Computational Fluid Dynamics

Classification of PDEs

M.T. Manzari

Classification

- Classification of PDEs helps us to understand their behavior and choose suitable solution techniques.
- Classification of the governing equations can be performed in two ways:
- Mathematical
- physical
- PDEs are categorized in terms of mathematical types as follows:
- Hyperbolic (wave)
- Parabolic (transient heat-conduction)
- Elliptic (diffusion)
- PDEs are categorize in terms of physical types as follows:
- Equilibrium Problems (steady heat conduction)
- Marching Problems (Unsteady heat conduction)

Physical Classification

- Equilibrium problems involve a closed domain and boundary conditions.
- They are in fact boundary value problems.
- Examples are Laplace and Poisson equations:

$$
\begin{aligned}
& \nabla^{2} \varphi=0 \\
& \nabla^{2} p=f(u, v, \nabla \cdot \mathbf{V})
\end{aligned}
$$

Physical Classification...

- Marching problems involve an open domain (time or time-like) and initial conditions and/or boundary conditions.
- Example are unsteady heat conduction and boundary layer (without separation) problems.

Physical Classification...

- Boundary layer equations: (marching in x-direction)

$$
\begin{aligned}
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \\
& u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=v \frac{\partial^{2} u}{\partial y^{2}}
\end{aligned}
$$

- Pure initial value problems:

$$
\text { I.C. } u(x, 0)=f(x) \rightarrow \begin{cases}\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial x}=0 & \text { linear Berger Eq. } \\ \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0 & \text { non }- \text { linear Berger Eq. }\end{cases}
$$

$$
\begin{aligned}
\text { I.C. } \quad u(x, 0) & =f(x) \quad \& \quad u_{t}(x, 0)=g(x) \\
& \rightarrow \frac{\partial^{2} u}{\partial t^{2}}=a^{2} \frac{\partial^{2} u}{\partial x^{2}} \quad \text { (wave Eq.) }
\end{aligned}
$$

Mathematical Classification

- Consider the following general $2^{\text {nd }}$ order PDE:

$$
A \varphi_{x x}+B \varphi_{x y}+C \varphi_{y y}+D \varphi_{x}+E \varphi_{y}+F \varphi+G=0
$$

- The characteristic equation of this PDE is:

$$
A\left(\frac{d y}{d x}\right)^{2}-B\left(\frac{d y}{d x}\right)-C=0
$$

- Whose roots are:

$$
\left(\frac{d y}{d x}\right)=\frac{B \pm \sqrt{B^{2}-4 A C}}{2 A}
$$

- We can categorize the PDE according to its discriminant: $D=B^{2}-4 A C$

Mathematical Classification...

- If $D>0$ at $p\left(x_{0}, y_{0}\right)$, two real characteristics exist and the equation is Hyperbolic.
- If $D=0$ at $p\left(x_{0}, y_{0}\right)$, only one real characteristic exists and the equation is Parabolic.
- If $D<0$ at $p\left(x_{0}, y_{0}\right)$, no real characteristics exists and the equation is elliptic.
- If D changes sign then the PDE is of mixed type. For example, for 2 D potential flow and Transonic flow, we have:

$$
\begin{aligned}
& \left(1-M^{2}\right) \varphi_{x x}+\varphi_{y y}=0 \\
& D=-4\left(1-M^{2}\right)
\end{aligned}
$$

- Note that a PDE can be of different types in different regions.

Mathematical Classification...

- Wave equation:

$$
\begin{aligned}
& u_{t t}=a^{2} u_{x x}, \\
& I . C .: \quad u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x)
\end{aligned}
$$

- The exact solution is

$$
u(x, t)=\frac{1}{2}[f(x+a t)+f(x-a t)]+\frac{1}{2 a} \int_{x-a t}^{x+a t} g(z) d z
$$

- It is seen that

$$
D=4 a^{2} \quad \rightarrow \quad \text { Hyperbolic }
$$

- On the $x-t$ plane, we can show that two characteristic lines exist

$$
\frac{d t}{d x}= \pm \frac{1}{a} \rightarrow\left\{\begin{array}{c}
x=a t+c_{1} \\
x=-a t+c_{2}
\end{array}\right.
$$

Mathematical Classification...

