hiiqg

Hy —Hj
n H% - Hj

7.19 The following vectors contain values for Parts (a) through (g). For intake

conditions:

3274.3-E \

kg
3509.8-2
kg
k
3634.5-—J
kg
3161.2-E
kg
2801.4-E
kg
1444.7-@

m

1389.6-]3—tu

Hvap = 2609.9'_

kJ
kg
3 kJ

Hy =2.421x 10" —

kg

n = 0819 Ans.

k
6.5597-—J

kg-K

6.8143-£

kg-K
6.9813-i
kg-K
6.4536-£
kg-K

6.4941-i

kg K

1.6000- Btu
by, - rankine

B
1.5677- tu

231

)

by, - rankine )

0.80)
0.77
0.82
0.75
0.75
0.80
0.75 )




For discharge conditions:
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' S1 - Siiq
X = —"
Svap - Sliq

AH :=[n-(H2 - H; |

s

H»> - Hiig
X =
Hyap — Hiig

H = Hig X oy~ i |

—
H, = Hy + AH Wdot := (AH-mdot

Sy = I: Stig + XZ'(Fvap — Siiq j

. .
. Ans.
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720 T :=423.15-K Py := 8.5-bar P := 1-bar

J
mol-K

For isentropic expansion, AS =0

For the heat capacity of nitrogen:

0.593-107°

K

For the entropy change of an ideal gas, combine Eqs. (5.14) & (5.15)
with C = 0. Substitute:

A = 3.280 B: D := 0.040-10°-K°

1:=0.5 (guess)

Given
AS=R|An(k + B~I+R-(T+ n (k-1 - P
. T
t := Find(X To = — To = 76242K  Ans.
T

Thus the initial temperature is 489.27 degC

721 Tp:=1223.15-K P := 10-bar Py := 1.5-bar
Cp =32 ! =0.77
P mol-K =

Eqgs. (7.18) and (7.19) derived for isentropic compression apply equally well
for isentropic expansion. They combine to give:

R
Cp
Pz\ J
W = Cp-Ty| | — -1 W' = —15231 —
Pl} mol
\ J
Ws = n-W's AH = W W = —11728m—01 Ans.
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Eq. (7.21) also applies to expansion:

AH
Ty =T +— T, = 856.64K Ans.
Cp
7.22  Isobutane: T :=408.1-K P¢ := 36.48-bar o = 0.181
Tp :=523.15-K Py := 5000-kPa P := 500-kPa
J . .
AS = 0- For the heat capacity of isobutane:
mol-K
37.853.107° ~11.945-10" °
A =1.677 B=———— C:= —2
K K
T Py
Ty = — Ty = 1.282 Pyo = — Pyo = 1.3706
Cc PC
P
Pr = — Pr = 0.137
P¢

The entropy change is given by Eq. (6.92) combined with Eq. (5.15) with D = 0:

T:=0.5 (guess)

Given

AS = R

)
-T
+SRB| —_ @, | SRB(JI10,8;0.
i Te )

t := Find(X T:=1To T = 445.71K

T, = 1.092
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The enthalpy change is given by Eq. (6.91):

A, = RICPH(Jro. T,1.677,37.853-1073,-11.945.107% 0.0
kJ
AHjg = —11.078 ——
mol
AH':= AHjg + R-Tc:(HRB(JI;.8;, - HRB ()rro B0,
J
AH' = —8331.4—
mol
The actual enthalpy change from Eq. (7.16):
1 J
n=08 ndot:=700=>  AH:=nAH  AH = -6665.1—
sec mol
Wdot := ndot-AH Wdot = —4665.6kW Ans.

The actual final temperature is now found from Eq. (6.91) combined with Eq
(4.7), written:

T :=0.7 (guess)

Given

AH = R Adp() -1 +§~froz-()2—1 +§~ﬂ“03~()3—1

©To ) )
+ TC' HRB a(BI' 5 — HRB ()rI'O ’(BI'O ’
Te ) )
t := Find(} T = 0.875 T:=1Tp T = 4578K  Ans.
7.23 From Table F.2 @ 1700 kPa & 225 degC:
kJ kJ
Hp :=2851.0-— S1:=6.5138-——
kg kg-K
kJ
At 10 kPa: x7 = 0.95 Sliq := 0.6493- ——

kg-K
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kJ kJ kJ

Hjjg = 191.832.— H = 2584.8-— S =8.1511-——
liq ke vap ke vap ke K
kg
mdot := 0.5-— Wdot := —180-kW
sec
H> = Hjjq + XZ'()'lvap — Hiiq AH = Hp - H;
kJ kJ
Hy = 2.465 x 10° — AH = —385.848—
kg kg
kJ
(@)  Qdot := mdot-AH — Wdot Qdot = -12.92— Ans.
sec

(b) For isentropic expansion to 10 kPa, producing wet steam:

S1— Sliq
X' = —— H'> := Hjjq + X'2'()qvap — Hiiq
SVap - Sliq
o kJ
X2 =0.782 H = 2.063x 10° —
kg
Wdot' := mdot-()—]‘z -H; Wdot' = —=394.2kW  Ans.
724 Tg:=673.15-K Po := 8-bar P := 1-bar
For isentropic expansion, AS = 0- !
mol-K

For the heat capacity of carbon dioxide:

1.045.107°

K
For the entropy change of an ideal gas, combine Eqs. (5.14) & (5.15) with C=0:
1:=0.5 (guess)

A = 5.457 B: D = —1.157-10°-K>

Given

—rl A +] Brgr —2 (T oy Cp( )
AS R{Al()c {BTO ()1"0472( : j:|(): 1 1(1)0}}
1 := Find(} T = 0.693 T:=1Tg T =46646K
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7.25

A = RICPH(Jrg. T',5.457,1.045-107%,0.0,-1.157-10°

kJ
AH' = -9.768 —
mol
kJ
n = 0.75 Work := nA H' Work = —7.326—— Ans.
mol
kJ
AH := Work AH = -7.326——
mol

For the enthalpy change of an ideal gas, combine Eqs. (4.2) and (4.7)
with C = 0:

Given
B D -1
s =R ATE() 1 + B2 ()2o1 4 22 )
2 To T j
1 := Find(} T =0.772 T :=1.To T =5199K Ans.
Thus the final temperature is 246.75 degC
Vectors containing data for Parts (a) through (e):
500 6 ) 371 1.2) 3.5)
450 5 376 2.0 4.0
T1:=[525| Pl:=|10 T2 :=| 458 P2:={30| Cp:=|55|R
475 7 372 1.5 4.5
550 ) 4 ) 403 ) 1.2) 2.5)
AH = [Cp-(T2 - Tl),] Ideal gases with constant heat capacities
R 7
C_p Eq. (7.22) Applies to expanders as
AHg :=| Cp-T1- P_2\ 1 well as to compressors
P1)
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0.7

— 0.803
AH
n=—= n = | 0.649
AHg
0.748
0.699 )
7 1
7.26 oo SR ndot = 17529 T1 .= 550K Pl := 6bar P2 := 1.2bar
SecC

Guesses: n :=0.75 Wdot := 600kW

Given

R

Cp

P2
Wdot = —{ 0.065 + .08-ln \\ ndot-Cp-T1- —\ -1
w)) P1)
Wdot := Find(Wdot) Wdot = 594.716kW  Ans.
Wdot
n = 0.065 + 0.08-In| —— ) n=0576 Ans.
kw J)
For an expander operating with an ideal gas with constant Cp, one can
show that:
R
p2\ P
T2 =TIl 1 +n || — - T2 = 433.213K
P1)
By Eq. (5.14):
C T2 P2
AS =R p [ 120 g P21 AS = 6.435
T1) P1)) mol-K
By Eq. (5.37), for adiabatic operation :
J
Sdotg = ndotAS  Sdotg = 1.126x 10° Ans.
K-sec
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7.27

Properties of superheated steam at 4500 kPa and 400 C from Table F.2,
p. 742.

HI := 3207.1 S1 :=6.7093

If the exhaust steam (Point 2, Fig. 7.4) is "dry," i.e., saturated vapor, then
isentropicexpansion to the same pressure (Point 2', Fig. 7.4) must produce
"wet' steam, withentropy:

S2 =S1=6.7093 = (x)(Svap) + (1-x)(Sliq) [x is quality]
A second relation follows from Eq. (7.16), written:

AH = Hvap - 3207.1 = (n)(AHy) = (0.75)[ (x)(Hvap) + (1-x)(Hliq) - 3207.1]

Each of these equations may be solved for x. Given a final temperature
and the corresponding vapor pressure, values for Svap, Sliq, Hvap, and
Hliq are found from the table for saturated steam, and substitution into the
equations for x produces two values. The required pressure is the one for
which the two values of x agree. This is clearly a trial process. For a final
trial temperature of 120 degC, the following values of H and S for
saturated liquid and saturated vapor are found in the steam table:

Hl := 503.7 Hv := 2706.0
S1:= 1.5276 Sv :=7.1293

The two equations for x are:

Hv -801.7 - .75-H1 6.7093 — Sl
XH = X§ = ———
.75-(Hv — HI) Sv - SI
The trial values given produce: xp = 0.924 xg = 0.925

These are sufficiently close, and we conclude that:
t=120 degC; P=198.54 kPa

If n were 0.8, the pressure would be higher, because a smaller pressure
drop would be required to produce the same work and AH.
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7.29 Pl :=5-atm P2 := 1-atm T1 := 15-degC n = 0.55

Data in Table F.1 for saturated liquid water at 15 degC give:

cm3 kJ
V =1001-— Cp =4.190-——
kg kg-degC
Egs. (7.16) and (7.24) combine to give: AH = n-V-(P2 - PIl)
kJ
Ws:=AH (7.14) Ws = —O.223k—
g

Eq. (7.25) with B=0 is solved for AT: AT = 20— Vém - P1)
p

AT = 0.044degC  Ans.

7.30 Assume nitrogen an ideal gas. First find the temperature after isentropic
expansion from a combination of Eqs. (5.14) & (5.15) with C = 0. Then
find the work (enthalpy change) of isentropic expansion by a combination
of Eqgs. (4.2) and (4.7) with C = 0. The actual work (enthalpy change) is
found from Eq. (7.20). From this value, the actual temperature is found by
a second application of the preceding equation, this time solving it for the
temperature. The following vectors contain values for Parts (a) through

(e):
753.15\ 6-bar\ l-bar\
673.15 5-bar 1-bar
To:=|773.15 |-)K Po :=| 7-bar P :=| 1-bar
723.15 8-bar 2-bar
755.37 ) 95-psi ) 15-psi )
200 ) 0.80 ) AS = 0
150 0.75 mol-K
1
ndot:=| 175 |22 4 =|078 i=1.5
SecC
100 0.85
0.5-453.59 ) 0.80 )

241



For the heat capacity of nitrogen:

3

A =3280 B = % D := 0.040-10°-K°
1:=0.5 (guess)
Given
AS = R{ Acin(k +| B-To+ —> 2-(7"”\ (k-1 —1{3\
Tau()o,Po,P := Find(} T = Tau()l‘oi,Poi,Pi
460.67
431.36
T = Toi-‘ci T =1453.48 |K
494.54
455.14 )

AHY; = R-ICPH(TO_ ,Ti,3.280,0.593-10_3,0.0,0.040-105)
1

~8879.2) ~7103.4)
~7279.8 —5459.8
J N J
AH' = | —9714.4 |— AH := (AH'n AH = | -75772 |—
mol mol
—6941.7 ~5900.5
-9112.1 ) ~7289.7 )

T:=0.5 (guess)

Given
B_2()2 D (t-1)
AH = R:{ Adp\) -1 +=A¢-\) -1 +—-
R e e
Tau()l'o,AH = Find(): Tj = Tau()foi,AHi T := T()i-ri
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520.2 ) —1421))

492.62 ~819
S
T=[52514 [K Ans. Wdot:= (hdotAH ‘Wdot=|-1326 |[kW Ans.
529.34 ~590
516.28 ) -1653 )

7.31 Property values and data from Example 7.6:

KJ KJ k

Hy = 3391.6-— S| = 6.6858 —— mdot = 59.02-~2
kg kg-K sec
k KJ

Hy = 2436.0-2 Sy = 7.6846 —— Wdot = —56400-kW
kg kg-K

Ts := 300-K By Eq. (5.26)

Wdotigeql = mdot| Hy—Hi - To(B2—-S1 | Wdotigeal = ~74084kW

Wdot
Nt == SR n¢ = 0.761 Ans.
Wdotigeal

The process is adiabatic; Eq. (5.33) becomes:
kW

Sdotg := mdot-(B2 - S| Sdotg = 58.949 — Ans.
K

Wdotst := T+ Sdotg Wdotjost = 17685kW Ans.

7.32 For sat. vapor steam at 1200 kPa, Table F.2:

kJ kJ
Hy :=2782.7-— Sy == 6.5194.——

kg kg-K
The saturation temperature is 187.96 degC.

The exit temperature of the exhaust gas is therefore 197.96 degC, and
the temperature CHANGE of the exhaust gas is -202.04 K.

For the water at 20 degC from Table F.1,
kJ kJ

Hp = 83.86-— S1:=0.2963- ——
kg kg-K
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The turbine exhaust will be wet vapor steam.
For sat. liquid and sat. vapor at the turbine exhaust pressure of 25 kPa, the
best property values are found from Table F.1 by interpolation between 64

and 65 degC:
kJ kJ
Hiiq = 272.0-— Hjy = 2346.3-—
kg kg
kJ kJ
Sliq := 0.8932.—— Sty = 6.9391-—— n = 0.72
kg-K kg-K

For isentropic expansion of steam in the turbine:

1 1 S'3 B Sllq 1 1
S'3:=S, X3 i=— H'3 := Hjiq + x'3-Hly
KJ o
T = — kJ
33=0300K X3 = 0.811 H'3 = 2.174 % 10° —
kg
AH3 := n-(H’3 - Ha Hj3 := Hp + AHy3
kJ kJ
AHy3 = —437.996 — Hy = 2.345x 10° —
kg kg
3~ Hiig S3 := Stig + X3-S
X3 == 3 = Sliq + X3Sy
Hiy a W
x3 = 0.883 53 = 7.023 kg K
For the exhaust gases: ndot := 125-m—01
S€C
Ty := (273.15 + 400)-K Ty := (273.15 + 197.96)-K
T = 673.15K T, = 471.11K

molwt := 18 £m
mol

AHgyg = R-MCPH()Fl T5,3.34,1.12:10">.,0.0.0.0 (r2-Ty

(k B =)
ASgas = R-MCPS| ', T2,3.34,1.12-10 7,0.0,0.0 -In| —

le
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AH

gas = —6.687x 10

k k
- ASgqq = —11.791 —
kmol kmol-K

Energy balance on boiler:

—Adot: H I
mdot = —— &2 mdot = 0.30971 ~&
H, - Hy sec
(a) Wdot := mdot-(H3 - Hy Wdot = —135.65kW  Ans.
(b) By Eq. (5.25): T = 293.15-K

(c)

(d)

Wdotideal := ndot-AHgaS + mdot-()—l3 - Hj
+ —TG-[ ndot-AS g, + mdot- (B3 — S ]

Wdot

Wdotigeal = —314.302kW 1y 1= ————
Wdotideal

n¢ = 04316  Ans.

For both the boiler and the turbine, Eq. (5.33) applies with Q = 0.
For the boiler:

Sdotg = ndot-ASgas + mdot-()Sz -5

Boiler: Sdotg = 0_4534k?W Ans.

For the turbine: Sdotg = mdot-()i3 -S

Turbine: Sdotg = 0,156k?W Ans.
kW
Wdotjost boiler = 0.4534-?-1“0 Wdotjost.boiler = 132.914kW
kW
Wdotjost.turbine = 0~1560'?'T6 Wdotjost.turbine = 45.731kW
Wdotjost.boil
Fractionyojje = ﬁ Fractionpjjer = 0.4229  Ans.
idea
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7.34

Wdotost turbine

FI‘aCthIlturbme =
| Wdotigeall

Fractiongrhine = 0.1455 Ans.

Note that: Nt + Fractionygiler + Fractionghine = 1

From Table F.2 for sat. vap. at 125 kPa:

kJ kJ
Hp = 2685.2-— Sy :=7.2847 ——
kg kg-K
. . . kJ
For isentropic expansion, S'5 = S| = 7.2847 ——
kg-K

Interpolation in Table F.2 at 700 kPa for the enthalpy of steam with this
entropy gives

kJ H', — Hj kJ
H :=3051.3-— 1 :=0.78 AH = ———— AH = 469.359 —
kg n kg
kJ
H, := Hy + AH H, = 3154.6k— Ans.
g

Interpolation in Table F.2 at 700 kPa for the entropy of steam with this
enthalpy gives

kJ
Sy = 7.4586-—— Ans.
kg-K

k
mdot := 2.5-—g Wdot := mdot-AH Wdot = 1173.4kW Ans.
sec
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7.35 Assume air an ideal gas. First find the temperature after isentropic
compression from a combination of Egs. (5.14) & (5.15) with C = 0. Then
find the work (enthalpy change) of isentropic compression by a
combination of Eqs. (4.2) and (4.7) with C = 0. The actual work (enthalpy
change) is found from Eq. (7.20). From this value, the actual temperature
is found by a second application of the preceding equation, this time
solving it for the temperature. The following vectors contain values for

Parts (a) through (f):
298.15)) 101.33-kPa ) 375-kPa
353.15 375-kPa 1000-kPa
303.15 100-kPa 500-kPa
To = ‘K Py = P =
373.15 500-kPa 1300-kPa
299.82 14.7-psi 55-psi
338.71 ) 55-psi ) 135-psi
100 ) 0.75)
100 0.70 I
AS = 0-
ndot := —_— n:=
50 sec 0.75 D216
0.5-453.59 0.75
0.5-453.59 ) 0.70 )

For the heat capacity of air:

A = 3355 B = %’10_3 D = -0.01610"K*
T:=0.5 (guess)
Given
AS = R-{A-ln(): +{B-T0+ ]2) 2-(T ; lﬂ-()c 1 - IH(PE\}
To T 0)
Tau()o,Pg.P = Find(} 1= Tau()l‘oi,Poi,Pi
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431.06 )
464.5
T; :=To.-7i 476.19

1
486.87
434.74
435.71 )

AHY; = R-ICPH(TO_,Ti,3.355,0.575-10_3,0.0,—0.016-105)
1

3925.2))
3314.6
51332 |
AH' = -
3397.5 | mol
3986.4
2876.6 ) 5233.6)
. 4735.1
AL = (E\ 64165 | ]
) AH = —
n 4530 | mol
5315.2
4109.4 )

t:=1.5 (guess)

Given AH = R'{A'TO'() 1 4 ?‘TOZ'() 2 1 + 2(1 - 1\
Tau()l"o,AH = Find(): Ti = Tau()l‘oi,AHi

—
Wdot := ()1dot- AH
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. . . i

7.36 Ammonia: T¢ = 405.7-K P¢ := 112.8-bar o = 0.253
To = 294.15-K Pg := 200-kPa P := 1000-kPa
AS = 0- d For the heat capacity of ammonia:
mol-K
=3
3.020-10
A:=3578 B=—1_— D = -0.186-10°-K”
K
To Po
Ty = — Tyo = 0.725 Pryo = — Py = 0.0177
TC C
P
Pr = Pr S 0.089
Pc

Use generalized second-virial correlation:
The entropy change is given by Eq. (6.92) combined with Eq. (5.15); C=0:
t:=14  (guess)

Given

_ D T+1) P
AS = R A-In(X +|:B-T0+(>.TO 2.( . )}-()5—1 —1n(P—0}

T
_+ SRB£¥ B, ) — SRB(J10.®B0.

t := Find(X T = 1.437 T:=1Tp T = 422.818K
T
Tr = — Tr == 1.042
T
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MM, = RICPH(Jro. T,3.578,3.020-1073,0.0,-0.186-10°

kJ
AH;, = 4.826 —
'8 mol

AH' = AHjg + R-Te:(HRB(Jr.8,  —HRB(Jr0.Br0,

AH' = 4652L
mol

The actual enthalpy change from Eq. (7.17):

AH' J
= — AH = 5673.2 —

n = 0.82 AH :
n mol

The actual final temperature is now found from Eq. (6.91) combined with Eq
(4.7), written:

t:=14 (guess)

Given

AH = R A-TO-() -1 +§.ﬂ“02.()2_1 _,_B_(T - 1\

Te ) )

t := Find(} T = 1521 T :=1To T = 44747K  Ans.

T

Ty = —
T TC

T, = 1.103

AS := R{ A-In(} +|:B-T0+ = 2-(”1\}-(}—1 —h{i\

T2\ 2 ) Po)
+SRB()Ir.8r,  — SRB(J10.80.
AS = 23472
- < mol-K Ans.
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7.37  Propylene: T¢ := 365.6-K P. = 46.65-bar o = 0.140

Tp :=303.15-K Po := 11.5-bar P := 18-bar
J .
AS := 0- For the heat capacity of propylene:
mol-K
-3 —6
22.706-10 -6.915-10

A =1.637 B=——-—— C:= — S

K K
To Po
Ty = — Tro = 0.8292 Py = — P9 = 0.2465
P
P; = P_c P, = 0.386

Use generalized second-virial correlation:
The entropy change is given by Eq. (6.92) combined with Eq. (5.15) with D = 0:

T:=1.1 (guess)

Given
i +1 P |
AS = R:| A-In(X +[B-T0+ C-Toz-(T \:|-(): ~1 —-In P
2 j P()j
t-To \
+SRB| — .8, - SRB(JIx0.8B0.
i Te ) |
t := Find(X T = 1.069 T:=1To T = 324.128K
T
Ty = — T, = 0.887
Tc
The enthalpy change for the final T is given by Eq. (6.91), with HRB for
this T:
A, = RICPH(Jo. T,1.637,22.706. 1073, ~6.915-10~%,0.0
J
AHjy = 1.409x 10° —
mol
AH':= AHjq + R-T-(HRB(Jlr.8:,  — HRB(Jl'10.8r0.
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AH' = 964.1 i
mol

The actual enthalpy change from Eq. (7.17):

AH' J
n = 0.80 AH = — AH = 1205.2 —
n mol
mol
ndot := 1000-—— Wdot := ndot-AH Wdot = 1205.2kW  Ans.
sec

The actual final temperature is now found from Eq. (6.91) combined with Eq
(4.7), written:

T:=1.1 (guess)

Given

AH = R| ATy() -1 +§-a"02-()2—1 +§-i03-()3—1

©To ) )
+TC' HRB 9(Bra - HRB()FI'O ’(BI'O:
Te ) )
t:=Find(k 1t =1.079 T :=1.To T =327.15K  Ans.
7.38 Methane: T, :=190.6:K P. := 45.99-bar o = 0.012
Tp := 308.15-K Pg := 3500-kPa P := 5500-kPa
AS = 0- J For the heat capacity of methane:
mol-K
9.081-10° 2.164-10” °
A = 1.702 Bi=—«— C:= —2
< K
To Py
T = — T = 1.6167 Py = — Py = 0.761
Te Pc
P
Pr = — Pr = 1.196
Pc
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Use generalized second-virial correlation:
The entropy change is given by Eq. (6.92) combined with Eq. (5.15) with D = 0:

T:=1.1 (guess)

Given
i 2( 1T+ 1\ P\ ]
AS =R AIn(k +| B-Tg+C-To"- (k=1 - —"..
2 j P()j
T
+SRB| —2 @, | SRB(Jl10,8B10.
i Te ) ]
t := Find(X T =1.114 T:=1Ty T = 343.379K
T
Ty = — T, = 1.802
r TC T

The enthalpy change for the final T is given by Eq. (6.91), with HRB for
this T:

3 6

AHig = R-ICPH()]'(),T, 1.702,9.081-10 ~,-2.164-10 ~,0.0
J
AHjg = 1.298x 10° —
mol
AH' = AH;, + R~TC~<){RB ()rr,@r, — HRB ()rro B0,
J
AH' = 1158.8—
mol
The actual enthalpy change from Eq. (7.17):
AH' J
n :=0.78 AH = — AH = 1485.6—
n mol
mol
ndot := 1500-— Wdot := ndot-AH Wdot = 2228 4kW Ans.
sec

The actual final temperature is now found from Eq. (6.91) combined with Eq
(4.7), written:

t:=1.1 (guess)
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7.39

Given

AH = R{ ATo() 1 +§-%r02-()2—1 +§-ﬂ"03-()3—1

©-To 3 3
+ TC' HRB »‘Br ) - HRB ()[‘I'O ’BI'O s

Te ) )
t:=Find(} 1=114 T :=1To T =351.18K  Ans.
From the data and results of Example 7.9,
T; :=293.15-K T, := 428.65K Pj:= 140-kPa  Pj := 560-kPa

J
Work := 5288.3-—— Tg := 293.15-K
mol
ML:RﬂmH&LTLLﬂnﬂom463;zm4m‘ﬂao
J
AH = 52882 —
mol

AS = R-(ICPS()rl . T5,1.702,9.081-10"°

AS = 3.201

mol-K

Since the process is adiabatic: Sg := AS

Wideal := AH — T4-AS

. Wideal
e Work
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—2.164-10° 2,00 —ln(

Sg = 3.2012
G mol-K

J
Wideal = 4349.8 —
mol

J
Wlost = 938.4_

mol

n¢ = 0.823

P2

1))

Ans.

Ans.

Ans.

Ans.



7.42

Pl := latm T1 := (35+273.15K T1 = 308.15K
P2 := 50atm T2 := (200 + 273.15)K T2 = 473.15K
3
m
n = 0.65 Vdot := 0.5 — Cp :=3.5-R
sec
R-T1 Vdot |
Vo= —— ndot = ~—— ndot = 19.775 2%
P1 AV sec

With compression from the same initial conditions (P1,T1) to the same
final conditions (P2,T2) in each stage, the same efficiency in each stage,
and the same power delivered to each stage, the applicable equations are:

1

= E\ N (where r is the pressure ratio in each stage and N is
P1) the number of stages.)

Eq. (7.23) may be solved for T2prime: T'2 := [ (T2 - T1):n + T1 |

T2 = 415.4K Eq. (7.18) written for a single stage is:
R1
PZ\ N-Cp
T2 =TIl (—1 ) Put in logarithmic form and solve for N:
P
| P2)
R n Pl ) (a) Although any number of
N = PO N =3.743 stages greater than this
p ln(—\ would serve, design for 4
T1 ) stages.
1
p2\N
(b) Calculate r for 4 stages: N := 4 ri= (—U r=2.659
P

Power requirement per stage follows from Eq. (7.22). In kW/stage:
R
Cp
ndot-Cp-T1-\r © ~ 1)
n

Wdot, = 87.944kW  Ans.

Wdot; =
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7.44

(c) Because the gas (ideal) leaving the intercooler and the gas entering

the compressor are at the same temperature (308.15 K), there is no
enthalpy change for the compressor/interchanger system, and the first law
yields:

Qdot, := —~Wdot, Qdot; = —87.944kW  Ans.

Heat duty = 87.94 kW/interchanger
(d) Energy balance on each interchanger (subscript w denotes water):

With data for saturated liquid water from the steam tables:

kJ kJ
AHy, = (188.4 — 104.8)— AHy, = 83.6 —
kg kg
dot
mdoty, := |Q r| mdoty, = 1,052§ Ans. (in each interchanger)
AHy, sec
300 2.0
290 1.5
T1:=]295 |K Pl :=| 1.2 |bar
300 1.1
305 ) 1.5)
464\ 6) 3.5)
547 5 2.5
T2 :=455 |K P2 :=| 6 |bar Cp:=1|45 R
505 8 5.5
496 ) 7) 4.0 )
AH = [Cp-(T2 - Tl),] Ideal gases with constant heat capacities
E 7
Cp
P2
AHg = | Cp-TI- —\ -1 (7.22)
P1)

256



7.47

3.219)
3.729
kJ
4.745 | —
mol
5.959
4.765 )

0.675)
0.698
0.793
0.636
0.75 )

Ans.

The following vectors contain values for Parts (a) through (e). Intake

conditions first:

298.15)
363.15
333.15 | K
294.26
366.48 )

2000-kPa )
5000-kPa
5000-kPa
20-atm
1500-psi )

100-kPa
200-kPa
20-kPa

1-atm

15-psi )

0.75)
0.70
0.75
0.70
0.75 )

20-kg
30-kg
15-kg
50-1b
80-1b )

mdot :=

S€C

257.2))
696.2
523.1
217.3
7143 )

10°°

From the steam tables for sat.liq. water at the initial temperature (heat
capacity calculated from enthalpy values):

1.003 ) 4.15 )
1.036 ; 4.20
cm kJ
Vi=|1017 |- — Cp:=| 420 |——
gm kg-K
1.002 4.185
1.038 ) 4.20 )
—>
T AHg
ByEq.(724)  AHg:=[V:(P2-P; | AH = —=
n
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1.906 2.541)
4.973 7.104
kJ kJ
AHg = | 5.065 |— AH = | 6.753 | —
kg kg
1.929 2.756
10.628 ) 14.17 )
0.188)
> 0.807
AH-V-() =BTy «(P2-P
By Eq. (7.25) AT := . AT =] 0.612 [K
P
0.227
1.506 )
—>
Wdot := (AH-mdot Ans.

298.338 )
363.957
—
Ty = ()1 + AT T, = | 333.762 |K
294.487
367.986 )

—_—
\
ty == degC

T )
= (E - 273.15))

;

T>
= (E-I.S —459.6 degF
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7.48 Results from Example 7.10:

kJ kJ kJ
AH := 11.57— W= 1157 — AS = 0.0090- ——
kg kg kg-K
Wideal
To = 300-K Wideal := AH — T5-AS ng = \1Nea
kJ
Wideal = 8-87k— Ans. ;= 0.767 Ans.
g

Since the process is adiabatic.

SG = AS -3 K
Sg=9%x10 "——
G ke K Ans.
Wiost == To-AS K
0s ° Wiost = 2.7k_g Ans.
753  Typ:=(25+273.15K P := 1.2bar P, = Sbar

T3 := (200 +273.15) K P3 := Sbar

kJ
AHy, = 30.72— n =07

Cyy = 105
pY mol-K mol

Estimate the specific molar volume of liquid benzene using the Rackett
equation (3.72).

3
From Table B.1 for benzene: T, := 562.2K Z.:=0.271 V. := 2590—ml
mo

T
From Table B.2 for benzene: T, := (80.0 + 273.15)K T = =
Te

2
7

. -T
Assume Via=Vsat; v . VC-ZC() ™ Eq.(3.72) V= 96.802°—m1
mo

Calculate pump power

V- - P
Ws = —())2 : W = 0.053£ Ans.
n mol
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Assume that no temperature change occurs during the liquid compression.
Therefore: T, =T

Estimate the saturation temperature at P =5 bar using the Antoine
Equation and values from Table B.2

For benzene from

Table B.2: A = 13.7819 B :=2726.81 C:=217.572
B )
2
A —In| —
kPa) ) Tsat := Tsat + 273.15K  Tgat = 415.9K
Estimate the heat of vaporization at Tsat using Watson's method
From Table B.2 kJ
At 80 C: AHy, = 30.72m
80 +273.15)K Tsat
Ty = ) Ty = 0628 Ty i= —— Ty =0.74
T¢ T¢
0.38
1-Tp kJ
AH}yo = AHyy ! \ Eq. (4.13) AHpyy = 26.822 —
1- Trl] mol

Calculate the heat exchanger heat duty.

3 6

Q= R-ICPH()]‘z,Tsat,—0.747,67.96-10_ ,—37.78-10 °,0

+AHjy) + va‘()TS — Tsat

kJ
Q=511—  Ans.

mol
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7.54

T1 = (25+273.15K Py := 1.2bar P> := 1.2bar

T3 := (200 + 273.15)K  P3 := Sbar

Cpy =105 n :=0.75

mol-K
Calculate the compressor inlet temperature.

Combining equations (7.17), (7.21) and (7.22) yields:

T3
T, = _ Ty = 408.06K
£
LB v 1 Ty —273.15K = 134.91 degC
n [\ P2)

Calculate the compressor power

kJ
Wg = Cpy -T W = 6.834—— Ans.
s pv ()F3 2 s mol

Calculate the heat exchanger duty. Note that the exchanger outlet
temperature, T2, is equal to the compressor inlet temperature. The
benzene enters the exchanger as a subcooled liquid. In the exchanger the
liquid is first heated to the saturation temperature at P, vaporized and

finally the vapor is superheated to temperature T,.
Estimate the saturation temperature at P = 1.2 bar using the
Antoine Equation and values from Table B.2

For benzene from

Table B.2: A =13.7819 B = 2726.81 C =217.572
B )
Tgat == —P\ — C 'degC Tgat = 85.595degC
1
A—In| —

kPa) ) Tsat := Tsat + 273.15K  Tgqt = 358.7K
Estimate the heat of vaporization at Ts2t using Watson's method
From Table B.2 _ kJ  From Table B.1 T, = 562.2K
At25C: AHyy = 30.72 mol for benzene:
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_ (80+273.15)K Tsat

Tyl : Ty = 0628  Tpp = T,y = 0.638
rl T, rl 12 T, 2
0.38
1-Tp kJ
AH}yo := AHypy - \ Eq. (4.13) AHpy, = 30.405—
1- Trl] mol
Q= R-ICPH()rl Teat.—~0.747,67.96-10" >, -37.78-10" .0 ...

+AHjy) + va‘()r2 — Tsat

kJ

Q =44393—— Ans.
mol
kmol
7.57 ndot == 100 ho Py := 12bar Ty := 300K P, == 6bar
I
C, = 50.6— = 0.70

Assume the compressor is adaiabatic.

R
C
Pz\ p
Ty=|— Ty @Pg77) Ty = 390.812K
Pl)
Wdots == ndot-Cp-(Jr2 — Ty Wdotg = 127.641 kW
Wdotg
Wdot, = Wdot, = 182.345kW
n
o 0.952
C_compressor := 3040dollars-( oW ] C_compressor = 307452 dollars Ans.
0%\0.855
C_motor = 380dollars-( W ) C_motor = 32572 dollars Ans.
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7.59

Ty := 375K P := 18bar Py := 1.2bar
For ethylene: o = 0.087 T¢ = 282.3K P := 50.40bar
T Py
Trl = — Trl = 1.328 Prl = — Prl = 0.357
T P
Py
Pc
A = 1.424 B = 1439410°° C:=-439210°% D=0

a) For throttling process, assume the process is adiabatic. Find T, such that

AH=0.
AH = Cpmig(l2-T1 +HRy-HR;  Eq.(6-93)

Use the MCPH function to calculate the mean heat capacity and the HRB
function for the residual enthalpy.

Guess: Ty :=T;
Given
J

o-m—o1 = MCPH(JF1,T2,A,B,C,D -R-(J2 - T}

Tz
+R-TeHRB| — @12, ) R-TeHRB()r1 81,

C
Ts
-

Calculate change in entropy using Eq. (6-94) along with MCPS function for
the mean heat capacity and SRB function for the residual entropy.

T, :=Find(Jl; Ty =365474K  Ans. T : T = 1.295

T P
AS = (R-MCPS()Tl ,T2,A,B,C,D -1n(T—2) - R-ln(P—zD .. Eq.(6-94)
1 1
+ R-SRB ()rrz ,(Br2 ’ -R- SRB()Trl ’(Brl ’
AS = 22.128 Ans.
mol-K
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b) For expansion process. 1 := 70%
First find T2 for isentropic expansion. Solve Eq. (6-94) with AS = 0.

Guess: Tp:=T)

Given
T P
0 = R-MCPS()Tl,Tz,A,B,C,D In i\—R-ln —2\
mol-K Ty ) P ) Eq. (6-94)
i) \
+SRB| — 8,5, R-— SRB()I"rl B, R
Te )
. T2
Ty :=Find(Jl, Ty =219.793K Ty = T T, = 0.779

Now calculate the isentropic enthalpy change, AH.

HR, := HRB ()rrz B, RT.

AHg :=[R-MCPH(JF1,T2,A,B,C,D -(J2- Ty ] ..
+HRB(J2.Br2,  -R-Tc— HRB(JIr1 .81, -R-Te

J
AHg = —6.423 x 10° ——
mol

Calculate actual enthalpy change using the expander efficiency.

J
AH = nA H AH = —4.496 x 10° ——
S mol

Find T2 such that AH matches the value above.
Given
nA Hg = MCPH(JI1,T2,A,B,C,D -R-(J2 - T}

T>
+RTeHRB| —= @, ) R-Te-HRB()r1 .81,

C

Ty =Find(J,  Tp = 268.536K  Ans.
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7.60

b)

Now recalculate AS at calculated T,

T P
AS = (R~MCPS()1‘1,T2,A,B,C,D -h{T—z) - R-ln(P—zD .. Eq.(6-94)
1 1
+R-SRB(J2.8r2,  — R-SRB(JIr1 .81,
AS = 7.77 Ans.
mol-K

Calculate power produced by expander

P:=mA H P= —3,147£ Ans.
mol

The advantage of the expander is that power can be produced in the
expander which can be used in the plant. The disadvantages are the extra
capital and operating cost of the expander and the low temperature of the
gas leaving the expander compared to the gas leaving the throttle valve.

J
Hydrocarbon gas: Ty := 500degC C =150
1 g pgas mol K
. . J
Light oil: Ty :=25degC  Cpoil := 200 AHyy, = 35000 —
mol-K mol

Exit stream: T3 := 200degC

Assume that the oil vaporizes at 25 C. For an adiabatic column, the overall
energy balance is as follows.

F-Cpgas'(Jf3 = T1 +D-[ AHy, + Coitp:(J'3 -T2 | =0

Solving for D/F gives:
DF - A Cpgas(F3 - T1 |
" [ AH + Cpoit (T3 -T2 ] DF = 0.643 Ans.

Using liquid oil to quench the gas stream requires a smaller oil flow rate.
This is because a significant portion of the energy lost by the gas is used
to vaporize the oil.
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Chapter 8 - Section A - Mathcad Solutions

8.1  With reference to Fig. 8.1, SI units,

At point 2: Table F.2, Hj := 3531.5 Sy = 6.9636
At point 4: Table F.1, Hy := 209.3

At point 1: Hi:=Hy

At point 3: Table F.1,  Hjjq := Hy AHjy, = 2382.9

x3 = 0.96 Hj3 := Hjjq + x3-AH},  H3 = 2496.9
Stiq == 0.7035 ASyy = 7.3241

For isentropic expansion, S'3:= S,

X'3 = | x'3 = 0.855
ASyy
H'3 := Hjiq + x'3-AH}y H's = 2246
hiEhi 0805 A
S =0, ns.
Nturbine H - H, N turbine
Ws:=H3-H> Qu = H2 - Hj
3 3
W, =-1.035%x 10 Qg =3.322x10
| W
Neycle = On Neyele = 0.311 Ans.
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8.2

mdot := 1.0 (kg/s)
The following property values are found by linear interpolation in Table F.1:
State 1, Sat. Liquid at TH: H]1 := 860.7 S1 :=2.3482 P1 :=3.533
State 2, Sat. Vapor at TH: H2 := 2792.0 S2 :=6.4139 P2 := 3.533
State 3, Wet Vapor at TC: Hliq := 112.5 Hvap = 2550.6 P3 :=1616.0
State 4, Wet Vapor at TC: Sliq := 0.3929  Svap := 8.5200 P4 :=1616.0
(a) The pressures in kPa appear above.

(b) Steps 2--3 and 4--1 (Fig. 8.2) are isentropic, for which S3=S2 and S1=S4.
Thus by Eq. 6.82):

— Sli 1 — Sl
x3 = —Sz Shq x3 = 0.741 x4 = —S S “? x4 = 0.241
Svap — Sliq Svap — Sliq
(¢) The rate of heat addition, Step 1--2:
Qdot12 := mdot-(H2 — HI) Qdotl2 = 1.931x10° (kJ/s)

(d) The rate of heat rejection, Step 3--4:
H3 := Hliq + x3-(Hvap — Hliq) H4 := Hliq + x4-(Hvap — Hliq)

H3 = 1.919x 10° H4 = 699.083

Qdot34 := mdot-(H4 — H3) Qdot34 = —1.22x 10°  (kJ/s)
() Wdotl2 :=0 Wdot34 := 0

Wdot23 = mdot-(H3 — H2) Wdot23 = ~873.222

Wdot41 := mdot-(H1 — H4) Wdot41 = 161.617

Wdot23 + Wdot41
() o= |2 * VO N = 0.368
Qdot12

Note that the first law is satisfied:
2Q = Qdotl12 + Qdot34 >W = Wdot23 + Wdot41
2Q+2XW =0
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8.3 The following vectors contain values for Parts (a) through (f).

Enthalpies and entropies for superheated vapor, Tables F.2 and F.4 @ P2
and T2 (see Fig. 8.4):

3622.7-E \ 6.9013-i \
kg kg-K
k k
3529.6-—J 6.9485-—J
kg kg-K
k
3635.4-—J 6.9875-—kJ
kg kg-K
Hy = Sy =
3475.6-E 6.9145-i
kg kg-K
BT BT
1507.0-—U 1.6595-—U_
by by, - rankine
1558.8. 010 16759 — 210
by j by, rankine )

Sat. lig. and sat. vap. values from Tables F.2 and F.4 @ P3 = P4:

kJ
191.832-—\ 2584.8-E )
kg kg
k k
251.453-—J 2609.9-—J
kg kg
191.832-E 2584.8.E
kg kg
Hiiq = Hyap =
KkJ P k
419.064- — 2676.0-—J
kg kg
B
180.17-ﬂ 1150.5-E
m m
BTU BT
69.73- —— 1105.8-—U
m m
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Sy —Sj;
S3=S, X'y = "
Svap — Sliq

Hj3 = [Hz + nturbine'()'l'-” —H j

Wdot

mdot :=
Wturbine + Wpump

Answers follow:

Hy = H4 + Wpump

= I:Hliq + X'3'()‘Ivap — Hiig j

Whurbine := H3 — H2

Qdoty = ()‘ Hyp - H1| -mdot>
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P —
_ | Wdot|

8.4  Subscripts refer to Fig. 8.3.
Saturated liquid at 50 kPa (point 4)

3
cm

V4 = 1.030—
gm

n= Qdoty
KJ P4 := 3300-kPa
Hy := 340.564-—
kg Py := 50-kPa

Saturated liquid and vapor at 50 kPa:

Hiiq :== Hq
kJ
Stiq = 1.0912. ——
kg-K

By Eq. (7.24),

The following vectors give values for temperatures of 450, 550, and 650 degC:

3340.6 )
Hy := | 3565.3 I-kH
3792.9 ) :

Hvap = 2646.0' H

kg

kJ
Svap = 7.5947’_

kg-K
kJ
kJ
Hy = 343911 —
kg

7.0373 ")
Sy :=| 7.3282 |-i
kg-K

7.5891 )
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8.5

S'3 = Siiq

S'3:= 97 X'3 =
SVap - Sliq
H'3 := Hjjq + X’3-(}lvap — Hiig Wturbine == H'3 — Ha
Qy = ()42 - H; N = |Wturbine + Wpump|
QH
0.914") 0.297")
x'3 = | 0.959 | n=|0314 | Ans.
0.999 ) 0.332 )
Subscripts refer to Fig. 8.3.
Saturated liquid at 30 kPa (point 4)
cm3 kJ
Vg = 1.022— Hy := 289.302-— Py := 30-kPa
gm kg
Saturated liquid and vapor at 30 kPa:
5000
kJ
Hiiq = Hy oo = 2625.4-k— P4 :=| 7500 |-kPa
g
10000
kJ kJ
kg-K kg-K
294.381)
kJ
Hj = Hy + Wpump H; = | 296.936 |k—
g
299.491 )

The following vectors give values for pressures of 5000, 7500, and
10000 kPa at 600 degC

3664.5 ) 7.2578
H, = | 3643.7 |-§ S, = | 7.0526 |-kk—JK
3622.7 ) = 6.9013 ) ¢
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8.6

S'3 = Siiq

S'3:= 97 X'3 =
Svap - Sliq
H'3 := Hiiq + x'3(Hvap — Hiig Wiurbine = H'3 —Hp
Qy = ()42 - H; N = |Wturbine + Wpump|
Qu
0.925) 0.359)
x'3 = | 0.895 | n=|0375 | Ans.
0.873 ) 0.386 )
From Table F.2 at 7000 kPa and 640 degC:
kJ kJ
Hp :=3766.4-— Sy = 7.2200-—— S =S
kg kg-K
For sat. lig. and sat. vap. at 20 kPa:
kJ kJ
Hijq == 251.453-— Hyap = 2609.9-—
kg kg
kJ kJ
Sliq := 0.8321-—— Svap = 7.9094- ——
kg-K kg-K

The following enthalpies are interpolated in Table F.2 at four values for
intermediate pressure P2:

725 3023.9))
750 3032.5 | kJ
Py = -kPa H"» = —
775 3040.9 | kg
800 ) 3049.0 )

n :=0.78 Wio = n-()—l'z - H; Hy :=Hy+Wq2
~579.15 3187.3) 7.4939")
~572.442 | J 3194 | kJ 7.4898 | kJ

Wiz = — Hj = — Sy = —
~565.89 |kg 3200.5 | kg 7.4851 | kg'K
~559.572 ) 3206.8 ) 7.4797 )
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where the entropy values are by interpolation in Table F.2 at P2.

S2 = Siig
X3 = — H'3 := Hjjq + Xv3'()'lvap — Hiig
SVap - Sliq

W3 i= ('3~ Ha ~20.817)
-7.811 | kJ

AW = Wi — Wo3 AW = —
5.073 lkg
17.723 )

The work difference is essentially linear in P2, and we interpolate linearly to
find the value of P2 for which the work difference is zero:

. AW
linterp| ——,P>,0.0 | = 765.16kPa (P2)
( kI
ke )
Also needed are values of H2 and S2 at this pressure. Again we do linear
interpolations:

kJ kJ
linterp(P2,Hz,765.16-kPa = 3197.9— Hj := 3197.9-—
kg kg
kJ kJ
linterp(P2,S2,765.16-kPa = 7.4869 —— S5 := 7.4869- ——
kg-K kg-K

We can now find the temperature at this state by interplation in Table F.2.
This gives an intermediate steam temperature t2 of 366.6 degC.

The work calculations must be repeated for THIS case:

, S2 = Slig
Wiz :=Hy-Hj X3 = ———
Svap - S1iq
kJ
W12 = —568.5— X'3 =094
kg
H'3 = Hiig +x'3-(Hvap — Hiig Wa3 = 1-(H's - H
kJ
kJ _ xJ
H'3 = 2.469 x 10° 22 W23 568.46 ke

kg
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kJ
Work := W12 + W3 Work = -1 137k—
g
For a single isentropic expansion from the initial pressure to the
final pressure, which yields a wet exhaust:

S1 - Sliq
X3 = H'3 := Hjjiq + Xv3'(){vap — Hiiq
Svap - Sliq
w 3kJ
X'3 = 0.903 H3 =238x%x10 k_g
kJ
W':= H3 - Hj W'=-1386.2 —
kg
Whence the overall efficiency is:
Work
Noverall -~ W Noverall = 0.8202 Ans.
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‘"
H Boiler ) L 2

m kg

w <
s

Pump

From Table F.2 for steam at 4500 kPa and 500 degC:

kJ kJ
Hjy := 3439.3-— Sy :=7.0311-—— S'3:=9S)
kg kg-K
By interpolation at 350 kPa and this entropy,
kJ
H'3 = 2770.6-k— n = 0.78 Wi :=n-(H'3 - Hy
g
kJ kJ
Hj = Hy + W] Hy = 2918x 10°=2 Wy = —521.586—
kg kg

Isentropic expansion to 20 kPa:

S'4:=9> Exhaust is wet: for sat. liq. & vap.:
kJ kJ
Hjjq := 251.453-— Hyap = 2609.9-—
kg kg
kJ kJ
kg-K kg-K
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S'4 = Siiq

'

X'g = H'4 = Hliq + X'4'()'Ivap - Hliq
SVap - Sliq W
Vo e
X' = 0.876 H'g = 2.317x 10 ke
3 kJ
Hq4 :=Hp+n:(H4—-H Hgq = 2.564 x 107 —
4 2+M (){4 2 4 ke
cm3
Hs := Hijq Vs5:=1.017-— P5 := 20-kPa P¢ := 4500-kPa
gm
Vs-()’é —Ps
n
kJ kJ
W = 5.841— Hg = 257.294 —
pump ke 6 ke
For sat. lig. at 350 kPa (Table F.2):
kJ
H7 = 584.270'1(— t7 .= 138.87  (degC)
g

We need the enthalpy of compressed liquid at point 1, where the pressure is
4500 kPa and the temperature is:

t; .= 138.87-6 Ty := ()1 +273.15 K t] = 132.87
At this temperature, 132.87 degC, interpolation in Table F.1 gives:
kJ cm3
Hsathq = 558.5_ Psat = 294.26'kPa Vsathq = 1.073_
kg gm

Also by approximation, the definition of the volume expansivity yields:

3
1 (1.083-1.063) cm
B = ( \ Pl — P6
Vsat.lig 20 ) gm-K
41
B=932x10 =
K
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8.8

By Eq. (7.25),

kJ
H1 := Hgatlig + Vsa‘t.liq'()1 -B-T ())1 — Psat Hy = 561.305k_g
By an energy balance on the feedwater heater:
H; - He
mass .= ——-kg mass = 0.13028kg Ans.
H3 - Hy

Work in 2nd section of turbine:

Wit = (1-kg — mass)-(Hy - H3 Wi = —307.567KkJ

Qu = (){2 - Hyp -1'kg
Qu = 2878k]J n = n = 0.2861 Ans.

Refer to figure in preceding problem.

Although entropy values are not needed for most points in the process, they are
recorded here for future use in Problem 15.8.

From Table F.4 for steam at 650(psia) & 900 degF:

BTU BTU
Hj = 1461.2.—— Sy i=1.6671-——— S'3:=9;
by by, rankine

By interpolation at 50(psia) and this entropy,

BTU

H'3 .= 1180.4-—— =0.78 Wi:=n-(H3-H
3 . M 1:=n-(H3-Hz
BTU BTU
H3 := Hy + W] H3 = 12422 —— Wi = -219.024 ——
[ s
BTU
Sz :=17431 ——
by, rankine
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Isentropic expansion to 1(psia):

Exhaust is wet: for sat. liq. & vap.:

BTU
Hjjq == 69.73- ——
m
BTU
Stiq := 0.1326- -
by, -rankine
' S'4 = Siig
X'y = —mm
SVap - Sliq
x'4 = 0.831
Hg :=Hpy + n-(}l'4 - H»
Hy —Hiiq
X4 = ———————
Hvap - Hliq
x4 = 0.944
P5 := 1-psi
Vs-(P6—Ps
Wy =
n
Pg := 650-psi

For sat. liq. at 50(psia) (Table F.4):

BT
Hy = 25021209
lby,

t7 == 281.01

S'4:=8
BTU
Hvap = 1105.8'—
m
BTU
Svap = 1.9781'

by, - rankine

H'4 == Hjjg + X'4'()'Ivap — Hiiq

BT
HYy = 931204207
m

BTU

Hy = 1047.8——

Iby,

S4 = Siiq + X4'($Vap — Sliq

BTU
Sq4 = 1.8748 -
by, -rankine
fr°
Hs := Hiiq Vs :=0.0161-—
m
BTU
Wpump =S 2.489—
by
BTU
Ibm
BTU

S7:=0.4112. -
Iby,-rankine

We need the enthalpy of compressed liquid at point 1, where the pressure is

650(psia) and the temperature is

t == 281.01 - 11

Ty =

(}1 +459.67 -rankine t] = 270.01
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At this temperature, 270.01 degF, interpolation in Table F.3 gives:

3
ft
Psat = 41.87'pSi Vsathq = 0.1717'_
lbm
BTU
Hgat lig := 238.96-—— BTU
lbm Ssat liq := 0.3960: ———
by, - rankine
The definition of the volume expansivity yields:
5 1 (001726-0.01709) £ b p
= : : , 1:=Pg
Vsat.lig 20 ) by, -rankine
_ 1
B=495x10 > ——
rankine
By Eq. (7.25) and (7.26),
BTU
Hi = Healiq + Vsatlig'(} = B-T1 -(P1 — Psat Hi = 257.6——
m
BTU
S1 := Ssatlig + VsatligB- -P S1 =0.397
1 sat.liq sat.liq B ())1 sat 1 [zt
By an energy balance on the feedwater heater:
Hj - Hg
Mass 1= T, o mass = 0.18687Iby, Ans.
Work in 2nd section of turbine:
Wip := () Iby — mass -(Hs — H3 Wi = —158.051 BTU
Whet = (W1 + Wpump -1-1bm + Wiy Whet = —374.586 BTU
3
Qu = (H2 - Hj -1:lby Qp = 1.204 x 10" BTU
Whet
n = [Wne n=03112 Ans
Qu
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8.9

Boiler

vy

Steam at 6500 kPa & 600 degC (point 2) Table F.2:

kJ kJ
Hy = 3652.1-— S, = 7.1258 —— P, := 6500-kPa

kg kg-K
At point 3 the pressure must be such that the steam has a condensation
temperature in feedwater heater I of 195 degC, 5 deg higher than the
temperature of the feed water to the boiler at point 1. Its saturation pressure,
corresponding to 195 degC, from Table F.1, is 1399.0 kPa. The steam at point 3
is superheated vapor at this pressure, and if expansion from P2 to P3 is

isentropic,
S'3:=95; By double interpolation in Table F.2,
HY = 3142.6 N = 0.80 Wi = n-(H'3 - Hy
kg
kJ kJ
Hj = Hy + W] Hy = 3244x 10°= Wy = -407.6—
kg kg
kJ
From Table F.1: Hig := 829.9.1(_
g
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Similar calculations are required for feedwater heater II.

At the exhaust conditions of 20 kPa, the properties of sat. liq. and sat.
vap. are:

3
K kJ
Hijq = 251.453-— Hygp = 2609.9-— Viig = 1.017-
kg kg gm
Ky kJ
Sjiq = 0.8321.—— Syap 1= 7.9094- ——
kg-K kg-K

If we find t7, then t8 is the mid-temperature between t7 and t1(190 degC), and
that fixes the pressure of stream 4 so that its saturation temperature is 5 degC
higher. At point 6, we have saturated liquid at 20 kPa, and its properties from
Table F.2 are:

teat == 60.09 Tsat = (Jsat + 273.15 -K
Hg := Hiiq Ve := Viiq Pg := 20-kPa
Ve (P2 - Ps
n
kJ

We apply Eq. (7.25) for the calculation of the temperature change from point 6
to point 7. For this we need values of the heat capacity and volume expansivity
of water at about 60 degC. They can be estimated from data in Table F.1:

g L [l023- 1.012) om’ o 272022302 K
"~ Viig 20 ) emK P 10 ke K
_41 kJ
B =5408x10 "= Cp = 4.18——
K kg-K
Solving Eq. (7.25) for delta T gives:
AHg7 = Viig'(] = B-Tsat *(P2—Pe
ATg7 = al) = Toa (P ATg7 = 0.678K
Cp
ATg7 190 — t;
t7 = tgat + tg =———+ty tg :=t9g+35

2
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t7 = 60.768

kJ
tg = 130.38 From Table F.1: Hg = 547,9.k_
g
H7 := Hjiq + AHg7 tg = 125.38 Tg := (273.15+ 19 ‘K
kJ
H7 = 259.691 —
kg

At points 9 and 1, the streams are compressed liquid (P=6500 kPa), and we
find the effect of pressure on the liquid by Eq. (7.25). Values by
interpolation in Table F.1 at saturation temperatures t9 and t1:

3
kJ
Hearo = 526.6—  Vgarg = 1.065-— Peato = 234.9-kPa
kg gm
kJ
Hggr 1 = 807.5— Vg1 = 1.142- 221 Pey 1 = 1255.1-kPa
kg gm
cm3 Cl’Il3
AVg = (1.075 — 1.056)-— AV = (1.156 — 1.128)-—
gm gm
1 AVg 1 AVI
AT := 20-K Bg := — By = 1
Vsat9 AT Vsat.1 AT
41 -31
—892x10 "= - 1226x 10 °—
Bog - B -
kJ
Hg := Hgato + Vsat.9-()1 ~Bo-Ty (P2~ Psaro Hg = 530-9k—g
T = (273.15 + 190)-K T; = 463.15K
kJ
Hi = Heat1 + Vsat1() = B1-T1 (P2 - Psat.1 Hy = 810089

Now we can make an energy balance on feedwater heater I to find the
mass of steam condensed:

Hi—-Hog

=— kg my = 0.11563kg Ans.
H3 —Hjg

my :
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The temperature at point 8, t8 = 130.38 (see above) is the saturation temperture in
feedwater heater II. The saturation pressure by interpolation in Table F.1 is
273.28 kPa.

Isentropic expansion of steam from the initial conditions to this pressure results in
a slightly superheated vapor, for which by double interpolation in Table F.2:

kJ
H'4 :=2763.2-— Then Hgq :=Hy+n -(){'4 - Hj

kg

kJ
Hy = 2.941 x 10° —
kg

We can now make an energy balance on feedwater heater II to find the mass of
steam condensed:

myp = (1o~ Hy kg -~ mr (1o ~ H my = 0.0971kg  Ans.
H4 - Hg

The final stage of expansion in the turbine is to 20 kPa, where the exhaust is wet.
For isentropic expansion,

S2 — Siig
X's = ———— H's := Hjjq + X'S'()'Ivap — Hiiq
SVap - Sliq
kJ
x's = 0.889 H's = 2.349 x 10° ~
kg
Then Hs = Hy+n:(Hs-H Hs = 2609.4
5:=Hp s—Ha 5 e
The work of the turbine is:
Wiurbine = Wr-1-kg + ()-kg —my ()'14 —Hj3
+ () kg —mp —my -(Hs - Hy
Wiurbine = —936.2kJ Qu=(H2-Hi -lkg  Qu=2842x 10"k
Whurbine + W 1-k
N = turbine pump g| N = 03265  Ans.

Qn
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8.10 Isobutane: T¢ = 408.1-K P; := 36.48-bar o = 0.181

For isentropic expansion in the turbine, let the initial state be represented by
symbols with subscript zero and the final state by symbols with no subscript.
Then

Tp := 533.15-K Pg := 4800-kPa P := 450-kPa

AS = 0- ! For the heat capacity of isobutane:
mol-K
37.853:107° ~11.945-10"°
A = 1.677 B="—+—""" C = —2
K K
To Po
Ty = — Ty = 1.3064 Pyo = — Pro = 1.3158
Te P¢
P
Pc

Use generalized second-virial correlation:

The entropy change is given by Eq. (6.92) combined with Eq. (5.15) with D = 0:

T := 0.8 (guess)

Given

AS = R A-In(} +[B-T0+ C-Toz-(T ; IH-(} 1 - 1{%} N

T-To 3
_+ SRB (T— ,(Br 5 ) - SRB ()I‘I‘O 5(BI‘0 ’

C

t := Find(X T = 0.852 T:=1To T = 454.49K
T
Tc

The enthalpy change for this final temperature is given by Eq. (6.91), with HRB at
the above T:

3 6

AHjg = R'ICPH()F(),T,1.677,37.853'10_ ,—11.945-10 ~,0.0

1141 x 104
mol

AHjy =
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AHgyrbine = AHjg + R'Tc‘(FRB ()rr B, —HRB ()rrO »Br0

J
AHturbine = _8850-6m_01 Witurbine ‘= AHgurbine

The work of the pump is given by Eq. (7.24), and for this we need an estimate of
the molar volume of isobutane as a saturated liquid at 450 kPa. This is given by
Eq. (3.72). The saturation temperature at 450 kPa is given by the Antoine
equation solved for t degC:

VP = 450-kPa
Ayp = 14.57100 Byp = 2606.775  Cyp i= 274.068
tsat = VP - Cvp tsat = 34 Tsat = ()Sat + 27315 ‘K
Avp -~ 1“(1(_% ) Teae = 307.15K
crn3 Tsat
VC = 262.7'_ Zc = 0.282 Trsat = Trsat = 0753
mol c
2
()_Trsat ’ Cm3
Vlig = VeZe Viig = 112.362m—01
. . J

The flow rate of isobutane can now be found:

1000-k
mdot := 000-kW mdot = 119.59m—01 Ans.

Wiurbine + Wpump sec

The enthalpy change of the isobutane in the cooler/condenser is calculated in
two steps:

a. Cooling of the vapor from 454.48 to 307.15 K

b. Condensation of the vapor at 307.15 K

Enthalpy change of cooling: HRB at the initial state has already been calculated.
For saturated vapor at 307.15 K:

3 6

AHjg = R-ICPH()I',Tsat,1.677,37.853-10_ ,—11.945-10 ~,0.0
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J
AH:, = —1.756 x 10* ——
'8 mol

AH, := AHjy + R-T¢-(HRB(JFrsat. @,  — HRB(JIr. 8,

J
AH, = —-18082 —
mol

For the condensation process, we estimate the latent heat by Eqs. (4.12) and (4.13):

T
Ty = 261.4-K Tpy = — Ty = 0.641
T
P
R-Tn-1.092-(ln(b—c) - 1.013) |
AH, = z AH, = 2.118 x 10% ——
0.930 - Ty mol
0.38
1-T J
AHyp = —AH,- 1= Trsac) AHp, = —18378 ——
1 -Tm j mol

Qdotgyyt == mdot-()&Ha + AHy,

1000-kW
Qdotip := |Wturbine + Wpump| -mdot + |Qd0tout| n=——
Qdotip
Qdotyyt = —4360kW Qdotj, = 5360kW n = 0.187 Ans.
8.11 Isobutane: T. := 408.1-K P¢ := 36.48-bar o := 0.181

For isentropic expansion in the turbine, let the initial (inlet) state be
represented by symbols with subscript zero and the final (exit) state by
symbols with no subscript. Then

To = 413.15K  Pg:= 3400-kPa P := 450.-kPa  molwt := 58.123“;—“11
mo
J

AS = 0-
mol-K
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For the heat capacity of isobutane:

-3 -6
37.853-10 —-11.945-10
A = 1.677 B=——-—— Ci=—2-""°- "
K KZ
To Py
Tc P
P
P¢

Use Lee/Kesler correlation for turbine-inlet state, designating values
by HRLK and SRLK:

HRLK( = -1.530 SRLK( = -1.160
The entropy change is given by Eq. (6.92) combined with Eq. (5.15) with D =0

T:=0.8 (guess)

Given

AS = R| A-In(} +[B-T0+ C-TOZ-(T - 1\:|-(): N A I
2 j P()j

(TO'T )
+SRB| — .,8;, - SRLK|
t := Find(} T = 0.809 T:=1Ty T = 334.08K
T

T, = o T, = 0.819

The enthalpy change for this final temperature is given by Eq. (6.91), with
HRB at the above T:

MM, = RICPH(Jo. T,1.677,37.853-107%,-11.945.10~% 0.0
J
AHjy = —9.3x 10° ——
mol
AHgyrpine = AHjg + R-Te(HRB(Jr,@;, — HRLKg
J
AHgyrbine = —4852.6 — Witurbine = AHyrbine
mol
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The work of the pump is given by Eq. (7.24), and the required value for the
molar volume of saturated-liquid isobutane at 450 kPa (34 degC) is the
value calculated in Problem 8.10:

3
cm J
Viig = 112.36-— W = Vlig* -P W = 331462 —
liq mol pump lig ())0 pump mol

For the cycle the net power OUTPUT is:
75 kg

Wdot := —mdot- 4+ W
molwt sec ()Nturblne pump

mdot =

Wdot = 5834kW Ans.

The enthalpy change of the isobutane in the cooler/condenser is calculated in
two steps:

a. Cooling of the vapor from 334.07 to 307.15 K

b. Condensation of the vapor at 307.15 K

Enthalpy change of cooling: HRB at the initial state has already been
calculated. For saturated vapor at 307.15 K it was found in Problem 8.10 as:

Tsat
Tsat = 307.15K Trsat = T_ Trsat = 0.753
C
AHjq = R~ICPH()1‘,Tsat, 1.677,37.853-10 >,-11.945-10" °,0.0
kJ
AHjy = —2.817—
mol
AH, := AHjg + R-Tc:(HRB(JFrsat. B, — HRB(Jr. 8,
J
AH, = —2975—
mol

For the condensation process, the enthalpy change was found in Problem
8.10:

J
AHy, = —18378-— Qdotoy == mdot-(NH, + AHy,
mol

Qdotyyt = —27553kW  Ans.
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For the heater/boiler:

Qdotiy := Wdot + |Qdotoy Qdot;;, = 33387kW Ans.
Wdot

N = —0 n = 0.175 Ans.
Qdotj,

We now recalculate results for a cycle for which the turbine and pump each
have an efficiency of 0.8. The work of the turbine is 80% of the value
calculated above, i.e.,

J
W'turbine = 0'8'Wtu1’bine W'turbine = —3882—
mol

The work of the pump is:
W J
pump
w = w! =4143 —
pump 0.8 pump mol

Wdot := —mdot-(W'turbine + W'pump Wdot = 4475kW Ans.

The decrease in the work output of the turbine shows up as an increase in
the heat transferred out of the cooler condenser. Thus

Qdotoyt := Qdotoyt + ()Nturbine — W'turbine -mdot
Qdotyyt = —28805kW Ans.

The increase in pump work shows up as a decrease in the heat added in the
heater/boiler. Thus

Qdotin := Qdotin — (W'pump — Wpump -mdot  Qdotip = 33280kW  Ans.

Wdot
= 0 n = 0.134 Ans.

n Qdotin
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7

8.13 Refer to Fig. 8.10. Cp = E-R
Pc = 1-bar Tc =293.15-K Pp = 5-bar y:=14
By Eq. (3.30¢): Pc-Vc' = Pp-Vp'
! 1
Ve (Pp)’ Pp)’
— = —\ or ri= —\ r=3.157 Ans.
Vb \Pc) Pc)
-1
Pp) ! J
Eq. (3.30b): Tp = Tc —\ Qpa = 1500-—
ch mol
Qpa
Qpa = Cp-(Ffa-Tp Tpa=——+Tp  Ta = 515.845K
Cp
R-T¢
e = VB = Ms = Pe P P Tc Pa
. = e = — —
VA VA RTp A=Pp © = T Pe
PA
re = 2.841  Ans.
8.14 3)
5 Py
Ratio := Ratio = — y =135
7 Pa
9)
Eq. (8.12) now becomes:
y-1 0.248")
Y 0.341
Ratio ) 0.396
0.434 )
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8.16
B heati
65 b--...E eatmg C
(combustion) .
turbine
D
P (bar)
comp..

4-nozzle

L E

A cooling
%

Figure shows the air-standard turbojet power plant on a PV diagram.

Ta = 303.15-K Tc = 1373.15:K
By Eq. (7.22)
R
Cp 2
PB) _ ( 7
WaB = Cp-Tar|| — —1|=Cp-Ta-\cr
PA) ]
R
Cp 2
_ Pp) _ ( 7
Wep = CpTel|— . —1|=CpTeler —1)
Pc) ]

where cr is the compression ratio and er is the expansion ratio. Since the two

work terms are equal but of opposite signs,

er:= 0.5 (guess)

TC'(ef - J = —TA-(CY% - J
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cr:=6.5

<N

Given

7
Cp =—R
P=3

)

_1)

)

er := Find(er)
er = 0.552



R

Cp
PD\
By Eq. (7.18): Tp = Tc| —
ch
2
This may be written: T := Tc-er7
-1
2-v-Pp-Vp Pg) ¥
By Eq. (7.11) upt—up’= — = 21— _\ (A)
y-1 Pp )
We note the following:
Pp Pp _ Pc Pp
er= — cr=—=— crer= —
Pc PA  Pg E
The following substitutions are made in (A):
-1 _ R _2 Pg 1
uD:() Y_=_=_ PD'VD=R'TD _—=
Y Cp 7 Pp crer
Then molwt = 29£
5 mol
7
7 R 1) m
ug = [2:—— Tp| 1 - up = 843.4—
E 2 molwt P (cr-er ) . sec Ans.
Pg := 1-bar Pp := crer-Pg Pp = 3.589bar Ans.

8.17 Tp = 305K Pa ;= 1.05bar  Ppg := 7.5bar n = 0.8

Assume air to be an ideal gas with mean heat capacity (final temperature by
iteration):

Cpmyir = MCPH(b98.15K 582K ,3.355.0.575-107>,0.0,-0.016-10° -R

Cpmyir = 29.921
PMair mol-K
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Compressor:

R
Cpmg;r
CpmyirTA | [ PB J
Wsgip 1= —— . Pp) ~1 Wi = 8.292 x 10° ——
n Pa } mol
Wsair
Tg :=TaA + T = 582.126 K
Cpmair

Combustion: CH4 +202=CO02 +2H20

Basis: Complete combustion of 1 mol CH4. Reactants are N mol of
air and 1mol CH4.

Because the combustion is adiabatic, the basic equation is:
AHR +&H298 + Hp =0

For AH_R, the mean heat capacities for air and methane are required.
The value for air is given above. For methane the temperature change
is very small; use the value given in Table C.1 for 298 K: 4.217*R.

The solution process requires iteration for N. Assume a value for N until
the above energy balance is satisfied.

(a) Tc := 1000K N := 57.638 (This is the final value after iteration)

AHp := CpmgirN-(298.15 — 582.03)-K + 4.217-R-(298.15 — 300)-K

J
AHR = —4.896 x 10° —
mol

The product stream contains:

1 mol CO2, 2mol H20, 0.79N mol N2, and (0.21N-2) mol O2

1) 5.457) 1.045)) ~1.157)
2 ‘ 3.470 ‘ 1.450 ‘ _3 0.121 5
A= B = 10 D := 10
79-N 3.280 0.593 0.040
21N-2) 3.639 ) 0.506 ) ~0.227 )
1:=1..4
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i i

Z n; = 58.638 A = Z ()11-Ai B = Z ()11-Bi D := Z ()11-Di

A =198.517 B = 0.036 D = -1.387x 10°

Cpmp = MCPH()Z98.15K, 1000.K,198.517,0.0361 ,0.0,—1.3872-105 ‘R

I
AHp := Cpmp-(JTc — 298.15K AHp = 1.292 x 10°——
mol

J
From Ex. 4.7: AHjgg := —802625 —
mol

AHR +MHy9g + Hp = 136.223 Ll (This result is sufficiently close to zero.)
mo

Thus, N = 57.638 moles of air per mole of methane fuel. Ans.

Assume expansion of the combustion products in the turbine is to 1(atm),
i.e., to 1.0133 bar:

Pp = 1.0133bar Pc := 7.5bar

The pertinent equations are analogous to those for the compressor. The
mean heat capacity is that of the combustion gases, and depends on the
temperature of the exhaust gases from the turbine, which must therefore be
found by iteration. For an initial calculation use the mean heat capacity
already determined. This calculation yields an exhaust temperature of
about 390 K. Thus iteration starts with this value. Parameters A, B, and D
have the final values determined above.

Cpm := MCPH()IOOOK,343.12K, 198.517,0.0361 ,0.0,—1.3872-105 ‘R

3 ]
Cpm = 1.849x 10 For 58.638 moles of combustion product:

mol-K
R
Cpm
58.638-Cpm:T Pp
s = paTe | (P} Ws = —1.214x 10°—
n PC] mol
Ws . . .
Tp :=Tc+ C Tp = 343.123K  (Final result of iteration.) Ans.
pm
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J
Wspet := Ws+ Wsgir N Wespet = —7.364 x 105E Ans.

(J per mole of methane)

Parts (b) and (c) are solved in exactly the same way, with the following
results:

(b) Tc:=1200 N:=37.48  Wsper = —7.365-10°  Tp := 343.123

(© Tc:=1500 N:=2407  Wspet = —5.7519-10° Tp := 598.94

dollars

8.18 nyy := 0.35 Nme = 0.95  line_losses := 20% Cost_fuel := 4.00

Cost_fuel
[n tm ' Nme: (1 — line_losses)]

Cost_electricity :=

cents
kW-hr
This is about 1/2 to 1/3 of the typical cost charged to residential customers.

Ans.

Cost_electricity = 0.05

kJ
8.19 T¢ = 111.4K Ty = 300K AHny, = 8.206 —
mol
Tc
Ncarnot = 1 — T_H NCarnot = 0.629 NHE = 0.6Ncamot MHuE = 0.377
Assume as a basis: W = 1kJ
W
Qg = — Qu =265k Qc=Qu(}-nug  Qc= 1651kl
NHE
Qc
AH
My 0.201m_ol Ans.
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8.20 Ty == (27 +273.15)K Tc = (6 + 273.15)K

Tc
) M Carnot == 1 — T_H NCarnot = 0.07 Ans.

2
b) nactual = nCamot'0.6'§ nactual = 0.028 AHS.

¢) The thermal efficiency is low and high fluid rates are required to generate
reasonable power. This argues for working fluids that are relatively
inexpensive. Candidates that provide reasonable pressures at the
required temperature levels include ammonia, n-butane, and propane.

297



Chapter 9 - Section A - Mathcad Solutions

9.2 Ty := (20 +273.15K Ty = 293.15K
Tc = (=20 + 273.15)K Tc = 253.15K
KkJ
Qdotc := 125000-—
day
Tc
OCamot = ——— 93)  © = 0.6:0Camot o = 3.797
Ty-Tc
Qdotc
Wdot := 9.2) Wdot = 0.381kW
(O]
11
Cost = 2% Wdot Cost = 267.183 301358\
W-hr yr

9.4 Basis: 1 lbm of tetrafluoroethane

The following property values are found from Table 9.1:

State 1, Sat. Liquid at TH: H1 := 44943 S1 := 0.09142 Pl := 138.83
State 2, Sat. Vapor at TH: H2 := 116.166 S2 := 0.21868 P2 := 138.83
State 3, Wet Vapor at TC: Hliq := 15.187 Hvap = 104.471 P3 = 26.617
State 4, Wet Vapor at TC: Sliq := 0.03408 Svap := 0.22418 P4 := 26.617
(a) The pressures in (psia) appear above.

(b) Steps 3--2 and 1--4 (Fig. 8.2) are isentropic, for which S3=S2 and S1=S4.
Thus by Eq. 6.82):

S2 — Sli
X3 = d

= —_— x4 = 0.302
Svap — Sliq

320071 xd - 1S
Svap — Sliq

(c) Heat addition, Step 4--3:
H3 := Hliq + x3-(Hvap — Hliq) H4 := Hliq + x4-(Hvap — Hliq)

H3 = 101.888 H4 = 42.118
Q43 = (H3 - H4) Q43 = 59.77 (Btu/lb,)

298



9.7

(d) Heat rejection, Step 2--1:

Q21 := (H1 — H2) Q21 = -71.223 (Btu/lb,,)
() W21:=0 W43 =0
W32 := (H2 - H3) W32 = 14.278
W14 := (H4 — H1) W14 = -2.825
43
® o0=—25 o = 5219
W14 + W32
Note that the first law is satisfied:
2Q = Q21 +Q43 W = W32+ Wl14 2Q+2ZW =0
Tc =298.15-K Ty = 523.15-K (Engine)
T'c:=273.15-K T'g = 298.15-K (Refrigerator)
Tc
By Eq. (5.8): NCarnot := | — — NCarnot = 0.43
Th
T'c
By Eq. (9.3): OCamot := ————  ®Carnot = 10.926
Ty—-Tc
Wengi '
By definition: n= @ o = Qc
Qu Wrefrig
' kJ
But |Wengine| = Wrefrig Q¢ =35—
sec
Whence Qu = Qe Quy = 7,448£ Ans.
N Carnot” @ Carnot S0
Given that: 1 := 0.6 Cgqmot ® = 0.6:0Camot o = 6.556
Q'c kJ
Qg:=—— Qpg = 20.689 — Ans.
ne sec
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9.8

9.9

kJ

(a) QC = 4_
S€C

Qc

o= —

w

() QH:=Qc+W

Tc
© o=
Ta—-Tc
Te = Ty — )
0)+1)

W = 1.5-kW

® = 2.667
kJ

Qu=55—

S€C

Ans.

Ans.

Ty = (40 + 273.15)-K Ty = 313.15K

Tc = 227.75K
or -45.4 degC

Ans.

The following vectors contain data for parts (a) through (e). Subscripts
refer to Fig. 9.1. Values of H2 and S2 for saturated vapor come from

Table 9.1.

489.67
479.67
Ty :=| 469.67 |-rankine
459.67
449.67 )

107.320")
105.907
104471 |- 24
Ib
103.015
101.542 )

T4 := 539.67-rankine

S3=5)

0.79
0.78
n:=|0.77
0.76
0.75 )

0.22244")
0.22325

0.22525
0.22647 )

Btu

Hy := 37.978- —

m

(isentropic compression)

300

0.22418 |-

600

500
Bt

Qdotc = | 400 | ==

Sec

300

200 )

Btu
by, - rankine

From Table 9.1
for sat. liquid



The saturation pressure at Point 4 from Table 9.1 is 101.37(psia). For
isentropic compression, from Point 2 to Point 3', we must read values for
the enthalpy at Point 3' from Fig. G.2 at this pressure and at the entropy
values S2. This cannot be done with much accuracy. The most
satisfactory procedure is probably to read an enthalpy at S=0.22 (H=114)
and at S=0.24 (H=126) and interpolate linearly for intermediate values of
H. This leads to the following values (rounded to 1 decimal):

115.5)
116.0 —
Btu H'3 — Hp
H'3 =|116.5 F H3 = H2 + AH23
n
117.2 Hj := Hy
117.9) 24.084) 273.711)
30.098 276.438
kJ kJ kJ
H| = 88.337— 36337 |—  H3 =|279.336 |—
kg kg k
43.414 283.026
50.732 ) 286.918 )
8.653)
Qd—) 7.361 "
ot
mdot := 7C mdot = | 6.016 |—  Ans.
H, - H; sec
4.613
3.146 )
—689.6)
~595.2
Btu
Qdoty := [ mdot-(Hs - H3 | Qdotg = | —494 |——  Ans.
S€C
~386.1
~268.6 )
94.5
100.5
—_—
Wdot := (jndot-AHps Wdot = | 99.2 |kW Ans.
90.8
724 )
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9.10

6.697 )

—
Qdot: 5.25
® = Wdot ® =| 4.256 Ans.
3.485
2.914 )
Tc:=T» Ty =Ty 9.793\
— 7.995
T
®Carnot -~ < OCarnot = | 6.71 Ans.
fn=tc 5.746
4.996 )

Subscripts in the following refer to Fig. 9.1. All property values come from
Tables F.1 and F.2.

