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Note that the integration limits are now —oo to +oo, in contrast to the speed
distribution in which the limits were 0 to co. We must include all atoms in the
integral—those that are moving toward the observer as well as those that are
moving away. Evaluating the integral, we find 4~! = Nhy/m/27kT /2mL(2s + 1)
and thus we have the Maxwell velocity distribution
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This function is plotted in Figure 10.13. The shaded strip shows the number
dN = N(v,)dv, having velocity components between v, and v, + dv,. This is a
familiar curve known as the Gaussian distribution or the normal distribution
(also called the “bell-shaped curve”), which has applications in many areas of
probability and statistics.

To complete the analysis of the Doppler broadening, we must change the
distribution function so it describes frequency or wavelength. That is, let’s find
out how many atoms will emit frequencies in the range from f to /' + df,, which
we can write as dN = N(f)df. The relationship between frequency and velocity
is given by Eq. 2.22. We’ll change notation somewhat and let f, represent the
unshifted frequency while f represents the observed (Doppler-shifted) frequency.

We then have
. l—vx/c_ 1 —v/c ~ _
f = e =h = A w0

where we have replaced the square root in the denominator with 1 because
v, < ¢ for thermal motions. Solving for v,, we obtain v, = c(1 —f/f;) and
taking the magnitude of the differentials we then have |dv,| = c df /f,. With these
substitutions the number of atoms in the small interval becomes

(10.26)

1/2 d
AN = N()df = N(v)dv, = N (%) e—"wz“—f/ﬁﬂz/zkfcf—f (10.27)
0

and so the frequency distribution function is
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The frequency distribution function is shown in Figure 10.14. The broadening
is usually characterized by giving the width of the spectral line Af, defined as
the range over which the intensity falls to half the maximum value on either
side. (This is known as the “full width at half maximum” or FWHM.) The only
factor in Eq. 10.28 that depends on frequency is the exponential, and so the width
is determined by the frequencies at which the exponential (which is equal to 1
at f = f;) falls by half: et (/0 /24T — | /2 or, taking the logarithm of both
sides,

5 2
e (1—-1) — In(1/2) (10.29)
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FIGURE 10.13 The Maxwell veloc-
ity distribution for gas molecules. The
distribution is centered on v, = 0. The
shaded strip represents the number of
molecules with velocity components
between v, and v, + dv,.
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FIGURE 10.14  Doppler-broadened
spectral line. The natural linewidth has
been exaggerated for the drawing—
typically the natural linewidth is no
more than 107 to 10~ of the broad-
ened linewidth.
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which can be solved to give /' = f,(1 £ 1/(2In2)kT/mc?). The two solutions
(corresponding to the + and — signs) give the two points at which the distribution
falls to half its maximum. The interval between those two points is

Af = 2o/ 2 In2)kT Jmc? (10.30)

We can write a similar expression for the wavelength broadening because
Af/fo = AX/X,. The Doppler broadening is directly related to the temperature,
and so a measurement of the width of spectral lines provides a way to determine
the temperature of the emitting atoms. This is a powerful means of determining
the temperatures of stars from observing the widths of their spectral lines.

10.5 QUANTUM STATISTICS

As we discussed in Section 10.2, the distribution functions for the indistinguishable
particles of quantum physics are different from those of classical physics. Because
of the unusual behavior of quantum systems, we must have separate distribution
functions for particles that obey the Pauli exclusion principle (such as electrons)
and particles that do not obey the Pauli principle (such as photons). We will not
derive these distribution functions, but merely state them and discuss some of
their properties and their applications.

Particles that do not obey the Pauli principle are those with integral spins
(0, 1, 2, ..., in units of /). Their statistical properties are determined by the
Bose-Einstein distribution function:

Joe ) = g (10.31)

Particles described by this distribution are known collectively as bosons. The
constant A, serves as a kind of normalization constant, in analogy with the factor
A in the Maxwell-Boltzmann distribution (and the comparison shows why we
included this factor as 4~! in Eq. 10.16).

Particles of half-integral spin (%, %, ...) that obey the Pauli principle, such as
electrons or nucleons, are described by the Fermi-Dirac distribution function:

Jip(E) = o (10.32)

These particles are known collectively as fermions.

How the minor change in sign in the denominator between fgp and fpp
gives such a radical change in the form of the distribution function is not
immediately obvious, and to show the differences we need to know more about
the normalization coefficient App, which is not a constant but depends on 7.
For the Bose-Einstein distribution, in most cases of practical interest App is
either independent of 7 or depends so weakly on 7 that the exponential term
ef/*T" dominates the temperature dependence. However, for the Fermi-Dirac



distribution, App is strongly dependent on 7, and the dependence is usually
approximately exponential, so App, is written as

App = e EF/AT (10.33)

and the Fermi-Dirac distribution becomes

1
Jp(B) = CE AT 1 ] (10.34)
where Ep is called the Fermi energy.

Let us look qualitatively at the differences between fgr and frp at low
temperatures. For the Bose-Einstein distribution, assuming for the moment Agp =
1, in the limit of small 7" the exponential factor becomes large for large E, and so
Jfse — O for states with large energies. The only energy levels that have any real
chance of being populated are those with £ = 0, for which the exponential factor
approaches 1, the denominator becomes very small, and fyp — oo. Thus when T
is small, all of the particles in the system try to occupy the lowest energy state.
This effect is known as “Bose-Einstein condensation,” and we will see that it has
some rather startling consequences.

This effect is not possible for fermions, such as electrons. We know that the
electrons in an atom, for example, do not all occupy the lowest energy state, no
matter what the temperature. Let us see how the Fermi-Dirac distribution function
prevents this. The exponential factor in the denominator of fi, is e Z=£9)/kT For
values of £ > Eg, when T is small the exponential factor becomes large and fi.y
goes to zero, just like fgp. When E < Ep, however, the story is very different, for
then E — Ey. is negative, and e®~F0)/" goes to zero for small T, so frp = 1. The
occupation probability is therefore only one per quantum state, just as required by
the Pauli principle. Even at very low temperatures, fermions do not “condense”
into the lowest energy level.

In Figures 10.15 to 10.17, the three distributions fy5, fgp. and frp are plotted
as functions of the energy E. (Note the qualitative similarity with Figures 10.4 to
10.6.) You can see, by comparing these figures, that all of the distribution functions
fall to zero at large values of E; when £ >> kT, the occupation probability is
very small, as we calculated for f;5 in the case of the first excited state of the
hydrogen atom in Example 10.3. Notice also that, even though fy;53 becomes large
for small £, it remains finite. The Bose-Einstein distribution, fzp, on the other
hand, becomes infinite as £ — 0; this is the “condensation” effect referred to
earlier, in which all of the particles try to occupy the lowest quantum state.

You can see that fi, never becomes larger than 1.0, just as we expect for
particles that obey the Pauli principle. The function fr has the value 1.0 for states
with low energy (all states are filled), and it falls quickly to zero at high energy (all
states are empty). The Fermi energy Ey gives the point at which the distribution
function has the value 1/2. At absolute zero, all states below E}; are filled and all
states above Ep are empty.

The normalization constant ultimately depends on the number of particles
in the system, determined by integrating the distribution function f(E) after
multiplying it by the density of states g(E£). Note how changing the number
of particles changes the normalizations of the different distributions. For the
Maxwell-Boltzmann distribution, increasing N increases the area under the curve
by raising the intercept, thus raising the entire curve. For the Fermi-Dirac
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FIGURE 10.15 The Maxwell-

Boltzmann distribution function.

fee(E)

E

FIGURE 10.16  The Bose-Einstein
distribution function.

FIGURE 10.17 The Fermi-Dirac dis-
tribution function.
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FIGURE 10.18 The occupation prob-
ability of electrons in an electron gas
(a) at T=0 and (b) at T>0. The
solid dots represent filled states and
the open dots represent empty states.
Each energy level can hold a maxi-
mum of 2 electrons (spin up and spin
down).

distribution, on the other hand, increasing N increases the area by widening the
curve to the right (increasing £) while keeping the intercept at 1.0.

Let’s consider a gas of electrons described by the density of states function
g(E) givenin Eq. 10.12 and thus with N(E) = Vg(E)fep(E). Figure 10.18a shows
a hypothetical set of energy levels and how they would be populated at 7= 0
(with 2 electrons in each quantum state). As 7' increases, some levels above Ep
are partially occupied (fzp > 0), while some levels below Ey are partially empty
(fep < 1). Figure 10.185 shows how the energy levels of a system might be
populated at 7 > 0. The higher the temperature, the more the distribution spreads,
but notice that only states in the vicinity of £y are affected. The states at much
lower energies remain filled, and those at much higher energies remain empty.

The Fermi energy varies only slightly with temperature for most materials, and
we can regard it as constant for many applications. As we will see in Section 10.7,
for electrons in a metal £ depends on the electron density of the material,
which doesn’t change much with temperature. For some materials, notably
semiconductors, the density of conduction electrons can change significantly with
temperature, and thus £} in these materials is temperature dependent.

Limit of Classical Statistics

Under what circumstances can we treat a system classically rather then according
to the laws of quantum mechanics? The quantum behavior can be neglected if the
de Broglie wavelength of a particle is much smaller than the physical separation
between the particles. That is, no particle lies within the wave packet of its
neighbors. If we take k7 as a representative measure of the kinetic energy of a
particle in a collection of particles at temperature 7, then with p?/2m = kT we
obtain the de Broglie wavelength as

/\_h _h ke
P N2mkT — 2mc2kT

(10.35)

The density N/V gives the number of particles per unit volume, and so the
average spacing d between particles is about (N/7)~!/3. The condition for the
applicability of classical physics is then A < d or A /d < 1, which gives

A he/N2mc2kT — he(N/V)'/3
b helame kD heWID T (10.36)
d N/~ ~2mc2kT

The normalization constant we found from Eq. 10.18 for the Maxwell-Boltzmann
distribution can be written

s N (hc)? 1 /DT s
T VQ@s4+ DQ@amc2kT)3? T Qs+ D32 | Jom2kT (1037

The quantity in brackets on the right is just A/d from Eq. 10.36. Apart from
some small factors of order unity, Eq. 10.36 is equivalent to requiring that the
normalization constant of the Maxwell-Boltzmann distribution is small: 41 « 1,
or that the number of occupied states in the gas is much smaller than the number
of available states.
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10.6 APPLICATIONS OF BOSE-EINSTEIN

STATISTICS

Thermal Radiation

As we did in our discussion of thermal radiation in Chapter 3, we consider a
cavity filled with electromagnetic radiation. For this calculation, we assume the
box to be filled with a “gas” of photons. Photons have spin 1, so they are bosons
and obey Bose-Einstein statistics.

The normalization parameter Ay of the Bose-Einstein distribution, Eq. 10.34,
depends on the total number of particles described by the distribution. Because
photons are continuously created and destroyed as radiation is emitted or absorbed
by the walls of the cavity, the total number of particles is not constant, and the
parameter Agp loses its significance. We can eliminate this factor from the
Bose-Einstein distribution by setting Agp = 1 in Eq. 10.34.

The number of photons having energy in the range £ to £ + dE is, according
to the Bose-Einstein distribution and using the density states for the photon gas
from Eq. 10.15,

8 1

— _ _ 2
dN = N(E) dE = Vg(E)fyp (E) dE = VWE S dE (1039)

The radiant energy carried by photons with energy between £ and E + dE is
EdN = EN(E)dE, and the contribution to the energy density (energy per unit
volume) of photons with energy E is

EN(E)dE _ 8rE’ 1
Vo (he)3 E/MT —

u(E) dE = dE (10.39)

The total energy density over all photon energies is

8t [ EdE  8a(kT)* (™ x’dx
(he)® Jo  eEAT —1 (he)d Jy e —1

U= /OO u(E) dE = (10.40)
0

where x = E/kT. The integral is a standard form and has the value 74/15, so

8Tkt
U= 5o (10.41)

This is identical with Stefan’s law (Eq. 3.26) using the Stefan-Boltzmann constant
from Eq. 3.42 and accounting for the factor ¢/4 that takes us from energy density
of the radiation to radiant intensity /.

We can show that our expression for the energy density leads to Planck’s
equation for the intensity of cavity radiation by changing variables from E to A.
Substituting £ = hc/x and |dE| = (hc/A%)dA, we find

8mhe 1
Multiplying by ¢/4 to convert from the energy density of the radiation to the
intensity, we obtain the result that was given in Eq. 3.41.
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FIGURE 10.19 The specific heat of
liquid helium. The discontinuity at
2.17 K is called the lambda point.

FIGURE 10.20 Liquid helium can be
seen dripping from the bottom of this
container, as a result of a thin film
flowing up and over the walls from
the liquid inside the container.

Thus the Planck theory of blackbody radiation, which was so successful
in accounting for experimental results, can be derived from the Bose-Einstein
distribution for photons (but Planck’s original work was done two decades before
the development of Bose-Einstein statistics).

Liquid Helium

One of the most remarkable substances we can study in the laboratory is liquid
helium. Here are some of its properties:

1. Helium gas is the most inert of the inert gases. Under normal conditions,
it forms no compounds, and it has the lowest boiling point, 4.18 K, of any
material.

2. Just below its boiling point of 4.18 K, helium behaves much like an ordinary
liquid. As the helium boils, the escaping gas forms bubbles, like a boiling
pot of water. As the liquid is cooled further, a sudden transition occurs at
a temperature of 2.17 K: the violent boiling stops, and the liquid becomes
absolutely still. (Evaporation continues, but only from the surface.)

3. As the liquid is cooled below 2.17 K, the specific heat and the thermal
conductivity both increase suddenly and discontinuously. Figure 10.19 shows
the specific heat as a function of temperature. The form of the figure looks
rather like the Greek letter A, and so the transition point at 2.17 K has become
known as the lambda point. The thermal conductivity rises at the A point by a
factor of perhaps 10°.

4. Above 2.17 K, liquid helium can be held in a vessel with a porous plug in
the bottom. As soon as the liquid is cooled below 2.17 K, the liquid begins to
flow easily through the plug.

5. Below the lambda point, liquid helium has the power to seemingly defy
gravity, flowing up and over the walls of its container. The helium forms a
thin film, which lines the walls of the container; the remaining liquid is then
drawn up by the film like a siphon, and the helium can be seen dripping from
the bottom of the container, as in the photograph of Figure 10.20.

All of these strange properties occur because liquid helium obeys Bose-Einstein
statistics. Ordinary helium has two electrons filling the 1s shell, so the total angular
momentum of the electrons is zero. It happens that the helium nucleus (alpha
particle) also has a spin of zero. Therefore the total spin of the atom (electron
spin 4 nuclear spin) is zero, and a helium atom behaves like a boson. At 2.17 K,
a change of phase occurs in the helium liquid. Above the lambda point, helium
behaves like an ordinary liquid; below the lambda point, liquid helium begins
to become a superfluid. As the temperature is decreased from the lambda point
toward absolute zero, the relative concentration of the normal fluid decreases and
that of the superfluid increases. The unusual properties of liquid helium are all
caused by the superfluid component, which is also known as a quantum liquid.
Because the helium atoms obey Bose-Einstein statistics, the Pauli principle does
not prevent all of the atoms from being in the same quantum state. This begins
to happen at the lambda point. We can think of the superfluid as being a single
quantum state made up of a very large number of atoms; the atoms behave in a
cooperative way, giving the superfluid its unusual properties.

By way of comparison, if we try the same kinds of experiments with the
rarer isotope of helium, *He, the behavior is very different. Although *He has
zero electronic spin, just like “He, it has only three particles rather than four in
its nucleus, and its nuclear spin is Y. The total atomic (electronic + nuclear)
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spin is therefore 15, and 3He behaves like a fermion and obeys the Fermi-Dirac
distribution. Because the Pauli principle prevents more than one fermion from
occupying any quantum state, no superfluidity is expected for *He, and indeed
none is observed until *He is cooled to about 0.002 K. At this point the weak
coupling of two *He to form a boson occurs, and the *He pairs can display
the effects of Bose-Einstein statistics. (A related effect involving the pairing of
electrons is responsible for superconductivity; see Section 11.5.)

Bose-Einstein Condensation

Let’s consider the expression for the total number of particles of a system of
bosons in a volume V. We can treat the bosons as a quantum system similar to
the electron gas—particles with wave functions that vanish at the boundaries of
the volume. The density of states is then given by Eq. 10.12 and the total number
of particles in the volume V is then

v=[av=| " NE)dE = | " VR (E s (B dE
0 0

(s + Dany2Vm’/? /00 E'2
- W3 0 ABEeE/kT —1

dE (10.43)

Previously our approach to an equation of this type was to evaluate the integral
and solve the resulting equation for the constant 4, which provides the normal-
ization to make the total number of particles equal to N. That procedure poses
some difficulties for this integral, so we’ll try a different approach: we’ll see
what Eq. 10.43 tells us about the maximum number of particles that can be
accommodated in the volume V. Because Apg is a pure number that is always
> +1 (otherwise the denominator of 5 could become negative, which makes no
sense for a distribution function), we can find this maximum value by making the
denominator in the integral as small as possible, that is, by putting Agy = 1. The
resulting integral has the value 1.3067'/2(kT)3/?, and the maximum number of
particles is then

27rka>3/2

N =2.612V(2s+ 1) (h—2 (10.44)

It appears that we can violate this maximum limit by either (1) putting more parti-
cles into the volume V than Eq. 10.44 permits, or (2) lowering the temperature (and
thus reducing the maximum N) so that the actual number of particles in the system
becomes greater than the maximum limit given by Eq. 10.44 for that temperature.
How can we still refer to a “maximum” number of particles in these cases?

To resolve this apparent difficulty, we must look more carefully at what happens
for £ = 0. Clearly the Bose-Einstein distribution function fgp; (£) becomes infinite
for E = 0 when A = 1. The integral in Eq. 10.43 doesn’t blow up at £ =0
because the numerator £'/2 is zero at E = 0. But there is something very wrong
with that restriction, which requires that the density of states (Eq. 10.12) be zero
at £ = 0. Our system must have a ground state, so there is at least one state at
E = 0. This contradicts the calculation which puts g(0) = 0.

If we try to put more particles into the system than the maximum given by
Eq. 10.44 (or equivalently if we try to reduce the temperature below its limit for a
given N), the additional particles all can go into the £ = 0 ground state, which is
not subject to the restriction on the maximum value of N. This is Bose-Einstein
condensation—all excess particles are “condensing” into the ground state. Note
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that the use of the word “condensation” to describe this effect does not refer
to a gas condensing into a liquid. The particles are “condensed” into the same
quantum state, where they are all described by the same wave function, but they
are all still in the gaseous state.

What we are thus actually calculating in Eq. 10.44 is the number of particles
in all states except the ground state, that is, the number in all the excited states.
Let’s call that value N,,. It is this value that is limited by the restriction on the
maximum number of particles that can be accommodated by the Bose-Einstein
distribution. The number of particles in the ground state, N,, has no restriction.
The total number of particles iS N,y = Ny + Ny -

Let’s solve Eq. 10.44 for the critical temperature at which we expect this
condensation to occur:

Nyw/V 7 B
TBEC=< totl/ ) (10.45)

261225+ 1))  2mmk

Above this temperature, all of the particles can be in excited states of the system
without restriction. When the temperature is reduced to Tzgc, the excited states
are all fully populated, and any further reduction of the temperature below this
value means that particles must be transforming from excited states into the
ground state. With N, as the number of particles calculated in Eq. 10.44, we can
combine that equation with Eq. 10.45 to give Ny, /N,y = (T/Tgpc)>/?, or

N, < T )3/2
—1— (10.46)

]vtotal T BEC

This applies only to temperatures at or below Tgpc. At T = T, Ny = 0—all
of the particles are in the excited states. As T is reduced below Tk, the fraction
Ny/Nyar Increases, approaching 1 (all particles in the ground state) as 77 — 0.
This is the Bose-Einstein condensation.

Einstein first predicted this effect in dilute gases in 1925, but it took 70 years
until the first experiments were done in 1995. The reason for this is apparent from
considering the temperature necessary to observe the condensation. If we start
with an ordinary gas at room temperature (with a density of around 2.4 x 10%
molecules/m®), then Eq. 10.45 gives a temperature of around 0.001 K = 1 mK.
This is the temperature at which the condensate begins to form, and to have a
significant number of particles in the condensate we must be well below this
temperature. It is clear that very low temperatures are required to observe the
condensate. However, even if the gas molecules were only weakly interacting,
a gas at ordinary densities would become a liquid at these temperatures. It is
therefore necessary to work with gases at extremely low densities, and from
Eq. 10.45 you can see that as we reduce the density, the temperature necessary to
observe the Bose-Einstein condensation becomes even smaller.

To avoid the gas condensing into a liquid, we want to molecules to be very
far apart (corresponding to a very low density). How far apart must they be?
In an ordinary gas, the mean free path (average distance between collisions) is
the order of 100 molecular diameters. To avoid molecules from colliding and
therefore sticking together (which might trigger the formation of the liquid), let’s
assume the spacing between molecules must be the order of 100 times larger than
it is in an ordinary gas, which means the density must be smaller by a factor of
(107%)3 = 107°. From Eq. 10.45 we see that if the density is smaller by 107°,
then Type will be smaller by a factor of (1076)2/> = 10~%. Thus instead of a
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temperature of 1 mK, the observation of a Bose-Einstein condensation requires
temperatures of the order of 100 nK.

Such incredibly low temperatures require extraordinary means to produce,
and that is why it took 70years to observe the first Bose-Einstein condensate.
Several successful experiments have been done since 1995, and the experiments
generally use a combination of /aser cooling and magnetic cooling to achieve
these temperatures. In laser cooling, a collection of gas atoms is illuminated with
a laser beam that is tuned to one of the atomic absorption frequencies. A gas atom
that happens to be moving toward the laser will absorb a photon and slow down.
However, a gas atom that is moving away from the laser will absorb a photon and
speed up. How can this result in an overall slowing of the gas atoms?

The trick in laser cooling is to take advantage of the Doppler broadening of the
absorption due to the distribution in the velocities of the gas atoms. The laser beam
is tuned so that its frequency is a bit below the central frequency of the broadened
peak. Frequencies smaller than the central frequency correspond to atoms moving
toward the laser beam; such atoms can absorb at the frequency of the laser and
thus slow down. Atoms moving in the opposite direction cannot absorb at that
frequency (because their Doppler shifts are opposite) and so are not affected. If a
second laser beam, also tuned below the central frequency, illuminates the atoms
from the opposite side, then atoms moving in either direction will be slowed and
therefore cooled. In practice, the gas is illuminated by lasers in all six directions
to achieve cooling by slowing the atoms in three dimensions. The excited state
formed by absorbing the photon will decay back to the ground state by emitting a
photon, but the emission occurs in random directions and so doesn’t change the
velocity distribution of the atoms.

Laser cooling by itself is insufficient to achieve the temperatures necessary for
Bose-Einstein condensation. It is also necessary to use some form of magnetic
cooling. For example, suppose we confine the atoms in a region in which there
is a magnetic field that is produced by a set of coils. The atoms are moving very
slowly and do not have enough energy to escape the potential energy barrier that
is established by the magnetic field. If the magnetic field strength is then reduced
slightly, the more energetic atoms can escape. The remaining atoms still confined
by the (weaker) magnetic field are the ones with smaller kinetic energies, and thus
they have a lower temperature. With each lowering of the field strength, the more
energetic atoms escape and the remaining gas cools. This is similar to evaporative
cooling of a cup of hot coffee—the faster-moving atoms are the most likely to
leave the liquid, and the remaining atoms have a smaller average kinetic energy
and thus a lower temperature.

The first observations of a Bose-Einstein condensation were reported in 1995
by Eric Cornell and Carl Wieman using Rb vapor and by Wolfgang Ketterle using
Na vapor. Figure 10.21 shows the velocity distribution illustrating the formation
of the condensate in Rb vapor from the original work of Cornell and Wieman.
At a temperature of 400 nK, the distribution shows a broad peak corresponding
to a Maxwell velocity distribution centered at v = 0. At 200 nK, a narrow peak
is superimposed on top of the Maxwell distribution at v = 0. This represents the
atoms all moving with the same speed, as would be expected for a condensate with
a large number of atoms in the same state of motion. At still lower temperatures
(50 nK), the Maxwell distribution has disappeared, so that nearly all of the atoms
are in the condensed ground state, consistent with Eq. 10.45.
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FIGURE 10.21 Bose-Einstein condensation in Rb atoms. The graphs show a repre-
sentation of the velocity distribution at 400 nK (left), 200 nK (center), and 50 nK
(right). At 400 nK, there is a broad Maxwellian distribution, but as the temperature is
reduced, the molecules condense into a single quantum state characterized by a much
narrower velocity profile.

For the experimental observations of the Bose-Einstein condensation, Cornell,
Wieman, and Ketterle shared the 2001 Nobel Prize in physics.

10.7 APPLICATIONS OF FERMI-DIRAC STATISTICS

Now let’s consider some applications of Fermi-Dirac statistics. We’ll discuss
several different systems consisting of spin-Y particles: electrons in metals,
electrons and neutrons in stars, and *He in liquid “He.

The Free Electron Model of Metals

In a metal, the valence electrons are not very strongly bound to individual atoms,
and consequently they travel rather freely throughout the volume of the metal.
We can treat these electrons as a “gas” that obeys the Fermi-Dirac distribution,
with a density of states given by Eq. 10.12. The number of electrons with energies
between £ and E + dFE is then

=0 8777/ 2m>3/? 1
- m dN = N(E)dE = Vg(E)fyp(E)dE =V 3 E'? SEET ] dE
= KT -l (10.47)
Figure 10.22 shows a graph of N(E). Note that the energy kT is only a small
interval compared with the range of occupied energy states. When the temperature
0 1 2 3 of the metal is increased from 0 K to 300 K (room temperature), only a very small
E(eV) fraction of the electrons is affected—a small number move from filled states just

below Ep to formerly empty states just above Ep.
We can find a numerical value for E; at T = 0 by normalizing Eq. 10.47 so
that the sample contains a total number N of these free electrons:

8V 2m3? [ E/? I
e o eE—ER)/KT 4

FIGURE 10.22 The number of occu-
pied energy levels for electrons at 7 =
0 and 7 = 300K, according to the
Fermi-Dirac distribution. The Fermi
energy Ey. is chosen to be 3.0eV.

N= de =/OON(E) dE = (10.48)
0
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At T = 0, the Fermi-Dirac distribution function has the value 1 for £ < Ey and 0
for £ > Ey, so the integral reduces to

8V 2m3? [FF 8V 2m¥2 2 4
N=—"6#6#+—/#—— EVPdE = "2 Zpi2 10.49
3 /0 3 3°F ( )
Solving for Ep, we obtain
n 3N\
Ep=—|— 10.50
7 2m (871V) (10.50)
We can also find the mean or average energy of the electrons
1 o0
E, = —[ EN(E)dE (10.51)
N Jo
and it is left as an exercise to show that
E, = 3Eg (10.52)
| Example 10.8
Compute the Fermi energy Er for sodium. The Fermi energy now can be found from Eq. 10.50:
Solution R (3 N\ R (3 N\
Each sodium atom contributes one valence electron to the F= o \sr v T ome \sz vV
metal, and so the number of electrons per unit volume, A
N/V, is equal to the number of sodium atoms per unit (1240 eV -nm)> 3 254 % 1028 m3 /
volume. This in turn can be found from the density p and T 2(0.511 x 106eV) \ 87
the molar mass M of sodium:
=3.15eV
3 3 23
EZ'O NA=(0'971 x 10° kg/m”)(6.02 x 10™ atoms/mole) average energy of the valence electrons is %EF or
VoM 0.023 kg/mole 1.89eV. Even at the absolute zero of temperature, the
=2.54 x 10®% m™3 electrons still have quite a large average energy.

From Figure 10.22 we see that the change in N(E) between 7 =0 and
T = 300K (room temperature) is relatively small, and so these values for £y and
E_, are approximately correct at room temperature.

The meaning of these numbers is as follows. Instead of isolated atoms with
individual energy levels, we consider the metal to be a single system with a
very large number of energy levels (at least as far as the valence electrons
are concerned). Electrons fill these energy levels, in accordance with the Pauli
principle, beginning at £ = 0. By the time we add 2.54 x 10?? valence electrons
to 1cm?® of sodium, we have filled energy levels up to Ep = 3.15¢V; all levels
below Ey are filled and all levels above E}. are empty. Electrons have an almost
continuous energy distribution (the levels are discrete, but they are very close
together) from £ = 0to E = Ey, with anaverage energy of 1.89eV. At T = 300K,
a relatively small number of electrons is excited from below Ep to above Eg;
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the range over which electrons are excited is of order k7" = 0.025 eV, so that only
electrons within about 0.025 eV of Ey are affected by the change from 7' = 0 to
T =300K.

In a similar fashion, if we apply a modest electric field to a metal, the only
effect is to change the state of motion of a relatively small number of electrons
near the Fermi energy. Most of the electrons can’t be affected by the electric field,
because all of the nearby states are already filled. In Chapter 11, we’ll discuss the
heat capacity and the electrical conductivity of metals based on the Fermi-Dirac
distribution of the electrons.

White Dwarf Stars

A star like the Sun has a constant radius because the outward pressure due to
the radiation traveling from the center (where the fusion reactions take place)
balances the inward gravitational force that tends toward collapse. Eventually
the hydrogen fuel will be converted to helium, the rate of fusion reactions will
decrease, and gravity will take over. The Sun will collapse to a smaller and smaller
radius, until further contraction is stopped by the Pauli principle. This is the white
dwarf stage of stellar evolution.

Let’s consider a star of mass M to be composed originally of hydrogen, with
equal numbers of protons (hydrogen nuclei) and electrons. (The star is too hot for
atomic hydrogen to form, so we consider the star to be a “gas” of protons and
a “gas” of electrons occupying the same spherical volume.) After the hydrogen
has been converted into helium, the star will contain N electrons and N /2 helium
nuclei (alpha particles). The helium nuclei are bosons, so the Pauli principle does
not apply to them during the collapse. The collapse ends when the electrons
cannot be forced closer together because the Pauli principle would be violated. At
that point, all of the electron energy levels are filled from 0 to the Fermi energy.
The average energy E,, of the electrons is %EF, as given by Eq. 10.52, and so the
total energy of N electrons is

e T e O L S L IO (1053)
clec =M T SR T 5 om, \ 82V ) 10m, R2 \ 3272 '

assuming the electrons to be distributed uniformly throughout a sphere of radius
R and volume V' = %nR3.

The total gravitational energy of the star can be found from the mass distribution
of the helium (the electron mass is negligible in comparison with the helium
mass). For simplicity, we assume the star to be of uniform density. The result (see
Problem 38) is

3GM*  3GN’m;,

-2 = _ 10.54
g5 R 5 4R (10-54)
with M = (N /2)m,,. The total energy is
Fep. g NP1 (9N 2P 3GN?m2 (1055)
T elee TRV T 0, R2 \ 3272 20R '

The star collapses until its energy reaches a minimum value, at which point we
can find its radius by setting dE/dR equal to 0 and solving the resulting equation,
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which gives

R=— 1 (—) (10.56)
GN'Bmom? \ 472

Let’s consider the white dwarf star Sirius B, which has a mass of 2.09 x 103° kg
(about 5% greater than the mass of the Sun). Equation 10.56 gives a radius
of 7.2 x 10°m for Sirius B. The measured radius is about 5.6 x 10°m. The
difference between the calculated and observed values is probably due mostly
to the relativistic motion of the electrons. Our calculation of the Fermi energy
assumed the electrons to move nonrelativistically. The Fermi energy of Sirius
B is about 200 keV, which means that the kinetic energy of electrons near
the Fermi energy is not small compared with the rest energy (511 keV). We
also oversimplified the structure of the star by assuming it to be of uniform
density (which was necessary to obtain Eq. 10.54 for the gravitational energy).
Nevertheless, even this very rough calculation gives us a good approximation to
the properties of white dwarf stars and demonstrates another system in which
Fermi-Dirac statistics can be applied.

Note that the radius of the white dwarf is comparable to the radius of the Earth;
that is, the white dwarf has the mass of the Sun but the radius of the Earth. The
average density of Sirius B is about 10° kg/m?, which is about one million times
the average density of objects on Earth. The white dwarf is indeed an extreme
state of matter!

If we treat the electrons relativistically, we can obtain an estimate for the mass
of'the star at which the Pauli principle applied to the electrons is not able to prevent
gravitational collapse. This value, which is called the Chandrasekhar limit, is
about 1.4 solar masses. For stars with greater masses, the extreme density forces
the protons and electrons to combine into neutrons until the star collapses into
a neutron star, composed entirely of neutrons. Because neutrons obey the Pauli
principle, we can apply Fermi-Dirac statistics to analyze the properties of neutron
stars (see Problem 27). From a calculation similar to that for the white dwarf, we
can find the radius at which the energy of a neutron star is at a minimum:

h2 9 2/3
R= —1 <—> (10.57)
GN'/3m3 \ 3272

In this equation, N refers to the number of neutrons in the star. For a star of 1.5 solar
masses, the radius would be about 11 km with a density of about 5 x 10'7 kg/m?.

Neutron stars are commonly observed as pulsars in which the magnetic field
of the neutrons traps electrons outside the neutron star, and the rapid rotation of
the neutron star causes a beam of electromagnetic radiation from the accelerated
electrons to sweep past the Earth somewhat like the rotating light in a lighthouse.
For stars heavier than about 6 solar masses, not even the Pauli principle applied
to the neutrons can prevent further gravitational collapse, and the star will either
explode as a supernova or collapse to a black hole.

The Heat Capacity of Dilute Solutions of
S3He in 4He

Helium has two stable isotopes, *He and “He. The isotope *He is very rare
(about 107 in abundance relative to “He) in natural He gas. The two isotopes
are chemically identical and have the same electronic structure, but differ in their
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FIGURE 10.23 The region near Ef,
showing N(E) at T =0 and at tem-
perature 7. When the temperature is
raised from 0 to 7, the dN particles in
the shaded region move to the corre-
sponding region above Ep, increasing
their energy by 2¢ in the process.

atomic masses (*He has a mass of about 3 u and *He is about 4 u). The difference
comes about as a result of their nuclei: the nucleus of *He contains 2 protons and
1 neutron, while the nucleus of *He contains 2 protons and 2 neutrons. Protons,
neutrons, and electrons all have a spin of 15. In “He, the 2 electrons combine to
a total spin of 0, as do the 2 protons and the 2 neutrons. The total spin of *He is
therefore 0. In *He, the 2 electrons combine to give a spin of 0 as do the 2 protons,
but with only 1 neutron the total spin of *He is . As a result, “He behaves like a
boson and *He like a fermion.

As discussed above, “He becomes a superfluid at temperatures below 2.17 K,
while 3He does not. In a dilute mixture of liquid *He and *He below 2.17 K,
the “He serves as a mostly inert background medium for the *He, and so we can
treat the >He as a dilute “gas” of fermions, just as we treated the electron gas in
analyzing metals.

The heat capacity of a dilute mixture of *He in “He is relatively straightforward
to measure, so let’s try to calculate the heat capacity using the Fermi-Dirac
distribution to describe the *He. Starting with fermions at 7 = 0, we add energy
until the collection is at temperature 7. Because all of the energy states below
Ey are filled at 7 = 0, most of the particles are not able to absorb any additional
energy. A particle with energy far below E cannot absorb energy of the order of
kT and move to an empty state, because there are no empty states nearby. The only
particles that can change their state are those within a small energy range of about
kT at Ey, as shown in Figure 10.22. In going from temperature 0 to temperature
T, only a relatively small number of particles moves from just below Ey to just
above Ep, with the rest of the particles remaining in their same energy states.

Figure 10.23 shows a greatly magnified view of the region around £y. As the
temperature is raised from 0 to 7, the particles in the region just below £ move to
fill states just above E. In particular, consider the small number of particles dN in
the narrow region of width dE located a small energy —e = E — E below Ey.. The
particles fill states in that region at 7 = 0, but when the temperature is raised to 7
they move to fill states in the corresponding region at an energy ¢ above Ey. Each
particle in that narrow interval thus gains an energy of 2e, and the total energy
gained by all the particles in that narrow strip is dE,, = 2edN. The strip has height
N, given by the difference between N(E) at T = 0 and N(E) at temperature 7"

N, =N(E,T =0) — NE,T) = Vg(E)[1 — fip(E)] (10.58)

where we have used N(E) = Vg(E)fpp(£) and fpp =1 for 7' = 0. The width
of the strip is dE, so the number of particles in the strip is dN = N, dE. With
—& = F — E¢ and |de| = |dE|, we obtain the energy gained by the particles in
the narrow strip:

1
dEex =2edN = 28Nex de = 28Vg(EF — 8) (1 — m) de (1059)
The energy difference ¢, which we defined as the energy of the strip below Ep,

runs from Ep (where £ = 0) to 0 (where E = E}). The total excitation energy of
all of the particles that are excited from below E to above Ey, is

0
1
Eex = /dEex = 2VLF 8g(EF — 8) <1 — m) d£ (1060)

We can simplify the calculation by noting that g(£) is a very slowly varying
function compared with frp in the region near E, and even though we are
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integrating from Ey to 0 the integral is nonzero only in a region very close to Ey.
We can therefore take g(Ey — ) = g(Ey) and bring it out of the integral. Again
because the integrand is nonzero only in a very small region, we can replace the
lower limit on the integral by oo.

[e0]

0
1
The heat capacity is defined as C = dE,,/dT. The derivative with respect to 7
can be moved inside the integral, and so

dE,, Y e
C= o7 =2Vg(EF)L8[m <m>] ’

 2Vg(Eg) 3/00 x2e*
=7 (kT) et dx (10.62)

where x = ¢/kT. The integral is a standard form that has the value 72 /6. Putting
in the value for g(£y) from Eqgs. 10.12 and 10.50, we finally obtain

72 k2NT
C =

(10.63)

This equation predicts that the heat capacity of a dilute gas of fermions at low
temperature should be proportional to 7. Figure 10.24 shows the low-temperature
heat capacity of a dilute mixture of 5% 3He in “He, and you can see how
well the data agree with the prediction. The relationship is indeed linear in
T at low temperature. This same behavior also describes the low-temperature
heat capacity of metals, in which the electrons can also be treated as a dilute
gas of fermions, but as we will see in the next chapter the contribution of the
atoms to the heat capacity can often be much larger than the contribution of the
electrons.

Equation 10.63 predicts that the slope of the plot of C against 7" should be
72k*N /2Ey, which works out to be 1.24J/K? for the experiment that obtained
the results shown in Figure 10.24 (a 5% mixture of *He in “*He and a total of 0.5
mole of liquid). The measured slope is 3.11 J/K?, which differs from the expected
slope by a factor of 2.5. The discrepancy comes about because we treated the He
atoms like those of a gas, in which the particles move freely. However, when 3He
moves through “He, there are viscous and other forces that act on the atoms. We
can account for the difference by assigning the *He an “effective mass,” which is
greater than its actual mass; the greater mass simulates the sluggish behavior of
the 3He atoms as they move through “*He. This same factor of about 2.5 appears in
experiments with very different concentrations of *He, so it is not related to any
interaction of *He atoms with other *He atoms. It also arises in other experiments,
such as the study of heat conduction in *He-*He mixtures, so it does indeed
seem to describe the properties of the mixture itself rather than any particular
experiment.

The success of the Fermi-Dirac distribution function in accounting for the
properties of such a diverse array of systems—metals, white dwarf stars, and
dilute mixtures of *He in *“He—is truly impressive. In the next chapter, we shall
explore in more detail how both Bose-Einstein and Fermi-Dirac statistics can be
used to help us understand various properties of solids.

0.2 .

0.1 /.

C (J/K)

0 0.05 0.1
T(K)

FIGURE 10.24 The heat capacity of
0.5 mole of a dilute (5%) mixture of
3He in *He. The straight line is a fit
to the linear portion of the plot below
about 40 mK.
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Suppose a container filled with a gas moves with constant
velocity v. How is the Maxwell velocity distribution differ-
ent for such a gas, compared with the same container of gas
at rest?

The population inversion necessary for the operation of a
laser is sometimes called a “negative temperature.” What
is the meaning of a negative temperature? Does it have a
physical interpretation?

Figure 10.25 shows two different experimental arrangements
used to measure the distribution of molecular speeds. Based
on the figures, explain how each apparatus might operate,
and try to guess how the observed distribution of molecules
might appear. Where do the fastest molecules land? The
slowest?

How would Figure 10.13 change if the temperature of the
gas were increased?

How is the speed distribution of a gas at temperature 7
different from that at temperature 27°? The energy distribu-
tion? Sketch the speed and energy distributions at the two
temperatures.

Slit

(b)

FIGURE 10.25 Question 3.
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Consider a mixture of two gases of molecular masses m, and
m, = 2m; in thermal equilibrium at temperature 7. How
do their speed distributions differ? How do their energy
distributions differ?

It is generally more convenient, wherever possible, to use
Maxwell-Boltzmann statistics rather than quantum statis-
tics. Under what circumstances can a quantum system be
described by Maxwell-Boltzmann statistics?

Suppose we had a gas of hydrogen atoms at relatively high
density. Do the atoms behave as fermions or as bosons?
Would a gas of deuterium (heavy hydrogen) atoms behave

Statistical Analysis

A collection of three noninteracting particles shares 3 units
of energy. Each particle is restricted to having an integral
number of units of energy. (¢) How many macrostates are
there? (b) How many microstates are there in each of the
macrostates? (¢) What is the probability of finding one of
the particles with 2 units of energy? With 0 units of energy?
(a) Considering the numbers of heads and tails, how many
macrostates are there when 5 coins are tossed? (b) What is
the total number of possible microstates in tossing 5 coins?
(c¢) Find the number of microstates for each macrostate, and
be sure the total agrees with your answer to part (b).
Consider a system consisting of two particles, one with
spin s = 1 and another with spin s = 1/5. (a) Considering
a microstate to be an assignment of the z component of
the spins of each of the particles, what is the total num-
ber of microstates of the two-particle system? (b) How
many macrostates are there for the total spin of the two-
particle system? (c) Find the number of microstates for each
macrostate, and be sure the total number agrees with your
answer to part (a).

Classical and @uantum Statistics

Calculate the probabilities for £ = 0,3 and 5 listed in Table
10.2.

Calculate the probabilities given in Table 10.3 for £ =0
and £ = 3 for (a) integral spin and (b) spin 1/2.

A system of four oscillator-like particles shares 8 units
of energy. (That is, the particles can accept energy only
in equal units, in which the oscillator spacing is 1 unit.)
(a) List the macrostates, and for each macrostate give the
number of microstates for distinguishable classical particles,
indistinguishable quantum particles with integral spin, and
indistinguishable quantum particles with half-integral spin.
(b) Calculate the probability to find a particle with exactly
2 units of energy for each of the three different types of
particles.

10.

10.3

11.

104
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any differently? (Hint: The nuclear spin is ¥ for hydrogen
and 1 for deuterium.)

The early universe contained a large density of neutrinos
(massless spin- 15 particles that travel at the speed of light).
Which statistical distribution would be needed to describe
the properties of the neutrinos?

Would you expect the photoelectric effect to depend on the
temperature of the surface of the metal? Explain.

Estimate the mean kinetic energy of the “free” electrons in
a metal if they obeyed Maxwell-Boltzmann statistics. How
does this compare with the result of applying Fermi-Dirac
statistics? Why is there such a difference?

A system consists of two particles, each of which has a spin
of 3/2. (a) Assuming the particles to be distinguishable, what
are the macrostates of the z component of the total spin, and
what is the multiplicity of each? (b) What are the possible
values of the total spin S and what is the multiplicity of
each value? Verify that the total multiplicity matches that
of part (a). (c) Now suppose the particles behave like indis-
tinguishable quantum particles. What is the multiplicity of
each of the macrostates of the z component of the total spin?
(d) Show that for these quantum particles it is possible to
have only combinations with total spin § = 3 or 1.

The Density of States

The universe is filled with photons left over from the
Big Bang that today have an average energy of about
2 x 10~*eV (corresponding to a temperature of 2.7 K).
What is the number of available energy states per unit
volume for these photons in an interval of 1073 eV?

In certain semiconductors, the conducting regions are
grown in very thin layers, which can be regarded as two-
dimensional regions holding an electron gas. Calculate the
density of states (per unit area) for a gas of particles of mass
m and spin s confined to move in two dimensions in a square
region of length L on each side.

Calculate the density of states (per unit area) for a collection
of photons confined to a two-dimensional region in the shape
of a square a length L on each side.

In a conductor like copper, each atom provides one electron
that is available to conduct electric currents. If we assume
that the electrons behave like a gas of particles at room tem-
perature with a most probable energy of 0.0252 eV, what
is the density of states in an interval of 1% about the most
probable energy?

The Maxwell-Boltzmann Distribution

A system consists of N particles that can occupy two
energy levels: a nondegenerate ground state and a three-fold
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degenerate excited state, which is at an energy of 0.25¢eV
above the ground state. At a temperature of 960 K, find the
number of particles in the ground state and in the excited
state.

A system with nondegenerate energy levels has three energy
states: a ground state at £ = 0 and excited states at energies
of 0.045¢V and 0.135eV. At a temperature of 650 K, find
the relative numbers of particles in the three states.

Show that the most probable speed v, of the Maxwell speed
distribution is (2kT/m)'/?.

A container holds one mole of helium gas at a temperature of
293 K. (a) Show that the mean energy E,, of the molecules
is 0.0379 eV. (b) How many molecules have energies in an
interval of width 0.01E, centered on £, ?

A cubic container holds one mole of argon gas at a tem-
perature of 293 K. (a¢) How many molecules have speeds
between 500 and 510 m/s? (b)) How many molecules have
velocities between 500 and 510 m/s in one particular direc-
tion? Explain any differences between the answers to (a)
and (b).

The photosphere of the Sun has a temperature of 5800 K.
(a) Calculate the energy linewidth of the first transition in
the Lyman series of hydrogen in the Sun’s photosphere.
(b) For comparison, calculate the natural linewidth, assum-
ing a lifetime of 1078 s.

Quantum Statistics

Do we expect to be able to use Maxwell-Boltzmann statis-
tics to analyze (a) nitrogen gas at standard conditions (room
temperature, 1 atmosphere pressure); (b) liquid water at
room temperature; (c) liquid helium at 4 K; (d) conduction
electrons in copper at room temperature?

(a) What pressure must be applied to nitrogen gas at room
temperature before Maxwell-Boltzmann statistics begins to
fail? (b) To what temperature must we cool nitrogen gas at 1
atmosphere before Maxwell-Boltzmann statistics begins to
fail?

Applications of Bose-Einstein Statistics

(a) Show that the total number of photons per unit volume at
temperature T is N/V = 87(kT /hc)’ [;° x*dx/(e" — 1). (b)
The value of the integral is about 2.404. How many photons
per cubic centimeter are there in a cavity filled with radiation
at 7 =300K? At 7 =3K?

A blackbody is radiating at a temperature of 2.50 x 10> K.
(a) What is the total energy density of the radiation? (b) What
fraction of the energy is emitted in the interval between 1.00
and 1.05 eV? (¢) What fraction is emitted between 10.00 and
10.05eV?

Find the photon energy at which the blackbody energy
spectrum u#(E) is a maximum. Compare this result with
Wien’s displacement law (see Chapter 3) and account for
any differences.

10.7 Applications of Fermi-Dirac Statistics
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Compute the Fermi energy and the average electron energy
for copper.

Calculate the Fermi energy for magnesium, assuming two
free electrons per atom.

A certain metal has a Fermi energy of 3.00eV. Find the
number of electrons per unit volume with energy between
5.00eV and 5.10eV for (a) T = 295K; (b) T = 2500 K.
Derive Eq. 10.52 from Eq. 10.51.

Assume a neutron star consists of N neutrons (fermions with
spin 1/») in a sphere of radius R and uniform density. The
star is in equilibrium because the inward gravitational force,
which tends to collapse the star, is opposed by a repulsion
due to the Pauli principle, which prevents the neutrons from
moving closer together. (a) Find an expression for the radius
of a neutron star. (b) Evaluate the radius for a star of mass
equal to 3 solar masses. (¢) What is the density of the star?
Consider a neutron star of mass equal to twice the mass
of the Sun. (a) Evaluate the Fermi energy and determine
whether classical or relativistic kinematics should be used in
the analysis. (b) Find the de Broglie wavelength of a neutron
at the Fermi energy and compare with the average distance
between neutrons.

For a 5.0% mixture of *He in 0.50 mole of “He, calculate
the heat capacity in J/K at a temperature of 0.025 mK and
compare with the data shown in Figure 10.24. The density
of liquid “He at this temperature is 2.2 x 10?® atoms/m?>.
Assume an effective mass of *He that is 2.5 times its ordinary
mass.

General Problems

30.
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Show that a system of 2 indistinguishable quantum particles
with spin 2 can combine only to a total spin of 0, 2, or 4.
Consider a collection of N noninteracting atoms with a single
excited state at energy E. Assume the atoms obey Maxwell-
Boltzmann statistics, and take both the ground state and the
excited state to be nondegenerate. (@) At temperature 7,
what is the ratio of the number of atoms in the excited state
to the number in the ground state? () What is the average
energy of an atom in this system? (c¢) What is the total
energy of the system? (d) What is the heat capacity of this
system?

Suppose we have a gas in thermal equilibrium at temperature
T. Each molecule of the gas has mass m. (¢) What is the
ratio of the number of molecules at the Earth’s surface to the
number at height / (with potential energy mgh)? (b) What is
the ratio of the density of the gas at height / to the density
P, at the surface? (c) Would you expect this simple model
to give an adequate description of the Earth’s atmosphere?
A collection of noninteracting hydrogen atoms is maintained
in the 2p state in a magnetic field of strength 5.0 T. (a) At
room temperature (293 K), find the fraction of the atoms in
the m; = +1,0, and —1 states. (b) If the 2p state made a
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transition to the ls state, what would be the relative inten-
sites of the three normal Zeeman components? Ignore any
effects of electron spin.

The following method is used to measure the molecular
weight of very heavy molecules. A liquid containing the
molecules is spun rapidly in a centrifuge, which estab-
lishes a variation in the density of the liquid. The density
is measured, such as by absorption of light, to determine
the molecular weight. Assign a fictitious “centrifugal” force
to act on the molecules and show that the density varies
as p = pOe"”"z"z/ 2T where w is the angular velocity of the
centrifuge and x measures the distance along the centrifuge
tube.

In sodium metal at room temperature, compute the energy
difference between the points at which the Fermi-Dirac dis-
tribution function has the values 0.1 and 0.9. What do you
conclude about the “sharpness” of the distribution?

In sodium metal (see Example 10.8), calculate the number of
electrons per unit volume at room temperature in an interval
of width 0.01F} at the mean energy £, ..

Protons and neutrons are spin-1/; particles in the nucleus.
Find the average energy of the protons and neutrons in the
nucleus of a uranium atom, which contains 92 protons and
143 neutrons and has the shape of a sphere of radius of
7.4 x 107 m

Consider a uniform spherical distribution of matter of radius
r and density p. (a) Imagine that a small increment of mass
dm is brought from infinity to radius ». What is the change
in the gravitational potential energy of the system consisting
of the sphere and this mass increment? (b) Suppose we
bring in from infinity a series of small mass increments
that eventually form a thin spherical shell of radius » and
thickness dr about the central sphere. What is the change
in the potential energy of the system? (¢) What is the total
change in potential energy involved with creating a sphere
of mass M and radius R?

(a) For a white dwarf star of mass equal to the mass
of the Sun, find the de Broglie wavelength for electrons
at the Fermi energy. Use nonrelativistic kinematics and

40.

41.
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assume the star to be composed of helium nuclei (alpha
particles) and of uniform density. (b) Estimate the aver-
age distance between the electrons and compare with their
de Broglie wavelength. What can you conclude from this
comparison?

Measuring the relative population of magnetic substates of
nuclei provides a direct way of determining the temperature
for very cold systems, using a thermometer that is absolute
and needs no calibration. The nucleus **Co behavgs as if it
has a spin of 5 and a magnetic moment of i = yS, where
S represents the nuclear spin and y is a constant equal to
3.64 x 107 T~'s~!. When Co atoms are imbedded in a piece
of magnetized iron, the Co nuclei experience a magnetic field
of B = —BK, where B =29.0T and K is the unit vector in
the z direction. (a) In a certain experiment using a Co in
Fe thermometer, the ratio  of the population of the second
lowest substate to that population of the lowest substate
was observed to be » = 0.419. What is the corresponding
temperature? (b) At that temperature, what is the ratio of
the population of the m = 0 substate to that of the lowest
substate?

The molecule cyanogen (CN), which is commonly found in
interstellar gas clouds, has rotational excited states that can
absorb visible light. These rotational states are populated by
the warming effect of the cosmic background radiation that
is a remnant of the creation of the universe. The energy of the
first excited rotational state (L = 1)is4.71 x 10~* eV above
the ground state. (a) The ratio of the intensity of the radiation
absorbed in the first excited rotational state to the intensity
of the radiation absorbed in the rotational ground state is
0.421 £ 0.017. Assuming this factor represents the relative
populations of the two states, calculate the temperature of
the cyanogen molecules and its uncertainty. (b) Based on
your deduced temperature, calculate the expected ratio of
the absorption intensity from the second rotational state to
that of the ground state and compare with the observed rela-
tive intensity (0.0121 £ 0.0014). Direct observation of this
background radiation shows it to have the expected thermal
radiation spectrum at this temperature (see Chapter 15).
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This scanning electron microscope image shows crystals of the metallic element tungsten.
The shape of the crystal is determined by the geometrical arrangement of tungsten atoms,
which are bound together in the body-centered cubic structure.
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In this chapter we study the way atoms or molecules combine to make solids. In
particular, we discuss how the principles of quantum mechanics are essential in
understanding the properties of solids.

At first thought, there seem to be so many different solids that to classify them
and form some general rules for their properties would appear to be a hopeless
task. The book you are reading is made of paper and cloth, held together by a glue
made from resins, once liquid and now solid. Your desk might be made of wood,
metal, or plastic; your chair might be made of similar materials, and might perhaps
be covered with cloth, leather, or plastic fabric and contain fiber or synthetic foam
padding. Around you, there might be many books and papers, pencils made of
wood and metal and graphite, rubber erasers, pens of metal and plastic. A plastic
body and a liquid crystal display surround the semiconductors that lie at the heart
of your calculator or computer, your cell phone, and your portable multimedia
player. Looking out through a glass window, you see structures made of wood,
bricks, concrete, or metal, selected for strength, utility, or attractiveness. Each of
these solids has a characteristic color, texture, strength, hardness, or ductility; it has
a certain measurable electrical conductivity, heat capacity, thermal conductivity,
magnetic susceptibility, and melting point; it has certain characteristic emission
or absorption spectra in the visible, infrared, ultraviolet, or other regions of the
electromagnetic spectrum.

It is a fair generalization to say that all of these properties depend on two
features of the structure of the material: the type of atoms or molecules of which
the substance is made, and the way those atoms or molecules are joined or
stacked together to make the solid. It is the formidable task of the solid-state (or
condensed-matter) physicist or physical chemist to try to relate the structure of
materials to their observed physical or chemical properties.

Quantum mechanics plays a fundamental role in determining properties of
the solid: mechanical, electrical, thermal, magnetic, optical, and so forth. In this
chapter we illustrate the application of quantum mechanics to the study of solids
by studying some of their thermal, electrical, and magnetic properties.

11.1 CRYSTAL STRUCTURES

Our discussion will concentrate on materials in which the atoms or molecules
occupy regular or periodic sites; this structure is called a lattice, and materials
with this structure are called crystals. Crystalline materials include many metals,
chemical salts, and semiconductors. One property that distinguishes crystals is
their long-range order—once we begin constructing the lattice in one location,
we determine the placement of atoms that are quite far away. In this respect, the
crystal is like a brick wall, in which the bricks are stacked in a periodic array and
the placement of a brick is predetermined by the original arrangement of bricks
far away compared with the size of a brick. (By contrast, amorphous materials
such as glass or paper have no long-range order, and their structure is more
similar to a pile of bricks than to a brick wall.)

Solid crystals can be classified by the cohesive forces that are responsible for
holding the lattice together, as well as by the shape of the arrangement of the
atoms in the lattice. We’ll look at a few different ways that atoms can be bound
together in solids.



lonic Solids

As we learned in Chapter 9, the cohesive forces in ionic molecules originate
from the electrostatic attraction between a closed-shell ion, such as Na™, and
another closed-shell ion, such as CI™. lonic materials can also form solids readily,
because a Na™ ion can simultaneously attract many Cl~ ions to itself, thereby
building up a solid structure. The ions are held together by electrostatic forces,
so we might suppose that the more negative ions there are around a positive ion,
the more stable and strong the solid will be. (Covalent bonds, on the other hand,
involve specific electron wave functions and so are limited in the number of near
neighbors that can participate in the bonding.)

Ionic solids are crystalline, rather than amorphous, because we can pack ions
together more efficiently in a regular array than in a random arrangement. (The
same is true for bricks: In a regular array, there are more bricks per unit volume
than in a random pile, and their average separation is smaller.)

The simplest type of crystal lattice is the cubic lattice, in which we imagine the
atoms to be placed at the corners of a succession of cubes that cover the volume
of the crystal. Figure 11.1 shows the basic cubic structure. This type of stacking
is not the most efficient, because there are large gaps at the center of each face
of the cube, and also in the middle of the cube itself. We get a better stacking
arrangement, which has more atoms per unit volume, if we place another atom
either at the center of each face of the cube or at the center of the body of the
cube. These two lattices are known as face-centered cubic (fcc) and body-centered
cubic (bee) and are illustrated in Figures 11.2 and 11.3.

The fcc lattice gives a slightly more efficient packing (more atoms per unit
volume) and so it is usually the most stable structure. However, atoms do not stack
like hard spheres, and often the bec structure is preferred. These two crystal types,
fce and bec, also occur for materials other than ionic solids, such as certain metals.

A common material that has the fcc lattice structure is NaCl, and for that reason
the fcc lattice is often called the NaCl structure. In order to have the atoms attract
one another, we must alternate Na™ and C1~ ions, as is shown in Figure 11.4.

FIGURE 11.1  The simple

11.1 | Crystal Structures 327

cubic crystal. The atoms are FlGURE 11.2 The face-centered FIGURE 11.3 Thebody-centered
shown as small spheres for cubic structure. cubic structure.

clarity; in an actual solid, the
atoms should be imagined as
spheres in contact in this cubic
geometry.
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FIGURE 11.4 Packing of Na (small
spheres) and Cl (large spheres) in a
fce crystal of NaCl.

FIGURE 11.5 Packing of Cs (large
spheres) and Cl (small spheres) in a
bece crystal of CsCl.

In this illustration you can see how the atoms pack together just like hard spheres
in contact. Notice that a given Na™ ion is attracted by 6 close C1~ neighbors, and
does not “belong to” any single C1™ ion. It is therefore wrong to consider ionic
solids as being composed of molecules.

A typical bec structure is CsCl, as shown in Figure 11.5, and so the bec lattice
is often known as the CsClI structure. In this case each ion is surrounded by 8
neighbors of the opposite charge.

Each Na™ ion in the NaCl structure is surrounded at a distance R by 6 C1~ ions
exerting attractive electrostatic forces. At the slightly larger distance of Rv/2 from
each Na™ ion are 12 Na* ions exerting repulsive forces, and at the still greater
distance of R+/3 there are 8 Cl~ ions exerting attractive forces. To find the total
Coulomb potential energy U, we can continue in this way to add the alternating
attractive and repulsive contributions:

1 1 1

91492 e?
Ur = = —[-6=-+12— —8—+
c=2 4megr 4, ( R + RV2 RV3

(11.1)

e 1 ( 12 8 ) el
=—— (6= 4+ .. )=—q——
47mey R J2 3 4mey R
where «, called the Madelung constant, is the factor in parentheses in Eq. 11.1:

12 n 8
V2 V3
This quantity depends only on the geometry of the lattice and is evaluated by

summing the slowly converging series of alternating positive and negative terms.
The result is

a=6 (11.2)

o = 1.7476 (fce or NaCl lattice)

For the bec lattice, a similar calculation gives

a = 1.7627 (bee or CsCl lattice)

As in the case of ionic molecules, the net attractive electrostatic force is opposed
by a repulsive force due to the Pauli principle, which keeps the filled subshells
from overlapping. The repulsive potential energy can be approximated as

Ug = AR™" (11.3)

where A gives the strength of the potential energy and » determines how rapidly
it increases at small R. For most ionic crystals, # is in the 8—10 range. The total
potential energy of an ion in the lattice is the sum of the Coulomb and repulsive
potential energies:
2
e 1 4
U=U+Ug=—a———+ — 11.4
cHR=TOG R T R (114)
The energies are illustrated in Figure 11.6. There is a stable minimum in the
energy, that determines both the equilibrium separation R, and the binding
energy. To find this minimum, we set dU/dR to zero, which gives

2 pn—1
_ae Ry

11.5
4megn (115
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Nearest-Neighbor Cohesive Energy
Separation (kJ/mol) n Structure
LiF 0.201 1030 6 fec
LiCl 0.257 834 7 fee
NaCl 0.281 769 9 fee
Nal 0.324 682 9.5 fec
KCl 0.315 701 9 fec
KBr 0.330 671 9.5 fee
RbF 0.282 774 8.5 fec
RbCl 0.329 680 9.5 fee
CsCl 0.356 657 10.5 bee
Csl 0.395 600 12 bee
MgO 0.210 3795 7 fec
BaO 0.275 3029 9.5 fee
The binding energy B of an ion in the crystal is the depth of the energy well at
R = R, the equilibrium separation between nearest-neighbor ions. Substituting
Eq. 11.5 into Eq. 11.4 and evaluating the resulting equation at R = R,), we obtain
B=—U(RRy = o’ ()] (11.6)
N 0" 47 R, n ’

From thermodynamic measurements, it is possible to determine the bulk !
cohesive energy of a solid. In effect, the cohesive energy of an ionic solid is 10 :
defined as the energy necessary to dismantle the solid into individual ions. Some !
measured values of the cohesive energies and nearest-neighbor spacings are given !
in Table 11.1. The value of the exponent 7 is determined from compressibility 5 “UR
data. \

The cohesive energy of a bulk sample can be calculated by multiplying the E \
binding energy for a single ion, determined from Eq. 11.6, by the number of ions 3 0 R\ Separation (nm)
in the sample, except that such a calculation would count each ion twice.* In one & 0J2 : 0.4 0.6
mole of an ionic solid, there are Avogadro’s number N, of positive ions and also :Cj !

N, negative ions, for a total of 2N, ions per mole. The relationship between the ! T
molar cohesive energy E_, and the ionic binding energy B is then -5 \:. P
=B __ |\ ! /
Eeyp = 5(B)Y2N,) = BN, (11.7) ’
-10 /
/

o U
*Consider ions 4 and B. If we use Eq. 11.6 to compute the binding energy of ion 4, the result includes

the interaction of ion 4 with all the ions of the solid, including ion B. Similarly, the binding energy of
ion B calculated from Eq. 11.6 includes the interaction of B with 4. If we calculated the total binding
energy of the solid by adding together the binding energies of all ions 4 and B, we would be including
the interaction between 4 and B twice.

FIGURE 11.6  Contributions to the
energy of an ionic crystal. Numerical
values are for NaCl.
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where the factor of 1/2 corrects for the problem of double counting of the ions.
The following examples illustrate the relationship between cohesive energy of
the bulk solid and the binding energy per ion pair.

| Example 11.1

(a) Determine the experimental value of the binding energy
of an ion pair in the NaCl lattice from the cohesive energy.
(b) Find the expected value of the binding energy based on
the lattice parameters.

Solution
(a) From Eq. 11.7, we have
5 Eeon _ 769 x 10% J/mol

N, (6.02 x 10 ions/mol)(1.60 x 10~19 J/eV)
=798¢eV

(b) The calculated value of the ionic binding energy is
obtained from Eq. 11.6:

ae’ 1
B (1-)
4megRy n

_ (1.7476)(1.44 ¢V - nm)
B 0.281 nm

(0.889) = 7.96 eV

The agreement between the experimental and calculated
values is very good.

| Example 11.2

How much energy per neutral atom would be needed to
take apart a crystal of NaCl?

Solution

If we supply an energy of E_, to a mole of NaCl, we
obtain N, Na™ ions and N, Cl~ ions. To convert these to
neutral atoms, we must remove an electron from each C1,
which costs us the electron affinity of CI (3.61¢V), and

then we must attach that electron to the Na™, which returns
the ionization energy of Na (5.14 eV). The net cost per pair
of Na and Cl atoms is

798¢V +3.61eV —5.14eV =6.45¢eV

Expending this much energy gives two neutral atoms (Na
and Cl), so the net cost per atom is half that amount, or
3.23eV.

FIGURE 11.7 The tetrahedral struc-
ture of carbon.

The large cohesive energies of ionic solids such as NaCl gives them a common
set of properties: They are hard, with high melting and vaporization temperatures
(because it takes a lot of thermal energy to break the bonds). They are soluble in
polar liquids such as water, in which the dipole moment of the water molecule
can supply the electrostatic force necessary to break the ionic bonds. There are no
free or valence electrons, so they are poor electrical conductors and not strongly
magnetic. They are transparent to visible light (because light rays have too little
energy to excite electrons from the filled shells), but absorb strongly in the infrared
(corresponding to the vibrational frequencies of the atoms in their lattice sites).

Covalent Solids

As we discussed in Chapter 9, carbon forms molecules by covalent bonding of
its four outer electrons in sp* hybrid orbits. Such bonds are highly directional,
and we have seen how it is possible to calculate the angle between the bonds
based on the symmetry of the bonding configuration. Solid carbon, in the form of
diamond, is an example of a solid in which the interatomic forces are also of a
covalent nature. As in a molecule, the four equivalent sp* hybrid states participate
in covalent bonds, and because they are equivalent they must make equal angles
with one another. The manner in which this is done is shown in Figure 11.7. A
central carbon atom is covalently bound to four other carbons that occupy four
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Crystal Nearest-Neighbor Distance (nm) | Cohesive Energy (kJ/mol)
ZnS 0.235 609
C (diamond) 0.154 710
Si 0.234 447
Ge 0.244 372
Sn 0.280 303
CuCl 0.236 921
GaSb 0.265 580
InAs 0.262 549
SiC 0.189 1185

corners of a cube as shown. The angle between the bonds is 109.5°, as it was in
the covalently bonded molecules.

Figure 11.8 illustrates how the solid structure characteristic of diamond is
constructed of such bonds. Each carbon has four close neighbors with which it
shares electrons in covalent bonds. The basic structure is known as tetrahedral,
and many compounds have a similar structure as a result of covalent bonding.
Table 11.2 shows some of these compounds. The cohesive energy is the energy
required to dismantle the solid into individual atoms. The structure is also known
as the zinc sulfide or zinc blende structure.

Some of the covalent solids listed in Table 11.2 have bond energies larger
than those of ionic solids. Substances such as diamond and silicon carbide are
particularly hard. Other covalent solids with structures similar to carbon are silicon
and germanium; the structure of these solids is responsible for their behavior as
semiconductors.

The covalent solids do not have the same similarity of characteristics that ionic
solids do, and so we cannot make the same generalizations. Carbon, in the diamond
structure, has a large bond energy and is therefore very hard and transparent to
visible light; germanium and tin have similar structures, but are metallic in
appearance and highly reflective. Carbon (as diamond) has an extremely high
melting point (4000 K); germanium and tin melt at much lower temperatures
more characteristic of ordinary metals. Some (like diamond) are extremely poor
electrical conductors, while others (like Si, Ge, and Sn) can conduct electricity but
not nearly as well as most metals. Of course, these differences depend on the actual
bond energy in the solid, which in turn depends on the type of atoms of which the
solid is made. Those solids with large bond energies are hard, have high melting
points, are poor electrical and thermal conductors, and are transparent to visible
light. Those solids with small bond energies may have very different properties.

Metallic Bonds

The valence electrons in a metal are usually rather loosely bound, and frequently
the electronic shells are only partially filled, so that metals tend not to form
covalent bonds. The basic structure of metals is a “sea” or “‘gas” of approximately
free electrons surrounding a lattice of positive ions. The metal is held together by
the attractive force between each individual metal ion and the electron gas.

FIGURE 11.8 The lattice structure of
diamond.
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TABLE 11.3 Structure of Metallic Crystals

Metal Crystal Type Nearest-Neighbor Distance (nm) Cohesive Energy (kJ/mol)
Fe bee 0.248 418
Li bee 0.304 158
Na bee 0.372 107
Cu fee 0.256 337
Ag fce 0.289 285
Pb fec 0.350 196
Co hep 0.251 424
Zn hep 0.266 130
Cd hep 0.298 112

FIGURE 11.9 Arrangement of atoms

in a hexagonal close-packed crystal.

The most common crystal structures of metallic solids are fcc, bee, or a third
type known as hexagonal close-packed (hcp). The hep structure is shown in
Figure 11.9; like the fcc structure, it is a particularly efficient way of packing
atoms together. Some metals and their characteristics are shown in Table 11.3.
The cohesive energy of metal bonds tends to fall in the range 100—400 kJ/mol
(1-4 eV/atom), making the metals less strongly bound than ionic or covalent
solids. As a result, many metals have relatively low melting points (some below
a few hundred °C). The relatively free electrons in the metal interact readily with
photons of visible light, so metals are not transparent. The free electrons are
responsible for the high electrical and thermal conductivity of metals. Because
metallic bonds don’t depend on any particular sharing or exchange of electrons
between specific atoms, the exact nature of the atoms of the metal is not as
important as it is in the case of ionic or covalent solids; as a result we can make
many kinds of metallic alloys by mixing together different metals in varying
proportions.

Molecular Solids

None of the solids we have discussed so far can be considered as composed of
individual molecules. It is, however, possible for molecules to exert forces on one
another and to bind together in solids. The electrons in a molecule are already
shared in molecular bonds, so there are no available electrons to participate in
ionic, covalent, or metallic bonds with other molecules. Moreover, molecules are
electrically neutral, so there are no Coulomb forces involved. Molecular solids
are held together by much weaker forces, which generally depend on the electric
dipole moments of the molecules. Because these forces are much weaker than the
internal forces that hold a molecule together, a molecule can retain its identity in
a molecular solid.

The electric dipole moment of one molecule can exert an attractive force on
the dipole moment of another. The dipole cohesive force (which is proportional
to 1/R%) in molecular solids is generally weaker than the 1/R?> Coulomb force
that is responsible for the cohesive energies of other solids. Molecular solids are
therefore more weakly bound and have lower melting points than ionic, covalent,
or metallic solids, because it takes less thermal energy to break the bonds of a
molecular solid.



Some molecules (called polar molecules) have permanent electric dipole
moments consisting of a positive charge on one end of the molecule and an
equal negative charge on the opposite end. For example, in a water molecule, the
oxygen atom tends to attract all of the electrons of the molecule and so looks
like the negative end of the dipole; the two “bare” protons are the positive ends
of the dipole. The dipole forces between water molecules are responsible for the
beautiful hexagonal patterns of snowflakes. When bonding of this sort involves
hydrogen atoms, as it does in water, it is known as hydrogen bonding.

It is also possible to have dipole forces exerted between atoms or molecules
that have no permanent dipole moments. Quantum mechanical fluctuations® can
produce an instantaneous electric dipole moment in one atom, which then induces a
dipole moment by polarizing a neighboring atom. The result is an attractive dipole-
dipole force known as the van der Waals force, which is responsible for the bonding
in certain molecular solids (as well as for such physical effects as surface tension
and friction). Examples of solids that are bound by the van der Waals force include
those composed of the inert gases (Ne, Ar, Kr, and Xe), symmetric molecules
such as CH, and GeCly, halogens, and other gases such as H,, N,, and O,.

The van der Waals force is extremely weak; it falls off with separation distance
like R~7. In inert gas crystals, the nearest neighbor distance is 0.3—0.4 nm, but
the cohesive energies are typically only 10kJ/mol or 0.1 eV/atom. Solids bound
by these weak forces have low melting points, because little thermal energy is
required to break the bonds. In fact, because the induced dipole moment of an atom
or molecule should be approximately proportional to its fotal number of electrons,
we might expect that the melting points of nonpolar molecular solids should be
roughly proportional to the number of electrons in each molecule. Figure 11.10
shows this relationship; although the properties of the individual solids cause
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FIGURE 11.10 The melting points of molecular solids depend approximately on
the number of electrons per molecule.

*These fluctuations are too rapid to be observed in the laboratory. Measurements give only the average
value of this fluctuating dipole moment, which is zero.
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considerable scatter of the points, the relationship is roughly as we expect it
should be.

11.2 THE HEAT CAPACITY OF SOLIDS

Just as we discussed in Chapter 1 for the heat capacity of gases, the heat capacity
of solids provides another example of the breakdown of classical statistical
mechanics and the need for a more detailed theory based on quantum mechanics.
(You might find it helpful to review the classical calculation of the heat capacity
for gases in Section 1.3.)

Let’s first consider what classical thermodynamics predicts for the heat capacity
of a solid. In contrast to a gas, an atom in a solid occupies a specific position in
the lattice, so no translational motion is possible. Thus there are no degrees of
freedom corresponding to the translational motion. The atom can move only by
vibrating about its equilibrium position in the lattice. We can imagine the atom
to behave as if it were connected to all of its closest neighbors by springs. It
can vibrate in any of the three coordinate directions independently of the other
two—the initial displacements of the springs in the x,y, and z directions can
be chosen independently, and the initial velocities in each direction can be set
independently of one another. Consequently there are 6 degrees of freedom in this
situation—2 degrees of freedom (corresponding to the vibrational potential and
kinetic energies) for each of the three directions. According to the equipartition
theorem, the average energy for each degree of freedom is %kT , so the average
energy per atom is 6 X %kT = 3kT. The total internal energy of one mole (N,
atoms) would then be E;, = 3N kT = 3RT (where R = N,k is the universal gas
constant), and the corresponding molar heat capacity is

AFE,

C=—"—3R=124.9]J/mol-K (11.8)
AT
This is the expected value of the molar heat capacity of solids based on classical
30 /\/— statistical mechanics and is known as the law of Dulong and Petit.
Dulong - Petit How well does this prediction compare with experiment? Table 11.4 shows
25 F—————4—————- uiat some values of the molar heat capacities at room temperature (approximately
I * 300K) and at 100K and 25K for some metallic elements. There is good
c 20 S agreement with the Dulong and Petit prediction at room temperature, but
% . P . Cu poor agreement as the temperature is reduced. (Note that the classical value is
g5 . independent of temperature.)
i oL . : Figure 11.11 shows the temperature dependence of the heat capacities of Pb,
. R Cu, and Cr at temperatures between 1K and 100 K. It appears that the heat
¢ . s Cr capacity approaches 0 at the lowest temperatures. As the temperature is increased,
5 N . . . . .
. = |, the heat capacity rises, eventually reaching the Dulong and Petit value at high
0 Lotmnzl & i N/_ enough temperature. However, the rate of increase is very different for these
0 50 100 V 300 metals: Pb rises quickly (approaching the Dulong and Petit value by 100 K), Cu
Temperature (K) rises more slowly, and Cr rises even more slowly.

Clearly the classical calculation fails to account for the heat capacities of
FIGURE 11.11 Molar heat capacity  these solids. One possible resolution of this problem would be to consider the
of Pb (diamonds), Cu (squares), and  application of quantum statistics to the electrons in these metals. In Chapter 10,
Cr (triangles) at temperatures below  we discussed the heat capacity of a gas of fermions. We applied the model to
100 K. The room temperature values 3 dilute solution of *He in “He, but the result can apply equally as well to any
are shown at the right. system of particles governed by Fermi-Dirac statistics.
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TABLE 11.4 Heat Capacities of Common Metals*

T=300K T=100K T=25K

Metal J/kg-K J/mole - K J/mole - K J/mole - K

Al 0.904 23.4 12.8 0.420

Ag 0.235 243 20.0 3.05

Au 0.129 234 21.1 5.11

Cr 0.461 23.8 10.0 0.199

Cu 0.387 23.9 16.0 0.971

Fe 0.450 24.6 12.0 0.398

Pb 0.128 24.7 23.8 14.0

Sn 0.222 23.8 22.0 6.80

*The value of the heat capacity depends on the circumstances under which it is
determined. Usually measured values are observed at constant pressure (Cp), while
calculated values are more easily obtained for constant volume (Cj,). The first data
column in this table is the experimental specific heat (heat capacity per unit mass) at
constant pressure, and the remaining columns all give the molar heat capacity at constant
volume. In most cases Cp is just a few percent larger than Cy,.

