
C H A P T E R 2

Simple Linear Regression

The simple linear regression model consists of the mean function and the variance
function

E(Y |X = x) = β0 + β1x

Var(Y |X = x) = σ 2
(2.1)

The parameters in the mean function are the intercept β0, which is the value of
E(Y |X = x) when x equals zero, and the slope β1, which is the rate of change in
E(Y |X = x) for a unit change in X; see Figure 2.1. By varying the parameters, we
can get all possible straight lines. In most applications, parameters are unknown
and must be estimated using data. The variance function in (2.1) is assumed to be
constant, with a positive value σ 2 that is usually unknown.

Because the variance σ 2 > 0, the observed value of the ith response yi will
typically not equal its expected value E(Y |X = xi). To account for this dif-
ference between the observed data and the expected value, statisticians have
invented a quantity called a statistical error, or ei , for case i defined implicitly
by the equation yi = E(Y |X = xi) + ei or explicitly by ei = yi − E(Y |X = xi).
The errors ei depend on unknown parameters in the mean function and so are not
observable quantities. They are random variables and correspond to the vertical dis-
tance between the point yi and the mean function E(Y |X = xi). In the heights data,
page 2, the errors are the differences between the heights of particular daughters
and the average height of all daughters with mothers of a given fixed height.

If the assumed mean function is incorrect, then the difference between the
observed data and the incorrect mean function will have a non random component,
as illustrated in Figure 2.2.

We make two important assumptions concerning the errors. First, we assume
that E(ei |xi) = 0, so if we could draw a scatterplot of the ei versus the xi , we
would have a null scatterplot, with no patterns. The second assumption is that the
errors are all independent, meaning that the value of the error for one case gives
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FIG. 2.1 Equation of a straight line E(Y |X = x) = β0 + β1x.

Y

Fixed lack-of-fit error

True relationship

Straight line

X

FIG. 2.2 Approximating a curved mean function by straight line cases adds a fixed component to the
errors.

no information about the value of the error for another case. This is likely to be
true in the examples in Chapter 1, although this assumption will not hold in all
problems.

Errors are often assumed to be normally distributed, but normality is much
stronger than we need. In this book, the normality assumption is used primarily
to obtain tests and confidence statements with small samples. If the errors are
thought to follow some different distribution, such as the Poisson or the Binomial,
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other methods besides ols may be more appropriate; we return to this topic in
Chapter 12.

2.1 ORDINARY LEAST SQUARES ESTIMATION

Many methods have been suggested for obtaining estimates of parameters in a
model. The method discussed here is called ordinary least squares, or ols, in
which parameter estimates are chosen to minimize a quantity called the residual
sum of squares. A formal development of the least squares estimates is given in
Appendix A.3.

Parameters are unknown quantities that characterize a model. Estimates of
parameters are computable functions of data and are therefore statistics. To keep
this distinction clear, parameters are denoted by Greek letters like α, β, γ and σ ,
and estimates of parameters are denoted by putting a “hat” over the corresponding
Greek letter. For example, β̂1, read “beta one hat,” is the estimator of β1, and σ̂ 2 is
the estimator of σ 2. The fitted value for case i is given by Ê(Y |X = xi), for which
we use the shorthand notation ŷi ,

ŷi = Ê(Y |X = xi) = β̂0 + β̂1xi (2.2)

Although the ei are not parameters in the usual sense, we shall use the same hat
notation to specify the residuals: the residual for the ith case, denoted êi , is given
by the equation

êi = yi − Ê(Y |X = xi) = yi − ŷi = yi − (β̂0 + β̂1) i = 1, . . . , n (2.3)

which should be compared with the equation for the statistical errors,

ei = yi − (β0 + β1xi) i = 1, . . . , n

All least squares computations for simple regression depend only on aver-
ages, sums of squares and sums of cross-products. Definitions of the quantities
used are given in Table 2.1. Sums of squares and cross-products have been cen-
tered by subtracting the average from each of the values before squaring or tak-
ing cross-products. Appropriate alternative formulas for computing the corrected
sums of squares and cross products from uncorrected sums of squares and cross-
products that are often given in elementary textbooks are useful for mathematical
proofs, but they can be highly inaccurate when used on a computer and should be
avoided.

Table 2.1 also lists definitions for the usual univariate and bivariate summary
statistics, the sample averages (x, y), sample variances (SD2

x, SD2
y), and estimated

covariance and correlation (sxy, rxy). The “hat” rule described earlier would suggest
that different symbols should be used for these quantities; for example, ρ̂xy might
be more appropriate for the sample correlation if the population correlation is ρxy .
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TABLE 2.1 Definitions of Symbolsa

Quantity Definition Description

x
∑

xi/n Sample average of x

y
∑

yi/n Sample average of y

SXX
∑

(xi − x)2 = ∑
(xi − x)xi Sum of squares for the x’s

SD2
x SXX/(n − 1) Sample variance of the x’s

SDx
√

SXX/(n − 1) Sample standard deviation of the x’s
SYY

∑
(yi − y)2 = ∑

(yi − y)yi Sum of squares for the y’s
SD2

y SYY/(n − 1) Sample variance of the y’s
SDy

√
SYY/(n − 1) Sample standard deviation of the y’s

SXY
∑

(xi − x)(yi − y) = ∑
(xi − x)yi Sum of cross-products

sxy SXY/(n − 1) Sample covariance
rxy sxy/(SDxSDy) Sample correlation

aIn each equation, the symbol
∑

means to add over all the n values or pairs of values in the data.

This inconsistency is deliberate since in many regression situations, these statistics
are not estimates of population parameters.

To illustrate computations, we will use Forbes’ data, page 4, for which n = 17.
The data are given in Table 2.2. In our analysis of these data, the response will
be taken to be Lpres = 100 × log10(Pressure), and the predictor is Temp. We have
used the values for these variables shown in Table 2.2 to do the computations.