Ty := (4 +273.15)-K T4 = (34+273.15)- K n:=0.76
kJ kJ kJ
Qdotc := 1200-— Hy := 2508.9-— Sy :=9.0526-——
sec kg kg K
kJ . . .
Hy = 142.4~k— S's =S, (isentropic compression)
g

The saturation pressure at Point 4 from Table F.1 is 5.318 kPa. We must
find in Table F.2 the enthalpy (Point 3') at this pressure and at the
entropy S2. This requires double interpolation. The pressure lies
between entries for pressures of 1 and 10 kPa, and linear interpolation
with P is unsatisfactory. Steam is here very nearly an ideal gas, for
which the entropy is linear in the logarithm of P, and interpolation must
be in accord with this relation. The enthalpy, on the other hand, changes
very little with P and can be interpolated linearly. Linear interpolation
with temperture is satisfactory in either case.

The result of interpolation is

kJ H'3 - Hj
H'y := 2814.7-— AHy3 = ———— H; :=Hy
kg n
kJ
AHy3 = 402.368 —
kg
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9.11

H3 :=Hp + AH23

Qdotc
Hy —Hj

mdot =

Qdoty = mdot-(){4 - Hj

Wdot := mdot-AH3

Qdotc
W =
Wdot
T
Q)] =
Carnot T4—To

KJ
Hs = 2.911x 10° =

kg

k
mdot = 0.507—g Ans.
sec

kJ
Qdotg = —1404— Ans.
sec

Wdot = 204kW Ans.
o = 5.881 Ans.
OCarnot = 9-238 Ans.

Parts (a) & (b): subscripts refer to Fig. 9.1

Part (c)

7y t@ 7 b( Evaporator

5 (Btu)/(s)

At the conditions of Point 2 [t = -15 degF and

P =14.667(psia)] for sat. liquid and sat. vapor from Table 9.1:

Bt
Hijq = 7.505-1—u

m

Btu
Hvap = 100.799‘ F

m
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Btu Bt
Sliq = 0.01733 ———— Sy = 022714 —————

by, - rankine by, rankine

For sat. liquid at Point 4 (80 degF):

Bt Btu
Hy = 37.978 == Sy = 007892 — >
o by, rankine

(a) Isenthalpic expansion: Hj; := Hy

Bt Qdotc Ib
Qdotc = 5-—u mdot (= ——— mdot = 0.0796—  Ans.
sec H, — Hy sec
(b) Isentropic expansion: S1:=54
S1— Siiq BTU
x{=———  Hjy:=Hiqg+x-(Hyap-Hiig  Hj = 34892——
SVap - Sliq lbm
Qdotc by,
mdot ;== ——— mdot = 0.0759 — Ans.
H, - Hy sec

(c¢) The sat. vapor from the evaporator is superheated in the heat
exchanger to 70 degF at a pressure of 14.667(psia). Property values
for this state are read (with considerable uncertainty) from Fig. G.2:

Btu Btu
Hop = 117.5— Sop =0.262-———
bm by, - rankine
Qdot Ib
mdot := _—C mdot = 0.0629—=  Ans.
Hpoa —Hy sec

(d) For isentropic compression of the sat. vapor at Point 2,

S3 = Svap and from Fig. G.2 at this entropy and P=101.37(psia)

Hy = 118.3-? Eq. (9.4) may now be

m applied to the two cases:

In the first case H1 has the value of H4:

H>, — Hy

=— ®, = 3.5896  Ans.
H3 - Hp

Oy
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In the second case H1 has its last calculated value [Part (b)]:

Hp - Hj

0p = ————
b H3 - Hj

®p = 3.7659  Ans.

In Part (c), compression is at constant entropy of 0.262 to the
final pressure. Again from Fig. G.2:

_ Btu . (Last calculated
Hz = 138.@ Wdot := ()—13 Hoa -mdot value of mdot)
BTU
Wdot = 1.289
sec
Qdotc
O¢ = | | ®c = 3.8791  Ans.
Wdot

9.12 Subscripts: see figure of the preceding problem.

At the conditions of Point 2 [sat. vapor, t =20 degF and P = 33.110(psia)]
from Table 9.1:

Bt Bt
Hy = 105.907-—— S, := 0.22325 aa

Ibm by, rankine
At Point 2A we have a superheated vapor at the same pressure and at
70 degF. From Fig. G.2:

Btu Btu

Hyp = 1162 Sya = 0.2435.
2A . 2A Ne—— -

For sat. liquid at Point 4 (80 degF):

Btu Bt
Hy = 37.978 —— Sy = 0.07892- ——

m Ibpy-

Energy balance, heat exchanger:

BTU
Hy := H4—Hpa + Hp Hy =27.885——
Ibm
Btu Qdotc Ib
Qdotc = 2000-— mdot .= ——— mdot = 25.634 —
sec H, - Hy sec
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9.13

For compression at constant entropy of 0.2435 to the final pressure of
101.37(psia), by Fig. G.2:

Bt H'3 —Hoa
Hy = 127 — N = 0.75 AHgopmp = ————
b n
Bt
Wdot := mdot-AH gopmp AHgomp = 14.6671—u
m
Ibym
mdot = 25.634 — Wdot = 396.66kW  Ans.
N

If the heat exchanger is omitted, then H1 = H4.
Points 2A & 2 coincide, and compression is at a constant entropy of
0.22325 to P = 101.37(psia).

Qdotc Bt H'3 — Hp
mdot ;= ——— H'3 = 16— AHeomp = ———
Hy — Hy by n
Btu
Wdot := mdot-AH¢omp AHcomp = 13.457 —
by
by
mdot = 29.443 — Wdot = 418.032kW Ans.
sec

Subscripts refer to Fig. 9.1.
At Point 2 [sat. vapor @ 10 degF] from Table 9.1:

Btu Bt
Hy := 104471 — Sy = 0.22418 ——

m lbpy-

H values for sat. liquid at Point 4 come from Table 9.1 and H values
for Point 3° come from Fig. G.2. The vectors following give values for
condensation temperatures of 60, 80, & 100 degF at pressures of
72.087, 101.37, & 138.83(psia) respectively.

31.239) 113.3)
Hy :=| 37.978 I-@ H3 :=| 116.5 I-% H; = Hy
1 m m
44.943 ) 119.3 )
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(a) By Eq. (9.4):

"
Hp —Hj

0 =—
H'3 - Hp

H'3 - Hj
0.75

Eq. (9.4) now becomes

(b) AH =

—
Hy —Hj

~ AH

(C I

9.14 WINTER

WINTER

=293.15 K

-
H

o =|5528 |

(O}

| Wl

Since

307

8.294")
Ans.

4.014 )

AH = H3 - H»

6.221")
4.146 |
3.011)

Ans.

Ty := 293.15
Wdot := 1.5
Qdoty = —0.75-()]'1_1 -Tc

Wdot  _ Th-Tc
|Qd0tH| Th

Tc =250  (Guess)
Given

Wdot
0.75-()1']{ -Tc

Tc = Find()]'c

Ta-Tc
Ty

Tc = 268.94 K Ans.
Minimum t = -4.21 degC



SUMMER T = 298.15

SUMMER Qdotc = 0.75-(J' — Tc
\ TH / Wdot _ TH-Tc
Qdotc Tc

Ty := 300 (Guess)

W,
| Sl Given
10cl Wdot _Tu-Tc
0.75-(u - Tc Tc
House
. Ty := Find
T, =293.15K gl = O

Ty = 322.57 K Ans.

Maximum t = 49.42 degC

9.15 and 9.16 Data in the following vectors for Pbs. 9.15 and 9.16 come from
Perry's Handbook, 7th ed.

1033.5) kJ kJ 1186.7 ) kJ
Hy := \— Hg := 284.7-— 15 = \—
785.3 ) kg kg 1056.4 ) kg
_—
H4-H 0.17
By Eq. (9.8): Z = i zZ = \ Ans.
Hg9 — Hjs 0.351)

9.17 Advertized combination unit:

Ty = (150 + 459.67) -rankine Tc = (30 + 459.67)-rankine

Ty = 609.67 rankine Tc = 489.67 rankine

Btu Tu-Tc Btu
= 50000-— \\Y = —_— W = 12253 —
QC hr Carnot QC Te Carnot hr
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Btu
hr
This is the TOTAL power requirement for the advertized combination unit.
The amount of heat rejected at the higher temperature of

150 degF is
Btu

QH = Wi+ Q¢ QH = 68380T
r

For the conventional water heater, this amount of energy must be supplied
by resistance heating, which requires power in this amount.
For the conventional cooling unit,

Ty := (120 + 459.67) -rankine

Th—-Tc Btu
Wcarnot = Qc——— Wcarot = 9190 —
Tc hr
Bt
Work = 1.5-Warmot Work = 13785 —hu
Ir

The total power required is
Btu

Wi = Qg + Work Wi = 82165E NO CONTEST
9.18 T :=210 T'y := 260 T'c := 255 Ty = 305
By Eq. (9.3):
Tc Tc T'c
=— o = 0.65 ———— oy = 0.65———
Tg-Tc Ty—-Tc Tg—-T'c
Qc Qc Qc
Wcarmot = — W= — W= —
()} o1 o711

Define r as the ratio of the
actual work, WI + WII, to the . ._ m-[ ! ! \ = 1477 Ans.

PR + R
Carnot work: O] oy )

9.19 This problem is just a reworking of Example 9.3 with different values of x.
It could be useful as a group project.
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9.22 Ty = 290K Tc := 250K W = 0.40kW
Tc

OCarnot = = OcCamot = 625 ® = 65%0Camet ©® = 4.063
Tg-Tc

Ans.
Qci=Wso Qc=1.625x10°kgm’s Qu == Ws+ |Qc| [Q = 2:025kW

9.23 Follow the notation from Fig. 9.1
With air at 20 C and the specification of a minimum approach AT =10 C:
Ty = (10 +273.15)K T4 = (30 +273.15)K Ty =T

Calculate the high and low operating pressures using the given vapor
pressure equation

Guess: Pp = lbar Py = 2bar
PL
Pr 4104.67 Ty bar
Given ln(—\ = 45327 - ——— - 5.146In o) 161502 .
bar Ti K) Tl\
K —_—
K )
Py := Find(pPL PL = 6.196bar
Py
Py 4104.67 Ty bar
Given ln(—\ = 45327 - ——" _5146In —\ +615.0—2
bar) E K) T4\2
K —_—
K )

Py := Find(Py Py = 11.703 bar

Calculate the heat load
kmol

hr

ndotiofyene = 50 Tl := (100 +273.15K T2 := (20 +273.15K

Using values from Table C.3

Qdot = —ndotgpene R-ICPHUI . T2.15.133.6.79-1073,16.35-107 .0

Qdotc = 177.536kW
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Since the throttling process is adiabatic: H4 = Hy

But:  Hligq = Hliq; + x1-AHlv| so: Hligq — Hliq = x1-AHlv

T4
and:  Hligq - Hliq = Vjjg-(P4a—Py + J Cpliq(T) dT
Ty
Estimate Vy;, using the Rackett Eqn.
o = 0.253 T. := 405.7K P := 112.80bar
cm3 kJ
Z; = 0.242 Vei=725—— Ty := 239.7K AHyy, = 23.34 —
mol mol
20+ 273.15)K
Tr = ( ) Tr = 0.723
T¢
2
(-’ em’
Vliq == Ve Ze Vliq = 27.112—
mol

Estimate AH, at 10C using Watson correlation

Th Ty
C TC
0.38
AHy, = Ay ] A1) kJ
v = Ivn’ - ij AH}, = 2()'798m_01
AHligy = Viig(Pu-PL + R-ICPH()I‘l 1T4,22.626,-100.75-10° °,192.71-10" %, 0
kJ AHligq,
AHligy| = 1.621 —— x| = x| = 0.078
mol AHyy,

For the evaporator

AHyp = Ha - Hi = Hiyep — (Hitig + x1-AHy, = () —x1 -AHj,

kJ
AHyp = () —x1 -AH), AHyp = 19.177 —
mol
Qdotc 1
ndot := ndot = 9.258£ Ans.

AH1o sec
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10.1  Benzene: Aq = 13.7819 Bq := 2726.81 Cy = 217.572
Toluene: Ao :=13.9320 B, := 3056.96 Cy = 217.625
B1 B2
Al————— Ap———
3 C+C1 3 C+C2
Psat1(T) :=e ° -kPa Psaty(T) :=e ° -kPa

(a) Given: x;:=0.33 T :=100-degC Guess: y;:=05 P :=100-kPa
Given  x1-Psaty(T) + (1 —xg)-Psatp(T) = P

X1-Psat1(T) = y1-P

(yl) = Find(y1.P) y1 = 0545 Ans. P = 109.303kPa Ans.
P

(b) Given: yq :=0.33 T :=100-degC Guess: x;:=0.33 P :=100-kPa
Given  xq-Psaty(T) + (1 —xg)-Psatp(T) = P

X1-Psat1(T) = y1-P

x1)
) = Find(xy.P) X1 = 0169 Ans. P =92156kPa Ans.
P

(c) Given: xq:=0.33 P :=120-kPa Guess: yq:=05 T :=100-degC
Given  x-Psaty(T) + (1 —xg)-Psatp(T) = P

X1-Psat1(T) = y1-P

(yl) = Find(y1,T) y1 = 0542 Ans. T =103.307degC Ans.
T
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(d) Given: y; :=0.33 P :=120-kPa Guess: x;:=0.33 T :=100-degC
Given  xq-Psaty(T) + (1 —x1)-Psata(T) = P

X1-Psat1(T) = y1-P

x1)
j = F|nd(x1,T) X1 = 0.173 Ans. T = 109.131degC Ans.
T

(e) Given: T :=105-degC P := 120-kPa Guess: x;:=0.33 y;:=05
Given  xp-Psaty(T) + (1 - xl)-Psatg(T) =P

X1-Psat1(T) = y1-P

Xl\
[ :=Find(x1.y1) X3=0282  Anms. y;=0484 Ans.

y1)

® z1 :=0.33 X1 = 0.282 y1 = 0.484
Guess: L:=05 V=05
Given z1 = L-x1+Vy1
L+V=1

L
( ) := Find(L,V) Vapor Fraction: |/ = 0.238 Ans.
V

Liquid Fraction: L = 0.762 Ans.

(g) Benzene and toluene are both non-polar and similar in shape and
size. Therefore one would expect little chemical interaction
between the components. The temperature is high enough and
pressure low enough to expect ideal behavior.
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10.2

Pressures in kPa; temperatures in degC

(a) Antoine coefficients: Benzene=1; Ethylbenzene=2

A7 := 13.7819 By := 2726.81 Cq := 217.572
A, = 13.9726 B, := 3259.93 Cp := 212.300
B1
Psat1(T) := exp| A1 — \
T+ Cl)
B2
Psato(T) := exp| Ao — \
T+ Czj
P-x-y diagram: T := 90
x1-Psat1(T)
P(x1) := x1-Psaty (T) + (1 - x1)-Psata(T) y1(x1) =

T-x-y diagram: P':= 90
Guess t for root function: t:= 90

T(xq) := root] xq-Psaty (t) + (1 - xq)-Psata(t) — P', ]

_ x1-Psaty(T(x1))
Xl.Psatl(T(Xl)) + (1 — xl)-Psatz(T(xl))

y'1(x1) :

x1 == 0,0.05..1.0

150

0 0.5 1 0 0.5 1

X1, y'1(><1)
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(b) Antoine coefficients: 1-Chlorobutane=1; Chlorobenzene=2

Ay := 13.7965 By := 2723.73 Cq := 218.265

A, := 13.8635 B, := 3174.78 Cp := 211.700

B1 B2
Psat1(T) := exp| A1 — \ Psato(T) := exp| Ao — \
T+ Cl) T+ C2)
P-x-y diagram: T:=90

X1-Psatq (T)
P(x1) := x1-Psaty (T) + (1 - x1)-Psata(T) y1(x1) = W

T-x-y diagram: P':=90
Guess t for root function: t:= 90
T(xq) := root] xq-Psaty (t) + (1 - xq)-Psata(t) — P', ]

_ x1-Psaty(T(x1))
x1-Psaty (T(x1)) + (1 - x1)-Psato(T(x1))

y'1(x1) :

x1 == 0,0.05..1.0

160

20 0 0.5 1 70 0 0.5 1

x1.Y1(x1) X1, Y'1(X1)
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10.3

Pressures in kPa; temperatures in degC

(a) Antoine coefficinets: n-Pentane=1; n-Heptane=2

A1 := 13.7667 By := 2451.88 Cq := 232.014
A, = 13.8622 B, := 2911.26 Cp := 216.432
B1 \
Psatq (T) := exp(Al - Psato(T) = expl Aoy — By )
T+Cy) 2(T) = exp| Az T Gy
Psat1(T) + Psato(T
T :=55 P:= ( (D > ( )) P = 104.349

Since for Raoult's law P is linear in x, at the specified P, x1 must be 0.5:
X1-Psatq(T)
X1 :=0.5 Y1 = — 5

For a given pressure, z1 ranges from the liquid composition at the bubble
point to the vapor composition at the dew point. Material balance:

y1 = 0.89

z1=X1-(1-V)+y1-V

Z1 ;= X1,X1+0.01..yq V(Zl) =

V is obviously linear in z1:

1 I ‘
X1 )
V(z) o5 -
I | | | | | | | 1
045 05 055 0.6 0.65 0.7 0.75 0.8 0.85
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(b) At fixed T and z1, calculate x1, y1 and P as functions of fraction vapor (V).

z1:=05
Psaty (T) + Psata(T)

2 )

Three equations relate x1, yl, & P for given V:

Guess: x:=05 y:=05 p = (

Given
p = x-Psat1(T) + (1 — x)-Psato(T)
y-p = X-Psat1(T)
z1=(1-V)x+Vy

f(V) = Find(x,y,p)

x1(V) = (V)1 y1(V) = f(V)2 P(V) :=1f(V)3
Plot P, x1 and y1 vs. vapor fraction (V) V:=0,01..1.0
150 1 I
T —
~
100 i x1(V) ™~
P(V) — 05 ™~
— y1(V)
50 - - -
0 : 0 :
0 0.5 1 0 0.5 1
\Y \Y
104 Each part of this problem is exactly like Problem 10.3, and is worked in
exactly the same way. All that is involved is a change of numbers. In
fact, the Mathcad solution for Problem 10.3 can be converted into the
solution for any part of this problem simply by changing one number, the
temperature.
10.7  Benzene: A = 13.7819 B1 := 2726.81 Cj :=217.572
Ethylbenzene A := 13.9726 B> := 3259.93 Co :=212.300
B1 B2
A1- AV
o +Cq1 o +Co
Psat1(T) :=e * -kPa Psaty(T) =€ * -kPa
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10.8

10.9

(a) Given: Xxq:=0.35 vy;:=0.70 Guess: T :=116-degC P := 132-kPa
Given x1-Psatq(T) + (1 - X1)-F’3at2(T) =P

X1-Psat1(T) = y1-P

T
( ) = Find(T,P) T =1341degC Ans. |P=207.46kPd Ans.

P)

For parts (b), (c) and (d) use the same structure. Set the defined variables
and change the variables in the Find statement at the end of the solve
block.

(b) T =111.88-deg C P = 118.72-kPa
(¢) T=091.44-deg C P = 66.38-kPa
(d) [T=7243.deg C P = 36.02-kPa

To calculate the relative amounts of liquid and vapor phases, one must
know the composition of the feed.

To increase the relative amount of benzene in the vapor phase, the
temperature and pressure of the process must be lowered. For parts (¢)
and (d), the process must be operated under vacuum conditions. The
temperatures are well within the bounds of typical steam and cooling water
temperatures.

(1) = benzene 13.7819 ) 2726.81) 217.572")
(2) = toluene A:=|139320 | B:=|3056.96| C:=|217.625 |
(3) = ethylbenzene 13.9726 ) 3250.93 ) 212.300 )

1
(@ n:=rows(A) i:=1.n T:=110-degC P:=90-kPa zj:=—

n

Bi
Aj-
T +Cj
' Psat(i, T

Psat(i,T) :==e degC -kPa Kj := w Guess: V :=05

P
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zZi-Ki

Given =1 Eq.(10.17)
1+ V-(ki-1) 1
i=1
V =Find(V) M =083 Ans.
zirki Eq. (10.16) A
= . . ns.
AR TRV D B
..P
= y'— Ans.
Psat(i, T)

(b) T = 110-deg_C V = 0575

P = 100-kPa
(c) T=110-deg C -
P = 110-kPa

(d) T=110-deg C V = 0.146

P = 120-kPa

10.10 As the pressure increases, the fraction of vapor phase formed (V)
decreases, the mole fraction of benzene in both phases increases and the
the mole fraction of ethylbenzene in both phases decreases.
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10.11 (a) (1)= acetone _ (14.3145\ 5. (2756.22\ _ (228.060\

(2) = acetonitrile 14.8950 3413.10 ) 250.523 )
n := rows(A) i:=1.n
z1 := 0.75 T := (340 — 273.15)-degC P := 115-kPa
Z=1-271
Bi
Aj-
T +C;j
' Psat(i,T
Psat(i,T) :i=e  ®9C kP K= —Sat;" )
Guess: V=05
n zi-Ki
. "N
Given _——=1 Eq. (10.17)
Z 1+V-(kj-1) !
i=1

V = Find(V) 'V = 0.656 Ans.

Zj-Kj
Eq. (10.16) Y S — = 0.805 Ans.
Tt rivk-ny A
yi-P
Xi = ——— x1 = 0.644 Ans.
Psat(i, T)
-V
r:= Y r = 0.705 Ans.
71
(b) xq=0.285 y1 = 0.678 V = 0.547 r=0.741
(¢) x1=0.183 y1 = 0.320 V = 0.487 r=0.624
(d) xq=0.340 y1 = 0.682 V = 0.469 r=0.639
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10.13 Hj := 200-bar Psaty := 0.10-bar P := 1-bar

10.16

Assume at 1 bar that the vapor is an ideal gas. The vapor-phase fugacities
are then equal to the partial presures. Assume the Lewis/Randall rule
applies to concentrated species 2 and that Henry's law applies to dilute
species 1. Then:

y1-P = Hy-X1 y2-P = Xp-Psatp P=y1-P+y2P

X1+ Xp =1 P = Hy-xg +(1-xq)-Psaty

Solve for x1 and y1:

g e o 2  Hixg
H — Psaty y1:= P
— 4502x 10 °

X1 = 49U x y1 = 0.9 Ans.

Pressures in kPa

Psaty := 32.27 Psaty := 73.14 A = 0.67 z1 := 0.65
2 2

a(caoc)  explane?) 1) - explae?)

P(x1,X2) = X1-71(X1.X2)-Psaty + X2-y2(X1,X2)-Psatp

(a) BUBL P calculation: X1 =21 X2 :=1-X1
Pbubl = P(Xl,XZ) Ppubl = 56.745  Ans.
DEW P calculation: y1 =121 yr:=1-y1
Guess: X1 := 0.5 B Psaty + Psato

2
Given y1-P' = x-y1(x1,1 - xq)-Psaty

P'= Xl'Yl(Xl’l - X]_)'Psatl
" (1 _ Xl)'YZ(Xl,l _ xl)-PSatz

X1
= Find(x,P') Pdew = 43.864  Ans.
Pdew]
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The pressure range for two phases is from the dewpoint to the
bubblepoint: From 43.864 to 56.745 kPa

(b)  BUBL P calculation: X1 := 0.75 X2 :=1-X1

x1-71(X1,1 - x1)-Psaty

P(Xl ,1-— Xl)
The fraction vapor, by material balance is:

y1(x1) =

3 21— X1
B Y1(X1) - X1

(¢) See Example 10.3(e).

Vo V =0379 P(x1.Xp) =51.892 Ans.

71(0,1)-Psats Psatq
o = =
12.0 Psatp 121 v2(1,0)-Psaty
o120 = 0.862 o121 = 0.226
Since alpha does not pass through 1.0 for 0<x1<1, there is no
azeotrope.
10.17 Psat; := 79.8 Psaty := 40.5 A :=0.95
2 2
12 = exp( ) o) - exel )

P(x1,X2) = X1-71(X1.X2)-Psaty + X2-y2(X1,X2)-Psatp

x1-71(x1,1 - x1)-Psaty

yl(xl) = P(xl, 1- xl)
(a) BUBL P calculation: X1 := 0.05 X2 :=1-X1
Pbubl := P(X1.X2) Ppubl = 47.971 Ans.
y1(x1) = 0.196
(b) DEW P calculation: y1 := 0.05 yo =1-y1
Guess: X1 :=0.1 P = —Psatl + etz

2
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Given '
y1-P' = x1-y1(x1,1 - xq)-Psaty

P'= Xl'Yl(Xl’l - X]_)'Psatl
" (1 _ Xl)'YZ(Xl,l — xl)-PSatz

X1
[ = Find(x,P') Pdew = 42.191

Pdew) Ans.
X1 = 0.0104
(c) Azeotrope Calculation:
Psat1 + Psaty
Guess: X1 = 0.8 Y1 = X1 P := f
Given x1-71(X1,1 - x1)-Psaty
y1= 5 X120 xp<1 X1=Y1
P = x1-y1(X1,1 - xq)-Psaty + (1 - xq)-y2(x1,1 - x1)-Psatp
Xaz, | X, ) (057 \
Yaz, | = Find(xl,YLP) Yaz, ‘ =| 0.857 | Ans.
81.366
Paz) I:’az) }
10.18 Psat; := 75.20-kPa Psaty := 31.66-kPa
At the azeotrope: y1 = X1 and Yi = P
Psat;
Y2  Psatp
Therefore — = X1 := 0.294 X2 :=1-X1
v2)
Inyq = A-x22 Inyo = A-x12 Inf— = A-(xlz—x22)
Y1
Psaty
Psato )
Whence A=— - A = 2.0998

2 2
X2 —X1

For X1 :=0.6 Xo =1-X1
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Y1 = exp(A-xzz) Yo = exp(A-xlz) P := X1-y1-Psaty + X2-yo-Psatp

X1-v1-Psatg
y1:= —p P = 90.104 kPa y1 = 0.701 Ans.
10.19 Pressures in bars: Psat] := 1.24 Psatp := 0.89
A:=18 X1 := 0.65 X2 :=1-X1
2 2
Y1 = exp(A-x2 ) Yo = exp(A-xl )
X1-v1-Psatg
P = X1-y1-Psaty + Xo-yo-Psatp y1 = — 5
y1 = 0.6013 P=1.671 Answer to Part (b)
By a material balance,
Z1 — X1
V= For 0<V<1 06013<2z; <065 Ans.(a)
Y1—X1

(c) Azeotrope calculation:

Psat1 + Psaty

Guess: X1 :=0.6 y1 = X1 P:= 5
y1(x1) = exp[A-(l - xl)z] va(x1) = exp(A-xlz)
Given P = xq-y1(X1)-Psaty + (1 - x1)-yp(x1)-Psatz
x1-y1(x1)-Psaty
y1= 5 X120 xp <1 X1 =Y1
X1 x1) (0592
y1 | = Find(x1.,y1.P) yi | =10592 | Ans.
P ) p) \L1673)
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10.20

Antoine coefficients: Pin kPa; T in degC
Acetone(1): A1 = 14.3145 B1 := 2756.22 Cq := 228.060
Methanol(2): Ao = 16.5785 B> := 3638.27 Co :=239.500
B1 \ B2 \
P T) = exp| A1 - P T) = exp| Az -
1sat(T) p( 1 T+C1] 2sat(T) p( 2 T+C2j
A = 0.64 X1 := 0.175 z1 = 0.25 p:= 100 (kPa)
2 2
(x1g) = o) ra(c10) = ol )

P(Xl,T) = Xl-yl(xl,l - Xl)'Plsat(T)
+(1-x1)-v2(x1,1 = x1)-P2sat(T)

B Xl'Yl(Xlal - Xl)'Plsat(T)

T) := F=1

a(xa.) P(x1,T)
Guesses: V=05 L:=05 T := 100
Given
F=L+V 21-F = xp-L +y1(x1,T)-V p=P(x.T)

L L) (0431)

V | := Find(L,V,T) V | =] 0569 |

T) T) \59.531)
T = 59.531 (degC) y1(x1.T) = 0.307 Ans.
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10.22 x4 := 0.002 y1 := 0.95 Guess: T := 300-K
A1 :=10.08 B1 := 2572.0 Ao = 11.63 Bo := 6254.0

A B1 A Bo
1- (I\ Z_F
Psat1(T) :=e KJ -bar Psato(T) =€ K) -bar
0.93-x5° 0.93-x1°
X2 = 1-X1 y2:=1-y1 y1:=6€ Yo =€

Psat;(T)  X2'v2'y1

Given =
Psato(T)  x1-v1-y2

T:=Find(T) [T =376.453K  Ans.

X1-y1-Psat1(T)
P:=
Y1

P = 0.137bar Ans.
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Problems 10.25 to 10.34 have been solved using MS-EXCEL 2000
We give the resulting spreadsheets.

Problem 10.25

a) BUBL P T=-60 F (-51.11 C)
P=200 psia P=250 psia P=215 psia (14.824 bar) ANSWER
Component Xi Ki yi=Ki*xi Ki yi=Ki*xi Ki yi=Ki*xi
methane 0.100 5.600 0.560 4.600 0.460 5.150 0.515
ethylene 0.500 0.700 0.350 0.575 0.288 0.650 0.325
ethane 0.400 0445 0.178 0.380 0.152 0420 0.168
SUM= 1.088 SUM = 0.900 SUM= 1.008 close enough
b) DEW P =-60 F (-51.11 C)
P=190 psia P=200 psia (13.79 bar) ANSWER
Component yi Ki xi=yi/Ki Ki xi=yi/Ki
methane 0.500 5.900 0.085 5.600 0.089
ethylene 0.250 0.730 0.342 0.700 0.357
ethane 0.250 0.460 0.543 0.445 0.562
SUM = 0.971 SUM = 1.008 close enough
c)BUBLT P=250 psia (17.24 bar)
T=-50 F T=-60 F T=-57 F (-49.44 C) ANSWER
Component Xi Ki yi=Ki*xi Ki yi=Ki*xi Ki yi=Ki*xi
methane 0.120 4.900 0.588 4.600 0.552 4700 0.564
ethylene 0.400 0.680 0.272 0.570 0.228 0.615 0.246
ethane 0.480 0450 0.216 0.380 0.182 0405 0.194
SUM= 1.076 SUM= 0.962 SUM= 1.004 close enough
d)DEWT P=250 psia (17.24 bar)
T=-40 F T=-50F T=-45F (-27.33 C) ANSWER
Component yi Ki xi=yi/Ki Ki xi=yi/Ki Ki xi=yi/Ki
methane 0.430 5.200 0.083 4.900 0.088 5.050 0.085
ethylene 0.360 0.800 0.450 0.680 0.529 0.740 0.486
ethane 0.210 0.520 0.404 0.450 0.467 0485 0.433
SUM= 0.937 SUM= 1.084 SUM= 1.005 close enough
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Problem 10.26

a) BUBL P T=60 C (140 F)

P=200 psia P=50 psia P=80 psia (5.516 bar) ANSWER
Component Xi Ki yi=Ki*xi Ki yi=Ki*xi Ki yi=Ki*xi
ethane 0.10 2.015 0.202 6.800 0.680 4.950 0.495
propane 0.20 0.620 0.124 2.050 0.410 1.475 0.295
isobutane 0.30 0.255 0.077 0.780 0.234 0.560 0.168
isopentane 0.40 0.071 0.028 0.205 0.082 0.12 0.048

SUM= 0.430 SUM= 1.406 SUM= 1.006 close enough

b) DEW P T=60 C (140 F)

P=80 psia P=50 psia P=52 psia (3.585 bar) ANSWER
Component yi Ki xi=yi/Ki Ki xi=yi/Ki Ki xi=yi/Ki
ethane 0.48 4950 0.097 6.800 0.071 6.600 0.073
propane 0.25 1475 0.169 2.050 0.122 2.000 0.125
isobutane 0.15 0.560 0.268 0.780 0.192 0.760  0.197
isopentane 0.12 0.12 1.000 0.205 0.585 0.195 0.615

SUM= 1.534 SUM= 0.970 SUM= 1.010 close enough

c)BUBLT  P=15 bar (217.56 psia)

T=220 F T=150 F T=145 F (62.78 C) ANSWER
Component Xi Ki yi=Ki*xi Ki yi=Ki*xi Ki yi=Ki*xi
ethane 0.14 5350 0.749 3.800 0.532 3.700 0.518
propane 0.13 2500 0.325 1.525 0.198 1475  0.192
isobutane 0.25 1475 0.369 0.760 0.190 0.720 0.180
isopentane 048 0.57 0.274 0.27 0.130 0.25 0.120
SUM= 1.716 SUM= 1.050 SUM= 1.010 close enough
d)DEWT P=15 bar (217.56 psia)
T=150 F T=145F T=148 F (64.44 C) ANSWER
Component yi Ki xi=yi/Ki Ki xi=yi/Ki Ki xi=yi/Ki
ethane 0.42 3.800 0.111 3.700 0.114  3.800 0.111
propane 0.30 1.525 0.197 1.475 0.203 1.500 0.200
isobutane 0.15 0.760  0.197 0.720 0.208 0.740 0.203
isopentane 013 0.27 0.481 0.25 0.520 0.26 0.500

SUM= 0.986 SUM = 1.045 SUM= 1.013 close enough
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Problem 10.27

FLASH T=80 F (14.81 C) P=250 psia (17.24 bar)
Fraction condensed
V= 0.855 L= 0.145 ANSWER
Component zi Ki yi xi=yi/Ki
methane 0.50 10.000 0.575 0.058
ethane 0.10 2.075 0.108 0.052
propane 0.20 0.680 0.187 0.275
n-butane 020 0.21 0.129 0.616

SUM= 1.000 SumMm= 1.001
Problem 10.28
First calculate equilibrium composition

T=95 C (203 F)

P=80 psia P=65 psia P=69 psia (4.83 bar) ANSWER
Component Xi Ki yi=Ki*xi Ki yi=Ki*xi Ki yi=Ki*xi
n-butane 025 225 0.5625 2.7 0.675 2.6 0.633
n-hexane 0.75 045 0.3375 0.51 0.3825 0.49 0.3675

SUM= 0.9000 SUM= 1.0575 SUM= 1.0005 Close enough

Now calculate liquid fraction from mole balances

z1= 0.5
x1= 0.25
y1=0.633
ANSWER L= 0.347
Problem 10.29
FLASH P =2.00 atm (29.39 psia)

T =200 F (93.3 C)

Fraction condensed

V= 0.266 L= 0.73 ANSWER
Component zi Ki yi xi=yi/Ki
n-pentane 0.25 2.150 0.412 0.191
n-hexane 0.45 0.960 0.437 0.455
n-heptane 0.30 0.430 0.152 0.354

SUM= 1.000 SUM= 1.000
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Problem 10.30

FLASH T=40 C (104 F)
V= 0.60
P=110 psia
Component zi Ki yi

ethane 0.15 5.400 0.223
propane 0.35 1.900 0.432
n-butane 0.50 0.610 0.398

SUM= 1.053

Problem 10.31

Fraction condensed

L= 0.40
P=100 psia
xi=yilKi Ki yi
0.041 4.900 0.220
0.227 1.700 0.419
0.653 0.540 0.373
0.921 SuMm= 1.012

Fraction condensed

FLASH T=70F (21.11 C)
V= 0.20
P=50 psia
Component zi Ki yi

ethane 0.01  7.400 0.032
propane 0.05 2400 0.094
i-butane 0.50 0.925 0.470
n-butane 0.44 0.660 0.312
SUM= 0.907

L= 0.80
P=40 psia
xi=yilKi Ki yi
0.004 9.300 0.035
0.039 3.000 0.107
0.508 1.150 0.558
0.472 0.810 0.370
1.023 SUM= 1.071

330

xi=yi/Ki
0.045
0.246
0.691
0.982

xi=yi/Ki
0.004
0.036
0.485
0.457
0.982

ANSWER
P=120 psia (8.274 bar)
Ki yi xi=yi/Ki
4.660 0.219 0.047
1.620 0.413 0.255
0.525 0.367 0.699
SUM= 0.999 1.001

ANSWER
P=44 psia (3.034 bar)

Ki
8.500
2.700
1.060
0.740

SUM =

yi
0.034
0.101
0.524
0.343
1.002

xi=yi/Ki
0.004
0.037
0.494
0.464
1.000



Problem 10.32

FLASH T=-15C (5F) Target: y1=0.8
P=300 psia
V= 0.1855 L= 0.8145
Component zi Ki yi xi=yi/Ki

methane 0.30 5.600 0.906 0.162
ethane 0.10 0.820 0.085 0.103
propane 0.30 0.200 0.070 0.352
n-butane 0.30 0.047 0.017 0.364

SUM= 1.079 SUM = 0.982

P=150 psia
V= 0.3150 L= 0.6850
Component zi Ki yi xi=yi/Ki
methane 0.30 10.900 0.794 0.073
ethane 0.10 1.420 0.125 0.088
propane 0.30 0.360 0.135 0.376
n-butane 0.30 0.074 0.031 0.424

SUM= 1.086 SUM = 0.960

P=270 psia (18.616 bar)

V= 0.2535 L= 0.7465 ANSWER
Component zi Ki yi xi=yi/Ki
methane 0.30 6.200 0.802 0.129
ethane 0.10  0.900 0.092 0.103
propane 0.30 0.230 0.086 0.373
n-butane 0.30 0.0495 0.020 0.395

SUM= 1.000 SUM= 1.000
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Problem 10.33

First calculate vapor composition and temperature on top tray

BUBL T: P=20 psia
T=70F
Component Xi Ki yi=Ki*xi
n-butane 0.50 1.575 0.788
n-pentane 0.50 0.450 0.225
SUM= 1.013

T=60 F

Ki
1.350
0.360

SUM =

T=69 F (20.56 C)
yi=Ki*xi

yizKi*xi  Ki
0.675  1.550
0.180  0.440
0.855 SUM=

ANSWER

0.775
0.220
0.995 close enough

Using calculated vapor composition from top tray, calculate composition out of condenser

FLASH P=20 psia (1.379 bar)
V= 0.50 L= 0.50
T=70F
Component zi Ki yi
n-butane 0.78 1.575 0.948
n-pentane 0.22 0450 0.137
SUM= 1.085

Problem 10.34

FLASH T=40 C (104 F)
V= 0.60 L= 0.40
P=350 psia
Component zi Ki yi
methane 0.50 7.900 0.768
n-butane 0.50 0.235 0.217
SUM= 0.986

xi=yi/Ki
0.602
0.303
0.905

xi=yilKi
0.097
0.924
1.021

T=60 F (15.56 C)

Ki yi
1.350 0.890
0.360 0.116
SUM = 1.007

P=250 psia
Ki yi
11.000 0.786
0.290 0.253
SUM= 1.038
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ANSWER
xi=yi/Ki
0.660
0.324
0.983
ANSWER

P=325 psia (7.929 bar)

xi=yilKi  Ki yi xi=yilKi
0.071 8.400 0.772 0.092
0.871 0.245 0.224 0.914
0.943 SUM= 0.996 1.006

close enough



10.35 a) The equation from NIST is: M; = k;-y;-P Eq. (1)

The equation for Henry's Law ix;-H; = y;-P Eq. (2)

M.
Solving to eliminate P gives: H, = I Eq. 3)
i Xi
.
By definition: \v; = - where M is the molar mass and the
ng- Mg subscript s refers to the solvent.
Dividing by the toal number of moles gives: M; = Eq. (4)
Xg Mg
Combining Eqs. (3) and (4) gives: H, = ;
Xs'Mgkj
If x; is small, then x is approximately equal to 1 and: H; = lk Eq. (5)
s Kj
gm
b) For water as solvent: Mg := 18.015—=—
mol
For CO2 in H20: k; = 0,034 %!
kg-bar
1
By Eq. (5): H; = Hi = 1633bar Ans.
Mg-kj

The value is Table 10.1 is 1670 bar. The values agree within about 2%.

10.36 143145 —=12022
1 C+228.060
Acetone: Psat)(T) =e = -kPa
3413.10
14.8950
+250.523
Acetonitrile Psaty(T) :=e¢ degC -kPa
a) Find BUBL P and DEW P values
T := 50degC x1 :=0.5 y1 :=0.5
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BUBLP := x-Psat(T) + ()1 —x1 -Psaty(T) St i e

DEWP := DEWP = 0.478atm Ans.

1
noo, (¥ -v1
Psat1(T) Psaty(T)

At T =50 C two phases will form between P = 0.478 atm and 0.573 atm
b)Find BUBL T and DEW T values
P := 0.5atm x1 :=0.5 y1 :=0.5 Guess: T := 50degC

Given  x1-Psat(T) + () —x1 -Psatp(T) = P

BUBLT := Find(T) BUBLT = 46.316degC  Ans.
Given  xj-Psat;(T) = y;-P () —x1 -Psata(T) = (J —y1 -P
| (x
= Find( k1, T =
DEWT ) DEWT = 51.238degC  Ans.

At P =0.5 atm, two phases will form between T = 46.3 C and 51.2 C

10.37 Calculate x and y at T =90 C and P =75 kPa

2726.81
13.7819
1 C+217.572
Benzene: Psat1(T) :=e = -kPa
3056.96
13.9320
1 C+217.625
Toluene: Psaty(T) :=¢ e -kPa

a) Calculate the equilibrium composition of the liquid and vapor at the flash T and P

T := 90degC P := 75kPa Guess: x] :=0.5 y1:=0.5
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Given  x1-Psat)(T) = y;-P () —x1 -Psaty(T) = ()1 -y1 -P

x1 )
[ = Find(k1.y1 x1 = 0.252 y1 = 0.458

1)

The equilibrium compositions do not agree with the measured values.

b) Assume that the measured values are correct. Since air will not dissolve
in the liquid to any significant extent, the mole fractions of toluene in the
liquid can be calculated.

x] = 0.1604 y1 = 0.2919 xp = 1-x1 xp = 0.8396

Now calculate the composition of the vapor. y; represents the mole
fraction of air in the vapor.

Guess:  yp:=0.5 y3:=1-y2-y1
Given
() —x1 Psaty(T) = (J —y1—y3 P yi+y2+y3=1

(yz\ = Find(y2.y3  |y2 = 0.608

y3 )
y3 = O_]_ AnS.

Conclusion: An air leak is consistent with the measured compositions.

10.38 yO21 := 0.0387  yN2; :=0.7288 yCO2; := 0.0775 yH20; := 0.1550

kmol
ndot := 10 ho Tq := 100degC Ty := 25degC P := latm
r
3885.70
16.3872
3 C+23O.17O
Psatpoo(T) =€ °8 -‘kPa
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Calculate the mole fraction of water in the exit gas if the exit gas is
saturated with water.

PsatHzo()Tz
P

This is less than the mole fraction of water in the feed. Therefore, some
of the water will condense.

yH20, = yH20, = 0.0315

Assume that two streams leave the process: a liquid water stream at rate
ndot;;, and a vapor stream at rate ndot,,,. Apply mole balances around

the cooler to calculate the exit composition of the vapor phase.
Guess: ndoty,p = N ndotjjq = >

y02, = 0.0387 yN2; := 0.7288 yCO2; := 0.0775

Given ndot = ndotjjq + ndotyap Overall balance
ndot-yN2| = ndotyap yN23 N, balance
ndotyCO2| = ndotyap yCO2; CO, balance

y025 + yN27 + yCO2p + yH20, = 1  Summation equation

ndotjig \

ndotyap

y022 | := Find(jpdotliq,ndotyqp,y022,yN22,yCO2)

yN23
yCO2, j
kmol kmol
ndotjiqg = 1.276 ndoty,, = 8.724
lig hr vap hr

yO2; = 0.044 yN27 = 0.835 yCO2, = 0.089 yH20; = 0.031
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Apply an energy balance around the cooler to calculate heat transfer rate.

kJ
AH}yp100 = 40.66 —— Ty := Ty +273.15K Ty == Ty +273.15K

mol
Qdot := ndotvap-y022-R-ICPH(>l‘1 ,T>,3.639,0.506-10 3 ,0,-0.227- 105
+ ndotvap-yN22-R-ICPH()l'1 ,T2,3.280,0.539-10 3 ,0,0.040- 105
+ ndotvap~yCO22'R'ICPH()l'1 ,T>,5.457,1.045-10 3 ,0,-1.157 105
+ ndotvap-yH202-R-ICPH()l'1 ,T>,3.470,1.450-10 3 ,0,0.121- 105

+— HlVH2O' ndOtliq

Qdot = —19.895kW  Ans.

10.39 Assume the liquid is stored at the bubble point at T =40 F

Taking values from Fig 10.14 at pressure: P = 18psia Ans.

xc3 = 0.05 Kcz =39
x4 = 0.85 Kcg = 0.925
xc5 = 0.10 Kcs :=0.23

The vapor mole fractions must sum to 1.

xc3 Koz + xca Keg + xo5-Kes = 1.004
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10.40 H,S +3/2 0, -> H,0+ SO,
By a stoichiometric balance, calculate the following total molar flow rates

kmol

hr

3
Feed: ndotyos = 10 ndotpy = Endotst

Products ndotgoy := ndotyyps  ndotgpo := ndotyag

. e 3885.70
Exit conditions: 16.3872

3 C+230.17O
P :=latm Tj := 70degC Psatpo(T) = ¢ °& -kPa

a) Calculate the mole fraction of H,O and SO, in the exiting vapor stream
assuming vapor is saturated with H,O

PsatHzo()Tz
YH2Ovap = —p YH20vap = 0.308 Ans.
yso2 = 1-— YH2Ovap yso2 = 0.692 Ans.

b) Calculate the vapor stream molar flow rate using balance on SO,

ndotg0? kmol
ndoty,p = ——— ndoty,p = 14.461 Ans.
YS0O2
Calculate the liquid H,O flow rate using balance on H,O
kmol
ndotHzOVap = ndotvapszovap ndotHzOVap = 4.461 hr
kmol
ndoty20liq := ndotg20 — ndot20vap  NAOtH2Qliq = 5-539 Ans.

hr
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k
10.41 NCL = 0.01 -2 Mo = 18.01 25 My = 2928
kg mol mol
Mair
a)  Ypgoo := NCL- Y20 = 0.0161
MH20
YH20
=— = 0.0158
b) P := latm PPH20 = YH20'P ppH20 = 1.606kPa Ans.
3885.70
16.3872
+230.170
degC Guess: T :=20degC

c) Psatipo(T) =

Given

Tgp = 14.004 degC

kmol
10.42 ndot; := 50—

16.3872

Psatipo(T) :=¢

PsatHzo()pol
y1 = P

-kPa
YH20-P = Psatypo(T)  Tqp := Find(T)

Tap := Tgp + 32degF Tgp = 57.207degF Ans.

Tdp1 = 20degC ~ Tgpp := 10degC P := latm
3885.70
gm
+230.170 Mmoo = 18.01 —1
degC -kPa mo
Psaty20( Jldp2
y1=0023  y;:= POT d y2 = 0.012

By a mole balances on the process

Guess: ndotyjiq := ndot] ndotzy,p = ndot
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Given ndot-y| = ndotyyap'y2 + ndotyjig H20 balance

ndot| = ndotyyap + ndotylig Overall balance
ndotyjig \
= Fil’ld()ldotzliq ,ndotyyap
ndotzvapj
kmol kmol
ndot = 49.441 ndotyjig = 0.559
2vap hr 2liq hr
kg
mdotyliq := ndotz1iq-MH20 mdotyjiq = 10.074E Ans.
10.43 Benzene: Al :=13.7819 B1 :=2726.81 Cl :=217.572
Cyclohexane: A2 := 13.6568 B2 :=2723.44 C2 :=220.618
B1
Psatl(T) := exp| Al — \kPa
+ Cl1
degC )
B2
Psat2(T) = exp| A2 — - \kPa
+C2
degC )
Guess: T := 66degC
Given Psatl(T) = Psat2(T) T := Find(T)

The Bancroft point for this system is:

Psatl(T) = 39.591kPa T = 52.321degC Ans.

Component1 Component2 T (C) P (kPa)

Benzene Cyclohexane 52.3 39.6
2-Butanol Water 87.7 64.2
Acetonitrile Ethanol 65.8 60.6
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11.1

11.2

Chapter 11 - Section A - Mathcad Solutions

For an ideal gas mole fraction = volume fraction

Co2 (1): X1 =07  Vi:=07m’
N2 @) =03 v, .= 03m°
i=1.2 P lbar T := (25+273.15K
P-Z Vi
ni=———  n=40342mol
R-T
J
AS := —n-R- - In( X; AS = 204.885 — Ans.
> el !
1

For a closed, adiabatic, fixed-volume system, AU =0. Also, for an ideal
gas, AU = Cv AT. First calculate the equilibrium T and P.

nN? = 4-mol TN = [(75 +273.15)-K] PN = 30-bar
nar := 2.5-mol Tar = (130 +273.15)-K Par := 20-bar
TN = 348.15K Tar = 403.15K L= 1.0
nN2 NAr
Ntotal = NIN2 + NAr X] = X2 =
Ntotal Ntotal
x1] = 0.615 xp = 0.385
3 5
Cvar = =R Cvng = =R
Ar > N2 >

Cpar = Cvar+R Cpn2 = Cvno +R
Find T after mixing by energy balance:

TN2 + Tar
T := —

Given nNz-CVNz-()T T = nAr'CVAr'()rAr -T T := Find(T)

(guess)
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11.3

T —273.15-K = 90degC
Find P after mixing:

P PNn2 + PAr
2

(guess)

Given

()’lNZ +nar -RT — onp R T . nArR-TAr
P PN2 PAr

P := Find(P) P = 24.38bar

Calculate entropy change by two-step path:

1) Bring individual stream to mixture T and P.
2) Then mix streams at mixture T and P.

AS\p = nNz-(CpNz-ln(i\ — R-ln(i\\

J
ASy = 11806

N2 Pn2))
AS Ay == napr| Cparin L\ —R:In L\\ ASp; = —9.547l
TAr} PAr}} K

]
ASmix = 36,006~

ASpi = ntotal-,:—R-Z (ki-n(ki }

]
AS = ASNp +MSpr+ Smix  AS=3827-%  Ans.

k k
mdotyp := P mdoty = 0.5 -2
sec sec
molwtyy := 28.014- 2 molwtyp = 201620 . _
mol mol =1
mdoty? mdotpp
molarflowyny == —— molarflowyp = ——
molwty? molwtypp
mol
molarflowyia] := molarflowny + molarflowp; molarflowgia) = 319.409 —
sec

342



molarflown molarflowy)

yp =——— y; = 0.224 yy = ——  yp = 0.776
molarflowgta] molarflowgta]
AS := —R-molarflowgta]- i-In( AS = 1411 Ans.
oty (i —
1
114 T; :=448.15K Ty :=308.15-K Py := 3-bar Py := 1-bar

For methane:

MCPHy, = MCPH(1 T5.1.702,9.081-107%,-2.164-10~ 0.0
3

MCPSy, := MCPS()I‘l ,T2,1.702,9.081-10 ,—2.164-10_6,0.0

For ethane:

3

MCPH, = MCPH()rl T5,1.131,19.225-10° >,—5.561-10~ °,0.0

3 5561107 %,0.0

MCPS, := MCPs()rl,Tz, 1.131,19.225-10~
MCPH iy := 0.5-MCPHp, + 0.5-MCPH. ~ MCPHppix = 6.21

MCPSppix := 0.5-MCPSp, + 0.5MCPS; ~ MCPSyix = 6.161

J
AH := R-MCPHpix-(Jl2 - T AH = —7228 —
mol

T2) P2)
AS = R-MCPSpix:Inl — —R:In| — + R-2-0.5-In(0.5)

T Pl)
The last term is the entropy change of UNmixing
AS = —-15.813 Ts := 300-K

mol-K
J
mol
11.5 Basis: 1 mole entering air.

y1 :=0.21 y2 :=0.79 n¢ = 0.05 Ts := 300-K

Assume ideal gases; then AH = (

The entropy change of mixing for ideal gases is given by the equation
following Eq. (11.26). For UNmixing of a binary mixture it becomes:
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AS :=R-(y1-In(y1 +yzIn(}2

By Eq. (5.27): Wideal := &g+ S
By Eq. (5.28): Work = —deal
Nt
11.16 0 1.000 )
10 0.985
20 0.970
40 0.942
60 0.913
P:=| 80 |-bar Z = 0.885
100 0.869
200 0.765
300 0.762
400 0.824
500 ) 0.910 )

J

mol-K

AS = -4.273

J
Wideal = 1.282x 10° —
mol

Work = 25638L Ans.
mol

Indq := 0 o1 =1

end := rows(P)

1:=2..end

Zi—1
P;

F; =

Fi is a well behaved function; use the trapezoidal rule to integrate Eq.

(11.35) numerically.

F1+F1 1

Aj = {(Pi—Pi_ Ind; :=

i = eXp()n¢i fi == ¢i'Pj

Indi—1 + Aj

Generalized correlation for fugacity coefficient:

For CO2: T, :=3042-K
T := (150 + 273.15)-K
P
¢G(P) = exp| — ()30()T +o-Bi(J;
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Te

P. := 73.83-bar o = 0.224

T
T, = 1.391

fG(P) = ¢G(P)-P



P; fi
bar bi = bar
10 . 9.925
Calculate values: 0999
20 0.978 19.555
40 0.949 37.973
60 0.922 55.332
80 0.896 71.676
100 0.872 87.167
200 0.77 153.964
300 0.698 209.299
400 0.656 262.377
500 0.636 317.96
400 I
O
f; 300 .
] —_— O
bar
ooo - 200 =
fo(Pi
LT .
0.4 | | 0 | |
0 200 400 600 200 400 600
P; P;
bar bar
Agreement looks good up to about 200 bar (Pr=2.7 @ Tr=1.39)
For SO2: T¢ = 430.8-K P; := 78.84-bar o = 0.245
T := 600-K P := 300-bar
T'—T Ty = 1.393 P—P P, = 3.805
r- Te r . r P, r .

For the given conditions, we see from Fig. 3.14 that the Lee/Kesler
correlation is appropriate.
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11.18

11.19

Data from Tables E.15 & E.16 and by Eq. (11.67):

g = 0.672 01 = 1.354 ohi= o dp o = 0.724
f:=¢-P GRRT := In(})
f=217.14bar GRRT = —0.323 Ans.
Isobutylene: Te :=4179-K P := 40.00-bar o = 0.194
a) At 280 degC and 20 bar: T := (280 + 273.15)-K P := 20-bar
T P
Te(T) = — T.(T) = 1.3236 P;(P) := — P.(P) = 0.5
Te Pe
At these conditions use the generalized virial-coeffieicnt correlation.
f:= PHIB(Jr(T),8(P), P f=18.76bar Ans.
b) At 280 degC and 100 bar: T := (280 + 273.15)-K P := 100-bar
T.(T) = 1.3236 P:(P) =25

At these conditions use the Lee/Kesler correlation, Tables E.15 & E.16 and
Eq. (11.67).

00 = 0.7025 ¢l = 1.2335  o¢= 0-¢1” fi=¢-P

¢ = 0.732 f=73.169bar Ans.

The following vectors contain data for Parts (a) and (b):
(a) = Cyclopentane; (b)=1-butene

511.8) 45.02)) 0.196
c = ‘K c = -bar =

420.0 ) 40.43 ) 0.191 )
0.273 258 J 322.4

0.277 ) 239.3 ) mol 266.9 )
383.15) 275 5.267)

T := ‘K P = -bar Psat = -bar

393.15 ) 34 ) 25.83 )
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11.21

— —

T 0.7486 Psat 0.117
Tp = — T = \ Psat; = > Psat; = \
Te 0.9361 ) P, 0.6389 )

Calculate the fugacity coefficient at the vapor pressure by Eq. (11.68):

(a) PHIB( ¢ oBsate . 1 = 0.900
(b) PHIB( o Bsaty . 2 =076
Eq. (3.72), the Rackett equation:

H
T 0.749
Tr = Tr =
Te 0.936 )
Eq. (11.44):
2 7

7 107546\ e’
Vsat = VC-ZC() Tr Vsat = ( \ cm

133.299 ) mol

N

Vsat-(P — Psat):H

f:= {PHIB()I‘r,tBsatr, -Psat-exp{

R-T
1178
f= bar Ans.
20.29 )
Table F.1, 150 degC: Pyt = 476.00-kPa molwt := 18-‘(”—m1
mo
Cm3
Viar = LOOL=mmolWt o (150 427315 K - P o= 150-bar
Vit = 19.638 T = 423.15K
mol

f

sat

Equation Eq. (11.44) with ¢, P

sat =

Vgat(P—-P f
ro= exp{ - (I}:T Sat} r=1084  r=— =108 Ans.
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11.22 The following vectors contain data for Parts (a) and (b): molwt = 18-g—m1
mo

Table F.2: (a) 9000 kPa & 400 degC; (b) 1000(psia) & 800 degF:

. (400 + 273.15)-K
1=
(800 + 459.67)-rankine

3121.2~L\ 6.2915~L \
gm gm-K
Hi= Bt S1:= Btu ‘
1389.6-—— 15677 ——=
by, j by, rankine )
Table F.2: (a) 300 kPa & 400 degC; (b) S0(psia) & 800 degF: T, := T
3275.2~L\ 8.0338~L )
gm gm-K
2= Bt S2:= Bt ‘
1431.7. 22 19227 — 2%
by, j by, - rankine )

Eq. (A) on page 399 may be recast for this problem as:

molwt | Ha — Hj 0.0377")
r = exp . T —()32—81 r= 00542]

1Y) 15}
(a) r= f_ = (0.0377 (b) r= f_ = (0.0542 Ans.
1 1

11.23 The following vectors contain data for Parts (a), (b), and (c):

(a) = n-pentane (b) = Isobutylene (¢) = 1-Butene:
469.7 33.70") 0.252)

To:=|4179 |[K  P.:=| 40.0 |-bar o :=]0.194 |
420.0 ) 40.43 ) 0.191 )
0.270 313.0) 309.2)

Ze:=10275 | Ve = | 2389 || L Ty = | 266.3 | K
0.277 ) 239.3 ) mol 266.9 )
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200 1.01325))
P :=| 300 |-bar Psat := | 1.01325 |-bar

150 ) 1.01325 )
— 0.6583 ) —> 0.0301 )
Ty Psat
T, = - T, = | 0.6372 | P, = > P, = | 0.0253 |
¢ 0.6355 ) ¢ 0.0251 )

Calculate the fugacity coefficient at the nbp by Eq. (11.68):
(a) PHIB( eoBr . 1 = 09572
(b) PHIB( 0B, 2 = 09618
(©) PHIB( roBr, 3 = 0.9620

N
7

()—T 0.2857
Eq. (3.72): Vsat :=| VgZol !

AN
7

Vsat- (P — Psat)j|:|

Eq. (11.44): f::{PHIB()]‘r,cBr, -Psat-exp|:

R‘Tn
2.445)
f=|3326 |[bar Ans.
1.801 )
11.24 (a) Chloroform: T, := 536.4-K P, := 54.72-bar o = 0222

Ze= 0293  Vei=239.02%  T,:=3343K  Psat:= 22.27-bar

mol
T Ty
T:=473.15K T; := = T, = 0.882 T = — T = 0.623
: ) c
()—Tm 7 cm
Eq. (3.72): Vsat := V- Z; Vsat = 94.4] —

mol
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Calculate fugacity coefficients by Eqs. (11.68):

Pr(P)
T,

P:(P) = PE

C

o(P) := exp|:

(ol +ormfr |

f(P) := if[ P <¢Psat,d (P)-P, (Psat).psat.exp[ Vsat'(;’ ; Psat)ﬂ

P Vsat-(P — P
¢(P) := if {P <¢Psat ¢ (P), (Psat)'STat-eXp|: sat (R‘T Sat)ﬂ

P := 0-bar,0.5-bar.. 40-bar

40 [ [
I:’sat P:sat
30 - - T
f(P) bar/ 0.8 o
bar )/ |
i 20 / : — E) i
bar 1 0.6 - | —

- 1r / | 7 |
0 L 0.4 L

0 20 40 0 0 40
r P P
bar * bar bar

(b) Isobutane T :=408.1-K P. := 36.48-bar o = 0.181
cm
Z. :=0.282 Ve i=262.7— Ty = 261.4-K Psat := 5.28-bar
mol
Th
T:=313.15K T;:=— T, = 0.767 Ty = — T = 0.641
T T
2
(0 -Teg ’ cm’
Eq. (3.72): Vsat .= V- Z, Vsat = 102.107 —
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Calculate fugacity coefficients by Eq. (11.68):

P(P)

P:(P) := PE

C

o= o 2l s |

f(P) = if|:P <¢Psat,p (P)-P, (Psat)-Psat-exp|:

Vsat- (P — Psat)
R-T

p
o(P) := if{P <@Psat . (P), (Psat)-STat-exp[ -

P := 0-bar,0.5-bar.. 10-bar

Vsat- (P — Psat):|:|

10 r ‘
Psat / :sat
bar / bar
f®) | 0.8 - | -
bar 1 1
— 5 / - o(P) |
P y4 — |
bar y 0.6 |- .
0 ” 0.4 :
0 5 10 0 5 10
PP P
bar ~ bar bar
11.25 Ethylene = species 1; Propylene = species 2
282.3) 50.40 0.087
Tc := K Pc := -bar W =
365.6 ) 46.65 ) 0.140 )
0.281) 1318 @ur
/c = Ve = —_
0.289 ) 188.4 ) mol
T :=423.15-K P := 30-bar y1 := 0.35 y2:=1-yjp
n:=2 i:=1.n j=1.n k:=1.n
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By Egs. (11.70) through (11.74)

Wit Wwj _ ' Zci + Zc;
(’01,_] = 2 Tci’j = ‘\’ TCI’TCJ Zci’j -— 2
17
3 3 .R.
(Vei ~ +(Ve; Lo iRl s
Ve = p, =—2 0
ij 2 i Ve, |
L]
T 1.499 1.317)
T 1317 1.157)
131 157.966 ) cm o (50345 48.189\b
_ - = ar
157.966 188.4 ) mol ¢ 48.189 46.627)
0.087 0.114) 2823 321.261) 0.281 0.285)
L0114 0.14 ) (321261 365.6 ) 10285 0.289 )

By Egs. (3.65) and (3.66):

BO; ;= Bo()rri i Blj,j = Bl()rri i

~0.138 —0.189) . 0.108 0.085)
~(-0.189 -0.251 ) ~10.085 0.046 )
R-Te ~59.892 —99.181) ¢
Bi,j = I’J-()301,j "'(Di,j‘Bli,j B = \ﬂ
Pe —99.181 —159.43 ) mol

1’-]

By Eq. (11.64):

3
8i,j=2Bi j—Bi,i-Bjj 5| ° 2096 e
2096 0 )mol

dhaty = exp{%'|:3k,k+ %ZZ [yiyi (R8i k- i, ]H
P

0.957) " (10.053\
at =

fhaty := ¢haty-yx-P ¢hat = ar
! 0.875 ) 17.059 )
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For an ideal solution, ¢id = ¢ pure species

P (0.595\ Pr

P; :

= Ta (BOK, K + ok, Bl Kk

1dg = ex
0.643 ) ¢ P Tr .

ar Ans.

0.95 9.978
\ fhatjq = ( \

thatiq = ¢idg-y-P ¢id = b
i = PP 0= s ) 17.022 )

Alternatively,

P
P T
Py = ——  ¢idg == exp bk

1,] P T
i Tk .k

0.95
0.873 )

'CBOk,kJFOJk,k-Blk,k ¢id=(

11.27 Methane = species 1
Ethane = species 2 T :=373.15-K P := 35-bar
Propane = species 3

0.21) 0.012)) 0.286 )
y =043 | w = 0.100 | Zc :=|0.279 |
0.36 ) 0.152 ) 0.276 )
190.6 45.99 98.6 )
Te == | 3053 |.K Pc := | 48.72 |-bar Ve = | 1455 | ZL
369.8 ) 42.48 ) 200.0 ) ol
n:=3 i=1.n ji=1.n k:=1.n

By Eqgs. (11.70) through (11.74)

Wi+ Wj Zci + Z¢;
®j,j = ! J T = /Tci-TCj Ze = e
2 1) ] 2
1 17
= 3 Ze RTe
= ()]CI i ()\/CJ . Cla] Cla.]
Ve = P, = T
o 2 ) Ve.
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1.958 1.547 1.406)
T, = —— T, = | 1.547 1.222 1.111 |
i 1.406 1.111 1.009 )
98.6  120.533 143.378)

cm
Ve =|120.533 1455 171.308|—1
mo

143.378 171308 200 )

45.964 47.005 43.259)) 0.012 0.056 0.082)
P. = | 47.005 48.672 45.253 |bar ® =[0056 0.1 0.126 |
43259 45253 42.428 ) 0.082 0.126 0.152)
190.6  241.226 265.488 ) 0.286 0.282 0.281)
Te = | 241226 3053 336.006 |K Zo=10282 0279 0.278 |
265.488 336.006 369.8 ) 0.281 0.278 0.276 )

By Egs. (3.65) and (3.66):

E;()i’j = IS()()Fri j 13 li,j = Egl ()rriaj

I{'jﬁc

=L (Boj.j + i Bl
Ci,j

By Eq. (11.64):

Bi,j=

0 30442 107.809)

8i,j=2Bi,j—Bi i~ Bjj 5=[30442 0 23482 |_I°nn;1
107.809 23.482 0o )

dhaty = exp % Bk,k+%'ZZ[Yi'Yj'OZ'5i,k_ i,j]
i

fhaty := ¢haty-yk-P 1.019) 7.491 )
ohat = | 0.881 | fhat = | 13.254 |bar  Ans.
0.775 ) 9.764 )
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For an ideal solution, ¢id = ¢ pure species

0.761
P . Pri
Pry := Do Pr=10.718 | oidg := exp T '()301( k+ ok, kBlk k
ck
0.824 ) g

G—? = ()—2.6-X1 - 1.8:x2 ‘x1"x2

11.28 Given:
(a)  Substitute x, =1 - x;.

GE

= = (F8x1 - 18 xi-() —x1 = ~1.8x1 +x1°+ 08,

Apply Egs. (11.15) & (11.16) for M = GE/RT:

{68 {6
In =E+()—X . RT} In =@_X.LT)
17 RT ' 27 R T  a
(&)
—_— —18+2X1+24X1
dx;

Ans.

(b) Apply Eq. (11.100):

This reduces to the initial condition:
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(c¢) Divide Gibbs/Duhem eqn. (11.100) by dx1:

dx1 dxq

Differentiate answers to Part (a):

A _ 242.8x] — 4.8 ()2
dx dxp

These two equations sum to zero in agreement with the
Gibbs/Duhem equation.

= 2x; - 48%,

(d) When x1 =1, we see
from the 2nd eq. of

Part (c) that -

Q.E.D.

When x1 =0, we see
from the 3rd eq. of
Part (c¢) that

Q.E.D.

(¢) DEFINE: g = GE/RT
g()(l =-1.8x1 + X12 + 0.8-)(13
2 3
Inyp(ki = -1.8+2:x; + L4x;" - 1.6:x|

lnyz()q = —X12 — 1.6-X13
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— I I /I —
~ —
~ —
—
~
—~
(T - > -
gLX1 - \
S ~
Inyy (ki e \ Iy (0)
— - N
Iny2 (k1 Sk ]
lnvzh)\
3 | | | |
0 0.2 0.4 0.6 0.8
X]
— H
— ° Hlbar
— " H2bar
0.02715Y) 87.5 )
11.32 0.09329 265.6
0.17490 417.4
0.32760 534.5
0.40244 531.7
0.56689 421.1
0.63128 347.1
0.66233 321.7
X] = VE = n:= rows()q i:=1.n
0.69984 276.4
0.72792 252.9 x1:=0,0.01..1
0.77514 190.7
0.79243 178.1
0.82954 138.4
0.86835 98.4
0.93287 37.6
0.98233 ) 10.0 )
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(a) Guess: a:=-3000 b:=-3000 c:=250

(e ] a) a) [ 3448x10° )
F(ki = xi>(f—x1 || b | = tinfit(x;, VE.F [b =] 500 x10° | "
(x| c) c) 244615 )
600
VE; 400 [~ —

o

2
1-(1-x1)- b-x1+c-(x1
x1-(1—x1) [a+ x1+c-(x1) ] 200

xli,xl
By definition of the excess properties

vE = x1-X2-[a+b'X1 +e(k 2]

j—VE = —dc(k 2 +3c-b)(k 2+2(b-a)x; +a
X1

(Wbary ®= (ko 2| at2bxs + 3¢k 7]
(Wbara B= (k1 2| a— b+ 20— c)xg +3c(ks 2|

(b) To find the maximum, set dVE/dx1 = 0 and solve for x,. Then use x, to
find VE__ .

Guess: x1 :=0.5

Given
3 2
—4-c-(x1)”" +3-(c—-b)(x1)"+2:(b—a)xl+a=20

x1 := Find(x1) xl = 0.353 Ans.
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VEmax = x1-(1 - xl)-()i+ b-x1 + C-Xl2 VEmax = 536.294 Ans.
2 2
(¢) VEbary(x1) := (1 —x1) -|:a+ 2-b-x1 + 3-c-(x1) }

VEbary(x1) := (x1)2] @b+ 2:(b - 0)x1 + 3-c-(x1)? |

x1 :=0,0.01..1

4000

VEbar (x1) 2000

VEbar; (x1)
— 0

—2000

Discussion:
a) Partial property for species i goes to zero WITH ZERO SLOPE as x; -> 1.

b) Interior extrema come in pairs: VEbar min for species 1 occurs at the
same x,; as VEbar max for species 2, and both occur at an inflection point on

the VE vs. x, plot.

¢) At the point where the VEbar lines cross, the VE plot shows a maximum.

11.33 Propane =1; n-Pentane =2

T :=(75+273.15)-K P := 2-bar y1 = 0.5 vy =1 -y
276 —466) cm’
= — n:=2 1:=1.n J=1.n
~466 -809 ) mol
3
By Eq. (11.61): B := ()’i'}’j'Bi i cm
» B = -504.25—
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Use a spline fit of B as a function of T to
find derivatives:

~331) 3 —980) 3 ~558 ) "
bll :=| -276 | — b22 = | -809 | — bl12 :=| —466 | —
mol mol mol
-235 ) ~684 ) ~399 )
50 ) 323.15))
t:=|| 75 |+273.15|K t=|348.15 |K
100 ) 373.15)

3
cm

vsll := Ispline(t,b11) B11(T) := interp(vsll,t,bl1,T) BI1I(T) = —276—1
mo

vs22 := Ispline(t,b22) B22(T) := interp(vs22,t,b22,T) B22(T) = —809(’—m1
mo

3
cm

vs12 := Ispline(t,bl12) B12(T) := interp(vs12,t,b12,T) BI12(T) = —466—l
mo

4 B11(T) d—Bl2(T)\ ;
BT dT dT | BT 1.92 3.18) cm
4 d (318 5.92 ) mol-K
€ BI2(T) SB22(T)
dT dT
3
Differentiate Eq. (11.61): dBAT = 3" 3" (yi-yj-dBdT; dBdT = 3.5
mol-
]
B-P 7.R-T
ByEq.(3.38):Z .= 1 + — Z = 0.965 Vi=—-
R-T P
P (B
By Eq. (6.55): HRRT := E'(T - dBdT) HRRT = —0.12 HR := HRRT-R-T

P
By Eq. (6.56): SRR := —E-dBdT SRR = —0.085 SR := SRR-R

3
V = 13968 2L HR = 348.037—— SR = —0.71 —>
mol mol mol-K

Ans.
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11.34 Propane =1; n-Pentane =2

T := (75 +273.15)-K

X

Si’j '=2-Bj j—Bj,i—

—276 —466) cm-
—466 —809 ) mol

P := 2-bar y1 =0.5 y2 =1-yjp
n:.=2 1:=1.n
ji=1.n

Bj j

By Eqgs. (11.63a) and (11.63b):

[B1,1+(1—y1)2-51,2ﬂ

P
hatl (y1) := exp| —
dhatl (y1) p_ T
ohat2 (y1) i ()3 +y1%8
a = exp| ——- :
y p_R'T 2,2+yl781 2
yl:=0,0.1..1.0
1
0.99 .
0.98 -
ohatl (y1)
— 0.97 -
¢hat2(yl)
0.96 [
—
—
//
0.95 - -
0.94 . . . .
0.2 0.4 0.6 0.8
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0.0426 ) —23.3 )

11.36 0.0817 —45.7
0.1177 —66.5
0.1510 —86.6
0.2107 ~118.2
0.2624 ~144.6
0.3472 ~176.6
0.4158 ~195.7

X1 = 05163 HE = 040 n:= rows()q i:=1.n
0.6156 —-191.7 x1:=0,001..1
0.6810 ~174.1
0.7621 ~141.0
0.8181 ~116.8
0.8650 —85.6
0.9276 —43.5
0.9624 ) -22.6 )
(a) Guess: a :=-500 b:=-100 c¢:=0.01
xi() = x1 a) a) ~539.653 )
F( o=| x1>(N-x1 || b | = tinfie(ki . HEF [b ] = porrx10° | "
R c) \ 913122 )
0
HE; -100 - .
[
i-(l—xl)-[a+b'x1+c-(x1)2]_200 i A
=300 | | | |

0 0.2 04 0.6

xli,xl
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By definition of the excess properties

u* = X1'X2'[a+b'xl +e (ki 2]

4 HE = gc() d+3c—b)(k 2+2:(b-a)x +a

dx

(Hbar, © = (ko 2] 2+ 2:boxy + 3 (k1 2|
(bary = (ki 2 a=b+2:(—01x) + 30k *|

(b) To find the minimum, set dHE/dx1 = 0 and solve for x;. Then use x, to

find HE . .
2
Guess: x1:=0.5 HE(x1) := x1-(1 - Xl)‘()ﬂ + b-x1 + ¢-x1
Given  —4-c(x1)° +3-(c=b)-(x1)> +2-(b—a)xl +a= 0

x1 := Find(x1) xl = 0.512 Ans.

HEnin = x1-(1 - Xl)'()1+ b-x1 + c-xl2 HEnin = —204.401 Ans.

(¢) HEbar(x1) := HE(x1) + (1 — xl)-j—HE(xl)

x1
d )
HEbary(x1) := HE(x1) — x1-| —HE(x1)
dx1
x1:=0,0.01..1
500

HEbary(x1) 0

HEbar; (x1) s

00 =

—1000

x1
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Discussion:
a) Partial property for species i goes to zero WITH ZERO SLOPE as x; -> 1.

b) Interior extrema come in pairs: HEbar min for species 1 occurs at the same
x, as HEbar max for species 2, and both occur at an inflection point on the HE

vs. X, plot.

c¢) At the point where the HEbar lines cross, the HE plot shows a minimum.

