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Model Equations 
 

• To understand the performance of the numerical methods when 
applied to flow problems, we first examine them on simple 
model equations that represent various features of the Navier-
Stokes equations. 

• These are: 

o First order linear wave equation: )0(0 >=
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o Transient Diffusion: )0(02
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o Laplace Equation: 02
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o Burger's Inviscid Equation: 0=
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o Burger's Viscous Equation: 2
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Solution in Wave Space 
 
• Let us consider the linear convection equation with a periodic 

boundary condition (bi-convection problem) and )()0,( 0 xuxu =  

as initial condition: 
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• In this case, the waveform travels through one boundary and re-
appears at the other boundary, eventually returning to its initial 
position. This process continues forever without any change in 
the shape of the solution. 

• Preserving the shape of the initial condition )(0 xu  can be a 

difficult challenge for a numerical problem. 

• Another type of boundary condition for the linear convection 

equation is defined by prescribing the value of )(xu  on one 

boundary. This corresponds to a wave entering the domain 
through this inflow boundary. No boundary condition is given at 
the opposite side, the outflow boundary.  



Solution in Wave Space… 
 
• Now, let us consider an initial condition ( π20 ≤≤ x )  

xiefxu κ)0()0,( =  

• Where )0(f  is a complex constant and κ  is the wave-number. 

In order to satisfy the periodic boundary condition, κ  must be 
integer. The solution for our bi-convection problem is: 
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• Substituting this solution into the equation gives: 
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• Therefore, 
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• Where the frequency ω  is defined as 

aκω =       (dispersion relation) 



Solution in Wave Space… 
 

• The dispersion relation aκω =  is a characteristic of wave 

propagation in a non-dispersive medium. This means that the 
phase speed is the same for all wave-numbers. 

• We will see that most numerical methods introduce some 
dispersion, that is, waves with different wave-numbers travel at 
different speeds.  

• An arbitrary initial waveform can be described by its M modes 

as ( Mκκκ ≤≤≤ L21 ) 
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• Then, the solution becomes: 
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• Dispersion and dissipation resulting from a numerical 
approximation will cause the shape of the solution to change 
from that of the original waveform. 



Solution in Wave Space… 
 
• Now, let us consider the diffusion: 
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• The steady-state solution of this is )()( aba uuxuxh −+=
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• Let the initial condition be (κ must be integer to satisfy BC)  
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• Substituting this into the equation, we find that 
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• Therefore,  
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• Note that high wave-number components (large mκ ) of the 

solution decay more rapidly than low wave-number 
components, consistent with the physics of diffusion. 



Fourier Error Analysis 
 
• This method can be used to evaluate the accuracy of a FDM 

formulation.  

• An arbitrary periodic function can be decomposed into its 

Fourier components, which are in the form )exp( xiκ  , where κ  

is the wave number. 

• It is of interest to examine how well a given FD operator 

approximates derivatives of )exp( xiκ . The exact first derivative 

of )exp( xiκ  is:               xi
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• Applying a 2nd order centered difference operator to 

)exp( jj xiu κ=  with xjx j ∆= , we get: 

( ) [ ] [ ]

( ) ( )[ ] ( ) ( )[ ]{ }

( ) )exp()exp(sin

sincossincos
2

)exp(
2

)1(exp)1(exp
2
1

jj

j

jj
jx

xiixi
x
xi

xixxix
x
xi

x
jxijxi

x
uu

u

κκκκ

κκκκ
κ

κκδ

∗

+

=
∆
∆

=

∆−∆−∆+∆
∆

=

∆
−∆−+∆

=
∆

−
=

 



Fourier Error Analysis… 
 
• Note that the degree to which the modified wave number 

∗κ approximates the actual wave number is a measure of the 
accuracy of the approximation. 

• Note also that 
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• When applied to the linear convection equation, we have 
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• And the solution becomes: 
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• Where ∗a is the numerical (or modified) phase speed: 
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• Note that since 1/ ≤∗ aa , the numerical method introduces 

dispersion.  



