Otto, Brayton and Rankine Cycles

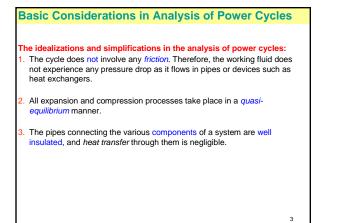
Selected from Chapter 9 and 10

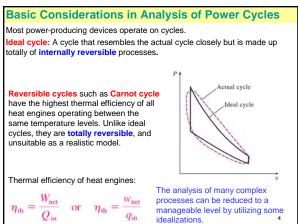
The content and the pictures are from the text book: Çengel, Y. A. and Boles, M. A., "Thermodynamics: An Engineering Approach," McGraw-Hill, New York, 6th Ed., 2008

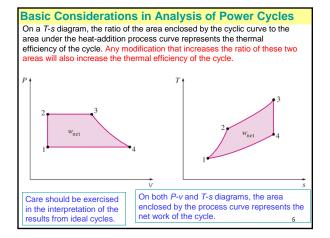
Objective

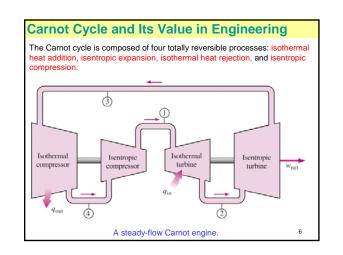
- · Basic considerations in the analysis of power cycles
- · The Carnot cycle and its value in engineering
- Air-standard assumptions
- Otto cycle: The ideal cycle for spark-ignition engines
- Brayton cycle: The ideal cycle for gas-turbine engines
- Rankine cycle: The ideal cycle for vapor power cycles