11.37 (a) (1) = Acetone (2) = 1,3-butadiene

= y2 = 1-vy] T := (60 +273.15)-K P := 170-kPa
0307\ 508.2") 0.233) 209 \ em’

Te = K Z; = V¢ = p—

0.190 ) 425.2 ) 0.267 ) 220.4 ) mol

=2 i=1.n ji=1.n ki,j==0
0.307 0.2485 0.082)
Eq. (11.70) o j:= : o =02485 0.19 0.126 |

0.082 0.126 0.152)
508.2  464.851)
Eq. (1L71) Tcj ji= [Te T (J—ki,j Te=|464.851 4252 [K
369.8 0o )

Zo +7¢ 0.233  0.25 )
Eq. (11.73) zci,jzzf Zc=| 025 0267 |
0276 0 )
o7
3, 3 209 214.65)
()‘/Ci ()‘/Cj cm
Eq.(11.74) Vg j = : Ve =|214.65 220.4 |—1
mo
200 0
47.104 45.013)
Zc; 'R-Tc
Eq.(1L72) Pg ;= 1’\1/ = Pc = | 45.013 42.826 |bar
Ci,j

4248 0 )

Note: the calculated pure species Pc values in the matrix above do not agree
exactly with the values in Table B.1 due to round-off error in the calculations.
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Tr ;= Prj ;=
) Tcl,] ] PCI ]
0.036 0.038)
0.656 0.717)
Tr = Pr=0.038 0.04 |
0.717 0.784 )
0824 0 )

Eq.(3.65  BO;_ j:=Bo()Jmi_j
~0.74636 —0.6361 —0.16178 )
BO = | -0.6361 —0.5405 -0.27382 |
~0.16178 —0.27382 —0.33295 )

Eq.(3.66)  Bl; j:=Bi(Jri_j

~0.874 —0.558 0.098 )
Bl = | -0.558 —0.34 0.028 |
0.098 0.028 —0.027 )

Eq.(11.69a) + (11.69b)  B; | := - ()301 j+oi iBlij
—910.278 —665.188") Cm
~665.188 —499.527 ) mol
Eq. (11.61) I 3
q. . cm
B := cyi-Bi i B =-598.524—
> 3 s -
i=1 j=
B-P
Eq.-338) Z:=1+— Z = 0.963
R-T
R-T-Z
Vi —= V = 15694 x 10* S Ans.
P mol
0.675 0.722
Eq. (6.89) dBO0dTr; j := —= Eg.(6.90) dB1dTr; j:= —
Orei,j = (rrij ™
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Differentiating Eq. (11.61) and using Eq. (11.69a) + (11.69b)
R

n n
dBdT := Z Z |:yi-yj-|:PCi j-()iBOdTri,j + o, j-dB1dTrj ; :|i|

i=1j=1

Eq. (6.55) HR := P.T-@ - dBdT) - Ans.
Eq. (6.56) SR := —P-dBdT - Ans.
Eq. (6.54) GR :=B-P - Ans.
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Data for Problems 11.38 - 11.40

325))
200
575
350
300
525
225
200 )

11.38 Redlich/Kwong Equation:

S

o3

Guess:

Eq.(3.53) B =

z:=1

15 ) 308.3)
100 150.9
40 562.2
35 304.2
Tc = [P =
50 282.3
10 507.6
25 190.6
75 ) 126.2 )
1.054")
1.325
1.023
_)
1.151 p
Pr.=—
1.063 Pc
1.034
1.18
1.585 )
Q := 0.08664
0.02
0.133
0.069
—_—>
0.036 N%
q:=
0.081 O.Tr
0.028
0.04
0.121)

367

61.39")
48.98
48.98
73.83
50.40
30.25
45.99
34.00 )

0.244
2.042
0.817
0.474
0.992
0.331
0.544
2.206 )

Pr =

Y = 0.42748

) _
— Eq.(54) q =

187
.000
210
224
087
301
012
038 )

4.559")
3.234
4.77
3.998
4.504
4.691
3.847
2.473 )




Given z=1+p-qp- Eq. (3.52) Z(B.,q := Find(z)

()z+

i=1.8 I ;= In &\ Eq. (6.65)
Z( i.di

¢i = exp(E(Bi.ai —1-In(E(Bi.ai —Bi —aili Eq.-(A137)

fi := ¢i-P;
11.39 Soave/Redlich/Kwong Equation =0.08064 W :=0.42748
_ (b.480+ 15740 - 0.176.02 o =] 1+c(h-m®3 ]2
0.02 4.49
0.133 3.202
0.069 4737
—_— R
ng( E\ Eq.(3.53) B = 0.056 q:= (‘Pa ) Eq.(3.54) q = 379
Tr) 0.081 Q-Tr) 4.468
0.028 4.62
0.04 3.827
0.121) 2.304 )

Guess: z:=1
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Given z=1+p-qp- Eq.(3.52) Z(B.,q := Find(2)

()z+

i:=1.8 [[:=1In &\ Eq. (6.65)
Z( i-di

i = eXp()Z( i»di —1—1n()l()31,qi - Bi —qi'l; Eq. (11.37)

fi == ¢i-Pj

11.40 Peng/Robinson Equation

o i=1+4/2 g:=1-4/2 Q = 0.07779 Y = 0.45724
(b d :
¢ := (.37464 + 1.54226-0 — 0.26992- o] 14 c()‘ 05 ]
0.018") 5.383)
0.12 3.946
0.062 5.658
— —
0.032 4.598
BO- P Gy B = q =2 VG54 q=
Tr) 0.073 Q-Tr) 5.359
0.025 5.527
0.036 4.646
0.108 ) 2.924 )
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Guess: z:=1

7 —

B Eq. (3.52 = Find(z
Goop Grop v C 2B = Finde)

Given z= 1+ —q-B-

Pi=1.8 = — .ln(z( 1-0i +0f i) Eq. (6.65)
22\ Z(Bi.ai +¢B i)

i == eXp()Z( i»di —l—ln()l( i.qi —Bi —aqi'li Eq.(11.37)

fi .= ¢i-P; Z(Bi.qi = oj = fi =
0.918 0.923 13.842
0.69 0.711 71.113
0.647 0.73 29.197
0.882 0.89 31.142
0.617 0.709 35.465
0.881 0.891 8.91
0.865 0.876 21.895
0.845 0.832 62.363

¢ BY GENERALIZED CORRELATIONS

Parts (a), (d), (f), and (g) --- Virial equation:

325)) 308.3 ) 15) 61.39") 187
350 304.2 35 73.83 224
T = ‘ Tc = ‘ P = ‘ Pc = ‘ o = ‘
525 507.6 10 30.25 301
225 ) 190.6 ) 25) 45.99 ) 012 )
—> —
T P
Tr = — Pr = —
Tc Pc

Evaluation of ¢:

— —
B0 := By(Tr) Eq.(3.65) Bl :=B(Tr) Eq. (3.66)
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—> —>
0.675 0.722

DBO = —=  Eq.(6.89) DBI = == Eq.(690)
Tr Tr
> 0.932)
¢ = exp|:E-()30 + 0Bl } Eq. (11.60) 0.904 (@)
Tr b = (@)
0.903 (f)
0895) ©®

Parts (b), (¢), (¢), and (h) --- Lee/Kesler correlation:

Interpolate in Tables E.13 - E.16:

7454 1.1842)) 0.000 )
. 7517 ‘ 0.9634 0.210 ‘
"] .7316 1 0.9883 "~ 10.087
8554 ) 1.2071 ) 0.038 )
0.745)) o
= () 0-41° Eq.(11.67): b = 0.746 ’ ©
0.731 (e)
0.862 ) (b
kmol kmol
11.43 ndot; := 2 1o ndoty := 1o ndot3 := ndot; + ndot)
hr hr
ndot;
X1 = x1 = 0.333 x2:=1-x1 x2 = 0.667
ndot3

a) Assume an ideal solution since n-octane and iso-octane are non-polar and
very similar in chemical structure. For an ideal solution, there is no heat of
mixing therefore the heat transfer rate is zero.

b) AS, = —R-(ki-In(k1 +xzIn(ks -ndots AS,~ 882 Ans
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11.44 For air entering the process: x021 = 0.21 xN21 = 0.79

For the enhanced air leaving the process: xp, := 0.5

xN22 = 0.5
1
ndoty = SOE
sec
a) Apply mole balances to find rate of air and O, fed to process
1 1
Guess:  ndoty == 40 - ndotp = 10 22
sec sec
Given
x021-ndotyir + ndotpr = xp22-ndot) Mole balance on O,
xN21-ndotzir = xXN22-ndot) Mole balance on N,
ndot,;y \
= Find()‘ldotair,ndotoz
ndotp) j
1 1
ndotyir = 31.646——  Ans. ndotop = 18.354 2%  Ans.

S€C S€C

b) Assume ideal gas behavior. For an ideal gas there is no heat of mixing,
therefore, the heat transfer rate is zero.

¢) To calculate the entropy change, treat the process in two steps:

1. Demix the air to O2 and N2
2. Mix the N2 and combined O2 to produce the enhanced air

Entropy change of demixing AS;, := R'(>(021'1n()(021 + xNzl-ln()chl

Entropy change of mixing  AS,; := —R-()cozz-ln()cozz + xN22-1n(>cN22

Total rate of entropy generation: Sdotg := ndot,jAS 5 + ndoty-ASy3

%
Sdotg = 152.919—~  Ans.
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10 544.0" 932.1)
J J
1150 T := | 30 |K+273.15K  GE:=|513.0 |— HE := | 893.4 |—
mo mol
50 ) 494.2 ) 845.9 )
Assume Cp is constant. Then HE is of the form: HE=c+a-T

Find a and c using the given HE and T values.

J

a := slope(T,HE a=-2.155
pe( ) mol-K

J
— intercept(T,HE) ¢ = 1.544x 10° ——
mol

GE is of the form: GE = —a. (T ln( \ \ +b-T+c

<))

Rearrange to find b using estimated a and c values along with GE and T data.

AN

GE+a(T ln(T\ T\—c _13-543\
B

= K) B =| -13.559 \L
T mol-K
~13.545 )

Use averaged b value

> o

i=1 b= 13549
3 mol-K

Now calculate HE, GE and T*SE at 25 C using a, b and c values.

b=

. J
HE(T) :=a-T+c HE[(25 + 273.15)K] = 901.242—— A

mol

J
GE(T) = —a: (T ln( N \ +b-T+c GE[(25 + 273.15)K] = 522.394—— Ans.

) ) mol
TSE(T) := HE(T) — GE(T) TSE[(25 + 273.15)K] = 378.848 LIAHS-
mo
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Chapter 12 - Section A - Mathcad Solutions

12.1 Methanol(1)/Water(2)-- VLE data: T :=333.15-K
39.223)) 0.1686 ) 0.5714")
42.984 0.2167 0.6268
48.852 0.3039 0.6943
52.784 0.3681 0.7345
56.652 0.4461 0.7742

P .= -kPa X] = y1 =
60.614 0.5282 0.8085
63.998 0.6044 0.8383
67.924 0.6804 0.8733
70.229 0.7255 0.8922
72.832) 0.7776 ) 0.9141 )
Number of data points:  n := rows(P) n=10 1:=1.n
— —>
Calculate x2 and y2: X) = ()1 - X1 y2 = () -y1

Vapor Pressures from equilibrium data:

Psat] := 84.562-kPa Psaty := 19.953-kPa

Calculate EXPERIMENTAL values of activity coefficients and
excess Gibbs energy.

E— —
y1'P y2P ’
Y1 = 1 Psat; Yo = o Psaty GERT = ()(yln()(l + xz-ln()(z
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i = Yli = Y2i = ln(Vli) = ln(Y2i) = GERT;j =
1 1.572 1.013 0.452 0.013 0.087
2 1.47 1.026 0.385 0.026 0.104
3 1.32 1.075 0.278 0.073 0.135
4 1.246 1.112 0.22 0.106 0.148
5 1.163 1.157 0.151 0.146 0.148
6 1.097 1.233 0.093 0.209 0.148
7 1.05 1.311 0.049 0.271 0.136
8 1.031 1.35 0.031 0.3 0.117
9 1.021 1.382 0.021 0.324 0.104
10 1.012 1.41 0.012 0.343 0.086

0.5 T

X

0.4 y _
11‘1(>/1, + +
XXX b3 X N i ]
1“021

X

tﬁ%n 0217 " ]
< o % VRPN .

0.1 o < . + % o o —

X
0 + | l l X %
0 0.2 0.4 0.6 0.8

(a) Fit GE/RT data to Margules eqn. by linear least squares:

GERT;
VX =X, VY; =
1

X1.-X2.
i A

Slope := slope(VX,VY) Intercept := intercept(VX, VY)

Slope = —0.208 Intercept = 0.683
Aqp = Intercept Ap1 = Slope+ A2
A1x = 0.683 Ay = 0475 Ans.
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The following equations give CALCULATED values:

exp[ X22-|:A12 + 2-()%21 - A -Xl]]

exp[xlz-[Azl + 2-()%12 - A -X2]i|

v1(x1,x2)
v2(x1,x2)

ji=1..101

X|. = .01-j— .01
J

Xy =1-Xq.
J J

Pealc. = X1.-v1()>(1.,X2. -Psatg +Xz.-y2()>(1.,X2, -Psat
J J J J ] J J

Xl.'Yl()Kl.,Xz. -Psat
j i

chalcj =

Pcalc.
]

P-x,y Diagram: Margules eqn. fit to GE/RT data.

Pcalc.
cale;

kPa

Pcalc.

kPa

90

80

70

60

50

40

30

20

10

0 0.2

000 p.x data

¢ P-ydata
— P-xcalculated
— P-ycalculated

0.4 0.6
Xll > Y11 > Xl] )chale
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Pcalc, = X1.-v1(>c1.,xz. -Psaty +X2.'Y2(>‘1.,X2. -Psatp
1 1 1 1 1 1 1

xli-yloqi,xzi -Psaty

Ylcalc. ==
! Pcalci

RMS deviation in P:
2
())i - Pcalci

RMS == [ ~————  pys - 0.399kPa

i

(b) Fit GE/RT data to van Laar eqn. by linear least squares:

X112,

B GERT;
Slope := slope(VX,VY) Intercept := intercept(VX,VY)

VX = X7, VY; :
1

Slope = 0.641 Intercept = 1.418
1 1
a|)p = —— ap] =
Intercept (Slope + Intercept)
ajp = 0.705 ay] = 0.485 Ans.
ayy-x1 \_ 2

v1(x1,x2) := exp

app-| 1+
12( a21-x2)
(1 +

a21-x2\_2
v2(x1,x2) = exp| a1-
a12-x1)
j:=1.101 X1.:=.01-37—-.00999 (To avoid singularities)
]
Xy =1-Xj.
] ]
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Pecalc. * X1.-V1()X1.,X2. -Psat1+X2.-Y2(><1.,X2. -Psat)
] ] ] ] ] ] ]

Pcalc. = xl.-y1(>(1_,le -Psat; +X2‘-y2(>q.,x2, -Psaty
1 1 1 1 1 1 1

X1.~Y1()’(1.,X2. -Psaty X1.-V1(>€1.,X2. -Psaty
] ] ] 1 1 1

Yicalc. = Ylcale. -=
J Pcalcj ! Pcalci

P-x,y Diagram: van Laar eqn. fit to GE/RT data.

90
80
P.
170
kPa
ooo
P 60
kPa
o
Pcalc. 50
]
kPa 40
Pcalc ]
kPa 30
20
10 0 0.2 0.4 0.6 0.8 1
Xli,y1i,X1j,Y1ca1cj
000 px data
¢ P-ydata
— P-x calculated
— P-ycalculated
RMS deviation in P:
2
(})i - Pcalci
RMS := z <~ RMS = 0.454kPa
n

i
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(c¢) Fit GE/RT data to Wilson eqn. by non-linear least squares.

Minimize the sum of the squared errors using the Mathcad Minimize function.

Guesses: A1p =05 Ay =1.0

2
SSE(N 12,42 ;:Z GERT; + Xli-ln(>(1i+xzi-A12 )

1 + Xzi-ln()(zi + Xli'AZI j
App) A2\ (0476)
= Minimize()SSE,Alz, 21 = ns.
Aat1) Az ) \1.026)
) A Ay )
exp| x2- -
xl +x2-Aqp X2+X1-A21)
y1(x1,x2) =
()(1 + X2-A12
| Ay Ay )
exp| —x1- -
x1 +X2-A12 x2 +X1-A21)
v2(x1,x2) =
()(2+X1-A21
j:=1..101 Xqy.:=.01-5-.01 X7 =1-X.
] J ]
= X171 ,Xo. -Psaty + Xo -y2 ,X»o -Psat
pcalcj 1j Y ()le 2J 1 2J Y (YIJ 2J 2
Pcalc. = Xl.'Y1(>‘1.,X2. -Psaty +X2.'72<>‘1.,X2. -Psat)
1 1 1 1 1 1 1
Xl"yl()xl.,xz. -Psaty Xl{yl()‘]i’xzi Psaty
J ] ]

}’lcalci =

Yicale. = P
J Pcalcj calci
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P-x,y diagram: Wilson eqn. fit to GE/RT data.

90
80
P
kPa 70
ooo
P.
60
kPa
o
Pcalc. >0
]
kPa 40
Pcalcj 30
kPa
20
1
0 0 0.2 0.4 0.6 0.8
><1i,y1i,le,Y1calcj
000 p.x data
¢ P-ydata
— P-x calculated
— P-ycalculated
RMS deviation in P:
2
(}’i - Pcalci
RMS := Z <~ RMS = 0.48kPa
n

i

(d) BARKER'S METHOD by non-linear least squares.
Margules equation.

Guesses for parameters: answers to Part (a).

Yl()‘l ,X2,A12,A21 = eXp|: (X2)2-[A12 + 2-()&21 -Ap -Xl]]

yz()(l ,X2,A12,A21 = exp|: (Xl)z-[Azl + 2-()412 - A 'X2]]
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Minimize the sum of the squared errors using the Mathcad Minimize function.

Guesses: A1p =05 Ar1 =1.0

2
SSE(A12.A21 :=Z Pi— Xli'Y1(>‘1i,X2i,A12,A21 Psaty ... |

i +X2i'Y2(>(1i»X2i,A12,A21 -Psat) )
A12) A12) (0758
= Minimize(BSE, A12,A7 = ( ) Ans.
A2l ) A1) \0435)

pcalcj = le‘Yl(}Klj,ij,Alz,Azl -Psaty ...
+X2j-V2()’<1j,X2j,A12,A21 -Psat)

le'Yl()Klj,ij,Alz,Am -Psatq

Yicalc. =
J Pcalcj

Pcalci = Xli-vl(}li,xzi,Alz,Azl -Psaty ...
+X21'Yz(>&1i,xzi,A12,A21 -Psatp

Xli'Y1(>(li,X2i,A12,A21 -Psaty

Ylcale. =
! Pcalci
RMS deviation in P:
2
(})i - Pcalci
RMS := Z < RMS = 0.167kPa
n

i
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P-x-y diagram, Margules eqn. by Barker's method

90
80
Pj
kPa 70
ooo
P
_ 60
kPa
° 50
Pcalc.
)
kPa 40
pcalcj 30
kPa
E— 20
1
0 0 0.2 0.4 0.6 0.8
><1i,y1i,le,Y1calcj
000 p.x data
¢ P-ydata
— P-x calculated
— P-ycalculated
Residuals in P and y1
1
o
P;-P
i calci 0.5 o .
kPa X o
XXX
1.7Y1calc. - 100 IS
()(’) ;Yleale, 0 ><§ o *x
% X
X
o
05 0.2 0.4 0.6 0.8
X1

XXX Pressure residuals
¢yl residuals




(e) BARKER'S METHOD by non-linear least squares.
van Laar equation.

Guesses for parameters: answers to Part (b).

au-xl\_z
’Y1(>(1’X2’312’321 = €Xp| a12- 1+

a21-x2j

a21-x2\_2

Yz()(l,x2,a12,321 =expl az1| 1+

a12-xl}

Minimize the sum of the squared errors using the Mathcad Minimize function.

Guesses: ajp :=0.5 a1 := 1.0

2
SSE (12,221 :=Z Pi - Xli-v1(>(1i,xzi,a12,a21 Psaty ... |

i +X2i-Y2(>&1i,X2i,a12,azl -Psat) )

(312\ a12 ) 5 (0.83 3

:= Minimize( BSE ,aj7,ay; =
aZl} ()S a21} 0.468)

pcalcj = le-v1()x1j,X2j,a12,az1 -Psaty ...
+X2j-vz()x1j,X2j,a12,a21 -Psatp

le'Yl()’(ljaxzj,alz,azl -Psaty

Yicalc. =
J Pcalcj

Pcalci = Xli-h(}&li,xzi,alz,am -Psaty ...

+Xzi-Y2(>(1i,X2i,a12,azl -Psatp

Xli'Y1(>‘1i,X2i,a12,a21 -Psat;

Ylcale. =
! Pcalci
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RMS deviation in P:

RMS = 0.286kPa

P-x,y diagram, van Laar Equation by Barker's Method

90
80
70
P
kPa
ooo 60
Pj
kPa
o
Pcalc. 50
]
kPa
Pcalcj 40
kPa
30
20
10 0 0.2 0.4 0.6 0.8

Xli ’Y1i sxlj ’chalcj

Ooo  p.x data

¢ Pp-ydata
— P-xcalculated
— P-ycalculated
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Residuals in P and yl1.

1
o
o ©
¢ X
Pi_Pcalci 0.5 o
kPa
XXX X X
()’1.—}’10alc~ 100
1 1
o 0 é <
X
o
X X
0.5 #
T0 0.2 0.4 0.6 0.8
X1,

1

XXX Pressure residuals
¢yl residuals

() BARKER'S METHOD by non-linear least squares.
Wilson equation.
Guesses for parameters: answers to Part (c).

ji=1..101 X|. = .01-j— .01 Xy i=1-X].
] J ]

yl(>cl,A2,A12, 21 = €Xp —1Il<>(1+X2-A12
A1z Ay )

+x2- -
x1 +X2-A12 X2+X1-A21)

Y2()(1,A2,A12, 21 = €Xp —111()(2+X1-A21
A1 . Ay )
x1 +X2-A12 X2+X1-A21)

+x1-

Minimize the sum of the squared errors using the Mathcad Minimize function.

Guesses: A1p =05 Ay =1.0
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2
SSE()\lz,Azl 322 Pi - Xli'Y1(>‘1i=A2i,A12, 71 -Psaty \

i +Xzi'Y2()‘1i”"2iaA 12> 21 -Psaty )

Az A1) (0348)
= Minimize()SSE A1, 21 = ns.

Aat1) Az ) \1.198)

pcalcj = le‘Yl()xlj ’sz A12, 21 -Psaty ..
+X2j-Y2()7<1j,X2j,A12, 21 -Psaty

le'Yl()Klj ’sz A 12, 21 -Psaty

Yicalc. =
J pcalcj

Pcalci = Xli'Y1(>(1iaﬁzi,A 12, 21 -Psaty ...
+X21'Y2()‘1i,A2i,A12, 21 -Psatp

Xli‘Y1(>(li,A2i,A 12, 21 -Psat]

Ylcale. =
! Pcalci
RMS deviation in P:
2
(}’i - Pcalci
RMS = " — RMS = 0.305kPa

i
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P-x,y diagram, Wilson Equation by Barker's Method

90
80
Pj
kPa 70
ooo
Pj
S 60
kPa
° 50
Pcalc.
]
kPa 40
pcalcj 30
kPa
- 20
10 0.2 0.4 0.6 0.8
X113y115X1J nYlCElle
000 px data
P-y data
— P-x calculated
— P-ycalculated
Residuals in P and y1.
1 <o
Lo o3
<o
Pi_Pcalci 0.5 X o
kPa X X
XXX
()’Ii_YIcalci -100 0 % °
o x o ©
X x X X
-0.5 d
T 0 0.2 04 0.6 0.8
X1

XXX Pressure residuals
¢yl residuals
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12.3 Acetone(1)/Methanol(2)-- VLE data:

72278
75.279
77.524
78.951
82.528
86.762
90.088
93.206
95.017
96.365
97.646
98.462
99.811
99.950
100.278
100.467
100.999
101.059
99.877
99.799 )

Number of data points:

Calculate x2 and y2:

0.0287
0.0570
0.0858
0.1046
0.1452
0.2173
0.2787
0.3579
0.4050
0.4480
0.5052
0.5432
0.6332
0.6605
0.6945
0.7327
0.7752
0.7922
0.9080
0.9448 )

X1 :

T :=328.15-K

M

n := rows(P) n=20

s

s

xo = () -x1 v2:= (L -w

Vapor Pressures from equilibrium data:

Psaty := 96.885-kPa

Psaty := 68.728-kPa
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Calculate EXPERIMENTAL values of activity coefficients and
excess Gibbs energy.

— — .

Y1 = & Yo = ﬂ GERT := ()(ylﬂ()(l + x2-ln()(2
x1-Psatq x7-Psaty

i= YL = YZi = ln()/li = ln()Qi = GERT;
1 1.682 1.013 0.52 0.013 0.027
2 1.765 1.011 0.568 0.011 0.043
3 1.723 1.006 0.544 5.815:10-3 0.052
4 1.706 1.002 0.534 1.975-10-3 0.058
5 1.58 1.026 0.458 0.026 0.089
6 1.497 1.027 0.404 0.027 0.108
7 1.396 1.057 0.334 0.055 0.133
8 1.285 1.103 0.25 0.098 0.152
9 1.243 1.13 0.218 0.123 0.161
10 1.224 1.14 0.202 0.131 0.163
11 1.166 1.193 0.153 0.177 0.165
12 1.155 1.2 0.144 0.182 0.162
13 1.102 1.278 0.097 0.245 0.151
14 1.082 1.317 0.079 0.275 0.145
15 1.062 1.374 0.06 0.317 0.139
16 1.045 1.431 0.044 0.358 0.128
17 1.039 1.485 0.039 0.395 0.119
18 1.037 1.503 0.036 0.407 0.113
19 1.017 1.644 0.017 0.497 0.061
20 1.018 1.747 0.018 0.558 0.048
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0.6 N
+
X "X
+
— X +
ln(}li 0.4 o
XXX % R
1n(}2i +
+++ X +
G<>ERTi 0o b X o .
o °° §§ TN
R o . L+ S oo
<O + x X (o4
0? X S
o LB 0" | ! i X X
0 0.2 0.4 0.6 0.8
Xli
(a) Fit GE/RT data to Margules eqn. by linear least squares:
GERT;
VX = x7. =
! X1.°X2,
1 1
Slope := slope(VX,VY) Intercept := intercept(VX,VY)
Slope = —-0.018 Intercept = 0.708
A1q7 := Intercept Ajq := Slope+ Aqp
A1x = 0.708 Ar1 = 0.69 Ans.
The following equations give CALCULATED values:
v1(x1,x2) = exp|:x22-|:A12 +2-(A21 - A12 ~x1ﬂ
y2(x1,x2) = exp|:X12-|: Azr+2-(A12—Ag -xzﬂ
j:=1.101 X1, :=.01-5-.01 Xy =1-Xq,
J J J

Pealc, = X1.-Y1()X1.,Xz. -Psat +X2.-Y2()’<1.,X2. -Psatp
] ] i j i

X1.~v1()’(1.,X2. -Psaty
J J J

Yicalc. =
J Pcalcj
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P-x,y Diagram: Margules eqn. fit to GE/RT data.

105
100
Pj
k_Pa 95
ooo
P 90
kPa
o
Pcalc. 85
]
kPa 80
Pcalc.
75
kPa
70
65

0 0.2 0.4 0.6 0.8
Xli 5 y1i ,le > chalcj

ooo p.x data

¢ Pp-ydata
P-x calculated
— P-ycalculated

Pecale, = X1.-Y1(>&1.,X2. -Psat +X2.-Y2<>i1.,xz. -Psatp
1 1 1 1 1 1 1

x1i~y1(>(1i,xzi -Psat;

Ylcale. =
! Pcalci
RMS deviation in P:
2
(}Pi - Pcalci
RMS == [¥" =————  Rys — 0.851 kPa

i
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(b) Fit GE/RT data to van Laar eqn. by linear least squares:

X1."X2.
i “i

VX = X1, VY =
i GERTj;

Slope := slope(VX,VY) Intercept := intercept(VX,VY)

Slope = 0.015 Intercept = 1.442
1 1
ajpp == —— ap] =
Intercept (Slope + Intercept)
ajp = 0.693 ay] = 0.686 Ans.

312~X1\_2

1(x1,x2) :=ex
v1(x1,x2) := exp oy

a2

(1 +
( a21-x2\_2
1+

v2(x1,x2) = exp| a1
a12-x1)
j:=1..101 Xq.:=.01-7-.00999 (To avoid singularities)
J
Xy =1-X]q.
] J

Pcalc. = X1.-Y1()X1.,X2. -Psat +X2.-Y2()7<1.,X2. -Psat)
j j i ] i

Pealc. = X1.-Y1(>&1.,X2. -Psaty +X2.-72<>(1.,X2. -Psat)
1 1 1 1 1 1 1

X1.~Y1()X1.,Xz. -Psat; X1.-Y1(>&1.,X2. -Psat;
_] _] _] 1 1 1

chalcj = }’lcallci =

Pcalc. Pcalc.
] 1
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P-x,y Diagram: van Laar eqn. fit to GE/RT data.

105
100
P
kPa 95
ooo
Pi 99
kPa
o
Pcalc. 85
]
kPa 80
Pcalcj s
kPa
70
65 0 0.2 0.4 0.6 0.8

Xli’YIi’le achalcj

OO0 p.x data

¢ P-ydata
— P-xcalculated
— P-ycalculated

RMS deviation in P:

RMS = Z ~ U RMS = 0.701 kPa

(c¢) Fit GE/RT data to Wilson eqn. by non-linear least squares.

Minimize the sum of the squared errors using the Mathcad Minimize function.

Guesses: A1y =05 Ay :=1.0

SSE(N 12,421 ;:Z GERT; + xli-ln(>(1i+x2i-/\12
1 + Xzi-ln(>&2i + Xli'A21 ]
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A1p) . A) (071
= Minimlze()SSE,Alz, 21 = ns.
Aat1) Ay ) \0.681)
X Ay Ay )
exp| x2- -
P xl +x2-Aqp x2+x1-A21)
1(x1,x2) =
! ( ) ()(1 +X2-A12
| Ay Ay )
exp| —x1- -
P xl +x2-A1p x2 +x1-A7_1)
2(x1,x2) =
! ( ) ()(2+X1-A21
j:=1..101 Xy.:=.01-5-.01 ij = l—le
J
= X1 .-yl ,Xo. -Psaty + X» -y2 ,Xo -Psat
pcalcj 1j Y ()le 2J 1 2J Y ()XlJ 2] 2
Pcalci = Xli'ylo(li’xzi -Psatq + Xzi-y2<>(1i,xzi -Psaty
le-yl()Klj,ij Psat] Xl{yl()”i’xzi ‘Psaty

Yicale, = Ylcale, =
ca cJ Pcalcj Pcalci
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P-x,y diagram: Wilson eqn. fit to GE/RT data.

105
100
P
kPa 95
ooo
i 90
kPa
o
Pcalc 85
]
kPa 80
Pcal
calc 75
kPa
70
65 0 0.2 0.4 0.6 0.8 1

Xli’yli’le achalcj

OO0 p.x data

¢ P-ydata
— P-xcalculated
— P-ycalculated

RMS deviation in P:

(})i - Pcalci 2
RMS := Z — RMS = 0.361kPa

i

(d) BARKER'S METHOD by non-linear least squares.
Margules equation.

Guesses for parameters: answers to Part (a).

Yl(}‘l ,X2,A12,A21 = eXp|: (X2)2-[A12 + 2-()&21 -Aq -Xl]]

yz()(l ,X2,A12,A2] exp|: (Xl)z-[Azl + 2-()412 - Ay 'X2]]
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Minimize the sum of the squared errors using the Mathcad Minimize function.

Guesses: A1p =05 Ar1 =1.0

2
SSE(A12.A21 :=Z Pi— Xli'Y1(>‘1i,X2i,A12,A21 Psaty ... |

i +X2i'Y2(>(1i»X2i,A12,A21 -Psat) )
A1) o A12)  (0.644)
= Mmlmlze()SSE,Alg,Azl = ns.
Azt A1) \0.672)

pcalcj = le‘Yl(}Klj,ij,Alz,Azl -Psaty ...
+X2j-V2()’<1j,X2j,A12,A21 -Psat)

le'Yl()Klj,ij,Alz,Am -Psatq

Yicalc. =
J Pcalcj

Pcalci = Xli-vl(}li,xzi,Au,Azl -Psaty ...

+Xzi'vz(>&1i,xzi,A12,A21 -Psatp

Xli'Y1(>(li,X2i,A12,A21 -Psaty

Ylcale. =
! Pcalci

RMS deviation in P:

(})i - Pcalci 2
RMS := Z — RMS = 0.365kPa

i
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P-x-y diagram, Margules eqn. by Barker's method

105
100
Pj
kPa 95
ooog
Pj
_ 90
kPa
° g5
Pcalc.
]
kPa 80
pcalcj 75
kPa
- 70
65 0 0.2 0.4 0.6 0.8
><1i,y1i,le,Y1calcj
000 px data
¢ P-ydata
— P-x calculated
— P-ycalculated
Residuals in P and y1
2
Pi—Pcalci 1
kPa o
XXX Xx o X o © >§§ X
()’l1 YIcalc -100 0 X o % °© <o
o <><>>< x X xx<>x>< xx?““
)
o © <
0 0.2 04 0.6 0.8
X].

1

XXX Pressure residuals
¢yl residuals
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(e) BARKER'S METHOD by non-linear least squares.
van Laar equation.

Guesses for parameters: answers to Part (b).

au-xl\_z
Y]()ﬁl,x2,alz,azl =exp| ajp-| 1+
a21-x2j

a21-x2\_2
exp| ax1| 1+
a12-xl}

v2(k1.x2,a12, 201

Minimize the sum of the squared errors using the Mathcad Minimize function.

Guesses: ajp :=0.5 ap; = 1.0

2
SSE (12,221 :=Z Pi— Xli-v1(>(1i,xzi,a12,a21 Psaty ... |

i +X2i'Y2(>‘1i=X2iaaIZaa21 'PsatZ j
ai2 ) a;n)  (0.644
= Minimize()SSE,alz,a21 = ( \ Ans.
a1 ) a1 ) \0.672)

pcalcj = le-v1()x1j,X2j,a12,az1 -Psaty ...
+X2j-Y2()X1j,X2j,a12,a21 -Psatp

le'Yl()’(ljaxzj,alz,azl -Psaty

Yicalc. =
J Pcalcj

Pcalci = Xli‘Y1(>‘1i,X2i,312,a2l -Psaty ...

+Xzi-Y2(>(1i,X2i,a12,azl -Psatp

Xli'Y1(>‘1i,X2i,a12,a21 -Psaty

Ylcale. =
! Pcalci
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RMS deviation in P:

RMS = Z - RMS = 0.364kPa

P-x,y diagram, van Laar Equation by Barker's Method

105
100
95
P
kPa
ooo 90
Pj
kPa
o
Pcalc. 85
]
kPa
Pcalcj 80
kPa
75
70
65 0 0.2 0.4 0.6 0.8 1

Xli ’Y1i sxlj ’chalcj

Ooo  p.x data

¢ Pp-ydata
— P-xcalculated
— P-ycalculated
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Residuals in P and y1.

1.5
X
1
Pi_PcalCi 05 xx > ] :><
kPa o X o o
XXX % © :%
(}’L_chalo -100 ¢ s X X
i i X Xo xX x ¢
<o © X xX ¥
o
—0.5
o o °©
1 a2
0 0.2 0.4 0.6 0.8
X1,
XXX Pressure residuals
¢yl residuals
(f) BARKER'S METHOD by non-linear least squares.
Wilson equation.
Guesses for parameters: answers to Part (c).
j:=1.101 Xq.=.01-5-.01 Xy =1-Xq,
] ] ]

vi(k1.A2.A 12, 2

v2(k1.A2,A 12, 2

Minimize the sum of the squared errors using the Mathcad Minimize function.

Guesses:

exp

exp

A12 =0.5

A21 =1.0

400

[ —In(k1 +x2:A ]
Alp Ay )
+x2- -
i x1 +X2-A12 x2 +X1-A21) ]
[ —In(k2 +x1-Ay ]
-Aqp Ay )
+x1- +
i x1 +X2-A12 x2 +X1-A21) ]




2
SSE()\lz,Azl 322 Pi - Xli'Y1(>‘1i=A2i,A12, 71 -Psaty \

i +Xzi'Y2()‘1i”"2iaA 12> 21 -Psaty )

Arz) A (0.732)
= Minimize()SSE A1, 21 = ns.

Aat1) Az ) \0.663)

pcalcj = le‘Yl()xlj ,sz A12, 21 -Psaty ..
+X2j-Y2()7<1j,X2j,A12, 21 -Psaty

le'Yl()Klj ’sz A 12, 21 -Psaty

Yicalc. =
J pcalcj

Pcalci = Xli'Y1(>(1iaﬁzi,A 12, 21 -Psaty ...
+X21'Y2()‘1i,A2i,A12, 21 -Psatp

Xl{Yl()‘li,Azi,A 12, 21 -Psat]

Ylcale. =
! Pcalci

RMS deviation in P:

(}’i - Pcalci 2

RMS == Z n RMS = 0.35kPa

i
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P-x,y diagram, Wilson Equation by Barker's Method

105
100
Pj
kPa 95
ooo
Pj
S 90
kPa
° g5
Pcalc.
]
kPa 80
pcalcj 75
kPa
- 70
65 0 0.2 04 0.6 0.8
XII’Yll,XIJ achalcj
000 px data
¢ P-ydata
— P-x calculated
— P-ycalculated
Residuals in P and y1.
2
Pi_Pcalci 1 %
kPa % ©
XXX X" o X © % Xo
1.~ Ylcalc. -100 © ©
()Il i of & ,x X8 xx xQo
<o < S X x X &
o o ©
-1 O ©
0 0.2 0.4 0.6 0.8

X1,

XXX Pressure residuals
¢yl residuals
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12.6 Methyl t-butyl ether(1)/Dichloromethane--VLE data: T := 308.15-K

83.402") 0.0330

0.0141

82.202 0.0579 0.0253
80.481 0.0924 0.0416
76.719 0.1665 0.0804
72.442 0.2482 01314
68.005 0.3322 0.1975

P 65.096 o . 0.3880 | 02457
59.651 0.5036 y1-= 03636
56.833 0.5749 0.4564
53.689 0.6736 05882
51.620 0.7676 07176
50.455 0.8476 0.8238
49.926 0.9093 0.9002
49.720 ) 0.9529 ) 09502 )
— e —

x2 = () -x1 v2 = () -9

Psat] := 49.624-kPa Psaty := 85.265-kPa

Calculate EXPERIMENTAL values of activity coefficients and excess

Gibbs energy.

Y] = xl}-lll)satl Yy = xz}-]i)satz GERT = ()cl-ln()(l +x2-ln()(2

—>
GERTxI1x2 = GERT n := rows(P) n=14 1:=1.n
X1-X2
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(a) Fit GE/RT data to Margules eqn. by nonlinear least squares.
Minimize sum of the squared errors using the Mathcad Minimize function.
Guesses: Ajp:=-03 Ap1 :=-05 C:=02

SSE()A]Q_,Azl ,C = Z |:GERTi — ()Azl-xli + A12-X2i - C-Xli-xzi -Xli-xzi]z

i

A12) A12)  (-0.336)
A1 | := Minimize(PSE, A12,A21,C Aoy | =]-0535 | Ans.
c ) c ) (0195 )

(b) Plot data and fit

GeRTx1x2(x1,x2) := ()Azl-xl + Aqp-x2 - C-x1-x2
GeRT(x1,x2) := GeRTx1x2(x1,x2)-x1-x2

Iny1(x1,x2) = x22-|:A12 +2(A21— A2 -C xl + 3-C-x12]

Iny2(x1,x2) = x12-|:A21 +2(A- Ay -C x2+ 3-C-x22]

ji=1.101 X|. :=.01-j-.01 Xy =1-X.
] ] ]

GERTx1x2; 0
XXX

GeRTxlxz()Kl ,,ij 0.1
i .

ln(}li -02

ooo
In 1()9( L X0,
72 -0.3

1n(}2i

o
In 2()’( X0,
Y 1_] 2J
e 0.5

| | | |
06 0 0.2 0.4 0.6 0.8

Xli,le,XIi,le,XIi,le
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(c) Plot Pxy diagram with fit and data

y1(x1,x2) = exp()nyl (x1,x2)

v2(x1,x2) = exp(ny2(x1,x2)

Pcalc. == X1 .-Yl(}’(l.,Xz. -Psat] + X2.-Y2()K1 ,Xp -Psaty
j j 7] j i 7

le-yl(y(lj,ij Psat]

Ylcalc. =
J Pcalcj

P-x,y Diagram from Margules Equation fit to GE/RT data.

90

P.
Y 80

kPa
ooo

P

kPa 70

o

Pcalc

kPa 60
P .

calc ]

kPa 50

4
0 0 0.2 0.4 0.6 0.8
Xli,.‘mi,Xlj >Ylcale;
000 px data
¢ P-ydata
P-x calculated
— P-ycalculated
(d) Consistency Test: SGERT; = GeRTGq, ,x3. — GERT;
i i

Yl(}li,xzi ) Yli\

Slnyly2; = In| ———— — In| —

y2(>(1i,xzi ) 1)
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0.004

<>
% o o 0 Xx><
SSERTi 0f o ° 0 0% Slny1y2; o x
X 0,005 | %y X
<o X
X X
|

-0.004 X |
0 0.5 1 ~0.05 0 |

Xli X

Calculate mean absolute deviation of residuals

mean()SGERT| = 9.391 x 10_4 mean()é‘)lnyly2| = 0.021

(e) Barker's Method by non-linear least squares:
Margules Equation
_ . .
le(l ,X2,A12,A21,C =exp| (x2)7-| A12+ 2-()%21 -A1p-C x1 ...
2
| +3-C-x1

y2(>(l ,X2,A12,A21,C =exp (Xl)z-TAzl + 2-()412 — Ay —-C x2..]
+3.Cx2?

Minimize sum of the squared errors using the Mathcad Minimize function.

Guesses: A1y :=-03 Ap1 :=-05 C:=0.2

SSE()Alz,Azl,C :zz P; - Xli-ylo(]i,xzi,Alz,Azl,C -Psaty \ 2

i +X2i-vz(>&1i,xzi,A12,A21,C -Psatp )
A1) A1) (-0.364)
A1 | = Minimize(BSE,A12,A21,C A | =[-0521|  Ans
c ) c) (o023 )
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Plot P-x,y diagram for Margules Equation with parameters from Barker's
Method.

Pcalcj = le-Y1<)X1j,X2j,A12,A21,C -Psaty ...

+X2.-Y2()><1.,X2.,A12,A21,C -Psatp
j i

le'Y1<)K1j ,ij ,A12,A>1,C -Psatg

Ylcale. =
J Pcalcj

90

40 0 0.2 04 0.6 0.8

Xli’Y1i ,le »Y1calcj

000 p.x data

¢ P.ydata
— P-xcalculated
— P-ycalculated

Pcalci = X11Y1(>‘11,X21»A129A21,C 'Psatl
+X2y2(>‘13X29A127A21,C ‘Psat2
1 1 1

Xl{Yl()‘li,Xzi,Alz,Azhc -Psat;

Ylcalc. =
! Pcalci
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Plot of P and y1 residuals.

0.8
o
0.6 <o
o
l)i_Pcalci 0.4 o ©
kPa
XXX < o
(>’l~_}’1calc~ 100 g2
1 1 o
o
o
o X z 0o
0 X x X R ex
% X
X
2 X
0 0 0.5
X1,
XXX Pressure residuals
¢yl residuals
RMS deviations in P:
2
(})i - Pcalci
RMS := Z <~ RMS = 0.068kPa
n

i
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12.8

(a) Data:
0.0523 1202) 1.002")
0.1299 1.307 1.004
0.2233 1.295 1.006
0.2764 1228 1.024
0.3482 1.234 1.022
0.4187 1.180 1.049
0.5637 1.120 1.102
0.6469 1.076 1.170
0.7832 1.032 1.298
0.8576 1.016 1.393
0.9388 1.001 1.600
0.9813 ) 1,003 ) 1.404 )
n:= rows()q 1:=1.n n=13 Xy = 1—-x1.
1 1

GERT; = X1_-h’l(>1. + X2_-h’l()/2.
1 1 1

1

(b) Fit GE/RT data to Margules eqn. by linear least-squares procedure:

GERT;
Xj = X]. Y=
! X1.'X2.
1 1
Slope := slope(X,Y) Intercept := intercept(X,Y)
Slope = 0.247 Intercept = 0.286
Aq7 := Intercept Ap1 = Slope+ A2
A1x = 0.286 Ar1 = 0.534 Ans.

v1(x1,x2) = exp[sz-[Alz +2-(A21 - A12 -xlﬂ
v2(x1,x2) = exp[xlz-[Azl +2-(A12- Az -xzﬂ

GeRT(x1,x2) := xI-In(}1(x1,x2) +x2-In(}2(x1,x2)
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Plot of data and correlation:

(¢) Calculate and plot residuals for consistency test:

SGERT; := GeRTOq_ Xy — GERT;
1 1

Vl(}li,xzi ) Yli\

In| —

Y2(>(1i,X2i ) _ 1)

olnyly2; := In
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12.9

OGERT] = dlnyly2; =

3.314-10-3 0.098
-2.264-10-3 -9.153-10-5
-3.14-10-3 -0.021
-2.998-10-3 0.026
-2.874-10-3 -0.019
-2.22-10-3 5.934-10-3
-2.174-10-3 0.028
-1.553-10-3 -9.59-10-3
-8.742-10-4 9.139-10-3
2.944-104 -5.617-10-4
5.962-10-° -0.011
9.025:10-° 0.028
4.236-104 -0.168

Calculate mean absolute deviation of residuals:

mean(ﬁaGERﬂ — 1.615% 107>

Based on the graph and mean absolute deviations,

0.1

0.05

Slnyly2;
XXX

mean() 81ny1y2| = 0.03

the data show a high degree of consistency

Acetonitrile(1)/Benzene(2)-- VLE data

31.957))
33.553
35.285
36.457
36.996
37.068
36.978
36.778
35.792
34.372
32.331
30.038 )

-kPa

X1 :

0.0455
0.0940
0.1829
0.2909
0.3980
0.5069
0.5458
0.5946
0.7206
0.8145
0.8972
0.9573 )

411

T :=318.15-K

y1:

0.1056
0.1818
0.2783
0.3607
0.4274
0.4885
0.5098
0.5375
0.6157
0.6913
0.7869
0.8916 )




—> e —
x2 = () = x1 va:= (N -v1
Psat] := 27.778-kPa Psaty := 29.819-kPa

Calculate EXPERIMENTAL values of activity coefficients and excess
Gibbs energy.

e e
y1-P y2-P >
e e = — GERT :=(x1:In + x2:1n
Yl x1-Psaty 2 x7-Psaty <>(1 ()(1 ()(2
—
GERT .
GERTx1x2 := n := rows(P) n=12 1:=1.n
X1-X2

(a) Fit GE/RT data to Margules eqn. by nonlinear least squares.
Minimize sum of the squared errors using the Mathcad Minimize function.
Guesses: Ajp:=-03 Ap1:=-05 C:=02

2
SSE()A]Q_,Azl ,C = Z |:GERTi - ()Azl-xli + A12-X2i — C-Xli-xzi -Xli-xzi]

i

A12) A1) (1.128)

A1 | = Minimize(BSE,A12,A21,C Aoy | =] 1.155 | Ans.

c ) c ) \053)
(b) Plot data and fit

GeRTx1x2(x1,x2) == (M21-x1 + Ajp-x2 = C:x1-x2

GeRT(x1,x2) := GeRTx1x2(x1,x2)-x1-x2

Iny1(x1,x2) = x22-[A12 +2(A21— A - C xl+ 3-c-x12]

Iny2(x1,x2) = xlz-[Azl +2(A- Ay -C x2+ 3-c-x22]

j:=1.101 X|. :=.01-j-.01 Xy i=1-X].
] ] ]
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GERTx1x2;

XXX

GeRTx1x2 ()S(l ., ij
]

ln(}li

ooo
In 1()5( L Xs.
Y 1J 2J

1n(}2i

o
In 2()’( X9,
Y 1_] 2J

0 0.2 0.4 0.6 0.8
Xli’le ’Xli’le ’Xli’le

(c) Plot Pxy diagram with fit and data

v1(x1,x2) = exp()nyl(xl ,X2)

v2(x1,x2) = exp()nyZ(xl ,X2)

Pealc, = X1.-Y1()X1A,X2A -Psaty +X2:Y2()’<1.,X2. ‘Psatp
J J ] ] ] J J

X1.-Y1(}’<1.,X2. -Psat
j i

Ylcalc. ==
J Pcalcj
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P-x,y Diagram from Margules Equation fit to GE/RT data.

38
Pj 36
kPa
ooo
Py 34
kPa
o
Pcale 32
kPa
— 30
P
cach
kPa 28
26 0 0.2 0.4 0.6 0.8
Xli,yli,le,ylcalcj
000 px data
¢ P-ydata
— P-xcalculated
— P-ycalculated
(d) Consistency Test: SGERT; = GeRTGq, ,x3. — GERT;
1 1
Y1(><1i,xzi ) Yli\
dlnyly2; .= In| ——— —In| —
2()( , X
Y 1, X2, ] Yzi )
0.004
X
X X
o o 0 XXX x
SGERT; 0 ° o 0 %
. i o o0 o Slnyly2; %
o XXX 0.025
|
—0.004 |
0 0.5 1 —0.05 0 0.3
X1
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Calculate mean absolute deviation of residuals

mean()SGERT| = 6.237 x 10_4 mean()Slny1y2| = 0.025

(e) Barker's Method by non-linear least squares:
Margules Equation
_ . .
le(l ,X2,A12,A21,C =exp| (x2)"-| A12+ 2-()421 -A1;p-C x1 ...
2
| +3-C-x1

v2(k1.x2,A12,A21,C = exp| (x)*[ Az +2:(A12 - A2y —C x2..]
+3.Cx2”

Minimize sum of the squared errors using the Mathcad Minimize function.

Guesses: Ajp:=-03 Ap1 :=-05 C:=02

SSE()Alz,Azl,C zzz P; - Xli-yloﬁli,xzi,Alz,Azl,C -Psaty \ 2

i +X2i'Y2(>‘1iaxzi,A12,A21,C -Psatp )
A12) Az) (1114
A1 | := Minimize(BSE,A12,A21,C Az1 | =11.098 | Ans.
c) c ) \0387)

Plot P-x,y diagram for Margules Equation with parameters from Barker's
Method.

Pcalcj = le-ﬁ{l(yﬁj,XQj,Alg,Azl,C -Psaty ...
+X2.'Y2()K1.,X2.,A12,A21,C -Psat)
J ] ]

le'Y1<)le,X2j,A12,A21,C -Psaty

Ylcalc. =
J Pcalcj
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38

Py 36
kPa
ooo
P; 34
kPa
Lo
Pcalc. 32
kPa
- 30
Pcalc.
kPa 28
26

0 0.2 04 0.6 0.8
Xli ,}’Ii ’le a}’lcalcj

000 px data

¢ Pp-ydata
—  P-x calculated
— P-ycalculated

Pcalci = XIIYI(>(117X219A129A2],C 'Psatl
+X2.'Y2(>‘1.,Xz.,A12,A21,C -Psaty
1 1 1

Xli'Y1(>(1i,X2i,A12,A21,C -Psat;

Ylcale. =
! Pcalci
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Plot of P and y1 residuals.

0.6
04
Pi—Pcalc.
1 0.2
kPa

X

XX X
(Y17 ¥1cate; 100 0|
<

—0.2

-0.4

0.5

Xli

XXX Ppressure residuals

o

RMS deviations in P:

RMS Z (})1 - I:l(:alci 2

i

y1 residuals

RMS = 0.04kPa
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12.12 It is impractical to provide solutions for all of the systems listed in the
table on Page 474 we present as an example only the solution for the
system 1-propanol(1)/water(2). Solutions for the other systems can be
obtained by rerunning the following Mathcad program with the appropriate
parameter values substituted for those given. The file WILSON.mcd
reproduces the table of Wilson parameters on Page 474 and includes the
necessary Antoine coefficients.

Antoine coefficients:

1-Propanol: Al :=16.1154 Bl := 3483.67-K CI = 205.807-K

Water: A2 = 16.3872 B2 := 3885.70-K C2 :=230.170-K
_ a1 _
Psat(T) := exp| Al — -kPa
i (T -273.15-K) + C1 |
_ B _
Psaty(T) := exp| A2 — -kPa
i (T-273.15K) + C2 |
Parameters for the Wilson equation:
cm cm’
V1 =75.14— V2 = 18.07-—
mol mol
cal cal
al2 := 77548 — a2l :=1351.90-—
mol mol
V2 —al2 \Y! —a2l
A12(T) = —=exp| =2 ) A21(T) = ~—-exp| — )
\%! RT) V2 RT)
A12(T) A21(T) )
exp| x2- -
x1 +x2-A12(T) x2+x1-A21(T))
y1(x1,x2,T) :=
(k1 +x2-A12(T)
A12(T) A21(T) )
exp| —x1- -
x1 +x2-A12(T) x2+x1-A21(T)j
v2(x1,x2,T) =

(k2 + x1-A21(T)
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P-x,y diagram at

Guess:

Given

P := 70-kPa

P = x1-y1(x1,1 - x1,T)-Psat;(T) ...

T = (60 +273.15)-K

+(1 = x1)-y2(x1,1 - x1,T)-Psaty(T)

Peq(x1) := Find(P)

x1-yl(x1,1—x1,T)-Psat;(T)

yeq(x1) : Peq(x1)
X = yeq(x) =

0 0
0.05 0.315
0.1 0.363
0.15 0.383
0.2 0.395
0.25 0.404
0.3 0.413
0.35 0.421
0.4 0.431
0.45 0.441
0.5 0.453
0.55 0.466
0.6 0.483
0.65 0.502
0.7 0.526
0.75 0.556
0.8 0.594
0.85 0.646
0.9 0.718
0.95 0.825

1 1

Peq(x)
kPa

20.007

28.324

30.009

30.639

30.97

31.182

31.331

31.435

31.496

31.51

31.467

31.353

31.148

30.827

30.355

29.686

28.759

27.491

25.769

23.437

20.275

419
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P,x,y Diagram at T = 333.15K

32 :

Peq(x)
kPa

Peq(x)
kPa

X, yeq(x)

12.13 Itis impractical to provide solutions for all of the systems listed in the
table on Page 474; we present as an example only the solution for the
system 1-propanol(1)/water(2). Solutions for the other systems can be
obtained by rerunning the following Mathcad program with the
appropriate parameter values substituted for those given. The file
WILSON.mcd reproduces the table of Wilson parameters on Page 474
and includes the necessary Antoine coefficients.

Antoine coefficients:

1-Propanol: Al := 16.1154 B1 :=3483.67-K Cl = 205.807-K

Water: A2 :=16.3872 B2 := 3885.70-K C2 :=230.170-K
_ a1 -
Psat1(T) = exp| Al — -kPa
i (T -273.15-K) + C1 |
_ B -
Psaty(T) = exp| A2 — -kPa
i (T-273.15-K) + C2 |
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Parameters for the Wilson equation:

3 3
V1 = 75.14- S V2 = 18.07- 2L
mol mol
cal cal
al2 .= 77548 — a2l :=1351.90-——
mol mol
2 ~al2 1 —a21
AI2(T) = 2 exp| 22 ) A21(T) = L exp| 22 )
\%! R-T) V2 RT)
A12(T) A21(T) )
exp| x2- -
x1 +x2-A12(T)  x2 +x1-A21(T) )
y1(x1,x2,T) :=
(k1 +x2-A12(T)
A12(T) A21(T) )
PP X A2 2 exlA2l T))
2(x1,x2,T) = X1+ x2 A x2 +x1A21(T)

(k2 + x1-A21(T)
T-x,y diagram at P := 101.33-kPa

Guess: T:=(90+273.15)-K
Given _
P = xI-y1(x1,1 —x1,T)-Psat;(T) ...
+ (1 —x1)-y2(x1,1 —x1,T)-Psaty(T)
Teq(x1) := Find(T)

x1-yI(x1,1 —x1,Teq(x1))-Psat;(Teq(x1))
P

yeq(x1) =

x:=0,0.05..1.0
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0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95

yeq(x) =

Teq(x) _
—K =

0.304

373.149

0.358

364.159

0.381

362.476

0.395

361.836

0.407

361.49

0.418

361.264

0.429

361.101

0.44

360.985

0.453

360.911

0.468

360.881

0.484

360.904

0.504

360.99

0.527

361.154

0.555

361.418

0.589

361.809

0.631

362.364

0.686

363.136

0.759

364.195

0.858

365.644

367.626

370.349

T,x,y Diagram at P := 101.33-kPa

375

Teq(x) 370
K

Teq(x)

360 0

X, yeq(x)
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12.14 It is impractical to provide solutions for all of the systems listed in the
table on Page 474; we present as an example only the solution for the
system 1-propanol(1)/water(2). Solutions for the other systems can be
obtained by rerunning the following Mathcad program with the
appropriate parameter values substituted for those given. The file
NRTL.mcd reproduces the table of NRTL parameters on Page 474 and
includes the necessary Antoine coefficients.

Antoine coefficients:

1-Propanol: Al := 16.1154 B1 := 3483.67-K Cl1 :=205.807-K

Water: A2 :=163872  B2:=3885.70-K  C2 :=230.170-K
_ . _
Psat(T) := exp| Al — -kPa
i (T -273.15K) + C1 _
_ o _
Psaty(T) := exp| A2 — -kPa
| (T —273.15-K) + C2 |
Parameters for the NRTL equation:
1 1
b12 = 500.40- = b21 = 1636.57 a = 0.5081
mol mol
b12
T12(T) == — b21
) 21(T) = —
R-T (T) T
G12(T) := exp(Fo- 12(T) G21(T) := exp(}ao- 21(T)
o -
2 G21(T) )

1(x1,x2,T) :=exp| x27-| 121(T)-
vi( ) P ( )(xl+x2-G21(T))

G12(T)-t12(T)

(x2 +x1-G12(T))*

G12(T) )’
x2+x1-GI12(T) )
G21(T)-121(T)

v2(x1,x2,T) := exp| x1™ 112(T)-(

(x1 +x2-G21(T))*
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P-x,y diagram at T := (60 + 273.15)-K
Guess: P := 70-kPa
Given _
P = x1-yl(x1,1 —x1,T)-Psat;(T) ...
+ (1 —x1)-y2(x1,1 —x1,T)-Psaty(T)

Peq(x1) := Find(P)

x1-yl(x1,1—x1,T)-Psat;(T)

yeq(x1) : Poqel) x :=0,0.05..1.0
Peq(x)
X = yeq(x) = re

0 0 20.007
0.05 0.33 28.892
0.1 0.373 30.48
0.15 0.382 30.783
0.2 0.386 30.876
0.25 0.39 30.959
0.3 0.395 31.048
0.35 0.404 31.127
0.4 0.414 31.172
0.45 0.427 31.163
0.5 0.442 31.085
0.55 0.459 30.922
0.6 0.479 30.657
0.65 0.503 30.271
0.7 0.531 29.74
0.75 0.564 29.03
0.8 0.606 28.095
0.85 0.659 26.868
0.9 0.732 25.256
0.95 0.836 23.124

1 1 20.275
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P,x,y Diagram at T = 333.15K

35

Peq(x)
kPa

Peq(x)
kPa

X, yeq(x)

12.15 Itis impractical to provide solutions for all of the systems listed in the
table on Page 474; we present as an example only the solution for the
system 1-propanol(1)/water(2). Solutions for the other systems can be
obtained by rerunning the following Mathcad program with the
appropriate parameter values substituted for those given. The file
NRTL.mcd reproduces the table of NRTL parameters on Page 474 and
includes the necessary Antoine coefficients.

Antoine coefficients:
1-Propanol: Al = 16.1154 B1 := 3483.67-K Cl := 205.807-K

Water: A2 :=16.3872 B2 := 3885.70-K C2 :=230.170-K
_ B -
Psat1(T) = exp| Al — -kPa
i (T -273.15-K) + C1 |
_ B -
Psaty(T) = exp| A2 — -‘kPa
i (T-273.15-K) + C2 |
Parameters for the NRTL equation:
cal cal
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12
t12(T) = %

G12(T) := exp(fm- 12(T)

21
21(T) = %

G21(T) := exp(}m- 21(T)

2
G21(T
y1(x1,x2,T) := exp X22- 121(T)- (D \
x1 +x2-G21(T) )
G12(T)-t12(T)
i (x2 +x1-G12(T))* |
o a2m V|
v2(x1,x2,T) :=exp| x17:| 112(T)-
x2 +x1-G12(T) )
G21(T)-121(T)
i (x1 +x2-G21(T))* |
T-x,y diagram at P := 101.33-kPa
Guess: T :=(90+273.15)-K
Given

P=xI-y1(x1,1 —x1,T)-Psat;(T) ...

+(1 - x1)y2(x1,1 - x1,T)-Psaty(T)

Teq(x1) := Find(T)

x1-y1(x1,1 —x1,Teq(x1))-Psat;(Teq(x1))

yeq(x1) :=

P
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x:=0,0.05..1.0

0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95

yeq(x) =

Teq(x)
—K =

0.32

373.149

0.377

363.606

0.394

361.745

0.402

361.253

0.408

361.066

0.415

360.946

0.424

360.843

0.434

360.757

0.447

360.697

0.462

360.676

0.48

360.709

0.5

360.807

0.524

360.985

0.552

361.262

0.586

361.66

0.629

362.215

0.682

362.974

0.754

364.012

0.853

365.442

367.449

370.349

T,x,y Diagram at P := 101.33-kPa

375

Teq(x) 370
K

Teq(x)

360

X, yeq(x)
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12.16 It is impractical to provide solutions for all of the systems listed in the
table on Page 474; we present as an example only the solution for the
system 1-propanol(1)/water(2). Solutions for the other systems can be
obtained by rerunning the following Mathcad program with the appropriate
parameter values substituted for those given. The file WILSON.mcd
reproduces the table of Wilson parameters on Page 474 and includes the
necessary Antoine coefficients.

Antoine coefficients:
1-Propanol: Al = 16.1154 B1 := 3483.67-K Cl := 205.807-K
Water: A2 = 16.3872 B2 := 3885.70-K C2 :=230.170-K

B1
Psat1(T) = exp| Al — -kPa
i (T-273.15-K) + C1 |

B2
Psaty(T) := exp| A2 —
i (T -273.15-K) + C2 |

-kPa

Parameters for the Wilson equation:

3
V1 = 75.14- 22 V2 = 18.07 L
mol mol

al2 = 775.48 2L 21 = 1351.90. 2L

mol mol

V2 —al2 Vi —a21
A12(T) = —=exp| =2 ) A21(T) = ~—exp| — )
\%! RT) V2 RT)

{ [ A12(T) A21(T) \}
exp| x2- —

1(x1,x2,T) = x1 +x2-A12(T)  x2+x1-A21(T) )
T (k1 +x2-A12(T)

[ [ A12(T) A21(T) \}
exp| —x1- _

2x1,x2,T) = x1 +x2-A12(T)  x2+x1-A21(T) )
B (k2 + x1-A21(T)
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(a) BUBL P: T :=(60+273.15)-K x1 =03 x2:=1-xl

Guess: P :=101.33-kPa yl =04 y2:=1-yl
Given yl-P = xI-y1(x1,x2,T)-Psati(T)
yl+y2=1
y2-P = x2-y2(x1,x2,T)-Psaty(T)
Poubl )
yl | :=Find(P,yl,y2)
y2 )
Ppubl = 31.33kPa yl = 0.413 y2 = 0.587 Ans.
(b) DEW P: T := (60 +273.15)-K yl :=0.3 y2:=1-yl
Guess: P := 101.33-kPa x1 := 0.1 x2 :=1-xl1
Given yl1-P = x1-y1(x1,x2,T)-Psat;(T)
xl+x2=1
y2-P = x2-y2(x1,x2,T)-Psaty(T)
Pdew\
x1 | := Find(P,x1,x2)
x2 j
Pgew = 27.79kPa x1 = 0.042 x2 = 0.958 Ans.

(c) P,T-flash Calculation

Pdew + Pbubl
pi= — 0 T := (60 + 273.15)-K 21 := 0.3

2
Guess: V=05 x1:=0.1 x2:=1-yl
yl :=0.1 y2 = 1-xl
Given x1-y1(x1,x2,T)-Psat; (T)
yl = x1+x2 =1
P
x2-y2(x1,x2,T)-Psaty(T)
y2 = yl+y2=1

P
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x1-(1-V)+yl-V =zl  Eq.(10.15)

xl\

x2
yl | = Find(x1,x2,y1,y2,V)
y2
V)

x1 = 0.08 x2 =092 yl = 0351 y2=10.649 V =0.813

(d) Azeotrope Calculation

Test for azeotrope at: T := (60 +273.15)-K
v1(0,1,T) = 21.296 v2(1,0,T) = 4.683
v1(0,1,T)-Psat(T)
al2g = al2y = 21.581
Psaty(T)
Psatq(T)
al2;: al2; =0.216

~ y2(1,0,T)-Psaty(T)

Since one of these values is >1 and the other is <1, an azeotrope exists.
See Ex. 10.3(e)

Guess: P :=10133-kPa  x1:=03 x2:=1-yl
yl =03 y2 =1-xlI
Given yl-P = x1-y1(x1,x2,T)-Psat|(T)
y2-P = x2-y2(x1,x2,T)-Psaty(T)
xl+x2=1 yl+y2=1 xl =yl
x1 \
x2
yl | := Find(x1,x2,y1,y2,P)
y2
Paz]
Py, = 31.511kPa x1 = 0.4386 yl = 0.4386 Ans.
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12.17

It is impractical to provide solutions for all of the systems listed in the
table on Page 474; we present as an example only the solution for the
system 1-propanol(1)/water(2). Solutions for the other systems can be
obtained by rerunning the following Mathcad program with the
appropriate parameter values substituted for those given. The file
NRTL.mcd reproduces the table of NRTL parameters on Page 474 and
includes the necessary Antoine coefficients.

Antoine coefficients:

1-Propanol: Al := 16.1154 B1 := 3483.67-K Cl1 :=205.807-K

Water: A2 :=16.3872 B2 := 3885.70-K C2 :=230.170-K
_ a1 -
Psat(T) := exp| Al — -kPa
i (T-273.15-K) + C1 |
_ B -
Psaty(T) := exp| A2 — -kPa
i (T -273.15-K) + C2 |
Parameters for the NRTL equation:
cal cal
bl2 = 500.40~m b2l = 1636.57~m—01 o = 05081
b12
t12(T) == — b21
) 21(T) = —
R-T (1) = o=
G12(T) := exp(Fo- 12(T) G21(T) := exp(fao- 21(T)
_ _ R
2 G2I(T)

1(x1,x2,T) :=exp| x27-| 121(T)-
vi( ) P ( )(xl+x2-G21(T))

G12(T)-t12(T)

(x2 +x1-G12(T))*

G12(T) )’
x2+x1-GI12(T) )
G21(T)-121(T)

v2(x1,x2,T) := exp| x1™ 112(T)-(

(x1 +x2-G21(T))*
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(a) BUBL P: T := (60 +273.15)-K x1:=0.3 x2:=1-xl1

Guess: P := 101.33-kPa yl =04 y2i=1-yl
Given yl1-P = x1-y1(x1,x2,T)-Psat{(T)
yl+y2=1
y2-P = x2-y2(x1,x2,T)-Psaty(T)
Phubl |
yl | :=Find(P,yl,y2)
y2 )
Ppubl = 31.05kPa yl = 0.395 y2 = 0.605 Ans.
(b)) DEWP: T :=(60+273.15)-K yl :=0.3 y2:=1-yl
Guess: P := 101.33-kPa x1 :=0.1 x2 :=1-xl1
Given _
yl-P = x1-y1(x1,x2,T)-Psaty(T)
xl+x2=1
y2-P = x2-y2(x1,x2,T)-Psaty(T)
Pdew\
x1 | := Find(P,x1,x2)
x2 j
Pgew = 27.81kPa x1 = 0.037 x2 = 0.963 Ans.
(c) P,T-flash Calculation
Pdew + Poubl
P = % T := (60 + 273.15)-K z1:=03
Guess: V=05 x1 = 0.1 x2 :=1-yl
yl :=0.1 y2 =1-xlI
x1-y1(x1,x2,T)-Psaty(T)
Given yl = > xl+x2=1
x2-y2(x1,x2,T)-Psaty(T)
y2 = b yl+y2=1

x1-:(1-V)+yl-V=2z1 Eq.10.15)

432



Xl\

x2
yl | = Find(x1,x2,y1,y2,V)
y2
V)

x1 = 0.06 x2 = 0.94 yl =0345 y2 =0.655 V =0.843

(d) Azeotrope Calculation

Test for azeotrope at: T := (60 + 273.15)-K

v1(0,1,T) = 19.863 v2(1,0,T) = 4.307
v1(0,1,T)-Psat(T)
al2g = al2y = 20.129
Psaty(T)
Psatq(T)
al2) = al2; = 0.235

v2(1,0,T)-Psaty(T)

Since one of these values is >1 and the other is <1, an azeotrope exists.
See Ex. 10.3(e).

Guess: P :=101.33-kPa  xI:=0.3 X2 = 1-xl
yl :=0.3 y2 =1-xlI
Given yl-P = x1-y1(x1,x2,T)-Psat;(T)
y2-P = x2-y2(x1,x2,T)-Psaty(T)
xl+x2=1 yl+y2=1 xl =yl
x1 \
x2
yl | := Find(x1,x2,y1,y2,P)
y2
Paz]
Py, = 31.18kPa x1 = 0.4187 yl = 0.4187 Ans.
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12.18

It is impractical to provide solutions for all of the systems listed in the
table on Page 474; we present as an example only the solution for the
system 1-propanol(1)/water(2). Solutions for the other systems can be
obtained by rerunning the following Mathcad program with the
appropriate parameter values substituted for those given. The file
WILSON.mcd reproduces the table of Wilson parameters on Page 474
and includes the necessary Antoine coefficients.

Antoine coefficients:

1-Propanol: Al = 16.1154 Bl := 3483.67-K CI :=205.807-K

Water: A2 :=16.3872 B2 := 3885.70-K C2 :=230.170-K
_ a1 -
Psat(T) := exp| Al — -‘kPa
i (T -273.15-K) + C1 |
_ B -
Psaty(T) := exp| A2 — -kPa
(T -273.15-K) + C2 |
Parameters for the Wilson equation:
cm3 cm3
V1 :=75.14.— V2 :=18.07-—
mol mol
cal cal
al2 := 77548 — a2l :=1351.90.-—
mol mol
V2 —al2 Vi —a2l
A12(T) = —=exp| =2 ) A21(T) = ~—-exp| — )
\%! R-T) V2 R-T)

{ [ A12(T) A21(T) \}
exp| x2- -

1(x1,x2,T) = x1 +x2-A12(T)  x2+x1-A21(T) )
T (k1 + x2-A12(T)

[ [ A12(T) A21(T) \}
exp| —x1- —

2(x1,x2,T) = x1 +x2-A12(T)  x2+x1-A21(T) )
R (k2 +x1-A21(T)
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(a) BUBL T: P := 101.33-kPa x1 :=0.3 x2 :=1-x1

Guess: T := (60 +273.15)-K yl :=0.3 y2:=1-yl
Given yl-P = x1-y1(x1,x2,T)-Psat|(T)
yl+y2=1
y2-P = x2-y2(x1,x2,T)-Psaty(T)
Thubl )
yl | := Find(T,yl,y2)
y2 )
Tpubl = 361.1K yl = 0.418 y2 = 0.582  Ans.
(b)) DEWT: P :=101.33-kPa yl :=0.3 y2:=1-xl1
Guess: T := (60 + 273.15)-K x1 := 0.1 x2:=1-yl
Given yl-P = x1-y1(x1,x2,T)-Psaty(T)
xl+x2=1
y2-P = x2-y2(x1,x2,T)-Psaty(T)
Tdew\
x1 | = Find(T,x1,x2)
x2 )
Tdew = 364.28K x1 = 0.048 x2 = 0.952 Ans.

(c) P,T-flash Calculation

Tdew + Toubl
g P = 10133-kPa  z1:=03

2
Guess: V=05 xl:=0.1 x2:=1-yl
x1-y1(x1,x2,T)-Psat1(T)
Given  yl = > xl+x2 = 1
x2-y2(x1,x2,T)-Psaty(T)
y2 = yl+y2=1

P
xl-(1-V)+yl-V=1zI Eq. (10.15)
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Xl\

x2

yl | := Find(x1,x2,y1,y2,V)

y2

V)
x1 = 0.09 x2 = 091 yl =0.35

(d) Azeotrope Calculation

Test for azeotrope at: P := 101.33-kPa

Tbl

Tb2

y1(0,

OL120 .

OL121 .

= Cl\ +273.15-K

)
B ) arask

B1

_ Al - h{i\

kPa )

B2

)

y2 = 0.65

A2 — ln(ga j )

1,Tb2) = 16.459

v1(0,1,T)-Psat; (Tb2)
P

P
v2(1,0,T)-Psaty(Tbl)

V = 0.807

Tbl = 370.349K

Tb2 = 373.149K

v2(1,0,Tb1) = 3.779

al2p = 19.506

al2; = 0.281

Since one of these values is >1 and the other is <1, an azeotrope exists.

See Ex. 10.3(e).
T := (60 + 273.15)-K

Guesses:

xl1 =04 x2:=1-yl

yl =04 y2:=1-x1

Given yl-P=x1-yl(x1,x2,T)-Psatj(T) x1+x2=1

y2-P = x2-y2(x1,x2,T)-Psatp(T) yl +y2 =1 xl =yl
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12.19

Xl\

x2
yl | := Find(x1,x2,y1,y2,T)
y2
Taz}

Taz = 360.881K x1 = 0.4546 yl = 0.4546 Ans.

It is impractical to provide solutions for all of the systems listed in the
table on page 474; we present as an example only the solution for the
system 1-propanol(1)/water(2). Solutions for the other systems can be
obtained by rerunning the following Mathcad program with the
appropriate parameter values substituted for those given. The file
NRTL.mcd reproduces the table of NRTL parameters on Page 474 and
includes the necessary Antoine coefficients.

Antoine coefficients:

1-Propanol: Al := 16.1154 B1 :=3483.67-K CI := 205.807-K

Water: A2 = 16.3872 B2 := 3885.70-K C2 :=230.170-K
_ - _
Psat](T) = exp| Al — -kPa
| (T -273.15-K) + C1 |
_ B _
Psaty(T) := exp| A2 — -kPa
| (T —273.15-K) + C2 |
Parameters for the NRTL equation:
1 1
b12 := 500.40-—— b21 = 1636.57 —— o = 0.5081
mol mol
bl12
t12(T) == — b21
i 221(T) = —
R-T (1) = o=
G12(T) := exp(Fo- 12(T) G21(T) := exp(}u- 21(T)
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G21(T) )’

x1 +x2-G21(T) )
G12(T)-t12(T)

y1(x1,x2,T) := exp| x2" r2l(T)-(

(x2 +x1-G12(T))*

G12(T) )’

x2 + x1-G12(T) )
G21(T)-t21(T)

2(x1,x2,T) = exp| x1% 112(T)-(

(x1 +x2-G21(T))*

(@ BUBLT: P :=101.33-kPa x1:=0.3 x2 = 1-xl
Guess: T := (60 + 273.15)-K yl =03 y2:=1-yl
Given  yl-P = x1-y1(x1,x2,T)-Psat|(T)
yl+y2=1
y2-P = x2-y2(x1,x2,T)-Psaty(T)
Thubl )
yl | :=Find(T,yl,y2)
y2 )
Thubl = 360.84K yl = 0.415 y2 = 0.585 Ans.
(b)) DEWT: P :=101.33-kPa yl :=0.3 y2 :=1-x1
Guess: T :=(90+273.15)-K x1 := 0.05 x2:=1-yl
Given yl-P = x1-y1(x1,x2,T)-Psat(T)
y2-P = x2.2(x1,x2,T)-Psato(T) xl+x2=1
Tdew\
x1 | = Find(T,x1,x2)
x2 )
Tdew = 364.27K x1 = 0.042 x2 = 0.958  Ans.
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(c) P,T-flash Calculation

V =0.816

T + Thubl
- M P := 101.33-kPa z1 =03
Guess: V=05 x1 :=0.1 x2:=1-yl
yl :=0.1 y2 =1-xl1
x1-y1(x1,x2,T)-Psaty(T)
Given yl = > xl+x2=1
x2-y2(x1,x2,T)-Psaty(T)
y2 = yl+y2=1
P
x1-(1 =V)+yl-V =zl Eq.(10.15)
xl\
x2
yl | := Find(x1,x2,y1,y2,V)
y2
V)
x1 = 0.069 x2 = 0.931 yl = 0352 y2 =0.648
(d) Azeotrope Calculation
Test for azeotrope at: P := 101.33-kPa
i Bl )
Tbl := —P\ Cl ' +273.15-K Tbl = 370.349K
Al - ln(
I kPa) ) 1
i B2 \
Tb2 = —\ C2'+273.15-.K Tb2 = 373.149K
A2 - (
I kPa) ) 1

v1(0,1,Tb2) = 14.699
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12.20

v1(0,1,T)-Psat(Tb2)
- P

al2g: al2g = 17.578

P
al2 = al2; =0.27
v2(1,0,T)-Psaty(Tbl)

Since one of these values is >1 and the other is <1, an azeotrope exists.
See Ex. 10.3(e). Guesses:

T :=(90+273.15)-K x =04 x2:=1-yl yl=04 y2:=1-x1

Given yl-P = x1-y1(x1,x2,T)-Psat|(T) xl+x2=1

y2-P = x2-y2(x1,x2,T)-Psatp(T) yl+y2=1 xl =yl
x1 \
x2
yl | := Find(x1,x2,y1,y2,T)
y2
Tas)
Taz = 360.676K x1 = 0.4461 yl = 0.4461 Ans.

Molar volumes & Antoine coefficients:

74.05 14.3145) 2756.22) 228.060
V:=14073| A:=[165785| B:=[363827| C:=]239.500 |
18.07 ) 16.3872 ) 3885.70 ) 230.170 )
Bi
Psat(i,T) := exp| Aj— - \ -‘kPa T := (65 +273.15)K
— —273.15 |+ C;
K )
0 -161.88 291.27)
Wilson parameters: a:=| 583.11 0 107.38 |i11
(0]

m
1448.01 469.55 0 )
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1

V: —a; \
.. j i, ] . .
AG,),T) = —exp| — i=1.3 =1.3 =1.3
(1,j,T) v p(R.TJ J p

(a) BUBL P calculation: No iteration required.

x1:=0.3 xy =04 x3:=1-x1—-x2
v(,x,T) = exp_ 1- _ln|:z ()(j-A(i,j,T) } 1]
j
.\ xpA(p,i,T)
=~ (kA5
L L J .

xi-y (1,x,T)-Psat(i, T)

Ppubl = iy (1,x,T)-Psat(i, T) yi =
Z O( Pbubl
1
0.527 )
y =|0367 | Ppubl = 117.1kPa Ans.
0.106 )
(b) DEW P calculation:
y1:=0.3 yp =04 yv3:=1-y1—y2
Guess:  x1 :=0.05 xp =02 x3:=1-x1-xp P := Ppubl
Given
P-y1 = x1-v(1,x,T)-Psat(1,T) P-yr = x2-7(2,x,T)-Psat(2,T)
P-y3 = x3-y(3,x,T)-Psat(3,T) Z xi =1
X1 ) !
X2
= Find()(l ,X2,%x3,P
X3
Pdewj
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Piw S OUIRRE  yp

_ Pdew * Poubl
2

(c) P,T-flash calculation: P : T =338.15K

z1 =03 7 =04 z3=1-21—-27

Guess: V:=0.5 Use x from DEW P and y from BUBL P as initial

guess.
Given
P-y; = x1-v(1,x,T)-Psat(1,T) x1-(1=-V)+y;-V =z
P-yy = x5-v(2,x,T)-Psat(2,T) x2:(1=V)+yy V=2
P-y3 = x3-v(3,x,T)-Psat(3,T) x3:(1-V)+y3V=23
IRETIND Y
i i

X1 )

X2

X3

y1 | = Find()(l,xz,X3,y1,yz,y3,V

y2

Ans.
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12.21 Molar volumes & Antoine coefficients:

Antoine coefficients:

74.05 ) 14.3145)) 2756.22) 228.060 )
V:=14073| A:=|165785| B:=|363827| C:=]239.500 |
18.07 ) 16.3872 ) 3885.70 ) 230.170 )
. Bj
T :=(65+273.15K Psat(i,T) := exp| Aj— - \ -kPa
(——273.15 +Cj
NRTL parameters: K )
0 03084 0.5343) 0 18470 631.05 )
1
o:=]03084 0 02994 | bi=|20264 0 -253.88 |-i1
mo
0.5343 02994 0 ) 1197.41 84521 0 )
1=1.3 ji=1.3
l=1.3 k:=1.3 77 RT b by

(a) BUBL P calculation: No iteration required.

x1 =03 xy =04 x3:=1-x1—-Xx2

> (i.Giixg |

J

S (i

1

v(1,x,T) = exp

> (e G|
. Xj'Gi,j . Kk
JZ > (B ! > (B

1 1

. . X]Y(I,X,T)Psat(l,T)
Ppupl = i-v(i,x,T)-Psat(i, T) yi =
Z O( Pbubl
1
0.525)
y=| 037 | Ppubl = 115.3kPa Ans.
0.105 )
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(b) DEW P calculation:

y1 =03 y2 =04 y3=1-y1—-y2
Guess: x1 := 0.05 xp :=0.2 x3:=1-x1—-x%x2 P := Ppypi
Given
PYl = X1Y(1 9X9T)'Psat(1 7T) PY2 = X2"Y(2,X,T)'Psat(2,T)
P-y3 = x3-v(3,x,T)-Psat(3,T) Z xi=1
X1 ) !
X2
= Find()(l ,X2,%x3,P
X3
Pdew}
0.038
x=|0.192 | Pgew = 68.9kPa Ans.
0.77 )
_ Pdew + Poubl

(c¢) P,T-flash calculation: P := T = 338.15K

2
z1:=0.3 7y =04 z3:=1-2z1-2p

Guess: V :=0.5 Use x from DEW P and y from BUBL P as initial

guess.