TABLE 2.2 Forbes’ 1857 Data on Boiling Point and Barometric Pressure for 17
Locations in the Alps and Scotland

Case Number Temp (◦F) Pressure (Inches Hg) Lpres = 100 × log(Pressure)

1 194.5 20.79 131.79
2 194.3 20.79 131.79
3 197.9 22.40 135.02
4 198.4 22.67 135.55
5 199.4 23.15 136.46
6 199.9 23.35 136.83
7 200.9 23.89 137.82
8 201.1 23.99 138.00
9 201.4 24.02 138.06
10 201.3 24.01 138.04
11 203.6 25.14 140.04
12 204.6 26.57 142.44
13 209.5 28.49 145.47
14 208.6 27.76 144.34
15 210.7 29.04 146.30
16 211.9 29.88 147.54
17 212.2 30.06 147.80
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Neither multiplication by 100 nor the base of the logarithms has important effects
on the analysis. Multiplication by 100 avoids using scientific notation for numbers
we display in the text, and changing the base of the logarithms merely multiplies
the logarithms by a constant. For example, to convert from base-ten logarithms
to base-two logarithms, multiply by 3.321928. To convert natural logarithms to
base-two, multiply by 1.442695.

Forbes’ data were collected at 17 selected locations, so the sample variance
of boiling points, SD2

x = 33.17, is not an estimate of any meaningful population
variance. Similarly, rxy depends as much on the method of sampling as it does
on the population value ρxy , should such a population value make sense. In the
heights example, page 2, if the 1375 mother–daughter pairs can be viewed as a
sample from a population, then the sample correlation is an estimate of a population
correlation.

The usual sample statistics are often presented and used in place of the corrected
sums of squares and cross-products, so alternative formulas are given using both
sets of quantities.

2.2 LEAST SQUARES CRITERION

The criterion function for obtaining estimators is based on the residuals, which
geometrically are the vertical distances between the fitted line and the actual y-
values, as illustrated in Figure 2.3. The residuals reflect the inherent asymmetry in
the roles of the response and the predictor in regression problems.
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FIG. 2.3 A schematic plot for ols fitting. Each data point is indicated by a small circle, and the solid
line is a candidate ols line given by a particular choice of slope and intercept. The solid vertical lines
between the points and the solid line are the residuals. Points below the line have negative residuals,
while points above the line have positive residuals.
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The ols estimators are those values β0 and β1 that minimize the function1

RSS(β0, β1) =
n∑

i=1

[
yi − (β0 + β1xi)

]2 (2.4)

When evaluated at (β̂0, β̂1), we call the quantity RSS(β̂0, β̂1) the residual sum of
squares, or just RSS.

The least squares estimates can be derived in many ways, one of which is
outlined in Appendix A.3. They are given by the expressions

β̂1 = SXY

SXX
= rxy

SDy

SDx

= rxy

(
SYY

SXX

)2

β̂0 = y − β̂1x

(2.5)

The several forms for β̂1 are all equivalent.
We emphasize again that ols produces estimates of parameters but not the actual

values of the parameters. The data in Figure 2.3 were created by setting the xi to be
random sample of 20 numbers from a N(2, 1.5) distribution and then computing
yi = 0.7 + 0.8xi + ei , where the errors were N(0, 1) random numbers. For this
graph, the true values of β0 = 0.7 and β1 = 0.8 are known. The graph of the true
mean function is shown in Figure 2.3 as a dashed line, and it seems to match
the data poorly compared to ols, given by the solid line. Since ols minimizes
(2.4), it will always fit at least as well as, and generally better than, the true mean
function.

Using Forbes’ data, we will write x to be the sample mean of Temp and y to be
the sample mean of Lpres. The quantities needed for computing the least squares
estimators are

x = 202.95294 SXX = 530.78235 SXY = 475.31224

y = 139.60529 SYY = 427.79402
(2.6)

The quantity SYY, although not yet needed, is given for completeness. In the rare
instances that regression calculations are not done using statistical software or a
statistical calculator, intermediate calculations such as these should be done as
accurately as possible, and rounding should be done only to final results. Using
(2.6), we find

β̂1 = SXY

SXX
= 0.895

β̂0 = y − β̂1x = −42.138

1We abuse notation by using the symbol for a fixed though unknown quantity like βj as if it were a
variable argument. Thus, for example, RSS(β0, β1) is a function of two variables to be evaluated as its
arguments β0 and β1 vary. The same abuse of notation is used in the discussion of confidence intervals.



ESTIMATING σ2 25

The estimated line, given by either of the equations

Ê(Lpres|Temp) = −42.138 + 0.895Temp

= 139.606 + 0.895(Temp − 202.953)

was drawn in Figure 1.4a. The fit of this line to the data is excellent.

2.3 ESTIMATING σ 2

Since the variance σ 2 is essentially the average squared size of the e2
i , we should

expect that its estimator σ̂ 2 is obtained by averaging the squared residuals. Under
the assumption that the errors are uncorrelated random variables with zero means
and common variance σ 2, an unbiased estimate of σ 2 is obtained by dividing
RSS = ∑

ê2
i by its degrees of freedom (df), where residual df = number of cases

minus the number of parameters in the mean function. For simple regression,
residual df = n − 2, so the estimate of σ 2 is given by

σ̂ 2 = RSS

n − 2
(2.7)

This quantity is called the residual mean square. In general, any sum of squares
divided by its df is called a mean square. The residual sum of squares can be
computed by squaring the residuals and adding them up. It can also be computed
from the formula (Problem 2.9)

RSS = SYY − SXY 2

SXX
= SYY − β̂2

1 SXX (2.8)

Using the summaries for Forbes’ data given at (2.6), we find

RSS = 427.79402 − 475.312242

530.78235
= 2.15493 (2.9)

σ 2 = 2.15493

17 − 2
= 0.14366 (2.10)

The square root of σ̂ 2, σ̂ = √
0.14366 = 0.37903 is often called the standard error

of regression. It is in the same units as is the response variable.
If in addition to the assumptions made previously, the ei are drawn from a

normal distribution, then the residual mean square will be distributed as a multiple
of a chi-squared random variable with df = n − 2, or in symbols,

(n − 2)
σ̂ 2

σ 2
∼ χ2(n − 2)
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This is proved in more advanced books on linear models and is used to obtain the
distribution of test statistics and also to make confidence statements concerning σ 2.
In particular, this fact implies that E(σ̂ 2) = σ 2, although normality is not required
for unbiasedness.