We can treat the electrons in a metal as a Fermi gas. In deriving Eq. 10.63
for the heat capacity, the only assumption we made was that k7" < E}.. For most
metals, E¢ is a few eV and even at room temperature k7 is only 0.025 eV, so the
approximation should be pretty good. Let’s rewrite Eq. 10.63 for one mole of a
substance (N = N,) as follows:

272 2
c= TENAT _ n” RET (11.9)
2FE% 2 Ep
where R = 8.31 J/mole - K. Equation 11.9 is written as if each atom of the lattice
contributes one electron to the electron gas, so that N (the number of electrons) is
equal to N, (for one mole of atoms). If, for example, the metal had a valence of
2, then we would have N = 2N,.

For copper Ep = 7.03¢eV and Eq. 11.9 gives C = 0.146 J/mole - K at room
temperature. This value is far smaller than the experimental value, indicating that
the electrons provide only a small contribution to the heat capacity, at least at
room temperature. So the correct explanation for the behavior of the heat capacity
must lie elsewhere than the electrons.

Einstein Theory of Heat Capacity

In an ordinary solid, most of the physical properties originate either with the
valence electrons or with the latticework of atoms. Electrical conductivity,
for example, originates with the valence electrons, while the propagation of
mechanical waves is due to the lattice of atoms. The heat capacities of solids have
contributions from both lattice and conduction electrons; at all but the lowest
temperatures, the lattice contribution is dominant.

The explanation for the failure of classical physics to account for the heat
capacity of solids was first given by Einstein, who assumed that the oscillations
(not the atoms) of the solid obeyed Bose-Einstein statistics. Just as electromagnetic
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FIGURE 11.12 Molar heat capacity
of Cu. The solid curve gives the tem-
perature dependence expected accord-
ing to the Einstein theory (Eq. 11.11).

waves are analyzed as “particles” (quanta of electromagnetic energy, or photons)
that obey Bose-Einstein statistics, so are mechanical or acoustic waves analyzed
as “particles” (quanta of vibrational energy, called phonons) that also obey
Bose-Einstein statistics. Einstein made the simplifying assumption that all of the
phonons (oscillations) have the same frequency.

We have seen in Chapter 5 that a quantized oscillator has an energy of
hw(n + %). Each additional value of n represents an additional phonon; to go
from a vibrational energy of %ha) to %hw we must “create” a phonon of energy fiw.
One mole of the solid contains N, atoms and thus 3N, oscillators. The density
of states (number of states per unit volume) is thus 3N, /V, and the integral of
Eq. 10.7 is evaluated only at the single energy £ = 7iw (because all phonons have
energy /iw). Using the Bose-Einstein distribution, the number of phonons is then
N = 3N, /("/¥T — 1), and the total internal energy of the solid is the number of
phonons times the energy of each phonon:

The heat capacity can be found from dE;,/dT":
dE. (/¥ (he / KT?)
C= T = 3NAhw—(ehw/kT 1y
Fion 2 ehw/kT TE 2 eTE/T

where we have replaced 7iw/k with the parameter Ty, called the Einstein temper-
ature. The vibrational energy 7w (or the Einstein temperature 7j) is an adjustable
parameter of the theory and takes different values for different materials. Typically,
Tt is of the order of several hundred kelvins.

When 7 is small, the exponential term in the denominator dominates, and
C o« e Te/T 5o indeed C approaches 0 for small T, in agreement with experiment.
Figure 11.12 shows the molar heat capacity of Cu compared with the behavior
predicted by Eq. 11.11, with 7y = 225 K giving the best fit to the data. As you
can see, the agreement is reasonably good. However, even though the shape of
the theoretical curve matches the overall trend of the data, it fails to do a good job
at accounting for the behavior at the lowest temperatures (the data approach zero
more slowly than the theory predicts).

In this calculation we have oversimplified by assuming all of the oscillations
to have the same frequency. A better calculation, which was first done in 1912
by Peter Debye*, assumes a distribution of frequencies with a density of states
given by an expression of the same form as that for the “photon gas” of blackbody
radiation; the predicted low temperature behavior is then

1274 ([ T\°
C = R(— (11.12)
5 T,

where T, is a parameter of the theory known as the Debye temperature, which is
different for different materials.

“Peter Debye (1884-1966) was born in the Netherlands but spent most of his academic career in
German universities (where at one point he served as Schrodinger’s professor) and finally moved to
the U.S. in 1940. He is perhaps best known for his analysis of X-ray diffraction patterns (such as
Figure 3.8), for which he received the 1936 Nobel Prize in chemistry.
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At the lowest temperatures, we therefore can identify two terms in the heat
capacity: a term due to the electrons, which is linear in the temperature (Eq. 11.9),
and another term due to the lattice vibrations of the atoms, which is proportional to
T3. Combining these two terms, we then expect the low-temperature heat capacity
to be of the form C = aT + hT?3, where a is the coefficient of T in Eq. 11.9 and
b is the coefficient of 7 in Eq. 11.12. As T approaches 0, the 7> term drops off
more rapidly than the linear term, so at the very lowest temperatures we expect
the electrons to have a more significant contribution. We can turn this equation
into a linear graph and identify both contributions by writing C/T = a + bT? and
plotting C/T as a function of 72, which should give a straight line of slope b and
y-intercept a. Figure 11.13 shows the results for copper. The data do indeed fall
on a straight line, in excellent agreement with the Debye theory. If the electronic
part if the heat capacity were not present (that is, if there were only the lattice
contribution from Eq. 11.12), then the line would go through the origin and the
intercept would be zero. So the intercept tells us about the electronic contribution
to the heat capacity. The slope of the line tells us about the lattice contribution
and depends on the Debye temperature.

| Example 11.3

Slope =
4.80 x 1075/

moIe~K/

e

/

C/T (1073 J/mole-K?)

2
Interce
/ 7.01 x

pt =
10™*J/mole-K?

OO 5

0 100

72 (K?)

FIGURE 11.13 Molar heat capacity
for Cu, plotted as C/T against 7. The
slope gives the lattice contribution and
the intercept gives the contribution of

the electrons.

(a) From the slope of the line in Figure 11.13, determine the  (b) The intercept « is the coefficient of 7 in the electronic
Debye temperature of copper. (b) Using the Fermi energy  contribution to the heat capacity (Eq. 11.9):

of copper (7.03 eV), determine the expected value of the

) w2kR
intercept. a=

2E;

Solution
(a) Theslope b is equal to the coefficient of 73 in Eq. 11.12,

~ 7%(8.617 x 1072 eV/K)(8.31 J/mole - K)

so b = 127*R/5T3 and

. <12n4R>”3 _[ 1274(8.31 J/mole - K) }”3
D™=\ s ~ | 5(4.80 x 105 J/mole - K*)
=343K

2(7.03eV)

=5.03 x 107* J/mole - K>

The expected value of the intercept based on the free-electron model doesn’t quite
agree with the experimental value from Figure 11.13 for exactly the same reason
that our analysis of the *He data in Chapter 10 didn’t agree with the predictions:
an electron moving through a copper lattice doesn’t behave as a free electron
would in an electron gas. We can account for the forces exerted by the lattice on
the electrons by assigning the electrons an “effective mass” that is larger than the
mass of a free electron. The additional mass accounts for the “sluggish” behavior
of the electrons in moving through the lattice. The mass enters the calculation
through the Fermi energy (Eq. 10.50); making the mass larger results in a smaller
value of £y and thus a larger value of the intercept a. For copper, the effective
mass of the electrons is about 1.4 times their free mass.

The Debye theory also gives good agreement with the experimental data at
higher temperatures. Except at room temperature, the data of Table 11.4 seem to
have little in common. At 100 K the heat capacities vary by more than a factor of 2,
and they vary by two orders of magnitude at 25 K. In the Debye theory, the heat
capacity for any substance can be written as a function of 7/ T,. If we plot the heat
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FIGURE 11.14 The heat capacity for
eight different metals plotted against
T/Tp. All values fall along the same
curve calculated from the Debye
theory.
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FIGURE 11.15 (a) The density of

states factor for electrons (Eq. 10.12).
(b) The Fermi-Dirac distribution func-
tion (Eq. 10.34). (¢) The number of
occupied states per unit energy inter-
val, determined from the product of

(a) and (b).

capacities of the eight metals listed in Table 11.4 against 7'/ T, the large variation
among the values for different metals disappears, as shown in Figure 11.14.
The data for all substances fall along the same curve calculated from the Debye
theory. Understanding these widely different materials in a common basis is a
great triumph for the quantum theory and for the application of Bose-Einstein
statistics.

Ml 11.3 ELECTRONS IN METALS

In metals, each atom contributes one or more loosely bound electrons to an
“electron gas” of nearly free electrons that can easily move throughout the metal.
In analogy with an ordinary molecular gas, these electrons move freely and
experience forces only when they scatter from the ion cores in the lattice. For
now, we’ll assume the distribution of occupied electron states is determined by
the density of states for the electron gas and the Fermi-Dirac distribution function.
In the next section, we will see that a more detailed analysis of the properties
of the interaction of the electrons with the atoms of the lattice forbids certain
ranges of energy values, but we’ll ignore that effect for this discussion. With these
assumptions, we can use the electron gas model to study many of the properties
of metals, such as electrical conduction, heat capacity, and heat conduction.

Figure 11.15 reviews the main details of the Fermi-Dirac energy distribution,
which we discussed in Chapter 10, as it might be applied to electrons in metals.
The distribution of occupied electron states is determined by the product of the
density of states factor, Eq. 10.12, and the Fermi-Dirac distribution function, Eq.
10.34. At T =0, all states above the Fermi energy Ep are empty and all states
below Ep are occupied. For temperatures greater than 0, £y identifies the point
at which the Fermi-Dirac factor has the value !/>. The difference between N (E)
at 7 = 0 and at room temperature was illustrated in Figure 10.22; only a small
number of electrons near Ey are affected by the temperature change.

We calculated the Fermi energy at 7 = 0 by using Eq. 10.49, in which the
integral of N (E) over all energies gives the total number of electrons N. The same
procedure can be used to find £ at any temperature:

EV2dE
e E—Ep)/KT | |

827V m3/2 /00
0

N = / N(E) dE =
0 h

(11.13)
In principle, we can evaluate the integral and solve for E, as we did to obtain

Eq. 10.50. However, the integral cannot be evaluated in closed form. The solution
can be approximated as

2 2
Ep(T) ~ Ex(0) [1—”—< i )]
12 \E.(0)

Here Ep(T) represents the Fermi energy at temperature 7' and Ep(0) represents
the Fermi energy at 7 = 0 (Eq. 10.50). At room temperature, k7 = 0.025 eV, and
for most metals the Fermi energy is a few eV, so the change in the Fermi energy
between 0 K and room temperature is only about 1 part in 10*. We can therefore

(11.14)
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regard the Fermi energy as a constant for our applications, and we will represent  TpBLE 11.5 Fermi Energies of Some

it simply as Ep. Table 11.5 shows the Fermi energies of some metals. Metals
Electrical Conduction Metal | Ep(eV)
. = . . o A 5.50
When an electric field E is applied to a metal, a current flows in the direction of £
the field. The flow of charges is described in terms of a current density j, the Au 52
current per unit cross-sectional area. In an ordinary metal, the current density is Ba 3.65
proportional to the applied electric field: C )
a .

where the proportionality constant o is the electrical conductivity of the material. Cu 7.03
We would like to understand the conductivity in terms of the properties of the Li 4.70
metal. N R

The free electrons in our electron gas experience a force F = —¢E and a Mg 711
corresponding acceleration —eE/m. We observe that in a conductor the current Na 3.15

is constant in time, so the increase in velocity from the electric field must be
opposed, in this case by collisions with the lattice. This model of conduction in
metals views the electrons as accelerated by the field only for short intervals,
following which they are slowed by collisions. The net result is that the electrons
acquire on the average a steady drift velocity V4, given by the acceleration times
the average time 7 between collisions:

. —¢E
v, = %r (11.16)

The magnitude of the current density is determined by the number of charge
carriers and their average speed:

i = —nev, (11.17)

where 7 is the density of electrons available for conduction. Substituting for the
drift velocity, we obtain

2 nez‘l: =
j= (11.18)
m
and the conductivity is therefore
2
o="2" (11.19)
m

The unknown factor in Eq. 11.19 is the time between collisions, which we can
express as

T=— (11.20)

where [ is the mean firee path of the electrons, the average distance the electrons
travel between collisions, and v,, is their average speed through the lattice. (Note
that this speed is not the same as the drift speed, which is the small increment of
speed that comes about from applying the electric field.)

Let’s see how this theory compares with experimentally observed
conductivities.
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| Example 11.4

Assuming the average distance traveled between colli-
sions is roughly the distance between atoms, estimate the
electrical conductivity of copper at room temperature.

Solution

The nearest neighbor spacing between atoms in a copper
lattice is 0.256nm. If we treat the electron gas semi-
classically, the average kinetic energy of an electron is
%kT , and so the average speed of an electron at room

The average time between collisions is then

T =1/v,, = (0.256 x 107" m)/(1.15 x 10° m/s)
=222x10"5s

The density of copper atoms is

PNy (8.96 x 10° kg/m?)(6.02 x 10?3 atoms/mole)
M 0.0635 kg/mole

n—

temperature (k7' = 0.0252¢V) is

3kT
iy

= 8.49 x 10%® atoms/m’

and the conductivity is

3(0.0252¢eV)

- \/0.511 % 100 eV/c2

=1.15 x 10° m/s

(849 x 10%¥ m™)(1.60 x 10717 €)*(2.22 x 107 5)
N 9.11 x 10-3! kg
=530x10°Q ' m™!
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FIGURE 11.16 (a) The Fermi-

Dirac velocity distribution function.
(b) When an electric field is applied,
the distribution shifts as the electrons
are accelerated in a direction opposite
to the field.

The measured conductivity of copper at room temperature is
5.96 x 107 Q7 'm~!, so our calculation is off by more than an order of
magnitude. Moreover, the temperature dependence is wrong: this calculation
predicts that the conductivity should decrease as 7~'/2 in this temperature region,
while the measured conductivity decreases like 7.

We have actually made a couple of errors in this calculation, both of which
have to do with ignoring the effects of quantum mechanics in the conduction
process. Let’s see how we can remedy these defects.

Quantum Theory of Electrical Conduction

Figure 11.16a represents the Fermi distribution of electron velocities in the metal.
Like the Fermi energy distribution, it is flat at v = 0 and it falls to zero near the
Fermi velocity v, but (unlike the energy distribution) it has positive and negative
branches because the electrons can move in either direction. When an electric field
is applied, all electrons acquire on the average an additional velocity component
equal to the drift velocity v4, which shifts the entire velocity distribution to the
left (opposite the field direction), as shown in Figure 11.16b. Even though the
entire distribution shifts, the net effect of applying the electric field is centered on
a small number of electrons in the vicinity of vg. The electric field causes some
electron states near vg in the direction of E to become unoccupied, while an equal
number of states near vg in a direction opposite to E become occupied.

The only electrons affected by the field are those in a narrow interval near the
Fermi energy. These electrons are moving with a speed vy = /2Ey/m, which
for copper with Ex = 7.03eV works out to be 1.57 x 10®m/s. This speed is



about an order of magnitude larger than the speed we found in Example 11.4,
which would give us a shorter average time between collisions and hence a
smaller conductivity. This seems to make the disagreement between theory and
experiment even worse! Moreover, the Fermi energy is nearly independent of
temperature, so the speed of electrons near the Fermi energy should likewise not
change with temperature, nor should the conductivity.

That leaves the mean free path / as our last resort in fixing the calculation.
However, in a perfectly arranged lattice, the mean free path should be infinite!
Because atoms are mostly empty space, an electron should have a clear path
through the material without scattering from the lattice ions. A perfect lattice
should have an infinite conductivity! In practice, we find that the mean free path
of an electron may be many hundreds of times the spacing between atoms, so that
an encounter of an electron with a lattice ion is not very common.

In a real metallic lattice, two effects contribute to the scattering of electrons:
(1) the atoms are in random thermal motion (oscillating about their equilibrium
positions) and therefore do not occupy exactly the positions of a perfectly
arranged lattice, and (2) lattice imperfections and impurities cause deviations
from the ideal lattice. The first effect is temperature dependent and dominates at
high temperatures; the second effect is independent of temperature and dominates
at the lowest temperatures. In fact, because the average vibrational potential
energy (which depends on the square of the vibrational amplitude) is proportional
to the temperature, the average area that a vibrating atom presents to an electron
moving through the lattice is also proportional to 7. Therefore the conductivity
decreases like 77!, in agreement with observations.

Figure 11.17 shows the resistivity (the inverse of conductivity) of sodium metal
as a function of the temperature. You can see the temperature-independent part
at low temperature and the temperature-dependent part at higher temperatures
(which increases linearly with 7).

The same principles that govern electrical conductivity in a metal also govern
thermal conductivity. Heat entering the material causes electrons in a small interval
(of width £T') near the Fermi energy to move more rapidly, and those electrons can
transfer their energy to the lattice in collisions with the ions. Assuming the mean
free paths for electrical conduction and thermal conduction are the same, the ratio
of the thermal conductivity to the electrical conductivity should be independent
of the material but should depend only on the temperature (because the interval
kT determines the number of electrons available for thermal conduction).

The ratio K /oT (where K is the thermal conductivity) should be the same for
all materials and all temperatures. The proportionality of the thermal and electrical
conductivities is known as the Wiedemann-Franz law. The ratio K /oT can be
calculated from the parameters of the electron gas model to be

L=n%/3> =2.44 x 1078 W . Q/K? (11.21)

which is called the Lorenz number. Figure 11.18 shows the ratio K/oT for a
variety of metals at room temperature. In this region the thermal and electrical
conductivities vary by nearly two orders of magnitude, but the ratio remains fairly
constant and agrees with the Lorenz value. This agreement is another successful
application of Fermi-Dirac statistics to the properties of electrons in solids.
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FIGURE 11.17  The electrical resis-
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the Lorenz number.
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11.4 BAND THEORY OF SOLIDS

The model of treating a conductor as a gas of free electrons has taken us a
long way toward understanding the properties of materials, but to gain a deeper
understanding we must consider the interaction of the electrons with the atoms of
the lattice. We’ll see that this interaction leads to a profound difference between
the electron energies of the free electron gas (continuous from zero up to the
Fermi energy) and the electron energies in an interacting system (an alternating
series of allowed and forbidden energy regions).

When two identical atoms, such as sodium, are very far apart, the electronic
levels in one are not affected by the presence of the other. The 3s electron of each
atom has a single energy with respect to its nucleus. As we bring the atoms closer
together, the electron wave functions begin to overlap, and two different 3s levels
form, depending on whether the two wave functions add or subtract. This effect
is responsible for molecular binding, as discussed in Section 9.2. Figure 11.19
shows a representation of the energy levels.

As we bring together more atoms, the same sort of effect occurs. When the
sodium atoms are far apart, all 3s electrons have the same energy, and as we begin
to move them together, the energy levels begin to “split.” The situation for five
atoms is shown in Figure 11.20. There are now five energy levels that result from
the five overlapping electron wave functions. As the number of atoms is increased
to the very large numbers that characterize an ordinary piece of metal (perhaps
10?2 atoms), the levels become so numerous and so close together that we can no
longer distinguish the individual levels, as shown in Figure 11.21. We can regard
the N atoms as forming an almost continuous band of energy levels. Because those
levels were identified with the 3s atomic levels of sodium, we refer to the 3s band.

Each energy band in a solid with N atoms has a total of N individual levels.
Each level can hold 2(2/+ 1) electrons (corresponding to the two different
orientations of the electron spin and the 2/41 orientations of the electron orbital
angular momentum) so that the capacity of each band is 2(2/ + 1)N electrons.

Figure 11.22 shows a more complete representation of the energy bands in
sodium metal. The 1s, 2s, and 2p bands are each full; the 1s and 2s bands each
contain 2N electrons and the 2p band contains 6NV electrons. The 3s band could

Energy
Energy
Energy

3s

3s 3s

Atomic separation Atomic separation Atomic separation

FIGURE 11.19 Splitting of 3s level  FIGURE 11.20 Splitting of 3s level  FIGURE 11.21 Formation of 3s band
when two atoms are brought together. when five atoms are brought together. by a large number of atoms.



accommodate 2N electrons as well; however, each of the N atoms contributes
only one 3s electron to the solid, and so there is a total of only N 3s electrons
available. The 3s band is therefore half full. Above the 3s band is a 3p band,
which could hold 6N electrons, but which is completely empty.

The situation we have described is the ground state of sodium metal. When
we add energy to the system (thermal or electrical energy, for example), the
electrons can move from the filled states to any of the empty states. In this case,
electrons from the partially full 3s band can absorb a small amount of energy and
move to empty 3s states within the 3s band, or they can absorb a larger amount
of energy and move to the 3p band.

We can describe this situation in a more correct way using the Fermi-Dirac
distribution. At a temperature of 7 = 0K, all electron levels below the Fermi
energy Ep are filled and all levels above the Fermi energy are empty. In the case
of sodium, the Fermi energy is in the middle of the 3s band, because all electron
levels below that energy are occupied (Figure 11.23). At higher temperatures
the Fermi energy gives the level at which the occupation probability is 0.5; the
Fermi energy does not change significantly as we increase the temperature, but
the occupation probability of the levels above Ep is no longer zero. Figure 11.24
shows a situation in which the thermal excitation of electrons leads to a small
population of the 3p band and some vacant states in the 2p band.

Sodium is an example of a substance that is a good electrical conductor. When
we apply a very modest potential difference, of the order of 1 V, electrons can
easily absorb energy because there are N unoccupied states within the 3s band, all
within an energy of about 1 eV. Electrons absorb energy as they are accelerated
by the applied voltage, and they are therefore free to move as long as there are
many unoccupied states within the accessible energy range. In sodium there are
N relatively free electrons that can easily move to N unoccupied energy states,
and sodium is therefore a good conductor.

3p 3p
( N 3s (S p— Er
fro(E)
6N 2p 2p
0 1
( 2 2s FIGURE 11.23 Energy bands in

sodium at 7 =0 (the filled 1s
and 2s bands are not shown).
The Fermi energy is at the center
of the half-filled 3s band. Note
that the Fermi-Dirac distribution
function is drawn with the energy
axis vertical.
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FIGURE 11.22 Energy bands in so-

dium metal.
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FIGURE 11.24 Energy bands in
sodium at 7 > 0. The 2p band is
no longer completely full (there
are a few vacant states near the
top), and the 3p band is no longer
completely empty.
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there are no electrons in the conduc-
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an insulator.

< Conduction band

——— Ef

Jr(E)

T

band

( Valence

0 1

FIGURE 11.26 Band structure of a
semiconductor. The gap is much
smaller than in an insulator, so there
is now a small population of the con-
duction band.
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FIGURE 11.27 Band structure in

magnesium. The filled 3s and empty
3p bands overlap, forming a single
partially filled band.

The band structure of sodium, in which the Fermi level lies in the middle of a
band, is characteristic of many good electrical conductors. A completely different
situation occurs when the Fermi level lies in the gap between two bands, so that
the band below Ey. is completely full and the band above is completely empty. If
the gap energy E, is large compared with k7', then even though the Fermi-Dirac
distribution spreads as the temperature is raised, it doesn’t spread enough to result
in a significant population of states in the upper band (called the conduction band)
or a significant number of empty states in the lower band, called the valence band.
This situation is shown in Figure 11.25. There are many electrons in the valence
band available for electrical conduction, but there are few empty states for them to
move through, so they do not contribute to the electrical conductivity. There are
many empty states in the conduction band, but at ordinary temperatures there are
so few electrons in that band that their contribution to the electrical conductivity
is also very small. These substances are classified as insulators and in general
they have two properties: a large energy gap (a few electron-volts) between the
valence and conduction bands, and a Fermi level that is in the gap between the
bands (i.e., a filled valence band and an empty conduction band).

A material with the same basic structure but a much smaller energy gap
(1eV or less) shows quite a different behavior. These materials are known as
semiconductors. Figure 11.26 shows a representation of such a substance at
ordinary temperatures. There are now many electrons in the conduction band, and
of course many empty states accessible to them, so that they can conduct relatively
easily. There are also many empty states in the valence band, so that some of the
electrons in the valence band can also contribute to the electrical conductivity
by moving about through those states. We consider these two mechanisms of
electrical conduction in detail in Section 11.6. For now we note two characteristic
properties of semiconductors that relate directly to the band structure as shown
in Figure 11.26. (1) Because thermal excitation across the gap is relatively
probable, the electrical conductivity of semiconductors depends more strongly
on temperature than the electrical conductivity of insulators or conductors. (2) It
is possible to alter the structure of these materials, by adding impurities in very
low concentration, in such a way that the Fermi energy changes and may move
up toward the conduction band or down toward the valence band. This process,
known as doping, can have a great effect on the conductivity of a semiconductor.

In the examples we have discussed so far, it is not apparent why the band theory
is so useful in understanding the properties of a solid. Sodium, for example, is
expected to be a good conductor based on its atomic properties alone (a relatively
loosely bound 3s electron); on the other hand, solid xenon has only filled atomic
shells and should be a poor conductor. These conclusions follow either from
simple atomic theory or from band theory. However, there are many cases in
which atomic theory leads to wrong predictions while band theory gives correct
results. We consider two examples. (1) Magnesium has a filled 3s shell, and on
the basis of atomic theory alone we expect it to be a poor electrical conductor.
It is, however, a very good electrical conductor. (2) The 2p shell of carbon has
only two electrons of the maximum number of six. Carbon should therefore be a
relatively good conductor; instead it is an extremely poor conductor.

We can understand both of these materials based on the unusual way the bands
of these solids behave when the atoms are close enough so that the band gap
disappears and the bands overlap. In magnesium (Figure 11.27), for example, the
(filled) 3s and (empty) 3p bands overlap, and the result is a single band with a
capacity of 2N + 6N = 8N levels. Only 2N of those are filled, and so magnesium



behaves like a material with a single band filled only to one-fourth its capacity.
Magnesium is therefore a very good conductor.

In carbon, the overlap of the electronic wave functions at close range first
causes mixing of the 2s and 2p bands, in a way similar to magnesium; a single band
is created with a capacity of 8N electrons (Figure 11.28). The 2s states contribute
2N electrons, and the 2p states contribute another 2NV (out of a maximum capacity
of 6N). As the atoms approach still closer, the band divides into two separate
bands, each with a capacity of 4N electrons. Because carbon has four valence
electrons (two 2s and two 2p), the lower 4N states are completely filled and the
upper 4N states of the conduction band are completely empty. Carbon is therefore
an insulator. Germanium and silicon have the same type of structure as carbon,
but their equilibrium separation is greater, so the gap between the valence and
conduction bands is smaller, about 1 eV; it is this feature that causes Ge and Si to
be semiconductors.

*Justification of Band Theory

The band theory of solids has had great success in accounting for the properties
of metals, insulators, and semiconductors. In this section we consider a different
approach to band theory that is based on the quantum mechanics of an electron
moving through a lattice of ions. In analogy with solutions to the Schrodinger
equation discussed in Chapter 5, in which an electron in a potential energy well
shows discrete energy levels, we will see that an electron in a periodic potential
energy provided by a lattice of ions can show energy bands.

To simplify the problem we consider only a one-dimensional lattice of ions
(Figure 11.29). The electron is represented by a de Broglie wave traveling through
the lattice. The interaction between the electron and the lattice can be represented
as a scattering problem, similar to Bragg scattering (Section 3.1). The Bragg
condition for scattering is

2dsind =nh  (n=1,2,3,...) (11.22)

where d is the atomic spacing and 6 is the angle of incidence measured from the
plane of atoms (not from the normal). In a two-dimensional lattice, the incident
wave can be scattered in many different directions, depending on the plane where
we imagine the reflection to occur (recall Figure 3.6); in one dimension, however,
only one possible reflection can occur—the incident wave can be reflected back
in the opposite direction. We can use the Bragg condition for this case, withd = a
(the spacing between the ions or atoms of the lattice) and 8 = 90° (the angle
between the “reflecting plane” and the incident wave). With 2a sin 90° = nA and
A = 27 /k (where k is the wave number), we find

k=nt (11.23)
a
For wave numbers that do not satisfy this condition, the electron propagates
freely through the lattice and behaves like a free particle whose energy is only
kinetic:
2 hZ k2
=2 _r* (11.24)
2m 2m

*This is an optional section that may be skipped without loss of continuity.

11.4 | Band Theory of Solids 345

Energy

Atomic separation

FIGURE 11.28 Band structure of car-
bon (n=2), silicon (n=3), and
germanium (n = 4). The combined
ns + np band splits into two bands,
each of which can hold 4N electrons.
The atomic separation of carbon gives
it a gap of about 7 eV and makes it an
insulator, while the larger separation
of silicon and germanium results in a
smaller gap of about 1eV and makes
them semiconductors.
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FIGURE 11.29 One-dimensional
Bragg scattering. The only possible
scattering is a reflection back in the op-
posite direction.
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FIGURE 11.30 The parabolic rela-
tionship between energy and wave
number for a free particle.
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FIGURE 11.31 Probability densities
for two different standing waves in the
one-dimensional lattice.
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FIGURE 11.32 The relationship be-
tween energy and wave number for
a one-dimensional lattice. The dashed
curve is the parabola that represents
the free particles. The solid curves rep-
resent waves scattered by the lattice.

There are no restrictions on £, so all values of £ are allowed. This relationship
between E and £ for free electrons defines a parabola, as shown in Figure 11.30.

For wave numbers that satisfy the Bragg condition, the reflected and incident
waves add to produce standing waves, which always result when we superpose
two waves of equal wavelengths traveling in opposite directions. Depending on
the phase difference between the waves, their amplitudes can add or subtract, so
two different possible standing waves can result. Their probability densities are
shown in Figure 11.31. For one of the waves (), the electrons are more likely
to be found close to the positive ions; these electrons are more tightly bound to
the lattice—the energy of the electron is a bit lower than that of the free electron,
due to the negative potential energy between the electron and the ions. Electrons
represented by the other wave (v,) are most likely to be found in the region
between the ions; they are less tightly bound, so their energies are a bit above
those of the unscattered electrons (for which the probability density is flat, so they
are equally likely to be found at any location).

The resulting dependence of the energy of the electrons on the wave number &
is illustrated by the S-shaped curve segments in Figure 11.32. For wave numbers
that are far from satisfying the Bragg condition (that is, values of & that are not
close to nm/a), the curve segments overlap the dashed parabola representing the
free particle. Close to the wave numbers that satisfy the Bragg condition, however,
the energy deviates from that of the free particle, a bit below the parabola for
the more tightly bound electrons that spend more time near the ions and a bit
above the parabola for the less tightly bound electrons that are more likely found
between the ions.

Notice from Figure 11.32 that, even though all values of k are permitted,
there are certain allowed bands of energy values separated by forbidden gaps. An
electron traveling in this lattice is permitted to have energies only in the regions
corresponding to the allowed bands. This indicates how a periodic array of atoms
results in energy bands.

A more detailed calculation in three dimensions gives a better representation
of the allowed and forbidden bands, but you can see that even this basic one-
dimensional model shows how the bands can arise from the interactions of the
electrons with a periodic lattice.

11.5 SUPERCONDUCTIVITY

At low temperatures, the resistivity of a metal (the inverse of its conductivity) is
nearly constant. As the temperature of a material is lowered, the lattice contribution
to the resistivity decreases while the impurity contribution remains approximately
constant, and as we approach 7 = 0K the resistivity should approach a constant
value. Many metals, known as normal metals, behave in this way, as illustrated
in Figure 11.17.

The behavior of another class of metals is quite different. These metals behave
normally as the temperature is decreased, but at some critical temperature 7,
(which depends on the properties of the metal), the resistivity drops suddenly to
zero, as shown in Figure 11.33. These materials are known as superconductors.
The resistivity of a superconductor is not merely very small at temperatures below
T,; it vanishes! Such materials can conduct electric currents even in the absence of
an applied voltage, and the conduction occurs with no 2R (joule heating) losses.
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Superconductivity has been observed in 28 elements at ordinary pressures, in
several additional elements at high pressure, and in hundreds of compounds and
alloys. Since the original discovery of superconductivity in Hg in 1911, the focus
of research has been to search for materials with the highest possible critical
temperature, because many possible large-scale applications of superconductivity
are presently impractical owing to the high cost of keeping materials below their
critical temperatures. Table 11.6 summarizes some superconducting materials and T,
their critical temperatures. You can see that before 1986, progress in raising the Temperature
critical temperature was very slow, but since 1986 dramatic and rapid increases
in 7, have been achieved. FIGURE 11.33  Resistivity of a

Conspicuously absent from the list of superconductors are the best metallic ~ superconductor.
conductors (Cu, Ag, Au), which suggests that superconductivity is not caused
by a good conductor getting better but instead must involve some fundamental
change in the material. In fact, superconductivity results from a kind of paradox:
ordinary materials can be good conductors if the electrons have a relatively weak
interaction with the lattice, but superconductivity results from a strong interaction
between the electrons and the lattice.

Consider an electron moving through the lattice. As it moves, it attracts the

positive ions and disturbs the lattice, much as a boat moving through water creates
a wake. These disturbances propagate as lattice vibrations, which can then interact
with another electron. In effect, two electrons interact with one another through
the intermediary of the lattice; the electrons move in correlated pairs that do
not lose energy by interacting with the lattice. (These pairs are not necessarily
traveling together through the lattice; they may be separated by a large distance.)
In the absence of a net current, the members of a pair have opposite momenta;
when a net current is established, both members of the pair acquire a slight
increase in momentum in the same direction, and this motion is responsible for
the current.

Resistivity

TABLE 11.6 Some Superconducting Materials

Material T, (K) Gap (meV) Year

Zn 0.85 0.24 1933

Al 1.18 0.34 1937

Sn 3.72 1.15 1913

Hg 4.15 1.65 1911

Pb 7.19 2.73 1913

Nb 9.25 3.05 1930

Nb;Sn 18.1 1954
Nb;Ge 23.2 1973

La Ba,_.CuO, 36 1986
La,Sr,  CuOs 40 1986
YBa,Cu;0, 93 1987
Tl,Ba,Ca,Cu;0, 125 1988
Hg,,Tl;Ba;,Cas;Cuys0, 7 138 1994
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FIGURE 11.34 The number of filled electron states in (a) a normal conductor at
T =0; (b) a normal conductor at 7> 0; (c) a superconductor at 7 =0; (d) a
superconductor at 7' > 0 but less than 7. In (c), there is an energy gap of width £,
and states displaced from within the gap pile up on either side of the gap. At higher
temperatures, as in (d), the gap is narrower and there are empty states below the gap
and filled states above the gap. As the temperature is increased to 7, the gap width
becomes 0 and the distribution of occupied states of the superconductor approaches
that of the normal conductor. The gap width is exaggerated in the figure; generally,
E,~ 107%eV.

According to the successful BCS theory of superconductivity,” below the
critical temperature there is a small energy gap E|, in the occupation probability of
electrons in a superconductor (Figure 11.34). Below the gap, the electrons form
pairs, which are known as Cooper pairs. Once a single Cooper pair forms, it is
energetically favorable for other pairs to form, so the change from the normal
state above 7, to the superconducting state below 7, is quite sudden. (As shown in
Figure 11.34c¢, the population can exceed the limits imposed by the Fermi-Dirac
distribution of at most one electron per quantum state. When the electrons are
paired, they no longer behave like fermions and so it is possible to have more
than one in each quantum state.)

When a superconductor is cooled below 7T, the gap opens and Cooper pairs
begin to form. As the material is cooled further, the gap widens. Values of the
energy gap listed in Table 11.6 correspond to the limiting case as 7' — 0. The
energy gaps, which can be regarded as representing the binding energy of a
Cooper pair, are very small, of the order of 107> eV. At T = 0, all states below the
gap are occupied. When 0 < 7' < T, there are some unoccupied states below the
gap, and some states above the gap are occupied by normal (unpaired) electrons.

It seems reasonable that there should be a direct relationship between the critical
temperature and the energy gap: the larger the energy gap, the more thermal energy
is required to break the Cooper pairs to destroy the superconductivity. The BCS
theory gives this relationship:

E, = 3.53kT, (11.25)

*The theory of superconductivity was developed in 1957 by John Bardeen, Leon N. Cooper, and J.
Robert Schrieffer, who were awarded the 1972 Nobel Prize in physics for their work. Bardeen also
shared the 1956 Nobel Prize for his research on semiconductors and his development of the transistor.



As the temperature is raised to 7, the gap width decreases, and the superconduc-
tivity disappears above 7, where the gap width becomes zero.

Beginning in 1986, a new class of superconductors was discovered with unusu-
ally high values of 7. In the 75 years from the discovery of superconductivity in
1911 until 1986, the highest 7, had gone from 4 K to about 23 K. In 1986, several
materials were discovered with 7, in the range 30—40 K. By 1987 it was up to 93 K,
and it rose to 138 K in 1994. Crossing the boundary at 77 K is important, because
it means that cooling can be accomplished with liquid nitrogen instead of liquid
helium, which costs nearly an order of magnitude more than liquid nitrogen. The
rapid increase in 7 has led to the hope that it might be possible to develop mate-
rials that are superconductors at room temperature. Such materials could enable
the transmission of electric power over long distances without resistive losses.

The high-T, superconductors are oxides of copper in combination with other
elements. They are ceramics, which means that they are rather brittle and not
easily formed into wires to carry current. The crystal structure is characterized
by planes of copper and oxygen between planes of the other elements. It seems
likely that the superconductivity occurs in the copper oxide planes, but it is not
yet clear that the complete explanation for these new superconductors is given by
the BCS theory.

Superconducting materials have many applications that take advantage of their
abilities to carry electrical currents without resistive losses. Electromagnets can
be constructed that carry large currents and therefore produce large magnetic
fields (of order 5 to 10 T). Currents as large as 100 A can be carried by very fine
superconducting wires, of order 0.1 mm diameter, and thus such magnets can be
constructed in a smaller space, using less material, than would be possible with
ordinary conductors. Once started, a current in a superconducting loop of wire
can circulate for years with no external source to drive it. Superconducting wires
are also used to produce magnetic fields in magnetically levitated trains and in
magnetic resonance imaging, and also to bend beams of particles in high-energy
accelerators, such as the Large Hadron Collider, which began operation in 2008.

Josephson Effect

Imagine a thin layer of insulating material sandwiched between two identical
superconductors. The insulating layer is thin enough that the electron pairs can
tunnel through from one superconductor to another. This is a typical case of
one-dimensional barrier penetration, such as we discussed in Chapter 5.

Figure 11.35 represents the arrangement. In the superconductors (regions 1
and 3), the electron pairs move freely, so the wave functions are of the form of
the free particle: v, (x) = 4e'®+*) and v, (x) = 4e®+3) where «; and a5 are
arbitrary phase angles (the amplitude A4 is taken to be real). At the two boundaries
on either side of the barrier, the waves are ¥, = 4e®1 and y; = Ae'?s, where ¢,
and ¢; represent the values of the exponents at the boundaries. Inside the barrier
of height U, the wave function is of the form v, (x) = Bt 4+ Ce ¥, where
k' = /2mU,y/h%. Applying the two boundary conditions on ¥, we ultimately
obtain a current of the form

i =iy sin(p, — ¢3) (11.26)

The existence of this “supercurrent” through the junction was first predicted by
British physicist Brian Josephson in 1969, and it is now known as the Josephson
effect. Josephson shared the 1973 Nobel Prize in physics for this discovery.
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FIGURE 11.35 (a) A thin insulator
sandwiched between two supercon-
ductors provides a potential energy
barrier of height U, to the flow of cur-
rent. (b) There is a phase difference of
¢, — ¢; between the wave functions
Y, and V5 in the superconductors.
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FIGURE 11.36 Two Josephson junc-
tions can be combined to form a
quantum interference device.

One important application of the Josephson effect is in the measurement of
very weak magnetic fields. Consider a device with two Josephson junctions, as
shown in Figure 11.36. Under ordinary circumstances the current divides equally
in the two branches, and the phase difference is the same across both junctions.
Now suppose a magnetic field is applied perpendicular to the plane of the loop.
An additional current is induced around the loop. This additional current, either
clockwise or counterclockwise depending on the direction of the magnetic field,
will add to the current in one of the Josephson junctions and subtract from the
current in the other, causing a relative change in the phase differences across the
two junctions. When the currents combine, this phase difference causes maxima
and minima in the net current leaving the loop in a manner that is very similar
to the maxima and minima in double-slit interference. Observing the maxima
and minima serves as a sensitive measurement of the magnetic field in the loop.
This device is called a SQUID (Superconducting QUantum Interference Device)
and allows measurements of magnetic fields of less than 10~!7 T. Such sensitive
devices allow precise mapping of the magnetic fields inside the brain and also find
use in other medical procedures including magnetic resonance imaging (MRI).

In another application, a DC voltage AJV is applied across a single Josephson
junction. This voltage changes the energy of an electron pair on one side of the
junction by 2eAV. For example, if region 1 is made more positive than region 3,
the wave function at the boundary in region 1 would become v, = Ae/(¢1+2¢AV1/M)
using the usual procedure (see Eq. 5.6) for including the time dependence of the
wave function (the factor e ! with w = E/h = —2eAV /h). The current through
the junction then becomes

2eAV
i = iy sin <¢1—¢3+ c t) (11.27)

h

Applying a DC voltage to the junction produces an AC current! Because frequen-
cies can be measured very precisely, a measurement of the frequency of this AC
current can be used to determine AV. As a result, since 1990 the AC Josephson
effect has been accepted by the General Conference on Weights and Measures as
the international standard for the volt.

11.6 INTRINSIC AND IMPURITY

SEMICONDUCTORS

A semiconductor is a material with an energy gap £, of order 1 eV between the
valence band and the conduction band. At T = 0, all states in the valence band are
full and all states in the conduction band are empty; recall that the Fermi-Dirac
distribution is a step function at 7 = 0 and gives an occupation probability of
exactly 1 for all states below Ep and exactly O for all states above Ep. As the
temperature is raised, however, some states above £y are occupied and some states
below Ep are empty. At room temperature, the relationship between the Fermi
energy, the valence and conduction bands, and the electron energy distribution
might be as shown in Figure 11.26.

Although the value of the room-temperature Fermi-Dirac distribution function
is nearly zero in the conduction band, it is not exactly zero; Figure 11.37 shows
a greatly magnified view of fpp(E) near the bottom of the conduction band. The
value of E — E} is about 0.5eV if Ep lies near the middle of the 1eV energy
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gap, and therefore £ — Ep > kT, because at room temperature k7" ~ 0.025eV.
The 1 in the denominator of the Fermi-Dirac distribution is therefore negligible,
and fzp (E) is approximately exponential, as shown in Figure 11.37.

Assuming the Fermi energy to lie near the middle of the gap, the occupation
probability near the bottom of the conduction band is of order e Fe/M = 1079,
Thus one atom in 10° contributes an electron to the electrical conductivity;
compare this with a metal in which essentially every atom contributes an electron
to the conductivity. (On the other hand, consider an insulator, which has a band
structure very similar to that of a semiconductor, except the energy gap is perhaps
5eV instead of 1eV. This small difference in the size of the energy gap has an
enormous effect on the occupation probability of the conduction band at room
temperature: e 5/ =104 Thusina sample containing of order 10?° atoms,
there may be 10'! conduction electrons in a semiconductor, 10%° in a conductor,
and none in an insulator.)

Figure 11.38 shows the corresponding region near the top of the valence
band. If there are a few filled states in the conduction band, there must be a
few empty states in the valence band, and the Fermi-Dirac distribution is just a
tiny bit smaller than 1; in fact it is approximately 1 — e®=E9/4T This number
is about 1-10~7, based on our discussion for the electrons in the conduction
band. (Because all the electrons in the conduction band came originally from the
valence band, the number of electrons in the conduction band is exactly equal
to the number of vacancies in the valence band. The Fermi-Dirac distribution is
therefore symmetric in the conduction and valence bands, so the Fermi energy
must lie at the center of the gap.)

In practice it is much easier to analyze the behavior of a relatively small number
of vacancies in the valence band rather than the large number of electrons in that
band. When we apply an electric field to the semiconductor, the electrons in the
conduction band can move easily, because there are many empty states to move
into. There are few vacancies in the valence band, however. Under the influence
of the electric field, an electron in the valence band can move only if there is a
vacancy nearby for it to move into. When that electron moves into the vacancy,
it creates another vacancy, which can in turn be filled by another electron. In this
way, electrons moving in one direction cause an apparent motion of the vacancy
in the opposite direction. The situation is similar to the motion of cars in a parking
lot with one vacancy (Figure 11.39).

These vacancies in the valence band are known as /foles, and they behave
as if they have positive charges. In an electric field, electrons in the conduction
band acquire a drift velocity in a direction opposite to the field (see Eq. 11.16)
but (because electrons carry negative charge) they give a current opposite to the
velocity and thus in the same direction as the field (see Eq. 11.17). The holes in
the valence band acquire a velocity in the same direction as the field and give a
current in the same direction as their velocity (that is, in the direction of the field).
The current due to the electrons in the conduction band is therefore in the same
direction as the current due to the holes in the valence band.

The current in a semiconductor therefore consists of two parts: the negatively
charged electrons in the conduction band and the positively charged holes in the
valence band. Although the number of electrons in the conduction band is equal to
the number of holes in the valence band, the two contributions to the current are in
general not equal, because the electrons in the conduction band move more easily
than the electrons in the valence band. Typically, the contribution of the electrons
to the current at room temperature is about two to four times the contribution of
the holes.

~107°

Bottom of
conduction band

fro(E)

FIGURE 11.37 The tail of the Fermi-
Dirac distribution function near the
bottom of the conduction band. On the
scale of this greatly magnified draw-
ing, the 1 of fzn(E) would be about
1000 km off to the right, and Ey is
about 1 m below the edge of this page.
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FIGURE 11.38 The Fermi-Dirac dis-
tribution function near the top of the
valence band, showing the small frac-
tion of empty states.
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FIGURE 11.39 One car moves to the
left, filling the vacancy but creating
a new vacancy, which is then filled
by the next car moving to the left.
The motion of cars to the left, each
filling a vacant space, is equivalent to
the motion of the vacant space to the
right.
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FIGURE 11.40 (a) Covalent bonding
in Si or Ge. Each atom provides four
electrons for covalent bonds with its
neighbors. (b)) When a Si or Ge atom
is replaced with a valence-5 atom
(shaded), there is an extra electron that
does not participate in covalent bonds.
(c) If a Si or Ge atom is replaced by a
valence-3 atom (shaded), one electron
from a neighboring atom is not paired
in a covalent bond.

The material we have been describing thus far is an intrinsic semiconductor and
is characterized by several features: (1) the number of electrons in the conduction
band is equal to the number of holes in the valence band; (2) the Fermi energy lies
at the middle of the gap; (3) the electrons contribute most to the current, but the
holes are important also; (4) about 1 electron in 10° contributes to the conduction.

Because only 1 electron in 10° contributes to the conductivity of an intrinsic
semiconductor, the presence of impurities can significantly alter the conductivity
of the semiconductor in a way that might not be easily controllable. However,
if impurities with known properties are deliberately introduced into the semi-
conductor in carefully controlled amounts, their contribution to the conductivity
can be precisely determined. At impurity levels of only 1 part in 10% or 107, the
impurity contribution to the conductivity dominates the intrinsic contribution.

Such materials are known as impurity semiconductors, and the process of
introducing the impurity is known as doping. Impurity semiconductors can be of
two varieties: those in which the impurity contributes additional electrons to the
conduction band and those in which the impurity contributes additional holes to
the valence band.

Let us consider a material such as silicon or germanium, in which there are four
valence electrons in hybrid orbitals. In the band theory view, these fill the 4N states
of the valence band; in the atomic view the lattice is constructed so that each Ge
or Si atom has four neighbors with which it shares an electron, and so all electrons
participate in covalent bonding (Figure 11.40a). Now suppose we replace one of
the Si or Ge atoms with an atom that has five valence electrons, such as phosphorus,
arsenic, or antimony. Four of the five electrons form covalent bonds with the
neighboring Si or Ge atoms, but the fifth electron is relatively weakly bound to
the impurity atom and can be easily detached to contribute to the conductivity
(Figure 11.40b). Alternatively, we could replace one of the Si or Ge atoms with
an atom that has three valence electrons, such as boron, aluminum, gallium, or
indium. Its three valence electrons form covalent bonds with the neighboring Si
or Ge (Figure 11.40c¢), but one of the surrounding atoms has an unpaired electron.
Completing the four pairs of covalent bonds is energetically very favorable, so an
electron is easily captured to complete the symmetry of the lattice. This creates a
hole in the valence band and therefore contributes to the conductivity.

On an energy-level diagram, the electron energies of these impurity atoms
appear as discrete levels in the energy gap, either just below the conduction band
(as in Figure 11.41a), or just above the valence band (as in Figure 11.41b). The
energy needed for these electrons to enter the conduction band, or for electrons
from the valence band to fill the low-lying empty states, is relatively small, about
0.01eV in Ge and 0.05eV in Si. As a result, even at room temperature (k7'
~ 0.025eV) these excitations can occur easily.

The energy levels formed by valence-5 impurities are known as donor states
and the impurity is known as a donor, because electrons are “donated” to the
conduction band. A semiconductor that has been doped with donor impurities is
known as an n-type semiconductor, because the conductivity is due mostly to the
negative electrons.

The energy levels formed by valence-3 impurities are known as acceptor states,
because they can “accept” electrons from the valence band. A material that has
been doped with acceptor impurities is known as a p-fype semiconductor, because
the conductivity is due mostly to the positively charged holes. (Remember that
n-type and p-type materials are both electrically neutral because they are made
from neutral atoms. The designations # and p refer only to the charge carriers, not
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the Fermi energy moves toward the
middle of the gap as the temperature
increases.

els of donor states. (b) Energy
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to the material itself. Depending on whether we add or remove electrons, n-type
and p-type materials can become either negatively or positively charged).

At T = 0 the Fermi energy in n-type semiconductors lies between the donor
states and the conduction band (remember, all states below Ep are full and all
above Ep are empty; at 7 = 0 the donor states are all occupied). In p-type
semiconductors, the Fermi energy at 7' = 0 lies between the valence band and the
acceptor states. As the temperature is raised, the thermal excitation of electrons
from the valence band to the conduction band (as in an intrinsic semiconductor)
causes the Fermi energy to move toward the center of the energy gap, as shown
in Figure 11.42. For low doping levels and at a high enough temperature, the
material may behave like an intrinsic semiconductor.

11.7 SEMICONDUCTOR DEVICES

The p-n Junction

When a p-type semiconductor is placed in contact with an n-type semiconductor
(Figure 11.43) electrons flow from the n-type material into the p-type material,
until equilibrium is established. This equilibrium occurs when the Fermi energies

in the two substances become identical. Conduction Conduction
The resulting energy level diagram is shown in Figure 11.44. The region BEIT band

between the two materials is known as the depletion region, because it has been O —0— —0

somewhat depleted of charge carriers. Electrons from the donor states of the Donors

n-type material fill the holes of the acceptor states of the p-type material. In this
region the donor states do not provide electrons for the conduction band and the

acceptor states do not provide holes in the valence band. Ep oo
Actually, these devices are not made by bringing two different materials into _Acc_(ip_tor_s._
contact, but rather by doping one side of a material so that it becomes 7 type and
the other side so that it becomes p type. The doping is carefully controlled, and Valence Valence
typically depletion layers have a thickness of the order of 1 um. band band
The excess electrons that have entered the p-type material give that side of the p type n type

depletion region a negative charge, which tends to repel additional electrons from
the n region. There is a corresponding positive charge in the » region (because FIGQRE 11.43  n-type and p-type
it has lost electrons to the p region). These charges are associated with the fixed —semiconductors before contact.
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FIGURE 11.44 (a) A p-n junction.
The electric field in the depletion
region inhibits the additional flow of
electrons. (b) Energy levels in p-n
junction. Energetic electrons in the tail
of the Fermi-Dirac distribution con-
tribute to the diffusion current, while
thermal excitation gives an equal and
opposite drift current.

ions in those regions; the acceptor atoms in the p region acquire an electron and
become fixed sites of negative charge, while the donor atoms in the » region lose
an electron and become fixed sites of positive charge.

In equilibrium, enough negative charge builds up to stop the flow of electrons
completely. There is a net electric field E in the depletion region that results in a
force (in the opposite direction) on the electrons, preventing any further flow of
charge. Equivalently, there is a potential difference AV, between the n-type and
p-type regions; for electrons to flow from the # region to the p region, they must
climb the energy barrier of height eAV,.

In the tail of the Fermi distribution of electrons in the conduction band of the n
region, there will be a small number of electrons with enough energy to climb the
energy barrier and enter the p region, where they recombine with holes (that is,
they “fall” from the conduction band of the p region into the valence band). This
gives the diffusion or recombination contribution to the current, which is directed
from the p region to the n region (the current direction always being opposite to
the direction of electron flow).

Even though holes provide the dominant contribution to the conduction in
the p region, there are also electrons that provide a smaller contribution to the
current. Electrons are thermally excited from the valence band in the p region to
the conduction band, where they are accelerated by the electric field and travel
into the n region. This gives the drift or thermal contribution to the current. At
equilibrium, the two contributions to the current cancel one another, so that the
net current is zero, as shown in Figure 11.44.

Let us now apply an external voltage AV, across the junction so that the
p-type material is made more positive than the » material; that is, we connect
the + terminal of a battery to the p side of the junction and the — terminal of
the battery to the n side (Figure 11.45). The effect of the battery is to lower
the energy hill by an amount eAV,,. (The vertical axis shows electron energy,
and a potential difference of AV, gives an electron energy of —eAV,;.) This
situation is called a forward voltage or forward biasing. The forward bias causes
the depletion region to become narrower, because the battery pulls electrons out
of the p region and injects them back into the n region. Because the energy hill
is lower, more electrons can diffuse from the » region into the p region, so the
diffusion current is considerably increased. (That is, there are more electrons in
the » region in the tail of the Fermi distribution with energies above the bottom
of the conduction band of the p region.) The drift current, however, is unaffected
by the presence of the battery or the height of the hill. There is now a net current
through the junction in the forward direction.

Now we reverse the battery connections (Figure 11.46), a situation known as
reverse voltage or reverse biasing. This raises the hill by the amount eAV,,,
widens the depletion region (because the battery pulls more electrons from the
region and injects them into the p region), and decreases the diffusion current.
The drift current is again unchanged, so now there is a relatively small net current
in the reverse direction.

Figure 11.47 shows the upper tail of the Fermi-Dirac distribution of the
electrons extending into the conduction band of the n-type region. Only those
electrons in the portion of the tail above the energy E, of the bottom of the
conduction band of the p-type region can flow back across into the p-type region
and it is these electrons that produce the diffusion current. The number of electrons
in that tail above the energy E is approximately

N, = neE—E)/AT (11.28)
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FIGURE 11.46 (a) A reversed-
biased p-n junction. (b) The energy
level diagram. The potential energy
hill is larger, the diffusion current is
smaller, and there is a small reverse
current.

FIGURE 11.45 (a) A forward-biased
p-n junction. (b) The energy level
diagram. The potential energy hill is
smaller, the diffusion current is larger,
and there is a net forward current.

where n is some proportionality factor, and where we have approximated the
Fermi-Dirac function as an exponential by neglecting the 1 in the denominator.
(Because E, — Ep > 1eV and kT = 0.025 eV, this is an excellent approximation.)
The diffusion current is proportional to N;, and because the drift and diffusion
currents are equal, the drift current is also proportional to N;. Applying AV,

ext
changes the level £ to £, — eAV,,,, and the number of electrons in the tail above
E, —eAV  is

—(E,—eAV,

ext

N, = ne —Ep) /KT

(11.29)
The diffusion current is now proportional to NV, ; applying the bias did not change
the drift current, so it is still proportional to N,. The net current is given by the
difference:

i o< Ny — Ny = ne” EcER)/AT (el exe/KT _ 1) (11.30)
We can rewrite this expression as
i =ig(eYex/kT _ 1) (11.31)

This function is plotted in Figure 11.48, and it is immediately obvious why such
p-n junctions, also known as diodes, have the property of rectifying varying
currents. When the applied voltage is such that the junction is forward biased, a
large forward current can flow. (When AV, = 1V, i = 2 x 10'7i,.) When the
applied voltage is such that the junction is reverse biased, only a very small current
can flow. (When AV,,, = —1V, i = —i,.) Even very small forward voltages can
produce large forward currents; even very large reverse voltages can produce only
small reverse currents.

Conduction
band

FIGURE 11.47 The diffusion current
depends on the number of electron
states in the tail of the Fermi-Dirac
distribution above the energy E, of
the bottom of the conduction band in
the p-type material.

A Vext

FIGURE 11.48 Current-voltage char-
acteristics of an ideal p-n junction.
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FIGURE 11.49 Energy level diagram
of a p-n junction under heavy doping.
Electrons can tunnel across the narrow

gap.

AVext

FIGURE 11.50 Current-voltage char-
acteristics of a tunnel diode. The
dashed curve shows the characteristics
of an ordinary p-n junction diode.
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FIGURE 11.51 Energy bands in a
diode laser. The active region has a
smaller gap than the n-type and p-type
regions on either side.
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The Tunnel Diode

When the p and nregions are very heavily doped, the depletion layer becomes much
narrower, perhaps 10 nm, and the energy diagram might look like Figure 11.49.
When a small forward bias is applied, there is now a third contribution to the
current—an electron from the conduction band of the n region can “tunnel”
through the forbidden region directly into the valence band of the p region. This
process of course depends on the wave nature of the electron and is an example of
the type of barrier penetration we have discussed previously, in Section 5.6. The
narrow depletion layer makes the process possible. The wavelength of an electron
near the Fermi surface is about 1 nm, and if the thickness of the depletion layer were
many orders of magnitude larger than this, tunneling would be unlikely to occur.
As the forward voltage is increased, the potential hill is lowered, and soon it no
longer becomes possible for an electron to tunnel directly through the forbidden
region. For a voltage of a few tenths of a volt, the tunneling current becomes
zero. At this point the tunnel diode behaves like an ordinary diode. Figure 11.50
illustrates the characteristic current-voltage relationship for a tunnel diode.
Tunnel diodes are useful in electric circuits as high-speed elements, because
the characteristics of the device can change as rapidly as the bias voltage can be
changed. They can also be used as switches. If we were to pass current through the
tunnel diode so that we were on the peak of the characteristic curve, a small increase
in the current would cause the voltage to jump suddenly to a much larger value.

Photodiodes

A photodiode is a p-n junction whose operation involves the emission or absorption
of light. These devices operate on principles similar to ordinary atoms. An electron
in the valence band can absorb a photon and make a transition to the conduction
band. Photons of visible light have energies of order 2 to 3 eV, so a semiconductor
with its gap of order 1 eV is just right for such a transition. Conversely, an excited
electron from the conduction band can drop back down to the valence band,
emitting a photon in the process.

A common device that emits visible light is the LED, or light-emitting diode.
An external current supplies the energy necessary to excite electrons to the
conduction band, and when the electrons fall back down to recombine with holes,
a photon is emitted. The energy is of course equal to the difference in energy of the
electronic states. By varying the chemical composition, it is possible to produce
LEDs emitting any color of visible light. LEDs find wide use as indicator lights and
in video displays, including televisions and computer monitors. Broad-spectrum
LEDs emitting white light are used in environmental lighting.

It is possible for photodiodes to operate in reverse, in which an incoming
photon is absorbed in the depletion region and produces an electron-hole pair. An
electric field sweeps up the electron-hole pairs and produces an electric signal.
Such devices are used to produce electric current (as in a silicon solar cell) or to
count photons (as in light meters for cameras or detectors of X rays or gamma
rays in space probes).

Figure 11.51 shows another application of the emission of light by a semi-
conductor, in this case a diode laser or semiconductor laser. A thin layer of
semiconducting material is sandwiched between n-type and p-type regions having
a slightly larger energy gap. Electrons are injected from an external circuit into the
n-type material, from which they diffuse into the middle layer. The electrons are
prevented from diffusing into the p-type layer by a potential barrier, so they tend
to concentrate in the middle layer. In a similar fashion, holes are injected into the
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p-type layer and again concentrate in the middle layer. This creates a population Cleaved
inversion similar to that described in our discussion of the laser in Section 8.7. An mirror
electron drops into the valence band accompanied by the emission of a photon;
that photon then induces other transitions leading to the avalanche of photons that
gives the lasing action.

The physical construction of a typical diode laser is illustrated in Figure 11.52.
The lasing material is a narrow (0.2 um) layer of GaAs, and the p-type and n-type
layers are GaAlAs a few pum in thickness. The ends of the material are cleaved
to create mirrorlike surfaces that reflect a portion of the light wave, enhancing
stimulated emission in the active region. This device emits at a wavelength of
840 nm, in the near infrared region. Diode lasers at this wavelength are commonly
used in communication to send signals along optical fibers. By varying the
materials of the laser, it is possible to obtain visible radiation in almost any color.
Diode lasers find common use in bar-code scanners and in players for CDs and
DVDs. There are also many medical uses, for example in laser surgery.

Diode lasers are of small size, and they consume very little power (typically Cleaved
10 mW, compared with the standard HeNe laser that may consume several watts). n;;rcrgr
As aresult, diode lasers can be powered by ordinary batteries. The light signal can
be turned on or off in switching times that are characteristic of semiconductors FIGURE 11.52 A diode laser. The
(< 100 ps), and thus we have a device that can rapidly modulate the beam. Even  |aging action occurs in the thin GaAs
though conventional lasers are capable of performing many of the same functions  |ayer,
as diode lasers, the small size, low cost, low power consumption, and rapid switch-
ing times make diode lasers the superior choice for most low-power applications.

11.8 MAGNETIC MATERIALS

Our final example of the application of quantum physics to solids concerns
the magnetic behavior of materials. The magnetic susceptibility of atoms was
discussed briefly in Section 8.4 (see Figure 8.10). Most atoms have permanent
magnetic dipole moments, due either to the spin or orbital angular momentum
of the electrons (or both). Ordinarily, these magnetic moments point in random
directions, so the net total magnetic dipole moment of a sample of the material
is zero. However, when a magnetic field is applied, the magnetic moments rotate
into partial or full alignment with the applied field, and the vector sum of the
dipole moments gives the material a net magnetization. Specifically, the total
magnetization M is defined as the sum of all the individual atomic magnetic
dipole moments |i; per unit volume:

GaAs
active

X

M= 7 (11.32)
where the sum is carried out over all the N individual particles (atoms, for
example) in the material.

Over a fairly wide range of applied magnetic fields, in many materials we
find that the net magnetization is directly proportional to the applied field B,
That is, the stronger the applied field, the more the individual magnetic moments
rotate into alignment with the field. (Clearly this proportionality cannot continue
indefinitely as the field strength increases, because eventually all dipoles will be
aligned with the field and further increases in the field will have little or no effect.)

M=
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FIGURE 11.53  The dashed lines
show the number of electrons in the
Fermi-Dirac distribution drawn sepa-
rately for spin up (top) and spin down
(bottom). In an applied magnetic field,
the energies of the spin-up electrons
increase and the energies of the spin-
down electrons decrease. To maintain
the same Fermi energy with the field
on, the spin-up electrons in the shaded
strip flip their spins and move into the
equivalent area with spin down.

The proportionality constant between the magnetization and the applied field

is called the magnetic susceptibility x:
woM = xB,,, (11.33)

For many materials, yx is small (10~ to 10~!) and positive. These materials are
called paramagnetic. In other materials, x is observed to be negative (that is,
the direction of the net magnetization is opposite to the direction of the applied
field). These materials, which are called diamagnetic, usually have no permanent
atomic magnetic moments, often because they have only paired electrons (as
for example the inert gases); their magnetic behavior is due to a slight change
in the orbital motion of the atomic electrons in response to the applied field.
Diamagnetism is ordinarily a very weak effect, with susceptibilities in the range
of —1073 to —10~*. (The effect responsible for diamagnetism, the alteration of the
orbital motion of the electrons, can also occur in paramagnetic materials, but it is
generally much weaker than the paramagnetism. However in some materials, such
as copper, the paramagnetism is so weak that the diamagnetism is dominant.) In
yet other materials, the magnetization remains after the applied field is removed.
These include the ferromagnetic substances, and the susceptibility is undefined
for ferromagnets.

Magnetic effects are often strongly temperature dependent. In fact materials
can change from ferromagnetic to paramagnetic as the temperature is increased.

Paramagnetism of Electron Gas

Let’s begin by investigating the magnetic behavior of an electron gas. When
we apply a magnetic field to an electron gas, the energy of an electron in the
field is E = —}, - B, Where i, = —(e/m)s is the spin magnetic moment of
the electron. The energy of the interaction of an electron with the field is then
(assuming the field is in the z direction)

e

E=—ji,-B,,=—5B,,=—sB, = awp = THpByy, (11.34)

e
Z mShB app

S| e

with m; = £1/5. The symbol up represents the Bohr magneton ef/2m (see
Eq. 7.23). The electrons with m; = +1/ gain energy ugB,,, and those with
m, = —1/> lose an equal amount of energy.

Figure 11.53 shows the Fermi-Dirac distribution of populated electron states
separately for the spin-up and spin-down electrons (half of the electrons are in
each group). All of the spin-up electrons move up in energy by ugB,,, and all of
the spin-down electrons move down. Because the two groups of electrons are in
contact, the higher-energy electrons in the shaded region with spin up flip their
spins and fill the vacant energy states in the spin-down group until the two groups
equalize their Fermi energies. As a result, there is an excess of electrons with spin
down in a strip of width AE = 2ugB,,,. The number of electrons in the strip
is AN = %Vg(E)fFD (E)AE, where the factor of 1/, comes from the fact that the
spin-up and spin-down distributions each have 1/, of the total number of electrons.
The drawing of Figure 11.53 has been exaggerated; the strips are very narrow
compared with £y, and we assume that we are at a reasonably low temperature in
which the Fermi-Dirac distribution is fairly sharp, so we can evaluate the density
of states at £ = E, and take fyp = 1:

AN = N({) = N(1) = Vg(Ep)1t5Bopp (11.35)



From Eq. 11.32, the z component of the magnetizationis V' Y, = V' ug AN,
so

3oz N
Mol IV (11.36)
2E, V

oM
X = BO = noup g(Ep) =
app

using g(Er) = 3N /2VEg. This calculation was first done by Wolfgang Pauli, and
the result is often called the Pauli paramagnetic susceptibility. Note that N/V in
this equation is the number of free electrons per unit volume, which might differ
from the number of atoms per unit volume in materials in which there is more
than one valence electron per atom.

Equation 11.36 can be used to calculate values for the susceptibility of
materials in which the electrons behave like a gas of fermions. However,
comparing calculated susceptibility values with experimental values can often be
challenging because of the many different units that are used. On the surface,
it appears that the susceptibility is a dimensionless quantity, but in fact it can
be calculated in many different ways: susceptibility per unit volume (as in
Eq. 11.36) or per unit mass or per mole. Furthermore, it can be expressed in
either cgs units or SI units (our choice). The tabulated values in the literature are
often given as the molar susceptibility in cgs units. The conversion procedure is
X e = Ampe = 4n(p/M)x ., where p is the density of the solid and M
is its molar mass (don’t confuse this with the magnetization!). With the conversion
written in this way, p and M must be in cgs units.

With that warning in mind, let’s look at how Eq. 11.36 compares with
experiment. Table 11.7 shows a few calculated and measured values. The
agreement is surprisingly good, particularly in view of our omitting a number of
important effects from the calculation, including a diamagnetic correction. For
many metals, the diamagnetic contribution is larger than the Pauli paramagnetism,
and as a result their susceptibility is negative (copper and gold are examples).
The diamagnetic contribution is important because the Pauli susceptibility is so
small (only a small fraction of the electrons near the Fermi energy contribute).
Metal ions in salts typically have paramagnetic susceptibilities that can be several
orders of magnitude larger, as we discuss next.

It is also interesting to note that Eq. 11.36 predicts that the susceptibility of
these substances should be independent of temperature. Raising the temperature
should broaden the distribution of both the spin-up and spin-down distributions
(Figure 11.53) by about the same amount, making a negligible contribution to
the susceptibility. Indeed, the susceptibility of these metals has only a very weak
dependence on temperature. In sodium, for example, the susceptibility changes
by only a few percent between room temperature (300 K) and liquid helium
temperature (4 K).

TABLE 11.7 Pauli Magnetic Susceptibility of Some Solids
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Experimental susceptibility (x10~%)
Element cgs, per mole SIL, per volume Calculated susceptibility (x10~%)
Al 16.5 20.7 15.7
K 20.8 5.8 6.2
Mg 13.1 11.8 12.2
Na 16 8.5 8.2
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| Example 11.5

(a) Compute the Pauli paramagnetic susceptibility of Mg.
(b) The experimental value of the molar susceptibility is
13.1 x 107 in cgs units. What is the value of the volume
susceptibility in ST units?

Solution
(a) For Mg (which has valence 2),

N  2pN,
Vo M
2(1.74 x 10° kg/m*)(6.02 x 10% atoms/mole)
- 0.0243 kg/mole
=8.62x 103 m™3

The susceptibility is

_ 3uoui N
2E, V

To see how the units cancel, it is helpful to realize that
the magnetic moment has units of either J/T or A -m? (the
latter coming from the definition u = i4 for the magnetic
moment of a current i in a loop of area A).

(b) p
cgs
X\%lume = 47TM Xmgolar
1.74 g/em®
— 4 FM (131 % 107
24.3 g/mole
=11.8x 107

Note that the density and molar mass are in cgs units for
the conversion.

_ 3(4mx 1077 T-m/A)(9.27 x 10724 J/T)*(8.62 x 10 m )

2(7.13 eV)(1.602 x 10—19 J/eV)
=122x107°

Paramagnetism of Atoms and lons

Instead of the free electrons, let’s consider the contribution of the atoms or ions
to the paramagnetism. We’ll represent the effective electronic spin of each atom
by J, which might represent the total intrinsic spin S of the electrons in the atom,
their total orbital angular momentum L, or a combination of both (the nuclear
spin is excluded, because nuclear magnetic effects are negligible compared with
electronic magnetic effects). Depending on the number of electrons in the atom,
J might be integral or half-integral.

The angular momentum J has all of the usual properties of quantum angular
momentum. It has z componentJ, = m %, where m; runs from —J to +/ in integer
steps. For any J, there are 2J + 1 possible values of m;. For example, if J = 3/2,
then m; = —3/2, —1/2,+1/2,+3/>. Associated with this angular momentum there
is an effective magnetic moment | = —g,upJ, where g, is a dimensionless factor
of order unity that describes how the spin and orbital angular momenta combine
to give J. (The minus sign is present because electrons have negative charge.)
Assuming the magnetic field defines the z direction, the energy of interaction of
this magnetic moment with the applied field is £ = —|i - By = & By,

We’ll treat the atoms or ions as if they are independent of one another, so that
they can be described by Maxwell-Boltzmann statistics. Because the magnetic
substates m; are nondegenerate, we can write the number of atoms in each mag-
netic substate in the form of Eq. 10.4: N, = A~"e™ "/ = A~V ertnmsBu/KT

where 47! is the normalization constant for the Maxwell-Boltzmann distribution.



The normalization condition requires that N be the total number of atoms in all

+J + 5
substates: N = 3N, = A7 Y e Pam/M We therefore have:

mJ:7J mj=*J
Ne_g/”“Bm./Bapp/kT
iy (11.37)
3 e 8B Bapy /KT
m;=—J
The z component of the magnetization is then
+J
—1 -1
M=V = VYN, g,
all atoms m;=—J
+J
NVlgug Y mjeng"BmJBapp/kT
m;=—J
=— = (11.38)
Z eng,u,BmJBapp/kT
m;=—J
The magnetic susceptibility is
+J
RNV ™1 Y mye8r s Ban! T
oM my=-
X=g—=- — (11.39)
app Ba Z e_gJ/"B’"JBapp/kT
pp w =

Let’s examine the form of x for the simplest case in which J = 1/,, so that
we have only two terms in the sums (m; = —!/> and + 1/»). Equation 11.39
becomes

—1oNg gl (—1/2)8r BB KT 1 (41 /2) 818 Bapp/ 2K
= VB ngMBBapp/sz + enguBBapp/ZkT)

app(
N
= L0788 tanh(g, 1 Bypy /KT) (11.40)

2VB,,,

Figure 11.54 shows the susceptibility of a spin- 1/, atom as a function of 1/7, so the
high-temperature region is on the left side of the graph and the low-temperature
region is on the right side. In the low-temperature region, the magnetic moments
become fully aligned, and neither additional cooling nor an increase in the applied
field can change the magnetization. In the high-temperature region, the graph is
nearly a straight line, indicating that the susceptibility is linear in 1/7. (How high
must the temperature be to observe this linear behavior? For a fairly large field of
1 T the quantity pupB,,, is about 0.060 meV. When 7' is 10K, 7" is 0.862 meV.
Thus even with moderately large fields, “high temperature” for this discussion
means anything above about 10 K. At low fields the “high temperature region”
might reach all the way down to 1K.)

In the high-temperature region, the exponents in Eq. 11.39 are small and we
can use the approximation e* = 1 + x for small x (with x = g, ugm, B, /kT):

+J
NV~ gy Y- my(1 — g upm By, /kT)
mjsz

Y= - (11.41)
Bapp Z (1 _gJ:u'Bm./Bapp/kT)

szfJ
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FIGURE 11.54 Magnetic susceptibil-
ity as a function of inverse temperature
for a spin- 1/, material. Note the linear
behavior at high temperature.
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Susceptibility (x1073)

0
0 002 0.04 0.06 0.08
UT (K1)

4 All quantities other than m,; come out of the sums, leaving us three summations
to evaluate:
3 +J +J +J
d1=2/+1 > my;=0 domi=1JU+ DRI+ 1) (11.42)
2 my=—J my=—J m;=—J

After making these substitutions and clearing terms, the result is

2,,2
o Ng gt (J + 1)
= 1143
X VT (11.43)

This shows the linear dependence of the susceptibility on 1/7, as we observed

in the high-temperature region of Figure 11.54. This result is known as Curie’s

FIGURE 11.55 Susceptibility of
paramagnetic copper sulfate (CuSOy, -
5H,0) between room temperature and
14 K.

law*, which is often expressed in the form x = C/T where C (the combination
of factors in Eq. 11.43) is called the Curie constant. (It is not a true constant, as
it takes different values for different substances, but it is constant for any single
substance.) Figure 11.55 shows the susceptibility of the paramagnetic salt copper

sulfate, which clearly shows the expected linear behavior down to a temperature

of about 14 K.
| Example 11.6

The slope of the graph in Figure 11.55 is 0.0499 K. Assum-
ing the paramagnetism resides with the copper ions, find
the value of the quantity g7 J(J + 1) for copper sulfate.

Solution

We first need the value of N/V, which requires the den-
sity (2.28 x 10 kg/m®) and molar mass (0.250 kg/mole)
of copper sulfate:

N pNy
VoM
(228 % 10° kg/m?)(6.02 x 10?3 atoms/mole)

0.250 kg/mole
= 5.49 x 10?7 atoms/m>

Because each molecule of copper sulfate has only one Cu
ion, this number also gives us the density of Cu ions. We

then have

oN 1
C= (;VkBgiJ(JJr 1)

(4 x 1077 T-m/A)(5.49 x 107 m~3)
x(9.27 x 10724 J/T)?g3J (J + 1)
x[3(1.38 x 10723 J/K)]~!

= (0.0143 K) g3J(J + 1) = 0.0499 K

As a result, g?,J (J 4+ 1) = 3.49. Such experiments give us
important information about the behavior of ions in crystals
that is otherwise difficult to obtain. In this case we can learn
about the value of the effective spin J that describes the
copper ion.

In copper sulfate, the divalent copper ion Cu®™™ has the outer electronic
configuration 3d° (recall that neutral Cu atoms have the configuration 3d'%4s").
According to the rules for finding the total S and L for atoms (see Section 8.6), the
nine 3d electrons in Cu™™ have S = 1/, (the maximum possible value of the total
My) and L = 2 (the maximum possible resulting value of the total A/ ). However,
the measured value of ng (J 4+ 1) of 3.49 from Example 11.6 is more consistent
with the configuration S = 1/»,L = 0 (for which its value would be 3.00), than

*Physicist Pierre Curie (1859—1906) was the husband of Marie Curie. Together they shared the 1903
Nobel Prize in physics for their research on radioactivity. Pierre Curie also contributed to the study of

magnetism.
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it is with any configuration involving S = 1/, and L = 2 (which give values of
either 2.40 or 12.60).

