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Classification 
 
 

• Classification of PDEs helps us to understand their behavior 
and choose suitable solution techniques. 

• Classification of the governing equations can be performed in 
two ways: 

o Mathematical 
o physical 

• PDEs are categorized in terms of mathematical 

types as follows: 

o Hyperbolic (wave) 

o Parabolic (transient heat-conduction) 

o Elliptic (diffusion)  

• PDEs are categorize in terms of physical types as 

follows: 

o Equilibrium Problems (steady heat conduction) 

o Marching Problems (Unsteady heat conduction)  



Physical Classification 
 
 

• Equilibrium problems involve a closed domain and 

boundary conditions.  

• They are in fact boundary value problems.  

• Examples are Laplace and Poisson equations: 
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Boundary condition 
PDE must be satisfied in D 



Physical Classification… 
 
 

• Marching problems involve an open domain (time or 

time-like) and initial conditions and/or boundary 

conditions. 

• Example are unsteady heat conduction and boundary 

layer (without separation) problems.  
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Physical Classification… 
 
 

• Boundary layer equations: (marching in x-direction) 
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• Pure initial value problems: 
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Mathematical Classification 
 
 

• Consider the following general 2nd order PDE: 
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• The characteristic equation of this PDE is: 
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• Whose roots are: 
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• We can categorize the PDE according to its 

discriminant: ACBD 42 −=   



Mathematical Classification... 
 

 

• If 0>D  at ),( 00 yxp , two real characteristics 

exist and the equation is Hyperbolic. 

• If 0=D  at ),( 00 yxp , only one real characteristic 

exists and the equation is Parabolic. 

• If 0<D  at ),( 00 yxp , no real characteristics 

exists and the equation is elliptic. 

• If D  changes sign then the PDE is of mixed type. 

For example, for 2D potential flow and Transonic 

flow, we have: 
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• Note that a PDE can be of different types in 

different regions. 

 



Mathematical Classification... 
 

 

• Wave equation: 
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• The exact solution is 
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• It is seen that 

HyperbolicaD →= 24  

• On the tx −  plane, we can show that two 

characteristic lines exist 
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Mathematical Classification... 
 

• Region 3 is called domain of influence for point P . 

• Region 2 is called domain (zone) of dependence for 
point P . 

• Region 1, is called domain of silence. This region 
does not feel the other two regions. 
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Model Equations 
 

• Laplace and Poisson: 
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• Unsteady Heat Conduction: 

)( yyxxt ϕϕαϕ +=  

• First order linear wave equation (Linear Burger Eq.): 

0=+ xt aϕϕ  

• First order nonlinear wave equation (Inviscid nonlinear burger): 

0=+ xt ϕϕϕ  

• Viscous Burger Equation: 

xxxt νϕϕϕϕ =+  

• Second order wave equation: 

xxtt a ϕϕ 2=  

 



System of PDEs 
 

• In general, any higher-order PDE can be converted to a 
system of first order PDEs. 

• EXAMPLE: Let us consider the wave equation xxtt a ϕϕ 2= : 
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• Or equivalently 
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• Eigen-values of A  are a±=λ . 

• Therefore, we have two distinct real eigen-value.  

• That is our system is Hyperbolic. 



System of PDEs… 
 

• EXAMPLE: studying the Laplace equation, 0=+ yyxx ϕϕ , we 

find: 
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• This have two distinct complex eigen-values, i±=λ . 

• Therefore, the equation is elliptic.  



Linear Unsteady System of Equations 
 

• Consider 
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• Here, matrices  A  and B  are functions of xt,  and y . 
• ϕ  is a column vector and is the dependent variable. 
• ψ  is a column vector and is function of x,ϕ  and y . 
• The equation is hyperbolic at a point ),( txp  if the eigen-values 

of A  are all real and distinct. 

• The equation is hyperbolic at a point ),( typ  if the eigen-values 

of B  are all real and distinct. 

• The equation is parabolic at a point ),( txp  if the eigen-values 

of A  are all real but less than number of equations. 

• The equation is parabolic at a point ),( typ  if the eigen-values 

of B  are all real but less than number of equations. 
 



Linear Unsteady System of Equations 

 

• The equation is elliptic at a point ),( txp  if the eigen-values of 

A  are all complex. 

• The equation is elliptic at a point ),( typ  if the eigen-values of 

B  are all complex. 

• The equation is mixed (Hyperbolic/Elliptic) at a point ),( txp  if 

the eigen-values of A  are mixed real and complex. 

• The equation is mixed (Hyperbolic/Elliptic)  at a point ),( typ  if 

the eigen-values of B  are mixed real and complex. 

 

 

 

 

 

 



Linear Steady System of Equations 
 

• Consider 
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• Method 2: re-write the equation as 
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Linear Steady System of Equations 
 

• In the characteristic direction nr , we can write 

yxyx nBnAninBiAT +=+•+= )ĵˆ()ĵˆ(  

• A wave-like solution will exist if 

00 =+= yx nBnAorT  

• This gives 
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Linear Steady System of Equations 
 

• EXAMPLE: Steady, inviscid and incompressible flow 
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• In vector form, we have 
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• Which means that the equations are of mixed hyperbolic/elliptic 
type. 



Linear Unsteady System of Equations 
 

• EXAMPLE: Unsteady, 1D, inviscid and compressible flow 
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• In vector form,  
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• Whose eigen-values are 

auauuI −+=→=− ,,0 λλA  

• System has 3 real and distinct eigen-values, therefore, it is 

hyperbolic. 



Second order PDEs 
 

• Every second order PDE can be converted to two first order 
equations first and then dealt with as before. 

• EXAMPLE: steady, 2D, viscous, incompressible flow 
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• Set, 
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Second order PDEs 
 

• In vector form, we get 
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• We get, 
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• Whose eigen-values are imaginary. Therefore, the system is 
mixed elliptic/parabolic.  


