
618 

 

 

Chapter 13 
 

1. The gravitational force between the two parts is 

 

 
 2

2 2
= =

Gm M m G
F mM m

r r


  

 

which we differentiate with respect to m and set equal to zero: 

 

 2
= 0 = 2 = 2

dF G
M m M m

dm r
  . 

 

This leads to the result m/M = 1/2. 

 

2. The gravitational force between you and the moon at its initial position (directly 

opposite of Earth from you) is 

0 2( )

m

ME E

GM m
F

R R



 

 

where mM  is the mass of the moon, MER  is the distance between the moon and the Earth, 

and ER  is the radius of the Earth. At its final position (directly above you), the 

gravitational force between you and the moon is 

 

1 2( )

m

ME E

GM m
F

R R



. 

 

(a) The ratio of the moon’s gravitational pulls at the two different positions is 

 
2 2

2 8 6

1

2 8 6

0

/( ) 3.82 10  m 6.37 10  m
1.06898.

/( ) 3.82 10  m 6.37 10  m

m ME E ME E

m ME E ME E

GM m R RF R R

F GM m R R R R

       
      

      
 

 

Therefore, the increase is 0.06898, or approximately 6.9%. 

 

(b) The change of the gravitational pull may be approximated as 

 

1 0 2 2 2 2

3

1 2 1 2
( ) ( )

4
.

m m m mE E

ME E ME E ME ME ME ME

m E

ME

GM m GM m GM m GM mR R
F F

R R R R R R R R

GM mR

R

   
         

     


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On the other hand, your weight, as measured on a scale on Earth, is  
 

2

E
g E

E

GM m
F mg

R
  . 

 

Since the moon pulls you “up,” the percentage decrease of weight is  

 
3 3

22 6
7 51 0

24 8

7.36 10 kg 6.37 10  m
4 4 2.27 10 (2.3 10 )%.

5.98 10 kg 3.82 10  m

m E

g E ME

F F M R

F M R

        
          

     
 

 

3. THINK The magnitude of gravitational force between two objects depends on their 

distance of separation. 

 

EXPRESS The magnitude of the gravitational force of one particle on the other is given 

by F = Gm1m2/r
2
, where m1 and m2 are the masses, r is their separation, and G is the 

universal gravitational constant.  

 

ANALYZE Solve for r using the values given, we obtain 

 

   11 2 2

1 2

12

6.67 10 N m / kg 5.2kg 2.4kg
19m

2.3 10 N

Gm m
r

F





 
  


. 

 

LEARN The force of gravitation is inversely proportional to 2r .  

 

4. We use subscripts s, e, and m for the Sun, Earth and Moon, respectively. Plugging in 

the numerical values (say, from Appendix C) we find 

 
2 2

2 30 8

2 24 11

/ 1.99 10 kg 3.82 10  m
2.16.

/ 5.98 10 kg 1.50 10  m

sm s m sm s em

em e m em e sm

F Gm m r m r

F Gm m r m r

    
      

   
 

 

5. The gravitational force from Earth on you (with mass m) is  

 

 
2

E
g

E

GM m
F mg

R
   

 

where 2 2/ 9.8 m/s .E Eg GM R   If r is the distance between you and a tiny black hole of 

mass 111 10 kgbM    that has the same gravitational pull on you as the Earth, then 

 

2
.b

g

GM m
F mg

r
   

 

Combining the two equations, we obtain  
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11 3 2 11

2 2 2

(6.67 10  m /kg s )(1 10 kg)
0.8 m.

9.8 m/s

b bE

E

GM m GMGM m
mg r

R r g

  
       

 

6. The gravitational forces on m5 from the two 5.00 g masses m1 and m4 cancel each 

other. Contributions to the net force on m5 come from the remaining two masses: 

 

   

 

11 2 2 3 3 3

net 2
1

14

6.67 10  N m /kg 2.50 10  kg 3.00 10  kg 1.00 10  kg

2 10  m

1.67 10  N.

F

   





     




 

 

 

The force is directed along the diagonal between m2 and m3, toward m2. In unit-vector 

notation, we have 

 

 14 14

net net
ˆ ˆ ˆ ˆ(cos45 i sin 45 j) (1.18 10 N)i  (1.18 10 N) jF F          . 

 

7. We require the magnitude of force (given by Eq. 13-1) exerted by particle C on A be 

equal to that exerted by B on A.  Thus, 

 
GmA mC

r
2   = 

GmA mB

d
2   . 

 

We substitute in mB = 3mA   and mB = 3mA, and (after canceling “mA”) solve for r. We 

find r = 5d.  Thus, particle C is placed on the x axis, to the left of particle A (so it is at a 

negative value of x), at x = –5.00d.  

 

8. Using F = GmM/r
2
, we find that the topmost mass pulls upward on the one at the 

origin with 1.9  10
8

 N, and the rightmost mass pulls rightward on the one at the origin 

with 1.0  10
8

 N. Thus, the (x, y) components of the net force, which can be converted to 

polar components (here we use magnitude-angle notation), are 

 

   8 8 8

net 1.04 10 ,1.85 10 2.13 10 60.6 .F           

 

(a) The magnitude of the force is 2.13  10
8

 N. 

 

(b) The direction of the force relative to the +x axis is 60.6 . 

 

9. THINK Both the Sun and the Earth exert a gravitational pull on the space probe. The 

net force can be calculated by using superposition principle.   

 

EXPRESS At the point where the two forces balance, we have 2 2

1 2/ /E SGM m r GM m r , 

where ME is the mass of Earth, MS is the mass of the Sun, m is the mass of the space 
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probe, r1 is the distance from the center of Earth to the probe, and r2 is the distance from 

the center of the Sun to the probe. We substitute r2 = d  r1, where d is the distance from 

the center of Earth to the center of the Sun, to find 

 
22

1 1

.SE
MM

r d r



 

 

ANALYZE Using the values for ME, MS, and d given in Appendix C, we take the 

positive square root of both sides to solve for r1. A little algebra yields 

 
11

8

1
30 24

1.50 10  m
2.60 10  m.

1 / 1 (1.99 10  kg)/(5.98 10  kg)S E

d
r

M M


   

   
 

 

LEARN The fact that 1r d indicates that the probe is much closer to the Earth than the 

Sun.  
 

10. Using Eq. 13-1, we find 

      FAB 
    

 = 
2GmA

2

d
2   j

^
 ,   FAC 

    

=  – 
4GmA

2

3d
2   i

^
  . 

 

Since the vector sum of all three forces must be zero, we find the third force (using 

magnitude-angle notation) is  

       FAD 
    

 = 
GmA

2

d
2  (2.404      –56.3º) . 

 

This tells us immediately the direction of the vector  r  


  (pointing from the origin to 

particle D), but to find its magnitude we must solve (with mD = 4mA) the following 

equation:  

2.404






GmA

2

d
2   = 

GmAmD

r
2    . 

 

This yields r = 1.29d.  In magnitude-angle notation, then,  r  


  = (1.29     –56.3º) , with 

SI units understood. The “exact” answer without regard to significant figure 

considerations is 

 
6 6

2 , 3 .
13 13 13 13

r
 

   
 

 

 

(a) In (x, y) notation, the x coordinate is x = 0.716d. 

 

(b) Similarly, the y coordinate is y = 1.07d.   

 

11. (a) The distance between any of the spheres at the corners and the sphere at the center 

is  

/ 2cos30 / 3r     
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where  is the length of one side of the equilateral triangle. The net (downward) 

contribution caused by the two bottom-most spheres (each of mass m) to the total force 

on m4 has magnitude 

4 4

2 2
2 = 2 sin30 = 3 .y

Gm m Gm m
F

r

 
 

 
 

 

This must equal the magnitude of the pull from M, so 

 

4 4

2 2
3

( / 3)

Gm m Gm m
  

which readily yields m = M. 

 

(b) Since m4 cancels in that last step, then the amount of mass in the center sphere is not 

relevant to the problem. The net force is still zero. 

 

12. (a) We are told the value of the force when particle C is removed (that is, as its 

position x goes to infinity), which is a situation in which any force caused by C vanishes 

(because Eq. 13-1 has r
2
 in the denominator).  Thus, this situation only involves the force 

exerted by A on B: 

 
net, 2

A B
x AB

AB

Gm m
F F

r
   4.17  10

10 
 N . 

 

Since mB = 1.0 kg and 0.20 mABr  , then this yields  

 
2 2 10

11 3 2

(0.20 m) (4.17 10 N)
0.25 kg

(6.67 10  m /kg s )(1.0 kg)

AB AB
A

B

r F
m

Gm






  

 
. 

 

(b) We note (from the graph) that the net force on B is zero when x = 0.40 m.  Thus, at 

that point, the force exerted by C must have the same magnitude (but opposite direction) 

as the force exerted by A (which is the one discussed in part (a)).  Therefore 

        

 
2(0.40 m)

C BGm m
 = 4.17  10

10 
 N      mC = 1.00 kg. 

 

13. If the lead sphere were not hollowed the magnitude of the force it exerts on m would 

be F1 = GMm/d
2
. Part of this force is due to material that is removed. We calculate the 

force exerted on m by a sphere that just fills the cavity, at the position of the cavity, and 

subtract it from the force of the solid sphere. 

 

The cavity has a radius r = R/2. The material that fills it has the same density (mass to 

volume ratio) as the solid sphere, that is, Mc/r
3
= M/R

3
, where Mc is the mass that fills the 

cavity. The common factor 4/3 has been canceled. Thus, 
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3 3

3 3
= = = .

8 8
c

r R M
M M M

R R

   
   
   

 

 

The center of the cavity is d  r = d  R/2 from m, so the force it exerts on m is 

 

 

 
2 2

/8
= .

/2

G M m
F

d R
 

The force of the hollowed sphere on m is 

 

   
1 2 2 22 2

11 3 2

2 2 2 2 2

9

1 1 1
= = = 1

8 /2 8 1 /2

(6.67 10  m /s kg)(2.95 kg)(0.431 kg) 1
1

(9.00 10 m) 8[1 (4 10 m) /(2 9 10 m)]

8.31 10 N.

GMm
F F F GMm

d dd R R d



  



   
     

       

  
  

     

 

 

 

14. All the forces are being evaluated at the origin (since particle A is there), and all 

forces (except the net force) are along the location vectors ,r  which  point to particles B 

and C.  We note that the angle for the location-vector pointing to particle B is 180º – 

30.0º = 150º (measured counterclockwise from the +x axis).  The component along, say, 

the x axis of one of the force vectors F  


  is simply Fx/r in this situation (where F is the 

magnitude of F  


 ).  Since the force itself (see Eq. 13-1) is inversely proportional to r
2
, 

then the aforementioned x component would have the form GmMx/r
3
; similarly for the 

other components. With mA = 0.0060 kg, mB = 0.0120 kg, and mC = 0.0080 kg, we 

therefore have 

Fnet x = 
3 3

A C CA B B

B C

Gm m xGm m x

r r
   = (2.77  10

14 
N)cos(163.8º) 

and  

Fnet y = 
3 3

A C CA B B

B C

Gm m yGm m y

r r
  = (2.77  10

14 
N)sin(163.8º) 

 

where rB = dAB = 0.50 m, and (xB, yB) = (rBcos(150º), rBsin(150º)) (with SI units 

understood).  A fairly quick way to solve for rC is to consider the vector difference 

between the net force and the force exerted by A, and then employ the Pythagorean 

theorem.  This yields rC = 0.40 m. 

 

(a) By solving the above equations, the x coordinate of particle C is  xC = 0.20 m. 

 

(b) Similarly, the y coordinate of particle C is  yC = 0.35 m. 
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15. All the forces are being evaluated at the origin (since particle A is there), and all 

forces are along the location vectors ,r  which point to particles B, C, and D. In three 

dimensions, the Pythagorean theorem becomes r = x
2
 + y

2
 + z

2 
 .   The component along, 

say, the x axis of one of the force-vectors F  


  is simply Fx/r in this situation (where F is 

the magnitude of F  


 ).  Since the force itself (see Eq. 13-1) is inversely proportional to r
2
 

then the aforementioned x component would have the form GmMx/r
3
; similarly for the 

other components.  For example, the z component of the force exerted on particle A by 

particle B is 

GmA mB zB

rB
3  = 

GmA(2mA)(2d)

((2d)
2
 + d

2
 + (2d)

2
)
3  = 

2

2

4

27

AGm

d
. 

 

In this way, each component can be written as some multiple of GmA
2
/d

2
.  For the z 

component of the force exerted on particle A by particle C, that multiple is –9 14 /196. 

For the x components of the forces exerted on particle A by particles B and C, those 

multiples are 4/27 and  –3 14 /196, respectively.  And for the y components of the forces 

exerted on particle A by particles B and C, those multiples are 2/27 and 3 14 /98, 

respectively.  To find the distance r to particle D one method is to solve (using the fact 

that the vector add to zero) 
 

2 2 2 2 22 2 2

2 2 2

4 3 14 2 3 14 4 9 14
0.4439

27 196 27 98 27 196

A D A AGm m Gm Gm

r d d

           
                                   

 

With mD = 4mA, we obtain 

 

2 1/ 4

2 2 2

4 0.4439 16
4.357

( ) 0.4439
r d d

r d

   
      

   
. 

 

The individual values of x, y, and z (locating the particle D) can then be found by 

considering each component of the GmAmD/r
2
 force separately.  

 

(a) The x component of r would be  
2

2 2

3 2 2

4 3 14
0.0909

27 196

A D A AGm m x Gm Gm

r d d

 
      

 

, 

 

which yields 
3 3

2 2

(4.357 )
0.0909 0.0909 1.88

(4 )

A A

D A

m r m d
x d

m d m d
      .  

(b) Similarly, y = 3.90d, 

 

(c) and z = 0.489d. 

 

In this way we are able to deduce that (x, y, z) = (1.88d, 3.90d, 0.489d). 
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16. Since the rod is an extended object, we cannot apply Equation 13-1 directly to find 

the force. Instead, we consider a small differential element of the rod, of mass dm  of 

thickness dr  at a distance r from 1m . The gravitational force between dm  and 1m is 

 

1 1

2 2

( / )Gm dm Gm M L dr
dF

r r
  , 

 

where we have substituted ( / )dm M L dr  

since mass is uniformly distributed. The 

direction of dF  is to the right (see figure). The 

total force can be found by integrating over the 

entire length of the rod: 

 

1 1 1

2

1 1

( )

L d

d

Gm M Gm M Gm Mdr
F dF

L r L L d d d L d

  
      

  
  . 

 

Substituting the values given in the problem statement, we obtain 

 
11 3 2

101 (6.67 10  m /kg s )(0.67 kg)(5.0 kg)
3.0 10 N.

( ) (0.23 m)(3.0 m 0.23 m)

Gm M
F

d L d


 

   
 

 

 

17. (a) The gravitational acceleration at the surface of the Moon is gmoon = 1.67 m/s
2
 (see 

Appendix C). The ratio of weights (for a given mass) is the ratio of g-values, so  

 

Wmoon = (100 N)(1.67/9.8) = 17 N. 

 

(b) For the force on that object caused by Earth’s gravity to equal 17 N, then the free-fall 

acceleration at its location must be ag = 1.67 m/s
2
. Thus, 

 

7

2
1.5 10 mE E

g

g

Gm Gm
a r

r a
      

 

so the object would need to be a distance of r/RE = 2.4 “radii” from Earth’s center. 

 

18. The free-body diagram of the force acting on the plumb 

line is shown to the right. The mass of the sphere is 

  

3 3 3 3 3

13

4 4
(2.6 10 kg/m )(2.00 10  m)

3 3

8.71 10 kg.

