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Preface 
 

This Instructor’s Manual accompanies the 3rd edition of the textbook Modern 
Physics (John Wiley & Sons, 2012).  It includes (1) explanatory material for each 
chapter; (2) suggested outside readings for instructor or student; (3) references to web 
sites or other generally available simulations of phenomena; (4) exercises that can be 
used in various active-engagement classroom strategies; (5) sample exam questions; and 
(6) complete solutions to the end-of-chapter problems in the text. 

Perhaps the greatest influence on my teaching in the time since the publication of 
the 2nd edition of this textbook (1996) has been the growth into maturity of the field of 
physics education research (PER).  Rather than indicating specific areas of 
misunderstanding, PER has demonstrated that student comprehension is enhanced by any 
of a number of interactive techniques that are designed to engage the students and make 
them active participants in the learning process.  The demonstrated learning 
improvements are robust and replicable, and they transcend differences among instructors 
and institutional types.  In my own trajectory in this process, I have been especially 
influenced by the work of Lillian McDermott and her group at the University of 
Washington1 and Eric Mazur at Harvard University.2  I am grateful to them not only for 
their contributions to PER but also for their friendship over the years. 

With the support of a Course, Curriculum, and Laboratory Improvement grant 
from the National Science Foundation3, I have developed and tested a set of exercises 
that can be used either in class as group activities or outside of class (for example, in a 
Peer Instruction mode following Mazur’s format or in a Just-In-Time Teaching4 mode).  
These exercises are included in this Instructor’s Manual.  I am grateful for the support of 
the National Science Foundation in enabling this project to be carried out.  Two Oregon 
State University graduate students assisted in the implementations of these reformed 
teaching methods: K. C. Walsh helped with producing several simulations and illustrative 
materials, with implementing an interactive web site, and with corresponding 
developments in the laboratory that accompanies our course, and Pornrat 
Wattanakasiwich undertook a PER project5 for her Ph.D. that involved the observation of 
student reasoning about probability, which lies at the heart of most topics in modern 
physics. 
 One of the major themes that has emerged from PER in the past two decades is 
that students can often learn successful algorithms for solving problems while lacking a 
fundamental understanding of the underlying concepts.  The importance of the in-class or 
pre-class exercises is to force students to consider these concepts and to apply them to 
diverse situations that often cannot be analyzed with an equation.  It is absolutely 
essential to devote class time to these exercises and to follow through with exam 
questions that require similar analysis and a similar articulation of the conceptual 
reasoning.  I strongly believe that conceptual understanding is a necessary prerequisite to 
successful problem solving.  In my own classes at Oregon State University I have 
repeatedly observed that improved conceptual understanding leads directly to improved 
problem-solving skills. 
 In training students to reason conceptually, it is necessary to force them to 
verbalize their reasons for selecting a particular answer to a conceptual or qualitative 
question, and you will learn much from listening to or reading their arguments.  A simple 
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multiple-choice conceptual question, either as a class exercise or a test problem, gives 
you insufficient insight into the students’ reasoning patterns unless you also ask them to 
justify their choice.  Even when I have teaching assistants grade the exams in my class, I 
always grade the conceptual questions myself, if only to gather insight into how students 
reason.  To save time I generally grade such questions with either full credit (correct 
choice of answer and more-or-less correct reasoning) or no credit (wrong choice or 
correct choice with incorrect reasoning).   

Here’s an example of why it is necessary to require students to provide conceptual 
arguments.  After a unit on the Schrödinger equation, I gave the following conceptual test 
question: Consider a particle in the first excited state of a one-dimensional infinite 
potential energy well that extends from x = 0 to x = L.  At what locations is the particle 
most likely to be found?  The students were required to state an answer and to give their 
reasoning.  One student drew a nice sketch of the probability density in the first excited 
state, correctly showing maxima at x = L/4 and x = 3L/4, and stated that those locations 
were the most likely ones at which to find the particle. Had I not required the reasoning, 
the student would have received full credit, and I would have been satisfied with the 
student’s understanding of the material.  However, in stating the reasoning, the student 
demonstrated what turned out to be a surprisingly common incorrect mode of reasoning.  
The student apparently confused the graph of probability density with a similar sort of 
roller-coaster potential energy diagram from introductory physics and reasoned as 
follows:  The particle is moving more slowly at the peaks of the distribution, so it spends 
more time at those locations and is thus more likely to be found there.  PER follow-up 
work indicated that the confusion was caused in part by combining probability 
distributions with energy level diagrams – students were unsure of what the ordinate 
represented.  As a result, I adopted a policy in class (and in this edition of the textbook) 
of never showing the wave functions or probability distributions on the same plot as the 
energy levels. 
 The overwhelming majority of PER work has concerned the introductory course, 
but the effective pedagogic techniques revealed by that research carry over directly into 
the modern physics course.  The collection of research directly linked to topics in modern 
physics is much smaller but no less revealing.  The University of Washington group has 
produced several papers impacting modern physics, including the understanding of 
interference and diffraction of particles,, time and simultaneity in special relativity, and 
the photoelectric effect (see the papers listed on their web site, ref. 1).  The PER group of 
Edward F. Redish at the University of Maryland has also been involved in studying the 
learning of quantum concepts, including the student’s prejudices from classical physics, 
probability, and conductivity.6 (Further work on the learning of quantum concepts has 
been carried out by the research groups of two of Redish’s Ph.D. students, Lei Bao at 
Ohio State University7 and Michael Wittmann at the University of Maine.8)  Dean 
Zollman’s group at Kansas State University has developed tutorials and visualizations to 
enhance the teaching of quantum concepts at many levels (from pre-college through 
advanced undergraduate).9  The physics education group at the University of Colorado, 
led by Noah Finkelstein and Carl Wieman, is actively pursuing several research areas 
involving modern physics and has produced numerous research papers as well as 
simulations on topics in modern physics.10  Others who have conducted research on the 
teaching of quantum mechanics and developed interactive or evaluative materials include 
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Chandralekha Singh at the University of Pittsburgh11 and Richard Robinett at 
Pennsylvania State University.12 

 
Classroom Materials for Active Engagement 

 
1.  Reading Quizzes 
 
I started developing the interactive classroom materials for modern physics after 
successfully introducing Eric Mazur’s Peer Instruction techniques into my calculus-based 
introductory course.  Daily reading quizzes were a part of Mazur’s original classroom 
strategy, but recently he has adopted a system that is more like Just-in-Time Teaching.  
Nevertheless, I have found the reading quizzes to work effectively in both my 
introductory and modern physics classes, and I have continued using them.  We use 
electronic classroom communication devices (“clickers”) to collect the responses, but in a 
small class paper quizzes work just as well.  Originally the quizzes were intended to get 
students to read the textbook before coming to class, and I have over the years collected 
evidence that the quizzes in fact accomplish that goal.  The quizzes are given just at the 
start of class, and I have found that they have two other salutary effects: (1) In the few 
minutes before the bell rings at the start of class, the students are not reading the campus 
newspaper or discussing last week’s football game – they are reading their physics books.  
(2) It takes no time at the start of class for me to focus the students’ attention or put them 
“in the mood” for physics; the quiz gets them settled into class and thinking about 
physics.  The multiple-choice quizzes must be very straightforward – no complex 
thinking or reasoning should be required, and if a student has done the assigned reading 
the quiz should be automatic and should take no more than a minute or so to read and 
answer.  Nearly all students get at least 80% of the quizzes correct, so ultimately they 
have little impact on the grade distribution.  The quizzes count only a few percent toward 
the student’s total grade, so even if they miss a few their grade is not affected. 
 
2.  Conceptual Questions 
 
I spend relatively little class time “lecturing” in the traditional sense.  I prefer an 
approach in which I prod and coach the students into learning and understanding the 
material.  The students’ reading of the textbook is an important component of this process 
– I do not see the need to repeat orally everything that is already written in the textbook.  
(Of course, there are some topics in any course that can be elucidated only by a well 
constructed and delivered lecture.  Separating those topics from those that the students 
can mostly grasp from reading the text and associated in-class follow-ups comes only 
from experience.  Feedback obtained from the results of the conceptual exercises and 
from student surveys is invaluable in this process.)  I usually take about 10 minutes at the 
beginning of class to summarize the important elements from that day’s reading.  In the 
process I list on the board new or unfamiliar words and important formulas.  These 
remain visible during the entire class so I can refer back to them as often as necessary.  I 
explain any special or restrictive circumstances that accompany the use of any equation.  
I do not do formal mathematical derivations in class – they cause a rapid drop-off in 
student attention.  However, I do discuss or explain mathematical processes or techniques 
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that might be unfamiliar to students.  I encourage students to e-mail me with questions 
about the reading before class, and at this point I answer those questions and any new 
questions that may puzzle the students. 
 The remainder of the class period consists of conceptual questions and worked 
examples.  I follow the Peer Instruction model for the conceptual questions: an individual 
answer with no discussion, then small group discussions, and finally a second individual 
answer. On my computer I can see the histograms of the responses using the clickers, and 
if there are fewer than 30% or more than 70% correct answers on the first response, the 
group discussions normally don’t provide much benefit so I abandon the question and 
move on to another.  During the group discussion time, I wander throughout the class 
listening to the comments and occasionally asking questions or giving a small nudge if I 
feel a particular group is moving in the wrong direction.  After the second response I ask 
a member of the class to give the answer and an explanation, and I will supplement the 
student’s explanation as necessary.  I generally do not show the histograms of the clicker 
responses to the class, neither upon the first response nor the second.  The daily quiz, 
summary, two conceptual questions or small group projects, and one or two worked 
examples will normally fill a 50-minute class period, with a few minutes at the end for 
recapitulation or additional questions.  I try to end each class period with a brief teaser 
regarding the next class. 
 Some conceptual questions listed for class discussion may appear similar to those 
given on exams.  I never use the same question for both class discussion and examination 
during any single term.  However, conceptual questions used during one term for 
examinations may find use for in-class discussions during a subsequent term. 
 
3.  JITT Warm-up Exercises 
 
Just-in-Time Teaching uses web-based “warm-up” exercises to assess the student’s prior 
knowledge and misconceptions.  The instructor can use the responses to the warm-up 
exercises to plan the content of the next class.  The reading quizzes and conceptual 
questions intended for in-class activities can in many cases be used equally well for JiTT 
warm-up exercises. 
 

Lecture Demonstrations 
 
Demonstrations are an important part of teaching introductory physics, and physics 
education research has shown that learning from the demos is enhanced if they are made 
interactive.  (For example, you can ask students to predict the response of the apparatus, 
discuss the predictions with a neighbor, and then to reconcile an incorrect prediction with 
the observation.)  Unfortunately, there are few demos that can be done in the modern 
physics classroom.  Instead, we must rely on simulations and animations.  There are 
many effective and interesting instructional software packages on the web that can be 
downloaded for your class, and you can make them available for the students to use 
outside of class.  I have listed in this Manual some of the modern physics software that I 
have used in my classes.  Of particular interest is the open-source collection of Physlets 
(physics applets) covering relativity and quantum physics produced by Mario Belloni, 
Wolfgang Christian, and Anne J. Cox.13 
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Sample Test Questions 
 
This Instructor’s Manual includes a selection of sample test questions.  A typical midterm 
exam in my Modern Physics class might include 4 multiple-choice questions (no 
reasoning arguments required) worth 20 points, 2 conceptual questions (another 20 
points) requiring the student to select an answer from among 2 or 3 possibilities and to 
give the reasons for that choice, and 3 numerical problems worth a total of 60 points. 
Students have 1 hour and 15 minutes to complete the exam. The final exam is about 1.5 
times the length of a midterm exam. 
 One point worth considering is the use of formula sheets during exams.  Over the 
years I have gone back and forth among many different exam systems: open book, closed 
book and notes, and closed book with a student-generated formula sheet.  I have found 
that in the open book format students seem to spend a lot of time leafing through the 
book looking for an essential formula or constant.  On the other hand, I have been 
amazed at how many equations a student can pack onto a single sheet of paper, and I 
often find myself wondering how much better such students would perform on exams if 
they spent as much study time working on practice problems as they do miniaturizing 
equations.  (Students often have difficulty distinguishing important formulas, which 
represent a fundamental concept or relationship, from mere equations which might be 
intermediate steps in solving a problem or deriving a formula.)  I have finally settled on a 
closed book format in which I supply the formula sheet with each exam.  I feel this has a 
number of advantages: (1) It equalizes the playing field.  (2) Students don’t need to waste 
time copying equations.  (3) The formula sheet, a copy of which I give to students at the 
beginning of the term, itself serves as a kind of study guide.  (4) Students use the formula 
sheet when working homework problems and studying for the exams, so they know what 
formulas are on the sheet and where they are located.  (5) I can be sure that the formulas 
that students need to work the exams are included on the formula sheet.  A sample copy 
of my formula sheet is included in this Instructor’s Manual. 
 
 This Instructor’s Manual is always a work in progress.  I would be grateful to 
receive corrections or suggestions from users. 
 
Kenneth S. Krane 
kranek@physics.oregonstate.edu 
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Chapter 1 
 
 This chapter presents a review of some topics from classical physics.  I have often 
heard from instructors using the book that “my students have already studied a year of 
introductory classical physics, so they don’t need the review.”  This review chapter gives 
the opportunity to present a number of concepts that I have found to cause difficulty for 
students and to collect those concepts where they are available for easy reference.  For 
example, all students should know that kinetic energy is 21

2 mv , but few are readily 
familiar with kinetic energy as 2 / 2p m , which is used more often in the text.  The 
expression connecting potential energy difference with potential difference for an electric 
charge q, U q VΔ = Δ , zips by in the blink of an eye in the introductory course and is 
rarely used there, while it is of fundamental importance to many experimental set-ups in 
modern physics and is used implicitly in almost every chapter.  Many introductory 
courses do not cover thermodynamics or statistical mechanics, so it is useful to “review” 
them in this introductory chapter. 
 I have observed students in my modern course occasionally struggling with 
problems involving linear momentum conservation, another of those classical concepts 
that resides in the introductory course. Although we physicists regard momentum 
conservation as a fundamental law on the same plane as energy conservation, the latter is 
frequently invoked throughout the introductory course while former appears and virtually 
disappears after a brief analysis of 2-body collisions. Moreover, some introductory texts 
present the equations for the final velocities in a one-dimensional elastic collision, 
leaving the student with little to do except plus numbers into the equations.  That is, 
students in the introductory course are rarely called upon to begin momentum 
conservation problems with initial finalp p= .  This puts them at a disadvantage in the 
application of momentum conservation to problems in modern physics, where many 
different forms of momentum may need to be treated in a single situation (for example, 
classical particles, relativistic particles, and photons).  Chapter 1 therefore contains a 
brief review of momentum conservation, including worked sample problems and end-of-
chapter exercises. 
 Placing classical statistical mechanics in Chapter 1 (as compared to its location in 
Chapter 10 in the 2nd edition) offers a number of advantages.  It permits the useful 
expression 3

av 2K kT= to be used throughout the text without additional explanation. The 
failure of classical statistical mechanics to account for the heat capacities of diatomic 
gases (hydrogen in particular) lays the groundwork for quantum physics.  It is especially 
helpful to introduce the Maxwell-Boltzmann distribution function early in the text, thus 
permitting applications such as the population of molecular rotational states in Chapter 9 
and clarifying references to “population inversion” in the discussion of the laser in 
Chapter 8.  Distribution functions in general are new topics for most students.  They may 
look like ordinary mathematical functions, but they are handled and interpreted quite 
differently.  Absent this introduction to a classical distribution function in Chapter 1, the 
students’ first exposure to a distribution function will be |ψ|2, which layers an additional 
level of confusion on top of the mathematical complications.  It is better to have a chance 
to cover some of the mathematical details at an earlier stage with a distribution function 
that is easier to interpret. 
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Suggestions for Additional Reading 

 
Some descriptive, historical, philosophical, and nonmathematical texts which give good 
background material and are great fun to read: 
A. Baker, Modern Physics and Anti-Physics (Addison-Wesley, 1970). 
F. Capra, The Tao of Physics (Shambhala Publications, 1975). 
K. Ford, Quantum Physics for Everyone (Harvard University Press, 2005). 
G. Gamow, Thirty Years that Shook Physics (Doubleday, 1966). 
R. March, Physics for Poets (McGraw-Hill, 1978). 
E. Segre, From X-Rays to Quarks: Modern Physicists and their Discoveries (Freeman, 1980). 
G. L. Trigg, Landmark Experiments in Twentieth Century Physics (Crane, Russak, 1975). 
F. A. Wolf, Taking the Quantum Leap (Harper & Row, 1989). 
G. Zukav, The Dancing Wu Li Masters, An Overview of the New Physics (Morrow, 1979). 
 
Gamow, Segre, and Trigg contributed directly to the development of modern physics and 
their books are written from a perspective that only those who were part of that 
development can offer. The books by Capra, Wolf, and Zukav offer controversial 
interpretations of quantum mechanics as connected to eastern mysticism, spiritualism, or 
consciousness. 
 
 

Materials for Active Engagement in the Classroom 
 
A.  Reading Quizzes 
  
1. In an ideal gas at temperature T, the average speed of the molecules: 

(1) increases as the square of the temperature. 
(2) increases linearly with the temperature. 
(3) increases as the square root of the temperature. 
(4) is independent of the temperature. 

 
2. The heat capacity of molecular hydrogen gas can take values of 3R/2, 5R/2, and 7R/2 

at different temperatures.  Which value is correct at low temperatures? 
 (1) 3R/2  (2) 5R/2  (3) 7R/2 
 
Answers  1. 3 2. 1 
 
 
B.  Conceptual and Discussion Questions 
 
1. Equal numbers of molecules of hydrogen gas (molecular mass = 2 u) and helium gas 

(molecular mass = 4 u) are in equilibrium in a container. 
 (a) What is the ratio of the average kinetic energy of a hydrogen molecule to the 

average kinetic energy of a helium molecule?   
 H He =/K K  (1) 4      (2) 2      (3) 2       (4) 1      (5) 1/ 2       (6) 1/2      (7) 1/4 
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(b) What is the ratio of the average speed of a hydrogen molecule to the average 
speed of a helium molecule? 

 H He =/v v  (1) 4      (2) 2      (3) 2       (4) 1      (5) 1/ 2       (6) 1/2      (7) 1/4 (C) 
(c) What is the ratio of the pressure exerted on the walls of the container by the 
hydrogen gas to the pressure exerted on the walls by the helium gas? 

 H He =/P P  (1) 4      (2) 2      (3) 2       (4) 1      (5) 1/ 2       (6) 1/2      (7) 1/4 
          
2. Containers 1 and 3 have volumes of 1 m3 and container 2 has a volume of 2 m3.  

Containers 1 and 2 contain helium gas, and container 3 contains neon gas. All three 
containers have a temperature of 300 K and a pressure of 1 atm. 

 
 
 
 
 
 
 
  
              1          2         3 
 

(a) Rank the average speeds of the molecules in the containers in order from largest to 
smallest. 

  (1) 1 > 2 > 3  (2) 1 = 2 > 3  (3) 1 = 2 = 3 
  (4) 3 > 1 > 2  (5) 3 > 1 = 2  (6) 2 > 1 > 3 
 (b) In which container is the average kinetic energy per molecule the largest? 
  (1) 1   (2) 2   (3) 3 
  (4) 1 and 2  (5) 1 and 3  (6) All the same 
 
3. (a) Consider diatomic nitrogen gas at room temperature, in which only the 

translational and rotational motions are possible.  Suppose that 100 J of energy is 
transferred to the gas at constant volume.  How much of this energy goes into the 
translational kinetic energy of the molecules? 

  (1) 20 J  (2) 40 J  (3) 50 J 
  (4) 60 J  (5) 80 J  (6) 100 J 

(b) Now suppose that the gas is at a higher temperature, so that vibrational motion is 
also possible.  Compared with the situation at room temperature, is the fraction of the 
added energy that goes into translational kinetic energy: 

  (1) smaller?  (2) the same?  (3) greater? 
 
Answers 1. (a) 4   (b) 3   (c) 4  2. (a) 2   (b) 6  3. (a) 4   (b) 1 
 
 

 

He He Ne 
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Sample Exam Questions 
 

A.  Multiple Choice 
 
1. A container holds gas molecules of mass m at a temperature T.  A small probe 

inserted into the container measures the value of the x component of the velocity of 
the molecules.  What is the average value of 21

2 xmv  for these molecules? 

  (a) 3
2 kT  (b) 1

2 kT  (c) kT  (d) 3kT  
2. A container holds N molecules of a diatomic gas at temperature T.  At this 

temperature, rotational and vibrational motions of the gas molecules are allowed.  A 
quantity of energy E is transferred to the gas.  What fraction of this added energy is 
responsible for increasing the temperature of the gas? 

  (a) All of the added energy          (b) 3/5          (c) 2/5          (d) 2/7           (e) 3/7 
3. Two identical containers with fixed volumes hold equal amounts of Ne gas and N2 gas 

at the same temperature of 1000 K.  Equal amounts of heat energy are then transferred 
to the two gases.  How do the final temperatures of the two gases compare? 

  (a) T(Ne) = T(N2) (b) T(Ne) > T(N2) (c) T(Ne) < T(N2) 
 
Answers  1. b 2. e 3. b 
 
 
B.  Conceptual 
 
1. A container of volume V holds an equilibrium mixture of N molecules of oxygen gas 

O2 (molecular mass = 32.0 u) and also 2N molecules of He gas (mass = 4.00 u).  Is 
the average molecular energy of O2 greater than, equal to, or less than the average 
molecular energy of He?  EXPLAIN YOUR ANSWER. 

2. Consider two containers of identical volumes.  Container 1 holds N molecules of He 
at temperature T.  Container 2 holds the same number N molecules of H2 at the same 
temperature T.  Is the average energy per molecule of He greater than, less than, or 
the same as the average energy per molecule of H2?  EXPLAIN YOUR ANSWER. 

 
Answers  1. equal to 2. the same as 
 
 
C.  Problems 
 
1. N molecules of a gas are confined in a container at temperature T.  A measuring 

device in the container can determine the number of molecules in a range of 0.002v at 
any speed v, that is, the number of molecules with speeds between 0.999v and 1.001v.  
When the device is set for molecules at the speed vrms, the result is N1.  When it is set 
for molecules at the speed 2vrms, the result is N2.  Find the value of N1/N2.  Your 
answer should be a pure number, involving no symbols or variables. 

2. A container holds 2.5 moles of helium (a gas with one atom per molecule; atomic mass = 
4.00 u; molar mass = 0.00400 kg) at a temperature of 342 K.  What fraction of the gas 
molecules has translational kinetic energies between 0.01480 eV and 0.01520 eV? 
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3. One mole of N2 gas (molecular mass = 28 u) is confined to a container at a 
temperature of 387 K.  At this temperature, you may assume that the molecules are 
free to both rotate and vibrate. 
(a) What fraction of the molecules has translational kinetic energies within ±1% of 
the average translational kinetic energy? 

 (b) Find the total internal energy of the gas. 
 
Answers:  1.  11.25 2.  0.0066 3.  (a) 0.0093   (b) 11.2 kJ 
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Problem Solutions 
 
 
1. (a) Conservation of momentum gives ,initial ,finalx xp p= , or 
 

H H,initial He He,initial H H,final He He,finalm v m v m v m v+ = +  
 
 Solving for He,finalv with He,initial 0v = , we obtain 
 

 

H H,initial H,final
He,final

He
27 7 6

6
27

( )

(1.674 10 kg)[1.1250 10 m/s ( 6.724 10 m/s)] 4.527 10 m/s
6.646 10 kg

m v v
v

m
−

−

−
=

× × − − ×
= = ×

×

 

 
(b) Kinetic energy is the only form of energy we need to consider in this elastic 
collision.  Conservation of energy then gives initial finalK K= , or 

 
2 2 2 21 1 1 1

H H,initial He He,initial H H,final He He,final2 2 2 2m v m v m v m v+ = +  
 
 Solving for He,finalv with He,initial 0v = , we obtain 
 

 
2 2

H H,initial H,final
He,final

He
27 7 2 6 2

6
27

( )

(1.674 10 kg)[(1.1250 10 m/s) ( 6.724 10 m/s) ] 4.527 10 m/s
6.646 10 kg

m v v
v

m
−

−

−
=

× × − − ×
= = ×

×
 

 
2. (a) Let the helium initially move in the x direction.  Then conservation of momentum 

gives: 
,initial ,final He He,initial He He,final He O O,final O

,initial ,final He He,final He O O,final O

: cos cos
: 0 sin sin

x x

y y

p p m v m v m v
p p m v m v

θ θ
θ θ

= = +
= = +  

 
From the second equation, 

 
27 6

He He,final He 6
O,final 26

O O

sin (6.6465 10 kg)(6.636 10 m/s)(sin84.7 ) 2.551 10 m/s
sin (2.6560 10 kg)[sin( 40.4 )]

m v
v

m
θ

θ

−

−

× × °
= − = − = ×

× − °
 

(b) From the first momentum equation, 
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He He,final He O O,final O

He,initial
He

27 6 26 6

27

6

cos cos

(6.6465 10 kg)(6.636 10 m/s)(cos 84.7 ) (2.6560 10 kg)(2.551 10 m/s)[cos( 40.4 )]
6.6465 10 kg

8.376 10 m/s

m v m v
v

m
θ θ

− −

−

+
=

× × ° + × × − °
=

×
= ×

 
3. (a) Using conservation of momentum for this one-dimensional situation, we have 

,initial ,finalx xp p= , or 

He He N N D D O Om v m v m v m v+ = +  
 
 Solving for Ov with N 0v = , we obtain 
 

6 7
5He He D D

O
O

(3.016 u)(6.346 10 m/s) (2.014 u)(1.531 10 m/s) 7.79 10 m/s
15.003 u

m v m vv
m
− × − ×

= = = − ×

 
 (b) The kinetic energies are: 
 

2 2 27 6 2 131 1 1
initial He He N N2 2 2

2 2 27 7 21 1 1
final D D O O2 2 2

27 5 21
2

(3.016 u)(1.6605 10 kg/u)(6.346 10 m/s) 1.008 10 J
(2.014 u)(1.6605 10 kg/u)(1.531 10 m/s)

(15.003 u)(1.6605 10 kg/u)(7.79 10 m/s) 3.995

K m v m v
K m v m v

− −

−

−

= + = × × = ×
= + = × ×

+ × × = × 1310 J−

 
 

As in Example 1.2, this is also a case in which nuclear energy turns into kinetic 
energy.  The gain in kinetic energy is exactly equal to the loss in nuclear energy.   

 
 
4. Let the two helium atoms move in opposite directions along the x axis with speeds 

1 2andv v .  Conservation of momentum along the x direction ( ,initial ,finalx xp p= ) gives 
  
 1 1 2 2 1 20 orm v m v v v= − =  
 
 The energy released is in the form of the total kinetic energy of the two helium atoms: 
  
 1 2 92.2 keVK K+ =  
 
 Because 1 2v v= , it follows that 1 2 46.1 keVK K= = , so 
  

 

3 19
61

27
1

6
2 1

2 2(46.1 10 eV)(1.602 10 J/eV) 1.49 10 m/s
(4.00 u)(1.6605 10 kg/u)

1.49 10 m/s

Kv
m

v v

−

−

× ×
= = = ×

×

= = ×

 



 8

5. (a) The kinetic energy of the electrons is 
 
 2 31 6 191 1

i i2 2 (9.11 10 kg)(1.76 10 m/s) 14.11 10 JK mv − −= = × × = ×  
 

In passing through a potential difference of f i 4.15 voltsV V VΔ = − = + , the potential 
energy of the electrons changes by 

 
 19 19( 1.602 10 C)( 4.15 V) 6.65 10 JU q V − −Δ = Δ = − × + = − ×  
 
 Conservation of energy gives i i f fK U K U+ = + , so 
 

 

19 19 19
f i i f i

19
6f

f 31

( ) 14.11 10 J 6.65 10 J 20.76 10 J

2 2(20.76 10 J) 2.13 10 m/s
9.11 10 kg

K K U U K U

Kv
m

− − −

−

−

= + − = −Δ = × + × = ×

×
= = = ×

×

 

 
 (b)  In this case ΔV = −4.15 volts, so ΔU = +6.65 × 10−19 J and thus 
 

19 19 19
f i

19
6f

f 31

14.11 10 J 6.65 10 J 7.46 10 J

2 2(7.46 10 J) 1.28 10 m/s
9.11 10 kg

K K U

Kv
m

− − −

−

−

= − Δ = × − × = ×

×
= = = ×

×

 

 
 
6. (a) 8 9(0.624)(2.997 10 m/s)(124 10 s) 23.2 mA Ax v t −Δ = Δ = × × =  

 (b) 8 9(0.624)(2.997 10 m/s)(159 10 s) 29.7 mB Bx v t −Δ = Δ = × × =  
 

7. With 35 C 308 KT = ° = and 51.22 atm 1.23 10 PaP = = × ,  
 

 
5

25 3
-23

1.23 10 Pa 2.89 10 atoms/m
(1.38 10 J/K)(308 K)

N P
V kT

×
= = = ×

×
 

 
 so the volume available to each atom is (2.89 × 1025/m3)−1 = 3.46 × 10−26 m3.  For a 

spherical atom, the volume would be 
  

 3 10 3 30 34 4
3 3 (0.710 10 m) 1.50 10 mRπ π − −= × = ×  

  
 The fraction is then 

 
30

5
26

1.50 10 4.34 10
3.46 10

−
−

−

×
= ×

×
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8. Differentiating N(E) from Equation 1.22, we obtain 

 

 1/ 2 / 1/ 2 /1
23/ 2

2 1 1
( )

E kT E kTdN N E e E e
dE kT kTπ

− − −⎡ ⎤⎛ ⎞= + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

 
To find the maximum, we set this function equal to zero: 
 

 1/ 2 /
3/ 2

2 1 1 0
( ) 2

E kTN EE e
kT kTπ

− − ⎛ ⎞− =⎜ ⎟
⎝ ⎠

 

 
Solving, we find the maximum occurs at 1

2E kT= .  Note that E = 0 and E = ∞ also 
satisfy the equation, but these solutions give minima rather than maxima. 

 
9. For this case 5(280 K)(8.617 10 eV/K) 0.0241eVkT −= × = .  We take dE as the width 

of the interval (0.012 eV) and E as its midpoint (0.306 eV).  Then 
 

1/ 2 (0.306 eV)/(0.0241eV) 6
3/ 2

2 1( ) (0.306 eV) (0.012 eV) 6.1 10
(0.0241eV)

NdN N E dE e N
π

− −= = = ×  

 
10. (a) From Eq. 1.31, 
  

 35 5
int 2 2 (2.37 moles)(8.315 J/mol K)(65.2 K) 3.21 10 JE nR TΔ = Δ = ⋅ = ×  

 
 (b) From Eq. 1.32, 
 

35 7
int 2 2 (2.37 moles)(8.315 J/mol K)(65.2 K) 4.50 10 JE nR TΔ = Δ = ⋅ = ×  

 
 (c) For both cases, the change in the translational part of the kinetic energy is given 

by Eq. 1.29: 
 

33 5
int 2 2 (2.37 moles)(8.315 J/mol K)(65.2 K) 1.93 10 JE nR TΔ = Δ = ⋅ = ×  

 
 

11. After the collision, m1 moves with speed 1v′  (in the y direction) and m2 with speed 2v′  
(at an angle θ with the x axis).  Conservation of energy then gives Einitial = Efinal: 

 
 2 2 2 2 2 21 1 1

1 1 1 1 2 2 1 22 2 2 or 3m v m v m v v v v′ ′ ′ ′= + = +  
 

Conservation of momentum gives: 
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,initial ,final 1 1 2 2 2

,initial ,final 1 1 2 2 1 2

: cos or 3 cos

: 0 sin or 3 sin
x x

y y

p p m v m v v v

p p m v m v v v

θ θ

θ θ

′ ′= = =

′ ′ ′ ′= = − =
 

 
 We first solve for the speeds by eliminating θ from these equations.  Squaring the two 

momentum equations and adding them, we obtain 2 2 2
1 29v v v′ ′+ = , and combining this 

result with the energy equation allows us to solve for the speeds: 
  
 1 2/ 2 and / 6v v v v′ ′= =  
 
 By substituting this value of 2v′  into the first momentum equation, we obtain 
  
 cos 2 / 3 or 35.3θ θ= = °  
 
 

12. The combined particle, with mass 1 2 3m m m m′ = + = , moves with speed v′ at an angle 
θ with respect to the x axis.  Conservation of momentum then gives: 

  

 
,initial ,final 1 1

4
,initial ,final 2 2 3

: cos or 3 cos

: sin or 3 sin
x x

y y

p p m v m v v v

p p m v m v v v

θ θ

θ θ

′ ′ ′= = =

′ ′ ′= = =
 

 
 We can first solve for θ by dividing these two equations to eliminate the unknown v′: 
  
 4

3tan or 53.1θ θ= = °  
 
 Now we can substitute this result into either of the momentum equations to find 
  
 5 / 9v v′ =  
 
 The kinetic energy lost is the difference between the initial and final kinetic energies: 
  
 2 2 2 2 2 2 25 261 1 1 1 1 2 1 1

initial final 1 1 2 22 2 2 2 2 3 2 9 27 2(2 )( ) (3 )( ) ( )K K m v m v m v mv m v m v mv′ ′− = + − = + − =  
 

The total initial kinetic energy is 2 2 2171 1 2 1
2 2 3 9 2(2 )( ) ( )mv m v mv+ = .  The loss in kinetic 

energy is then 26
51 51%= of the initial kinetic energy. 

 
13. (a)  Let 1v  represent the helium atom that moves in the +x direction, and let 2v  

represent the other helium atom (which might move either in the positive or negative 
x direction).  Then conservation of momentum ( ,initial ,finalx xp p= ) gives 

   
 1 1 2 2 1 2or 2mv m v m v v v v= + = +  
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 where 2v  may be positive or negative.   The initial velocity v is 
  

 
3 -19

5
-27

2 2(40.0 10 eV)(1.602 10 J/eV) 9.822 10 m/s
(8.00 u)(1.6605 10 kg/u)

Kv
m

× ×
= = = ×

×
 

  
The energy available to the two helium atoms after the decay is the initial kinetic 
energy of the beryllium atom plus the energy released in its decay: 
 

 2 2 2 21 1 1 1
1 1 2 2 1 1 2 12 2 2 292.2 keV (2 )K m v m v m v m v v+ = + = + −  

 
where the last substitution is made from the momentum equation.  Solving this 
quadratic equation for 1v , we obtain 6 6

1 2.47 10 m/s or 0.508 10 m/sv = × − × .  Because 
we identified m1 as the helium moving in the positive x direction, it is identified with 
the positive root and thus (because the two heliums are interchangeable in the 
equation) the second value represents the velocity of m2: 
 

 6 6
1 22.47 10 m/s, 0.508 10 m/sv v= × = − ×  

 
(b)  Suppose we were to travel in the positive x direction at a speed of v = 9.822× 105 
m/s, which is the original speed of the beryllium from part (a).  If we travel at the 
same speed as the beryllium, it appears to be at rest, so its initial momentum is zero in 
this frame of reference.  The two heliums then travel with equal speeds in opposite 
directions along the x axis.  Because they share the available energy equally, each 
helium has a kinetic energy of 46.1 keV and a speed of 62 / 1.49 10 m/sK m = × , as 
we found in Problem 4.  Let’s represent these velocities in this frame of reference 
as 6 6

1 21.49 10 m/s and 1.49 10 m/sv v′ ′= + × = − × .  Transforming back to the original 
frame, we find 
 

 
6 5 6

1 1

6 5 6
2 2

1.49 10 m/s 9.822 10 m/s 2.47 10 m/s

1.49 10 m/s 9.822 10 m/s 0.508 10 m/s

v v v

v v v

′= + = × + × = ×

′= + = − × + × = − ×
 

 
 

14. (a) Let the second helium move in a direction at an angle θ with the x axis.  (We’ll 
assume that the 30° angle for m1 is measured above the x axis, while the angle θ for 
m2 is measured below the x axis.   Then conservation of momentum gives: 

  
,initial ,final 1 1 2 2 1 2

,initial ,final 1 1 2 2 1 2

3: cos30 cos or 2 cos
2

1: 0 sin 30 sin or sin
2

x x

y y

p p mv m v m v v v v

p p m v m v v v

θ θ

θ θ

= = °+ − =

= = °− =

 

We can eliminate the angle θ by squaring and adding the two momentum equations: 
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 2 2 2

1 1 24 2 3v v vv v+ − =  
 

The kinetic energy given to the two heliums is equal to the original kinetic energy 
21

2 mv  of the beryllium plus the energy released in the decay: 
 

 
2 2 2 2 2 21 1 1 1 1

1 1 2 2 1 1 2 1 12 2 2 2 2

2 2 21 1
1 2 1 2 1 22 2

92.2 keV (4 2 3 )

( ) 3 (2 92.2 keV) 0

mv m v m v m v m v v vv

m m v m vv m v mv

+ = + = + + −

+ − + − − =
 

 
 Solving this quadratic equation gives 
  
 6 6

1 2.405 10 m/s, 0.321 10 m/sv = × − ×  
 

Based on the directions assumed in writing the momentum equations, only the 
positive root is meaningful.  We can substitute this value for 1v  into either the 
momentum or the energy equations to find 2v  and so our solution is: 
 

 6 6
1 22.41 10 m/s, 1.25 10 m/sv v= × = ×  

 
The angle θ can be found by substituting these values into either of the momentum 
equations, for example 

 
6

1 11
6

2

2.41 10 m/ssin sin 74.9
2 2(1.25 10 m/s)
v
v

θ − − ×
= = = °

×
 

  
 (b)  The original speed of the beryllium atom is 62 / 1.203 10 m/sv K m= = × .  If we 

were to view the experiment from a frame of reference moving at this velocity, the 
original beryllium atom would appear to be at rest.  In this frame of reference, in 
which the initial momentum is zero, the two helium atoms are emitted in opposite 
directions with equal speeds.  Each helium has a kinetic energy of 46.1 keV and a 
speed of 6

1 2 1.49 10 m/sv v′ ′= = × .  Let φ represent the angle that each of the helium 
atoms makes with the x axis in this frame of reference.  Then the relationship between 
the x components of the velocity of m1 in this frame of reference and the original 
frame of reference is 

 
 1 1cos30 cosv v vφ′° = +  
 

and similarly for the y components 
 

 1 1sin 30 sinv v φ′° =  
 
 We can divide these two equations to get 
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 1

1

coscot 30
sin

v v
v

φ
φ

′ +
° =

′
 

 
 which can be solved to give φ = 53.8°.  Using this value of φ, we can then find 

6
1 2.41 10 m/sv = × .   We can also write the velocity addition equations for m2: 

 
 2 2 2 2cos cos and sin sinv v v v vθ φ θ φ′ ′= − + = −  
 

which describe respectively the x and y components.  Solving as we did for m1, we 
find 6

2 1.25 10 m/s and 74.9v θ= × = ° . 
 

 
 

15. (a) With 3
2K kT= , 

 23 213 3
2 2 (1.38 10 J/K)(80 K) 1.66 10 J 0.0104 eVK k T − −Δ = Δ = × = × =  

 
 (b)  With U mgh= , 

 
21

27 2

1.66 10 J 2550 m
(40.0 u)(1.66 10 kg/u)(9.80 m/s )

Uh
mg

−

−

×
= = =

×
 

 
 

16. We take dE to be the width of this small interval: 0.04 0.02 0.02dE kT kT kT= − = , 
and we evaluate the distribution function at an energy equal to the midpoint of the 
interval (E = 0.03kT): 

 

 1/ 2 (0.03 ) / 3
3/ 2

( ) 2 1 (0.03 ) (0.02 ) 3.79 10
( )

kT kTdN N E dE kT e kT
N N kTπ

− −= = = ×  

 
 
17. If we represent the molecule as two atoms considered as point masses m separated by 

a distance 2R, the rotational inertia about one of the axes is 2 2 22xI mR mR mR′ = + = .  
On average, the rotational kinetic energy about any one axis is 1

2 kT , so 
21 1

2 2x xI kTω′ ′ = and 
 

23
12

2 27 9 2

(1.38 10 J/K)(300 K) 4.61 10 rad/s
2 2(15.995 u)(1.6605 10 kg/u)(0.0605 10 m)x

x

kT kT
I mR

ω
−

′ − −
′

×
= = = = ×

× ×
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Chapter 2 
 

 This chapter presents an introduction to the special theory of relativity.  It is 
written assuming that students have not yet seen a full presentation of then topic, even 
though they might have seen selected bits in their introductory courses. 
 I have chosen not to introduce the speed parameter /v cβ = and the Lorentz 
factor 2 1/ 2(1 )γ β −= − , as I have found from practical experience in teaching the subject 
that while they may render equations more compact they also can make an intimidating 
subject more obscure.  Students seem more comfortable with equations in which the 
velocities appear explicitly. 
 For similar reasons I have also chosen not to rely on spacetime (Minkowski) 
diagrams for the presentation of the space and time aspects of relativity, although in this 
edition I give a short introduction to their use in analyzing the twin paradox, where they 
do serve to enhance the presentation. 
 Any presentation of special relativity offers the instructor an opportunity to dwell 
on elucidating the new ways of thinking about space and time engendered by the theory.  
Some references to the resulting logical paradoxes are listed below.  In terms of 
applicability, however, the remainder of the textbook relies more heavily on the more 
straightforward applications of relativistic dynamics.  The Lorentz transformation, for 
example, does not reappear beyond this chapter, nor does reference to clock 
synchronization.  Relativistic time dilation and Doppler shift do appear occasionally.  
Approximately 2/3 of this chapter deals with aspects of space and time, while only 1/3 
deals with the more applicable issues of relativistic mass, momentum, and energy.  In 
terms of division of class time, I try to divide the two topics more like 50/50, being 
especially careful to make sure that students understand how to apply momentum and 
energy conservation to situations involving high-speed motion. 
 
 

Supplemental Materials 
 
Time dilation: 
http://faraday.physics.utoronto.ca/PVB/Harrison/SpecRel/Flash/TimeDilation.html 
http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/lightclock.swf 
Physlet Quantum Physics, Section 2.4 
 
Length contraction: 
http://faraday.physics.utoronto.ca/PVB/Harrison/SpecRel/Flash/LengthContract.html 
http://science.sbcc.edu/physics/flash/relativity/LengthContraction.html 
 
Simultaneity: 
http://faraday.physics.utoronto.ca/GeneralInterest/Harrison/SpecRel/Flash/Simultaneity.html 
http://science.sbcc.edu/physics/flash/relativity/Simultaniety.html 
 
Twin paradox: 
http://webphysics.davidson.edu/physletprob/ch10_modern/default.html 
Physlet Quantum Physics, Sections 2.8 and 3.6 

http://faraday.physics.utoronto.ca/PVB/Harrison/SpecRel/Flash/TimeDilation.html
http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/lightclock.swf
http://faraday.physics.utoronto.ca/PVB/Harrison/SpecRel/Flash/LengthContract.html
http://science.sbcc.edu/physics/flash/relativity/LengthContraction.html
http://faraday.physics.utoronto.ca/GeneralInterest/Harrison/SpecRel/Flash/Simultaneity.html
http://science.sbcc.edu/physics/flash/relativity/Simultaniety.html
http://webphysics.davidson.edu/physletprob/ch10_modern/default.html
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Other relativity paradoxes: 
The best collection I know is that of Taylor and Wheeler’s Spacetime Physics (2nd 
edition, 1992).  See especially space war (pp. 79-80), the rising manhole (p. 116), the 
pole and barn paradox (p. 166), and the detonator paradox (pp. 185-186). 
 
 

Suggestions for Additional Reading 
 
Special relativity has perhaps been the subject of more books for the nontechnical reader 
than any other area of science: 
L. Barnett, The Universe and Dr. Einstein (Time Inc., 1962). 
G. Gamow, Mr. Tompkins in Paperback (Cambridge University Press, 1967).   
L. Marder, Time and the Space Traveler (University of Pennsylvania Press, 1971). 
N. D. Mermin, It’s About Time: Understanding Einstein’s Relativity (Princeton  

University Press, 2009). 
B. Russell, The ABC of Relativity (New American Library, 1958). 
L. Sartori, Understanding Relativity: A Simplified Approach to Einstein’s Theories 
 (University of California Press, 1996). 
J. T. Schwartz, Relativity in Illustrations (New York University Press, 1962). 
R. Wolfson, Simply Einstein: Relativity Demystified (Norton, 2003). 

 
Gamow’s book takes us on a fanciful journey to a world where c is so small that effects 
of special relativity are commonplace.  Other introductions to relativity, more complete 
mathematically but not particularly more difficult than the present level, are the 
following: 
P. French, Special Relativity (Norton, 1968).  
H. C. Ohanian, Special Relativity: A Modern Introduction (Physics Curriculum and 
 Instruction, 2001) 
R. Resnick, Introduction to Special Relativity (Wiley, 1968).  
R. Resnick and D. Halliday, Basic Concepts in Relativity (Macmillan, 1992). 
 
For discussions of the appearance of objects traveling near the speed of light, see: 
V. T. Weisskopf, “The Visual Appearance of Rapidly Moving Objects,” Physics Today,  
 September 1960.  
I. Peterson, “Space-Time Odyssey,” Science News 137, 222 (April 14, 1990). 
 
Some other useful works are: 
L. B. Okun, “The Concept of Mass,” Physics Today, June 1989, p. 31.  
C. Swartz, “Reference Frames and Relativity,” The Physics Teacher, September 1989, p. 437. 
R. Baierlein, “Teaching E = mc2,” The Physics Teacher, March 1991, p. 170.  
 
Okun’s article explores the history of the “relativistic mass” concept and the connection 
between mass and rest energy.  The article by Swartz gives some mostly classical 
descriptions of inertial and noninertial reference frames.  Bayerlein’s article discusses 
some of the common misconceptions about mass and energy in special relativity. 
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Finally, a unique and delightful exploration of special relativity; elegant and witty, with 
all of the relativity paradoxes you could want, carefully explained and diagrammed, with 
many worked examples: 
E. F. Taylor and J. A. Wheeler, Spacetime Physics, 2nd ed. (Freeman, 1992). 
 
 

Materials for Active Engagement in the Classroom 
 
A.  Reading Quizzes 
 
1. Which of the following is not a consequence of the postulates of special relativity? 
  (1) Clocks in motion appear to run slow. 
  (2) Objects appear shortened in their direction of motion. 
  (3) The velocity addition law allows relative velocities greater than the speed of  
   light under certain circumstances. 
  (4) The Doppler change in frequency does not distinguish between motion of the 
   source and motion of the observer. 
 
2. If two observers are in relative motion (one moves relative to the other) with constant 

relative velocity, in which of the following measurements would they obtain identical 
values? 

  (1)  The velocity of an electron. (2)  The speed of a light beam. 
  (3)  The ticking rate of a clock. (4)  The volume of a box. 
 
3. Consider 2 observers moving toward each other at high speed.  One fires a light beam 

toward the other at speed c.  What speed v does the second observer measure for the 
light beam? 

  (1) v > c  (2) v = c  (3) v < c 
  (4) Depends on magnitude and direction of relative speed of observers. 
 
4. Observer O fires a particle at velocity v in the positive y direction.  Observer O′, who 

is moving relative to O with velocity u in the x direction, measures the y component 
of the velocity of the same particle and obtains v′.  How does the y component 
measured by O′ compare with the y component measured by O? 

  (1) v′ > v (2) v′ = v (3) v′ < v (4) v′ = 0 
 
5. Two clocks in the reference frame of observer 1 are exactly synchronized.  For other 

observers in motion relative to observer 1, the clocks are: 
  (1) synchronized for all observers. 
  (2) not synchronized, but all observers will agree which of the two clocks is ahead. 
  (3) not synchronized, but different observers may not agree which of the clocks is 
    ahead. 
  (4) either synchronized or not synchronized, depending on the locations of the 
   observers. 
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6. In Tom's frame of reference, two events A and B take place at different locations 
along the x axis  but are observed by Tom to be simultaneous.  Which of the 
following statements is true?  (Consider observer motion along the x axis only.) 

  (1) No observers moving relative to Tom will find A and B to be simultaneous,  
   but some may see A before B and others B before A. 
  (2) No observers moving relative to Tom will find A and B to be simultaneous, 
   but they all will observe events A and B in the same order. 
  (3) All observers moving relative to Tom will also perceive A and B to be  
   simultaneous. 
  (4) Some observers moving relative to Tom will find A and B to be simultaneous, 
   while others will not. 
 
7. The quantity mc2 represents: 
  (1) the kinetic energy of a particle moving at speed c. 
  (2) the energy of a particle of mass m at rest. 
  (3) the total relativistic energy of a particle of mass m moving at speed c. 
  (4) the maximum possible energy of a moving particle of mass m. 
 
8. Which one of the following statements is true? 
  (1) The laws of conservation of energy and momentum are not valid in special  
   relativity. 
  (2) The laws of conservation of energy and momentum are valid in special  
   relativity only if we use definitions of energy and momentum that differ  
   from those of classical physics. 
  (3) According to special relativity, particles have energy only if they are in motion. 
  (4) mc2 represents the energy of a  particle moving at speed c. 
 
Answers 1. 3 2. 2 3. 2 4. 3 5. 3 6. 1 7. 2 8. 2 
 
 
B.  Conceptual and Discussion Questions 
 
1. Rockets A and C move with identical speeds in opposite directions relative to B, who 

is at rest in this frame of reference.  A, B, and C all carry identical clocks. 
 
 
 
 According to A: 
  (1) B's clock and C's clock run at identical slow rates. 
  (2) B's clock runs fast and C's clock runs slow. 
  (3) B's clock runs slow and C's clock runs even slower. 
  (4) B's clock runs fast and C's clock runs even faster. 
  (5) B's clock runs slow and C's clock runs fast. 
 

v v B A C 
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2. Rockets A and C move with identical speeds v = 0.8c in opposite directions relative 
to B, who is at rest in this frame of reference.  A stick of length L0 carried by A has 
length 0.6L0 according to B.  What is the length of the stick according to C? 

 
 
 
  (1) L0  (2) 0.6L0 (3) 0.36L0 (4) 0.22L0 
 
3. Three identical triplets Larry, Moe, and Curly are testing the predictions of special 

relativity.  Larry and Moe set out on round-trip journeys from Earth to distant stars.  
Larry's star is 12 light-years from Earth (as measured in the Earth reference frame), 
and he travels the round trip at a speed of 0.6c.  Moe's star is 16 light-years from 
Earth (also measured in the Earth frame), and he travels the round trip at a speed of 
0.8c.  Both journeys thus take a total of 40 years, as measured by Curly who stays 
home on Earth.  When Larry and Moe return, how do the ages of the triplets 
compare? 

  (1) Larry = Moe > Curly      (2) Moe < Larry < Curly      (3) Larry < Moe < Curly 
  (4) Larry = Moe = Curly      (5) Moe > Larry > Curly      (6) Larry = Moe < Curly 
 
4. A star (assumed to be at rest relative to the Earth) is 100 light-years from Earth.  (A 

light-year is the distance light travels in one year.)  An astronaut sets out from Earth 
on a journey to the star at a constant speed of 0.98c.   (Note: At v = 0.98c, 

2 21 / 0.20v c− = ) 
(a) How long does it take for a light signal from Earth to reach the star, according to 
an observer on Earth? 

  (1)  100 y    (2)  98 y    (3)  102 y    (4) 20 y    
(b) How long does it take for the astronaut to travel from Earth to the star, according 
to an observer on Earth? 

  (1)  100 y    (2)  98 y    (3)  102 y    (4) 20 y    
 (c) According to the astronaut, what is the distance from Earth to the star? 
  (1) 100 l.y.   (2) 102 l.y.   (3) 20 l.y.   (4) 98 l.y.   

(d) According to the astronaut, how long does it take for the astronaut to travel from 
Earth to the star? 

  (1) 100 y    (2) 102 y    (3) 20 y    (4) 20.4 y    
(e) Light takes 100 years to travel from Earth to the star, but the astronaut makes the 
trip in 20.4 y.  Does that mean that the astronaut travels faster than light? 

  (1)  Yes (2) No  (3) Maybe 
 
5. Two clocks, equidistant from O and at rest in the reference frame of O, start running 

when they receive a flash of light from the light source midway between them.  
According to O, the two clocks are synchronized (they start at the same time).  
According to O′, who is moving with velocity u relative to O, clock 2 starts ahead of 
clock 1 by an amount Δt′. 

vv B A C 
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(a) Suppose there is a second observer O2 at rest with respect to O at a location 
midway between the light source and clock 2.  Will O2 conclude that the two clocks 
are synchronized? 

  (1) Yes  (2) No  (3) Depends on location of O2. 
(b) Suppose there is a second observer 2O′  moving with the same speed u as O′.  At 
the instant shown, 2O′  is slightly to the left of clock 1.  What will 2O′  conclude about 
the synchronization of the two clocks? 

  (1) Clock 1 starts ahead of clock 2. 
   (2) Clock 2 starts ahead of clock 1 by a time that is smaller than Δt′. 
   (3) Clock 2 starts ahead of clock 1 by a time that is larger than Δt′. 
  (4) Clock 2 starts ahead of clock 1 by a time that is equal to Δt′. 
 
6. In a certain collision process, particles A and B collide, and after the collision 

particles C and D appear (C and D are different from A and B).  Which quantities are 
conserved in this collision? 

  (1) only linear momentum  (2) only total relativistic energy 
  (3) only mass and linear momentum (4) only linear momentum and kinetic energy 
  (5) only mass and kinetic energy  
  (6) only linear momentum and total relativistic energy 
  (7) only linear momentum, kinetic energy, and total relativistic energy 
  (8) linear momentum, kinetic energy, total relativistic energy, and mass 
 
7. Two particles each of mass m are moving at speed v = 0.866c directly toward one 

another.  After the head-on collision, all that remains is a new particle of mass M.  
What is the mass of this new particle?   (Note: At v = 0.866c, 2 21 / 0.50v c− = ) 

 (1)  M = 2m        (2)  M = 4m        (3)  M = m        (4)  M = 1.5m        (5) None of these 
 
Answers 1. 3 2. 4 3. 2 4. 1,3,3,4,2 5. 1,4    6. 6      7. 2 
 

2O′ u 
O′

u

2OO

 



 20

Sample Exam Questions 
 
A.  Multiple Choice 
 
1. A certain particle at rest lives for 1.25 ns.  When the particle moves through the 

laboratory at a speed of 0.91c, what is its lifetime according to an observer in the 
laboratory? 

  (a) 0.52 ns (b) 3.01 ns (c) 1.25 ns (d) 7.27 ns 
 
2. Two electrons, each with a kinetic energy of 2.52 MeV, collide head-on to produce a 

new particle.  What is the rest energy of this new particle? 
  (a) Zero (b) 5.04 MeV  (c) 6.06 MeV  (d) 9.54 MeV 
 
3. A newly created particle is moving through the laboratory at a speed of 0.765c.  It is 

observed to live for a time of 0.231 μs before decaying.  What would be the lifetime 
of this particle according to someone who is moving along with the particle at a speed 
of 0.765c? 

  (a) 0.358 μs  (b) 0.149 μs  (c) 0.096 μs  (d) 0.557 μs 
 
4. Tom fires a laser beam in the y direction of his coordinate system.  Mary is moving 

relative to Tom in the x direction with a speed of 0.65c. According to Mary, what is 
the y component of the speed of Tom’s laser beam? 

  (a) c  (b) 0.89c (c) 0.76c (d) 0.35c 
 
5. In Albert’s frame of reference, there is a stick of length LA at rest along the x axis.  

Betty is traveling along the x axis in either the positive or negative direction.  In 
Betty’s frame of reference, the length of the stick is: 

  (a) always equal to LA           (b) always greater than LA          (c) always less than LA 
  (d) either greater than LA or less than LA, depending on the direction of Betty’s motion 
 
6. Sitting in a chair in his laboratory, Albert observes a particle to be created at one 

instant moving at a speed of 0.65c and to decay after a time interval of 5.75 ns.  Betty 
is moving along with the particle at a speed of 0.65c.  What is the time between the 
creation and decay of the particle according to Betty? 

  (a) 2.43 ns (b) 4.37 ns (c) 5.75 ns (d) 7.57 ns (e) 9.64 ns 
 
7. What is the momentum of a proton that has a kinetic energy of 750 MeV? 
  (a) 750 MeV/c           (b) 1186 MeV/c           (c) 1404 MeV/c           (d) 1688 MeV/c 
 
8. A certain particle at rest has a lifetime of 2.52 μs.  What must be the speed of the 

particle for its lifetime to be observed to be 8.34 μs? 
  (a) 0.953c (b) 0.302c (c) 0.913c (d) 0.985c  (e) None of these 
 

9. A particle moving through the laboratory at a speed of v = 0.878c is observed to have 
a lifetime of 2.43 ns.  If that particle had been produced at rest in the laboratory, what 
would its lifetime be? 
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  (a) 2.43 ns (b) 5.08 ns (c) 1.16 ns (d) 1.89 ns (e) 3.79 ns 
 

10. An unstable particle moving through the laboratory leaves a track of length 3.52 mm.  
The particle is moving at a speed of 0.943c.  How long would the particle’s track 
appear to someone moving with the particle? 

  (a) 1.17 mm      (b) 10.6 mm      (c) 3.52 mm       (d) 0.390 mm      (e) None of these 
 

11. Tom observes a blinking light bulb that is at rest in his reference frame.  Mary is 
moving relative to Tom at a speed of 0.735c.  According to Mary, the light blinks on 
for a time interval of 5.25 ms.  What is the blinking interval according to Tom? 

  (a) 7.74 ms      (b) 1.48 ms      (c) 3.56 ms      (d) 10.76 ms      (e) 5.25 ms 
 

12. A distant star is 4.8 light-years (l.y.) from Earth, according to observers on Earth.  An 
astronaut will travel to the star in a spaceship at a speed of 0.925c.  During the 
voyage, what distance does the astronaut measure between the Earth and the star? 

  (a) 4.8 l.y. (b) 12.6 l.y. (c) 4.4 l.y. (d) 1.8 l.y. (e) 7.6 l.y. 
 

13. An astronaut was told on Earth in 1993 that she had exactly 15 years to live.  Starting 
in 1993 she made a journey at a speed of 0.80c to a distant star and back.  What is the 
latest New Years Day she will be able to celebrate on Earth?    

  (a) 2002   (b) 2008   (c) 2011   (d) 2018   (e) 2032 
 

14. A particle of mass m moving with speed v collides with a particle of mass 2m at rest.  
The particles merge to form only a new particle of mass M that moves with speed V.  
How is M related to m? 

  (a) M < 3m  (b) M = 3m  (c) M > 3m 
 

15. A particle of mass M at rest decays into two identical particles each of mass m = 
0.100M that travel in opposite directions.  What is the speed of these particles? 

  (a) 0.98c  (b) 0.96c (c) 0.50c (d) 0.32c 
 
16. A certain particle has a proper lifetime of 1.00 × 10-8 s.  It is moving through the 

laboratory at a speed of 0.85c.  What distance does the particle travel in the 
laboratory? 

  (a) 2.55 m          (b) 4.84 m          (c) 1.34 m          (d) 9.19 m 
 

17. Two particles of the same mass m and moving at the same speed v collide head-on and 
combine to produce only a new particle of mass M.  Which of the following is 
correct? 

  (a) M = 2m  (b) M < 2m  (c) M > 2m 
 

18. Two particles each of mass m are each moving at a speed of 0.707c directly toward 
one another.  After the head-on collision, all that remains is a new particle of mass M.  
What is the mass of this new particle? 

  (a) 0.5m        (b) 1.0m        (c) 2.0m        (d) 2.8m        (e) 4.0m 
 



 22

Answers 1. b 2. c 3. b 4. c 5. c 6. b 7. c 8. a 9. c 
   10. a 11. c 12. d 13. d 14. c 15. a 16. b 17. c 18. d 
 
 
B.  Conceptual 
 
1. A particle of mass m is moving at a speed of v = 0.80c. It collides with and merges 

with another particle of the same mass m that is initially at rest.  Is the mass of the 
resulting combined particle greater than, less than, or equal to 2m?  EXPLAIN 
YOUR ANSWER. 

 
2. A particle of mass M moving with velocity v decays into two photons of energies E1 

and E2.  Is the rest energy of the original particle equal to E1 + E2, less than E1 + E2, 
or greater than E1 + E2?  EXPLAIN YOUR ANSWER. 

 
3. Particle X1 of mass m1 is moving with speed v1 > 0.5c and kinetic energy K1.  It 

collides with particle X2 of mass m2 that is initially at rest.  The collision produces 
ONLY a new particle X3 of mass m3 and kinetic energy K3 (that is, X1 + X2 → X3).  Is 
m3 greater than, less than, or equal to the sum of m1 + m2?  EXPLAIN YOUR 
ANSWER. 

 
4. Two spaceships A and B are approaching a space station from opposite directions.  

An observer on the station reports that both ships are approaching the station at the 
same speed v.  According to classical physics, each ship would see the other moving 
at a speed of 2v.  According to special relativity, does each ship sees the other moving 
at a speed that is greater than 2v, less than 2v, or equal to 2v?  EXPLAIN YOUR 
ANSWER. 

 
Answers 1. greater than 2. less than 3. greater than 4. less than 
 
 
C.  Problems 
 
1. A photon of energy 1.52 MeV collides with and scatters from an electron that is 

initially at rest.  After the collision, the electron is observed to be moving with a speed 
of 0.937c at an angle of 64.1° relative to its original direction. 

 (a) Find the energy of the scattered photon. 
 (b) Find the direction of the scattered electron. 
 
2. A particle of rest energy 547 MeV is moving in the x direction with a speed of 0.624c.  

It decays into 2 new particles, each of rest energy 106 MeV.  One of the decay particles 
has a kinetic energy of 301 MeV and is moving at an angle of 38o relative to the x axis.   

 (a) What is the kinetic energy of the second decay particle?   
 (b) What is the direction of the second decay particle relative to the x axis? 
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3. Particle A has a rest energy of 1192 MeV and is moving 

through the laboratory in the positive x direction with a 
speed of 0.45c.  It decays into particle B (rest energy = 
1116 MeV) and a photon; particle A disappears in the 
decay process.  Particle B moves at a speed of 0.40c at an 
angle of 3.03o with the positive x axis.  The photon moves 
in a direction at an angle θ with the positive x axis. 

 (a) Find the energy of the photon. 
(b) Find the angle θ. 

 
4. A star is at rest relative to the Earth and at a distance of 1500 light-years.  An 

astronaut wishes to travel from Earth to the star and age no more than 30 years during 
the entire round-trip journey. 
(a) Assuming that the journey is made at constant speed and that the acceleration and 
deceleration intervals are very short compared with the rest of the journey, what speed 
is necessary for the trip? 

 (b) According to the astronaut, what is the distance from Earth to the star? 
(c) According to someone on Earth, how long does it take the astronaut to make the 
round trip? 
(d) It takes light 1500 years to travel from Earth to the star, but the astronaut makes 
the trip in 15 years.  Does this mean that the astronaut travels faster than light?  
Explain your answer. 

 
5. A particle of mass M is moving in the positive x direction with speed v.  It 

spontaneously decays into 2 photons, with the original particle disappearing in the 
process.  One photon has energy 233 MeV and moves in the positive x direction, and 
the other photon has energy 21 MeV and moves in the negative x direction. 

 (a) What is the total relativistic energy of the particle before its decay? 
 (b) What is the momentum of the particle before its decay? 
 (c) Find the mass M of the particle, in units of MeV/c2. 
 (d) Find the original speed of the particle, expressed as a fraction of the speed of light. 
 
6. In your laboratory, you observe particle A of mass 498 MeV/c2 to be moving in the 

positive x direction with a speed of 0.462c.  It decays into 2 particles B and C, each of 
mass 140 MeV/c2.  Particle B moves in the negative x direction with a speed of 0.591c. 

 (a) Find the relativistic total energy of each of the three particles. 
 (b) Find the velocity (magnitude and direction) of particle C. 

(c) Your laboratory supervisor is watching this experiment from a spaceship that is 
moving in the positive x direction with a speed of 0.635c.  What values would your 
supervisor measure for the velocities of particles B and C? 

 
7. The pi meson is a particle that has a rest energy of 135 MeV.  It decays into two 

gamma-ray photons and no other particles.  (The pi meson disappears after the decay.)  
Suppose a pi meson is moving through the laboratory in the positive x direction at a 
speed of v = 0.90c.  One of the decay photons moves in the positive x direction and 

3.03o

θ 

photon 

0.40c B 

A 

0.45c 
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the other in the negative x direction.    
(a) What are the applicable conservation laws in this problem?  Set up the equations for 
each applicable conservation law using the numerical values for this problem.  THE 
ONLY UNKNOWNS IN YOUR EQUATIONS SHOULD BE THE ENERGIES OF 
THE TWO PHOTONS.  Other than the unknown energies, all numerical factors in each 
equation should be evaluated.  You don’t need to solve the equations, just set them up. 
(b) One of the photons has energy 15.5 MeV.  Find the energy of the other photon, 
and show how all applicable conservation laws are satisfied. 
(c) What are the speeds of the two photons in the rest frame of the pi meson and in the 
laboratory frame of reference?  Explain your answer. 

 
8. A pi meson (rest energy = 140 MeV) is moving through the laboratory with a kinetic 

energy of 405 MeV.   
 (a) Expressed as a fraction of the speed of light, what is the speed of the pi meson?   
 (b) At this speed, how long a track will the pi meson leave in the laboratory during its 

lifetime?  The lifetime of a pi meson at rest in the laboratory is 1.0 × 10-16 s.   
 
9. A particle of rest energy 266.0 MeV is moving, according to a laboratory observer, in 

the x direction with a speed of 0.720c.  It decays into 2 photons.  Photon 1 has an 
energy of 260.6 MeV and travels at an angle of 26.2° with the direction of the motion 
of the original particle.   

 (a) Find the energy and direction of photon 2 in this frame of reference. 
(b) A second observer is moving at a speed of 0.720c, so that the original particle 
appears to be at rest.  According to this observer, what are the energy and direction of 
travel of photon 1? 

 
10. A pi meson (m = 135 MeV/c2) moving through the laboratory at a speed of v = 0.998c 

decays into two gamma-ray photons. The two photons have equal energies Eγ  and 
move at equal angles θ on opposite sides of the direction of motion of the original pi 
meson.  Find Eγ and θ.  

 
11. Space pilot Jim measures the length of his space ship to be 2450 m.  The ship drifts at 

a constant velocity of 0.740c past a space platform from which Mary (at rest on the 
platform) observes its passage. 

 (a) What is the length of the space ship according to Mary? 
(b) According to Mary, what is the time interval between the bow (front) of the ship 
passing her and the stern (rear) of the ship passing her? 
(c) According to Jim, what is the time interval between the bow (front) of the ship 
passing Mary and the stern (rear) of the ship passing her? 

 
Answers  
  1. (a) 0.568 MeV    (b) -21.9° 
  2. (a) 187 MeV   (b) 62.3° 
  3. (a)117 MeV   (b) 12.7° 
  4. (a) 0.99995c   (b) 15 l.y.    (c) 3000.15 y    (d) no 
  5. (a) 254 MeV    (b) 212 MeV/c    (c) 140 MeV/c2    (d) 0.834c 
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  6. (a) 561.5 MeV, 173.6 MeV, 388.0 MeV    (b) +0.933c    (c) -0.891c, +0.731c 
  7. (a) E1 + E2 = 310 MeV, E1 − E2 = 279 MeV    (b) 294.5 MeV    (c) c 
  8. (a) 0.966c    (b) 0.113 μm 
  9: (a) 122.7 MeV, -69.7°    (b) 133.0 MeV, 60.0° 
  10. 1069 MeV, 3.6° 
  11. (a) 1650 m    (b) 7.4 μs    (c) 11 μs 
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Problem Solultions 
 
 
1. Your air speed in still air is (750 km)/(3.14 h) = 238.8 km/h.  With the nose of the 

plane pointed 22° west of north, you would be traveling at this speed in that direction 
if there were no wind.  With the wind blowing, you are actually traveling due north at 
an effective speed of (750 km)/(4.32 h) = 173.6 km/h.  The wind must therefore have 
a north-south component of (238.8 km/h)(cos 22°) − 173.6 km/h = 47.8 km/h (toward 
the south) and an east-west component of (238.8 km/h)(sin 22°) = 89.5 km/h (toward 
the east).  The wind speed is thus 

 
 2 2(47.8 km/h) (89.5 km/h) 101 km/hv = + =  
 
 in a direction that makes an angle of 
 

 1 89.5 km/htan 62 east of south
47.8 km/h

θ −= = °  

 
 

2. (a)   95 m 179 s
0.53 m/s

=  

 

 (b)  95 m 54 s
1.24 m/s + 0.53 m/s

=  

 

 (c)  95 m 49 s
2.48 m/s 0.53 m/s

=
−

 

 

3. up down across 2 2 2 2

2 1 12
1 / 1 /

Lt t t t
c u c u c

⎡ ⎤
Δ = + − = −⎢ ⎥− −⎣ ⎦

 

 
Assuming u c , 
 

 

2 2

2 2 2 22 2

2 2 2

2 2 3

3 8 3 15
4

1 1 11 and 1
1 / 21 /

2 11 1
2

(3 10 m/s) (2 10 s) 7 10 m/s
11 m

u u
u c c cu c

L u u Lut
c c c c

c tu
L

−

≅ + ≅ +
− −

⎡ ⎤⎛ ⎞
Δ ≅ + − + =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

Δ × ×
= = = ×
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4. (a) u = 100 km/h = 28 m/s c 
 

 

2 2
2 2 15

2 8 2

2 2 15
0 0

15 15 6 8
0 0

1 1 (28 m/s)1 / 1 1 1 4.3 10
2 2 (3 10 m/s)

1 / (1 4.3 10 )

(4.3 10 ) (4.3 10 )(5 10 m) 2.1 10 m

uu c
c

L L u c L

L L L

−

−

− − −

− ≅ − = − = − ×
×

= − = − ×

− = × = × × = ×

 

 
  This is less than the wavelength of light. 
 

 (b) 150 0
0152 2
(1 4.3 10 )

1 4.3 101 /
t tt t

u c
−

−

Δ Δ
Δ = ≅ ≅ Δ + ×

− ×−
 

 
 15 15 10

0 0(4.3 10 ) (4.3 10 )(50 h)(3600 s/h) 7.7 10 st t t− − −Δ − Δ = × Δ = × = ×  
 
5. With 1

02L L= , the length contraction formula gives 2 21
0 02 1 /L L u c= − , so 

 
 83 / 4 2.6 10 m/su c= = ×  
 
6. The astronaut must travel 400 light-years at a speed close to the speed of light and 

must age only 10 years.  To an Earth-bound observer, the trip takes about Δt = 
400 years, but this is a dilated time interval; in the astronaut’s frame of reference, 
the elapsed time is the proper time interval Δt0 of 10 years.  Thus, with 

2 2
0 / 1 /t t u cΔ = Δ − , 

 

22

22 2

2

10 years 10400 years or 1
4001 /

1 (10 / 400) 0.9997

u
cu c

u c c

⎛ ⎞= − = ⎜ ⎟
⎝ ⎠−

= − =

 

 
 

7. (a) 0
2 2 2

100.0 ns 357.1 ns
1 / 1 (0.960)

tt
u c
Δ

Δ = = =
− −

 

  
(b) 8 90.960(3.00 10 m/s)(357.1 10 s) 103 md v t −= Δ = × × =  
 
(c) 8 9

0 0 0.960(3.00 10 m/s)(100.0 10 s) 28.8 md v t −= Δ = × × =  
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8. In the laboratory reference frame, the lifetime is 
 

 11
8

1.25 mm 0.418 10 s
0.995(3.00 10 m/s)

dt
u

−Δ = = = ×
×

 

 
 2 2 11 2 13

0 1 / (0.418 10 s) 1 (0.995) 4.17 10 st t u c − −Δ = Δ − = × − = ×  
 
 
9. From Equation 2.15, 1 /( )t L v uΔ = − , and from Equation 2.16, 2 /( )t L c uΔ = + . 
 

 0
1 2 2 21 /

tL Lt t t
v u c u u c

Δ
Δ = Δ + Δ = + =

− + −
 

  
 With 2 2

0 0 0 0/ / and 1 /t L v L c L L u c′Δ = + = − , this becomes 
   

 2 2

1 1 1 1 1
1 /v u c u u c v c

⎛ ⎞+ = +⎜ ⎟′− + − ⎝ ⎠
 

  
 Solving for v, we obtain 
  

 21 /
v uv
v u c
′ +

=
′+

 

 
10. Let ship A represent observer O, and let observer O′ be on Earth.  Then v′ = 0.851c 

and u = −0.753c, and so 
  

 2

0.851 0.753 0.978
1 / 1 (0.851)(0.753)

v u c cv c
v u c
′ + +

= = =
′+ +

 

  
 If now ship B represents observer O, then v′ = −0.753c and u = −0.851c. 
  

 2

0.753 0.851 0.978
1 / 1 ( 0.753)( 0.851)

v u c cv c
v u c
′ + − −

= = = −
′+ + − −

 

 
11. Let O′ be the observer on Earth, and let O be the observer on ship B.  Then v′ = 

0.826c and u = −0.635c. 
  

 2

0.826 0.635 0.402
1 / 1 (0.826)( 0.635)

v u c cv c
v u c
′ + −

= = =
′+ + −
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12. (a) With (1 / ) /(1 / )f f u c u c′ = − +  and /c fλ = , we obtain 
  

 1 / 1 /or 366 nm 122 nm
1 / 1 /

u c u c
u c u c

λ λ + +′ = =
− −

 

 
 Solving, we get u/c = 0.800 or u = 2.40 × 108 m/s. 
 

 (b) 1 / 1 0.800122 nm 40.7 nm
1 / 1 0.800

u c
u c

λ λ − −′ = = =
+ +

 

 
 

13. With (1 / ) /(1 / )f f u c u c′ = − +  and /c fλ = , we obtain 
   

22 21 / 650 nm 1.397
1 / 550 nm

u c f
u c f

λ
λ

′ ⎛ ⎞⎛ ⎞− ⎛ ⎞= = = =⎜ ⎟⎜ ⎟ ⎜ ⎟′+ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 
 Solving, u/c = 0.166 or u = 5. 0 × 107 m/s. 
 

 

14.    
2

2 2 2 2

/and
1 / 1 /
dx u dt dt u dx cdx dt

u c u c
− −′ ′= =
− −

 

   

2 2 2

/
/ 1 ( / ) / 1 /

x
x

x

v udx dx u dt dx dt uv
dt dt u dx c u dx dt c uv c
′ −− −′ = = = =
′ − − −

 

 
 With dz dz′ = , we obtain 
  

 
2 22 2

2 22 2 2

1 /( / ) 1 /
1 / 1 /( / ) / 1 /

z
z

x x

v u cdz dz dz dt u cv
dt uv c uv cdt u dx c u c

′ −−′ = = = =
′ − −− −

 

 
 
15. For the light beam, observer O measures vx = 0, vy = c.  Observer O′ measures 
  

 
2 2

2 2
2 2

1 /
0 and 1 /

1 / 1 /
yx

x y
x x

v u cv uv u u v c u c
uv c uv c

−−′ ′= = − = − = = −
− −

 

 According to O′, the speed of the light beam is 
  
 2 2 2 2 2 2( ) ( ) (1 / )x yv v v u c u c c′ ′ ′= + = + − =  
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16. O measures times t1 and t2 for the beginning and end of the interval, while O′ 
measures 1t′  and 2t′ .  Using Equation 2.23d, 

   

 
2 2

1 2
1 22 2 2 2

/ /and
1 / 1 /

t ux c t ux ct t
u c u c

− −′ ′= =
− −

 

  
 The same coordinate x appears in both expressions, because the bulb is at rest 

according to O (so Δt is the proper time interval).  Subtracting these two equations, 
we obtain 

 

 2 1
2 1 2 2 2 2

or
1 / 1 /

t t tt t t
u c u c
− Δ′ ′ ′− = Δ =

− −
 

 
17. Suppose observer O is moving with the K meson; to this observer, the K meson 

appears to be at rest, and so O measures v1 = +0.828c and v2 = −0.828c for the two π 
mesons.  Observer O′ is moving relative to O with a velocity u = −0.486c; in the 
reference frame of O′, observer O and the K meson are moving in the positive x 
direction with a velocity of 0.486c.  We can use the Lorentz velocity transformation 
(Equation 2.28a) to find the velocities of the two π mesons according to O′: 

 

 

1
1 2

1

2
2 2

2

0.828 ( 0.486 ) 0.937
1 / 1 (0.828)( 0.486)

0.828 ( 0.486 ) 0.572
1 / 1 ( 0.828)( 0.486)

v u c cv c
v u c

v u c cv c
v u c

− + − −′ = = = +
− − −

− − − −′ = = = −
− − − −

 

 
18. Imagine the rod to be the hypotenuse of a right triangle having sides Lx along the x 

axis and Ly in the y direction.  According to O′, the length Lx is shortened by the 
length contraction, but the length Ly is unaffected because it is perpendicular to the 
direction of motion.  For O, tan 31y xL L= ° , while for O′, tan 46y xL L′ ′= °where 

2 21 /x xL L u c′ = − . 
Because y yL L′= , we have 

 2 2tan 31 tan 46 1 / tan 46x x xL L L u c′° = ° = − °  
  
 or 
 
 1 (tan 31 ) /(tan 46 ) 0.648u c c= − ° ° =  
 
 

19. (a)  Changing the coordinates in Equation 2.23d to intervals, we have 
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2

2 2 2

/ 0.465 s (0.762)(53.4 m) /(300 m/ s) 0.508 s
1 / 1 (0.762)

t u x ct
u c

μ μ μΔ − Δ −′Δ = = = +
− −

 

  
(b) Changing coordinates to intervals in Equation 2.23a, 
 

2 2 2

53.4 m (0.762 300 m/ s)(0.465 s) 81.5 m
1 / 1 (0.762)
x u tx

u c
μ μΔ − Δ − ×′Δ = = = −

− −
 

 
The negative sign of x′Δ  indicates that O′ finds the two events in inverted locations 
compared with O; for example, if O finds that event 1 occurs at a smaller x coordinate 
than event 2, then O′ finds that event 1 occurs at a larger x′ coordinate than event 2.  
That is, O sees event 1 to the left of event 2, while O′ sees event 1 to the right of 
event 2.  Note than both observers find the time interval to be positive – event 2 
occurs after event 1 to both observers. 

 
 
20. From Equation 2.23d written in terms of intervals, for O′ to find Δt′ = 0, it must be 

true that 2( / ) 0t u c xΔ − Δ = .  Thus 
 

 
2 (300 m/ s)(0.138 s 0.124 s) 0.32

(23.6 m 10.4 m)
c tu c c

x
μ μ μΔ −

= = = +
Δ −

 

 
21. (a) In your frame of reference on the plane, the distance between Los Angeles and 

Boston is contracted to 2(3000 mi) 1 [(600 mi/h)/(1000 mi/h)] 2400 mi− = , and you 
measure the time for the trip to be (2400 mi)/(600 mi/h) = 4 h.  So your watch reads 
2:00 pm. 
(b) According to an observer on the ground, the trip takes (3000 mi)/(600 mi/h) = 5 h.  
So the airport clock reads 3:00 pm. 
(c) The return trip again takes 4 h as measured in your frame of reference and 5 h 
from the frame of reference of the ground.  When you depart Boston, the airport clock 
reads 10:00 am but your watch reads 9:00 am, so when you land in Los Angeles, your 
watch reads 1:00 pm and the airport clock reads 3:00 pm. 
 This analysis duplicates the result of the twin paradox: If your twin wearing an 
identical watch had remained at the Los Angeles airport, all observers would agree 
that you were 2 hours younger than your twin. 

 
22. (a)  On the outward journey at 0.60c, the rate at which signals are received is 

  

 1 / 1 0.60(1/ year) 0.5 / year
1 / 1 0.60

u cf f
u c

− −′ = = =
+ +

 

  
 (b)  During the return journey, 
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 1 / 1 0.60(1/ year) 2 / year
1 / 1 0.60

u cf f
u c

+ +′ = = =
− −

 

 
(c)  According to Casper, Amelia’s outward journey lasts 16 years (it is 16 years 
before he sees her arrive at the planet), during which he receives 8 signals (0.5/year × 
16 years).  Her total journey lasts 20 Earth years, so the return journey lasts 4 Earth 
years, during which he receives 8 signals (2/year × 4 years).  Thus Casper receives 16 
signals (8 during the outward trip and 8 during the return) and concludes that his 
sister has aged 16 years. 

 
23. According to Amelia, the distance to the star is shortened to  

 
 2 2 2

0 1 / (8.0 l-y) 1 (0.80) 4.8 l-yL L v c= − = − =  
 

and at a speed of 0.80c Amelia’s travel time to the star is (4.8 l-y)/(0.80c) = 6.0 y.  
The total round-trip time in Amelia’s frame of reference is 12 years, so she is 8 years 
younger than her brother when she returns. 

 
24. (a)

 

0 5 10 
Distance (light-years) 

5 

10 

15 

20 

 Time  
(years) 

Amelia’s worldline Casper’s 
worldline 



 33

  
  (b) 16 years 
   
  (c) 4 years 

25. (a)   
2 2

2 21 2
i 1i 2i 1 22 2 2 2

1i 2i1 / 1 /
m c m cK K K m c m c
v c v c

′ ′ ′= + = − + −
′ ′− −

 

  
2 2

2 2 2

2 2

(2 ) (2 ) 0.512
1 0 1 (0.750)
m c mcm c mc mc= − + − =
− −

 

 

2 2
2 21 2

f 1f 2f 1 22 2 2 2
1f 2f

2 2
2 2 2

2 2

1 / 1 /
(2 ) (2 ) 0.512

1 ( 0.585) 1 (0.294)

m c m cK K K m c m c
v c v c

m c mcm c mc mc

′ ′ ′= + = − + −
′ ′− −

= − + − =
− − −

 

 (b)   
2 2

2 21 2
i 1i 2i 1 22 2 2 2

1i 2i1 / 1 /
m c m cK K K m c m c

v c v c
= + = − + −

− −
 

2 2
2 2 2

2 2

(2 ) (2 ) 0.458
1 (0.550) 1 ( 0.340)

m c mcm c mc mc= − + − =
− − −

 

2 2
2 21 2

f 1f 2f 1 22 2 2 2
1f 2f

2 2
2 2 2

2 2

1 / 1 /
(2 ) (2 ) 0.458

1 ( 0.051) 1 (0.727)

m c m cK K K m c m c
v c v c

m c mcm c mc mc

= + = − + −
− −

= − + − =
− − −

 

 

26.  
2

2 2 2 2 2

1 ( )( / ) 1 (938.3 MeV)(0.756) 1084 MeV/
1 / 1 / 1 (0.756)

mv mc v cp c
c cv c v c

= = = =
− − −

 

  
2

2

2 2 2

938.3 MeV 938.3 MeV 495 MeV
1 / 1 (0.756)

mcK mc
v c

= − = − =
− −

 

  
2 495 MeV 938.3 MeV 1433 MeVE K mc= + = + =  

 
27. 2 1.264 MeV 0.511 MeV 1.775 MeVE K mc= + = + =  
   
  Solving Equation 2.36 for v, we obtain 
 

 
2 22 0.511 MeV1 1 0.958

1.775 MeV
mcv c c c
E

⎛ ⎞ ⎛ ⎞
= − = − =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
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28.  dp dxW F dx dx dp v dp
dt dt

= = = =∫ ∫ ∫ ∫  

  

2

2 2 2 20 0 0

2 2
2 2 2 2 2

2 2 2 2

1 / 1 /

1 /
1 / 1 /

v v vmv mvK v dp pv p dv dv
v c v c

mv mcmc v c mc mc
v c v c

= = − = −
− −

= + − − = −
− −

∫ ∫ ∫
 

 
29. For what range of velocities is 21

2 0.01K mv K− ≤ ?  At the upper limit of this range, 
where 21

2 0.01K mv K− = , we have 

   
2

2 21
22 2

0.99 0.99
1 /

mcK mc mv
v c

⎛ ⎞
= − =⎜ ⎟

−⎝ ⎠
 

  

  With 2 2/x v c= ,  
2

1
2

1 1 0.50.99 1 which gives 1
1 0.991

x x
xx

⎛ ⎞ ⎛ ⎞− = = +⎜ ⎟⎜ ⎟ −− ⎝ ⎠⎝ ⎠
 

  
 2 21 (1 )(1 1.0101 0.2551 ) or 0.2551 0.7550 0.0101 0x x x x x= − + + + − =  
 

 Solving using the quadratic formula, we find x = 0.0133 or -2.97.  Only the positive 
solution is physically meaningful, so 

 
 0.0133 0.115v c c= =  
 

 That is, for speeds smaller that 0.115c, the classical kinetic energy is accurate to within 1%.  
For a different approach to that same type of calculation, see Problem 32. 

 
 

30. As in Problem 29, let us now find the lower limit on the momentum such that 
  
 2 2 2 2 2 2( ) ( ) 0.01 ( ) ( )pc mc pc pc mc+ − ≤ +  
  
 From the lower limit, we obtain 2 2 20.99 ( ) ( )pc mc pc+ = , which can be written as 
  

 
2 4

2 2
2( ) or 7.02

1/(0.99) 1
m cpc pc mc= =

−
 

 
 With 2 2 2/ 1 / 7.02mvc v c mc− = , we obtain 
  

 
2 2

2 249.25 1 or / 0.990v v v c
c c

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
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 Whenever / 0.990v c ≥ , the expression E = pc will be accurate to within 1%. 

 

31. 
2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2
2 2 2 2 2 2

( ) 1 / /( ) ( ) ( ) ( )
1 / 1 / 1 /

mc v c v c m c vE mc mc mc pc
v c v c v c

⎛ ⎞− +
= = = + = +⎜ ⎟− − −⎝ ⎠

 

2 2 2( ) ( )E mc pc= +  
  

32. With 
22 2

2 22 2

1 1 ( 1/ 2)( 3 / 2)1
2 21 /

v v
c cv c

⎛ ⎞− −
= + + +⎜ ⎟

− ⎝ ⎠
, we have 

  

 
2 4 2

2 2 21
22 4 22 2

1 1 3 31 1 1 1
2 8 41 /

v v vK mc mc mv
c c cv c

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − = + + + − = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

− ⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 
so 21

2K mv≅  when v c .  The correction term is 2 23 / 4v c , which has the value 
0.01% when 2 23 / 4 0.0001v c = , or 
 

 0.0001(4 / 3) 0.0115v c c= =  
 
 

33. (a) With E = 1125 MeV and pc = 817 MeV, Equation 2.39 gives 
 

 2 2 2 2 2
2 2

1 1( ) (1125 MeV) (817 MeV) 773 MeV/m E pc c
c c

= − = − =  

 
  (b)  2 2 2 2 2( ) ( ) (953 MeV) (773 MeV) 1227 MeVE pc mc= + = + =  

 
 
34.  