This is a common observation for paramagnetic crystals involving the transition
metals (those in which the 3d shell is filling). In a magnetic field, which has a
single preferred direction (usually taken to be the z direction), the component of
the orbital angular momentum L_ along that direction is fixed, while the other
components (L, and L,) average to zero. In a crystal, however, there is a strong
electric field that may have three equivalent directions, and all three components
of L might average to zero. As a result, the ion behaves as if it has L = 0 (we
say that the orbital angular momentum is “quenched”), and so only the total §
contributes to the magnetic moment. In contrast, the rare earth elements also form
many paramagnetic crystals, but both L and S contribute to J. In the rare earths,
the electrons in the unfilled 4f shell are shielded by the filled 5s and 5p shells,
which have the strongest interactions with the electric field of the crystal (because
the average radii of their orbits are larger). The “inner” 4/ electrons are not much
affected by the electric field of the crystal and so they contribute their large orbital
angular momentum to the total J of the ion.

Ferromagnetism

In some materials, the individual magnetic dipoles of the ions can align with
one another even in the absence of an external magnetic field. In this case a
net magnetization M is present when B, is zero, so clearly the susceptibility
is undefined for these materials. The most familiar example of this behavior is
ferromagnetism, in which the neighboring dipoles all align in the same direction.
(It is also possible to have antiferromagnetic materials, in which the neighboring
dipoles orient in opposite directions.)

It is perhaps tempting at first to think of the interaction responsible for
ferromagnetism as a result of the magnetic field due to one dipole exerting
a magnetic force to align the neighboring dipole. However, this dipole-dipole
interaction is far too weak to account for the strong coupling between neighbors
that produces ferromagnetic alignment. Instead, the effect results from the overlap
of the wave functions of the electrons in neighboring atoms, in a manner similar
to covalent bonding but depending on the spins of the electrons. This effect is very
sensitive to the interaction between the spins and also to the distance between the
neighboring ions. oo - — — — [ Ep

In Fe, Co, and Ni the value of the atomic spacing results in an energy minimum
for the parallel orientation of neighboring spins, and so these materials are (@)
ferromagnetic at room temperature (but they become paramagnetic at a sufficiently
high temperature, where the thermal energy k7 exceeds the interaction energy).
In other materials (such as some of the rare earth elements) the interaction is
weaker, so they may not exhibit their ferromagnetic behavior until they are cooled
to a point where the thermal energy k7 is smaller than the interaction energy. (b)

In still other cases, the atomic spacing of the pure element may not permit

ferromagnetism, but a different atomic spacing in certain compounds containing FIGURE 11.56 The 3d band in Fe.
that element may allow the overlap interaction that causes the spins to align. For (a) In the absence of the interac-
example, Cr is weakly paramagnetic at room temperature, but CrO, (which is tion, there are 3 electrons per atom in
used to make magnetic recording tape) is ferromagnetic. the spin-up and spin-down subbands.

The band theory provides a framework for understanding ferromagnetic behav-  (b) The interaction lowers the relative
ior. Consider iron, which has the electronic configuration 3d°4s?. The partially  energy of the spin-up band, so there
filled 3d band can be split into two subbands, one with spin up and one with  are now 4 electrons per atom with spin
spin down. In the absence of the overlap interaction, the bands are at the same  up and 2 with spin down.

——————— - — — — EF
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energy and each band has 3 electrons per atom (out of its maximum capacity of 5)
as in Figure 11.56a. The effect of the overlap interaction is to raise the energy
of one band relative to the Fermi energy and lower the energy of the other (as
in Figure 11.56b). Now there are roughly 4 electrons per atom in the spin-up
subband and 2 in the spin-down subband, and this difference of approximately 2
electrons per atom in the 3d band is responsible for the net magnetization of iron.

Section Section
o ae? 1 BCS gap energy  E, = 3.53kT 11.5
Binding energy B = p— (1 - ;) IL.1 | in superconductor
fioni tal 070
oL Ion T elyst Currentinp-n i = ig(eVet/kT — 1) 1.7
Cohesive energy E ., = BN, I1.1 | junction diode
of crystal 3 2 N
7w 2N\ T 7® RkT Pauli paramag-  x = ZOEMB 7 11.8
Electron C= Tk 2 E. 1.2 | petic susceptibility F
contribution to F F . 1
heat capacity Paramagnetic X == NV g;up 11.8
7A\2 /T susceptibility of y ij ) 1pmy Bapp /KT
Einsteinheat ~ C=3R(-£) —S 112 | atoms i
. T (eTE/T _ 1)2 : my=—.
capacity iy -1
12 4 T 3 x | B e_gJHBmJBapka
Debye heat C= 5” R (7> 11.2 ( o, 2
capacity D ,
.. 1
Conductivity of & = ne’t/m 113 | Curie’s law _ PN mp/UH D C g
free electron gas 3VkT r
Lorenz number L = w2k?/3¢? 11.3

=244 x 108 W. /K>

1. Compare the equilibrium separations and binding energies
of ionic solids (Table 11.1) with those of the corresponding
ionic molecules (Table 9.5). Account for any systematic
differences.

2. How should Eq. 11.7 be modified to be valid for MgO and
BaO?

3. From Figure 11.11, estimate the Einstein temperature for
lead. (Hint: Consider Eq. 11.11 when T = T}.)

4. A graph of C/T vs. T? for solid argon (similar to
Figure 11.13) goes through the origin; that is, its y-intercept
is zero. Explain.

5. Assuming that its other properties don’t also change with
temperature, at what temperature would you expect carbon
to begin to behave like a semiconductor?

6. Would you expect the Wiedemann-Franz law to apply to
semiconductors? To insulators?

7. (a) Why does the electrical conductivity of a metal decrease
as the temperature is increased? () How would you expect

the conductivity of a semiconductor to change with temper-
ature?

8. Why is it that only the electrons near £} contribute to the
electrical conductivity?

9. Would you expect silicon to behave like an insulator at a
low enough temperature? Would it behave like a conductor
at a high enough temperature?

10. What determines the drift speed of an electron in a metal?

What determines the Fermi speed?

Do the superconducting elements have any particular elec-
tronic structure or configuration in common?

12. Three different materials have filled valence bands and
empty conduction bands, and the Fermi energy lies in the
middle of the gap. The gap energies are 10¢eV, 1¢eV, and
0.01 eV. Classify the electrical properties of these materials

at room temperature and at 3 K.

13. In what way does a p-n junction behave as a capacitor?



14.

15.

16.

17.

18.

1.1

Semiconductors are sometimes called “nonohmic” materi-
als. Why?

If a semiconductor is doped at a level of one impurity atom
per 10° host atoms, what is the average spacing between the
impurity atoms?

Explain the processes that contribute to the current in a
forward-biased p-n junction. Do the same for a reverse-
biased junction.

What limits the response time of a p-n junction when the
external voltage is varied? Why does a tunnel diode not have
the same limits?

The energy gap E, is 0.72 ¢V for Ge and 1.10¢V for Si. At
what wavelengths will Ge and Si be transparent to radiation?
At what wavelengths will they begin to absorb significantly?

Crystal Structures

Consider the packing of hard spheres in the simple cubic
geometry of Figure 11.1. Imagine eight spheres in contact
with their nearest neighbors, with their centers at the corners
of the basic cube. (¢) What fraction of the volume of each
sphere is inside the volume of the basic cube? (b) Let  be
the radius of each sphere and let a be the length of a side
of the cube. Express a in terms of r. (¢) What fraction of
the volume of the cube is taken up by the portions of the
spheres? This fraction is called the packing fraction.
Compute the packing fractions (see Problem 1) of
(a) the fcc structure (Figure 11.2) and (b) the bec struc-
ture (Figure 11.3). Which structure fills the space most
efficiently?

Derive Egs. 11.5 and 11.6.

Calculate the first three contributions to the electrostatic
potential energy of an ion in the CsCl lattice.

(a) Find the binding energy per ion pair in CsCl from the
cohesive energy. (b) Find the binding energy per ion pair in
CsCl from Eq. 11.7. (¢) Find the binding energy per atom
for CsCl. The ionization energy of Cs is 3.89 eV.

(a) Find the binding energy per ion pair in LiF from the
cohesive energy. (b) Find the binding energy per ion pair in
LiF from Eq. 11.7. (¢) Find the binding energy per atom for
LiF. The ionization energy of Li is 5.39 eV, and the electron
affinity of F is 3.45¢eV.

Calculate the Coulomb energy and the repulsion energy for
NaCl at its equilibrium separation.

The density of sodium is 0.971 g/cm® and its molar mass
is 23.0 g. In the bec structure, what is the distance between
sodium atoms?

Copper has a density of 8.96g/cm® and molar mass of
63.5 g. Calculate the center-to-center distance between cop-
per atoms in the fcc structure.

19.

20.

21.

22.
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Why is a semiconductor better than a conductor for applica-
tions as a solar cell or photon detector? Would an insulator
be even better?

Why is the magnetic susceptibility of an electron gas almost
independent of temperature?

Would a sample of paramagnetic material be attracted or
repelled by the N pole of a magnet? By the S pole? How
would a sample of diamagnetic material behave? How would
ferromagnetic material behave?

Is it possible for a material that has a positive magnetic
susceptibility at room temperature to have a negative sus-
ceptibility at higher temperature?

Calculate the binding energy per atom for metallic Na
and Cu.

The Heat Capacity of Solids

At what temperature do the lattice and electronic heat capaci-
ties of copper become equal to each other? Take 77, = 343K
and E; = 7.03 eV. Which contribution is larger above this
temperature? Below this temperature?

(a) The heat capacity of solid argon at a temperature
of 2.00K is 2.00 x 1072 J/mole-K. What is the Debye
temperature of solid argon? (See Question 4.) (b) What
value do you expect for the heat capacity at a temperature
of 3.00 K?

When C/T is plotted against 72 for potassium, the graph
gives a straight line with a slope 0of 2.57 x 1073 J/mole - K*.
What is the Debye temperature for potassium?

At a temperature of 4K, the heat capacity of silver is
0.0134 J/mole - K. The Debye temperature of silver is 225 K.
(a) What is the electronic contribution to the heat capacity
at 4 K? (b) What are the lattice and electronic contributions
and the total heat capacity at 2 K?

Electrons in Metals

(a) In copper at room temperature, what is the electron
energy at which the Fermi-Dirac distribution function has
the value 0.1? (b) Over what energy range does the Fermi-
Dirac distribution function for copper drop from 0.9 to
0.1?

Calculate the de Broglie wavelength of an electron with
energy Ep in copper, and compare the value with the atomic
separation in copper.

What is the number of occupied energy states per unit
volume in sodium for electrons with energies between 0.10
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19.

20.
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26.

27.

11.6
28.
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and 0.11eV above the Fermi energy at room temperature
(293 K)?

The electrical conductivity of copper at room temperature is
5.96 x 107 Q7 'm~!. Evaluate the average distance between
electron scatterings. How many lattice spacings does this
amount to?

At what temperature would the Fermi energy of Au be
reduced by 1%? Compare this temperature with the melting
point of Au (1337 K). Is it reasonable to assume the Fermi
energy is a constant, independent of temperature?

A copper wire of diameter 0.50 mm carries a current of
2.5mA. What fraction of the copper electrons contributes to
the electrical conduction?

Use the Wiedemann-Franz ratio to calculate the thermal
conductivity of copper at room temperature. The electrical
conductivity is 5.96 x 10" Q~!.m~!.

Band Theory of Solids

Estimate the ratio of the concentration of electrons in the
conduction band of carbon (an insulator) and silicon (a semi-
conductor) at room temperature (293 K). The energy gaps
are 5.5eV for carbon and 1.1eV for silicon. Assume the
Fermi energy lies at the center of the gap.

Estimate the ratio of the number of electrons in the con-
duction bands of germanium (£, = 0.66¢V) and silicon
(Eg = 1.12eV) at a temperature of 400 K. Assume the Fermi
energy is at the center of the gap.

The valence band in Si has a width of 12¢eV. In a cube
of Si that measures 1.0 mm on each side, calculate (a) the
total number of states in the valence band, and (b) the aver-
age spacing between the states. The density of sodium is
2.33g/cm’.

Superconductivity

(a) Zirconium metal has a superconducting transition tem-
perature of 0.61 K. Assuming the validity of the BCS theory,
what is the energy gap for Zr? (b) If a beam of photons were
incident on superconducting Zr, what wavelength of photons
would be sufficient to break up the Cooper pairs? In what
region of the electromagnetic spectrum are these photons?
When superconducting tantalum metal is illuminated with
a beam of photons, it is found that photon wavelengths of
up to 0.91 mm are sufficient to destroy the superconducting
state. According to the BCS theory, find the energy gap and
critical temperature for Ta.

Find the frequency of the current that results when a voltage
difference of 1.25 1V is applied across a Josephson junction.

Intrinsic and Impurity Semiconductors

The temperature of a sample of intrinsic silicon is increased
by 100K over room temperature (293 K). Estimate the
increase in conductivity that we would expect from this
increase in temperature. The gap energy in silicon is 1.1¢eV.

29.

30.

31.

32.

33.
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34.
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37.

(a) Estimate the fraction of the electrons in the valence band
of intrinsic silicon that can be excited to the conduction band
at a temperature of 100K and at room temperature. Take
the energy gap in silicon to be 1.1eV. (b) By what factor
would the conductivity of a metal change over this same
temperature interval?

Estimate the temperature at which the density of conduc-
tion electrons in intrinsic germanium equals that of intrinsic
silicon at room temperature (293 K). The gap energies are
1.12 eV for Si and 0.66 eV for Ge.

(a) When we replace an atom of silicon with an atom of
phosphorus, the outer electron of phosphorus is screened
so that the atom behaves like a single-electron atom with
Zy = 1. Compute the energy of the electron, assuming
that silicon has a dielectric constant of 12 that effec-
tively reduces the electric field experienced by the electron.
(b) The additional electron in Si has an effective mass that is
0.43 times the free electron mass. How does this correction
factor change the electron energy?

Assuming the energy gap in intrinsic silicon is 1.1eV and
that the Fermi energy lies at the middle of the gap, calculate
the occupation probability at 293 K of (a) a state at the
bottom of the conduction band and (b) a state at the top of
the valence band.

In a sample of germanium at room temperature (293 K),
what fraction of the Ge atoms must be replaced with donor
atoms in order to increase the population of the conduction
band by a factor of 3? Assume all donor atoms are ionized,
and take the energy gap in Ge to be 0.66 eV.

Semiconductor Devices

(a) In a p-n junction at room temperature, what is the ratio
between the current with a forward bias of 2.00 V to the
current with a forward bias of 1.00 V? (b) Evaluate the same
ratio at a temperature of 400 K.

Under certain conditions, the current in a p-n junction at
room temperature is observed to be 1.5 mA when a forward
bias of 0.25V is applied. If the same voltage were used to
reverse bias the junction, what would be the current?
Gallium phosphide (£, = 2.26 ¢V) and zinc selenide (£, =
2.87eV) are commonly used to make LEDs. What is the
most prominent emission wavelength of these devices, and
what color is the corresponding light?

LEDs of varying colors can be made by mixing GaN
(Eg =3.4¢eV) and InN (Eg = 0.7¢eV) in different propor-
tions. Calculate the relative amounts of GaN and InN needed
to produce an LED that emits («) green light (550 nm) and
(b) violet light (400 nm).

11.8 Magnetic Materials

38.

Estimate the fraction of spin-up electrons in sodium that flip
their spins (as in Figure 11.53) and thus contribute to the
Pauli paramagnetism. Assume a magnetic field of 1 T.



39.

40.

41.

42.

In copper sulfate, the Cu™™ ions behave as if they have
J = 1/, for which g; = 2. In a magnetic field of 0.25 T, cal-
culate the relative numbers of copper ions in the m; = +1/»
and m; = —1/> states at (a) 300K and (b) 4.2 K.

Compute the Pauli paramagnetic susceptibilities for (a) Li
and (b) Ba. Compare with the experimental values, which
are respectively 14.2 x 107% and 20.6 x 107° (in cgs units
per mole).

(a) Calculate the expected paramagnetic susceptibility for
gold, assuming it to behave like a free electron gas.
(b) The observed cgs molar susceptibility at room tempera-
ture is —28.0 x 107, Assuming the susceptibility consists
only of the diamagnetic and paramagnetic parts, find the
diamagnetic contribution to the susceptibility of gold.

(a) The experimental paramagnetic susceptibility of MnCl,
at room temperature (293 K) in cgs units per mole is
14350 x 10~°. What is the value of ng(J—i— 1) for the
Mn™* ion? (b) What is the electronic configuration expected
for the Mn™ ion? For this configuration, and assuming that
the electronic S corresponds to maximizing the total Mg,
what is the value of S for Mn™"? For the arrangement
with that S, what is the corresponding total L? (¢) With
J =L+, what is the value of g; that follows from the
experimental susceptibility?

General Problems

43.

44.

45.

46.

47.

By summing the contributions for the attractive and repul-
sive Coulomb potential energies, show that the Madelung
constant has the value 2 In 2 for a one-dimensional “lattice”
of alternating positive and negative ions.

Plot the cohesive energies of ionic crystals (see Table 11.1
and other data that you may find) against their melting points
(see, for example, the Handbook of Chemistry and Physics).
Is there a correlation between cohesive energies and melting
points?

Plot the cohesive energies of metallic crystals (see Table 11.3
and other data that you may find) against their melting points
(see, for example, the Handbook of Chemistry and Physics).
Is there a correlation between cohesive energies and melting
points?

(a) By taking the derivative of the total potential energy of
an ion in a lattice, find an expression for the force on the
ion. (b) Suppose an ion is displaced from its equilibrium
position by a small distance x, so that R = R, + x. Show that
for small values of x, the force can be written as F' = —kx.
Express k& in terms of the other parameters of the crystal.
(c¢) Find the value of k for NaCl and evaluate the oscillation
frequency for a sodium ion. (d) Suppose a sodium ion in
the lattice absorbed a photon of this frequency and began to
oscillate. Find the wavelength of the photon. In what region
of the electromagnetic spectrum is this photon?

The electric field of a dipole is proportional to 1/r>. Assum-
ing that the induced dipole moment of molecule B is
proportional to the electric dipole field of molecule A,

48.
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50.
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show that the van der Waals force is proportional to 7.

(Hint: Show that the potential energy of dipole B in the
electric field caused by dipole A is proportional to r~©.)

(a) Obtain the data for the heat capacity of aluminum
between 1K and 100K (see, for example, the Handbook
of Chemistry and Physics). Plot the data, and by trial and
error find the value of the Einstein temperature that gives the
best fit to the data. (b) Plot the data for temperatures below
10K as C/T vs. T?, determine the slope and intercept, and
deduce the Debye temperature and effective mass for Al
(using Ep = 11.7eV).

(a) Obtain the data for the heat capacity of gold between 1 K
and 100K (see, for example, the Handbook of Chemistry
and Physics). Plot the data, and by trial and error find the
value of the Einstein temperature that gives the best fit to
the data. (b) Plot the data for temperatures below 10K as
C/T vs. T?, determine the slope and intercept, and deduce
the Debye temperature and effective mass for Au (using
Ep =5.53¢V).

(a) A Cooper pair in a superconductor can be considered
to be a bound state with an energy uncertainty that is of
the order of the gap energy E,. Assuming these pairs exist
close to the Fermi energy, find the uncertainty in the loca-
tion of a Cooper pair, which is a good estimate of its size.
(b) Estimate the size of a Cooper pair for aluminum (Ep =
11.7eV) and compare with the lattice spacing in aluminum
(0.286 nm).

When a material such as germanium is used as a photon
detector, an incoming photon makes many interactions and
excites many electrons across the gap between the valence
and the conduction band. (a)'37Cs emits a 662-keV gamma
ray. How many electrons are excited across the 0.66-e¢V
gap of germanium by the absorption of this gamma ray?
(b) The number N calculated in part (@) is subject to sta-
tistical fluctuations of ~/N. Compute the variation in N' and
the fractional variation in N. (¢) What is the corresponding
variation in the measured energy of the gamma ray? This
result is the experimental resolution of the detector.

On a single graph, sketch the atomic paramagnetic suscep-
tibility as a function of inverse temperature for J = 1/, 1,
and 3/2. Assume all other coefficients (N/V, g J,Bapp) to be
the same for these three cases. Plot the ratio of the suscepti-
bility to its maximum for that spin, so you can compare the
variation in the approach to saturation for these three spins.
The magnetic field at a distance » from a magnetic dipole
wis B = o/ 2. Show that the dipole-dipole interaction
energy is too small to account for the ferromagnetism of
iron at all but the lowest temperatures. Assume an effective
magnetic dipole moment of 2.2 uy; per atom.

(a) Oxygen gas is observed to be paramagnetic at room tem-
perature, but nitrogen gas is diamagnetic. Explain this based
on the filling of the bonding and antibonding 2p orbitals in
O, and N,. (Hint: See Example 9.1.) (b) Would you expect
NO gas to be paramagnetic or diamagnetic?






NUCLEAR STRUCTURE AND
RADIOACTIVITY

Radioactive isotopes have proven to be valuable tools for medical diagnosis. The photo
shows gamma-ray emission from a man who has been treated with a radioactive element.
The radioactivity concentrates in locations where there are active cancer tumors, which
show as bright areas in the gamma-ray scan. This patient’s cancer has spread from his
prostate gland to several other locations in his body.
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Enrico Fermi (1901-1954, Italy-
United States). There is hardly a field
of modern physics to which he did
not make contributions in theory or
experiment. He developed the statis-
tical laws for spin-1/» particles, and
in the 1930s he proposed a theory
of beta decay that is still used today.
He was the first to demonstrate the
transmutation of elements by neutron
bombardment (for which he received
the 1938 Nobel Prize), and he directed
the construction of the first nuclear
reactor.

The nucleus lies at the center of the atom, occupying only 10~'3 of its volume
but providing the electrical force that holds the atom together. Within the nucleus
there are Z positive charges. To keep these charges from flying apart, the nuclear
force must supply an attraction that overcomes their electrical repulsion. This
nuclear force is the strongest of the known forces; it provides nuclear binding
energies that are millions of times stronger than atomic binding energies.

There are many similarities between atomic structure and nuclear structure,
which will make our study of the properties of the nucleus somewhat easier.
Nuclei are subject to the laws of quantum physics. They have ground and excited
states and emit photons in transitions between the excited states. Just like atomic
states, nuclear states can be labeled by their angular momentum.

There are, however, two major differences between the study of atomic and
nuclear properties. In atomic physics, the electrons experience the force provided
by an external agent, the nucleus; in nuclear physics, there is no such external
agent. In contrast to atomic physics, in which we can often consider the interactions
among the electrons as a perturbation to the primary interaction between electrons
and nucleus, in nuclear physics the mutual interaction of the nuclear constituents
is just what provides the nuclear force, so we cannot treat this complicated many-
body problem as a correction to a single-body problem. We therefore cannot avoid
the mathematical difficulties in the nuclear case, as we did in the atomic case.

The second difference between atomic and nuclear physics is that we cannot
write the nuclear force in a simple form like the Coulomb force. There is no
closed-form analytical expression that can be written to describe the mutual forces
of the nuclear constituents.

In spite of these difficulties, we can learn a great deal about the properties of
the nucleus by studying the interactions between different nuclei, the radioactive
decay of nuclei, and the properties of some nuclear constituents. In this chapter and
the next we describe these studies and how we learn about the nucleus from them.

12.1 NUCLEAR CONSTITUENTS

The work of Rutherford, Bohr, and their contemporaries in the years between
1911 and 1920 showed that the positive charge of the atom is confined in a very
small nuclear region at the center of the atom, that the nucleus in an atom of
atomic number Z has a charge of 4+Ze, and that the nucleus provides most (99.9%)
of the atomic mass. It was also known that the masses of the atoms (measured in
atomic mass units) were very nearly integers; a glance at Appendix D confirms
this observation, usually to within about 0.1%. We call this integer A the mass
number. It was therefore reasonable to suppose that nuclei are composed of a
number 4 of more fundamental units whose mass is very close to 1 u. Because
the only particle known at that time with a mass close to 1 u was the proton
(the nucleus of hydrogen, with a mass of 1.0073 u and a charge of +e), it was
postulated (incorrectly, as we shall see) that the nucleus of an atom of mass
number A4 contained 4 protons.

Such a nucleus would have a nuclear charge of Ae rather than Ze; because
A > Z for all atoms heavier than hydrogen, this model gives too much positive
charge to the nucleus. This difficulty was removed by the proton-electron model,
in which it was postulated (again incorrectly) that the nucleus also contained
(A — Z) electrons. Under these assumptions, the nuclear mass would be about



A times the mass of the proton (because the mass of the electrons is negligible)
and the nuclear electric charge would be A(+e)+ (4 —Z)(—e) = Ze, in
agreement with experiment. However, this model leads to several difficulties.
First, as we discovered in Chapter 4 (see Example 4.7), the presence of electrons
in the nucleus is not consistent with the uncertainty principle, which would
require those electrons to have unreasonably large (~ 19 MeV) kinetic energies.

A more serious problem concerns the total intrinsic spin of the nucleus. From
measurements of the very small effect of the nuclear magnetic moment on the
atomic transitions (called the hyperfine splitting), we know that the proton has
an intrinsic spin of 1/5, just like the electron. Consider an atom of deuterium,
sometimes known as “heavy hydrogen.” It has a nuclear charge of +e, just like
ordinary hydrogen, but a mass of two units, twice that of ordinary hydrogen.
The proton-electron nuclear model would then require that the deuterium nucleus
contain two protons and one electron, giving a net mass of two units and a net
charge of one. Each of these three particles has a spin of 1/», and the rules for adding
angular momenta in quantum mechanics would lead to a spin of deuterium of either
1/> or 3/,. However, the measured total spin of deuterium is 1. For these and other
reasons, the hypothesis that electrons are a nuclear constituent must be discarded.

The resolution of this dilemma came in 1932 with the discovery of the neutron,
a particle of roughly the same mass as the proton (actually about 0.1% more
massive) but having no electric charge. According to the proton-neutron model,
a nucleus consists of Z protons and (4 — Z) neutrons, giving a total charge of Ze
and a total mass of roughly 4 times the mass of the proton, because the proton
and neutron masses are roughly the same.

The proton and neutron are, except for their electric charges, very similar to
one another, and so they are classified together as nucleons. Some properties of
the two nucleons are listed in Table 12.1.

The chemical properties of any element depend on its atomic number Z, but
not on its mass number A4. It is possible to have two different nuclei with the same
Z but with different 4 (that is, with the same number of protons but different
numbers of neutrons). Atoms of these nuclei are identical in all their chemical
properties, differing only in mass and in those properties that depend on mass.
Nuclei with the same Z but different 4 are called isotopes. Hydrogen, for example,
has three isotopes: ordinary hydrogen (Z = 1,4 = 1), deuterium (Z = 1,4 = 2),
and tritium (Z = 1,4 = 3). All of these are indicated by the chemical symbol
H. When we discuss nuclear properties it is important to distinguish among the
different isotopes. We do this by indicating, along with the chemical symbol, the
atomic number Z, the mass number A4, and the neutron number N = A — Z in the
following format:

A
ZXN

where X is any chemical symbol. The chemical symbol and the atomic number Z
give the same information, so it is not necessary to include both of them in the
isotope label. Also, if we specify Z then we don’t need to specify both N and

TABLE 12.1 Properties of the Nucleons
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Name Symbol Charge Mass Rest Energy Spin

Proton p +e 1.007276 u | 938.28 MeV '

Neutron n 0 1.008665 u 939.57 MeV U
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A. Tt is sufficient to give only the chemical symbol and 4. The three isotopes of
hydrogen would be indicated as |H,, ?H,, and JH,, or more compactly as 'H,
’H, and 3H. In Appendix D you will find a list of isotopes and some of their

properties.
| Example 12.1

Give the symbol for the following: (@) the isotope of helium
with mass number 4; (b) the isotope of tin with 66 neu-
trons; (¢) an isotope with mass number 235 that contains
143 neutrons.

Solution
(a) From the periodic table, we find that helium has Z = 2.
With 4 = 4, we have N = A4 — Z = 2. Thus the symbol

(b) Again from the periodic table, we know that for tin
(Sn), Z = 50. We are given N = 66,804 = Z + N = 116.
The symbol is '18Sngq or '16Sn.

(c) Given that 4 =235 and N = 143, we know that
Z=A— N =92. From the periodic table, we find that
this element is uranium, and so the proper symbol for this
isotope is 235U, 43 or 23U.

would be 3He, or “He.

12.2 NUCLEAR SIZES AND SHAPES

Like atoms, nuclei lack a hard surface or an easily definable radius. In fact,
different types of experiments can often reveal different values of the radius for
the same nucleus.

From a variety of experiments, we know some general features of the nuclear
density. Its variation with the nuclear radius is shown in Figure 12.1. Because
the nuclear force is the strongest of the forces, we might expect that this strong
force would cause the protons and neutrons to congregate at the center of the
nucleus, giving an increasing density in the central region. However, Figure 12.1
shows that this is not the case—the density remains quite uniform. This gives
some important clues about the short range of the nuclear force, as we discuss in
Section 12.4.

Another interesting feature of Figure 12.1 is that the density of a nucleus seems
not to depend on the mass number 4; very light nuclei, such as '>C, have roughly
the same central density as very heavy nuclei, such as 2*Bi. Stated another way,
the number of protons and neutrons per unit volume is approximately constant
over the entire range of nuclei:

120 706 number of neutrons and protons A ant
e | 209p; = = constan
= — Bi | volume of nucleus inR?
: \
g assuming the nucleus to be a sphere of radius R. Thus 4 oc R?, which suggests
S 27t Na.otmh7.1 fm a proportionality between the nuclear radius R and the cube root of the mass
= number: R oc 4'/3or, defining a constant of proportionality R,
\ N R = RyA"? (12.1)
01 2 3 45 6 7 8 9

The constant R, must be determined by experiment, and a typical experiment
might be to scatter charged particles (alpha particles or electrons, for example)
from the nucleus and to infer the radius of the nucleus from the distribution
of scattered particles. From such experiments, we know the value of R, is

r (fm)

FIGURE 12.1 The radial dependence
of the nuclear charge density.
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approximately 1.2 x 10™'5 m. (The exact value depends, as in the case of atomic
physics, on exactly how we define the radius, and values of R, usually range from
1.0 x 1075 mto 1.5 x 10~ m.) The length 10~ m is 1 femtometer (fm), but
physicists often refer to this length as one fermi, in honor of the Italian-American
physicist Enrico Fermi.

| Example 12.2

Compute the approximate nuclear radius of carbon (4 = As you can see from Figure 12.1, these values define the
12), germanium (4 = 70), and bismuth (4 = 209). mean radius, the point at which the density falls to half the

. central value.
Solution

Using Eq. 12.1, we obtain:

Carbon: R=RyA3 = (1.2 fm)(12)!/3 = 2.7 fm
Germanium: R = RyA'3 = (1.2 fm)(70)!/3 = 4.9 fm
Bismuth: R = ROAI/3 = (1.2 fm)(209)1/3 = 7.1 fm

| Example 12.3

Compute the density of a typical nucleus, and find the The mass of a hypothetical nucleus with a 1-cm radius

resultant mass if we could produce a nucleus with a radius  would be
of l cm.

m=plV = p(%nR3)

Solution
Making a rough estimate of the nuclear mass m as A times =(2x 10" kg/m3)(§ﬂ)(0-01 m)3
the proton mass, we have =8x 10" kg
m Amp Amp
= = T 3= T 3 about the mass of a 1-km sphere of ordinary matter!

1.67 x 10727k
== S =2 x 107 kg/m?
(1.2 x 10~ m)

The result of Example 12.3 shows the great density of what physicists call
nuclear matter. Although examples of such nuclear matter in bulk are not found
on Earth (a sample of nuclear matter the size of a large building would have a
mass as great as that of the entire Earth), they are found in certain massive stars, in
which the gravitational force causes protons and electrons to merge into neutrons,
creating a neutron star (see Section 10.7) that is in effect a giant atomic nucleus!

One way of measuring the size of a nucleus is to scatter charged particles, such
as alpha particles, as in Rutherford scattering experiments. As long as the alpha
particle is outside the nucleus, the Rutherford scattering formula holds, but when
the distance of closest approach is less than the nuclear radius, deviations from the
Rutherford formula occur. Figure 12.2 shows the results of a Rutherford scattering
experiment in which such deviations are observed. (Problem 33 suggests how a
value for the nuclear radius can be inferred from these data.)
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Other scattering experiments can also be used to measure the nuclear radius.
Figure 12.3 shows a sort of “diffraction pattern” that results from the scattering
of energetic electrons by a nucleus. In each case the first diffraction minimum
is clearly visible. (The intensity at the minimum doesn’t fall to zero because
the nuclear density doesn’t have a sharp edge, as illustrated in Figure 12.1.) For
scattering of radiation of wavelength A by a circular disc of diameter D, the first
diffraction minimum should appear at an angle of & = sin~! (1.221/D). (Review
Example 4.2 for another example of this calculation.) At an electron energy of
420 MeV, the observed minima for '°0 and '?C give a radius of 2.6 fm for '°0
and 2.3 fm for 1>C (see Problem 34), in agreement with the values 3.0 fm and 2.7
fm computed from Equation 12.1.

12.3 NUCLEAR MASSES AND BINDING ENERGIES

Suppose we have a proton and an electron at rest separated by a large distance.
The total energy of this system is the total rest energy of the two particles,
myc* + mc?. Now we let the two particles come together to form a hydrogen
atom in its ground state. In the process, several photons are emitted, the fotal
energy of which is 13.6eV. The total energy of this system is the rest energy of
the hydrogen atom, m(H)c?, plus the total photon energy, 13.6 V. Conservation
of energy demands that the total energy of the system of isolated particles must
equal the total energy of atom plus photons: m.c? + mpc2 =m(H)c? +13.6¢eV,
which we write as

mec® + myc® — m(H)c> = 13.6eV
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That is, the rest energy of the combined system (the hydrogen atom) is less than
the rest energy of its constituents (an electron and a proton) by 13.6eV. This
energy difference is the binding energy of the atom. We can regard the binding
energy as either the “extra” energy we obtain when we assemble an atom from its
components or else the energy we must supply to disassemble the atom into its
components.

Nuclear binding energies are calculated in a similar way. Consider, for example,
the nucleus of deuterium, 7H,, which is composed of one proton and one neutron.
The nuclear binding energy of deuterium is the difference between the total rest
energy of the constituents and the rest energy of their combination:

B=m,* + mloc2 — mpc? (12.2)

where mp, is the mass of the deuterium nucleus. To finish the calculation, we
replace the nuclear masses m,, and mp, with the corresponding afomic masses:
m(*H)c? = mp02 +myc? —13.6eV  and mCH)c? = mpc? + moc? — 13.6¢V.
Substituting into Eq. 12.2, we obtain

B = m,c* + [m(*H)c? — m,® + 13.6eV] — [m(*H)c* — m,c® + 13.6eV]
= [m, + m("H) — m(H)]c?

Notice that the electron mass cancels in this calculation. For deuterium, we then
have

B = (1.008665 u + 1.007825 u — 2.014102 u)(931.5MeV/u) = 2.224 MeV

Here we use ¢> = 931.5 MeV /u to convert mass units to energy units.

Let’s generalize this process to calculate the binding energy of a nucleus X
of mass number 4 with Z protons and N neutrons. Let my represent the mass of
this nucleus. Then the binding energy of the nucleus is, by analogy with Eq. 12.2,
the difference between the nuclear rest energy and the total rest energy of its
constituents (N neutrons and Z protons):

B = Nm,c* + Zmpc2 — myc? (12.3)

In order to use tabulated atomic masses to do this calculation, we must replace
the nuclear mass my with its corresponding atomic mass: m(4Xy)c? = myc? +
Zm.c* — B,, where B, represents the total binding energy of all the electrons
in this atom. Nuclear rest energies are of the order of 10° to 10'!' eV, total
electron rest energies are of the order of 10° to 10% eV, and electron binding
energies are of the order of 1 to 10° eV. Thus B, is very small compared with the
other two terms, and we can safely neglect it to the accuracy we need for these
calculations.

Substituting atomic masses for the nuclear masses m, and my, we obtain an
expression for the total binding energy of any nucleus /Z‘XN:

B = [Nm, + Zm(1H,) — m(4X,)]c? (12.4)

The electron masses cancel in this equation, because on the right side we have
the difference between the mass of Z hydrogen atoms (with a total of Z electrons)
and the atom of atomic number Z (also with Z electrons). The masses that appear
in Eq. 12.4 are atomic masses.
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| Example 12.4

Find the total binding energy B and also the average binding  For 238y
56 238 9271462
energy per nucleon B/4 for 5 Fe;y and “55U 44.
B =[146(1.008665u) + 92(1.007825u)

Solution « , —238.050788 u](931.5 MeV/u)
From Eq. 12.4, for 5;Fes, with N = 30 and Z = 26,

= 1802 MeV
B =1[30(1.008665u) 4 26(1.007825u)
B 1802MeV
—55.934937u](931.5 MeV/u) 1= 8 = 7.570 MeV per nucleon
=492.3 MeV
B 492.3MeV
1= Te = 8.790 MeV per nucleon

Example 12.4 gives us insight into an important aspect of nuclear structure.
The values of B/A show that the nucleus “°Fe is relatively more tightly bound than
the nucleus 23%U; the average binding energy per nucleon is greater for *°Fe than
for 238U. Alternatively, this calculation shows that, given a large supply of protons
and neutrons, we would release more energy by assembling those nucleons into
nuclei of *°Fe than we would by assembling them into nuclei of 2*U.

Repeating this calculation for the entire range of nuclei, we obtain the results
shown in Figure 12.4. The binding energy per nucleon starts at small values

10
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FIGURE 12.4 The binding energy per nucleon.
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(0 for the proton and neutron, 1.11 MeV for deuterium), rises to a maximum of
8.795MeV for °Ni, and then falls to values of around 7.5MeV for the heavy
nuclei.

The binding energy per nucleon is roughly constant over a fairly wide range of
nuclei. From the region around 4 = 60 there is a sharp decrease for light nuclei,
which is caused by their having an increasing relative fraction of loosely bound
protons and neutrons on the surface. There is a gradual decrease for the more
massive nuclei, due to the increasing Coulomb repulsion of the protons.

Figure 12.4 suggests that we can liberate energy from the nucleus in two
different ways. If we split a massive nucleus (say, 4 > 200) into two lighter
nuclei, energy is released, because the binding energy per nucleon is greater for
the two lighter fragments than it is for the original nucleus. This process is known
as nuclear fission. Alternatively, we could combine two light nuclei (4 < 10, for
example) into a more massive nucleus; again, energy is released when the binding
energy per nucleon is greater in the final nucleus than it is in the two original
nuclei. This process is known as nuclear fusion. We consider fission and fusion
in greater detail in Chapter 13.

Proton and Neutron Separation Energies

If we add the ionization energy E; (13.6eV) to a hydrogen atom, we obtain a
hydrogen ion H™ and a free electron. In terms of the rest energies of the particles,
we can write this process as E; + m(H)c? = m(H")c? + m.c?. If we generalize to
an arbitrary element X, this becomes E; + m(X)c?> = m(XT)c? + mecz, or

X — X" +e:  E =mXNHA 4 mc? —mX)e? = [m(XT) + m, — m(X)]c?

In the case of element X, the ionization energy gives the smallest amount of
energy necessary to remove an electron from an atom, and we saw in Figure 8.8
how the ionization energy provides important information about the properties of
atoms.

For nuclei, a process similar to ionization consists of removing the least tightly
bound proton or neutron from the nucleus. The energy required to remove the
least tightly bound proton is called the proton separation energy S,,. If we add
energy S, to a nucleus 4X y, we obtain the nucleus 4~} X/, and a free proton. In
analogy with the atomic case, we can write the separation energy as

Xy = 30Xy +p S, =[mGIIXY) + m(H) — m(GXy)1e (12.5)

using atomic masses. Similarly, if we add the neutron separation energy S, to
nucleus 4X,, we obtain the nucleus A}XNfl and a free neutron:

WXy = 1 Xy 1 S, = [m(* ) Xy_y) + my, — mEX)]e? (12.6)

Proton and neutron separation energies are typically in the range of 5—10 MeV.
It is no coincidence that this energy is about the same as the average binding
energy per nucleon. The total binding energy B of a nucleus is the energy needed
to take it apart into Z free protons and N free neutrons. This energy is the sum of
A proton and neutron separation energies.
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| Example 12.5

Find the proton separation energy and the neutron separa-  For neutron separation, '>Te — '?*Te 4 n. The neutron

tion energy of '2°Te. separation energy is (from Eq. 12.6)
Solution S, = [m(***Te) + m, — m('*Te)]c?
To separate a proton, '>Te — 24Sb 4 p. Using Eq. 12.5, — (123.902818 u 4+ 1.008665 u

the proton separation energy is
—124.904431 u)(931.50 MeV/u)

S — bm(24sh "H) — m('¥Te))?

= (123.905936 u+ 1.007825 u
—124.904431 u)(931.50 MeV/u)
= 8.691 MeV

The proton and neutron separation energies play a role in nuclei similar to
that of the ionization energy in atoms. Figure 12.5 shows a plot of the neutron
separation energies of nuclei with a “valence” neutron (and no valence proton)
from Z =36 to Z = 62. As we add neutrons, the neutron separation energy
decreases smoothly except near N = 50 and N = 82, where there are more
sudden decreases in the separation energy. In analogy with atomic physics (see
Figure 8.8), these sudden decreases are associated with the filling of shells. The
motions of neutrons and protons in the nucleus are described in terms of a shell
structure that is similar to that of atomic shells, and when a neutron or proton is
placed into a new shell it is less tightly bound and its separation energy decreases.
The neutron separation data indicate that there are closed neutron shells at N = 50
and N = 82. Relationships such as Figure 12.5 provide important information
about the shell structure of nuclei.
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FIGURE 12.5 The neutron separation energy. The lines connect isotopes
of the same element that have an odd neutron, starting on the left at
Z = 36 and ending on the right at Z = 62.

12.4 THE NUCLEAR FORCE

Our successful experience with using the simplest atom, hydrogen, to gain insights
into atomic structure suggests that we should begin our study of the nuclear force
by looking at the simplest system in which that force operates—the deuterium
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nucleus, which consists of one proton and one neutron. For example, we might
hope to learn something about the nuclear force from the photons emitted in
transitions between the excited states of this nucleus. Unfortunately, this strategy
does not work—deuterium has no nuclear excited states. When we bring a proton
and an electron together to form a hydrogen atom, many photons may be emitted
as the electron drops into its ground state; from this spectrum we learn the energies
of the excited states. When we bring a proton and a neutron together to form
a deuterium nucleus, only one photon (of energy 2.224 MeV) is emitted as the
system drops directly into its ground state.

Even though we can’t use the excited states of deuterium, we can learn about the
nuclear force in the proton-neutron system by scattering neutrons from protons as
well as by doing a variety of different experiments with heavier nuclei. From these
experiments we have learned the following characteristics of the nuclear force:

1. The nuclear force is the strongest of the known forces, and so it is sometimes
called the strong force. For two adjacent protons in a nucleus, the nuclear
interaction is 10—100 times stronger than the electromagnetic interaction.

2. The strong nuclear force has a very short range—the distance over which
the force acts is limited to about 10~'3 m. This conclusion follows from the
constant central density of nuclear matter (Figure 12.1). As we add nucleons
to a nucleus, each added nucleon feels a force only from its nearest neighbors,
and not from all the other nucleons in the nucleus. In this respect, a nucleus
behaves somewhat like a crystal, in which each atom interacts primarily with
its nearest neighbors, and additional atoms make the crystal larger but don’t
change its density. Another piece of evidence for the short range comes from
Figure 12.4. Because the binding energy per nucleon is roughly constant, total
nuclear binding energies are roughly proportional to 4. For a force with long
range (such as the gravitational and electrostatic forces, which have infinite
range) the binding energy is roughly proportional to the square of the number of
interacting particles. (For example, because each of the Z protons in a nucleus
feels the repulsion of the other Z — 1 protons, the total electrostatic energy of
the nucleus is proportional to Z(Z — 1), which is roughly Z? for large Z.)

Figure 12.6 illustrates the dependence of the nuclear binding energy on the
separation distance between the nucleons. The binding energy is relatively
constant for separation distances less than about 1 fm, and it is zero for FIGURE 12.6 Dependence of nuclear
separation distances much greater than 1 fm.

3. The nuclear force between any two nucleons does not depend on whether the
nucleons are protons or neutron—the n-p nuclear force is the same as the n-n
nuclear force, which is in turn the same as the nuclear portion of the p-p force.

Separation distance

e——~1 fm

Nuclear binding energy (MeV)

binding energy on the separation dis-
tance of nucleons.

A successful model for the origin of this short-range force is the exchange
force. Suppose we have a neutron and a proton next to one another in the nucleus.
The neutron emits a particle, on which it exerts a strong attractive force. The
proton also exerts a strong force on the particle, perhaps strong enough to absorb
the particle. The proton then emits a particle that can be absorbed by the neutron.
The proton and neutron each exert a strong force on the exchanged particle, and
thus they appear to exert a strong force on each other. The situation is similar to
that shown in Figure 12.7, in which two people play catch with a ball to which
each is attached by a spring. Each player exerts a force on the ball, and the effect
is as if each exerted a force on the other.

How can a neutron of rest energy m,c” emit a particle of rest energy
mc? and still remain a neutron, without violating conservation of energy? The FIGURE 12.7 An attractive exchange
answer to this question can be found from the uncertainty principle, AEAt ~ /. force.

2
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We don’t know that energy has been conserved unless we measure it, and we can’t
measure it more accurately than the uncertainty AE in a time interval Az. We
can therefore “violate” energy conservation by an amount AFE for a time interval
of at most At = i/ AE. The amount by which energy conservation is violated in
our exchange force model is mc?, the rest energy of the exchanged particle. This
particle can thus exist only for a time interval (in the laboratory frame) of at most

At=— (12.7)
mc
The longest distance this particle can possibly travel in the time Az is x = cAt,
since it can’t move faster than the speed of light. With x = cAt = cfi/mc?, we
then have a relationship between the maximum range of the exchange force and
the rest energy of the exchanged particle:

I
me = - (12.8)
X

Inserting into this expression an estimate for the range of the nuclear force of
10~ mor 1 fm, we can estimate the rest energy of the exchanged particle:

> hc  200MeV-fm

= — = = 200 MeV
mc E Tfm e

The exchanged particle cannot be observed in the laboratory during the exchange,
for to do so would violate energy conservation. However, if we provide energy to
the nucleons from an external source (for example, by causing a nucleus to absorb
a photon), the “borrowed” energy can be repaid and the particle can be observed.
When we carry out this experiment, the nucleus is found to emit pi mesons
(pions), which have a rest energy of 140 MeV, remarkably close to our estimate of
200 MeV. Many observable properties of the nuclear force have been successfully
explained by a model based on the exchange of pions. We discuss the properties
of pions in Chapter 14. Other exchanged particles contribute to different aspects
of the nuclear force. For example, an exchanged particle is responsible for the
repulsive part of the force at very short range, which keeps the nucleons from all
collapsing toward the center of the nucleus (see Problem 10).

12.5 QUANTUM STATES IN NUCLEI

Ideally we would like to solve the Schrodinger equation using the nuclear potential
energy. This process, if it were possible, would give us a set of energy levels for
the protons and neutrons that we could then compare with experiment (just as we
did for the energy levels of electrons in atoms). Unfortunately, we cannot carry
through with this program for several reasons: the nuclear potential energy cannot
be expressed in a convenient analytical form, and it is not possible to solve the
nuclear many-body problem except by approximation.

Nevertheless, we can make some simplifications that allow us to analyze the
structure and properties of nuclei by using techniques already introduced in this
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book. We’ll represent the nuclear potential energy as a finite potential well of
radius R equal to the nuclear radius. That confines the nucleons to a nucleus-sized
region and allows them to move freely inside that region.

Let’s consider ' Te (a nucleus very close to the center of the range of nuclei),
which we analyzed in Example 12.5. The width of the potential energy well is equal
to the nuclear radius, which we find from Eq. 12.1: R = (1.2 fm)(125)'3 = 6.0 fm.
The second quantity we need to know is the depth of the potential energy well.
We’ll consider the neutrons and protons separately. The 73 neutrons in '>>Te will
fill a series of energy levels in the potential energy well. The top of the well is at
E = 0 (above which the neutrons would become free). The bottom of the well is
at a negative energy —U,,. The neutrons fill the levels in the well starting at — U,
and ending not at energy zero but at energy —6.6 MeV, as we found in Example
12.5. That is, we must add a minimum of 6.6 MeV to raise the least tightly bound
neutron out of the well and turn it into a free neutron.

To find the energy difference between the bottom of the well and the highest
filled state, we can consider the nucleus to be a “gas” of neutrons and protons
whose energies are described by the Fermi-Dirac distribution (Chapter 10). A
statistical distribution is intended to describe systems with large numbers of
particles, but it should be a reasonable rough approximation for our “gas” of 73
neutrons. To find the energy of the highest filled state, we need the Fermi energy
of the neutrons (using Eq. 10.50 with V' = %nR3 =900 fm® as the volume of the
125Te nucleus):

(3N \  rE (3NN
Er=— | — = | —/——
7 om <8nV> 2mc? (8711/)

(1240 MeV - fm)? [ 3(73)
© 2(940MeV) | 87(900 fm?)

2/3
] =37.0MeV

Figure 12.8 shows the resulting potential energy well for neutrons. The depth of
the well is the sum of the neutron separation energy S, and the Fermi energy:
Uy=S, +Ep =6.6MeV +37.0MeV = 43.6 MeV.

A similar calculation for the 52 protons in '23Te gives Er = 29.5 MeV. For the
protons, S, + Ep = 8.7MeV + 29.5MeV = 38.2 MeV, much less than the depth
we determined for the neutron well. The difference between the depths of the
neutron and proton wells is due to the Coulomb repulsion energy of the protons,
which makes the protons less tightly bound than the neutrons. Figure 12.9 gives
a representation of the proton states in their potential energy well.

Quantum States and Radioactive Decay

Figure 12.10 shows the protons and neutrons near the top of their potential energy
wells. Note that we can add energy to the nucleus that is less than the proton or
neutron separation energies. In the region between £ = —S, or —S;, and £ = 0
are the nuclear excited states in which a proton or a neutron can absorb energy
and move from its ground state to one of the unoccupied higher states. As was
the case with atoms, the nucleus can make transitions from excited states to lower
excited states or to the ground state by photon emission. In the case of nuclei,
those photons are called gamma rays and have typical energies of 0.1 MeV to a
few MeV.
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FIGURE 12.8  Neutron states in a
potential energy well for the 73 neu-
trons of ' Te.
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FIGURE 12.9 Proton states inapoten-
tial energy well for the 52 protons of
125Te.
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$8 pha FIGURE 12.10 Proton and neu-
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It is also possible to have other nuclear transformations that can be represented
in Figure 12.10. It is clearly not possible for this nucleus spontaneously to emit
a proton or a neutron—we have seen that it takes many MeV to boost a bound
proton or neutron to a free state. However, it is possible simultaneously to boost
two protons and two neutrons and form them into an alpha particle (3He,). If the
energy gained in the formation of the alpha particle (its binding energy, 28.3 MeV)
is greater than the sum of the four separation energies, there will be a net energy
gain in the process; this energy can appear as the kinetic energy of the alpha
particle that is emitted by the nucleus. This process is called nuclear alpha decay.
You can see from the neutron and proton separation energies that this process
does not occur for >3 Te.

Another type of transformation occurs under certain circumstances when a
neutron changes into a proton and drops into one of the empty proton states at
lower energy. Under other circumstances, in which the proton levels are higher
and the neutron levels are lower, a proton can transform into a neutron and drop
into one of the empty neutron states. This process is called nuclear beta decay. It
is not always obvious from diagrams such as Figure 12.10 whether this type of
transformation will occur, because changing a neutron to a proton increases the net
Coulomb energy of the nucleus and thus increases the energy of all of the proton
states. Neither the neutron-to-proton nor the proton-to-neutron transformation can
occur for '>Te.

12.6 RADIOACTIVE DECAY

Figure 12.11 shows a plot of all the known nuclei, with stable nuclei indicated by
dark shading. For the lighter stable nuclei, the neutron and proton numbers are
roughly equal. However, for the heavy stable nuclei, the factor Z(Z — 1) in the
Coulomb repulsion energy grows rapidly, so extra neutrons are required to supply
the additional binding energy needed for stability. For this reason, all heavy stable
nuclei have N > Z.
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FIGURE 12.11 Stable nuclei are shown in color; known radioactive nuclei are in light

shading.

Most of the nuclei represented in Figure 12.11 are unstable, which means that
they transform themselves into more stable nuclei by changing their Z and N
through alpha decay (emission of “He) or beta decay (changing a neutron to a
proton or a proton to a neutron). Nuclei are unstable in excited states, which
can transition to ground states through gamma decay (emission of photons). The
three decay processes (alpha, beta, and gamma decay) are examples of the general
subject of radioactive decay. In the remainder of this section, we establish some
of the basic properties of radioactive decay, and in the following sections we treat
alpha, beta, and gamma decay separately.

The rate at which unstable radioactive nuclei decay in a sample of material is
called the activity of the sample. The greater the activity, the more nuclear decays
per second. (The activity has nothing to do with the kind of decays or of radiations
emitted by the sample, or with the energy of the emitted radiations. The activity
is determined only by the number of decays per second.)

The basic unit for measuring activity is the curie.* Originally, the curie was
defined as the activity of one gram of radium; that definition has since been
replaced by a more convenient one:

1 curie (Ci) = 3.7 x 10'? decays/s
One curie is quite a large activity, and so we work more often with units of

millicurie (mCi), equal to 1073 Ci, and microcurie («Ci), equal to 107 Ci.

*The SI unit of activity is the becquerel (Bq), named for Henri Becquerel, the French scientist who
discovered radioactivity in 1896. One becquerel equals one decay/s, so 1 Ci=3.7 x 10'°Bq.

12.6 | Radioactive Decay 383
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Marie Curie (1867—1934, Poland-
France). Her pioneering studies of the
natural radioactivity of radium and
other elements earned her two Nobel
Prizes, the physics prize in 1903 for
the discovery of radioactivity (shared
with Henri Becquerel and with her
husband, Pierre) and the unshared
chemistry prize in 1911 for the iso-
lation of pure radium. She established
the Institute of Radium at the Univer-
sity of Paris, where she continued to
pursue research in the medical appli-
cations of radioactive materials. Her
daughter Irene was awarded the 1935
Nobel Prize in chemistry for the dis-
covery of artificial radioactivity.

Consider a sample with a mass of a few grams, containing the order of 10?* atoms.
If the activity were as large as 1 Ci, about 10! of the nuclei in the sample would
decay every second. We could also say that for any one nucleus, the probability of
decaying during each second is about 10'°/10%3 or 10~!3. This quantity, the decay
probability per nucleus per second, is called the decay constant (represented by
the symbol 1). We assume that X is a small number, and that it is constant in time
for any particular material—the probability of any one nucleus decaying doesn’t
depend on the age of the sample. The activity a depends on the number N of
radioactive nuclei in the sample and also on the probability A for each nucleus to
decay:

a =N (12.9)

which is equivalent to decays/s = decays/s per nucleus x number of nuclei.

Both a and N are functions of the time 7. As our sample decays, N certainly
decreases—there are fewer radioactive nuclei left. If N decreases and A is
constant, then a must also decrease with time, and so the number of decays per
second becomes smaller with increasing time.

We can regard a as the change in the number of radioactive nuclei per unit
time—the more nuclei decay per second, the larger is a.

dN
dt
A minus sign must be present because dN/dt is negative (N is decreasing with

time), and we want a to be a positive number.) Combining Eqs. 12.9 and 12.10
we have dN /dt = —AN, or

(12.10)

dN
— = —\dt (12.11)
N
This equation can be integrated directly to yield
N = Nye ™ (12.12)

where N, represents the number of radioactive nuclei originally present at # = 0.
Equation 12.12 is the exponential law of radioactive decay, which tells us how
the number of radioactive nuclei in a sample decreases with time. We can’t easily
measure NV, but we can put this equation in a more useful form by multiplying on
both sides by X, which gives

a=age ™ (12.13)

where a, is the original activity (a, = AN,).

Suppose we count the number of decays of our sample in one second (by
counting for one second the radiations resulting from the decays). Repeating the
measurement, we could then plot the activity a as a function of time, as shown in
Figure 12.12. This plot shows the exponential dependence expected on the basis
of Eq. 12.13.

It is often more useful to plot a as a function of ¢ on a semilogarithmic scale,
as shown in Figure 12.13. On this kind of plot, Eq. 12.13 gives a straight line of
slope —A.
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The half-life, t, ,, of the decay is the time that it takes for the activity to be
reduced by half, as shown in Figure 12.12. That is, when 7 =1, ,,a = %ao =

age /2, from which we find

Whent = 1,a = ape™! = 0.37a,.

| Example 12.6

(12.14)

(12.15)

The half-life of 8 Au is 2.70 days. (a) What is the decay
constant of '"®Au? (b) What is the probability that any
198 Au nucleus will decay in one second? (c) Suppose
we had a 1.00-ug sample of ' Au. What is its activity?
(d) How many decays per second occur when the sample
is one week old?

Solution
(a)
B 0.693 . 0693 1d 1h

A= =
11, 2.70d 24h 3600s

=297 x 107¢¢7!

(b) The decay probability per second is just the decay
constant, so the probability of any '°® Au nucleus decaying
in one second is 2.97 x 107°.

(¢) The number of atoms in the sample is determined from
the Avogadro constant N, and the molar mass M:
MmN,
M
(1.00 x 107° g)(6.02 x 10?* atoms/mole)

- 198 g/mole

=3.04 x 10'° atoms
a=AN=(2.97 x 107°s7")(3.04 x 10"%)

=9.03 x 10° Bq = 0.244 Ci

N =

(d) The activity decays according to Eq. 12.13:
a= aoef’\’
= (9.03 x 10° Bq)e*(2'97“0_6 s~ (7 d)(3600 s/d)

=1.50 x 10° Bq
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| Example 12.7

The half-life of 23°U is 7.04 x 108 y. A sample of rock, Each half-life reduces N by a factor of 2, so the overall

which solidified with the Earth 4.55 x 10° years ago, con-  reduction in N has been

2646 — 88.2. The original rock

tains N atoms of 23U. How many 235U atoms did the same ~ therefore contained 88.2N atoms of #°U.

rock have at the time it solidified?

Solution
The age of the rock corresponds to

4.55x10°y
7.04 x 108y

= 6.46 half-lives

Conservation Laws in Radioactive Decays

Our study of radioactive decays and nuclear reactions reveals that nature is not
arbitrary in selecting the outcome of decays or reactions, but rather that certain
laws limit the possible outcomes. We call these laws conservation laws, and
we believe these laws give us important insight into the fundamental workings
of nature. Several of these conservation laws are applied to radioactive decay
processes.

1. Conservation of Energy Perhaps the most important of the conservation
laws, conservation of energy tells us which decays are energetically possible and
enables us to calculate rest energies or kinetic energies of decay products. A
nucleus X will decay into a lighter nucleus X', with the emission of one or more
particles we call collectively x only if the rest energy of X is greater than the total
rest energy of X' + x The excess rest energy is known as the Q value of the decay
X=X +x:

0 = [my — (my + m)1c* (12.16)

where the m’s represent the nuclear masses. The decay is possible only if this
O value is positive. The excess energy Q appears as kinetic energy of the decay
products (assuming X is initially at rest):

0 =Ky +K, (12.17)
2. Conservation of Linear Momentum If the initially decaying nucleus is

at rest, then the total linear momentum of all of the decay products must sum to
Zero:

Py +p, =0 (12.18)
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Usually the emitted particle or particles x are much less massive than the residual
nucleus X', and the recoil momentum py, yields a very small kinetic energy Ky .

If there is only one emitted particle x, Eqs. 12.17 and 12.18 can be solved
simultaneously for Ky, and K. If x represents two or more particles, we have
more unknowns than we have equations, and no unique solution is possible. In
this case, a range of values from some minimum to some maximum is permitted
for the decay products.

3. Conservation of Angular Momentum The total spin angular momentum
of the initial particle before the decay must equal the total angular momentum
(spin plus orbital) of all of the product particles after the decay. For example, the
decay of a neutron (spin angular momentum = 1/5) into a proton plus an electron is
forbidden by conservation of angular momentum, because the spins of the proton
and electron, each equal to !/2, can be combined to give a total of either 0 or 1,
neither of which is equal to the initial angular momentum of the neutron. Adding
integer units of orbital angular momentum to the electron does not restore angular
momentum conservation in this decay process.

4. Conservation of Electric Charge This is such a fundamental part of all
decay and reaction processes that it hardly needs elaborating. The total net electric
charge before the decay must equal the net electric charge after the decay.

5. Conservation of Nucleon Number In some decay processes, we can
create particles (photons or electrons, for example) which did not exist before the
decay occurred. (This of course must be done out of the available energy—that
is, it takes 0.511 MeV of energy to create an electron.) However, nature does not
permit us to create or destroy protons and neutrons, although in certain decay
processes we can convert neutrons into protons or protons into neutrons. The total
nucleon number A does not change in decay or reaction processes. In some decay
processes, A remains constant because both Z and N remain unchanged; in other
processes Z and N both change in such a way as to keep their sum constant.

12.7 ALPHRA DECAY

In alpha decay, an unstable nucleus disintegrates into a lighter nucleus and an
alpha particle (a nucleus of *He), according to

Xy = 573X\_» + 3He, (12.19)

where X and X' represent different nuclei. For example, 3Ra, 35 — %22Rn 3¢ +
He,.

Decay processes release energy, because the decay products are more tightly
bound than the initial nucleus. The energy released, which appears as the kinetic
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energy of the alpha particle and the “daughter” nucleus X', can be found from the

X4 iggj masses of the nuclei involved according to Eq. 12.16:
o 0 = [m(X) — m(X') — m(*He)]c? (12.20)
After As we did in our calculations of binding energy, we can show that the electron
- X o—»

Do 4 decay 4 »
o “ appears as kinetic energy of the decay products:

FIGURE 12.14 A nucleus X alpha

=Ky +K
decays, resulting in a nucleus X’ and Q X *

masses cancel in Eq. 12.20, and so we can use atomic masses. This energy Q

(12.21)

an alpha particle. assuming we choose a reference frame in which the original atom X is at
rest. Linear momentum is also conserved in the decay process, as shown in

Figure 12.14, so that

Py = Px

(12.22)

From Egs. 12.21 and 12.22 we eliminate py, and K/, because we normally don’t
observe the daughter nucleus in the laboratory. Typical alpha decay energies are a
few MeV; thus the kinetic energies of the alpha particle and the nucleus are much
smaller than their corresponding rest energies, and so we can use nonrelativistic

mechanics to find

| Example 12.8

(12.23)

Find the kinetic energy of the alpha particle emitted in the = The kinetic energy is given by Eq. 12.23:
alpha decay process ?°Ra — ?*’Rn + “He.

_A-4
T4
= 4.785MeV

222
0= <—> (4.871 MeV)

i K
Solution o 276

From Eq. 12.20 the Q value is

0 = [m(**Ra) — m(***Rn) — m(*He)]?
= (226.025410 u — 222.017578 u
—4.002603 u)(931.5 MeV/u)
= 4.871 MeV

Table 12.2 shows some sample alpha decays and their half-lives. You can see
from the table that small changes in the decay energy (about a factor of 2) result in
enormous changes in the half-life (24 orders of magnitude)! For example, for the
isotopes 2*2Th and 2**Th (which have the same Z and therefore the same Coulomb
interaction between the alpha particle and the product nucleus) the kinetic energy
changes by only 0.68 MeV (about 15%), while the half-life changes by about five
orders of magnitude. Any successful calculation of the alpha decay probabilities

must account for this sensitivity to the decay energy.



TABLE 12.2 Some Alpha Decay Energies and Half-Lives

Isotope K, (MeV) ti )
20T 4.01 14%x100%y | 1.6x 10718
EI 4.19 45x%x10%y 49 x 10713
0Ty 4.69 7.5 x 10y 29x 1071
241 Am 5.64 432y 5.1 x 1071
=) 5.89 20.8d 3.9x 1077
210Rn 6.16 2.4h 8.0 x 1073
220Rp 6.29 56's 1.2 x 1072
22 A 7.01 5s 0.14
215pg 7.53 1.8 ms 3.9 x 102
218Tp 9.85 0.11 ps 6.3 x 10°

Quantum Theory of Alpha Decay

Alpha decay is an example of quantum-mechanical barrier penetration, as we
discussed in Chapter 5. Suppose it is energetically possible for two neutrons and
two protons to form an alpha particle, as represented in Figure 12.10. The alpha
particle is trapped inside the nucleus by a barrier due to the Coulomb energy. The
height of this barrier Uy is the Coulomb potential energy of the alpha particle and
daughter nucleus at the radius R:

2(Z —2)é?
4meyR

Up= 0% _ (12.24)
dreg 1

which gives 30 to 40 MeV for a typical heavy nucleus. Here g, = 2e is the electric

charge of the alpha particle, and g, = (Z — 2)e s the electric charge of the nucleus

after the decay, which is responsible for the Coulomb force.

Figure 12.15 shows the potential energy barrier encountered by the alpha
particle as it tries to leave the interior of the nucleus (» < R). The energy of the
alpha particle is typically in the range of 4—8 MeV, and so it is impossible for the
alpha particle to surmount the barrier; the only way the alpha particle can escape
is to “tunnel” through the barrier. A representation of the alpha particle wave
function as it tunnels through the barrier is shown in Figure 12.155.

The probability per unit time A for the alpha particle to appear in the laboratory
is the probability of its penetrating the barrier multiplied by the number of times
per second the alpha particle strikes the barrier in its attempt to escape. If the
alpha particle is moving at speed v inside a nucleus of radius R, it will strike the
barrier as it bounces back and forth inside the nucleus at time intervals of 2R /v.
In a heavy nucleus with R ~ 6 fm, the « particle strikes the “wall” of the nucleus
about 1072 times per second!
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FIGURE 12.15 (a) The potential

energy barrier for an alpha particle. (b)
A representation of the wave function
of the alpha particle.
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_UO

FIGURE 12.16 Replacing the Cou-
lomb barrier for alpha decay with a
flat barrier of height Uy.

| Example 12.9

The probability for the alpha particle to penetrate the barrier can be found by
solving the Schrodinger equation for the potential energy shown in Figure 12.15.
To simplify this calculation, we can replace the Coulomb barrier with a “flat”
barrier, as shown in Figure 12.16. As we discussed in Chapter 5, the probability to
penetrate a potential energy barrier is determined by the exponential factor e =24,
where L is the thickness of the barrier and where k = \/(2m/h?)(U, — E) for a
barrier of height U, and a particle of energy E. The decay probability can then be
estimated as

3= V2
2R
which includes both the rate at which the particle strikes the barrier and its
probability to penetrate it. By making suitable rough estimates for the thickness
and height of the barrier (see Problem 41), you should be able roughly to reproduce
the range of values for the decay probabilities given in Table 12.2.

An exact calculation of the decay probability can be done by replacing the
Coulomb barrier with a series of thin, flat barriers that are chosen to fit the
Coulomb barrier as closely as possible. This calculation was first done in 1928 by
George Gamow and was one of the first successful applications of the quantum
theory.

Some nuclei can be unstable to the emission of other particles or collections
of particles. Nuclei that have a large abundance of protons (those at the left-hand
boundary of the light shaded region of Figure 12.11) may emit protons in a rare
process similar to alpha decay. In this way they reduce their proton excess and
move closer to stability. An example of this process is '3{ Lugy — '30Ybg, + p.

Other nuclei have recently been shown to emit clusters of particles such as
12C, 14C, or 2°Ne. The following example illustrates this process.

(12.25)

The nucleus >*Ra decays by alpha emission with a half-life
of 1600 y. It also decays by emitting '4C. Find the Q value
for '4C emission and compare with that for alpha emission
(see Example 12.8).

Solution

If 2%6Ra emits '“C, which contains 6 protons and 8 neu-
trons, the resulting nucleus is 2'?Pb, so the decay process
is 22°Ra — 212Pb + 4C. The Q value can be found from
Eq. 12.16, where we can again use atomic masses because
the electron masses cancel.

0 = [m(*Ra) — m('2Pb) — m(40)]c
= (226.025410 u — 211.991898 u
—14.003242 u)(931.5MeV/u)
= 28.197 MeV

Even though the Q value far exceeds the Q value for alpha
decay (4.871 MeV), the Coulomb barrier for '*C decay is
roughly 3 times higher and thicker than it is for alpha decay
[change ¢,¢, to 6(Z — 6)e? in Eq. 12.24]. As a result, the
probability for “C decay turns out to be only about 10"
of the probability for alpha decay; that is, 2*°Ra emits one
14C for every 10° alpha particles. See Problem 42 for a
calculation of the relative decay probabilities.
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12.8 BETA DECAY |

In beta decay a neutron in the nucleus changes into a proton (or a proton into a
neutron); Z and N each change by one unit, but 4 doesn’t change. The emitted
particles, which were called beta particles when first observed in 1898, were soon
identified as electrons. In the most basic beta decay process, a free neutron decays
into a proton and an electron: n — p + e (plus a third particle, as we discuss later).

The emitted electron is not one of the orbital electrons of the atom. It also is
not an electron that was previously present within the nucleus, for as we have seen
(Example 4.7) the uncertainty principle forbids electrons of the observed energies
to exist inside the nucleus. The electron is “manufactured” by the nucleus out of
the available energy. If the rest energy difference between the nuclei is at least
m,c?, this will be possible.

In the 1910s and 1920s, beta decay experiments revealed two difficulties.
First, the decay n — p+ e~ appears to violate the law of conservation of
angular momentum, as we discussed in Section 12.6. Second, measurements
of the energy of the emitted electrons showed that the energy spectrum of the
electrons is continuous, from zero up to some maximum value K., as shown
in Figure 12.17. This implies an apparent violation of conservation of energy,
because all electrons should emerge from the decay n — p + e~ with precisely
the same energy. Instead, all electrons emerge with less energy, but in varying
amounts.

For example, in the decay n — p +e~, the QO value is

0 = (m, —m, —m)c* = 0.782MeV (12.26)

Except for a very small correction, which accounts for the recoil energy of the
proton, all of this energy should appear as kinetic energy of the electron, and all
emitted electrons should have exactly this energy. However, experiments in the
1920s showed that all the emitted electrons have less than this energy—they have
a continuous range of energies from 0 to 0.782 MeV.

The problem of this “missing” energy was very puzzling until 1930 when
Wolfgang Pauli found the ingenious solution to both the apparent violations of
conservation of angular momentum and energy—he suggested that there is a
third particle emitted in beta decay. Electric charge is already conserved by the
proton and electron, so this new particle cannot have electric charge. If it has spin
1/5, it will satisfy conservation of angular momentum, because we can combine
the spins of the three decay particles to give 1/>, which matches the spin of the
original decaying neutron. The “missing” energy is the energy carried away by
this third particle, and the observed fact that the energy spectrum extends all the
way to the value 0.782 MeV suggests that this particle has a very small mass.

This new particle is called the neutrino (“little neutral one” in Italian) and has Komax
the symbol v. As we discuss in Chapter 14, every particle has an antiparticle, and 0
the antiparticle of the neutrino is the antineutrino v. It is, in fact, the antineutrino Kinetic energy of electrons
that is emitted in neutron beta decay. The complete decay process is thus

Number of electrons

FIGURE 12.17 Spectrum of electrons
n—>p+e +7v (12.27) emitted in beta decay.
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Neutron decay can also occur in a nucleus, in which a nucleus with Z protons
and N neutrons decays to a nucleus with Z 4 1 protons and N — 1 neutrons:

Xy = 24X +e 4+ (12.28)
The Q value for this decay is
0 = [m(*X) — m(*X')]c? (12.29)

It can be shown (Problem 23) that the electron masses cancel in calculating Q, so
it is atomic masses that appear in Eq. 12.29. The antineutrino does not appear in
the calculation of the Q value because its mass is negligibly small (of the order of
eV/c?, compared with the atomic masses measured in units of 10> MeV/c?).

The energy released in the decay (the O value) appears as the energy E,, of the
antineutrino, the kinetic energy K, of the electron, and a small (usually negligible)
recoil kinetic energy of the nucleus X':

O=E, +K, +Ky =ZE, +K, (12.30)

The electron (which must be treated relativistically, because its kinetic energy is
not small compared with its rest energy) has its maximum kinetic energy when
the antineutrino has a negligibly small energy. Figure 12.17 shows the energy
distribution of electrons emitted in a typical negative beta decay. The electron
and neutrino share the decay energy Q; the kinetic energy of the electron (equal
to O — K,) ranges from 0 (when the neutrino has its maximum energy, £, = Q)
to Q (when E, = 0).
Another beta decay process is

p—n+et+v (12.31)

in which a positive electron, or positron, is emitted. The positron is the antiparticle
of the electron; it has the same mass as the electron but the opposite electric
charge. The neutrino emitted in this process is similarly the antiparticle of the
antineutrino that is emitted in neutron beta decay.

Proton beta decay has a negative O value, and so it is never observed in nature
for free protons. (This is indeed fortunate—if the free proton were unstable to
beta decay, stable hydrogen atoms, the basic material of the universe, could not
exist!) However, protons in some nuclei can undergo this decay process:

WXy = 5 Xy e+ (12.32)
The Q value for this process is (Problem 23)

0 = [m(*X) — m(*X') — 2m,]c? (12.33)



in which the masses are atomic masses. In this case, the positron and neutrino
share the decay energy O (again neglecting the small recoil energy of the nucleus
X"). Figure 12.18 shows the energy distribution of positrons emitted in a typical
positive beta decay.

A nuclear decay process that competes with positron emission is electron
capture; the basic electron capture process is

pte - ntv (12.34)

in which a proton captures an atomic electron from its orbit and converts into a
neutron plus a neutrino. The electron necessary for this process is one of the inner
orbital electrons in an atom, and we identify the capture process by the shell from
which the captured electron comes: K-shell capture, L-shell capture, and so forth.
(The electronic orbits that come closest to, or even penetrate, the nucleus have the
higher probability to be captured.) In nuclei the process is

WXy +e = , Xy +v (12.35)
and the Q value, using atomic masses, is
0 = [m(*X) — m(*X")]c? (12.36)

In this case, neglecting the small initial kinetic energy of the electron and the
recoil energy of the nucleus, the neutrino takes all of the available final energy:

E, =0 (12.37)

In contrast to other beta-decay processes, a monoenergetic neutrino is emitted in
electron capture.

Table 12.3 gives some typical beta decay processes, along with their Q values
and half-lives.

TABLE 12.3 Typical Beta Decay Processes

Decay Type 0 (MeV) L
Y0 - PF4e +7v B~ 4.82 27s
76y — "SHf + ¢~ + v B~ 1.19 3.6x 1010y
BAl— BMg+et 4 v B+ 3.26 72s
1241 5 Te L et 4 v B+ 2.14 424d
BO4+e™ — BN+ EC 2.75 122's
0T 4+ e~ — 70Br 4+ v EC 0.31 129d
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Number of positrons

Kmax

o

Kinetic energy of positrons

FIGURE 12.18  Spectrum of posi-
trons emitted in beta decay.
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| Example 12.10

23Ne decays to 2*Na by negative beta emission. What is
the maximum kinetic energy of the emitted electrons?

Solution

This decay is of the form given by Eq. 12.28, *Ne —
2Na+ e~ + 7, and the Q value is found from Eq. 12.29,
using atomic masses:

0 = [m(*Ne) — m(*Na)]c*
= (22.994467 u — 22.989769 u)(931.5 MeV /u)
=4.376 MeV

Neglecting the small correction for the kinetic energy of
the recoiling nucleus, the maximum kinetic energy of the
electrons is equal to this value (which occurs when the
neutrino has a negligible energy).

| Example 12.11

40K is an unusual isotope, in that it decays by negative
beta emission, positive beta emission, and electron capture.
Find the Q values for these decays.

Solution

The process for negative beta decay is given by Eq. 12.28,
0K - YCa+e” 47, and the O value is found from
Eq. 12.29 using atomic masses:

0p- = [m(*'K) — m(**Ca)]c?
— (39.963998 u — 39.962591 u)(931.5 MeV/u)
= 1.311 MeV

Equation 12.32 gives the decay process for positive beta
emission, *K — “°Ar +e* + v, and the QO value is given

by Eq. 12.33:

Op+ = [m(*K) — m(*Ar) — 2m,]c?
=[39.963998 u — 39.962383 u — 2(0.000549 u)]
x(931.5MeV/u)
= 0.482 MeV

For electron capture, *°K +e~ — *°Ar+ v, and from
Eq. 12.36:

0.. = [m(*K) — m(*Ar)]?
= (39.963998 u — 39.962383 u)(931.5 MeV/u)
= 1.504 MeV

12.9 GAMMA DECAY AND NUCLEAR

EXCITED STATES

Following alpha or beta decay, the final nucleus may be left in an excited state.
Just as an atom does, the nucleus will reach its ground state after emitting one
or more photons, known as nuclear gamma rays. The energy of each photon is
the energy difference between the initial and final nuclear states, less a negligibly
small correction for the recoil kinetic energy of the nucleus. The energies of
emitted gamma rays are typically in the range of 100 keV to a few MeV. Nuclei
can likewise be excited from the ground state to an excited state by absorbing a
photon of the appropriate energy, in a process similar to the resonant absorption

by atomic states.
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Figure 12.19 shows a typical energy-level diagram of excited nuclear states
and some of the gamma-ray transitions that can be emitted. Typical values for the
half-lives of the excited states are 10~ to 10~!2 s, although there are occasional
cases of excited states with half-lives of hours, days, or even years.

