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Model Equations 
 

• Here, we will study various methods for solving the followings: 

o First order linear wave equation: )0(0 >=
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o Laplace Equation: 02

2

2

2

=
∂
∂

+
∂
∂

y
u

x
u

 

o Burger's Inviscid Equation: 0=
∂
∂

+
∂
∂

x
uu

t
u

 

o Burger's Viscous Equation: 2
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Linear Wave Equation 
 
• We will study the following methods: 

o Euler explicit method 
o First order upwind method 
o Lax method 
o Euler implicit method 
o Leap frog method 
o Lax-Wendroff method (single step and 2-step) 
o Mac-Cormack method 
o 2nd order upwind method (Warming-Beam) 
o Trapezoidal method 
o Runge-Kutta method 

 



Diffusion Equation 
 
• We will study the following methods: 

o Simple explicit method 
o Simple implicit method 
o Crank-Nicholson method 
o Dufort-Frankel method 

o θ -methods 

o Keller-Box method 
o ADI method 
 



Inviscid Burger Equation 
 
• We will study the following methods: 

o Lax method 
o Lax-Wendroff method 
o Mac-Cormack method 
o Warming-Kutler-Lomax method 
o Beam-Warming method 

 
 
 
 
 



 
 
 
 
 
 

Linear Wave Equation



Euler Explicit Method 
 
• The method is ( 0>c ) 
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• It is unconditionally unstable. 
 



First Order Upwind Method 
 
• The method is 
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• Or in general,  
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First Order Upwind Method… 
 

• The amplification factor and phase angle are: 
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• The exact solution for the problem is [ ])(exp ctxiu m −= κ , thus 
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• This means that 

o If the initial wave amplitude is 0A , then after N steps the 
total dissipation error is given by ( ) 01 AG N−  

o The total dispersion (phase) error is given by ( )φφ −eN  
o Note that after one step, the relative shift error is 
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First Order Upwind Method… 
 
• For small wave numbers (small β ) we can write 
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• For the upwind method, we get 
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Lax Method 
 
• The method reads 
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Euler Implicit Method 
 
• The method reads 

( ) ( ) 0
2

1 1
1

1
1

1 =−
∆

+−
∆

+
−

+
+

+ n
i

n
i

n
i

n
i uu

x
cuu

t
 

• The method is second order in space and first order in time. 

• It is unconditionally stable. 

• The modified equation is 
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• The amplification factor and phase error are 
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Leap-Frog Method 
 
• This 2nd order method is 
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• It is neutrally stable for 1≤ν . 

• The modified equation shows a predominantly dispersive 
behavior.  
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• The amplification factor and phase error are 
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Lax-Wendroff Method 
 
• The method (2nd order in time and space) is derived from the 

Taylor expansion in time:  
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• It is stable for 1≤ν . 

• The modified equation is 
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• The amplification and phase errors are: 
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• Note that the method has a predominantly lagging phase error 
except for large wave numbers with 15.0 <<ν  



Two-step Lax-Wendroff Method 
 
• For nonlinear equations such as the inviscid flow equations, a 

2-step variation of the original Lax-Wendroff method can be 
used: 
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• The scheme is 2nd order in time and space. 

• It is stable for 1≤ν . 

• For the linear wave equation, the method becomes exactly like 
the original Lax-Wendroff equation. 



MacCormack Method 
 
• This method is a predictor-corrector type method (1969): 
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• For the linear wave equation, this method is equivalent to the 
original Lax-Wendroff method with the same accuracy and 
stability limit. 



2nd Order Upwind Method 
 
• This is also called Warming and Beam method (1975): 
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• For the linear wave equation, substituting the predictor into the 
corrector gives: 
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• The stability condition is 20 ≤≤ν  
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2nd Order Upwind Method… 
 
• Note that  
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• For 10 <<ν  the phase errors of the 2nd order upwind method 

and the Lax-Wendroff scheme are opposite. Fromm's method 
(1968) uses this fact to produce a method free of dispersive 
error. 

 



Trapezoidal Differencing Method 
 
• The method is developed by using Taylor series for time and  

central differences for spatial derivatives: (time-centered & 
space-centered) 
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• The method is second order in space and time. 

• It is also unconditionally stable. 

• It's modified equation is: 
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Runge-Kutta Methods 
 
• These methods transform the PDE to an ODE as 
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• Or simply we have 
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• Using 2nd-order central differences, we obtain the 2nd order Lax-
Wendroff scheme. 

 



Runge-Kutta Methods… 
 
• One of the most popular Runge-Kutta method is its 4-step 

version (2nd order in time and 4th order in space when 2nd order 
spatial differences are used): 
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Diffusion Equation 
 
 



Diffusion Equation 
 
• In 1D, we have 
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Simple Explicit Method 
 
• Using first order in time and second order in space, we get 
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• The amplification factor is 
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• The modified equation becomes: 
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Simple Implicit Method 
 
• This method is first order in time and second order in space: 
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• It is unconditionally stable. 