 

2 2
f i f i f i

2 2

2 2 2 2 2 2
f i

( ) ( )

0.511 MeV 0.511 MeV 0.361 MeV
1 / 1 / 1 (0.91) 1 (0.81)

K K E mc E mc E E

mc mc
v c v c

− = − − − = −

= − = − =
− − − −

 

 
 
35.   (1g)(0.40 J/g K)(100 K) 40 JE mc TΔ = Δ = ⋅ =  

 16
2 16 2 2

40 J 4.4 10 kg
9 10 m /s

Em
c

−Δ
Δ = = = ×

×
 

 
36. (a)  At such low speed, the classical approximation is valid. 
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2

2 2 -4 2 31 1 1
2 2 22 (0.511 MeV)(1.00 10 ) 2.56 10 eVvK mv mc

c
−⎛ ⎞

= = = × = ×⎜ ⎟
⎝ ⎠

 

 
 (b)  The relativistic expression gives 
  

 2

2 2 2

1 11 0.511 MeV 1 25.6 eV
1 / 1 (0.01)

K mc
v c

⎛ ⎞⎛ ⎞
⎜ ⎟= − = − =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

  
For this speed, the classical expression 21

2 mv  also gives 25.6 MeV, so the two 
calculations agree to at least three significant figures.  (Actually they agree to four 
significant figures, but not to five.) 

 
 (c)  The relativistic expression gives 

 

 2

2 2 2

1 11 0.511 MeV 1 24.7 keV
1 / 1 (0.3)

K mc
v c

⎛ ⎞⎛ ⎞
⎜ ⎟= − = − =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

  
For this speed, the classical expression gives 23.0 keV, which is incorrect by about 
7%. 

 

(d)   2

2 2 2

1 11 0.511 MeV 1 10.9 MeV
1 / 1 (0.999)

K mc
v c

⎛ ⎞⎛ ⎞
⎜ ⎟= − = − =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

 
37. Because the electrons and the protons have charges of the same magnitude e, after 

acceleration through a potential difference of magnitude ΔV = 10.0 million volts (a 
positive difference for the electron, a negative difference for the proton), each loses 
potential energy of U e VΔ = − Δ = -10.0 MeV and thus each acquires a kinetic energy 
of K = +10.0 MeV.  For the electron, E = K + mc2 = 10.0 MeV + 0.511 MeV = 10.5 
MeV.  The momentum is then 

 

 2 2 2 2 21 1( ) (10.5 MeV) (0.511 MeV) 10.5 MeV/p E mc c
c c

= − = − =  

 
 The classical formula 2 / 2K p m=  gives 

  
 22 2(0.511 MeV/ )(10.0 MeV) 3.20 MeV/p mK c c= = =  
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which is far from the correct result (a discrepancy we would expect for such highly 
relativistic electrons).  For the protons, E = K + mc2 = 10.0 MeV + 938.3 MeV= 948.3 
MeV, and the momentum is 

 

 2 2 2 2 21 1( ) (948.3 MeV) (938.3 MeV) 137.4 MeV/p E mc c
c c

= − = − =  

 
 The classical formula gives 
  
 22 2(938.3 MeV/ )(10.0 MeV) 137.0 MeV/p mK c c= = =  
 

The difference between the classical and relativistic formulas appears only in the 
fourth significant figure. 

 
 

38. The mass of a uranium atom is about (235 u)(1.66 × 10−27 kg/u) = 3.90 × 10−25 kg, so 
1.00 kg contains 1.00 kg/3.90 × 10−25 kg = 2.56 × 1024 atoms.  The total energy 
released is  

  
 24 26(200 MeV/atom)(2.56 10 atoms) 5.12 10 MeVEΔ = × = ×  
 

 and the change in mass is 
  

 
26 13

4
2 8 2

(5.12 10 MeV)(1.602 10 J/MeV) 9.14 10 kg
(2.998 10 MeV)

Em
c

−
−Δ × ×

Δ = = = ×
×

 

  
 About one gram of matter vanishes for each kilogram that is fissioned! 
 

 
39. (a)   

2
2

p p2 2 2

139.6 MeV 938.3 MeV 1268.1 MeV
1 / 1 (0.906)

m cE E E m c
v c
π

π= + = + = + =
− −

 

 (b) 
2

p 2 2 2 2 2

1 ( / ) 1 (139.6 MeV)(0.906) 298.8 MeV /
1 / 1 / 1 (0.906)

m v m c v cp p p c
c cv c v c

π π
π= + = = = =

− − −
 

 (c) 
 2 2 2 2 2( ) (1268.1 MeV) (298.8 MeV) 1232 MeVmc E pc= − = − =  

 
 

40. Before the collision, the total relativistic energy of each electron is 
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2

e
e 2 2 2

0.511 MeV 114.3 MeV
1 / 1 (0.99999)

m cE
v c

= = =
− −

 

 
 The total energy in the collision is therefore 2×114.3 MeV = 228.6 MeV.  The total 

momentum is zero before the collision, because the two particles moves with equal 
and opposite velocities and have equal masses.  After the collision, the total 
momentum is still zero, so we know that the two muons must move with equal speeds 
and thus have equal energies.  The total energy of each muon is then 114.3 MeV and 
its kinetic energy is 

 
 2 114.3 MeV 105.7 MeV 8.6 MeVK E m cμ μ μ= − = − =  
   
 

41. The two protons have equal (and opposite) momenta and thus equal energies E1 and 
E2.  The new particle is created with zero momentum (at rest), so its total energy is 
equal to its rest energy Mc2 = 9700 MeV.  Conservation of energy then gives 

2 2
1 2 1 2, so / 2E E Mc E E Mc+ = = = . 

  

 

2 2
p

1 2 2

2 222
p

2 2

21 /

2( ) 2(938.3 MeV)1 0.0374 so 0.981
9700 MeV

m c McE
v c

m cv v c
c Mc

= =
−

⎡ ⎤ ⎡ ⎤
− = = = =⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦

 

 
 

42. For particle 1, moving in the positive x direction, 
 

 
2

1 1
2 2 2 2 2

1 1

282 MeV 140 MeV 422 MeV
( ) (422 MeV) (140 MeV) 398 MeV

E K mc
cp E mc

= + = + =

= − = − = +
 

 
 For particle 2, moving in the negative x direction, 
 

2
2 2

2 2 2 2 2
2 2

25 MeV 140 MeV 165 MeV
( ) (165 MeV) (140 MeV) 87 MeV

E K mc
cp E mc

= + = + =

= − − = − − = −
 

 
The net final momentum is f 1 2 398 MeV/ 87 MeV/ 311 MeV/p p p c c c= + = − = , and 
the net final energy is f 1 2 422 MeV 165 MeV 587 MeVE E E= + = + = .  Because of 
the conservation laws, these must be equal to the momentum and the energy of the 
initial particle, so that its rest energy is then 
 

 2 2 2 2 2
i i i( ) (587 MeV) (311 MeV) 498 MeVm c E cp= − = − =  
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 Solving Equation 2.36 for v, we obtain 
 

 
2 22 498 MeV1 1 0.529

587 MeV
mcv c c c
E

⎛ ⎞ ⎛ ⎞
= − = − =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 

43.         
2

2 2

( )( / )
1 /

mc v cpc
v c

=
−

 

 
2 2 2

2 2 2

0
2 2 2

( / ) (3094 MeV/105.7 MeV) 0.99942
1 ( / ) 1 (3094 MeV/105.7 MeV)

2.198 s 64.38 s
1 / 1- (0.99942)

v pc mc
c pc mc

tt
v c

μ μ

= = =
+ +

Δ
Δ = = =

−

 

  
 

44.   2 2 2 2 2 2 2 2 2 2( ) ( ) ( ) ( ) 2pc E mc K mc mc K Kmc= − = + − = +  

 
2 2

2
2 22 so

2 2
K p Kp Km m
c K c

= + = +  

 
45. (a)  If the astronaut travels at speed v for a distance d = 200 ly in the reference frame 

of Earth, then in the spacecraft reference frame the distance to the star is 
2 21 /d v c− and the time T for the astronaut to reach the star (which must be 10 years 

in the spacecraft frame of reference) is 
 

 
2 2

2 21 / or 1 /d v c T v cTT v c v
v d c d
−

= − = =  

 
 Solving, we find 

 2 2

1 1 0.99875
1 ( / ) 1 (10 / 200)

v c c c
Tc d

= = =
+ +

 

 
(b) According to an observer on Earth, the astronaut travels a total distance of 400 ly 
at a speed of 0.99875c, so the total time for the round trip is (400 ly)/0.99875c 400.5 
y. 

 
 

46.   
2 2

1 1 2 2
1 22 2 2 2

( / ) ( / )and
1 / 1 /

t u c x t u c xt t
u c u c

− −′ ′= =
− −
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2

2 1 2 1
2 1 2 2 2 2

( / )( )
1 / 1 /

t t u c x xt t
u c u c
− −′ ′− = −

− −
 

  
In the O frame of reference, the “cause” can travel to the “effect” with a speed 
that can be no greater than c; that is, 2 1 2 1( ) /( )x x t t c− − ≤ , or 2 1 2 1( ) ( )x x c t t− ≤ − . 
Substituting for 2 1( )x x−  in the second term, we obtain 
 

 2 1 2 1
2 1 2 12 2 2 2 2 2

( / )( ) 1 /( ) 0
1 / 1 / 1 /

t t u c t t u ct t t t
u c u c u c
− − −′ ′− ≥ − = − ≥

− − −
 

 
47. For the red flash, 1 1 1 10 at 0, so 0 and 0.x t x t′ ′= = = =   For the blue flash, which occurs 

at 
   2 23.26 km and 7.63 s,x t μ= =  

  

 

2 2
2 2 2 2

2
2 2

2 2 2 2

3.26 km (0.625 )(7.63 s) 2.34 km
1 / 1 (0.625)

( / ) 7.63 s (0.625 / 0.300 km/ s)(3.26 km) 1.07 s
1 / 1 (0.625)

x ut cx
u c

t u c xt
u c

μ

μ μ μ

− −′ = = =
− −

− −′ = = =
− −

 

 
  

48. Let O′ be the observer on ship A, traveling at u = 0.60c relative to the space station.  
Observer O on the space station measures vBx = 0, vBy = 0.50c for ship B.  According 
to O′, 

2

2 2 2

2

2 2 2 2

1 1

0 0.60 0.60
1 / 1 0

1 / 0.50 1 (0.60)
0.40

1 / 1 0

( ) ( ) ( 0.60 ) (0.40 ) 0.72

0.40tan tan 146
0.60

Bx
Bx

Bx

By
By

Bx

B Bx By

By
B

Bx

v u cv c
v u c

v u c c
v c

v u c

v v v c c c

v c
v c

θ − −

− −′ = = = −
− −

− −
′ = = =

− −

′ ′ ′= + = − + =

′
= = = °

′ −

 

 For ship C, O measures vCx = −0.50c, vCy = 0. 
  

 

0.50 0.60 0.85 , 0
1 ( 0.50)(0.60)

0.85 at 180 (negative  direction)

Cx Cy

C C

c cv c v

v c xθ

− −′ ′= = − =
− −

′ = = °
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 For ship D, O measures ( 0.50 )sin 45 0.35 , 0.35Dx Dyv c c v c= − ° = − = + . 
 

 

2

2 2 1

0.35 1 (0.60)0.35 0.60 0.79 , 0.23
1 ( 0.35)(0.60) 1 ( 0.35)(0.60)

0.23( 0.79 ) (0.23 ) 0.82 at tan 164
0.79

Dx Dy

D D

cc cv c v c

cv c c c
c

θ −

−− −′ ′= = − = =
− − − −

′ = − + = = = °
−

 

 

49. (a)  
2

2 2 2

( / ) 1.52 s (0.563/ 300 m/ s)(524 m) 0.648 s
1 / 1 (0.563)

t u c xt
u c

μ μ μ− −′ = = =
− −

 

  

 (b) 
2 2 2

524 m (0.563 300 m/ s)(1.52 s) 335 m
1 / 1 (0.563)

x utx
u c

μ μ− − ×′ = = =
− −

 

 
 
50. (a) O′ measures 2( ) /(1 / ),v v u uv c′ = − − and according to O′ the energy is 

  

 
2 2

2 2 22 21 / 1 ( ) /(1 / /

mc mcE
v c v u uv c c

′ = =
′− ⎡ ⎤− − −⎣ ⎦

 

  
  and the momentum is 

  

 
2

2 2 22 2

( ) /(1 / )
1 / 1 ( ) /(1 / ) /

mv m v u uv cp
v c v u uv c c

′ − −′ = =
′− ⎡ ⎤− − −⎣ ⎦

 

  (b)  
22 4 2 2

2 2 2 4
22 2

( ) /(1 / )
( )

1 ( ) /(1 / ) /

m c m v u uv c
E p c m c

v u uv c c

⎡ ⎤− − −⎣ ⎦′ ′− = =
⎡ ⎤− − −⎣ ⎦

 

  
 The quantity 2 2( )E p c′ ′−  is equal to m2c4 in every frame of reference, no matter what 

its relative speed u.  In other words, every observer measures the same value for the 
rest energy or mass.   
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51. (a) O′ measures 2 2, 1 / .x yv u v v u c′ ′= − = −  

  

 

2 2 2 2 2 2 2

2 2

2 2 2 2 2 2 2 2 4

2 2 2 2 2

2 2 2 2 2 2 2 2 4

( ) ( ) /

1 / 1 / / /

/
1 / 1 / / /

x yv v v u v u v c

mc mcE
v c u c v c u v c

mv m u v u v cp
v c u c v c u v c

′ ′ ′= + = + −

′ = =
′− − − +

′ + −′ = =
′− − − +

 

 

 (b) 
2 4 2 2 2 2 2 2 2

2 2 2 4
2 2 2 2 2 2 4

( / )( )
1 / / /

m c m c u v u v cE p c m c
u c v c u v c
− + −′ ′− = =

− − +
 

 
52.  

 
  (b) 40 years 
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 (c) During Amelia’s outbound journey, her worldline and Bernice’s overlap.   This 
part of her journey takes 8 years, as measured in the clocks in Bernice’s frame of 
reference. 

 
 (d) Let O = Casper and O′ = Bernice.  Then u = 0.60c and vx = −0.60c. 

 2

0.60 0.60 0.882
1 / 1 ( 0.60)(0.60)

x
x

x

v u c cv c
v u c
− − −′ = = = −

− − −
 

 
 (e) On his 4th birthday. 
 
 (f) On his 16th birthday. 
 

 
53.   (a) Before the first acceleration, E = E0 = mc2.  After the acceleration, the energy is 

 

 
2

1 2 2 2

0.511 MeV 3.6 MeV
1 / 1 (0.99)

mcE
v c

= = =
− −

 

 
 The change in energy is 1 0 3.6 MeV 0.5 MeV 3.1 MeVE E EΔ = − = − = , so the first 

stage adds 3.1 MeV to the energy of the electron. 
 

  (b)   
2

2 2 2 2

0.511 MeV 11.4 MeV
1 / 1 (0.999)

mcE
v c

= = =
− −

 

 
 The change in energy is 2 1 11.4 MeV 3.6 MeV 7.8 MeVE E EΔ = − = − = , so the 

second stage adds about 2.5 times as much energy as the first stage, even though the 
second stage increases the velocity by only 0.9%. 

 
 

54. 
2

2

2 2 2

0.511 MeV 0.511 MeV 0.239 MeV per particle
1 / 1 (0.732)

mcK mc
v c

= − = − =
− −

 

 
11 14

beam (0.239 MeV/particle)(1.35 10 particles/s)(3600 s) 1.16 10 MeV 18.6 JE = × = × =  
 

Copper has a density of ρ = 8.92 g/cm3 and a specific heat capacity of cp = 0.385 
J/g⋅K.  The mass M of the copper is 3 3(8.92 g/cm )(2.54 cm) 146 gM Vρ= = = .  
Assuming all of the kinetic energy carried by the particles in the beam acts to produce 
a change in temperature of the copper ( beam pE Mc T= Δ ), the temperature increase is 

 

 beam

p

18.6 J 0.33 K 0.33 C
(146 g)(0.385 J/g K)

ET
Mc

Δ = = = = °
⋅
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55. (a)  
2

i
i 2 2 2

i

(0.511 MeV/ )(0.960 ) 1.752 MeV/
1 / 1 (0.960)

mv c cp c
v c

= = =
− −

 

 
2

1f
1f 2 2 2

1f

(0.511 MeV / )(0.956 ) 1.665 MeV/
1 / 1 (0.956)

mv c cp c
v c

= = =
− −

 

 
f 1f 1 2f 2 2f 2 2f 2cos cos (1.665 MeV/ )(cos9.7 ) cos 1.642 MeV/ cosxp p p c p c pθ θ θ θ= + = ° + = +

f 1f 1 2f 2 2f 2 2f 2sin sin (1.665 MeV/ )(sin 9.7 ) sin 0.281 MeV/ sinyp p p c p c pθ θ θ θ= + = ° + = +
 

 Conservation of momentum gives pxf = pi and pyf = 0.  Thus 
 

 2f 2

2f 2

cos 1.752 MeV/ 1.642 MeV/ 0.110 MeV/
sin 0 0.281 MeV/ 0.281 MeV/

p c c c
p c c

θ
θ

= − =
= − = −

 

 
 Dividing the second result by the first gives 
 

 2 2
0.281 MeV/tan 2.55 or 68.6

0.110 MeV/
c
c

θ θ−
= = − = − °  

 
 With 2f (0.110 MeV/ ) /[cos( 68.6 )] 0.302 MeV/p c c= − ° = , we have 

 2f
2f 2 2

2f

0.302 MeV/
1 /

mvp c
v c

= =
−

 

 and solving, we find v2f = 0.508c. 
 

 (b)   
2

i 2 2 2
i

0.511 MeV 2.336 MeV
1 / 1 (0.960)

mcE
v c

= = =
− −

 

  
2

1f 2 2 2
1f

0.511 MeV 1.743 MeV
1 / 1 (0.956)

mcE
v c

= = =
− −

 

 
 Conservation of energy gives Ei = E1f + E2f, so E2f = 2.366 MeV − 1.743 MeV =  
 0.593 MeV and 

 
2

2f 2 2 2 2
2f 2f

0.511 MeV0.593 MeV
1 / 1 /

mcE
v c v c

= = =
− −

 

 
 and solving we find v2f = 0.508c, in agreement with part (a). 

 
 
56. The initial energy is 
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2

2 2 2

135 MeV 678 MeV
1 / 1 (0.98)

mcE
v c

π = = =
− −

 

 
 and the momentum is 
  

 2 2 2 2 21 1( ) (678 MeV) (135 MeV) 664 MeV/p E mc c
c cπ π= − = − =  

  
 Because the two gamma ray photons have equal energies, each has an energy of 

1
2 (678 MeV) , so Eγ = 339 MeV.  Each gamma ray photon has a momentum of 

/ 339 MeV/p E c cγ γ= = , which has a component cospγ θ  along the direction of the 
initial π meson.  Conservation of momentum then gives 2 cosp pπ γ θ= , so the angle 
is 

 

 1 1 664 MeV/cos cos 11.7
2 2(339 MeV/ )
p c
p c
π

γ

θ − −= = = °  

 
57. The total energy of the kaon is 2

K K 77.0 MeV 497.7 MeV 574.7 MeVK m c+ = + = .  

The speed of the kaon is found from 2 2 2
K K / 1 /E m c v c= − : 

  

 
2 2

497.7 MeV574.7 MeV
1 /v c

=
−

 

 
 which gives v = 0.500c.  This is the same as the transformation speed u necessary to 

move from the laboratory frame to a frame in which the kaon is at rest. 
  When a kaon at rest decays into two pions, each pion has an energy of half the 

rest energy of the kaon: 21
K2 248.9 MeVE m cπ = = .  In this frame, the speed of each 

pion is found from 2 2 2/ 1 / :E m c v cπ π ′= −  
 

 
2 2

139.6 MeV248.9 MeV
1 /v c

=
′−

 

 
 Solving, we find v′ = 0.828c, with the two pions moving in opposite directions with 

this speed 1 2( 0.828 , 0.828 ).v c v c′ ′= + = −  
  We can now transform back to the original laboratory frame:  
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1
1 2

1

2
2 2

2

0.828 0.500 0.9392
1 / 1 (0.828)(0.500)

0.828 0.500 0.5597
1 / 1 ( 0.828)(0.500)

v u c cv c
v u c

v u c cv c
v u c

′ + +
= = =

′+ +

′ + − +
= = = −

′+ + −

 

 

  

2
2

1 2 2 2
1

2
2

2 2 2 2
2

139.6 MeV 139.6 MeV 267.0 MeV
1 / 1 (0.9392)

139.6 MeV 139.6 MeV 28.9 MeV
1 / 1 (0.5597)

m cK m c
v c

m cK m c
v c

π
π

π
π

= − = − =
− −

= − = − =
− −
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Chapter 3 
 
 This chapter presents the three experiments of the late 19th and early 20th centuries 
that pointed toward the particle nature of electromagnetic radiation: the photoelectric 
effect, thermal radiation, and Compton scattering.  I have chosen not to present these 
experiments in their historic order, because the barrier for understanding thermal 
radiation is significantly greater than that for the photoelectric effect.  The latter is clear 
and unambiguous, while the analysis of the former depends on a complex argument 
touching on statistical considerations, the full details of which are best left for a later 
time. For a first exposure to these ideas, the photoelectric effect presents fewer 
challenges. (However, see the discussion in Chapter 2 of the book by Greenstein and 
Zajonc cited in the reading list below; they summarize the argument that a classical 
radiation field and quantized levels in atoms can explain the photoelectric effect, without 
recourse to quantizing the radiation field, and that a semiclassical explanation can also be 
given for the Compton effect.  Nevertheless, for an introduction at this level I prefer to 
offer the traditional explanation of these experiments in terms of photons.)  
 
 

Supplemental Materials 
 
Double slit interference: 
http://vsg.quasihome.com/interfer.htm 
Physlet Quantum Physics, Section 5.4 
 
Photoelectric effect: 
Physlet Quantum Physics, Section 5.2 
 
Thermal (blackbody radiation): 
http://www.mhhe.com/physsci/astronomy/applets/Blackbody/frame.html 
 
Compton scattering: 
Physlet Quantum Physics, Section 5.2 
 
Other processes: 
http://www.upscale.utoronto.ca/GeneralInterest/Harrison/Flash/Nuclear/PairProduction/P
airProduction.html 
 
Wave-particle duality: 
I have used in my classes a very nice interferometer simulation called “Quantum Eraser” 
developed at the University of Munich by Albert Huber.  [See also the discussion of the use 
of this simulation by Chandralekha Singh, American Journal of Physics 76, 400 (2008).]  
The original version of this program, called “Polfilter”, is available through the archives of 
the University of Munich physics education research group at: 
http://www.didaktik.physik.uni-muenchen.de/archiv/inhalt_materialien/polfilter/index.html . 
  
 

http://vsg.quasihome.com/interfer.htm
http://www.mhhe.com/physsci/astronomy/applets/Blackbody/frame.html
http://www.upscale.utoronto.ca/GeneralInterest/Harrison/Flash/Nuclear/PairProduction/PairProduction.html
http://www.upscale.utoronto.ca/GeneralInterest/Harrison/Flash/Nuclear/PairProduction/PairProduction.html
http://www.didaktik.physik.uni-muenchen.de/archiv/inhalt_materialien/polfilter/index.html
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Suggestions for Additional Reading 
 
A collection of photographs illustrating the phenomena of classical optics can be found in 
M. Cagnet, M. Francon, and J. C. Thrierr, Atlas of Optical Phenomena (Berlin, Springer-
Verlag, 1962). 
 
For more complete discussions of blackbody radiation, including more detailed 
derivations of the Rayleigh-Jeans law, see: 
R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei, 

and Particles, 2nd ed. (Wiley, 1985). 
F. K. Richtmeyer, E. H. Kennard, and J. N. Cooper, Introduction to Modern Physics, 

6th ed. (McGraw-Hill, 1969). 
 
The properties of X rays, including diffraction and scattering, are discussed in the 
following: 
L. Bragg, “X-Ray Crystallography,” Scientific American 219, 58 (July 1968). 
G. L. Clark, Applied X Rays (McGraw-Hill, 1940). 
A. H. Compton and S. K. Allison, X Rays in Theory and Experiment (Van Nostrand, 1935). 
N. A. Dyson, X Rays in Atomic and Nuclear Physics (Cambridge University Press, 1990). 
 
For more details of experiments discussed in this chapter and their importance in the 
development of quantum theory, see: 
W. H. Cropper, The Quantum Physicists (Oxford University Press, 1970), chapter 1. 
G. Greenstein and A. Zajonc, The Quantum Challenge (Jones and Bartlett, 1997). 
A. Shimony, “The Reality of the Quantum World,” Scientific American 258, 46 (Jan. 1988). 
 
 

Materials for Active Engagement in the Classroom 
 
A.  Reading Quizzes 
 
1. The brehmsstrahlung process occurs when 
  (1) an isolated electron emits a photon. (2) an electron encounters a positron. 
  (3) an electron absorbs a photon.  (4) an electron decelerates near an atom. 
 
2. The Compton effect is based on: 
  (1) scattering of photons by the tightly bound inner electrons of an atom. 
  (2) scattering of photons by the loosely bound, nearly free electrons of a material. 
  (3) interference of light waves scattered from electrons. 
  (4) the wave-like behavior of electrons. 
 
3. In the Compton effect: 
  (1) an electron emits an X-ray photon. 
  (2) an X-ray photon is absorbed by a metal surface and knocks loose an electron. 
  (3) an X-ray photon loses energy after colliding with an electron. 
  (4) an X-ray photon gains energy after colliding with an electron. 
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4. The photoelectric effect: 
  (1) verifies that electrons behave like waves. 
  (2) involves the interference of light waves that reflect from the surface of a metal. 
  (3) is consistent only with the wave theory of light. 
  (4) verifies that light behaves as if it is composed of particles. 
 
5. Which of the following processes is impossible under all circumstances? 
  (1) photon → electron + positron (2) electron + positron → photons 
  (3) electron → electron + photon (4) photon + electron → photon + electron 
  (5) photon + electron → electron (6) All of the above are possible. 
 
Answers 1. 4 2. 2 3. 3 4. 4 5. 6 
 
 
B.  Conceptual or Discussion Questions 
 
1. Photons of wavelength λ are Compton scattered from electrons, and the scattered 

photons of wavelength λ′ are observed at an angle of 90 degrees relative to the 
direction of the incident photons.   
(a) If the detector of the scattered photons is moved to an angle that is smaller than 90 
degrees, the wavelength of the scattered photons will: 

  (1) increase  (2) decrease  (3) remain the same 
  (4) increase at some angles between 0 and 90 degrees and decrease at other angles 

(b) If the source of incident photons is replaced with one that produces photons of 
much larger wavelength, how does the change in wavelength Δλ = λ′ - λ measured at 
90 degrees compare with that of the original source?  

  (1) Δλ increases (2) Δλ decreases (3) Δλ remains the same 
 
2. Compton scattering suggests that the light scattered from objects should change 

wavelength when the objects are viewed from different angles.  Why don’t we 
observe objects changing color as we vary the viewing angle? 

 
3. In a photoelectric experiment, changing one of the experimental conditions might 

produce one of the following results: 
  (1) Increase the photoelectric current. (2) Increase the stopping potential. 
  (3) Decrease the photoelectric current. (4) Decrease the stopping potential. 
 Choose the outcome that would occur after the following changes: 

(a) Replace the light source with one of twice the frequency but emitting the same 
number of photons per second. 
(b) Replace the light source with one of twice the wavelength but emitting the same 
number of photons per second. 
(c) Replace the light source with one of the same frequency but emitting twice as 
many photons per second. 
(d) Without changing the light source, replace the emitter surface with a material 
having a smaller work function. 
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4. Possible interactions between electrons and photons can be represented symbolically 

by the 5 processes listed below.  For each process, give the conventional name for the 
process, state whether it can occur for isolated particles, and describe how energy is 
conserved in the process. 

  (a) photon → electron + positron (b) electron + positron → photons 
  (c) electron → electron + photon (d) photon + electron → photon + electron 
  (e) photon + electron → electron 
 
Answers 1. (a) 2   (b) 3  2. 0.001 nmλΔ ∼  3. (a) 2   (b) 4   (c) 1   (d) 2 
 
 

Sample Exam Questions 
 
A.  Multiple Choice 
 
1. Some stars appear to have a color that is more blue than the color of the Sun.  How 

would the surface temperature of a blue star compare with the surface temperature of 
the Sun? 

  (a) Tblue star > TSun (b) Tblue star < TSun  
 
2. The most intense radiation emitted from a hot sample of metal has a wavelength of 60 
 μm.  When the temperature of the sample is doubled, what will be the wavelength of 
 the most intense radiation? 
  (a) 30 μm  (b) 120 μm  (c) 960 μm  (d) 15 μm 
 
3. A glowing object emits radiation with a spectrum in which there is one particular 

wavelength at which the maximum intensity occurs.  If the temperature of the object 
is doubled, what happens to the wavelength of the intensity maximum? 

  (a) Remains the same (b) Becomes twice as large  (c) Becomes half as large 
  (d) Becomes 4 times as large (e) Becomes 16 times as large 
 
4. The Sun’s yellow color corresponds to a surface temperature of about 5500 K.  What 

would  be the color of a star with surface temperature of 7000 K? 
  (a) red (longer wavelength)   (b) blue (shorter wavelength)        
  (c) yellow (same wavelength) 
 
 
5. Electrons are accelerated through a potential difference of 2000 volts and are incident 

on a metal surface, resulting in the emission of photons.  Which of the following 
photon wavelengths would NOT be observed from this surface? 

  (a) 0.24 nm  (b) 0.78 nm  (c) 1.25 nm  (d) 3.62 nm 
 
6. Light of wavelength 477 nm is incident on the surfaces of several different metals.  

For which value of the work function will electrons be emitted from the surface? 
  (a) 4.2 eV (b) 3.7 eV (c) 3.2 eV (d) 2.3 eV 
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7. When photons of wavelength 488 nm are incident on a metal surface, electrons of 

maximum kinetic energy 1.39 eV are emitted from the surface.  What is the minimum 
energy needed to remove an electron from this metal? 

  (a) 2.54 eV (b) 3.93 eV (c) 0.65 eV (d) 1.15 ev 
 
8. For a certain metal surface, electrons are emitted when the surface is illuminated with 

light of wavelength below 435 nm but for no wavelengths above 435 nm.  What is the 
work function of this surface? 

  (a)  1.36 eV (b) 2.85 eV (c) 3.48 eV (d) None of these values. 
 
9. At temperature T a body emits its most intense radiation at a wavelength of 5.6 μm.  

What is the wavelength of the most intense radiation emitted by the same body at 
temperature 4T? 

  (a) 22.4 μm    (b) 4.0 μm   (c) 1.4 μm   (d) 7.8 μm   (e) 5.6 μm  
 
10. Electrons of maximum kinetic energy K1 are released when X rays of wavelength λ1 

are incident on the surface of a metal.  If the light source is replaced by another that 
emits photons at the same rate but of longer wavelength λ2, how is the resulting 
maximum kinetic energy K2 related to K1? 

  (a) K2 = K1 (b) K2 > K1 (c) K2 < K1 
 
11. Electrons are emitted when an ultraviolet light source of wavelength λ illuminates a 

certain metal surface.  If you wanted to increase the number of electrons per unit time 
emitted from the surface, you should 

  (a) increase the frequency of the light source   
  (b) increase the wavelength of the light source 
  (c) add a second light source identical to the first light source 
 
12. A metal surface is illuminated with light of wavelength λ, and a resulting current i is 

observed in an electric circuit connected to the surface.  The source is replaced with a 
different one in which the photon emission rate is only half as large.  What should be 
the wavelength of this second source in order that the current have the same value i? 

  (a) 2λ    (b) λ/2   (c) > 2λ    (d) <  λ/2     
  (e) The experiment is impossible -- the second source can never give the same 
    current i. 
 
 
13. Which one of these processes involves a decrease in the kinetic energy of an electron? 
  (a) bremsstrahlung  (b) photoelectric effect (c) Compton scattering 
  (d) pair production 
 
Answers 1. a 2. a 3. c 4. b 5. a 6. d 7. d 8. b 9. c 10. c 
   11. c 12. e 13. a 
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B.  Conceptual 
 
1. Photons of wavelength λ are incident on a metal target.  Scattered photons are 

observed at an angle θ1 relative to the direction of the original photons.  In this 
geometry, it is determined that the scattered electrons have kinetic energy K1.  If the 
scattered photons were observed at a larger angle, would the corresponding kinetic 
energy of the scattered electrons be greater than K1, equal to K1, or less than K1?  
EXPLAIN YOUR ANSWER. 

 
2. A beam of photons of energy E is incident on a metal target.  The photons scatter 

from the nearly free electrons in the target, and the scattered photons are observed at 
an angle θ relative to the direction of the original beam of photons.  When the 
photons emerge at that angle, the scattered electrons have a certain kinetic energy.  As 
the angle θ is made smaller, does the corresponding kinetic energy of the scattered 
electrons increase, decrease, or remain the same?  EXPLAIN YOUR ANSWER. 

 
3. Consider two monochromatic (single-wavelength) light sources emitting light of 

respective wavelengths λ1 and λ2, with λ2 > λ1.  The two bulbs are otherwise identical 
and emit light with exactly the same intensity (in W/m2).  A detector placed a distance 
d from bulb 1 (emitting at wavelength λ1) records N photons per second.  When the 
same detector is placed at the same distance d from bulb 2 (emitting at wavelength 
λ2), is the number of photons per second recorded by the detector greater than N, 
smaller than N, or equal to N?  EXPLAIN YOUR ANSWER. 

 
4. A source of light of wavelength λ is incident on a metal surface, and electrons of  

maximum kinetic energy K are observed to be emitted from the surface.  The source 
is replaced by a different source that emits the same power (in watts) but has a 
smaller wavelength.  Does the rate at which electrons are emitted from the surface 
increase, decrease, or remain the same, and does their maximum kinetic energy 
increase, decrease, or remain the same?  EXPLAIN YOUR ANSWERS. 

 
5. A beam of photons of energy E1 strikes a metal surface, and electrons are observed to 

be emitted at a rate that produces a current i1 in an external circuit.  If the photon 
energy is increased while the number of photons per second striking the surface is 
kept constant, does the current in the external circuit increase, decrease, or remain 
the same?  EXPLAIN YOUR ANSWER. 
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6. When a certain light source illuminates a metal surface, electrons are emitted from the 
metal with kinetic energies up to the value K.  The light source is replaced with one 
that has the same wavelength but less intensity.  With this new light source, does the 
upper limit of the electron kinetic energies increase, decrease, or remain the same?  
EXPLAIN YOUR ANSWER. 

 
7. Consider an experiment in which a beam of monoenergetic photons is incident on 

free electrons.  The scattered electrons are observed with an energy E1 when the 
scattered photons are observed at an angle θ1.  For the same incident photons, when 
the scattered photons are observed at an angle that is smaller than θ1 do the scattered 
electrons have an energy that is greater than E1, less than E1, or equal to E1?   
EXPLAIN YOUR ANSWER. 

 
8. The walls of a hollow metal box are maintained at a temperature T = 1000 K.  The 

box is filled with photons in equilibrium with the walls.  A tiny hole in one of the 
walls allows a small number of the photons to escape.  Your equipment measures the 
number of escaping photons in a small interval of wavelength dλ at a wavelength of 
10-5 m.  If you raise the temperature of the box to 2000 K, would you expect the 
number of photons in the same interval at the same wavelength to increase, decrease, 
or stay about the same?  EXPLAIN YOUR ANSWER. 

 
9. A beam of ultraviolet light is incident on a metal surface.  Electrons leave the surface 

with a range of kinetic energies from very small values up to some maximum value.  
If the light source is replaced by a different source that emits photons at the same rate 
but with smaller wavelength, does the range of electron kinetic energies become 
larger, become smaller, or remain the same?   EXPLAIN YOUR ANSWER. 

 
10. In Einstein’s explanation of the photoelectric effect, for a fixed wavelength the 

number of emitted photoelectrons is [directly proportional to, independent of] the 
intensity of the incident radiation and the kinetic energy of the emitted photoelectrons 
is [directly proportional to, independent of] the intensity of the incident radiation.  
EXPLAIN YOUR ANSWERS. 

 
11. X rays of wavelength λ1 are incident on a material, and scattered X rays of 

wavelength λ1 + Δλ1 are observed at the scattering angle θ.  The source of X rays is 
now replaced with a source of wavelength λ2 which is greater than λ1, and at the same 
angle θ the scattered X rays now have wavelength λ2 + Δλ2.  Is Δλ2 greater than, 
equal to, or less than Δλ1?  EXPLAIN YOUR ANSWER. 

 
12. The walls of a hollow metal box are maintained at a temperature T = 1000 K.  The 

box is filled with photons in equilibrium with the walls.  A tiny hole in one of the 
walls allows a small number of the photons to escape.  Your equipment measures the 
number of escaping photons in a small interval of wavelength dλ at a wavelength of 
10-5 m.  If you raise the temperature of the box to 2000 K, would you expect the 
number of photons in the same interval at the same wavelength to increase, decrease, 
or stay about the same?  EXPLAIN YOUR ANSWER. 
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Answers 1. greater than  2. decrease  3. greater than 
   4. decrease, decrease 5. remain the same 6. remain the same 
   7. less than  8. increase  9. become larger 
   10. directly proportional to, independent of 11. equal to 
   12. increase 
 
 
C.  Problems 
 
1. Light of wavelength 435 nm is incident on a metal surface, and it is observed that 

electrons leave the surface with a maximum kinetic energy of 1.16 eV. 
 (a) What is the work function of this metal? 
 (b) What is the maximum kinetic energy of the electrons if light of wavelength 
  560 nm is used? 
 (c) What is the longest wavelength of light that will cause electrons to be emitted  
  from this surface? 
 
2. Light from a source with a variable wavelength is incident on a metal.  It is observed 

that electrons are emitted from the surface of the metal for all wavelengths less than 
525 nm but never for wavelengths above 525 nm.   
(a) What is the minimum energy necessary to remove an electron from the surface of 

the metal?   
(b) After leaving the surface, electrons must cross through a potential difference V in 

order to contribute to the current in an external circuit.  When the wavelength of 
the light is changed to 345 nm, what potential difference is necessary to prevent 
the most energetic electrons from completing the circuit? 

 
3. Ultraviolet radiation of wavelength 176 nm is incident on the surface of a metal.  

Electrons are released from the metal with a maximum kinetic energy of 4.52 eV. 
 (a)  What is the maximum wavelength of the incident radiation that could cause  
  electrons to be released from the metal? 
 (b) If the wavelength of the incident radiation were changed to 288 nm, what would  
  be the maximum kinetic energy of the emitted electrons? 
 
4. A beam of photons of energy 6250 eV is incident on an aluminum target.  Scattered 

photons are observed at an angle of 60o relative to the direction of the incident beam.   
 (a) What is the wavelength of the scattered photons? 
 (b) Assuming that the photons scatter from nearly free electrons, what is the energy  
  given to the scattered electrons? 
 (c) Find the electron’s momentum component in the direction of the original incident  
  photons. 
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5. X-ray photons of wavelength 0.01575 nm are incident on free electrons at rest.  After 

the interaction, photons of wavelength 0.01772 nm are observed. 
 (a) Relative to the direction of the original X-rays, at what angle would we observe  
  these photons? 
 (b) What is the kinetic energy given to the electrons by this interaction? 
 
6. A beam of photons of energy 184 keV is incident on a target.  Scattered photons are 

observed at an angle of 60° relative to the direction of the incident beam.  Assume 
that the photons scatter from free electrons in the target. 

 (a) What is the energy of the scattered photons? 
 (b) Find the kinetic energy that is acquired by the scattered electrons. 
 (c) Find the magnitude of the electron’s momentum and the component of the  
  electron’s momentum perpendicular to the direction of the incident beam. 
 
7. The stopping potential for a certain surface is 1.25 V when it is illuminated with light 

of wavelength 471 nm.  When the wavelength is changed to a new value, the stopping 
potential becomes 1.68 V.   

 (a) What is this new wavelength? 
 (b) What is the work function of this surface? 
 
8. An X-ray photon of wavelength 0.00375 nm is scattered from an electron.   
 (a) At what angle would we observe scattered photons of wavelength 0.00860 nm?  
 (b) For these scattered photons, what is the kinetic energy of the scattered electrons? 
 
9. An ultraviolet lamp of adjustable wavelength is shining on a metal surface.  It is observed 

that electrons begin to emerge from the surface when the wavelength is 255 nm.   
 (a) What is the minimum energy necessary to remove an electron from the surface of  
  this metal? 
 (b) If the wavelength is reduced to 215 nm, what is the energy of the electrons that  
  leave the surface? 
 
10. A metal surface is illuminated with light of different wavelengths. It is observed that 

electrons are emitted from the metal for wavelengths of light up to 525 nm but for no 
wavelengths above 525 nm.  When light of 420 nm is used, what is the maximum 
kinetic energy of the electrons? 

 
11. A metal surface is illuminated with ultraviolet light of adjustable wavelength.  It is 

observed that electrons are emitted from the surface when the wavelength of the 
ultraviolet light is below 325 nm but never when the wavelength is above 325 nm.  
What is the kinetic energy of the emitted electrons when light of wavelength 243 nm 
is used? 
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12. The largest wavelength of light that will cause emission of photoelectrons from a 

certain surface is 486 nm. 
 (a) What is the work function of the surface? 
 (b) When light of wavelength 325 nm is used, what is the stopping potential? 
 
Answers 1. (a) 1.69 eV   (b) 0.52 eV   (c) 734 nm 
   2. (a) 2.36 eV   (b) 1.23 V 
   3. (a) 491 nm   (b) 1.78 eV 
   4. (a) 0.1996 nm   (b) 38 eV   (c) 3144 eV/c 
   5. (a) 79°   (b) 8.75 keV 
   6. (a) 156 keV   (b) 28 keV   (c) 171 keV/c, 135 keV/c 
   7. (a) 405 nm   (b) 1.38 eV 
   8. (a) 178°   (b) 186 keV 
   9. (a) 4.86 eV   (b) 0.91 eV 
   10. 0.59 eV 
   11. 1.29 eV 
   12. (a) 2.55 eV   (b) 1.27 V 



 57

Problem Solutions 
 
 

1. 1
(589.0 nm)(2.357 m) 1.32 mm

1.05 mmn n
Dy y y
d
λ

+Δ = − = = =  

 
2. 2(0.250 nm)sin 0.8865

2 2(0.282 nm)
n

d
λθ = = =      so     1sin 0.8865 62.4θ −= = °  

 

3. (a) 2 sin 2(0.347 nm)(sin 34.0 ) 0.388 nm
1

d
n

θλ °
= = =  

 
(b) The spacing between planes is (0.347 nm)sin 45 0.245 nm° = .  The Bragg 
condition then gives 
 

0.388 nmsin 0.791 or 52.2
2 2(0.245 nm)d
λθ θ= = = = °  

 
 This is the angle that the reflected ray makes with the plane of atoms.  Because this 

plae makes and angle of 45° with the surface, the beam emerges at an angle of 
52.2 45 7.2° − ° = °with the surface. 

 
4. The Bragg formula for the first-order peak is 2 sindλ θ= .  We need to know the 

relationship between a small angular range dθ and the corresponding wavelength 
range dλ, which is found by taking the differentials from the Bragg formula: 

 
2 cosd d dλ θ θ=  

 
Eliminating the lattice spacing d using the Bragg formula, we obtain (after converting 
dθ to radians) 

 

-4 4

2 cos cot
2sin

(0.149 nm)(cot 15.15 )(2.6 10  rad) 1.4 10  nm

d d dλλ θ θ λ θ θ
θ

−

⎛ ⎞= =⎜ ⎟
⎝ ⎠

= ° × = ×

 

 
5. (a) 1210.0 MeV 1.60 10 JE −= = ×  
   

7

12
21

8

10.0 MeV 1.00 10 eV/

1.60 10 J 5.33 10 kg m/s
3.00 10 m/s

Ep c
c c

p
−

−

= = = ×

×
= = × ⋅

×
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 (b) 1525 keV 4.0 10 JE −= = ×  
   

4

15
23

8

25 keV 2.5 10 eV/

4.0 10 J 1.3 10 kg m/s
3.00 10 m/s

Ep c
c c

p
−

−

= = = ×

×
= = × ⋅

×

 

  
 (c) 31.0 m 1.0 10 nmλ μ= = ×  
 

3

34
28

6

1 1 1240 eV nm 1.2 eV/
1.0 10 nm

6.6 10 J s 6.6 10 kg m/s
1.0 10 m

h hcp c
c c

p

λ λ
−

−
−

⋅
= = = =

×

× ⋅
= = × ⋅

×

 

 
 (d) 15 6 7 26(4.14 10 eV s)(150 10 Hz) 6.2 10 eV 9.9 10 JE hf − − −= = × ⋅ × = × = ×  
   

7
7

26
34

8

6.2 10 eV 6.2 10 eV/

9.9 10 J 3.3 10 kg m/s
3.00 10 m/s

Ep c
c c

p

−
−

−
−

×
= = = ×

×
= = × ⋅

×

 

 
6. At 6 15 6 -1 91 MHz 10 Hz, (4.14 10 eV s)(10 s ) 4 10 eVE hf − −= = = × ⋅ = ×  
 
 At 8 15 8 -1 7100 MHz 10 Hz, (4.14 10 eV s)(10 s ) 4 10 eVE hf − −= = = × ⋅ = ×  
 
 The range is from 4 × 10−9 eV to  4 × 10−7 eV. 
 

7. (a) 4

1240 eV nm 0.124 nm
1.00 10 eV

hc
E

λ ⋅
= = =

×
 

 

 (b) 3
6

1240 eV nm 1.24 10 nm
1.00 10 eV

λ −⋅
= = ×

×
 

 

 (c) 350 nm: 1240 eV nm 3.5 eV
350 nm

hcE
λ

⋅
= = =  

 

  700 nm: 1240 eV nm 1.8 eV
700 nm

E ⋅
= =  

 
 The range is from 1.8 eV to 3.5 eV. 
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8. With φ = 4.08 eV  for aluminum, 
 

c
1240 eV nm 304 nm

4.08 eV
hcλ
φ

⋅
= = =  

 

9.        
c

1239.853 eV nm 3.808 eV
325.6 nm

hcφ
λ

⋅
= = =  

s

s

1239.853 eV nm 3.808 eV 0.964 eV
259.8 nm

0.964 V

hceV

V

φ
λ

⋅
= − = − =

=
 

 

10.   s,Cu Cu s,Na Naandhc hceV eVφ φ
λ λ

= − = −  

 
 Subtracting, we obtain 
 

   s,Cu s,Na Na Cu

s,Na s,Cu

2.28 eV 4.70 eV 2.42 eV
2.42 eV 2.42 volts

eV eV
V V V

φ φ− = − = − = −

= + = +
 

 

11. (a) 
c

1240 eV nm 4.88 eV
254 nm

hcφ
λ

⋅
= = =  

 
 (b) 254 nmλ <  
 

12. (a) With φ = 4.31 eV, c
1240 eV nm 288 nm

4.31 eV
hcλ
φ

⋅
= = =  

 

 (b) s
1240 eV nm 4.31 eV 1.33 eV, so 1.33 volts

220.0 nms
hceV Vφ
λ

⋅
= − = − = =  

 
13. (a) The total number of oscillators is 

 

/ /

0 0
0

( ) ( )E kT E kTN Nn E dE e dE kT e N
kT kT

∞
∞ ∞ − −= = − =∫ ∫  

 
(b) The average energy is (from Equation 3.33) 

 
/

avg 0 0 0

1 1( ) with /E kT xE E n E dE E e dE kT xe dx x E kT
N kT

∞ ∞ ∞− −= = = =∫ ∫ ∫  

 
The definite integral is a standard form that is equal to 1, so avgE kT= . 
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14. (a) The total number of oscillators at all energies is 
 

/ /
/

0 0 0

1
1

nE kT n kT
n kT

i n n
N Ae A e A

e
ε

ε

∞ ∞ ∞
− −

−
= = =

= = =
−∑ ∑ ∑  

 
 Setting this result equal to N, we obtain /(1 )kTA N e ε−= − . 
 

 (b)  On the left side 
0 0

nx nx

n n

d e ne
dx

∞ ∞

= =

=∑ ∑ and on the right side 2

1
1 (1 )

x

x x

d e
dx e e

=
− −

.  

Setting these equal to each other gives 2
0 (1 )

x
nx

x
n

ene
e

∞

=

=
−∑ . 

 (c) 
/

/ / /
avg / 2 /

0 0

1 (1 ) ( ) (1 )
(1 ) 1

kT
kT n kT kT

n n kT kT
n n

eE N E e n e e
N e e

ε
ε ε ε

ε ε

εε ε
−∞ ∞

− − −
−

= =

= = − = − =
− −∑ ∑  

 

 (d) For large λ, / 1 /hc kTe hc kTλ λ≈ + and thus avg /

/ /
1 1 / 1hc kT

hc hcE kT
e hc kTλ

λ λ
λ

= ≈ =
− + −

 

 
 As λ goes to 0, /hc kTe λ →∞ and avg 0E → . 
 

15.   
2

5 /

2 1( )
1hc kT

hcI
e λ

πλ
λ

=
−

 

  

  
/ 2

2
6 / 5 / 2

5 1 1 ( )( / )2
1 ( 1)

hc kT

hc kT hc kT

dI e hc kThc
d e e

λ

λ λ

λπ
λ λ λ

⎡ ⎤− − −⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎢ ⎥− −⎝ ⎠ ⎝ ⎠⎣ ⎦
 

 
 Setting dIdλ equal to zero gives 
  

  
/ 2

/

5 ( )( / ) 0
1

hc kT

hc kT

e hc kT
e

λ

λ

λ
λ

− + =
−

 

 
 or, with / ,x hc kTλ=  
     ( 5) 5 0xx e− + =  
 

This equation does not have an exact solution, but an approximate solution can be 
found by trial and error: 4.9651 / ,x hc kTλ= =  so 

 
3

5

1239.853 eV nm 2.8978 10 m K
4.9651 4.9651(8.6174 10 eV/K)

hcT
k

λ −
−

⋅
= = = × ⋅

×
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 16.  
2

5 /0 0

2 1( )
1hc kT

hcI d d
e λ

πλ λ λ
λ

∞ ∞
=

−∫ ∫  

  
With 2/ and ( / ) ,x hc kT dx hc kT dλ λ λ= = −  

 

  

3 3
2

0 0

4 3 4 4
2 4 4 4

3 20

( ) 2
1

22
1 15

x

x

kT kT x dxI d hc
hc hc e

k x dx khc T T T
hc e h c

λ λ π

π ππ σ

∞ ∞

∞

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟ −⎝ ⎠ ⎝ ⎠

⎛ ⎞= = =⎜ ⎟ −⎝ ⎠

∫ ∫

∫
 

 
  with 5 4 3 22 /15k h cσ π=  
 

17.  
1/ 3 1/ 35 4 5 23 4

2 8 2 4 8 2

2 2 (1.38066 10 J/K)
15 15(5.6704 10 W/m K )(2.9979 10 m/s)

kh
c

π π
σ

−

−

⎛ ⎞ ⎡ ⎤×
= =⎜ ⎟ ⎢ ⎥× ⋅ ×⎝ ⎠ ⎣ ⎦

 

 
                346.626 10 J s−= × ⋅  
 

18.  
3 32.898 10 m K 2.898 10 m K 483 nm

6000 KT
λ

− −× ⋅ × ⋅
= = =  

 
This is in the middle of the visible spectrum, close to the peak sensitivity of the eye. 

 

19. 
3 32.898 10 m K 2.898 10 m K 1.1 mm (microwave region)

2.7 KT
λ

− −× ⋅ × ⋅
= = =  

 
31240 eV nm 1.1 10 eV

1.1 mm
hcE
λ

−⋅
= = = ×  

 

20. (a) 
3 3

max
2.898 10 m K 2.898 10 m K 9.4 m (infrared)

307 KT
λ μ

− −× ⋅ × ⋅
= = =  

 (b) Assume a person can be represented as a cylinder, about 6 feet (1.83 m) tall and 1 
foot (0.30 m) in diameter.  The surface area is 22 2 (0.15 m)(1.83 m) 1.72 mrLπ π= = . 

 
4 8 2 4 4 2

2 2

(5.67 10 W/m K )(307 K) 504 W/m

(504 W/m )(1.72 m ) 870 W

I T

P IA

σ −= = × ⋅ =

= = =
 

  
  (c) For T = 20°C = 293 K, 
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4 8 2 4 4 2

2 2

(5.67 10 W/m K )(293 K) 418 W/m

(418 W/m )(1.72 m ) 719 W

I T

P IA

σ −= = × ⋅ =

= = =
 

 
 Thus the net power radiated by a person is about 150 W. 
 
21. 4 8 2 4 5 2(5.67 10  W/m K )(1650 K) 4.20 10  W/mI Tσ −= = × ⋅ = ×  

 
 2 5 2 3 2( ) (4.20 10  W/m ) (0.50 10  m) 0.33 WP IA I rπ π −= = = × × =  

 
22. This small wavelength interval can be treated as a differential dλ.  At T = 1675 K, 

5(8.6174 10 eV/K)(1675 K) 0.1443 eVkT −= × = .  From Equation 3.41 we obtain 
2

5 /

34 8 2 9
2

9 5 (1240eV nm) /(875 nm)(0.1443 eV)

2 1( )
1

2 (6.626 10  J s)(2.998 10  m/s) (1.55 10  m) 61.4 W/m
(875 10  m) ( 1)

hc kT

hcdI I d d
e

e

λ

πλ λ λ
λ

π − −

− ⋅

= =
−

× ⋅ × ×
= =

× −

 

 
23. (a)  We consider an interval of width dλ = 2.0 nm at a central wavelength of 551.0 

nm.  At T = 6000 K, 5(8.6174 10 eV/K)(6000 K) 0.517 eVkT −= × = .  The intensity 
in this interval is 

 
2

5 /

34 8
5 2

9 5 (1240eV nm) /(551.0 nm)(0.517 eV)

2 1( )
1

2 (6.626 10  J s)(2.998 10  m/s)(2.0 nm) 1.9 10  W/m
(551.0 10  m) ( 1)

hc kT

hcdI I d d
e

e

λ

πλ λ λ
λ

π −

− ⋅

= =
−

× ⋅ ×
= = ×

× −

 

 
(b)  The total radiant intensity emitted by the Sun is 

 
4 8 2 4 4 7 2(5.67 10  W/m K )(6000 K) 7.35 10 W/mI Tσ −= = × ⋅ = ×  

 
The fraction is then 

 
5 2

7 2

1.9 10 W/m 0.0026 0.26%
7.35 10 W/m

×
= =

×
 

 
 

24. 2 2 2 2 2 2 4
e e( ) ( 2 cos )E m c E c p pp p m cθ′ ′ ′+ − = − + +  

 
2 2 2 4 2 2 2 2 2 2 2 2 4

e e e e2 2 2 2 cosE E m c Em c EE E m c c p c pp c p m cθ′ ′ ′ ′ ′+ + + − − = − + +  
 

 With 2 2 2 2 2 2and ,E c p E c p′ ′= =  
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2 2

e e

2
e

2
e

cos

( ) (1 cos )

1 1 1 (1 cos )

Em c EE E m c EE

m c E E EE

E E
EE E E m c

θ

θ

θ

′ ′ ′− − = −

′ ′− = −

′−
= − = −

′ ′

 

 

25. (a) 1
2

e

1 1 1 cos 1 1 2 / 2 0.09682 keV
10.39 keV 511.0 keVE E m c

θ −− −
= + = + =
′

 

 
 so 11/ 0.09682 keV 10.33 keVE −′ = = . 
 

(b) 2
e e e 10.39 keV 10.33 keV 0.06 keVK E m c E E′= − = − = − =  

 
26. (a) e( / )(1 cos )h m cλ λ θ′ = + −  

 
      0.02480 nm (0.002426 nm)(1 cos90 ) 0.02723 nm= + − ° =  
 

 (b) The momenta of the incident and scattered photons are 
   

4

4

1 1 1240 eV nm 4.999 10 eV/ ( direction)
0.02480 nm

1 1 1240 eV nm 4.553 10 eV/ ( direction)
0.02723 nm

h hcp c x
c c

h hcp c y
c c

⋅
= = = = ×

⋅′ = = = = ×

λ λ

λ λ

 

 
 (c) 4 4 3

e 4.999 10 eV 4.553 10 eV 4.46 10 eVK E E cp cp′ ′= − = − = × − × = ×  
 

(d) Because momentum must be conserved, the x component of the electron’s 
momentum must equal p, and the y component must equal p′− : 

  
4 4

e e4.999 10 eV/ and 4.553 10 eV/x yp p c p p c′= = × = − = − ×  
 

  2 2 4 2 4 2 4
e e e (4.999 10 eV/ ) (4.553 10 eV/ ) 6.762 10 eV/x yp p p c c c= + = × + × = ×  

 in the direction given by 
4

e1 1
4

e

4.553 10 eV/tan tan 42.3
4.999 10 eV/

y

x

p c
p c

θ − − − ×
= = = − °

×
 

 

27. When θ = 180°, cos θ = −1 and 2
e

1 1 2
E E m c

= +
′

, so 
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2 2 2
2e e e

e2 2
e e

0.25 MeV when
2 2 / 2

Em c m c m cE E m c
E m c m c E

′ = = ≅ = >>
+ +

 

 

28. (a)  1
2

e

1 1 1 cos 1 1 cos60 2.489 MeV
0.662 MeV 0.511 MeVE E m c

θ −− − °
= + = + =
′

 

 
  so 11/ 2.489 MeV 0.402 MeVE −′ = = . 
 

 (b) e 0.662 MeV 0.402 MeV 0.260 MeVK E E′= − = − =  
 

29. The initial momentum of the atom is zero, so conservation of momentum requires that 
the total final momentum of the atom and the photon also must equal zero.  Thus the 
recoil momentum of the atom patom and the momentum p of the photon must be equal 
in magnitude and opposite in direction.  The photon momentum is 

 

  36.4 keV 6.4 10  eV/Ep c
c c

= = = ×  

  
The recoil momentum of the atom is therefore 3

atom 6.4 10  eV/p c= × .  The kinetic 
energy associated with this momentum is certainly going to be far smaller than the 
atom’s rest energy (the mass of an iron atom is about 56 u, and thus its rest energy is 
in the range of 50,000 MeV).  We are therefore safe in using nonrelativistic kinetic 
energy: 

 
2 2 2 3 2

4atom atom
atom 2

(6.4 10  eV) 3.9 10 eV
2 2 2(56 u)(931.5 MeV/u)
p p cK

m mc
−×

= = = = ×  

  
30. After acceleration through a potential difference of 42.5 10 VVΔ = × , the electrons 

lose a potential energy of 42.5 10 eVU q VΔ = Δ = × and thus gain a kinetic energy of 
the same amount.  From Equation 3.55, 

  

min 4

1240 eV nm 0.0496 nm
2.5 10 eV

hc
K

λ ⋅
= = =

×
 

 
31. The energy of the absorbed photon is 

 
1240 eV nm 3.31eV

375 nm
hcE
λ

⋅
= = =  

 
 Neglecting the small recoil kinetic energy of the atom, this is the amount by which 

the internal energy of the atom increases.  The energy of the emitted photon is 
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1240 eV nm 2.14 eV
580 nm

hcE
λ

⋅
= = =  

 
 Again neglecting the recoil of the atom, this is the amount by which the internal 

energy decreases what the photon is emitted.  The net change in energy of the atom is 
 

3.31eV 2.14 eV 1.17 eVEΔ = − =  
 

32. (a)  191240 eV nm 2.25 eV/photon 3.61 10 J/photon
550 nm

hcE
λ

−⋅
= = = = ×  

 

20 23
19

radiated power = 55 W 0.75 = 41.25 W = 41.25 J/s

41.25 J/sphoton emission rate = 1.14 10 photons/s 9.12 10 photons/h
3.61 10 J/photon−

×

= × = ×
×

 
  (b)   At a distance of d = 1.0 m, the protons are spread uniformly over a sphere of 

surface area 24 dπ .  The fraction that strikes the paper depends on the ratio between 
the area of the paper and the area of the spherical surface over which they are spread: 

 

20 16
2

area of paperRate = emission rate 
area of sphere

(0.10 m)(0.10 m)(1.14 10 photons/s) 9.1 10 photons/s
4 (1.0 m)

×

= × = ×
π

 

 
33. Applying s /eV hc λ φ= −  to both of the data points, we have 

  

0.65 eV and 1.69 eV
420 nm 310 nm

hc hcφ φ= − = −  

  
 Subtracting these two equations, we find 

  

  
15

8

1 11.04 eV
310 nm 420 nm

1.04 eV 4.10 10 eV/s
1 1(3.00 10 m/s)

310 nm 420 nm

hc

h −

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

= = ×
⎛ ⎞

× −⎜ ⎟
⎝ ⎠

 

 
Returning to the two original equations, we multiply each equation by its wavelength: 
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  (0.65 eV)(420 nm) (420 nm) and (1.69 eV)(310 nm) (310 nm)hc hcφ φ= − = −  
 

 and solving for φ by subtracting, we obtain 
  

  (1.69 eV)(310 nm) (0.65 eV)(420 nm) 2.28 eV
420 nm 310 nm

φ −
= =

−
 

 
34. The photon’s momentum is / (1240 eV nm) / (192 nm) 6.46 eV/p h c cλ= = ⋅ =  and its 

energy is 6.46 eV.  The work function of aluminum is 4.08 eV, so the maximum 
kinetic energy of the photoelectron is 6.46 eV – 4.08 eV = 2.38 eV.  The momentum 
of the electron is 

 
21 12 2 2(511,000 eV)(2.38 eV) 1560 eV/p mK mc K c

c c
= = = =  

 
Conservation of momentum requires that photon atom electronp p p= − , taking the initial 
direction of the photon as positive.  Thus 

 
atom photon electron

2 2 2
5atom

atom 2 6
atom

6.46 eV/ 1560 eV/ 1566 eV/

(1566 eV) 4.88 10 eV
2 2(26.98 u)(931.5 10 eV/u)

p p p c c c

c pK
m c

−

= + = + =

= = = ×
×

 

 
This energy is negligible compared with the energy of the electron.  The relatively 
heavy atom can take the recoil momentum at very little cost in energy. 

  
35. (a)  At T = 1150 K, 

3 3

max
2.898 10  m K 2.898 10  m K 2.52 m

1150 KT
λ μ

− −× ⋅ × ⋅
= = =  

 

 (b) 3 5
max

1240 eV nm 4.9655
(2.898 10 m K)(8.617 10 eV/K)

hc
kTλ − −

⋅
= =

× ⋅ ×
 

 
 Comparing I(2λmax) with I(λmax), we obtain 

 

   
max

max

/5 4.9655
max max

/ 25 4.9655/ 2
max max

(2 ) ( ) 1 1 1 0.405
( ) (2 ) 1 32 1

hc kT

hc kT

I e e
I e e

λ

λ

λ λ
λ λ

⎡ ⎤ ⎡ ⎤− −
= = =⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎣ ⎦

 

 
36. Ke is largest when E′ is smallest (because eK E E′= − ) and thus when 1/E′ is largest, 

which occurs when cos θ = −1 (that is, when θ = 180°). 
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2 2
e e

2 2 2
e e e

2 2
e

e 2 2
e e

1 1 2 2 so
2

2
2 2

m c E Em cE
E E m c Em c m c E

Em c EK E E E
m c E m c E

+ ′= + = =
′ +

′= − = − =
+ +

 

 

37. With
2

5 /

2 1( )
1hc kT

hcdI I d d
e λ

πλ λ λ
λ

= =
−

, we solve to get 
2

/
5

21hc kT hc de
dI

λ π λ
λ

= +  and 

solving for T then gives 
 

2

5

7

34 8 2 2
5

2 5 7 2

2ln 1

(1240 eV nm)(10 cm/nm)
2 (6.626 10 J s)(2.997 10 m/s) (0.00833 10 m)(0.133 cm)(8.617 10 eV/K)ln 1+

(0.133 10 m) (1.440 10 W/m )
2.724 K

hcT
hc dk

dI
π λλ
λ

π

−

− −
−

− −

=
⎛ ⎞
+⎜ ⎟

⎝ ⎠
⋅

=
⎛ ⎞× ⋅ × ×

× ⎜ ⎟× ×⎝ ⎠
=

 

 
38. The radiation intensity per unit wavelength interval is I(λ).  The peak wavelength can 

be found from Wien’s displacement law: 
 

3
3

max
2.8978 10 m K 1.0634 10 m

2.7250 K
λ

−
−× ⋅

= = ×  

 
 It is convenient for this calculation to evaluate the quantity /hc kTλ , using Wien’s 

law to substitute for the product Tλ : 
 

9

5 3

(1240 eV nm)(10 m/nm) 4.9659
(8.617 10 eV/K)(2.8978 10 m K)

hc
kTλ

−

− −

⋅
= =

× × ⋅
 

 
  and thus / 143.44hc kTe λ = .  The intensity at this temperature and wavelength is 
 

  
2 34 8 2

3 3
5 / 3 5

2 1 2 (6.626 10 J s)(2.997 10 m/s)( ) 1.9306 10 W/m
1 (1.0634 10 m) (143.44 1)hc kT

hcI
e λ

π πλ
λ

−
−

−

× ⋅ ×
= = = ×

− × −
 

 
  The change in intensity corresponding to a small temperature difference is 
 

2 / /

5 / 2 2 / 2

5
3 3 8 3

2 ( )
( 1) 1

143.44 2 10(1.9306 10 W/m ) (4.9659) 7.1 10 W/m
142.44 2.7250

hc kT hc kT

hc kT hc kT

dI hc e hc e hcI T T R T
dT e kT e kT

λ λ

λ λ

π λ
λ λ λ

−
− −

⎛ ⎞ ⎛ ⎞Δ = Δ = Δ = Δ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

×⎛ ⎞= × = ×⎜ ⎟
⎝ ⎠
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 Measuring this tiny difference in the radiation intensity is roughly like trying to tell 

the difference between a 60 W bulb and a 100 W bulb from a distance of 4 miles. 
 
39. (a) According to Wien’s law, the maximum radiation intensity is emitted at a 

wavelength of 3 3
max (2.8977 10 m K) /(2.725 K) 1.063 10 m 1.063 mmλ − −= × ⋅ = × = .  

This is within the desired wavelength range, so the spectrometer records the 
maximum intensity at this wavelength.  With  

 
9

-3 5

(1240 eV nm)(10 m/nm) 4.968
(1.063 10 m)(8.617 10 eV/K)(2.725 K)

hc
kTλ

−

−

⋅
= =

× ×
 

 
we have 

max

2

max max /5
max

34 8 2
7 10 2

3 5 4.968

2 1( )
1

2 (6.626 10 J s)(2.997 10 m/s) 1 (3.0 10 m) 5.79 10 W/m
(1.063 10 m) 1

hc kT

hcdI I d d
e

e

−
− −

−

= =
−

× ⋅ ×
= × = ×

× −

λ

πλ λ λ
λ

π
 

 
The intensity falls off from the maximum in both directions, so the minimum 
intensity must occur at one of the endpoints.  For the endpoint at 1 0.5 mmλ = , we find 
as above 11 2

1 1 1/ 10.56 and ( ) 9.31 10 W/mhc kT dI I dλ λ λ −= = = × , and for the  
endpoint at 2 5.0 mmλ = , 2/ 1.056hc kTλ = , and 11 2

1 1( ) 1.91 10 W/mdI I dλ λ −= = × .  
Clearly the minimum intensity would be recorded at 2λ . 
(b) The area of the detector is 2 2 5 2(0.0043 m) 5.81 10 mA rπ π −= = = × .  At the 
maximum intensity, the photon energy is 

 
6 3 22/ (1240 eV nm) /(1.063 10 nm) 1.167 10 eV 1.869 10 JE hc λ − −= = ⋅ × = × = ×  

 
The number of photons striking the detector per unit time is 

 
 10 2 5 2 22 8(5.79 10 W/m )(5.81 10 m ) /(1.869 10 J/photon) 1.81 10 photons/sN − − −= × × × = ×  
 

At the wavelength corresponding to the minimum intensity, we have a photon energy 
of 233.973 10 JE −= ×  and a rate of 72.97 10 photons/sN = × . 

 

40. (1 cos ) 7.52 pm (2.426 pm)(1 cos180 ) 12.37 pmh
mc

λ λ θ′ = + − = + − ° =  
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5
initial

5

1 1 1240 eV nm 1.65 10 eV/
0.00752 nm

1 1 1240 eV nm 1.00 10 eV/ in negative direction
0.01237 nm

hcp c p
c c

hcp c
c c

λ

λ

⋅
= = = × =

⋅′ = = = ×
′

 

 
With final e initial finaland  p p p p p′= − = , we have 

 
5 5 5

e 1.65 10 eV/ 1.00 10  eV/ 2.65 10 eV/p p p c c c′= + = × + × = ×  
 
41. The initial speed of the atom can be expressed as v = c(125.0 m/s)/(2.997 × 108 m/s) =  

4.171 × 10−7c.  The initial momentum (which is nonrelativistic at this low speed) is 
 

 2 6 7
i

1 1 (1.007825 u)(931.5 10 eV/u)(4.171 10 ) 391.6 eV/vp mv mc c
c c c

−= = = × × =  

 
The photon momentum, which is in the opposite direction, has magnitude  

 
1 1 1240 eV nm 12.8 eV/

97 nm
hcp c

c cλ
⋅

= = =  

 
The atom’s final momentum is f i 391.6 eV/ 12.8 eV/ 378.8 eV/p p p c c c= − = − =  and 
its speed is 

 

  7f f
f 2 6

378.8 eV 4.035 10 120.9 m/s
(1.007825 u)(931.5 10  eV/u)

p p cv c c c
m mc

−= = = = × =
×

 

 
So the change in the speed of the atom is 125.0 m/s − 120.9 m/s = 4.1 m/s. 

 
42. (a) From the equation for the Doppler shift (Eq. 2.22 converted from frequency to 

energy and evaluated for small speeds), (1 / )E E v c′ = + , we solve for v to find 
 

2.41 keV 0.0047
511 keV

E Ev c c c
E
′ −⎛ ⎞= = =⎜ ⎟

⎝ ⎠
 

 
 (b)  The speed of the electron is so small that we may safely use nonrelativistic 

equations: 
2

2 2 21 1 1
2 2 2 (511,000 eV)(0.0047) 5.6 eVvK mv mc

c
⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

 

 
 As we learn in Chapter 10, this is a very typical value for the electrons in a solid. 
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43. Suppose the electron moves with velocity v in the x direction, and let the photon be 
emitted at an angle θ with momentum p and energy E.  After emission of the photon, 
the electron moves with velocity v′ ay an angle φ.  Then conservation of x and y 
components of momentum gives 

  
e e e

2 2 2 2 2 2

cos sincos and 0 sin
1 / 1 / 1 /

m v m v m vp p
v c v c v c

φ φθ θ
′ ′

= + = −
′ ′− − −

 

 
 Squaring and adding these two equations, we obtain 
  

2 2 2 2
2e e e

2 2 2 2 2 2

2 cos( )
1 / 1 / 1 /

m v m v m v pp
v c v c v c

θ φ
′ ′

= + − +
′− − ′−

 

 
 Conservation of energy gives e eE E pc′= + , or 
 

2 2
e e

2 2 2 21 / 1 /
m c m c pc

v c v c
= +

′− −
 

 
 Cancelling the common factor of c and squaring, we find 
  

2 2 2 2
2e e e

2 2 2 2 2 2

2
1 / 1 / 1 /

m c m c pm cp
v c v c v c

= + +
′− − ′−

 

 
 Now we subtract the results of the energy and momentum equations: 
  

[ ]

[ ]

2 2 2 2 2 2
e e e

2 2 2 2 2 2

e
2 2

( ) ( ) 2 cos( )
1 / 1 / 1 /

20 cos( )
1 /

m c v m c v m p c v
v c v c v c

m p c v
v c

θ φ

θ φ

′− − ′= + + +
′− − ′−

′= + +
′−

 

 
The quantity in the square brackets can never be zero (because v′ < c), so the only 
way the right side of this equation can be zero is if p = 0 – that is, no photon is 
emitted!  Thus it is not possible to have a photon emitted by an electron and satisfy 
both momentum and energy conservation. 

  
It is easier to analyze this problem if we switch to a frame of reference in which the 
electron is at rest.  The total initial energy is just the electron’s rest energy, 2

em c .  If 
the electron were to emit a photon of energy E, the final energy would be 

2
e eK m c E+ + , which is equal to the initial energy only if Ke = 0 and  

E = 0, which again shows that no photon can be emitted. 
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44. Let E be the energy of the initial photon, and let pe and Ke be the momentum and 
kinetic energy of each of the three electrons after the encounter.  Then momentum 
conservation gives 

  
2 2

e e3 or 9( )E p E p c
c
= =  

  
(where E/c is the momentum of the initial photon), and energy conservation gives 

  
2 2 2 2

e e e e3 3 ( ) ( )E m c E p c m c+ = = +  
 
 Squaring this expression, we obtain 
 

2 2 2 4 2 2 4
e e e e2 9( ) 9( )E Em c m c p c m c+ + = +  

 
 Combining the energy and momentum results, we find 
  

2 2 4 2 4 2
e e e e2 9( ) or 4Em c m c m c E m c+ = =  

  
The total initial energy of the electron + photon is then 2 2

e e5E m c m c+ = .  The final 
energy is 2

e e e3 3( )E m c K= + .  Equating the initial and final energies, we obtain 
 

2 2 22
e e e e e35 3( ) som c m c K K m c= + =  
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Chapter 4 
 
 This chapter presents some of the experimental evidence for the wave nature of 
particles (including the results of several beautiful particle diffraction experiments).  The 
resulting considerations affecting indeterminacy are discussed, followed by the 
representation of the behavior in terms of wave packets.  Some students may find the 
latter material mathematically challenging, especially those who are not yet familiar with 
Fourier analysis. 
 I have chosen to sidestep issues related to the nature of quantum reality, not 
because I find them uninteresting but rather because such philosophical discussions are 
not appropriate in a course at this level.  I have given in the reading list below some 
references that deal with these issues.  
 Students who are still reasoning from a semiclassical perspective will often fall 
into a “hidden-variable” mode of thinking: the particle has a definite location somewhere 
in the wave packet, and by measurement we find out what that location is (or was).  It’s a 
rather large leap to get to the view that the particle does not have a location but that it is 
the measurement that imparts a location to the particle. A full discussion of such issues 
would invoke the EPR (Einstein, Podolsky, Rosen) argument, Bell’s theorem, and the 
experiments that showed the violations of Bell’s inequality and thus agreement with the 
traditional Copenhagen interpretation.  Along with entanglement, teleportation, and 
quantum computing, those are topics for a more detailed or higher-level presentation, but 
interested students can be referred to one of the general presentations in the reading list. 
 
 

Supplemental Materials 
 
 Chapter 5 of Physlet Quantum Physics offers several simulations showing particle 
diffraction experiments, wave packet construction, and the uncertainty principle. 
 I often use the particle double-slit simulation “Doppelspalt” that can be found in 
the archives of the University of Munich physics education research group at: 
http://www.didaktik.physik.uni-muenchen.de/archiv/inhalt_materialien/doppelspalt/index.html. 
This program allows one to simulate diffraction experiments with different particles, 
adjust the particle energy and slit separation, and symbolically choose whether or not to 
detect the passage of the particles through the slits. 

 
 

Suggestions for Additional Reading 
 
For a delightful account of a world in which Planck’s constant is so large that quantum 
effects are ordinary, see G. Gamow, Mr. Tompkins in Paperback (Cambridge University 
Press, 1967). Another nonmathematical discussion of quantum theory is B. Hoffmann, 
The Strange Story of the Quantum (Dover, 1959). An imaginary dialogue, in which the 
protagonists of Galileo’s dialogues are reunited to discuss quantum theory, measurement, 
and uncertainty, is in J. M. Jauch, Are Quanta Real? (Indiana University Press, 1973). 
The paradox of Schrodinger’s cat is discussed in this last reference. Other references, in 

http://www.didaktik.physik.uni-muenchen.de/archiv/inhalt_materialien/doppelspalt/index.html
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which the philosophy of quantum theory is mixed with mathematics at about the same 
level as this text, are as follows: 
R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics 

(Addison-Wesley, 1965). Chapters 1 to 3 of Volume 3 are particularly good 
introductions to quantum waves and the philosophy of measurement. 

R. Resnick and D. Halliday, Basic Concepts in Relativity and Early Quantum Theory 
(Macmillan, 1992). Chapter 6 discusses the wave nature of particles and the 
uncertainty principle. 

E. H. Wichmann, Quantum Physics, Volume 4 of the Berkeley Physics Course (McGraw-
Hill, 1971). 

 
For a discussion of the uncertainty principle, see: 
G. Gamow, “The Principle of Uncertainty,” Scientific American 198, 51 (January 1958). 
 
A translation of Claus Jonsson’s 1959 article on the electron double-slit experiment is 
given in American Journal of Physics 42, 4 (1974). This short, clearly written paper is 
very readable and is highly recommended as an example of the careful experimental 
technique that is necessary in doing interference experiments to illustrate the wave nature 
of particles. 

More recent experiments, in which an electron microscope has been used to 
demonstrate beautiful interference and diffraction effects with electrons, can be found in: 

 
P. G. Merli, G. F. Missiroli, and G. Pozzi, American Journal of Physics 44,306 (1976). 
G. Matteucci and G. Pozzi, American Journal of Physics 46, 619 (1978). 
A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, and H. Ezawa, American Journal 

of Physics 57, 117 (1989).  
G. Matteucci, American Journal of Physics 58, 1143 (1990). 
 
A summary of experiments demonstrating interference and diffraction effects with 
neutrons is: 
R. Gahler and A. Zeilinger, American Journal of Physics 59, 316 (1991). 
 
Some readable and nontechnical presentations of quantum measurement issues and more 
recent considerations (such as Bell’s theorem and its experimental tests): 
J. Baggott, The Quantum Story: A History in 40 Moments (Oxford University Press, 2011). 
P. C. W. Davies and J. R. Brown, eds., The Ghost in the Atom (Cambridge University  
 Press, 1986). 
G. Greenstein and A. Zajonc, The Quantum Challenge (Jones and Bartlett, 1997). 
J. Gribben, Schrodinger’s Kittens and the Search for Reality (Little, Brown & Co., 1995). 
D. F. Styer, The Strange World of Quantum Mechanics (Cambridge University Press, 2000). 
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Materials for Active Engagement in the Classroom 
 
A.  Reading Quizzes 
 
1. De Broglie waves: 
  (1) are a form of electromagnetic radiation. 
  (2) are a basic property of all particles, whether at rest or in motion. 
  (3) travel at the speed of light. 
  (4) describe the wave-type behavior of moving particles. 
 
2. The deBroglie wave of a particle can best be described as: 
  (1) a form of electromagnetic wave. 
  (2) a characteristic of the oscillation of the particle. 
  (3) a probability wave. 
  (4) none of the above. 
 
3. Which of the following is NOT true about the deBroglie wavelength? 
  (1) It is larger for an electron than for a baseball moving at the same speed. 
  (2) It applies only to charged particles. 
  (3) It describes the wave properties of particles such as electrons. 
  (4) It is a property of waves of probability. 
 
4. The uncertainty relationships: 
  (1) apply to all types of waves.  (2) apply only to de Broglie waves. 
  (3) apply only to classical waves.  (4) apply only to light waves. 
 
Answers 1. 4 2. 3 3. 2 4. 1 
 
 
B.  Conceptual or Discussion Questions 
 
1. In the following situations, choose which particle has the larger de Broglie 

wavelength: 
  (1) the electron  (2) the proton  (3) they are both the same 
 (a) An electron and a proton moving with the same momentum.   
 (b) An electron and a proton moving at the same speed.   
 (c) An electron and a proton with the same nonrelativistic kinetic energy. 
 (d) An electron and a proton with the same kinetic energy, in both cases much larger 
  than the rest energy. 
  
2. Why is it not possible to observe double-slit interference with baseballs? 
 (1) The de Broglie wavelength of a baseball is too large. 
 (2) The de Broglie wavelength of a baseball is too small. 
 (3) Baseballs are too large to fit through a double-slit apparatus. 
 (4) Baseballs can't be accelerated to the speed of light. 
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3. A beam of electrons moving with speed v passes through a single slit and strikes a 
screen, where it forms a diffraction pattern with a bright central maximum and some 
less intense maxima on either side of center. 

 (a) If the speed of the electrons is increased to 2v, what happens to the width of the  
  central maximum? 
  (1) Increases (2) Decreases  (3) Remains the same 

(b) If the beam of electrons is replaced with a beam of protons moving with speed v, 
what happens to the width of the central maximum compared with that of electrons 
moving with the same speed? 

  (1) Increases (2) Decreases  (3) Remains the same 
 
4. Suppose an electron is moving at speed v.  In terms of v, what would be the speed of a 

baseball with the same deBroglie wavelength as the electron? 
  (1) v     (2) 1010v     (3) 10−10v     (4) 10−20v     (5) 10−30v 
 
5. A beam of monoenergetic electrons is incident on a mask that contains a single 

narrow slit.  A pattern of diffraction maxima and minima appears on the screen. 
 (a) If the slit width is halved, the diffraction minima on the screen would then be: 
  (1) closer together    (2) farther apart    (3) unchanged 

(b) If the kinetic energy of the electrons in the original experiment is halved, the 
diffraction minima on the screen would be: 

  (1) closer together    (2) farther apart    (3) unchanged 
(c) Suppose the beam of electrons were replaced with a beam of particles of greater 
mass, such that the resultant diffraction pattern was exactly the same as that in the 
original experiment.  To accomplish this, the kinetic energy of the new particles 
would be: 

  (1) greater than that of the original electrons   
  (2) less than that of the original electrons 
  (3) equal to that of the original electrons 
 
6. (a) A packet of water waves of width Δx contains a range of wavelengths Δλ about a 

central wavelength λ; that is, the range of wavelengths is from about λ - Δλ/2 to  
λ + Δλ/2.  If the packet were made half as wide, what would be the new range of 
wavelengths? 

  (1) 2Δλ    (2) Δλ/2 (3) Δλ      (4) None of these 
(b) A whistle blast lasts for a time interval Δt.  It consists of a central frequency ν 
with a range Δν.  If the blast were made twice as long, what would be the new range 
of frequencies? 

  (1) 2Δν    (2) Δν/2 (3) Δν     (4) None of these 
(c) A beam of electrons of momentum px moving in the x direction passes through a 
slit of width Δy = a.  The beam diffracts through the slit so that the range in its y 
momentum is Δpy, that is, from -Δpy/2 to + Δpy/2.  What is the new range in the y 
momentum if the slit is made half as wide? 

  (1) 2Δpy (2) Δpy/2 (3) Δpy  (4) None of these 
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7. Consider the following three experiments: 
 (a) The x component of the position of an electron is measured to within ±Δx, and  
 simultaneously the x component of its momentum is measured to within ±Δpx.   

(b) The x component of the position of an electron is measured to within ±Δx, and 
then later the x component of its momentum is measured to within ±Δpx.    
(c) The x component of the position of an electron is measured to within ±Δx, and 
simultaneously the y component of its momentum is measured to within ±Δpy. 
In which of these cases does the uncertainty principle NOT impose a limitation on the 
outcome of the experiment?   

  (1) a only    (2) b only     (3) c only 
  (4) a and b only   (5) a and c only    (6) b and c only     (7) a, b, and c 
 
Answers 1. (a) 3   (b) 1   (c) 1   (d) 3   2. 3 3. (a) 2   (b) 2      4. 5 
  5. (a) 2   (b) 2   (c) 2      6. (a) 1   (b) 2   (c) 1 7. 6 
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[Note to instructors: The following worksheet can serve as a transition between the 
material covered in chapters 4 and 5.] 
 

DeBroglie Wave Worksheet 
 

A particle of momentum p moving in the x direction is represented by a deBroglie wave 
of wavelength λ = h/p.  Suppose the deBroglie wave has amplitude A.  Then the 
probability to find the particle in any small interval of width dx is proportional to the 
square of the amplitude: probability ∝ |A|2dx.    
 
 
1.  First consider a free particle – no forces act on the particle anywhere in space.  The 
particle (of mass m) is moving in the x direction with speed v.  Write an expression that 
could represent the deBroglie wave of this particle.  Your wave equation should be a 
function of both x and t. 
 
 
 
 
 
Consider an interval of width dx located somewhere on the x axis.  What is the 
probability to locate the particle in that interval? 
 
 
 
 
How does that probability change as the interval is moved to different locations along the 
x axis?  Explain. 
 
 
 
 
How does the probability to locate the particle in any interval depend on the time?  
Explain. 
 
 
 
 
 
2.  Suppose now there is a constant potential energy U0 everywhere along the x axis, from 
x = −∞ to x = +∞.  Describe how your answers to the above questions would change.  
Assume the particle is moving with the same speed v. 
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3.  Now suppose that the potential energy changes at x = 0: 
    U(x) = U0      x < 0 
    U(x) = U1      x > 0 
Assume U1 > U0 (both are positive) and assume that the kinetic energy of the particle is 
greater than U1.  Let the particle be originally moving in the region x < 0 with speed v0 
toward the origin.  How does λ0, the wavelength of the deBroglie wave in the region x < 
0, compare with λ1, the wavelength of the deBroglie wave in the region x > 0? 
(1) λ0 = λ1    (2) λ0 < λ1    (3) λ0 > λ1   
Explain. 
 
 
 
 
How would you expect the probability P0 to locate the particle in a small interval dx 
somewhere in the region x < 0 to compare with the probability P1 to locate it in a similar 
interval in the region x > 0?  (Think about the speed of the particle in the two regions.) 
(1) P0 = P1    (2) P0 < P1    (3) P0 > P1   
Explain. 
 
