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Preface

Digital signal processing (DSP) is concerned with the representation of signals in digital form, and
with the processing of these signals and the information that they carry. Although DSP, as we know
it today, began to flourish in the 1960's, some of the important and powerful processing techniques
that are in use today may be traced back to numerical algorithms that were proposed and studied
centuries ago. Since the early 1970's, when the first DSP chips were introduced, the field of digital
signal processing has evolved dramatically. With a tremendously rapid increase in the speed of DSP
processors, along with a corresponding increase in their sophistication and computational power,
digital signal processing has become an integral part of many commercial products and applications,
and is becoming a commonplace term.

This book is concerned with the fundamentals of digital signal processing, and there are two ways
that the reader may use this book to learn about DSP. First, it may be used as a supplement to any
one of a number of excellent DSP textbooks by providing the reader with a rich source of worked
problems and examples. Alternatively, it may be used as a self-study guide to DSP, using the method
of learning by example. With either approach, this book has been written with the goal of providing
the reader with a broad range of problems having different levels of difficulty. In addition to
problems that may be considered drill, the reader will find more challenging problems that require
some creativity in their solution, as well as problems that explore practical applications such as
computing the payments on a home mortgage. When possible, a problem is worked in several
different ways, or alternative methods of solution are suggested.

The nine chapters in this book cover what is typically considered to be the core material for an
introductory course in DSP. The first chapter introduces the basics of digital signal processing, and
lays the foundation for the material in the following chapters. The topics covered in this chapter
include the description and characterization of discrete-type signals and systems, convolution, and
linear constant coefficient difference equations. The second chapter considers the represention of
discrete-time signals in the frequency domain. Specifically, we introduce the discrete-time Fourier
transform (DTFT), develop a number of DTFT properties, and see how the DTFT may be used to
solve difference equations and perform convolutions. Chapter 3 covers the important issues
associated with sampling continuous-time signals. Of primary importance in this chapter is the
sampling theorem, and the notion of aliasing. In Chapter 4, the z-transform is developed, which is
the discrete-time equivalent of the Laplace transform for continuous-time signals. Then, in Chapter
5, we look at the system function, which is the z-transform of the unit sample response of a linear
shift-invariant system, and introduce a number of different types of systems, such as allpass, linear
phase, and minimum phase filters, and feedback systems.

The next two chapters are concerned with the Discrete Fourier Transform (DFT). In Chapter 6, we
introduce the DFT, and develop a number of DFT properties. The key idea in this chapter is that
multiplying the DFTs of two sequences corresponds to circular convolution in the time domain.
Then, in Chapter 7, we develop a number of efficient algorithms for computing the DFT of a finite-
length sequence. These algorithms are referred to, generically, as fast Fourier transforms (FFTSs).
Finally, the last two chapters consider the design and implementation of discrete-time systems. In
Chapter 8 we look at different ways to implement a linear shift-invariant discrete-time system, and
look at the sensitivity of these implementations to filter coefficient quantization. In addition, we



analyze the propagation of round-off noise in fixed-point implementations of these systems. Then, in
Chapter 9 we look at techniques for designing FIR and IIR linear shiftinvariant filters. Although the
primary focus is on the design of low-pass filters, techniques for designing other frequency selective
filters, such as high-pass, bandpass, and bandstop filters are also considered.

It is hoped that this book will be a valuable tool in learning DSP. Feedback and comments are
welcomed through the web site for this book, which may be found at

http://www.ee.gatech.edu/users/mhayes/schaum

Also available at this site will be important information, such as corrections or amplifications to
problems in this book, additional reading and problems, and reader comments.
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Chapter 1

Signals and Systems

1.1 INTRODUCTION

In this chapter we begin our study of digital signal processing by developing the notion of a discrete-time signal
and a discrete-time system. We will concentrate on solving problems related to signal representations, signal
manipulations, properties of signals, system classification, and system properties. First, in Sec. 1.2 we define
precisely what is meant by a discrete-time signal and then develop some basic, yet important, operations that
may be performed on these signals. Then, in Sec. 1.3 we consider discrete-time systems. Of special importance
will be the notions of linearity, shift-invariance, causality, stability, and invertibility. It will be shown that for
systems that are linear and shift-invariant, the input and output are related by a convolution sum. Properties of
the convolution sum and methods for performing convolutions are then discussed in Sec. 1.4. Finally, in Sec. 1.5
we look at discrete-time systems that are described in terms of a difference equation.

1.2 DISCRETE-TIME SIGNALS

A discrete-time signal is an indexed sequence of real or complex numbers. Thus, a discrete-time signal is a
function of an integer-valued variable, n, that is denoted by x(n). Although the independent variable » need not
necessarily represent “time” (n may, for example, correspond to a spatial coordinate or distance), x(n) is generally
referred to as a function of time. A discrete-time signal is undefined for noninteger values of n. Therefore, a
real-valued signal x(n) will be represented graphically in the form of a lollipop plot as shown in Fig. 1-1. In

x(n)
f

-2 -1 1 1 3 5 6 l 8 9 -
Fig. 1-1. The graphical representation of a discrete-time signal x(n).

some problems and applications it is convenient to view x(n) as a vector. Thus, the sequence values x(0) to
x(N — 1) may often be considered to be the elements of a column vector as follows:

x = [x(0), x(1),...,x(N = 1))7

Discrete-time signals are often derived by sampling a continuous-time signal, such as speech, with an analog-
to-digital (A/D) converter.! For example, a continuous-time signal x,(¢) that is sampled at a rate of f; = 1/T;
samples per second produces the sampled signal x(n), which is related to x,(t) as follows:

x(n) = xq(nT;)

Not all discrete-time signals, however, are obtained in this manner. Some signals may be considered to be naturally
occurring discrete-time sequences because there is no physical analog-to-digital converter that is converting an

! Analog-to-digital conversion will be discussed in Chap. 3.
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analog signal into a discrete-time signal. Examples of signals that fall into this category include daily stock
market prices, population statistics, warehouse inventories, and the Wolfer sunspot numbers.?

1.2.1 Complex Sequences

In general, a discrete-time signal may be complex-valued. In fact, in a number of important applications such as
digital communications, complex signals arise naturally. A complex signal may be expressed either in terms of
its real and imaginary parts,

z(n) = a(n) + jb(n) = Re{z(n)} + jIm{z(n))
or in polar form in terms of its magnitude and phase,
z(n) = |z(n)| expl jarg{z(n)}]
The magnitude may be derived from the real and imaginary parts as follows:
|z(m)* = Re?{z(n)} + Im*{z(n))
whereas the phase may be found using

_1 Im{z(n)}

arg{z(n)} = tan Re{z(n))

If z(n) is a complex sequence, the complex conjugate, denoted by z*(n), is formed by changing the sign on the
imaginary part of z(n):

z*(n) = Re{z(n)} — jIm{z(n)} = |z(n)| exp[— jarg{z(n)}]

1.2.2 Some Fundamental Sequences

Although most information-bearing signals of practical interest are complicated functions of time, there are three
simple, yet important, discrete-time signals that are frequently used in the representation and description of more
complicated signals. These are the unit sample, the unit step, and the exponential. The unit sample, denoted by
8(n), is defined by

| n=20
0 otherwise

8(n) = [

and plays the same role in discrete-time signal processing that the unit impulse plays in continuous-time signal
processing. The unit step, denoted by u(n), is defined by

n>0
otherwise

u(n) = I(l)

and is related to the unit sample by
n

u(n) =Y 5(k)

k=—00

Similarly, a unit sample may be written as a difference of two steps:

8(n) = u(n) — u(n — 1)

2The Wolfer sunspot number R was introduced by Rudolf Wolf in 1848 as a measure of sunspot activity. Daily records are available back
to 1818 and estimates of monthly means have been made since 1749. There has been much interest in studying the correlation between
sunspot activity and terrestrial phenomena such as meteorological data and climatic variations.
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Finally, an exponential sequence is defined by
x(n)y=a"

where a may be a real or complex number. Of particular interest is the exponential sequence that is formed when
a = e/, where wy is a real number. In this case, x(n) is a complex exponential

e/nwo — cos(nwy) + J sin(nwy)

As we will see in the next chapter, complex exponentials are useful in the Fourier decomposition of signals.

1.2.3 Signal Duration

Discrete-time signals may be conveniently classified in terms of their duration or extent. For example, a discrete-
time sequence is said to be a finite-length sequence if it is equal to zero for all values of n outside a finite
interval [N}, N;]. Signals that are not finite in length, such as the unit step and the complex exponential, are said
to be infinite-length sequences. Infinite-length sequences may further be classified as either being right-sided,
left-sided, or two-sided. A right-sided sequence is any infinite-length sequence that is equal to zero for all values
of n < ny for some integer ng. The unit step is an example of a right-sided sequence. Similarly, an infinite-length
sequence x(n) is said to be left-sided if, for some integer ng, x(n) = 0 for all n > ny. An example of a left-sided
sequence is

x(n) =ulng —n) = ! m= T

0 n > ng

which is a time-reversed and delayed unit step. An infinite-length signal that is neither right-sided nor left-sided,
such as the complex exponential, is referred to as a two-sided sequence.

1.2.4 Periodic and Aperiodic Sequences

A discrete-time signal may always be classified as either being periodic or aperiodic. A signal x(n) is said to be
periodic if, for some positive real integer N,

x(n)=x(n+ N) 1.1y

for all n. This is equivalent to saying that the sequence repeats itself every N samples. If a signal is periodic with
period N, it is also periodic with period 2N, period 3N, and all other integer multiples of N. The fundamental
period, which we will denote by N, is the smallest positive integer for which Eq. (/.7) is satisfied. If Eq. (1./)
is not satisfied for any integer N, x(n) is said to be an aperiodic signal.

EXAMPLE 1.2.1 The signals

" _]a" n>0
xi(n) = a"u(n) = | n<0
and x2(n) = cos(n?)

are not periodic, whereas the signal
x3(n) = /™8

is periodic and has a fundamental period of N = 16.

If xy(n) is a sequence that is periodic with a period Ny, and x»(n) is another sequence that is periodic with a
period N, the sum

x(n) = x1(n) + x2(n)
will always be periodic and the fundamental period is

NN,

AL S C 12
ged(Ny, N2) 42
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where gcd(N, N,) means the greatest common divisor of Ny and N,. The same is true for the product; that is,
x(n) = xy(n)xz(n)

will be periodic with a period N given by Eq. (/.2). However, the fundamental period may be smaller.
Given any sequence x(n), a periodic signal may always be formed by replicating x(n) as follows:

&Y

y(m)y= Y x(n—kN)

k=—00

where N is a positive integer. In this case, y(n) will be periodic with period N.

1.2.5 Symmetric Sequences

A discrete-time signal will often possess some form of symmetry that may be exploited in solving problems.
Two symmetries of interest are as follows:

Definition: A real-valued signal is said to be even if, for all n,
x(n) = x(—n)
whereas a signal is said to be odd if, for all n,
x(n) = —x(—n)
Any signal x(n) may be decomposed into a sum of its even part, x.(r), and its odd part, x,(n), as follows:
x(n) = xe(n) + x,(n) (.3
To find the even part of x(n) we form the sum
xe(n) = 3{x(n) + x(—n)}
whereas to find the odd part we take the difference
Xo(n) = 3{x(n) — x(—n)}
For complex sequences the symmetries of interest are slightly different.
Definition: A complex signal is said to be conjugate symmetric? if, for all n,
x(n) = x*(—n)
and a signal is said to be conjugate antisymmetric if, for all n,
x(n) = —x*(—n)

Any complex signal may always be decomposed into a sum of a conjugate symmetric signal and a conjugate
antisymmetric signal.

1.2.6 Signal Manipulations

In our study of discrete-time signals and systems we will be concerned with the manipulation of signals. These
manipulations are generally compositions of a few basic signal transformations. These transformations may be
classified either as those that are transformations of the independent variable n or those that are transformations
of the amplitude of x(n) (i.e., the dependent variable). In the following two subsections we will look briefly at
these two classes of transformations and list those that are most commonly found in applications.

3A sequence that is conjugate symmetric is sometimes said to be hermitian.
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Transformations of the Independent Variable

Sequences are often altered and manipulated by modifying the index n as follows:

y(n) = x(f(n))

where f(n) is some function of n. If, for some value of n, f(n) is not an integer, y(n) = x(f(n)) is undefined.
Determining the effect of modifying the index n may always be accomplished using a simple tabular approach
of listing, for each value of n, the value of f(n) and then setting y(n) = x(f(n)). However, for many index
transformations this is not necessary, and the sequence may be determined or plotted directly. The most common
transformations include shifting, reversal, and scaling, which are defined below.

Shifting This is the transformation defined by f(n) = n — ng. If y(n) = x(n — ny), x(n) is shifted to
the right by ng samples if ng is positive (this is referred to as a delay), and it is shifted to the left by ng
samples if ng is negative (referred to as an advance).

Reversal This transformation is given by f(n)= — n and simply involves “flipping” the signal x(n)
with respect to the index .

Time Scaling This transformation is defined by f(n)=Mn or f(n)=n/N where M and N are
positive integers. In the case of f(n)= Mn, the sequence x(Mn) is formed by taking every Mth sample
of x(n) (this operation is known as down-sampling). With f(n)=n/N the sequence y(n) = x(f(n)) is

defined as follows:
x(i) n=0,+N, 2N, ..
y(n) = N

0 otherwise
(this operation is known as up-sampling).

Examples of shifting, reversing, and time scaling a signal are illustrated in Fig. 1-2.

x(n)
3
2

1

-2 -1 1 2 3 4 5 6 7 8

(a) A discrete-time signal.

x(n—2) x(—n)
3 3
2 2
.1 I ] | )
2 -1 ' 1 23 45 6 7 8 —8 7 —6 -5 ~4 -3 —2 —I 12
(b) A delay by ng = 2. (c) Time reversal.
x(2n)
3
2
1
n
-2 -1 1 2 3 4 5 6 7 8 -2 —1 1 2 3 4 5 6 7 8 9 1011
(d) Down-sampling by a factor of 2. (e) Up-sampling by a factor of 2.

Fig. 1-2. Illustration of the operations of shifting, reversal, and scaling of the independent variable n.
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Shifting, reversal, and time-scaling operations are order-dependent. Therefore, one needs to be careful in
evaluating compositions of these operations. For example, Fig. 1-3 shows two systems, one that consists of a
delay followed by a reversal and one that is a reversal followed by a delay. As indicated, the outputs of these
two systems are not the same.

x(n) x(n — ng) x(=n — ng)
T, ——_——

Y

——— T, o

(a) A delay T, followed by a time-reversal 7.

x(n) x(—n) x(=n + ng)
—_— T’ > Tnn —_—

(b) A time-reversal T, followed by a delay Ty,

Fig. 1-3. Example illustrating that the operations of delay and reversal do
not commute.

Addition, Multiplication, and Scaling
The most common types of amplitude transformations are addition, multiplication, and scaling. Performing these
operations is straightforward and involves only pointwise operations on the signal.

Addition The sum of two signals

y(n) = x1(n) + x2(n) —00 < h <00
is formed by the pointwise addition of the signal values.
Multiplication The multiplication of two signals
y(n) = x1(n)xa(n) —00<hn <o
is formed by the pointwise product of the signal values.

Scaling Amplitude scaling of a signal x(n) by a constant ¢ is accomplished by multiplying every
signal value by c:
y(n) = cx(n) —00 <h <00

This operation may also be considered to be the product of two signals, x(») and f(n) = c.

1.2.7 Signal Decomposition

The unit sample may be used to decompose an arbitrary signal x(») into a sum of weighted and shifted unit
samples as follows:

x(n)y=---+x(=D8(n+ 1)+ x(0)8(n) + x(1)é(n — 1) + x(2)6(n —2) + - - -
This decomposition may be written concisely as
x(n) = Z x(k)8(n — k) (1.4)
=—00

where each term in the sum, x(k)8(n —k), is a signal that has an amplitude of x(k) at time » = k and a value of zero
for all other values of n. This decomposition is the discrete version of the sifting property for continuous-time
signals and is used in the derivation of the convolution sum.
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1.3 DISCRETE-TIME SYSTEMS

A discrete-time system is a mathematical operator or mapping that transforms one signal (the input) into another
signal (the output) by means of a fixed set of rules or operations. The notation T'[-] is used to represent a general
system as shown in Fig. 1-4, in which an input signal x(n) is transformed into an output signal y(rn) through
the transformation T'[-]. The input-output properties of a system may be specified in any one of a number of
different ways. The relationship between the input and output, for example, may be expressed in terms of a
concise mathematical rule or function such as

y(n) = x*(n)

or y(n) =0.5y(n — 1)+ x(n)

It is also possible, however, to describe a system in terms of an algorithm that provides a sequence of instructions
or operations that is to be applied to the input signal, such as

yi(n) =0.5y1(n — 1)+ 0.25x(n)
ya(n) = 0.25y,(n — 1) 4+ 0.5x(n)
yi(n) = 0.4y3(n — 1)+ 0.5x(n)
y(n) = yi(n) + y2(n) + yi(n)

In some cases, a system may conveniently be specified in terms of a table that defines the set of all possible
input-output signal pairs of interest.

x(n) y(n) =T[x(n)]

—_— T[] e

Fig. 1-4. The representation of a discrete-time system as a trans-
formation T'[-] that maps an input signal x(n) into an output
signal y(n).

Discrete-time systems may be classified in terms of the properties that they possess. The most common
properties of interest include linearity, shift-invariance, causality, stability, and invertibility. These properties,
along with a few others, are described in the following section.

1.3.1 System Properties
Memoryless System

The first property is concerned with whether or not a system has memory.

Definition: A system is said to be memoryless if the output at any time n = n¢ depends only
on the input at time n = ny.

In other words, a system is memoryless if, for any ng, we are able to determine the value of y(n¢) given only the
value of x(ng).

EXAMPLE 1.3.1 The system
y(n) = x*(n)
is memoryless because y(no) depends only on the value of x(n) at time no. The system
y(n) =x(n)+x(n—1)

on the other hand, is not memoryless because the output at time no depends on the value of the input both at time n, and at
time ng — 1.
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Additivity

An additive system is one for which the response to a sum of inputs is equal to the sum of the inputs individually.
Thus,

Definition: A system is said to be additive if
Txy(n) + x2(n)] = T [x1(n)] + T [x2(n)]

for any signals x;(n) and x,(n).

Homogeneity

A system is said to be homogeneous if scaling the input by a constant results in a scaling of the output by the
same amount. Specifically,

Definition: A system is said to be homogeneous if
T[cx(n)] = cT[x(n)]

for any complex constant ¢ and for any input sequence x(n).

EXAMPLE 1.3.2 The system defined by

A )
y(n) = =D

is not additive because
(x1(n) + x2(n))?

Txi(n) + x2(m)] = xin =D+ xn—-1)

which is not the same as ) )
xi(n) x;(n)

xi(n—=1)  x(n—1)
This system is, however, homogeneous because, for an input cx(n) the output is

(cx(m))* xX*(n)
cx(n—1y Cx(n -1

Txi(M)] + Tlxa(n)] =

Tlcx(n)] = = cT [x(n)]

On the other hand, the system defined by the equation
y(n) =x(n)+x"(n — 1)
is additive because
X1 () + X2 + [x1 (7 = D) 4+ x2(n — DI = [x1(0) + x7(n = D] + [xa(n) + x3(n — )]
However, this system is not homogeneous because the response to cx(n) is
Tlex(n)] = cx(n) + c*x*(n - 1)
which is not the same as

cTx(n)] =cx(n) +cx*(n — 1)

Linear Systems
A system that is both additive and homogeneous is said to be /inear. Thus,
Definition: A system is said to be linear if
Tlaixi(n) + azxa(n)] = a1 T [x1(n)] + a2T [x2(n)]

for any two inputs x,(n) and x,(n) and for any complex constants a; and a,.
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Linearity greatly simplifies the evaluation of the response of a system to a given input. For example, using the
decomposition for x(n) given in Eq. (/.4), and using the additivity property, it follows that the output y(n) may
be written as

y(n) = Tlx(n)] = T[ > x(k)s(n —k)] = ) T(k)s(n—k)]
k=—00 k=—o00

Because the coefficients x(k) are constants, we may use the homogeneity property to write

o0 o0

Y=Y Tl -kl =Y xW)Ts(n - k)] (1.5

k=—00 k=—00

If we define h,(n) to be the response of the system to a unit sample at time n = k,
hi(n) = T[8(n — k)]
Eq. (1.5) becomes

o0

ymy= Y x(kh(n) (1.6)

k=—00

which is known as the superposition summation.

Shift-Invariance
If a system has the property that a shift (delay) in the input by n¢ results in a shift in the output by ng, the system
is said to be shift-invariant. More formally,

Definition: Let y(n) be the response of a system to an arbitrary input x(n). The system is
said to be shift-invariant if, for any delay ng, the response to x(n — ng) is y(n — ng). A system
that is not shift-invariant is said to be shift-varying.*

In effect, a system will be shift-invariant if its properties or characteristics do not change with time. To test for
shift-invariance one needs to compare y(n — ng) to T [x(n — ng)]. If they are the same for any input x(») and for
all shifts ng, the system is shift-invariant.

EXAMPLE 1.3.3 The system defined by
y(n) = x*(n)

is shift-invariant, which may be shown as follows. If y(n) = x*(n) is the response of the system to x(n), the response of the
system to
x'(n) = x(n — no)

is Y(n) = X'} = x*(n — no)
Because y'(n) = y(n — ng), the system is shift-invariant. However, the system described by the equation
y(n) = x(n) + x(—n)
is shift-varying. To see this, note that the system’s response to the input x(n) = 8(n) is
y(n) = 8(n) + 8(—n) = 28(n)
whereas the response to x(n — 1) = 8(n — 1) is
y(n)y=8(n—-1)+8(-n—-1)

Because this is not the same as y(n — 1) = 28(n — 1), the system is shift-varying.

4Some authors refer to this property as time-invariance. However, because n does not necessarily represent “time,” shift-invariance is a bit
more general.
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Linear Shift-Invariant Systems

A system that is both linear and shift-invariant is referred to as a linear shift-invariant (LSI) system. If h(n) is
the response of an LSI system to the unit sample 8(n), its response to §(n — k) will be h(n — k). Therefore, in
the superposition sum given in Eq. (/.6),

hy(n) = h(n — k)

and it follows that
o0

ymy= > x(k)h(n — k) (1.7

k=—00

Equation ({.7), which is known as the convolution sum, is written as
y(n) = x(n) x h(n)

where * indicates the convolution operator. The sequence h(n), referred to as the unit sample response, provides
a complete characterization of an LSI system. In other words, the response of the system to any input x(n) may
be found once A(n) is known.

Causality
A system property that is important for real-time applications is causality, which is defined as follows:

Definition: A system is said to be causal if, for any n(, the response of the system at time
no depends only on the input up to time n = ny.

For a causal system, changes in the output cannot precede changes in the input. Thus, if x)(n) = x,(n) for
n < ng, y)(n) must be equal to y,(n) for n < ny. Causal systems are therefore referred to as nonanticipatory.
An LSI system will be causal if and only if 4(n) is equal to zero for n < 0.

EXAMPLE 1.3.4 The system described by the equation y(n) = x(n)+x(n — 1) is causal because the value of the output at
any time n = ng depends only on the input x (n) at time ng and at time no — 1. The system described by y(n) = x(n) + x(n+1),
on the other hand, is noncausal because the output at time » = no depends on the value of the input at time ny + 1.

Stability

In many applications, it is important for a system to have a response, y(n), that is bounded in amplitude whenever
the input is bounded. A system with this property is said to be stable in the bounded input-bounded output (BIBO)
sense. Specifically,

Definition: A system is said to be stable in the bounded input-bounded output sense if, for
any input that is bounded, |x(n)| < A < oo, the output will be bounded,

fy(n)l < B < o0

For a linear shift-invariant system, stability is guaranteed if the unit sample response is absolutely summable:

> k@) < o0 (1.8

n=-—00

EXAMPLE 1.3.5 An LSI system with unit sample response h(n) = a"u(n) will be stable whenever |a| < 1, because
o0 o0 1
(b)) = ) la|" = —— la] <1
,,;oo ; 1 —|al

The system described by the equation y(n) = nx(n), on the other hand, is not stable because the response to a unit step,
x(n) = u(n), is y(n) = nu(n), which is unbounded.
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Invertibility

A system property that is important in applications such as channel equalization and deconvolution is invertibility.
A system is said to be invertible if the input to the system may be uniquely determined from the output. In order
for a system to be invertible, it is necessary for distinct inputs to produce distinct outputs. In other words, given
any two inputs x;(n) and x2(n) with x|(n) # x2(n), it must be true that y,(n) # y2(n).

EXAMPLE 1.3.6 The system defined by
y(n) = x(n)g(n)

is invertible if and only if g(n) # O for all n. In particular, given y(n) with g(n) nonzero for all n, x(n) may be recovered
from y(n) as follows:

1.4 CONVOLUTION

The relationship between the input to a linear shift-invariant system, x(»n), and the output, y(n), is given by the

convolution sum
oo

x(n) x h(n) = Z x(k)h(n — k)

k=—00

Because convolution is fundamental to the analysis and description of LSI systems, in this section we look at the
mechanics of performing convolutions. We begin by listing some properties of convolution that may be used to
simplify the evaluation of the convolution sum.

1.4.1 Convolution Properties

Convolution is a linear operator and, therefore, has a number of important properties including the commutative,
associative, and distributive properties. The definitions and interpretations of these properties are summarized
below.

Commutative Property

The commutative property states that the order in which two sequences are convolved is not important. Mathe-
matically, the commutative property is

x(n) x h(n) = h(n) * x(n)

From a systems point of view, this property states that a system with a unit sample response #(#) and input x(n)
behaves in exactly the same way as a system with unit sample response x(n) and an input 4(n). This is illustrated
in Fig. 1-5(a).

Associative Property

The convolution operator satisfies the associative property, which is
{x(n) * hi(n)} * ha(n) = x(n) * {h1(n) * ha(n)}

From a systems point of view, the associative property states that if two systems with unit sample responses
hi(n) and h,(n) are connected in cascade as shown in Fig. 1-5(b), an equivalent system is one that has a unit
sample response equal to the convolution of 4;(n) and hy(n):

heq(n) = hy(n) * hy(n)
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x(n) y(n) h(n) y(n)
— h(n) —— —_— x(n) ——

(a) The commutative property.

x(n) y(n) x(n) y(n)
—_— hi(n) ha(n)  f—— —p—a R (1) % hy(n)  fee————

A 4

(b) The associative property.

Y

hy(n) >

x(n) + y(n) x(n) y(n)
— H—— —>— hi(n)+ ha(n) ————

Y

ha(n) >

(c) The distributive property.
Fig. 1-5. The interpretation of convolution properties from a systems point of view.

Distributive Property

The distributive property of the convolution operator states that
x(n) x {h1(n) + ha(n)} = x(n) * hi(n) + x(n) x ha(n)

From a systems point of view, this property asserts that if two systems with unit sample responses #;(n) and
hy(n) are connected in parallel, as illustrated in Fig. 1-5(c), an equivalent system is one that has a unit sample
response equal to the sum of 4(n) and Ay(n):

heq(n) = h(n) + hay(n)

1.4.2 Performing Convolutions

Having considered some of the properties of the convolution operator, we now look at the mechanics of performing
convolutions. There are several different approaches that may be used, and the one that is the easiest will depend
upon the form and type of sequences that are to be convolved.

Direct Evaluation

When the sequences that are being convolved may be described by simple closed-form mathematical expressions,
the convolution is often most easily performed by directly evaluating the sum given in Eq. (/.7). In performing
convolutions directly, it is usually necessary to evaluate finite or infinite sums involving terms of the form «” or
na”. Listed in Table 1-1 are closed-form expressions for some of the more commonly encountered series.

EXAMPLE 1.4.1 Let us perform the convolution of the two signals

n

x(n) =a"u(n) = 8 n<0

and

h(n) = u(n)
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Table 1-1 Closed-form Expressions for Some Commonly
Encountered Series

N-1 1 —(IN o]

n — n - ]
,,=oa e "Z;a T a la| <
N-1 N+1 N o0

. (N—=Da — Na" +a " a
§na = T=ap %na =0—ar la] < 1
N-1 NI
n=4iN®N—1) n=IN(N—-1@2N -1
n=0 n=0
"With the direct evaluation of the convolution sum we find
o0 o

y(n) = x(n) x h(n) = Z x(kYh(n — k) = Z aku(k)u(n —k)

k=—o0 k=—00

Because u(k) is equal to zero for £ < 0 and u(n — k) is equal to zero for k > n, when n < 0, there are no nonzero terms in
the sum and y(n) = 0. On the other hand, if n > 0,

n n+1

l1-a
y(n):Za" = l—
=0 —a

an-H

1-—

Therefore, y(n) = u(n)

Graphical Approach

In addition to the direct method, convolutions may also be performed graphically. The steps involved in using
the graphical approach are as follows:

Plot both sequences, x(k) and A (k), as functions of k.

Choose one of the sequences, say A(k), and time-reverse it to form the sequence A(—k).

Shift the time-reversed sequence by n. [Note: If n > 0, this corresponds to a shift to the right (delay),
whereas if n < 0, this corresponds to a shift to the left (advance).]

4. Multiply the two sequences x(k) and A(n — k) and sum the product for all values of k. The resulting
value will be equal to y(n). This process is repeated for all possible shifts, n.

EXAMPLE 1.4.2 Toillustrate the graphical approach to convolution, let us evaluate y(n) = x(n)*h(n) where x(n) and h(n)
are the sequences shown in Fig. 1-6 (@) and (b), respectively.To perform this convolution, we follow the steps listed above:

1. Because x(k) and h(k) are both plotted as a function of & in Fig. 1-6 (a) and (b), we next choose one of the sequences
to reverse in time. In this example, we time-reverse h(k), which is shown in Fig. 1-6 (¢).
2. Forming the product, x(k)A(—k), and summing over k, we find that y(0) = 1.

3. Shifting A(k) to the right by one results in the sequence #(1 — k) shown in Fig. 1-6 (d). Forming the product,
x(k)h(1 — k), and summing over &, we find that y(1) = 3.

4. Shifting A(1 — k) to the right again gives the sequence #(2 — k) shown in Fig. 1-6 (¢). Forming the product,
x(k)h(2 — k), and summing over k, we find that y(2) = 6.

5. Continuing in this manner, we find that y(3) = 5, y(4) = 3, and y(n) =0 forn > 4.
We next take #(—k) and shift it to the left by one as shown in Fig. 1-6 (). Because the product, x(k)h(—1 — k), is
equal to zero for all £, we find that y(—1) = 0. In fact, y(n) = O forall n < 0.

Figure 1-6 (g) shows the convolution for all n.
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x(k) h(k)
3 3
2 2
1 | k
2 1 1 2 3 4 5 6 7 8
(b)

k
2~ 1 2 3 4 5 6 7 8
(a)
h(l = k)
3
2
1
k
2 1 1 2 3 4 5 6 7 8
(¢) (d)
h(2 - k) h(—1—k)
3 3
2 2
1 |
k k
—2 —1 1 2 3 4 5 6 7 8 —2 -1 1 2 3 4 5 6 7 8
(o) o
y(n)
6
p
4
T Vo 2 3 45 06 78

(2)
Fig. 1-6. The graphical approach to convolution.

A useful fact to remember in performing the convolution of two finite-length sequences is that if x(n) is of
length L, and A(n) is of length L,, y(n) = x(n) * h(n) will be of length
L=L+L;—1

Furthermore, if the nonzero values of x(r) are contained in the interval [M,, N ] and the nonzero values of h(n) are
contained in the interval [M;,, N, ], the nonzero values of y(n) will be confined to the interval [M,+ M, N+ N,].

EXAMPLE 1.4.3 Consider the convolution of the sequence

) 10 <n <20
x(n) =
0 otherwise

-5<n<Ss

n
ith h(n) =
W (n) [0 otherwise

Because x(n) is zero outside the interval [10, 20], and A(n) is zero outside the interval [—5, 5], the nonzero values of the
convolution, y(n) = x(n) * hA(n), will be contained in the interval [5, 25].
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Slide Rule Method

Another method for performing convolutions, which we call the slide rule method, is particularly convenient
when both x(n) and /(n) are finite in length and short in duration. The steps involved in the slide rule method
are as follows:

1. Write the values of x(k) along the top of a piece of paper, and the values of #(—k) along the top of
another piece of paper as illustrated in Fig. 1-7.

2. Line up the two sequence values x(0) and #(0), multiply each pair of numbers, and add the products to
form the value of y(0).

3. Slide the paper with the time-reversed sequence 4 (k) to the right by one, multiply each pair of numbers,
sum the products to find the value y(1), and repeat for all shifts to the right by n > 0. Do the same,
shifting the time-reversed sequence to the left, to find the values of y(n) for n < 0.

UK x(=2) x(=1) x(0) x(1) x(2) cee
l oo h(2) h(1) h(0) =1  h(=2)

Fig. 1-7. The slide rule approach to convolution.

In Chap. 2 we will see that another way to perform convolutions is to use the Fourier transform.

1.5 DIFFERENCE EQUATIONS

The convolution sum expresses the output of a linear shift-invariant system in terms of a linear combination of
the input values x(n). For example, a system that has a unit sample response h(n) = «"u(n) is described by the
equation

ym)y =Y o*x(n—k) (1.9)
k=0

Although this equation allows one to compute the output y(»n) for an arbitrary input x(n), from a computational
point of view this representation is not very efficient. In some cases it may be possible to more efficiently express
the output in terms of past values of the output in addition to the current and past values of the input. The previous
system, for example, may be described more concisely as follows:

y(n) =ay(n — 1)+ x(n) (1.10)

Equation (/./0) is a special case of what is known as a linear constant coefficient difference equation, or LCCDE.
The general form of a LCCDE is

q )4
y(n) =Y btk)x(n —k) =Y a(k)y(n — k) (1.11)
k=0

k=1

where the coefficients a(k) and b(k) are constants that define the system. If the difference equation has one or
more terms a@(k) that are nonzero, the difference equation is said to be recursive. On the other hand, if all of
the coefficients a(k) are equal to zero, the difference equation is said to be nonrecursive. Thus, Eq. (1.10) is
an example of a first-order recursive difference equation, whereas Eq. (/.9) is an infinite-order nonrecursive
difference equation.

Difference equations provide a method for computing the response of a system, y(»n), to an arbitrary input
x(n). Before these equations may be solved, however, it is necessary to specify a set of initial conditions. For
example, with an input x(»n) that begins at time n = 0, the solution to Eq. (/.//) at time n = 0 depends on the



16 SIGNALS AND SYSTEMS [CHAP. 1

values of y(—1), ..., y(—p). Therefore, these initial conditions must be specified before the solution for n > 0
may be found. When these initial conditions are zero, the system is said to be in initial rest.

For an LSI system that is described by a difference equation, the unit sample response, s(n), is found by
solving the difference equation for x(n) = §(n) assuming initial rest. For a nonrecursive system, a(k) = 0, the
difference equation becomes

q
y(ry =Y blk)x(n — k) (1.12)
k=0
and the output is simply a weighted sum of the current and past input values. As a result, the unit sample response
is simply
q
h(n) =Y " b(k)s(n — k)
k=0
Thus, h(n) is finite in length and the system is referred to as a finite-length impulse response (FIR) system.

However, if a(k) # 0, the unit sample response is, in general, infinite in length and the system is referred to as
an infinite-length impulse response (IIR) system. For example, if

y(n) =ay(n — 1)+ x(n)

the unit sample response is h(n) = a"u(n).

There are several different methods that one may use to solve LCCDEs for a general input x(n). The first
is to simply set up a table of input and output values and evaluate the difference equation for each value of n.
This approach would be appropriate if only a few output values needed to be determined. Another approach is
to use z-transforms. This approach will be discussed in Chap. 4. The third is the classical approach of finding
the homogeneous and particular solutions, which we now describe.

Given an LCCDE, the general solution is a sum of two parts,

y(n) = yp(n) + yp(n)

where y;(n) is known as the homogeneous solution and yp,(n) is the particular solution. The homogeneous
solution is the response of the system to the initial conditions, assuming that the input x(n) = 0. The particular
solution is the response of the system to the input x(n), assuming zero initial conditions.

The homogeneous solution is found by solving the homogeneous difference equation

p
Y+ ) _atk)y(n —k)=0 (1.13)
k=1

The solution to Eq. (/./3) may be found by assuming a solution of the form

yu(n) = 2"

Substituting this solution into Eq. (/./3) we obtain the polynomial equation

p
"+ ak)" =0
k=1

or PP a()z2P 7 +a)z2P 24 4a(p—Dz4a(p)) =0

The polynomial in braces is called the characteristic polynomial. Because it is of degree p, it will have p roots,
which may be either real or complex. If the coefficients a(k) are real-valued, these roots will occur in complex-
conjugate pairs (i.e., for each complex root z; there will be another that is equal to z;). If the p roots z; are
distinct, z; # z; for k # i, the general solution to the homogeneous difference equation is

p
wn) =" Az} (1.14)
k=1
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where the constants A, are chosen to satisfy the initial conditions. For repeated roots, the solution must be

modified as follows. If z; is a root of multiplicity m with the remaining p — m roots distinct, the homogeneous
solution becomes

14
Ya(n) = (Al + Agn 4+ Aun™ D2+ D Az (1.15)
k=m+1

For the particular solution, it is necessary to find the sequence y,(n) that satisfies the difference equation for

the given x(n). In general, this requires some creativity and insight. However, for many of the typical inputs that

we are interested in, the solution will have the same form as the input. Table 1-2 lists the particular solution for

some commonly encountered inputs. For example, if x(n) = a”u(n), the particular solution will be of the form

yp(n) = Ca"u(n)

provided a is not a root of the characteristic equation. The constant C is found by substituting the solution into
the difference equation. Note that for x(n) = C§(n) the particular solution is zero. Because x(n) = 0 forn > 0,
the unit sample only affects the initial condition of y(n).

Table 1-2 The Particular Solution to an LCCDE
for Several Different Inputs

Term in x(n) Particular Solution

C C

Cn Cin+C,

Ca" Ca"

C cos(nwyg) C| cos(nwyp) + C, sin(nwyp)

C sin(nwy) C cos(nawp) + C; sin(nawp)
Ca" cos(nawyp) Ca" cos(nwp) + Coa" sin(nwyp)
Cé(n) None

EXAMPLE 1.5.1 Let us find the solution to the difference equation
y(n) — 0.25y(n — 2) = x(n) (1.16)

for x(n) = u(n) assuming initial conditions of y(—1) = 1 and y(—2) = 0.
We begin by finding the particular solution. From Table 1-2 we see that for x(n) = u(n)

yp(n)y =C,

Substituting this solution into the difference equation we find

C,—025C, =1
In order for this to hold, we must have | A
1 =1Z02573
To find the homogeneous solution, we set y,(n) = z", which gives the characteristic polynomial
2 -025=0
or (z+05)(z—05)=0

Therefore, the homogeneous solution has the form
yr(n) = A1(0.5)" + A(—0.5)"

Thus, the total solution is
y(n) =%+ A1(0.5 + Ay (0.5 n>0 (1.7
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The constants A; and A; must now be found so that the total solution satisfies the given initial conditions, y(—1) = 1 and
y(—=2) = 0. Because the solution given in Eq. (/./7) only applies for n > 0, we must derive an equivalent set of initial
conditions for y(0) and y(1). Evaluating Eq. (/./6) atn =0 and n = 1, we have
(1) = 0.25y(=1) = x(1) =1
Substituting these derived initial conditions into Eq. (1.17) we have
YO =3+A+4A=1
y) =5 +34 -4, =1

Solving for A, and A, we find

Thus, the solution is
y(n)=3%—(0.5" + 1(-05" n>0

Although we have focused thus far on linear difference equations with constant coefficients, not all systems
and not all difference equations of interest are linear, and not all have constant coefficients. A system that
computes a running average of a signal x(n) over the interval [0, n], for example, is defined by

1 n
ym = kz:(;x(k) n>0

This system may be represented by a difference equation that has time-varying coefficients:
n
n+1

Although more complicated and difficult to solve, nonlinear difference equations or difference equations with
time-varying coefficients are important and arise frequently in many applications.

y(n) = yn = 1)+ x(n) n>0

Solved Problems

Discrete-Time Signals

1.1  Determine whether or not the signals below are periodic and, for each signal that is periodic, determine
the fundamental period.
(@) x(n) =cos(0.1257rn)
(b) x(n) = Re{e/"™/12} 4 Im{e/"7/18)
(¢) x(n)=sin(r + 0.2n)
d) x(n)=el%" cos(nm/17)

(@) Because 0.1257 = 7/8, and
cos(%n) = cos(%(n + 16))
x(n) is periodic with period N = 16.
(b) Here we have the sum of two periodic signals,
x(n) = cos(nm/12) + sin(nw /18)
with the period of the first signal being equal to Ny = 24, and the period of the second, N, = 36. Therefore,

the period of the sum is

NiN, @936  _ (24)36) _ 7

T god(Ni, Ny)  ged(24,36) 12
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1.2

1.3

(¢) In order for this sequence to be periodic, we must be able to find a value for N such that
sin(w + 0.2n) = sin(r +0.2(n + N))

The sine function is periodic with a period of 27r. Therefore, 0.2N must be an integer multiple of 27r. However,
because 7 is an irrational number, no integer value of N exists that will make the equality true. Thus, this
sequence is aperiodic.

(d) Here we have the product of two periodic sequences with periods N| = 32 and N, = 34. Therefore, the funda-

mental period is
(B34 (32)34)

T ged(32,34) 2 544
Find the even and odd parts of the following signals:
(@) x(n)=u(n)
(b) x(n) = a"u(n)
The even part of a signal x(n) is given by
xe(n) = 30x(n) + x(=n)]
With x(n) = u(n), we have
xelm) = M 4w = |1 "0
2 n#0

which may be written concisely as
Xe(n) = 3 + 38(n)
Therefore, the even part of the unit step is a sequence that has a constant value of % for all n except at n = 0, where
it has a value of 1.
The odd part of a signal x(n) is given by the difference
xo(n) = zlx(n) = x(=n)]

With x(n) = u(n), this becomes

3 n>0
x,(n) =40 n=20
——% n<0
or xo(n) = 3sgn(n)
where sgn(n) is the signum function.
With x(n) = a"u(n), the even part is
it n>0
xe(n) = 3a"u(n) + a"u(-n)] = { 1 n=0
ta™" n<0
or Xe(n) = o' + 38(n)
The odd part, on the other hand, is
xo(n) = 3a"u(n) — a "u(—n)] = 3o sgn(n)
If x;(n) is even and x»(n) is odd, what is y(n) = x;(n) - x2(n)?
If y(n) = x1(n) - xa(n),
y(=n) = xi(=n) - xa(—n)
Because x,(n) is even, x,(n) = x;(—n), and because x;(n) is odd, x,(n) = —x(—n). Therefore,

y(=n) = —x,(n) - Xp(n) = —y(n)
and it follows that y(n) is odd.
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If x(n) = O for n < 0, derive an expression for x(n) in terms of its even part, x.(n), and, using this
expression, find x(n) when x.(n) = (0.9)"'u(n). Determine whether or not it is possible to derive a
similar expression for x(n) in terms of its odd part.

Because
xe(n) = $[x(n) + x(—n)]

and x,(n) = 3[x(n) — x(—n)]

note that when x(n) = 0 forn < 0,
xe(n) = 1x(n) n>0

and X.(n) = x(n) n=20
Therefore, x(n) may be recovered from its even part as follows:

) = x.(n) n=0
W=y n>o0

For example, with x,(7) = (0.9)"u(n), we have
x(n) = 8(n) + 2(0.9)"u(n — 1)

Unlike the case when only the even part of a sequence is known, if only the odd part is given, it is not possible to
recover x(n). The problem is in recovering the value of x(0). Because x,(0) is always equal to zero, there is no
information in the odd part of x(n) about the value of x(0). However, if we were given x(0) along with the odd part,
then, x(n) could be recovered for all n.

If x.(n) is the conjugate symmetric part of a sequence x(n), what symmetries do the real and imaginary
parts of x.(n) possess?

The conjugate symmetric part of x(n) is
Xe(n) = 1[x(n) + x*(—n)]
Expressing x(n) in terms of its real and imaginary parts, we have

xe(n) = %) + jxi(n) + {x.(—n) + jxi(—n)}']
= L[ (n) + jxi(n) + x.(—=n) — jx;(—n)]
= 306 () + x. (=) + 3 jlxi(n) — xi(—n)]

Therefore, the real part of x.(n) is even, and the imaginary part is odd.

Find the conjugate symmetric part of the sequence
x(n) = jelnm!4
The conjugate symmetric part of x(n) is
xXe(n) = L[x(n) + x*(=n)] = [ je"™/* — jei™/*] = 0

Thus, this sequence is conjugate antisymmetric.

Given the sequence x(n) = (6 — n)[u(n) — u(n — 6)], make a sketch of

(@ y»(n)=x@4—-n) () y2in) = x(2n - 3)
(©) y3(n) =x(8 —3n) (d) yan) =x(n®>-2n+1)
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(a) The sequence x(n), illustrated in Fig. 1-8(a), is a linearly decreasing sequence that begins at index » = 0 and
ends at index n = 5. The first sequence that is to be sketched, y;(n) = x(4 — n), is found by shifting x(n) by
four and time-reversing. Observe that at index n = 4, y;(n) is equal to x(0). Therefore, y,;(n) has a value of 6
at n = 4 and decreases linearly to the left (decreasing values of n) until n = —1, beyond which y,(n) = 0. The
sequence y((n) is shown in Fig. 1-8(b).

x(n)
6
4
2
n
-2 -1 1 2 3 4 5 6 7 8 9
(a)

x(4—-n)
6
4
2
n
-2 -1 | 2 3 4 5 6 7 8 9
b)
x(n=3) x(2n = 3)
6 6
4 4
2 2
T [, . ‘
o O—o—>-
-2 -1 1 2 3 4 5 6 7 8 9 -2 -1 l 2 3 4 5 6 7 8 9 10
(¢) (@)
x(8—n) x(8 = 3n)

6
4 4
2 11] .
b o—
-2 -1 1 2 3 4 5 6 7 8 10 -2 -1 | 2

n
345 6 78 9 10
0]

=N ]

x(n?=2n+1)

6
4
2
-2 -1 1

n
2 3 4 5 6 78 9 10
&)

Fig. 1-8. Performing signal manipulations.

(b) The second sequence, y,(n) = x(2n — 3), is formed through the combination of time-shifting and down-
sampling. Therefore, y,(n) may be plotted by first shifting x(n) to the right by three (delay) as shown in
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Fig. 1-8(c). The sequence y,(n) is then formed by down-sampling by a factor of 2 (i.e., keeping only the even
index terms as indicated by the solid circles in Fig. 1-8(c)). A sketch of y,(n) is shown in Fig. 1-8(d).

(¢) The third sequence, y3(n) = x(8 — 3n), is formed through a combination of time-shifting, down-sampling, and
time-reversal. To sketch y;(n) we begin by plotting x(8 — n), which is formed by shifting x(n) to the left by
eight (advance) and reversing in time as shown in Fig. 1-8(¢). Then, y3(n) is found by extracting every third
sample of x(8 — n), as indicated by the solid circles, which is plotted in Fig. 1-8( f).

(d) Finally, ys(n) = x(n* — 2n + 1) is formed by a nonlinear transformation of the time variable n. This sequence
may be easily sketched by listing how the index »n is mapped. First, note that if n >4 or n <—2, then
n* —2n + 1 > 9 and, therefore, y4(n) = 0. For —1 < n < 3 we have

ya(—=1) = ys(3) = x(4) = 2 ¥4(0) = y4(2) = x(1) =5 ya(1) = x(0) = 6
The sequence ys(n) is sketched in Fig. 1-8(g).
1.8 The notation x((n))y is used to define the sequence that is formed as follows:
x((n))y = x(n modulo V)

where (n modulo N) is the positive integer in the range [0, N — 1] that remains after dividing n by N.
For example, ((3))s = 3, ((12))s = 4, and ((—6)); = 2. If x(n) = (%)” sin(nz /2)u(n), make a sketch of
(@) x((n))3 and (b) x((n — 2))3.