Given P-yj = x1-y(1,x,T)-Psat(1,T) x1(1=V)+y1-V = 74
P-yy = x5-v(2,x,T)-Psat(2,T) x2:(1=-V)+y2-V=2
P-y3 = x3-y(3,x,T)-Psat(3,T) x3 (1 =V)+y3V=2z3

in=1 Zyi=l
i

i
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X1 )
X2

X3

Y1 1=Find(){l,xz,X3,y1,Y2,y3,V

y2
3
V)
0.118) 0.391")
x =|0.347 | y = | 0.426 | V = 0.667 Ans.
0.534 ) 0.183 )

12.22 Molar volumes & Antoine coefficients:

74.05 14.3145) 2756.22) 228.060
V:=14073| A:=[165785| B:=[363827| C:=]239.500 |
18.07 ) 16.3872 ) 3885.70 ) 230.170 )
Bi
Psat(i,T) := exp| Aj— - \ -‘kPa P :=101.33kPa
— —273.15 |+ C;
K )
0 -161.88 291.27)
Wilson parameters: a:=| 583.11 0 107.38 |i11
(0]

m
1448.01 46955 0 )

(a) BUBL T calculation:

x1 =03 xy =04 x3:=1-Xx1—x2



J

v(i,x,T) == exp| 1 - —h{Z (ki-AG,j,T) }

XpA(palaT)

> Z (ki A(p,j,T)
]

+

Guess: T :=300K y;:=03 yp:=03 y3:=1-y1—-y2

Given
PY] = X1Y(1 9X9T)'Psat(1 9T) PY2 = X2"Y(2,X,T)'Psat(2,T)
P-y3 = x3-y(3,x,T)-Psat(3,T) P = Z (ki-v (i,x,T)-Psat(i,T)
yi o) '
Y2 .
= Flnd()'l ,¥2,y3, T
3
Thubl )
0.536
y =| 0361 | Thub] = 334.08K Ans.
0.102 )

(b) DEW T calculation:

y1 :=0.3 yp := 0.4 yv3:=1-y1—y2
Guess:  xp :=0.05 xp =02 X3 :

1-x1—x2 T := Thubl
Given

P-y; = x1-y(1,x,T)-Psat(1,T) P-yz = x2-v(2,x,T)-Psat(2,T)

P-y3 = x3-7(3,x,T)-Psat(3,T) Z xj=1

i
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X1 )

X2
= Find()&l ,X2,x3, T
X3
Tdew)
0.043
X =|0.204 | Tgew = 347.4K Ans.
0.753 )

_ Tdew + Thubl
2

(¢) P,T-flash calculation: T : T = 340.75K

z1 =03 7y :=0.2 z3=1-21—-27

Guess: V:=0.5 Use x from DEW P and y from BUBL P as initial

guess.
Given Pyl = XIY(I 7X7T)'Psat(1 aT) X](l _V) + y]V = Zl
P-yy = x2-v(2,x,T)-Psat(2,T) x2:(1=V)+yyV=2
P-y3 = x3-v(3,x,T)-Psat(3,T) x3:(1 =V) +y3-V = z3

Yuet Fwed
i i
X1 )

X2
X3
¥yl 1=Find(){l,xz,X3,y1,Y2,y3,V
¥2

Y3
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12.23

v(1,x,T) := exp

0.125) 0.536)

x=| 017 | y =|0.241 | V = 0.426 Ans.
0.705 ) 0.223 )
Molar volumes & Antoine coefficients:
Antoine coefficients:
74.05 14.3145)) 2756.22) 228.060 )
V:=14073| A:=|165785| B:=[363827| C:=]239.500 |
18.07 ) 16.3872 ) 3885.70 ) 230.170 )
. Bj
P := 101.33kPa Psat(i,T) := exp| Aj— \ -kPa
(——273.15 +Cj
NRTL parameters: K )
0 03084 0.5343) 0 18470 631.05 )
1
o=]03084 0 02994 | bi=|22264 0 -253.88 |-i1
mo
0.5343 02994 0 ) 1197.41 84521 0 )
1=1.3 ji=1.3 1:=1.3 bi ;
t(i,j,T) = =
k:=1.3  G(,j,T) = exp(}ei j (i,j,T) R-T
(a) BUBL T calculation:
x1 =03 xy =04 x3:=1-x1-x2
> (kG016 T
j
> (BT

1

xj-G(i,],T)

+Z Z (B, T)x

1
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: T(i’jaT) - S
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Guess: T :=300K y;:=03 y2 :=0.3 y3:=1-y1—-¥y2

Given
P-y1 = x;-y(1,x,T)-Psat(1,T)  P-yp = xp7(2,x,T)-Psat(2,T)
P-y3 = x37(3,x,T)-Psat(3,T) P= Z (kiy (i,x,T)-Psat(i, T)
yi o) '
2
= Flnd()'l ,¥2,y3, T
y3
Toubl )
0.533
y =|0.365 | Thub] = 334.6K Ans.
0.102 )

(b) DEW T calculation:

y1:=0.3 yo := 0.4 y3:=1-y1—-v2
Guess: x1 := 0.05 xp :=0.2 x3:=1-x1—-X%x3 T := Thubl
Given
P-y1 = xpy(1,x,T)-Psat(1,T)  P-yz = x2:7(2,x,T)-Psat(2,T)
P-y3 = x3-v(3,x,T)-Psat(3,T) in =1
X1 ) !
X2
= Find()&l ,X2,x3, T
X3
Tdew)
0.046
x = 0.205 | Tgew = 347.5K  Ans.
0.749 )
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_ Tdew + Thubl

(c) P,T-flash calculation: T := T = 341.011K
2

z1 =03 77 :=0.2 7z3:=1-21—-2)

Guess: V:=0.5 Use x from DEW P and y from BUBL P as initial

guess.
Given P-y; = x1-v(1,x,T)-Psat(1,T) x1{(1=-V)+y1-V =27
P-y2 = x2-7(2,x,T)-Psat(2,T) X2 (1=V)+y2r V=12
P-y3 = x3-v(3,x,T)-Psat(3,T) x3:(1-V)+y3-V=2z3

in=1 Zyi=1
i

i

X1 )
X2
X3

Y1 1=Find(){l,xz,X3,y1,Y2,y3,V

y2
y3
v)
0.133) 0.537")
x=|0.173 | y = 0238 | V = 0414 Ans.
0.694 ) 0.225 )
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12.26

12.27

3 3

x| = 0.4 xp = 1-x; vi=11022 v, =90
mol mol

cm’ cm’

VE(k1,x0 =x1-X0:(#5-x1 +25:xp —— VE(Xx1,xp =792——
(k1.x2 1-x-(#5-x1 2 — (k1.x2 p—

By Eq. (12.27): V()(l ,Xp = VE()(l ,X2 +X1:V1+x2:V»

3
cm
V(ki,xp =10592——
Oﬁl 2 mol
By Eqs. (11.15) & (11.16):
d cm3
Vbar = V()(l ,X2 +X2~—V()(1 ,X2 Vbar; = 190.28 —
dx mol
Ans.
d \ cm3
Vbar) = V()q ,X2 —XJ- —V(){l,xz Vbary = 49.68 —
dxy ) mol
Check by Eq. (11.11):
cm3
V := x1-Vbar] + x3-Vbarp V =10592— OK
mol
cm3 cm3
V] = 58.63-— Vy = 118.46-——
mol mol
750-cm’ 1500-cm”
moles] = ——— molesy = ——
Vi Va
moles := moles; + moles) moles = 25.455mol
moles|
X] = x1 = 0.503 xp=1-xq
moles
crn3 cm3
VE := x-x2 —1.026 +0.220-(k1 - x2 | — VE = —0.256 —
mol mol
cm3
By Eq. (12.27), V =VE+x1-V]+x3:Vp V = 88.136—1
mo
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Viotal := V-moles Viotal = 2243 cm3 Ans.

For an ideal solution, Eq. (11.81) applies:

Viotal = ()(1-\71 +x2-V7 -moles Viotal = 2250 cm3 Ans.

12.28 LiClL2H20 > Li+ 12 C2+2 H2 + 02 (1)
Li+ 1/2 CI2 + 10 H20 --> LiCI(10 H20) (2)

2(H2 + 1/2 02 —> H20) )

LiC1.2H20 + 8 H20(]) ---> LiCl(10 H20)

AH1 := —(-1012650)-J (Table C.4)

AH2 := —441579-] (Pg. 457)

AH3 := 2-(-285830-J) (Table C.4)

AH := AHI +MH2 + H3

AH = -5891] (On the basis of 1 mol of solute)

Since there are 11 moles of solution per mole of solute, the result on the
basis of 1 mol of solution is

AH
T = —53.55] Ans.

12.29  2(HCI + 2.25 H20 —--> HCI(2.25 H20)) (1)
HCI(4.5 H20) -—--> HC1 + 4.5 H20 (2)

HCI1(4.5 H20) + HCI ----- >2 HCI(2.25 H20)

AH1 := 2-(=50.6-kJ) (Fig. 12.14 @ n=2.25)

AH2 = 62-kJ (Fig. 12.14 @ n=4.5 with sign change)
AH := AHI + AH2

AH = -39.2k] Ans.
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12.30 Calculate moles of LiCl and H2O in original solution:

12.31

0.1-125 0.9-125
icl = -kmol n = -kmol
HC T 039 20~ T8 015
nricr = 0.295kmol ngo = 6.245 x 103 mol
. 20
Moles of LiCl added: n'Licl = 239 -kmol  n'Ljc1 = 0.472kmol

NH20

Mole ratio, original solution: =21.18

NLiCl

n
Mole ratio, final solution: _ H0 = 8.15

nLicl + n'Licl
ngicl + n'Lict = 0.7667 kmol

0.2949(LiC1(21.18 H20) -—> LiCl + 21.18 H20) (1)
0.7667(LiCl + 8.15 H20 ---> LiCI(8.15 H20)) (2)

0.2949 LiCL(21.18 H20) + 0.4718 LiCl ---> 0.7667 LiC1(8.145 H20)
kJ
AHI := npjcp- (35 —) (Fig. 12.14, n=21.18)

AH2 = ()’LlCl +1n'Licl ( 32— (Fig. 12.14, n=8.15)
Q

Q := AHI + AH2 = —14213k]  Ans.

Basis: 1 mole of 20% LiCl solution entering the process.

Assume 3 steps in the process:

1. Heat M1 moles of water from 10 C to 25 C

2. Unmix 1 mole (0.8 moles water + 0.2 moles LiCl) of 20 % LiCl solution
3. Mix (M1 + 0.8) moles of water and 0.2 moles of LiCl
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12.32

k k
Step 1: From Steam Tables AH; := 104.8-—J = 41.99-—“-18.015- ke
kg kg) kmol
kJ
AHy = 1.132—
mol

Step 2: From Fig. 12.14 with n = 4 moles H20O/mole solute:

k
AH2 = —25.5'—J
mol

Step 3: Guess M1 and find AH3 solution from Figure 12.14. Calculate AH
for process. Continue to guess M1 until AH =0 for adiabatic process.

()).8~mol + M kJ
M = 1.3-mol n3 = AHj3 := -33.16-—
0.2-mol mol

n3 = 10.5
AH = Mj-AH; — 0.2-tol- Hy + 0.2-tol- Hj

AH = —0.061kJ Close enough

2-mol
- _Ozmol SuGRT A

Mj + 1-mol
H0@5C - > H0@25C (1)
LiCIG H20) ~  —— >  LiCI+3H20 (2
LiCl+4H20 - >  LICI4H20) (3)

H20 @ 5 C + LiCI(3 H20) ----- > LiCl(4 H20)

kJ kJ kJ
AH; = [104.8-— 21015 15 015 8 AHj = 1.509——

kg kg ) mol mol

AH, = 20.756-k—Jl From p. 457 (AH LiCl(s) - AH LiCl in 3 mol H,0)
mo

AHj3 = —25.5-£ From Figure 12.14
mol

AH := (NHj +MH, + Hy -0.2:mol AH = —646.905]  Ans.
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1233 (a) LiCl+4 H20 ----- > LiC1(4H20 AH = _25,5.£ From Figure 12.14

mol
0.2-dol- H=-5.1k] Ans.

(b) LiCI3 H20) - > LiCl + 3 H20 (1)
LiCl+4 H20 - > LiCl(4 H20) (2)

LiCIl(3 H20) + H20 ----- > LiCl(4 H20)

kJ
A = 20.756- = From p. 457 (AH LiCI(s) - AH LiCl in 3 mol H,0)

AHy = —25_5~£ From Figure 12.14
mol

AH = 02-mol-() Hy + AHy  |AH = -0.949k] Ans.

(¢ LiCI*H20 - >  Li+12CR+H2+1202 (1)
H2+1202 - >  H20 Q)
Li+12CR2 - >  LiCl 3)
LiCl+4 H20 - > LiCl(4 H20) @)

LiCI*H20 + 3 H20 ----- > LiCl(4 H20)

AHq = 712.58-£ From p. 457 for LiCI'-H,O

mol
kJ
AH, := —285.83-——  From Table C.4 AH; H,O(l)
mol
kJ i
AHj = —408.61. —— From p. 457 for LiCl
mol
kJ .
AHy = -25.5-— From Figure 12.14
mol

AH = 0.2:nol() Hy +MHp +AHy+ Hy  |AH =-1472k]  Ans.

(d) LiCl+4 H20 - >  LiCl4 H20) (1)
4/9 (LiCI(9 H20) - > LiCl + 9 H20) (2)

5/9 LiCl + 4/9 LiC1(9 H20) > LiCl(4 H20)
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AHy = —25.5-£ From Figure 12.14

mol

AH, = g-(32.4)-£ From Figure 12.14

mol

AH = 0.2:tol-() H + AHy  AH =-222kl Ans.

(e) 5/6 (LiCI3 H20) - > LiCl + 3 H20) (1)
1/6 (LiC1(9 H20) - > LiCl + 9 H20) (2)
LiCl+4H20 —- > LiCl(4 H20) (3)

5/6 LiC1(3 H20) + 1/6 LiC1(9 H20) -—-> LiCl(4 H20)

AH = %(20.756)-1{—”11 From p. 457 (AH LiCl(s) - AH LiCl in 3 mol H,0)
mo
1 kJ .
AHy = —-(32.4)-— From Figure 12.14
6 mol
kJ .
AH3 := -25.5-— From Figure 12.14
mol
AH := 0.2-mol-() H +MH, + Hj AH = —0.561k]  Ans.
@® 58 @LiCl*H20 - > Li+12CI2+H2+1/202) (1)
58MH2+1202 - > H20) ()
3/8 (LiCl(9 H20) - > LiCl + 9 H20) 3
s8@Li+12Cr2 - > LiCl “
LiCl1+4H20 - > LiCl(4 H20) o)

5/8 LiCI*H20 + 3/8 LiC1(9 H20) ——--> LiCl(4 H20)

AHq = E-(712.58)-£ From p. 457 for LiCI'-H,O
8 mol
5 kJ
AH, = g-(—285.83)-—1 From Table C.4 AH; H,O(l)
mo
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12.34

3 kJ .
AHj3 = g.(32.4)._ From Figure 12.14

mol
5 kJ ) .
AHy := =-(—408.61)-— From p. 457 for LiCl
8 mol
kJ )
AHjs = -25.5-— From Figure 12.14
mol

AH := 02-mol-() Hy +MHy +A Hy +A Hy+ Hs | AH = -0.403k

BASIS: 1 second, during which the following are mixed:

(1) 12 kg hydrated (6 H2O) copper nitrate
(2) 15 kg H20

12 kmol 15 kmol
= . n» .= .
205.61 sec 27 18015 sec

nj :

kmol ny = 0.833 2mol

S€C

ny = 0.041 sec

6:ny +ny
Mole ratio, final solution: — =26.51
nj
6(H2 + 1/2 O2 ---> H20(1)) 1)
Cu + N2 +3 02 ---> Cu(NO3)2 2)
Cu(NO3)2.6H20 --->Cu+ N2+ 6 O2 + 6 H2 A3)
Cu(NO3)2 + 20.51 H20 ---> Cu(NO3)2(20.51 H20) 4)

Ans.

Cu(NO3)2.6H20 + 14.51 H20(1) —> Cu(N03)2(20.51 H20)

AH1 := 6-(-285.83-kJ) (Table C.4)

AH2 := -302.9-kJ AH3 := —(-2110.8-kJ) AH4 := —47.84-k]

AH = AHI +A\H2 +A H3 + H4 AH = 45.08kJ
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This value is for 1 mol of the hydrated copper nitrate. On the basis of 1
second,

AH kJ
Q:=n— Q = 1830— Ans.
mol sec

12.35 LiCL.3H20 > Li+ 1/2 C12 + 3H2 + 3/2 02 (1)
3(H2 + 1/2 02 > H20(1)) Q)
2(Li + 1/2 CI2 + 5 H20 > LiCI(5H20))  (3)
LiCI(TH20) —>Li+12CR +7H20  (4)

LiCI1(7H20) + LiCL.3H20 ---> 2 LiCl(5H20)

AH1 := 1311.3-kJ AH2 := 3-(-285.83-kJ) (Table C.4)
AH3 := 2-(—436.805-kJ) AH4 = —(—439.288-kJ) (Pg. 457)

AH := AHI +AH2 +AH3 + H4  AH = 19.488kJ
Q:=AH |Q=19488k] Ans.

12.36 Li+ 1/2 CI2 + (n+2)H20 -—> LiCl(n+2 H20) (1)
2(H2 + 1/2 02 ——-> H20) 2)
LiCl.2H20 —>Li+12CR2+2H2+ 02  (3)

LiCL.2H20 + n H20 > LiCl(n+2 H20)

AH2 = 2-(-285.83-kJ) AH3 := 1012.65-kJ (Table C.4)

Since the process is isothermal, AH = AHI +MA\H2 + H3
Since it is also adiabatic, AH = (0

Therefore, AHI := -AH2 — H3 AH1 = —-440.99kJ

Interpolation in the table on pg. 457 shows that the LiCl is dissolved in
8.878 mol H20.
1

XLiCl = m xricl = 0.1012 Ans.
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10 ) —862.74")

12.37 Data:
15 —867.85
20 —-870.06
25 —871.07
n:=| 50 AHyg = | —872.91 |-kJ
100 —873.82
300 —-874.79
500 —875.13
1000 ) —875.54 )

Ca+ CI2 + n H20 ---> CaCI2(n H20)  AH¢

CaCl2(s) ---> Ca + CI2 —AHgcac12

CaCl2(s) + n H20 ——-> CaCI2(n H20)  AHtilde

From Table C.4: AH¢cacpp = —795.8-k]

1:= 1..rows(n)

-65
-70
AHfi—AHfCacu\
kJ )
===
-75
3000 100 110
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12.38

12.39

CaCl2 ---> Ca + CI2 (1
2(Ca + CI2 + 12.5 H20 ---> CaCl2(12.5 H20) (2)
CaCl2(25 H20) ---> Ca + CI12 + 25 H20 3

CaCI2(25 H20) + CaCI2 > 2 CaCI2(12.5 H20)

AH1 = 795.8-k] (Table C.4)
AH2 = 2-(—865.295-kJ) AH3 = 871.07-kJ
AH := AHI +AAH2 + H3 Q = AH Q = -63.72kJ Ans.

The process may be considered in two steps:
Mix at 25 degC, then heat/cool solution to the final temperature. The two
steps together are adiabatic and the overall enthalpy change is 0.

Calculate moles H20O needed to form solution:

85
18.015 . .
n:= — n = 34911 Moles of H20O per mol CaCl2 in final solution.

110.986

Moles of water added per mole of CaCI2.6H20:
n—6= 28911
Basis: 1 mol of Cacl2.6H20 dissolved

CaCI2.6H20(s) —> Ca+ CI2 + 6 H2 +3 02 (1)
Ca + CI2 + 34.991 H20 --->CaCl2(34.911 H20) (2)
6(H2 + 1/2 02 —> H20) (3)

CaCl2.6H20 + 28.911 H20 ---> CaCl2(34.911 H20)

AH1 := 2607.9-k] AH3 := 6-(-285.83-kJ) (Table C.4)

AH2 := —871.8-k] (Pb. 12.37)

AHjgg := AHI +MH2 + H3  for reaction at 25 degC

AH,og = 21.12KJ Mgolp = (110.986 + 34.911-18.015)-gm
Mgoln = 739.908 gm
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kJ —AHj9g

Cpi=328———  AHyg+CpAT=0 AT :=—"—
kg-degC Mol Cp
AT = —-8.702degC T:=258egC+ T T = 16.298degC Ans.
12.43 ‘my = 150-Ib (H2SO4) my = 350-b (25% soln.)
BT BT .
Hp = 8-—U Hy = —23-—U (Fig. 12.17)
by by

100-%-mj + 25-%-m»

=47.5% (Final soln.)
mj +mp

m3 = mjp +mp Hj = —9O-T (Fig. 12.17)
m

Q:=m3-H3—(jn-Hy+mpHy  Q=-38150BTU  Ans.
12.44 Enthalpies from Fig. 12.17.

BTU

x1 := 0.5 x = 1-x1 H:=-69—— (50 % soln)
Ibm,
BTU BTU
Hj = 20o——  (pure H2SO4) Hp := 108:—— (pure H20)
BT
HE := H - (k1-Hy +x2-Hy HE = 133209 Ans.
lbm
12.45 (a) mj := 400:1by, (35% soln. at 130 degF)
myp = 175:-1by, (10% soln. at 200 degF)
BTU BTU .
Hy = 100-—— Hy .= 152.——  (Fig. 12.19)
Ibm by
35-%-mq + 10-%-mp
=2739% (Final soln)
mjp +mp
BTU .
m3 = mj +mp Hj3 :=41-——  (Fig. 12.19)
m
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Q := m3-H3 — (Jni-Hy + mp-Hy Q = —43025BTU Ans.
(b) Adiabatic process, Q = 0.

mj-Hj +mp-Hp BTU
Hj := H3 = 115.826 ——
m3 Ibm
From Fig. 12.19 the final soln. with this enthalpy has a temperature of
about 165 degF.

|
1246 mp := 25— (feed rate) X1 :=0.2
Hy = -24.—— (Fig. 12.17 at 20% & 80 degF)

Hp := -55-—— (Fig. 12.17 at 70% and 217 degF)
Ibm [Slight extrapolation]

xp = 0.7
Hj = 1157_7.2 (Table F.4, 1.5(psia) & 217 degF]

m
X1-mg Ib
m=7.143—  m3=mj-mp m3=17.857 —
X2 sec sec

mp =

BTU

S€C

Q :=my-Hy + m3-H3 —mj-H; Q = 20880 Ans.

12.47 Mix m1 Ibm NaOH with m2 Ibm 10% soln. @ 68 degF.

BASIS: mj = 1:1by, x3 := 0.35 xp := 0.1
my = 1-lby (guess) m3 = mjp +mp

Given mj +mp = m3 mj + Xp-mp = X3-mj3

mj )
= Find(jn; ,m3 my = 0.3851by, m3 = 1.3851by,
m3)
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12.48

From Example 12.8 and Fig. 12.19

BTU BTU

H; :=478.7-—— Hy := 43.——
Ibyy Ibyy

mi-Hj + mp-Hp BTU

Hj = H3 = 164——

From Fig. 12.19 at 35% and this enthalpy, we find the temperature to be
about 205 degF.

First react 1 mol SO3(l) with 1 mol H20O(1) to form 1 mol H2SO4(l):

SO3(1) + H20(1) ---> H2S04(1)
With data from Table C.4:

AH,og = [~813989 — (~441040 — 285830)]-]  AHgeg = ~8.712x 10°J

Mix 1 mol or 98.08 gm H2SO4(l) with m gm H2O to form a 50% solution.

MH2S04

m = 98.08-gm
H2S04 g 05

Mgolp =
MH20 = Mgoln — MH2S04

Data from Fig. 12.17:

Huoso04 = 0-% [pure acid @ 77 degF (25 degC)]
m
Huoo = 45-% [pure water @ 77 degF (25 degC)]
m
Hgoln = —70-? [50% soln. @ 140 degF (40 deg C)]
m

AH iy = mgoln'Hsoln — mA2504-HH2504 — mu20-HH20

BTU
AHpix = —18.145kgT
m
_ AHpgg + AHpix 0= 28381 ans
' Mgoln lbm
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12.49

12.50

my = 140-lby, x1 = 0.15 my = 230-lby, xp = 0.8
H; = 65~¥ (Fig. 12.17 at 160 degF)
Hy = —102-% (Fig. 12.17 at 100 degF)
mip-X]+mp-xp
m3 ;= mj +mp X3 = x3 = 554%
m3
Q+(my-Hy +mp-Hp
Q :=-20000-BTU Hj3 = ()n
m3
BTU .
Hjz = _92,9E From Fig. 12.17 find temperature about 118 degF
Initial solution (1) at 60 degF; Fig. 12.17:
BTU
my = 1500-1by, x1 := 0.40 Hy = -98——
Ibm
Saturated steam at 1(atm); Table F.4:
BTU
m ‘=mj+m Hp := 1150.5-——
3(Jn2 1 +my 2 o,
X1-my mi-Hy + mp-Hp
X3y = —- Hi(my =
(2 = (}n e
BTU
mp = 125:1b X = 36.9% H =-2—
2 m 3()“2 0 3(n2 o

The question now is whether this result is in agreement with the value read
from Fig. 12.17 at 36.9% and 180 degF. It is close, but we make a second
calculation:

mos 0y (e =% s —ssBT

This is about as good a result as we can get.
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12.51 [Initial solution (1) at 80 degF; Fig. 12.17:

12.52

BTU
mj = 1-1by x1 =045 Hy :=-95——
by
Saturated steam at 40(psia); Table F.4:
BTU
m3()‘nz =mp+my Hy :=1169.8-——
m
X1-mj mi-Hy + mp-Hp
x3(mp = — Hi(p =
U2 = U2 ==
BTU
my := 0.05-1by, x3(Jny =429% H3(jy = -34. sb—
m

The question now is whether this result is in agreement with the value read
from Fig. 12.17 at 36.9% and 180 degF. It is close, but we make a second
calculation:

BTU
my := 0.048:1by, x3(ny = 42.9% H3(ny = -37. 1E
This is about as good a result as we can get.

Initial solution (1) at 80 degF; Fig. 12.19:
BTU
mp = 1-1by x1 = 0.40 Hy =77 ——
Ibm
Saturated steam at 35(psia); Table F.4:
BTU X1-mp
Hy .= 1161.1-—— x3 := 0.38 my = —mj
Ibm X3
m3 ;= mj +mp m3 = 1.0531by, my = 0.0531by,
mi-Hy +my-Hy
Hj =
m3
q 1312 BTU We see from Fig. 12.19 that for this enthalpy
9 by, at 38% the temperature is about 155 degF.
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12.53 Read values for H, H1, & H2 from Fig

. 12.17 at 100 degF:

BTU BTU BTU
H:=-56-—— 1 =8 —— Hjp := 68-——

Ibm Ibm by
x1 = 0.35 xp = 1-x1 AH = H - x;-Hj - x0-Hy

BTU
AH = -103—— Ans.
m
12.54 BASIS: 1(1bm) of soln.
Read values for H1 & H2 from Fig. 12.17 at 80 degF:
BTU BTU
Hy=4—— Hy ;= 48.—— x]:=04 xp:=1-x1
by, Ibm
Q=AH=H-x1-Hi—-xp-Hy =0
BTU
H :=x1-H; +x2-H» H=304——
Ibm
From Fig. 12.17, for a 40% soln. to have this enthalpy the temperature is
well above 200 degF, probably about 250 degF.
12.55 Initial solution:  x; := 298.08 x| = 0.421
2-98.08 + 15-18.015

Final solution: x5 := 5:98.08 xp = 0.538

3-98.08 + 14-18.015

Data from Fig. 12.17 at 100 degF:

BTU BTU
H = 68 —— H =9 ——
H20 lbm H2S04 lbm

BTU BTU
Hy = -75—— Hy := -101.——
by, by
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Unmix the initial solution:

AHynmix = [ x1-HH2504 + ()1 -x1 -Hmo |- Hj

BTU
AH iy = 118.185 ——

m

React 1 mol SO3(g) with 1 mol H20O(]) to form 1 mol H2SO4(l). We
neglect the effect of Ton the heat of reaction, taking the value at 100 degF
equal to the value at 77 degF (25 degC)

J J
AHfSO3 = —395720-—— AHszo = —285830-——
mol mol
J
AHfH2$O4 = —813989-——
mol
5 J
AHrX = AHfH2$O4 —&Hszo — HfSO3 AHrX =-1324x 10" —

mol

Finally, mix the constituents to form the final solution:

BTU
AHpix = Hy —[ x2-Hpaso4 + () —x2 ‘Hu2o | AHpiy = —137.231 —
m
Q := AHypmix-(2-98.08 + 15-18.015)-1b ...
+ 1-dbmol- Hy ...

+ AH ;5 (3-98.08 + 14-18.015)-1b Q = —76809BTU  Ans.

12.56 Read values for H(x1=0.65), H1, & H2 from Fig. 12.17 at 77 degF:

BTU BTU BTU
H:=-125-—— Hy =0—— Hy :=45——
Ibm by m
x1 := 0.65 xy = 1-x1 AH = H -x1-H1 —x2-H»
BTU
AH = —140.8—— Ans.
Ibm,
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12.57

12.58

From the intercepts of a tangent line drawn to the 77 degF curve of Fig.
12.17 at 65%, find the approximate values:

BT BT
Hbar; = —136-—U Hbar) = —103-—U Ans.

by, by,

Graphical solution: If the mixing is adiabatic and water is added to bring
the temperature to 140 degF, then the point on the H-x diagram of Fig.
12.17 representing the final solution is the intersection of the 140-degF
isotherm with a straight line between points representing the 75 wt %
solution at 140 degF and pure water at 40 degF. This intersection gives
x3, the wt % of the final solution at 140 degF:

x3 1= 42-% mj = 1-lb

By a mass balance:

0.75-my 0.75-my
X35 —— mp = -mp  mp = 0.7861by, Ans.
mip +mp X3
(@) mp = 25-1by my := 40-1by, m3 = 75-1b
= m
Enthalpy data from Fig. 12.17 at 120 degF:
BTU BTU
Hj := 88 —— Hjy := 14 —— Hj = -7 BTU
m m . lbm
my :=mj;+my+m3 my = 1401lby,
X1-mjp + X2-mp + X3-m3
X4 = my x4 = 0.42
BTU .
Hy = —63- —— (Fig. 12.17)
by

Q = my-Hg — (Jny-H; + mp-Hp + m3-H3 Q = —-11055BTU Ans.
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12.59

. BTU
(b) Firststep: m := 40:1b x] =1 Hy =14 ——
lbm
BTU
my := 75-1b xp :=0.25 Hy = -7 ——
Iby,
X1-mjp + X2-mp Q+mj-Hy +my-Hy
m3 = mj +mp X3 = Hj =
m3 m3
BTU
x3 = 0.511 Hz = -95.8——
by

From Fig. 12.17 at this enthalpy and wt % the temperature is about 100
degF.

BASIS: 1 mol NaOH neutralized.
For following reaction; data from Table C.4:

NaOH(s) + HCI(g) -—> NaCl(s) + H20(l)

AH,og := [~411153 — 285830 — (—425609 — 92307)]-J
AHpog = —1.791 x 10°J

NaOH(s) + HCI(g) ---> NaCl(s) + H20() (1)
NaOH(inf H20) ---> NaOH(s) + inf H20  (2)
HCI1(9 H20) --> HCI(g) + 9 H20(I) 3)
NaCl(s) + inf H20 ——> NaCl(inf H20)  (4)

NaOH(inf H20) + HC1(9 H20) ---> NaCl(inf H20)

AHI = AH298 AH2 = 44.50-kJ AH3 = 68.50-kJ
AH4 = 3.88-kJ AH = AHI +MH2 +A H3 + H4
Q= AH Q = —62187]  Ans.
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12.60 First, find heat of solution of 1 mole of NaOH in 9 moles of H20
at 25 degC (77 degF).

Weight % of 10 mol-% NaOH soln:

1-40.00
X] = x1 = 19.789%
1-40.00 + 9-18.015
Hioo = 45~E (Table F.3, sat. liq. at 77 degF)
Ibm
Hgoln = 35-@ (Fig. 12.19 at x1 and 77 degF)
by
HyaoH = 478.7-@ [Ex. 12.8 (p. 468 at 68 degF]
m

Correct NaOH enthalpy to 77 degF with heat capacity at 72.5 degF
(295.65 K); Table C.2:

T := 295.65-K molwt := 40.00--2
mol
R 163161072 ) BTU
Cp = 10121 4+ —-T Cp=0245————
molwt ) by rankine
. BTU
HnaoH = HNnaoH + Cp- (77 — 68)-rankine HyaoH = 480.91-T
m
AH := Hgoln [ x1-HNaoH + (} —x1 -Hp20 |
kJ ..
AH = -0.224 — This is for 1 gm of SOLUTION.
gm

However, for 1 mol of NaOH, it becomes:

AH kJ
AH := —molwt AH = —45.259 —

X1 mol
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Now, on the BASIS of 1 mol of HCI neutralized:

NaOH(s) + HCI(g) > NaCl(s) + H20(l) (1)
HCI(inf H20) —> HCl(g) + inf H20  (2)
NaOH(9 H20) —> NaOH(s) + 9 H20 A3)
NaCl + inf H20 > NaCl(inf H20) @)

HCl(inf H20) + NaOH(9 H20) ---> NaCl(inf H20)
AH| = —179067-] (Pb. 12.59)

AH, = 74.5-k]J (Fig. 12.14 with sign change)
AHjz = 45.259-kJ (See above; note sign change)
AHy = 3.88-kJ (given)

AH := AH| +MH, +AH3+ Hy  Q:=AH |Q =-14049] Ans.

12.61 Note: The derivation of the equations in part a) can be found in Section B
of this manual.

0.1 ) 7327

0.2 144.21

0.3 208.64

0.4 262.83

0.5 302.84 —
kJ ~ HE

x1 =] 0.6 HE = 32331 |— xp:=(J-x; H:=

kg X1-X2

0.7 320.98

0.8 279.58

0.85 237.25

0.9 178.87

0.95 ) 100.71 )
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In order to take the necessary derivatives of H, we will fit the data to a

3\.

2
=a+byx]+cx] +dxg

third order polynomial of the form | H =
X1-X2

Use the Mathcad regress function to find the parameters a, b, ¢ and d.

W) W) 30
W W 3
n n 3
a | := regress| X| ,—\ s a |=| —=735.28
b — b —-824.518
(kg}
c c 195.199
d) d) (914579 )
kJ
(}(1 +b-x1 +cx1” +d-xq e

Using the equations given in the problem statement and taking the
derivatives of the polynomial analytically:

v

HEbar1(>(1 = () - X1 2-|:H(>(1 +X1-_())+2-C-X1 +3-d-x12 -E_

Iwv

[0 =t [(przom s e K]

i kg

HEbar, ()c 1
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X1 :

| | | |
0 0.2 0.4 0.6 0.8
x1
= HxIx2
= HEbarl
==< HEbar2
12.62 Note: This problem uses data from problem 12.61
7327 )
144.21
208.64
262.83
302.84
kJ ?
HE := -| 323.31 |— x2 = () —x
kg
320.98
279.58
237.25
178.87
100.71 )

(kJ/kg)

=500

—1000

—1500

—2000

—2500

0.1 )

0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.85
0.9

0.95 )
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HE
Fit a third order polynomial of the form (
X1-X2

Use the Mathcad regress function to find the parameters a, b, ¢ and d.

W) W) 3
w w 3

n n 3

a | := regress| X| ’kLJ\ ,3 a | =| —735.28

b (k_g) b —824.518
C c 195.199
d) d) \(-914.579)

By the equations given in problem 12.61

2 3 kI
H = ()1+b-x +cx; +dx;T —
(k1 1 1 Uy

Bl o= rks )

Hbarl()q = ()l - X] 2-|: H(){l + X1- ()}+2-C-X1 +3-d-X12 ll:—;

Hbars (1 = xlz.{H(yl St (b 2o + 302 lﬁ_;

At time 0, let:

x1 = mass fraftion of H2SO4 in tank

m = total mass of 90% H2SO4 added up to time 0
H = enthalpy of H2SO4 solution in tank at 25 C
H2 = enthalpy of pure H20 at 25 C

H1 = enthalpy of pure H2SO4 at 25 C

H3 = enthalpy of 90% H2S04 at 25 C

Material and energy balances are then written as:

x1-(4000 + m) = 0.9m Solving for m: m
1-( ) ()(1 09 —x;

Q = AHt = (4000 + m)-H — 4000H, — m-H3
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(4000kg)x1

3)

Eq. (A)



Since AH = H — x1-H| — x2-H» and since T is constant at 25 C, we set

H1 = H2 = 0 at this T, making H=AH. The energy balance then
becomes:

Q = (4000 + m)-AH — m-Hj Eq. (B)

Applying these equations to the overall process, for which:

0 = 6hr x1:=0.5 H3 := H(0.9) Hjz = —178.737%
g
AH := H(0.5) AH = —303.265£
kg
Define quantities as a function of x;
ol =[(Joooke +m(l H(ky ~m(ys ]
m()i = (4000kg)x; m(0.5) = 5000k

0.9 —-xq
Qt(k1 := (J00Okg+m(k; -AH-m(k; -H3 Qt(0.5) = —1.836 x 10°kJ

Since the heat transfer rate q is constant:

. Qt(>‘1

0

QX1
and  O(k = (X Eq. (C)
q
The following is probably the most elegant solution to this problem, and it
leads to the direct calculation of the required rates,
dm

r=_

do

When 90% acid is added to the tank it undergoes an enthalpy change equal
to: 0.9Hbar1+0.1Hbar2-H3, where Hbarl and Hbar2 are the partial
enthalpies of H2SO4 and H2O in the solution of mass fraction x1 existing in
the tank at the instant of addition. This enthalpy change equals the heat
required per kg of 90% acid to keep the temperature at 25 C. Thus,

(ki - !
0.9Hbary(k; +0.1Hbary(k; —H3
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Plot the rate as a function of time

x] == 0,0.01..0.5

1200

1100 [~

1000 [~

800

700

600

Ib
12.64 mdot| = 20000~
r

Tq = 120degF

Enthalpies from Fig. 12.17 x5 := 0.0 Tj := 40degF

T3 = 140degF

5 6
BTU
Hj=-92——
Ib
BTU
Hy = 7——
Ib
BTU
Hj3 = —70 ——
Ib

a) Use mass balances to find feed rate of cold water and product rate.

Guess: mdoty := mdot;
Given mdot; + mdoty = mdot3

mdot-x] + mdoty-x» = mdot3-x3

mdot3 := 2mdot;
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mdoty) Ib Ib
= Find(Jndot;,mdot3 /mdoty = 12000— mdot3 = 32000— Ans.
mdot3 j hr hr

b) Apply an energy balance on the mixer

BTU

hr

Qdot := mdot3-H3 — (Jndot-H1 + mdotp-Hy Qdot = —484000

Since Qdot is negative, heat is removed from the mixer.

c¢) For an adiabatic process, Qdot is zero. Solve the energy balance to find H;

mdotq-H + mdoty-Hp BTU
Hz = Hz = -54.875 ——
mdotj b

From Fig. 12.17, this corresponds to a temperature of about 165 F

12.65 Let L = total moles of liquid at any point in time and Vdot = rate at
which liquid boils and leaves the system as vapor.

An unsteady state mole balance yields: % = —Vdot
t
. e S0
An unsteady state species balance on water yields: —a = —y1-Vdot
t
: o dx dL
Expanding the derivative gives: L-T +X1-— = —Vdot-y]
t
dx
Substituting -Vdot for dL/dt: L-T + x1-(—=Vdot) = —y;-Vdot
t
dxy
Rearranging this equation gives: L-T = ()(1 —y1 -Vdot
t
dx
Substituting -dL/dt for Vdot: L-—1 = ()/1 - X1 d—L
dt dt
Lo . dxg dL
Eliminating dt and rearranging: = —
yi—x1 L
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At low concentrations y; and x, can be related by:

Psaty \ K h K Psaty
- . —_—X - X where. = . .
Y1 Yinfl P lj 1-X1 1 = YVinfl P
dx
Substituting gives: s S d—L
()(1 -1 x L
L X
Integrating this equation yields: In —f\ = ! ‘In 1f\
Lo) (Ki=1 {x0)

where L, and x,, are the initial conditions of the system

For this problem the following values apply:

600 50
Lo := 1mol X10 = — X|f = —
10 10
T := 130degC P := latm Yinfl = 5.8
3885.70 )
Psat| := exp| 16.3872 — -kPa Psat; = 270.071kPa
+230.170
degC )
Psat;
K1 = Yinf1- K = 15.459

_ L (X
Lf:= Lo-exp ()<1 1 -1n Lf = 0.842mole

X10 )
Norg0 = LO'() —X10 Noref ‘= Lf’() - X1f
ngrg0 = 0.999 mole norgf = 0.842mole
Norg0 — Norgf
Yolossorg = e 9% Yolossorg = 15.744%  Ans.

Norg0
The water can be removed but almost 16% of the organic liquid will
be removed with the water.
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12.69 1 - Acetone  2- Methanol T := (50 +273.15)K

For Wilson equation

3 3
cal cm

I
apy = —161.88—— ayp = 583.11—— V| = 7405V, = 40.73 2
mol mol mol mol

= -€X o = -€X o
12 p RT) B2 7 215 5P RT) "2 7

Inyinfy = (Fin(fjp +A - 5 [Inyinfy = 0613 Ans.

From p. 445
Inyinfy = (Fin(Np) +A - |5 Inyinf, = 0.603  Ans.
From Fig. 12.9(b) Inyinf; = 0.62 Inyinf, = 0.61
For NRTL equation
| |
biy = 18470 by == 222.64—— o = 0.3048
mol mol
b1 b1
Ty = —— T1o = 0.288 Tyl = —— To1 = 0.347
125 o1 12 21°F o7 21

Gip = exp(}w 12 G2 =0916 Gy = exp(}u- 71 G221 =09

Inyinfy = 151 + 112 explfT- 12 Inyinf] = 0.611
From p. 446 (}
Inyinfy =115 + Tzl-exp(}u- 21 Inyinf, = 0.600

Both estimates are in close agreement with the values from Fig. 12.9 (b)
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12.71 Psat) := 183.4kPa Psaty := 96.7kPa
x1 = 0.253 y1 = 0.456 P := 139.1kPa

Check whether or not the system is ideal using Raoult's Law (RL)

PrL := x1-Psaty + () —Xx1 -Psaty Prr = 118.635kPa

Since P, <P, y, and y, are not equal to 1. Therefore, we need a model for

GE/RT. A two parameter model will work.

GE
From Margules Equation: — = x;-x»- X1 +A2X
RT 1-X2 ()AZI 1 12°X2

ln()( 1

n(yy = x1*[ Az +2:(h12- Azt x2] Eq. (12.10b)

Find y, and y, at x;=0.253 from the given data.

P ) R
e x1-Psaty V1= 1367 2= () — X1 -Psatp

x2"[ A +2-(f21 - A1z x| Eq.(12.10a)

vo = 1.048

Use the values of y, and y, at x,=0.253 and Eqs. (12.10a) and (12.10b) to
find A, and A,,.

Guess: Ap =05 A1 =05

Given ln()/ |

i

= 12,021 12 = V. 21 = V.
1&21)

Y1()€1 = eXp[()l —X] 2-[A12+2-()421 - A12 -Xlﬂ
Vz()n = eXp[Xlz-[AzlJrZ-()Mz—Azl -()l—X1 ﬂ

(- xi 2.[A12 +2(B21-App x;]  Eq.(12.10a)

X12'|:A21 + 2-()412 - A () - X1 ] Eq. (12.10b)
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X171l k1 -Psaty
a)x; :=0.5 y1 = (>(P y1 = 0.743 Ans.

P :=xpyy(ki -Psat; + () —x1 -yp(ki -Psaty P =160.148kPa Ans.

b) ¥ 1int = exp(A12 Yiinf = 1.904  voine = exp(Pa1  y2inf = 1.614

Y 1inf- Psat] Psat
al2g =—— al2pg=3612 ol2;=—— @al2; = 1175
Psaty Y2inf- Psat

Since o, remains above a value of 1, an azeotrope is unlikely based on the

assumption that the model of GE/RT is reliable.

12.72 P := 108.6kPa x1 := 0.389
T :=(35+273.15)K Psat; := 120.2kPa Psaty := 73.9kPa

Check whether or not the system is ideal using Raoult's Law (RL)
Prr, = xq-Psat] + () — X1 -Psatp Prr = 91.911kPa

Since PRL <P, ' and Y, are not equal to 1. Therefore, we need a model for

GE/RT. A one parameter model will work.

Assume a model of the form: @ = A-X1-X2

RT

_ 2

1= exp()A'XE
- 2

Y2 = exp(%x.l

Since we have no y1 value, we must use the following equation to find A:

P = xj-y-Psat] + xp-y5-Psaty
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Use the data to find the value of A
Guess: A =1

Given P = xl-exp|: A()l - X1 2]-Psatl + () - X1 -exp[()A-xl 2]-Psat2

A = Find(A) A =0.677
na =es[ A0-x 7] = ewlhx’

Psat;
S y1 = 0.554 Ans.

) yp = x1vq(k1 -

b) P := xp-yy (k1 -Psat; + () —x1 -ya(k1 -Psaty  |P.=110.228kPa  Ans.

€) Y 1inf = exp(A) Yiinf = 1.968  ya2int := exp(A) Y2inf = 1.968
Y1inf-Psat Psat;
al2g = ————  @al29g=3201 al2;=———— |al2; = 0.826
Psatp Y2inf- Psat)

Since 12 ranges from less than 1 to greater than 1 an azeotrope is likely
based on the assumption that our model is reliable.
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Chapter 13 - Section A - Mathcad Solutions

Note: For the following problems the variable kelvin is used for the SI
unit of absolute temperature so as not to conflict with the variable K
used for the equilibrium constant

13.4 H2(g) + CO2(g) = H20(g) + CO(g)

V=Zvi=—1—1+1+1=0 ng=1+1=2

i

1—¢ €
By Eq. (13.5). YH, = YCO, = 5 YH20 = YCO = 5

By Eq. (A) and with data from Example 13.13 at 1000 K:
T = 1000-kelvin

G(k :=(12 \( 395790)—+—( 192420 — 200240)-—— .

) mol mol
e 22 £ Laft)
2 2 )" 2")
Guess: €e = 0.5
Given 9 G(pe =0—= eo = Find(jo |60 = 045308
de, mol

€:=03,031..0.6

—2.082

b

[

©

~
I
|

|
g
o
0
N
I
|
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13.5 (a) H2(g) + CO2(g) = H20(g) + CO(g)

V=Zvi=—l—l+l+l=0 np=1+1=2
i

l1-¢

2

By Eq. (13.5). YH, = YCO, = YH20 = YCO =

| m

By Eq. (A) and with data from Example 13.13 at 1100 K:

T := 1100-kelvin

G(} :_(1; \( 395960)—+—( 187000 — 209110)L

) mol mol
+R.T.(z - m( ) 1(\\
2 2 )" 2))
Guess: €e:=0.5
Given d_G();e =0 g - Find(f. e =0502 Ans.
de, mol

€ = 0.35,0.36..0.65

—2.102

—2.103

b
—
[e)
g

I

|
N
—
S
vy

I

—2.106

—2.1070.3
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(b) H2(g) + CO2(g) = H20(g) + CO(g)

V—ZVI——1—1+1+1—O np=1+1=2
1

l1-¢

2

o |,

YH20 = YCO =

By Eq. (A) and with data from Example 13.13 at 1200 K:

T := 1200-kelvin

G(} :=(12 \( 396020)—+—( 181380 — 217830)L

) mol mol
+R.T.(z - m( SR 1(\\
2 2 )" 2))
Guess: €e = 0.1
Given d_G();e =0 g, = Find( &c=0.53988  Ans.
de, mol

€:=04,041..0.7

—2.121

—2.122

—2.123

T 52124
10

—2.125

—2.126

— l I I I I |
2'1270.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
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() H2(g) + CO2(g) = H20(g) + CO(g)

V=Zvi=—l—l+l+l=0 np=1+1=2
i
By Eq, (13.5) = = 1-¢ = veo = <
y £q, (15.9), YH, = YCO, > YH20 = ¥CO = 7
By Eq. (A) and with data from Example 13.13 at 1300 K:
T = 1300-kelvin
1-¢) J
G(} = -(=396080)- —— + — ( 175720 — 226530)- — ...
2 ) mol mol
+R.T.(z - m( A ( A
2 2 ) ")
Guess: ge:=0.6
: d J .
Given —G():e =0— go:= Flnd(>e €c = 0.57088  Ans.
de, mol

€:=04,041..0.7

—2.14

—2.142 -

G(}

—<2.144 -
10

—2.146 -

— l I I I I |
2'1480.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
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13.6 H2(g) + CO2(g) = H20(g) + CO(g)

V=Zvi=—1—1+1+1=0 ng=1+1=2
i
By Eq, (13.5) = =1-¢8 = veo = <
Yy £Q, (12),  yH, = YCo, > YH20 = ¥CO = 7
With data from Example 13.13, the following vectors represent values for
Parts (a) through (d):
1000 3130 )
1100 —-150 J
T:= ‘kelvin AG = —
1200 —3190 | mol
1300 ) ~6170 )
Combining Egs. (13.5), (13.11a), and (13.28) gives
2z )
2)\2 -A
) ) = ¢ = K = exp —G\
1-g)(1-¢) (O -c > R-T)
2 )L 2 )
0.4531")
% —>
~AG 0.5021
€ = |[exp| — €= 5 € = Ans.
R-T) 1+¢& 0.5399
0.5709 )

13.11 4HCI(g) + 02(g) = 2H20(g) + 2CI(g)

v=-—1 ng=6 T := 773.15-kelvin T := 298.15-kelvin

J J
AH298 = —114408-m—01 AG298 = —75948-111—01
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The following vectors represent the species of the reaction in the order in
which they appear:

—4 3.156 ) 0.623) 0.151 )

-1 3.639 0.506 | _4 -0.227 |
V= A= B = 107 D:= 10

2 3.470 1.450 0.121

2 ) 4.442 ) 0.089 ) ~0.344 )
end := rows(A) 1:=1..end

AA = Z (ViAi  AB:= Z (Ji-Bi AD := Z (Vi D

AA = -0.439 AB = 8 x 10_5 AC:=0 AD = -8.23x 104

T
AG := AHp9g - T—O'()3H298 —AG)9g

+R-IDCPH()1“O,ZT,AA,AB,AC, D
+—R-T-IDCPS()ro,zr,AA,AB,Ac, D

J
AG = -1.267x 10—

mol
-AG
K :=exp —\ K =7.18041
R-T)
5-4¢
6—-¢
l1-¢ 2- 2-
yo2 = YH20 = ycR =
6—¢ 6—¢ 6—¢
Apply Eq. (13.28); g:=05 (guess)
4
2- 6 —
Given e V(6=e)oyk Find(} g = 0.793
5-— 4-8} 1- g]
5—-4-¢ 1—¢ 2- 2.¢
YHCI = YO2 = YH20 = YC12 =
6—¢ 6—c¢ 6—¢ 6—¢

yac] = 0.3508  yop = 0.0397 yH20 = 0.3048  ycpp = 0.3048  Ans.
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13.12 N2(g) + C2H2(g) = 2HCN(g) v=0 ng =2

This is the reaction of Pb. 4.21(x). From the answers for Pbs. 4.21(x),
4.22(x), and 13.7(x), find the following values:

] J
AH298 = 42720-— AG298 = 39430*—
mol mol
AA = 0060 AB:=0.173-100° AC:=0  AD :=—-0.191-10°
T := 923.15-kelvin T := 298.15-kelvin

T
AG = AH298 — T—O-()SHZQS — AG298

+R-IDCPH(J0.X , AA,ABAC, D
+—R-T-IDCPS()1“0,ZT,AA,AB,AC, D

J -AG
AG = 3242 % 10" —— K := exp ZAG) K = 0.01464
mol R-T)
By Eq. (13.5),
l1-¢ 1-¢ 2e
= = = _—_ =g
YN2 D) YC2H4 D) YHCN >
By Eq. (13.28), &:=0.5  (guess)
2
9.
Given ¢ \ =K €= Find(}, e = 0.057
1 - 8)
1-¢ l-¢
YN2 = YC2H4 = YHCN = &
2 2
yn2 = 0.4715 ycoH4 = 0.4715 YHCN = 0.057 Ans.

Given the assumption of ideal gases, P has no effect on the equilibrium
composition.
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13.13 CH3CHO(g) + H2(g) = C2H50H(g) v=-1 ng=25

This is the reaction of Pb. 4.21(r). From the answers for Pbs. 4.21(r),
4.22(r), and 13.7(r), find the following values:

J J
AH298 = —68910-—— AG298 = —-39630-——
mol mol
AA == —1424 AB = 1.601-10 > AC :=0.156-10° % AD := —0.083-10°
T := 623.15-kelvin To := 298.15-kelvin

T
AG = AH298 - T—Q-()ﬁHzgg — AG298

+R-IDCPH(Jlo.X AA.AB.AC, D
+-R-T-IDCPS(JFo.X . AA AB.AC, D

J -AG
AG = —6.787 x 10° — K := exp —AG) K = 3.7064
mol R~T)
1-¢ 1.5-¢ €
By Eq. (13.5), ycmscho = YH2 = YC2H50H =
25-¢ 25-¢ 25-¢
By Eq. (13.28), e =05 (guess)
. 55—
Given ¢ OZ ¢ = 3.K € = Find(}, e = 0.818
() —-€ ()5 —-€
YCH3CHO = —— 15-¢ €
_ YH2 = YC2H50H =
25-¢ 25-¢ 25-¢
yCcH3cHO = 0.108 yH2 = 0.4053 yC2H50H = 0.4867 Ans.
If the pressure is reduced to 1 bar,
. 5 -
Given e(Rs-e 1.K ¢ := Find(} & = 0.633
() - ()5 -
YCHICHO = —— 15-¢ €
_ YH2 = YC2H50H =
25-¢ 25-¢ 25-¢
YCH3CHO = 0.1968 yH2 = 0.4645 YC2H50H = 0.3387 4 ¢
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13.14 C6H5CH:CH2(g) + H2(g) = C6H5.C2H5(g) v=-1 ng=2.5

This is the REVERSE reaction of Pb. 4.21(y). From the answers for Pbs.
4.21(y), 4.22(y), and 13.7(y) WITH OPPOSITE SIGNS, find the following
values:

J J
AH298 = —117440-—— AG298 = —83010-——

mol mol

6

AA =—-4.175 AB := 4.766-10_3 AC = -1.814-10 ° AD := —0.083'105

T := 923.15-kelvin To := 298.15-kelvin

T
AG := AHp9g — T—O'()3H298 —AG)9g

+R-IDCPH()1“O,ZT,AA,AB,AC, D
+—R-T-IDCPS()]‘0,Z1“,AA,AB,AC, D

J ~AG
AG = —2.398 x 10° —— K = exp AG) K = 1.36672
mol R-T)
1-c¢

By Eq. (13.5), YC6H5CHCH2 =

25—¢

_15-¢ R -
YH2 = YC6H5C2H5 =
25-¢ 25-¢
By Eq. (13.28), € =05 (guess)
(p.5- ,
Given e(bs-e 1.0133-K ¢ :=Find(}  &=0418
() —¢€ ()5 —¢€
1-¢ 1.5—-¢ €
C6HSCHCH2 = H2 = C6H5C2HS5 =

Y 25-¢ Y 25-¢ Y 25-¢

YC6H5CHCH2 = 0.2794 ym2 = 0.5196  yceHscoms = 0201 Ans.
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13.15 Basis: 1 mole of gas entering, containing 0.15 mol SO2, 0.20 mol O2,
and 0.65 mol N2.

S02 + 0.502 =S03 v=-05 ng = 1
By Eq. (13.5),

0.15-¢ _020-0.5¢ €

2= —— o2 —————— SO3 = ———
780 1-0.5¢ Y 1-0.5-¢ Y 1-0.5¢

From data in Table C.4,

J J
AH298 = —98890~m—01 AG298 = —70866'm

The following vectors represent the species of the reaction in the order

in which they appear:
-1) 5.699 ) 0.801) -1.015))
vi=|-05] A=[3639] B:=|0506]10"> D:=|-0227]10°
1 ) 8.060 ) 1.056 ) ~2.028 )
end := rows(A) 1:=1.end
AA = Z (ViAi  AB:= Z (Ji-Bi AD := Z (Vi-Di
i i i
AA = 0.5415 AB=2x10"° AC:=0 AD = -8.995x 10"
T := 753.15-kelvin Tg := 298.15-kelvin
T
AG = AHp9g - T—O'()3H298 — AGog
+R-IDCPH(Jlo.X ,AA . AB.AC, D
+-R-T-IDCPS(JFp.X . AA AB.AC, D
AG = —2804x 10" K = exp(ﬂ\ K = 88.03675
mol R~T)
By Eq. (13.28), g:=0.1 (guess)
8() -0.5¢ 05

Given =K € = Find()s e = 0.1455

D15—¢ -(p2-05e *°
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13.16

By Eq. (13.4), ngp3 = ¢ = 0.1455
By Eq. (4.18), AH7s3 := AHpog + R-IDCPH()FO X AAABAC, D

J J
AH7s3 = —98353 — Q:=¢A His3 Q=-14314— Ans.
mol mol
C3HS8(g) = C2H4(g) + CH4(g) vEl

Basis: 1 mole C3HS8 feed. By Eq. (13.4) ncygg = 1 —¢

no-nc3us _ 1-(h-e

Fractional conversion of C3HS = =c

ng 1
1-¢ € €
By Eq. (13.5), YC3HS = YC2H4 = YCH4 =
1+¢ 1+¢
From data in Table C.4,
J J

AH298 = 82670-—— AG298 = 42290 ——

mol mol

The following vectors represent the species of the reaction in the order
in which they appear:

-1) 1.213) 28.785)) ~8.824)
vi=| 1] A=|1424]| B:=|1439%|107° C:=|-4392 |10°°
1) 1.702 ) 9.081 ) ~2.164 )
end := rows(A) 1:=1..end
A=Y (ViAi  AB:= > (Ji-Bi AC=%" (Ji-Ci
i 1 i
AA = 1913 AB=-531x10°> AC=2268x10 ° AD:=0

(@) T := 625 kelvin To := 298.15-kelvin
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T
AG := AHp9g - T—O'()3H298 — AGog

+R-IDCPH()1‘0,ZT,AA,AB,AC, D
+—R-T-IDCPS()FO,ZT,AA,AB,AC, D

J -AG
AG = -2187.9— K :=exp —\ K = 1.52356
mol R-T )
By Eq. (13.28), g :=0.5 (guess)
82
Given =K € = Find()z
N+e-(-e
c =0.777 This value of epsilon IS the fractional conversion. Ans.
82
(b) £ :=0.85 K = K = 2.604
ON+e-O-e
J
AG = R-T-In(K) AG = 49723 —— Ans.
mol

The problem now is to find the T which generates this value.
It is not difficult to find T by trial. This leads to the value:
T =646.8 K Ans.

13.17 C2H6(g) = H2(g) + C2H4(g) v=1
Basis: 1 mole entering C2H6 + 0.5 mol H20.

ng= 1.5 By Eq. (13.5),

l-¢ _ € _ &
H~= YC2H4 =
1.5+¢ Y 1.5+¢ 1.5+¢

YC2H6 =

From data in Table C.4,

J J
AH298 = 136330-m—01 Angg = 100315-m—01

The following vectors represent the species of the reaction in the order in
which they appear:
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-1 1.131)) 19.225)

vi=| 1|  A:=|3249 | B:=| 0422 |-10°°
1) 1.424 ) 14.394 )
~5.561") 0.0
c=| 00 |[100® D:==|0083]10°
-4.392 ) 0.0 )
end := rows(A) 1:=1.end
AA = Z (Vi-Aj AB := Z (JiBi AC:= Z (yCi  AD := Z (Vi D
i 1 1 1
AA =3.542 AB = —4.409x 10 > AC = 1.169x 10" ° AD = 83x 10°

T := 1100-kelvin To := 298.15-kelvin

T

AG := AHp9g - T—O'()SHZ% — AG93
+ R-IDCPH()FO AXAAABAC, D
+—R-T-IDCPS()1“0,ZT,AA,AB,AC, D

J -AG
AG = —5.429 x 103— K = exp —\ K = 1.81048
mol R-T)

By Eq. (13.28), g:=0.5 (guess)

2
Given ¢ =K ¢:=Find(} & = 0.83505
().5 +¢ () —-&
By Eq. (13.4), ncope = 1-¢ ng2 =ncoH4 =€ n=l+e
l-¢ € €
YC2H6 = YH2 = YC2H4 =
l+¢ I +e¢ l+¢
yc2H6 = 0.0899 ycoH4 = 0.4551 yg2 = 0.4551 Ans.
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13.18 C2HSCH:CH2(g) = CH2:CHCH:CH2(g) + H2(g) v=1
(1) (2) ()

Number the species as shown. Basis is 1 mol species 1 + x mol steam.
ngp=1+x
1-¢ €

By Eq. (13.5), y; = — yp=y3= ———— = 0.10
I +ex + 1 +& +

From data in Table C.4,

J J
AH298 = 109780.1’1’1_01 AG298 = 79455-1,11—01

The following vectors represent the species of the reaction in the
order in which they appear:

-1 1967 31.630)
vi=|1]  A=|2734] B = | 26786 |-107°
1) 3.249 ) 0.422 )

—9.873 ) 0.0
C:=|-888 |10 ° D=| 00 |10’
0.0 ) 0.083 )
end := rows(A) i1:=1.end

AA = Z ()/1~Ai AB = Z ()/i'Bi AC = Z ()/i-Ci AD = Z ()’i'Di

3 7

AA =4.016 AB=-4422x10 ° AC=991x10 AD = 8.3 x 103

T := 950-kelvin T := 298.15-kelvin

T
AG := AHp9g — T—O'()SH298 — AGpog

+R-IDCPH(Jl0.X , AA,ABAC, D ..
+—R-T-IDCPS()FO,ZT,AA,AB,AC, D
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13.19

J “AG
AG = 4.896 x 10° —— K = exp( ) K = 0.53802

mol R-T)
By Eq. (13.28), (0.1)-(0.1)-() +& + -
1-¢
. K
Since 0.10-) +e&x+ = gr= — £ = 0.843
K +0.10
e
X = —— —¢l — X = 6.5894
0.10
1-¢
(a) yp o= ————— yH20 = 1 -02 -y
I +ex +
y1 = 0.0186 yH20 = 0.7814 Ans.
6.5894
(b) YSteam = 75894 ySteam = 08682 AnS.

C4H10(g) = CH2: CHCH:CH2(g) + 2H2(g)

v=E2
ey (2) 3
Number the species as shown. Basis is _
. . ngp=1+x

1 mol species 1 + x mol steam entering.

l-¢ €
By Eq. (13.5), y; = ——— y25 ————— =0.12

l+x+2¢ l+x+2¢

y3 = 2-yp = 0.24
From data in Table C.4,

J J
AH298 = 235030'm—01 AG298 = 166365-m—01

The following vectors represent the species of the reaction in the order in
which they appear:

-1) 1.935) 36.915))
vi=|1 | A:=]|2734 | B :=|26.786 |-10~°
2 ) 3.249 ) 0.422 )
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~11.402) 0.0 )

C:=| -8882 [100® D:=| 00 |10°
00 ) 0.083 )
end := rows(A) 1:=1.end
AA = Z (ViAi  AB:= Z (iBi AC:= Z (yCi  AD := Z (Vi Di
i i i i
AA =7297 AB=-9285x10 ° AC=252x10° AD = 1.66x 10"
T := 925-kelvin To := 298.15-kelvin

T
AG := AHjgg - T—O'()3H298 —AGyog

+R-IDCPH(Jlp.X AA,AB.AC, D
+-R-T-IDCPS(JFo.X ,AA AB,AC, D

J -AG
AG = 9.242 x 103— K :=exp —\ K = 0.30066
mol R-T)
2
By Eq. (13.28), (0.12)-(024)" (N +x+ 2 _ K
1-¢
K
Because 0.12-€) +x+2-e = gi=——
K +(0.24)
Xi=—— _1-2¢g X = 43151 £ = 0.839
0.12
l1-¢
(@ yj=——-— YH20 = 1-0.36 -y
1+x+2¢
y1 = 0.023 yH20 = 0.617  Ans.
43151
(b) = = 0.812 Ans.
Ysteam 53151 Ysteam
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13.20

1/2N2(g) + 3/2H2(g) = NH3(g) v=-—-1
Basis: 1/2 mol N2, 3/2 mol H2 feed ng = 2

This is the reaction of Pb. 4.21(a) with all stoichiometric coefficients divided
by two. From the answers to Pbs. 4.21(a), 4.22(a), and 13.7(a) ALL
DIVIDED BY 2, find the following values:

] J
AH298 = —46110— AG298 = —1645()'—
mol mol
AA = —2.9355 AB = 2.0905-10°° AC:=0 AD := —03305-10°
(@) T :=300-kelvin To := 298.15-kelvin

T
AG = AHp9g — T—O'()3H298 — AGog

+R-IDCPH(Jlp.X AA,AB.AC, D
+-R-T-IDCPS(Jlo.X ,AA AB,AC, D

J “AG
AG = —1.627x 10" —— K := exp ZAG) K = 679.57
mol R-T)

P:=1 PO :=1
From Pb. 13.9 for ideal gases:

P \—0.5
e=1-11+1.299-K-— e = 0.9664

PO )

° YNIG = 09349 Ans.

2—¢

YNH3 =
(b) For ynpg3 = 0.5 Dby the preceding equation

g = z Solving the next-to-last equation for K with P = P0 gives:
3

K=—-—-—2o—— K = 6.1586
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Find by trial the value of T for which this is correct. It turns out to be

T = 399.5-kelvin  Ans.

(¢) For P =100, the preceding equation becomes

2
)
—¢) K = 0.06159

129.9
Another solution by trial for T yields |T = 577.6-kelvin Ans.

(d) Egq. (13.27) applies, and requires fugacity coefficients, which can be
evaluated by the generalized second-virial correlation. Since iteration
will be necessary, we assume a starting T of 583 K for which:

T := 583kelvin P ;= 100bar

For NH3(1): T,; := 405.7kelvin P.q = 112.8bar op = 0.253
T P
Te1 Pc1
For N2(2): T¢p := 126.2kelvin P¢o = 34.0bar ®y = 0.038
583 100
Ty =—— T =4.62 Pp=—— Py =2941
? T 62 7 T30 7

For H2(3), estimate critical constants using Eqns. (3.58) and (3.59)

43.6
Te3 = \kelvin Te3 = 42.806K
21.8
b |
2.016 T
kelvin] Ty =— T3 = 13.62
Tc3
20.5
P2 = -bar P.x = 19.757 bar
c3 442 c3
14— P
2 016 T Py3 = - Pi3 = 5.061
kelvin c3

03 :=0
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13.21

Therefore, i=1..3

PHIB(Jr1 Br1, 1 ) 0.924)
¢ = | PHIB(JF12 B2, o | o =|1.034 |
PHIB(J13.Br3, 3 1.029 )
1) v
vi={-05| H()bl = 1.184
-1.5) !
The expression used for K in Part (c) now becomes:
)
-1
1 - 8}
K=——FF—— K = 0.07292
129.9
(1.184 )

Another solution by trial for T yields T = 568.6-K  Ans.

Of course, the INITIAL assumption made for T was not so close to the
final T as is shown here, and several trials were in fact made, but not
shown here. The trials are made by simply changing numbers in the
given expressions, without reproducing them.

CO(g) + 2H2(g) = CH30H(g) v=-2
Basis: 1 mol CO, 2 mol H2 feed ngp =3

From the data of Table C.4,

J J
AH298 = —90135-m—01 AG298 = —24791-m—01

This is the reaction of Ex. 4.6, Pg. 142 from which:

% AD := —0.135-10°

AA = —7.663 AB :=10.815-10 > AC := —3.45-10
(a) T := 300-kelvin To := 298.15-kelvin
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T
AG = AHp9g - T—O'()ﬁHz% — AGog

+R-IDCPH()F0,ZT,AA,AB,AC, D
+-R-T-IDCPS(JFo.X . AA AB,AC, D

J “AG

AG = —2.439x 10* K := exp ZAG) K = 1.762x 10*
mol R-T)

P:=1 PO =1

By Eq. (13.5), with the species numbered in the order in which they appear
in the reaction,

l1-¢ _2-2¢ _ €
3-2¢ 3-2-¢ 3-2-¢

y1 =

By Eq. (13.28), ¢ :=0.8 (guess)

2 2
(B = 2. P
Given ‘9()3—83 = (—\ X ¢ =Find(} &= 09752
a(i-e® (PO
° v3 = 0.9291 | Ans
y3 = 3=y .
3-2¢
®) y3:=05 By the preceding equation
3-y3
g = e =0.75
2.y3+1

Solution of the equilibrium equation for K gives

2
(B =2
K = 8()3—83 K =27
4() -€
Find by trial the value of T for which this is correct. It turns out to be:

T = 364.47-kelvin Ans.
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(c) For P =100 bar, the preceding equation becomes

2
K = ‘”3'()3i.1oo‘2 K=27x10

4() -€ 3

Another solution by trial for T yields T = 516.48-kelvin Ans.

3

(d) Eq. (13.27) applies, and requires fugacity coefficients. Since iteration
will be necessary, assume a starting T of 528 K, for which:

T = 528kelvin P := 100bar

For CO(1): T¢; := 132.9kelvin P¢1 = 34.99bar o1 = 0.048
T P

T = — Ty =3.973 P = — Py = 2.858
Tcl Pei

For CH30OH(3): T3 := 512.6kelvin  P3 := 80.97bar 03 = 0.564

T P
T, = — T, = 1.03 Py = — P, = 1.235
Te3 Pc3

By Eq. (11.67) and data from Tables E.15 & E.16.

b3 = 0.6206-0.9763 b3 = 0.612

For H2(2), the reduced temperature is so large that it may be
assumed ideal: ¢ = 1.

Therefore: i:=1..3

PHIB(JNr1 .81, 1 ) 1.032))
¢ = 1.0 | o=| 1 |
0.612 ) 0.612 )
_1\
vi=| 2| [T O " = 05933
1) i
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13.22

The expression used for K in Part (c) now becomes:

8()3 -2 2

K=Y 728 100720593 K = 1.6011 x 10”

4()1 -¢€ 3

Another solution by trial for T yields:T = 528.7-kelvin Ans.

3

CaCO3(s) = CaO(s) + CO2(g)

Each species exists PURE as an individual phase, for which the activity is
f/f0. For the two species existing as solid phases, f and f0 are for practical
purposes the same, and the activity is unity. If the pure CO2 is assumed
an ideal gas at 1(atm), then for CO2 the activity is f/f0 = P/P0 = P (in bar).
As a result, Eq. (13.10) becomes K =P =1.0133, and we must find the T
for which K has this value.

From the data of Table C.4,

I I
AH,gg := 178321 —— AGog = 130401-——

mol mol

The following vectors represent the species of the reaction in the order in
which they appear:

-1 12.572) 2.637)) ~3.120))
3

vi=|1] A=|6104] B:=|0443]10° D:=|-1.047]10°

1) 5.457 ) 1.045 ) ~1.157 )

i=1.3 AA:= Z (Vi-Ai  AB:= Z (JiBi  AD:= Z (Vi-Di

AA = —-1.011 AB =-1.149x10° AC:=0 AD =9.16x 10"

T := 1151.83-kelvin T := 298.15-kelvin

T
AG = AHp9g — T—O'()SH298 — AG)og

+R-IDCPH<)1‘0,ZT,AA,AB,AC, D
+—R-T-IDCPS()FO,ZT,AA,AB,AC, D
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13.23

J -AG
AG = -126.324 — K :=exp —\ K =1.0133
mol R-T)

Thus T = 1151.83-kelvin Ans.

Although a number of trials were required to reach this result, only the
final trial is shown. A handbook value for this temperature is 1171 K.

NH4ClI(s) = NH3(g) + HCI(g)

The NH4Cl exists PURE as a solid phase, for which the activity is {/{0.
Since f and f0 are for practical purposes the same, the activity is unity. If
the equimolar mixture of NH3 and HCl is assumed an ideal gas mixture at
1.5 bar, then with f0 = 1 bar the activity of each gas species is its partial
pressure, (0.5)(1.5) = 0.75. As a result, Eq. (13.10) becomes K =
(0.75)(0.75) = 0.5625 , and we must find the T for which K has this value.

From the given data and the data of Table C.4,

J J

The following vectors represent the species of the reaction in the order in
which they appear:

-1 5.939)) 16.105") 0.0
vi=|1] A=[3518] B:=|302 |10° D:=|-0186]10°
1) 3.156 ) 0.623 ) 0.151 )
i=1.3 AA:= Z (yiAi  AB:= Z (JiBi  AD:= Z (Vi-Di
i i i
AA = 0795  AB = —0.012462 AC:=0  AD=-35x10°

T := 623.97-kelvin T := 298.15-kelvin
T
AG := AHp9g — T—O'()SH298 — AG)og

+R-IDCPH()1‘0,ZT,AA,AB,AC, D
+—R-T-IDCPS()FO,ZT,AA,AB,AC, D
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J “AG
AG = 2.986x 10° —— K = exp| — K = 0.5624
mol R-T

Thus T = 623.97-K Ans.

Although a number of trials were required to reach this result, only the
final trial is shown.

13.25 NO(g) + (1/2)02(g) = NO2(g) v=-05
NO2 NO2
O 03 = Y 03 =K T = 298.15-kelvin
ynor(Joz 7 yNor(02D)"
From the data of Table C.4, AGygg = —35240-L
mol

K ~AG29g ) ;

T TR K = 1.493 x 10

- 12 -6

yNO = 10 yNO2 = 10 (guesses)

. 0.5 ~6
Given  yno2 = (0.21) 7-K-yNO YNO2 + YNO = 5-10

YNO ) 5
= Find(yno, yNO2 yNO = 7307 x 107 12
yNO2 )

This is about 7-10 8 ppm  (a negligible concentration) Ans.

13.26 C2H4(g) + (1/2)02(g) = <(CH2)2>0(g) v=-05
See Example 13.9, Pg. 508-510 From Table C.4,

J J
AH298 = —10514O-m—01 AG298 = —81470-m—01

Basis: 1 mol C2H4 entering reactor.

Moles O2 entering: nop = 1.25-0.5
. 79
Moles N2 entering: Ny = noz.a
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ng := 1 +np + nN2 ng = 3.976
Index the product species with the numbers:

1 = ethylene

2 = oxygen

3 = ethylene oxide

4 = nitrogen

The numbers of moles in the product stream are given by Eq. (13.5).

For the product stream, data from Table C.1:

Guess: g :=0.8

l-¢ ) 1424 14.394)
0 no2 - 0.5-¢ 3.639 ‘ 5 0.506 ‘ 1073
n = = — .
€ —-0.385 23.463 | kelvin
NI 3.280 ) 0.593 )
~4.392)) 0.0 -1
0.0 -6 —0.227 —0.5
= ‘ 10 D = ‘-los-kelvin2 V= ‘
—9.296 kelvin2 1
0.0 ) 0.040 ) 0 )

=14 AL =D (A BOE =" (h(k B

1 1

Ck =>" (h(k iCi Db =" (h(k i D;

y(b = ol K(k = H()/()s P K(k = 15947

ng—0.5-¢

The energy balance for the adiabatic reactor is:

AHp9g + AHp = 0 For the second term, we combine Eqgs. (4.3) & (4.7).

The three equations together provide the energy balance.
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For the equilibrium state, apply a combination of Eqgs. (13.11a) &
(13.18).The reaction considered here is that of Pb. 4.21(g), for which the
following values are given in Pb. 4.23(g):

-3 -6
10 10
AA = -3.629 AB := 8.816-—— AC := —4.904-
kelVln kelVin
AD = 0.114-10°kelvin®  Tg := 298.15-kelvin
Guess: T:=3
AB
ideph = | AAT-() — 1 +7-T02-<)2—1
AC AD (-1
+—-if03~() 3 1l +— ‘ \
3 To T )
) 2 T+ l\
ideps = AA-l(k +| B&o+| CTo .. | 2}-&—1
AD
i 2
(kTo
idcph = —130.182kelvin idcps = -0.417

Given

~AHpeg = R{ A(} -To-() =1 +

c(}

+T-T03-() 3 1 +

B(z)s 'Toz'() 2_,

%( ~1)

To T}

AHpog — AGgg  AHpog
K(); = exp - Ry )

R-Ty

(-6

+ idcps —

88244
18374 )
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0.0333)

0.052
v(0.88244) = Ans.

0.2496
0.6651 )
T :=1-Ty T = 949.23kelvin Ans.
13.27 CH4(g) = C(s) + 2H2(g) v =1 (gases only)

The carbon exists PURE as an individual phase, for which the activity is
unity. Thus we leave it out of consideration.