 
 
 
Describe the deBroglie wave that would represent this particle and sketch the waveform.  
Be especially careful to think about how the wave changes when it passes through x = 0, 
and be sure your sketch is consistent with your answers to the above questions about how 
the wavelength and the probability differ in the two regions. 
 
 
 
 
 
 
 
 
4.  Suppose we have trapped a particle in a region of space of length L: 
    U(x) = +∞ x < 0 
    U(x) = 0 0 < x < L 
    U(x) = +∞ x > L 
Describe the physical motion of the particle in this case. 
 
 
 
 
How would you represent the deBroglie wave for this particle?  To what classical wave 
phenomenon is this similar? 
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Sample Exam Questions 
 
 
A.  Multiple Choice 
 
1. A particle has a lifetime of 3.2 × 10-23 s.  The rest energy of the particle is about 600 

MeV.  What range of values will most likely result from a measurement of its rest 
energy? 

  (a) 599 to 601 MeV    (b) 590 to 610 MeV    (c) 500 to 700 MeV    (d) 0 to 1200 MeV 
 
2. What is the kinetic energy of a proton whose deBroglie wavelength is 15.4 fm? 
  (a) 80.5 MeV  (b) 3.45 MeV  (c) 6340 MeV  (d) 6.90 MeV 
 
3. What is the de Broglie wavelength of an electron with a kinetic energy of 12.8 eV? 
  (a) 96.9 nm (b) 0.34 nm (c) 16.8 nm (d) 0.66 nm 
 
4. Experiments to measure the rest energy of a highly unstable elementary particle give 

a distribution of values centered at 2500 MeV with a width of ±40 MeV.  Assuming 
the width is not due to any defect in the measuring instrument, what is the best 
estimate for the lifetime of the particle? 

  (a) 10−19 s (b) 10−21 s (c) 10−23 s (d) 10−25 s 
 
5. A sodium atom, a neutron, a proton, and an electron all have the same nonrelativistic 

kinetic energy.  Which has the smallest de Broglie wavelength? 
  (a) sodium atom (b) neutron      (c) proton  (d) electron 
 
6. Which of the following does NOT provide evidence for the wave nature of matter?  
  (a) the photoelectric effect      (b) neutron diffraction   
  (c) the Heisenberg relationships     (d) electron diffraction 
 
Answers 1. b 2. b      3. b    4. c    5. a    6. a 
 
 
B.  Conceptual 
 
1. A beam of electrons of speed v is incident on a double slit and then strikes a screen 

where it is made visible.  If the speed of the electrons is increased, does the spacing 
between the bright regions on the screen increase, decrease, or remain the same?  
EXPLAIN YOUR ANSWER. 

  
2. An electron is trapped in a region of space between two walls that are a distance L 

apart.  Measurements of the kinetic energy of the electron give an average value of E.  
If the walls are moved closer together, will the average kinetic energy increase, 
decrease, or remain the same? EXPLAIN YOUR ANSWER. 
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3. A beam of electrons with kinetic energy K1 is incident on a single slit of width a.  
After passing through the slit, the beam strikes a screen where it is made visible.  At 
the center of the screen directly in front of the slit, the intensity of the pattern on the 
screen is I1.  If the kinetic energy of the beam is increased (keeping the slit width and 
the number of electrons per second constant), does the intensity of the pattern at the 
center of the screen increase, decrease, or remain the same?   EXPLAIN YOUR 
ANSWER. 

 
4. A beam of electrons of kinetic energy K is incident on a tiny hole of diameter D in a 

metal foil.  Electrons that pass through the hole strike a screen where they produce a 
visible image.  Most of the electrons appear concentrated in a bright spot at the center 
of the screen.  If the kinetic energy of the electrons is increased, does the size of the 
central spot on the screen increase, decrease, or remain the same?  EXPLAIN YOUR 
ANSWER. 

 
5. Atomic masses are often given in mass units (u) to an accuracy of six decimal places.  

A certain atom is very unstable, with a lifetime of about 10-20 s.  Does this short 
lifetime have a large effect or a negligible effect on our ability to determine the mass 
of this atom to the desired precision of 10-6 u?  EXPLAIN YOUR ANSWER. 

 
6. The rest energies of two particles are measured in the laboratory.  The measurements 

on particle A show a distribution of values centered at 500 MeV but with a spread of 
about ±10 MeV.  Measurements on particle B show a distribution centered at 200 
MeV but with a spread of about ±20 MeV.  The measurements are done with 
equipment of very great precision (typically 1 eV).  When measurements are made of 
the lifetimes of the two particles, is the lifetime of particle A greater than, less than, 
or equal to the lifetime of particle B?  EXPLAIN YOUR ANSWER. 

 
7. A beam of electrons of speed v is incident on a single slit and then strikes a screen 

where it is made visible.  If the speed of the electrons is increased, does the width of 
the central bright region on the screen increase, decrease, or remain the same?  
EXPLAIN YOUR ANSWER. 

  
8. An electron is represented by a wave packet of length d.  The electron cannot be at 

rest, but must have a certain minimum kinetic energy K.  If the size of the electron’s 
wave packet is doubled to 2d, does the minimum kinetic energy increase, decrease, 
or remain the same?  EXPLAIN YOUR ANSWER. 

 
9. A beam of electrons passes through a narrow hole and then strikes a screen.  After the 

beam passes through the hole, it is found that the beam spreads because the electrons 
have acquired an average momentum of p transverse (perpendicular) to the direction 
of their original motion.  If the hole is made larger, does the average transverse 
momentum become larger, become smaller, or stay the same?  EXPLAIN YOUR 
ANSWER. 
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10. Consider the following three experiments: (a) The position of an electron is measured 
to within Δx, and simultaneously the x component of its momentum is measured to 
within Δpx.  (b) The position of an electron is measured to within Δx, and then later 
the x component of its momentum is measured to within Δpx.   (c) The position of an 
electron is measured to within Δx, and simultaneously the y component of its 
momentum is measured to within Δpy. 
In which of these cases (possibly more than one) does the uncertainty principle NOT 
impose a limitation on the outcome of the experiment?  EXPLAIN YOUR ANSWER. 

 
Answers 1. decrease 2. increase 3. increase 4. decrease 5. large 
   6. greater than 7. decrease 8. decrease 9. become smaller 10. b,c 
 
 
 
C.  Problems 
 
1. A certain solid is composed of molecules of diameter 0.30 nm (1 nm = 10-9 m). You 

are assigned the task of forming an image of the molecules in this solid by using 
neutron scattering.   

 (a) What value should you choose for the kinetic energy of the neutrons? 
(b) The molecule consists of several atoms.  If you wanted instead to produce images 
of the individual atoms rather than the entire molecule, should you increase or 
decrease the kinetic energy of the neutrons?  Explain your answer. 

 
2. In a certain experiment, the momentum of a beam of electrons is measured to have a 

value of 14.2 keV/c, with a spread in values of ±0.7 keV/c. 
(a) What is the minimum size of the apparatus containing the electrons that is 
necessary to make this measurement? 

 (b) What is the deBroglie wavelength of these electrons? 
(c) If an experiment were done to measure the wavelength of the electrons (for 
example, a double-slit interference experiment), there will be a distribution of values 
about some central mean or average wavelength.  How likely would it be to find a 
particular value for the wavelength that is 15% larger or smaller than the mean value?  
Very likely?  Somewhat likely?  Very unlikely?  Explain your answer. 

 
3. (a) An electron is moving in the x direction with a speed of 0.0045c.  What is its de 

Broglie wavelength? 
(b) The electron is confined to a region of space along the x axis that is 0.236 nm in 
length.  What range of values will most likely result from a measurement of its speed 
in the x direction? 

 (Hint:  You can work this problem either in SI units or in eV units.) 
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4. (a) Calculate the uncertainty in momentum for a proton confined to a nucleus of 

radius 6.0 fm. 
 (b) What is the kinetic energy of a proton with that momentum? 

(c) Suppose a proton in that nucleus had a kinetic energy of 5.6 MeV.  If the proton 
were represented by a deBroglie wave, how many wavelengths could fit across the 
diameter of that nucleus? 

 
5. (a) Find the de Broglie wavelength of electrons moving with a speed of 1.63 × 105 m/s. 

(b) Suppose these electrons are described by a wave packet of width 2.65 nm.  What 
range of values will most likely result from a measurement of the speed of the 
electrons? 
(c) What range of values would most likely result from a measurement of the 
wavelength of these electrons? 

 
6. An electron moving at a speed of 0.0202c is trapped in an atomic-sized region of 

width 0.12 nm.   
(a) What range of values would likely result from a measurement of the speed of the 
electron? 

 (b) Find the de Broglie wavelength of the electron and sketch its wave packet. 
 
Answers 1. (a) 0.0091 eV   (b) decrease 
  2. (a) 0.28 nm   (b) 0.0873 nm   (c) Very unlikely 
  3. (a) 837 eV/c or 0.54 nm   (b) 0.0029c to 0.0061c 
  4. (a) 16.5 MeV/c   (b) 0.144 MeV   (c) 1 
  5. (a) 4.46 nm   (b) 1.19 × 105 m/s to 2.07 × 105 m/s   (c) 3.26 nm to 5.66 nm  
  6. (a) 0.0170c to 0.0234c   (b) 0.12 nm 
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Problem Solutions 
 
 
1. (a) At 5 MeV, 2K mc , so we use nonrelativistic kinetic energy. 
 

 

21 12 2 2(938.3 MeV)(5 MeV) 96.9 MeV/

1240 MeV fm 13 fm
96.9 MeV

p mK mc K c
c c

hc
pc

λ

= = = =

⋅
= = =

 

 
 (b)  In this case 2K mc , so the extreme relativistic approximation E = pc is valid. 
 

 3

1240 MeV fm 0.025 fm
50 10 MeV

hc hc
pc E

λ ⋅
= = = =

×
 

 
(c)  The speed is small compared with c, so nonrelativistic formulas apply.  With 

6 8/ (1.00 10 m/s)/(3.00 10 m/s) 0.00333.v c = × × =  
 

 2

1240 eV nm 0.73 nm
( )( / ) (511,000 eV)(0.00333)

h h hc
p mv mc v c

λ ⋅
= = = = =  

 
2. (a)    53 3

2 2 (8.6174 10 eV/K)(293 K) 0.0379 eVK kT −= = × =  
 
 (b)   The neutrons are nonrelativistic, so 
 

 

2 6 3

3

1 12 2 2(939.6 10 eV)(0.0379 eV) 8.44 10 eV/

1240 eV nm 0.147 nm
8.44 10 eV

p mK mc K c
c c

hc
pc

λ

= = = × = ×

⋅
= = =

×

 

 

3. (a)  1 1 1240 MeV fm 135.4 MeV/
9.16 fm

h hcp c
c c

⋅
= = = =
λ λ

 

    From 2 2 2 2 2/ 1 / (1/ ) ( / ) / 1 /p mv v c c mc v c v c= − = −  we solve for v: 
    

 
2 2 2

0.143
1 ( / ) 1 [(938.3 MeV)/(135.4 MeV)]

c cv c
mc pc

= = =
+ +

 

 
    (b)    2 2 2 2

0 ( ) ( )K E E pc mc mc= − = + −      

         2 2(135.4 MeV) (938.3 MeV) 938.3 MeV 9.72 MeV= + − =  
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This gain in kinetic energy requires a loss in potential energy of ΔU = −9.72 MeV 
and thus a potential difference of / 9.72 MeV/ 9.72 MVV U q eΔ = Δ = − = − . 

 
4. With 5( )( 2.36 10 V) 0.236 MeVU q V eΔ = Δ = + − × = − , we have 

0.236 MeVK UΔ = −Δ = + .  Then 

 

21 12 2 2(938.3 MeV)(0.236 MeV) 21.0 MeV/

1240 MeV fm 59.0 fm
21.0 MeV

p mK mc K c
c c

hc
pc

λ

= = = =

⋅
= = =

 

 
 
5. (a)  For λ = 12 nm, 

  2 2 2 2

2

1 1 1240 eV nm 100 eV/
12 nm
(100 eV) 0.010 eV

2 2 2(511,000 eV)

h hcp c
c c

p p cK
m mc

λ λ
⋅

= = = =

= = = =
 

  
To increase the kinetic energy by ΔK = 0.010 eV, its potential energy must decrease 
by , whereU K U q VΔ = −Δ Δ = Δ : 

  
0.010 eV 0.010 VU KV

q q e
Δ −Δ −

Δ = = = = +
−

 

   
 (b)  For λ = 0.12 nm, 
  

 

4

2 2 2 4 2

2

1 1 1240 eV nm 1.0 10 eV/
0.12 nm

(1.0 10 eV) 100 eV
2 2 2(511,000 eV)

/ 100 V

h hcp c
c c

p p cK
m mc

V K q

λ λ
⋅

= = = = ×

×
= = = =

Δ = −Δ = +

 

 
 (c)  For λ = 1.2 fm, 
  

 1 1 1240 MeV fm 1000 MeV/
1.2 fm

hcp c
c cλ

⋅
= = =  

  
 Here 2pc mc , so we can use the extreme relativistic approximation: 
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9

9

1000 MeV 1.0 10 eV

/ 1.0 10 V

K E pc

V K q

≅ ≅ = = ×

Δ = −Δ = + ×
 

 
Although it is possible to accelerate electrons to such high energies, it is not done by 
a single acceleration through such a large potential difference. 

 
6. (a)  The wavelength should be roughly the size of (or smaller than) the object we 

want to study, so λ ≤ 0.10 μm. 
 (b)  Corresponding to λ ≤ 0.10 μm, 
  

 
2 2 2 2

4
2

4

1 1 1240 eV nm 12.4 eV/
100 nm

(12.4 eV) 1.5 10 eV
2 2 2(511,000 eV)

/ / 1.5 10 V

h hcp c
c c

p p cK
m mc

V U q K q

λ λ

−

−

⋅
= = = =

= = = = ×

Δ = Δ = −Δ = + ×

 

 
This is a lower limit on the accelerating voltage.  If ΔV is smaller than this value, the 
wavelength is too large and details of the particles could not be seen because of 
diffraction effects.  As ΔV is increased above this value, finer details would be 
observed. 

 

7. (a)          1 1 1240 MeV fm 88.6 MeV/
14 fm

hcp c
c cλ

⋅
= = =  

  
 For electrons 2pc mc , so the extreme relativistic approximation is valid. 
  

 
2

88.6 MeV

88.6 MeV 0.5 MeV 88 MeV

E pc

K E mc

≅ =

= − = − =
 

 
 (b)  For neutrons, 2pc mc so 
  

 
2 2 2 2

2

(88.6 MeV) 4.2 MeV
2 2 2(939.6 MeV)
p p cK
m mc

= = = =  

 

 (c)    
2 2 2 2

2

(88.6 MeV) 1.1 MeV
2 2 2(3727.4 MeV)
p p cK
m mc

= = = =  

 

8. (a)        2 6 41 12 2 2(3727 10 eV)(0.020eV) 1.22 10 eV/p mK mc K c
c c

= = = × = ×  
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 4

1240 eV nm 0.10nm
1.22 10 eV

hc
pc

λ ⋅
= = =

×
 

  
 (b)   The fringes are separated by about 9 μm. 
  

 
6 -6(8 10 m)(9 10 m) 0.11 nm
0.64 m

d y
D

λ
−Δ × ×

= = =  

 
9. For m = 10−9 g and taking the density to be ρ = 2 g/cm3, the volume of the particle is 

9 3 10 3/ (10 g)/(2g/cm ) 5 10 cmV m ρ − −= = = × , which corresponds to a diameter of 
about 0.001 cm = 10−5 m.  The spacing between the fringes is then 

  

 
20 6

8
5

(6.6 10 m)(5 10 m) 3.3 10 m 33 nm
10 m

Dy
d
λ −

−
−

× ×
Δ = = = × =  

  
 which is about the size of an atom! 
 

10.    sin (0.215 nm)(sin55 ) 0.0881 nm
2 2

d φλ °
= = =  

 

4

2 2 4 2

2 6

1240 eV nm 1.408 10 eV
0.0881 nm

( ) (1.408 10 eV) 194 eV
2 2 2(0.511 10 eV)

hcpc

p pcK
m mc

λ
⋅

= = = ×

×
= = = =

×

 

 
To achieve this kinetic energy, the electrons must be accelerated through a potential 
difference of ΔV = +194 V. 

 

11.  2 6 41 12 2 2(0.511 10 eV)(175 eV) 1.337 10 eV/p mK mc K c
c c

= = = × = ×  

 4

1240 eV nm 0.0927 nm
1.337 10 eV

h hc
p pc

λ ⋅
= = = =

×
 

  

 For n = 1:  1 1 0.0927 nmsin sin 15.2
0.352 nmd

λφ − −= = = °  

 

 For n = 2:  1 12 2(0.0927 nm)sin sin 31.8
0.352 nmd

λφ − −= = = °  

 

 For n = 3:  1 13 3(0.0927 nm)sin sin 52.2
0.352 nmd

λφ − −= = = °  
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 There is no diffracted beam for n = 4. 
 

12. The number of wave crests passing the observation point in time Δt is N f t= Δ .  The 
uncertainty in this number is 

  
 N f tΔ = Δ Δ  
  
 With /f v λ= , we take differentials and obtain 
  

 2 2orv vdf d fλ λ
λ λ

= − Δ = Δ  

  
 Using /t x vΔ = Δ  (where Δx is the distance traveled by the wave in the time Δt), 
  

 2 2

v x xN f t
v

λλ
λ λ

Δ Δ Δ⎛ ⎞⎛ ⎞Δ = Δ Δ = Δ =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

  
If the uncertainty in counting is a fraction ε of one wave ( NΔ ∼ ε ), then these results 
are consistent with 2 andx f tΔ Δ Δ Δ∼ ∼λ ελ ε . 

 
13. (a)   (330 m/s)(2.0 s) 660 mx v tΔ = Δ = =  
 

  (b)   3

330 m/s 0.33 m
1.0 10 Hz

v
f

λ = = =
×

 

 

  (c)   
2 2(0.1)(0.33 m) 0.017 mm

(660 m)x
ελλΔ = =
Δ

∼  

 

  (d)   0.1 0.050 Hz
2.0 s

f
t
ε

Δ = =
Δ

∼  

 
14. (a)   2(25 cm/s)(4.0 s) 1.0 10 cmx v tΔ = Δ = = ×  
 
  (b)  With 2/ (1.0 10 cm)/12 8.3 cmx Nλ = Δ = × = , we have 
   

 
2 2

2

(0.1)(8.3 cm) 0.069 cm
1.0 10 cmx

ελλΔ = =
Δ ×

∼  

 
15. The central frequency is 8 9/ (2.997 10 m/s)/(0.225 m) 1.33 10 Hzf c λ= = × = × .  The 

frequency range is 
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 4
6

0.1 8.4 10 Hz
1.17 10 s

f
t
ε

−Δ = = ×
Δ ×

∼  

   
The receiver should accept signals in a range of 8.4 × 104 Hz about a frequency of 
1.33 × 109 Hz. 

 
16. For 410 HzfΔ = , 

 5
4

0.1 10 s
10 Hz

t
f
ε −Δ = =
Δ

∼  

  
 The signal processing time must be at least 10−5 s. 

 
 
17. With Δv = 2.0 × 104 m/s, 
  

   
34

9
31 4

1.05 10 J s 5.8 10 m 5.8 nm
(9.11 10 kg)(2.0 10 m/s)

x
p m v

−
−

−

× ⋅
Δ = = = × =

Δ Δ × ×
∼  

 

18. (a)  1 1 1240 eV nm 2000 eV/
2 2 2 (0.1 nm)

h hcp c
x x c x cπ π π

⋅
Δ = = = =

Δ Δ Δ
∼  

 

  (b)  
2 2 2

2 6

( ) ( ) (2000 eV) 4 eV
2 2 2(0.511 10 eV)
p c pK
m mc

Δ Δ
= = = =

×
 

 

19.   
16

23

6.58 10 eV s 33 MeV
2.0 10 s

E
t

−

−

× ⋅
Δ = =

Δ ×
∼  

 
 Measurements of the Σ+ rest energy are likely to fall in the range 1385 MeV ± 33 

MeV, or from 1352 MeV to 1418 MeV. 
 

20.   
16

24
6

6.58 10 eV s 5.5 10 s
120 10 eV

t
E

−
−× ⋅

Δ = = ×
Δ ×

∼  

 

21.   
16

7
9

6.58 10 eV s 5.5 10 eV
1.2 10 s

E
t

−
−

−

× ⋅
Δ = = ×

Δ ×
∼  

 
22. With 15/ 10E E −Δ = , we have 
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15 15 3 11

16
5

11

10 10 (50 10 eV) 5.0 10 eV

6.58 10 eV s 1.3 10 s
5.0 10 eV

E E

t
E

− − −

−
−

−

Δ = = × = ×

× ⋅
Δ = = ×

Δ ×
∼

 

 
 
23. As we did for electrons in Example 4.7, let’s find the kinetic energy of an alpha 

particle with a momentum of 19.7 MeV/c: 
  

 
2 2 2

2

( ) (19.7 MeV) 0.052 MeV
2 2 2(3727 MeV)
p pcK
m mc

= = = =  

 
This is negligible compared with the typical kinetic energies of alpha particles 
emitted in radioactive decays. Therefore, the uncertainty principle does not limit the 
existence of these alpha particles inside the nucleus. 

 

24.        
00

0 0

/ 2/ 2

0 0
/ 2 / 2

sin( ) ( ) cos cos
k kk k

k k k k

kxy x A k kx dk A kx dk A
x

+Δ+Δ

−Δ −Δ

= = =∫ ∫  

            

[ ]0
0 0

0
0 0 0 0

0
0

sin ( / 2) sin ( / 2)

sin cos cos sin sin cos cos sin
2 2 2 2

2 sin cos
2

A x k k x k k
x

A x k x k x k x kk x k x k x k x
x

A k x k x
x

= + Δ − −Δ

⎡ Δ Δ Δ Δ ⎤⎛ ⎞= + − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Δ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 
 

25.   
2 2

0( ) / 2( )
0( ) ( ) cos cosk k ky x A k kx dk A e kx dk

+∞ +∞ − − Δ

−∞ −∞
= =∫ ∫  

 
  Let 0k k k′ = − . 

    
2 2/ 2( )

0 0 0( ) [cos cos sin sin ]k ky x A e k x k x k x k x dk
+∞ ′− Δ

−∞
′ ′ ′= −∫  

 
The integral over the second term (involving the sines) vanishes because sin k x′  is an 
odd function of k′ (the contribution of the integral from −∞ to 0 cancels the part from 
0 to +∞).  The remaining integral is 
 

 
2 2/ 2( )

0 0 0
( ) 2 cos cosk ky x A k x e k x dk

∞ ′− Δ ′ ′= ∫  
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 The integral is a standard form that can be found in integral tables: 
  

 
2 2

2 2
( ) / 2

( ) / 2
0 0 0 0( ) 2 cos 2 cos

2 /

x k
x key x A k x A k e k x

k
π π

− Δ
− Δ= = Δ

Δ
 

 
 

26.   1 2 1 2( ) cos(2 / ) cos(2 / ) [cos(2 / ) cos(2 / )]y x A x A x A x xπ λ π λ π λ π λ= + = +  
  Using the identity 1 1

2 2cos cos 2cos ( )cos ( )x y x y x y+ = + − , we get directly 
   

 
1 2 1 2

( ) 2 cos cosx x x xy x A π π π π
λ λ λ λ

⎛ ⎞ ⎛ ⎞
= + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 

27.  1
1 1 1

1 1

6 4 2 22 2 2 and
9 3 9

vf kπ π πω π π π
λ λ

= = = = = =  

 2
2 2 2

2 2

4 8 2 22 2 2 and
11 11 11

vf kπ π πω π π π
λ λ

= = = = = =  

 

 1 2
group

1 2

4 / 3 8 /11 15
2 / 9 2 /11

v
k k k

ω ωω π π
π π

−Δ −
= = = =
Δ − −

 

 
28. (a)  phase /v kω=   

phase
group phase phase

phase phase phase phase phase
2

phase
group phase

( )

2 2

dvd dv kv v k
dk dk dk

dv dv dv dv dvd d
dk d dk d dk k d k d k

dv
v v

d

ω

λ π π λ
λ λ λ λ

λ
λ

= = = +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= −

 

 
(b)  The index of refraction n for light in glass decreases as λ increases (shorter 
wavelengths are refracted more than longer wavelengths); that is / 0dn dλ < .  
Because phase/n c v= , /dn dλ  and phase /dv dλ  have opposite signs and so 

phase /dv dλ > 0.  Thus group phasev v> . 
 

29.   3/ 2
phase or

2 2
b bk bv k

k
ω ω

λ π π
= = = =  

 

 1/ 2
group phase

3 3 3
2 2 2 2 2

d b bkv k v
dk
ω

π π
= = = =  
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30.    2 2 2 2 4 2K E mc p c m c mc= − = + −  
 

           
2 2 2 2

2 2 2 4 1/ 2 2 2

2 2 2 4 2 2 2

1 / 1 /( ) (2 )
2 / 1 /

dK pc pc mv v cp c m c pc c v
dp Ep c m c mc v c

− −
= + = = = =

+ −
 

 
31. (a)  With a node at each end (say, at x = 0 and x = L) and no other nodes, we must 

have one half-wave between the two nodes.  Thus 1 1/ 2 or 2L Lλ λ= = .  If there is an 
additional node at the midpoint (x = L/2), then there is a full wave between the two 
ends, and 2 2or 2 / 2L Lλ λ= = .  The next shorter wavelength has (in addition to the 
nodes at either end ) nodes at x = L/3 and x = 2L/3, so there are three half-waves 
between the ends: 3 33 / 2 or 2 / 3L Lλ λ= = .  Continuing in this way, we see that in 
the nth case there are n half-waves in the length L, so ( / 2) or 2 /n nL n L nλ λ= = . 

 (b)  With / / 2n np h nh Lλ= = , we see that cpn is of order keV, so nonrelativistic 
equations can safely be used: 

 

 
2 2 2 2 2 2 2

2 2
2 2 2 2

(1240 eV nm) (1.50 eV)
2 2 8 8(511,000 eV)(0.50 nm)

n n
n

p c p n h cK n n
m mc mc L

⋅
= = = = =  

 
 Thus 1 2 31.50 eV, 6.00 eV, 13.5 eV.K K K= = =  
 

32. 
2 6

1240 eV nm 0.279 nm
2 2(940 10 eV)(0.0105 eV)

h hc
p mc K

λ ⋅
= = = =

×
 

   
  From the Bragg scattering formula (Eq. 3.18), we have 
 

 (1)(0.279 nm)sin 0.565 or 34.4
2 2(0.247 nm)
n

d
λθ θ= = = = °  

 
For second-order (n = 2) scattering at that angle, (2 sin ) / 2 0.140 nmdλ θ= = .  The 
wavelength is reduced by half, so the momentum is doubled and the kinetic energy 
increases by a factor of 4 to 0.0420 eV.  For third-order scattering (n = 3), the kinetic 
energy is 9 times as great, or 0.0945 eV.  The scattered beam at that angle will consist 
of all energies that are n2 times the original energy (n = 1,2,3,…). 

 
33. (a)  The mass of a nitrogen molecule is 14 u.  The average molecular kinetic energy is 

3
2 kT , so the de Broglie wavelength is 

 

2 6 5

1240 eV nm 0.0279 nm
2 2(14 u)(931.5 10 eV/u)(1.5)(8.617 10 eV/K)(293 K)

h hc
p mc K

λ
−

⋅
= = = =

× ×
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 (b)  The number of nitrogen molecules per unit volume is 
 

3 23
25 3A (1.292 kg/m )(6.02 10 molecules/mole) 2.78 10 molecules/m

(0.028 kg/mole)
Nn
M
ρ ×

= = = ×  

 
and the average spacing between molecules is 1/ 3 93.30 10 m 3.3 nmn− −= × = .  The de 
Broglie wavelength is 2 orders of magnitude smaller than the molecular spacing, so 
that quantum effects are unimportant in gases at room temperature. 
(c)  Let’s estimate that quantum effects would be significant if the de Broglie 
wavelength were about 1/10 of the molecular separation (0.33 nm): 
 

 2 2 2 2
4

2 6

1 1 1240 eV nm 3760 eV/
0.33 nm

(3760 eV) 2.71 10 eV
2 2 2(28 u)(931.5 10 eV/u)

h hcp c
c c

p p cK
m mc

λ λ
−

⋅
= = = =

= = = = ×
×

 

.   
The molecules have this tiny amount of average kinetic energy at a temperature 
 

 
4

5

2 2(2.71 10 eV) 2.1 K
3 3(8.617 10 eV/K)
KT
k

−

−

×
= = =

×
 

  
Nitrogen is no longer a gas at this temperature, so our calculation using the formula 
for the mean molecular energy of gases is not correct.  However, it does suggest that 
if quantum effects are to become important in gases, they will occur only at low 
temperatures.  (Recall the discussion in Chapter 1 about how the equipartition of 
energy fails for the rotational and vibrational motions of some gases at even moderate 
temperatures, so other effects of quantum behavior may be observable at these 
temperatures.) 

 
34. For both the photon and the electron, 
 

 31 1 1240 eV nm 4.41 10 eV/
0.281 nm

h hcp c
c cλ λ

⋅
= = = = ×  

 
  For the photon, 

 
 34.41 10 eVE pc= = ×  
 

  For the electron, 
 

 
2 2 2 3 2

2

(4.41 10 eV) 19.1eV
2 2 2(511,000 eV)
p p cK
m mc

×
= = = =  
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35. (a)  The initial nucleus is at rest, the final momenta of the helium and the neutron 

must sum to zero: n He 0p p+ = , and so n Hep p= − .  The energy released in the decay 
appears as the kinetic energy of the final products: n He 0.89 MeVK K+ = .  Using 
nonrelativisitc kinetic energies, we have 

 

 
22 2 2 2
Hen n n n n

n He
n He n He n He

1 0.89 MeV
2 2 2 2 2

pp p p p mK K
m m m m m m

⎛ ⎞
+ = + = + = + =⎜ ⎟

⎝ ⎠
 

 

 n
n He

0.89 MeV 0.89 MeV 0.71 MeV
1 / 1 1/ 4

K
m m

= = =
+ +

 

 

 (b)   
16

21

6.58 10 eV s 0.66 MeV
1.0 10 s

E
t

−

−

× ⋅
Δ = =

Δ ×
∼  

 
The measured neutron energies will then be in the range 0.89 MeV ± 0.66 MeV.  The 
neutron energy is not very well defined in this process. 

 

36. (a) 51 1 1240 eV nm 2.0 10 eV/
2 2 (1.0 cm)x

hcp c
x c x cπ π

−⋅
Δ = = = ×

Δ Δ
∼  

 
  (b)  2 2 2 2 2 2 2 2

av av( ) ( ) ( ) ( ) ( ) 3( )x y z x y z xp p p p p p p p= + + = Δ + Δ + Δ = Δ  
 

 using Eq. 4.15, where the last step can be made because all three components of the 
momentum have the same uncertainty. 

 

 
2 2 5 2

15av
av 2

( ) 3( ) 3(2.0 10 eV) 1.2 10 eV
2 2 2(511,000 eV)

xp c pK
m mc

−
−Δ ×

= = = = ×  

 
(c)  The 1 cm3 piece of copper has a mass of (1 cm3)(8.95 g/cm3) = 8.95 g.  The molar 
mass of copper is 63.5 g, so the cube is (8.95 g)/(63.5 g/mole) = 0.141 mole.  As a 
rough estimate, let’s assume that the heat capacity of copper remains constant for 
most of the region from T = 0 K to 300 K (the heat capacity in fact falls to zero at low 
temperature, but the assumption is good enough for this estimate).  The internal 
energy added to copper to raise its temperature from 0 K to 300 K is then roughly 

  
 int (0.141 mole)(24.5 J/mole K)(300 K) 1000 JE C TμΔ = Δ = ⋅ =  
 

Assuming that each atom contributes one free electron (and thus 1.2 × 10−15 eV) to 
the metal, the contribution to the internal energy of the metal is 
 

 23 15 8 11(0.141 mole)(6.02 10 atoms/mole)(1.2 10 eV/atom) 1.0 10 eV 1.6 10 J− −× × = × = ×  
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This is some 14 orders of magnitude smaller than the internal energy of the metal, so 
it is clear that these mobile electrons do not make a significant contribution to the 
internal energy of the metal. 

 
37. (a)  2 135 MeVE m cπΔ =∼  
 

  (b) 
16

24
6

6.58 10 eV s 4.87 10 s
135 10 eV

t
E

−
−× ⋅

Δ = = ×
Δ ×

∼  

 
  (c) 8 24(3.00 10 m/s)(4.87 10 s) 1.46 fmx c t −Δ = Δ = × × =  
 

38. (a) 1 1 1240 eV nm 990 eV/
2 2 (0.20 nm)x

hcp c
x c x cπ π

⋅
Δ = = =

Δ Δ
∼  

 
  (b) 2 2 2 2 2 2 2 2

av av( ) ( ) ( ) ( ) ( ) 3( )x y z x y z xp p p p p p p p= + + = Δ + Δ + Δ = Δ  
 

 
2 2 2 2

5av av
av 2 6

( ) ( ) 3(990 eV) 2.4 10 eV
2 2 2(65 u)(931.5 10 eV/u)
p c pK

m mc
−= = = = ×

×
 

 
 (c)  In a cube of copper 1.0 cm on edge (0.141 mole), the energy is 
 

23 5 18(0.141 mole)(6.02 10 atoms/mole)(2.4 10 eV/atom) 2.04 10 eV 0.33 J−× × = × =  
 

This energy is small compared with the internal energy (roughly 1000 J), but it is not 
quite as negligibly small as the energy of the electronic motion (see Problem 36).  
This energy of 0.33 J is independent of temperature, so it becomes relatively more 
important as the temperature of the copper is reduced (thereby decreasing the internal 
energy).  This is one example of the phenomenon of “zero-point motion,” a certain 
minimum energy that a confined quantum system must have.  There is no counterpart 
to this zero-point motion in classical physics. 

 
39. When the beam passes through a hole of width x dΔ = , there is a resulting 

uncertainty in the transverse momentum of order /xp dΔ ∼ and thus in the 
transverse velocity of /xv mdΔ ∼ .  From Eq. 4.16, we have 

2 2 2 2
av av( ) ( ) or ( ) ( )x x x xp p v v= Δ = Δ .  The diameter of the beam grows larger than its 

original diameter by an amount xd t vΔ = Δ , where t is the time the beam has been 
traveling.  The speed of the atoms as they leave the oven at a temperature T is found 
from 
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 2 31
2 2

3so kTK mv kT v
m

= = =  

 
 The beam travels the distance L at a speed v in a time t = L/v, and thus 
 

 
34

9

27 23

3 / 3

(2 m)(1.05 10 J s) 3 10 m
(0.003 m) 3(7 u)(1.66 10 kg/u)(1.38 10 J/K)(1500 K)

x
L L Ld t v
d md md kT m d mkT

−
−

− −

Δ = Δ = =

× ⋅
= = ×

× ×

∼

 

 
 The spreading of the beam due to the uncertainty principle is thus a negligible effect. 
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Chapter 5 
 
 This chapter presents an introduction to the methods of quantum mechanics as 
exemplified by solving the Schrödinger equation.  It is helpful but not necessary for 
students to have some prior experience with differential equations.  Because the 
application of boundary conditions is especially important, the chapter begins with a 
discussion of continuity of the classical wave and its first derivative, as applied to a wave 
that crosses the interface between two regions in which it propagates differently.  
Particularly for students with no prior training in solving differential equations (and even 
for students who have had such training but for whom the boundary conditions may be 
more a mathematical than a physical manifestation), it is important to introduce these 
exercises.  The notion of confined particles then allows a quick review of issues related to 
wave packets and uncertainty from Chapter 4, before we launch into the Schrödinger 
formalism.  New features in this edition include an earlier introduction of the complex 
nature of the wave function, which allows plots of the real part, imaginary part, and 
squared magnitude for the solutions to the problem of scattering from a step or barrier 
later in the chapter.  As mentioned in the preface, this edition avoids plotting the wave 
function or probability density on the same plot as the energy levels of bound states, 
which many students found to be confusing.   Also new to this edition is a section on the 
finite potential energy well. 
 I have long been curious why so many of us say “potential” instead of “potential 
energy” when we discuss the Schrödinger equation.  That’s a mistake we would certainly 
correct for our students if they were discussing electrostatics.  Yet many quantum 
mechanics textbooks say “Coulomb potential” when the presence of the e2 shows what is 
meant is potential energy, and one even occasionally sees 21

2 kx called the “harmonic 
oscillator potential.”  This confusion is compounded by notation, because quantum 
mechanics textbooks often use V in the potential energy term in the Schrödinger equation, 
but students in introductory physics learn to use U to represent potential energy and V to 
represent potential.  I have been careful to use the term “potential energy well” rather 
than “potential well” in this edition and to use U for the potential energy. 
 
 

Supplemental Materials 
  

Chapters 6-12 of Physlet Quantum Physics offer numerous simulations that cover 
material presented in this chapter. It is especially instructive to be able to illustrate the 
time dependence of the real and imaginary parts of the wave function of non-stationary 
states, such as in the case of scattering from a step or barrier.  Static illustrations in the 
text (such as Figures 5.24 and 5.25) don’t quite convey the nature of the time dependence 
or the “waviness.”  Physlet exercises allowing one to vary the particle energy relative to 
the step or barrier height are available for classroom display or student use.  A very 
useful simulation for step and barrier problems is available from the University of 
Colorado PhET simulations at http://phet.colorado.edu/en/simulation/quantum-tunneling.  
Another excellent PhET simulation for bound states in various potential energy wells is at 
http://phet.colorado.edu/en/simulation/bound-states.  
 

http://phet.colorado.edu/en/simulation/quantum-tunneling
http://phet.colorado.edu/en/simulation/bound-states
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Suggestions for Additional Reading 
 
An introduction to the formalism of quantum physics and its historical development is 
found in W. H. Cropper, The Quantum Physicists and an Introduction to Their Physics 
(Oxford University Press, 1970). 
 Other discussions of the Schrödinger equation and examples of its use are given in 
the following books, in approximately increasing order of difficulty beginning at the 
level of this book: 
N. Ashby and S. C. Miller, Principles of Modern Physics (Holden-Day, 1970).  
P. A. Lindsay, Introduction to Quantum Mechanics for Electrical Engineers  
 (McGraw-Hill, 1967). 
E. H. Wichmann, Quantum Physics, Volume 4 of the Berkeley Physics Course 
 (McGraw-Hill, 1971). 
R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei, and  
 Particles,2nd ed., (Wiley, 1985). 
R. B. Leighton, Principles of Modern Physics (McGraw-Hill, 1959). 
 
Illustrations showing the scattering of wave packets from barriers and the behavior of 
wave packets inside square-well and harmonic-oscillator potential energy wells may be 
found in: 
S. Brandt and H. D. Dahmen, The Picture Book of Quantum Mechanics, 3rd ed.,  
 (Springer, 2000). 
 
For a description of the scanning tunneling microscope, see: 
G. Binnig and H. Rohrer, Scientific American 253, 50 (August 1985). 
 
 

Materials for Active Engagement in the Classroom 
 
A.  Reading Quizzes 
 
1. The probability density for a particle in the ground state of a one-dimensional infinite 

potential energy well: 
  (1) has a single maximum at the center of the well. 
  (2) has a minimum at the center of the well and maxima at the sides of the well. 
  (3) has several maxima and minima in the well. 
  (4) is constant throughout the well. 
 
2. In the one-dimensional infinite well, how does the energy spacing between the 

excited states change as the energy of the states increases? 
  (1) The spacing is constant.   (2) The spacing decreases. 
  (3) The spacing increases.   (4) The spacing changes randomly. 
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3. A beam of particles is incident from the negative x axis onto a positive potential 

energy step located at x = 0.  The kinetic energy of the particles is less than the 
potential energy of the step.  Which is the best description of the behavior of the 
particles? 

  (1) All particles are reflected precisely at x = 0. 
  (2) Some particles are reflected at the step and some are transmitted into the x > 0 

region. 
  (3) Some particles are reflected and some are absorbed. 
  (4) All particles are reflected, but they can penetrate a short distance into the x > 0 

region. 
  (5) All particles are absorbed at the step. 
 
4. The probability to find a particle at any specific location in space: 
  (1)  is directly proportional to the amplitude of the wave function. 
  (2)  can never be zero. 
  (3)  depends on the squared amplitude of the wave function. 
  (4)  can sometimes be infinite. 
 
5. The Schrödinger equation is 
  (a) a second-order differential equation. 
  (b) an equation based on conservation of energy. 

(c) an equation whose solution gives the wave function that describes a particle. 
 How many of the above statements are true? 
  (1) Zero (2) One (3) Two (4) All three 
 
Answers 1. 1 2. 3 3. 4 4. 3 5. 4 
 
 
B.  Conceptual or Discussion Questions 
 
1. A particle of mass m is in the ground state of an infinite potential energy well of 

width L.  The energy of the particle is 2.0 eV 
(a) How much energy must be added to the particle to cause it to jump to the first 
excited state? 

  (1) 2.0 eV (2) 4.0 eV (3) 6.0 eV (4) 8.0 eV 
(b) Suppose the particle is in the second excited state (n = 3) from which it can jump 
to any lower state by emitting a photon whose energy is equal to the difference in the 
energies of the two states.  Considering all possible jumps that lead eventually to the 
ground state, which photon energy would NOT be observed? 

  (1) 6.0 eV (2) 10.0 eV (3) 12.0 eV (4) 16.0 eV 
(c) What would be the ground-state energy of this particle if the width of the well 
were changed to 2L? 

  (1) 0.5 eV (2) 1.0 eV (3) 2.0 eV (4) 4.0 eV 
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2. Suppose a particle is in the ground state (n = 1) of an in finite potential energy well.  
The energy is 2 2 2

1 2π= = + =/E mL K U K  because U = 0. 

 Thus 
22 2

2 or
2 2
π π

= =x
x

p p
mL m L

 

If px is exactly known, then Δpx = 0.  For this problem, Δx = L (the particle is known 
to be somewhere in that interval).  We then obtain 0 0Δ Δ = =( )( )xx p L , in violation 
of the uncertainty principle. 

WHAT'S WRONG WITH THIS CALCULATION??? 
 
3. Particles are incident from the negative x axis onto a potential energy step at x = 0.  

At the step the potential energy drops from the positive value U0 for all x < 0 to the 
value 0 for all x > 0.  The energy of the particles is greater than U0.   

 (a) Which statement best describes the behavior of the particles? 
  (1) All particles are transmitted from x < 0 to x > 0. 
  (2) All particles are reflected back to x < 0 at the step. 
  (3) Some particles are reflected and some are transmitted. 
  (4) Some particles are reflected and some are absorbed. 

(b) How would the wavelength of a particle change as it moves from the x < 0 region 
to the x >0 region? 

  (1) Increases  (2) Decreases  (3) Remains the same 
 (c) What are the continuity conditions at x = 0? 
  (1) Both ψ and dψ/dx are continuous at x = 0. 
  (2) ψ is continuous at x = 0, but dψ/dx is not. 
  (3) dψ/dx is continuous at x = 0, but ψ is not. 
  (4) Neither ψ nor dψ/dx are continuous at x = 0. 
 
4. The ground-state energy of a simple harmonic oscillator is 1.0 eV. 

(a) If the oscillator is in its ground state, how much energy must be added for it to 
reach the first excited state? 

  (1) 0.5 eV    (2) 1.0 eV    (3) 2.0 eV    (4) 3.0 eV    (5) 4.0 eV 
(b) How much energy must be added to move the oscillator from the first excited 
state to the second excited state? 

  (1) 0.5 eV    (2) 1.0 eV    (3) 2.0 eV    (4) 3.0 eV    (5) 4.0 eV 
(c) The oscillator is in the third excited state (n = 3).  It can jump to any lower state, 
in the process emitting a photon whose energy is equal to the difference in energy 
between the states.  How many different photon energies can be emitted if these 
oscillators can take any possible path from the excited state to the ground state? 

  (1) 1    (2) 2    (3) 3    (4) 4    (5) 5    (6) 6 
 
Answers 1. (a) 3   (b) 3   (c) 1  2. / , so 2 /x xp L p Lπ π= ± Δ ∼  
  3. (a) 3   (b) 2   (c) 1  4. (a) 3   (b) 3   (c) 3 
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[Note to instructors:  Some students have trouble understanding energy diagrams, which impedes 
their efforts to learn quantum mechanics.  This worksheet helps them make the transition from 
classical to quantum energy diagrams.] 

 
Energy Diagrams Worksheet 

 
1.  A small puck is gliding with initial speed v across a frictionless horizontal surface.  It glides up 
a small hill and then moves on a horizontal surface that is a distance h above the first surface. 
 
  
  
 
           0 x1      x2      x3 
Sketch a plot that shows, on the same diagram, the gravitational potential energy U, kinetic 
energy K, and total energy E = K + U for this system. 
 
 
 
 
 
 
 
          0           x1      x2         x3 
2.  An electron is moving with initial speed v inside a thin hollow metal tube.  It emerges from the 
tube through a hole in a large metal plate and continues through a hole in a second plate into 
another thin tube.  The two plates are connected across a battery of potential difference V. 
 
 
 
 
 
 
 
 
 V 
   
  
Sketch a plot that shows, on the same diagram, the electrical potential energy U, kinetic energy K, 
and total energy E = K + U for this system. 
 
 
 
 
 
 
 
          0           x1      x2         x3 

−+ 

Energy 

Energy 

v 

x 

v h 

x 



 101

3.  Redraw the energy diagram for these situations if the distance x2 – x1 (over which the potential 
energy changes) becomes smaller. 
 
 
 
 
 
 
 
          0             x1          x2          x3 
 
4.  Redraw the energy diagram for the limit in which x2 – x1 becomes zero. 
 
 
 
 
 
 
 
          0                   x3 
5.  Draw energy diagrams similar to those of questions 2, 3, and 4, but now assume that the initial 
kinetic energy is only half of the energy needed to climb the potential energy hill between the two 
plates. 
 
 
 
 
 
 
 
          0           x1      x2         x3 
 
 
 
 
 
 
 
          0             x1          x2          x3 
 
 
 
 
 
 
 
          0                   x3 
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[Note to instructors: This worksheet should be done by students working in groups, 
preferably in class.] 

 
Schrödinger Worksheet 

 
In this calculation you will analyze the quantum behavior of a particle moving in the 
following potential energy well: 

Region 1:  U(x) = ∞  x < 0 
Region 2:  U(x) = 0  0 ≤ x ≤ L 
Region 3:  U(x) = U0  L ≤ x ≤ 2L  (U0 > 0) 
Region 4:  U(x) = ∞  x > 2L 

Begin by sketching this potential energy well. 
 
 
 
 
 
 
 
 
Part A.  First we will consider states of motion of the particle of energy E < U0. 
 
1.  Write down solutions for the wave function in each of the 4 regions. 
 
 ψ1 =  
 ψ2 =        (use coefficients A and B) 
 ψ3 =        (use coefficients C and D) 
 ψ4 =  
 
ψ2 should be written in terms of the parameter k = (2mE/ħ2)1/2.    
ψ3 should be written in terms of the parameter k’ = [2m(U0 − E)/ħ2]1/2. 
 
2.  Apply the boundary condition on ψ at x = 0 [ψ1(x=0) = ψ2(x=0)]  to eliminate one of 
the coefficients A or B.  (Which one will be eliminated depends on how you wrote Ρ2.) 
 
 
 
 
 
 
3.  Apply the boundary condition on ψ at x = 2L [ψ3(x=2L) = ψ4(x=2L)]  to eliminate one 
of the coefficients C or D.  (Solve for C in terms of D or for D in terms of C.) 
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4.  Apply the boundary condition on ψ at x = L [ψ2(x=L) = ψ3(x=L)]  to express your 
remaining coefficient in ψ3 (either C or D) in terms of your remaining coefficient in ψ2 
(either A or B). 
 
 
 
 
 
 
 
 
5.  Your entire wave function in the region x = −∞ to x = +∞ should now depend on only 
one coefficient (either A or B).  Explain how the normalization condition allows you to 
determine this remaining coefficient.  Don’t carry out the calculation, just show how it 
can be done. 
 
 
 
 
 
 
6.  There is still one boundary condition you haven’t yet applied – the condition on dψ/dx 
at x = L.  Explain how applying this boundary condition allows you to determine the 
energy E.  Don’t carry out the calculation, just show how it can be done. 
 
 
 
 
 
 
 
 
 
 
Part B.  Now we will repeat the calculation for states of energy E > U0. 
 
1.  Write down solutions for the wave function in each of the 4 regions. 
 
 ψ1 =  
 ψ2 =        (use coefficients A and B) 
 ψ3 =        (use coefficients C and D) 
 ψ4 =  
 
ψ2 should be written in terms of the parameter k = (2mE/ħ2)1/2. 
ψ3 should be written in terms of the parameter k’ = [2m(E – U0)/ħ2]1/2. 
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2.  Apply the boundary condition on ψ at x = 0 to eliminate one of the coefficients A or B.  
(Which one will be eliminated depends on how you wrote Ρ2.) 
 
 
 
 
 
 
 
 
3.  Apply the boundary condition on ψ at x = 2L to eliminate one of the coefficients C or 
D. 
 
 
 
 
 
 
4.  Apply the boundary condition on ψ at x = L to express your remaining coefficient in 
ψ3 (either C or D) in terms of your remaining coefficient in ψ2 (either A or B). 
 
 
 
 
 
 
 
 
5.  Your entire wave function in the region x = −∞ to x = +∞ should now depend on only 
one coefficient (either A or B).  Explain how the normalization condition allows you to 
determine this remaining coefficient.  Don’t carry out the calculation, just show how it 
can be done. 
 
 
 
 
 
 
 
6.  There is still one boundary condition you haven’t yet applied – the condition on dψ/dx 
at x = L.  Explain how applying this boundary condition allows you to determine the 
energy E.  Don’t carry out the calculation, just show how it can be done. 
 
 



 105

Part C.   Now consider the probability to locate the particle using the wave functions of 
Part B. 
 
1.  What is the probability of finding the particle in each region (1, 2, 3, and 4)?  Don’t 
evaluate any mathematical expressions, just write them down as completely as you can. 
 
 
 
 
 
 
 
 
 
2.  How does the probability to find the particle in region 2 compare with the probability 
to find the particle in region 3? 
  ___  probability (2) > probability (3) 
  ___  probability (2) = probability (3) 
  ___  probability (2) < probability (3) 
 
Use the classical behavior of the particle to justify your answer.  What does this imply 
about the wave function? 
 
 
 
 
 
 
 
Part D.  Without solving the equations for the various coefficients that you found in 
Parts A and B, sketch ψ(x) in the entire region x = −∞ to x = +∞ in the following 
cases. 
 
1.  The lowest energy state in Part A. 
2.  The next higher state above the lowest one in Part A (the first excited state in Part A). 
3.  The second excited state in Part A. 
4.  The lowest energy state in Part B. 
5.  The next higher state above the lowest one in Part B. 
 
Your sketches need not be exact representations of the wave functions, but each sketch 
should clearly illustrate: 

(a) the continuity conditions at each boundary; 
(b) relative wavelengths associated with the particle motion; 
(c) relative amplitudes of the wave function. 
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Sample Exam Questions 
 
A.  Multiple Choice 
 
1. A particle in the first excited state of a one-dimensional infinite potential energy well 

(with U = 0 inside the well) has an energy of 6.0 eV.  What is the energy of this 
particle in the ground state? 

  (a) 1.0 eV  (b) 1.5 eV  (c) 2.0 eV  (d) 3.0 eV 
 
2. The ground state of a particle in simple harmonic motion has energy 0.5 eV and the 

first excited state has energy 1.5 eV.  What is the energy of the next excited state? 
  (a) 2.5 eV  (b) 3.5 eV  (c) 3.0 eV  (d) 2.0 eV 
 
3. The ground-state energy of a particle in an infinite one-dimensional potential energy 

well is 6.0 eV.  What is the energy of the first excited state? 
  (a) 12.0 eV  (b) 18.0 eV  (c) 7.5 eV  (d) 24.0 eV 
 
4. In a certain infinite potential energy well, the particle has a ground-state energy of 2.0 

eV.  Which of the following is NOT a possible value for the energy of one of the 
excited states of this particle in the well? 

  (a) 36 eV  (b) 50 eV  (c) 18 eV  (d) 8 eV 
 
5. A particle is moving in an infinite potential energy well in one dimension.  In the 

ground state, the energy of the particle is 5.0 eV.  Which one of the following is a 
possible energy for an excited state? 

  (a) 25.0 eV  (b) 40.0 eV  (c) 80.0 eV  (d) 100.0 eV 
 
6. An electron in the ground state of an infinite potential energy well has an energy of 

8.0 eV.  How much additional energy must be supplied for the electron to jump from 
the ground state to the first excited state? 

  (a) 8.0 eV  (b) 16.0 eV  (c) 24.0 eV  (d) 32.0 eV 
 
7. Consider the following two possible solutions to the Schrödinger equation in the 

entire interval from x = 0 to x = +∞:     (i) ψ(x) = Ae-kx/x      (ii) ψ (x) = Ae+kx          
 (A and k are real positive constants.)  Which are allowable wave functions? 
  (a) Only i     (b) Only ii     (c) Both i and ii     (d) Neither i nor ii 
 
8. A beam of particles is incident from the negative x direction on a potential energy 

step at x = 0.  When x < 0, the potential energy of the particles is zero, and for x > 0 
the potential energy has the constant positive value U0.  In the region x < 0, the 
particles have a kinetic energy K that is smaller than U0.  What is the form of the 
wave function in the region x > 0? 

  (a) kx kxAe Be−+      (b) ikx ikxAe Be−+      (c) kxAe      (d) kxAe−      (e) cos sinA kx B kx+  
 
Answers 1. b 2. a 3. d 4. a 5. c 6. c 7. d 8. d 
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B.  Conceptual 
 
1. A beam of particles is incident from the negative x axis, where U(x) = 0, on a barrier 

of constant height U0 which extends from x = 0 to x = L.  Beyond the barrier (where x 
> L), the potential energy is again equal to zero.  The particles have energy E which is 
less than the height of the barrier.  Let B represent the amplitude of the wave function 
of particles that appear beyond the barrier (where x > L).  Keeping the height of the 
barrier constant, we suddenly increase the thickness of the barrier from L to 2L (that 
is, the barrier now extends from x = 0 to x = 2L).  Is the amplitude of the wave 
function for particles beyond the new barrier (where x > 2L) greater than B, equal to 
B, or less than B?  EXPLAIN YOUR ANSWER. 

 
2. The wave function shown is associated with the motion of an electron in one of the 

four energy levels of a finite potential energy well of width L and depth U.  Identify 
the number of the level with which this wave function is associated, and describe 
where in this region the electron would most likely be found.  EXPLAIN YOUR 
ANSWERS. 

 

 
 
3. A beam of particles of energy 3 eV is moving in the region x < 0 toward the origin.  

The potential energy is zero in this region.  Starting at x = 0 and continuing until x = 
L, the potential energy is 10 eV, and beyond x = L the potential energy is once again 
zero.  Is the wavelength in the region x > L greater than, smaller than, or equal to the 
wavelength in the region x < 0, and is the maximum probability to find particles in the 
region x > L greater than, smaller than, or equal to the maximum probability to find 
particles in the region x < 0?  EXPLAIN YOUR ANSWERS.  (Note that this problem 
requires 2 answers.) 

 
4. A particle is trapped between x = 0 and x = 0.120 nm in a potential energy well of 

infinite height.  The particle may be in either the first excited state or the second 
excited state.  For which of these two states is there a greater probability of finding 
the particle in the region between x = 0.039 nm and x = 0.041 nm?  EXPLAIN YOUR 
ANSWER. 
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5. A particle moves in a one-dimensional potential energy 
 U(x) specified by: 
 U(x) = ∞  x < 0  (region 1) 
 U(x) = -30 eV 0 < x < L (region 2) 
 U(x) = -15 eV L < x < 3L (region 3) 
 U(x) = 0  3L < x < 4L (region 4) 
 U(x) = ∞  x > 4L  (region 5) 
 The energy of the particle is -5 eV. 

If we measure the position of the particle at a random  
time, in which region (1,2,3,4, or 5) are we most likely  
to find the particle?  EXPLAIN YOUR ANSWER. 

 
 
 
6. An electron is trapped in an infinite potential energy well with walls at x = 0 and x = 

0.100 nm.  Consider the probability to find the electron in a narrow region in the 
center of the well between x = 0.049 nm and x = 0.051 nm.  Is the probability to find 
the electron in this region when the electron is in its ground state greater than, less 
than, or equal to the probability to find the electron in this same region when it is in 
the first excited state?  EXPLAIN YOUR ANSWER. 

 
7. A particle is trapped in the region between x = 0 and x = L by two rigid walls.  The 

particle is in its ground state.  Is the probability to locate the particle in a small 
interval of width dx near x = 0.5L greater than, less than, or equal to the probability 
to locate it in a small interval of width dx near x = 0.1L?  EXPLAIN YOUR 
ANSWER. 

 
8. An electron is trapped in a one-dimensional region of space between two rigid walls 

at x = 0 and x = L.  In the first excited state, where would you expect that the electron 
is most likely found?  EXPLAIN YOUR ANSWER. 

 
Answers 1. less than 2. n = 2, near x = L/4 and 3L/4 3. equal to, smaller than 
   4. first excited state  5. 3  6. greater than 
   7. greater than  8. x = L/4 and 3L/4 
 
 
C.  Problems 
 
1. A particle of mass m is moving in a one-dimensional region of space where there is a 

Coulomb-like potential energy U(x) = -C/x, where C is a positive constant. 
(a) Show that ψ(x) = Axe-ax (with 2/a mC= ) is a solution to the one-dimensional 
Schrödinger equation, and find the corresponding energy E. 
(b) Would you expect this wave function to be valid for the entire region -∞ ≤ x ≤ +∞?  
Explain. 
(c) Set up the equation that can be solved to find the constant A.  Do not try to solve 
the equation, just set it up. 

x=4L x=3L x=L x=0

E 

1 2 3 4 5
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2.  A beam of electrons with energy E is incident from the negative x direction on a 

potential energy step located at x = 0.  The potential energy is zero for x < 0 and has 
the constant positive value U0 for x > 0.  Assume E is about U0/3. 
(a) What are the wave functions that describe the particle in the region x < 0 and in 
the region x > 0?  You should use a total of 3 undetermined coefficients in your two 
wave functions.  Define all parameters that appear in your wave functions. 
(b) Show how to use the continuity conditions at x = 0 to find relationships among the 
coefficients. 

 (c) Sketch the wave function. 
(d) Describe as carefully as you can how the wave functions in the regions x < 0 and 
x > 0 would change if E were doubled (but still less than U0). 

 
3. (a) A neutron (mc2 = 939.6 MeV) is confined in a nucleus of diameter 11 fm.  Inside 

the nucleus, the neutron moves freely (no forces act on it), but at the edges of the 
nucleus a very strong force (which we can take to be infinitely strong) prevents the 
neutron from leaving the nucleus.  Treating this as a one-dimensional problem, find 
the energy difference between the ground state and the first excited state of the 
neutron. 
(b) In the ground state, what is the probability to find the neutron in a narrow region 
of width 0.10 fm located at the center of the nucleus? 

 
4. Consider the following potential energy: 
 region 1: U(x) = U0  x < 0 
 region 2: U(x) = 0  0 < x < L 
 region 3: U(x) = U0  x > L 

where U0 > 0.  We want to consider a particle with energy E  
 such that 0 < E < U0.   
 

There are two possible forms for the wave function that might be used to represent 
the particle: 

 
( ) sin cos

( ) i i

i i i i
k x k x

i i

x A k x B k x

x Ae B e

ψ

ψ −

= +

= +
 

 where i = 1,2,3 indicates the three regions. 
(a) Write down wave functions that describe the behavior of the particle in region 1, 
region 2, and region 3.  Use appropriate subscripts to label all parameters.  If any of 
the coefficients Ai or Bi are zero, identify those coefficients and explain why they are 
equal to zero. 
(b) Sketch the probability distributions you would expect for the ground state and the 
first excited state. 
In region 2, how is the probability distribution of the ground state different from the 
probability distribution of the first excited state? 
In regions 1 and 3, how is the probability distribution of the ground state different 
from the probability distribution of the first excited state? 
(c) Use the continuity conditions at x = 0 to show how the coefficients of the wave 
function in region 2 are related to the coefficients of the wave function in region 1. 

E 
U0  
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5. Consider the following one-dimensional potential energy barrier: 
 
  U(x) = 0 x < 0 
  U(x) = U0 x > 0   (U0 is a positive constant) 
 
 Particles of mass m and energy E are incident on this barrier from the negative x axis. 

(a) Suppose the particles have energy greater than U0.  Write down the wave function 
for the regions x < 0 and x > 0.  Explain briefly how to determine all constants that 
appear in your solutions.  Sketch a possible form for the wave function, paying 
careful attention to how the wavelength and amplitude change at x = 0. 
(b) Now suppose the particles have energy less than U0.  Write down the wave 
function for the regions x < 0 and x > 0.  Explain briefly how to determine all 
constants that appear in your solutions.  Sketch a possible form for the wave function. 

 
6. A beam of particles of mass m is traveling from x = -∞ toward x = 0. In that region 

the potential energy is zero.  In the region x > 0 there is a constant negative potential 
energy U0.   
(a) By direct substitution into the Schrodinger equation, show that the particles in the 
region x < 0 can be represented by the wave function 1 1

1( ) ik x ik xx Ae Beψ −= + .  In the 
process of solving this equation, find the energy of the particles as a function of k1. 

 (b) Describe the physical meaning of the constants A and B. 
(c) Write down the wave function ψ2 that would describe the particles in the region  
x > 0.  Define all constants that appear in your wave function.  Show how you would 
apply the continuity conditions at x = 0 to determine these constants.  It is not 
necessary to find the algebraic solutions to the continuity equations, just set them up 
in terms of the constants that need to be determined. 

 
7. A beam of electrons is traveling along the x axis starting at x = −∞ in a region in 

which the potential energy can be taken to be zero.  The electrons have a kinetic 
energy of E = 4.0 eV.  At x = 0, the potential energy suddenly rises to U0 = 10.0 eV 
and stays at that value to x = +∞. 
(a) Write down the wave function for this situation in the region x < 0.  Explain the 
meaning of all terms and constants in your equation. 
(b) Write down the wave function for this situation in the region x > 0.  Explain the 
meaning of all terms and constants in your equation. 

 (c) Show how to apply the continuity conditions at x = 0. 
(d) Sketch the probability density as a function of x showing portions of both regions.  
Be sure your sketch clearly indicates the zero of the probability density axis. 
(e) Sketch the probability density for the case in which the original kinetic energy is 
8.0 eV, with all other parts of the problem remaining the same.  Describe 2 ways in 
which this probability density differs from part (d). 

 
8. An electron is trapped in a region between two perfectly rigid walls (which can be 

regarded as infinitely high energy barriers).  In the region between the walls the 
potential energy of the electron is zero.  The (normalized) wave function of the 
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electron in the region between the walls is ψ(x) = a sin bx where a = 0.50 nm-1/2 and  
 b = 1.18 nm-1.   

(a) By substituting into the Schrödinger equation, find the energy of the electron in 
this state of motion. 

 (b) What is the probability to find the electron between x = 0.99 nm and x = 1.01 nm? 
 
9. A particle of mass m is trapped in a one-dimensional finite potential energy well.  The 

potential energy is zero in the region between x = 0 and x = L, and it is equal to the 
constant positive value U0 in the regions x < 0 and x > L.  We want to examine 
bound-state solutions with E < U0.   
(a) Write down the wave functions that describe the particle in the regions x < 0,  
0 < x < L, and x > L.  It is not necessary to apply the boundary conditions, but be sure 
all your wave functions remain finite in the regions in which they are defined.  All 
unknown parameters that appear in your equations must be defined. 
(b) Sketch the probability densities for the ground state and the first excited state.  
How do the ground-state and first excited-state wave functions differ from each other 
inside the well (0 < x < L)?  How do they differ from each other outside the well  
(x < 0 or x > L)?. 

 
10. In some situations, the behavior of an electron can be approximated as if the electron 

were bound to an equilibrium position by a spring force (F = -kx, U = kx2/2).  
Suppose such an electron were in the first excited state, with a wave function 

2

( ) axx Axeψ −= , where A is a constant and / 2a km= .  In this equation, x 
represents the distance of the electron from its equilibrium position.   

 (a) Find the energy of the electron in terms of the spring constant k and its mass m. 
(b) If the electron behaved like a classical oscillating particle, the largest value of x 
would be xm.  Find xm in terms of k and m. 
(c) Sketch a drawing that shows the probability to find the electron as a function of x 
in the range −∞ to +∞.  Indicate where xm would appear on your sketch. 

 (d) Explain the meaning the probability when x > xm. 
 
11. (a) For a particle of mass m moving in the potential energy U(x) = -A/x, one solution 

to the Schrödinger equation for the region 0 < x < ∞ is ψ(x) = Bxe-bx, where  
b = 4π2Am/h2.  Show that this function is a solution, and find the corresponding 
energy E. 
(b) Sketch the probability density for this wave function.  Where would you expect 
the electron to be most likely to be found? 

 
12. A particle moves in the following one-dimensional potential energy well: 

 U =  ∞  x < 0 
 U = 0  0 < x < L 

   U = U0  L < x < 2L 
 U =  ∞  x > 2L 

 where U0 is a positive constant. 
(a) Assume E > U0.  Without doing the complete mathematical solution, describe the 
wave function of the particle as completely as you can.  Specify the behavior of the 
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wave function in all 4 regions of the x axis.  Sketch wave functions that might 
represent the ground state and the first excited state.  Pay special attention to the wave 
behavior of the particle.  Describe clearly what happens to the wave function at each 
of the boundaries between the regions. 

 (b) Repeat part (a), but now assume U0 > E > 0. 
 
13. A beam of particles of mass m and energy E is traveling from x = -∞ in a region in 

which the potential energy is zero. Between x = 0 and x = L the potential energy has 
the negative value -U0 , and beyond x = L the potential energy is again equal to 0. 
(a) Find the wavelengths of the particles in the three regions x < 0, 0 < x < L, and x > L. 
(b) Using complex exponentials in the form e±ikx, write down the wave functions that 
describe the particles in the three regions.  Explain the meanings of any coefficients 
you use in your equations. 

 (c) Sketch the probability density, showing the regions from x < 0 to x > L. 
 
Answers 2. (a) 2

1 1 1 1sin cos with 2 /A k x B k x k mEψ = + =  

            2 2
2 2 0with 2 ( ) /k xCe k m U Eψ −= = −  

   3. (a) 5.07 MeV   (b) 0.018 
   4. (a) 31

1 1 2 2 2 2 2 3 3, sin cos , k xk xA e A k x B k x B eψ ψ ψ −= = + =  

   5. (a) 2
1 1 1 1sin cos with 2 /A k x B k x k mEψ = + =  

            2
2 2 2 2 0sin cos with 2 ( ) /C k x D k x k m E Uψ = + = −  

       (b) 2 2
2 2 0with 2 ( ) /k xDe k m U Eψ −= = −  

   6. (a) 2 2
1 / 2E k m=    (c) 2 2

2 2 0with 2 ( ) /ik xCe k m E Uψ = = +  

   7. (a) 2
1 1 1 1sin cos with 2 /A k x B k x k mEψ = + =  

            2 2
2 2 0with 2 ( ) /k xCe k m U Eψ −= = −  

   8. (a) 0.053 eV   (b) 0.0043 
   9. (a) 31

1 1 2 2 2 2 2 3 3, sin cos , k xk xA e A k x B k x B eψ ψ ψ −= = + =  

   10. (a) 3
2 /k m    (b) 1/ 4( ) 3mk −  

   12. (a) 2
1 20, sin cos with 2 /A kx B kx k mEψ ψ= = + =  

    2
3 0 4sin cos with 2 ( ) / , 0A k x B k x k m E Uψ ψ′ ′ ′ ′ ′= + = − =  

         (b) 2
3 0with 2 ( ) /k x k xA e B e k m U Eψ ′ ′−′ ′ ′= + = −  

   13. (a) 0/ 2 , / 2 ( ), / 2h mE h m E U h mE+  

         (b) 2
1 with 2 /ikx ikxAe Be k mEψ −= + =  

    2
2 0 3with 2 ( ) / ,ik x ik x ikxCe De k m E U Feψ ψ′ ′− ′= + = + =  
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Problem Solutions 
 
 

1. (a) In air, the initial velocity is zero, so 1( )v t gt= −  and 21
1 2( )y t H gt= − . 

 
 (b) The time T at which the ball hits the water is determined by setting y1 to zero: 
 

21
1 2( ) 0 so 2 /y T H gT T H g= − = =  

 
 At this time, we set 1 2 1 2( ) ( ) and ( ) ( )y T y T v T v T= = : 
 

2 2
1 2 1 2 2 2 2and
2 2

H B mg H H H B mg HH g b c g b
g m g g g m g

⎛ ⎞ ⎛ ⎞− −⎛ ⎞ ⎛ ⎞− = + + − = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 
The second equation can be solved directly to give  
 

2B Hb
m g

= −  

 
 and inserting this value into the first equation gives 
  

1Bc H
mg

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 

 
 

2. Let 1( ) cos(2 / / 3)y x A xπ λ π= + for x < 0.  For x > 0, the wave is 
 

2 2 2( ) cos(2 / )y x A xπ λ φ= +  
 
with 2 / 2λ λ= .  The continuity conditions on y and dy/dx at x = 0 give 
 

1 2 2

1 2 2

or cos( / 3) cos

42or sin( / 3) sin

y y A A

dy dy AA
dx dx

π φ

ππ π φ
λ λ

= =

= − = −

 

 
Dividing the second of these equations by the first, we obtain 
 

[ ]1 1
2tan( / 3) 2 tan or tan tan( / 3) 40.9π φ φ π−= = = °  

 
and solving the first equation for A2, 
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2
cos / 3 0.661

cos
A A Aπ

φ
= =  

 
 

3.    
2

1 2 4.4 eV
8

hE
mL

= =  

 
With 2L L′ = , 

2 2 2

1 2 2 2

1 1 (4.4 eV) 1.1 eV
8 8 (2 ) 4 8 4

h h hE
mL m L mL

′ = = = = =
′

 

 
 

4. With 2 /n L nλ = , 
 

1 2 3
2(0.120nm) 0.240 nm 0.240 nm0.240 nm 0.120 nm 0.080 nm

1 2 3
λ λ λ= = = = = =

 
 

5. The smallest energy is (using Equation 5.3) 
  

2 2 2

1 2 2 2 2

( ) (1240 eV nm) 150 eV
8 8( ) 8(511,000 eV)(0.050 nm)

h hcE
mL mc L

⋅
= = = =  

 
Then 2

2 12 600 eVE E= = and 2
3 13 1350 eVE E= = . 

 
 
6. With L = 1.0 × 10−14 m = 10 fm, 

 
2 2 2

1 2 2 2 2

( ) (1240 MeV fm) 2.0 MeV
8 8( ) 8(940 MeV)(10 fm)

h hcE
mL mc L

⋅
= = = =  

  
 
 

7. (a) At x = a, 1 2 1 2and / /d dx d dxψ ψ ψ ψ= = : 
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20 ( ) and 2 2( )a d c ab a d= − − − = −  
 
From the second equation, ( 1)d a b= + .  Inserting this into the first equation, we find 

2 2c a b= . 
 
(b) With 2 3ψ ψ=  at x = w, we get 2( ) 0w d c− − = , or  
 

2 2( 1) (2 1)w d c a b a b a b= + = + + = +  
 
The slope is discontinuous at w suggesting an infinite discontinuity in the potential 
energy at that location. 
 

8. (a) The regions with x < a and x > a do not contribute to the normalization.  The 
normalization integral is 

  

 
/ 23 5

2 2 2 2 2 2 4 2 2 4 2 4 2

/ 2

( ) ( ) ( 2 ) 2
3 5

a
a a

a a
a

x xx dx b a x dx b a a x x dx b a x aψ
+

+ +

− −
−

⎛ ⎞
= − = − + = − +⎜ ⎟

⎝ ⎠
∫ ∫ ∫  

 
Evaluating the integral and setting it equal to 1, we find 
  

5 5
2 5

5

4 2 152 1 or
3 5 16
a ab a b

a
⎛ ⎞

− + = =⎜ ⎟
⎝ ⎠

 

 
(b) 2 2 2 2 2( ) | ( ) | ( )P x dx x dx b a x dxψ= = − , and with x = +a/2 and dx = 0.010a we obtain 

22
2

5

15( ) (0.010 ) 0.0053
16 4

aP x dx a a
a

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
 

 

(c)  
3 5

2 2 2 2 2 4 2
5/ 2 / 2

/ 2

15( / 2 : ) ( ) ( ) 2
16 3 5

a
a a

a a
a

x xP a a x dx b a x dx a x a
a

ψ
⎛ ⎞

= = − = − +⎜ ⎟
⎝ ⎠

∫ ∫  

 

 
2 3 5

4 3 5
5

15 2 1 0.104
16 2 3 8 5 32

a a a aa a a a
a

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞= − − − + − =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 
9. With ( ) bxx Cxeψ −= , we have / bx bxd dx Ce bCxeψ − −= − and 

  
2

2
2 2 bx bxd bCe b Cxe

dx
ψ − −= − +  

 
We now substitute ( )xψ and 2 2/d dxψ into the Schrödinger equation: 
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2

2( 2 ) ( )
2

bx bx bx bxbCe b Cxe U x Cxe ECxe
m

− − − −− − + + =  

 
Canceling the common factor of bxCe− and solving for E, 
 

2 2 2

( )
2

b bE U x
mx m

= − +  

 
The energy E will be a constant only if the two terms that depend on x cancel each other: 
 

2 2

( ) 0 or ( )b bU x U x
mx mx

+ = = −  

 
The cancellation of the two terms depending on x leaves only the remaining term for the 
energy: 

2 2

2
bE
m

= −  

 
10. (a)  The regions with x < −L/2 and x > +L/2 do not contribute to the normalization 

integral.  The remaining integral is: 
  

0 / 22 2 2 2 2

/ 2 0

0 / 22 3 2 2 2 3 2 2 2

/ 2 0

| ( ) | (2 / 1) ( 2 / 1)

(4 / 3 2 / ) (4 / 3 2 / ) / 3

L

L

L

L

x dx C x L dx C x L dx

C x L x L x C x L x L x C L

ψ
−

−

= + + − +

= + + + − + =

∫ ∫ ∫
 

 
Setting the integral equal to 1 gives 3 /C L= . 
 
(b) 2 2 2 2( ) | ( ) | (4 / 4 / 1)P x dx x dx C x L x L dxψ= = − + and with x = 0.250L and dx = 
0.010L, 

2

2

3 4 4( ) 1 (0.010 ) 0.0075
16 4
L LP x dx L

L L L
⎛ ⎞

= − + =⎜ ⎟
⎝ ⎠

 

 
(c)

/ 23 2/ 4 / 42 2 2
2 20 0

0

4 4 3 4 4 1(0 : / 4) | ( ) | 1
3 2 2

L
L L x xP L x dx C x x dx x

L L L L L
ψ

⎛ ⎞⎛ ⎞= = − + = − + =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫  

 

(d) 
2 20 / 22

2 2/ 2 0

3 4 4 4 4| ( ) | 1 1
L

L

x x x xx x x dx x dx x dx
L L L L L

ψ
−

⎛ ⎞ ⎛ ⎞
= = + + + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫ ∫  
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0 / 24 3 2 4 3 2

2 2
/ 2 0

3 4 3 4 0
3 2 3 2

L

L

x x x x x x
L L L L L L

−

⎛ ⎞ ⎛ ⎞
= + + + − + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
It is apparent from the shape of the wave function that the equal probability densities for 
positive and negative x cancel to give an average of zero. 
 

 

2 20 / 22 2 2 2 2
2 2/ 2 0

0 / 25 4 3 5 4 3 2

2 2
/ 2 0

3 4 4 4 4| ( ) | 1 1

3 4 3 4
5 3 5 3 40

L

L

L

L

x x x xx x x dx x dx x dx
L L L L L

x x x x x x L
L L L L L L

ψ
−

−

⎛ ⎞ ⎛ ⎞
= = + + + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
= + + + − + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∫ ∫ ∫
 

 

The rms value is then 2 2
rms / 40 0.158x x L L= = = . 

 
11. With 2

1 11.26 eV and nE E n E= = we have 
 

3 3 1 1 1 1

4 4 1 1 1 1

9 8 8(1.26 eV) 10.1eV

16 15 15(1.26 eV) 18.9 eV

E E E E E E

E E E E E E

Δ = − = − = = =

Δ = − = − = = =
 

 
 

12. (a)   
2 2 2

1 2 2 2 2

( ) (1240 eV nm) 5.97 eV
8 8( ) 8(511,000 eV)(0.251 nm)

h hcE
mL mc L

⋅
= = = =  

 
  

 4 1 1 1 14 1: 16 15 15(5.97 eV) 89.6 eVE E E E E E→ Δ = − = − = = =  
 
(b) 4 3 1 1 14 3: 16 9 7 7(5.97 eV) 41.8 eVE E E E E E→ Δ = − = − = = =  

 4 2 1 1 14 2 : 16 4 12 12(5.97 eV) 71.6 eVE E E E E E→ Δ = − = − = = =  

 3 2 1 1 13 2 : 9 4 5 5(5.97 eV) 29.9 eVE E E E E E→ Δ = − = − = = =  

 3 1 1 1 13 1: 9 8 8(5.97 eV) 47.8 eVE E E E E E→ Δ = − = − = = =  

 2 1 1 1 12 1: 4 3 3(5.97 eV) 17.9 eVE E E E E E→ Δ = − = − = = =  

 

13. 2 2 2 2

0 0
sin sin with /

L nn x LA dx A u du u n x L
L n

ππ π
π

= =∫ ∫ .  The integral is a standard form 

that can be found in integral tables: 
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( )2 2 2 21 1
2 40 0

sin sin 2
2

n
nL L LA u du A u u A

n n

π
π

π π
= − =∫  

 
Setting the integral equal to 1 for normalization gives 2 / 2 1or 2 /A L A L= = . 
 
 

14. (a)
/3 /3 /32 2 2

10 0 0

2 2(0 : / 3) | ( ) | sin sin
L L xP L x dx dx u du

L L
ππψ

π
= = =∫ ∫ ∫  

 
/3

0

2 sin 2 0.1955
4 4
u u

π

π
⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 

 

(b) 
2 /3 2 /3 2 /32 2 2

1/3 /3 /3

2 2( / 3 : 2 / 3) | ( ) | sin sin
L L

L L

xP L L x dx dx u du
L L

π

π

πψ
π

= = =∫ ∫ ∫  

 
2 /3

/3

2 sin 2 0.6090
4 4
u u

π

ππ
⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 

 

(c)  2 2 2
12 /3 2 /3 2 /3

2 2(2 / 3 : ) | ( ) | sin sin
L L

L L

xP L L x dx dx u du
L L

π

π

πψ
π

= = =∫ ∫ ∫  

 

2 /3

2 sin 2 0.1955
4 4
u u

π

ππ
⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 

 

15. (a)  2 2 2 5
3

2 3 2 3 (0.188 nm)( ) | ( ) | sin sin 0.001 nm 2.63 10
0.189 nm 0.189 nm

xP x dx x dx dx
L L

π πψ −= = = = ×  

 

(b) 2 22 3 2 3 (0.031 nm)( ) sin sin 0.001 nm 0.0106
0.189 nm 0.189 nm

xP x dx dx
L L

π π
= = =  

 

(c)  2 2 32 3 2 3 (0.079 nm)( ) sin sin 0.001 nm 5.42 10
0.189 nm 0.189 nm

xP x dx dx
L L

π π −= = = ×  

 
A classical particle has a uniform probability to be found anywhere within the region, so 

3( ) (0.001 nm) /(0.189 nm) 5.29 10P x dx −= = × . 
 
 

16. With 2 2
0 ( )x yE E n n= +  the levels above 50E0 are as follows: 

 
nx ny E nx ny E 
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6 4 52E0 6 5 61E0 
4 6 52E0 5 6 61E0 
7 2 53E0 7 4 65E0 
2 7 53E0 4 7 65E0 
7 3 58E0 8 1 65E0 
3 7 58E0 1 8 65E0 

 
The level at E = 65E0 is 4-fold degenerate. 
 
 

17. With 2 2
0 ( / 4)x yE E n n= +  the levels are as follows: 

 
nx ny E nx ny E 
1 1 1.25E0 2 3 6.25E0 
1 2 2.00E0 1 5 7.25E0 
2 1 2.25E0 2 4 8.00E0 
1 3 3.25E0 3 1 9.25E0 
2 2 5.00E0 1 6 10.00E0 
1 4 5.00E0 3 2 10.00E0 

 
The levels at E = 5.00E0 and E = 10.00E0 are both 2-fold degenerate. 
 
 

18. Using Equations 5.39 and 5.40, we have 
 

 

2 2
2 2 2

2 2

2 2
2 2 2

2 2

( ) ( )( cos sin )

( ) ( )( sin cos ) ( ) ( )

( ) ( )( cos sin )

( ) ( )( sin cos ) ( ) ( )

x x x x

x x x x x

y y y y

y y y y y

dfg y g y k A k x k B k x
x dx

d fg y g y k A k x k B k x k g y f x
x dx

dgf x f x k C k y k D k y
y dy

d gf x f x k C k y k D k y k f x g y
y dy

ψ

ψ

ψ

ψ

∂
= = −

∂

∂
= = − − = −

∂
∂

= = −
∂

∂
= = − − = −

∂

 

With ( , ) 0U x y =  inside the well, Equation 5.37 gives 
 

 
2

2 2( ) ( ) ( ) ( ) ( ) ( )
2 x yk f x g y k f x g y Ef x g y

m
⎡ ⎤− − − =⎣ ⎦  

and so 
2

2 2( )
2 x yE k k

m
= + . 

19. Let 2 2 2
0 / 2E mLπ= .  The energy states are then 
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nx ny nz E degeneracy nx ny nz E degeneracy nx ny nz E degeneracy
1 1 1 3E0 1 2 2 2 12E0 1 1 1 4 18E0 
          1 4 1 18E0 
1 1 2 6E0 1 2 3 14E0 4 1 1 18E0 

 
3 
 

1 2 1 6E0 1 3 2 14E0      
2 1 1 6E0 

 
3 
 2 1 3 14E0 1 3 3 19E0 

     2 3 1 14E0 3 1 3 19E0 
1 2 2 9E0 3 1 2 14E0 3 3 1 19E0 

 
3 
 

2 1 2 9E0 3 2 1 14E0

 
 
6 
 
 
      

2 2 1 9E0 

 
3 
      1 2 4 21E0 

     2 2 3 17E0 1 4 2 21E0 
1 1 3 11E0 2 3 2 17E0 2 1 4 21E0 
1 3 1 11E0 3 2 2 17E0

 
3 
 2 4 1 21E0 

3 1 1 11E0 

 
3 
      4 1 2 21E0 

          4 2 1 21E0 

 
 
6 
 
 
 

 

 
 
20. With 

2

( ) axx Aeψ −= , the normalization integral is 
 

 
2 22 2 2 2 2 2

0
| ( ) | 2

2
ax axx dx A e dx A e dx A

a
πψ

+∞ +∞ ∞− −

−∞ −∞
= = =∫ ∫ ∫  

 
The integral is a standard form that can be found in integral tables.  Setting this result 
equal to 1 for the normalization condition and using Equation 5.49 for a, we 
obtain 2 / 2 1A aπ =  or 
 

 
1/ 41/ 4 1/ 4

02a km mA ω
π π π

⎛ ⎞⎛ ⎞ ⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 

(1,3,3), (3,1,3), (3,3,1) 
6 
3 
3 
3 

6 
1 
3 
3 

3 

1 

(1,1,4), (1,4,1), (4,1,1) 
(2,2,3), (2,3,2), (3,2,2) 

(1,2,2), (2,1,2), (2,2,1) 

(1,1,1) 

(1,1,3), (1,3,1), (3,1,1) 
(2,2,2) 

(1,1,2), (1,2,1), (2,1,1) 

Degeneracy       (nx, ny, nz) Energy 

21E0 

19E0 
18E0 
17E0 

14E0 

12E0 
11E0 

9E0 

6E0 

3E0 

(1,2,4), (1,4,2), (2,1,4), (2,4,1), (4,1,2), (4,2,1) 

(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1) 
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where the final result uses 2
0 /k mω = . 

 
21. (a)  21 1

0 0 0 0 02 2 so /E kx x kω ω= = =  
 
 (b) 23 1

1 0 0 0 02 2 so 3 /E kx x kω ω= = =   
 

25 1
2 0 0 0 02 2 so 5 /E kx x kω ω= = =  

 

22.   
22 2 2

av | ( ) | 0axx x x dx A e x dxψ
∞ ∞ −

−∞ −∞
= = =∫ ∫  

 
because the integrand is an odd function of x (the integral from −∞ to 0 exactly cancels 
the integral from 0 to +∞). 
 

 
2 2 2

2
2 2 2 2 2 2 2 2 2 2

av 30 0

2( ) | ( ) | 2
8

ax ax uAx x x dx A e x dx A e x dx e u du
a

ψ
∞ ∞ ∞ ∞− − −

−∞ −∞
= = = =∫ ∫ ∫ ∫  

 
with the substitution 2u x a= .  The integral is a standard form found in tables and is 
equal to / 4π .  Substituting 1/ 4

0( / )A mω π=  and 0/ 2 / 2a km mω= = , we find 
  

 
3/ 21/ 2

2 0
av

0 0

1 2( ) 2
4 22 2

mx
m m

ω π
π ω ω

⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
 2 2

av av 0( ) ( ) / 2x x x mωΔ = − =  
 

23. (a)  Because the oscillating particle moves with equal probability in the positive and 
negative x directions, av 0p = .   

 (b)   2 2
av av 0 02

0 0

1 1 1 1( )
2 2 2 2 2 4

U k x k m
m m

ω ω
ω ω

= = = =  

 
  1 1 1

av av 0 0 02 4 4K E U ω ω ω= − = − =  
 

  2 0
av av 0

1( ) 2 2
4 2

mp mK m ωω⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

  
 (c) 2 2

av av 0( ) ( ) / 2p p p mωΔ = − =  
 

24. 1
0 0 021.24 eV so 2.48 eVE ω ω= = =  
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  To n = 2 state:  5 1
2 0 0 0 02 2 2 2(2.48 eV) 4.96 eVE E E ω ω ωΔ = − = − = = =  

  To n = 4 state:  9 1
4 0 0 0 02 2 4 4(2.48 eV) 9.92 eVE E E ω ω ωΔ = − = − = = =  

 
25. 