(a) We begin by noting that ((n));, for any value of n, is always an integer in the range [0, 2]. In fact, because
((n)); = ((n + 3k)); for any £,

x((n))3 = x((n + 3k))3

Therefore, x((n)); is periodic witha period N = 3. It thus follows that x((n)) is formed by periodically repeating
the first three values of x(n) as illustrated in the figure below:

x((n))3

172

-3 -2 -1 1 2 3 4 5 6 7 8

(b) The sequence x((n — 2)); is also periodic with a period N = 3, except that the signal is shifted to the right by
ng = 2 compared to the periodic sequence in part (a). This sequence is shown in the figure below:

x((n —2))3

172

-3 -2 -1 1 2 3 4 5 6 7 8

1.9  The power in a real-valued signal x(n) is defined as the sum of the squares of the sequence values:

P= i x2(n)

n=-—0oo

Suppose that a sequence x(n) has an even part x,(n) equal to

xe(n) = (3)"
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[f the power in x(n) is P =5, find the power in the odd part, x,(n), of x(n).
This problem requires finding the relationship between the power in x(n) and the power in the even and odd parts.

By definition, x(n) = x,(n) + x,(n). Therefore,

P=Y xm= Y [xn+x,mn}P

= i x2(n) + i x5(n) + i 2xe(n)x,(n)

n=-00
Note that x,(n)x,(n) is the product of an even sequence and an odd sequence and, therefore, the product is odd

Because the sum for all n of an odd sequence is equal to zero,

D 2xe(m)xg(n) =0

n=—occ
Thus, the power in x(n) is
o oC
P= Y xXm+ Y xinm
n=-—-oc

n=—00
which says that the power in x(n) is equal to the sum of the powers in its even and odd parts. Evaluating the power

in the even part of x(n), we find
2|n| >0 2n
Pe=2 ()" =-1+23 (3)" =}
Therefore, with P = 5 we have
Po =5- Pe = %
1.10  Consider the sequence
n
x(m) = (3)"u(=n)
(a) Find the numerical value of
o
A= Z x(n)
(b) Compute the power in x(n),
o0
P= Z x2(n)

n=—0¢

(¢) If x(n) is input to a time-varying system defined by y(n) = nx(n), find the power in the output

signal (i.e., evaluate the sum)

o0
P= 3" Y
n=—o00
(a) This is a direct application of the geometric series
oc . 0 \7
A=) () uem= 0 (3)
n=-—o n=-—oc
With the substitution of —n for n we have
oo o0 n
_ 3\ " _ 2
A=Y (3)"=>20)
n=0 n=0
Therefore, it follows from the geometric series that
1
=3
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(by To find the power in x(n) we must evaluate the sum

P=3 fm=3 (3

Replacing n by —» and using the geometric series, this sum becomes

> 2n ad 2 |
3\ 2\ _ _9
P=Y ()= () = =
n=0 n=0 9
(¢) Finally, to find the power in y(n) = nx(n) we must evaluate the sum
e o n
P = Z [nx(n)]2 = an(g)
n=—ou n=0
In Table 1-1 there is a closed-form expression for the sum
> a
Zna” = > lal < 1
(I —a)y

n=0

but not for Y ;- , n’a". However, we may derive a closed-form expression for this sum as follows.®> Differenti-

ating both sides of Eq. (/./9) with respect to a, we have

> ey _.i a 1 +a
T da(l—a® " (1 -a)

n=0

Therefore, we have the sum

inza” _a(l+a)
- (1—a)

n=0

Using this expression to evaluate Eq. (/./8), we find

1.11  Express the sequence

1 n=20

2 =1
xm =13 Z:z

0 else

as a sum of scaled and shifted unit steps.

In this problem, we would like to perform a signal decomposition, expressing x(n) as a sum of scaled and shifted
unit steps. There are several ways to derive this decomposition. One way is to express x(n) as a sum of weighted

and shifted unit samples,
x(n) =8(n) +28(n — 1)+ 38(n — 2)

and use the fact that a unit sample may be written as the difference of two steps as follows:

8(n) = u(n) —u(n — 1)

Therefore, x(ny=uny—un — )+ 2lun — 1)y —u(n — 2)] + 3{u(n — 2) — u(n — 3)]
which gives the desired decomposition:

x(ny =uny+uln — 1)+ u(n —2) — 3u(n — 3)

SThis method is very useful and should be remembered.
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Another way to derive this decomposition more directly is as follows. First, we note that the decomposition should
begin with a unit step, which generates a value of | at index » = 0. Because x(n) increases to a value of 2 atn = 1,
we must add a delayed unit step u(n — 1). At n = 2, x(n) again increases in amplitude by 1, so we add the delayed
unit step u(n — 2). At this point, we have

1 n=20
u(n)+un—D+un—-2)=4{2 n=1
3 n>?2

Thus, all that remains is to bring the sequence back to zero for n > 3. This may be done by subtracting the delayed
unit step 3u(n — 3), which produces the same decomposition as before.

Discrete-Time Systems

1.12

For each of the systems below, x(n) is the input and y(n) is the output. Determine which systems are
homogeneous, which systems are additive, and which are linear.

(@) y(n) =log(x(n))
() yn)y=6x(n+2)+4x(n+1)+2x(n)+1
(©) y(n)=6x(n)+ [x(n+ Dx(n — D]/x(n)
(d) y(n)=x(n)sin(nm/2)
(e) y(n) =Re{x(n)}
(f) y(n) = 3lx(n) + x*(—n))]
(a) If the system is homogeneous,
y(n) = Tlex(n)] = cTlx(n)]
for any input x(n) and for all complex constants ¢. The system y(n) = log(x(n)) is not homogeneous because
the response of the system to x;(n) = cx(n) is
y1(n) = log(x(n)) = log(cx(n)) = log ¢ + log(x(n))

which is not equal to ¢ log(x(n)). For the system to be additive, if y,(n) and y,(n) are the responses to the inputs
x1(n) and x,(n), respectively, the response to x(n) = x,(n) + x2(n) must be y(n) = y,(n) + y(n). For this
system we have

T{x;(n) + x2(n)] = log[x;(n) + x2(n)] # loglx;(n)] + log[x2(n)]

Therefore, the system is not additive. Finally, because the system is neither additive nor homogeneous, the
system is nonlinear.

(b) Note that if y(n) is the response to x(n),
y(n)=6x(n+2)+4x(n+ 1)+ 2x(n)+ 1

the response to x(n) = cx(n) is

yi(n) = 6x;(n+2)+ 4x(n + 1)+ 2x,(n) + 1
=c{6x(n +2)+4x(n + )+ 2x(n)} + 1
However, cy(n) = c{b6x(n + 2) + 4x(n + 1) + 2x(n) + 1}

which is not the same as y;(n). Therefore, this system is not homogeneous. Similarly, note that the response to
x(n) = x,(n) + xa(n) is
y(n) =6x(n+2)+4x(n+ 1)+ 2x(n) + 1
= 6{x,(n +2) + xo(n + 2)} + 4{x1(n + 1) + x2(n + D} + 2{x1(n) + x2(m)} + 1
= yi(n) + y2(n) — t

which is not equal to y;(n) + y2(n). Therefore, this system is not additive and, as a result, is nonlinear.
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(c) This system is homogeneous, because the response of the system to x;(n) = cx(n) is

x(n+ Dxy(n—1)
x1(n)

x(n+ Dx(n—1)
x(n)

The system is clearly, however, not additive and therefore is nonlinear.

yi(n) = 6x,(n) +

= C[Gx(n) + ] = cy(n)

(d) Let y,(n) and y,(n) be the responses of the system to the inputs x,(n) and x,(n), respectively. The response to
the input
x(n) = ax (n) + bxy(n)

is yn) = x(n)sm(ﬁzi'.> = [ax,(n) + bxo(n)] sin(%)

1.20
= ax,(n) sin(%) + bxﬂn)sin(%) = ay,(n) + by,(n) ( )

Thus, it follows that this system is linear and, therefore, additive and homogeneous.

(e) Because the real part of the sum of two numbers is the sum of the real parts, if y;(n) is the response of the
system to x(n), and y,(n) is the response to x,(n), the response to y(n) = y,;(n) + y,(n) is

y(n) = Re{xi(n) + x2(n)} = Refx;(n)} + Re{xo(n)} = yi(n) + ya2(n)
Therefore the system is additive. It is not homogeneous, however, because
Refcx(n)} # cRe{x(n)}

unless c is real. Thus, this system is nonlinear.

(f) For an input x(n), this system produces an output that is the conjugate symmetric part of x(n). If ¢ is a complex
constant, and if the input to the system is x,(n) = cx(n), the output is

yi(r) = Hxi(n) + x}(—=n)] = Slex(n) + *x*(=m)] # cy(n)
Therefore, this system is not homogeneous. This system is, however, additive because
Txi(n) + x2(m)] = 3{[x1(n) + x2(n)] + [x1(—n) + x2(—n)]*}

= ${Ix () + X7 (=m] + [x2(n) + x3(—n)]}
= T[x1(n)] + Tx2(n)]

A linear system is one that is both homogeneous and additive.
(a) Give an example of a system that is homogeneous but not additive.
(b) Give an example of a system that is additive but not homogeneous.

There are many different systems that are either homogeneous or additive but not both. One example of a system
that is homogeneous but not additive is the following:

()_x(n—l)x(n)
Y= =+

Specifically, note that if x(n) is multiplied by a complex constant ¢, the output will be

cx(n — 1) cx(n) x(n — Dx(n)
y(n) = =c
cx(n+1) x(n+1)

which is ¢ times the response to x(n). Therefore, the system is homogeneous. On the other hand, it should be clear
that the system is not additive because, in general,
{xitn = D+ xn = DHxi(n) + xo(m)b |, xiln = Dxi(n) | x(n = Dxa(n)
xin+ 1) +x2n+ 1) xi(n+1) xa(n+1)
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An example of a system that is additive but not homogeneous is

y(n) = Im{x(n)}

Additivity follows from the fact that the imaginary part of a sum of complex numbers is equal to the sum of imaginary
parts. This system is not homogeneous, however, because

y(n) =Im{jx(m)] # jlm{x(n))

Determine whether or not each of the following systems is shift-invariant:

(@)
(b)
()
(d)
(e)
02

(@)

(b)

(©)

yn)=x(n)+x(n — ) +x(n—2)

y(n) = x(mu(n)

y(n) =3 4o x(k)

y(n) = x(n?)

y(n) = x((n))y (i.e., y(n) = x(n modulo N) as discussed in Prob. 1.8)
y(n) = x(—n)

Let y(n) be the response of the system to an arbitrary input x(n). To test for shift-invariance we want to compare
the shifted response y(n — ny) with the response of the system to the shifted input x(n — ny). With

ymy=xn)+x(n—1+x(n—-2)
we have, for the shifted response,
yn —ng)=x(n—ng)+x(n —ny—1)+x(n—ny—2)
Now, the response of the system to x,(n) = x(n — ngy) is

) =xi(n)+x(n =1 +x(n-2)
= X(I’I - n())+..\'(n — Ny — l) + x(n — ny — 2)

Because y,(n) = y(n — np), the system is shift-invariant.

This system is a special case of a more general system that has an input-output description given by
y(n) = x(n)f(n)

where f(n)isashift-varying gain. Systems of this form are always shift-varying provided f(n) is not a constant.
To show this, assume that f(n) is not constant and let n, and n, be two indices for which f(n,) # f(n,). With
an input x,(n) = 8(n — n,), note that the output y(n) is

nn) = f(n)dn —ny)
[f, on the other hand, the input is x,(n) = §(n — n,), the response is
»a(n) = f(n2)d(n — ny)
Although x(n) and x,(n) differ only by a shift, the responses y,(n) and y,(n) differ by a shift and a change in

amplitude. Therefore, the system is shift-varying.
Let

n

yom =Y xk)

k=—20
be the response of the system to an arbitrary input x(n). The response of the system to the shifted input

xi(n) = x(n — ngy) is
n n—ngqy

yi(n) = i xi(k) = Z x(k —ng) = Z x(k)

k=—nc k=—oc k=—0oc

Because this is equal to y(n — ng), the system is shift-invariant.
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This system is shift-varying, which may be shown with a simple counterexample. Note that if x(n) = §(n), the
response will be y(n) = 8(n). However, if x,(n) = 8(n—2), the response will be y,(n) = x;(n?) = §(n*—2) = 0,
which is not equal to y(n — 2). Therefore, the system is shift-varying.

With y(n) the response to x(n), note that for the input x;(n) = x(n — N), the output is
yi(n) = x((n — N))y = x((n)n

which is the same as the response to x(n). Because y,(n) # y(n—N), in general, this system is not shift-invariant.

This system may easily be shown to be shift-varying with a counterexample. However, suppose we use the
direct approach and let x(n) be an input and y(n) = x(—n) be the response. If we consider the shifted input,
x1(n) = x(n — ng), we find that the response is

yi(n) = x(=n) = x(—n — ng)
However, note that if we shift y(n) by no,

y(n — ng) = x(—(n — ng)) = x(—n + ng)

which is not equal to y,(n). Therefore, the system is shift-varying.

1.15 A linear discrete-time system is characterized by its response h(n) to a delayed unit sample §(n — k).
For each linear system defined below, determine whether or not the system is shift-invariant.

(@ hi(n) = (n — Ku(n — k)
() hi(n) =38Q2n —k)

© h(n) dn—k—1) k even
c n)=
g 5u(n — k) k odd
(a) Note that h,(n) is a function of n — k. This suggests that the system is shift-invariant. To verify this, let y(n)

be the response of the system to x(n):

Yy = Y he(mx(k)

k=—00
= > (n—ku(n—kxk)= Y (n—kxk) (.21
k=—00 k=—00

The response to a shifted input, x(n — ny), is

00

nmy =" xtk—nodh(n)y =Y (n— kuln — k)x(k - no)

k=—00 k=—00

= Z (n — k)x(k — ng)

k=—00

With the substitution / = k& — ny this becomes

n—nq

yimy=Y " (n=no = Dx()
l=—00
From the expression for y(n) given in Eq. (/.21), we see that
n—ngp
yn—no)= 3 (n—no—kx(k)

k=—00

which is the same as y;(n). Therefore, this system is shift-invariant.
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For the second system, /1,(n) is not a function of n — k. Therefore, we should expect this system to be shift-
varying. Lel us see if we can find an example that demonstrates that it is a shift-varying system. For the input
x(n) = é(n), the response is

1 n=70

y(n) = ho(n) = 8(2n) = 0 else

If we delay x(n) by 1, the response to x,(n) = é(n — 1) is
ywimy=hm=2n-1=0

Because y,(n) # y(n — 1), the system is shift-varying.
Finally, for the last system, we see that although 4, (n) is a function of n — k for k even and a function of (n — k)
for k odd,

hi(n) # he(n— 1)
In other words, the response of the system to §(n — k — 1) is not equal to the response of the system to §(n — k)
delayed by 1. Therefore. this system is shift-varying.

Let T[-] be a linear system, not necessarily shift-invariant, that has a response 4, (n) to the input §(n — k).
Derive a test in terms of /1;(n) that allows one to determine whether or not the system is stable and whether
or not the system is causal.

(a) The response of a linear system to an input x(n) is

X

vy =" hmx(k) (1.22)

k=—00

Therefore. the output may be bounded as follows:

> hu(nyx (k)

k=—00

< Y )l (k))

k=—oc

[y(m)| =

If x(n) is bounded, |x(n)| < A < o0,

oC
Lyl < 4 Y ()

k=-00
As a result, if

o0

> )] = B <0 all n (1.23)

k=-00
the output will be bounded, and the system is stable. Equation (/.23) is a necessary condition for stability.
To establish the sufficiency of this condition, we will show that if this summation is not finite, we can find a
bounded input that will produce an unbounded output. Let us assume that s;(n) is bounded for all & and n
[otherwise the system will be unstable, because the response to the bounded input §(# — k) will be unbounded].
With /1, (n) bounded for all k and n, suppose that the sum in Eq. (7.23) is unbounded for some n, say n = ny.
Let

x(n) = sgn{hy,(no)}

that is,
l ha(ng) > 0
x(ny=4 0 hy(ny)=0
—1 h,,(n(,) <0
For this mput, the response at time n = ny is
y(ny) = Z hi(ng)x(k) = Z hi(ng) sgn{h(ng)} = Z [h(no)l
ke=—oc k=—oc k=—00

which, by assumption, is unbounded. Therefore, the system is unstable and we have established the sufficiency
of the condition given in Eq. (/.23).
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Let us now consider causality. For an input x(n), the response is as given in Eq. (/.22). In order for a system
to be causal, the output y(n) at time n, cannot depend on the input x(n) for any n > ng. Therefore, Eq. (/.22)
must be of the form

Yy =Y he(n)x(k)

k=—00

This, however, will be true for any x(rn) if and only if
hy(n) =0 n <k

which is the desired test for causality.

1.17 Determine whether or not the systems defined in Prob. 1.15 are (a) stable and (b) causal.

1.18

(@)

(b)

(©)

For the first system, h;(n) = (n — k)u(n — k), note that h;(n) grows linearly with n. Therefore, this system
cannot be stable. For example, note that if x(n) = §(n), the output will be
y(n) = ho(n) = nu(n)

which is unbounded. Alternatively, we may use the test derived in Prob. 1.16 to check for stability. Because

Y il = 3 -k =Ykl = 0
k=0

k=—00 k=—o00
this system is unstable. On the other hand, because 4,(n) = 0 for n < &, this system is causal.

For the second system, 4;(n) = §(2n — k), note that h,(n) has, at most, one nonzero value, and this nonzero
value is equal to 1. Therefore,

oo

> ) <1

k=—oc
for all n, and the system is stable. However, the system is not causal. To show this, note that if x(n) = §(n — 2),
the response is
y(n)=hy(n)y=82n—-2)=480n—1)
Because the system produces a response before the input occurs, it is noncausal.

For the last system, note that

o0 o0 oC o0
Yol =Y I+ Y Il < Y i)
e PRy ot oy

o0 n

Il
W
s
=
S

|
x~

N

Il

W

which is unbounded. Therefore, this system is unstable. Finally, because A,(n) = O for n < k, the system is
causal.

Consider a linear system that has a response to a delayed unit step given by

sp(n) = ké(n — k)

That is, si(n) is the response of the linear system to the input x(n) = u(n — k). Find the response of this

system to the input x(n) = §(n — k), where k is an arbitrary integer, and determine whether or not this
system is shift-invariant, stable, or causal.

Because this system is linear, we may find the response, /;(n), to the input 8(n — k) as follows. With §(n — k) =
u(n — k) — u(n — k — 1), using linearity it follows that

hi(n) = si(n) = sp1(n) = k8(n — k) — (k + Dd(n —k = 1)

which is shown below:
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From this plot, we see that the system is not shift-invariant, because the response of the system to a unit sample
changes in amplitude as the unit sample is advanced or delayed. However, because 4;(n) = 0 for n < k, the system
is causal. Finally, because /;(n) is unbounded as a function of k, it follows that the system is unstable. In particular,
note that the test for stability of a linear system derived in Prob. 1.16 requires that

max Z |hy(n)l < B < 00

k=—o00
For this system,

o0

3 1) = 120

k=—00
Note that in evaluating this sum, we are summing over k. This is most easily performed by plotting 4,(n) versus n
as illustrated in the figure below.

)

n—

—_— 00— O—O—0
n-=2 n

Because this sum cannot be bounded by a finite number B, this system is unstable. Because this system is unstable,
we should be able to find a bounded input that produces an unbounded output. One such sequence is the following:

x(m)=)_8(n —2k)
k=0

The response is
y(n) = n(=1)"u(n)

which is clearly unbounded.

Consider a system whose output y(n) is related to the input x(n) by

o0

ymy= " x(k)x(n +k)

k=—00

Determine whether or not the system is (a) linear, (b) shift-invariant, (c¢) stable, (d) causal.
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(b)
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(d)
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The first thing that we should observe about y(n) is that it is formed by summing products of x(n) with shifted

versions of itself. For example,
2 <]

YO = Y k)

k=—ov

We expect, therefore, this system to be nonlinear. Let us confirm this by example. Note that if x(n) = §(n),
y(n) = &(n). However, if x(n) = 28(n), y(n) = 48(n). Therefore, the system is not homogeneous and,
consequently, is nonlinear.

For shift-invariance, we want to compare

o0

y(n — ng) = Z x(k)x(n — ny + k)

k=—o¢

to the response of the system to x,(n) = x(n — ny), which is

yi(n) = Z X1 (k)xy(n + k)

700
= Z x(k — ny)x(n 4+ k — ny)

T
i
2

= Z (Kx(n + k)

where the last equality follows with the substitution k" = k — n,. Because y(n) # y(n — ny), this system is
not shift-invariant.

For stability, note that if x(») is a unit step, y(0) is unbounded. Therefore, this system is unstable.

Finally, for causality, note that the output depends on the values of x(»n) for all n. For example, y(0) is the sum
of the squares of x(k) for all k. Therefore, this system is not causal.

Given that x(n) is the system input and y(n) is the system output, which of the following systems are

causal?

(@ y(n) = x*(nyu(n)

(b) y(n) = x(|nl)

(¢) yn)y=x(n)y+xn-—-3)+ x(n—10)

(d) y(n)=x(n)—x(n*—n)

N

@ ymy=[]xn=h

k=1
[o.¢]

(f) ym)y=) x(n—k

k=n

(a) The system y(n) = x2(mu(n) is memoryless (i.e., the response of the system at time »n depends only on the
input at time »n and on no other values of the input). Therefore, this system is causal.

(b) The system y(n) = x(|n|) is an example of a noncausal system. This may be seen by looking at the output when
n < 0. In particular, note that y(—1) = x(1). Therefore. the output of the system at time n = —1 depends on
the value of the input at a future time.

(c) For this system, in order to compute the output y(») at time » all we need to know is the value of the input x(#n)
at times n, n — 3, and n — 10. Therefore, this system must be causal.

(d) This system is noncausal, which may be seen by evaluating v(n) for n < 0. For example,

y(—1) =x(=1)—x(2)

Because y(—1) depends on the value of x(2), which occurs after time n = — 1, this system is noncausal.
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1.21

(e) The output of this system at time # is the product of the values of the input x(n) at timesn — 1,...,n — N.
Therefore, because the output depends only on past values of the input signal, the system is causal.

(f) This system is not causal, which may be seen easily if we rewrite the system definition as follows:

00 0
ym =Y xn—ky= Y x()
k=n I=—00

Therefore, the input must be known for all n < 0 to determine the output at time n. For example, to find y(—5)
we must know x(0), x(—1), x(—2), .... Thus, the system is noncausal.

Determine which of the following systems are stable:

(@ y(n)=x*n)
() y(n)=e"/x(n—1)
(¢) y(n) = cos(x(n))

n

d) ym= ) xk

k=—00
(&) y(n) =log(1l+ |x(n)])
(f) y(n) = x(n) * cos(nn/8)

(@) Letx(n) be any bounded input with |x(n)| < M. Then it follows that the output, y(n) = x%(n), may be bounded
by
ly(m)| = x(m))* < M?
Therefore, this system is stable.

(b) This system is clearly not stable. For example, note that the response of the system to a unit sample x(n) = §(n)
is infinite for all values of n except n = 1.

(c) Because |cos(x)| < 1 for all x, this system is stable.

(d) This system corresponds to a digital integrator and is unstable. Consider, for example, the step response of the
system. With x(n) = u(n) we have, for n > 0,

n

yimy= Y utk)y=(n+1)

Although the input is bounded, |x(n)| < 1, the response of the system is unbounded.
(e) This system may be shown to be stable by using the following inequality:
log(1+x) <x x>0
Specifically, if x(n) is bounded, |x(n)| < M,
ly(n)| = Hog( + [x(mD| = t+ [x(n)] < 1 + M

Therefore, the output is bounded, and the system is stable.

(f) This system is not stable. This may be seen by considering the bounded input x(n) = cos(nm/8). Specifically,
note that the output of the system at time n = 0 is

y(0) = Z x(k)h(—k) = Z cos(%)cos(—%) = Z cosz(%)
k=—occ k=—o00 k=—o00

which is unbounded. Alternatively, because the input-output relation is one of convolution, this is a linear
shift-invariant system with a unit sample response

=)
n) = cos 3
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Because a linear shift-invariant system will be stable only if

i |h(n)| < o0

n=-00

we see that this system is not stable.

1.22 Determine which of the following systems are invertible:

1.23

(a@)
(b)
(©)

)
(e)

y(n) = 2x(n)
y(n) = nx(n)
y(n) = x(n) —x(n — 1)

n

Yy =) x(h)

k=-—00

y(n) = Re{x(n))

To test for invertibility, we may show that a system is invertible by designing an inverse system that uniquely recovers
the input from the output, or we may show that a system is not invertible by finding two different inputs that produce
the same output. Each system defined above will be tested for invertibility using one of these two methods.

(a)
(b)

(©)

(@)

(e)

This system is clearly invertible because, given the output y(n), we may recover the input using x(n) = 0.5y(n).
This system is not invertible, because the value of x(n) at n = () cannot be recovered from y(n). For example,
the response of the system to x(n) and to x,(n) = x(n) + a8(n) will be the same for any «.

Due to the differencing between two successive input values, this system will not be invertible. For example,
note that the inputs x(n) and x(n) 4+ ¢ will produce the same output for any value of ¢.

This system corresponds to an integrator and is an invertible system. To show that it is invertible, we may
construct the inverse system, which is

x(n) = yn)— y(n—1)
To show that this is the inverse system, note that

n n—I

Y =y ==Y xtk) = D x(k)=x(n)

k=-00 k=—00

Invertibility must hold for complex as well as real-valued signals. Therefore, this system is noninvertible because
it discards the imaginary part of x(n). One could state, however, that this system is invertible over the set of
real-valued signals.

Consider the cascade of two systems. S| and S;.

(@)

(b)
(©)

(@

x(n) w(n) y(n)

————] S] S2 ’

\ 4

If both S; and S, are linear, shift-invariant, stable, and causal, will the cascade also be linear,
shift-invariant, stable, and causal?

If both S| and S, are nonlinear, will the cascade be nonlinear?

If both §| and S are shift-varying, will the cascade be shift-varying?

Linearity, shift-invariance, stability, and causality are easily shown to be preserved in a cascade. For example,
the response of S, to the input ax,(n) + hx,(n) will be aw, (n) + bw,(n) due to the linearity of §,. With this as
the input to S5, the response will be, again by linearity, ay,(n) + by,(n). Therefore, if both S, and S, are linear,
the cascade will be linear.
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Similarly, for shift-invariance, if x(n — ng) is input to S|, the response will be w(n — ny). In addition,
because 5, is shift-invariant, the response to w(n —ng) will be y(n — ng). Therefore, the response of the cascade
to x(n — ngp) is y(n — nyp), and the cascade is shift-invariant.

To establish stability, note that with S| being stable, if x(n) is bounded, the output w(n) will be bounded.
With w(n) a bounded input to the stable system S, the response y(n) will also be bounded. Therefore, the
cascade is stable.

Finally, causality of the cascade follows by noting that if S; is causal, y(n) at time n = n, depends only
on w(n) for n < ny. With S, being causal, w(») for n < ny will depend only on the input x(») for n < ny, and
it follows that the cascade is causal.

(b) If S) and S, are nonlinear, it is not necessarily true that the cascade will be nonlinear because the second system
may undo the nonlinearity of the first. For example, with

w(n) = S;{x(n)} = exp{x(n)}
y(n) = Sr{w(n)} = log{w(n)}

although both S and S are nonlinear, the cascade is the identity system and, therefore, is linear.

(¢) Asin (b),if S| and S, are shift-varying, it is not necessarily true that the cascade will be shift-varying. For
example, if the first system is a modulator,

w(n) = x(n) - /"

and the second is a demodulator,
y(n) = wn) - e~

the cascade is shift-invariant, even though a modulator and a demodulator are shift-varying. Another example
is when S, is an up-sampler

x(8)  n=0,42,44, ...

win) = 0 else

and §; is a down-sampler
y(n) = w(2n)

In this case, the cascade is shift-invariant, and y(n) = x(n). However, if the order of the systems is reversed,
the cascade will no longer be shift-invariant. Also, if a linear shift-invariant system, such as a unit delay, is
inserted between the up-sampler and the down-sampler, the cascade of the three systems will, in general, be
shift-varying.

Convolution
1.24  The first nonzero value of a finite-length sequence x(n) occurs atindex n = —6 and has a value x(—6) = 3,
and the last nonzero value occurs at index n = 24 and has a value x(24) = —4. What is the index of the

1.25

first nonzero value in the convolution
y(n) = x(n) * x(n)
and what is its value? What about the last nonzero value?

Because we are convolving two finite-length sequences, the index of the first nonzero value in the convolution is
equal to the sum of the indices of the first nonzero values of the two sequences that are being convolved. In this case,
the index is n = —12, and the value is

y(=12) = x*(~6) =9

Similarly, the index of the last nonzero value is at n = 48 and the value is

y(48) = x2(24) = 16

The convolution of two finite-length sequences will be finite in length. Is it true that the convolution of
a finite-length sequence with an infinite-length sequence will be infinite in length?
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It is not necessarily true that the convolution of an infinite-length sequence with a finite-length sequence will be
infinite in length. It may be either. Clearly, if x(n) = &(n) and A(n) = (0.5)"u(n), the convolution will be an
infinite-length sequence. However, it is possible for the finite-length sequence to remove the infinite-length tail of
an infinite-length sequence. For example, note that

0.5)"u(n) — (0.5)"'u(n — 1) = 8(n)
Therefore, the convolution of x(n) = §(n) - %5(n — 1) with A(n) = (0.5)"u(n) will be finite in length:

[8(n) — 18(n — 1)] % (0.5Y'u(n) = (0.5)"u(n) — 1(0.5"'u(n — 1) = 8(n)

1.26 Find the convolution of the two finite-length sequences:

x(n) = 0.5n[u(n) — u(n — 6)]
h(n) = 2sin (%)[u(n +3) —u(n —4)]
Shown in the figure below are the sequences x (k) and h(k).

x(k)
3

2
1

—4 -3 -2 —1 1 2 3 4 5 6 7 8

Because h(n) is equal to zero outside the interval [—3, 3], and x(n) is zero outside the interval [1, 5], the convolution
y(n) = x(n) x h(n) is zero outside the interval [—2, 8].

One way to perform the convolution is to use the slide rule approach. Listing x(k) and h(—k) across two pieces
of paper, aligning them at k¢ = 0, we have the picture as shown below (the sequence h(—k) is in front).

0 0 0 0 0.5 1 1.5 2 2.5

Forming the sum of the products x(k)h(—k), we obtain the value of y(n) at time n = 0, which is y(0) = 2. Shifting
h(—k) to the left by one, multiplying and adding, we obtain the value of y(n) at n = —1, which is y(—1) = 2.
Shifting one more time to the left, forming the sum of products, we find y(—2) = 1, which is the last nonzero value
of y(n) for n < 0. Repeating the process by shifting 2(—k) to the right, we obtain the values of y(n) for n > 0,
which are

yh=2 y@=3 y3)=-2 y4=-3
Y& =2  y6)=2 yNH=-4 y@8=-5
Another way to perform the convolution is to use the fact that
x(n)*8(n — ng) = x(n — ny)
Writing h(n) as
h(n) =28(n+3)—28(n+ 1)+ 28(n — 1) — 28(n — 3)
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1.27

1.28

we may evaluate y(n) as follows
y(n)y=2x(n+3)=2x(n+ 1) +2x(n — 1) — 2x(n — 3)

Making a table of these shifted sequences,

n| -2 -l ] 3 4 5 6 7 8

2x(n +3) 1 2 3 4 0 0 0 0 0 0
—2x(n+1) 0 6o -1 -2 -3 -4 =5 0 0 0 0
2x(n—1) 0 0 0 0 1 2 3 4 5 0 0
—2x(n —3) 0 0 0 -1 -2 -3 -4 -5
y(n) 1 2 2 2 3 -2 =3 2 2 -4 =5

and adding down the columns, we obtain the sequence y(n).

Derive a closed-form expression for the convolution of x(n) and h(n) where
x(n) = (é)"76u(n)
hn) = (%)"u(n -3)

Because both sequences are infinite in length, it is easier to evaluate the convolution sum directly:

X

ymy =" x(kh(n — k)

k=-00
Note that because x(n) = 0 for n < 0 and h(n) = 0 for n < 3, y(n) will be equal to zero for n < 3. Substituting
x(n) and A(n) into the convolution sum, we have

o

v = 3 () uto(3)  utn —k = 3)

k=—00

Due to the step u(k), the lower limit on the sum may be changed to & = 0, and because u(n — k — 3) is zero for
k > n — 3, the upper limit may be changed to X = n — 3. Thus. for n > 3 the convolution sum becomes
a3 k-6 n—k n n3
yn =3 () (3)" =6(3)
k=0 k=0

Using the geometric series to evaluate the sum, we have

=) T —2 ey ] 2

1
2

A linear shift-invariant system has a unit sample response
hn)y =u(—n —1)

Find the output if the input is
x(n) = —n3"u(—n)

Shown below are the sequences x(n) and h(n).

h{n)

T

7 6 -5-4-3-2-1 1 | 2
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1.30
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Because x(n) is zero for n > —1, and h(n) is equal to zero for n > —1, the convolution will be equal to zero for
n > —2. Evaluating the convolution sum directly, we have

o0 o0

y(n) = Z x(K)h(n — k) = Z —k3fu(=ku(—(n — k) — 1)

k=—oc k=—0c
Because u(—k) =0 for k > 0 and u(—(n — k) — 1) = 0 for k < n + |, the convolution sum becomes

0

ym= Y —k3*  n<-2

k=n+1

With the change of variables m = —k, and using the series formulas given in Table |-1, we have

—n—1 m (_ _ ]) I —n+1 + l —n + i
s = 3o m() = = (le I)Z"(s) 3
nm= — 3

n

=itien-nG)" n=-2

Let us check this answer for a few values of n using graphical convolution. Time-reversing x(k), we see that A(k)

and x(—k) do not overlap for any £ and, thus, y(0) = 0. In fact, it is not until we shift x(—k) to the left by two

that there is any overlap. With x(—2 — k) and h(k) overlapping at one point, and the product being equal to i,

it follows that y(—2) = % Evaluating the expression above for y(n) above at index n = —2, we obtain the same
result. For n = —3, the sequences x(—3 — k) and h(k) overlap at two points, and the sum of the products gives
y(=3) = 1 + % = 2, which, again, is the same as the expression above.

If the response of a linear shift-invariant system to a unit step (i.e., the step response) is
s(n) = n(%)"u(n)
find the unit sample response, h(n).

In this problem, we begin by noting that
8(n) = un) —u(n—1)

Therefore, the unit sample response, h(n), is related to the step response, s(n), as follows:
h(n) = s(n)y—-sn—1)
Thus, given s(n), we have
h(n) = s(n) —s(n — 1)
=n(2)"utn) = (n = D(2)" utn — 1)
=[n(3)" =20 = ()" Jutn = 1)
=2-m(3) un -1

Prove the commutative property of convolution
x(n) x h(n) = h(n) x x(n)

Proving the commutative property is straightforward and only involves a simple manipulation of the convolution
sum. With the convolution of x(n) with h(n) given by

oC

x(myxh(n) = > x(k)h(n — k)
k=—00
with the substitution / = n — k, we have
x(n)xh(n) = Y x(n — D) = h(n) * x(n)
[=—00

and the commutative property is established.
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1.31

1.32

1.33

Prove the distributive property of convolution
h(n) * [x(n) + x2(n)] = h(n) * x,(n) + h(n) * xa(n)

To prove the distributive property, we have

hn)  [xi (1) + xa(m)} = Y h(R)[xi(n — k) + xa(n — k)]
k=—00
Therefore, h(n) % [xi(n) + xa(ml = Y h()xi(n = k) + Y h(k)xa(n — k)
k=—00 k=-00
= h(n) * x(n) + h(n) * x2(n) (1.24)

and the property is established.

Let
h(n) = 3(3)"u(n) = 2(3)" " utn)

be the unit sample response of a linear shift-invariant system. If the input to this system is a unit step,

1 n>0
xn) = {0 else
find lim,,_, o, y(n) where y(n) = h(n) x x(n).
With -
y(n) = h(n)x x(n) = Y h(k)x(n — k)
k=—00
if x(n) is a unit step,
ymy= Y hku(n—ky =Y k)
k=-0c k=-nc
Therefore, lim y(n) = Y h(k)
n—o00 =
Evaluating the sum, we have
> k > k=1 3 6
n—co ;(2) ;(3) 1—1/2 1-1/3
Convolve
x(n) = (0.9)"u(n)
with a ramp
h(n) = nu(n)
The convolution of x(r) with /A(n) is
yn) = x(n)xh(n) = Y x()h(n — k)
k=—00

D 109 u®Nl(n = kyuin — k)]

k=—00
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Because u(k) is zero for k < 0, and u(n — k) is zero for k > n, this sum may be rewritten as follows:

Yy =Y (n—k)09* =0
k=0

"

or ymy=ny_ (0.9 =) k09" =0
k=0

k=0
Using the series given in Table 1-1, we have

- — .9y n(0.9Y*2 = (n + D(O.9y*! +0.9
YW =100 (1 —0.9)

10n[1 — (0.9)"*'] — 100[n(0.9Y" % — (n + 1)(0.9)"*" +0.9] n>0

which may be simplified to
y(n) = [10n — 90 + 90(0.9)" |u(n)

1.34  Perform the convolution
y(n) = x(n) * h(n)

when h(n) = (3)"u(n)

and x(n) = (4)"[u(n) — u(n — 101)]

With y(n) = xtn) x h(n) = Y x(k)hin — k)
k=—oc

we begin by substituting x(n) and 4(#n) into the convolution sum

vy =3 () ) — utk = 1001(2)" " utn — k)
k=—oc
100 k n—k
or y =3 (5)(3)" un k)
k=0

To evaluate this sum, which depends on n, we consider three cases. First, forn < 0, the sum is equal to zero because
u(n — k) =0 for0 < k < 100. Therefore,

y(n)=0 n<0
Second, note that for 0 < n < 100, the step u(n — k) is only equal to 1 for k < n. Therefore,

n n

k=0 k=0
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1.35

Finally, for n > 100, note that u(n — k) is equal to 1 for all £ in the range 0 < k£ < 100. Therefore

’

k=0 k=0

In summary, we have

Let A(n) be a truncated exponential

a” O0<n=<10
hn) = {O else
and x(n) a discrete pulse of the form
x(n) = {1 0<n<5
0 else

Find the convolution y(n) = h(n) * x(n).

To find the convolution of these two finite-length sequences, we need to evaluate the sum

o

y(n) = h(n) x x(m) = Y h(k)x(n — k)

k=-00

To evaluate this sum, it will be useful to make a plot of /1(k) and x(n — k) as a function of k as shown in the following
figure:

4 H0O
b |
—oo o IT_T??’?!QQ--;{
‘rx(n—k)
1
b
k
n—>5 n

Note that the amount of overlap between h(k) and x(n — k) depends on the value of n. For example, if n < 0, there
is no overlap, whereas for 0 < n < 5, the two sequences overlap for 0 < k < n. Therefore, in the following, we
consider five separate cases.

Casel n < 0. When n < 0, there is no overlap between h(k) and x(n — k). Therefore, the product
h(k)x(n — k) = 0 for all k, and y(n) = 0.

Case2 0 < n < 5. For this case, the product #(k)x(n — k) is nonzero only for £ in the range 0 < k < n.
Therefore,
n+l

z |l —«
ymy =) o= ——
k; l—«
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Case3 6 <n < 10. For 6 < n < 10, all of the nonzero values of x(rn — k) are within the limits of the
sum, and

n 5
Yy = ) ot =) dt
k=0

k=n—5
5

| —ab
=an75zak:an 5 ]
=0 -«

Case4 11 <n <15 Whennisintherange 11 < n < 15, the sequences A (k) and x(n — k) overlap for
n — 5 < k < 10. Therefore,

10 15-n

y(n) — 2 : ak — 2 :ak+(n—5)
k=n—5 k=0
15—n 16—n
| —«
— an—S 2 ak — an~5 ;
k=0 -

Case 5 n > 15. Finally, for n > 15, there is again no overlap between A (k) and x(n — k), and the product
h(k)x(n — k) is equal to zero for all k. Therefore, y(n) =0 forn > 15.

In summary, for the convolution we have

0 n<0
_ o+l
'l“ 0<n<s
— o
1 — 6
y(n) = a"'*‘ﬁ 6<n<10
1 — 16—n
P 1“ 11<n<15
—
0 n>15

1.36 The correlation of two sequences is an operation defined by the relation

x(n) * h(n) = Z x(k)h(n + k)

k=—o00
Note that we use a star * to denote correlation and an asterisk * to denote convolution.

(a) Find the correlation between the sequence x(n) = u(n) — u(n — 6) and h(n) =u(n —2) — u(n —5).

(b) Find the correlation of x(n) =a"u(n) with itself (i.e., #(n) = x(n)). This is known as the autocor-
relation of x(n). Assume that |a| < 1.

(a) If we compare the expression for the correlation of x(n) and A(n) with the convolution

o0

x(n) % h(n) = 2:.«mhm-m

k=—o0

we see that the only difference is that, in the case of convolution, 4(k) is time-reversed prior to shifting by »,
whereas for correlation h(k) is shifted without time-reversal. Therefore, with a graphical approach to compute
the correlation, we simply need to plot x(k) and A(k), shift h(k) by n (to the left if n > 0 and to the right if
n < 0), multiply the two sequences x(k) and h(n + k), and sum the products. Shown in the figure below is a
plot of x(k) and h(k).
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-2 -1 1 2 3 4 5 6 7 8 -2 -1 2 3 4 5 6 7 8

Denoting the correlation by r,,(n), it is clear that for n =0 the correlation is equal to 3. In fact, this will be
the value of r,,(n) for —1 < n < 2. For n =3, x(k) and /(3 + k) only overlap at two points, and r,,(3) =2.
Similarly, because x(k) and A(4 + k) only overlap at one point, ry,(4)= 1. Finally, r.,(n)=0 for n > 4.
Proceeding in a similar fashion for n < 0, we find that r,;,(—2) =2, and r,(—3) = |. The correlation is shown
in the figure below.

ron(n)

-4 =3 =2 —| 12 3 4 5 6 7 8

(b) Let r.(n) denote the autocorrelation of x(n), and note that the autocorrelation is the convolution of x(n) with

x(—n): -
ry(n) = x(n)*x(n) = x(n) x x(—n) = Z x(k)x(n + k)
k=-00
In addition observe that r.(n) is an even function of n:
o o
re=m= Y xox(—n+k)= D x(k'+nxk)=r.(n)
k=-00 K =—00

Therefore, it is only necessary to find the values of r,(n) for n > 0. For n > 0, we have

X0 0
l
_ k n+k _ 2k n
rx(n)—kzau(k)a u(n+k)—a"Za =7 n>0

== k=0

Using the symmetry of r.(n), we have, forn < 0,
1 -
ren) = ﬁa n n<o0
Combining these two results together, we finally have
,‘Y(n)z ﬂa\"\
| —?

Difference Equations

1.37 Consider a system described by the difference equation
y(n)=yn—1)—yn—2)4+0.5x(n) +0.5x(n — 1)
Find the response of this system to the input
x(n) = (0.5)'u(n)
with initial conditions y(—1) = 0.75 and y(—2) = 0.25.

The first step in solving this difference equation is to find the particular solution. With x(n) = (0.5)"u(n), we assume
a solution of the form
Ypn) = C1(0.5)"  nz0

Substituting this solution into the difference equation, we have

Ci(0.5)" = C1(0.5)"" — C(0.5)"72 4+ 0.5(0.5)" + 0.5(0.5)"~" n>0
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Dividing by (0.5)",

which gives

The next step is to find the homogeneous solution. The characteristic equation is
2—z41=0
which has roots
z=3(1 £ jV3) =eH
Therefore, the form of the homogeneous solution is
yu(n) = Arei™? 4 A,einl?
and the total solution becomes
y(n) = 0.5 + A + Aye ™ n>0 (1.25)

The constants A, and A; must now be found so that the total solution satisfies the given initial conditions, y(—1) =
0.75 and y(—2) = 0.25. Because the solution given in Eq. (/.25) is only applicable for n > 0, we must derive an
equivalent set of initial conditions for y(0) and y(1). Evaluating the difference equation forn = Oandn = 1, we
have

¥(0) = y(—1) — y(=2) + 0.5x(0) + 0.5x(—=1) = 0.75 - 025+ 0.5 = |
and

y()=y0)— y(-=1)+05x(1)+05x(0)=1-075+0254+05=1
Now, substituting these derived initial conditions into Eq. (1.25), we have

y0)=05+A+A4=1
y(1) = 0.25 + A1e/™3 4 Aze™ /™3 =1

Writing this pair of equations in the two unknowns A and A, in matrix form,

o1 Al _Jos
i3 o=in3 1 Ay | T 075

[A.] _ Y3
Az 3| —leim gl

Substituting into Eq. (/.25) and simplifying, we find, after a bit of algebra,
3 2V3
y(n) = 0.5/ + V3 sm(ﬂ) - %— sin((n _ 1)%)

and solving, we find

2 3

An important observation to make about this solution is that, because the difference equation has real coefficients,
the roots of the characteristic polynomial are in complex-conjugate pairs. This ensures that the unit sample response
is real. With a real-valued input x(n), the response must be real and, therefore, it follows that A, will be the complex
conjugate of A;:

A = A
A second-order recursive system is described by the LCCDE
y(n) = 3y(n — 1) — y(n — 2) + x(n) — x(n — 1)

(a) Find the unit sample response 4(n) of this system.

(b) Find the system’s response to the input x(n) = u(n) — u(n — 10) with zero initial conditions.
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(¢) Find the system’s response to the input x(n) = (%)”u(n) with zero initial conditions.

(a)

(b)

To find the unit sample response, we must solve the difference equation with x(n)=35(n) and initial rest
conditions. The characteristic equation is

A-frt=(-Ye-d)
Therefore, the homogeneous solution is
wm=a,(3)"+4(})  n=zo0 (1.26)

Because the particular solution is zero when the system input is a unit sample, Eq. (/.26) represents the total
solution.

To find the constants A, and A,, we must derive the initial conditions at » = 0 and » = 1. With initial rest
conditions, y(—1) = y(—2) = 0, it follows that

¥(O0) = 3y(=1) = 1y(=2) + x(0) — x(=1) = |
Y = 3y0) — y(—=D+x() —x(0) =3 — 1 = —

n—

We may now write two equations in the two unknowns A, and A, by evaluating Eq. (/.26)atn = 0and n = 1
as follows:

l=A+A;
=LA+ 4

Solving for A, and A,, we find

Thus,
v ==2(3) +3(1)"  nz0

and the unit sample response is

hen = [~2(3)" +3(3)" Juen)

To find the response of the system to x(n) = u(n) — u(n — 10), we may proceed in one of two ways. First, we
may perform the convolution of A(n) with x(n):
x 9
y(n) = x(n) x h(n) = Z x(h(n — k) = Zh(n —k)

k=—00 k=0

Alternatively, noting that the input is a sum of two steps, we may find the step response of the system, s(n), and
then using linearity, write the response as

y(n) = s(n) —s(n — 10)

Using this approach, we see from part (a) that the step response for n > 0 is

s(n)=h(n)*u(n)=Zh(k)=2[—2(%)k+3(%)k] nz0
k=0

k=0

Evaluating the sums using the geometric series, we find

1 - l "+' l - l n+1 n n
s(n) = |:—2 ] (_2)1 +3 l (_4)1 ]u(n) = [2(%) - (%) ]u(n)
2 N 4

Thus, the desired solution is

ym) = s(m) = stn = 10) = [2(4)" = (4)"Jutm = [2(3)"" = ()" Jutn = 10)
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(¢) With x(n) = (;l)"u(n), note that x(n) has the same form as one of the terms in the homogeneous solution.
Therefore, the p;articular solution will not be of the form y,(n) = C(';)" as indicated in Table 1-2. If we were
to substitute this particular solution into the difference equation, we would find that no value of C would work.
As is the case when a root of the characteristic equation is of second order, the particular solution has the form

yo(m) = Cn(5)'

Substituting this into the difference equation, we have

cn(4)' =3cm—n(3)"" —jcm-2() "+ ()" - ()"
Dividing through by (1), we have
Cn=3Cn-h-icmn-2-1
Solving for C, we find that C = —2. Thus, the total solution is
ymy=-2n(2)" +A4,(4)" +a(})" n=zo0 (1.27)

We now must solve for the constants A, and A,. As we did in part (a), with zero initial conditions we find that
y(0) = I and y(1) = 41 Therefore, evaluating Eq. (/.27) at n = 0 and n = 1, we obtain the following two
equations in the two unknowns A; and A;:

=A+ A
=-2(3) + 1A+ 14,

Bl— —

Solving for A, and A,, we find that A, = 4 and A, = 3. Thus, the total solution becomes

ym = [=2n(3)" +4(3)" = 3(3) " Jum)

A $100,000 mortgage is to be paid off in equal monthly payments of d dollars. Interest, compounded
monthly, is charged at the rate of 10 percent per annum on the unpaid balance [e.g., after the first month
the total debt equals ($100,000 + %MO0.000)]. Determine the amount of the payment, d, so that the
mortgage is paid off in 30 years, and find the total amount of payments that are made over the 30-year
period.