From the data of Table C.4,

J J

The following vectors represent the species of the reaction in the order in

which they appear:
-1 1702 9.081)
vi=|1 | A= 1771 | B:=|0771 |-107°
2 ) 3.249 ) 0.422 )
—2.164") 0.0
i=1.3 c=| 00 |100® D=|-086710
-0.0 ) 0.083 )
AA = Z (ViAi  AB:= Z (iBi AC:= Z (JiCi AD:= Z (Vi-Di
i i i i
3 6

AA = 6.567 AB =-7466x10 ~ AC =2164x10 = AD = -7.01 x 104

T := 923.15-kelvin To := 298.15-kelvin
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T
AG := AHpgg - T—O'()SH298 — AGyogg

+R-IDCPH()1“0,ZT,AA,AB,AC, D
+—R-T-IDCPS()r0,zr,AA,AB,AC, D

4] ~AG)
AG =-1.109x 10  — K := exp| — K =4.2392
mol R-T)
1-¢ 2-€
By Eq. (13.5), ng =1 YCH4 = YH2 =
1+¢ 1 +¢
()2-8 2 4-82
(a) By Eq. (13.28), = =K

e 0 |2

€ = K e =0.7173 (fraction decomposed)
4+ K
l-¢ 2-€
YCH4 = YH2 = ycH4 = 0.1646
1+¢ l+e Ans
yH2 = 0.8354 )
(b) For a feed of 1 mol CH4 and 1 mol N2, ng =2
By Eq. (13.28), g:=.8 (guess)
(e ° .
Given =K €= F1nd()5
(R+e-(h-e
€ =0.7893 (fraction decomposed)
l-¢ 2-¢
YCH4 = YH2 = YN2 = 1 = YCH4 — YH2
2+¢ 2+¢
ya2 = 0.5659 ycH4 = 0.0756 yN2 = 0.3585 Ans.
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13.28 1/2N2(g) + 1/202(g) = NO(g) v=0 1)

This is the reaction of Pb. 4.21(n) with all stoichiometric coefficients
divided by two. From the answers to Pbs. 4.21(n), 4.22(n), and 13.7(n) ALL
DIVIDED BY 2, find the following values:

J J
AH298 = 90250-—— AG298 = 86550-——
mol mol
AA = -0.0725 AB = 0.0795~10_3 AC =0 AD = 0.1075~105

T := 2000-kelvin To := 298.15-kelvin

T
AG = AH298 — T—O-()SH298 — AG298

+R-IDCPH()1“0,ZT,AA,AB,AC, D
+—R-T-IDCPS()1‘0,ZT,AA,AB,AC, D

J -AG
AG = 6501 x 10°—— K| :=exp ZAG) K = 0.02004
mol R-T j
1/2N2(g) + 02(g) = NO2(g) v=-05 (2)
From the data of Table C.4,
J J
AH298 = 33180-—— AG298 = 51310-——
mol mol

The following vectors represent the species of the reaction in the order in

which they appear:
~0.5) 3.280) 0.593 ) 0.040
vi=| -1 | A=|3639] B:=|0506]10° D:=|-0227]10°
1) 4.982 ) 1.195 ) —0.792 )
=13 A=Y (VA  AB = > (ViBi AD =)' (Vi-Di
i i i
AA = —0.297 AB=3925x10% AC:=0 AD=-585x10"

T := 2000-kelvin To := 298.15-kelvin
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13.29

T
AG = AH298 — T—Q-()SHzgg — AG298

+R-IDCPH(Jlg.X , AA.AB.AC, D
+-R-T-IDCPS(Jlo.X . AA AB.AC, D

J _AG .
AG = 1.592x 10°—— Ky = exp ZAG) Ky = 6.9373x 10 °
mol R-T)

With the assumption of ideal gases, we apply Eq. (13.28):

YNO YNO
(1) = = K,

()’NZ 0.5_()/02 0.5 (0.7)0.5‘(0.05)0.5

yNo = Ki-(0.7)22-(0.05)% YNO = 3.74962x 10> Ans.
2) PO:=1 P:=200
YNO2  _ yNO2Z ( p %2 K
- L
0.5 0.5
Oz Syor (0% 005) \POJ
0.5
_(P 0.5 ~ -5 4
YNO2 = (ﬁ) -K2-(0.7) 7-(0.05) yNO2 = 4.104 x 10 ns.

2H2S(g) + SO2(g) = 3S(s) + 2H20(g)

The sulfur exists PURE as a solid phase, for which the activity is f/f0. Since
f and f0 are for practical purposes the same, the activity is unity, and it is
omitted from the equilibrium equation. Thus for the gases only,

v=-1

From the given data and the data of Table C.4,

J J
AH298 = —145546-m—01 AG298 = —89830-m—01

512



The following vectors represent the species of the reaction in the order in

which they appear:

-2 3.931) 1.490

-1 5.699 0.801 _3
V= A = = .10

3 4.114 ~1.728

2 ) 3.470 ) 1.450 )

1:=

1.4 AA ::Z()/i-Ai AB ::Z()/i-Bi

3

AA = 5.721 AB = —6.065x 10 AC =0

T := 723.15-kelvin To := 298.15-kelvin

T
AG := AHp9g - T—O'()3H298 —AG)93

+R-IDCPH()rO,zr,AA,AB,AC, D
+—R-T-IDCPS()ro,zr,AA,AB,Ac, D

~0.232))
~1.015

D := ‘ 10
~0.783

0.121 )

AD := Z (Vi-Di

5

AD = —6.28 x 10*

J -AG
AG = —1.538 x 104— K = exp —\ K =12.9169
mol R-T )
By Eq. (13.5), gases only: np =3 (basis)
2-2-¢ 1-¢ 2-€
YH2S = Yso2 = YH20 =
3—-¢ 3—-¢ 3—-¢
By Eq. (13.28), g:=0.5 (guess)
2
Given ()28 03 = 8-K €= Find(} e = 0.767
2
(2-2e “(h-e
Percent conversion of reactants = PC
njQ — N ¥y
PC = -100 = 100 [By Eq. (13.4)]
nj0 njQ
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Since the reactants are present in the stoichiometric proportions, for each
reactant,

nj) = —Vv;j Whence PC := ¢-100 PC = 76.667 Ans.

13.30 N204(g) = 2NO2(g)
() (b)

Data from Tables C.4 and C.1 provide the following values:

v=1

J ]
AHjog i= 57200-——  AGaog i= 5080-——
mol mol
To := 298.15-kelvin T := 350-kelvin
AA = —-1.696 AB:=0.133-10° AC:=0 AD = 1.203-10°

T
AG := AHpgg - T—O'()SH298 — AGog

+R-IDCPH()ro,zr,AA,AB,AC, D
+—R-T-IDCPS()T0,ZT,AA,AB,AC, D

J _AG
AG = —3.968 x 10° —— K = exp A6 g 30
mol R-T )

Basis: 1 mol species (a) initially. Then

Vo = l1-¢ o = 2-¢ ()Z~82 _ P\_lK
— b— — — .
Yol 1+ (h-¢ -(h+e \P0)
K
@ P:=5 PO =1 € = e = 0.4044
4.P+K
1—
Ya = : ya = 0.4241 Ans
1+¢
K
(b) P:=1 PO =1 g = ¢ = 0.7031
4.P+K
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By Egq. (4.18), at 350 K:

J
AH := AH,gg + R-IDCPH()ro,zr AAABAC, D AH = 56984—1
mo

This is Q per mol of reaction, which is

Ae = 0.7031 - 0.4044 Ag = 0.299

J
Whence Q := AH-A¢ Q = 17021 — Ans.
mol

xgvg _ (1-xa 7B

13.31 By Eq. (13.32), K=
XATA XAYA
In(y, =0.1xg’ In(yp = 0.1xs” Whence
K= I_XA\em{blez-I_XAeX[OIG>2—X2]
XA ) 0) 2 xa DLV TR
exp|p.1-xp
I —xa —AG\
K= -exp| 0.1-( R-xp — 1 K = exp| ——
o0 (a1 ] =
J
AG = -1000-— T := 298.15-kelvin
mol

XA = .5 (guess)

, 1-xA —AG) ,
Given N -epr:O.l-()Z-xA— 1 ] = exp(ﬁj XA = Fmd()(A

xA = 0.3955 Ans.

For an ideal solution, the exponential term is unity:

1 —xa -AG
Given = exp(—T xA = Find(ka xA = 0.4005

This result is high by 0.0050. Ans.
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13.32 H20(g) + CO(g) = H2(g) + CO2(g) v=0

From the the data of Table C.4,

J J
AH298 =—-41166-—— AG298 = 28618 ——
mol mol
To := 298.15-kelvin T := 800-kelvin
AA == 1860 AB := —0.540-10 > AC := 0 AD = —1.164-10°

T
AG := AHp9g - T—O'()XH298 —AG)og

+R-1DCPH()rO,zr,AA,AB,AC, D
+-R-T-IDCPS(JFo.X , AA,AB,AC, D

J -AG

AG = —9.668 x 10° —— K := exp TAG) K = 427837
mol R-T )

(a) No. Since v=0 ,atlow pressures P has no effect

(b) No. K decreases with increasing T. (The standard heat of reaction is
negative.).

(¢) Basis: 1 mol CO, 1 mol H2, w mol H20 feed.
From the problem statement,

nco
= 0.02
nco + nH2 + nCo2
By Eq. (13.4), nco=1-¢ ngp = 1+¢ Ncoz2 = ¢
1-— 1-— 0.96
¢ =——%=00 = & = 0.941
1—¢+¢el +¢ + 2+¢ 1.02
Let z = w/2 = moles H2O/mole ""Water gas"'.
By Eq. (13.5),
_wW-—¢ _ 22— _ l-¢ _ l+e
0 Sy T 2422 Ry TH2 T
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€

yco2 = By Eq. (13.28) z:=2  (guess)
242z

Gven _ellee o Find(z)  z=41 Ans.
(ha- -(h-e

(d) 2CO(g) =CO2g) + C(s) v =—1 (gases)

Data from Tables C.4 and C.1:

J J
AH298 = —172459-In—01 AG298 = —120021-m—01

AA = 0476  AB :=0.702-10 °  AC =0 AD = —1.962-10°

T
AG = AH298 — T—O-()SHzgg — AG298

+R-IDCPH(J0.X ,AA AB.AC, D
+-R-T-IDCPS(Jlo.X . AA AB.AC, D

A
AG = —3.074x 10* —— K = exp 26Y) k17
mol R-T)

By Eq. (13.28), gases only, with P = P0 =1 bar

yCo2

(¥co ’

If the ACTUAL value of this ratio is GREATER than this value, the
reaction tries to shift left to reduce the ratio. But if no carbon is present, no
reaction is possible, and certainly no carbon is formed. The actual value of
the ratio in the equilibrium mixture of Part (c) is

= K = 101.7 for the reaction AT EQUILIBRIUM.

__ & _1-¢
yeoz: 2427 yco - 2407
yco2 = 0.092 yeo = 5.767x 107>
yYCo2
RATIO = RATIO = 2.775x 10°

(yco *

No carbon can deposit from the equilibrium mixture.
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13.33 CO(g) + 2H2(g) = CH30H(g) v=-2 1)

This is the reaction of Pb. 13.21, where the following parameter values are

given:
J J
AH298 = -90135-—— AG298 = -24791-——
mol mol
T := 550-kelvin Tg := 298.15-kelvin

AA = —7.663 AB := 10.815-10 > AC = —3.45-10°% AD := —0.135-10°

T
AG = AH298 — T—O~()SH298 — AG298

+R-IDCPH()1"0,ZT,AA,AB,AC, D
+—R-T-IDCPS()I‘O,ZT,AA,AB,AC, D

J _AG .

AG =3339x 10°—— K| :=exp ZAG) K| =6749% 10 %
mol R-T)

H2(g) + CO2(g) = CO(g) + H20(g) v=0 (2)

From the the data of Table C.4,

J J
AH298 =41166-—— AG298 = 28618-——
mol mol
T := 550-kelvin T := 298.15-kelvin
The following vectors represent the species of the reaction in the order in
which they appear:
-1 3.249) 0.422) 0.083
-1 5.457 1.045 _3 -1.157 5
V= A = B = -10 — -10
1 3.376 0.557 —-0.031
1) 3.470 ) 1.450 ) 0.121 )
i=1.4 AA:= Z (ViAi  AB:= Z (JiBi  AD:= Z (Vi-Di
i i i
AA =-186  AB=54x10" AC:=0  AD = 1.164x 10°
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T
AG = AH298 — T—O-()SHzgg — AG298

+R-IDCPH(J0.X , AA AB.AC, D
+-R-T-IDCPS(JFo.X . AA AB.AC, D
4 J

-AG
AG = 1.856 x 10 — Ky == exp —\ K> = 0.01726
mol R-T)

Basis: 1 mole of feed gas containing 0.75 mol H2,
0.15 mol CO, 0.05 mol CO2, and 0.05 mol N2.

Stoichiometric numbers, v;;

i= H2 CO Cc0O2 CH30H H20
i
1 =2 -1 0 1 0
2 -1 1 -1 0 1
By Eq. (13.7)
0.75 —5‘2-81— 2 0.15—821+ 2
YH2 = yco=s ———mm—
l — 281 1 — 281
0.05-¢y €1 )
yco2 = —— YCH30H = YH20 =
1—2'81 1—2'81 1—2~81
P :=100 PO =1
By Eq. (13.40), g1:=0.1 g7 = 0.1 (guesses)
Given

er() -2¢ ? (1\2.

(p.75 -2€)— » 2.())_15_$1+ ] P0)
())'15 &1t 282 _ ey ) B
())'75 21— '()).05 ) = K2 82) = F1nd(>1,82
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g1 = 0.1186 gy = 8.8812x 10 °

0.75 —2‘2-81— 2 0.15—&‘31+ 2
YH2 = yco=—"——"
1- 2-81 1 - 2~81
0.05 — %) €1 €
yYco2 = —— YCH30OH = YH20 =
1-2-¢ 1-2-¢ 1-2-¢
YN2 := 1 —YH2 = YCO — YCO2 — YCH30H ~ YH20
yH2 = 0.6606 yco = 0.0528 yco2 = 0.0539
Ans.
ycH30H = 0.1555 ya20 = 0.0116 yN2 = 0.0655
13.34 CH4(g) + H20(g) = CO(g) + 3H2(g) v=2 (1)

From the the data of Table C.4,

J J
AH298 = 205813-—— AG298 = 141863-——
mol mol
The following vectors represent the species of the reaction in the order in
which they appear:
-1 1.702") 9.081)
-1 3.470 1.450 _3
V= A = B = -10
1 3.376 0.557
3) 3.249 ) 0.422 )
—2.164") 0.0 )
0.0 _6 0.121 5
C:= -10 D = -10 1:=1..4
0.0 —-0.031
0.0 ) 0.083 )

AA = Z (ViAi  AB:= Z (Ji-Bi AC = Z (yiCi  AD:= Z (Vi-Di

3 6

AA = 7951 AB = -8.708 x 10 AC =2.164x 10 AD = 9.7 x 103
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T := 1300-kelvin T := 298.15-kelvin

T
AG = AH298 — T—O-()SHzgg — AG298

+R-IDCPH(Jl0.X AA.AB.AC, D
+-R-T-IDCPS(Jlo.X . AA AB.AC, D

-AG

AG = —-1.031 x IOSL Ki:=exp —\ Kq = 13845
mol R'T)

H20(g) + CO(g) = H2(g) + CO2(g) v=0 (2

This is the reaction of Pb. 13.32, where parameter values are given:

] J
AHygg = ~41166-— AGpgg = ~28618 —

3

AA :=1.860 AB :=-0.540-10 AC =0.0 AD = ~1.164-10°

T
AG = AH298 — T—O-()SHzgg — AG298

+R-IDCPH(Jl0.X ,AA AB.AC, D
+-R-T-IDCPS(Jlo.X . AA AB.AC, D

J -AG
AG = 5.892 x 103— Ky = exp —\ K> = 0.5798
mol R-T)

(a) No. Primary reaction (1) shifts left with increasing P.

(b) No. Primary reaction (1) shifts left with increasing T.

(¢) The value of K1 is so large compared with the value of K2 that for all
practical purposes reaction (1) may be considered to go to
completion. With a feed equimolar in CH4 and H20, no H2O then
remains for reaction (2). In this event the ratio, moles H2/moles CO
is very nearly equal to 3.0.
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(d) With H2O present in an amount greater than the stoichiometric
ratio, reaction (2) becomes important. However, reaction (1) for all
practical purposes still goes to completion, and may be considered
to provide the feed for reaction (2). On the basis of 1 mol CH4 and
2 mol H2O initially, what is left as feed for reaction (2) is: 1 mol
H20, 1 mol CO, and 3 mol H2; n0 =S5. Thus, for reaction (2) at
equilibrium by Eq. (13.5):

_ _l-¢ _ € _3+e

YCO = YH20 5 YCco2 s YH2 5

By Eq. (13.28), g:=05 (guess)
B+

Given 80;—82 = K, & := Find(} g = 0.1375
O -e

. YH2 . +¢& :
Ratio = —— Ratio := Ratio = 3.638 Ans.
YCO 1-¢

(e) One practical way is to add CO2 to the feed. Some H2 then reacts
with the CO2 by reaction (2) to form additional CO and to lower the
H2/CO ratio.

() 2CO(g) = CO2(g) + C(s) v=-1 (gases)

This reaction is considered in the preceding problem, Part (d), from
which we get the necessary parameter values:

J J
AH298 = —172459.—— AG298 =—120021-——
mol mol
For T=1300 K, T :=1300-kelvin  Tq := 298.15-kelvin
AA =0476 AB = 0.702-10_3 AC = 0.0 AD = —1.962-105

T
AG = AHp9g — T—O'()3H298 — AGog

+R-IDCPH(Jlg.X ,AA . AB.AC, D
+-R-T-IDCPS(JFo.X . AA AB,AC, D
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13.37

J ~AG _
AG = 5.673x 107 —— K = exp(R—\ K = 5.255685x 10" °

mol T )

As explained in Problem 13.32(d), the question of carbon deposition
depends on:

yCo2

(¥co ’

When for ACTUAL compositions the value of this ratio is greater than the
equilibrium value as given by K, there can be no carbon deposition. Thus
in Part (c), where the CO2 mole fraction approaches zero, there is danger
of carbon deposition. However, in Part (d) there can be no carbon
deposition, because Ratio > K:

RATIO =

Ratio := _&2 Ratio = 0.924

-z

Formation reactions:

C +2H2 =CH4

H2 + (1/2)02 = H20

C+1/2)02=CO

C+02=C0O2

Elimination first of C and then of O2 leads to a pair of reactions:
CH4+H20=CO+3H2 (1)

CO+H20=C0O2+H2 (2)

There are alternative equivalent pairs, but for these:

Stoichiometric numbers, v, ]

i= CH4 H20 CO CO2 H2 A2

J
1 -1 1 0 3 2
2 0 -1 -1 1 1 0



For initial amounts: 2 mol CH4 and 3 mol H20, n0 =5, and by Eq. (13.7):

_ 2-¢q _ 3-&1— 2 _ &1 ¢€
YO S TH20 T Y0
8 _ g1+ 9
ycoz = 5424, YH2 = 5+—281

By Eq. (13.40), with P = PO = 1 bar

yeor (Yr2 . _ YCO2'YH2 _
——— =Kk —=k

YCH4 YH20 YCO'YH20

From the data given in Example 13.14,

AG| = —27540-L AG, = —3130-L T := 1000-kelvin
mol mol
~AG) ~AG»)
1 eXp R-T ) 2 eXp R-T )
K| = 27.453 Ky = 1.457
g1 =15 gy =1 (guesses)
Given 3
— . .8 +
b fee s’
(b (o 2 {2
82‘()3'81 T2
= KZ
()31_82 '()3_551_ 2
e1)
= Find(} 1, &5 g1 = 1.8304 g, = 0.3211
82)
2—81 3—&}1— 2 €1 — &
S T S 0T,
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€7 3-£1+ 2

YCO2 = YH2 = ———
5+2-¢ 5+2-g;

ycH4 = 0.0196 ya20 = 0.098 yco = 0.1743

ycoz = 0.0371 yH2 = 0.6711

These results are in agreement with those of Example 13.14.

13.39 Phase-equilibrium equations:

y1-P
Ethylene oxide(1): p; = y;-P = 415-x; P := 101.33-kPa X] =
b= : ' 415.kpa
y2-P
Water(2): xp-Psaty = yo-P Psatp := 3.166-kPa x5y =
Psaty

(steam tables)
Ethylene glycol(3): Psat3 = 0.0 y3 = 0.0
Therefore, y, = 1 -y and x3=1-%x2—x3

For the specified standard states:
(CH2),0(g) + H,0(1) = CH,OH.CH,OH()

By Eq. (13.40) and the stated assumptions,

K = ¥3°X3 _ X3
yli\()/ . V1-X2 T := 298.15-kelvin
po) V2
Data from Table C.4: AGjrgg = —72941-L
mol
~AG29g )
k := exp k=6018x10'2 Ans.
RT )
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So large a value of k requires either y1 or x2 to approach zero. Ifyl
approaches zero, y2 approaches unity, and the phase-equilibrium
expression for water(2) makes x2 = 32, which is impossible. Thus x2
must approach zero, and the phase-equilibrium equation requires y2 also
to approach zero. This means that for all practical purposes the reaction
goes to completion. For initial amounts of 3 moles of ethylene oxide and
1 mole of water, the water present is entirely reacted along with 1 mole of

the ethylene oxide. Conversion of the oxide is therefore
33.3 %.

-1 -1) 50

13.41 o
-1 0 Initial 50 |kmol
a) Stoichiometric coefficients:v := ‘ numbers of n0 :=
1 moles 0 I hr
0o 1) 0 )
Number of components: i:=1.4 Number of reactions: j:=1.2

1 _1j r

Given values: ya :=0.05 yg:=0.10

o . -1 kmol
Vj - ZV1,_] VZL n03:Zn01 ng = 100 1’:110
1

kmol kmol
Guess: yc =04 yp:=04 ¢g;:=1 ° gy =1 0
hr hr
Given
n0| —&1- » n02 — &g
YAS ——— YBT ——
ng—&€1— 2 np—&;— 2
Eqn. (13.7)
n03 +&1 - > n04 + €5
ye= — Y0F ———
ng—&€1— - ng—&;— 2
ye )
P ‘ kmol kmol
e | Find(Jegper 2 5~ 44737 ho £y = 2.632 ho
r r

82)
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kmol

(D np:=n0y-e&;- > np = 2.632
hr
kmol
ng :=nly — g ng = 5.263
hr
kmol
nc:=n03+&; - » nc = 42.105
hr
kmol
np = n04 + €7 np = 2.632
hr
kmol
n = np +ng+nc +np n = 526322 Ans.
(ii) YC = 0.8 YD = 0.05 Ans.
-1 -1) 40
b) Stoichiometric coefficients:v :— ‘ numbers of n0 :=
1 moles 0 I hr
0 1) 0 )
Number of components: i:=1.4 Number of reactions: j:=1.2
e . —1\ kmol
ViT Vi, ] v = ng = n0;j ng= 80
A 2 DT
Given values: yc:=0.52 yp:=0.04
kmol kmol
Guess: ya =04 yB:=04 ¢g;:=1 ° € = o
hr hr
Given
n0) —&1 - » n0y — &1 —2¢y
YAS —————— YB =
nop—¢€1 —2¢, no—¢e1—2¢,
Eqn. (13.7)
n03 + g n04 + €5
ye=———— YOF —————
no—¢€;—2¢, ng—¢&;—2¢p
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yA )

YB
= Fj kmol kmol
e = Fll’ld()lA,tyB,Sl, b &1 = 26 mo ey = 2 mo
hr hr
82)
ya = 0.24 yg = 0.2
kmol
np =nl;—&;— » np = 12 0
hr
kmol
ng :=n0p — g1 —2¢y ng = 10 0
Ans.
kmol
nc :=n03 + ¢y nc = 26 0
kmol
np = n04 + €9 np =2 °
hr
-1 -1) 100
1 -1 Initial 0 |kmol
¢) Stoichiometric coefficients:v := ‘ numbers of n0 :=
1 moles 0 hr
1) 0 )
Number of components: i:=1..4 Number of reactions: j:=1.2
e . 1 \ kmol
ViT Vi, ] V= ng := n0; ng = 100
2 2y om0 s 00T
Given values: yc =0.3 yp = 0.1 1
kmol kmol
Guess: yA =04 yp:=04 g1:=1 ° gy =1 o
hr hr
Given
n0) &1 - » n0y+e&; - o
yAs ————=0  yp= ————
ng+e&— o np+&;— 9
Eqn. (13.7)
n03 + €1 n04 + €9
ye= — YDF ———
ng+e&;— 2 np+&; - 2
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yaA )

¥yB
T kmol kmol
.. | = Find(yagner, 2 g1 = 37.5—— £y = 125
1 hr hr
82)
ya = 04 yB = 0.2
kmol
na =n0;—&1- » np = 50 0
hr
kmol
ng :=n0) +&1 - 7 ng = 25 0
hr Ans.
kmol
nc :=n03 + ¢y nc = 37.5 0
r
kmol
np =n04 + €9 np = 12.5 0
-1 -1 40
-1 -1
Initial 60 kmol
d) Stoichiometric coefficients:v .= | 1 0 numbers of n0 :=
0 1 moles 0 i
0 1) 0)
Number of components: i:=1..5 Number of reactions: j:=1.2

A . -1
Vi '_ZVI,J v:[ ) ng ::Znoi ng = 100krnOI

i 0 ) hr

Given values: yo :=0.25 yp := 0.20

i

kmol kmol

hr hr

Guess: ya =02 yg:=04 yg:=01 ¢;:=1
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13.45

Given n0; —&1- » n0y —&1— 7
npg—¢&q npg—¢€q
n0s3 + € n04 + €5 n0s5 + &y
yc= —— YyD=F —— YE= —
npg—¢&q ng—¢€q ng—¢€q
YA )
YB
kmol kmol
YE | := Find ,VB-JE-€ 1, g1 =20 €7 =16
()VA YB-FE-E 15 2 1 - 2 hr
€1
82)
@) (ii)
kmol
np =nlj-&;— o np=4 ho yaA = 0.05
r
kmol
ng:=nlp—-&1—- o, ng=24 0 yB = 0.3
hr
kmol
nc :=n03 + ¢ nc = 20 - Ans. yc = 0.25
kmol
np =n04+ €9 np = 16 hO yp = 0.2
r
kmol
ng = n05 + g, ng = 16 0 yg = 0.2
hr
C,H,(g) + H,0(g) -> C,H;OH(g)
TO := 298.15kelvin PO := 1bar T := 400kelvin P := 2bar
J J
1=C,H,(g) AHOg := 52500 — AGOyg; = 68460 —
mol mol
J J
2=H,0(g) AHOp := —241818 — AGOg) := —228572 —
mol mol
J J
3 =C,H5O0H(g) AHO¢; := —235100—— AGOg3 := —168490-—
mol mol
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kJ
AHO := ~AHO;; ~A HOp + HOg  AHO = —45.782 —

mol
kJ
AGO = ~AGOg A GO + GOz AGO = —8.378 ——
mol
AA = —(1.424) — (3.470) + (3.518) AA = 1376
AB = [~(14.394) — (1.450) + (20.001)]-10° AB = 4.157x 10 °
AC = [—(=4.392) — (0) + (-6.002)]-10" ° AC = —1.61x 10" °
AD = [~(0) — (0.121) + (0)]-10° AD = —1.21x 10*
~AGO)
a) Ko .= expl —— | Eqn. (13.21) Ko9g := Ko Ko9g = 29.366 Ans.
R-TO )
AHO TO _
b)K| = exp (12T gqn. 13.22) K| =9.07x10 >
R-TO T)

-1
K = exp ?IDCPH()I'O,ZT,AA,AB,AC, D ...\ K, = 0.989 Eqn. (13.23)

+IDCPS(0, X AA ABAC, D )

Ky00 = Ko-K-Ky  Eqn. (13.20) K400 = 0.263 Ans.

¢) Assume as a basis there is initially 1 mol of C2H4 and 1 mol of H20

1 —e, 1 —eg €
y1= y2 = y3 =
2—¢q 2—-¢, 2—-¢ge
Assuming ideal gas behavior RN = i
y1y2 PO
€e
e . . . . 2—ge P
Substituting results in the following expression: = K400 —
l-eg. 1—gg PO

2—€s 2—gg
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Solve for g, using a Mathcad solve block.

€e
2—¢ P
Given ° = Kyp0-—
l-e. 1—-¢¢ PO
2—¢g¢ 2—¢;
1 —¢€e I —¢g
y1:= y2 =
2—¢gg 2—gg
y1 = 0.447 yp = 0.447

Guess: ¢, :=0.5
e =Find(fe g =0.191
€e
y3 =
2—-¢€q
y3 = 0.105 Ans.

d) Since v=-1<0, a decrease in pressure will cause a shift on the reaction
to the left and the mole fraction of ethanol will decrease.

13.46 H,(g) + O,(g) -> H,0,(g)

kJ

AHOfH202 = —136. 1064m—01

SO0 := 130.680
H2 mol-kelvin

SO = 23295
H202 mol-kelvin

ASOf1202 = —SO0H2 — S002 + SOH202

AGOf = AHOszoz — T-ASOszoz

532

S0p2 = 205.152

T := 298.15kelvin P := lbar

mol-kelvin

J
ASOf1202 = —102.882 -
mol-kelvin
kJ
AGOf = —105.432—— Ans.

mol



13.48 C;Hg(g) -> C3Hg(g) + Hy(g) (D
C;Hg(g) -> C,Hy(g) + CHy(g) (ID

TO := 298.15kelvin PO := lbar T := 750kelvin P := 1.2bar
J J
1=C;Hg(g) AHO¢) = -104680 — AGOygy = —24290 —
mol mol
J J
2=C;H4(g) AHOp := 19710 — AGOp = 62205 —
mol mol
J J
3=H,(g) AHO¢3 = 0— AGOp = 0—
mol mol
J J
4=C,H (g0 AHOgy := 52510— AGOgy = 68460 ——
mol mol
J J
5=CH, (g) AHOg5 = =74520 — AGO¢5 = —50460 —
mol mol

Calculate equilibrium constant for reaction I:

kJ
AHOL := ~AHOp +A HOp + HOg  AHOI = 124.39—
mo
kJ
AGOL := ~AGOf +A GOp + GO AGOT = 86.495—
mo

AAT := —(1.213) + (1.637) + (3.249) AAI = 3.673

3 3

ABI = -5.657x 10
6

ABI := [—(28.785) + (22.706) + (0.422)]- 10~

6

ACI := [~(~8.824) + (=6.915) + (0)]- 10~ ACI = 1.909 x 10~

ADI := [~(0) + (0) + (0.083)]-10° ADI = 83 x 10°
—AGOI
Klo = exp(—R_TO ) Eqn.(1321) Klp = 0
[ AHOI TO
Kl i=exp| ——| 1 - —\ Eqn. (13.22) KI; = 1.348 x 1013
| R-TO T)

-1
Kl := exp ?IDCPH()FO,ZT,AAI,ABI,ACI, DI ...\ Kl = 1.714

+IDCPS(J0,A AALABI,ACI, DI ) Eqn.(13.23)
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KI := Klop-KI;-KIp Eqn. (13.20) KI = 0.016

Calculate equilibrium constant for reaction I1:

kJ
AHOII := ~AHOf +A HOgy + HOgs  AHOI = 82.67—
mo

kJ
AGOIL := ~AGOf +A GOgy + GOgs  AGOIl = 42.29—
mo

AAIL := —(1.213) + (1.424) + (1.702) AAIL = 1.913

3 3

ABII := [—(28.785) + (14.394) + (9.081)]- 10~ ABII = =531 x 10~

6 6

ACII := [~(~8.824) + (—4.392) + (-2.164)]- 10~ ACII = 2.268 x 10~

ADII := [~(0) + (0) + (0)]-10° ADII = 0
KT e x| ZAGOI) .
0= P =10 ) Eqn.(3.21) Kllp = 3.897 x 10~

[ AHOII T
KII; := exp —0(1 - —O\

| R-TO T)
-1

KII; := exp ?IDCPH()FO A ,AAILLABIILACII, DII \ KII, = 1.028

} Eqn. (13.22) KII, = 5.322x 10°

+IDCPS(Jr0, A AAILABILACI, DI JEqn.(13.23)
KII := KIIy-KII;-KII, Eqn. (13.20) KII = 21.328

Assume an ideal gas and 1 mol of C;Hj initially.

_l-e1— _ e _ e
yi= —m 2= ——mmmm y3= —m
1+8§I+ I 1+&II+ 11 1+EEI+ 11
€n e€n
yas ———  ys=————— Eqn. (13.7)
1+&II+ 11 1+%EI+ I

The equilibrium relationships are:

y2'y3 PO 4ys
_ KI‘(_\ ya'y

= KII-(E\ Eqn. (13.28)
vl P) vl P)
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Substitution yields the following equations:

( o \( o)
I+er+ )\ l+er+ 1) _ p_()\
(1—351— i) KI(P]

1+{-EI+ H)

[ \( o)
1 +e1+ II) ] +e1+ H) _ p_o\
(1—351— ) KH(P)

1+{-EI+ H)

Use a Mathcad solve block to solve these two equations for ¢yand g Note

that the equations have been rearranged to facilitate the numerical
solution.

Guess:  g7:=0.5 erp = 0.5
Given

€] e KI_(P_O\‘(l &1 1)

1+EBI+ I 1+EEI+ I P) 1+EEI+ H}

el SLI—— PO\ l-®1- 11
Pj 1+EEI+ I

l+EEI+ 10 1+EEI+ I

er )
= Find(}r.eq er = 0.026 ey = 0.948
eqp )
l-&r— g g g
yi=———— Y= y3i=—————
1+{-}II+ I 1+{},‘I+ 11 1+£—},‘I+ I
en el
V4= ———— ys = ————
1+EEI+ I l+EBI+ 11

y1 = 0.01298 ys = 0.0132 y3 =0.0132 y4= 04803 ys= 0.4803

535



A summary of the values for the other temperatures is given in the table below.

T= 750 K 1000 K 1250 K
Y1 0.0130 0.00047 0.000006
y2 0.0132 0.034  0.0593
y3 0.0132  0.034  0.0593
Y4 0.4803 0.4658 0.4407
ys 0.4803 0.4658 0.4407

13.49 n-C4H10(g) -=> iSO-C4H10(g)

TO := 298.15kelvin PO := lbar T := 425kelvin P := 15bar
J J
1=n-C,H,,(g) AHOg = —125790——  AGOp = —16570 —
mol mol
. J J
2=is0-C,H,o(g)  AHOp == —134180——  AGOp = —20760——
mol mol
KJ
AHO := ~AHOg + HOp AHO = ~8.39 ——
mol
KJ
AGO = —~AGOs + GOp AGO = —4.19 =
mol
A = —(1.935) + (1.677) AA = —0.258
AB = [~(36.915) + (37.853)]- 10" ° AB = 938x 10 %
— [(11.402) + (—11.945)]-10" ° AC = —543x 10"
AD = [~(0) + (0)]-10° AD =0
—AGO)
a) K := exp Eqn. (13.21) Ko = 5.421 Ans.
R-TO )
[ AHO TO
b)K; := exp| ——-| 1 — _\ Eqn. (13.22) K1 =0.364
| R-TO T)

-1
K = exp ?IDCPH()I'O,ZT,AA,AB,AC, D ...\ Kr=1 Eqn.(13.23)

+IDCPS(0, X AA ABAC, D )
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Assume as a basis there is initially 1 mol of n-C H,,(g)

y1=1-¢g; V2 = &g

a) Assuming ideal gas behavior 22 = Ke
y1
o . . €e
Substitution results in the following expression: ~— =K,

() -=
Solving for K yields the following analytical expression for g,

1
I +Ke

£e = 0.336

€e !
yi=1-¢g, y| = 0.664 V2 = € y2 = 0336  Ans.

b) Assume the gas is an ideal solution. In this case Eqn. (13.27) applies.

11 { (ioi = (%)V-K} Eqn. (13.27)

Substituting for y; yields:
€e’ ¢ 1

K

0P
¢2 + Ke'¢1

Calculate ¢i for each pure component using the PHIB function.

This can be solved analytically for ¢, to get: ¢, =

For n-CjH;y:  ®q := 0.200 Tep := 425.1kelvin ~ P¢p = 37.96bar
T ! T 1 P P P 0.395
rl == —— rl = rl == —— rl =Y.
Te1 Pc1
¢1 = PHIB(Jr1 81, | o1 = 0.872
For iso-C,H,,: ®y = 0.181 Tep = 408.1kelvin Py := 36.48bar
T = — Ty = 1.041 P
A 2= - Py = — Py = 0411
P2
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¢2 = PHIB(Jl2.Br2, 2 b2 = 0.884

¢
Solving for g, yields: ¢, := "z €e = 0.339

 Go+Kedg

y1 = 1—¢; y1 = 0.661 Y2 = € y2 = 0.339 Ans.

The values of y; and y, calculated in parts a) and b) differ by less than 1%.
Therefore, the effects of vapor-phase nonidealities is here minimal.
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141

(@)

(b)

Chapter 14 - Section A - Mathcad Solutions

A12 :=0.59 Arq =142

Margules equations:

y1(x1) = exp[ (1- X1)2-[A12 +2-(A21- A12)-X1ﬂ

va(x1) = exp[ xlz-[ Az1+2:(A12 - A1)-(1-x) ﬂ

Psat1 := 82.37-kPa
BUBL P calculations based on Eq. (10.5):

Psaty := 37.31-kPa

Poubt(X1) = x1-v1(x1)-Psaty + (1 - x1)-y2(x1)-Psatz

x1-71(x1)-Psaty

() = Pbubl (X1)

X1 := 0.25 Pbubl(X1) = 64.533kPa
X1 := 0.50 Pbubl(X1) = 80.357kPa
x1 := 0.75 Pbubl(X1) = 85.701kPa

BUBL P calculations with virial coefficients:

cm3 cm3

B11 := -963-—— Byo := -1523-——
mol mol

819 = 2:B12-B11-B22

_Bll-(P — Psaty) + P-y2°-31

®1(P.T.y1.y2) := exp —

B (P Psaty) + Prys %51 |

®,(P,T.y1.y2) := exp —
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T = (55 + 273.15)-K

y1(x1) = 0.562
y]_(Xl) = 0.731
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Psat1 + Psaty
- 2
X1 := 0.25 Given

Guess: P y1:=0.5 y2:=1-y1

y1-®1(P,T,y1,y2)-P = x1-y1(x1)-Psaty
y2-®5(P,T,y1,¥2)-P = (1-x1)-v2(x1)-Psatz

y2=1-y1
y1)
y2 | := Find(y1,y2,P)
P)

X1 := 0.50 Given

y1-®1(P,T,y1,y2)-P = x1-y1(x1)-Psaty

y2-®5(P,T,y1,Y2)-P = (1-x1)-v2(x1)-Psatz

y2=1-y1
y1)
y2 | := Find(y1,y2,P)
P)

X1 := 0.75 Given

y1-®1(P,T,y1,y2)-P = x1-y1(x1)-Psaty
y2-®5(P,T,y1,¥2)-P = (1-x1)-72(x1)-Psatz

y2=1-y1
y1)
y2 | := Find(y1,y2,P)
P)
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143 T :=200-K P := 30-bar y1 = 0.95

Cm3

H4 := 200-bar B := -105-—
mol

Assume Henry's law applies to methane(1) in the liquid phase, and that the
Lewis/Randall rule applies to the methane in the vapor:

fhatll = Hi-xq fhatlv = y1-¢1-P
By Eq. (11.36): dq == ex ﬂ\ ¢ = 0.827
. . . 1= p RT) 1=V

Equate the liquid- and vapor-phase fugacities and solve for x1:

_yrérP
-

X1 : X1 = 0.118 Ans.

14.4 Pressures in kPa

Data: 0.000 ) 12.30)) 0.000 )
0.0895 15.51 0.2716
0.1981 18.61 0.4565
0.3193 21.63 0.5934

X1 = P:= y1 =

0.4232 24.01 0.6815
0.5119 25.92 0.7440
0.6096 27.96 0.8050
0.7135 ) 30.12 ) 0.8639 )

i:=2..rows(P) X2 :=1-X1 Psaty := Pq

(a) It follows immediately from Eq. (12.10a) that:

|n(vloo) = A

Combining this with Eq. (12.10a) yields the required expression
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(b) Henry's constant will be found as part of the solution to Part (c)

(c) BARKER'S METHOD by non-linear least squares.
Margules equation.

The most satisfactory procedure for reduction of this set of data is to find
the value of Henry's constant by regression along with the Margules
parameters.

v1(x1,x2,A12, A1) = exp[ (xz)Z-[Alg +2-(A21 - Alz)-xlﬂ
v2(X1,x2,A12,A21) = exp[ (xl)z-[Agl +2-(A12 - A21)-x2ﬂ

Guesses: Hi =50 A1 :=0.2 A1 =04

Mininize the sums of the squared errors by
setting sums of derivatives equal to zero.

Given i - 12
)

ld o (o i
0= Z v Pi— | X1, 71( X X2, -A12. A1) exp(A12) |
I

+X2i-v2(X1i X2, ,A12,A21)-Psat2 )

- -2
H
0= Z d Pi — Xli-vl(xli,xzi,A12,A21)-W;12) \|

+X2i-v2(X1i X2, ,A12,A21)-Psat2 )

Hq \ 2
eXp(Alz) |
+X2i-y2(X1i,Xgi,Alg,Agl)-Psatz )

0= Z j—Hl Pi— X1i-Y1(X1i,X2i,A12aA21)'

A12) A12) (0348
A21 | := Find(A12,A21,H1) Az |=| 0178 |  Ans.
Hy ) Hy ) \51.337)
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(d) y1(x1,x2) := exp[ xzz-[ A2 +2:(A21 - Alg)-xlﬂ

v2(x1,Xx2) := exp[ xlz-[ A1 +2:(A12 - Agl)-xzﬂ
Hi

0.8

Pealc, == X1.- 1(X1.,Xz.)-— + X, 2(X1.,X2.)-Psatz
calc; i’ P74 eXp(Alz) i! P74
1 1
0,1k, ) s
Iy 1 1 exp(AlZ)
Yicalc. =
! Pcalci
0.2
X
X
0 X x " <
Pi—PcaICi o
XXX 0.2 5
(Y1i—Y1caIci)'100 ¢ ¢
o o
0.4
o
06 0 0.2 0.4 0.6
X1.

i
XXX Ppressure residuals
<yl residuals

Fit GE/RT data to Margules egn. by least squares:

i :=2..rows(P) y2=1-y1

Given ~

0= d xli-ln

— dA12
|




d yli'Pl \ \
= — [X1-In —(A21-X1 \Xl X2
| dA21 ' ” Hy | A )'(
ew(AL) 2% )
y2.-Pi
|
Txein X2, Psatzj )
d i yli'PI \ \ ]
= — Xl.'ln e — A21-X1 \ X1.-X2.
dHq ! y Hq | A i
I .
ap(An) ) | AR
y2.-Pi
|
Txein x2i-Psat2) )
A12) A12) (0375
A21 | := Find(A12,A21,H1) A1 |=| 0148 | Ans.
Hy ) Hy ) \53.078)

v1(x1,x2) := exp[ xzz-[ A2 +2:(A21 - Alg)-xlﬂ
v2(x1,Xx2) := exp[ xlz-[ A1 +2:(A12 - Agl)-xzﬂ

H
L ) +x2i-yz(x1i,x2i)-Psat2

F’calci = Xli'yl(xli’xzi).(ﬂ(p(—Alz

Hi
(%) oy

Pcalci

Y1calci =
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% X X
X <o o
X <
—0.2
Pi—PcaICi ©
XXX 0.4
(Y1i—Y1caIci)' 100
o <o
—0.6
<o
08 0 0.2 0.4 0.6 0.8
Xli
XXX Ppressure residuals
<yl residuals
14.5 Pressures in kPa
0.3193) 21.63) 0.5934 )
Data: 0.4232 24.01 0.6815
0.5119 25.92 0.7440
0.6096 27.96 0.8050
X1 = P:= y1 =
0.7135 30.12 0.8639
0.7934 31.75 0.9048
0.9102 34.15 0.9590
1.000 ) 36.09 ) 1.000 )
i=1.7 X2 :=1-X1 Psat1 := Pg

(@) It follows immediately from Eq. (12.10a) that:

|n(v200) = A2

Combining this with Eq. (12.10a) yields the required expression.

(b) Henry's constant will be found as part of the solution to Part (c).
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(c) BARKER'S METHOD by non-linear least squares.
Margules equation.

The most satisfactory procedure for reduction of this set of data is to find
the value of Henry's constant by regression along with the Margules
parameters.

v1(x1,x2,A12, A1) = exp[ (xz)z-[Alg +2-(A21 - Alz)-xlﬂ
v2(X1,x2,A12,A21) = exp[ (xl)z-[Agl +2-(A12 - A21)-x2ﬂ

Guesses: Ho =14 Aoq :=0.148 A1p :=0.375

Mininize the sums of the squared errors by
setting sums of derivatives equal to zero.

Given 0 = Z ST_Pi_ X1. Yl(xl x2 ,A12, Agl) Psatq ..
" 12
H>

+X2. YZ(Xl X2, JA12, A21) w

i H»>
+X2. YZ(Xl X2, JA12, A21)

V]
|
)]

_ d o
0= Z - | Pj—(xq. yl(xl X2, JA12, Azl) Psaty .. \|
)]

oo(Az1)

d 2
0= Pi— (X, 71(X1,. X2, A12, A2 Psat1 )
Zi: dH; ( ) |
_ +x2i'vz(xli,xzi,A12,A21) - A21 )
A12) A12) (0469
A21 | := Find(A12,A21,Hz) Az | =|0.279 | Ans,
Hz ) Hy ) \14.87)

(d) y1(x1,x2) := exp[ xzz-[ A2 +2:(A21 - Alg)-xlﬂ

v2(x1,x2) := exp[ xlz-[ A1 +2:(A12— Agl)-xzﬂ
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H2
Pcalci = X1i.y1(X1i ,Xzi)-Psatl + Xzi-YZ(Xli ’Xzi).—exp(Am)

X1i-yl(xli ,Xzi) -Psaty

Yicalc. =
! I:’calci

The plot of residuals below shows that the procedure used (Barker's
method with regression for H2) is not in this case very satisfactory, no
doubt because the data do not extend close enough to x1 = 0.

1
0 X X—X% X X X
o o
Pi—PcaICi -1 s
XXX o
(Y1i—Y1caIci)' 100 _,
o <o
-3
o
—4
0.2 0.4 0.6 0.8

X1.
ll

XXX Ppressure residuals
< y1 residuals

Fit GE/RT data to Margules egn. by least squares:

i=1.7 yo =1-y1
Giver - -
q y1.-Pi 3 3
= — | | X Inf —— ... —(A21-X1. ... \-Xl.-Xz.
i dAr | Xli'Psatlj +A12->I(2 bt
y2Pi ) )
+ X2 -In
| Hy |
X9 i—m———

i Fexp(Az1) ) ) |
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q y1.-Pi ) )
0= 2| |xg-In A21 X, - ) X1. X2,
i dAo1 P Xy, -Psatlj +A12 % i
Y2, Pi ) i)
+x2i-ln |
X2,
i 'exp(Am)) )
q i y1.-Pi 3 3 T
0=% —1|xg:In A21 XL - |XLX2,
: dH2 | X1. Psatlj +A « | |
2 \ 12%2; |
+x2i-ln
Xy —
i 'exp(Am)) ) |
A12) A12) (037 )
A21 | := Find(A12,A21,Ho) Az |=| 0204 |  Ans
Hy ) Hy ) \15.065)
v1(x1,x2) := exp[ xzz-[ A2 +2:(A21 - Alg)-xlﬂ
v2(x1,Xx2) := exp[ xlz-[ A1 +2:(A12 - Agl)-xzﬂ
H>
Pealc, = xli.yl(xli ,xzi)-Psatl + X2i'Y2(X1i ,xzi)-—exp(A21)

X1i-yl(xli ,Xzi) -Psaty

Yicalc. =
! I:’calci
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0 3
» X X 3 X
% o
o o
Pi—PcaICi 02
XXX N4
(Y1i—Y1caIci)' 100
<o 0.4
o

_0'60.3 04 05 06 07 08 09

Xli
XXX Ppressure residuals
<yl residuals

This result is considerably improved over that obtained with Barker's method.

14.6 Pressures in kPa

Data: 15.79) 00 )
17.51 0.0932
18.15 0.1248
19.30 0.1757
19.89 0.2000
"7 v 171 02626 &
24.95 0.3615
29.82 0.4750
34.80 0.5555
42.10 ) 0.6718 )
i :=2..rows(P) X2 :=1-X1 Psatp := P1

(@) It follows immediately from Eq. (12.10a) that:

|n(vloo) = A1

0.0
0.1794
0.2383
0.3302
0.3691
0.4628
0.6184
0.7552
0.8378
0.9137 )

Combining this with Eq. (12.10a) yields the required expression
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(b) Henry's constant will be found as part of the solution to Part (c)

(c) BARKER'S METHOD by non-linear least squares.
Margules equation.

The most satisfactory procedure for reduction of this set of data is to

find the value of Henry's constant by regression along with the
Margules parameters.

v1(x1,x2,A12, A1) = exp[ (xz)z-[Alg +2-(A21 - Alz)-xlﬂ
v2(X1,x2,A12,A21) = exp[ (xl)z-[Agl +2-(A12 - A21)-x2ﬂ
Guesses: Hy1 =35 Aoy = -1.27 A1 :=-0.70

Mininize the sums of the squared errors by
setting sums of derivatives equal to zero.

Given ; - Hy \—2

0= — | Pi— [ X171 X1.,X2.,A12,A21 ) —F— ...
iz dA12 I ! l( o ) exp(Alz) |
+X2i-v2(X1i,Xzi,Alz,Azl)-Psatz )

~ ) e
d Hi )
0= — | Pj—| X1.:v1( X1.,X2.,A12, A2} —— ...
Zi: dA21 | ll Yl( ll 2| 12 21) EXp(Alz) |
+X2i-v2(X1i,Xzi,Alz,Azl)-Psatz )

B d : " | 2
0= Z d_Hl Pi — Xli.yl(xli,xzi,A12,A21)'W |
|

+X2i-\(2(X1i X2, ,A12,A21)-Psat2 )

A12) A2)  (-0731)
A21 | := Find(A12,A21,H1) A1 | =|-1.187 | Ans.
Hy ) Hy ) \32.065)
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d) y1(x1,x2) := exp[ xzz-[Alg +2-(Az1- Alg)-xlﬂ
v2(x1,Xx2) := exp[ xlz-[ A1 +2:(A12 - A21)-x2ﬂ
Hi
Pcalci = ><1i-v1(X1i ,Xzi)-w + xzi-vz(xli ,xzi)-Psatz
Hi
(%) oy
Yicalc, ==
! Pcalci
05
X
X X XX
0 o0 o X X o X
Pi—PcaICi —0.5 S ©
XXX
(Y1i—Y1caIci)‘100 -1 o
<o
-15 o
20 01 02 03 04 05 06 07

<

XXX Ppressure residuals
y1 residuals

Fit GE/RT data to Margules egn. by least squares:

i:=2..rows(P)
Giver
0= d_
— dA12

y2i=1-y1
Y1, Pi
X1.-In
i Hq
X1,
ep(Ar)
y2:Pi )
+ X2 -In
I X2 Psatzj




d yli'PI \ \
= —| [ Xz.-In —(A21-X1
dHy |t 1 [ A
|
Vep(Ar) ) | \TAR%E )
YZi'Pl
3
o X2 -Psato ) )
A12) A12)  (-0707)
A21 | := Find(A12,A21,H1) A1 | ={-1.192 |
Hy ) Hy ) \33.356)

v1(x1,x2) := exp[ xzz-[ A2 +2:(A21 - Alg)-xlﬂ

v2(x1,Xx2) := exp[ xlz-[ A1 +2:(A12 - Agl)-xzﬂ

Hi
Pcalci = ><1i-v1(X1i ,Xzi)-w + xzi-vz(xli ,xzi)-Psatz

H1
(%) oy

Pcalci

Y1calci =
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0

—0.5
Pi—PcaICi -1
XXX
(Y1i—Y1caIci)' 100_, ¢
o
-2
—2.5

14.7 Pressures in kPa

Data:

X1 :

i=1..9

(@) It follows immediately from Eq. (12.10a) that:

|n(v200) = A2

X X X x
X
X o
So o % x
¢ o o
[
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Xli
XXX Ppressure residuals
<yl residuals

0.1757) 19.30)) 0.3302))
0.2000 19.89 0.3691
0.2626 21.37 0.4628
0.3615 24.95 0.6184
0.4750 29.82 0.7552
0.5555 34.80 0.8378
0.6718 42.10 0.9137
0.8780 60.38 0.9860
0.9398 65.39 0.9945
1.0000 ) 69.36 ) 1.0000 )

X :=1-Xx1 Psaty := P19

Combining this with Eq. (12.10a) yields the required expression.

(b) Henry's constant will be found as part of the solution to Part (c).
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(c) BARKER'S METHOD by non-linear least squares.
Margules equation.

The most satisfactory procedure for reduction of this set of data is to
find the value of Henry's constant by regression along with the
Margules parameters.

v1(x1,x2,A12, A1) = exp[ (xz)z-[Alg +2-(A21 - Alz)-xlﬂ
v2(X1,x2,A12,A21) = exp[ (xl)z-[Agl +2-(A12 - A21)-x2ﬂ

Guesses: Hyo =4 Aoy :=-1.37 A1y :=-0.68

Mininize the sums of the squared errors by
setting sums of derivatives equal to zero.

Given -~ -
_ d (g . 2
0= Z Klz |:>| Xll Yl(xllale :A125A21) Psatl H \|
i 2
_ +X2i-v2(X1i,Xzi,Alz,A21)‘w )
ld | 2 |
0= Z KZ:L |:>| Xll Yl(xllale :A125A21) Psatl H \|
i 2
_ +X2i-v2(X1i,Xzi,Alz,A21)‘w )
_~ld o _ 2
0= Z P Pi— (%1, yl(Xli,Xzi,Alz,Am) Psaty H \|
i 2
+X2i'Y2(X1i,Xzi,Alz,A21)~w)
A12) A12)  (-0679)
A1 | = Find(Alg,Agl,Hg) A21 | = | -1.367 | Ans.
sz H2) 3'969}
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(d) y1(x1,x2) := exp[ xzz-[ A2 +2:(A21 - Alg)-xlﬂ

v2(x1,Xx2) := exp[ xlz-[ A1 +2:(A12 - A21)-x2ﬂ

H2
Peale, = X1, V(X1 Xz, ) -Psaty + X, 12(X1, . Xp ) ———
i i P77 [ P77 exp(A21)
X1i-yl(xli,X2i)-Psat1
Yicalc. =
! I:’calci
1
X X x
0 > X
Pi—PcaICi X o o ¢
XXX X
(Y1i—Y1caIci)' 100 o ¢ °
o -1 N
o
-2
0 0.2 0.4 0.6 0.8
Xli
XXX Pressure residuals
< y1 residuals
Fit GE/RT data to Margules egn. by least squares:
1:=1.9 y2:=1-y1
Giver B D.
q y1.-Pi 3 3
=N 7| |xgIn| ——— ... — (A21-X1. ... )X1.-X2.
dA12 ' X1_-P8at1j i i
i ! +A12:X2. )
y2Pi ) i
+ X2 -In
' Hy |
I "exp(A21) ) )
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q y1.-Pi ) 3
= - xl_-ln —(A21-X1. ... \-Xl,-Xg,
— dAo1 | X1. Psatlj I r
i ! +A12:X2. )
YZi‘Pl \ :
+ X2 In H |
2
X2.
i "exp(Az1) ) )
q i y1.-Pi ) 3
= —| | X1-In . —(A21-X1. ... \-Xl.-Xz.
— dH> Xy Psatlj A ! o
i +A12:X2.
YZi'Pl \ : )
i "exp(Az1) ) )
A12) A12)  (-0.845)
Al | = Find(Alg,Agl,Hg) A2l | =|-1.229 | Ans,
sz H2) 4'703}

v1(x1,x2) := exp[ xzz-[ A2 +2:(A21 - Alg)-xlﬂ

v2(x1,Xx2) := exp[ xlz-[ A1 +2:(A12 - Agl)-xzﬂ

H2
Pcalci = X1i.y1(X1i ,Xzi)-Psatl + Xzi-YZ(Xli ’Xzi).—exp(Am)

X1i-yl(xli ,Xzi) -Psaty

Yicalc. =
! I:’calci

556




1
<
X
X%
Pi—PcaICi 0 % 6o
XXX %
(Y1i—Y1caIci)' 100 ol o
o -1
<
X
—2
0 0.2 0.4 0.6 0.8
XXX Pressure residuals
<yl residuals
14.8 (a) Data from Table 12.1
15.51) 0.0895 ) 0.2716 ) 1.304) 1.009)
18.61 0.1981 0.4565 1.188 1.026
21.63 0.3193 0.5934 1.114 1.050
24.01 0.4232 0.6815 1.071 1.078
P:=|2592 [kPa x71:=|0.5119 | y;:=|0.7440 | y1 :=|1.044 | yo:=|1.105
27.96 0.6096 0.8050 1.023 1.135
30.12 0.7135 0.8639 1.010 1.163
31.75 0.7934 0.9048 1.003 1.189
34.15 ) 0.9102 ) 0.9590 ) 0.997 ) 1.268 )
n := rows(P) n=9 i:=1.n X2, = 1—x1i y2, = 1—y1i

Psat1 := 36.09kPa

Data reduction with the Margules equation and Eq. (10.5):

Yli =

y1i-Pi

X1i-Psat1

Psaty := 12.30kPa

yzi-Pi

%= X2, Psatp

557

T = (50 + 273.15)K



i=1.n GERT,; = X1i-|n(Y1_) + X2i'|n(Y2.)
1 |

Guess: A1 :=0.1 A1 :=03

f(A12,Az1) : Z [GERTi—(Agl-xli+A12-x2i)-x1i-x2i]z

A12)
== Minimize(f,A12,A21) A1z = 0.374 Ao = 0.197 Ans.
2viy
2
Z [GERTi — (A21-X1i + A12-X2i)-X1i-X2i]
RMS Error: RMS = i=1
n
RMS = 1.033x 10" ° x1:=0,001.1
0.1
GERT;
ooo 05 - |
[ Ag1-x1+A12- (1-x1) |- x1- (1-x1)
0 ] ] ] ]
0 02 04 06 08
xli,xl

Data reduction with the Margules equation and Eq. (14.1):

3 3 cm3

cm cm
B11 :=-1840—— Bjpo := -1800—— B2 := -1150—
mol mol mol

819 = 2:B12-B11-B22

2
[Bn-(Pi—Psatl) +Pir(yz) -612} Y1;®1.Pi
D1 =exp vy = ———
i R-T t xq-Psaty
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2
[Bzz-(Pi—Psatz) +Pir(yy,) -612} Y, ®2.Pi
Dy = exp Yo = ————
' R-T [ xzi-Psatz

i=1.n  GERTj:= xli-ln(yl_) + Xzi-ln(vz.)
1 |

Guess: A1 :=0.1 A1 :=03
2
f(A12.A21) : Z [GERTi—(Agl-xli +A12-x2i)-x1i-x2i]

[Am )

Ax) = Minimize(f,A12,A21) A1z = 0.379 Ao = 0.216 Ans.
21

RS Error RS Zn: [GERTi—(Aerli+A12.x2i).x1i.x2i]2

n
i=1
RMS = 9.187x 10™ * x1:=0,001.1
0.1
GERT;
ooo 05 — —
[ Ag1-x1+A12- (1-x1) |- x1- (1-x1)
0 ]
0 05 1
xli,xl

The RMS error with Eqn. (14.1) is about 11% lower than the RMS error
with Egn. (10.5).

Note: The following problem was solved with the temperature (T) set at

the normal boiling point. To solve for another temperature, simply change
T to the approriate value.
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14.9

(a) Acetylene: T, := 308.3K Pc := 61.39bar Th = 189.4K
T
T:=Tp Tr=— T, = 0.614
Tc
For Redlich/Kwong EOS:
c:=1 e:=0 Q = 0.08664 Y .= 0.42748 Table 3.1
> o(Tr)-RETS
o (Tr) = Tr 2 Table3.1  a(Ty) := \P.% Eq. (3.45)
C
(Tr) 7o (T Eq. (354)  B(Ty.Py) P Eq 353)
allr) = QTr A r-Fr) = Tr . (0.
Define Z for the vapor (Zv) Guess: zv =09
Given Eq. (3.52)
zv — B(Tr.Pr)

v=1+ B(Tr,Pr) - q(Tr)'B(Tf’Pf)'(ZV+ s-B(Tr,Pr))‘(ZV““ G-B(Tr,Pr))

Zv(Ty.Py) := Find(zv)

Define Z for the liquid (ZI) Guess: zl :=0.01

Given Eg. (3.56)

1+B(Tr.Pr) —21)
a(Te)-B(Tr.Pr) )

To find liquid root, restrict search for z| to values less than 0.2, zI < 0.2

ZI(Ty,Py) := Find(zl)

2= B(Tr.Pr) + (2 +eB(Tr.Pr))(2 +G'B(T“Pr))(

Define I for liquid (Il) and vapor (1v)

(T, Pr) = L 2/(Te.Pr) + 0B (Tr.Pr))
O —¢& ZI(Tr,Pr) +8'B(Trapr))

IV(Tr.Py) = L 2v(TrPr) + B (Tr.Pr) Eq. (6.65b)
G-t ZV(Tr,Pr) +s-B(Tr,Pr)j
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Inol(Tr.Pr) := ZI(Tr.Pr) = 1= In(ZI(Tr.Pr) = B(Tr.Pr)) = a(Te)-1(Tr.Pr)

Eq. (11.37)

Ingv(Ty.Pr) = 2v(Tr.Pr) = 1= In(2v(Tr.Pr) = B(Tr.Pr)) —a(Te)-Iv(Tr.Pr)

1bar

Guess Psat: Psaty :== —

Given

c

Ingl (T, Psaty) = Ingv(Tr,Psaty)

Psat, = 0.026

Psat = Psatr'PC

ZI(Ty,Psaty) = 4.742x 10~

Psat = 16 bar

3

Ans.

Psaty := Find(Psaty)

Zv(Ty,Psaty) = 0.965

The following table lists answers for all parts. Literature values are interpolated
from tables in Perry's Chemical Engineers' Handbook, 6th ed. The last column
shows the percent difference between calculated and literature values at 0.85Tc.
These range from 0.1 to 27%. For the normal boiling point (Tn), Psat should be
1.013 bar. Tabulated results for Psat do not agree well with this value.
Differences range from 3 to > 100%.

Tn (K)|Psat (bar)[0.85 Tc (K)| Psat (bar) | Psat (bar) | % Difference
@ Tn @ 0.85 Tc|Lit. Values
Acetylene 189.4 1.60 262.1 20.27 19.78 2.5%
Argon 87.3 0.68 128.3 20.23 18.70 8.2%
Benzene 353.2 1.60 477.9 16.028 15.52 3.2%
n-Butane 272.7 1.52 361.3 14.35 12.07 18.9%
Carbon Monoxide | 81.7 0.92 113.0 15.2 12.91 17.7%
n-Decane 447.3 2.44 525.0 6.633 5.21 27.3%
Ethylene 169.4 1.03 240.0 17.71 17.69 0.1%
n-Heptane 371.6 2.06 459.2 7.691 7.59 1.3%
Methane 111.4 0.71 162.0 19.39 17.33 11.9%
Nitrogen 77.3 0.86 107.3 14.67 12.57 16.7%
14.10 (a) Acetylene: @ := 0.187 T.:=308.3K P¢:=61.3%ar T, := 189.4K
. T
T:=Ty, Note: For solutionat 0.85T, set T :=0.85T,. T, := T
c
For SRK EOS: T, = 0.614
c:=1 e=0 Q :=0.08064 Y :=0.42748 Table 3.1

561



172
a(Tr.0) = L + (0.480 +1.5740 — 0.176(02)-[1 = Trzj} Table 3.1
2.2
Tr,0)R%T
a(Ty) = ‘P-a( o) RoTe Eq. (3.45)
Pc

(Tr) = \P’“(T““’) Eq. (3.54) T,,P P Eq. (3.53)
allr) = oT Q. (S B( r r) T g. (s
Define Z for the vapor (Zv) Guess: zv =09
Given Eq. (3.52)

zv—B(Tr.Pr)

v=1+ B(Tr,Pr) - q(Tr)'B(Tf’Pf)'(ZV+ s-B(Tr,Pr))‘(ZV““ G-B(Tr,Pr))

Zv(Ty.Py) := Find(zv)

Define Z for the liquid (ZI) Guess: zl :=0.01

Given Eq. (3.56)

1+B(Tr.Pr) —21)
a(Tr)-B(Tr.Pr) )

To find liquid root, restrict search for zl to values less than 0.2, z| < 0.2

2l = B(Tr.Pr) + (2 +&-B(Tr.Pr))-(2 +G'B(T“Pr))(

ZI(Ty,Py) := Find(zl)

Define I for liquid (Il) and vapor (Iv)

I(Tr.Pr) == ——In 2\(Tr.Pr) + B (Tr-Pr)
O —¢& ZI(Tr,Pr) +8'B(Trapr))
Eq. (6.65b)
(1 L 2T
c—¢ |\ 2V(Tr.Pr) +eB(Tr.Pr) )

562



Inol(Tr.Pr) := ZI(Tr.Pr) = 1= In(ZI(Tr.Pr) = B(Tr.Pr)) = a(Te)-1(Tr.Pr)

Eq. (11.37)
Ingv(Ty.Pr) = 2v(Tr.Pr) = 1= In(2v(Tr.Pr) = B(Tr.Pr)) —a(Te)-Iv(Tr.Pr)
Guess Psat: Psaty = 22"
Given |n¢|(Tr,Ps:tr) = Ingv(Ty,Psaty)  Psaty := Find(Psaty)

3

Psaty = 0.017  ZI(Ty,Psat) = 3.108x 10" °  Zv(Ty,Psat;) = 0.975

Psat := Psaty-P¢ Psat = 1.073bar Ans.

The following table lists answers for all parts. Literature values are interpolated
from tables in Perry's Chemical Engineers' Handbook, 6th ed. The last column
shows the percent difference between calculated and literature values at 0.85Tc.
These range from less than 0.1 to 2.5%. For the normal boiling point (Tn), Psat
should be 1.013 bar. Tabulated results for Psat agree well with this value.
Differences range from near 0 to 6%.

Tn (K)| Psat (bar)|0.85 Tc (K)| Psat (bar) | Psat (bar) | % Difference
@ Tn @ 0.85 Tc| Lit. Values
Acetylene 189.4| 1.073 262.1 20.016 19.78 1.2%
Argon 87.3 0.976 128.3 18.79 18.70 0.5%
Benzene 353.2 1.007 477.9 15.658 15.52 0.9%
n-Butane 272.7 1.008 361.3 12.239 12.07 1.4%
Carbon Monoxide | 81.7 1.019 113.0 12.871 12.91 -0.3%
n-Decane 447.3 1.014 525.0 5.324 5.21 2.1%
Ethylene 169.4| 1.004 240.0 17.918 17.69 1.3%
n-Heptane 371.6 1.011 459.2 7.779 7.59 2.5%
Methane 111.4| 0.959 162.0 17.46 17.33 0.8%
Nitrogen 77.3 0.992 107.3 12.617 12.57 0.3%

14.10 (b) Acetylene: @ := 0.187 T¢:= 308.3K Pc:=61.3%bar T, := 189.4K

T:=Tp Note: For solution at 0.85T, set T :=0.85T.. T, := Tl

c
For PR EOS: T, = 0.614
6:=1+/2 e:=1-1/2 Q:=007779 ¥ := 0.45724 Table 3.1
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0y
a(Tr.o) = 1+ (037464 + 1.542260 - 0.2699207)-| 1 - T, )| Tablest
2.2
Tr,0)-RST
a(Ty) = ‘P-a( o) R Eq. (3.45)
c
(Tr) : ¥elTo) Eq.(354)  B(Tr,Py): i Eq. (3.53)
)= Q-T; - (9 Br,r.—_l_r (3.
Define Z for the vapor (Zv) Guess: v = 0.9
Given Eq. (3.52)
2v—B(Tr.Pr)

v=1+ B(Tr,Pr) - q(Tr)'B(Tf’Pf)'(ZV+ s-B(Tr,Pr))‘(ZV““ G-B(Tr,Pr))

Zv(Ty.Py) := Find(zv)

Define Z for the liquid (ZI) Guess: zl :=0.01

Given Eg. (3.56)

1+B(Tr.Pr) —21)
a(Tr)-B(Tr.Pr) )

2l = B(Tr.Pr) + (2 +&-B(Tr.Pr))-(2 +G'B(T“Pr))(

To find liquid root, restrict search for zl to values less than 0.2z] < 0.2
ZI(Ty,Py) := Find(zl)

Define I for liquid (Il) and vapor (Iv)

II(Tr,Pr) = ! In ZI(Tr’Pr) +G'B(Trapr)\
c-¢ Z'(Trapr)+8-B(Tr,Pr))

Eq. (6.65b)
IV(Tr,P) = ! In ZV(Tr’Pr) +G‘B(Trapr)\
c—& |\ 2V(Tr.Pr)+eB(Ty Pr)]
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Inol(Tr.Pr) := ZI(Tr.Pr) = 1= In(ZI(Tr.Pr) = B(Tr.Pr)) = a(Te)-1(Tr.Pr)

Eq. (11.37)
Ingv(Ty.Pr) = 2v(Tr.Pr) = 1= In(2v(Tr.Pr) = B(Tr.Pr)) —a(Te)-Iv(Tr.Pr)
Guess Psat:  Psaty = 220"
Given |n¢|(Tr,Ps:tr) = Ingv( Ty, Psaty) Psaty := Find(Psaty)

3

Psat, = 0.018 ZI(Ty,Psaty) = 2.795x 10~ Zv(Tr,Psaty) = 0.974

Psat := Psat;-Pc  Psat = 1.09bar  Ans.

The following table lists answers for all parts. Literature values are interpolated
from tables in Perry's Chemical Engineers' Handbook, 6th ed. The last column
shows the percent difference between calculated and literature values at 0.85Tc.
These range from less than 0.1 to 1.2%. For the normal boiling point (Tn), Psat
should be 1.013 bar. Tabulated results for Psat agree well with this value.
Differences range from near 0 to 7.6%.

Tn (K)| Psat (bar)[0.85 Tc (K)| Psat (bar) | Psat (bar) | % Difference
@ Tn @ 0.85 Tc| Lit. Values
Acetylene 189.4 1.090 262.1 19.768 19.78 -0.1%
Argon 87.3 1.015 128.3 18.676 18.70 -0.1%
Benzene 353.2 1.019 477.9 15.457 15.52 -0.4%
n-Butane 272.7 1.016 361.3 12.084 12.07 0.1%
Carbon Monoxide | 81.7 1.041 113.0 12.764 12.91 -1.2%
n-Decane 447.3 1.016 525.0 5.259 5.21 0.9%
Ethylene 169.4 1.028 240.0 17.744 17.69 0.3%
n-Heptane 371.6 1.012 459.2 7.671 7.59 1.1%
Methane 111.4| 0.994 162.0 17.342 17.33 0.1%
Nitrogen 77.3 1.016 107.3 12.517 12.57 -0.4%

1412  (a) vander Waals Egqn.  Tr:= 0.7

c:=0 e:=0 Q;:l ‘I’::g o(Tr) =1
8 64
Yo (Tr) Q-Pr
Tr) = ——= Tr,Pr) .= —— zv := 0.9 (guess)
a(Tn) = =% BT =

zv—B(Tr,Pr)

Given zv=1+B(Tr,Pr)—q(Tr)-B(Tr,Pr)-
(2v)°

Eq. (3.52)
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Zv(Tr,Pr) := Find(zv)
zl .= .01 (guess)

Given  z1= p(Tr.p + (22 BULPY =2 20356 51 <02

q(Tr)-B(Tr,Pr)

ZI(Tr,Pr) := Find(zl)

B(Tr,Pr) I(Tr.Pr) = B(Tr,Pr)
Zv(Tr,Pr) ZI(Tr,Pr)
By Eq. (11.39):

Iv(Tr,Pr) = Case I, pg. 218.

Inpv(Tr,Pr) .= Zv(Tr,Pr) -1 - In(Zv(Tr,Pr) — B(Tr, Pr)) —q(Tr)-Iv(Tr,Pr)

Ingl (Tr,Pr) := ZI(Tr,Pr) — 1 — In(ZI(Tr,Pr) — B(Tr,Pr)) — q(Tr)-1(Tr,Pr)

Psatr := .1
Given Ingl (Tr,Psatr) — Ingpv(Tr,Psatr) = 0 Psatr := Find(Psatr)
Zv(Tr,Psatr) = 0.839 ZI(Tr,Psatr) = 0.05 Psatr = 0.2

Ingl (Tr,Psatr) = —0.148 In¢v(Tr,Psatr) = —0.148 B (Tr,Psatr) = 0.036
® = -1 — log(Psatr) o = -0.302 Ans.

(b) Redlich/Kwong Eqgn Tr := 0.7

c:=1 e:=0 Q :=0.08664 Y :=0.42748

a(Tr) =Tr S

Q-Pr
B(Tr,Pr) = T— Guess: 7v := 0.9
r

zv—B(Tr,Pr)

Eq. (3.52)
v-(zv+ B(Tr,Pr))

Given zv =1+ B(Tr,Pr) —q(Tr)-B(Tr,Pr)-
z

Zv(Tr,Pr) := Find(zv)
Guess: zl .= .01
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) 1+B(Tr,Pr)-1zl

_ _ | _ Eq. (3.55
Given zI = B(Tr.Pr) +2I-(zl + B(Tr,Pr) q(Tr)-B(Tr,Pr) +O®

z1 < 0.2 ZI(Tr,Pr) := Find(zl)

ZI(Tr,Pr) + B(Tr,Pr) )
ZI(Tr,Pr) )

Zv(Tr,Pr) + B(Tr,Pr))
Zv(Tr,Pr) )

Iv(Tr,Pr) := In( I(Tr,Pr) := In(

By Eq. (11.39):
Inpv(Tr,Pr) .= Zv(Tr,Pr) -1 - In(Zv(Tr,Pr) — B(Tr, Pr)) —q(Tr)-Iv(Tr,Pr)

Ingl (Tr,Pr) := ZI(Tr,Pr) — 1 — In(ZI(Tr,Pr) — B(Tr,Pr)) — q(Tr)-1(Tr,Pr)
Psatr .= .1

Given Ingl (Tr,Psatr) = Inpv(Tr,Psatr) Psatr := Find(Psatr)
Zv(Tr,Psatr) = 0.913 ZI(Tr,Psatr) = 0.015 Psatr = 0.087
Inpv(Tr,Psatr) = —0.083 In¢l(Tr,Psatr) = —0.083 B (Tr,Psatr) = 0.011

— log(Psatr) ® = 0.058 Ans,

1415 (@) xla:=0.1 X2a := 1 - xlo x1B := 0.9 x2B = 1-x1B

Guess: A12 = A2l =2

vloA21,A12) = exp[xZoc { A2 +2(A21 - Ag2)-xla ]
v1B(A21.A12) = exp[xzﬁ [ A2 +2(A21 - Ar) xmﬂ
v20i( A21,A12) = exp[xloc { Az1+2(A12 - Az)-x2a ]

v2B(A21.A12) = exp[xlﬁ [ Agg+2:(A12 - Ag1)-x2B |
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Given  xla-yla(Az1,A12) = x1B-y1B(A21.A12)
x200720( A21,A12) = x2B72B(A21,A12)

A)
= Find(A12.A21) Aoy = 2.747 A = 2.747  Ans.
2viy
(b) xla :=0.2 x2o = 1 - xla x1B = 0.9 x2B = 1-x1p
Guess: A1 =2 A21 =2

vloA21,A1) : exp[xZoc { A2 +2(A21 - Ap2)-xla ]
v1B(A21.A12) : exp[xzﬁ [ A2 +2(A21 - Ar) xlﬁﬂ
v20,( A21,A12) : [xloc [ A1 +2(A12 - Az1) xzaﬂ

v2B(A21.A12) —exp[xlﬁ [ Az1+2(A12-Az) xzﬁﬂ

Given  xla-yla(Az1,A12) = x1B-v1B(A21,A12)
x20720.( A21,A12) = x2B-2B(A21,A12)

A2)
= Find(A12.A21) Aqp = 2.148 Asq = 2.781 Ans.
2viy
(¢) xla :=0.1 x2o = 1 - xla x1B = 0.8 x2B = 1-x1p
Guess: A1 = Agq =2

vloA21,A12) = exp[xZoc [ A2 +2:(A21 - Ap2)-xla ]
v1B(A21.A12) = exp[xzﬁ [ A2 +2(A21 - Ar) xmﬂ
v20/( A21,A12) = exp[x [ A1 +2(A12 - Az1) xzaﬂ

v2B(A21.A12) = exp[xlﬁ [ Az1+2(A12 - Az1) xzﬁﬂ
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Given  xla-yla(Az1,A12) = x1B-v1B(A21,A12)

x20-720/ Ag1,Ar2) = x2B-72B(A21,A12)

A2)
= Find(A12.A21) A2 = 2.781 Aoy = 2.148 Ans.
2viy
1416 (a) xla :=0.1 x20 = 1-xla x1B := 0.9 x2B :=1-x1p
Guess: arp =2 ap] =2
Given = = =

a12-X10L\_ 2 alZ'XlB\_ ’
exp| azo:| 1+ Xla = exp| aj2-| 1+ X1B
a21-x2a) a21-X2B]

-2 ~2
as1-X2a any-x2
exp agl-[l + \ X200 = exp agl-(l + B\ X2

a12-X10L) a12-X1B]
a2)
= Find(ay2,a21) agp = 2.747 as] = 2.747  Ans.
a1 )
(b) xla :=0.2 x2o = 1 - xla x1B = 0.9 x2B = 1-x1p
Guess: alp =2 a1 =2
Giver a12-x10c\_ 2 6112~X1B\_ 2
exp| az2:| 1+ Xla = exp| aj2-| 1+ X1B
a21-x2a) a21-X2B]
ag1x20 )" ag1-x2p\ 2
exp| az1:| 1+ X200 = exp| ag1-| 1+ X2
a12-X10L) a12-X1B]
a2)
= Find(ay2,a21) aro = 2.199 as] = 281 Ans.
a1 )
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14.18

() xla:=0.1 x2o = 1 - xla x1B = 0.8 x2B = 1-x1p

Guess: ajp =2 ap1 =2
Giver agyxla) 2 agpx1p) 2
exp| az2:| 1+ Xla = exp| aj2-| 1+ X1B
a21-x2a) a21-X2B]
ag1x20 ) ag-x2p\ 2
exp| az1:| 1+ X200 = exp| ag1-| 1+ X2
a12-X10L) a12-X1B]
a2)
= Find(ay2,a21) app = 2.81 as] = 2199 Ans.
a1 )
(@) a:=975 b:=-18.4 c:=-3
a
T:=250..450 A(T) = T +b—cIn(T)
2.1
A(T) 2
1.9 | | |
250 300 350 400 450
T
Parameter A = 2 at two temperatures. The lower one is an UCST,
because A decreases to 2 as T increases. The higher one is a LCST,
because A decreases to 2 as T decreases.
Guess: X = 0.25
: 1-x)
Given A(M)-(1-2x)=1In ) Eq. (E), Ex. 14.5
X
x>0 x<05 x1(T) = Find(x) x2(T) :=1-x1(T)
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UCST := 300 (guess)
Given  A(UCST)=2 UCST := Find(UCST) UCST = 272.93

LCST := 400 (guess)
Given  A(LCST)=2 LCST :=Find(LCST)  LCST = 391.21

Plot phase diagram as a function of T

T1 :=225,225.1.. UCST T2 := LCST..450

500
/ e
T 0t \' - .
T1
T2
T2 300 F =
~
~
] ] ] ] ]
20045 03 0.4 05 06 0.7 08
x1(T1),x2(T1),x1(T2),x2(T2)
(b) a:=540 b:=-17.1 c:=-3

a
T:=250.450  A(T) = —+b-cin(T)

2.5 |

A(T) 2F =

| | |
250 300 350 400 450

T

Parameter A = 2 at a single temperature. Itis
a LCST, because A decreases to 2 as T decreases.