2.4 PROPERTIES OF LEAST SQUARES ESTIMATES

The ols estimates depend on data only through the statistics given in Table 2.1.
This is both an advantage, making computing easy, and a disadvantage, since any
two data sets for which these are identical give the same fitted regression, even if
a straight-line model is appropriate for one but not the other, as we have seen in
Anscombe’s examples in Section 1.4. The estimates β̂0 and β̂1 can both be written
as linear combinations of y1, . . . , yn, for example, writing ci = (xi − x)/SXX (see
Appendix A.3)

β̂1 =
∑ (

xi − x

SXX

)
yi =

∑
ciyi

The fitted value at x = x is

Ê(Y |X = x) = y − β̂1x + β̂1x = y

so the fitted line must pass through the point (x, y), intuitively the center of the
data. Finally, as long as the mean function includes an intercept,

∑
êi = 0. Mean

functions without an intercept will usually have
∑

êi �= 0.
Since the estimates β̂0 and β̂1 depend on the random eis, the estimates are also

random variables. If all the ei have zero mean and the mean function is correct,
then, as shown in Appendix A.4, the least squares estimates are unbiased,

E(β̂0) = β0

E(β̂1) = β1

The variance of the estimators, assuming Var(ei) = σ 2, i = 1, . . ., n, and
Cov(ei, ej ) = 0, i �= j , are from Appendix A.4,

Var(β̂1) = σ 2 1

SXX

Var(β̂0) = σ 2

(
1

n
+ x2

SXX

)
(2.11)

The two estimates are correlated, with covariance

Cov(β̂0, β̂1) = −σ 2 x

SXX
(2.12)
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The correlation between the estimates can be computed to be

ρ(β̂0, β̂1) = −x√
SXX/n + x2

= −x√
(n − 1)SD2

x/n + x2

This correlation can be close to plus or minus one if SDx is small compared to |x|
and can be made to equal zero if the predictor is centered to have sample mean
zero.

The Gauss–Markov theorem provides an optimality result for ols estimates.
Among all estimates that are linear combinations of the ys and unbiased, the ols
estimates have the smallest variance. If one believes the assumptions and is inter-
ested in using linear unbiased estimates, the ols estimates are the ones to use.

When the errors are normally distributed, the ols estimates can be justified
using a completely different argument, since they are then also maximum likelihood
estimates, as discussed in any mathematical statistics text, for example, Casella and
Berger (1990).

Under the assumption that errors are independent, normal with constant variance,
which is written in symbols as

ei ∼ NID(0, σ 2) i = 1, . . . , n

β̂0 and β̂1 are also normally distributed, since they are linear functions of the yis
and hence of the ei , with variances and covariances given by (2.11) and (2.12).
These results are used to get confidence intervals and tests. Normality of estimates
also holds without normality of errors if the sample size is large enough2.

2.5 ESTIMATED VARIANCES

Estimates of Var(β̂0) and Var(β̂1) are obtained by substituting σ̂ 2 for σ 2 in (2.11).
We use the symbol V̂ar( ) for an estimated variance. Thus

V̂ar(β̂1) = σ̂ 2 1

SXX

V̂ar(β̂0) = σ̂ 2

(
1

n
+ x2

SXX

)

The square root of an estimated variance is called a standard error, for which we
use the symbol se( ). The use of this notation is illustrated by

se(β̂1) =
√

V̂ar(β̂1)

2The main requirement for all estimates to be normally distributed in large samples is that

maxi

(
(xi − x)2/SXX

)
must get close to zero as the sample size increases (Huber, 1981).
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2.6 COMPARING MODELS: THE ANALYSIS OF VARIANCE

The analysis of variance provides a convenient method of comparing the fit of
two or more mean functions for the same set of data. The methodology developed
here is very useful in multiple regression and, with minor modification, in most
regression problems.

An elementary alternative to the simple regression model suggests fitting the
mean function

E(Y |X = x) = β0 (2.13)

The mean function (2.13) is the same for all values of X. Fitting with this mean
function is equivalent to finding the best line parallel to the horizontal or x-axis, as
shown in Figure 2.4. The ols estimate of the mean function is E(̂Y |X) = β̂0, where
β̂0 is the value of β0 that minimizes

∑
(yi − β0)

2. The minimizer is given by

β̂0 = y (2.14)

The residual sum of squares is∑
(yi − β̂0)

2 =
∑

(yi − y)2 = SYY (2.15)

This residual sum of squares has n − 1 df, n cases minus one parameter in the
mean function.

Next, consider the simple regression mean function obtained from (2.13) by
adding a term that depends on X

E(Y |X = x) = β0 + β1x (2.16)

Fitting this mean function is equivalent to finding the best line of arbitrary slope,
as shown in Figure 2.4. The ols estimates for this mean function are given by
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FIG. 2.4 Two mean functions compared by the analysis of variance.
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(2.5). The estimates of β0 under the two mean functions are different, just as the
meaning of β0 in the two mean functions is different. For (2.13), β0 is the average
of the yis, but for (2.16), β0 is the expected value of Y when X = 0.

For (2.16), the residual sum of squares, given in (2.8), is

RSS = SYY − (SXY)2

SXX
(2.17)

As mentioned earlier, RSS has n − 2 df.
The difference between the sum of squares at (2.15) and that at (2.17) is the

reduction in residual sum of squares due to enlarging the mean function from (2.13)
to the simple regression mean function (2.16). This is the sum of squares due to
regression, SSreg, defined by

SSreg = SYY − RSS

= SYY −
(

SYY − (SXY)2

SXX

)
= (SXY)2

SXX
(2.18)

The df associated with SSreg is the difference in df for mean function (2.13),
n − 1, and the df for mean function (2.16), n − 2, so the df for SSreg is (n −
1) − (n − 2) = 1 for simple regression. These results are often summarized in an
analysis of variance table, abbreviated as ANOVA, given in Table 2.3. The column
marked “Source” refers to descriptive labels given to the sums of squares; in
more complicated tables, there may be many sources, and the labels given may be
different in some computer programs. The df column gives the number of degrees of
freedom associated with each named source. The next column gives the associated
sum of squares. The mean square column is computed from the sum of squares
column by dividing sums of squares by the corresponding df. The mean square on
the residual line is just σ̂ 2, as already discussed.

The analysis of variance for Forbes’ data is given in Table 2.4. Although this
table will be produced by any linear regression software program, the entries in
Table 2.4 can be constructed from the summary statistics given at (2.6).

The ANOVA is always computed relative to a specific larger mean function, here
given by (2.16), and a smaller mean function obtained from the larger by setting

TABLE 2.3 The Analysis of Variance Table for Simple Regression

Source df SS MS F p-value

Regression 1 SSreg SSreg/1 MSreg/σ̂ 2

Residual n − 2 RSS σ̂ 2 = RSS/(n − 2)

Total n − 1 SYY
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TABLE 2.4 Analysis of Variance Table for Forbes’ Data

Source df SS MS F p-value

Regression on Temp 1 425.639 425.639 2962.79 ≈ 0
Residual 15 2.155 0.144

some parameters to zero, or occasionally setting them to some other known value.
For example, equation (2.13) was obtained from (2.16) by setting β1 = 0. The line
in the ANOVA table for the total gives the residual sum of squares corresponding
to the mean function with the fewest parameters. In the next chapter, the analysis
of variance is applied to a sequence of mean functions, but the reference to a fixed
large mean function remains intact.