22 2 2 2( ) | ( ) | so at 0 (0)axP x dx x dx A e dx x P dx A dxψ −= = = =  
 
  At the classical turning points 0x x= ± , K = 0 so 21 1

0 02 2orE U kxω= =  
 
  02( / 2 )( / )2 2 1 1

0( ) (0) 0.368 (0)km kP x dx A e dx A e dx e P dx P dxω− − −± = = = =  

26.  
1/ 2 1/ 21

2
2

0 0 0

( ) 1 2 2 0
2 2 ( )

d x d K K K
dK dK m U E K m U E K U E K

−⎛ ⎞ ⎡ ⎤Δ
= = − =⎜ ⎟ ⎢ ⎥− + − + − +⎣ ⎦⎝ ⎠

 

   

     
1/ 2

1/ 2
0

0

1 or
2

KK K U E
U E K

− = = −
− +

 

 

 0
max

0 0

1 2( ) 1( )
2 2( ) 2 2 ( )

U Ex
m U E m U E
−

Δ = =
− −

 

 

27. 0 0 0 0 2

20 : sin cos with mEx A k x B k x kψ< = + =  

 

1 1 0
1 1 2

2 ( )0 : ( ) withk x k x m U Ex x Ce De kψ − −
> = + =  

 
We set C = 0 to keep 1ψ  finite as x → ∞.  We then apply the continuity conditions on ψ  
and /d dxψ  at x = 0: 
 

0 1(0) (0) : B Dψ ψ= =  

0 1
0 1

0 0

:
x x

d d k A k D
dx dx
ψ ψ

= =

⎛ ⎞ ⎛ ⎞= = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
Thus 0 1 0( / ) /( )D B A k k A E U E= = − = − − . 
 

28. 0 0
0 0 2

20 : withik x ik x mEx A e B e kψ −′ ′< = + =  

 

1 1 0
1 1 2

2 ( )0 : ( ) withik x ik x m E Ux x C e D e kψ − −′ ′> = + =  
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If the particles are incident from them negative x direction, then D′ (the coefficient of the 
term that represents a wave in the region of positive x traveling toward the origin) must 
be set to 0.  We then apply the continuity conditions on ψ  and /d dxψ  at x = 0: 
 

0 1(0) (0) : A B Cψ ψ ′ ′ ′= + =  

0 1
0 1

0 0

: ( )
x x

d d k A B k C
dx dx
ψ ψ

= =

⎛ ⎞ ⎛ ⎞ ′ ′ ′= − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
Solving these two equations, we obtain 
 

 1 0

1 0 1 0

2 1 /
1 / 1 /

A k kC B A
k k k k
′ −′ ′ ′= =

+ +
 

 
 The squares of the amplitude ratios give the relative probabilities for the particles to be 

reflected at x = 0 or transmitted into the x > 0 region: 
 

 Reflection probability: 
22

1 0
2

1 0

| | 1 /
| | 1 /
B k k
A k k

⎛ ⎞′ −
= ⎜ ⎟′ +⎝ ⎠

 

 

 Transmission probability: 
2

2 2
1 0

| | 4
| | (1 / )
C
A k k
′

=
′ +

 

 
29. (a) 0 0 2

0 00 : ( ) with 2 /ik x ik xx x Ae Be k mEψ −< = + =  
 
  1 1 2

1 1 00 : ( ) with 2 ( ) /k x k xx L x Ce De k m U Eψ −< < = + = −  
 
  2 2

2 2 0: ( ) withik x ik xx L x Fe Ge k kψ −> = + =  
 
 (b) The continuity conditions on ψ  and /d dxψ at x = 0 are 
 

  
0 1

0 1
0 1

0 0

(0) (0) :

: ( ) ( )
x x

A B C D

d d ik A B k C D
dx dx

ψ ψ

ψ ψ

= =

= + = +

⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 and at x = L  
 

  

0 01 1

0 01 1

1 2

1 2
1 0

( ) ( ) :

: ( ) ( )

ik L ik Lk L k L

ik L ik Lk L k L

x L x L

L L Ce De Fe Ge

d d k Ce De ik Fe Ge
dx dx

ψ ψ

ψ ψ

−

−−

= =

= + = +

⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 



 124

 (c) G = 0, because no wave can travel right to left in the region x > L if the particles are 
incident from x < 0. 

 
30. (a) 0 0 2

0 00 : ( ) with 2 /ik x ik xx x Ae Be k mEψ −< = + =  
 
  1 1 2

1 1 00 : ( ) with 2 ( ) /ik x ik xx L x Ce De k m E Uψ −< < = + = −  
 
  2 2

2 2 0: ( ) withik x ik xx L x Fe Ge k kψ −> = + =  
 
 (b) The continuity conditions on ψ  and /d dxψ at x = 0 are 
 

  
0 1

0 1
0 1

0 0

(0) (0) :

: ( ) ( )
x x

A B C D

d d ik A B ik C D
dx dx

ψ ψ

ψ ψ

= =

= + = +

⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
 and at x = L  
 

  

0 01 1

0 01 1

1 2

1 2
1 0

( ) ( ) :

: ( ) ( )

ik L ik Lik L ik L

ik L ik Lik L ik L

x L x L

L L Ce De Fe Ge

d d ik Ce De ik Fe Ge
dx dx

ψ ψ

ψ ψ

−

−−

= =

= + = +

⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
 (c) G = 0, because no wave can travel right to left in the region x > L if the particles are 

incident from x < 0. 

0

1

2

3

-2 -1 0 1 2

 
  
 In this sketch the barrier extends from x = 0 to x = 1.  To the left of the barrier, the 

incident and reflected waves combine to form a standing wave (but the minima do not go 
to zero, because the reflected wave has smaller amplitude than the indicent wave).  
Between x = 0 and x = 1, the particles have a smaller kinetic energy and thus: (1) a larger 
de Broglie wavelength, and (2) a slower speed, which means that  the probability to find 

|ψ|2
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the particles in any interval must be larger.  Beyond the barrier (x > L) the probability 
density is flat. 

 

31. (a)  
2 2 2

2 2
1 2 2 2 2

100( ) 100(1240 eV nm)10 2160 eV
8 8 8(511,000 eV)(0.132 nm)

h hcE n E
mL mc L

⋅
= = = = =  

 

 (b) 2 2 41 12 2 2(511,000 eV)(2160 eV) 4.70 10 eV/p p mE mc E c
c c

Δ = = = = = ×  

 

 (c)  3
4

1 1 1240 eV nm 4.2 10 nm
2 2 4.70 10 eV

hcx
p c pπ π

−⋅
Δ = = = ×

Δ Δ ×
∼  

 
 
32.  

 
 

33. 
3

2 2 2 2 2 2
av 0 0 0

2 2( ) | ( ) | sin sin with
L L nn x L n xx x x dx x dx u u du u

L L L n L
ππ πψ

π
⎛ ⎞= = = =⎜ ⎟
⎝ ⎠∫ ∫ ∫  

 
 The integral is a standard form that can be found in integral tables. 
 
 

2 3 2 2 3
2 2

av 3 3 2 2
0

2 1 cos2 2 ( ) 1 1( ) sin 2
( ) 6 4 8 4 ( ) 6 4 3 2

n
L u u u u L n nx u L

n n n

π
π π

π π π
⎡ ⎤⎛ ⎞ ⎡ ⎤ ⎛ ⎞= − − − = − = −⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎢ ⎥ ⎝ ⎠⎝ ⎠ ⎣ ⎦⎣ ⎦
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34. With av / 2x L= from Example 5.4, we have 
  

 
2

2 2 2
av av 2 2 2 2

1 1 1 1( ) ( )
3 2 2 12 2

Lx x x L L
n nπ π

⎛ ⎞ ⎛ ⎞Δ = − = − − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
35. (a) The particle has no preferred direction of motion, so it is equally likely to be moving 

in the positive and negative x directions.  We therefore expect that av 0p = . 
 (b) Because the potential energy is zero inside the well, the kinetic energy is equal to the 

total energy: 

 
2 2 2 2 2

2
2 2or so

2 8 4n
p h n h nK E p
m mL L

= = =  

 
For a given level n, p2 is constant so 2

av( )p  has that same value. 
 

(c)   
2 2

2 2
av av 2( ) ( ) 0

4 2
h n hnp p p

L L
Δ = − = − =  

 

36.  
2 2 2 22 2( 2 ) (1 2 )ax ax ax axd dA xe A e ax e Ae ax

dx dx
ψ − − − −= = − = −  

 
2 2 2

2
2 2 3

2 [( 4 ) (1 2 )( 2 ) ] ( 6 4 )ax ax axd A ax e ax ax e Ae ax a x
dx
ψ − − −= − − − − = − +  

 
Substituting the second derivative into the Schrödinger equation, we have 
   

 
2 2 2

2
2 3 21( 6 4 )

2 2
ax ax axAe ax a x kx Axe EAxe

m
− − −− − + + =  

 
After canceling common factors and combining terms, 
 

 
2 2 2

2 2 3 0
2
k a ax E

m m
⎛ ⎞ ⎛ ⎞

− + − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
In order for this to be valid for all possible values of x, both of the quantities in 
parentheses must be zero: 
 

 
2 2 2 2

0 0
0

2 3 3 3or AND
2 2 2 2
k a m a ma E

m m m
ω ω ω= = = = =  

 
2 2 2

2 2
2 2 2 2 2 2 2 2

3 30 0

2| ( ) | 2
48 2

ax ax uA Ax dx A x e dx A x e dx u e du
a a

πψ
∞ ∞ ∞ ∞− − −

−∞ −∞
= = = =∫ ∫ ∫ ∫  
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where we have made the substitution 2u x a=  to put the integral into a standard form 
that is found in integral tables.   Setting the result equal to 1 gives 
 

 
3/ 2 3/ 43

2 0 0
1/ 4

4 2 2 24 or
2

a m mA Aω ω
π ππ
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

37.  
2

0 0 0 0

2 2 2 2 2| ( ) | | ( ) | 2 | ( ) | 2 ax

x x x x
P x dx x dx x dx A e dxψ ψ ψ

−∞ ∞ ∞ ∞ −

−
= + = =∫ ∫ ∫ ∫  

 
2 20

1 1

1 22 0.157
2

u um e du e du
a

ω
π π

∞ ∞− −= = =∫ ∫  

 
38. (a) The x and y motions are independent, and each contributes an energy of 1

0 2( )nω + , 
but the integer n is not necessarily the same for the two independent motions.   Thus the 
total energy is 

  
   1 1

0 0 02 2( ) ( ) ( 1)x y x yE n n n nω ω ω= + + + = + +  
 
(b) 

 
(c) The level with energy 0N ω  has N different possible sets of quantum numbers ,x yn n .  
Both nx and ny range from 0 to N−1 but with their sum fixed to N.  The number of 
possible values of nx is then N (the values are 0, 1, 2, …, N-2, N-1), and for each value of 
nx the value of ny is fixed.  The total degeneracy of each level is thus 1x yN n n= + + . 
 

04 ω  

03 ω  

02 ω  

0ω  

Energy 

4 

3 

2 

1 

(0,3), (1,2), (2,1), (3,0) 

(0,2), (1,1), (2,0) 

(0,1), (1,0) 

(0,0) 

Degeneracy         (nx, ny) 
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Chapter 6 
 
 Why teach the Bohr model?  It lays the groundwork for the relationship between 
atomic spectroscopy and atomic structure, and as such displays for students a classic 
example of how theory is informed by experiment.  The model gives a useful (although 
ultimately incorrect) picture of how electrons move in atoms; even though the model is 
incorrect it offers a quick means to calculate or estimate atomic properties, for example 
magnetic dipole moments.  It allows some fundamental ideas (such as quantized energy 
levels in atoms, quantization of angular momentum, and the correspondence principle) to 
be introduced in a simple context.   
 The Bohr model is also important in its historical context.  Why then not 
introduce it in that context (that is, prior to de Broglie waves)?  The work of Rutherford 
and Bohr is more significant in elucidating the properties and structure of atoms than it is 
in leading to further developments in quantum physics. Hence it should be presented as a 
lead-in to atomic structure.   
 It is also important to minimize the time between the introduction of the Bohr 
model and its negation by the correct quantum theory calculation.  This avoids what the 
psychologists call “imprinting.”  In this ordering of topics, the Bohr model is presented, 
its deficiencies are discussed (in the context of our previous discussion of quantum 
mechanics), and then we launch quickly into the correct quantum model. 
 Instructors will note that this text does not present the quantization of angular 
momentum based on a calculation in which standing de Broglie waves just fit around the 
circumference of a Bohr orbit.  In my view this piles misunderstanding on top of 
misunderstanding.  (Note that Bohr could not have derived quantization of angular 
momentum in this way, as his work occurred a decade before de Broglie’s.)  Just what is 
it that students should regard those standing de Broglie waves as representing?  That is, is 
there some spatial variation of the electron probability density around the orbit?  And 
how do we reconcile this with the spherical symmetry of the ground state?  In a similar 
fashion, how would we draw the standing de Broglie waves for the l = 0 state?  This leads 
to no productive outcome, so it is better to leave it out.   
 
 

Supplemental Materials 
 
 The University of Colorado PhET collection offers a Rutherford scattering 
simulation at http://phet.colorado.edu/en/simulation/rutherford-scattering.  Chapter 4 of 
Physlet Quantum Physics includes simulations of Thomson and Rutherford scattering. 
 
 
 

Suggestions for Additional Reading 
 
A discussion of many of the basic properties of atoms may be found in: 
M. R. Wehr, J. A. Richards, and T. W. Adair, Physics of the Atom (Addison-Wesley, 

1978). 
 

http://phet.colorado.edu/en/simulation/rutherford-scattering
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For a historical perspective on the development of atomic theory, see: 
H. A. Boorse and L. Motz, editors, The World of the Atom (Basic Books, 1966). 
G. K. T. Conn and H. D. Turner, The Evolution of the Nuclear Atom (Iliffe Books, 1965).  
F. Friedman and L. Sartori, The Classical Atom (Addison-Wesley, 1965). 
 
For more details on the history of the Thomson and Bohr models, see: 
J. L. Heilbron, “J. J. Thomson and the Bohr Atom,” Physics Today, April 1977, p. 23. 
J. L. Heilbron, “Bohr’s First Theories of the Atom,” Physics Today, October 1985, p. 28. 
 
For a popular summary of Rutherford’s work, see: 
E. N. da C. Andrade, “The Birth of the Nuclear Atom,” Scientific American 195, 93 

(November 1956). 
 
The early papers on the Rutherford model and its experimental confirmation illustrate the 
difficulty of the experiments and the care and abilities of the experimenters. They are 
easily readable and require no mathematics beyond the present level. 
E. Rutherford, Philosophical Magazine 21, 669 (1911). 
H. Geiger, Proceedings of the Royal Society of London A83, 492 (1910). 
H. Geiger and E. Marsden, Philosophical Magazine 25, 604 (1913). 
 
 

Materials for Active Engagement in the Classroom 
 
A.  Reading Quizzes 
 
1. Which of the following is NOT a characteristic of the Bohr model of the structure of 

the atom? 
  (1) Electrons move in circular orbits about the nucleus. 
  (2) Photons are emitted when an electron jumps from one circular orbit to a  
   lower-energy orbit. 
  (3) The circular motion of the electron is consistent with the uncertainty principle. 
  (4) The angular momentum of each orbit can take only values that are integer  
   multiples of the smallest value. 
 
2. In the Bohr model: 
  (1) Electrons move in circular orbits of definite radius. 
  (2) Electrons move in elliptical orbits. 
  (3) Electrons moving in the same orbit can have different energies. 
  (4) Electrons can never jump from one orbit to another. 
 
3. Which of the following is NOT used in the Bohr model of the atom? 
  (1) Quantization of energy. 
  (2) Relativistic energy and momentum. 
  (3) Coulomb’s law for electrostatic forces. 
  (4) Quantization of angular momentum. 
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4. In a Rutherford scattering experiment: 
  (1) most of the particles are not scattered at all or scattered only at small angles,  
   but a few are scattered at large angles. 

(2) the experimental results verify that the positive charge of the atom is spread 
throughout the volume of the atom. 

(3) most particles are scattered only once, but the ones that are scattered at large 
angles are scattered many times. 

(4) scattering by the negatively charged electrons can cancel scattering by the 
positively charged nucleus. 

 
Answers  1. 3 2. 1 3. 2 4. 1 
 
 
B.  Conceptual or Discussion Questions 
 
1. An atom absorbs a photon, so that the electron’s total energy increases by an amount 

equal to the photon energy.  In the Bohr model, the electron moves to an orbit of 
larger radius.  what happens to the orbital speed of the electron? 

  (1) Increases   (2) Decreases  (3) Stays the same 
 
2. In the Bohr model of the hydrogen atom, the speed of the electron is 

(1) much smaller than the speed of light, so that nonrelativistic equations can 
safely be used. 

(2) large enough that the difference between the relativistic and nonrelativistic 
equations is important. 

(3) very close to the speed of light, so that the extreme relativistic approximation 
E = pc should be used. 

 
3. Among the radiations emitted by atomic hydrogen we find one of energy 13.6 eV, the 

series limit of the Lyman series (n = ∞ to n = 1).  A photon of the same energy also 
exists as the limit of a certain series in singly ionized helium (Z = 2).  What is the 
final value of n for this photon emission? 

  (1) 1 (2) 2 (3) 3 (4) 4 (5) more than 4 
 
4. A Rutherford scattering experiment is set up with alpha particles incident on a silver 

foil, and the scattered alpha particles are observed by a detector at the scattering angle 
θ.  How does the counting rate (number of counts per second) in the detector change 
in each of the following cases?  Possible answers are: 

  (1) Increases    (2) Decreases    (3) Remains the same    (4) Needs more information 
 (a) The detector moves to larger angles. 
 (b) The kinetic energy of the incident alpha particles is increased. 
 (c) The silver foil (Z = 47) is replaced with gold (Z = 79). 
 (d) The alpha particles are replaced with protons. 
 (e) The thickness of the foil is decreased. 
 
Answers  1. 2 2. 1 3. 2 4. (a) 2   (b) 2   (c) 1   (d) 2   (e) 2 
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Sample Exam Questions 
 
A.  Multiple Choice 
 
1. In Rutherford scattering we ignore the effect of the electrons because:  
 (a) electrons do not exert any force on alpha particles.   
 (b) electrons are uniformly distributed throughout the atom.   
 (c) the electrons are in such rapid motion that the alpha particles do not collide with them.    
 (d) the mass of an electron is much smaller than the mass of an alpha particle. 
 
2. In a certain Rutherford scattering experiment with alpha particles, the distance of 

closest approach between the alpha particles and the nucleus is r.  If the kinetic 
energy of the alpha particles is doubled, what is the new distance of closest approach? 

 (a) 2r  (b) 4r  (c) r/2  (d) r/4 
 
3. In Rutherford scattering, what is the approximate ratio of the number of particles 

scattered at 10° to the number scattered at 5°? 
 (a) 1/4   (b) 1/8  (c) 1/16 (d) 1/64 
 
4. When alpha particles of kinetic energy E are incident on nuclei of gold atoms, the 

smallest distance between an alpha particle and a nucleus is x.  What is the smallest 
separation distance when the alpha particle kinetic energy is doubled to 2E? 

 (a) 2x  (b) x/2  (c) / 2x       (d) x/4        (e) 2x  
 
5. In Rutherford scattering of alpha particles by a gold foil, large deflections can 

occasionally be observed because: 
 (a) a single alpha particle can be scattered many times in encounters with many atoms. 
 (b) the alpha particle can be deflected by the many atomic electrons of the gold atoms. 
 (c) the wave nature of the alpha particles causes interference effects. 
 (d) none of the above. 
 
6. Alpha particles are scattered from a certain nucleus and are observed at scattering 

angles of 45o and 135o.  For which of these two scattering angles does the nucleus 
exert a greater average force on the alpha particles? 

 (a) 45o  (b) 135o (c) The average force is the same for both angles. 
 
7. In a scattering experiment, protons pass through a thin foil of silver (Z = 47).  The 

probability to detect the scattered protons has the value I at an angle of 10.0o relative 
to the direction of the original beam of protons.  At what angle is the scattering 
probability 0.1I?    

 (a) 40.0o  (b) 5.6o (c) 2.5o  (d) 17.8o  (e) None of these. 
 
Answers  1. d 2. c 3. c 4. b 5. d 6. b 7. d 
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B.  Conceptual 
 
1. Consider two different alpha-particle scattering experiments, one in which the particle 

is deflected by 45o and another in which it is deflected from the same target by 135o.  
In the 45o scattering experiment, is the maximum force experienced by the alpha 
particle greater than, less than, or the same as the maximum force experienced by the 
alpha particle in the 135o scattering experiment?  EXPLAIN YOUR ANSWER. 

 
Answers 1. less than 
 
 
C.  Problems 

 
1. (a) The Balmer series of lines emitted by doubly ionized lithium (Li++), which has 

atomic number 3, consists of electron transitions that end at the first excited state.  
Find the limiting wavelength of the Balmer series of doubly ionized lithium.   

(b) Find the longest wavelength at which doubly ionized lithium in its ground state 
can absorb a photon. 

 
2. (a) Find the energies of the ground state and the first two excited states of the electron 

in doubly ionized lithium Li++ (atomic number = 3).  Sketch an energy-level 
diagram and label each level with its energy and principal quantum number.   

(b) If the electron is originally in the second excited state, find the wavelengths of all 
photons that can be emitted as the electron eventually reaches the ground state. 

 
3. A neutral atom of Li has 3 electrons.  Two of these are removed, leaving an ion of Li++.   

(a) What is the longest wavelength at which the ground state of the Li++ ion can 
absorb electromagnetic radiation?   

 (b) How much energy is needed to remove the electron from the ground state of the ion?   
(c) When the electron is in its second excited state, it can return to the ground state 

through a variety of paths.  Find the wavelengths of all possible radiations that 
can be emitted in these processes. 

 
4. A neutral atom of the element boron (B) has 5 electrons.  Four of the electrons are 

removed, forming an ion with the one remaining electron.   
(a) Sketch an energy level diagram for this ion, showing the ground state and the first 

two excited states.  Label each state with the value of its energy.   
(b) Calculate the two longest wavelengths at which this ion can absorb radiation. 

Assume all absorption occurs from the ground state.   
(c) What is the minimum amount of energy needed to remove the electron from the 

ground state of this ion? 
 
5. Consider an atom in which a single electron is attached to a positively charged 

nucleus.  The ionization energy (the minimum energy necessary to completely 
remove the electron from the atom in its ground state) is 217.6 eV.    

 (a) Find the energies of the ground state and the first and second excited states.   
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 (b) How many positive charges are there in the nucleus?   
(c) What are the longest and shortest wavelengths of the photons that can be absorbed 

by this atom in its ground state? 
 
6. (a) Calculate the energies and draw an energy-level diagram showing the ground state 

and first 3 excited states of triply ionized Be+++ (Z = 4).  Label each state with its 
energy and principal quantum number.   

(b) The Balmer series in this atom consists of electron transitions from higher states 
to the first excited state.  Find the longest wavelength in the Balmer series for this 
atom, and draw this transition on your energy-level diagram.   

(c) If the atom is in its ground state, what is the longest wavelength at which it can 
absorb a photon?  Indicate this process on your energy-level diagram. 

 
7. In a certain atom with a single electron, the longest wavelength at which absorption in 

the ground state will occur is 4.86 nm.  For this atom, find:   
(a) the energies of the ground state and the first two excited states (sketch an energy 

level diagram and label each state with its energy and its principal quantum 
number);  

(b) the ionization energy (the minimum energy required for an electron in the ground 
state to be completely removed from the atom;  

(c) the wavelengths of the photons emitted when the electron makes transitions to 
lower states beginning in the second excited state. 

 
8. (a) In a certain atom with a single electron, the longest wavelength at which photons 

can be absorbed from the ground state is 4.863 nm.  What is the atomic number Z 
of this atom?   

(b) What is the ionization energy (energy necessary to remove the electron from the 
ground state) of this atom? 

 
9. In a certain single-electron ion in its ground state, the ionization energy (the energy 

needed to completely remove the electron from the ion) is 490 eV.   
 (a) How many positive charges are in the nucleus of this ion? 

(b) What is the wavelength of the photon emitted when the electron jumps from the 
first excited state to the ground state? 

 
10. (a) Draw an energy-level diagram showing the ground state and first 3 excited states 

of doubly ionized Li (Z = 3).  Label each state with its energy.   
(b) Calculate the longest-wavelength photon emitted in transitions from the third 

excited state.   
 (c) Calculate the ionization energy of the third excited state.   
  
11. (a) Find the ionization energy (the energy needed to remove the electron) in an “atom” 

in which a single electron is attached to a nucleus of boron (atomic number = 5). 
(b) Sketch an energy level diagram for this atom showing the ground state and the 

first 3 excited states.  Label each state with its principal quantum number and its 
energy.   
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(c) Find the wavelength of the photon that is emitted when the electron makes a 
transition from the first excited state to the ground state. 

 
12. (a) In the Balmer series of emitted transitions in a one-electron atom, the electron 

jumps from other states to the first excited state.  In doubly ionized lithium 
(atomic number = 3), what are the wavelengths of the longest and shortest 
members of the Balmer series?   

(b) The lifetime of the first excited state is about 10-8 s.  Estimate the limit of 
precision with which it is possible to measure the energy of that state, and 
compare with the energy of the state. 

 
13. (a) An atom of singly ionized helium (atomic number = 2) is initially in its second 

excited state.  It ends up in the ground state after two photons are emitted from the 
atom. Find the energies of the two photons.    

 (b) How much energy is required to completely remove the electron when the He ion 
is in its ground state? 

 
Answers 1. (a) 40.5 nm   (b) 13.5 nm   
   2. (a) -122.4 eV, -30.6 eV, -13.6 eV   (b) 72.9 nm, 11.4 nm, 13.4 nm 
   3. (a) 13.4 nm   (b) 122.4 eV   (c) 72.9 nm, 11.4 nm, 13.4 nm 
   4. (a) -340 eV, -85 eV, -37.8 eV   (b) 4.86 nm, 4.10 nm   (c) 340 eV 
   5. (a) -217.6 eV, -54.4 eV, -24.2 eV   (b) 4   (c) 7.50 nm, 5.70 nm 
   6. (a) -217.6 eV, -54.4 eV, -24.2 eV, -13.6 eV   (b) 41.1 nm   (c) 7.60 nm 
   7. (a) -340 eV, -85 eV, -37.8 eV   (b) 340 eV   (c) 26.3 nm, 4.10 nm 
   8. (a) 5   (b) 340 eV 
   9. (a) 6   (b) 3.37 nm 
   10. (a) -122.4 eV, -30.6 eV, -13.6 eV, -7.65 eV   (b) 208.4 nm   (c) 7.65 eV 
   11. (a) 340 eV   (b) -340 eV, -85 eV, -37.8 eV, -21.3 eV   (c) 4.86 nm 
   12. (a) 72.9 nm, 40.5 nm   (b) 6 × 10-8 eV 
   13. (a) 7.6 eV, 40.8 eV   (b) 54.4 eV 
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SOLUTIONS 
 
 

1.    1 1 197eV nm 1970eV/
0.10nm

cp c
x c x c

⋅
Δ = = =

Δ Δ
∼  

 

 
2 2 2 2
av av

av 2 6

(1970eV) 3.8 eV
2 2 2(0.511 10 eV)
p p cK
m mc

= = = =
×

 

 
This energy is consistent with the observed energies of electrons in atoms. 
 

2. (a)  
34

2 3enclosed
3 34

30 0 0

14 or
4

q Ze r Zer E E r
R R

ππ
ε ε π πε

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
 

 

(b)    
2

3
0

1
4

ZeF eE r
Rπε

= =  

 

3. (a)      
2 2 2

3 3 2
0 0

1 1 1
2 2 4 2 4

k Ze Ze cf
m R m R mcπ π πε π πε

= = =   

 

          

8 2 9 2
15

3 6

8
8

15

1 (1.440eV nm)(3.00 10 m/s) (10 nm/m) 6.57 10 Hz
2 (0.053nm) (0.511 10 eV)

3.00 10 m/s 4.57 10 m 45.7 nm
6.57 10 Hz

c
f

π

λ −

⋅ ×
= = ×

×

×
= = = × =

×

 

 
 This is about a factor of 3 smaller than the observed wavelength.  
 
(b) With Z = 11 and R = 0.18 nm, 
 

 

8 2 9 2
15

3 6

8
8

15

1 (11)(1.440eV nm)(3.00 10 m/s) (10 nm/m) 3.48 10 Hz
2 (0.18nm) (0.511 10 eV)

3.00 10 m/s 8.62 10 m 86.2 nm
3.48 10 Hz

f

c
f

π

λ −

⋅ ×
= = ×

×

×
= = = × =

×

 

 
 This is nearly an order of magnitude smaller than the observed wavelength. 
 
 

4. (a)  The force on an electron at the radius x due to the positive sphere is given by  
Equation 6.2 evaluated for Z = 2: 
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2

3
0

1 2
4

e xF
Rπε+ =  

  
The force exerted on one electron by the other electron (located a distance 2x away) is 
  

 
2

2
0

1
4 4

eF
xπε− =  

 
At equilibrium, F F+ −= , so 
 

 
2 2

3 2

2 or
4 2

e x e Rx
R x

= =  

 
5. (a) From Equation 6.8, 

 

 
2

0

(2)(79)cot (1.440 MeV fm)cot 45 22.8 fm
2 4 2 2(5.00 MeV)
Zz eb
K

θ
πε

= = ⋅ ° =  

 
(b) We can rewrite Equation 6.18 as 
 

 
2

2 2 2 21 1
min min2 2

0

0
4

emv r Zzr mv b
πε

− − =  

 
which can be analyzed using the quadratic formula to give 
 

22 2
2

min 2 2
0 0

2
2

4 4

(1.440 MeV fm)(2)(79) (1.440 MeV fm)(2)(79) (22.8fm) 55.0 fm or 9.5 fm
10.00 MeV 10.00 MeV

e Zz e Zzr b
mv mvπε πε

⎛ ⎞
= ± +⎜ ⎟

⎝ ⎠

⎛ ⎞⋅ ⋅
= ± + = −⎜ ⎟

⎝ ⎠
 
Only the positive root is physically meaningful, so min 55.0 fm.r =  
 

(c)            
2

0 min

(1.440 MeV fm)(2)(79) 4.14 MeV
4 55.0fm

e ZzU
rπε

⋅
= = =  

 
 5.00 MeV 4.14 MeV 0.86 MeVK E U= − = − =  
 

6. From Equation 6.19, 



 137

 
2

0

(1.440 MeV fm)(2)(79) 33 MeV
4 7.0fm

e ZzK
dπε

⋅
= = =  

 

7.  
2

0

(1.440 MeV fm)(2)(29) 14fm
4 6.0 MeV

e Zzd
Kπε

⋅
= = =  

 
8. (a) The density ρ of silver is 10.5 g/cm3 and its molar mass M is 107.9 g/mole.  Thus 

 
23 3

22 3 28 3A (6.02 10 atoms/mole)(10.5 g/cm ) 5.86 10 atoms/cm 5.86 10 atoms/m
107.9g/mole

Nn
M
ρ ×

= = = × = ×

 

At θ = 90°, 
2

0

(1)(47)cot cot 45 6.77 fm
2 4 2 2(5.00 MeV)
Zz eb
K

θ
πε

= = ° =  

2 28 3 6 15 2 5
90 (5.86 10 m )(4.0 10 m)( )(6.77 10 m) 3.37 10f nt bπ π− − −

> ° = = × × × = ×  
 

(b) At θ = 10°, 
2

0

(1)(47)cot cot 5 77.4 fm
2 4 2 2(5.00 MeV)
Zz eb
K

θ
πε

= = ° =  

 2 28 3 6 15 2 3
10 (5.86 10 m )(4.0 10 m)( )(77.4 10 m) 4.41 10f nt bπ π− − −
> ° = = × × × = ×  

 

(c) At θ = 5°, 
2

0

(1)(47)cot cot 2.5 155 fm
2 4 2 2(5.00 MeV)
Zz eb
K

θ
πε

= = ° =  

 
2 28 3 6 15 2

5

2 2 2
5 10

(5.86 10 m )(4.0 10 m)( )(155 10 m) 1.77 10

1.77 10 4.43 10 1.33 10

f nt b

f f

π π− − −
> °

− − −
> ° > °

= = × × × = ×

− = × − × = ×
 

 
(d) 2

5 51 1 1.77 10 0.982f f −
< ° > °= − = − × =  

 
9. (a) From Equation 6.19 

  

 
2

0

(1.440 MeV fm)(1)(29) 8.4 MeV
4 5.0fm

e ZzK
dπε

⋅
= = =  

 

(b)  
2

0

(1)(29)cot (1.440 MeV fm)cot 60 1.61 fm
2 4 2 2(7.5MeV)
Zz eb
K

θ
πε

= = ⋅ ° =  

 

(c) We can rewrite Equation 6.18 as   
2

2 2 2 21 1
min min2 2

0

0
4

emv r Zzr mv b
πε

− − =  

and the quadratic formula then gives 



 138

 
22 2

2
min 2 2

0 0

2
2

4 4

(1.440 MeV fm)(1)(29) (1.440 MeV fm)(1)(29) (1.61fm) 6.00 fm or 0.43 fm
15.0 MeV 15.0 MeV

e Zz e Zzr b
mv mvπε πε

⎛ ⎞
= ± +⎜ ⎟

⎝ ⎠

⎛ ⎞⋅ ⋅
= ± + = −⎜ ⎟

⎝ ⎠
 
Only the positive root is physically meaningful, so min 6.00 fm.r =  

   
 (d) For copper, ρ = 8.95 g/cm3 and M = 63.5 g/mole, so 
 

 
23 3

28 3A (6.02 10 atoms/mole)(8.95g/cm ) 8.49 10 atoms/m
63.5g/mole

Nn
M
ρ ×

= = = ×  

 
   
 2 28 3 6 15 2 6

120 (8.49 10 m )(12 10 m)( )(1.61 10 m) 8.3 10f nt bπ π− − − −
> ° = = × × × = ×  

 

10. 
22 3 2

Au Ag Au90 Au Au Au
2 2 3 2

90 Ag Ag Ag Ag Au Ag

(Au) (19.3g/cm )(107.9g/mole)(79) 2.84
(Ag) (10.5g/cm )(197.0g/mole)(47)

M Zf n t bR
f n t b M Z

ρπ
π ρ

> °

> °

= = = = =  

 
11. As a rough first approximation, we can assume that the light alpha particle rebounds from 

the massive gold nucleus with a final momentum pf that is in magnitude nearly equal to its 
initial momentum pi, so that the recoil momentum given to the gold nucleus is 

 
 recoil i f i i i( ) 2p p p p p p= − ≅ − − =  
 
This is accurate to within about 2%.  The recoil kinetic energy of the gold nucleus is 
  

 
2 2
recoil i

recoil
Au Au Au

4(2 )4 44(8.0MeV) 0.63 MeV
2 2 2 197
p m KpK
M M M

α α= = = = =  

 
12. Let pi and pf represent the initial and final momentum of the alpha particle, and let Ki and 

Kf be its initial and final kinetic energies.  Then conservation of momentum and energy 
give i f e i f eandp p p K K K= + = + , or 
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2 2 2 2 22 2 2
e i e e i e e ei f i

e e e

2i e i
e e

e e

2 2 2
e i i

i f e 2 2
e e e e

2

( ) 2
2 2 2 2 2 2 2 2 2

21 1 or
2 2 1 /

44
2 2 (1 / ) 2 (1 / )

4(7294)(8.0 MeV) 0.0044 MeV
(1 7294)

p p p p p p p pp p p
m m m m m m m m m

p p pp p
m m m m m

p mp pK K K
m m m m m m m

α α α α α α

α α α

α

α α α

−
= + = + = − + +

⎛ ⎞
= + =⎜ ⎟ +⎝ ⎠

− = = = =
+ +

= =
+

 

 
13. The potential energy at minimum separation is U = E − K = 4.8 MeV, so 

  

 
2

min
0

(1.440MeV fm)(2)(47) 28.2 fm
4 4.8MeV

e Zzr
Uπε

⋅
= = =  

  
From conservation of angular momentum (Equation 6.17), we obtain  
  

 

min min
min min

0
2

4.8MeV(28.2fm) 19.9 fm
9.6MeV

8 (2)(9.6MeV)(19.9fm)cot 2.828 or 38.9
2 (2)(47)(1.440 MeV fm)

v Kb r r
v K

Kb
Zze
πεθ θ

= = = =

= = = = °
⋅

 

 

14.   
23 3

28 3A
2 3

(6.02 10 atoms/mole)(19.3 g/cm ) 5.90 10 atoms/m
(197 g/mole)(10 m/cm)

Nn
M
ρ

−

×
= = = ×  

 

 

22 2

2 4
0

228 3 6
2

2 4

1( )
4 2 4 sin / 2

(5.90 10 m )(3.0 10 m) (2)(79)(1.440 MeV fm) 1 0.246 m
4(0.12 m) 2(6.0 MeV) sin 15

nt Zz eN
r K

θ
πε θ

− −
−

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤× × ⋅
= =⎢ ⎥ °⎣ ⎦

 

 
This gives the probability per unit area for an alpha particle to be scattered into the 
detector.  The area of the detector is π(0.50 cm)2 = 7.96 × 10−6 m2.  The total probability 
for an alpha particle to strike the detector is 2 6 2 6(0.246 m )(7.96 10 m ) 1.96 10− − −× = × .  
That is, each alpha particle has a probability of 1.96 × 10−6 to be scattered into the 
detector.  If the rate of incident particles is 3.0 × 107 s−1, the rate at which they strike the 
detector is 6 7 1 1(1.96 10 )(3.0 10 s ) 59 s− − −× × = . 
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15. The shortest wavelength is the series limit.  For the Lyman series, n0 = 1 and Equation 
6.21 becomes 

 
2

2(91.13 nm) 2,3,4,
1

n n
n

λ = =
−

…  

 
which gives λ = 121.51 nm (n = 2), 102.52 nm (n = 3), 97.21 nm (n = 4). 
 

16. For the Brackett series, n0 = 4.  With λ = 1944 nm, Equation 6.21 gives 
 

 
2

2 21944 nm (1458 nm)
4

n
n

=
−

 

 
which can be solved to give n = 8.  The next higher (n = 7) and next lower (n = 9) lines 
are 

 
2 2

2 2 2 2

7 9(1458 nm) 2165 nm (1458 nm) 1817 nm
7 4 9 4

λ λ= = = =
− −

 

 
17. For the Pfund series, n0 = 5 and the longest wavelength corresponds to n = 6.  Solving 

Equation 6.21 for the series limit, we have 
 

 
2 2 2 2

0
limit 2 2

6 5(7459 nm) 2279 nm
6

n n
n

λ λ − −
= = =  

 
18.  3 09 9(0.0529 nm) 0.476 nmr a= = =  

 

 

3 5
2 6

2

0

2

0

3(1240eV nm) / 2 2.43 10 7.30 10 m/s
(0.511 10 eV)(0.476nm)

1 1.440 eV nm 3.02 eV
4 0.476 nm

1 1.440eV nm 1.51eV
8 2(0.476 nm)

n n cv c c c
mr mc r

eU
r

eK
r

π

πε

πε

−⋅
= = = = × = ×

×

⋅
= − = − = −

⋅
= = =

 

 
19. The Lyman series consists of transitions from higher levels to the n2 = 1 level.  The series 

limit would be the transition with the highest energy, corresponding to a jump from n1 = 
∞ to n2 = 1.  The wavelength is found from Equation 6.33: 

 

 
2 2 2 2
1 2 2 1

2 2 2 2 7 1
1 2 1 2

1 1 91.13 nm
1.09737 10 m

n n n n
R n n R n n

λ −
∞ ∞

⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟− − ×⎝ ⎠ ⎝ ⎠

 

 
For the Paschen series (n2 = 3), the series limit is (with n1 = ∞) 
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2
2

limit 7 1

9 820.1 nm
1.09737 10 m

n
R

λ −
∞

= = =
×

 

 

20. (a) From Equation 6.26, 2
0

n nv
mr mn a

= = .  Using Equation 6.29 for a0, we obtain 

 
2

2 2
0 0

1
(4 / ) 4

e cv
nm me n n

α
πε πε

= = =  

 
(b)  When the nuclear charge is Ze, we must replace e2 with Ze2, so /v Z c nα= . 
 

21. The energy of the initial n = 5 state is 5
13.6 eV 0.544 eV

25
E −

= = − .  An electron in this 

state can make transitions to any of the lower states with n = 4 (E4 = −0.850 eV), n = 3 
(E3 = −1.51 eV), n = 2 (E2 = −3.40 eV), and n = 1 (E1 = −13.6 eV).  The transition 
energies are: 
  

 

5 4

5 3

5 2

5 1

5 4 : 0.544 eV ( 0.850 eV) 0.306 eV
5 3: 0.544 eV ( 1.51eV) 0.97 eV
5 2 : 0.544 eV ( 3.40 eV) 2.86 eV
5 1: 0.544 eV ( 13.6 eV) 13.1eV

E E E
E E E
E E E
E E E

→ Δ = − = − − − =
→ Δ = − = − − − =
→ Δ = − = − − − =
→ Δ = − = − − − =

 

 
 

22. The Paschen series consists of transitions from higher levels that end in the n = 3 level.  
The energies and wavelengths are: 

  

 

2 2

2 2

2 2

1 1 1240eV nm4 3: ( 13.60eV) 0.661eV 1876 nm
4 3 0.661 eV
1 1 1240eV nm5 3: ( 13.60eV) 0.967eV 1282 nm
5 3 0.967 eV
1 1 1240eV nm6 3: ( 13.60eV) 1.133eV 1094 nm
6 3 1.133 eV

7 3:

E

E

E

λ

λ

λ

⋅⎛ ⎞→ Δ = − − = = =⎜ ⎟
⎝ ⎠

⋅⎛ ⎞→ Δ = − − = = =⎜ ⎟
⎝ ⎠

⋅⎛ ⎞→ Δ = − − = = =⎜ ⎟
⎝ ⎠

→ Δ 2 2

1 1 1240eV nm( 13.60eV) 1.234eV 1005 nm
7 3 1.234 eV

E λ ⋅⎛ ⎞= − − = = =⎜ ⎟
⎝ ⎠

 

 
The series limit is 1.511 eV, corresponding to a wavelength of 820.5 nm. 
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23. The photon energies of the incident light are 
 

 1240 eV nm 21.0 eV
59.0 nm

hcE
λ

⋅
= = =  

  
When an atom in the ground state absorbs a 21.0-eV photon, the atom is ionized (which 
takes 13.6 eV).  The excess energy, 21.0 eV − 13.6 eV = 7.4 eV, appears as the kinetic 
energy of the electron, which is now free of the atom.  Neglecting a small recoil kinetic 
energy given to the proton, the electrons have a kinetic energy of 7.4 eV. 
 

24. (a) The ionization energy is the magnitude of the energy of the electron.  For the n = 3 
level of hydrogen 

 3
13.6 eV 1.51 eV

9
E −

= =  

  
(b) For singly ionized helium (Z = 2) we use Equation 6.38: 
 

 
2 2

2 2

( 13.6 eV) ( 13.6 eV)2 13.6 eV
2n

ZE
n

− −
= = =  

   

(c)   
2 2

2 2

( 13.6 eV) ( 13.6 eV)3 7.65 eV
4n

ZE
n

− −
= = =  

 

0.
66

1 

Photon 
wavelength 
(nm) 

Photon 
energy 
(eV) 

n = ∞
n = 7 
n = 6 
n = 5 
n = 4 

n = 3 

0.
96

7 

1.
13

3 

1.
23

4 

1.
51

1 …

…

…

18
76

 

12
82
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0.

5 

E3 = -1.511 eV 

E4 = -0.850 eV 
E5 = -0.544 eV 
E6 = -0.378 eV 

E∞ =  0.000 eV 
E7 = -0.278 eV 
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25. (a)   4 2 2 2

1 1(4 2) ( 13.6 eV) 2.55 eV
4 2

E E E ⎛ ⎞→ = − = − − =⎜ ⎟
⎝ ⎠

 

 

   4 3 2 2

1 1(4 3) ( 13.6 eV) 0.661eV
4 3

E E E ⎛ ⎞→ = − = − − =⎜ ⎟
⎝ ⎠

 

 

   3 2 2 2

1 1(3 2) ( 13.6 eV) 1.89 eV
3 2

E E E ⎛ ⎞→ = − = − − =⎜ ⎟
⎝ ⎠

 

 
   (4 3) (3 2) 0.661 eV 1.89 eV 2.55 eV (4 2)E E E→ + → = + = = →  
 

 (b)   4 2 2 2

1 1(4 1) ( 13.6 eV) 12.8 eV
4 1

E E E ⎛ ⎞→ = − = − − =⎜ ⎟
⎝ ⎠

 

 

   2 1 2 2

1 1(2 1) ( 13.6 eV) 10.2 eV
2 1

E E E ⎛ ⎞→ = − = − − =⎜ ⎟
⎝ ⎠

 

 
   (4 2) (2 1) 2.55 eV 10.2 eV 12.8 eV (4 1)E E E→ + → = + = = →  
 

26. The Lyman series consists of transitions that end in the n = 1 level.  The smallest energy 
difference, corresponding to the longest wavelength, is n = 2 to n = 1. 

 

 

2
2 1 2 2

1 1( 13.6 eV)2 40.8 eV
2 1

1240 eV nm 30.4 nm
40.8 eV

E E E

hc
E

λ

⎛ ⎞Δ = − = − − =⎜ ⎟
⎝ ⎠

⋅
= = =
Δ

 

  
The largest energy difference would correspond to transitions from n = ∞ to n = 1: 
 

 

2
1 2

1( 13.6 eV)2 0 54.4 eV
1

1240 eV nm 22.8 nm
54.4 eV

E E E

hc
E

λ

∞
⎛ ⎞Δ = − = − − =⎜ ⎟
⎝ ⎠

⋅
= = =
Δ

 

 
27. Using Equation 6.38, we have 2 2 2( 13.6 eV) / ( 54.4 eV) /nE Z n n= − = − , 

so 1 2 3 454.40 eV, 13.60 eV, 6.04 eV, 3.40 eVE E E E= − = − = − = − .  The possible 
transitions are: 
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4 1

4 2

4 3

3 1

3 2

2 1

4 1: 51.00 eV / 24.31 nm

4 2 : 10.20 eV / 121.6 nm

4 3: 2.64 eV / 469.7 nm

3 1: 48.36 eV / 25.64 nm

3 2 : 7.56 eV / 164.0 nm

2 1: 40.80 eV /

E E E hc E

E E E hc E

E E E hc E

E E E hc E

E E E hc E

E E E hc E

λ

λ

λ

λ

λ

λ

→ Δ = − = = Δ =

→ Δ = − = = Δ =

→ Δ = − = = Δ =

→ Δ = − = = Δ =

→ Δ = − = = Δ =

→ Δ = − = = Δ 30.39 nm=

 

 
 

 
 

28. The gravitational force law is 2
e p /F Gm m r= instead of 2 2

0/ 4F e rπε= .  The Bohr theory 

can thus be directly applied if we substitute e pGm m  for 2
0/ 4e πε . Equation 6.29 becomes 

 

 
2 34 2

29
0 2 11 2 2 31 2 27

e p

(1.05 10 J s) 1.19 10 m
(6.67 10 N m /kg )(9.11 10 kg) (1.67 10 kg)

a
Gm m

−

− − −

× ⋅
= = = ×

× ⋅ × ×
 

 
2 3 2

e p2e
2 1 e p2 2 2 2

11 2 2 2 31 3 27 2
97 78

34 2

31 1( )
2 2 1 8

3(6.67 10 N m /kg ) (9.11 10 kg) (1.67 10 kg) 3.2 10 J 2.0 10 eV
8(1.05 10 J s)

G m mmE E Gm m

− − −
− −

−

⎛ ⎞− = − − =⎜ ⎟
⎝ ⎠

× ⋅ × ×
= = × = ×

× ⋅
 

24
.3

1 
nm

 

12
1.

6 
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46
9.

7 
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25
.6

4 
nm

 

16
4.

0 
nm

 

30
.3

9 
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n = 1 

n = 2 
n = 3 
n = 4 

E1 = -54.40 eV 

E2 = -13.60 eV 
E3 = -6.04 eV 
E4 = -3.40 eV 
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29. (a)  If the circumference is an integral number of de Broglie wavelengths ( 2 r nπ λ= ), 
then after each orbit the waves will align, peak to peak and valley to valley, to give 
standing waves. 

 (b)    2 so
2

h nh nhr n n mvr n
p mv

π λ
π

= = = = =  

 
30. Let V1 = 4 V, V2 = 7 V, and V3 = 9 V.  Then decreases in the current should be observed 

at the following voltages: 
  
  V1 = 4 V   3V1 = 12 V   2V1 + V3 = 17 V 
  V2 = 7 V   V1 + V3 = 13 V   2V3 = 18 V 
  2V1 = 8 V   2V2 = 14 V   3V1 + V3 = 19 V 
  V3 = 9 V   2V1 + V2 = 15 V  5V1 = 20 V 
  V1 + V2 = 11 V   4V1 = 16 V 
 

31. The energy difference between the ground state and the first excited state is 
 

 1240 eV nm 2.10 eV
590 nm

hcE
λ

⋅
= = =  

 
At V = 2.10 V, we expect to see a decrease in the current, as atoms are raised to the first 
excited state. 

 
 

32. The energy uncertainty of a state with a lifetime of 10−8 s is 
 

 
16

8
8

6.58 10 eV s 6.58 10 eV
10 s

E
t

−
−

−

× ⋅
Δ = = ×

Δ
∼  

 
 This energy uncertainty will be equal to the spacing E hfΔ =  with f given by Equation 

6.43 when n is large: 
24 2 2

2 2 2 3 2 3
0 0

1 1
16 ( ) 4

me mc eE hf
n c nπ ε πε

⎛ ⎞
Δ = = = ⎜ ⎟

⎝ ⎠
 

 

 

2 2 2 6 2
03 3

2 8 2

2 2 11
0

( / 4 ) (0.511 10 eV)(1.440 eV nm) 746
( ) (6.58 10 eV)(197 eV nm)

(746) (5.29 10 m) 29 m

mc en
E c

r n a

πε

μ

−

−

× ⋅
= = =

Δ × ⋅

= = × =

 

 
 

33. (a) The frequency of revolution is given by Equation 6.41: 
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4 4 15

3 2 3 3 2 2 2 3 3 3
0 0

1 1 1 13.6 eV 1 6.58 10 Hz
32 32n

me mef
n n n nπ ε π π ε π

×
= = = =  

 
A similar calculation gives the radiation frequency from Equation 6.42: 
 

 
4

15
3 2 3 2 2 2 2 2 2

0

2 1 13.6 eV 2 1 2 1(6.58 10 Hz)
64 ( 1) 2 ( 1) 2 ( 1)

me n n nf
n n n n n nπ ε π

− − −
= = = ×

− − −
 

 
For n = 10, we get 12 126.58 10 Hz and 7.72 10 Hznf f= × = × . 
 
(b) For n = 100, 9 96.58 10 Hz and 6.68 10 Hznf f= × = × . 
 
(c) For n = 1000, 6 66.58 10 Hz and 6.59 10 Hznf f= × = × . 
 
(d) For n = 10,000, 3 36.58 10 Hz and 6.58 10 Hznf f= × = × .  Note how f approaches nf  
as n becomes large, in accordance with the correspondence principle. 
 

34. The Rydberg constant in ordinary hydrogen is 
 

 
4

H
H

5.48580 10 u1 1 (1.000544)
1.007825 u

mR R R R
M

−

∞ ∞ ∞

⎛ ⎞ ⎛ ⎞×
= + = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
and in “heavy” hydrogen or deuterium: 
 

4

D
D

5.48580 10 u1 1 (1.000272)
2.104102 u

mR R R R
M

−

∞ ∞ ∞

⎛ ⎞ ⎛ ⎞×
= + = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
From Equation 6.33 the difference in wavelengths for the first line of the Balmer series (n 
= 3 to n = 2) is 

 
2 2

D H 2 2 7 -1
D H

1 1 3 2 7.2 1 1 0.178 nm
3 2 1.09737 10 m 1.000272 1.000544R R

λ λ
⎛ ⎞⎛ ⎞ ⎛ ⎞− = − = − =⎜ ⎟ ⎜ ⎟⎜ ⎟− × ⎝ ⎠⎝ ⎠⎝ ⎠

 

 
This small wavelength difference led to the discovery of deuterium in 1931. 
 

35. (a) 15 different transitions are possible: 6 → 5, 6 → 4, 6 → 3, 6 → 2, 6 → 1, 5 → 4, 5 → 
3, 5 → 2, 5 → 1, 4 → 3, 4 → 2, 4 → 1, 3 → 2, 3 → 1, 2 → 1. 

 
(b) Only 5 of the transitions change n by one unit. 
 
(c) One. 
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36. (a) From the n = 8 level, downward transitions are possible to any level of smaller n.  The 

transitions with the longest wavelengths are those with the smallest energy differences. 
 
 8→7: ( )2 2

2 1 1
8 7 8 7

( 13.6 eV)Z 0.260 eVE E EΔ = − = − − =  

 1240 eV nm 4.77 m
0.260 eV

hc
E

λ μ⋅
= = =
Δ

 

 8→6: ( )2 2
2 1 1

8 6 8 6
( 13.6 eV)Z 0.661eVE E EΔ = − = − − =  

 1240 eV nm 1.88 m
0.661eV

hc
E

λ μ⋅
= = =
Δ

 

 8→5: ( )2 2
2 1 1

8 5 8 5
( 13.6 eV)Z 1.33 eVE E EΔ = − = − − =  

 1240 eV nm 0.935 m
1.33 eV

hc
E

λ μ⋅
= = =
Δ

 

(b) The transition with the shortest wavelength is the one with the largest energy 
difference. 
  
 8→1: ( )2 2

2 1 1
8 1 8 1

( 13.6 eV)Z 53.6 eVE E EΔ = − = − − =  

 1240 eV nm 23.2 nm
53.6 eV

hc
E

λ ⋅
= = =
Δ

 

(c) From the n = 8 level, the atom can absorb a photon and the electron will jump to a 
state of larger n.  The longest absorption wavelengths correspond to the smallest energy 
differences. 

 
 8→9: ( )2 2

2 1 1
9 8 9 8

( 13.6 eV)Z 0.178 eVE E EΔ = − = − − =  

 1240 eV nm 6.95 m
0.178 eV

hc
E

λ μ⋅
= = =
Δ

 

  
 8→10: ( )2 2

2 1 1
10 8 10 8

( 13.6 eV)Z 0.306 eVE E EΔ = − = − − =  

 1240 eV nm 4.05 m
0.306 eV

hc
E

λ μ⋅
= = =
Δ

 

  
 8→11: ( )2 2

2 1 1
11 8 11 8

( 13.6 eV)Z 0.400 eVE E EΔ = − = − − =  

 1240 eV nm 3.10 m
0.400 eV

hc
E

λ μ⋅
= = =
Δ

 

 
(d)  The shortest absorption wavelength corresponds to the largest energy difference. 
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 8→ ∞: ( )2
2 1

8 8
( 13.6 eV)Z 0 0.850 eVE E E∞Δ = − = − − =  

 1240 eV nm 1.46 m
0.850 eV

hc
E

λ μ⋅
= = =
Δ

 

 
37. The time Δt in which we must measure the energy of the state is no greater than the 

lifetime of that state, and the energy measurement must be uncertain by an amount ΔE 
given by the uncertainty principle. 

 

 
16

8
8

6.58 10 eV s 7 10 eV
10 s

E
t

−
−

−

× ⋅
Δ = = ×

Δ
∼  

 
This energy uncertainty is negligible compared with the energy of the first excited state 
(−3.4 eV).  There are very few measurements that are capable of determining energies to 
1 part in 108, and thus the energy uncertainty does not affect the observed photon 
energies in most experiments. 
 

38. For a transition from n to n0,  
 

 
2 2

0
2 2 2 2 2

0 0

1240 eV nm (22.78 nm)
( 13.6 eV) (1/ 1/ )

n nhc
E Z n n n n

λ ⋅
= = =
Δ − − −

 

 
Transitions ending on the state with n0 = 1 (analogous to the Lyman series in hydrogen) 
have wavelengths ranging from 22.78 nm (for jumps from n = ∞) to 30.38 nm (for jumps 
from n = 2).  Transitions ending with n0 = 2 (similar to the Lyman series) have 
wavelengths from 91.13 nm (n = ∞) to 164.0 nm (n = 3).  Those ending with n0 = 3 range 
from 205.0 nm (n = ∞) to 468.6 nm (n = 4). 

 For a given value of n0, we can solve for n: 
 

 2
0

1
1/ (22.78 nm)/

n
n λ

=
−

 

 
The first two given wavelengths (24.30 nm and 25.63 nm) fall in the range of transitions 
with n0 = 1, so we find 

 

 1 14 and 3
1 (22.78 nm)/(24.30 nm) 1 (22.78 nm)/(25.63 nm)

n n= = = =
− −

 

 
The transition with wavelength 102.5 nm belongs to the group with n0 = 2: 
 

 1 6
1/ 4 (22.78 nm)/(102.5 nm)

n = =
−
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and 320.4 nm belongs to the group with n0 = 3: 

 
1 5

1/ 9 (22.78 nm)/(320.4 nm)
n = =

−
 

 
39. For a transition from n to n0 in lithium (Z = 3), 

 

 
2 2

0
2 2 2 2 2

0 0

1240 eV nm (10.13 nm)
( 13.6 eV) (1/ 1/ )

n nhc
E Z n n n n

λ ⋅
= = =
Δ − − −

 

  
The range of wavelengths for each series is: 10.13 nm to 13.50 nm for n0 = 1; 40.50 nm to 
72.90 nm for n0 = 2; 91.17 nm to 208.4 nm for n0 = 3; and so forth.  The wavelengths 
given for this problem clearly fall in the group with n0 = 2, for which 

 

 1
1/ 4 (10.13 nm)/

n
λ

=
−

 

 
This gives n = 3 for 72.90 nm and n = 4 for 54.00 nm.  The next member of the series 
corresponds to n = 5, which has wavelength 

 
2 2

2 2

5 2(10.13 nm) 48.23 nm
5 2

hc
E

λ = == =
Δ −

 

 
40. Let p and E be the momentum and energy of the photon, and assume the atom is at rest 

before the photon is emitted.  Then conservation of momentum and energy give: 
 

 
initial final R

initial final 1 2 R

: 0

:

p p p p

E E E E E K

= = −

= = + +
 

 
Using nonrelativistic kinetic energy for the recoil of the atom, R R2p MK= , and 
substituting RE cp cp= = , we obtain 

 2
1 2 R R R R2E E cp K Mc K K− = + = +  

 
Because we expect 2

RK Mc , the second term on the right can be neglected and we can 
solve for KR: 

 
2

1 2
R 2

( )
2

E EK
Mc
−

≅  

 
For the n = 2 to n = 1 transition in hydrogen, we have 
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2

8
R 6

[ 3.4 eV ( 13.6 eV)] 5.5 10 eV
2(1.007825 u)(931.5 10 eV/u)

K −− − −
= = ×

×
 

 
This is indeed a very small recoil energy, which can be neglected when we consider the 
energies of the emitted photons. 
 

41. (a) Equation 6.30 shows that the energy levels are directly proportional to the mass of the 
electron.  If the electron is replaced by a particle with 207 times its mass, then the 
energies of the levels are increased by a factor of 207.  The ground-state energy is thus 

1 ( 13.6 eV)(207) 2.82 keVE = − = − .  The shortest wavelength (largest energy) of the 
Lyman series represents a jump from n = ∞ (E = 0) to n = 1, so the energy of the photon 
is 2.82 keV and its wavelength is  

 

 1280 eV nm 0.440 nm
2820 eV

hc
E

λ ⋅
= = =
Δ

 

 
This is in the X-ray region of the electromagnetic spectrum. 
(b) The correction for the finite nuclear mass is given by 
 

 
11 4207(5.49 10 u)1 1 /1.113 0.899

1.007825 u
mR R R R R
M

−− −

∞ ∞ ∞ ∞

⎛ ⎞×⎛ ⎞= + = + = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
The correction for muonic hydrogen is 11.3%, in contrast with the 0.055% correction for 
electronic hydrogen.  Because the wavelengths are inversely proportional to the Rydberg 
constant (Equation 6.33), the shortest wavelength in the Lyman series would be increased 
from 0.440 nm to (0.440 nm)/0.899 = 0.490 nm.   
 

42. We can use Equation 6.38, with the electron mass m replaced by the muon mass which is 
207 times the electron mass.  For n = 1, we obtain 

 

 150
1 3.11 10 m 3.11 fm

(207)(82)
ar −= = × =  

 
This is less than the nuclear radius of 7 fm, which suggests that the muon is inside the 
nucleus!  (However, we originally set up the calculation of the hydrogen-like atoms by 
assuming that the electron experienced the full nuclear charge of Ze.  If the muon spends 
at least part of its time inside the nucleus, it will not experience the full Coulomb force, 
so the calculation is no longer exact.) 
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Chapter 7 
 
 This chapter presents the solutions to the Schrödinger equation for the Coulomb 
potential energy and thus obtains the wave functions for the hydrogen atom.  A new 
feature of this edition is the opening section on the solutions for the one-dimensional 
Coulomb problem.  This problem has no physical application, but it serves as a chance to 
review some aspects of solutions to the Schrödinger equation and their interpretation.  It 
also addresses some of the deficiencies of the Bohr model discussed at the end of the 
previous chapter.  Finally, it eases the transition into the full-blown formalism in 
spherical polar coordinates.  References to papers on the one-dimensional hydrogen atom 
are given below. 
  
 

Supplemental Materials 
 
 Simulations of the wave functions for the one-dimensional and three-dimensional 
Coulomb potential energies are available in the University of Colorado PhET simulation 
of various bound state problems: http://phet.colorado.edu/en/simulation/bound-states.  
These simulations permit display of the real and imaginary parts of the wave function, 
which can be seen to oscillate even though the probability distribution remains constant 
in time.  Chapter 14 of Physlet Quantum Physics gives plots of the radial wave functions 
and probability densities, and a Physlet for producing density plots of the angular wave 
functions is at http://webphysics.davidson.edu/physletprob/ch10_modern/angular.html.  
Another applet for displaying the complete hydrogenic wave functions can be found at 
http://www.falstad.com/qmatom/.  A Maple worksheet that produces 3-dimensional 
displays of hydrogenic wave functions is at: 
http://www.physics.oregonstate.edu/portfolioswiki/doku.php?id=activities:main&file=cfh
ydrogenvis.  
 
 

Suggestions for Additional Reading 
 
For a more detailed treatment of the hydrogen atom, especially of the fine structure, see: 
J. Norwood, Twentieth Century Physics (Prentice-Hall, 1976). 
 
An excellent and detailed full-scale treatment of the solutions of the Schrödinger 
equation for the hydrogen atom is Chapter V of: 
L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics (McGraw-Hill, 1935). 
 
Representing the three-dimensional probability distributions on a two-dimensional paper 
is a great challenge for illustrators, and the interpretation of such illustrations is often a 
similar challenge for students. It might be helpful to look at some other representations: 
N. Ashby and S. C. Miller, Principles of Modern Physics (Holden-Day, 1970). 
S. Brandt and H. D. Dahmen, The Picture Book of Quantum Mechanics, 3rd ed.,  
 (Springer, 2000). 
R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei, 

http://phet.colorado.edu/en/simulation/bound-states
http://webphysics.davidson.edu/physletprob/ch10_modern/angular.html
http://www.falstad.com/qmatom/
http://www.physics.oregonstate.edu/portfolioswiki/doku.php?id=activities:main&file=cfhydrogenvis
http://www.physics.oregonstate.edu/portfolioswiki/doku.php?id=activities:main&file=cfhydrogenvis
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and Particles, 2nd ed. (Wiley, 1985). 
D. Kleppner, M. G. Littman, and M. L. Zimmerman, “Highly Excited Atoms,” Scientific 

American 244, 130 (May 1981). 
R. B. Leighton, Principles of Modern Physics (McGraw-Hill, 1959). 
 
References on the one-dimensional hydrogen atom are: 
R. Loudon, “One-Dimensional Hydrogen Atom,” American Journal of Physics 27, 649 (1959). 
L. K. Haines and D. H. Roberts, “One-Dimensional Hydrogen Atom,” American Journal of 
 Physics 37, 1145 (1969). 
 
 

Materials for Active Engagement in the Classroom 
 
A.  Reading Quizzes 
 
1. How do the energy levels in a hydrogen atom depend on the orbital angular 

momentum quantum number? 
  (1) The energy increases as the orbital angular momentum increases. 
  (2) The energy decreases as the orbital angular momentum increases. 
  (3) The energy does not depend on the orbital angular momentum. 
 
2. In which of the following does the quantum mechanical picture of the hydrogen atom 

give the same result as the Bohr model?  
  (1) The energy levels of the electron.  
  (2) The orbital radius of the electron. 
  (3) The angular momentum of the electron.  
  (4) The probability distribution of the electron. 
 
3. Which statement about electron spin is not true? 
  (1) The spin can be measured only when the atom is in a magnetic field. 
  (2) The z component of the spin of the electron can never be zero. 
  (3) The degeneracy of the hydrogen levels doubles when the electron spin is included. 
  (4) The spin quantum number of the electron is always 1/2. 
 
4. In which states of hydrogen is the probability to locate the electron independent of the 

direction in space? 
  (1) None (2) Only the n = 1 state (3) Only ml states (4) All l = 0 states 
 
Answers 1. 3 2. 1 3. 1 4. 4 
 
 
B.  Conceptual or Discussion Questions 
 
1. How many of the following sets of quantum numbers n,l,ml are allowed for the 

hydrogen atom?   (i) 1,0,0     (ii) 1,0,1    (iii) 1,1,0    (iv) 1,1,1 
  (1) One (2) Two (3) Three (4) Four (5) None  
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2. In the set of quantum numbers n,l,ml = 2,x,1 what are the possible values of x? 
  (1) x = 0 only  (2) x = 0 or 1  (3) x = 1 or 2 
  (4) x = 1 only  (5) x = ±1 
 
3. (a) How many sets of quantum numbers n,l,ml are possible for n = 4? 
 (b) How many of the possible sets of quantum numbers n,l,ml for n = 4 have l = 2?   
 (c) How many of the possible sets of quantum numbers n,l,ml for n = 4 have ml = 0? 
 
4. In a Stern-Gerlach type of experiment on an atom (such as boron) with a single 2p 

electron, into how many components would the beam be split? 
  (1) 2  (2) 3  (3) 5  (4) 6  (5) 8 
 
Answers 1. 1 2. 4 3. (a) 16   (b) 5   (c) 4      4. 4 
 
 

Sample Exam Questions 
 
A.  Multiple Choice 
 
1. Which of the following can also be quantum numbers of an l = 2 electron in 

hydrogen? 
 (a) ml = 1/2  (b) n = 0  (c) n = 2  (d) ml = 0 
 
2. Which of the following is an allowed set of quantum numbers n,l,ml,ms for an 
 electron in a hydrogen atom? 
 (a) 3,2,3,1/2  (b) 3,3,2,-1/2  (c) 3,1,0,-1/2  (d) 2,1,1,0 
 
3. Which of the following sets of quantum numbers n,l,ml,ms is not allowed for an 

electron in a hydrogen atom? 
 (a) 2,0,0,+1/2  (b) 3,2,-2,-1/2  (c) 3,1,1,-1/2  (d) 2,2,0,1/2 
 
4. If an angular momentum vector has a maximum z component of 3+ , how many 

different z  components can it have? 
 (a) 7  (b) 6  (c) 5  (d) 3 
 
5. An electron is in an n = 2 state in a hydrogen atom.  Which of the following can also 

be quantum numbers that describe that state of the electron? 
 (a) l = 2, ml = 0 (b) l = 1, ml = +½ (c) l = −1, ml = 0 (d) l = 1, ml = −1 
 
6. The quantum number ml provides information about what property of a hydrogen atom?    
 (a) Energy    (b) Orbital radius   (c) Magnitude of the orbital angular momentum    
 (d) z component of the orbital angular momentum 
 
7. Which of the following sets of quantum numbers n,l,ml is not allowed for the electron 

in an atom of hydrogen? 
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 (a) 3,0,0   (b) 3,2,-2 (c) 2,1,+1 (d) 2,2,-1 
 
8. Relative to the z axis, how many possible directions are there in space for the orbital 

angular momentum vector that represents an electron in a 4f state (n = 4, l = 3)?  
 (a) 2  (b) 3  (c) 5  (d) 7  (e) 9 
 
Answers  1. d 2. c 3. d 4. a 5. d 6. d 7. d 8. d 
 
 
B.  Conceptual 
 
1. Excluding cases in which the angular momentum is zero, is the length of the angular 

momentum vector that describes an electron in an atom always equal to, either 
greater than or equal to, or always greater than the maximum possible z component 
of the angular momentum?  EXPLAIN YOUR ANSWER. 

 
2. For a certain electronic state in hydrogen, the angular part of the wave function is 

( ) sin cosCθ θ θΘ = .  Is the electron described by this wave function most likely to be 
found close to the z axis, close to the xy plane, or somewhere in between?  EXPLAIN 
YOUR ANSWER.  (θ is the polar angle between r and the z axis.) 

 
3. The angular part of one of the 2p wave functions in atomic hydrogen is A sin θ, where 

A is a constant.  (θ is the polar angle between the z axis and the line connecting the 
electron to the origin.)  Does this electron have a greater probability to be found near 
the z axis or near the xy plane?  EXPLAIN YOUR ANSWER. 

 
Answers  1. always greater than      2. somewhere in between     3. near the xy plane 
 
 
C.  Problems 
 
1. The radial part of the 2p wave function of atomic hydrogen is Cre-r/2a0 where C = 

(24a0
5)-1/2.  Consider two very thin spherical shells, each of thickness dr.  One shell 

has radius 2a0 and the other has radius 4a0.  Find the ratio of the probability to find 
the electron in the larger shell to the probability to find it in the smaller shell. 

 (Here “in the shell” means between r and r + dr.) 
 
2. The 2p (l = 1) radial wave function of an electron in atomic hydrogen is 

0/ 2

0

( ) r arR r A e
a

−=  

 where A is a constant. 
 (a) Find the most probable value of r, that is, the most probable distance between the  
  electron and the nucleus.   

(b) List all possible sets of quantum numbers that can describe an electron in this state 
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3. (a) The radial part of the wave function of the n = 2, l = 1 electron in a hydrogen atom is 
0/ 2

3/ 2
00

1( )
3(2 )

r arR r e
aa

−=  

Find all maxima and minima of the radial probability density and sketch the radial 
probability density as a function of r.   
(b) List all possible l values for an electron in hydrogen with n = 2.  For each l value, 
list all possible values of ml. 

 
4. (a) The radial part of the 2p hydrogen wave function is  

0/ 2( ) r aR r Are−=  
where A is a constant.  Find the most probable distance of the electron from the nucleus. 

 (b) The complete 2p wave function for a particular value of ml is 
0/ 2

1/ 2 3/ 2
0 0

1( , , ) cos
(4 ) (2 )

r arr e
a a

ψ θ φ θ
π

−=  

Describe the angular part of the electron probability density.  Consider both the θ and 
φ dependences.  Include in your discussion a sketch of the angular part of the 
probability density.   

 
5. The radial part of the 3d wave function of atomic hydrogen is 

0/37 / 2 2
0( ) r aR r Ca r e−−=  

where 3(2 / 81) 2 /15 9.016 10C −= = × .   
 (a) Find the locations of the maxima and minima of the radial probability density.   
  Sketch the radial probability density as a function of r.   
 (b) Independent of the angular coordinates, what is the probability to find the electron  
  in the region between r = a0 and r = 1.01a0? 
 
6. (a) The radial part of the 2p (l = 1) wave function of hydrogen is  

0/ 25/ 2
0( ) r aR r Aa re−−=  

where A = 1/ 24 = 0.2041.  What is the probability to find the electron in the 
entire region of the thin spherical shell between 0.99a0 and 1.01a0? 

(b)  The angular part of this wave function is ( ) sinBθ θΘ = , where B = 1
2 3 .   

Where would you expect the probability to find the electron to be larger: closer to 
the z axis or closer to the xy plane?  Explain your answer.  (θ is the polar angle 
between the z axis and a line connecting the electron’s volume element to the 
origin.) 

 
Answers  1. 2.16  2. (a) 4a0   (b) (2,1,±1,±1/2), (2,1,0,±1/2) 
    3. (a) min: 0,∞; max: 4a0   (b) l = 0 (ml = 0), l = 1 (ml = 0,±1)  
    4. (a) 4a0    (b) Independent of φ; max for θ = 0 and π, zero for θ = π/2 
    5. (a) minima at 0,∞; maximum at 9a0   (b) 4.17 × 10-7  
    6. (a) 3.07 × 10-4   (b) near xy plane 
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Problem Solutions 
 
 

1. ( ) bxx Axeψ −=  gives / bx bxd dx Ae bAxeψ − −= −  and 2 2 2/ 2 bx bxd dx bAe b Axeψ − −= − + .  
Then substituting into Equation 7.2 we have 

 
2 2

2

0

( 2 )
2 4

bx bx bx bxeAbe b Axe Axe EAxe
m xπε

− − − −− − + − =  

 
Canceling common factors gives 
 

2 2 2 2 2 2 2 2

0 0

or 0
2 4 4 2

b b e b e bx Ex x E
m m m mπε πε

⎛ ⎞ ⎛ ⎞
− − = − + − − =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

  
For this expression to equal zero for all x, both terms in parentheses must be zero.  Thus  
 

2 2 2 2 2 4

2 2 2 2
0 0 0 0

1or and
4 4 2 32

b e me b meb E
m a mπε πε π ε

= = = = − = −  

 
2. The probability density is 2 2 2 2( ) ( ) bxP x x A x eψ −= = .  To find the maximum, we set the 

first derivative equal to zero: 
 

2 2 2 2 22 2 0bx bxdP A xe bA x e
dx

− −= − =  

 
 This has solutions at x = 0, x = ∞, and x = 1/b = a0.  The first two give minima and the 

third gives the maximum. 
 
3. The probability to find the electron in a small interval is 2 2 2( ) bxP x dx A x e dx−= .  

Substituting the values of A and b, and evaluating the resulting expression for x = a0 and 
dx = 0.02a0 (appropriate to the interval from x = 0.99a0 to x = 1.01a0), we obtain 

 
02 /2 2 2

0 03 3
0 0

4 4( ) (0.02 ) 0.0108x aP x dx x e dx a e a
a a

− −= = =  

 
4. (a)  ( 1) (3)(4) 12l l= + = =L  
 
 (b)  There are 2l + 1 = 7 possible z components: 3 , 2 , ,0, , 2 , 3z lL m= = + + + − − − . 
 
 (c)  cos / ( 1) / 12l lm l l mθ = + =  
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1

1

1

1

1

1

1

3 cos 3/ 12 30

2 cos 2 / 12 55

1 cos 1/ 12 73

0 cos 0 90

1 cos ( 1/ 12) 107

2 cos ( 2 / 12) 125

3 cos ( 3/ 12) 150

l

l

l

l

l

l

l

m

m

m

m

m

m

m

θ

θ

θ

θ

θ

θ

θ

−

−

−

−

−

−

−

= + = = °

= + = = °

= + = = °

= = = °

= − = − = °

= − = − = °

= − = − = °

 

 
5. For l = 2, ml = +2, +1, 0, −1, −2.  With cos / ( 1) / 6l lm l l mθ = + = , we have 
 

1

1

1

1

1

2 cos 2 / 6 35

1 cos 1/ 6 66

0 cos 0 90

1 cos ( 1/ 6) 114

2 cos ( 2 / 6) 145

l

l

l

l

l

m

m

m

m

m

θ

θ

θ

θ

θ

−

−

−

−

−

= + = = °

= + = = °

= = = °

= − = − = °

= − = − = °

 

 
6. l = 0:  (4, 0, 0) 
 
 l = 1:  (4, 1, +1), (4, 1, 0), (4, 1, −1) 
 
 l = 2:  (4, 2, +2), (4, 2, +1), (4, 2, 0), (4, 2, −1), (4, 2, −2) 
 
 l = 3:  (4, 3, +3), (4, 3, +2), (4, 3, +1), (4, 3, 0), (4, 3, −1), (4, 3, −2), (4, 3, −3) 
 
7. (a) lmax = n – 1 = 5 so l = 0, 1, 2, 3, 4, 5 for n = 6. 
 
 (b) ml = +6, +5, +4, +3, +2, +1, 0, −1, −2, −3, −4, −5, −6 
 
 (c) 1 5n l≥ + = for l = 4, so the smallest possible n is 5. 
 
 (d) For ml = 4, 4l ≥ so the smallest possible l is 4. 
 
8.  The normalization integral for the (1, 0, 0) wave function is 
 

 0
22 22 /2 3 2 1 1

1,0,0 0 2 20 0 0 0 0 0
sin ( , , ) 4 sinr ar dr d d r a e r dr d d

π π π π

πθ θ φ ψ θ φ θ θ φ
∞ ∞ −−=∫ ∫ ∫ ∫ ∫ ∫  
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  02 /3 2
0 3 30

0 0

4 2!4 1
(2 / )

r aa e r dr
a a

∞ −−= = =∫  

The last integral is evaluated using the standard form 1

0
!/n ax nx e dx n a

∞ − +=∫ . 

The normalization integral for the (2, 0, 0) wave function is 
0

22 2/2 3 2 21 1 1
2,0,0 0 08 2 20 0 0 0 0 0

sin ( , , ) (2 / ) sinr ar dr d d r a r a e r dr d d
π π π π

πθ θ φ ψ θ φ θ θ φ
∞ ∞ −−= −∫ ∫ ∫ ∫ ∫ ∫  

0

3 4
/3 2 31 1 1

0 08 8 82 3 4 2 50
0 0 0 0 0 0 0

2! 4 3! 1 4!4 4 4 (8 24 24) 1
(1/ ) (1/ ) (1/ )

r a r ra e r dr a
a a a a a a a

∞ −− −⎛ ⎞ ⎡ ⎤
= − + = − + = − + =⎜ ⎟ ⎢ ⎥

⎝ ⎠ ⎣ ⎦
∫

 

9. With 0/ 2
2,0,0 3

00

1 1( , , ) 2
4 8

r arr e
aa

ψ θ φ
π

−⎛ ⎞
= −⎜ ⎟

⎝ ⎠
, we then have 0 and 0ψ ψ

θ φ
∂ ∂

= =
∂ ∂

. 

0 0 0

0 0 0 0

/ 2 / 2 / 2
23 3

0 0 0 0 00 0

2
/ 2 / 2 / 2 / 2

2 2 2 2 2 33 3
0 0 0 0 0 00 0

1 1 1 1 22
2 232 32

1 1 1 1 1 32
2 2 4 2 432 32

r a r a r a

r a r a r a r a

r re e e
r a a a a aa a

r re e e e
r a a a a a aa a

ψ
π π

ψ
π π

− − −

− − − −

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
= − − − = − +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
= + + − = −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 
 
Substituting into the left side of Equation 7.10, we have 
 

0 0 0

0

0

2 2
/ 2 / 2 / 2

2 3 23 3 3
0 0 0 0 0 00 0 0

2 2 2
/ 2

2 3 23
0 0 0 0 0 0 00

2
/ 2

3
0

1 3 2 1 2 1 2
2 2 4 2 432 32 32

1 3 4 1
2 2 4 2 432

1
432

r a r a r a

r a

r a

r r e re e e
m a a r a a r aa a a

r e ee
m a a ra a r aa

ee
a

πεπ π π

πε πεπ

πεπ

− − −

−

−

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− − + − + − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
= − − − + − +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

=

0

2
0 0 0 0

2 2
/ 2

2,0,0 2,0,023
0 0 0 0 00

5 2 2 1
4 8

1 1 1 ( , , ) ( , , )
4 4 8 4 832

r a

r
a a r r a

e r ee r E r
a a aa

ψ θ φ ψ θ φ
πε πεπ

−

⎛ ⎞
− + + − +⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
= − + = − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

with 
2 2 2 4

2 2 2 2
0 0 0 0 0

1 1
4 8 4 32 4 32

e e me meE
aπε πε πε π ε

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
, which is the energy E2 as 

defined in Equation 7.13. 
 

Starting with 0/ 2
2,1,0 5

0

1( , , ) cos
32

r ar re
a

ψ θ φ θ
π

−= , 
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0 0

0 0 0

0

0

/ 2 / 2

5
00

2
/ 2 / 2 / 2

2 25
0 0 00

/ 2

5
0

/ 2

5
0

1 cos
232

1 1 1 cos
2 2 432

1 ( sin )
32

1sin (2sin cos )
32

r a r a

r a r a r a

r a

r a

re e
r aa

re e e
r a a aa

re
a

re
a

ψ θ
π

ψ θ
π

ψ θ
θ π

ψθ θ θ
θ θ π

− −

− − −

−

−

⎛ ⎞∂
= −⎜ ⎟∂ ⎝ ⎠

⎛ ⎞∂
= − − +⎜ ⎟∂ ⎝ ⎠

∂
= −

∂

∂ ∂⎛ ⎞ = −⎜ ⎟∂ ∂⎝ ⎠

 

 
Equation 7.10 then gives 
 

 

0

2 2
/ 2

25
0 0 0 00

2 2

2,1,0 2,1,0 2 2,1,0
0 0 0 0

cos 1 2 21
2 4 2 432

1 1 1 1 1( , , ) ( , , ) ( , , )
4 2 8 2 4 8

r a r r ee
m a a r a ra

e er r E r
r a r r a

θ
πεπ

ψ θ φ ψ θ φ ψ θ φ
πε πε

−
⎛ ⎞⎡ ⎤⎛ ⎞
− − + + − − −⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠

⎛ ⎞ ⎛ ⎞
= − + − = − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

 

10. With 0/
1,0,0 3

0

1( , , ) r ar e
a

ψ θ φ
π

−= , 0 0

2
/ /

2 23 3
0 00 0

1 1 1 1andr a r ae e
r a r aa a
ψ ψ

π π
− −⎛ ⎞ ⎛ ⎞∂ ∂

= − =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
. 

Substituting into Equation 7.10, we have 
 

 

0 0 0

0

2 2
/ / /

23
0 0 00

2 2
/

1,0,0 1,0,03
0 0 0 00

1 1 2
2 4

1 1 1 1 1 ( , , ) ( , , )
4 2 2 4

r a r a r a

r a

ee e e
m a a r ra

e ee r E r
a r r aa

πεπ

ψ θ φ ψ θ φ
πε πεπ

− − −

−

⎡ ⎤⎛ ⎞
− − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

⎛ ⎞
= − + − = − =⎜ ⎟

⎝ ⎠

 

 

with 
2 2 2 4

2 2 2 2
0 0 0 0 0

1 1
2 4 2 4 4 32

e e me meE
a πε πε πε π ε

= − = − = −  which is E1 from Equation 7.13. 

 
11. (a) For n = 2, l = 1, ml = 0, the probability to find the electron in a volume element dV is 

given by Equation 7.16: 
  

0

2
2 / 2 2

2,1,0 3 2
0 0

1 3( , , cos sin
24 4

r arr dV e r dr d d
a a

ψ θ φ θ θ θ φ
π

− ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
and for ml = ±1,  
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0

2
2 / 2 2

2,1, 1 3 2
0 0

1 3( , , sin sin
24 8

r arr dV e r dr d d
a a

ψ θ φ θ θ θ φ
π

−
±

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
For θ = 0, both probabilities are zero due to the sin θ terms.  (b) For θ = 90°, the 2,1,0 
probability is zero due to the cos θ term.  With dr = 0.02a0, dθ = 0.11° = 0.00192 rad, and 
dφ = 0.25° = 0.00436 rad, the 2,1,±1 probability is 
 

0 0

2
2 0.5 / 2 20

2,1, 1 05
0

11
0

(0.50 ) 3( , , sin 90 (0.50 ) (sin 90 )
24 8

(0.02 )(0.00192 rad)(0.00436 rad) 3.2 10

a aar dV e a
a

a

ψ θ φ
π

−
±

−

⎛ ⎞= ° °⎜ ⎟
⎝ ⎠

× = ×
 

 
(c) Because the probability density associated with any particular state in hydrogen is 
always independent of φ , the 2,1,0 probability is again zero and the 2,1,±1 probability is 
again 3.2 × 10−11.  (d) The only change in the 2,1,±1 probability is to replace sin 90° with 
sin 45° in three locations, so the new probability is 11 3 111

2(3.2 10 )( 2) 1.1 10− −× = × .  For 
the 2,1,0 probability, the angular factors are the same because cos 45° = sin 45°.  The 
only change comes about because of the change from 3/8π to 3/4π in the Θ(θ) term, so 
the 2,1,0 probability is 2.2 × 10−11. 
 

12. For n = 1, l = 0 we have 0
2 2 /2 2 3

1,0 0( ) ( ) 4 /r aP r r R r r e a−= = .  To find the maximum, we set 
dP/dr to zero: 
 

0 0 02 / 2 / 2 /2
3 3
0 0 0 0

4 2 82 1 0r a r a r adP r rre r e e
dr a a a a

− − −⎡ ⎤⎛ ⎞ ⎛ ⎞
= − = − =⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
 

 
There are three solutions to this equation: r = 0, r = ∞, r = a0.  The first two solutions 
correspond to minima of P(r); only the solution at r = a0 gives a maximum. 
 