M V R
 

 
 

     
 

 
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The force between the “spherical” mountain and the plumb line is 2/F GMm r . 

Suppose at equilibrium the line makes an angle   with the vertical and the net force 

acting on the line is zero. Therefore, 

net, 2

net,

0 sin sin

0 cos

x

y

GMm
F T F T

r

F T mg

     

  




 

 

The two equations can be combined to give 
2

tan
F GM

mg gr
   . The distance the lower 

end moves toward the sphere is  

 
11 3 2 13

2 3 2

6

(6.67 10  m /kg s )(8.71 10 kg)
tan (0.50 m)

(9.8)(3 2.00 10  m)

8.2 10  m.

GM
x l l

gr






  
  

 

 

 

 

19. THINK Earth’s gravitational acceleration varies with altitude.   

 

EXPRESS The acceleration due to gravity is given by ag = GM/r
2
, where M is the mass 

of Earth and r is the distance from Earth’s center. We substitute r = R + h, where R is the 

radius of Earth and h is the altitude, to obtain  

 

 
2 2( )

g

E

GM GM
a

r R h
 


. 

ANALYZE Solving for h, we obtain / g Eh GM a R  . From Appendix C, RE = 6.37  

10
6
 m and M = 5.98  10

24
 kg, so 

 

  
 

11 3 2 24

6 6

2

6.67 10 m / s kg 5.98 10 kg
6.37 10 m 2.6 10 m.

4.9m / s
h

  
      

 

LEARN We may rewrite ag as 

 
2

2 2 2

/

(1 / ) (1 / )

E
g

E E

GM RGM g
a

r h R h R
  

 
 

 

where 29.83 m/sg   is the gravitational 

acceleration on the Surface of the Earth. The plot 

below depicts how ag decreases with increasing 

altitude. 
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20. We follow the method shown in Sample Problem 13.2 – “Difference in acceleration 

at head and feet.” Thus, 

2 3
= = 2E E

g g

GM GM
a da dr

r r
   

 

which implies that the change in weight is 

 

 top bottom .gW W m da   

 

However, since Wbottom = GmME/R
2
 (where R is Earth’s mean radius), we have 

 

 
3

bottom3 6

1.61 10  m
= 2 = 2 = 2 600 N 0.303 N

6.37 10  m

E
g

GmM dr
mda dr W

R R


    


 

 

for the weight change (the minus sign indicating that it is a decrease in W). We are not 

including any effects due to the Earth’s rotation (as treated in Eq. 13-13). 

 

21. From Eq. 13-14, we see the extreme case is when “g” becomes zero, and plugging in 

Eq. 13-15 leads to 
3 2

2

2
0 = = .

GM R
R M

R G


   

 

Thus, with R = 20000 m and  = 2 rad/s, we find M = 4.7  10
24

 kg  5  10
24

 kg. 

 

22. (a) Plugging Rh = 2GMh /c
2
 into the indicated expression, we find 

 

       

4

2 2 22 2

1
= = =

1.001 2.0021.001 2 /

h h
g

hh h

GM GM c
a

MR GGM c
 

 

which yields ag = (3.02  10
43

 kg·m/s
2
) /Mh. 

 

(b) Since Mh is in the denominator of the above result, ag decreases as Mh increases. 

 

(c) With Mh = (1.55  10
12

) (1.99  10
30

 kg), we obtain ag = 9.82 m/s
2
. 

 

(d) This part refers specifically to the very large black hole treated in the previous part. 

With that mass for M in Eq. 13-16, and r = 2.002GM/c
2
, we obtain 

 

     

6

3 3 2
2

2
= 2 =

2.0022.002 /
g

GM c
da dr dr

GMGM c
   
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where dr  1.70 m as in Sample Problem 13.2 – “Difference in acceleration at head and 

feet.” This yields (in absolute value) an acceleration difference of 7.30  10
15

 m/s
2
. 

 

(e) The miniscule result of the previous part implies that, in this case, any effects due to 

the differences of gravitational forces on the body are negligible. 

 

23. (a) The gravitational acceleration is 2

2
= = 7.6 m/s .g

GM
a

R
 

 

(b) Note that the total mass is 5M. Thus, 
 

 
2

2

5
= = 4.2 m/s .

3
g

G M
a

R
 

 

24. (a) What contributes to the GmM/r
2
 force on m is the (spherically distributed) mass M 

contained within r (where r is measured from the center of M). At point A we see that M1 

+ M2 is at a smaller radius than r = a and thus contributes to the force: 

 

 1 2

on 2
.m

G M M m
F

a


  

 

(b) In the case r = b, only M1 is contained within that radius, so the force on m becomes 

GM1m/b
2
. 

 

(c) If the particle is at C, then no other mass is at smaller radius and the gravitational 

force on it is zero. 

 

25. Using the fact that the volume of a sphere is 4R
3
/3, we find the density of the sphere: 

 

 

4
3 3total

334 4
3 3

1.0 10 kg
2.4 10 kg/m .

1.0 m

M

R


 


     

 

When the particle of mass m (upon which the sphere, or parts of it, are exerting a 

gravitational force) is at radius r (measured from the center of the sphere), then whatever 

mass M is at a radius less than r must contribute to the magnitude of that force (GMm/r
2
). 

 

(a) At r = 1.5 m, all of Mtotal is at a smaller radius and thus all contributes to the force: 

 

 7total
on 2

3.0 10 N/kg .m

GmM
F m

r

    

 

(b) At r = 0.50 m, the portion of the sphere at radius smaller than that is 

 

3 34
= =1.3 10  kg.

3
M r 

 
 

 
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Thus, the force on m has magnitude GMm/r
2
 = m (3.3  10

7
 N/kg). 

 

(c) Pursuing the calculation of part (b) algebraically, we find 

 

 34
3 7

on 2

N
6.7 10 .

kg m
m

Gm r
F mr

r

 
 

   
 

 

 

26. (a) Since the volume of a sphere is 4R
3
/3, the density is 

 

total total

3 34
3

3
.

4

M M

R R


 
   

 

When we test for gravitational acceleration (caused by the sphere, or by parts of it) at 

radius r (measured from the center of the sphere), the mass M, which is at radius less than 

r, is what contributes to the reading (GM/r
2
). Since M = (4r

3
/3) for r  R, then we can 

write this result as 
3

total

3

total

2 3

3 4

4 3

M r
G

R GM r

r R





  
  
  

  

 

when we are considering points on or inside the sphere. Thus, the value ag referred to in 

the problem is the case where r = R: 

total

2
=g

GM
a ,

R
 

 

and we solve for the case where the acceleration equals ag/3: 

 

total total

2 3
.

3 3

GM GM r R
r

R R
    

 

(b) Now we treat the case of an external test point. For points with r > R the acceleration 

is GMtotal/r
2
, so the requirement that it equal ag/3 leads to 

 

total total

2 2
3 .

3

GM GM
r R

R r
    

 

27. (a) The magnitude of the force on a particle with mass m at the surface of Earth is 

given by F = GMm/R
2
, where M is the total mass of Earth and R is Earth’s radius. The 

acceleration due to gravity is 
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  

 

11 3 2 24

2

22 6

6.67 10  m /s kg 5.98 10  kg
= = = = 9.83 m/s .

6.37 10  m
g

F GM
a

m R

  


 

 

(b) Now ag = GM/R
2
, where M is the total mass contained in the core and mantle together 

and R is the outer radius of the mantle (6.345  10
6
 m, according to the figure). The total 

mass is  

M = (1.93  10
24

 kg + 4.01  10
24

 kg ) = 5.94  10
24

 kg. 

 

The first term is the mass of the core and the second is the mass of the mantle. Thus, 

 

  

 

11 3 2 24

2

2
6

6.67 10  m /s kg 5.94 10  kg
= = 9.84 m/s .

6.345 10  m
ga

  


 

 

(c) A point 25 km below the surface is at the mantle–crust interface and is on the surface 

of a sphere with a radius of R = 6.345  10
6
 m. Since the mass is now assumed to be 

uniformly distributed, the mass within this sphere can be found by multiplying the mass 

per unit volume by the volume of the sphere: 3 3( / ) ,e eM R R M  where Me is the total 

mass of Earth and Re is the radius of Earth. Thus, 

 

 
3

6
24 24

6

6.345 10  m
= 5.98 10  kg = 5.91 10  kg.

6.37 10  m
M

 
  

 
 

 

The acceleration due to gravity is 

 

  

 

11 3 2 24

2

22 6

6.67 10  m /s kg 5.91 10  kg
= = = 9.79 m/s .

6.345 10  m
g

GM
a

R

  


 

 

28. (a) Using Eq. 13-1, we set GmM/r
2
  equal to  

1

2
 GmM/R

2
, and we find r = R 2 .  Thus, 

the distance from the surface is  ( 2  – 1)R = 0.414R.  

 

(b) Setting the density  equal to M/V where V = 
4

3
 R

3
, we use Eq. 13-19: 

 

 
3 3 2

4 4 1
/ 2.

3 3 4 / 3 2

Gmr Gmr M GMmr GMm
F r R

R R R

  



 
      

 
 

  

29. The equation immediately preceding Eq. 13-28 shows that  K = –U (with U evaluated 

at the planet’s surface: –5.0  10
9
 J) is required to “escape.”  Thus, K = 5.0  10

9
 J. 
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30. The gravitational potential energy is 

 
 2= =

Gm M m G
U Mm m

r r


    

 

which we differentiate with respect to m and set equal to zero (in order to minimize). 

Thus, we find M  2m = 0, which leads to the ratio m/M = 1/2 to obtain the least potential 

energy.  

 

Note that a second derivative of U with respect to m would lead to a positive result 

regardless of the value of m, which means its graph is everywhere concave upward and 

thus its extremum is indeed a minimum. 

 

31. THINK Given the mass and diameter of Mars, we can calculate its mean density, 

gravitational acceleration and escape speed.  

 

EXPRESS The density of a uniform sphere is given by  = 3M/4R
3
, where M is its 

mass and R is its radius. On the other hand, the value of gravitational acceleration ag at 

the surface of a planet is given by ag = GM/R
2
. for a particle of mass m, its escape speed 

is given by 

21 2
.

2

mM GM
mv G v

R R
    

 

ANALYZE (a) From the definition of density above, we find the ratio of the density of 

Mars to the density of Earth to be 
3

3 4

3 3

0.65 10  km
= = 0.11 = 0.74.

3.45 10  km

M M E

E E M

M R

M R





 
 

 
 

 

(b) The value of gravitational acceleration for Mars is 

 

 
2

2 2 4
2 2

2 2 2 2 3

0.65 10  km
0.11 9.8 m/s 3.8 m/s .

3.45 10  km

M M E E M E
g M g E

M M E E E M

GM M R GM M R
a a

R R M R M R

 
       

 

 

(c) For Mars, the escape speed is 

 

  11 3 2 24

3

6

2(6.67 10  m /s kg) 0.11 5.98 10  kg2
5.0 10  m/s.

3.45 10  m

M
M

M

GM
v

R

  
   


 

 

LEARN The ratio of the escape speeds on Mars and on Earth is 

 

 
3

3

2 / 6.5 10  km
(0.11) 0.455

3.45 10  km2 /

M MM M E

E E ME E

GM Rv M R

v M RGM R


     


. 
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32. (a) The gravitational potential energy is 

 

   11 3 2

11
6.67 10  m /s kg 5.2 kg 2.4 kg

= = =  4.4 10  J.
19 m

GMm
U

r




 

     

 

(b) Since the change in potential energy is 

 

 11 112
= = 4.4 10  J = 2.9 10  J,

3 3

GMm GMm
U

r r

  
        

 
 

 

the work done by the gravitational force is W =  U = 2.9  10
11

 J. 

 

(c) The work done by you is W´ = U = 2.9  10
11

 J. 

 

33. The amount of (kinetic) energy needed to escape is the same as the (absolute value of 

the) gravitational potential energy at its original position. Thus, an object of mass m on a 

planet of mass M and radius R needs K = GmM/R in order to (barely) escape. 

(a) Setting up the ratio, we find 

= = 0.0451m m E

E E m

K M R

K M R
 

 

using the values found in Appendix C. 

 

(b) Similarly, for the Jupiter escape energy (divided by that for Earth) we obtain 

 

= = 28.5.J J E

E E J

K M R

K M R
 

 

34. (a) The potential energy U at the surface is Us = –5.0  10
9
 J according to the graph, 

since U is inversely proportional to r (see Eq. 13-21), at an r-value a factor of 5/4 times 

what it was at the surface then U must be 4 Us/5.  Thus, at r = 1.25Rs, U = – 4.0  10
9
 J.  

Since mechanical energy is assumed to be conserved in this problem, we have 

  

K + U = –2.0  10
9
 J 

 

at this point.  Since U = – 4.0  10
9
 J here, then 92.0 10 JK    at this point. 

 

(b) To reach the point where the mechanical energy equals the potential energy (that is, 

where U = – 2.0  10
9 

J) means that U must reduce (from its value at r = 1.25Rs) by a 

factor of 2, which means the r value must increase (relative to r = 1.25Rs) by a 

corresponding factor of 2.  Thus, the turning point must be at r = 2.5Rs. 
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35. Let m = 0.020 kg and d = 0.600 m (the original edge-length, in terms of which the 

final edge-length is d/3). The total initial gravitational potential energy (using Eq. 13-21 

and some elementary trigonometry) is 

 

Ui = – 
4Gm

2

d
 – 

2Gm
2

2 d
 . 

 

Since U is inversely proportional to r then reducing the size by 1/3 means increasing the 

magnitude of the potential energy by a factor of 3, so 

 

         Uf  = 3Ui      U = 2Ui = 2(4 + 2 )








– 
Gm

2

d
  = – 4.82  10

–13
 J . 

 

36. Energy conservation for this situation may be expressed as follows: 

 

1 1 2 2 1 2

1 2

GmM GmM
K U K U K K

r r
        

 

where M = 5.0  10
23

 kg, r1 = R = 3.0  10
6
 m and m = 10 kg. 

 

(a) If K1 = 5.0  10
7
 J and r2 = 4.0  10

6
 m, then the above equation leads to 

 

7

2 1

2 1

1 1
2.2 10 J.K K GmM

r r

 
     

 
 

 

(b) In this case, we require K2 = 0 and r2 = 8.0  10
6
 m, and solve for K1: 

 

7

1 2

1 2

1 1
6.9 10 J.K K GmM

r r

 
     

 
 

 

37. (a) The work done by you in moving the sphere of mass mB equals the change in the 

potential energy of the three-sphere system. The initial potential energy is 

 

A C B CA B
i

Gm m Gm mGm m
U

d L L d
  


 

and the final potential energy is 

 

.A C B CA B
f

Gm m Gm mGm m
U

L d L d
  


 

The work done is 
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11 3 2

1 1 1 1

2 2 2
( )

( ) ( ) ( )

0.12 m 2(0.040 m)
(6.67 10 m / s kg) (0.010 kg)(0.080 kg 0.020 kg)

(0.040 m)(0.12 0.040 m)

5.0 10

f i B A C

B A C B A C

W U U Gm m m
d L d L d d

L d d L L d
Gm m m Gm m m

d L d d L d d L d



    
              

   
    

   


   



   13 J.

 

 

(b) The work done by the force of gravity is (Uf  Ui) = 5.0  10
13

 J. 

 

38. (a) The initial gravitational potential energy is 

 
11 3 2

8 8

(6.67 10  m /s kg) (20 kg) (10 kg)

0.80 m

1.67 10 J 1.7 10 J.

