Computational Fluid Dynamics

Numerical Methods for Model Equations

M.T. Manzari

Model Equations

- Here, we will study various methods for solving the followings:
- First order linear wave equation: $\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial x}=0 \quad(a>0)$
- Transient Diffusion: $\frac{\partial u}{\partial t}-\alpha \frac{\partial^{2} u}{\partial x^{2}}=0 \quad(\alpha>0)$
- Laplace Equation: $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$
- Burger's Inviscid Equation: $\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0$
- Burger's Viscous Equation: $\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\mu \frac{\partial^{2} u}{\partial x^{2}}$

Linear Wave Equation

- We will study the following methods:
- Euler explicit method
- First order upwind method
- Lax method
- Euler implicit method
- Leap frog method
- Lax-Wendroff method (single step and 2-step)
- Mac-Cormack method
- $2^{\text {nd }}$ order upwind method (Warming-Beam)
- Trapezoidal method
- Runge-Kutta method

Diffusion Equation

- We will study the following methods:
- Simple explicit method
- Simple implicit method
- Crank-Nicholson method
- Dufort-Frankel method
- θ-methods
- Keller-Box method
- ADI method

Inviscid Burger Equation

- We will study the following methods:
- Lax method
- Lax-Wendroff method
- Mac-Cormack method
- Warming-Kutler-Lomax method
- Beam-Warming method

Linear Wave Equation

Euler Explicit Method

- The method is $(c>0)$

$$
\begin{array}{|ll|}
\hline \frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}+c \frac{u_{i+1}^{n}-u_{i}^{n}}{\Delta x}=0 & 1 \text { st order in } \mathrm{t} \text { and } \mathrm{x} \\
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}+c \frac{u_{i+1}^{n}-u_{i-1}^{n}}{2 \Delta x}=0 & 1 \text { st order in } \mathrm{t} \text { and 2nd order in } \mathrm{x} \\
\hline
\end{array}
$$

- It is unconditionally unstable.

First Order Upwind Method

- The method is

$$
\begin{array}{|ll|}
\hline \frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}+c \frac{u_{i}^{n}-u_{i-1}^{n}}{\Delta x}=0 & \mathrm{c}>0 \\
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}+c \frac{u_{i}^{n}-u_{i+1}^{n}}{\Delta x}=0 & \mathrm{c}<0 \\
\hline
\end{array}
$$

- Or in general,

$$
u_{i}^{n+1}=u_{i}^{n}-\overbrace{\frac{c \Delta t}{2 \Delta x}\left(u_{i+1}^{n}-u_{i-1}^{n}\right)}^{\text {central difference }}+\overbrace{\frac{c \mid \Delta t}{2 \Delta x}\left(u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right)}^{\text {Artificial viscosity }}
$$

- The method is stable provided that

$$
0 \leq v=\frac{c \Delta t}{\Delta x} \leq 1
$$

- Remember that its modified equation is

$$
\begin{aligned}
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}= & \frac{c \Delta x}{2}(1-v) u_{x x}-\frac{c \Delta x^{2}}{6}\left(2 v^{2}-3 v+1\right) u_{x x x} \\
& +O\left[\Delta x^{3}, \Delta x^{2} \Delta t, \Delta x \Delta t^{2}, \Delta t^{3}\right]
\end{aligned}
$$

First Order Upwind Method...

- The amplification factor and phase angle are:

$$
\begin{aligned}
& G=(1-v-v \cos \beta)-i(v \sin \beta)=|G| \exp (i \phi) \\
& \phi=\tan ^{-1} \frac{\operatorname{Im}(G)}{\operatorname{Re}(G)}=\tan ^{-1}\left(\frac{-v \sin \beta}{1-v-v \cos \beta}\right)
\end{aligned}
$$

- The exact solution for the problem is $u=\exp \left[i \kappa_{m}(x-c t)\right]$, thus

$$
\begin{aligned}
& G \equiv \frac{u(t+\Delta t)}{u(t)}=\frac{\exp \left\{i \kappa_{m}[x-c(t+\Delta t)]\right\}}{\exp \left\{i \kappa_{m}[x-c t]\right\}}=\exp \left(-i \kappa_{m} c \Delta t\right) \equiv \exp \left(i \phi_{e}\right) \\
& \phi_{e}=-\kappa_{m} c \Delta t=-\beta v
\end{aligned}
$$

- This means that
- If the initial wave amplitude is A_{0}, then after N steps the total dissipation error is given by $\left(1-|G|^{N}\right) A_{0}$
- The total dispersion (phase) error is given by $N\left(\phi_{e}-\phi\right)$
- Note that after one step, the relative shift error is

$$
\frac{\phi}{\phi_{e}}=\frac{-1}{\beta v} \tan ^{-1}\left(\frac{-v \sin \beta}{1-v+v \cos \beta}\right)
$$

First Order Upwind Method...