13. For n = 2, l = 0, 0 0

2 3 4
2 / /2 2 2

2,0 3 3 2
0 0 0 0 0

1 1 4( ) ( ) 2 4
8 8

r a r ar r rP r r R r r e r e
a a a a a

− −⎛ ⎞ ⎛ ⎞
= = − = − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 Setting dP/dr to zero, we have 
  

0 0

2 3 2
/ /

3 2 3 3 2
0 0 0 0 0 0 0 0

1 16 8 1 68 2 4 0
8 8

r a r ar r r r r rre re
a a a a a a a a

− −⎛ ⎞ ⎛ ⎞⎛ ⎞
− + − = − − + =⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 
The five solutions are: 0 00, , 2 , (3 5)r r r a r a= = ∞ = = ± .  The first three solutions give 
minima and the last two give maxima. 
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14. For n = 2, l = 1, we have 0

2
2 /2 2

2,1 3 2
0 0

1( ) ( )
24

r arP r r R r r e
a a

−= = .  The total probability 

between r = a0 and r = 2a0 is 
  

0 0
0

0 0

2 2 /4
0 0 5

0

1( : 2 ) ( )
24

a a r a

a a
P a a P r dr r e dr

a
−= =∫ ∫  

 
We can use Equation 7.4 to evaluate this integral.  The result is 
 

00

0

2/ 4 3 2 2 3
0 0 0 0 0 05

0

1( : 2 ) ( 4 12 24 24) 0.0490
24

ar a

a
P a a a e r a r a r a r

a
−⎡ ⎤= − + + + + =⎣ ⎦  

 

15. 
22 2 2

1,0 0 03
0

4( ) ( ) (1.00 ) (0.01 ) 0.0054P r dr r R r dr a e a
a

−= = =  

16. The angular probability density is 2 215
8( , ) sin cosP πθ φ θ θ= .  To find the locations of the 

maxima and minima, we set the derivative equal to zero: 
  

3 3 2 215 15(2sin cos 2sin cos ) (sin )(cos )(cos sin ) 0
8 4

dP
d

θ θ θ θ θ θ θ θ
θ π π
= − = − =  

 
The three angular terms in parentheses give three sets of solutions: θ = 0,π; θ = π/2; and θ 
= π/4,3π/4.  By checking the second derivative, we find that the first two give minima 
(the second derivative is positive) and the third gives maxima (negative second 
derivative).  The angular probability density thus starts at zero along the positive z 
direction, rises to a maximum at θ = 45°, falls again to zero in the xy plane (θ = 90°), 
rises again to a maximum at θ = 135°, and finally falls again to zero on the negative z 
axis.   
 

17. The angular probability density is 2 25
16( , ) (3cos 1)P πθ φ θ= − .  To find the locations of the 

maxima and minima, we set the derivative equal to zero: 
  

2 25 15(3cos 1)( 6sin cos ) (sin )(cos )(3cos 1)
8 4

dP
d

θ θ θ θ θ θ
θ π π
= − − = − −  

 
The three angular terms in parentheses give three sets of solutions: θ = 0,π; θ = π/2; and 

1cos ( 1/ 3) 0.955,2.186θ −= ± = .  The first two give maxima and the third gives minima.  
The angular probability density is a maximum on the positive z axis, falls to zero at θ = 
55°, rises again to a maximum in the xy plane (θ = 90°), falls to zero at θ = 125°, and 
rises to a maximum on the negative z axis.   
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18. (a) degeneracy = 2n2 = 2(5)2 = 50 
 
 (b)  For each value of l, the degeneracy is 2(2l+1). 
 
   l = 0: 2(0+1) =   2 
   l = 1: 2(2+1) =   6 
   l = 2: 2(4+1) = 10 
   l = 3: 2(6+1) = 14 
   l = 4: 2(8+1) = 18 
   total:     50 
 

19.  
1 1 1

2

0 0 0

( 1)2(2 1) 4 2 1 4 2 2
2

n n n

l l l

n nl l n n
− − −

= = =

−
+ = + = + =∑ ∑ ∑  

 
20. (a)  l exceeds the maximum permitted value (n – 1). 

 
 (b) ml exceeds the maximum permitted value (l) 
 
 (c) ms can be only +1/2 or -1/2 
 
 (d) negative values of l are not permitted 
 

21. The selection rule is Δl = ±1, so the 4p state can make transitions to any lower s state (Δl 
= −1) or d state (Δl = +1).  The possible transitions are then: 

 
   4p → 3s, 4p → 2s, 4p → 1s, and 4p → 3d 
 
22. (a) The transitions that change l by one unit are 

 
 
 (b) Starting instead with 5d, the permitted transitions are 

n = 5 
n = 4 
n = 3 

n = 2 

n = 1 

s p d f g 
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23. (a) 7s, 7p, 7d, 7f, 7g, 7h, 7i  (b) 6p, 6f, 5p, 5f, 4p, 4f, 3p, 2p 
 
24. (a)   

 
 
 (b) Transitions shown with dashed lines violate the 1lmΔ = ±  selection rule. 
 
 (c) The energy of the initial state is 

ii 3d lE E m E= + Δ and the energy of the final state 
is

ff 2 p lE E m E= + Δ  (where ΔE is the spacing between adjacent states).  The transition 
energies can be found from the energy difference: 

 
i fi f 3 2 3 2( ) ( ) ( )d p l l d p lE E E E m m E E E m E− = − + − Δ = − + Δ Δ  

 
There are only three permitted values of lmΔ  (0, ±1), so there are only three possible 
values of the energy difference: 3 2 3 2 3 2, ,d p d p d pE E E E E E E E− − + Δ − + Δ . 

ΔE 3d 

2p 

il
m  

fl
m  

+2 
+1 
0 
−1 
−2 

+1 
0 
−1 

n = 5 
n = 4 
n = 3 

n = 2 

n = 1 

s p d f g 
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25. (a) In the absence of a magnetic field, the 3d to 2p energy difference is 
 

    2 2

1 1( 13.6057 eV) 1.88968 eV
3 2

E ⎛ ⎞= − − =⎜ ⎟
⎝ ⎠

 

 
and the wavelength is 
 

1239.842 eV nm 656.112 nm
1.88968 eV

hc
E

λ ⋅
= = =  

 
The magnetic field gives a change in wavelength of 
 

2 2
5(656.112 nm) (5.79 10 eV/T)(3.50 T) 0.0703 nm

1239.842 eV nm
E

hc
λλ −Δ = Δ = × =

⋅
 

 
The wavelengths of the three normal Zeeman components are then 656.112 nm, 656.112 
nm + 0.070 nm = 656.182 nm, and 656.112 nm − 0.070 nm = 656.042 nm. 
 

26. The energy of the 2p to 1s Lyman transition is 
 

2 2

1 1( 13.60570 eV) 10.20428 eV
2 1

E ⎛ ⎞= − − =⎜ ⎟
⎝ ⎠

 

 
and its wavelength (in the absence of fine structure) is 
 

1239.842 eV nm 121.5022 eV
10.20428 eV

hc
E

λ ⋅
= = =  

 
With the fine structure energy splitting of 4.5 × 10-5 eV, the wavelength splitting is 
 

2 2
5(121.5 nm) (4.5 10 eV) 0.00054 nm

1240 eV nm
E

hc
λλ −Δ = Δ = × =

⋅
 

 
The fine structure splits one level up by 0.5ΔE and the other down by the same amount, 
so the wavelengths are 
 

1 1
2 2121.5024 nm and 121.5019 nmλ λ λ λ+ Δ = − Δ =  

 
27. The 3d fine structure splitting is roughly 
  

5
2 4 61

3
6.0 10 eVE mc α −Δ = = ×  
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Assuming that the parallel and antiparallel states are affected equally by this splitting, the 
3d fine structure levels are each shifted upward and downward by half this amount so 
their energies are −1.51 eV ± 3.0 × 10-6 eV, while the 2p fine structure levels are each 
shifted upward and downward by half of the 2p fine structure splitting (4.5 × 10-5 eV)  so 
their energies are -3.40 eV ± 2.25 × 10-5 eV.  The possible energy differences are then 
 

5 51.89 eV 2.55 10 eV and 1.89 eV 1.95 10 eV− −± × ± ×  
 
The wavelength differences are 
 

2 2
5

2 2
5

(656 nm) (2.55 10 eV) 0.00885 nm
1240 eV nm

(656 nm) (1.95 10 eV) 0.00677 nm
1240 eV nm

E
hc

E
hc

λλ

λλ

−

−

Δ = Δ = × =
⋅

Δ = Δ = × =
⋅

 

 
We might therefore observe as many as 4 component wavelengths: 656.1123 nm ± 
0.0089 nm and 656.1123 ± 0.0068 nm. 
 

28. With 2( ) ( ) bxx A x cx eψ −= + , we find 2/ (1 2 ) ( )bc bxd dx A cx e bA x cx eψ − −= + − + and 
2 2 2 2/ 2 2 (1 2 ) ( )bx bx bxd dx cAe bA cx e b A x cx eψ − − −= − + + + .  Substituting into Equation 7.2 

and canceling the common factor bxAe− , we obtain 
 

2 2
2 2 2

0

[2 2 (1 2 ) ( )] (1 ) ( )
2 4

ec b cx b x cx cx E x cx
m πε

− − + + + − + = +  

 
or 
 

 
2 2 2 2 2 2 2 2 2

2

0 0

2 0
4 2 4 2

c b e bc b e c b cx E x Ec
m m m m mπε πε

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− + − + − − − + − − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 
For this expression to be true for any x, all three expressions in parentheses must equal 
zero.  Solving the third for E and substituting into the second, we find 

2 2
0 0/ 8 1/ 2b me aπε= = .  Substituting this result into the first expression, we 

obtain 2
0 0/ 8 1/ 2c me aπε= − = − .  The third expression then gives 

2 2 4 2 2 2 4 2 2 21
0 04/ 2 /128 ( / 32 )E b m me meπ ε π ε= − = − = − , which is the energy of the first 

excited state in the Bohr model.  To find the value of A, we must normalize the wave 
function: 
 

0 0
2 / /2 2 2 2 2 3 4 2

0 0 00 0 0
( ) ( / 2 ) ( / / 4 ) 1x a x ax dx A x x a e dx A x x a x a e dxψ

∞ ∞ ∞− −= − = − + =∫ ∫ ∫  
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Evaluating the integrals with Equation 7.3, we find 
 

2
3 4 2 5 3

0 0 0 0 0 0

2 1 3! 1 4! 11 or
(1/ ) (1/ ) 4 (1/ ) 2

A A
a a a a a a

⎛ ⎞
− + = =⎜ ⎟

⎝ ⎠
 

 

29. For n = 2, l = 0, we have 0

2
2 /2 2

2,0 3
0 0

1( ) ( ) 2
8

r arP r r R r r e
a a

−⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
.  The probability to 

find the electron beyond r = 5a0 is 
  

 0

0 0

3 4
/2 2 3 4

0 3 25 5 5
0 0 0

1 4 1(5 : ) ( ) 4 (4 4 )
8 8

r a x

a a

r rP a P r dr r e dr x x x e dx
a a a

∞ ∞ ∞− −⎛ ⎞
∞ = = − + = − +⎜ ⎟

⎝ ⎠
∫ ∫ ∫  

 
with 0/x r a= .  The integrals can be evaluated using Equation 7.4.  The result of the 
integration is 
 

( )0
1(5 : ) 4 0.2493 4 1.5902 10.5718 0.651
8

P a ∞ = × − × + =  

 

For n = 2, l = 1, we have 0

2
2 /2 2

2,1 3 2
0 0

1( ) ( )
24

r arP r r R r r e
a a

−= = .  The probability is 

 
0

0

/4 4
0 5 5 5

0

1 1(5 : ) 0.440
24 24

r a x

a
P a r e dr x e dx

a
∞ ∞− −∞ = = =∫ ∫  

 
 Thus the n = 2, l = 0 electron is more likely to be found beyond r = a0 than the n = 2, l = 1 
electron. 
 

30.  0
2

2 /3 3
av 1,0 03 3 40 0 0

0 0 0

4 4 3! 3( ) ( )
(2 / ) 2

r ar rP r dr r R r dr r e dr a
a a a

∞ ∞ ∞ −= = = = =∫ ∫ ∫  

 

31. 2s level: 0

2
2

/3 3
av 2,0 30 0 0

0 0

1( ) ( ) 2
8

r arr rP r dr r R r dr r e dr
a a

∞ ∞ ∞ −⎛ ⎞
= = = −⎜ ⎟

⎝ ⎠
∫ ∫ ∫  

 

 0

4 5
/3

03 2 3 4 5 2 60
0 0 0 0 0 0 0 0 0

1 1 3! 4 4! 1 5!4 4 4 6
8 8 (1/ ) (1/ ) (1/ )

r ar rr e dr a
a a a a a a a a a

∞ −⎛ ⎞ ⎛ ⎞
= − + = − + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫  

 

2p level:      0
2

/3 5
av 2,1 05 5 60 0 0

0 0 0

1 1 5!( ) ( ) 5
24 24 (1/ )

r ar rP r dr r R r dr r e dr a
a a a

∞ ∞ ∞ −= = = = =∫ ∫ ∫  
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32.  0

2 2
2 2 /2

av 1,0 30 0 0
0 0 0

4( ) ( ) ( )
4 4

r ae eU U r P r dr r R r dr re dr
r aπε πε

∞ ∞ ∞ −⎛ ⎞
= = − = −⎜ ⎟

⎝ ⎠
∫ ∫ ∫  

 

  
2 2

3 2
0 0 0 0 0

4 1
4 (2 / ) 4

e e
a a aπε πε

= − = −  

 
33. Assuming a beam of silver atoms (m = 108 u) and estimating the magnetic moment of the 

atom to be about one Bohr magneton, we have 
  

24 23(9.27 10 J/T)(10 T/m) 9.3 10 Nz z
dBF
dz

μ − −= = × = ×  

 
The acceleration in the region of the field is 
 

23
2

27

9.3 10 N 518 m/s
(108 u)(1.66 10 kg/u)

z
z

Fa
m

−

−

×
= = =

×
 

 
For an oven temperature of 1000 K, the kinetic energy of the atoms is 
 

23 203 3
2 2 (1.38 10 J/K)(1000 K) 2.1 10 JK kT − −= = × = ×  

 
and the speed of these atoms is 
 

20

27

2 2(2.1 10 J) 480 kg/s
(108 u)(1.66 10 kg/u)

Kv
m

−

−

×
= = =

×
 

 
The time for an atom to travel 1 meter through the magnetic field region is 
 

31 m 2.1 10 s
480 m/s

t −= = ×  

 
Let the atoms enter the field with z = 0 and vz = 0.  Then after passing through the 1-
meter field region, 
 

2 2 3 21 1
2 2

2 3

(518 m/s )(2.1 10 s) 1.1 mm

(518 m/s )(2.1 10 s) 1.1 m/s

z

z z

z a t

v a t

−

−

= = × =

= = × =
 

 
After leaving the region of the field there is no longer an acceleration, but the z 
component of the velocity causes an additional displacement in the z direction.  The 
horizontal velocity is unchanged, to the atom takes 2.1 × 10−3 s to pass through the field-
free region, and the additional displacement is 
 



 168

3(1.1 m/s)(2.1 10 s) 2.2 mmzz v t −= = × =  
 
The total displacement is then 1.1 mm + 2.2 mm = 3.3 mm.  We would thus expect to see 
images on the screen separated by a few mm. 
 

34.   For 1s:      0
2

2 /1 1
av 1,0 3 3 20 0 0

0 0 0 0

4 4 1 1( ) ( ) ( )
(2 / )

r ar r P r dr r R r dr re dr
a a a a

∞ ∞ ∞ −− −= = = = =∫ ∫ ∫  

 

 For 2s:  0

2
2 /1

av 2,0 30 0
0 0

1( ) ( ) 2
8

r arr r R r dr r e dr
a a

∞ ∞ −− ⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
∫ ∫  

  

0

2 3
/

3 2 3 2 3 2 40
0 0 0 0 0 0 0 0 0 0

1 1 1 4 2 1 3! 14 4 4
8 8 (1/ ) (1/ ) (1/ ) 4

r ar rr e dr
a a a a a a a a a a

∞ −⎛ ⎞ ⎛ ⎞
= − + = − + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫  

 

For 2p:       0

2
2 /1

av 2,1 3 2 5 40 0
0 0 0 0 0

1 1 3! 1( ) ( )
24 24 (1/ ) 4

r arr r R r dr r e dr
a a a a a

∞ ∞ −− = = = =∫ ∫  
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Chapter 8 
 
 The theme of this chapter is to extend our simple model for one-electron atoms to 
help us understand the properties of atoms with more than one electron.  This attempt can 
meet with only limited success, but it is necessary to avoid delving into many-body 
theory or formal perturbation methods.  As a result, this chapter is built mostly on 
conceptual rather than mathematical arguments. 
  
 

Supplemental Materials 
 
Tabulations of atomic properties can be found in: 
C. Kittel, Introduction to Solid State Physics 8th ed. (Wiley, 2004). 
Handbook of Chemistry and Physics (CRC Press, published annually). 
National Institute of Standards and Technology (http://www.nist.gov/pml/data/). 
J. G. Speight, Lange’s Handbook of Chemistry, 16th ed. (McGraw-Hill, 2004). 
 
 

Suggestions for Additional Reading 
 
Some additional basic features of the vector representation of atomic states are in: 
K. W. Ford, Classical and Modern Physics (Xerox College Publishing, 1974), Vol. 3,  

Chapt. 24. 
 
More advanced and detailed works on atomic structure are: 
C. J. Foot, Atomic Physics (Oxford University Press, 2005). 
H. G. Kuhn, Atomic Spectra (Academic Press, 1969). 
H. Semat and J. R. Albright, Introduction to Atomic and Nuclear Physics (Holt, 

Rinehart and Winston, 1972). 
J. C. Willmott, Atomic Physics (Wiley, 1975). 
 
Three classic works that include some introductory and advanced material covering 
almost all aspects of atomic structure: 
A. C. Candler, Atomic Spectra and the Vector Model (Cambridge University Press, 1937). 
G. Herzberg, Atomic Spectra and Atomic Structure (Prentice-Hall, 1937). 
H. E. White, Introduction to Atomic Spectra (McGraw-Hill, 1934). 
 
Many reference works, both popular and technical, are available about lasers. A good 
introductory work is: 
B. A. Lengyel, Lasers (Wiley, 1971). 
 
Two popular articles by the 1981 Nobel prize recipient (for his work with lasers): 
A. W. Schawlow, “Optical Masers,” Scientific American 204, 52 (June 1961). 
A. W. Schawlow, “Laser Light,” Scientific American 219, 120 (September 1968). 
 
 

http://www.nist.gov/pml/data/
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Materials for Active Engagement in the Classroom 
 
A.  Reading Quizzes 
 
1. The Pauli principle states that 
  (1) Atoms emit photons when electrons change from one quantum state to another. 
  (2) No two electrons in an atom can have the same set of quantum numbers. 
  (3) Electrons in an atom are forbidden from occupying certain orbits. 
  (4) An atom with Z positive charges in its nucleus cannot hold more than Z electrons. 
 
2. Which statement best describes the emission of discrete X rays in atoms? 

(1) The energies of the X rays depend on the quantum numbers of the atomic 
states but not on the atomic number of the atom. 
(2) The energies of the X rays depend strongly on the orbital angular momentum 
quantum number. 
(3) X rays are emitted when one of the outer electrons returns to its original state 
after being promoted to a higher state. 
(4) X rays are emitted when one of the inner electrons jumps from one state to a 
state where a vacancy has occurred.  

 
3. X rays are emitted: 
  (1) When one of the outer electrons jumps from an excited state to its original state. 
  (2) Only from atoms of elements with small atomic number Z. 
  (3) Only from atoms of elements with large atomic number Z. 
  (4) After one of the inner electrons of an atom is removed. 
 
4. In an excited state, a certain atom has the configuration 3p13d1.  What range of values 

is possible for the total orbital angular momentum L of the two electrons? 
  (1) 0,1,2 (2) 1,2,3,4 (3) 1,2,3 (4) 1,2 
 
Answers 1. 2 2. 4 3. 4 4. 3 
 
 
B.  Conceptual or Discussion Questions 
 
1. (a) In what period (horizontal row) of the periodic table would we expect to find the 

element with Z = 167? 
 (b) What would be the most probable electronic configuration of the element with Z = 167? 
 (c) What would be the most likely atomic number of the next inert gas after Z = 118? 
  (1) 136  (2) 150  (3) 168  (4) 180 
 
2. Comparing elements from Ne (Z = 10) to Ca (Z = 20), approximately how would you 

expect the energy necessary to remove a 1s electron to vary with Z? 
  (1) Independent of Z       (2) Like Z1/2       (3) Linearly with Z        (4) Like Z2 

 
Answers 1. (a) 8   (b) 8p5   (c) 3  2. 4 
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Sample Exam Questions 
 
A.  Multiple Choice 
 
1. The Kα wavelength of an element with atomic number Z = 17 is 8.  What is the 

atomic number of an element with a  Kα wavelength of 48? 
  (a) 3 (b) 7 (c) 9 (d) 33    (e) 65 
 
2. In the ground state of a sodium atom, which has 11 electrons, the valence electron 

goes into the 3s state rather than the 3p state because: 
  (a) the 3s state is lower in energy than the 3p state. 
  (b) the 3p state is already filled with electrons. 
  (c) the 3s orbit occupies less space than the 3p orbit. 
  (d) the 3s orbit is always closer to the nucleus than the 3p orbit. 
 
3. If electrons did not have spin (intrinsic angular momentum), how many elements 

would occupy the second row in the periodic table? 
  (a) 3  (b) 4  (c) 6
 
4. If the Kα (2 → 1) X-ray energy in a certain element is E, what is the Kβ (3 → 1) 

energy in that element? 
  (a) 1.2E (b) 2.25E (c) 9E  (d) 1.5E 
 
5. Put the energies of the Kα, Kβ, Lα X-rays from an element in order of increasing 

energy (from smallest to largest). 
  (a) Lα, Kα, Kβ  (b) Kα, Kβ, Lα  (c) Kα, Lα, Kβ  (d) Lα, Kβ, Kα  
 
6. Consider two elements with atomic numbers Z and 2Z.  How do the wavelengths of 

the Kα X-rays compare in the two elements? 
  (a) λ(Z)/λ(2Z) = 4  (b) λ(Z)/λ(2Z) > 4  (c) λ(Z)/λ(2Z) < 4 
 
7. Oxygen has the electronic configuration 1s22s22p4.  In the ground state, the total ms of 

all 8 of the electrons has the largest possible value consistent with the Pauli principle.  
What is this value? 

  (a) 1  (b) 2  (c) 3  (d) 4 
 
8. The sodium atom (Z = 11) has a single valence electron in the 3s subshell.  The 

properties of the electron can be analyzed as if the electric force acting on that 
electron were due to an effective charge of about 

  (a) +e  (b) –e  (c) +5e     (d) +10e 
 
9. Consider an atom of oxygen, which has 4 electrons in the 2p (l = 1) subshell.  If we 

add the z components of the intrinsic spins of these 4 electrons, what is the maximum 
total z component of the intrinsic spin that is consistent with the Pauli principle? 

  (a) 2+  (b) 3
2+  (c) +   (d) 1

2+  (e) 0 
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Answers 1. c 2. a 3. b 4. a 5. a 6. b 7. a 8. a 9. c 
 
 
B.  Conceptual 
 
1. The lanthanide elements (Z = 57 to Z = 70) have the outer electron configuration 

6s24f k where k = 1 to 14.  Based on this configuration, explain why: 
 (a) the atomic radius is very nearly constant over all 14 elements. 
 (b) these elements have very similar chemical properties. 
 
2. Consider the ionization energy (the least energy needed to remove an electron) from 

the ground state of a neutral atom of Li (Z = 3).  Compared with the ionization energy 
of the ground state of H, is the ionization energy of Li much larger, much smaller, or 
about the same?  EXPLAIN YOUR ANSWER. 

 
3. The Lα x ray occurs when an electron in the n = 3 atomic level jumps to a vacancy in 

the n = 2 atomic level.  Suppose you are doing an experiment to measure the Lα x ray 
frequencies in a variety of different elements with atomic numbers Z greater than 20.  
You graph your data in the form of (frequency)1/2 on the y axis against the atomic 
number Z on the x axis.  You find that the data fall very nicely along a straight line.  
Would your straight line cross the x axis at a value whose magnitude is nearly equal 
to one, much greater than one, or much less than one?  EXPLAIN YOUR ANSWER. 

 
4. The Moseley formula for the frequency of the K  x ray in an element of atomic 

number Z depends not on Z but on Z - 1.  Explain in detail the reason for the 1.  Base 
your discussion on the quantum mechanical wave functions of the atom, and specify 
whether the 1 is exact or an approximation. 

 
5. The electronic configuration of nitrogen (Z = 7) is 1s22s22p3.  There is an empirical 

rule that requires the electrons in unfilled shells to have quantum numbers so that the 
sum of the z components of their spins has the maximum possible value.  Using this 
rule, give the complete set of quantum numbers n,l,ml,ms for the three 2p electrons. 
EXPLAIN YOUR ANSWER. 

 
Answers 1. all have “outer” 6s electrons that determine chemical properties 
   2. much smaller 3. much greater then one 
   4. approximate factor based on screening by remaining 1s electron 
   5. (2,1,+1,+1/2), (2,1,0,+1/2), (2,1,-1,+1/2) 
 
 
C.  Problems 
 
1. (a) The Kα X ray in a certain element has an energy of 8585 eV.  Identify the element 

by its atomic number.    
(b) The Kα X ray is emitted when an electron in the n = 2 shell makes a transition to 

fill a vacancy that has been created in the n = 1 shell.  The Kβ X ray is emitted 
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when an electron in the n = 3 shell makes a transition to fill a vacancy that has 
been created in the n = 1 shell.  Estimate the energy of the Kβ X ray in this 
element. 

 
2. (a) In a certain one-electron atom, the longest wavelength at which the atom in its 

ground state can absorb a photon is 7.598 nm.  What is the next longest 
wavelength at which a photon can be absorbed from the ground state of this atom?   

(b) A neutral atom of zinc has 30 electrons.  What is the energy of the Kα X ray of 
zinc? 

 
Answers 1. (a) 30   (b) 10,175 eV 2. (a) 6.411 nm   (b) 8.58 keV 
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Problem Solutions 
 
 

1. (a)  For a 2p electron, n = 2, l = 1, ml = 0,±1 and ms = ±½, so the possible sets of quantum 
numbers (n,l,ml,ms) are:  

(2,1,+1,+½), (2,1,+1,−½), (2,1,0,+ ½), (2,1,0,−½), (2,1,−1,+½), (2,1,−1,−½) 
(b) There are 6 possible sets of quantum numbers for each electron, so the total number 
of possibilities for 2 electrons is 6 × 6 = 36. 
(c) The Pauli principle prevents the two sets from being identical.  There will be 6 
combinations in which the two sets are identical; eliminating these combinations leaves 
30 allowed combinations. 
(d) Because the n values are different, the Pauli principle does not restrict the number of 
combinations, to there will be 36 possible combinations. 
 

2. (a) The two electrons in the 1s level have ms of +1/2 and −1/2, so they do not contribute 
to the total ms, and the same is true for the two electrons in the 2s level.  In the 2p level, 
there are three different possible values of ml, and for each of those values we can assign 
a set of quantum numbers with ms = +1/2, so the maximum possible value of the total ms 
is +3/2. 

 (b) (n, l, ml, ms) = (2, 1, +1, +1/2), (2, 1, 0, +1/2), (2, 1, −1, +1/2) 
 (c) There is only one possible value of the total ml in the states that maximize ms, and 

from the states listed in (b) that value is +1 + 0 + (−1) = 0. 
 (d) We could maximize the total ml by giving the first 2p electron ml = +1, and the second 

electron can also have ml = +1 if we give these two electrons opposite values of ms.  The 
third electron cannot have ml = +1, so we must assign it ml = 0 and the maximum total ml 
is +2. 

 
3. (a) There are seven possible values of ml (+3, +2, +1, 0, −1, −2, −3).  For each choice of 

ml, the value of ms can be either +1/2 or −1/2, so there will be a total of 14 possible 
combinations of ml and ms. 

 (b) By a suitable choice of ml, it is possible to have as many as seven electrons in the 4f 
level with ms = +1/2.  So the three electrons can each be assigned ms = +1/2 for a total of 
+3/2. 

 (c) Two electrons can be assigned ml = +3 (one with ms = +1/2 and one with ms = −1/2).  
The next highest possible value of ml available for the third electron is ml = +2, so the 
maximum value of the total is +3 + 3 + 2 = +8. 

 (d) We can assign ms = +1/2 to no more than seven 4f electrons, and so the last three must 
have ms = −1/2 which gives a total of 7(+1/2) + 3(−1/2) = +2. 

 (e) We can maximize the total ml by assigning two electrons each to ml = +3, +2, +1, 0, 
and −1, for a total of +10. 

 
4. (a) In beryllium (1s22s2) the smallest energy jump is from 2s to 2p. 
 (b) In neon (1s22s22p6) the smallest energy jump is from 2p to 3s.   
 (c) From Figure 8.1 we see that the 2s→2p energy difference is smaller than the 2p→3s 

difference, so the minimum absorption energy would be smaller for beryllium. 
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5. (a) From Figure 8.2 we find: N (2p3), P (3p3), As (4p3), Sb (5p3), Bi (6p3). 
 (b) Co (3d7), Rh (4d7), Ir (5d7), Mt(6d7) 
 

6. (a) [Ne] 3s23p3       (b) [Ar] 4s23d3   (c) [Kr] 5s24d105p3    (d) [Xe] 6s24f145d106p2 
 

7. (a) [Ar]4s23d6. 
 (b) The 4s electrons and the Ar core have a total ms of zero.  Of the six 3d electrons, at 

most five can have ms = +1/2 without violating the Pauli principle (because there are only 
five different ml labels that can be used), and the sixth electron must then have ms = −1/2.  
The total ms is then 5 × (+1/2) + (−1/2) = 2. 

 (c) The five electrons with ms = +1/2 use up all of the possible ml values (+2, +1, 0, −1, 
−2), which sum to zero.  The sixth electron has a maximum ml of +2, so the maximum 
total ml is +2. 

 (d) The next available level for one of the 3d electrons is 4p.  The remaining five 3d 
electrons can all have ms = +1/2, and so can the single 4p electron.   The maximum total 
ms is 5 × (+1/2) + (+1/2) = 3.  The ml values of the five 3d electrons again sum to zero, 
and the 4p electron has a maximum ml of of +1, so the total ml is +1. 

 
8. Singly ionized lithium has two electrons.  When one of those is excited to a higher level, 

it is screened by the one electron remaining in the 1s level so eff 3 1 2Z = − = .  The 
expected energy when the outer electron is excited to the 2p level is 
 

2 2
eff
2 2

2( 13.6 eV) ( 13.6 eV) 13.6 eV
2n

ZE
n

= − = − = −  

 
which agrees very well with the measured value of −13.4 eV.  When the outer electron is 
in the 3d level, its expected energy is 
 

2 2
eff
2 2

2( 13.6 eV) ( 13.6 eV) 6.0 eV
3n

ZE
n

= − = − = −  

 
in excellent agreement with the measured value.   

 
9. The outer electron is screened by the three inner electrons, so eff 4 3 1Z = − = .  The 

expected energy of the 3p excitation is 
 

2 2
eff
2 2

1( 13.6 eV) ( 13.6 eV) 1.51eV
3n

ZE
n

= − = − = −  

 
and for 4d 

2 2
eff
2 2

1( 13.6 eV) ( 13.6 eV) 0.85 eV
4n

ZE
n

= − = − = −  
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10. In lithium, 

  3d→3p  λ = 610.4 nm  1240 eV nm 2.03 eV
610.4 nm

hcE
λ

⋅
Δ = = =  

  4d→3p  λ = 460.3 nm  1240 eV nm 2.69 eV
460.3 nm

hcE
λ

⋅
Δ = = =  

   
(4 3 ) (4 3 ) (3 3 ) 2.69 eV 2.03 eV 0.66 eVE d d E d p E d pΔ → = Δ → −Δ → = − =  

 
 In sodium, 

3d→3p  λ = 819.1 nm  1240 eV nm 1.51eV
819.1 nm

hcE
λ

⋅
Δ = = =  

  4d→3p  λ = 568.6 nm  1240 eV nm 2.18 eV
568.6 nm

hcE
λ

⋅
Δ = = =  

   
(4 3 ) (4 3 ) (3 3 ) 2.18 eV 1.51eV 0.67 eVE d d E d p E d pΔ → = Δ → −Δ → = − =  

 

 In hydrogen, 2 2

1 1(4 3) ( 13.6 eV) 0.66 eV
4 3

E ⎛ ⎞Δ → = − − =⎜ ⎟
⎝ ⎠

 

 The agreement is very good, because in lithium and sodium the outer electron is screened 
by the Z−1 inner electrons, and so the outer energy levels are well approximated by the 
hydrogenic levels with Z = 1. 

 
11. (a) From Figure 8.4 we find the 3d→3p energy difference to be 

  
 

(3 3 ) (3 2 ) (3 2 ) (3 2 ) (2 2 ) (3 2 )

(3 2 ) (2 2 ) (3 2 )
1 1 1(1240 eV nm) 0.045 eV

610.4 nm 670.8 nm 323.3 nm

E d p E d s E p s E d p E p s E d s
hc hc hc

d p p s p sλ λ λ

Δ → = Δ → −Δ → = Δ → +Δ → −Δ →

= + −
→ → →

⎛ ⎞
= ⋅ + − =⎜ ⎟

⎝ ⎠
 

(b)  ( 2 ) ( 2 ) (2 2 )
( 2 ) (2 2 )

hc hcE ns s E ns p E p s
ns p p sλ λ

Δ → = Δ → +Δ → = +
→ →

 

 1 1(3 2 ) (1240 eV nm) 3.374 eV
812.7 nm 670.8 nm

E s s
⎛ ⎞

Δ → = ⋅ + =⎜ ⎟
⎝ ⎠

 

 1 1(4 2 ) (1240 eV nm) 4.373 eV
491.2 nm 670.8 nm

E s s
⎛ ⎞

Δ → = ⋅ + =⎜ ⎟
⎝ ⎠

 

 1 1(5 2 ) (1240 eV nm) 4.750 eV
427.3 nm 670.8 nm

E s s
⎛ ⎞

Δ → = ⋅ + =⎜ ⎟
⎝ ⎠
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(c)  (2 2 ) (2 ) (2 )E p s E p E sΔ → = −  

 
(2 ) (2 ) (2 2 ) (2 )

(2 2 )
1240 eV nm5.39 eV 3.54 eV

670.8 nm

hcE p E s E p s E s
p sλ

= + Δ → = +
→

⋅
= − + = −

 

  
 The 2p ionization energy is therefore 3.54 eV.   
  

(3 ) (2 ) (3 2 ) 5.39 eV 3.37 eV 2.02 eVE s E s E s s= + Δ → = − + = −  
 
The 3s ionization energy is 2.02 eV. 

 

12. Solving Equation 8.4 for Z with 1240 eV nm 6392 eV
0.1940 nm

hcE
λ

⋅
Δ = = = , we obtain 

  
6392 eV1 1 26

10.2 eV 10.2 eV
EZ Δ

= + = + =  

so the element is iron. 
 

13. Ca (Z = 20): 2 2(10.2 eV)( 1) (10.2 eV)(19) 3.68 keVE ZΔ = − = =  
 Zr (Z = 40): 2 2(10.2 eV)( 1) (10.2 eV)(39) 15.5 keVE ZΔ = − = =  
 Hg (Z = 80): 2 2(10.2 eV)( 1) (10.2 eV)(79) 63.7 keVE ZΔ = − = =  
 
 The values computed from Moseley’s law are smaller than the measured values, and the 

discrepancy increases as Z increases. 
 
14. There is nothing that prevents all 6 electrons from having ms = +½, so 

1 1 1 1 1 1
2 2 2 2 2 2,max 3SM = + + + + + =  and 3S = .  According to the Pauli principle, the five 

3d electrons must all have different ml values, which are +2, +1, 0, −1, −2.  The 4s 
electron has only ml = 0.  Thus ,max 2 1 0 ( 1) ( 2) 0 0LM = + + + + − + − + =  and so L = 0.  The 
configuration is L = 0, S = 3. 

 
15. (a) The two 6s electrons have opposite spins (ms = +½ and ms = −½) but each of the other 

two electrons can have ms = +½, so 1 1 1 1
2 2 2 2,max ( ) 1SS M= = + + − + + = .  The Pauli 

principle does not restrict the ml values of the 4f and 5d electrons, so 
,max 0 0 3 2 5LL M= = + + + = .  The ground state is L = 5, S = 1. 

 (b) Once again, the two 6s electrons have opposite ms values.  The 4f shell can hold up to 
14 electrons, so all 7 electrons can have ms = +½, as can the single 5d electron.  Thus 

1
2,max 8( ) 4SM = + =  so S = 4.  If all seven of the 4f electrons have the same ms, they must 

all have different ml values: +3, +2, +1, 0, −1, −2, −3, which sum to zero.  The only 
contribution to L comes from the 5d electron with ml = 2.  Thus L = 2. 
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 (c) There is no contribution to L or S from the filled 4f subshell.  The spin of the nine 5d 
electrons is maximized by giving five of them ms = +½ while the other four must then 
have ms = −½.  The 6s electron also contributes ms = +½, so ,max 1SM =  and S = 1.  The 6s 
electron has ml = 0 and the five 5d electrons with ms = +½ must have ml = +2, +1, 0, −1, 
−2.  To maximize ML, the remaining four 5d electrons must have ml = +2, +1, 0, −1, so L 
= 2. 

 
16. (a) The configuration of fluorine is [He]2s22p5.  Only the five 2p electrons contribute to L 

or S.  The total spin is maximized with three having ms = +½ and two having ms = −½, 
and thus 1

2,maxSS M= = .  The three electrons with ms = +½ have ml = +1, 0, −1 for a 
total of zero.  The two electrons with ms = −½ maximize ML if they are assigned ml = +1 
and 0, so ,max 1LL M= = . 

 (b)  The configuration of magnesium is [Ne]2s2.  The 2s electrons must have opposite 
spins, so S = 0, and they both have l = 0, so L = 0. 

 (c)  The configuration of titanium is [Ar]4s23d2.  The 4s electrons do not contribute to L 
or S.  The two 3d electrons can both have ms = +½, so 1 1

2 2,max 1SS M= = + = .  If they 
have the same ms, they must have different ml, and the maximum values are +2 and +1, 
so ,max 2 1 3LL M= = + = . 

 (d) The configuration of iron is [Ar]4s23d6.  The 4s electrons do not contribute to L or S.  
Maximizing the spins of the six 3d electrons gives five with ms = +½ and one with ms = 
−½, so 1 1 1 1 1 1

2 2 2 2 2 2,max 2SS M= = + + + + − = .  The five 3d electrons with ms = +½ must 
have ml = +2, +1, 0, −1, −2, for a total of zero.  The maximum ml of the remaining 3d 
electron is +2, so ,max 2LL M= = . 

 
17. Each electron has s = ½, so the possible values of the total S for the two electrons is 0 or 

1.  The two d electrons, each with l = 2, can couple to give L = 0, 1, 2, 3, 4. 
 
18. Figure 8.18 shows 6 states with different L and S values that make up the 2p13p1 group.  

Each of these states has a degeneracy of (2S + 1)(2L + 1): 
          degeneracy 

L = 0, S = 0      1 
L = 1, S = 0      3 
L = 2, S = 0      5 
L = 0, S = 1      3 
L = 1, S = 1      9 
L = 2, S = 1    15 
              Total = 36 

The total number of individual states is 36, in agreement with the number found in 
Problem 1(d). 
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19. (a) For λ = 632.8 nm, 
  

19

3
16

19

1240 eV nm 1.96 eV 3.14 10 J
632.8 nm

3.5 10 J/s 1.12 10 photons/s
3.14 10 J/photon

hcE

P

λ
−

−

−

⋅
= = = = ×

×
= = ×

×

 

 
(b) From Equation 3.10, 
 

7 8 3
0 av

3 2

2 2(4 10 T m/A)(3.00 10 m/s)(3.5 10 W) 763 V/m
(1.2 10 m)

cPE
A

μ π
π

− −

−

× ⋅ × ×
= = =

×
 

 
For the incandescent bulb,  
 

7 8
0 av

2

2 2(4 10 T m/A)(3.00 10 m/s)(100 W) 77 V/m
(1 m)

cPE
A

μ π
π

−× ⋅ ×
= = =  

 
20. (a) There are 6 possible sets of quantum numbers for an electron in the 2p level, 

corresponding to the three possible values of ml (+1, 0, −1) and the two possible values of 
ms (+1/2, −1/2).  The first electron can be assigned any one of these 6 sets, leaving 5 sets 
that could be assigned to the second electron, 4 for the third, and 3 for the fourth.  The 
total number of possibilities is then 6 × 5 × 4 × 3 = 360.  This would be the result if we 
could somehow tell the difference among the electrons.  Because all the electrons are 
identical, we must correct for the different permutations obtained by simply switching the 
assigned states among the four electrons; for each way of assigning the states, there are 

 4 × 3 × 2 = 24 different permutations, so the actual number of different ways of assigning 
the quantum numbers is 360/24 = 15. 

 (b) We cannot have all four electrons with ms = +1/2 (nor all four with ms = −1/2), 
because that would violate the Pauli principle (there are only three possible ml values that 
can be assigned to the electrons).  So the possible distributions of the ms values are three 
with +1/2 and one with −1/2, two each with +1/2 and −1/2, and one with +1/2 and three 
with −1/2, giving possible totals of +1, 0, and −1. 

 (c) We can assign at most two electrons with ml = +1; if the two others both have ml = 0, 
we get the largest possible total ml of +2.  Reversing the signs, we find that the smallest 
possible value is −2.  Other combinations can give all values in between, so the possible 
values of the total are +2, +1, 0, −1, and −2. 

 (d) We maximize ms by assigning three electrons with ms = +1/2 and the fourth with ms = 
−1/2.  The first three electrons must have ml = +1. 0, and −1, which contributes a sum of 
0 to the total ml.  The fourth electron can have any allowed value of ml, so the possible 
values of the total ml are +1, 0, or −1. 

 (e) The maximum total ml occurs when two electrons have ml = +1 and two have ml = 0.  
In each case the two electrons must have ms = +1/2 and −1/2, so the total ms is 0. 
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21. (a) For the 3s outer electron of sodium, inserting E3 = −5.14 eV into Equation 8.1 gives 

 

eff
5.14 eV3 1.84

13.6 eV 13.6 eV
nEZ n −

= = =
− −

 

 
The simple screening model predicts Zeff = 1, so clearly the 3s electron is slightly 
penetrating the inner orbits and so is less screened by the inner electrons. 
(b) For the 4f state,  

 

eff
0.85 eV4 1.00

13.6 eV 13.6 eV
nEZ n −

= = =
− −

 

 
so the screening is complete, with the 11 positive charges in the nucleus screened by the 
10 electrons in the n = 1 and n = 2 shells. 

 
 
22. 

0
30
60
90

120
150
180

0 10 20 30 40 50 60

 
 
 The slope of the line is 3.48 eV1/2 and the intercept is 1.8.   
 The Kβ X rays originate from the n = 3 shell, so we must modify Equation 8.4 

accordingly: 
2 2

3 1 2 2

1 1( 13.6 eV)( 1) (12.1eV)( 1)
3 1

E E E Z Z⎛ ⎞Δ = − = − − − = −⎜ ⎟
⎝ ⎠

 

 
The expected slope is then (12.1 eV)1/2 = 3.48 eV1/2, which agrees exactly with the slope 
of the graph.  The screening model predicts an intercept of 1; the value from the graph is 
slightly larger, which suggests that our assumption that the screening is due to a single 1s 
electron is not quite correct. 

 
 

Z 

ΔE  
(eV)1/2 
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23. 

 

0

20

40

60

80

0 10 20 30 40 50 60 70

 
  

The slope is 1.40 eV1/2 and the intercept is 6.4. 
The Lα X rays originate from the n = 3 shell and lead to the n = 2 level.  It is difficult to 
calculate the screening effect of the 1s, 2s, and 2p electrons on the n = 3 electron that 
makes the transition, so we’ll represent it by the value k. 
 

2 2
3 2 2 2

1 1( 13.6 eV)( ) (1.89 eV)( )
3 2

E E E Z k Z k⎛ ⎞Δ = − = − − − = −⎜ ⎟
⎝ ⎠

 

 
The expected slope is (1.89 eV)1/2 = 1.38 eV1/2, in very good agreement with the slope of 
the graph.  If all of the n = 1 and n = 2 electrons contributed to the screening, we would 
expect k = 9, in contrast to the value 6.4 obtained from the intercept of the graph.   
 

24. The wavelength difference is Δλ = 0.59 nm.  By taking differentials of E = hc/λ, we can 
find the corresponding energy difference: 

  
3

2 2

1240 eV nm (0.59 nm) 2.1 10 eV
(590 nm)

hcE λ
λ

−⋅
Δ = Δ = = ×  

 
This energy difference comes from the interaction of a magnetic field B with a magnetic 
moment that we assume is of the order of 1 μB.  The energy difference between the cases 
with the magnetic moment parallel to B and antiparallel to B is (see Figure 7.25) 

2 BE BμΔ = , so 
3

5

2.1 10 eV 18 T
2 2(5.8 10 eV/T)B

EB
μ

−

−

Δ ×
= = =

×
 

 
This is quite a large magnetic field, of the order of the largest that can be produced in the 
laboratory with superconducting electromagnets. 
 

25. (a) Figure 8.4 shows that the longest absorption wavelength from the ground state is 
670.8 nm, in the visible region of the spectrum. 

 (b) From Figure 8.17, the longest ground-state absorption wavelength is 58.4 nm, in the 
ultraviolet region. 

ΔE  
(eV)1/2 

 

Z 
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 (c) The shortest absorption wavelengths (largest absorption energies) are those that ionize 
the atom.  For lithium this is 

  
1240 eV nm 230 nm

5.39 eV
hc
E

λ ⋅
= = =  

 
in the near ultraviolet region.  For helium,  
 

1240 eV nm 50.6 nm
24.5 eV

hc
E

λ ⋅
= = =  

 in the ultraviolet region. 
 

26.  (4 3 ) (4 2 ) (3 2 )
(4 2 ) (3 2 )

hc hcE p p E p s E p s
p s p sλ λ

Δ → = Δ → −Δ → = −
→ →

 

 
1240 eV nm 1240 eV nm 0.655 eV

396.5 nm 501.6 nm
⋅ ⋅

= − =  

 
 In hydrogen, 2 2(4 3) ( 13.6 eV)(1/ 4 1/ 3 ) 0.661 eVEΔ → = − − = .  The agreement is very 

good, because the 4p electron in helium is screened by the 1s electron, so that 
eff 2 1 1Z = − = . 

(4 3 ) (4 2 ) (3 2 )
(4 2 ) (3 2 )

1240 eV nm 1240 eV nm 0.663 eV
447.1 nm 587.6 nm

hc hcE d d E d p E d p
d p d pλ λ

Δ → = Δ → −Δ → = −
→ →

⋅ ⋅
= − =

 

 
Again, the agreement with hydrogen is very good. 
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Chapter 9 
 
This chapter provides an introduction to the structure and properties of molecules and  
how the spatial properties of the atomic wave functions described in Chapters 7 and 8 can 
be applied to understanding the arrangements of atoms in simple molecules.  The 
mathematics of molecular orbitals is beyond the level of this text, so only very simple 
molecular wave functions are included: the hydrogen molecule ion 2H+  and the hydrogen 
molecule H2.  The structures of some simple molecules containing s and p orbitals are 
illustrated.  Both ionic and covalent bonds are briefly considered.  Quantum states 
associated with rotation and vibration are reviewed, and then applied to the analysis of 
excited states in molecules.  Electromagnetic transitions between states are discussed in 
connection with molecular spectroscopy.  The major changes from the 2nd edition involve 
the restructuring of the latter material on rotations, vibrations, and spectroscopy. 
 
 

Supplemental Materials 
 

Information on the properties of molecules is tabulated in many locations; see, for 
example, the Handbook of Chemistry and Physics (Chemical Rubber Publishing Co.), the 
American Institute of Physics Handbook (American Institute of Physics), or the Journal 
of Physical and Chemical Reference Data.  The National Institute of Standards and 
Technology (NIST) maintains a web site with chemistry reference data that includes 
properties of diatomic molecules (http://webbook.nist.gov/chemistry). 
 
Chapter 14 of Physlet Quantum Physics has programs for displaying the +

2H  and H2 wave 
functions and also the representation of the potential energy for diatomic molecules by 
various functions such as Morse and Lennard-Jones.  The PhET programs “Quantum 
Bound States” and “Double Wells and Covalent Bonds” have the option of displaying the 
one-dimensional wave functions and energy levels for an electron interacting with two 
positive charges separated by a distance that may be varied by the user. 
 
More than 100 different types of molecules have been discovered in space, some with 
more than10 atoms.  Two popular-level articles on the search for molecules in space: 
B. E. Turner, “Interstellar Molecules,” Scientific American 228, 50 (March 1973). 
B. Zuckerman, “Interstellar Molecules,” Nature 268, 491 (August 1977). 
The web sites of NASA, the Jet Propulsion Laboratory, and the National Radio 
Astronomy Observatory provide links to lists of molecules discovered in space.  Other 
good sites include http://astrochemistry.net/ and the University of Cologne’s data base for 
molecular spectroscopy: http://www.astro.uni-koeln.de/site/vorhersagen/ . 
 
 

Suggestions for Additional Reading 
 
Books on molecular spectroscopy that include introductory as well as advanced material: 
G. M. Barrow, Introduction to Molecular Spectroscopy (McGraw-Hill, 1962). 

http://webbook.nist.gov/chemistry
http://astrochemistry.net/
http://www.astro.uni-koeln.de/site/vorhersagen/
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M. Karplus and R. N. Porter, Atoms and Molecules (W. A. Benjamin, 1970). 
P. S. C. Mathews, Quantum Chemistry of Atoms and Molecules (Cambridge University 

Press, 1986) 
L. Pauling, The Chemical Bond (Cornell University Press, 1967). 
W. G. Richards and P. R. Scott, Structure and Spectra of Molecules (Wiley, 1985). 
 
An advanced but very detailed work: 
G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, 1950). 

molecules. 
 
 

Materials for Active Engagement in the Classroom 
 
A.  Reading Quizzes 
 
1. Which is the correct procedure for combining the wave functions of the two electrons 

in the H2 molecule to get the total electron probability density? 
  (1) First add (or subtract) the two individual wave functions, then square the  
   result; that is, |ψ1 ± ψ2|2. 
  (2) First square the two wave functions, then add or subtract the results; that is,  
   |ψ1|2 ± |ψ2|2. 
 
2. As the rotational energy of a molecule increases, what happens to the spacing 

between the rotational energy states? 
  (1) The energy spacing increases. 
  (2) The energy spacing decreases. 
  (3) The energy spacing remains constant. 
 
Answers 1. 1 2. 1 
 
 
B.  Conceptual or Discussion Questions 
 
1. Using the following atomic numbers for the 2p elements: 
    B C N O F Ne 
   Z = 5 6 7 8 9 10 

identify the molecule in each pair that has the larger dissociation energy. 
(a) CO or O2  (b) C2 or B2  (c) BC or BO  

  (d) CF or CN  (e) FO or F2  (f) N2 or NO 
 
2. Molecules have three different types of excited states: electronic, vibrational, 

rotational.  Put these in increasing order according to the amount of energy generally 
required for each type of excitation. 

  (1) Vibrational, electronic, rotational  (2) Vibrational, rotational, electronic 
  (3) Electronic, vibrational, rotational  (4) Electronic, rotational, vibrational 
  (5) Rotational, electronic, vibrational  (6) Rotational, vibrational, electronic 
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3. As the angular momentum quantum number L increases, the actual energy of the 

rotational states differs slightly from the predicted value 2 2
eq1 2LE L L mR= +( ) / . 

 How would you expect the actual energy to differ from the predicted energy? 
  (1) The actual energy is a little larger than the predicted energy. 
  (2) The actual energy is a little smaller than the predicted energy. 
 
4. The figure shows the energy curves of two different molecules that have the same 

reduced mass.  Which molecule has the larger (a) equilibrium radius?  (b) dissociation 
energy? (c) rotational constant B?   (d) rotational inertia?   (e) vibrational energy 
spacing?  (f) zero point energy? 

 

0 0.1 0.2 0.3 0.4 0.5 0.6

Molecule 1

Molecule 2

 
 
Answers 1.  (a) CO   (b) C2   (c) BO   (d) CN   (e) FO   (f) N2             2. 6            3. 2 
   4. (a) 2   (b) 1   (c) 1   (d) 2   (e) 1   (f) 1 
 
 

Sample Exam Questions 
 
A. Multiple Choice 
 
1. A certain diatomic molecule absorbs energy by rotating.  The first excited rotational 

state is at an energy of 0.10 eV above the ground state.  What is the energy of the 
second excited rotational state above the ground state?    

  (a) 0.15 eV    (b) 0.20 eV (c) 0.30 eV (d) 0.40 eV 
 
2. In a measurement of the absorption of microwaves by a diatomic gas, you find that 

the lowest absorption frequency is f0.  What is the next lowest absorption frequency? 
  (a) 2f0  (b) 3f0  (c) 4f0  (d) 1.2f0 
 
3. A certain diatomic molecule absorbs energy by vibrating.  The first excited 

vibrational state is at an energy of 2.0 meV above the ground state.  What is the 
energy of the second excited vibrational state above the ground state? 

  (a) 2.5 meV (b) 4.0 meV (c) 6.0 meV (d) 8.0 meV 
 
4. Which has the smaller molecular binding energy, neutral H2 or ionized H2

+? 
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  (a) H2  (b) H2
+  (c) They are the same. 

 
5. Photons emitted in transitions among the rotational or vibrational states of molecules 

generally are in what region of the electromagnetic spectrum? 
  (a) X-ray (b) Optical (c) Ultraviolet  (d) Infrared  (e) Radio 
 
6. The energy difference between the ground state and the first excited vibrational state 

of molecular H2 is E.  The energy difference between the first excited state and the 
second excited state is: 

  (a)  E  (b) 2E  (c) 3E  (d) 4E 
 
7. In a certain rotating diatomic molecule, the energy difference between the ground 

state and first excited state is 3.0 eV.  What is the energy difference between the first 
and second excited states? 

  (a) 1.5 eV (b) 3.0 eV (c) 6.0 eV (d) 9.0 eV (e) 12.0 eV 
 
Answers 1. c 2. a 3. b 4. a 5. d 6. a 7. c 
 
 
B.  Conceptual 
 
1. Depending on whether their spins are parallel or antiparallel, two electrons (each with 

spin 1/2) can combine to give a total spin of 1 (parallel) or 0 (antiparallel).  Only one 
of these two possible values is correct for the two electrons in a H2 molecule.  Which 
one is correct?  EXPLAIN YOUR ANSWER. 

 
2. Consider what happens to the rotational and vibrational spacings of KH (mK = 39 u, 

mH = 1 u) when the hydrogen is replaced by deuterium (heavy hydrogen, mD = 2 u).  
Compared with KH, are the rotational spacings of KD larger or smaller?  Are the 
vibrational spacings of KD larger or smaller than those of KH? Which changes by 
the larger amount, the rotational or the vibrational spacings?  (Assume the 
equilibrium separations of KH and KD are the same.)  EXPLAIN YOUR 
ANSWERS. 

 
3. Put the following compounds in order of increasing dissociation energy of the carbon-

carbon bond: C2H2 , C2H4 , C2H6 .  EXPLAIN YOUR ANSWER. 
 
Answers 1. 0 (antiparallel) 2. smaller, smaller, rotational   
   3. C2H6 < C2H4 < C2H2 
 
 
C.  Problems 
 
1. In a certain diatomic molecule, the two atoms can vibrate relative to their common 

center of mass and also rotate about the center of mass.  The masses of the two atoms 
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are 10.0 u and 30.0 u.  At equilibrium, the two atoms are separated by a distance of 
0.236 nm.  The vibrational frequency is found to be 2.42 × 1013 s−1.   

 (a) Considering only vibrational motion and assuming there to be no rotation,  
calculate the energies of the ground state and the first two excited states.  Draw a 
diagram showing the vibrational energy levels. 

 (b) Considering only rotational motion and assuming there to be no vibration,  
calculate the energies of the ground state and the first two excited states.  Draw a 
diagram showing the rotational energy levels. 
 

2. (a) Calculate the energies of the first 3 rotational excited states of molecular CN.  The 
equilibrium separation of CN is 0.117 nm and the masses of carbon and nitrogen are 
12.00 u and 14.00 u. 

 (b) Draw an energy-level diagram showing the ground state and first 3 excited states.  
Label each state with its energy, angular momentum, and degeneracy. 

 (c) On your diagram show all allowed absorption transitions and calculate their 
wavelengths. 

 
Answers 1. (a) 0.050 eV, 0.150 eV, 0.250 eV (b) 0, 100 μeV, 300 μeV 
   2. (a) 0.471 meV, 1.413 meV, 2.827 meV       (c) 2.632 mm, 1.316 mm, 0.877 mm 
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Problem Solutions 
 
 

1. The energy of +
2H is −16.3 eV, and the energy of H2 is −31.7 eV.  The ionization energy 

is the difference between these values: 
  

+
ion 2 2 2(H ) (H ) (H ) 16.3 eV 31.7 eV 15.4 eVE E E= − = − + =  

 
2. Let the negative charge on the sphere be −q. Then the potential energy between the 

sphere and either of the protons is 
 

e
0 eq

1
4 / 2

qeU
Rπε

= −  

 
The total energy of the system includes the repulsion of the protons and the attraction of 
the negative sphere for each of the protons: 
 

2

p e
0 eq 0 eq 0 eq

1 1 12 2 ( 4 )
4 4 / 2 4

e qe eE U U e q
R R Rπε πε πε

= + = − = −  

 
Inserting the value of Req = 0.106 nm and E = −B = −2.7 eV, we can solve to find 
 

q = 0.30e 
 
This quantity of charge is roughly consistent with the fraction of ψ2 that appears between 
the two protons in Figure 9.3a. 
 

3. (a)  Each mole contains 6.022 × 1023 molecules, so 
  

3

23 19

410 10 J/mole 1 4.25 eV/molecule
6.022 10 molecules/mole 1.602 10 J/eV

E −

×
= =

× ×
 

 

(b) 
3

23 19

106 10 J/mole 1 1.10 eV/molecule
6.022 10 molecules/mole 1.602 10 J/eV

E −

×
= =

× ×
 

 

(c) 
3

23 19

945 10 J/mole 1 9.80 eV/molecule
6.022 10 molecules/mole 1.602 10 J/eV

E −

×
= =

× ×
 

 
4. NO has 15 electrons, NF has 16, and OF has 17.  A total of 8 electrons will occupy the 1s 

and 2s bonding and antibonding states, and 6 electrons can be placed in the three 2p 
bonding states.  The remaining electrons in each molecule must go into the 2p 
antibonding states: one in NO, two in NF, and three in OF.  So we would expect NO to 
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have the largest dissociation energy, followed by NF and then by OF.  The measured 
bond strengths and corresponding dissociation energies are consistent with these 
predictions – NO: 631 kJ/mole and 6.54 eV; NF: 333 kJ/mole and 3.45 eV; OF: 222 
kJ/mole and 2.30 eV. 

 
5. (a) Be2 has four electrons, which fill the 1s bonding and antibonding states.  Li2 has six 

electrons, so in addition to filling the 1s bonding and antibonding states there are two 
electrons available for the 2s bonding state.  So we expect Li2 to have the greater 
dissociation energy.  The measured values are 0.61 eV for Be2 and 1.10 eV for Li2. 

 (b) B2 has 10 electrons, with 8 filling the 1s and 2s bonding and antibonding states so that 
there are 2 electrons left for the 2p bonding state.  C2 has 10 electrons, so 4 are available 
for the 2p bonding states.  We thus expect C2 to have the greater dissociation energy.  
The measured values are 3.08 eV for B2 and 6.29 eV for C2. 

 (c) There are 14 electrons in CO and 16 in O2.  In CO, 8 of the electrons fill the 1s and 2s 
bonding and antibonding states, and so there are 6 electrons available for the 2p bonding 
states.  O2 has 8 electrons available for the 2p states, of which 6 go into bonding states 
and 2 into antibonding states.  We thus expect CO to have the greater dissociation energy.  
The measured values are 11.17 eV for CO and 5.16 eV for O2. 

 
6. (a) F2 has 18 electrons, 8 in the 1s and 2s bonding and antibonding states, 6 in the 2p 

bonding states, and 4 in the 2p antibonding states.  F2
+ has one less electron in the 

antibonding state, so it should have the greater dissociation energy.  The measured values 
are: 1.6 eV for F2 and 3.2 eV for F2

+. 
 (b) N2 (14 electrons) has 6 electrons in the 2p bonding state, while N2

+ has only 5. Thus 
N2 should have the greater dissociation energy.  The measured values are: 9.8 eV for N2 
and 8.7 eV for N2

+. 
 (c) NO (15 electrons) has 1 antibonding 2p electron while NO+ has none, so NO+ should 

have the greater dissociation energy.  The measured values are: 6.5 eV for NO and 10.9 
eV for NO+. 

 (d) CN (13 electrons) has 5 bonding 2p electrons while CN+ has only 4, so CN should 
have the greater dissociation energy.  The measured values are: 7.9 eV for CN and 4.9 eV 
for CN+. 

 
7. The equilibrium separation of KBr is 0.282 nm, so 
   

2

0

1 1.440 eV nm 5.11 eV
4 0.282 nm

eU
Rπε

⋅
= = =  

 
8. The difference between the ionization energy of K and the electgron affinity of I is 
  

4.34 eV 3.06 eV 1.28 eV− =  
 
The potential energy will be 1.28 eV when the separation R is 
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2

0

1 1.440 eV nm 1.13 nm
4 1.28 eV

eR
Uπε

⋅
= = =  

 
Whenever R is less than 1.13 nm it is advantageous to have K+ and I− ions. 
 
 

9. (a)  19 9 30
eq (1.602 10 C)(0.193 10 m) 30.9 10 C mp qR − − −= = × × = × ⋅  

 

 (b) 
30

meas
30

eq

27.2 10 C m 0.88,  so NaF is 88% ionic.
30.9 10 C m

p
qR

−

−

× ⋅
= =

× ⋅
 

 
10.  19 9 30

eq (1.602 10 C)(0.160 10 m) 25.6 10 C mp qR − − −= = × × = × ⋅  
30

meas
30

eq

1.47 10 C m 0.057 5.7% ionic
25.6 10 C m

p
qR

−

−

× ⋅
= = =

× ⋅
 

 
11.  19 9 30

eq 2(1.602 10 C)(0.194 10 m) 62.1 10 C mp qR − − −= = × × = × ⋅  
  

30
meas

30
eq

26.5 10 C m 0.427 42.7% ionic
62.1 10 C m

p
qR

−

−

× ⋅
= = =

× ⋅
 

 
12. (a) The reduced mass of the CN molecule is 
  

(C) (N) (12.00 u)(14.00 u) 6.462 u
(C) (N) 12.00 u + 14.00 u

m mm
m m

= = =
+

 

 
 The vibrational energy is 
  

4 2

2 6

1.017 10  eV/nm(197.3 eV nm) 0.2565 eV
(6.462 u)(931.5 10  eV/u)

k kE c
m mc

ω ×
= = = = ⋅ =

×
 

 
The first excited state would be at energy E = 0.2565 eV above the ground state and the 
second excited state would be at energy 2E = 0.5130 eV above the ground state. 
(b) The force constant is smaller by 3.42% or by a factor of 0.9658, so the energy, which 
is proportional to k1/2, would be smaller by 0.96581/2 = 0.9828.  The vibrational energy 
would then be 0.9828 × 0.2565 eV = 0.2521 eV, so the first excited state would be 0.2521 
eV above the ground state and the second excited state would be 0.5042 eV above the 
ground state. 
 

13. The reduced mass of BeO is 
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(Be) (O) (9.012 u)(15.995 u) 5.764 u
(Be) (O) 9.012 u + 15.995 u

m mm
m m

= = =
+

 

 
The vibrational frequency is 
 

8
13

6

2.998 10  m/s 4.459 10  Hz
6.724 10  m

cf
λ −

×
= = = ×

×
 

 
and the force constant is then 
 

2 2 2 2 13 2 6
2

2 8 2 9 2

3 2

4 4 (4.459 10  Hz) (5.764 u)(931.5 10  eV/u)
(2.998 10  m/s) (10  nm/m)

4.689 10  eV/nm

f mck m
c

π πω × ×
= = =

×
= ×

 

 

14.  2 18 2
2

2(0.25 eV) 310 eV/nm 310 10 eV/m
(0.040 nm)

k = = = ×  

1 2

1 2

2 18 2 8 2
12

2 6

8

12

(23 u)(35.5 u) 13.96 u using average mass of Cl
23 u + 35.5 u

1 1 (310 10 eV/m )(3.0 10 m/s) 7.4 10 Hz
2 2 (13.96 u)(931.5 10  eV/u)

3.00 10 m/s 40 m (infrared region)
7.4 10 Hz

0.031

m mm
m m

kcf
mc

c
f

hf

π π

λ μ

= = =
+

× ×
= = = ×

×

×
= = =

×

= eV

 

 
The approximation is valid for an energy range of about 0.25 eV, or up to about N = 8. 

 
15. (a) The vibrational energy is /E k mω= = , and so E depends on the reduced mass as 

m−1/2.  The reduced mass of CO made with 12C and 16O is 
  

12 16
12 16

12 16

( C) ( O) (12.00 u)(16.00 u)( C O) 6.857 u
( C) ( O) 12.00 u + 16.00 u

m mm
m m

= = =
+

 

 
Substituting 18O for 16O would give a reduced mass of 
 

12 18
12 18

12 18

( C) ( O) (12.00 u)(18.00 u)( C O) 7.200 u
( C) ( O) 12.00 u + 18.00 u

m mm
m m

= = =
+

 

 
Because the vibrational energy depends on m−1/2, the vibrational energy of 12C18O is 
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12 16 1/2
12 18 12 16

12 18 1/2

( C O) 6.857 u( C O) ( C O) (0.2691 eV) 0.2626 eV
( C O) 7.200 u

mE E
m

= = =  

 
(b) The reduced mass of 14C16O is 
 

14 16
14 16

14 16

( C) ( O) (14.00 u)(16.00 u)( C O) 7.467 u
( C) ( O) 14.00 u + 16.00 u

m mm
m m

= = =
+

 

 
The vibrational energy is then 
 

12 16 1/2
14 16 12 16

14 16 1/2

( C O) 6.857 u( C O) ( C O) (0.2691 eV) 0.2579 eV
( C O) 7.467 u

mE E
m

= = =  

 

16.  
2 2 2 2 2 2

2 2 2 2 1 2 1 1 1 2 2 1 2 1 2 2
1 1 2 2 1 1 2 2

1 2 1 2

( ) m m m x m m x m m x m xI m x m x m x m x
m m m m

⎛ ⎞+ + + +
= + = + =⎜ ⎟+ +⎝ ⎠

 

  

 
2 2

2 21 2 1 1 2 1 2 1 2 2 1 2
1 1 2 2

1 2 1 2

2 ( 2 )m m x m m x x m m x m m x x x x m
m m m m

+ +
= = + + =

+ +
 

17. For NaCl (using the average mass of 35.5 u for Cl) and with Req = 0.236 nm, 
  

1 2

1 2

2 2 2 2
5

2 2 2 6 2
eq eq

(23.0 u)(35.5 u) 13.96 u
23.0 u + 35.5 u

(197 eV nm) 2.68 10 eV
2 2 2(13.96 u)(931.5 10 eV/u)(0.236 nm)

m mm
m m

cB
mR mc R

−

= = =
+

⋅
= = = = ×

×

 

 

 L = 1 to L = 0: 5
5

1240 eV nm2 5.36 10 eV and 23.1 mm
5.36 10 eV

hcE B
E

λ−
−

⋅
Δ = = × = = =

Δ ×
 

 L = 2 to L = 1: 4
4

1240 eV nm4 1.07 10 eV and 11.6 mm
1.07 10 eV

hcE B
E

λ−
−

⋅
Δ = = × = = =

Δ ×
 

 L = 3 to L = 2: 4
4

1240 eV nm6 1.61 10 eV and 7.71 mm
1.61 10 eV

hcE B
E

λ−
−

⋅
Δ = = × = = =

Δ ×
 

 
18. For rotations about an axis that passes through the central carbon atom, the rotational 

inertia involves only the two oxygen atoms: 2
O2I m R= , where mO is the mass of an 

oxygen atom and R is the distance of the oxygens from the rotation axis.  The rotational 
energy then depends on 
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2 2 2 2 2

2 2 2 6 2
O O

5

(197 eV nm)
2 4 4 4(16 u)(931.5 10  eV/u)(0.116 nm)

4.84 10  eV  48.4 eV

c
I m R m c R

μ−

⋅
= = =

×

= × =
 

 
and the energies of the rotational states are given by Equation 9.12, with 

(48.4 eV) ( 1)LE L Lμ= + : 
 

0 1 2

3 4

0 (48.4 eV)(1)(2) 96.8 eV (48.4 eV)(2)(3) 290.4 eV

(48.4 eV)(3)(4) 580.8 eV (48.4 eV)(4)(5) 968.0 eV

E E E

E E

μ μ μ μ

μ μ μ μ

= = = = =

= = = =
 

 
19. The reduced masses are 
  

1 2
35

1 2

1 2
37

1 2

(1.007825 u)(34.968853 u) 0.979593 u
1.007825 u + 34.968853 u

(1.007825 u)(36.965903 u) 0.981077 u
1.007825 u + 36.965903 u

m mm
m m

m mm
m m

= = =
+

= = =
+

 

 
2 2 2

35 37
2 2 2 2
eq 35 37 eq 35 37

2
6

6

1 1 1 1(H Cl) (H Cl) =
2 2

1 197.3 eV nm 1 1 1 2.00 10 eV
2 0.127 nm 0.979593 u 0.981077 u 931.5 10 eV/u

cB B B
R m m R m c m c

δ

−

⎛ ⎞ ⎛ ⎞
= − − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞⋅
= − = ×⎜ ⎟ ⎜ ⎟ ×⎝ ⎠ ⎝ ⎠

 

 
20. (a) Because there are no transitions with wavelengths between the two observed values, 

these wavelengths must correspond to emissions from L + 1 → L and L + 2 → L + 1 
(although we don’t yet know the value of L).  The transition energies are: 

  
3

3

3
3

1239.8 eV nm2 1: 2.354 10  eV
526.6 10  nm

1239.8 eV nm1 : 1.883 10  eV
658.3 10  nm

hcL L E

hcL L E

λ

λ

−

−

⋅
+ → + Δ = = = ×

×

⋅
+ → Δ = = = ×

×

 

 
From Equation 9.17, we see that successive values of ΔE increase by 2B, and so the 
rotational spacing 2B is just the difference between the energies of successive emissions: 
 

3 3 42 2.354 10  eV 1.883 10  eV 4.71 10  eVB − − −= × − × = ×  
 

 For the first transition, Equation 9.17 gives  
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3

4

2.354 10  eV1 5
2 4.71 10  eV

EL
B

−

−

Δ ×
+ = = =

×
 

 
and thus the reported wavelengths must be from the 6 → 5 and 5 → 4 transitions. 

 (b) With Req = 0.1172 nm, the reduced mass is 
 

2 2

2 2 6 4 2
eq

1 ( ) (197.3 eV nm) 6.459 u
2 (931.5 10  eV/u)(4.71 10  eV)(0.1172 nm)

cm
c BR −

⋅
= = =

× ×
 

 
With m1 = 12.00 u for carbon, we solve Equation 9.10 for m2 to give 
 

1
2

1

(12.000 u)(6.459 u) 13.988 u
12.000 u 6.459 u

m mm
m m

= = =
− −

 

 
The only stable atom with a mass near 14 u is nitrogen, so the molecule must be CN. 

 
21. ( 1/ 2) ( 1) 2( 1/ 2) 10 ( 1)NLE N hf BL L N L L= + + + = + + +  

 

 
 
 
22. (a) 

0 

20 

40 

60 

80 

100 

120 0 

0 

0 

1 

1 

1 

1 

2 

2 

2 

2 

0 

3 

3 

3

3 0 

1 

2 

3 

E N L 
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 (b) ( 1/ 2) ( 1) 10( 1/ 2) 0.25 ( 1)NLE N hf BL L N L L= + + + = + + +  
 For N = 0 to N = 1, there are two sequences of absorption lines: 
  

0 1 1 0 1 1

1: 10 / 2 1: 10 ( 1) / 2
L L L LE E E E E

L L E L L L E L
± ±Δ = − = − +

→ − Δ = − → + Δ = + +
 

 

 
 

23. For emission transitions N → N − 1 and L → L ± 1, so with 1 1NL N LE E E − ±Δ = −  
 

  
1: ( 1) ( 1)( 2) 2 ( 1)

1: ( 1) ( 1)( ) 2

L L E hf BL L B L L hf B L

L L E hf BL L B L L hf BL

→ + Δ = + + − + + = − +

→ − Δ = + + − − = +
 

 

24. (a)  4 2K Cl

K Cl

(39.1 u)(35.5 u) 18.6 u 1.73 10 MeV/
39.1 u + 35.5 u

m mm c
m m

= = = = ×
+

 

8 9 10 11 12

L=5  
  to 
L=4 

L=4  
  to 
L=3 

L=3  
  to 
L=2 

L=2 
  to 
L=1 

L=1  
  to 
L=0

L=0 
  to 
L=1

L=1  
  to 
L=2

L=2  
  to 
L=3

L=3  
  to 
L=4

L=4 
  to 
L=5

0 

5 

10 

15 

20 

E N   L 
0     0 
0     1 
0     2 
0     3 
0     4 

0     5 

1     0 
1     1 
1     2 
1     3 

1     4 

1     5 
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 (b) 
2 2 2 2

5
2 2 2 10 2
eq eq

(197.3 eV nm) 1.58 10 eV
2 2 2(1.73 10 eV)(0.267 nm)

cB
mR mc R

−⋅
= = = = ×

×
 

  
The spacing of the transitions is 2B = 3.16 × 10−5 eV. 

 
25.  / [( 1/ 2) ( 1)]/( ) (2 1) (2 1)NLE kT N hf BL L kT

NLp E L e L e− − + + += + = +  
[( 1/ 2) ( 1)]/ [( 1/ 2) ( 1)]/2 (2 1) (2 1) 0N hf BL L kT N hf BL L kTdp Be L e L

dL kT
− + + + − + + += − + + =  

22 1 kTL
B

+ =  

 

26.    
(3/ 2) /

/
(1/ 2) /

( 1)
( 0)

hf kT
hf kT

hf kT

p N e e
p N e

−
−

−

=
= =

=
 

  

5

0.358 eV 3780 K
ln[ ( 1) / ( 0)] (8.617 10  eV/K) ln(1/ 3)

hfT
k p N p N −

− −
= = =

= = ×
 

 
  

27. For CO, 3 2C O

C O

(12 u)(16 u) 6.86 u 6.39 10  MeV/
28 u

m mm c
m m

= = = = ×
+

 

  
2 2 2 2

4
2 2 2 9 2
eq eq

4

(197.3 eV nm) 2.39 10  eV
2 2 2(6.39 10  eV)(0.113 nm)

2 2(0.025 eV)2 1 14.5 so 7
2.39 10  eV

cB
mR mc R

kTL L
B

−

−

⋅
= = = = ×

×

+ = = = =
×

 

 
 

28. At the equilibrium separation R = Req, 0 and / 0 :E E dE dR= − =  
  

0 9 10 2
eq eq eq eq

9and 0A B dE A BE
R R dR R R

−
− = − = + =  

 
Solving these two equations simultaneously, we obtain 
 

9
0 eq

0 eq8
eq

9 9and
8 8

E R AA B E R
R

= = =  

 
With these values we can write the energy equation as 
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0 0
9

eq eq

91 1
8 ( / ) 8 /
E EE

R R R R
= −  

 

-10

-5

0

5

10

15

20

0 0.05 0.1 0.15 0.2 0.25

Separation (nm)

En
er

gy
 (e

V)

 
29. 

  
 
 2 2 2 22 and ( ) ( ) 2 3AB L AC AB BC L L L= = + = + =  
 
 Using the law of cosines on triangle OAB: 
  

2 2 2( ) ( ) ( ) 2( )( )cosAB AO OB AO OB θ= + −  
 
but 1

2 , soAO OB AC= =  
  

2 2 21 1
2 2( ) 2( ) 2( ) cosAB AC AC θ= −  

 
2 2

1 1 1
2 21 1

2 2

( ) 2 1cos 1 cos 1 cos 109.5
( ) (3 ) 3
AB L
AC L

θ − − −⎡ ⎤ ⎡ ⎤ ⎛ ⎞= − = − = − = °⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎝ ⎠⎣ ⎦ ⎣ ⎦
 

 

L 

L 

L 

A 

B C 

O 

θ 
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30. For H2  1 2 H H
H

1 2 H H

( )( ) 1
2

m m m mm m
m m m m

= = =
+ +

 

  

For HD 1 2 H H
H

1 2 H H

( )(2 ) 2
2 3

m m m mm m
m m m m

= = =
+ +

 

 

For D2  1 2 H H
H

1 2 H H

(2 )(2 )
2 2

m m m mm m
m m m m

= = =
+ +

 

 

With 2

2 2

DH HHD

H HH H

/ 2 / 21 3 1we get 0.866 and 0.707
4 22 / 3

fm mff
f fm m m

∝ = = = = = =  

 

2

14 14
HD

14 13
D

0.866(1.32 10 Hz) 1.14 10 Hz

0.707(1.32 10 Hz) 9.33 10 Hz

f

f

= × = ×

= × = ×
 

 
Req does not depend on the nuclear mass, so HD and D2 should have the same Req as H2.  
The rotational parameter B depends inversely on the mass, so the rotational parameters 
for HD and D2 can be found from the rotational parameter for H2 ( 0.0076 eVB = ) and 
the mass ratios: 
 

For HD H

H

/ 2(0.0076 eV) 0.0057 eV
2 / 3
mB
m

= =  

 

For D2  H

H

/ 2(0.0076 eV) 0.0038 eVmB
m

= =  

 
31. (a) The vibrational energies depend on the reduced mass like m−1/2.  With the deuterium 

mass mD = 2mH, where mH is the mass of the ordinary hydrogen atom, the reduced masses 
are m(H2) = mH/2, m(HD) = 2 mH/3, and m(D2) = mH.  The vibrational energies are then 

  

 For HD 
1/ 2

2 H
vib vib 2 1/ 2

H

(H ) 0.5(HD) (H )  =(0.54 eV) 0.47 eV
(HD) 0.667

m mE E
m m

= =  

 

 For D2  
1/ 2

2 H
vib 2 vib 2 1/ 2

2 H

(H ) 0.5(D ) (H )  =(0.54 eV) 0.38 eV
(D )

m mE E
m m

= =  

 
 The zero-point energy is half the vibrational energy, so the zero-point energies are 0.27 

eV for H2, 0.23 eV for HD and 0.19 eV for D2. 
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 (b) The depth of the minimum of the molecular energy curve is lower than the 
dissociation energy (which is the energy necessary to add to the vibrational ground state 
to reach E = 0) by the zero-point energy, so for H2 the minimum would be at an energy of 
4.52 eV + 0.27 eV = 4.79 eV below zero.  Assuming the same value for the energy 
minimum for HD, the vibrational ground state of HD would then be 0.23 eV above the 
minimum, or 4.79 eV − 0.23 eV = 4.56 eV below zero.  For D2, the vibrational ground 
state would be 4.79 eV − 0.19 eV = 4.60 eV below zero.  Thus the dissociation energies 
are 4.56 eV for HD and 4.60 eV for D2. 
 

32. (a) For H2, vib 0.54 eV and 0.0076 eVE B= = , so from Equation 9.16 
 

vib 0.54 eV( 1) 71 and 8
0.0076 eV

EL L L
B

+ = = = ≅  

 
so 9 rotational states (L = 0 to 8) are between the vibrational states. 
 
(b) For HCl, vib 0.358 eV and 0.00132 eVE B= = , so from Equation 9.16 

 
vib 0.358 eV( 1) 271 and 16

0.00132 eV
EL L L
B

+ = = = ≅  

 
so 17 rotational states (L = 0 to 16) are between the vibrational states. 
 
(c) For NaCl, 5

vib 0.30 eV and 2.68 10 eVE B −= = × : 
 

vib
5

0.030 eV( 1) 1119 and 33
2.68 10 eV

EL L L
B −+ = = = ≅

×
 

 
so 34 rotational states are between the vibrational states. 
 

33. (a) The “missing” transition is at an energy of about 0.317 eV. 
 

 (b) 13
15

0.317 eV 7.66 10 Hz
4.14 10 eV s

Ef
h −= = = ×

× ⋅
 

  

2H Br

H Br

2 2 6 2 13 2
21 2

2 16 2 2

(1 u)(80 u) 0.988 u 920 MeV/
81 u

(2 ) (920 10  eV)(2 ) (7.66 10  Hz) 2.37 10  eV/m
9.00 10  m /s

m mm c
m m

mc fk
c
π π

= = = =
+

× ×
= = = ×

×

 

 
(c) With Req = 0.141 nm, 
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2 2 2 2
3

2 2 2 6 2
eq eq

(197.3 eV nm)2 2.1 10 eV
(920 10  eV)(0.141 nm)

cB
mR mc R

−⋅
= = = = ×

×
 

 
This value agrees nicely with the spacing of the lines in the spectrum, estimated to be 
about 0.002 eV. 
 
 

34. (a) The vibrational energy is 0.54 eVhf = .  The vibrational states are non-degenerate, so 
  

(3/ 2) /
/

(1/ 2) /

( 1)
( 0)

hf kT
hf kT

hf kT

p N e e
p N e

−
−

−

=
= =

=
 

 
At T = 293 K, kT = 0.02525 eV. 
 

/ 0.54 eV/0.02525 eV 10( 1) 5.15 10
( 0)

hf kTp N e e
p N

− − −=
= = = ×

=
 

 
(b) In the N = 2 state,  
 

(5/ 2) /
2 / 2(0.54 eV)/0.02525 eV 19

(1/ 2) /

( 2) 2.65 10
( 0)

hf kT
hf kT

hf kT

p N e e e
p N e

−
− − −

−

=
= = = = ×

=
 

 
35. (a)  For NaCl, 0.063 eV.hf =  
  

(3/ 2) /
/ 0.063 eV/0.02525 eV 2

(1/ 2) /

( 1) 8.2 10
( 0)

hf kT
hf kT

hf kT

p N e e e
p N e

−
− − −

−

=
= = = = ×

=
 

 

(b)   
(5/ 2) /

2 / 2(0.063 eV)/0.02525 eV 3
(1/ 2) /

( 2) 6.8 10
( 0)

hf kT
hf kT

hf kT

p N e e e
p N e

−
− − −

−

=
= = = = ×

=
 

 
36. (a) For H2, 0.0076 eV.B =   At T = 293 K, kT = 0.02525 eV. 
  

( 1) / ( 1)(0.0076 eV)/(0.02525 eV) 0.301 ( 1)( ) (2 1) (2 1) (2 1)
(0)

BL L kT L L L Lp L L e L e L e
p

− + − + − += + = + = +  

(1) (2) (3)1.64, 0.822, 0.189
(0) (0) (0)

p p p
p p p

= = =  

 
(b) At T = 30 K, kT = 0.002585 eV and 2.94 ( 1)( ) / (0) (2 1) .L Lp L p L e− += +  
 

3 7 15(1) (2) (3)8.38 10 , 1.09 10 , 3.33 10
(0) (0) (0)

p p p
p p p

− − −= × = × = ×  
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37. (a) For NaCl, 52.68 10  eV.B −= ×   At T = 293 K, kT = 0.02525 eV. 
  

2 5 3( 1) / ( 1)(2.68 10  eV)/(0.02525 eV) 1.06 10 ( 1)( ) (2 1) (2 1) (2 1)
(0)

BL L kT L L L Lp L L e L e L e
p

− −− + − + × − × += + = + = +  

(1) (2) (3)2.99, 4.97, 6.91
(0) (0) (0)

p p p
p p p

= = =  

 
(b) At T = 30 K, kT = 0.002585 eV and 

21.04 10 ( 1)( ) / (0) (2 1) .L Lp L p L e
−− × += +  

 
(1) (2) (3)2.94, 4.70, 6.18
(0) (0) (0)

p p p
p p p

= = =  

 
38. (a) The difference in electronegativity between K and Br is 2.96 – 0.82 = 2.14.  Based on 

the values in Figure 9.21, we expect an ionic content in the range of 60-80%. 
 (b) The tabulated value of the electric dipole moment of KBr is 3.47 × 10−29 C⋅m.  The 

equilibrium separation is 0.282 nm so the expected dipole moment in a purely ionic 
molecule would be 

  
19 9 29

eq (1.602 10  C)(0.282 10  m) 4.52 10  C mp qR − − −= = × × = × ⋅  
 
and thus the fractional ionic content is  
 

29

29

3.47 10  C m 77%
4.52 10  C m

−

−

× ⋅
=

× ⋅
 

 
which agrees very well with the prediction based on the electronegativity values. 
 

39. (a) The energies corresponding to the reported frequencies are 388.7 μeV, 583.1 μeV, 
and 971.7 μeV.  The differences between successive values are 194.4 μeV and 388.6 
μeV.  For a sequence of rotational transitions, we know that the difference between 
consecutive emissions is 2B.  Noting that 388.6 μeV ≈ 2 × 194.4 μeV, these transitions 
would be consistent with a rotational sequence with 2B = 194.4 μeV if the experiment 
had not been able to observe a transition at 583.1 μeV + 194.4 μeV = 777.5 μeV.  (b) 
With 388.7 μeV/194.4 μeV = 2, the observed transitions must correspond to angular 
momentum quantum numbers 2 → 1, 3 → 2, and 5 → 4 (with 4 → 3 missing from the 
sequence).  (c) The reduced mass of PN is 

  
(P) (N) (30.97 u)(14.00 u) 9.642 u

(P) (N) 30.97 u + 14.00 u
m mm

m m
= = =

+
 

 
The equilibrium separation of PN is 0.1491 nm, so the rotational spacing is expected to 
be 
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2 2 2

2 2 2 6 2
eq eq

( ) (197.3 eV nm)2 195.0 eV
(9.642 u)(931.5 10  eV/u)(0.1491 nm)

cB
mR mc R

μ⋅
= = = =

×
 

 
which agrees with the observed value of 194.4 μeV. 
 