The total unpaid balance at the end of the nth month, in the absence of any additional loans or payments, is equal
to the unpaid balance in the previous month plus the interest charged on the unpaid balance for the previous month.
Therefore, with y(n) the balance at the end of the #nth month we have

y(n)=y(n — 1)+ By(n — 1)

where 8 = Oi—lzo is the interest charged on the unpaid balance. In addition, the balance must be adjusted by the net
amount of money leaving the bank into your pocket, which is simply the amount borrowed in the nth month minus

the amount paid to the bank in the nth month. Thus
y(n) = y(n — 1)+ By(n — 1) + xp(n) — x,(n)

where x,(n) is the amount borrowed in the nth month and x,(n) is the amount paid in the nth month. Combining
terms, we have
yn) —vylr — 1) = xp(n) — x,(n) = x(n)

wherev=14+8=1+ %, and x(n) is the net amount of money in the nth month that leaves the bank. Because
a principal of p dollars is borrowed during month zero, and payments of d dollars begin with month 1, the driving
Sfunction, x(n), is

x(n) = xp(n) — x,(n) = pd(n) — du(n — 1)

and the difference equation for y(n) becomes

y(n) —vy(n — 1) = pé(n) — du(n — 1)
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Because we are assuming zero initial conditions, y(—1) = 0, and because the input consists of a linear combination
of a scaled unit sample and a scaled delayed step, the solution to the difference equation is simply

y(n) = ph(n)+ds(n — 1)

where A(n) and s(n) are the unit sample and unit step response, respectively. To find the unit sample response, we
write the difference equation in the form

y(n) =vyn — 1)+ 48(n)
The characteristic equation for this difference equation is
z—-v=0

and the homogeneous solution is
y(n) = Av" n=0

Because the input x(n) = §(n) is equal to zero for n > 0, the particular solution is zero (all that the unit sample does
is set the initial condition at » = 0). Evaluating the difference equation at n = 0, we have

YO =vy(-DH+1=1
Therefore, it follows that A = 1 in the homogeneous solution, and that the unit sample response is
h(n) = v'u(n)
The step response may now be found by convolving A(n) with u(n):
n h k n ) 1 — U"+I
=h = = = > 0
s(r) = h(n) * u(n) ; (k) AZ(‘:U — n>

Thus, the total solution is

"

I —v

y(n) = ph(n) +ds(n — 1) = pv*'u(n) ~ d l u(n — 1)

-V

We now want to find the value of d so that after 360 equal monthly payments the mortgage is paid off. In other
words, we want to find d such that

] — 360

y(360) = pv*® — ¢
|l —v

I
m[p(l — o — g =¥ =0

Solving for d, we have

1 —
I v) 360

d= | — p360

With v = &l and p = 100,000, we have
d =8717.57

The total payment to the bank after 30 years is

C = (877.57)(360) = 315,925.20

Every second, each « particle within a reactor splits into eight 8 particles and each 8 particle splits into
an ¢ particle and two f particles. Schematically,

o —> 88 B— a+28
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Given that there is a single « particle in the reactor at time n = 0, find an expression for the total number
of particles within the reactor at time n.

Let a(n) and B(n) be the number of « particles and 8 particles within the reactor at time n. The behavior within the
reactor may be described by the following pair of coupled difference equations:

aln+1) = B(n)
B(n + 1) = Ba(n) + 2B(n)
Before we can solve these difference equations, we must uncouple them. Therefore, let us derive a single difference

equation for B(n). From the first equation we see that «(n) = B(n — 1). Substituting this relation into the second
difference equation, we have

B(n+1)=8B(n—1)+2B(n)
or, equivalently,
Bn) =2(n — 1)+ 8B(n ~ 2)
The characteristic equation for this difference equation is
2 -22-8=0z-Hz+2)=0
which gives the following homogeneous solution
B(n) = A\(4)" + Ay(=2)"

Similarly, because a(n) = B(n — 1), the solution for a(n) is

A| A2
e L B, )
a(n) 4 5 (~2)
With the initial conditions «(0) = | and 8(0) = 0, we may solve for A, and A, as follows:
A A
0 = — - — = l
0 ==

BO)=A1+A,=0

Therefore, A=

[STR

Ay = -4
and the solutions for «(n) and B(n) are

Bny =34 —3(=2" n=0

a(n) = (4 + 3(=2y n>0

Because we are interested in the total number of particles within the reactor at time n, with

y(n) = a(n)+ B(n)

we have y(n) = 1[5 +(=2)"""] n=0

-3

Supplementary Problems

Discrete-Time Signals

1.41

Find the period N of the sequence

() = (E) 2n7t) ,(m'r fnm
n) = cos 3 COS(T + sin T)SIH(—I)
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1.42  The input to a linear shift-invariant system is periodic with period N.
(a) Show that the output of the system is also periodic with period N.
(b) If the system is linear but shift-varying, is the output guaranteed to be periodic?

(¢) If the system is nonlinear but shift-invariant, is the output guaranteed to be periodic?
143 Ifx(n) =0 forn < 0, and the odd part is x,(n) = n(0.5)""!, find x(n) given that x(0) = 1.
1.44  Find the conjugate symmetric part of the sequence
x(n) = (L + j1) um
145 If x(n) is odd, what is y(n) = x2(n)?

146 If x(n) = 0 forn < 0, P, is the power in the even part of x(n), and P, is the power in the odd part, which of the
following statements are true?

(@ P.zP,
b) P, =P,
(¢y P.=P,

(d) None of the above are true.

1.47  Express the sequence

—n" -2<n<?2
x(n) =
0 else
as a sum of scaled and shifted unit steps.
148  Synthesize the triangular pulse
x(n)
6
4
2
n
-2 —1 1 2 3 4 5 6 7 8
as a sum of scaled and shifted pulses,
) 0<n<3
n)=
P 0 else

Discrete-Time Systems

1.49  Listed below are several systems that relate the input x(») to the output y(n). For each, determine whether the
system is linear or nonlinear, shift-invariant or shift-varying, stable or unstable, causal or noncausal, and invertible
or noninvertible.

(@ y(n) =x(n)+ x(—n)

(b ym) =) x(k
k=0

n+ng

©) yn)= Z x(k)

k=n-ng

(d) y(n) =log{x(n)}
(¢) y(n) = median{x(n — 1), x(n), x(n + 1)}
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Given below are the unit sample responses of several linear shift-invariant systems. For each system, determine the
conditions on the parameter a in order for the system to be stable.

(a) h(n) = a"u(—n)
(b) h(n) =a"{u(n) — u(n — 100)}
(¢) h(n) =a"

[s it true that all memoryless systems are shift-invariant?

Consider the linear shift-invariant system described by the first-order linear constant coefficient difference equation

y(n) =ay(n — 1) + x(n)
Determine the conditions (if any) for which this system is stable.

Suppose that two systems, S| and S,, are connected in parallel.

(a) If both S| and S, are linear, shift-invariant, stable, and causal, will the parallel connection always be linear,
shift-invariant, stable, and causal?

(b) If both S| and S, are nonlinear, will the parallel connection necessarily be nonlinear?

(¢) If both S, and S, are shift-varying, will the parallel connection necessarily be shift-varying?

Convolution

1.54

1.55

1.56

1.57

1.58

Find the convolution of the two sequences
x(n) = 8(n —2)—28(n —4)+ 38(n — 6)
h(n) = 28(n+ 3) 4+ 8(n) + 26(n — 2) + 6(n — 3)
The unit sample response of a linear shift-invariant system is
h(n) =38(n —3)+0.58(n —4) 4+ 0.28(n — 5)+ 0.78(n — 6) — 0.88(n —7)

Find the response of this system to the input x(n) = u(n — I).

A linear shift-invariant system has a unit sample response
hn) = u(—n)
Find the output if the input is
x(ny = (1) um

The step response of a system is defined as the response of the system to a unit step u(n).

(@) Lets(n)be the step response of a linear shift-invariant system. Express s(n) in terms of the unit sample response
h(n), and find s(n) when A(n) = u(n) — u(n — 6).

(b) Derive an expression for A(n) in terms of s(n) and find the unit sample response for a system whose step
response is

s(n) = (—0.5)"u(n)

The unit sample response of a linear shift-invariant system is shown below.
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1.59

1.60

1.61

1.62

1.63

1.64

1.65

1.66

1.67

1.68

1.69

1.70

(a) Find the response of the system to the input u(n — 4).
(b) Repeat for x(n) = (—1)"u(n).
If x(n) = (%)"u(n — 2)and A(n) = 2"u(—n — 5), find the convolution y(n) = x(n) * h(n).

Given three sequences, A(n), g(n), and r(n), express g(n) in terms of r(n) if
gmy= " hn+bhS -k  rm= Y hin—khk)
k=—00 k=-00
Let i(n) = a"u(n) and x(n) = b"u(n). Find the convolution y(n) = x(n) * h(n) assuming that a # b.

If x(n) = a"u(n), find the convolution y(n) = x(n) * x(n).

The input to a linear shift-invariant system is the unit step, x(n) = u(n), and the response is y(n) = §(n). Find the
unit sample response of this system.

If h(n) = Ad(n)+( % )"u(n) is the unit sample response of a linear shift-invariant system, and s(n) is the step response
(the response of the system to a unit step), find the value of the constant A so that lim,_. s(n) = 0.

The unit sample response of a linear shift-invariant system is
h(n) = (1)" u(n)
Find the response of the system to the complex exponential x(n) = exp(jnm/4).
Evaluate the convolution of the sequence x(n) = n(%)"cos(nn) with the unit step, A(n) = u(n).

Let
n(0.5)" 0<n<S5

x(n) = 1 (0.25)"

<0
n2

and h(n) = e/ T"u(—n). If y(n) = x(n) * h(n), what is the numerical value of y(—2)?

Given
n
— 0O<n<S5s
5 =n=
x(n) = 2-5  6s=n<10
0 otherwise

and h(n) = 8(n — 2) + 8(n — 3) + 8(n — 4), at what value of n will the convolution y(n) = x(n) * h(n) attain its
maximum value, and what is this maximum value?

A linear system has a response A, (n) = §(2n — k) to the unit sample 8(n — k). Find the response of the system to
the input x(n) = u(n).

Consider the interconnection of three linear shift-invariant systems shown in the figure below.

o ha(n)
\ 4
+
x(n) ———  hi(n) O——
+
A
> h3(n)
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If hi(n) = u(n — 2), hy(n) = nu(n) and h3(n) = 8(n — 2), find the unit sample response of the overall system.

Difference Equations

1.71

1.72

1.73

1.74

1.75

1.76

1.77

141

1.42

143

Consider the linear shift-invariant system described by the LCCDE
y(n) = —1y(n — 1)+ 2x(n)
Find the response of this system to the input

2 n=0,24,6,...
x(n) = .
0 otherwise

Hint: Write x(n) as {1 + (—1)"} u(n) and use linearity.

Consider a system with input x(n) and output y(n) that satisfies the difference equation
y(n) =ny(n — 1)+ x(n)

If x(n) = 8(n), determine y(n) for all n.

A linear shift-invariant system is described by the LCCDE
y(n) —=5y(n =D +6y(n—2)=x(n-1)

Find the step response of the system (i.e., the response to the input x(n) = u(n)).

A system is characterized by the difference equation
y(n) — 6y(n — 1)+ 8y(n — 2) = 4x(n)

If the input is x(n) = 2u(n) — 3nu(n), find the response of the system assuming initial conditions of y(—1) = 2 and

Consider the system described by the difference equation
y(n) —y(n —1)+025y(n —2) = x(n) — 0.25x(n — 1)

(a) Find the unit sample response of the system.

(b) Find the response of the system to x(n) = (0.25)"u(n).

For a savings account that pays interest at the rate of | percent per month, if deposits are made on the first of each
month at the rate of $50 per month, how much money will there be in the account at the end of 1 year?

A savings account pays interest at the rate of 1 percent per month. With an initial deposit of $50, how much will
there be in the account after 10 years?

Answers to Supplementary Problems

N = 120.

(a) If x(n) = x(n + N), by shift-invariance, y(n) = y(n + N). Therefore, y(n) is periodic with period N.
(b) No. (¢) Yes.

x(n) = &)+ 2n(0.5)"u(n — 1).
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xe(n) = L(32) e 4 L(n)

Even.

(a) is true.

x(n) =uln +2) = 2u(n + 1)+ 2u(n) = 2u(n — 1)+ 2u(n — 2) — u(n — 3).

x(n)y=2pn — 1)+ 2p(n —2)+ 2p(n — 3) —2p(n — 4).

(a) Linear, shift-varying, stable, noncausal, noninvertible. (b) Linear, shift-varying, unstable, noncausal,
invertible. (¢) Linear, shift-invariant, stable, noncausal, invertible. (d) Nonlinear, shift-invariant, stable, causal,
invertible. (¢) Nonlinear, shift-invariant, stable, noncausal, noninvertible.

(a) la) > 1. (b) Any finite a. (¢) |a| < 1.

No. Consider the system y(n) = x(n)cos(nm/2).

la] < 1.

(a) Yes. (b) No. (¢) No.

The sequence values, beginning at index n = —1, are y(n) = {2,0, —4,1,6,0,1, —1, =2, 6, 3}.

y(n) =38(n —4) + 3.58(n —~ 5) +3.78(n — 6) +4.48(n — 7) 4 3.6u(n — 8).

y(n) = Ju(--n = 1)+ (1) utn).

(a) s(n)= Z h(k). With h(n) = u(n) — u(n — 6) the step response is

k=—00

0 n<0
s(m)y=3(n+1) 0<n<5
6 6<n

(b) hn) = s(n) — s(n — 1). If s(n) = (—0.5)"u(n), then h(n) = 8(n) + 3(—=0.5Vu(n — 1).
@) y(n)=8(n—2)+28(n — 3) — 28(n — 5) — 8(n — 6).

b) y(n)=38(n+2)—28(n)+8(n~—2).

vy = 5(2)" " un + 2+ L@ u(—n - 3).

gn)y =r(n-+5).

bn+| _ an+l
yn = ——

u(n).

y(n) = (n+ )a"u(n).

h(n) = 6(n) — 6(n — 1).

A=-2.

s

| i 4
y(n) = meﬂl”/ )
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SIGNALS AND SYSTEMS

y(n) = L[@n +3)=1) = 3]un).
=2 =14 -j4.
max{y(n)} = 2, which occurs at index n = 8.

y(n) = u(n).

y(n) = u(n — 4) + L(n — 2)(n = Du(n —2).

y(m) = [4(=1y" + 4 — 4 (=1)"Juw).

y(n) = n! u(n).

y(m) = [} + (3)3y —22M]u(n).

y(n) = [2[4" = 1] = 4n + 122" Ju(n).

@ h(my=[in+1](3)"um). ®) y(n) = (n + (1) u(n).
$690.46.

$165.02.

[CHAP. 1



Chapter 2

Fourier Analysis

2.1 INTRODUCTION

The Fourier representation of signals plays an extremely important role in both continuous-time and discrete-time
signal processing. It provides a method for mapping signals into another “domain” in which to manipulate them.
What makes the Fourier representation particularly useful is the property that the convolution operation is mapped
to multiplication. In addition, the Fourier transform provides a different way to interpret signals and systems.
In this chapter we will develop the discrete-time Fourier transform (i.e., a Fourier transform for discrete-time
signals). We will show how complex exponentials are eigenfunctions of linear shift-invariant (LSI) systems
and how this property leads to the notion of a frequency response representation of LSI systems. Finally, we
will explore how the discrete-time Fourier transform may be used to solve linear constant-coefficient difference
equations and perform convolutions.

2.2 FREQUENCY RESPONSE

Eigenfunctions of linear shift-invariant systems are sequences that, when input to the system, pass through with
only a change in (complex) amplitude. That is to say, if the input is x(n), the output is y(n) = Ax(n), where A,
the eigenvalue, generally depends on the input x(n).

x{(n) y(n) = Ax(n)
_ h(n) ———
Signals of the form
x(n) = e/ —00 < n <00

where w is a constant, are eigenfunctions of LSI systems. This may be shown from the convolution sum:

o0

y(n) = h(n)xx(n)=Y_ h(k)x(n — k)

k=—o00

= Y hk)e "R = e N h(kye ke

k=—00 k=—00
— H(eja))ejnw
Thus, the eigenvalue, which we denote by H (e/*), is
. x .
He!®y= )" htkye /* @.D

k=—00

Note that H(e/®) is, in general, complex-valued and depends on the frequency w of the complex exponential.
Thus, it may be written in terms of its real and imaginary parts,

H(e/”) = Hg(e!”) + jH (/)
or in terms of its magnitude and phase,
H(el?) = [H(e/")]e/™
55
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where [H(e®)? = H(e/*)H*(e/?) = H3(e®) + HP(e'®)
_ —1 HI (ejw)
and ¢p(w) = tan He(e®)

Graphical representations of the frequency response are of great value in the analysis of LSI systems, and
plots of the magnitude and phase are commonly used. However, another useful graphical representation is a plot
of 20 log| H (e/*)| versus w. The units on the log magnitude scale are decibels (abbreviated dB). Thus, O dB corre-
sponds to a value of | H (e/“)| = 1,20dB is equivalent to | H (¢/)| = 10, —20dB is equivalent to | H(e/*)| = 0.1,
and so on. It is also useful to note that 6 dB corresponds approximately to | H (e/?)| = 2, and —6 dB is approxi-
mately | H (e/%)| = 0.5. One of the advantages of a log magnitude plot is that, because the logarithm expands the
scale for small values of | H(e/?)|, it is useful in displaying the fine detail of the frequency response near zero.

A graphical representation that is often used instead of the phase is the group delay, which is defined as
follows:

In evaluating the group delay, the phase is taken to be a continuous and differentiable function of w by adding
integer multiples of 7 to the principal value of the phase (this is referred to as unwrapping the phase).

The function H(e/®) is very useful and important in the characterization of LSI systems and is called
the frequency response. The frequency response defines how a complex exponential is changed in (complex)
amplitude when it is filtered by the system. The frequency response is particularly useful if we are able to
decompose an input signal into a sum of complex exponentials. For example, the response of an LSI system to
an input of the form

N .
x(n) = Z oy el
k=1

N
will be y() ="y o H(e/*)elm
k=1

where H (e/“*) is the frequency response of the system evaluated at frequency .

EXAMPLE 2.2.1 Let x(n) = cos(nwy) be the input to a linear shift-invariant system with a real-valued unit sample
response h(n). If x(n) is decomposed into a sum of two complex exponentials,

x(n) = %e”’“’o + %e"f"“’“
the response of the system may be written as
y(n) = FH(e*)e/"™ 4+ LH(e™/0)e™ /"0
Because /(n) is real-valued, H(e/®) is conjugate symmetric:

H(e ) = H*(e’*)

Therefore, y(n) = %H(ej“’" Yelmeo 4 %H*(e"“"’ e ~imo

and it follows that
y(n) = Re{H(e/™)e/"™} = | H(e/™)| cos(nwo + ¢y (wo))
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Periodicity

The frequency response is a complex-valued function of @ and is periodic with a period 2z. This is in sharp
contrast with the frequency response of a linear time-invariant continuous-time system, which has a frequency
response that is not periodic, in general. The reason for this periodicity stems from the fact that a discrete-time
complex exponential of frequency wy is the same as a complex exponential of frequency wy + 27 ; that is,

x(n) = e/ — pinlwo+n)

Therefore, if the input to a linear shift-invariant system is x(n) = e/ the response must be the same as the
response to the signal x(n) = e/"@*2™)_ This, in turn, requires that

H(ej“’(’) — H(ej(wo+2n))

Symmetry

If h(n) is real-valued, the frequency response is a conjugate symmetric function of frequency:
H(e ) = H* (')

Conjugate symmetry of H(e/®) implies that the real part is an even function of w,
Hr(e’®) = Hr(e™/*)

and that the imaginary part is odd, , '
Hi(e!®) = —H(e™’*)

Conjugate symmetry also implies that the magnitude is even,
|H(e/) = |H(e /)|
and that the phase and group delay are odd,
tn(w) = —w(—0)  w(@) = —TH(—w)
EXAMPLE 2.2.2 Consider the LSI system with unit sample response
h(n) = «"u(n)
where « is a real number with Ja| < 1. The frequency response is

o0 =
H(e/*) = Z h(n)e /" = Za”e‘j"‘"

n=—00 n=0

d ; 1
= Z(ae"“’)" = —
n=0

1 —aqe i@

The squared magnitude of the frequency response is

) ) . 1 1 1
joyi2 — He!*YH*(e!®) = . =
1H @) () H™(™) l —ae /e 1 —qelv | +a? - 2acosw

and the phase is
_ Hi(e?®) R —asinw
Hpg(el®) |l —acosw

¢n(w) = tan

Finally, the group delay is found by differentiating the phase. The result is

a? —acosw

(@) = T 1+a?—2acosw
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Inverting the Frequency Response

Given the frequency response of a linear shift-invariant system,
H(e™®)y= Y h(m)e ™™
n=—oQ

the unit sample response may be recovered by integration:

n

h(n):—l— H(e'Ye!™dw (2.2)
27 J_,

The integral may be taken over any period of length 27.
EXAMPLE 2.2.3 For a system with a frequency response given by

) { 1 lo| < w,
H(e'?) =

0 w < |wl <m

(this system is referred to as an ideal low-pass filter), the unit sample response is

1 [ 1 ; ; sin
h(n) = — / e"dw = [e/" —e™ /"] = Sl
21 J_q, 2jmn n

Note that this system is noncausal (it is also unstable) and, therefore, unrealizable.

2.3 FILTERS

The term digital filter, or simply filter, is often used to refer to a discrete-time system. A digital filter is defined
by J. F. Kaiser! as a ... computational process or algorithm by which a sampled signal or sequence of numbers
(acting as the input) is transformed into a second sequence of numbers termed the output signal. The computa-
tional process may be that of lowpass filtering (smoothing), bandpass filtering, interpolation, the generation of
derivatives, etc.”

Filters may be characterized in terms of their system properties, such as linearity, shift-invariance, causality,
stability, etc., and they may be classified in terms of the form of their frequency response. Some of these
classifications are described below.

Linear Phase

A linear shift-invariant system is said to have linear phase if its frequency response is of the form
H(e!®) = A(e!)e*
where « is a real number and A(e/®) is a real-valued function of w. Note that the phase of H (¢/) is

—aw when A(e/¥) > 0
—aw+ 7 when A(e/®) < 0

on(w) =

Similarly, a filter is said to have generalized linear phase if the frequency response has the form
H(ej"’) — A(ejw)e-j(aw-ﬂ)

Thus, filters with linear phase or generalized linear phase have a constant group delay.

1System Analysis by Digital Computer, F. F. Kuo and J. F. Kaiser, Eds., John Wiley and Sons, New York, 1966.
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Allpass

A system is said to be allpass filter if the frequency response magnitude is constant:
|H(e'*) = ¢
An example of an allpass filter is the system that has a frequency response

: e —«a
HEe*)y= ———
€™ 1 —ae 7

where ¢ is any real number with [@| < [. The unit sample response of this allpass filter is

h(n) = —ad(n) + (1 — a®a" 'u(n — 1)

Frequency Selective Filters

Many of the filters that are important in applications have piecewise constant frequency response magnitudes.
These include the low-pass, high-pass, bandpass, and bandstop filters that are illustrated in Fig. 2-1. The intervals
over which the frequency response magnitude is equal to 1 are called the passbands, and the intervals over which
it is equal to O are called the stopbands. The frequencies that mark the edges of the passbands and stopbands are
the cutoff frequencies.

4 |H () H (/)
1 —_— 1
w w
- -, e n - :n' —w, ! e rr ]
(a) Ideal low-pass filter. (b) 1deal high-pass filter.
|H (/)] 4 HE)
1 -1
2] )
jﬂf —-w -] I w) W) b4 i :1 —w  —w w) w) n i
(c) Ideal bandpass filter. (d) 1deal bandstop filter.

Fig. 2-1. Ideal filters.

2.4 INTERCONNECTION OF SYSTEMS

Filters are often interconnected to create systems that have desirable properties. Two common types of connec-
tions are series (cascade) and parallel. A cascade of two linear shift-invariant systems is shown in the figure below.

x(n) y(n)
— hi(n) ha(n) -

A

A cascade is equivalent to a single linear shift-invariant system with a unit sample response

h(n) = hy(n) * ha(n)
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and a frequency response
H(e*) = Hi(e*) Hae')
Note that the log magnitude of the cascade is the sum of the log magnitudes of the individual systems,
201log|H (e/®)| = 20 log|H,(e/*)| + 20 log| Ha(e’®)|

and the phase and group delay are additive,

(@) = d1(w) + d2(w)

T(w) = 1i(w) + 12(w)

A parallel connection of two linear shift-invariant systems is shown in the figure below.

hi(n) >

A 4

x(n) + ¥y

\

A 4

ha(n)

A parallel network is equivalent to a single linear shift-invariant system with a unit sample response
h(n) = hi(n) + ha(n)
Therefore, the frequency response of the parallel network is
H(e’®) = Hi(e’®) + Ha(e'®)
EXAMPLE 2.4.1 The cascade of a low-pass filter with a high-pass filter may be used to implement a bandpass filter. For
example, the ideal bandpass filter shown in Fig. 2-1(c) may be realized by cascading a low-pass filter with a cutoff frequency w,

with a high-pass filter that has a cutoff frequency w,. Similarly, the bandstop filter shown in Fig. 2-1(d) may be realized with a
parallel connection of a low-pass filter with cutoff frequency w, and a high-pass filter with a cutoff frequency w,, withw, > w,.

Another interconnection of systems that is commonly found in control applications is the feedback network
shown in the figure below.

x(n) w(n) y(n)
—{(— o > >

A

g(n)

This network may be analyzed as follows. With
w(n) = x(n) + g(n) * y(n)

and y(n) = f(n)* w(n)
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we may use the Fourier analysis techniques described in the following section to show that the frequency response
of this system, if it exists, is?

F(e/®)
| — F(e/®)G(e/v)

H(e/?) =

2.5 THE DISCRETE-TIME FOURIER TRANSFORM

The frequency response of a linear shift-invariant system is found by multiplying 4(»n) by a complex exponential,
e~ " and summing over n. The discrete-time Fourier transform (DTFT) of a sequence, x(»), is defined in the
same way,
o<
Xy =Y x(mye " 2.3)

n=-—00o

Thus, the frequency response of a linear shift-invariant system, H (¢/®), is the DTFT of the unit sample response,
h(n). In order for the DTFT of a sequence to exist, the summation in Eq. (2.3) must converge. This, in turn,
requires that x(n) be absolutely summable:

> k=S < oo

n=-—00
EXAMPLE 2.5.1 The DTFT of the sequence
xi(n) = a"u(n) Jo| < 1
is X (e’?) = Za"e""“’ = Z(ae"“’)"
n=0 n=0
Using the geometric series, this sum is
: 1
X'y = ———
1e’”) [ “ae o
provided |a| < 1. Similarly, for the sequence
x(n) = —a"u(—n —1) la] > 1
the DTFT is
o0 ~1
X2(e-i“’) — Z xz(n)e—jnw - _ Z ane—jnw

Changing the limits on the sum, we have

o0 [0 0]
Xz(ej‘”) - _ Za—nejnw - _ Z(a-lejw)n +1
n=1 n=0
If || > 1, this sum is
. 1 1
X))y = ——---—++1=

1 —aleiw | —ae—iw

Therefore, x,(n) = «"u(n) and x,(n) = —a"u(—n — 1) both have the same DTFT.

2It is possible that g(n) will make the system unstable, in which case the DTFT of A(n) will not exist. Feedback systems are typically
analyzed using z-transforms.
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Given X (e/), the sequence x(n) may be recovered using the inverse DTFT,

1 T . .
x(n) = —/ X(e’*Ye!"dw Q2.4
27 J_,

The inverse DTFT may be viewed as a decomposition of x(#n) into a linear combination of all complex exponentials
that have frequencies in the range —m < w < m. Table 2-1 contains a list of some useful DTFT pairs.

Table 2-1 Some Common DTFT Pairs

Sequence Discrete-Time Fourier Transform
é(n) 1
8(n — ng) e~ Jnow
1 21 é(w)
e’/ 2m8(w — wy)

1

n l -
a"u(n), la| < =

1
—a"u(—n—1), la| > 1 _—
| —ae I
1
(n+Da"u(n), lal <1 (0 —ae-ioy
COS nwy wé(w + wo) + wé(w — wo)

EXAMPLE 2.5.2 Suppose X (e/“) consists of an impulse at frequency @ = wy:
X () = 8(w — wp)
Using the inverse DTFT, we have

1T [ o 1
x(n) = ﬁ/_ X' dw = Ze”’“’o

n

Note that although x(r) is not absolutely summable, by allowing the DTFT to contain impulses, we may consider the DTFT
of sequences that contain complex exponentials. As another example, if

X'y =m8(w — wy) + 78(w + wy)

computing the inverse DTFT, we find .
x(n) = %ef"‘“" + %e""“’o = cos(nwy)

2.6 DTFT PROPERTIES

There are a number of properties of the DTFT that may be used to simplify the evaluation of the DTFT and its
inverse. Some of these properties are described below. A summary of the DTFT properties appears in Table 2-2.

Periodicity
The discrete-time Fourier transform is periodic in w with a period of 27:
X(eja)) =X (ej(a)+2n'))
This property follows directly from the definition of the DTFT and the periodicity of the complex exponentials:

0 o0
X(ej(a)+27r)) — Z x(n)e—jn(a)+2rr) — Z x(n)e—jnwe~j2nn
n=—00 n=-00
00

= Z x(n)e " = X (/)

n=—00



CHAP. 2] FOURIER ANALYSIS 63

Table 2-2 Properties of the DTFT

Property Sequence Discrete-Time Fourier Transform
Linearity ax(n) + by(n) aX(e/?) + bY (e/?)
Shift x(n — n) einw X (elw)
Time-reversal x(—n) X(e~/®)
Modulation e x(n) X (e/@=0))
Convolution x(n) * y(n) X (e/*)Y (e/)
Conjugation x*(n) X*(e /)

. dX(e'?)
Derivative nx(n) J

| Ao

Multiplication x(n)y(n) o /"X(e/")Y(e”“’_‘”)dG

Note: Given the DTFTs X(e/®) and Y(e/®) of x(n) and y(n), this table lists the
DTFTs of sequences that are formed from x(n) and y(n).
Symmetry

The DTFT often has some symmetries that may be exploited to simplify the evaluation of the DTFT or the
inverse DTFT. These properties are listed in the table below.

x(n) X(e/*)
Real and even Real and even
Real and odd Imaginary and odd
Imaginary and even Imaginary and even
Imaginary and odd Real and odd

Note that these properties may be combined. For example, if x(n) is conjugate symmetric, its real part is
even and its imaginary part is odd. Therefore, it follows that X (e/®) is real-valued. Similarly, note that if x(n)
is real, the real part of X (e/“) is even and the imaginary part is odd. Thus, X (e/?) is conjugate symmetric.

Linearity

The discrete-time Fourier transform is a linear operator. That is to say, if X (e/®) is the DTFT of x,(n), and
X,(e/?) is the DTFT of xp(n),

axi(n) + bxo(n) ZEL 4 X 1(€7°) + bX 2(e/?)

Shifting Property

Shifting a sequence in time results in the multiplication of the DTFT by a complex exponential (linear phase
term):

x(n — ng) ZEL g=inow x (giwy

Time-Reversal

Time-reversing a sequence results in a frequency reversal of the DTFT:

x(=n) ZEL X (e @)
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Modulation
Multiplying a sequence by a complex exponential results in a shift in frequency of the DTFT :

; DIFT o
e/"®x(n) & X (/™)

Thus, modulating a sequence by a cosine of frequency wy shifts the spectrum up and down in frequency by wq:

x(n) cos nwo Z %X(ej(‘”*“”’)) + %X(ej(“’“"’))

Convolution Theorem

Perhaps the most important result in linear systems theory is that convolution in the time domain is equivalent
to multiplication in the frequency domain. Specifically, this theorem says that the DTFT of a sequence that is
formed by convolving two sequences, x(n) and A(n), is the product of the DTFTs of x(n) and A(n):

h(n) % x(n) Z5 H (/)X (e/?)

Multiplication (Periodic Convolution) Theorem

As with the time-shift and modulation properties, there is a dual to the convolution theorem that states that
multiplication in the time domain corresponds to (periodic) convolution in the frequency domain:

1 [~ . .
x(n)y(n) g T X(e’G)Y(e’(‘“_o))d()
T J—n
Parseval’s Theorem
A corollary to the multiplication theorem is Parseval’s theorem, which is
o0 1 b4 )
Y kP == X do
n=-00 2

-1

Parseval’s theorem is referred to as the conservation of energy theorem, because it states that the DTFT operator
preserves energy when going from the time domain into the frequency domain.

2.7 APPLICATIONS

In this section, we present some applications of the DTFT in discrete-time signal analysis. These include finding
the frequency response of an LSI system that is described by a difference equation, performing convolutions,
solving difference equations that have zero initial conditions, and designing inverse systems.

2.7.1 LSI Systems and LCCDEs

An important subclass of LSI systems contains those whose input, x(n), and output, y(n), are related by a linear
constant coefficient difference equation (LCCDE):

p q
yny= =3 _alkyy(n — k) + Y _ b(k)x(n — k) 2.5)
k=1 k=0

The linearity and shift properties of the DTFT may be used to express this difference equation in the frequency
domain as follows:

» q
Y(e/?) = — Z a(k)e™ 7 Y (/) + Z bik)e 7% X (1)
= k=0
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p q9
or Y(efw)[l +y a(k)e—f“w] = X(e/*) ) blkye **
k=1 k=0

Therefore, the frequency response of this system is
q

, b(k)e Ik
Yy =

X(ei®) — P )
( 1+ Za(k)e‘fk“’
k=1

H(e/?) = (2.6)

EXAMPLE 2.7.1 Consider the linear shift-invariant system characterized by the second-order linear constant coefficient
difference equation

y(n) = 1.3433y(n — 1) — 0.9025y(n — 2) + x(n) — 1.4142x(n — 1) + x(n — 2)

The frequency response may be found by inspection without solving the difference equation for 4(n) as follows:

1 — 1.4142¢7/@ 4 ¢=2/@

H(e'®) = _ ,
€)= 11 3433¢-7% 5 0.9025¢-7%

Note that this problem may also be worked in the reverse direction. For example, given a frequency response function such as

1 4 e e
—e7/2 4 0.5¢"%e

H(e'®) =
(e’) )
a difference equation may be easily found that will implement this system. First, dividing numerator and denominator by 2
and rewriting the frequency response as follows,

0.5+ 0.5¢%
1 —0.5¢-/® +0.25¢-2/*

H(e/®y =

we see that a difference equation for this system is

y(n) =0.5y(n — 1) — 0.25y(n — 2) + 0.5x(n) + 0.5x(n — 2)

2.7.2 Performing Convolutions

Because the DTFT maps convolution in the time domain into multiplication in the frequency domain, the DTFT
provides an alternative to performing convolutions in the time domain. The following example illustrates the
procedure.

EXAMPLE 2.7.2 If the unit sample response of an LSI system is
h(n) = a"u(n)

let us find the response of the system to the input x(n) = B"u(n), where |a| < 1, |8| < 1, and o # B. Because the output of
the system is the convolution of x(n) with A(n),

y(n) = h(n) * x(n)

the DTFT of y(n) is
1 1
—we /o] — Beie

Y(e'?) = H(e*)X (/) = 1
Therefore, all that is required is to find the inverse DTFT of ¥ (e/“). This may be done easily by expanding Y (e/“) as follows:

1 A B

Jjoy — =
Ve = e — g~ T_aere ¥ 1= peio
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where A and B are constants that are to be determined. Expressing the right-hand side of this expansion over a common
denominator,
1 _ (A+B) — (AB + Ba)e
(1 —ae=i@)(1 — Be=i®) — (1 —ae=i@)(1 — Be~iv)

and equating coefficients, the constants A and B may be found by solving the pair of equations

A+B =1
AB+Ba =0
The result is
o B
A= B=-—
] o —B
o _ @@= B) B/ —p)
Therefore, Y(e'?) = I —ae o 1= peio
and it follows that the inverse DTFT is
a n — ﬂ n
y(n) = [a—_ga a_— ﬁﬂ ]u(n)

2.7.3 Solving Difference Equations

In Chap. 1 we looked at methods for solving difference equations in the “time domain.” The DTFT may be
used to solve difference equations in the “frequency domain” provided that the initial conditions are zero. The
procedure is simply to transform the difference equation into the frequency domain by taking the DTFT of each
term in the equation, solving for the desired term, and finding the inverse DTFT.

EXAMPLE 2.7.3 Let us solve the following LCCDE for y(n) assuming zero initial conditions,
y(n)—0.25y(n — 1) =x(n) — x(n — 2)
for x(n) = 8(n). We begin by taking the DTFT of each term in the difference equation:
Y(e/?) — 0.25¢77Y (e/) = X (/) — e™“ X (e/*)

Because the DTFT of x(n) is X(e/*) =1,

j | — e~ 2iw 1 e Uw
Y(e/?) = — = — —
) = T 0257 = T=025¢ 7  1=025¢7"
Using the DTFT pair
DTF. 1
0.25)" —_—
02 = (2507w

the inverse DTFT of ¥ (¢/“) may be easily found using the linearity and shift properties,

y(n) = (0.25)"u(n) — (0.25)"2u(n — 2)

2.7.4 Inverse Systems

The inverse of a system with unit sample response 4(r) is a system that has a unit sample response g(n) such that

h(n) * g(n) = é(n)
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In terms of the frequency response, it is easy to see that, if the inverse of H (e/“) exists, it is equal to

1
H(ei®)

G(ejw) =

Care must be exercised, however, because not all systems are invertible or, if the inverse exists, it may be
noncausal. For example, the ideal low-pass filter in Example 2.2.3 does not have an inverse, and the inverse of
the system

H(e/?) =1—=2e7 /¢

is Gy = ———
€™ 1 —2¢ o
which corresponds to a system that has a noncausal unit sample response

g(n) = —27""u(—n — 1)

EXAMPLE 2.7.4 If the frequency response of an LSI system is

" 1 — le-je
HE"y= —3+—
1+ je-jw
the inverse system is
; 1 14 temie
G’y = = 2

H(eio) — 1 —le-jw

which has a unit sample response
g(n) = (0.25)"u(n) + 0.5(0.25)" 'u(n — 1)

Solved Problems

Frequency Response

2.1 Let h(n) be the unit sample response of an LSI system. Find the frequency response when
(@ h(n)=2¥8(n)+65(n—1)+4+38(n—-2)
B hn) = (5" un - 2).

(a) This system has a unit sample response that is finite in length. Therefore, the frequency response is a polynomial
in e/%, with the coefficients of the polynomial equal to the values of h(n):

H@e'®) =1+ 6e/% 4+ 3¢72%

This may be shown more formally by writing

00 00
H(e™)= Y h(me™ ™ = Y [8(n) + 68(n — 1) + 38(n — 2)}e /"
n=—00 n=-o0
d : .
Because Z 8(n — ng)e™ im0 = gminow

then H(e') =1+ 6779 4 3¢ ¢
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(b) For the second system, the frequency response is
i 00 ) 00 w42
B = 3 hei =37 (1) e
n=-00 n=2
Changing the limits on the sum so that it begins with n = 0, we have
jw o [ 1\ —j(n+2 1V 2jo 50 (1 —jw)"
He) =) (5)" e = (5) e 2o (se7)
n=0

Using the geometric series, we find

. 4 —2jw
joy — l) e
Hie )_(3 —le7w

2.2 An Lth-order moving average filter is a linear shift-invariant system that, for an input x(»), produces the
output

1 L
y(n) = L_-f-_l k2=:0x(n —k)

Find the frequency response of this system.

If the input to the moving average filter is x(n) = §(n), the response, by definition, will be the unit sample response,
h(n). Therefore,

1 L
h(n) = I kg(;a(n —k)

, 1 &
and H('?)= —— e ike
@)= 7

Using the geometric series, we have
l 1 — e—j(L-H)w

L+1 1 —eo

H(e!”) =
Factoring out a term e~/“*"*/2 from the numerator, and a term ¢~/“/? from the denominator, we have

L2 I LAV _ o= i(Lt+Vw/2
—jLw

. 1
Jwy —
H(e'?) = It le Y p——s

or H(ef‘") = *e*jLw/ZSi_n(E'f'—‘)—aﬁ
L+1 sinw/2

2.3  The input to a linear shift-invariant system is
nm L /3nm 0w
x(n) = 2cos(7> + 3sm(—4— + §)

Find the output if the unit sample response of the system is

sin[(n — 1)7/2]

h(n) =2 =D

This problem may be solved using the eigenfunction property of LSI systems. Specifically, as we saw in Exam-
ple 2.2.1, if the input to an LSI system is x(n) = cos(nay), the response will be

y(n) = |H(e’“*)| cos(nwo + @u(wo))
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2.4

2.5

Therefore, we need to find the frequency response of the system. In Example 2.2.3, it was shown that the unit sample
response of an ideal low-pass filter,

i o] < w,
Hi(e’") =
0 w. <ol <m
) sinnw
is hin) = ——
n

Because h(n) = 2h,(n ~ 1) with w, = /2, an expression may be derived for H (¢/*) in terms of H,(e/*) as follows:

o0

H(e™y= Y h(me™ ™ = " 2h(n— e ™

n=-—00 n=-00

=2 ) hy(n)e 1t = 2070 Z hy(n)e ™" = 27 H\(e/*)

n=-cc n=--0c

2e7 ol 2
Therefore, H(e!*) = T 2
7 < lwt <7

Because |H(e'“)| = 0 at w = 31 /4, the sinusoid in x(n) is filtered out, and the output is simply

yin) = 2|H(ef"/“)1003(% +¢h<%)>

= dcos( -+ T ) = dcos| (n — )
= 4 a 4 = 4cos| (n 2

Find the magnitude, phase, and group delay of a system that has a unit sample response
h(n) = 8(n) —ad(n — 1)
where ¢ is real.
The frequency response of this system is
HE'*)=1—qe ™/ =1—acosw+ josinw

Therefore, the magnitude squared is

[H(e/*)* = H(e/*)H"(e’?) = (1 —ae™/?) - (1 — ae’®) = | +o® — 20 cosw
The phase, on the other hand, is

, Hy(el®) _, asinw
— =1a
Hg(e/®) l —acosw

¢n(w) = tan”™

Finally, the group delay may be found by differentiating the phase (see Prob. 2.19). Alternatively, we may note that
because this system is the inverse of the one considered in Example 2.2.2, the phase and the group delay are simply
the negative of those found in the example. Therefore, we have

©) a? —acosw
mw)= ——————
1 +a? = 2acosw

A 90° phase shifter is a system with a frequency response

; —-J O<w<m
H*) =1 "
J -T<w<0
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Note that the magnitude is constant for all w, and the phase is —7/2 for 0 < w < 7 and 7/2 for
—m < w < 0. Find the unit sample response of this system.

The unit sample response may be found by integration:

1 [ o | | A
h(n) = I f_” H(e’!*)e'"dw = 5 /:" jel"dw — 2—n/(; je'"dw

0 b4
jnw elne

2wn

1 . 1 .
= [l —e My~ —_feinm
2nn Znn[ ¢ ] le I

2nn

- 0

1 jnm 1 n
= —[l—e"]=—[1—(=1)]
h n
Therefore, we have

2
— n odd
h(n) = [ nmw

0 neven

which may also be expressed as

2 sin’(n7/2)
hmy={n n
0

Filters

2.6  Let h(n) be the unit sample response of a low-pass filter with a cutoff frequency w,.

(a) What type of filter has a unit sample response g(n) = (—1)"h(n)?

(b) If a filter with a unit sample response 4(n) is implemented with a difference equation of the form
P

q
yn) =) ak)y(n —k) + ) blkx(n — k) 2.7

k=1 k=0
how should this difference equation be modified to implement the system that has a unit sample
response g(n) = (—1)"h(n)?

(a) Giventhat g(n) = (—1)"h(n), the frequency response G (e/“) is related to the frequency response of the low-pass
filter, H (e’®), as follows:

Gy =Y gme ™ = Y (—1)'h(n)e™ "

n=-o0o n=-0o
o
— Z h(n)e'/"(“’_”) — H(e/(w—n))
n=-—00

Therefore, G (¢/*) is formed by shifting H (/) in frequency by 7. Thus, if the passband of the low-pass filter
is || < w, the passband of G(e/“) will be 7 — w, < |w| < 7. As a result, it follows that g(») is the unit
sample response of a high-pass filter.

(b) If a filter with a unit sample response A(n) may be realized by the difference equation given in Eq. (2.7), the
frequency response of the filter is
q
Y bk
k=0

=
1 - Za(k)e’jk“’
k=1

Multiplying A(n) by (—1)" produces a system with a frequency response

4 .
Z b(k)e-—/k(tu-—ﬂ)
k=0

P

H(el?) =

G(e!*) = H(e!“™) =
1— a(k)e ke

k=1
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Because e/f7 = (—1),

q .
Zemmmﬂw

k=0

G(e/?) = -
1= (=D'atkye
k=1
and the difference equation becomes
)4 q
Yy =Y (= Dratk)y(n — k) + Y_(—Dibk)x(n — k)
k=1 k=0

That is, the coefficients a(k) and b(k) for & odd are negated.

2.7  Let H(e’®) be the frequency response of an ideal low-pass filter with a cutoff frequency w, as shown in
the figure below.

[H (e/®)]
{;

Assume that the phase is linear, ¢»(w) = —now. Determine whether or not it is possible to find an input
x(n) and a cutoff frequency w, < 7 that will produce the output

o[l n=01..2
Y =10 otherwise

If X (/) is the DTFT of x(n), the output of the low-pass filter will have a DTFT
Y(e'®) = H(e'“)X (e'*)

Therefore, Y (¢/) must be equal to zero for w. < |w| < 7. However, the DTFT of y(n) is

. 20 ) 1 - e—lem
Yy = E e = ——
| —e-Jw

n=0

which is not zero for w. < |w| < m. Therefore, there is no value for w. < m, and no input x(») that will generate
the given output y(n).

2.8  Leth(n)bethe unitsample response of an ideal low-pass filter with a cutoff frequency w, = m /4. Shownin
the figure below is a linear shift-invariant system that is formed from a cascade of a low-pass filter and two
modulators. Find the frequency response of the overall system relating the input x(n) to the output y(n).