- Region 3 is called domain of influence for point P.
- Region 2 is called domain (zone) of dependence for point P.
- Region 1, is called domain of silence. This region does not feel the other two regions.

Model Equations

- Laplace and Poisson:

$$
\varphi_{x x}+\varphi_{y y}=\left\{\begin{array}{c}
0 \\
f(x, y)
\end{array}\right.
$$

- Unsteady Heat Conduction:

$$
\varphi_{t}=\alpha\left(\varphi_{x x}+\varphi_{y y}\right)
$$

- First order linear wave equation (Linear Burger Eq.):

$$
\varphi_{t}+a \varphi_{x}=0
$$

- First order nonlinear wave equation (Inviscid nonlinear burger):

$$
\varphi_{t}+\varphi \varphi_{x}=0
$$

- Viscous Burger Equation:

$$
\varphi_{t}+\varphi \varphi_{x}=v \varphi_{x x}
$$

- Second order wave equation:

$$
\varphi_{t t}=a^{2} \varphi_{x x}
$$

System of PDEs

- In general, any higher-order PDE can be converted to a system of first order PDEs.
- EXAMPLE: Let us consider the wave equation $\varphi_{t t}=a^{2} \varphi_{x x}$:

$$
\left\{\begin{array}{l}
v=\frac{\partial u}{\partial t} \\
w=a \frac{\partial u}{\partial x}
\end{array} \rightarrow\left\{\begin{array}{l}
\frac{\partial v}{\partial t}=\frac{\partial^{2} v}{\partial t^{2}} \\
\frac{\partial v}{\partial x}=\frac{\partial^{2} u}{\partial t \partial x} \\
\frac{\partial w}{\partial x}=a \frac{\partial^{2} u}{\partial x^{2}} \\
\frac{\partial w}{\partial t}=a \frac{\partial^{2} u}{\partial x \partial t}
\end{array} \rightarrow \frac{\partial}{\partial t}\left[\begin{array}{c}
v \\
w
\end{array}\right]+\left[\begin{array}{cc}
0 & -a \\
-a & 0
\end{array}\right] \frac{\partial}{\partial x}\left[\begin{array}{c}
v \\
w
\end{array}\right]=0\right\}\right.
$$

- Or equivalently

$$
\frac{\partial \mathbf{U}}{\partial t}+\mathbf{A} \frac{\partial \mathbf{U}}{\partial x}=\mathbf{0}
$$

- Eigen-values of \mathbf{A} are $\lambda= \pm a$.
- Therefore, we have two distinct real eigen-value.
- That is our system is Hyperbolic.

System of PDEs...

- EXAMPLE: studying the Laplace equation, $\varphi_{x x}+\varphi_{y y}=0$, we find:

$$
\left\{\begin{array}{l}
u=\frac{\partial \varphi}{\partial y} \\
v=\frac{\partial \varphi}{\partial x}
\end{array} \quad \rightarrow \quad \frac{\partial}{\partial x}\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \frac{\partial}{\partial y}\left[\begin{array}{l}
u \\
v
\end{array}\right]=0\right.
$$

- This have two distinct complex eigen-values, $\lambda= \pm i$.
- Therefore, the equation is elliptic.

Linear Unsteady System of Equations

- Consider

$$
\frac{\partial \varphi}{\partial t}+A \frac{\partial \varphi}{\partial x}+B \frac{\partial \varphi}{\partial y}+\psi=0
$$

- Here, matrices A and B are functions of t, x and y.
- φ is a column vector and is the dependent variable.
- ψ is a column vector and is function of φ, x and y.
- The equation is hyperbolic at a point $p(x, t)$ if the eigen-values of A are all real and distinct.
- The equation is hyperbolic at a point $p(y, t)$ if the eigen-values of B are all real and distinct.
- The equation is parabolic at a point $p(x, t)$ if the eigen-values of A are all real but less than number of equations.
- The equation is parabolic at a point $p(y, t)$ if the eigen-values of B are all real but less than number of equations.