- For small wave numbers (small β) we can write

$$
\frac{\phi}{\phi_{e}} \approx 1-\frac{1}{6}\left(2 v^{2}-3 v+1\right) \beta^{2}
$$

- Note that

$\frac{\phi}{\phi_{e}}>1$	leading phase error
$\frac{\phi}{\phi_{e}}<1$	

- For the upwind method, we get

$0<v<0.5$	leading phase error
$0.5<v$	lagging phase error

Lax Method

- The method reads

$$
\frac{1}{\Delta t}\left(u_{i}^{n+1}-\frac{u_{i+1}^{n}-u_{i-1}^{n}}{2}\right)+\frac{c}{2 \Delta x}\left(u_{i+1}^{n}-u_{i-1}^{n}\right)=0
$$

- Where

$$
\begin{aligned}
& G=\cos \beta-i v \sin \beta \\
& \frac{\phi}{\phi_{e}}=\frac{\tan ^{-1}(-v \tan \beta)}{-v \beta}
\end{aligned}
$$

Euler Implicit Method

- The method reads

$$
\frac{1}{\Delta t}\left(u_{i}^{n+1}-u_{i}^{n}\right)+\frac{c}{2 \Delta x}\left(u_{i+1}^{n+1}-u_{i-1}^{n+1}\right)=0
$$

- The method is second order in space and first order in time.
- It is unconditionally stable.
- The modified equation is

$$
u_{t}+c u_{x}=\left(\frac{c^{2} \Delta t}{2}\right) u_{x x}-\left(\frac{c \Delta x^{2}}{6}+\frac{c^{3} \Delta t}{3}\right) u_{x x x}+\ldots
$$

- The amplification factor and phase error are

$$
\begin{aligned}
& G=\frac{1-i v \sin \beta}{1+i v^{2} \sin ^{2} \beta} \\
& \frac{\phi}{\phi_{e}}=\frac{\tan ^{-1}(-v \sin \beta)}{-v \beta}
\end{aligned}
$$

Leap-Frog Method

- This $2^{\text {nd }}$ order method is

$$
\frac{1}{2 \Delta t}\left(u_{i}^{n+1}-u_{i}^{n-1}\right)+\frac{c}{2 \Delta x}\left(u_{i+1}^{n}-u_{i-1}^{n}\right)=0
$$

- It is neutrally stable for $|v| \leq 1$.
- The modified equation shows a predominantly dispersive behavior.

$$
u_{t}+c u_{x}=\left(\frac{c \Delta x^{2}}{6}\right)\left(v^{2}-1\right) u_{x x x}-\left(\frac{c \Delta x^{4}}{120}\right)\left(9 v^{4}-10 v^{2}+1\right) u_{x x x x x}+\ldots
$$

- The amplification factor and phase error are

$$
\begin{aligned}
& G= \pm \sqrt{1-v^{2} \sin ^{2} \beta}-i v \sin \beta \\
& \frac{\phi}{\phi_{e}}=\frac{\tan ^{-1}\left(\mp v \sin \beta / \sqrt{1-v^{2} \sin ^{2} \beta}\right)}{-v \beta}
\end{aligned}
$$

Lax-Wendroff Method

- The method ($2^{\text {nd }}$ order in time and space) is derived from the Taylor expansion in time:

$$
u_{i}^{n+1}=u_{i}^{n}-\overbrace{\frac{c \Delta t}{2 \Delta x}\left(u_{i+1}^{n}-u_{i-1}^{n}\right)}^{\text {central difference }}+\overbrace{\frac{c^{2} \Delta t^{2}}{2 \Delta x^{2}}\left(u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right)}^{\text {Artificial viscosity }}
$$

- It is stable for $|v| \leq 1$.
- The modified equation is

$$
u_{t}+c u_{x}=\left(\frac{c \Delta x^{2}}{6}\right)\left(v^{2}-1\right) u_{x x x}-\left(\frac{c \Delta x^{3}}{8}\right) v\left(-v^{2}+1\right) u_{x x x x}+\ldots
$$

- The amplification and phase errors are:

$$
\begin{aligned}
& G=\left[1-v^{2}(1-\cos \beta)\right]-i(v \sin \beta) \\
& \frac{\phi}{\phi_{e}}=\frac{\tan ^{-1}\left\{-v \sin \beta /\left[1-v^{2}(1-\cos \beta)\right]\right\}}{-v \beta}
\end{aligned}
$$

- Note that the method has a predominantly lagging phase error except for large wave numbers with $\sqrt{0.5}<v<1$