= =

x(n) v(n) w(n) y(n)
h(n)

There are two ways that we may use to find the frequency response of this system. The first is to note that because
the input to the low-pass filter is (—1)"x(n), the output of the low-pass filter is

o0

w(n) = h(n) x [(—1)"x(n)] = Z h(kY(=1)" x(n = k)

k=—00
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Therefore. y(n) = (=D'wm) = (=11 Y ht(=1)"Fx(n —k)]
k=-n0
Bringing the term (—1)" inside the summation, and using the fact that (— 1)"* = (= 1)*", we have
Yy =Y A1 (=D x i = k) = ) (=D hK)x(n = k) = (=1 h(m)] % x(n)
k=—00 k=—o0c

Thus, the unit sample response of the overall system is (—1)"h(n), and the frequency response is

3
Z <ol <n
DTFT{(—1)"h(n)} = H (/™) = 4

0 otherwise

Another way to determine the frequency response is to find the response of the system to a complex exponential,
x(n) = ¢/". Modulating by (—1)" = ¢~/"" produces the sequence

U(ﬂ) — (_ l)nejmu — ejn(w—;vr)
which is the input to the LSI system. Because v(n) is a complex exponential, the response of the system to v(n) is
w(n) = H((’j(w_m)(’j"(w—”)

Finally, with
¥y = (= 1'w(n) = (=D H (/)10 = p (¢1t0=0) gino

it follows that the frequency response of the overall system is H (ef“”"”) as we found before.

If h(n) is the unit sample response of an ideal low-pass filter with a cutoff frequency w. = /4, find the
frequency response of the filter that has a unit sample response g(n) = h(2n).

To find the frequency response of this system, we may work the problem in one of two ways. The first is to note that
because the unit sample response of an ideal low-pass filter with a cutoff frequency w, = 7 /4 is

sin(nm/4)
ni

h(n) =

sin(2nm/4) _ | sin(nm/2)
2nm T2 oanm

then h(2n) =

which is the unit sample response of a low-pass filter with a magnitude of 1 and a cutoff frequency w = /2. The
second way to work this problem is to find the frequency response of the .system that has a unit sample response
g(n) = h(2n), given that H (¢’/“) is the frequency response of a system with a unit sample response 4(n). Although
more difficult than the first approach, this will give a general expression for the frequency response G (e/“) in terms
of H(e/*) that may be applied to any system. To find the frequency response, we must evaluate the sum

G(e'?) = Z h2n)e~ i

Using the identity
" 2 n even
=D 2{0 n odd

we may write the frequency response as

o0

G(é’jw) — % [1 _f_(_l)nlh(n)efjmuﬂ

2

n

Il

e |

h(n)e—juw/z +12 Z (_l)nh(n)e—jnw/Z

—00 n=—o0c

I
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In terms of H(e/“), the first term may be written as

20
Y)Y h(me ™% = JH(e?)

n=—o00
whereas the second term is
00 oo . )
% z (_l)nh(n)e—jnw/Z — % Z h(n)e—]n(w+2zr)/2 — %H(E”w+2")/2)
n=-00 n=—00
Therefore, G(e/®) = %H(ej“’/z) + %H(ej“”“")/z)

With H (¢/®) the frequency response of a low-pass filter with a cutoff frequency w, = 7 /4, this gives the same result
as before.

2.10 Consider the high-pass filter that has a cutoff frequency w. = 37 /4 as shown in the following figure:

H(e/?)

(@) Find the unit sample response, h(n).
(b) A new system is defined so that its unit sample response is #2;(n) = h(2n). Sketch the frequency
response, H\(e/®), of this system.

(a) The unit sample response may be found two different ways. The first is to use the inverse DTFT formula and
perform the integration. The second approach is to use the modulation property and note that if

| for |w| <

N

Hip(el®) =
0 otherwise

H (e’“) may be written as ‘
H(e’”) = Hy,(e’“™™)

Therefore, it follows from the modulation property that

h(n) = e/" hy,(n) = (—1)"hy,(n)

With by = SCT/4)
nmw
we have hin) = (—1)"Sl—n(w
nmw

(b) The frequency response of the system that has a unit sample response #,(n) = h(2n) may be found by evaluating
the discrete-time Fourier transform sum directly:

Hie®)= Y hime ™ = 3" h@me /™ =Y h(n)e /™"

n=—0o n even
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However, an easier approach is to note that

sin(2nr/4)  sin(nw/2)

— __(_1\2n
hi(n) = h(2n) = (=1) oy oy

which is a low-pass filter with a cutoff frequency of /2 and a gain of 1. A plot of H,(e/®) is shown in the
following figure:

§ @)

1/2

Y

-1 —n/2 /2 4

Interconnection of Systems
2.11 The ideal filters that have frequency responses as shown in the figure below are connected in cascade.

|H (/)| |Ha(e®)]|

 —— 1

" - N
T I - T

/3 b4 - —3n/4 —n/4| /4  3m/4 b4
(@) (b)

For an arbitrary input x(n), find the range of frequencies that can be present in the output y(n). Repeat
for the case in which the two systems are connected in parallel.

If these two filters are connected in cascade, the frequency response of the cascade is
H(e’") = Hy(e’")Hy(e’*)

Therefore, any frequencies in the output, y(n), must be passed by both filters. Because the passband for H,(e/®) is
|w| > /3, and the passband for H,(e/?) is /4 < |w| < 37 /4, the passband for the cascade (the frequencies for
which both |H;(e/?)| and |Hy(e’?)) are equal to 1) is

T ol < 3
3= =7y
With a parallel connection, the overall frequency response is
H(e’®) = Hi(e’*) + Ha(e'”)

Therefore, the frequencies that are contained in the output are those that are passed by either filter, or

o] > =
4

2.12  Consider the following interconnection of linear shift-invariant systems:

x(n) w(n) ) y(n)
——p + | Hy(e/”) f—d———

hy(n)
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2.13

‘ I lwl<Z
where hi(n)=38n—1) and Hye!?) = . 2
0 5 < lw| <7

Find the frequency response and the unit sample response of this system.

To find the unit sample response, let x(n) = §(n). The output of the adder is then
w(n) =8(n)y—6(n—10)

Because w(n) is input to an LSI system with a unit sample response %,(n),

y(n) = hy(n) — ha(n — 1)

1 [ o 1 : 5
where ha(n) = _/ Ha(e')e " dwy = — I = sin(nm/2)
2 ) 21 Joap nm

Therefore, the unit sample response of the overall system is

sin(nm/2) B sinf(n — 1) /2]

hin) = nn (n—nm

To find the frequency response, note that

We)=1—e*

| S R e S
Therefore, H(e!?) = W(e!*YHa(e’?) = [1 — e/ “1Hy(e’®) =

2 <ol <
— < | T
4 <

Consider the interconnection of LSI systems shown in the following figure:

Y

hy(n) —-

x(n) y(n)

hi(n) > q.)_._

4

o hi(n) o ha(n)

(a) Express the frequency response of the overall system in terms of H,(e/®), Hy(e/®), H3(e/®), and
Ha(el®).

(b) Find the frequency response if
hy(n) =6n)+28(n —2)+8(n —4)
ha(n) = h3(n) = (0.2)"u(n)
ha(n) = 6(n —2)
(a) Because h(n) is in parallel with the cascade of ~3(n) and h4(n), the frequency response of the parallel network is
G(e’”) = Hy(e!") + Hy(e/*)Hyle'?)
With h;(n) being in cascade with g(n), the overall frequency response becomes

H(e'®) = H\(e/*)[Ha(e'?) + H3(e!*)Hale'®)]
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(b) The frequency responses of the systems in this interconnection are

H\(e7®) = 14 2e77% 4 7% = (] 4 ¢ /20)?

Hy(e'®) = Hy(e’”) = :

1 —02e /e
Hy(e/®) = e /%
Therefore, H(e!®) = Hi(e/”)[Hx(e’”) + Hi(e!)Hy(e!)]
= Hi(e/*)Hy(e’*)[1 + Ha(e’®)]
(1 4 e772)3
T 1=02e %

2.14 Suppose that the frequency response of a linear shift-invariant system is piecewise constant as shown in
the following figure:

Ay

A3

Y

'l .
I I Ll I

- —wn —w| ) w2 4

Describe how this filter may be implemented as a parallel connection of low-pass filters.

This filter may be viewed as a summation of a low-pass filter, a bandpass filter, and a high-pass filter. Because
both a bandpass filter and a high-pass filter may be synthesized using a parallel connection of low-pass filters, we
may proceed as follows. First, we put an allpass filter H3(¢/*) = Aj in parallel with a low-pass filter with a cutoff
frequency , and a gain of A, — Aj;. This parallel network has a frequency response

H(el?y = Ay lw] < w,
- As wy <ol <n

To produce the correct magnitude over the lower band, (| < w,, we add a third low-pass filter in parallel with the
other two. This filter has a cutoff frequency of w, and a gain of A; — Aj.

2.15 Two linear shift-invariant systems are connected in a feedback network as illustrated in the figure below.

x(n) w(n) ¥(m)
—(H— fn) > >

Po-

+

8(n) <

Assuming that the overall system is stable, so that H (e/®) exists, show that the frequency response of
this feedback network is

; Y(e/® F(e/®
H(el™) = (‘)= (' ) _
X(e/?) 1 — F(e/®)G(e/®)
To analyze this network, we begin by noting that

w(n) = x(n) + g(n) * y(n)
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which, in the frequency domain, becomes

W(e!?) = X(e’*) + G(e/)Y (/%)
Because Y(e/®) = F(e/)W (e/*)

then Y(e'®) = F(e’*)[ X (') + G(e’/*)Y (e/*)]

Solving for Y (¢/¢) yields
F(e/®)

[~ FemGen )

Y(e!?) =
Therefore, the frequency response is

Y (e/?) _ F(e/®)

Joy —
He™) = X(ei®)y T 1 = F(ei®)G(el®)

The Discrete-Time Fourier Transform

2.16 A linear shift-invariant system is described by the LCCDE
y(n) =0.5y(n — 1) + bx(n)

Find the value of b so that |H(e/?)| is equal to | at @ = 0, and find the half-power point (i.e., the
frequency at which |H (e/)|? is equal to one-half of its peak value, which occurs at w = 0).

The frequency response of the system described by this difference equation is

b

He™) = =557

b? b?
(1 —0.5¢-/%)(1 — 0.5¢J%) _ 1.25 — cosw

Because |H(e')|* =

|H(e’®)| will be equal to 1 at w = 0 if
b2
- =1
1.25 ~1
This will be true when b = +0.5.
To find the half-power point, we want to find the frequency for which

. 0.25
H")) = ————— =05
1H(e™)] 1.25 — cosw
This occurs when
cosw = 0.75

orw = 0.237.

2.17 Consider the system defined by the difference equation
v(n) =ay(n — 1)+ bx(n)y+x(n — 1)

where a and b are real, and |a| < 1. Find the relationship between a and b that must exist if the frequency
response is to have a constant magnitude for all w, that is,

|H(e/?)| =1
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Assuming that this relationship is satisfied, find the output of the system when a = % and

x(n) = (3)"u(n)
The frequency response of the LSI system described by this difference equation is

b+e i

H(e™) = ———
@) 1 —ae i

The squared magnitude is

(b + e 72)(b + &/?) B 1 +b*+2bcosw

H(e/))? = . — =
IH (™) (1 —ae i*)(1 —aei®) 1+4a?—2acosw

Therefore, it follows that |H (e/®)|> = 1 if and only if b = —a.
Witha = 1 and b = —1, if x(n) = (3)"u(n), Y (¢/*) is given by

1 - 1 —j
: , : -3 +el? 1 —5+e
Y(e?) = H(e")X (/") = —2r — = 5
l—ie / l—if J (1_%67_/(0)

Using the DTFT pair
" DTFT 1
(n+ Da"u(n) = m
given in Table 2-1, and using the linearity and delay properties of the DTFT, we have

¥y = =4+ (1) utn) + (1) utn = 1)

What we observe from this example is that although |H (e/)] = 1, the nonlinear phase has a significant effect on
the values of the input sequence.

Show that the group delay of a linear shift-invariant system with a frequency response H (e/“) may be
expressed as

Hg(e/®)G r(e/®) + H; (/)G ;(e/®)
|H (e/*)[?

Th(w) =

where Hg(e/®) and H;(e/?) are the real and imaginary parts of H (e/®), respectively, and G (e/®) and
G (e/*) are the real and imaginary parts of the DTFT of nh(n).

In terms of magnitude and phase, the frequency response is
H(e™) = |H (e)|e/*
Note that if we take the logarithm of H (e/), we have an explicit expression for the phase
In H(e’”) = In|H(e’*)| + jp(w)

Differentiating with respect to w, we have

1 d . d ; d
—H(e’*y = — In|H(e’*)| + j——dn(w)
dw dw

a In H(e'®) = -
dw H(e/*)dw

Equating the imaginary parts of both sides of this equation yields

d—H(ef‘“)

d
do @) = Im{ H(e®) dw
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2.19

If we define

d jw ’ jw spyt jw
EH(e’ Y= Hg(e!*) + jH (e*)

where Hp(e/?) is the derivative of the real part of H(e/*) and H;(e/*) is the derivative of the imaginary part, the
group delay may be written as

Hi(e!) + J'H/(E’“’)}

d
Th(w) = —%@.(w) = —Im{ Hers)

Multiplying the numerator and denominator by H*(e/®) = Hg(e/*) — jH,(e’®) yields

Th(w)

i [Hp(elo) + jH(e’)]|[Hr(e?) — jHi(e/)]
[H (e/®)|?

_ Hi(e’*)Hp(e’*) — Hy(e/*)H](e/*)
a |H (e/v)|2

Finally, recall that if H (e/?) is the DTFT of h(n), the DTFT of g(n) = nh(n) is
jw jw . jw . d f ’ i syt i
G =Gr(e’)+ jG (') = jEH(e’ ) = —H e’y + jHy(e’?)

where G g(e’?)is the real part of the DTFT of nk(n), and G ; (¢/*) is the imaginary part. Therefore, Hy(e/”) = G, (e/*)
and H,(e’®) = —G r(e’®). Expressed in terms of G g(e/“) and G (e’*), the group delay becomes

Hg(e’*)Gg(e/) + H (e/)G,(e7)
|H(e/)|?

TH(w) =

Note that this expression for the group delay is convenient for digital evaluation, because it only requires computing
the DTFT of h(n) and nh(n), and no derivatives.

Find the group delay for each of the following systems, where « is a real number:
(@) Hi(e/®)=1—aeJ®
. 1
(b) Hy(e!?) = ——n
l — e /@
1
1 —2acosfei® + q2e~ /20

(c) Hs(el®) =
(a) For the first system, the frequency response is
H\(e’*)=1—acosw+ jasinw

Therefore, the phase is

_, oasinw
$1(@) = tan~} —=0¢
l —acosw
Becau: —tan™! 1 _du
eeause dx 1 +u?dx
the group delay is
@) d @) 1 d ( o sinw )
T = —— = — -
e dw¢' @ 1+ (lf:icnoz:w)z do \l —acosw
1 (1 — a cos ) cos w — (& sin w)?

Therefore, T(w) = - ; 2
1+ ( a sinw

l—acosw

(1 — ¢ cos w)?
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which, after simplification, becomes

(1 — o cos w)a cos w — (« sin w)? a? —acosw

(1 — acosw)? + (a sin w)? T l4a?—2acosw

T(w) = —

Another way to solve this problem is to use the expression for the group delay derived in Prob. 2.18. With
Hi(e’)=1—-acosw+ jasinw

we see that
Hg(e’*)=1—acosw Hi(e’*) = asinw

Because the unit sample response is
h(n) = 8(n) —ad(n — 1)

then g(n) =nh(n) = —ad(n — 1)
and G(e!®) = —ae™® = —acosw + jasinw

Therefore, the group delay is

Hg(e/*)G (/) + H/(e/*)G (e/*)

mler = e
_ —a cosw(l — o cos w) + (« sin w)? _ a2 —acosw
- (1 — acos w)? + (a sin w)? T 14 a2 —2acosw

which is the same as before.

(b) Having found the group delay for H,(e/“) = 1 — ae™/®, we may easily derive the group delay for H,(e’®),
which is the inverse of H,(e’®):
1 1

H jw - - = -
2(e’?) e = Hi@®)
Specifically, because
; 1
Hy(e’®) =
2(e’) Her™)
¢2(w) = —¢1(w) and, therefore,
a? —acosw
n(w) = — 1(w) =

I +a?—2xcosw

(¢) For the last system, Hs(e/®) may be factored as follows:

1 1 1

Hi(e'®) = . — = , —
1 - 2acosfe= 7@ + qle— /2w | —aelfeto | —qe lfe—iv

The group delay of H3(e’“) is thus the sum of the group delays of these two factors. Furthermore, the group
delay of each factor may be found straightforwardly by differentiating the phase. However, the group delay of
these terms may also be found from t,(w) in part (b) if we use the modulation property of the DTFT. Specifically,
recall that if X (e/®) is the DTFT of x(n), the DTFT of ¢/ x(n) is

i DTFT f(w— i(w— id(w—
e;n(ﬂx(n) Pty X(e}(w 9)) — IX(ej(w 9))|e}¢(w 6)

Therefore, if the group delay of x(n) is 7(w), the group delay of /" x(n) will be T(w — ). In part (b), we found
that the group delay of H(e/®) = 1/(1 — ae™/®) is

a’ —acosw

@)= "1+ a2 —2acosw
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Thus, it follows from the modulation property that the group delay of H(e/“) = 1/(1 — ae™ /@) s
a? — acos(w — )

1 +a? — 2a cos(w — )

T(w) = —

and that the group delay of H(e/®) = 1/(1 — ae™/“t9) s

a? —acos(w +0)
1 4+ a? —2xcos(w + 6)

T(w) = —

Therefore, the group delay of H3(e/®) is the sum of these:

a? —acos(w — 0) a? —acos(w + 0)
1 +a? —2acos(w —0) 1+ a?—2acos(w+6)

(w) = —

2.20 Find the DTFT of each of the following sequences:

(@) xi(n)=(3)"u(n+3)
b) xy(n) = a” sin(nwg) u(n)
(3)" n=0.24,...

© x3(n) = 0 otherwise

(a) For the first sequence, the DTFT may be evaluated directly as follows:

Xi(e™) = Z (1)'em = i (de77e)"

n=-3 n=-3

8e3jw

0
— l —jw 3§ I 7]14)
— lo—jw
l ze

n=0

(b) Thebestwayto find the DTFT of x,(n) is to express the sinusoid as a sum of two complex exponentials as follows:
1. _
xa(n) = 77 [a"e!"™ — a"e™ "0 u(n)
J

The DTFT of the first term is
> . 1 1

—jlo—w))" N,
(ae ) 2j 1 — qeJlw—w0)

gk

_ anejmuoe—jnw - L
2j = 2j

1l
=}

n
Similarly, for the second term we have
1 1

_ no—jnwy,—jne _
2; D ateTime 27 1 — ae-Jwton

Therefore,

1 1 (a sin awp)e ™7
X (/) = - = . -
2 1 —qe/lw—e0) | ~ ge—/lwtwp) 1 — Qo coswy)e /@ + q2e2iw

(¢) Finally, for x3(n), we have

X}(ejw) — Z x3(n)e—jnw — Z (%)"e_jna)
n=-00 n=0,2,4....

= 1

o0
Therefore, Xi(e’®) = E % e Mnw — E ‘ *le =
n=0 L — e

n=0
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Because the DTFT of the output of a linear shift-invariant filter with frequency response H (e/®) is
Y(e'?) = X(e/?)H(e’?)

where X (e/®) is the DTFT of the input, it follows that an LSI system cannot produce frequencies in the
output that are not present in the input. Therefore, if a system introduces new frequencies, the system
must be nonlinear and/or shift-varying. For each of the following systems, find the frequencies that are
present in the output when x(n) = cos(nwy):

@ y(n)=x*n)
(b) y(n) = x(n)cos(nm/4)
(c) y(n)=x2n)
(a) With x(n) = cos(nwy), the output of the square-law device is
¥(n) = cos*(nwo)
Using the trigonometric identity
cos’ A = ;— + %cos(ZA)
it follows that
y(n) = 3 + 3 cos(2nay)

Therefore, although the only frequencies present in the input are w = %wy, the frequencies in the output are
w =0, £2w,. Because this system is nonlinear, it creates frequencies in the output that are not in the input.

(b) For the modulator, the output is

y(n) = x(n) COS(%) = cos(nwy) cos(%z)

Using the trigonometric identity
2cos Acos B = cos(A + B)+ cos(A — B)

it follows that

. nmw : nmw
¥(n) = 5 cos| nwg + 7 + 3 cos| nwyp — T

Therefore, the frequencies in the output are w = wy £ /4, which are different from those in the input. This is
because the modulator is a shift-varying system.

(¢) The last system, called a down-sampler, produces the output
y(n) = x(2n) = cosnwy)

thus creating frequencies in the output that are not present in the input. The down-sampler is a shift-varying
system.

For each of the following pairs of signals, x(n) and y(n), determine whether or not there is a linear
shift-invariant system that has the given response, y(n), to the given input, x(n). If such a system exists,
determine whether or not the system is unique, and find the frequency response of an LSI system with
the desired behavior. If no such LSI system exits, explain why.

@ x(n)=(3)"um), y(n) = (3)"un)

(b) x(n) =el"™4, y(n) = 0.5¢/m/4

(C) x(n) — sin(nm/4) y(n) - sin(nm/2)

nm ’ nm

(d) x(n) =u(n), y(n) =45(n)
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2.23

(a) For the first input-output pair, we have

1 |

X(e?) = Y(e'?) =

— lo—jw _lo—jw
1 —3e 1— e

Because X (/) is nonzero for all w, the system that produces the response y(n) is unique and is given by

Y(elo) 1 —je

X(ei®y 1 — %e-/w

H(ejw)z

(b) For the second system, note that the input is a complex exponential with a frequency w = 7 /4. Therefore, if
the system is LSI, the output must be a complex exponential of exactly the same frequency, that is,

y(n) — H((,jir/xi)ejmr/ét
Because the output is
y(n) = 0.5 e/m/4

any LSI system with
H(™*y =05

will produce the given response. Thus, the system is not unique. One possible system is the low-pass filter

: 05 lol<Z
H(e®) = 2
0 otherwise

(c¢) For the third system, recall that an ideal low-pass filter with a cutoff frequency w, has a unit sample response
given by (see Example 2.2.3)

hn) = sin nw,
hn
Therefore, the DTFT of the input x(n) is
b4
. 1 lw| < —
X('?) = 4
0 otherwise
and the DTFT of the output y(n) is
, 1 ol <X
Y(e/®) = 2
0 otherwise

Because X (e/“) = 0 for |w| > /4, if the system is to be linear and shift-invariant, Y (¢/“) must be equal to zero

for |w| > m/4 (an LSI system cannot produce new frequencies). Because this is not the case, no LSI system

will produce the given input-output pair.
(d) For the last system, we are given x(n) = u(n) and y(n) = 8(n). Therefore,

. 1 .
X)) = —— and Y(e/“)=1
| —e-Jo

As in part (@), there is a unique LSI system that produces this input-output pair, and the frequency response of

this system is
Y(e/*)
X (e/®)

=1—e/®

H(e'?) =

Find the DTFT of the two-sided sequence

= (3)"
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Note that we may write x(n) as the sum of a left-sided sequence and a right-sided sequence as follows:

x(n) = (%)"u(n) + (%)v"u(—n) — 8(n)

where the last term is included to remove the extra term that is introduced at n = 0 by the two exponential sequences.

The DTFT of the first term is
( )n DTET 1

O L g
_Zelw

and, using the time-reversal property, it follows that the DTFT of the second term is

Therefore, X(e/®) + -
I —deie 1 —1ei
15
16

(1—fe)(1-3e) 5§

v

CoOsw

Pl

2.24  Use the orthogonality of the complex exponentials

Y 1 1 k=1
o Jkw ,— jlo _
2 /,,,e ¢ d‘”‘[o k#1

to show that x(n) may be recovered from X (e/*) as follows:

| m o
x(n) = —/ X (e’ dw
27 J_

n
Given a sequence x(n), the DTFT is defined by
o0

X(el) = Z x(kye ke

k=—00

To recover x(n) from X (e/®), it is necessary to ““filter out” all of the terms in the sum except one (i.e., we must isolate
asingle term in the sum). This may be done by multiplying both sides of the equation by a complex exponential, e/

o0
X(ejw)ejnw — Z x(k)eéjkwejnw

k=—00

and integrating from —rx to 7,
g X . b4 o .
f X(e)e!™dw = / Z x(k)eijk“’ " 4w
- T k=-00
Interchanging the order of the integral and the sum on the right gives
f X' dw = x(k)f e kel dey
- k=—o00

Using the orthogonality of the complex exponentials, it follows that the integral is zero when & # n, and it is equal
to 2t when k = n. Therefore,

/ X" dw = 2mx(n)

4

Dividing both sides by 2 gives the desired result.
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2.25 Find the inverse DTFT of X (e/*) shown in the figure below:

X(e!®)

1 i
T I L

- —3n/4 -—m/4 /4 /4

N

Because X (e/”) is a piecewise constant function of w, finding the inverse DTFT may be easily accomplished by
integration. Using the inverse DTFT, we have

| i )
x(n)y = —f X' dw
2w J_,

l 3n/4 ] —n/4
= — e"dw + — " duw
27 /4 27 J 3n
In/4 -r/4
— : ejnw . el
2mjn /4 2mjn —3n/4

| : 1 ,
_ 2njn [ej3ﬂﬂ/4 _ ej'lﬂ/4] + znjn [e—jllﬂ/“ _ e—j3nn/4]

Rearranging the terms, we have

[€]3rrn/4 —e I [ejnrr/4 _ e—jmr/4] — Sin(3ﬂn/4) _ Sin(””/4)

~j3nn/4] _
2mjn 2njn mh mn

x(n) =

which is the desired result.

It is interesting to note that x(n) is expressed as the difference of two sequences, with the first being an ideal
low-pass filter with a cutoff frequency of 37 /4, and the second an ideal low-pass filter with a cutoff frequency of
/4. This is a consequence of the fact that X (¢/“) may be expressed as

X(e'”) = X (/) — Xa(e’®)

[ ol 3

where Xi(e/) = =7
0 otherwise

I el <2

. w| < —

and X,(e’?) = 4
0 otherwise

Another way to evaluate the inverse DTFT is to observe that X (¢/“) may be written as
X(e'?) = Xl(ejlw+l'z)) + Xz(ej(w—l'[))

where X ;(e/®) is the ideal low-pass filter defined above. Thus, X (¢/“) may be viewed as a modulated low-pass filter:

nm
x(n) = 2x2(n)cos(7)

S 4
With Xo(n) = sin(nrr/4)
nm
x(n) may also be written as
sin(nm /4) cos(nm/2)
x(n)y=2
nm

This may be shown to be equivalent to the previous representation for x(n) by using the trigonometric identity

2sin Asin B = sin(A + B) + sin(A — B)
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Find the inverse DTFT of X(e/“) = cos? w.
Recall that the DTFT of a delayed unit sample is a complex exponential:

DTFT _;
8(n — ng) &= e /"0¢

Therefore, the inverse DTFT of X (e/“) = cos? w may be found easily if we expand it in terms of complex exponen-
tials:

X(@) = (e + Je)' = 4 4 Lo 4 Lo

Thus, it follows that x(n) is
x(n) = 18(n) + 18(n +2) + 18(n - 2)

If h(n) is the unit sample response of a real and causal linear shift-invariant system, show that the system
is completely specified by the real part of its frequency response:

Hg(e’”) = Re(H (e’*))
In other words, show that H (¢/) may be uniquely recovered from its real part.

Recall from the symmetry properties of the DTFT that if a(n) is real, H (¢/®) is conjugate symmetric. Therefore, if
H (e/®) is written in terms of its real and imaginary parts,

H(e!*) = Hp(e!*) + jH (')
then the real part, Hg(e/*), is the DTFT of the even part of h(n):
he(n) = LA(n) + h(—n)] €55 Hy(e™)

Therefore, given Hg(e/?), or h,(n), the question is how to recover h(n). Note that if h(n) is causal, h(n) = 0 for

n <0, and
%h(n) n>0

h.(n) = { h(0) n=20
Lh(=n) n<0

As aresult, h(n) may be recovered from 4.(n) as follows:

2h.(n) n>0
h{n) = { h.(0) n=20
0 n<0

If h(n) is real and causal, and if
Hg(e’®) = Re{H (¢’®)} = 1 + a cos 2w
find h(n).
Because the real part of H(e/®) is
Hg(e’”) = 1+ acos2w = | + jae’™ + Lae™ />
the even part of h(n), which is the inverse DTFT of Hg(e/®), is
he(n) = 8(n) + %a&(n +2)+ %aa(n -2)
With h(n) a causal sequence, it follows from the results of Prob. 2.27 that

2h,(n) n>0
h(n) = { h.(0) n=20
0 n<0

which gives
h(n) = 8(n) + ad(n — 2)
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DTFT Properties

2.29

2.30

Show that if X (e/*) is real and even, x(n) is real and even.

For x(n) we have

1 " . . 1 " )
x(n) = —f XY dw = — f X(e’“)cos(nw)dw — j—
_ 2w J_, 2w

/ X(e’?) sin(nw)dw
27T 7 -

If X (e/“) is real and even, then X (e/) sin(nw) is real and odd. Therefore, when integrated from — to 7, the integral
is zero. Thus, x(n) may be written as

x(n) = i/ X (e’?) cos(nw)dw
2 J_

n

and it follows that x(n) is real. Finally, because X (¢/“) cos(nw) is real and even, x(n) is real and even, that is,

x(—n) = %/ X(e/*ycos(—nw)dw = %f X (e/?) cos(nw)dw = x(n)

Prove the convolution theorem.
There are several ways to prove the convolution theorem. One way is by a straightforward manipulation of the DTFT
sum. Specifically, if y(n) = h(n) * x(n),

o0

yny= Y h(l)x(n —1)

|=—00

and the DTFT of y(n) is

Fem= 3 {i h(lyx(n — 1)] e = 3 h(/)[ > xn - 1)e—f"w]

n=—00 | I=—00 1=—00 n=—00
Note that the expression in brackets is the DTFT of x(n —[). Using the delay property of the DTFT, this is equal to
X(e/?)e™/! and the right side of this equation becomes

Y(e'®) = Z h(l)X (e/)e™ e

I=—00

Factoring out X (¢/“) from the sum, which does not depend on /, we have

Y(e®) = X (/) > h(he " = X(e*)H (')
I=—0c0
which proves the theorem.

Another way to prove the convolution theorem is to consider the following cascade of two LSI systems, one
with a unit sample response of 4(») and the other with a unit sample response of x(n):

e;’ncu H(ef‘”)X(e/"")ef"“’
e h(n) £ x(n) e

If the input to this cascade is a complex exponential, e/", the output of the first system is H (e/“)e/"“, Because this
complex exponential is the input to the second system, the output is H (e/*)X (e/*)e/". Therefore, H(e/*)X (e/®)
is the frequency response of the cascade, and because the unit sample response of the cascade is the convolution
h(n) x x(n), we have the DTFT pair

h(n) % x(n) ZEL H (/)X (/%)

which establishes the convolution theorem.
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Derive the up-sampling property of the DTFT, which states that if X (¢/®)is the DTFT of x(n), the DTFT of

x(ﬁ) n=0,+L +2L, ...
y(n) = L
0 otherwise

is Y(e/?) = X(e/t)

From the definition of the DTET, we have

ocC

Y(e/) = Y y(ne "

n=-00
Because y(n) is equal to zero except when # is an integer multiple of L,
00 o0

Y(e/¥) = Z y(nL)e "t = Z x(n)e /e

n=—00 n=-00

or Y(e?) = X(e/*)

Thus, Y (e/“) is formed by scaling X (¢/) in frequency.

Find the inverse DTFT of
1

joy —
X(e™) = 1 — le=jtow

For this problem, the direct approach of performing the integration
1 ” ; ;
x(n)= — / X ('Y dw
2 J_ .

is not easy. However, a simple approach is to recall that the inverse DTFT of

1

—
1 jo
1 3€

Y(e'®) =

is y(n) = (%)"u(n)

and to note that Y (¢/*) is related to X (e/*) by scaling in frequency,
Xy =Y(')

Therefore, it follows from the up-sampling property in Prob. 2.31 that

" (%)"/“’ n=0,£10,420, ...
xn) =

0 otherwise

In other words, the sequence x(n) is formed by inserting nine zeros between each value of y(n).

Let x(n) be a sequence with a DTFT X (e/¢). For each of the following sequences that are formed from
x(n), express the DTFT in terms of X (¢/®):

(@) x*(—n)
(b) x(n)* x*(—n)
@ x@2n+1
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(@) The DTFT of x*(—n) is

DTFT{x*(-=n)} = Y x*(=m)e™™ = Y x*(n)e/™
n=-—-00 n=—00
Bringing the conjugate outside, we have
DTFT{x*(—n)) = [ > x(n)e_j’”":l = X*(e/?)
n=-00

which leads to the DTFT pair
x*(—n) ZEL x* (el

(b) For y(n) = x(n) * x*(—n), note that because y(n) is the convolution of two sequences, the DTFT of y(n) is the
product of the DTFTs of x(n) and x*(—n). As shown in part (a), the DTFT of x*(—n) is X*(e/). Therefore,
we have the DTFT pair

x(n) % x*(—n) Z X (&)X *(e’) = | X (/)2
(¢) Forx(2n + 1) we have

oc

DTFT{x(2n + 1)} = Z x(2n + De™i™ = Z x(n)e~im

n=—00 n odd

To evaluate this sum, a “trick” is to use the identity

. |2 nodd
I=(=D _{0 n even

This allows us to write the DTFT as follows:

DTFT(x(2n + D} = Y x(me " = £ 3" [1 — (=1)"]x(m)e™ "
n odd n=-00
=1 Z x(n)e " — 1 Z (=1)"x(n)e~ /"

Because the first sum is simply X(e/“), and the second is the DTFT of the modulated signal

(=1'x(n) = e x(n)
then DTFT{x(2n + 1)} = {[X(e/*) — X (e/“™)]

2.34 Let x(n) be the sequence
x(n)=06(n+1)—38(n)+25(n—1)+36(n—2)

which has a DTFT ) _ )
X(e'?) = Xr(e’)+ jX (/)

where X g(e/) and X ;(e/®) are the real part and the imaginary part of X (e/“), respectively. Find the
sequence y(n) that has a DTFT given by

Y (e/?) = X 1(e’°) + jX r(e/®)e/®

The key to solving this problem is to recall that if x(n) is real, and if X(e/*) is written in terms of its real and
imaginary parts, X z(e/“) is the DTFT of the even part of x(n), and X,(e’*) is the DTFT of the odd part:

xe(n) = Hx(n) + x(=n)] EE X p(e™)

xo(n) = 30x(n) — x(=m)] ZEL jx (/)



90

2.35

FOURIER ANALYSIS

Therefore, the DTFT of — jx,(n) is X, (e/*),

. DTFT o
—jxo(n) &= X, (')

and the DTFT of jx.(n +2)is
Jxe(n +2) ‘gg jXR(ej‘”)ejz‘”
Thus, Jxe(n +2) = jxo(n) B ¥ (1) = X, (/) + jX ale/®)e’

and it follows that
y(n) = jx.(n+2) — jx,(n)

Finally, with x,.(n) and x,(n) as tabulated below,

n|—2 -1 0 1 2

xo(n) 312 32 -1 32 312
xo(n) | =3/2 =172 0 12 3/

it follows that y(n), which is formed from these two sequences, is as shown below:

n | -4 -3 -2 -1 0 1 2
y(n)|3j/2 3j/2 /2 2j 3j/2 —j/2 =3j/2

Let x(n) be the sequence
x(n) =25(n+2)—8(mn+1)+38(n)—46(n—1)+28n—2)

Evaluate the following quantities without explicitly finding X (e/?):
(@ X(e®)w=0

(b) ¢x(w)

© [, X(e/)dw

@) X(e)o=r

(e) [7,1X(e/)dw

(a) Because the DTFT of x(n) is

o0
X(el¥) = Z x(n)e /"
n=—00
note that if we evaluate X (e/¢) at w = 0, we have
. o0
X(€)wmo = D x(n)

which is simply the sum of the values of x(n). Therefore, for the given sequence it follows that

X(€w=0 =5

[CHAP. 2

(b) To evaluate the phase, note that because x(n) is real and even, X (e/*) is real and even and, therefore, the phase

is equal zero or x for all w.
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(¢) From the inverse DTFT,
1 m ) .
x(n) = —/ X(e/?)e"dw
2 J_

24

note that when n = 0: u

x(0) = l X(e®)dw
2

-

Therefore, it follows that .
f X(e/)dw = 27 x(0) = 67

(d) Evaluating the DTFT of x(n) at w = 7, we have

o0 o0

X(€/Nomn = Y x(me /" = 3" (=1)"x(n)

n=—0oc n=—00

which, for the given values of x(n), evaluates to
X(e')pern =9

(¢) From Parseval’s theorem, we know that

=/ X(E)do= Y xin)P

n=—oc

Therefore, / IX (/) dw = 27 Z lx(n))* = 387

n=-00

2,36 The center of gravity of a sequence x(n) is defined by

o0

Z nx(n)

n=—o00
00

Z x(n)

n=-—00

C =

and is used as a measure of the zime delay of a sequence. Find an expression for ¢ in terms of the DTFT
of x(n), and find the value of ¢ for the sequence x(n) that has a DTFT as shown in the figure below.

L Re(X(e/*)} | Im{X (/)

1

+1

\
/

4

!

3

!
win T
[SER
=1
[WE]
[SER 3
= 3

-7 —

T -1

(a) (b

To find the value of ¢ in terms of X (e’/®), first note that the denominator is simply the value of X (¢/®) evaluated at

w=0: -

3 x(n) = X(@)lumo
n=-—0oo
For the numerator, recall the DTFT pair

d .
nx(n) pid jd—wX(é”w)
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Therefore i (n) 'dX(f“’)
I , nx(n) = j—
o 2 n=j X i
and ¢ may be evaluated in terms of X (e/*) as follows:
d X(e’)
—X(e
] dw w=0
X (e7)w=0
For the DTFT that is given, we see that
X(€')|pmo = 1
d ; d ‘ d ; 2
and —X(*)| = —Re{X(e/V}u=o+ j—Im{X(e/*Ne=o = —Jj—
dw weo do dw 4
2
Therefore, c=—
i
2.37 For the sequence x(n) plotted in the figure below,
x(n)
3
2
1
I I ,,
*—o | — O—O————~
-4 -3 =2 -l l 2 3 4 l 6 7
evaluate the integral
T d ] 2
/ —X('?)| dw
_xldw

This integral is easy to evaluate if we use Parseval’s theorem
l n 00
jwyi2 _ 2
oy f W (e/)2de = _Z lw(n)|
n=—-00

and the derivative property

d ‘

nx(n) & = x(e)

dw

Specifically, we have

2 oc [e<]
do=2r Y |—jrxmP =21 Y Inx(n)]? =75

n=-—00 n=-00

——X(ef‘")
w

[l
—xld

Applications

2.38 A linear shift-invariant system has a frequency response

1

H(e/*) = e/ ———
() 1.1 4 cosw

Find an LCCDE that relates the input to the output.
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2.39

2.40

241

To convert H(e/®) into a difference equation, we must first express H(e¢/®) in terms of complex exponentials.
Expanding the cosine into a sum of two complex exponentials, we have

ele

H(e®) = . -
) l.l+%e‘1“’+%eﬂ"

Multiplying numerator and denominator by 2e=/¢ gives

Y (e/®) _ 2

Hel*y= —~ 2 = : :
) = X = 1T 22e 7 5 e

Cross-multiplying, we have
[1+2.2e77% + e He]Y (e/°) = 2X (/)
which leads to the following difference equation when we take the inverse DTFT of each term:

y(n) +2.2y(n — 1)+ y(n — 2) = 2x(n)

Find the frequency response of a linear shift-invariant system whose input and output satisfy the difference
equation
y(n) —05y(n—- 1) =x(n)+2x(n— 1)+ x(n —2)

To find the frequency response, we begin by finding the DTFT of each term in the difference equation
(1~ 0.5e7/°)Y (e/) = (1 + 2¢7/° + e7/*)X (/)
Because H (e/“) = Y (e/?)/ X (¢/*). we have

1+ 2¢77% 4 ¢720@

Joy —
He™) = 1—-0.5¢"j«

Write a difference equation to implement a system with a frequency response

[ —0.5e77% + 73/

H(el®) = : :
@) = T 05¢7% 5 0.75¢-2%

Y(e/) 1 -05e7/v 4
X(e/®) ~ 14 0.5ei® + 0.75¢~ 2w

With H(e/®) =
after cross-multiplying, we have

[1+0.5¢7/° + 0.75e72“1¥ (¢/*) = [1 — 0.5¢7/“ + e~} X (e/*)
Taking the inverse DTFT of each term gives the desired difference equation

y(n) +0.5y(n — D+ 0.75y(n —2) = x(n) — 0.5x(n — 1) + x(n — 3)

Find a difference equation to realize a linear shift-invariant system that has a frequency response
H('®) = tanw
To find a difference equation for H (¢/*). we must first express tan w in terms of complex exponentials:

sinw | e/ —e i@

cosw  jeo +e v
With H(e/®) = Y (e/“)/ X (e/*) we have, after cross-multiplying,

JjleP? + ey (e00) = [€/° — 711X (e7?)
Inverse transforming, we obtain the following difference equation:

jyin+ D+ jyin -1 =x(n+1)—x(n—1)
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By introducing a delay and dividing by /, this difference equation may be written in the more standard form

ym)y = —yn —2)— jx(n) + jx(n —2)

Find a difference equation to implement a filter that has a unit sample response
hin) = (4)"cos( 5 Ju(n)

To find a difference equation for this system, we must first find the frequency response H (e/). Expressing h(n) in
terms of complex exponentials,

h(n) = %(%)nej"ﬂ/BM()z) + %(%)"87]‘""/314(;1)
it follows that the frequency response is

) 1
He™) = % 1 — jeimBe=io * % 1 - %e*lf””e*f“’
I 1—feimBPemio 4] — Leminemiv
2 (1 - %gjﬂﬂe—jw) (1 - %e—jn/se—/w)
1 2 — § cos(m/3)e™

21— 3 cos(m/3)eIw + e

Therefore, the difference equation for this system is

y(n) = %(cos %)y(n - 1) — £y(n —2)+ x(n) — %(cos %)x(n -1

A system with input x(n) and output y(n) is described by the following set of coupled linear constant
coefficient difference equations:

y(r) = 3y(n — 1)+ 2v(n) + v(n — 1)

v(n) = fv(n — )+ wn — 1)

w(n) = 3x(n) + 2x(n — 1)
Find a single linear constant coefficient difference equation that describes this system, and find the
frequency response H(e’/®).
To find the frequency response for this system of difference equations, we first express each equation in the frequency
domain:

[1—je]r@) =12+ eV (™)

[1 = Le/“]viel®) = e7*W(e/*)

W(e®) = [1+2e77°]x (/)

Using the last two equations to express V (¢/*) in terms of X (¢/?), we have

e“’""[% + 2e‘f“’]

Jwy —
V(e®) = T

X(e/®)

Substituting this expression for V (e/) into the first equation and solving for ¥ (¢/*) gives

Yoo Lo
I—leso 1- 1w

Y(e'®) = eIvX (e/®)
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2.44

2.45

Therefore, the frequency response is

Y(ejw) e~jw + ge—ij+2e—3jw
X(e) 1= 2eio4 Lo

H(e’?) =

Cross-multiplying, we have
Y(e)[1 ~ 277 + Lem] = X (e/)[e7/ + Se 2w + 2¢7¢]
and taking the inverse DTFT of each term gives the difference equation for the system:

y(n) — %y(n— )+ %y(n —2=xn—1D+ (—;x(n —2)+2x(n —3)

A linear shift-invariant system with input x(n) and output v(n) is described by the difference equation
v(in) =x(n)+ax(n —1)

This system is cascaded with another system with input v(n) and output y(n) that is described by the
difference equation

y(n) = y(n — 1)+ v(n)
What value of o will guarantee that y(n) = x(n)?

Substituting the first equation into the second, we obtain a single difference equation that describes the overall system,

that is,
y(n) = y(n — 1)+ x(n) + ax(n — 1)

Taking the DTFT of both sides of the equation, we have
Y(e/®) = LeTY (/) + X(e7) + ae /X (/)

If y(n) = x(n), Y (e/®) = X(e’®), and it is clear that this will be true if and only if @ = ——%.

Find the input x(n) that will produce a response, y(n) = §(n), for a system described by the LCCDE
y(n) — %y(n — 1) =x(n) - éx(n -2)
This problem is easily solved if we express this difference equation in the frequency domain. Specifically, we have
Y(e/®) — te Y (e/”) = X (/) — Le T X (/)
If we want the output to be y(rn) = 8(n), Y (¢/“) = 1, and we have
1— 17/ = X(e') — e 2 X (e’*)

Solving for X (e/*) gives

b 1=t
X =17
1 — §€ J
To find the inverse DTFT of X (e/*), recall that
1) DTF 1
(8) u(n) 4={ Fpy %e‘fw
Therefore, the inverse DTFT of |
Joy— =
W(e’®) = = ée“/'?-w

is the sequence
1 nj/2 _
win) = ) n=024,...
otherwise
and x(n) is given by
()" n=024,...

T A S T .

x(n) =
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Supplementary Problems

Frequency Response

2.46  Consider a linear shift-invariant system with a unit sample response
h(n) =8(n)+8(n—1)

Find the output of the system when the input is

(n) 1+5cos(’m
x(n) = —
10

2.47  If the unit sample response of a linear shift-invariant system is
h(n) = a"u(n)

with [a]| < 1, find the response of the system to the input x(n) = 1. Repeat for x(n) = (—1)".

2.48 Find the frequency response of the system that has a unit sample response

cos(nwy) 0<n<N-—-1
0 otherwise

h(n) = l

249  The input to a linear shift-invariant system is

(n) = (E+ sn
Xx{n) = cos 8 Ccos 2

Find the output when the unit sample response is

_ Sin(7nm/8)
(@) h(n)= T8
) hiny = ST/ g sinGi/4)

n
2.50  The input to a linear shift-invariant system is
x(n) = n(%)"u(n)

and the output is
n=2 n=3
ymy=(4)" Tun =2 = §(3) Tutn -3

Find the frequency response H (¢/*).
2,51 Find the frequency response of the system described by the LCCDE
y(n) = }y(n = 10) + x(n) + jx(n — 10)
2.52  Find the group delay of the system that has a frequency response
— lpmiw

H(e!) = 1_2_
1+ geio

Filters

2.53  What is the unit sample response of an ideal bandstop filter with a lower cutoff frequency of w, and an upper cutoff
frequency of w,?

2.54  If h(n) is the unit sample response of an ideal low-pass filter with a gain of one and a cutoff frequency w, = 7/8,
what is g(n) = cos(nm/2)h(n)?
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The Interconnection of Systems

2.55  What type of filter has a unit sample response
sin(nmr/3)
nm

h(n) = 8(n) —

2.56  What is the magnitude of the frequency response of the cascade of the following two systems?

: e /¢ —0.5 sin(nm /4)
Hy(e'*) = ——— h =§(n) - ——
(&) = e =8 - ——
The Discrete-Time Fourier Transform
2,57  Find the DTFT of the sequence
N+1-—|n| |n] < N
x(n) =
0 else

2.58  For each of the following systems, find the frequencies that are present in the output when the DTFT of the input

x(n) is
. I jel<Z
X(e') = x 3
0 3 <lwl <m

@ y(n) = x*n)
b) y(n) = x(n)cos(nw/2)
© y() =x(2n)

2.59 Letx(n) = e/"*u(n) and y(n) = 0.5¢/""*u(n). Determine whether or not there is a linear shift-invariant system
that has the response, y(»), to the input x(r). If such a system exists, determine whether or not the system is unique,
and find the frequency response of an LSI system with the desired behavior. If no such LSI system exists, explain why.

