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Model Equations

¢ Here, we will study various methods for solving the followings:

i . . ou ou
o First order linear wave equation: —+a—=0 (a>0)
ot ox
ou o’u
o Transient Diffusion: —-a—=0 (a>0)
ot 0.
. o’u o'u
o Laplace Equation: |— +— =0
ox~ oy
o ) ou ou
o Burger's Inviscid Equation: |—+u—=0
ot ox
ou oOu 0’u

o Burger's Viscous Equation:




Linear Wave Equation

o We will study the following methods:
o Euler explicit method
o First order upwind method
o Lax method
o Euler implicit method
o Leap frog method
o Lax-Wendroff method (single step and 2-step)
o Mac-Cormack method
o 2" order upwind method (Warming-Beam)
o Trapezoidal method

o Runge-Kutta method



Diffusion Equation

o We will study the following methods:

@)

@)

o

Simple explicit method
Simple implicit method
Crank-Nicholson method
Dufort-Frankel method

0 -methods

Keller-Box method
ADI method



Inviscid Burger Equation

o We will study the following methods:
o Lax method
o Lax-Wendroff method
o Mac-Cormack method
o Warming-Kutler-Lomax method

o Beam-Warming method



Linear Wave Equation



Euler Explicit Method

e The methodis (¢ >0)

n+l n n n
Ay u' —u )
d Lyl 7 -0 Ist orderin t and x
At Ax
un+1 . un un o un
i Lyl Tl Ist order in t and 2nd order in x
At 2Ax

¢ It is unconditionally unstable.



First Order Upwind Method

The method is

n+l n n n
u. —U. u. —u.
' Lpe—t—H=0 c>0
At Ax
n+l n n n
u. —u. u. —u.
! L +c i i+l — 0 c< 0
At Ax
Or in general,
central difference Artificial viscosity
—_——t—
1 c At |c| At
u™ =u - (qu —u; 1)+ u', —2u +u’,
2Ax 2Ax

The method is stable provided that

0<v= C—At<1

Ax

Remember that its modified equation is

ou Ou cAx ch2
—tC—=— (1 - ) xx -
ot o

+ O[Ax3,Ax2At,AxAt ,AP]

v? =3v+Du

XXX




First Order Upwind Method..

o The amplification factor and phase angle are:

G =(1—v—vcos,b’)—i(vsinﬂ)=|G|exp(i¢)

4=tan” Im(G) —tan = vsin
Re(G) l-v—-vcosf

e The exact solution for the problem is |u = eXp[iKm (x— Cl‘)] , thus

G=

G

e

u(t+At) exp{ikm [x —c(t+ At)]}
ut)y exp{ircm [x - ct]}
=1 @ =—K,cAt=—pv

= exp(— iK,c At) =exp(ig,)

¢ This means that

(@]

If the initial wave amplitude is AO, then after N steps the
total dissipation error is given by (1_‘G‘N)A0

The total dispersion (phase) error is given by N(¢e —¢)
Note that after one step, the relative shift error is

ﬁz—_ltanl( —vsin 8 J
¢, pBv l-v+vcosf




First Order Upwind Method..

e For small wave numbers (small /) we can write

ﬂzl—é(2v2—3v+1)ﬁ2

¢
¢ Note that
¢ >1 leading phase error
¢£<1 lagging phase error

o For the upwind method, we get

0<v<0.S5 leading phase error

0.5<v lagging phase error




Lax Method

e The method reads

1 u;’”—u”l_u’;] +-< (”;11—”:‘"—1):0
Af 2 2Ax

e Where

G=cosf—ivsinf
_ tan” (- tan )
b VP




Euler Implicit Method

The method reads

é(u[’”l —ui”)+ ﬁ(uﬂl _“zl): 0

The method is second order in space and first order in time.

It is unconditionally stable.
The modified equation is

¢t At cAx* At
u, +cu, = 5 U, — S + 3 u . +..

The amplification factor and phase error are

_ 1-ivsinp
1+iv’sin® S
¢ _ tan”' (—vsin )

b VB




Leap-Frog Method

e This 2" order method is

%N(u;m —u! )+

n n \_
(ui+1 Uy )— 0

<
2Ax

e Itis neutrally stable for |V| <I.

¢ The modified equation shows a predominantly dispersive

behavior.

2 4
u,+cu, :(CAX J(v2 -Du_, —(CAX J(9v4 —10v* +u

o T oo

6 120

¢ The amplification factor and phase error are

G ==+41-v’sin’ B —ivsin S

tan~' (Fvsin B/4/1—v’sin® )
—vB

[
g,




Lax-Wendroff Method

The method (2" order in time and space) is derived from the

Taylor expansion in time:

central difference Artificial viscosity
—_—
2
| cAt ¢’ At
u™ =u!' - 2Ax( o u;’_l) —2Ax2 M= 2ul ul

It is stable for |v| <1.

