Lecture 9: Linear
Regression



Goals

* Develop basic concepts of linear regression from
a probabilistic framework

* Estimating parameters and hypothesis testing
with linear models

* Linear regression in R



Regression

e Technique used for the modeling and analysis of
numerical data

* Exploits the relationship between two or more
variables so that we can gain information about one of
them through knowing values of the other

e Regression can be used for prediction, estimation,
hypothesis testing, and modeling causal relationships



Regression Lingo

Y =X, + X, + X,
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Dependent Variable Independent Variable
Outcome Variable Predictor Variable

Response Variable Explanatory Variable



Why Linear Regression?

* Suppose we want to model the dependent variable Y in terms
of three predictors, X,, X,, X,

Y = f(X;, X, X;)

* Typically will not have enough data to try and directly
estimate f

* Therefore, we usually have to assume that it has some
restricted form, such as linear

Y =X, +X,+X,



Linear Regression is a Probabilistic Model

* Much of mathematics is devoted to studying variables
that are deterministically related to one another

y = p, + px

e |&

8, by

X

* But we're interested in understanding the relationship
between variables related in a nondeterministic fashion



A Linear Probabilistic Model

* Definition: There exists parameters f3,, 5, and o’ such that for
any fixed value of the independent variable x, the dependent

variable is related to x through the model equation

y=Pp, +Px +¢

. £is arv assumed to be N(0, 07)

f\True Regression Line
y = Py + px

B




Implications

* The expected value of Y is a linear function of X, but for fixed
X, the variable Y differs from its expected value by a random
amount

* Formally, let x* denote a particular value of the independent
variable x, then our linear probabilistic model says:

EY | x*)= uy .. = mean value of Y when x 1s x *

V(Y | x*¥)= o2 . = variance of Y when x is x *



Graphical Interpretation

y = f, + px

» X

* For example, if x = height and y = weight then Wy x-¢o is the average

weight for all individuals 60 inches tall in the population



One More Example

Suppose the relationship between the independent variable height
(x) and dependent variable weight (y) is described by a simple

linear regression model with true regression line
y=75+0.5xand 0=3

* Q1: What is the interpretation of [, = 0.5?

The expected change in height associated with a 1-unit increase
in weight

* Q2: If x = 20 what is the expected value of Y?
Wy = 7.5 + 0.520) = 17.5

. Q3: If x = 20 what is P(Y > 22)?
22-17.5

P(Y>22|X=20)=P( )=1—¢(1.5)=0.067



Estimating Model Parameters

* Point estimates of [3’0 and [3’1 are obtained by the principle of least
squares

f(ﬁo’ﬁl) = E[yi - (/30 + ﬁlxi)]z

X




Predicted and Residual Values

Predicted, or fitted, values are values of y predicted by the least-
squares regression line obtained by plugging in x;,x,,...,x_ into the
estimated regression line

)A’l =, - Px,
)A’z =, - px,

Residuals are the deviations of observed and predicted values
e =y -J

82=J’2_)A’2




Residuals Are Useful!

* They allow us to calculate the error sum of squares (SSE):
SSE = E(ei)z = E(yi -3
i=1 i=1

*  Which in turn allows us to estimate o°:

O =
n-2

* As well as an important statistic referred to as the coefficient of
determination:

2 o1k SST =N (v, - 9)’
=1



Multiple Linear Regression

* Extension of the simple linear regression model to two or
more independent variables

y = /30 + ﬁl’xl + ﬁ2x2+"‘+ﬁn’xn+8

Expression = Baseline + Age + Tissue + Sex + Error

* Partial Regression Coefficients: 3, = effect on the
dependent variable when increasing the i*" independent
variable by 1 unit, holding all other predictors
constant



Categorical Independent Variables

* Qualitative variables are easily incorporated in regression
framework through dummy variables

* Simple example: sex can be coded as 0/1

* What if my categorical variable contains three levels:

)




Categorical Independent Variables

* Previous coding would result in colinearity

* Solution is to set up a series of dummy variable. In general
for k levels you need k-1 dummy variables

1if AA
O otherwise

1if AG
O otherwise

X1—

X2 -
X1 X
AA 1 O

AG 0 1
GG 0 O



Hypothesis Testing: Model Ultility Test (or
Omnibus Test)

* The first thing we want to know after fitting a model is whether
any of the independent variables (X’s) are significantly related to
the dependent variable (Y):

H, : B=8,=...=8, =0

H, : Atleastone g, =0

—_ R2 [ k
(1-R*) n-(k+1)

/

Rejection Region: F, ..



Equivalent ANOVA Formulation of Omnibus Test

* We can also frame this in our now familiar ANOVA framework

- partition total variation into two components: SSE (unexplained
variation) and SSR (variation explained by linear model)



Equivalent ANOVA Formulation of Omnibus Test

* We can also frame this in our now familiar ANOVA framework

- partition total variation into two components: SSE (unexplained
variation) and SSR (variation explained by linear model)

Source of df Sum of Squares MS F
Variation
: A~ _ SSR MS,
Regression k SSR = E(yi ~y)? . VS,
SSE
Error n-2 - —9.)?
SSE=Y (=3 =5
Total n-1 | SST = E(yi ~5)?

Rejection Region: F_ ..



F Test For Subsets of Independent Variables

* A powerful tool in multiple regression analyses is the ability to
compare two models

* For instance say we want to compare:
Full Model: y = B, + Bx, + B,x, + Byx, + B, x, + €

Reduced Model: y = B, + Bx, + B,x, +¢€

* Again, another example of ANOVA:

SSE; = error sum of squares for

reduced model with [ predictors _ (SSER — SSEF)/(k — l)

/
SSE; = error sum of squares for SSEF /([n - (k + 1)]

full model with k predictors




Example of Model Comparison

* We have a quantitative trait and want to test the effects at two
markers, M1 and M2.

Full Model: Trait = Mean + M1 + M2 + (M1*M2) + error
Reduced Model: Trait = Mean + M1 + M2 + error

_(SSE, -SSE)/(3-2) (SSE, - SSE,)

! SSE, /([100 - (3+ 1] SSE, /96

Rejection Region: F, | 4



Hypothesis Tests of Individual Regression
Coefficients

» Hypothesis tests for each f3, can be done by simple t-tests:

HO : /§i=0
H, : /;’i;tO
T= l_ﬁi

Se(ﬁi)

Critical value: 7,,,,,_ .,

* Confidence Intervals are equally easy to obtain:

P+ Loron—ken) ® se(f;)



Checking Assumptions

* Critically important to examine data and check assumptions
underlying the regression model

» Outliers

» Normality

» Constant variance

» Independence among residuals

* Standard diagnostic plots include:

» scatter plots of y versus x. (outliers)

» qq plot of residuals (normality)

» residuals versus fitted values (independence, constant variance)
> residuals versus x; (outliers, constant variance)

* We'll explore diagnostic plots in more detail in R



Fixed -vs- Random Effects Models

* In ANOVA and Regression analyses our independent variables can
be treated as Fixed or Random

* Fixed Effects: variables whose levels are either sampled
exhaustively or are the only ones considered relevant to the

experimenter

 Random Effects: variables whose levels are randomly sampled
from a large population of levels

* Example from our recent AJHG paper:

Expression = Baseline + Population + Individual + Error