40. The energies corresponding to these two transitions are 663.05 μeV and 647.48 μeV.  
The reduced masses of AlCl for the two different stable isotopes of Cl (masses 34.969 u 
and 36.966 u) are: 

  
35

35
35

37
37

37

(Al) ( Cl) (26.982 u)(34.969 u)(Al Cl) 15.230 u
(Al) ( Cl) 26.982 u 34.969 u

(Al) ( Cl) (26.982 u)(36.966 u)(Al Cl) 15.597 u
(Al) ( Cl) 26.982 u 36.966 u

m mm
m m

m mm
m m

= = =
+ +

= = =
+ +

 

 
The equilibrium separation of the atoms is 0.2130 nm, so the rotational constants are: 
 

2 2 2
35

2 2 2 6 2
eq eq

2 2 2
37

2 2 2 6 2
eq eq

( ) (197.3 eV nm)(Al Cl) 30.240 eV
2 2 2(15.230 u)(931.50 10  eV/u)(0.2130 nm)

( ) (197.3 eV nm)(Al Cl) 29.528 eV
2 2 2(15.597 u)(931.50 10  eV/u)(0.2130 nm)

cB
mR mc R

cB
mR mc R

μ

μ

⋅
= = = =

×

⋅
= = = =

×
 
We assume that the larger of the observed close-lying emissions is associated with 
Al35Cl, because it has the larger rotational constant.  Equation 9.16 then gives 

1 / 2 663.05 eV/2(30.240 eV) 11L E B μ μ+ = Δ = =  and similarly for Al37Cl the other 
emission gives 1 / 2 647.48 eV/2(29.528 eV) 11L E B μ μ+ = Δ = = .  Thus both emissions 
arise from the rotational transition with angular momentum quantum numbers 11 → 10. 
(b) The rotational state with L = 11 is at an energy given by Equation 9.16: 
 

11 ( 1) (30.240 eV)(11)(12) 0.00399 eVE BL L μ= + = =  
  
 To have a reasonable probability to reach an excited state at this energy, the environment 
of the molecules must be at a temperature of 
 

5

0.00399 eV 46 K
8.617 10  eV/K

ET
k −= = =

×
 

 
(Here k is the Boltzmann constant, not the force constant for vibrations.)  Although this is 
cold by ordinary standards, it is far above the temperature of interstellar space (2.7 K), 
which suggests that the star is warming the dust cloud. 
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Chapter 10 
 
 This chapter begins with a short exercise in discrete statistics that motivates the 
ensuing discussion of classical and quantum statistics.  New to this edition is an explicit 
calculation of the density of states functions for particles and photons.  The discussion of 
the classical statistics has been changed from the 2nd edition by starting with a discussion 
of the Maxwell-Boltzmann energy distribution and then deriving the speed and velocity 
distributions from the energy distribution.  The discussion of Doppler broadening of 
spectral lines has been moved from a worked example to a full discussion.  In the 
presentation of the applications of Bose-Einstein statistics, the discussion of the Einstein 
specific heat has been moved to Chapter 11 and a new section on Bose-Einstein 
condensation has been added.  Applications of Fermi-Dirac statistics now include white 
dwarf stars and mixtures of 3He and 4He. 
 
 

Supplemental Materials 
 

 Chapter 15 of Physlet Quantum Physics has several animations and exercises that 
illustrate quantum statistical distributions.  The statistical and thermal physics package in 
the ComPADRE digital library (http://www.compadre.org/stp/items/detail.cfm?ID=7308) 
also has animations that may be instructive for students. 
 
 

Suggestions for Additional Reading 
 
An excellent introduction to statistical physics, including examples of arranging and 
sorting problems similar to the one in Section 10.2: 
D. McLachlan Jr., Statistical Mechanical Analogies (Prentice-Hall, 1968). 
 
More extensive treatments of statistical physics, at about the same mathematical level as 
this chapter: 
F. Reif, Statistical Physics, Volume 5 of the Berkeley Physics Series (McGraw-Hill, 1967).  
W. G. V. Rosser, An Introduction to Statistical Physics (Ellis Horwood, 1982). 
D. V. Schroeder, An Introduction to Thermal Physics (Addison Wesley Longman, 2000). 
M. D. Sturge, Statistical and Thermal Physics: Fundamentals and Applications (A. K. 

Peters, 2003). 
 
Advanced texts, with many applications of classical and quantum statistics: 
C. Kittel, Thermal Physics (Wiley, 1969). 
P. M. Morse, Thermal Physics (Benjamin, 1965). 
R. D. Reed and R. R. Roy, Statistical Physics for Students of Science and Engineering 

(Intext, 1971). 
 
The properties of liquid helium are discussed in a very general and highly readable book: 
K. Mendelssohn, The Quest for Absolute Zero (McGraw-Hill, 1966). 
 

http://www.compadre.org/stp/items/detail.cfm?ID=7308
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For additional work on the properties of 3He, see: 
N. D. Mermin and D. M. Lee, “Superfluid Helium 3,” Scientific American 235, 56 

(December 1976). 
 
 

Materials for Active Engagement in the Classroom 
 
A.  Reading Quizzes 
 
1. Which distribution function provides the best description of the behavior of electrons 

in a metal? 
  (1) Maxwell-Boltzmann (2) Bose-Einstein (3) Fermi-Dirac 
 
2. Which statistical distribution might describe the energy distribution of photons from 

the Sun? 
  (1) Maxwell-Boltzmann (2) Bose-Einstein (3) Fermi-Dirac 
 
3. The density of states gives information about: 
  (1) the number of filled states at a particular energy 
  (2) the number of states available (either filled or empty) at a particular energy 
  (3) the probability for a particular state to be occupied 
  (4) the type of distribution function that describes the particles 
 
4. The unusual properties of liquid helium occur because: 
  (1) there is a strong attractive force between the helium atoms 
  (2) the liquid exists only at a particularly low temperature 
  (3) two helium atoms in the liquid can combine to form a molecule 
  (4) the helium atoms can occupy the same quantum state 
 
5. In a metal the Fermi energy describes 
  (1) the highest occupied energy state of a free electron at zero temperature 
  (2) the minimum energy necessary to remove an electron from the metal 
  (3) the mean thermal energy of the atoms at temperature T 
  (4) the energy necessary to break the bonds between the metal atoms 
 
Answers 1. 3 2. 2 3. 2 4. 4 5. 1 
 
 
B.  Conceptual or Discussion Questions 
 
1. Consider the states of the combined total spin of two particles, each of which has spin 

5/2 with ms = +5/2, +3/2, +1/2, −1/2, −3/2, and −5/2. 
 (a) How many macrostates are there corresponding to the different values of the total 

spin if the particles are distinguishable? 
  (1) 2  (2) 5    (3) 6    (4) 12    (5) 36 
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(b) If the two particles are distinguishable, what is the total number of microstates for 
all the allowed macrostates? 
 (1) 6    (2) 12    (3) 18    (4) 24    (5) 36 
(c) If the two particles are indistinguishable, what is the total number of microstates 
for all the allowed macrostates? 
 (1) 6    (2) 12    (3) 15    (4) 21    (5) 36 
(d) What are the allowed values for the total spin if the two particles are 
indistinguishable? 
 (1) 0,1,2,3,4,5         (2) 1,3,5  (3) 0,5  (4) 5  (5) 0 

 
2. Consider a collection of 4 identical atoms obeying the rules of quantum mechanics.  

The atoms can occupy a set of equally spaced energy levels: 
 
 
               
  
 
 
 
 

At a temperature of T = 0 K, what would be the average energy of these 4 atoms if 
they behaved like: 

  (a) spin-1 particles 
  (b) spin-1/2 particles 

(c) spin-1/2 particles in a strong magnetic field in which all the electron spins 
point in the same direction 

 Give your answer in units of eV rounded to the nearest integer. 
 

Answers 1. (a) 3   (b) 5   (c) 4   (d) 2  2. (a) 2   (b) 3   (c) 5 
 
 

Sample Exam Questions 
 
A.  Multiple Choice 
 

1. Protons and neutrons have spin ½, just like the electron.  Which function would best 
describe the statistical energy distribution of protons and neutrons in a nucleus? 

  (a) Fermi-Dirac  (b) Maxwell-Boltzmann (c) Bose-Einstein  
  (d) Protons and neutrons do not follow statistical rules in a nucleus. 
 
2. Which statistical distribution function allows all particles to occupy the same 

quantum state? 
  (a) Maxwell-Boltzmann (b) Fermi-Dirac (c) Bose-Einstein 
 
3. In a “gas” of photons filling a container, the sharing of energy among the photons is 

best described by which statistical distribution? 

6 eV 

8 eV

4 eV 

2 eV 
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  (a) Maxwell-Boltzmann (b) Fermi-Dirac (c) Bose-Einstein 
 
4. A gas of atoms can be described with classical rather than quantum statistics only if 
  (a) the atoms exert strong forces on one another 
  (b) the atoms have no intrinsic spin 
  (c) the temperature of the gas is very low 
  (d) the average spacing between atoms is larger than their de Broglie wavelength 
 
Answers 1. a 2. c 3. c 4. d 
 
 
B.  Conceptual 
 
1. Let E represent the average energy of spin-1/2 electrons in a certain block of metal at 

a temperature of 0 K.  Now suppose the electrons have spin 1 instead of spin ½.  
Would you expect the average energy of the spin = 1 electrons in an otherwise 
identical block of metal at 0 K to be greater than, the same as, or less than the energy 
E?  EXPLAIN YOUR ANSWER. 

 
2.  
 
Answers 1. less than 
 
 
C.  Problems 
 
1. (a) Consider a one-dimensional “lattice” of electrons in which a total of N electrons 

occupy a length L.    Derive the expression 2( ) 2 /g E dE m Eh dE= for the density of 
states for this system. 

 (b) Assuming these particles to be described by the Fermi-Dirac distribution, find the 
total number of particles at T = 0 and derive an expression for the Fermi energy of the 
electrons. 

 
2. Consider an atom at the surface of the Sun, where the temperature is 6000 K.  The 

atom can exist in only 2 states.  The ground state is an s state and the excited state at 
1.25 eV is a p state.  What is the probability to find the atom in the excited state? 

 
Answers 1. (b) 2 2

F ( / 2 )( / 2 )E h m N L=   2. 21% 
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Problem Solutions 
 

1. (a) There are 3 macrostates: A, in which one particle has 3 units of energy; B, in which 
one particle has 2 units of energy; and C, in which each particle has 1 unit. 

 (b) In macrostate A, there are 3 different ways to choose which particle gets the 3 units.  
We can represent the distribution of energy to the three particles in these microstates as 
300, 030, and 003.  For macrostate B, the microstates are 210, 201, 021, 120, 012, and 
102 for a total of 6.  For macrostate C, there is only one microstate, 111. 
(c) There is a total of 10 microstates.  Macrostate A has 3 of the 10 microstates, so there 
is a 30% probability of finding the system in macrostate A.  None of the particles in 
macrostate A has 2 units of energy.  There are 6 microstates in macrostate B, so there is a 
60% probability of finding the system in B.  Only one of the 3 particles in state B has 2 
units of energy, so the probability is 1/3 × 60% = 20%.  None of the particles in 
macrostate C has 2 units of energy, so the overall probability of finding a particle with 2 
units of energy is 20%.   
There is a 2/3 chance of finding a particle with energy 0 in macrostate A and a 1/3 chance 
in macrostate B, so the net probability of finding a particle with energy 0 is 2/3 × 30% + 
1/3 × 60% = 40%. 

 
2. (a) The possible macrostates (H = heads, T = tails) are 5H0T, 4H1T, 3H2T, 2H3T, 1H4T, 

and 0H5T, for a total of 6 macrostates.   
(b) Each toss has 2 possible outcomes, so the total number of possible outcomes is 25 = 
32 microstates.   
(c) 5H0T – 1 microstate 4H1T – 5 microstates  3H2T – 10 microstates 
     0H5T – 1 microstate 1H4T – 5 microstates  2H3T – 10 microstates 
Total = 32 microstates 
 

3. (a) There are 3 different z components ( ,0,+ − ) for s = 1 and 2 different z components 
( / 2, / 2+ − ) for s = 1/2, so the total number of possible combinations is 3 × 2 = 6. 

  (b) Two particles of spins 1 and 1/2 can combine to give a total spin of either 3/2 or 1/2.  
So there are 2 macrostates of the total spin. 

 (c) For total spin 3/2 there are 4 microstates (z components 3 / 2, / 2, / 2, 3 / 2+ + − − ).  
For total spin 1/2 there are 2 microstates ( / 2, / 2+ − ). The total number of microstates 
is 4 + 2 = 6. 

 

4. 4 5 3 20 3 20 2 30 3 10 2 60 2 10 1 20 1 30 0 5(0) 0.400
5 210

p × + × + × + × + × + × + × + × + × + ×
= =

×
 

 

 

0 5 0 20 0 20 0 30 2 10 1 60 0 10 1 20 0 30 0 5(3) 0.095
5 210

0 5 1 20 0 20 0 30 0 10 0 60 0 10 0 20 0 30 0 5(5) 0.019
5 210

p

p

× + × + × + × + × + × + × + × + × + ×
= =

×

× + × + × + × + × + × + × + × + × + ×
= =

×
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5. (a) Integral spin: 
  

4 1 3 1 3 1 2 1 2 1 3 1 2 1 1 1 1 1 0 1(0) 0.420
5 10

0 1 0 1 0 1 0 1 1 1 2 1 0 1 1 1 0 1 0 1(3) 0.080
5 10

p

p

× + × + × + × + × + × + × + × + × + ×
= =

×

× + × + × + × + × + × + × + × + × + ×
= =

×

 

 
(b) Spin 1/2: 
 

2 1 2 1 1 1(0) 0.333
5 3

0 1 1 1 0 1(3) 0.067
5 3

p

p

× + × + ×
= =

×

× + × + ×
= =

×

 

 
  

6. (a) The expected total number of microstates, using Equation 10.2, is 11!/8!3! = 165. 
Ignoring factors of 0! and 1!,  which are equal to 1, we have 

 
Number of Microstates Macrostate 

Distinguishable Indistinguishable, 
integral spin 

Indistinguishable, 
half-integral spin 

8000 4!/3! = 4 1 0 
7100 4!/2! = 12 1 1 
6200 4!/2! = 12 1 1 
6110 4!/2! = 12 1 1 
5300 4!/2! = 12 1 1 
5210 4! = 24 1 1 
5111 4!/3! = 4 1 0 
4400 4!/2!2! = 6 1 1 
4310 4! = 24 1 1 
4220 4!/2! = 12 1 1 
4211 4!/2! = 12 1 1 
3320 4!/2! = 12 1 1 
3311 4!/2!2! = 6 1 1 
3221 4!/2! = 12 1 1 
2222 4!/4! = 1 1 0 
Total 165 15 12 

 
(b) For distinguishable particles, including the 15 macrostates in order 

 
0 0 1 12 0 0 1 24 0 0 0 2 12 1 12 1 12 0 2 12 4 1(2) 0.170

4 165
p + + × + + + × + + + + × + × + × + + × + ×

= =
×
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For indistinguishable particles with integral spin, 
 

0 0 1 1 0 0 1 1 0 0 0 2 1 1 1 1 1 0 2 1 4 1(2) 0.200
4 15

p + + × + + + × + + + + × + × + × + + × + ×
= =

×
 

 
and for indistinguishable particles with half-integral spin, 
 

0 1 1 0 0 1 1 0 0 2 1 1 1 1 1 0 2 1(2) 0.167
4 12

p + × + + + × + + + × + × + × + + ×
= =

×
 

 
7. (a) The z components of the spin of each of the particles are z ss m=  with ms = +3/2, 

+1/2, −1/2, −3/2.  The z component of the combined spin S is z SS M= , with 

1 2S s sM m m= + .  There are 4 different possible ms for each particle, so the total number 
of combinations is 4 × 4 = 16. 

  
Multiplicity MS ms1,ms2 

Distinguishable Indistinguishable
+3 +3/2,+3/2 1 1 
+2 +3/2,+1/2; +1/2,+3/2 2 1 
+1 +3/2,−1/2; +1/2,+1/2; −1/2,+3/2 3 2 
0 +3/2,−3/2; −3/2,+3/2; +1/2,−1/2; −1/2,+1/2 4 2 
−1 −3/2,+1/2; −1/2,−1/2; +1/2,−3/2 3 2 
−2 −3/2,−1/2; −1/2,−3/2 2 1 
−3 −3/2,−3/2 1 1 

  
Note that the total multiplicity is 16, as expected. 

 (b) The possible values of the total spin S are 3, 2, 1, and 0.  For S = 3, we can have MS = 
+3, +2, +1, 0, −1, −2, −3 for a multiplicity of 7.  For S = 2, MS = +2, +1, 0, −1, −2 for a 
multiplicity of 5.  For S = 1, MS = +1, 0, −1 with multiplicity 3, and for S = 0, MS = 0.  
The total multiplicity of these states is 7 + 5 + 3 + 1 = 16. 

  (c) Because the particles are indistinguishable, we cannot count the arrangements 
obtained by interchanging ms1 and ms2 as separate microstates, for example +3/2,+1/2 and  
+1/2,+3/2.  The multiplicities are then reduced to 1 for the states with MS = +3, +2, −2, −3 
and to 2 for states with MS = +1, 0, −1.  The total multiplicity is now 10. 

 (d) Because we have states with MS = ±3, there must be a state with total spin S = 3.  This 
state must have MS = +3, +2, +1, 0, −1, −2, −3.  That uses up 7 of the 10 permitted states.  
The 3 remaining states have MS = +1, 0, −1,  which must be S = 1. 
   

8. From Equation 10.15, 
 

9 3
2 4 2 5 6 3 3

3 3

8 8 (10  nm/m)( ) (2 10  eV) (10  eV) 5 10  m 5 cm
( ) (1240 eV nm)

g E dE E dE
hc
π π − − − −= = × = × =

⋅
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 This is an extremely small number of available states, which suggests that the actual 
density of these photons must be very small. 

 
9. In two dimensions, the energy of a particle in a square region is 2 2 2 2( / 8 )( )x yE h mL n n= + , 

with 2 2 2
x yn n n= + .  If we imagine a two-dimensional x yn n coordinate system, the points 

with a given value of E lie on a circle of radius n, and the points with energies between E 
and E + dE lie on a circular ring of radius n and thickness dn, and thus of area 2 n dnπ .  
Because the segment of the ring with positive values of nx and ny occupies only ¼ of its 
area, the density of available states for particles of spin s is 

  

2

1 2 1( ) 2
4

sg n dn n dn
L

π+
=  

 
which gives the number of states per unit area.  With 2 2 2/ 8E h n mL= , we get 

2 2( / 8 )2dE h mL n dn=  and so 
 

2 2 2 2

1 2 1 2 (2 1)( ) ( )
4 / 8

s dE s mg E dE g n dn dE
L h mL h

π π+ +
= = =  

 
Note that g(E) for this case is independent of E. 
 

10. The energy of the photons is 2 2 2 2( / )x y x yE c p p c L n nπ= + = + .  In two dimensions, we 
can represent the possible energies of the photons as points in a nxny coordinate system.  
The points with energy E lie on a circle of radius 2 2

x yn n n= + , and the number of 
photons with energies between E and E + dE is determined by the area of the ring 
between radii n and n + dn, which is 2 n dnπ . Because nx and ny must be positive, only ¼ 
of the area of the ring contributes to the density of states.  Allowing for the 2 polarization 
states of the photons, the density of states is 

  

2

1 2( ) 2
4

g n dn n dn
L

π=  

 
where the area occupied by the photons is L2.  With /E cn L=  and ( / )dE c L dn= , we 
obtain 

2 3

2 2

4( ) ( )
( )

Lg E dE g n dn E dE E dE
L c hc
π π⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

 
11. With s = 1/2 and mc2 0.511 MeV for electrons, we obtain 
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2 3/ 2
1/ 2

3

6 3/ 2
1/2 23 3

3 9 3

4 (2 1) 2( )( )
( )

8 2(0.511 10  eV) (0.0252 eV) (0.000252 eV) 2.7 10  m
(1240 eV nm) (1 m/10  nm)

s mcg E dE E dE
hc

π

π −

+
=

×
= = ×

⋅

 

 
 The atomic density of copper metal is 8.5 × 1028 atoms per m3, so there seems to be a 

discrepancy between the density of states calculation and a model in which each atom 
contributes an electron.  The error lies in assuming that the electrons behave as if they 
had thermal energies.  In reality, the electrons that participate in electrical conduction 
have much greater average energies, of the order of a few eV, which is sufficient to 
provide rough agreement between the number of available energy states and the number 
of conduction electrons available to occupy those states. 

 
 

12. With 5(8.617 10  eV/K)(960 K) 0.0827 eVkT −= × = , the ratio of the number of particles 
N2 in the excited state E2 to the number N1 in the ground state E1 is 

 
2

2 1

1

/
( ) / 0.25 eV / 0.0827 eV2 2

/
1 1

3 3 0.146
E kT

E E kT
E kT

N d e e e
N d e

−
− − −

−= = = =  

 
The total number of particles is 1 2N N N= + , so with 1 1( ) / 0.146N N N− =  we get 
 

1 2 1
1 0.87 and 0.13

1 0.146
N N N N N N N= = = − =

+
 

 
13. The levels are E1, E2, E3 with numbers of particles N1, N2, N3  such that the total number 

of particles is 1 2 3N N N N= + + , or 1 2 1 3 1/ 1 / /N N N N N N= + + .  With 
5(8.617 10  eV/K)(650 K) 0.0560 eVkT −= × = , the Maxwell-Boltzmann distribution for 

nondegenerate states gives  
 

2
2 1

1

/
( ) / 0.045 eV/0.0560 eV2

/
1

0.448
E kT

E E kT
E kT

N e e e
N e

−
− − −

−= = = =  

  
3

3 1

1

/
( ) / 0.135 eV/0.0560 eV3

/
1

0.090
E kT

E E kT
E kT

N e e e
N e

−
− − −

−= = = =  

 
1 2 1 3 1 1/ 1 / / 1 0.448 0.090 1.538 so / 0.65N N N N N N N N= + + = + + = =  

2 2 1 1/ ( / )( / ) (0.448)(0.65) 0.29N N N N N N= = =  

3 1 2/ 1 / / 1 0.65 0.29 0.06N N N N N N= − − = − − =  
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14. The most probable speed vp occurs where N(v) has its maximum value, which we find by 
setting dN/dv to zero: 

 
2 2

3/ 2
/ 2 2 / 24 (2 ) ( 2 / 2 ) 0

2
mv kT mv kTdN mN v e v mv kT e

dv kT
π

π
− −⎛ ⎞ ⎡ ⎤= + − =⎜ ⎟ ⎣ ⎦⎝ ⎠

 

 
Cancelling common factors we find 32 / 0v mv kT− = , so 
  

p
2kTv
m

=  

 
 

15. (a) With 5(8.617 10  eV/K)(293 K) 0.02525 eVkT −= × = , then 3
m 2 0.0379 eVE kT= = . 

(b)  m /1/2A
m m3/ 2

2( )
( )

E kTNdN N E dE E e dE
kTπ

−= =  

 
23

1/2 0.0379 eV/0.02525 eV 21
3/ 2

2(6.02 10 ) (0.0379 eV) (0.000379 eV) 2.78 10
(0.02525 eV)

e
π

−×
= = ×  

 
16. (a) With v = 505 m/s and dv = 10 m/s, Equation 10.20 gives 

 
2

27 2 23

3/ 23/ 2 27
2 / 2 23

23

2 (39.95 u)(1.6605 10  kg/u)(505 m/s) / 2(1.38 10  J/K)(293 K)

2 2 (39.95 u)(1.6605 10  kg/u)( ) (6.02 10 )
(1.38 10  J/K)(293 K)

(505 m/s) (10 m/s) 1.0

mv kTmdN N v dv N v e dv
kT

e

π π
− −

−
−

−

− × ×

⎡ ⎤×⎛ ⎞= = = ×⎜ ⎟ ⎢ ⎥×⎝ ⎠ ⎣ ⎦

× = 220 10×
 
(b)  Now using Equation 10.25 we get 
 

2

27 2 23

1/ 21/ 2 -27
/ 2 23

23

(39.95 u)(1.6605 10  kg/u)(505 m/s) / 2(1.38 10  J/K)(293 K) 21

(39.95 u)(1.6605 10  kg/u)( ) (6.02 10 )
2 2 (1.38 10  J/K)(293 K)

(10 m/s) 1.20 10

xmv kT
x x x

mdN N v dv N e dv
kT

e

π π
− −

−
−

− × ×

⎡ ⎤×⎛ ⎞= = = ×⎜ ⎟ ⎢ ⎥×⎝ ⎠ ⎣ ⎦

× = ×
 
Note that there are about an order of magnitude more atoms in the speed interval at 500 
m/s than in the same velocity interval.  This is because there are many ways to have a 
speed of 500 m/s that don’t involve a velocity of 500 m/s in any particular direction.  For 
example, it is just as likely to have an atom with 3 components of 289 m/s (which gives a 
speed of 500 m/s) as it is to have an atom with one component of 500 m/s and two 
components of 0.  
 

17. (a) The energy of the n = 2 to n = 1 transition in hydrogen is 10.2 eV.  Multiplying on 
both sides by Planck’s constant h, we can turn Equation 10.30 into an equation for the 
energy linewidth, and with 5(8.617 10  eV/K)(5800 K) 0.500 eVkT −= × = we obtain 
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 2 6

02 (2 ln 2) / 2(10.2 eV) (2 ln 2)(0.500 eV)/(938.8 10  eV) 554 eVE E kT mc μΔ = = × =  
 
(b) The natural linewidth is determined by the uncertainty relationship: 
 

34

8 19

1.055 10  J s 0.066 eV
(10  s)(1.602 10  J/eV)

E
t

μ
−

− −

× ⋅
Δ = =

Δ ×
∼  

 
The natural linewidth is negligible in comparison with the Doppler-broadened linewidth. 
 

18. (a) At a pressure of 1 atmosphere = 1.0 × 105 N/m2, the density of nitrogen gas is 
  

5 2
25 3

23

1.0 10  N/m 2.5 10  m
(1.38 10  J/K)(293 K)

N P
V kT

−
−

×
= = = ×

×
 

 
With 5(8.617 10  eV/K)(293 K) = 0.0252 eVkT −= × , the ratio in Equation 10.36 is  
  

1/3 25 3 1/3 9

2 6

( / ) (1240 eV nm)(2.5 10  m ) (10  m/nm) 0.010
2 2(28 u)(931.5 10  eV/u)(0.0252 eV)

hc N V
d mc kT
λ − −⋅ ×
= = =

×
 

 
Thus Equation 10.36 is easily satisfied in this case. 
(b) The density of water is 1.0 × 103 kg/m3, which is equivalent to  
 

3 3 28 3
27

1 molecule 1 u(1.0 10  kg/m ) 3.3 10  m
18 u 1.67 10  kg

N
V

−
−

⎛ ⎞⎛ ⎞= × = ×⎜ ⎟⎜ ⎟ ×⎝ ⎠⎝ ⎠
 

 
With 5(8.617 10  eV/K)(293 K) = 0.0252 eVkT −= × , the ratio in Equation 10.36 is  
 

1/3 28 3 1/3 9

2 6

( / ) (1240 eV nm)(3.3 10  m ) (10  m/nm) 0.14
2 2(18 u)(931.5 10  eV/u)(0.0252 eV)

hc N V
d mc kT
λ − −⋅ ×
= = =

×
 

 
This ratio does not appear to be small enough to allow us to neglect quantum effects. 
 (c) The density of liquid helium at 4 K is 0.125 kg/L = 0.125 × 103 kg/m3, so 
 

3 3 28 3
27

1 atom 1 u(0.125 10  kg/m ) 1.9 10  m
4 u 1.67 10  kg

N
V

−
−

⎛ ⎞⎛ ⎞= × = ×⎜ ⎟⎜ ⎟ ×⎝ ⎠⎝ ⎠
 

 
With 5 4(8.617 10  eV/K)(4 K) = 3.45 10  eVkT − −= × × , the ratio in Equation 10.36 is  
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1/3 28 3 1/3 9

2 6 4

( / ) (1240 eV nm)(1.9 10  m ) (10  m/nm) 2.1
2 2(4 u)(931.5 10  eV/u)(3.45 10  eV)

hc N V
d mc kT
λ − −

−

⋅ ×
= = =

× ×
 

 
Clearly it is not correct to use Maxwell-Boltzmann statistics in this case. 
(d) The density of solid copper is 8.95 g/cm3 and its molar mass is 63.5 g/mole, so 
 

3 23
28 3A

6 3 3

(8.95 g/cm )(6.02 10  atoms/mole) 8.5 10  atoms/m
(63.5 g/mole)(10  m / cm )

NN
V M

ρ
−

×
= = = ×  

 
With one conduction electron per atom, the density of conduction electrons has this same 
value.  The ratio in Equation 10.36 is 
 

1/3 28 3 1/3 9

2 6

( / ) (1240 eV nm)(8.5 10  m ) (10  m/nm) 34
2 2(0.511 10  eV)(0.0252 eV)

hc N V
d mc kT
λ − −⋅ ×
= = =

×
 

  
It would not be appropriate to use Maxwell-Boltzmann statistics for this case, nor is it 
correct to estimate the kinetic energy of the conduction electrons as kT. 
 

19. (a) Let’s assume that Maxwell-Boltzmann statistics will fail when the ratio in Equation 
10.36 becomes larger than 0.1.  When thus occurs, 1/3 2( / ) 0.1 2hc N V mc kT= , or 
with 5(8.617 10  eV/K)(293 K) = 0.0252 eVkT −= × , 

   
33

62
28 3

9

0.1 2(28 u)(931.5 10  eV/u)(0.0252 eV)0.1 2 2.5 10  m
(1240 eV nm)(10  m/nm)

N mc kT
V hc

−
−

⎛ ⎞⎛ ⎞ ×
⎜ ⎟= = = ×⎜ ⎟⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠

 

 
Using the ideal gas law 
 

28 3 23 8 2 3( / ) (2.5 10  m )(1.38 10  J/K)(293 K) 1.01 10  N/m 10  atmP N V kT − −= = × × = × =  
 
At pressures below this extremely large value, we may safely use Maxwell-Boltzmann 
statistics for nitrogen gas. 
(b) At a pressure of 1 atmosphere = 1.0 × 105 N/m2, the density of nitrogen gas is 

  
5 2

25 3
23

1.0 10  N/m 2.5 10  m
(1.38 10  J/K)(293 K)

N P
V kT

−
−

×
= = = ×

×
 

 
Again choosing 0.1 as the critical value of the ratio in Equation 10.36, we solve for T: 
 

2 2/3 2 25 3 2/3 9 2

2 6 5

( ) ( / ) (1240 eV nm) (2.5 10  m ) (10  m/nm) 2.9 K
0.01(2 ) (0.01)(2)(28 u)(931.5 10  eV/u)(8.617 10  eV/K)
hc N VT

mc k

− −

−

⋅ ×
= = =

× ×
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Nitrogen becomes a liquid at 77 K and a solid at 63 K, so clearly we are safe in using 
Maxwell-Boltzmann statistics over most of the range in which nitrogen is a gas. 
 

20. (a) Integrating Equation 10.38 over all photon energies, we obtain 
 

2

3 /0 0

8( )
( ) 1E kT

V E dEN dN N E dE
hc e
π∞ ∞

= = =
−∫ ∫ ∫  

 

With /x E kT= and /dx dE kT= , we obtain 
3 2

3 0

8 ( )
( ) 1x

N kT x dx
V hc e

π ∞
=

−∫ . 

(b) At T = 300 K, 5(8.617 10  eV)(300 K) 0.02585 eVkT −= × = , so 
 

3
7 3 8 3

3

8 (0.02585 eV) (10  nm/cm) (2.404) 5.5 10  cm
(1240 eV nm)

N
V

π −= = ×
⋅

 

 
At 3 K the number is reduced by (100)3 = 106, so the number is 550 cm−3. 
 

21. (a) The total energy density is given by Equation 10.41: 
  

5 4 5 5 4
4 3 4 7 3

3 3 9 3

8 8 (8.617 10  eV/K) (2.50 10  K) 1.84 10  eV/m
15( ) 15(1240 eV nm) (10  m/nm)

kU T
hc

π π −

−

×
= = × = ×

⋅
 

  
 (b) At T = 2.5 × 103 K, 5 3(8.617 10  eV/K)(2.5 10  K) 0.215 eVkT −= × × = .  The energy 

emitted in the interval dE = 0.05 eV at E = 1.00 eV is 
 

3 9 3 3
15 3

3 / 3 1.00 eV/0.215 eV

8 8 (10  nm/m) (1.00 eV)( ) (0.05 eV) 6.36 10  eV/m
( ) 1 (1240 eV nm) 1E kT

Eu E dE dE
hc e e
π π

= = = ×
− ⋅ −

 
The fraction of the total energy that this represents is 
  

15 3

17 3

( ) 6.36 10  eV/m 0.035
1.84 10  eV/m

u E dE
U

×
= =

×
 

 
(c) At 10.00 eV, 
 

3 9 3 3
3

3 / 3 10.00 eV/0.215 eV

8 8 (10  nm/m) (10.00 eV)( ) (0.05 eV) 4.16 eV/m
( ) 1 (1240 eV nm) 1E kT

Eu E dE dE
hc e e
π π

= = =
− ⋅ −

 

 
3

17
17 3

( ) 4.16 eV/m 2.3 10
1.84 10  eV/m

u E dE
U

−= = ×
×
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22.   
3

3 /

8 1( )
( ) 1E kT

Eu E
hc e
π

=
−

 

  
2 3 /

max3 / / 2

8 3 0 for
( ) 1 ( 1)

E kT

E kT E kT

du E E e E E
dE hc e e kT

π ⎡ ⎤⎛ ⎞
= − = =⎢ ⎥⎜ ⎟− − ⎝ ⎠⎣ ⎦

 

 
  max max/ /

max3( 1) ( / )E kT E kTe E kT e− =  
 
This equation cannot be solved exactly, but an approximate solution can be found 
numerically for max / 2.8214E kT = : 
 

5 4
max (2.8214)(8.617 10  eV/K) (2.4313 10  eV/K)E T T− −= × = ×  

 
Note that, using Equation 3.28, 
 

4
3

max

1240 eV nm (4.2784 10  eV/K)
(2.8978 10  m K)

hc T
Tλ

−
−

⋅
= = ×

× ⋅
 

 
and thus max max/E hc λ≠ .  This occurs because u(E) and u(λ) do not simultaneously reach 
their maximum values. That is, when / 0, / 0du dE du dλ= ≠ . 

 
23. We assume each copper atom contributes one free electron to the metal.  The density of 

copper atoms (and therefore of the free electrons) is 
  

3 23
28 3A

3

(8.95 g/cm )(6.02 10  atoms/mole) 8.48 10  m
(63.5 g/mole)(1 m/100 cm)

NN
V M

ρ −×
= = = ×  

 
2 /32 /3 2 /32 2 2 28 3

F 2 6 9 3

3 ( ) 3 (1240 eV nm) 3(8.48 10  m ) 7.04 eV
2 8 2 8 2(0.511 10  eV) 8 (10  nm/m)
h N hc NE
m V mc Vπ π π

−⎛ ⎞⋅ ×⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ×⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

3 3
m F5 5 (7.04 eV) 4.22 eVE E= = =  

 

24.  A(2 electrons/atom) NN
V M

ρ
=  

  

 
3 23

28
3

(1.74 g/cm )(6.02 10  atoms/mole)(2 / atom) 8.62 10  m
(24.3 g/mole)(1 m/100 cm)

×
= = ×

 
2 /32 /3 2 /32 2 2 28 3

F 2 6 9 3

3 ( ) 3 (1240 eV nm) 3(8.62 10  m ) 7.12 eV
2 8 2 8 2(0.511 10  eV) 8 (10  nm/m)
h N hc NE
m V mc Vπ π π

−⎛ ⎞⋅ ×⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ×⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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25. (a) At 295 K, 5(8.617 10  eV/K)(295 K) 0.0254 eVkT −= × = . 
 

F F

3/ 2 2 3/ 2 1/ 2
1/ 2

( ) / ( ) /3 3

6 3/2 1/2
36 3

3 9 3 (5.00 eV 3.00 eV)/(0.0254 eV)

( ) 8 2 1 8 2( )
1 ( ) 1

8 2(0.511 10  eV) (5.00 eV) (0.10 eV) 4.37 10  m
(1240 eV nm) (10  m/nm) 1

E E kT E E kT

N E dE m mc E dEE dE
V h e hc e

e

π π

π

− −

− −
− −

= =
+ +

×
= = ×

⋅ +

 

 
(b) At 2500 K, 5(8.617 10  eV/K)(2500 K) 0.215 eVkT −= × = . 

 

F F

3/ 2 2 3/ 2 1/ 2
1/ 2

( ) / ( ) /3 3

6 3/2 1/2
6 3

3 9 3 (5.00 eV 3.00 eV)/(0.215 eV)

( ) 8 2 1 8 2( )
1 ( ) 1

8 2(0.511 10  eV) (5.00 eV) (0.10 eV) 6.00 10  m
(1240 eV nm) (10  m/nm) 1

E E kT E E kT

N E dE m mc E dEE dE
V h e hc e

e

π π

π

− −

− −
− −

= =
+ +

×
= = ×

⋅ +

 

 

26. 
F

3/ 2
3/ 2

m ( ) /30 0

1 1 8 2 1( )
1E E kT

mE E N E dE V E dE
N N h e

π∞ ∞

−= =
+∫ ∫  

 

F

5/ 2 5/33/ 2 3/ 2 3/ 2 2
3/ 2 5/2

F3 3 30

2/32

F

1 8 2 1 8 2 2 1 8 2 2 3
5 5 2 8

3 3 3
5 2 8 5

Em m m h NV E dE V E V
N h N h N h m V

h N E
m V

π π π
π

π

⎛ ⎞ ⎛ ⎞= = = ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞= =⎜ ⎟
⎝ ⎠

∫

 
27. (a) Repeating the derivation of Section 10.7, we have, for a star of mass nM Nm=  

(where mn is the mass of a neutron) 
 

2 2 2
n

grav
3 3
5 5

GM GN mE
R R

= − = −  

 
 and 
 

2 / 32 / 3 2 / 32 2 2

neut m F 3 2 24
3n n n

3 3 3 3 3 3 1 9
5 5 2 8 5 2 8 5 2 32

h N h N h NE NE NE N N N
m V m R m Rπ π π π

⎛ ⎞⎛ ⎞ ⎛ ⎞= = = = =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 
2 / 32 2 2

n
grav neut 2 2

n

3 3 1 9
5 5 2 32

GN m h NE E E N
R m R π

⎛ ⎞= + = − + ⎜ ⎟
⎝ ⎠
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The minimum radius is found by setting dE/dR to zero: 
 

2/32 2 2
n

2 3 2
n

3 3 2 9 0
5 5 2 32

GN mdE h NN
dR R m R π

−⎛ ⎞⎛ ⎞= + =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
Solving, we obtain 
 

2/32

1/3 3 2
n

9
32

hR
GN m π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
(b) For 30 30

Sun3 3(2.00 10  kg) 6.00 10  kgM M= = × = × , we have 
 30 27 57

n/ 6.00 10 kg/1.67 10  kg 3.6 10N M m −= = × × = × .  Then 
 

2/3 2/32 34 2

1/3 3 2 11 2 2 57 1/3 27 3 2
n

9 (6.626 10  J s) 9
32 (6.67 10  N m /kg )(3.6 10 ) (1.67 10  kg) 32

hR
GN m π π

−

− −

× ⋅⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟× ⋅ × ×⎝ ⎠ ⎝ ⎠
 
which evaluates to 8.6 km. 
(c) The density is  
 

30
18 3

34
3

6.00 10  kg 2.2 10  kg/m
(8600 m)

M
V

ρ
π

×
= = = ×  

 
This unimaginably large density is comparable to the central density of an atomic 
nucleus! 

 
28. (a) For 30 30

Sun2 2(2.00 10  kg) 4.00 10  kgM M= = × = × , the number of neutrons would 
be 30 27 57

n/ 4.00 10 kg/1.67 10  kg 2.4 10N M m −= = × × = × .  The Fermi energy is 
 

2 / 32 / 32 34 57

F 27 4 34
3n

3 6.626 10  J s 3(2.4 10 ) 140 MeV
2 8 2(1.67 10  kg) 8 (1 10 )
h NE
m Vπ π π

−

−

⎛ ⎞× ⋅ ×⎛ ⎞= = =⎜ ⎟⎜ ⎟ × ×⎝ ⎠ ⎝ ⎠
 

 
 This is smaller than the rest energy of the neutron (940 MeV), but not negligibly smaller.  

We probably don’t make too large an error by using the nonrelativistic kinetic energy to 
compute the Fermi energy, but for larger stars relativistic effects should become 
important. 

 (b) The de Broglie wavelength is (again assuming nonrelativistic energy and momentum) 
  

2

1240 MeV fm 2.4 fm
2 2(940 MeV)(140 MeV)2

h h hc
p mE mc E

λ ⋅
= = = = =  
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The radius of this neutron star would be  
 

2/32 34 2 2 2/3

1/3 3 2 11 2 2 57 1/3 27 3
n

9 (6.626 10  J s) (9 / 32 ) 9.8 km
32 (6.67 10  N m /kg )(2.4 10 ) (1.67 10  kg)

hR
GN m

π
π

−

− −

× ⋅⎛ ⎞= = =⎜ ⎟ × ⋅ × ×⎝ ⎠
 

  
giving a neutron density of 57 3 3 44 34

3/ (2.4 10 ) /( )(9.8 10  m) 6.1 10  mN V π −= × × = × and thus 
an average particle spacing of 1/3( / ) 1.18 fmN V − = .  The de Broglie wavelength is much 
larger than the particle spacing, meaning that neighboring neutrons lie within each other’s 
wave packets and so quantum effects are very important. 

 
29. The density of the 3He atoms is 28 3 27 3(0.05)(2.2 10  m ) 1.1 10  m− −× = × .  With m = 3.02 u 

and an effective mass 2.5 times as large, we have for the Fermi energy 
  

2/3 2 /32 2 2

F 2

2/32 9 2
27 3 5

6

3 3
2 8 2 8

(1240 eV nm) (10  m/nm) 3 1.1 10  m 2.83 10  eV
(2)(2.5)(3.02 u)(931.5 10  eV/u) 8

h N h c NE
m V mc Vπ π

π

−
− −

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⋅ ⎛ ⎞= × = ×⎜ ⎟× ⎝ ⎠

 

 
0.50 mole of 4He is 3.0 × 1023 atoms, so a 5% solution would have 1.5 × 1022 atoms of 
3He.  The heat capacity is then 
 

2 2 2 23 2 22

5 19
F

(1.38 10  J/K) (1.5 10 )(0.025 K) 0.078 J/K
2 2(2.83 10  eV)(1.6 10  J/eV)
k NTC
E

π π −

− −

× ×
= = =

× ×
 

 
30. The particles with s = 2 can have ms = +2, +1, 0, −1, −2.  The maximum value of the total 

1 2S s sM m m= +  is +4, for which we can have only ms1,ms2 = +2,+2.  With MS = +3, we 
can have ms1,ms2 = +2,+1 (but we cannot list +1,+2 as a separate microstate because the 
particles are indistinguishable).  For MS = +2 we have ms1,ms2 = +2,0 or +1,+1.  For MS = 
+1, ms1,ms2 = +1,0 or +2,−1, and for MS = 0, ms1,ms2 = +2,−2 or +1,−1 or 0,0.  For 
negative values of MS we get the same number of microstates as the positive values, with 
all plus signs becoming minus signs and minus signs becoming plus signs.  So instead of 
the 25 microstates that would characterize distinguishable particles, we have 15 
microstates.  The 9 states with MS = +4,+3,+2,+1,0,−1,−2,−3,−4 must go with S = 4.  
There are no addition microstates with MS = ±3, so we cannot have a state with S = 3.  
The remaining 6 microstates have MS = +2,+1,0,0,−1,−2.  Five of them (+2,+1,0,−1,−2) 
can be assigned to go with S = 2, and the remaining MS = 0 state must go with S = 0. 

  This situation commonly arises in nuclear excited states, which can be treated as 
vibrational states in analogy with molecular vibrations.  The vibrations behave as if they 
have two units of angular momentum.  The first excited state has one of these vibrational 
quanta and thus has 2 units of angular momentum.  At about twice the energy of the first 
excited state there is often a triplet of states with angular momentum 0,2,4.   
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31. (a) Let 1 20,E E E= = .  The states are nondegenerate, so 1 21and 1d d= = . If N1 and N2 

are respectively the number of atoms with energies E1 and E2, then  
  

2 1( ) / /2 2 MB 2

1 1 MB 1

( )
( )

E E kT E kTN d f E e e
N d f E

− − −= = =  

 

(b) 
/

1 1 2 2 1 2 1 2
m / /

1 2 2 1

( / ) 0
1 / 1 1

E kT

E kT E kT

N E N E E N N E Ee EE
N N N N e e

−

−

+ + +
= = = =

+ + + +
 

 

(c) total 1 2 2 2 m / 1E kT

NEE N E N E NE
e

= + = =
+

 

 
(d) Assume AN N=  (corresponding to one mole of the atoms) 
 

2 /
/total

A A/ / 2 2 / 2

1 1
1 ( 1) ( 1)

E kT
E kT

E kT E kT E kT

dE d E E eC N E N E e R
dT dT e e kT kT e

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
32. (a) At height h, E K mgh= + , so the ratios of the energy distributions would be 

 
2

1

/ ( ) /
/2 2

/ /
1 1

( ) ( )
( ) ( )

E kT K mgh kT
mgh kT

E kT K kT

N E g E e e e
N E g E e e

− − +
−

− −= = =  

 
(b) The density at height h is proportional to the number of molecules at that height, so 
we expect 
 

/2 2
0 0

1 1

( ) ( ) ( )so ( )
(0) ( ) ( )

mgh kTh N E N Eh e
N E N E

ρ ρ ρ ρ
ρ

−= = =  

 
(c) This simple model gives a surprisingly good account of the variation of density with 
altitude, even though our assumption that the gas at all altitudes is in thermal equilibrium 
at temperature T is not an accurate description of the atmosphere. 

 
33. (a) With Bμ μ= , we have 27 23

B (9.27 10  J/T)(5.0 T) 4.64 10  JE Bμ − −Δ = = × = ×  for the 
energy splitting of the ml states.  Because the degeneracies of the ml states are identical, 
the ratio of the number of atoms

lmN with different values of the energy 
lmE is, for ml = 0 

and ml = −1, 
  

0 23 -23
0 1

1

/
( ) / / (4.64 10  J)/(1.38 10  J/K)(293 K)0 0

/
1 1

0.9886
E kT

E E kT E kT
E kT

N d e e e e
N d e

−
−

−

−
− − −Δ − × ×

−
− −

= = = = =  
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 Because the ml = +1 and ml = 0 states have the same energy splitting EΔ , the ratio of 
their populations is the same: 1 0/ 0.9886N N+ = .  The fraction of the atoms in any 
particular state is the number in that state divided by the total number: 

 

1 0 1

l

l

m
m

N
f

N N N+ −

=
+ +

 

 
so we have 
 

1 01
1

1 0 1 1 0 1 0

/ 0.9886 0.3295
/ 1 / 0.9886 1 1/ 0.9886

N NNf
N N N N N N N

++
+

+ − + −

= = = =
+ + + + + +

 

 
0

0
1 0 1 1 0 1 0

1 1 0.3333
/ 1 / 0.9886 1 1/ 0.9886

Nf
N N N N N N N+ − + −

= = = =
+ + + + + +

 

 
1 1 01 0.3372f f f− += − − =  

 
(b) The three normal Zeeman  components represent the 2p → 1s transitions that begin in 
the initial levels with ml = +1, 0, and −1.  The relative intensities would then be 
proportional to the populations of the initial substates.  The lowest energy substate (ml = 
−1) has the largest population and so has the largest relative intensity (0.3372).  The next 
substate (ml = 0) has the next highest population (0.3333), and so it has a smaller relative 
intensity, and the transition from the n ml = +1 substate, which lies highest in energy, has 
the smallest relative intensity (0.3295). 
 

34. Consider a molecule of the liquid at the location x measured from the axis of rotation.  
The apparent “centrifugal” force on it is 2F mxω= .  We assume that the forces in the 
liquid that give rise to this force have an associated potential energy U(x), 
where /F dU dx= − : 

 
2 2 21

20

x
U F dx mx dx m xω ω= − = − = −∫ ∫  

 
where we take U = 0 at x = 0.  The Maxwell-Boltzmann distribution then gives 
 

2 2
2 2

/ 2
/ 2

0

( ) ( )
(0) (0)

m x kT
m x kTx N x e e

N e

ω
ωρ

ρ
= = =  

 
and thus 

2 2 / 2
0( ) m x kTx e ωρ ρ= with 0 (0)ρ ρ= . 

 
35. At room temperature (293 K), 5(8.617 10  eV/K)(293 K) 0.02525 eVkT −= × = .  With 

F 3.15 eVE = for sodium, the distribution function has the value 0.9 where 
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F

F

( ) / F
FD ( ) /

1( ) 0.9 or 1/ 9 and ln 9
1

E E kT
E E kT

E Ef E e
e kT

−
−

−
= = = = −

+
 

 
 F ln 9 3.15 eV (0.02525 eV)(2.20) 3.09 eVE E kT= − = − =  
 
The distribution  function has the value 0.1 where 
 

F

F

( ) / F
FD ( ) /

1( ) 0.1 or 9 and ln 9
1

E E kT
E E kT

E Ef E e
e kT

−
−

−
= = = =

+
 

 
F ln 9 3.15 eV+(0.02525 eV)(2.20) 3.21 eVE E kT= + = =  

 
The energy difference is 3.21 eV − 3.09 eV = 0.12 eV, so the distribution is rather sharp.  
The distribution changes from 90% full to 10% full within ±2% of the Fermi energy. 

 
36. For E = 1.89 eV and kT = 0.02525 eV (corresponding to T = 293 K), the Fermi-Dirac 

distribution function is 
  

FFD ( ) / (1.89 eV 3.15 eV) / 0.02525 eV

1 1 1.000
1 1E E kTf

e e− −= = =
+ +

 

 
3/ 2 2 3/ 2

1/2 1/2m
m FD m m FD m3 3

6 3/2
1/2 28 3

3 9 3

( ) 8 2 8 2( )( ) ( )
( )

8 2(0.511 10  eV) (1.89 eV) (0.0315 eV) 2.95 10  m
(1240 eV nm) (10  m/nm)

N E dEdN m mcE f E dE E f E dE
V V h hc

π π

π −
−

= = =

×
= = ×

⋅

 

 
37. The volume of the nucleus is 3 3 34 4

3 3 (7.4 fm) 1697 fmV Rπ π= = = .  The number of 
protons per unit volume is 3 3/ 92 /1697 fm 0.0542 fmN V −= = .  The Fermi energy of the 
protons is 

 

 
2/3 2 /3 2/32 2 2

3
F 2

3 ( ) 3 (1240 MeV fm) 3 0.0542 fm 28.5 MeV
2 8 2 8 2(938.3 MeV) 8
h N hc NE
m V mc Vπ π π

−⋅⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
3 3

m F5 5 (28.5 MeV) 17.1 MeVE E= = =  
 

 For the neutrons, 3 3/ 143/1697 fm 0.0843 fmN V −= =  
 

 
2 /3 2 /3 2 /32 2 2

3
F 2

3 ( ) 3 (1240 MeV fm) 3 0.0843 fm 38.1 MeV
2 8 2 8 2(939.6 MeV) 8
h N hc NE
m V mc Vπ π π

−⋅⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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3 3
m F5 5 (38.1 MeV) 22.9 MeVE E= = =  

 
38. (a) The gravitational potential energy of two uniform spherical objects of masses m1 and 

m2 is 1 2 /U Gm m r= − , where r is the distance between their centers.  When the separation 
is infinite, the initial potential energy is zero.  When mass dm is brought from an infinite 
separation to the surface of the spherical mass m, the final potential energy is 

 
34

23 4
3

( )m dm r dmdU G G G r dm
r r

ρ π π ρ= − = − = −  

 
 (b) The total mass brought in from infinity is in the spherical shell of radius r, surface 

area 24 rπ , and volume  24dV r drπ= .  Its mass is 24dm dV r drρ πρ= = , and the 
corresponding change in potential energy is 

  
2 2 2 2 4164

3 3(4 )dU G r r dr G r drπ ρ πρ π ρ= − = −  
 
(c)To assemble the entire sphere from r = 0 to r = R, we have 
 

25 5 2
2 2 4 2 2 2

340
3

16 16 16 3
3 3 5 3 5 5

R R M R GMU dU G r dr G G
R R

π ρ π ρ π
π

⎛ ⎞
= = − = − = − = −⎜ ⎟

⎝ ⎠
∫ ∫  

 
39. (a)  When the Sun becomes a white dwarf star, the number of alpha particles in it will be 

MSun/mα = 1.99 × 1030 kg/6.64 × 10−27 kg = 3.00 × 1056.  The number of electrons is twice 
this number, so 566.00 10N = × .  Its radius will be  

  

 

2 /32

1/3 2 2

2/334 2

11 2 2 56 1/3 31 27 2 2

6

9
4

(6.626 10  J s) 9
(6.67 10  N m /kg )(6.00 10 ) (9.11 10  kg)(6.64 10  kg) 4

7.28 10  m

e

hR
GN m mα π

π

−

− − −

⎛ ⎞= ⎜ ⎟
⎝ ⎠

× ⋅ ⎛ ⎞= ⎜ ⎟× ⋅ × × × ⎝ ⎠

= ×

 

 
 The Fermi energy is 
 

2/3 2 /32 2

F 2 2 2

2/32 9 2 56
5

6 6 2 2

3 ( ) 1 9
2 8 2 32

(1240 eV nm) (10  m/nm) 9(6.00 10 ) 1.88 10  eV
2(0.511 10  eV) (7.28 10  m) 32

h N hc NE
m V mc Rπ π

π

−

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⋅ ×
= = ×⎜ ⎟× × ⎝ ⎠

 

 
Using nonrelativistic mechanics, the de Broglie wavelength is 
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3

2 6 5

1240 eV nm 2.83 10  nm
2 2 2(0.511 10  eV)(1.88 10  eV)

h h hc
p mE mc E

λ −⋅
= = = = = ×

× ×
 

 
(b) The star contains 6.00 × 1056 electrons in a volume 3 6 34 4

3 3 (7.28 10  m)V Rπ π= = ×  
= 1.62 × 1021 m3, so the particle density is N/V = 6.00 × 1056/1.62 × 1021 m3 = 3.70 × 1035 
m−3.  The average distance between particles is 1/3 3( / ) 1.39 10  nmN V − −= × .  The de 
Broglie wavelength is larger than the spacing between the electrons, which means that 
quantum effects are indeed important. 
 

40. (a) In a magnetic field, a state with spin 5 splits into 11 substates with z SS M=  (MS = 
+5, +4, +3, …, −4, −5).  The magnetic energy of the substate MS is 

SM z SE B BS B Mγ γ γ= − ⋅ = ⋅ = =μ B S k .  The lowest state (MS = −5) has energy 

5 5E Bγ− = −  and the second lowest state (MS = −4) has energy 4 4E Bγ− = − .  The ratio 
of the populations 

SMN  is (with nondegenerate substates) 
 

4

5

/ 4 /
/4 4

/ 5 /
5 5

E kT B kT
B kT

E kT B kT

N d e er e
N d e e

γ
γ

γ

−

−

−
−− −

−
− −

= = = =  

 
With ln /r B kTγ= − , we have 
 

7 1 1 34

23

(3.64 10  T s )(29.0 T)(1.055 10  J s) 0.00925 K
ln (1.38 10  J/K)ln(0.418)
BT

k r
γ − − −

−

× × ⋅
= − = − =

×
 

 

(b)    
0

5

/ 0
5 /0 0

/ 5 /
5 5

E kT
B kT

E kT B kT

N d e er e
N d e e

γ
γ−

−
−

−
− −

= = = =  

 
 

7 1 1 34 235(3.64 10  T s )(29 T)(1.055 10  J s)/(1.38 10  J/K)(0.00925 K) 0.0128e
− − − −− × × ⋅ ×= =  

 
41. (a) The degeneracies of the rotational states are 2L + 1, so the ratio of the populations of 

the L = 1 and L = 0 states is 
   

1
1 0

0

/
( ) / /1 1

10 /
0 0

4

5
10

3 3

4.71 10  eV 2.78 K
ln( / 3) (8.617 10  eV/K)ln(0.421/3)

E kT
E E kT E kT

E kT

N d er e e
N d e

ET
k r

−
− − −Δ

−

−

−

= = = =

−Δ − ×
= = =

×

 

 
The uncertainties can be analyzed by taking differentials of the first equation, which 
gives / 2 2

10 103 ( / ) ( / )E kTdr e E kT dT r E kT dT−Δ= Δ = Δ : 
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2 5 2

10
4

10

0.017 (8.617 10  eV/K)(2.78 K) 0.06 K
0.421 4.71 10  eV

dr kTdT
r E

−

−

×
= = =

Δ ×
 

 
so the deduced temperature is 2.78 ± 0.06 K. 
(b) The second excited rotational state has L = 2. Because the energy of the rotational 
states is proportional to L(L+1), this state has 3 times the energy of the first excited state: 
 

 
2 4 5

2 0

0

/
( ) / 3 / 3(4.71 10  eV)/(8.617 10  eV/K)(2.78 K)2 2

20 /
0 0

5 5 5 0.0137
E kT

E E kT E kT
E kT

N d er e e e
N d e

− −
−

− − − Δ − × ×
−= = = = = =  

 
The range of ±0.06 K in temperature corresponds to a range of ±0.0017 in r20, so this 
ratio is in very good agreement with the observed value. 
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Chapter 11 
 

This chapter discusses several properties of solids in the context of applying 
quantum statistics and thus demonstrating the importance of quantum theory in studying 
condensed matter.  The previous editions of this text included only applications to 
electrical conduction in solids, primarily that of semiconductors.  In the present edition, 
the coverage of electrical conduction has been reduced somewhat in order to add 
discussions of the heat capacity of solids and paramagnetism.  In both cases, theoretical 
formalisms have been coupled with analysis of actual experimental data, emphasizing the 
success of the interpretation based on quantum theory. 
 

 
Suggestions for Additional Reading 

 
More detailed and comprehensive books on solid-state physics: 
 
R. H. Bube, Electrons in Solids: An Introductory Survey, 3rd ed. (Academic Press, 1992). 
J. R. Christman, Fundamentals of Solid State Physics (Wiley, 1988). 
A. J. Dekker, Solid State Physics (Prentice-Hall, 1957). 
A. Hart-Davis, Solids: An Introduction (McGraw-Hill, 1975). 
C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1996). 
H. P. Myers, Introductory Solid State Physics (Taylor and Francis, 1990). 
M. N. Rudden and J. Wilson, Elements of Solid State Physics, 2nd ed. (Wiley, 1993). 
H. M. Rosenberg, The Solid State, 3rd ed. (Oxford, 1988). 
R. T. Sanderson, Chemical Bonds and Bond Energy (Academic Press, 1976). 
R. Turton, The Physics of Solids (Oxford, 2000). 
 
High-temperature superconductors are discussed in R. J. Cava, “Superconductors beyond 
1-2-3,” Scientific American 263, 42 (August 1990). 
 
Bulk properties of solids are tabulated in many references, including the Handbook of 
Chemistry and Physics (Chemical Rubber Publishing Co.) and the American Institute of 
Physics Handbook (McGraw-Hill, 1963). 
 
 

Materials for Active Engagement in the Classroom 
 
A.  Reading Quizzes 
 
1. At the lowest temperatures, the molar heat capacity of metals can be explained 

primarily by the application of: 
  (1) the equipartition theorem 
  (2) Fermi-Dirac statistics of electrons 
  (3) Bose-Einstein statistics of vibrating atoms 
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2.  Which of the following processes can produce a substantial increase in the electrical 
conductivity of a semiconductor? 

(1) Lower the temperature.  (2) Add certain impurities. 
(3) Both 1 and 2.   (4) Neither 1 nor 2. 

 
3. How does the electrical conductivity of a semiconductor depend on the temperature? 

(1) The conductivity increases as the temperature increases. 
(2) The conductivity decreases as the temperature increases. 
(3) The conductivity does not depend on the temperature. 

 
Answers 1. 3 2. 2 3. 1 
 
 
B.  Conceptual or Discussion Questions 
 
1. Put these types of solids in order of increasing values of typical melting points: 
  (1) ionic (2) covalent (3) metallic (4) molecular 
 
2.  Classify the following materials as: 
  (1) Conductor   (2) Insulator   (3) Semiconductor  (4) Conductor and insulator 

 (5) Conductor and semiconductor (6) Insulator and semiconductor  
  (7) Conductor, insulator, and semiconductor  (8) None of these 

(a) Filled valence band, empty conduction band, energy gap = 8 eV. 
(b) Filled valence band, empty conduction band, energy gap = 1 eV. 
(c) Half-filled valence band, empty conduction band, energy gap = 1 eV. 
(d) The Fermi energy is located in the gap between the valence and conduction bands. 
(e) The electrical resistance decreases significantly as the temperature is lowered. 

 
3.  In an intrinsic semiconductor, the number of electrons in the conduction band is 

_______ the number of holes in the valence band. 
  (1) exactly equal to  (2) approximately equal to 
  (3) much greater than  (4) much less than 

4.  In an intrinsic semiconductor, the contribution of the electrons to the current is usually 
_______ the contribution of the holes to the current. 

  (1) exactly equal to  (2) approximately equal to 
  (3) much greater than  (4) much less than 

5.  In a p-type semiconductor, the number of electrons in the conduction band is _______ 
the number of holes in the valence band. 

  (1) exactly equal to  (2) approximately equal to 
  (3) much greater than  (4) much less than 

6.  In a p-type semiconductor, the contribution of the electrons to the current is usually 
_______ the contribution of the holes to the current. 

  (1) exactly equal to  (2) approximately equal to 
  (3) much greater than  (4) much less than 
 



 228

Answers 1. 4,3,2,1 2. (a) 2   (b) 3   (c) 1   (d) 6   (e) 1 3. 1 4. 3 5. 4 6. 4 
 
 

Sample Exam Questions 
 
A.  Multiple Choice 
 
1. In the range from 100 K to 200 K, the temperature variation of the molar heat 

capacity of metals is best explained in terms of 
 (a) the equipartition theorem 
 (b) Fermi-Dirac statistics of electrons 
 (c) Bose-Einstein statistics of lattice vibrations 
 
2.  An intrinsic semiconductor at room temperature has:  

(a) a greater density of electrons in its conduction band than holes in its valence band.   
(b) a greater density of electrons in its conduction band than electrons it its valence band.    
(c) a greater density of electrons in its valence band than it would at a temperature of 0 K.    
(d) a greater density of holes in the valence band than it would at a temperature of 0 K. 

 
3.  In a certain intrinsic semiconductor, the probability for electron states at the bottom of 

the conduction band to be occupied at room temperature (300 K) is 1.0 × 10−10.  What 
would be the probability for these electron states to be occupied if the temperature 
were raised to 330 K?   
(a) 8.1 × 10−10       (b) 1.2 × 10−11      (c) 1.1 × 10−10       (d) 2.4 × 10−9  (e) 9.0 × 10−11 

 
4.  In a certain intrinsic (undoped) semiconducting material, the occupation probability 

near the bottom of the conduction band at room temperature (300 K) is 10-9.  If the 
temperature is raised to 390 K, what would you estimate to be the new occupation 
probability near the bottom of the conduction band? 
(a) 10-10 (b) 10-9  (c) 10-8  (d) 10-7  (e) 10-6  

 
5.  A piece of silicon contains a small amount of an impurity that forms states located in 

the energy gap very close to the edge of the valence band.  What category would best 
describe this material? 
(a) insulator (b) p-type semiconductor (c) n-type semiconductor    
(d) intrinsic semiconductor (e) conductor 

 
6.  A certain semiconductor has an energy gap of about 1 eV and a certain insulator has 

an energy gap of about 6 eV.  Which of these would you expect to be transparent to 
all visible light? 
(a) semiconductor     (b) insulator      (c) both (d) neither 

 
7.  A certain intrinsic (undoped) semiconducting material has an energy gap of 1.6 eV 

between the valence and conducting bands.  What is the approximate probability to 
find electrons at the bottom of the conduction band at room temperature (300 K)? 
(a) 10-10 (b) 10-12 (c) 10-14 (d) 10-16 (e) 10-18  
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Answers 1. c 2. d 3. a 4. d 5. b 6. c 7. c 
 
 
B.  Conceptual 
 
1. A certain insulator has an energy gap of 6.0 eV.  When visible light (400 to 700 nm) 

shines on this material, would you expect the light to be strongly absorbed (so the 
material would be opaque) or not absorbed (so that the material would be 
transparent)? EXPLAIN YOUR ANSWER. 

 
2. Suppose we raise the temperature of a semiconductor from room temperature (20°C 

or about 300 K) to the temperature of hot tap water (40°C or about 320 K).  Would 
you expect the electrical conductivity to increase or decrease, and would you expect 
the change in electrical conductivity to be large or small?  EXPLAIN YOUR 
ANSWER. 

  
3. In a certain intrinsic (undoped) semiconductor, the Fermi energy at the absolute zero 

of temperature is at the middle of the gap between the valence band and the 
conduction band.  The temperature is now raised to a value in the neighborhood of 
room temperature.  At this temperature, it is found that there are Ne empty states in 
the valence band.  At this temperature, is the number of filled states in the conduction 
band greater than Ne, less than Ne, or equal to Ne?  EXPLAIN YOUR ANSWER. 

 
Answers 1. not absorbed 2. increase, large 3. equal to 
 
 
C.  Problems 
 
1. In a certain conducting material at T = 0 K, all of the electron energy levels below 

3.15 eV are filled, and all of the levels above 3.15 eV are empty.  The material is now 
heated to a temperature of 120 K.  Consider electrons with energies in a small interval 
dE around E1 = 3.10 eV and also electrons with energies in a small interval dE around 
E2 = 3.20 eV.  Find the ratio of the probabilities to find electrons in these two 
intervals. 

 
2. In a certain semiconductor, the energy gap is 1.10 eV and the Fermi energy is at the 

center of the gap.   
(a) What is the probability that a state at the bottom of the conduction band is 
occupied at room temperature (300 K)? 
(b) What is the probability that a state at the top of the valence band is empty at room 
temperature? 
(c) What is the probability that a state at the bottom of the conduction band is 
occupied at 0 K? 

 
Answers 1. 0.0079 2. (a) 5.76 × 10−10   (b) 5.76 × 10−10   (c) 0 
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Problem Solutions 
 
 

1. (a) 1/8 
 (b) If the spheres are in contact along each edge of the cube, then 2a r= . 
 (c) With 2 3 31 4

cube spheres 8 3(2 ) and 8V a r V rπ= = = × × , the packing fraction is 
  

34
spheres 3

3
cube

packing fraction 0.5236
8 6

V r
V r

π π
= = = =  

 
2. (a) In the fcc lattice, inside the basic cube there is 1/8 of a sphere at each of the 8 corners 

and 1/2 of a sphere at each of the 6 faces.  Thus ( ) 3 3161 1 4
spheres 8 2 3 38 6V r rπ π= × + × = .  The 

diagonal along any face of the cube has length 2a , where a is the length of an edge of 
the cube.  The spheres are in contact along one of these diagonals, so 2 4a r= , 
and 3 3 3

cube (4 / 2) 16 2V a r r= = = .  The packing fraction is 
 

316
spheres 3

3
cube

packing fraction 0.7405
16 2 3 2

V r
V r

π π
= = = =  

 
(b) In the bcc lattice, inside the basic cube there is a full sphere at the center and 1/8 of a 
sphere at each of the 8 corners, so ( ) 3 381 4

spheres 8 3 38 1V r rπ π= × + = .  The body diagonal has 

length 3a .  The spheres are in contact along the body diagonal, so 3 4a r= , and 
3 3 3

cube (4 / 3) 64 / 3 3V a r r= = = .  The packing fraction is 
 

38
spheres 3

3
cube

3packing fraction 0.6802
864 / 3 3

V r
V r

π π
= = = =  

 
The fcc arrangement allows for more dense packing of the spheres (and both fcc and bcc 
are more efficient packing schemes than the simple cubic). 
 

3. Starting with 
2

0

1
4 n

e AE
R R

α
πε

= − + , we take the derivative to obtain: 

 
2

02 1
0

1 0 at
4 n

dE e nA R R
dr R R

α
πε += − = =  

 

With 
12 2

0
2 1

0 0 0 0

1 we get
4 4

n

n

Re nA eA
R R n

α α
πε πε

−

+= =  and so 
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12 12 2
0 0

0 0 0

1 1 11
4 4 4

nn

n

e R Re eE
R n R R n R

αα α
πε πε πε

−− ⎡ ⎤⎛ ⎞= − + = − −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

 
The binding energy is 
 

2

0
0 0

1( ) 1
4

eB E R
R n

α
πε

⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

 

 
4. In the CsCl (bcc) structure, a Cs+ ion at the center of a cube is surrounded by 8 Cl− ions at 

a distance R.  With a as the length of a cube edge, the distance R is half the body diagonal 
3a , so 2 / 3a R= .  At this distance from each Cs+ ion, there are 6 Cs+ ions, each at 

the center of an adjacent cube.  At the 4 far corners of each of the 6 adjacent cubes there 

is a total of 24 Cl− ions at a distance of 2 2( 2 / 2) (3 / 2) 11/ 4 11/ 3a a a R+ = = .  The 
potential energy due to these three terms is 

 
2 2 2 2

0 0 0 0

1 1 1 24 38 6 24 8 3 3
4 4 4 42 3 11/ 3 11

e e e eU
R RR Rπε πε πε πε

⎛ ⎞
= − + − = − − +⎜ ⎟⎜ ⎟

⎝ ⎠
 

 

5. (a)  
3

coh
23 19

A

657 10  J/mole 6.82 eV
(6.02 10  ions/mole)(1.60 10  J/eV)

EB
N −

×
= = =

× ×
 

 

 (b) 
2

0 0

1 (1.7627)(1.440 eV nm) 11 1 6.45 eV
4 0.356 nm 10.5

eB
R n

α
πε

⋅⎛ ⎞ ⎛ ⎞= − = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
 (c) To find the binding energy per atom pair, we start with the binding energy per ion 

pair, add the electron affinity of Cl, and subtract the ionization energy of Cs: 6.82 eV + 
3.61 eV − 3.89 eV = 6.54 eV.  The binding energy per atom is half this value, or 3.27 eV. 

 

6. (a)  
3

coh
23 19

A

1030 10  J/mole 10.69 eV
(6.02 10  ions/mole)(1.60 10  J/eV)

EB
N −

×
= = =

× ×
 

 

 (b) 
2

0 0

1 (1.7476)(1.440 eV nm) 11 1 10.43 eV
4 0.201 nm 6

eB
R n

α
πε

⋅⎛ ⎞ ⎛ ⎞= − = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
 (c) To find the binding energy per atom pair, we start with the binding energy per ion 

pair, add the electron affinity of F, and subtract the ionization energy of Li: 10.69 eV + 
3.45 eV − 5.39 eV = 8.75 eV.  The binding energy per atom is half this value, or 4.38 eV. 

 

7.   
2

C
0 0

1 1.440 eV nm1.7476 8.96 eV
4 0.281 nm

eU
R

α
πε

⋅
= − = − = −  



 232

 

 
2

R C
0 0 0

1 1( ) (8.96 eV) 1.00 eV
4 9n

A eU U
R R n n

α
πε

= = = − = =  

 
8. The density of atoms is 
  

3 23
28 3A

2 3

(0.971 g/cm )(6.02 10  atoms/mole) 2.54 10  atoms/m
(23.0 g/mole)(1 m/10  cm)

Nn
M
ρ ×

= = = ×  

 
In the bcc structure, each basic cell contains 2 atoms: 1/8 atom at each of the 8 corners 
and one at the center of the cube.  If a is the length of one edge of the cube, then 

3 28 32 atoms / 2.54 10  atoms/ma = × , or 
 

1/3
10

28 3

2 atoms 4.29 10  m 0.429 nm
2.54 10  atoms/m

a −⎛ ⎞= = × =⎜ ⎟×⎝ ⎠
 

 
The body diagonal has length 3a , so the atomic spacing is 1

2 3 0.371 nma = . 
 

9.  The density of atoms is 
  

3 23
28 3A

2 3

(8.96 g/cm )(6.02 10  atoms/mole) 8.49 10  atoms/m
(63.5 g/mole)(1 m/10  cm)

Nn
M
ρ ×

= = = ×  

 
In the fcc structure, each basic cell contains 4 atoms: 1/8 atom at each of the 8 corners 
and 1/2 atom at the center of each of the 6 faces.  If a is the length of one edge of the 
cube, then 3 28 34 atoms / 8.49 10  atoms/ma = × , or 
 

1/3
10

28 3

4 atoms 3.61 10  m 0.361 nm
8.49 10  atoms/m

a −⎛ ⎞= = × =⎜ ⎟×⎝ ⎠
 

 
The face diagonal has length 2a , so the atomic spacing is 1

2 2 0.255 nma = . 
 

10. Na: 
3 19

coh
23

A

(107 10  J/mole)(1 eV/1.60 10  J) 1.11 eV
6.02 10  atoms/mole

EB
N

−× ×
= = =

×
 

 

 Cu: 
3 19

coh
23

A

(337 10  J/mole)(1 eV/1.60 10  J) 3.50 eV
6.02 10  atoms/mole

EB
N

−× ×
= = =

×
 

 
11. Equating the electronic (Equation 11.9) and lattice (Equation 11.12) contributions to the 

heat capacity gives 
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32 4

F D

12
2 5

kT TR R
E T

π π ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

 
Solving for T, we obtain 
 

3 5 3
D

2 2
F

5 5(8.617 10  eV/K)(343 K) 3.23 K
24 24 (7.03 eV)

kTT
Eπ π

−×
= = =  

 
Above 3.23 K, the lattice contribution to the heat capacity is larger than the electronic 
contribution, but below 3.23 K the electronic contribution is larger. 

 
12. (a) From Equation 11.12, 
  

1/3 1/34 4

D
12 12 (8.31 J/mole K)(2.00 K) 91.9 K

5 5(0.0200 J/mole K)
RT T

C
π π⎛ ⎞ ⎡ ⎤⋅

= = =⎜ ⎟ ⎢ ⎥⋅⎝ ⎠ ⎣ ⎦
 

 
(b) The heat capacity should increase as T 3, so the heat capacity at 3.00 K should be 
greater than the heat capacity at 2.00 K by the factor 3(3.00 K/2.00 K) 3.375= .  The heat 
capacity at 3.00 K is therefore 2 2(2.00 10  J/mole K)(3.375) 6.75 10  J/mole K− −× ⋅ = × ⋅ . 
 

13. From Equation 11.12, the slope b is 4 3
D12 / 5R Tπ , so 

 
1/3 1/34 4

D 3 4

12 12 (8.31 J/mole K) 91.1 K
5 5(2.57 10  J/mole K )

RT
b
π π

−

⎛ ⎞ ⎡ ⎤⋅
= = =⎜ ⎟ ⎢ ⎥× ⋅⎝ ⎠ ⎣ ⎦

 

 
14.  (a) The lattice contribution to the heat capacity at 4 K is 
 

3 34 4

D

12 12 (8.31 J/mole K) 4 K 0.0109 J/mole K
5 5 225 K

R TC
T

π π⎛ ⎞ ⋅ ⎛ ⎞= = = ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
The electronic contribution is then 0.0134 J/mole⋅K − 0.0109 J/mole⋅K = 0.0025 
J/mole⋅K. 
(b) The lattice contribution to the heat capacity is proportional to T 3, so at 2 K it is 
smaller by (2 K/4 K)3 = 0.125 and thus 0.125(0.0109 J/mole K) 0.00136 J/mole K⋅ = ⋅ .  
The electronic contribution is proportional to T and so at 2 K its value is reduced by half, 
to 0.00125 J/mole⋅K.  The total heat capacity at 2 K is 0.00136 J/mole⋅K + 0.00125 
J/mole⋅K = 0.00261 J/mole⋅K.   
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15. (a)  
FFD ( ) /

1( ) 0.1
1E E kTf E

e −= =
+

 

 
F( ) / F1 10 so ln 9E E kT E Ee

kT
− −

+ = =  

 
At room temperature (293 K), 5(8.617 10  eV/K)(293 K) 0.0252 eVkT −= × = , so 
 

F ln 9 7.03 eV (0.0252 eV)(2.20) 7.09 eVE E kT= + = + =  
 
(b) FE E−  is 2.20 times kT, indicating the sharpness of the Fermi-Dirac distribution – it 
drops from 0.9 to 0.1 within 4.40kT or about 0.11 eV. 
 

16. An electron at the Fermi energy of 7.03 eV has momentum 2p mE= and de Broglie 
wavelength 

 

2 6

1240 eV nm 0.463 nm
2 2(0.511 10  eV)(7.03 eV)

h hc hc
p pc mc E

λ ⋅
= = = = =

×
 

 
This is comparable to the atomic spacing of copper (0.256 nm). 
 

17. From Equation 10.47 for the Fermi-Dirac distribution, with F 3.15 eVE = for sodium and 
5(8.617 10  eV/K)(293 K) 0.0252 eVkT −= × = , 

 

F

2 3/ 2 1/ 2

( )3

6 3/ 2 1/2
24 3

3 0.1 eV/0.0252 eV

8 2( )
( ) 1

8 2(0.511 10  eV) (3.25 eV) (0.01 eV) 2.3 10  m
(1240 eV nm) 1

E E kT

dN mc E dE
V hc e

e

π

π

−

−

=
+

×
= = ×

⋅ +

 

 
 

18. Solving Equation 11.19 for τ, we obtain 
 

7 1 1 31
14

2 28 3 19 2

(5.96 10 m )(9.11 10 kg) 2.50 10 s
(8.49 10 atoms/m )(1.60 10 C)

m
ne
στ

− − −
−

−

× Ω ×
= = = ×

× ×
 

 
 Using the Fermi velocity of 1.57 × 106 m/s, the mean free path is 
 
  

14 6
F (2.50 10  s)(1.57 10  m/s) 39.2 nml vτ −= = × × =  
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In terms of the atomic spacing of Cu (0.256 nm), this amounts to more than 150 lattice 
spacings. 
 

19.    
22

F

F F

( ) 0.99 1
(0) 12 (0)

E T kT
E E

π ⎛ ⎞
= = − ⎜ ⎟

⎝ ⎠
 

 

F 2 2

12(1 0.99) 12(0.01)(0) (5.53 eV) 0.610 eVkT E
π π
−

= = =  

 
5(0.610 eV)/ (0.610 eV)/(8.617 10  eV/K) 7080 KT k −= = × =  

 
20. The current density (current per unit area) is  
 

3 2 4 2/ 2.5 10  A/ (0.00025 m) 1.27 10  A/mj i A π−= = × = ×  
 
 and the drift velocity is 
 

4 2
7

d 28 3 19

1.27 10  A/m 9.37 10  m/s
(8.49 10  m )(1.60 10  C)

jv
ne

−
− −

×
= = = ×

× ×
 

 
 The number of electrons in a narrow strip of width dE is ( )dN N E dE= .  We’ll assume 

that it is sufficient to evaluate N(E) at the Fermi energy because the strip is very narrow.  
With ( / )dE dE dv dv mv dv= = (evaluating dE/dv for 21

2E mv= ) we have 
 

F F F F d( ) ( ) ( )dN N E dE N E mv dv N E mv v= = =  
 
using dv = vd for the width of the strip as in Figure 11.16.  We can show that 

F F( ) 1.5 /N E N E= , and so 
 

31 6 7
12F d

19
F

1.5 1.5(9.11 10  kg)(1.57 10  m/s)(9.37 10  m/s) 1.8 10
(7.03 eV)(1.602 10  J/eV)

mv vdN
N E

− −
−

−

× × ×
= = = ×

×
 

 
Only a very small fraction of the electrons participates in the conduction. 

 
21.  8 2 7 1 1(2.44 10  W /K )(5.96 10 m )(293 K) 426 W/K mK L Tσ − − −= = × ⋅Ω × Ω ⋅ = ⋅  
 
22. The concentration is dependent on the Fermi-Dirac distribution, which is to be evaluated 

at 5(8.617 10  eV/K)(293 K) 0.0252 eVkT −= × = . For states at the bottom of the 
conduction band, F g / 2E E E− = and 
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gF

g

48
/ 2( ) / 5.5 eV/2(0.0252 eV)

10
/ 2 1.1 eV/2(0.0252 eV)

1 1 1 4.0 10  for C
1 11

1 1 3.3 10  for Si
11

E kTE E kT

E kT

e ee

ee

−
−

−

= = = ×
+ ++

= = ×
++

 

 
The ratio of the electron concentrations of C and Si is about 1.2 × 10−38. 
 

23. At 5(8.617 10  eV/K)(400 K) 0.0345 eVkT −= × =  the Fermi-Dirac distribution gives 
  

gF

g

5
/ 2( ) / 0.66 eV/2(0.0345 eV)

8
/ 2 1.12 eV/2(0.0345 eV)

1 1 1 7.0 10  for Ge
1 11

1 1 8.9 10  for Si
11

E kTE E kT

E kT

e ee

ee

−
−

−

= = = ×
+ ++

= = ×
++

 

 
 The Ge/Si ratio is about 790. 
 
24. (a) The cube has a volume of (0.10 cm)3 = 1.0 × 10−3 cm3 and thus a mass of 2.3 × 10−3 g, 

so 3 23 19(2.3 10  g)/(28 g/mole)(6.02 10  atoms/mole) 5.0 10  atomsN −= × × = × .  The 
number of states in the valence band is 4N = 2.0 × 1020. 

 (b) The valence band has a width of 12 eV, so the average spacing between the states is 
20 2012 eV / 2.0 10 6.0 10  eV−× = × . 

 
25. (a) From Equation 11.25, 
 

5
g c3.53 3.53(8.617 10  eV/K)(0.65 K) 0.20 meVE kT −= = × =  

 

(b)  6
3

1240 eV nm 6.3 10  nm 6.3 mm in the microwave region
0.20 10  eV

hc
E

λ −

⋅
= = = × =

×
 

 
26. The minimum energy of the photons that can destroy the superconductivity are 
   

3
6

1240 eV nm 1.36 10  eV 1.36 meV
0.91 10  nm

hcE
λ

−⋅
= = = × =

×
 

 
This must be the same as the gap energy, so Eg = 1.36 meV for Ta.  According to the 
BCS theory, the critical temperature is 
 

3
g

c 5

1.36 10  eV 4.47 K
3.53 3.53(8.617 10  eV/K)

E
T

k

−

−

×
= = =

×
 

 
27. The frequency / 2f ω π=  is 
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19 6

34

2 2(1.60 10  C)(1.25 10  V) 603 MHz
2 2 6.63 10  J s

e Vf ω
π π

− −

−

Δ × ×
= = = =

× ⋅
 

 
 Such frequencies in the radio region of the electromagnetic spectrum can be measured 

with very high precision. 
 
28. Assuming the Fermi energy to be at the middle of the gap, the relative number of 

electrons excited from the valence band to the conduction band will be proportional to 
gF / 2( ) / E kTE E kTe e−− − = , so the ratio of the conductivities at two different temperatures 

should be roughly 
 

-5
g 1

-5g 2

/ 2 (1.1 eV)/2(8.617 10  eV/K)(393 K)

/ 2 (1.1 eV)/2(8.617 10  eV/K)(293 K)
255

E kT

E kT
e e
e e

− − ×

− − ×
= =  

 
There are other temperature-dependent factors on which the conductivity depends, but 
their temperature variation is much weaker than the exponential factor.  Note that a 
relatively small change in the temperature produces a huge change in the conductivity.   
 

29. (a) With the Fermi energy at the middle of the gap, the number of excited electrons is 
proportional to gF / 2( ) / E kTE E kTNe Ne−− − = and so the fraction is approximately 

 
5

g

5
g

/ 2 (1.1 eV) / 2(8.617 10  eV/K)(100 K) 28

/ 2 (1.1 eV) / 2(8.617 10  eV/K)(293 K) 10

1.9 10 at 100 K
3.5 10 at 293 K

E kT

E kT
e e
e e

−

−

− − × −

− − × −

= = ×
= = ×

 

 
(b) In a metal, the conductivity decreases linearly with the temperature, so it would drop 
by roughly a factor of 3 over this temperature range. 
 

30. The occupation probability in the conduction band is roughly gF / 2( ) / E kTE E kTe e−− − = , 
assuming the Fermi energy is at the middle of the gap.  If the occupation probabilities are 
equal, then the values of the exponents must be equal: g Si g Ge(Si) / 2 (Ge) / 2E kT E kT= , or 
 

g
Ge Si

g

(Ge) 0.66 eV(293 K) 173 K
(Si) 1.12 eV

E
T T

E
= = =  

 
This is only a rough estimate, because we have ignored several factors that give an 
additional temperature dependence as well as a dependence on the different effective 
masses of electrons in Ge and Si.  The correct value is closer to 200 K, but even this 
rough calculation gives a fairly good estimate of the temperature. 
 

31. (a) The electric field in a dielectric is reduced by a factor of 1/κ, where κ is the dielectric 
constant.  In electric field equations, that change can be accomplished by replacing ε0 by 
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κε0 everywhere it appears.  In the Bohr theory (Equation 6.30), the energy levels include 
the factor 2

01/ε , so the energy of the single phosphorous electron in Si is 
  

2 2

13.6 eV 13.6 eV 0.094 eV
12

E
κ

− −
= = = −  

 
(b) Again from the Bohr theory, the electron energy is directly proportional to the 
electron mass, so the effective mass changes the energy by the factor eff / 0.43m m = .  The 
energy would then be ( 0.094 eV)(0.43) 0.040 eV− = − . This is very close to the observed 
energy necessary to excite an electron for phosphorous impurities in Si (0.045 eV).   
 

32. (a) For 5(8.617 10  eV/K)(293 K) 0.0252 eVkT −= × = and F g / 2 0.55 eVE E E− = = , we 
have 
 

gF

10
FD / 2( ) / 0.55 eV/0.0252 eV

1 1 1( ) 3.32 10
1 11E kTE E kTf E

e ee
−

−= = = = ×
+ ++

 

  
(b) The occupied states in the conduction band exactly correspond to the empty states in 
the valence band, so the occupation probability in the valence band is 101 3.32 10−− × . 
 