1.5
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Guess: X := 0.25

Given A(T)-(1-2-x) = In(l —X) Eq. (E), Ex. 14.5

x )
x>0 x<05 x1(T) = Find(x)
LCST := 350 (guess)

Given A(LCST) = 2 LCST := Find(LCST) LCST = 346
Plot phase diagram as a function of T T := LCST.. 450

450
T 400 _
-
— - 350 -
300 | | | | | | |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
x1(T),1-x1(T)
(©) a := 1500 b:=-19.9 c:=-3

a
T:=250.450  A(T) = —+b-clin(T)

250 300 350 400 450

Parameter A = 2 at a single temperature. Itis
an UCST, because A decreases to 2 as T increases.
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Guess: X := 0.25

Given A(T)-(l—2-x):In(1;X) Eq. (E), Ex. 14.5

x1(T) = Find(x)

x>0 X <05

UCST := 350 (guess)

Given A(UCST) =2  UCST := Find(UCST) UCST = 339.66
Plot phase diagram as a functionof T T := UCST.. 250
350 |
~
N

-

—— 300 N\ -

T N\

250 | | | | \
0 0.2 0.4 0.6 0.8

x1(T),1-x1(T)

14.20 Guess: xla := 0.5 x1pB = 0.5

Given Write Eq. (14.74) for species 1:

xiavexp| 04-(1-x10)? | = x1p-exp| 08(1-x1p)? |

Xlo. X1 _, (Material balance)
1-xla 1-x1P

Xloc\ .
= Find(x1a,x1p) xlo = 0371  xIB =0.291 Ans.
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14.22 Temperatures in kelvins; pressures in kPa.

g
Plsat(T) := exp(19.1478 - 5363 ) water
P := 1600
2048.97
P2sat(T) := exp(14.6511 _ 20489 ) SF6

Find 3-phase equilibrium temperature and vapor-phase composition (pp.
594-5 of text):

Guess: T := 300

Given P = Plsat(T) + P2sat(T) Tstar := Find(T)  Tstar = 281.68
Plsat(Tstar

ylstar := # ylstar- 106 = 695

Find saturation temperatures of pure species 2:

Guess: T := 300

Given P2sat(T) = P T2 := Find(T) T2 = 281.71
P2sat(T
TII := Tstar, Tstar + 0.0001.. T2 ylI(T) :=1- A
Plsat(T
Tl := Tstar, Tstar + 0.01.. Tstar + 6 y1I(T) = #

Because of the very large difference in scales appropriate to regions | and
Il [Fig. 14.21(a)], the txy diagram is presented on the following page in two
parts, showing regions | and 11 separately.

281.7
Tl

Tstar
© 28169

| | | | | |
281.68 0 100 200 300 400 500 600 700

y1(TI)-10%, yai(Tiny-10°
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288

286 -
TI
— 284 -
Tstar

282 — _

280 | | | | | | |

650 700 750 800 850 900 950 1000 1050
y11(TD-10%, y11(T1)-10°

14.24 Temperatures in deg. C; pressures in kPa

Plsat(T) := exp| 13.9320 — M\ Toluene
T +217.625 )
3885.70 P:=101.33
P2sat(T) := exp| 16.3872 - —— Water
T +230.170 )

Find the three-phase equilibrium T and y:
Guess: T:=25

Given P = Plsat(T) + P2sat(T) Tstar := Find(T)  Tstar = 84.3

_ Plsat(Tstar)

ylstar ylstar = 0.444

For z1 < y1*, first liquid is pure species 2.
yl:=0.2 Guess: Tdew := Tstar

P2sat(Tdew)

Given yl=1- Tdew := Find(Tdew)

Tdew = 93.855 Ans.

For z1 > y1*, first liquid is pure species 1.
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14.25

yl:=0.7 Guess: Tdew := Tstar

_ Plsat(Tdew)

Given yl Tdew := Find(Tdew)

Tdew = 98.494 Ans.

In both cases the bubblepoint temperature is T*, and the mole fraction of
the last vapor is y1*.

Temperatures in deg. C; pressures in kPa.

2910.2
Plsat(T) = exp(13.8622 - %} n-heptane
e P = 101.33
v
P2sat(T) := exp| 16.3872 — M\ water
T +230.170 )

Find the three-phase equilibrium T and y:
Guess: T := 50
Given P = Plsat(T) + P2sat(T) Tstar := Find(T)  Tstar = 79.15

__ Plsat(Tstar)

ylstar ylstar = 0.548

Since 0.35<y1*, first liquid is pure species 2.

yI(T) == 1 - P2sat(T)

Find temperature of initial condensation at y1=0.35:

ylg :=0.35 Guess:  Tdew := Tstar

Given y1(Tdew) = ylg Tdew := Find(Tdew) Tdew = 88.34
Define the path of vapor mole fraction above and below the dew point.
ylpath(T) := if (T > Tdew,ylo,y1(T)) T :=100,99.9.. Tstar

Path of mole fraction heptane in residual vapor as temperature is
decreased. No vapor exists below Tstar.

576



100

T
75 | | | |
0.3 0.35 0.4 0.45 0.5 0.55
ylpath(T)
14.26 Pressures in kPa. Plsat := 75 P2sat := 110 A =225
v1(x1) = exp[A-(l — xl)z] v2(x1) = exp(A-xlz)
Find the solubility limits:
Guess: xla := 0.1
. 1- Xloc\ .
Given A-(l - 2-xla) = In xlo == Flnd(xla)
xlo )
xla = 0.224 x1B = 1-xla x1pB = 0.776
Find the conditions for VLLE:
Guess: Pstar := Plsat ylstar := 0.5

Given Pstar = x1B-y1(x1B)-Plsat + (1 — x1at)-y2(x1a)-P2sat

ylstar-Pstar = xloc-yl(xloc)-Plsat

Pstar |
:= Find(Pstar, ylstar) Pstar = 160.699 ylstar = 0.405
ylstar )

Calculate VLE in two-phase region.
Modified Raoult's law; vapor an ideal gas.

Guess: x1:=0.1 P:=50
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Given

P = x1-y1(x1)-Plsat + (1 — x1)-y2(x1)-P2sat

P(x1) := Find(P)

Plot the phase diagram.

Define liquid equilibrium line:

y1(x1) :=

x1-y1(x1)-Plsat

P(x1)

PL(x1) := if (P(x1) < Pstar,P(x1),Pstar)

Define vapor equilibrium line:

PV(x1) := if (P(x1) < Pstar,P(x1),Pstar)

Define pressures for liquid phases above Pstar:

Pliq := Pstar.. Pstar + 10

x1:=0,0.01..1

200

175

PL(xD) 150
PV/(x1)
Pliq

Pliqg 100

125

75

50

E—

0 0.2

x1:=0,0.05..0.2

0.4

578

0.6 0.8

x1,y1(x1),xlo,X1B




14.27

x1:=1,0.95..0.8

Temperatures in deg. C; pressures in kPa.

Water: Plsat(T) := exp| 16.3872 — M\
T +230.170 )
n-Pentane:  P2sat(T) := exp| 13.7667 - _ 245188 )
T +232.014 )
n-Heptane: P3sat(T) := exp| 13.8622 — ﬂ\
T +216.432 )

P :=101.33 z1 := 0.45 z2 :=0.30 23 =1-21-22

(@) Calculate dew point T and liquid composition
assuming the hydrocarbon layer forms first:

Guess: Tdewl := 100 X20. = 22 X3o =1 - X2

Given P = x2a.-P2sat(Tdewl) + x3a-P3sat(Tdewl)
23-P = x3a.-P3sat(Tdewl)

X200+ X3a = 1
X2 \
X3a | = Find(x2a,x3a,TdeW1)
Tdew1 )
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Calculate dew point temperature assuming the water layer forms first:
x1B =1 Guess: Tdew2 := 100
Given x1B-Plsat(Tdew?2) = z1-P Tdew2 := Find(Tdew?2)
Tdew2 = 79.021
Since Tdew?2 > Tdewl, the water layer forms first
(b) Calculate the temperature at which the second layer forms:
Guess: Tdew3 := 100 X20, := 22 x3a := 1 - x20
yl:.=1z1 y2 =22 y3 =23
Given P = Plsat(Tdew3) + x2a.-P2sat(Tdew3) + x3a-P3sat(Tdew3)
y1.P = Plsat(Tdew3)

y2 22
— = — 1+y2+y3=1
V3 23 yl+yz+y
y2-P = x2o.-P2sat(Tdew3) X200+ X3a. = 1
yl )
y2
y3
= Find(yl,y2,y3,Tdew3,x2a,x3a)
Tdew3
X2a
X3 )
yl = 0.288 y2 = 0.388 y3 = 0.324
Tdew3 = 68.437 x2a = 0.1446 x3a = 0.8554
(c) Calculate the bubble point given the total molar composition of the
two phases
2
Tbubble := Tdew3 X2a = z x3a = 23
z2 +23 z2 +23
x2a. = 0.545 x3a = 0.455
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14.28

Given

P = Plsat(Tbubble) + x2a.-P2sat(Tbubble) + x3a-P3sat(Thubble)

Tbubble := Find(Thubble) Tbubble = 48.113
_ Plsat(Tbubble) vl = 0111
p
y2 = xza.PZSa;(Tbubble) y2 = 081
y3 = x3a-P3$a;(Tbubble) y3 = 0078

Temperatures in deg. C; pressures in kPa.

3885.70 )

Water: Plsat(T) := exp| 16.3872 - —
T +230.170 )

2451.88 )

n-Pentane: P2sat(T) := exp| 13.7667 - ——
T +232.014 )

2910.26 )
T +216.432 )

n-Heptane: P3sat(T) := exp| 13.8622 —

P :=101.33 z1 :=0.32 z2 := 0.45 23 =1-271-22

(@) Calculate dew point T and liquid composition
assuming the hydrocarbon layer forms first:

Guess: Tdewl := 70 X2o == 22 X3a ;=1 - X2a

Given P = x2a.-P2sat(Tdewl) + x3o.-P3sat(Tdewl)
z3-P = x3o.-P3sat(Tdewl) X200+ X3a. = 1

X2 \
x3o | = Find(x2a,x3a,Tdewl)
Tdewl )

Tdewl = 65.122 x3a = 0.686 X200 = 0.314
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Calculate dew point temperature assuming the water layer forms first:

x1B =1 Guess: Tdew2 := 70

Given x1B-Plsat(Tdew?2) = z1-P Tdew2 := Find(Tdew?2)
Tdew2 = 70.854

Since Tdewl1>Tdew2, a hydrocarbon layer forms first

(b) Calculate the temperature at which the second layer forms:
Guess: Tdew3 := 100 X201, := 72 X3a := 1 - x20
yl:.=1z1 y2 =22 y3 =23

Given P = Plsat(Tdew3) + x2a.-P2sat(Tdew3) + x3a-P3sat(Tdew3)
y2 22

yl1.P = Plsat(Tdew3d) — = — yl+y2+y3=1
y3 z3
y2-P = x2o.-P2sat(Tdew3) X200+ X3a. = 1
yL )
y2
y3
= Find(yl,y2,y3,Tdew3,x2a,x3a)
Tdew3
X2a
X3 )
yl =0.24 y2 = 0.503 y3 = 0.257
Tdew3 = 64.298 x2a = 0.2099 x3a = 0.7901

(c) Calculate the bubble point given the total
molar composition of the two phases

Tbubble := Tdew3 X2a = 22 x3a = 23
z2 +23 z2 +23
x2a = 0.662 x3a = 0.338
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14.32

GIVen  p — pisat(Thubble) + x20.-P2sat (Tbubble) + x3a-P3sat (Thubble)

Tbubble := Find(Tbubble) Tbubble = 43.939

vl Plsat(Tbubble) y1 = 009
p
20.-P2sat (T I
y2 = X20u sa;( bubble) y2 = 0.861
-P3sat(Tbubbl
y3 = X3 SSaL( bubble) y3 = 0.049
0.302 748.4 40.51
® = \ Tc = \K Pc .= \bar
0.224 ) 304.2 ) 73.83 )
P := 10bar, 20bar.. 300bar
H
T
T := 353.15K Tr .= —
Tc
Use SRK EOS
From Table 3.1, p. 98 of text:
c:=1 e=0 Q = 0.08664 VY = 0.42748
2 05) 12
o= [1 + (0.480 +1.574-0 — 0.176-® )(l -Tr )]
% 4)
2.2
a TaRTTCT oo s b= 2RTC Eq (1432
Pc
5 -4\ 3
£6.842\ kgm 1.331x 10 m
0.325 ) 2 mol? 2 968 x 10—5) mol
by-P as
P) .= —— Eq.(14.33 = Eq. (14.34
pa(P) = ——  Ed.(1439) G = o E6-(1439)
20 =1 (quess)
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Given

22 - B2(P)
22+ -B2(P))(22+ 5-B2(P))

22 = 1+ B2(P) —q2:B2(P)- ( Eq. (14.36)

Z5(P) := Find(z2)

Eq. (6.65b)

Z2(P)
For simplicity, let ¢, represent the infinite-dilution value of the fugacity
coefficient of species 1 in solution.

Zy(P P
() In[ 2(P) +B2(P) )

Eq. (14.103): lip == 0.088

b
01(P) = exp |:b—i-(Zg(P) 1)~ In(Zo(P) - BZ(P))}
0.5 b
+‘Q2'{2'(1—|12)'(ﬂ\ - |12(P)

agj by

3
cm

Psat1 := 0.0102bar V1 :=1245—
mol

Egs. (14.98) and (14.99), with ¢satl =1 and (P - Psatl) = P, combine to give:

Psatq (P-vl\

y1(P) = -exp
P-¢1(P) RT)
0.1
0.01 —
y1(P)
110° F -
104 | | | | |
110 0 50 100 150 200 250 300
P
bar
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r

0.302 748.4 40.51
\ Tc :=( \K Pc : ( \b

= a
0.038 ) 126.2 ) 34.00 )
P := 10bar, 20bar.. 300bar
—
T

T := 308.15K (K) Tr =
Tc

Use SRK EOS
From Table 3.1, p. 98 of text:
c:=1 e:=0 Q = 0.08664 Y = 0.42748

N
7

o = 1+(0.480 + 15740 - 0176-0) (1 - T1*9) ]2

2.2 ;
A= —‘P'O"E TC Eq (1431) b= ERTC E4 1a.32)
C
5 -4\ 3
[7.298\ kgm 1.331x 10 m
OOG?} 32 m0|2 2 674 x 10—5) mol
P) .= - Eq.(14.33 = Eq. (14.34
B2(P) -~ q. (14.33) g2 —— q. (14.34)
zp =1 (guess)
Given
z2 - Bo(P
2 P2P) Eq. (14.36)

22 = 1+ B2(P) — az2:B2(P)- (22 + s.Bz(P))'(ZZ + G'BZ(P))

Z5(P) := Find(z2)

Z2(P) + B2(P))
Io(P) = |n£ ZE ) Eq. (6.65b)

For simplicity, let ¢, represent the infinite-dilution value of the fugacity
coefficient of species 1 in solution.
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l1 .= 0.0 EQ.(14.103):

- _
01(P) = exp |:b—i-(Zg(P) 1)~ In(Zo(P) - BZ(P))}
0.5
al\ b1
“+—0|2-{2-(1 - |12)'(a—2) ‘b_J"z(P) ||
Cm3
Psat] := 2.9-10 “bar Vq = 1250
mol

Egs. (14.98) and (14.99), with ¢satl =1 and (P - Psatl) = P, combine to
give:

Psatq (P-vl\
p

y1(P) = €
P-91(P) RT)
10
5
y1(P)-10
1 ] ] ] ] ]
0 50 100 150 200 250 300

P

bar

Note: y axis is log scale.
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14.45 A labeled diagram of the process is given below. The feed stream is taken as
the o phase and the solvent stream is taken as the g phase.

F R
nF Feed nR
— —
Xg, = 0.99 X
X, =0.01 Mixer/ Xa, = 0.001
S Settler £
Ng Solvent Ne
_ —_—
XS3 =1.0 XBZ
XB3

Define the values given in the problem statement. Assume as a basis a feed
rate ng = 1 moll/s.

mol
Ng:=1— XfF1 = 0.99 Xp2 = 0.01 Xg3:=1
S

Xap = 0.001 Xaq = 1—Xoo

Apply mole balances around the process as well as an equilibrium relationshiy

From p. 585 A1 =15 A3 :=-0.8

VOtz(Xz) = exp[ A12-(l - Xz)zJ sz(Xz) = exp[ A23-(1 - Xz)z]
Material Balances
Ns+NE = Ng + NR (Total)
ns = XP3-Ng (Species 3)
XE1-NE = Xoq-NR (Species 1)
Substituting the species balances into the total balance yields
1 XF1

Nns+Ng=——Ns+——NF
XB3 Xop

Solving for the ratio of solvent to feed (ng/ng) gives

Ns _ (Xal - XFl\(XBS\

ng 1—XB3) XOL]_)
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We need xf,;. Assume exiting streams are at equilibrium. Here, the only
distributing species is 2. Then

Xap-yap = XBoyB2

Substituting for ya,, and yB,

2 2
xaz-exp[ A12-(l - xaz) ] = sz-exp[ A23-(1 - sz) }
Solve for xB, using Mathcad Solve Block
Guess: XBo = 0.5

Given
XOLZ'eXp[ AlZ'(l _ XO(,Z)Z] = XBZ.eXp|: A23-(1 - XBZ)2i|

XBp = Find(xBy)  xBp =0.00979  xBg:=1-xB;  xPg = 0.9902
From above, the equation for the ratio nS/nF is:

— Xal—XFl\_ XB3 )
1- XB3 ) XOL]_}

a) nSnF = 0.9112 Ans.

b)xBy = 0.00979  Ans.

¢) ""Good chemistry' here means that species 2 and 3 "'like"* each other, as
evidenced by the negative GE,;. "'Bad chemistry" would be reflected in a

positive GE,,, with values less than (essential) but perhaps near to GE,,.

14.46 1 - n-hexane
2 - water

Since this is a dilute system in both phases, Eqns. (C) and (D) from Example

14.4 on p. 584 can be used to find y,* and yZB.
520 2

Xaq = — Xap =1 —Xog XBo = — XB1 =1-xPBo
10 10
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XP1
Yo = — yop = 1.923 x 10°  Ans.
Xolp
1- Xoup 5
VBo = vBp = 4.997x 10°  Ans,
1-xBg
cm®
14.50 1 - butanenitrile Psatj := 0.07287bar Vi1 = 90—I
mo
cm®
2- benzene Psaty := 0.29871bar Vo =92 —
mol
3 3 3

cm cm cm
B1,1:=-7993—— By 2:=-1247—— By 2:=-2089— By 1:=B1 2
| mol ’ mol mol > )

T := 318.15K P := 0.20941bar X1 := 0.4819 y1 := 0.1813
i=1.2 j=1.2 k:=1.2 X2 :=1-X1 y2 =1-y1
Term A is calculated using the given data.
.'P
term_Aj = i
Xj- Psat;

Term B is calculated using Eqns. (14.4) and (14.5)

Sj’i = 2-Bj,i—Bj’j—Bi,i

hat - exp_%.{gi,i s %{Z {Z [yjvic(285. —%x)]ﬂﬂ

k

J

Bi,i-Psati\ S ohati
RT ) = psatj

¢satj := exp

Term C is calculated using Eqn. (11.44)

[Vi(P- Psati)]} term_ ;o 20
R-T
1)

iy

fsatj := ¢satj-Psatj fj := <|>sati-Psati-exp{
i

1.081 0.986
\ term_B = ( \ Ans.

term_C =
1.108 ) 1.006 ) - (

term_A = (
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14.51 a) Equivalent to d*(AG/RT)/dx,? = 0, use d*(GF/RT)/dx,? = -1/x,X,
For GE/RT = Ax X, = A(X;-%;%)
d(GE/RT)/dx, = A(1-2x,)
d2(GE/RT)/dx,2 = -2A

Thus, -2A = -1/X;X, or 2AX;X, = 1.

Substituting for x,: x;-x,% = 1/(2A) or x,2-x,+1/(2A) = 0.

/ 2
1+ (1- K
The solution to this equation yields two roots: xj = —
2
1-[1- A
and X1 =
2

The two roots are symmetrical around x; = 1/2
Note that for:

A<2: No real roots
A =2: One root, x; = 1/3 (consolute point)

A>2: Two real roots, x; >0 and x; <1

b) Plot the spinodal curve along with the solubility curve

From Fig. 14.15:  A(T) := 540K

+21.1-3lIn I\
K

Both curves are symmetrical around x; = 1/2. Create functions to
represent the left and right halves of the curves.

From above, the equations for the spinodal curves are:

1,1 [AM-2 1 1 [A(M)-2
xspr(T) : 5 + 5 A(T) xspl1(T) := 277 %

xr:=0.7 x|l :=0.3

From Eq. (E) in Example 14.5, the solubility curves are solved using
a Solve Block:
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1 r

Given  A(T)-(1-2xr) = In( X xr > 0.5 xr1(T) := Find(xr)
Xr
—xI

1

)
)
Given  A(T)-(1-2xl) = In( ) xl <05 XI11(T) = Find(xl)

xI
Find the temperature of the upper consolute point.

T:=300K Given A(T)=2 Tu:=Find(T) Tu = 345.998K
T := 250K .. 346K

360

340 -

320 -

300 -

280 -

260 -

14.54 The solution is presented for one of the systems given. The solutions for the
other systems follow in the same manner.

f) 1- Carbon tetrachloride

o1 = 0.193 Te1 := 556.4K Pc1 = 45.60bar
A1 = 14.0572 B :=2914.23 Cy :=232.148
B1
Psat1(T) := exp| A1 — = \ kPa
(— —273.15 +Cq
K )
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2 - n-heptane

o := 0.350 Teo := 540.2K Pco := 27.40bar
Ay = 13.8622 By := 2910.26 Co :=216.432
B2
Psaty(T) = exp| Az — = \ kPa
(— —273.15 +C»
K )

T := (100 + 273.15)K

T Psatq (T)

T =— T = 0.671 Psatl, .= ——  Psatl, = 0.043
Te1 Pe1
T Psaty(T)

T = — Tro = 0.691 Psat2, .= ——  Psat2, = 0.039
Te2 Pc2

Using Wilson's equation A1y =15410 Apq :=0.5197

y1(xa) = exp| —In[ xg+(1-x1)-A1p ] ...
A1 A2

+(1—X1)- -

v2(x1) = exp| —In[ (1-xq) +x1-Azq ] ..

X1 + (l — Xl)-A12 (1 — Xl) + Xl'A21j|

A A
. (_Xl)_{ 12 21

X1 + (l—Xl)-A12 - (1—X1) +X1-A21j|

For part i, use the modified Raoult's Law. Define the pressure and vapor

mole fraction y, as functions of the liquid mole fraction, X.

Pi(x1) = x1-v1(x1)-Psaty (T) + (1 - x1)-v2(x1)-Psata(T)

x1-71(X1)-Psat1(T)
Pi(Xl)

yi1(x1) =
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For part ii, assume the vapor phase is an ideal solution. Use Eqn. (11.68)
and the PHIB function to calculate phat and ¢sat.

¢saty = PHIB(T1,Psatl;, o) ¢sat; = 0.946
P ¢dhatq (P)
ohat; (P) := PHIB Trl,—,ml\ d1(P) = ———
Pe1 7)) ¢saty
¢saty := PHIB( T2, Psat2;, o) ¢saty = 0.95

dhat;(P)
ohato(P) := PHIB Trg,i,mz\ ¢o(P) == ———
P2 7) ¢saty
Solve Eqgn. (14.1) for y, and P given x;.

Guess: y1:=05 P :=1bar
Given

y1:¢1(P)-P = xq-v1(X1)-Psat1(T) Eqn. (14.1)
(1 _ Y1)'¢2(P)'P - (1 _ Xl).yz(xl)-Psatg(T)

fii(x1) := Find(P,y1)
fii is a vector containing the values of P and y,. Extract the pressure, P and
vapor mole fraction, y1 as functions of the liquid mole fraction.

Pii(xy) = fii(xa)o  yiig(x1) = fii(x)1

Plot the results in Mathcad x1:=0,0.1..10
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1 | | | |
0 0.2 0.4 0.6 0.8

x1,Yi1(x1),x1, yii1(x1)
—  P-xRaoult's
—  P-yRaoult's
""" P-x Gamma/Phi
“““ P-y Gamma/Phi
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15.1

Chapter 15 - Section A - Mathcad Solutions

Initial state: Liquid water at 70 degF.
BTU BTU

Hjp := 38.05-—— S1 :=0.0745-———— (Table F.3)
by by, rankine
Final state: Ice at 32 degF.
BTU 143.3 BTU
Hy = (-0.02 - 143.3)- —— Sy :=10.0- \ .
Iby, 491.67 ) by, - rankine

Ts = (70 + 459.67)-rankine

@) Cooling

water @ 70 (F))

C

Throttle Y)

D
-«

‘Ece @ 32 (F) Water @ 70 (F)

Point A: sat. vapor at 32 degF.

Point C: sat. liquid at 70 degF. P = 85.79(psia).

Point D: Mix of sat. liq. & sat. vapor at 32 degF with the enthalpy of Point C.
Point B: Superheated vapor at 85.79(psia) and the entropy of Point A.

Data for Points A, C, & D from Table 9.1. Data for Point B from Fig. G.2.
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Wideal = Hy = Hy = To+(B2 - S

BTU
Wideal = 12.466 —— ot o 1..0m
lbm ' sec

(b) For the Carnot heat pump, heat equal to the enthalpy change of the
water is extracted from a cold reservoir at 32 degF, with heat
rejection to the surroundings at 70 degF.

BTU
Tc :=491.67-rankine Ty :=Ts Qc:=Hy—-H; Qc =-181.37T——
m

Ta—-Tc BTU

Work := |Q(]- —\ Work = 14.018 —

Tc ) by

Wdot := mdot- Work Wdot = 14.79kW  Ans.
Wdotigeal
Nt = — n¢ = 0.889 Ans.

Wdot

The only irreversibility is the transfer of heat from the water as it cools
from 70 to 32 degF to the cold reservoir of the Carnot heat pump at 70
degF.

(c) Conventional refrigeration cycle under ideal conditions of operation:
Isentropic compression, infinite flow rate of cooling water, &
minimum temp. difference for heat transfer = 0.

For sat. liquid and vapor at 32 degF, by interpolation in the table:

BTU BTU
Hp = 107.60-—— Sa =0.2223 —
by, by, - rankine

For sat. liquid at 70 degF:

BTU
Hc = 34.58-1— Hp := Hc

m

For superheated vapor at 85.79(psia) and S = 0.2223:
BTU

Hp = 114.——
1b

m
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Refrigerent circulation rate:

by
~(H2—Hp -1 — Ib

m

mdot ;= mdot = 2.484 —

Ha - Hp sec
Wdot := mdot-(Hp — Ha Wdot = 16.77kW Ans.

Wdotigeal
=— = (0.784 Ans.
Nt Wdot Nt

The irreversibilities are in the throttling process and in heat transfer in
both the condenser and evaporator, where there are finite temperature
differences.

(@) Practical cycle. n :=0.75

Point A: Sat. vapor at 24 degF.

Point B: Superheated vapor at 134.75(psia).

Point D: Mix of sat. liq. and sat. vapor at 24 degF with H of point C,
Point C: Sat. Liquid at 98 degF.

(Note that minimum temp. diff. is not at end of condenser, but it is not
practical to base design on 8-degF temp. diff. at pinch. See sketch.)

For sat. liquid and vapor at 24 degF:

BTU BTU
th = 19.58'— Hvap = 106.48'— HA = Hvap
BTU BTU

by, rankine by, - rankine
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For sat. liquid at 98 degF, P=134.75(psia):

BTU BTU
Hc := 4424 —— Sc:=0.0902- —
bm by rankine

For isentropic compression, the entropy of Point B is 0.2229 at
P=134.75(psia). From Fig. G.2,

BTU H'g —Hp
Ibm n
BTU i ;
Hp = 121.84 The entropy at this H is

read from Fig. G.2 at

m
P=134.75(psia)
BTU Hp — Hjj
Sp:=0228———— Hp:=Hc xpi=—-" xp=0284
BTU

by, - rankine

Refrigerent circulation rate:

by,
~(H2—H1 1 — Ibm
mdot := mdot = 2.914 —
Ha - Hp sec
Wdot := mdot-()—IB —Ha Wdot = 47.22kW  Ans.
Wdotigdeal
=— = 0279 Ans.
Nt Wdot Nt

THERMODYNAMIC ANALYSIS Tg := (70 + 459.67) -rankine

Wdotjost.compressor = met‘Tc‘()gB —-Sa

Qdotcondenser = met'()'IC - Hp

Wdotjost.condenser = met'TG'(;C —SB - Qdotcondenser
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Wdotost throttle := met‘Tc‘()gD -Sc

Wdotyost.evaporator := To met'()SA -Sp ..

Ibm
+ l-g-()iz -S4
Wdotigeas = 13.152kW 27.85%
WdOtlost.compressor = 8.305kW 17.59%
Wdotiost.condenser = 14.178kW 30.02%
Wdotost throttle = 6.621 kW 14.02%
Wdotjost.evaporator = 4.968kW 10.52%

The percent values above express each quantity as a percentage of the
actual work, to which the quantities sum.

15.2 Assume ideal gases. Data from Table C.4

AHygg := —282984-] AGrgg = —257190-]
AHjp9g — AGpog J

AShog = ASHog = —86.513 —
g 298.15-K g2 K

BASIS: 1 mol CO and 1/2 mol O2 entering with
accompanying N2=(1/2)(79/21)=1.881 mol

nco = 1'mol  ngjr := 2.381-mol nco2 ;= I'mol  npnp := 1.881-mol
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(a) Isothermal process at 298.15 K:

2.88

/ Product gases >
Reaction :

' ’I

: : €0,

1CO -

:"’Asunmix’:‘—AH‘{gS; AS?.QS —pe—— ASnix s :

- AH', AS' &,

'

Since the enthalpy change of mixing for ideal gases is zero, the overall
enthalpy change for the process is

AH = AHjgg For unmixing the air, define

nN2

y1 = y1 = 0.79 2 =1-y]

Najr
By Eq. (12.35) with no minus sign:
ASunmixing = Nair R-(y1-In(y1 +y2:In(}2
ASunmixing = —10.174i
K

For mixing the products of reaction, define

nco2
y] = — y1 = 0.347 y2:=1-y]
nN?2 +nco?2

ASmixing = —()1(:02 + nN2 -R-()q-ln()q + yz-ln()fz ASmixing = 15.465%

J
AS = Asunmixing +MSr9g + Smixing AS = —81.223 E
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(b) Adiabatic combustion:

T
-
Q 1 mol CO
‘(\k z 2
> 1.88 mol N .
298.15 K
o]
1 mol CO 298
0.5 mol 02
1.88 mol N 2
Heat-capacity data for the product gases from Table C.1:
nco2-5.457 + nnp-3.280
A = co2 N2 A =11.627
mol
nco2-1.045 + nNp-0.593 _
B = 0 ST B=216x10"
mol
nco2-—1.157 + nnp-0.040
D= —2 N 10° D = -1.082x 10°
mol
T
Cp
For the products, AHp = R- Y dT T :=298.15-K
To

The integral is given by Eq. (4.7). Moreover, by an energy balance,

AH298 + AHP =0
3

Guess t©:=2 A:=11.627 B:= % D := ~1.082-10°-K>
Given
B 2 ()2 D (t1-1)
AHnroe = —R-mol:| A-Ta() =1 + =- A) =1 + =
s = Rl Ay <1 R 2071 2 ()
t := Find(X T = 8.796 T = Tot T = 2622.603K
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15.3

For the cooling process from this temperature to the final temperature of
298.15 K, the entropy change is calculated by

ICPS(L622.6,298.15 ,11.627,2.160-10 3 ,0.0,-1.082- 105

= -29.701
J
ICPS := -29.701 AS := R-mol-ICPS AS = —246.934E
AH = AH»og Wideal.cooling := AH — Tg-AS
AH = _2.83 X 105J Wideal‘cooling = _208904J Ans'
W. .
Wideal
The surroundings increase in entropy in the amount:
Qo J
Qs = _()5H298 - Wideal.cooling ASg = — ASs = 246-93E
(o)
The irreversibility is in the combustion reaction. Ans.
1 Saturated vapor
>
2,700 kPa -
’ /-' \\
H = 28017 BOXOF 1 3 Steam { Virtual \ Saturated liquid
S, = 62244 TRICKS | 1,000 kPa \ condenserj " 179 83 C; 453.03 K
N~ H=7626
2 Saturated vapor > i S = 2.1382
275 kPa ¥
H,= 27207 Q
82 = 7.0201 -300kJ /s

For the sat. steam at 2700 kPa, Table F.2:
kJ kJ
Hjp :=2801.7-— S| =6.2244. ——
kg kg-K
For the sat. steam at 275 kPa, Table F.2:
kJ kJ
Hy :=2720.7-— Sy :=7.0201-——
kg kg-K
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For sat. liquid and vapor at 1000 kPa, Table F.2:

kJ kJ
Hijq == 762.6-— Stiq == 2.1382.——
kg kg-K
kJ kJ
Hyap = 27762 — Syap = 6.5828 —— Tgat := 453.03K
vap e vap ke K sat

(a) Assume no heat losses, no shaft work, and negligible changes in kinetic
and potential energy. Then by Eqs. (2.30) and (5.22) for a completely
reversible process:

Ag(H-mdot) = 0 Ag(S-mdot) = 0

We can also write a material balance, a quantity requirement, and relation
between H3 and S3 which assumes wet steam at point 3.
The five equations (in 5 unknowns) are as follows:

k
Guesses: mdot; := 0.1-—g mdoty := mdot; mdot3 := mdot; + mdot)
s

H{+Hjp H3 — Hiiq
2 sat
Given
kJ
Hj3-mdotz — Hi-mdot; — Hy-mdoty, = 0—
]
kJ
S3-mdot3 — Sy-mdot; — Sp-mdoty = 0—
s-K
kJ
mdot3z = mdot] + mdoty (}13 — Hjjq -mdot3 = 300 —
s
H3 — Hijiq
S3 = Sligt ———
sat
mdotl\
mdoty

mdot3 | = Find()‘ndotl ,mdoty ,mdot3,H3,S3
H3

S3}
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K K K
mdot] = 0.086~2 mdoty = 0.064—2  mdots = 0.15~2
S S S
KJ KJ
Hy = 2767x 10°~—  S3 = 6.563 —— Ans.
kg kg-K

Steam at Point 3 is indeed wet.

(b) Turbine: Constant-S expansion of steam from Point 1 to 1000 kPa
results in wet steam of quality

S1 - Sliq
X'turb = ————— H'turb = Hiigq + X'turb'()'lvap — Hiigq
SVap - Sliq 1
3
5 H' =2614x10"—
X'turb = 0.919 turb % =
Nturb = 0.78 Heyeb = Hy + 1Tturb'()'rturb -H
kJ
Hyyh = 2.655 x 10° —
kg
Heurb — Hliq
Xturb = Sturb = Sliq + Xturb* | Pvap — Sl
kJ
S = 6.316——
Xturb = 0.94 L kg K

Compressor: Constant-S compression of steam from Point 2 to 1000 kPa
results in superheated steam. Interpolation in Table F.2 yields

, kJ
e = 2993.51(—g Neomp = 0-75
H' -Hjp kJ
Heomp = Ha + Heomp ~Ha Heomp = 3084.4 —
Ncomp j kg
By interpolation: S = 7.1803 K
. comp -= /- kg K
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The energy balance, mass balance, and quantity requirement equations of
Part (a) are still valid. In addition, The work output of the turbine equals
the work input of the compressor. Thus we have 4 equations (in 4
unknowns):

K K
Guesses: mdot| := 0.086~2 mdoty = 0.064~2
S S
k kJ
mdot := 0.15-2 Hj = 2770.—
s kg
Given

()'lcomp —Hp -mdotp = _(;Hturb —Hp -mdot;

kJ
Hj3-mdotz — Hi-mdot; — Hy-mdoty, = 0—
S

kJ
mdot3z = mdot; + mdot) (}13 — Hjiq -mdot3 = 300 —
S
mdotl\
mdoty
:= Find(mdot; ,mdoty ,mdotz ,H3
mdotj ()‘n
Hj j
k k
mdot] = 0.10608~2 mdoty = 0.04274~2
S S
2 = Ans.
mdots = 0.14882 -2 Hs = 2.77844 x 10° =
S kg
Steam at Point 3 is slightly superheated.
. . kJ
By interpolation, S3 = 6.5876 ——
kg-K

THERMODYNAMIC ANALYSIS Ty := 300K (assumed)
By Eq. (5.25), with the enthalpy term equal to zero:
Wdotideal := TG-()‘ndotg-Sj; — mdot;-S; — mdoty-S»
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15.4

Wdotjgea] = 6.014kW

Wdotiost.turb := To-mdot ;- (Brurb — S1

Wdot|ost.comp = Tc-mdotz-()scomp -S7

Wdotjost. mixing = TG-[()ndot3-S3 —mdot]-Sgyry — mdotz-Scomp]
Wdotjost turb = 2.9034 kW 48.2815%

Wdotjost.comp = 2.054kW 34.1565%

The percent values above express each quantity as a percentage of the
absolute value of the ideal work, to which the quantities sum.

Some property values with reference to Fig. 9.1 are given in Example 9.1.
Others come from Table 9.1 or Fig. G.2.

For sat. liquid and vapor at the evaporator temperature of 0 degF:

BTU
o BTU BTU
Hiiq = 12.090 - Hyap = 103.015 ——

m

BTU BTU
Syap = 0.22525 Sliq = 0.02744 ———

by, rankine by, - rankine

For sat. liquid at the condenser outlet temperature of 80 degF:

BTU BTU
Hy = 37.978 —— S4:=0.07892- ——
by by, rankine
H1 - Hiig
X] = —————— S1 = Siiq + X1-( Pvap — Sii
T a+x1:(Pvap = Stig
BTU
S1 =0.084 —
x] = 0.285 ! 1by,-rankine
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From Example 9.1(b) for the compression step:

BTU BTU
AH = 17.48-T Hj3 := Hy + AH H3z = 120.5——

m m

From Fig. G.2 at H3 and P = 101.37(psia):

BTU
S3 = 0.231.—1bm'rankine mdot = 1845.1.—2
hr
BTU
Wdot := mdot-AH Wdot = 3.225 x 104

hr

The purpose of the condenser is to transfer heat to the surroundings. Thus
the heat transferred in the condenser is Q in the sense of Chapter 15; i.e.,
it is heat transfer to the SURROUNDINGS, taken here to be at a
temperature of 70 degF.

Internal heat transfer (within the system) is not Q. The heat transferred in
the evaporator comes from a space maintained at 10 degF, which is part of
the system, and is treated as an internal heat reservoir.

The ideal work of the process is that of a Carnot engine operating between
the temperature of the refrigerated space and the temperature of the
surroundings.

Ts = (70 + 459.67)-rankine Ty =Tg
BTU
Qdotc = -120000 0 Tc = (10 + 459.67)-rankine
r
Tg—-Tc BTU
Wdotigeal := |Qd0tc| —_— Wdotjgeal = 1.533 x 104
Tc hr
BTU
Qdot = (}14 — H3 -mdot Qdot = —1.523 x 105
hr

Wdotost throttle := Tc'met'()Sl -S4
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Wdotlost.evap = Tc'mdot'(FZ - Sl

Hy - Hp
+ Tg-——— mdot
Tc
The final term accounts for the entropy change of the refrigerated space (an
internal heat reservoir).

47.53%
17.42%
11.24%
14.67%

9.14%

The percent values above express each quantity as a percentage of the

actual work, to which they sum:

15.5 The discussion at the top of the second page of the solution to the
preceding problem applies equally here. In each case,

Ts := (70 + 459.67) -rankine Ty =T

The following vectors refer to Parts (a)-(e):

40" 600 )
30 500
BTU
tc =20 Qdotc := —| 400 |-
S€C
10 300
0) 200 )
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Tc := (jc + 459.67 -rankine

Ta-Tc)

Wdotigeal := (|Qd0tc| . T )

For sat. liquid and vapor at the evaporator temperature, Table 9.1:

21.486)) 107.320
18.318 105.907
Hijq = | 15.187 51U vap = | 104.471 51U 2 = Hyap
12.090 103.015
9.026 ) 101.542 )
0.04715Y) 0.22244
0.04065 0.22325
Sliq := | 0.03408 -lbmi:niine Svap = | 0.22418 -lbmi:iine 82 = Syap
0.02744 0.22525
0.02073 ) 0.22647 )
For sat. liquid at the condenser temperature:
Hy = 37.978-% S4 == 0.07892. lbm]ilime H; = Hy
- \
X] = % St :=| Siig + Xl'()gvap - Sliq |

From the results of Pb. 9.9, we find:

117.7)
118.9
120.1
121.7
123.4 )

BTU

From these values we must find the
corresponding entropies from Fig. G.2.
They are read at the vapor pressure for
80 degF of 101.37 kPa. The flow rates
come from Problem 9.9:

609



Wdotjost.comp = I:Tc met )33 - SZ

Qdot = [()-14 - Hj3 -mdotj

Wdotost.cond = [Tc-mdot-()S4 -S3 j — Qdot

N
7

Wdotjost.throttle = I:Tcs'met' ()31 -S4 ]

N

Wdotjpst.evap = I:Tc-mdot-(}iz -5 j -

+ [(Tc- i Hz\-mdot]
Tc )

The final term accounts for the entropy change of the refrigerated space (an
internal heat reservoir).

Wdot := I:mdot- ()-13 —Hjp j
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In each case the ideal work and the lost work terms sum to give the actual
work, and each term may be expressed as a percentage of the actual work.

15.6 The discussion at the top of the second page of the solution to Problem

15.4 applies equally here.

Ty =Ts

Tu-Tc BTU
Wdotigeal = (|Qdotc| T—c) Wdotigea] = 163.375

S€C

For sat. liquid and vapor at the evaporator temperature, Table 9.1:

H2 = Hvap S2 = Svap
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For sat. liquid at the condenser temperature:

BTU BTU
Hy :=37.978. —— S4 = 0.07892 ————
by by, rankine

From Problem 9.12,

BTU
Hox = 116 BTU Soa = 02435 —
2A = T by, - rankine
m
BTU BTU
Hj3 := Hop + 14.667- —— H3 = 130.67——
1 m bm
From Fig. G.2 at this enthalpy and 33.11(psia):
BTU
S3 :=0.2475 ——
by, - rankine
Energy balance on heat exchanger:
BTU
Hy :=H4—-Hya +H> Hy = 27.885 ——
m
H1 - Hiiq
X] = S1 = Siiq + X1-( Pvap — Sii
BTU
— 0.109 S1=0.001] ——
ML by, - rankine

Upstream from the throttle (Point 4A) the state is subcooled liquid with
the enthalpy:

Haa = Hy

The entropy at this point is essentially that of sat. liquid with this
enthalpy; by interpolation in Table 9.1:

BTU
Sqa = 0.05986- -
by, -rankine

by
From Problem 9.12: mdot := 25.634.——
sec
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VVd(’tlost.comp = Tcs‘met'(F3 -Soa
Qdot := ()-14 — H3 -mdot

WdOthSt.COIld = Tc'mdot'(;4 - S3 - QdOt
Wdotjost throttle = Tc‘met'()gl = S4A

Wdotlost_evap = Tc'mdot'(Fz - Sl

Hp-Hp
+ (TGT—\met
C

The final term accounts for the entropy change of the refrigerated space (an
internal heat reservoir).

Wdotjost.exchanger = Tc'met'()g2A —S2+S4A -S4

Wdot := mdot-()—Ig —Hoa

43.45%

14.45%

23.16%

2.65%

11.99%

4.30%

The figures on the right are percentages of the
actual work, to which the terms sum.
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15.7

0.5kg/s
2
| Wi
3
1 Feed > Slurry
100C | \{ 100 C
l4

Compression to a pressure at which condensation in coils occurs at
110 degC. Table F.1 gives this sat. pressure as 143.27 kPa

Neomp = 0.75
kJ kJ -
Hy :=419.1.— S1 = 1.3069-—— (sat. liquid)
kg kg-K
kJ kJ
H, := 2676.0-— Sy == 7.3554.—— (sat. vapor)
kg kg-K
For isentropic compression to 143.27 kPa, we find by double interpolation in
Table F.2:
kJ H3 —Hp kJ
H'5 :=2737.0-— Hy =Hy + —— Hz = 27573 —
kg Ncomp kg
By more double interpolation in Table F.2 at 143.27 kPa,
kJ
S3 = 7.4048. ——
kg-K

By an energy balance, assuming the slurry passes through unchanged,

kJ
H4 :=Hj+H3-H> Hy = 500.4k—
g
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This enthalpy is a bit larger than that of sat. liquid at 110 degC; find quality

and then the entropy:
kJ kJ kJ
Hijq := 461.3- — Hyy := 2230.0-— Sliq == 1.4185-——
kg kg kg-K
kJ Hy4 — Hj;
S}y = 5.8203 —— xq = — 4 x4 = 0.018
kg-K Hiy
kJ kg
S4 = Sijig +x4-S Sq4 = 1.5206 —— mdot := 0.5-—
4 lig T X4:9lv 4 ke K Sec
Ts := 300-K

Wdotigeql = mdot| Hy - Hj - To+(B4— S |
Wdotjost.evap = md0t~TG~()S4 -S3+S, -5
Wdotjost.comp = mdot-TG-()S‘3 -Sy
Wdot := mdot-(){3 -Hy
Wdotjgeal = 8.606 kW 21.16%
Wdotjost.evap = 24.651kW 60.62%
Wdotjost.comp = 7-41kW 18.22%

The figures on the right are percentages of the

Lot = LSS actual work, to which the terms sum.

15.8 A thermodynamic analysis requires an exact definition of the overall
process considered, and in this case we must therefore specify the source
of the heat transferred to the boiler.
Since steam leaves the boiler at 900 degF, the heat source may be
considered a heat reservoir at some higher temperature. We assume in
the following that this temperature is 950 degF.
The assumption of a different temperature would provide a variation in the
solution.
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The ideal work of the process in this case is given by a Carnot engine
operating between this temperature and that of the surroundings, here
specified to be 80 degF.

We take as a basis 1 lbm of H2O passing through the boiler. Required
property values come from Pb. 8.8.

Ty := (459.67 + 950)-rankine T = (459.67 + 80)-rankine Tg := T¢

Subscripts below correspond to points on figure of Pb. 8.7.

HI) 9576 ) S (0.3970)
Hy 1461.2 S2 1.6671
H3 12422 | BTU S3 1.7431 BTU
Hy |~ | 10478 | Tbm Sq | | 1.8748 | Tom-rankine
Hs 69.7 Ss 0.1326
Hy ) 2502 ) s7) 0.4112)
Tc)
Qu = (H2 - Hy -1Iby, Wideal = QH'(I )

For purposes of thermodynamic analysis, we consider the following 4 parts
of the process:

The boiler/heat reservoir combination
The turbine
The condenser and throttle valve

The pump and feedwater heater

QH
Wiost.boiler.reservoir ‘= TG‘|:()32 =Sp -I-Iby - T_
H

m := 0.18688-1by, (From Pb. 8.8)

Wiost.turbine = TG'I:m' ()33 -5y + ()'lbm —m ()34 -2 ]

The purpose of the condenser is to transfer heat to the surroundings. The
amount of heat is

Q := IlbyHs — (J-Ibyy — m -Hg — m-Hy

Q = —829.045BTU

616



15.9

Wiost.cond.valve = TG'D ‘Ibm-S5 - ()‘lbm —m -S4 — m-Sﬂ -Q

Wiost.pump.heater := TG'[ 1'lbrn'(ﬁl -S5 +m ()37 -S3 ]

The absolute value of the actual work comes from Pb. 8.8:

Wabs.value = 374.61-BTU
Wiost.boiler.reservoir = 224.66 BTU
Wiost.turbine = 98.81 BTU
Wiost.cond.valve = 36.44BTU
Wiost.pump.heater = 8.36 BTU

50.43%

30.24%

13.30%

4.90%

1.13%

Wideal = 742.82BTU The numbers on the right are percentages of the
absolute value of the ideal work, to which they

(absolute value) sum.

Refer to Figure 9.7, page 330 The analysis presented here is for

the liquefaction section to the right of the dashed line. Enthalpy and
entropy values are those given in Ex. 9.3 plus additional values from
the reference cited on page 331 at conditions given in Ex. 9.3.

Property values:

kJ
Hy = 1140.0-—
kg
kJ
Hs := 1009.7-—
kg
kJ
H7 = 719.8-—
kg
kJ
Hg := 285.4.—
kg
k
Hig = 796.9-—J
kg

617

kJ
S4 :=9.359-——
kg-K
kJ
S5 = 8.894. ——
kg-K
kJ
S7 = 7.544 ——
kg-K
kJ
Sg :=4.928- ——
kg-K
k
S10 := 9.521-—J
kg-K



kJ kJ

Hig = 1042.1~k—g Si4 = 11.015-kg—_K
Hys = 1188.9-15—; Sys = 11.589.1{1;—?K
Hg :=Hs Sg:=S; Hi1:=Hs S11 =S5
Hi2:==Hjo S12 = S0 Hj3 = Hi0 S13 == S10
T = 295K

The basis for all calculations is 1 kg of methane entering at point 4. All
work quantities are in kJ. Results given in Ex. 9.3 on this basis are:
Fraction of entering methane that is liquefied:

Fraction of entering methane passing through the expander:

On this basis also Eq. (5.26) for Ideal Work, Eq. (5.33) for Entropy
Generation,and Eq. (5.34) for Lost Work can be written:

z:=0.113 x = 0.25

Q
Wideal = A(H-m)fs — To-A(S-m). Sg = A(S-m) — T Wiost = ToSG

(e}

Wideal = [ Hi5:(1-2) + Hoz~ H4| = T Si5:(1 = 2) + So-z — S4 |

kJ
Wideal = —489.001 —
kg
kJ
Wout = ()’[12 -Hip x Wyt i=—
kg
(a) Heat Exchanger I: S, = [()3‘5 -S4 + (F15 - S14 (1 - Z)]
kJ kJ
SG.a = 0.044 — Wiost.a = To-SG.a Wiosta = 13.021 —
kg-K kg

(b) Heat Exchanger II: Sg , := [()37 -S¢ (1 -x)+ (F14 - S13 (1 - Z)]

kJ kJ
SGb = 0-313@ Wiostb := To'SGb Wiostb = 92.24 —

kg
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(c) Expander: Sg . := (}512 —Sy1 X

(d) Throttle: S 4 :=[ So-z+Sjo(1-z-x)—S7:(1 - x) |

Entropy-generation analysis:

kJ/kg-K Percent of
S G, 0.044 2.98%
S Gy 0.313 21.18%
S G 0.157 10.62%
S_Gq 0.964 65.22%
) 1.478 100.00%

Work analysis, Eq. (15.3):

kJ/kg Percent of X
|Wou| 53.20 10.88%
Wiost.a 13.02 2.66%
Wiost.b 92.24 18.86%
Wiost.c 46.24 9.46%
Wiost.d 284.30 58.14%
) 489.00 100.00%

Note that: ¥ = |Wideal|
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Chapter 16 - Section A - Mathcad Solutions

16.10 (Planck's constant) (Boltzmann's constant) (Avagodro's number)
_ _ J _
h = 6.626-10 %) k= 138110 23'E Na = 6.023-105mol !
3
R-T m
P := 1bar T := 298.15K Vi=——0o V =0.025—
P mol
39.948g—m1
a) For Argon: M = mo
Na
3 5
2 2
) 2.t-M:-k-T\" V- :
Sig := R-In| | 2~ 17 Ve Sig = 154.84 Ans.
h2 ) Na mol-K
J
NIST value: [154.84 1
‘K
83.800“%—m1 e
b) For Krypton: M = o
Na
3 5
2 2
: 2:n-M-k-T\™ V- : J
Sig := R:In| T \ e Sig = 164.08 Ans.
h2 ) Na mol-K
NIST value: 164.05
mol-K
131.30“%—“‘1
¢) For Xenon M = mo
Na
3 5
MET)? Ve Sig = 164.08 Ans.
Sig == Reln| [ 27 l\gk T\ Ve s mol- K
) Na ;
NIST value: 169.68
mol-K
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Chapter 1 - Section B - Non-Numerical Solutions

1.1 This system of units is the English-system equivalent of SI. Thus,
ge = 1(Iby)(f)(poundal)~' (s) >

1.2 (a) Power is power, electrical included. Thus,

N. ke-m?
Power [=] en.ergy = m [=] gm
time s s3

(b) Electric current is by definition the time rate of transfer of electrical charge. Thus

Charge [=] (electric current)(time) [=] A-s
(c) Since power is given by the product of current and electric potential, then

ower kg-m?
Electric potential [=] POWEL =1 =2

current A-s3

(d) Since (by Ohm’s Law) current is electric potential divided by resistance,

electric potential kg-m?

Resistance [=] = 3
current AZ.s

(e) Since electric potential is electric charge divided by electric capacitance,

. charge A2-s4
Capacitance [=] - — [= 5
electric potential kg-m
1.3 The following are general:
Inx =1In10 x log;, x (A)
y y 100 kPa
P s /kPa = P % /torr x — (B)
750.061 torr
t/°C=T/K—-273.15 <)
By Egs. (B) and (A),
In P % /kPa = In 10 x log,, P % /torr + In 100
= 10 750.061
The given equation for log,, P **'/torr is:
b
log,, P /torr =a — ————
010 /torr = a 1/°C +c
Combining these last two equations with Eq. (C) gives:
b 100
lnPsm/kPazlnlO[a— ( +In
T/K—-273.15+c¢ 750.061
b
= 2.3026 [ a— ( —2.0150

T/K —273.15 + ¢

Comparing this equation with the given equation for In P %' /kPa shows that:

A =2.3026a — 2.0150 B =2.3026b C =c—-273.15

621



1.9 Reasons result from the fact that a spherical container has the minimum surface area for a given interior
volume. Therefore:
(a) A minimum quantity of metal is required for tank construction.

(b) The tensile stress within the tank wall is everywhere uniform, with no sites of stress concentration.
Moreover, the maximum stress within the tank wall is kept to a minimum.

(c) The surface area that must be insulated against heat transfer by solar radiation is minimized.
1.17 Kinetic energy as given by Eq. (1.5) has units of mass-velocity?. Its fundamental units are therefore:

Eg [=] kgm*s™? [=] N-m [=] ]

Potential energy as given by Eq. (1.7) has units of mass-length-acceleration. Its fundamental units are
therefore:
Ep [=] kgm'm:s—* [=] Nom [=] ]

1.20 See Table A.1, p. 678, of text.
e I(atm)~ 1 bar = 1/0.986923 = 1.01325 bar
e 1(Btu)~ 1kJ=1/0.947831 = 1.05504 kJ
e 1(hp) = 0.75 kW = 1/1.34102 = 0.745701 kW
e 1(in) & 2.5 cm = 2.54 cm exactly, by definition (see p. 651 of text)
e 1(Iby) =~ 0.5 kg = 0.45359237 kg exactly, by definition (see p. 651 of text)
e I(mile) &~ 1.6 km = 5280/3280.84 = 1.60934 km
e 1(quart) ~ 1 liter = 1000/(264.172 x 4) = 0.94635 liter (1 liter = 1000 cm?)
e I(yard) &~ 1 m = (0.0254)(36) = 0.9144 m exactly, by definition of the (in) and the (yard)

An additional item could be:
e I(mile)(hr)~!'~ 0.5 m s~'= (5280/3.28084)(1/3600) = 0.44704 m s~!
1.21 One procedure here, which gives results that are internally consistent, though not exact, is to assume:
1 Year [=] 1 Yr [=] 364 Days

This makes 1 Year equivalent to exactly 52 7-Day Weeks. Then the average Month contains 30% Days
and 4% Weeks. With this understanding,

1 Year [=] 1 Yr [=] 364 Days [=] (364)(24)(3600) = 31,449,600 Seconds

Whence,
e 1 Sc[=]31.4496 Second 1 Second [=] 0.031797 Sc
e 1 Mn [=] 314.496 Second 1 Minute [=] 60 Second [=] 0.19078 Mn
e 1 Hr [=] 3144.96 Second 1 Hour [=] 3600 Second [=] 1.14469 Hr
e 1 Dy [=] 31449.6 Second 1 Day [=] (24)(3600) Second [=] 2.74725 Dy
e 1 Wk [=] 314496. Second 1 Week [=] (7)(24)(3600) Second [=] 1.92308 Wk
e 1 Mo [=] 3144960 Second 1 Month [=] (4%)(7)(24)(3600) Second[=] 0.83333 Mo

The final item is obviously also the ratio 10/12.
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2.3

2.6

2.7

2.8

2.9

2.10

2.14

Chapter 2 - Section B - Non-Numerical Solutions

Equation (2.2) is here written: QU +0Ep+IdEx =0+ W

(a) In this equation W does not include work done by the force of gravity on the system. This is
accounted for by the 0 Eg term. Thus, W = 0.

(b) Since the elevation of the egg decreases, sign(d Ep) is (—).
(c) The egg is at rest both in its initial and final states; whence 0 Ex = 0.
(d) Assuming the egg does not get scrambled, its internal energy does not change; thus 3 U’ = 0.

(e) The given equation, with d U' = 9 Ex = W = 0, shows that sign(Q) is (—). A detailed exam-
ination of the process indicates that the kinetic energy of the egg just before it strikes the surface
appears instantly as internal energy of the egg, thus raising its temperature. Heat transfer to the
surroundings then returns the internal energy of the egg to its initial value.

If the refrigerator is entirely contained within the kitchen, then the electrical energy entering the re-
frigerator must inevitably appear in the kitchen. The only mechanism is by heat transfer (from the
condenser of the refrigerator, usually located behind the unit or in its walls). This raises, rather than
lowers, the temperature of the kitchen. The only way to make the refrigerator double as an air condi-
tioner is to place the condenser of the refrigerator outside the kitchen (outdoors).

According to the phase rule [Eq. (2.7)], F = 2 — k 4+ N. According to the laboratory report a pure
material (N = 1) is in 4-phase (x = 4) equilibrium. If this is true, then F =2 —4 + 1 = —1. This is
not possible; the claim is invalid.

The phase rule [Eq. (2.7)] yields: F =2 —«k + N =2 —2+72 = 2. Specification of 7" and P fixes the
intensive state, and thus the phase compositions, of the system. Since the liquid phase is pure species
1, addition of species 2 to the system increases its amount in the vapor phase. If the composition of
the vapor phase is to be unchanged, some of species 1 must evaporate from the liquid phase, thus
decreasing the moles of liquid present.

The phase rule [Eq. (2.7)] yields: F =2 —«x + N =2 -2+ 3 = 3. Withonly T and P fixed,
one degree of freedom remains. Thus changes in the phase compositions are possible for the given
T and P. If ethanol is added in a quantity that allows T and P to be restored to their initial values,
the ethanol distributes itself between the phases so as to form new equilibrium phase compostions and
altered amounts of the vapor and liquid phases. Nothing remains the same except 7 and P.

(a) Since F = 3, fixing T and P leaves a single additional phase-rule variable to be chosen.

(b) Adding or removing liquid having the composition of the liquid phase or adding or removing
vapor having the composition of the vapor phase does not change the phase compositions, and
does not alter the intensive state of the system. However, such additions or removals do alter the
overall composition of the system, except for the unusual case where the two phase compositions
are the same. The overall composition, depending on the relative amounts of the two phases, can
range from the composition of the liquid phase to that of the vapor phase.

If the fluid density is constant, then the compression becomes a constant-V process for which the work
is zero. Since the cylinder is insulated, we presume that no heat is transferred. Equation (2.10) then
shows that 9 U = 0 for the compression process.
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2.16

2.19

Electrical and mechanical irreversibilities cause an increase in the internal energy of the motor, man-
ifested by an elevated temperature of the motor. The temperature of the motor rises until a dynamic
equilibrium is established such that heat transfer from the motor to the srroundings exactly compen-
sates for the irreversibilities. Insulating the motor does nothing to decrease the irreversibilities in
the motor and merely causes the temperature of the motor to rise until heat-transfer equilibrium is
reestablished with the surroundings. The motor temperature could rise to a level high enough to cause
damage.

Let symbols without subscripts refer to the solid and symbols with subscript w refer to the water.
Heat transfer from the solid to the water is manifested by changes in internal energy. Since energy is
conserved, AU" = —AU/ . If total heat capacity of the solid is C’ (= mC) and total heat capacity of
the water is C! (= m,,C,,), then:

C(T — To) = —C,,(Tyy — Tuy)

t

C
of Ty = Tuy, — (T = Tp) (A)
Cw

This equation relates instantaneous values of 7, and T'. It can be written in the alternative form:
TC'—T,C'=T,,C., —T,C!

or T,,C!, + ToC' = T,C, + TC' (B)

wo >~ w

The heat-transfer rate from the solid to the water is given as Q = K (T,, — T). [This equation implies
that the solid is the system.] It may also be written:

,dT
C' = = KT, = T) (©)

In combination with Eq. (A) this becomes:

C’dT—K T, Ct(T Ty) — T
dr e 0
dT To —T T—T 1 1 T, To
— =K 2 — =-TK|—+— K|{—"+ —
o wr (e ) (@)
. — 1 1 _ Two TO
Define: ﬁ:K(E—i_C_’) O[:K(F—i_C_’)

where both « and 8 are constants. The preceding equation may now be written:

 —a—B8T
draﬂ

dT  1d(@—$T)

= — dt
o — BT B oa—pBT

Rearrangement yields:

Integration from 7 to T and from O to T gives:

| (a—ﬂT)
L Y (bl
B a— BT

624



2.20

. . a— BT
which may be written: —— =exp(—f71)
o — ﬂT()

When solved for 7" and rearranged, this becomes:

T=3+<%—g%mem)

B B
Ty, C!, + ToC'
where by the definitions of « and S, ¢ LugCy + 1oC
B ci,+C

When 7 = 0, the preceding equation reduces to T = Ty, as it should. When t = oo, it reduces to
T = a/B. Another form of the equation for «/8 is found when the numerator on the right is replaced
by Eq. (B):

« T,C,+TC'

e
By inspection, T =a«a/f when T, =T, the expected result.

The general equation applicable here is Eq. (2.30):

A[(H + u? 4+ zg) ] = 0 + W,

(a) Write this equation for the single stream flowing within the pipe, neglect potential- and kinetic-
energy changes, and set the work term equal to zero. This yields:

(AH)m = Q

(b) The equation is here written for the two streams (I and II) flowing in the two pipes, again neglecting
any potential- and kinetic-energy changes. There is no work, and the the heat transfer is internal,
between the two streams, making QO = 0. Thus,

(AH)mi+ (AH)ymy =0

(c) For a pump operating on a single liquid stream, the assumption of negligible potential- and kinetic-
energy changes is reasonable, as is the assumption of negligible heat transfer to the surroundings.
Whence,

(AH)m = W
(d) For a properly designed gas compressor the result is the same as in Part (c).
(e) For a properly designed turbine the result is the same as in Part (c).

(f) The purpose of a throttle is to reduce the pressure on a flowing stream. One usually assumes
adiabatic operation with negligible potential- and kinetic-energy changes. Since there is no work,
the equation is:

AH =0

(g) The sole purpose of the nozzle is to produce a stream of high velocity. The kinetic-energy change
must therefore be taken into account. However, one usually assumes negligible potential-energy
change. Then, for a single stream, adiabatic operation, and no work:

A[(H+ 3u*)m] =0
The usual case is for a negligible inlet velocity. The equation then reduces to:

AH + 3u3=0
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2.21

2.24

2.32

2.35

We reformulate the definition of Reynolds number, with mass flowrate m replacing velocity u:

. T 5
m=uAp=u—D"p
4
) ) 4 m
Solution for u gives: U=——
T D%p

D 4 n D 4
Whence, Re = i il mr = m

w wD pu  mDup
(a) Clearly, an increase in m results in an increase in Re.

(b) Clearly, an increase in D results in a decrease in Re.

With the tank as control volume, Egs. (2.25) and (2.29) become:

d d(mU
—m+n'1’=0 and (mU)

H/'/:O
dt dt +ham

Expanding the derivative in the second equation, and eliminating m’ by the first equation yields:

dUu dm dm

m— — —H—=0
dt dt dt
dU dm
Multiply by dt and : = —
ultiply by dt and rearrange 0 —U .

Substitution of H' for H requires the assumption of uniform (though not constant) conditions through-
out the tank. This requires the absence of any pressure or temperature gradients in the gas in the tank.

. . RT
From the given equation: P=—+—
V->b
Y2 " RT
By Eq. (1.3), W=— PdV=—/ —d(V —b)
v, vy, V—>b
Vi—b
Whence, W = RT In !
Vo—b
Recall: d(PV)=PdV +VdP and dW = —-PdV
Whence, dW =V dP —d(PV) and W=/[VdP— A(PV)

By Eq. (2.4), dQ =dU —dW
ByEq.(2.11), U=H—-PV and dU=dH —PdV —-VdP
With dW = —PdV the preceding equation becomes dQ =dH — VdP

Whence, Q=AH-— [VdP
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2.38 (a) By Eq. (2.24a), m=uAp With n1, A, and p all constant, # must also be constant. With
qg = uA, q is also constant.

(b) Because mass is conserved, m must be constant. But 7 = M/m may change, because M may
change. At the very least, p depends on 7" and P. Hence u and g can both change.

2.40 In accord with the phase rule, the system has 2 degrees of freedom. Once T and P are specified, the
intensive state of the system is fixed. Provided the two phases are still present, their compositions
cannot change.

2.41 In accord with the phase rule, the system has 6 degrees of freedom. Once T and P are specified, 4
remain. One can add liquid with the liquid-phase composition or vapor with the vapor-phase compo-
sition or both. In other words, simply change the quantities of the phases.

2.43 Let 7’ represent the moles of air leaving the home. By an energy balance,

Q- v d(nU) H o+ dUu +Udn
=n —_— n—— _—
d dt dt
. . . dn
But a material balance yields n=- 2
cn — — — - n—-
dt dt
or S = aa=
dt dt
2.44 (a) By Eq. (2.32a): H, — H + %(ug —uf) =0
By Eq. (2.24a) i 4 _m
. 24a). = — — ———
v Ap m pD?
Th 2 u? 4\ (] ! d gi H, — H 1(P P))
en us—-u=\—| —=|——-—— and given — = — —
2 1 T 02 DE‘ D? g 2 1 P 2 1
Lp —pys L(4 *m? (D} - D} o
p 2 VT 2\x) p2 piDd )
m\2( DD \1°
Solve for r: W= |20(P — P <_) P
olve for m m |: o (P ») 1 (D?—Dg)]

(b) Proceed as in part (a) with an extra term, Here solution for # yields:

2 D4D4 1/2
o= o= e G (2%
1 2

Because the quantity in the smaller square brackets is smaller than the leading term of the preced-
ing result, the effect is to decrease the mass flowrate.
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3.2

3.3

3.7

Chapter 3 - Section B - Non-Numerical Solutions

Differentiate Eq. (3.2) with respect to P and Eq. (3.3) with respect to T':

) () () ()
(nP)T__vz (nP Aot ), TV \aPar ) T T \aPar
e\ 1 (nV v l(nzV . nZV)
(JT_T)P_W(T[_T>P(T[_P>T_V JTTnP)_ s¢ (nPnT

Addition of these two equations leads immediately to the given equation.

One could of course start with Eq. (3.4) and apply the condition for an exact differential, but this topic
is not covered until Chapter 6.

The Tait equation is given as: V=Vl1- AP
B+ P

where V), A, and B are constants. Application of Eq. (3.3), the definition of €, requires the derivative

of this equation:
oV A AP AVy P
— ) =W|- + 5| = -1+
7P /), B+P (B+P) B+ P B+ P

Multiplication by —1/V in accord with Eq. (3.3), followed by substitution for V/V by the Tait equa-
tion leads to:

i AB
T B+P[B+(-AP]

dv
(a) For constant T, Eq. (3.4) becomes: v = —€edP

Integration from the initial state (P;, V1) to an intermediate state (P, V') for constant € gives:
In—=—€(P—P))

Whence, V = Viexp[—€ (P — P))] = Vi exp(—e P) exp(e Pp)

If the given equation applies to the process, it must be valid for the initial state; then, A(T) =
Viexp(e P), and

V = A(T) exp(—€ P)

(b) Differentiate the preceding equation: dV = —€eA(T)exp(—e P)dP
% P
Therefore, W=— / PdV =eA(T) / P exp(—e P)d P
Vi Py
A(T)

= [(e Py + 1) exp(—€ P;) — (e P, + 1) exp(—€ P»)]
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3.11

3.12

3.13

With V), = A(T)exp(—«P;) and V, = A(T)exp(—« P), this becomes:

W= %[(KP] + DV — P+ 1)V2]

Vi—W

K

or W=P1V]—P2V2+

Differentiate Eq. (3.35c) with respect to T':

1-8)/8
7 (128 ptacoym-t 4P pacsys 4T _ p (L=8Y PEORAP gy dT
) Z dz P dz dz

)

Algebraic reduction and substitution for d P /dz by the given equation yields:

T (1—-6 dT
;(T) (_Mpg)+d_z =0

For an ideal gas Tp/P = 1/R. This substitution reduces the preceding equation to:

AT Mg (8—1
dz R 8

Example 2.13 shows that U, = H'. If the gas is ideal,

H =U+ PV =U+RT and U,—U =RT

For constant Cy, U,—-U' =Cy(T,—-T') and Cy(T, —T') = RT’
,-T R Cp—C
Whence, 2 =
T Cy Cy
When Cp/Cy is set equal to y, this reduces to: T, =yT'

This result indicates that the final temperature is independent of the amount of gas admitted to the
tank, a result strongly conditioned by the assumption of no heat transfer between gas and tank.

Isobaric case (5§ = 0). Here, Egs. (3.36) and (3.37) reduce to:

_ YRT,

W =—RT1(1* -1) and 0
y —1

(1* -1
Both are indeterminate. The easiest resolution is to write Eq. (3.36) and (3.37) in the alternative but
equivalent forms:
RT, (T
W= 1 < 2

= 2 =
s—1\T ) and O

(6 —y)RTy <T2 1)

G-Dy-D\T

from which we find immediately for § = O that:
YR
W=-R(T,—T;) and Q= m(Tz —T)=Cp(l, - T)
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3.14

Isothermal case (6 = 1). Equations (3.36) and (3.37) are both indeterminate of form 0/0. Application
of I’Hopital’s rule yields the appropriate results:

P2 P2

W = RT)In — and QO =—RT|In—

Py Py

P, 0-D/8 d | /P \O-DE p
Note that if y= (2 then 2 —_ (22 In =2
P, a5~ 82\ p, P

Adiabatic case (5§ = y). In this case simple substitution yields:

RT1 P2 y=1/y
W=t (F) —1 and Q=0
Y — 1

Isochoric case (§ = co). Here, simple substitution yields:

RT, P, RT, T,
W =0 and O=—|—-1)|=——|=-1)=Cy(Ir-T)
)/—1 P, )/—1 T

What is needed here is an equation relating the heat transfer to the quantity of air admitted to the tank
and to its temperature change. For an ideal gas in a tank of total volume V' at temperature T,
P V! P,V!

and ny, =
RT RT

ny =

The quantity of air admitted to the tank is therefore:

_ V(P = P)

B RT

The appropriate energy balance is given by Eq. (2.29), which here becomes:

/

(A4)

d (n U)tank

_ -/H/: ~
dt " ©

where the prime (') identifies the entrance stream of constant properties. Multiplying by d¢ and inte-
grating over the time of the process yields:

nUs —mU; —n'H' = Q
With n’ = ny, — ny, n,(Uy— H) —ni(Uy—H)=Q
Because U, = H, — RT and U; = H; — RT, this becomes:
ny(Hy— H — RT) —n (U — H —RT)=Q
or m[Cp(T —T") — RT] —m[Cp(T —=T")— RT]=Q

Because n' = n, —ny, this reduces to:

Q =n'[Cp(T —T') — RT]

Given: V' =100,000cm® T =298.15K 7' =318.15K P, =101.33kPa P, = 1500 kPa
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By Eq. (A) with R = 8,314 cm?® kPamol~! K~!,

_ (100, 000)(1500 — 101.33)
o (8, 314)(298.15)

/

= 56.425 mol

With R = 8.314 Jmol~! K=! and Cp = (7/2)R, the energy equation gives:

7
0 = (56.425)(8.314) [5(298.15 —318.15) — 298.15i| =—172,705.6J

or 0=-172.771K]

3.15 (a) The appropriate energy balance is given by Eq. (2.29), here written:

d(nU)tank _ I’.l/H/ — Q
dt

where the prime (') identifies the entrance stream of constant properties. Multiplying by dr and
integrating over the time of the process yields:

I’l2U2 —nlUl —n'H = Q

Since n’ = n, — ny, rearrangement gives:

noy(Up — H) —nmi(Uy — H')=Q

(b) If the gas is ideal, H =U + PV =U+ RT’

Whence for an ideal gas with constant heat capacities,
U —H =U,—U —RT'=Cy(T, — T') — RT'

Substitute R = Cp — Cy: U —H =CyT, —CyT' — CpT'+CyT' =CyT, — CpT’

Slmllarly, U1 —H = Cle — CPT/
and ny(CyTr — CpT') —nyi(CyTy — CpT') = Q
P> Vian Py Vian
Note also: ny = 2 "tank n; = L7 tank
RT, RT,
(c) Ifn; =0, ny(CyT, — CpT') = Q

(d) Ifinaddition Q =0, CyTh, =CpT’ and Th=SET

Whence, h=yT

(e) 1. Apply the result of Part (d), with y = 1.4 and T’ =298.15K:

T, = (1.4)(298.15) =417.41 K
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Then, with R = 83.14 bar cm® mol~' K~ !:

PZVtank (3)(4 X 106)
nr» = =
T RT,  (83.14)(417.41)

= 345.8 mol

2. Heat transfer between gas and tank is: Q = —muC(Tr — T")
where C is the specific heat of the tank. The equation of Part (¢) now becomes:

ny(CyTy — CpT') = —mguC(Th — T')

P 2 Vtank
Moreover ny, =
RT,

These two equations combine to give:

P 2 Vtank
RT,

(CyTr = CpT') = —muC(T, = T")

With Cp = (7/2)Rand Cy = Cp — R = (7/2)R — R = (5/2) R, this equation becomes:

P 2 Vtank
RT,

R
(5T, — 7T/)E = —MukC(Tr = T')

Note: R in the denominator has the units of PV; R in the numerator has energy units.
Given values in the appropriate units are:

Menk = 400 kg C =460 J mol~! kg™! T’ =298.15K
P, = 3 bar Viank = 4 x 10% cm®
Appropriate values for R are therefore:
R (denominator) = 83.14 bar cm® mol~! K~! R (numerator) = 8.314 J mol~! K~
Numerically,

(3)(4 x 10°)

8.314
(83.14) (D) [(5)(T2) = (7)(298.15)] =5 — = —(400) (460)(T> — 298.15)

Solution for 75 is by trial, by an iteration scheme, or by the solve routine of a software package.
The result is 7> = 304.217 K. Then,

_ PZVtank _ (3)(4 X 106)
~ RT,  (83.14)(304.217)

no = 474.45 mol

3.16 The assumption made in solving this problem is that the gas is ideal with constant heat capacities.

The appropriate energy balance is given by Eq. (2.29), here written:

d(nU)tank , oy .
ek L g =
a =0
Multiplied by dt it becomes: dnU)+ H'dn' =dQ
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where n and U refer to the contents of the tank, and H =and n=refer to the exit stream. Since the stream
bled from the tank is merely throttled, H== H, where H is the enthalpy of the contents of the tank.
By material balance, dn== —dn. Thus,

ndU+Udn—Hdn=Q or ndU —(H—-U)dn=dQ

Also, dU = CydT H—-U=PV =RT dQ = —-mCdT
where m is the mass of the tank, and C is its specific heat.

Thus, nCydT — RTdn=—-mCdT

or aT R _ R dnCy) R dinCy +mC)

T ~nCy+mC " T CynCy+mC_ Cy nCy+mC

Integration yields: In Ly_R In n,Cy +mC
Tl CV I’l1CV + mC

or T, (nmaCy+mC\M
i \nCy+mC

In addition, o= PV PV
RT, RT,

These equations may be solved for 7, and ny. If mC >>> nCy, then T, = T|. If mC = 0, then we
recover the isentropic expansion formulas.

3.27 For anideal gas, AU = Cy AT PV = RT A(PV)=RAT
Cy
Whence, AU = ?A(PV)
C C 1 1
But =V _ v = Therefore : AU = ——A(PV)
R Cp—Cy y —1 y —1

RT _
3.28 Since Z = PV/RT the given equation can be written: V= 3 + BRT

Differentiate at constant 7': dV = — —dP

Vi 1
P> .
Whence, W = RT In o Compared with Eq. (3.27)
1
. . RT 0
3.29 Solve the given equation of state for V: V= 3 +b— RT
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oV RT
‘Whence, (_) - _
T

oP P?
By definition [Eq. (3.3)] iy
efinition [Eq. (3.3)]: k=—|—
Y E v \aP),
Substitution for both V and the derivative yields:
RT
=
RT 0
P\—+b— —
(7 +o-77)
. . RT
Solve the given equation of state for P: P = 5
V—-b+ —
RT

Differentiate:

6 do
oP R T drT
ar )., ~ ] + 0 \?2

Voolv—b+— — b4 ——
< + RT V—-b+ RT
By the equation of state, the quantity in parentheses is R7/P; substitution leads to:
0P\ _P_ (P 2060 do
aT ), T RT) \T 4T

3.31 When multiplied by V/RT, Eq.(3.42) becomes:

1% a()V/RT ~_ V a(T)V/RT

7 = — = —
V—b (V+eb)(V+ob) V-—-b V2+(e+0)bV +eob?

- 1 a(T)p 1
Substitute V = 1/p: 7 = _
1 —bp RT 1+ (e +0)bp + €0 (bp)?