Two-step Lax-Wendroff Method

- For nonlinear equations such as the inviscid flow equations, a 2-step variation of the original Lax-Wendroff method can be used:

$$
\begin{align*}
& \frac{1}{\Delta t / 2}\left(u_{i+1 / 2}^{n+1 / 2}-\frac{u_{i+1}^{n}+u_{i}^{n}}{2}\right)+\frac{c}{\Delta x}\left(u_{i+1}^{n}-u_{i}^{n}\right)=0 \tag{step1}\\
& \frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}+\frac{c}{\Delta x}\left(u_{i+1 / 2}^{n+1 / 2}-u_{i-1 / 2}^{n+1 / 2}\right)=0 \tag{step2}
\end{align*}
$$

- The scheme is $2^{\text {nd }}$ order in time and space.
- It is stable for $|v| \leq 1$.
- For the linear wave equation, the method becomes exactly like the original Lax-Wendroff equation.

MacCormack Method

- This method is a predictor-corrector type method (1969):

$$
\begin{array}{ll}
\bar{u}_{i}^{n+1}=u_{i}^{n}-\frac{c \Delta t}{\Delta x}\left(u_{i+1}^{n}-u_{i}^{n}\right) & \text { (predictor) } \\
u_{i}^{n+1}=\frac{1}{2}\left[u_{i}^{n}+\bar{u}_{i}^{n+1}-\frac{c \Delta t}{\Delta x}\left(\bar{u}_{i}^{n+1}-\bar{u}_{i-1}^{n+1}\right)\right] & \text { (corrector) }
\end{array}
$$

- For the linear wave equation, this method is equivalent to the original Lax-Wendroff method with the same accuracy and stability limit.

$2^{\text {nd }}$ Order Upwind Method

- This is also called Warming and Beam method (1975):

$$
\begin{align*}
& \bar{u}_{i}^{n+1}=u_{i}^{n}-\frac{c \Delta t}{\Delta x}\left(u_{i}^{n}-u_{i-1}^{n}\right) \tag{corrector}\\
& u_{i}^{n+1}=\frac{1}{2}\left[u_{i}^{n}+\bar{u}_{i}^{n+1}-\frac{c \Delta t}{\Delta x}\left(\bar{u}_{i}^{n+1}-\bar{u}_{i-1}^{n+1}\right)-\frac{c \Delta t}{\Delta x}\left(u_{i}^{n}-2 u_{i-1}^{n}+u_{j-2}^{n}\right)\right]
\end{align*}
$$

- For the linear wave equation, substituting the predictor into the corrector gives:

$$
u_{i}^{n+1}=u_{i}^{n}-v\left(u_{i}^{n}-u_{i-1}^{n}\right)+\frac{v(v-1)}{2}\left(u_{i}^{n}-2 u_{i-1}^{n}+u_{i-2}^{n}\right)
$$

- The modified equation is

$$
u_{t}+c u_{x}=\left(\frac{c \Delta x^{2}}{6}\right)(1-v)(2-v) u_{x x x}-\left(\frac{\Delta x^{4}}{8 \Delta t}\right) v(1-v)^{2}(2-v) u_{x x x x}+\ldots
$$

- The stability condition is $0 \leq v \leq 2$
- Also

$$
G=1-2 v\left[v+2(1-v) \sin ^{2} \frac{\beta}{2}\right] \sin ^{2} \frac{\beta}{2}-i(v \sin \beta)\left[1+2(1-v) \sin ^{2} \frac{\beta}{2}\right]
$$

$2^{\text {nd }}$ Order Upwind Method...

- Note that

$0<v<1$	a predominantly leading phase error
$1<v<2$	a predominantly lagging phase error

- For $0<v<1$ the phase errors of the $2^{\text {nd }}$ order upwind method and the Lax-Wendroff scheme are opposite. Fromm's method (1968) uses this fact to produce a method free of dispersive error.

Trapezoidal Differencing Method

- The method is developed by using Taylor series for time and central differences for spatial derivatives: (time-centered \& space-centered)

$$
u_{i}^{n+1}=u_{i}^{n}-\frac{v}{4}\left(u_{i+1}^{n+1}+u_{i+1}^{n}-u_{i-1}^{n+1}-u_{i-1}^{n}\right)
$$

- The method is second order in space and time.
- It is also unconditionally stable.
- It's modified equation is:

$$
u_{t}+c u_{x}=-\left(\frac{c^{3} \Delta t^{2}}{12}+\frac{c \Delta x^{2}}{6}\right) u_{x x x}-\left(\frac{c \Delta x^{4}}{120}+\frac{c^{3} \Delta t^{2} \Delta x^{2}}{24}+\frac{c^{4} \Delta t^{4}}{80}\right) u_{x x x x}+\ldots
$$

- Also

$$
G=\left(1-\frac{i v}{2} \sin \beta\right) /\left(1+\frac{i v}{2} \sin \beta\right)
$$