Linear Unsteady System of Equations

- The equation is elliptic at a point $p(x, t)$ if the eigen-values of A are all complex.
- The equation is elliptic at a point $p(y, t)$ if the eigen-values of B are all complex.
- The equation is mixed (Hyperbolic/Elliptic) at a point $p(x, t)$ if the eigen-values of A are mixed real and complex.
- The equation is mixed (Hyperbolic/Elliptic) at a point $p(y, t)$ if the eigen-values of B are mixed real and complex.

Linear Steady System of Equations

- Consider

$$
A \frac{\partial \varphi}{\partial x}+B \frac{\partial \varphi}{\partial y}+\psi=0
$$

- Method 1: define

$$
\begin{aligned}
& H=R^{2}-4 P Q \\
& \text { where } \\
& P=|A| \quad Q=|B| \quad R=\left|\begin{array}{ll}
a_{1} & a_{4} \\
b_{1} & b_{4}
\end{array}\right|+\left|\begin{array}{ll}
a_{3} & a_{2} \\
b_{3} & b_{2}
\end{array}\right|
\end{aligned}
$$

- Then,

$$
\begin{array}{|ccl|}
\hline H>0 & \rightarrow & \text { Hyperbolic } \\
H=0 & \rightarrow & \text { parabolic } \\
H<0 & \rightarrow & \text { Elliptic } \\
\hline
\end{array}
$$

- Method 2: re-write the equation as

$$
(A \hat{i}+B \hat{j}) \bullet\left(\frac{\partial \varphi}{\partial x} \hat{i}+\frac{\partial \varphi}{\partial y} \hat{j}\right)+\psi=0
$$

Linear Steady System of Equations

- In the characteristic direction \vec{n}, we can write

$$
T=(A \hat{i}+B \hat{\mathbf{j}}) \bullet\left(n_{x} \hat{i}+n_{y} \hat{\mathbf{j}}\right)=A n_{x}+B n_{y}
$$

- A wave-like solution will exist if

$$
|T|=0 \quad \text { or } \quad\left|A n_{x}+B n_{y}\right|=0
$$

- This gives

$$
Q\left(\frac{n_{x}}{n_{y}}\right)^{2}+R\left(\frac{n_{x}}{n_{y}}\right)+P=0
$$

- Or $\left(H=R^{2}-4 P Q\right)$

$$
\frac{n_{x}}{n_{y}}=\frac{-R \pm \sqrt{H}}{2 Q}
$$

- Therefore,

$$
\begin{aligned}
& H>0 \rightarrow \text { Hyperbolic } \\
& H=0 \rightarrow \text { Parabolic } \\
& H<0 \rightarrow \text { Elliptic }
\end{aligned}
$$

Linear Steady System of Equations

- EXAMPLE: Steady, inviscid and incompressible flow

$$
\begin{aligned}
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \\
& u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+\frac{\partial p}{\partial x}=0 \\
& u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+\frac{\partial p}{\partial y}=0
\end{aligned}
$$

- In vector form, we have
$A \frac{\partial U}{\partial x}+B \frac{\partial U}{\partial y}=0$ with $U=\left[\begin{array}{l}u \\ v \\ p\end{array}\right] \quad A=\left[\begin{array}{lll}1 & 0 & 0 \\ u & 0 & 1 \\ 0 & u & 0\end{array}\right] \quad B=\left[\begin{array}{lll}0 & 1 & 0 \\ v & 0 & 0 \\ 0 & v & 1\end{array}\right]$
$\Rightarrow|T|=-\left(u n_{x}+v n_{y}\right)\left(n_{x}^{2}+n_{y}^{2}\right)=0 \quad \rightarrow \frac{n_{x}}{n_{y}}=-\frac{u}{v}$ and $\frac{n_{x}}{n_{y}}= \pm \sqrt{1}$
- Which means that the equations are of mixed hyperbolic/elliptic type.