A B
i

i

GM M
U

r



 

 
   

     

 

 

(b) We use conservation of energy (with Ki = 0): 

 
11 3 2

8 (6.67 10  m /s kg)(20 kg)(10 kg)
    1.7 10

0.60 m
iU K U K


  

        

 

which yields K = 5.6  10
9

 J. Note that the value of r is the difference between 0.80 m 

and 0.20 m. 

 

39. THINK The escape speed on the asteroid is related to the gravitational acceleration at 

the surface of the asteroid and its size.  

 

EXPRESS We use the principle of conservation of energy. Initially the particle is at the 

surface of the asteroid and has potential energy Ui = GMm/R, where M is the mass of 

the asteroid, R is its radius, and m is the mass of the particle being fired upward. The 

initial kinetic energy is 21
2 mv . The particle just escapes if its kinetic energy is zero when 

it is infinitely far from the asteroid. The final potential and kinetic energies are both zero. 

Conservation of energy yields  

GMm/R + ½mv
2
 = 0. 

 

We replace GM/R with agR, where ag is the acceleration due to gravity at the surface.  

Then, the energy equation becomes agR + ½v
2
 = 0. Solving for v, we have  

 

2 .gv a R  
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ANALYZE (a) Given that 500 kmR  and 23.0 m/sga  , we find the escape speed to 

be 

2 3 32 2(3.0 m/s )(500 10 m) 1.7 10 m/s.gv a R      

 

(b) Initially the particle is at the surface; the potential energy is Ui = GMm/R and the 

kinetic energy is Ki = ½mv
2
. Suppose the particle is a distance h above the surface when it 

momentarily comes to rest. The final potential energy is Uf = GMm/(R + h) and the final 

kinetic energy is Kf = 0. Conservation of energy yields 

 

21
.

2

GMm GMm
mv

R R h
   


 

 

We replace GM with agR
2
 and cancel m in the energy equation to obtain 

 
2

21
.

2 ( )

g

g

a R
a R v

R h
   


 

The solution for h is 

 
2 2 3 2

3

2 2 3 2

5

2 2(3.0 m/s ) (500 10 m)
(500 10 m)

2 2(3.0 m/s ) (500 10 m) (1000 m/s)

2.5 10 m.

g

g

a R
h R

a R v


    

  

 

 

 

(c) Initially the particle is a distance h above the surface and is at rest. Its potential energy 

is Ui = GMm/(R + h) and its initial kinetic energy is Ki = 0. Just before it hits the 

asteroid its potential energy is Uf = GMm/R. Write 21
2 fmv  for the final kinetic energy. 

Conservation of energy yields 

21
.

2

GMm GMm
mv

R h R
   


 

 

We substitute agR
2
 for GM and cancel m, obtaining 

 
2

21
.

2

g

g

a R
a R v

R h
   


 

The solution for v is 

 
2 2 3 2

2 3

3 3

3

2 2(3.0 m/s )(500 10 m)
2 2(3.0 m/s ) (500 10 m)

(500 10 m) +(1000 10 m)

1.4 10 m/s.

g

g

a R
v a R

R h


    

  

 

 

 

LEARN The key idea in this problem is to realize that energy is conserved in the process: 
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0i i f fK U K U K U       . 

 

The decrease in potential energy is equal to the gain in kinetic energy, and vice versa.   

 

40. (a) From Eq. 13-28, we see that 0 / 2 Ev GM R  in this problem.  Using energy 

conservation, we have 
1

2
 mv0

2
 – GMm/RE = – GMm/r 

 

which yields r = 4RE/3. So the multiple of RE is 4/3 or 1.33. 

 

(b) Using the equation in the textbook immediately preceding Eq. 13-28, we see that in 

this problem we have Ki = GMm/2RE, and the above manipulation (using energy 

conservation) in this case leads to r = 2RE. So the multiple of RE is 2.00. 

 

(c) Again referring to the equation in the textbook immediately preceding Eq. 13-28, we 

see that the mechanical energy = 0 for the “escape condition.”  

 

41. THINK The two neutron stars are attracted toward each other due to their 

gravitational interaction. 

 

EXPRESS The momentum of the two-star system is conserved, and since the stars have 

the same mass, their speeds and kinetic energies are the same. We use the principle of 

conservation of energy. The initial potential energy is Ui = GM
2
/ri, where M is the mass 

of either star and ri is their initial center-to-center separation. The initial kinetic energy is 

zero since the stars are at rest. The final potential energy is 2 /f fU GM r  , where the 

final separation is / 2f ir r . We write Mv
2
 for the final kinetic energy of the system. This 

is the sum of two terms, each of which is ½Mv
2
. Conservation of energy yields 

 
2 2

22
.

i i

GM GM
Mv

r r
     

ANALYZE (a) The solution for v is 

 
11 3 2 30

4

10

(6.67 10 m / s kg)(10 kg)
8.2 10 m/s.

10 mi

GM
v

r

 
     

 

(b) Now the final separation of the centers is rf = 2R = 2  10
5
 m, where R is the radius of 

either of the stars. The final potential energy is given by Uf = GM
2
/rf and the energy 

equation becomes  

GM
2
/ri = GM

2
/rf + Mv

2
. 

 

The solution for v is 
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11 3 2 30

5 10

7

1 1 1 1
(6.67 10 m / s kg) (10 kg)

2 10 m 10 m

1.8 10 m/s.

f i

v GM
r r


   

            

 

 

 

LEARN The speed of the stars as a function of 

their final separation is plotted below. The 

decrease in gravitational potential energy is 

accompanied by an increase in kinetic energy, 

so that the total energy of the two-star system 

remains conserved.  

 

 

 

42. (a) Applying Eq. 13-21 and the Pythagorean theorem leads to 

 

       U =  – 






GM

2

2D
 + 

2GmM

y
2
 + D

2   

 

where M is the mass of particle B (also that of particle C) and m is the mass of particle A.  

The value given in the problem statement (for infinitely large y, for which the second 

term above vanishes) determines M, since D is given.  Thus M = 0.50 kg. 

 

(b) We estimate (from the graph) the y = 0 value to be Uo = – 3.5 × 10
10 

J.  Using this, 

our expression above determines m.  We obtain m = 1.5 kg. 

 

43. (a) If r is the radius of the orbit then the magnitude of the gravitational force acting on 

the satellite is given by GMm/r
2
, where M is the mass of Earth and m is the mass of the 

satellite. The magnitude of the acceleration of the satellite is given by v
2
/r, where v is its 

speed. Newton’s second law yields GMm/r
2
 = mv

2
/r. Since the radius of Earth is 6.37  

10
6
 m, the orbit radius is r = (6.37  10

6
 m + 160  10

3
 m) = 6.53  10

6
 m. The solution 

for v is 

 
11 3 2 24

3

6

(6.67 10 m / s kg)(5.98 10 kg)
7.82 10 m/s.

6.53 10 m

GM
v

r

  
   


 

 

(b) Since the circumference of the circular orbit is 2r, the period is 

 
6

3

3

2 2 (6.53 10 m)
5.25 10 s.

7.82 10 m/s

r
T

v

  
   


 

 

This is equivalent to 87.5 min. 
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44. Kepler’s law of periods, expressed as a ratio, is 

 
3 2 23

1

2 1 lunar month

s s s

m m

r T T

r T

      
        

      
 

 

which yields Ts = 0.35 lunar month for the period of the satellite. 

 

45. The period T and orbit radius r are related by the law of periods: T
2
 = (42

/GM)r
3
, 

where M is the mass of Mars. The period is 7 h 39 min, which is 2.754  10
4
 s. We solve 

for M: 

 

2 3 2 6 3
23

22 11 3 2 4

4 4 (9.4 10 m)
6.5 10 kg.

(6.67 10 m / s kg) 2.754 10 s

r
M

GT

 




   

  
 

 

46. From Eq. 13-37, we obtain v = /GM r  for the speed of an object in circular orbit 

(of radius r) around a planet of mass M. In this case, M = 5.98  10
24

 kg and  

 

r = (700 + 6370)m = 7070 km = 7.07  10
6
 m. 

 

The speed is found to be v = 7.51  10
3
 m/s. After multiplying by 3600 s/h and dividing 

by 1000 m/km this becomes v = 2.7  10
4
 km/h. 

 

(a) For a head-on collision, the relative speed of the two objects must be 2v = 5.4  10
4
 

km/h. 

 

(b) A perpendicular collision is possible if one satellite is, say, orbiting above the equator 

and the other is following a longitudinal line. In this case, the relative speed is given by 

the Pythagorean theorem: 2 2   = 3.8  10
4
 km/h. 

 

47. THINK The centripetal force on the Sun is due to the gravitational attraction between 

the Sun and the stars at the center of the Galaxy.  

 

EXPRESS Let N be the number of stars in the galaxy, M be the mass of the Sun, and r be 

the radius of the galaxy. The total mass in the galaxy is N M and the magnitude of the 

gravitational force acting on the Sun is  

 

 
2

2 2

( )
g

GM NM GNM
F

R R
  . 

 

The force, pointing toward the galactic center, is the centripetal force on the Sun. Thus,  

 
2 2

2c g

Mv GNM
F F

R R
   . 
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The magnitude of the Sun’s acceleration is a = v
2
/R, where v is its speed. If T is the 

period of the Sun’s motion around the galactic center then v = 2R/T and a = 4
2
R/T

2
. 

Newton’s second law yields  

GNM
2
/R

2
 = 4

2
MR/T

2
. 

The solution for N is 
2 3

2

4
.

R
N

GT M


  

 

ANALYZE The period is 2.5  10
8
 y, which is 7.88  10

15
 s, so 

 
2 20 3

10

11 3 2 15 2 30

4 (2.2 10 m)
5.1 10 .

(6.67 10 m / s kg)(7.88 10 s) (2.0 10 kg)
N





  

   
 

 

LEARN The number of stars in the Milky Way is between 1110 to 114 10 . Our 

simplified model provides a reasonable estimate. 

 

48. Kepler’s law of periods, expressed as a ratio, is 

 
3 2 2

3(1.52)
1y

M M M

E E

a T T

a T

     
       

    
 

 

where we have substituted the mean-distance (from Sun) ratio for the semi-major axis 

ratio. This yields TM = 1.87 y. The value in Appendix C (1.88 y) is quite close, and the 

small apparent discrepancy is not significant, since a more precise value for the semi-

major axis ratio is aM/aE = 1.523, which does lead to TM = 1.88 y using Kepler’s law. A 

question can be raised regarding the use of a ratio of mean distances for the ratio of semi-

major axes, but this requires a more lengthy discussion of what is meant by a ”mean 

distance” than is appropriate here. 

 

49. (a) The period of the comet is 1420 years (and one month), which we convert to T = 

4.48  10
10

 s. Since the mass of the Sun is 1.99  10
30

 kg, then Kepler’s law of periods 

gives 
2

10 2 3 13

11 3 2 30

4
(4.48 10 s) 1.89 10 m.

(6.67 10  m /kg s )(1.99 10 kg)
a a




 
     

   
 

 

(b) Since the distance from the focus (of an ellipse) to its center is ea and the distance 

from center to the aphelion is a, then the comet is at a distance of 

 
13 13(0.9932 1) (1.89 10  m) 3.767 10 mea a       

 

when it is farthest from the Sun. To express this in terms of Pluto’s orbital radius (found 

in Appendix C), we set up a ratio: 
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13

12

3.767 10
6,4 .

5.9 10
P PR R

 
 

 
 

 

50. To “hover” above Earth (ME = 5.98  10
24

 kg) means that it has a period of 24 hours 

(86400 s). By Kepler’s law of periods, 

 
2

2 3 74
(86400) 4.225 10 m.

E

r r
GM

 
    
 

 

 

Its altitude is therefore r  RE (where RE = 6.37  10
6
 m), which yields 3.58  10

7
 m. 

 

51. THINK The satellite moves in an elliptical orbit about Earth. An elliptical orbit can 

be characterized by its semi-major axis and eccentricity. 

 

EXPRESS The greatest distance between the satellite and Earth’s center (the apogee 

distance) and the least distance (perigee distance) are, respectively,  

 

Ra = RE + da = 6.37  10
6
 m + 360  10

3
 m = 6.73  10

6
 m 

 Rp = RE + dp = 6.37  10
6
 m + 180  10

3
 m = 6.55  10

6
 m. 

 

Here RE = 6.37  10
6
 m is the radius of Earth.  

 

ANALYZE The semi-major axis is given by 

 
6 6

66.73 10 m + 6.55 10 m
6.64 10 m.

2 2

a pR R
a

  
     

 

(b) The apogee and perigee distances are related to the eccentricity e by Ra = a(1 + e) and 

Rp = a(1  e). Add to obtain Ra + Rp = 2a and a = (Ra + Rp)/2. Subtract to obtain Ra  Rp 

= 2ae. Thus, 
6 6

6 6

6.73 10 m 6.55 10 m
0.0136.

2 6.73 10 m 6.55 10 m

a p a p

a p

R R R R
e

a R R

    
   

   
 

 

LEARN Since e is very small, the orbit is nearly circular. On the other hand, if e is close 

to unity, then the orbit would be a long, thin ellipse.    

 

52. (a) The distance from the center of an ellipse to a focus is ae where a is the semi-

major axis and e is the eccentricity. Thus, the separation of the foci (in the case of Earth’s 

orbit) is 

   11 92 2 1.50 10 m 0.0167 5.01 10 m.ae      

 

(b) To express this in terms of solar radii (see Appendix C), we set up a ratio: 
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9

8

5.01 10 m
7.20.

6.96 10 m





 

 

53. From Kepler’s law of periods (where T = (2.4 h)(3600 s/h) = 8640 s), we find the 

planet’s mass M: 
2

2 6 3 244
(8640s) (8.0 10 m) 4.06 10 kg.M

GM

 
     
 

 

 

However, we also know ag = GM/R
2
 = 8.0 m/s

2
 so that we are able to solve for the 

planet’s radius: 
11 3 2 24

6

2

(6.67 10  m /kg s )(4.06 10 kg)
5.8 10 m.

8.0 m/sg

GM
R

a

  
     

 

54. The two stars are in circular orbits, not about each other, but about the two-star 

system’s center of mass (denoted as O), which lies along the line connecting the centers 

of the two stars. The gravitational force between the stars provides the centripetal force 

necessary to keep their orbits circular. Thus, for the visible, Newton’s second law gives 

 

 
2

1 2 1

2

1

Gm m m v
F

r r
   

 

where r is the distance between the centers of the stars. To find the relation between r  

and 
1r , we locate the center of mass relative to 1m . Using Equation 9-1, we obtain 

 

 1 2 2 1 2
1 1

1 2 1 2 2

(0)m m r m r m m
r r r

m m m m m

 
   

 
. 

 

On the other hand, since the orbital speed of 1m  is 12 /v r T , then 1 / 2r vT   and the 

expression for r can be rewritten as   

1 2

2 2

m m vT
r

m 


 . 

 

Substituting r  and 1r  into the force equation, we obtain  

 
2 3

1 2 1

2 2 2

1 2

4 2

( )

Gm m m v
F

m m v T T

 
 


 

or  
3 3 5 3

302

2 11 3 2

1 2

(2.7 10 m/s) (1.70 days)(86400 s/day)
6.90 10 kg

( ) 2 2 (6.67 10  m /kg s )

3.467 ,s

m v T

m m G

M

  


   

  


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where 301.99 10 kgsM    is the mass of the sun. With 1 6 sm M , we write 2 sm M  

and solve the following cubic equation for  : 

 
3

2
3.467 0

(6 )




 


. 