When a gamma-ray photon is emitted, the nucleus must recoil to conserve
momentum. The photon has energy £, and momentum p,, = E,, /c. The nucleus
recoils with momentum py. If the nucleus is initially at rest, then momentum
conservation requires that py = p,, in magnitude (and that the nucleus recoil in
a direction opposite to that of the gamma ray). The recoil kinetic energy Ky is
small, so that nonrelativistic equations can be used for the nucleus (of mass M):

_nm_n_ 5
R™oMm ~ 2m — 2Mc2

(12.38)

For a medium-mass nucleus of 4 = 100 and a large gamma-ray energy of 1 MeV,
the recoil kinetic energy is only 5eV. Suppose the gamma ray is emitted when
the nucleus jumps from an initial state with energy E; to a final state with energy
Ey. Conservation of energy then gives E; = E; + E,, + Ky, so the energy of the
emitted gamma ray is
E,=E —E — Ky =E —E; (12.39)
The gamma-ray energy is equal to the difference between the initial and final
energy states, because the recoil kinetic energy of the nucleus is negligibly small.
In calculating the energies of alpha and beta particles emitted in radioactive

decays, we have assumed that no gamma rays are emitted. If there are gamma
rays emitted, the available energy (Q value) must be shared between the other

1.088 MeV
7 »’
0.412 MeV
n
0
198Hg

FIGURE 12.19

emitted following beta decay.

Some gamma rays

particles and the gamma ray, as the following example shows.

| Example 12.12

12N beta decays to an excited state of '2C, which subse-
quently decays to the ground state with the emission of
a 4.43-MeV gamma ray. What is the maximum kinetic
energy of the emitted beta particle?

Solution

To determine the Q value for this decay, we first need to
find the mass of the product nucleus '2C in its excited state.
In the ground state, '?C has a mass of 12.000000 u, so its
mass in the excited state (indicated by >C*) is

4.43 MeV

12 ~%
C*) = 12.000000 u 4 — ¥
m(CH) Ut 5315 Mev

= 12.004756 u
In this decay, a proton is converted to a neutron, so it must

be an example of positron decay. The Q value is, according
to Eq. 12.33,

0 = [m("®N) — m(*>C*) — 2m,]c?
=[12.018613 u — 12.004756 u — 2(0.000549 u)]
x(931.5MeV/u)
= 11.89 MeV

(Notice that we could have just as easily found the O value
by first finding the Q value for decay to the ground state,
16.32 MeV, and then subtracting the excitation energy of
4.43 MeV, because the decay to the excited state has that
much less available energy.)

Neglecting the small correction for the recoil kinetic
energy of the '2C nucleus, the maximum electron kinetic
energy is 11.89 MeV.
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FIGURE 12.20 Nuclear vibrational
states in the nucleus '?°Te. The states
are labeled with the vibrational quan-
tum number N. Note that the states are
nearly equally spaced, as is expected
for vibrations.

Nuclear Excited States

The study of nuclear gamma emission is an important tool of the nuclear physicist;
the energies of the gamma rays can be measured with great precision, and they
provide a powerful means of deducing the energies of the excited states of nuclei.
This type of nuclear spectroscopy is very similar to the methods of molecular
spectroscopy discussed in Chapter 9. In fact, the nuclear excited states can be
formed in ways that are similar to molecular excited states:

1. Proton or Neutron Excitation Nuclear excited states can be formed when
a proton or a neutron is excited from a filled state to one of the empty states
shown in Figure 12.8 or 12.9, just as in molecules we can form an excited state
by promoting an electron from a lower state to one of the empty molecular
orbitals. When a proton or neutron drops from an excited state to a lower state,
a gamma-ray photon is emitted. The energy of the photon is equal to the energy
difference between the states (neglecting the small recoil kinetic energy of the
nucleus). To estimate the average energy for this type of excitation, we note
from Figure 12.8 that 73 neutrons occupy an energy of 37.0 MeV, so the average
spacing of the filled levels is (37.0 MeV)/73 = 0.5 MeV. The spacing between the
empty states, among which gamma rays are emitted, should be about the same.

2. Nuclear Vibrations The nucleus can vibrate like a jiggling water droplet.
The vibrational excited states are equally spaced, just like the molecular vibrational
states shown in Figure 9.22. Unlike a molecule, a nucleus vibrates like an
incompressible fluid—for example, if the “equator” bulges outward, the “poles”
must move inward to keep the density constant. The separation of the equally
spaced vibrational states is about 0.5—1 MeV. Figure 12.20 shows an example of
some vibrational nuclear excited states. Although the selection rules for photon
emission in nuclei are not as strongly restrictive as they are in molecules, nuclei
in higher vibrating states usually jump to lower vibrating states by changing the
vibrational quantum number by one unit and emitting a gamma-ray photon in the
process.

3. Nuclear Rotations The nucleus can rotate, showing the same L(L+1)
spacing as a molecule (see Figure 9.25). Figure 12.21 shows an example of
rotational nuclear excited states. The spacing between the rotational ground state
and the first rotational excited state is typically 0.05—-0.1 MeV. (Note that in
nuclei, as in molecules, the rotational spacing is generally much smaller than the
vibrational spacing.) Nuclei in higher rotational states can jump to lower rotational
states by emitting gamma-ray photons; in the case of nuclei, the selection rule
restricting the change in the rotational quantum number to one unit, which was
strongly followed by molecules, does not strongly apply to nuclei. In nuclei,
the rotational quantum number generally changes by one or two units when
gamma-ray photons are emitted in transitions between the nuclear rotational
states.

*Nuclear Resonance

One way of studying atomic systems is to do resonance experiments. In such
experiments, radiation from a collection of atoms in an excited state is incident

*This is an optional section that may be skipped without loss of continuity.
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on a collection of identical atoms in their ground state. The ground-state atoms 53/, 1291
can absorb the photons and jump to the corresponding excited state. However,
as we have seen, the emitted photon energy is less than the transition energy
by the recoil kinetic energy Kp; moreover, it is less than the photon energy

required for resonance by 2Ky, because the absorbing atom must recoil also. 2172 1069
The absorption experiment is still possible, because the excited states don’t have
“exact” energies—a state with a mean lifetime t has an energy uncertainty AE
that is given by the uncertainty relationship: AEt ~ 7. That is, the state lives on 1972 863
the average for a time 7, and during that time we can’t determine its energy to an
accuracy less than AE. For typical atomic states, 7 ~ 1078 s, so AE ~ 1077 eV.
Because Ky, which is of the order of 107'% ¢V, is much less than the width AE, 1772 673
the “shift” caused by the recoil is not large, and the widths of the emitting and
absorbing atomic states cause sufficient overlap for the absorption process to  15/2 499
occur. Figure 12.22 illustrates this case.

The situation is different for nuclear gamma rays. A typical lifetime might be ;5,5 345
10719 s, and so the widths are the order of AE ~ 107> eV. The photon energies
are typically 100 keV = 10° eV, and so Ky is of order 1eV. This situation is 11/2 210
depicted in Figure 12.23, and you can immediately see that because Ky is so
much larger than the width AZ, no overlap of emitter and absorber is possible, so g/, 95
resonance absorption cannot occur.

In 1958, it was discovered that the overlap of the emitter and absorber can be /12 0
restored by placing the radioactive nuclei and the absorbing nuclei in crystals. L E (keV)

The crystalline binding energies are large compared with Ky, so the individual
atoms are held tightly to their positions in the crystal lattice and are not free to
recoil; if any recoil is to occur, it must be the whole crystal that recoils. This
effect is to make the mass M that appears in Eq. 12.38 not the mass of an atom,
but the mass of the entire crystal, perhaps 102 times larger than an atomic mass.
(As an analogy, imagine the difference between striking a brick with a baseball
bat, and striking a brick wall!) Once again the recoil kinetic energy is made small, (L + 1) spacing.
and resonant absorption can occur (Figure 12.24). For this discovery, Rudolf

Maossbauer was awarded the 1961 Nobel Prize in physics, and the process of

achieving nuclear resonance by embedding the emitting and absorbing nuclei in

crystal lattices is now known as the Mdssbauer effect.

FIGURE 12.21 An example of
nuclear rotational states in the nucleus
165Ho. The states are labeled with
the rotational quantum number L. The
energies closely follow the expected

S A Absorption I 2Kr I = 2K

Emission

Emission Absorption

AE AE

Energy Energy Energy

FIGURE 12.22 Representative ~ FIGURE 12.23  Representative ~ FIGURE 12.24 ~ Emission and
emission and absorption energies ~ emission and absorption energies  absorption energies for nuclei
in an atomic system. in a nuclear system. bound in a crystal lattice.
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Source Absorber The small remaining difference between the emission and absorption energies
PJW | I:I can be eliminated to obtain complete overlap by Doppler-shifting either the
Detactor emission or absorption energies. The Df)ppl.er—shifted frequency when a source

OmO —y moves toward the observer at speed v is given by Eq. 2.22, f' =114+ v/c),

where we ignore the /1 —1v?/c? term because v < c¢. Using E = hf for the

FIGURE 12.25 Mossbauer effect photon energy, we have

apparatus. A source of gamma rays E =E(l +v/c) (12.40)
is made movable, in order to Doppler-
shift the photon energies. The intensity  If we take the width AE as a representative estimate of how far we would
of radiations transmitted through the like to Doppler-shift the photon energy, then £/ = E + AE, and so E + AE =
absorber is measured as a function of E + E(v/c). Solving for v, we find
the speed of the source. AE
vEc— (12.41)
E
Estimating AE ~ 107 eV (the width of the state) and £ ~ 100 keV (the energy
of the photon), we have

1073 eV
v (3 x 108 m/s) =3cm/s
105 eV
Source velocity (cm/s) Such low speeds can be easi.ly and accurately produced in the laboratory.

4 2 0 42 44 Figure 12.25 shows a diagram of the apparatus to measure the Mossbauer
0.0 effect. The resonant absorption is observed by looking for decreases in the
i number of gamma rays that are transmitted through the absorber. At resonance,
05 + more gamma rays are absorbed and so the transmitted intensity decreases. Typical

results are shown in Figure 12.26.

The Mdssbauer effect is an extremely precise method for measuring small
changes in the energies of photons. In one particular application, the Zeeman
splitting of nuclear (not atomic) states can be observed. When a nucleus is placed
in a magnetic field, the Zeeman effect causes an energy splitting of the nuclear m

-2 -1 0 1 2 states, similar to the atomic case. However, nuclear magnetic moments are about

Energy change (1075 eV) 2000 times smaller than atomic magnetic moments, and a typical energy splitting

would be about 107%eV. To observe such an effect directly we would need to

FIGURE 12.26 Typical results in 2 meagure photon energies to 1 part in 10'! (a photon energy of 10° eV is shifted
M@ssbauer effect experiment. A by 10~ V), but using the Mdssbauer effect, this is not difficult.

velocity of 2 cm/s Doppler shifts the In Chapter 15 we discuss another application of this extremely precise tech-

gamma rays enough to move the pjgue, in which the energy gained when a photon “falls” through several meters

emission and absorption energies off  of the Earth’s gravitational field is measured in order to test one prediction of

resonance. Einstein’s general theory of relativity.

12.10 NATURAL RADIOACTIVITY

All of the elements beyond the very lightest (hydrogen and helium) were produced
by nuclear reactions in the interiors of stars. These reactions produce not only
stable elements, but radioactive ones as well. Most radioactive elements have
half-lives that are much smaller than the age of the Earth (about 4.5 x 10° y), so
those radioactive elements that may have been present when the Earth was formed
have decayed to stable elements. However, a few of the radioactive elements

Percent absorption

—
o
e




created long ago have half-lives that are as large as or even greater than the age of
the Earth. These elements can still be observed to undergo radioactive decay and
account for part of the background of natural radioactivity that surrounds us.

Radioactive decay processes either change the mass number 4 of a nucleus
by four units (alpha decay) or don’t change A4 at all (beta or gamma decay).
A radioactive decay process can be part of a sequence or series of decays if a
radioactive element of mass number A decays to another radioactive element
of mass number 4 or 4 — 4. Such a series of processes will continue until a
stable element is reached. A hypothetical such series is illustrated in Figure 12.27.
Because gamma decays don’t change Z or A4, they are not shown; however, most
of the alpha and beta decays are accompanied by gamma-ray emissions.

The A values of the members of such decay chains differ by a multiple of
4 (including zero as a possible multiple) and so we expect four possible decay
chains, with A4 values that can be expressed as 4n,4n + 1,4n + 2, and 4n + 3,
where 7 is an integer. One of the four naturally occurring radioactive series is
illustrated in Figure 12.28. Each series begins with a relatively long-lived member,
proceeds through many « and B decays, which may have very short half-lives,
and finally ends with a stable isotope. Three of these series begin with isotopes
having half-lives comparable to the age of the Earth, and so are still observed
today. The neptunium series (4n + 1) begins with 23’Np, which has a half-life of
“only” 2.1 x 10° y, much less than the 4.5 x 10° y since the formation of the
Earth. Thus all of the 2>’ Np that was originally present has long since decayed to
20985

235

231

227

223

219

215

4decay

211

207 o——ofF decay———

2077

80 85 90
Z

FIGURE 12.28 The %3°U decay chain. The diagonal lines represent «
decays, and the horizontal lines show S decays.
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5SF
@
S
FIGURE 12.27 An example of a
hypothetical radioactive decay chain.
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| Example 12.13

Compute the Q value for the 23U — 20°Pb decay chain,
and find the rate of energy production per gram of uranium.

Solution

Because A4 changes by 32, there must be 8§ alpha decays in
the chain. These 8 alpha decays would decrease Z by 16
units, from 92 to 76. However, the final Z must be 82, so
there must also be 6 beta decays in the chain. We recall
that for B~ decays, the electron masses combine with the
nuclear masses in the computation of the Q value and we
can therefore use atomic masses. Thus for the entire decay
chain,

0 = [m(*3¥U) — m(**Pb) — 8m(*He)]c?
— [238.050788 u — 205.974465 u—8(4.002603 u)]
x(931.5MeV/u)
=51.7MeV

The half-life of the decay is 4.5 x 10° y, so A, the decay
probability per atom, is

s In2 0.693
T hp | @5 x 10°y)(3.16 x 107 sy)
=49 x10718g7!
One gram of *%U is ﬁ mole and therefore contains

ﬁ x 6 x 10?3 atoms. The decay rate (activity) of the 233U

is given by the decay probability per atom per unit time
multiplied by the number of atoms:

a= AN

d 1
=(49x 1078 fecays — x 6 x 10% atoms
atom - s 238

= 12,000 decays/s

Each decay releases 51.7MeV, and so the rate of energy
production is

d MeV \Y% J
12,0005 o 517255 100 w16 x 10719
] decay MeV e
=1.0x1077W

This may seem like a very small rate of energy release, but if the energy were

| Example 12.14

to appear as thermal energy and were not dissipated by some means (radiation or
conduction to other matter, for example), the 1-g sample of >3¥U would increase
in temperature by 25°C per year and would be melted and vaporized in the order
of one century! This calculation suggests that we can perhaps account for some
of the internal heat of planets through natural radioactive processes.

If we examine a sample of uranium-bearing rock, we can find the ratio of
238U atoms to 2°°Pb atoms. If we assume that all of the 2°°Pb was produced
by the uranium decay and that none was present when the rock was originally
formed (assumptions that must be examined with care both theoretically and
experimentally), then this ratio can be used to find the age of the sample, as shown
in the following example.

Three different rock samples have ratios of numbers of
238U atoms to 2°°Pb atoms of 0.5, 1.0, and 2.0. Compute

the ages of the three rocks.

Solution

present today, and N, — Nye™*' is the number that have
decayed and are presently observed as 2°°Pb. The ratio R
of 238U to 2%°Pb is thus

number of 23¥U

Because all of the other members of the uranium series
have half-lives that are much shorter than the half-life of
238U (4.5 x 10° y), we ignore the intervening decays and
consider only the 2*3U decay. Let N, be the original number
of 28U atoms, so that Nye*' is the number that are still

 number of 2%°Ph
Noef)ht

Ny — Nye™
1

e —1
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Solving for ¢ and recalling that A = 0.693/1, ,, we find:

L2 1
= In{—=+1
0.693 n(R * )
We can then obtain the values of ¢ corresponding to the
three values of R,

The oldest rocks on Earth, dated by similar means, have
ages of about 4.5 x 10° y. The age of the first rock ana-
lyzed above, 7.1 x 10° y, suggests either that the rock had
an extraterrestrial origin, or else that our assumption of
no initial 2%°Pb was incorrect. The age of the third rock
suggests that it solidified only 2.6 x 10° y ago; previous to
that time it was molten and the decay product 2°°Pb may

(12.42)

R=05 t="71x10y have “boiled away” from the 23%U.
R=1.0 t=45%x10y
R=20 t=26x10"y

There are a number of other naturally occurring radioactive isotopes that are
not part of the decay chain of the heavy elements. A partial list is given in
Table 12.4; some of these can also be used for radioactive dating.

TABLE 12.4 Some Naturally Occur-
ring Radioactive Isotopes

Other radioactive elements are being produced continuously in the Earth’s Isotope L2
atmosphere as a result of nuclear reactions between air molecules and the 40 125 x10%y
high-energy particles known as “cosmic rays.” The most notable and useful of = 0
these is '“C, which beta decays with a half-life of 5730 y. When a living plant Rb 48 x 107y
absorbs CO, from the atmosphere, a small fraction (about 1 in 10'2) of the carbon 92Nb 32x 107y
atoms is '“C, and the remainder is stable 12C (99%), and '*C (1%). When the plant 11304 9 % 1015
dies, its intake of '4C stops, and the '*C decays. If we assume that the composition i
of the Earth’s atmosphere and the flux of cosmic rays have not changed In 51x 10"y
significantly in the last few thousand years, we can find the age of specimens of 1381 4 1.1 x 10y
organic material by comparing their '*C/!?C ratios to those of living plants. The
» « - . . I 176y 3.6 x 1010y

ollowing example shows how this radiocarbon dating technique is used.
187Re 4x 100y
232Th 1.41 x 100y

| Example 12.15

(a) A sample of carbon dioxide gas from the atmosphere fills
a vessel of volume 200.0 cm? to a pressure of 2.00 x 10* Pa
(1Pa =1 N/m?, about 10> atm) at a temperature of 295
K. Assuming that all of the '*C beta decays were counted,
how many counts would be accumulated in one week?
(b) An old sample of wood is burned, and the resulting
carbon dioxide is placed in an identical vessel at the same
pressure and temperature. After one week, 1420 counts
have been accumulated. What is the age of the sample?

Solution
(a) We first find the number of atoms present in the vessel,
using the ideal gas law:

N PV (2.00 x 10* N/m?)(2.00 x 10~* m?)
N (1.38 x 1023 J/K)(295 K)

kT
= 9.82 x 10* atoms

If the fraction of '*C atoms is 10~!'2, there are 9.82 x 108
atoms of '*C present. The activity is

0.693
N =
(5730 y)(3.16 x 107 s/y)
=3.76 x 1073 decays/s

9.82 x 108

In one week the number of decays is 2280.

(b) An identical sample that gives only 1420 counts must
be old enough for only 1420/2280 of its original activity to
remain. With 1420 = 2280e*, we have

1 2280 5730y 2280
t=—1In = In =3920y

A 1420 0.693 1420
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Section Section
Nuclear radius R = RyA'/3, Ry = 1.2 fm 122 | Qvalueof Q= [my — (my + my]c? 12.6
Nuclear B =[Nm, + Zm(}HO) — m(fZ’XN)]c2 12.3 decay ,
binding energy X—>X+x
Proton S, = [mC=1X4) + m(H) — m(@X,)le? 123 | Qvalweof 0 =[m(X) - m(X') —m(*He)le* 127
separation alpha decay
energy Kinetic energy K, = Q4 —4)/4 12.7
Neutron S, = [m* )} Xy_)) +my, —m@Xy)1? 123 of alpha
separation particle
energy Qvalues of Oy = [m(*X) — m(*X")]c?, 12.8
Range of me* = hc/x 12.4 beta decay Q,s+ = [m(AX) - m@X) - Zme]cz
exchanged Recoil in Ky = E2/2Mc? 12.9
particle gamma decay
Activity a=AN,r=In2/t,,, =0.693/1, 12.5
Radioactive N = Nye™,a = aje™ 12.5
decay law

The magnetic dipole moment of a deuterium nucleus is about
0.0005 Bohr magneton. What does this imply about the pres-
ence of an electron in the nucleus, as the proton-electron
model requires?

Suppose we have a supply of 20 protons and 20 neutrons. Do
we liberate more energy if we assemble them into a single
40Ca nucleus or into two 2°Ne nuclei?

Atomic masses are usually given to a precision of about the
sixth decimal place in atomic mass units (u). This is true for
both stable and radioactive nuclei, even though the uncer-
tainty principle requires that an atom with a lifetime At has
a rest energy uncertain by 7/ At. Based on the typical life-
times given for nuclear decays, are we justified in expressing
atomic masses to such precision? At what lifetimes would
such precision not be justified?

Only two stable nuclei have Z > N. (a) What are these
nuclei? (b) Why don’t more nuclei have Z > N?

In a deuterium nucleus, the proton and neutron spins can be
either parallel or antiparallel. What are the possible values of
the total spin of the deuterium nucleus? (It is not necessary
to consider any orbital angular momentum.) The magnetic
dipole moment of the deuterium nucleus is measured to be
nonzero. Which of the possible spins is eliminated by this
measured value?

Why is the binding energy per nucleon relatively constant?
Why does it deviate from a constant value for low mass
numbers? For high mass numbers?

10.

11.

12.

13.

A neutron, which has no electric charge, has a magnetic
dipole moment. How is this possible?

The electromagnetic interaction can be interpreted as an
exchange force, in which photons are the exchanged parti-
cle. What does Eq. 12.8 imply about the range of such a
force? Is this consistent with the conventional interpretation
of the electromagnetic force? What would you expect for
the rest energy of the exchanged particle that carries the
gravitational force?

What is meant by assuming that the decay constant X is
a constant, independent of time? Is this a requirement of
theory, an axiom, or an experimental conclusion? Under
what circumstances might A change with time?

If we focus our attention on a specific nucleus in a radioac-
tive sample, can we know exactly how long that nucleus
will live before it decays? Can we predict which half of the
nuclei in a sample will decay during one half-life? What part
of quantum physics is responsible for this?

A certain radioactive sample is observed to undergo 10,000
decays in 10 s. Can we conclude that @ = 1000 decays/s if
(@)t > 1085 (b) 1), =105 () £y, K 1087

Suppose we wish to do radioactive dating of a sample whose
age we guess to be ¢. Should we choose an isotope whose
half-life is (a) > t; (b) ~ t; or (¢) K 1?

The alpha particle is a particularly tightly bound nucleus.
Based on this fact, explain why heavy nuclei alpha decay
and light nuclei don’t.



14.

15.

16.

17.

18.

19.

20.

121

12.2

12.3

Can you suggest a possible origin for the helium gas that is
part of the Earth’s atmosphere?

Estimate the recoil kinetic energy of the residual nucleus
following alpha decay. (This energy is large enough to drive
the residual nucleus out of certain radioactive sources; if
the residual nucleus is itself radioactive, there is the chance
of spread of radioactive material. A thin coating over the
source is necessary to prevent this.)

Why does the electron energy spectrum (Figure 12.17) look
different from the positron energy spectrum (Figure 12.18)
at low energies?

Will electron capture always be energetically possible when
positron beta decay is possible? Will positron beta decay
always be energetically possible when electron capture is
possible?

All three beta decay processes involve the emission of neu-
trinos (or antineutrinos). In which processes do the neutrinos
have a continuous energy spectrum? In which is the neutrino
monoenergetic?

Neutrinos always accompany electron capture decays. What
other kind of radiation always accompanies electron cap-
ture? (Hint: It is not nuclear radiation.) What other kind of
nonnuclear radiation might accompany B~ or BT decays in
bulk samples?

The positron decay of 'O goes directly to the ground state
of 1N; no excited states of >N are populated and no y rays

Nuclear Constituents

Give the proper isotopic symbols for: (a) the isotope of
fluorine with mass number 19; () an isotope of gold with
120 neutrons; (c¢) an isotope of mass number 107 with 60
neutrons.

Tin has more stable isotopes than any other element; they
have mass numbers 114, 115, 116, 117, 118, 119, 120, 122,
124. Give the symbols for these isotopes.

Nuclear Sizes and Shapes

(a) Compute the Coulomb repulsion energy between two
nuclei of '°0 that just touch at their surfaces. (b) Do the
same for two nuclei of 238U.

Find the nuclear radius of (a) '’ Au; (b) “He; (c) 2Ne.

Nuclear Masses and Binding Energies

Find the total binding energy, and the binding energy per
nucleon, for () 2%Pb; (b) 133Cs; (¢) *Zr; (d) °Co.

Find the total binding energy, and the binding energy per
nucleon, for (a) *He; (b) 2°Ne; (¢) *°Ca; (d) >>Mn.
Calculate the total nuclear binding energy of *He and *H.
Account for any difference by considering the Coulomb
interaction of the extra proton of *He.

21.

22.

23.

24.

25.

12.4
10.

11.

12.5
12.

13.

Problems 403

follow the beta decay. Yet a source of '>O is found to emit y
rays of energy 0.51 MeV. Explain the origin of these y rays.
Would *’Nb be a convenient isotope to use for determining
the age of the Earth by radioactive dating? (See Table 12.4.)
What about '3Cd?

The natural decay chain 35U — 2%Pb consists of several
alpha decays, which decrease 4 by 4 and Z by 2, and neg-
ative beta decays, which increase Z by 1. (See Example
12.13.) As shown in Figures 12.27 and 12.28, sometimes a
decay chain can proceed through different branches. Does
the number of alpha decays and beta decays in the chain
depend on this branching?

It has been observed that there is an increased level of radon
gas (Z = 86) in the air just before an earthquake. Where
does the radon come from? How is it produced? How is it
released? How is it detected?

Which of the decay processes discussed in this chapter
would you expect to be most sensitive to the chemical state
of the radioactive sample?

In Figure 12.26, only 1% of the gamma intensity is absor-
ped, even at resonance. For complete resonance, we would
expect 100% absorption. What factors might contribute to
this small absorption?

Find the neutron separation energy of: (a) !70; (b) "Li;
(c) *"Fe.
Find the proton separation energy of: (a) *He; (b) '2C;
(c) *Ca.

The Nuclear Force

The nuclear attractive force must turn into a repulsion at very
small distances to keep the nucleons from crowding too close
together. What is the mass of an exchanged particle that will
contribute to the repulsion at separations of 0.25 fm?

The weak interaction (the force responsible for beta decay)
is produced by an exchanged particle with a mass of roughly
80 GeV. What is the range of this force?

Quantum States in Nuclei

Determine the depth of the proton and neutron potential
energy wells for (a) '°0; (b) 2*°U.

The two-neutron separation energies of 1Dy and '**Dy are,
respectively, 15.4MeV and 13.9 MeV, and the two-proton
separation energies of 1Dy and 92Dy are, respectively,
12.4MeV and 14.8 MeV. From these data alone, determine
whether alpha decay is energetically allowed for '*“Dy and
164Dy
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12.6 Radioactive Decay

14.

15.

16.

17.

18.

19.

12.7

20.
21.

22.

What fraction of the original number of nuclei present in a
sample will remain after («) 2 half-lives; (b) 4 half-lives;
(c) 10 half-lives?

A certain sample of a radioactive material decays at a rate
of 548 per second at r = 0. At t = 48 minutes, the counting
rate has fallen to 213 per second. (¢) What is the half-life of
the radioactivity? (b) What is its decay constant? (c¢) What
will be the decay rate at t = 125 minutes?

What is the decay probability per second per nucleus of a
substance with a half-life of 5.0 hours?

Tritium, the hydrogen isotope of mass 3, has a half-life
of 12.3 y. What fraction of the tritium atoms remains in a
sample after 50.0 y?

Suppose we have a sample containing 2.00 mCi of radioac-
tive 1 (1, = 8.04 d). (a) How many decays per second
occur in the sample? () How many decays per second will
occur in the sample after four weeks?

Ordinary potassium contains 0.012 percent of the naturally
occurring radioactive isotope “°K, which has a half-life of
1.3 x 10° y. (a) What is the activity of 1.0 kg of potassium?
(b) What would have been the fraction of “°K in natural
potassium 4.5 x 10° y ago?

Alpha Decay

Derive Eq. 12.23 from Eqgs. 12.21 and 12.22.

For which of the following nuclei is alpha decay permitted?
(a) *'°Bi; (b) *Hg; (c) *!'At,

Find the kinetic energy of the alpha particle emitted in the
decay of 24U.

12.8 Beta Decay

23.
24.

25.

26.

Derive Egs. 12.29, 12.33, and 12.36.

Find the maximum kinetic energy of the electrons emitted
in the negative beta decay of ' Be.

73Se decays by electron capture to 7’As. Find the energy of
the emitted neutrino.

150 decays to SN by positron beta decay. () What is the
O value for this decay? (b) What is the maximum kinetic
energy of the positrons?

12.9 Gamma Decay and Nuclear Excited States

27.

28.

29.

The nucleus '"®Hg has excited states at 0.412 and
1.088 MeV. Following the beta decay of '*®Au to '*®Hg,
three gamma rays are emitted. Find the energies of these
three gamma rays.

Compare the recoil energy of a nucleus of mass 200 that
emits (@) a 5.0-MeV alpha particle, and (b) a 5.0-MeV
gamma ray.

A certain nucleus has the following sequence of rotational
states E; (energies in keV): £, =0, E, =100.1, E, =
300.9, E; =603.6, and £, = 1010.0. Assuming that the

emitted gamma rays occur only from changes of one or
two units in the rotational quantum number, find all possible
photon energies that can be emitted from these states. Sketch
the excited states, showing the allowed transitions.

12.10 Natural Radioactivity

30.

31.

32.

The radioactive decay of >3?Th leads eventually to stable
208ph. A certain rock is examined and found to contain 3.65
g of 222Th and 0.75 g of 2%Pb. Assuming all of the Pb was
produced in the decay of Th, what is the age of the rock?
The 4n radioactive decay series begins with 2(3,(2)Th and
ends with zgng. (a) How many alpha decays are in the
chain? (See Question 22.) (b) How many beta decays?
(¢) How much energy is released in the complete chain?
(d) What is the radioactive power produced by 1.00kg of
P2Th (), = 1.40 x 10" y)?

A piece of wood from a recently cut tree shows 12.4 14C
decays per minute. A sample of the same size from a tree cut
thousands of years ago shows 3.5 decays per minute. What
is the age of this sample?

General Problems

33.

34.

35.

36.

37.

Figure 12.2 suggests that the Rutherford scattering formula
fails for 60° scattering when K is about 28 MeV. Use the
results derived in Chapter 6 to find the closest distance
between alpha particle and nucleus for this case, and com-
pare with the nuclear radius of 2®Pb. Suggest a possible
reason for any discrepancy.

Assuming the nucleus to diffract like a circular disk, use
the data shown in Figure 12.3 to find the nuclear radius
for 12C and '°0. How does changing the electron energy
from 360 MeV to 420 MeV affect the deduced radius for
160? (Hint: Use the extreme relativistic approximation from
Chapter 2 to relate the electron’s energy and momentum to
find its de Broglie wavelength.)

A radiation detector is in the form of a circular disc of
diameter 3.0 cm. It is held 25 ¢cm from a source of radiation,
where it records 1250 counts per second. Assuming that the
detector records every radiation incident upon it, find the
activity of the sample (in curies).

What is the activity of a container holding 125 cm? of tri-
tium (H, 7, , = 12.3 y) ata pressure of 5.0 x 10° Pa (about
Satm) at 7 = 300 K?

With a radioactive sample originally of N, atoms, we could
measure the mean, or average, lifetime 7 of a nucleus by
measuring the number N, that live for a time ¢, and then
decay, the number N, that decay after ¢, and so on:

1
T = ﬁo(Nltl + Nty + -+

(a) Show that this is equivalent to 7 =1 [~ e rdr.
(b) Show that T = 1/A. (¢) Is = longer or shorter than 7, ,?



38.

39.

40.

41.

Complete the following decays:

(a) ¥'Si — ?TAl +

(b) ™As — "4Se +

(c) 28U - o +

(d) Mo +e™ —

(e) B = Blxe 4

239Pu decays by alpha emission with a half-life of
2.41 x 10* y. Compute the power output, in watts, that
could be obtained from 1.00 gram of 23?Pu.

228Th alpha decays to an excited state of **Ra, which in turn
decays to the ground state with the emission of a 217-keV
photon. Find the kinetic energy of the alpha particle.

By replacing the Coulomb barrier in alpha decay with a
flat barrier (see Figure 12.16) of thickness L = %(R’ —R),
equal to half the thickness of the Coulomb barrier that the
alpha particle must penetrate, and height U, = %(UB +K,),
equal to half the height of the Coulomb barrier above the
energy of the alpha particle, estimate the decay half-lives
for 232Th and 2'8Th and compare with the measured values
given in Table 12.2. (Hint: In calculating the speed of the
alpha particle inside the nucleus, assume that the well depth
is 30 MeV.) Although the results of this rough calculation
do not agree well with the measured values, the calculation
does indicate how barrier penetration is responsible for the
enormous range of observed half-lives. How would you
refine the calculation to obtain better agreement with the
measured values?

42.

43.

44.

45.

46.

Problems 405

(a) Using the same replacements described in Problem 41,
estimate the decay probability of 2*°Ra for alpha emis-
sion and for '*C emission. (See Examples 12.8 and 12.9.)
(b) Using the results of part (a), estimate the number of '“C
emitted relative to the number of alpha particles emitted by
a source of 2>°Ra.

Compute the recoil proton kinetic energy in neutron beta
decay (a) when the electron has its maximum energy;
(b) when the neutrino has its maximum energy.

In the beta decay of *Na, an electron is observed with
a kinetic energy of 2.15MeV. What is the energy of the
accompanying neutrino?

The first excited state of >’Fe decays to the ground state
with the emission of a 14.4-keV photon in a mean lifetime
of 141 ns. (a) What is the width AE of the state? (b) What
is the recoil kinetic energy of an atom of °’Fe that emits
a 14.4-keV photon? (c) If the kinetic energy of recoil is
made negligible by placing the atoms in a solid lattice, res-
onant absorptions will occur. What velocity is required to
Doppler-shift the emitted photon so that resonance does not
occur?

What is the probability of a '*C atom in atmospheric CO,
decaying in your lungs during a single breath? The atmo-
sphere is about 0.03% CO,. Assume you take in about 0.5
L of air in each breath and exhale it 3.5 s later.






NUCLEAR REACTIONS AND
APPLICATIONS

Nuclear reactors produce intense beams of neutrons that can be used to measure how
radiation exposure affects various materials. They also produce rare radioisotopes that can
be used for medicine and applications in industry. The photo shows the core of a nuclear
reactor, which is submerged in water that acts as a neutron moderator. The glow comes
from Cerenkov radiation, which is emitted when electrons from radioactive decays move at
speeds greater than the speed of light in water.




408 Chapter 13 | Nuclear Reactions and Applications

The knowledge of the nucleus that we can obtain from studying radioactive
decays is limited, because only certain radioactive processes occur in nature, only
certain isotopes are made in those processes, and only certain excited states of
nuclei (those that happen to follow radioactive decays) can be studied. Nuclear
reactions, however, give us a controllable way to study any nuclear species, and
to select any excited states of that species.

In this chapter we discuss some of the different nuclear reactions that can
occur, and we study the properties of those reactions. Two nuclear reactions are
of particular importance: fission and fusion. We pay special attention to those
processes and we discuss how they are useful as sources of energy (or, more
correctly, as converters of nuclear energy into thermal or electrical energy).

We conclude our study of nuclear physics with an introduction to some of the
ways that methods of nuclear physics can be applied to problems in a variety of
different areas.

13.1 TYPES OF NUCLEAR REACTIONS

In a typical nuclear reaction laboratory experiment, a beam of particles of type x
is incident on a target containing nuclei of type X. After the reaction, an outgoing
particle y is observed in the laboratory, leaving a residual nucleus Y. Symbolically,
we write the reaction as

x+X—-y+7Y

For example,
2 63 64
1Hy +55Cu3y — n+ 35Zny,

Like a chemical reaction, a nuclear reaction must be balanced—the total number
of protons must be the same before and after the reaction, and also the total
number of neutrons must remain the same. In the example above, there are 30
protons on each side and 35 neutrons on each side. (The forces responsible for
nuclear beta decay can change neutrons into protons or protons into neutrons,
but these forces act on a typical time scale of at least 107" s. The projectile and
target nuclei are within the range of one another’s nuclear forces for an interval
of at most 1072%s, so there is not enough time for this type of proton-neutron
conversion to take place.) The protons and neutrons can be rearranged among the
reacting nuclei, but their numbers cannot change.

A nuclear reaction takes place under the influence of forces internal to the
system of projectile and target. The absence of external forces means that the
reaction conserves energy, linear momentum, and angular momentum.

In most experiments, we observe only the outgoing light particle y; the heavy
residual nucleus Y usually loses all its kinetic energy (by collisions with other
atoms) and therefore stops within the target.

We assume that we produce the reaction by bombarding target nuclei X,
initially at rest, with projectiles x of kinetic energy K. The product particles then
share this kinetic energy, plus or minus any additional energy from the rest energy
difference of the initial and final nuclei. (We consider energy in nuclear reactions
in Section 13.3.)
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The bombarding particles x can be either charged particles, supplied by a
suitable nuclear accelerator, or neutrons, whose source may be a nuclear reactor.
Accelerators for charged particles, illustrated in Figures 13.1 and 13.2, are of two
basic types. In a cyclotron, a particle is held in a circular orbit by a magnetic
field and receives a small “kick” by an electric field twice each time it travels
around the circle; a particle may make perhaps 100 orbits before finally emerging
with a kinetic energy of the order of 10 to 20 MeV per unit of electric charge. In
the Van de Graaff accelerator, a particle is accelerated only once from a single
high-voltage terminal, which may be at a potential of as much as 25 million volts;
the kinetic energy of the particle is then about 25 MeV per unit of charge.

Electromagnet

0

“/

\ﬁh>l

FIGURE 13.1 (a) Schematic diagram of a cyclotron accelerator. Charged particles
are bent in a circular path by a magnetic field and are accelerated by an electric field
each time they cross the gap. (b) A cyclotron accelerator. The magnets are in the large
cylinders at the top and the bottom. The beam of particles is visible as it collides with
air molecules after leaving the cyclotron.

(@) )

Pressure tank

Charging belt
——— 0O
Beam

High-voltage tube
terminal (+V)

(a) (b)

FIGURE 13.2 (a) Diagram of a Van de Graaff accelerator. Particles from the ion
source are accelerated from the high-voltage terminal to ground. (b) A typical Van de
Graaff accelerator laboratory. The ion source and high-voltage terminal are inside the
large pressure tank.
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In nuclear reaction experiments, we usually measure two basic properties of
the particle y: its energy, and its probability to emerge at a certain angle with a
certain energy. We look briefly at these two types of measurements.

1. Measuring the particle energy If neither the residual nucleus Y nor the
outgoing particle y had excited states, then by using conservation of energy and
momentum, we could calculate exactly the energy of y when measured at a certain
angle. If the nucleus Y is left in an excited state, then the kinetic energy of y is
reduced by (approximately) the energy of the excited state above the ground state,
because the two particles ¥ and y must still share the same amount of total energy.
Each higher excited state of the nucleus Y corresponds to a certain reduced energy
of the particle y, and a measurement of the different energies of the particle y
tells us about the excited states of the nucleus Y. Figure 13.3 shows an example
of a typical set of experimental results and the corresponding deduced excited
states of the residual nucleus. Each peak in Figure 13.3 corresponds to a specific
energy of y, and therefore to a specific excited state of Y that is, when particles
with energy 9.0 MeV are observed, the nucleus Y is left in the excited state with
energy 1.0 MeV.

2. Measuring the reaction probability Notice that the different peaks in
Figure 13.3 have different heights. This feature of the results of our experiment
tells us that it is more probable for the reaction to lead to one excited state
than to another. This is an example of the reaction probability, the second
of the properties of y that we can determine. For example, Figure 13.3 shows that
the probability of leaving Y in its second excited state (1.0 MeV) is about twice
the probability of leaving Y in its first excited state. If it were possible to solve the
Schrodinger equation with the nuclear potential energy, we could calculate these
reaction probabilities and compare them with experiment. Unfortunately we can’t
solve this many-body problem, so we must work backward by measuring the
reaction probabilities and then trying to infer some properties of the nuclear force.

E=2.0 MeV

E=1.3 MeV L Excited

/_ states
= 1 0 MeV

E=0.6 MeV |

E=0  Ground
A \f Energy states state

of nucleus Y
8.0 8.5 9.0 9.5 10.0
Energy of emitted particles, E, (MeV)

Number of particles with energy E,

/_
/—
. —

FIGURE 13.3 A sample spectrum of energies of the outgoing particle y, and the
corresponding excited states of Y.
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The Reaction Cross Section

Reaction probabilities are usually expressed in terms of the cross section, which
is a sort of effective area presented by the target nucleus to that projectile for a
specific reaction, for all possible energies and directions of travel of the outgoing
particle y. The larger the reaction probability, the larger is the corresponding
cross section. In general, the cross section depends on the energy of the incident
particle, K.

The cross section o is expressed in units of area, but the area is a very small
one, of the order of 1072% m?. Nuclear physicists use this as a convenient unit of
measure for cross sections, and it is known as one barn (b): 1 barn = 10728 m?.
Notice that the area of the disc of a single nucleus of medium weight is about 1
barn; however, reaction cross sections often can be very much greater or less than
one barn. For example, consider the cross section for these reactions involving
certain isotopes of the neighboring elements iodine and xenon:

I+ n — I+ n (inelastic scattering) o=4b
Xe +n — Xe + n (inelastic scattering) o =4b

I+ n — I+ y (neutron capture) oc=7Db
Xe +n — Xe + y (neutron capture) o=10%b

You can see that, although the neutron inelastic scattering cross sections of I
and Xe are similar, the neutron capture cross sections are very different. These
measurements are therefore telling us something interesting and unusual about
the properties of the nucleus Xe.

Suppose a beam of particles is incident on a thin target of area S, which contains
a total of NV nuclei. The effective area of each nucleus is the cross section o, and
so the total effective area of all the nuclei in the target is (ignoring shadowing
effects) o N. The fraction of the target area that this represents is o N/S, and as
long as this ratio is small, shadowing effects are negligible. This fraction is the
probability for the reaction to occur.

Suppose the incident particles strike the target at a rate of /, particles per second,
and suppose the outgoing particles y are emitted at a rate of R per second. (This is
also the rate at which the product nucleus Y is formed.) Then the reaction probabil-
ity can also be expressed as the rate of y divided by the rate of x, or R/. Setting
the two expressions for the reaction probability equal to each other, we obtain
oN/S =R/I,, or

oN
R= — o (13.1)
This gives a relationship between the reaction cross section and the rate of
emission of y.

In a reactor, the intensity of neutrons is usually expressed in terms of the rate
at which neutrons cross a unit area perpendicular to the beam, or neutron flux
¢ (neutrons/cm?/s). The cross section is o (square centimeter per nucleus per
incident neutron). The rate R also depends on the number of target nuclei. Suppose
the mass of the target is m; the number of target nuclei is then N = (m/M)N,,
where M is the molar mass, and N, is Avogadro’s constant (6.02 x 10>} atoms
per mole). Thus, for neutron-induced reactions, using Eq. 13.1 we obtain

R =¢oN = ¢o %NA (13.2)
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| Example 13.1

For a certain incident proton energy the reaction p +
3Fe — n + °Co has a cross section of 0.40 b. If we bom-
bard a target in the form of a 1.0-cm-square, 1.0-um-thick
iron foil with a beam of protons equivalent to a current
of 3.0 nA, and if the beam is spread uniformly over the
entire surface of the target, at what rate are the neutrons
produced?

Next we need to find the number of particles per sec-
ond in the incident beam. We are given that the current
is 3.0 x 107 A = 3.0 x 107°C/s, and with each proton
having a charge of 1.6 x 107'° C, the beam intensity is

3.0 x 1079 C/s

= 1.9 x 10" particles/s

%7 1.6 x 10~19 C/particle
Solution

We first calculate the number of nuclei in the target. The
volume of the target is ¥ = (1.0cm)?(1.0 um) = 1.0 x
10~*cm?, and (using the density of iron of 7.9 g/cm?)
its mass is m=pV = (7.9g/cm?)(1.0 x 10~*cm’) =
7.9 x 10~* g. The number of atoms (or nuclei) is then

From Eq. 13.1 we can now find R:

R— Nol,
S
= (8.5 x 10'8 nuclei)(0.40 x 10~2* cm?/nucleus)

x (1.9 x 103 particles/s) (1 cm2)7l
= 6.5 x 107 particles/s

mN, (7.9 x 107* 2)(6.02 x 10> atoms/mole)
=
= 8.5 x 10'® atoms

N =

56 g/mole

About 108 neutrons per second are emitted from the target.

13.2 RADIOISOTOPE PRODUCTION IN NUCLEAR

REACTIONS

Often we use nuclear reactions to produce radioactive isotopes. In this procedure,
a stable (nonradioactive) isotope X 1is irradiated with the particle x to form
the radioactive isotope Y; the outgoing particle y is of no interest and is not
observed. In this case we don’t observe the individual particles Y as they are
produced in the reaction; instead, we irradiate the target to produce some number
of radioactive Y nuclei that remain within the target. After the irradiation we
observe the radioactive decay of the nuclei Y.

We would like now to calculate the activity of the isotope Y that is produced
from a given exposure to a certain quantity of the particle x for a certain time 7.
Let R represent the constant rate at which Y is produced; this quantity is related
to the cross section and to the intensity of the beam of x, as given in Eq. 13.1.
In a time interval dt, the number of ¥ nuclei produced is R dt. The isotope Y is
radioactive, so the number of nuclei of Y that decay in the interval dr is AN dt,
where A is the decay constant (A = 0.693/¢, ) and N is the number of ¥ nuclei
present. The net change dN in the number of Y nuclei is

dN = Rdt — AN dt (13.3)
or
dN
— =R—- AN 13.4
7 (13.4)
The solution to this differential equation is
R
N(@t) = X(l —e M) (13.5)
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and the activity is

a(t) = AN =R(1 — e )

Notice that, as expected, a = 0 at # = 0 (there are no nuclei of type Y present
at the start). For large irradiation times 7 >> #, », this expression approaches the
constant value R. When ¢ is small compared with the half-life ¢ ,, the activity

increases linearly with time:

a(t) =R[1 — (1 —At+ )] = Rt

(t < ty))

(13.6) RE-
>, e
S 0.5R
0
(13.7) 0 1 2 3 4 5

Irradiation time (units of half-life)

Figure 13.4 shows the relationship between a(¢) and ¢. As you can see, not much

activity is gained by irradiating for more than about two half-lives.

| Example 13.2

FIGURE 13.4 Formation of activity in
a nuclear reaction.

Thirty milligrams of gold are exposed to a neutron flux
of 3.0 x 10'? neutrons/cm?/s for 1.0 minute. The neutron
capture cross section of gold is 99 b. Find the resultant
activity of 1%8Au.

Solution

From Appendix D we find that the stable isotope of gold has
amass number of 4 = 197, and that radioactive '* Au has a
half-life of 2.70 d = 3.88 x 10° min. Thus, using Eq. 13.2,

R—¢ A
= O'_/V
M

= (3.0 x 1012M 99 x 104 L
' cm?-s neutron - nucleus
0.030
« ( d

W) (6.02 x 10%* atoms/mole)
g/mole

=2.7x 107"
In this case < 1, so we can use Eq. 13.7:

0.693

a=Ri=Q27x100s [ —————
3.88 x 103 min

) (1.0 min)
=4.8x 10°s™! =130 uCi

| Example 13.3

The radioactive isotope ' Cu (¢, = 3.41h) is to be pro-
duced by alpha particle reactions on a target of >*Co. A foil
of cobalt, measuring 1.5cm x 1.5 cminareaand 2.5 um in
thickness, is placed in a 12.0-uA beam of alpha particles;
the beam uniformly covers the target. For the alpha energy
selected, the reaction has a cross section of 0.640 b. (a) At
what rate is the ! Cu produced? (b) What is the resulting
activity of ¢! Cu after 2.0 h of irradiation?

Solution
(a) The reaction is ¥Co + *He — °'Cu + 2n. The mass
of the target is m=plV = (8.9 g/cm3)(1.5 cm)?(2.5 x
107%cm) =5.0 x 107> g and the number of target
atoms is

MmN

M

(5.0 x 107 )(6.02 x 10** atoms/mole)
N 58.9 g/mole

=5.12 x 10" atoms

N =

The rate at which the beam strikes the target is

120 x 107 A
Iy = T i
2 x 1.60 x 10~1” C/particle

=3.75 x 10" particles/s
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The rate at which the ¢! Cu is produced is, using Eq. 13.1,

_ Nol
8

R

_(5.12 x 10" atoms) (0.640 x 107* cm?)(3.75 x 107 s7)

(b) The activity is determined from Eq. 13.6:

a=R(—e™)
= (5.5 x 108 S—l) (1 _ e—(0.693)(2.0 h)/(3.41h))

(1.5 cm)?

=55x10%s7!

=18 x10%s7! =4.9mCi

Dx

g

Before

X

Py
After

FIGURE 13.5 Momenta of particles
before (top) and after (bottom) the
reaction.

13.3 LOW-ENERGY REACTION KINEMATICS

We assume for this discussion that the velocities of the nuclear particles are
sufficiently small that we can use nonrelativistic kinematics. We consider a
projectile x moving with momentum p, and kinetic energy K. The target is at
rest, and the reaction products have momenta f)y and py and kinetic energies K,
and K. The particles y and Y are emitted at angles 6, and 6, with respect to the
direction of the incident beam. Figure 13.5 illustrates this reaction. We assume
that the resultant nucleus Y is not observed in the laboratory (if it is a heavy
nucleus, moving relatively slowly, it generally stops within the target).

As we did in the case of radioactive decay, we use energy conservation to
compute the O value for this reaction (assuming X is initially at rest):

initial energy = final energy

my (0 + K, + my(X)* = my(y)c* + K, + my(Y)e* + Ky (13.8)

The m’s in Eq. 13.8 represent the nuclear masses of the reacting particles.
However, as we have discussed, the number of protons must be balanced in a
nuclear reaction:

Zo+Zy=2,+Zy (13.9)
We can therefore add equal numbers of electron masses to each side of Eq. 13.8
and, neglecting as usual the electron binding energy, the nuclear masses become
atomic masses with no additional corrections needed. Rewriting Eq. 13.8, we
obtain

[m(x) + mX) — m(y) — m(Y)]c? =K, + Ky — K, (13.10)

The rest energy difference between the initial particles and final particles is defined
to be the Q value of the reaction

0 = (m; — mp)c* = [m(x) + m(X) — m(y) — m(Y)]c* (13.11)

and, combining Eqs. 13.10 and 13.11, we see that the Q value is equal to the
difference in kinetic energy between the final particles and initial particle:

0=K,+Ky,—K, (13.12)
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| Example 13.4

(a) Compute the Q value for the reaction *H + Cu —
n + %Zn. (b) Deuterons of energy 12.00 MeV are incident
on a % Cu target, and neutrons are observed with 16.85 MeV
of kinetic energy. Find the kinetic energy of the ®*Zn.

Solution
(a) The Q value can be found using Eq. 13.11 with masses
from Appendix D:

= (2.014102u + 62.929597 u — 1.008665 u
— 63.9291421)(931.5 MeV /u)
= 5.488 MeV

(b) From Eq. 13.12, we find

Ky =0+K, —K,

= 5.488MeV+12.00 MeV —16.85 MeV

0 = [m(*H) + m(®*Cu) — m(n) — m(**Zn)]c?

= 0.64 MeV

Reactions for which O > 0 convert nuclear energy to kinetic energy of y and Y.
They are called exothermic or exoergic reactions. Reactions with Q < 0 require
energy input, in the form of the kinetic energy of x, to be converted into nuclear
binding energy. These are known as endothermic or endoergic reactions.

In an endoergic reaction, we must supply at least enough kinetic energy to
provide the additional rest energy of the reaction products. There is thus some
minimum, or threshold, kinetic energy of x, below which the reaction will not take
place. This threshold kinetic energy not only must supply the additional rest energy
of the products, but also must supply some kinetic energy of the products; even at
the minimum energy, the products cannot be at rest, for that would violate conser-
vation of linear momentum—the momentum p, before the collision would not be
equal to the momentum of the final products after the collision if they were formed
at rest.

This problem is most easily analyzed in the center-of-mass reference frame.
In the lab frame before the reaction, the center of mass moves with velocity
v =mx)v,/[mx) +mX)]. If we travel with that velocity and observe the
reaction, we would see x moving with velocity v, — v and X moving with velocity
—v, as shown in Figure 13.6. If x has exactly the threshold kinetic energy, in this
reference frame the reaction products y and ¥ would be at rest.

We must conserve total relativistic energy K + mc? in the reaction, and
we restrict our discussion to small velocities v < ¢ so that the nonrelativistic
expression for the kinetic energy can be used. Energy conservation in the
center-of-mass frame gives:

1 IR 32 2 2 _ 2 2
2m(x)(vx v)© + 2m(X)( V) +mx)c + mX)c® =m@y)c” +m(Y)c
(13.13)
where v, represents the threshold velocity in the lab frame. Substituting the value

of v and doing a bit of algebra, we can find the threshold kinetic energy (in the
laboratory reference frame):

. m(x)
K =0 (1 - m(X))

(13.14)

Vy—V v X/
Before
) (8%
After

FIGURE 13.6 Reaction at threshold
in center-of-mass reference frame.
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| Example 13.5

Calculate the threshold kinetic energy for the reaction
p+3H — 2H+2H (a) if protons are incident on *H at

1.007825u

— (4.033MeV) (1 4 o0
(4.033 eV)( * 30160490

) = 5.381 MeV

rest; (b) if *H (tritons) are incident on protons at rest.

Solution
The Q value is

0 = [m("H) + m(*H) — 2m(*H)]c?
= (1.007825u+ 3.016049u — 2 x 2.014102 u)

x (931.5MeV/u)
= —4.033 MeV

(a) When protons are incident on 3H, the identification is

x='H X =3H, so
Ky =-0 <1 +

m('H)
m(H)

(b) When *H is incident on protons, the identification of x
and X is reversed, so

m(3H))

Kth=—Q<1+WH)

3.01604%9u

— (4.033MeV) (14 2220
( ¢ )< 10078254

) = 16.10MeV

This calculation illustrates a general result: Less energy is
required for a nuclear reaction if a light particle is incident
) on a heavy target than if a heavy particle is incident on a
light target.

Lise Meitner (1878—1968, Germany-
Sweden). Known for her research
into radioactivity, Meitner discovered
the radioactive element protactinium
(Z =91) and was among the first to
study the properties of beta decay.
Her most important discovery was the
explanation for the puzzling results
that were observed when uranium was
bombarded with neutrons. She sug-
gested that the uranium could split into
two pieces, and she proposed the name
“fission” for this process. Element 109
is named in her honor.

The massive nucleus 2*Cf (Z = 98) can be produced in accelerators by collisions
between suitably chosen projectiles and targets. This nucleus is of special interest
because it is also produced in supernova explosions, and knowledge of its
properties provides a key to understanding the formation of the elements in
stars, as we discuss later in this chapter. 2>*Cf is radioactive, decaying with
a half-life of 60.5 d. The Q values for positive and negative beta decay of
234Cf are both negative, so that mode of decay is not available. Alpha decay is
energetically possible but the Coulomb barrier is very high, making that decay
mode improbable. Instead, 2*Cf decays by splitting into two pieces of much
smaller masses—for example,

%5¢Cfise — '3 Xegs + 43Rugg + 4n

This mode of decay is known as nuclear fission. Fission can occur as a spontaneous
radioactive decay process for a relatively small number of massive nuclei, and it
can also be induced in other nuclei by adding energy to make the nucleus less
stable. In addition to the two fission fragments, some neutrons are usually emitted
in the fission process.

We can consider the nucleus to be a mixture of protons and neutrons moving
about under the mutual attraction of their nuclear forces and (in the case of the
protons) the repulsion of their Coulomb forces. For many nuclei, the result of
these interactions is a spherical shape that has often been compared to a drop of
liquid floating freely in a region where no external forces act. The equilibrium
shape will be close to spherical, and if the nucleus is distorted (for example,
by stretching it in one direction) it can vibrate about its equilibrium shape and
eventually return to its spherical shape somewhat like a stretched spring or other
elastic system returns to its original configuration. Figure 13.7 shows a schematic
representation of the energy of the drop as a function of the distortion.



For other nuclei, the equilibrium shape is not spherical but is already distorted;
their surfaces are like an ellipse rotated about its long axis. For these nuclei,
the major axis might be 30—50% longer than the minor axis. If these nuclei are
stretched by a small amount and released, they will usually revert to their distorted
equilibrium shape. But if the stretching is sufficiently large, they may not return
to equilibrium but instead may split in two, as represented in Figure 13.8.

This occurs because of the rather delicate balance between the nuclear force
that keeps the nucleus together and the Coulomb repulsion force, which makes the
nucleus less stable. When the stretching is sufficiently large, the total attractive
nuclear force is reduced (because on the average the protons and neutrons have
fewer “near neighbors” with which to interact), but the Coulomb force, because
it has a long range, is not reduced significantly. The center of the distorted shape
can be “pinched off” and the delicate balance between the nuclear and Coulomb
forces is upset. The Coulomb force can then drive the two fragments apart.

Figure 13.8 shows a kind of “barrier” between the distorted equilibrium shape
and the fissioned nucleus. This fission barrier has a height of roughly 6 MeV,
but as we know it is possible to “tunnel” through the barrier. Thus nuclei can
undergo fission with smaller amounts of excitation energy. It is very unlikely for
a nucleus to tunnel through the barrier at its thickest, but as the excitation energy
is increased the barrier becomes less thick and fission becomes more probable.
For the radioactive decay of *Cf, the probability to penetrate the fission barrier
(99.7%) is greater than the probability to penetrate the barrier to alpha decay
(0.3%).

The splitting of a nucleus such as 2*Cf into two fragments does not always
produce the same set of final nuclei. Many different processes are possible, with
the actual outcome determined according to statistical probability. For 23*Cf it
is most likely that one fragment will have a mass near 4 = 110 and the other
near 4 = 140, but other mass distributions can occur. Figure 13.9 shows the mass
distribution of the fragments in the fission of 2*Cf and 2*3U.

The number of neutrons emitted in fission can also vary. For 2>Cf, the average
is about 3.9 neutrons per fission.

Energy Released in Fission

According to Figure 12.4, the binding energy per nucleon of 2*Cf is about 7 MeV.
If a nucleus of 23*Cf splits into two nuclei with 4 = 127, the binding energy per
nucleon of the final nuclei would be about 8 MeV. Thus the binding energy of
each of those 254 nucleons increases from about 7MeV to about 8 MeV, which
gives an increase in the total binding energy of the nucleus of about 250 MeV. If
the final nucleons are more tightly bound, that means that an equivalent amount
of energy has been released to some other form.

This energy release from a single nucleus is an enormous quantity. For
comparison, chemical processes such as combustion usually release a few eV per
atom. In fission we have an energy release at the atomic level that is 10% times
larger than the energy released in chemical processes!

Where does this energy go? Let’s imagine that >*Cf suddenly breaks in half to
form two nuclei with Z = 49 and 4 = 127 that are just touching at their surfaces.
The radius of each of these nuclei is 1.2(127)!/3 = 6.0 fm, and the Coulomb
repulsion of these two nuclei would be U = (49¢)? /4w e, (2R) = 286 MeV, which
is quite close to our estimate of the nuclear binding energy released. These two
charged objects repel one another, so that the Coulomb energy quickly becomes
kinetic energy. Most of the energy released in fission is thus produced as
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Nuclear binding energy
Coulomb potential energy of nuclear fragments
Kinetic energy of fragments

About 80% of the fission energy is released in this form. The fragments do not
travel very far before dissipating their kinetic energy through atomic collisions,
which are usually observed as a temperature increase of the material. In a power
reactor, this temperature increase can be used to produce steam, which can drive a
turbine to produce electricity. The remaining 20% of the energy released appears
as decay products (betas and gammas) of the highly radioactive fragments and
kinetic energies of the neutrons that may also be emitted during fission.

Induced Fission

The radioactive decay of >>*Cf is an example of the spontaneous fission of a
nucleus that is sufficiently unstable that it can tunnel through the fission barrier
with no additional energy needed. However, 2*Cf is an artificially produced
nucleus that does not occur in nature and in which the energy released in fission is
essentially stored in the nucleus by the nuclear reaction that was used to produce
the 2>4Cf. There are other examples of fissionable nuclei that may occur naturally
or are produced artificially but that do not fission spontaneously. These nuclei can
be made to fission by the addition of some energy, which might be in the form
of an absorbed photon but more often occurs with the absorption of a neutron. In
these cases the energy input is very small compared with the energy released in
the fission process. One such nucleus is 2>U, which might absorb a neutron to
make 23U and then fission according to

235 93 141
92 Ujg3 + 1 — 37Rbsg + 55 Csgg + 2n

As in the case of spontaneous fission, many different outcomes are possible,
with a statistical distribution of the masses of the fragments. In the fission of
235U, the most probable outcome has fragments of mass numbers near 4 = 90
and 4 = 140 (as in Figure 13.9), and the average number of neutrons is about
2.5. Examples of easily produced fissionable nuclei include >3°Pu (obtained from
the beta decay of 23°U, which is made when 23U absorbs a neutron) and 233U
(obtained in a similar manner from 232 Th).

In a bulk sample of uranium, each of the neutrons emitted in fission can be
absorbed by another nucleus of 23U and thus induce another fission process,
resulting in the emission of still more neutrons, followed by more fissions, and
so forth. As long as the average number of neutrons available to produce new
fissions is greater than 1 per reaction, the number of fissions grows with time.
This avalanche or chain reaction of fission events, each with the release of about
200 MeV of energy, can either occur under very rapid and uncontrolled conditions,
as in a nuclear weapon, or else under slower and carefully controlled conditions,
as in a nuclear reactor.

Electrical Power from Fission

Electrical power can be generated using the thermal energy released in fission
to boil water. Ordinary uranium by itself cannot serve as fuel for the reactor for
several reasons, of which three in particular stand out: enrichment, moderation,
and control.



Enrichment To maintain a steady energy production from fission reactions,
we would like for one neutron from each fission to be available to produce another
fission. Generally the average number of neutrons produced is greater than one, but
neutrons can be lost from the reaction in a variety of ways (for example, by non-
fission absorption by 2*3U in uranium fuel). Natural uranium consists of only about
0.7% of 233U and 99.3% 233U, which means that most of the available uranium
nuclei generally do not participate in the fission process but instead remove
neutrons from being able to produce other fissions. To overcome this problem it
is necessary to use enriched uranium, in which the abundance of 23U is increased
beyond its natural value of 0.7%. Most power reactors use uranium enriched to
3-5%233U. Enrichment is a difficult process because 23U and 23U are chemically
identical. It is achieved only by taking into account the small mass difference
between the two isotopes (for example, by forcing gaseous uranium through a
porous barrier in which the more massive 23U atoms diffuse more slowly).

Moderation The neutrons produced in fission typically have kinetic energies of
a few MeV. Such energetic neutrons have a relatively low probability of inducing
new fissions, because the fission cross section generally decreases rapidly with
increasing neutron energy. We therefore must slow down, or moderate, these
neutrons in order to increase their chances of initiating fission events. The
fissionable material is surrounded by a moderator, and the neutrons lose energy
in collisions with the atoms of the moderator. When a neutron is scattered from a
heavy nucleus like uranium, the energy of the neutron is changed hardly at all, but
in a collision with a very light nucleus, the neutron can lose substantial energy.
The most effective moderator is one whose atoms have about the same mass as a
neutron; hydrogen is therefore the first choice. Ordinary water is frequently used
as a moderator, because collisions with the protons are very effective in slowing
the neutrons; however, neutrons have a relatively high probability of being
absorbed by the water according to the reaction p +n — %Hl + y. So-called
“heavy water,” in which the hydrogen is replaced by deuterium, is more useful as
amoderator, because it has virtually no neutron absorption cross section. A heavy-
water reactor, which has more available neutrons, can use ordinary (nonenriched)
uranium as fuel; a reactor using ordinary water as moderator has fewer neutrons
available to produce fission, and must therefore have more 23U in its core.

Carbon is a light material that is solid, stable, and abundant, and that has a
relatively small neutron absorption cross section. Enrico Fermi and his co-workers
built the first nuclear reactor in 1942 at the University of Chicago; this reactor
used carbon, in the form of graphite blocks, as moderator.

Control To produce a stable nuclear reactor, the average number of neutrons
in each fission reaction that is available to produce the next set of fission
reactions must be exactly equal to 1. If it is even slightly greater than 1, the
reaction rate will grow exponentially out of control. Control of the reaction rate is
usually accomplished by inserting into the core of the reactor control rods made
of cadmium, which has a very large cross section for absorbing neutrons and
thus removing them from the fission process. However, small fluctuations in the
reaction rate occur much too rapidly for any mechanical system to move the control
rods in and out to control the number of neutrons emitted in the fission reaction.
Fortunately, nature has provided us with the solution to this problem. About
1% of the neutrons emitted in fission are delayed neutrons, produced not at the
instant of fission but somewhat later, following the radioactive decays of the
fission fragments. For example **Rb, which might be produced in the fission of
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FIGURE 13.10 A typical sequence of processes in fission. A nucleus of 23°U
absorbs a neutron and fissions; two prompt neutrons and one delayed neutron are
emitted. Following moderation, two neutrons cause new fissions and the third is
captured by 233U, resulting finally in 23°Pu.

235U, beta decays with a half-life of 6 s to **Sr, which is occasionally (in about
1% of decays) produced in a very high excited state that is unstable to neutron
emission. The neutron appears to emerge with the 6-s half-life of the beta decay.
This short delay time is enough to allow the control rods to be adjusted to maintain
a constant reaction rate. The reactor is designed so that the neutron replication
rate is just less than 1 for the prompt neutrons and exactly equal to 1 for prompt
+ delayed neutrons, which allows the control rods to work effectively.

Figure 13.10 summarizes some of the processes that can occur in fission. A
nucleus of 23U captures a neutron and fissions into two heavy fragments and two
prompt neutrons; one of the fragments emits a delayed neutron. The three neutrons
are slowed by passage through the moderator. Two of the neutrons cause new fis-
sions, and the third is captured by 28U, eventually to form fissionable >3 Pu, which
can be recovered from the fuel by chemical means. Not shown in this diagram are
other processes that can occur: escape of neutrons through the surface of the reac-
tor, capture in the moderator, and fission of 23U by fast (unmoderated) neutrons.

Fission Reactors

In a fission reactor, the heat produced in the fuel must be extracted to generate
electrical power. It must also be extracted for reasons of safety, because enough
heat is produced to melt the core and cause a serious accident. For this reason,
reactors contain an emergency core cooling system that is designed to prevent the
core from overheating if the heat extraction system should fail.

Extracting the fission energy from the reactor core can be accomplished through
several different techniques. In one design, called the pressurized water reactor
and illustrated in Figure 13.11, the heat is extracted in a two-step process. Water
circulates through the core under great pressure, to prevent its turning to steam.
This hot water then in turn heats a second water system, which actually delivers
steam to the turbine. The steam never enters the reactor core, so it does not become
radioactive, and thus there is no radioactive material in the vicinity of the turbine.

The power reactors in the United States are mostly the pressurized-water type
using enriched uranium as fuel and ordinary water as moderator. Canada also



uses pressurized water reactors, but heavy water and natural uranium are used. In
a variation on this design, the pressurized water is replaced with a liquid metal
such as sodium, which has the advantages of remaining liquid at much higher
temperatures than water and of having a larger thermal conductivity than water.
Yet another design uses gas flow through the core to extract the heat; the hot
gas is then used to produce steam. Reactors in Great Britain are gas-cooled and
graphite-moderated.

There are yet other technological problems associated with nuclear power
that are the subjects of active debate and investigation. Some of the radioactive
isotopes among the fission fragments have very long half-lives, of the order of
many years. The radioactive waste from reactors must be stored in a manner that
prevents leakage of radioactive material into the biological environment. Many
people are concerned about the safety of nuclear reactors, not only regarding
proper design and operation, but also about their resistance to natural disasters
such as earthquakes or to acts of terrorism or sabotage.

In 1986, a graphite-moderated power reactor at Chernobyl in the former
U.S.S.R. suffered a serious accident due to the disabling of the core cooling
system, which is designed to extract the intense heat generated in the reactor
core. The resulting temperature rise ignited the graphite moderator and caused an
explosion of the reactor containment vessel, releasing radioactive fission products
and exposing the inhabitants of the region to life-threatening radiation doses. The
water-moderated power reactors used in the United States cannot suffer this kind
of accident.

The vulnerability of reactors to natural disasters was dramatically revealed by
the earthquake-triggered tsunami that struck Japan’s Fukushima reactor complex
in 2011. The flooding of the reactor buildings caused the pumps supplying cooling
water to fail. As a result, the reactor core overheated due to the radioactive decay of
the fission products, and a partial meltdown of the fuel rods occurred. The ensuing
release of radioactivity contaminated a wide region of the Japanese countryside.

Finally, as in all heat engines, the disposal of the exhaust or waste heat
(primarily from the steam recondensing to water) generates considerable thermal
pollution. Nuclear power plants are generally less efficient at converting fuel
to electrical power compared with plants that burn fossil fuels, because nuclear
plants operate at lower temperatures; while fossil-fuel plants can have efficiencies
as large as 40%, nuclear plants are generally in the range of 30 to 35%. A plant
operating at 30% efficiency produces 50% more thermal pollution than one that
generates the same amount of power at 40% efficiency.

A Naturally Occurring Fission Reactor

We conclude this section with a fascinating example of nature at work—the first
sustained nuclear fission reactor on Earth was not the one constructed by Fermi
in Chicago in 1942, but a natural fission reactor in Africa, which is believed
to have operated two billion years ago for a period of perhaps several hundred
thousand years. This reactor of course used naturally occurring uranium as a fuel
and naturally occurring water as a moderator.

It would not be possible to build such a reactor today, because the capture of
neutrons by the protons in water results in too few neutrons remaining to sustain
a chain reaction in uranium with only 0.7% of 2>U. However, two billion years
ago, naturally occurring uranium contained a much larger fraction of 23U than
does present-day uranium. Both 23U and 23U are radioactive, but the half-life
of 233U is only about one-sixth as great as the half-life of 233U. If we go back in
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time about 2 x 10°y, which is half of one half-life of 2>3U, there was about 40%
more 238U than there is today, but there was 2 = 8 times as much 2**U. Naturally
occurring uranium was then about 3% 235U, and, at such enrichments, ordinary
water can serve as an effective moderator.

A deposit of such uranium, in a large enough mass and with ground water
present to act as moderator, could have “gone critical” and begun to react. The
reaction could have been controlled by the boiling of the water—when enough
heat had been generated to evaporate some of the water, the reaction would slow
down and perhaps stop, because of the lack of a moderator. When the uranium
had cooled sufficiently to allow more liquid water to collect, the reactor would
have started up again. This cycle could in principle have continued indefinitely,
until enough 23>U was used up or until geological changes resulted in the removal
of the water.

The discovery of this reactor followed the observation that the uranium that was
being mined from that region in Africa contained too little 2>3U. The discrepancy
was a very small one—the samples contained 0.7171% 23°U, compared with the
usual 0.7202%—but it was enough to stimulate the curiosity of the researchers.
They guessed that the only mechanism that could result in the consumption of
235U was the nuclear fission process, and this guess was tested by searching in the
ore for stable isotopes that result from the radioactive decay of fission products.
When such isotopes were found, and in particular when they were found in
abundances very different from what would be expected from “natural” mineral
deposits, the existence of the natural reactor was confirmed.

Energy may also be released in nuclear reactions in the process of fusion, in
which two light nuclei combine to form a heavier nucleus. The energy released
in this process is the excess binding energy of the heavy nucleus compared with
the lighter nuclei; from Figure 12.4, we see that this process can release energy as
long as the final nucleus is less massive than about 4 = 60.

For example, consider the reaction

iH, + {H, — {H, + [H,

The Q value is 4.0 MeV, and so this nuclear reaction liberates about 1 MeV per
nucleon, roughly the same as the fission reaction. This reaction can occur when
a beam of deuterons is accelerated on to a deuterium target. In order to observe
the reaction, we must get the incident and target deuterons close enough that the
nuclear force can produce the reaction; that is, we must overcome the mutual
Coulomb repulsion of the two particles. We can estimate this Coulomb repulsion
by calculating the electrostatic repulsion of two deuterons when they are just
touching. The radius of a deuteron is about 1.5 fm, and the electrostatic potential
energy of the two charges separated by about 3 fm is about 0.5 MeV. A deuteron
with 0.5 MeV of kinetic energy can overcome the Coulomb repulsion and initiate
a reaction in which 4.5 MeV of energy (0.5 MeV of incident kinetic energy plus
the 4-MeV Q value) is released.

Doing this reaction in a typical accelerator, in which the beam currents are
typically in the microampere range, would produce only a small amount of energy
(of the order of a few watts). To obtain significant amounts of energy from fusion,



it is necessary to work with much larger quantities of deuterium. For example,
the fusion energy from the deuterium in a liter of ordinary water (which contains
0.015% D,0) would be equivalent to the chemical energy obtained from burning
about 300 liters of gasoline.

A more promising approach consists of heating deuterium gas to a high enough
temperature so that each atom of deuterium has about 0.25 MeV of thermal kinetic
energy (hence the name thermonuclear fusion). Then in a collision between two
deuterium atoms, the total of 0.5MeV of kinetic energy would be sufficient to
overcome the Coulomb repulsion.

The difficulty with this approach is in heating the deuterium gas to a sufficient
temperature; from the expression %kT for the thermal kinetic energy of a
gas molecule, we can calculate that an energy of 0.25MeV corresponds to a
temperature of the order of 10° K. Even assuming that barrier penetration (Section
5.6) would allow a reasonable probability to penetrate the Coulomb barrier at
lower kinetic energies (perhaps corresponding to one-tenth of the calculated
temperature), it is hard to imagine conditions under which these temperatures
can be created. However, such conditions do exist in the interiors of stars, which
produce their energy through fusion reactions. Fusion processes thus support all
life on Earth. Scientists and engineers who are seeking to develop fusion processes
for electrical power generation face the challenge of duplicating, for a brief instant
of time and on a much smaller scale, the conditions in the interior of stars.

Fusion Processes in Stars

In the basic fusion process that occurs in stars (including our Sun), four protons
combine to make one *He. Stars are composed of ordinary hydrogen rather than
deuterium, so it is first necessary to convert the hydrogen to deuterium. This is
done according to the reaction

1Hy+ {Hy — {H, + et +v

This process involves converting a proton to a neutron and is analogous to
the beta-decay processes discussed in Chapter 12. Once we have obtained *H
(deuterium), the next reaction that can occur is

iH; + [Hy — 3He, +y
followed by
3He, + 3He, — 3He, + 21H,

Note that the first two reactions must occur fwice in order to produce the two *He
we need for the third reaction; see the schematic diagram of Figure 13.12. We can
write the net process as

4{H, — 3He, 4+ 2e™ +2v 42y

For the calculation of the O value in terms of afomic masses, four electrons
must be added to the left side to make four neutral hydrogen atoms. To balance
the reaction we must also add four electrons to the right side; two of these are
associated with the “He atom, and the other two can be combined with the two
positrons according to the reaction et + e~ — 2y, so that the additional gamma
rays are available as energy from the reaction. The two positrons disappear in this
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process; the only masses remaining are four hydrogen atoms and the one helium
atom, and so

0 = (m; — mp)® = [4m('H) — m(*He)]c?
= (4 x 1.007825u — 4.002603 u)(931.5 MeV/u) = 26.7 MeV

Each fusion reaction liberates about 26.7 MeV of energy.