The modified equation is

2 3
+=(A6x ](v ~Dut, - (Agx ]v( Vi D, +

The amplification and phase errors are:

G= [1 v (1 —cosﬁ)]—i(vsinﬂ)
P _ tan”' {—vsinﬂ/[l v (1 —cosﬁ)]}
¢ —Vp

Note that the method has a predominantly lagging phase error

except for large wave numbers with /0.5 <v <1



Two-step Lax-Wendroff Method

For nonlinear equations such as the inviscid flow equations, a

2-step variation of the original Lax-Wendroff method can be

used:
1 st i +u c n n

At/2 (”Ml//zz ITJ T E(”Hl U ): 0 (step 1)
n+l n

M (a0 sep 2

The scheme is 2" order in time and space.

It is stable for |V| <1.

For the linear wave equation, the method becomes exactly like

the original Lax-Wendroff equation.



MacCormack Method

This method is a predictor-corrector type method (1969):

—n n CAt n n :

" =u ——(ul.+1 —u, ) (predictor)
1 _ cAf(_ _

™ =—u +u" ——(ul.”“ —ulﬁl) (corrector)
2 Ax

o For the linear wave equation, this method is equivalent to the
original Lax-Wendroff method with the same accuracy and

stability limit.



2"? Order Upwind Method

This is also called Warming and Beam method (1975):

_ cAt
u‘n+1_un_ (ln_ :il)

i i

(predictor)

cAt

A (u[’ =2u, +u, )} (corrector)

i i-1

_ CAt (ﬁnﬂ _ ﬁnﬂ
Ax

)-

For the linear wave equation, substituting the predictor into the

corrector gives:

n

+1 _ n n
u'" =u, —V(ul. —u;,

D )

The modified equation is

e
u, +cu, =

2

Ax ](1—1/)(2—1/)um _(Ax

4

8At]v(l V) 2-viu_, +..

The stability conditionis 0 <v <2

Also

G=1- 21/[1/ +2(1-v)sin® g} sin’ g—i(v sin ﬁ){l +2(1-v)sin® g}




2" Order Upwind Method..

Note that
O<v<l a predominantly leading phase error
I<v<?2 a predominantly lagging phase error

For 0 <v <1 the phase errors of the 2" order upwind method
and the Lax-Wendroff scheme are opposite. Fromm's method
(1968) uses this fact to produce a method free of dispersive

error.



Trapezoidal Differencing Method

The method is developed by using Taylor series for time and
central differences for spatial derivatives: (time-centered &

space-centered)

n+l
i+1

n+l _ n Vv n n+l n
u, =uy; _Z(u U, U _”i—l)

The method is second order in space and time.
It is also unconditionally stable.

It's modified equation is:

AP AP cAxt G APAST A
ut-i-Cl/l_,c = — + um— + + uxxmc""
12 6 120 24 80

Also

G- (1—%sinﬁj/(l+%sinﬁ)




Runge-Kutta Methods

These methods transform the PDE to an ODE as

ou ou
—=R(u) where R(u)=—-c—
ot Ox
A 2" order Runge-Kutta method becomes:
u® =u" + AtR" (step 1)
n+l n At n (1)
u" =u +?(R +R) (step 2)
where

m n n "
] B4
Ox ox Oox ox 0

Or simply we have

o w2 C2eu + )

Using 2"%-order central differences, we obtain the 2" order Lax-

Wendroff scheme.




Runge-Kutta Methods..

e One of the most popular Runge-Kutta method is its 4-step
version (2" order in time and 4™ order in space when 2" order

spatial differences are used):

u(l) =y" +%R" (step 1)

U@ =y +%R(l) (step 2)

u® =" + ALR? (step 3)
A

W=y +é(R" +2R" +2R® +RY) (step 4)




Diffusion Equation



Diffusion Equation

In 1D, we have

ou 0*u
— = —
ot Ox?

This is a parabolic equation whose exact solution for an initial

condition u(x,0)= f(x) and boundary conditions

u(0,1)=u(1,¢) =0 is given by

u(x,r)= Y A, exp(-ak,t)sin(k, x)

n=1

where (k, =nr)

4 = 2} £ (x)sin(k, x) dx

The exact amplification is
u(t+ At
G - Ui+A)
u(t)

= exp(~ak2 A1) = exp(~r3°)




Simple Explicit Method

Using first order in time and second order in space, we get

n+l1 n n

n n
u, —u, =aui+l 2u; +u;

At Ax?

The scheme is stable for

The ampl

oy:%suz

ification factor is

G=1+2r(cosf—-1)

The modified equation becomes:

ut—aum:(

—a’ At aAX? AP ot AtAY?
+ U, + -
2 12 3 12

360

a Ax*
+ uXXXXTKX +




Simple Implicit Method

This method is first order in time and second order in space:

n+l1 n n+l

n+l n+l
u, —u, :aum —2u;" +u,

At Ax?