Runge-Kutta Methods

- These methods transform the PDE to an ODE as

$$
\frac{\partial u}{\partial t}=R(u) \quad \text { where } \quad R(u)=-c \frac{\partial u}{\partial x}
$$

- A $2^{\text {nd }}$ order Runge-Kutta method becomes:

$$
\begin{array}{ll}
u^{(1)}=u^{n}+\Delta t R^{n} & \text { (step 1) } \\
u^{n+1}=u^{n}+\frac{\Delta t}{2}\left(R^{n}+R^{(1)}\right) & \text { (step 2) } \\
\text { where } \\
R^{(1)}=-c\left(\frac{\partial u}{\partial x}\right)^{(1)}=-c\left[\left(\frac{\partial u}{\partial x}\right)^{n}+\Delta t\left(\frac{\partial R}{\partial x}\right)^{n}\right]=-c\left(\frac{\partial u}{\partial x}\right)^{n}+c^{2} \Delta t\left(\frac{\partial^{2} u}{\partial x^{2}}\right)^{n}
\end{array}
$$

- Or simply we have

$$
u^{n+1}=u^{n}+\frac{\Delta t}{2}\left(-2 c u_{x}^{n}+c^{2} \Delta t u_{x x}^{n}\right)
$$

- Using $2^{\text {nd }}$-order central differences, we obtain the $2^{\text {nd }}$ order LaxWendroff scheme.

Runge-Kutta Methods...

- One of the most popular Runge-Kutta method is its 4-step version ($2^{\text {nd }}$ order in time and $4^{\text {th }}$ order in space when $2^{\text {nd }}$ order spatial differences are used):

$$
\begin{align*}
& u^{(1)}=u^{n}+\frac{\Delta t}{2} R^{n} \tag{step1}\\
& u^{(2)}=u^{n}+\frac{\Delta t}{2} R^{(1)} \\
& u^{(3)}=u^{n}+\Delta t R^{(2)} \\
& u^{n+1}=u^{n}+\frac{\Delta t}{6}\left(R^{n}+2 R^{(1)}+2 R^{(2)}+R^{(3)}\right)
\end{align*}
$$

Diffusion Equation

Diffusion Equation

- In 1D, we have

$$
\frac{\partial u}{\partial t}=\alpha \frac{\partial^{2} u}{\partial x^{2}}
$$

- This is a parabolic equation whose exact solution for an initial condition $u(x, 0)=f(x)$ and boundary conditions $u(0, t)=u(1, t)=0$ is given by

$$
\begin{aligned}
& u(x, t)=\sum_{n=1}^{\infty} A_{n} \exp \left(-\alpha k_{n}^{2} t\right) \sin \left(k_{n} x\right) \\
& \text { where } \quad\left(k_{n}=n \pi\right) \\
& A_{n}=2 \int_{0}^{1} f(x) \sin \left(k_{n} x\right) d x
\end{aligned}
$$

- The exact amplification is

$$
G_{e}=\frac{u(t+\Delta t)}{u(t)}=\exp \left(-\alpha k_{m}^{2} \Delta t\right)=\exp \left(-r \beta^{2}\right)
$$

Simple Explicit Method

- Using first order in time and second order in space, we get

$$
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=\alpha \frac{u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}}{\Delta x^{2}}
$$

- The scheme is stable for

$$
0 \leq r=\frac{\alpha \Delta t}{\Delta x^{2}} \leq 1 / 2
$$

- The amplification factor is

$$
G=1+2 r(\cos \beta-1)
$$

- The modified equation becomes:

$$
u_{t}-\alpha u_{x x}=\left(\frac{-\alpha^{2} \Delta t}{2}+\frac{\alpha \Delta x^{2}}{12}\right) u_{x x x x}+\left(\frac{\alpha^{3} \Delta t^{2}}{3}-\frac{\alpha^{2} \Delta t \Delta x^{2}}{12}+\frac{\alpha \Delta x^{4}}{360}\right) u_{x x x x x}+\ldots
$$

Simple Implicit Method

- This method is first order in time and second order in space:

$$
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=\alpha \frac{u_{i+1}^{n+1}-2 u_{i}^{n+1}+u_{i-1}^{n+1}}{\Delta x^{2}}
$$

- It is unconditionally stable.
- The modified equation is

$$
u_{t}-\alpha u_{x x}=\left(\frac{\alpha^{2} \Delta t}{2}+\frac{\alpha \Delta x^{2}}{12}\right) u_{x x x x}+\left(\frac{\alpha^{3} \Delta t^{2}}{3}+\frac{\alpha^{2} \Delta t \Delta x^{2}}{12}+\frac{\alpha \Delta x^{4}}{360}\right) u_{x x x x x x}+\ldots
$$