At what rate do these reactions occur in the Sun? About 1.4 x 10° W of
solar power is incident on each square meter of the Earth’s surface. At our
distance of about 1.5 x 10'' m from the Sun, its energy is spread over a sphere
of area 477> = 28 x 10> m?, and thus the power output from the Sun is about
4 x 10?°* W, which corresponds to about 2 x 10*° MeV/s. Each fusion reaction
liberates about 26 MeV, and thus there must be about 10°® fusion reactions
per second, consuming about 4 x 103% protons per second. (Don’t worry about
running out of protons—the Sun’s mass is about 2 x 10" kg, which corresponds
to about 1037 protons, enough to burn for the next few billion years.)

The sequence of reactions described above is called the proton-proton cycle
and probably represents the source of the Sun’s energy. However, it is probably
not the primary source of fusion energy in many stars, because the first reaction
(in which two protons combine to form a deuteron), which is similar to beta decay,
takes place only on a very long time scale (as we discuss in the next chapter),
and is therefore very unlikely to occur. A more likely sequence of reactions is the
carbon cycle:

1zc+1H_) 13N+]/
PN— BC+et +v
BC+'H— "“N+y
14N+]H—>150+J/
B0 — PN+em+v
BN+ 'H - 2C +*He

A symbolic diagram of the process is shown in Figure 13.13. Notice that the
12C plays the role of catalyst; we neither produce nor consume any '2C in these
reactions, but the presence of the carbon permits this sequence of reactions to take
place at a much greater rate than the previously discussed proton-proton cycle.
The net process is still described by 4'H — *He, and of course the Q value is
the same. The Coulomb repulsion between H and C is larger than the Coulomb
repulsion between two H nuclei, so more thermal energy and a correspondingly
higher temperature are needed for the carbon cycle. The carbon cycle probably
becomes important at a temperature of about 20 x 10° K, while the Sun’s interior
temperature is “only” 15 x 10° K.

FIGURE 13.13 Sequence of events in the carbon cycle.



Fusion Reactors

For a controlled thermonuclear reactor, several reactions could be used, such as

’H+’H—H+'H Q=4.0MeV
’H+?H—He4+n Q=33MeV
’H+43H — *He +n 0 =17.6MeV

The third reaction, known as the D-T (deuterium-tritium) reaction, has the largest
energy release and is perhaps the best candidate for a fusion reactor. When
deuterium gas (or a deuterium-tritium mixture) is heated to a high temperature,
the atoms become ionized; the resulting gas of hot, ionized particles is called
a plasma. To increase the probability of collisions between the ions that would
result in fusion, there are three requirements for the plasma: (1) a high density n,
so that the particles have a high probability of collision; (2) a high temperature T,
in the range of 10 K, which increases the probability for the particles to penetrate
their mutual Coulomb barrier; and (3) a long confinement time t, during which
the high temperature and density must be maintained. The first and third of these
parameters can be combined using some fairly general considerations based on
the power needed to heat the plasma (which is proportional to the density #) and
the power derived from fusions in the plasma (which is proportional to #*7). For
the fusion power to exceed the input power, the product nt must exceed a certain
minimum value; this condition is

nt > 102 s.m™3 (13.15)

which is known as Lawson’s criterion. The capability of a plasma to produce
energy through fusion can be characterized by the value of its Lawson’s parameter
nt and its temperature 7.

The electrical repulsion of the ionized particles in a plasma tends to force the
ions away from one another and toward the walls of their container, where they
would lose energy in collisions with the cooler atoms of the walls. To maintain
the density and temperature, two techniques are under development. In magnetic
confinement, intense magnetic fields are used to trap the motion of the particles,
and in inertial confinement, the plasma is heated and compressed so quickly that
fusion occurs before the fuel can expand and cool.

Magnetic confinement A magnetic field can confine a plasma because the
charged particles spiral around the magnetic field lines. Figure 13.14 shows
a toroidal magnetic confinement geometry. There are two contributions to the
magnetic field: One is along the toroid axis and another is around the axis. The
combination of these two fields gives a helical field along the toroid axis, and
the charged particles are confined as they spiral about the field lines. This type of
device is a called a tokamak (from the Russian acronym for “toroidal magnetic
chamber”). A current passed through the plasma serves both to heat the plasma
and to create one of the magnetic field components. Figure 13.15 shows the
Tokamak Fusion Test Reactor at Princeton University, which operated from
1982 to 1997 and achieved an ion temperature of 5.1 x 10® K and a fusion power
level of 10.7 MW. This device came very close to reaching Lawson’s criterion
with a plasma density of n = 10?° particles/m? (five orders of magnitude smaller
than an ordinary gas) and a confinement time of 7 = 0.2 s.
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FIGURE 13.16 The approach to
breakeven and ignition in fusion reac-
tors, shown as a plot of Lawson’s
parameter against temperature.

FIGURE 13.15 The inside of the Tokamak Fusion Test Reactor. The technician
at the left gives a measure of the size of the toroidal chamber. (Dietmar
Krause/Princeton Plasma Physics Laboratory.)

The development of magnetic confinement devices has produced a steady
march toward achieving a self-sustaining fusion reactor by increasing the values
of both Lawson’s parameter nt and the temperature, as illustrated in Figure 13.16.
Devices have closely approached “breakeven,” where the power produced by
fusion reactions equals the power necessary to heat the plasma. A true self-
sustaining reactor requires the attainment of “ignition,” where the power produced
by fusion reactions can maintain the reactor with no external source of energy.
The next generation of fusion reactor development is the ITER (originally, the
International Thermonuclear Experimental Reactor), currently under construction
in France as a collaboration among many nations and expected to be operational in
the year 2016. The ITER is planned to produce fusion power levels that are 5—10
times what is necessary to heat the plasma (that is, 5—10 times the “breakeven”
condition).

Inertial confinement Inertial confinement takes the opposite approach by
compressing the fuel to high densities for very short confinement times. In one
method, which is illustrated in Figure 13.17, a small pellet of D-T fuel is struck
simultaneously from many directions by intense laser beams that first vaporize
the pellet and convert it to a plasma, and then heat and compress it to the point
at which fusion can occur. The laser pulses are very short, typically lasting only
about 1 ns, and thus according to Lawson’s criterion the density must exceed 10%°
particles/m>. However, because of inefficiencies of the lasers and other losses a
self-sustaining laser fusion reactor must exceed this minimum by perhaps 2—3
orders of magnitude. Figure 13.18 shows the target chamber of the National
Ignition Facility at the Lawrence Livermore National Laboratory. Operating for
the first time in 2010, it is designed so that a 2-mm diameter pellet of D-T is
struck simultaneously by 192 laser beams that deliver an energy of 1 MJ in a pulse
lasting a few ns, which is expected to compress the pellet to a central density that
is 100 times that of lead.
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FIGURE 13.17 Inertial confinement fusion initiated by a laser.

FIGURE 13.18 Workers inside the 10-m-diameter target chamber where
192 laser beams (which enter the chamber through the circular ports) strike
the target that is held by the positioning arm at the right. (Courtesy Lawrence
Livermore National Laboratory.)

In the D-T fusion reaction, most of the energy is carried by the neutrons
(recall that in the fission reaction only a small fraction of the energy went to the
neutrons). This presents some difficult problems for the recovery of the energy and
its conversion into electrical power. One possibility for a fusion reactor design is
shown in Figure 13.19. The reaction area is surrounded by lithium, which captures
neutrons by the reaction

SLi; +n — 3He, + 1H,

The kinetic energies of the reaction products are rapidly dissipated as heat, and
the thermal energy of the liquid lithium can be used to convert water to steam in
order to generate electricity. This reaction has the added advantage of producing
tritium (*H), which is needed as a fuel for the fusion reactor.

One difficulty with the D-T fusion process is the large number of neutrons
released in the reactions. Although fusion reactors will not produce the radioactive
wastes that fission reactors do, the neutrons are sure to make radioactive the
immediate area surrounding the reactor, and the structural damage to materials
resulting from exposure to large fluxes of neutrons may weaken critical parts of
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FIGURE 13.19 Design of a fusion reactor.

the reactor vessel. Here once again the lithium is helpful, because a 1-m thickness
of lithium should be sufficient to stop essentially all of the neutrons.

Fusion energy is the subject of vigorous research in many laboratories in the
United States and around the world; the technological problems are being attacked
with a variety of methods, and researchers are hopeful that solutions can be found
during the next 20 years so that fusion can help to supply our electrical power needs.

After a star’s hydrogen has been converted to helium through fusion reactions,
gravitational collapse can occur that raises the temperature of the core of the star
from about 107 K to about 108 K. At this point there is enough thermal kinetic
energy to overcome the Coulomb repulsion of the helium nuclei, and helium fusion
can begin. In this process three “He are converted into '>C by the two-step process

‘He + ‘He — ®Be
$Be + “He — '2C

The first reaction is endothermic, with a Q value of 92 keV. The nucleus *Be
is unstable and decays back into two alpha particles in a time of the order of
10~'%s. Even so, the Boltzmann factor e~ 2£/¥T suggests that at 108 K there will
be a small concentration of 8Be. The second reaction has a particularly large
cross section; in spite of the rapid breakup of ®Be, there is still a good chance
to form '>C. The net Q value for the process is 7.3 MeV, or about 0.6 MeV per
nucleon, much less than the 6.7 MeV per nucleon produced by hydrogen burning.

Once enough '?C has formed in the core, other alpha particle reactions become
possible, such as

2C +%He — '°0
100 + *He — 2'Ne
2ONe 4 *He — % Mg



Each of these reactions is exothermic, releasing a few MeV of energy and
contributing to the star’s energy production. At still higher temperatures (10° K)
carbon burning and oxygen burning begin:

2C 4 12¢ - Ne + “He
160+ 160 s 2SSi+4He

Eventually °Fe is reached, at which point no further energy is gained by fusion
(Figure 12.4).

If this explanation of the formation of elements is correct, we expect the
abundances of the elements to have the following properties:

1. Large relative abundances of the light, even-Z clements; small relative
abundances of odd-Z elements.

2. Little or none of the elements between He and C (Li, Be, B), which are not
produced in these reactions.

3. Large relative abundance of Fe, the end product of the fusion cycle.

Figure 13.20 shows the relative abundances of the light elements in the solar
system, and they are in agreement with all of the three above expectations. Each
even-Z element is 10 to 100 times more abundant than its odd-Z neighbors; there
is a prominent peak at Fe; the heavy elements with Z > 30 combined are less
abundant than every element but one in the range C to Zn; and the three elements
Li, Be, B are far less abundant than the elements in the range C to Zn.

The light odd-Z elements can be produced by alternative reactions among the
fusion products, for example:

12C+12C—> 23Na+1H
16O—|—16O—> 31P+1H

The abundance of nitrogen is nearly equal to that of its neighbors C and O,
which are the most abundant of elements beyond H and He; nitrogen has a greater
abundance than any other odd-Z element shown, and greater than all even-Z
elements with Z > 8. The formation of nitrogen must therefore be a relatively
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FIGURE 13.20 Relative abundances (by weight) of the elements beyond helium in the
solar system.
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common process in stars. The element B is rare, so alpha particle reactions are of
no help in forming nitrogen. The most likely sources of N are

2C+'H— BN+y %0+ 'H— "F+y
BN - BCH+et +v and TE 5 704 et v
13C+1H—) 14N+J/ 17O+1H—> 14N+4He

The stable isotopes '*C and 7O are found in natural carbon and oxygen with
abundances of 1.1% and 0.04%, which suggests that these reactions do indeed
take place.

The production of the elements beyond iron requires the presence of neutrons,
which are not produced in the reactions we have listed so far, because neutrons
are likely to be emitted only in reactions with nuclei that have an excess of
neutrons. If enough of the heavier isotopes, such as 13C, 170, or 2! Ne, are formed,
the following reactions can produce neutrons:

BC+%He —» O +n
70 +*He — **Ne +n
2INe 4 “He — Mg +n
How are the heavy elements built up by neutron capture? Consider the effect
of neutron capture on *°Fe:
%Fe +n — “'Fe (stable)
S7Fe 4+ n — Fe (stable)
SSFC +n— SQFC (fl/z =45 d)
What happens next depends on the number of available neutrons. If that number
is small, the chances of *°Fe encountering a neutron before it decays to °Co are
small, and the process might continue as follows:
YFe - PCo+e +7
*Co+n— “Co (ty,=5Y)
9Co — ONi+e™ +7v
On the other hand, if the number of neutrons is very large, a different sequence
might result:

YFe+n— PFe  (1,,,=3x10"y)
“Fe+n— *Fe (4, =6m)
OFe — ®1Co4+e 4+ 7

01Co - *"Ni4+e +7

If the density of neutrons is so low that the chance of encountering a neutron is,
on the average, less than once every 45 days, the first process ought to dominate,
with the production of ®*Ni. If the chance of encountering a neutron is more
like once every few minutes, the second process should dominate, and no °Ni is
produced.

The first type of process, which occurs slowly and allows the nuclei time to
beta decay, is known as the s process (s for slow); the second process occurs very
rapidly and is known as the r process (r for rapid).



13.6 | Nucleosynthesis 431

Figure 13.21 illustrates how the 7 and s processes can proceed from °Fe. The
s process never strays very far from the region of the stable nuclei, while the r
process can produce many nuclei that have a large excess of neutrons. The larger
the excess of neutrons, the shorter is the half-life of these nuclei. Eventually the
half-life becomes so short that no neutron is captured before the beta decay occurs
to the next higher Z. All nuclei produced in the r process will eventually decay
toward the stable nuclei, generally moving by beta decays along the diagonal line
of constant mass number 4.

Some stable nuclei are produced only through the s process, others are produced
only through the r process, and some may be produced through both processes.
Often the natural abundance of the isotopes of an element can suggest the relative
roles of these two processes. In Figure 13.21, you can see that the stable isotope
70Zn cannot be produced in the s process, because the half-life of %Zn is too short
(56 min). Other isotopes for which the r process is important are "°Ge, 32Se, K,
%Zr, and '?>Sn. The isotope **Ni can be produced either through the s process
(as shown in Figure 13.21) or through the » process (such as through beta decays
beginning with ®*Fe). On the other hand, ®*Zn (the most abundant isotope of zinc)
is produced only through the s process, because r-process beta decays proceeding
along the 4 = 64 line are stopped at stable ®*Ni and cannot reach *Zn.

The heaviest element that can be built up out of s-process neutron captures
is 299Bi; the half-lives of the isotopes beyond 2*’Bi are too short to allow the s
process to continue. The presence in nature of heavier elements such as thorium
or uranium suggests that the 7 process must operate in this region as well.

The r process most likely occurs during supernova explosions, following the
breakdown and implosion of a star that has used up its fusion reserves. In a
very short time, lasting of the order of seconds, the star implodes, produces an
enormous flux of neutrons (perhaps 1032 n/cm?/s), and builds up all elements to
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FIGURE 13.21 A section of the chart of the nuclides (Figure 12.11), showing the s- and r-process paths from °Fe.
Shaded squares represent stable nuclei, and unshaded squares represent radioactive nuclei. Many r-process paths are
possible, as the short-lived nuclei beta decay; only one of those possible paths is shown. All the nuclei in the r-process
path are unstable and may beta decay toward the stable nuclei.



432 Chapter 13 | Nuclear Reactions and Applications

64Cu
108
197mpyg  69mzp,
2
% y\ 198Auh 76As 56\MIn
2 e ]I[

0.2 0.4

E (MeV)

06 038

FIGURE 13.22 Gamma-ray spectrum
following neutron activation of a sam-
ple of human hair. The sample shows
traces of mercury, gold, zinc, cop-
per,arsenic, antimony, and manganese.
[From D. DeSoete et al., Neutron Acti-
vation Analysis (Wiley Interscience,
1972).]

about 4 = 260. When the final explosion occurs, these elements are hurled out
into space, to become part of new star systems. The heavy atoms of which the
Earth is made may have been produced in such an explosion.

13.7 APPLICATIONS OF NUCLEAR PHYSICS

In this chapter, we have discussed how fission and fusion reactions can be used
to generate electrical power, and in the previous chapter we discussed how the
radioactive decay of various isotopes can be used to date the historical origin of
material containing those isotopes. These are but a few of the many ways that
nuclear decays and reactions can be applied to the solution of practical problems.
In this section we discuss briefly some other applications of the techniques of
nuclear physics.

Neutron Activation Analysis

Nearly every radioactive isotope emits characteristic gamma rays, and many
chemical elements can be identified by their gamma ray spectra. For example,
when *°Co (the only stable isotope of cobalt) is placed in a flux of neutrons (such
as is found near the core of a reactor), neutron absorption results in the production
of the radioactive isotope ®*Co, which beta decays with a half-life of 5.27 years.
Following the beta decay, °“Ni emits two gamma rays of energies 1.17 MeV and
1.33 MeV and of equal intensity. If we place in a flux of neutrons a material of
unknown composition, and if we observe, following the neutron bombardment,
two gamma rays of equal intensity and energies 1.17 MeV and 1.33 MeV, it is
a safe bet that the unknown sample contained cobalt. In fact, from the rate of
gamma emission we could deduce exactly how much cobalt the material contains,
assuming that we know the neutron flux and the neutron capture cross section of
39Co. This technique is known as neutron activation analysis, and has been used
in many applications in which the elements are present in such small quantities
that chemical identification is not practical. Typically, neutron activation analysis
can be used to identify elements in quantities of the order of 10~ g, and sensitivity
down to 10712 g is often possible.

Such a sensitive and precise technique finds application in a variety of areas, in
which the chemical composition must be determined for samples that are available
only in microscopic quantities or that must be analyzed in a nondestructive manner.
For example, the chemical composition of various types of pottery can help us
trace the geographical origin of the clay from which they were made; such
analyses of pottery shards can trace the trading routes of prehistoric people.
Art forgeries can be detected by a knowledge of the chemical composition of
paints, because techniques for producing pigments have changed over the last
four centuries with corresponding changes in the level of impurities in paints. The
chemical analysis of tiny quantities of material such as paint, gunshot residues,
soil, or hair can provide important evidence in criminal investigations. Neutron
activation analysis of samples of the hair of such historical figures as Napoleon
or Newton has revealed the chemicals to which they were exposed centuries ago.
An example of a neutron activation analysis study of a sample of hair is shown in
Figure 13.22.
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Medical Radiation Physics

One of the most important applications of nuclear physics has been in medicine,
for both diagnostic and therapeutic purposes. The use of X rays for producing
images for medical diagnosis is well known, but X rays are of limited value. They
show distinct and detailed images of bones, but they are generally less useful
in making images of soft tissue. Radioactive isotopes can be introduced into the
body in chemical forms that have an affinity for certain organs, such as bone
or the thyroid gland. A sensitive detector (called a “gamma-ray camera”) can
observe the radiations from the isotopes that are concentrated in the organ and can
produce an image that shows how the activity is distributed in the patient. These
detectors are capable of determining where each gamma-ray photon originates
in the patient. Figure 13.23 shows an image of the brain, taken after the patient
was injected with the radioactive isotope *Tc (7, ;2 = 6h). The images clearly
show an area of the brain where the activity has concentrated. Ordinarily the brain
does not absorb impurities from the blood, so such concentrations often indicate
a tumor or other abnormality.

Another technique that reveals a wealth of information is positron emission
tomography (PET), in which the patient is injected with a positron-emitting isotope
that is readily absorbed by the body. Examples of isotopes used are O (¢, n=
2 min), ®N (= 10 min), ''C (= 20 min), and '$F (#/, = 110 min). These
isotopes are produced with a cyclotron, and because of the short half-lives the
cyclotron must be present at the site of the diagnostic facility. When a positron
emitter decays, the positron quickly annihilates with an electron and produces
two 511-keV gamma rays that travel in opposite directions. By surrounding the
patient with a ring of detectors, it is possible to determine exactly where the decay
occurred, and from a large number of such events, the physician can produce an
image that reconstructs the distribution of the radioisotope in the patient. One
advantage of the PET scan over X-ray techniques such as the CAT (computerized
axial tomography) scan is that it can produce a dynamic image——changes in the
patient during the measuring time can be observed. Figure 13.24 shows a brain
scan of a patient who was injected with glucose labeled with '8F. Active areas of
the brain metabolize glucose more rapidly, and so they become more concentrated
with 13F, allowing medical workers to observe regions of the brain associated
with different mental activities.

Radiation therapy takes advantage of the effect of radiations in destroying
unwanted tissue in the body, such as a cancerous growth or an overactive thyroid
gland. The effect of the passage of radiation through matter is often to ionize the

FIGURE 13.24 PET scan showing different areas of the brain that are active
when either hearing words or seeing words.

(a)

(b)

FIGURE 13.23 Scintillation camera
image of the brain, following intra-
venous injection of 20 mCi of *™Tc.
(a) Side view, with the patient’s face
to the left. (b) Back view. The bright
circular spot shows concentration of
blood in a lesion, possibly a tumor.
Other bright areas show the scalp and
the major veins.
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Rosalyn Yalow (1921-2011, United
States). After receiving her Ph.D. in
nuclear physics, she researched the
medical applications of radioactive
isotopes. Yalow developed the tech-
nique of radioimmunoassay, which
uses radioactive tracers to measure
small amounts of substances in the
blood or other fluids. Her develop-
ment of this technique was recognized
with the award of the Nobel Prize in
medicine in 1977.

atoms. The ionized atoms can then participate in chemical reactions that lead to
their incorporation into molecules and subsequent alteration of their biological
function, possibly the destruction of a cell or the modification of its genetic
material. For example, an overactive thyroid gland is often treated by giving the
patient radioactive '3'I, which collects in the thyroid. The beta emissions from
this isotope damage the thyroid cells and ultimately lead to their destruction.
Certain cancers are treated by implanting needles or wires containing radium or
other radioactive substances. The decays of these radioisotopes cause localized
damage to the cancerous cells.

Other cancers can be treated using beams of particles that cause nuclear
reactions within the body at the location of the tumor. Pions and neutrons are
used for this purpose. The absorption of a pion or a neutron by a nucleus causes
a nuclear reaction, and the subsequent emission of particles or decays by the
reaction products again causes local damage that is concentrated at the site of the
tumor, inflicting maximum damage to the tumor and minimum damage to the
surrounding healthy tissue.

Alpha-Scattering Applications

Radioactive sources emitting alpha particles have been used in a variety of
applications. Most of these take advantage of the persistence of radioactive
decay—the decays can be depended upon to occur at a fixed rate in any location.

Alpha particles from radioactive decay can be absorbed and their energy
converted into another form, such as electrical power obtained through
thermoelectric conversion. The power levels are not large (of the order of 1 W per
gram of material; see Problem 31), but they are sufficient to power many devices,
from cardiac pacemakers to the Voyager spacecraft, which photographed Jupiter,
Saturn, and Uranus.

Scattering of alpha particles emitted by a radioactive source is the basis of
operation of ionization-type smoke detectors; alpha particles from the decay of
241 Am are scattered by the ionized atoms that result from combustion. When the
smoke detector senses a decrease in the rate at which alphas are counted (due to
some of them being scattered away from the detector), the alarm is triggered.

Other applications of alpha-particle scattering are used for materials analysis.
In Rutherford backscattering, the analysis uses the reduction in energy of an alpha
particle that is scattered through an angle of 180°. Although our discussion of
Rutherford scattering in Chapter 6 assumed that the target nucleus was infinitely
heavy and thus acquired no energy in the scattering, in practice a small amount of
energy is given even to a heavy nucleus. By allowing the target nucleus to recoil,
we can find the loss in energy AK of an alpha particle of kinetic energy K that
scatters through 180° (see Problem 29):

(13.16)

|: 4m/M ]
AK =K

(1 +m/M)>

where m is the mass of the alpha particle and M is the mass of the target nucleus.
For a heavy nucleus (m/M = 0.02), the loss in energy is of order 0.5MeV,
which is easily measurable. Figure 13.25 shows a sample of the spectrum of
alpha particles backscattered from a thin foil containing copper, silver, and gold.
Note the Z? dependence of the scattering probability that characterizes Rutherford
scattering (see Eq. 6.14), and also note the sensitivity of the technique even to the
two naturally occurring isotopes of copper. (However, the two isotopes of silver
cannot be resolved.) The Surveyor spacecraft that landed on the Moon and the
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FIGURE 13.25 Backscattering spectrum of 2.5-MeV « particles from a thin
film of copper, silver, and gold. The dashed line shows the Z? behavior of the
cross section expected from the Rutherford formula. Note the appearance of the
two isotopes of copper. [From M.-A. Nicolet, J. W. Mayer, and 1. V. Mitchell,
Science 177, 841 (1972). Copyright ©1972 by the AAAS.]

Viking landers on Mars carried Rutherford backscattering experiments to analyze
the chemical composition of the surface of those bodies.

Superheavy Elements

The known atoms beyond uranium (Z = 92) are all radioactive, with half-lives
short compared with the age of the Earth. They are therefore not present in
terrestrial matter, but they can be produced in the laboratory. The production
process for the series of elements beginning with neptunium (Z = 93), called
transuranic elements, follows the same process outlined in Section 13.6: neutron
capture followed by beta decay. Using similar techniques researchers have
produced elements up to Z = 100 (fermium). Beyond this point, too few atoms
are produced for neutron capture to reveal the presence of the next element.
Instead, reactions with accelerated charged particles are used.

Many of the elements in this series have half-lives of only minutes or seconds,
and thus the production and identification of these elements requires painstaking
experimental efforts—the isotopes are often produced in quantities of a few
atoms! Although most of these elements have not been produced in sufficient
quantity to study their chemical properties, it is expected that their place in the
periodic table will be as shown in Figure 13.26, up to the inert gas with Z = 118.
All elements up to 118 have been observed (although names for elements beyond
Z = 112 have not yet been chosen—the symbols shown in Figure 13.26 represent
placeholder names).

The extreme instability of these transuranic elements results from the increased
Coulomb repulsion of the nuclear protons as Z increases; these elements decay
by alpha decay or by spontaneous fission. However, strong theoretical evidence
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FIGURE 13.26 New massive elements in the periodic table.

suggests that elements around Z = 114, N = 184 should be stable against alpha
decay, beta decay, and spontaneous fission. This region around element 114 is
often called the “island of stability.”

Although the production and observation of nuclei of such superheavy elements
are not likely to have any immediate applications, their study would be of great
interest to test our understanding of the ordering of the periodic table, and the
comparison of their chemical and physical properties with those of the 54 and 6p
elements would be a test of our ordering of the elements. Many of the artificially
produced transuranic elements have already found applications in research and
technology. The alpha decays of 2>*Pu and 2°Pu have been used as power sources
for spacecraft, and *'Am serves as an alpha source for smoke detectors. The
radioisotope >*Cf decays by spontaneous fission; the neutrons released in the
decay have many applications, including medical treatment and materials analysis.
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10.

11.

12.

The cross sections for reactions induced by protons gener-
ally increase as the kinetic energy of the proton increases,
while cross sections for neutron-induced reactions gener-
ally decrease with increasing neutron energy. Explain this
behavior.

Cross sections for reactions induced by thermal neutrons
(K ~ kT, where T is room temperature) are often several
orders of magnitude larger than cross sections for the same
reaction induced by fast neutrons (K ~ MeV). Justify this
difference by comparing the time spent in the vicinity of a
target nucleus by a thermal neutron and a fast neutron.
When two nuclei approach one another in a nuclear reac-
tion, there is a Coulomb repulsion between them. Does this
potential energy affect the kinematics of the reaction? Does
it affect the cross section?

The most abundant component of our atmosphere is “N.
Assuming that cosmic rays supply sufficient high-energy
protons and neutrons, explain how the radioactive isotopes
14C and *H can be formed.

Consider the photodisintegration reaction 4 + y — B+ C.
In terms of the binding energies of 4, B, and C, what are the
requirements for this reaction? Would you expect to observe
photodisintegration more readily for light nuclei (4 < 56)
or heavy nuclei (4 > 56)?

Would you expect to observe the radiative capture of an
alpha particle X + a — X’ + y for heavy nuclei?

In what sense is photodisintegration (see Question 5) the
inverse of radiative capture (see Question 6)? How are the
photon energies related?

Comment on the following statement: The fission reaction
is useful for energy production because of the large kinetic
energies given to the neutrons emitted following fission.
2381 is fissionable, but only with neutrons in the MeV range.
Explain why 23U is not a suitable reactor fuel.

What is the difference between a slow neutron and a delayed
neutron? Between a fast neutron and a prompt neutron?

In a typical fission reaction, which fragment (heavier or
lighter) has the larger kinetic energy? The larger momen-
tum? The larger speed?

When charged particles travel in a medium faster than light
travels in that medium, Cerenkov radiation is emitted. This
is the origin of the blue glow of the water that surrounds a
reactor core. What might be the identity of these charged

13.1 Types of Nuclear Reactions

1.

(a) *He+ "N — 70+ (c)
(b) °Be+“%He — 2C + (d)

Fill in the missing particle in these reactions:

2TAl+*He —» n+
2cy — BN+4n

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Problems 437

particles from a reactor? What velocities and kinetic energies
do they need to produce Cerenkov radiation? (The index of
refraction of water is 1.33.)

In general, would you expect fission fragments to decay by
positive or negative beta decay? Why?

Among the fission products that build up in reactor fuel
elements is xenon, which has an extremely large neutron
capture cross section (see Section 13.1). What effect does
this buildup have on the operation of the reactor?

Helium has virtually no neutron absorption cross section.
Would helium be a better reactor moderator than carbon,
which has a small but nonzero cross section?

Estimate the number of fissions per second that must occur
in a 1000-MW power plant, assuming a 30% efficiency of
energy conversion.

The fission cross section for 233U for slow neutrons is about
10° times the fission cross section of 233U for slow neutrons,
yet for fast neutrons the fission cross sections of 23°U and
2381 are roughly the same. Explain this effect.

Consider two fragments of uranium fission with atomic
numbers Z and 92 — Z. Estimating their mass numbers as
2.5 times their atomic numbers, find an expression for the
Coulomb potential energy of the two fragments when they
are just touching, and show that this expression is maxi-
mized when the two fragments are identical. Why then is
the fission fragment mass distribution, Figure 13.9, not a
maximum at 4 = 118?

Assume that 23U splits into two fragments with mass num-
bers of 90 and 145, with each fragment having roughly
the same ratio of Z/4 as 23°U. On this basis, explain why
neutrons are emitted in fission.

Why is it necessary to convert a proton to a neutron in the
first step of the proton-proton fusion cycle? Why can’t two
protons fuse directly?

Explain why a fusion reactor requires a high particle density,
a high temperature, and a long confinement time.

In the argument leading to Lawson’s criterion, Eq. 13.15, it
was mentioned that the power necessary to heat the plasma
is proportional to the particle density n, while the power
obtained from fusion is proportional to n*. Explain these
two proportionalities.

Why do radioactive decay power sources use alpha emitters
rather than beta emitters?

In a certain nuclear reaction, outgoing protons are observed
with energies 16.2 MeV, 14.8 MeV, 11.6 MeV, 8.9 MeV, and
6.7 MeV. No energies higher than 16.2 MeV are observed.
Construct a level scheme of the product nucleus.
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13.2

11.

In order to determine the cross section for neutron capture,
you are irradiating a thin gold foil, in the form of a circular
disk of diameter 3.0 mm and thickness 1.81 um, with neu-
trons to produce the reaction n + '7Au — "8Au+ y. By
observing the outgoing gamma-ray photons in a detector,
you determine that the gold decays at a rate of 5.37 x 10° per
second. From an independent measurement, you have deter-
mined the neutron flux to be 7.25 x 10'° neutrons/cm?/s.
What value do you deduce for the cross section for this
reaction?

The element cobalt is commonly used for measuring the
intensity of neutron beams through the reactionn 4+ *Co —
%0Co + y. By observing the radioactive decay of ®*Co, it is
possible to deduce the rate at which it is produced in the
reaction. The cross section for this reaction is 37.0 b. A
thin disk of Co-Al alloy has a diameter of 1.00cm and a
mass of 46 mg; the alloy contains 0.44% Co by weight. With
neutrons spread uniformly over the surface of the foil, it is
concluded that %°Co is produced at the rate of 1.07 x 10'?
per second. What is the rate at which neutrons strike the
target?

A beam of 20.0 A of protons is incident on 2.0 cm? of a
target of 7 Ag of thickness 4.5 um producing the reaction
p+'7Ag — 195Cd + 3n. Neutrons are observed at a rate
of 8.5 x 10° per second. What is the cross section for this
reaction at this proton energy?

A beam of alpha particles is incident on a target of Cu,
resulting in the reaction o + %Cu — 0 Ga + n. Assume the
cross section for the particular alpha energy to be 1.25 b.
The target is in the form of a foil, 2.5 um thick. The beam
has a circular cross section of diameter 0.50 cm and a current
of 7.5 nA. Find the rate of neutron emission.

Radioisotope Production in Nuclear Reactions

A radioactive isotope of half-life 7, , is produced in a nuclear
reaction. What fraction of the maximum possible activity
is produced in an irradiation time of (a) #;,; (b) 2t 3
(c) 41, ,?

List five nuclear reactions, consisting of a light stable projec-
tile nucleus (mass 4 or less) incident on a heavy stable target
nucleus, that can produce the radioactive nucleus >°Co.
Show that Eq. 13.5 is a solution to Eq. 13.4.

The radioisotope '°O (1), = 1225) is used to measure res-
piratory function. Patients inhale the gas, which is made
by irradiating nitrogen gas with deuterons (*H). Consider a
cubical cell measuring 1.24 cm on each edge, which holds
nitrogen gas at a pressure of 2.25 atm and a temperature of
293 K. One face of the cube is uniformly irradiated with a
deuteron beam having a current of 2.05 A. At the chosen
deuteron energy, the reaction cross section is 0.21 b. (a) At
what rate is 1°O produced in the cell? (b) After an irradiation
lasting for 60.0 s, what is the activity of '*O in the cell?
Neutron capture in sodium occurs with a cross section of
0.53 b and leads to radioactive **Na (¢, , = 15h). What is

the activity that results when 1.0 ug of Na is placed in a
neutron flux of 2.5 x 10'3 neutrons/cm?/s for 4.0 h?

13.3 Low-Energy Reaction Kinematics

12.

13.

14.

15.

16.

Derive Eq. 13.14 from Eq. 13.13.

Find the Q value of the reactions:

(a) p+>Mn — *Fe+2n

(b) *He +*“Ar — YK +2H

Find the Q value of the reactions:

(a) °Li4+n — *H+ *He

) p+’H— 2p+n

(¢) 'Li+?H — ®Be+n

In the reaction H + *He — p + “He, deuterons of energy
5.000 MeV are incident on 3He at rest. Both the proton and
the alpha particle are observed to travel along the same
direction as the incident deuteron. Find the kinetic energies
of the proton and the alpha particle.

(a) What is the Q value of the reaction p + *He —
2H + 3He? (b) What is the threshold energy for protons
incident on “He at rest? (¢) What is the threshold energy if
“4He are incident on protons at rest?

13.4 Fission

17.

18.

19.

20.

(@) Find the Q value of the fission decay
24Cf — 2In+'%"In, in which 2*Cf splits in half.
(b) Find the Q value for the more probable fission
process %33Cfis — '$9Xegs + '|9Rugg + 4n. Masses are:
m(1¥"In) = 126.917353 u, m(1°Xe) = 139.921641 u,
m(M°Ru) = 109.914136u.

Find the energy released in the fission of 1.00 kg of uranium
that has been enriched to 3.0% in the isotope 23> U.

We can understand why 233U is readily fissionable, and 233U
is not, with the following calculation. (@) Find the energy
difference between 23U + n and 2°U. We can regard this as
the “excitation energy” of 2°U. (b) Repeat for *8U 4 n and
239U. (¢) Comparing your results for (@) and (b), explain why
235U will fission with very low energy neutrons, while 228U
requires fast neutrons of 1 to 2MeV of energy to fission.
(d) From a similar calculation, predict whether 23 Pu requires
low-energy or higher-energy neutrons to fission.

Find the Q value (and therefore the energy released) in
the fission reaction 2>°U +n — **Rb + #1Cs + 2n. Use
m(**Rb) = 92.922042 u and m('#! Cs) = 140.920046 u.

13.5 Fusion

21.

22.

23.

(a) Calculate the Q value for the six reactions or decays of
the carbon cycle of fusion. (b) By accounting for the electron
masses, show that the total Q value for the carbon cycle is
identical with that of the proton-proton cycle.

Show that the D-T fusion reaction releases 17.6 MeV of
energy.

In the D-T fusion reaction, the kinetic energies of >H and 3H
are small, compared with typical nuclear binding energies.
(Why?) Find the kinetic energy of the emitted neutron.



24.

(a) If a tokamak fusion reactor were able to achieve a con-
finement time of 0.60 s, what minimum particle density is
required? (b) If the reactor were able to achieve 10 times
the density found in part (a), what is the minimum plasma
temperature required for ignition of a self-sustaining fusion
reaction?

13.6 Nucleosynthesis

25.

26.

27.

28.

13.7
29.

30.

31.

Find the energy released when three alpha particles combine
to form 12C.

To what temperature must helium gas be heated before the
Coulomb barrier is overcome and fusion reactions begin?
Trace the path of the s process from the stable isotope Cu
to the stable isotope 7> As, showing the neutron capture and
beta decay processes.

Show how the s process proceeds from stable 8!Br to stable
%Mo.

Applications of Nuclear Physics

An alpha particle of mass m makes an elastic head-on colli-
sion with an atom of mass M at rest. Show that the loss in
kinetic energy of the alpha particle is given by Eq. 13.16.
(a) Calculate the energy loss of a 2.50-MeV alpha particle
after backscattering from an atom of copper, silver, and gold.
Compare your calculated values with the peak energies in
Figure 13.25. (b) Calculate the expected energy difference
between the peaks for the two isotopes of copper and also
for the two isotopes of silver. Explain why the silver peaks
are closer together than the copper peaks. Can you estimate
the relative abundances of the two isotopes of copper from
the figure?

A radioactive source is to be used to produce electrical
power from the alpha decay of 2**Pu (¢, ;2 = 88Y). (a) What
is the Q value for the decay? (b) Assuming 100% conver-
sion efficiency, how much power could be obtained from
the decay of 1.0 g of 238Pu?

General Problems

32.

33.

A small sample of paint is placed in a neutron flux of
3.0 x 10'? neutrons/cm?/s for a period of 2.5 min. At the
end of that period the activity of the sample is found
to include 105 decays/s of >'Ti (ty, =5.8 min) and 12
decays/s °Co (tl/2 = 5.27y). Find the amount, in grams, of
titanium and cobalt in the original sample. Use the following
information: Cobalt is pure **Co, which has a cross section
of 19 b; titanium is 5.25 percent °Ti, which has a cross
section of 0.14 b.

A 2.0-mg sample of copper (69% %Cu,31% %Cu) is
placed in a reactor where it is exposed to a neutron flux

34.

35.

36.

37.

38.

39.

40.
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of 5.0 x 10" neutrons/cm?/s. After 10.0 min the resulting
activities are 72 uCi of %Cu (t,, = 12.7h) and 1.30 mCi
of %Cu (#;,=>5.1 min). Find the cross sections of **Cu
and %Cu.

A beam of neutrons of intensity / is incident on a thin
slab of material of area A, thickness dx, density p, and
atomic weight M. The neutron absorption cross section is o.
(a) What is the loss in intensity d/ of this beam in passing
through the material? (b) A beam of original intensity I,
passes through a thickness x of the material. Show that the
intensity of the emerging beam is I = [je™"°*, where n is
the number of absorber nuclei per unit volume. (¢) Assume
that the total cross section for neutrons incident on copper
is 5.0 b. What fraction of the intensity of a neutron beam
is lost after traveling through copper of thickness 1.0 mm?
1.0cm? 1.0 m?

A reaction in which two particles join to form a single
excited nucleus, which then decays to its ground state by
photon emission, is known as radiative capture. Find the
energy of the gamma ray emitted in the radiative capture
of an alpha particle by "Li. Assume alpha particles of very
small kinetic energy are incident on "Li at rest.

How much energy is required (in the form of gamma-ray
photons) to break up "Li into 3H 4 “He? This reaction is
known as photodisintegration.

The nucleus ''*Cd captures a thermal neutron (K =
0.025eV), producing ''*Cd in an excited state; the excited
state of *Cd decays to the ground state by emitting a
photon. Find the energy of the photon.

When a neutron collides head-on with an atom at rest, the
loss in its kinetic energy is given by Eq. 13.16. (¢) What
fraction of its energy will a neutron lose in a head-on col-
lision with an atom of hydrogen, deuterium, or carbon?
(b) Consider a neutron with an initial energy of 2.0 MeV.
How many head-on collisions must it make with carbon
atoms for its energy to be reduced to the thermal range
(0.025eV)? (c) Is the result of part (b) an underestimate or
an overestimate of the actual number of collisions necessary
to “thermalize” the neutrons? Explain.

Suppose we have 100.0cm® of water, which is 0.015%
D,0. (a) Compute the energy that could be obtained if all
the deuterium were consumed in the 2H +2H — 3H +p
reaction. (b) As an alternative, compute the energy released
if two-thirds of the deuterium were fused to form *H, which
is then combined with the remaining one-third in the D-T
reaction.

(a) Find the Q value of the reaction “He 4+ “He — ®Be.
(b) In a gas of “He at a temperature of 108 K, estimate the
relative amount of ®Be present.






ELEMENTARY PARTICLES

Particle tracks from a head-on collision of two lead ions at the Large Hadron Collider at
CERN. Thousands of product particles are produced in each collision. As they travel outward
from the collision site at the center, their energy loss and the curvature of their path in a
magnetic field help to identify the particles. The goal of this experiment is to produce a
“soup’’ of quarks and gluons, which is believed to characterize the universe just
microseconds after the Big Bang.
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The search for the basic building blocks of nature has occupied the thoughts of
scientific investigators since the Greeks introduced the idea of atomism 2500 years
ago. As we look carefully at complex structures, we find underlying symmetries
and regularities, that help us to understand the laws that determine how they
are put together. The regularities of crystal structure, for example, suggest to us
that the atoms of which the crystal is composed must follow certain rules for
arranging themselves and joining together. As we look more deeply, we find that
although nature has constructed all material objects out of roughly 100 different
kinds of atoms, we can understand these atoms in terms of only three particles:
the electron, proton, and neutron. Our attempts to look further within the electron
have been unsuccessful—the electron seems to be a fundamental particle, with
no internal structure. However, when nucleons collide at high energy, the result
is more complexity rather than simplicity; hundreds of new particles can emerge
as products of these reactions. If there are hundreds of basic building blocks, it
seems unlikely that we could ever uncover any fundamental dynamic laws of their
behavior. However, experiments show a new, underlying regularity that can be
explained in terms of a small number of truly fundamental particles called quarks.

In this chapter, we examine the properties of many of the particles of physics, the
laws that govern their behavior, and the classifications of these particles. We also
show how the quark model helps us to understand some properties of the particles.

14.1 THE FOUR BASIC FORCES

All of the known forces in the universe can be grouped into four basic types.
In order of increasing strength, these are: gravitation, the weak interaction,
electromagnetism, and the strong interaction.

1. The Gravitational Interaction Gravity is of course exceedingly important
in our daily lives, but on the scale of fundamental interactions between particles
in the subatomic realm, it is of no importance at all. To give a relative figure,
the gravitational force between two protons just touching at their surfaces is
about 10738 of the strong force between them. The principal difference between
gravitation and the other interactions is that, on the practical scale, gravity is
cumulative and infinite in range. Tiny gravitational interactions, such as the force
exerted by one atom of the Earth on one atom of your body, combine to produce
observable effects. The other forces, while much stronger than gravity at the
microscopic level, do not affect objects on the large scale, either because they
have a short range (the strong and weak forces) or their effect is negated by
shielding (electromagnetism).

2. The Weak Interaction The weak interaction is responsible for nuclear beta
decay (see Section 12.8) and other similar decay processes involving fundamental
particles. It does not play a major role in the binding of nuclei. The weak force
between two neighboring protons is about 10~ of the strong force between them,
and the range of the weak force is on the scale of 0.001 fm. Nevertheless, the
weak force is important in understanding the behavior of fundamental particles,
and it is critical in understanding the evolution of the universe.

3. The Electromagnetic Interaction Electromagnetism is important in the
structure and the interactions of the fundamental particles. For example, some
particles interact or decay primarily through this mechanism. Electromagnetic
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forces are of infinite range, but the shielding effect generally diminishes their
effect for ordinary objects. Many common macroscopic forces (such as friction,
air resistance, drag, and tension) are ultimately due to electromagnetic forces at the
atomic level. Within the atom, electromagnetic forces dominate. The electromag-
netic force between neighboring protons in a nucleus is about 1072 of the strong
force, but within the nucleus the electromagnetic forces can act cumulatively
because there is no shielding. As a result, the electromagnetic force can compete
with the strong force in determining the stability and the structure of nuclei.

4. The Strong Force The strong force, which is responsible for the binding of
nuclei, is the dominant one in the reactions and decays of most of the fundamental
particles. However, as we shall see, some particles (such as the electron) do not
feel this force at all. It has a relatively short range, on the order of 1 fm.

The relative strength of a force determines the time scale over which it acts. If
we bring two particles close enough together for any of these forces to act, then
a longer time is required for the weak force to cause a decay or reaction than for
the strong force. As we shall see, the mean lifetime of a decay process is often
a signal of the type of interaction responsible for the process, with strong forces
being at the shortest end of the time scale (often down to 10723 s). Table 14.1
summarizes the four forces and some of their properties.

Particles can interact with one another in decays and reactions through any
of the basic forces. Table 14.1 indicates which particles can interact through
each of the four forces. All particles can interact through the gravitational and
weak forces. A subset of those can interact through the electromagnetic force (for
example, the neutrinos are excluded from this category), and a still smaller subset
can interact through the strong force. When two strongly interacting particles are
within the range of each other’s strong force, we can often neglect the effects
of the weak and electromagnetic forces in decay and reaction processes; because
their relative strengths are so much smaller than that of the strong force, their
effects are much smaller than those of the strong force. (However, these forces
are not always negligible—the weak interaction between protons is responsible
for a critical step in one of the fusion processes that occurs in stars.)

Even though the proton is a strongly interacting particle, a proton and an
electron will never interact through the strong force. The electron is able to ignore
the strong force of the proton and respond only to its weak or electromagnetic
force.

Each of the four forces can be represented in terms of the emission or
absorption of particles that carry the interaction, just as we represent the
force between nucleons in the nucleus in terms of the exchange of pions (see
Section 12.4). Associated with each type of force is a field that is carried by its
characteristic particle, as shown in Table 14.2.

TABLE 14.1 The Four Basic Forces

Type Range Relative Strength Characteristic Time Typical Particles
Strong 1 fm 1 < 107225 7,K,n,p
Electromagnetic 00 102 10714 - 1020 e, uw,m,K,n,p
Weak 1073 fm 1077 1078 — 10755 All
Gravitational 0 10738 Years All
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TABLE 14.2 The Field Particles

Force Field Particle Symbol Charge (e) Spin (%) Rest Energy (GeV)
Strong Gluon g 0 1 0
Electromagnetic Photon y 0 1 0
W+, W- +1 1 80.4
Weak Weak b ;
ea eak boson 70 0 ) 912
Gravitational Graviton 0 2 0

* The strong force between quarks is carried by particles called gluons,
which have been observed through indirect techniques.

* The electromagnetic force between particles can be represented in terms
of the emission and absorption of photons.

+ The weak force is carried by the weak bosons W* and Z°, which are
responsible for processes such as nuclear beta decay. For example, the
beta decay of the neutron (a weak interaction) can be represented as

n—>p+W"~ followed by W™ —=e 47,

Because the decay n — p + W~ would violate energy conservation, the
existence of the W™ is restricted by the uncertainty principle, and its range
can be determined in a manner similar to that of the pion (see Eq. 12.8).

* The gravitational force is carried by the graviton, which is expected to
exist based on theories of gravitation but has not yet been observed.

14.2 CLASSIFYING PARTICLES

One way of studying the elementary particles is to classify them into different
categories based on certain behaviors or properties and then to look for similarities
or common characteristics among the classifications. We have already classified
some particles in Table 14.1 according to the types of forces through which they
interact. Another way of classifying them might be according to their masses.
In the early days of particle physics, it was observed that the lightest particles
(including electrons, muons, and neutrinos) showed one type of behavior, the
heaviest group (including protons and neutrons) showed a different behavior, and
a middle group (such as pions and kaons) showed a still different behavior. The
names originally given to these groups are based on the Greek words for light,
middle, and heavy: leptons for the light particles, mesons for the middle group,
and baryons for the heavier particles. Even though the classification by mass is
now obsolete (leptons and mesons have been discovered that are more massive
than protons or neutrons), we keep the original names, which now describe instead
a group or family of particles with similar properties. When we compare our first
two ways of classifying particles, we find an interesting result: The leptons do not
interact through the strong force, but the mesons and baryons do.

We can also classify particles by their intrinsic spins. Every particle has an
intrinsic spin; you will recall that the electron has a spin of 1», as do the proton and
neutron. We find that the leptons all have spins of !>, the mesons all have integral
spins (0, 1,2, ...), and the baryons all have half-integral spins (1/2, 3/2, 5/2, . ..).



Antiparticles

One additional property that is used to classify a particle is the nature of its
antiparticle.* Every particle has an antiparticle, which is identical to the particle
in such properties as mass and lifetime, but differs from the particle in the sign of
its electric charge (and in the sign of certain other properties, as we discuss later).
The antiparticle of the electron is the positron e™, which was discovered in the
1930s through reactions initiated by cosmic rays. The positron has a charge of +¢
(opposite to that of the electron) and a rest energy of 0.511 MeV (identical to that
of the electron). The antiproton p was discovered in 1956 (see Example 2.18); it
has a charge of —e and a rest energy of 938 MeV. A stable atom of antihydrogen
could be constructed from a positron and an antiproton; the properties of this atom
would be identical to those of ordinary hydrogen.

Antiparticles of stable particles (such as the positron and the antiproton)
are themselves stable. However, when a particle and its antiparticle meet, the
annihilation reaction can occur: the particle and antiparticle both vanish, and
instead two or more photons can be produced. Conservation of energy and
momentum requires that, neglecting the kinetic energies of the particles, when
two photons are emitted each must have an energy equal to the rest energy of the
particle. Examples of annihilation reactions are:

e +et >y +y, (E,=E,=0511MeV)
ptp—=>n+r. (E, =E,=938MeV)

We call the kind of stuff of which we are made matfer and the other kind of
stuff antimatter. There may indeed be galaxies composed of antimatter, but we
cannot tell by the ordinary techniques of astronomy, because light and antilight
are identical! To put it another way, the photon and antiphoton are the same
particle, so matter and antimatter emit the same photons. The only way to tell the
difference is by sending a chunk of our matter to the distant galaxy and seeing
whether or not it is annihilated with the corresponding emission of a burst of
photons. (It is indeed possible, but kighly unlikely, that the first astronaut to travel
to another galaxy may suffer such a fate! The first intergalactic handshake would
indeed be quite an event!)

In our classification scheme it is usually easy to distinguish particles from
antiparticles. We begin by defining particles to be the stuff of which ordinary mat-
ter is made—electrons, protons, and neutrons. Ordinary matter is not composed of
neutrinos, so we have no basis for distinguishing a neutrino from an antineutrino,
but the conservation laws in the beta decay process can be understood most easily
if we define the antineutrino to be the particle that accompanies negative beta
decay and the neutrino to be the particle that accompanies positron decay and
electron capture. For a heavy baryon, such as the A (lambda), we take advantage
of its radioactive decay, which leads eventually to ordinary protons and neutrons;
that is, the A is the particle that decays to n, and the A (“anti-lambda”) therefore
decays to 0. Similarly, in the case of the leptons, the .+~ and the u™ are antiparti-
cles of one another; because ;= decays to ordinary e~ (and has many properties
in common with the electron) it is the particle, while u™ is the antiparticle.

*We use two systems to indicate antiparticles. Sometimes the symbol for the particle will be written
along with the electric charge to indicate particle or antiparticle, as, for example, e and e, or u*
and p~. Other times the antiparticle will be written with a bar over the symbol—for example, v and
vorpandp.
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Three Families of Particles

Table 14.3 summarizes the three families of material particles.

Leptons The leptons interact only through the weak or electromagnetic inter-
actions. No experiment has yet been able to reveal any internal structure for the
leptons; they appear to be truly fundamental particles that cannot be split into still
smaller particles. All known leptons have spin 1.

Table 14.4 shows the six known leptons, grouped as three pairs of particles.
Each pair includes a charged particle (e~, u~, t~) and an uncharged neutrino
(ve» vy, V). Each lepton has a corresponding antiparticle. We have already
discussed the electron neutrino and antineutrino in connection with beta decay
(Section 12.8), and the decay of cosmic-ray muons was discussed as confirming
the time dilation effect in special relativity (Section 2.4). The neutrino masses
are very small but nonzero. The rest-energy limits shown in Table 14.4 come
from attempts at direct measurement, but indirect evidence from astrophysics and
cosmology suggests that the rest energies of all three neutrinos are less than 1 eV.

Mesons Mesons are strongly interacting particles having integral spin. A partial
list of some mesons is given in Table 14.5. Mesons can be produced in reactions
through the strong interaction; they decay to other mesons or leptons through the
strong, electromagnetic, or weak interactions. For example, pions can be produced
in reaction of nucleons, such as

p+n—>p+p+m or p—l—n—>p~|—n—i—7t0
TABLE 14.3 Families of Particles
Family Structure Interactions Spin Examples
Leptons Fundamental Weak, electromagnetic Half integral e,V
Mesons Composite Weak, electromagnetic, strong Integral w, K
Baryons Composite Weak, electromagnetic, strong Half integral p,n
TABLE 14.4 The Lepton Family
Particle Spin Rest Energy Mean Life Typical Decay
Particle Antiparticle Charge (e) (h) (MeV) (s) Products
e~ et -1 ! 0.511 00
Ve R 0 % <2eV 00
w- wt —il : 105.7 22 %1076 e+ V.4,
v, v, 0 : <0.19 o0
T Tt -1 3 1777 29 %1071 wo+v, +,
v, v, 0 : <18 00




TABLE 14.5 Some Selected Mesons
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Charge* | Spin Rest Energy | Mean Life Typical Decay
Particle | Antiparticle (e (h) Strangeness* (MeV) (s) Products
at T~ +1 0 0 140 2.6 x 1078 ut+v,
0 0 0 0 0 135 8.4 x 10717 y+y
K+ K~ +1 0 +1 494 1.2x 1078 ut+v,
K° K 0 0 +1 498 0.9 x 10710 AT
n n 0 0 0 548 5.1 x 107" y+vy
ot o~ +1 1 0 775 4.4 x 107 at+ a0
n n' 0 0 0 958 3.2 x 1072 n+nt 4+~
D* D~ +1 0 0 1869 1.0x 10712 | K- +xt 47"
Iy Iy 0 1 0 3097 7.1 x 1072 et +e”
B+ B~ +1 0 0 5279 1.6 x107"2 | D™ 47" 47~
T T 0 1 0 9460 1.2 x 10720 et +e”

*The charge and strangeness are those of the particle. Values for the antiparticle have the opposite sign. The spin, rest energy, and

mean life are the same for a particle and its antiparticle.

and the pions can decay according to

(mean life = 2.6 x 1073 s)

(mean life = 8.4 x 10717 s)

71’—>,uf+ﬁu
7>y +y

The first decay is caused by the weak interaction (indicated by the lifetime and by
the presence of a neutrino among the decay products) and the second is caused by
the electromagnetic interaction (indicated by the lifetime and the photons).

Because mesons are not observed in ordinary matter, the classification into
particles and antiparticles is somewhat arbitrary. For the charged mesons such as
7T and 7~ or K and K~, which are not part of ordinary matter, the positive and
negative particles are antiparticles of one another but there is no way to choose
which is matter and which is antimatter. For some uncharged mesons (such as 7°
and 1) the particle and antiparticle are identical, while for others (such as K® and
KO) they may be distinct.

Baryons The baryons are strongly interacting particles with half-integral spins
(Y2, 3/2,...). A partial listing of some baryons is given in Table 14.6. Like the
leptons, the baryons have distinct antiparticles. Like the mesons, the baryons
can be produced in reactions with nucleons through the strong interaction; for
example, the A? baryon can be produced in the following reaction:

p+p—p+A’+K"
The A° then decays through the weak interaction according to

A0 — p+m~ (mean life = 2.6 x 10710 S)
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TABLE 14.6 Some Selected Baryons

Charge* Spin Rest Energy | Mean Life | Typical Decay
Particle | Antiparticle (e) () | Strangeness* (MeV) (s) Products
p p +1 3 0 938 00
n f 0 : 0 940 886 p+e +7,
A° A’ 0 ! -1 1116 26x1070 | pym-
o+ = +1 1 -1 1189 8.0 x 1071 p+ 7
0 bk 0 1 1 1193 74x10720 [ A4y
- T -1 : -1 1197 1.5 x 10710 n+ 7
=0 g’ 0 L —2 1315 29x10710 [ A% 450
o B -1 : -2 1322 L6x 1071 | A4z~
A* A* +2,+1,0,—1 | 3 0 1232 5.6 x 10724 p+m
i ph +1,0,—1 3 -1 1385 1.8 x 10723 A+
g+ 2 —-1,0 3 -2 1533 7.2 x 10723 E+m
Q- Q -1 3 -3 1672 82x 107! A"+ K-

*The charge and strangeness are those of the particle. Values for the antiparticle have the opposite sign. The spin, rest energy, and
mean life are the same for a particle and its antiparticle.

Even though neutrinos are not produced in this decay process, the lifetime
indicates that the decay proceeds through the weak interaction. Other baryons
can be identified in Table 14.6 that decay through the strong, electromagnetic, or
weak interactions.

14.3 CONSERVATION LAWS

In the decays and reactions of elementary particles, conservation laws provide a
way to understand why some processes occur and others are not observed, even
though they are expected on the basis of other considerations. We frequently
use the conservation of energy, linear momentum, and angular momentum in our
analysis of physical phenomena. These conservation laws are closely connected
with the fundamental properties of space and time; we believe those laws to be
absolute and inviolable.

We also use other kinds of conservation laws in analyzing various processes.
For example, when we combine two elements in a chemical reaction, such as
hydrogen + oxygen — water, we must balance the reaction in the following way:

2H, 4+ 0, — 2H,0

The process of balancing a reaction can also be regarded as a way of accounting for
the electrons that participate in the process: A molecule of water contains 10 elec-
trons, and so the atoms that combine to make up the molecule must likewise include
10 electrons.



In nuclear processes, we are concerned not with electrons but with protons and
neutrons. In the alpha decay of a nucleus, such as

235 231 4
92U143 = 750Thyy; +5He,
or in a reaction such as
63 63
P+ 20Cusy — 3Zn33 +n

we balance the number of protons and also the number of neutrons. We might
be tempted to conclude that nuclear processes conserve both proton number
and neutron number, but the separate conservation laws are not satisfied in beta
decays, for example

n—>p+e +7v,

which does not conserve either neutron number or proton number. However, it
does conserve the total neutron number plus proton number, which is equal to 1
both before and after the decay. (This conservation law of total nucleon number
includes the separate laws of conservation of proton number and neutron number
as a special case.)

Lepton Number Conservation

In negative beta decay we always find an antineutrino emitted, never a neutrino.
Conversely, in positron beta decay, it is the neutrino that is always emitted. We
account for these processes by assigning each particle a lepfon number L. The
electron and neutrino are assigned lepton numbers of +1, and the positron and
antineutrino are assigned lepton numbers of —1; all mesons and baryons are
assigned lepton numbers of zero. Lepton number conservation in positive and
negative beta decay then works as follows:

n—-p+ ¢ + v
L:0— 0+ 1 + (=1
p—>n+ et +
L:0 — 0+ (=) + 1

You can see that the total lepton number is 0 both before and after these decays,
which accounts for the appearance of the antineutrino in negative beta decay and
the neutrino in positron decay.

According to the lepton conservation law, these processes are forbidden:

e +p—>n+ v
L: 1 +0— 0+ (=1

p— e +y
L:0—- -1+ 0

In keeping track of leptons, we must count each type of lepton (e, u, 7)
separately. Evidence for this comes from a variety of experiments. For example,
the distinction between electron-type and muon-type leptons is clear from an
experiment in which a beam of muon-type antineutrinos is incident on a target of
protons:

v, +p—>n+put
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Emmy Noether (1882-1935, Ger-
many-United States). Known both
as a mathematician and a theoreti-
cal physicist, she explored the role
of conservation laws in physics. In
an important result now known as
Noether’s theorem, she discovered
that each symmetry of the mathe-
matical equations describing a phe-
nomenon gives a conserved quan-
tity. For example, the symmetry
of equations to translations in time
leads to conservation of energy,
and the invariance to translations in
space leads to conservation of linear
momentum.
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If there were no difference between electron-type and muon-type leptons, the
following reaction would be possible: v, +p — n+ et. However, this outcome
is never observed, which indicates the distinction between the two types of leptons
and the need to account separately for each type.

Another example of the difference between the types of leptons comes from
the failure to observe the decay u~ — e~ + y. If there were only one common
type of lepton number, this decay would be possible. The failure to observe this
decay (in comparison with the commonly observed decay u= — e~ + v, +v,,
which conserves both muon-type and electron-type lepton number) suggests the
need for the different kinds of lepton numbers. We call these lepton numbers
Le,L,, and L., and we have the following conservation law for leptons:

In any process, the lepton numbers for electron-type leptons, muon-type
leptons, and tau-type leptons must each remain constant.

The following examples illustrate the conservation of these lepton numbers.

vV, + p — e + n
L.: -1 4+ 0 - -1 4+ 0
v, + n —- u +p
L, 1.+ 0 - 1 +0
o= e+ v + oy,
L.: 0 - 1 + (=) + 0
L, 1 - 0 + 0 + 1
T u o+ v,
L,: 0 - 1 4+ (=1

Studying these examples, we can understand why sometimes neutrinos appear
and sometimes antineutrinos appear.

Baryvyon Nlumber Conservation

Baryons are subject to a similar conservation law. All baryons are assigned a
baryon number B = +1, and all antibaryons are assigned B = —1. All nonbaryons
(mesons and leptons) have B = 0. We then have the law of conservation of baryon
number:

In any process, the total baryon number must remain constant.

(The conservation of nucleon number A4 is a special case of conservation of
baryon number, in which all the baryons are nucleons. In particle physics, it is
customary to use B instead of 4 to represent all baryons, including the nucleons.)
No violation of the law of baryon conservation has ever been observed, although
the Grand Unified Theories (see Section 14.8) suggest that the proton can decay
in a way that would violate conservation of baryon number.

As an example of conservation of baryon number, consider the reaction that
was responsible for the discovery of the antiproton:

p+tp—>p+p+p+p

On the left side, the total baryon number is B = 42. On the right side, we
have three baryons with B = 41 and one antibaryon with B = —1, so the
total baryon number is B = 42 on the right side also. On the other hand, the



reaction p + p — p + p + n violates baryon number conservation and is therefore
forbidden.

Strangeness Conservation

The number of mesons that can be created or destroyed in decays or reactions
is not subject to a conservation law like the number of leptons or baryons. For
example, the following reactions can be used to produce pions:

p+p—p+n+na’ p+p—p+n+rt4+7°
p+p—p+p+n’ p+p—>p+p+rat+n-

As long as enough energy is available, any number of pions can be produced in
these reactions.

If we try the same type of reaction to produce K mesons, a different type of
behavior is observed. The reactionsp+p — p+n+K andp+p — p+p +K°
never occur, even though the incident proton is given enough energy to produce this
particle. We do, however, observe reactions suchasp +p — p+n+ K" + K and
p+p— p+p+K"+ K™, which are very similar to the reactions that produce
two pions. Why do reactions producing = mesons give any number (odd or even)
but reactions producing K mesons give them only in pairs?

Here’s another example of this unusual behavior. The reaction 7= +p —
7t + T~ conserves electric charge and baryon number and so would be expected
to occur, but it does not. Instead, the following reaction is easily observed:
7~ +p— K"+ 27, Usually when we fail to observe a reaction or decay
process that is expected to occur, we look for the violation of some conservation
law such as electric charge or baryon number. Is there a new conserved quantity
whose violation prohibits the reaction from occurring?

There are also decay processes that suggest that our labeling of the particles is
incomplete. The uncharged 1 and 7° mesons decay very rapidly (1076 — 10~1% 5)
into two photons; on the basis of the systematic behavior of mesons, we would
expect the K° to decay similarly to two photons in a comparable time. The
observed decay of the K° takes place much more slowly (107! s); moreover, the
decay products are not photons, but 7 mesons and leptons. Is a new conservation
law responsible for restricting the decay of the K°?

As a final example of the need for a new conservation law, the heavy charged
mesons are all strongly interacting particles, and we expect them to decay into
the lighter mesons through the strong interaction with very short lifetimes. For
example, the decay p* — 7+ + 70 occurs in a lifetime of about 10733 s. But
the decay K™ — 7™ + 7% occurs very slowly, in a time of the order of 108 s,
and in fact the different decay mode K™ — put + v, is more probable. What is
responsible for slowing the decay of the K meson by 15 orders of magnitude?

These unusual behaviors are explained by the introduction of a new conserved
quantity. This quantity is called the strangeness S, and we can use it to explain
the properties of the K-meson decays. The K® and K™ are assigned strangeness of
S = +1; the & mesons and leptons are nonstrange particles (S = 0). The decay
K® — y + y, which is an electromagnetic decay (as indicated by the photons), is
forbidden because the electromagnetic interaction conserves strangeness (S = +1
on the left, S = 0 on the right). The decay K* — 7+ 4 7 does not occur in the
typical strong interaction time of 10~2% s because the strong interaction cannot
change strangeness. It occurs in the typical weak interaction time of 10~® s (and the
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| Example 14.1

corresponding weak interaction decay K* — put + v, occurs as often) because
the weak interaction does not conserve strangeness; decays that are caused by the
weak interaction can change the strangeness by one unit.

We can summarize these results in the law of conservation of strangeness:

In processes governed by the strong or electromagnetic interactions, the
total strangeness must remain constant. In processes governed by the weak
interaction, the strangeness either remains constant or changes by one unit.

The strangeness quantum numbers of the mesons and baryons are given in
Tables 14.5 and 14.6. The strangeness of an antiparticle has the opposite sign to
that of the corresponding particle.

Conservation of strangeness in the strong interaction explains why the K
mesons are always produced in pairs in proton-proton collisions. The protons
and neutrons are non-strange particles (S = 0), so the only way to conserve
strangeness in the collisions that produce K mesons is to produce them in pairs,
always one with S = +1 and the other with § = —1.

The baryons also come in strange and nonstrange varieties. Looking at the
lifetimes in Table 14.6, we see that the A decays into p + 7~ with a lifetime
of about 107! s, while we would expect a strongly interacting particle to decay
to other strongly interacting particles with a lifetime of about 10723 s. If the
strangeness of the A" is assigned as —1, these decays change S and are forbidden
to go by the strong interaction, and so must be due to the weak interaction,
with the characteristic 1070 s lifetime. The strangeness violation also tells us
why the electromagnetic decay A — n+ y does not occur (while the decay
2% — A%+ y does occur, with a typical electromagnetic lifetime of 10~17s). It
also explains why the reaction 7~ +p — 7" + £, which is permitted by all
other conservation laws. is never observed—the initial state has S = 0 and the
final state has § = —1, so it violates strangeness conservation.

The weak interaction can change the strangeness by at most one unit. As
a result, processes such as B - n+ 7% (S= -2 — §=0) are absolutely
forbidden, even by the weak interaction.

The Q7 baryon has S = —3. (@) It is desired to produce the
Q7 using a beam of K™ incident on protons. What other
particles are produced in this reaction? (b) How might the
Q~ decay?

Solution
(a) Reactions usually proceed only through the strong
interaction, which conserves strangeness. We consider the
reaction

Ki+p—>Q +7?
On the left side, we have S = —1,B = +1, and electric

charge O = 0. On the right side, we have S = —3, B = +1,
and QO = —1. We must therefore add to the right side

particles with S =+2, B=0, and Q = +1. Scanning
through the tables of mesons and baryons, we find that we
can satisfy these criteria with K* and K°, so one possible
reaction is

K +p— Q +K"+K°

(b) The Q™ cannot decay by the strong interaction, because
no S = —3 final states are available. It must therefore decay
to particles having S = —2 through the weak interaction,
which can change S by one unit. One of the product parti-
cles must be a baryon in order to conserve baryon number.
Two possibilities are

Q" > A'+K and Q" - E'+n”
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14.4 PARTICLE INTERACTIONS AND DECAYS

In this section we briefly summarize the properties of the elementary particles and
how they are measured.
Atoms and molecules can be taken apart relatively easily and nonviolently,
enabling us to study their structure. However, the elementary particles, most
of which are unstable and do not exist in nature, must be created in violent
collisions. (The particle theorist Richard Feynman once compared this process
with studying fine Swiss watches by smashing them together and looking at the
pieces that emerge from the collision.) For this purpose we need a high-energy
beam of particles and a suitable target of elementary particles. The only strongly
interacting, stable elementary particle is the proton, and thus a hydrogen target is
a logical choice. To get a reasonable density of target atoms, researchers often
use liquid, rather than gaseous, hydrogen.
For a suitable beam, we must be able to accelerate a particle to very high
energies (so that the energy of the particle may be hundreds of times its rest
energy mc?). A stable charged particle is the logical choice for the beam; stability
is required because of the relatively long time necessary to accelerate the particle
to high energies, and a charged particle is required so that electromagnetic fields Richard P. Feynman (1918-1988,
may be used to accelerate the particle. Once again the proton is a convenient United States). Seldom is one person
choice, and thus many particle physics reactions are produced using beams of known for both exceptional insights
high-energy protons. For example, at the Fermi National Accelerator Laboratory into theoretical physics and excep-
(Fermilab) near Chicago protons are accelerated to 1000 GeV (v/c = 0.9999996) tional methods of teaching first-year

around a track of radius 1000 m (Figure 14.1). physics. He received the Nobel Prize
One type of particle physics reaction can thus be represented as for his work on the theory that couples
quantum mechanics to electromag-

p + p — product particles netism, and his text and film Lectures

on Physics give unusual perspectives
to many areas of basic physics for
undergraduates.

FIGURE 14.1 An aerial view of the Tevatron at the Fermi National Accelerator
Laboratory. Beams of protons and antiprotons circulate in opposite directions
around the 1-km ring and collide at two locations, at the upper center and lower
left. (Courtesy Fermi National Accelerator Laboratory.)
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FIGURE 14.2 The production of sec-
ondary particle beams. The magnet
helps to select the mass and momen-
tum of the desired particle.

Among the product particles may be a variety of mesons or even heavier particles
of the baryon family, of which the nucleons are the lightest members. The study
of the nature and properties of these particles is the goal of particle physics.

In many cases, conservation laws restrict the nature of the product particles,
and it would be desirable to have other types of beams available. One possibility
is indicated in Figure 14.2. A proton beam is incident on a target—the nature of
the target is not important. Like Feynman’s Swiss watch parts, many different
particles emerge. By suitable focusing and selection of the momentum, we can
extract a beam of the secondary particles created in the reactions. The particle
must live long enough to be delivered to a second target, which might be tens of
meters away; even if the particle were traveling at the speed of light, it would
need about 107 s to make its journey. Although this is a very short time interval
by ordinary standards, on the time scale of elementary particles, it is a very long
time—in fact, none of the unstable mesons or baryons (except the neutron) lives
that long.

Although our efforts to make a secondary beam would seem to be in vain, we
have forgotten one very important detail. The lifetime of the particle is measured
in its rest frame, while we are observing its flight in the laboratory frame, in
which the particle is moving at speeds extremely close to the speed of light.
The time dilation factor results in a lifetime, observed in our frame of reference,
which might be hundreds of times longer than the proper lifetime. This factor
extends the range of available secondary beams to those particles with lifetimes
as short as 1071”5, and makes it possible to obtain secondary beams to study such
reactions as

7w + p — particles
and
K + p — particles

even though the proper lifetimes of the 7 and K are in the range of 1070 to
1078s.

Detecting Particles

Observing the products of these reactions, which may involve dozens of high-
energy charged and uncharged particles, poses a great technological problem
for the experimenter. The detector must completely surround the reaction area,
so that particles are recorded no matter what direction they travel after the
reaction. The particles must produce visible tracks in the detector, so that their
identity and direction of travel can be determined. The detector must provide
sufficient mass to stop the particles and measure their energy. A magnetic field
must be present, so that the resulting curved trajectory of a charged particle
can be used to determine its momentum and the sign of its charge. Figure 14.3
shows tracks left in a bubble chamber, a large tank filled with liquid hydrogen
in which the passage of a charged particle causes microscopic bubbles resulting
from the ionization of the hydrogen atoms. The bubbles can be illuminated and
photographed to reveal the tracks. Figure 14.4 shows a large detector system
that is used both to display the tracks of particles and to measure their energies;
Figure 14.5 shows a sample of the results that are obtained with this type
of detector.



14.4 | Particle Interactions and Decays 455

FIGURE 14.3 A bubble chamber photograph of a reaction between particles.
At right is shown a diagram indicating the particles that participate in the
reaction. An incident pion collides with a proton in the liquid hydrogen,
producing a K and a A°, both of which subsequently decay. (Photo Courtesy
Lawrence Berkeley National Laboratory.)

FIGURE 14.4 A large detector at the Tevatron at Fer-
milab. The proton and antiproton beams travel along
the central axis of the detector and collide in its interior.
The arches that have been removed on either side are
the calorimeter detectors that in operation are pushed
together so they can record the energies of all parti-
cles that leave the reaction. The inner detectors record
the tracks of the particles. (Courtesy Fermi National
Accelerator Laboratory.)

FIGURE 14.5 A sample of the tracks left by a multitude
of particles from a single proton-antiproton collision
recorded with the detector of Figure 14.4. A magnetic
field causes the tracks to curve; the radius of curvature
determines the momentum of the particle, and the
direction of curvature determines the sign of the charge
of'the particle. The jets are showers of particles resulting
from a quark or antiquark that is produced in the
reaction. In this case the jets come from the top and
antitop quarks. (Courtesy Fermi National Accelerator
Laboratory.)
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FIGURE 14.6 Three possible decays
of an unknown particle into two =
mesons. The direction and momentum
of each 7 meson are indicated.

From a careful analysis of the paths of particles, such as those of Figures 14.3
or 14.5, we can deduce the desired quantities of mass, linear momentum, and
energy. The other important property we would like to know is the lifetime of the
decay of the product particles, because many of the products are often unstable. If
we know the speed of a particle, we can find its lifetime by simply observing the
length of its track in a bubble chamber photograph. (Even for uncharged particles,
which leave no tracks, we can use this method to deduce the lifetime, because the
subsequent decay of the uncharged particle into two charged particles defines the
length of its path rather clearly, as shown in Figure 14.3.)

This method works well if the lifetime is of the order of 1075 or so, such
that the particle leaves a track long enough to be measured (millimeters to
centimeters). With careful experimental technique and clever data analysis, this
can be extended to track lengths of the order of 107°m, and so lifetimes down
to about 107'¢s can be measured in this way (with a little help from the time
dilation factor). But many of our particles have lifetimes of only 10723 s, and a
particle moving at even the speed of light travels only the diameter of a nucleus
in that time! How can we measure such a lifetime? Furthermore, how do we even
know such a particle exists at all? Consider the reaction

T+p—>m+p+Xx

where x is an unknown particle with a lifetime of about 10723 s, which decays
into two 7 mesons according to x — m + 7. How do we distinguish the above
reaction from the reaction

T+p—->n+p+a+m

which leads to the same particles as actually observed in the laboratory?

Experimental evidence suggests that the two 7 mesons in this type of reaction
may combine for an instant (10723 s) to form an entity with all of the usual
properties of a particle—a definite mass, charge, spin, lifetime, etc. These states
are known as resonance particles, and we now look at the indirect evidence from
which we infer their existence.

Suppose you receive a package in the mail from a friend. When you open
it, you find it contains many small, irregular pieces of broken glass. How do
you learn whether your friend sent you a beautiful glass vase that was broken in
shipment or a package of broken glass as a practical joke? You try to put the pieces
together! If the pieces fit together, it is a good assumption that the vase was once
whole, although the mere fact that they fit together doesn’t prove that it was once
whole. It’s just the simplest possible assumption consistent with our experience.
(An alternative assumption that the pieces were manufactured separately and just
happen by chance to fit together is highly improbable.)

How then do we detect a “particle” that lives for only 1072 s? We look at its
decay products (which live long enough to be seen in the laboratory), and putting
the pieces back together, we infer that they once may have been a whole particle.