2.6.1 The F -Test for Regression

If the sum of squares for regression SSreg is large, then the simple regression
mean function E(Y |X = x) = β0 + β1x should be a significant improvement over
the mean function given by (2.13), E(y|X = x) = β0. This is equivalent to saying
that the additional parameter in the simple regression mean function β1 is different
from zero or that E(Y |X = x) is not constant as X varies. To formalize this notion,
we need to be able to judge how large is “large.” This is done by comparing the
regression mean square, SSreg divided by its df, to the residual mean square σ̂ 2.
We call this ratio F :

F = (SYY − RSS)/1

σ̂ 2
= SSreg/1

σ̂ 2
(2.19)

F is just a rescaled version of SSreg = SYY − RSS, with larger values of SSreg
resulting in larger values of F . Formally, we can consider testing the null hypothesis
(NH) against the alternative hypothesis (AH)

NH: E(Y |X = x) = β0
AH: E(Y |X = x) = β0 + β1x

(2.20)

If the errors are NID(0, σ 2) or the sample size is large enough, then under NH
(2.19) will follow an F -distribution with df associated with the numerator and
denominator of (2.19), 1 and n − 2 for simple regression. This is written F ∼
F(1, n − 2). For Forbes’ data, we compute

F = 425.639

0.144
= 2963

We obtain a significance level or p-value for this test by comparing F to the
percentage points of the F(1, n − 2)-distribution. Most computer programs that fit
regression models will include functions to computing percentage points of the F
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and other standard distributions and will include the p-value along with the ANOVA
table, as in Table 2.4. The p-value is shown as “approximately zero,” meaning that,
if the NH were true, the change of F exceeding its observed value is essentially
zero. This is very strong evidence against NH and in favor of AH.

2.6.2 Interpreting p-values

Under the appropriate assumptions, the p-value is the conditional probability of
observing a value of the computed statistic, here the value of F , as extreme or
more extreme, here as large or larger, than the observed value, given that the NH
is true. A small p-value provides evidence against the NH.

In some research areas, it has become traditional to adopt a fixed significance
level when examining p-values. For example, if a fixed significance level of α is
adopted, then we would say that an NH is rejected at level α if the p-value is
less than α. The most common choice for α is 0.05, which would mean that, were
the NH to be true, we would incorrectly find evidence against it about 5% of the
time, or about 1 test in 20. Accept–reject rules like this are generally unnecessary
for reasonable scientific inquiry. Simply reporting p-values and allowing readers
to decide on significance seems a better approach.

There is an important distinction between statistical significance, the observation
of a sufficiently small p-value, and scientific significance, observing an effect of
sufficient magnitude to be meaningful. Judgment of the latter usually will require
examination of more than just the p-value.

2.6.3 Power of Tests

When the NH is true, and all assumptions are met, the chance of incorrectly declar-
ing an NH to be false at level α is just α. If α = 0.05, then in 5% of tests where
the NH is true we will get a p-value smaller than or equal to 0.05.

When the NH is false, we expect to see small p-values more often. The power
of a test is defined to be the probability of detecting a false NH. For the hypothesis
test (2.20), when the NH is false, it is shown in more advanced books on linear
models (such as Seber, 1977) that the statistic F given by (2.19) has a noncentral
F distribution, with 1 and n − 2 df, and with noncentrality parameter given by
SXXβ2

1/σ 2. The larger the value of the non centrality parameter, the greater the
power. The noncentrality is increased if β2

1 is large, if SXX is large, either by
spreading out the predictors or by increasing the sample size, or by decreasing σ 2.

2.7 THE COEFFICIENT OF DETERMINATION, R2

If both sides of (2.18) are divided by SYY, we get

SSreg

SYY
= 1 − RSS

SYY
(2.21)

The left-hand side of (2.21) is the proportion of variability of the response explained
by regression on the predictor. The right-hand side consists of one minus the
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remaining unexplained variability. This concept of dividing up the total variability
according to whether or not it is explained is of sufficient importance that a special
name is given to it. We define R2, the coefficient of determination, to be

R2 = SSreg

SYY
= 1 − RSS

SYY
(2.22)

R2 is computed from quantities that are available in the ANOVA table. It is a scale-
free one-number summary of the strength of the relationship between the xi and
the yi in the data. It generalizes nicely to multiple regression, depends only on the
sums or squares and appears to be easy to interpret. For Forbes’ data,

R2 = SSreg

SYY
= 425.63910

427.79402
= 0.995

and thus about 99.5% of the variability in the observed values or
100 × log(Pressure) is explained by boiling point. Since R2 does not depend on
units of measurement, we would get the same value if we had used logarithms with
a different base, or if we did not multiply log(Pressure) by 100.

By appealing to (2.22) and to Table 2.1, we can write

R2 = SSreg

SYY
= (SXY)2

SXX × SYY
= r2

xy

and thus R2 is the same as the square of the sample correlation between the
predictor and the response.

2.8 CONFIDENCE INTERVALS AND TESTS

When the errors are NID(0, σ 2), parameter estimates, fitted values, and predictions
will be normally distributed because all of these are linear combinations of the
yi and hence of the ei . Confidence intervals and tests can be based on the t-
distribution, which is the appropriate distribution with normal estimates but using
an estimate of variance σ̂ 2. Suppose we let t (α/2, d) be the value that cuts off
α/2 × 100% in the upper tail of the t-distribution with d df. These values can be
computed in most statistical packages or spreadsheet software3.