2.60  Find the inverse DTFT of X (e/) illustrated in the figure below.

‘} X(e/®)

2
L,
w
—x —3n/4 —n/4 ©/4 dn/h ow
2.61  Find the inverse DTFT of X (/) illustrated in the figure below.
X (e/)
—_— 2 (_
1
w

—:n' —3r/4 —m/4 | r/4 3m/4 k4
2.62  Find the inverse DTFT of X (¢/) = cos 2w + j sinw.
2,63  Find the inverse DTFT of
2w T. || <

b4
x@y=1{°¢ 3 3
0 otherwise
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2.64 Find the DTFT of .
sin(nm/2) sin(nm/4)
x(n) =
nw nw
2.65 If x(n) is real and causal, and
; |
Re{X(e/)} = ———
3 —cosw
find x(n).
DTFT Properties
2.66  Let x(n) be a sequence with a DTFT X(e/). For each of the following sequences that are related to x(n), express
the DTFT in terms of X (¢/):
(@ x*(n)
(h) x(n) —x(n—2)
() x(2n)
(d) x(n)yxx(n—1)
2.67 If the DTFT of x(n) = (é)"u(n +2)is X(e/*), find the sequence that has a DTFT given by Y (e/?) = X (e/%®),
2.68 Let x(n) be the sequence
x(n)y=28(n+3)—28(n+ 1) +8(n—1)+38n—2)
If the DTFT of x(n) is expressed in terms of its real and imaginary parts as follows,
Xy = Xg(®) + jX (/)
find the sequence y(n) that has a DTFT given by
X(e/?) = Xp(e’) + j X (e/*)e /2
2.69 The DTFT of a sequence x(n) is
) 3
XY= ————
€)= T 080y
Evaluate the sum
o0
S = Z x(n)
n=-00
2.70  The DTFT of a sequence x(n) is
X (') = cos’(Bw)
Evaluate the sum
S= Y (=1)x(n)
271 Let) > _x(n)=Aand Y ;2 h(n) = B.If y(n) = h(n) x x(n), is it true that 302 ___ y(n) = A - B?
2,72  Evaluate the following integral:
T ejw
/_n T 03¢ %%
2.73  Using the center of gravity (see problem 2.36), find the time delay of the sequence

x(n) = a"u(n)
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Applications of the DTFT

2.74

2,75

2.76

2.46

2.47

2.48

249

2.50

2.51

2.52

2.53

2.54

2.55

2.56

2.57

A causal linear shift-invariant system is defined by the difference equation
2y(n) —y(n=2)y=x(n~ 1)+ 3x(n —2) + 2x(n — 3)
Find the frequency response, H (¢/?).
The frequency response of a linear shift-invariant system is
H joy . o .
(€)= e gy

Find an LCCDE that relates the input to the output.

Find the inverse of the system that has a unit sample response h(n) = n(— é)"u(n —-3).

Answers to Supplementary Problems

y(n) =2+ 9.88cos[(n — 1)m/10].

1 1
- and y(n) = ——

ym=1-, [ +a

. A’ . N
) N— sSinS-(w — wy N sin>-(w +
H(el®) = %e"jyz—l(w—wn)___z_(_._()) + %e-Jiz—'twwn)M

sind(w — wp) sind(w + wp)

(@ y(n) = Sx(n). (b) y(n) = jm’e".

: 2e7Je(l — Lemiwy
H(el®) = _(—2_)_

(1= lte-io)
) 1+ je~/i0
joy —
H(e’?) - %e\jl(’lw'

1 —2cosw 1 +4cosw
5—4cosw 17 +8cosw’

T(w) =

h(n) = hy(n) + hy(n) where h(n) = sin(nen) is an ideal low-pass filter with a cutoff frequency of w,, and
. wy
ha(n) = 6(n) — sin(na,) is an ideal high-pass filter with a cutoff frequency of w,.
1{10))

A bandpass filter with a lower cutoff frequency of w, = 37 /8, an upper cutoff frequency of w; = 57/8, and a gain
of one half.

A high-pass filter with a cutoff frequency w, = /3.

|H(e/®)| = 1 for |w| > Z and |H (e/*)| = 0 otherwise.

X (e/) sinzﬂ;—”w
ey = —————.

2w
sin 3
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2n T S 2
258 (a) o] < 5 b) 5 < lw| < T () |lw| < 3

2.59  Unique, h(n) = %S(n).

sinZ  sin22%
260 x(n)= -
nm nm
sin¥x  sinfZ
4 4

261 x(n) =28(n)—

nmw

262  x(n)=38(n+2)+ 18(n+1) — $5(n — 1) + 38(n - 2).

s (2
sin =%
263 2cos®dr. 5
ST o
2.64 The DTFT is constant with an amplitude of ; for o] < T and it decreases linearly to zero at w = iT.

265  x(n)=$5(m) + E(1) un —1).

266 (a) X*(e7®). (b) (1 —e )X (/). () %X(e"")+ %X(ef("'*’"’). (d) e “X(el®).

267  y(n) = (%)"/2 n=-4,-2,0,2,...,
0 otherwise
2.68 Beginning with index n = —3, the sequence values are [1, %, % _%, -2, % g, % —1].
269 3-5%
270 -1
2.71  Yes.
272 0.6m.
273 < z —.

) 1437/ 2e7 )%
wy _ 1 ,—jo
274 H(e'*) = ze7/ BTy %e‘f .

275 y(n) = jx(n+1)— 1y(n —2).

(14 ge /@y

276  —T2ed0 6
(1+ Lemiv)



Chapter 3

Sampling

3.1 INTRODUCTION

Most discrete-time signals come from sampling a continuous-time signal, such as speech and audio signals, radar
and sonar data, and seismic and biological signals. The process of converting these signals into digital form
is called analog-to-digital (A/D) conversion. The reverse process of reconstructing an analog signal from its
samples is known as digital-to-analog (D/A) conversion. This chapter examines the issues related to A/D and
D/A conversion. Fundamental to this discussion is the sampling theorem, which gives precise conditions under
which an analog signal may be uniquely represented in terms of its samples.

3.2 ANALOG-TO-DIGITAL CONVERSION

An A/D converter transforms an analog signal into a digital sequence. The input to the A/D converter, x,(7),
is a real-valued function of a continuous variable, t. Thus, for each value of ¢, the function x,(¢) may be any
real number. The output of the A/D is a bit stream that corresponds to a discrete-time sequence, x(»), with an
amplitude that is quantized, for each value of , to one of a finite number of possible values. The components of
an A/D converter are shown in Fig. 3-1. The first is the sampler, which is sometimes referred to as a continuous-
to-discrete (C/D) converter, or ideal A/D converter. The sampler converts the continuous-time signal x,(¢) into
a discrete-time sequence x(n) by extracting the values of x,(¢) at integer multiples of the sampling period, Ty,

x(n) = x4(nTy)

Because the samples .x, (n7T;) have a continuous range of possible amplitudes, the second component of the A/D
converter is the quantizer, which maps the continuous amplitude into a discrete set of amplitudes. For a uniform
quantizer, the quantization process is defined by the number of bits and the quantization interval A. The last
component is the encoder, which takes the digital signal %(n) and produces a sequence of binary codewords.

Ts A

xq(1) x(n) X(n) c(n)

e C/D —— Quantizer - Encoder ——

Fig. 3-1. The components of an analog-to-digital converter.

3.2.1 Periodic Sampling
Typically, discrete-time signals are formed by periodically sampling a continuous-time signal
x(n) = xq(nTy) 3.1

The sample spacing 7 is the sampling period, and f; = 1/T; is the sampling frequency in samples per second.
A convenient way to view this sampling process is illustrated in Fig. 3-2(a). First, the continuous-time signal is
multiplied by a periodic sequence of impulses,

oo

sa(t)= Y 8(t —nTy)

n=-—0c

101
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to form the sampled signal
o0

X(1) = X (D)sa() = Y g (T)8(t — nTy)

n=-0c

Then, the sampled signal is converted into a discrete-time signal by mapping the impulses that are spaced in time
by T into a sequence x(n) where the sample values are indexed by the integer variable n:

x(n) = xq(nTy)

This process is illustrated in Fig. 3-2(b).

x(n) = xq(nTy)

Convert impulses
VU G

Into samples

(a)

P

Y-

2T, —T; 0 T, 2T, 3T, A4T; -2 -1

o 1 2 3 4
(b)

Fig. 3-2, Continuous-to-discrete conversion. (a) A model that consists of multiplying x,(¢) by a sequence
of impulses, followed by a system that converts impulses into samples. (b) An example that illustrates the
conversion process.

The effect of the C/D converter may be analyzed in the frequency domain as follows. Because the Fourier
transform of 8(+ — nT;) is e~ /"**Ts, the Fourier transform of the sampled signal x,(¢) is

X(jQ) =Y xa(nT)e " (3.2)

h=—0C

Another expression for X;(j2) follows by noting that the Fourier transform of s,(¢) is

S.(jQ) = ZT_” > 8@ - k)

S k=00

where Q; = 2/ T; is the sampling frequency in radians per second. Therefore,

. 1 : R
X,(jR) = =Xa(D * SR = = 3 Xa(jR = jkQ)
S k=—00

Finally, the discrete-time Fourier transform of x(#n) is

X = Y xmeT ™ = 3 xu(aT)e " (3.3)

n=—oQ n=—00

Comparing Eq. (3.3) with Eq. (3.2), it follows that
o

. 1 w 2k
X'y = X;(jQ)|o= = — Xl j=——7 .
(el s(UDle=w/T, T. k;m (J T, J T. ) 34
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Thus, X(e’®) is a frequency-scaled version of X(j2), with the scaling defined by
w = QT

This scaling, which makes X (¢/“) periodic with a period of 27, is a consequence of the time-scaling that occurs
when x,(¢) is converted to x(n).

EXAMPLE 3.2.1 Suppose that x,(¢) is strictly bandlimited so that X,(j2) = O for |2} > Qg as shown in the figure below.

Xa(jS0)

-—Qn Q()

If x,(2) is sampled with a sampling frequency @, > 28, the Fourier transform of .x;(¢) is formed by periodically replicating
X,(j2) as illustrated in the figure below.

Xs(Jj)
T,
/\ /\ :
Ll L | T Ll -
—Qs '—Qn QO Qs

However, if 2; < 2€2,, the shifted spectra X,(j2 — jk2;) overlap, and when these spectra are summed to form X, (), the
result is as shown in the figure below.

X:(j)

1
]
J

—S-l.\' "Q.v/z 91/2 Q;

This overlapping of spectral components is called aliasing. When aliasing occurs, the frequency content of x,(t) is corrupted,
and X,(j2) cannot be recovered from X (j$2).

As illustrated in Example 3.2.1, if x,(¢) is strictly bandlimited so that the highest frequency in x,(¢) is Q,
and if the sampling frequency is greater than 22,

Qs > ZQ0

no aliasing occurs, and x,(¢) may be uniquely recovered from its samples x,(nT;) with a low-pass filter. The
following is a statement of the famous Nyquist sampling theorem:

Sampling Theorem: If x,(¢) is strictly bandlimited,
Xa(j2)=0 12| > Qg
then x,(#) may be uniquely recovered from its samples x,(nT;) if
2
Q, = T = 29

s

The frequency Qq is called the Nyquist frequency, and the minimum sampling frequency, ; = 2, is called
the Nyquist rate.
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Because the signals that are found in physical systems will never be strictly bandlimited, an analog anti-
aliasing filter is typically used to filter the signal prior to sampling in order to minimize the amount of energy
above the Nyquist frequency and to reduce the amount of aliasing that occurs in the A/D converter.

3.2.2 Quantization and Encoding

A quantizer is a nonlinear and noninvertible system that transforms an input sequence x(#) that has a continuous
range of amplitudes into a sequence for which each value of x(n) assumes one of a finite number of possible
values. This operation is denoted by

X(n) = Qlx(m)]

The quantizer has L + | decision levels x), xa, .. ., x. 4| that divide the amplitude range for x(r) into L intervals
L= xal k=1,2,....L

For an input x(n) that falls within interval /;, the quantizer assigns a value within this interval, &, to x(n). This
process is illustrated in Fig. 3-3.

decision level
N T2 T3 l T4 Ts T6 z7 z8

T = - T2 3 t T4 s g 7 s g = 00
quantizer output

Fig. 3-3. A quantizer with nine decision levels that divide the input amplitudes into eight
quantization intervals and eight possible quantizer outputs, ;.

amplitude

Quantizers may have quantization levels that are either uniformly or nonuniformly spaced. When the quan-
tization intervals are uniformly spaced,

A = Xppr — X

A is called the quantization step size or the resolution of the quantizer, and the quantizer is said to be a uniform
or linear quantizer.! The number of levels in a quantizer is generally of the form

L =28+

in order to make the most efficient use of a (B + 1)-bit binary code word. A 3-bit uniform quantizer in which the
quantizer output is rounded to the nearest quantization level is illustrated in Fig. 3-4. With L = 28+! quantization
levels and a step size A, the range of the quantizer is

R = 2B+l LA
Therefore, if the quantizer input is bounded,

(M| < Xmax
the range of possible input values may be covered with a step size

Xmax

A= 2B

With rounding, the quantization error

e(n) = Qlx(n)] — x(n)

"In some applications, such as speech coding, the quantizer levels are adaptive (i e., they change with time).
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will be bounded by

5 w2 &
y “¢M =3

However, if |x(n)| exceeds X max, then x(n) will be clipped, and the quantization error could be very large.

§ (n) = Qlz(n)]
3A T
28 T+
A -+~
z(n)
-4a -34 —24 -a A 28 34 -
~-A
T -224
r —3A
I ~44

I"_—_' 2xmnx —’l

Fig. 3-4. A 3-bit uniform quantizer.

A useful model for the quantization process is given in Fig. 3-5. Here, the quantization error is assumed
to be an additive noise source. Because the quantization error is typically not known, the quantization error is
described statistically. It is generally assumed that e(n) is a sequence of random variables where
The statistics of e(n) do not change with time (the quantization noise is a stationary random process).
The quantization noise e(n) is a sequence of uncorrelated random variables.

The quantization noise e(n) is uncorrelated with the quantizer input x(n).

The probability density function of e(n) is uniformly distributed over the range of values of the quan-
tization error.

W -

Although it is easy to find cases in which these assumptions do not hold (e.g., if x(n) is a constant), they are
generally valid for rapidly varying signals with fine quantization (A small).

z(n) z(n) = Q[z(n)]

———— Quantizer [——p—

z(n) Z(n) = z(n) + e(n)

e(n)

Fig. 3-5. A quantization noise model.

With rounding, the quantization noise is uniformly distributed over the interval [—A /2, A /2], and the
quantization noise power (the variance) is
2 A?
of = —

¢ 12
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With a step size
Xmax
7B

and a signal power o2, the signal-to-quantization noise ratio, in decibels (dB), is

A=

2
X
SQNR = 10log 2% = 6.02B + 10.81 — 20log ~" 3.5)
UF

X

Thus, the signal-to-quantization noise ratio increases approximately 6 dB for each bit.

The output of the quantizer is sent to an encoder, which assigns a unique binary number (codeword) to each
quantization level. Any assignment of codewords to levels may be used, and many coding schemes exist. Most
digital signal processing systems use the two’s-complement representation. In this system, with a (B + 1) bit
codeword,

C:[bo,b],....bg]

the leftmost or most significant bit, by, is the sign bit, and the remaining bits are used to represent either binary
integers or fractions. Assuming binary fractions, the codeword byb b, - - - bg has the value

x=(=Dbo+ 527 + 5272+ ... + 278

An example is given below for a 3-bit codeword.

Binary Symbol Numeric Value
011

010

001
000
111

110
101
100

O B— NI— B

— B N -

3.3 DIGITAL-TO-ANALOG CONVERSION

As stated in the sampling theorem, if x,(¢) is strictly bandlimited so that X,(j2) = 0 for |2] > o, and if
T, < /S, then x,(t) may be uniquely reconstructed from its samples x(n) = x,(nT;). The reconstruction pro-
cess involves two steps, as illustrated in Fig. 3-6. First, the samples x(n) are converted into a sequence of impulses,

o0

x(t)y =Y x(ms(t — nTy)

n=—00

and then x,(¢) is filtered with a reconstruction filter, which is an ideal low-pass filter that has a frequency response
given by

T, Q< %

H(j) = ;
0 2] > —

T,

This system is called an ideal discrete-to-continuous (D/C) converter. Because the impulse response of the
reconstruction filter is
sin(rt )/ Ty)

he(t) = TZ'I/TS
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x(n) Convert to xi(t) Ideal low-pass tal0) ._’_r(n) D/C —’—'xa(t)
— Impulses Filter /
(@)
T Hr(jS2)
Tx
Q
/T /T

(b)
Fig. 3-6. (@) A discrete-to-continuous converter with an ideal low-pass reconstruction filter. (b) The
frequency response of the ideal reconstruction filter.

the output of the filter is

= 2 sinm(t —nTy)/ Ty
x,(1) = x(n)h,(t — nTy) = x(n)————— 3.6)
_Zoo ’ Zoo w(t — nTy)/ T,
This interpolation formula shows how x,(¢) is reconstructed from its samples x(n) = x,(n7T). In the frequency
domain, the interpolation formula becomes

o0
Xa(jQ) = Y x(mH,(jQ)e /"
= ) | |
= H,(jQ) Y x(me " = H,(jQ)X (/") (3.7)
n=-—-0o
which is equivalent to
o rxemje< X
X, (j) = T (3.8)
0 otherwise

Thus, X(e/?) is frequency scaled (w = Q75), and then the low-pass filter removes all frequencies in the periodic
spectrum X (e/¥7) above the cutoff frequency Q. = 7/ T;.

Because it is not possible to implement an ideal low-pass filter, many D/A converters use a zero-order hold
for the reconstruction filter. The impulse response of a zero-order hold is

1 0<t <T,

0 otherwise

ho(t) = {

and the frequency response is
— QT2 sin(QTS/Z_)

Q/2
After a sequence of samples x,(nT,) has been converted to impulses, the zero-order hold produces the staircase
approximation to x,(#) shown in Fig. 3-7. With a zero-order hold, it is common to postprocess the output with a
reconstruction compensation filter that approximates the frequency response

QT, /2 LT
sin(Q7;/2)

Ho(j) =e

[ =
Hr(]Q) =
0 2] >

A JA
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e, -

1 4 3 >
u \ =

—27, -T, 0o T, 2T, 3T, 4T, —27T, =T, O T, 2T, 3T, 4T,

Fig. 3-7. The use of a zero-order hold to interpolate between the samples in x(z).

so that the cascade of Hy(e/®) with H.(e/“) approximates a low-pass filter with a gain of T; over the passband.
Figure 3-8 shows the magnitude of the frequency response of the zero-order hold and the magnitude of the
frequency response of the ideal reconstruction compensation filter. Note that the cascade of H.(j<2) with the
zero-order hold is an ideal low-pass filter.

Ts . .
- Ideal interpolating filter

Zero-order hold / \
\ o
« PO

N
-\2:/
.....T_": — o

. 2
T, T, T,

(4)

L [He(GQ)]
1
.0
_2n _n = 2n -
T, T T, T,

()
Fig. 3-8. (a) The magnitude of the frequency response of a zero-order
hold compared to the ideal reconstruction filter. (b) The ideal reconstruc-
tion compensation filter.

3.4 DISCRETE-TIME PROCESSING OF ANALOG SIGNALS

One of the important applications of A/D and D/A converters is the processing of analog signals with a discrete-
time system. In the ideal case, the overall system, shown in Fig. 3-9, consists of the cascade of a C/D converter,
a discrete-time system, and a D/C converter. Thus, we are assuming that the sampled signal is not quantized
and that an ideal low-pass filter is used for the reconstruction filter in the D/C converter. Because the input
Xx4(t) and the output y,(¢) are analog signals, the overall system corresponds to a continuous-time system. To
analyze this system, note that the C/D converter produces the discrete-time signal x(n), which has a DTFT
given by

. 1 & W 2k
X('*) = T Z Xa(jF —J—T—)
S k——00 s 5

If the discrete-time system is linear and shift-invariant with a frequency response H (e/%),

Y(e/) = H(e*)X () = H(ef"")TL > Xa (1% - 12’;—")

S k=—o00
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+ Tx * Ts
Xa(t) x(n) ¥(n) Yall)
— C/D > H(e'®)

D/C —

\

Fig. 3-9. Processing an analog signal using a discrete-time system.

Finally, the D/C converter produces the continuous-time signal y,(¢) from the samples y(n) as follows:

R sinm(t — nTy)/ T,
Ya) =Y YO~ T

n=-—0oo

Either using Eq. (3.7 ) or by taking the DTFT directly, in the frequency domain this relationship becomes

Ya(jR) = H (Y (%) = H(jH (%)X (/")

- 1 & 2wk
. _ . QTN L . .
or Ya(j) = H (GOH@) kZ X4 (JQ I )
=—00
If x,(¢) is bandlimited with X ,(jQ) = 0 for || > 7/ T, the low-pass filter H,(j2) eliminates all terms in the
sum except the first one, and

H(E®)X,(jQ) 19 < %

Ya(jS) = ,;
0 Q —

Q1>

Therefore, the overall system behaves as a linear time-invariant continuous-time system with an effective fre-
quency response

. H(e®Ty Q| < =
H,(jR) = T, 3.9)
0 otherwise

Just as a continuous-time system may be implemented in terms of a discrete-time system, it is also possible
to implement a discrete-time system in terms of a continuous-time system as illustrated Fig. 3-10. The signal
x4(¢) is related to the sequence values x(n) as follows:

ST,
Xq(t) = Z x(n) w(t —nTy)/ T,

n=-—00
b |-
x(n) Xa(t) Ya(l) ] y(n)
—_— D/C - H,(jQ) —p— C/D —_——

Fig. 3-10. Processing a discrete-time signal using a continuous-time system.

Because x,(¢) is bandlimited, y,(¢) is also bandlimited and may be represented in terms of its samples as follows:

_ ad sinm(t — nTy)/ Ty
Yalt) = Z y(n)———ﬂ(t_nTs)/T:

n=—00
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The relationship between the Fourier transform of x,(¢) and the DTFT of x(n) is

| T.X(e/%T) Q] < =
X.(jR) = T;
0 otherwise

and the relationship between the Fourier transforms of x,(t) and y,(¢) is

T
. H,(j)Xa(j2) 12 < —
v, = 0 T,
0 otherwise
Therefore Y(e/®) = iY j—w lw] < 7
’ T, ‘\ T,
and the frequency response of the equivalent discrete-time system is
H(el®y = Ha(le) lo| <7 (3.10)
5

3.5 SAMPLE RATE CONVERSION

In many practical applications of digital signal processing, one is faced with the problem of changing the sampling
rate of a signal. The process of converting a signal from one rate to another is called sample rate conversion.
There are two ways that sample rate conversion may be done. First, the sampled signal may be converted back
into an analog signal and then resampled. Alternatively, the signal may be resampled in the digital domain. This
approach has the advantage of not introducing additional distortion in passing the signal through an additional
D/A and A/D converter. In this section, we describe how sample rate conversion may be performed digitally.

3.5.1 Sample Rate Reduction by an Integer Factor

Suppose that we would like to reduce the sampling rate by an integer factor, M. With a new sampling period
T, = MTs, the resampled signal is

xa(n) = x4(nT)) = x,(nMT,) = x(nM)
Therefore, reducing the sampling rate by an integer factor M may be accomplished by taking every M th sample of

x(n). The system for performing this operation, called a down-sampler, is shown in Fig. 3-11(a). Down-sampling
generally results in aliasing. Specifically, recall that the DTFT of x(n) = x,(nTy) is

. 1 & o) 2wk
X(e/?) = — X = - =
(e’®) TSk;w (st jTJ)
Similarly, the DTFT of x4(n) = x(nM) = x,(nMT,) is

- | R 1) 2rr
Xq () = Xalj— —J
@)= 3 D (jMTS jMTS)

S r=—o00

Note that the summation index r in the expression for X ;(e/“) may be expressed as

r=i+kM
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x(n) xa(n)
— v
(a)
x(n) Low-pass filter Xa(n) xq(n)
N — Gain = | > 1 M )
Cutoff = m/M

(b)
Fig. 3-11. (a) Down-sampling by an integer factor M. (b) Decimation by
a factor of M, where H (¢/*) is a low-pass filter with a cutoff frequency
w. =1n/M.

where —00 < k < 0oand 0 < i < M — 1. Therefore, X4(¢/) may be expressed as

X (ef‘”)—LMZAl 1 ix . w  2nk 27
€)=y T, &~ " \Umr, "1, "M,

=0

The term inside the square brackets is

0
w2 Aw — 2m) 2k
X (e/w-2miv/i) Z ( -z )

Thus, the relationship between X (e/“) and X4 (¢/) is

M-I
X4(e) = % Y X (/o) 3.11)
k=0

Therefore, in order to prevent aliasing, x(n) should be filtered prior to down-sampling with a low-pass filter
that has a cutoff frequency w. = m/M. The cascade of a low-pass filter with a down-sampler illustrated in
Fig. 3-11(b) is called a decimator.

3.5.2 Sample Rate Increase by an Integer Factor

Suppose that we would like to increase the sampling rate by an integer factor L. If x,(t) is sampled with a
sampling frequency f; = 1/T;, then
x(n) = xq(nTy)

To increase the sampling rate by an integer factor L, it is necessary to extract the samples

xi(n) = x4 (%)

from x(n). The samples of x;(n) for values of n that are integer multiples of L are easily extracted from x(n) as
follows:

xi(nL) = x(n)
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Shown in Fig. 3-12(a) is an up-sampler that produces the sequence

x(n/L) n=0,xL,+2L, ...

Xi(n) = .
' otherwise

In other words, the up-sampler expands the time scale by a factor of L by inserting L — 1 zeros between each
sample of x(n). In the frequency domain, the up-sampler is described by

X'y = Z Fi(n)e I = Z x(n)einte
or Xi(e’®) = X (/1) 3.12)

Therefore, X (e/®) is simply scaled in frequency. After up-sampling, it is necessary to remove the frequency
scaled images of X ,(jS2), except those that are at integer multiples of 27. This is accomplished by filtering %;(n)

x(n) Xi(n)
—— t PR S—
(a)
x(n) Xi(n) Low-pass filter xi(m)
—_— T L > Gain= L ——>»————
Cutoff = /L

(b)
Fig. 3-12. (a) Up-sampling by an integer factor L. (b) Interpolation by
a factor of L.

with a low-pass filter that has a cutoff frequency of 7 /L and a gain of L. In the time domain, the low-pass filter
interpolates between the samples at integer multiples of L as shown in Fig. 3-13. The cascade of an up-sampler
with a low-pass filter shown in Fig. 3-12(b) is called an interpolator. The interpolation process in the frequency
domain is illustrated in Fig. 3-14.

RSN A

{b)
Fig. 3-13. (a) The output of the up-sampler. (b) The interpolation
between the samples X;(n) that is performed by the low-pass filter.
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Xa(j$2)

X(el®)
/T,

-2 -

_
[
Bl

Y

4 HE™)

L

2r

o~
N

)

Xi(e/?)

Y

=2n

-
N
~IN
Sl
e

s 4
~E

(e)

Fig. 3-14. Frequency domain illustration of the process of interpolation. (a) The
continuous-time signal. (b) The DTFT of the sampled signal x(n) = x,(nT)).
(¢) The DTFT of the up-sampler output. (d) The ideal fow-pass filter to perform the
interpolation. (¢) The DTFT of the interpolated signal.

3.5.3 Sample Rate Conversion by a Rational Factor

113

The cascade of a decimator that reduces the sampling rate by a factor of M with an interpolator that increases
the sampling rate by vital factor of L results in a system that changes the sampling rate by a rational factor
of L/M. This cascade is illustrated in Fig. 3-15(a). Because the cascade of two low-pass filters with cutoff

frequencies /M and /L is equivalent to a single low-pass filter with a cutoff frequency

m, T
= my—, —
we ML

the sample rate converter may be simplified as illustrated in Fig. 3-15(b).



114 SAMPLING [CHAP. 3

xafn)

> Gain=1L > Gain =1 >

x(n) T Xi(n) Low-pass Filter xi(m) Low-pass Filter Za(m)
L l M

Cutoff = /L Cutoff = n/M

(a)

Low-pass Filter Ti(n) xg(n)

x{n) Xi(m)
T L Gain = L l
—_—— »>- > M l—————

Cutoff =
min{r/L, /M)
(h)

Fig. 3-15. (a) Cascade of an interpolator and a decimator for changing the sampling rate by a rational factor L/M.

(b) A simplified structure that results when the two low-pass filters are combined.

EXAMPLE 3.5.1 Suppose that a signal x,(r) has been sampled with a sampling frequency of 8 kHz and that we would
like to derive the discrete-time signal that would have been obtained if x,(r) had been sampled with a sampling frequency of

10 kHz. Thus, we would like to change the sampling rate by a factor of

This may be accomplished by up-sampling x(n) by a factor of 5, filtering the up-sampled signal with a low-pass filter that
has a cutoff frequency w. = 7 /5 and a gain of 5, and then down-sampling the filtered signal by a factor of 4.

Solved Problems

A/D and D/A Conversion

3.1 Consider the discrete-time sequence

(n) = )S(E)
x(n) = cc 3

Find two different continuous-time signals that would produce this sequence when sampled at a frequency
of f, = 10 Hz.

A continuous-time sinusoid
Xq(t) = cos(2t) = cos(2x fot)

that is sampled with a sampling frequency of f; results in the discrete-time sequence

x(n) = x,(nTy) = cos(27r %n)

k)

However, note that for any integer &,

cos(Zn%n) = CoS (27r %n)

¥

Therefore, any sinusoid with a frequency
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3.2

will produce the same sequence when sampled with a sampling frequency f;. With x(n) = cos(nm/8), we want

Jo_ 7
2n— ==
”f; 3
or fo= 15 fc =625 Hz

Therefore, two signals that produce the given sequence are

x1(t) = cos(1250m¢)

and xa(t) = cos(21250mt)

If the Nyquist rate for x,(t) is 2, what is the Nyquist rate for each of the following signals that are
derived from x,(¢)?

dx,(1)
@ "4

(b) xa(2t)
(©) xX0)
(d) xa(t) cos(S2t)

(@) The Nyquist rate is equal to twice the highest frequency in x,(t). If

_dx(1)
Ya(t) = &
then Y.(jQ) = jQX.(jQ)

Thus, if X,(jR2) = 0 for |2|] > Qq, the same will be true for ¥,(j2). Therefore, the Nyquist frequency is not
changed by differentiation.

(b) The signal y,(t) = x,(2t) is formed from x,(t) by compressing the time axis by a factor of 2. This results in an
expansion of the frequency axis by a factor of 2. Specifically, note that

o0 , . .
Ya(jQ) :f ya(’)e‘lﬂl dt ___[ xa(21)e‘m’ dt

00 fe o]

= / %xa(l’)e—jm/z dr = %X‘,<j~2—-)

00

Consequently, if the Nyquist frequency for x,(¢) is €2,, the Nyquist frequency for y, () will be 2€2;.

(¢) When two signals are multiplied, their Fourier transforms are convolved. Therefore, if

ya(t) = x2(1)

1
then Ya(JQ)= E;Xa(jg)*xa(jg)

Thus, the highest frequency in y,(r) will be twice that of x,(¢), and the Nyquist frequency will be 2€2;.

(d) Modulating a signal by cos(R2¢) shifts the spectrum of x,(¢) up and down by €2,. Therefore, the Nyquist
frequency for y,(t) = cos(S2ot)x,(t) will be §2; + 2.
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Let #,(¢) be the impulse response of a causal continuous-time filter with a system function

s+a
Hy(s)= ———
© (s +ay+b
Thus, H,(s) has a zero at s = —a and a pair of poles at s = —a £ jb. By sampling 4,(t) we form a

discrete-time filter with a unit sample response
h(n) = h,(nT)

Find the frequency response H (e/“) of the discrete-time filter.

To find the frequency response H (e/®), it is necessary to find the impulse response of the analog filter, A,(z), sample
the impulse response,
h(l’l) = ha(nTj)

and then find the discrete-time Fourier transform,
. 0 .
H) = Y h(me ™
n=—00

To find the impulse response, we first perform a partial fraction expansion of H,(s) as follows:

A B

Hy(s) = — + . 3.13
) s+(a+jb) s+ (a—jb) ( )
The constant A is
s+a
= +a+ jb)H, sm—aq—jp = —————————— =1
(6 a4 H O = oms| =4
Similarly, for B we have
s+a
B = + —.bH,, s=—atjh = =l
s +a = JOHa(hi—marjp = | +@+jb) gy
1 1
Therefore, H,(s) = 2

— + -
s+(a+jb) s+(a~— jb)
Another way to find the constants A and B would be to write Eq. (3./3) over a common denominator,

s+a _A(s+a—jb)+B(s+a+ jb)
(s +aP+b> (s +a)* + b?

H,(s) =

and equate the polynomial coefficients in the numerators of H,(s):

A+B =1
Ala— jb)+ B(a+ jb)y=a

Solving these two equations for A and B gives the same result as before. From the partial fraction expansion of
H,(s), the impulse response may be found using the Laplace transform pair

e u(t) &

s+a

Specifically, we have
Ra(t) = 37Pu(e) + 3P u(t) = e cos(bt)ult)
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Sampling £,(t), we have
h(n) = hy(nT,) = e~ cos(bnT,)u(n)

Finally, for the frequency response we have

o

o0
Hel*y = Y h(me /™ =" e cos(bnT,)e "
n=0

n=-00

00
e(fufjh)n'[} ()—jnw + § %e‘l—tHfh)nT\ e“/"“’

n=0

I
2

L
2

1
>

o0
Vo ,—ali\n - +bT¢) § 1, ,—aT. - —bT,
E(e )E n(w ¢ + 5(9 a‘)ne Jnlw—bTys)
n=0)

I
gk

(

n

Note that in order for these sums to converge, and for the frequency response to exist, it is necessary that

7(IT‘-| <1

le
or, because 7, > 0, we must have ¢ > 0. In other words, the poles of H,(s) must lie in the left-half s-plane or,
equivalently, 4,(f) must be a stable filter. With a > 0 we have

|

H(gj"))z l 2

—— + ——
_ e(*(l—]b]l}e—jw 1 — e(—u+jh)7;€—jw

STE

which, after combining over a common denominator and simplifying, gives

| —e T cos(hT,)e™/®

H(e') = -
@) 1 —2¢~4Ts cos(bT,)e 1@ + e~2aTs o= j20

3.4 A continuous-time filter has a system function

H,(s) = T

If h,(t) is sampled to form a discrete-time system with a unit sample response
h(n) = ha(nTv)

find the value for T so that H (¢/%) at = /2 is down 6 dB from its maximum value at w = 0, that is,

|H(em )
10log -t =
Olog T = °

The impulse response of the continuous-time system is
ha(t) = e~"u(t)
When sampled with a sampling period 75, the resulting unit sample response is
h(n) = h,(nT,) = ¢ " u(n)
and the frequency response is

o 20
H(ejw) — § e—nT_Ye-—jnw — § e—(TS+1w)n —

— e Te—Jjw
n=() n=0 1 e e
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With [H(e/")? = _
1 (4 = (] — g*Tx)z
H(e/™/?y2 =
and IHE™ D" = =5 p=r
it follows that we want
|H(e/"?)? (I —eT)?
0log ———— = 10log ———— = —6
8 TH e B
1 — -T2
or A=Y _ g0 = 02512
l + e=2T

Thus, we have
1—2e7" e =0.2512[1 + 7]
or 0.7488¢7 25 —2¢7 T+ +0.7488 = 0

which is a quadratic equation in e~ Solving for the roots of this quadratic equation, we find

1 1
= |2+ /4 4(0.7488) | = 1 +0.6628] = 2.2206, 0.4503
¢ T 20.7488) [ ( ) } 07488 ]

Taking the natural logarithm, and selecting the positive value for T, we have

T, =0.7978

A continuous-time signal x,(¢) is bandlimited with X,(jQ) = O for || > . If x,(¢) is sampled with
a sampling frequency $2; > 229, how is the energy in x(n),

Eq= )Y |x(n)

n=—0C

related to the energy in x,(),

E, = / 'Xa(r)lz dt

[o.¢]
and the sampling period T;?
Using Parseval’s theorem, the energy in the analog signal x,(r) may be expressed in the frequency domain as follows:

[o 0] ] o0
&=/lmwM=—/|mmwm
_ 27 J oo

o

Because x,(¢) is bandlimited with X () = O for |2] > Q,

1 [
&=—f 1X.(jQ)IdQ
27'[ -Q

Sampling x,(¢) at or above the Nyquist rate results in a sequence x(n) with a discrete-time Fourier transform

1 jow
, — X, | = < .
X(e/®) = l T, ( T, ) ot < 2T,

0 QT < o] <7
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Therefore, the energy in x(n), using Parseval’s theorem, is

o 1 m .

ZﬂmW=—fmem
27 J_,

, 2
Xa(J—w>1 dw
T,

1 Q s ]
X, GuwlPdu = —E,
hn[%'””'” T,

Eq

il

1 Ty

27 T2
21 Jogor, T

and we have
|

E,= —E,
T

As a check on this result, suppose that x,(¢) is a bandlimited signal with a spectrum shown in the figure below.

} Xa(jS2)
A
Q
—Qo Qo
The energy in x,(¢) is
1 2Q
Ey=—A? 2Qy=—2
2n b4
When sampled with a sampling frequency Q; > 2€2,, the DTFT of the sampled signal is as shown in the following
figure:
L X(e/)
A
T
w
-2 —Q0Ts QT 2
Therefore, the energy in x(n) is
1A\ A2Q, 1
Ei=—\=) 2T = = —E,
d 27T (Tr ) 0 ”TJ Tx

3.6 A complex bandpass analog signal x,(r) has a Fourier transform that is nonzero over the frequency range
[, ©22] as shown in the figure below.

+ Xa(GQ)

Q) Q)

The signal is sampled to produce the sequence x(n) = x,(nT,).

(a) What is the smallest sampling frequency that can be used so that x,(¢) may be recovered from its
samples x(n)?
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(b)
(a)
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For this minimum sampling frequency, find the interpolation formula for x,(t) in terms of x(n).

Because the highest frequency in x,(¢) is 5, the Nyquist rate is 2€2,. However, note that if x,(t) is modulated
with a complex exponential of frequency (2, + €2/)/2,

yalt) = xa([)e—j(ﬂz-*-ﬂnfﬂ

then y,(¢) is a (complex) low-pass signal with a spectrum shown in the following figure:
4 Yu(jS2)

/ ¢

—Q Q

where Q¢ = (22, — ©)/2. Thus, the Nyquist rate for y,(t) is 229 = 2, — Q;, which suggests that x,(¢) may
be uniquely reconstructed from its samples x,(nT) provided that

4

Iy c——
Q; —

If x,(¢) is sampled with a sampling frequency €2;, the spectrum of the sampled signal is

. R R
X(j =7 ) Xa(jQ = jkQ)

¥ k=-oc

as illustrated below.
R

/1 /]

Q
Q-9 -9 Q) Q0

In order for there to be no interference between the shifted spectra, it is necessary that

Q- Q, <

or Q> Q; — Q)

If this condition is satisfied, x,(t) may be uniquely reconstructed from x,(¢) using a bandpass filter with a
frequency response as shown below.
Y HG

+ T,

Q) Q)

(b) With asampling frequency 2, = 2, — 2, the reconstruction filter is a complex bandpass filter with an impulse

response

ha(t) = T:we—j(ﬂﬁﬂm/z
e
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Therefore, the output of the reconstruction filter, which produces the complex bandpass signal x,(t), is

o0 .
sin$&(t = nT5)/2 _j@yeanc-ntyn

xal0)= ) Xkt —nT) =T 3 x(m——r—"

n=-00 n=-—o00

Given a real-valued bandpass signal x,(¢) with X,(f) = O for |f| < f; and |f| > f>, the Nyquist
sampling theorem says that the minimum sampling frequency is f; = 2 f,. However, in some cases, the
signal may be sampled at a lower rate.

(a)

(b)

(©)
(@)

Suppose that f; = 8 kHz and f, = 10 kHz. Make a sketch of the discrete-time Fourier transform
of x(n) = x,(nTy) if fy = 1/T;, = 4 kHz.
Define the bandwidth of the bandpass signal to be
B=f,-fi
and the center frequency to be
2+ /i
fo= T

Show that if f. > B/2 and f; is an integer multiple of the bandwidth B, no aliasing will occur if
x,(t) is sampled at a sampling frequency f; = 2B.

Repeat part (b) for the case in which f, is not an integer multiple of the bandwidth B.
Let x,(¢) have a spectrum as shown in the figure below.

Xal(f)

&‘ /] f e

-12 -10 -8 -6 -4 =2 I 2 4 6 8 10 12

The spectrum of the sampled signal

o0

X0 =Y x(nT)8(t — nTy)
] o0
is X(f) = > Xa(f —kfo)
S k=—00

which is formed by shifting X,(f) by integer multiples of the sampling frequency and summing. With f; =
4 kHz, we have the spectrum sketched below.

Note that X,(f) is not aliased. Therefore, with the appropriate processing of x,(¢), the signal x,(¢) may be
recovered from its samples. Finally, the DTFT of the discrete-time sequence x(n) = x,(nT;) is
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which is sketched below.

X ()

-2n - " 2n
(b) If f; is an integer multiple of B, we may express f, and f, as follows:
fi=(-1B  f=IB
With a sampling frequency of f, = 2B, the sampled signal has a spectrum

l o0
Xdf) = Y Xolf —2kB)

5 k=-0c

Because X,(f) is nonzero only for (! — 1)B < |f| < /B, there is only one term in the sum that contributes to
X;(f) in the frequency range O< f <B and only one term that contributes to the frequency range —B < f < 0
(draw a picture as in part (@) to see this clearly). Therefore, there is no aliasing, and .x,(¢) may be sampled
without aliasing if a sampling frequency f, = 2B.

(¢) If £, is not an integer multiple of B, we may always increase B until this is the case. Specifically, let

-4

where {-]| is defined to be the “integer part.” Now, if we simply increase B to B’ where

k=L

B/
we have the case described in part (b) where f; is an integer multiple of the bandwidth. Thus, x,(#) may be
sampled without aliasing a sampling frequency of

261
, =28 =
it L2/B]

3.8  Determine the minimum sampling frequency for each of the following bandpass signals:
(a) x,(t) is real with X,(f) nonzero only for 9 kHz < | f| < 12 kHz.
(b) x,4(t) is real with X,(f) nonzero only for 18 kHz < | f| < 22 kHz.
(¢) x4(t) is complex with X,(f) nonzero only for 30 kHz < f < 35 kHz.

(a) For this signal, the bandwidth is B = f, — f| = 3 kHz, and f, = 12 = 4B is an integer multiple of B.
Therefore, the minimum sampling frequency is f; = 2B = 6 kHz.

(b) For this signal, B = 4 kHz and f, = 22, which is not an integer multiple of B. With | f,/B] = 5, if we let
B" = f,/5 = 4.4, f, is an integer multiple of B’, and x,(¢) may be sampled with a sampling frequency of
fs =2B" = 8.8 kHz.

(c) For a complex bandpass signal with a spectrum that is nonzero for fi < f < f,, the minimum sampling
frequency is f; = f>» — fi1. Thus, for this signal, f; = 5 kHz.

39 How many bits are needed in an A/D converter if we want a signal-to-quantization noise ratio of at least
90 dB? Assume that x,(¢) is gaussian with a variance o2, and that the range of the quantizer extends from
—30, to 30y; that is, Xnax = 30, (with this value for X ., only about one out of every 1000 samples
will exceed the quantizer range).
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3.10

3.11

For a (B + 1)-bit quantizer, the signal-to-quantization noise ratio is

X max

SQNR = 6.02B + 10.81 — 20 log

U.Y
With X ..« = 30, this becomes

SQNR = 6.02B + 10.81 — 20log3 = 6.02B + 10.81 — 9.54 = 6.02B + 1.27

If we want a signal-to-quantization noise ratio of 90 dB, we require

90 —1.27
B=—o— = .
) 14.74

or B + 1 = 16 bits.

An image is to be sampled with a signal-to-quantization noise ratio of at least 80 dB. Unlike many other
signals, the image samples are nonnegative. Assume that the sampling device is calibrated so that the
sampled image intensities fall within the range from 0 to 1. How many bits are needed to achieve the
desired signal-to-quantization noise ratio?

For a bipolar signal with amplitudes that fall within the range [~ X n.x, Xmax |, the signal-to-quantization noise ratio
is

X
SQNR = 6.02B + 10.81 ~20log —***

x

For a nonnegative signal that is confined to the interval [0, 1], the signal-to-quantization noise ratio is equivalent to
the bipolar case if we set X« = 0.5. If we assume that the intensities of the image are uniformly distributed over
the interval [0, 1],

2 L
o =1

12
Therefore, SQNR = 6.02B + 10.81 — 201log g = 6.02B + 6.03

and for a signal-to-quantization noise ratio of 80 dB, we require

80— 6.03

B
6.02

=12.29

or B + 1 = 14 bits.

Suppose that we have a set of unquantized samples, x(n), that are nonnegative for all n. A method for
quantizing x(n) that is often used in speech processing is as follows. First, we form the sequence

y(n) = log[x(n)]
Then y(n) is quantized with a (B + 1)-bit uniform quantizer,
Y(n) = Qly(m)} = y(n) + e(n)
The quantized signal samples are then obtained by exponentiating $(n),
£(n) = exp{J(n)}

Show that if e(r) is small, the signal-to-quantization noise ratio is independent of the signal power.

With $n) = Oly(m] = y(n) + e(n) = loglx(m)] + e(n)
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we have, for £(n),
%(n) = exp{log[x(n)] + e(n)} = x(n) - exp{e(n)}
If e(n) <« 1, we may use the expansion
expfe(n)} = 1 + e(n)
to write

X(n) = x(m)| L + e(n)] = x(n) + f(n)

where f(n) = x(n)e(n) is a (signal-dependent) quantization noise. If we assume that the quantization noise e(n) is
statistically independent of x(n),
E(fA(m) = E{x*(n)} - E{e*(n))

and the signal-to-quantization noise ratio is

2
SQNR = 10log 5—54—2?} = —10log E{e2(n))

which is independent of the signal power.

Discrete-Time Processing of Analog Signals

3.12

3.13

A continuous-time signal x,(¢) is to be filtered to remove frequency components in the range SkHz < f <
10 kHz. The maximum frequency present in x,(¢) is 20 kHz. The filtering is to be done by sampling
x4(1), filtering the sampled signal, and reconstructing an analog signal using an ideal D/C converter. Find
the minimum sampling frequency that may be used to avoid aliasing, and for this minimum sampling
rate, find the frequency response of the ideal digital filter H (¢/*) that will remove the desired frequencies
from x,(¢).

Because the highest frequency in x,(t) is 20 kHz, the minimum sampling frequency to avoid aliasing is f; = 40 kHz.
The relationship between the continuous frequency variable €2 and the discrete frequency variable w is given by

w = QT

or w=2n£

Therefore, the frequency range 5 kHz < f < 10 kHz corresponds to a digital frequency range

Sw=

PN
NS

and the desired digital filter is a bandstop filter that has a frequency response as illustrated in the figure below.

) |H(e/2)]
-1
w
L L -
T T Lagl
T s b4 T
- -7 71 q 2 T

A major problem in the recording of electrocardiograms (ECGs) is the appearance of unwanted
60-Hz interference in the output. The causes of this power line interference include magnetic induc-
tion, displacement currents in the leads on the body of the patient, and equipment interconnections.
Assume that the bandwidth of the signal of interest is 1 kHz, that is,

X.(f)=0  |f] > 1000 Hz
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3.14

The analog signal is converted into a discrete-time signal with an ideal A/D converter operating using
a sampling frequency f;. The resulting signal x(n) = x,(nTs) is then processed with a discrete-time
system that is described by the difference equation

y(n) = x(n) +ax(n — 1)+ bx(n — 2)

The filtered signal, y(n), is then converted back into an analog signal using an ideal D/A converter. Design
a system for removing the 60-Hz interference by specifying values for f;, a, and b so that a 60-Hz signal
of the form

w,(t) = Asin(120mt)

will not appear in the output of the D/A converter.