For example, suppose in the laboratory we observe two 7 mesons emitted
as shown in Figure 14.6. We measure the direction of travel and the linear
momentum of the 7 mesons as shown. A second and a third event each produces
two 7 mesons as also shown in the figure. Are these three events consistent with
the existence of the same resonance particle?
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Let us assume that in each case, a particle moving at an unknown speed decayed
into the two particles as shown, one with energy E; and momentum p, and the
other with energy E, and momentum p,. Each decay must conserve energy and
momentum, so we can use the decay information to find the energy £ = E| + E,
and momentum p = p, + p, of the decaying particle, and then we can find
its rest energy according to mc? = v E2 — 2p? = \/(E, + E»)2 — 2(p; + p)>.
Carrying out the calculation, we find that, for the decay shown in part (a) of
Figure 14.6, mc*> = 764 MeV, while for part (b), mc> = 775 MeV. It is therefore
possible that these two events result from the decays of identical particles. Part
(c) of the figure gives mc? = 498 MeV, which differs considerably from parts
(a) and (b).

Of course, these two events are not sufficient to identify conclusively the
existence of a resonance particle with a rest energy in the range of 770 MeV. It
could be a mere accident, just like the chance fitting together of two pieces of
broken glass. What is needed is a large (statistically significant) number of events,
in which we can combine the energy and momenta of the two emitted 7 mesons
in such a way that the deduced mass of the resonance particle is always the same.
Figure 14.7 is an example of such a result. There is a background of events with
a continuous distribution of energies, like beta decay electrons; these come from
events like part (¢) of Figure 14.6. There is also present a very prominent peak
at 775 MeV. We identify this energy as the rest energy of the resonance particle,
which is known as the p (tho) meson. (How do we know it is a meson? It must
be a strongly interacting particle, because it decays so rapidly. Therefore the only
possibilities are mesons, with integral spin, or baryons, with half-integral spin.
Pi mesons have integral spin, and two integral spins can combine to give only
another integral spin, so it must be a meson.)

100
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FIGURE 14.7 The resonance identified as the p meson. The horizontal axis shows the
energy and momentum of the two decay 7 mesons, combined to be equivalent to the mass
of the resonance particle.
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We can also infer the lifetime of the particle from Figure 14.7. The particle
lives only for about 10723, and so if we are to measure its rest energy we
have only 10723 s in which to do it. But the uncertainty principle requires that
an energy measurement made in a time interval A be uncertain by an amount
roughly AE = 7/ At. This energy uncertainty AE is observed as the width of the
peak in Figure 14.7. We don’t always deduce the same value 775 MeV for the rest
energy of the p meson; sometimes our value is a bit larger and sometimes a bit
smaller. The width of the resonance peak tells us the lifetime of the particle. (The
width is not really precisely defined, but physicists usually take as the width the
interval between the two points where the height of the resonance is one-half its
maximum value above the background, as shown in Figure 14.7.) The width of
AE = 150 MeV leads to a value of At = /i/ AE = 4.4 x 10~2*s for the lifetime
of the p meson.

14.5 ENERGY AND MOMENTUM IN

PARTICLE DECAYS

In analyzing the decays and reactions of elementary particles, we apply many
of the same laws that we used for nuclear decays and reactions: energy, linear
momentum, and total angular momentum must be conserved, and the total value
of the quantum numbers associated with electric charge, lepton number, and
baryon number (which we previously called nucleon number) must be the same
before and after the decay or reaction. In reactions of elementary particles, we
are often concerned with the production of new varieties of particles. The energy
necessary to manufacture these particles comes from the kinetic energy of the
reaction constituents (usually the incident particle); this energy is usually quite
large (hence the name high-energy physics for this type of research), so relativistic
equations must be used for energy and momentum.

The decays of elementary particles can be analyzed in a way similar to the
decays of nuclei, following the same two basic rules:

1. The energy available for the decay is the difference in rest energy between
the initial decaying particle and the particles that are produced in the decay.
By analogy with our study of nuclear decays, we call this the Q value:

0 = (m; — mp)c? (14.1)

where m,c? is the rest energy of the initial particle and mc? is the total rest
energy of all the final product particles. (Of course, the decay will occur only
if Q is positive.)

2. The available energy Q is shared as kinetic energy of the decay products in
such a way as to conserve linear momentum. As in the case of nuclear decays,
for a decay of a particle at rest into two final particles, the particles have equal
and opposite momenta, and we can find unique values for the energies of the
two final particles. For decays into three or more particles, each particle has
a spectrum or distribution of energies from zero up to some maximum value
(as was the case with nuclear beta decay).
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Compute the energies of the proton and 7 meson that result
from the decay of a A” at rest.

Solution
The decay process is A’ — p 4+ 7. Using the rest energies
from Tables 14.5 and 14.6, we have:

0 = (myo —my — m__)c?
= 1116 MeV — 938 MeV — 140 MeV
=38 MeV

and so the total kinetic energy of the decay products
must be:

K, + K, =38MeV

Using the relativistic formula for kinetic energy, we can
write this as

K, +K, = (‘ [c2pd + mict — mpcz)
+ <,/c2 2 +m2ct — mﬂc2> =38 MeV

Conservation of momentum requires p, = p_,. Substituting
for one of the unknown momenta in the above equation
and solving algebraically for the other, we obtain

Pr =pp, =101 MeV/c

The kinetic energies can be found by substituting these
momenta into the relativistic formula:

K, =33MeV and K, =5MeV

| Example 14.3

What is the maximum kinetic energy of the electron emitted
in the decay u= — e~ + v, +v,?

Solution

The Q value for this decay is Q=m ucz —mc? =
105.2MeV, because the neutrinos have negligible rest
energy. If the ™ is at rest, this energy is shared by the
electron and the neutrinos: Q = K, + E;_ + E, . When the
electron has its maximum kinetic energy, the two neutrinos
carry away the minimum energy. This minimum cannot be
zero, because that would violate momentum conservation:
the electron would be carrying momentum that would not
be balanced by the neutrino momenta to give a net of zero
(the ™ is at rest, so Y. p; = Y_ pr = 0). We assume that
the electron has its maximum energy when the neutrinos
are emitted in exactly the opposite direction to the elec-
tron; otherwise some of the decay energy is “wasted” by
providing transverse momentum components for the neu-
trinos, and not as much energy will be available for the
electron. It does not matter which of the neutrinos carry
the energy and momentum (they may even share it in any
proportion), so we let £, and p,, be the total neutrino energy
and momentum; these are of course related by E, = cp,,

because neutrinos are presumed to be of negligible mass
and thus to travel at nearly the speed of light. If we let £,
and p, represent the energy and momentum of the electron,
then linear momentum conservation gives

pe_pv:O

For the electron, E, = \/c?p? + mic*. Together, these
equations give:

Q=K ,+E,=E, —myc*+cp, =E, —mc* +cp,

—F — 2 2 2t
=FE, —m.c” +/E; — mic

Solving, we find E, = Q/2m,,c* + m,c* and so
K, = E, — m.c* = 0*/2m, > = 52.3MeV

The original rest energy of the p™ is shared essentially
equally by the electron and the two neutrinos in this case:
(K ) max = (E))max = O/2. Note how different this is from
the case of the beta decay of the neutron, where the heavy
proton resulting from the decay could absorb considerable
recoil momentum at a cost of very little energy, so nearly
all of the available energy could be given to the electron,
and in that case (K,),x = O.
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| Example 14.4

Find the maximum energy of the positrons and of the &
mesons produced in the decay K™ — 70 + et + v,.

Solution
The Q value for this decay is

Q = (mg—m, —m,)c* = 494 MeV —135MeV —0.5 MeV
= 358.5MeV

This energy must be shared among the three products:
O0=K,+K.+E,

The electron and # meson have their maximum energies
when the neutrino has negligible energy: O = K, + K,
and conservation of momentum in this case (if the neu-
trino has negligible momentum) requires p, = p,. Using
relativistic kinetic energy, we have

Q0=K, +K, =/ (pc)* + (m,c2)? —m,c*
+/ (pO)? 4 (mc?)? — m?

where p = p, = p,. Inserting the numbers, we obtain

494 MeV = \/ (pc)? + (135MeV)? + \/ (pc)? + (0.5MeV)?

Clearing the two radicals involves quite a bit of alge-
bra, but we can simplify the problem if we inspect this
expression and notice that the solution must have a large
value of pc, certainly greater than 100 MeV. (Otherwise
the two terms could not sum to nearly 500 MeV.) Thus
(pc)? > (0.5MeV)?, and we can neglect the electron rest
energy term in the second radical, which simplifies the
equation somewhat:

494 MeV = \/ (pc)? + (135MeV)? + pe

Solving, we find pc = 229 MeV, which gives (E,) . =
229 MeV and (£ ).« = 266 MeV. Figure 14.8 shows the
observed energy spectra of e* and 7° from the K* decay,
and the energy maxima are in agreement with the calcu-
lated values. (The shapes of the energy distributions are
determined by statistical factors, as in the case of nuclear
beta decay. The statistical factors are different for e™ and
70, because the 7 also has its maximum energy when the
et appears at rest and the v carries the recoil momentum.)

You should repeat this calculation and convince your-
self that (1) the 7% has its maximum energy also when
K, =0 (E, =m.?) and (2) the et does not have its
maximum energy when K. = 0.
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FIGURE 14.8 The spectrum of positrons and 77 mesons from
the decay of the K™ meson.

14.6 ENERGY AND MOMENTUM IN PARTICLE

REACTIONS

The basic experimental technique of particle physics consists of studying the prod-
uct particles that result from a collision between an incident particle (accelerated
to high energies) and a target particle (often at rest). The kinematics of the reaction



process must be analyzed using relativistic formulas, because the kinetic energies
of the particles are usually comparable to or greater than their rest energies. In
this section we derive some of the relationships that are needed to analyze these
reactions, using the formulas for relativistic kinematics we obtained in Chapter 2.
An important purpose of these reactions is the production of new varieties of
particles, so we concentrate on calculating the threshold energy needed to produce
these particles. (You might find it helpful to review the discussion in Chapter 13
on nonrelativistic reaction thresholds.)
Consider the following reaction:

my +my — my+my+ms+---

where the m’s represent both the particles and their masses. Any number of
particles can be produced in the final state. Here m, is the incident particle,
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FIGURE 14.9 A reaction between

which has total energy E,, kinetic energy K, = E; — m;c?, and momentum
cpy = VE? — mic* in the laboratory frame of reference. The target particle m,
is at rest in the laboratory. Figure 14.9 illustrates this reaction in the laboratory
frame of reference.

Just as we did for nuclear reactions, we define the Q value to be the difference
between the initial and final rest energies:

0 = (m; = mp)e® = [my +my — (my + my +ms + - )¢ (14.2)

If Q is positive, rest energy is turned into kinetic energy, so that the product
particles ms,my, ms,... have more combined kinetic energy than the initial
particles m, and m,. If Q is negative, some of the initial kinetic energy of m, is
turned into rest energy.

| Example 14.5

particles in the laboratory reference
frame.

Compute the O values for the reactions (a) 7~ +p — ®)
KO+ A% (D) K™ +p— A+ 70

Solution
(a) Using rest energies from Tables 14.5 and 14.6,

0 = [my,— +m, — (mgo + myo)]c?
= 140 MeV + 938 MeV — 498 MeV — 1116 MeV
= —536 MeV

This reaction has a negative Q value, and energy must be
supplied in the form of initial kinetic energy to produce the
additional rest energy of the products.

0 = [mg- +m, — (myo + m0)]c?
=494 MeV + 938 MeV — 1116 MeV — 135 MeV
= 181 MeV

A positive O value indicates that there is enough rest energy
in the initial particles to produce the final particles; in fact
there is 181 MeV of energy (plus the kinetic energy of the
incident particle) left over for kinetic energy of the A” and
0.

Threshold Energy

When the Q value is negative, there is a minimum kinetic energy that m; must
have in order to initiate the reaction. As in the non-relativistic nuclear physics
case, this threshold kinetic energy Ky, is larger than the magnitude of Q. The O
value is the energy necessary to create the additional mass of the product particles,
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Before 1 Ep = mac

After

FIGURE 14.10 The reaction of
Figure 14.9 when m, has the threshold
kinetic energy. The product particles
move together as a unit in the direction
of the original momentum.

but to conserve momentum the product particles cannot be formed at rest, so
the threshold energy must not only create the additional particles but must also
give them sufficient kinetic energy so that linear momentum is conserved in the
reaction.

If Figure 14.9 represents a reaction with a negative Q value, clearly the reaction
is not being done at the threshold kinetic energy. In the reaction as it is drawn,
not only have the new particles been created, they have been given both forward
momentum (to the right in the figure), which is necessary to conserve the initial
momentum of m, as well as transverse momentum. This transverse momentum,
which must sum to zero in order to conserve momentum, is not necessary either
to create the particles or to satisfy conservation of momentum. At the minimum
or threshold condition, this transverse momentum is zero.

Also at threshold, the most efficient way to provide momentum to the final
particles is to have them all moving together with the same speed, as in
Figure 14.10. (This is equivalent to creating the particles at rest if we examine
the collision from a reference frame in which the total initial momentum is zero,
such as in a head-on collision of two particles.) Let’s represent the bundle of
final particles, all moving as a unit, as a total mass M. Then conservation of
momentum (a1 = Prinal) 1VES p; = py, and conservation of total relativistic
energy (Einiia = Efna) gives E| + E, = E);, where p,, and E,, represent the
momentum and total relativistic energy of the final bundle of particles. Then

V@102 + (mc®)? + myc* = \/(pMc)z + (my,c?)? = \/(plc)z + (my,c?)?

(14.3)

Squaring both sides and solving, we obtain

22 _ 22 _ 22
V @10)? + (myc?)? = e (’;Iizc)z e (14.4)

The threshold kinetic energy of m, is then

Ky =E —m = /(p;0)* + (m;c3)?—m,c?

_ M)~ om, ) — ey’ —m,c (14.5)

2
2myc

_ (Mc? — myc? — myc?)(M? + myc? + myc?)

2
2m,c

With Q = m,c? + myc? — Mc? and M = my + my + ms + - - -, this becomes

m1+m2+m3+m4+m5+"'
2m2

Ky = (=0 (14.6)

This can also be written as

total mass of all particles involved in reaction
Ky, = (=0) . (14.7)
2 x mass of target particle

In the limit of low speeds, the relativistic threshold formula reduces to the non-
relativistic formula for nuclear reactions derived in Chapter 13 (see Problem 20).
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| Example 14.6

Calculate the threshold kinetic energy to produce 7 mesons

i 0 4m, + m
from the reactionp+p —>p+p+ 7. Ky = (—0) gm i
Solution P
The QO value is 4(938MeV) 4 135 MeV
e — (135 Mev) 2 2(;38); v ¥ _ 280Mev
0= mpc2 + mpc2 — (mpc2 + mpc2 + mﬂcz) ¢
= —m,c* = —135MeV Such energetic protons are produced at many accelerators
throughout the world, and as a result the properties of the

Using Eq. 14.7 we can find the threshold kinetic energy: 7t mesons can be carefully investigated.
| Example 14.7
In 1956 an experiment was performed at Berkeley to search ~ Thus
for the antiproton, which could be produced in the reaction
p+p— p+p+p+p. What is the threshold energy for , 6m,c? s
this reaction? Kip = (2mpc”) 2m 2 = 6m,c” = 5628 MeV
Solution =5.628GeV

The rest energy of the antiproton is identical to the rest

energy of the proton (938 MeV), so the O value is For the discovery of the antiproton produced in this reac-

5 ) ) 5 tion, Owen Chamberlain and Emilio Segré were awarded
Q = myc” +mye” — Amyc”) = —2myc the Nobel Prize in physics in 1959.

It is interesting to compute the “efficiency” of these reactions—that is, how
much of the initial kinetic energy we supply actually goes into producing the
final particles, and how much is “wasted” in the laboratory kinetic energies of the
reaction products. In the first example, we supply 280 MeV of kinetic energy to
produce 135 MeV of rest energy, for an efficiency of about 50%. In the second
example, 6mpc2 of kinetic energy produces only 2mpc2 of rest energy, for an
efficiency of only 33%. As the rest energies of the product particles become
larger, the efficiency decreases, and relatively more energy must be supplied. For
example, to produce a particle with a rest energy of 50 GeV in a proton-proton
collision, we need to supply about 1250 GeV of initial kinetic energy. Only 4% of
the energy supplied actually goes into producing the new particles; the remaining
96% must go to kinetic energy of the products in order to balance the large initial
momentum of the incident particle. To produce a 100-GeV particle requires not
twice as much energy, but four times as much. This is obviously not a pleasant
situation for particle physicists, who must build increasingly more powerful
accelerators to accomplish their goals of producing more massive particles.

One way out of this difficulty would be to do an experiment in which two
particles with equal and opposite momentum collide head-on. In effect, we would
be doing this experiment in the center-of-mass (CM) frame, where at threshold the
production of new particles is 100% efficient—none of the initial kinetic energy
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goes into kinetic energy of the products, which are produced at rest in the CM
@ frame. Thus a 50-GeV particle could be produced by a head-on collision between
two protons with as little as 25 GeV of kinetic energy. Of course, this great gain in
efficiency is at a cost ofthe technological difficulty of making such collisions occur.
There are now colliding beam accelerators in operation, in which beams of
@ particles (such as electrons or protons) can occasionally be made to collide.
For example, in the Fermilab accelerator (Figure 14.1), beams of protons and
antiprotons (each of energy 1 TeV = 1000 GeV) circulate around the ring in
opposite directions and collide twice during each revolution. The Large Hadron
Collider (hadron meaning strongly interacting particles), which is on the border
between Switzerland and France, became operational in 2009; it collides two
beams of protons each at an energy of 7 GeV in order to search for new particles
in an even higher range of rest energies. Other colliding beam accelerators bring
FIGURE 14.11 The relationship be- together electrons and positrons at energies of 50 to 100 GeV. In each case, all of
the available energy can go into the production of new particles.
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14.7 THE QUARK STRUCTURE OF MESONS

AND BARYONS

A° Although the classifications and properties of the elementary particles seem like a
@ @ complicated and disordered collection, there is an underlying order that suggests

that a scheme of remarkable simplicity is at work. We can illustrate this order
if we plot a diagram that has strangeness along the y axis and electric charge
2 @ along the x axis. If the families of particles are placed in their proper locations on

the graphs, regular geometrical patterns begin to emerge. Figures 14.11 to 14.13
show such plots for the lower mass spin-0 mesons, the spin-% baryons, and the
spin-% baryons. In 1964, Murray Gell-Mann and George Zweig independently
and simultaneously recognized that such regular patterns are evidence of an
FIGURE 14.12 The relationship be- underlying structure in the particles. They showed that they could duplicate these
tween electric charge and strangeness ~ patterns if the mesons and baryons were composed of three fundamental particles,
for the spin-% baryons. which soon became known as quarks. These three quarks, known as up (u), down
(d), and strange (s), have the properties listed in Table 14.7. We will shortly see

.@ .@ .@ .@ t]lat weE now belle\/e t] 1at SIX qlla] kS are necessar y to account 101 all kll() wn mesons
and baI yOnS.

Let us see how the quark model works in the case of the spin-0 mesons. The
@ @ quarks have spin %, so the simplest scheme to form a spin-0 meson would be to

Strangeness
L
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9 -1
3 combine two quarks, with their spins directed oppositely. However the mesons
g:.)o have baryon number B = 0, while a combination of two quarks would have
£ B = % + % = % A combination of a quark and an antiquark, on the other hand,
wn . 1
would have B = 0, because the antiquark has B = —3.
For example, suppose we combine a u quark with a d (“antidown”) quark,
-3 @ obtaining the combination ud. This combination has spin zero and electric charge

%e + %e = +e. (A d quark has charge —%e, so d has charge —i—%e.) The properties
of this combination are identical with the 7+ meson, and so we identify the 7 * with
the combination ud. Continuing in this way, we find nine possible combinations
FIGURE 14.13 The relationship be- ©of one of the three original quarks from Table 14.7 with an antiquark, as listed in
tween electric charge and strangeness ~ 1able 14.8, and plotting those nine combinations on a graph of strangeness against
for the spin-% baryons. electric charge, we obtain Figure 14.14, which looks identical to Figure 14.11.

-1 0 +1 +2
Electric charge
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TABLE 14.7 Properties of the Three Original Quarks

Charge | Spin | Baryon
Name | Symbol (e) () | Number | Strangeness | Antiquark

Up u —l—% % -I—% 0 u
Down d —% % +% 0 d
Strange S — % % +% -1 S

Values shown for the charge, baryon number, and strangeness are those for the quark;
values for the antiquark have the opposite sign.

TABLE 14.8 Possible Quark-Antiquark Comhinations

Combination | Charge (e¢) | Spin (z) | Baryon Number | Strangeness
uu 0 0,1 0 0
ud +1 0,1 0 0
us +1 0,1 0 +1
du —1 0,1 0 0
dd 0 0,1 0 0
ds 0 0,1 0 +1
su —1 0,1 0 -1
sd 0 0,1 0 -1
sS 0 0,1 0 0

The baryons have B = +1 and spin % or %, which suggests immediately that
three quarks make a baryon. The 10 possible combinations of the three original
quarks are listed in Table 14.9, and we can arrange them into two patterns as
shown in Figures 14.15 and 14.16, which are identical to those for the spin-% and
spin-% baryons.

Using the quark model, we can analyze the decays and reactions of the
elementary particles, based on two rules:

1. Quark-antiquark pairs can be created from energy quanta, and conversely can
annihilate into energy quanta. For example,

energy — u+u or d+d— energy

This energy can be in the form of gamma rays (as in electron-positron
annihilation), or else it can be transferred to or from other particles in the
decay or reaction.

2. The weak interaction can change one type of quark into another through
emission or absorption of a W* or W, for example s — u+ W~. The W
then decays by the weak interaction, suchas W™ — u~ +v, ot W™ — d +u.
The strong and electromagnetic interactions cannot change one type of quark
into another.
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FIGURE 14.14  Spin-0 quark-anti-
quark combinations; compare with
Figure 14.11.
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combinations; compare with Figure
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TABLE 14.9 Possible Three-@uark Combinations

Combination | Charge (¢) | Spin (z) | Baryon Number | Strangeness
uuu +2 % +1 0
uud +1 1.3 +1 0
udd 0 33 +1 0
uus +1 %, % +1 —1
uss 0 %, % +1 -2
uds 0 5.3 +1 ~1
ddd -1 3 +1 0
dds -1 3.3 +1 ~1
dss -1 1.3 Sl -2
sss =1 % +1 =3

| Example 14.8

Analyze (a) the reaction 7~ +p — A + K and () the
decay 7 — pu™ + v, in terms of the constituent quarks.

Solution
(a) The reaction 7~ 4+ p — A 4+ K can be rewritten as
follows:

du+uud — uds + ds

Each side contains one u quark and two d quarks, which
don’t change in the reaction. Removing these “spectator”
quarks from each side of the reaction, we are left with the
remaining transformation:

u+u—s+s

The u and u annihilate, and from the resulting energy s and
§ are created.

(b) The 7" has the quark composition ud. There are no
quarks in the final state (ut + v,), so we must find a way
to get rid of the quarks. One possible way is to change the
u quark into a d quark: u — d + W*. The net process can
thus be written as

ud > d+d+W*

with the products then undergoing the following processes
to produce the final observed particles:

d4+d— energy and W' — ut+v,

You may have noticed that some of the heavier mesons listed in Table 14.5
were not included in Figure 14.11, and they cannot be accounted for among the
quark-antiquark combinations listed in Table 14.8. Where do these particles fit in

our scheme?

In 1974, a new meson called J/¢ was discovered at a rest energy of 3.1 GeV.
(Tt was given different names J and ¥ by the two competing experimental groups
that first reported its discovery.) This new meson was expected to decay to lighter
mesons in a characteristic strong interaction time of around 1072% s. Instead, its
lifetime was stretched by 3 orders of magnitude to about 1072°s, and its decay
products were ¢t and e~, which are more characteristic of an electromagnetic
process. Why is the rapid, strong interaction decay path blocked for this particle?
This was soon explained by assuming the J/vr to be composed of a new quark c,
called the charm quark, and its antiquark c. The existence of the ¢ quark had
been predicted 4 years earlier as a way to explain the failure to observe the decay
K — u* 4 u~, which violates no previously known law but is nevertheless not

observed.
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The ¢ quark, which carries a charge of +%e, has a property, charm, that operates
somewhat like strangeness. We assign a charm quantum number C = +1 to the
¢ quark (and assign C = —1 to its antiquark ¢). All other quarks are assigned
C = 0. We can now construct a new set of mesons by combining the ¢ quark with
the T, d, and § antiquarks and by combining the ¢ antiquark with the u, d, and s
quarks. Instead of nine spin-0 mesons, there are now 16, and the two-dimensional
graphs of Figures 14.11 and 14.14 must be extended to a third dimension to show
the C axis (Figure 14.17). All of these new mesons, called D, have been observed
in high-energy collision experiments. Baryons containing this new quark have
also been discovered, analogous to the A, ¥, &, and 2 particles but with an s
quark replaced by a ¢ quark.

In 1977, the same sequence of events was repeated with another meson, Y
(upsilon). The rest energy was determined to be about 9.5 GeV, and again its
decay was slowed to about 1072% s and occurred into et + e~ rather than into
mesons. Once again, a new quark was postulated: the b (bottom) quark with a new
quantum “bottomness” number B = —1 and a charge of — %e. (The letter B is used
to represent baryon number as well as bottomness. It should always be apparent
from the discussion which one is meant.) The Y is assigned as the combination
bb. Many new particles containing the b quark have been discovered, including
B mesons (in which a b quark is paired with a different antiquark) and baryons
similar to A, X, and E with a b quark replacing one of the s quarks.

A sixth quark was discovered in 1994 in proton-antiproton collisions at
Fermilab. These collisions created this new quark and its antiquark, both of which
decayed into a shower of secondary particles (as in Figure 14.5). By measuring
the energy and momentum of the secondary particles, the experimenters were
able to determine the mass of the new quark to be 172 GeV (roughly the mass of
a tungsten atom). This new quark is known as t (top) and has a new associated
property of “topness” with a quantum number 7 = +1.

It may now seem that we are losing sight of our goal to achieve simplicity
(to add the “bottomness” axis to Figure 14.17 we would need to depict a four-
dimensional space!) and that we are moving toward replacing a complicated array
of particles with an equivalently complicated array of quarks. However, there is
good reason to believe that there are no more than six fundamental quarks. In the
next section, we discuss how we are indeed on the path to a simple explanation of
the fundamental particles.

Electric charge

FIGURE 14.17 The relationship among electric
charge, strangeness, and charm for the spin-0
mesons.
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TABLE 14.10 Properties of the Buarks

Charge | Spin | Baryon | Rest Energy Properties
Type Symbol | Antiparticle (e) (h) Number (MeV) C S T B
Up u +3 3 +1 330 0] o] 0|0
Down d -1 3 +3 330 0| 0| 0|0
Charm c g +3 3 +3 1500 +1 [ 0] 0|0
Strange ] S = % % +% 500 0 —1 0 0
Top t +3 : +1 172,000 0| 0 | +1 | 0
Bottom b b -1 3 +3 4700 0] o0 | 0 | -1

Table 14.10 shows the six quarks and their properties. The masses of the quarks
cannot be directly determined, because a free quark has yet to be observed. The
rest energies shown in Table 14.10 are estimates based on the “apparent” masses
that quarks have when bound in various particles. For example, the observed rest
energy of the proton is the sum of the rest energies of its three quark constituents
less the binding energy of the quarks. Since we don’t know the binding energy,
we can’t determine the rest energy of a free quark. The rest energies shown in
Table 14.10 are often called those of constituent quarks.

The quark model does a great deal more than allow us to make geometrical
arrangements of particles such as Figure 14.17. It can be used to explain many
observed properties of the particles, such as their masses and magnetic moments,
and to account for their decay lifetimes and reaction probabilities. Nevertheless,
a free quark has never been observed, despite heroic experiments to search for
them. How can we be sure that they exist? In experiments that scatter high-energy
electrons from protons, we observe more particles scattered at large angles than
we would expect if the electric charge of the proton were uniformly distributed
throughout its volume, and from the analysis of the distribution of the scattered
electrons we conclude that inside the proton are three point-like objects that are
responsible for the scattering. This experiment is exactly analogous to Rutherford
scattering, in which the presence of the nucleus as a compact object inside the atom
was revealed by the distribution of scattered alpha particles at angles larger than
expected. Like Rutherford’s experiment, the observed cross section depends on
the electric charge of the object doing the scattering, and from these experiments
we can deduce charges of magnitude %e and %e for these point-like objects. These
experiments give clear evidence for the presence of quarks inside the proton.

We don’t yet know why free quarks have not been observed. Perhaps they
are so massive that no accelerator yet built has enough energy to liberate one.
Perhaps the force between quarks increases with distance (in contrast with
electromagnetism or gravitation, which decrease with separation distance), so
that an infinite amount of energy would be required to separate a quark from
a nucleon. Or (as is now widely believed) perhaps the basic theory of quark
structure forbids the existence of free quarks.

Quarkonium

The theoretical analysis of the structure of baryons poses mathematical difficulties
that are characteristic of all three-body mechanical or quantum-mechanical
systems. Instead, we can learn a bit about the interactions of quarks from
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examining the properties of two-body systems, especially the quark-antiquark
combinations in mesons.

We’ll look briefly at the combination of a quark with its own antiquark. The
binding energies of quarks in mesons are very large (hundreds of MeV), so the
quark-antiquark pairs of the light quarks (u, d, s) must be treated relativistically,
because the binding energies and thus the kinetic energies in the bound state are
roughly the same as the rest energies. However, for the more massive quarks (c,
b, t), the binding energies are small compared with the rest energies and we can
use nonrelativistic methods (such as the Schrodinger equation) for the analysis.

There is a well-studied analogy for the properties of a quark-antiquark combina-
tion. When a positron travels through matter, before it annihilates it forms an atom-
like bound state with an electron. This bound electron-positron system is called
positronium. The positron and the electron each orbit about their center of mass, in
states that are similar to atomic states in hydrogen. We can label these states by the
values of their total spin angular momentum S and orbital angular momentum L, as
we did for atomic states in Chapter 8. (Don’t confuse these labels with strangeness
and lepton number.) The spins of the two particles can be parallel (hence with
total spin S = 1) or antiparallel (S = 0). The total orbital angular momentum of
the two particles about the center of mass can be L = 0 for s states, L = 1 for p
states, etc. Finally, the system can exist with different radial wave functions that
we can label with principal quantum number n = 1,2, 3, .. ., exactly as we did in
the hydrogen atom. Figure 14.18a shows some of the bound states in positronium.

The positronium structure is very similar to the bound states in a quark-
antiquark system, which is correspondingly known as quarkonium. Figure 14.18b
shows the quarkonium excited states for the ¢C system, and the states for the bb
system are shown in Figure 14.18¢. There is a great similarity between the excited
states of the two quarkonium systems. Note in particular the states with S = 1
and L = 0 in cC and bb. (These would be equivalent to the s, 2s, 3s, and 4s states

(a) (b) (©)
efe” cc 4 bb 4
1000 3 1000 -
s 3 — 2 S
Z L _ —
25 4 — T > ——| @500 — 2 8 500 =
2 2 2 2 | o — |8 J—
L ] 2 |uw 2
— 1
1 JE—
o L1 L ol L ol L
s= 0 0 1 1 0 0 1 1 0 0 1 1
= 0 0 1 0 1 0 1 0 1

FIGURE 14.18 The energy levels of (a) positronium (ete™), () cC quarkonium, and (c) bb quarkonium. The
atom-like states are labeled with the value of the principal quantum number #n. The zero of the energy scale is
at 2980 MeV for cc and 9389 MeV for bb. The n = 2 states with S = 0,L = 0 and S = 0, L = 1 in bb have not
yet been discovered.
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in a hydrogenic system. The lowest S = 1, L = 0cc state is the J/1 meson, and
the corresponding bb state is the Y meson.) Moreover, the overall structure of the
excited states of the quarkonium systems is very similar to that of positronium
(especially the n = 2 states of positronium and cc).

Knowledge of the excited states of quarkonium allows us to guess at an
effective potential energy for which we can solve the Schrodinger equation
to try to calculate the energies of the states. The similarity with positronium
certainly suggests that we try a Coulomb-like potential energy that depends on
1/r. However, it cannot be an electromagnetic interaction—the electromagnetic
interaction between two quarks separated by a distance on 0.5 fm (a typical size of
a meson) is at most about 1 MeV, which is less than 1% of the energy differences
of the quarkonium excited states shown in Figure 14.18. (Moreover, the cc
electromagnetic interaction should be 4 times stronger than the bb electromagnetic
interaction, but there is no evidence of this in Figure 14.18.) The 1/r interaction
grows weaker with increasing separation, so we must add another term that grows
stronger with separation, which accounts for the failure to produce a free quark.
Several different potential energies have been tried for this additional term, the
simplest being a term that is linear in the separation r. The net effective potential
energy is then of the form

Utr) = —‘—: + br (14.8)

The Schrodinger equation can be solved numerically for this potential energy,
with the constants a and b adjusted to give best agreement with experiment. The
constant b turns out to have a value of about 1 GeV/fm. This large value is
consistent with the failure to observe a free quark—to separate the quarks in a
meson even to an atom-sized distance would require about 10° GeV, far greater
than the beam energy of any accelerator.

One of the especially interesting features of the quarkonium excited states
shown in Figure 14.18 is the rough agreement between the energies of the cc and
bb states. (See especially the four states with S = 1 and L = 0.) This is surprising,
because in a simple two-body hydrogen-like system, the energies should depend
on the masses of the orbiting particles, and the b quark is three times as massive
as the ¢ quark. It would be interesting to continue this comparison for the bound
states of the tt system involving the top quark, but the difficulty of producing this
particle in significant quantities (owing to its large mass) has so far prevented a
study of the excited states of the tt system.

14.8 THE STANDARD MODEL

Ordinary matter is composed of protons and neutrons, which are in turn composed
of uand d quarks. Ordinary matter is also composed of electrons. In the radioactive
decay of ordinary matter, electron-type neutrinos are emitted. Our entire world
can thus be regarded as composed of four spin-% particles (and their antiparticles),
which can be grouped into a pair of leptons and a pair of quarks:

(e,v,) and (u, d)

Within each pair, the charges of the two particles differ by one unit: —1 and 0,
+% and —%.



When we do experiments with high-energy accelerators, we find new types
of particles: muons and muon neutrinos, plus mesons and baryons with the new
properties of strangeness and charm. We can account for the structure of these
particles with another pair of leptons and another pair of quarks:

(usvy,) and (c,s)

Once again, the particles come in pairs differing by one unit of charge.

At even higher energies, we find a new generation of particles consisting
of another pair of leptons (tau and its neutrino) and a new pair of quarks (top
and bottom), which permits us to continue the symmetric arrangement of the
fundamental particles in pairs:

(t,vy) and (t,b)

Is it possible that there are more pairs of leptons and quarks that have not
yet been discovered? At this point, we strongly believe the answer to be “No.”
Every particle so far discovered can be fit into this scheme of 6 leptons and
6 quarks. Furthermore, the number of lepton generations can be determined by
the decay rates of the heaviest particles, and a limit of 3 emerges from these
experiments. Finally, according to present theories the evolution of the universe
itself would have proceeded differently if there had been more than three types of
neutrinos. For these reasons, it is generally believed that there are no more than
three generations of particles.

The strong force between quarks is carried by an exchanged particle, called
the gluon, which provides the “glue” that binds quarks together in mesons and
baryons. (There are actually eight different gluons in the model.) A theory known
as quantum chromodynamics describes the interactions of quarks and the exchange
of gluons. In this theory, the internal structure of the proton consists of three
quarks “swimming in a sea” of exchanged gluons. Like the quarks, the gluons
cannot be observed directly, but there is indirect evidence of their existence from
a variety of experiments.

The theory of the structure of the elementary particles we have described so far
is known as the Standard Model. 1t consists of 6 leptons and 6 quarks (and their
antiparticles), plus the field particles (photon, 3 weak bosons, 8 gluons) that carry
the various forces. It is remarkably successful in accounting for the properties of
the fundamental particles, but it lacks the unified treatment of forces we would
expect from a complete theory.

The first step toward unification was taken in 1967 with the development of
the electroweak theory by Stephen Weinberg and Abdus Salam. In this theory,
the weak and electromagnetic interactions are regarded as separate aspects of the
same basic force (the electroweak force), just as electric and magnetic forces are
distinct but part of a single phenomenon, electromagnetism. The theory predicted
the existence of the W and Z particles; their discovery in 1983 provided a
dramatic confirmation of the theory.

The next-higher level of unification would be to combine the strong and
electroweak forces into a single interaction. Theories that attempt to do this are
called Grand Unified Theories (GUTs). By incorporating leptons and quarks into
a single theory, the GUTs explain many observed phenomena: the fractional
electric charge of the quarks and the difference of one unit of charge between the
members of the quark and lepton pairs within each generation. The GUTs also
predict new phenomena, such as the conversion of quarks into leptons, which
would permit the proton (which we have so far assumed to be an absolutely stable

14.8 | The Standard Model

471



472 Chapter 14 | Elementary Particles

particle) to decay into lighter particles with a lifetime of at least 10°! y. Searches
for photon decay (by looking for evidence of decays in a large volume of matter;
see Figure 14.19) have so far been unsuccessful and have placed lower limits on
the proton lifetime of at least 1032 y.

A missing part of the Standard Model is an explanation of why the particles
have the masses that we observe. A complete theory ought to be able to calculate
the masses of the particles. It has been proposed that there is a field pervading
the entire universe and that particles acquire their particular masses as a result
of the strength of their interactions with this field, somewhat like a particle
moving through a viscous medium seems to have more inertia and thus a greater
“effective” mass. This field is known as the Higgs field and the particle that carries
the field interaction is called the Higgs boson. This particle has been searched for
but not yet found; estimates of its expected mass are in excess of 100 GeV /c?.
The Large Hadron Collider, the world’s most powerful particle accelerator, is
currently searching for evidence of the Higgs boson by colliding beams of protons
at an energy of 7000 GeV.

Another shortcoming of the Standard Model is that it is based on massless
neutrinos. Although the upper limit (see Table 14.4) on the mass of the electron
neutrino is very small (2eV), the limits on the other neutrino masses are much
larger. Measurements of the flux of neutrinos reaching Earth from the Sun,
produced in the fusion reactions discussed in Chapter 13, have consistently
revealed a large deficit—the intensity of electron neutrinos observed on Earth
is only about 1/3 of what is predicted based on models of how fusion reactions
occur in the Sun’s interior. Recent measurements at the Sudbury Neutrino
Observatory in Canada have revealed that, although the intensity of electron
neutrinos from the Sun is only 1/3 of the expected value, the total intensity

FIGURE 14.19 The Superkamiokande detector system in Japan was
designed to search for proton decay. The water tank, 40 m in diameter
and located 1000 m underground, holds 50,000 tons of water. The tank
is lined with more than 10,000 photomultiplier detectors that respond to
flashes of light that would be emitted when one of the protons in the water
decayed. Here the tank has been partly emptied so that the technicians (in
the boat) can service the photomultipliers.



of all neutrinos (including muon and tau neutrinos) reaching us from the Sun
agrees with the predicted rate. This is very puzzling, because the fusion reactions
in the Sun should produce only electron neutrinos; the reacting particles in the
solar interior are not sufficiently energetic to produce mu and tau leptons. This
mystery has been explained by proposing that the electron neutrinos are produced
in the solar interior at the expected rate, but that during their journey from the
Sun to Earth, the purely electron neutrinos become a mixture of roughly equal
parts electron, muon, and tau neutrinos. This nicely explains why the rate of
electron neutrinos from the Sun appears to be only about 1/3 of what is expected
(the other 2/3 of the electron neutrinos having been converted into muon or tau
neutrinos). This phenomenon of neutrino oscillation (which refers to neutrinos
oscillating from one type to another) can occur only if the neutrinos have mass.
The required masses are very small, well within the experimental limits, but the
neutrino masses are definitely not zero. The Standard Model must be extended to
include nonzero neutrino masses, and the rules for conservation of lepton number
must be modified to allow one type of neutrino to transform into another.

The search for a consistent explanation of the elementary particles has led
physicists to work with exotic theories. In string theory the particles are replaced
by tiny (10733 cm) strings, whose vibrations give rise to the properties we observe
as particles. These theories exist in spacetimes with 10 or more dimensions, and at
present seem to be far beyond any possible experimental test. Another extension
of the Standard Model is called supersymmetry; this theory proposes that there is
a higher symmetry between the spin-% particles (such as the quarks and leptons)
and particles with integral spin, so that under this theory there would be electrons
and quarks with a spin of 0 and W and Z particles and photons with a spin of
%. The masses of these supersymmetric particles are estimated to be very much
larger than their ordinary partners, perhaps in the range of 100 GeV /c?, but even
in this range they should be observable through experiments currently planned at
the Large Hadron Collider.

There is so far no conclusive verification for any of the GUTs, nor is there
a successful theory that incorporates the remaining force, gravity, into a unified
theory. The quest for unification and its experimental tests remains an active area
of research in particle physics.
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10.

11.

14.1

Some conservation laws are based on fundamental properties
of nature, while others are based on systematics of decays
and reactions and have as yet no fundamental basis. Give
the basis for the following conservation laws: energy, lin-
ear momentum, angular momentum, electric charge, baryon
number, lepton number, strangeness.

Does the presence of neutrinos among the decay products
of a particle always indicate that the weak interaction is
responsible for the decay? Do all weak interaction decays
have neutrinos among the decay products? Which decay
product indicates an electromagnetic decay?

Do all strongly interacting particles also feel the weak
interaction?

In what ways would physics be different if there were
another member of the lepton family less massive than the
electron? What if there were another lepton more massive
than the tau?

Suppose a proton is moving with high speed, so that
E > mc?. Is it possible for the proton to decay, such as
inton+ 7t orp 4+ 7°?

On planet anti-Earth, antineutrons beta decay into antipro-
tons. Is a neutrino or an antineutrino emitted in this decay?
List some experiments that might distinguish antineutrons
from neutrons. Among others, you might consider (a) neu-
tron capture by a nucleus; (b) beta decay; (c) the effect of a
magnetic field on a beam of neutrons.

The =9 can decay to A without changing strangeness, so
it goes by the electromagnetic interaction; the charged X+
decay to p or n by the weak interaction in characteristic
lifetimes of 107!%s. Why can’t ©* decay to A’ by the
strong interaction in a much shorter time?

The Q™ particle decays to A? +K~. Why doesn’t it also
decay to A® + 72

Explain why we do not account for the number of mesons in
decays or reactions with a “meson number” in analogy with
lepton number or baryon number.

Consider that leptons and baryons both obey conservation
laws and are both fermions; mesons do not obey a conser-
vation law and are bosons. Can you think of another particle
(other than a meson) that has integral spin and can be emitted
or absorbed in unlimited numbers?

The Four Basic Forces

Identify the interaction responsible for the following decays
(approximate half-lives are given in parentheses):

(@) A* > p+m(107235s)

(b) n—y+y 107"y

12.

13.

15.

16.

18.

20.

21.

Can antibaryons be produced in reactions between baryons
and mesons?

List some similarities and differences between the properties
of photons and neutrinos.

Is it reasonable to describe a resonance as a definite particle,
when its mass is uncertain (and therefore variable) by 20%?
Why are most particle physics reactions endothermic
(Q < 0)?

Although doubly charged baryons have been found, no dou-
bly charged mesons have yet been found. What would be
the effect on the quark model if a meson with charge +2e
were found? How could such a meson be interpreted within
the quark model?

All direct quark transformations must involve a change of
charge; for example, u — d is allowed (accompanied by the
emission of a W™), but s — d is not. Can you suggest a
two-step process that might permit the transformation of an
s quark into a d?

The decay K* — nt + e + e is at least five orders of
magnitude less probable than the decay K* — 70 4+ et +
V.. Based on Question 17, can you explain why?

The D mesons decay to 7 and K mesons with a lifetime
of 10713 s. (¢) Why is the lifetime so much slower than a
typical strong interaction lifetime? Is a quantum number not
conserved in the decay? () What interaction is responsible
for the decay?

The A* baryons are found with electric charges +2,+1,0,
and —1. Based on the quark model, why do we expect no
A* with charge —2?

Although we cannot observe quarks directly, indirect evi-
dence for quarks in nucleons comes from the scattering
of high-energy particles, such as electrons. When the de
Broglie wavelength of the electrons is small compared with
the size of a nucleon (~ 1 fm), the electrons appear to be
scattered from massive, compact objects much smaller than
a nucleon. To which phenomenon discussed previously in
this text is this similar? Can the scattering be used to deduce
the mass of the struck object? How does the scattering
depend on the electric charge of the struck object? What
would be the difference between scattering from a particle
of charge e and one of charge %e?

(©)
(d)

Kt — ut + v, (1078s)

A= p4+7~ (10710%)

(&) 0 — n+2m (10721s)

() K= 7t +77 (10710)

What is the range of the W™ particle that is responsible for
the weak interaction of a proton and a neutron?



14.2
3.

4.

14.3

14.4
10.

11.

14.5
12.

13.

Classifying Particles

Give one possible decay mode of the following mesons:
@z  ®»p ©D @K

Give one possible decay mode of the following antibaryons:
(@) @ b A © @ @ =
Suggest a possible decay mode for the K® meson that
involves the emission of:

(a) v, (b) v, () v, d v,

Is it possible to have a decay mode of the K° that involves
the emission of v, or v_?

Conservation Laws

Name the conservation law that would be violated in each
of the following decays:
(@) 7t > et +y
b A —p+K-

A —>n+y

) Q — 8°+K-

) Q> +x° (g9 B'— 20450

d AN -7 +xt (hy w-—=e +vy

Each of the following reactions violates one (or more) of
the conservation laws. Name the conservation law violated
in each case:

(@) vo+p—>n+e"

®) p+p—p+n+K*

(© p+p—>p+p+A +K°

(d 7 +n—K +A°

() K-+p—>n+A°

Supply the missing particle in each of the following decays:
(@) K-> na%+e +

() KO — 7%+ 704+

(¢) n—>nt+mx +

Each of the reactions below is missing a single particle.
Supply the missing particle in each case.

(@) p+p—p+ A+ (d K +n— A0+

b)) p+p—>n+ (e v,+p—>n+

() m+p—>E"+K'+ () K +p—>K'+

(e)

Particle Interactions and Decays

Carry out the calculations of mc? for the three decays of
Figure 14.6.

Determine the energy uncertainty or width of (a) n; (b) n';
(¢) % (d) A,

Energy and Momentum in Particle Decays

A X~ baryon is produced in a certain reaction with a kinetic
energy of 3642 MeV. If the particle decays after one mean
lifetime, what is the longest possible track this particle could
leave in a detector?

Repeat the calculation of Example 14.4 for the case in
which the 7 meson has zero kinetic energy, and show that
the electron energy in this case is less than the maximum
value.

14.

16.

17.

19.

14.6
20.

21.

22.

23.

24.

14.7
25.

Problems 475

Find the Q values of the following decays:

(@ 7%= y+y (¢) DY > K +zat+x*
b Tt —>p+n°

Find the Q values of the following decays:

(@) 7= > pu +7v, () 0= A4y

() KO- gt 47~

Find the kinetic energies of each of the two product particles
in the following decays (assume the decaying particle is at
rest):

(@) KO- gt 47~ bh) X" —>n+n-

Find the kinetic energies of each of the two product particles
in the following decays (assume the decaying particle is at
rest):

(@) Q@ — A" +K~ (b) 7t = pt+v,

A X~ with a kinetic energy of 0.250 GeV decays into
7~ + n. The 7~ moves at 90° to the original direction of
travel of the ¥ ™. Find the kinetic energies of 7~ and n and
the direction of travel of n.

A K° with a kinetic energy of 276 MeV decays in flight
into 7 and 7 ~, which move off at equal angles with the
original direction of the K°. Find the energies and directions
of motion of the 7+ and 7.

Energy and Momentum in Particle Reactions

Show Eq. 14.6 reduces to Eq. 13.14 in the nonrelativistic
limit.

Determine the Q values of the following reactions:

(@) K-+p— A0+ n0

(b)) 7t +p—> T +K"

© p+p—p+at+A+K°

Determine the Q values of the following reactions:

(@ y+n—na"+p

() K +p— Q +KF+K°

© p+p—p+Et+K

Find the threshold kinetic energy for the following reactions.
In each case the first particle is in motion and the second is
at rest.

(@ p+p—-n+St+K' 477

b) 7~ +p— 22 +K°

Find the threshold kinetic energy for the following reactions.
In each case the first particle is in motion and the second is
at rest.

(@ p+n—>p+3X” +K*

by nt+p—p+p+n

The Quark Structure of Mesons and Baryons

Analyze the following reactions in terms of the quark content
of the particles and reduce them to fundamental processes
involving the quarks:

(@ K +p— Q +K'+K°

(b)) 7t +p— T +K"

(@ y+n—>7a"+p
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26.

27.

28.

29.

Analyze the following reactions in terms of the quark content
of the particles and reduce them to fundamental processes
involving the quarks:

(@) KT+ p—> A +7°

() p+p—>p+at+A+K°

© yv+p— D*+D’ +n

Analyze the following decays in terms of the quark content
of the particles and reduce them to fundamental processes
involving the quarks:

(@) Q@ — A’ +K- () 1= y+y

(b)) n—>p+e +7, (d DT —->K +nt+nt
Analyze the following decays in terms of the quark content
of the particles and reduce them to fundamental processes
involving the quarks:

(@) KO— gt 47~ (¢) - >n+n~

b)) AT > p4at (d) D' > Kt 47
Based on Figure 14.17, give the quark content of the six D
mesons.

General Problems

30.

31.

32.

Table 14.5 lists the most likely decay mode of the K™ meson;
Example 14.4 gives another possible decay. List four other
possible decays that are allowed by the conservation laws.
It is desired to form a beam of A° particles to use for the
study of reactions with protons. The A° are produced by
reactions at one target and must be transported to another
target 2.0 m away so that at least half of the original A°
remain in the beam. Find the speed and the kinetic energy
of the A? for this to occur.

Find a decay mode, other than that listed in Table 14.6,
for (a) Q7; (b) A% (c) T that satisfies the applicable
conservation laws.

33.

34.

35.

36.

Consider the reaction p+p — p+p+ 7 discussed in
Example 14.6, but viewed instead from a frame of reference
in which the two protons collide head-on with equal veloc-
ities. (a) At threshold in this frame of reference, the product
particles are formed at rest. Find the proton velocities in this
case. (b) Use the Lorentz velocity transformation to switch to
the laboratory frame of reference in which one of the protons
is at rest, and find the velocity of the other proton. (c¢) Find
the kinetic energy of the incident proton in the laboratory
frame and compare with the value found in Example 14.6.
The D] meson (rest energy = 1969 MeV, S = +1,C = +1;
see Figure 14.17) has a lifetime of 0.5 x 107!%s. (¢) Which
interaction is responsible for the decay? () Among the
possible decay modes are ¢ + 7 *, u* 4+ v, and K* + K.
How do the § and C quantum numbers change in these
three decays? (The ¢ meson has a spin of 1, a rest energy
of 1020 MeV, and a quark content of ss.) (¢) Analyze the
three decay modes according to the quark content of the
initial and final particles. (¢) Why is the decay into K+ +
7t + 7~ allowed, while the decay into K~ + 7" + 77 is
forbidden?

Inthe decay K™ — 7 + 7 + 7~ with the initial K meson
atrest, what is the maximum kinetic energy of the pi mesons?
A beam of 7~ mesons with a speed of 0.9980c¢ is incident
on a target of protons at rest. The reaction produces two par-
ticles, one of which is a K® meson that is observed to travel
with momentum 1561 MeV/c in a direction that makes an
angle of 20.6° with the direction of the incident pions.
(a) Find the momentum and the direction of the second
product particle. (b) Find the energy of that particle. (¢) Find
the rest energy of the second particle and deduce its identity.



COSMOLOGY: THE ORIGIN AND
FATE OF THE UNIVERSE

Today we scan the skies at all wavelengths from the very short (X rays and gamma rays) to
the very long (radio waves). New and unexpected discoveries have occurred at these
wavelengths: quasars, pulsars, supernovas, black holes — all of which suggest that the
universe is not at all static and eternal, as was once believed, but instead is active, evolving,
and teeming with radiation. Van Gogh'’s painting The Starry Night suggests exactly that view,
even though it was painted in 1889, long before any of these discoveries were made.
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In the short time of a few hundred years, developments in astronomy have taken
us from the belief that the Earth and its human population were the center of the
universe, to a role that approaches insignificance. Before the 16th century, it was
widely believed that the planets, Sun, Moon, and stars revolved about a central
Earth. By the early 20th century, astronomers had discovered that we inhabit
one minor star of a vast number in our galaxy, and that the universe contains an
equally vast number of other galaxies.

Gravity is the dominant force that determines the structure of the present
universe, but Newton’s theory is insufficient to explain a number of observations
of the motion of celestial objects. For this purpose we need a different theory,
the general theory of relativity, which was proposed by Albert Einstein in 1916.
Although the mathematics of this theory is beyond the level of this text, we can
summarize some of its features and discuss its experimental predictions and their
verification. Like the special theory, the general theory of relativity offers us a
new way of thinking about space and time.

In this chapter, we briefly survey the field of cosmology, the study of the
universe on the large scale, including its origin, evolution, and future. For this
study we must rely not only on relativity (special and general) and quantum theory,
but also on fundamental results from atomic and molecular physics, statistical
physics, thermodynamics, nuclear physics, and particle physics.

We begin with three discoveries that fundamentally altered our concept of the
universe: it is expanding, it is filled with electromagnetic radiation, and most of
its mass is mysteriously hidden from our view. We show how these discoveries
have been incorporated, using results from general relativity, into a theory of
the origin of the universe known as the Big Bang theory. We then consider other
measurements that support this theory, and we conclude with some speculations
on the future of the universe.

15.1 THE EXPANSION OF THE UNIVERSE

The evidence for the expansion of the universe comes from the change in
wavelength of the light emitted by distant galaxies. In Chapter 2, we analyzed
a similar effect as the relativistic Doppler shift (Eq. 2.22), which we can write
in terms of wavelength as

, 1+v/c 14+v/c
A=A =A 15.1
V 1—v/c V1—=v?/c? (151

where v represents the relative velocity between the source of the light and the
observer. Here A’ is the wavelength we measure on Earth and A is the wavelength
emitted by the moving star or galaxy in its own rest frame.

The light emitted by a star such as the Sun has a continuous spectrum. As light
passes through the star’s atmosphere, some of it is absorbed by the gases in the
atmosphere, so the continuous emission spectrum has a few dark absorption lines
superimposed (see Figure 6.15). Comparison between the known wavelengths of
these lines (measured on Earth for sources at rest relative to the observer) and
the Doppler-shifted wavelengths allows the speed of the star to be deduced from
Eq. 15.1.

Of the stars in our galaxy, some are found to be moving toward us, with
their light shifted toward the shorter wavelengths (blue), and others are moving
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away from us, with their light shifted toward the longer wavelengths (red). The
average speed of these stars relative to us is about 30 km/s (10~*¢). The change
in wavelength for these stars is very small. Light from nearby galaxies, those of
our “local” group, again shows either small blue shifts or small red shifts.

However, when we look at the light from distant galaxies, we find it to
be systematically red shifted, and by a large amount. Some examples of these
measurements are shown in Figure 15.1. We do not see a comparable number of
red and blue shifts, as we would expect if the galaxies were in random motion.
All of the galaxies beyond our local group seem to be moving away from us.

The cosmological principle asserts that the universe must look the same from
any vantage point, and so we must conclude that any other observer in the universe
would draw the same conclusion: The galaxies would be observed to recede from
every point in the universe.

Hubble’s Law

In the 1920s, astronomer Edwin Hubble was using the 100-inch telescope on
Mount Wilson in California to study the wispy nebulae. By resolving individual
stars in the nebulae, Hubble was able to show that they are galaxies like the
Milky Way, composed of hundreds of billions of stars. When Hubble measured
the wavelength shifts of the light from the galaxies and deduced their speeds, he
made two remarkable conclusions: the galaxies are moving away from us, and
the farther away a galaxy is from us, the faster it is moving. This proportionality
between the speed of the galaxy and its distance d is known as Hubble’s law:

v = Hyd (15.2)

The proportionality constant H, is known as the Hubble parameter.

Figure 15.2a shows a plot of Hubble’s data for the deduced speeds against the
distance. Although the points scatter quite a bit (due primarily to uncertainties in
the distance measurements), there is a definite indication of a linear relationship.
(Hubble’s distance calibration was incorrect, so the labels on the horizontal axis
do not correspond to the actual distances to the galaxies.) More modern data
based on observing supernovas in distant galaxies are shown in Figure 15.25.
There is again clear evidence for a linear relationship, and the slope of the line
gives a value of the Hubble parameter of about 72 km/s/Mpc*, within a range
of about +10%. The Hubble parameter can also be determined from a variety of
other cosmological experiments. These agree with the supernova data, and the
best current value is

Mpc

The uncertainty in this value is on the order of £4%.

The Hubble parameter has the dimension of inverse time. As we show later,
Hy !is a rough measure of the age of the universe. The best value of H, gives an
age of 14 x 10°y. If the speed of recession has been changing, the true age can
be less than H; .

*A parsec, pc, is a measure of distance on the cosmic scale; it is the distance that corresponds to one
angular second of parallax. Because parallax is due to the Earth’s motion around the Sun, the parallax
angle 2« is the diameter 2R of the Earth’s orbit divided by the distance d to the star or galaxy. Thus
o (: R/d radians, which gives 1 pc = 3.26 light-years = 3.084 x 10'3 km. One megaparsec, Mpc, is
10° pe.

(a)

(b)

(c)

FIGURE 15.1 Red shifts of galaxies.
(a) The horizontal band in the cen-
ter shows a continuous spectrum with
two dark lines superimposed (vertical
arrow near left side), which repre-
sent absorption by calcium. Above
and below the absorption spectrum
are emission spectra for calibration.
The recessional speed of this galaxy
(which is in our local group) is
1200 km/s, so the red shift is very
small. (b) The absorption spectrum of
a galaxy with a recessional speed of
15,000 km/s. The red shift of the two
calcium lines (indicated by the hor-
izontal arrow) is significant. (¢) The
red shift of a galaxy with a recessional
speed of 22,000 km/s. (Data courtesy
Hale Observatories.)
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FIGURE 15.2 (a) Hubble’s original data showing the linear relationship between the recessional speed of a
galaxy and its distance from Earth. () Modern data showing Hubble’s law. Data are based on observations of
supernovas in distant galaxies using the Hubble Space Telescope. The solid line represents a Hubble parameter
of 72km/s/Mpc, and the dashed lines show the limits corresponding to £7 km/s/Mpc. [Data from W. L.
Freedman et al., Astrophysical Journal 553, 47 (2001).]

How does the Hubble law show that the universe is expanding? Consider the
unusual universe represented by the three-dimensional coordinate system shown
in Figure 15.3a, where each point represents a galaxy. With the Earth at the origin,
we can determine the distance d to each galaxy. If this universe were to expand,
with all the points becoming further apart, as in Figure 15.35, the distance to each
galaxy would be increased to d’. Suppose the expansion were such that every
dimension increased by a constant ratio & in a time ¢; that is, x’ = kx, and so forth.
Then d’ = kd, and a given galaxy moves away from us by a distance d’ — d in a

time ¢, so its apparent recessional speed is

d—d k—1
y =
t t

If we compare two galaxies 1 and 2,

n_d

V2 d,

a relationship identical with Hubble’s law, Eq. 15.2. Thus, in an expanding
universe, it is perfectly natural that the further away from us a galaxy might be,

the faster we observe it to be receding.

Notice also from Figure 15.3 that this is true no matter which point we happen
Edwin Hubble (1889-1953, United to choose as our origin. From any point in the “universe” of Figure 15.3, the other
States). His observational work with  points would be observed to satisfy Eq. 15.4 and thus also Hubble’s law. We can
large telescopes revealed the existence  further demonstrate this with two analogies. If we glue some spots to a balloon
of galaxies, and he was the firsttomea-  (Figure 15.4) and then inflate it, every spot observes all other spots to be moving
sure their size and distance. Hubble’s  away from it, and the farther away a spot is from any point, the faster its separation
discovery of the recessional motion grows. For a three-dimensional analogy, consider the loaf of raisin bread shown
of the galaxies was one of the most in Figure 15.5 rising in an oven. As the bread rises, every raisin observes all the
exciting and important in the history  others to be moving away from it, and the speed of recession increases with the

of astronomy. separation.
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’,

d1
()
FIGURE 15.3 The expansion of a
coordinate space, showing that the FIGURE 15.4 As a balloon is
apparent speed of recession depends inflated, every observer on the
on the distance; d, is greater than d, surface experiences a velocity-
and d, increases faster than d, . distance relationship of the

form of the Hubble law.

The correct interpretation of the cosmological redshifts requires the techniques
of general relativity, which we discuss later in this chapter. According to general
relativity, the shift in wavelength is caused by a stretching of the entire fabric of
spacetime. Imagine small photos of galaxies glued to a rubber sheet. As the sheet is
stretched, the distance between the galaxies increases, but they are not “in motion”
according to the terms we usually use in physics to describe motion. However,
the stretching of the space between the galaxies causes the wavelength of a light
signal from one galaxy to increase by the total amount of the stretching before it
is received at another galaxy. This is very different from the usual interpretation
of the Doppler formula (Eq. 15.1). (In fact, for some galaxies the wavelength
shift is so large that the special relativity formula would imply a recessional
speed greater than the speed of light!) At low speeds, the Doppler interpretation
of the redshift (that is, calculating a speed from the Doppler formula and using
that speed in Hubble’s law) gives results that correspond with those based on an
expansion of spacetime. However, for very large cosmological redshifts, a more
correct analysis must be based on the stretching model:

AR,
A R

where R, represents a “‘size” or distance scale factor of the universe at the present
time and R represents a similar factor at the time the light was emitted.

(15.5)

(b)

FIGURE 15.5  Another system in
which the Hubble law is valid.
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George Gamow (1904—1969, United
States). His significant contributions
to nuclear physics (theories of alpha
decay, beta decay, and nuclear
structure),  astrophysics  (nucleo-
synthesis, stellar structure), and cos-
mology (the Big Bang theory) place
him among the first rank of scientists.
Gamow was also one of the most suc-
cessful writers of popular science, to
which he brought unusual and amus-
ing perspectives.

The expansion of the universe has been widely accepted since Hubble’s
discoveries in the 1920s. There are, however, two interpretations of this expansion.
(1) If the galaxies are separating, long ago they must have been closer together.
The universe was much denser in its past history, and if we look back far enough
we find a single point of infinite density. This is the “Big Bang” hypothesis,
developed in 1948 by George Gamow and his colleagues. (2) The universe has
always had about the same density it does now. As the galaxies separate, additional
matter is continuously created in the empty space between the galaxies, to keep
the density more or less constant. This is the “Steady State” hypothesis, proposed
also in 1948 by astronomer Fred Hoyle and others. New galaxies created from
this new matter would make the universe look the same not only from all vantage
points, but also at all times in the present and future. (To keep the density constant,
the rate of creation need be only about one hydrogen atom per cubic meter every
billion years.)

Both hypotheses had their supporters, and during the 1940s and 1950s the
experimental evidence did not seem to favor either one over the other. In the 1960s,
the new field of radio astronomy revealed the presence of a universal background
radiation in the microwave region, which is believed to be the remnant radiation
from the Big Bang. This single observation has propelled the Big Bang theory to
the forefront of cosmological models.

15.2 THE COSMIC MICROWAVE BACKGROUND

RADIATION

When a gas expands adiabatically, it cools. The same is true for the universe: the
expansion is accompanied by cooling. As we go back in time, we find a hotter,
denser universe. Far enough back in time, the universe would have been too
hot for stable matter to form. Its composition was then a “gas” of particles and
photons. The unstable particles eventually decayed to stable ones, and the stable
particles eventually clumped together to form matter. The photons that filled
the universe remained, but their wavelengths were stretched by the continuing
expansion. Today those photons have a much lower temperature, but they still
uniformly fill the universe.

The wavelength spectrum of those photons is that of an isolated object
(blackbody) emitting thermal radiation at the temperature 7" that characterizes the
universe at a particular time. The wavelengths change as the universe expands,
but the radiation retains an ideal thermal spectrum at a temperature that decreases
with time. In the 1940s, the Big Bang cosmologists (Gamow and others) predicted
that this “fireball” would today be at a temperature of the order of 5 to 10 K; such
photons would have a typical energy kT of the order of 1073 eV or a wavelength
of order 1 mm, in the microwave region of the spectrum.

The properties of this background radiation can be described using the
formulas for thermal radiation we developed in Section 10.6. The number of
photons dN in the energy interval dE at E (that is, with energies between £ and
E + dFE) was given by Eq. 10.38. Writing that equation as the number per unit
volume (number density), we get

N(E)dE _ 8wE* 1
Vo (he)? E/MT — 1

dE (15.6)
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To find the total number of photons of all energies per unit volume we integrate
Eq. 15.6 over energy:

N 1/°°N(E)dE_ 87 /00 E*dE 87 &Y > x?dx
VoV Jo T (he)d Sy €EIT — 1 (he)3 0 e —1
(15.7)

where we have substituted x = £/kT. The definite integral is a standard form with
a value approximately equal to 2.404. Equation 15.7 shows that the total number
of photons per unit volume is proportional to the cube of the temperature, and
evaluating the constants we find

N/V = (2.03 x 10 photons/m*- K*)T? (15.8)

We can write Eq. 10.41 for the energy density (energy per unit volume) in the
same form by evaluating the constants:
8ok
U= 5 74— 472 x 10’ eV/im® . K4 T (15.9)
15(hc)3
and the mean (average) energy per photon at temperature 7 is obtained from the
ratio of Egs. 15.9 and 15.8:

E, = W =(2.33 x 107*eV/K)T (15.10)

We now look at the experimental evidence for the existence of this microwave
radiation and the determination of its temperature. From Eq. 10.42 we see that
the measurement of the radiant energy density at any wavelength is enough for
a determination of the temperature 7', although to demonstrate that the radiation
actually has an ideal thermal spectrum requires measurement over a range of
wavelengths.

The first experimental evidence for this radiation was obtained in a 1965
experiment by Arno Penzias and Robert Wilson, who used a microwave antenna
tuned to a wavelength of 7.35 cm. At this wavelength they recorded an annoying
“hiss” from their antenna that could not be eliminated, no matter how much care
they took in refining the measurement. After painstaking efforts to eliminate the
“noise,” they concluded that it was coming from no identifiable source and was
striking their antenna from all directions, day and night, summer and winter. From
the radiant energy at that wavelength they deduced a temperature of 3.1 £ 1.0K,
and it was later concluded that the radiation was the present remnant of the Big
Bang “fireball.” For this experiment, Penzias and Wilson shared the 1978 Nobel
Prize in physics.

Since that original experiment there have been many additional studies, at
various wavelengths in the range 0.05 to 100 cm, all giving about the same tem-
perature. The most recent measurements were made with the Cosmic Background
Explorer (COBE) satellite, which was launched into Earth orbit 1989, and the
Wilkinson Microwave Anisotropy Probe (WMAP) satellite, which was launched
into solar orbit in 2001. Previously, no precise data from Earth-bound observations
were available below a wavelength of 1 cm because of atmospheric absorption.
The COBE and WMAP satellites were able to obtain very precise data on the
intensity of the background radiation in the wavelength range between 1 cm and
0.05cm (0.0001 eV and 0.0025eV).
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The results from the COBE satellite are summarized in Figure 15.6. The data
points fall precisely on the solid line, which is calculated from Eq. 10.39 for a
temperature 7' = 2.725 K. For these spectacularly beautiful data, experimenters
John Mather and George Smoot were awarded the 2006 Nobel Prize in physics.

Other experiments show that the radiation has a uniform intensity in all
directions. It comes from no particular source, but instead fills the universe today
as it did in the early times just after the Big Bang.

Using the deduced temperature of 2.7 K, we can calculate from Eqs. 15.8 to
15.10 that there are about 4.0 x 10® of these photons in every cubic meter of space,
that they contribute to the universe an energy density of about 2.5 x 10° eV/m?
FIGURE 15.6 Energy density of the (about half the rest energy of an electron), and that each photon has an average
energy of about 0.00063 eV. The number of photons is particularly important,
points are from the COBE satellite, because for nearly all of the last 14 x 10° y the ratio of the number of nucleons
and the error bars have been mul- (Protons and neutrons) to photons has been almost constant. This has important
tiplied by a factor of 400 to make CcOnsequences for the Big Bang cosmology.
them visible. The solid curve is the
expected thermal radiation spectrum
(Eq. 10.39) for a temperature of 2.725
K. (Data from Legacy Archive for 15.3 DARK MATTER
Microwave Background Data Analy-
sis, NASA Office of Space Science.)  Figure 15.7 shows spiral galaxies that are similar to our Milky Way galaxy, in
which about 10! stars are bound together by the gravitational force. The diameter
of a typical galaxy might be 10—50 kpc (0.3—1.5 x 10'8 km). Many galaxies
have this spiral structure, with a bright central region (containing most of the
galaxy’s mass) and several spiral arms in a flat disk. The entire structure rotates
about an axis perpendicular to the plane of the disk. The Sun, which is in one of
the spiral arms of our galaxy at a distance of 8.5 kpc from the center (about 2/3
of the radius of the disk), has a tangential velocity of 220 km/s. At this speed, it
takes about 240 million years for a complete rotation; during the lifetime of the
solar system of about 4.5 billion years, the Sun has made about 20 revolutions.

Because the stars in the galaxy are bound by the gravitational force, we can use
Kepler’s laws to analyze the motion. We assume that the gravitational force on
the Sun is due primarily to the dense region at the center of the galaxy; the total

u(E)

0 t t t t
0 0.5 1.0 05 20 25
E (meV)

microwave background. The data

FIGURE 15.7 Spiral galaxies similar to the Milky Way, viewed from two different perspectives—one normal to the plane
and one along the plane.



mass of the other stars in the spiral arm is much smaller than the central mass, so
they make a negligible contribution to the force on the Sun. Kepler’s third law
relates the period 7 of the orbit to the radius:

4 2
2= ()3 (15.11)
GM
With T = 2mr/v, where v is the tangential velocity, we obtain
GM
v= /2= (15.12)
r

Here M refers to the mass contained within the region of radius ». The Sun’s
tangential velocity suggests that a mass equivalent to 10'! solar masses lies within
the Sun’s orbit.

According to this model, we expect stars beyond the Sun to have tangential
velocities that decrease with increasing radius like 7~'/2. (The planets in the solar
system follow this expectation to very high precision.) However, we observe that
for the rotation of the galaxy v is constant or perhaps increases slightly for stars
beyond the Sun (Figure 15.8).

Other spiral galaxies show the same effect. The tangential speeds of stars in
distant galaxies can be measured by the Doppler shift of their light. If we are
viewing a galaxy along the plane of the disk, then one side will always be moving
toward us and the other will always be moving away from us. The difference
between the Doppler shifts of the light from the two sides of the galaxy then tells
us about its rotational speed, independently of the net motion of the entire galaxy.
From this measurement, we can determine how the tangential velocity of the
galaxy depends on the distance from its center. A typical set of results is shown
in Figure 15.9. Once again, the velocity fails to follow the expected relationship
and instead remains constant throughout the visible part of the galaxy.

These results are not consistent with Kepler’s law, which is based on a large
central mass attracting each star toward the center of the galaxy. On the contrary,
to explain a velocity that is constant as a function of radius we must have a
mass M that increases linearly with 7 (see Eq. 15.12). However, this explanation
is inconsistent with visual observations of the galaxies, which clearly show that
most of the light, and therefore presumably most of the mass, is concentrated in
the central region.

To resolve this dilemma, it has been concluded that there is a large quantity
of invisible matter in galaxies—matter that must be present in the galaxy to
supply the gravitational force, but that does not give off any light (or other
electromagnetic radiation). To supply the required gravitational force, this dark
matter must have a mass at least 10 times the mass of the visible matter in the
galaxy. That is, more than 90% of the matter in the galaxy is in some unknown
and invisible form. This dark matter permeates the region of space occupied by
the galaxy and may surround it in the form of a halo.

Galaxies are observed in gravitationally bound clusters of typically 100
members. The size of a cluster is perhaps 1 Mpc, about 100 times as large as a
typical galaxy. Because these clusters rotate about their common center, we can
perform similar measurements to compare the rotational speed of a galaxy with
its distance from the center. As with individual galaxies, the clusters follow the
dependence shown in Figure 15.9, suggesting that there is more matter in the
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FIGURE 15.8 Tangential velocities
of stars in our galaxy, determined from
the Doppler shift of their light. The
solid line is the prediction based on
Kepler’s third law, Eq. 15.12.
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FIGURE 15.9 The tangential rota-
tional velocity of a distant galaxy as
a function of the distance from its
center. The solid line is the expected
r~1/2 dependence at distances beyond
the central concentration of stars.
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Vera Rubin (1928—, United States).
An observational astronomer, she has
made pioneering discoveries about
the motion of stars and galaxies. By
observing the Doppler shifts of stars in
galaxies, she deduced that their rota-
tional velocities are not consistent with
attraction only by a large concentra-
tion of mass at the galactic center.
Rubin’s work has been among the
leading contributions to understanding
the existence and amount of dark mat-
ter in the universe. She was awarded
the National Medal of Science in 1993.

clusters than we can account for from the galaxies alone. We conclude that dark
matter also surrounds clusters of galaxies.

Support for the existence of dark matter comes from the observation of light
from distant galaxies that passes by a cluster of galaxies on its way to Earth. This
light is deflected by the gravitational field of the cluster in a process known as
“gravitational lensing.” From the amount of the deflection of the light, it is possible
to deduce the quantity of matter in the cluster. The results of these observations
show that there is much more matter in the cluster than we would deduce from
the luminous matter alone, suggesting the presence of relatively large amounts of
dark matter. A dramatic illustration of this effect occurs in the colliding galaxies
ofthe “Bullet Cluster,” first analyzed in 2006, in which the distribution of ordinary
matter (revealed by the glowing interstellar gas) is different from the distribution
of dark matter (revealed by the gravitational lensing effect).

What kinds of objects make up this dark matter? Speculations about its
nature are divided loosely into two categories: MACHOs (Massive Compact Halo
Objects) and WIMPs (Weakly Interacting Massive Particles). Possible MACHOs
include massive black holes, neutron stars, burnt-out white dwarf stars, or brown
dwarf stars (Jupiter-sized objects of too small a mass to become a star). The
WIMPs include neutrinos, magnetic monopoles, and other exotic types of stable
elementary particles produced during the Big Bang. The major difference between
the two types of objects is that MACHOs are made from baryons (protons and
neutrons, like ordinary matter), while WIMPs are made from some other, more
exotic type of non-baryonic matter. Current theories suggest that most of the dark
matter is of the non-baryonic form, but (aside from neutrinos) no examples of this
type of matter have yet been produced in any laboratory on Earth.

15.4 THE GENERAL THEORY OF RELATIVITY

The interpretation of the observational data describing our universe must be
done using methods from the general theory of relativity, which is in essence a
theory of gravitation developed by Albert Einstein between 1911 and 1915. The
mathematical level of this theory is beyond the level of this text, but we will try
to appreciate how the theory helps us to understand the structure and evolution of
the universe.

The special theory of relativity arose from a thought experiment of Einstein’s
in which he imagined trying to catch up with a light beam. The general theory
also arose from a thought experiment. Here are Einstein’s words:

I was sitting in a chair in the patent office at Bern when all of a sudden
a thought occurred to me: If a person falls freely he will not feel his own
weight. This simple thought made a deep impression on me. It impelled me
toward a theory of gravitation.

Figure 15.10 illustrates a freely falling person in two situations: in the Earth’s
gravity and in interstellar space where the gravitational field is negligibly weak.
In both cases the person is in an isolated chamber and therefore unable to use
outside objects to deduce the motion of the chamber. From within the chamber
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FIGURE 15.10 The effects of freely falling appear identi-
cal from within the chamber in (a) the Earth’s gravity and
(b) interstellar space.
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FIGURE 15.11

The effects appear identical when the
chamber is (a) at rest in a uniform gravitational field and
(D) accelerating in interstellar space.

the two cases look exactly equivalent; no measuring instrument operating entirely
within the chamber can distinguish between the two cases. An accelerationa = g
in a gravitational field g is equivalent to an acceleration of 0 in a negligible
gravitational field.