- The amplification factor is

$$
G=\frac{1}{1+2 r(1-\cos \beta)}
$$

Crank-Nicolson Method

- The method (1947) reads

$$
\left.\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=\frac{\alpha}{2 \Delta x^{2}}\left[\left(u_{i+1}^{n+1}-2 u_{i}^{n+1}+u_{i-1}^{n+1}\right)+\left(u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right)\right]\right]
$$

- Its modified equation is

$$
u_{t}-\alpha u_{x x}=\left(\frac{\alpha \Delta x^{2}}{12}\right) u_{x x x x}+\left(\frac{\alpha^{3} \Delta t^{2}}{12}+\frac{\alpha \Delta x^{4}}{360}\right) u_{x x x x x x}+\ldots
$$

- The amplification factor is

$$
G=\frac{1-r(1-\cos \beta)}{1+r(1-\cos \beta)}
$$

Dufort-Frankel Method

- This method is given by $\left(r=\alpha \Delta t / \Delta x^{2}\right)$

$$
u_{i}^{n+1}(1+2 r)=u_{i}^{n-1}+2 r\left(u_{i+1}^{n}-u_{i}^{n-1}+u_{i-1}^{n}\right)
$$

- Remember that the method is not consistent with the diffusion equation if $\Delta t / \Delta x \rightarrow$ cte .
- The modified equation becomes

$$
u_{t}-\alpha u_{x x}=\left(\frac{\alpha \Delta x^{2}}{12}-\frac{\alpha^{3} \Delta t^{2}}{\Delta x^{2}}\right) u_{x x x x}+\left(\frac{\alpha \Delta x^{4}}{360}-\frac{\alpha^{3} \Delta t^{2}}{3}+\frac{2 \alpha^{5} \Delta t^{4}}{\Delta x^{4}}\right) u_{x x x x x}+\ldots
$$

- Also, the amplification factor is

$$
G=\frac{2 r \cos \beta \pm \sqrt{1-4 r^{2} \sin ^{2} \beta}}{1+2 r}
$$

- The method is unconditionally stable (for $r \geq 0$) and can be easily extended to 2D and 3D cases.

θ - Methods

- By combining the formulation of the simple explicit, simple implicit and Crank-Nicolson methods, we obtain

$$
\begin{aligned}
& \frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=\frac{\alpha}{\Delta x^{2}}\left[\theta \delta_{x}^{2} u_{i}^{n+1}+(1-\theta) \delta_{x}^{2} u_{i}^{n}\right] \quad 0 \leq \theta \leq 1 \\
& \text { where } \\
& \delta_{x}^{2} u_{i}^{n}=u_{i}^{n+1}-2 u_{i}^{n}+u_{i-1}^{n} \\
& \hline
\end{aligned}
$$

- The method is $2^{\text {nd }}$ order in time and space except for special cases:

$$
\begin{array}{|ll}
\hline \text { Crank }- \text { Nicolson }(\theta=1 / 2) & \text { T.E. }=O\left[\Delta t^{2}, \Delta x^{2}\right] \\
\left(\theta=\frac{1}{2}-\frac{\Delta x^{2}}{12 \alpha \Delta t}\right) & \text { T.E. }=O\left[\Delta t^{2}, \Delta x^{4}\right] \\
\left(\theta=\frac{1}{2}-\frac{\Delta x^{2}}{12 \alpha \Delta t}\right), \frac{\Delta x^{2}}{\alpha \Delta t}=\sqrt{20} & \text { T.E. }=O\left[\Delta t^{2}, \Delta x^{6}\right] \\
\hline
\end{array}
$$

- Its modified equation is
$u_{t}-\alpha u_{x x}=\left[\left(\theta-\frac{1}{2}\right) \alpha^{2} \Delta t+\frac{\alpha \Delta x^{2}}{12}\right] u_{\operatorname{xxx}}+\left[\left(\theta^{2}-\theta+\frac{1}{3}\right) \alpha^{3} \Delta t^{2}+\frac{1}{6}\left(\theta-\frac{1}{2}\right) \alpha^{2} \Delta t \Delta x^{2}+\frac{\alpha \Delta x^{4}}{360}\right] u_{\operatorname{xxxx}}+\ldots$.
- The method is unconditionally stable if $1 / 2 \leq \theta \leq 1$.
- When $0 \leq \theta \leq 1 / 2$ the method is stable if $0 \leq r \leq(2-4 \theta)^{-1}$

Keller-Box Method

- In this method, we split the equation into the followings:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial x}=v \\
\frac{\partial u}{\partial t}=\alpha \frac{\partial v}{\partial x}
\end{array}\right.
$$

- Then, the method becomes

$$
\begin{aligned}
& \frac{u_{i}^{n+1}-u_{i-1}^{n+1}}{\Delta x_{i}}=\frac{v_{i}^{n+1}+v_{i-1}^{n+1}}{2} \\
& \frac{u_{i}^{n+1}+u_{i-1}^{n+1}}{\Delta t_{n+1}}=\frac{\alpha}{\Delta x_{i}}\left(v_{i}^{n+1}-v_{i-1}^{n+1}\right)+\frac{u_{i}^{n}+u_{i-1}^{n}}{\Delta t_{n+1}}+\frac{\alpha}{\Delta x_{i}}\left(v_{i}^{n}-v_{i-1}^{n}\right)
\end{aligned}
$$

- This method is $2^{\text {nd }}$ order in time and space.

