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FDM: Basics

¢ The finite difference method is based on the properties of the
Taylor series and on the straight forward application of the

definition of derivatives.

e For afunction u(x), the derivative at point x is defined as

u, _ou_ lim”(x"'Ax)—u(x)

ox Ax—0 Ax

( )=( )+ )
e The power Ax with which the error goes to zero for Ax —> 0 is

called the order of the difference equation.
u(x + Ax) u(x)

2
u(x +Ax) =u(x)+Ax.u,_ +%um +.. -

u(x+AX)—u(x):u +(ﬂ)u +...=u,_+0O(Ax)
~ e e e Sy




Various Differences

e There are three difference forms:

(u,), = % +O(Ax) Jorward
(1), === +0(A) backward
x /i Ax
(1), == 2+ 0(AF)
(), =210 O(AX?) central

U —u;, 2
= O(Ax
(“x )1-1/2 Ax +0( )



Using Arbitrary Number of Points

o We can involve as many points as we want to obtain a required

accuracy. For example, we can write:

+O(Ax?)

( ) _ay, +bu,  +cu, ,
X /i

e The coefficients a, b and c are obtained as

s =u-2c(u,), +2(axP ()~ 28 ) 4

e Then,

au; +bu, | +cu,_, =(a+b+cu, — Ax(2c+b)(u,), + (Ax2)(4c +b)(u,), + O(AxY)
o This requires
a+b+c=0 a=3/2
2c+b=-1 = {b==2 — (u) =
4c+b=0 c=1/2




Using Arbitrary..

e A similar relation can be written using i,i +1 and i +2

= 3u, +4u,,
(ux )i - AX

e For the second order derivatives, we can write:

“ %2 4 0(Ax?)

(uxx )i _ (ux )i+1 - (”x )i Uy —2u Uy n O(sz)

Ax (Ax)

e Another form which is first order can be written as

( XX )i = ui _2u[_1 +ui_2

(Ax)

+0(Ax)



General Method for Deriving Formulas

o We use the following operator

Eu,=u,, (displacement operator)
E'u =u,,
E'u, =u,, (in general)

e Also use

0" . forward difference operator  6'u, =u,,, —u,

0~ : backward difference operator 6 u, =u, —u,,

o central difference operator OU, =U; ,, —U_ i,

5 central difference operator Su, =, —u,_)/2

U averaging operator g, = (u,,,, +u,_, )2
D differential operator Du, = Z—Z =u,

e We note that

0" =E-1 o =1-1/E




General Method...
e This results in the following relations:
5 =ES"
T8 =66"=0"-6 =57
S=E"?-E'"=(E-E")/2
u=(E"?+E)/2

e For n repeated actions of the operator o , we have

(67f =667 =E>-2E+1
(6°) =(E-1) =E* -3E” +3E-1




Difference Formulas for First Derivatives

Using the Taylor expansion, we get

u(x + Ax) =u(x)+ Ax.u, +%um +%um + ...
Or
Eu(x)= (1 +Ax.D + (szl')) + (Ax;')) + ...Ju(x) -

Eu(x)=e"u(x) - E=exp(AxD) — AxD=ln(E)

Forward Difference: from the above relations, we can write

AxD:In(E)zln(l+5+):§+—(5+) +(5+) _67) +
2 3 4

Keeping the first three terms, we get

—3u, +4u,,, —u, 2
(ux )i = Dui = ul +2 Z;l qu + (A;C) uxxx




Difference formulas...

e Backward difference:

AxDzln(E)z—ln(l—é‘)zé‘+(52) +(53) +(54) .

or

2
(u,); =Du, = Su; — Ay, H i (Ax) u_

2 Ax 3

e Central Difference:

172 T2
Suy =ty —Uyy =(E"—E" Dy, -

i

d=exp(AxD/2)—exp(-Ax D/2)=2sinh(AxD/2) —

3 5 7
AxD = 2sinh ™ (8/2) =2 &~ [5) 13 [ﬂ __1x3x5 [5) L
2 2x3\2 2x4x5\2 2x4x6xT\ 2

5 38° 567
=0—-——+
24 640 7168

o Keeping the first term, we obtain

(”x)- _ Uinp “Uin (Ax)z -
' Ax 24

+ ...




Difference formulas...

Keeping the first two terms, we obtain:

(ux )i _ " Ui +27u,,,, = 27U, ) +u, 5, N 3 (Ax)4 2
24 Ax 640 Ox
We could use 5 to get
S 1 -1 1 AxD _AxD .
5:5(E—E ):5(6 —e ):SH’lh(AXD) N

=<\
AxD:sinh-l(S)zg—(‘? +2Xix5(5‘)5—...