2.8.1 The Intercept

The intercept is used to illustrate the general form of confidence intervals for nor-
mally distributed estimates. The standard error of the intercept is
se(β0) = σ̂ (1/n + x2/SXX)1/2. Hence a (1 − α) × 100% confidence interval for
the intercept is the set of points β0 in the interval

β̂0 − t (α/2, n − 2)se(β̂0) ≤ β0 ≤ β̂0 + t (α/2, n − 2)se(β̂0)

3Such as the function tinv in Microsoft Excel, or the function pt in R or S-plus.
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For Forbes’ data, se(β̂0) = 0.37903(1/17 + (202.95294)2/530.78235)1/2 = 3.340.
For a 90% confidence interval, t (0.05, 15) = 1.753, and the interval is

−42.138 − 1.753(3.340) ≤ β0 ≤ −42.136 + 1.753(3.340)

−47.993 ≤ β0 ≤ −36.282

Ninety percent of such intervals will include the true value.
A hypothesis test of

NH: β0 = β∗
0 , β1 arbitrary

AH: β0 �= β∗
0 , β1 arbitrary

is obtained by computing the t-statistic

t = β̂0 − β∗
0

se(β̂0)
(2.23)

and referring this ratio to the t-distribution with n − 2 df. For example, in Forbes’
data, consider testing the NH β0 = −35 against the alternative that β0 �= −35. The
statistic is

t = −42.138 − (−35)

3.340
= 2.137

which has a p-value near 0.05, providing some evidence against NH. This hypoth-
esis test for these data is not one that would occur to most investigators and is used
only as an illustration.

2.8.2 Slope

The standard error of β̂1 is se(β̂1) = σ̂ /
√

SXX = 0.0164. A 95% confidence inter-
val for the slope is the set of β1 such that

0.8955 − 2.131(0.0164) ≤ β1 ≤ 0.8955 + 2.131(0.0164)

0.867 ≤ β1 ≤ 0.930

As an example of a test for slope equal to zero, consider the Ft. Collins snowfall
data presented on page 7. One can show, Problem 2.11, that the estimated slope is
β̂1 = 0.2035, se(β̂1) = 0.1310. The test of interest is of

NH: β1 = 0
AH: β1 �= 0

(2.24)

For the Ft. Collins data, t = (0.20335 − 0)/0.1310 = 1.553. To get a significance
level for this test, compare t with the t (91) distribution; the two-sided p-value is
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0.124, suggesting no evidence against the NH that Early and Late season snowfalls
are independent.

Compare the hypothesis (2.24) with (2.20). Both appear to be identical. In fact,

t2 =
(

β̂1

se(β̂1)

)2

= β̂2
1

σ̂ 2/SXX
= β̂2

1 SXX

σ̂ 2
= F

so the square of a t statistic with d df is equivalent to an F -statistic with (1, d) df.
In nonlinear and logistic regression models discussed later in the book, the analog
of the t test will not be identical to the analog of the F test, and they can give
conflicting conclusions. For linear regression models, no conflict occurs and the
two tests are equivalent.

2.8.3 Prediction

The estimated mean function can be used to obtain values of the response for given
values of the predictor. The two important variants of this problem are prediction
and estimation of fitted values. Since prediction is more important, we discuss it
first.

In prediction we have a new case, possibly a future value, not one used to
estimate parameters, with observed value of the predictor x∗. We would like to
know the value y∗, the corresponding response, but it has not yet been observed.
We can use the estimated mean function to predict it. We assume that the data
used to estimate the mean function are relevant to the new case, so the fitted
model applies to it. In the heights example, we would probably be willing to apply
the fitted mean function to mother–daughter pairs alive in England at the end of
the nineteenth century. Whether the prediction would be reasonable for mother–
daughter pairs in other countries or in other time periods is much less clear. In
Forbes’ problem, we would probably be willing to apply the results for altitudes
in the range he studied. Given this additional assumption, a point prediction of y∗,
say ỹ∗, is just

ỹ∗ = β̂0 + β̂1x∗

ỹ∗ predicts the as yet unobserved y∗. The variability of this predictor has two
sources: the variation in the estimates β̂0 and β̂1, and the variation due to the
fact that y∗ will not equal its expectation, since even if we knew the parameters
exactly, the future value of the response will not generally equal its expectation.
Using Appendix A.4,

Var(ỹ∗|x∗) = σ 2 + σ 2
(

1

n
+ (x∗ − x)2

SXX

)
(2.25)

Taking square roots and estimating σ 2 by σ̂ 2, we get the standard error of prediction
(sepred) at x∗,

sepred(ỹ∗|x∗) = σ̂

(
1 + 1

n
+ (x∗ − x)2

SXX

)1/2

(2.26)
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A prediction interval uses multipliers from the t-distribution. For prediction of
100 × log(Pressure) for a location with x∗ = 200, the point prediction is ỹ∗ =
−42.13778 + 0.89549(200) = 136.961, with standard error of prediction

sepred(ỹ∗|x∗ = 200) = 0.37903

(
1 + 1

17
+ (200 − 202.95294)2

530.78235

)1/2

= 0.393

Thus a 99% predictive interval is the set of all y∗ such that

136.961 − 2.95(0.393) ≤ y∗ ≤ 136.961 + 2.95(0.393)

135.803 ≤ y∗ ≤ 138.119

More interesting would be a 99% prediction interval for Pressure, rather than for
100 × log(Pressure). A point prediction is just 10(136.961/100) = 23.421 inches of
Mercury. The prediction interval is found by exponentiating the end points of the
interval in log scale. Dividing by 100 and then exponentiating, we get

10135.803/100 ≤ Pressure ≤ 10138.119/100

22.805 ≤ Pressure ≤ 24.054

In the original scale, the prediction interval is not symmetric about the point
estimate.

For the heights data, Figure 2.5 is a plot of the estimated mean function given
by the dashed line for the regression of Dheight on Mheight along with curves at

β̂0 + β̂1x∗ ± t (.025, 15)sepred( ˜Dheight∗|Mheight∗)

The vertical distance between the two solid curves for any value of Mheight cor-
responds to a 95% prediction interval for daughter’s height given mother’s height.
Although not obvious from the graph because of the very large sample size, the
interval is wider for mothers who were either relatively tall or short, as the curves
bend outward from the narrowest point at Mheight = Mheight.

2.8.4 Fitted Values

In rare problems, one may be interested in obtaining an estimate of E(Y |X = x). In
the heights data, this is like asking for the population mean height of all daughters
of mothers with a particular height. This quantity is estimated by the fitted value
ŷ = β0 + β1x, and its standard error is

sefit(ỹ∗|x∗) = σ̂

(
1

n
+ (x∗ − x)2

SXX

)1/2
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FIG. 2.5 Prediction intervals (solid lines) and intervals for fitted values (dashed lines) for the heights
data.

