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Classification

Classification of PDEs helps us to understand their behavior
and choose suitable solution techniques.
Classification of the governing equations can be performed in
two ways:

o Mathematical

o physical
PDEs are categorized in terms of mathematical
types as follows:

o Hyperbolic (wave)

o Parabolic (transient heat-conduction)

o Elliptic (diffusion)
PDEs are categorize in terms of physical types as
follows:

o Equilibrium Problems (steady heat conduction)

o Marching Problems (Unsteady heat conduction)



Physical Classification

Equilibrium problems involve a closed domain and

boundary conditions.

They are in fact boundary value problems.
Examples are Laplace and Poisson equations:
Vip=0
Vip=f(u,v,V.V)

Boundary condition

PDE must be satisfied in D /




Physical Classification..

Marching problems involve an open domain (time or
time-like) and initial conditions and/or boundary

conditions.

Example are unsteady heat conduction and boundary

layer (without separation) problems.

Marching direction
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Physical Classification..

e Boundary layer equations: (marching in x-direction)

Oou Ov
-t — =

0

e Pure initial value problems:

Ou +a ou =0 linear Berger Eq.
IC. ux0)=f(x) — 100 &
Ou Ou _

—+u—-=0 non — linear Berger Eq.
ot Ox

1.C. u(x,00=f(x) & u,(x0)=g(x)

o*u o*u
? = az ? (Wave Eq)




Mathematical Classification

Consider the following general 2" order PDE:

A(pxx+B(pxy+C(pyy+D¢)x+E(py+F¢+G=O

The characteristic equation of this PDE is:

2
{848
dx dx

Whose roots are:

(ﬂj _ Bi+B*-44C

dx 24

We <can categorize the PDE according to its

discriminant: D=B>-4AC



Mathematical Classification...

1f D>0 atp(xm)%), two real characteristics
exist and the equation is Hyperbolic.

1f D=0 atp(x,,y,), only one real characteristic
exists and the equation is Parabolic.

1f D<O0 atp(x,,),), no real -characteristics
exists and the equation is elliptic.

If D changes sign then the PDE is of mixed type.
For example, for 2D potential flow and Transonic

flow, we have:
(1-M*p, +¢, =0
D=-4(1-M?)

Note that a PDE can be of different types in

different regions.



Mathematical Classification...

Wave equation:

utt - azuxx >
1.C.: u(x,0)=f(x), u,(x,0)=g(x)

The exact solution is

x+at

u(x,t) = %[ f(x+at)+ f(x—at)|+ i j 2(z)dz

It is seen that
D=4a> — Hyperbolic
On the x-t plane, we can show that two

characteristic lines exist

dt 1 x=at+c,
Tt S
dx a xX=-at+c,



Mathematical Classification...

Region 3 is called domain of influence for point P.

Region 2 is called domain (zone) of dependence for

point P.

Region 1, is called domain of silence. This region

does not feel the other two regions.
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Model Equations

Laplace and Poisson:

r0,={
P TPy f(ny)

Unsteady Heat Conduction:
¢ =P, +0,)
First order linear wave equation (Linear Burger Eq.):
¢, +ap, =0
First order nonlinear wave equation (Inviscid nonlinear burger):
¢ +ep, =0
Viscous Burger Equation:
PTOP. =V,
Second order wave equation:

(Dtt = az¢m



System of PDEs

¢ In general, any higher-order PDE can be converted to a

system of first order PDEs.

e EXAMPLE: Let us consider the wave equation ¢, = a2q0m :

o _o
ot ot
ou ov  0u
V= P ol|v 0 -al|o|v
o _, ) oOx 81‘62x S99 7. < -
_ Ou ow ou ot|lw —a 0 |[ox|w
w=a— —_—=q—
ox ox ox?
ow 0’u
—=a
Ot Ooxot
e Or equivalently
a_U+Aa_U:0
ot ox

e Eigen-values of A are 1 ==a.
o Therefore, we have two distinct real eigen-value.

o That is our system is Hyperbolic.



System of PDEs..

EXAMPLE: studying the Laplace equation, ¢ +¢ =0,we

find:
L
oy _)iu_i_O—lﬁu:O
V:a_(ﬁ ox|v 1 0 |oy|v
ox

This have two distinct complex eigen-values, A = +i.

Therefore, the equation is elliptic.