33. The fraction of electrons in the conduction band is roughly gF / 2( ) / E kTE E kTe e−− − = , assuming 
the Fermi energy is at the center of the gap: 

  
5

g / 2 0.66 eV/2(8.617 10  eV/K)(293 K) 62.1 10E kTe e
−− − × −= = ×  

 
To increase the population of the conduction band by a factor of 3, it is necessary to 
provide twice this number of donor atoms, so the relative population of donor atoms must 
be 4.2 × 10−6. 

 
 
34. (a) From Equation 11.31 with kT = 0.0252 eV, we have 

  
2.00 eV/0.0252 eV

17
1.00 eV/0.0252 eV

(2 V) 1 1.7 10
(1 V) 1

i e
i e

−
= = ×

−
 

 
(b) At 400 K, 5(8.617 10  eV/K)(400 K) 0.0345 eVkT −= × = and 
 

2.00 eV/0.0345 eV
12

1.00 eV/0.0345 eV

(2 V) 1 3.9 10
(1 V) 1

i e
i e

−
= = ×

−
 

 
This sensitive dependence of current on temperature is in part what distinguishes 
semiconductors from ordinary metals. 
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35. From Equation 11.30, the coefficient i0 is (with kT = 0.025 eV at room temperature) 
 

ext

5
0 / 0.25 eV/0.025 eV

1.5 mA 6.8 10  mA
1 1e V kT

ii
e e

−
Δ= = = ×

− −
 

 
Under reverse bias, the exponential factor in the denominator will be 10 54.5 10e− −= × , 
which is negligible compared with the 1 in the denominator.  Thus under reverse biasing, 

5
0 6.8 10  mAi i −= − = − × . 

 

36.  1240 eV nmGaP : 549 nm (green)
2.26 eV

hc
E

λ ⋅
= = =
Δ

 

 

  1240 eV nmZnSe: 432 nm (blue)
2.87 eV

hc
E

λ ⋅
= = =
Δ

 

 
37. (a) For green light, the photon energy is / 1240 eV nm / 550 nm 2.25 eVE hc λ= = ⋅ = .  

With a mixture of InxGa1−xN, the effective energy gap would be 
  

(0.7 eV) (1 )(3.4 eV) 2.25 eV or 0.43x x x+ − = =  
 
so we would need 43% InN and 57% GaN. 
(b) For violet light, the photon energy is / 1240 eV nm / 400 nm 3.10 eVE hc λ= = ⋅ = and 
 

(0.7 eV) (1 )(3.4 eV) 3.10 eV or 0.11x x x+ − = =  
 
The mixture should be 11% InN and 89% GaN. 
 

38. The number of electrons in the narrow strip is ( )dN N E dE= , where the width of the strip 
is B appdE Bμ= .  We’ll assume that we are at a low enough temperature that we can 
approximate the Fermi-Dirac distribution by its T = 0 limit, and we’ll also assume that 
the strip is so narrow that we can replace N(E) by its value at E = EF.  Then using 
Equations 10.47 and 10.49 with E = EF, we obtain for the fraction dN/N: 

  
1/ 2 24

B app 5F
3/ 2 192
F F3

3 3(9.27 10  J/T)(1 T) 2.8 10 0.0028%
2 2(3.15 eV)(1.6  10  J/eV)

BE dEdN
N E E

μ −
−

−

×
= = = = × =

×
 

 
Even with a relatively large field of 1 T, only a small fraction of the electron spins will 
flip. 

 
39. (a) The states have energies of B app B appJ JE g m B Bμ μ= − = ∓ with gJ = 2 and 1/ 2Jm = ± .   
  

24 24 5
B app (9.27 10  J/T)(0.25 T) 2.32 10  J 1.45 10  eVE Bμ − − −= = × = × = ×∓ ∓ ∓ ∓  
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At room temperature, 5(8.617 10  eV/K)(293 K) 0.0252 eVkT −= × = .  The Boltzmann 
population factors are then 
 

5

5 5

/ 1.45 10 eV/0.0252 eV

/ / 1.45 10 eV/0.0252 eV 1.45 10 eV/0.0252 eV
0.4997

1 1 0.4997 0.5003

E kT

E kT E kT

N e e
N N e e e e

N N
N N N N

−
+

− −
+ −

− − ×
+

− − − × + ×
+ −

− +

+ − + −

= = =
+ + +

= − = − =
+ +

 

 
The difference between the relative spin-down and spin-up populations is 0.0006. 

 (b) At 4.2 K, 5 4(8.617 10  eV/K)(4.2 K) 3.62 10  eVkT − −= × = ×  and so 
 

5 4

5 4 5 4

/ 1.45 10 eV/3.62 10  eV

/ / 1.45 10 eV/3.62 10  eV 1.45 10 eV/3.62 10  eV
0.480

1 1 0.480 0.520

E kT

E kT E kT

N e e
N N e e e e

N N
N N N N

− −
+

− − − −
+ −

− − × ×
+

− − − × × + × ×
+ −

− +

+ − + −

= = =
+ + +

= − = − =
+ +

 

 
 At the lower temperature, the population difference is about 4%. 
 
40. (a) For Li, with ρ = 0.534 g/cm3 and M = 6.94 g/mole, 
  

3 3 23
28 3A

3

2 7 24 2 28 3
60 B

19
F

(0.534 10  kg/m )(6.02 10  atoms/mole) 4.63 10  m
6.94 10  kg/mole

3 3(4 10  T m/A)(9.27 10  J/T) (4.63 10  m ) 10.0 10
2 2(4.70 eV)(1.60 10  J/eV)

NN
V M

N
E V

ρ

μ μ πχ

−
−

− − −
−

−

× ×
= = = ×

×

× ⋅ × ×
= = = ×

×

 

 
The experimental value for comparison is 
 

cgs 6 6
expt molar

4 4 (0.534) (14.2 10 ) 13.7 10
6.94M

πρ πχ χ − −= = × = ×  

 
(b) For Ba, with ρ = 3.50 g/cm3 and M = 137.3 g/mole, 
  

3 3 23
28 3A

3

2 7 24 2 28 3
60 B

19
F

(3.504 10  kg/m )(6.02 10  atoms/mole) 1.53 10  m
137.34 10  kg/mole

3 3(4 10  T m/A)(9.27 10  J/T) (2 1.53 10  m ) 8.5 10
2 2(3.65 eV)(1.60 10  J/eV)

NN
V M

N
E V

ρ

μ μ πχ

−
−

− − −
−

−

× ×
= = = ×

×

× ⋅ × × ×
= = = ×

×
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The experimental value for comparison is 
 

cgs 6 6
expt molar

4 4 (3.50) (20.6 10 ) 6.6 10
137.3M

πρ πχ χ − −= = × = ×  

 
41. (a) For gold, the number of free electrons per unit volume is 
 

3 3 23
28 3A (19.3 10  kg/m )(6.02 10  atoms/mole) 5.90 10  m

0.197 kg/mole
NN

V M
ρ −× ×

= = = ×  

 
The Pauli paramagnetic susceptibility is 
 

2 7 24 2 8 3
60 B

19
F

3 3(4 10  T m/A)(9.27 10  J/T) (5.90 10  m ) 10.8 10
2 2(5.53 eV)(1.60 10  J/eV)

N
E V
μ μ πχ

− − −
−

−

× ⋅ × ×
= = = ×

×
 

 
(b) The experimental volume susceptibility in SI units is 
 

3
SI cgs 6 6
volume molar

19.3 g/cm4 4 ( 28.0 10 ) 34.5 10
197 g/moleM

ρχ π χ π − −= = − × = − ×  

 
With total para diaχ χ χ= + , we have 6

dia 45.3 10χ −= − × . 
 

42. (a) For MnCl2, ρ = 3.0 g/cm3 and M = 126 g/mole.  The SI volume susceptibility is then 
  

3
SI cgs 6 3
volume molar

3.0 g/cm4 4 (14350 10 ) 4.29 10
126 g/moleM

ρχ π χ π − −= = × = ×  

 
3 3 23

28 3A (3.0 10  kg/m )(6.02 10  atoms/mole) 1.43 10  m
0.126 kg/mole

NN
V M

ρ −× ×
= = = ×  

 

 
23 3

2
2 7 28 3 24 2

0 B

3 3(1.38 10  J/K)(293 K)(4.29 10 )( 1) 33.7
( / ) (4 10  T m/A)(1.43 10  m )(9.27 10  J/T)J

kTg J J
N V

χ
μ μ π

− −

− − −

× ×
+ = = =

× ⋅ × ×
 

 
(b) The neutral Mn atom has the electronic configuration 3d 5s2.  If we remove the two 
outer 4s electrons, the Mn++ ion will have the configuration 3d 5 The 3d subshell can 
accommodate a total of 10 electrons with 5 different ml values.  Without duplicating any 
ml values, each of the five 3d electrons in Mn++ can have ms = +1/2, so we have S = 5/2.  
The 5 electrons with ms = +1/2 must use up all of the allowed ml values for l = 2 (+2, +1, 
0, −1, −2), so the total L is zero. 
(c) With 0 5 / 2 5 / 2J L S= + = + = , we have  
 

33.7 / ( 1) 33.7 /(2.5)(3.5) 1.96Jg J J= + = =  
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This is in excellent agreement with the value 2.0 expected when the magnetic moment 
depends only on the spin and not on the orbital angular momentum. 
 

43. Let a represent the spacing between the ions.  Any particular ion in the lattice will 
experience an attractive potential energy due to the two closest neighbors of the opposite 
charge: 

  
2

1
0 0

( )( ) 1 12 2
4 4
e e eU

a aπε πε
+ −

= = −  

 
At a distance of 2a from this ion, there will be two ions of the same charge, so the next 
term in the series is 
 

2

2
0

12
4 2

eU
aπε

= +  

 
The series continues as follows:  
 

2 2

3 4
0 0

1 12 and 2
4 3 4 4

e eU U
a aπε πε

= − = +  

 
and so forth.  The total potential energy is 1 2 3 4U U U U U= + + + + , or 
 

 
2 2 1 2 2

10 0 0 0

1 1 1 1 ( 1)2 2 2 (ln 2)
4 2 3 4 4 4 4

n

n

e e e eU
a a a a a n a a

α
πε πε πε πε

+∞

=

−⎛ ⎞= − − + − + = − = − = −⎜ ⎟
⎝ ⎠

∑  

 
where 2 ln 2α = . 
 

44. 
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 There does seem to be a rough correlation between cohesive energy and melting point. 
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45.  
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 There seems to be a very good correlation between cohesive energy and melting point for 

the metallic solids – the larger the cohesive energy, the higher the melting point.  The line 
shows that the relationship is very nearly linear. 

 

46. (a) With 
2 12

0

0 0

1 1( )
4 4

n

n

e ReU R
R n R

αα
πε πε

−

= − + , we obtain 

   
12

0
2 1

0

1( )
4

n

n

RdU eF R
dR R R

α
πε

−

+

⎛ ⎞
= − = − −⎜ ⎟

⎝ ⎠
 

 

(b) 
12

0
0 2 1

0 0 0

1( )
4 ( ) ( )

n

n

RdU eF R x
dR R x R x

α
πε

−

+

⎛ ⎞
+ = − = − −⎜ ⎟+ +⎝ ⎠

 

 

 

2 2

2 1 2 2
0 0 0 0 0 0 0

2 2

3 3
0 0 0 0

1 1 11 ( 1)
4 ( ) (1 / ) 4 (1 / )

( 1) ( 1)with
4 4

n

e e xn
R x x R R x R R

e n e nx kx k
R R

α α
πε πε

α α
πε πε

−

⎛ ⎞ ⎡ ⎤
= − − ≅ − −⎜ ⎟ ⎢ ⎥+ + +⎝ ⎠ ⎣ ⎦

− −
= − = − =

 

 

(c) 
2

2
3 3

0 0

( 1) (1.75)(1.44 eV nm)(8) 909 eV/nm
4 (0.281 nm)
e nk

R
α
πε

− ⋅
= = =  

 
2 2 16 2 2

12
2 6 9 2

1 1 1 (909 eV/nm )(9.00 10  m /s ) 9.83 10  Hz
2 2 2 (23 u)(931.5 10  eV/u)(10  m/nm)

k kcf
m mcπ π π −

×
= = = = ×

×
 

 

(d)   
8

6
12

3.00 10  m/s 30.5 10  m 30.6 m
9.83 10  Hz

c
f

λ μ−×
= = = × =

×
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which is in the infrared region of the electromagnetic spectrum. 
 

47. The potential energy of electric dipole B in the electric field of dipole A is B AU = − ⋅p E .  
With 3

B A Aand 1/p E E r∝ ∝ , it follows that 3
B 1/p r∝ and thus 61/U r∝ .  With 

6/U C r= , we obtain 
   

6 76dU dF Cr Cr
dr dr

− −= − = − =  

48.  
T (K) C (J/mole⋅K)  T (K) C (J/mole⋅K)  T (K) C (J/mole⋅K) 

1 0.00138  10 0.0378  50 3.83 
2 0.00292  15 0.108  60 5.78 
3 0.00475  20 0.240  70 7.75 
4 0.00705  25 0.473  80 9.64 
6 0.0135  30 0.851  90 11.4 
8 0.0238  40 2.09  100 13.0 
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The best fit with the Einstein model is obtained for an Einstein temperature of about  
280 K, but the lowest temperature data are not fit very well. 
(b) 
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The slope of the line is b = 2.55 × 10−5 J/mole⋅K4.  From Equation 11.12 we have  
 

1/3 1/34 4

D 5 4

12 12 (8.31 J/mole K) 430 K
5 5(2.44 10  J/mole K )

RT
b
π π

−

⎛ ⎞ ⎡ ⎤⋅
= = =⎜ ⎟ ⎢ ⎥× ⋅⎝ ⎠ ⎣ ⎦

 

 
The intercept of the line is 1.37 × 10−3 J/mole⋅K2.  With EF = 11.7 eV, Equation 11.9 
gives the expected intercept as  
  

2 2 5
4 2

F

3 3 (8.617 10  eV/K)(8.31 J/mole K) 9.06 10  J/mole K
2 2(11.7 eV)

kRa
E

π π −
−× ⋅

= = = × ⋅  

 
The expected value can be forced into agreement with the value deduced from the graph 
if we modify the Fermi energy by reducing it by a factor of 1.51.  This reduction in the 
Fermi energy in turn comes about by using an effective mass for the electron that is 1.51 
times its actual mass. 
 

49. (a)  
T (K) C (J/mole⋅K)  T (K) C (J/mole⋅K)  T (K) C (J/mole⋅K)

1 0.00118  10 0.433  50 14.3 
2 0.00493  15 1.46  60 16.6 
3 0.0138  20 3.13  70 18.3 
4 0.0315  25 5.18  80 19.5 
6 0.0985  30 7.31  90 20.5 
8 0.236  40 11.3  100 21.3 
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The best fit to the higher temperature data is for an Einstein temperature of about 135 K, 
although the Einstein model doesn’t fit the lower temperature data very well. 
(b)  
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The slope of the line is b = 4.31 × 10−4 J/mole⋅K4.  From Equation 11.12 we have  
 

1/3 1/34 4

D 4 4

12 12 (8.31 J/mole K) 165 K
5 5(4.31 10  J/mole K )

RT
b
π π

−

⎛ ⎞ ⎡ ⎤⋅
= = =⎜ ⎟ ⎢ ⎥× ⋅⎝ ⎠ ⎣ ⎦

 

 
The intercept is a = 8.95 × 10−4 J/mole⋅K2.  From Equation 11.9 we have (with EF = 5.53 
eV) 
 

2 2 5
4 2

F

(8.617 10  eV/K)(8.31 J/mole K) 6.39 10  J/mole K
2 2(5.53 eV)

kRa
E

π π −
−× ⋅

= = = × ⋅  

 
If we reduce the Fermi energy by using an effective mass for the electron of 1.40 times its 
actual mass, the expected value of the intercept will agree with the value obtained from 
the graph. 
 

50. (a) If we take 2p mE= , then 1
2 2 /dp m E dE= .  With E = EF, dE = Eg, and m = 2me, 

we have 
 

F
2

e ge F g/
E cx

p m c Em E E
Δ = =

Δ
∼  

 
(b) For aluminum,  
 

3F
2 6 3

e g

11.7 eV 197 eV nm 2.8 10  nm
0.511 10  eV 0.34 10  eV

E cx
m c E −

⋅
Δ = = ×

× ×
∼  

 
This amounts to about 104 times the atomic separation in aluminum, so the Cooper pair is 
indeed very large compared with the distance between atoms. 
 

 
T 2 
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51. (a)  
3

6662 10  eV 1.00 10  electrons
0.66 eV/electron

N ×
= = ×  

 

 (b)  3 31.00 10 1.00 10NN N
N
δδ −= = × = ×  

 

 (c)  3 31.00 10 (1.00 10 )(662 keV) 0.662 keVE N EE E
E N E
δ δ δδ− −= = × = = × =  

 
52. Grouping the constants in Equation 11.39 together, we can write the susceptibility as 
 

/ /

/ /

J J

J J

J J

J J

J J
m c T m c T

J J
m J m J

J J
m c T m c T

m J m J

m e m e
C C

e e
χ

+ −
−

=− =+
+ +

− −

=− =−

= − =
∑ ∑

∑ ∑
 

 
We then have: 
 

 

0.5 / 0.5 /

0.5 / 0.5 /

/ /

/ /

1.5 / 0.5 / 0.5 / 1.5 /

1.5 / 0.5 / 0.5 / 1.5 /

0.5 ( 0.5)1/ 2 :

(1.0) 0 ( 1.0)1:
1

(1.5) (0.5) ( 0.5) ( 1.5)3 / 2 :

c T c T

c T c T

c T c T

c T c T

c T c T c T c T

c T c T c T c T

e eJ C
e e

e eJ C
e e

e e e eJ C
e e e e

χ

χ

χ

−

−

−

−

− −

− −

+ −
= =

+

+ + −
= =

+ +

+ + − + −
= =

+ + +

 

 

  
0

1

 
 
 
 

53. The interaction energy of two adjacent dipoles in iron separated by the atomic spacing 
(0.248 nm) is 

1/T (K−1) 

max/χ χ  J = 3/2 
J = 1 
J = 1/2 
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2 7 24 2

50
3 9 3 19

(4 10  T m/A)(2.2 9.27 10  J/T) 3.4 10  eV
2 2 (0.248 10  m) (1.6 10  J/eV)

E B
r

μ μ πμ
π π

− −
−

− −

× ⋅ × ×
= = = = ×

× ×
 

 
This would correspond to a thermal energy of kT for T = 0.4 K.  That is, above about 0.4 
K the thermal energy is sufficient to destroy the tendency of the dipoles to align due to 
the interaction with neighboring dipoles.  This indicates that the dipole-dipole interaction 
is far too weak to be responsible for ferromagnetism as observed at ordinary 
temperatures. 
 

54. (a) In N2, the six 2p electrons fill all of the bonding states, with 2 electrons in each state 
(px, py, pz).  These electrons are paired with spin up and spin down.  When all electrons 
spins are paired, we expect the substance to be diamagnetic.  O2 has 2 additional 
electrons, which go into the first antibonding state.  This state includes the degenerate py 
and pz orbitals, so it is possible to have the 2 electron spins in the same direction without 
violating the Pauli principle.  So for oxygen to be paramagnetic, we must indeed have the 
two spins in the antibonding states in the same direction.  (b) NO would have a single 
electron in the antibonding state, and thus all electrons cannot be paired.  We therefore 
expect NO to be paramagnetic.  It is indeed observed to be paramagnetic, with a magnetic 
susceptibility of roughly half that of O2.   
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Chapter 12 
 
This chapter presents a basic introduction to the structure of nuclei, including masses, 
binding energies, and radioactive decays.  New to this edition are sections that improve 
the integration of nuclear properties with previous material in the text, thereby presenting 
a more coherent view of nuclear structure as a manifestation of phenomena that have 
already been discussed in quantum mechanics or applied to atoms or molecules.  
Examples of this material include proton and neutron separation energies (which are the 
counterpart of ionization energies in atoms), quantum states in nuclei (similar to states in 
potential energy wells discussed in Chapter 5 and filled in analogy to electron states in 
atoms as discussed in Chapter 8), and nuclear rotational and vibrational excited states 
(analogous to the molecular states considered in Chapter 9).  
 
 

Supplemental Materials 
 
A complete tabulation of nuclear masses, decay properties, isotopic abundances, excited 
states is: 
R. B. Firestone and V. S. Shirley, editors, Table of Isotopes, 8th Edition (Wiley, 1999). 
 
A more compact listing of radioactive isotopes and their decay properties can be found in 

the Table of Radioactive Isotopes, which is available both in print format (E. Browne 
and R. B. Firestone, editors; Wiley, 1986) and electronic format (http://ie.lbl.gov/toi/). 

 
 
 

Suggestions for Additional Reading 
 

The following are some intermediate-level, comprehensive nuclear physics texts. 
B. L. Cohen, Concepts of Nuclear Physics (McGraw-Hill, 1971). 
R. D. Evans, The Atomic Nucleus (McGraw-Hill, 1955). 
I. Kaplan, Nuclear Physics (Addison-Wesley, 1962). 
K. S. Krane, Introductory Nuclear Physics (Wiley, 1987). 
 
 
 
 

Materials for Active Engagement in the Classroom 
 
A.  Reading Quizzes 
 
1. The nuclear force 
  (1) has infinite range, like the electromagnetic or gravitational force. 
  (2) becomes infinite in strength as the distance between two particles approaches 

zero. 
  (3) is exerted by each proton or neutron on only its nearest neighbors. 
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  (4) is exerted by each proton or neutron on all other protons or neutrons in the 
nucleus. 

 
2. The binding energy of a nucleus is: 
  (1) the energy needed to remove one proton or neutron. 
  (2) the energy needed to take apart a nucleus into its constituent protons and 

neutrons. 
  (3) the energy with which the nucleus attracts the atomic electrons. 
  (4) the energy equivalent of the mass of the nucleus. 
 
3. The number of neutrons in a nucleus is: 
  (1) always equal to the number of protons. 
  (2) usually greater than the number of protons. 
  (3) usually smaller than the number of protons. 
  (4) always equal to the number of electrons in the atom. 
 
4. In which type of decay process is the total number of protons before the decay not 

equal to the total number of protons after the decay? 
  (1) Alpha decay (2) Beta decay  (3) Gamma decay 
  (4) All of the decay processes  (5) None of the decay processes 
 
5. Which of the following is allowed to change in a radioactive decay process? 
  (1) Total energy (2) Total number of nucleons (protons plus neutrons) 
  (3) Total electric charge (4) Total number of electrons 
 
Answers 1. 3 2. 2 3. 2 4. 2 5. 4 
 
 
B.  Conceptual or Discussion Questions 
 
1. Suppose we combine two nuclei of Ca to make a single nucleus of Zr. 

(a) Compared with one of the original Ca nuclei, the newly formed nucleus of Zr will 
have: 

  (1) twice the radius (2) twice the surface area (3) twice the volume 
(b) If B represents the total binding energy of a Ca nucleus, then the total binding 
energy of a Zr nucleus is approximately 

  (1) 0.5B (2) B  (3) 2B  (4) 4B  (5) 8B 
 
2. For two protons separated by a distance of about 1 fm (a typical separation in a 

nucleus), the attractive nuclear (strong) force is stronger than the Coulomb repulsion 
force.  Why then do nuclei need neutrons?   Why don’t we find nuclei with Z protons 
and zero neutrons? 

 
3. Light nuclei generally have N ≈ Z, but more massive nuclei have N ≈ 1.5Z.  That is, 

as nuclei become more massive the number of neutrons increases more rapidly than 
the number of protons.  Why?   
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4. Choose from among the following decay processes: 
  (1) Alpha decay (2) All beta decays (3) Negative beta decay 
  (4) Positive beta decay (5) Negative or positive beta decay 
  (6) Electron capture decay (7) Gamma decay (8) Alpha and gamma decays 
  (9) Alpha, electron capture, and gamma decays (10) Alpha, beta, and gamma decays 
 (a) In which type of decay might we expect to see bremsstrahlung? 
 (b) Which type of decay is accompanied by monoenergetic X rays? 
 (c) Which type of decay is accompanied by two 0.511-MeV photons? 
 (d) In which type of decay is a monoenergetic particle emitted? 
 (e) In which type of decay is new matter created? 

(f) Assuming the same Q value, in which type of decay would the residual nucleus 
have the largest kinetic energy? 

 
Answers 1. (a) 3   (b) 3   
   2. Neutrons are necessary to oppose the Coulomb force with its infinite range. 
   3. The Coulomb force (with infinite range) affects all protons in the nucleus. 
   4. (a) 5   (b) 6   (c) 4   (d) 9   (e) 2   (f) 1 
 
 

Sample Exam Questions 
 
A.  Multiple Choice 
 
1. A sample contains a large number of radioactive nuclei.  At any instant of time, the 

rate of decay is: 
  (a) directly proportional to the number of nuclei that have already decayed. 
  (b) directly proportional to the number of nuclei that have not yet decayed. 
  (c) constant in time. 
  (d) directly proportional to the half-life of the decay. 
 
2. The nuclear force:   
  (a) has infinite range.    
  (b) is generally stronger than the electromagnetic force.    
  (c) becomes infinite as the distance between particles approaches zero. 
  (d) acts on electrons that may be inside the nucleus. 
 
3. Nucleus A has a half-life T and nucleus B has a half-life 2T.  Initially the number of 

nuclei of type A equals the number of nuclei of type B.  After a certain time, 10% of 
the nuclei of type B remain.  At this same time, what fraction of the nuclei of type A 
remains? 

  (a) 5%  (b) 1%  (c) 0.01%  (d) 20% (e) 50% 
 
4. The energy necessary to remove a proton or a neutron from a nucleus is typically 

about 
  (a) 1 MeV  (b) 10 MeV  (c) 100 MeV  (d) 1000 MeV 
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5. Two nuclei of 40Ca (atomic number 20) undergo fusion to form a nucleus of 80Zr 

(atomic number 40).  The total binding energy of 40Ca is B.  What would be the best 
estimate for the total binding energy of 80Zr? 

  (a) 4B  (b) 2B  (c) B  (d) B/2  (e) B/4 
 
Answers 1. b 2. b 3. b 4. b 5. b 
 
 
B.  Conceptual 
 
1. A nucleus of 4He absorbs a photon of energy E which causes it to split apart into two 

nuclei of 2H.  The two 2H nuclei fly apart with kinetic energies K1 and K2.  Is the total 
final kinetic energy K (which is equal to K1 + K2) greater than, less than, or equal to 
the photon energy E?  EXPLAIN YOUR ANSWER. 

 
2. Suppose we can break apart a nucleus of 48

24 24Cr  in two different ways: 2 nuclei of 
24
12 12Mg  or 3 nuclei of 16

8 8O .  Is the amount of energy required to break it into two 
24
12 12Mg  greater than, less than, or equal to the amount of energy required to break it 
into three 16

8 8O ?  EXPLAIN YOUR ANSWER. 
 
3. You wish to obtain a supply of 20 free neutrons and 20 free protons.  You have 

available either one nucleus of 40Ca (Z = 20, N = 20) or two nuclei of 20Ne (Z = 10, N 
= 10).  Will the energy necessary to obtain the 20 neutrons and 20 protons from one 
40Ca nucleus be less than, greater than, or equal to the energy necessary to obtain the 
same number of neutrons and protons from the two 20Ne nuclei?   EXPLAIN YOUR 
ANSWER. 

 
4. 224Ra can decay either by alpha emission or by 12C emission.  The probability for 

alpha emission is about 109 greater than the probability for 12C emission.  How would 
you explain this great difference? 

 
Answers 1. less than 2. less than 3. greater than 
   4. The Coulomb barrier for 12C is 3 times higher than for 4He. 
 
 
C.  Problems 
 
1. (a) Natural uranium today consists of about 0.7% of the isotope 235U (half life = 7.1 × 

108 y) and 99.3 % of 238U (half life = 4.5 × 109 y).  At some time in the past, natural 
uranium would have contained 3.0% of 235U, enough to make natural water-
moderated fission reactors.  How long before the present time did this occur? 
(b) Compute the binding energy per nucleon of 238U (atomic number = 92, atomic 
mass = 238.050784 u). 
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2. Consider the decay 226 212 14
88 82 6Ra  Pb + C→ , which is similar to alpha decay.  

(a) The kinetic energy of the 14
6 C  emitted in this decay process is 26.704 MeV.  

Calculate the kinetic energy of the “recoiling” 212
82 Pb .  Assume the original 226

88 Ra is at 
rest before the decay. 
(b) Given the atomic masses of 226

88 Ra  (226.025410 u) and14
6 C  (14.003242 u), find the 

atomic mass of 212
82 Pb . 

(c) Suppose the half-life for this decay is T.  In terms of T, how long does it take for 
95% of the nuclei in a sample of 226

88 Ra to decay? 
 
3. In a process similar to alpha decay, a nucleus can emit a 12C particle instead of an 

alpha particle (4He).  Consider the decay 224 212 12
88 82 6Ra Pb + C→ .  The masses are: 

m(224Ra) = 224.020212 u; m(212Pb) = 211.991898 u; m(12C) = 12.000000 u. 
 (a) How much energy is released in this decay? 

(b) Suppose the original 224Ra is at rest.  Find the ratio of the kinetic energies 
K(12C)/K(212Pb). 

 
4. In the alpha decay of 226Ra (originally at rest) to 222Rn (m = 222.017578 u), an alpha 

particle (m = 4.002603 u) is emitted with a kinetic energy of 4.785 MeV.  The masses 
given here are atomic masses. 
(a) Find the recoil kinetic energy of the 222Rn and the total energy released in the 
decay. 

 (b) From this information, find the atomic mass of 226Ra. 
(c) The half-life of 226Ra is 1600 y.  How long must you wait for 90% of the original 
Ra nuclei in a sample to decay? 

 
5. (a) Find the total binding energy and the binding energy per nucleon for 61

28 Ni (atomic 
mass = 60.931056 u).  (b) Would you expect 61Ni to decay by beta decay?  
Neighboring nuclei are 61

29Cu  (mass = 60.933458 u) and 61
27 Co  (mass = 60.932476 u).  

Explain your answer. 
 
6. (a) Calculate the binding energy per nucleon of 8

4 Be  (atomic mass = 8.005305 u). 
(b) 8

4 Be  decays into two alpha particles, 4
2 He 4

2He2 (atomic mass = 4.002603 u).  
Calculate the kinetic energy of the two alphas if the original Be is at rest. 

 
Answers 1. (a) 1.8 × 109 y   (b) 7.57 MeV  
   2. (a) 1.763 MeV   (b) 211.991608 u   (c) 4.32T 
   3. (a) 26.4 MeV   (b) 17.7 
   4. (a) 0.086 MeV, 4.871 MeV   (b) 226.025410 u   (c) 5315 y 
   5. (a) 534.7 MeV, 8.77 MeV   (b) No, because mf > mi 
   6. (a) 7.06 MeV   (b) 0.0461 
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Problem Solutions 
 

1. (a) Fluorine has Z = 9, and given A = 19, we have N = A − Z = 19 − 9 = 10.  The symbol 
is 19

9 10F . 

 (b) Gold has Z = 79, so A = Z + N = 79 + 120 = 199.  The symbol is 199
79 120Au . 

 (c) With A = 107 and N = 60, Z = A − N = 107 − 60 = 47.  The element with Z = 47 is 
silver, and the symbol is 107

47 60Ag . 
 

2.  The atomic number of tin is Z = 50, and so the symbols are 
  

114 115 116 117 118 119 120 122 124
50 64 50 65 50 66 50 67 50 68 50 69 50 70 50 72 50 74Sn , Sn , Sn , Sn , Sn , Sn , Sn , Sn , Sn  

 
3. (a) The radius of 16O is R = (1.2 fm)A1/3 = (1.2 fm)(16)1/3 = 3.0 fm.  The Coulomb 

repulsion energy of two charges of 8e whose centers are separated by 6.0 fm is 
  

2 2 2 2

0 0

1 (1.440 MeV fm)(8 ) 15 MeV
4 4 6.0 fm

q e ZU
r rπε πε

⋅
= = = =  

 
(b) For 238U, R = (1.2 fm)A1/3 = (1.2 fm)(238)1/3 = 7.4 fm, and with Z = 92 the repulsion 
energy is 

2 2 2

0

(1.440 MeV fm)(92 ) 824 MeV
4 14.8 fm

e ZU
rπε

⋅
= = =  

 
4. (a) R = (1.2 fm)A1/3 = (1.2 fm)(197)1/3 = 7.0 fm 

  
 (b) R = (1.2 fm)A1/3 = (1.2 fm)(4)1/3 = 1.9 fm 
 
 (c) R = (1.2 fm)A1/3 = (1.2 fm)(20)1/3 = 3.3 fm 
 

 
5. (a) 1 2

n[ ( H) ( )]AB Nm Zm m X c= + −  
         [126(1.008665 u) 82(1.007825 u) 207.976652 u](931.50 MeV/u) 1636.4 MeV= + − =  

/ (1636.4 MeV) / 208 7.868 MeV per nucleonB A = =  
(b) [78(1.008665 u) 55(1.007825 u) 132.905452 u](931.50 MeV/u) 1118.5 MeVB = + − =  

/ (1118.5 MeV) /133 8.410 MeV per nucleonB A = =  
(c) [50(1.008665 u) 40(1.007825 u) 89.904704 u](931.50 MeV/u) 783.9 MeVB = + − =  

/ (783.9 MeV) / 90 8.710 MeV per nucleonB A = =  
(d) [32(1.008665 u) 27(1.007825 u) 58.933195 u](931.50 MeV/u) 517.3 MeVB = + − =  

/ (517.3 MeV) / 59 8.768 MeV per nucleonB A = =  
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6. (a) 1 2
n[ ( H) ( )]AB Nm Zm m X c= + −  

        [2(1.008665 u) 2(1.007825 u) 4.002603 u](931.50 MeV/u) 28.30 MeV= + − =  
/ (28.30 MeV) / 4 7.074 MeV per nucleonB A = =  

(b) [10(1.008665 u) 10(1.007825 u) 19.992440 u](931.50 MeV/u) 160.6 MeVB = + − =  
/ (160.6 MeV) / 20 8.032 MeV per nucleonB A = =  

(c) [20(1.008665 u) 20(1.007825 u) 39.962591 u](931.50 MeV/u) 342.1 MeVB = + − =  
/ (342.1 MeV) / 40 8.551 MeV per nucleonB A = =  

(d) [30(1.008665 u) 25(1.007825 u) 54.938045 u](931.50 MeV/u) 482.1 MeVB = + − =  
/ (482.1 MeV) / 55 8.765 MeV per nucleonB A = =  

 
7. 3 He: [1(1.008665 u) 2(1.007825 u) 3.016029 u](931.50 MeV/u) 7.718 MeVB = + − =  

 3 H: [2(1.008665 u) 1(1.007825 u) 3.016049 u](931.50 MeV/u) 8.482 MeVB = + − =  
 The radius of a nucleus with A = 3 is 1/ 3 1/ 31.2 1.2(3) 1.7 fmR A= = =  and the Coulomb 

repulsion energy of two protons separated by 1.7 fm is 
2

0

1 1.440 eV nm 0.85 MeV
4 1.7 fm

eU
Rπε

⋅
= = =  

This is very close to the difference in binding energy of 8.482 MeV − 7.718 MeV = 0.764 
MeV, which suggests that the smaller binding energy of 3He arises primarily from the 
Coulomb repulsion of its two protons. 
 

8. (a)  17 16 17 2
n n( O) [ ( O) ( O)]S m m m c= + −  

   [1.008665 u 15.994915 u 16.999132 u](931.50 MeV/u) 4.143 MeV= + − =  
 (b)  7 6 7 2

n n( Li) [ ( Li) ( Li)]S m m m c= + −  
   [1.008665 u 6.015123 u 7.016005 u](931.50 MeV/u) 7.250 MeV= + − =  
 (c)  57 56 57 2

n n( Fe) [ ( Fe) ( Fe)]S m m m c= + −  
   [1.008665 u 55.934937 u 56.935394 u](931.50 MeV/u) 7.647 MeV= + − =  
 

9. (a)  4 1 3 4 2
p ( He) [ ( H) ( H) ( He)]S m m m c= + −  

   [1.007825 u 3.016049 u 4.002603 u](931.50 MeV/u) 19.814 MeV= + − =  
 (b)  12 1 11 12 2

p ( C) [ ( H) ( B) ( C)]S m m m c= + −  
   [1.007825 u 11.009305 u 12.000000 u](931.50 MeV/u) 15.958 MeV= + − =  
 (c)  40 1 39 40 2

p ( Ca) [ ( H) ( K) ( Ca)]S m m m c= + −  
   [1.007825 u 38.963707 u 39.962591 u](931.50 MeV/u) 8.329 MeV= + − =  
 
10. By analogy with Equation 12.8, 
  

2 197 MeV fm 790 MeV
0.25 fm

cmc
x

⋅
= = =  
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11. 3
2 3

197 MeV fm 2.5 10 fm
80 10 MeV

cx
mc

−⋅
= = = ×

×
 

 
12. (a) We first need the proton and neutron separation energies for 16O: 

     
     16 1 15 16 2

p ( O) [ ( H) ( N) ( O)]S m m m c= + −  
      [1.007825 u 15.000109 u 15.994915 u](931.50 MeV/u) 12.127 MeV= + − =  

     16 15 16 2
n n( O) [ ( O) ( O)]S m m m c= + −  

      [1.008665 u 15.003066 u 15.994915 u](931.50 MeV/u) 15.664 MeV= + − =  
 
The nuclear radius of 16O is 1/3 1/3

0 (1.2 fm)16 3.0 fmR R A= = = so the volume of the 
nucleus is 3 34

3 116 fmV Rπ= = .  The Fermi energy of the protons and neutrons is 
 

 

2 /32 /32 2

Fp 2 3

2/32 /32 2

Fn 2 3

( ) 3 (1240 eV nm) 3 8 33.
2 8 2(938.3 MeV) 8 (116 fm )
( ) 3 (1240 eV nm) 3 8 33.
2 8 2(939.6 MeV) 8 (116 fm )

hc ZE
mc V
hc NE
mc V

π π

π π

⎛ ⎞⋅ ⋅⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⋅ ⋅⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

The well depths are then the sums of the separation energy and Fermi energy: 
  

 0p p Fp

0n n Fn

12.127 MeV 33.4 MeV 45.4 MeV
15.664 MeV 33.4 MeV 49.1 MeV

U S E
U S E

= + = + =
= + = + =

 

 
(b) For 235U we have 
 
     235 1 234 235 2

p ( U) [ ( H) ( Pa) ( U)]S m m m c= + −  
        [1.007825 u 234.043308 u 235.043930 u](931.50 MeV/u) 6.710 MeV= + − =  

     235 234 235 2
n n( U) [ ( U) ( U)]S m m m c= + −  

               [1.008665 u 234.040952 u 235.043930 u](931.50 MeV/u) 5.297 MeV= + − =  
  
 1/3 1/3 34 4

0 3 3(1.2 fm)235 7.4 fm andR R A V Rπ π= = = = =
 

2 /32 /32 2

Fp 2 3

2/32 /32 2

Fn 2 3

( ) 3 (1240 eV nm) 3 92 28.4 MeV
2 8 2(938.3 MeV) 8 (1700 fm )
( ) 3 (1240 eV nm) 3 143 38.1 MeV
2 8 2(939.6 MeV) 8 (1700 fm )

hc ZE
mc V
hc NE
mc V

π π

π π

⎛ ⎞⋅ ⋅⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⋅ ⋅⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
0p p Fp

0n n Fn

6.710 MeV 28.4 MeV 35.1 MeV
5.297 MeV 38.1 MeV 43.4 MeV

U S E
U S E

= + = + =
= + = + =
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13.   Starting with 160Dy, we first extract 2 neutrons and then extract 2 protons from the 
resulting 158Dy.  The total energy cost is 
  

160 158
2n 2p( Dy) ( Dy) 15.4 MeV 12.4 MeV 27.8 MeVE S S= + = + =  

 
 The gain in energy if those 4 nucleons were formed into an alpha particle would be 28.3 

MeV, and thus there is an excess energy of 0.5 MeV available and alpha decay is 
allowed.  (However, the barrier penetration probability for such a low-energy alpha 
particle is extremely small, and as a result 160Dy is a stable nucleus.) 

  Starting instead with 164Dy, we first extract 2 neutrons and then 2 protons from 
the resulting 162Dy.  The total energy cost is 

 
164 162

2n 2p( Dy) ( Dy) 13.9 MeV 14.8 MeV 28.7 MeVE S S= + = + =  
 
 The energy cost exceeds the gain (28.3 MeV) obtained by forming an alpha particle, so 

alpha decay is strictly forbidden for 164Dy. 
 
14. 1/ 2 1/ 20.693 / /

0/ 0.5t t t ttN N e eλ −−= = =  
 (a) 2

1/ 2 0/ 2 : / 0.5 0.25 1/ 4t t N N= = = =  
 (b) 4

1/ 2 0/ 4 : / 0.5 0.0625 1/16t t N N= = = =  
 (a) 10

1/ 2 0/ 10 : / 0.5 1/1024 0.000977t t N N= = = =  
 

15. (a) With a0 = 548 s−1 and a = 213 s−1 at t = 48 min, the radioactive decay equation 
0

ta a e λ−=  gives 1/ 20.693(48 min) /1 1213 s (548 s ) te−− −= or 
  

1

1/ 21
1/ 2

213 s 0.693(48 min)ln so 35 min
548 s

t
t

−

− = − =  

 

(b)   1

1/ 2

0.693 0.693 0.020 min
35 mint

λ −= = =  

 
(c)  

-11 (0.020 min )(125 min) 1
0 (548 s ) 46 sta a e eλ− − − −= = =  

 

16. With 4
1/ 2 5.0 h 1.8 10 st = = × ,    5

4
1/ 2

0.693 0.693 3.9 10 s
1.8 10 st

λ −= = = ×
×

 

 
17.    1/ 20.693 / 0.693(50.0 y)/(12.3 y)

0/ 0.0598t tN N e e− −= = =  
 

18. (a)  10 1 7 1
0 (2.00 mCi)(3.7 10 s /Ci) 7.40 10 sa − −= × = ×  

 (b)  1/ 20.693 / 7 1 0.693(28 d) /(8.04 d) 6 1
0 (7.40 10 s ) 6.62 10 st ta a e e− − − −= = × = ×  
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19. (a)  23 251000 g 6.022 10 atoms/mole 1.54 10 atoms
39.1 g/mole

N = × = ×  

        
 Of these, 0.012% or 1.85 × 1021 are radioactive 40K.  The activity is 

  

 21 4 1
9 7

1/ 2

0.693 0.693 1.85 10 3.1 10 s 0.85 Ci
(1.3 10 y)(3.156 10 s/y)

a N N
t

λ μ−= = = × = × =
× ×

 

 
(b)  In a sample of N atoms, Nr are radioactive and Nnr are nonradioactive ( r nrN N N= + ).  
Presently, r / 0.012%N N = .  With r r0

tN N e λ−= , we obtain for the original number of 
radioactive nuclei 

 
9 90.693(4.5 10 y) /(1.3 10 y)

r0 r r r11.0tN N e N e Nλ × ×= = =  
 
At that time (4.5 × 109 years ago), the total number was 0 nr r0N N N= + and the fraction of 
40K was 
  

 
4

r0 r0 r r r
4

0 nr r0 nr r r r

11 11 11( / ) 11(1.2 10 ) 0.13%
11 10 1 10( / ) 1 10(1.2 10 )

N N N N N N
N N N N N N N N N

−

−

×
= = = = = =

+ + + + + ×
 

 
20. Conservation of momentum gives 'Xp pα= , if the original decaying nucleus is at rest. 
  

2 2 2 2 2
'

'
' ' ' '

1 1
2 2 2 2 2

X
X

X X X X

p p p p p m mQ K K K
m m m m m m m

α α α α α α
α α

α α α

⎛ ⎞ ⎛ ⎞
= + = + = + = + = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 

'

' '1 /
X

X X

Q mK Q
m m m mα

α α

⎛ ⎞
= = ⎜ ⎟+ +⎝ ⎠

 

 
To a very good approximation,  
 

' '( 4) u and ( 4) u 4 u uX Xm A m m A Aα≅ − + ≅ − + =  
 
so 
 

4AK Q
Aα
−⎛ ⎞≅ ⎜ ⎟

⎝ ⎠
 

 
21. (a)  210 206 210 206 4 2Bi Tl : [ ( Bi) ( Tl) ( He)]Q m m m cα→ + = − −  
  [209.984120 u 205.976110 u 4.002603 u](931.50 MeV/u) 5.04 MeVQ = − − = +  
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(b)  203 199 203 199 4 2Hg Pt : [ ( Hg) ( Pt) ( He)]Q m m m cα→ + = − −  
  [202.972872 u 198.970593 u 4.002603 u](931.50 MeV/u) 0.30 MeVQ = − − = −  

 
(c)  211 207 211 207 4 2At Bi : [ ( At) ( Bi) ( He)]Q m m m cα→ + = − −  

  [210.987496 u 206.978471 u 4.002603 u](931.50 MeV/u) 5.98 MeVQ = − − = +  
 
22. 234 230 234 230 4 2U Th : [ ( U) ( Th) ( He)]Q m m m cα→ + = − −  
  [234.040952 u 230.033134 u 4.002603 u](931.50 MeV/u) 4.859 MeVQ = − − =  
 

4 230(4.859 MeV) 4.776 MeV
234

AK Q
Aα
−⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
23. For negative beta decay, 1 eA A

Z ZX X ν−
+ ′→ + + , using nuclear masses mN and neglecting 

the mass of the neutrino, 
2

N N 1 e[ ( ) ( ) ]A A
Z ZQ m X m X m c+ ′= − −  

Converting the nuclear masses to atomic masses and neglecting the atomic binding 
energy of the electrons, we then obtain 
 

2 2
e 1 e e 1{[ ( ) ] [ ( ) ( 1) ] } [ ( ) ( )]A A A A

Z Z Z ZQ m X Zm m X Z m m c m X m X c+ +′ ′= − − − + − = −  
 
For positron beta decay, 1 eA A

Z ZX X ν+
− ′→ + + ,  

  
2

N N 1 e

2
e 1 e e 1 e

[ ( ) ( ) ]

{[ ( ) ] [ ( ) ( 1) ] } [ ( ) ( ) 2 ]

A A
Z Z

A A A A
Z Z Z Z

Q m X m X m c

m X Zm m X Z m m c m X m X m c

−

− −

′= − −

′ ′= − − − − − = − −
 

 
For electron capture, 1eA A

Z ZX X ν−
− ′+ → + ,  

  
2

N e N 1

2
e e 1 e 1

[ ( ) ( )]

{[ ( ) ] [ ( ) ( 1) ]} [ ( ) ( )]

A A
Z Z

A A A A
Z Z Z Z

Q m X m m X c

m X Zm m m X Z m c m X m X c

−

− −

′= + −

′ ′= − + − − − = −
 

 
24. For 11 11Be B e ν−→ + + , assuming the antineutrino mass is negligible, 
 
 11 11[ ( Be) ( B)] [11.021658 u 11.009305 u](931.50 MeV/u) 11.506 MeVQ m m= − = − =  

 
With B eQ K K Kν= + + , the electrons have their maximum kinetic energy when the 
antineutrino energy is zero, and assuming the kinetic energy of the 11B is negligibly 
small, we conclude that the maximum electron kinetic energy is 
 

e,max 11.506 MeVK Q= =  



 260

25. With 75 75Se + e As ν− → +  and assuming the neutrino mass is negligible,  
  

 75 75 2[ ( Se) ( As)] [74.922523 u 74.921596 u](931.5Q m m c= − = −
 
Then As eQ K E Kν= + − and neglecting the electron and As kinetic energies, 
 

0.864 MeVE Qν = =  
 
26. (a) With 15 15O N e ν+→ + +  and assuming a negligible neutrino mass,  
  

  
15 15 2

e[ ( O) ( N) 2 ]

[15.003066 u 15.000109 u](931.50 MeV/u) 2(0.511 MeV) 1.732 MeV

Q m m m c= − −

= − − =
 

 
(b) With N eQ K K Kν= + + , the kinetic energy of the 15N is negligibly small and the  
electrons have their maximum kinetic energy when the neutrino energy is zero.  Thus  
 

e,max 1.732 MeVK Q= =  
 

27. Let E1 = 0.000 MeV represent the ground state, and E2 = 0.412 MeV and E3 = 1.088 MeV 
then represent the excited states.  Neglecting the small recoil energy, the energies of the 
emitted gamma rays are equal to the energy differences between the levels: 

 
12 2 1

13 3 1

23 3 2

0.412 MeV 0.000 MeV 0.412 MeV

1.088 MeV 0.000 MeV 1.088 MeV

1.088 MeV 0.412 MeV 0.676 MeV

E E E

E E E

E E E

Δ = − = − =

Δ = − = − =

Δ = − = − =

 

 
28. (a) If we assume that 5 MeV is the kinetic energy of the alpha particle, then from 

Equation 12.23 we can find the Q value to be /( 4)Q K A Aα= − , and combining this 
result with Equation 12.21 we can find the recoil energy of the nucleus X′: 
 

4 4 (5.0 MeV) 0.10 MeV
4 4 196X

AK Q K K K K
A Aα α α α′ = − = − = = =
− −

 

 
 (b)  The gamma-ray recoil energy is given by Equation 12.38: 

 
2 2

5
R 2

(5.0 MeV) 6.7 10  MeV 67 eV
2 2(200 u)(931.5 MeV/u)

E
K

Mc
γ −= = = × =  

 
The recoil energy from the alpha decay is about three orders of magnitude larger than that 
from the gamma decay. 
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29. L = 1 → L = 0:   ΔE10 = E1 − E0 = 100.1 keV – 0 = 100.1 keV 
 L = 2 → L = 0:   ΔE20 = E2 − E0 = 300.9 keV – 0 = 300.9 keV 
 L = 2 → L = 1:   ΔE21 = E2 − E1 = 300.9 keV – 100.1 keV = 200.8 keV 
 L = 3 → L = 1:   ΔE31 = E3 − E1 = 603.6 keV – 100.1 keV = 503.5 keV 
 L = 3 → L = 2:   ΔE32 = E3 − E2 = 603.6 keV – 300.9 keV = 302.7 keV 
 L = 4 → L = 2:   ΔE42 = E4 − E2 = 1010.0 keV – 300.9 = 709.1 keV 
 L = 4 → L = 3:   ΔE43 = E4 − E3 = 1010.0 keV – 603.6 = 406.4 keV 

 
30. The ratio of the number of Th atoms to the number of Pb atoms is 
   

Th PbTh Th Th

Pb Pb Pb Pb Th

/ (3.65 g)(208 g/mole) 4.36
/ (0.75 g)(232 g/mole)

A

A

m MN m N MR
N m N M m M

= = = = =  

 
10

91/ 2 1 1.41 10  y 1ln 1 ln 1 4.2 10  y
0.693 0.693 4.36

tt
R

×⎛ ⎞ ⎛ ⎞= + = + = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
31. 232 208 4

90 142 82 126 2 2 e eTh Pb He eN N Nα ν−→ + + +  
 (a) Balancing the mass numbers, we obtain 

    232 208 4 or 6N Nα α= + =  

(b)  Balancing the electric charges, we obtain 

  e e90 82 2 or 4N N Nα= + − =  

(c)  232 208 4 2[ ( Th) ( Pb) 6 ( He)]Q m m m c= − −  
         [232.038050 u 207.976636 u 6(4.002603 u)](931.50 M= − −
 
(d) The number of atoms in the sample is 
 

23
24A (1000 g)(6.022 10 atoms/mole) 2.60 10 atoms

232 g/mole
mNN

M
×

= = = ×  

E L 

0.0 
100.1 
300.9 

603.6 

1010.0 

0
1

2

3

4
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24 6 1

10 7

0.693 (2.60 10 ) 4.07 10 s
(1.40 10 y)(3.156 10 s/y)

a Nλ −= = × = ×
× ×

 

 
13 6 1(42.659 MeV)(1.602 10 J/MeV)(4.07 10 s ) 27.8 WP μ− −= × × =  

 
 

32.    3.5 decays/min = (12.4 decays/min) te λ−  
  

 
1 1

4ln(12.4 min / 3.5 min ) 1.26 1.04 10 y
0.693/ 5730 y

t
λ

− −

= = = ×  

 
33. For 60° scattering with K = 28 MeV, Equation 6.8 gives 
  

2

0

(2)(82)cot (1.440 MeV fm)(cot30 ) 7.3 fm
2 4 2 2(28 MeV)
zZ eb
K

θ
πε

= = ⋅ ° =  

 
The minimum distance between alpha particle and nucleus is found from Equation 6.18: 
  

2 2

2
min 0 min

2
2 2 2

min min min min
0

4

0 or 8.43 53.35 0
4

b e zZK K
r r

e zZr r b r r
K

πε

πε

= +

− − = − − =

 

 
with all distances expressed in fm.  Using the quadratic formula, we find solutions for 
rmin = 12.6 fm or −4.2 fm.  The negative root is physically unacceptable, so we conclude 
 

rmin = 12.6 fm 
 
The nuclear radius of 208Pb is R = (1.2 fm)A1/3 = (1.2 fm)(208)1/3 = 7.1 fm.  The minimum 
distance is thus greater than the nuclear radius of 208Pb, and even when we include the 
nuclear radius of the alpha particle (1.9 fm) we might question why the Rutherford 
formula fails even when the projectile and target are still “outside” of each other’s 
nuclear charge distributions.  Figure 12.1 shows that the nuclear charge actually extends 
1-2 fm beyond the computed mean radius, so the alpha particle charge distribution 
extends to 3-4 fm and 208Pb to 8-9 fm.  It is therefore not surprising that they begin to 
overlap in the range of 12-13 fm. 
 

34. For diffraction by a circular disk, the first minimum occurs at 1sin 1.22 / Dθ λ−= .  For 
12C at 420 MeV, θ = 51° and the diameter of the disk is 
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1.22 1.22 (1.22)(1240 MeV fm) 4.64 fm so 2.32 fm
sin sin (sin51 )(420 MeV)

hcD R
E

λ
θ θ

⋅
= = = = =

°
 

 
For 16O at 420 MeV, θ = 45° and 

 
1.22 (1.22)(1240 MeV fm) 5.09 fm so 2.54 fm
sin (sin 45 )(420 MeV)

hcD R
Eθ

⋅
= = = =

°
 

 
For 16O at 360 MeV, θ = 53° and 
 

1.22 (1.22)(1240 MeV fm) 5.26 fm so 2.63 fm
sin (sin53 )(360 MeV)

hcD R
Eθ

⋅
= = = =

°
 

 
35. We assume that the radiation is emitted by the source uniformly in all directions.  It is 

thus distributed over a sphere of radius R = 25 cm and area 4πR2, and the detector 
receives a fraction of the radiation equal to the fraction of the area that it occupies.  If as 
represents the actual activity of the source and ad represents the activity measured by the 
detector of radius r, then 2 2

d s ( / 4 )a a r Rπ π=  or 

2 2
1 6 1

s d 2 2

4 4 (25 cm)(1250 s ) 1.39 10 s 37.5 Ci
(1.5 cm)

Ra a
r
π π μ
π π

− −= = = × =  

 

36.  
5 2 6 3(5.0 10 N/m )(125 10 m ) 0.0251 mole

(8.31 J/mole K)(300 K)
PVn
RT

−× ×
= = =

⋅
 

 
 23 22(0.0251 mole)(6.022 10  molecules/mole)(2 atoms/moleclule) 3.02 10 atomsN = × = ×  

 
22

13 1
7

1/ 2

0.693 0.693(3.02 10 ) 5.39 10 s 1460 Ci
(12.3 y)(3.156 10 s/y)

Na N
t

λ −×
= = = = × =

×
 

 
37. (a) Let 1n nt t t+ = + Δ .  The number of decays Nn between tn and tn+1 is 

1
1 0 0 0 0( ) ( ) (1 ) ( )n n n nt t t tt

n n nN N t N t N e N e N e e N e tλ λ λ λλ λ+− − − −− Δ
+= − = − = − ≅ Δ  

 for 1/t λΔ .  The mean lifetime is then  
 

0

1
n nt t

n n n n
n n n

N t e t t e t t
N

λ λτ λ λ− −= = Δ = Δ∑ ∑ ∑  

 
If the time interval Δt becomes infinitesimally small, the sum becomes an integral: 
  

0

te t dtλτ λ
∞ −= ∫  



 264

(b) 00 0

1 1 1 1( ) ( ) [ ( 1)]t x xe t d t e x dx e xλτ λ λ
λ λ λ λ

∞ ∞− − − ∞= = = − − =∫ ∫  

 

(c) 1/ 2
1/ 2 1/ 2

1 1.44 so
0.693

t t tτ τ
λ

= = = >  

 
38. (a) 27 27

14 13 13 14Si Al e ν+→ + +  
 (b) 74 74

33 41 34 40As Se e ν−→ + +  
 (c) 228 4 224

92 136 2 2 90 134U He Th→ +  

 (d) 93 93
42 51 41 52Mo e Nb ν−+ → +  

 (e) 131 131
53 78 54 77As Xe e ν−→ + +  

 
39. 1.00 g of 239Pu is 1/239 mole or (6.022 × 1023)/239 = 2.52 × 1021 atoms.  The activity is 
  

21
9 1

4 7
1/ 2

0.693 (0.693)(2.52 10 ) 2.30 10 s
(2.41 10 y)(3.156 10 s/y)

Na N
t

λ −×
= = = = ×

× ×
 

 
The energy output per 239Pu nucleus is 
 

239 235 4 2[ ( Pu) ( U) ( He)]

[239.052163 u 235.043930 u 4.002603 u](931.50 MeV/u) 5.245 MeV

Q m m m c= − −

= − − =
 

   
An energy output of 5.245 MeV = 8.404 × 10−13 J is released in each decay, and there are 
2.30 × 109 decays per second, so the power output is 
  

13 9 1 3(8.404 10 J)(2.30 10 s ) 1.93 10 WP − − −= × × = ×  
 

40. The mass of 224Ra in its excited state is 0.217 MeV224.020212 u 224.020445 u
931.50 MeV/u

+ = . 

 The Q-value for the decay 228 224Th Ra α→ +  is 
228 224 4 2[ ( Th) ( Ra) ( He)]

[228.028741 u 224.020445 u 4.002603 u](931.50 MeV/u) 5.303 MeV

Q m m m c= − −

= − − =
 

   
4 224(5.303 MeV) 5.210 MeV

228
AK Q

Aα
−⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
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41. For 232Th, 1/ 3 1/ 31.2 1.2(232) 7.37 fmR A= = = and 
  

2

B
0

2

0

2

1
0 B 02

02

( ) (1.440 MeV fm)(2)(88) 34.37 MeV
4 7.37 fm

( ) (1.440 MeV fm)(2)(88) 63.20 fm
4 4.01 MeV

2 2(34.01 MeV) 0.135
3727 MeV

( ) 19.20 MeV so 15.19 MeV

2 2(3727 MeV)( )
(

e z Z zU
R

e z Z zR
K

v K
c mc

U U K U K

mk U K

α

α α

α

πε

πε

− ⋅
= = =

− ⋅′ = = =

= = =

= + = − =

= − = 1
2

8
2 2(47.74) 20 1

15

(15.19 MeV) 1.71 fm
197 MeV fm)

27.92 fm so 47.74
2

(0.135)(3.00 10 m/s) 1.04 10 s
2 2(7.37 10 m)

kL

R RL kL

v e e
R

λ

−

− − − −
−

=
⋅

′ −
= = =

×
= = = ×

×

 

 
For 218Th, 1/ 3 1/ 31.2 1.2(218) 7.22 fmR A= = = and 

  
2

B
0

2

0

2

1
0 B 02

02

( ) (1.440 MeV fm)(2)(88) 35.10 MeV
4 7.22 fm

( ) (1.440 MeV fm)(2)(88) 25.73 fm
4 9.85 MeV

2 2(39.85 MeV) 0.146
3727 MeV

( ) 22.48 MeV so 12.63 MeV

2 2(3727 MeV)( )
(

e z Z zU
R

e z Z zR
K

v K
c mc

U U K U K

mk U K

α

α α

α

πε

πε

− ⋅
= = =

− ⋅′ = = =

= = =

= + = − =

= − = 1
2

8
2 2(14.45) 8 1

15

(12.63 MeV) 1.56 fm
197 MeV fm)

9.26 fm so 14.45
2

(0.146)(3.00 10 m/s) 9.0 10 s
2 2(7.22 10 m)

kL

R RL kL

v e e
R

λ

−

− − −
−

=
⋅

′ −
= = =

×
= = = ×

×
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42. (a)  For 226Ra, 1/ 3 1/ 31.2 1.2(226) 7.31 fmR A= = = and 
  

2

B
0

2

0

2

1
0 B 02

02

( ) (1.440 MeV fm)(2)(86) 33.88 MeV
4 7.31 fm

( ) (1.440 MeV fm)(2)(86) 51.76 fm
4 4.785 MeV

2 2(34.785 MeV) 0.1366
3727 MeV

( ) 19.33 MeV so 14.545 MeV

2 2(3727 M( )

e z Z zU
R

e z Z zR
K

v K
c mc

U U K U K

mk U K

α

α α

α

πε

πε

− ⋅
= = =

− ⋅′ = = =

= = =

= + = − =

= − = 1
2

8
2 2(37.12) 11 1

15

eV) (14.545 MeV) 1.67 fm
(197 MeV fm)

22.23 fm so 37.12
2

(0.1366)(3.00 10 m/s) 1.5 10 s
2 2(7.31 10 m)

kL

R RL kL

v e e
R

λ

−

− − − −
−

=
⋅

′ −
= = =

×
= = = ×

×

 

  

For 14C emission, Q = 28.215 MeV and C
14 26.47 MeVAK Q

A
−

= = . 
2

B
0

2

0

2

1
0 B C 0 C2

0 C2

( ) (1.440 MeV fm)(6)(82) 96.92 MeV
4 7.31 fm

( ) (1.440 MeV fm)(6)(82) 26.77 fm
4 26.47 MeV

2 2(56.47 MeV) 0.093
(14 u)(931.50 MeV/u)

( ) 61.70 MeV so 35.23 MeV

2 (

e z Z zU
R

e z Z zR
K

v K
c mc

U U K U K

mk U K

α

πε

πε

− ⋅
= = =

− ⋅′ = = =

= = =

= + = − =

= − 1
2

8
2 2(47.39) 20 1

15

2(14 u)(931.50 MeV/u)) (35.23 MeV) 4.87 fm
(197 MeV fm)

9.73 fm so 47.39
2

(0.093)(3.00 10 m/s) 1.4 10 s
2 2(7.31 10 m)

kL

R RL kL

v e e
R

λ

−

− − − −
−

= =
⋅

′ −
= = =

×
= = = ×

×

 

 

 (b)  
20 1

9C
11 1

1.4 10 s 1.1 10
1.5 10 sα

λ
λ

− −
−

− −

×
= = ×

×
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43. (a) In the decay n p e ν−→ + + , assume the neutrino is of negligible mass and carries no 
energy.  Then 

  

 
2

n p e p p e

2 2
p e n p (1.0086650 u 1.0072765 u)(931.50 MeV/u) 1.293 MeV

E E E m c K E

K E m c m c

= + = + +

+ = − = − =
 

 
Momentum conservation (with the initial neutron at rest) gives p ep p= .  The proton can 

be treated nonrelativistically, but the electron is relativistic.  With 2 2 2 2
e e e( ) ( )E p c m c= + , 

  
2 2 2 2 2 2 2 2 2 2 2

p e e e p e p p e

2 2
p p

( 1.293 MeV) ( ) ( ) ( ) ( ) 2 ( )

(1879.15 MeV) 1.412 MeV 0

K E p c m c p c m c m K c m c

K K

− = = + = + = +

− + =
 

 
Solving using the quadratic formula, we find two roots: 7.52 × 10−4 MeV and 1879.15 
MeV.   Only the smaller root is physically meaningful, so 
 

Kp = 7.52 × 10−4 MeV 
 
(b)  For the neutrino to have its maximum energy, the electron must have a kinetic energy 
of zero.  In this case 
 

2 2 2
n n p p e

2 2 2
n p e p p( ) 0.782 MeV

E m c K m c m c E

E m c m c m c K K

ν

ν

= = + + +

= − − − = −
 

  
In analogy with the results of part (a), we know that Kp will be small (of order 10−4 
MeV).  Thus to a good approximation 0.782 MeVEν = , and with p /p p E cν ν= = , 
  

2 2 2 2
p 4

p 2
p p p

(0.782 MeV) 3.26 10 MeV
2 2 2 2(938.3 MeV)
p p EK
m m m c

ν ν −= = = = = ×  

 
44. For 24 24Na Mg e ν−→ + + , 
 

24 24 2[ ( Na) ( Mg)] [23.990963 u 23.985042 u](931.50 MeV/u) 5.515 MeVQ m m c= − = − =
 

 With Mg eQ K K Eν= + +  and neglecting KMg, we obtain 
 

e 5.515 MeV 2.15 MeV 3.37 MeVE Q Kν = − = − =  
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45. (a)  
16

9
9

6.58 10 eV s 4.67 10 eV
141 10 s

E
τ

−
−

−

× ⋅
Δ = = = ×

×
 

 (b) 
2 2

3
2

(14.4 keV) 1.95 10 eV
2 2(56.935 u)(931.50 MeV/u)

E
K

mc
γ −= = = ×  

 (c) 
9

134.67 10 eV 3.24 10 0.097 mm/s
14.4 keV

Ev c c c
E

−
−Δ ×

= = = × =  

 
46. The volume of CO2 in one breath is (0.0003)(0.5 L) = 1.5 × 10−4 L = 1.5 × 10−7 m3.  The 

number of CO2 molecules is then 
 

5 7 3
18

23

(1.01 10  Pa)(1.5 10  m ) 3.75 10
(1.38 10  J/K)(293 K)

PVN
kT

−

−

× ×
= = = ×

×
 

 
so the number of 14C atoms in the lungs will be about N14 = 10−12N = 3.75 × 106.   

Because the decay constant λ gives the decay probability per nucleus per unit 
time, the total probability for decay in a time interval Δt is 
 

6 5
14 7

0.693probability (3.75 10 )(3.5 s) 5.0 10
(5730 y)(3.155 10  s/y)

N tλ −= Δ = × = ×
×
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Chapter 13 
 
This chapter broadens the previous study of nuclear science from Chapter 12 by 
including nuclear reactions, including fission and fusion.  To improve continuity, the 
section fission opens with a discussion of fission as a competing mode of radioactive 
decay for certain nuclei before moving on to neutron-induced fission.  In this new edition 
there is less discussion of them technology of reactors compared with the 2nd edition.  
The discussion of fusion has been updated to include reference to the current facilities 
attempting to exploit fusion by magnetic confinement and inertial confinement.  Because 
much current nuclear research is oriented toward studying astrophysics, a section on 
nucleosynthesis has been added to this chapter. 
 
 

Supplemental Materials 
 
The Nuclear Science Wall Chart (Contemporary Physics Education Project, 1997) 
contains much useful information about nuclear reactions.  The accompanying on-line 
guide (http://www.lbl.gov/abc/wallchart/guide.html) provides supporting information as 
well as links to references and other sites.  The content covers fission, fusion, 
nucleosynthesis, transuranic elements, and applications of nuclear science.   
 
 

Suggestions for Additional Reading 
 
See the references listed in Chapter 12 for more detail on nuclear reactions. Other 
references at about the same level as this chapter are: 
H. Semat and J. R. Albright, Introduction to Atomic and Nuclear Physics (Holt, Rinehart 

and Winston, 1972). 
M. R. Wehr, J. A. Richards, and T. W. Adair, Physics of the Atom (Addison-Wesley, 

1984). Particularly good discussion of fission reactors. 
 
A detailed history of the development of fission is: 
R. Rhodes, The Making of the Atomic Bomb (Simon and Schuster, 1986). 
 
The natural fission reactor is discussed in: 
G. A. Cowan, “A Natural Fission Reactor,” Scientific American 235, 36 (July 1976). 
A. P. Meshik, “The Workings of an Ancient Nuclear Reactor,” Scientific American 293, 
82 (November 2005). 
 
For a comprehensive and nontechnical history of fusion, see: 
R. Herman, Fusion: The Search for Endless Energy (Cambridge University Press, 1990). 
T. K. Fowler, The Fusion Quest (Johns Hopkins University Press, 1997). 
 
The history of progress in fusion power development can be traced through a series of 
articles in Scientific American, including the following: W. C. Gough and B. J. Eastland, 
“The Prospects of Fusion Power,” (February 1971); M. J. Lubin and A. P. Fraas, “Fusion 

http://www.lbl.gov/abc/wallchart/guide.html
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by Laser,” (June 1971); B. Coppi and J. Rem, “The Tokamak Approach in Fusion 
Research,” (July 1972); J. L. Emmett, J. Nuckolls, and L. Wood, “Fusion Power by Laser 
Implosion,” (June 1974); H. Furth, “Progress toward a Tokamak Fusion Reactor,” 
(August 1979); R. W. Conn, V. A. Chuyanov, N. Inoue, and D. R. Sweetman, “The 
International Thermonuclear Experimental Reactor,” (April 1992); M. Moyer, “Fusion’s 
False Dawn,” (March 2010). 
 
For more information on medical applications of nuclear physics, see: 
N. A. Dyson, An Introduction to Nuclear Physics with Applications in Medicine and 

Biology (Halsted Press, 1981). 
 
More detail on the effects of radiation on living organisms can be found in: 
S. C. Bushong, “Radiation Exposure in our Daily Lives,” The Physics Teacher, March 

1977, p. 135. 
 
For more information on the stable elements beyond uranium, see: 
G. T. Seaborg and W. D. Loveland, The Elements Beyond Uranium (Wiley, 1990) 
 

 
Materials for Active Engagement in the Classroom 

 
A.  Reading Quizzes 
 
1. Energy is released in the fission of 238U because: 
  (1) the binding energy per nucleon increases with A for large A. 
  (2) the binding energy per nucleon decreases with A for large A. 
  (3) the binding energy per nucleon increases with A for small A. 
  (4) the binding energy per nucleon decreases with A for small A. 
 
2. In the radioactive decays of fission fragments, the most common emitted particles 

are: 
  (1) electrons  (2) positrons  (3) neutrons  (4) alphas 
 
3. Producing electricity from fusion reactors is currently not practical because: 
  (1) the temperatures required to initiate the reaction in bulk matter are very high. 
  (2) the energy release per nucleon is very small. 

(3) the nuclei needed for the reactions are found only in chemical elements that 
are very rare in nature. 
(4) fusion reactions occur only in the Sun and have never been achieved under 
laboratory conditions on Earth. 

 
4. In a nuclear fusion reaction such as 2H + 3H → 4He + n, the binding energy per 

nucleon 
  (1) Increases  (2) Decreases  (3) Does not change 
  (4) Depends on the kinetic energy of the colliding particles 
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5. Thermonuclear fusion 
  (1) requires isotopes that are very scarce. 
  (2) requires extremely high temperatures. 
  (3) requires that the particles move at speeds close to the speed of light. 
  (4) presently is used to generate electricity in certain power plants. 
 
Answers 1. 2 2. 1 3. 1 4. 1 5. 2 
 
 
B.  Conceptual or Discussion Questions 
 
1. Without doing any calculations, which reaction would you expect to have the higher 

Q value?  (1) 2H + 4He → 6Li (2) 3H + 3He → 6Li 
  
2. Which of the following fusion reactions would you expect to release the most energy  

per reacting nucleon? 
  (1) 2H + 2H   (2) 12C + 12C  (3) 40Ca + 40Ca (4) 56Fe + 56Fe  
 
3. Answer each of the following with: 
    (1) Fission  (2) Fusion  (3) Both 
 (a) Nuclei produced in the reaction are usually highly radioactive. 
 (b) Energy release can be as large as several MeV per reacting nucleon. 
 (c) It is usually necessary to overcome a Coulomb barrier for the reaction to occur. 
 (d) Usually induced by the capture of a neutron. 
 (e) Reacting nuclei come from commonly available chemical elements. 

(f) Electrical power could be generated by boiling water using heat obtained from 
kinetic energy of nuclei produced in the reaction. 

 
Answers 1. 2 2. 1 3. (a) 1   (b) 2   (c) 2   (d) 1   (e) 2   (f) 3 
 

 
Sample Exam Questions 

 
A.  Multiple Choice 
 
1. Suppose a nucleus of 238

92 U fissions into two nuclei of 119
46 Pd .  Compared with the mass 

of 238
92 U , the total mass of the two 119

46 Pd  is 
 (a) the same (b) larger (c) smaller 
 
2. Fusion releases energy because the binding energy per nucleon:   
 (a) increases with increasing mass number at high mass numbers.   
 (b) increases with increasing mass number at low mass numbers. 
 (c) decreases with increasing mass number at high mass numbers. 
 (d) decreases with increasing mass number at low mass numbers.   
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3. The total nuclear binding energy of an alpha particle (a nucleus of 4He) is about 28 
MeV.  When 4 protons undergo fusion in the Sun to form an alpha particle, the total 
energy released is about 

 (a) 7 MeV  (b) 14 MeV (c) 28 MeV (d) 56 MeV (e) 112 MeV 
 
Answers 1. c 2. b 3. c 
 
 
B.  Conceptual 
 
1. Would you expect the core of a fission reactor to emit mostly neutrinos, mostly 

antineutrinos, or a roughly equal mixture of neutrinos and antineutrinos?  EXPLAIN 
YOUR ANSWER. 

 
2. In the reactions 2H + 2H → 3He + n and 2H + 3H → 4He + n initiated in each case by 

2H with kinetic energy K incident on a target at rest, in which case would you expect 
the total kinetic energy of the reaction products to be greater?  EXPLAIN YOUR 
ANSWER. 

 
Answers 1. antineutrinos (because fission products have an excess of neutrons) 

 2. the large binding energy of 4He gives the second reaction a much larger  
  Q value and thus a much larger total kinetic energy 

 
 
C.  Problems 
 
1. (a) The fusion reaction 2H + 2H → 3He + n is initiated by two 2H colliding head-on 

with equal kinetic energies of 0.124 MeV.  Find the total kinetic energy of the 
products of this reaction.  Atomic masses are: 2H – 2.014102 u, 3He – 3.016029 u. 

 (b) Find the kinetic energy of the neutron. 
 
2. (a) The nucleus 14C (halflife 5730 y) is used in radiocarbon dating to determine the 

age of previously living material.  A certain sample of wood currently shows a decay 
rate of 25.0 decays/s of 14C.  The wood is taken from a structure that was built from a 
tree that was cut 15,000 years ago.  What would have been the 14C decay rate of this 
wood sample when the tree was cut? 
(b) Given that 14C has 6 protons and 8 neutrons and an atomic mass of 14.003242 u, 
find the total binding energy (in MeV) of 14C.  Use 1.008665 u for the neutron mass and 
1.007825 u for the mass of a hydrogen atom. 
(c) Suppose it were possible to form a nucleus of 14C by colliding two 7

3 Li  nuclei.  Is 
energy absorbed or released in this process?  (Choose which one.)  Calculate the 
energy absorbed or released in MeV.  The mass of 7

3 Li is 7.016004 u. 
 
Answers 1. (a) 3.52 MeV   (b) 2.64 MeV  
   2. (a) 153 decays/s   (b) 105.3 MeV   (c) 26.8 MeV released 
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Problem Solutions 
 
 

1. (a) 4 14 17 1
2 2 7 7 8 9 1 0He N O H+ → +  (c)  27 4 1 30

13 14 2 2 0 1 15 15Al He n P+ → +  

 (b)  9 4 12 1
4 5 2 2 6 6 0 1Be He C n+ → +  (d)  12 2 13 1

6 6 1 1 7 6 0 1C H N n+ → +  
 
2. Assuming the highest energy protons (16.2 MeV) lead to the ground state, the next 

highest to the first excited state, and so forth, the energies of the excited states are 
 
 16.2 MeV − 14.8 MeV = 1.4 MeV  16.2 MeV − 8.9 MeV = 7.3 MeV 
 
 16.2 MeV − 11.6 MeV = 4.6 MeV  16.2 MeV − 6.7 MeV = 9.5 MeV 
  
 

  
 
3. Using the density of gold of 19.3 g/cm3, the mass of the foil is  

 
3 2 4 4(19.3 g/cm )( )(0.15 cm) (1.81 10  cm) 2.47 10  gm Vρ π − −= = × = ×  

 
Solving Equation 13.2 for the cross section, we find 
 

6 1
23 2

10 2 4 23 1
A

(5.37 10  s )(197 g/mole) 9.8 10  cm 98 b
(7.25 10  neutrons/cm /s)(2.47 10  g)(6.02 10  mole )

RM
mN

σ
φ

−
−

− −

×
= = = × =

× × ×
 
 

4. The mass of Co in the foil is (46 mg)(0.0044) = 0.202 mg, and the corresponding number 
of Co nuclei is 
 

23 21
A

0.202 mg 6.02 10 2.07 10
58.9 g

mN N
M

= = × = ×  

 
and the neutron beam intensity is, from Equation 13.1, 
 

12 2
13 1

0 24 2 21

(1.07 10  s )( )(0.50 cm) 1.1 10  s
(37 10  cm )(2.07 10 )

RSI
N

π
σ

−
−

×
= = = ×

× ×

-1

 

E (MeV) 
0.0 
1.4 

4.6 

7.3 
9.5 
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5.   
6

14
0 19

20 10 A 1.25 10 protons/s
1.60 10 C/proton

I
−

−

×
= = ×

×
 

  
Let t represent the thickness of the target.  Then 
 

A A

23 3 4
19 2

( / )

(6.022 10 atoms/mole)(10.5 g/cm )(4.5 10 cm) 2.65 10 atoms/cm
107 g/mole

N N M V N t
S S M

ρ ρ

−

= =

× ×
= = ×

 

 
Because 3 neutrons are produced in each reaction, the reaction rate R is 6 11

3 (8.5 10 s ).−×  
 

6 1 14 11
28 2 430

19 2

/ (8.5 10 s ) /(1.25 10 s ) 8.6 10 cm 8.6 10 b
/ 2.65 10 cm

R I
N S

σ
− −

− −
−

× ×
= = = × = ×

×
 

 
6. The irradiated target has a thickness of 2.5 μm and a diameter of 0.50 cm.  Its mass is 
  

3 4 2 4(8.96 g/cm )(2.5 10 cm) (0.25 cm) 4.40 10 gm Vρ π− −= = × = ×  
4

23 184.40 10 g(6.022 10 atoms/mole) 4.20 10 atoms
63 g/mole

N
−×

= × = ×  

6
13

0 19

7.5 10 A 2.34 10 particles/s
2(1.6 10 C/particle)

I
−

−

×
= = ×

×
 

 
13 1 24 2 18

80
2

(2.34 10 s )(1.25 10 cm )(4.20 10 ) 6.26 10 neutrons/s
(0.25 cm)

I NR
S
σ

π

− −× × ×
= = = ×  

 
7. From Equation 13.6, the fraction of the maximum activity ( ) /f a t R=  

is 1/ 2 1/ 20.693 / /1 1 1 (0.5)t t t ttf e eλ −−= − = − = −  
 (a) at 1

1/ 2 1 (0.5) 0.5t t f= = − =  
 (b) at 2

1/ 22 1 (0.5) 0.75t t f= = − =  
 (c) at 4

1/ 24 1 (0.5) 0.9325t t f= = − =  
 

8.   56 56 2 56 56 2 54 56p Fe Co n H Fe Co 2n H Fe Co γ+ → + + → + + → +  
       4 55 56 3 55 56 2 58 56 4He Mn Co 3n He Mn Co 2n H Ni Co He+ → + + → + + → +  

 

9.  (1 ) (1 ) (1 )t t t tdN d RN e R e Re R e R
dt dt

λ λ λ λλ
λ

− − − −⎡ ⎤+ = − + − = + − =⎢ ⎥⎣ ⎦
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10. (a) The number of nitrogen molecules in the cell is 
 

5 3
20

23

(2.25 atm)(1.01 10  Pa/atm)(0.0124 m) 1.07 10
(1.38 10  J/K)(293 K)

PVN
kT −

×
= = = ×

×
 

 
 and the number of nitrogen nuclei is twice that, or 2.14 × 1020.  The incident beam 

contains I0 = (2.05 × 10−6 C/s)/(1.60 × 10−19 C/deuteron) = 1.28 × 1013 deuterons/s.  The 
reaction rate is then 

 

  
28 2 20

13 1 8 1
0 2

(0.21 10  m )(2.14 10 ) (1.28 10  s ) 4.03 10  s
(0.0124 m)

NR I
S
σ −

− −× ×
= = × = ×  

 
(b)  8 1 (0.693)(60 s) /(122 s) 8 1(1 ) (4.03 10  s )(1 ) 1.16 10  s 3.14 mCita R e eλ− − − −= − = × − = × =  
 

11. With 13 2 24 2 11 1 1(2.5 10  neutrons/cm s)(0.53 10  cm /atom) 1.33 10  s atomφσ − − − −= × ⋅ × = × ,  
 

( )
6

11 1 1 23 5 1
A

1.0 10 g atoms1.33 10 s atom 6.022 10 3.47 10 s
23.0 g/mole mole

mR N
M

φσ
−

− − − −⎛ ⎞× ⎛ ⎞= = × × = ×⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

  
5 1 0.693(4 h)/(15 h) 4 1(1 ) (3.47 10 s )(1 ) 5.85 10 s 1.58 Cita R e eλ μ− − − −= − = × − = × =  

 
12.     2 2 2 2 2 21 1

2 2( ) ( )x x X x X y Ym v v m v m c m c m c m c− + − + + = +  
 
 Substituting /( )x x x Xv v m m m= + , we obtain 
 

2 2
21 1

2 2 ( )x x x x
x x X y Y x X

x X x X

v m v mm v m m m m m c Q
m m m m

⎛ ⎞ ⎛ ⎞
− + − = + − − = −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 

 
2

21
2 2 2( ) ( )

X x X
x x

x X x X

m m mm v Q
m m m m

⎡ ⎤
+ = −⎢ ⎥+ +⎣ ⎦

 

 

th thor 1X x

x X X

m mK Q K Q
m m m
⎡ ⎤ ⎡ ⎤

= − = − +⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦
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13. (a)     55 54p + Mn  Fe + 2n→  
1 55 54 2[ ( H) ( Mn) ( Fe) 2 (n)]

[1.007825 u + 54.938045 u  53.939611 u 2(1.008665 u)](931.50 MeV/u)

10.313 MeV

Q m m m m c= + − −

= − −

= −

 

 
(b)     3 40 41 2He + Ar  K + H→  

3 40 41 2 2[ ( He) ( Ar) ( K) ( H)]

(3.016029 u + 39.962383 u  40.961826 u 2.014102 u)](931.50 MeV/u)

2.314 MeV

Q m m m m c= + − −

= − −

=

 

  
14. (a)     6 3 4Li + n  H + He→  

6 3 4 2[ ( Li) (n) ( H) ( He)]

(6.015123 u + 1.008665 u  3.016049 u 4.002603 u)(931.50 MeV/u)

4.784 MeV

Q m m m m c= + − −

= − −

=

 

  
 (b)     2p + H  2p + n→  

1 2 1 2[ ( H) ( H) 2 ( H) (n)]

[1.007825 u + 2.014102 u  2(1.007825 u) 1.008665 u](931.50 MeV/u)

2.224 MeV

Q m m m m c= + − −

= − −

= −

 

 
 (c)     7 2 8Li + H  Be + n→  

7 2 8 2[ ( Li) ( H) ( Be) (n)]

(7.016005 u + 2.014102 u  8.005305 u 1.008665 u)(931.50 MeV/u)

15.032 MeV

Q m m m m c= + − −

= − −

=

 

 
15. 2 3 4H + He  p + He→  

2 3 1 4 2[ ( H) ( He) ( H) ( He)]

(2.014102 u + 3.016029 u  1.007825 u 4.002603 u)(931.50 MeV/u)

18.353 MeV

Q m m m m c= + − −

= − −

=

 

 
 Let y = p, Y = 4He, x = 2H.  Then y Y xQ K K K= + − , so 
  

2 2

18.353 MeV 5.00 MeV 23.353 MeV

23.353 MeV
2 2

y Y x

y Y

y Y

K K Q K

p p
m m

+ = + = + =

+ =
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21 12 2 2(2.014102 u)(931.50 MeV/u)(5.00 MeV) 137.0 MeV/x x x x xp m K m c K c

c c
= = = =

 
Momentum conservation gives 137.0 MeV/y x Y Yp p p c p= − = − .  Substituting into the 
energy equation gives 
  

2 2(137.0 MeV/ ) 23.353 MeV
2 2

Y Y

y Y

c p p
m m

−
+ =  

 
2

2 2
2 2 2 2

1 1 137.0 MeV (137.0 MeV) 23.353 MeV 0
2 2 2Y Y

y Y y y

c p cp
m c m c m c m c

⎡ ⎤
+ − + − =⎢ ⎥

⎢ ⎥⎣ ⎦
 

 
Solving for pY using the quadratic formula, we obtain 
 

cpY = 288.4 MeV or −69.5 MeV 
 
The first solution corresponds to the 4He moving in the same direction as the original 2H, 
while the protons move in the opposite direction 
( 137.0 MeV 151.4 MeVy Ycp cp= − = − ).  The kinetic energies are 
 

2 2

2

( ) (288.4 MeV) 11.152 MeV
2 2(4.002603 u)(931.50 MeV/u)

23.353 MeV 11.152 MeV 12.201 MeV

Y
Y

Y

y

cpK
m c

K

= = =

= − =

 

 
The second solution gives 4He moving opposite to the original direction of the 2H, with 
kinetic energy 

2(69.5 MeV) 0.647 MeV
2(4.002603 u)(931.50 MeV/u)

23.353 MeV 0.647 MeV 22.706 MeV

Y

y

K

K

= =

= − =

 

 
16. (a)     4 2 3p + He  H + He→  

1 4 2 3 2[ ( H) ( He) ( H) ( He)]

(1.007825 u + 4.002603 u  2.014102 u 3.016029 u)(931.50 MeV/u)

18.353 MeV

Q m m m m c= + − −

= − −

= −

 

 
 (b) For protons incident on 4He, x = 1H and X = 4He: 
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1

th 4

( H) 1.007825 u1 (18.353 MeV) 1 22.974 MeV
( He) 4.002603 u

mK Q
m

⎛ ⎞ ⎛ ⎞= − + = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
(c) For 4He incident on protons, x = 4He and X = 1H: 

  
4

th 1

( He) 4.002603 u1 (18.353 MeV) 1 91.242 MeV
( H) 1.007825 u

mK Q
m

⎛ ⎞ ⎛ ⎞= − + = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
17. (a) The Q value is 
  

 
254 127 2[ ( Cf ) 2 ( In)]

[254.087323 u 2(126.917353 u)](931.5 MeV/u) 235.3 MeV
Q m m c= −
= − =

 

 
(b) 254 140 110 2[ ( Cf ) ( Xe) ( Ru) 4 (n)]Q m m m m c= − − −  

      (254.087323 u 139.921641 u 109.914136 u 4(1.00866
202.0 MeV

= − − −
=

 
18. The number of 235U atoms in 1000 g of U (= 30 g of 235U) is 
 

23
22(30 g)(6.022 10  atoms/mole) 5.9 10  atoms

235 g/mole
×

= ×  

 
If each fission releases about 200 MeV, the total energy released is 
 

22 31 12(200 MeV/atom)(5.9 10  atoms) 1.2 10  eV 1.9 10  JE = × = × = ×  
 

19. (a)      235 236 2[ ( U) (n) ( U)]E m m m cΔ = + −  
                   (235.043930 u 1.008665 u 236.045568 u)(931.50 MeV/u) 6.546 MeV= + − =  
 
(b)     238 239 2[ ( U) (n) ( U)]E m m m cΔ = + −  
                (238.050788 u 1.008665 u 239.054293 u)(931.50 MeV/u) 4.807 MeV= + − =  

 
(c) If 235U + n gives enough energy of excitation to make the 236U fission easily, then  
238U + n needs about 1.7 MeV of additional energy to reach the same state of excitation 
and therefore to have about the same probability to fission.  This additional energy must 
come from the incident neutrons, so 238U can be fissioned easily only by “fast” neutrons 
with 1-2 MeV of kinetic energy. 
 