To obtain confidence intervals, it is more usual to compute a simultaneous interval
for all possible values of x. This is the same as first computing a joint confidence
region for β0 and β1, and from these, computing the set of all possible mean
functions with slope and intercept in the joint confidence set (Section 5.5). The
confidence region for the mean function is the set of all y such that

(β̂0 + β̂1x) − sefit(ŷ|x)[2F(α; 2, n − 2)]1/2 ≤ y

≤ (β̂0 + β̂1x) + sefit(ŷ|x)[2F(α; 2, n − 2)]1/2

For multiple regression, replace 2F(α; 2, n − 2) by p′F(α; p′, n − p′), where p′
is the number of parameters estimated in the mean function including the intercept.
The simultaneous band for the fitted line for the heights data is shown in Figure 2.5
as the vertical distances between the two dotted lines. The prediction intervals are
much wider than the confidence intervals. Why is this so (Problem 2.4)?

2.9 THE RESIDUALS

Plots of residuals versus other quantities are used to find failures of assumptions.
The most common plot, especially useful in simple regression, is the plot of resid-
uals versus the fitted values. A null plot would indicate no failure of assumptions.
Curvature might indicate that the fitted mean function is inappropriate. Residuals
that seem to increase or decrease in average magnitude with the fitted values might
indicate nonconstant residual variance. A few relatively large residuals may be
indicative of outliers, cases for which the model is somehow inappropriate.

The plot of residuals versus fitted values for the heights data is shown in
Figure 2.6. This is a null plot, as it indicates no particular problems.
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FIG. 2.6 Residuals versus fitted values for the heights data.
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FIG. 2.7 Residual plot for Forbes’ data.

The fitted values and residuals for Forbes’ data are plotted in Figure 2.7. The
residuals are generally small compared to the fitted values, and they do not fol-
low any distinct pattern in Figure 2.7. The residual for case number 12 is about
four times the size of the next largest residual in absolute value. This may sug-
gest that the assumptions concerning the errors are not correct. Either Var(100 ×
log(Pressure)|Temp) may not be constant or for case 12, the corresponding error
may have a large fixed component. Forbes may have misread or miscopied the
results of his calculations for this case, which would suggest that the numbers in
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TABLE 2.5 Summary Statistics for Forbes’
Data with All Data and with Case 12 Deleted

Quantity All Data Delete Case 12

β̂0 −42.138 −41.308
β̂1 0.895 0.891
se(β̂0) 3.340 1.001
se(β̂1) 0.016 0.005
σ̂ 0.379 0.113
R2 0.995 1.000

the data do not correspond to the actual measurements. Forbes noted this possi-
bility himself, by marking this pair of numbers in his paper as being “evidently a
mistake”, presumably because of the large observed residual.

Since we are concerned with the effects of case 12, we could refit the data, this
time without case 12, and then examine the changes that occur in the estimates
of parameters, fitted values, residual variance, and so on. This is summarized in
Table 2.5, giving estimates of parameters, their standard errors, σ̂ 2, and the coef-
ficient of determination R2 with and without case 12. The estimates of parameters
are essentially identical with and without case 12. In other regression problems,
deletion of a single case can change everything. The effect of case 12 on standard
errors is more marked: if case 12 is deleted, standard errors are decreased by a
factor of about 3.1, and variances are decreased by a factor of about 3.12 ≈ 10.
Inclusion of this case gives the appearance of less reliable results than would be
suggested on the basis of the other 16 cases. In particular, prediction intervals of
Pressure are much wider based on all the data than on the 16-case data, although
the point predictions are nearly the same. The residual plot obtained when case
12 is deleted before computing indicates no obvious failures in the remaining 16
cases.

Two competing fits using the same mean function but somewhat different data
are available, and they lead to slightly different conclusions, although the results of
the two analyses agree more than they disagree. On the basis of the data, there is
no real way to choose between the two, and we have no way of deciding which is
the correct ols analysis of the data. A good approach to this problem is to describe
both or, in general, all plausible alternatives.

PROBLEMS

2.1. Height and weight data The table below and in the data file htwt.txt
gives Ht = height in centimeters and Wt = weight in kilograms for a sample
of n = 10 18-year-old girls. The data are taken from a larger study described
in Problem 3.1. Interest is in predicting weight from height.
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Ht Wt

169.6 71.2
166.8 58.2
157.1 56.0
181.1 64.5
158.4 53.0
165.6 52.4
166.7 56.8
156.5 49.2
168.1 55.6
165.3 77.8

2.1.1. Draw a scatterplot of Wt on the vertical axis versus Ht on the horizontal
axis. On the basis of this plot, does a simple linear regression model
make sense for these data? Why or why not?

2.1.2. Show that x = 165.52, y = 59.47, SXX = 472.076, SYY = 731.961,
and SXY = 274.786. Compute estimates of the slope and the intercept
for the regression of Y on X. Draw the fitted line on your scatterplot.

2.1.3. Obtain the estimate of σ 2 and find the estimated standard errors of
β̂0 and β̂1. Also find the estimated covariance between β̂0 and β̂1.
Compute the t-tests for the hypotheses that β0 = 0 and that β1 = 0
and find the appropriate p-values using two-sided tests.

2.1.4. Obtain the analysis of variance table and F -test for regression. Show
numerically that F = t2, where t was computed in Problem 2.1.3 for
testing β1 = 0.

2.2. More with Forbes’ data An alternative approach to the analysis of Forbes’
experiments comes from the Clausius–Clapeyron formula of classical ther-
modynamics, which dates to Clausius (1850). According to this theory, we
should find that

E(Lpres|Temp) = β0 + β1
1

Ktemp
(2.27)

where Ktemp is temperature in degrees Kelvin, which equals 255.37 plus
(5/9) × Temp. If we were to graph this mean function on a plot of Lpres
versus Ktemp, we would get a curve, not a straight line. However, we can
estimate the parameters β0 and β1 using simple linear regression methods by
defining u1 to be the inverse of temperature in degrees Kelvin,

u1 = 1

Ktemp
= 1

(5/9)Temp + 255.37
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Then the mean function (2.27) can be rewritten as

E(Lpres|Temp) = β0 + β1u1 (2.28)

for which simple linear regression is suitable. The notation we have used
in (2.28) is a little different, as the left side of the equation says we are
conditioning on Temp, but the variable Temp does not appear explicitly on
the right side of the equation.

2.2.1. Draw the plot of Lpres versus u1, and verify that apart from case 12
the 17 points in Forbes’ data fall close to a straight line.

2.2.2. Compute the linear regression implied by (2.28), and summarize your
results.

2.2.3. We now have two possible models for the same data based on the
regression of Lpres on Temp used by Forbes, and (2.28) based on the
Clausius–Clapeyron formula. To compare these two, draw the plot of
the fitted values from Forbes’ mean function fit versus the fitted values
from (2.28). On the basis of these and any other computations you
think might help, is it possible to prefer one approach over the other?
Why?