• The modified equation is 
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• The amplification factor is 
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Crank-Nicolson Method 
 
• The method (1947) reads  
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• Its modified equation is 
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Dufort-Frankel Method 
 

• This method is given by ( 2/ xtr ∆∆=α ) 
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• Remember that the method is not consistent with the diffusion 
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• The modified equation becomes 
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• The method is unconditionally stable (for 0≥r ) and can be 

easily extended to 2D and 3D cases. 
 
 



θ - Methods 
 
• By combining the formulation of the simple explicit, simple 

implicit and Crank-Nicolson methods, we obtain 
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• The method is 2nd order in time and space except for special 
cases: 
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• Its modified equation is 
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• The method is unconditionally stable if 12/1 ≤≤θ  . 

• When 2/10 ≤≤θ  the method is stable if 1)42(0 −−≤≤ θr  



Keller-Box Method 
 
• In this method, we split the equation into the followings: 
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• Then, the method becomes 
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• This method is 2nd order in time and space. 
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ADI Method 
 
• The Alternating Direction Implicit method consists of two steps: 
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• In the first step a tri-diagonal system is solved for each j row 

and during the 2nd step a tri-diagonal system is solved for each 

i  row of grid points. 

• The method is 2nd order in yxt ,, . And 
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• The method is unconditionally stable. 



ADI Method… 
 
• For a 3D problem, Douglas and Gunn suggest the following 

formulation: 
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Inviscid Burger Equation



General 
 
• The inviscid Burger equation  
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• Is analog to the Euler equations for the flow of an inviscid fluid. It 
also represents a nonlinear wave equation, where each point on the 
wave front can propagate with a different speed. As a result this 
equation can show the coalescence of characteristics and therefore 
accept the formation of discontinuous solutions, similar to shock 
waves in fluid dynamics. 

  
• The characteristic of  the Burger's equation is 

udx
dt 1

=  

• The solution to the Burger's equation under a specific initial 
condition is   
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General… 
 
• The solution can be shown as below 

 
• If the initial condition was 
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• Then, a shock wave like discontinuity will be traveling in the 

domain at the average value of the ( ) 2/21 uu +  function across 

the wave front. 
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Lax Method 
 
• This is a first order method: 
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• Its amplification factor is 
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• The stability limit is 
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• When using a finite volume method, a first order method in t  is 
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• Using the Lax method, we get 
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• This flux function is consistent in the sense that 
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Lax-Wendroff Method 
 
• This method is developed using the Taylor series and is 2nd 

order accurate in space and time. 

• The method reads: ( ) ( )2/)(/ 12/12/1 +++ +=≡∂∂ iiii uuAAuF  
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• We also have 
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• The stability requirement is 

1max ≤
∆
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x
t  

• As the Courant number xtu ∆∆ /  is reduced from 1.0, the quality 

of the solution is degraded and more oscillations are produced. 
 
 
 



Lax-Wendroff Method... 
 
• Using the finite volume formulation, we get 
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• Here 2/1+iλ is the eigenvalue of the Jacobian 2/1+iA  which is 

2/1+iu for the Burger's equation. 

• We also notice that 
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• Since Lax method produces no oscillations, we can use a 

function φ  to control the amount of the 2nd part to be added to 

the Lax method to minimize the oscillations. 
 
 
 



MacCormack Method 
 
• This method is a predictor-corrector version of the Lax-

Wendroff scheme thus easier to implement. 
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• The amplification factor and the stability limit are the same as 
those for the Lax-Wendroff method. 

 
 
 
 



Warming-Kutler-Lomax Method 
 
• This is a 3rd order scheme and uses the MacCormack method 

for the first two levels. The method (1973) reads 

( )

( )

( )

( ) ( )n
i

n
i

n
i

n
i

n
iii

n
i

n
i

n
i

n
i

n
i

n
i

i
n
ii

n
ii

n
i

n
i

n
ii

uuuuuFF
x
t

FFFF
x
tuu

FF
x
tuuu

FF
x
tuu

2112
)2(

1
)2(

1

2112
1

)1(
1

)1()2(

1
)1(

464
248

3

2772
24

3
2

2
1

3
2

−−++−+

−−++
+

−

+

+−+−−−
∆
∆

−

+−+−
∆
∆

−=





 −

∆
∆

−+=

−
∆
∆

−=

ω

 

• The stability limit for Burger's equation is given by 
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Beam and Warming Method 
 
• This is a 2nd order implicit method.  

• First use the trapezoidal method,  
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• Then, substitute the model equation into it 
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• Beam and Warming (1976) suggested that 
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• Thus, the method becomes 
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• Substitute x-derivatives with 2nd order central differences, we get 
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Beam and Warming Method... 
 
• This leads to a tri-diagonal system and can be solved using the 

Thomas algorithm.  

• This method is stable but produces oscillations.  

• To reduce oscillations, an artificial smoothing can be added to 

the scheme 10 ≤<ω : 
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• An efficient form of the above method can be obtained using 
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• The trapezoidal formula with the following linearization 
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• The final form of the scheme becomes 
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• Which is simpler for computation. The method still needs a 
smoothing to produce an oscillation free solution. 