The signal that is to have the 60-Hz noise removed is bandlimited to 1000 Hz. Therefore, in order to avoid aliasing
when the signal is sampled, we require a sampling frequency

fs = 2000
Using the minimum rate of 2000 Hz, note that a 60-Hz signal w,(¢) = sin(1207¢) becomes

1207t n
2000

w(n) = wy(nTs) = Sin( ) = sin(nwy)

where wy = (.06, Recall that complex exponentials are eigenfunctions of linear shift-invariant systems. Therefore,
if the input to an LSI system is x(n) = e/"m the output is

y(n) = H(e/*0)elm0

e/nwo _ g—nwp
Because wn) = ————-
2j

w(n) will be removed from x(n) if we design a filter so that H (e/“) is equal to zero at w = +wj,. Because H (e/*) is
a second-order filter with a frequency response

H@e'®) =1 + ae™ @ + be™ /%

it may be factored as follows:
H(e/*)= (1 —ae™ /)1 — Be™*)

Therefore, H (/) will be zero for w = +wy if @ = e/ and B = e /0. In this case, we have
H(e/®)y = 1 — 2(cos wp)e /® + e~/
Thus, our requirements are that
a = —2coswy = —2c0s(0.06rr) b=1

and f; = 2000.

The following system is used to process an analog signal with a discrete-time system.

+T. + T,

%alt) x(m) Discrete-time yim) Ya(0)

—— CD = Systom > DC t———ou
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Suppose that x,(¢) is bandlimited with X,(f) = O for | f| > 5 kHz as shown in the figure below,

Xalf)
1

f kHz

-5 5
and that the discrete-time system is an ideal low-pass filter with a cutoff frequency of /2.
(a) Find the Fourier transform of y,(¢) if the sampling frequencies are f; = f, = 10 kHz.
(b) Repeat for f; =20 kHz and f, = 10 kHz.
(¢) Repeat for fi = 10 kHz and f> = 20 kHz.

(a) When the sampling frequencies of the C/D and D/C converters are the same, and x,(t) is bandlimited with
X,(j2) = 0 for || > =/ T\, this system is equivalent to an analog filter with a frequency response

) n

H (/9N Q| < —

e < [HET iel< g
0 else

Therefore, if H(e/*) is a low-pass filter with a cutoff frequency 7 /2, the cutoff frequency of H,(j2), denoted
by o, is given by

4
Q()T| = 5
or 2rnfy - T\ = T
2
Thus, fo= 1 fi =2500 Hz

(b) When the sampling frequencies of the C/D and D/C are different, it is best to plot the spectrum of the signals as
they progress through the system. With X,(f) as shown above, the discrete-time Fourier transform of x(n) is

X (e/¥)
/T

w

+ >

t i 4
- —-/2 /2 b4
Because the cutoff frequency of the discrete-time low-pass filter is /2, y(n) = x(n), and the output of the D/C
converter is as plotted below.

Yo )
/Ty =2

f kHz
s 2
(c) With f; = 10 kHz, we are sampling x,(¢) at the Nyquist rate, and the spectrum of x(n) is
X(el®)
1/T)

- —rn/2 /2 n



CHAP. 3] SAMPLING 127

and the output of the low-pass filter is as shown below.

Y(e/®)
1T,
w
} ! { ] } -
- —m/2 /2 b4
Therefore, the spectrum of y,(t) is as follows:
Yao(f)
/T
f kHz
5 ' s

3.15 Consider the system in Fig. 3-9 for implementing a continuous-time system in terms of a discrete-time
system. Assume that the input to the C/D converter is bandlimited to £2¢p = €2;/2 and that the unit sample
response of the discrete-time system is

h(n) = 8(n) —0.96(n - 1)

Find the overall frequency response of this system.

Assuming bandlimited inputs with X,(jQ) = 0 for (2| > Q,/2, the output ¥,(/<) is related to the input X,(j2)
as follows:
Y,(jQ) = H,(jQX(jQ)

HE) 19 < =
where H,(jQ) = T;
0 otherwise

Because the frequency response of the discrete-time system is

H?) =1 —=0.9e7

1-0972% || < Z
then H,(jQ) = T;
0 otherwise

3.16 Consider the system shown in Fig. 3-9 for implementing a continuous-time system in terms of a discrete-
time system. Assuming that the input signals x,(¢) are bandlimited so that X,(f) = O for [ f| > 10 kHz,
find the discrete-time system that produces the output

| f1Xa(f) 2000 < | f| < 8000
Ya(f) = .
0 otherwise
For bandlimited inputs, the system in Fig. 3-9 is a linear shift-invariant system with an effective frequency response
equal to
. 4
H (e/9T5) 2] < —
H.(jQ) = T
0 otherwise

The system that we would like to realize has a frequency response

|12 4000 < 2| < 16000~

H,(jQ) =
() 0 otherwise
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If we assume a sampling frequency f; = 20 kHz, the frequency response of the discrete-time system should be

w
) — . < < 0.
H(e) = ITXI 0.27 < |w| < 0.87

0 otherwise

where T, = 1/20000.

3.17 Diagrammed in the figure below is a hybrid digital-analog network.

x(n) y(n) Ya(t)
- C/D b~ H(el®) o D/C
Xq(1) Xa(t)
—_— an
va(t) i
> Hypt(f) >

The discrete-time system H (e/®) is a low-pass filter

- A w| < wy
Hem={g
and the analog system Hyy( f) is a high-pass filter with a frequency response as shown below.
Hype(f)
1 -
_f (kHz)
-2 ' 2 ]

The input x,(¢) is bandlimited to 4 kHz, and the sampling frequencies of the ideal C/D and D/C converters
are 10 kHz. Find the value for A and wq that will result in perfect reconstruction of x,(¢),

Xa(t) = x4()

Because x,(t) is bandlimited to 4 kHz, the upper branch of this hybrid system acts as an ideal analog low-pass filter
with a frequency response

wo
A Ifl =
2Ty
Hip(f) = wo
0
[fl> 2T,

Because the analog network is a high-pass filter with a cutoff frequency of 4 kHz, and
Ra(f) = Yal) + Va(f)
X4(t) will be equal to x,(¢) provided that A = 1 and

wy
ﬁ = 2000

or wy = 0.4,

3.18 Adigital sequence x(n) is to be transmitted across a linear time-invariant bandlimited channel as illustrated
in the figure below.
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+ TS + Ts
x(n) Xq() Yalt) y(n)
_ D/C - Channel > C/D —

Transmitter Receiver

The transmitter is a D/C converter, and the receiver simply samples the received waveform y,(¢):

y(n) = ya(”T:)

Assume that the channel may be modeled as an ideal low-pass filter with a cutoff frequency of 4 kHz:

(a)

(b)

(@)

)

1 |2] < 27(4000)

G.(jS) =
UD=10 1l > 27(4000)

Assuming an ideal C/D and D/C, and perfect synchronization between the transmitter and receiver,
what values of T (if any) will guarantee that y(n) = x(n)?

Suppose that the D/C is nonideal. Specifically, suppose that x(n) is first converted to an impulse
train and then a zero-order hold is used to perform the “interpolation” between the sample values.
In other words, the impulse response of the interpolating filter is a pulse of duration T

1 0<t=<T;
ha() = 0 otherwise

Because the received sequence y(n) will no longer be equal to x(n), in order to improve the perfor-
mance of the receiver, the received samples are processed with a digital filter as shown below.

y(n) x(n)
—_— H(e“) ————

Find the frequency response of the filter that should be used to filter y(n).

The output of the D/C converter is a bandlimited signal x,(r) with a Fourier transform that is equal to zero for
| f1 > fs/2. Because x,(¢) is passed through a bandlimited channel that rejects all frequencies greater than
4 kHz, in order for there to be no distortion at the receiver, it is necessary that

—]f— < 4000

2
or fs < 8000

Thus, the C/D and D/C converters must operate at a rate less than 8 kHz.

In order to get the maximum amount of data through the channel per unit of time, we will let 7, be the minimum
sampling period,
= L
T = oo
When the reconstruction filter in the D/C converter is a zero-order hold, the frequency response of the discrete-
time system that relates the input sequence x(n) to the reconstructed sequence y(n) is
. )
H(e) = Ha(j——) o <
T;
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o-iOT 2 sin(27T;/2) Q| < s
where H,(jQ) = Q/2 T,
0 otherwise

) i 2
Therefore, H(e/?) = T,e /%% M

’ w/2

o] <7

and the discrete-time filter for processing y(n) to remove the distortion introduced by the zero-order hold should
approximate the response

_@2 ep

Joy —
R )

lw| <

3.19 Consider the following system for processing a continuous-time signal with a discrete-time system:

I I

Xa(1) x(n) y(n) Ya(t)
—_— C/D > H(e/?)

D/C  f——

v

The frequency response of the discrete-time filter is

25-€)

H(e'?) = :
) 1 - §'e‘/“’

If f; = 2 kHz and x,(¢) = sin(10007 ), find the output y,(¢).

Sampling x,(7) = sin(100057¢) with a sampling frequency f; = 2000 produces the discrete-time sequence
x(n) = x,(nT,) = sin(1000nT,) = sin(%)

This sequence is then filtered with the discrete-time filter

2(4 -

1 :
— e~ @
1 36

H(e'*) =
Because x(n) is a sinusoid, the response is
. [nm
yin)=A sm(T + ¢)

where A and ¢ are the magnitude and phase, respectively, of the frequency response at w = 7 /2. With

i —jw | jo 0
jop g ) (G-e) 8- eosw
|He)? =4 - . =43 =4
(l - %e‘l‘“) (l - %e!‘”) T — 3cosw
it follows that |H (¢/“)] = 2. We may evaluate the phase as follows:
) L _p-jo | _lgjw
H(e’) = 213_ T iejw
3 3
B 2% — Lelv —ei@ 3 2% — Ycosw+ jisinw

2 2
L T .
—_ J@ —_ —p—lw
1 3€ 1 361



CHAP. 3] SAMPLING 131

3.20

Therefore, Pnlw) = tan™! ———

which, when evaluated at w = 7 /2, gives

&1 (@))=r/2 = tan™" i;—? =tan”' § = 0.29527

Thus, y(n) = 2sin(§[n + 0.59()3])
Consider the following system consisting of an ideal D/C converter, a linear time-invariant filter, and an

ideal C/D converter.
* T * T

x(n) Xa(1) Ya(t) y(n)
—] D/C > ha(t) -+ C/D [

The continuous-time system #,(¢) is an ideal low-pass filter with a frequency response

1 |f1 <10 kHz
0 otherwise

Ha(f) = [

(@ T,=T,=10"% find an expression relating the output y(n) to the input x(n).
b)) IfT, = (%) x 10™*and T, = 1074, find y(n) when

) — [sin(mr/z) 2

(a) When T, = T, this system behaves as a linear shift-invariant discrete-time system with a frequency response

H(e"‘”)zH,,(ﬁ) lw| <7
T,

Because H,(j2) = | for |Q) < 27 - 107,

H('") =1 lw| < 7

and h(n) = &(n)

Therefore, y(n) = x(n).

Another way to analyze this system is to note that the output of the D/C converter, x,(#), is bandlimited to
f = SkHz. Because H,(f) is an ideal low-pass filter with a cutoff frequency 10 kHz, y,(¢) = x,(¢). Therefore,
this system is equivalent to the one shown below.

*r. f n

x(n) Xa(1) y(n)
—_— D/C £ C/D e —

Because an ideal D/C converter followed by an ideal D/C converter is the identity system, y(n) = x(n).

(b) When T, # T, this system is, in general, no longer a linear shift-invariant system. However, we may analyze
this system in the frequency domain as follows. First, note that the DTFT of x(n) is as illustrated in the following
figure:
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X(e/?)
2

1 —

—2n -7 b4 2

Thus, the output of the D/C converter is a bandlimited signal that has a Fourier transform as shown in the
following figure:

Xa(f)
2T,

f kHz

-20 20
The analog low-pass filter removes all frequencies in x,(t) above 10 kHz to produce a signal y,(¢) that has a
Fourier transform as shown below.

Ya(f)
2T,

f kHz

—20 —10 ! 10 20

Because the highest frequency in y,(¢) is 10 kHz, the Nyquist rate is 20 kHz. However, the sampling frequency
of the C/D converter is 10 kHz, so y,(¢) will be aliased. The DTFT of y(n) is related to Y,(j2) as follows:

1 & w 2k
YEe)==— Y ¥, (j— - '—)

T2 k;oo T2 g Tz
Summing the shifted and scaled transforms yields

Y(e/?)y = % lw| <

Therefore, y(n) = 38(n)

Sample Rate Conversion

3.21 Suppose that a discrete-time sequence x(n) is bandlimited so that
Xe*)y=0 037 <|wl<m
This sequence is then sampled to form the sequence
y(n) = x(nN)

where N is an integer. Find the largest value for N for which x(n) may be uniquely recovered from y(n).

The easiest way to view this problem is as illustrated below.

f " f v,

x(n) Xa(1) y(n)
_ D/C > C/D ——

Converting x(n) into a continuous-time signal with an ideal D/C converter with a sampling frequency f; produces
a continuous-time signal x,(¢) that is bandlimited to f, = 0.3 - f;/2. Therefore, x,(t) may be sampled, without
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3.22

3.23

aliasing, if we use a sampling frequency f;, > 2 fo = 0.3 f;, or

T T:
<
03

= 3.333T,

Therefore, if T, = 3T,
y(n) = x,(3nT) = x(3n)

and x(n) may be uniquely recovered from y(n). Thus, N = 3.

Consider the following system:

IE

X4 (1) x(n) _ u(n) y(n)
——1 D |— 4o 1 H(el®) [— YL ——
Assume that X,(f) = 0 for | f| > 1/T; and that
e ol < %
H(e!”) = T
0 — <ol <n
L

How is the output of the discrete-time system, y(n), related to the input signal x,(¢)?

Inthis system, the bandlimited signal x, (¢) is sampled, without aliasing, to produce the sampled signal x(n) = x,(nT;).
Up-sampling x(n) by a factor of L, and filtering with an ideal low-pass filter with a cutoff frequency w. = 7 /L,

produces the signal
nT;
w(n) = X4 (T)

that is, a signal that is sampled with a sampling frequency L f;. However, because the low-pass filter has linear phase
with a group delay of one sample, the interpolated up-sampled signal is delayed by 1. Therefore, the output of the
low-pass filter is

T,
u(n) = wn — 1) = x, ([n - l]f)
Down-sampling by L then produces the output
T,
y(n) =u(lLn)=w(ln—1)=x,|nT; - T
Thus, y(n) corresponds to samples of x,(t — 1) where to = T, /L.

Consider the system shown in the figure below.

*T, +rg

xq(2) x(n) y(n) Ya(t)
l M

—_ C/D > e D/C r—»——

Assume that the input is bandlimited, X,(j$2) = 0 for || > 27 - 1000.
(@) What constraints must be placed on M, T}, and T in order for y,(¢) to be equal to x,(¢)?
(b) If fi = f, =20kHz and M = 4, find an expression for y,(¢) in terms of x,(¢).
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(a) Suppose that x,(¢) has a Fourier transform as shown in the figure below.

Xa(JD)

N ] N -

—2m - 1000 2 - 1000
Because y(n) = x(Mn) = x,(nMT)), in order to prevent x(n) from being aliased, it is necessary that
|
MT| < 3000

If this constraint is satisfied, the output of the down-sampler has a DTFT as shown below.

X(e/?)

—211 1000 MT, lO()O MT|

Going through the D/C converter produces the signal y,(r), which has the Fourier transform shown below.

Ya(j)

T/MT,

Q

>

¥ 1 t
—2m - 1000M T,/ T; 2m - 1000M T, /T,

Therefore, in order for y,(t) to be equal to x,(f), we require that

1. MT, <1/2000 in order to avoid aliasing.
2. T, = MT, to prevent frequency scaling.

(b) With Ty = T, = 1/20000 and M = 4, note that

—_ 1 |
MT = 5% < w0

Therefore, there is no aliasing. Thus, as we see from the figure above,

Q2
nGw = ()

or ya(l) = X”(4l)

3.24 Digital audio tape (DAT) drives have a sampling frequency of 48 kHz, whereas a compact disk (CD)
player operates at a rate of 44.1 kHz. In order to record directly from a CD onto a DAT, it is necessary to
convert the sampling rate from 44.1 to 48 kHz. Therefore, consider the following system for performing
this sample rate conversion:

—_— > H(el®) o [

xcp(n) u(n) w(n) xpar(n)
fo fw
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3.25

Find the smallest possible values for L. and M and find the appropriate filter H(e/®) to perform this
conversion.

Given that 48000 = 27 - 3 - 5% and 44100 = 2% - 32. 5% . 72, to change the sampling rate we require

L 2735 25.5 160

M 22.32.52.72 7 3.72 7 147

Therefore, if we up-sample by L = 160 and then down-sample by M = 147, we achieve the desired sample rate
conversion. The low-pass filter that we require is one that has a cutoff frequency

e b4
w.=min| —, — ) = —
L M 160
and the gain of the filter should be equal to L = 160.

Suppose that we would like to slow a segment of speech to one-half its normal speed. The speech signal
s4(¢) is assumed to have no energy outside of 5 kHz, and is sampled at a rate of 10 kHz, yielding the
sequence

s(n) = s4(nTy)

The following system is proposed to create the slowed-down speech signal.

2 g

Sa(t) s(n) v(n) y(n) Ya(t)
—»| CD > fz > Filter > D/C |

Assume that S,(j2) is as shown in the following figure:
Sa(j)
A

T T —

—100007 10000

(a) Find the spectrum of v(n).
(b) Suppose that the discrete-time filter is described by the difference equation

y(n) = v(n) + 3lv(n — 1) + v(n + 1)]

Find the frequency response of the filter and describe its effect on v(n).

(¢) Whatis Y,(j<2) in terms of X,(j2)? Does y,(¢) correspond to slowed-down speech?

(a) Since s,(1) is sampled at the Nyquist rate, the DTFT of the sampled speech signal, s(n), is as follows:
S(e’?)
A/T;

¥ 1 i —-
- n

Up-sampling by a factor of 2 scales the frequency axis of S(e/“) by a factor of two as shown below.
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V(?jm)

A/T,

-7 —

SR
(e}
3

(b) The unit sample response of the discrete-time filter is
h(n) = 38(n + 1)+ 8(n) + 38(n — 1)

which has a frequency response
H(e'®y=1+cosw

To see the effect of this filter on v(n), note that due to the up-sampling, v(n) = O for n odd. Therefore, with
y(n) = v(n) + fvn — 1)+ fv(n + 1)
it follows that

u(n) n odd
y(n) =

%v(n-—l)+%v(n+l) n even

Thus, the even-index values of v(n) are unchanged, and the odd-index values are the average of the two
neighboring values. As a result, #(n) performs a linear interpolation between the values of v(n).

(¢) The output of the DC converter, y,(), has a Fourier transform

, T,Y (e/977) 12| < /T
Y, (jR) = )
0 otherwise

Since Y(e'?) = H(e/*)WV (e®) = (1 + cosw)V (e/)
and V(e') = S(e’*)

T,(1 + cos QT,)S(e/29T) 1£2] < 100007
then Y.(jRQ) =

0 otherwise

which is the product of (1 4+ cos QT5) and T,S(e/2%") as illustrated below.

Ya (i)

2A

i 1 .
Y T T y >

-~10000xr —50007 5000w 10000

Thus, y,(t) does not correspond to slowed-down speech due to the images of s,(r) that occur in the frequency
range 5000 < |2| < 100007 and the nonideal linear interpolator. Note that a better approximation would be
to use a DC converter with a sampling rate of 27} to eliminate the images.

3.26 Shown in the figure below are two different ways of cascading an up-sampler with a down-sampler.
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(a)

(b)
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x(n) wy(n) yi(n)
MG By i A D
(a)

x(n) wa(n) y2(n)
_— *M = 1‘L —_
(h)

If M = L, show that the two systems are not identical.

Under what conditions will the two systems be identical?

In the first system, which consists of an up-sampler followed by a down-sampler, note that w,(n) is a sequence
that is formed by inserting L — | zeros between each value of x(#). The down-sampler then extracts every Lth
value of w(n), thus producing the output

yi(n) = x(n)
In the second system, however, the down-sampler extracts every Lth sample of x(n) and discards the rest. The
up-sampler then inserts L — | zeros between each value of w,(n). Thus,
(nM
T
ya(n) =

0 else

) n=0,+L £2L,...

Therefore, the two systems are not the same.

In order to analyze these systems when L # M, note that y,(n) in the second system has the form shown in the
following figure:

L 2L

On the other hand, the sequence w,(n) in the first system is as shown below.

L 2L

Note that y,(n) is formed by extracting every Mth value of w,(n),

yi(n) = wi(nM)
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Clearly, vi(kL) = wi (kML) = x(kM)

$0 Yi(kL) = y (kL)

However, in order for y,(n) to be equal to y,(n), we require that
»n)=wi(nM)=0 n#kL

This will be true if and only if M and L are relatively prime.

Supplementary Problems

A/D and D/A Conversion

3.27

3.28

3.29

3.30

3.31

3.32

3.33

3.34

3.35

3.36

3.37

Find two different continuous-time signals that will produce the sequence
x(n) = cos(0.15nm)
when sampled with a sampling frequency of 8 kHz.
If the Nyquist rate for x,(¢) is €2, find the Nyquist rate for (a) X220, (b) x(t/3), (¢) x(t) * x(1).

A continuous-time signal x,(r) is known to be uniquely recoverable from its samples x,(nT) when T; = 1 ms. What
is the highest frequency in X ,(f)?

Suppose that x,(t) is bandlimited to 8 kHz (that is, X,(f) = O for | f| > 8000). (a) What is the Nyquist rate for
X4(1)? (b) What is the Nyquist rate for x,(t)cos(2m - 1000¢)?

Let x,(t) = cos(650m¢) + 2sin(720m ). (a) What is the Nyquist rate for x,(t)? (b) If x,(¢) is sampled at twice the
Nyquist rate, what are the frequencies of the sinusoids in the sampled sequence?

If a continuous-time filter with an impulse response 4,(¢) is sampled with a sampling frequency of f;, what happens
to the cutoff frequency w, of the discrete-time filter as f; is increased?

A complex bandpass signal x,(¢) with X,(f) nonzero for 10 kHz < f < 12 kHz is sampled at a sampling rate of
2 kHz. The resulting sequence is

x(n) = &(n)
What is x,(1)?

If the highest frequency in x,(r) is f =8 kHz, find the minimum sampling frequency for the bandpass signal
Yalt) = xa(£) cos(Q1) if (@) Qo = 27 - 20 - 10* and (b) Qp = 27 - 24 - 10°,

The continuous-time signal x,(r) = 7.25cos(2000rr¢) is sampled at a sampling frequency of 8 kHz and quantized
with a resolution A = 0.02. How many bits are required in the A/D converter to avoid clipping x,(¢)?

Suppose that we want to sample the signal x,(¢) with a 12-bit quantizer, where x,(t) is assumed to be gaussian with
a variance o?. What is the signal-to-quantization noise ratio if we want the range of the quantizer to extend from
—30, to 30,7

Suppose that an analog waveform is sampled with a sampling frequency of 10 kHz and that x,(¢) contains a
strong 60-Hz interference signal. If the only information in x,(r) of interest is in the frequency band above
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3.38

60 Hz, the interference may be eliminated with a discrete-time high-pass filter that has a frequency response of
the form

o 0 ol < w,
H(e'?) = o <<
r S WS

What is the smallest cutoff frequency w, that may be used and still eliminate the 60-Hz interference?

True or False: If x(n) has a discrete-time Fourier transform that is equal to zero for 7 /4 < |w| < 7,

& sinl(n — 4K)/4]
x(m) =} xh) 7(n — ak)/4

k=—oc

Discrete-Time Processing of Analog Signals

3.39

3.40

341

The system shown in Fig. 3-9 may be used to process an analog signal with a discrete-time system. Assume that
X,4(t) is bandlimited with X ,(f) = 0 for | f| > 10 kHz as shown in the figure below.

Xa(f)
1

t 1 t
-10 10

If the discrete-time system is an ideal low-pass filter with a cutoff frequency of 7 /4, find the Fourier transform of
vo(t) when (a) fi = 20kHz and f, = 10 kHz and (b) f| = 10 kHz and f; = 20 kHz.

For bandlimited input signals, the system shown in Fig. 3-10 is a linear time-invariant continuous-time system.
If

y(n) = %y(n — 1)+ x(n)
find the frequency response of the equivalent continuous-time system.

For bandlimited input signals, the system shown in Fig. 3-10 is a linear time-invariant continuous-time system. If
the overall system is to be a differentiator,

(1) = a Q)
Yall) = d’Xa

how should the frequency response of the discrete-time system be defined?

Sample Rate Conversion

3.42

343

3.4

The up-sampler and down-sampler are components that are found in interpolators and decimators, respectively. Are
these systems linear? Are they shift-invariant?

A sequence x(n) corresponds to samples of a bandlimited signal using a sampling frequency of 10 kHz. However,
the sequence should have been sampled using a sampling frequency f, =12 kHz. Design a system for digitally

changing the sampling rate.

A signal x,(¢) that is bandlimited to 10 kHz is processed by the following system:
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+f=20kHz +f:20kHz
Xa(t) ) y(n) Ya(0)
—1 oD > 410 ] Hel*) [— Y10 > DIC |—>—
, e~tiw lw| < r
If H(e!) = 10
0 otherwise

express the output y, () in terms of the input x,(r).

Answers to Supplementary Problems

3.27  x(t) = cos(12007m¢) and x,(¢) = cos(17200m¢).
328 (a)4R. (b) Q/3. () Q.

3.29 500 Hz.

330 (a)16kHz. (b) 18 kHz.

331 (a)720kHz. (b) wy = 657/142 and w, = /2.

3.32  w, decreases.

1 sin(2000 .
333 x ()= 500 S]n(n—t”r)ejzn(l 1000

3.34 (a) 56 kHz. (b) 32 kHz.
3.35 10 bits.

336 73.51dB.

337 w.=0.0127.

3.38  True.

3.39

Ya(f) Ya(f)

-1250 [ 1250 —2500  —1250 1250 2500
(@) (b)
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— Q| < =
340 H,(j)={1-le-io% 2=

0 otherwise
341  H(®) = jw/T, for |w| <.
342  Both are linear and shift-varying.
3.43  Up-sample by L = 6, filter with a low-pass filter that has a cutoff frequency of w. = /6 and a gain of 6, and

down-sample by M = 5.

344y, (1) = x,(t — AT, /10) = x,(t — 2 - 107°).

141



Chapter 4

The z-Transform

4.1 INTRODUCTION

The z-transform is a useful tool in the analysis of discrete-time signals and systems and is the discrete-time
counterpart of the Laplace transform for continuous-time signals and systems. The z-transform may be used to
solve constant coefficient difference equations, evaluate the response of a linear time-invariant system to a given
input, and design linear filters. In this chapter, we will look at the z-transform and examine how it may be used
to solve a variety of different problems.

4.2 DEFINITION OF THE z-TRANSFORM

In Chap. 2, we saw that the discrete-time Fourier transform (DTFT) of a sequence x(n) is equal to the sum

o0

X(e/®) = Z x(n)e /"

n=-—00

However, in order for this series to converge, it is necessary that the signal be absolutely summable. Unfortunately,
many of the signals that we would like to consider are not absolutely summable and, therefore, do not have a
DTFT. Some examples include

x(n) = u(n) x(n) = (0.5)"u(—n) x(n) = sinnwy

The z-transform is a generalization of the DTFT that allows one to deal with such sequences and is defined as
follows:

Definition: The z-transform of a discrete-time signal x(n) is defined by’

o0

X(z) = Z x(n)z ™" (4.1

n=—0o<C

where z = re/“ is a complex variable. The values of z for which the sum converges define a
region in the z-plane referred to as the region of convergence (ROC).

Notationally, if x(n) has a z-transform X (z), we write

x(n) <> X(2)

The z-transform may be viewed as the DTFT of an exponentially weighted sequence. Specifically, note that
with z = re/®,
o8]

X(z) = Z x(mz™" = Z [rinx(n)]g*j’”“

n=—00 n=—0oo

and we see that X (z) is the discrete-time Fourier transform of the sequence r ™" x(n). Furthermore, the ROC is
determined by the range of values of r for which

Z lx(m)r™"| < o0

n=—00

I'The reader should note that in many mathematics books, and in some engineering books, X (z) is defined in terms of a sum using positive
powers of z.

142
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Because the z-transform is a function of a complex variable, it is convenient to describe it using the complex
z-plane. With
z =Re(z) + jIm(z) = rel®
the axes of the z-plane are the real and imaginary parts of z as illustrated in Fig. 4-1, and the contour corresponding
to |z] = 1 is a circle of unit radius referred to as the unit circle. The z-transform evaluated on the unit circle
corresponds to the DTFT,

X(e'”) = X(2))zmer 4.2)
More specifically, evaluating X (z) at points around the unit circle, beginning at z = 1(w = 0), through z = J
(w=m/2),t0z = —1(w = 7), we obtain the values of X (¢/*) for 0 < w < m. Note that in order for the DTFT

of a signal to exist, the unit circle must be within the region of convergence of X (z).
Im(z)

Unit circle

- Re(z)

Fig. 4-1. The unit circle in the complex z-plane.

Many of the signals of interest in digital signal processing have z-transforms that are rational functions of z:

Xq: b(k)z™*

_ B2 =

N TE R

4.3)

a(k)z"*
k=0

Factoring the numerator and denominator polynomials, a rational z-transform may be expressed as follows:

4.4)

The roots of the numerator polynomial, f;, are referred to as the zeros of X (z), and the roots of the denominator
polynomial, «, are referred to as the poles. The poles and zeros uniquely define the functional form of a
rational z-transform to within a constant. Therefore, they provide a concise representation for X (z) that is often
represented pictorially in terms of a pole-zero plot in the z-plane. With a pole-zero plot, the location of each pole is
indicated by an “x” and the location of each zero is indicated by an “o”, with the region of convergence indicated
by shading the appropriate region of the z-plane. The region of convergence is, in general, an annulus of the form

o <|z| < B

If « = 0, the ROC may also include the point z = 0, and if 8 = oo, the ROC may also include infinity. For a
rational X (z), the region of convergence will contain no poles. Listed below are three properties of the region
of convergence:
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1. A finite-length sequence has a z-transform with a region of convergence that includes the entire z-plane
except, possibly, z = 0 and z = co. The point z = oo will be included if x(r) = 0 for n < 0, and the
point z = 0 will be included if x(n) = 0 for n > 0.

2. A right-sided sequence has a z-transform with a region of convergence that is the exrerior of a circle:
ROC: |z| > «

3. A left-sided sequence has a z-transform with a region of convergence that is the interior of a circle:
ROC: |z] < B

EXAMPLE 4.2.1 Let us find the z-transform of the sequence x(n) = a"u(n). Using the definition of the z-transform and
the geometric series given in Table 1-1, we have

o0

X(z) = Z x(n)z™" = ia":‘"
n=0

n=—oQ
o0
1
) S
o 1 —az!

with the sum converging if |az~'| < 1. Therefore the region of convergence is the exterior of a circle defined by the set of
points |z| > |a|. Expressing X(z) in terms of positive powers of z,

X(z) =

Z—a

we see that X(z) has a zero at z = 0 and a pole at z = «. A pole-zero diagram with the region of convergence is shown in
the figure below.

Im(z2)

Re(z)

Note that if @] < 1, the unit circle is included within the region of convergence, and the DTFT of x(n) exists.

Example 4.2.1 considered the z-transform of a right-sided sequence, which led to a region of convergence
that is the exterior of a circle. The following example considers the z-transform of a left-sided sequence.

EXAMPLE 4.2.2 Let us find the z-transform of the sequence x(n) = —a”u(—n — 1). Proceeding as in the previous
example, we have

o0

X)) = Z x(n)z™" = — _Zl 'z = — i(a“z)"*'
n=0

n=-—00 n=—no

2 alz 1
=—alz Z(a_lz)" =
n=0

1—a-!z 1 —az™!
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with the sum converging if Ja~'z| < 1 or |z| < |a|. A pole-zero diagram with the region of convergence indicated is given
in the figure below.

Im(z)

7 X
N2

Note that if || < 1, the unit circle is not included within the region of convergence, and the DTFT of x(n) does not exist.

Re(z)

Comparing the z-transforms of the signals in Examples 4.2.1 and 4.2.2, we see that they are the same, differing
only in their regions of convergence. Thus, the z-transform of a sequence is not uniquely defined until its region
of convergence has been specified.

EXAMPLE 4.2.3 Find the z-transform of x(n) = (%)"u(n) — 2"u(—n — 1), and find another signal that has the same
z-transform but a different region of convergence.

Here we have a sum of two sequences. Therefore, we may find the z-transform of each sequence separately and add
them together. From Example 4.2.1, we know that the z-transform of x,(n) = (%)"u(n) is

1
Xi(2) = 1—_? lz| > %
2
and from Example 4.2.2 that the z-transform of x,(n) = —2"u(—n — 1) is
1
Xz(Z) = l——zF |Z| <2
Therefore, the z-transform of x(n) = x,(n) + x2(n) is
1 1 2— 377!
X@@) = + -

- T 1= T (1= 1z —-221)
with a region of convergence % < |z| < 2, which is the set of all points that are in the ROC of both X,(z) and X(z).
To find another sequence that has the same z-transform, note that because X(z) is a sum of two z-transforms,

1 1
X(z) =
®=1- 32! T

each term corresponds to the z-transform of either a right-sided or a left-sided sequence, depending upon the region of
convergence. Therefore, choosing the right-sided sequences for both terms, it follows that

xin) = (%)"u(n) + 2"u(n)
has the same z-transform as x(n), except that the region of convergence is |z| > 2.

Listed in Table 4-1 are a few common z-transform pairs. With these z-transform pairs and the z-transform
properties described in the following section, most z-transforms of interest may be easily evaluated.
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Table 4-1 Common z-Transform Pairs

Sequence z-Transform Region of Convergence
8(n) 1 all z
1
a"u(n) |z] > |e|
I ~az!
1
—a"u(—n —1) lz] < |e|
| —az™!
"u(n) @ )21 > la|
n Z| > |
nau T a1y
"u(=n — 1) - 2] < la]
- —n— z| <
nou n (l — az*l)z o
| — (coswy)z™!
S 1
cos(nawo)u(n) 1 — 2(coswg)z™! +z72 21>
. (sinwp)z™!
sin(nwg)u(n) jz] > 1

1 — 2(coswg)z™" + z72

4.3 PROPERTIES

Just as with the DTFT, there are a number of important and useful z-transform properties. A few of these
properties are described below.

Linearity

As with the DTFT, the z-transform is a /inear operator. Therefore, if x(n) has a z-transform X (z) with a region
of convergence R, and if y(n) has a z-transform Y (z) with a region of convergence R,

w(n) = ax(n) + by(n) <—/—> W(z) =aX(z)+ bY(2)
and the ROC of w(n) will include the intersection of R, and R,, that is,

R, contains R, N R,

However, the region of convergence of W (z) may be larger. For example, if x(n) = u(n) and y(n) = u(n —1), the
ROC of X(z) and Y (z) is |z| > 1. However, the z-transform of w(n) = x(n) — y(n) = 8(n) is the entire z-plane.

Shifting Property

Shifting a sequence (delaying or advancing) multiplies the z-transform by a power of z. That is to say, if x(n)
has a z-transform X(z),

x(n — ng) PN 27" X (2)

Because shifting a sequence does not affect its absolute summability, shifting does not change the region of
convergence. Therefore, the z-transforms of x(n) and x(n — ng) have the same region of convergence, with the
possible exception of adding or deleting the points z = 0 and z = co.

Time Reversal

If x(n) has a z-transform X (z) with a region of convergence R, that is the annulus « < |z| < B, the z-transform
of the time-reversed sequence x(—n) is

x(—n) <—Z—> X(z_')

and has a region of convergence 1/8 < |z| < |/a, which is denoted by 1/R,.
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Multiplication by an Exponential
If a sequence x(n) is multiplied by a complex exponential ",
n z -1
a"x(n) «— X(a@ 'z)
This corresponds to a scaling of the z-plane. If the region of convergence of X(z) isr_ < |z| < r,, which will

be denoted by R,, the region of convergence of X(a~'z) is |a|r_ < |z| < |a|ry, which is denoted by |a|R,. As
a special case, note that if x(») is multiplied by a complex exponential. /",

e/" N x(n) PLIN X(e™/*z)

which corresponds to a rotation of the z-plane.

Convolution Theorem

Perhaps the most important z-transform property is the convolution theorem, which states that convolution in
the time domain is mapped into multiplication in the frequency domain, that is,

z
y(n) = x(n) x h(n) «— Y(z) = X(2)H(2)
The region of convergence of Y (z) includes the intersection of R, and R,,
R, contains R, N R,

However, the region of convergence of Y (z) may be larger, if there is a pole-zero cancellation in the product
X(2)H(z).

EXAMPLE 4.3.1 Consider the two sequences
x(n) = a"u(n) h(n)y =8(n) — ad(n — 1)

The z-transform of x(n) is

1
X@)=+—— lzI> el
| —az
and the z-transform of h(n) is
Hz)=1-az" 0 < |z
However, the z-transform of the convolution of x(n) with A(n) is
1 -1
Y@)=X@H(Z)= —— - (1 —az7 ) =1
] —oz!

which, due to a pole-zero cancellation, has a region of convergence that is the entire z-plane.

Conjugation
If X(z) is the z-transform of x(n), the z-transform of the complex conjugate of x(n) is
* z kg%
x*(n) «— X7(z7)
As a corollary, note that if x(n) is real-valued, x(n) = x*(n), then

X(z) = X*(z")
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Derivative

If X(z) is the z-transform of x(#), the z-transform of nx(n) is

Repeated application of this property allows for the evaluation of the z-transform of n*x(n) for any integer &.
These properties are summarized in Table 4-2. As illustrated in the following example, these properties are
useful in simplifying the evaluation of z-transforms.

Table 4-2 Properties of the z-Transform

Property Sequence z-Transform Region of Convergence
Linearity ax(n) + by(n) aX(z) + bY(2) Contains R, N R,
Shift x(n — ny) z7MX(z) R,
Time reversal x(—n) X(z™h 1/R,
Exponentiation a’x(n) X(a™'z) la| R,
Convolution x(n)* y(n) X(2)Y(z) Contains R, N R,
Conjugation x*(n) X*(z%) R,

ax
Derivative nx(n) —z d(z) R,

z

Note: Given the z-transforms X (z) and ¥ (z) of x(n) and y(n), with regions of convergence R, and
R, respectively, this table lists the z-transforms of sequences that are formed from x(n) and y(n).

EXAMPLE 4.3.2 Let us find the z-transform of x(n) = na”u(—n). To find X(z), we will use the time-reversal and
derivative properties. First, as we saw in Example 4.2.1,

z
a"u(n) «—>

T—ar Iz| > «
] " 4 ]
Therefore, =} uln) > —— |z| > —
o | —a!z7t o
and, using the time-reversal property,
a"u(—n) PN |z] < &

1l —a !z

Finally, using the derivative property, it follows that the z-transform of na” u(—n) is

d 1 a'z

_Za'_zl—at“'z—:_(1—01*'2)2 Iz} <@

A property that may be used to find the initial value of a causal sequence from its z-transform is the initial
value theorem.

Initial Value Theorem
If x(n) is equal to zero for n < 0, the initial value, x(0), may be found from X (z) as follows.
x(0) = ZlLrgo X(z)
This property is a consequence of the fact that if x(n) = 0 forn < 0,
X@) =x(O)+x(Dz™" +x2)z72 +--.

Therefore, if we let z — o0, each term in X (z) goes to zero except the first.
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4.4 THE INVERSE z-TRANSFORM

The z-transform is a useful tool in linear systems analysis. However, just as important as techniques for finding
the z-transform of a sequence are methods that may be used to invert the z-transform and recover the sequence
x(n) from X(z). Three possible approaches are described below.

4.4.1 Partial Fraction Expansion

For z-transforms that are rational functions of z,

q
bk)z~*
0

q
[T -8z
X(z) = k: —-C k=1

Za(k)zik ﬁ(l —oz7h
k=1

k=0

a simple and straightforward approach to find the inverse z-transform is to perform a partial fraction expansion
of X(z). Assuming that p > g, and that all of the roots in the denominator are simple, «; # o fori # k, X(z)
may be expanded as follows:

x@=) 4.5)
- =l 1 — otkz‘l ’
for some constants A; for k = 1,2, ..., p. The coefficients A; may be found by multiplying both sides of

Eq. (4.5) by (1 — a;z~") and setting z = o;. The result is

A= - akz_])X(z)]z=m
If p < g, the partial fraction expansion must include a polynomial in z~! of order (p —¢). The coefficients of this
polynomial may be found by long division (i.e., by dividing the numerator polynomial by the denominator). For
multiple-order poles, the expansion must be modified. For example, if X (z) has a second-order pole at z = ¢,
the expansion will include two terms,

B B,
+
1 —apz=! (1 —apz™1)?

where B, and B, are given by

By = ak[—d—(l - akz"')ZX(z)]
dz

=0y

By = [(1 - axz™)’X (2)]

=0

EXAMPLE 4.4.1 Suppose that a sequence x(n) has a z-transform

410412 4TV 412
X(Z): 1 ; -1 41 -2 = 1 lj—l 1 41 —1
~ 37 tie (1 —3z71) (1 = 3z7")

with a region of convergence |z| > % Because p = ¢ = 2, and the two poles are simple, the partial fraction expansion has
the form

X(z2)=C +
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The constant C is found by long division:

2
B oden [l g e
i AR
—1z7142

Therefore, C = 2 and we may write X (z) as follows:

2 4
X(z)=2+ ]
Next, for the coefficients A; and A, we have

A={(1-3x@] 0, =

and Ay = [(l — %z")X(z)]f,:A = - =—1
I -5z i
Thus, the complete partial fraction expansion becomes
3 1
X(z)y=2+ - %z“ ST

Finally, because the region of convergence is the exterior of the circle |z| > % x(n) is the right-sided sequence

x(n) = 28(n) +3(1) " utn) — (3)"un)

4.4.2 Power Series
The z-transform is a power series expansion,

X(z) = Z x(n)z7" = ---+x(—2)zZ +x(=Dz 4+ x(0) + x()z™! +x(2)z‘2 4 .-

n=-00
where the sequence values x(n) are the coefficients of z7” in the expansion. Therefore, if we can find the power
series expansion for X (z), the sequence values x(n) may be found by simply picking off the coefficients of z7”,
EXAMPLE 4.4.2 Consider the z-transform

X(z) = log(l +az™") |z| > |al
The power series expansion of this function is

N |
1 1 -y —(—1 n+1 n,—n
og(l +az™") ;n( Y a

Therefore, the sequence x(n) having this z-transform is

1
__ln+l n
X(n) = n( Y'*la n>0

0 n<o0
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4.4.3 Contour Integration

Another approach that may be used to find the inverse z-transform of X (z) is to use contour integration. This
procedure relies on Cauchy’s integral theorem, which states that if C is a closed contour that encircles the origin
in a counterclockwise direction,

I . 1 k=1
T dz‘lo k#1
o0
With X(z) = Z x(n)z™"

Cauchy’s integral theorem may be used to show that the coefficients x(n) may be found from X(z) as follows:

1
x(n) = —% X(z)z" 'dz
27Tj C

where C is aclosed contour within the region of convergence of X (z) that encircles the origin in a counterclockwise
direction. Contour integrals of this form may often by evaluated with the help of Cauchy’s residue theorem,

|
x(n) = zn_/ fé X(z)" 'dz = Z [residues of X(z)z"'at the poles inside C]

If X(z) is a rational function of z with a first-order pole at z = oy,

Res[X(2)z" 'atz = o] = [(] —axz™ )X (2)2" "]

=0

Contour integration is particularly useful if only a few values of x(n) are needed.

4.5 THE ONE-SIDED z-TRANSFORM

The z-transform defined in Sec. 4.2 is the two-sided, or bilateral, z-transform. The one-sided, or unilateral,
z-transform is defined by

X,(z) = Zx(n)z‘“ 4.6)

n=0

The primary use of the one-sided z-transform is to solve linear constant coefficient difference equations that have
initial conditions. Most of the properties of the one-sided z-transform are the same as those for the two-sided
z-transform. One that is different, however, is the shift property. Specifically, if x(n) has a one-sided z-transform
X1(2), the one-sided z-transform of x(n — 1) is

x(n—1) SN 27 X1 (2) + x(=1)

It is this property that makes the one-sided z-transform useful for solving difference equations with initial
conditions.

EXAMPLE 4.5.1 Consider the linear constant coefficient difference equation
y(n)y =0.25y(n — 2) + x(n)

Let us find the solution to this equation assuming that x(n) = §(n — 1) with y(—1) = y(=2) = 1.
We begin by noting that if the one-sided z-transform of y(n) is Y,(z), the one-sided z-transform of y(n — 2) is

Zy(n — 227" = y(=2)+ y(=Dz7' + Zy(n)z"'_2 = y(=2)+ y(= Dz + 272 (2)

n=0 n=0
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Therefore, taking the z-transform of both sides of the difference equation, we have
Y1(2) = 0.25[y(=2) + (— Dz~ + 272 11(D)] + X1 (2)

where X ,(z) = z~'. Substituting for y(—1) and y(—2), and solving for Y,(z), we have

145z~
=L1___ -
Yi(z) =; =
To find y(n), note that ¥, (z) may be expanded as follows:?
u 9
Y(z) = 3 _ 8
() 1—%2*‘ l+%z*’
Therefore, y(n) = [%(%) - %’( - %) ]u(n)

Solved Problems

Computing z-Transforms
4.1 The z-transform of a sequence x(n) is

7422724773
X —rv-——
@) | —=3z-4 425

If the region of convergence includes the unit circle, find the DTFT of x(n) at w = 7.

[CHAP. 4

If X (z) is the z-transform of x(n), and the unit circle is within the region of convergence, the DTFT of x(n) may be

found by evaluating X (z) around the unit circle:
X(e) = X(2)| __,
Therefore, the DTFT at w = 7 is
X (@ Nomr = X(@zerm = X(@)]immi

and we have
2422724273

o =l+2-1
| =3z-4 425

X(e/® = E g ——
Gl =3-1 ~°

7=/

4.2  Find the z-transform of each of the following sequences:

(@ x(n)=38(n)+8(n—-2)+8n+2)
(b) x(n) =u(n) — u(n — 10)

(a) Because this sequence is finite in length, the z-transform is a polynomial,

X(z)=34+27%42°

and the region of convergence is 0 < |z] < 0o. Note that because x(n) has nonzero values for n < 0, the
region of convergence does not include |z| = oo, and because x(n) has nonzero values for n > 0, the region of

convergence does not include the point z = 0.

2See the discussion in Sec. 4.4.1 on partial fraction expansions.



CHAP. 4] THE z-TRANSFORM 153

(b) For this sequence,
10

9 -
-2z

X@ =) " =10
n=0 “

which converges for all |z| > 0. Note that the roots of the numerator are solutions to the equation

|0:1

These roots are

z=e k=0,1,...,9
which are 10 equally spaced points around the unit circle. Thus, the pole at z = 1 in the denominator of X(z)
is canceled by the zero at z = 1 in the numerator, and the z-transform may also be expressed in the form

9

X@) =[] (1 -e*¥iz)
k=1
4.3  Find the z-transform of each of the following sequences:
(@) x(n)=2"u(n)+ 3(%)"u(n)
() x(n) = cos(nwy)u(n).

(a) Because x(n) is a sum of two sequences of the form «” u(n), using the linearity property of the z-transform, and
the z-transform pair

z
o"u(n) «—

[
h X@) = — et — e 2l > 2
we have Z) = = zZy >
I~27" 1=zt (1=22-)(1 = Lz71)

(b) For this sequence we write
x(n) = cos(nwo)u(n) = %[ej"“"‘ + eI u(n)
Therefore, the z-transform is

1

1
| —ejenz=l 2] — p=jonz-1

X(z)=3
with a region of convergence |z| > 1. Combining the two terms together, we have

1 — (coswp)z™!

1
1 — 2(coswy)z™! + z72 Izl >

X(Z) =

4.4  Find the z-transform of each of the following sequences. Whenever convenient, use the properties of the
z-transform to make the solution easier.