 

The equation has one real solution: 9.3  , which implies 2 / 9sm M  . 

 

55. (a) If we take the logarithm of Kepler’s law of periods, we obtain 

 

2 22 1
2 log ( ) = log (4 / ) + 3 log ( )  log ( )  log ( )   log (4 / )

3 3
T GM a a T GM     

 

where we are ignoring an important subtlety about units (the arguments of logarithms 

cannot have units, since they are transcendental functions). Although the problem can be 

continued in this way, we prefer to set it up without units, which requires taking a ratio. If 

we divide Kepler’s law (applied to the Jupitermoon system, where M is mass of Jupiter) 

by the law applied to Earth orbiting the Sun (of mass Mo), we obtain 

 
3

2 o( / )  =  E

E

M a
T T

M r

  
  

   
 

where TE = 365.25 days is Earth’s orbital period and rE = 1.50  10
11

 m is its mean 

distance from the Sun. In this case, it is perfectly legitimate to take logarithms and obtain 

 

o2 1
log log log

3 3

E E Mr T

a T M

    
      

     
 

 

(written to make each term positive), which is the way we plot the data (log (rE/a) on the 

vertical axis and log (TE/T) on the horizontal axis). 

 

 
 

(b) When we perform a least-squares fit to the data, we obtain  
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log (rE/a) = 0.666 log (TE/T) + 1.01, 

 

which confirms the expectation of slope = 2/3 based on the above equation. 

 

(c) And the 1.01 intercept corresponds to the term 1/3 log (Mo/M), which implies 

 

3.03o o

3
10 .

1.07 10

M M
M

M
  


 

 

Plugging in Mo = 1.99  10
30

 kg (see Appendix C), we obtain M = 1.86  10
27

 kg for 

Jupiter’s mass. This is reasonably consistent with the value 1.90  10
27

 kg found in 

Appendix C. 

 

56. (a) The period is T = 27(3600) = 97200 s, and we are asked to assume that the orbit is 

circular (of radius r = 100000 m). Kepler’s law of periods provides us with an 

approximation to the asteroid’s mass: 

 

 
2

32 164
(97200) 100000 6.3 10 kg.M

GM

 
    
 

 

 

(b) Dividing the mass M by the given volume yields an average density equal to  

 

 = (6.3  10
16

 kg)/(1.41  10
13

 m
3
) = 4.4  10

3
 kg/m

3
, 

 

which is about 20% less dense than Earth. 

 

57. In our system, we have m1 = m2 = M (the mass of our Sun, 1.99  10
30

 kg). With r = 

2r1 in this system (so r1 is one-half the Earth-to-Sun distance r), and v = r/T for the 

speed, we have 

 
2 2 3

1 2
12

2
.

2

r TGm m r
m T

r r GM

 
    

 

With r = 1.5  10
11

 m, we obtain T = 2.2  10
7
 s. We can express this in terms of Earth-

years, by setting up a ratio: 

 
7

7

2.2 10 s
(1y) = 1 y 0.71 y.

1y 3.156 10 s

T
T

   
   

   
 

 

58. (a) We make use of 
3 3

2

2

1 2( ) 2

m v T

m m G



 

 

where m1 = 0.9MSun is the estimated mass of the star. With v = 70 m/s and T = 1500 days 

(or 1500  86400 = 1.3  10
8
 s), we find 
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3

232

2

Sun 2

1.06 10 kg .
(0.9 )

m

M m
 


 

 

Since MSun  2.0  10
30

 kg, we find m2  7.0  10
27

 kg. Dividing by the mass of Jupiter 

(see Appendix C), we obtain m  3.7mJ. 

 

(b) Since v = 2r1/T is the speed of the star, we find 

 
8

9

1

(70m/s) (1.3 10 s)
1.4 10 m

2 2

vT
r

 


     

 

for the star’s orbital radius. If r is the distance between the star and the planet, then r2 = r 

 r1 is the orbital radius of the planet, and is given by 

 

111 2 1
2 1 1

2 2

1 3.7 10 m .
m m m

r r r
m m

 
     

 
 

 

Dividing this by 1.5  10
11

 m (Earth’s orbital radius, rE) gives r2 = 2.5rE. 

 

59. Each star is attracted toward each of the other two by a force of magnitude GM
2
/L

2
, 

along the line that joins the stars. The net force on each star has magnitude 2(GM
2
/L

2
) cos 

30 and is directed toward the center of the triangle. This is a centripetal force and keeps 

the stars on the same circular orbit if their speeds are appropriate. If R is the radius of the 

orbit, Newton’s second law yields (GM
2
/L

2
) cos 30 = Mv

2
/R. 

 
 

The stars rotate about their center of mass (marked by a circled dot on the diagram above) 

at the intersection of the perpendicular bisectors of the triangle sides, and the radius of the 

orbit is the distance from a star to the center of mass of the three-star system. We take the 

coordinate system to be as shown in the diagram, with its origin at the left-most star. The 

altitude of an equilateral triangle is  3 / 2 L , so the stars are located at x = 0, y = 0; x = 

L, y = 0; and x = L/2, 3 / 2y L . The x coordinate of the center of mass is xc = (L + 



 645 

L/2)/3 = L/2 and the y coordinate is  3 / 2 / 3 / 2 3cy L L  . The distance from a star 

to the center of mass is  

   2 2 2 2/ 4 /12 / 3c cR x y L L L     . 

 

Once the substitution for R is made, Newton’s second law then becomes 

 2 2 22 / cos30 3 /GM L Mv L  . This can be simplified further by recognizing that 

cos 30 3 / 2.   Divide the equation by M then gives GM/L
2
 = v

2
/L, or /v GM L . 

 

60. (a) From Eq. 13-40, we see that the energy of each satellite is GMEm/2r. The total 

energy of the two satellites is twice that result: 

 

 

11 3 2 24

6

9

(6.67 10  m /kg s )(5.98 10 kg)(125 kg)

7.87 10  m

6.33 10 J.

E
A B

GM m
E E E

r

  
   



 

 

 

(b) We note that the speed of the wreckage will be zero (immediately after the collision), 

so it has no kinetic energy at that moment. Replacing m with 2m in the potential energy 

expression, we therefore find the total energy of the wreckage at that instant is  


11 3 2 24

9

6

(2 ) (6.67 10  m /kg s )(5.98 10 kg)2(125 kg)
6.33 10 J.

2 2(7.87 10  m)

EGM m
E

r

  
   




 

(c) An object with zero speed at that distance from Earth will simply fall toward the 

Earth, its trajectory being toward the center of the planet. 

 

61. The energy required to raise a satellite of mass m to an altitude h (at rest) is given by 

 

1

1 1
,E

E E

E U GM m
R R h

 
    

 
 

 

and the energy required to put it in circular orbit once it is there is 

 

 
2

2 orb

1
.

2 2

E

E

GM m
E mv

R h
 


 

Consequently, the energy difference is 

 

1 2

1 3
.

2( )
E

E E

E E E GM m
R R h

 
     

 
 

 

(a) Solving the above equation, the height h0 at which 0E   is given by 
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 6

0

0

1 3
0    3.19 10  m. 

2( ) 2

E

E E

R
h

R R h
     


 

 

(b) For greater height 0h h , 0,E   implying 1 2E E . Thus, the energy of lifting is 

greater.  

 

62. Although altitudes are given, it is the orbital radii that enter the equations. Thus, rA = 

(6370 + 6370) km = 12740 km, and rB = (19110 + 6370) km = 25480 km. 

 

(a) The ratio of potential energies is 

 

/ 1
.

/ 2

B B A

A A B

U GmM r r

U GmM r r


  


 

 

(b) Using Eq. 13-38, the ratio of kinetic energies is 

 

/ 2 1
.

/ 2 2

B B A

A A B

K GmM r r

K GmM r r
    

 

(c) From Eq. 13-40, it is clear that the satellite with the largest value of r has the smallest 

value of |E| (since r is in the denominator). And since the values of E are negative, then 

the smallest value of |E| corresponds to the largest energy E. Thus, satellite B has the 

largest energy. 

 

(d) The difference is  

1 1
.

2
B A

B A

GmM
E E E

r r

 
      

 
 

 

Being careful to convert the r values to meters, we obtain E = 1.1  10
8
 J. The mass M 

of Earth is found in Appendix C. 

 

63. THINK We apply Kepler’s laws to analyze the motion of the asteroid. 

 

EXPRESS We use the law of periods: T
2
 = (4

2
/GM)r

3
, where M is the mass of the Sun 

(1.99  10
30

 kg) and r is the radius of the orbit. On the other hand, the kinetic energy of 

any asteroid or planet in a circular orbit of radius r is given by K = GMm/2r, where m is 

the mass of the asteroid or planet. We note that it is proportional to m and inversely 

proportional to r. 

 

ANALYZE (a) The radius of the orbit is twice the radius of Earth’s orbit: r = 2rSE = 

2(150  10
9
 m) = 300  10

9
 m. Thus, the period of the asteroid is 

 



 647 

2 3 2 9 3
7

11 3 2 30

4 4 (300 10 m)
8.96 10 s.

(6.67 10 m / s kg)(1.99 10 kg)

r
T

GM

 



   

  
 

 

Dividing by (365 d/y) (24 h/d) (60 min/h) (60 s/min), we obtain T = 2.8 y. 

 

(b) The ratio of the kinetic energy of the asteroid to the kinetic energy of Earth is  

 

 4 4/(2 ) 1
(2.0 10 ) 1.0 10

/(2 ) 2

SE

E E SE E

rK GMm r m

K GMM r M r

  
       

 
. 

 

LEARN An alternative way to calculate the ratio of kinetic energies is to use 
2 / 2K mv  and note that 2 /v r T . This gives 

 
2 22

2

2

2

4 4

/ 2 /

/ 2 /

1.0 y
(2.0 10 ) 2 1.0 10

2.8 y

E

E E E E E E SE E E SE

TK mv m v m r T m r

K M v M v M r T M r T

 

    
        

     

 
     

 

 

 

in agreement with what we found in (b).  

 

64. (a) Circular motion requires that the force in Newton’s second law provide the 

necessary centripetal acceleration: 
2

2

GmM v
m

r r
 . 

 

Since the left-hand side of this equation is the force given as 80 N, then we can solve for 

the combination mv
2
 by multiplying both sides by r = 2.0  10

7
 m. Thus, mv

2
 = (2.0  10

7
 

m) (80 N) = 1.6  10
9
 J. Therefore, 

 

 2 9 81 1
1.6 10 J 8.0 10 J .

2 2
K mv      

 

(b) Since the gravitational force is inversely proportional to the square of the radius, then 

 
2

.
F r

F r

  
  

 
 

Thus, F´ = (80 N) (2/3)
2
 = 36 N. 

 

65. (a) From Kepler’s law of periods, we see that T is proportional to r
3/2

. 

 

(b) Equation 13-38 shows that K is inversely proportional to r. 
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(c) and (d) From the previous part, knowing that K is proportional to v
2
, we find that v is 

proportional to 1/ r . Thus, by Eq. 13-31, the angular momentum (which depends on the 

product rv) is proportional to r/ r  = r . 

 

66. (a) The pellets will have the same speed v but opposite direction of motion, so the 

relative speed between the pellets and satellite is 2v. Replacing v with 2v in Eq. 13-38 is 

equivalent to multiplying it by a factor of 4. Thus, 

 

  11 3 2 24

rel 3

5

2(6.67 10 m / kg s ) 5.98 10 kg 0.0040 kg
4

2 (6370 500) 10 m

4.6 10 J.

EGM m
K

r

   
  

  

 

 

 

(b) We set up the ratio of kinetic energies: 

 

  

5
2rel

2
1

bullet 2

4.6 10 J
2.6 10 .

0.0040kg 950m/s

K

K


    

 

67. (a) The force acting on the satellite has magnitude GMm/r
2
, where M is the mass of 

Earth, m is the mass of the satellite, and r is the radius of the orbit. The force points 

toward the center of the orbit. Since the acceleration of the satellite is v
2
/r, where v is its 

speed, Newton’s second law yields GMm/r
2
 = mv

2
/r and the speed is given by v = 

/GM r . The radius of the orbit is the sum of Earth’s radius and the altitude of the 

satellite:  

r = (6.37  10
6
 + 640  10

3
) m = 7.01  10

6
 m. 

Thus, 

 11 3 2 24

3

6

(6.67 10 m / s kg) 5.98 10 kg
7.54 10 m/s.

7.01 10 m

GM
v

r

  
   


 

 

(b) The period is  

 

T = 2r/v = 2(7.01  10
6
 m)/(7.54  10

3
 m/s) = 5.84  10

3
 s   97 min. 

 

(c) If E0 is the initial energy then the energy after n orbits is E = E0  nC, where C = 1.4  

10
5
 J/orbit. For a circular orbit the energy and orbit radius are related by E = GMm/2r, 

so the radius after n orbits is given by r = GMm/2E. 

The initial energy is 

 

  11 3 2 24

9

0 6

(6.67 10 m / s kg) 5.98 10 kg 220 kg
6.26 10 J,

2(7.01 10 m)
E

  
    


 

 

the energy after 1500 orbits is 
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  9 5 9

0 6.26 10 J 1500 orbit 1.4 10 J orbit 6.47 10 J,E E nC           

 

and the orbit radius after 1500 orbits is 

 

  11 3 2 24

6

9

(6.67 10 m / s kg) 5.98 10 kg 220 kg
6.78 10 m.

2( 6.47 10 J)
r

  
   

 
 

 

The altitude is  

h = r  R = (6.78  10
6
 m  6.37  10

6
 m) = 4.1  10

5
 m. 

 

Here R is the radius of Earth. This torque is internal to the satelliteEarth system, so the 

angular momentum of that system is conserved. 

 

(d) The speed is 

 

 11 3 2 24

3

6

(6.67 10 m / s kg) 5.98 10 kg
7.67 10 m / s 7.7 km/s.

6.78 10 m

GM
v

r

  
    


 

 

(e) The period is 
6

3

3

2 2 (6.78 10 m)
5.6 10 s

7.67 10 m/s

r
T

v

  
    


93 min. 

 

(f) Let F be the magnitude of the average force and s be the distance traveled by the 

satellite. Then, the work done by the force is W = Fs. This is the change in energy: Fs 

= E. Thus, F = E/s. We evaluate this expression for the first orbit. For a complete 

orbit s = 2r = 2(7.01  10
6
 m) = 4.40  10

7
 m, and E = 1.4  10

5
 J. Thus, 

 
5

3

7

1.4 10 J
3.2 10 N.

4.40 10 m

E
F

s

 
    


 

 

(g) The resistive force exerts a torque on the satellite, so its angular momentum is not 

conserved. 

 

(h) The satelliteEarth system is essentially isolated, so its momentum is very nearly 

conserved. 

 

68. The orbital radius is 66370 km 400 km 6770 km 6.77 10  m.Er R h        

 

(a) Using Kepler’s law given in Eq. 13-34, we find the period of the ships to be  
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2 3 2 6 3
3

0 11 3 2 24

4 4 (6.77 10 m)
5.54 10 s 92.3 min.

(6.67 10 m / s kg)(5.98 10 kg)

r
T

GM

 



    

  
 

 

(b) The speed of the ships is 

 
6

3 2

0 3

0

2 2 (6.77 10  m)
7.68 10 m/s

5.54 10 s

r
v

T

  
   


. 

 

(c) The new kinetic energy is  

 

 2 2 2 3 2 10

0

1 1 1
(0.99 ) (2000 kg)(0.99) (7.68 10 m/s) 5.78 10  J.