Nothing that 1° =1+5°/4 or

2 4 6

8 128 1024

We obtain

2 2 _ 2 2 2
AxD=ﬂ[§—31'53 L2 s —...):5[1—152 125 —ﬁ# +J

3!

3! St 7




Difference formulas...

e Then, keeping one term, we get

2
0,) = et T,

o And keeping two terms, we get

4
(”x)' _ Ui +8u,, —8u,  +u,, " (Ax) U
' 12 Ax 30




Higher Order Derivatives

For higher-order derivatives, we can use a one-sided forward

difference as

(a"ul = D'y, = ﬁ[ln(l +69'u,

ox"
1 By n(Bn+S5) oy n(n+2)(n+3) (e
L e e e

This can be written in terms of the backward and central

differences as

(

ul _ “Llina-s)]'s, oul isinhl(éj u,
ox" )  Ax" ox" ) | Ax 2

For even values of 7n, the central difference form generates

formulas using the integer mesh points. For odd values of 7,

the formulas involve points at half-integer mesh points.

For the following equation, the inverse is true:

n 2
D' _us (1_n+352+5n +52n+13554+“'j “

Ax" 24 5760




Higher Order Derivatives

For example, we obtain the followings:

sz

O L R T e R

(,,); =
(uxx )i = 1

sz

AxZ

1 _(5)2+(5)3+%(5)4+§(5)5+..}ui
(6) =0+ (0 - <

12

6

90 560

L (o) +oar )}

By keeping only the first term, these formulas give:

1

(u,, )i = E( o =2u,,, +u,)—Ax.u_, (st order forward)
(u,, )i = Aiz (u, —2u,_, +u,_,)+Ax.u_, (lst order backward)
2
(uxx)i =§( u,, —2u, +u,_ ) —.u . (2nd order central)
1 5Ax*
(u, )i = E(”H&/Q T Ui T Uiy +ui—3/2)_7 ww (2nd order central)




Higher Order Derivatives..

o The one-sided difference formulas are only first-order accurate,
while the central difference always leads to a higher-order of
accuracy.

o By keeping the first two terms of the above formulas, we obtain
higher-order formulas:

(uxx ), = ﬁ(Zu, —5u,,, +4u,,, - u,+3)+ ! llAzxz .. (2nd order forward)

(uxx ), = ﬁ(Zu, —5u,_ +4u,_, — uH)f 111A2xz Uy (2nd order backward)

(u.,) :%(f U, +16u,,, —30u, +16u,_, —u,_, )+ ﬁu (4th order central)

O12Ax° 90
() = ﬁ(f Sttyysn + 39,5, — 34y, — 34U, +3%,_;, — 5u,,5/2)+%.uwx (4th order central)

0 ou
e For aterm like a—(k(x) 8_j , we can use: (2" order central)
X X

0

Oox

‘:k(x) %} u, =

1

(Ax)

5 (k, 0 Ju, + O(AX)

ki (U —uy,) . ki, (u; —u,y)

(Ax)

(Ax)

+O0(Ax?)




3™ Order Derivatives

o As an special case, we can easily show that
o' ! (u 3u;,, + 3u u,) Ax 0'u Ist order forward
— | =—\u,., —3u. o —U)———— -
ac ’ (AX)3 i+3 i+2 i+l i 2 ot .
d'u 1 21(Ax) &%u
— | = —3u,,, +14u, - 24u,,, +18u,  —5u, )+ — 2nd order forward
(28] - g e w120 1, =50 ) 2T 2 f
3 4
a—’: - ~ (u, =3u, , +3u, , 7u,,3)+g6—il Ist order backward
ox” ), (Ax) - 2 ox
3 1 21 2 A5
a—’f = 0 (5u, —18u, , +24u, , —14u, ,+3u, ,)— (ax) a—l: 2nd order backward
ox” ), 2(Ax) 12 ox°
o’u (Ax) &°u
(axg J, = (Ax)j(uus/z =31y 30Uy — Uy ) - T o 2nd order central
o*u 1 37(Ax)' 8"u
(5} = S(Axy (_”,+5/z +13u,, 5, —34u;,,,, +34u,_,,, —13u,_5, +u,;_; 2)— 1920 2 4th order central

o Also, using integer points, we get:

; 2 A5
[2;:]1 - Q(Alx)} (“;+2 =2u,, +2u, , + uffz)—%zx—? 2nd order central
o | 7(Ax)* &7
[6)61:], ) 8(Ax)’ (_ Upy + 8ty —13u,y +13u, —8u,_, + MH)_%QI: Ak order central




4th Order Derivatives

Similarly, for the 4™ order formulas, we get

o
ox?
o
ox*
ou
ox*

i

(&)’

—~

Ax)'

5

(”i+4 —4u,, 5 +6u,,, —4u,,
ou
- (u, —4u,  +6u,_,—4u, 5+ u,.74)+ 2Mx— 1st order backward
Ax) Ox
(Ax) o
U, —4u,, +6u —4u,  +u, ,)————r
( i+2 i+1 i i-1 1—2) 6 ax(,

+u,)- ZM% 1st order forward
X

2nd order central




Implicit FD Formulas

Implicit formulas are defined as expressions where derivatives
at different mesh points appear simultaneously.