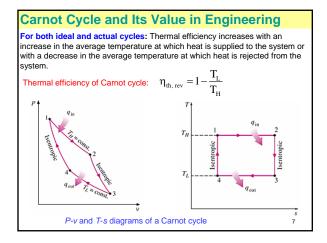
2

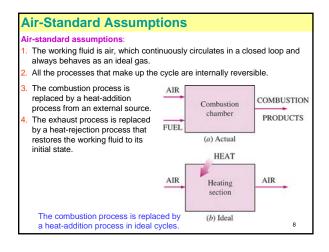


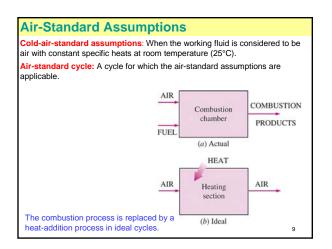


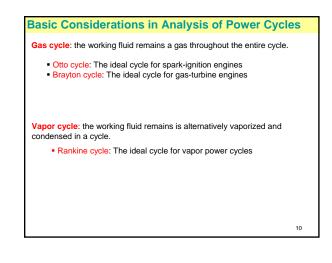


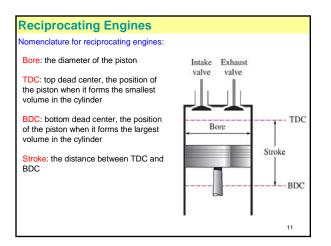


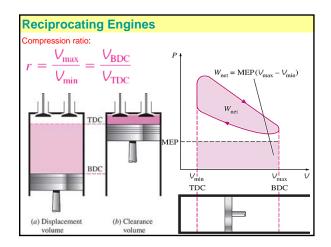


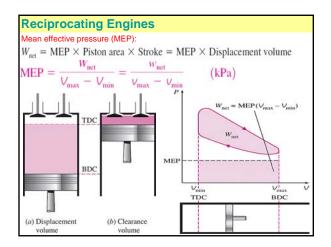


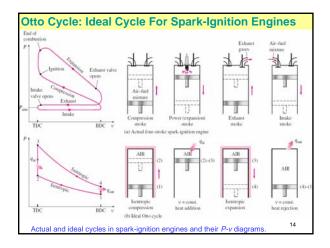


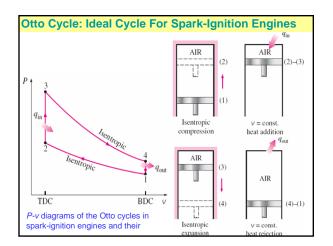


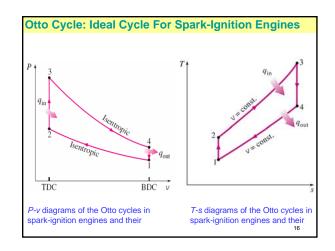


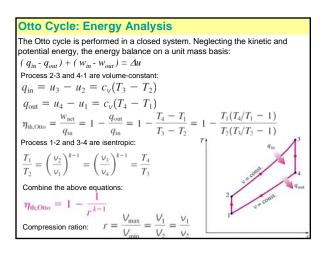


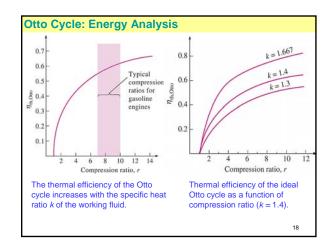


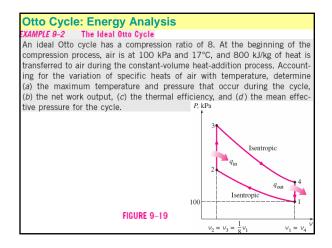


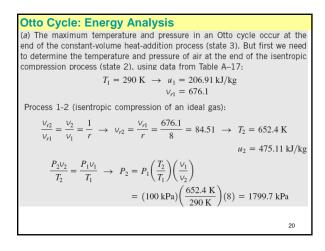








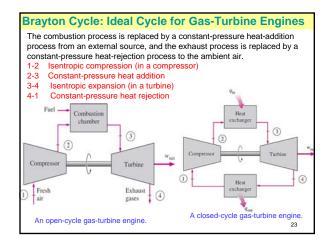


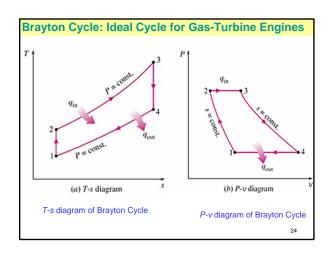


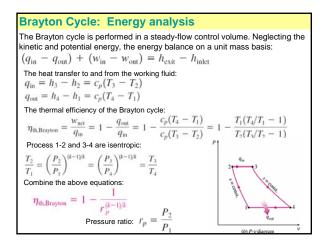
Otto Cycle: Energy Analysis
Process 2-3 (constant-volume heat addition):
$q_{in} = u_3 - u_2$
$800 \text{ kJ/kg} = u_3 - 475.11 \text{ kJ/kg}$
$3000 \text{ kJ/kg} = u_3 + 75.11 \text{ kJ/kg}$
$u_3 = 1275.11 \text{ kJ/kg} \rightarrow T_3 = 1575.1 \text{ K}$
$V_{r3} = 6.108$
$\frac{P_3 v_3}{T_3} = \frac{P_2 v_2}{T_2} \rightarrow P_3 = P_2 \left(\frac{T_3}{T_2}\right) \left(\frac{v_2}{v_3}\right)$
$= (1.7997 \text{ MPa}) \left(\frac{1575.1 \text{ K}}{652.4 \text{ K}}\right) (1) = 4.345 \text{ MPa}$
(b) The net work output for the cycle is determined either by finding the
boundary (P dV) work involved in each process by integration and adding
them or by finding the net heat transfer that is equivalent to the net work
done during the cycle. We take the latter approach. However, first we need