2 2 2
K mv m v       

 

(d) Immediately after the burst, the potential energy is the same as it was before the burst. 

Therefore, 
11 3 2 24

11

6

(6.67 10 m / s kg)(5.98 10 kg)(2000 kg)
1.18 10  J.

6.77 10 m

GMm
U

r

  
      


 

 

(e) In the new elliptical orbit, the total energy is  

 
10 11 105.78 10  J ( 1.18 10  J) 6.02 10  J.E K U           

 

(f) For elliptical orbit, the total energy can be written as (see Eq. 13-42) / 2E GMm a  , 

where a is the semi-major axis. Thus,  

 
11 3 2 24

6

10

(6.67 10 m / s kg)(5.98 10 kg)(2000 kg)
6.63 10 m.

2 2( 6.02 10  J)

GMm
a

E

  
     

 
 

 

(g) To find the period, we use Eq. 13-34 but replace r with a. The result is 

 
2 3 2 6 3

3

11 3 2 24

4 4 (6.63 10 m)
5.37 10 s 89.5 min.

(6.67 10 m / s kg)(5.98 10 kg)

a
T

GM

 



    

  
 

 

(h) The orbital period T for Picard’s elliptical orbit is shorter than Igor’s by 

 

0 5540 s 5370 s 170 sT T T      . 

 

Thus, Picard will arrive back at point P ahead of Igor by 170 s – 90 s = 80 s. 

 

69. We define the “effective gravity” in his environment as geff = 220/60 = 3.67 m/s
2
. 

Thus, using equations from Chapter 2 (and selecting downward as the positive direction), 

we find the “fall-time” to be 
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2

0 2

1 2(2.1 m)
1.1 s.

2 3.67 m/s
effy v t g t t       

 

70. (a) The gravitational acceleration ag is defined in Eq. 13-11.  The problem is 

concerned with the difference between ag evaluated at r = 50Rh and ag evaluated at r = 

50Rh + h (where h is the estimate of your height).  Assuming h is much smaller than 50Rh 

then we can approximate h as the dr that is present when we consider the differential of 

Eq. 13-11: 

       |dag| = 
2GM

 r
3  dr    

2GM

50
3
Rh

3 h  = 
2GM

50
3
(2GM/c

2
)
3 h . 

 

If we approximate |dag| = 10 m/s
2
 and h  1.5 m, we can solve this for M.  Giving our 

results in terms of the Sun’s mass means dividing our result for M by 2   10
30

 kg.  Thus, 

admitting some tolerance into our estimate of h we find the “critical” black hole mass 

should in the range of 105 to 125 solar masses. 

 

(b) Interestingly, this turns out to be lower limit (which will surprise many students) since 

the above expression shows |dag| is inversely proportional to M.  It should perhaps be 

emphasized that a distance of 50Rh from a small black hole is much smaller than a 

distance of 50Rh from a large black hole. 

 

71. (a) All points on the ring are the same distance (r = x
2
 + R

2 
 ) from the particle, so 

the gravitational potential energy is simply U =  –GMm/ x
2
 + R

2 
 , from Eq. 13-21.  The 

corresponding force (by symmetry) is expected to be along the x axis, so we take a 

(negative) derivative of U (with respect to x) to obtain it (see Eq. 8-20).  The result for the 

magnitude of the force is GMmx(x
2
 + R

2
)
3/2

. 

 

(b) Using our expression for U, the change in potential energy as the particle falls to the 

center is  

 
2 2

1 1
U GMm

R x R

 
    

 
 

 

By conservation of mechanical energy, this must “turn into” kinetic energy, 
2 / 2K U mv    . We solve for the speed and obtain 

 

2

2 2 2 2

1 1 1 1 1
2

2
mv GMm v GM

R Rx R x R

   
       

    
. 

 

72. (a) With 302.0 10 kgM    and r = 10000 m, we find 12 2

2
1.3 10 m/s .g

GM
a

r
    

 

(b) Although a close answer may be gotten by using the constant acceleration equations 

of Chapter 2, we show the more general approach (using energy conservation): 
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o oK U K U    

 

where Ko = 0, K = ½mv
2
, and U is given by Eq. 13-21. Thus, with ro = 10001 m, we find 

 

6

o

1 1
2 1.6 10 m/s .v GM

r r

 
    

 
 

 

73. Using energy conservation (and Eq. 13-21) we have 

 

         K1  – 
GMm

 r1
  = K2 – 

GMm

 r2
  . 

 

(a) Plugging in two pairs of values (for (K1 ,r1) and (K2 ,r2)) from the graph and using the 

value of G and M (for Earth) given in the book, we find  m  1.0  10
3
 kg. 

 

(b) Similarly, v = (2K/m)
1/2

  1.5  10
3
 m/s  (at  r = 1.945   10

7
 m). 

 

74. We estimate the planet to have radius r = 10 m. To estimate the mass m of the planet, 

we require its density equal that of Earth (and use the fact that the volume of a sphere is 

4r
3
/3): 

3

3 34 / 3 4 / 3

E
E

E E

m M r
m M

r R R

 
    

   
 

 

which yields (with ME  6  10
24

 kg and RE  6.4  10
6
 m) m = 2.3  10

7
 kg. 

 

(a) With the above assumptions, the acceleration due to gravity is 

 

  11 3 2 7

5 2 5 2

2 2

6.7 10  m /s kg 2.3 10  kg
1.5 10 m s 2 10 m s .

(10 m)
g

Gm
a

r



 
  

       

 

(b) Equation 13-28 gives the escape speed: 
2

0.02 m/s .
Gm

v
r

   

 

75. We use m1 for the 20 kg of the sphere at (x1, y1) = (0.5, 1.0) (SI units understood), m2 

for the 40 kg of the sphere at (x2, y2) = (1.0, 1.0), and m3 for the 60 kg of the sphere at 

(x3, y3) = (0, 0.5). The mass of the 20 kg object at the origin is simply denoted m. We 

note that 1 21.25, 2r r  , and r3 = 0.5 (again, with SI units understood). The force nF  

that the n
th

 sphere exerts on m has magnitude 2/n nGm m r  and is directed from the origin 

toward mn, so that it is conveniently written as 
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 2 3
ˆ ˆ ˆ ˆ= i + j = i + j .n n n n

n n n

n n n n

Gm m x y Gm m
F x y

r r r r

 
 
 

 

 

Consequently, the vector addition to obtain the net force on m becomes 

 

3 3 3
9 7

net 3 3
=1 1 1

ˆ ˆ ˆ ˆ= i j ( 9.3 10 N)i (3.2 10 N)jn n n n
n

n n nn n

m x m y
F F Gm

r r

 

 

    
           

    
    . 

 

Therefore, we find the net force magnitude is 7

net 3.2 10 NF   . 

 

76. THINK We apply Newton’s law of gravitation to calculate the force between the 

meteor and the satellite.  

 

EXPRESS We use F = Gmsmm/r
2
, where ms is the mass of the satellite, mm is the mass of 

the meteor, and r is the distance between their centers. The distance between centers is r 

= R + d = 15 m + 3 m = 18 m. Here R is the radius of the satellite and d is the distance 

from its surface to the center of the meteor.  

 

ANALYZE The gravitational force between the meteor and the satellite is 

 

   

 

11 2 2

11

22

6.67 10 N m / kg 20kg 7.0kg
2.9 10 N.

18m

s sGm m
F

r




 

     

 

LEARN The force of gravitation is inversely proportional to 2r . 

 

77. We note that rA (the distance from the origin to sphere A, which is the same as the 

separation between A and B) is 0.5, rC = 0.8, and rD = 0.4 (with SI units understood). The 

force kF  that the k
th

 sphere exerts on mB has magnitude 2/k B kGm m r  and is directed from 

the origin toward mk so that it is conveniently written as 

 

 2 3
ˆ ˆ ˆ ˆ= i + j = i + j .k B k k k B

k k k

k k k k

Gm m x y Gm m
F x y

r r r r

 
 
 

 

 

Consequently, the vector addition (where k equals A, B, and D) to obtain the net force on 

mB becomes 

5

net 3 3
ˆ ˆ ˆ= i j (3.7 10 N)j.k k k k

k B

k k kk k

m x m y
F F Gm

r r


    

        
    

    

 

78. (a) We note that rC (the distance from the origin to sphere C, which is the same as the 

separation between C and B) is 0.8, rD = 0.4, and the separation between spheres C and D 

is rCD = 1.2 (with SI units understood). The total potential energy is therefore 
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4

2 2 2
= 1.3 10  JB C C DB D

C D CD

GM M GM MGM M

r r r

      

 

using the mass-values given in the previous problem. 

 

(b) Since any gravitational potential energy term (of the sort considered in this chapter) is 

necessarily negative (GmM/r
2
 where all variables are positive) then having another mass 

to include in the computation can only lower the result (that is, make the result more 

negative). 

 

(c) The observation in the previous part implies that the work I do in removing sphere A 

(to obtain the case considered in part (a)) must lead to an increase in the system energy; 

thus, I do positive work. 

 

(d) To put sphere A back in, I do negative work, since I am causing the system energy to 

become more negative. 

 

79. THINK Since the orbit is circular, the net gravitational force on the smaller star is 

equal to the centripetal force.  

 

EXPRESS The magnitude of the net gravitational force on one of the smaller stars (of 

mass m) is 

 
22 2

.
42

GMm Gmm Gm m
F M

r rr

 
    

 
 

 

This supplies the centripetal force needed for the motion of the star: 

 
2

2 4

Gm m v
M m

r r

 
  

 
 

 

where 2 /v r T . Combining the two expressions allows us to solve for T. 

 

ANALYZE Plugging in for speed v, we arrive at an equation for the period T: 

 
3 22

.
( / 4)

r
T

G M m





 

LEARN In the limit where m M , we recover the expected result 
3 22 r

T
GM


  for two 

bodies.  

 

80. If the angular velocity were any greater, loose objects on the surface would not go 

around with the planet but would travel out into space. 
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(a) The magnitude of the gravitational force exerted by the planet on an object of mass m 

at its surface is given by F = GmM / R
2
, where M is the mass of the planet and R is its 

radius. According to Newton’s second law this must equal mv
2
 / R, where v is the speed 

of the object. Thus, 
2

2
= .

GM v

R R
 

 

With 34 /3M R  where  is the density of the planet, and 2 /v R T , where T is the 

period of revolution, we find 
2

2

4 4
= .

3

R
G R

T

 
  

We solve for T and obtain 

3
T

G




 . 

 

(b) The density is 3.0  10
3
 kg/m

3
. We evaluate the equation for T: 

 

  
3

11 3 2 3 3

3
6.86 10 s 1.9h.

6.67 10 m / s kg 3.0 10 kg/m
T




   
  

 

 

81. THINK In a two-star system, the stars rotate about their common center of mass.  

 

EXPRESS The situation is depicted on the right. The 

gravitational force between the two stars (each having 

a mass M) is 

 
2 2

2 2(2 ) 4
g

GM GM
F

r r
   

  

The gravitational force between the stars provides the 

centripetal force necessary to keep their orbits circular.  
 

Thus, writing the centripetal acceleration as r2
 where  is the angular speed, we have 

 
2

2

24
g c

GM
F F Mr

r
   . 

 

ANALYZE (a) Substituting the values given, we find the common angular speed to be 

 
11 2 2 30

7

3 11 3

1 1 (6.67 10 N m /kg )(3.0 10 kg)
2.2 10 rad/s.

2 2 (1.0 10  m)

GM

r



  

   

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(b) To barely escape means to have total energy equal to zero (see discussion prior to Eq. 

13-28). If m is the mass of the meteoroid, then 

 

2 41 4
0 8.9 10 m/s .

2

GmM GmM GM
mv v

r r r
        

 

LEARN Comparing with Eq. 13-28, we see that the escape speed of the two-star system 

is the same as that of a star with mass 2M.  

 

82. The key point here is that angular momentum is conserved: 

 

Ipp = Iaa 

 

which leads to 2( / )p a p ar r  ,but rp = 2a – ra where a is determined by Eq. 13-34 

(particularly, see the paragraph after that equation in the textbook).  Therefore, 

 

              p = 
ra

2 
a

(2(GMT 
2


2
)
1/3

 – ra)
2  = 9.24  10

5
 rad/s . 

 

83. THINK The orbit of the shuttle goes from circular to elliptical after changing its speed by firing the 

thrusters.  

 

EXPRESS We first use the law of periods: T
2
 = (4

2
/GM)r

3
, where M is the mass of the 

planet and r is the radius of the orbit. After the orbit of the shuttle turns elliptical by firing 

the thrusters to reduce its speed, the semi-major axis is / 2a GMm E  , where 

E K U   is the mechanical energy of the shuttle and its new period becomes 

2 34 /T a GM  .   

 

ANALYZE (a) Using Kepler’s law of periods, we find the period to be  

  

2 2 7 3
3 4

11 2 2 25

4 4 (4.20 10  m)
2.15 10 s .

(6.67 10 N m /kg )(9.50 10 kg)
T r

GM

 


  
    

   
 

 

(b) The speed is constant (before she fires the thrusters), so  

 

 
7

4

0 4

2 2 (4.20 10 m)
1.23 10 m/s

2.15 10 s

r
v

T

  
   


. 

 

(c) A two percent reduction in the previous value gives  

 
4 4

00.98 0.98(1.23 10 m/s) 1.20 10 m/sv v     . 
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(d) The kinetic energy is 2 4 2 111 1
(3000 kg)(1.20 10 m/s) 2.17 10  J

2 2
K mv     . 

 

(e) Immediately after the firing, the potential energy is the same as it was before firing 

the thruster:  

 
11 2 2 25

11

7

(6.67 10 N m /kg )(9.50 10 kg)(3000 kg)
4.53 10  J

4.20 10  m

GMm
U

r

  
      


. 

 

(f) Adding these two results gives the total mechanical energy:  

 

 11 11 112.17 10  J ( 4.53 10  J) 2.35 10  JE K U          . 

 

(g) Using Eq. 13-42, we find the semi-major axis to be 

 
11 2 2 25

7

11

(6.67 10 N m /kg )(9.50 10 kg)(3000 kg)
4.04 10  m

2 2( 2.35 10  J)

GMm
a

E

  
     

 
. 

 

(h) Using Kepler’s law of periods for elliptical orbits (using a instead of r) we find the 

new period to be 

 

2 2 7 3
3 4

11 2 2 25

4 4 (4.04 10  m)
2.03 10 s .

(6.67 10 N m /kg )(9.50 10 kg)
T a

GM

 


  
     

   
 

 

This is smaller than our result for part (a) by T  T´ = 1.22  10
3
 s. 

 

(i) Comparing the results in (a) and (h), we see that elliptical orbit has a smaller period. 

 

LEARN The orbits of the shuttle before and after firing the thruster are shown below. 

Point P corresponds to the location where the thruster was fired.   

 

 
 

84. The difference between free-fall acceleration g and the gravitational acceleration ga  

at the equator of the star is (see Equation 13.14): 
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2

ga g R   

where  

2 2
153rad/s

0.041sT

 
     

 

is the angular speed of the star. The gravitational acceleration at the equator is 

 

 
11 3 2 30

11 2

2 4 2

(6.67 10  m /kg s )(1.98 10 kg)
9.17 10 m/s .

(1.2 10  m)
g

GM
a

R

  
   


 

 

Therefore, the percentage difference is  

 
2 2 4

4

11 2

(153rad/s) (1.2 10  m)
3.06 10 0.031%.