1
Expressed in series form, the first term on the right becomes: T8 = 14+ bp+ (bp)* + -
—bp

The final fraction of the second term becomes:

1
1+ (e +0)bp + €0 (bp)?

=1—(e+0)bp+[(e+0) —ealbp)®+---

Combining the last three equations gives, after reduction:

T (S u) PR e

Equation (3.12) may be written: Z=14+Bp+Cp>+---

B a(T) and C=b 4 (e +0)ba(T)

Comparison shows: B=b
RT RT
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3.36

3.56

For the Redlich/Kwong equation, the second equation becomes:

o ba(T)_ a(T)
C=b+ RT —b<b+ )

RT
Values for a(T) and b are found from Egs. (3.45) and (3.46), with numerical values from Table 3.1:

b 0.08664RT, a(T) _ 0.42748RT.
N P, RT TSP,

The numerical comparison is an open-ended problem, the scope of which must be decided by the
instructor.

aZ
Differentiate Eq. (3.11): (8_P> =B +2C'P+3D'P*+--.
T

0Z ,
Whence, — =B
AP )7 po

Equation (3.12) with V =1/p: Z=1+Bp+Cp>+Dp>+---

0Z
Differentiate: (8_) =B +2Cp+3Dp>+---
P/

0Z
Whence, (—) =B
ap Jr. 0=0

The compressibility factor is related to the measured quantities by:
PVl MPV!
Z — —

" nRT  mRT (A)

By Eq. (3.39), B=(Z-1V = (Z-DHMmV! )
m

(a) By Eq. (A), dZ _dM  dP dV' dm _dT ©

z M+P+V’ m T

Thus Max |% 8 Z| ~ |% SM| + |% 8P| + |% 8V'| + |% dm| + |% 8T |

Assuming approximately equal error in the five variables, a £1% maximum error in Z requires
errors in the variables of <0.2%.

) By Ea. (B) dB _ 7 dZ  dv' dM _dm
y B4 A2, B Z-12z "vi"m  m

P T

dB Z dP dT 27 — 1 dV’+dM dm
Vi M m

ByEq.(C), 2 —-_%2_
y Eq. (€) B Z-1 Z— 1

Therefore
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Z
Max |% 8§ B| ~ 'ﬁ‘ (1% 8P|+ 1%8T|)

'2Z—1

~ 1‘(|%8V’|+|%8M|+|%8m|)

For Z ~ 0.9 and for approximately equal error in the five variables, a 1% maximum error in B
requires errors in the variables of less than about 0.02%. This is because the divisor Z — 1 ~ 0.1.
In the limit as Z — 1, the error in B approaches infinity.

3.57 The Redlich/Kwong equation has the following equivalent forms, where a and b are constants:

\% a RT a

Z: —_— P = —
V —b RT32(V +b) V—-b TYV2V(V+b)

From these by differentiation,

(a_z) _ a(V —b)> —bRT*2(V + b)? )
oV ), RT32(V — b)2(V + b)?
(8_P) _ aQV 4+ b)(V —b)> — RT3?V>(V + b)? B)
v/, T'V2V2(V — b)2(V + b)?
In addition, we have the mathematical relation:
0Z aZ/aV
<8_P>T - EBP;BVZ ©)
Combining these three equations gives
(a_z) _ aV*(V —b)*> — bRT*V*(V + b)? D)
OP ), aRTQV +b)(V —b)> — R?’T>2V2(V + b)?

, 0Z b—a/RT>?
For P — 0, V — o0, and Eq. (D) becomes: Im|—) =—+—
P—>0\0P /, RT
. 0Z b
For P — oo, V — b, and Eq. (D) becomes: Iim | — ) =—
P—oo \ 0P /; RT
3.60 (a) Differentiation of Eq. (3.11) gives:
BZ / / ! p2 : aZ /
— ) =B +2C'P +3D P* +- whence Iim|{—) =B
oP T P—0\OJP T
If the limiting value of the derivative is zero, then B = 0, and B=BRT =0

(b) For simple fluids, @ = 0, and Egs. (3.52) and (3.53) combine to give B = BP./RT,. If B = 0,
then by Eq. (3.65),

0.422

T1.6 =0

r

B° =0.083 —
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3.63

3.64

3.66

3.68

0.422\ /19

Linear isochores require that (yP/yT)y = Constant.
. ) yP\ B
(a) By Eq. (3.4) applied to a constant-V process: — ) =-
vyl ), «
. yP R
(b) Foranideal gas PV = RT, and — ) ==
')y V
. - . yP R
(c) Because a and b are constants, differentiation of Eq. (3.42) yields: 1) =v s
Vi /)y -

In each case the quantities on the right are constant, and so therefore is the derivative.

(a) Ideal gas: Low P, or low p, or large V and/or high 7'. See Fig. 3.15 for quantitative guidance.
(b) Two-term virial equation: Low to modest P. See Fig. 3.14 for guidance.
(c) Cubic EOS: Gases at (in principle) any conditions.

(d) Lee/Kesler correlation: Same as (c), but often more accurate. Note that corresponding states
correlations are strictly valid for non-polar fluids.

(e) Incompressible liquids: Liquids at normal T's and Ps. Inappropriate where changes in V are
required.

(f) Rackett equation: Saturated liquids; a corresponding states application.

(g) Constant 8, « liquids: Useful where changes in V are required. For absolute values of V, a
reference volume is required.

(h) Lydersen correlation for liquids: a corresponding-states method applicable to liquids at extreme
conditions.

Write Eq. (3.12) with 1/p substituted everywhere for V. Subtract 1 from each side of the equation
and divide by p. Take the limit as p — O.

Follow the procedure laid out on p. 93 with respect to the van der Waals equation to obtain from
Eq. (3.42) the following three more-general equations:

1+(1—€—-0)Q=3Z

€ —(e+0)QQL+ D + W =372
oL+ +VQ=27]
where by definition [see Egs. (3.45) and (3.46)]:

bP, e Pe
and U = a4

Q
RT, R2T?

For a given EOS, € and o are fixed, and the above set represents 3 equations in 3 unknowns, 2, W,
and Z.. Thus, for a given EOS the value of Z, is preordained, unrelated to experimental values of Z,.
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(a, b) For the Redlich/Kwong and Soave/Redlich/Kwong equations, ¢ = 0 and ¢ = 1. Substitution
of these values into the 3-equation set allows their solution to yield:

Z. == 2 = 0.086640 W = 0.427480

(¢) For the Peng/Robinson equation, ¢ = 1 — +/2 and 0 = 1 + +/2. As for the Soave and SRK
equations the 3-equation set can be solved (with considerably greater difficulty) to yield:

Z. = 0.30740 Q = 0.077796 W = 0.457236
3.69 Equation (3.12): Z=1+Bp+Cp*+... where  p = P/ZRT
Eliminat z=1428 | cr +
1iminate p: =
P ZRT © Z2RT?
714 B8P B CP} P + —i+B Pe p? N
- RT, ZT, R*T? Z7°T? ZT, Z2T?
R (Z-DZT, _ oo o P,
carrange: _— = . .
g P, 7T,

B = lim (Z — )ZT,/P,
P—0

3.74 In acylinder filled with 1 mole of an ideal gas, the molecules have kinetic energy only, and for a given
T and P occupy a volume V'8,

(a) For 1 mole of a gas with molecules having kinetic energy and purely attractive interactions at the
same T and P, the intermolecular separations are smaller, and V < V4. In this case Z < 1.

(b) For 1 mole of a gas with molecules having kinetic energy and purely repulsive interactions at the
same T and P, the intermolecular separations are larger, and V > V€. In this case Z > 1.

(c) If attractive and repulsive interactions are both present, they tend to cancel each other. If in bal-
ance, then the average separation is the same as for an ideal gas, and V = V&, In this case

Z=1.
RT \%
3.75 van der Waals EOS: P=—-— < l=—- a
V—-b V2 V—-b VRT
1 b
Set V =1/p: 7 = _Ap 0P AP
1—bp RT 1—bp RT
bp ap
whence Zep = - oty = o7
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3.76 Write each modification in “Z-form,”

Vv a . a
(@) Z=————= lim Z=1-—
V—->b RT V—oo RT
The required behavior is: Vlim Z=1
—00
\% a . a
() Z=—""5—— lim Z = ——
(V — b)2 RT V—oo RT
The required behavior is: vlim Z =1
—00
© 7= : lim Z =0
= — — 1m =
¢ V_-b VRT V—00
The required behavior is: Vlim Z=1
—00
d Z=1-— =1L
VRT RT
Although Vlim Z =1 as required, the equation makes Z linear in p; i.e., a 2-term virial EOS in
—00

0. Such an equation is quite inappropriate at higher densities.

. d dUu
3.77 Refer to Pb. 2.43, where the general equation was developed; Q = —PVd—’t1 + nE
PV! d PV'\ dT
For an ideal gas, n = and o () Note that PV'/R = const.
RT dt RT? ) dt
dU dT
Also for an ideal gas, dU =CydT whence — =Cy—
dt dt
0= _RT PV'\ dT . PV' dT _ PV dT
- RT2) dr " RT Vdt — "RT dt
. . T R o,
Integration yields: In—- = Qdt
I, CpPV' ),
dv
3.78 By Eq. (3.4), v = BdT —kdP  where B and k are average values
Integrate: 12 = 1n 2 = 1n 22 D1 +5D)° 1 1+‘SD2 B(Ty—Ty) —k(Py— Py)
ntegrate: In— =In-—==Inh—==In|—— | =In — ) = —T))—«k(Py—
g Vi Vlt D12 D, D, 2 1 2 1

In(1.0035)% = 250 x 107%(40 — 10) — 45 x 107%(P, — 6)

Solution for P; yields: P, = 17.4 bar
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4.5

4.6

Chapter 4 - Section B - Non-Numerical Solutions

For consistency with the problem statement, we rewrite Eq. (4.8) as:

B C , 5
(Cp/=A+ ST+ 1)+ ST +v+ 1)

where v = T,/T,. Define Cp,, as the value of Cp evaluated at the arithmetic mean temperature Typ,.
Then:
Cp,, =A+ BTym+CT2

L+Ti  Tw+Ti  Tiv+1) T}

where Tom = 5 = 5 = > and Tazm = Tl(v2 +2v+1)
Whence, Cp,, =A+5T1(V+1)+ZT1 w*+2v+1)
Define ¢ as the difference between the two heat capacities:

vi+v4+1 V242041

e=(Cp/-Cp, =cTpl LEVHL_p AP
3 4

2

This readily reduces to: e = %(]} —1)?

Making the substitution v = 75/ T) yields the required answer.

For consistency with the problem statement, we rewrite Eq. (4.8) as

B D
(Cp/=A+ ETl(U + 1)+ v—le
where v = T,/T). Define Cp_ as the value of Cp evaluated at the arithmetic mean temperature 7yp,.
Then:
D
Cpam:A+BTam+E

As in the preceding problem,

T 1 T?
Tom = % and Ta2m = Tl(v2 +2v+1)
Wh C A+ B iv+1)+ 4D
ence, = —Ti(v

Define ¢ as the difference between the two heat capacities:

(Cp /= C D1 4 (
&= - =—t--—
d f =2y 242041
2
This readily reduces to: e = D [v—1(
T?v v+1

Making the substitution v = 75/ T yields the required answer.
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4.8 Except for the noble gases [Fig. (4.1)], Cp increases with increasing 7. Therefore, the estimate is
likely to be low.

4.27 (a) When the water formed as the result of combustion is condensed to a liquid product, the resulting
latent-heat release adds to the heat given off as a result of the combustion reaction, thus yielding a
higher heating value than the lower heating value obtained when the water is not condensed.

(b) Combustion of methane(g) with H,O(g) as product (LHV):

C(s) + 02(g) = COx(g) A Hjy = —393,509
2H;(g) + 02(g) = 2H,0(g) A Hzyq = (2)(—241,818)
CHa4(g) — C(s) + 2Ha(g) A Hsye = 74,520

CH.(g) + 204(g) — CO,(g) + 2H,0(g) | AH3 = —802,625 J (LHV)

Combustion of methane(g) with HyO(/) as product (HHV):
CHy(g) +20,(g) — CO2(g) + 2H,0(g) A Hjyg = —802,625
2H,0(g) — 2H,0(]) AHjye = (2)(—44,012)

CHy4(g) + 202(g) — CO2(g) + 2H20() | AH, 55 = —890,649 J (HHV)

(c¢) Combustion of n-decane(/) with H,O(g) as product (LHV):

10C(s) + 1004(g) — 10CO4(g) A Hj = (10)(—393,509)
11 Ha(g) + 5105(g) — 11 H,0(g) AHe = (11)(—241,818)
CioHa () = 10C(s) + 11 Ha(g) A Hj,e = 249,700

CioHa(l) + 15104(g) = 10COx(g) + 11 H,0(g) | AHspq = —6,345,388 J (LHV)

Combustion of n-decane(/) with H,O(!) as product (HHV):
CioHx (D) + 15%02(g) — 10CO,(g) + 11H,0(g) A H;y = —6,345,388
11 H,0(g) — 11 H,O() AHjye = (11)(—44,012)

CioHao(l) + 15104(g) = 10COx(g) + 11 H,0() | AHspe= —6,829,520 J (HHV)

4.49 Saturated because the large A H'” overwhelms the sensible heat associated with superheat.
Water because it is cheap, available, non-toxic, and has a large A H v,

The lower energy content is a result of the decrease in A H'® with increasing T, and hence P.
However, higher pressures allow higher temperature levels.
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Chapter 5 - Section B - Non-Numerical Solutions

5.1 Shown to the rightis a PV diagram with two adi-
abatic lines 1 oo 2 and 2 co 3, assumed to inter- 3
sect at point 2. A cycle is formed by an isothermal
line from 3 oo 1. An engine traversing this cycle P
would produce work. For the cycle 7 U = 0, and
therefore by the first law, Q + W = 0. Since
W is negative, Q must be positive, indicating that

heat is absorbed by the system. The net result adiabatics

is therefore a complete conversion of heat taken
in by a cyclic process into work, in violation of
Statement 1a of the second law (Pg. 160). The

Intersecting

assumption of intersecting adiabatic lines is there-
fore false.

5.5 The energy balance for the over-all process is written: Q =nU'+ 7 Ex + 7 Ep

Assuming the egg is not scrambled in the process, its internal-energy change after it returns to its initial
temperature is zero. So too is its change in kinetic energy. The potential-energy change, however, is
negative, and by the preceding equation, so is Q. Thus heat is transferred to the surroundings.

The total entropy change of the process is: 7 Siorg = 7 8" + 7 S

surr
Just as 7w U’ for the egg is zero, so is 7w S'. Therefore,
_ qurr _Q

7T Siotal = T S‘t = =
surr TS TS

Since Q is negative, 7 Sy, 1S positive, and the process is irreversible.

5.6 By Eq. (5.8) the thermal efficiency of a Carnot engineis: € =1— ;:—EI
1 T,
Differentiate: L ¢ ( —_ L and [ e( _ T _
Te 1y Ty T 1. Tu

Te 1

Ty Ty

Since T¢/Ty is less unity, the efficiency changes more rapidly with T¢ than with Ty. So in theory it is
more effective to decrease T¢. In practice, however, T¢ is fixed by the environment, and is not subject
to control. The practical way to increase € is to increase Ty. Of course, there are limits to this too.

5.11
can be rewritten as:

nS:Cpln[E( —Rln[&(
T Py
[Tz( P,
(a) IfP2:P1, JTSP:CPIH — If V2:V1, —_— =
T] Pl
Whence, JTSV:CPIH[E( —Rln[ﬁ( :CVIn[Q(
T; T; Ti
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Since Cp > Cvy, this demonstrates that ASp > ASy.

b)) If =T, AS Rin( 22 i v=v, 2_b
= , = — n _— = . _——= —
2 1 T P, 2 1 T P,

P, P, P,

Whence, ASy =Cpln| =) —RIn{—=)=CyIn| —

P P P

This demonstrates that the signs for AS7 and ASy are opposite.

5.12 Start with the equation just preceding Eq. (5.14) on p. 170:

Foranideal gas PV = RT, and InP +InV =In R+ InT. Therefore,

dP dV _dT o dP _dT dV

P+V T P T Vv

Whence, — =+ — =

ds CEdT dT dv  [(C}f dT
R R T TV

Because (CjS/R)—1=C\*/R, thisreduces to:

ds C}fdT
— =YX "—+4dhV
R R T
o AS T Ci#dr 1%
Integration yields: — = — — +In—
R n R T Vo

ok oskoskoskoskoskoskoskoskoskosk sk sk ok ok ok ok sk osk ok ok

As an additional part of the problem, one could ask for the following proof, valid for constant heat
capacities. Return to the original equation and substitute d7/T =dP/P +dV/V:

ds _CFdP  CpFdV dP _CFfdP C;fav

R R P RV P R P R V

AS CF P CE.V
Integration yields: — =Y Ih—+-"Lmn-—
R R Py R Vo

5.13 Asindicated in the problem statement the Th,
basic differential equations are:
dW —dQy —dQc =0 (A) i
d T wirt
QH=__H (B) dW et——— e
dQc Tc :
where Q¢ and Qg refer to the reservoirs.
Tes
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(a) With dQy = CydTy and dQ¢ = C.dTc, Eq.(B)becomes:

CydTy Ty dTc Cl, dTy
= - or — = —
CedTc Tc Tc CL Ty
Ct
Whence, dinTe = —VWdInTy where = C—’t"
c

Integration from Ty, and T¢, to Ty and T¢ yields:

T, Ty \ " Ty \ "
Tc, TH, Ty,

(b) With dQy = CydTy and dQc¢ = Céch, Eq. (A) becomes:

AW = C,dTy + CLdTc
Integration yields: W =Cy(Ty — Ty,) + C(Tc — T¢,)

Eliminate T¢ by the boxed equation of Part (a) and rearrange slightly:

T Ty \ Y
v = et (72 -1) v (72) "1
0 0

(c¢) For infinite time, Ty = T¢ = T, and the boxed equation of Part (a) becomes:

T\ % T \ ¥
o) ()
Hyp

From which: TV = T, (Twy)"
T = (T, )/ (T ¥/ 94D and Ti — (Teg) /WD (T )W/ ¥+
Hy

Because /(W + 1) — 1 = —1/(¥ + 1), then:

i: <&>l/(\y+l) ind (i>—‘l/= (&>_‘Ij/(\p+l)
Ty, Ty, T, T,

Because Ty = T, substitution of these quantities in the boxed equation of Part (b) yields:

T, 1/(¥+1) Te -/ (W+1)
W = ClTy, (T—H“) — 1|+ C.Tg, <T—H"> —1
0 0

5.14 Asindicated in the problem statement the

Ty

basic differential equations are:

dW —dQy —dQ¢ =0 (A) -
d T e
Oun _ _Tu (B) L

dQc Tc s

where Q¢ and Qg refer to the reservoirs.
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5.15

5.20

5.22

(a) With dQ¢ = CidT¢, Eq.(B)becomes:

dQy Ty Ty
—_— = - — d = —CL—dT,
CthTC TC or QH ¢ TC ¢
Substitute for d Qg and d Q¢ in Eq. (A):
dT,
AW = —chTHT—C + CLA T,
c

Integrate from 7¢, to T¢:

t Tc t t TCo
W = —CCTHln——i-CC(TC—TCO) or WZCC Ty 1H——|—Tc—TCO
TC() TC

(b) For infinite time, 7¢c = Ty, and the boxed equation above becomes:

t T,
W=CC THIHT—H+TH—TC0

Write Egs. (5.8) and (5.1) in rate form and combine to eliminate | Q "l

14 T, W . X
%=1——C=l—r or u=|W|—i—|Q| where r=
IWI+1Qcl Ty I—r

Tc
Ty

With |QC| = kA(Tc)* = kA(rTy)*, this becomes:

. 1 . r _ 4 4 = W] !
|W| <m_1)_|W|(1—}’)_kAr (Th) or A= |:k(TH)4i| (1_,-),,-3

Differentiate, noting that the quantity in square brackets is constant:

dA | |W| -3 1 | ow 4r —3
dr | k(Ty)* |:(1—r)r4+(1—r)2r3:|_ k(Ty)* |:(1—r)2r4:|

Equating this equation to zero, leads immediately to: 4r =3 or |r =0.75

Because W = 0, Eq. (2.3) here becomes:
Q = AU"=mCyAT

A necessary condition for AT to be zero when Q is non-zero is that m = oo. This is the reason that
natural bodies (air and water) that serve as heat reservoirs must be massive (oceans) or continually
renewed (rivers).

An appropriate energy balance hereis: Q = AH' =0
Applied to the process described, with T as the final temperature, this becomes:
_mTy +mT

mCp(T —T)) +m,Cp(T —T5) =0 whence T
my + m;

(1)
If my=my, T=(T+T)/2
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5.23

5.24

5.31

The total entropy change as a result of temperature changes of the two masses of water:

- r r
AS = m1Cp In +m2Cp In (2)
Ti T,

Equations (1) and (2) represent the general case. If m; = m, = m,

T? T
AS"=mCpln — or AS' =2mCpn
P VT, T

Because T = (T + 1»)/2 > /TiT», AS'is positive.

Isentropic processes are not necessarily reversible and adiabatic. The term isentropic denotes a pro-
cess for which the system does not change in entropy. There are two causes for entropy changes in a
system: The process may be internally irreversible, causing the entropy to increase; heat may be trans-
ferred between system amd surroundings, causing the entropy of the system to increase or decrease.
For processes that are internally irreversible, it is possible for heat to be transferred out of the system
in an amount such that the entropy changes from the two causes exactly compensate each other. One
can imagine irreversible processes for which the state of the system is the same at the end as at the
beginning of the process. The process is then necessarily isentropic, but neither reversible nor adia-
batic. More generally, the system conditions may change in such a way that entropy changes resulting
from temperature and pressure changes compensate each other. Such a process is isentropic, but not
necessarily reversible. Expansion of gas in a piston/cylinder arrangement is a case in point. It may be
reversible and adiabatic, and hence isentropic. But the same change of state may be irreversible with
heat transfer to the surroundings. The process is still isentropic, but neither reversible nor adiabatic.
An isentropic process must be either reversible and adiabatic or irreversible and non-adiabatic.

[z, CpdT [V CpdT

T —-Ty To—T
By inspection, one sees that for both T > T and Ty > T the numerators and denominators of the
above fractions have the same sign. Thus, for both cases (Cp), is positive.

r . dT T dT
InCrg I Crg
In(T/To) — In(To/T)

By definition, (Cp)y =

Similarly,

(CP>S -

By inspection, one sees that for both T > T and 7y > T the numerators and denominators of the
above fractions have the same sign. Thus, for both cases (Cp)y is positive.

When T = T, both the numerators and denominators of the above fractions become zero, and the
fractions are indeterminate. Application of 1I’Hopital’s rule leads to the result: (Cp), = (Cp)g = Cp.

The process involves three heat reservoirs: the house, a heat sink; the furnace, a heat source; and the
surroundings, a heat source. Notation is as follows:

|O| Heat transfer to the house at temperature T
|Qr| Heat transfer from the furnace at Tp
|O,| Heat transfer from the surroundings at 7,

The first and second laws provide the two equations:

01 =10r 410, and 2121121,
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5.32

Combine these equations to eliminate |Q, |, and solve for |QF|:

0l =10l (=12 ) I
e Tr—T,) T
With T = 295K Tr = 810K T, = 265K and | Q| = 1000 kJ
The result is: |OFr| = 151.14KkJ

Shown to the right is a scheme designed to ac- —_—
complish this result. A Carnot heat engine op- FURNACE @ 7 |
erates with the furnace as heat source and the ' '

house as heat sink. The work produced by the en- |

gine drives a Carnot refrigerator (reverse Carnot ___H"L:“L..[.,L.
engine) which extracts heat from the surround- -

ings and discharges heat to the house. Thus the Tel

heat rejected by the Carnot engine (|Q;|) and by —_—

the Carnot refrigerator (| Q»|) together provide the L HOUSE @ T I

heat | Q| for the house. The energy balances for
the engine and refrigerator are:

|W|engine = |QF| - |Ql|
|W|refrig = |Q2| - |Qa|

Equation (5.7) may be applied to both the engine e i
and the refrigerator: | SURROUNDINGS @ 7, |

1QFl _ Tr Q| _ T,
1O T 102l T
Combine the two pairs of equations:
TF TF -T Ta T— T(T
|W|engine=|Q1| ?_1 =|Q1| T |W|refrig=|Q2| 1_? =|Q2| T
Since these two quantities are equal,
o = ga 1021 = 1011 77—
= or =
L A 2 g T,

Because the total heat transferred to the house is |Q| = | Q1| + | Q»l,

Tr—T Tr—T Tr—T,
|Q| =101+ |Q1|T_ T, = Q] (1 + T _ T(,> = lQl'T——T(,
But Qi = |Qrl— whence |Q|=|QF|1<u>
TF TF T_T(T

Solution for |Q ¢| yields the same equation obtained more easily by direct application of the two laws
of thermodynamics to the overall result of the process.

The process involves three heat reservoirs: the house, a heat source; the tank, a heat source; and the
surroundings, a heat sink. Notation is as follows:
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| 0| Heat transfer from the tank at temperature 7
|Q’| Heat transfer from the house at 7’
|O,| Heat transfer to the surroundings at 7,

The first and second laws provide the two equations:

10,1 101 Q]
=10, d - — - =0
101+ 10" = Qs an T, T T
Combine these equations to eliminate |Q, |, and solve for |Q|:
o1=101(==L) I
B T-T,) T
With T =448.15K T'=297.15K T, = 306.15 K and |Q’| = 1500 kJ
The result is: |Q| = 143.38 k] . i
|| TANK @ T |
Shown to the right is a scheme designed to accom- o T
Q]

plish this result. A Carnot heat engine operates
with the tank as heat source and the surroundings
as heat sink. The work produced by the engine
drives a Carnot refrigerator (reverse Carnot en-
gine) which extracts heat | Q’| from the house and
discharges heat to the surroundings. The energy
balances for the engine and refrigerator are:

|W|engine = |Q| - |Q01|
|W|refrig = |Q02| - |Q/|
Equation (5.7) may be applied to both the engine
and the refrigerator:
|Q(71| — & .
10 T o' 1

Combine the two pairs of equations:

|QO’2| _ TU

W

~ ' Fengne

|Q{7|

SURROUNDINGS @ 7, §|

Qo

W

refng

| houst@ 7’ |

i

T, T-T, A Ts T =1
|W|engine=|Q| 1_? = 10| T |W|refrig=|Q| F = Q| T’
Since these two quantities are equal,
ot =tr _ oyl T o1=101(==E) 1
= or = —
T T’ T-T,)] T

5.36 For a closed system the first term of Eq. (5.21) is zero, and it becomes:

d(mS)ey
dt

o _
T;,;

+Y = =5

J
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5.37

5.40

where Q j 1s here redefined to refer to the system rather than to the surroundings. Nevertheless, the sec-

ond term accounts for the entropy changes of the surroundings, and can be written simply as d S /dt:

d(mS)ey ds! . ds! dsT .
_ sur__ ¢ > () v s _ S > ()
d1 ar 0= o i dr 9=

Multiplication by dt and integration over finite time yields:

AS. 4+ ASL,. >0 or ASiorar = 0

surr

The general equation applicable here is Eq. (5.22):

ASris =) =862 0
il

(a) For a single stream flowing within the pipe and with a single heat source in the surroundings, this
becomes:

(AS)na—ngsczo

(b) The equation is here written for two streams (I and II) flowing in two pipes. Heat transfer is
internal, between the two streams, making Q = 0. Thus,

(AS)pity + (AS)riy = Sg = 0

(c) For a pump operatiing on a single stream and with the assumption of negligible heat transfer to
the surroundings:
(AS)m =S85>0
(d) For an adiabatic gas compressor the result is the same as for Part (c).
(e) For an adiabatic turbine the result is the same as for Part (c).
(f) For an adiabatic throttle valve the result is the same as for Part (¢).
(g) For an adiabatic nozzle the result is the same as for Part (c).
The figure on the left below indicates the direct, irreversible transfer of heat | Q| from a reservoir at T

to a reservoir at 7,. The figure on the right depicts a completely reversible process to accomplish the
same changes in the heat reservoirs at T; and T5.

T T 1

|Q] 10|
10| LA

T T,
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The entropy generation for the direct heat-transfer process is:

1 1 -1,
o101z 7) =10 ()

For the completely reversible process the net work produced is Wigea:

wil = 1ol (L=t a  wi=o (2t
= an =
1 T, p T

Wigea = [Wi| — |Wal = T 0] ( L= 12
ideal — 1 21 — 1o Tsz

This is the work that is lost, Wi, in the direct, irreversible transfer of heat | Q|. Therefore,

-1
T\ T,

Wlost = T0|Q| = TchG

Note that a Carnot engine operating between 77 and 7, would not give the correct Wigea or Wigg,
because the heat it transfers to the reservoir at 75 is not Q.

5.45 Equation (5.14) can be written for both the reversible and irreversible processes:

Tirrev ig dT P Trev ig dT P
ASirrey = T CP 7 —In po ASrey = T CP T —In po
Titrev dT
. . ig
By difference, with AS,.y, = 0: ASirrev = / Cp T

Since ASirey must be greater than zero, T, must be greater than T, .
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Chapter 6 - Section B - Non-Numerical Solutions

H
6.1 By Eq. (6.8), <];_S> =T and isobars have positive slope
P

. . . . v H vT
Differentiate the preceding equation: — ) = —
vS? ), vS Jp

’H T
Combine with Eq. (6.17): (V?) = and isobars have positive curvature.
% P P

6.2 (a) Application of Eq. (6.12) to Eq. (6.20) yields:

vCp _ vV —T@V/vT)p}
( vP )T - [ vT i|P

vCp vV vV vV
or (=) —7(2-2) (=
vP ), vT ) p vT? )/, vT Jp

2
Whence, E =-T u
vP ), vT? )/,
2
For an ideal gas: vy = 5 and ﬂ =0
vl ), P vT? )/,

(b) Equations (6.21) and (6.33) are both general expressions for d S, and for a given change of state

both must give the same value of dS. They may therefore be equated to yield:

dT vP vV
Cp—Cy)—=|—) dV+|—) dP
T vT ), vl Jp

) vP vV
Restrict to constant P: Cp=Cy+T (—) (—)
vl ), \vT Jp
vV vP e
By Eqgs. (3.2) and (6.34): — ) =&V and — ] =-
vl ) p vl )y, p
Combine with the boxed equation: Cp—Cy=¢TV <g—>
P

6.3 By the definition of H, U = H — PV. Differentiate:

vU vH vV vU vV
(7),-(7), -7 C), o [(F),=e-(7)
vl Jp vl Jp vT Jp vl /p vT J)p
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Substitute for the final derivative by Eq. (3.2), the definition of 8:

VN —cp—ppv
ar ), "

Divide Eq. (6.32) by dT and restrict to constant P. The immediate result is:

(57), == (55), 7] (&),

Solve for the two derivatives by Eqgs. (6.34) and (3.2); substitution gives:

aU B
— ) =C —(BT —kP)V
<8T )P v+ p (B K P)
aop
6.4 (a) In general, dU = CydT + [T <8_T) — P:| dv (6.32)
14
i RT ap R P
By the equation of state, P=— whence — ) =— ==
V—-b>b or), V-b T
Substituting this derivative into Eq. (6.32) yields dU = Cy dT, indicating that U = f(T)
only.
(b) From the definition of H, dH =dU +d(PV)
From the equation of state, d(PV)=RdT +bdP

Combining these two equations and the definition of part (a) gives:

dH = CydT + RdT +bdP = (Cy + R)dT +bdP
Th on Cy+R
en, _— =
or ), "
By definition, this derivative is Cp. Therefore Cp = Cy 4+ R. Given that Cy is constant, then
soisCpandsois y =Cp/Cy.

(c¢) For a mechanically reversible adiabatic process, dU = d W. Whence, by the equation of state,

RT d(V—-»>b
CyvdT = —-PdV = ———dV = —RT¥
V->b V—-b>b
dT R
or — =——dIn(V —b)
T Cy
But from part (), R/Cy =(Cp —Cy)/Cy =y — 1. Then
dinT = —(y — 1)dIn(V — b) or dInT +dIn(V — b1 =0
From which: T(V —b)Y~! = const.

Substitution for 7' by the equation of state gives

P(V —b)(V —b)r!
R

= const. or P(V — b)Y = const.

652



6.5

6.6

It follows immediately from Eq. (6.10) that:

0G 0G
V=|— and S=—[—
oP /, oT /p

Differentation of the given equation of state yields:

RT ar(T
V=— and S=- )

P dT

—RInP

Once V and S (as well as G) are known, we can apply the equations:

H=G+TS and U=H—-PV=H-—-RT
These become:
dr(T) dl’(T)
H=T({T)-T 3T and u=r-ro — RT
By Egs. (2.16) and (2.20),
oH U
Cp =\ — and CV =\ —
aT Jp T Jy
Because I' is a function of temperature only, these become:
C Td2F d C szl“ R=C R
= — 1 ——= an = —] — — = —
d dT? Y dT? d

The equation for V gives the ideal-gas value. The equations for H and U show these properties to
be functions of 7" only, which conforms to ideal-gas behavior. The equation for S shows its relation
to P to be that of an ideal gas. The equations for Cp and Cy show these properties to be functions
of T only, which conforms to ideal-gas behavior, as does the result, Cp = Cy + R. We conclude
that the given equation of state is consistent with the model of ideal-gas behavior.

It follows immediately from Eq. (6.10) that:

G G
V=|— and S=—[|—
aP )., aT ),

Differentation of the given equation of state yields:

dF(T)
4T

V=K and S =

Once V and S (as well as G) are known, we can apply the equations:
H=G+TS and U=H-—-PV=H-PK

These become:

dF(T) and U=FT)- TdF(T)

H=FT)+KP-T
)+ dT dT

By Egs. (2.16) and (2.20),

oH oUu
CP: —_— and CV: —
or /, aT ),
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6.11

6.12

6.13

Because F is a function of temperature only, these become:

C T &F d C T &°F C

= —] — an = —] — =
P dT? Y dr? — "
The equation for V shows it to be constant, independent of both 7 and P. This is the definition of
an incompressible fluid. H is seen to be a function of both 7" and P, whereas U, S, Cp, and Cy are
functions of T only. We also have the result that Cp = Cy. All of this is consistent with the model

of an incompressible fluid, as discussed in Ex. 6.2.

Results for this problem are given in the text on page 217 by Egs. (6.61), (6.62) and (6.63) for G~,
HE and SR respectively.

Parameter values for the van der Waals equation are given by the first line of Table 3.1, page 98. At
the bottom of page 215, it is shown that [ = d/Z. Equation (6.66b) therefore becomes:

GR q0
—=Z—-1-(Z-9)— —
RT Z

For given T and P, Z is found by solution of Eq. (3.52) for a vapor phase or Eq. (3.56) for a liquid
phase with o = 8§ = 0. Equations (3.53) and (3.54) for the van der Waals equation are:
3 P, d 27
= an =
8T, 1731,

With appropriate substitutions, Egs. (6.67) and (6.68) become:

HR ) Sk
2z -4 and = =z -0

This equation does not fall within the compass of the generic cubic, Eq. (3.42); so we start anew.
First, multiply the given equation of state by V/RT:

PV Vv —a
— = exp
RT V—-b VRT

. PV 1 a
Substitute: /= — V = — =gq
RT 0 bRT
Then, Z = exp(—gbp)
1—bp
With the definition, & = bp, this becomes:
1
Z =1 exp(=4§) (A)
—§
B P/ZRT £ bP
ecause p = , - —
P ZRT

Given T and P, these two equations may be solved iteratively for Z and &.

Because b is a constant, Egs. (6.58) and (6.59) may be rewritten as:
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6.18

6.19

GR § ds
ﬁ_fo(z_l)?JrZ_l_an (B)

H—R—fg oz d—§+z 1 C
RT‘O(aTls - ©

In these equations, Z is given by Eq. (A), from which is also obtained:

InZ=—1In(l — &) — d <%>—L (=q8)
nZ =—In &) —qé an BTS_T(I—s)eXp q

The integrals in Egs. (B) and (C) must be evaluated through the exponential integral, E(x), a special
function whose values are tabulated in handbooks and are also found from such software packages
as MAPLE®. The necessary equations, as found from MAPLE®, are:

§ d
fo z - 1)?S — exp(—q) (E[—q(1 — £)] — E(—q)} — E(g&) — In(q&) — y

where y is Euler’s constant, equal to 0.57721566....

and —T/é (%> 58 gexp(—q)El=q(1 — £)] — E(—q)}
A 9T gg = qeXp(—¢q q q

Once values for GR/RT and H®/RT are known, values for S¥/R come from Eq. (6.47). The
difficulties of integration here are one reason that cubic equations have found greater favor.

Assume the validity for purposes of interpolation of Eq. (6.75), and write it for 7>, T, and T7:

B
1 P sat — A _ = A
nrH T (A)
B
1nPSﬁt:A—— (B)
T
B
1 P sat — A _ = C
nry T ©)
sat .
Subtract (C) from (A): w2 —p(L_L)y_ =TV
PlSat T 1 T,
sat _
Subtract (C) from (B): In P _ =B o1 — B (T -1
P LT T\ T

The ratio of these two equations, upon rearrangement, yields the required result.

B

Write Eq. (6.75) in log,, form: log P = A — = (A)
. . B

Apply at the critical point: logP. = A — - (B)
c
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6.83

6.84

By difference, logpst = p (L L)y p(f=! ©
’ T. T T

If P is in (atm), then application of (A) at the normal boiling point yields:

B
logl=A— — or A=—
T, T,

With 6 = T,/ T,, Eq. (B) can now be written:
1 1 T.— T, 1-06
logP.=B|(——-——=]=8B =B
I, T. T,T. T,

T,
Whence, B = (ﬁ) log P,

Equation (C) then becomes:

at T, T, —1 0 T, -1
log P = T— 0 T log P, = T T log P,

3 0
Apply at T, = 0.7: log(P"") 1,07 = — 7 (—1 9) log P,
By Eq. (3.48), o =—1.0 —log(P ) 7,07
3 0
Whence, w=-|——)logP. -1
T7\1-6

The slopes of isobars and isochores on a T'S diagram are given by Egs. (6.17) and (6.30):

T T T T
— ) = — and — ) = —
39S ), Cp s ), ~ Cy

Both slopes are necessarily positive. With Cp > Cy, isochores are steeper.

An expression for the curvature of isobars results from differentiation of the first equation above:

T\ 1 [(aT T (3Ce\ _ T T (9Cp\ (9T\ _ T [ T (9Cp

3s2 ),  Ccp\dS /), cz\8s /), 2 c32\aT J,\3S/), C3 Cp \ 3T /),
aC T (dC bT

With Cp = a +bT, ) =bp  and  1-— () =1 S
AT ), Cp \ 3T ), a+bT ~ a+bT

Because this quantity is positive, so then is the curvature of an isobar.

Division of Eq. (6.8) by dS and restriction to constant 7" yields:

oH oP oP -1
— ) =T+V|— By Eq. (6.29), -] = —
IS /7 a8 )y as ), ~ BV
oH 1 1
Therefore, — ) =T —-——-=—-(BT - 1)
S Jr g B
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6.85

Al HY 1 (ap\ 1 (9B (9PN _ 1 (3B\ (-1
o (5w @) w 6), (57w ), (7)

0’H 1 (9B
Whence, ) = (X
052 ), =~ pv\er),
By Eqs. 3.2)and 338):  p =~ (2 d v="2T 5
S. . an . . = — | — an = —
Y v\ar), P
VN R dB | (R dB
Whence, A I d - (2422
enee (ar),, par n =y (P+dT)

Differentiation of the second preceding equation yields:

ap R R dB\ 1 [0V R 1 [0V
ar), = v \pTar)vi\ar ), = v TP Gp
T T T

From the equation of state, 8_V = — E
0P/, P2
op R  BRT R
Whence, ) = ——— 4+ 5 — (BT —1
(8P>T V P2 * V P2 VPQ(’B )

Clearly, the signs of quantity (87 — 1) and the derivative on the left are the same. The sign is
determined from the relation of 8 and V to B and dB/dT:

RT dB dB

Y T-— _B
__TRdB__P+dT__dT
BT —1=—(=-+—)-1=L~—94L _1=-_dI
v\pP dT RT+B RT+B

P P

In this equation d B/dT is positive and B is negative. Because RT/ P is greater than | B|, the quantity
BT — 1 is positive. This makes the derivative in the first boxed equation positive, and the second
derivative in the second boxed equation negative.

Since a reduced temperature of 7, = 2.7 is well above “normal” temperatures for most gases, we
expect on the basis of Fig. 3.10 that B is (—) and that d B/dT is (4). Moreover, d*B/dT? is (—).

By Egs. (6.54) and (6.56), GR=BP and  SR=—P(dB/dT)

Whence, both G® and S® are (—). From the definition of GR, HR = GR+ TSR, and HRis (-).
By Egs. (3.38) and (6.40), VR =B, and V&is(—).

Combine the equations above for GX, S® and HX:

® dB IHR dB d’B  dB d’B
Hf=P(B-T— Whence, =P(—=-T-—5—-—=)=-PT——
dT T )p dT ~ dT? dT dT?

R

oH
Therefore, C 1’5 (

3T )P is (4). (See Fig. 6.5.)
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1.V
6.89 By Eq. (3.5) at constant 7T': —P =—1In v Py (A)
K 1

1V 1 1
(a) Work dW = —-PdV = <—ln——Pl>dV =—InVdV — (P1 +—an1>dV
Kk Vi K K

1 " 1
W:—/ 1anV—<P1+—1nV1)(V2—V1)
v K

K- Jv,

1 1
W = ;[(Vz InV, = Vo) =(VilnVy = V)] = Pi(Va — V) — ;(Vz InV, —ViinVy)

1 V,
= — Vzlnv—l-V]—Vz —Pl(Vz—Vl)
1

K
Vs Vo=V
By Eq. (3.5), In v =—k(P,— P) whence W=~PV — PV, —
1
(b) Entropy By Eq. (6.29), dS=—BVdP

InV InV, 1

ByEq (4), —-P=—_"""_p  and —dP=-dlnV
K K K
BV B B

dS=—dnV =—-dV and AS=—V2—Vy)
K K K

(c¢) Enthalpy By Eq. (6.28), dH =(1-8T)VdP
1 1 - BT
Substitute for d P: dH=—-(1—-8T)V-—dInV = — p dv
K K
1—-B8T
AH = V1 —Va)
K

These equations are so simple that little is gained through use of an average V. For the conditions
given in Pb. 6.9, calculations give:

W = 4.855kJ kg™! AS = —0.036348 kJ kg~! K~! AH = 13455kJ kg™!

oM
6.90 The given equation will be true if and only if (8_P> dP =0
T

The two circumstances for which this condition holds are when (0M/0P)r =0 or when dP = 0.
The former is a property feature and the latter is a process feature.

OH's OH'¢ OH's oT ig (0T
6.91 = + — ) =Ccf (=
aP J, aP ), aT ), \dP), aP ),

Neither C ;,g nor (T /dP)y isin general zero for an ideal gas.

dH's dH's dH's oT ig (0T
= + e =CP e
P ) P ); oT )p \OP ) P )
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oT\ aT 9S8 T 98’8
oP)s \ase),\aP ), cik\aP);
dOH's aS's
=T —
oP /g oP )
Neither T nor (3S5¢/dP)r is in general zero for an ideal gas. The difficulty here is that the
expression independent of pressure is imprecise.

2S5 N
6.92 For S = S(P,V): dS=|—) dP + —) av
oP /, A

By the chain rule for partial derivatives,

39S\ (0T 39S\ (0T
5= (57), (5), o7+ (7). (),
ar ), \oP ), oT ), \ov ),

With Egs. (6.30) and (6.17), this becomes:

Cy (9T Cp (T
ds=-2L () ap+=L(Z=) av
T \aP), T \av ),

oP oU
6.93 By Eq. (6.31), P=T|—=—) - (==
oT )y, ov ),
. RT oP R
(a) For an ideal gas, P=— and — ) ==
Vv or/), V
RT RT oU oU
Therefore — = | = and —~) =0
\% \% ov ), v /),

RT a oP R
(b) For a van der Waals gas, P — and e
v

“V-b V2 aT ), ~ vV —b
RT RT oU oU
Therefore S S i and vy -4
V—-b V2 V-b v/, ov ), V2
oU 3/2)A
(c) Similarly, for a Redlich/Kwong fluid find: — ) = L
oV ), T2V (V +b)

1
where A=a(T,) T’

6.94 (a) The derivatives of G with respect to 7" and P follow from Eq, (6.10):

oG 0G
—S=\—= and V=1|—
oT /p oP ),

Combining the definition of Z with the second of these gives:

,_PV_ P (3G
~ RT RT \dP),
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Combining Eqgs. (2.11) and (3.63) and solving for U gives U = G+ TS — PV.

0G G
Replacing S and V by their derivatives gives: U=G6-T|— ) —P|—
T Jp oP ),

Developing an equation for Cy is much less direct. First differentiate the above equation for U
with respect to T and then with respect to P: The two resulting equations are:

aU 902G 0°G
— ) =-T|— ) —P
oT /p aT? ), oToP
14 3*G 3*°G
=) =_7T —_prl=—=
oP ), aToP apP? ),
From the definition of Cy and an equation relating partial derivatives:
oUu aU oU oP
Cy — ) == +|—= —
oT /, oT ) p oP ), \oT /,
Combining the three equations yields:
3°G 3°G 092G 902G oP
Cy=—T\|\— ) —P —|\T +P|— —
aT? ), aTaPpP oToP apP?),1\aT ),
Evaluate (0P /dT)y through use of the chain rule:
Py P oV  —@V/aT)p
aT ), \av /. \aT ),  (@V/aP)s
The two derivatives of the final term come from differentiation of V = (dG /9 P)r:
aVv 902G oV 0°G
— | = and — ) = —
oT /p aPoT oP ), aP? ),
Py —(0%G/aT)p
T ), (3°G/aP¥)r

092G 3°G 0°G 0°G (3G /aPadT)
and Cy=-T|—) — P +|T + P
T2 ), aToP AT P P2 ). | (82G/aP?)r

Some algebra transforms this equation into a more compact form:

Then

9°G 392G /9T I P)>
cy= 128\ , @ G/OTIP)
T2 ), (32G/3aP?)y

(b) The solution here is analogous to that of part (a), but starting with the derivatives inherent in
Eq. (6.9).

dinP™  AH"
d(1/T) ~  RAZP

The right side is approximately constant owing to the qualitatively similar behaviior of A H'" and
AZ"™. Both decrease monotonically as T increases, becoming zero at the critical point.

6.97 Equation (6.74) is exact:
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dP s B ASSI AHSI

dT ~ AVsL  TAV

If the ratio AS*! to AV*! is assumed approximately constant, then

6.98 By the Clapeyron equation:

P = A+ BT
If the ratio AH*' to AV*! is assumed approximately constant, then

P =A+BInT

6.99 By Eq, (6.73) and its analog for sv equilibrium:

dPS\  PAH®  PAH
dT ), RT?AZ RT?

dP\  PAH!  PAH]
dT ), RT?AZP ~ RT?

dP,Sat dP sat P
Sv _ lv ~ t2 (AH;U _ AH[IU)
dar ), \ar ), 7 R7,

Because (AH,XU — AH;”) = AH;" is positive, then so is the left side of the preceding equation.

dPsat AHlv
6.100 By Eq. (6.72): =
y Eq. (672) AT~ TAVD
w  RT _. dln P AHY
But AV = —AZ whence = (6.73)
p st dT RT2AZM
dinP*  TAH" _AH" 1 | AH"
dT, ~ RT2*AZ  RT, T2AZY | T2AZW

6.102 Convert «, to reduced conditions:

dln P dln P T dln P dln P
O = | ——7 = =1, =
dinT |;_g dinT, |;_, dT, 17, ar, 17,

From the Lee/Kesler equation, find that

[d In Pt

= 5.8239 4 4.8300
dTr j|T=1 M @

Thus, a.(L/K)=15.82 for v = 0, and increases with increasing molecular complexity as quantified
by w.
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Chapter 7 - Section B - Non-Numerical Solutions

7.2 (a) Apply the general equation given in the footnote on page 266 to the particular derivative of interest
here:
ory oT aS
aP )y \as/),\arP ),
The two partial derivatives on the right are found from Eqgs. (6.17) and (6.16); thus,
ory T ([9V
aP )y Cp\3T ),

For gases, this derivative is positive. It applies to reversible adiabatic expansions and compressions
in turbines and compressors.

(b) Application of the same general relation (page 266) yields:

(), -~ (o), (),

The two partial derivatives on the right are found from Eqgs. (2.16) and (6.31); thus,

(), =77 ()]

For gases, this may be positive or negative, depending on conditions. Note that it is zero for an
ideal gas. It applies directly to the Joule expansion, an adiabatic expansion of gas confined in a
portion of a container to fill the entire container.

7.3 The equation giving the thermodynamic sound speed appears in the middle of page 257. As written,
it implicitly requires that V represent specific volume. This is easily confirmed by a dimensional
analysis. If V is to be molar volume, then the right side must be divided by molar mass:

2__V_2(8_P) (A)
“TTm\av ),

Applying the equation given in the footnote on page 266 to the derivative yields:

oP B oP 0S
av ), \as /), \av/,
This can also be written:

()=o), GG, (), )= 1Gs). () )1, o).

Division of Eq. (6.17) by Eq. (6.30) shows that the first product in square brackets on the far right is
the ratio Cp/Cy. Reference again to the equation of the footnote on page 266 shows that the second
product in square brackets on the far right is —(d P /0 V), which is given by Eq. (3.3).

P Cp (OP Cp (-1
Therefore, ) === == —
oV)s Cy\oV/, Cy \«V
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7.6

7.7

7.8

_ VCp VCp
N MCVK MCVK

: |RT C
(a) For anideal gas, V = RT /P and x = 1/P. Therefore, c'8 = WC_P
14

(b) For an incompressible liquid, V is constant, and ¥ = 0, leading to the result: ¢ = oo. This of
course leads to the conclusion that the sound speed in liquids is much greater than in gases.

Substitute into Eq. (A): c?

| m

|
I
I
| 2
I

| !

|
:///1 I
p | Critical-pressure

ratio
P P
]
0 1.0

P1/P

As P, decreases from an initial value of P, = Py, both u, and m steadily increase until the critical-
pressure ratio is reached. At this value of P, u, equals the speed of sound in the gas, and further
reduction in P, does not affect u, or m.

The mass-flow rate 1 is of course constant throughout the nozzle from entrance to exit.

The velocity u rises monotonically from nozzle entrance (P/P; = 1) to nozzle exit as P and P/ P,
decrease.

The area ratio decreases from A/A; = 1 at the nozzle entrance to a minimum value at the throat and
thereafter increases to the nozzle exit.

Substitution of Eq. (7.12) into (7.11), with u; = 0 gives:

2 2)/P1V] 2 2
Uthroat = 1 - =yPVi| —
y—1 y+1 y+1

where V; is specific volume in m*-kg~! and P; is in Pa. The units of ufhroat are then:

2 2 2

N
Pa-m® kg7'=— -m’ kg'=N-m-kg7' =kg-m-s2-m-kg' =m?-s

m?2

With respect to the final term in the preceding equation, note that P; Vi has the units of energy per unit
mass. Because 1 N - m = 1], equivalent units are J -kg”. Moreover, PiV, = RT;/M; whence

u2 _ )/RT[ 2
throat M y +1

With R in units of J-(kg mol)~!.K~!, RT;/M has units of J-kg~!' or m?.s~2.
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7.16 It is shown at the end of Ex. 7.5 that the Joule/Thomson inversion curve is the locus of states for which
(0Z/9T)p = 0. We apply the following general equation of differential calculus:

(5)= ) () (5).
(57),= (7). + (50), (Gr),
e (7).~ (&), - (&), G7),

P p P -1 3Z
Because @~ P =pZRT, p=——  and L) = lz+T (=
ZRT aT ), ~ R | (2T)? T ),

Setting (0Z/dT)p = 0 in each of the two preceding equations reduces them to:
(), (), (7) (i), =~ zwm =7
— ) === — and — ] =- S =—
oT /, ap ) \oT /p oT ) p ZRT T

Combining these two equations yields:
( 0Z ) ( Z )
T|—) =p|—
ar )/, oo )y

(a) Equation (3.42) with van der Waals parameters becomes:

_RT a
S V-b V2
Multiply through by V/RT, substitute Z = PV /RT, V = 1/p, and rearrange:
_ 1 ap
" 1—bp RT

In accord with Eq. (3.51), define ¢ = a/bRT. In addition, define & = bp. Then,
1

Z=—= A
¢ 9§ (A)
. . 0Z 0Z dg
Differentiate: — ) =|—=) =-&—
ar /, aT /¢ dT
By Eq. (3.54) with «(7,) = 1 for the van der Waals equation, ¢ = ¥/ QT,. Whence,
dg WV (-1\dr, Vv 1 ¥ 1 ¢
dT  Q\7?)dr  QT,  QTT, T
0Z
Then, — ) =(=§) (_ 2) — ﬁ
aT )/, T T
0Z 0Z b
In addition, (—) =b (—) = 5 —qb
ap T & T 1-8)
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Substitute for the two partial derivatives in the boxed equation:

ris _ b
T (1-¢§)?

—qbp or q§ —q§

__ &
(1-§)

1
Whence, E=1——— (B)
v2q

By Eq. (3.46), P, = QRT./b. Moreover, P = ZpRT. Division of the second equation by the
first gives P, = ZpbT /2T.. Whence

P, = Z5T, (©)
TToQ

These equations allow construction of a 7, vs. P, inversion curve as in Fig. 7.2. For a given value
of T,, calculate g. Equation (B) then gives &, Eq. (A) gives Z, and Eq. (C) gives P,.

(b) Proceed exactly as in Part (a), with exactly the same definitions. This leads to a new Eq. (A):

1
AL (A)
1-& 1+¢
By Eq. (3.54) with «(7,) = T,7** for the Redlich/Kwong equation, ¢ = W/ QT!. This leads to:
dq 15¢ 37 1.5¢¢
— = and — ) =
T T o) "~ T +6)
0Z b bg
Moreover, — ] = 5 — 3
ap Jr A=86)7> (A+§)

Substitution of the two derivatives into the boxed equation leads to a new Eq. (B):

_(1+8Y 1
q_(1—s) (2.5+1.55> (B)

As in Part (a), for a given T,, calculate g, and solve Eq. (B) for &, by trial or a by a computer
routine. As before, Eq. (A) then gives Z, and Eq. (C) of Part (a) gives P,.

7.17 (a) Equalto. (b)Lessthan. (c)Lessthan. (d) Equalto. (e)Equal to.

7.28 When a saturated liquid is expanded in a turbine some of the liquid vaporizes. A turbine properly

7.33

designed for expansion of liquids cannot handle the much larger volumes resulting from the formation
of vapor. For example, if saturated liquid at 5 bar expands isentropically to 1 bar, the fraction of the
original liquid that vaporizes is found as follows:

Sy =S +x¥(Sy—SH =5,

S — S5 1.8604 —1.3027
Sy —Sh o 7.3598 — 1.3027

Were the expansion irreversible, the fraction of liquid vaporized would be even greater.

v

or X3 =0.0921

Apply Eq. (2.29) to this non-steady-state process, with n replacing m, with the tank as control volume,
and with a single inlet stream. Since the process is adiabatic and the only work is shaft work, this
equation may be multiplied by dt to give:

dnU)nk — Hdn = dW,
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7.40

Because the inlet stream has constant properties, integration from beginning to end of the process
yields:
WS = I’lez - n1U1 —nH

where the subscripted quantities refer to the contents of the tank and n and H refer to the inlet stream.
Substitute n =ny —nyand H =U + PV =U + RT:

WS = I’lez - 7’[1U1 - (I/LZ —I’ll)(U + RT) = I’lz(Uz —-U — RT) —nl(Ul —U - RT)
With AU = Cy AT for an ideal gas with constant heat capacities, this becomes:
Wy =no[Cy (T, —T) — RT] — ny[Cy(Ty — T) — RT]

However, T = T}, and therefore:

Wy =na[Cy(To — T1) — RTi]1 4+ nRT,

P, ¥=D/v)
By Eq. (3.30b), T, = (—)
Py
PV P, Vi
Moreover, ny = ;{;;nk and ny) = ;2](

With y = 1.4, T, = 573.47 K. Then, with R = 8.314 m> kPa kmol~! K~!,

(101.33)(20) (1000)(20)

= —————— =0.8176 kmol and ny = ———————— = 4.1948 kmol
(8.314)(298.15) (8.314)(573.47)

nj

Substitution of numerical values into the boxed equation, with R = 8.314 kJ kmol~! K~!, gives:

W, = 15,633 KkJ
Combine Egs. (7.13) and (7.17):
. . .(AH)s
Wy=nAH=n
n
By Eq. (6.8), (AH)s = [VdP = (V)AP

Assume now that AP is small enough that (V), an average value, can be approximated by V| =
R T] / P 1- Then

RT, . . RT;
(AH)s = —AP and Wy =n——AP
P nPy

Equation (7.22) is the usual equation for isentropic compression of an ideal gas with constant heat
capacities. For irreversible compression it can be rewritten:

: 1CpTy | (P \®/Cr
WS=”P1 <2> 1
n P

For A P sufficiently small, the quantity in square brackets becomes:

P\ R/er AP\R/Cr R AP
2 “1=(1+= 1+ —=—"") -1
<Pl> (+P1) <+CP P1>

The boxed equation is immediately recovered from this result.
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7.41

7.43

7.45

7.46

The equation immediately preceding Eq. (7.22) page 276 gives T, = T;m. With this substitution,

Eq. (7.23) becomes:
T'w —T T —1
L=T+—=T1 1+
n n

The entropy generation S¢ is simply AS for the compression process, for which Eq. (5.14) may be
rewritten:

1+7T_1
AS -1 C
—=—|:ln(1+n—)—ln71:|=—Pln 1
R n b4
S C -1
Whence, 26 _ —Pln(n—i_” )
R R nw

The relevant fact here is that Cp increases with increasing molecular complexity. Isentropic compres-
sion work on a mole basis is given by Eq. (7.22), which can be written:

P2 R/Cp
W, =CpTi(mr — 1) where T = (F)
1

This equation is a proper basis, because compressor efficiency n and flowrate n are fixed. With all
other variables constant, differentiation yields:

L P ..
= T —
dcy ! Pacy
From the definition of =,
R P, dinm 1 dm R P,
Inm = —1In— whence = — = — In —=
Cp P de JTdCP CP2 Py
R P
Then, dr _ 7R n=2
dCp Cp> P
dWw; R_ P
and =T Jr—l—ﬂ—ln—2 =Tt —1—mlnm)
de CP Pl

When m = 1, the derivative is zero; for w > 1, the derivative is negative (try some values). Thus, the
work of compression decreases as Cp increases and as the molecular complexity of the gas increases.

The appropriate energy balance can be written: W = AH — Q. Since Q is negative (heat transfer is
out of the system), the work of non-adiabatic compression is greater than for adiabatic compression.
Note that in order to have the same change in state of the air, i.e., the same A H, the irreversibilities of
operation would have to be quite different for the two cases.

There is in fact no cause for concern, as adiabatic compression sends the steam further into the super-
heat region.
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7.49 (a) This result follows immediately from the last equation on page 267 of the text.
(b) This result follows immediately from the middle equation on page 267 of the text.
(c) This result follows immediately from Eq. (6.19) on page 267 of the text.

J 0Z 0Z oT bat b i
(d) <8V> < ) (8V> ut by (a), this is zero.

i ) Vv (@P/3T)y av oP v
(e) Rearrange the given equation: —=————=—[— — | ==
T (@P/AV)r oP J,\oT oT Jp

For the final equality see footnote on p. 266. This result is the equation of (¢).

V. Cp 1 1 /oV
7.50 From the result of Pb. 7.3: ¢= |— — - — where kK =-——|—
M Cy « V \OP ),
RT oV RT C
With V=—+ B then — ) =—— Also,let y = s
P oP ), p? Cy

MRT MRT RT

/yRT+ B [yRT b
C=1—+—=\/——"
M T RTV M

A value for B at temperature 7 may be extracted from a linear fit of ¢ vs. P.

BP\ [yRT
Then ¢ = PV.|—— = (RT + BP).|—~ =<1+—> yas

7.51 (a) On the basis of Eq. (6.8), write:

i . RT
AHG = | V'8dP = 7dP (const S)

ZRT
AHS_deP /—dP (const S)

ZRT
/ ——dP (constS)

g = = (Z)
AH / dP (const .S)
P
. . , . AH W
By extension, and with equal turbine efficiencies, — = —— = (Z)
AH'S wis
7.52 By Eq. (7.16), AH =n(AH)g For Cp =constant, T, — T} = n[(T2)s — T1]

p,\ R/Cr
For an ideal gas with constant Cp, (73)s is related to T} by (see p. 77): (T»)s =T (PZ)
1

R/Cp
Combine the last two equations, and solve for 73: =T [1 +7n |:(F2) — 1i| }
1
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From which n= Note thatn < 1

Results: For T, =318 K, n = 1.123; For T, = 348 K, n = 1.004; For T, = 398 K, n = 0.805.
Only 7, = 398 K is possible.

7.55 The proposal of Pb. 7.53, i.e., pumping of liquid followed by vaporization. The reason is that pumping
a liquid is much less expensive than vapor compression.

7.56 What is required here is the lowest saturated steam temperature that satisfies the AT constraint. Data
from Tables F.2 and B.2 lead to the following:
Benzene/4.5 bar; n-Decane/17 bar; Ethylene glycol/33 bar; o-Xylene/9 bar
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Chapter 8 - Section B - Non-Numerical Solutions

8.12 (a) Because Eq. (8.7) for the efficiency 7npieser includes the expansion ratio, r. = Vg/Va, we relate
this quantity to the compression ratio, r = V¢ /Vp, and the Diesel cutoff ratio,r. = V4/ Vp. Since
VC = VB, Fe = Vc/VA. Whence,

r _ Vc/VD

VA 1 re
= =—=rc or _——= —
re VC/VA VD Te r

jesel = 1 — —
NDiesel rc/r — 1/}"

: 1 (1/r) (rcy—l)
y _; 1/r re — 1

N~ -1
or NDiesel = 1 — <;) m

Equation (8.7) can therefore be written:

I [m/rw - (1/r>y] B

(b) We wish to show that:

rl —1 . x4 —1
— >1 or more simply — > 1
y(re—1) a(x —1)
Taylor’s theorem with remainder, taken to the 1st derivative, is written:
g=gM)+gM)-x—D+R
"I +6(x —1
where, r=81 +2'(x V-1 ©0<o<1)
Then, xX*=14a-(x— 1)+%a-(a— D-[14+60(x—-D]*2% (x—=1)>
Note that the final term is R. Fora > 1 and x > 1, R > 0. Therefore:
x*>14+a-(x—=1) xX*—1>a-(x—=1)
rcy —1
and —>1
y(@re—1)
(c) If y = 1.4 and r = 8, then by Eq. (8.6):
1 0.4
770tt0 = 1 - (g) and nOIIO = 05647

1 0.4 21.4 —1

o 7. =2 NDesiel = 1 — (g) m and NDiesel = 0.4904
1 0.4 314 _q

7. =3 NDesiel = 1 — <§) m and NDiesel = 0.4317
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8.15 See the figure below. In the regenerative heat exchanger, the air temperature is raised in step B — B*,
while the air temperature decreases in step D — D*. Heat addition (replacing combustion) is in step

B* — C.
—Wyp — W,
By definition, n= _TABT TCD
Op+c
where, Wap = (Hp — Hpy) = Cp(Tp — T»)
Wep = (Hp — He) = Cp(Tp — Tc)
Opc =Cp(Tc — Tp+) = Cp(Tc — Tp)
Ty —T Tc — T Ts — T,
Whence, n = A B+ 1c¢ D _ 4 B A

Tc —Tp T Tc—-Tp
By Eq. (3.30D),

Py v—=1/y Py y=1/y P, v=D/y
TB = TA - and TD = TC e = Tc —_—
Py Pc Pg

Then, n=1-—

(P (r=1/y
c Py

Multiplication of numerator and denominator by (Pg/P)” D7 gives:

_ TA PB y—=1/y
"= Tc \ Pa

V
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8.21 We give first a general treatment of paths ona PT diagram for an ideal gas with constant heat capacities
undergoing reversible polytropic processes. Equation (3.35¢), p. 78, may be rewritten as

dP 6 dT
P = KT%0"D InP=InkK + InT - =
5 —1 P 5—1T
dP 5 P ) . .
—=—— (A) Signof dP/dT isthatof § — 1, i.e., +
dT 6—1T

8=0—dP/dT =0 Constant P

Special cases {8 =1—> dP/dT = oo Constant T

By Eq. (A) °p 8§ (1dPp P\ 8 1( 8 P P
yEQAA, dT2 T 5—I\TdT T2) T s—1T\s—1T T
d*pP s P
= — (B) Sign of d>P/dT? is that of 8, i.e., +
dT? ~ (85— 1)2 T2

For a constant-V process, P varies with T in accord with the ideal-gaslaw: P = RT/V or P = KT
With respect to the initial equation, P = K T%©~1  this requires § = oo. Moreover, dP/dT = K
and d?>P/dT? = 0. Thus a constant-V process is represented on a PT diagram as part of a straight
line passing through the origin. The slope K is determined by the initial PT coordinates.

For a reversible adiabatic process (an isentropic process), § = y . In this case Egs. (A) and (B) become:

dP _ y P Py P
dT  y—1T dT?  (y — 1)2T?

We note here that y/(y — 1) and y/(y — 1)? are both > 1. Thus in relation to a constant-V process
the isentropic process is represented by a line of greater slope and greater curvature for the same T
and P. Lines characteristic of the various processes are shown on the following diagram.

The required sketches appear on the following page. (Courtesy of Prof. Mark T. Swihart, State Uni-
versity of New York at Buffalo.)
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A A
P P
0 > 0 “= >
0 T 0 T
Figure 1: The Carnot cycle Figure 2: The Otto cycle
A A
P P
0 bt > 0 >
0 T 0 T
Figure 3: The Diesel cycle Figure 4: The Brayton cycle

8.23 This is a challenging and open-ended problem for which we offer no solution. Problem 8.21 may offer
some insight.
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9.1

9.3

9.5

9.6

Chapter 9 - Section B - Non-Numerical Solutions

Since the object of doing work |W| on a heat pump is to transfer heat | Q y| to a heat sink, then:

What you get = |Q gl
What you pay for = |W|

Whence v ( Qx|
W]

For a Carnot heat pump,
|O0nl Ty

Vv = —
|Qul —10Qcl Ty —Tc

Because the temperature of the finite cold reservoir (contents of the refrigerator) is a variable, use
differential forms of Carnot’s equations, Eqs. (5.7) and (5.8):

dQn Ty [ TC(
= - d dW=t1—-—\d
dQc Tc o Ty Qn

In these equations Q¢ and Qg refer to the reservoirs. With dQy = C"dTc, the first of Carnot’s
equations becomes:

dT,
dQy = —C'Ty—=<
Tc
Combine this equation with the second of Carnot’s equations:
t dTc t
dW = —C'Tyg— + C' dT¢
Tc
Integration from T¢ =Ty to T¢ = T¢ yields:
T T, T
W=—CtTH1H—C+Ct(TC—TH) or WZCITH[IH—H‘F—C—I(
Ty Ic Ty
Differentiation of Eq. (9.3) yields:
1 T, T, T,
[er( _ poTe o Tw gy [ er ( S -
eTc 7, Tu—Tc (Tw—Tc) (Tyg — Tc) eTu 1, (Tyg — Tc)

Because Ty > T¢, the more effective procedure is to increase 7¢.

For a real refrigeration system, increasing 7¢ is hardly an option if refrigeration is required at a partic-
ular value of 7¢. Decreasing T is no more realistic, because for all practical purposes, Ty is fixed by
environmental conditions, and not subject to control.

For a Carnot refrigerator, p is given by Eq. (9.3). Write this equation for the two cases:

T T,
< and Po = o

p= Ty — Tc Ioy — Toe

Because the directions of heat transfer require that 7y > T,, and T < T,., a comparison shows that
0 < po and therefore that p is the more conservative value.
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9.20 On average, the coefficient of performance will increase, thus providing savings on electric casts. On
the other hand, installation casts would be higher. The proposed arrangement would result in cooling of
the kitchen, as the refrigerator would act as an air conditioner. This would be detrimental in the winter,
but beneficial in the summer, at least in temperate climates.

9.21

Tc
A= 06 ACarnot == 06 ﬁ

If A< 1,then T¢c < Ty /1.6. For Ty = 300 K, then 7 < 187.5 K, which is most unlikely.
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Chapter 10 - Section B - Non-Numerical Solutions

10.5 For a binary system, the next equation following Eq. (10.2) shows that P is linear in x;. Thus no
maximum or minimum can exist in this relation. Since such an extremum is required for the existence
of an azeotrope, no azeotrope is possible.

10.6 (a) Because benzene and toluene are chemically similar and the pressure is only 1(atm), this system
can be modeled by Raoult’s law to a good approximation.

(b) Although n-hexane and n-heptane are chemically similar, a pressure of 25 bar is too high for
modeling this system by Raoult’s law.

(c) At200 K, hydrogen is supercritical, and modeling the hydrogen/propane system at this tempera-
ture by Raoult’s law is out of the question, because no value of P % for hydrogen is known.

(d) Because isooctane and n-octane are chemically similar and at a temperature (373.15 K) close to
their normal boiling points, this system can be modeled by Raoult’s law to a good approximation.

(e) Water and n-decane are much too dissimilar to be modeled by Raoult’s law, and are in fact only
slightly soluble in one another at 300 K.

10.12 For a total volume V' of an ideal gas, PV’ = nRT. Multiply both sides by y;, the mole fraction of
species i in the mixture:

m;

yiPV' =n;RT or piV = M

RT

where m; is the mass of species i, M; is its molar mass, and p; is its partial pressure, defined as
pi = y; P. Solve for m;:
M;p: V'
m = ———
RT

Applied to moist air, considered a binary mixture of air and water vapor, this gives:

MHZOPHZOVt Mairpairvt
Mo = g A =
(a) By definition,
M
h= my,0 or h— H,0 PH,0
M iy Mir Pair

Since the partial pressures must sum to the total pressure, p,i; = P — pu,o0; Whence,

_ My, phyo
Mair P_pHZO

h

(b) If air is in equilibrium with liquid water, then the partial pressure of water vapor in the air equals
the vapor pressure of the water, and the preceding equation becomes:

sat

Mu,o  Puyo
t
My P — P

hsat _
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(c) Percentage humidity and relative humidity are defined as follows:

h P _ P sat
L= PHSza(t) —Hzo(l()o) and heet = pH:a?
h Py,0 P — Pryo P

hye = (100)

Combining these two definitions to eliminate py,o gives:

sat
P — PHz o

P — P]-[Szato(hre]/loo)

hpc = hrel

10.14 Because the vapor space above the liquid phase is nearly pure gas, Eq. (10.4) becomes P = x;'H;.
For the same mole fraction of gas dissolved in the liquid phase, P is then proportional to H;. Values
given in Table 10.1 indicate that were air used rather than CO,, P would be about 44 times greater,
much too high a pressure to be practical.

10.15 Because Henry’s constant for helium is very high, very little of this gas dissolves in the blood streams
of divers at approximately atmospheric pressure.

10.21 By Eq. (10.5) and the given equations for In y; and In y»,
y1 P = x; exp(Ax3) P;** and y2P = xy exp(Ax{) P
These equations sum to give:
P = x; exp(Ax;) P + x; exp(Ax}) P,
Dividing the equation for y, P by the preceding equation yields:

_ x1 exp(Ax3) P
= x1 exp(Ax3) P + x; exp(Ax]) P

For x| = x; this equation obviously reduces to:

sat
Pl

P = Plsat + stat

10.23 A little reflection should convince anyone that there is no other way that BOTH the liquid-phase and
vapor-phase mole fractions can sum to unity.

10.24 By the definition of a K-value, y; = K;x; and y, = Kx,. Moreover, y; + y, = 1. These equations
combine to yield:

lel + K2X2 =1 or lel + Kz(l —Xl) =1

1-K;

Solve for x;: x| = T XK.
1— K2

Substitute for x; in the equation y; = Kyxy:

_ Ki(1—-K»)
Y1 —Kl K,
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Note that when two phases exist both x; and y; are independent of z;.
By a material balance on the basis of 1 mole of feed,
xL+yV =2z or xx(1=V)+»V =2z

Substitute for both x; and y; by the equations derived above:

—K2 Kl(l _KZ)
~ (1 — _ ) =
Kl—Kz( W+ K — K> v=a
Ki—K)—(1-K
Solve this equation for V: V= 21K, 2) = ( 2
(K1 — D1 = K3)

Note that the relative amounts of liquid and vapor phases do depend on z;.

10.35 Molality = M; = & =
ms  xsM;

where subscript s denotes the solvent and M, is the molar mass of the solvent. The given equation
may therefore be written:

Xi

1
i = kiyiP or Xi (xstki> = ylP

'xS N

Comparison with Eq. (10.4) shows that

H; = or forx; — 0 H; =

For water, M; = 18.015 gmol~! or 0.018015 kg mol~".

1
= (0.018015)(0.034)

Thus, = 1633 bar

This is in comparison with the value of 1670 bar in Table 10.1.
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Chapter 11 - Section B - Non-Numerical Solutions

11.6 Apply Eq. (11.7):

T; ( [v(nT)( :T)ﬂ] =T P; ( [v(nP)( :P)ﬂ] —p
VI p g, Vi 7 pn; Vi pTa, Vi 7 pn;
) ) _ ) vm]
11.7 (a) Let m be the mass of the solution, and define the partial molar mass by: m; ( / —
VI 7 pn;
Let M, be the molar mass of species k. Then
m=g nMy=nM;+ g njM; (j#i)
k J
iM; -
and ) v_m] = [M( =M, Whence, m; = M;
Vi T pn; vn; T,Pn,
~ M! M! ;
(b) Define a partial specific property as: M; ( ) s ] =) Y ] ) ﬂ]
Vi 1.pom; Vi rpm; Y T Pm;
. . . m; ) Ul’li] 1
If M, is the molar mass of species i, n;, = — and —_ = —
' P ' Mi vm; T,P.m; M,’
o . . : - M,
Because constant m ; implies constant 7, the initial equation may be written: | M; = M
_ dv - dv
11.8 By Egs. (10.15) and (10.16), V=V 4+ x,— and Vo=V —x1—
dx; dx,
dv. = —-1d
Because V =p~! then — = "% Whence
dx; 02 dx;
- 1 d 1 d 1 d
Vlz__x_i_pz_)l_ﬁ_p] =_2),)_)62_/)]
p  prdxy  p p dx; o dx
- 1 x1 d 1 x1 d 1 d
o Lynde 1), mde] 1), 4]
p  prdx; p p dx P dx;
. ) dp
With p =ap+ aix; + arxj and Tl =a; + 2a>x; these become:
X1

_ 1 - 1
V, = ;[ao —ay +2(a; — ax)x; + 3ayxi] and V) = ;(ao + 2a;x1 + 3axx7)

679



11.9 For application of Eq. (11.7) all mole fractions must be eliminated from the given equation by the
relation x; = n; /n:

ninsns
nM =n M, +nyM; + n3M; + p C
- anM) 1 2ny [ on
FOer, =M1+n2n3C —2——3 _—
anl T,P,np,n3 n n anl T,P,ny,n3
on
Because n = ny + ny, + ns, — =1
an] T,P,ny,n3
- nans n —
Whence, M, = M, + =2 [1 - 2—] C and M, = M, + xox3[1 — 2x,1C
n n
Similarly, | My = M, + x;x3[1 — 2x,]C and M3 = M3 + x1x5[1 — 2x3]C

One can readily show that application of Eq. (11.11) regenerates the original equation for M. The
infinite dilution values are given by:

Mioo=Mi+XijC (J,k;él)

Here x; and x; are mole fractions on an i-free basis.

11.10 With the given equation and the Dalton’s-law requirement that P = ), p;, then:
RT
P=— i Zi
v Y
For the mixture, P = ZRT/V. These two equations combine to give Z = ) . y; Z;.

11.11 The general principle is simple enough:

Given equations that represent partial properties M;, MiR , or MiE as functions of com-
position, one may combine them by the summability relation to yield a mixture property.
Application of the defining (or equivalent) equations for partial properties then regenerates
the given equations if and only if the given equations obey the Gibbs/Duhen equation.

11.12 (a) Multiply Eq. (A) of Ex. 11.4 by n (= n; + n,) and eliminate x; by x| = n/(n, + ny):

3

"
H = 600 —180n; —20———
n (n1 + n2) n L E )
Form the partial derivative of n H with respect to n; at constant 7n,:
- 3n? Zn? n% n?
H; =600 — 180 — 20 5 - ;| =420-60———F +40——
(ny +n2)>  (n+ny) (ny +ny) (n1 +n2)
Whence, Hy =420 — 60 x? + 40.x}
Form the partial derivative of n H with respect to n, at constant n;:
= 600+ 20— 2" Hy = 600 + 40 5
= _— or = X
’ (n1 +ny)? ’ :
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(b) In accord with Eq. (11.11),
H = x1(420 — 60)612 + 40x13) + (1 — x2)(600 + 40xf)

Whence, H =600 — 180 x; — 20 x;
. : - dH, dH,
(c) Write Eq. (11.14) for a binary system and divide by dx;: x; T + xzd— =0
X1 X1
Differentiate the the boxed equations of part (a):
dH, dH,

—— = —120x; + 120x} = —120x;x,  and

= 120x?
dx; dx;

Multiply each derivative by the appropriate mole fraction and add:

—120x}x, + 120x7x, = 0

(d) Substitute x; = 1 and x, = 0 in the first derivative expression of part (¢) and substitute x; = 0
in the second derivative expression of part (¢). The results are:

<d1:11) B (dﬁ2> _0
d'xl x1=1 B d'xl x1=0 B

(e)

11.13 (a) Substitute x, = 1 — x; in the given equation for V and reduce:
V =70+58x; —xi—7x;
Apply Egs. (11.15) and (11.16) to find expressions for V; and V5. First,

dv
d—x] :58—2)61 —21)(312
Then, Vi =128 —2x; —20x? + 14 x} and Va=70+x%+ 14x3
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(b) In accord with Eq. (11.11),

V=x,(128 —2x; —20x7 + 14x3) + (1 — x)(70 + x> + 14 x?)