ADI Method

- The Alternating Direction Implicit method consists of two steps:

$$
\begin{aligned}
& \frac{u_{i, j}^{n+1 / 2}-u_{i, j}^{n}}{\Delta t / 2}=\alpha\left(\bar{\delta}_{x}^{2} u_{i, j}^{n+1 / 2}+\bar{\delta}_{y}^{2} u_{i, j}^{n}\right) \\
& \frac{u_{i, j}^{n+1}-u_{i, j}^{n+1 / 2}}{\Delta t / 2}=\alpha\left(\bar{\delta}_{x}^{2} u_{i, j}^{n+1 / 2}+\bar{\delta}_{y}^{2} u_{i, j}^{n+1}\right) \\
& \text { where } \\
& \bar{\delta}_{x}^{2}=\delta_{x}^{2} / \Delta x^{2} \quad \bar{\delta}_{y}^{2}=\delta_{y}^{2} / \Delta y^{2}
\end{aligned}
$$

- In the first step a tri-diagonal system is solved for each j row and during the $2^{\text {nd }}$ step a tri-diagonal system is solved for each i row of grid points.
- The method is $2^{\text {nd }}$ order in t, x, y. And

$$
\begin{aligned}
& G=\frac{\left[1-r_{x}\left(1-\cos \beta_{x}\right)\right]\left[1-r_{y}\left(1-\cos \beta_{y}\right)\right.}{\left[1+r_{x}\left(1-\cos \beta_{x}\right)\right]\left[1+r_{y}\left(1-\cos \beta_{y}\right)\right]} \\
& \text { where } \\
& r_{x}=\frac{\alpha \Delta t}{\Delta x^{2}}, \quad r_{y}=\frac{\alpha \Delta t}{\Delta y^{2}}, \quad \beta_{x}=\kappa_{m} \Delta x, \quad \beta_{y}=\kappa_{m} \Delta y
\end{aligned}
$$

- The method is unconditionally stable.

ADI Method...

- For a 3D problem, Douglas and Gunn suggest the following formulation:

$$
\left[\begin{array}{l}
\left(1-\frac{r_{x}}{2} \delta_{x}^{2}\right) \Delta u^{*}=\left(r_{x} \delta_{x}^{2}+r_{y} \delta_{y}^{2}+r_{z} \delta_{z}^{2}\right) u^{n} \\
\left(1-\frac{r_{y}}{2} \delta_{y}^{2}\right) \Delta u^{* *}=\Delta u^{*} \\
\left(1-\frac{r_{z}}{2} \delta_{z}^{2}\right) \Delta u=\Delta u^{* *} \tag{step3}\\
\text { where } \\
\Delta u_{i, j}=u_{i, j}^{n+1}-u_{i, j}^{n} \\
\hline
\end{array}\right.
$$

Inviscid Burger Equation

General

- The inviscid Burger equation

$$
\frac{\partial u}{\partial t}+\frac{\partial F}{\partial x}=\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0 \quad \text { with } \quad F=u^{2} / 2
$$

- Is analog to the Euler equations for the flow of an inviscid fluid. It also represents a nonlinear wave equation, where each point on the wave front can propagate with a different speed. As a result this equation can show the coalescence of characteristics and therefore accept the formation of discontinuous solutions, similar to shock waves in fluid dynamics.
- The characteristic of the Burger's equation is

$$
\frac{d t}{d x}=\frac{1}{u}
$$

- The solution to the Burger's equation under a specific initial condition is

$$
\left\{\begin{array} { l l }
{ u (x , 0) = 0 } & { x < 0 } \\
{ u (x , 0) = 1 } & { 0 \leq x }
\end{array} \rightarrow \left\{\begin{array}{ll}
u=0 & x \leq 0 \\
u=x / t \\
u=1 & 0<x<t \\
& t \leq x
\end{array}\right.\right.
$$

General...

- The solution can be shown as below

- If the initial condition was

$$
\begin{cases}u(x, 0)=u_{1} & x \leq a \\ u(x, 0)=u_{2}<u_{1} & x>a\end{cases}
$$

- Then, a shock wave like discontinuity will be traveling in the domain at the average value of the $\left(u_{1}+u_{2}\right) / 2$ function across the wave front.