2.2.4. In his original paper, Forbes provided additional data collected by
the botanist Dr. Joseph Hooker on temperatures and boiling points
measured often at higher altitudes in the Himalaya Mountains. The
data for n = 31 locations is given in the file hooker.txt. Find the
estimated mean function (2.28) for Hooker’s data.

2.2.5. This problem is not recommended unless you have access to a pack-
age with a programming language, like R, S-plus, Mathematica, or
SAS IML. For each of the cases in Hooker’s data, compute the pre-
dicted values ŷ and the standard error of prediction. Then compute
z = (Lpres − ŷ)/sepred. Each of the zs is a random variable, but if
the model is correct, each has mean zero and standard deviation close
to one. Compute the sample mean and standard deviation of the zs,
and summarize results.

2.2.6. Repeat Problem 2.2.5, but this time predict and compute the z-scores
for the 17 cases in Forbes data, again using the fitted mean func-
tion from Hooker’s data. If the mean function for Hooker’s data
applies to Forbes’ data, then each of the z-scores should have zero
mean and standard deviation close to one. Compute the z-scores,
compare them to those in the last problem and comment on the
results.

2.3. Deviations from the mean Sometimes it is convenient to write the simple
linear regression model in a different form that is a little easier to manipu-
late. Taking equation (2.1), and adding β1x − β1x, which equals zero, to the
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right-hand side, and combining terms, we can write

yi = β0 + β1x + β1xi − β1x + ei

= (β0 + β1x) + β1(xi − x) + ei

= α + β1(xi − x) + ei (2.29)

where we have defined α = β0 + β1x. This is called the deviations from the
sample average form for simple regression.

2.3.1. What is the meaning of the parameter α?

2.3.2. Show that the least squares estimates are

α̂ = y, β̂1 as given by (2.5)

2.3.3. Find expressions for the variances of the estimates and the covariance
between them.

2.4. Heights of mothers and daughters
2.4.1. For the heights data in the file heights.txt, compute the regres-

sion of Dheight on Mheight, and report the estimates, their standard
errors, the value of the coefficient of determination, and the esti-
mate of variance. Give the analysis of variance table that tests the
hypothesis that E(Dheight |Mheight) = β0 versus the alternative that
E(Dheight |Mheight) = β0 + β1Mheight, and write a sentence or two
that summarizes the results of these computations.

2.4.2. Write the mean function in the deviations from the mean form as in
Problem 2.3. For this particular problem, give an interpretation for the
value of β1. In particular, discuss the three cases of β1 = 1, β1 < 1
and β1 > 1. Obtain a 99% confidence interval for β1 from the data.

2.4.3. Obtain a prediction and 99% prediction interval for a daughter whose
mother is 64 inches tall.

2.5. Smallmouth bass
2.5.1. Using the West Bearskin Lake smallmouth bass data in the file

wblake.txt, obtain 95% intervals for the mean length at ages 2, 4
and 6 years.

2.5.2. Obtain a 95% interval for the mean length at age 9. Explain why this
interval is likely to be untrustworthy.

2.5.3. The file wblake2.txt contains all the data for ages one to eight
and, in addition, includes a few older fishes. Using the methods we
have learned in this chapter, show that the simple linear regression
model is not appropriate for this larger data set.

2.6. United Nations data Refer to the UN data in Problem 1.3, page 18.
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2.6.1. Using base-ten logarithms, use a software package to compute the
simple linear regression model corresponding to the graph in Prob-
lem 1.3.3, and get the analysis of variance table.

2.6.2. Draw the summary graph, and add the fitted line to the graph.

2.6.3. Test the hypothesis that the slope is zero versus the alternative that it
is negative (a one-sided test). Give the significance level of the test
and a sentence that summarizes the result.

2.6.4. Give the value of the coefficient of determination, and explain its
meaning.

2.6.5. Increasing log(PPgdp) by one unit is the same as multiplying PPgdp
by ten. If two localities differ in PPgdp by a factor of ten, give a 95%
confidence interval on the difference in log(Fertility) for these two
localities.

2.6.6. For a locality not in the data with PPgdp = 1000, obtain a point pre-
diction and a 95% prediction interval for log(Fertility). If the interval
(a, b) is a 95% prediction interval for log(Fertility), then a 95% pre-
diction interval for Fertility is given by (10a, 10b). Use this result to
get a 95% prediction interval for Fertility.

2.6.7. Identify (1) the locality with the highest value of Fertility; (2) the
locality with the lowest value of Fertility; and (3) the two localities
with the largest positive residuals from the regression when both vari-
ables are in log scale, and the two countries with the largest negative
residuals in log scales.

2.7. Regression through the origin Occasionally, a mean function in which the
intercept is known a priori to be zero may be fit. This mean function is
given by

E(y|x) = β1x (2.30)

The residual sum of squares for this model, assuming the errors are indepen-
dent with common variance σ 2, is RSS = ∑

(yi − β̂1xi)
2.

2.7.1. Show that the least squares estimate of β1 is β̂1 = ∑
xiyi/

∑
x2
i .

Show that β̂1 is unbiased and that Var(β̂1) = σ 2/
∑

x2
i . Find an

expression for σ̂ 2. How many df does it have?

2.7.2. Derive the analysis of variance table with the larger model given by
(2.16), but with the smaller model specified in (2.30). Show that the
F -test derived from this table is numerically equivalent to the square
of the t-test (2.23) with β∗

0 = 0.

2.7.3. The data in Table 2.6 and in the file snake.txt give X = water
content of snow on April 1 and Y = water yield from April to July
in inches in the Snake River watershed in Wyoming for n = 17 years
from 1919 to 1935 (from Wilm, 1950).
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TABLE 2.6 Snake River Data for Problem 2.7

X Y X Y

23.1 10.5 32.8 16.7
31.8 18.2 32.0 17.0
30.4 16.3 24.0 10.5
39.5 23.1 24.2 12.4
52.5 24.9 37.9 22.8
30.5 14.1 25.1 12.9
12.4 8.8 35.1 17.4
31.5 14.9 21.1 10.5
27.6 16.1

Fit a regression through the origin and find β̂1 and σ 2. Obtain a
95% confidence interval for β1. Test the hypothesis that the intercept
is zero.