We can generate implicit formulas from previous explicit
formulas.

For example starting with

AxD :y5(1+52 /6)" +0(Ax") —

(1+52/6)D = Ax+0(Ax) =

el +40) +(0,), = B oqar

The last equation is called rational fraction or Pade's

differencing.



Implicit FD Formulas..

e The use of this formulas results in the following tri-diagonal

system:
0 0
_ 0] )
141 (”x ),-71 U, —u;,
1 4 1 (”x )i = =2 Uiy — U
14 1 (ux )[+1 A Uiy —U;
0 S .
L 0 _ L O .

e The reason why the formulas are higher order is that each u,

depends on all values of u's .



Derivation of Implicit Formulas

o If we use a three point expression, we can write a general form

as

a‘u,, +a’u, +au,  +
b* (ux )i+1 +b0(ux )i +b_(ux )i—l +
C+ (uxx )i+1 +co(uxx )i +c—(uxx )i—l = O

e Developing all the variables in a Taylor series about point i, We

get
e In order to get a 2" order accuracy for the second derivative,
we request the coefficients up to the third order derivatives of

the truncation error to vanish, i.e.:

(ax)”

(1), +

(&)

i_ (uxxxxx )l + T uXXX)CXX )l i

Uy, =u x Ax(ux)i +




Derivation of Implicit Formulas..

e For the first derivative, we get

Ax)’ Ax)
(ux )1+1 (ux )[ i Ax(uxx )l + ( 2) ( XXX )[ i ( 6) (uxxxx )i
(Ax)’ (Ax) (Ax)
+ 2 4 (u)oocxx )1 * 5' (uxx)cxxx )1 6' (uxxxxm )i
¢ And for the second derivative, we get
Ax)’ Ax)’
(uxx )iil = (uxx )i i Ax(urxx )i + ( 2) (uxxxx )i i ( 6) (um)cx )i
Ax)' Ax) Ax)’
+ (24) (uxx_xxxx )i * ( 5') (uxxx)ocxx )i + ( 6') ( XXXXXXXX )i




Derivation of Implicit Formulas..

In order to get a 2" order accuracy for the 2" derivative, we
request that the coefficients up to the 3" order derivatives of

the truncation error to vanish:

a"+a’—a =0
Ax(a"—a )+b" +b°+b =0

2

A; (a+ +a’)+Ax(b+ —b’)+c+ +c+c =0 7

2

A Mo b ) el —e)=0

(a+ —a’)+

a —L{—Slf -b +l(2c’ —4c” —co)}
Ax Ax
a’ zi[lf -b +L(c+ +c’ —c‘)}
Ax Ax
- 1 + - 2 + - 0
a :—[b +5b" +—(2c¢" —4c —c )}
2Ax Ax

b =2(p* +b-)+§(c+ —¢)




Derivation of Implicit Formulas..

And the truncation error R reduces to

3
R=21 ot -
24

i‘;; :2(17+ —b‘)+%(c+ —c-)}%Jr

Ag!s :4(19+ b )+fE(c te )—éc E;‘Jr
A;é :4(b+ +b_)+ix—6(c+ —c‘)} 2;7 +

A; :6(b+ b )+iE(c te )—éd’ﬁi‘;

10 2 0'u
b )Y+—(c"—c)—— +
) (c"—c) 0}64

This gives a four parameter family of implicit relations.

One parameter may be set arbitrarily to one since our original

form is homogeneous.



Derivation of Implicit Formulas..

e If we choose to make the first three terms in R equal to zero,

we obtain:

b* =$(80+ +c‘)

b- =i(c+ +80‘)

c’ = —4(c+ +c’)

e Then, we get:

3 24 3
T (13+3a)u,,, — E(l +au, + =

é(g +afu,), - %(1 —a)u,) + i (1+8a)u,)., +
( )t+1 4(1+ 0{)( ) + a(”xx )i—l =0

e Where a=c /c" and

8Ax5




Derivation of Implicit Formulas..