9.17 10 m/s

g

g g

a g R

a a

 
 

    


 

 

85. Energy conservation for this situation may be expressed as follows: 

 

2 2

1 1 2 2 1 2

1 2

1 1

2 2

GmM GmM
K U K U mv mv

r r
        

 

where M = 5.98  10
24

 kg, r1 = R = 6.37  10
6
, m and v1 = 10000 m/s. Setting v2 = 0 to 

find the maximum of its trajectory, we solve the above equation (noting that m cancels in 

the process) and obtain r2 = 3.2  10
7
 m. This implies that its altitude is 

 

h = r2  R = 2.5  10
7
 m. 

 

86. We note that, since v = 2r/T, the centripetal acceleration may be written as a = 

4
2
r/T

2
. To express the result in terms of g, we divide by 9.8 m/s

2
. 

 

(a) The acceleration associated with Earth’s spin (T = 24 h = 86400 s) is 

 
6

3

2 2

4 (6.37 10 m)
3.4 10 .

(86400s) (9.8m/s )
a g g

 
  

2

 

 

(b) The acceleration associated with Earth’s motion around the Sun (T = 1 y = 3.156  

10
7
 s) is 

11
4

7 2 2

4 (1.5 10 m)
6.1 10 .

(3.156 10 s) (9.8m/s )
a g g

 
  



2

 

 

(c) The acceleration associated with the Solar System’s motion around the galactic center 

(T = 2.5  10
8
 y = 7.9  10

15
 s) is 
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20

11

15 2 2

4 (2.2 10 m)
1.4 10 .

(7.9 10 s) (9.8m/s )
a g g

 
  



2

 

 

87. (a) It is possible to use 2 2

0 2v v a y   as we did for free-fall problems in Chapter 2 

because the acceleration can be considered approximately constant over this interval. 

However, our approach will not assume constant acceleration; we use energy 

conservation: 

02 2

0

0 0

2 ( )1 1

2 2

GM r rGMm GMm
mv mv v

r r r r


      

 

which yields v = 1.4  10
6
 m/s. 

 

(b) We estimate the height of the apple to be h = 7 cm = 0.07 m. We may find the answer 

by evaluating Eq. 13-11 at the surface (radius r in part (a)) and at radius r + h, being 

careful not to round off, and then taking the difference of the two values, or we may take 

the differential of that equation — setting dr equal to h. We illustrate the latter procedure: 

 

6 2

3 3
| | 2 2 3 10 m/s .g

GM GM
da dr h

r r
      

 

88. We apply the work-energy theorem to the object in question. It starts from a point at 

the surface of the Earth with zero initial speed and arrives at the center of the Earth with 

final speed vf. The corresponding increase in its kinetic energy, ½mvf
2
, is equal to the 

work done on it by Earth’s gravity: ( )F dr Kr dr   . Thus, 

 
0 0

2 21 1
( )

2 2
f

R R
mv F dr Kr dr KR      

 

where R is the radius of Earth. Solving for the final speed, we obtain vf = R /K m . We 

note that the acceleration of gravity ag = g = 9.8 m/s
2
 on the surface of Earth is given by  

 

ag = GM/R
2
 = G(4R

3
/3)R

2
, 

 

where  is Earth’s average density. This permits us to write K/m = 4G/3 = g/R. 

Consequently, 

 

2 6 3(9.8 m/s ) (6.37 10 m) 7.9 10 m/s .f

K g
v R R gR

m R
        
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89. THINK To compare the kinetic energy, potential energy, and the speed of the Earth 

at aphelion (farthest distance) and perihelion (closest distance), we apply both 

conservation of energy and conservation of angular momentum. 

 

EXPRESS As Earth orbits about the Sun, its total energy is conserved: 

  

 2 21 1

2 2

S E S E
a p

a p

GM M GM M
mv mv

R R
   . 

 

In addition, angular momentum conservation implies
a a p pv R v R . 

 

ANALYZE (a) The total energy is conserved, so there is no difference between its values 

at aphelion and perihelion. 

 

(b) The difference in potential energy is  

 

11 2 2 30 24

11 11

32

1 1

1 1
(6.67 10 N m /kg )(1.99 10 kg)(5.98 10 kg)

1.52 10  m 1.47 10  m

1.8 10  J.

a p S E

a p

U U U GM M
R R



 
       

 

 
       

  

 
 

(c) Since 0K U   , 321.8 10  Ja pK K K U        . 

 

(d) With a a p pv R v R , the change in kinetic energy may be written as 

 

 
2

2 2 2

2

1 1
1

2 2

a
a p E a p E a

p

R
K K K M v v M v

R

 
        

 

 

 

from which we find the speed at the aphelion to be 

 

4

2 2

2( )
2.95 10 m/s

(1 / )
a

E a p

K
v

M R R


  


. 

 

Thus, the variation in speed is  
11

4

11

3

1.52 10  m
1 1 (2.95 10 m/s)

1.47 10  m

0.99 10 m/s 0.99 km/s.

a
a p a

p

R
v v v v

R

   
              

    

 

 

The speed at the aphelion is smaller than that at the perihelion. 
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LEARN Since the changes are small, the problem could also be solved by using 

differentials: 

 

   

 
 

11 2 2 30 24

9

22 11

6.67 10 N m /kg 1.99 10 kg 5.98 10 kg
5 10  m .

1.5 10  m

E SGM M
dU dr

r

    
   
  

 

This yields U  1.8  10
32

 J. Similarly, with K  dK = MEv dv, where v  2R/T, we 

have 

 
 11

32 24

7

2π 1.5 10  m
1.8 10  J 5.98 10 kg

3.156 10 s
v

 
    
 
 

 

 

which yields a difference of v  0.99 km/s in Earth’s speed (relative to the Sun) between 

aphelion and perihelion. 
 

90. (a) Because it is moving in a circular orbit, F/m must equal the centripetal 

acceleration: 
280 N

.
50 kg

v

r
  

However, v = 2r/T, where T = 21600 s, so we are led to 

 

2

2

4
1.6m/s r

T




2

 

which yields r = 1.9  10
7
 m. 

 

(b) From the above calculation, we infer v
2
 = (1.6 m/s

2
)r, which leads to v

2
 = 3.0  10

7
 

m
2
/s

2
. Thus, K = ½mv

2
 = 7.6  10

8
 J. 

 

(c) As discussed in Section 13-4, F/m also tells us the gravitational acceleration: 

 

2

2
1.6 m/s .g

GM
a

r
   

We therefore find M = 8.6  10
24

 kg. 

 

91. (a) Their initial potential energy is Gm
2
/Ri and they started from rest, so energy 

conservation leads to 
2 2 2

total total .
0.5i i i

Gm Gm Gm
K K

R R R
      

 

(b) They have equal mass, and this is being viewed in the center-of-mass frame, so their 

speeds are identical and their kinetic energies are the same. Thus, 
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2

total

1
.

2 2 i

Gm
K K

R
   

 

(c) With K = ½ mv
2
, we solve the above equation and find v = / iGm R . 

 

(d) Their relative speed is 2v = 2 / iGm R . This is the (instantaneous) rate at which the 

gap between them is closing. 

 

(e) The premise of this part is that we assume we are not moving (that is, that body A 

acquires no kinetic energy in the process). Thus, Ktotal = KB, and the logic of part (a) leads 

to KB = Gm
2
/Ri. 

 

(f) And 21
2 B Bmv K  yields vB = 2 / iGm R . 

 

(g) The answer to part (f) is incorrect, due to having ignored the accelerated motion of 

“our” frame (that of body A). Our computations were therefore carried out in a 

noninertial frame of reference, for which the energy equations of Chapter 8 are not 

directly applicable. 

 

92. (a) We note that the altitude of the rocket is Eh R R   where 66.37 10 mER   . 

With 245.98 10 kgM   , R0 = 0ER h = 6.57  10
6
 m and R = 7.37  10

6
 m, we have 

 

3 2

0

1
(3.70 10 m/s)

2
i i

GmM GmM
K U K U m K

R R
        , 

 

which yields K = 3.83  10
7
 J. 

 

(b) Again, we use energy conservation. 

 

3 2

0

1
(3.70 10 ) 0

2
i i f f

f

GmM GmM
K U K U m

R R
         

 

Therefore, we find Rf = 7.40  10
6
 m. This corresponds to a distance of 1034.9 km  1.03 

 10
3
 km above the Earth’s surface. 

 

93. Energy conservation for this situation may be expressed as follows: 

 

2 2

1 1 2 2 1 2

1 2

1 1

2 2

GmM GmM
K U K U mv mv

r r
        
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where M = 7.0  10
24

 kg, r2 = R = 1.6  10
6
 m, and r1 =  (which means that U1 = 0). We 

are told to assume the meteor starts at rest, so v1 = 0. Thus, K1 + U1 = 0, and the above 

equation is rewritten as 

2 4

2 2

2

1 2
2.4 10 m s.

2

GmM GM
mv v

r R
      

 

94. The initial distance from each fixed sphere to the ball is r0 = , which implies the 

initial gravitational potential energy is zero. The distance from each fixed sphere to the 

ball when it is at x = 0.30 m is r = 0.50 m, by the Pythagorean theorem. 

 

(a) With M = 20 kg and m = 10 kg, energy conservation leads to 

 

0 0 2i i

GmM
K U K U K

r
        

 

which yields K = 2GmM/r = 5.3  10
8

 J. 

 

(b) Since the y-component of each force will cancel, the net force points in the –x 

direction, with a magnitude  

 

2Fx = 2 (GmM/r
2
) cos  , 

 

where   = tan
1

 (4/3) = 53. Thus, the result is 8

net
ˆ( 6.4 10  N)i.F     

 

95. The magnitudes of the individual forces (acting on mC, exerted by mA and mB, 

respectively) are 

 

8 8

2 2
2.7 10 N and 3.6 10 NA C B C

AC BC

AC BC

Gm m Gm m
F F

r r

        

 

where rAC = 0.20 m and rBC = 0.15 m. With rAB = 0.25 m, the angle AF makes with the x 

axis can be obtained as 
2 2 2

1 1cos cos (0.80) 217 .
2

AC AB BC
A

AC AB

r r r

r r
     

      
 

 

 

Similarly, the angle BF makes with the x axis can be obtained as 

 
2 2 2

1 1cos cos (0.60) 53 .
2

AB BC AC
B

AB BC

r r r

r r
    

    
 

 

 

The net force acting on mC then becomes 
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8

ˆ ˆ ˆ ˆ(cos i sin j) (cos i sin j)

ˆ ˆ( cos cos )i ( sin sin )j

ˆ( 4.4 10  N) j.

C AC A A BC B B

AC A BC B AC A BC B

F F F

F F F F

   

   



   

   

  

 

 

96. (a) From Chapter 2, we have 2 2

0 2v v a x   , where a may be interpreted as an 

average acceleration in cases where the acceleration is not uniform. With v0 = 0, v = 

11000 m/s, and x = 220 m, we find a = 2.75  10
5
 m/s

2
. Therefore, 

 
5 2

4

2

2.75 10 m/s
2.8 10

9.8 m/s
a g g

 
   
 

. 

 

(b) The acceleration is certainly deadly enough to kill the passengers. 

 

(c) Again using 2 2

0 2v v a x   , we find 

 
2

2(7000 m/s)
7000 m/s 714 .

2(3500 m)
a g    

 

(d) Energy conservation gives the craft’s speed v (in the absence of friction and other 

dissipative effects) at altitude h = 700 km after being launched from R = 6.37  10
6
 m 

(the surface of Earth) with speed v0 = 7000 m/s. That altitude corresponds to a distance 

from Earth’s center of r = R + h = 7.07  10
6
 m. 

 

2 2

0

1 1
.

2 2

GMm GMm
mv mv

R r
    

 

With M = 5.98  10
24

 kg (the mass of Earth) we find v = 6.05  10
3
 m/s. However, to 

orbit at that radius requires (by Eq. 13-37)  

 

v´ = /GM r  = 7.51  10
3
 m/s. 

 

The difference between these two speeds is v´  v = 1.46  10
3
 m/s 31.5 10  m/s,   which 

presumably is accounted for by the action of the rocket engine. 

 

97. We integrate Eq. 13-1 with respect to r from 3RE to 4RE and obtain the work equal to  

 

1 1
.

4 3 12

E
E

E E E

GM m
W U GM m

R R R

 
      

 
 

 

98. The gravitational force at a radial distance r inside Earth (e.g., point A in the figure) 

is  
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3g

GMm
F r

R
  

 

The component of the force along the tunnel is  

 

3 3
sinx g

GMm x GMm
F F r x

R r R


 
     

 
 

 

which can be rewritten as 

 
2

2

2 3x

d x GM
a x x

dt R
     

 

where 2 3/ .GM R  The equation is similar to Hooke’s law, in that the force on the train 

is proportional to the displacement of the train but oppositely directed. Without exiting 

the tunnel, the motion of the train would be periodic would a period given by 2 / .T    

The travel time required from Boston to Washington DC is only half that (one-way): 

 

 
3 6 3

11 3 2 24

(6.37 10 m)
2529 s 42.1 min

2 (6.67 10  m /kg s )(5.98 10 kg)

T R
t

GM


 

 


      

  
 

 

Note that the result is independent of the distance between the two cities. 

 

99. The gravitational force exerted on m due to a mass element dM from the thin rod is 

 

2

( )
g

Gm dM
dF

R
  

 

By symmetry, the force is along the y-

direction. With 

 

M M
dM dl Rd d

R
  

 

 
   

 
 

 

where /M R   is the mass density (mass per unit length), we have 

 

, 2 2
sin sin sing y g

Gm Md GMm
dF dF d

R R


   

 

 
   

 
 

Integrating over  gives 

 

, 2 2 20 0

2
sin sing y

GMm GMm GMm
F d d

R R R

 

   
  

     

 



   CHAPTER 13 666 

Substituting the values given leads to 

 
11 3 2 3

12

, 2 2

2 2(6.67 10  m /kg s )(5.0 kg)(3.0 10 kg)
1.51 10  N

(0.650 m)
g y

GMm
F

R 

 
  

     

 

If the rod were a complete circle, by symmetry, the net force on the particle would be 

zero. 

 

100. The gravitational acceleration at a distance r from the center of Earth is 

 

 
2g

GM
a

r
  

Thus, the weight difference between the two objects is 

 

 2

2 2 2 2 3

2 2
( ) 1 (1 / )

( )
g

GMm GMm GMm GMm h GMmh
w m g a h R

R R h R R R R

            
 

 

With 34
3

,M R   the above expression can be rewritten as 

 

3

3 3

2 2 4 8

3 3

GMmh Gmh Gmh
w R

R R

 


 
     

 
 

 

Substituting the values given, we obtain 

 

3 3 11 3 2

7

8 8
(5.5 10 kg/m )(6.67 10  m /kg s )(2.00 kg)(0.050 m)

3 3

3.07 10 N

Gmh
w

  



     

 

 

 

101. Let the distance from Earth to the spaceship be r. Rem = 3.82  10
8
 m is the distance 

from Earth to the moon. Thus, 

 
2 2

= = = ,m e
m E

em

GM m GM m
F F

rR r
 

 

where m is the mass of the spaceship. Solving for r, we obtain 

 
8

8

22 24

3.82 10 m
3.44 10 m

/ 1 (7.36 10 kg) /(5.98 10 kg) 1

em

m e

R
r

M M


   

   
. 
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Chapter 14 
 

 

1. Let the volume of the expanded air sacs be Va and that of the fish with its air sacs 

collapsed be V. Then 

3 3fish fish
fish 1.08 g/cm     and     1.00 g/cmw

a

m m

V V V
    


 

 

where w is the density of the water. This implies  

 

fishV = w(V + Va) or (V + Va)/V = 1.08/1.00, 

 

which gives Va/(V + Va) = 0.074 = 7.4%. 