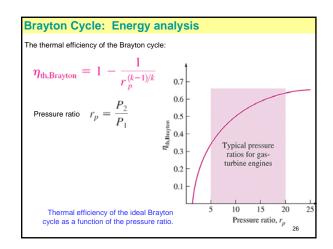
21

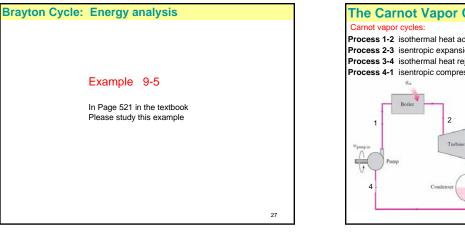
to find the internal energy of the air at state 4: Process 3-4 (isentropic expansion of an ideal gas): **Otto Cycle: Energy Analysis** Process 3-4 (isentropic expansion of an ideal gas): $\frac{V_{r4}}{V_{r3}} = \frac{V_4}{v_3} = r \rightarrow v_{r4} = rv_{r3} = (8)(6.108) = 48.864 \rightarrow T_4 = 795.6 \text{ K}$ Process 4-1 (constant-volume heat rejection): $-q_{out} = u_1 - u_4 \rightarrow q_{out} = u_4 - u_1$ $q_{out} = 588.74 - 206.91 = 381.83 \text{ kJ/kg}$ Thus, $w_{net} = q_{net} = q_{in} - q_{out} = 800 - 381.83 = 418.17 \text{ kJ/kg}$ (c) The thermal efficiency of the cycle is determined from its definition: $\eta_{th} = \frac{w_{net}}{q_{in}} = \frac{418.17 \text{ kJ/kg}}{800 \text{ kJ/kg}} = 0.523 \text{ or } 52.3\%$ Under the cold-air-standard assumptions (constant specific heat values at room temperature), the thermal efficiency would be (Eq. 9-8) $\eta_{th,Otto} = 1 - \frac{1}{r_{k-1}^{k-1}} = 1 - r^{1-k} = 1 - (8)^{1-1.4} = 0.565 \text{ or } 56.5\%$ which is considerably different from the value obtained above. Therefore care should be exercised in utilizing the cold-air-standard assumptions.

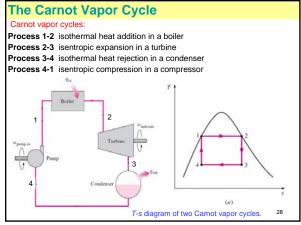


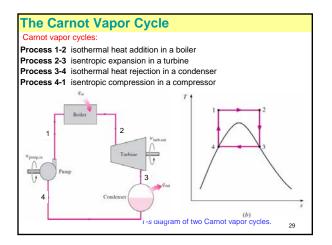












The Carnot Vapor Cycle

The Carnot cycle is the most efficient cycle operating between two specified temperature limits but it is not a suitable model for power cycles. Because: Process 1-2 Limiting the heat transfer processes to two-phase systems severely limits the maximum temperature that can be used in the cycle (374°C

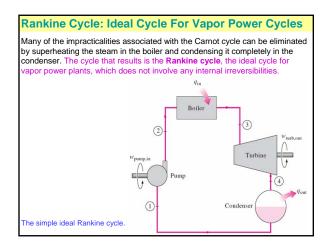
for water) Process 2-3 The turbine cannot handle steam with a high moisture content

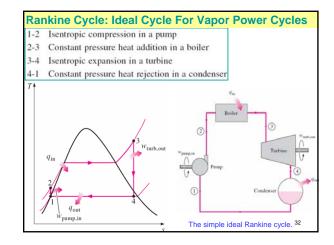
because of the impirement of liquid droplets on the turbine blades causing erosion and wear.

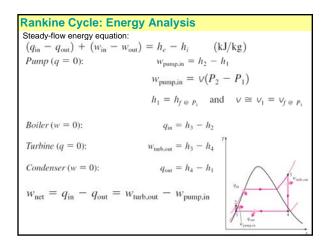
Process 4-1 It is not practical to design a compressor that handles two phases.