Linear Unsteady System of Equations

Consider

§£+AQ£+B§Q+W:O
o ox oy
Here, matrices A and B are functions of 7,x and .
@ is a column vector and is the dependent variable.
Y is a column vector and is function of @,x and y.
The equation is hyperbolic at a point p(x,?) if the eigen-values

of A are all real and distinct.

The equation is hyperbolic at a point p(y,?) if the eigen-values

of B are all real and distinct.

The equation is parabolic at a point p(x,?) if the eigen-values

of A are all real but less than number of equations.

The equation is parabolic at a point p(),?) if the eigen-values

of B are all real but less than number of equations.




Linear Unsteady System of Equations

The equation is elliptic at a point p(x,?) if the eigen-values of

A are all complex.
The equation is elliptic at a point p(y),?) if the eigen-values of

B are all complex.
The equation is mixed (Hyperbolic/Elliptic) at a point p(x,¢) if

the eigen-values of 4 are mixed real and complex.

The equation is mixed (Hyperbolic/Elliptic) at a point p(y,?) if

the eigen-values of B are mixed real and complex.




Linear Steady System of Equations

Consider

AQ£+BQ£+W=O

ox oy
Method 1: define
H=R>-4PQ
where
P=|4 Q=|B R= Z Z ; Z Z

Then,

H>0 — Hyperbolic
H=0 — parabolic
H<0 — Elliptic

Method 2: re-write the equation as

(4t +B o227+ 22 3wy =0
ox oy



Linear Steady System of Equations

In the characteristic direction 7, we can write
T=(Ai+Bje(n.i+n,j)=An +Bn,
A wave-like solution will exist if

T]=0 or |4n,+Bn|=0

Q(mJ +RP%J+P:O
n)’ n}’

Or (H=R>-4PQ)

This gives

n, _—R i«/ﬁ
n, 20
Therefore,
H >0 — Hyperbolic
H =0 — Parabolic

H <0 — Elliptic



Linear Steady System of Equations

o EXAMPLE: Steady, inviscid and incompressible flow

ou Ov

—+—=0

ox Oy

u@_u+v6_u+8_p:0
ox Oy Ox

u@+v@+a—p:()
ox Oy Oy

e In vector form, we have

1 0
0 0
v 1

S < O

0
1 B=
0

S [ =
T O O

u
A%—Z+B%—(;=O with U=|v| A=
p

n u n
I’ly Vv ny

¢ Which means that the equations are of mixed hyperbolic/elliptic

type.




Linear Unsteady System of Equations

e EXAMPLE: Unsteady, 1D, inviscid and compressible flow

0 ox oy
ot ox pOx
Py pa Py P g
ot Oox Oox
e In vector form,
Yo, u p 0
a—U+A8—U=O with U=|u| A={0 u 1/p
ot ox s
p 0 pu u

¢ Whose eigen-values are

|A—/U|=0 - A=u,u+a,u—a

e System has 3 real and distinct eigen-values, therefore, it is

hyperbolic.



Second order PDEs

e Every second order PDE can be converted to two first order
equations first and then dealt with as before.

o EXAMPLE: steady, 2D, viscous, incompressible flow

o, v _

+ 0
ox Oy
ou Ou op 1 (0°u 0u
U—FV—=——t—| —S+—
ox oy ox Rel\ox™ Oy
ov ov op 1 (v 0w
U—F+V—=——t—| S+
& oy 0y Relox” oy
e Set,
ov
a=2
Ox
e R -
oy ox oy
ou
c=H
oy




Second order PDEs

In vector form, we get

5U aU
=C
8x 6y
[0 0 0 0 0 0] 1 0 0o 0o 0 0]
" 1 0 0 0 0 0 0 1 0 0 0 0
v 0 0 0 1 0 0 0 0 -1 0 0 0
U:Z 4=l0 0 0 0 1 0 B=l0o 0 0 1 0 0
0 0 0 £ o 1 o 0o o o =L o
c Re Re
» o 0o =L o 0o o o 0o o =L o 1
L Re ] L Re ]
We get
, 0 0 0 0 0]
n. n, 0 0 0 0
0 0 -n, n 0 0 n,=0
0 0 n, n, 0 ‘T‘ —n (n +n2,) =0 > {(nY
n. —n e ! 2| +1=0
o0 o0 N - n,
Re Re
_ -n,
0 0 o g
L Re Re -

Whose eigen-values are imaginary. Therefore, the system is

mixed elliptic/parabolic.