 

2. The magnitude F of the force required to pull the lid off is F = (po – pi)A, where po is 

the pressure outside the box, pi is the pressure inside, and A is the area of the lid. 

Recalling that 1N/m
2
 = 1 Pa, we obtain 

 

5 4

4 2

480 N
1.0 10  Pa 3.8 10  Pa.

77 10  m
i o

F
p p

A 
      


 

 

3. THINK The increase in pressure is equal to the applied force divided by the area.  

 

EXPRESS The change in pressure is given by p = F/A = F/r
2
, where r is the radius of 

the piston.  

 

ANALYZE substituting the values given, we obtain  

 

p = (42 N)/(0.011 m)
2
 = 1.1  10

5
 Pa. 

 

This is equivalent to 1.1 atm. 

 

LEARN The increase in pressure is proportional to the force applied. In addition, since 

1/p A , the smaller the cross-sectional area of the syringe, the greater the pressure 

increase under the same applied force. 

 

4. We note that the container is cylindrical, the important aspect of this being that it has a 

uniform cross-section (as viewed from above); this allows us to relate the pressure at the 

bottom simply to the total weight of the liquids. Using the fact that 1L = 1000 cm
3
, we 

find the weight of the first liquid to be 
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3 3 2 6 2

1 1 1 1 (2.6 g / cm )(0.50 L)(1000 cm / L)(980 cm/s ) 1.27 10 g cm/s

12.7 N.

W m g V g     


 

 

In the last step, we have converted grams to kilograms and centimeters to meters. 

Similarly, for the second and the third liquids, we have 

 
3 3 2

2 2 2 2 (1.0 g/cm )(0.25 L)(1000 cm L)(980 cm s ) 2.5 NW m g V g     

and 
3 3 2

3 3 3 3 (0.80 g/cm )(0.40 L)(1000 cm / L)(980 cm/s ) 3.1 N.W m g V g     

 

The total force on the bottom of the container is therefore F = W1 + W2 + W3 = 18 N. 

 

5. THINK The pressure difference between two sides of the window results in a net force 

acting on the window. 

 

EXPRESS The air inside pushes outward with a force given by piA, where pi is the 

pressure inside the room and A is the area of the window. Similarly, the air on the outside 

pushes inward with a force given by poA, where po is the pressure outside. The magnitude 

of the net force is F = (pi – po)A.  

 

ANALYZE Since 1 atm = 1.013  10
5
 Pa, the net force is 

 
5

4

( ) (1.0 atm 0.96 atm)(1.013 10  Pa/atm)(3.4 m)(2.1 m)

2.9 10  N.

i oF p p A    

 
 

 

LEARN The net force on the window vanishes when the pressure inside the office is 

equal to the pressure outside. 

  

6. Knowing the standard air pressure value in several units allows us to set up a variety of 

conversion factors: 

 

(a)  
5

2

2

1.01 10  Pa
28 lb/in. 190 kPa

14.7 lb/in
P

 
  

 
. 

 

(b) 
5 51.01 10 Pa 1.01 10  Pa

 (120 mmHg) 15.9 kPa,     (80 mmHg) 10.6 kPa.
760 mmHg 760 mmHg

    
    

   
 

 

7. (a) The pressure difference results in forces applied as shown in the figure. We 

consider a team of horses pulling to the right. To pull the sphere apart, the team must 

exert a force at least as great as the horizontal component of the total force determined by 

“summing” (actually, integrating) these force vectors. 
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We consider a force vector at angle . Its leftward component is p cos dA, where dA is 

the area element for where the force is applied. We make use of the symmetry of the 

problem and let dA be that of a ring of constant  on the surface. The radius of the ring is 

r = R sin , where R is the radius of the sphere. If the angular width of the ring is d, in 

radians, then its width is R d and its area is dA = 2R
2
 sin  d. Thus the net horizontal 

component of the force of the air is given by 

 
/ 2

0

2
2 2 2 2

0
2  sin  cos  sin .hF R p d R p R p



      


       

 

(b) We use 1 atm = 1.01  10
5
 Pa to show that p = 0.90 atm = 9.09  10

4
 Pa. The sphere 

radius is R = 0.30 m, so  

 

Fh = (0.30 m)
2
(9.09  10

4
 Pa) = 2.6  10

4
 N. 

 

(c) One team of horses could be used if one half of the sphere is attached to a sturdy wall. 

The force of the wall on the sphere would balance the force of the horses. 

 

8. Using Eq. 14-7, we find the gauge pressure to be gaugep gh , where   is the density 

of the fluid medium, and h is the vertical distance to the point where the pressure is equal 

to the atmospheric pressure.  

 

The gauge pressure at a depth of 20 m in seawater is  

 

 3 2 5

1 sw (1024 kg/m )(9.8 m/s )(20 m) 2.00 10  Pap gd    . 

 

On the other hand, the gauge pressure at an altitude of 7.6 km is  

 

 3 2 4

2 air (0.87 kg/m )(9.8 m/s )(7600 m) 6.48 10  Pap gh    . 

 

Therefore, the change in pressure is  

 
5 4 5

1 2 2.00 10  Pa 6.48 10  Pa 1.4 10  Pap p p         . 

 

9. The hydrostatic blood pressure is the gauge pressure in the column of blood between 

feet and brain. We calculate the gauge pressure using Eq. 14-7. 

 

(a) The gauge pressure at the heart of the Argentinosaurus is  

 

 

3 3 2

heart brain

3

1 torr
80 torr (1.06 10 kg/m )(9.8 m/s )(21 m 9.0 m)

133.33 Pa

1.0 10 torr.

p p gh
 

       
 

 

 

 

(b) The gauge pressure at the feet of the Argentinosaurus is  
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3 3 2

feet brain

3

1 torr
80 torr (1.06 10 kg/m )(9.8 m/s )(21 m)

133.33 Pa

80 torr 1642 torr 1722 torr 1.7 10 torr.

p p gh
 

      
 

    

 

 

10. With A = 0.000500 m
2
 and F = pA (with p given by Eq. 14-9), then we have ghA = 

9.80 N. This gives h  2.0 m, which means d + h = 2.80 m. 

 

11. The hydrostatic blood pressure is the gauge pressure in the column of blood between 

feet and brain. We calculate the gauge pressure using Eq. 14-7. 

 

(a) The gauge pressure at the brain of the giraffe is  

 

 

3 3 2

brain heart

1 torr
250 torr (1.06 10 kg/m )(9.8 m/s )(2.0 m)

133.33 Pa

94 torr.

p p gh
 

      
 



 

 

(b) The gauge pressure at the feet of the giraffe is  

 

3 3 2

feet heart

2

1 torr
250 torr (1.06 10 kg/m )(9.8 m/s )(2.0 m) 406 torr

133.33 Pa

4.1 10 torr.

p p gh
 

      
 

 

 

(c) The increase in the blood pressure at the brain as the giraffe lowers its head to the 

level of its feet is 
2

feet brain 406 torr 94 torr 312 torr 3.1 10 torr.p p p         

 

12. Note that 0.05 atm equals 5065 Pa.  Application of Eq. 14-7 with the notation in this 

problem leads to 

 max

liquid liquid liquid

0.05 atm 5065 Pap
d

g g g  
   . 

 

Thus the difference of this quantity between fresh water (998 kg/m
3
) and Dead Sea water 

(1500 kg/m
3
) is 

 

max 2 3 3

fw sw

5065 Pa 1 1 5065 Pa 1 1
0.17 m.

9.8 m/s 998 kg/m 1500 kg/m
d

g  

   
        

  
 

 

13. Recalling that 1 atm = 1.01  10
5
 Pa, Eq. 14-8 leads to 
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3 2 3 3

5

1 atm
(1024 kg/m ) (9.80 m/s ) (10.9 10 m) 1.08 10 atm.

1.01 10 Pa
gh

 
     

 

 

14. We estimate the pressure difference (specifically due to hydrostatic effects) as 

follows: 
3 3 2 4(1.06 10  kg/m )(9.8 m/s )(1.83 m) = 1.90 10 Pa.p gh      

 

15. In this case, Bernoulli’s equation reduces to Eq. 14-10. Thus, 

 
3 2 4( ) (1800kg/m )(9.8 m/s )(1.5 m) 2.6 10 Pa .gp g h        

 

16. At a depth h without the snorkel tube, the external pressure on the diver is  

0p p gh  , where 0p  is the atmospheric pressure. Thus, with a snorkel tube of length 

h, the pressure difference between the internal air pressure and the water pressure against 

the body is  

0p p p gh    . 

(a) If 0.20 m,h   then 

3 2

5

1atm
(998 kg/m )(9.8 m/s )(0.20 m) 0.019 atm

1.01 10  Pa
p gh   


. 

 

(b) Similarly, if 4.0 m,h   then 

3 2

5

1atm
(998 kg/m )(9.8 m/s )(4.0 m) 0.39 atm

1.01 10  Pa
p gh   


. 

 

17. THINK The minimum force that must be applied to open the hatch is equal to the 

gauge pressure times the area of the hatch. 

 

EXPRESS The pressure p at the depth d of the hatch cover is p0 + gd, where  is the 

density of ocean water and p0 is atmospheric pressure. Thus, the gauge pressure is 

gaugep gd , and the minimum force that must be applied by the crew to open the hatch 

has magnitude gauge ( )F p A gd A  , where A is the area of the hatch. 

 

Substituting the values given, we find the force to be 

 

 
3 2

gauge

5

( ) (1024 kg/m )(9.8 m/s )(100 m)(1.2 m)(0.60 m)

7.2 10 N.

F p A gd A  

 
 

 

LEARN The downward force of the water on the hatch cover is (p0 + gd)A, and the air 

in the submarine exerts an upward force of p0A. The greater the depth of the submarine, 

the greater the force required to open the hatch.  
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18. Since the pressure (caused by liquid) at the bottom of the barrel is doubled due to the 

presence of the narrow tube, so is the hydrostatic force. The ratio is therefore equal to 2.0. 

The difference between the hydrostatic force and the weight is accounted for by the 

additional upward force exerted by water on the top of the barrel due to the increased 

pressure introduced by the water in the tube. 

 

19. We can integrate the pressure (which varies linearly with depth according to Eq. 14-7) 

over the area of the wall to find out the net force on it, and the result turns out fairly 

intuitive (because of that linear dependence): the force is the “average” water pressure 

multiplied by the area of the wall (or at least the part of the wall that is exposed to the 

water), where “average” pressure is taken to mean 
1

2
 (pressure at surface + pressure at 

bottom).  Assuming the pressure at the surface can be taken to be zero (in the gauge 

pressure sense explained in section 14-4), then this means the force on the wall is 
1

2
 gh  

multiplied by the appropriate area.  In this problem the area is hw (where w is the 8.00 m 

width), so the force is 
1

2
 gh

2
w, and the change in force (as h is changed) is 

 
1

2
 gw ( hf 

2
 – hi 

2 
)  =  

1

2
 (998 kg/m

3
)(9.80 m/s

2
)(8.00 m)(4.00

2
 – 2.00

2
)m

2
  = 4.69  10

5
 N. 

 

20. (a) The force on face A of area AA due to the water pressure alone is 

 

   
32 3 3 2

6

(2 ) 2 1.0 10 kg m 9.8m s 5.0m

2.5 10 N.

A A A w A A wF p A gh A g d d     

 
 

 

Adding the contribution from the atmospheric pressure,  

 

F0 = (1.0  10
5
 Pa)(5.0 m)

2
 = 2.5  10

6
 N, 

we have 
6 6 6

0 2.5 10 N  2.5 10 N 5.0 10 N.A AF F F          

 

(b) The force on face B due to water pressure alone is 

 

   
32 3 3 3 2

avg

6

5 5 5
1.0 10 kg m 9.8m s 5.0m

2 2 2

3.1 10 N.

B B B w

d
F p A g d gd 

 
     

 

 

 

 

Adding the contribution from the atmospheric pressure,  

 

F0 = (1.0  10
5
 Pa)(5.0 m)

2
 = 2.5  10

6
 N, 

we obtain 
6 6 6

0 2.5 10 N  3.1 10 N 5.6 10 N.B BF F F          
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21. THINK Work is done to remove liquid from one vessel to another.  

 

EXPRESS When the levels are the same, the height of the liquid is h = (h1 + h2)/2, where 

h1 and h2 are the original heights. Suppose h1 is greater than h2. The final situation can 

then be achieved by taking liquid from the first vessel with volume V = A(h1 – h) and 

mass m = V = A(h1 – h), and lowering it a distance y = h – h2. The work done by the 

force of gravity is  

Wg = mg y =A(h1 – h)g(h – h2). 

 

ANALYZE We substitute h = (h1 + h2)/2 to obtain  

 

 
2 3 3 2 4 2 2

1 2

1 1
(1.30 10 kg/m )(9.80 m/s )(4.00 10 m )(1.56 m 0.854 m)

4 4

0.635 J

gW gA h h      



 

 

LEARN Since gravitational force is conservative, the work done only depends on the 

initial and final heights of the vessels, and not on how the liquid is transferred. 

 

22. To find the pressure at the brain of the pilot, we note that the inward acceleration can 

be treated from the pilot’s reference frame as though it is an outward gravitational 

acceleration against which the heart must push the blood. Thus, with 4a g , we have 

 

3 3 2

brain heart

1 torr
120 torr (1.06 10 kg/m )(4 9.8 m/s )(0.30 m)

133 Pa

120 torr 94 torr 26 torr.

p p ar
 

       
 

  

 

 

23. Letting pa = pb, we find  

 

cg(6.0 km + 32 km + D) + m(y – D) = cg(32 km) + my 

and obtain 

    3

3 3

6.0km 2.9g cm6.0km
44km.

3.3g cm 2.9g cm

c

m c

D


 
  

 
 

 

24. (a) At depth y the gauge pressure of the water is p = gy, where  is the density of the 

water. We consider a horizontal strip of width W at depth y, with (vertical) thickness dy, 

across the dam. Its area is dA = W dy and the force it exerts on the dam is dF = p dA = 

gyW dy. The total force of the water on the dam is 

 

    
22 3 3 2

0

9

1 1
1.00 10 kg m 9.80m s 314m 35.0m

2 2

1.88 10 N.

D

F gyW dy gWD    

 

  
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(b) Again we consider the strip of water at depth y. Its moment arm for the torque it 

exerts about O is D – y so the torque it exerts is  

 

d = dF(D – y) = gyW (D – y)dy 

 

and the total torque of the water is 

 

 

    

3 3 3

0

33 3 2 10

1 1 1

2 3 6

1
1.00 10 kg m 9.80m s 314m 35.0m 2.20 10 N m.

6

D

gyW D y dy gW D D gWD   
 

     
 

    


 

 

(c) We write  = rF, where r is the effective moment arm. Then, 

 
31

6

21
2

35.0 m
11.7 m.

3 3

gWD D
r

F gWD




      

 

25. As shown in Eq. 14-9, the atmospheric pressure 0p  bearing down on the barometer’s 

mercury pool is equal to the pressure gh  at the base of the mercury column: 
0p gh . 

Substituting the values given in the problem statement, we find the atmospheric pressure 

to be  

4 3 2

0

1 torr
(1.3608 10 kg/m )(9.7835 m/s )(0.74035 m)

133.33 Pa

739.26 torr.

p gh
 

    
 



 

 

26. The gauge pressure you can produce is 

 

   3 2 2

3

5

1000kg m 9.8m s 4.0 10 m
3.9 10 atm

1.01 10 Pa atm
p gh






      


 

 

where the minus sign indicates that the pressure inside your lung is less than the outside 

pressure. 