2.7.4. Plot the residuals versus the fitted values and comment on the ade-
quacy of the mean function with zero intercept. In regression through
the origin,

∑
êi �= 0.

2.8. Scale invariance
2.8.1. In the simple regression model (2.1), suppose the value of the predictor

X is replaced by cX, where c is some non zero constant. How are β̂0,
β̂1, σ̂ 2, R2, and the t-test of NH: β1 = 0 affected by this change?

2.8.2. Suppose each value of the response Y is replaced by dY , for some
d �= 0. Repeat 2.8.1.

2.9. Using Appendix A.3, verify equation (2.8).

2.10. Zipf’s law Suppose we counted the number of times each word was used in
the written works by Shakespeare, Alexander Hamilton, or some other author
with a substantial written record (Table 2.7). Can we say anything about the
frequencies of the most common words?

Suppose we let fi be the rate per 1000 words of text for the ith most
frequent word used. The linguist George Zipf (1902–1950) observed a law
like relationship between rate and rank (Zipf, 1949),

E(fi |i) = a/ib

and further observed that the exponent is close to b = 1. Taking logarithms
of both sides, we get approximately

E(log(fi)| log(i)) = log(a) − b log(i) (2.31)
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TABLE 2.7 The Word Count Data

Word The word
Hamilton Rate per 1000 words of this word in the writings of Alexander Hamilton
HamiltonRank Rank of this word in Hamilton’s writings
Madison Rate per 1000 words of this word in the writings of James Madison
MadisonRank Rank of this word in Madison’s writings
Jay Rate per 1000 words of this word in the writings of John Jay
JayRank Rank of this word in Jay’s writings
Ulysses Rate per 1000 words of this word in Ulysses by James Joyce
UlyssesRank Rank of this word in Ulysses

Zipf’s law has been applied to frequencies of many other classes of objects
besides words, such as the frequency of visits to web pages on the internet
and the frequencies of species of insects in an ecosystem.

The data in MWwords.txt give the frequencies of words in works from
four different sources: the political writings of eighteenth-century American
political figures Alexander Hamilton, James Madison, and John Jay, and the
book Ulysses by twentieth-century Irish writer James Joyce. The data are
from Mosteller and Wallace (1964, Table 8.1-1), and give the frequencies of
165 very common words. Several missing values occur in the data; these are
really words that were used so infrequently that their count was not reported
in Mosteller and Wallace’s table.

2.10.1. Using only the 50 most frequent words in Hamilton’s work (that is,
using only rows in the data for which HamiltonRank ≤ 50), draw the
appropriate summary graph, estimate the mean function (2.31), and
summarize your results.

2.10.2. Test the hypothesis that b = 1 against the two-sided alternative and
summarize.

2.10.3. Repeat Problem 2.10.1, but for words with rank of 75 or less, and
with rank less than 100. For larger number of words, Zipf’s law may
break down. Does that seem to happen with these data?

2.11. For the Ft. Collins snow fall data discussed in Example 1.1, test the hypoth-
esis that the slope is zero versus the alternative that it is not zero. Show that
the t-test of this hypothesis is the same as the F -test; that is, t2 = F .

2.12. Old Faithful Use the data from Problem 1.4, page 18.

2.12.1. Use simple linear regression methodology to obtain a prediction
equation for interval from duration. Summarize your results in a
way that might be useful for the nontechnical personnel who staff
the Old Faithful Visitor’s Center.

2.12.2. Construct a 95% confidence interval for

E(interval|duration = 250)
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2.12.3. An individual has just arrived at the end of an eruption that lasted 250
seconds. Give a 95% confidence interval for the time the individual
will have to wait for the next eruption.

2.12.4. Estimate the 0.90 quantile of the conditional distribution of

interval|(duration = 250)

assuming that the population is normally distributed.

2.13. Windmills Energy can be produced from wind using windmills. Choosing
a site for a wind farm, the location of the windmills, can be a multimillion
dollar gamble. If wind is inadequate at the site, then the energy produced
over the lifetime of the wind farm can be much less than the cost of building
and operation. Prediction of long-term wind speed at a candidate site can be
an important component in the decision to build or not to build. Since energy
produced varies as the square of the wind speed, even small errors can have
serious consequences.

The data in the file wm1.txt provides measurements that can be used
to help in the prediction process. Data were collected every six hours for
the year 2002, except that the month of May 2002 is missing. The values
Cspd are the calculated wind speeds in meters per second at a candidate
site for building a wind farm. These values were collected at tower erected
on the site. The values RSpd are wind speeds at a reference site, which is
a nearby location for which wind speeds have been recorded over a very
long time period. Airports sometimes serve as reference sites, but in this
case, the reference data comes from the National Center for Environmental
Modeling; these data are described at http://dss.ucar.edu/datasets/ds090.0/.
The reference is about 50 km south west of the candidate site. Both sites
are in the northern part of South Dakota. The data were provided by Mark
Ahlstrom and Rolf Miller of WindLogics.

2.13.1. Draw the scatterplot of the response CSpd versus the predictor RSpd.
Is the simple linear regression model plausible for these data?

2.13.2. Fit the simple regression of the response on the predictor, and present
the appropriate regression summaries.

2.13.3. Obtain a 95% prediction interval for CSpd at a time when RSpd =
7.4285.

2.13.4. For this problem, we revert to generic notation and let x = CSpd and
y = CSpd and let n be the number of cases used in the regression
(n = 1116 in the data we have used in this problem) and x and
SXX defined from these n observations. Suppose we want to make
predictions at m time points with values of wind speed x∗1, .., x∗m

that are different from the n cases used in constructing the prediction
equation. Show that (1) the average of the m predictions is equal to
the prediction taken at the average value x∗ of the m values of the
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predictor, and (2) using the first result, the standard error of the
average of m predictions is

se of average prediction =
√

σ̂ 2

m
+ σ̂ 2

(
1

n
+ (x∗ − x)2

SXX

)
(2.32)

If m is very large, then the first term in the square root is negligible,
and the standard error of average prediction is essentially the same
as the standard error of a fitted value at x∗.

2.13.5. For the period from January 1, 1948 to July 31, 2003, a total of
m = 62039 wind speed measurements are available at the reference
site, excluding the data from the year 2002. For these measurements,
the average wind speed was x∗ = 7.4285. Give a 95% prediction
interval on the long-term average wind speed at the candidate site.
This long-term average of the past is then taken as an estimate of
the long-term average of the future and can be used to help decide
if the candidate is a suitable site for a wind farm.


