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1. Introduction1to linear regression 
 
Regression analysis is the art and science of fitting straight lines to patterns of data.  In a linear 
regression model, the variable of interest (the so-called “dependent” variable) is predicted from k 
other variables (the so-called “independent” variables) using a linear equation.   If Y denotes the 
dependent variable, and X1, …, Xk, are the independent variables, then the assumption is that the 
value of Y at time t (or row t) in the data sample is determined by the linear equation 
 

t 0 1 1t 2 2t k kt tY   =   β  +  β  X   +  β  X   +  ...  +  β  X   +  ε  
 

where the betas are constants and the epsilons are independent and identically distributed (i.i.d.) 
normal random variables with mean zero (the “noise” in the system).  β0 is the so-called 
intercept of the model—the expected value of Y when all the X’s are zero—and βi is the 
coefficient (multiplier) of the variable Xi.   The betas together with the mean and standard 
deviation of the epsilons are the parameters of the model.   The corresponding equation for 
predicting  Yt from the corresponding values of the X’s  is therefore 
 

t 0 1 1t 2 2t k k tŶ   =   b  +  b X   +  b X   +  ...  +  b X  
 

where the b’s are estimates of the betas obtained by least-squares, i.e., minimizing the squared 
prediction error within the sample.  This is about the simplest possible model for predicting one 
variable from a group of others, and it rests on the following assumptions. 
 

1. The expected value of Y is a linear function of the X variables.  This means:  
a. if Xi  changes by an amount ∆Xi, holding other variables fixed, then the expected 

value of Y changes by a proportional amount βi∆Xi, for some constant βi (which 
in general could be a positive or negative number). 

b. The value of βi is always the same, regardless of values of the other X’s.  
c. The total effect of the X’s on the expected value of Y is the sum of their separate 

effects. 
                                                 
 (c) 2014 by Robert Nau, all rights reserved.  Last updated on 11/26/2014.  
The material presented in this handout can also be found in html form on the introduction-to-linear-regression page 
and the mathematics-of-simple-regression page on the main web site:  people.duke.edu/~rnau/411home.htm  

Notes on linear regression analysis 
 
Robert Nau 
Fuqua School of Business, Duke University 
 

http://people.duke.edu/~rnau/regintro.htm
http://people.duke.edu/~rnau/mathreg.htm
http://people.duke.edu/~rnau/411home.htm


 2 

2. The unexplained variations of Y are independent random variables (in particular, not 
“autocorrelated” if the variables are time series) 

3. They all have the same variance (“homoscedasticity”). 
4.  They are normally distributed. 

 
These are strong assumptions.  You can easily imagine situations in which Y might be a 
nonlinear function of the X’s (e.g., if there are diminishing marginal effects), or in which there 
might be interactions among the X’s in their effects on Y (e.g., if the sensitivity of Y to one of 
the X’s depends on the values of other X’s), or in which the size of the random deviations of Y 
from its expected value might depend on the values of the X’s (e.g., if there is greater or lesser 
uncertainty under some conditions), or in which the random deviations might be correlated in 
time, or in which the errors are not normally distributed (e.g., the error distribution might not be 
bell-shaped and/or might have some really extreme values).  A regression model assumes that 
there are no such nonlinearities or interactions or changing volatility or autocorrelation or non-
normality in the random variations.   (Further discussion of the assumptions of regression models 
and how to test them are given on the introduction-to-regression web page and the testing-model-
assumptions page on the main web site.) 
 
Of course, no model is perfect—these assumptions will never be exactly satisfied by real-world 
messy data—but you hope that they are not badly wrong.  Just to be clear about all this: 
 

 
The art of regression modeling is to (most importantly!) collect data that is relevant and 
informative with respect to your decision or inference problem, and then define your variables 
and construct your model in such a way that the assumptions listed above are plausible, at least 
as a first-order approximation to what is really happening.  There is no magic formula for doing 
this—you need to exercise your own judgment based on your own understanding of the situation 
and your own understanding of how a regression model works.  Choosing a good regression 
model requires (a) gathering useful data and making sure you know where it came from and how 
it was measured, (b) performing descriptive analysis on it to understand its general patterns and 
to spot data-quality problems, (c) applying appropriate data transformations if you see strong 
evidence of relationships that are nonlinear or noise that is non-normal or time-dependent, (d) 
fitting and refining and comparing models, (e) checking to see whether a given model’s 
assumptions are reasonably well satisfied or whether an alternative model is suggested, (f) 
choosing among reasonable models based on the appropriate bottom-line accuracy measure, and 
(g) deriving some useful insights from the whole process. What story does the model tell about 
the data, does it make sense to you, is it useful, and can you explain (or sell) it to someone else? 

A regression model does not assume that Y merely “depends in some way” on the X’s.  If 
you have a variable Y that you wish to predict, and you have some other variables X1, 
X2, etc., that you believe have “some sort of effect” on Y or “some sort of predictive 
value” with respect to future values of Y, this does NOT suffice to justify using a linear 
regression model to predict Y from the X’s.   The regression model makes very strong 
assumptions about the WAY in which Y depends on the X’s, namely that the causal or 
predictive effects of the X’s with respect to Y are linear and additive and non-interactive 
and that any variations in Y that are not explained by the X’s are statistically 
independent of each other and identically normally distributed under all conditions.  

http://people.duke.edu/~rnau/regintro.htm
http://people.duke.edu/~rnau/testing.htm
http://people.duke.edu/~rnau/testing.htm
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In decision-making settings the dependent variable might be some bottom-line measure of 
revenue or cost or productivity and the independent variables might be things that you control 
(such as your own prices or the timing of promotions) or that you don’t control (such as your 
competitors’ prices or the unemployment rate or the timing of holidays).   For example, in an 
agricultural decision problem, the question of interest might be how crop yields are affected by 
decisions about chemical treatments and by weather conditions during the growing season.  The 
dependent variable might be the crop yield in bushels per acre and independent variables might 
be pounds of fertilizers and pesticides applied per acre and amounts of rainfall and average 
temperatures during the months of the growing season.  In a marketing decision problem, the 
dependent variable might be units of a product sold per week and the independent variables 
might be numbers of discount coupons distributed, numbers of spot advertisements on TV, and 
number of in-store displays.  In other settings the question of interest may be one of inference or 
general knowledge, e.g., determining whether one variable has any significant effect on or 
association with another variable, in order to test a theory or a conjecture or to justify a claim 
about positive or negative effects of some activity or product or medical treatment. 
 
2.   Correlation and regression-to-mediocrity 
 
The use of regression models in statistical analysis was pioneered by (Sir) Francis Galton, a 19th 
Century scientist and explorer who might be considered a model for the Indiana Jones character 
of the movies.  Early in his career, after he inherited a fortune and quit medical school, he went 
on two expeditions to Africa, the first to the upper Nile Valley and the second through parts of 
south-west Africa, sandwiched around 5 years of enjoying the sporting life.  Based on what he 
learned from these adventures he wrote two best-selling books—The Art of Travel and its sequel, 
The Art of Rough Travel—which offered practical advice to future explorers on topics such as 
how to treat spear wounds and pull your horse out of quicksand, and he introduced a new item of 
camping gear to the Western world:  the sleeping bag.   These authoritative books are still in 
print and you can order them from Amazon: 
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Galton went on to become a pioneer in the collection & analysis of biometric, anthropometric & 
psychometric data, as well as the invention of weather maps and the application of scientific 
methods to everyday activities such as tea-brewing.  He was a half-cousin of Charles Darwin, 
and they struck up a long friendship and correspondence (initiated by Darwin) after they 
discovered each others’ work.   Darwin’s theory had a revolutionary impact on Galton and 
inspired him to conduct experiments in plant-breeding to test some of its implications.  (In fact, 
he corrected some errors in Darwin’s thinking about whether acquired traits can be passed on to 
offspring.)  In his experiments, Galton discovered a phenomenon whose universality took a 
while to become appreciated:  an individual that is exceptional within its own generation with 
respect to some measureable trait (e.g., size) has offspring who on average are exceptional in the 
same way, but less so in relative terms within their own generation.  More precisely, if the 
measured trait of the parent is X standard deviations from the mean within its own generation, 
then the same trait of the offspring should be predicted to be r × X deviations from the mean of 
its own generation, where r is a number less than 1 in magnitude:  the coefficient of correlation 
between the trait of the parent and that of the offspring.2   Here is the first published picture of a 
regression line, from a lecture presented by Galton in 1877:  
 

 
 
Galton termed this phenomenon a “regression towards mediocrity,” which we now call a 
“regression to the mean.” 3  At first glance it appears to imply that individual differences will be 

                                                 
2 Galton was an empirical scientist rather than a mathematician, and the formal details of regression models as we 
know them today were more fully worked out by his disciple, Karl Pearson, and other statistical theorists of the early 
20th Century. 
3 The “R” on this chart is the estimated coefficient of the parent seed diameter in the regression, not the correlation.  
From my attempts to read the offspring diameter values off the Y axis, I get rXY ≈ 0.9, STDEV.P(Y) ≈ 0.75, 
STDEV.P(X) ≈ 2.  The coefficient of X in a simple regression is given by the formula rXY × (STDEV.P(Y)/ 
STDEV.P(X)), which is equal to 0.9 × (0.75/2) ≈ 0.338 in this case.  

http://www.mugu.com/galton/essays/1880-1889/galton-1886-jaigi-regression-stature.pdf
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smoothed out over generations, each one becoming more mediocre than the one before it, but 
this is not so.  It is a purely statistical phenomenon that can be viewed as a form of selection bias.  
Every quantitative measurement is a combination of signal and noise.  When a value above the 
mean is observed, it is probable that the value of the signal was above average and the value of 
the noise was above average.   Now suppose there is some other quantity (say, some measurable 
trait of the offspring—not necessarily the same one) whose value depends only on the signal, not 
the noise, in the first quantity.  Then a measurement of the second quantity should also be 
expected to be above the mean, but less so in relative terms, because only the above-average 
signal is passed on; the above-average noise is not.  In fact, it is the independent noise in the 
second quantity that prevents variations from ever dying out over generations.  For example, in 
the case of Galton’s sweet pea seeds, an unusually large parent seed probably occurred partly for 
genetic reasons (which were passed on to its offspring) and partly for environmental reasons 
(which were not), and the sizes of the offspring seeds would also have been affected to some 
extent by random forces unrelated to their parentage or simply unmeasured by the scientist. 
 
Regression-to-mediocrity is a fact of life that you should come to terms with.  If you take a 
course in which there is both a midterm and a final exam, then you should expect that your 
performance on the final exam will be more mediocre than your performance on the midterm, in 
the sense of being fewer standard deviations from the class mean, for better or worse.  If you 
have a “hot hand” (or a cold one) in a game of pickup basketball, you should expect to have a 
less-hot (or less-cold) hand in the next one.    The mutual fund managers who had hot hands over 
the last 5 years will probably have less-hot hands over the next 5 years.  If you are exceptionally 
talented along some dimension (which probably you are, if you are reading these notes in the 
first place), you should expect that your children will also be talented but less so than you are 
along the same dimension, measured relative to their own cohort (sorry!).   
 
This is not guaranteed, but it’s the way to bet.   What it implies for forecasting is that on a 
scatterplot of Y vs. X, the regression line for predicting Y from X is not the visual “axis of 
symmetry” of the joint distribution.   Rather, it tilts toward the horizontal.  
 
If you standardize the values of Y and X by converting them to units of standard-deviations-
from-the-mean, then the distribution of points will be roughly symmetric around a 45-degree line 
drawn through the origin, and the regression line for predicting Y from X will also pass through 
the origin (i.e., Y will be predicted to equal its own mean when X equals its own mean), but it 
will have a slope of less than 45 degrees, i.e., it will “regress” toward the X axis.  
 
To make this argument precise, let X* and Y* denote the variables that are the standardized 
values of  X and Y, whose observations in period t are defined as: 
 

*
t tX   =   (X AVERAGE(X))/STDEV.P(X)−  
*
t tY   =   (Y AVERAGE(Y))/STDEV.P(Y)−  
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where STDEV.P(X) and STDEV.P(Y) are the population standard deviations.4  Mathematically, 
the coefficient of correlation between X and Y is the average product of their standardized 
values,5 i.e., 

* * * * * *
1 1 2 2

XY
X Y  + X Y   ...   X Yr   =  n n

n
+ +  

 
where n is the sample size.  Intuitively, the quantity determined by this equation should be 
positive if X and Y have a tendency to vary on the same sides of their respective means at the 
same time (i.e., if X*

t and Y*
t tend to have the same sign for any given t), and it should be 

negative if X and Y have a tendency to vary on opposite sides of their respective means at the 
same time (i.e., if X*

t and Y*
t  tend to have opposite signs).   

 
In general the correlation coefficient is a number that lies somewhere between -1 and +1, 
where -1 indicates a perfect negative linear relationship, +1 indicates a perfect positive 
linear relationship, and zero indicates no linear relationship.   
 
Just to be clear:  a correlation of zero between X and Y does not necessarily mean that there is no 
relationship, just that there is no linear relationship within the historical sample of data that is 
being analyzed, i.e., it means that an equation of the form 0 1Ŷ  =  b + b X  is no better for 

predicting Y than the equation 0Ŷ  =  b  within that sample of data. For example, if Y is always 
exactly equal to X squared, and you look at a sample of data in which X is symmetrically 
distributed on both sides of zero, then the graph of Y versus X looks like a parabola, and the 
correlation between X and Y can be zero even though Y can be perfectly predicted from X—it 
just can’t be perfectly predicted using a linear equation. 
 
In Excel, correlations can be calculated using the CORREL function.  For example, if X and Y 
are stored in the ranges A1:A100 and B1:B100, then their correlation is given by the formula 
=CORREL(A1:A100,B1:B100).   RegressIt and programs such as Statgraphics and SPSS and 
Stata also have built-in functions for calculating correlations—in fact, they can compute all 
pairwise correlations between a specified group of variables, arranged in the form of a 
correlation matrix. 
 
To continue the story, the phenomenon that Galton noted was that the regression line for 
predicting Y* from X* is a line passes that through the origin and has a slope equal to the 
correlation between Y and X, i.e., the regression equation in standardized units is: 

                                                 
4 The population standard deviation is the actual root-mean-square deviation of the variable from its mean value, 
which can be calculated when the data sample consists of the entire population and actual mean value is exactly 
known.  The sample standard deviation, which is the function STDEV.S in Excel, is the estimated root-mean-square 
deviation of the variable from its mean value, when only a sample is observed and the mean value is estimated from 
the sample.  The formula for the sample standard deviation includes a correction for the fact that the true mean is 
unknown.  The two formulas are related by STDEV.S = STDEV.P × SQRT(n/(n-1)) where n is the sample size.  (In 
older version of Excel the sample and population standard functions were called STDEV and STDEVP.)  
Standardized values are sometimes computed relative to sample standard deviations, but the population standard 
deviations are the ones that are needed in the correlation calculation. 
5 This is one of several equivalent mathematical formulas for computing the correlation coefficient. 
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* *
XYŶ   =   r X  

The plots below illustrate this equation.   When the units of X and Y are standardized and both 
are also normally distributed, their values are distributed in an elliptical pattern that is symmetric 
around the 45-degree line, which has a slope equal to 1:  
 

 
   X* 

 
However, the regression line for predicting Y* from X* is NOT the 45-degree line.  Rather, it is a 
line passing through the origin whose slope is  rXY—the dashed red line in the picture below—
which is tilted toward the horizontal because the correlation is less than 1 in magnitude.6  In 
other words, it is a line that “regresses” (i.e., moves backward) toward the X-axis. 
 

 
   X* 

                                                 
6 If Y and X are negatively correlated, the distribution of points on this chart will be symmetric around the negative-
45-degree line, but the regression line will still tilt toward the horizontal, merely from below rather than from above. 

Y* 

The regression line for 
predicting Y*  from X*  
is NOT the 45-degree 
line.  It has slope rXY, 
which is less than 1.  
Hence it “regresses” 
toward the X-axis.   
For this data sample, 
rXY = 0.69.   

If X and Y are two jointly 
normally distributed 
random variables, then in 
standardized units (X*, Y*) 
their values are scattered 
in an elliptical pattern that 
is symmetric around the 
45-degree line. 

Y* 
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This is actually true regardless of whether X and Y are normally distributed—the key assumption 
is that your goal is to minimize squared error in predicting Y from X.   If Y is a time series, then 
the regression-to-the-mean effect implies that the plot of the forecasts vs. time will look smoother 
(less variable) than the plot of the data versus time. 
 
What’s going on here is that the mean value of Y that is observed for any given value of X is the 
value around which the sum of squared deviations is minimized.   (Recall that the mean of a 
sample of data has the property that it minimizes the sum of squared deviations from itself.)   So, 
when our objective is to position the line so that its height at any point is the mean value of Y 
that should be expected for a given value of X, we want to orient the line so as to minimize the 
sum of squared errors measured vertically (i.e., the vertical distances of the points from the line).  
Now, here’s the interesting and important thing:  the sum of the squared errors measured 
vertically is minimized by tilting the prediction line toward the horizontal to some extent—
in fact, tilting it precisely so that its slope is rXY when the two variables are in standardized 
units. 
 
That’s the story of how the strange term “regression” came to be applied to linear statistical 
models.  When we speak of “regressing” one variable on a group of others, we mean the fitting 
of a linear equation that minimizes the sum of squared errors in predicting that variable from the 
others.   
 
 
3.  Mathematics of the simple regression model 

 
The remainder of this handout discusses the equations used to estimate parameters and calculate 
forecasts and confidence limits with simple regression models.  Before reading it, you should 
have read the handout on the mean model, because it lays the groundwork for the mathematics 
of regression models (although its key equations are restated below).  The formulas are also  
demonstrated in the simple regression Excel file on the web site.   

 
To set the stage for discussing the formulas used to fit a simple (one-variable) regression model, 
let′s briefly review the formulas for the mean model, which can be considered as an "intercept-
only" (zero-variable) regression model.  You can use regression software to fit this model and 
produce all of the standard table and chart output by merely not selecting any independent 
variables.  R-squared will be zero in this case, because the mean model does not explain any of 
the variance in the dependent variable:  it merely measures it. 

 
The forecasting equation of the mean model is: 

 

0Ŷ  =  b  
 

…where b0, the the least-squares estimate of β0,  is 
 

b0  =  AVERAGE(Y) 
 

http://people.duke.edu/~rnau/Review_of_basic_statistics_and_the_mean_model_for_forecasting--Robert_Nau.pdf
http://people.duke.edu/~rnau/Simple_regression_formulas_and_RegressIt_model.xlsx
http://people.duke.edu/~rnau/Review_of_basic_statistics_and_the_mean_model_for_forecasting--Robert_Nau.pdf
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(The sample mean has the property that it is the least-squares estimate of the true mean.) Thus, 
every forecast is simply equal to the mean of the historical data.  The error that the model makes 
for observation  t  is therefore the deviation of Y from its historical average value: 

 

t t t t 0
ˆe   =   Y   Y    =  Y   b− −  

 
 

The standard error of the model, denoted by s, is our estimate of the standard deviation of the 
true noise (unexplainable variation) in the data.  Smaller is better, other things being equal:  we 
want the model to explain as much of the variation as possible.  In the special case of the mean 
model, the standard error of the model is just is the sample standard deviation of the data: 

 

2
tt 1

1= e =  STDEV.S(Y)
1

ns
n =− ∑  

 
Note that the standard error of the model is not the square root of the average value of the 
squared errors within the historical sample of data.  Rather, the sum of squared errors is divided 
by n−1 rather than n under the square root sign because this adjusts for the fact that a “degree of 
freedom for error” has been used up by estimating one model parameter (namely the mean) from 
the sample of n data points. 

 
Now, the accuracy of the estimated mean is measured by the standard error of the mean, whose 
formula is: 

mean
sSE
n

=
 

 
This is the estimated standard deviation of the error in estimating the mean.  Notice that it is 
inversely proportional to the square root of the sample size, so it tends to go down as the sample 
size goes up.  For example, if the sample size is increased by a factor of 4, the standard error of 
the mean goes down by a factor of 2, i.e., our estimate of the mean becomes twice as precise. 

 
The accuracy of a forecast based on this model is measured by the standard error of the forecast, 
whose formula is 

  
2 2      fcst meanSE s SE= +  

 
This is the estimated standard deviation of the error in the forecast, which is not quite the same 
thing as the standard deviation of the unpredictable variations in the data (which is s).  It takes 
into account both the unpredictable variations in Y and the error in estimating the mean.     
 
The standard error of the forecast gets smaller as the sample size is increased, but only up to a 
point.  More data yields a systematic reduction in the standard error of the mean, but it does not 
yield a systematic reduction in the standard error of the model.  The standard error of the model 
will change to some extent if a larger sample is taken, due to sampling variation, but it could 
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equally well go up or down.  The sort of variations in the data that were previously unexplainable 
remain unexplainable if we continue to believe in the model’s assumptions, so the standard error 
of the model is always a lower bound on the standard error of the forecast.   
 
Confidence intervals for the mean and for the forecast are equal to the forecast plus-or-minus the 
appropriate standard error multiplied by the appropriate 2-tailed critical value of the t 
distribution.  The critical value that should be used depends on the number of degrees of freedom 
for error (the number data points minus number of parameters estimated, which is n−1 for this 
model) and the desired level of confidence.  It can be computed in Excel using the T.INV.2T 
function.  So, for example, a 95% confidence interval for the forecast is given by  
 

0b T.INV.2T(0.05, 1)  fcstSE n± × −  
 
In general, T.INV.2T(0.05, n−1) is fairly close to 2 except for very small samples, i.e., a 95% 
confidence interval for the forecast is roughly equal to the forecast plus-or-minus two standard 
errors.  (In older versions of Excel, this function was just called TINV.) 

 
 
 
 

Now, let’s see how those formulas are generalized when we move from the mean model to a 
simple regression model…  
 
A simple regression model is a regression model with a single independent variable, as in the 
pictures shown in the previous section, whose forecasting equation in real units is  

t 0 1 tŶ  =  b + b X  

It differs from the mean model merely by the addition of a multiple of Xt to the forecast.  The 
estimated constant b0 is the Y-intercept of the regression line (usually just called “the 
intercept”), which is the value that would be predicted for Y at X = 0.  The estimated coefficient 
b1 is the slope of the regression line, i.e., the predicted change in Y per unit of change in X.  The 
simple regression model reduces to the mean model in the special case where the estimated slope 
is exactly zero.  The estimated slope is almost never exactly zero (due to sampling variation), but 
if it is not significantly different from zero (as measured by its t-statistic), that suggests that the 
mean model should be preferred on grounds of simplicity. 
 

 
 
 
 
 
 
 
 

  

Usually we do not care too much about the exact value of the intercept or whether it is 
significantly different from zero, unless we are really interested in what happens when X goes 
to “absolute zero” on whatever scale it is measured.  Often X is a variable which logically can 
never go to zero, or even close to it, given the way it is defined.   So, attention usually focuses 
mainly on the slope coefficient in the model, which measures the change in Y to be expected 
per unit of change in X as both variables move up or down relative to their historical mean 
values on their own natural scales of measurement. 
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The coefficients, standard errors, and forecasts for this model are given by the following 
equations.   

 
The least-squares estimate of the slope coefficient (b1) is equal to the correlation between X 
and Y times the ratio of the standard deviation of Y to the standard deviation of X: 

1 XY XY
STDEV.P(Y) STDEV.S(Y)b   =  r r
STDEV.P(X) STDEV.S(X)

=  

 
The ratio of standard deviations on the RHS of this equation merely serves to scale the 
correlation coefficient appropriately for the real units in which the variables are measured. 

 
The least-squares estimate of the intercept is the mean of Y minus the slope coefficient times 
the mean of X: 

0 1b  = AVERAGE(Y)  b AVERAGE(X)− ×  
 

This equation implies that Y must be predicted to be equal to its own average value whenever X 
is equal to its own average value. 7 
 
The standard error of the model  (denoted again by s) is usually referred to as the standard error 
of the regression (or sometimes the “standard error of the estimate”) in this context, and it is 
equal to the square root of {the sum of squared errors divided by n−2}, or equivalently, the 
standard deviation of the errors multiplied by the square root of (n-1)/(n-2), where the latter 
factor is a number slightly larger than 1: 

2
tt=1

1= e STDEV.S(errors)   SQRT(( 1) / 2))
2

ns n n
n

= × − −
− ∑  

The sum of squared errors is divided by n−2 in this calculation rather than n−1 because an 
additional degree of freedom for error has been used up by estimating two parameters (a slope 
and an intercept) rather than only one (the mean) in fitting the model to the data.   The standard 
error of the regression is an unbiased estimate of the standard deviation of the true noise in 
the data, i.e., the variations in Y that are not explained by the model.   
 
  

                                                 
7These formulas for b0 and b1 can be derived from the standardized regression equation * *

t XY tŶ  =   r ×X  by 
*
t tX   =  (X  AVERAGE(X))/STDEV.P(X)−  and *

t t
ˆ ˆY   =  (Y AVERAGE(Y))/STDEV.P(Y)−  and rearranging 

terms.  The sample standard deviation, STDEV.S in Excel, can also be used in the equation for b1 because it differs 
from STDEV.P only by a multiplicative factor that cancels between numerator and denominator. 
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Each of the two model parameters, the slope and intercept, has its own standard error, which is 
the estimated standard deviation of the error in estimating it.  The standard error of the intercept 
is 

0

2

b
(AVERAGE(X))1

VARP.(X)
sSE
n

= × +  

…which looks exactly like the formula for the standard error of the mean in the mean model, 
except for the additional term of (AVERAGE(X))2/VAR.P(X) under the square root sign.8  The 
standard error of the slope coefficient is given by: 

1b
1

STDEV.P(X)
sSE
n

= ×  

...which also looks very similar, except for the factor of STDEVP(X) in the denominator.  Note 
that s is measured in units of Y and STDEVP(X) is measured in units of X, so

1bSE  is measured 
(necessarily) in “units of Y per unit of X”, the same as b1 itself.    The terms in these equations 
that involve the variance or standard deviation of X mainly play a role in scaling the units of the 
coefficients and standard errors. 
 
You don’t need to memorize all these equations, but there is one important thing to note:  the 
standard errors of the coefficients are directly proportional to the standard error of the 
regression and inversely proportional to the square root of the sample size.  This means that 
“noise” in the data (whose intensity if measured by s) tends to “fuzz up” all the coefficient 
estimates in exactly the same way, and it also means that 4 times as much data will tend to 
reduce the standard errors of the all coefficients by approximately a factor of 2, assuming the 
data is really all generated from the same model, and a really huge of amount of data will reduce 
them to zero. 
 
However, more data will not systematically reduce the standard error of the regression.  As with 
the mean model, variations that were considered inherently unexplainable before are still not 
going to be explainable with more of the same kind of data under the same model assumptions.  
As the sample size gets larger, the standard error of the regression merely becomes a more 
accurate estimate of the standard deviation of the noise. 
 
  

                                                 
8 Note that the population (.P) statistic rather than the sample (.S) statistic is used in the formulas for standard errors 
of coefficients, as well as in the formula for standardized values that was used to calculate the correlation coefficient 
earlier.  In the rest of the equations of the regression model, the sample rather than the population statistics are used. 
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And now, introducing R-squared…. 
 
The fraction of the variance of Y that is “explained” by the simple regression model, i.e., the 
percentage by which the sample variance of the errors (“residuals”9) is less than the sample 
variance of Y itself, is equal to the square of the correlation between them,  i.e., “R squared”:   

2
XY

VAR.S(errors)R-squared   1 r
VAR.S(Y)

= − =
 

Equivalently: 
 

VAR.S(errors) =  (1  minus  R-squared) × VAR.S(Y)
 

Thus, for example, if the correlation is rXY = 0.5, then rXY
2 

= 0.25, so the simple regression model 
explains 25% of the variance in Y in the sense that the sample variance of the errors of the 
simple regression model is 25% less than the sample variance of Y.  This is not supposed to be 
obvious—it is a “strange but true” fact that can be proved with a little bit calculus. 

 
By taking square roots everywhere, the same equation can be rewritten in terms of standard 
deviations to show that the standard deviation of the errors is equal to the standard deviation of Y 
multiplied by the square root of 1 minus the correlation squared: 

STDEV.S(errors) = SQRT(1  minus R-squared) × STDEV.S(Y) 

However, the sample variance and standard deviation of the errors are not unbiased estimates of 
the variance and standard deviation of the unexplained variations in the data, because they do not 
into account the fact that 2 degrees of freedom for error have been used up in the process of 
estimating the slope and intercept. The fraction by which the square of the standard error of the 
regression is less than the sample variance of Y (which is the fractional reduction in unexplained 
variation compared to using the mean model) is the “adjusted” R-squared of the model, and in a 
simple regression model it is given by the formula  

1Adjusted R-squared  =  1  (1 minus R-squared)
2

n
n
−

− ×
−

. 

The factor of (n−1)/(n−2) in this equation is the same adjustment for degrees of freedom that is 
made in calculating the standard error of the regression.10  
  

                                                 
9 The term “residuals” refers to the prediction errors made within the sample of data to which the model was fitted.  
Their statistical properties are not quite the same as those of the errors made in predicting outside the sample.  The 
residuals tend to be a little smaller than the true random variations in the data because the coefficient estimates are 
adjusted precisely so as to minimize their sum of squared values (thereby reducing the degrees of freedom for error), 
while out-of-sample forecast errors tend to be a little larger than the true random variations due to errors in the 
coefficient estimates. 
10 In  a multiple regression model with k independent variables plus an intercept, the number of degrees of freedom 
for error is n−(k+1), and the formulas for the standard error of the regression and adjusted R-squared remain the 
same except that the n−2 term is replaced by  n−(k +1) . 



 14 

 In fact, adjusted R-squared can be used to determine the standard error of the regression from 
the sample standard deviation of Y in exactly the same way that R-squared can be used to 
determine the sample standard deviation of the errors as a fraction of the sample standard 
deviation of Y: 

 
Standard error of regression  = SQRT(1 minus Adjusted R-squared) × STDEV.S(Y) 
 

You can apply this equation without even calculating the model coefficients or the actual errors!   
 

It follows from this equation that if you fit simple regression models to the same sample of the 
same dependent variable Y with different choices of X as the independent variable, then 
adjusted R-squared necessarily goes up as the standard error of the regression goes down, 
and vice versa.  Hence, it is equivalent to say that your goal is to minimize the standard error of 
the regression or to maximize adjusted R-squared through your choice of X, other things being 
equal.  However, as I will keep saying, the standard error of the regression is the real “bottom 
line” in your analysis:  it measures the variations in the data that are not explained by the model 
in real economic or physical terms. 

 
Adjusted R-squared can actually be negative if X has no measurable predictive value with 
respect to Y.  In particular, if the correlation between X and Y is exactly zero, then R-squared is 
exactly equal to zero, and adjusted R-squared is equal to 1 − (n−1)/(n−2), which is negative 
because the ratio (n−1)/(n−2) is greater than 1.  If this is the case, then the mean model is clearly 
a better choice than the regression model.  Some regression software will not even display a 
negative value for adjusted R-squared and will just report it to be zero in that case. 

 
 
And finally, the standard errors of means and forecasts… 

 
The standard error of the mean for Y for a given value of X is the estimated standard deviation 
of the error in measuring the height of the regression line at that location, given by the formula 

 
2(X AVERAGE(X))(X) 1

VAR.P(X)mean
sSE
n

−
= × +

 
 

This looks like a lot like the formula for the standard error of the mean in the mean model:  it is 
proportional to the standard error of the regression and inversely proportional to the square root 
of the sample size, so it gets steadily smaller as the sample size gets larger, approaching zero in 
the limit even in the presence of a lot of noise.  However, in the regression model the standard 
error of the mean also depends to some extent on the value of X, so the term 𝑠/√𝑛 is scaled up 
by a factor that is greater than 1 and is larger for values of X that are farther from its mean.  
Hence, there is relatively greater uncertainty about the true height of the regression line for 
values of X that are farther from its historical mean value.   
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The standard error for the forecast for Y for a given value of X is then computed in exactly 
the same way as it was for the mean model:   
 

( )22(X)     (X)   fcst meanSE s SE= +  

 
 
In the regression model it is larger for values of X that are farther from the mean—i.e., you 
expect to make bigger forecast errors when extrapolating the regression line farther out into 
space—because SEmean(X) is larger for more extreme values of X.  The standard error of the 
forecast is not quite as sensitive to X in relative terms as is the standard error of the mean, 
because of the presence of the noise term s2 under the square root sign.  (Remember that s2 is the 
estimated variance of the noise in the data.)   In fact, s is usually much larger than SEmean(X) 
unless the data set is very small or X is very extreme, so usually the standard error of the forecast 
is not too much larger than the standard error of the regression. 

 
Finally,  confidence limits for means and forecasts are calculated in the usual way, namely as 
the forecast plus or minus the relevant standard error times the critical t-value for the desired 
level of confidence and the number of degrees of freedom, where the latter is n−2 for a simple 
regression model.  For all but the smallest sample sizes, a 95% confidence interval is 
approximately equal to the point forecast plus-or-minus two standard errors, although there is 
nothing particularly magical about the 95% level of confidence—you can choose your own, or 
just report the standard error along with the point forecast. 

 
Here are a couple of additional pictures that illustrate the behavior of the standard-error-of-the-
mean and the standard-error-of-the-forecast in the special case of a simplex regression model.  
Because the standard error of the mean gets larger for extreme (farther-from-the-mean) values of 
X, the confidence intervals for the mean (the height of the regression line) widen noticeably at 
either end.   
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The confidence intervals for predictions also get wider when X goes to extremes, but the effect is 
not quite as dramatic because the standard error of the regression (which is usually a bigger 
component of forecast error) is a constant.  Note that the inner set of confidence bands widens 
more in relative terms at the far left and far right than does the outer set of confidence bands. 

 
 

But remember:  the standard errors and confidence bands that are calculated by the regression 
formulas are all based on the assumption that the model is correct, i.e., that the data really is 
described by the assumed linear equation with normally distributed errors.  If the model 
assumptions are not correct—e.g., if the wrong variables have been included or important 
variables have been omitted or if there are non-normalities in the errors or nonlinear relationships 
among the variables—then the predictions and their standard errors and confidence limits may 
all be suspect.  So, when we fit regression models, we don’t just look at the printout of the model 
coefficients—we look at various other statistics and charts that shed light on the validity of the 
model assumptions. 
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4. Take-aways: 
 

1.  The coefficients and error measures for a regression model are entirely determined by the 
following summary statistics:  means, standard deviations, and correlations of the variables, and 
the sample size. 

 
2. The correlation between Y and X , denoted by rXY, is equal to the average product of their 
standardized values, i.e., the average of {the number of standard deviations by which Y 
deviates from its mean} times {the number of standard deviations by which X deviates from its 
mean}, using the population (rather than sample) standard deviation in the calculation.  This 
statistic measures the strength of the linear relation between Y and X on a relative scale of -1 to 
+1.  The correlation between Y and X is positive if they tend to move in the same direction 
relative to their respective means and negative if they tend to move in opposite directions, and it 
is zero if their up-or-down movements with respect to their own means are statistically 
independent. 
 
3.  The slope coefficient in a simple regression of Y on X is the correlation between Y and X 
multiplied by the ratio of their standard deviations:  b1 = rXY × (STDEV.S(Y))/STDEV.S(X)). 

 
4.  In a simple regression model, the percentage of variance “explained” by the model, which is 
called R-squared, is the square of the correlation between Y and X.  That is, R-squared = rXY

2, 
and that’s why it’s called R-squared.  This means that the sample standard deviation of the 
errors is equal to  {the square root of  1-minus-R-squared} times the sample standard deviation 
of Y:     

                    STDEV.S(errors) = (SQRT(1 minus R-squared)) × STDEV.S(Y).  
So, if you know the standard deviation of Y, and you know the correlation between Y and X, you 
can figure out what the standard deviation of the errors would be be if you regressed Y on X. 
However…. 

 
5.  The sample standard deviation of the errors is a downward-biased estimate of the size of the 
true unexplained deviations in Y because it does not adjust for the additional “degree of 
freedom” used up by estimating the slope coefficient.  An unbiased estimate of the standard 
deviation of the true errors is given by the standard error of the regression, denoted by s.  In the 
special case of a simple regression model, it is: 

                 Standard error of regression = STDEV.S(errors) × SQRT((n−1)/(n−2)) 
This is the real bottom line, because the standard deviations of the errors of all the forecasts and 
coefficient estimates are directly proportional to it (if the model’s assumptions are correct!!) 
 
6.  Adjusted R-squared, which is obtained by adjusting R-squared for the degrees if freedom for 
error in exactly the same way, is an unbiased estimate of the amount of variance explained: 

                   Adjusted R-squared = 1 − ((n−1)/(n−2)) × (1 − R-squared). 
For large values of n, there isn’t much difference.   
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In a multiple regression model in which k is the number of independent variables, the n−2 term 
that appears in the formulas for the standard error of the regression and adjusted R-squared 
merely becomes n−(k+1). 
 
7. The important thing about adjusted R-squared is that: 

Standard error of the regression  

= (SQRT(1 minus adjusted-R-squared)) × STDEV.S(Y). 
So, for models fitted to the same sample of the same dependent variable, adjusted R-squared 
always goes up when the standard error of the regression goes down.  

 
A model does not always improve when more variables are added:  adjusted R-squared can go 
down (even go negative) if irrelevant variables are added.   

 
8.  The standard error of a coefficient estimate is the estimated standard deviation of the error 
in measuring it. And the estimated height of the regression line for a given value of X has its own 
standard error, which is called the standard error of the mean at X.  All of these standard 
errors are proportional to the standard error of the regression divided by the square root of the 
sample size.  So, a greater amount of noise in the data (as measured by s) makes all the estimates 
proportionally less accurate, and a larger sample size makes all of them more accurate (4 times as 
much data reduces all standard errors by a factor of 2).  However, more data does not 
systematically reduce the standard error of the regression.  Rather, the standard error of the 
regression merely becomes a more accurate estimate of the true standard deviation of the noise. 

 
9.  The standard error of the forecast for Y for a given value of X is the square root of the 
sum of squares of the standard error of the regression and the standard error of the mean 
at X.  The standard error of the mean is usually a lot smaller than the standard error of the 
regression except when the sample size is very small and/or you are trying to predict what will 
happen under very extreme conditions, so the standard error of the forecast is usually only 
slightly larger than the standard error of the regression. (Recall that under the mean model, the 
standard error of the mean is a constant.  In a simple regression model, the standard error of the 
mean depends on the value of X and is larger for values of X that are farther from its own mean.) 

 
10.  Two-sided confidence limits for coefficient estimates, means, and forecasts are all equal 
to their point estimates plus-or-minus the appropriate critical t-value times their respective 
standard errors.  For simple regression model, in which two degrees of freedom are used up in 
estimating both the intercept and the slope coefficient, the appropriate critical t-value is 
T.INV.2T(1 − C, n − 2) where C is the desired level of confidence and n is the sample size. The 
usual default value for the confidence level is 95%, for which the critical t-value is 
T.INV.2T(0.05, n − 2) 

 
For the case in which there are two or more independent variables, the mathematics is not too 
much harder if you are familiar with how to do arithmetic with vectors and matrices.  Here is 
another spreadsheet file that gives a demonstration: people.duke.edu/~rnau/simpreg.xls.    

http://people.duke.edu/~rnau/simpreg.xls