(@) x(n)= (%)nu(~n)

(b x(n)=(3)"uln +2)+ 3 u(-n -1
() x(n)= (%)" cos(nwg)u(n)

(d) x(n)=a"

(a) Using the definition of the z-transform we have

o0 0
X(z) = Z x(n)z™" = Z (%)"z_”
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where the sum converges for

3z <1 or |z| < 1]
Alternatively, note that the time-reversed sequence y(n) = x(—n) = (%)"’u(n) has a z-transform given by
Y(z) :
z) = ——
1 —3z7!

with a region of convergence given by |z| > 3. Therefore, using the time-reversal property, Y (z) = X (z™'), we
obtain the same result.

(b) Because x(n) is the sum of two sequences, we will find the z-transform of x(#) by finding the z-transforms of
each of these sequences and adding them together. The z-transform of the first sequence may be found easily
using the shift property. Specifically, note that because

n n+2
(%) u(n +2) = 4(%) * u(n + 2)
the z-transform of (3)"u(n + 2) is 4z” times the z-transform of ()" u(n), that is,
(%)"u(n +2) PN
which has a region of convergence |z| > %

The second term is a left-sided exponential and has a z-transform that we have seen before, that is,

1

z
3"u(—n —1 -
u(—n ) «—> =3,

with a region of convergence |z| < 3.

Finally, for the z-transform of x(n), we have

472 1

=1z 1-3

X(z) =
with a region of convergence 5\ < |z] < 3.
(c) As we saw in Problem 4.3(b), the z-transform of cos(nwg)u(n) is

1 — (cos wp)z™!
| — 2(coswe)z™! + 272’

z
cos(nwy)u(n) «—— lz| > 1
Therefore, using the exponentiation property,

" x(n) < X 'z)

1 — 1(cos wp)z™"

we have 1Y cos(napu(n) <>
(3) 0 1 - %(coswu)z‘l + %z‘z

with a region of convergence [z| > 1.

(d) Writing x(n) as
x(n) =a"u(n) + o "u(—n) — 8(n)

we may use the linearity and time-reversal properties to write

1 I
X(z)= —
l—«a

I
z'+l—az—l 3 <zl <2
which may be simplified to
X@= 1= 2] <2
7)) = < |z| <
O —az7 ") —az) 2
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4.5

4.6

4.7

Without explicitly solving for X(z), find the region of convergence of the z-transform of each of the
following sequences:

@ 0 =[(3)"+ () Jutn = 10)
I —10<n<10
B x( =14 therwise

(¢) x(n)=2"u(—n)
(a) Because the first sequence is right-sided, the region of convergence is the exterior of a circle. With a pole at

7= 21 coming from the term (%—)", and a pole at z = 41 coming from the term (%)”, it follows that the region of
convergence must be |z| > 3.

(b) This sequence is finite in length. Therefore, the region of convergence is at least 0 < |z| < co. Because x(n)
has nonzero values for » < 0 and for #» > 0, z = 0 and z = oo are not included within the ROC.

(¢) Because this sequence is left-sided, the region of convergence is the interior of a circle. With a pole atz = 2, it
follows that the region of convergence is |z| < 2.

Find the z-transform of the sequence y(n) = Y ;___ x(k) in terms of the z-transform of x(n).

There are two ways to approach this problem. The first is to note that x(n) may be written in terms of y(n) as follows:
x(n)=y(n)—yn—-1)
Therefore, if we transform both sides of this equation, and use the shift property of the z-transform, we find
Xz =Y —z7'Y()
Solving for Y (z), we find
Y(z)=

X(z)

| —z-!

n

1
Thus, y(n) = Z x(k) JEIN ]—_—:—_]-X(/Z)

k=-00

which is referred to as the summation property.
The second approach is to note that y(n) is the convolution of x(n) with a unit step,

y(n) = x(n) x u(n)
Therefore, using the convolution theorem, we have
Y(z) = X(2)U(2)

and, with U (z) = 1/(1 — z™"), we obtain the same result as before. For the region of convergence, note that because
the ROC of U(z) is |z| > 1, the ROC of Y (z) will be at least

Ry = R, N {|z] > 1}

where R, is the ROC of X(z).

Find the z-transform of the sequence y(n) where

y(n) = Z alk n>0

k=—n

and y(n) = 0 for n < 0. Assume that [¢| < 1.
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For this sequence, we may use a variation of the summation property derived in Prob. 4.6. Specifically, recall that if

n

y(n) = x(n)xum) = Y x(k)

k=—00

X(z2)

then Y(z) =
| —z-

1

Now consider the two-sided summation,

n

ymy= " x(k)

k=—n

which may be written as

n 1] n n
Yy =Y xtk)+ Y x(k) — x(0) =Y x(k)+ Y x(=k) — x(0)
k=0 k=0 k=0

k=—n

Therefore, if we let

[ x(—n) n>0

and Xo(n) =

0 n

then Zx(k) = x|(n) * u(n) Zx(—k) = x7(n) * u(n)
k=0 k=0

Therefore, we have
X1(2) + Xo(2)

Y(z)= ———— — x(0)
| —z-!
Finally, with x(n) = a'"l, it follows that x,(n) = x2(n) = a"u(n), and x(0) = 1. Thus,
2X(2) 2
re = -z I= 1 =az7H(1 -z -1

I+ +a)z! —az?
T o (l—az Y1 -2zY

with a region of convergence |z| > 1.

Let x(n) be a finite-length sequence that is nonzero only for 0 < n < N — 1, and consider the one-sided
periodic sequence, y(n), that is formed by periodically extending x(n) as follows:

y(n)=_x(n—kN)
k=0

Express the z-transform of y(n) in terms of X (z) and find the region of convergence of Y (z).

The one-sided periodic sequence y(n) may be written as the convolution of x(n) with the pulse train

pr(n) =) 8(n—kN)

k=0
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In other words,
y(n) = x(n) % py(n) = ) _ x(n —kN)
k=0

Therefore, the z-transform of y(n) is the product of the z-transforms of x(n) and py(n). Because py(n) is a sum of
shifted unit samples, and because the z-transform of §(n — kN ) is equal to z %", the z-transform of py(n) is

P =3 = s

_ N
k=0 I -z

Thus, the z-transform of the one-sided periodic sequence y(n) is

X(z)
Y(z) = X(2)Py(2) = =

—z-N

Because x(n) is finite in length and zero for n < 0, the region of convergence for X(z) is |z] > 0. Therefore, the
region of convergence of Y (z) is |z| > 1.

4.9  Consider the sequence shown in the figure below.

The sequence repeats periodically with a period N =4 for n > 0 and is zero for n < 0. Find the
z-transform of this sequence along with its region of convergence.

This is a problem that may be solved easily using the property derived in Prob. 4.8. Because

o0

x(n) = Z wn —kN)

k=0

where N = 4 and
w(n) =8(n —1)+28(n —2)+8(n—3)

then W) =z"'"1+2:"" 4277

and we have
271 42271 4+ 277

—a

X(z) =

1—-z

Because x(n) is right-sided and X (z) has four poles at |z| = 1, the region of convergence is |z| > 1.
Properties

4.10  Use the z-transform to perform the convolution of the following two sequences:

(;)' 0=n=2

0 else

x(n)=86n)+8(n—1)+48(n —2)

h(n) =
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The convolution theorem for z-transforms states that if y(n) = h(n) * x(n), the z-transform of y(n) is Y (z) =
H(z)X (z). With
Hiz)y= 1+ 327"+ 3277
X@)=1+z"+4z7

it follows that
Y(z) = H2)X(2) = (l + %z" + 412_2)(1 +z7 ' 44272

Muiltiplying these two polynomials, we have
Y)=1+2z"' +4z72
+ iz 4+ 4272 4227
+ 327 + iz 4
=1+3z7"+ 8272+ 3,73 274
By inspection, we then have for the sequence y(n),

y(n) = 8(n) + 28(n — 1) + 28(n = 2) + 58(n — 3) + 8(n — 4)

4.11 Evaluate the convolution of the two sequences
h(n) = (0.5)"u(n) and x(n) =3"u(—n)

To evaluate this convolution, we will use the convolution property of the z-transform. The z-transform of 4(n) is

lzl > 3

H(z):l

— 1,
52

and the z-transform of x(») may be found from the time-reversal and shift properties, or directly as follows:

00 0
X(z) = Z x(n)z™" = Z 3"
n=—0C n=—0o0
= n 1 3z7!
= 0(%2) = 1_%22—1_232_1 |Z|<3
n= 3

Therefore, the z-transform of the convolution, y(n) = x(n) * h(n), is

1 327!

1 - %z“ C1=3z)

Y(z) = —

The region of convergence is the intersection of the regions |z} > '5 and |z| < 3, which is % < |z] < 3. To find the
inverse z-transform, we perform a partial fraction expansion of Y (z),

A B
Y(2) = - %z" + [ —37
where a=[0- el =
and B=[(1-32"YY ()]s = -}

Therefore, it follows that

y(n) = ($)(3) u(m) + (§)3"u(=n— 1)
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4.12

4.13

4.14

Let x(n) be an absolutely summable sequence,

Y Jx(m)] < 00

n=—oo

with a rational z-transform. If X(z) has a pole at z = % and lim;)_, o X(z) = 1, what can be said about
the extent of x(n) (i.e., finite-in-length, right-sided, etc.)?

Because x(n) is an absolutely summable sequence, the ROC of X(z) includes the unit circle, {z| = 1. With a pole at
z= %, the region of convergence will either be an annulus of the form r_ < |z| < r,, or it will be the exterior of a
circle, r_ < |z|. However, because X(z) converges as |z| — 00, the region of convergence will be the exterior of a
circle, and it follows that x(») is right-sided (infinite in length) with x(»n) = 0 forn < 0.

Find the z-transform of x(n) = |n|(3)""!.

Using the derivative property and the z-transform pair

it follows that the z-transform of w(n) = n(3)"u(n) is

d
w = —Z— =
(z) = . %z" (] B %Z_l)z

Because x(n) may be written as

x(n) = |n|(%)("[ = n('i)"u(n) - n(%)gnu(—n)

using linearity and the time-reversal property, we have

N
oE—
N
oc |
N
+
ot
]
|
|
—

1
X(z) = 2

7+ 2= 2 2
(—=) (-8 (-0 (-3)

which has a region of convergence 21 < |zl < 2.

Let y(n) be a sequence that is generated from a sequence x(n) as follows:

n
ymy =Y kx(k)
k=—00
(a) Show that y(n) satisfies the time-varying difference equation

y(n) =y — 1) = nx(n)

and show that

where X (z) and Y (z) are the z-transforms of x(n) and y(n), respectively.

(b) Use this property to find the z-transform of

y(n) = Zk(%)k n>0
k=0
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4.15

4.16

(@)

(b)

THE z-TRANSFORM

From the definition of y(n), we see that

n—1
yin—D= > kx(k)

k=—~00

and it follows immediately that
y(n) = y(n — 1) = nx(n)

From this difference equation, we may take the z-transform of both sides. Because

adX(z)
nx(n) «— —z
dz
then Y2 = 27V () = —2 XD
dz

-z dX(z) -2’ dX(2)
—z' dz T z—1 dz

or Y(z)= ]

To find the z-transform of the given sequence, note that

ymy= " kx(k)
k=-00

where x(n) = (%)"u(n)

Because the z-transform of x(n) is

zvl

[
then Y(z) = T-1 d: oz -1 (l _ %2_1)2 - (l _ %2_1)2(] —z=h

[CHAP. 4

Because x(n) is right-sided, then the region of convergence is the exterior of a circle. Having poles at z = 1

and z = 5'. it follows that the region of convergence is z| > 1.

Find the value of x(0) for the sequence that has a z-transform

|z] > a

X(z) = —
)= ——
1 —az!

Find the value of x(0) for the sequence that has a z-transform

4

=T a-

L
|Z|>§

X(z)=

Taking the limit of X(z) as z — o0, we see that X(z) — 1. Because the limit exists, x(»n) is causal, and x(0) = 1.

Because the region of convergence of X (z) is the exterior of a circle, x(n) is right-sided. However, if we write X (z)
in terms of positive powers of z,
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we see that X(z) — oc as |z] = oo. Therefore, x(n) is not causal. However, because x(n) is right-sided, it may be
delayed so that it is causal. Specifically, if we delay x(n) by 1 to form the sequence y(n) = x(n — 1),

23

C-DE-}

which approaches 1 as |z| — o0o. Thus, y(n) is causal, and we conclude that y(0) = x(—1) = 1. Because

Y(z)=

Xz)=x(-Dz+ Zx(n)z:_"

n=0
X (z) — x(—1)z is the z-transform of a causal sequence, and it follows from the initial value theorem that

x(0) = lllim {X(z) — x(—1)z]

4
With X@) —x(=Dz =X@) -z =
it @) =x(=Dz = X(2) - z z=3)(z2-3) Z
_24—2(23—%22'%z+%)
(-3 -3)

we have x(0)=|l|im [X(z) —x(=Dz] =}

4.17 Generalize the initial value theorem to find the value of a causal sequence x(n) at n = 1, and find x(1)
when

If x(n) is causal,
X@) =x(0)+x(Dz™" +x(2z7 + -

Therefore, note that if we subtract x(0) from X (z),
X@) —x@ =x(D)z' +xQ)z72+ -
Multiplying both sides of this equation by z, we have
2[X(z) = x(0)] = x() + x(Dz™" + -+
If we let z > 00, we obtain the value for x(1),
x(1y = |zl1i_1"nw(2[1’((2) —x(O])

For the given z-transform we see that

x(0) = '_llim X(z) =1

24 6z7!
Therefore, X(z)— % =3 —2:2-%2— 1323 % =

67! 4272 - L3
4 -2z724 1323

and x(1) = {zlli_rpw(Z[X(Z) - x(0]} = 3
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4.18 Let x(n) be a left-sided sequence that is equal to zero for n > 0. If

327 42272
X [ —
@ 33—z 14272

find x(0).
For a left-sided sequence that is zero for n > 0, the z-transform is
X(2) = x(0) + x(=Dz + x(=2)2> + - - -

Therefore, it follows that
x(0) = lim X(2)

For the given z-transform, we see that

327 4272 3242
x(O):!in(l’X(Z)___!in?) 27+ 2z — z+

m =2
3—z 4272 z[->03zz—z+l

4.19 If x(n) is real and even with a rational z-transform, show that
X)) =Xz

and describe what constraints this places on the poles and zeros of X (z).

If x(n) is even,
x(n) = x(—n)

Therefore, it follows immediately from the time-reversal property that

X(iz)= X"
If X(z) has a zero at z = z;,
X(zo)=0
then X (20-1) =0

which implies that X (z) will also have a zero at z = 1/z,. The same holds true for poles. That is, if there is a pole
at z, there must also be a pole at z = 1/z.

4.20 Use the derivative property to find the z-transform of the following sequences:
(@ x(n)=n(})"un-2)
(b x(n)= %(—2)_”u(~n -1

(a) The derivative property states that if X (z) is the z-transform of x(n),
nx(n) <-Z—> —ziX(z)
dz
If we let x(n) = nw(n), where
n n-2
wn) = (%) u(n —2) = 41(%) u(n —2)
from the delay property and the z-transform pair

o uln) <> fz| > ||

| —az—!
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4.21

4.22

it follows that

1
W(z) = _4'_

| —3z7!

[STE

Therefore, using the derivative property, we have the z-transform of x(n),

-4z
X(z) = —zdiW(z)= %z-t%
: (1-327)

(b) Evaluating the z-transform of this sequence directly is difficult due to the factor of n~'. However, if we define
a new sequence, y(n), as follows,

Z

y(m) = nx(n) = (=2)""u(-n - 1)
the z-transform of y(n) is easily determined to be

Y(Z) = I—F—

L |
52

L

fzl < 3

Noting the relationship between x(n) and y(n), we can apply the derivative property to set up a differential
equation for X (z),

Xy —
Za' (z) 1+%."
or dX() !
ZX(2) =
dz z+%

The solution to this differential equation is
X(z) = log (z +3)
and the region of convergence is |z| < '5

Up-sampling is an operation that stretches a sequence in time by inserting zeros between the sequence
values. For example, up-sampling a sequence x(n) by a factor of L results in the sequence

x(ﬁ) n=0,+L, +2L
y(n) = L ST
0 otherwise

Express the z-transform of y(#n) in terms of the z-transform of x(»n).

Because y(n)isequal to zero forall n # kL, with y(n) equal tox(n/L) forn = kL, the z-transform of the up-sampled
signal is

Y@ =)y =3 xmzt = Y x(m)Eh) " = X (@h)

If X(z) converges for a < |z| < B, Y(z) will converge fora < |z]* < B, or

al/l. < ‘Zi <ﬂ|/L

Find the z-transform of the sequence

/10 n=0,10,20,...

x(n) = 0 else

where || < 1.



THE z-TRANSFORM [CHAP. 4

We recognize x(n) as an exponential sequence that has been up-sampled by a factor of 10 (see Prob. 4.21). Therefore,
because

1

" u(n) PRI
l —az!

Iz] > «

the z-transform of x(n) is

1
X(z)= —— Iz > a'/10
]l -«

z—10

Inverse z-Transforms

4.23 Find the inverse of each of the following z-transforms:

(@ X(2)=4+3>+272) 0<|z|] < 00

3

() X@) = — e Izl > 3
1

R e
1

@ XD =g )

(a) Because X(z) is a finite-order polynomial, x(n) is a finite-length sequence. Therefore, x(n) is the coefficient
that multiplies z™" in X (z). Thus, x(0) = 4 and x(2) = x(—2) = 3.

(b) This z-transform is a sum of two first-order rational functions of z. Because the region of convergence of X (z) is
the exterior of a circle, x(n) is a right-sided sequence. Using the z-transform pair for a right-sided exponential,
we may invert X (z) easily as follows:

x(n) = (%)nu(n) + 3(%)"u(n)

(¢) Here we have a rational function of z with a denominator that is a quadratic in z. Before we can find the inverse
z-transform, we need to factor the denominator and perform a partial fraction expansion:

1 1

X = =
A I e e T ()
2 ]
T 142270 14z

Because x(n) is right-sided, the inverse z-transform is
x(n) = 2(=2Y"u(n) — (=1)"u(n)
(d) One way to invert this z-transform is to perform a partial fraction expansion. With

1 1
=z =22 (1-z""21+z1H
A N B, N B,
T4z =zt (L=t

X(z) =

the constants A, B, and B, are as follows:
A=[1+z)X@)]ery = &

_ i _-1y2 _ 272 1
B, —[dz(l z )X(Z)]F,’l:——(l-}-f')z]z [T

By =[(1-z"")’X(2)]m1 = 5
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Inverse transforming each term, we have
x(n) = JU=D"+ 1+ 201 + D]u(n)
Another way to invert this z-transform is to note that x(n) is the convolution of the two sequences,
x(n) = xi(n) * xa(n)
where x;(n) = u(n) and x,(n) is a step function that is up-sampled by a factor of 2. Because
xj(n)*x(n)=1{1,1,2,2,3,3,4,4,...}

we have the same result as before.

4.24 Find the inverse z-transform of the second-order system

1+ iz71
X(z)= —4—— Iz| > 1
(1 _ 12_1)2 2
2
Here we have a second-order pole at z = 5' The partial fraction expansion for X(z) is
A A
X(z)= ———+ P
R (-8
The constant A, is
d 2
_ 1 -1 1 L2 1
A= E[E(l - 2Z ) X(z)] i = i[ — s ]L=|/2 =7

and the constant A, is

1 3
Therefore, X(z) = ——2 + |2
2

and x(n) = —(%)nﬂu(n) +3(n + 1)(%)n+lu(n)

4.25 Find the inverse of each of the following z-transforms:
(@ X(z)=log(l—3z7") lz| > 1
(b) X(z) = e'/?, with x(n) a right-sided sequence

(a) There are several ways to solve this problem. One is to look up or compute the power series expansion of the
log function. Another way is to differentiate X(z). Specifically, because

1,-2
22

d
=XO=7I5a

L

if we multiply both sides of this equation by (—z), we have

Y(z) = —z;——zX(z) = ——%
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Note that the region of convergence for X (z) is |z| > % Because the region of convergence for Y (z) is the same
as it is for X(z), the inverse z-transform of Y (z) is

y(n) = —(%)nu(n -1

Now, from the derivative property, y(n) = nx(n), and it follows that
x(n) = _’11(21)"“(,, -1

(b) For this z-transform, we could determine the inverse by finding the power series expansion of X (z). However,
another approach is to do what we did in part () and take the derivative. Differentiating X (z), we find

9 x(2) = ~22x(
e 2y = —z z)

Multiplying both sides by (—z), we have

dX() “'X(z2)
—Z— zZ)=2
dz Z

and taking the inverse z-transform gives
nx(n) =x(n —1)

which is a recursion for x (). To solve this recursion, we need an initial condition. Because x(n) is a right-sided
sequence, we may use the initial value theorem to find x(0). Specifically,

x(0) = lim X(2)=1

Thus, the recursion that we want to solve is
|
x(n)=—-x(n—-1) n>0
n

with x(0) = 1. The solution for n > 0 is

1
x(n) = —
n!

and we have

x(n) =é8(n) + —l—u(n -1
n!

Find the inverse z-transform of X (z) = sinz.

To find the inverse z-transform of X (z) = sinz, we expand X (z) in a Taylor series about z = 0 as follows:

dX(z) 22 d*X(z) 2" d" X (z)
X =X — g
(2) (Z)‘Z=0 +e dz |._, * 20 dz? |, n! dz" | _,
z] 25 0 22n+l
—y = iy =
TR g( VG
Because X(z)= Z x(n)yz™

we may associate the coefficients in the Taylor series expansion with the sequence values x(n). Thus, we have

n ‘ —_— _ _
x(”)z—(—l)m n=-—1,-3-5,...



CHAP. 4] THE z~-TRANSFORM 167

4.27

4.28

Evaluate the following integral:

I f 42 =22
— z az
2 fe (== 30

where the contour of integration C is the unit circle.

Recall that for a sequence x(n) that has a z-transform X (z), the sequence may be recovered using contour integration
as follows:

x(n) = —1— ?ﬁ X(2)z""'dz 4.7)
27j J,

Therefore, the integral that is to be evaluated corresponds to the value of the sequence x(n) at n = 4 that has a
z-transform

1+2:70 —z72
(1=32) (=37
Thus, we may find x(n) using a partial fraction expansion of X(z) and then evaluate the sequence at n = 4. With
this approach, however, we are finding the values of x(n) for all n. Alternatively, we could perform long division
and divide the numerator of X(z) by the denominator. The coefficient multiplying z=* would then be the value of
x(n) at n = 4, and the value of the integral. However, because we are only interested in the value of the sequence at

n = 4, the easiest approach is to evaluate the integral directly using the Cauchy integral theorem. The value of the
integral is equal to the sum of the residues of the poles of X(z)z3 inside the unit circle. Because

X(z) =

2 7 —
X(2)z} = fi____

1
C-DGE-9

" =2
has poles at z == 5 and z = 3,

and Res[X(z)z3]z=% = |:z ————:l =L
: L2
=3

Therefore, we have

Find the inverse z-transform of

1
X(2)= " |z > le|

— 0710

Note that the denominator of X (z) is a tenth-order polynomial. Although the roots may be found easily, performing
a partial fraction expansion would be time consuming. For this problem, it is much better to exploit the properties
of the z-transform. Note, for example, that

X)) =YY" where Y(z) = T
— 107

10n

Because y(n) = a ul(n)
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we may use the up-sampling property (Prob. 4.21) to obtain

y(i) n=0,+10, £20. ...
x(n) = 10
0 otherwise

Therefore, we have

a” n=20,10,720,...
0 otherwise

In many cases one is interested in computing the inverse z-transform of a rational function

q
blk)z*
Xa)=§g;=k?
Za(k)z"‘
k=0

Because a partial fraction expansion requires knowledge of the roots of A(z), if the order of the denom-
inator is large, finding the roots may be difficult. Although a partial fraction expansion would give a
closed-form solution for x(n) for all n, if one only wants to plot x(n) for a limited range of values for »,
a closed-form expression is not required. Given that x(rn) = 0 for n < 0, find a recursion that generates
x(n) forn > 0.

If we consider x(n) to be the unit sample response of a linear shift-invariant system, we may straightforwardly
specify the filter in terms of a linear constant coefficient difference equation. This leads to a recursively computable
difference equation for x(n). Specifically, note that because

X(2)A(z) = B(2)
we may express this in the time domain as follows:
x(n) xa(n) = b(n)
Writing out this convolution explicitly, we have
Xp:a(k)x(n — k) = b(n)
k=0
Bringing the first term out of the summation and dividing by a(0) gives
b(n " a(k
x(n) = 21% — Z %O;X(n — k)

Therefore, given that x(n) = 0 for » < 0, this recursion allows us to compute x(n) for all » > 0. For example,

_ b(0)
X(O)_Zz(—m

_ b _aty
=20 " a0

Note that b(n) = 0 for n > g. Thus, for n > g, the recursion simplifies to
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One-Sided z-Transforms

4.30 Find the one-sided z-transform of the following sequences:

4.31

4.32

(@ x(n)=(3)"uln+3)
(b) x(n)=68(n—5)+8(n)+ 2" "u(—n)

In the following, let x, (n) denote the sequence that is formed from x(n) by setting x(n) equal to zero forn < 0, that is,

- x(n) n=>0
xXgln) =

* 0 n<0
(a) Because x(n) = (%)"u(n), the one-sided z-transform of x(n) is

!
Xi(z) = I_——”‘—

1
1 |Z|> 3
3Z

(b) For this sequence, because
xy(n) =8(n—5)+8(n)+27"8(n)

then X(@=z"+1+3=15+:7"

Let X (z) be the one-sided z-transform of x(n). Find the one-sided z-transform of y(n) = x(n + 1).
The one-sided z-transform of x(#) is
oC
X1(@) = xO@ + x(z ™ +x@z 2 4=y x(mz "
n=0
If x(n) is advanced in time by one, y(n) = x(n + 1), the one-sided z-transform of y(n) is

Yi(z) = iy(n)zf" = ix(n + 1)z7™"

n=0 n=0

Therefore, Yi2)=x()+x@)z" +x(3)z 2+

Comparing this to X ,(z), we see that
Yi(z) = z[X(z) — x(0)]

Consider the LCCDE
y(n)—3y(n=2)=8n) n=0

Find a set of initial conditions on y(n) for n < 0 so that y(n) = 0 for n > 0.

The one-sided z-transform of the LCCDE is
Vi) = Hz7Yi@) + y(= Dz + y(=2)]) = |

Solving for Y,(z), we have
1+ ﬁ[_Y(—Z) +y(—Dz7"]

1,2
1 iZ

Yi(z) =

In order for y(n) to be equal to zero for n > 0, Y,(z) must be equal to zero. This will be the case when

1+ 4y(=2)=0
y(=hH=0

or YD =4 y(=1)=0
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4.33 Consider a system described by the difference equation
y(n)=y(n —1) — y(n —2) + 0.5x(n) + 0.5x(n — 1)
Find the response of this system to the input
x(n) = (0.5)"u(n)

with initial conditions y(—1) = 0.75 and y(—2) = 0.25.

This is the same problem as Prob. 1.37. Whereas this difference equation was solved in Chap. 1 by finding the
particular and homogeneous solutions, here we will use the one-sided z-transform.
First, we take the one-sided z-transform of each term in the difference equation

Yzy=z""Y@)+y(—D) =27V @)+ 27 y(=D) + y(=2] + 1X(@) + 127X (2)
Substituting the given values for the initial conditions, we have

Y@y =z"Y(z)+:

3
4

— (@) -7 = L+ X @) + 327 X(2)
Collecting all of the terms that contain Y (z) onto the left side of the equation gives
YU -z 427 =1 = 227+ 1X() + 527X ()

Because x(n) = (%)"u(n).

which gives

1 3,1 1 1 —1i
Y 2 T % E+§z
(Z) 1 —1 -2 | ] 1 2
77l 4z (]_iz )(1_2 +z7?)

Expanding the second term using a partial fraction expansion, we have

-1

13- |
3— 32 3 z
Y = 2 4 + 2 +
(@) =zl 4272 p—gz7t 1=zl 4272
| Ly oL-1
- - +_Z
or Y(z) = —2 z__4
@) ) =gzt 1=zl 4272

Therefore, the solution is

sy = (1t + [% sin (%) + L sin(n — 1)%]14(,1)
4.34  Adigital filter that is implemented on a DSP chip is described by the linear constant coefficient difference
equation

y(n) = 3y(n — 1) = gy(n —2) + x(n)

In evaluating the performance of the filter, the unit sample response is measured (i.e., the response y(n)
to the input x(n) = 8(n) is determined). The internal storage registers on the chip, however, are not set
to zero prior to applying the input. Therefore, the output of the filter contains the effect of the initial
conditions, which are

=1 =-1 and y—=2)=1
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Determine the response of the filter for all » > 0 and compare it with the zero state response (i.e., the
output with y(—1) = y(=2) = 0).

Here we want to solve a difference equation that has initial conditions. Using the one-sided z-transform, we have
Y(2) = {Hz 'Y (@) + y(=D) = {27V @) + y(=Dz7 4+ y(=2)) + X (2)
With X (z) = | and the given initial conditions, this becomes
Y@ =2"Y@ - - Mz @ -2+ 1)+

Solving for Y (z), we find

Performing a partial fraction expansion gives

Y =
(2) l

Thus, with an inverse z-transform we have

The zero state response, on the other hand, is simply the unit sample response of the filter. With

i 2 1
Ho = I— iz 412 11,1 1-1;
4 8 2-

it follows that

hon = [2(3)" = (5) Jutn)
Applications

4.35 There are two kinds of particles inside a nuclear reactor. Every second, an « particle will split into eight
B particles and a 8 particle will split into an « particle and two g particles. If there is a single « particle
in the reactor at time ¢ = 0, how may particles are there altogether at time ¢t = 1007

In this problem we need to begin by writing down, in mathematical terms, what is happening within the reactor. Let
a(n) be the number of « particles in the reactor at time »n, and let 8(n) be the number of 8 particles. Because there
are eight B particles created from each « particle and two from each 8 particle, we have

Bn) =8an — 1)+2Bn -1
Also, because one « particle is created from each f particle,
a(n) =pn—1)
Substituting the second equation into the first, we have
B(n)=8B(n—2)+2Bn-1)

which is an equation that defines how many B particles there are in the reactor at time n. Because there is one o
particle in the reactor at time n = 0, it follows that there are eight 8 particles at time » = 1. Therefore, the initial
condition associated with B(n) is (1) = 8, and this may be incorporated into the equation as follows:

B(n) =8B(n —2)+2B(n—1)+85(n—1) n>1
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with B(n) = 0 for n < 1. Using z-transforms, we may solve this equation for S(n) as follows:

8z7! %
B = p— j—
D= g~ T4 1120

wid

Taking the inverse z-transform, we have
B(ny = 34 u(n) — 5(=2)"u(n)

Finally, because the number of « particles at time # is equal to the number of S particles at time {(n — 1), the total
number of particles at time n = 100 is

N = B(100) + B(99) = ('™ = (=2)'® + @)* — (-=2)*] = ¢[54)* + (-2)*°]

A $100,000 mortgage is to be paid off in 360 equal monthly payments of d dollars. Interest, compounded
monthly, is charged at the rate of 10 percent per annum on the unpaid balance (e.g., after the first month
the total debt equals $100,000 + oi—lz(-)$100,000). Find the payment d so that the mortgage is paid in full
after 30 years, leaving a net balance of zero.

This is the same problem that was solved in Prob. 1.39. Here, however, we will use the z-transform to find the solution.

The total unpaid balance at the end of the nth month, in the absence of any additional loans or payments, is
equal to the unpaid balance in the previous month plus the interest charged on the unpaid balance for the previous
month. Therefore, if y(n) is the balance at the end of the nth month,

y(n)=y(n = 1)+ By(n — 1)

where B is the interest charged on the unpaid balance. In addition, the balance must be adjusted by the amount of
money leaving the bank into your pocket, which is simply the amount borrowed in the nth month and the amount
paid to the bank in the nth month. Thus

y(ny =y — 1)+ By(n — 1) + xp(n) — x,(n)

where x,(n) is the amount borrowed in the nth month, and x,(#) is the amount paid in the nth month. Combining
terms, we have
y() —vy(n — 1) = xp(n) — x,(n) = x(n)

where v = 1+ = 140.10/12, and x(n) is the net amount of money in the nth month that leaves the bank. Because a
principal of p dollars is borrowed during month zero, and payments of d dollars begin with month 1, the input x(n) is

x(n) = xp(n) — xp(n) = pd(n) —du(n — 1)
and the difference equation for y(n) becomes
y(n) —vy(n — 1) = pd(n) — du(n — 1)
Expressing this difference equation in terms of z-transforms, we have

Y@) - vz 'Y (@)= p—d—
1 —z!

Solving for Y (z), we find

Y(z) =

p—(p+dz"" 1 [p+td—pv d
(I—vz-hY1 =2z 1—-v| 1 —vz” 1 -z

Taking the inverse z-transforms yields

1
y(n) = T__—‘v[(p +d — pv" —dlu(n)
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We now want to find the value of d so that the mortgage is retired after 360 equal monthly payments. That is, we
want to find d so that

¥(360) = l—l—[(p +d—pon¥® —d1=0

-V

Solving for d, we have

_ el —v) 5
d= [ — p360

With v = 121 and p = 100,000 we have

.1
12

d =8717.57

which is the same as we had previously calculated.

A generalized Fibonacci sequence is a sequence of numbers, x(n), that satisfies the difference equation

x(n+2)=x(n)+x(n+1) for n>0

That is, x(n) is the sum of the two previous values. The classical Fibonacci sequence results when the
initial conditions are x(0) = 0 and x(1) = 1. The Fibonacci numbers occur in such unsuspecting places
as the number of ancestors in succeeding generations of the male bee, the input impedance of a resistor
ladder network, and the spacing of buds on the branch of a tree.

(a) Find a closed-form expression for x(n).
(b) Show that the ratio x(n)/x(n + 1) approaches the limit 2/(1 + V/3) as n — oo. This ratio is known

()

(a)

as the golden mean and was said by the ancient Greeks to be the ratio of the sides of the rectangle
that has the most pleasing proportions.

Show that the Fibonacci sequence has the following properties:
1. 2(m)+x*n+1)=x2n+1)
2. xXn+2)—xX(n+1)=x(n)x(n +3)

Here we have a second-order linear constant coefficient difference equation that we want to solve. Let us begin
by rewriting it in a slightly different form. Specifically, consider the following

x(ny—x(n—=1)—x(n—=2)=46n—-1)

where we assume that x(n) = 0 for n < 0 (i.e, initial rest). Written in this form with the delayed unit sample
on the right-hand side, we note that x(0) = 0 and x(1) = 1 as desired and x(n + 2) = x(n) + x(n + 1) for
n > 0. The solution to this difference equation may be found using z-transforms as follows:

X@) —2"'X(2)— 272 X(z) =z

Solving for X(z), we have
-1

X(z):l

R )

The poles of X(z) are located at z = (1 & +/5)/2, and the partial fraction expansion of X (z) is

1 ]
e e

Taking the inverse z-transform of X(z), we find

x(n) = = [(252)" = (:58) Jum)
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(b) Starting with the difference equation that defines the Fibonacci sequence, divide both sides by x(n + 1):

x(n+2)  x(n)
xn+1  x(n+D

+ 1

If we define r(n) to be the ratio of two successive Fibonacci numbers

) _ x(n+1)
r(n) = NS
|
we have rin+1)=——+1
r(n)
or rin+ )rin) =14r(n)
If we let n — o0, and define r(o0) = lim,_, », ¥ (1), we have

r3(00) = 1 + r(c0)

Solving this quadratic equation for r(00), we find

S

==
2

r(co) =
However, because r(n) > 0, it follows that r(c0) is the positive root, which is

1+5
2

r(oo) =

Finally, because
x(n) |

x(n+1) - r(n)

x(n) 2

then lim =
neoox(n 1) 1 +4/5

(¢) For the first property, we may simply substitute the closed-form expression for the Fibonacci sequence into the
equation, and verify that it is true. For the second property, from the definition of the Fibonacci sequence we have

xHn+2) = x2(n) + x*n 4+ 1) + 2x(n)x(n + 1)
which we may rewrite as
xXXn+2) = x*(n+ 1) = x()lx(n) + 2x(n + D)

However, note that
xn+3)=xn+D+x(n+2)=x(n)+2x(n+1)

Substituting this into the previous equation, we have the desired property.

4.38 A savings account pays interest at the rate of 5 percent per year with interest compounded monthly.

(a) If $50 is deposited into the account every month for 60 months, find the balance in the account at
the end of the 60 months. Assume that the money is deposited on the first day of the month so that,
at the end of the month, an entire month’s interest has been earned.

(b) If no deposits are made for the next 60 months, find the account balance at the end of the next 60-
month period.
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Instead of being compounded monthly, suppose that the bank offers to compound the interest daily.
Compute the account balance at the end of 60 months and 120 months and compare your balances
with those obtained when the interest is compounded monthly.

The savings account balance at the beginning of the nth month is equal to the balance in the previous month
plus the amount deposited in the nth month plus the interest earned on the balance from the previous month.
Therefore, if y(n) is the balance at the beginning of the nth month,

y(n)=y(n — 1)+ By(n — 1) + x(n)

where B is the interest earned on the account, and x(n) is the amount deposited into the savings account in the
nth month. Taking z-transforms, and solving for Y (z), we have

Y(z) = X(z)

Tl =z
where v = | + B. With $50 deposits beginning with month number zero, x(n) = 50u(n), and

1

Y(z) = 50(1 vy p—

Performing a partial fraction expansion of Y (z), we have

Y() 50 1 v
Z) = -
l—v|l—2z"! 1 —vz!

Taking the inverse z-transform, we have

Yo = 21— v ) 48)

Withv =14 g,and 8 = % at the end of 60 months, after ¢arning | month’s interest, but prior to making
the next deposit, the balance is

50 o
Y(60) = T [1 = v*'] = 50 = 3.412.47
—V

With no deposits for the next 60 months, the balance at the end of the first 60 months simply grows as

y(n) = y(60y - v 1 > 60

Therefore, y(120) = 4,379.42

With the interest compounded daily, let us compute the effective monthly interest rate. Assuming a balance of
$1 at the beginning of the month, the difference equation that describes the daily balance, w(n), is

w(n) = wn — 1)+ Bwn — 1)+ 8(n)
where 8 = ‘;—255 Using z-transforms as we did in part (a), the solution to this difference equation is
w(n) = v'u(n)
where v = | + 8. Assuming that a month is 30 days long, for | month’s interest we have
w(30) = 1> = 1.004175
Using v = 1.004175 in Eq. (4.8), we have

y(60) = 3,465.37
y(120) = 4,449.56
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The deterministic autocorrelation sequence corresponding to a sequence x(n) is defined as

2.2

re(n) = Z x(k)x(n + k)

k=—00
(a) Express r,(n) as the convolution of two sequences, and find the z-transform of r,(r) in terms of the
z-transform of x(n).

(b) If x(n) = a"u(n), where |a| < 1, find the autocorrelation sequence, r,(n), and its z-transform.

(a) From the definition of the deterministic autocorrelation, we see that r.(n) is the convolution of x(n) with
x(—=n),
ro(ny = x(n) x x(—n)

Therefore, using the time-reversal property of the z-transform, it follows that
R(2) = X(2)X(z™")

If the region of convergence of X(z) is R,, the region of convergence of R,(z) will be the intersection
of the regions R, and 1/R,. Therefore, if this intersection is to be nonempty, R, must include the unit
circle.

(b) With x(n) = a"u(n), the z-transform is

1
X(2)=—77 lz| > lal
| —az
and the z-transform of the autocorrelation sequence is
Ri(2) : lal < 12| < —
A e TP —— al < |z| <« —
! (1 —az=")1 — az) lal

The autocorrelation sequence may be found by computing the inverse z-transform of R,(z). Performing a partial
fraction expansion of R.(z), we have

[ B
Rx(z)z( 1 a’'z 1 [ 1 3 1 :I

l—az (0 —az) (I—azYl-a'z-0) 1-a?|1—az-' 1—alz

Thus, because the region of convergence is |a| < z < 1/|a|, the inverse z-transform is

I

e [@"u(n)+a "u(—n —1)] = 7

r(n) = a

In many disciplines, differential equations play a major role in characterizing the behavior of various phe-
nomena. Obtaining an approximate solution to a differential equation with the use of a digital computer
requires that the differential equation be put into a form that is suitable for digital computation. This prob-
lem presents a transformation procedure that will convert a differential equation into a difference equation,
which may then be solved by a digital computer. Consider a first-order differential equation of the form

d
Zya(t) + aya(t) = x,(t)

where y,(0)=yo. Because numerical techniques are to be used, we will restrict our attention to investi-
gating y,(¢) at sampling instants nT where T is the sampling period. Evaluating the differential equation
att = nT, we have

d
Eya(nT) + ay.(nT) = x,(nT)
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From calculus we know that the derivative of a function y,(¢) att = aT is simply the slope of the function
at t = nT. This slope may be approximated by the relationship

d 1
Eya(nT) ~ F[ya("T) — yo(nT —T)]

(a) Insert this approximation into the sampled differential equation above and find a difference equation
that relates y(n) = y,(nT) and x(n) = x,(nT), and specify the appropriate initial conditions.

(b) With x,(t) = u(t) and y,(07) = 1, numerically solve the differential equation using the difference
equation approximation obtained above.

(c¢) Compare your approximation to the exact solution.

d
(@) with Eya(t)+oeya(t)=xa<!) ¥a(07) = yo

using the approximation

d 1
S YD)~ [yunT) = yu(nT =]

we have 206 T) = 3T = D +anT) = 5 T) 30 = 3o
If we let y(n) = y,(nT) and x(n) = x,(nT),

1
7[y(") —y(n—Dl+ay(n)=x(n)  y0)=y

With a=

this becomes
y(n)—ay(n — 1) =aTx(n)  y(0) =y

(b) Using the one-sided z-transform to solve this difference equation, we have
Yi(2) —alz”'Yi(2) + y(=D] = aT X(2)

We must now derive the initial condition on y(n) at time n = —1 from the initial condition at n = 0. From the
difference equation, we have

¥(0) — ay(=1) = aTx(0)

With y(0) = 1 and x(0) = 1, the initial condition becomes

Y1) = 1 - aT'
With x,(2) = u(t) or x(n) = u(n),
XO=145
Therefore, using the given initial condition, we have
aT 1—aT

e T L g
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Performing a partial fraction expansion gives
aT a’T
a | —aT
Y — | —a = |—u
o) l—z7' 1—agz' | —az!
and we may find y(»n) by taking the inverse z-transform:
aT T
yn) = _ 1 a"+ (1 —aT)a" n>0
I —a 1 —a
aT T l+aoT 1

I—a=l+ozT> aT o

l l n
| — — >0
+( 01)(|+0!T) "=

(c) The solution to the differential equation is a sum of two terms. The first is the homogeneous solution, which is

Because

this may be written as

yh(l) = Ae™™
where A is a constant that is selected in order to satisfy the initial condition y(0™) = 1. The second is the
particular solution, which is
(1) !
y = -
" «

Thus, the total solution is
|
Yolt) = — + Ae™™
@

Evaluating this at time 1 = 07,
1

Yo (0)=—+A
o

we see that in order to match the initial conditions. we must have

Therefore,

If we compare this to the approximation in part (b), note that if T < 1,
e—mll:nT — (euT)fn ~ (l + aT)—n

1 1 1 "
s+ (1) ()

and
Supplementary Problems
z-Transforms
4.41  Find the z-transform of
MW" <10
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442  The z-transform of a sequence x(n) is
| —4z7' 4272
Xz)= —— T °7°
@ = 3105

If the region of convergence includes the unit circle, find the DTFT of x(n) at = 7/2.
4.43  Find the z-transform of each of the following sequences:

(@) x(n)=(—1)'u(n)

(b) x(n)= %u(n -1

(¢) x(n) = zcosh(an)u(n)

4.44  Find the z-transform of the sequence

Ytk nz0
yin) =4 =
0 n<0
4.45  Find the z-transform of the sequence
N N!
X(ﬂ)z(n)=m (JSnSN
446  How many different sequences have a z-transform given by
1—-2z7" 43272

H(z) =

(= F 5+ 1)
4.47  The sequence y(n) is formed from x(n) by
Yy =3 kx(k)
k=0

where X(z) = sinz~'. Find Y (2).
4.48 If x(n) is an absolutely summable sequence with a rational z-transform that has poles at z = % and z = 2, what can

be said about the extent of x(n) (i.e., finite in length, right-sided, etc.)?
Properties
449 A right-sided sequence x(n) has a z-transform X (z) given by

2: 8427622704+ 4
278 2775 — 4773

X(z) =

Find the values of x(n) forall n < 0.

4,50  Use the z-transform to perform the convolution of the following two sequences:

x(n) = 8(n) —28(n —2)
h(n) = 28(n) —28(n —1)+38(n—2)+d6(n—73)

4.51  Evaluate the following summation:
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4.52  Find the value of x(0) for the sequence that has a z-transform

z+3+z7!

(=50 5)

X(2) =

1
lz| > 5

4.53 A right-sided sequence has a z-transform

27743274 =227 4
327948277 —4z2

X(z) =

Find the index and the value of the first nonzero value of x(n).

Inverse z-Transforms

4.54  Find the inverse z-transform of
1

(@) X()= m

2| > 0.4

b) X(@) = lz] > 0.2

1—-0.2z2
4,55  Find the inverse z-transform of X (z) = cosz~'. Assume that the ROC includes the unit circle, |z| = 1.
4.56  Find the inverse z-transform of X(z) = ¢*. Assume that the ROC includes the unit circle, |z| = 1.

4.57  Find the inverse z-transform ot

oz
X(z)= = lz] > 1
4.58  Find the inverse z-transform of
14 Lzt
X(2)= —— |zl <}
(1-4)
1
459 If X(z)= —— 2] <2
z—2
find the values of x(n) at n = —2 and n = —1 using contour integration.

4.60  Use the residue theorem to find the value of x(n) at n = 10 when

1 —3z7¢
X(z) = , '
O= 00z naroen 700

4.61 Find the inverse z-transform of

X(z) = log(l —22) |z| < %

One-Sided z-Transforms
4.62  Find the one-sided z-transform of the sequences x(n) = (;)""\.

4.63  Let X,(z) be the one-sided z-transform of x(n).
(a) Find the one-sided z-transform of y(n) = x(n — I).

(b) Find the one-sided z-transform of y(n) = x(n + 3).
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4.64  Find the solution to the following linear constant coefficient difference equations:

(a) y(n)= %y(n — 1)+ x(n) with x(n) = u(n) and y(—1) = %.

by yn) = y(n —1)— y(n —2) + 2u(n) with y(=1) = 2 and y(-2) = 1.

(¢) y(n)+ y(n —2) = 68(n) with y(—1) = l and y(-2) = 0.
4.65 The sequence y(n) is the solution to the LCCDE

y(n)—-%y(n—l)+%y(n—2)=x(n) n>0

with x(#) = 8(n). Find a set of initial conditions on y(n) for n < 0 so that y(n) = 1 forn > 0.

4.66  Consider the following difference equation:
y(n) + y(n —2) = x(n) + x(n — 1)

If x(n) = 10u(n) and y(—=2) = —10 and y(-1) = O, find the output sequence y(n) forn > 0.
Applications
4.67  Determine the number of years that are required for an investment of money in a savings account to double if the

money is compounded monthly at an annual rate of (a) 5 percent and () 10 percent.
4.68  Suppose that x(n) has a z-transform

1 1
X(z) = -
@) I —az=! 1 —=pz"!
with |a| < 1 and |b| < 1 and a region of convergence that includes the unit circle. (@) Find the deterministic autocor-
relation sequence r,(n). (b) Find another sequence that has the same autocorrelation.
Answers to Supplimentary Problems
1\ 10 10 B
g ()"0 - (39 0 - 1)
(1= 327)(1-32)

—1+4

442 = t4)
5+ 3j

4.43 (a) rz'—" IZ] > 1

by —log(l —z7Y, |z| > 1.

| 1
(©) |z} > max(e®. e ).
l—e%z7! 1 —ez!
444 Y(2) !
. )= ————.
(1—2z7")

445 X@2)=(04z"HV.
446  Three.

cosz™!