Linear Unsteady System of Equations

- EXAMPLE: Unsteady, 1D, inviscid and compressible flow

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}+\rho \frac{\partial u}{\partial y}=0 \\
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\frac{1}{\rho} \frac{\partial p}{\partial x}=0 \\
& \frac{\partial p}{\partial t}+\rho a^{2} \frac{\partial u}{\partial x}+u \frac{\partial p}{\partial x}=0
\end{aligned}
$$

- In vector form,

$$
\frac{\partial \mathbf{U}}{\partial t}+\mathbf{A} \frac{\partial \mathbf{U}}{\partial x}=0 \quad \text { with } \quad \mathbf{U}=\left[\begin{array}{c}
\rho \\
u \\
p
\end{array}\right] \quad \mathbf{A}=\left[\begin{array}{ccc}
u & \rho & 0 \\
0 & u & 1 / \rho \\
0 & \rho u^{2} & u
\end{array}\right]
$$

- Whose eigen-values are

$$
\mid \mathbf{A}-\lambda I=0 \quad \rightarrow \quad \lambda=u, u+a, u-a
$$

- System has 3 real and distinct eigen-values, therefore, it is hyperbolic.

Second order PDEs

- Every second order PDE can be converted to two first order equations first and then dealt with as before.
- EXAMPLE: steady, 2D, viscous, incompressible flow

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \\
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=-\frac{\partial p}{\partial x}+\frac{1}{\operatorname{Re}}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) \\
u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}=-\frac{\partial p}{\partial y}+\frac{1}{\operatorname{Re}}\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)
\end{array}\right.
$$

- Set,

$$
\left\{\begin{array}{l}
a=\frac{\partial v}{\partial x} \\
b=\frac{\partial v}{\partial y} \quad------\rightarrow \quad \frac{\partial u}{\partial x}=-\frac{\partial v}{\partial y}=-b \\
c=\frac{\partial u}{\partial y}
\end{array}\right.
$$

Second order PDEs

- In vector form, we get

$$
A \frac{\partial U}{\partial x}+B \frac{\partial U}{\partial y}=C
$$

$$
U=\left[\begin{array}{c}
u \\
v \\
a \\
b \\
c \\
p
\end{array}\right] \quad A=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & \frac{1}{\operatorname{Re}} & 0 & 1 \\
0 & 0 & \frac{-1}{\operatorname{Re}} & 0 & 0 & 0
\end{array}\right] \quad B=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{-1}{\mathrm{Re}} & 0 \\
0 & 0 & 0 & \frac{-1}{\mathrm{Re}} & 0 & 1
\end{array}\right]
$$

- We get,

$$
T=\left[\begin{array}{cccccc}
n_{y} & 0 & 0 & 0 & 0 & 0 \\
n_{x} & n_{y} & 0 & 0 & 0 & 0 \\
0 & 0 & -n_{y} & n_{x} & 0 & 0 \\
0 & 0 & 0 & n_{y} & n_{x} & 0 \\
0 & 0 & 0 & \frac{n_{x}}{\operatorname{Re}} & \frac{-n_{y}}{\operatorname{Re}} & n_{x} \\
0 & 0 & \frac{-n_{x}}{\operatorname{Re}} & \frac{-n_{y}}{\operatorname{Re}} & 0 & n_{y}
\end{array}\right] \rightarrow|T|=\frac{1}{\operatorname{Re}} n_{y}^{2}\left(n_{x}^{2}+n_{y}^{2}\right)^{2}=0 \quad \rightarrow\left\{\left\{\begin{array}{c}
n_{y}=0 \\
\left(\frac{n_{y}}{n_{x}}\right)^{2}+1=0
\end{array}\right.\right.
$$

- Whose eigen-values are imaginary. Therefore, the system is mixed elliptic/parabolic.