Whence, V =70+58x —x?—7x}

which is the first equation developed in part (a).

dv.
(c) Write Eq. (11.14) for a binary system and divide by dx;: x; Ly xgd—z =0
X1
Differentiate the the boxed equations of part (a):
dv dV.
=2 40x +42x3 and —2 = 2x 4217
dx, dx,

Multiply each derivative by the appropriate mole fraction and add:
X1 (=2 —40x; +42x) + (1 —x)(2x; +42x1) =0

The validity of this equation is readily confirmed.

(d) Substitute x; = 1 in the first derivative expression of part (c) and substitute x; = 0 in the second
derivative expression of part (c). The results are:

(dVl) _(d\‘@) _o
dx; x1=1 dx x1=0

140 T T T T

(e)

L‘rm
120

100

80
V2
60 | ] | ]
0 0.2 04 0.6 0.8 1
X4
11.14 By Egs. (11.15) and (11.16):
_ dH - dH
H =H+ x,— and H=H—x—
dx; dx;

682



11.15

11.20

Given that: H = xi(a; + bix1) + x2(az + brxy)

dH
Then, after simplification, Tr. =a; +2b1x1 — (ar + 2byx»)
X1

Combining these equations gives after reduction:
H, = ay + bix; + x2(x1by — x2b7) and Hy = ay + byxy — x1(x1b1 — x2b7)

These clearly are not the same as the suggested expressions, which are therefore not correct. Note
that application of the summability equation to the derived partial-property expressions reproduces
the original equation for H. Note further that differentiation of these same expressions yields results
that satisfy the Gibbs/Duhem equation, Eq. (11.14), written:

dH, N dH, 0
Xj— +xp—— =
]dxl zd)ﬁ

The suggested expresions do not obey this equation, further evidence that they cannot be valid.

Apply the following general equation of differential calculus:

(5)=(5). ). (E)

[a(nM)] _ [a(nM)] N |:8(nM):| <8V>
dn; T,Pn; an; T.V.n, OV Jr, \0n T,P.n;

- - oM Vv ~ - oM A%
M,-:M,-—i—n —_— —_— or M,'=Mi—l’l —_— —
OV Jru \ONi J1 p o, OV Jru \ONi )1 pa,

- anVv) aV aV _
Vi = = — +V or — =V,=-V
oni  Jr pn on; T,Pn; on; T,Pn;
- _ _ oM
Therefore, Mi=M+V -V) | —
oV ),

Equation (11.59) demonstrates that In b isa partial property with respect to GX/RT. Thus In b =
G;/RT. The partial-property analogs of Egs. (11.57) and (11.58) are:

9 1n VR 3 1n ¢ HR
=L and =
op | RT oT ), RT?

The summability and Gibbs/Duhem equations take on the following forms:

GR A A
=T = Y xiIng; and Y, xidlng; =0 (const T, P)
i

i
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11.26 For a pressure low enough that Z and In ¢ are given approximately by Eqs. (3.38) and (11.36):

Z=1+ BP d In ¢ BP
= —_— an ng = ——
RT RT

then: Inp~27Z-—1

11.28 (a) Because Eq. (11.96) shows that In y; is a partial property with respect to GE/RT, Eqs. (11.15)
and (11.16) may be written for M = GX/RT:

| GE N d(GE/RT) | G d(GE/RT)
n = — Xy—mm n = — - — X
MERT TR 4y ERT TN 4y

Substitute x, = 1 — x; in the given equaiton for G¥/RT and reduce:

GE d(GE/RT
— = —1.8x; +x} +0.8x] whence M:—1.8+2x1+2.4x12
RT d)C]

Then, In y; :—1.8—i—2x1—i—1.4x12—1.6x13 and lny2=—x12—1.6xf

(b) In accord with Eq. (11.11),

E
=7 = Iny; +xInyy =x (=18 4+2x; + 1.4x7 — 1.6x3) + (1 — x))(—x} — 1.6x7)
GE
Whence, RT = —1.8x; +x7 +0.8x]

which is the first equation developed in part (a).
(c) Write Eq. (11.14) for a binary system with M; = Iny; and divide by dx;:

dInvy, n dny,

=0
o dx, 2 dx;
Differentiate the the boxed equations of part (a):
dlIn dIn
M — 0428y — 4857 and Yo 2k — 4842
d.X] dX]

Multiply each derivative by the appropriate mole fraction and add:
x1(2+2.8x; —48x) + (1 —x)(—2x; —4.8x7) =0

The validity of this equation is readily confirmed.

(d) Substitute x; = 1 in the first derivative expression of part (¢) and substitute x; = O in the second
derivative expression of part (c). The results are:

(dlnyl) =<d1ny2) _o
dxl x1=1 dxl x1=0
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(e) 0 —==—_ T g
o= - =) - =
—>< GE |RT
-~ ~
-1 + -~ o= ~ =1
= 49\\
2 2N\
- \
Iny® L * i
= e N
2 \
N\
N Inys®
L |
-3 | |
0 0.2 0.4 0.6 0.8 1
X9

11.29 Combine definitions of the activity coefficient and the fugacity coefficients:

_ fi/xiP

" fi/P

P

Vi

Note: See Eq. (14.54).

11.30 For C§ = const., the following equations are readily developed from those given in the last column
of Table 11.1 (page 415):

aGE AT
AHE = CE AT and ASE = —A ( ) =Cp—
P,x

Working equations are then:

Hf — GE AT
sE="1__—1 and Sy =8 +Ch—
Ty (T)

Hy = Hf + Cp AT and Gy = Hy — T»Sy

For Ty = 298.15, T, = 328.15, (T) = 313.15 and AT = 30, results for all parts of the problem are
given in the following table:

L IL For C5 =0

G¥ HE SE ck SE Hf GY Sk Hf G¥

(a) | =622 —1920 —4.354 42 | =3.951 —1794 —-497.4 | —4.354 —1920 —-4914
(b) | 1095 1595 1.677 33 1.993 1694  1039.9 1.677 1595  1044.7
(c) 407 984 1.935 =27 1.677 903 352.8 1.935 984 348.9
) 632 —208 -—-2.817 23.0| —-0.614 482 683.5 | —2.817  —208 716.5
(e) | 1445 605 —-2.817 11.0 | —1.764 935 1513.7 | —2.817 605  1529.5
o) 734 —416 —3.857 11.0 | —2.803 —86 833.9 | —3.857 —416 849.7
(g) 759 1465 2368 —8.0 1.602 1225 699.5 2.368 1465 688.0
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11.31

11.35

(a) Multiply the given equation by n (= n; + n,), and convert remaining mole fractions to ratios of
mole numbers:

RT
Differentiation with respect to n; in accord with Eq. (11.96) yields [(0n/0n1)n, ., = 11

1 n 1 m nons
Iny = Apma (= — 5 |+ A |- — = ) — An—;
non non n

= Apxo(l —x1) + Aizxz(1 — x1) — Axzxoxs

Similarly, Iny, = Apxi(1 — x2) — Aizxix3 + Axzxs(1 — xp)
Iny; = —Apxix; + Apxi(l — x3) + Axa(1 — x3)

(b) Each In y; is multiplied by x;, and the terms are summed. Consider the first terms on the right of
each expression for In y;. Multiplying each of these terms by the appropriate x; and adding gives:

2 2
A (x1x2 — X7X2 + X2X1 — X5X1 — X1x2X3) = Apxixo(l —x; +1—2x —x3)

= Apxi1x2[2 — (1 +x2 +x3)] = Apxixz

An analogous result is obtained for the second and third terms on the right, and adding them
yields the given equation for GE/RT.

(c¢) For infinite dilution of species 1, x1 =0: Iny (x; =0) = Appxy + Ajzxs — Axzxoxs
For pure species 1, x = 1: Iny(x;=1)=0
For infinite dilution of species 2, x, =0: Iny (x, =0) = A13X§
For infinite dilution of species 3, x3=0: Iny (x3 =0) = A12x22

By Eq. (11.87), written with M = G and with x replaced by y: GE =GR - ) »GR
i
Equations (11.33) and (11.36) together give GZ-R = B;; P. Then for a binary mixture:
G® = BP —yB\P — y,B»P or G* = P(B — y1Bi1 — y2B»)

Combine this equation with the last equation on Pg. 402: Gt =681,Py 1y

dGE
From the last column of Table 11.1 (page 415): Sf = — ( )
P.x

oT

. . E dépp
Because 41, is a function of T only: | §% = — ﬁPylyz

" E E E E E déi2
By the definition of G*, H® = G* + TS§"; whence, | H* = | §1» — Tﬁ Pyiy,

, ; (0HE
Again from the last column of Table 11.1: Cjp = 3T
P,x
. . . . E d*31;

This equation and the preceding one lead directly to: | Cp = _TW Pyiy
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E _ gk E _ E
11.41 From Eq. (11.95): (a(G /RT)) A (3(G /T)) _-H
P P

T "~ RT? oT T2

d(GE/T)\ _ AGE/T) _ —HF
or ), AT T T?

To an excellent approximation, write: (
mean

A(GE/T) _785/323 —805/298  —0.271

From the given data: = = —0.01084
AT 323 — 298 25
—HE  —1060
and — = = —0.01082
T2, 3132
The data are evidently thermodynamically consistent.
dM dM
11.42 By Eq. (11.14), the Gibbs/Duhem equation, x;— + x,——= =0
dx1 a’x1
. _ — dMl sz
Giventhat M; =M+ Ax, and M, =M+ Ax; then—=—-A and —=A
dx1 d)C1
dM, dM,
Then x;— 4+x—— = —x1A+xA =AM —x1)#0
dx1 dx1

The given expressions cannot be correct.
1145 (@) For M = Ax*x2  find ME = Ax;x3(2—3x;) and ME = Ax?x2(2 — 3x,)
Note that at both x; =0 (x; = 1) and x; = 1 (xa =0), ME=ME=0
In particular, (ME)® = (M£)* =0

Although M has the same sign over the whole composition range, both M £ and MZE change
sign, which is unusual behavior. Find also that

E

dME dM!
=2Ax(1 —6x1x3) and —= = —2Ax1(1 — 6x1x2)
d)C1 d-xl

The two slopes are thus of opposite sign, as required; they also change sign, which is unusual.

dME dME
For x; =0 =2A and =0
dx1 X1
dME dMF
For x; =1 L =0 and 2 =24
dx; dx;

(b) For MF¥ = Asin(x;) find:

MlE = Asin(wx) + Amwx,cos(wrx;) and Mf = Asin(mwx;) — Amwx; cos(mwxy)

= —An“x,sin(;rx;) and = Amr“xysin(mwxy)
dx1 dX1
The two slopes are thus of opposite sign, as required. But note the following, which is unusual:
dME dMFE
For x; =0 and x =1 L =0 and 2 =0
dx; dx

PLOTS OF THE FUNCTIONS ARE SHOWN ON THE FOLLOWING PAGE.
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Pb. 11.45 (a) A =10 1= 0..100 X; .= .00001 + .01-i

= Ag) (1o %) MBbarly = A (1 x) (2 - 30x)

1

ME. !

1

MEbar2; = A-xi-xi-<1 - xi>-[2 - 3-(1 - Xiﬂ

2
ME.
1
MEbarli
MEbar2i
-0.5
0 0.2 0.4 0.6 0.8 1
X.
1
Pb. 11.45 (b) ME; = A-sin<p~xi> (pi prints as bf p)
MEbarl; = A-sin<p~xi> + A-p-<1 - xi>-cos<p-xi>
MEbar2; = A-sin<p~xi> - A-p-<x1>-cos<p~xi>
40
ME.
1
MEbarli
MEbarZi
10 | |
0 0.2 0.4 0.6 0.8 1
X
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_ TamM oM
11.46 By Eq. (11.7), M; = [ (n )] —M+n <—>
T,P.n Oni )7 pon,

oM

At constant 7" and P, dM = Z ( ) dx;
T \OXk )7 p s,

Divide by dn; with restriction to constant n; (j # i):

oM oM Xy
(W) =2 <3_> (a_>
i /T,P.nj k k/T,P.x; i/nj

ny .
- (k #1)
. ni 0x n

Wil me =y (a_) 11 oa
Hon ——= (k=i

non
oM 1 oM 1 oM
F =—=) x|\ +-(I—x)|

Oni )1 pou; " Xk Jrpo, N 9%i )1, p s,

1 <8M) 1 Z <8M)
n axi T,P,x; n k axk T,P,x;

- oM oM
amne (), )
9x; T,P.x; X 9xk T,P.x;

For species 1 of a binary mixture (all derivatives at constant 7 and P):

M= M+ oM oM oM M+ oM oM
= _— — X _— — X _— = X —_— — _
! x| X ! dx; x : dxy x| : 0X1 x2 0x) x1

Because x; + x; = 1, the partial derivatives in this equation are physically unrealistic; however, they
do have mathematical significance. Because M = M (xy, x»), we can quite properly write:

oM oM
dM = (—) dx1 + (—> d)C2
8)61 x 8)62 x]

Division by dx; yields:

dM _ (oM (OMY dx _ (oM M
dx1 N 3x1 x 8)62 x| dx1 N 8x1 x 8)62 X1

wherein the physical constraint on the mole fractions is recognized. Therefore

- am
My =M+ x,—
dx1

The expression for M, is found similarly.
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- a(mnM*E
11.47 (a) Apply Eq. (11.7) to species 1: ME = [%}
ni n

Multiply the given equation by »n and eliminate the mole fractions in favor of mole numbers:

1 1
nME = Anin, +
ni+ Bny  ny+ Bng

_ 1 1 —1 B
ME=A + + -
! nz{(m + Bn, n2+Bn1) m ((m + Bny)? (n2+Bn1)2)}

Conversion back to mole fractions yields:

- 1 1 1 B
ME = Ax + —X + )}
: ? {(xl +Bx,  x2+ Bx1> : <(xl + Bx)?  (x2+ Bxy)?

The first term in the first parentheses is combined with the first term in the second parentheses
and the second terms are similarly combined:

- E 1 X1 1 Bx1
M =Ax———|1— + ]— —
X1+ Bx, X1+ Bxp X, + Bx; X + Bxy

Reduction yields:

, B 1
| (x1 + Bx2)?  (x2+ Bx1)? |

Similarly,

1 4 B
| (x1 + Bx2)?  (x2+ Bx1)? |

ME = Ax}

(b) The excess partial properties should obey the Gibbs/Duhem equation, Eq. (11.14), when written
for excess properties in a binary system at constant 7 and P:

AME  dME

=0
! dx1 2 dX]

X

If the answers to part (a) are mathematically correct, this is inevitable, because they were derived
from a proper expression for M. Furthermore, for each partial property ME, its value and
derivative with respect to x; become zero at x; = 1.

(©) WEy> = A +1 Why© = a1+
1 B 2 B

11.48 By Eqgs. (11.15) and (11.16), written for excess properties, find:

dMf  d’M* dMf d*ME

=Xy——— —X|———
dx, dx? dx; dx}

Atx; =1,d M E/dx, = 0, and by continuity can only increase or decrease for x1 < 1. Therefore the
sign of d ME /dx, is the same as the sign of d*ME /dx}. Similarly, at x; = 0, dMF /dx, = 0, and by
the same argument the sign of d M¥ /dx, is of opposite sign as the sign of a’ZME/dxf.
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11.49 The claim is not in general valid.

1 [(aV |
(5 Vit = 3"V,
P v(aT>P .-

i

) 1 aV; 1
,BId = Xi (—> = x; Vi Bi
> xiVi Z o Jp ¥ xV, Z
1 1

The claim is valid only if all the V; are equal.
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12.2

124

12.5

Chapter 12 - Section B - Non-Numerical Solutions

Equation (12.1) may be written: y; P = x;m; P;**.

Summing fori = 1, 2 gives: P = xm P"™ + xom P,™.

dP dm dm
Differentiate at constant T: — = P [ X1 2y 771( + P [ xz—z — nz(
dX1 dX1 dX1

Apply this equation to the limiting conditions:

d
For x; =0: X, =1 m o=’ m =1 2=0
dx1
d
For x;=1: x, =0 m =1 m =" ﬂ=0
dx1
Then,
[ d_P( — Plsatnloo _ stat or [ d_P( + stat — Plsatnloo
d'xl x1=0 dxl x1=0
[ d_P( — Plsat _ statn.2oo or [ d_P( _ Plsat — _P2satn,200
dxi - dxi -
Since both P;** and 7z are always positive definite, it follows that:
[ d_P( ( _ stat and [ d_P( ) plsat
dx1 =0 dx1 x=1
By Egs. (12.15), Inm = Ax22 and Inm = Axl2
il 2 2
Therefore, In ;2 =AMy —x7) =AM —x1) = A1 — 2xy)
T x P sat x P sat
By Eq. (12.1), n w2,
m b »/x2 P
Whence, In(¢ppr) = A0 —2xy)
If an azeotrope exists, &1 =1 at 0) xi*) 1. Atthis value of xi, Inr = A(1 — 2x{*)

The quantity A(1 — 2x,) is linear in x;, and there are two possible relationships, depending on the
sign of A. An azeotrope exhists whenever |A| ) |Inr|. NO azeotrope can exist when |A| < |Inr]|.

Perhaps the easiest way to proceed here is to note that an extremum in In s is accompanied by the
opposite extremum in In . Thus the difference Inm — Inm, is also an extremum, and Eq. (12.8)

becomes useful:
M d(GE/RT
Inm—Inm=In—=———
M%) dxl

Thus, given an expression for GE/RT = g(x;), we locate an extremum through:

d*(G¥/RT) _ dn(m/m)

0
dx? dx,
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For the van Laar equation, write Eq. (12.16), omitting the primes (/):

GE
=T = An 21% where A= Apx + Aux;
dA d’A
Moreover, — = App— Ay and — = 0
dX1 dxl
d(GE/RT — dA
Then, AGT/RT) _ y q, D2—X1 xix dA
d-xl A A2 dX]
d*(GE/RT) 2 x,—x1 dA  xix,d*A  dA 2x1xy dA Xy — Xy
PN _ gy [ 2o moadh s 4 dh T3 e
dxl A A dxl A dxl dx1 A dx1 A
2 2 —x) dA  2xx ZA/a
= ApAy|————"— —
122 [ A C R T e P

2A1A dA A
= # |:—A2 — ()Cz —Xl)Ad— + X1x2 Z—f:|
X1

A3 dx1

24040 32 dA dA f
[ — - - A
A3 TR dx,

This equation has a zero value if either A, or A, is zero. However, this makes GE/RT everywhere
zero, and no extremum is possible. If either quantity in parentheses is zero, substitution for A and
dA/dx, reduces the expression to A, = 0 or Ay; = 0, again making GX/RT everywhere zero. We
conclude that no values of the parameters exist that provide for an extremum in In(y,/y»).

The Margules equation is given by Eq. (12.9b), here written:

G A h A=A + A A A A d’A 0
— = Ax1x where = X X — = — — =
RT 1X2 21X1 12X2 dx, 21 12 dx12
d(GE/RT dA
Then, M =A(xy —x1) + x1x00—
dx; dx
d*(GE/RT) dA d’A

dA
= —2A+ (X2 — X1)— + (Xz — xl)— + X1x2
d)C1 dx1

dxl2 dx12

dA dA
= 2A42x—x))— =2|(x1 —x)— — A
dx; dx;
This equation has a zero value when the quantity in square brackets is zero. Then:

dA
(Xz—xl)E—A = (x2—x1)(A21 — Ap) —Asix1 — Appxy = Aoixo+Appxy —2(A21x1 +Appxy) =0
|

Substituting x, = 1 —x; and solving for x; yields:

2

Ay —2A12 (l" - 2)
X = —= or X = —
3(A2 — Ap)

ﬁ
Il

|
W
~~
S
|

—
p—
S
sy
I~
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When r =2, x; =0, and the extrema in Iny; and In y, occur at the left edge of a diagram such
as those of Fig. 12.9. For values of r > 2, the extrema shift to the right, reaching a limiting value for
r =00 at x; = 1/3. For positive values of the parameters, in all of these cases A;; > Ay, and the
intercepts of the In y, curves at x; = 1 are larger than the intercepts of the In y; curves at x; = 0.

When r = 1/2, x; = 1, and the extrema in Iny; and In y, occur at the right edge of a diagram
such as those of Fig. 12.9. For values of r < 1/2, the extrema shift to the left, reaching a limiting
value for r = 0 at x; = 2/3. For positive values of the parameters, in all of these cases Ay < Ao,
and the intercepts of the Iny; curves at x; = 0 are larger than the intercepts of the Iny, curves at
X1 = 1.

No extrema exist for values of » between 1/2 and 2.
12.7 Equations (11.15) and (11.16) here become:

| GE N d(GE/RT) q | GE d(GE/RT)
n = — Xp— an n = X\
"ERT T 4y ERT TN 4

(a) For simplicity of notation, omit the primes that appear on the parameters in Eqgs. (12.16) and
(12.17), and write Eq. (12.16) as:

¢ = ApAy 222 where D = Apxi + Azixz
RT D
Then, CZ(G;% = ApAy [xz I_DXI - %(Alz - Am)]
and Iny; = A;pAy [% + x2 (xz ;)CI - %(Alz - Azl))]
= AIZ;ZI [x]xz + X3 — x1x) — )%C%(Alz - AZl)i|

A1pAgx3 ApAgx3
= Tz(D — Apx) 4+ Ayxy) = Tz(AZUCZ + Azixy)

_ ApAjx; A Ao\ _ 4 D\ _ A Apxi + Ay
= ——>— =A4n =Anp =Ap|—————
D D Axxy Azix;

The equation for In y; is derived in analogous fashion.

d(nG"/RT
(b) With the understanding that 7" and P are constant, Iny, = [%}
ny ny
and Eq. (12.16) may be written:
Gt ApA
n _ 124211112 where nD = Apny 4+ Ayng

RT nD
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Differentiation in accord with the first equation gives:

1 A A 1 ni d(nD)

n = n _—
Aty T wny ony ),
Iny, = A12A21n2 l—[_ Au) ApArx; (1 B A12x1>

ApArx; ApArx; A A3 X3
= T(D—A12X1)=— Xy = —22

The remainder of the derivation is the same as in Part (a).

12.10 This behavior requires positive deviations from Raoult’s law over part of the composition range and
negative deviations over the remainder. Thus a plot of G vs. x; starts and ends with G = 0 at
x; = 0 and x; = 1 and shows positive values over part of the composition range and negative values
over the remainder, with an intermediate crossing of the x; axis. Because these deviations are usually
quite small, the vapor pressures P,;*** and P,**" must not be too different, otherwise the dewpoint and
bubblepoint curves cannot exhibit extrema.

12.11 Assume the Margules equation, Eq. (12.9b), applies:
E E

G G 1
RT = x1x2(Az1x1 + Appxz) and ﬁ(equimolar) = g(Alz + Az

But [see page 438, just below Eq. (12.10b)]: Ap =Iny> Ay =Iny”

equimolar) = n + In or equimolar) = n(y
RT 8 Vi V2 RT 8 RE

GE
12.24 (a) By Eq. (12.6): RT = xi1Iny + xIny,
= x1%5(0.273 + 0.096 x;) + x2x7(0.273 — 0.096 x5)
= x1x2(0.273 x5 + 0.096 x1x, + 0.273 x; — 0.096 x1x7)
= x1x2(0.273)(x1 + x7)

E

RT =0.273 X1X2

(b) The preceding equation is of the form from which Egs. (12.15) are derived. From these,

Iny; = 0.273x3 and Iny, = 0.273 x?

(c) The equations of part (b) are not the reported expressions, which therefore cannot be correct. See
Problem 11.11.

12.25 Write Eq. (11.100) for a binary system, and divide through by dx;:

dIny n dIny, 0 h dlny, x1dlny;  x; dlny
X X - whence = — — = —
! d)C1 2 dx1 dX1 X2 d)C] X2 d.)Cz

694



Integrate, recalling that Iny, = 1 for x; = 0:

Txdl T x; dln
lny2=ln(1)+f all nyld)q:/ AN
0o X2 dx 0o X2 dxy
dl
(@) For Iny; = Ax%, N _ 2Ax,
dXQ
X1
Whence Iny, = 2A/ X1 dx; or Iny, = Ax12
0
E
By Eq. (12.6), BT = Axi1x»

(b) For Iny; = x3(A + Bxy),

dl
dn "L~ 2%3(A + Bxy) + x2B = 2Ax; + 3Bx% = 2Ax; + 3Bxa(1 — x1)
X2
X] X1 X1
Whence Iny, :2Af x1 dx +3Bf x1 dx —33/ xidx
0 0 0
, 3B, 5 5 3B ) B
Iny, = Ax; +7X1 —Bx; or |Iny,=x A+7 — Bx; | =xj A+5(1 + 2x5)
GE ) ) 3B
Apply Eq. (12.6): RT = x1x5(A 4+ Bxp) + x2x7(A + 5 Bx)

Algebraic reduction can lead to various forms of this equation; e.g.,

G~ _ A+B(1+ )
RT—xlxz ) X2

(c¢) For Iny, = x22(A + Bx; + Cx%),

dIn V4!

= 20(A+ B+ Cx3) + x5 (B +2Cxy) = 2Axs + 3Bx; +4Cx;
X2

= 2Ax; + 3Bxa(1 — x1) + 4Cxo(1 — x1)?

X1

X1 X1
Whence Iny, = ZA/ x1dx; + 3B/ x1(1 — x1)dx; +4C/ x1(1— xl)zdxl
0 0 0

X1 X X]
or Iny, = QA+ 3B + 4C)f x1dx; — (3B + 8C)/ xidx; + 4c/ X3 dx,
0 0 0

2A+3B+44C 3B 4+ 8C
o= (P o (945)

) 3B 8C )
Iny, = xj A+7+2C— B+? x; + Cxj
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12.40 (a)

(b) By geometry, with reference to the following figure,

B C
or Iny, = x} [A+3(1 +2x2)+§(1—|—2x2—|—3x§)j|

The result of application of Eq. (12.6) reduces to equations of various forms; e.g.:

GE B c
o7 = X102 [A + 0 +x)+ (045 +x§)]
1 ~ ~
As shown on page 458, x| = 57 and AH=AH{+n)
n
T Lo ~ AH
Eliminating 1 + 7 gives: AH = —
X1

, o dAH 1 dAH AH dx, 1 dAH AH)\ dx,
Differentiation yields: = — S — - =

i~ x dn x2 din \x; dx,  xP ) dn
d -1
where if = —=—x
din  (1+n)?
dAH dAH . dHE
Whence, — = AH — x4 =H" —x;
dn dx; dx,
. . . . E - E dHE
Comparison with Eq. (11.16) written with M = H*, Hy =H" —x y
X1
dAH
shows that — = Hf
dn

dRH RH -1

din n
Slope = (—[_\_{_; /
dn
[T o
P !
.J’/" I
/ r/ :
r
|
|
f i
1
.. L . - AH-—1
Combining this with the result of Part (a) gives: H, = ————
n
From which, I =AH-—# F]ZE
. ~ AH HE . X
Substitute: AH=—" =" and n=_=
X1 X1 X1
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HE  xp -, HF —x;Hf
Whence, l=——-—H = ———
X1 X1 X1

However, by the summability equation, H® — x, I-_IZE =x H IE

Then, I = I-—IIE

12.41 Combine the given equation with Eq. (A) of the preceding problem:

AH = x(Agix; + Apxa)

With x; =1—x; and x; =1/(1 +n) (page458): x; = 7
n

The preceding equations combine to give:

~ 7 A Appn
AH — n ( 21 n 12”)

l+a\l+n 1+n
(a) It follows immediately from the preceding equation that: lir% AH =0
(b) Because in/(1 + 1) — 1 forn — oo, it follows that: lim AH = A

n—00

(¢) Analogous to Eq. (12.10b), page 438, we write: HZE = x7[A2 + 2(A12 — Az)xa]

Eliminate the mole fractions in favor of 7:

HE—L2A+2(A —A)ﬁ
2_1+ﬁ 21 12 211+ﬁ

In the limit as 7 — 0, this reduces to A;. From the result of Part (a) of the preceding problem,
it follows that

. dAH
lim — = A21

i»0 dn

12.42 By Eq. (12.29) with M = H, AH = H — ), x; H;. Differentiate:

IAH 9H 3 I H,
at P.x ot P.x i ot P.x

. oH . 0AH
With (—) = Cp, this becomes <—> =Cp— Y, xiCp = ACp
Jat P.x ot P.x i
AH '
Therefore, / d(AH) = f ACp dt AH = AHy + f,(’) ACp dt
AHy to
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12.61 (a) From the definition of M: ME = x;x,M (A)

dME dM
=M, —x1) + x1x0—— (B)
dx; dx;

Differentiate:

Substitution of Egs. (A) & (B) into Egs. (11.15) & (11.16), written for excess properties, yields
the required result.

(b) The requested plots are found in Section A.

12.63 In this application the microscopic “state” of a particle is its species identity, i.e., 1, 2, 3, .... By
assumption, this label is the only thing distinguishing one particle from another. For mixing,

t _ ot ¢t _ ¢t _ t
AS" = Smixed Sunmixed - Smixed E Si
i

where the fotal emtropies are given by Eq. (5.42). Thus, for an unmixed species i, and for the mixed
system of particles,

N;! N!
Si=klnQ; =kln— =0 St ied = kIn —————
N;! N{! NI N3!---
N!
Combining the last three equations gives: AS' =kln ——————
Ni! NI N3!- -
AS AS? AS! 1 N! 1
From which: — = = =—In—————=—(InN!- )Y, InN;))
R R(N/N,) kN N N{!N!N3!--- N -
InN!~NInN — N and InN;! =~ N;InN; — N;
AS 1 1
T%N(NIHN_N_ EN,’IDN,'-F EN,)ZN(NIHN— ExiNlnxl-N)
i i i

1
= N(NIHN— ExiNlnxi — ExiNlnN) = —Exilnxl

12.66 Isobaric data reduction is complicated by the fact that both composition and temperature vary from
point to point, whereas for isothermal data composition is the only significant variable. (The effect
of pressure on liquid-phase properties is assumed negligible.) Because the activity coefficients are
strong functions of both liquid composition and 7', which are correlated, it is quite impossible without
additional information to separate the effect of composition from that of 7. Moreover, the P,** values
depend strongly on T, and one must have accurate vapor-pressure data over a temperature range.

12.67 (a) Written for G¥, Egs. (11.15) and (11.16) become:

- dG*t - dG*t
G =GF +x, o and Gy =GF —x o
Gt GE
Divide through by RT; define G =—; note by Eq. (11.91) that — =Iny,
RT RT
d d
Then Iny, =G +x2—g and Iny, =G — xl—g
dx; dx
GE

Given: = Ak with A = x AS, + xA%,
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dg dAl/k

Whence: G = x 1A% and + AV (x, — x1)

d_xl - dx;
dc?xll/k - %A(l/k)_lj_i - %%M(Aél_fvb) and g = XIXZ%(AI&—A]fz)-i-A]/k(xz—xl)
Finally, Iny = x2AVk |:(A]§1 ;;]fz)m 4 1]
Similarly, Iny, = x2A "% [1 (45 ; :'fz)h]

(b) Appropriate substitition in the preceding equations of x; = 1 and x; = 0 yields:

Iny® = A" = A})V* = Ay Iny° = AYE = (A5)VE = Ay
() Let g= O°_ pwio (X145, + x45) "¢
xX1xoRT
Ifk =1, g =x1A21 + XA (Margules equation)
Ifk =-1, g = (xlAz_l1 + szl_zl)*1 = ﬂ (van Laar equation)

xX1A2 + x2A2
For k = 0, —o0, +00, indeterminate forms appear, most easily resolved by working with the
logarithm:

1
Ing = In(x; A%, + x AN )VF = % In (xlAgl + szlfz)
Apply I’Hopital’s rule to the final term:

dIn (x1 A5 +x0AY)  x A5 In Ay + A, In A

(A)
dk xlAgl + szll‘2

Consider the limits of the quantity on the right as k approaches several limiting values.

e Fork >0, Ing— xjInAy +xInA;;=InAj; +InA} and g = A A;

e For k — +o00, Assume Aiy/Aj; > 1, and rewrite the right member of Eq. (A) as

x11n Ay + x2(A12/A2) In Ap,
x1 + x2(A1n/Ap)*

e Fork > —o0, lim (Alz/A21)k — 0 and lim Ing =1In Ay
k——o0 k——00
Whence g = Ay exceptat x; =0 where g = A,

e Fork — 400, lim (Alz/AZI)k —o00 and limIlng=InAj
k— 00 k—00

Whence g=Ap exceptat x; =1 where g = Ay

If A1z/Az < 1 rewrite Eq. (A) to display Asi/Aqs.
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12.68 Assume that Eq. (12.1) is the appropriate equilibrium relation, written as

XeVe P = x,y P =y, P e = EtOH

e

Because P is low, we have assumed ideal gases, and for small x, let y, ~ y.*. For volume fraction
&, in the vapor, the ideal-gas assumption provides &’ ~ y,, and for the liquid phase, with x, small

V! V! V!
gl = e Ve ~tele e b = blood
Xe Ve[ + Xb Vb Xp Vb Vb
Then E? 1y psit & gt p volume % EtOH ir‘l blood ~ V. P
Ve volume % EtOH in gas Vey X P

HE GE/RT
12.70 By Eq. (11.95), —— =T ("(—/))
RT P.x

kT
E
— = —x1In(x; + x2A12) — x2In(xy + x1Az1)
RT
dAqp d Ay
(K(GE/RT)) _ X1X2 dT X2X1 dT
kT . o X1 +x2A 1 Xy + x1A2
dA d A
E
x0T dT dT
RT X1+ x2A12  x2+x1A
Nj=Lexp o (i # )
ij = — €X l
=y P RT J
dhy; V

j —dij | _4ij dij
— = |ex = A
ar v, ( P RT) RT? ~ “URT?

Apa Aria
HE =x1x2( 202 21421 )
X1 +x3A12  x2+x1A

Because C5 = dHE /dT, differentiate the preceding expression and reduce to get:

Cy o [xlAlz(a]Z/RT)2 szZI(aZI/RT)Z]
— = XX
R (x1 + x2A12)? (x2 + x1A2))?

Because Ajp and A, must always be positive numbers, C5 must always be positive.
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Chapter 13 - Section B - Non-Numerical Solutions

13.1 (a) 4NH;(g) + 50,(g) oo 4NO(g) + 6H,0(g)
v=[ v=-d4-54+446=1 ng=| =2+5=7
i io
By Eq. (13.5),
_2—48 _5—58 _ 4e . 6e
yNH3—7+8 )’02—7+8 yNO—7+8 YH20—7+8
(D) 2H,S(g) + 302(g) o0 2H,0(g) + 2S0,(g)
v=[ vw=-2-342+42=-1  ny=[ =3+5=38
i io
By Eq. (13.5),
_3—2 _5—38 . 2¢e _ 2¢e
szS_s_e y02_8_8 yH20_8_ y502_8_
() 6NO,(g) + 8NH3(g) oo TNa(g) + 12H,0(g)
v=[ v=-6-84+7+12=5 ny=[ =3+4+1=38
i io
By Eq. (13.5),
_3—68 _4—88 _1+78 . 12¢
MO = g5y N T g, MNTgise MOT RS,
13.2 CoHi(g) + 302(8) 00 ((CH2)2)0(g)
CaHy(g) + 302(g) oo 2C0O1(g) + 2H,0(g)
The stoichiometric numbers v; ; are as follows:
i = CyHy 0O, ((CH,),)O CO, H,O
J vj
1 1
1 -1 3 3
2 -1 -3 0 0
nog = [ =243=5
io
By Eq. (13.7),
2—81—82 3—%81—382 &1
YOH, = —(/——— Yo, = ——F——~F Y((CH,)»)0 =
s 5—%81 ? 5—%81 2 5—%81
2 2¢;
yCOZ_S—%l )’Hzo—s_%g1
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13.3 CO,(g) + 3H2(g) — CH30H(g) + H,O(g) (1)
COa(g) + Ha(g) — CO(g) + H,0(g) 2

The stoichiometric numbers v; ; are as follows:

i = CO, H, CH;0H CO H,O
J Vj
1 -1 -3 1 0 1 -2
2 —1 —1 0 1 1 0

n0:Z:2+5—|—1:8
io

By Eq. (13.7),

2—¢& — & 53— & & I+ & te
8—2e; T T 8-2g CMOMTRT o YOT g2, MMOT R

Yco, =

13.7 The equation for AG°, appearing just above Eq. (13.18) is:

T . T'ACp T'ACpdT
AG° = AHS — —(AHy — AGg) + R dT — RT —
Ty n R n R T

0

To calculate values of AG°, one combines this equation with Egs. (4.19) and (13.19), and evaluates
parameters. In each case the value of AH; = AHjy is tabulated in the solution to Pb. 4.21. In
addition, the values of AA, AB, AC, and AD are given in the solutions to Pb. 4.22. The required
values of AGj = AG5yg inJ mol~! are:

(a) —32,900; (f) —2,919,124; (i) 113,245; (n) 173,100; (r) —39,630; (1) 79,455; (u) 166,365;
(x) 39,430; (y) 83,010

13.8 The relation of K, to P and K is given by Eq. (13.28), which may be concisely written:

P —v
Ky - F K

(a) Differentiate this equation with respect to T and combine with Eq. (13.14):

0K,]7 [P "dK K,dK  dlnK K,AH°
3T |, | P°] dr K dT ' dT ~ RT?

Substitute into the given equation for (de./dT ) p:

e, K, de,
= ————AH"°
dT |, ~ RT?dK,

(b) The derivative of K, with respect to P is:

K, P11 P1I'TP]T "1 —uk,
—_— = —y K =—vK =
P |, pe pe p° pel pe P
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Substitute into the given equation for (de,/0 P)r:
ae, K, d
=) =2 ()
oP /), P dK,

() With Ky, J]OG)", InKy,= Y, v;Iny,. Differentiation then yields:
i i

1 de . V; dy,~

K, de. (@
y Ee i Yi dge
B / dy; 1dn; n; dn 1 (dn; dn
ecause i =n;/n, = - — = — = — —_ vy —
ey de, nds, n? dse n \ds, Yi de,
But ni = Nj, + ;& and n=ngy+ ve,
dn; d
Whence, o V; and LA
de, de,
dy; i — Vi
Therefore, i _hT P

de, no+ve,
Substitution into Eq. (A) gives

Lde _ Zﬂ(vi_yil)): 1 Z(v_lz_vv)
K, de, — y; \Ng + V&, no + ve, Vi '

1

- no+VSe2m:<__VlZVk>

i=1

In this equation, both K, and ng + ve, (= n) are positive. It remains to show that the summation
term is positive. If m = 2, this term becomes

2 2 2
v v (Y2v1 — y1v2)
L vt + 22—ty =
Y1 »2 yiy2

where the expression on the right is obtained by straight-forward algebraic manipulation. One
can proceed by induction to find the general result, which is

Xm: (V_lz v Xm:vk> ZZ ()’sz ytvk) (l < k)
k=1

i—1 i Yi Yk

All quantities in the sum are of course positive.

13.9 IN2(8) + 2Ha(g) — NHj(g)
For the given reaction, v = —1, and for the given amounts of reactants, ny = 2.
By Eq. (13.5 (1 —e) 21— e
y Eq. (13.5), W =TT M=o N =
YNH; £.(2 —¢.) P
By Eq. (13.28), = =K—
o, el PR —e)P P
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13.10

(2 — &) 12 33 p P
Wh , — = = - K— =1.299K —
ence (1 — 86)2 ) ) po P°
This may be written: re —2re,+ @ —1)=0
P
where, r=1+ 1.299KF
The roots of the quadratic are: g, =1=% = 1+ 7,172
r
—1,2
Because ¢, <1, g, =1 —r"1/2 g, =1— 1+ LZ%KF

The reactions are written:

Mary: 2NH; + 3NO — 3H,0 + 32N, (A)
Paul: 4NH; + 6NO — 6H,0 + 5N, (B)
Peter: 3H,0 + 2N, — 2NH; + 3NO (&)

Each applied Eqgs. (13.11b) and (13.25), here written:

InK = —AG°/RT  and K = (P [[(/)"

For reaction (A), AGS = 3AG?fH20 — ZAG;LNH3 — 3AG;-NO
For Mary’s reaction v = % and:
;3 752 AG®
KA=(P°)_%% and InK, = RTA
ffNH3 ffNO
For Paul’s reaction v = 1, and
76 fs
KB:(PO)_]% and IHKB:TA
ffNH3 ffNO
For Peter’s reaction v = —%, and:
fra 1} AGS
Kc = (1"0)%—AfNH‘3 o and InKe=—4
3 5/2 RT
JH,07 N,
In each case the two equations are combined:
23 75/2
. . _AGO
Mary: (P°)"2 ELICAEL R exp A

2 3
‘ffNH3 fNo RT
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e f —AGS 12
Paul: (PO)‘IM = [exp A]
ffNH3 /No

Taking the square root yields Mary’s equation.

Peter: (PO)%—JCA]%NH3 f?NO = |:exp _AGOA] B
SR R
Taking the reciprocal yields Mary’s equation.
13.24 Formation reactions: %Nz + %Hz — NH; 1)
IN, + 10, — NO 2)
3N2 + 0, — NO; 3)
H; + 10, - H,0 “)
Combine Eq. (3) with Eq. (1) and with Eq. (2) to eliminate Nj:
NO, + %Hz — NH;3 + O, )
NO, — 10, + NO (6)

The set now comprises Egs. (4), (5), and (6); combine Eq. (4) with Eq. (5) to eliminate H:

NO, + 3H,0 — NH; + 130, (7)
Equations (6) and (7) represent a set of independent reactions for which r = 2. Other equivalent sets
of two reactions may be obtained by different combination procedures. By the phase rule,

F=2—-n+N-r—-s=2-145-2-0 F=4
y P1°
13.35 (a) Equation (13.28) here becomes: B |:P°:| K=K
YA
Whence, B K(T)
1 —yg

(b) The preceding equation indicates that the equilibrium composition depends on temperature only.
However, application of the phase rule, Eq. (13.36), yields:

F=24+2-1—-1=2

This result means in general for single-reaction equilibrium between two species A and B that
two degrees of freedom exist, and that pressure as well as temperature must be specified to fix the
equilibrium state of the system. However, here, the specification that the gases are ideal removes
the pressure dependence, which in the general case appears through the bis.

13.36 For the isomerization reaction in the gas phase at low pressure, assume ideal gases. Equation (13.28)
then becomes:

VB rp1° 1 —ya
— = -| K=K whence = K(T)
YA P AU
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Assume that vapor/liquid phase equilibrium can be represented by Raoult’s law, because of the low
pressure and the similarity of the species:

XAPJ(T) = yaP and (1 = xa) Pg™(T) = (1 = yA) P

(a) Application of Eq. (13.36) yields: F=2-n+N-r=2-24+2-1=1

(b) Given T, the reaction-equilibriuum equation allows solution for y,. The two phase-equilibrium
equations can then be solved for x5 and P. The equilibrium state therefore depends solely on 7.

13.38 (a) For low pressure and a temperature of 500 K, the system is assumed to be a mixture of ideal
gases, for which Eq. (13.28) is appropriate. Therefore,

P\’ P\’ P\’
X _ Ky = K; X _ Ky = Kn B _ K = Km
Yox P Yox p° Yox p°

(b) These equation equations lead to the following set:

ymx = Kyyox | (1) ypx = Knyox | (2) yeB = Kmyox | (3)

The mole fractions must sum to unity, and therefore:

yox + Kiyox + Knyox + Kmyox = yox(1 + Ki + Ky + Kip) =1

1
1+ K+ K+ Ky

“

Yox

(c) With the assumption that AC; = 0 and therefore that K, = 1, Egs. (13.20), (13.21), and (13.22)

combine to give:
—AGS AH, T;
K = KoK =exp | —=28 Jexp | —22 -2
RTy RT, T

) 298.15 )
A1_1298 1 - 500 - AG298
(8.314)(298.15)

Whence, K =exp

The data provided lead to the following property changes of reaction and equilibrium constants
at 500 K:

Reaction | AHy, AGjy K

I —1,750 -=3,300 2.8470
II —1,040 —1,000 1.2637
I 10,920 8,690 0.1778
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(d) Substitution of numerical values into Egs. (1), (2), (3), and (4) yields the following values for the
mole fractions:

yox = 0.1891 ywx = 0.5383 ypx = 0.2390 yes = 0.0336

13.40 For the given flowrates, n4, =10 and ng, =15, with ny, the limiting reactant without (II)

npa =na, — & — €&
ng =npg, — &1

nc =€ —é€n

np =&

n =nyp—¢& —é&n
Use given values of Y¢ and S¢,p to find & and ey
&1 — &1 €1 — €1

YC = and SC/D =
na, én

Solve for ¢ and gy;:
S 1 2+1
g = (ﬂ) naYe = (%) x 10 x 0.40 = 6

nAOYC B 10 x 0.40 —9

& SC/D )
na =10—-6-2 =2 YA =2/17 =0.1176
ng =15-6 =9 VB =9/17 = 0.5295
ne =6-2 =4 yc =4/17 =0.2353
np =2 =2 YD =2/17 =0.1176
n =17 =1

13.42 A compound with large positive AG¢ has a disposition to decompose into its constituent elements.
Moreover, large positive AG*; often implies large positive AH ;. Thus, if any decomposition product
is a gas, high pressures can be generated in a closed system owing to temperature increases resulting
from exothermic decomposition.

13.44 By Eq. (13.12), AG°= Y vG?  and from Eq. (6.10), (9G$/dP); =V
i

8AG°> (8G9>

—] =2 v s o= 2wV
(5), =2 (50), - 2

For the ideal-gas standard state, V> = RT /P °. Therefore

IAG® RT VRT ) ) Py
=> v = and  AG°(Py) — AG°(P{) = vRT In =
aP° ), & pe p° Py

13.47 (a) For isomers at low pressure Raoult’s law should apply:
P :xAPAsat+xBPBsat — PBsat_i_xA(PAsat _ PBsat)
For the given reaction with an ideal solution in the liquid phase, Eq. (13.33) becomes:

1 — 1
Kl =B _ a from which XA =
X Xa K'+1
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The preceding equation now becomes,

1 1
P = 1] - ——— Psat - Psat
[ K’+1i| 5 +[K1+1] A

K' sat 1 sat
P = X1 Pg* + K1 Py (A)

ForK'=0 P=P®  ForkK'=0c0 P =P

(b) Given Raoult’s law:

P P YA VB
l=xa+xp=yam t VB 5 =P|:
PASclt PB at PAsat PBsat
1 PAsa[ PBsat PAsathsat

P = = =
ya/ P+ yp/Pgt  yaPg" +yp P Py (Pt — PN
For the given reaction with ideal gases in the vapor phase, Eq. (13.28) becomes:
VB 1

= K" whence =
va YA K"+ 1

Elimination of y4 from the preceding equation and reduction gives:

. (KU + l)PASa'[PBSat

P = KUPASM-FPBSM (B)

ForK'=0 P=P™ For K' =00 P = Py
(c) Equations (A) and (B) must yield the same P. Therefore

: Psat+ sat __ ([(v—i_])PAsatPB;gat
K'+1]° " K'+1] 4 KP4+ Py
A B

KU P sat
Some algebra reduces this to: — =5
Kl P

(d) As mentioned already, the species (isomers) are chemically similar, and the low pressure favors
ideal-gas behavior.

(e F=N+2—-—nm—r=2+42-2—-1=1 Thus fixing T should suffice.
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Chapter 14 - Section B - Non-Numerical Solutions

14.2 Start with the equation immediately following Eq. (14.49), which can be modified slightly to read:

A e(nG®/RT enzZ elnZ
Inv, = (nG"/RT)  &( )+n L1
en; en; en;
where the partial derivatives written here and in the following development without subscripts are
understood to be at constant T', n/p (or p/n), and n;. Equation (6.61) after multiplication by n can

be written: R
G 3 2
”RT — 2n(nB) [g( + 5n%0C) [5( —ninZ
Differentiate:
GX/RT - 3 2 - InZ
FQGTRT) _ [P B +nby+2[2C @n2c +n26) —n2Z _1nz
en; n 2 n en;
e(nG®/RT) - 3, - elnZ
or ——=2p(B+B)+ -p " 2C+C;) —n —InZ
en; 2 en;
_ B - C
By definition, B ( ) 275 amd G () EMO]
8ni T,nj 8”1' T,nj

The equation of state, Eq. (3.40), can be written:

2
Z=1+B/o—i—C,02 or nZ=n+n(nB)[£(+n2(nC)[£(
n n
Z - 2 -
Differentiate: £(n2) =1+ [2( (nB +nB;) + [2( 2n*C + n*C))
en; n n
e(nz) - ) -
or =14 p(B+ B)+p°2C+C)

en;

When combined with the two underlined equations, the initial equation reduces to:

Inv; = 1+ p(B+ B) + 1p22C + C))

The two mixing rules are:
B = y{Bi1 +2y1y2B1> + y;Bn

C = y;Ciii +3y1»2C112 + 301¥3Ci22 + v3Cam
Application of the definitions of B; and C; to these mixing rules yields:
By = y1(2—y1)Bi1 +2y3B1y — y3Bn
Ci = yi(3 = 2y1)Ci11 + 6y1y3C112 + 3y3(1 — 2y1)Ci2n — 2y;Com

By = —y{Bii +2y{ Bia + 2(2 — y2) Bx
Cy = —=2y/Cri1 + 3y7(1 = 22)Criz + 6315 Cin + 23 (3 — 2y2)Coma
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14.11

In combination with the mixing rules, these give:

B+ By = 2(y1Bi1 + y2B12)

2C 4+ Ci = 3(1Ciit + 213:C12 + y3Ci2)
B+ By = 2(y2Bx + y1B12)

2C + Cy = 3(y3Cam + 2y1y,C120 + ¥iCi12)

In combination with the boxed equation these expressions along with Eq. (3.40) allow calculation of
In ¢, and In ¢,.

sat

For the case described, Eqgs. (14.1) and (14.2) combine to give: yiP =x; P, Sa‘(ﬁ%

R ¢.Sat
If the vapor phase is assumed an ideal solution, ¢; = ¢;, and yiP =x; P, Sa‘q’ﬁ—
When Eq. (3.38) is valid, the fugacity coefficient of pure species i is given by Eq. (11.36):

1 ¢ BiiP d ¢sat BiiPisat
n P = an ) —_—_
RT ! RT
sat BiiP' sat BiiP Bii P. sat P
Therefore, In o _ Ing™ —Ing; = L _ Bulh )
o; RT RT RT
For small values of the final term, this becomes approximately:
sat Bii P‘sat — P
o _ |, BalP )
bi RT
Wh poypuly BB =P
ence, P = x; P _—t
Y ’ RT

iP'SatBii P»Sat _ P

or yiP—XiPisat=x L ( L )

RT

Write this equation for species 1 and 2 of a binary mixture, and sum. This yields on the left the
difference between the actual pressure and the pressure given by Raoult’s law:

x1 B PP (P — P) 4 x3 By P, (P — P)
RT

Because deviations from Raoult’s law are presumably small, P on the right side may be replaced by
its Raoult’s-law value. For the two terms,

P—PRL) =

Plsat —_ P = Plsat — X Plsat _ x2P2sat — Plsat _ (1 _ .7C2) Plsal _ x2P25a[ — x2(Plsat _ P2sat)
stat —_ P = stat — X Plsat _ x2P2sat — stat _ xlplsat _ (1 _ xl)stat — xl(stat _ Plsat)
Combine the three preceding equations:

x1x2311 (Plsat _ stat) Plsat _ xlszzz(Plsat _ stat) stat
RT

P— PRL) =

xlxz(P]sat _ P2sat) . .
= RT (B11 P — By P,*™)
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Rearrangement yields the following:

Psat_Psat2
P prLy = 1O BT (

B“Plsat _ Bzzpzsal
R

sat sat
Pl - P2

_ x1x (P — Pyity? By, + (Bi1 — By) P,
RT Plsat _ stat

x1x2(Plsat _ PZSat)2 322 stat
= B 1 1— — ot
RT ( 1]) + B11 Plsat _ stat

Clearly, when By, = By, the term in square brackets equals 1, and the pressure deviation from the
Raoult’s-law value has the sign of By1; this is normally negative. When the virial coefficients are not
equal, a reasonable assumption is that species 2, taken here as the “heavier” species (the one with
the smaller vapor pressure) has the more negative second virial coefficient. This has the effect of
making the quantity in parentheses negative and the quantity in square brackets < 1. However, if this
latter quantity remains positive (the most likely case), the sign of Bj; still determines the sign of the
deviations.

14.13 By Eq. (11.90), the definition of y;, Iny; =1In fl —Inx; —In f;

diny;, dinf, 1 1dfi 1

Whence, = =
dx; dx; Xi fz dx; X;

>0

1 df;
Combination of this expression with Eq. (14.71) yields: — —f

dx,-

R df;
Because f; > 0, d_f >0 (const T, P)
Xi

R dui dinf. RT df:
By Eq. (11.46), the definition of f,, di — RT dnf - = d—f’
X X i Xi

dpi
Combination with Eq. (14.72) yields: di >0 (const T, P)
Xi

14.14 Stability requires that AG < 0 (see Pg. 575). The limiting case obtains when AG = 0, in which
event Eq. (12.30) becomes:
GE = —RT Y xiInx;

i

For an equimolar solution x; = 1/N where N is the number of species. Therefore,
G®(max) = —RT 2 ln— = RT 2 N InN =RTInN
i

For the special case of a binary solution, N = 2, and Gf(max) = RT In 2
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14.17

14.19

14.21

14.23

GE  §pP

According to Pb. 11.35, GE =6;,P —_— =
ccording to 12EYy1Y2 or RT RT yiy2
E
This equation has the form: T Axix;

for which it is shown in Examples 14.5 and 14.6 that phase-splitting occurs for A > 2. Thus, the
formation of two immiscible vapor phases requires: 8, P/RT > 2.

Suppose T = 300 K and P = 5 bar. The preceding condition then requires: 815 > 9977 cm® mol~!
for vapor-phase immiscibility. Such large positive values for §;, are unknown for real mixtures.
(Examples of gas/gas equilibria are known, but at conditions outside the range of applicability of the
two-term virial EOS.)

E
Consider a quadratic mixture, described by: T = Ax1x,

It is shown in Example 14.5 that phase splitting occurs for such a mixture if A > 2; the value of
A = 2 corresponds to a consolute point, at x; = x, = 0.5. Thus, for a quadratic mixture,
phase-splitting obtains if:

. 11

This is a model-dependent result. Many liquid mixtures are known which are stable as single phases,
even though Gf > 0.5RT for equimolar composition.

Comparison of the Wilson equation, Eq. (12.18) with the modified Wilson equation shows that
(GE/RT)y, = C(GE/RT), where subscript m distinguishes the modified Wilson equation from
the original Wilson equation. To simplify, define ¢ = (G/RT); then

d(ngm) _ Ca(ng)
al’ll anl

gm = Cg ngm = Cng In(y))m =Clny,

where the final equality follows from Eq. (11.96). Addition and subtraction of In x; on the left side
of this equation and of C In x; on the right side yields:

In(x1y)m — Inx; = Cln(x;y;) — Clnxg

or In(x1y1)m = Cln(x;1y1) — (C — 1D 1nx

dl dl Cc—-1
Differentiate: 101 1)m =C ntayi) —
dx dx X1
As shown in Example 14.7, the derivative on the right side of this equation is always positive. How-
ever, for C sufficiently greater than unity, the contribution of the second term on the right can make

dIn(x;yi)wm
dx1

over part of the composition range, thus violating the stability condition of Eq. (14.71) and implying
the formation of two liquid phases.

<0

(a) Refer to the stability requirement of Eq. (14.70). For instability, i.e., for the formation of two
liquid phases,
d*(GE/RT) 1
—_—_— < —_——

dx? X1X2
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14.29

14.30

14.31

over part of the composition range. The second derivative of G must be sufficiently negative so
as to satisfy this condition for some range of x;. Negative curvature is the norm for mixtures for
which G¥ is positive; see, e.g., the sketches of GE vs. x| for systems (a), (b), (d), (e), and (f) in
Fig. 11.4. Such systems are candidates for liquid/liquid phase splitting, although it does not in
fact occur for the cases shown. Rather large values of G¥ are usually required.

(b) Nothing in principle precludes phase-splitting in mixtures for which G < 0; one merely re-
quires that the curvature be sufficiently negative over part of the composition range. However,
positive curvature is the norm for such mixtures. We know of no examples of liquid/liquid phase-
splitting in systems exhibiting negative deviations from ideal-solution behavior.

The analogy is Raoult’s law, Eq. (10.1), applied at constant P (see Fig. 10.12): y; P = x; P,**
If the vapor phase in VLE is ideal and the liquid molar volumes are negligible (assumptions inherent
in Raoult’s law), then the Clausius/Clapeyron equation applies (see Ex. 6.5):

din Pt AH]

dar RT?

Integration from the boiling temperature 7}, at pressure P (where P, = P) to the actual temperature

T (where P,*" = P**) gives:
P'sat T AHlv
In+t— = / —dT
P~ Jy, RT?

T AHiIU
Vi = X; exp RI? aT

Combination with Eq. (10.1) yields:

which is an analog of the Case I SLE equations.

Consider binary (fwo-species) equilibrium between fwo phases of the same kind. Equation (14.74)
applies:
xyt=xlyl (=12

If phase g is pure species 1 and phase « is pure species 2, then xf = yf3 =1 and x§ =y, =1
Hence, xtyl = xfyl'3 =1 and X3y, = xgyzﬁ =1

The reasoning applies generally to (degenerate) N-phase equilibrium involving N mutually immis-
cible species. Whence the cited result for solids.

The rules of thumb are based on Case II binary SLE behavior. For concreteness, let the solid be pure
species 1 and the solvent be liquid species 2. Then Eqgs. (14.93) and (14.92a) apply:

AH' (T — T,
X1 =Y =exp RT T
nmj

dx, AH?
Differentiate: = . 1
(a) Differentiate T /2 RT?

Thus dx;/dT is necessarily positive: the solid solubility x; increases with increasing T'.

(b) Equation (14.92a) contains no information about species 2. Thus, to the extent that Eqs. (14.93)
and (14.92a) are valid, the solid solubility x; is independent of the identity of species 2.
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(c) Denote the two solid phases by subscripts A and B. Then, by Eqs. (14.93) and (14.92a), the
solubilities x4 and xp are related by:

XA [AH”(TmB — T,,,A)}

— =exp

XB RT,, Ty
where by assumption, AHY = AHy = AH*

Accordingly, x4/xp > 1 ifandonlyif 74 < Tp, thus validating the rule of thumb.

(d) Identify the solid species as in Part (c¢). Then x4 and xp are related by:

XA (AHY — AH)(T,, — T)
— =exp
XB RT,T

where by assumption, Tn,=Tn, =T,

Notice that 7,, > T (see Fig. 14.21b). Then x,/xp > 1 ifandonlyif AHY < AH}, in
accord with the rule of thumb.

14.34 The shape of the solubility curve is characterized in part by the behavior of the derivative dy;/d P
(constant T'). A general expression is found from Eq. (14.98), y; = P;*"P/F;, where the enhance-
ment factor F; depends (at constant 7) on P and y;. Thus,

d P st P | (QF aF,\ d
Py B (_1> +(_1) i
dP P P oP ), oy ), dP
olnF olnF d
(5,505
P oP ), ay, )pdP
[(31@1) 1}
Y1 - =
dYI P i P

Whence, = A
P (a In F1> (4)
1=y
v Jp
This is a general result. An expression for Fj is given by Eq. (14.99):
sat Vs P—P sat
F, = ¢} exp ——1 = ( )
| RT
From this, after some reduction:
(alnFl) <31n¢31> Ve (81nF1) (alnél)
= — + and = —
P ), aP . RT v Jp n /,
dIng Ve o1
yi | — ¢l + |
d P RT P
Whence, by Eq. (A), o i (B)

dP ~ d1n o
1+y1( ¢1>
dy1 »

714



This too is a general result. If the two-term virial equation in pressure applies, then In qASl is given by
Eq. (11.63a), from which:

91In ¢ 1 91In ¢ 2,81, P
( n¢1) = — (B + y3812) and ( n¢1) — _ ononl
Y P

y <V15—B“—y22512_l>
dy, ' RT p
Whence, by Eq. (B), d_l_-i = 2y1y20812 P
1 — 2222
RT

The denominator of this equation is positive at any pressure level for which Eq. (3.38) is likely to be
valid. Hence, the sign of dy,/d P is determined by the sign of the group in parentheses. For very low
pressures the 1/ P term dominates and dy,/d P is negative. For very high pressures, 1/P is small,
and dy,/d P can be positive. If this is the case, then dy;/d P is zero for some intermediate pressure,
and the solubility y; exhibits a minimum with respect to pressure. Qualitatively, these features are
consistent with the behavior illustrated by Fig. 14.23. However, the two-term virial equation is only
valid for low to moderate pressures, and is unable to mimic the change in curvature and “flattening”
of the y; vs. P curve observed for high pressures for the naphthalene/CO, system.

14.35 (a) Rewrite the UNILAN equation:
n— zﬂ [In(c + Pe’) —In(c + Pe™)] (A)
s
As s — 0, this expression becomes indeterminate. Application of I’Hopital’s rule gives:

. .om Peé’ Pe™*
limn = lim — +
s—0 s—02 \c+ Pe’ ¢+ Pe™*

_m P+P
- 2\c¢c+P c+P

I mP
or img_,on =
s—0 c+ P
which is the Langmuir isotherm.
... . dn
(b) Henry’s constant, by definition: k= lim —
P—0dP
. . dn m e’ e’
Differentiate Eq. (A): —_— = — - — -
dP 2s \c+ Pe* c+ Pe™*

C C CcS

m (e e * m (e’ —e™* m .
Whence, k= 7 i = — | — or k = — sinh s
S

(c) All derivatives of n with respect to P are well-behaved in the zero-pressure limit:

. dn m .
lim — = —sinhs
P—~0dP cs
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14.36

14.37

d*n

m
im —— = — ——sinh2s
P—0 dP? c2s
3
. n 2m .
lim —— = ——sinh3s
P=0dP3 c3s

Etc.

Numerical studies show that the UNILAN equation, although providing excellent overall corre-
lation of adsorption data at low-to-moderate surface coverage, tends to underestimate Henry’s
constant.

Start with Eq. (14.109), written as:
In(P/n) = —Ink + /On(z — l)d# +z-1
With z=14 Bn+ Cn?+---, this becomes:
In(P/n) = —Ink +2Bn + %an + -

Thus a plot of In(P/n) vs. n produces —Ink as the intercept and 2B as the limiting slope (for
n — 0). Alternatively, a polynomial curve fit of In(P/n) inn yields —Ink and 2B as the first
two coefficients.

For species i in a real-gas mixture, Eqs. (11.46) and (11.52) give:
ui =T(T)+ RT Iny,§; P
At constant temperature, d ,ulfg =RTdny, g@,- P

Withdu; = duf, Eq. (14.105) then becomes:
a ~
— ﬁdl'l +dInP + Y xidIny;¢; =0 (const T')
For pure-gas adsorption, this simplifies to:
R“—Tdn —dnP+ding  (constT) (A)

which is the real-gas analog of Eq. (14.107). On the left side of Eq. (A), introduce the adsorbate
compressibility factor z through z = [la/RT = I[1A/nRT:

a dn
ﬁd [M=dz+ 17 (B)
where 7 is moles adsorbed. On the right side of Eq. (A), make the substitution:
dP
dlnd):(Z—l)? <)

which follows from Eq. (11.35). Combination of Egs. (A), (B), and (C) gives on rearrangement (see
Sec. 14.8):

n dn dprP
din—=(1—-7)——d Z—-1)—
nP ( Z)n z+( )P

which yields on integration and rearrangement:

P dpP n dn
”=kP-eXp/ (Z = 1D)—--exp /(l—z)—+1—z
0 P 0 n

This equation is the real-gas analog of Eq. (14.109).

716



14.39 & 14.40 Start with Eq. (14.109). With z = (1 — bm)~!, one obtains the isotherm:

14.41

bn
n=kP(l —bn)exp|— (A)
1—bn
. bn bn
For bn sufficiently small, exp| — ~1-
1—bn 1—bn
Whence, by Eq. (4) kP (1 —2bn) o
nce, . , =~ — r N -
ence, by Eq n n 0 n T 26kP

which is the Langmuir isotherm.
With z =1+ Bn, the adsorption isotherm is: n = kP exp(—2p6n)
from which, for Bn sufficiently small, the Langmuir isotherm is again recovered.

By Eq. (14.107) with a = A/ Adll_ dP
. . 1 = , =
Y= Wit " RT _"'p

The definition of ¥ and its derivative are:

MA Adll
—= and dy = ———
T RT

dP
Whence, dyr = n? (A)

4

By Eq. (14.128), the Raoult’s law analogy, x; = y; P/P,°. Summation for given P yields:

Pe-rTh

(B)

By general differentiation,

d¥xi=PdYy 2L+ 2lap (©)

P P,

The equation, ) . x; = 1, is an approximation that becomes increasingly accurate as the solution
procedure converges. Thus, by rearrangement of Eq. (B),

Xi
Vi _2,': 1

—~pP° P P
14

With P fixed, Eq. (C) can now be written in the simple but approximate form:

dP

d P =—

2% =
Equation (A) then becomes:
dy =nd ) x; or 81//:118(2)@)
i i

where we have replaced differentials by deviations. The deviation in ) ; x; is known, since the true

value must be unity. Therefore,
§¥xi=P Z ylo
i i

i

—1
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14.42

1
> (xi/n7)

i

By Eq. (14.132), n=

Combine the three preceding equations:

PZ;;O—I

P —
E (xi/ny)

When x; = y; P/P;°, the Raoult’s law analogy, is substituted the required equation is reproduced:

Py 2L
i P.o

Y= ——

P2 P?Oi;;?

Multiply the given equation for GZ/RT by n and convert all mole fractions to mole numbers:

I’lGE niny nins nyns
=Ap +A3— + Apz——
RT n n n

Apply Eq. (11.96) for i = 1:

1 m 1 m nons
Inyr = Apma | = — 5 | +Apns | = — — ) —An—
non n n

n
= Apxo(l —x1) + Aizxz(1 — x1) — Axzxoxz

Introduce solute-free mole fractions:

/ X2 X2 / X3
X, = = and X3 =
Xy + X3 1 —x; 1 —x
Whence, In Y1 = A]zxé(l — X1)2 + A13x§(1 — X1)2 — A23x§xé(l — X1)2

For x; — 0, Iny™ = Apx) + Azxl — Apxix;
Apply this equation to the special case of species 1 infinitely dilute in pure solvent 2. In this case,
x;=1, x; =0, and
Iny’ = A}, Also Iny’s = Al
Whence, Iny® = x)Iny’ + x3Iny5 — Axsxsx;

In logarithmic form the equation immediately following Eq. (14.24) on page 552 may be applied to
the several infinite-dilution cases:

InH; =1In fi +Iny> InH;p,=1Infi +1ny’% InH;3 =Infi +Iny
Whence, InH; —1In fi = x(InH; 2 —In fi) + x5(nH; 3 — In fi) — Apx)x]
or InH; =x)InHi o + x5 InH; 3 — Apnxjx]
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14.43

14.44

14.47

14.48

For the situation described, Figure 14.12 would have two regions like the one shown from « to B,
probably one on either side of the minimum in curve II.

— IV,
By Eq. (14.136) with V, = V;: R_T2 = —In(xyy»)
Represent In y, by a Taylor series:
dny, 1 d’Iny, 5
Iny, = In _ S ——
rElet T Lt e T |

x1=0
Butat x; =0 (x, = 1), both Iny, and its first derivative are zero. Therefore,

1 (d’Iny, 5
| = — 4
nr 2( dx? ) o

x1=0
2 3 4
X X X
Also, Inx, =In(1 — =—x -2 -1 _1_ ..
X2 (I —x1) - 3 )

1 (d*In
Therefore, In(xyy) =+Inx; +Iny, = —x; — % |:1 - = ( )/2) :|xl2 — .
x1*0
HVz 1 1 dzln]/z
d =14+=-|1-=
an O RT +2{ 2( dx? fit

_ _ , _ 1 1 (d*Iny,
Comparison with the given equation shows that: | B = 3 1-— >
X1 =0

d(GE/RT HE
Equation (11.95) applies: (M) =
P.x

aT = RT?

For the partially miscible system GZ/RT is necessarily “large,” and if it is to decrease with increasing
T, the derivative must be negative. This requires that HZ be positive.

~

1 ¢i _ sat i _ Vi Pj sat d)isat
(a) In accord with Egs. (14.1) and (14.2), y,~¢satP =x;¥i P = K, = L= 7
4 ; .

1

K, Vi Plsat ¢lsat ¢'§2
Opp = = ~
K2 V) stat ¢1 ¢2sat

J/loo Plsat ¢1 (Plsat) . ¢2(P2sat) _ yloo Plsat ' ¢l (Plsat)

(b) ap(x =0)=—F5— = =
Py gy ga(P) P (st

Plsat ‘ ¢1(Plsat) ' d';ZOO(P]sat) _ P]sat . ¢§(2>0(Plsat)
)/200 P2sat ¢] ( Plsat) ¢2 ( stat) J/200 P2sat ¢2( stat)

The final fractions represent corrections to modified Raoult’s law for vapor nonidealities.

apx =1) =
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(c) If the vapor phase is an ideal solution of gases, then q;,» = ¢; for all compositions.

14.49 Equation (11.98) appli dlny H
o uation . a 1€S: = —
a PP oT ),. RTZ

Assume that H% and I-_IiE are functions of composition only. Then integration from 7 to T gives:

e HE /T dT  HE (1 1 Af (T
n = — _— = — _— — = - — _——
vi(x, Ti) R J; T? R \T Ty RT \ T

k

HE (T
vitx, T) = vi(x, Ty) - exp [_ — <Fk — 1)}

0GE
14.52 (a) From Table 11.1, p. 415, find: ( 3T ) =—SF=0 and GEis independent of 7.
P.x
E
F
Therefore G— = R()
RT RT
0(GE/RT) HE GE

b) By Eq. (11.95), _ =——=0 —=F
(b) By Eq. ( ) < 3T , RT? = 7 = Fal)

(¢) For solutions exhibiting LLE, G£/RT is generally positive and large. Thus o and 8 are positive
for LLE. For symmetrical behavior, the magic number is A = 2:

A <2 homogeneous; A =2 consolute point; A >2 LLE

With respect to Eq. (A), increasing T makes G£/RT smaller. thus, the consolute point is an up-
per consolute point. Its value follows from:
o o

=2 T = —
RTy, = U= 2R

The shape of the solubility curve is as shown on Fig. 14.15.

14.53 Why? Because they are both nontoxic, relatively inexpensive, and readily available. For CO,, its
T, is near room temperature, making it a suitable solvent for temperature-sensitive materials. It is
considereably more expensive than water, which is probably the cheapest possible solvent. However,
both 7, and P. for water are high, which increases heating and pumping costs.
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Chapter 16 - Section B - Non-Numerical Solutions

16.1 The potential is displayed as follows. Note that K is used in place of k£ as a parameter to avoid
confusion with Boltzmann’s constant.

4
71

K.d l-d

Combination of the potential with Eq. (16.10) yields on piecewise integration the following expression
for B:

B = %nNAds [1+ & =D (1 - =@ = K) (e —1)]
dB

From this expression, =
P dT ~ kT?

[—(K® — DEe™ /M + (P — KP)ee/M ]

according to which dB/dT =0 for T oo ( and also for an intermediate temperature 7,,:

€e+&
Tm= 3
Kl & K°—1
n —
e PB-K3

That 7,, corresponds to a maximum is readily shown by examination of the second derivative d>B/d T?.

16.2 The table is shown below. Here, contributions to ¢/ (long range) are found from Eq. (16.3) [for U(el)],
Eq. (16.4) [for U(ind)], and Eq. (16.5) [for /(disp)]. Note the following:
1. As also seen in Table 16.2, the magnitude of the dispersion interaction in all cases is substantial.

2. U(el), hence f(el), is identically zero unless both species in a molecular pair have non-zero
permanent dipole moments.

3. As seen for several of the examples, the fractional contribution of induction forces can be sub-
stantial for unlike molecular pairs. Roughly: f(ind) is larger, the greater the difference in polarity
of the interacting species.
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16.3

16.4

16.5

16.6

16.7

Molecular Pair Ce/1078Tm®  f(el) f(ind) f (disp)  f(el)/ f(disp)

CH4/C7H6 49.8 0 0 1.000 0
CH.4/CHCl3 34.3 0 0.008  0.992 0
CH,4/(CH3),CO 249 0 0.088  0.912 0
CH4/CH;CN 22.1 0 0.188  0.812 0
C;H,6c/CHCl; 161.9 0 0.008  0.992 0
C;H6/(CH3),CO 119.1 0 0.096  0.904 0
C;H;6/CH3;CN 106.1 0 0.205  0.795 0
CHCI3/(CH3),CO 95.0 0.143  0.087  0.770 0.186
CHCI:/CH3CN 98.3 0.263 0.151  0.586 0.450
(CH3),CO/CH;CN 270.3 0.806 0.052  0.142 5.680

Water (H,0), a highly polar hydrogen donor and acceptor, is the common species for all four systems;
in all four cases, it experiences strong attractive interactions with the second species. Here, interactions
between unlike molecular pairs are stronger than interactions between pairs of molecules of the same
kind, and therefore A H is negative. (See the discussion of signs for H” in Sec. 16.7.)

Of the eight potential combinations of signs, two are forbidden by Eq. (16.25). Suppose that H” is
negative and S is positive. Then, by Eq. (16.25), GE must be negative: the sign combination G* @,
HE ©, and S @ is outlawed. Similar reasoning shows that the combination G ©, HE @, and St ©
is inconsistent with Eq. (16.25). All other combinations are possible in principle.

In Series A, hydrogen bonding occurs between the donor hydrogens of CH,Cl, and the electron-rich
benzene molecule. In series B, a charge-transfer complex occurs between acetone and the aromatic
benzene molecule. Neither cyclohexane nor n-hexane offers the opportunity for these special solvation
interactions. Hence the mixtures containing benzene have more negative (smaller positive) values of
HE than those containing cyclohexane and n-hexane. (See Secs. 16.5 and 16.6.)

(a) Acetone/cyclohexane is an NA/NP system; one expects GE @, HE @, and SE .

(b) Acetone/dichloromethane is a solvating NA/NA mixture. Here, without question, one will see
GEfo,HE o, and St ©.

(c) Aniline/cyclohexane is an AS/NP mixture. Here, we expect either Region I or Region II behavior:
GE@® and HE @, with S @ oro. [At 323 K (50°C), experiment shows that SE is @ for this
system.]

(d) Benzene/carbon disulfide is an NP/NP system. We therefore expect G @, HE @, and St &.

(e) Benzene/n-hexane is NP/NP. Hence, GE @, HE @, and S &.

(f) Chloroform/1,4-dioxane is a solvating NA/NA mixture. Hence, G ©, HE ©, and St ©.

(g) Chloroform/n-hexane is NA/NP. Hence, GE @, HE @, and St @.

(h) Ethanol/n-nonane is an AS/NP mixture, and ethanol is a very strong associator. Hence, we expect
Region II behavior: G @, HE @, and SE ©.

By definition,  &; =2[B;; — 3 (Bii + Bj;)]

At normal temperature levels, intermolecular attractions prevail, and the second virial coefficients are
negative. (See Sec. 16.2 for a discussion of the connection between intermolecular forces and the
second virial coefficient.) If interactions between unlike molecular pairs are weaker than interactions
between pairs of molecules of the same kind,

|Bij| < 3|Bii + Byjl

722



16.8

16.9

and hence (since each B is negative) §;; > 0. If unlike interactions are stronger than like interactions,
1
|Bij| > 5|Bii + Bjjl
Hence §;; < 0. For identical interactions of all molecular pairs, B;; = B;; = Bj;, and §;; =0

The rationalizations of signs for HZ of binary liquid mixtures presented in Sec. 16.7 apply approxi-
mately to the signs of §;, for binary gas mixtures. Thus, positive &, is the norm for NP/NP, NA/NP, and
AS/NP mixtures, whereas &1, is usually negative for NA/NA mixtures comprising solvating species.
One expects &1 to be essentially zero for ideal solutions of real gases, e.g., for binary gas mixtures of
the isomeric xylenes.

The magnitude of Henry’s constant H; is reflected through Henry’s law in the solubility of solute i in a
liquid solvent: The smaller H;, the larger the solubility [see Eq. (10.4)]. Hence, molecular factors that
influence solubility also influence H;. In the present case, the triple bond in acetylene and the double
bond in ethylene act as proton acceptors for hydrogen-bond formation with the donor H in water, the
triple bond being the stronger acceptor. No hydrogen bonds form between ethane and water. Because
hydrogen-bond formation between unlike species promotes solubility through smaller values of G*
and y; than would otherwise obtain, the values of H; are in the observed order.

By Eq. (6.70), AH® = TAS*. For the same temperaature and pressure, less structure or order
means larger S. Consequently, AS*/, AS", and AS*" are all positive, and so therefore are A H*,
AH",and AH®.

16.11 At the normal boiling point: AH!" = H> — H' = (H" — H¢) — (H' — H'¢) = H?Rv — gR/!

Therefore HR = gRv _ AH

At 1(atm), H®? should be negligible relative to AH'. Then HX! ~ —AH". Because the normal
boiling point is a representative T for typical liquid behavior, and because H % reflects intermolecular
forces, A H'" has the stated feature. A H"V(H,0) is much larger than A H'*(CH,) because of the strong
hydrogen bonding in liquid water.

16.12 By definition, write Ch, = C jpg +CP!, where Cx' is the residual heat capacity for the liquid phase.

16.13 The ideal-gas equation may be written: V' =

Also by definition, C f,f’l = (QHR®'/3T)p. By assumption (modest pressure levels) C ;;g ~ Cp.

I ~ v 9 R
Thus, Cpr=Cp+
P

oT

For liquids, H® is highly negative, becoming less so as T increases, owing to diminution of inter-
molecular forces (see, e.g., Fig. 6.5 or Tables E.5 and E.6). Thus Cf.f’l is positive, and Cfu > Cp.
nRT _ N RT N V! _ RT

P Ny P N NuP

The quantity V’/N is the average volume available to a particle, and the average length available is

about:
AL RT \ /3
(W) - (NAP>

viy'"? 83.14 cm? bar mol™! K~! x 300 K
N ~ \6.023 x 102 mol~" x 1 bar x 10° cm® m™~

For argon, this is about 10 diameters. See comments on p. 649 with respect to separations at which
attractions become negligible.

1/3
3) =346x10"""m or 346A
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