Lax Method

- This is a first order method:

$$
u_{i}^{n+1}=\left(\frac{u_{i+1}^{n}+u_{i-1}^{n}}{2}\right)-\frac{\Delta t}{2 \Delta x}\left(F_{i+1}^{n}-F_{i-1}^{n}\right)=0
$$

- Its amplification factor is

$$
G=\cos \beta-i \frac{\Delta t}{\Delta x} \frac{d F}{d u} \sin \beta
$$

- The stability limit is

$$
\left|\frac{\Delta t}{\Delta x} u_{\max }\right| \leq 1
$$

- When using a finite volume method, a first order method in t is

$$
u_{i}^{n+1}=u_{i}^{n}-\frac{\Delta t}{\Delta x}\left(F_{i+1 / 2}^{n}-F_{i-1 / 2}^{n}\right)
$$

- Using the Lax method, we get

$$
F_{i+1 / 2}=\frac{1}{2}\left[F_{i}^{n}+F_{i+1}^{n}-\frac{\Delta x}{\Delta t}\left(u_{i+1}-u_{i}\right)\right]
$$

- This flux function is consistent in the sense that

$$
F\left(u_{i}, u_{i+1}\right)=F\left(u_{i}\right) \quad \text { when } \quad u_{i}=u_{i+1}
$$

Lax-Wendroff Method

- This method is developed using the Taylor series and is $2^{\text {nd }}$ order accurate in space and time.
- The method reads: $(\partial F / \partial u)_{i+1 / 2} \equiv A_{i+1 / 2}=A\left(\left(u_{i}+u_{i+1}\right) / 2\right)$

$$
u_{i}^{n+1}=u_{i}^{n}-\frac{\Delta t}{2 \Delta x}\left(F_{i+1}^{n}-F_{i}^{n}\right)+\frac{1}{2}\left(\frac{\Delta t}{\Delta x}\right)^{2}\left[A_{i+1 / 2}^{n}\left(F_{i+1}^{n}-F_{i}^{n}\right)-A_{i-1 / 2}^{n}\left(F_{i}^{n}-F_{i-1}^{n}\right)\right]
$$

- We also have

$$
G=1-2\left(A \frac{\Delta t}{\Delta x}\right)^{2}(1-\cos \beta)-2 i A \frac{\Delta t}{\Delta x} \sin \beta
$$

- The stability requirement is

$$
\left|\frac{\Delta t}{\Delta x} u_{\max }\right| \leq 1
$$

- As the Courant number $u \Delta t / \Delta x$ is reduced from 1.0, the quality of the solution is degraded and more oscillations are produced.

Lax-Wendroff Method...

- Using the finite volume formulation, we get

$$
F_{i+1 / 2}=\frac{1}{2}\left(F_{i}+F_{i+1}\right)-\frac{\Delta t}{2 \Delta x} \lambda_{i+1 / 2}^{2}\left(u_{i+1}-u_{i}\right)
$$

- Here $\lambda_{i+1 / 2}$ is the eigenvalue of the Jacobian $A_{i+1 / 2}$ which is $u_{i+1 / 2}$ for the Burger's equation.
- We also notice that

$$
F_{i+1 / 2}=\overbrace{\frac{1}{2}\left(F_{i}+F_{i+1}-\frac{\Delta x}{\Delta t}\left(u_{i+1}-u_{i}\right)\right)}^{\text {Lax method (frrst order) }}+\overbrace{\frac{\Delta x}{\Delta t}\left[1-\left(\frac{\Delta t}{\Delta x}\right)^{2} \lambda_{i+1 / 2}^{2}\right]\left(\frac{u_{i+1}-u_{i}}{2}\right)}^{\text {Extra term producing 2nd order accuracy }}
$$

- Since Lax method produces no oscillations, we can use a function ϕ to control the amount of the $2^{\text {nd }}$ part to be added to the Lax method to minimize the oscillations.

MacCormack Method

- This method is a predictor-corrector version of the LaxWendroff scheme thus easier to implement.

$$
\begin{align*}
& \bar{u}_{i}^{n+1}=u_{i}^{n}-\frac{\Delta t}{\Delta x}\left(F_{i+1}^{n}-F_{i}^{n}\right) \tag{predictor}\\
& u_{i}^{n+1}=\frac{1}{2} u_{i}^{n}+\bar{u}_{i}^{n+1}-\frac{\Delta t}{\Delta x}\left(\bar{F}_{i}^{n+1}-\bar{F}_{i-1}^{n+1}\right) \tag{corrector}
\end{align*}
$$

- The amplification factor and the stability limit are the same as those for the Lax-Wendroff method.