It is unconditionally stable.

The modified equation is

a’ At aAX? a’ A dP AN a A
ul - auxx = + uxxxx + + + uxxxxxx +
2 12 3 12 360

The amplification factor is

G= 1
1+2r(1—-cos f)




Crank-Nicolson Method

e The method (1947) reads

n+l n
u. —Uu. a
C M P N = 2u ) (g, - 2] )]
At 2Ax

¢ Its modified equation is

a Ax? a’AF a A
ut - a u.xx = uxxxx + + uXxxXXX +
12 12 360

e The amplification factor is

G 1-r(l1—cosf)
- 1+7r(1—cos f)




Dufort-Frankel Method

This method is given by (7 = o At/ Ax”)

w1+ 2r)=u" +2r(u, —u

n—1
i

n
+Uu,_,

Remember that the method is not consistent with the diffusion

equation if At/ Ax — cte.

The modified equation becomes

u —au. =

t xx

|

a Ax? B a’ AP

12

sz

20° At?

aAxt AP
quXX + - +
’ 360 3

A)C4

j uxxxxxx +

Also, the amplification factor is

G 2rcos B+/1—4r*sin’ B

1+2r

The method is unconditionally stable (for »>0) and can be

easily extended to 2D and 3D cases.



0 - Methods

By combining the formulation of the simple explicit, simple

implicit and Crank-Nicolson methods, we obtain

u™ —y"

At
where

Ax

2 057w +(1-0)52u!]

2 n _  n+l n n
o u =u'" =2u +u,

0<6<1

The method is 2" order in time and space except for special

cases:

1
2
1

0=3-

(@

AXZ
12a At
AxZ

12aAt”’

Ax

a At

Crank — Nicolson (0=1/2)

=420

T.E.=O[At*,Ax*]

T.E.= O[At*,Ax*]

T.E.=O[A*,Ax*]

Its modified equation is

2
u—au, = [9—1]azm+ﬂ U, + (92—9+l]a3At2+l(9—ljazAtsz+
’ 2 12 | 3 6 2 36

ahx’
0 u.’(.’fxxx.\/ + A

The method is unconditionally stable if 1/2<60<1 .

When 0 <@ <1/2 the method is stable if 0 <r < (2—-46)""




Keller-Box Method

In this method, we split the equation into the followings:

Atrﬁ»l

ou < >
D (n,i) (n+1,1)
ax t b i d
8_u - @ T__, op o<o Ax,
o ox X 4

e o o

(ni-1)  (n+li-1)

Then, the method becomes

Uu. u

n+l o on+l
i -1 _

n+l
i-1

1
vt 4y

Ax,

1

At

n+l

n+l n+l n n
u. +u. (94 u. +u,_ (04

i -1 _ (v.nH _vinjl)_,’_ i i—1 + (vn _vn )
Ax

2

AJC- i At i i-1

i n+l i

This method is 2" order in time and space.



ADI Method

¢ The Alternating Direction Implicit method consists of two steps:

w2 g _ _
z,/AZ/z ij :a(é»Xz uZ;m +5yz uzn,)
uznjl — i’:;m S2oonsl/2 | S2 ntl
T=a(5x u o u )
where
0} =671A% 5. =62/A

(step1)

(step 2)

¢ In the first step a tri-diagonal system is solved for each ;row

and during the 2" step a tri-diagonal system is solved for each

i row of grid points.

e The method is 2" orderin #,x,y . And

B [1 -r(l- cosﬂx)]ll —r,(I-cos ﬁy)J
i+ (=cos p)lt+r,(1—cos B,)]
where
a At a At
n=—"">> h= 3
T Ax EAYY

> IBX :KmAx’ ﬁy :KmAy

e The method is unconditionally stable.



ADI Method..

e For a 3D problem, Douglas and Gunn suggest the following

formulation:
1-552 | A" = (1,02 + 7,82 + 182 " (step 1)
2 X — Ux%x yy zYz p
ry 2 *k *

1- 5 o, |Au =Au (step 2)
(l—rzzéfJAu =Au" (step 3)
where

n+l n
Auw. =u,; —U;;




Inviscid Burger Equation



General

The inviscid Burger equation

8_u+8_F:8_u+u8_u:0 with F=u"/2
ot Ox Ot Ox

Is analog to the Euler equations for the flow of an inviscid fluid. It
also represents a nonlinear wave equation, where each point on the
wave front can propagate with a different speed. As a result this
equation can show the coalescence of characteristics and therefore
accept the formation of discontinuous solutions, similar to shock
waves in fluid dynamics.