It appears that an acceleration is able to “cancel out” the effects of a gravitational
field. Let us go one step further and ask whether an acceleration can produce the
effects of a gravitational field. Consider the situations illustrated in Figure 15.11.
In one case the observer is at rest near the Earth, where the gravitational field
is g. In the other case, the observer is in empty space where the gravitational
field is negligibly small, but the rocket engines are firing so that the chamber has
an acceleration a = —g. There are various experiments in the chamber: a scale
displays the weight of the observer (actually, the normal force exerted on the
observer by the scale), a ball drops to the floor, a mass stretches a spring, and
a pendulum oscillates. All of these experiments give identical results in the two
chambers. Once again, there is no experiment that can be done within the chamber
to distinguish the two cases.

This leads us to the principle of equivalence:

There is no local experiment that can be done to distinguish between the
effects of a uniform gravitational field in a nonaccelerating inertial frame
and the effects of a uniformly accelerating (noninertial) reference frame.

By “local” we mean that the experiments must be done within the chamber, and
also that the chamber must be sufficiently small that the gravitational field is
uniform. Near the surface of the Earth, for example, not all g vectors inside the
chamber would be parallel; they point toward the center of the Earth, so there
would be a slight angle between the g vectors on opposite sides of the chamber. If
we make the chamber small, this effect is negligible and the g vectors everywhere
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FIGURE 15.12 A source S emits a
light wave that is recorded by a detec-
tor D in a chamber that is accelerating
upward.

in the chamber, like the a vectors in the accelerating chamber, are parallel to one
another.

The principle of equivalence appears in a slightly different (and weaker)
form in introductory physics, where it is stated in terms of the equivalence of
inertial and gravitational mass. That is, the mass m that appears in the expression
F = ma (inertial mass) is identical to the mass m that appears in the expression
F = GMm/r* (gravitational mass). It follows from this form of the principle
of equivalence that all objects, regardless of their masses, fall with the same
acceleration in the Earth’s gravity. This was first tested by Galileo in the famous
(and perhaps apocryphal) experiment in which he dropped two different masses
from the top of the leaning tower of Pisa and observed them to fall at the same rate.
In recent years other more precise experiments have established the equivalence
of gravitational and inertial mass to about 1 part in 10'!.

Einstein realized that the principle of equivalence applied not only to mechan-
ical experiments but to all experiments, even ones based on electromagnetic
radiation. Consider the arrangement shown in Figure 15.12. At the top of the
chamber is a light source that emits a wave of frequency f. At the bottom of the
chamber and a distance H away is a detector that observes the wave and measures
its frequency. When the light wave is emitted in the accelerating chamber, the
source has speed v, which we assume to be small compared with the speed of
light c. When it is detected, after a time of flight t &~ H /c, the floor is moving with
a speed v + at. In effect there is a relative speed Av = at between the source and
the detector, so there is a Doppler shift in the frequency given by Eq. 2.22:

- 1+ Av/c N
f=f /—1 e ~f(1+ Av/c) (15.13)

or, in terms of the frequency difference Af = " — f,
Af  Av_at  aH

e @ (15.14)

Now let us compare the result of this experiment with a similar one done in
a chamber at rest in a uniform gravitational field g. If the results of the two
experiments are to be identical (as required by the principle of equivalence), there
must be a frequency shift given by Eq. 15.14 witha = g:

A gH

T2 (15.15)
The principle of equivalence thus predicts a change in frequency of a light wave
falling in the Earth’s gravity.

In 1959, R. V. Pound and G. A. Rebka allowed 14.4-keV photons from the
radioactive decay of >’ Co to fall down the Harvard tower, a distance of 22.6 m. The
expected fractional change in frequency, Af/f = gH /c?, was 2.46 x 10~'3; that
is, to detect the effect, they had to measure the frequency or energy of the photon
at the bottom of the tower to a precision of about 1 part in 10'°! The Mdssbauer
effect (Section 12.9) makes it possible to achieve such a level of precision,
and the measured result was Af/f = (2.57 4 0.26) x 10~'3, consistent with the
equivalence principle. Similar experiments based on comparisons between the
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frequency of radiation emitted by satellites and received by ground stations have
confirmed the predictions of the principle of equivalence to a precision of about
1 part in 10%.

Because the Global Positioning System (GPS) relies on frequency measure-
ments on the surface of the Earth from transmitters in orbiting satellites, its
accuracy depends on applying a correction due to the gravitational frequency shift
predicted by general relativity. Without this correction, errors in the GPS locating
system of roughly 10 km per day would accumulate.

Note that in Eq. 15.15 the frequency shift depends on the difference in
gravitational potential AV (potential energy per unit mass) between the source
and the detector:

AU (mgH—0)

m m

AV = gH (15.16)
For the satellite, even though the gravitational field through which the radiation
travels is not uniform, the same conclusion holds: the frequency shift depends
on the difference in gravitational potential between the source and the observer.
Consider, for example, light leaving the surface of a star of mass M and radius R.
The gravitational potential at the surface is V' = —GM /R. If the light is observed
on the Earth, where the gravitational potential is negligible compared with that of
the star, the frequency shift is

Af AV GM

T2 T R (15.17)
Photons climbing out of a star’s gravitational field lose energy and are therefore
shifted to smaller frequencies or longer wavelengths (red shifted). This effect is
difficult to observe for two reasons: (1) the motion of the star causes a Doppler
shift that is generally greater than the gravitational shift, and (2) the spectral lines
are Doppler broadened by the thermal motion of the atoms near the surface of a
star (see Section 10.4). Nevertheless, the effect has been confirmed for a few stars
including the Sun.

| Example 15.1

The Lyman « line in the hydrogen spectrum has a wave-  The shift in wavelength is
l&.eng‘Fh of 121.5 nm. Find the change in vx./av.elength .of this AR = (2.12 x 107°)(121.5 nm)
line in the solar spectrum due to the gravitational shift.

Solution =0257pm

From Eq. 15.17, we have This shift in wavelength is small in comparison with the
AL A GM tl))op;()iler. shiftfs‘ tdue totthlel.Sun’s rotl:;lticg} an(é the thermal
AT T Re roadening of its spectral lines (see Problem 6).

_ (667 x 107" N-m?/kg?)(1.99 x 103 kg)
(6.96 x 108 m)(3.00 x 108 m/s)?
=2.12x107°
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FIGURE 15.13 (a) The path through
flat spacetime of a particle moving at
constant velocity. (b) The path through
flat spacetime of an accelerating parti-
cle. (¢) The path of a particle through
spacetime curved by matter.

Space and Time in General Relativity

From special relativity we learn that the laws of physics must be the same in
all inertial frames, and that there is no preferred inertial frame relative to which
it is possible to determine the absolute velocity of an observer. From this point
of view, it seems that an accelerated (noninertial) frame is a preferred frame,
because it is possible to determine the absolute acceleration. In the general theory,
Einstein sought to remove this restriction, so that motion would be relative for
all observers, even accelerated ones. The principle of equivalence, which tells us
that we can’t distinguish between acceleration and a gravitational field, removes
acceleration from its privileged role.

Ultimately, general relativity is a theory of geometry. The motion of a particle
is determined by the properties of the space and time coordinates through which
it moves. Because space and time are intimately coupled in relativity (see,
for example, the Lorentz transformation in Section 2.5), we regard them as
components of a combined coordinate system called spacetime.

The equivalence between accelerated motion and gravity suggests a relationship
between spacetime coordinates and gravity. In the classical description, we would
say that the presence of matter sets up a gravitational field, which then determines
how objects move in response to that field. According to general relativity, we
say that the presence of matter (and energy) causes spacetime to warp or curve;
the motion of particles is then determined by the shape of the coordinate system.
It is sometimes said that “Geometry tells matter how to move, and matter tells
geometry how to curve.” From the configuration of mass and energy, general
relativity gives us a procedure for calculating the curvature of spacetime, and the
motion of a particle or a light beam then follows directly.

Let’s consider the simple case of a particle that moves in only one
dimension—for example, a bead sliding without friction on a straight wire. We
can plot the motion of the bead on an xt coordinate system, which is the two-
dimensional spacetime of the bead. For example, if the bead moves with constant
velocity along the wire from position x, at time 7, to position xp at time 7z, the
motion in spacetime is represented by the straight line shown in Figure 15.13a.

Now suppose the wire is mounted vertically in an accelerating chamber in a
gravity-free environment. To an observer in the chamber, the bead will appear to
accelerate downward as the chamber is accelerated upward. The path in spacetime
is now curved, as suggested by Figure 15.135.

If the acceleration is replaced by the equivalent gravitational field, the motion
of the bead, as observed from inside the chamber, is exactly the same—the bead
appears to accelerate downward. General relativity describes this situation as a
change in the shape of spacetime; the presence of matter (which classically we
would describe as the source of the gravitational field) distorts the x spacetime as
indicated in Figure 15.13¢. If we imagine the spacetime coordinate system as a
grid laid out on a rubber sheet, the gravitating matter stretches the sheet, and the
particle moves from 4 to B along the most direct path in the curved spacetime.

It is convenient to define the spacetime interval ds, in effect the separation
between two events (such as the particle passing through successive points) in
two-dimensional spacetime, as

(ds)? = (c dt)?® — (dx)? (15.18)
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This quantity is invariant under the Lorentz transformation, as you can prove by
substituting dx” and d¢’ from Eq. 2.23. The trajectory of the particle in spacetime
can be regarded as a collection of infinitesimal intervals. The particle is merely
following the contour of spacetime, so the interval serves both to define the
trajectory and to represent the shape of spacetime. The extension to three spatial
dimensions gives an interval

(ds)? = (cdh? — (dx)* — (dy)* — (d2)* (15.19)

To characterize a “curved” four-dimensional spacetime, we might write the

. A
interval as \

(ds)? = go(c dt)?* — g, (dx)* — g,(dy)* — g3(dz)* (15.20)

B

FIGURE 15.14 A flat space and its
where the four coefficients g; describe the curvature of the spacetime and its Euclidian geometrical properties.
deviation from a Euclidian nature (for which all g; = 1).

The interval of Eq. 15.19 is characteristic of our familiar Euclidian space,
which we call “flat.” Figure 15.14 summarizes some of the characteristics of
that space: a straight line is the shortest distance between two points, the sum of
the angles of a triangle is 180°, parallel lines never meet, the ratio between the
circumference and the diameter of a circle is 77, and so forth.

Figure 15.15 shows a curved non-Euclidian geometry, the surface of a sphere.
Here the shortest distance between points is an arc of a great circle, the sum
of the angles of a triangle is greater than 180°, parallel lines can meet, and the
ratio between the circumference and the diameter of a circle is less than 7. The
saddle-shaped geometry shown in Figure 15.16 has a different kind of curvature,
in which the ratio between the circumference and the diameter of a circle is greater
than .

To appreciate the importance of curved spacetime, consider the experiment
illustrated in Figure 15.17. A light beam is emitted by a source in the chamber and
travels across the chamber to the opposite wall. If the chamber is in an inertial
frame and free from gravitational fields, the beam travels horizontally across the
chamber and strikes the opposite wall at the same height above the floor as the
source. (This holds even if the chamber moves at constant velocity, as you can
prove using special relativity.) Observers inside and outside the chamber agree
on this conclusion.

If the chamber accelerates, the situation is different. Suppose the light is
emitted when the chamber is at rest, relative to a particular inertial frame.
The light beam then has no transverse component of velocity in this frame
and moves horizontally. As the chamber accelerates, the light beam acquires
no transverse velocity component, but the chamber’s velocity increases. To the
inertial observer, the beam travels along a horizontal straight line, but the chamber
accelerates forward so that the beam strikes the opposite wall at a lower height
than the source. To an observer in the chamber, the beam appears to follow the
curved path shown in Figure 15.17a and strikes the wall at a lower height than
the source.

According to the principle of equivalence, the observer in the chamber should
record the same outcome if the chamber is at rest in a uniform gravitational field ~FIGURE 15.16 Another non-
(Figure 15.17b). General relativity explains this observation through the curvature  Euclidian curved space.

FIGURE 15.15 A curved space and
its non-Euclidian geometrical prop-
erties.
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(a) (b)

FIGURE 15.17 (a) According to an observer in an accelerating
chamber, the light beam follows a curved path. (b) An observer at
rest in a uniform gravitational field finds the same outcome.

of spacetime in the vicinity of the mass that is responsible for the gravitational
field. The light beam is merely seeking out the shortest possible path in the
curved spacetime, just like an ant crawling along a line on the spherical surface
of Figure 15.15. All paths in the curved spacetime are curved.

It is tempting to seek an alternative explanation for the outcome shown in
Figure 15.17b. For instance, we can assume each photon in the light beam to have
an effective mass m = E/c* and then calculate its trajectory in the gravitational
field as we would that of any classical particle of mass m. However, as we discuss
in the next section, this method gives results that do not agree with observations
for the path of photons in a gravitational field. The curvature of spacetime, which
provides the correct explanation, is an inescapable consequence of the principle
of equivalence.

General relativity gives a relationship between curvature and the density of
mass and energy in space, which can be written symbolically as

81 G
curvature of space = ﬂ—4(mass-energy density) (15.21)
C

Note that this expression incorporates gravitation (Newton’s constant G) and
special relativity (the speed of light ¢). If no matter or energy is present, the
right-hand side is zero; as a result, the curvature is zero and space is flat. In the
limit of classical kinematics (¢ — oo) and in the limit of weak gravitational fields
(G — 0), space is nearly flat and we can safely use the Newtonian gravitational
theory. This is equivalent to saying that if we take a small enough region of the
sphere of Figure 15.15, or if we increase its radius to a sufficiently large value,
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the geometry is approximately Euclidian. Just as classical kinematics can be
regarded as the limiting case of special relativity (for low speeds), so can classical
gravitation be regarded as the limiting case of general relativity (for weak fields).
In calculating the orbit of an Earth satellite or the trajectory of a space probe to
Mars, Newton’s theory gives entirely satisfactory results. Close to the Sun and to
compact or massive stars, the curving of space can lead to observable effects, as
we discuss in the next section.

O a

Gy

15.5 TESTS OF GENERAL RELATIVITY

Newtonian gravitation and Einstein’s general relativity each give predictions that
can be tested against experiment, but under most circumstances the differences
between the two predictions are extremely small. At the surface of the Earth,
space is curved by only about 1 part in 10°; even at the surface of the Sun, the
curvature is only about 1 part in 10°.

Nevertheless, there are experiments we can do that are precise enough to detect
the difference between flat spacetime and curved spacetime. In this section we
discuss several of these experiments.

Deflection of Starlight FIGURE 15.18 A light beam pass-

When a beam of light from a star passes close to the Sun, it is deflected from ng near the Sun is deflected. To an
its original direction, as shown in Figure 15.18. The star appears to be displaced ~©observer on Earth, the star at 4 appears
from its true position by an angle 6. to be at B.
It is possible to analyze this situation using Newtonian gravitation and special
relativity by assigning the photons in the beam an effective mass m = E/c?
and assuming them to be deflected by the Newtonian gravitational force. The
experiment then looks very much like Rutherford scattering, and by analogy with
the Rutherford scattering formula (see Problem 9) it is possible to calculate the
deflection angle (in radians):

2GM
0 =
Rc?
where M is the mass of the Sun and R is its radius. Substituting the numbers gives
0 = 0.87" as the prediction of special relativity and Newtonian gravitation.

General relativity gives a different view. Spacetime in the vicinity of the Sun
is curved, and the light beam is simply following the most direct path along

(15.22)

the curved spacetime (Figure 15.19 is a two-dimensional representation of this -

effect). According to general relativity, the expected deflection is 1.74”, exactly [~ i -

twice the value predicted by the Newtonian formul T HI 777

wice the value predicted by the Newtonian formula. e S iy o =
Measuring this effect requires the observation of a beam of light, such as from ...~’ I

a star, that passes near the edge of the Sun. Starlight near the Sun can be observed e

only during a total solar eclipse. In 1919, just a few years after Einstein completed

his general theory, two expeditions of British astronomers traveled to Africa and ~FIGURE 15.19 The path of a light
to South America to observe the solar eclipse and to measure the apparent changes ~ beam from a star through curved
in positions of stars whose light grazed the Sun. Their results for the deflection ~ spacetime.
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FIGURE 15.20 An electromagnetic
signal travels between Earth and
Venus at superior conjunction.

Venus

FIGURE 15.21

spacetime.

Path of signal be-
tween Earth and Venus in curved

FIGURE 15.22 The elliptical orbit of
a planet about a star.

FIGURE 15.23 Precession of the per-
ihelion (greatly exaggerated). After
each orbit, the perihelion advances by

an angle A¢.

==

angles, 1.98” +0.18” and 1.69” £ 0.45”, gave strong support for the new general
theory. In the years since those early results, this experiment has been repeated at
nearly every total solar eclipse, and the overall agreement with general relativity
is within 10%. Radio emission from quasars has also been used to confirm this
effect, and here the agreement with general relativity is within 2%.

These experimental results give a clear distinction between Newtonian gravity
(even with special relativity included) and general relativity.

Delay of Radar Echoes

When a line joining Earth and another planet (Venus, for example) passes through
the Sun, the situation is known as “superior conjunction” and is illustrated in
Figure 15.20. Based on the orbits of Earth and Venus, we can calculate how long
it takes a radar signal sent from Earth to be reflected from Venus and return to
Earth (about 20 minutes). Near superior conjunction, the signal passes close to the
Sun, and therefore, according to general relativity, it does not travel in a Euclidian
straight line, but instead follows a path through curved spacetime (Figure 15.21).
It therefore takes the signal a bit longer than the expected time to make the round
trip (think of the time intervals as extended as the beam passes close to the Sun,
thus lengthening the time to travel the path). This time delay is expected to be
about 10™*s, and it has been confirmed to within a few percent (the limit on
precision being uncertainties in the surface of Venus, since we don’t know if the
signal is being reflected from a mountain or a valley). More precise experiments
were done in the late 1970s using a signal sent between Earth and the Viking
landers on Mars. In this case, the result was consistent with general relativity to
within about 0.1%. Signals from NASA’s Cassini spacecraft, which entered orbit
around Saturn in 2004, have provided the most sensitive test of the time delay,
agreeing with the predictions of general relativity to within 0.002%.

Precession of Perihelion of Mercury

Consider a simple planetary system, shown in Figure 15.22, consisting of a single
planet in orbit about a star of mass M such as the Sun. According to Newtonian
gravitation, the orbit is a perfect ellipse with the star at one focus. The equation
of the ellipse is

1+e

=Fpin—————— 15.23
rmml-{-e‘COS(f) ( )

where r.;, is the minimum distance between planet and star and e is the
eccentricity of the orbit (the degree to which the ellipse is noncircular; e = 0 for a
circle). When r = r,,;,,, the planet is said to be at perihelion; this occurs regularly,
at exactly the same point in space, whenever ¢ = 0,27,4m,.... According to
general relativity, the orbit is not quite a closed ellipse; the curved spacetime
near the star causes the perihelion direction to precess somewhat, as shown in
Figure 15.23. After completing one orbit, the planet returns to r.;,, but at a
slightly different ¢. The difference A¢ can be computed from general relativity,
according to which the orbit is
l+e

= i T T eoon( — 59) (15.24)
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where

67nGM

ANp= ————
¢ AZrpin (1 + €)

(15.25)

For the Sun, 67GM /c* = 27.80 km, and thus even for the smallest value of 7,
(for Mercury, 46 x 10° km) A¢ is of order 107 rad, an extremely small quantity.
However, this effect is cumulative; that is, it builds up orbit after orbit, and after N
orbits, the perihelion has advanced by NA¢. We usually express this precession
in terms of the total precession per century (per 100 Earth years), and some
representative values are shown in Table 15.1.

The expected precessions are very small, of the order of seconds of arc per
century, but nevertheless have been measured with great accuracy; for the three
planets closest to the Sun, and for the asteroid Icarus, the measured values are
in agreement with the predictions of general relativity. In the best case, the
agreement is within about 1%.

These experiments are very difficult to do because (except for Mercury and
Icarus) the eccentricities are small and locating the perihelion is difficult. A
more serious problem is that other effects, not associated with general relativity,
also cause an apparent precession of the perihelion. In the case of Mercury, the
observed precession is actually about 5601” per century; of that, 5026” are due to
the precession of the Earth’s equinox (a classical Newtonian effect of the spinning
Earth) and 532" are due to the gravitational pull of the other planets on Mercury
(also a classical Newtonian effect). Only the difference of 43” is due to general
relativity.

Gravitational Radiation

Just as an accelerated charge emits electromagnetic radiation that travels with the
speed of light, an accelerated mass emits gravitational radiation that also travels
with the speed of light. In effect, gravity waves are ripples that travel through
spacetime. Waves produced by such motions as the planets around the Sun are
exceedingly weak and beyond any hope of detection. Cataclysmic events in the
universe, such as supernova explosions, and highly accelerated systems, such as
compact binary objects, may produce observable gravitational waves. Detection

TABLE 15.1 Precession of Perihelia

NA¢ (arc seconds per century)

Planet | N (orbits per century) e Frmin (10°km) | General Relativity| Observed
Mercury 415.2 0.206 46.0 43.0 43.1+0.5
Venus 162.5 0.0068 107.5 8.6 84+48
Earth 100.0 0.017 147.1 3.8 50£1.2
Mars 53.2 0.093 206.7 1.4

Jupiter 8.43 0.048 740.9 0.06

Icarus 89.3 0.827 27.9 10.0 9.8+£0.8
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of these waves would provide another important confirmation of the general
relativity theory.

In analogy with the effect of a passing electromagnetic wave on a charge, a
passing gravitational wave could be detected by its effect on matter. Several anten-
nas have been built to search for gravity waves, but no conclusive experimental
evidence has yet been obtained. Indirect evidence has come from the observations
of the change in the orbital period of a binary pulsar (see next section). Interfer-
ometric techniques are being used to build new detectors to search for gravity
waves. The Laser Interferometer Gravitational-wave Observatory (LIGO), which
began operation in 2001, consists of two installations (located in the states of
Washington and Louisiana) whose interferometer arms are 4 km in length. A
passing gravitational wave would cause a small change in the length of one arm
relative to the other, which would be detected through a change in the fringe
pattern similar to that of the Michelson interferometer (Section 2.2).

15.6 STELLAR EVOLUTION AND BLACK HOLES

Although the large gravitational field of the Sun has provided several good tests
of general relativity, the most stringent tests will come from measurements in
even larger gravitational fields, where the curvature of spacetime is significantly
greater. Such large gravitational fields can occur following the collapse of a star
into a more compact object: a white dwarf, a neutron star, or a black hole.

We considered the collapse of an ordinary star like the Sun to a white dwarf star
as an example of the application of Fermi-Dirac statistics in Section 10.7. As the
supply of hydrogen fuel in a star begins to be used up, the star will contract because
the radiation pressure that opposes gravitational collapse is reduced. Eventually
the stable white dwarf stage can be reached, at which the Pauli principle applied
—| +—1.34s . .

to the electrons prevents further collapse. The average density of a white dwarf

AAAANNANNNAN ~Annan]  star such as Sirius B is about 10° kg/m?>, which is about 10° times the average
density of the Sun.

0 10 20 If the star has a mass greater than about 1.4 solar masses (the Chandrasekhar
Time (s) limit), the gravitational force is sufficient to overcome the Pauli repulsion of the

electrons, and further collapse can occur. For a star of this mass, the Fermi energy

l+-10.714 s of the electrons (Eq. 10.50) is 0.30 MeV. Higher-energy electrons in the tail of

the Fermi-Dirac distribution will have sufficient energy to produce the inverse
beta-decay reaction:

e +p—>n+y,

0 2 4 6 8
Time (s) for which the threshold energy is 0.782 MeV, not too far above Ep. This reaction

removes some electrons from the star, reducing the effects of Pauli repulsion, and
FIGURE 15.24  The radio signals allowing the star to collapse a bit. The Fermi energy increases, pushing more
from two different pulsars. The top electrons above the 0.782-MeV threshold, resulting in more electrons being lost,
signal is the record of the first pulsar  and so on, until all (or very nearly all) of the electrons vanish. The star is now
discovered. composed of neutrons, instead of protons and electrons. The Pauli repulsion of the
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electrons no longer can oppose gravitational collapse, and so the star contracts until
the Pauli principle applied to the neutrons (which also obey Fermi-Dirac statistics)
prevents further collapse. As we calculated in Section 10.7, a neutron star of 1.5
solar masses would have a radius of 11 km and a density ofabout 5 x 10'7 kg/m?.

Are these neutron stars merely figments of the physicist’s imagination or do
they really exist? In 1967, radio astronomers at Cambridge University discovered
an unusual signal among their observations—a regular pulsation, such as is shown
in Figure 15.24, with a period of 1.34 s. No previously known astronomical object
could produce such sharp and regular pulses, and at first the Cambridge group
suspected that they might have discovered signals from an extraterrestrial intelli-
gent civilization. (The object emitting the pulses was at first called LGM-1; LGM
stands for “Little Green Men.”) This notion was later discarded (unfortunately)
and the object became known as a pulsar. Since 1967, hundreds of other pulsars
have been discovered; all have extremely regular periods typically in the range
0.01-1s.

The connection between pulsars and neutron stars was made soon after their
discovery. The collapse of a rotating star to a neutron star causes the neutron star
to rotate much more rapidly. Angular momentum is conserved during the collapse
(see Problem 11), so the rotational angular velocity increases as the rotational
inertia decreases. A relatively slow rotation rate of the original star can become a
very rapid rotation rate for the neutron star.

The intense magnetic field of such a rapidly rotating object traps any emitted
charged particles and accelerates them to high speeds, especially near the magnetic
poles, where they give off radiation (Figure 15.25). As the star rotates, this beam
of emitted radiation sweeps around like a searchlight or a lighthouse, and we see
a pulse of radiation whenever the beam sweeps through the Earth. The observed
interval between the pulses is, according to this interpretation, the rotational
period of the neutron star.

If this explanation of a pulsar as a rotating neutron star is correct, we ought to
see the pulsars slowing down somewhat, as the radiated energy is compensated
by a decrease in the neutron star’s rotational kinetic energy. This effect has been
seen for nearly all pulsars, and amounts to about 1 part in 10° per day.

Pulsars have now been observed at many different wavelengths (optical, X
ray, y ray, radio) and with such great precision of timing that the slowing down
of 107° per day is easily observable.

Although the exact mechanism of the collapse of a star to a neutron star is not
yet understood, we suspect that the violent explosions known as supernovas leave
a neutron star as a remnant. In 1054, Chinese astronomers observed a supernova
explosion (which they called a “guest star”) that was visible in the daytime over
many days. Today we see the expanding shell of that explosion as the Crab
Nebula (Figure 15.26). At the center of the Crab Nebula is a pulsar, rotating with
a frequency of 30 Hz. It is remarkable that none of the many photographs of the
Crab that were taken before 1967 revealed this pulsar blinking on and off every
0.033 s; all of these photographs were taken over long exposure times, and so
the pulsations were not observable. When careful measures are taken, however,
the blinking effect can be seen quite clearly (Figure 15.27). This suggests that, at
least in this instance, pulsars may be identified as supernova remnants.

Rotation
axis

Magnetic
field axis
/

. Magnetic
e field lines

Radiation

FIGURE 15.25  Charged particles
trapped by the magnetic field lines of
a neutron star are given large acceler-
ations near the magnetic poles, from
which a directional radiation beam
emerges. If this radiation beam inter-
cepts the Earth as the neutron star
rotates, we see it as a pulse of radiation.

FIGURE 15.26  The Crab Nebula,
remnant of a supernova observed in
the year 1054.
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FIGURE 15.27 The visible pulsar of the Crab Nebula. The two exposures show the pulsar blinking on and off relative to the
other stars in the photograph.

A Binary Pulsar

In 1974, an unusual pulsar was discovered. The period of the pulsar was measured
to be 59 ms, making it among the fastest observed up to that time. More surprising,
the pulse rate appeared to be slowing down by about 0.1% per hour, but later was
observed to be increasing by about the same amount. It was quickly realized that
the decrease and increase of the pulse rate could be explained as a Doppler shift
if the neutron star were moving first away from and later toward the Earth. To
move in this way, the pulsar must be in orbit around an unseen companion. Thus
we have a pulsar as part of a binary star system, or a “binary pulsar.”

The orbital period of the binary system was determined to be about 8 hours.
This is an extremely short period; for example, it is more than 250 times shorter
than the orbital period of Mercury, the fastest moving planet in our solar system.
To have such a short orbital period, the pulsar must be orbiting very close to its
companion (which is believed to be another neutron star). At such close distances,
the curvature of spacetime is large and the effects of general relativity should
be measurable. In effect, the binary pulsar provides us with a “general relativity
laboratory.”

Among the general relativity effects that have been observed in the binary
pulsar system is the delay of the pulses due to the curvature of spacetime. This
situation is similar to Figures 15.20 and 15.21, except that the pulsar (instead of
Venus) is the origin of the signals and the curvature is due to the companion
star (instead of the Sun). An effect analogous to the precession of Mercury’s
perihelion has also been observed (except that, in the case of a star, the point of
closest approach is called periastron rather than perihelion). The periastron of the
binary pulsar changes by 4.23° per year, about 35,000 times more rapidly than
that of Mercury; the change of the periastron is known to an accuracy of about 1
part in 10°, three orders of magnitude more precisely than Mercury’s.

The most remarkable observation from the binary pulsar is the slowing of
its orbital period, which general relativity explains as caused by the emission of
gravitational radiation. Because of its large centripetal acceleration (its orbital



15.6 | Stellar Evolution and Black Holes 499

speed is about 0.001c¢), the binary pulsar should emit gravity waves, and the
energy radiated away is compensated by a loss in the orbital energy. This loss
amounts of 76 us per year or 67ns per orbit, and the measured change in the
orbital rate confirmed the prediction of general relativity to within 1%. In the
absence of direct observation, this is the strongest evidence yet obtained for the
existence of gravitational radiation. For the discovery of the binary pulsar and its
contributions to the study of gravitation, Joseph Taylor and Russell Hulse were
awarded the 1993 Nobel Prize in physics.

Black Holes

A neutron star is not the ultimate fate of the collapse of massive stars. Stars with
masses less than two or three solar masses probably do end up as white dwarf
stars or neutron stars. For more massive stars, the gravitational force is strong
enough to overcome even the Pauli principle applied to the neutrons, and there
is nothing to prevent the material in the star from suffering complete collapse
down to a single point in space. To understand gravitational collapse, we must
turn again to general relativity.

Within a year after Einstein’s 1916 publication of the general theory, Karl
Schwarzschild worked out the solutions to the equations for the curvature of
spacetime near a spherically symmetric mass M. In spherical coordinates (7,0, ¢),
the spacetime interval for this solution is

(ds)? = [1 — M—M} dn? —

ctr

(dr)?
| _2GM
I

(Note that in the classical and zero-gravity limits ¢ — oo and G — 0, the two
factors in square brackets disappear, leaving us with an interval in spherical
coordinates that is the exact analog of the three-dimensional interval expressed in
Cartesian coordinates, Eq. 15.19.) The radial part of this solution (the dr term) has
what appears to be a serious problem: the factor in the denominator can become
zero for a particular r, causing that term in the equation to “blow up.” This occurs
when 7 has the value

— 12(d0)? — ¥ sin® 0(d¢)?

(15.26)

2GM
rs = )

(15.27)
C

which is known as the Schwarzschild radius. None of the physical coordinates
actually “blows up” at r = rg, and an object falling toward M would notice no
change in its motion as it crossed the Schwarzschild radius.

For external observers watching the falling object, the situation is very different.
As the object falls, general relativity predicts that its clocks would appear to run
ever more slowly, stopping completely when the object reaches rg. The object
appears to be frozen forever at that location! While the object is falling, the light
it emits becomes increasingly red shifted, and the red shift becomes infinite at
r = rg, so the object disappears from view! The outside observer can obtain no
information about the object once it passes through the Schwarzschild radius. For
that reason, the Schwarzschild radius is often called the event horizon; no external
observer can see into that horizon.
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The falling object does encounter one crisis at rg. At any time before crossing
rg, the object could reverse its fall and escape from the gravitational pull of M —for
example, by firing its rockets. Once it passes rg, no escape is possible. Inside g, the
escape speed exceeds the speed of light, and nothing (not even light) can escape.
No travel or communication is permitted from inside rg to the outside world.
However, the object inside 7 can continue to exert a gravitational force on external
objects or, in the language of general relativity, to curve spacetime beyond rg.

An object whose mass M lies totally within the corresponding radius rg is said
to be a black hole. To form such an object requires that matter be compressed
to exceptional densities. Table 15.2 shows some values of rg for representative
objects. For the Earth to become a black hole, we would need to compress it into
a sphere of radius less than 1 cm, and the Sun would become a black hole only if
compressed to a 3-km radius! Nevertheless, it has been speculated that black holes
are the end products of the collapse of massive stars, and that tiny (atom-sized)
black holes may have been formed by the extreme densities and pressures in the
early universe.

Far from a black hole, the gravitational field is Newtonian in character; the
effects of curved spacetime are small, and the black hole cannot be distinguished
from any other gravitating object. Close to a black hole (or close to any massive,
compact object), the effects of curved spacetime can become significant. The
discovery of a massive black hole could therefore provide another “laboratory” for
testing the predictions of general relativity where the effects may be substantially
larger than in the vicinity of the Sun.

Many stars are members of binary systems, in which two stars orbit about their
common center of mass. In many cases, a visible star appears to orbit with an
invisible companion, and gases from the visible star emit intense X rays as they
are accelerated toward the invisible companion. It is believed that these invisible
companions in binary systems are black holes. Many such systems have been
observed in our galaxy.

By observing the rotational motion of galaxies, it is possible to deduce the
mass at the galactic center. For some galaxies, this mass turns out to be greater
than 10° times the mass of the Sun. No known phenomenon other than a black
hole permits so much mass to be concentrated in so small a region. Similar
evidence derived from rotational motions suggests that even our near neighbor,

TABLE 15.2 Black Hole Event Horizons

Object Mass (kg) | Ordinary Radius (m) rg (m)
238U nucleus | 4 x 10725 7x 1071 6 x 1072
Physics book 1 0.1 1.5 x 10777
Earth 6 x 10% 6 x 10° 8.9 x 1073
Sun 2 x 103 7 x 108 3 x 10°
Galaxy ~2 x 10% ~10%° 3 x 10"
Universe ~10%! 10%6(?) ~10%4
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the Andromeda galaxy, has a black hole of a few million solar masses at its center.
Radio emissions from the center of our own Milky Way galaxy also suggest a
black hole of a few million solar masses.

A surprising development in black hole theory occurred in 1974, when Steven
Hawking showed that black holes could be sources of particle emission. According
to quantum mechanics, particle-antiparticle pairs can spontaneously appear, as
long as they exist for a short enough time that the uncertainty principle is not
violated. That is, the particles can “borrow” an energy of 2mc> as long as the
loan is repaid (the particles vanish) within a time of at most At ~ 7i/2mc?. If
a particle-antiparticle pair arises outside the event horizon of a black hole, its
gravitational field can provide the energy necessary to repay the loan so that the
particle and antiparticle can become real. Usually the particle and antiparticle
fall back into the black hole, restoring the energy balance. However, one of the
members of the pair may have enough energy to escape into the outside world.
The black hole thus appears to be emitting particles. In the process, the black hole
loses mass. The rate of mass loss is inversely proportional to the mass of the black
hole; massive black holes that result from the collapse of stars emit particles at
too low a rate to be observed. However, tiny black holes of atomic or nuclear size,
which may have been formed in the early evolution of the universe, could be very
bright sources of radiation.

Black holes provide both a fertile area for theoretical speculation and a
challenge for the skill of experimenters. It has been suggested that material that
falls into a black hole reappears at another time and place in the universe, or
perhaps in another universe. Thus a black hole, if this speculation is correct, could
be used for time travel or to travel between different universes. Other proposals
suggest harnessing a black hole as an energy source. It has been estimated that, if
black holes are indeed the end products of the evolution of massive stars, there
could be as many as 10° massive black holes in our galaxy, which makes it likely
that many black holes are within our observational reach. Or, perhaps we will
someday observe a minihole ending its existence with a burst of radiation. As
we continue to refine our ability to study the skies at visible, X-ray, and y-ray
wavelengths, black holes will figure prominently in our investigations.

15.7 COSMOLOGY AND GENERAL RELATIVITY

General relativity can be applied to calculate the properties of the universe as a
whole. For this case, the mass-energy density term in Eq. 15.21 must describe the
entire universe. We are not interested in the “local” variations in density on a scale
of galactic size, but rather in the average density of the entire universe, evaluated
over a distance that is large compared with the spacing between galaxies. (In
a similar way, when we speak of the density of a solid we are interested not
in the variations on the atomic scale but rather in the average density of the
entire material, evaluated over a distance that is large compared with the spacing
between atoms.) The density of the universe is not a constant; it changes with
time as the universe expands.
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Solving the equations of general relativity for the large-scale structure of the
universe gives the following result, which is known as the Friedmann equation:
dR\* 8w . .,
< 0 ) =3 GpR* — ke (15.28)
Here R(f) represents the size or distance scale factor of the universe at time ¢,
and p represents the total mass-energy density at the same time. (The density is
expressed in mass units, such as kg/m?, even if it represents radiation.)

The constant & that appears in Eq. 15.28 specifies the overall geometrical
structure of the universe: k¥ = 0 if the universe is flat, like Figure 15.14; k = +1
if the universe is curved and closed, like Figure 15.15; £ = —1 if the universe
is curved and open, like Figure 15.16. When k£ = +1, the distance factor R() is
directly related to the size or “radius” of the universe, but its meaning is not so
apparent when k = 0 or £ = —1, because in both of the latter cases the universe
is infinite in extent. In these cases R(¢) should be regarded as a scale factor that
represents the expansion of space; the absolute magnitude of R in this case is not
significant, and only its variation with time is of interest, because any particular
length (such as the distance between two galaxies) will vary with time just as R
does.

To solve Eq. 15.28, we must therefore specify the constant k. On the large
scale, our universe seems quite close to being flat (as we discuss in Section 15.10),
and we therefore take £ = 0. This simplifies the mathematics and gives results
that are not too far different from what we obtain with £ = +1, so for rough
estimates our calculation should be acceptable.

The density p in Eq. 15.28 must include both the matter and the radiation present
in the universe. The present universe is dominated by matter; the contribution of
radiation to the total density is negligible. As the universe expands, the amount of
matter remains constant but the volume increases like R. Thus the matter density
o, decreases with increasing R according to p,, oc R™>. Putting this result into
Eq. 15.28 and integrating, we find

R(t) = A3 (15.29)

where A4 is a constant. Using this result to eliminate R from Eq. 15.28, we obtain

1
P (15.30)

61Gp,

In contrast, the early universe was dominated by radiation; the mass density of
the matter was negligible. From Eq. 10.42 we see that the energy density of the
radiation depends on di/A°. All wavelengths scale with R, so we have dA oc R
and A> oc R°. Thus the energy density of radiation p, decreases with increasing
R according to p, o« R~*. Inserting this result into Eq. 15.28 and integrating, we
obtain

R(t) = A't'/? (15.31)

3
t= (15.32)
32nGp,

where A’ is a constant, and so
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The Hubble parameter can be defined in terms of the time variation of the scale
factor:

1 dR

~ Rat

As the universe evolves, the value of H changes. Its present value H, is revealed
in experiments with Hubble’s law (Eq. 15.2).

If the universe has been expanding at a constant rate (R o f), then H~! is the
age of the universe. In the two cases we derived above, the age is less than H~!.
A matter-dominated universe expanding since ¢ = 0 has an age of %H ~! while a
radiation-dominated universe has an age of %H ~!. In either case we can take H~!
as a rough measure of the age at any time.

We can therefore characterize the universe by several parameters: a shape
parameter k, which describes whether it is flat or curved, open or closed; a radius
or scale parameter R(7), which measures the size of the universe as a function
of time; the density p, which represents both matter and energy, and which is
also a function of time; the Hubble parameter /H, which is proportional to the
rate of expansion; and also a deceleration parameter ¢, which tells us the rate
at which the expansion is slowing down (see Problem 12). The challenge to the
observational astronomer is to obtain data on the distribution and motion of the
stars and galaxies that can be analyzed to obtain values for these parameters.

15.8 THE BIG BANG COSMOLOGY

The present universe is characterized by a relatively low temperature and a low
density of particles. Its structure and evolution are dominated by the gravitational
force. Because the universe has been expanding and cooling, in the distant past
it must have been characterized by a higher temperature and a greater density of
particles. Let us imagine we could run the cosmic clock backward and examine
the universe at earlier times, even before the formation of stars and galaxies. At
some point in its history, the temperature of the universe must have been high
enough to ionize atoms; at that time the universe consisted of a plasma of electrons
and positive ions, and the electromagnetic force was important in determining the
structure of the universe. At still earlier times, the temperature was hot enough
that collisions between the ions would have knocked loose individual nucleons,
so the universe consisted of electrons, protons, and neutrons, along with radiation.
In this era the strong nuclear force was important in determining the evolution of
the universe. At still earlier times the weak interaction played a significant role.
If we try to go back still further, we reach a time when the matter of the
universe consisted only of quarks and leptons. Because we have never observed
a free quark, we don’t know much about their individual interactions, and so we
can’t describe this very early state of the universe. If someday we are able to
understand the interactions of free quarks, we can penetrate this barrier and look
to still earlier times. Eventually we reach a fundamental barrier when the universe
had an age of only 10~* s, which is known as the Planck time (see Problem 26).
Before this time, quantum theory and gravity are hopelessly intertwined, and none
of our present theories gives us any clue about the structure of the universe.
Later than the Planck time, but still before the condensation of bulk matter, the
universe consisted of particles, antiparticles, and radiation in approximate thermal

(15.33)
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equilibrium at temperature 7. The universe at this time was radiation-dominated:
the energy density of the radiation exceeded the energy density of the matter.
In a radiation-dominated universe, we can use Eq. 15.32 to find a relationship
between the temperature and the age. Inserting the radiation density from Eq. 15.9,
remembering to convert to mass units such that p. = U/c?, and evaluating all
numerical factors, we obtain

1.5 x 1010 s1/2.K
r= 1172

(15.34)

where the temperature 7 is in K and the time ¢ is in seconds. This equation relates
the age of the early universe to its temperature.

The radiation of the early universe consisted of high-energy photons, whose
average energy at the temperature 7' can be roughly estimated as k7', where & is
the Boltzmann constant. The interactions between the radiation and the matter
can be represented by two processes:

photons — particle + antiparticle
particle 4+ antiparticle — photons

That is, photons can engage in pair production, in which their energy becomes
the rest energy of a particle-antiparticle pair, or a particle and antiparticle can
annihilate into photons. In each case, the energy of the photons must be at least as

large as the rest energy of the particle and antiparticle.

| Example 15.2

(a) At what temperature is the thermal radiation in the
universe energetic enough to produce nucleons and anti-
nucleons? () What is the age of the universe when it cools
to that temperature?

Solution
(a) Let us consider the formation of proton-antiproton or
neutron-antineutron pairs by photons:

y+y —>p+p and y+y —>n+n

To produce these reactions, the photons must have an
energy at least as great as the nucleon rest energy, or about
940 MeV. The temperature of the photons must then be

_ E B mc?
Tk ok
940 MeV

= —11x10BK
8.6 x 10~ eV/K

(b) From Eq. 15.34 we can find the age of the universe
when the photons have this temperature:

T
_ <1.5 x 10'0s/2. K

L (1.5 x 1010 s1/2-1<)2

2

) =2x10"°s
1.1 x 10B K
That is, at times earlier than 2 s, the universe was hot
enough for the photons to produce nucleon-antinucleon
pairs, but after 2 s the photons were not energetic enough
to produce nucleon-antinucleon pairs. The annihilation
reaction continues to occur, but after this time nucleon-
antinucleon pair production ceases.

In this calculation we are using average photon energies
as estimates. Photons in the tail of the thermal spectrum are
sufficiently energetic to produce nucleon-antinucleon pairs
even after 2 us, but on the average the photons have too
little energy. More precisely, we could state that the rate
of nucleon-antinucleon pair production drops rapidly at
around 2 us and becomes negligible at times much greater
than 2 us.
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Let us now look at some of the major developments in the evolution of the
universe.

t = 10°s We begin the story at a time of 1 us. From Eq. 15.34 we find
T =1.5x 108K or kT = 1300 MeV. The scale factor is smaller than that of
the present universe by the red shift, 2.7K/1.5 x 1083 K = 1.8 x 1013, If the
universe were closed and finite, its radius would be smaller than the present
observable radius (106 m) by this factor, so the universe at that time is about
the present size of the solar system (10'3 m). At 1 us, the universe consists of p,
p,n,n e ,et, u”, ut, 7% 7, w+, and perhaps other particles, plus photons,
neutrinos, and antineutrinos. Because both pair production and annihilation can
occur, the number of particles is roughly equal to the number of antiparticles
for each species. Furthermore, the number of photons is roughly equal to the
number of nucleons, which is in turn roughly equal to the number of electrons.
The relative number of neutrons and protons is determined by three factors:
1. The Boltzmann factor e~ “F*T_Protons have less rest energy than neutrons, so
there are more of them at any given temperature. The energy difference AE
is (m, — m )c? = 1.3 MeV, so the neutron-to-proton ratio can be expressed

as e~ 1510°°/T with T in Kelvins. For T ~ 10'3 K, this ratio is very nearly 1,
but it becomes different from 1 as T approaches 10'° K.

2. Nuclear reactions. Reactions suchasn+v, = p+e~ andn+et 2 p+ 7,
can go in either direction and tend to make it easy for protons to turn into
neutrons or neutrons into protons, as long as there are plenty of €7, e, v,
and v, around.

3. Neutron decay. The neutron half-life is about 10 min, which is going to be
important only at later times. For # < 1 s, there has not yet been enough time
for an appreciable number of neutrons to decay.

e’

At t = 1 us, all three of these factors keep the neutron-to-proton ratio very close
to 1.

t = 102%s Between 107 %s and 1025, the temperature drops from 1.5 x
108 K (kT = 1300MeV) to 1.5 x 10'' K (kT = 13 MeV), and the distance scale
factor increases by a factor of 100. The photons have on the average too little
energy (13 MeV) to produce pions and muons, and because the pion and muon
lifetimes are much shorter than 1072 s, they have decayed into electrons, positrons,
and neutrinos. Pair production of nucleons and antinucleons no longer occurs,
but nucleon-antinucleon annihilation continues. As we discuss later, there is very
slight imbalance of matter over antimatter of perhaps 1 part in 10°. During this
interval, all of the antimatter and most (99.9999999%) of the matter is annihilated.
Pair production of electrons and positrons can still occur, so the universe consists of
p,n, e, et, photons, and neutrinos. The neutron-to-proton ratio remains about 1.

t=1s Between 10725 and 1s, the temperature drops to 1.5 x 10!°K (kT =
1.3 MeV). In this interval, the Boltzmann factor, which determines the neutron-
to-proton ratio, becomes different from 1; by f = 1 s, the nucleons consist of about
73% protons and 27% neutrons. During this period, the influence of the neutrinos
has been decreasing; to convert a proton to a neutron by capturing an antineutrino
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(V. + p = n+ e') requires an antineutrino of at least 1.8 MeV, above the mean
neutrino energy (1.3 MeV) at this temperature. This begins the time of “neutrino
decoupling,” when the interactions of matter and primordial neutrinos no longer
occur. From this time on, the neutrinos continue to fill the universe, cooling
along with the expansion of the universe. These primordial neutrinos presently
have roughly the same density as the microwave photons, but a slightly lower
temperature (about 2 K).

t=6s Between 1 sand 6 s (T =6 x 10°K or kT = 0.5MeV), the average
photon energy decreases and becomes insufficient to produce electron-positron
pairs. Electron-positron annihilation continues, and as a result all of the positrons
and nearly all (99.9999999%) of the electrons are annihilated. The electrons
have too little energy to convert protons to neutrons (e~ 4+ p — n + v, no longer
occurs), and so the only remaining weak interaction process that influences the
relative number of protons and neutrons is the radioactive decay of the neutron,
which has a half-life of 10 minutes and so has not appreciably occurred by this
time. The nucleons are now about 84% protons and 16% neutrons, or about 5
times as many protons as neutrons.

The composition of the universe after # = 6 s consists of some number N
protons, the same number N electrons, and about 0.2N neutrons. There are no
remaining positrons or antinucleons. Because particle-antiparticle annihilation
has substantially reduced the number of nucleons while the number of photons
remained stable, there are about 10°N photons (and about the same number of
neutrinos).

| Example 15.3

Estimate the relative number of neutrons and protons so the ratio of neutrons to protons is
among the nucleons at f = 1.

Ny —AE/KT 1.0
Solution ﬁ =e =e =0.37

At this time, the temperature is 1.5 x 10'° K. The neutron- :
to-proton ratio is determined by the Boltzmann factor,  The relative number of protons is then

e AE/KT \where AE is the neutron-proton rest energy dif-
ference. The exponent in the Boltzmann factor is Np 1 1 .
AE 1.3MeV Ny+N, 1+N/N, 14037

=5 10
kT (8.62 x 107> eV/K)(1.5 x 100 K) The nucleons consist of 73% protons and 27% neutrons.

15.9 THE FORMATION OF NUCLEI AND ATOMS

Let’s review developments in the Big Bang cosmology up to # = 6. (1) A hot,
dense universe, full of photons and elementary particles of all varieties, has cooled
to below 10'°K. (2) Most of the unstable particles have decayed away. (3) All
of the original antimatter and most of the original matter annihilated one another,
leaving a small number of protons, an equal number of electrons, and about
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one-fifth as many neutrons. (4) Neutrinos, which have about the same density
as photons, decoupled at about 1 s and will continue cooling as the universe
expands.

As the neutrons and protons collide with one another, it is possible to form a
deuteron (*H nucleus):

n+p—> *H+y
but the high density of photons can also produce the inverse reaction:
Yy + H—>n+ p

We recall from Chapter 12 that the deuteron binding energy is 2.22 MeV. In order
to have any appreciable buildup of deuterons, the photons present must first cool
until their energies are below 2.22 MeV; otherwise the deuterons will be broken
up as quickly as they can be formed. The energy 2.22 MeV corresponds to a
temperature T = 2.5 x 10'°K, and we therefore might expect deuterons to be
formed as soon as the temperature drops below 2.5 x 10! K. However, this does
not happen. The radiation does not have a single energy, but rather has a thermal
spectrum. A small fraction of the photons has energies above 2.22 MeV, and these
photons continue to break apart the deuterons (Figure 15.28).

Before matter-antimatter annihilation occurred, there were about as many
photons as nucleons and antinucleons, but after # = 0.01 s, the ratio of nucleons
to photons is about 10~%; about % of the nucleons are neutrons. If the fraction
of photons above 2.22 MeV is greater than % x 1077, there will be at least one
energetic photon per neutron, which effectively prevents deuteron formation. Our
next job is to calculate to what temperature the photons must cool before fewer
than  x 107° of them are above 2.22 MeV.

The number density of thermal photons was given by Eq. 15.6. We expect that
the temperature must be much less than 2.5 x 10'° K, and so we are interested in
the distribution where £ >> kT, for which it is approximately

N(E)dE  8mE”

= We*E/kT dE (15.35)
C

and the total number density above some energy E,, is determined by integrating
the number density from E, to co: Np. g /V = fgs N(E)dE/V, which can be
shown to be

NE>E0 8w 3 _F E 2 E,
- T o/kT (22 2(2) +2 15.
% oy KD (kT e\ )t (15.36)

Equation 15.8 gives the fotal number density of photons, and thus the fraction f
above E is (Ng.. g, /V)/(N/V), which can be evaluated to be

NE>E0/V E E 2 E
= =80 0.420 Fo/kT | [ 22 2(=2) +2 15.37
==z ¢ (kT e\ )t (15.37)

For f = % x 107°, corresponding to the number needed to prevent deuteron
formation, Eq. 15.37 gives E,/kT = 28. With E, =2.22MeV, the required
temperature is thus about 9 x 108 K; when 7 > 9 x 10® K, the number of photons
with £ >2.22MeV is greater than the number of neutrons, and deuteron (*H)
formation is prevented. When 7' drops below 9 x 10® K (which occurs at about
t = 2505s), deuterons can be produced.

N(E)

Eg
Energy

FIGURE 15.28 The thermal radiation
spectrum. The photons above E, =
2.22 MeV are sufficiently energetic to
break apart deuterium nuclei.
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From 6 s to 250 s, very little (except expansion and the corresponding
temperature decrease) happens in the universe, but after # = 250 s things happen
very quickly. Deuterons form and then react with the many protons and neutrons
available to give

H+p - *He+y and 2H+n — *H+y

The energies of formation of these nuclei are, respectively, 5.49 MeV and
6.26 MeV, well above the 2.22 MeV threshold of the deuteron formation. If the
photons are not energetic enough to break apart the deuterons, they are certainly
not energetic enough to break apart *He and 3H. The final steps in the formation
of the heavier nuclei are

He+n — *He+y and S H+4+p — *He+y

There are no stable nuclei with 4 = 5, so no further reactions of this sort are
possible. Nor is it possible to have “He +*He reactions because ®Be is highly
unstable. (It would be possible to form stable °Li and "Li, but these are made in
very small quantities relative to H and He; from Li further reactions are possible,
such as "Li +*He — "B, and so forth, but these occur in still smaller quantities.
The end products 2H and He, along with the leftover original protons, make up
about 99.9999% of the nuclei after the era of nuclear reactions.)

By ¢ = 250 s, the original 16% neutrons present at = 6 s had beta-decayed to
about 12%, leaving 88% protons. Most of the ?H, 3H, and *He were “cooked”
into heavier nuclei, so we can assume the universe to be composed mostly of
'H and “He nuclei. Of the N nucleons present at t = 250, 12% (0.12N) were
neutrons and 0.88N were protons. The 0.12N neutrons combined with 0.12N
protons, forming 0.06N “He, and leaving 0.88N — 0.12N = 0.76N protons. The
universe then consisted of 0.82N nuclei, of which 0.06N (7.3%) were “He and
0.76N (92.7%) were protons. Helium is about four times as massive as hydrogen,
so by mass the universe is about 24% helium.

At this point the universe began a long and uneventful period of cooling, during
which the strong interactions ceased to be of importance.

The final step in the evolution of the primitive universe is the formation of
neutral hydrogen and helium atoms from the 'H, 2H, 3He, and *He nuclei and the
free electrons. In the case of hydrogen, this takes place when the photon energy
drops below 13.6eV; otherwise any atoms that might happen to form will be
immediately ionized by the radiation. There are still about 10° photons for every
proton, and so we must wait for the radiation to cool until the fraction of photons
above 13.6¢eV is less than about 107°. We can solve Eq. 15.37 for f = 10~
to obtain Ey/kT = 26. With E, = 13.6eV, the corresponding temperature is
T = 6070 K, which occurs at time # = 6.1 x 10'>s = 190,000y. These final
estimates are actually not quite correct. We have been considering only the energy
density of radiation present in the universe. As the universe cools, the contribution
of the matter to the total energy density becomes more significant, and so the
temperature drops more slowly than we would estimate. This contribution may
increase this time by about a factor of 2 to about 380,000 y, and the radiation
temperature is decreased by about a factor of +/2, to 7 = 4300 K.

After neutral atoms have formed, there are virtually no charged particles left
in the universe, and the radiation field is not energetic enough to ionize the atoms.
This is the time of the decoupling of the radiation field from the matter, and now
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FIGURE 15.29 Evolution of the universe according to the Big Bang cosmology. The blue line shows the temperature and time
in the radiation-dominated era before decoupling. The most important reactions in each era are shown.

electromagnetism, the third of the four basic forces, is no longer important in
shaping the evolution of the universe. The large-scale development of the universe
is from this point governed only by gravity.

The time after # = 380,000y has been comparatively uneventful, at least from
the point of view of cosmology. Density fluctuations of the hydrogen and helium
triggered the condensation of galaxies, and then first-generation stars were born.
Supernova explosions of the material from these stars permitted the formation of
second generation systems, among which planets formed from the rocky debris.

Meanwhile, the decoupled radiation field, unaffected by the gravitational
coming and going of matter, began the long journey that eventually took it, cooled
again by a factor of 1600, to the radio telescopes of 20th-century Earth.

The details of the Big Bang cosmology are summarized in Figure 15.29. It
is a remarkable story, all the more so because we can understand most of its
details—with the possible exception of the first instant—with nothing more than
some basic theories of modern physics, most of which we can study (on a much
smaller scale!) in our laboratories on Earth.

15.10 EXPERIMENTAL COSMOLOGY

Far from being a science that involves only speculations about the distant past or the
indefinite future, cosmology has in recent decades become a precise experimental
science, involving observational results from high-resolution observatories on
Earth and in space, as well as laboratory measurements of nuclear and particle
properties that provide insight into cosmological phenomena. Here are a few of
the observations and their implications.
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Matter and Antimatter

In the early universe, there was roughly one nucleon and one antinucleon for each
photon. If the numbers of nucleons and antinucleons had been exactly equal, there
would have been either complete annihilation of both (in which case we would
not be around to comment on the outcome) or else the clumping of matter and
antimatter into galaxies and antigalaxies. Our telescopes can’t tell the difference
between galaxies made of matter and antimatter (because both emit the same
light), but if there were large quantities of antimatter in the universe we should
occasionally find a galaxy and an antigalaxy colliding, and their annihilation
would light up the sky. We observe many galaxies in the process of colliding with
their neighbors, but none show the intense annihilation radiation that would signal
a matter-antimatter collision. Our conclusion is that the universe is made of matter
and contains no significant concentrations of antimatter. For every 1,000,000,000
nucleons in the early universe there were 999,999,999 antinucleons; following
the annihilation all of the antinucleons disappeared, leaving 1 out of the original
10? nucleons to make up the current universe.

After the matter-antimatter annihilation in the early universe, the ratio of the
number of remaining nucleons to photons was about 10~°. This number, which
has remained constant since the annihilation era, is deduced from the measurement
of the relative density of 2H and 3He in sites such as “first-generation” stars or
interstellar gas, where no significant additional amounts of those atoms have
been subsequently produced by fusion. The observed relative abundances of these
atoms gives a nucleon to photon ratio in the range of 5—7 x 10710,

Where did the 10~ excess of matter over antimatter in the early universe
come from? We don’t yet know the answer to this question, but evidence gathered
in particle physics experiments may provide a clue. The first indication of an
asymmetry between matter and antimatter was a 1964 experiment studying the
decay of the neutral K meson, which shows a difference in behavior between K°
and K’ only at the very low level of 1 part in 103 in the weak interaction or
thus at a level of 107! relative to the strong interaction. (J. W. Cronin and V. L.
Fitch received the 1980 Nobel Prize in physics for their work on this experiment.)
Following the discovery of the b quark, it was hypothesized that the B® meson
would show a similar effect, and so accelerators were built in the U. S. and Japan
that produced the B in large enough quantities to verify the asymmetry. Beginning
in about 2001, scientists at these accelerators announced results that verified the
matter-antimatter asymmetry previously observed only in the K decay.

The distinction between matter and antimatter occurred at an early stage in
the evolution of the universe, during the quark-antiquark era. The Grand Unified
Theories (GUTSs) include this asymmetry between quarks and antiquarks in a
natural way, although there is as yet no accepted version of the GUTs that yields
a convincing explanation for the K and B? experiments.

Helium Abundance

Much of the matter in the universe has been formed and reformed, and so has
lost its “memory” of the Big Bang. There is, however, “first generation” matter
in stars and galaxies, that should show the roughly 24% helium abundance that
characterized the formation of matter.

A variety of experiments suggests that the abundance of helium in the universe
is 23 to 27% by mass, in excellent agreement with our rough estimate of 24%.
These experiments include the emission of visible light from gas clouds near stars
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and the emission of radio waves by interstellar gas, both of which permit us to
compare the amounts of hydrogen and helium present. In addition, the dynamics
of stellar formation depends on the initial hydrogen and helium concentrations;
present theories permit us to estimate their ratio from the observed properties of
stars. The 24% abundance seems to be rather constant throughout the universe, as
we would expect if it were predetermined by the Big Bang. (Not enough helium
has been produced by nuclear fusion in stars in the last 14 x 10°y to change this
ratio significantly.)

In fact (and here physics comes nearly full circle, from the very old and large to
the very new and small), the early helium abundance is a function of the conditions
before 107% s, when quarks and leptons filled the universe. The evolutionary rate
in this era depends on the number of different kinds of quarks and leptons that
can participate in reactions. It has been calculated that the helium abundance
is probably not consistent with the existence of more than three generations of
quarks and leptons. It is remarkable that extrapolations to an unobservable state
of the universe can yield such insight into the fundamental structure of matter.

The Horizon Problem

Our telescopes permit us to look outward by about 10 billion light-years in any
direction. No matter in what direction we look, the universe (which we are
viewing as it looked 10 billion years ago) appears pretty much the same—the
same types of galaxies and the same temperature of the background radiation.
This is surprising, because regions that we observe in opposite directions are
separated by 20 billion light years, while the universe is only 14 billion years old.
If the universe had been expanding throughout its history at a uniform rate, those
opposite regions of the sky could never have been connected by any signal and
thus had no way to achieve the common characteristics that we now observe.
(Imagine finding a block of copper that had been assembled from a random
collection of copper atoms. If all parts of the block were at the same temperature,
you would conclude that the block had been in existence for a long enough time
for thermal energy to propagate throughout its volume. If we learned that the time
since the block’s assembly was less than that propagation time, it would be very
puzzling to explain the achievement of thermal equilibrium in so short a time.)

This paradox is solved by a hypothesis called “inflation,” which proposes that
in the early universe rather than a constant expansion rate there was a sudden
rapid growth (by perhaps 50 orders of magnitude) in a short interval of time
between 1073° s and 10732 s. Before the time of inflation, the size of the universe
was less than the distance through which distant parts could exchange energy
since the time of the Big Bang. Thus all parts of the universe were able to
achieve a common set of characteristics. After inflation, the size of the universe
exceeded the maximum range of communication signals, but the homogeneous
characteristics had already been achieved. The inflationary hypothesis thus neatly
solves the horizon problem.

The Flatness Problem

For a flat universe (k = 0), we can combine Eqs. 15.28 and 15.33 to give

31 0.97 x 1072 kg/m? (15.38)
=— =097 x 'm .
Per = 8aG &
This is the critical density corresponding to a flat universe. If the density is greater

than this critical value, the universe is closed, and if it is less than this value, the
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universe is open. In discussing the density of the universe, it is useful to define
the ratio between the actual density and this critical value:

=" (15.39)

Per

As the universe expands, the gravitational interaction among its components slows
the expansion rate. If 2 > 1, the gravitational interaction will eventually halt and
reverse the expansion. If Q < 1, the expansion will continue until the components
are separated by infinite distances. If 2 is exactly equal to one, the expansion will
also continue forever, but the components will arrive at their infinite separation
just as they lose the last bit of kinetic energy.

By carefully measuring the variations in the temperature of regions of the
microwave background, the WMARP satellite and other experiments have con-
cluded that Q2 is very close to 1, probably within 1%. It is of considerable interest
to know whether 2 is exactly equal to 1 (for a flat universe), or just happens to be
very close to 1 (for an open or closed universe).

By way of analogy, consider a projectile that is thrown upward from the surface
of the Earth (ignore the gravity of the Sun and all other objects). The parameter
Q in effect measures the ratio between the gravitational potential energy and
the kinetic energy: €2 = |Uy,,|/K. If the initial value of €2 is greater than 1, the
gravitational energy exceeds the kinetic energy, so the projectile will rise to a
maximum height and then fall back to Earth. When it reaches its maximum height,
K = 0 and Q2 becomes infinite. During the entire ascent, the value of Q2 increases
because the kinetic energy decreases more rapidly than the magnitude of the
gravitational energy. If the projectile is launched so that 2 < 1, there is more than
enough kinetic energy to overcome the Earth’s gravity, and the projectile will
escape the pull of the Earth. When it reaches infinite separation, 2 = 0 because
Ugray = 0. During its entire outward journey, €2 decreases from its initial value
and approaches zero. If we choose the initial velocity such that = 1, there is
just enough energy to escape, and the projectile reaches infinite separation with
K = 0. Throughout the entire journey, 2 remains exactly 1.

For the projectile as well as for the evolution of the universe, the conclusions
are identical: If 2 = 1 initially, it remains exactly 1 always, but if either 2> 1
or Q < 1, it grows further away from 1. If the early universe had & = 1.000001,
after the passage of 14 billion years Q2 would have grown very large; similarly, if
the initial value of @ were 0.999999, by now it would be very close to 0. It has
been calculated that for €2 to be within 1% of 1 today, it must have originally been
in the range 1 & 10792, Here again the inflation hypothesis is essential. Prior to
the inflation era, the universe may have been open, flat, or closed, with any value
of Q. During inflation, the universe grew by so many orders of magnitude that the
curvature became flat, much as the surface of a balloon becomes nearly flat when it
is inflated by many orders of magnitude. As a result, €2 was indeed very close to 1
just after inflation, and we continue today to observe an €2 that remains close to 1.

The Composition and Age of the Universe

During the past 10 years, researchers have made enormous strides in determining
the composition of the universe and its age. These determinations are based mostly
on measurements of the properties of the cosmic microwave background radiation,
in particular its geometrical distribution and its polarization properties. Among
the most detailed experiments are those of the WMARP satellite (2001) and the
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Boomerang balloon flights over Antarctica (1998 and 2003). These experiments,
along with others, indicate that the universe is very nearly flat; that is, 2 = 1.00
(so that p = p,,) to within about 1%. They are also able to measure the relative
densities of the various components of the mass-energy content of the universe.
Ordinary baryonic matter contributes about 4.6% of the critical density, and dark
(nonbaryonic) matter contributes 23%. Together, the two kinds of matter make
up 28% of the critical density. If the density of the universe is equal to the critical
density, what makes up the other 72%?

Beginning in about 1998, two teams of researchers were investigating the
Hubble law by studying the exploding stars known as supernovas in the most
distant galaxies (corresponding to large redshifts, with AX/X close to 0.9). Both
teams found systematic and consistent departures from the Hubble law. The
supernovas in these distant galaxies were fainter than expected, indicating that
the galaxies were 10 to 15% farther from us than the Hubble law predicts. The
research groups concluded that a mysterious force is accelerating the expansion
of the universe. Generally we would expect that the expansion would be slowing
down, owing to the gravitational interactions of its components. What could be
responsible for increasing the rate of the expansion?

This unknown interaction is called “dark energy,” and it represents the missing
72% of the composition of the universe. Although there are several theories about
the nature of the dark energy, there is no convincing explanation of its origin or
its role in the physical world. It has been suggested that the dark energy density
does not diminish as the universe expands, so that as the densities of matter (both
baryonic and non-baryonic) decrease with the expansion, eventually the dark
energy begins to dominate and accelerates the expansion. We live at a time when
this acceleration is dominant (which has occurred for about the past 5 billion years).

Another finding based on the observation of the background radiation is the age
of the universe. There is general agreement that the age is 13.7 x 10%years, with an
uncertainty of about 1%. The accelerated expansion solves a problem associated
with the Hubble age. In a matter-dominated universe (which our universe has been
for most of its existence), the present Hubble age should be %H !, which works
out to be about 9 x 10° years. If the expansion has been accelerating, then the
actual age can be greater than the Hubble age, which certainly seems to be the case.

It is fitting that this story ends where it began, with Einstein. When Einstein
produced the general relativity theory in 1916 (a decade before Hubble’s work),
it was widely believed that the universe was static. In order for the equations of
general relativity to allow a static solution, Einstein introduced into his equations
an additional term, called the cosmological constant. After learning of Hubble’s
discovery of the expansion of the universe, Einstein called the introduction of the
cosmological constant his “greatest blunder.” It now appears that the cosmological
constant is one possible explanation for the dark energy, and the term has been
restored to the equations.

The increasing role of the dark energy suggests a sad fate for the universe.
An open universe will expand forever, but in an accelerating open universe each
observer’s horizon will shrink increasingly rapidly. The most distant galaxies will
separate from us at speeds greater than the speed of light (which is not a violation
of special relativity, because no signals are being exchanged). The light from
these distant galaxies will not be able to reach us, and the galaxies will gradually
disappear. Future astronomers might be able to observe only local galaxies and
might learn nothing of the expansion or the properties of the universe!
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Section Section
Hubble’s law v=H,d 15.1 Age of matter-
Number density N/V = 15.2 gzgzr::;ed 1= 1/y6nGpn, 157
of photons (2.03 x 107photons/m3 KH13
Age of radiation-
; — 3 3 T4 g
Energy density U= @472x10°eV/m’-K")T 15.2 dominated t = J3732Gp, 157
of photons .
o , universe
gravnatlonz}ill Af/f =gH/c 15.4 Temperature -
equency change of universe at T— 1.5 x 10's"/2.K 15.8
Deflection of 0 = 2GM /Rc? 15.5 age t - 1172
starlight 6GM Fraction of f = 0.42¢Fo/kT
Perihelion Ap= 53— 15.5 photons above y (@)2 ) (@) 42 15.9
precession Crinin (1 +€) E, T T
. _ 2 . . 3H?
Schwarzschlld rg =2GM/c 15.6 Critical density  p,, = e
radius of universe i 26 ; 15.10
=0.97 x 107" kg/m

1. If we were to measure the equivalence of gravitational and 9. Explain why the age of the universe must be less than H~!.
inertial mass, would we show that m;,.i01 = Mgravitationat @0 10. Why is it difficult to obtain precise values for the Hubble

merely that Minertial X mgravitational? parameter?

2. Do tidal effects distinguish between Newtonian gravity and 11, All natural processes are governed by the rule that the
curved spacetime? What would be the shape of a drop of entropy must increase; the increase of entropy, as the uni-
liquid following a path in a curved spacetime? Can such a verse “runs down,” defines for us a direction of time. If the
drop distinguish between a uniform gravitational field and a universe begins to contract and therefore to heat up, will
uniform acceleration? the entropy of natural processes therefore decrease? Will

3. Suppose that the first measurement of deflection of starlight the inhabitants of that universe observe time to be running
during a solar eclipse had been done after 1905, when the backward?
special theory of relativity was introduced, but before 1916, 12, The hydrogen in the universe contains a small fraction of
when the general theory was introduced. What would have deuterium. Assuming the deuterium originated in the Big
been the effect of this measurement on the special theory? Bang, what era of the Big Bang would we learn about by

4. 1If we could make a precise comparison of light from the measuring the deuterium abundance? Can we accomplish
Sun with light from the Moon, would the moonlight be red this measurement using terrestrial hydrogen? What proper-
shifted, blue shifted, or unshifted relative to sunlight? ties of deuterium could we use to determine its presence in

5. What difficulties might arise in the Pound and Rebka exper- distant regions of the galaxy?
iment on the gravitational red shift if the temperature of the 13, Between = 1s and 7 = 65, the neutron fraction should
source or the absorber varied? drop from 27 to 8%; instead it drops only to about 16%.

6. Why are the abundances of Li, Be, and B so small? Why don’t more neutrons turn into protons during this era?

7. Can we look out into the distant universe without also Is it as difficult for protons to turn into neutrons?
looking back into time? 14. If we were able to observe the neutrinos from the early

8. Is Hubble’s parameter a constant? Does it vary over large universe, would they have a spectrum determined by the

distances of space? Over long intervals of time? Planck distribution?
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The Expansion of the Universe

Use Hubble’s law to estimate the wavelength of the 590.0 nm
sodium line as observed emitted from galaxies whose dis-
tance from us is (a) 1.0 x 10° light-years; (b) 1.0 x 10°
light-years.

The light from a certain galaxy is red-shifted so that the
wavelength of one of its characteristic spectral lines is dou-
bled. Assuming the validity of Hubble’s law, calculate the
distance to this galaxy.

The Cosmic Microwave Background Radiation

(a) Taking u(E) = EN(E) as the energy density of the ther-
mal radiation, with N(E) given in Eq. 15.6, differentiate
to find the energy at which the maximum of the radiation
energy spectrum occurs. (b) Evaluate the peak photon energy
of the 2.7-K microwave background.

Starting with Egs. 15.7 and 10.41, show how to evaluate the
numerical constants that appear in Egs. 15.8 and 15.9.

Dark Matter

Suppose an observer in a distant galaxy were observing
the light from our Sun as the Sun moves directly toward
the observer. Neglecting any net relative motion of the two
galaxies, calculate the change in wavelength of the 121.5-nm
Lyman series line due to the rotation of our galaxy.

The General Theory of Relativity

In Example 15.1 we calculated the change in wavelength of
the Lyman « line due to the gravitational red shift. Compare
this value with (@) the special relativistic Doppler shift due
to the rotation of the Sun and (b) the thermal Doppler broad-
ening (see Eq. 10.30). The Sun’s radius is 6.96 x 10% m, its
rotational period is 26 days, and it surface temperature is
6000 K.

A satellite is in orbit at an altitude of 150 km. We wish to
communicate with it using a radio signal of frequency
10° Hz. What is the gravitational change in frequency
between a ground station and the satellite? (Assume g
doesn’t change appreciably.)

According to the uncertainty principle, what is the min-
imum time interval necessary to measure a change in
frequency of the magnitude observed in the Pound and Rebka
experiment?

Tests of General Relativity

By drawing analogies between the Coulomb force law and
the gravitational force law, use Eq. 6.8 for the deflection in
Rutherford scattering to obtain Eq. 15.22 for the deflection
of photons. Assume the photon behaves as if it has a mass
m = E/c*. (Hint: Write Eq. 6.8 in terms of the velocity of
the particle instead of kinetic energy.)

10.

15.6
11.

15.7
12.

15.8

13.
14.

15.

15.9

16.
17.

18.

Problems 515

In the binary star system known as PSR 1913 + 16, two
neutron stars move about their common center of mass in
highly elliptical orbits. Locate the orbital parameters for this
motion, and add a row to Table 15.1 showing the precession
angle expected from general relativity. (Hint: In Eq. 15.25,
M is the total mass of'the orbiting body and the central body.)

Stellar Evolution and Black Holes

(a) Show that Eq. 10.57 for the radius of a neutron star of
mass M can be written R = (12.3km)(M/M)~"/> where
M, is the mass of the Sun. (b) Consider a star 1.5 times
as massive as the Sun with a radius of 7 x 10° km (equal
to the present radius of the Sun), rotating on its axis about
once per year. (This is quite a slow rate of rotation—our
Sun rotates about once per month.) If angular momentum
is conserved in the collapse, what will be the final angular
velocity? Assume the star can be represented as a sphere of
uniform density, with rotational inertia / = %MRZ.

Cosmology and General Relativity

The rate of change of the cosmic expansion can be
described in terms of a deceleration parameter q =
—R(d*R/dt*)/(dR/dt)?. (a) Evaluate g for the matter-
dominated universe (Eq. 15.29) and the radiation-dominated
universe (Eq. 15.31). (b) By differentiating Eq. 15.28,
show that in a matter-dominated universe ¢ = 47 Gp,, /3H>.
(Hint: Use p,, o< R73 to relate dp,, /dt to dR/dL.)

The Big Bang Cosmology

Derive Eq. 15.34.

At what age did the universe cool below the threshold
temperature for (a) nucleon production; (b) pi meson pro-
duction?

(a) At what temperature was the universe hot enough to per-
mit the photons to produce K mesons (mc? = 500 MeV)?
(b) At what age did the universe have this temperature?

The Formation of Nuclei and Atoms

Derive Eqgs. 15.36 and 15.37.

Suppose the difference between matter and antimatter in the
early universe were 1 part in 10% instead of 1 part in 10°.
(a) Evaluate the temperature at which deuterium begins to
form. (b) At what age does this occur? (¢) Evaluate the tem-
perature and the corresponding time of radiation decoupling
(when hydrogen atoms form).

What was the age of the universe when the nucleons con-
sisted of 60% protons and 40% neutrons?

15.10 Experimental Cosmology

19.

Assuming that the density of the universe is equal to its
critical value and that 4.6% of the universe is baryonic
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20.

21.

matter, calculate the average number of baryons (nucleons)
per cubic meter in the universe.

(a) Suppose the baryonic matter in the universe were com-
posed of uniformly distributed stars of the mass of the
Sun (2.0 x 10’°kg). What would be the average spac-
ing between the stars? Express your answer in light-years.
(b) Suppose instead that the baryonic matter were composed
of uniformly distributed galaxies of the mass of the Milky
Way (1.2 x 10*? kg). Expressed in light-years, what would
be the average distance between the galaxies?

Suppose the non-baryonic dark matter consists entirely of
neutrinos. What is the average rest energy of the neutrinos
that could account for this part of the mass of the universe?
As a rough estimate, assume that the neutrino density is the
same as the present photon density.

General Problems

22.

23.

24.

25.

26.

Photons of visible light have energies between about 2 and
3eV. (a) Compute the number density of photons from
the 2.73-K background radiation in that interval. (It is
sufficient to characterize the visible region as £ = 2.5eV
with dE = 1.0eV.) (b) Assume the eye can detect about
100 photons/cm>. At what temperature would the back-
ground radiation be visible? At what age of the universe
would this have occurred?