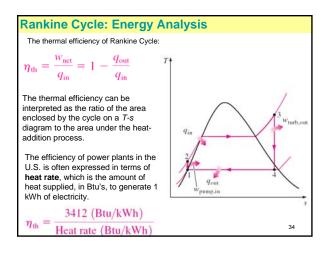
The cycle in (b) is not suitable since it requires isentropic compression to extremely high pressures and isothermal heat transfer at variable pressures.

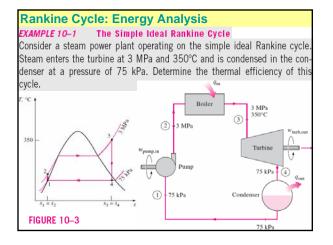
30











Rankine Cycle: Energy Analysis	
Solution:	
First we determine the enthalpies at various points in the cycle, usi from steam tables (Tables A-4, A-5, and A-6):	ng data
State 1: $P_1 = 75 \text{ kPa}$ $h_1 = h_{f \oplus 75 \text{ kPa}} = 384.44 \text{ kJ/kg}$ Sat. liquid $v_1 = v_{f \oplus 75 \text{ kPa}} = 0.001037 \text{ m}^3/\text{kg}$	
State 2: $P_2 = 3$ MPa $s_2 = s_1$	
$w_{\text{pumpin}} = v_1(P_2 - P_1) = (0.001037 \text{ m}^3/\text{kg})[(3000 - 75) \text{ kPa}] \left(\frac{1}{1 \text{ kP}}\right)$	$\left(\frac{kJ}{a \cdot m^3}\right)$
= 3.03 kJ/kg	
$h_2 = h_1 + w_{\text{pump,in}} = (384.44 + 3.03) \text{ kJ/kg} = 387.47 \text{ kJ/kg}$	
State 3: $P_3 = 3 \text{ MPa}$ $h_3 = 3116.1 \text{ kJ/kg}$ $T_3 = 350^{\circ}\text{C}$ $s_3 = 6.7450 \text{ kJ/kg} \cdot \text{K}$	
	36

Rank	ine Cycle: Energy Analysis
State 4:	$P_4 = 75 \text{ kPa} (\text{sat. mixture})$
	$s_4 = s_3$
	$x_4 = \frac{s_4 - s_f}{s_{fg}} = \frac{6.7450 - 1.2132}{6.2426} = 0.8861$
	$h_4 = h_f + x_4 h_{fg} = 384.44 + 0.8861(2278.0) = 2403.0 \text{ kJ/kg}$
Thus,	
	$q_{\rm in} = h_3 - h_2 = (3116.1 - 387.47) \text{kJ/kg} = 2728.6 \text{kJ/kg}$
	$q_{\text{out}} = h_4 - h_1 = (2403.0 - 384.44) \text{ kJ/kg} = 2018.6 \text{ kJ/kg}$
and	
	$\eta_{\text{th}} = 1 - \frac{q_{\text{out}}}{q_{\text{in}}} = 1 - \frac{2018.6 \text{ kJ/kg}}{2728.6 \text{ kJ/kg}} = 0.260 \text{ or } 26.0\%$
	37

Rankine Cycle: Energy Analysis	
The thermal efficiency could also be determined from	
$w_{\text{turb,out}} = h_3 - h_4 = (3116.1 - 2403.0) \text{ kJ/kg} = 713.1 \text{ kJ/kg}$	
$w_{\text{net}} = w_{\text{turb,out}} - w_{\text{pump,in}} = (713.1 - 3.03) \text{ kJ/kg} = 710.1 \text{ kJ}$	/kg
or	
$w_{\text{net}} = q_{\text{in}} - q_{\text{out}} = (2728.6 - 2018.6) \text{ kJ/kg} = 710.0 \text{ kJ/kg}$	
and	
$\eta_{\text{th}} = \frac{w_{\text{net}}}{q_{\text{in}}} = \frac{710.0 \text{ kJ/kg}}{2728.6 \text{ kJ/kg}} = 0.260 \text{ or } 26.0\%$	
38	