The characteristic of the Burger's equation is

di 1

dx u

The solution to the Burger's equation under a specific initial
condition is

u=0 x<0
u(x,0)=0 x<0
—<u=x/t O<x<t
u(x,0)=1 0<x
u=1 t<x




General..

e The solution can be shown as below

d
dx

o0

»X
o If the initial condition was
u(x,0)=u, x<a
u(x,0)=u, <u, xX>a

e Then, a shock wave like discontinuity will be traveling in the
domain at the average value of the (u1 +u2)/2 function across

the wave front.



Lax Method

This is a first order method:

EEEET T

Its amplification factor is

At dF
G=cosff—i——sin
P Ax du p

The stability limit is

At
—u

<1
Ax max

When using a finite volume method, a first order method in ¢ is

=y _%(F.Zm _F:'ﬁl/2)

1 1 1

Using the Lax method, we get

1 .. . Ax
Fi» :2|:E +F 7(“;41 _ui):l

i+1 At

This flux function is consistent in the sense that

F(ui7ui+l) = F(u,) when u,=u

i+l




Lax-Wendroff Method

This method is developed using the Taylor series and is 2"

order accurate in space and time.

The method reads: (8F/8u)i+l/2 =A4.,,= A((ul. + qu)/Z)

u

i i ZAX i+l

i _yn - AL (g F;’)+%(%

2
j [Ainﬂ/Z (F,ﬁl —F' )_ AL, (En —F )]

We also have

At

2
At .
G=1-2| A— | (1-cosf)—2i A—sin

The stability requirement is

At
Ax

umax

<1

As the Courant number uAf/ Ax is reduced from 1.0, the quality

of the solution is degraded and more oscillations are produced.



Lax-Wendroff Method...

Using the finite volume formulation, we get

I 5
A (”i+1 —U; )

1
Foin :E(E +E‘+1)_ 2Ax

Here A.,,is the eigenvalue of the Jacobian A4

112 Which is

u,,,,for the Burger's equation.

We also notice that

Lax method (first order) Extra term producing 2nd order accuracy

1 Ax Ax At U, —u,
Fon= 2[F+F:+1 AL (ui+1_ui)j+E|:1 (ij iim}( 12 J

Since Lax method produces no oscillations, we can use a
function ¢ to control the amount of the 2" part to be added to

the Lax method to minimize the oscillations.



MacCormack Method

This method is a predictor-corrector version of the Lax-

Wendroff scheme thus easier to implement.

At

—n+l .

=yt ——\F" —F" redictor

i i ‘ ( i+l i ) (p )

' = 1, " - ﬁ(ﬁ"“ —F") (corrector)
2 Ax

The amplification factor and the stability limit are the same as
those for the Lax-Wendroff method.



Warming-Kutler-Lomax Method

This is a 3" order scheme and uses the MacCormack method

for the first two levels. The method (1973) reads

2A
u =) -2 - F)

3Ax
u® = 1 u' +u —A(Fi" - F,-(_ll))

2 3Ax
n+ n At n n n n
u; = u; _m(_ 2F, +TF —TF + 2F;'—2)
3At a) n n n n n
- @(F;ﬁ) -F9 )_ ﬁ(uwz —4uiy +ou) —du’, +u, )

The stability limit for Burger's equation is given by

<1 and 4y vt <w<3

At
= 2
Ax




Beam and Warming Method

This is a 2" order implicit method.

First use the trapezoidal method,

=+ S )+, e olar]

Then, substitute the model equation into it

. A (aFj” [aF)”*‘
u; =u; ——||—| | —
! o2 \ox ox

Beam and Warming (1976) suggested that

F™' = F" +(%jn(u”*‘ —u"):F” +A”(u”*1 —u")

Thus, the method becomes

urt =t =AU OO Ly —u)]
2 Ox Ox

Substitute x-derivatives with 2" order central differences, we get

[

At Ain—l n+l n+l At Ain+1 n+l At F;zl — F;: At Ain—l n n At Aiyirl n
— N T | ) = — | | ) ] | —— ),
4Ax 4Ax Ax 2 4Ax 4Ax




Beam and Warming Method...

This leads to a tri-diagonal system and can be solved using the
Thomas algorithm.

This method is stable but produces oscillations.

To reduce oscillations, an artificial smoothing can be added to

the scheme O<w<1:

+6u —4u | + ul."_z)

i+2 i+l

%(u” —4u’

An efficient form of the above method can be obtained using

_ . n+l n
Au, =u;" —u,

The trapezoidal formula with the following linearization
F;.’H—l :F;n +Al."Aul.

The final form of the scheme becomes

At A" At A" A\ F" —F"
_ t 4 AMH +Au, + 14, AMHI — i i+l i1
4Ax 4Ax Ax 2

Which is simpler for computation. The method still needs a

smoothing to produce an oscillation free solution.