(d)      239 240 2[ ( Pu) (n) ( Pu)]E m m m cΔ = + −  
                   (239.052163 u 1.008665 u 240.053814 u)(931.50 MeV/u) 6.534 MeV= + − =  
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Because 239Pu + n has about the same relative excitation as 235U + n, we expect that 239Pu 
(like 235U) can be easily fissioned by slow neutrons. 
 

20.      235 93 141 2[ ( U) (n) ( Rb) ( Cs) 2 (n)]Q m m m m m c= + − − −  
(235.043930 u 92.922042 u 140.920046 u 1.008665 u)(931.50 MeV/u)

179.94 MeV

= − − −

=
 

 
21. (a)  12 1 13C + H  N + γ→  

12 1 13 2[ ( C) ( H) ( N)]

(12.000000 u + 1.007825 u  13.005739 u)(931.50 MeV/u) 1.943 MeV

Q m m m c= + −

= − =
 

 
  13 13 +N  C + e ν→ +  

13 13 2[ ( N) ( C) 2 (e)]

(13.005739 u 13.003355 u  2 0.0005486 u)(931.50 MeV/u) 1.199 MeV

Q m m m c= − −

= − − × =
 

  
  13 1 14C + H  N + γ→  

13 1 14 2[ ( C) ( H) ( N)]

(13.003355 u + 1.007825 u  14.003074 u)(931.50 MeV/u) 7.551 MeV

Q m m m c= + −

= − =
 

 
  14 1 15N + H  O + γ→  

14 1 15 2[ ( N) ( H) ( O)]

(14.003074 u + 1.007825 u  15.003066 u)(931.50 MeV/u) 7.296 MeV

Q m m m c= + −

= − =
 

 
  15 15 +O  N + e ν→ +  

15 15 2[ ( O) ( N) 2 (e)]

(15.003066 u 15.000109 u  2 0.0005486 u)(931.50 MeV/u) 1.732 MeV

Q m m m c= − −

= − − × =
 

  
  15 1 12 4N + H  C + He→  

15 1 12 4 2[ ( N) ( H) ( C) ( He)]

(15.000109 u + 1.007825 u  12.000000 u  4.002603 u)(931.50 MeV/u)

4.966 MeV

Q m m m m c= + − −

= − −

=

 

 
 (b) When the 6 reactions or decays are combined, 4 electrons must be added to each side 

of the equations, as in the proton-proton cycle.  (Two electrons are necessary to balance 
each of the two positron decays in the carbon cycle.)  The net Q value is then the sum of 
the Q values for the 6 processes plus 4mec2, which gives 26.7 MeV. 
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22. 2 3 4H + H  He + n→  
2 3 4 2[ ( H) ( H) ( He) (n)]

(2.014102 u + 3.016049 u  4.002603 u  1.008665 u)(931.50 MeV/u)

17.590 MeV

Q m m m m c= + − −

= − −

=

 

 
23. 2 3 4H + H  He + n→   with He n 17.6 MeVQ K K= + = , neglecting the initial kinetic 

energies of the 2H and 3H (which are less then 0.01 MeV for temperatures up to 108 K).  
Making also the approximation that the initial momentum is small, conservation of 
momentum then gives He n He n0,  or p p p p+ = = − . 

   
2 2 2 2 2
He n n n n n n

He n n
He n He n n He He

n
n He

1 1
2 2 2 2 2

17.6 MeV 14.1 MeV
1 / 1 0.25

p p p p p m mQ K K K
m m m m m m m

QK
m m

⎛ ⎞ ⎛ ⎞
= + = + = + = + = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= = =
+ +

 

 
24. (a)  20 310  s m for 0.60 snτ τ−≥ ⋅ =  

 
20 3 20 3

20 310  s m 10  s m 1.67 10  m
0.60 s

n
τ

− −
−⋅ ⋅

≥ = = ×  

 
(b) For n = 1.67 × 1021 m−3, Figure 13.16 indicates T > 1.5 × 108 K. 
 

25. 4 4 4 12He He He C+ + →  
4 12 2[3 ( He) ( C)]

(3 4.002603 u 12.000000 u)(931.50 MeV/u) 7.274 MeV

Q m m c= −

= × − =
 

 
This energy is about 0.6 MeV per reacting nucleon, far smaller than the 6.7 MeV per 
reacting nucleon that is released in the fusion of 4 protons to form 4He. 

 
26. We must first find the Coulomb barrier that keeps the helium nuclei from coming 

together.  To find the potential energy of two helium nuclei that just touch at their 
surfaces, we need the nuclear radius, 1/ 3 1/ 31.2 1.2(4) 1.9 fmR A= = = .  When the charges 
of +2e are separated by a distance of 2R, the potential energy is 

   
2

1 2

0 0

1 1 (2 ) 2(1.440 MeV fm) 1.5 MeV
4 4 2(1.9 fm) 1.9 fm

q q eU
rπε πε

⋅
= = = =  

 
We could overcome this barrier if each helium had a kinetic energy of 0.75 MeV.  The 
corresponding temperature is determined from 3

2K kT= : 
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9
5

0.75 MeV 5.8 10  K
1.5 1.5(8.6 10  eV/K)

KT
k −= = = ×

×
 

 
27. 63 64

1/ 2Cu n Cu ( 13 h)t+ → =    69 70
1/ 2Ga n Ga ( 21 m)t+ → =  

 64 64Cu Zn e ν−→ + +      70 70Ga Ge e ν−→ + +  
 64 65

1/ 2Zn n Zn ( 244 d)t+ → =    70 71
1/ 2Ge n Ge ( 11 d)t+ → =  

 65 65Zn Cu e ν+→ + +      71 71Ge e Ga ν−+ → +  
 65 66

1/ 2Cu n Cu ( 5 m)t+ → =    71 72
1/ 2Ga n Ga ( 14 h)t+ → =  

 66 66Cu Zn e ν−→ + +      72 72Ga Ge e ν−→ + +  
 66 67Zn n Zn (stable)+ →     72 73Ge n Ge (stable)+ →  
 67 68Zn n Zn (stable)+ →     73 74Ge n Ge (stable)+ →  
 68 69

1/ 2Zn n Zn ( 56 m)t+ → =    74 75
1/ 2Ge n Ge ( 83 m)t+ → =  

 69 69Zn Ga e ν−→ + +      75 75Ge As e ν−→ + +  
 
28. 81 82

1/ 2Br n Br ( 35 h)t+ → =    89 89Sr Y e ν−→ + +  
 82 82Br Kr e ν−→ + +      89 90

1/ 2Y n Y ( 64 h)t+ → =  
 82 83Kr n Kr (stable)+ →     90 90Y Zr e ν−→ + +  
 83 84Kr n Kr (stable)+ →     90 91Zr n Zr (stable)+ →  
 84 85

1/ 2Kr n Kr ( 11 y)t+ → =    91 92Zr n Zr (stable)+ →  
 85 86Kr n Kr (stable)+ →    

 92 93 6
1/ 2Zr n Zr ( 1.5 10  y)t+ → = ×  

 86 87
1/ 2Kr n Kr ( 76 m)t+ → =    93 94Zr n Zr (stable)+ →  

 87 87Kr Rb e ν−→ + +      94 95
1/ 2Zr n Zr ( 64 d)t+ → =  

 87 88
1/ 2Rb n Rb ( 18 m)t+ → =   

 95 95
1/ 2Zr Nb e ( 35 d)tν−→ + + =  

 88 88Rb Sr e ν−→ + +      95 95Nb Mo e ν−→ + +  
 ( )88 89

1/ 2Sr n Sr ( 51 d)t+ → =  
 
29. Let the alpha particle move with velocity v before the collision.  After the collision, the 

alpha particle moves (in the reverse direction) with velocity v′ and kinetic energy K′, and 
the atom moves with recoil velocity vR and kinetic energy KR.  We assume the kinetic 
energies to be nonrelativistic. 

 
 Conservation of energy: 2 2 21 1 1

R R2 2 2orK K K mv mv Mv′ ′= + = +  

 Conservation of momentum: R Ror ( )mmv Mv mv v v v
M

′ ′= − = +  
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 Combining these two equations, we obtain 
2

2 2 2
R( ) ( )m mv v v v v

M M
⎡ ⎤′ ′− = = +⎢ ⎥⎣ ⎦

 and so 

  
1 /( ) or
1 /

m m Mv v v v v v
M m M

−⎛ ⎞′ ′ ′− = + = ⎜ ⎟+⎝ ⎠
 

 
22

2 21 1
2 2 2 2

1 / 4 /1 1
1 / (1 / )

v m M m MK mv mv K K K
v m M m M

⎡ ⎤′⎛ ⎞ ⎡ ⎤−⎛ ⎞′Δ = − = − = − =⎢ ⎥⎜ ⎟⎜ ⎟ ⎢ ⎥+ +⎝ ⎠ ⎣ ⎦⎢ ⎥⎝ ⎠ ⎣ ⎦
 

 

30. (a) 63Cu:  2 2

4 / 4(4 / 63)(2.50 MeV) 0.561 MeV
(1 / ) (1 4 / 63)

m MK K
m M

⎡ ⎤ ⎡ ⎤
Δ = = =⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

 

   
107Ag:  2 2

4 / 4(4 /107)(2.50 MeV) 0.347 MeV
(1 / ) (1 4 /107)

m MK K
m M

⎡ ⎤ ⎡ ⎤
Δ = = =⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

 

 

  197Au:  2 2

4 / 4(4 /197)(2.50 MeV) 0.195 MeV
(1 / ) (1 4 /197)

m MK K
m M

⎡ ⎤ ⎡ ⎤
Δ = = =⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

 

 

 (b) 65Cu:  2 2

4 / 4(4 / 65)(2.50 MeV) 0.546 MeV
(1 / ) (1 4 / 65)

m MK K
m M

⎡ ⎤ ⎡ ⎤
Δ = = =⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

 

 

  109Ag:  2 2

4 / 4(4 /109)(2.50 MeV) 0.342 MeV
(1 / ) (1 4 /109)

m MK K
m M

⎡ ⎤ ⎡ ⎤
Δ = = =⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

 

 
 The energy difference is 0.015 MeV for Cu and 0.005 MeV for Ag. 
 
31. (a)   238 234Pu  U + α→  

238 234 4 2[ ( Pu) ( U) ( He)]

(238.049560 u  234.040952 u  4.002603 u)(931.50 MeV/u) 5.594 MeV

Q m m m c= − −

= − − =
 

 
 (b)   23 211 1

238 2381.0 g  mole (6.022 10  atoms) 2.53 10  atoms= = × = ×  
 

  21 11 1
7

0.693 2.53 10  atoms 6.30 10  s
(88 y)(3.16 10  s/y)

a Nλ −= = × = ×
×

 

 
 11 13(6.30 10  decays/s)(5.594 MeV/decay)(1.60 10  P aQ −= = × ×
 

32. Titanium: 
1

1 1
0.693(2.5 min)/(5.8 min)

105 s(1 ) 407 s
1 )

tR a e
e

λ
−

− − −
−= − = =

−
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1

14 50
12 2 24 2

407 s 9.68 10 atoms of Ti
(3.0 10 n/cm /s)(0.14 10 cm )

RN
φσ

−

−= = = ×
× ×

 

 
Titanium is 5.25% 50Ti, so the total number N of titanium atoms is 

14 169.68 10 / 0.0525 1.84 10× = × .  With A /N N m M= , 
 

16

23
A

(1.84 10 atoms)(47.9 g/mole) 1.47 g
6.022 10 atoms/mole

NMm
N

μ×
= = =

×
 

 

Cobalt:  5

1
1 7 1

0.693(2.5 min)/[(5.27 y)(5.26 10  min/y)]

12 s(1 ) 1.92 10 s
1 )

tR a e
e

λ
−

− − −
− ×

= − = = ×
−

 

 
7 1

17 59
12 2 24 2

1.92 10  s 3.36 10 atoms of Co
(3.0 10 n/cm /s)(19 10 cm )

RN
φσ

−

−

×
= = = ×

× ×
 

 
17

23
A

(3.36 10 atoms)(58.9 g/mole) 33 g
6.022 10 atoms/mole

NMm
N

μ×
= = =

×
 

 
33. The total number of copper atoms in the target is 

  
3 23

19A (2.0 10 g)(6.022 10 atoms/mole) 1.90 10 atoms
63.5 g/mole

mNN
M

−× ×
= = = ×  

 
For 63Cu + n → 64Cu, 63 19 19( Cu) 0.69 (Cu) 0.69(1.90 10 ) 1.31 10  atomsN N= = × = ×  

 
6 10 1

8 1
0.693(10 min)/[(12.7 h)(60 min/h)]

(72 10 Ci)(3.7 10 s / Ci) 2.94 10 s
1 1t

aR
e eλ

− −
−

− −

× ×
= = = ×

− −
 

 
From Equation 13.2, 

 
8 1

24 2
12 2 19

A

2.94 10 s 4.49 10 cm 4.49 b
(5.0 10 n/cm /s)(1.31 10 )

RM R
mN N

σ
φ φ

−
−×

= = = = × =
× ×

 

 
 
For 65Cu + n → 66Cu, 65 19 19( Cu) 0.31 (Cu) 0.31(1.90 10 ) 0.589 10  atomsN N= = × = ×  

 
3 10 1

7 1
0.693(10 min)/(5.1 min)

(1.30 10 Ci)(3.7 10 s / Ci) 6.47 10 s
1 1t

aR
e eλ

− −
−

− −

× ×
= = = ×

− −
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7 1
24 2

12 2 19
A

6.47 10 s 2.20 10 cm 2.20 b
(5.0 10 n/cm /s)(0.589 10 )

RM R
mN N

σ
φ φ

−
−×

= = = = × =
× ×

 

 
34. (a)  The number of atoms in the target is A A/ /N mN M AN dx M nAdxρ= = =  

where A/n N Mρ= is the number of target nuclei per unit volume.  The rate at which 
reactions occur in the target is 
 

A
mR N nAdx I n dx
M

φσ φσ σ= = =  

 
where the neutron beam intensity I (neutrons/s) is φA.  The beam therefore loses intensity 
dI: 

dI I n dxσ= −  
 
(b)  The total absorption after passing through a thickness x is 
 

0 0

I x

I

dI n dx
I

σ= −∫ ∫  

  
0 0ln ln or nxI I nx I I e σσ −− = − =  

  

(c) 
3 23

22 3A (8.95 g/cm )(6.022 10 atoms/mole) 8.49 10 atoms/cm
63.5 g/mole

Nn
M
ρ ×

= = = ×  

 
22 3 24 2 1(8.49 10 atoms/cm )(5.0 10  cm ) 0.424 cmnσ − −= × × =  

 
   

1(0.424 cm )(0.10 cm)
01.0 mm 0.10 cm: / 0.958 so 4.2% is lost.n xx I I e eσ −− −= = = = =  

   
1(0.424 cm )(1.0 cm)

01.0 cm: / 0.654 so 34.6% is lost.n xx I I e eσ −− −= = = =  

   
1(0.424 cm )(100 cm) 19

01.0 m 100 cm: / 3.85 10 so all is absorbed.n xx I I e eσ −− − −= = = = = ×  
 
35. 4 7 11He + Li  Be + γ→  

4 7 11 2[ ( He) ( Li) ( B)]

(4.002603 u + 7.016005 u  11.009305 u)(931.50 MeV/u) 8.666 MeV

Q m m m c= + −

= − =
 

 
 Neglecting the energy of the incident particles, 
  

B BandQ K E p pγ γ= + =  
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( )

2 22
B

B 2
B B B

2

2
B

2 2
B B

2 2 2

0
2

1 1 4 / 2 8.662 MeV

p EpK E E E E
m m m c

E
E Q

m c

E Q m c m c

γ γ
γ γ γ γ

γ
γ

γ

+ = + = + = +

+ − =

= − ± + =

 

 
The kinetic energy of the boron is only 0.004 MeV, but it is not negligible at the 
precision of this calculation. 
 

36. 7 3 4 + Li  H + Heγ →  
7 3 4 2[ ( Li) ( H) ( He)]

(7.016005 u 3.016049 u  4.002603 u)(931.50 MeV/u) 2.4657 MeV

Q m m m c= − −

= − − = −
 

 With the 7Li at rest, energy conservation gives H HeQ K K Eγ= + − .  Similarly, 
conservation of momentum gives H Hep p pγ = + .  If we supply only the minimum 
gamma-ray energy, the 3H and 4He will move together, as in a reaction at threshold.  
With H Hev v v= = , we have 

H He
H He H He

so
( )

p E
p m v m v v

m m c m m
γ γ

γ = + = =
+ +

 

( )
2

21 1 1
H He H He H He2 2 2 2 2

H He

( )
( )

E
Q E K K E m m v E m m

c m m
γ

γ γ γ= − + + = − + + = − + +
+

 

2

2
H He

0
2( )

E
E Q

m m c
γ

γ− − =
+

 

 

( )2 2
H He H He1 1 4 / 2( ) ( ) 2.4661 MeVE Q m m c m m cγ = ± + + + =  

 
The gamma ray must supply the energy to break up the 7Li (2.4657 MeV) plus an 
additional 0.0004 MeV to give the kinetic energies to the products that is necessary to 
conserve momentum. 
 

37. 113 114 Cd + n  Cd + γ→  
113 114 2[ ( Cd) (n) ( Cd)]

(112.904402 u + 1.008665 u  113.903359 u)(931.50 MeV/u) 9.043 MeV

Q m m m c= + −

= − =
 

 
 Energy conservation gives Cd nQ K E Kγ= + − , where KCd is the kinetic energy given to 

the product 114Cd (the original nucleus 113Cd being at rest).  The neutron kinetic energy 
(0.025 eV) is negligible.  We then have 
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Cd 9.043 MeVK Eγ+ =  
 
Momentum conservation gives n Cdp p pγ= + , and with pn negligibly small, we get 

Cdp pγ= − .  The heavy Cd nucleus can take this much momentum at a cost of very little 
energy, so we can neglect KCd to obtain 
 

9.043 MeVEγ =  
 
We can check these assumptions by computing the kinetic energy of the Cd nucleus.  The 
result is 4 × 10−4 MeV, which is indeed negligible within the precision of the numbers 
used in this problem. 

 

38.   2

4 / with 1 u (neutron)
(1 / )

K m M m
K m M
Δ

= =
+

 

 

 (a)  2

41 u (hydrogen): 1 (all kinetic energy is lost)
2

KM
K
Δ

= = =  

       2

4(1/ 2)2 u (deuteron): 0.89
(1 1/ 2)

KM
K
Δ

= = =
+

 

       2

4(1/12)12 u (carbon): 0.28
(1 1/12)

KM
K
Δ

= = =
+

 

 
 (b)   After one scattering, the new kinetic energy is 
 

2

2

4 1 /
(1 / ) 1 /

mM m MK K K K K K
m M m M

−⎛ ⎞′ = − Δ = − = ⎜ ⎟+ +⎝ ⎠
 

 
After n scatterings, the kinetic energy is 
 

2

2

6

1 /
1 /

1 1/120.025 eV 2.0 MeV
1 1/12

log[(0.025 eV) /(2 10  eV)] 54.5  or 55 scatterings
2log(11/13)

n

n

m MK K
m M

n

−⎛ ⎞′ = ⎜ ⎟+⎝ ⎠

−⎛ ⎞= ⎜ ⎟+⎝ ⎠

×
= =

 

 
39. (a) The number of molecules of water is 
  

23
3 3 246.022 10  molecules/mole (100 cm )(1 g/cm ) 3.3 10  molecules

18 g/mole
N ×
= = ×  
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The number of D2O molecules is 0.015% of this, or 5.0 × 1020.  Each molecule includes 2 
deuterons, but each fusion reaction takes 2 deuterons, so that consuming all of the D2O 
would result in 5.0 × 1020 fusion reactions, each of which releases 4.0 MeV.  The total 
energy release is 
 

20 21 8(5.0 10  reactions)(4.0 MeV/reaction) 2.0 10 MeV 3.2 10  JE = × = × = ×  
 
(b) If only 2/3 of the deuterium participated in the first reaction, the energy released 
would be 2/3 of that found in part (a), or 2.1 × 108 J.  Each reaction produces a single 3H, 
so the number of 3H produced is 201

3 (5.0 10 )× .  These 3H then react with the remaining 
201

3 (5.0 10 )×  deuterons, with each reaction releasing 17.6 MeV for an energy release of 
 

20 21 81
3 (5.0 10  reactions)(17.6 MeV/reaction) 2.9 10  MeV 4.7 10  JE = × = × = ×  

 
The total energy released in the combined set of processes is 
 

8 8 82.1 10  J 4.7 10  J 6.8 10  JE = × + × = ×  
 
More than twice as much energy is obtained from this second set of processes. 
 

40. (a) 4 4 8He He Be+ →  

  
4 8 2[2 ( He) ( Be)]

(2 4.002603 u 8.005305 u)(931.50 MeV/u) 0.092 MeV

Q m m c= −

= × − = −
 

 (b) At a temperature T, the relative number of helium pairs with energy ΔE = 0.092 MeV 
is approximately given by the Boltzmann factor 

 
5 8/ (0.092 MeV)/(8.62 10  eV/K)(10  K) 51 1

2 2 1.12 10E kTe e
−−Δ − × −= = ×  

 
The factor of ½ is necessary because we need to know the number of He pairs that have 
the necessary energy. 
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Chapter 14 
 

 This chapter provides an introduction to particle physics, including classifications 
of particles, decays and reactions of particles, and a brief introduction to the explanation 
of particle structure in terms of quarks.  The emphasis is on achieving a basic 
phenomenological understanding of the underlying structure of matter, rather than 
acquiring the mathematical skills necessary to analyze that structure.    

 
 

Supplemental Materials 
 
 Current listings of particle properties, quark contents, and decay modes can be 
found in the tables published by the Particle Data Group at the Lawrence Berkeley 
National Laboratory: http://pdg.lbl.gov/. 
 For an interactive and animated tour through the world of particle physics, see 
The Particle Adventure, also from the LBNL Particle Data Group: 
http://particleadventure.org/index.html. 
 A similar hands-on tutorial from CERN is at:  
http://hands-on-cern.physto.se/hoc_v21en/index.html. 
 And another from Fermilab: 
http://ed.fnal.gov/projects/labyrinth/games/index1.html. 
 For interactive questions interpreting bubble chamber tracks, see 
http://epweb2.ph.bham.ac.uk/user/watkins/seeweb_feb99/BubbleChamber.htm. 
  
 

Suggestions for Additional Reading 
 
Advanced books on particle physics tend to be mathematically difficult, full of field 
theory and relativistic quantum mechanics. Fortunately there are many popular-level 
books and articles that can be read for background material. These are generally 
descriptive and nonmathematical. For example, see 
G. Feinberg, What is the World Made Of? (Anchor Press, 1977). 
J. C. Polkinghorne, The Particle Play (W. H. Freeman, 1981). 
C. Schwarz, A Tour of the Subatomic Zoo (American Institute of Physics, 1992). 
R. Gilmore, The Wizard of Quarks (Copernicus Books, 2001). 
M. J. G. Veltman, Facts and Mysteries in Elementary Particle Physics (World  
 Scientific, 2003). 
The book by Gilmore is a fanciful tour through the world of particles written as a parody 
of The Wizard of Oz.   
 
A little more challenging, but still containing lots of general introductory material: 
G. D. Coughlan, J. E. Dodd and B. M. Gripaios, The Ideas of Particle Physics, 3rd ed. 

(Cambridge University Press, 2006). 
D. Griffiths, Introduction to Elementary Particles, 2nd ed. (Wiley, 2008). 
 
 

http://pdg.lbl.gov/
http://particleadventure.org/index.html
http://hands-on-cern.physto.se/hoc_v21en/index.html
http://ed.fnal.gov/projects/labyrinth/games/index1.html
http://epweb2.ph.bham.ac.uk/user/watkins/seeweb_feb99/BubbleChamber.htm
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For histories of some discoveries in particle physics, see: 
A. Pickering, Constructing Quarks (University of Chicago Press, 1984). 
R. P. Crease and C. C. Mann, The Second Creation, (MacMillan, 1986). 
 
A historical and lavishly illustrated introduction is: 
F. Close, M. Marten, and C. Sutton, The Particle Odyssey, (Oxford University Press, 

2002). 
 
For speculations about unification by one of the developers of the electroweak theory, 
see: 
S. Weinberg, Dreams of a Final Theory (Pantheon, 1992). 
 
Good sources of information about particle physics at a general level are the occasional 

articles in the magazine Scientific American: 
S. L. Glashow, “Quarks with Color and Flavor,” (October 1975); Y. Nambu, “The 
Confinement of Quarks,” (November 1976); C. Quigg, “Elementary Particles and 
Forces,” (April 1985); J. M. LoSecco, F. Reines, and D. Sinclair, “The Search for Proton 
Decay,” (June 1985); G. Kane, “The Dawn of Physics Beyond the Standard Model,”  
(June 2003); C. Quigg, “The Coming Revolutions in Particle Physics,” (February 2008). 
 
Many articles on particle physics from Scientific American are collected in: 
Particles and Forces: At the Heart of the Matter, edited by R. A. Carrigan, Jr. and W. P. 

Trower (Freeman, 1990). 
 
 

Materials for Active Engagement in the Classroom 
 
A.  Reading Quizzes 
 
1.  Which of the following particles is a composite (made up of other more fundamental 

particles)? 
(1) meson  (2) quark  (3) electron   (4) neutrino 

 
2.  Arrange the 4 basic forces in order of increasing values of the typical time over which 

the force acts. 
(1) electromagnetic, gravitational, weak, strong 
(2) weak, strong, electromagnetic, gravitational 
(3) gravitational, electromagnetic, weak, strong 
(4) strong, electromagnetic, weak, gravitational 

 
3. If a new particle with spin 3/2 were discovered, it would be a 
  (1) field particle (2) lepton  (3) meson  (4) baryon 
 
Answers 1. 1 2. 4 3. 4  
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B.  Conceptual or Discussion Questions 
 
1. Give the quark content of mesons with the following properties: 
 (a) charge = +1, charm = 0, strangeness = 0, topness = 0, bottomness = +1 
 (b) charge = 0, charm = 0, strangeness = 0, topness = 0, bottomness = +1 
 (c) charge = 0, charm = 0, strangeness = +1, topness = 0, bottomness = −1 
 (d) charge = −1, charm = −1, strangeness = 0, topness = 0, bottomness = −1 
 
2. The two dimensional (strangeness vs. charge) chart of the spin-0 mesons (Figure 

14.11) became 3-dimensional (Figure 14.17) when a new axis was added for charm.  
Extend the 2 dimensional chart for the spin-3/2 baryons (Figure 14.16) to 3 
dimensions by adding a charm axis and indicate the locations of all possible baryons 
that can be constructed from u, d, s, and c quarks. 

 
3. In the multiplet of 10 spin-3/2 baryons (Figures 14.13 and 14.16), each row differs 

from the row below by replacing a u or d quark with an s quark.  The average rest 
energy of the baryons in each row should therefore differ from the average rest 
energy of the next row by the difference in rest energy between the s quark and the u 
or d quark.  Find the average rest energy differences between the rows and compare 
with the rest energy difference of the quarks. 

 
4. The Ω− baryon decays through several processes in sequence, ultimately resulting in 

only stable particles.  After all decays have occurred, what are the remaining stable 
particles? 

 
5. The rest energy of the Ω− baryon (quark content sss) is 1672 MeV.  Estimate the rest 

energy you would expect for the charmed Ω (ssc), the bottom Ω (ssb), and the 
charmed bottom Ω (scb).  Find the measured values of the rest energies of these 
particles (if known) and compare with your estimates. 

 
Answers 1. (a) ub    (b) db    (c) bs    (d) bc    
  3. 153 MeV, 148 MeV, 139 MeV; 170 MeV  
  4. -

ep + 2e 2ν+  (other paths might also include 2 2μ μν ν+ ) 
  5.  2672 MeV, 5872 MeV, 6872 MeV 
 
 

Sample Exam Questions 
 
A.  Multiple Choice 
 
1.  In the reaction p + p  p + p + X→  (where p  represents an antiproton), what might X 

represent? 
(a) Two protons    (b) Two mesons (c) Two positrons (positive electrons)  
(d) One proton  (e) One baryon with an electric charge of +2e 
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2.  The decay  Ω- → Λ0 + K-  can be written in terms of quarks as sss →  uds + su .  
Which interaction is responsible for this decay?   
(a) Strong  (b) Weak (c) Electromagnetic  (d) Gravitational 

 
3.  Other than gravity, two protons can interact through which forces? 

(a) only electromagnetic  (b) only electromagnetic and strong 
(c) only electromagnetic and weak (d) strong, electromagnetic, and weak 

 
4.  In the reaction p + p → p + n + X, the single particle represented by X could be a 

(a) proton  (b) positron, e+ (c) quark (d) meson   (e) photon 
 
 
Answers 1. a 2. b 3. d 4. d 
 
B.   Conceptual 
 
1. The Δ baryon decays into 2 particles.  To which families do these 2 particles belong?  

EXPLAIN YOUR ANSWER. 
 
2. The D+ meson (quark content cd ), which is the least massive charmed meson, decays 

with a lifetime of about 10−12 s.  Some of its decay modes produce only 2 other 
mesons, for example 2 π mesons or a π and a K.  Would you expect to find a decay 
mode for the D+ meson in which its direct decay products are only leptons or 
antileptons?  Either give an example of an allowed decay process and explain why it 
is allowed, or else explain why the decay process would not be allowed. 

 
3. The Ω− baryon (strangeness = −3) decays through a series of processes that eventually 

lead to a nucleon (proton or neutron).  What is the minimum number of decay 
processes necessary for the Ω− to transform into p or n?  EXPLAIN YOUR 
ANSWER. 

 
Answers 1.  Baryon + meson (baryon + photon would be acceptable) 

2.  +D μμ ν+→ + , because the lifetime (and the change in charm) indicate 
 a decay by the weak interaction. 

  3.  Two (first a strangeness-changing weak decay including the emission 
of a strange meson, followed by another strangeness-changing weak 
decay.  (Full credit for a well-explained answer arguing for a series of 3 
weak decays each changing S by 1.) 

 
C.   Problems 
 
1. An unknown particle X moving in the x direction decays into a proton and a π−. 
 (a) To what family does X belong?  Explain your answer. 
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 (b) From the length of the track left by X, it is concluded that the decay lifetime is in 
the range of 10−10 s.  What does this imply about the interaction that is responsible for 
this decay, and what can you conclude about the properties of particle X? 

 (c) You observe the proton to move with momentum 360 MeV/c at 14° above the x 
axis and the pion to move with momentum 155 MeV/c at 34° below the x axis.  Find 
the momentum and energy of particle X.  The proton rest energy is 938 MeV and the 
pion rest energy is 140 MeV. 

 (d) What is the rest energy of particle X? 
 
2. (a) What is the minimum kinetic energy necessary to produce the reaction 

0 p p p pπ + → + +  with π0 incident on protons at rest?  (Rest energies are 
2 2

p135MeV, 938 MeVm c m cπ = = .) 
 (b) Find the kinetic energy of each of the final particles if the pions are incident at the 

threshold energy. 
 
 
Answers 1. (a) baryon   (b) weak interaction; a conservation law (such as strangeness) 

may be violated in the decay   (c) 478 MeV/c, 1214 MeV   (d) 1116 MeV 
 2.  (a) 3607 MeV   (b) 622 MeV 
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Problem Solutions 
 

1. (a) Strong, because of the lifetime. (b) Electromagnetic, because of the photons. 
 (c) Weak, because of the leptons. (d) Weak, because of the lifetime. 
 (e) Strong, because of the lifetime. (f) Weak, because of the lifetime. 
 
2. We can estimate the range Δx using the uncertainty principle in the form of E tΔ Δ ∼ , 

with 2E mcΔ =  and /t x cΔ = Δ : 
  

3
2 3

197 MeV fm 2.46 10  fm
80.2 10 MeV

cx
mc

−⋅
Δ = = ×

×
∼  

 
3. (a) μπ μ ν− −→ +   (b) 0ρ π π− −→ +  

 (c) D K π π− + − −→ + +  (d) 0K π π− +→ +  
 
4. (a) en p e ν+→ + +   (b) 0 p π +Λ = +  
 (c) 0 +K−Ω →Λ +   (d) 0 0 γΣ → Λ +  
 
5. (a) 0 +

eK eπ ν−→ + +   (b) 0
eK eπ ν+ −→ + +  

 (c) 0 +K μπ μ ν−→ + +  (d) 0K μπ μ ν+ −→ + +  
 

6. (a) Lepton number (Le = 0 → Le = −1) 
(b) Energy ( 2 2 2

p Km c m c m cΛ < + ) 
(c) Strangeness (S = −3 → S = −1; only ΔS = ±1 or 0 is allowed for the weak interaction) 
(d) Baryon number (B = 1 → B = 0) 
(e) Strangeness (S = −1 → S = 0; only ΔS = 0 is allowed for electromagnetic decays) 
(f) Energy ( 2 2 2

Km c m c m cΩ Ξ< + ) 
(g) Energy ( 2 2 2m c m c m cπΞ Σ< + ) 
(h) Electron and muon lepton numbers (Le = 0 → Le = 1 and Lμ = 1 → Lμ = 0) 
 

7. (a) Electron lepton number (Le = +1 → Le = −1) 
(b) Strangeness (S = 0 → S = −1) 
(c) Baryon number (B = 2 → B = 3) 
(d) Strangeness (S = 0 → S = −2) 
(e) Baryon number (B = 1 → B = 2) 
 

8. (a) νe  (b) π0  (c) π0  
 
9. (a) K+     (b) n        (c) K0 (d) π−     (e) μ+       (f) Ξ− 

 
 



 294

10. (a)  1 2 (528 MeV/ )cos30 (2166 MeV/ )cos 7 2607 MeV/x x xp p p c c c= + = °+ ° =  
      1 2 (528 MeV/ )sin 30 (2166 MeV/ )sin 7 0y y yp p p c c= + = °− ° =  

 2 2 2 4 2 2
1 1 (528 MeV) (140 MeV) 546 MeVE c p m cπ= + = + =  

 2 2 2 4 2 2
2 2 (2166 MeV) (140 MeV) 2171 MeVE c p m cπ= + = + =  

2 2 2 2 2 2
1 2( ) (546 MeV 2171 MeV) (2607 MeV) 764 MeVmc E E c p= + − = + − =  

(b)  1 2 (645 MeV/ )cos 20 (4223 MeV/ )cos3 4823 MeV/x x xp p p c c c= + = °+ ° =  
      1 2 (645 MeV/ )sin 20 (4223 MeV/ )sin 3 0y y yp p p c c= + = °− ° =  

 2 2 2 4 2 2
1 1 (645 MeV) (140 MeV) 660 MeVE c p m cπ= + = + =  

 2 2 2 4 2 2
2 2 (4223 MeV) (140 MeV) 4225 MeVE c p m cπ= + = + =  

2 2 2 2 2 2
1 2( ) (660 MeV 4225 MeV) (4823 MeV) 775 MeVmc E E c p= + − = + − =  

(c)  1 2 (119 MeV/ )cos 45 (962 MeV/ )cos5 1042 MeV/x x xp p p c c c= + = °+ ° =  
      1 2 (119 MeV/ )sin 45 (962 MeV/ )sin 5 0y y yp p p c c= + = °− ° =  

 2 2 2 4 2 2
1 1 (119 MeV) (140 MeV) 183 MeVE c p m cπ= + = + =  

 2 2 2 4 2 2
2 2 (962 MeV) (140 MeV) 972 MeVE c p m cπ= + = + =  

2 2 2 2 2 2
1 2( ) (183 MeV 972 MeV) (1042 MeV) 498 MeVmc E E c p= + − = + − =  

 

11. (a) 
16

19

6.58 10  eV s 1.29 keV
5.1 10  s

E
t τ

−

−

× ⋅
Δ = = = =

Δ ×
 

(b) 
16

21

6.58 10  eV s 0.21 MeV
3.2 10  s

E
t τ

−

−

× ⋅
Δ = = = =

Δ ×
 

(c) 
16

20

6.58 10  eV s 8.9 keV
7.4 10  s

E
t τ

−

−

× ⋅
Δ = = = =

Δ ×
 

(d) 
16

24

6.58 10  eV s 118 MeV
5.6 10  s

E
t τ

−

−

× ⋅
Δ = = = =

Δ ×
 

 
12. For −Σ the proper lifetime is 10

0 1.5 10  sτ −= × . 
2

2

2 2
3642 MeV 1197 MeV 4839 MeV

1 /
mcE K mc

v c
= + = + = =

−
 

2 22 1197 MeV1 1 0.9689
4839 MeV

v mc
c E

⎛ ⎞ ⎛ ⎞= − = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

10
100

2 2 2

1.5 10  s 6.07 10  s
1 / 1 (0.9689)v c
ττ

−
−×

= = = ×
− −

 

  
8 10(0.9689)(3.00 10  m/s)(6.07 10  s) 0.18 mD vτ −= = × × =  
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13. With 0Kπ = , and assuming mν  to be negligibly small, 
2 2 2 2

e e e e( ) ( )Q K E p c m c m c p cν ν= + = + − −  
 
Momentum conservation gives ep pν= , so 

2 2 2 2
e e e e( ) ( )Q m c p c p c m c+ − = +  

 
2 2 2 2 2 3 2 2 2

e e e e e e e e( ) ( ) 2 2 2 ( ) ( )Q m c p c Qm c Qp c m p c p c m c+ + + − − = +  
 

2 2 2
e

e 2
e

2 (358.2 MeV) 2(358.2 MeV)(0.511 MeV) 179.4 MeV
2 2 2(358.2 MeV) 2(0.511 MeV)

Q Qm ccp
Q m c
+ +

= = =
+ +

 

  
2 2 2 2 2

e e e( ) ( ) (179.4 MeV) (0.511 MeV) 179.4 MeVE p c m c= + = + =  
 

14. (a) 2 2 2
i f 135 MeVQ m c m c m cπ= − = =  

 (b) 2 2 2 2 2
i f pQ m c m c m c m c m cπΣ= − = − −  

       1189 MeV 938 MeV 135 MeV 116 MeV= − − =  
(c)  2 2 2 2 2

i f D K 2Q m c m c m c m c m cπ= − = − −  
     1869 MeV 494 MeV 2(140 MeV) 1095 MeV= − − =  
 

15. (a) 2 2 2 2 2
i f 140 MeV 105.7 MeV 34 MeVQ m c m c m c m c m cπ μ ν= − = − − = − =  

 (b) 2 2 2 2
i f K 2 498 MeV 2(140 MeV) 218 MeVQ m c m c m c m cπ= − = − = − =  

 (c) 2 2 2 2
i f 1192 MeV 1116 MeV 76 MeVQ m c m c m c m cΣ Λ= − = − = − =  

 
16. (a)  Momentum conservation: p p

π π+ −=  so E E
π π+ −=  

  Energy conservation: KE E E
π π+ −= +  

   
1 1

K2 2 (498 MeV) 249 MeVE E E
π π+ −= = = =  

2 249 MeV 140 MeV 109 MeVK K E m cππ π π+ − += = − = − =  
 
(b)  Momentum conservation: np pπ=  

  Energy conservation: 2 2 2 2 2 2
n n n( ) ( ) ( ) ( )E E p c m c p c m c Eπ π π Σ+ = + + + =  

  
2 2 2 2 2 2 2 2 2 2

n( ) ( ) ( ) ( ) ( ) ( )p c m c E p c m c m c p c m cπ π π π πΣ Σ+ = − + = − +  
 

2 2 2 2 2 2 2 2 2 2 2 2
n( ) ( ) ( ) ( ) ( ) 2 ( ) ( )p c m c m c p c m c m c p c m cπ π π π πΣ Σ+ = + + − +  
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2 2 2 2 2
2 2 2 n

2

2 2 2

( ) ( ) ( )( ) ( )
2

(1197 MeV) (140 MeV) (940 MeV) 221 MeV
2(1197 MeV)

m c m c m cE p c m c
m c
π

π π π
Σ

Σ

+ −
= + =

+ −
= =

 

2

n
2

n n n

221 MeV 140 MeV 81 MeV
1197 MeV 221 MeV 976 MeV

976 MeV 940 MeV 36 MeV

K E m c
E E E
K E m c

π π π

πΣ

= − = − =
= − = − =
= − = − =

 

 
17. (a)  Momentum conservation: Kp pΛ =  

  Energy conservation: 2 2 2 2 2 2
K K K( ) ( ) ( ) ( )E E p c m c p c m c EΛ Λ Λ Ω+ = + + + =  

  
2 2 2 2 2 2 2 2 2 2

K K K K K( ) ( ) ( ) ( ) ( ) ( )p c m c E p c m c m c p c m cΛ Ω Ω+ = − + = − +  
 

2 2 2 2 2 2 2 2 2 2 2 2
K K K K K( ) ( ) ( ) ( ) ( ) 2 ( ) ( )p c m c m c p c m c m c p c m cΛ Ω Ω+ = + + − +  

 
2 2 2 2 2

2 2 2
K K K 2

2 2 2

( ) ( ) ( )( ) ( )
2

(1672 MeV) (494 MeV) (1116 MeV) 537 MeV
2(1672 MeV)

Km c m c m cE p c m c
m c

Ω Λ

Ω

+ −
= + =

+ −
= =

 

2
K K K

K
2

537 MeV 494 MeV 43 MeV
1672 MeV 537 MeV 1135 MeV

1135 MeV 1116 MeV 19 MeV

K E m c
E E E
K E m c

Λ Ω

Λ Λ Λ

= − = − =
= − = − =
= − = − =

 

 
(b)  Momentum conservation: p pμ ν=  

  Energy conservation: 2 2 2 2( ) ( )E E p c m c p c E m cμ ν μ μ ν π π+ = + + = =  

  where we assume the ν has a negligible mass.  Then 
  

2 2 2 2 2 2 2 3 2( ) ( ) ( ) ( ) 2 ( )p c m c m c p c m c m p c p cν μ π ν π π ν ν+ = − = − +  
 

  
2 2 2 2 2 2

2

( ) ( ) (140 MeV) (105.7 MeV) 30 MeV
2 2(140 MeV)

m c m c
E p c

m c
π μ

ν ν
π

− −
= = = =  

 

2

140 MeV 30 MeV 110 MeV
110 MeV 106 MeV 4 MeV

E E E
K E m c
μ π ν

μ μ μ

= − = − =
= − = − =
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18.  2 250 MeV 1197 MeV 1447 MeVE K m cΣ Σ Σ= + = + =  

  2 2 2 2 2( ) (1447 MeV) (1197 MeV) 813 MeVcp E m cΣ Σ Σ= − = − =  
 
 Let the neutron move at an angle θ with the positive x axis, which is the original direction 

of motion of the Σ.  Then conservation of momentum gives: 
 
 x direction:  n cosp p θΣ =   y direction:  n n0 sin or sinp p p pπ πθ θ= − =  
 
 which combine to give 2 2 2

np p pπΣ + = .  Conservation of energy gives  
 

2 2 2 2 2 2
n n n

2 2 2 2 2 2 2 2 2 2
n n n n

( ) ( ) ( ) ( )

( ) ( ) 2 ( ) ( ) ( ) ( )

E E E cp m c cp m c

cp m c E E cp m c cp m c

π π π

π π

Σ

Σ Σ

= + = + + +

+ = − + + +
 

2 2 2 2 2 2 2
2 2 2 n n

n n n

2 2 2 2 2 2
n K

2 2 2 2

( ) ( ) ( ) ( )( ) ( )
2

( ) ( ) ( )
2

(940 MeV) (1447 MeV) (140 MeV) (813 MeV) 1250 MeV
2(1447 MeV)

m c E m c cp cpE cp m c
E

m c E m c cp
E

π π

π

Σ

Σ

Σ

Σ

+ − + −
= + =

+ − +
=

+ − +
= =

 

 
2

n n n

n
2

2 2 2 2 2
n n n

1 1

n

1250 MeV 940 MeV 310 MeV
1447 MeV 1250 MeV 197 MeV

197 MeV 140 MeV 57 MeV

( ) (1250 MeV) (940 MeV) 824 MeV
813 MeV/cos cos 9.4
824 MeV/

K E m c
E E E

K E m c

cp E m c
p c
p c

π

π π π

θ

Σ

− −Σ

= − = − =
= − = − =

= − = − =

= − = − =

= = = °

 

 
19. Let θ be the angles that the directions of the two outgoing pi mesons make above and 

below the x axis (which represents the direction of the original K meson).  We’ll use p+ 
and p− to represent the momenta of the pions and E+ and E− for their energies.  Then 
conservation of momentum gives: 

  
 x direction: K cos cosp p pθ θ+ −= +   y direction: 0 sin sinp pθ θ+ −= −  
 
 From the y equation, we get immediately p p+ −= , which in turn gives E E+ −= .  The 

total energy of the K meson is 2
K K K 276 MeV 498 MeV 774 MeVE K m c= + = + = .  

Conservation of energy then gives: 
 
  1 1

K K2 2so (774 MeV) 387 MeVE E E E E E+ − + −= + = = = =  
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2 2 2 2 2

K K K
2 2 2 2 2

( ) (774 MeV) (498 MeV) 592.5 MeV

( ) (387 MeV) (140 MeV) 360.8 MeV

cp E m c

cp E m cπ+ +

= − = − =

= − = − =
 

 
From the x component momentum equation with p p+ −=  we get K 2 cosp p θ+= , so 

 
1 1K 592.5 MeVcos cos 34.9

2 2(360.8 MeV)
p
p

θ − −

+

= = = °  

 
20. In the nonrelativistic limit, all kinetic energies are very small compared with rest 

energies, so that the total rest energy in the reaction does not change:  
 

1 2 3 4 5m m m m m+ ≅ + + +  
 
The threshold kinetic energy is then 

 

1 2 3 4 5 1 2 1
th

2 2 2

2( ) 1
2 2

m m m m m m m mK Q Q Q
m m m

⎛ ⎞+ + + + + +
= − = − = − +⎜ ⎟

⎝ ⎠
 

 
21. (a)  2 2 2 2 2 2

i f K pQ m c m c m c m c m c m cπΛ= − = + − −  
   494 MeV 938 MeV 1116 MeV 135 MeV 181 MeV= + − − =  
(b)  2 2 2 2 2 2

i f p KQ m c m c m c m c m c m cπ Σ= − = + − −  
   140 MeV 938 MeV 1189 MeV 494 MeV 605 MeV= + − − = −  
(c)  2 2 2 2 2 2 2 2

i f p p p KQ m c m c m c m c m c m c m c m cπ Λ= − = + − − − −  
   938 MeV 140 MeV 1116 MeV 498 MeV 816 MeV= − − − = −  
 

22. (a)  2 2 2 2 2
i f n pQ m c m c m c m c m cπ= − = − −  

   940 MeV 140 MeV 938 MeV 138 MeV= − − = −  
(b)  + 0

2 2 2 2 2 2 2
i f K p K K

Q m c m c m c m c m c m c m cΩ= − = + − − −  
  494 MeV 938 MeV 1672 MeV 494 MeV 498 MeV 1232 MeV= + − − − = −  
(c)  2 2 2 2 2 2 2

i f p p p KQ m c m c m c m c m c m c m cΣ= − = + − − −  
   938 MeV 1189 MeV 498 MeV 749 MeV= − − = −  

 
23. (a)  2 2 2 2 2 2 2 2

i f p p n KQ m c m c m c m c m c m c m c m cπΣ= − = + − − − −  
  2(938 MeV) 940 MeV 1189 MeV 498 MeV 140 MeV 891 MeV= − − − − = −  
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p n K
th

p

2
2

2(938 MeV) 940 MeV 1189 MeV 498 MeV 140 MeV(891 MeV)
2(938 MeV)

2205 MeV

m m m m m
K Q

m
πΣ+ + + +

= −

+ + + +
=

=

 

 
(b)  2 2 2 2 2 2

i f p KQ m c m c m c m c m c m cπ Σ= − = + − −  
   140 MeV 938 MeV 1192 MeV 498 MeV 612 MeV= + − − = −  

n K
th

p2
140 MeV 938 MeV 1189 MeV 498 MeV(612 MeV) 903 MeV

2(938 MeV)

m m m mK Q
m

π Σ+ + +
= −

+ + +
= =

 

 
24. (a)  2 2 2 2 2 2 2

i f p n p KQ m c m c m c m c m c m c m cΣ= − = + − − −  
   940 MeV 1197 MeV 494 MeV 751 MeV= − − = −  

p n p K
th

n2
2(938 MeV) 940 MeV 1197 MeV 494 MeV(751 MeV) 1800 MeV

2(940 MeV)

m m m m m
K Q

m
Σ+ + + +

= −

+ + +
= =

 

 
(b)  2 2 2 2 2 2 2

i f p p p nQ m c m c m c m c m c m c m cπ= − = + − − −  
   140 MeV 938 MeV 940 MeV 1738 MeV= − − = −  

p n
th

p

3
2

140 MeV 3(938 MeV) 940 MeV(1738 MeV) 3608 MeV
2(938 MeV)

m m m
K Q

m
π + +

= −

+ +
= =

 

 
25. (a)   K−  +  p  →  Ω−  +  K+  +  K0  
  su  + uud  sss + us  + ds→  

      u + u  s + s + s + s→  
The fundamental processes are annihilation of the uu  pair followed by the 
creation of two ss  pairs. 

(b)   π+   +  p  →   Σ+  +  K+  

 ud + uud  uus + us→  
     d  +  d  s  +  s→  

The fundamental processes are annihilation of the dd  pair followed by creation of 
the ss  pair. 

(c) γ  +   n    →  π−  +  p 
 + udd  du + uudγ →  

      u  +  uγ →  
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The incident photon creates a uu  pair. 
 

26. (a) K− +  p   →   Λ0  +  π0  
  su + uud  usd + uu→  

The quarks are merely rearranged among the particles; no quarks are created or 
destroyed. 

(b)     p  +   p    →    p   + π+ +  Λ0 +  K0   

 uud + uud  uud + ud + usd + ds→  
       energy  d + d + s + s→  

The incident proton energy creates dd  and uu  pairs. 

(c) 0   p    D D   nγ ++ → + +  
  + uud  cd  + uc + uddγ →  
             c + c + d + dγ →  

The incident photon creates cc  and dd  pairs. 
 

27. (a)  Ω− →  Λ0  + K− 
  sss  usd + su→  
  s  u + d + u→  
  The weak interaction processes are s  u + W−→  followed by W  d + u− → . 

 (b)    n   →     p   + e− + eν  

  e

e

udd  uud + e  + 
d  u + e  + 

ν
ν

−

−

→
→

 

  The weak interaction process is d  u + W−→  followed by eW  e  + ν− −→ . 

 (c) π0 → γ  + γ 
  uu   + γ γ→  
  Photons are created from the annihilation of the uu  pair. 

 (d) D+ → K− + π+ + π+  

 cd  su + ud + ud
c  s + u + d + u + u

→
→

 

The weak interaction processes are +c  s + W→  followed by +W  u + d→  and 
creation of a uu  pair. 

  
28. (a) K0  →  π+ +  π−  
  ds  ud + du→  
  s  d + u + u→  
  The weak interaction processes are +s  u + W→ followed by +W  u + d→ . 

 (b) Δ*++ →    p   +  π+ 
  uuu  uud + ud→  
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  energy  d + d→  
  The dd  pair is created from the decay energy. 

 (c)  Σ−  →    n    + π− 
  dds  udd + du→  
      s  u + d + u→  
  The weak interaction processes are s  u + W−→  followed by W  d + u− → . 

 (d) 0 +D K π −→ +  
  uc  us + du→  
  c  s + d + u→  
  The weak interaction processes are c  s + W−→  followed by W  d + u− → . 

29.  0 + +
sD  -  cu D  -  cd D  -  cs  

  0
sD  -  uc D  -  dc D  -  sc− −  

30. + + + 0 + 0
eK e K Kμν π μ ν π π+ +→ + → + + → +  

 + + 0 + + 0 0
eK K e Kπ π π π ν π π π+ − + +→ + + → + + → + +  

 
31. The mean lifetime in the laboratory τ is related to the halflife in the laboratory as 

1/ 2 / ln 2tτ = .  The beam must travel a distance d = 2.0 m at speed v within one halflife, so 

1/ 2 /t d v= .  Starting with the time dilation formula for the particle/s mean lifetime τ0 we 
have 

0 1/ 2
2 2

/
ln 2 ln 21 /
t d v

v c
ττ = = =
−

 

Solving for v/c, 

2
0

1 0.999635
1 ( ln 2 / )

v
c c dτ
= =

+
 

 
2

2 2 2

1116 MeV 41.3 GeV
1 / 1 (0.999635)

mcE
v c

= = =
− −

 

  
2 41.3 GeV 1.116 GeV 40.2 GeVK E mc= − = − =  

 
32. (a) 0 0orπ π− − −Ω →Ξ + Ξ +  

(b) 0 0
en or p eπ ν−Λ → + + +  

(c) 0
ee or nν π+ + +Σ → Λ + + +  

 
33. (a) The two protons have velocities of equal magnitude and thus equal kinetic energies.  

Conservation of energy then gives 
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2 2 2 2 2
p p p p p pm c K m c K m c m c m cπ+ + + = + +  

 
so 21

p 2K m cπ= and 2 1
p p p 2 (135 MeV) 938.3 MeV 1005.8 MeVE K m c= + = + = .  With 

2 2 2/ 1 /E mc v c= − we get 
 

2 2 21 ( / ) 1 (938.3 MeV/1005.8 MeV) 0.360v c mc E c c= − = − =  
 
(b) In this frame of reference the protons are moving with velocities +v and −v.  If we 
move at a transformation velocity −v, then the proton that was originally moving at 
velocity −v will appear at rest, and the velocity of the proton originally moving at +v can 
be found from the Lorentz velocity transformation: 
 

2 2 2 2 2

( ) 2 2(0.360 ) 0.637
1 / 1 ( ) / 1 / 1 (0.360)

v u v v v cv c
vu c v v c v c
− + −′ = = = = =

− − − + +
 

 

(c) 
2

2 2

2 2 2

938.3 MeV 938.3 MeV 279 MeV
1 / 1 (0.637)

mcK E mc mc
v c

= − = − = − =
− −

 

 
34. (a) Weak interaction. 

(b)  + + + + 0
s s sD D D K Kμφ π μ ν+ +→ + → + → +  

       C: +1   →  0  +  0   C:  +1   →  0  +  0       C: +1   →  0   +   0  
       S: +1   →  0  +  0   S:   +1   →  0  +  0        S: +1   → +1  + (−1)  
(c)  + + + + 0

s s sD D D K Kμφ π μ ν+ +→ + → + → +  

 + + +

+ + +

cs ss + ud cs leptons cs us + sd
c s + W and c + s W and c s + W and
W u + d W W u + dμμ ν+

→ → →
→ → →
→ → + →

 

(d) The weak interaction cannot change S by 2 units. 
 

35. One of the pions will have its maximum kinetic energy when the other 2 pions move in 
the opposite direction with equal momenta.  In this way they have the least possible 
energy necessary for momentum conservation. To conserve momentum, if one pion has 
momentum p, then the other 2 pions each move in the opposite direction with momentum 
p/2.  Conservation of energy then gives 

  
2 2 2 2 2 2

1 2 3 ( ) ( ) 2 ( / 2) ( )KE E E E cp m c cp m cπ π π π π= + + = + + +  
 

2 2 2 2 2 2 2 2 2 2 2 2 2
K( ) 2 ( ) ( ) ( ) ( ) 4[( / 4 ( ) ]Km c m c cp m c cp m c c p m cπ π π− + + + = +  
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2 2 2 2 2 2
2 2 2 K

1 2
K

( ) 3( ) (494 MeV) 3(140 MeV)( ) ( ) 187 MeV
2 2(494 MeV)

m c m cE cp m c
m c

π
π π

− −
= + = = =  

 
2

1 1 187 MeV 140 MeV 47 MeVK E m cπ π π= − = − =  
 
 

36. (a) The initial momentum of the pion is 
   

2

2 2 2 2 2

1 ( )( / ) 1 (139.6 MeV)(0.998) 2204 MeV/
1 / 1 / 1 (0.998)

mv mc v cp c
c cv c v c

π = = = =
− − −

 

 
and the momentum components of the K meson are 
 

K K K

K K K

cos (1560 MeV/ )cos 20.6 1460 MeV/
sin (1560 MeV/ )sin 20.6 549 MeV/

x

y

p p c c
p p c c

θ
θ

= = ° =
= = ° =  

 
so that the momentum components of the unknown particle are  
 

K

K

2204 MeV/ 1460 MeV/ 744 MeV/
549 MeV/

x x

y y

p p p c c c
p p c

π= − = − =
= =  

 
and its momentum and direction are thus 
  

2 2 2 2

1 1

(744 MeV/ ) (549 MeV/ ) 925 MeV/
549 MeV/tan tan 36.4
744 MeV/

x y

y

x

p p p c c c
p c
p c

θ − −

= + = + =

= = = °
 

(b) The initial energy and the final energy of the K meson are 
 

2
2

initial p p2 2 2

2 2 2 2 2
K K K

139.6 MeV 938.3 MeV 3147 MeV
1 / 1-(0.998)

( ) ( ) (1560 MeV) (498 MeV) 1638 MeV

m cE E E m c
v c

E cp m c

π
π= + = + = + =

−

= + = + =

 

 
and so the energy of the second outgoing particle is 
 

initial K 3147 MeV 1638 MeV 1509 MeVE E E= − = − =  
 
(c) The rest energy of the second outgoing particle is 
 

2 2 2 2 2( ) (1509 MeV) (925 MeV) 1192 MeVmc E cp= − = − =  
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Because the reaction started with one baryon, this particle must also be a baryon, and a 
look at Table 14.6 shows that it must be a Σ0.  This would be expected based also on the 
conservation of electric charge and strangeness. 
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Chapter 15 
 

   
 
 

Supplemental Materials 
 
  
  
 

Suggestions for Additional Reading 
 
 
There are many introductory, advanced, and popular-level books and articles that cover 
in more detail the subjects touched only briefly in this chapter. To pursue any of these 
subjects, you may first need some background material on astronomy and astrophysics: 
 
B. W. Carroll and D. A. Ostlie, An Introduction to Modern Astrophysics, 2nd ed. 

(Benjamin Cummmings, 2006). 
S. A. Gregory and M. Zeilik, Introductory Astronomy and Astrophysics, 4th ed.  
 (Saunders, 1997). 
M. Harwit, Astrophysical Concepts, 4th ed. (Springer, 2006).  
 
Some nonmathematical introductory books on general relativity and cosmology are: 
 
T. Ferris, The Red Limit (Wm. Morrow & Co., 1977).  
S. W. Hawking, A Brief History of Time (Bantam, 1988).  
L. Krauss, Quintessence: The Mystery of Missing Mass in the Universe (Basic Books, 

2000).  
K. Larsen, Cosmology 101 (Greenwood Press, 2007). 
A. Lightman, Ancient Light (Harvard University Press, 1991).  
S. Weinberg, The First Three Minutes (Basic Books, 1977).  
 
Some additional detail on general relativity, without the advanced math: 
 
P. G. Bergmann, The Riddle of Gravitation (Scribner’s, 1968).  
M. Berry, Principles of Cosmology and Gravitation (Cambridge University Press, 1976). 
P. C. W. Davies, Space and Time in the Modern Universe (Cambridge University Press, 

1977).  
W. Rindler, Essential Relativity (Van Nostrand, 1969).  
R. M. Wald, Space, Time, and Gravity, 2nd ed. (University of Chicago Press, 1992).  
 
Books on cosmology which include mostly calculus-level math (no tensors): 
 
A. Liddle, An Introduction to Modern Cosmology, 2nd ed. (Wiley, 2003). 
P. J. E. Peebles, Principles of Physical Cosmology (Princeton University Press, 1993).  
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M. Rowan-Robinson, Cosmology, 3rd ed. (Clarendon Press, 1996).  
D. W. Sciama, Modern Cosmology (Cambridge University Press, 1971).  
E. R. Harrison, Cosmology, 2nd ed. (Cambridge University Press, 2000).  
 
A more challenging work, but still very readable and containing much information on 
observations: 
 
J. V. Narlikar, Introduction to Cosmology, 3rd ed. (Cambridge University Press, 2002). 
 
As with many of the subjects covered in this book, a good source for current, popular-
level articles is the magazine Scientific American: 
 
S. W. Hawking, “The Quantum Mechanics of Black Holes,” Scientific American 236, 34 

(January 1977). 
M. J. Rees, “Black Holes in Galactic Centers,” Scientific American 263, 56 (November 

1990). 
W. L. Freedman, “The Expansion Rate and Size of the Universe,” Scientific American 

267, 54 (November 1992). 
D. E. Osterbrock, J. A. Gwinn, and R. S. Brashear, “Edwin Hubble and the Expanding 

Universe,” Scientific American 269, 84 (July 1993). 
C. H. Lineweaver and T. M. Davis, “Misconceptions About the Big Bang,” Scientific 

American 292, 36 (March 2005). 
L. M. Krauss and R. J. Scherrer, “The End of Cosmology?”, Scientific American 298, 46 

(March 2008). 
 
 
 
 

Materials for Active Engagement in the Classroom 
 
A.  Reading Quizzes 
 
 
Answers  
 
B.  Conceptual or Discussion Questions 
 
 
Answers  
 
 

Sample Exam Questions 
 
A.  Multiple Choice 
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Answers  
 
B.   Conceptual 
 
 
Answers  
 
C.   Problems 
 
 
 
Answers  
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Problem Solutions 
 
 

1. (a)  61.0 10  light-years 0.307 Mpcd = × =  
 

 

5

5

5

(72 km/s/Mpc)(0.307 Mpc) 22.1 km/s 7.37 10

1 / 1 7.67 10(590.0 nm) 590.0 nm
1 / 1 7.67 10

v Hd c

v c
v c

λ λ

−

−

−

= = = = ×

+ + ×′ = = =
− − ×

 

  
 (b)  91.0 10  light-years 307 Mpcd = × =  
 

 

2

2

2

(72 km/s/Mpc)(307 Mpc) 22,100 km/s 7.37 10

1 / 1 7.67 10(590.0 nm) 637.1 nm
1 / 1 7.67 10

v Hd c

v c
v c

λ λ

−

−

−

= = = = ×

+ + ×′ = = =
− − ×

 

 
2. With / 2λ λ′ = , Equation 15.1 gives 
 

 1 /2 which gives / 0.60
1 /

v c v c
v c

λ
λ
′ +
= = =

−
 

 
and from Hubble’s law 
 

 
5

3 3

0

(0.60)(3.00 10  km/s) 2.5 10  Mpc 8.15 10  light-years
72 km/s/Mpc

vd
H

×
= = = × = ×  

 

3. (a)  
3 2 3 /

3 / 3 / 3 / 2

8 1 24 1 8 (1/ ) 0
( ) 1 ( ) 1 ( ) ( 1)

E kT

E kT E kT E kT

du d E E E e kT
dE dE hc e hc e hc e

π π π⎛ ⎞
= = − =⎜ ⎟− − −⎝ ⎠

 

 

 
/

/3 0 or 1 with /
1 3

E kT
x

E kT

E e xe x E kT
kT e

−− = = − =
−

 

 
This equation must be solved numerically.  Note that a good starting guess is x = 3.  The 
numerical solution gives x = 2.841 and so 
 
 42.821 (2.431 10  eV/K)E kT T−= = ×  
 
(b) 4 4(2.431 10  eV/K)(2.73 K) 6.64 10  eVE − −= × = ×  
 

4. From Equation 15.7 we have 
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3 5 3

3 3 7 3 3 3
3 3 9 3

8 8 (8.617 10  eV/K) (2.404)(2.404) (2.03 10  photons/m K )
( ) (1240 eV nm) (1 m/10  nm)

N k T T T
V hc

π π −×
= = = × ⋅

⋅
 

 
Equation 10.41 gives 
 

 
5 4 5 5 4

4 4 3 3 4 4
3 3 9 3

8 8 (8.617 10  eV/K) (4.72 10  eV/m K )
15( ) 15(1240 eV nm) (1 m/10  nm)

kU T T T
hc

π π −×
= = = × ⋅

⋅
 

 
5. The tangential rotational speed of the Sun in our galaxy is 220 km/s.  From Equation 15.1 

we can find the Doppler shift when v << c, for λ λ λ′ = + Δ : 
  

 5

220 km/s1 so (121.5 nm) 0.089 nm
3.00 10  km/s

v v
c c

λ λ λ λ λ⎛ ⎞+ Δ ≅ + Δ = = =⎜ ⎟ ×⎝ ⎠
 

 
6. (a) The tangential speed at the Sun’s equator is  
  

 8 2(6.96 10  m) 1950 m/s
(26 d)(86400 s/d)

v R πω= = × =  

  
For such a small speed, we can approximate the Doppler shift (see Equation 15.1) as 
 

 8

1950 m/s(121.5 nm) 0.790 pm
3.00 10  m/s

v
c

λ λΔ ≅ = =
×

 

 
This is about 3 times larger than the gravitational shift. 
(b) The width of the spectral line, due to the thermal Doppler broadening, can be found 
from Equation 10.30, with T = 6000 K (the surface temperature of the Sun) and thus 

5(8.617 10  eV/K)(6000 K) 0.517 eVkT −= × = : 
  
 22 (2ln 2) / 2(121.5 nm) (2 ln 2)(0.517 eV)/(939 MeV) 6.7 pmkT mcλ λΔ = = =  
 
It is difficult to measure the small gravitational effect for this relatively broad spectral 
line.  

 

7.  
2 3

9 2
2 8 2

(9.8 m/s )(150 10  m)(10  Hz) 1.6 10  Hz
(3.00  10  m/s)

gHf f
c

−×
Δ = = = ×

×
 

 
8.  15 15(2.5 10 ) 2.5 10E h f h f E− −Δ = Δ = × = ×  
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16

5
15 3

6.58 10  eV s 1.8 10  s
(2.5 10 )(14.4 10  eV)

t
E

−
−

−

× ⋅
Δ = = = ×

Δ × ×
 

 

9.  
2

Coulomb grav2 2
0

and
4

e zZ GmMF F
r rπε

= =  

 
 so we can change expressions based on the Coulomb force into those based on the 

gravitational force by replacing 2
0/ 4zZe πε with GmM.  Equation 6.8 then becomes 

  

 
( )

2
1 1
2 2221

02

cot cot
42

zZ e GmMb b
mvmv

θ θ
πε

= → =  

 

For a photon that just grazes the Sun, b = R and v = c, so 1
22 cotGMR

c
θ= and, assuming θ 

is a small angle, 
 

 1 1
2 22 2

2tan soGM GM
Rc Rc

θ θ θ= ≅ ≅  

 
10. The orbital period is 7.75 h, so with (24)(365.25) = 8766 hours per year that works out to 

1131 orbits per year or 113,100 orbits per century.  The mass of each star is about 1.4 
solar masses, so the total mass M is (2.8)(2.0 × 1030 kg) = 5.6 × 1030 kg.  The eccentricity 
is 0.617, and the periastron distance rmin is 746,600 km. From Equation 15.25 we then 
have 

 

 
11 2 2 30

5
2 8 2 8

min

6 6 (6.67 10 N m / kg )(5.6 10 kg) 6.45 10 rad
(1 ) (3 10 m/s) (7.5 10 m)(1.617)
GM

c r e
π πφ

−
−× ⋅ ×

Δ = = = ×
+ × ×

 

 
Thus 
 

 
5

6
(113,100)(6.45 10 rad)(57.3deg/ rad)(3600 arc sec/deg)
1.5 10  arc seconds per century

N φ −Δ = ×
= ×

 

 
 

11. (a) If the star originally contains N nucleons (protons and neutrons), then in comparison 
with the Sun we have ( / )N N M M= .  Also, 57

n/ 1.188 10N M m= = × .  Equation 
10.58 is then 
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2 2 2/3 2 2 2/3

1/3 3 1/3 1/3 3
n n

1/334 2 2 2/3

11 2 2 57 1/3 27 3

1/3

(9 / 32 ) (9 / 32 )
( / )

(6.626 10  J s) (9 / 32 )
(6.673 10  N m /kg )(1.188 10 ) (1.675 10  kg)

(12.3 km)

h hR
GN m GN M M m

M
M

M
M

π π

π
−−

− −

−

= =

⎛ ⎞× ⋅
= ⎜ ⎟

× ⋅ × × ⎝ ⎠

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

 

 
 (b) The radius of the neutron star is R = (12.3 km)(1.5)−1/3 = 11 km.  The angular 

momentum L Iω=  is conserved during the collapse, so i i f fI Iω ω= : 
 

 
2 22 52

9i5i i
f i i i22

f f f5

7 10  km(1 rev/y) 4.0 10  rev/y 128 rev/s
11 km

MRI R
I MR R

ω ω ω ω
⎛ ⎞ ⎛ ⎞×

= = = = = × =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
12. (a) For the matter-dominated universe, 2/3R At= , so 1/32

3/dR dt At−=  and 
2 2 4/32

9/d R dt At−= − .  The deceleration parameter is 
  

 
( )

( )

2/3 4 /322 2
9

22 1/32
3

( )( / ) 0.5
( / )

At AtR d R dtq
dR dt At

−

−

−
= − = − =  

 
 For the radiation-dominated universe, 1/ 2R A t′= , so 1/ 21

2/dR dt A t−′=  and 
2 2 3/ 21

4/d R dt A t−′= − .  The deceleration parameter is 
  

 
( )

( )

1/ 2 3/ 212 2
4

22 1/ 21
2

( )( / ) 1.0
( / )

A t A tR d R dtq
dR dt A t

−

−

′ ′−
= − = − =

′
 

 
 (b)  Starting with 2 28

m3( / )dR dt G Rπ ρ= , we take the derivative with respect to time: 
 

 
2

2m
m2

8 82 2
3 3

ddR d R dRG R G R
dt dt dt dt

ρπ π ρ ⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 

 
 With 3

m CRρ −= where C is a constant, 4 1
m m/ 3 ( / ) 3 ( / )d dt CR dR dt R dR dtρ ρ− −= − = −  and 

 

 
2

m m m2

8 82 3 2
3 3

dR d R dR dR dRG R R G R
dt dt dt dt dt

π πρ ρ ρ⎛ ⎞= − + = −⎜ ⎟
⎝ ⎠
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22 2

m m
2 2 2

(4 / 3) 4( / )
( / ) ( / )

G R GR d R dtq
dR dt dR dt H

π ρ π ρ
= − = =  

 
where the last step uses 1( / )H R dR dt−= . 

 
13. With 3 3 4 4 16 3 4 4(4.72 10  eV/m K ) (7.56 10  J/m K )U T T−= × ⋅ = × ⋅ , Equation 15.32 for the 

radiation-dominated universe gives 
 

 

2 8 2

11 2 2 16 3 4 4
r

20 2 2

3 3 3(3.00 10  m/s)
32 32 32 (6.67 10  N m /kg )(7.56 10  J/m K )

(2.31 10  s K )

ct
G GU T

T

π ρ π π − −

−

×
= = =

× ⋅ × ⋅

= × ⋅
 

 

 
1/ 220 2 10 1/2

1/ 2

2.31 10  s K 1.5 10  s KT
t t

⎛ ⎞× ⋅ × ⋅
= =⎜ ⎟
⎝ ⎠

 

 

14. (a)   
2 6

13
5

940 10  eV 1.09 10  K
8.617 10  eV/K

mcT
k −

×
= = = ×

×
 

 

 
2 210 1/2 10 1/2

6
13

1.5 10  s K 1.5 10  s K 1.9 10  s
1.09 10  K

t
T

−⎛ ⎞ ⎛ ⎞× ⋅ × ⋅
= = = ×⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠

 

 

(b)   
2 6

12
5

140 10  eV 1.62 10  K
8.617 10  eV/K

mcT
k −

×
= = = ×

×
 

 

 
2 210 1/2 10 1/2

6
12

1.5 10  s K 1.5 10  s K 8.6 10  s
1.62 10  K

t
T

−⎛ ⎞ ⎛ ⎞× ⋅ × ⋅
= = = ×⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠

 

 

15. (a)  
2 6

12
5

500 10  eV 5.8 10  K
8.617 10  eV/K

mcT
k −

×
= = = ×

×
 

 

 (b)  
2 210 1/2 10 1/2

6
12

1.5 10  s K 1.5 10  s K 6.7 10  s
5.8 10  K

t
T

−⎛ ⎞ ⎛ ⎞× ⋅ × ⋅
= = = ×⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠

 

 

16.   0

0 0 0

1 2 / 3 2
3 3 /

8 8( ) ( )
( ) ( )

E E E kT x

E E E kT

N
V N E dE E e dE kT x e dx

V hc hc
π π∞ ∞ ∞> − − −= = =∫ ∫ ∫  
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0

0

2
/3 2 3 0 0

3 3/

8 8( ) 2 2 ( ) 2 2
( ) ( )

E kTx x x

E kT

E EkT x e xe e kT e
hc hc kT kT
π π∞ −− − −

⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤= − − − = + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 

 

0 0

0

0

23
/ 0 0

3 7 3 3 3

25 3 9 3
/ 0 0

3 7 3 3

/

/ 8 ( ) 2 2
/ ( ) (2.03 10  m K )

8 (8.617 10  eV/K) (10  nm/m) 2 2
(1240 eV nm) (2.03 10  m K )

0.42

E E E kT

E kT

E kT

N V E EkTf e
N V hc T kT kT

E Ee
kT kT

e

π

π

> −
− −

−
−

− −

−

⎡ ⎤⎛ ⎞ ⎛ ⎞= = + +⎢ ⎥⎜ ⎟ ⎜ ⎟× ⋅ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤× ⎛ ⎞ ⎛ ⎞= + +⎢ ⎥⎜ ⎟ ⎜ ⎟⋅ × ⋅ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

=
2

0 02 2E E
kT kT

⎡ ⎤⎛ ⎞ ⎛ ⎞+ +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

 

17. (a)  0

2
/8 0 0 01 10 0.42 2 2 gives 25

6
E kT E E Ef e

kT kT kT
−−

⎡ ⎤⎛ ⎞ ⎛ ⎞= × = + + =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

 

   
6

90
5

2.22 10  eV 1.0 10  K
25 25(8.617 10  eV/K)
ET

k −

×
= = = ×

×
 

 

 (b) 
2 210 1/2 10 1/2

9

1.5 10  s K 1.5 10  s K 225 s
1.0 10  K

t
T

⎛ ⎞ ⎛ ⎞× ⋅ × ⋅
= = =⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠

 

 

 (c)  0

2
/8 0 0 010 0.42 2 2 gives 24E kT E E Ef e

kT kT kT
−−

⎡ ⎤⎛ ⎞ ⎛ ⎞= = + + =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

 

   0
5

13.6 eV 6600 K
24 24(8.617 10  eV/K)
ET

k −= = =
×

 

 

 
2 210 1/2 10 1/2

12 51.5 10  s K 1.5 10  s K 5.2 10  s 1.6 10  y
6600 K

t
T

⎛ ⎞ ⎛ ⎞× ⋅ × ⋅
= = = × = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
 These times are not very different from those computed using 10−9 for the matter-

antimatter imbalance. 
 
18. With p n/ 0.60 / 0.40 1.5N N = = , we have 
 

 /n n

p p

or ln ln(1.5) 0.41E kTN NEe
N kT N

−Δ
⎛ ⎞Δ

= = − = =⎜ ⎟⎜ ⎟
⎝ ⎠
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 10
5

1.3 MeV 3.7 10  K
0.41 0.41(8.62 10  eV/K)

ET
k −

Δ
= = = ×

×
 

 

 
2 210 1/2 10 1/2

10

1.5 10  s K 1.5 10  s K 0.17 s
3.7 10  K

t
T

⎛ ⎞ ⎛ ⎞× ⋅ × ⋅
= = =⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠

 

 
 
19. With 26 3 28 3

cr0.046 0.046(0.97 10  kg/m ) 4.5 10  kg/mρ ρ − −= = × = × .  This amounts to 0.27 
nucleons per cubic meter, or about 1 nucleon in every 4 cubic meters. 

 

20. (a) 26 3 58 3
cr 30

1 star0.046 0.046(0.97 10  kg/m ) 2.2 10  stars/m
2.0 10  kg

ρ ρ − −= = × = ×
×

 so the 

average spacing is 58 1/3 19(2.2 10 ) 1.65 10  m = 1700 light-years− −× = × . 

 (b) 26 3 70 3
cr 42

1 galaxy0.046 0.046(0.97 10  kg/m ) 3.7 10  galaxy/m
1.2 10  kg

ρ ρ − −= = × = ×
×

so the 

average spacing is 70 1/3 23 7(3.7 10 ) 1.39 10  m = 1.5 10  light-years− −× = × × . 
 
21. From Equation 15.8, the present photon density (with T = 2.73 K) is 
 

 7 3 3 3 8 3/ (2.07 10  photons/m K )(2.73 K) 4.1 10  photons/mN V = × ⋅ = ×  
 
If the universe has its critical mass and if 23% is nonbaryonic dark matter, then the 
density of the nonbaryonic dark matter is 26 3 27 30.23(0.97 10  kg/m ) 2.2 10  kg/m− −× = × .  If 
4.1 × 108 neutrinos have a mass of 2.2 × 10−27 kg, then one neutrino has a rest energy of 
 

 
27

2 8 2
8 19

2.2 10  kg 1(3.00 10  m/s) 3.0 eV
4.1 10 1.60 10  J/eV

E mc
−

−

×
= = × =

× ×
 

 
This fairly close to the upper limit on the rest energy of the electron neutrino (see Table 
14.4), but well within the limits on the rest energies of the muon and tau neutrinos.   

 
 

22. (a) At T = 2.73 K, kT = 2.352 × 10−4 eV and E/kT = 10630 for E = 2.5 eV.  Then from 
Equation 15.37 we have 

 

 
2 2

/ 10630 4596 3
3 3 9 3

( ) 8 8 (2.5 eV) (1.0 eV) 2.9 10  m
( ) (1240 eV nm) (1 m/10  nm)

E kTN E dE E e dE e
V hc

π π− − − −= = = ×
⋅

 

 
In doing this evaluation, it is helpful to replace ex with 10x log e. 
Such a small density is impossible to observe. 
 (b) Again using Equation 15.37, 
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3 3 3 9 3

/ 12
2 3 2

( ) ( ) 100 cm (1240 eV nm) (1 m/10  nm) 1.21 10
8 (1 m/100 cm) 8 (2.5 eV) (1.0 eV)

E kT N E dE hce
V E dEπ π

−
− −⋅

= = = ×  

 
from which E/kT = 27.4, and so kT = (2.5 eV)/27.4 = 0.091 eV and T = 1060 K.  This 
temperature occurred at time 
 

2 210 1/2 10 1/2
14 61.5 10  s K 1.5 10  s K 2.0 10  s 6.4 10  y

1060 K
t

T
⎛ ⎞ ⎛ ⎞× ⋅ × ⋅

= = = × = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

23. (a) 
2 210 1/2 10 1/2

12 51.5 10  s K 1.5 10  s K 9.0 10  s 2.9 10  y
5000 K

t
T

⎛ ⎞ ⎛ ⎞× ⋅ × ⋅
= = = × = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
  This occurred during the time when atoms were forming. 

(b) 4 4
m (2.33 10  eV/K) (2.33 10  eV/K)(5000 K) 1.17 eVE T− −= × = × =  

(c)  The nucleon rest energy is 940 MeV, so the ratio of the energy densities is 
 

 
2 9

r r
2 6

m m

10 (1.17 eV) 1.24
940 10  eV

c
c

ρ ρ
ρ ρ

= = =
×

 

 
24. (a)  We assume that r mρ ρ= occurred after antimatter annihilation.  With 109 photons per 

nucleon and an average photon energy of Em, then 
 

 
2 9 9 4

r r m
2 2 6

m m nucleon

10 10 (2.33 10  eV/K) 1 or 4000 K
940 10  eV

c E T T
c m c

ρ ρ
ρ ρ

−×
= = = = =

×
 

 

(b)  
2 210 1/2 10 1/2

13 51.5 10  s K 1.5 10  s K 1.4 10  s 4.4 10  y
4000 K

t
T

⎛ ⎞ ⎛ ⎞× ⋅ × ⋅
= = = × = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
25. (a)  1/3 1/3(12.3 km)( / ) (12.3 km)(2.00) 9.79 kmR M M − −= = =  

 (b)  ( )2 2 21 1 2
2 2 5K I MRω ω= =  

 30 3 2 2 391
5 (2.00)(1.99 10  kg)(9.79 10  m) (2  rad/s) 3.01 10  Jπ= × × = ×  

(c) With 21
2K Iω= , then dK I dω ω= and / 2 /dK K dω ω= : 

 39 9 302 2(3.01 10  J)(10 ) 6.02 10  JK K ω
ω

−Δ
Δ = = × = ×  

(d)  
30

256.02 10  J 6.98 10  W
(1 d)(86400 s/d)

EP
t

Δ ×
= = = ×
Δ
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(e) If the radiation were distributed uniformly over a spherical surface at the Earth’s 
distance d = 104 light years = 9.46 × 1019 m, the fraction of the power received by the 
antenna of area A would be 
 

 
2

25 14
received transmitted 2 19 2

10 m(6.98 10  W) 6.21 10  W
4 4 (9.46 10  m)

AP P
dπ π

−= = × = ×
×

 

 
26. (a) With i j kt h c G∝ , we have [ ] [ ] [ ] [ ]i j kt h c G=  where [ ] indicates dimensions.  

Inserting the appropriate units, we have 
 

 

1 2 2 2 1 1 3 2 1

2 3 2

s (J s) (m s ) (N m kg ) (kg m s ) (m s ) (m s kg )

(kg) (m) (s)

i j k i j k

i k i j k i j k

− − − − − −

− + + − − −

= ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅

=
 

 
Equating powers of the units on both sides of the equation, we obtain 
 
 0 2 3 0 2 1i k i j k i j k− = + + = − − − =  
 
which can be solved to give 1/ 2, 5 / 2, 1/ 2.i j k= = − =  
 

(b) 
34 11 2 2

43
5 8 5

(6.626 10  J s)(6.67 10  N m /kg ) 1.3 10  s
(3.00 10  m/s)

hGt
c

− −
−× ⋅ × ⋅

= = = ×
×

 

 
(c) 8 43 35(3.00 10  m/s)(1.3 10  s) 3.9 10  mR ct − −= = × × = ×  
 

27. By taking differentials of Equations 2.23a and 2.23d, we obtain 
 

 
2

2 2 2 2

( / )and
1 / 1 /
dx u dt dt u c dxdx dt

u c u c
− −′ ′= =
− −

 

 
Making the substitutions in the expression for 2( )ds′ , 
 

 

2 2

2 2 2

2 2 2 2

2 2 2 2 2 2 2 2

2 2

2 2 2 2 2 2 2
2 2 2 2

2 2

( / )( ) ( ) ( )
1 / 1 /

( ) 2 ( / )( ) ( ) 2 ( )
1 /

(1 / )( ) (1 / )( ) ( ) ( ) ( )
1 /

c dt u c dx dx u dtds c dt dx
u c u c

c dt u dx dt u c dx dx u dx dt u dt
u c

c u c dt u c dx c dt dx ds
u c

⎡ ⎤ ⎡ ⎤− −′ ′ ′= − = −⎢ ⎥ ⎢ ⎥
− −⎣ ⎦ ⎣ ⎦

− + − + −
=

−

− − −
= = − =

−
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28.  (a) For small angles, the distance between I and the horizontal axis is Sdθ , the distance 
between S and the axis is Sdβ , and the distance between I and S is ( )S Ld dα − .  Thus 
 ( )S S S Ld d d dθ β α= + −  
 
From Equation 15.22, after inserting the extra factor of 2 to account for the difference 
between special and general relativity for the deflection angle, we have (again for small 
angles) 

 2 2

4 4

L

GM GM
bc d c

α
θ

= =  

so 

 2

4 ( )S S S L
L

GMd d d d
d c

θ β
θ

= + −  

(b) We can rewrite this equation as 

 
2

2

4 ( ) E
S L

L S

GM d d
d d c

θθ β β
θ θ

= + − = +  

or 
 2 2 0Eθ βθ θ− − =  
 
with 24 ( ) /E S L S LGM d d c d dθ = − .  Using the quadratic formula then gives the solutions 
 

( )2 21
2 4 Eθ β β θ± = ± +  

 
and the difference between the angular positions of the two images is 
 
 2 24 Eθ θ θ β θ+ −Δ = − = +  
 
(c) For β = 0, we have Eθ θ=  and the problem has rotational symmetry about the 
horizontal axis.  The image of the star is thus a circle. 
 
 

 