The unique, implicit relation of order six is obtained from a =1:

24 9
E( i+1 2“ + l/l 1)_5[(ux)i+l _(ux )i—1]+ (u,tx )i+1 _8(u,tx )i + (uxx)i—l = 0

with

200
87 o

The unique 4™ order relation is obtained from ¢’ = ’=c =0

and f=b/b":

1 2 1
T 5= Bt + (= P (5P + () + 20+ B, + lu, ), =
with
R=2 - T B T
0Ox
Note: SPECIAL CASE p=1




Multi-dimensional FDM Formulas

jt1

j-1
Ay

-1 1 i+l

¢ In a 2D space a rectangular mesh can be obtained by

X, =X, +Ax.i

yi:y0+Ay‘j




Multi-dimensional FDM Formulas

If we denote u(xi,yj) by u;, we can apply the previous

formulas on either variables x and y.

For example: (1* order formulas)

Uiy —U; | R
(MX)ij :—IJAX J :Eé‘x u; +O(AX)
Uijn —UW; 1
(u,), ==L = — 5w, +O(A)

: Ay Ay

And a second order formula can be written as

2
( ) Uiy —2u;  Fu _ Ax
uxx i sz 12 uxxxx




Multi-dimensional FDM Formulas

e Laplace Equation:

u,_,  —2u  +u,, u —Zu Gt
(0, +u, ), == S O(AF, A7)
v Ax Ay
e For Ax =Ay,we get
tu gt —duy 2ot 4
Aui' = (u\*x +u Yy ) = IHJ 1/21 “ s Ax 6 I:: 6711
v > Ax 12 {ox* oy

e A more general term V.(k V) can be written as

V.(kV)=

1

Aiz( iy '5_)”ij+

x Vi+l/2,j Yx

(07K

o,

i,j+1/2 %y

)u +O(Ax*,AV?)

e We could use another form as

1

V? = o

(1,6, ) +

Ay

<l

o

y

)2




Multi-dimensional FDM Formulas

Which gives the following formula for Ax = Ay :

1
2
Vuij:4—fz

(ui+1,j+1 FUy o U U _4ui,j)

This formula is not suitable as it decouples the odd-numbered
points from the even-number points. This means that for a

situation where the solution oscillates between values a and

b, the results satisfy the Laplace equation while it is not right.




Multi-dimensional FDM Formulas

¢ We can combine the last two methods to obtain a family of nine-

point schemes as (Ax = Ay)

2
Vi, =— {(53 +5j)+§5§5§} = Auy + Al’;

Y sz

(umx +tu,,, + 6b Uy )

e For b=2/3 , this is equivalent to a Galerkin finite element
discretization of the Laplace operator using bilinear

quadrilateral elements on the same mesh.



Mixed Derivatives

The simplest 2" order central formula is

u Ly& S, +O(Ax*Y) |, 0 1+52 +O0(M*Y) |u
Y AxAyT 6 vy 6

1 2
AxA (,uxé'“uy5y)u +O(AX*,Ay?)
1
= 4AxAy (ui+1,j+l U T U T U 1)+ O(sz Ay )

A first order formula in both x and y is

(uxy)/ 75+5+u +O(Ax,Ay) = —u

1
A)CAy x 2y iy m("i+l,j+l_ui+l,j +MU)+O(AX,A)/)

i,j+1

We should note that the above formula is 2" order at
(i+1/2,j+1/2).
The following formula is the most general 2" order mixed

derivative formula: (a +b =1)

1 2 A2
(uxy ),/ = 2AxAy 5x§y (a Uisija i Y AUy 500+ b”i+1/2,/—1/2 + bui—l/z,jH/Z )+ O(Ax”,Ay7)




NON-UNIFORM GRIDS

¢ In a general mesh, Ax may vary. So, we should be careful of the

order of the approximations:

u..—u Ax.
(), = —0 -y (first order)
Axi+1 2
U, —u, Ax,
(), =—"—"L+—u_ (first order)
Ax, 2
e Combining these formulas, one gets:
(ux )i = M{:ﬁ:tﬂ (ui+l - ui)+ AAXQI (ui —U, ):| _%u,\m (2nd order)

e A 2" order formula for the 2" derivative is

u.,,—u, u, —u, 2
(uxx )i =[ i+l i i z—lj
Ax, Axi Axi+1 +Axi

i+1
Ax> + Ax,3
i) uxxx

_ i+ u
12(Ax,,, +Ax,) ™

1
—(Ax
+3(

i+l

i+1




NON-UNIFORM GRIDS

Note that if the mesh size varies abruptly, for example if
Ax,,, ~ 2Ax, , then the formula will be only 1% order accurate.
It is a general property of finite difference method on non-

uniform meshes that if the mesh size does not vary smoothly, a

loss of accuracy is unavoidable.