447

z—1
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Two-sided.

x(—3) = —1 is the only nonzero value for n < 0.

x(n) % h(n) = 28(n) — 28(n — 1) — 8(n — 2) + 58(n — 3) — 68(n — 4) — 28(n — 5).

16 — 242
17-442

x(0) = 2.

x(=2) = —

i
1

(@ (n+ DO0.4D"u(n).

(0.2)"/2 n even
(b) x(m) = { 0 else

k=0

x(n) = Lu(—n).

(—n)!

x(n) =68(n+5)—2 Z 8(n — 5k).

k=0

(1) u=n ==+ DE) u=n =2 =8 + 1D — B+ (1) u(=n - 2).

x(—=1)=—1and x(=2) = —4.

2(=0.6)°[(—0.6)* — 3] + $(0.2)°((0.2)* — 3].

n~127"u(—=n — 1).

Xi(z) =

NP
1 2z

(@ z7'X,@2)+ x(=1.
®) [Xi(z) — x(0) — x(Dz™" = x(2)z72)23.

@ [2-7(3)"Juen.
b [2+ % sin(n + D7 /3]u(n).
(¢} [cos(nm/2) — sin(nm/2))u(n).

y(=1) =1and y(-2) = 3.
y(n) = 10 + 10v/2 cos(nm /2 — 7 /4), n=0.

(a) 167 months. (b) 84 months.

1
||
—2% YT, =

) x'(n) =a"u(n) — b "u(—n —1).

(@) re(n)y=

1
bl — ab[(a" +b6Mun) + (@™ + b "u(—n — 1.

[CHAP. 4



Chapter 5

Transform Analysis of Systems

5.1 INTRODUCTION
Given a linear shift-invariant system with a unit sample response A(n), the input and output are related by a
convolution sum

oo

y(n) = h(m) * x(n) = Y h(k)x(n — &)

k=—00

As discussed in Chap. 2, this relationship implies that ¥ (e/®) = X(e/®)H (e/“) where H(e/®), the frequency
response of the system, is the discrete-time Fourier transform of 4(n). This relationship between x(»n) and y(n)
may also be expressed in the z-transform domain as

Y(2) = X(2)H(2)

where H(z), the z-transform of h(n), is the system function of the LSI system. The system function is very
useful in the description and analysis of LSI systems. In this chapter, we look at the characterization of a linear
shift-invariant system in terms of its system function and discuss special types of LSI systems such as linear
phase systems, allpass systems, minimum phase systems, and feedback networks,

5.2 SYSTEM FUNCTION

The frequency response of a linear shift-invariant system is the discrete-time Fourier transform of the unit sample
response, and the system function is the z-transform of the unit sample response:

H(z) = Z h(n)z™" (5.1

The frequency response may be derived from the system function by evaluating H (z) around the unit circle:

H(e!®) = H(z)

z=e/¥

If the z-transform of the input to a linear shift-invariant system with a system function H(z) is X(z), the
z-transform of the output is
Y(z) = H(z)X(2)

For linear shift-invariant systems that are described by a linear constant coefficient difference equation,

r q
Y+ aloyn —k) =Y bkix(n — k)
k=1 k=0

the system function is a rational function of z:

q q
blk)z~* 1—[(1 —Bz™hH
H(z) = —*=° =A% (5.2)

P P
L+ Y atkz™ [Ja—az™
k=1 k=1
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Therefore, the system function is defined, to within a scale factor, by the location of its poles, «y, and zeros, S;.
Note that each term in the numerator

z— B

z

= pz™! =

contributes a zero to the system function at z = $; and a pole to the system function at z = 0. Similarly, each
term in the denominator contributes a pole at z = o and a zero at z = 0. Therefore, including the poles and
zeros that may lie at z = 0 or z = oo, the number of zeros in H(z) is equal to the number of poles.

If the unit sample response is real-valued, H (z) is a conjugate symmetric function of z,

H(z)= H*(z")

and the complex poles and zeros occur in conjugate symmetric pairs (i.e., if there is a complex pole (zero) at
z = zg, there is also a complex pole (zero) at z = zj)).

5.2.1 Stability and Causality

Stability and causality impose some constraints on the system function of a linear shift-invariant system.

Stability
The unit sample response of a stable system must be absolutely summable:
o0
> )] < o0
n=—0o00
Note that because this is equivalent to the condition that

Z |A(n)|z7" < 00

H=—00

for |z| = 1, the region of convergence of the system function must include the unit circle if the system is stable.

Causality

Because the unit sample response of a causal system is right-sided, #(rn) = 0 for n < 0, the region of convergence
of H(z) will be the exterior of a circle, |z| > «. Because no poles may lie within the region of convergence, all
of the poles of H (z) must lie on or inside the circle |z| < «.

Causality imposes some tight constraints on a linear shift-invariant system. The first of these is the Paley-
Wiener theorem.

Paley-Wiener Theorem: If /(n) has finite energy and 4(n) = 0 for n < 0,

f[mHW%Ww<w

One of the consequences of this theorem is that the frequency response of a stable and causal system cannot be
zero over any finite band of frequencies. Therefore, any stable ideal frequency selective filter will be noncausal.

Causality also places restrictions on the real and imaginary parts of the frequency response. For example,
if h(n) is real, h(n) may be decomposed into its even and odd parts as follows:

h(n) = ho(n) + ho(n)

where he(n) = 31h(n) + h(—n)]
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and ho(n) = Y[h(n) = h(=n)]
If A(n) is causal, it is uniquely defined by its even part:
h(n) = 2h(n)u(n) — he(n)d(n)

If h(n) is absolutely summable, the DTFT of A(n) exists, and H(el®) may be written in terms of its real and
imaginary parts as follows:

H(e/®) = Hg(e’”) + jH (')
Therefore, because Hg(e/“) is the DTFT of the even part of 4(n), it follows that if 4(n) is real, stable, and causal,

H (e’®) is uniquely defined by its real part. This implies a relationship between the real and imaginary parts of
H(e’®), which is given by

H (e/®) = ’%E / HR(ef'*’)cot(Q%Q)de (5.3)

This integral is called a discrete Hilbert transform. Specifically, H;(e/) is the discrete Hilbert transform of
Hg(e’?).

Realizable Systems

A realizable system is one that is both stable and causal. A realizable system will have a system function with a
region of convergence of the form |z| > o where 0 < o < 1. Therefore, any poles of H(z) must lie inside the
unit circle. For example, the first-order system

H(z) = W’:f(—ol))—zj 21 > la(1)|
will be realizable (stable and causal) if and only if
la(1)] <1
For the second-order system,
b(0)

H(z) =

l+a(Dz7'+a(2)z72
H (z) has two zeros at the origin and poles at
o a(l) N a*(1) — 4a(2)
1y &2 = 7 4

These roots satisfy the following two equations:
a(l) = —(a; +a)
a)y=a; - a
From these equations, it follows that the roots of H (z) will be inside the unit circle if and only if (see Prob. 8.29)
la2)] < 1
la(1)] < 1+ a(2)

These constraints define a stability triangle in the coefficient plane as shown in Fig. 5-1. Thus, a causal second-
order system will be stable if and only if the coefficients a(1) and a(2) lie inside this triangle. This result is
of special interest, because second-order systems are the basic building blocks for higher-order systems. If the
coefficients lie in the shaded region above the parabola defined by the equation

a’(1)—4a(2)=0

the roots are complex; otherwise they are real.
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Fig. 5-1. The stability triangle, which is defined by the lines |a(2)| < 1
and |a(1){ < 14+a(2). The shaded region above the parabola a*(l)—
4a(2) = O contains the values of a(1) and a(2) that correspond to
complex roots.

5.2.2 Inverse Systems

For a linear shift-invariant system with a system function H(z), the inverse system is defined to be the system
that has a system function G(z) such that
H(z) - G@z)=1

In other words, the cascade of H(z) with G (z) produces the identity system. In terms of H(z), the inverse is
simply

G(z) =

H(z)

For example, if H(z) is a rational function of z as given in Eq. (5.2). the inverse system is

Thus, the poles of H(z) become the zeros of G(z), and the zeros of H (z) become the poles of G(z). The region
of convergence that is associated with the inverse system is determined by the requirement that H (z) and G(z)
have overlapping regions of convergence.!

EXAMPLE 5.2.1 If

1 —0.5z"
H(Z)zr—o_&'j [Z'>08

the inverse system is

1 —0.8z"!

1 —0.5z-
There are two possible regions of convergence for g(n). The first is |z} > %, and the second is |z| < % Because |z| < % does
not overlap the region of convergence for H (z), the only possibility for the inverse system is |z| > % In this case, the unit
sample response is

G(z) =

gmy = (1)'umy—08(3)" un = 1)

UIf this were not the case, H (z)G (z) would not be the identity system, because the region of convergence would be empty.
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which is stable and causal. However, suppose that

0 5—z7!
H(z) = 08 |z| > 0.8
In this case, the inverse system is
1 -08z" 1-0.8z7"
G(z) = =2

where the region of convergence may be either [z| > 2 or |z| < 2. Because both regions of convergence overlap the region of
convergence of f(z), both are valid inverse systems. The first, which has a region of convergence |z[ > 2, has a unit sample
response

2(n) =212 u(n) — 1.6(2)"'u(n - 1)

and is causal but unstable. The second, with a region of convergence |z| < 2, has a unit sample response
g(n)y = =2(2)"u(=n — 1) + 1.6(2)" ' u(—n)

and is stable but noncausal.

5.2.3 Unit Sample Response for Rational System Functions

A linear shift-invariant system with a rational system function may be written in factored form as follows:

q
1—1 l - ﬁkZ

H(z) = ; 5.4
[

l—OlkZ

Assuming only first-order poles, with o, 5 B for all k and [, if p > ¢, H(z) may be expanded using a partial
fraction expansion as follows:

H() = i Ak
N =1 —oyz!
If the system is causal, the unit sample response is
h(n) = i Ao u(n) 5.5
k=1

When p < g, the partial fraction expansion has the form

and, if the system is causal, the unit sample response becomes

h(n) = Z Bid(n — k) + Z A u(n)

k=0

If p =0, H(z) has only zeros,
q
H(z) = btk)z™*
k=0
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and A(n) is finite in length with

q
h(n) = }: b(k)s(n — k) (5.6)
k=0

These systems are called finite-length impulse response (FIR) filters. If p > 0, H(z) is infinite in length, and
these systems are called infinite-length impulse response (IIR) filters.

If h(n) is real, H(z) = H*(z*), and the complex poles and zeros of H (z) occur in complex-conjugate pairs.
For example, if a; = rye/®* is a complex-valued pole, af = rye/* will also be a pole. This symmetry implies
that the complex terms in Eq. (5.5) may be combined to form terms of the form

Ckl‘,? cos(nwy + ¢x)

5.2.4 Frequency Response for Rational System Functions

The frequency response of a linear shift-invariant system may be found from the system function by evaluating
H (z) on the unit circle. For a rational function of z, the frequency response may be found geometrically from
the poles and zeros of H(z). With H(z) written in factored form as in Eq. (5.4), the frequency response is

q .
[0 = Bee™)
He)y= A 5.7)

[]a = exe™)
k=1
Because the magnitude of the frequency response is

q
[T =B

|H(e/)| = |A|E

P .
[T -ewe™
k=1

|H (e’®)| is | A| times the product of the terms |1 — Bye /| divided by the product of the terms |1 — aze™/].
Each term in the numerator

1= Bre /| = |e/ — Bl

is the length of the vector from the zero at z = S to the unit circle at z = e/® (labeled v, in Fig. 5-2). Similarly,
each term in the denominator

11— age™| = | — ey

is the length of the vector from the pole at z = ¢ to the unit circle at z = e/ (labeled v, in Fig. 5-2). When a
pole is close to the unit circle, a; = rye/ with r; & 1, the magnitude of the frequency response becomes large
for w = wy because the length of the vector from the pole to the unit circle becomes small. Similarly, if there is
a zero close to the unit circle, By = rye/“ withry ~ 1, the magnitude of the frequency response becomes small
for @ = wy, (if the zero is on the unit circle at z = ¢/, H(e/**) = 0).

The analysis for the phase is similar. Assuming that A is a positive real number, the phase corresponding to
the frequency response H (e/?) given by Eq. (5.7) is

q P
Pn(w) =) arg(l — Bre™/®) — Y " arg(l — ape ™)
k=1 k=1

Thus, ¢, (w) is the sum of the phases associated with the terms (1 — Bye /), minus the sum of the phases of the
terms (1 — e /?). Because
1= Bre™/® = e ~ )
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r Im(z)

Re(z)

Fig. 5-2. Evaluating the frequency response geometrically from the
poles and zeros of the system function.

then arg(l1 — Bre /) =arg(e’® — B) —w =6, —w

where 6, is the angle subtended by the vector from the zero at z = §; to the unit circle at z = e/ (see Fig. 5-2).
Similarly, for each term in the denominator

arg(l — e /) =6, —w

where 6, is the angle of the vector from the pole at z = o to the unit circle at z = ¢/“. When a pole (zero)
is close to the unit circle, the phase decreases (increases) rapidly as we move past the pole (zero). Because the
group delay is the negative of the derivative of the phase, this implies that the group delay is large and positive
close to a pole and large and negative when close to a zero.

5.3 SYSTEMS WITH LINEAR PHASE

A linear shift-invariant system is said to have linear phase if the frequency response has the form
H(e'") = [H(e/*)|e™/*
where « is a real number. Thus, linear phase systems have a constant group delay,
ww)=«a

In some applications, one is interested in designing systems that have what is referred to as generalized linear
phase. A system is said to have generalized linear phase if the frequency response has the form

H(ejtu) — A(ejw)e—](ﬂ“v—ﬂ) 5.8

where A(e/“) is a real-valued (possibly bipolar) function of w, and B is a constant. Often, the term /inear phase
is used to denote a system that has either linear or generalized linear phase.

EXAMPLE 5.3.1 Consider the FIR system with a unit sample response

1 n=0,1...,N

hm) = 0 else
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The frequency response is
: N+t
H(ejw) — e—ij/Q Slﬂ(%w)
in(3)

Therefore, this system has generalized linear phase, witha = N/2 and 8 = 0.

In order for a causal system with a rational system function to have linear phase, the unit sample response
must be finite in length. Therefore, IIR filters cannot have (generalized) linear phase. For an FIR filter with a
real-valued unit sample response of length N + 1, a sufficient condition for this filter to have generalized linear
phase is that the unit sample response be symmetric,

h(n) = h(N — n)
In this case, « = N/2 and 8 = 0 or . Another sufficient condition is that 4(n) be antisymmetric,
h(n) = —h(N — n)

which corresponds to the case in whicha = N/2 and 8 = = /2 or 3t /2.

Linear phase filters may be classified into four types, depending upon whether h(n) is symmetric or anti-
symmetric and whether N is even or odd. Each of these filters has specific constraints on the locations of the
zeros in H(z) which, in turn, place constraints on the frequency response magnitude. For each of these types,
which are described below, it is assumed that 4(n) is real-valued, and that 4(0) is the first nonzero value of A(n).

Type I Linear Phase Filters

A type I linear phase filter has a symmetric unit sample response,
h(n) = k(N — n) 0<n=<N

and N iseven. The center of symmetry is about the pointee = N /2, which is an integer, as illustrated in Fig. 5-3(a).

h(n) h(n)
,~¢— Center of symmetry
[

I
I
]
|
| " IR
-2 -1 1 2 3 4 5 6 -2 -1 1 2 3 4 5 6

(a) Type I filter. (b) Type I filter.

¢ Center of symmetry

h(n) h(n)

. Center of symmetry 1-¢— Center of symmetry

|
|
i
|
1

-2 -1 6

. 12?”5._:
HRIEERY

(c) Type I1I filter. (d) Type IV filter.
Fig. 5-3. Symmetries in the unit sample response for generalized linear phase systems.
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The frequency response of a type I linear phase filter may be expressed in the form

N/2
H(e'”) = e N> 3" a(k) cos(ka) (5.9)
k=0
N N
== — =1,2,..., —
where a(k) (2 k) k=1 5

a(0) = h(g—)

A type Il linear phase filter has a symmetric unit sample response, and N is odd. Therefore, the center of symmetry
of h(n) occurs at the half-integer value « = N /2, as illustrated in Fig. 5-3(b). The frequency response of a type
II linear phase filter may be written as

Type II Linear Phase Filters

‘ . (N+1)/2
H(e') = e~ /N> " b(k)cos[(k — })o] (5.10)
k=1
N +1 N +1
where b(k)=2h<—2L—k) k=12 " ;L )

Type 1 Linear Phase Filters
A type III linear phase filter has a unit sample response that is antisymmetric,
h(n) = —h(N — n)

and N is even. Therefore, h(n) is antisymmetric about o = N /2, which is an integer, as illustrated in Fig. 5-3(¢).
The frequency response of a type 1II linear phase filter may be written as

N/2
H(e!”) = je N/ " c(k) sin(ke) (5.10)
k=1
N N
=2h|— —k k=1,2,..., —
where c(k) h( 5 > 1, 5

Type 1V Linear Phase Filters

A type IV linear phase filter has a unit sample response that is antisymmetric, and N is odd. Therefore, h(n) is
antisymmetric about the half-integer value « = N /2, and the frequency response has the form

‘ ‘ (N+1)/2
H(el®) = je /N 3" d(k)sin[(k — §)w] (5.12)
k=1
N+ 1 N
where d(k)=2h(_—2+——k) k=125

The z-Transform of Linear Phase Systems

The symmetries in the unit sample response of a linear phase system impose constraints on the system function
H(z). For a type  or Il filter, h(n) = h(N — n), which implies that

Hiz)=zVHE™YH
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Similarly, for a type III or IV linear phase filter, 2(n) = —h(N — n), which implies that
HGz)=—2"VH@™H

In both cases, if H(z) is equal to zero at z = z¢, H (z) must also be zero at z = 1/z. Therefore, the zeros of H(z)
occur in reciprocal pairs. In addition, with A(n) being real-valued, complex zeros occur in conjugate reciprocal
pairs. Thus, the constraints on the zeros of a linear phase filter are as follows. First, H(z) may have one or more
zeros at z = %1. Second, H (z) may have complex-conjugate zeros on the unit circle at z = e/ or reciprocal
zeros on the real axis at z = ¢ and z = 1 /«. Finally, H(z) may have groups of four zeros in conjugate reciprocal
pairs at z = rye*/** and z = ;-e*/*. These constraints are illustrated in Fig. 5-4.

A Im(z2) ’Ol/z(;

4

1/2.’1 21

N
R YL
O

Fig. 5-4. Constraints on the zeros of the system function of
an FIR system with generalized linear phase and a real unit
sample response. Types III and 1V filters must have a zero
at z = 1, whereas types II and III filters must have a zero
atz = —1.

The cases of z = 1 and z = —1 deserve special attention. Evaluating the system function at z = —1 for a
type II filter, we have
H(=) =D H(-1)
Because N is odd, this implies that
H(—=1)=—-H(-1)

which will be true only if H(—1) = 0. Therefore, a type II linear phase filter must have a zero at z = —1.
Similarly, evaluating H(z) at z = —1 for a type III filter, we have

H(-1) =—(-D"H(-1)

which, because N is even, requires that there be a zero at z = —1. Because the system function evaluated at
z = —1 is equal to the frequency response at w = 7,
H(e’®) y—r =0  Types Il and III filters (5.13)

For types III and IV filters, evaluating the system function at z = |, we find
H()=—-H(l)

which will be true only if H(z) is zero at z = 1. Therefore, types III and TV linear phase filters must have a zero
at z = 1, which implies that

H(e’®))w—o =0  Types IIl and IV filters (5.14)
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5.4 ALLPASS FILTERS

An allpass filter has a frequency response with a constant magnitude,
|H(e/)] =1

This unit magnitude constraint constrains the poles and zeros of a rational system function to occur in conjugate
reciprocal pairs:
N1

HG) =[] ke (5.15)

k=1 - Az

Thus, if H(z) has a pole at z = a;, H(z) must have a zero at the conjugate reciprocal location z = 1/a;. If h(n)
is real-valued, the complex roots in Eq. (5.15) occur in conjugate pairs, and if these conjugate pairs are combined
to form second-order factors, the system function may be written as

N ~1 N -1 -2
z7'—b dy —cpz” ' +z
H(z) = l—[ —k i : k—l =2
el 1—bz il 1 —cz7 '+ dyz
where the coefficients by, ¢, and d; are real. If an allpass filter H(z) is stable and causal, the poles of H(z) lie
inside the unit circle, jax| < 1. Figure 5-5 shows a typical pole-zero plot for an allpass filter. Allpass filters are
useful for group delay equalization to compensate for phase nonlinearities.

O
 Im(2) /// 1/z;

Re(2)

1/2 2

N\
M1/
@)

Fig. 5-5. Tlustration of the conjugate reciprocal symmetry
constraint that is placed on the poles and zeros of an allpass
system.

A stable allpass filter has a group delay that is nonnegative for all w. This follows from the fact that, for a
first-order allpass factor of the form
Zfl _ (X*

H@) = (5.16)

—az™!
where a = re’%, the group delay is

@) ks
T = 5
YT T S reiteiop
Therefore, with 0 < r < 1, it follows that 7(w) > 0. Because a general allpass filter has a group delay that is a
sum of terms of this form, the group delay of a rational, stable, and causal allpass filter is nonnegative.

A filter may be cascaded with an allpass filter without changing the magnitude of the frequency response.

If the pole of the allpass filter cancels a zero, the zero is replaced with one at the conjugate reciprocal location.
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Thus, flipping one or more zeros of the system function about the unit circle does not change the magnitude of
the frequency response.

EXAMPLE 5.4.1 For a filter that has a system function

H) = 1 —02z7"
PET 05

the magnitude of the frequency response will not be changed if it is cascaded with the allpass filter

727 —~0.2
Hp(2) = =557

This allpass filter flips the zero at z = 0.2 in H(z) to its reciprocal location, z = 5, and the new filter has a system function

271 —0.2
1—-0.5z7!

G(z) =
5.5 MINIMUM PHASE SYSTEMS

A stable and causal linear shift-invariant system with a rational system function of the form given in Eq. (5.2)
has all of its poles inside the unit circle, Jax| < 1. The zeros, however, may lie anywhere in the z-plane. In some
applications, it is necessary to constrain a system so that its inverse, G(z) = 1/H(z), is also stable and causal.
This requires that the zeros of H (z) lie inside the unit circle, |8¢| < 1. A stable and causal filter that has a stable
and causal inverse is said to have minimum phase. Equivalently, we have the following definition:

Definition: A rational system function with all of its poles and zeros inside the unit circle is
said to be have minimum phase.

A minimum phase system is uniquely defined by the magnitude of its Fourier transform, |H(e/“)|. The

procedure to find H(z) from |H (¢/¢)| is as follows. Given |H (¢/®)|, we find |H (¢/*)|?, which is a function of
cos(kw). Then, by replacing cos(kw) with 1(z* + z7*), we have

G(z) = H(z)H(z™")
Finally, the minimum phase system is then formed from the poles and zeros of G (z) that are inside the unit circle.
EXAMPLE 5.5.1 Let H(z) be a minimum phase system with a Fourier transform magnitude
[H(e))* =11 —Lcosw

Expressing cos w in terms of complex exponentials,

joy2 T 1 e 1 -
IH(?I )' =E—Zel —4—8 /
and replacing e/ with z and e~/ with z™!, we have
G)=H@HE Y= -1:- 17 =(1-1z7")(1-}2)

Thus, the minimum phase system is
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A stable and causal system may always be factored into a product of a minimum phase system with an
allpass system:
H(z) = Hyin(z) - Hap(Z) 5.17)

The procedure for performing this factorization is as follows. First, all of the zeros of H(z) that are outside the
unit circle are reflected inside the unit circle to their conjugate reciprocal location. The resulting system function
is minimum phase, Hy,in(z). Then, the allpass filter is selected so that it reflects the appropriate set of zeros of
Hin(2) back outside the unit circle.

EXAMPLE 5§.5.2 For the system function

| —2z7!

H(z)=
) (1 -02z7"(1—=0.7z7H

the minimum phase factor is
_ 7' =2
S (1 =02z7")(1 = 0.727)

H(z)
Then, to reflect the zero at z = 0.5 back outside the unit circle to z = 2, we use the allpass factor

[ —-2z7!

Hap(z) = 1.2

Two properties of minimum phase systems are as follows. First, of all systems that have the same Fourier
transform magnitude, the minimum phase system has the minimum group delay. This follows from the factor-
ization given in Eq. (5.17). Specifically, let Hyin(z) be a minimum phase system, and let H(z) be another system
with the same magnitude. The group delay for H(z) may be written as

Th(w) = Tmin(w) + Tap(w)

where 7,5(w) is the group delay of a stable and causal allpass system. Because T,5(w) > 0, the group delay of H (z)
will be larger than the group delay of the minimum phase system Hy,;,(z). Furthermore, because the phase is the
negative of the integral of the group delay, the minimum phase system is also said to have the minimum phase-lag.

The second property of minimum phase systems is that they have the minimum energy delay. Specifically, if
hmin(n) is the unit sample response of a minimum phase system, and /(n) is the unit sample response of another
causal system that has the same magnitude response,

Y IR OF < Y i
k=0 k=0

for any n > 0.

5.6 FEEDBACK SYSTEMS

Feedback systems are used in many applications such as stabilization of unstable systems, compensation of
nonideal elements, tracking systems, and inverse system design. The general configuration of a discrete-time
feedback system is shown in Fig. 5-6. The system H(z) is referred to as the system function of the forward path,
and G(z) is referred to as the system function of the feedback path. The system function relating the input x(n)
to the output y(n) is called the closed-loop system function and is denoted by Q(z). Because

Y(2) = H@I[X(2) — G(2)Y(2)]
the closed-loop system function is

_ Y(z) _ H(z)
T X)) 14+ G@H()

0(2) (5.18)
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x(n) yin)
H(z) T P

G(z)

A

Fig. 5-6. A feedback network.

If H(z) and G(z) are rational functions of z,

H(Z) — gh(i) G(Z) _ Ng(Z)
h(‘-) Dg(z)

the closed-loop system function may be written as

_ Na(2)Dy(2)
Do@)Di(z) + Ne(2INi(2)

0(z)

Therefore, the poles of the closed-loop system ((z) are the roots of the equation
Do(z2)Dp(z) + Ny(2)Ny(z) =0 (5.19)
With the appropriate order and coefficients for G(z), the poles may be placed anywhere in the z-plane.

EXAMPLE 5.6.1 Suppose that we have an unstable system with system function

1

Hz)= ——
@ =17

Placed in a feedback network with
Giz)=K
the system function of the closed-loop system is

Y  H@) ! !

0O = ) =T kD~ (120 4K - O+ K) 1.2

which has a pole at z = 1.2/(1 + K'). Therefore, this system will be stable for all K > 0.2.

Solved Problems

System Function

5.1  If the input to a linear shift-invariant system is
x(n) = (3)"uln) + 2"u(—n — 1)

the output is
y(n) = 6(3)"u(n) = 6(2)"un)

Find the system function, H(z), and determine whether or not the system is stable and/or causal.
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5.2

5.3

In order to find the system function, recall that H(z) = Y (z)/X(z). Because we are given both x(n) and y(n), all
that is necessary to find H (z) is to evaluate the z-transform of x(n) and y(n) and divide. With

3,1
X@) = — 1 —2f L < jz) <2
Z)= — = = z
t— %Z" =2z (l - %z")(] - 22“) :
6 6 —2z7
and Y(z) = - = ) z| >3
SR PRl e e (e e R
Y 1 —2z7!
Then, H(z) = (2) ( z)

X@ -~ (1-3)

For the region of convergence of H(z), we have two possibilities. Either |z| > % orz| < %. Because the region of

convergence of Y (z) is |z| > % and includes the intersection of the regions of convergence of X (z) and H(z), the
region of convergence of H(z) must be |z| > 3

i

Because the region of convergence of H(z) includes the unit circle, h(n) is stable, and because the region of
convergence is the exterior of a circle and includes z = o0, h(n) is causal.
When the input to a linear shift-invariant system is

x(n) = 2u(n)
the output is
n n
y(m = [4(3)" = 3(=3)"Jum)
Find the unit sample response of the system.
One approach that we may use to solve this problem is to evaluate H(z) = Y (z)/ X(z) and then compute the inverse
z-transform. Note, however, that we are given the response of the system to a step with an amplitude of 2, and we
are asked to find the unit sample response. Because
§(n) =u@)—un—-1)

if we let s(n) be the step response, it follows from linearity that

h(n) =s(n)—s(n—1)

Therefore, from the response given above, we have
h(n) = 5ly(n) — y(n = 1)]

or hn = 4[4(3)"=3(=3)" Juem—3[4(3)" =3(=3)" Jutn - 1)

A causal linear shift-invariant system is characterized by the difference equation
y(n) = zy(n — D+ gy(n = 2) + x(n) = x(n = 1)

Find the system function, /(z), and the unit sample response, #(n).

To find the system function, we take the z-transform of the difference equation,

Y(2) =127V (@) + §27Y () + X(2) - 27 X(2)

1
3



198 TRANSFORM ANALYSIS OF SYSTEMS [CHAP. 5

or Y1 - =X -2

1 1
4 8

Therefore, the system function is
Y ] -zt | —z7!

H = — = =
R R B (R (e

Because the system is causal, the region of convergence is |z| > %
To find the unit sample response, we perform a partial fraction expansion of H(z),

A B
H(z) = +

l—%z‘“‘ 1+ 1z

|-z~
where A:(I—lzz")H(z) = | _'l ——_%
“12) ]+ZZ 12
1.,-1 -z 5
B=(1+57")H@) =L =3
“l=_4 2“ ~l—_4
_2 !
Therefore, H(z)= 3 3
@) 1 — 1z | 4+ 1z

and the unit sample response is

5.4 A causal linear shift-invariant system has a system function

14 z7!

_EZ

H(z) =

Find the z-transform of the input, x(n), that will produce the output
vy = —3(3)" ) = 32)"u(=n - 1)

To find the input to a linear shift-invariant filter that will produce a given output y(n), we use the relationship
Y(z) = H(2)X(z) to solve for X(z):

_ Y(z)
x(z) = H(z)

Computing the z-transform of y(n), we have

L4 Lm0 (1 = Lo
Therefore, X(@2) = ( 3? )( 2? ) = Al + B + ¢
(1=327)A =2z 427 P—gzt 1=270 0 1427
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1,-t |-z - g2 !
where A= (I ~ 3z )X(z) - = 20+ 0 y =
[ P PR
B =(1-2:X() - 62 "% =1
oy (l—lz")(l—#—z") ol
| - Lt 1,2
C=(+:h%@) = =&
., (=jza—2n| 0

Because i1(n) is causal, the region of convergence for H(z) is |z| > % With the region of convergence of Y(z) the

annulus } < |z| < 2, the region of convergence of X(z) is § < |z| < |. Therefore,

x(n) = Il;(ﬁ)"u(n) —22"u(—n — 1) = H(=1)'u(—n — 1)
5.5 Show that if 4(n) is real, and H (z) is rational,

9
(1—Bz™h
Hzy=A%

P
n(l —oyz "
k=1

the poles and zeros of H(z) occur in conjugate pairs.

It follows from the symmetry property of the z-transform that if 4(n) is real, H(z) = H*(z*). Therefore,

dq 4
[Ta -8 [T -8
Hey=|as | = 4 E

P
[0 =z [T -z
k=1 k=1

*

and the result follows.

5.6 Without evaluating the inverse z-transform, determine which of the following z-transforms could be the
system function of a causal but not necessarily stable discrete-time linear shift-invariant system:

(1- 4’

X(z)= ~—2~

@ X(z) -5
3
) X =121
(z—1)
_ 1)’
© X = (Z—%
(z-3)
. Ly
d X@z) = (_*_)3
(z=3)

A causal sequence is one that is equal to zero for n < 0. Therefore, the z-transform of a causal sequence may be
written as a one-sided summation:

X(z) = ix(n)z*"

n=0
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What distinguishes the z-transform of a causal signal from one that is not is the fact that X (z) does not contain any
positive powers of z. Consequently, if we let |z| — o0, X(z) — x(0), which is a statement of the initial value
theorem. It follows, therefore, that if x(n) is causal, this limit must be finite. For noncausal signals, on the other
hand, this limit will tend to infinity, because the z-transform will contain positive powers of z. For example, the
sequence x(n) = u(n + 1) has a z-transform

X(z):z+iz"’: :

— -1
n=0( !

P

and lim X(z) = o0

[z] =00
Thus, a z-transform may be the system function of a causal system only if
lim X(z) < 00
2|00
Of the transforms listed, only (a) and (c¢) have a finite limit as |z] — oc and, therefore, are the only ones that could
be the z-transform of a causal signal.
The result of a particular computer-aided filter design is the following causal second-order filter:

142271 4272
1 —2z7) 4+1.33z2

H(z) =

Show that this filter is unstable, and find a causal and stable filter that has the same magnitude response
as H(z).

This filter is clearly not stable, because the coefficient for 272 in the denominator, which is the product of the roots

of H(z), is greater than 1. Specifically, if the poles of H(z) are «; and «>, then oy - , = 1.33, and this implies that
at least one of the roots is outside the unit circle. Because the discriminant of the polynomial is negative,

[(2)> —4(1.33)) < 0
the roots are complex with @, = re/? and o, = re™ /% where r = +/1.33 and 8 = cos~'(1/+/1.33).

Recall that if we form a new system function given by H'(z) = H(z)G ,(z), where G ,,(z) is an allpass filter of
the form

| +az7' + Bz
Ol = G e
|H'(e/®)| = |H(e’®)|. Therefore, if
1 =227 +1.33;7?
Gl = — 77—

1.33 - 27V 422

the effect of G,p(z) is to replace the pair of complex poles in H(z) that are outside the unit circle with a complex
pole pair inside the unit circle at the reciprocal locations while preserving the magnitude response. Thus. a stable
filter that has a frequency response with the same magnitude as H (/) is the following:

14227 272
H{z) ) ——M
L 133 -2z 4272

The system function of a discrete-time linear shift-invariant system is A (z). Assume that H (z) is a rational
function of z and that H (z) is causal and stable. Determine which of the following systems are stable
and which are causal:

(@) G(z) = H(z)H*(z"%)
(b) G(z) = H'(z) where H'(z) = 5—[H(2)]
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(¢) Gy=HE™
(d) G(z)=H(-z)

With H (z) a rational function of z, if i(n) is stable and causal, the poles of H(z) (if any) are inside the unit circle,
and the region of convergence is the exterior of a circle and includes the unit circle.

(a) If H(z) is the z-transform of h(n), then H*(z*) is the z-transform of 4*(n), and the region of convergence is
the same as that for H(z). Because the region of convergence of G(z) = H(z)H*(z*) includes the regions of
convergence of H(z) and H*(z*), the region of convergence of G(z) will be the exterior of a circle and include
the unit circle. Therefore, g(n) is stable and causal.

(b) Recall that if H(z) is the z-transform of h(n),
z ,
nh(n) «— —zH'(z)
Therefore, delaying the sequence nh(n) by | yields the following z-transform pair:
z ,
(n—Dhn—=1) «— —H'(2)
and, clearly, (n — Dh(n — 1) will be causal if h(n) is causal. Finally, because H(z) is a rational function of z,

N(z)

H(z)=
( D(z)

and we have
D(N'(z) = N(:)D'(2)

H(z)= D)

Therefore, if the poles of H(z) are inside the unit circle, the poles of G(z) are inside the unit circle, and g(n) is
stable.

(c) With G(z) = H(z™"), note that if H(z) has a pole at = = z,, G(z) will have a pole at z = 1/z,. Therefore,
all of the poles of G(z) will be outside the unit circle, and g(n) cannot be both stable and causal. Because the
replacement of z with z ™! corresponds to a time reversal,

h(=n) <> H(iz""

g(n) is noncausal. Furthermore, because time-reversing a sequence does not affect its absolute summability,

S = 3 Jht-m)

H=—00 n=—nc

the region of convergence for G(z) will include the unit circle. Thus, g(n) is stable.

(d) With G(z) = H(—z2), note that replacing z with —z corresponds to modulating 4(n) by (= 1)":

o}

G(z)= H{—-2) = Z h(n)(—z)™" = Z (—D)"h(n)z™"

H=—00 n=—0o0

Therefore, if A(n) is causal and stable, so is g(»n).

Find the inverse system of
1—2:7!

&) = e

|z| > 0.6
The inverse system is
1-0.6z"

R e
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and there are two possible regions of convergence: |z| > 2 and |z| < 2. Because both of these overlap with the
region of convergence for H(z), both are valid inverse systems. For |z| > 2, the unit sample response is

g(n) = 2"u(n) — 0.6(2)" 'u(n — 1)
which is a causal but unstable system. For |z| < 2, the unit sample response is
g(n) = =2"u(—n — 1) + 0.6(2)" ' u(—n)
which is stable but noncausal. Note. however, that the system
|z] > 0.5
is both stable and causal, and the magnitude of the frequency response is the same as that of the inverse system.

Therefore, this system is realizable, and the system that is the cascade of H(z) with G(z) has a frequency response
with a magnitude of 1.

Let H(z) be a stable and causal filter with a system function

(1 —e/oz=I)(1 —e /o771

He) = A(l —refoz=1)(1 —re—iwmz)

(a) Make a pole-zero plot of the system function, and use geometric arguments to show that if » ~ 1,
the system is a notch filter.

(h) At what frequency does |H (e/*)| reach its maximum value?

(a) This system has a pair of complex zeros on the unit circle at z = ¢*/“ and a pair of complex poles just inside
the unit circle at z = re*/*. A pole-zero diagram for H(z) is shown in the figure below.

4 Im(2)

Re(z)

The first thing to note is that, due to the zeros that are on the unit circle, the frequency response goes to zero
at w = £ wy. The second thing to observe is that, as we move away from the unit circle zeros, the lengths of
the vectors from the poles to the unit circle approach the lengths of the vectors from the zeros to the unit circle.
Furthermore, the closer r is to |, the more rapidly the lengths of these vectors become the same. Therefore, if
r a1, H(e/*) is a notch filter, with a frequency response that is approximately constant except within a narrow
band ot frequencies around w = % wy, where the frequency response goes to zero.

(h) The magnitude of the frequency response increases monotonically as we more away from the unit circle zeros.
Therefore, |H (¢/“)| will reach its maximum value either at w = 0 or @ = 7. Because the frequency response
atw =01s

(1 — e/™)(1 — eI0) 2 —2coswy

(1 — ref=)(1 — re—iw0) R CoSs wy
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and the frequency response at w = 7 is

(I 4e/)(1 e /) 2+ 2coswy
(1 +res=)(1 +re=i=) ~ "1 +r2+2rcosw

|H (e/*)| will reach its maximum value at w = 0 if /2 < wy < 7, and it will reach its maximum value at
w=mif0 <wy < /2.

5.11 A signal y(n) contains a primary signal, x(n), plus two echos:
y(n) = x(n) + lzx(n —ng)+ 4lx(n —2n,4)

Find a realizable filter that will recover x(n) from y(n).

Because Y (z) is related to X (z) as follows:
Y(2)= (14 1z + Lz72) X (z)

the inverse filter is
G2 = l—ﬁl—ﬁ—
+ 3z7M + gz
We must check. however, to see whether or not this filter is realizable. First, note that we may write G(z) as
G(z) = F(")

1

where Fz)= —F——
{45271+ 3277

The poles of F(z) are at
z=—11£,jV3)
which are inside the unit circle at a radius of r = 0.5. Therefore, the poles of G(z) are inside the unit circle, at a
radjus of r = (0.5)™"¢, and G(z) is realizable.
5.12 A causal system with a real-valued unit sample response has a frequency response with areal part given by
Hg(e’®y =14 0.2cos 2w

Find h(n) and H (e/®).

We are given Hg(e/“) and are asked to find
H(e’*) = Hg(e’®) + jH; (')

Although we could find H;(e/“) using the discrete Hilbert transform, an easier approach is as follows. Because /#(n)
is causal, the even and odd parts of h(n) are

1h 0
o) — [ th(ny n#
h(0) n=20
%h(n) nx>0
and h,(n) = 0 n=20

—3h(n) n<0
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Therefore, the relationship between #,(n) and h,(n) is as follows:
h,(n) = sgn(n) - h(n)
| n>0

where sgn(n) = 0 n=20
-1 n<0

The inverse DTFT of Hg(e/“), which is the even part of i(n), is
ho(n) =8(n) +0.18(n —2)+0.18(n + 2)

Thus, h,(n) = sgn(n)h,(n) = 0.18(n —2) — 0.18(n + 2)
and H,(e’*®), the discrete-time Fourier transform of A,(n), is

Hi(e’) = —0.2sinQw)
Therefore, H(e’®) = Hg(e’) + jH (e'?) = 1 + 0.2¢c0s 2w — j0.25inQRw) = 1 +0.2¢7%/¢

and h(n) = 8(n)+ 0.28(n — 2)

5.13 A second-order system has two poles at z = 0.5 and a pair of complex zeros at z = ¢*/7/2, Geometrically
find the gain, A, of the filter so that | H (¢/*)| is equal to unity at w = 0.

Because the length of the vectors from the two zeros at z = ¢*/™/2 to the point z = 1 on the unit circle is equal to

v/2, and because the distance from the two poles at z = 0.5 to z = 1 is equal to 0.5, the magnitude of the frequency

response at w = 0 is
V242

05.05 oA

|H (e )omo = A
Therefore, the desired gain is

1
A=y

Systems with Linear Phase

5.14  Derive Eq. (5.9) for the frequency response of a type I linear phase filter.
A type I linear phase filter satisfies the symmetry condition
h(n) = h(N — n)

and N is even. The symmetry condition is equivalent to

N N N
hl = —k)=hl - +k k=1...., =
G-4)=G) 2

Therefore, the frequency response may be written as follows:

N N/2
H(e) =" h(n)e™ " =h( )e JNw/2+Z (— —k)e f‘f"“"’+2 ( +k) ~i o

n=0

Factoring out a linear phase term, e ~/¥“/2 from each sum, and using the symmetry of 4(n), we have

. N ' N/2 .
H(e'*) = h(;)e‘”"“’/7 e INer? Z (— - k) [e/t 4 o7 ik@)
) N N/2 N
= ¢miNol2 h(E) + 22”(5 - k) cos(kw) (5.20)
k=1
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5.15

5.16

Therefore, we may write the frequency response as follows:

N/2
H(e/®) = ¢ iNwi2 Z a(k) cos(kw)
k=0
N N
where a(k)=2h(7-l<> k:l,2,..<,7

N
a(0) = h(?)

Derive Eq. (5.10) for the frequency response of a type Il linear phase filter.

which is the desired result.

For a type II linear phase filter,

h(n) = h(N — n)
where N is odd. Therefore, #(n) is symmetric about the half-integer, N /2, and the symmetry condition is equivalent to
N +1 N -1 N +1
hl| —— —k)=h{l — +& k=1,..., ——
(% ) ( 2 " ) 2

Thus, the frequency response may be written as
H(e') = ih(,,)e-j,.m _ (NZT‘L)/Z;,(M B k>e_j(ﬂqﬂ—k)w N (N+Zl)/2h(___1 +k)e_,'(£2-_l+k)w
n=0 k=1 2 k=1 2
Factoring out a linear phase term ¢~/"*/2 and using the symmetry of 4(n). we have
(N+1)/2

H(ejw) — e—ij/Z Z h(Nz_l _k>[ej(k—§)m+e—j(k—'z)w]

k=1

N 2(N-+-l)/2 N+1
= ¢ INv/ 2h| —— —k k-1 521
ey an( B -k eos{ k- 4)u] .21

) ) (N+1)/2
Therefore, H(e/®) = e=INo/2 Z b(k)cos[(k — })w]

k=1
N+1 N +1

where b(k)=2h(T+—k> k=1,2,...,—2+—

which is the desired result.

How would the derivations in the previous two problems be modified to find the form of the frequency
response for types III and IV linear phase filters?

The only difference between a type I and a type III linear phase filter is that
h(n)y = h(N — n)

for a type I filter, and
h(n) = —h(N —n)

for a type 11l filter. Therefore, /(N /2) = 0, and Eq. (5.20) is modified as follows:
N2

H eja)) — eijw/Z h(__ _ k) f,jkw _ e*jkw

( ; 5 k) ]

N/2

. N )
— ¢ iNw/2 Z 2,‘;,(7 —k ) sin(kw)
k=1 .
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Thus, it follows that the frequency response may be written as
‘ N2
H(e'?) = je"N“’/z Z c(k) sin(kw)
k=1
h (k) = 2h A" k=1,2 N
where clky = 5 =1L2....3
The only modification required in Prob. 5.15 to find the form of the frequency response for a type IV linear phase
filter is to use the fact that 4(n) is odd to rewrite Eq. (5.2/) as follows:
(N+1)/2
H(el®y = ¢=iNol2 Z h(N +1 k>[€/(k—5)w _e—j(k—%)w]
k=1
(N+1)/2
- N +1 _
=N Y 2,‘};(—2L - k) sin[(k - 1)o]
k=1
Therefore, the frequency response is

_ , (N+1)/2

H(e'®y = je” N 3" dkysin[(k ~ })w]

k=)

N+ 1 N

where dky =20 251 k=1,2,..., =

2 2

5.17 Show that a system with a complex unit sample response has generalized linear phase if

h(n) = £ h*(N — n)

If H(e’*) is the DTFT of A(n), it follows from the delay property and the time-reversal property that the DTFT of

h(N —n)is
h(N — n) TEL g=ivo gy e-iv)

Applying the conjugation property, we then have
W N — n) BEL o=iNe g (eiv)
Now, let us consider the case in which A(n) is conjugate symmetric, h(n) = h*(N — n). Then
H(e!®) = e N H*(e/?)
and, expressing H (e/*) and H*(e/“) in terms of their magnitude and phase, we have

H (e/w) =|H (ejw)‘ejdm (@)

and H*(ej")) — |H(ef‘“)|e‘”"“”’

Therefore, it follows that
5.22)

el — ,=INw, = o)

or 20p(w) = —Nw + 2mk(w)
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where k(w) is an integer for each w. Solving for the phase, we have

Now
Pn(w) = “T + mk(w)

Therefore, H(e!?) = |H(e/)e IN@/2e/™@) = g(e/®)e™ INw/2

where A(e’®) is a real-valued (in general bipolar) function of @. Thus, #(n) has linear phase.
For the case in which h(n) is conjugate antisymmetric,

h(n) = —h*(N — n)

Eq. (5.22) becomes

eI — _ = iNw p= ()
or IO _ pin g= N y=jnw)
Therefore, 2¢p(w) = —Nw + 1 + 2mk(w)

where again k(w) is an integer for each w. Solving for the phase, we have

@=-"247 4 riw)
Pn(w) = 2 7 mwk(w

Therefore, H(e’?)y = [H(e/”)e /N “2eim2piTk@) — p(e/@)e=iNI20i7/2

where A(e/?) is a real-valued function of w, and A(n) has generalized linear phase.

The relationship between the input and the output of an FIR system is as follows:

N
y(ny ="y bk)x(n — k)
k=0

Find the coefficients b(k) of the smallest-order filter that satisfies the following conditions:

1. The filter has (generalized) linear phase.
2. It completely rejects a sinusoid of frequency wy = /3.

3. The magnitude of the frequency response is equalto |l atw = 0and w = 7.

To reject a sinusoid of frequency wy = 7/3, the system function must have a pair of zeros on the unit circle at
z = e*/™/3 Therefore, H(z) must contain a (linear phase) factor of the form

Hiz) = —e ™z 1 —e ™7y =1 - 2005(%)2’l +zi=1—z"4;72

Note that if
Hz)= Al —z""+ z77%)

the magnitude of the frequency response at w = 0 is
H(e',w)|u)=0 =A
and the magnitude of the frequency response at w = m is

H(e’)]yper = 34
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Thus, no value for A will allow us to simultaneously satisfy both unit magnitude constraints, and it is necessary to
add another linear phase term to H(z). To minimize the order of the filter, we will pick a factor of the form

Hyz)=1+ Bz~