Warming-Kutler-Lomax Method

- This is a $3^{\text {rd }}$ order scheme and uses the MacCormack method for the first two levels. The method (1973) reads

$$
\begin{aligned}
u_{i}^{(1)}= & u_{i}^{n}-\frac{2 \Delta t}{3 \Delta x}\left(F_{i+1}^{n}-F_{i}^{n}\right) \\
u_{i}^{(2)}= & \frac{1}{2}\left[u_{i}^{n}+u_{i}^{(1)}-\frac{2 \Delta t}{3 \Delta x}\left(F_{i}^{n}-F_{i-1}^{(1)}\right)\right] \\
u_{i}^{n+1}= & u_{i}^{n}-\frac{\Delta t}{24 \Delta x}\left(-2 F_{i+2}^{n}+7 F_{i+1}^{n}-7 F_{i-1}^{n}+2 F_{i-2}^{n}\right) \\
& -\frac{3 \Delta t}{8 \Delta x}\left(F_{i+1}^{(2)}-F_{i-1}^{(2)}\right)-\frac{\omega}{24}\left(u_{i+2}^{n}-4 u_{i+1}^{n}+6 u_{i}^{n}-4 u_{i-1}^{n}+u_{i-2}^{n}\right)
\end{aligned}
$$

- The stability limit for Burger's equation is given by

$$
|v|=\left|\frac{\Delta t}{\Delta x} u_{\max }\right| \leq 1 \quad \text { and } \quad 4 v^{2}-v^{4} \leq \omega \leq 3
$$

Beam and Warming Method

- This is a $2^{\text {nd }}$ order implicit method.
- First use the trapezoidal method,

$$
u_{i}^{n+1}=u_{i}^{n}+\frac{\Delta t}{2}\left[\left(u_{t}\right)^{n}+\left(u_{t}\right)^{n+1}\right]+O\left[\Delta t^{3}\right]
$$

- Then, substitute the model equation into it

$$
u_{i}^{n+1}=u_{i}^{n}-\frac{\Delta t}{2}\left[\left(\frac{\partial F}{\partial x}\right)^{n}+\left(\frac{\partial F}{\partial x}\right)^{n+1}\right]
$$

- Beam and Warming (1976) suggested that

$$
F^{n+1} \approx F^{n}+\left(\frac{\partial F}{\partial u}\right)^{n}\left(u^{n+1}-u^{n}\right)=F^{n}+A^{n}\left(u^{n+1}-u^{n}\right)
$$

- Thus, the method becomes

$$
u_{i}^{n+1}=u_{i}^{n}-\frac{\Delta t}{2}\left[2\left(\frac{\partial F}{\partial x}\right)^{n}+\frac{\partial}{\partial x}\left[A\left(u_{i}^{n+1}-u_{i}^{n}\right)\right]\right]
$$

- Substitute x-derivatives with $2^{\text {nd }}$ order central differences, we get

$$
-\left(\frac{\Delta t A_{i-1}^{n}}{4 \Delta x}\right) u_{i-1}^{n+1}+u_{i}^{n+1}+\left(\frac{\Delta t A_{i+1}^{n}}{4 \Delta x}\right) u_{i+1}^{n+1}=-\left(\frac{\Delta t}{\Delta x}\right) \frac{F_{i+1}^{n}-F_{i-1}^{n}}{2}-\left(\frac{\Delta t A_{i-1}^{n}}{4 \Delta x}\right) u_{i-1}^{n}+u_{i}^{n}+\left(\frac{\Delta t A_{i+1}^{n}}{4 \Delta x}\right) u_{i+1}^{n}
$$

Beam and Warming Method...

- This leads to a tri-diagonal system and can be solved using the Thomas algorithm.
- This method is stable but produces oscillations.
- To reduce oscillations, an artificial smoothing can be added to the scheme $0<\omega \leq 1$:

$$
\frac{-\omega}{8}\left(u_{i+2}^{n}-4 u_{i+1}^{n}+6 u_{i}^{n}-4 u_{i-1}^{n}+u_{i-2}^{n}\right)
$$

- An efficient form of the above method can be obtained using

$$
\Delta u_{i}=u_{i}^{n+1}-u_{i}^{n}
$$

- The trapezoidal formula with the following linearization

$$
F_{i}^{n+1}=F_{i}^{n}+A_{i}^{n} \Delta u_{i}
$$

- The final form of the scheme becomes

$$
-\left(\frac{\Delta t A_{i-1}^{n}}{4 \Delta x}\right) \Delta u_{i-1}+\Delta u_{i}+\left(\frac{\Delta t A_{i+1}^{n}}{4 \Delta x}\right) \Delta u_{i+1}=-\left(\frac{\Delta t}{\Delta x}\right) \frac{F_{i+1}^{n}-F_{i-1}^{n}}{2}
$$

- Which is simpler for computation. The method still needs a smoothing to produce an oscillation free solution.