Fourier Error Analysis… 
 
• In general, FD operators can be written as 
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• For example, using nodes 3−j  to 3+j , then 
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• The corresponding modified wave number is 
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• When the FD operator is anti-symmetric (centered), the modified 
wave-number is purely real. 

• When the FD operator is symmetric, the modified wave-number 
is complex, with the imaginary component being entirely error. 



Fourier Error Analysis… 
 
• The real part of the modified wave-number determines the error 

in the phase speed ( 1/ ≠∗ aa ). 

• The imaginary part of the modified wave-number leads to an 

error in the amplitude of the solution (Note: fiadtdf ∗−= κ/ ). 

 

• The number of points per wave-length (PPW) by which a given 

wave is resolved is given by x∆κπ /2 . 

 

• The resolving efficiency of a scheme can be expressed in terms 
of PPW required to produce errors below a specified level. 

• For our 2nd order FD scheme, we need 80 PPW to produce an 
error in the phase speed of less than 0.1 percent.  

 
 



Stability, Consistency and Convergence 
 
• Let us start with the following definitions: 
 

(Discretization error)= (Analytical solution)-(Ideal Numerical Solution) 
 

(Truncation error)= (PD Equation)-(FD Equation) 
 

(Discretization error)= (Truncation error)+(Errors due to BC) 
 

(Round off error)= (Real Numerical solution)-(Ideal Numerical Solution) 
 

• A numerical scheme is called STABLE if errors from 

any source (round off, truncation, mistakes) are 

not permitted to grow as the calculations 

proceeds. 
 

Error Stability 
If the overall round off error grows Strong instability 
If the overall round off error does not grow Strong stability 
If a single general round off error grows Weak Instability 
If a single general round off error does not grow Weak stability 
 
• A method is CONVERGENT if the solution to the FD 

equation approaches the true solution to the PDE 

as the mesh is refined. 



Fourier Stability Analysis… 
 
• A difference method is called consistent if its 

truncation error approaches zero as its mesh size 

goes to zero. 

• This is not true for all methods. For example, 

DuFort-Frankel method for solving the heat 

conduction equations is 
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• Whose truncation error is: 
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• Now, note that if ( ) 0/lim
0,
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, then, DuFort-

Frankel method in fact solves the following 

hyperbolic equation! 
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Lax Equivalence Theorem 
 

 
 

 
 
 

Given a properly posed initial value 

(linear) problem and a finite 

difference approximation to it that 

satisfies the consistency condition, 

stability is the necessary and 

sufficient condition for 

convergence.



Fourier or von Neumann Stability Analysis 
 
• This method investigates the growth of the error 

of a difference equation. Let us show this by an 

example.  

• Consider a simple explicit method for solving the 

heat conduction equation: 
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• Note that 

errorsolutionExactsolutionNumerical

DN ε+=  

• Substituting this in our FD equation, we get 
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Fourier Stability Analysis… 
 
• Since the exact solution satisfies the difference 

equation, then we have 
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• Now, express the error as 
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• Or we can write (a  is complex and mκ  is real) 
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• The amplification factor G  becomes: ( xm∆=κβ ) 
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Fourier Stability Analysis… 
 
• Thus, the error will not grow if 
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• Since, G  is purely real then the method has no 

phase angle. 

• As another example, we can consider the Lax method 

for solving the first order wave equation: 
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• In this case: ( xtc ∆∆= /ν ) 
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• Here, φ  is the phase angle. 
 



Fourier Stability Analysis… 
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Fourier Stability Analysis… 
 
• The Fourier method can be also applied to a system 

of equations. Consider: 

0=
∂
∂

+
∂
∂

xt
FU  

• This can be linearized as 

U
FAUAU
∂
∂

==
∂
∂

+
∂
∂ with

xt
0  

• Using the Lax method, we get 

n
j

nn
j

nn
j x

t
x
t

11
1

2
1

2
1

+−
+ 








∆
∆

−+







∆
∆

+= UAIUAIU  

• The amplification factor becomes 
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• For a stable solution, the largest eigen-value of 

G  must obey: ( maxλ  is the largest eigen-value of A ) 
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