
Lecture Notes; Dr. Etemadi 4/29/2014
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Numerical Methods in 
Engineering

3- NUMERICAL 
DIFFERENTIATION AND 

INTEGRATION

D R .  E T E M A D I

Numerical Differentiation

 Why numerical differentiation?

1 The source function is not known
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1. The source function is not known.

2. The source function is too complicated to 
differentiate.
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Equidistance Differentiation

 Using Taylor series expansion:
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Equidistance Differentiation
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Equ. Dis. Differentiation; Richardson’s Method

 Is used to improve the accuracy of differentiation

 Using Central Difference Approximation:
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 Using Central Difference Approximation:
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Equ. Dis. Differentiation; Richardson’s Method
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MATLAB Homework (Error)
7

 Plot the differentiation error by MATLAB for the first 
derivative of sin xderivative of sin x
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Homework

 For:
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 Show that:
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Equ. Dis. Differentiation (Example)

 Comparing Methods; Show that for
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we have: 
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Equ. Dis. Differentiation (Example)
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Equ. Dis. Differentiation: 2nd Derivative
11
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MATLAB Homework (Error)
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 Plot the differentiation error by MATLAB for the 2nd

derivative of sin xderivative of sin x
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Non Equidistance Differentiation

1. First establish an interpolating formula
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 Newton

 Lagrange

 Spline

2. Then differentiate the function
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Lagrangian Differentiation (Example)

 For three points:
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 Now for equidistance data:
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Lagrangian Differentiation (Example)
15
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Lagrangian Differentiation (Example)
16
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Two Dimensional Differentiation

 Gradient:
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Numerical Integratgion

Why numerical integration?
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 f(x) is not available.

 Analytical integration is not possible or is too 
complicated

Num. Methods: 4-Differentiation & Integration
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Numerical Integration
19
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Numerical Integration
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Numerical Integration 
21

 )(
b

dxxf







 

1

0
11 2/))((

n

i
iiii

a

xxff

  2/222/)()(
1





nb

hffffhffdxxf

Num. Methods: 4-Differentiation & Integration

 

)2)(2/(

2/2...22/)()(

1

1
0

110
0

1

















n

i
in

nn
i

ii
a

fffh

hffffhffdxxf

????????Method

 Maximum error estimation

22

 If         a < < b   then
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?????????? Method  (Example)

 Determine n for integration of the following function 
so that the integration error is less than 10^(-10)

23

so that the integration error is less than 10 ( 10)
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Simpson's Method (3points)

 For 3 points:

24
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Simpson's Method (3points)
25

 n=2k  is a necessity
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Simpson's Method (4points)

 For four points
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 32b

 n=3k is a necessity
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Integral Estimation Using Polynomial 

 Fit a polynomial  to tabulated data

Then use it to analytically  evaluate the integral
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Then use it to analytically  evaluate the integral

 For example by Lagrange’s method:
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Gauss Integration Method

 For n+1 data:
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 Use the following n+1 equations to evaluate Ai , i=0,1,…,n
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Gauss Integration (Example)
29
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Gauss Two-point Integration

 Gauss Formula:
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 Gauss Formula:

 For a general integral like:

Change the variable from x to t and then use the 
Gauss two-point formula
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Gauss Two-point Integration
31
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Integration (Two-point Example)

 1)
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 Analytic al solution;    I=1

 ???????

 Gauss two-point method:

Num. Methods: 4-Differentiation & Integration
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Integration (Two-point Example)

 2)
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 Analytic al solution;  

 ???????

 Gauss two-point method:
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Gauss Three-point Integration
34

 Gauss Formula:
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 For a general integral like:
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Change the variable from x to t and then use the 
Gauss two-point formula
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Gauss Three-point Integration
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Integration (Three-point Example)
36

 Analytic al solution:Analytic al solution:

 Simpson’s method
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 Gauss three-point method:


