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Preface

This book is a revision of the 3rd edition of Theory of Vibration with Applications.
The major addition is Chapter 8, “Computational Methods,” which presents the
basic principles orr which most modern computer programs on vibration theory are
developed. The new text is accompanied by a networked software for the PC to
solve the vibration problems most frequently encountered. The programs greatly
expand the range of problems that can be solved for numerical solution.

The author believes that problem solving is a vital part of the learning
process and the reader should understand the computational process carried out
by the computer. With this facility, the mass and stiffness matrices are inputed, and
the lengthy calculations for the eigenvalues and eigenvectors are delegated to the
computer.

Besides the new chapter on computer methods, the material in other chap-
ters is amplified and additional problems are introduced to take advantage of the
computing programs offered by the computer disk.

The first four chapters, which deal with single-degree-of-freedom systems,
needed very few changes, and the simple physical approach of the previous edition
is maintained. An example on rotor balancing is introduced in Chapter 3, and the
section on the shock spectrum and isolation is expanded in Chapter 4.

In Chapter 5, “Systems with Two or More Degrees of Freedom,” the
importance of normal mode vibration is emphasized to demonstrate that all free
vibrations are composed of normal mode vibrations and that the initial conditions
play a determining influence in free vibrations. Forced vibrations are again
presented in terms of the relationship of frequency ratio of forced to normal
frequencies in the single degree of freedom response. The important application of
vibration absorbers and dampers is retained unchanged.

Chapter 6, “Properties of Vibrating Systems,” is completely rearranged for
logical presentation. Stiffness of framed structures is again presented to bring out
the introductory basics of the finite element method presented later in Chapter 10,

ix



X Preface

and an example of static condensation for pinned joints is added. Orthogonality of
eigenvectors and the modal matrix and its orthonormal form enable concise
presentation of basic equations for the diagonal eigenvalue matrix that forms the
basis for the computation of the eigenvalue-eigenvector problem. They also pro-
vide a background for the normal mode-summation method. The chapter con-
cludes with modal damping and examples of equal roots and degenerate systems.

Chapter 7 presents the classic method of Lagrange, which is associated with
virtual work and generalized coordinates. Added to this chapter is the method of
assumed modes, which enables the determination of eigenvalues and eigenvectors
of continuous systems in terms of smaller equations of discrete system equations.
The Lagrangian method offers an all-encompassing view of the entire field of
dynamics, a knowledge of which should be acquired by all readers interested in a
serious study of dynamics.

Chapter 8, “Computational Methods,” examines the basic methods of com-
putation that are utilized by the digital computer. Most engineering and science
students today acquire knowledge of computers and programming in their fresh-
man year, and given the basic background for vibration calculation, they can easily
follow computer programs for the calculation of eigenvalues and eigenvectors.
Presented on the IBM computer disk are four basic Fortran programs that cover
most of the calculations encountered in vibration problems. The source programs
written as subroutines can be printed out by typing “.For” (for Fortran) after the
file name; i.e., “Choljac .For”. The user needs only to input the mass and stiffness
matrices and the printout will contain the eigenvalues and eigenvectors of the
problem. Those wishing additional information can modify the command instruc-
tions preceding the computation.

In Chapter 9, “Vibration of Continuous Systems,” a section on suspension
bridges is added to illustrate the application of the continuous system theory to
simplified models for the calculation of natural frequencies. By discretizing the
continuous system by repeated identical sections, simple analytic expressions are
available for the natural frequencies and mode shapes by the method of difference
equations. The method exercises the disciplines of matching boundary conditions.

Chapter 10, “Introduction to the Finite Element Method,” remains essen-
tially unchanged. A few helpful hints have been injected in some places and the
section on generalized force proportional to displacement has been substantially
expanded by detailed computation of rotating helicopter blades. Brought out by
this example is the advantage of forming equal element sections of length / = 1 (all
I’s can be arbitrarily equated to unity inside of the mass and stiffness matrices
when the elements are of equal lengths) for the compiling of the mass and stiffness
matrices and converting the final results to those of the original system only after
the computation is completed.

Chapters 9, 11 and 12 of the former edition are consolidated into new
chapter 11, “Mode-Summation Procedures for Continuous Systems,” and Chapter
12, “Classical Methods.” This was done mainly to leave undisturbed Chapter 13,
“Random Vibrations,” and Chapter 14, “Nonlinear Vibrations,” and in no way

s



Preface xi

implies that Chapters 11 and 12 are of lesser importance. As one finds in the finite
element method, the equation of motion soon becomes large in order to obtain
acceptable accuracies for higher modes, and the methods of new Chapters 11 and
12 yield these results with considerably simpler calculations.

This book can be used at the undergraduate or graduate level of instruction.
Chapters 1 through 6 can be covered in a first course on vibration, although parts
of other chapters might be appropriately introduced.

The subject of vibration and dynamics, fascinating to the author for over
most of his academic career, offers a wide range of opportunities for applying
various mathematical techniques to the solution of vibration problems, and is
presented with the hope that the subject matter will be enjoyed by others.

Finally, the author wishes to acknowledge his indebtedness to those who have
contributed to the writing of the computer programs on disk. Of these, Dr. Grant
Johnson of the Mechanical Engineering Department has generously aided the
author for the past few years, and Derek Zahl, also of the Mechanical Engineering
Department, carefully compiled the disk that is enclosed with the text. Thanks also
are due to David Bothman and Tony Peres for the photos of some of the
equipment used in our Undergraduate Laboratory.

William T. Thomson



QUANTITY

force

mass

length

mass density
torque or moment
acceleration

accel. of gravity
spring constant k
spring constant K
damping constant ¢
mass moment of inertia

modulus of elasticity

modulus of elasticity of steel

angle

ENGLISH SYSTEM

11b

11b - sec?/ft (slug)
1ft

11b/ft3

11b - in.

1 ft/sec?

32.2 ft/s* = 386 in. /sec?
11b/in.

11Ib - in./rad

11b - sec/in.

1 Ib. in. sec?

10° 1b/in.2

29 x 106 Ib /in.2

1 degree

S.I. SYSTEM

4.448 Newtons (N)
14.59 kg (kilogram)
0.3048 meters (m)
16.02 kg /m>
0.113N'm
0.3048 m /s

9.81 m/s?

175.1 N/m
0.113N - m/rad
1751 N - s/m
0.1129 kg m?

6.895 X 10° N /m?
200 X 10° N /m?
1/57.3 radian



The SI System
of Units

THE SI SYSTEM OF UNITS

The English system of units that has dominated the United States from historical
times is now being replaced by the SI system of units. Major industries throughout
the United States either have already made, or are in the process of making, the
transition, and engineering students and teachers must deal with the new SI units
as well as the present English system. We present here a short discussion of the SI
units as they apply to the vibration field and outline a simple procedure to convert
from one set of units to the other.
The basic units of the SI system are

Units Name Symbol
Length Meter m
Mass Kilogram kg
Time Second s

The following quantities pertinent to the vibration field are derived from these
basic units:

Force Newton N (= kg - m/s?)
Stress Pascal Pa (= N/m?)
Work Joule J(=N-m)
Power Watt W(=1J/s)
Frequency Hertz Hz (= 1/s)
Moment of a force N - m (= kg - m?/s?)
Acceleration m/s?
Velocity m/s
Angular velocity 1/s
Moment of inertia (area) m* (mm* X 10712?)
Moment of inertia (mass) kg - m? (kg - cm? X 107%)



2 The Sl System of Units

Because the meter is a large unit of length, it will be more convenient to
express it as the number of millimeters multiplied by 10 3. Vibration instruments,
such as accelerometers, are in general calibrated in terms of g = 9.81 m /52, and
hence expressed in nondimensional units. It is advisable to use nondimensional
presentation whenever possible.

In the English system, the weight of an object is generally specified. In the SI
system, it is more common to specify the mass, a quantity of matter that remains
unchanged with location.

In working with the SI system, it is advisable to think directly in SI units. This
will require some time, but the following rounded numbers will help to develop a
feeling of confidence in the use of SI units.

The newton is a smaller unit of force than the pound. One pound of force is
equal to 4.4482 newtons, or approximately four and a half times the value for the
pound. (An apple weighs approximately 5 Ib, or approximately 1 newton.)

One inch is 2.54 cm, or 0.0254 meter. Thus, the acceleration of gravity, which
is 386 in./s® in the English system, becomes 386 X 0.0254 = 9.81 m/s?, or
approximately 10 m /s>,

TABLE OF APPROXIMATE EQUIVALENTS

11b = 45N
Acceleration of gravity g = 10 m/s?
Mass of 1 slug = 15 kg
1ft = im

Sl conversion. A simple procedure to convert from one set of units to
another follows: Write the desired SI units equal to the English units, and put in
canceling unit factors. For example, if we wish to convert torque in English units
into SI units, we proceed as follows:

Example 1
[Torque SI] = [Torque English] X [multiplying factors]
. N
ARSI
= [Ib - in.](4.448)(0.0254)
= [Ib - in.](0.1129)
Example 2

[Moment of inertia SI] = [Moment of inertia English] X [multiplying factors]

g m = N-m-s?] = b i 1 )

= [Ib - in.- s?](4.448 X 0.0254)
= [Ib - in.- 52](0.1129)



The S| System of Units 3
Example 3
Modulus of Elasticity, E:
LRTRAYE Y
/] = |25 () ()
b ] 1\
- [——2 (4.448)(m)
in.” ] .
b ]
= | =5 |(6894.7)
in.” |
E of steel N/m? = (29 X 10° Ib/in.2)(6894.7) = 200 X 10° N /m?
Example 4
Spring Stiffness, K:
[N/m] = [Ib/in.] x (175.13)
Mass, M:
[kg] = [Ib - s?/in.] x (175.13)
CONVERSION FACTORS* U.S.-BRITISH UNITS TO SI UNITS
To Convert From To Multiply By
Acceleration:
foot /second? (ft/s?) meter /second? (m/s?) 3.048 x 10~ 1*
inch/second? (in. /s?) meter /second? (m/s?) 2.54 x 107
Area:
foot? (ft2) meter? (m?) 9.2903 x 1072
inch? (in.?) meter? (m?) 6.4516 X 10~%*
yard? (yd?) meter? (m?) 8.3613 x 107!
Density:
pound mass /inch? (Ibm /in.?) kilogram /meter? (kg/m?>) 2.7680 x 104
pound mass /foot> (Ibm /ft>) kilogram /meter> (kg /m>) 1.6018 x 10
Energy, Work:
British thermal unit (Btu) joule (J) 1.0551 x 103
foot-pound force (ft - Ibf) joule (J) 1.3558
kilowatt-hour (kw - h) joule (J) 3.60 X 10%*
Force:
kip (1000 1bf) newton (N) 4.4482 x 103
pound force (Ibf) newton (N) 4.4482
ounce force newton (N) 2.7801 x 107!
Length:
foot (ft) meter (m) 3.048 x 10~ 1*
inch (in.) meter (m) 2.54 x 107
mile (mi) (U.S. statute) meter (m) 1.6093 x 10°
mile (mi) (international nautical)  meter (m) 1.852 x 10**
yard (yd) meter (m) 9.144 x 10~ '*
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CONVERSION FACTORS* U.S.-BRITISH UNITS TO SI UNITS (continued)

To Convert From To Multiply By
Mass:
pound - mass (Ibm) kilogram (kg) 4.5359 x 107!
slug (Ibf - s2 /ft) kilogram (kg) 1.4594 x 10
ton (2000 Ibm) kilogram (kg) 9.0718 x 102
Power:
foot-pound/minute (ft - Ibf /min) watt (W) 22597 x 1072
horsepower (550 ft - 1bf/s) watt (W) 7.4570 x 102
Pressure, stress:
atmosphere (std) (14.7 Ibf/in.?)  newton/meter? (N/m? or Pa) 1.0133 x 10°
pound /foot? (Ibf /ft?) newton/meter? (N /m? or Pa) 4.7880 x 10
pound /inch? (Ibf /in.?, or psi) newton /meter? (N/m? or Pa) 6.8948 x 103
Velocity:
foot /minute (ft /min) meter /second (m/s) 5.08 x 1073
foot /second (ft/s) meter /second (m/s) 3.048 x 107 1*
knot (nautical mi/h) meter /second (m/s) 5.1444 x 107}
mile /hour (mi/h) meter /second (m/s) 4.4704 x 10~ '*
mile /hour (mi/h) kilometer /hour (km /h) 1.6093
mile /second (mi/s) kilometer /second (km /s) 1.6093
Volume:
foot? (ft3) meter? (m?) 2.8317 X 1072
inch? (in.?) meter? (m?) 1.6387 x 1073

* Exact value.

Source: J. L. Meriam, Dynamics, 2nd Ed. (SI Version) (New York: John Wiley, 1975).
The International System of Units (SI), July 1974, National Bureau of Standards, Special Publication

330.



Oscillatory
Motion

The study of vibration is concerned with the oscillatory motions of bodies and the
forces associated with them. All bodies possessing mass and elasticity are capable
of vibration. Thus, most engineering machines and structures experience vibration
to some degree, and their design generally requires consideration of their oscilla-
tory behavior.

Oscillatory systems can be broadly characterized as linear or nonlinear. For
linear systems, the principle of superposition holds, and the mathematical tech-
niques available for their treatment are well developed. In contrast, techniques for
the analysis of nonlinear systems are less well known, and difficult to apply.
However, some knowledge of nonlinear systems is desirable, because all systems
tend to become nonlinear with increasing amplitude of oscillation.

There are two general classes of vibrations—free and forced. Free vibration
takes place when a system oscillates under the action of forces inherent in the
system itself, and when external impressed forces are absent. The system under
free vibration will vibrate at one or more of its natural frequencies, which are
properties of the dynamical system established by its mass and stiffness distribu-
tion.

Vibration that takes place under the excitation of external forces is called
forced vibration. When the excitation is oscillatory, the system is forced to vibrate
at the excitation frequency. If the frequency of excitation coincides with one of the
natural frequencies of the system, a condition of resonance is encountered, and
dangerously large oscillations may result. The failure of major structures such as
bridges, buildings, or airplane wings is an awesome possibility under resonance.
Thus, the calculation of the natural frequencies is of major importance in the study
of vibrations.

Vibrating systems are all subject to damping to some degree because energy
is dissipated by friction and other resistances. If the damping is small, it has very
little influence on the natural frequencies of the system, and hence the calculations



6 Oscillatory Motion Chap. 1

for the natural frequencies are generally made on the basis of no damping. On the
other hand, damping is of great importance in limiting the amplitude of oscillation
at resonance.

The number of independent coordinates required to describe the motion of a
system is called degrees of freedom of the system. Thus, a free particle undergoing
general motion in space will have three degrees of freedom, and a rigid body will
have six degrees of freedom, i.e., three components of position and three angles
defining its orientation. Furthermore, a continuous elastic body will require an
infinite number of coordinates (three for each point on the body) to describe its
motion; hence, its degrees of freedom must be infinite. However, in many cases,
parts of such bodies may be assumed to be rigid, and the system may be considered
to be dynamically equivalent to one having finite degrees of freedom. In fact, a
surprisingly large number of vibration problems can be treated with sufficient
accuracy by reducing the system to one having a few degrees of freedom.

1.1 HARMONIC MOTION

Oscillatory motion may repeat itself regularly, as in the balance wheel of a watch,
or display considerable irregularity, as in earthquakes. When the motion is re-
peated in equal intervals of time 7, it is called periodic motion. The repetition time
7 is called the period of the oscillation, and its reciprocal, f = 1/7, is called the
frequency. If the motion is designated by the time function x(¢), then any periodic
motion must satisfy the relationship x(¢) = x(¢ + 7).

The simplest form of periodic motion is harmonic motion. It can be demon-
strated by a mass suspended from a light spring, as shown in Fig. 1.1-1. If the mass
is displaced from its rest position and released, it will oscillate up and down. By
placing a light source on the oscillating mass, its motion can be recorded on a
light-sensitive filmstrip, which is made to move past it at a constant speed.

The motion recorded on the film strip can be expressed by the equation

x = Asin 2w~ (1.1-1)

where A is the amplitude of oscillation, measured from the equilibrium position of
the mass, and 7 is the period. The motion is repeated when ¢ = 7.

Figure 1.1-1. Recording harmonic
motion.
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Figure 1.1-2. Harmonic motion as a projection of a point moving on a
circle.

Harmonic motion is often represented as the projection on a straight line of a
point that is moving on a circle at constant speed, as shown in Fig. 1.1-2. With the
angular speed of the line 0—p designated by w, the displacement x can be written
as

x = Asin wt (1.1-2)

The quantity o is generally measured in radians per second, and is referred to as
the circular frequency.’ Because the motion repeats itself in 27 radians, we have
the relationship

2
0= =2nf (1.1-3)
where 7 and f are the period and frequency of the harmonic motion, usually
measured in seconds and cycles per second, respectively.
The velocity and acceleration of harmonic motion can be simply determined
by differentiation of Eq. (1.1-2). Using the dot notation for the derivative, we
obtain

I

X =wAcos wt = wAsin(wt + 7/2) (1.1-4)
¥ = —w?Asin wt = w*Asin (0t + ) (1.1-5)

Thus, the velocity and acceleration are also harmonic with the same frequency of
oscillation, but lead the displacement by 7 /2 and = radians, respectively. Figure
1.1-3 shows both time variation and the vector phase relationship between the
displacement, velocity, and acceleration in harmonic motion.

Examination of Egs. (1.1-2) and (1.1-5) reveals that

i= —wx (1.1-6)

so that in harmonic motion, the acceleration is proportional to the displacement
and is directed toward the origin. Because Newton’s second law of motion states

*The word circular is generally deleted, and » and f are used without distinction for frequency.
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Figure 1.1-3. In harmonic motion, the velocity and acceleration lead the
displacement by 7 /2 and .

that the acceleration is proportional to the force, harmonic motion can be
expected for systems with linear springs with force varying as kx.

Exponential form. The trigonometric functions of sine and cosine are
related to the exponential function by Euler’s equation
e =cos6 +isin6 (1.1-7)
A vector of amplitude A rotating at constant angular speed w can be represented
as a complex quantity z in the Argand diagram, as shown in Fig. 1.1-4.
z = Ae'*
= A cos wt + iA sin wt (1.1-8)
=x+1iy
The quantity z is referred to as the complex sinusoid, with x and y as the real and

imaginary components, respectively. The quantity z = Ae’“’ also satisfies the
differential equation (1.1-6) for harmonic motion.

Figure 1.1-4. Harmonic motion
represented by a rotating vector.
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Figure 1.1-5. Vector z and its con-
jugate z*.

Figure 1.1-5 shows z and its conjugate z* = Ade ~‘“’, which is rotating in the
negative direction with angular speed —w. It is evident from this diagram, that the
real component x is expressible in terms of z and z* by the equation

x = 3(z +z*) = Acos wt = Re Ae’“’ (1.1-9)

where Re stands for the real part of the quantity z. We will find that the
exponential form of the harmonic motion often offers mathematical advantages
over the trigonometric form.

Some of the rules of exponential operations between z;, = 4,e'" and z, =
A,e' are as follows:

Multiplication 2,2, = A A,e" 17
.. z A : ~
Division Z—l- = (_/I_l)e’(al‘oz) (11_10)
2 2 .
Powers 2" = Aneind

Z1/n = Al/nei0/n

1.2 PERIODIC MOTION

It is quite common for vibrations of several different frequencies to exist simulta-
neously. For example, the vibration of a violin string is composed of the fundamen-
tal frequency f and all its harmonics, 2 f, 3f, and so forth. Another example is the
free vibration of a multidegree-of-freedom system, to which the vibrations at each
natural frequency contribute. Such vibrations result in a complex waveform, which
is repeated periodically as shown in Fig. 1.2-1.

The French mathematician J. Fourier (1768—1830) showed that any periodic
motion can be represented by a series of sines and cosines that are harmonically
related. If x(¢z) is a periodic function of the period 7, it is represented by the
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Figure 1.2-1. Periodic motion of period 7.
Fourier series
4
x(t) = 5 +a;C08 Wt +a,C08 wyt + -

+ b, sin wyt + b, sin w,t + -

where
2
w; = —
p
w, =nw,

Chap. 1

(1.2-1)

To determine the coefficients a, and b,, we multiply both sides of Eq. (1.2-1) by
cos w,t or sin w,? and integrate each term over the period 7. By recognizing the

following relations,

0 ifm+n

[7/2 tdt =
J _T/ZCOS wnt COS w,, = 7/2 lf m=n

/2 . fsi tdt = 0 ifm#n
fﬂ/zsmwn sin w,,, =\r/2 ifm=n

(1.2-2)

(1.2-3)

/2 . 0 ifm#n
/ cos w,t sinw, tdt = .
—1/2 0 ifm=n
all terms except one on the right side of the equation will be zero, and we obtain
the result
2 2
a,=— 4 x(t) cos w,tdt
T —-r/2
2 2 .
b== (" x(t)sin w,tdt

" T -1/2
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The Fourier series can also be represented in terms of the exponential
function. Substituting

cos w,t — %(eiw,,t + e—iw,,t)
sin w"t - _ %i(ei“’"' _ e-im,,r)
in Eq. (1.2-1), we obtain
a l . .
x(1) = 5 + L [3a, = ib)e™" + 3(a, + ib,)e "]

n=1

— 49 - iwpt * , —iw,t

=5t Y [cne + cXetn ] (1.2-4)
n=1

o
= Z Cneiw,,l

n= —oo
where
co = 3a
o (1.2-5)
¢, = 3(a, — ib,)
Substituting for a, and b, from Eq. (1.2-3), we find ¢, to be
1 7,2
c, = —f / x(t)(cos w,t — isin w,t) dt
T -1/2
(1.2-6)

1 /2 et
= Tf_T/zx(t)e dt

Some computational effort can be minimized when the function x(t) is
recognizable in terms of the even and odd functions:

x(t) = E(t) + O(1) (1.2-7)
An even function E(t) is symmetric about the origin, so that E(t) = E(—1t), i.e.,
cos wt = cos(—wt). An odd function satisfies the relationship O(¢) = —O(—t),
i.e., sin wt = —sin(—wt). The following integrals are then helpful:

2
[ E(t)sinw,tdt = 0
-7/2
(1.2-8)
2
[T/ O(t)cos w,tdt =0
~-7/2
When the coeflicients of the Fourier series are plotted against frequency w,,
the result is a series of discrete lines called the Fourier spectrum. Generally plotted

are the absolute values |2¢,| = y/aZ + b? and the phase ¢, = tan~'(b,/a,), an
example of which is shown in Fig. 1.2-2.
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Figure 1.2-2. Fourier spectrum for pulses shown in Prob. 1-16, k = ’;

With the aid of the digital computer, harmonic analysis today is efficiently
carried out. A computer algorithm known as the fast Fourier transform’ (FFT) is
commonly used to minimize the computation time.

1.3 VIBRATION TERMINOLOGY

Certain terminologies used in the vibration need to be represented here. The
simplest of these are the peak value and the average value.

The peak value generally indicates the maximum stress that the vibrating part
is undergoing. It also places a limitation on the ‘“rattle space” requirement.

The average value indicates a steady or static value, somewhat like the dc
level of an electrical current. It can be found by the time integral

- 1T
X = lim Tj;x(t) dt (1.3-1)

Tox

For example, the average value for a complete cycle of a sine wave, A sin ¢, is zero;
whereas its average value for a half-cycle is

%= i‘f"sin rdr = 24 _ 06374
w 0 o

It is evident that this is also the average value of the rectified sine wave shown in
Fig. 1.3-1.

*See J. S. Bendat and A. G. Piersol, Random Data (New York: John Wiley, 1971), pp. 305-306.
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Figure 1.3-1. Average value of a
rectified sine wave.

The square of the displacement generally is associated with the energy of the
vibration for which the mean square value is a measure. The mean square value of
a time function x(¢) is found from the average of the squared values, integrated
over some time interval T

= . 1,7
x2= Tl'i“mTfo x2(t) dt (1.3-2)
For example, if x(¢) = A4 sin wt, its mean square value is
= A% (71 1
2_ i A (L, _ 10
x°= rh-l.nm T J, 2(1 cos2wt) dt >4

The root mean square (rms) value is the square root of the mean square
value. From the previous example, the rms of the sine wave of amplitude A4 is
A/ v2 = 0.707A. Vibrations are commonly measured by rms meters.

The decibel is a unit of measurement that is frequently used in vibration
measurements. It is defined in terms of a power ratio.

dB = 10 1og10(ﬁ)
p;
" (1.3-3)
= 10log (f-l-)
10\ x,
The second equation results from the fact that power is proportional to the square

of the amplitude or voltage. The decibel is often expressed in terms of the first
power of amplitude or voltage as

dB = 20 logm(:;—‘) (1.3-4)
2

Thus an amplifier with a voltage gain of 5 has a decibel gain of
20log,o(5) = +14

Because the decibel is a logarithmic unit, it compresses or expands the scale.

When the upper limit of a frequency range is twice its lower limit, the
frequency span is said to be an octave. For example, each of the frequency bands
in Figure 1.3-2 represents an octave band.
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1-1

1-2
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Band  Frequency range (Hz)  Frequency Bandwidth

1 10-20 10
2 20-40 20
3 40-80 40
4 200-400 200

Figure 1.3-2.

PROBLEMS

A harmonic motion has an amplitude of 0.20 cm and a period of 0.15 s. Determine the
maximum velocity and acceleration.

An accelerometer indicates that a structure is vibrating harmonically at 82 cps with a
maximum acceleration of 50 g. Determine the amplitude of vibration.

A harmonic motion has a frequency of 10 cps and its maximum velocity is 4.57 m/s.
Determine its amplitude, its period, and its maximum acceleration.

Find the sum of two harmonic motions of equal amplitude but of slightly different
frequencies. Discuss the beating phenomena that result from this sum.

Express the complex vector 4 + 3i in the exponential form Ae'®.

Add two complex vectors (2 + 3i) and (4 — §), expressing the result as A £86.

Show that the multiplication of a vector z = Ae'®’ by i rotates it by 90°.

Determine the sum of two vectors 5¢:"/¢ and 4¢/"/> and find the angie between the
resultant and the first vector.

Determine the Fourier series for the rectangular wave shown in Fig. P1-9.

Figure P1-9.

1-10 If the origin of the square wave of Prob. 1-9 is shifted to the right by 7 /2, determine

the Fourier series.

1-11 Determine the Fourier series for the triangular wave shown in Fig. P1-11.

x(1)
1.0

- O mw 27 3w wqt
Figure P1-11.
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1-12 Determine the Fourier series for the sawtooth curve shown in Fig. P1-12. Express the
result of Prob. 1-12 in the exponential form of Eq. (1.2-4).

x(1)
1.0

-2 0 2m a4 e w,t
Figure P1-12.

1-13 Determine the rms value of a wave consisting of the positive portions of a sine wave.

1-14 Determine the mean square value of the sawtooth wave of Prob. 1-12. Do this two
ways, from the squared curve and from the Fourier series.

1-15 Plot the frequency spectrum for the triangular wave of Prob. 1-11.

1-16 Determine the Fourier series of a series of rectangular pulses shown in Fig. P1-16. Plot
c, and ¢, versus n when k = 2.

1N 00

21'r —-| —+|k1‘r|- wyt

Figure P1-16.

1-17 Write the equation for the displacement s of the piston in the crank-piston mechanism
shown in Fig. P1-17, and determine the harmonic components and their relative

magnitudes. If r/l = —, what is the ratio of the second harmonic compared to the
first?

Fs—| \_/ Figure P1-17.

1-18 Determine the mean square of the rectangular pulse shown in Fig. P1-18 for k = 0.10.
If the amplitude is A4, what would an rms voltmeter read?

Figure P1-18.

1-19 Determine the mean square value of the triangular wave of Fig. P1-11.

1-20 An rms voltmeter specifies an accuracy of +0.5 dB. If a vibration of 2.5 mm rms is
measured, determine the millimeter accuracy as read by the voltmeter.

1-21 Amplification factors on a voltmeter used to measure the vibration output from an
accelerometer are given as 10, 50, and 100. What are the decibel steps?
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Figure P1-22.

1-22 The calibration curve of a piezoelectric accelerometer is shown in Fig. P1-22 where the
ordinate is in decibels. If the peak is 32 dB, what is the ratio of the resonance response
to that at some low frequency, say, 1000 cps?

1-23 Using coordinate paper similar to that of Appendix A, outline the bounds for the
following vibration specifications. Max. acceleration = 2 g, max. displacement = 0.08
in., min. and max. frequencies: 1 Hz and 200 Hz.



Free
Vibration

All systems possessing mass and elasticity are capable of free vibration, or
vibration that takes place in the absence of external excitation. Of primary interest
for such a system is its natural frequency of vibration. Our objectives here are to
learn to write its equation of motion and evaluate its natural frequency, which is
mainly a function of the mass and stiffness of the system.

Damping in moderate amounts has little influence on the natural frequency
and may be neglected in its calculation. The system can then be considered to be
conservative, and the principle of conservation of energy offers another approach
to the calculation of the natural frequency. The effect of damping is mainly evident
in the diminishing of the vibration amplitude with time. Although there are many
models of damping, only those that lead to simple analytic procedures are
considered in this chapter.

2.1 VIBRATION MODEL

The basic vibration model of a simple oscillatory system consists of a mass, a
massless spring, and a damper. The mass is considered to be lumped and
measured in the SI system as kilograms. In the English system, the mass is
m=w/glb-s?/in.

The spring supporting the mass is assumed to be of negligible mass. Its
force-deflection relationship is considered to be linear, following Hooke’s law,
F = kx, where the stiffness k is measured in newtons /meter or pounds /inch.

The viscous damping, generally represented by a dashpot, is described by a
force proportional to the velocity, or F = cx. The damping coefficient ¢ is
measured in newtons /meter /second or pounds/inch /second.

17
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2.2 EQUATIONS OF MOTION: NATURAL FREQUENCY

Figure 2.2-1 shows a simple undamped spring-mass system, which is assumed to
move only along the vertical direction. It has 1 degree of freedom (DOF), because
its motion is described by a single coordinate x.

When placed into motion, oscillation will take place at the natural frequency
f,,» which is a property of the system. We now examine some of the basic concepts
associated with the free vibration of systems with 1 degree of freedom.

Newton’s second law is the first basis for examining the motion of the system.
As shown in Fig. 2.2-1 the deformation of the spring in the static equilibrium
position is A, and the spring force kA is equal to the gravitational force w acting
on mass m:

kA =w=mg (2.2-1)

By measuring the displacement x from the static equilibrium position, the forces
acting on m are k(A + x) and w. With x chosen to be positive in the downward
direction, all quantities—force, velocity, and acceleration—are also positive in the
downward direction.

We now apply Newton’s second law of motion to the mass m:

mi=3%F=w— k(A +x)
and because kA = w, we obtain
mi = —kx (2.2-2)

It is evident that the choice of the static equilibrium position as reference for x has
eliminated w, the force due to gravity, and the static spring force kA from the
equation of motion, and the resultant force on m is simply the spring force due to
the displacement x.
By defining the circular frequency w, by the equation
, k

0l = — (2.2:3)

Figure 2.2-1. Spring-mass system and free-body diagram.
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Eq. (2.2-2) can be written as
i+elx=0 (2.2-4)

and we conclude by comparison with Eq. (1.1-6) that the motion is harmonic.
Equation (2.2-4), a homogeneous second-order linear differential equation, has the
following general solution:

x=Asinw,t + Bcos w,t (2.2-5)

where A and B are the two necessary constants. These constants are evaluated
from initial conditions x(0) and x(0), and Eq. (2.2-5) can be shown to reduce to

x=x(0

W,

sin w,t + x(0) cos w, ¢t (2.2-6)

The natural period of the oscillation is established from w,r = 27, or

m
T=2m/ % (2.2-7)

and the natural frequency is

1 1 [k
==V m (2.2-8)
These quantities can be expressed in terms of the statical deflection A by observing
Eq. (2.2-1), kA = mg. Thus, Eq. (2.2-8) can be expressed in terms of the statical
deflection A as

1
fo= 72V % (22:9)

Note that 7, f,, and w, depend only on the mass and stiffness of the system, which
are properties of the system.

Although our discussion was in terms of the spring-mass system of Fig. 2.2-1,
the results are applicable to all single-DOF systems, including rotation. The spring
can be a beam or torsional member and the mass can be replaced by a mass
moment of inertia. A table of values for the stiffness k for various types of springs
is presented at the end of the chapter.

Example 2.2-1

A I-kg mass is suspended by a spring having a stiffness of 0.1533 N/mm. Determine
its natural frequency in cycles per second. Determine its statical deflection.

Solution: The stiffness is
k =153.3N/m
By substituting into Eq. (2.2-8), the natural frequency is

1 k 1 /1533
f='2; m=ﬂ W=3.941HZ
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The statical deflection of the spring suspending the %-kg mass is obtained from the
relationship mg = kA

mg 0.25 x 9.81

A 01533 — 16.0 mm

kN/mm

Example 2.2-2

Determine the natural frequency of the mass M on the end of a cantilever beam of
negligible mass shown in Fig. 2.2-2.

/ﬁ O

= — ] .
. Figure 2.2-2.

-

Solution: The deflection of the cantilever beam under a concentrated end force P is
Y
*=3EI T %

where EI is the fiexural rigidity. Thus, the stiffness of the beam is k = 3EI/I*, and
the natural frequency of the system becomes

_ 1 [3E
fn= 72\ 0
Example 2.2-3

An automobile wheel and tire are suspended by a steel rod 0.50 cm in diameter and
2 m long, as shown in Fig. 2.2-3. When the wheel is given an angular displacement
and released, it makes 10 oscillations in 30.2 s. Determine the polar moment of
inertia of the wheel and tire.

Solution: The rotational equation of motion corresponding to Newton’s equation is

J6 = —K6

where J is the rotational mass moment of inertia, K is the rotational stiffness, and 6
is the angle of rotation in radians. Thus, the natural frequency of oscillation is equal

i

Figure 2.2-3.
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to
=2 20 _ 2.081 rad
W, =2T3575 = 2. rad/s
The torsional stiffness of the rod is given by the equation K = GI,/I, where

I, = mwd*/32 = polar moment of inertia of the circular cross-sectional area of the
rod, | = length, and G = 80 X 10° N/m? = shear modulus of steel.

I, = 75(05 % 1072)" = 0.006136 X 10~® m*

9 -8
K= 80 X 107 X 0.(2]06136 X 10 — 2455 N - m/rad

By substituting into the natural frequency equation, the polar moment of inertia of
the wheel and tire is
J——-——Ig;—=-——2-i-‘§§—2-=0.567kg-m2
w,  (2.081)
Example 2.2-4

Figure 2.2-4 shows a uniform bar pivoted about point O with springs of equal stiffness
k at each end. The bar is horizontal in the equilibrium position with spring forces P,
and P,. Determine the equation of motion and its natural frequency.

Solution: Under rotation 8, the spring force on the left is decreased and that on the right

is increased. With J, as the moment of inertia of the bar about O, the moment
equation about O is

Y My, = (P, — kab)a + mgc — (P, + kb8)b = J,6
However,
Pia +mgc —P,b=0

in the equilibrium position, and hence we need to consider only the moment of the
forces due to displacement 6, which is

Y M, = (—ka* - kb?)8 = J,0
Thus, the equation of motion can be written as

» k(a® + b?)

0 7, 0=20

and, by inspection, the natural frequency of oscillation is

2 2
w, =/ Kt )
n _]0

Figure 2.2-4.



22 Free Vibration Chap. 2

2.3 ENERGY METHOD

In a conservative system, the total energy is constant, and the differential equation
of motion can also be established by the principle of conservation of energy. For
the free vibration of an undamped system, the energy is partly kinetic and partly
potential. The kinetic energy T is stored in the mass by virtue of its velocity,
whereas the potential energy U is stored in the form of strain energy in elastic
deformation or work done in a force field such as gravity. The total energy being
constant, its rate of change is zero, as illustrated by the fpllowing equations:

T + U = constant (2.3-1)
2(r+U)=0 (23-2)

If our interest is only in the natural frequency of the system, it can be
determined by the following considerations. From the principle of conservation of
energy, we can write

T,+U =T,+ U, (2.3-3)

where , and , represent two instances of time. Let | be the time when the mass is
passing through its static equilibrium position and choose U, = 0 as reference for
the potential energy. Let , be the time corresponding to the maximum displace-
ment of the mass. At this position, the velocity of the mass is zero, and hence
T, = 0. We then have

T,+0=0+10, (2.3-4)
However, if the system is undergoing harmonic motion, then 7; and U, are
maximum values, and hence

Toox = Unax (2.3-5)

The preceding equation leads directly to the natural frequency.

Example 2.3-1
Determine the natural frequency of the system shown in Fig. 2.3-1.

Figure 2.3-1.
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Solution: Assume that the system is vibrating harmonically with amplitude 6 from its static
equilibrium position. The maximum kinetic energy is

. W2
= (36 + 3m(r ]
The maximum potential energy is the energy stored in the spring, which is

Umax = lk(r20)max
Equating the two, the natural frequency is

max

kr?
J+mr?

w,

The student should verify that the loss of potential energy of m due to position
r,0 is canceled by the work done by the equilibrium force of the spring in the position
0 =0.

Example 2.3-2

A cylinder of weight w and radius r rolls without slipping on a cylindrical surface of
radius R, as shown in Fig. 2.3-2. Determine its differential equation of motion for
small oscillations about the lowest point. For no slipping, we have r¢ = Ré.

Solution: In determining the kinetic energy of the cylinder, it must be noted that both
translation and rotation take place. The translational velocity of the center of the
cylinder is (R — r)8, whereas the rotational velocity is (¢ — ) = (R/r — 1)6, be-
cause d> =(R /r)0 for no slipping. The kinetic energy can now be written as

rplon= il 235 (F - 1))

w(R—r) 62

T

| W

where (w/gXr?/2) is the moment of inertia of the cylinder about its mass center.
The potential energy referred to its lowest position is

U=w(R~-r)(1-cos @)
which is equal to the negative of the work done by the gravity force in lifting the
cylinder through the vertical height (R — rX1 — cos 6).

Figure 2.3-2.
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Substituting into Eq. (2.3-2)
%-Z—(R — )%+ w(R - r)sin6|é6 =0

and letting sin @ = 0 for small angles, we obtain the familiar equation for harmonic
motion

2g
+ 3(R-r)

By inspection, the circular frequency of oscillation is
2g
“nTV3R-1)

2.4 RAYLEIGH METHOD: EFFECTIVE MASS

] 6=0

The energy method can be used for multimass systems or for distributed mass
systems, provided the motion of every point in the system is known. In systems in
which masses are joined by rigid links, levers, or gears, the motion of the various
masses can be expressed in terms of the motion X of some specific point and the
system is simply one of a single DOF, because only one coordinate is necessary.
The kinetic energy can then be written as

T = %meff.x.lz (2.4"1)

where m. is the effective mass or an equivalent lumped mass at the specified
point. If the stiffness at that point is also known, the natural frequency can be
calculated from the simple equation

k

- 2.4-2
O =\ (24-2)

In distributed mass systems such as springs and beams, a knowledge of the
distribution of the vibration amplitude becomes necessary before the Kkinetic
energy can be calculated. Rayleigh' showed that with a reasonable assumption for
the shape of the vibration amplitude, it is possible to take into account previously
ignored masses and arrive at a better estimate for the fundamental frequency. The
following examples illustrate the use of both of these methods. "

Example 2.4-1
Determine the effect of the mass of the spring on the natural frequency of the system
shown in Fig. 2.4-1.

Solution: With X equal to the velocity of the lumped mass m, we will assume the velocity
of a spring element located a distance y from the fixed end to vary linearly with y as

*John W. Strutt, Lord Rayleigh, The Theory of Sound, Vol. 1, 2nd rev. ed. (New York: Dover,
1937), pp. 109-110.
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follows:
.y
T

The kinetic energy of the spring can then be integrated

25

to

fn Lf[61) o= 3

and the effective mass is found to be one-third the mass
the lumped mass, the revised natural frequency is

k
W, = ———
" m+ sm;

f——£8/2—+|

of the spring. Adding this to

o~ T —7\

m x l—l’*
|
I

3

Vs

=%

Figure 2.4-1. Figure 2.4-2. Effective mass of beam.

Effective mass
of spring.

Example 2.4-2

A simply supported beam of total mass m, has a concentrated mass M at midspan.
Determine the effective mass of the system at midspan and find its fundamental

frequency. The deflection under the load due to a con

centrated force P applied at

midspan is PI*/48EI. (See Fig. 2.4-2 and table of stiffness at the end of the chapter.)

Solution: We will assume the deflection of the beam to be th

at midspan or
3x x\3 x
y= ymax[‘r -5 (7
The maximum Kinetic energy of the beam itself is then
_ 10 2my | . 3x x\3
Towe= 3 57 {5 T - 4()

l 1
The effective mass at midspan is then equal to
Mo = M + 0.4857 m,,

and its natural frequency becomes

at due to a concentrated load

<1
2

2
} dx = 2 (04857 m,) 32,

Y 48EI
" (M + 04857 m,)
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2.5 PRINCIPLE OF VIRTUAL WORK

We now complement the energy method by another scalar method based on the
principle of virtual work. The principle of virtual work was first formulated by
Johann J. Bernoulli.” It is especially important for systems of interconnected
bodies of higher DOF, but its brief introduction here will familiarize the reader
with its underlying concepts. Further discussion of the principle is given in later
chapters.

The principle of virtual work is associated with the equilibrium of bodies, and
may be stated as follows: If a system in equilibrium under the action of a set of
forces is given a virtual displacement, the virtual work done by the forces will be zero.

The terms used in this statement are defined as follows: (1) A virtual
displacement &r is an imaginary infinitesimal variation of the coordinate given
instantaneously. The virtual displacement must be compatible with the constraints
of the system. (2) Virtual work 8W is the work done by all the active forces in a
virtual displacement. Because there is no significant change of geometry associated
with the virtual displacement, the forces acting on the system are assumed to
remain unchanged for the calculation of 6W.

The principle of virtual work as formulated by Bernoulli is & static procedure.
Its extension to dynamics was made possible by D’Alembert* (1718-1783), who
introduced the concept of the inertia force. Thus, inertia forces are included as
active forces when dynamic problems are considered.

Example 2.5-1
Using the virtual work method, determine the equation of motion for the rigid beam
of mass M loaded as shown in Fig. 2.5-1.

Solution: Draw the beam in the displaced position @ and place the forces acting on it,
including the inertia and damping forces. Give the beam a virtual displacement 66
and determine the work done by each force.

2
Inertia force 6W = — ( % ) 660

Spring force 6W = — (k%l?)% 40
Damper force 8W = — (cl6)! 56
2
Uniform load 8% = ['( pof(t) dx)x 86 =p0f(t)’7 56
0

Summing the virtual work and equating to zero gives the differential equation of
motion:

M%)\ . . 12 I?
(—3—)0 + (612)0 + k‘4“0 =p0"2—f(t)

Johann J. Bernoulli (1667-1748), Basel, Switzerland.
*D’Alembert, Traite de dynamique, 1743.



Sec. 2.5 Principle of Virtual Work 27

Figure 2.5-1.
Example 2.5-2

Two simple pendulums are connected together with the bottom mass restricted to
vertical motion in a frictionless guide, as shown in Fig 2.5-2. Because only one
coordinate @ is necessary, it represents an interconnected single-DOF system. Using
the virtual work method, determine the equation of motion and its natural frequency.

Solution: Sketch the system displaced by a small angle 8 and place on it all forces,
including inertia forces. Next give the coordinate @ a virtual displacement 6. Due
to this displacement, m, and m, will undergo vertical displacements of /86 sin 6
and 2156 sin 8, respectively. (The acceleration of m, can easily be shown to be
21(8'sin 8 + 6% cos @), and its virtual work will be an order of infinitesimal, smaller
than that for the gravity force and can be neglected.) Equating the virtual work to
zero, we have

8W = —(m,l0)186 — (m,g)l 80'sin 6 — (m,g)2156sin 6 = 0

= —[my6 + (m, + 2m,)g sin6]186 = 0

Figure 2.5-2. Virtual work of dou-
ble pendulum with motion of m,
restricted along vertical line.
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Because 86 is arbitrary, the quantity within the brackets must be zero. Thus, the
equation of motion becomes

) 2
o+(1+———m2)§e=0
m, |1

where sin 6 = 6 has been substituted. The natural frequency from the preceding
equation is

2
w, = (1+&)g

my

/

2.6 VISCOUSLY DAMPED FREE VIBRATION

Viscous damping force is expressed by the equation
F,=cx (2.6-1)

where ¢ is a constant of proportionality. Symbolically, it is designated by a
dashpot, as shown in Fig. 2.6-1. From the free-body diagram, the equation of
motion is seen to be

mi + cx + kx = F(t) (2.6-2)

The solution of this equation has two parts. If F(t) = 0, we have the homogeneous
differential equation whose solution corresponds physically to that of free-damped
vibration. With F(t) # 0, we obtain the particular solution that is due to the
excitation irrespective of the homogeneous solution. We will first examine the
homogeneous equation that will give us some understanding of the role of

damping.
With the homogeneous equation
mi+cx+kx=0 (2.6-3)
the traditional approach is to assume a solution of the form
x =e* (2.6-4)

where s is a constant. Upon substitution into the differential equation, we obtain
(ms*+cs +k)e=0

which is satisfied for all values of ¢+ when

k

24 s+ =0 (2.6-5)

Equation (2.6-5), which is known as the characteristic equation, has two roots:

51,2 =+ (= )2— L3 (2.6-6)

VI A VI m
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F(1 Figure 2.6-1.
Hence, the general solution is given by the equation
x = Ae’" + Be*? (2.6-7)

where 4 and B are constants to be evaluated from the initial conditions x(0)
and x(0).
Equation (2.6-6) substituted into (2.6-7) gives

X = e—(c/Zm)t (/‘{le(\/(c/Zm)2 —k/m)t + Be—<\/(c/2m)2—k/m)’) (26-8)

The first term, e ~(/?™" is simply an exponentially decaying function of time. The
behavior of the terms in the parentheses, however, depends on whether the
numerical value within the radical is positive, zero, or negative.

When the damping term (c/2m)? is larger than k/m, the exponents in the
previous equation are real numbers and no oscillations are possible. We refer to
this case as overdamped.

When the damping term (c /2m)? is less than k/m, the exponent becomes

an imaginary number, +i \/ k/m — (c/2m)’t. Because

exi(Virm=ccam?), _ cos)/ % - (%)z + isiny % - (%ﬂ;)zt

the terms of Eq. (2.6-8) within the parentheses are oscillatory. We refer to this case
as underdamped.

In the limiting case between the oscillatory and nonoscillatory motion,
(c/2m)* = k/m, and the radical is zero. The damping corresponding to this case
is called critical damping, c..

c.=2my % =2mw, = 2Vkm (2.6-9)

Any damping can then be expressed in terms of the critical damping by a
nondimensional number ¢, called the damping ratio:

[= = (2.6-10)



30 Free Vibration Chap. 2

and we can also express s, , in terms of { as follows:

) = to,

c c.
m ¢ ( 2m
Equation (2.6-6) then becomes

sia= (-0t V- 1), (2.6-11)

The three cases of damping discussed here now depend on whether { is
greater than, less than, or equal to unity. Furthermore, the differential equation of
motion can now be expressed in terms of { and w,, as

¥+ 2w,k + 0lx = %F(t) (2.6-12)

This form of the equation for single-DOF systems will be found to be helpful in
identifying the natural frequency and the damping of the system. We will fre-
quently encounter this equation in the modal summation for multi-DOF systems.

Figure 2.6-2 shows Eq. (2.6-11) plotted in a complex plane with ¢ along the
horizontal axis. If { = 0, Eq. (2.6-11) reduces to s, ,/w, = +i so that the roots on
the imaginary axis correspond to the undamped case. For 0 < { < 1, Eq. (2.6-11)

can be rewritten as
N .
L2 - rrif1-g?

n

The roots s, and s, are then conjugate complex points on a circular arc converging
at the point s, ,/w, = —1.0. As { increases beyond unity, the roots separate along
the horizontal axis and remain real numbers. With this diagram in mind, we are
now ready to examine the solution given by Eq. (2.6-8).

Figure 2.6-2.
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Oscillatory motion. [{ < 1.0 (Underdamped Case).] By substituting Eq.
(2.6-11) into (2.6-7), the general solution becomes

x = e~ bont (AeV1=Eent 4 Be=iV1=Funt) (2.6-13)

This equation can also be written in either of the following two forms:
x =Xt sin (Y1 = oyt + ¢) (2.6-14)
= e %(Cysiny/1 = Lw,t + Cyo08 Y1 = Pw,t) (2.6-15)

where the arbitrary constants X, ¢, or C,,C, are determined from initial condi-
tions. With initial conditions x(0) and x(0), Eq. (2.6-15) can be shown to reduce to

x =e ¢t x(z)n‘;lgfi';(o) siny/1 = {2w,t +x(0)cosy1 — (2w, t]| (2.6-16)

The equation indicates that the frequency of damped oscillation is equal to
w, = 27—" =w1-0° (2.6-17)
d

Figure 2.6-3 shows the general nature of the oscillatory motion.

Figure 2.6-3. Damped oscillation
{<1.0.

Nonoscillatory motion. [{ > 1.0 (Overdamped Case).] As { exceeds unity,
the two roots remain on the real axis of Fig. 2.6-2 and separate, one increasing and
the other decreasing. The general solution then becomes

x = A+ VE=Dant | Bo(=E= Y& =Dyt (2.6-18)

£(0) + (£ + V2 = 1)w,x(0)
2w,/ -1

where
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Figure 2.6-4. Aperiodic motion { >
1.0.

and

—i(0) = (£ = V2 = 1)w,x(0)
20,/ -1

The motion is an exponentially decreasing function of time, as shown in Fig. 2.6-4,
and is referred to as aperiodic.

Critically damped motion. [{ = 1.0.] For { = 1, we obtain a double root,
s, =§, = —w,, and the two terms of Eq. (2.6-7) combine to form a single term,
which is lacking in the number of constants required to satisfy the two initial
conditions.

The correct general solution is

x=(A+ Bt)e “ (2.6-19)
which for the initial conditions x(0) and %(0) becomes
x = {x(0) + [£(0) + w,x(0)]t}e "

This can also be found from Eq. (2.6-16) by letting { — 1. Figure 2.6-5 shows three
types of response with initial displacement x(0).

Figure 2.6-5. Critically damped
motion ¢ = 1.0.
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Figure 2.7-1. Rate of decay of os-
cillation measured by the logarith-
mic decrement.

2.7 LOGARITHMIC DECREMENT

A convenient way to determine the amount of damping present in a system is to
measure the rate of decay of free oscillations. The larger the damping, the greater
will be the rate of decay.

Consider a damped vibration expressed by the general equation (2.6-14)

x = Xe™¢ont sin(\/l - ot + tb)

which is shown graphically in Fig. 2.7-1. We introduce here a term called the
logarithmic decrement, which is defined as the natural logarithm of the ratio of any
two successive amplitudes. The expression for the logarithmic decrement then

becomes
: e bents sin(\/l — oyt + d))
X l'le_g""'('”'r") sin [\/1 - o (ty + 1) + ¢]

and because the values of the sines are equal when the time is increased by the
damped period 7,, the preceding relation reduces to

(2.7-1)

e-{"’ntl
§=In——— = Inetr = {wr, (2.7-2)

e—{wn('1+7d)

By substituting for the damped period, 7, = 27 /w,y1 — ¢ 2 the expression for
the logarithmic decrement becomes

8 = (2.7-3)

V1 -¢?
which is an exact equation.

When ¢ is small, /1 - ¢ 2 = 1, and an approximate equation
é=2mw¢ (2.7-4)

is obtained. Figure 2.7-2 shows a plot of the exact and approximate values of é as a
function of {.
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Figure 2.7-2. Logarithmic decre-
ment as function of .

Example 2.7-1

The following data are given for a vibrating system with viscous damping: w = 10 Ib,
k =30 1b/in., and ¢ = 0.12 Ib/in./s. Determine the logarithmic decrement and the
ratio of any two successive amplitudes.

Solution: The undamped natural frequency of the system in radians per second is

[k /30 X 386
w, = - = o = 34.0rad/s

The critical damping coefficient ¢, and damping factor { are

10 .
[ 2mwn =2 X % X34.0=1.76 lb/ln./s
c 0.12
(= Z = -m=0.0681

The logarithmic decrement, from Eq. (2.7-3), is
_ 2wl _ 27 X 0.0681
Vi-¢2 1 - (0.0681)°
The amplitude ratio for any two consecutive cycles is
Xy
Xz

8 = 0.429

=e? =" =154

Example 2.7-2
Show that the logarithmic decrement is also given by the equation

1lnf—(l

§=—
nox

n
where x, represents the amplitude after n cycles have elapsed. Plot a curve giving the
number of cycles elapsed against ¢ for the amplitude to diminish by 50 percent.
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Solution: The amplitude ratio for any two consecutive amplitudes is

The ratio x,/x, can be written as

Xo _ (X[ Xu)(X2)... [Xn2 =(e5)"=e"5
Xn X1 X2 X3 Xn
from which the required equation is obtained as

5= Lo
n X

n

To determine the number of cycles elapsed for a 50-percent reduction in
amplitude, we obtain the following relation from the preceding equation:

5=2m= Lingo 069
n n
0.693
n{— W = 0.110

The last equation is that of a rectangular hyperbola and is plotted in Fig. 2.7-3.

Figure 2.7-3.

2.8 COULOMB DAMPING

Coulomb damping results from the sliding of two dry surfaces. The damping force
is equal to the product of the normal force and the coefficient of friction u and is
assumed to be independent of the velocity, once the motion is initiated. Because
the sign of the damping force is always opposite to that of the velocity, the
differential equation of motion for each sign is valid only for half-cycle intervals.
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Figure 2.8-1. Free vibration with
Coulomb damping.

To determine the decay of amplitude, we resort to the work-energy principle
of equating the work done to the change in kinetic energy. By choosing a half-cycle
starting at the extreme position with velocity equal to zero and the amplitude equal
to X, the change in the kinetic energy is zero and the work done on m is also
Zero.

sk(XE—X2) - F(X,+X_) =0
or
%k(X1 -X_)=F,

where X _, is the amplitude after the half-cycle, as shown in Fig. 2.8-1.

By repeating this procedure for the next half-cycle, a further decrease in
amplitude of 2F,/k will be found, so that the decay in amplitude per cycle is a
constant and equal to

X, —X,= % (2.8-1)

The motion will cease, however, when the amplitude becomes less than A, at
which position the spring force is insufficient to overcome the static friction force,
which is generally greater than the kinetic friction force. It can also be shown that
the frequency of oscillation is @, = yk/m, which is the same as that of the
undamped system.

Figure 2.8-1 shows the free vibration of a system with Coulomb damping. It
should be noted that the amplitudes decay linearly with time.

TABLE OF SPRING STIFFNESS
ky k2 ‘= 1
o— WW——AMMN—0 1k, + 1/k,
ky
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Free Vibration Chap. 2

PROBLEMS

A 0.453-kg mass attached to a light spring elongates it 7.87 mm. Determine the natural
frequency of the system.

A spring-mass system, k; and m, has a natural frequency of f,. If a second spring &,
is added in series with the first spring, the natural frequency is lowered to if;.
Determine k, in terms of k.

A 4.53-kg mass attached to the lower end of a spring whose upper end is fixed vibrates
with a natural period of 0.45 s. Determine the natural period when a 2.26-kg mass is
attached to the midpoint of the same spring with the upper and lower ends fixed.

An unknown mass of m kg attached to the end of an unknown spring k£ has a natural
frequency of 94 cpm. When a 0.453-kg mass is added to m, the natural frequency is
lowered to 76.7 cpm. Determine the unknown mass m and the spring constant k
N/m.

A mass m, hangs from a spring k N/m and is in static equilibrium. A second mass m,
drops through a height 4 and sticks to m; without rebound, as shown in Fig. P2-5.
Determine the subsequent motion.

S

mp

I..u_:r....|

Figure P2-5.

The ratio k/m of a spring-mass system is given as 4.0. If the mass is deflected 2 cm
down, measured from its equilibrium position, and given an upward velocity of 8 cm /s,
determine its amplitude and maximum acceleration.

A flywheel weighing 70 Ib was allowed to swing as a pendulum about a knife-edge at
the inner side of the rim, as shown in Fig. P2-7. If the measured period of oscillation
was 1.22 s, determine the moment of inertia of the flywheel about its geometric axis.

Figure P2-7.
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2-8 A connecting rod weighing 21.35 N oscillates 53 times in 1 min when suspended as
shown in Fig. P2-8. Determine its moment of inertia about its center of gravity, which
is located 0.254 m from the point of support.

Figure P2-8.

2-9 A flywheel of mass M is suspended in the horizontal plane by three wires of 1.829-m
length equally spaced around a circle of 0.254-m radius. If the period of oscillation
about a vertical axis through the center of the wheel is 2.17 s, determine its radius of
gyration.

2-10 A wheel and axle assembly of moment of inertia J is inclined from the vertical by an
angle a, as shown in Fig. P2-10. Determine the frequency of oscillation due to a small
unbalance weight w b at a distance a in. from the axle.

Figure P2-10.

2-11 A cylinder of mass m and mass moment of inertia J,, is free to roll without slipping,
but is restrained by the spring k, as shown in Fig. P2-11. Determine the natural
frequency of oscillation.
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777777777777, 777 Figure P2-11.

2-12 A chronograph is to be operated by a 2-s pendulum of length L shown in Fig. P2-12. A
platinum wire attached to the bob completes the electric timing circuit through a drop
of mercury as it swings through the lowest point. (a) What should be the length L of
the pendulum? (b) If the platinum wire is in contact with the mercury for 0.3175 cm of
the swing, what must be the amplitude # to limit the duration of contact to 0.01 s?
(Assume that the velocity during contact is constant and that the amplitude of
oscillation is small.)

Figure P2-12.

2-13 A hydrometer float, shown in Fig. P2-13, is used to measure the specific gravity of
liquids. The mass of the float is 0.0372 kg, and the diameter of the cylindrical section
protruding above the surface is 0.0064 m. Determine the period of vibration when the
float is allowed to bob up and down in a fluid of specific gravity 1.20.

Figure P2-13.

2-14 A spherical buoy 3 ft in diameter is weighted to float half out of water, as shown in
Fig. P2-14. The center of gravity of the buoy is 8 in. below its geometric center, and the
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2-15

Figure P2-14.

period of oscillation in rolling motion is 1.3 s. Determine the moment of inertia of the
buoy about its rotational axis.

The oscillatory characteristics of ships in rolling motion depend on the position of the
metacenter M with respect to the center of gravity G. The metacenter M represents
the point of intersection of the line of action of the buoyant force and the center line
of the ship, and its distance 4 measured from G is the metacentric height, as shown in
Fig. P2-15. The position of M depends on the shape of the hull and is independent of
the angular inclination @ of the ship for small values of 8. Show that the period of the
rolling motion is given by

T=2m Wh

where J is the mass moment of inertia of the ship about its roll axis, and W is the
weight of the ship. In general, the position of the roll axis is unknown and J is
obtained from the period of oscillation determined from a model test.

Figure P2-15.

2-16 A thin rectangular plate is bent into a semicircular cylinder, as shown in Fig.

2-17

P2-16. Determine its period of oscillation if it is allowed to rock on a horizontal
surface.

"

Figure P2-16.

A uniform bar of length L and weight W is suspended symmetrically by two strings, as
shown in Fig. P2-17. Set up the differential equation of motion for small angular
oscillations of the bar about the vertical axis O-0, and determine its period.
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2-18

2-19

2-20

221

Free Vibration Chap. 2

-

FRRITRFINTRTRTY]

S

0]

I__I_J
L Figure P2-17.

0.

A uniform bar of length L is suspended in the horizontal position by two vertical
strings of equal length attached to the ends. If the period of oscillation in the plane of
the bar and strings is ¢; and the period of oscillation about a vertical line through the
center of gravity of the bar is ¢,, show that the radius of gyration of the bar about the
center of gravity is given by the expression

- (2|L
"‘(:)7

A uniform bar of radius of gyration k about its center of gravity is suspended
horizontally by two vertical strings of length &, at distances a and b from the mass
center. Prove that the bar will oscillate about the vertical line through the mass center,
and determine the frequency of oscillation.

A steel shaft 50 in. long and 1% in. in diameter is used as a torsion spring for the
wheels of a light automobile, as shown in Fig. P2-20. Determine the natural frequency
of the system if the weight of the wheel and tire assembly is 38 Ib and its radius of
gyration about its axle is 9.0 in. Discuss the difference in the natural frequency with
the wheel locked and unlocked to the arm.

Figure P2-20.

Using the energy method, show that the natural period of oscillation of the fluid in a
U-tube manometer shown in Fig. P2-21 is

{1
T=27 2_g

where [ is the length of the fluid column.
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Figure P2-21.

2-22 Figure P2-22 shows a simplified model of a single-story building. The columns are
assumed to be rigidly imbedded at the ends. Determine its natural period 7. Refer to
the table of stiffness at the end of the chapter.

i m

77 +—-  Figure P2-22.

2-23 Determine the effective mass of the columns of Prob. 2-22 assuming the deflection to
be

_1 (1_ W_X)
Y = 5 Ymax COs 7

2-24 Determine the effective mass at point n and its natural frequency for the system
shown in Fig. P2-24.

Figure P2-24.

2-25 Determine the effective mass of the rocket engine shown in Fig. P2-25 to be added to
the actuator mass m;.

Figure P2-25.
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2-26 The engine-valve system of Fig. P2-26 consists of a rocker arm of moment of inertia J,
a valve of mass m,., and a spring spring of mass m_. Determine its effective mass at A.

Mg

Figure P2-26. Engine valve system.

2-27 A uniform cantilever beam of total mass m/ has a concentrated mass M at its free
end. Determine the effective mass of the beam to be added to M assuming the
deflection to be that of a massless beam with a concentrated force at the end, and
write the equation for its fundamental frequency.

2-28 Repeat Prob. 2-27 using the static deflection

v = S |(3) - 4(3) 49

for the uniformly loaded beam, and compare with previous result.

2-29 Determine the effective rotational stiffness of the shaft in Fig. P2-29 and calculate its
natural period.

%

2-30 For purposes of analysis, it is desired to reduce the system of Fig. P2-30 to a simple
" linear spring-mass system of effective mass m . and effective stiffness k.. Determine
mqg and kg in terms of the given quantities.

J
K1 Ka % Kz

Figure P2-29.
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Figure P2-30.

2-31 Determine the effective mass moment of inertia for shaft 1 in the system shown in Fig.
P2-31.

Figure P2-31.

2-32 Determine the kinetic energy of the system shown in Fig. P2-32 in terms of Xx.
Determine the stiffness at m,, and write the expression for the natural frequency.

Figure P2-32.

2-33 Tachometers are a reed-type frequency-measuring instrument consisting of small
cantilever beams with weights attached at the ends. When the frequency of vibration
corresponds to the natural frequency of one of the reeds, it will vibrate, thereby
indicating the frequency. How large a weight must be placed on the end of a reed
made of spring steel 0.1016 cm thick, 0.635 cm wide, and 8.890 cm long for a natural
frequency of 20 cps?

2-34 A mass of 0.907 kg is attached to the end of a spring with a stiffness of 7.0 N/cm.
Determine the critical damping coefficient.

2-35 To calibrate a dashpot, the velocity of the plunger was measured when a given force

was applied to it. If a %-lb weight produced a constant velocity of 1.20 in. /s, determine
the damping factor { when used with the system of Prob. 2-34.
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2-36 A vibraiing system is started under the following initial conditions: x = 0 and
X = vy. Determine the equation of motion when (a) { = 2.0, (b) ¢ = 0.50, and (c)
¢ = 1.0. Plot nondimensional curves for the three cases with w,t as abscissa and
xw, /v, as ordinate.

2-37 In Prob. 2-36, compare the peak values for the three dampings specified.

2-38 A vibrating system consisting of a mass of 2.267 kg and a spring of stiffness 17.5 N/cm
is viscously damped such that the ratio of any two consecutive amplitudes is 1.00 and
0.98. Determine (a) the natural frequency of the damped system, (b) the logarithmic
decrement, (c) the damping factor, and (d) the damping coefficient.

2-39 A vibrating system consists of a mass of 4.534 kg, a spring of stiffness 35.0 N/cm, and a
dashpot with a damping coefficient of 0.1243 N /cm /s. Find (a) the damping factor, (b)
the logarithmic decrement, and (c) the ratio of any two consecutive amplitudes.

2-40 A vibrating system has the following constants: m = 17.5 kg, k = 70.0 N/cm, and
¢ =0.70 N/cm/s. Determine (a) the damping factor, (b) the natural frequency of
damped oscillation, (c) the logarithmic decrement, and (d) the ratio of any two
consecutive amplitudes.

2-41 Set up the differential equation of motion for the system shown in Fig. P2-41.
Determine the expression for (a) the critical damping coefficient, and (b) the natural
frequency of damped oscillation.

Figure P2-41.

2-42 Write the differential equation of motion for the system shown in Fig. P2-42 and
determine the natural frequency of damped oscillation and the critical damping
coefficient.

Figure P2-42.

2-43 A spring-mass system with viscous damping is displaced from the equilibrium position
and released. If the amplitude diminished by 5% each cycle, what fraction of the
critical damping does the system have?

2-44 A rigid uniform bar of mass m and length [ is pinned at O and supported by a spring
and viscous damper, as shown in Fig. P2-44. Measuring 6 from the static equilibrium
position, determine (a) the equation for small @ (the moment of inertia of the bar
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2-45

2-46

2-47

2-48

2-49
2-50

T,

le—a-
- O o j Figure P2-44.

about O is mi*/3), (b) the equation for the undamped natural frequency, and (c) the
expression for critical damping. Use virtual work.

A thin plate of area A4 and weight W is attached to the end of a spring and is allowed
to oscillate in a viscous fluid, as shown in Fig. P2-45. If 7, is the natural period of
undamped oscillation (i.e., with the system oscillating in air) and 7, the damped period
with the plate immersed in the fluid, show that

_ 2w 5T
p'—gATsz T2 T T

where the damping force on the plate is F, = u2 Av, 24 is the total surface area of
the plate, and v is its velocity.

Figure P2-45.

A gun barrel weighing 1200 1b has a recoil spring of stiffness 20,000 b /ft. If the barrel
recoils 4 ft on firing, determine (a) the initial recoil velocity of the barrel, (b) the
critical damping coefficient of a dashpot that is engaged at the end of the recoil stroke,
and (c) the time required for the barrel to return to a position 2 in. from its initial
position.

A piston of mass 4.53 kg is traveling in a tube with a velocity of 15.24 m /s and engages
a spring and damper, as shown in Fig. P2-47. Determine the maximum displacement of
the piston after engaging the spring-damper. How many seconds does it take?

y= I5'2.4 m/S =) 75Ns/cm

& m

m=453kg k=350 N/cm  Figure P2-47.

A shock absorber is to be designed so that its overshoot is 10% of the initial
displacement when released. Determine ¢;. If { is made equal to %{1, what will be the
overshoot?

Determine the equation of motion for Probs. 2-41 and 2-42 using virtual work.
Determine the effective stiffness of the springs shown in Fig. P2-50.
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m

Figure P2-50.

2-51 Determine the flexibility of a simply supported uniform beam of length L at a point
1L from the end.

2-52 Determine the effective stiffness of the system shown in Fig. P2-52, in terms of the
displacement x.

Figure P2-52.

2-53 Determine the effective stiffness of the torsional system shown in Fig. P2-53. The two
shafts in series have torsional stiffnesses of k; and k,.

k2 ki
yree 7
7777
Figure P2-53.

2-54 A spring-mass system, m and k, is started with an initial displacement of unity and an
initial velocity of zero. Plot In X versus n, where X is the amplitude at cycle n for (a)
viscous damping with ¢ = 0.05, and (b) Coulomb damping with damping force F, =
0.05k. When will the two amplitudes be equal?

2-55 Determine the differential equation of motion and establish the critical damping for
the system shown in Fig. P2-55.

Figure P2-55.
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2-56 Determine the differential equation of motion for free vibration of the system shown
in Fig. P2-56, using virtual work.

Figure P2-56.

2-57 The system shown in Fig. P2-57 has two rigid uniform beams of length / and mass per
unit length m, hinged at the middle and resting on rollers at the test stand. The hinge
is restrained from rotation by a torsional spring K and supports a mass M held up by

another spring k to a position where the bars are horizontal. Determine the equation
of motion using virtual work.

Figure P2-57.

2-58 Two uniform stiff bars are hinged at the middle and constrained by a spring, as shown
in Fig. P2-58. Using virtual work, set up the equation of motion for its free vibration.

Figure P2-58.
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2-59 The equation of motion for the system of Fig. P2-59 with Coulomb damping can be
written as

mi + kx = uFsgn (%)

where sgn(x) = +1 (i.e. sgn(x) = +1 when x is negative and —1 when x is
positive). The general solution to this equation is

x(t) =Asinw,t + Bcos w,,t
F
+ —‘%— sgn (%)

Evaluate the constants 4 and B if the motion is started with the initial conditions
x(0) = x4 and x(0) = 0.

Figure P2-59.



Harmonically
Excited Vibration

When a system is subjected to harmonic excitation, it is forced to vibrate at the
same frequency as that of the excitation. Common sources of harmonic excitation
are unbalance in rotating machines, forces produced by reciprocating machines,
and the motion of the machine itself. These excitations may be undesirable for
equipment whose operation may be disturbed or for the safety of the structure if
large vibration amplitudes develop. Resonance is to be avoided in most cases, and
to prevent large amplitudes from developing, dampers and absorbers are often
used. Discussion of their behavior is of importance for their intelligent use. Finally,
the theory of vibration-measuring instruments is presented as a tool for vibration
analysis.

3.1 FORCED HARMONIC VIBRATION

Harmonic excitation is often encountered in engineering systems. It is commonly
produced by the unbalance in rotating machinery. Although pure harmonic excita-
tion is less likely to occur than periodic or other types of excitation, understanding
the behavior of a system undergoing harmonic excitation is essential in order to
comprehend how the system will respond to more general types of excitation.
Harmonic excitation may be in the form of a force or displacement of some point
in the system.

We will first consider a single-DOF system with viscous damping, excited by a
harmonic force F, sin wt, as shown in Fig. 3.1-1. Its differential equation of motion
is found from the free-body diagram to be

mi + ¢x + kx = F; sin ot (3.1-1)

The solution to this equation consists of two parts, the complementary
function, which is the solution of the homogeneous equation, and the particular

51



52 Harmonically Excited Vibration Chap. 3

Reference

Figure 3.1-1  Viscously Figure 3.1-2. Vector relationship
damped system with har- for forced vibration with damping.
monic excitation.

integral. The complementary function, in this case, is a damped free vibration that
was discussed in Chapter 2.

The particular solution to the preceding equation is a steady-state oscillation
of the same frequency w as that of the excitation. We can assume the particular
solution to be of the form

x = Xsin(wt - ¢) (3.1-2)

where X is the amplitude of oscillation and ¢ is the phase of the displacement
with respect to the exciting force.

The amplitude and phase in the previous equation are found by substituting
Eq. (3.1-2) into the differential equation (3.1-1). Remembering that in harmonic
motion the phases of the velocity and acceleration are ahead of the displacement
by 90° and 180°, respectively, the terms of the differential equation can also be
displayed graphically, as in Fig. 3.1-2. It is easily seen from this diagram that

ko

X = a (3.1-3)
Vk = mo»)? + (cw)?
and
¢ =tan~' _C“r;wz (3.1-4)

We now express Egs. (3.1-3) and (3.1-4) in nondimensional form that enables
a concise graphical presentation of these results. Dividing the numerator and
denominator of Egs. (3.1-3) and (3.1-4) by k, we obtain

X = (3.1-5)
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and
tan ¢ = —— (3.1-6)

1-—%

These equations can be further expressed in terms of the following quantities:

[ k N
w, = |/ — = natural frequency of undamped oscillation
m

¢, = 2mw, = critical damping
c .
{= == damping factor
c
cw iccw _ el
k ¢, k 2{(1),,

The nondimensional expressions for the amplitude and phase then become
Xk 1

" - (20T 2] o

and

tan ¢ (3.1-8)

()

wn
These equations indicate that the nondimensional amplitude Xk /F,, and the phase
¢ are functions only of the frequency ratio w/w, and the damping factor { and
can be plotted as shown in Fig. 3.1-3. These curves show that the damping factor
has a large influence on the amplitude and phase angle in the frequency region
near resonance. Further understanding of the behavior of the system can be
obtained by studying the force diagram corresponding to Fig. 3.1-2 in the regions
w/w, small, w/w, = 1, and w/w, large.

For small values of w/w, < 1, both the inertia and damping forces are
small, which results in a small phase angle ¢. The magnitude of the impressed
force is then nearly equal to the spring force, as shown in Fig. 3.1-4(a).

For w/w, = 1.0, the phase angle is 90° and the force diagram appears as in
Fig. 3.1-4(b). The inertia force, which is now larger, is balanced by the spring force,
whereas the impressed force overcomes the damping force. The amplitude at

resonance can be found, either from Eqgs. (3.1-5) or (3.1-7) or from Fig. 3.1-4(b), to
be

X= = (3.1-9)
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Figure 3.1-3. Plot of Egs. (3.1-7) and (3.1-8).

At large values of w/w, > 1, ¢ approaches 180°, and the impressed force is
expended almost entirely in overcoming the large inertia force as shown in Fig.
3.1-4(c).

In summary, we can write the differential equation and its complete solution,
including the transient term as

F,
E+ 20w, + 0px =~ sin ot (3.1-10)
F, sin (wt —
x(t) - _k_o ( - )
w 2 w 2
127+ pes]
+ Xe Tt sin (Y1 = ot + o) (3.1-11)
Fa Kk 7 ’ X
1 0
(@) w/w,<<1 (b) w/w, =1 (€) w/wy,>>1

Figure 3.1-4. Vector relationship in forced vibration.
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"
=

ey Figure 3.6-2.

Comparison of the preceding equation with Eq. (3.5-8) shows that

it
-y

When the damping is negligible, the transmissibility equation reduces to
1

=

(0/w,)" =1

where it is understood that the value of w/w, to be used is always greater than
V2. On further replacing w, by A/g, where g is the acceleration of gravity and A
is the statical deflection, Equation (3.6-3) can be expressed as

R - 1
(2nf)’a/g -1

To reduce the amplitude X of the isolated mass m without changing TR, m
is often mounted on a large mass M, as shown in Fig. 3.6-2. The stiffness k must
then be increased to keep the ratio k/(m + M) constant. The amplitude X is,
however, reduced because k appears in the denominator of Eq. (3.6-1a).

Because in the general problem the mass to be isolated may have 6 DOF
(three translation and three rotation), the designer of the isolation system must use
his or her intuition and ingenuity. The results of the single-DOF analysis should,
however, serve as a useful guide. Shock isolation for pulse excitation is discussed in
Sec. 4.5 in Chapter 4.

Fr
TR =| &

(3.6-3)

Example 3.6-1

A machine of 100 kg mass is supported on springs of total stiffness 700 kN /m and has
an unbalanced rotating element, which results in a disturbing force of 350 N at a
speed of 3000 rpm. Assuming a damping factor of ¢ = 0.20, determine (a) its
amplitude of motion due to the unbalance, (b) the transmissibility, and (c) the
transmitted force.

Solution: The statical deflection of the system is

100 x 9.81

m = 1401 X 1073 m = 1.401 mm

and its natural frequency is

1 981
= o) = 13.32H
o= 27 Ta01 x 1073 z
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(a) By substituting into Eq. (3.1-5), the amplitude of vibration is

350
3
Yo 7020 X 10
50 \2 50 12
\/[1 - (13.32) ] + [2 X 0.20 X 13733
~=379%10°m
= 0.0379 mm

(b) The transmissibility from Eq. (3.6-2) is

50 \?
\/1 + (2)(0.20)( m)

TR = 2 - 0.137
2 2
\/[1—(—13@3—5) +(2><0.20><ﬁ~)

13.32
(c) The transmitted force is the disturbing force multiplied by the transmissibility.
Frgp =350 X 0.137 = 47.89 N

3.7 ENERGY DISSIPATED BY DAMPING

Damping is present in all oscillatory systems. Its effect is to remove energy from
the system. Energy in a vibrating system is either dissipated into heat or radiated
away. Dissipation of energy into heat can be experienced simply by bending a piece
of metal back and forth a number of times. We are all aware of the sound that is
radiated from an object given a sharp blow. When a buoy is made to bob up and
down in the water, waves radiate out and away from it, thereby resulting in its loss
of energy.

In vibration analysis, we are generally concerned with damping in terms of
system response. The loss of energy from the oscillatory system results in the decay
of amplitude of free vibration. In steady-state forced vibration, the loss of energy is
balanced by the energy that is supplied by the excitation.

A vibrating system can encounter many different types of damping forces,
from internal molecular friction to sliding friction and fluid resistance. Generally,
their mathematical description is quite complicated and not suitable for vibration
analysis. Thus, simplified damping models have been developed that in many cases
are found to be adequate in evaluating the system response. For example, we have
already used the viscous damping model, designated by the dashpot, which leads to
manageable mathematical solutions.

Energy dissipation is usually determined under conditions of cyclic oscilla-
tions. Depending on the type of damping present, the force-displacement relation-
ship when plotted can differ greatly. In all cases, however, the force-displacement
curve will enclose an area, referred to as the hysteresis loop, that is proportional to
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the energy lost per cycle. The energy lost per cycle due to a damping force F, is
computed from the general equation

W, = QF, dx (3.7-1)

In general, W, depends on many factors, such as temperature, frequency, or
amplitude.

We consider in this section the simplest case of energy dissipation, that of a
spring-mass system with viscous damping. The damping force in this case is
F, = cx. With the steady-state displacement and velocity

x = Xsin(wt — ¢)
{ = wX cos (wt — @)
the energy dissipated per cycle, from Eq. (3.7-1), becomes

W, = Peide = ei? di

= coX? " cos(wt - 6) dt = mcwX? (3.7-2)
0

Of particular interest is the energy dissipated in forced vibration at resonance. By
substituting w, = yk/m and c¢ = 2{Vkm , the preceding equation at resonance
becomes

W, = 2¢{mkX? (3.7-3)

The energy dissipated per cycle by the damping force can be represented
graphically as follows. Writing the velocity in the form

i =wXcos(wt—¢) = in\/l — sin?(wt — ¢)

= +oVX?-x?

the damping force becomes

F,=ck= tcoVX?—x? (3.7-4)
By rearranging the foregoing equation to

() + (3) - 79

we recognize it as that of an ellipse with F, and x plotted along the vertical and
horizontal axes, respectively, as shown in Fig. 3.7-1(a). The energy dissipated per
cycle is then given by the area enclosed by the ellipse. If we add to F, the force kx
of the lossless spring, the hysteresis loop is rotated as shown in Fig. 3.7-1(b). This
representation then conforms to the Voigt model, which consists of a dashpot in
parallel with a spring.
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(a) (b)
Figure 3.7-1. Energy dissipated by viscous damping.

Damping properties of materials are listed in many different ways, depending
on the technical areas to which they are applied. Of these, we list two relative
energy units that have wide usage. First of these is specific damping capacity,
defined as the energy loss per cycle W, divided by the peak potential energy U:

Wy
U

The second quantity is the loss coefficient, defined as the ratio of damping
energy loss per radian W,/2m divided by the peak potential or strain energy U:

_ W
"= 240

For the case of linear damping, where the energy loss is proportional to the
square of the strain or amplitude, the hysteresis curve is an ellipse. When the
damping loss is not a quadratic function of the strain or amplitude, the hysteresis
curve is no longer an ellipse.

(3.7-6)

(3.7-7)

Example 3.7-1

Determine the expression for the power developed by a force F = F;sin(wt + ¢)
acting on a displacement x = X, sin wt.

Solution: Power is the rate of doing work, which is the product of the force and velocity.

P= F% = (wXyF,)sin (wt + ¢)cos wt

(wX,yFy)[cos ¢ - sin wt cos wt + sin ¢ - coswt |
= 1w X Fy[sin ¢ + sin Qwt + ¢)]

The first term is a constant, representing the steady flow of work per unit time. The
second term is a sine wave of twice the frequency, which represents the fluctuating
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component of power, the average value of which is zero over any interval of time that
is a multiple of the period.

Example 3.7-2

A force F = 10sinwt N acts on a displacement of x = 2sin(wt — 7/6) m. Deter-
mine (a) the work done during the first 6 s; (b) the work done during the first 1 s.

Solution: Rewriting Eq. (3.7-1) as W = [Fxdt and substituting F = F,sin wf and x =
X sin (wt — ¢) gives the work done per cycle of

W =mF,Xsin¢

For the force and displacement given in this problem, F, = 10N, X =2 m, ¢ = w/6,
and the period 7 = 2 s. Thus, in the 6 s specified in (a), three complete cycles take
place, and the work done is

W=3(mFyXsing) =37 X 10X 2 X sin30°=942N - m

The work done in part (b) is determined by integrating the expression for work
between the limits 0 and J s.

1/2 . . 1/2, 4
W = wFOXO[cos30°f /%Sin wt cos wedt + sin 30°f "%Sin? wtdt]
0 0

. 1,2
=7r><10><2[—0'866 t sm21rt)]
41

cos2mt + 0.50( 5 yp

0

=1651N"-m

3.8 EQUIVALENT VISCOUS DAMPING

The primary influence of damping on oscillatory systems is that of limiting the
amplitude of response at resonance. As seen from the response curves of Fig.
3.1-3, damping has little influence on the response in the frequency regions away
from resonance.

In the case of viscous damping, the amplitude at resonance, Eq. (3.1-9), was
found to be

X = (3.8-1)

For other types of damping, no such simple expression exists. It is possible,
however, to approximate the resonant amplitude by substituting an equivalent
damping c,, in the foregoing equation.

The equivalent damping c,,, is found by equating the energy dissipated by the
viscous damping to that of the nonviscous damping force with assumed harmonic
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motion. From Eq. (3.7-2),
e X =W, (3.8-2)

where W, must be evaluated from the particular type of damping force.
Example 3.8-1

Bodies moving with moderate speed (3 to 20 m/s) in fluids such as water or air are
resisted by a damping force that is proportional to the square of the speed. Determine
the equivalent damping for such forces acting on an oscillatory system, and find its
resonant amplitude.

Solution: Let the damping force be expressed by the equation
Fd = iax.z

where the negative sign must be used when X is positive, and vice versa. Assuming
harmonic motion with the time measured from the position of extreme negative
displacement,

x = —X cos wt

the energy dissipated per cycle is

X
W, =2[" ai*dr = 2002X3 [ sinwtd(wt)
—-x 0
= %aw2X3
The equivalent viscous damping from Eq. (3.8-2) is then
Coq = %an

The amplitude at resonance is found by substituting ¢ = c,, in Eq. (3.8-1) with

w=w,:
| 31 F,
X=,/—
8aw?
Example 3.8-2

Find the equivalent viscous damping for Coulomb damping.

Solution: We assume that under forced sinusoidal excitation, the displacement of the
system with Coulomb damping is sinusoidal and equal to x = X sin wt. The equiva-
lent viscous damping can then be found from Eq. (3.8-2) by noting that the work done
per cycle by the Coulomb force F, is equal to W, = F; X 4X. Its substitution into Eq.
(3.8-2) gives

me,,wX? = 4F, X

_ 4F,
Cea = T0 X
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The amplitude of forced vibration can be found by substituting c., into Eq. (3.1-3):

Solvifig for X, we obtain

77 ()
x| = 0 T =_@ wF,
k — mw? k 1‘(3)2
wn

We note here that unlike the system with viscous damping, X/8,, goes to « when
w = w,. For the numerator to remain real, the term 4F,/m F, must be less than 1.0.

3.9 STRUCTURAL DAMPING

When materials are cyclically stressed, energy is dissipated internally within the
material itself. Experiments by several investigators’ indicate that for most struc-
tural metals, such as steel or aluminum, the energy dissipated per cycle is
independent of the frequency over a wide frequency range and proportional to the
square of the amplitude of vibration. Internal damping fitting this classification is
called solid damping or structural damping. With the energy dissipation per cycle
proportional to the square of the vibration amplitude, the loss coefficient is a
constant and the shape of the hysteresis curve remains unchanged with amplitude
and independent of the strain rate.
Energy dissipated by structural damping can be written as

W, =aX? (3.9-1)
where a is a constant with units of force /displacement. By using the concept of
equivalent viscous damping, Eq. (3.8-2) gives

T, ,wX? = aX?

or
o
Ceq = '7?5 (39-2)
By substituting c,, for c, the differential equation of motion for a system with
structural damping can be written as

" a . .
mi + (——)x + kx = Fysinwt (3.9-3)
mTw
A. L. Kimball, “Vibration Damping, Including the Case of Solid Damping,” Trans. ASME,

APM 51-52 (1929). Also B. J. Lazan, Damping of Materials and Members in Structural Mechanics
(Elmsford, NY: Pergamon Press, 1968).
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Complex stiffness. In the calculation of the flutter speeds of airplane
wings and tail surfaces, the concept of complex stiffness is used. It is arrived at by
assuming the oscillations to be harmonic, which enables Eq. (3.9-3) to be written as

a ;
mx + (k + z;)x = Fye''!

By factoring out the stiffness k and letting y = a/mk, the preceding equation
becomes

mi + k(1 + iy)x = Fye™' (3.9-4)

The quantity k(1 + iy) is called the complex stiffness and vy is the structural
damping factor.

Using the concept of complex stiffness for problems in structural vibrations is
advantageous in that one needs only to multiply the stiffness terms in the system by
(1 + ivy). The method is justified, however, only for harmonic oscillations. With the
solution x = Xe'®’, the steady-state amplitude from Eq. (3.9-4) becomes

Fy

X = 3.9-5
(k — mw?) + iyk ( )
The amplitude at resonance is then
F,
| X| = y_l(:: (3.9-6)

Comparing this with the resonant response of a system with viscous damping

Fy

we conclude that with equal amplitudes at resonance, the structural damping
factor is equal to twice the viscous damping factor.

Frequency response with structural damping. By starting with Eq.
(3.9-5), the complex frequency response for structural damping can be shown to be
a circle. Letting @/, = r and multiplying and dividing by its complex conjugate
give a complex frequency response of

1 1-r2 —y
H(r) = - 