Consider the universe at a temperature of 5000 K. (a) At
what age did this occur, and during which stage of the
evolution of the universe? (b) Evaluate the average photon
energy at that time. (c) If there are 10° photons per nucleon,
evaluate the ratio between the radiation density and the mass
density at that time.

The early universe was radiation dominated, and the present
universe is matter dominated. (a) At what temperature were
the radiation and matter densities equal? (b) What was the
age of the universe when this occurred?

A neutron star of 2.00 solar masses is rotating at a rate
of 1.00 revolutions per second. (a¢) What is the radius of
the neutron star? (See Problem 11.) () Find its rotational
kinetic energy. (c) If its rotational speed slows by 1 part
in 10° per day, find the loss in rotational kinetic energy
per day. (d) Assuming that the entire energy loss goes into
radiation, find the radiative power. (e) If the star is 10*
light-years from Earth, what would be the average power
received by an antenna of area 10m? if the star’s energy
were distributed uniformly in space instead of concentrated
in a narrow beam?

Because we don’t yet have a quantum theory of gravity,
we cannot analyze the properties of the universe before the
Planck time, about 10~*3 s. If we assume that the properties

27.

28.

of the universe during that era were determined by quantum
theory, relativity, and gravity, the Planck time should be
characterized by the fundamental constants of those three
theories: A, ¢, and G. We can therefore write ¢ o hic/ G,
where 7,7, and k are exponents to be determined. (a) Using
a dimensional analysis, determine 7,;, and k. (b) Assuming
the proportionality parameter is of order unity, evaluate 7.
(c) What was the size of the observable universe at the
Planck time?

Show that the spacetime interval given by Eq. 15.18 is
invariant with respect to the Lorentz transformation. That is,
show that (ds)? = (ds)?, where (ds')?> = (cdt')? — (dx')?.
Light from star S in Figure 15.30 passes a distance b
from a galaxy L, where it is deflected by an angle o and
then reaches the observer O, who sees an image of the
star at /. (For simplicity, assume the gravitational deflec-
tion takes place at a single point, and assume all angles
in the figure are very small.) The galaxy (of mass M) is
a distance d; from the observer, and the star is a dis-
tance dg from the observer. (a) For small angles, show
that 8dg = pdg + (4GM/0d, c*)(ds — d,). (Hint: Use Eq.
15.22 for the deflection angle & when the impact parameter
is b instead of R, but double the value to account for the
difference between the special and general relativity predic-
tions.) (b) Solve the resulting quadratic equation for 6 and
show that there are two image positions whose locations
differ by A6 = /B% + 407, where the Einstein angle 6y
is \/AGM(dg — d;)/c?dyd, . This is an example of gravita-
tional lensing, an effect of general relativity that has been
observed for distant objects that appear in multiple images
when their light travels a path through spacetime that is
curved by an intervening galaxy. (¢) When the star, lensing
galaxy, and observer lie along a single line, something other
than two images appears. Given the symmetry of the figure
when 8 = 0, what do you expect to be observed in this case?

o
b
[
rﬁ L 0
O
| dp
dg

FIGURE 15.30 Problem 28.



Appendix

CONSTANTS AND
CONVERSION FACTORS*

Speed of light c 2.99792458 x 108 m/s

Charge of electron e 1.60217657 x 1019 C

Boltzmann constant k 1.380649 x 10723 J/K =8.617332 x 107% eV/K

Planck’s constant h 6.62606957 x 1073* J.s =4.13566752 x 10~15 eV -5
h=h2r 1.054571726 x 1073* J.5 = 6.58211928 x 107'% eV s
he 1239.8419 eV - nm (or MeV - fm)
hic 197.326972 eV - nm (or MeV - fm)

Gravitational constant G 6.67384 x 107" N.m?/ kg?

Avogadro’s constant Ny 6.0221413 x 10%* mole™!

Universal gas constant R 8.314462 J/mole - K

Stefan-Boltzmann constant o 5.67037 x 1078 W/m? . K*

Rydberg constant R, 1.097373156854 x 107 m™~!

Hydrogen ionization energy |E | 13.6056925 eV

Bohr radius a, 5.291772109 x 10~'!'m

Bohr magneton UB 9.2740097 x 1072* J/T = 5.78838181 x 107> eV/T

Nuclear magneton N 5.0507835 x 10727 J/T = 3.15245126 x 1078 eV/T

Fine structure constant o 1/137.03599907

Electric constant e*/ane, 1.4399645 eV - nm (or MeV - fm)

*The number of significant figures given for the numerical constants indicates the precision to which
they have been determined; there is an experimental uncertainty, typically of a few parts in the last or
next-to-last digit, except for the speed of light (which is exact).
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SOME PARTICLE MASSES

kg u MeV/c?
Electron 9.1093829 x 103! 5.485799095 x 10~* 0.51099893
Proton 1.67262178 x 10~%7 1.0072764668 938.27205
Neutron 1.67492735 x 107%7 1.0086649160 939.56538
Deuteron 3.3435835 x 107%7 2.0135532127 1875.61286
Alpha 6.6446568 x 10~%7 4.001506179 3727.3792

CONVERSION FACTORS

leV = 1.60217657 x 10°19J 1 barn (b) = 10728 m?
1u = 931.49406 MeV/c? 1 curie (Ci) = 3.7 x 10'° decays/s
= 1.66053892 x 1072 kg 1 light-year = 9.46 x 10 m

ly=3.156x10"s=m x 10”s 1 parsec = 3.26 light-year



Appendix

COMPLEX NUMBERS

The imaginary number i is defined as v/—1. A complex number or function can be
represented as having a real part, which does not depend on 7, and an imaginary
part, which depends on i. We can write a complex variable as z = x + iy, where
the real part x and the imaginary part y are both real numbers or real functions. A
complex wave function i can be written in terms of its real and imaginary parts
as ¥ = Re(y) + ilm(y).

The complex conjugate of a complex number is obtained by substituting —i
fori,asinz* = x — iy or * = Re(y) — ilm(y).

The squared magnitude of a complex number is defined as the product of the
number and its complex conjugate, as in |z|> = zz* or |/ |> = ¥ *, and is equal
to the sum of the squares of its real and imaginary parts:

2P =2+ or Yl =[Re)]) + [Imy)]

The complex exponential e can be represented in terms of real trigonometric
functions as

=cosf +isinf and e = cost — isinf

o0
The squared magnitude of the complex exponential is equal to 1:

1?7 = €™ = (cosO + isind)(cosh — isin@) = cos’ 6 +sin’ 6 = 1

We can write the ordinary trigonometric functions in terms of these complex
functions:

1 . . 1 . .
sinf = 5(619 — e and cosf = E(e’e +e7)
i

It is sometimes convenient to write the wave function in terms of a complex
exponential as:

¥ o=yl

where || gives the magnitude of the wave function and « is its phase.
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Appendix

TABLE OF ATOMIC MASSES

The table gives the atomic masses of some isotopes of each element. All naturally
occurring stable isotopes are included (with their natural abundances shown in
italics in the last column). Some of the longer-lived radioactive isotopes of each
element are also included, with their half-lives. Each element has many other
radioactive isotopes that are not included in this table. More complete listings
can be found in the sources from which this table was derived: Table of Isotopes
(8th Edition), edited by R. B. Firestone and V. S. Shirley (Wiley, 1999); G. Audi,
A. H. Wapstra, and C. Thibault, “The 2003 Atomic Mass Evaluation,” Nuclear
Physics A729, 129 (2003).
In the half-life column, My = 10°y.
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Appendix D | Table of Atomic Masses

Atomic Abundance Atomic Abundance
VA A mass (u) or Half-life VA A mass (u) or Half-life
H 1 1 1.0078250 99.985% Na 11 21 20.997655 225
2 2.014102 0.015% 22 21.994436 2.60y
3 3.016049 123y 23 22.989769 100%
He 2 3 3.016029 0.000137% g‘; ;i'gggggi ;gg h
4 4.002603 99.999863% 26 55992633 115
Li 3 6 6.015123 7.59%
7 7.016005 92.41% Mg 12 22 21.999574 3.88s
8 8.022487 0.84s 23 22.994124 11.3s
Be 4 7 7.016930 53.2d 24 23985042 76.99%
3 2005305 0.07 fs 25 24.985837 10.00%
10 10.013534 1.5 My 27 26.984341 9.46 m
B 3 g ggf;‘gg; 8;2 > Al 13 25 24990428 7.8
: ' 26 25.986892 0.72 My
10 10.012937 19.8% P 26.981539 100%
1 11.009305 80.2% 28 27981910  224m
12 12.014352 20.2 ms 59 58980445 6.56 m
C 6 10 10.016853 1935
11 11.011434 203 m Si 14 26 25.992330 2235
12 12.000000 98.89% 27 26.986705 4.16s
13 13.003355 1.11% 28 27.976927 92.23%
14 14.003242 5730y 29 28.976495 4.68%
15 15.010599 245s 30 29.973770 3.09%
N 7 13 13.005739 9.96 m 31 30.975363 2.62h
14 14.003074 99.63% 32 31.974148 132y
15 15.000109 0.37%
16 16.006102 71 p 15 29 28.981801 4.14s
17 17.008450 425 30 29.978314 2.50m
0,
0 8 14 14.008596 70.6's 2 ;?:g;g;g? {Zg/z
15 15.003066 122 5 33 32971726 253d
16 15.994915 99.76%
17 16.999132 0. 038%
18 17.999161 0.200% S 16 30 29.984903 1.18 s
19 19.003580 269 s 31 30.979555 2.57s
20 20.004077 135 32 31.972071 95.02%
33 32.971459 0.75%
F 9 17 17.002095 64.5s 34 33.967867 4.21%
18 18.000938 1.83 h 35 34.969032 87.5d
19 18.998403 100% 36 35.967081 0.02%
20 19.999981 I1s 37 36.971126 5.05m
21 20.999949 42
Ne 10 18 18.005708 1.7s Cl 17 33 32.977452 251s
19 19.001880 17.2's 34 33.973763 1.53 s
20 19.992440 90.48% 35 34.968853 75.77%
21 20.993847 0.27% 36 35.968307 0.30 My
22 21.991385 9.25% 37 36.965903 24.23%
23 22.994467 37.2s 38 37.968010 372m
24 23.993611 3.4m 39 38.968008 55.6m



Atomic Abundance
V4 A mass (u) or Half-life
Ar 18 34 33.980271 0.844 s
35 34.975258 1.78 s
36 35.967545 0.337%
37 36.966776 35.0d
38 37.962732 0.063%
39 38.964313 269y
40 39.962383 99.60%
41 40.964501 1.82h
42 41.963046 329y
K 19 37 36.973376 1.23s
38 37.969081 7.64 m
39 38.963707 93.26%
40 39.963998 1.25 Gy
41 40.961826 6.73%
42 41.962403 12.3h
43 42.960716 22.3h
Ca 20 38 37.976318 0.44 s
39 38.970720 0.86s
40 39.962591 96.94%
41 40.962278 0.103 My
42 41.958618 0.647%
43 42.958767 0.135%
44 43.955482 2.09%
45 44.956187 163 d
46 45.953693 0. 0035%
47 46.954546 4.54d
48 47.952534 0.187%
49 48.955674 8.72 m
Sc 21 43 42.961151 3.89h
44 43.959403 397h
45 44.955912 100%
46 45.955172 83.8d
47 46.952408 3.35d
48 47.952231 437 h
Ti 22 44 43.959690 60y
45 44958126 3.08h
46 45.952632 8.25%
47 46.951763 7.44%
48 47.947946 73.72%
49 48.947870 5.41%
50 49.944791 5.18%
51 50.946615 5.76 m
52 51.946897 1.7m
A% 23 48 47.952254 16.0d
49 48.948516 329d
50 49.947158 0.250%
51 50.943960 99.750%
52 51.944775 3. 74 m
53 52.944338 1.60 m
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Atomic Abundance
Z A mass (u) or Half-life
Cr 24 48 47.954032 21.6h
49 48.951336 423 m
50 49.946044 4.35%
51 50.944767 27.7d
52 51.940507 83.79%
53 52.940649 9.50%
54 53.938880 2.36%
55 54.940840 3.50 m
56 55.940653 5.94m
Mn 25 52 51.945565 5.59d
53 52.941290 3.7 My
54 53.940359 312d
55 54.938045 100%
56 55.938905 2.58h
57 56.938285 85.4s
Fe 26 52 51.948114 8.27h
53 52.945308 8.5l m
54 53.939611 5.85%
55 54.938293 274y
56 55.934937 91.75%
57 56.935394 2.12%
58 57.933276 0.28%
59 58.934875 44.5d
60 59.934072 1.5 My
61 60.936745 6.0 m
Co 27 57 56.936291 272d
58 57.935753 70.8d
59 58.933195 100%
60 59.933817 527y
61 60.932476 1.65h
Ni 28 56 55.942132 6.08d
57 56.939794 356h
58 57.935343 68.08%
59 58.934347 0.076 My
60 59.930786 26.22%
61 60.931056 1.14%
62 61.928345 3.63%
63 62.929669 100y
64 63.927966 0.93%
65 64.930084 2.52h
Cu 29 61 60.933458 333h
62 61.932584 9.67 m
63 62.929597 69.17%
64 63.929764 12.7h
65 64.927789 30.83%
66 65.928869 5.12m
67 66.927730 61.8h
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Atomic Abundance
V4 A mass (u) or Half-life
Zn 30 62 61.934330 9.19h
63 62.933212 38.5m
64 63.929142 48.6%
65 64.929241 244 d
66 65.926033 27.9%
67 66.927127 4.1%
68 67.924844 18.8%
69 68.926550 56 m
70 69.925319 0.62%
71 70.927722 2.45m
Ga 31 67 66.928202 3.26d
68 67.927980 67.7m
69 68.925574 60.11%
70 69.926022 21.1m
71 70.924701 39.89%
72 71.926366 14.1h
73 72.925175 4.86 h
Ge 32 68 67.928094 271d
69 68.927965 39.0h
70 69.924247 20.4%
71 70.924951 11.4d
72 71.922076 27.3%
73 72.923459 7.8%
74 73.921178 36.7%
75 74.922859 82.8 m
76 75.921403 7.8%
77 76.923549 11.3h
As 33 73 72.923825 80.3d
74 73.923929 17.8d
75 74.921596 100%
76 75.922394 263 h
77 76.920647 38.8h
Se 34 72 71.927112 84d
73 72.926765 7.1h
74 73.922476 0.89%
75 74.922523 120d
76 75919214 9.4%
77 76.919914 7.6%
78 77.917309 23.8%
79 78.918499 0.30 My
80 79.916521 49.6%
81 80.917992 18.5m
82 81.916699 8.7%
83 82.919118 22.3m

Atomic Abundance
V4 A mass (u) or Half-life
Br 35 77 76.921379 57.0h
78 77.921146 6.46 m
79 78.918337 50.69%
80 79.918529 17.7m
81 80.916291 49.31%
82 81.916804 353h
83 82.915180 240 h
Kr 36 76 75.925910 14.8 h
77 76.924670 74.4 m
78 77.920365 0.35%
79 78.920082 35.0h
80 79.916379 2.28%
81 80.916592 0.229 My
82 81.913484 11.58%
83 82.914136 11.49%
84 83.911507 57.00%
85 84.912527 108y
86 85.910611 17.30%
87 86.913355 76.3 m
Rb 37 83 82915110 86.2d
84 83.914385 33.1d
85 84.911790 72.17%
86 85911167 18.6 d
87 86.909181 27.83%
88 87911316 17.8 m
Sr 38 82 81.918402 25.6d
83 82.917557 32.4h
84 83.913425 0.56%
85 84.912933 64.8 d
86 85.909260 9.86%
87 86.908877 7.00%
88 87.905612 82.58%
89 88.907451 50.6d
90 89.907738 289y
Y 39 87 86.910876 79.8 h
88 87.909501 106.6 d
89 88.905848 100%
90 89.907152 64.1 h
91 90.907305 58.5d
Zr 40 88 87.910227 83.4d
89 88.908890 78.4 h
90 89.904704 51.45%
91 90.905646 11.22%
92 91.905041 17.15%
93 92.906476 1.53 My
94 93.906315 17.38%
95 94.908043 64.0d
96 95.908273 2.80%
97 96.910953 16.7 h
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Atomic Abundance Atomic Abundance
VA A mass (u) or Half-life Z A mass (u) or Half-life
Nb 41 91 90.906996 680y Pd 46 100 99.908506 3.63d
92 91.907194 35 My 101 100.908289 8.47h
93 92.906378 100% 102 101.905609 1.02%
94 93.907284 20,300 y 103 102.906087 17.0d
95 94.906836 35.0d 104 103.904036 11.14%
105 104.905085 22.33%
Mo 42 90 89.913937 556 h 106 105.903486 27 339
91 90.911750 15.5m 107 106.905133 6.5 My
92 91.906811 14.8% 108 107.903892 26.46%
o3 92.906813 4000y 109 108905950  13.7h
94 93.905088 9.3% 110 109.905153 11.72%
95 94.905842 13.9% 111 110.907671 234m
96 95.904679 16.7%
97 96.906021 9.6%
98 97.905408 24.1% Ag 47 105 104.906529 413d
99 98.907712 65.9h 106 105.906669 24.0 m
100 99.907477 9.6% 107 106.905097 51.84%
101 100.910347 14.6 m 108 107.905956 237m
109 108.904752 48.16%
Te 43 95 94.907657 20.0 h 110 109.906107 246 s
96 95.907871 43d
97 96.906365 4.2 My
98 97.907216 4.2 My Cd 48 104 103.909849 57.7m
99 98.906255 0.211 My 105 104.909468 55.5m
100 99.907658 158 s 106 105.906459 1.25%
107 106.906618 6.50 h
Ru 44 94 93.911360 51.8 m 108 107.904184 0.89%
95 94.910413 1.64 h 109 108.904982 461d
96 95.907598 5.5% 110 109.903002 12.5%
97 96.907555 2.79d 111 110.904178 12.8%
98 97.905287 1.86% 112 111.902758 24.1%
99 98.905939 12.8% 113 112.904402 12.2%
100 99.904219 12.6% 114 113.903359 28.7%
101 100.905582 17.1% 115 114.905431 535h
102 101.904349 31.6% 116 115.904756 7.59%
103 102.906324 39.3d 117 116.907219 249 h
104 103.905433 18.6%
105 104.907753 4.44 h
In 49 111 110.905103 2.80d
Rh 45 101 100.906164 33y 112 111.905532 150 m
102 101.906843 207d 113 112.904058 4.29%
103 102.905504 100% 114 113.904914 719
104 103.906656 423 115 114.903878 95.71%
105 104.905694 354h 116 115.905260 14.1s
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Atomic Abundance Atomic Abundance
Z A mass (u) or Half-life Z A mass (u) or Half-life
Sn 50 110 109.907843 4.11h Xe 54 122 121.908368 20.1h
111 110.907734 353 m 123 122.908482 2.08h
112 111.904818 0.97% 124 123.905893 0.095%
0,
Ha o 3902779 0.66% 126 125904274  0.089%
1: 2 ﬂ‘;ggﬁﬁ ?j;’f}/ 127 126905184  364d
. . 0 0
117 116902952  7.68% gz ggggﬁ; ; 69 fl (j;/
118 117.901603 24.22% : o
119 118.903308 8.59% 130 129.903508 4.07%
120 119.902195  32.58% 131 130905082 21.23%
121 120.904235 27.0h 132 131.904153 26.91%
122 121.903439 4.63% 133 132.905911 5244
123 122.905721 129d 134 133.905394 10.44%
124 123.905274 5.79% 135 134.907227 9.14h
125 124.907784 9.64d 136 135.907219 8.86%
126 125.907653 0.23 My 137 136.911562 3.82m
Sb 3l 1;3 323823‘7‘; ?25 h Cs 55 131 130905464  9.69d
. Jm
121 120.903816 57.21% 132 131.906434 6'480d
122 121905174  272d 133 132.905452 100%
123 122904214 42.79% 134 133906718 2.06y
124 123905936  60.1d 135 134905977 23 My
125 124.905254 276y 136 135.907312 13.0d
Te 52 118 117.905828 6.00d Ba 56 128 127.908318 243d
119 118.906404 16.1 h 129 128.908679 223 h
120 119.904020 0.09% 130 129.906321 0.106%
121 120.904936  19.2d 131 130906941  11.5d
122 121.903044 255? 132 131.905061 0.101%
33 iggg‘z‘gg giﬁj 133 132906007 105y
. . 0 0
125 124.904431 7.07% 134 133904508 242 0/’
126 125903312 18.84% 135 134.905689  6.59 o/”
127 126.905226 0.35 h 136 135.904576 7.85%
128 127.904463 31.74% 137 136.905827 11.23%
129 128.906598 69.6 m 138 137.905247 71.70%
130 129.906224 34.08% 139 138.908841 83.1m
131 130.908524 25.0m
La 57 136 135.907636 9.87 m
I >3 BZ E‘;-Zg‘;ggg ig‘g‘ j 137 136906494 60,000y
e 120004478 Lo 138 137.907112 0.090%
. 0
1 138. 99.910%
128 127.905809 25.0m li (9) 122 gggi 3 z e dM
129 128.904988 15.7 My : :
130 129.906674 12.4h 141 140.910962 3.92h
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Atomic Abundance Atomic Abundance
V4 A mass (u) or Half-life Z A mass (u) or Half-life
Ce 58 134 133.908925 76 h Eu 63 149 148.917931 93.1d
135 134.909151 17.7h 150 149.919702 369y
32 ggggzégé g-éf% 151 150919850  47.81%
- - 152 151.921745 135y
138 137.905991 0.251% i
139 138906653  137.6d 153 152921230 32.19%
140 139.905439 88.45% 154 153.922979 8.59y
141 140.908276 3254d 155 154.922893 475y
142 141.909244 11.11% 156 155.924752 1524d
143 142.912386 33.0h
144 143.913647 285d Gd 64 150 149.918659 1.79 My
Pr 59 139 138.908938 441h 151 150.920348 124d
140 139.909076 339m 152 151.919791 0.20%
141 140.907653 100% 153 152.921750 240 d
142 141.910045 19.1h 154 153.920866 2.18%
143 142.910817 13.6d 155 154.922622 14.80%
Nd 60 140 139.909552 337d 156 155.922123 20.47%
141 140.909610 249h 157 156.923960 15.65%
142 141.907723 27.2% 158 157.924104 24.84%
143 142.909814 12.2% 159 158.926389 18.5h
144 143.910087 23.8% 160 159.927054 21.9%
145 144.912574 8.3% 161 160.929669 3.66 m
146 145913117 17.2%
147 146.916100 11.0d
148 147916893 5700 Tb 65 157 156.924025 Ty
149 148.920149 1.73h 158 157.925413 180y
150 149.920891 5.6% 159 158.925347 100%
151 150.923829 12.4m 160 159.927168 723 d
161 160.92 91
Pm 61 143 142.910933 265d 6 60.927570 6.91d
144 143.912591 363d
145 144919749 177y Dy 66 154 153.924424 3.0 My
146 145914696 553y 155 154925754 9.9h
147 146.915139 262y 156 155.924283 0.06%
148 147.917475 537d 157 156.925466 8.1h
149 148.918334 53.1h 158 157.924409 0.10%
Sm 62 142 141.915198 72.5m 159 158.925739 144.4d
143 142914628  875m 160 159.925198  2.3%
144 143.911999 3.1% 161 160.926933 18.9%
145 144.913410 340 d 162 161.926798 25.5%
146 145.913041 103 My 163 162.928731 24.9%
147 146.914898 15.0% 164 163.929175 28.2%
148 147.914823 11.2% 165 164.931703 2331
149 148.917185 13.8%
150 149917276  7.4% Ho 67 163 162928734 4570y
151 150.919932 90 y 164 163930234 s
152 151.919732 26.7% : m
153 152.922097 463 h 165 164.930322 100%
154 153.922209 22.7% 166 165.932284 268h
155 154.924640 223m 167 166.933133 3.0h
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Atomic Abundance Atomic Abundance
Z A mass (u) or Half-life VA A mass (u) or Half-life
Er 68 160 159.929083 28.6h w 74 178 177.945876 21.6d
161 160.929995 321h 179 178.947070 37.0m
162 161.928778 0.14% 180 179.946704 0.12%
163 162.930033 75.0m 181 180.948197 121d
164 163.929200 1.60% 182 181.948204 26.5%
165 164.930726 104 h 183 182.950223 14.3%
166 165.930293 33.50% 184 183.950931 30.6%
167 166.932048 22.87% 185 184.953419 75.1d
168 167.932370 26.98% 186 185.954364 28.4%
169 168.934590 9.39d 187 186.957160 23.7h
170 169.935464 14.91%
171 170.938030  7.52h Re 75 183 182950820  70.0d
Tm 69 167 166932852  925d 184 183952521 38.0d
185 184.952955 37.40%
168 167.934173 93.1d
169 168934213 000 186 185.954986 3.72d
187 186.955753 62.60%
170 169.935801 128.6 d 188 187998114 170k
171 170.936429 192y : '
Yb 70 166 165.933882 56.7h Os 76 182 181.952110 22.1h
167 166.934950 17.5m 183 182.953126 13.0h
168 167.933897 0.13% 184 183.952489 0.02%
169 168.935190 32.0d 185 184.954042 93.6d
170 169.934762 3.0% 186 185.953838 1.6%
171 170.936326 14.3% 187 186.955750 1.6%
172 171.936381 21.8% 188 187.955838 13.3%
173 172.938211 16.1% 189 188.958147 16.2%
174 173.938862 31.8% 190 189.958447 26.4%
175 174.941276 4.19d 191 190.960930 1544d
176 175.942572 12.8% 192 191.961481 40.9%
177 176.945261 1.9h 193 192.964152 30.1h
Lu 7 }Zi };igiggg; ;fyy Ir 77 189 188.958719 13.2d
175 174.940772  97.41% 12‘1) igggggg;‘j ;17§ ;
176 175.942686 2.59% 10 101962608 73'85
177 176.943758 6.65 d 103 192.96290 gy
Hf 72 172 171.939448 1.87y 194 193.965078 19.3h
173 172.940513 23.6h
174 173.940046 0.16% Pt 78 188 187.959395 10.2d
175 174.941509 70d 189 188.960834 109 h
176 175.941409 5.26% 190 189.959932 0.014%
177 176.943221 18.60% 191 190.961677 286d
178 177.943699 27.28% 192 191.961038 0.78%
179 178.945816 13.62% 193 192.962987 50y
180 179.946550 35.08% 194 193.962680 32.97%
181 180.949101 42.4d 195 194.964791 33.83%
196 195.964952 25.24%
Ta 73 179 178.945930 182y 197 196.967340 19.9h
180 179.947465  0.012% 198 197.967893  7.16%
181 180.947996 99.988% 199 198970593 30.8 m
182 181.950152 114 d



Atomic Abundance
V4 A mass (u) or Half-life
Au 79 195 194.965035 186 d
196 195.966570 6.17d
197 196.966569 100%
198 197.968242 2.696 d
199 198.968765 3.14d
Hg 80 194 193.965439 444 y
195 194.966720 10.5h
196 195.965833 0.15%
197 196.967213 64.1h
198 197.966769 10.0%
199 198.968280 16.9%
200 199.968326 23.1%
201 200.970302 13.2%
202 201.970643 29.9%
203 202.972872 46.6d
204 203.973494 6.9%
205 204.976073 5.1m
Tl 81 201 200.970819 72.9h
202 201.972106 12.2d
203 202.972344 29.52%
204 203.973864 378y
205 204.974428 70.48%
206 205.976110 420 m
Pb 82 202 201.972159 53,000 y
203 202.973391 519h
204 203.973044 1.4%
205 204.974482 17.3 My
206 205.974465 24.1%
207 206.975897 22.1%
208 207.976652 52.4%
209 208.981090 325h
Bi 83 207 206.978471 329y
208 207.979742 0.368 My
209 208.980399 100%
210 209.984120 5.01d
211 210.987269 2.14m
Po 84 207 206.981593 5.80 h
208 207.981246 290y
209 208.982430 102y
210 209.982874 138.4d
At 85 209 208.986173 541h
210 209.987148 8.1h
211 210.987496 7.21h
Rn 86 211 210.990601 14.6 h
222 222.017578 3.82d
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Atomic Abundance
Z A mass (u) or Half-life
Fr 87 212 211.996202 20.0 m
223 223.019736 22.0m
Ra 88 223 223.018502 11.43d
224 224.020212 3.63d
225 225.023612 149d
226 226.025410 1600 y
Ac 89 225 225.023230 10.0d
226 226.026098 29.4h
227 227.027752 21.77y
Th 90 228 228.028741 191y
229 229.031762 7340 y
230 230.033134 75,400 y
231 231.036304 25.52h
232 232.038055 100%
233 233.041582 21.8m
Pa 91 230 230.034541 17.4d
231 231.035884 32,800 y
232 232.038592 1.31d
234 234.043308 6.70 h
U 92 233 233.039635 0.1592 My
234 234.040952 0.2455 My
235 235.043930 0.720%
236 236.045568 23.42 My
237 237.048730 6.75d
238 238.050788 99.274%
239 239.054293 23.5m
Np 93 236 236.046570 0.154 My
237 237.048173 2.14 My
238 238.050946 2.117d
Pu 94 238 238.049560 87.74y
239 239.052163 24,100 y
240 240.053814 6561y
241 241.056851 143y
242 242.058743 0.375 My
Am 95 241 241.056829 432y
242 242.059549 16.0h
243 243.061381 7370y
Cm 96 246 246.067224 4760 y
247 247.070354 15.6 My
248 248.072349 0.348 My
Bk 97 247 247.070307 1380y
Ccf 98 251 251.079587 898y
254 254.087323 60.5d
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Atomic Abundance Atomic Abundance
V4 A mass (u) or Half-life V4 A mass (u) or Half-life
Es 99 252 252.082979 472d Sg 106 261 261.116117 0.23s
Fm 100 257 257.095105 100.5d Bh 107 262 262.122892 0.10 s
Md 100258 258098431 S1.Sd Hs 108 264 264128395  0.8ms
No 102259 29101031 58m Mt 109 266  266.137299  1.7ms
Lr 103 260 260.105504 3.0m
Ds 110 270 270.144720 0.5ms
Rf 104 261 261.108767 65s
Rg 111 272 272.153615 4ms
Db 105 262 262.114084 35s



ANSWERS TO ODD-NUMBERED
PROBLEMS

Chapter 1

7.
9.
11.
13.
15.
17.

4.527 x 10°m/s

(@) —=7.79 x 10°m/s

(b) 1.008 x 10713J,3.995 x 10713 J
(a)2.13 x 10°m/s

(b) 1.28 x 10°m/s

434 x 1075

6.1 x 107°N

35.3°,v/3/2,v/\/6

2.47 x 10°m/s, —0.508 x 10°m/s
(a)0.0104eV  (b)2550m

4.61 x 10"%rad/s

Chapter 2

W W =

13.
17.
19.
21.

23.
25.

27.
29.
33.
35.
37.

39.

41.

101 km/h at 62° east of south

7 x 10*m/s

2.6 x 108 m/s

(@)357.1ns (b)) 103m  (c) 28.8m
0.402¢

5.0 x 10’ m/s

+0.937¢, —0.572¢

(a) +0.508us () —81.5m

(a) 2:00 P.M. (b) 3:00 P.M.

(¢) 1:00 p.M. and 3:00 P.M.

8y

(a) K! = K} = 0.512mc?

(b) K, = K; = 0.458mc?

0.958¢

v < 0.115¢

(a) 773MeV/c*  (b) 1227 MeV
4.4 x 107 10kg

p. = 10.5MeV/c, K, = 10.0 MeV
Py = 137.4MeV/c, K, = 10.0 MeV
(a) 1268.1MeV  (b) 298.8 MeV/c
(c) 1232 MeV

0.981c¢

43.
45.
47.
49.

51.

53.
55.
57.

64.38 us

(a) 0.99875¢  (b) 400.5y

2.34km, 1.07 us

() 0.648 us  (b)335m

(@) E' =mc /(1 —u? /(1 =2/
, my/u? +1v2 — 1212 /c2

SN T

(b) m?>c*

(a)3.1MeV  (b) 7.8 MeV
0.508¢

267.0 MeV, 28.9 MeV

Chapter 3

1.

5.

11.
19.
21.
23.
25.
29.
31.
33.
35.
37.
39.

41.

1.32 mm
(a) 0.388nm  (b) 7.2°

(a) 1.00 x 107 eV/c,5.33 x 10721 kg-m/s

()2.5x 10*eV/c,1.3 x 1072 kg-m/s
() 1.2eV/c,6.6 x 10728 kg-m/s
(d)6.2 x 1077eV/c,3.3 x 1073 kg-m/s
(@) 0.124nm  (b) 1.24 x 1073 nm
(c)1.8eVto3.5eV

0.964V

(a) 4.88eV

I.Imm, 1.1 x 1073 eV

0.33W

(@) 1.9 x 10° W/m?  (b) 0.26%
(@) 10.33keV  (b) 0.06keV
3.9x 107*eV

1.17eV

2.28eV,4.10 x 1075 eV/s
(@)2.52um  (b) 0.405

2.724K

(@) 5.79 x 1071°W/m?,1.91 x 10~ W/m?

(b) 1.81 x 10%/5,2.97 x 107/s
4.1 m/s
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Chapter 4
I. (a)13fm (b)0.025fm (¢) 0.73 nm
3. (a)0.143¢ (b) —9.72MV
5. (@) +0.010V (b)) +100V  (c) +1.0 x 10°V
7. (a)88MeV (b)4.2MeV (c) 1.1 MeV
9. 33nm
11. 152°(n=1),31.8°(n = 2),52.2°(n = 3)
13. (@) 660m (b) 0.33m
(¢)0.017mm (d) 0.050 Hz
15. 8.4 x 10*Hz
17. 5.8nm
19. 33MeV
21. 5.5x1077eV
23. 0.052MeV
29. Vgroup = 1-5Vphase
31. (b) 1.50eV,6.00eV,13.5eV
33. (a)0.0279eV  (b)3.3nm (¢)2.1K
35. (a)0.71MeV  (b) 0.66 MeV
37. (a) 135MeV  (b)4.87 x 107%*s  (c) 1.46 fm
39. 3x10°m
Chapter 5
1. (b) —(B/m)/2H]g, H(1 + B/mg)
3. 1.1eV
5. 150eV,600eV, 1350eV
7. (@) c=da*b*,d=alb+1)

Byw=aRb+1)

9. U) = —h*b/mx,E = —h*b*/2m
11. 10.1eV, 189eV
15. (a)2.63 x 107>
17. 5.00E,, 10.00E,
19. 3E,,6E,,9E,, 11E,, 12E,, ...

21, (b) /3hwy/k, \/Shew,/k

23. ()0  (b) hawym/2

25. A?dx,0.3684%dx

27. B=D=—-A4/JE/(U,—E)

31. (a)2160eV  (b)4.70 x 10*eV/c
(c)4.2 x 1073 nm

35. (b) h*n?/4L?

37. 0.157

(6)0.0106  (c) 5.42 x 1073

Chapter 6

3. (a) 6.57 x 10'° Hz,45.7nm
(b) 3.48 x 10'° Hz, 86.2 nm

5. (a)22.8fm (b)55.0fm
(c) 4.14MeV, 0.86 MeV

7. 14 fm

9. (a)8.4MeV
(c) 6.00 fm

(b) 1.61 fm
(d)8.3 x 1076

11.
13.
15.
17.
19.
21.
23.
27.
31.
33.

35.
37.
39.
41.

0.63 MeV

28.2 fm, 19.9 fm, 38.9°

121.51 nm, 102.52 nm, 97.21 nm

2279 nm

91.13nm, 820.1 nm

AE =0.306eV,097¢V, 2.86eV, 13.1eV
7.4eV

—54.40eV, —13.60¢eV, —6.04eV, —3.40eV
2.10eV

(a) 6.58 x 10'2Hz,7.72 x 102 Hz

(b) 6.58 x 10° Hz, 6.68 x 10° Hz

(@15 B)5S (o1

7x 107 8eV

48.23 nm

(a) 0.440nm  (b) 11.3%

Chapter 7

11.

13.
15.
17.
21.
23.

25.
27.

29.
31.
33.

~ DN W =

—me* /3223 h?

0.0108

35°,66°,90°,114°, 145°
(a)0,1,2,3,4,5 (b) +6 to —6 in integer steps
(5 (d)4

(@)0,0 (b)0,3.2x 107!

(¢)0,3.2 x 1071

(d) 1.1 x 10711, 2.2 x 107!

(3 £+/5)q

0.0054

Minima: 55°, 125° Maxima: 0°, 90°, 180°
3s,2s, 1s,3d

(a) 7s,7p,7d,7f,7g,7h, Ti

(b) 6p, 6, 5p,5f,4p, 41, 3p, 2p

(a) 656.112nm, 656.182 nm, 656.042 nm
1.89eV +£2.55 x 102 eV,

1.89eV £1.95x 1075 eV

0.651, 0.440

6ay, Sa,

3.3mm

Chapter 8

1.

3.

(a) 2,1,+1,41/2),(2,1,4+1,—1/2),...
(b)36 (¢)30 (d)36

()14  (b)+3/2 (c)+8

(d)+2 (e)+10

(a) N, P, As, Sb, Bi

(b) Co, Rh, Ir, Mt

(a) [Ar]4s23d° (b)) +2

(c)+2 (d)+3,+1
—1.51eV,—0.85¢eV



11.

13.
15.
17.
19.
21.
23.
25.

(a) 0.045¢eV
(c)3.54eV,2.02eV
3.68eV, 15.5eV, 63.7¢V
(a)5,1 (b)2,4 (¢)2,1
0,1,2,3,4;0,1

(a) 1.12 x 10'® photons/s
(a) 1.84 (b) 1.00
1.40eV1/2,6.4

(a) 670.8nm  (b) 58.4nm
(c) 230 nm, 50.6 nm

(b) 763 V/m

Chapter 9

1.

5.

7.

9.
11.
13.
15.
17.
19.
23.
31.

33.

35.
37.

39.

15.4eV

(a) 4.25 eV /molecule
(c) 9.80 eV /molecule
(@)Li, (c¢)CO
5.11eV

(@)30.9 x 107 C-m
42.7%

4.689 x 10° eV/nm?
(a) 0.2626eV  (b) 0.2579eV
23.1mm, 11.6 mm, 7.71 mm

2.00 x 107%eV

hf —2B(L + 1), hf + 2BL
(a)0.27eV,0.23eV, 0.19eV
(b)4.56eV, 4.60eV

(@) 0.317eV  (b)2.37 x 10*' eV/m?
(€)2.1 x 1073 eV

(@)8.2x 1072 (b)6.8 x 1073
(a)2.99,4.97,6.91

(b)2.94,4.70, 6.18

(a) 194.4 puevV

(b) 88%

Chapter 10

1.

7.

11.
13.
15.
17.
19.
21.

23.
25.

(@3 (b)3,6,1 (c)20%,40%
(@6 (D)2 (04,2

(@) +3 (1), +2(2), +1(3),0(4),...
(6)3(7),2(5),1(3),0(1)

(©)+3 (1), +2(1),+1(2),02), ...
27 (2s + ym/H?
2.7 x 102 m™3
0.65, 0.29, 0.06
(a) 0.0379eV
(a) 554 uevV  (b) 0.066 ueV
(@) 103atm (b)2.9K

(a) 1.84 x 107 eV/m3

() 0.035 ()23 x 10717
7.04eV,4.22eV
(a)4.37 x 10730 m~3

(b)2.78 x 102!

(b) 6.00 x 10~®m~3

(b)3.374eV,4.373eV,4.750eV

27.
29.
31.

Answers to Odd-Numbered Problems

(b)8.6km  (c)2.2 x 108 kg/m?>
0.078 J/K
(a) e *F (D) E/("/* + 1)

(¢) NE/(E/*T 4 1)
(d) R(E/KT)?eE/RT 1 (E/KT 4 1)2

33. (a) 0.3295,0.3333, 0.3372

35. 0.12eV

37. 17.1MeV, 22.9MeV

39. (@)2.83 x10nm () 1.39 x 103> nm

41. (a)2.78+0.06K () 0.0137 4 0.0017

Chapter 11

1. (a)1/8 (b)ya=2r (c)0.5236

5. (a)6.82eV  (b)6.45eV  (c)3.27eV

7. —8.96eV,1.00eV

9. 0.255nm

11. 323K

13. 91.1K

15. (a)7.09eV  (b)0.11eV

17. 2.3 x 10%*m™3

19. 7080 K

21. 426 W/K-m

23. 790

25. (a)0.20MeV  (b) 6.3 mm

27. 603 MHz

29. (a) 1.9 x 10728,3.5 x 10710

31. (a) —0.094eV  (b) —0.040eV

33. 42x10°°

35. 6.8 x 107> mA

37. (a) 57% and 43%  (b) 89% and 11%

39. (a) 0.4997,0.5003  (b) 0.480, 0.520

41. (a)10.8 x 107° (b) —45.3 x 107°

49. (a) 135K (b) 165K, 1.40m,

51. (a) 1.00 x 10° () 1.00 x 103,1.00 x 1073
(c) 0.662keV

Chapter 12

L (@) '9Fy  (b) "9Aun  (0) 'Y AL

. (a) 15MeV  (b) 824 MeV

5. (a) 1636.4MeV, 7.868 MeV
(b) 1118.5MeV, 8.410 MeV

7. 7.718 MeV, 8.482 MeV

9. (a)19.814MeV  (b) 15.958 MeV

11. 25%x 1073 fm

13. '9Dy: yes, %4 Dy: no

15. (a)35min  (b) 0.020min~! () 465!

17. 0.0598

19. (a)0.85uCi (b)0.13%

21. (a)Yes (b)No (c)Yes

535
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25. 0.864 MeV Chapter 14
27. 0.412MeV, 1.088 MeV, 0.676 MeV
29. 100.1 keV, 300.9 keV, 200.8 keV, ... 1. (a) Strong  (b) Electromagnetic  (c) Weak
31. (@)6 (b)4 (c)42.659MeV  (d) 27.8 uW 7. (@L,(D)S
33. 12.6 fm 11. (a)1.29keV  (b) 0.21 MeV
35. 37.5 uCi 13. 179.4MeV
39. 1.93 mW 15. (a)34MeV (b)218MeV
41. 1.04 x 10720571, 9.0 x 108s! 17. (a)43MeV, 19MeV  (b) 30 MeV, 4 MeV
43. (a)7.52 x 107*MeV  (b) 3.26 x 107* MeV 19. 387MeV, 34.9°
45. (a)4.67x10%eV (b)) 1.95 x 103 eV 21. (a) 181 MeV (b)) —605MeV
(¢) 0.097 mm/s 23. (a)2205MeV  (b) 903 MeV

25. (a) uu annihilation, creation of 2 ss pairs
27. (a)s >u+W andW~ — d+1u

Chapter 13 29. cu, etc.

1. (@) |Hy (c)39Ps 31. 0.999635¢, 40.2 GeV

3. 98b 33. (a)0.360c () 0.637¢ (c) 279 MeV
5. 86x107*b 35. 47MeV

7. (@)0.5 (b)0.75 (c)0.9325

11. 1.58 uCi Chapter 15

13. (a) —10.313MeV  (b) 2.314MeV
15. 12.201 MeV, 11.152 MeV or
22.706 MeV, 0.647 MeV
17. (a)2353MeV  (b) 202.0 MeV
19. (a) 6.546MeV  (b) 4.807 MeV
21. (a) 1.943MeV, 1.199 MeV, 7.551 MeV, ...

(@) 590.0nm  (b) 637.1 nm

(b) 6.64 x 1074 eV

0.089 nm

7. 1.6 x 1072 Hz

11. (b) 128 rev/s

15. (@)5.8 x 102K (b)6.7 x 107°s

W =

23. 14.1MeV 17. (@)1.0 x 10°K  (h)225s (c)6600K, 1.6 x 107y
25. 7.274MeV 19 0.27m=3
31. (a)5.594MeV  (b) 0.56 W 21. 3.0eV

33. 4.49b,2.20b

35. 8.662MeV

37. 9.043MeV

39. (@)3.2x 1087 () 6.8 x 1087

23. (@)29x10°y (b)1.17eV  (c)1.24

25. (a)9.79km  (b)3.01 x 10%°]
(©)6.02 x 10°]  (d) 6.98 x 103 W
(e)6.21 x 10714 W
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INDEX

A
Absorption edge, 241
Absorption spectra, 181
Abundances, light elements, 429
Acceptor states, 352
Actinides, 240
Activity, 383—-385
Alpha decay, 163—164, 382, 383,
387-390
kinetic energy, 388
Q value, 388
quantum theory, 389—-390
Ammonia inversion, 164
Angular frequency, 70
Angular momentum, 6
classical orbits, 200
conservation of, 6
intrinsic (spin), 211, 215
quantization of, 184
quantum number, 201, 204
rules for addition, 245
uncertainty relationship, 202-203
Angular probability density, hydrogen,
201-211
Annihilation, electron-positron, 93—94
Antibonding state, 261, 265
Antimatter, 445, 510
Antineutrino, 391-392, 445
Antiparticles, 445
Atoms, basic properties, 170—171
Avogadro’s constant, 10
Azimuthal wave function, 203

B

Balmer, Johannes, 182

Balmer formula, 182

Balmer series, 181182, 186, 187

Band theory of solids, 342—-346

Bardeen, John, 348

Barn (unit), 411

Barrier penetration, 162

Baryon number, 450—-451

Baryons, 444, 447448, 464—466
quark structure, 464—466

BCS theory of superconductivity, 348

Becquerel (unit), 383

Beta decay, 382, 383, 391-394
electron capture, 393
Q value, 391-393

Big Bang theory, 482, 503-513

Binary pulsar, 498—499

Binding energy, 185
nuclear, 374-377
Binnig, Gerd, 165
Black holes, 499-501
Blackbody, 82
Body-centered cubic (bee) lattice,
327-329
Bohr, Niels, 184
Bohr magneton, 212
Bohr model, 183188
allowed radii, 184, 188
deficiencies, 191-192
energy levels, 185, 188
hydrogen wavelengths, 185—-186
Bohr radius, 184
Boltzmann constant, 10
Bonding state, 261, 265
Bose-Einstein condensation, 311-314
Bose-Einstein distribution, 306, 307,
309-314, 336
Boson, 306
Bottom quark, 467—-468
Boundary conditions, wave, 136
Boundary, wave continuity at, 136
wave incident on, 134
Bragg, Lawrence, 73
Bragg scattering, 345—346
Bragg’s law, 74
Bremsstrahlung, 92—93
Bubble chamber, 454455

C

Carbon, energy levels, 246—248
Carbon cycle, 424

Chamberlain, Owen, 56
Chandrasekhar limit, 496

Charm quark, 466—468

Chernobyl reactor, 421

Clock synchronization, 43

COBE satellite, 483484

Cohesive energy, 329

Colliding beam accelerators, 464
Complementarity principle, 110
Compton, Arthur H., 88-90
Compton effect, 87-91

Compton scattering formula, 88
Compton wavelength, 88
Conduction band, 344
Conductivity, electrical, 339
Conservation of angular momentum, 6
Conservation of energy, classical, 3

Conservation of energy, relativistic, 54
Conservation of linear momentum,
classical, 3
Conservation of linear momentum,
relativistic, 53
Constituent quarks, 468
Contact potential difference, 76
Continuity of wave at boundary, 136
Cooper, Leon N., 348
Cooper pairs, 348
Cornell, Eric, 313
Correspondence principle, 190—191
Cosmological principle, 479
Cosmology, 478—513
Big Bang theory, 482, 503-513
critical density, 511-512
dark matter, 484—486, 513
expansion of universe, 478—482
flatness problem, 511-512
general relativity and, 501-503
horizon problem, 511
Hubble’s law, 479-482
inflation, 511-512
microwave background radiation,
482-484
Coulomb force, 7
Coulomb potential energy, 7, 198
Covalent bonding, 262
Covalent solids, 330-331
Critical density, 511-512
Cronin, J. W., 510
Cross section, nuclear reaction, 411-412
Crystals, 326—334
cubic, 327-330
ionic, 327-330
Cubic lattice, 327
Curie, Marie, 362, 384
Curie, Pierre, 362
Curie (unit), 383
Curie constant, 362
Curie’s law, 362
Cutoff frequency, 77
Cutoft wavelength, 79
Cyclotron, 409

D

Dark energy, 513

Dark matter, 484486, 513

Davisson, Clinton, 105
Davisson-Germer experiment, 105-106
De Broglie, Louis, 102
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De Broglie wavelength, 103
De Broglie waves, group speed, 125
Debye, Peter, 336
Debye temperature, 336—338
Debye theory of heat capacity of solids,
336-338

Debye-Scherrer pattern, 75
Deflection of starlight, 493—-494
Degeneracy, 154155, 297
Degree of freedom, 16
Delayed choice experiment, 95
Delayed neutrons, 419-420
Density of states, 297—300

particles, 298—-299

photons, 299-300
Depletion region, 353—355
Deuterium-tritium (D-T) reaction, 425
Diamagnetism, 358
Diatomic gases, heat capacity, 18
Diatomic molecules, 271-281

ionic, 271-275

rotating, 279281

vibrating, 276277
Diffraction, 72, 104

electron, 104, 374

neutron, 106, 109

nuclear, 106, 109

X rays, 73-75
Diode laser, 356—-357
Diodes, 355, 356357
Dipole moment, electric, 273
Dissociation energy, 262
Distance of closest approach to nucleus,

178179

Distribution function, 296
Donor states, 352
Doping, 344, 352
Doppler broadening, 304—-306
Doppler effect

classical, 38

relativistic, 38—40

experimental test, 59-60

Double slit interference

atoms, 108

electrons, 107—-108, 128

molecules, 108—09

neutrons, 107—108

Young’s experiment, 72—73
Drift velocity, 339
Dulong and Petit law, 334

E

Effective mass, 319, 337
Einstein, Albert, 31, 486
postulates of special theory of
relativity, 31

theory of photoelectric effect, 78
Einstein temperature, 336
Einstein theory of heat capacity of solids,
335-336
Electric dipole moment, 273
Electric field of point charge, 70
Electric field, plane wave, 70
Electrical conduction, 339-341
quantum theory of, 340—341
Electrical conductivity, 339
Electrical resistivity, 236—237
Electromagnetic interaction, 442—444
Electromagnetic spectrum, 9
Electromagnetic wave
intensity of, 71
plane, 70
Electron affinity, 271
Electron capture, 393
Electron configuration, 230-231
Electron diffraction, 104, 374
Electron double slit interference,
107108, 128
Electron microscope, 109
Electron screening, 228, 232233
Electronegativity, 274
Electron-positron annihilation, 93-94
Electron-volt, 7
Electroweak theory, 471
Elementary particles, 442—473
antiparticles, 445
baryon number conservation, 450—451
baryons, 444, 447448, 464—466
decays, 458—460
families, 446—448
field particles, 443—444
interactions, 442444
lepton number conservation, 449—-450
leptons, 444, 446, 470—-471
mesons, 444, 446447, 464—465
quark structure, 464—471
reactions, 460—464
resonance particles, 456—458
standard model, 470—473
strangeness concervation, 451-452
Emission spectra, 180
Endothermic (endoergic) reactions, 415
Energy
binding, 185
conservation of
classical, 3
relativistic, 54
dissociation, 262
equipartition of, theorem, 16—17
internal, of gas, 17
ionization, 185
kinetic (classical), 3

kinetic (relativistic), 49—50
photon, 78
potential, 5
quantization of, 139
total (classical), 5
total (relativistic), 5051
zero-point, 275
Energy eigenvalues, 141
Energy levels
Bohr model, 185
Z>1,188
carbon, 246248
finite potential energy well, 151
helium, 234, 247-248
hydrogen atom, 185, 187, 217
infinite potential energy well, 147
lithium, 234
rotational, 278279
simple harmonic oscillator, 157
sodium, 234
two-dimensional infinite potential
energy well, 153
vibrational, 275-276
Enrichment, 419
Equation of state, ideal gas, 10
Equivalence principle, 487488
Equipartition of energy theorem, 16—17
Ether, 30
Evanescent wave, 135, 163
Event horizon, 499—-500
Exchange force, 378—380
Excitation energy, 185
Excited states, 147
nuclear, 396
Exothermic (exoergic)
reactions, 415
Expectation value, 143
Extreme relativistic approximation, 51

F

Face-centered cubic (fce) lattice,
327-329

Fermi, Enrico, 370

Fermi (unit), 373

Fermi energy, 307—308, 315, 338—339

Fermi National Accelerator Laboratory
(Fermilab), 453, 455

Fermi-Dirac distribution, 306—308,
314-319, 338

Fermion, 306

Ferromagnetism, 358, 363364

Feynman, Richard, 453

Field particles, 443—444

Fine structure, 219-221

constant, 220, 221
Fission, 416—422



barrier to, 417
chain reaction, 418
energy release, 417—418
fragment mass distribution, 417
induced, 416, 418
natural reactor, 421-422
reactors, 420422
spontaneous, 416
Fitch, V. L., 510
Flatness problem, 511-512
Fluorescence, 235
Fractional ionic character, 273
Frame, inertial, 27
Franck, James, 189
Franck-Hertz experiment, 189—190
Free electron theory of metals, 314—316
Free particle, wave function of, 145
Frequency
angular, 70
cutoff, 77
Friedman equation, 502
Fukushima reactor, 421
Fusion, 422428
carbon cycle, 424
proton-proton cycle, 424
reactors, 425—-428
inertial confinement, 426—427
magnetic confinement, 425—426
tokamak, 425-426
stellar, 423—-424
thermonuclear, 423

G

Galaxies, 484—486

Galilean transformation, 27

Gamma decay, 381, 383, 394-395

Gamow, George, 482

Gaussian distribution, 305

Geiger, Hans, 172, 177

Gell-Mann, Murray, 464

General theory of relativity, 486—496
cosmology and, 501-503
curved spacetime, 490—493, 499
deflection of starlight, 493—-494
delay of radar echoes, 494
experimental tests, 493496
frequency shift, 488489
Friedman equation, 502
gravitational radiation, 495—496,

498-499

precession of perihelion, 494—-495, 498
space and time in, 490—493

Gerlach, Walter, 214

Germer, Lester, 105

Global Positioning System (GPS), 58, 489

Gluon, 444

Grand unified theories (GUTs), 471-472

Gravitational interaction, 442—-444

Gravitational radiation, 495-496,
498-499

Graviton, 444

Ground state, 147

Group speed, 124

H

Half-life, 385
Hawking, Steven, 501
Heat capacity
diatomic gas, 18
hydrogen, 19
ideal gas, 17-19
molar, 17
solids, 334338
Debye theory, 336—338
Einstein theory, 335-336
Heisenberg, Werner, 114
Heisenberg uncertainty principle, 116
Heisenberg uncertainty relationships,
113-116
Helium
energy levels of, 234
formation in Big Bang, 506—509,
510-511
liquid, 310-311, 317-319
mixtures of He-*He, 317-319
Helium-neon laser, 250-252
Hertz, Gustav, 189
Hertz, Heinrich, 75
Higgs boson, 472
Holes, 351, 352
Homopolar (homonuclear) bonding, 262
Horizon problem, 511
Hoyle, Fred, 482
Hubble, Edwin, 480
Hubble parameter, 479—480
Hubble’s law, 479-482
Hulse, Russell, 499
Hund’s rules, 246
Hybrid states, 267—270
Hydrogen
atomic wave function, 204—-206
energy levels, 185, 187,217
formation in Big Bang, 506—509
heat capacity, 19
molecule, 261-262
molecule ion, 258261
radial probability density, 207—-209
radii, 184

I

Ideal gas
equation of state, 10
heat capacity, 17—-19
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Impact parameter, 171, 174—175
Impurity semiconductors, 352
Induced emission, 249
Inert gases, 238
Inertial confinement, 426—427
Inertial frame, 27
Inflation, 511-512
Insulators, 344
Interference, 72

constructive, 72

destructive, 72

double slit, 72—73
Interferometer, Michelson, 30
Internal energy of gas, 17
Intrinsic angular momentum (spin), 211,

215

Intrinsic semiconductors, 351-352
Ionic bonding, 271-275
Ionic character, fractional, 273
Ionization energy, 185, 236, 271
Isotopes, 371-372
Ives-Stilwell experiment, 59—-60

J
Josephson effect, 349-350

K

Kennedy-Thorndike experiment, 57
Kinetic energy

average, of gas molecule, 11

classical, 3

relativistic, 49—-50, 60-61
Kinetic theory, 10

L

Lambda point, 310
Lanthanides (rare earths), 240
Lasers, 248-252
diode, 356—357
helium-neon, 250-252
Laue, Max von, 73
Laue pattern, 74—75
Lawson’s criterion, 425
Length, contraction of, 34—35, 41
Leptons, 444, 446, 470—471
Lepton number, 449—-450
Light, speed of, 9
constancy principle (second
postulate), 31
Light-emitting diode (LED), 356
Line spectra, 180—182
Linear momentum
classical, 3
conservation of, classical, 3
conservation of, relativistic, 53
photon, 78
Lithium, energy levels of, 234
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Lorentz, H. A., 40

Lorentz transformation, 40—43
velocity, 42

Lorenz number, 341

Lyman series, 181, 187

M

MACHOs (Massive Compact Halo
Objects), 486
Macrostate, 291
Madelung constant, 328
Magnetic confinement, 425—-426
Magnetic dipole moment, orbital,
211-212
Magnetic field
current loop, 8
plane wave, 70
straight wire, 70
Magnetic materials, 357—-364
Magnetic moment
current loop, 9
orbital, 211-212
potential energy in magnetic field, 9
spin, 215, 219-220
torque in magnetic field, 9
Magnetic quantum number, 201, 204
Magnetic susceptibility, 237—-238, 358
paramagnetic atom, 361
Magnetization, 357358
Marsden, Ernest, 172, 177
Mass, relativistic, 51
Maxwell speed distribution, 303—304
Maxwell velocity distribution, 304—-305
Maxwell-Boltzmann distribution, 13—14,
84, 284,301-306, 360—-361
Meitner, Lise, 416
Mendeleev, Dmitri, 231
Mesons, 444, 446—-447, 464—465
quark structure, 464—465
Metallic bonds, 331-332
Metastable state, 248
Michelson, Albert A., 29-31
Michelson interferometer, 30
Michelson-Morley experiment, 2931
Microstate, 291
Microwave background radiation,
482484
Millikan, Robert A., 79
Moderator, 419
Molar heat capacity, 17
Molecular solids, 332—334
Molecular spectroscopy, 281285
Molecular structure, 258285
covalent bonding, 262—-270
hydrogen molecule, 261-262
hydrogen molecule ion, 258—261

ionic bonding, 271-275

pp covalent bonds, 264-266

rotations, 278285

sp covalent bonds, 266—270

sp hybridization, 267—-270

vibrations, 275-285
Momentum

angular, 6

linear, classical, 3

linear, conservation of classical, 3

relativistic, 46, 60—61
Moseley, Henry G. J., 243
Moseley plot, 243
Moseley’s law, 242—-244
Mossbauer effect, 397—-398
Multiplicity, 291
Muon, 1213, 35, 58-59

N

Natural radioactivity, 398—401
Neutrino, 391-393
Neutron
activation analysis, 432
delayed, 419-420
diffraction, 106
separation energy, 377—378
star, 317, 496—-497
Noether, Emmy, 449
Normalization, 142—143
n-type semiconductor, 352
Nuclear diffraction, 106
Nuclear matter, 373
Nuclear radius, 372—-373
Nuclear reactions, 408432
cross section, 411-412
fission, 416422
fusion, 422428
low-energy kinematics, 414—416
Q value, 414-416
radioisotope production in, 412—414
threshold energy, 415-416
Nuclear structure, 370382
exchange force, 378—380
excited states, 396
isotopes, 371-372
masses and binding energies, 374—377
proton and neutron separation energies,
377-378
proton-electron model, 370—371
proton-neutron model, 371
quantum states, 380—382
radii, 372-373
sizes and shapes, 372—-374
Nucleon, 371
Nucleosynthesis, 428432
r process, 430—431

s process, 430—431
Nucleus, 174
closest approach to, 178—179

(0]

Optical transitions, 234235
Orbital magnetic moment, 211-212
Orbits, penetrating, 228

P

Pair production, 93
Paramagnetism, 358—363
atoms and ions, 360—363
electron gas, 358—360
Pauli, Wolfgang, 226
Pauli exclusion principle, 226-227
Pauli paramagnetic susceptibility, 359
Pauling, Linus, 273
Penetrating orbits, 228
Penzias, Arno, 483
Perihelion precession, 494—495
Periodic table, 229-231
Phase speed, 123
Photodiodes, 356—357
Photoelectric effect, 75—79
classical theory, 7677
quantum theory, 78—79
Photoelectron, 75
Photon, 78, 94-97, 444
energy, 78
linear momentum, 78
Pion (pi meson), 11-12, 59
Planck, Max, 78, 85
Planck time, 503, 509
Planck’s constant, 78, 79, 85
p-n junction, 353-355
depletion region, 353355
forward biasing, 354—355
reverse biasing, 354—355
Polar wave function, 203
Population inversion, 250
Positron, 392
Positron emission tomography, 433
Potential difference, contact, 76
Potential difference, electrostatic, 7
Potential energy, 5, 7
barrier, 162—165
Coulomb, 7, 198
magnetic moment in magnetic field, 9
step, 159-162
well, 138
finite, 150—152
infinite, 145—-147
two-dimensional infinite, 152—155
Pound, R. V., 488
Poynting vector, 70
pp-bonded molecules, 264—-266



Precession of perihelion, 494—495, 498
Principal quantum number, 204
Principle of equivalence, 487—488
Probability density, 142
finite potential energy well, 151
hydrogen atom, 206—-207
infinite potential energy well, 148
one-dimensional atom, 199
potential energy step, 159, 161
simple harmonic oscillator, 157
two-dimensional infinite potential
energy well, 154
volume, 206
Proper length, 35
Proper time, 33
Proton separation energy, 377—378
Proton-electron model of nucleus,
370-371
Proton-neutron model of nucleus, 371
Proton-proton cycle, 424
p-subshell elements, 238—239
p-type semiconductor, 352
Pulsars, 497-499

Q

Q value
nuclear reactions, 414—416
particle decays, 458—460
particle reactions, 461—-463
radioactive decay, 386
Quantization of angular momentum, 184
Quantization of energy, 139
Quantum chromodynamics, 471
Quantum liquid, 310
Quantum mechanics, 85
Quantum number
angular momentum, 203
hydrogen atom, 204—205
magnetic, 204
principal, 204
Quarkonium, 468—470
Quarks, 464—471
mass, 468

R

r process, 430—-431

Radar echoes, delay of, 494

Radial probability density, hydrogen

atom, 207-209

Radial wave function, 203
hydrogen, 205, 206

Radii, atomic, 236

Radioactivity, 382—401
activity, 383—385
alpha decay, 382, 383, 387-390
beta decay, 382, 383, 391-394
conservation laws, 386—387

decay constant, 384—385
exponential decay law, 384—385
gamma decay, 381, 383, 394—395
half-life, 385
mean lifetime, 385
natural, 398-401
Radiocarbon dating, 401
Radiometer, 87
Rare earths (lanthanides), 240
Rayleigh-Jeans formula, 84
Rebka, G. A., 488
Recoil energy, gamma emission, 395
Red shift, cosmological, 478—479
Reduced mass, 191, 276
Relativity, general theory of: See general
theory of relativity
Relativity, special theory of: See special
theory of relativity
Resistivity, electrical, 236-237, 341
Resonance, nuclear, 396—-398
Resonance particles, 456—458
Rho meson, 457-458
Ritz combination principle, 182, 186—187
Rohrer, Heinrich, 165
Rotational selection rule, 279, 282
Rotations
molecular, 279-281
nuclear, 396-397
Rubin, Vera, 486
Rutherford, Ernest, 172
Rutherford backscattering, 434—435
Rutherford scattering, 175-179
deviations, 374
Rydberg constant, 186

S

s process, 430431
Salam, Abdus, 471
Scanning tunneling microscope, 165
Scattering, Rutherford, 175-179
Scattering, Thomson model, 171-174
Scattering angle, 88
Schrieffer, J. Robert, 348
Schrodinger, Erwin, 140
Schrddinger equation, 140—141
one-dimensional atom, 198
spherical polar coordinates, 203
time dependence, 141
time independent, 141
Schwarzschild radius, 499—-500
Segre, Emilio, 56
Selection rule
atomic transitions, 217
rotational, 279, 282
vibrational, 276, 282
Semiconductors, 344, 350357
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acceptor states, 352
donor states, 352
impurity, 352
intrinsic, 351-352
n-type, 352
photodiodes, 356—357
p-n junction, 353—-355
p-type, 352
tunnel diode, 356
Series limit, 181182
Simple harmonic oscillator, 155—158
Simultaneity, 42—-43
Sodium, energy levels of, 234
Solid-state physics, 326—364
band theory, 342—-346
covalent solids, 330-331
electrical conduction, 339-341
electrons in metals, 338341
heat capacity, 334—338
ionic solids, 327-330
cohesive energy, 329
magnetic materials, 357-364
metallic bonds, 331-332
molecular solids, 332-334
semiconductors, 350—-357
superconductors, 346—350
sp hybrid states, 267-270
Spacetime
curved, 490—-493
diagram, 46
interval, 490—-491, 499
Spatial quantization, 202, 214-215
sp-bonded molecules, 266—267
Special theory of relativity, 26—62
clock synchronization, 43
Doppler effect, 38—40
Einstein’s postulates, 31
experimental tests of, 56—62
length, 33-36, 41
principle of (first postulate), 31
simultaneity, 43
time, 32—33
twin paradox, 44—47
velocity addition, 37—38
Spectra
absorption, 181
emission, 180
line, 180—182
Spectroscopic notation, 216—217
Spectroscopy, molecular, 281-285
Spectrum, electromagnetic, 9
Speed of light, 9
constancy principle (second
postulate), 31
universality, 57-58
Speed, group, 124
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Speed, phase, 123
Spherical polar coordinates, 203
Spin magnetic moment, 215, 219-220
Spin, 211, 215
Spontaneous emission, 249
SQUID, 350
s-subshell elements, 239
Standard model, 470—473
Starlight, deflection of, 493494
Stationary states, 142, 184
Statistical physics, 290—-319
Bose-Einstein condensation, 311-314
Bose-Einstein distribution, 306, 307,
309-314
classical, 292-294
Fermi-Dirac distribution, 306—308,
314-319
free electron theory of metals, 314—316
3He-*He mixtures, 317-319
liquid helium, 310-311, 317-319
Maxwell speed distribution, 303—304
Maxwell velocity distribution,
304-305
Maxwell-Boltzmann distribution,
301-306
quantum, 294-295, 306-319
thermal radiation, 309—-310
white dwarf stars, 316317
Stefan’s law, 81
Stefan-Boltzmann constant, 81, 86
Stellar evolution, 496501
Stern, Otto, 214
Stern-Gerlach experiment, 211-215
Stimulated emission, 249
Stopping potential, 76
Strangeness, 451-452
String theory, 473
Strong interaction, 442—444
Subshell, 228
Superconductivity, 346—350
BCS theory, 348
critical temperature, 346
Josephson effect, 349—-350
Superfluid, 310
Superheavy elements, 435-436
Supernovas, 497
Susceptibility, magnetic, 237-238, 358
Synchronization of clocks, 43

T

Taylor, Joseph, 499

Tevatron, 453, 455

Thermal conductivity, 341

Thermal radiation, 80—87, 309-310
classical theory of, 83—85
quantum theory of, 85—-87

Thermonuclear fusion, 423
Thomson, G. P., 105
Thomson, J. J., 171
Thomson model, 171-174
Threshold energy
nuclear reactions, 415
particle reactions, 461463
Time, proper, 33
Time, relativity of, 32—33
Time dilation, 32—33, 35
experimental test, 58—59
in particle decays, 454
Tokamak, 425-426
Top quark, 467—468
Total energy, relativistic, 5051
Total internal reflection, frustrated, 163
Transformation
Galilean, 27
Lorentz, 40—43
Transition metals, 239240
Tunnel diode, 164, 356
Tunneling, 162
Twin paradox, 44—47
experimental test, 62

U

Ultraviolet catastrophe, 85
Uncertainty principle, 140, 161-162
Heisenberg, 116
violation of in Bohr model, 192
Uncertainty relationship
angular momentum, 202—-203
classical waves, 110—-113
energy-time, 115
frequency-time, 112—113
Heisenberg, 113—115
position-momentum, 114
position-wavelength, 110—112
Universal gas constant, 10

v

Valence band, 344
Van de Graaff accelerator, 409
Van der Waals force, 333
Velocity, drift, 339
Velocity addition, 6

relativistic, 37—38
Velocity transformation, relativistic, 42
Vibrational selection rule, 276, 282
Vibrations

molecular, 275-278

nuclear, 396

W

Wave function, 140
azimuthal, 203

constant potential energy, 144
free particle, 145
hydrogen atom, 204—206
infinite potential energy well, 148
one-dimensional atom, 198—199
polar, 203
potential energy step, 159—-161
radial, 203
hydrogen, 205, 206
simple harmonic oscillator, 156
two-dimensional infinite potential
energy well, 152—153
Wave
boundary conditions, 136
continuity at boundary, 136
evanescent, 135, 163
penetration at boundary,
135, 161-162
Wave mechanics, 85
Wave number, 70
Wave packets, 119-123
motion, 123-126
spread, 125—-126
Wavelength, cutoff, 79
Wavelength, de Broglie, 103
Wave-particle duality, 95-97
Weak boson, 444
Weak interaction, 442—444
Weinberg, Stephen, 471
White dwarf stars, 316—317
Wiedemann-Franz law, 341
Wieman, Carl, 313
Wien’s displacement law, 81
Wilson, Robert, 483
WIMPs (Weakly Interacting Massive
Particles), 486
WMAP satellite, 483, 512
Work function, 76
Worldline, 46

X

X rays, diffraction of, 73—75
X-ray transitions, 242

Y

Yalow, Rosalyn, 434
Young’s double slit
experiment, 72—73

Z

Zeeman, Peter, 219

Zeeman effect, 217-219, 398
Zero-point energy, 275
Zweig, George, 464
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SOME MILESTONES IN THE HISTORY OF MODERN PHYSIGS

1887
1896
1900
1905
1905
1911
1911
1913
1913
1914
1914
1915
1916
1919
1919

1921

1923
1924
1925
1925
1926
1926
1927
1927

1928
1929
1931
1931

Albert A. Michelson and Edward W. Morley fail to detect ether.

Henri Becquerel discovers radioactivity.

Max Planck introduces quantum theory to explain thermal radiation.

Albert Einstein proposes the special theory of relativity.

Albert Einstein introduces the concept of the photon to explain the photoelectric effect.

Heike Kamerlingh-Onnes discovers superconductivity.

Ernest Rutherford proposes the nuclear atom, based on experiments of Hans Geiger and Ernest Marsden.
Niels Bohr introduces theory of atomic structure.

William H. Bragg and William L. Bragg (father and son) study X-ray diffraction from crystals.
James Franck and Gustav Hertz show evidence for quantized energy states of atoms.

Henry G. J. Moseley shows relationship between X-ray frequency and atomic number.

Albert Einstein proposes the general theory of relativity.

Robert A. Millikan measures photoelectric effect to confirm Einstein’s photon theory.

Ernest Rutherford produces first nuclear reaction that transmutes one element into another.

Sir Arthur Eddington and other British astronomers measure gravitational deflection of starlight and confirm
predictions of Einstein’s general theory of relativity.

Otto Stern and Walter Gerlach demonstrate spatial quantization and show necessity to introduce intrinsic
magnetic moment of electron.

Arthur H. Compton demonstrates change in X-ray wavelength following scattering from electrons.
Louis de Broglie postulates wave behavior of particles.

Wolfgang Pauli proposes the exclusion principle.

Samuel Goudsmit and George Uhlenbeck introduce the concept of intrinsic angular momentum (spin).
Erwin Schrodinger introduces wave mechanics (quantum mechanics).

Max Born establishes statistical, probabilistic interpretation of Schrodinger’s wave functions.

Werner Heisenberg develops principle of uncertainty.

Clinton Davisson and Lester Germer demonstrate wave behavior of electrons; G. P. Thomson independently
does the same.

Paul A. M. Dirac proposes a relativistic quantum theory.
Edwin Hubble reports evidence for the expansion of the universe.
Carl Anderson discovers the positron (antielectron).

Wolfgang Pauli suggests existence of neutral particle (neutrino) emitted in beta decay.



1932
1932
1932
1934
1935
1938
1938
1940
1942
1945
1946
1948
1952
1956
1958
1960
1964
1964
1965
1967
1967

1974

1974
1977
1981
1983
1986
1994
1995
1998
2003

James Chadwick discovers the neutron.

John Cockeroft and Ernest Walton produce the first nuclear reaction using a high-voltage accelerator.
Ernest Lawrence produces first cyclotron for studying nuclear reactions.

Iréne and Frédéric Joliot-Curie discover artificially induced radioactivity.

Hideki Yukawa proposes existence of medium-mass particles (mesons).

Otto Hahn, Fritz Strassmann, Lise Meitner, and Otto Frisch discover nuclear fission.

Hans Bethe proposes thermonuclear fusion reactions as the source of energy in stars.

Edwin McMillan, Glenn Seaborg, and colleagues produce first synthetic transuranic elements.
Enrico Fermi and colleagues build first nuclear fission reactor.

Detonation of first fission bomb in New Mexico desert.

George Gamow proposes big-bang cosmology.

John Bardeen, Walter Brattain, and William Shockley demonstrate first transistor.

Detonation of first thermonuclear fusion bomb at Eniwetok atoll.

Frederick Reines and Clyde Cowan demonstrate experimental evidence for existence of neutrino.
Rudolf L. Mdssbauer demonstrates recoilless emission of gamma rays.

Theodore Maiman constructs first ruby laser; Ali Javan constructs first helium-neon laser.

Allan R. Sandage discovers first quasar.

Murray Gell-Mann and George Zweig independently introduce three-quark model of elementary particles.
Arno Penzias and Robert Wilson discover cosmic microwave background radiation.

Jocelyn Bell and Anthony Hewish discover first pulsar.

Steven Weinberg and Abdus Salam independently propose a unified theory linking the weak and
electromagnetic interactions.

Burton Richter and Samuel Ting and co-workers independently discover first evidence of fourth quark
(charm).

Joseph Taylor and Russell Hulse discover first binary pulsar.

Leon Lederman and colleagues discover new particle showing evidence for fifth quark (bottom).
Gerd Binnig and Heinrich Rohrer invent scanning-tunneling electron microscope.

Carlo Rubbia and co-workers at CERN discover W and Z particles.

J. Georg Bednorz and Karl Alex Miiller produce first high-temperature superconductors.
Investigators at Fermilab discover evidence for sixth quark (top).

Eric Cornell and Carl Wieman produce first Bose-Einstein condensation.

Discovery of neutrino oscillations shows that neutrinos have small but nonzero mass.

WMAP satellite data reveal age and composition of universe.



Units

Quantity Quantity
Unit Abbreviation Measured Unit Abbreviation Measured
gram g mass coulomb C electric charge
meter m length ampere A electric current
second s time volt v electric potential
newton N force ohm Q electric resistance
joule J energy tesla T magnetic field
watt W power atomic mass unit u mass
electron-volt eV energy curie Ci activity
hertz Hz frequency barn b cross section
kelvin K temperature
Prefixes of Units

Prefix Abbreviation Value Prefix Abbreviation Value

atto a 1018 centi c 1072

femto f 1071 kilo K 103

pico p 1012 mega M 108

nano n 107° giga G 10°

micro m 10~ tera T 1012

milli m 1073 peta P 1013

Some GCommonly Used
Constants and Conversion Factors
(see Appendix A for a more complete list)
Speed of light c=2.998 x 105m/s

Electronic charge
Boltzmann constant
Planck’s constant
Avogadro’s constant
Electron mass

Proton mass

Neutron mass

Bohr radius

Hydrogen ionization energy
Thermal energy

he = 1240 eV-nm (MeV- fm)
2

& —1.440¢V-nm (MeV - fm)
4re

e=1.602x 1071 C

k=1381x10"3J/K =8.617 x 107 eV/K
h=6.626x10"*].5s =4.136 x 10" eV-s
N, = 6.022 x 10% mole ~!

m, = 5.49 x 107%u = 0.511 MeV/c?

m, = 1.007276 u = 938.3 MeV /c?

m, = 1.008665u = 939.6 MeV/c?

ay = 0.0529 nm
13.6eV
kT =0.02525eV = 5 eV (T = 293K)

hc = 197e¢V-nm (MeV - fm)
lu=931.5MeV/c?
leV =1.602x1071J
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