 

27. THINK The atmospheric pressure at a given height depends on the density 

distribution of air.   

 

EXPRESS If the air density were uniform,  =const., then the variation of pressure with 

height may be written as: p2 = p1 – g(y2 – y1). We take y1 to be at the surface of Earth, 

where the pressure is p1 = 1.01  10
5
 Pa, and y2 to be at the top of the atmosphere, where 

the pressure is p2 = 0. On the other hand, if the density varies with altitude, then 

 

2 1
0

.
h

p p g dy    
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For the case where the density decreases linearly with height,  = 0 (1  y/h), where 0 is 

the density at Earth’s surface and g = 9.8 m/s
2
 for 0  y  h, the integral becomes 

 

2 1 0 1 0
0

1
1 .

2

h y
p p g dy p gh

h
 

 
     

   

 

ANALYZE (a) For uniform density with  = 1.3 kg/m
3
, we find the height of the 

atmosphere to be 
5

31
2 1 3 2

1.01 10 Pa
7.9 10 m = 7.9 km.

(1.3 kg/m ) (9.8m/s )

p
y y

g


      

 

(b) With density decreasing linearly with height, 2 1 0 / 2p p gh  . The condition p2 = 0 

implies 
5

31

3 2

0

2 2(1.01 10 Pa)
16 10 m = 16 km.

(1.3 kg/m ) (9.8 m/s )

p
h

g


     

 

LEARN Actually the decrease in air density is approximately exponential, with pressure 

halved at a height of about 5.6 km.  

 

28. (a) According to Pascal’s principle, F/A = f/a  F = (A/a)f. 

 

(b) We obtain 
2

3

2

(3.80 cm)
(20.0 10 N) = 103 N.

(53.0 cm)

a
f F

A
    

 

The ratio of the squares of diameters is equivalent to the ratio of the areas. We also note 

that the area units cancel. 

 

29. Equation 14-13 combined with Eq. 5-8 and Eq. 7-21 (in absolute value) gives 

 

mg = kx 
A1

 A2

 . 

 

With A2 = 18A1 (and the other values given in the problem) we find m = 8.50 kg. 

 

30. Taking “down” as the positive direction, then using Eq. 14-16 in Newton’s second 

law, we have  (5.00 kg)g – (3.00 kg)g = 5a. This gives a = 
2

5
 g = 3.92 m/s

2
, where g = 9.8 

m/s
2
. Then (see Eq. 2-15)  

1

2
 at

2
 = 0.0784 m (in the downward direction). 

 

31. THINK The block floats in both water and oil. We apply Archimedes’ principle to 

analyze the problem. 
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EXPRESS Let V be the volume of the block. Then, the submerged volume in water is 

2 / 3sV V . Since the block is floating, by Archimedes’ principle the weight of the 

displaced water is equal to the weight of the block, i.e., w Vs = b V, where w is the 

density of water, and b is the density of the block.  

 

ANALYZE (a) We substitute Vs = 2V/3 to obtain the density of the block:  

 

b = 2w/3 = 2(1000 kg/m
3
)/3  6.7 10

2
 kg/m

3
. 

 

(b) Now, if o is the density of the oil, then Archimedes’ principle yields 
o s bV V   . 

Since the volume submerged in oil is 0.90sV V  , the density of the oil is  

 

2 3 2 3(6.7 10 kg/m ) 7.4 10 kg/m
0.90

o b

V V

V V
 

 
     

 
. 

 

LEARN Another way to calculate the density of the oil is to note that the mass of the 

block can be written as   

b o s w sm V V V     . 

Therefore,  

3 2 32 / 3
(1000 kg/m ) 7.4 10 kg/m

0.90

s
o w

s

V V

V V
 

 
    

 
. 

 

That is, by comparing the fraction submerged with that in water (or another liquid with 

known density), the density of the oil can be deduced.    

 

32. (a) The pressure (including the contribution from the atmosphere) at a depth of htop = 

L/2 (corresponding to the top of the block) is 

 
5 3 2 5

top atm top 1.01 10  Pa (1030 kg/m )(9.8 m/s )(0.300 m) 1.04 10 Pap p gh        

 

where the unit Pa (pascal) is equivalent to N/m
2
. The force on the top surface (of area A = 

L
2
 = 0.36 m

2
) is  

Ftop = ptop A = 3.75  10
4
 N. 

 

(b) The pressure at a depth of hbot = 3L/2 (that of the bottom of the block) is 

 
5 3 2

bot atm bot

5

1.01 10  Pa (1030 kg/m )(9.8 m/s ) (0.900 m)

1.10 10 Pa

p p gh    

 
 

 

where we recall that the unit Pa (pascal) is equivalent to N/m
2
. The force on the bottom 

surface is  

Fbot = pbot A = 3.96  10
4
 N. 
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(c) Taking the difference Fbot – Ftop cancels the contribution from the atmosphere 

(including any numerical uncertainties associated with that value) and leads to 

 
3 3

bot top bot top( ) 2.18 10 NF F g h h A gL        

 

which is to be expected on the basis of Archimedes’ principle. Two other forces act on 

the block: an upward tension T and a downward pull of gravity mg. To remain stationary, 

the tension must be 

 
2 3 3

bot top( ) (450 kg)(9.80 m/s ) 2.18 10  N 2.23 10 N.T mg F F         

 

(d) This has already been noted in the previous part: 32.18 10 NbF   , and T + Fb = mg. 

 

33. THINK The iron anchor is submerged in water, so we apply Archimedes’ principle 

to calculate its volume and weight in air. 

 

EXPRESS The anchor is completely submerged in water of density w. Its apparent 

weight is Wapp = W – Fb, where W= mg is its actual weight and Fb =w gV is the buoyant 

force. 

 

ANALYZE (a) Substituting the values given, we find the volume of the anchor to be 

 

   
app 2 3

3 2

200 N
2.04 10 m .

1000 kg/m 9.8 m/s

b

w w

W W F
V

g g 




      

 

(b) The mass of the anchor is Fem g , where Fe is the density of iron (found in Table  

14-1). Therefore, its weight in air is 

 
3 2 3 2 3

Fe (7870 kg/m )(2.04 10 m )(9.80 m/s ) 1.57 10 N .W mg Vg        

 

LEARN In general, the apparent weight of an object of density that is completely 

submerged in a fluid of density f  can be written as app ( )fW Vg   . 

 

34. (a) Archimedes’ principle makes it clear that a body, in order to float, displaces an 

amount of the liquid that corresponds to the weight of the body. The problem (indirectly) 

tells us that the weight of the boat is W = 35.6 kN. In salt water of density  

' = 1100 kg/m
3
, it must displace an amount of liquid having weight equal to 35.6 kN. 

 

(b) The displaced volume of salt water is equal to 

 
3

3

3 3 2

3.56 10 N
3.30 m .

(1.10 10  kg/m )(9.80 m/s )

W
V

g


   

 
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In freshwater, it displaces a volume of V = W/g = 3.63 m
3
, where  = 1000 kg/m

3
. The 

difference is V – V ' = 0.330 m
3
. 

 

35. The problem intends for the children to be completely above water. The total 

downward pull of gravity on the system is 

 

  wood3 356 N N gV  

 

where N is the (minimum) number of logs needed to keep them afloat and V is the 

volume of each log:  

V = (0.15 m)
2
 (1.80 m) = 0.13 m

3
. 

 

The buoyant force is Fb = watergVsubmerged, where we require Vsubmerged  NV. The density 

of water is 1000 kg/m
3
. To obtain the minimum value of N, we set Vsubmerged = NV and 

then round our “answer” for N up to the nearest integer: 

 
 

 
wood water

water wood

3 356 N
3 356 N N gV gNV N

gV
 

 
   


 

which yields N = 4.28  5 logs. 

 

36. From the “kink” in the graph it is clear that d = 1.5 cm. Also, the h = 0 point makes it 

clear that the (true) weight is 0.25 N.  We now use Eq. 14-19 at h = d = 1.5 cm to obtain  

 

Fb = (0.25 N – 0.10 N ) = 0.15 N. 

 

Thus, liquid g V = 0.15, where  

 

V = (1.5 cm)(5.67 cm
2
) = 8.5  10

6
 m

3
. 

 

Thus, liquid = 1800 kg/m
3
 = 1.8 g/cm

3
. 

 

37. For our estimate of Vsubmerged we interpret “almost completely submerged” to mean 

 

3

submerged

4
where 60 cm .

3
o oV r r   

 

Thus, equilibrium of forces (on the iron sphere) leads to 

3 3

iron water submerged iron

4 4

3 3
b o iF m g gV g r r   

 
    

 
 

 

where ri is the inner radius (half the inner diameter). Plugging in our estimate for 

Vsubmerged as well as the densities of water (1.0 g/cm
3
) and iron (7.87 g/cm

3
), we obtain the 

inner diameter: 
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1/3
3

o 3

1.0 g/cm
2 2 1 57.3 cm.

7.87 g/cm
ir r

 
   

 
 

 

38. (a) An object of the same density as the surrounding liquid (in which case the 

“object” could just be a packet of the liquid itself) is not going to accelerate up or down 

(and thus won’t gain any kinetic energy).  Thus, the point corresponding to zero K in the 

graph must correspond to the case where the density of the object equals liquid.  

Therefore, ball = 1.5 g/cm
3
 (or 1500 kg/m

3
). 

 

(b) Consider the liquid = 0 point (where Kgained = 1.6 J).  In this case, the ball is falling 

through perfect vacuum, so that v
2
 = 2gh (see Eq. 2-16) which means that K = 

1

2
 mv

2
 = 1.6 

J can be used to solve for the mass.  We obtain mball = 4.082 kg.  The volume of the ball 

is then given by  

mball/ball = 2.72  10
3

 m
3
. 

 

39. THINK The hollow sphere is half submerged in a fluid. We apply Archimedes’ 

principle to calculate its mass and density. 

 

EXPRESS The downward force of gravity mg is balanced by the upward buoyant force 

of the liquid: mg = g Vs. Here m is the mass of the sphere,  is the density of the liquid, 

and Vs is the submerged volume. Thus m = Vs. The submerged volume is half the total 

volume of the sphere, so   31
2

4 3s oV r  , where ro is the outer radius.  

 

ANALYZE (a) Substituting the values given, we find the mass of the sphere to be  

 

3 3 3 31 4 2 2
(800 kg/m )(0.090 m) 1.22 kg.

2 3 3 3
s o om V r r

  
  

   
       

  
 

 

(b) The density m of the material, assumed to be uniform, is given by m = m/V, where m 

is the mass of the sphere and V is its volume. If ri is the inner radius, the volume is 

 

    3 33 3 4 34 4
( ) 0.090 m 0.080 m 9.09 10 m .

3 3
o iV r r

         

The density is 

3 3

4 3

1.22 kg
1.3 10 kg/m .

9.09 10 m
m 
  


 

 

LEARN Note that m > , i.e., the density of the material is greater that of the fluid. 

However, the sphere floats (and displaces its own weight of fluid) because it’s hollow.     

 

40. If the alligator floats, by Archimedes’ principle the buoyancy force is equal to the 

alligator’s weight (see Eq. 14-17). Therefore,  
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2 2H O H O( )b gF F m g Ah g   . 

 

If the mass is to increase by a small amount m m m m   , then 

 

2H O ( )b bF F A h h g   . 

 

With 0.010b b bF F F mg    , the alligator sinks by  

 

2 2

3

3 2

H O H O

0.01 0.010(130 kg)
6.5 10  m 6.5 mm

(998 kg/m )(0.20 m )

bF mg
h

Ag Ag 


       . 

 

41. Let 
iV  be the total volume of the iceberg. The non-visible portion is below water, and 

thus the volume of this portion is equal to the volume fV  of the fluid displaced by the 

iceberg. The fraction of the iceberg that is visible is  

 

 frac 1
i f f

i i

V V V

V V


   . 

Since iceberg is floating, Eq. 14-18 applies:  

 

.g i f i fF m g m g m m     

 

Since m V , the above equation implies  

 
f i

i i f f

i f

V
V V

V


 


   . 

Thus, the visible fraction is  

frac 1 1
f i

i f

V

V




     . 

 

(a) If the iceberg ( 3917 kg/mi  ) floats in salt water with 31024 kg/mf  , then the 

fraction would be  
3

3

917 kg/m
frac 1 1 0.10 10%

1024 kg/m

i

f




      . 

 

(b) On the other hand, if the iceberg floats in fresh water ( 31000 kg/mf  ), then the 

fraction would be  
3

3

917 kg/m
frac 1 1 0.083 8.3%

1000 kg/m

i

f




      . 
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42. Work is the integral of the force over distance (see Eq. 7-32). Referring to the 

equation immediately preceding Eq. 14-7, we see the work can be written as 

 

W =
water gA(–y) dy 

 

where we are using y = 0 to refer to the water surface (and the +y direction is upward).  

Let h = 0.500 m.  Then, the integral has a lower limit of –h and an upper limit of yf , with 

 

yf /h = cylinder /water = – 0.400. 

The integral leads to 

W = 
1

2
  watergAh

2
(1 – 0.4

2
)  =  4.11 kJ . 

 

43. (a) When the model is suspended (in air) the reading is Fg (its true weight, neglecting 

any buoyant effects caused by the air). When the model is submerged in water, the 

reading is lessened because of the buoyant force: Fg – Fb. We denote the difference in 

readings as m. Thus, 

( )g g bF F F mg     

 

which leads to Fb = mg. Since Fb = wgVm (the weight of water displaced by the model) 

we obtain 

4 30.63776kg
6.378 10 m .

1000 kg/m
m

w

m
V




     

 

(b) The 1
20

 scaling factor is discussed in the problem (and for purposes of significant 

figures is treated as exact). The actual volume of the dinosaur is 

 
3 3

dino 20 5.102 m .mV V   

 

(c) Using 3dino

dino

1000 kg/mw

m

V
    , we find the mass of the T. rex to be 

 
3 3 3

dino dino (1000kg/m ) (5.102 m ) 5.102 10 kgwm V    . 

 

44. (a) Since the lead is not displacing any water (of density w), the lead’s volume is not 

contributing to the buoyant force Fb. If the immersed volume of wood is Vi, then 

 

wood
wood

wood

0.900 0.900 ,b w i w w

m
F V g V g g  



 
    

 
 

 

which, when floating, equals the weights of the wood and lead: 
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wood
wood lead

wood

0.900 ( ) .b w

m
F g m m g



 
   

 
 

Thus, 
3

wood
lead wood 3

wood

(0.900) (1000kg/m )(3.67 kg)
0.900 3.67 kg

600 kg/m

1.84 kg.

w

m
m m



 
    

 



 

 

(b) In this case, the volume Vlead = mlead/lead also contributes to Fb. Consequently, 

 

wood
lead wood lead

wood lead

0.900 ( ) ,w
b w

m
F g m g m m g




 

   
      

   
 

which leads to 

 

wood wood wood

lead 3 3 4 3

lead

0.900( / ) 1.84 kg

1 / 1 (1.00 10 kg/m /1.13 10 kg/m )

2.01 kg.

w

w

m m
m

 

 


 

   



 

 

45. The volume Vcav of the cavities is the difference between the volume Vcast of the 

casting as a whole and the volume Viron contained: Vcav = Vcast – Viron. The volume of the 

iron is given by Viron = W/giron, where W is the weight of the casting and iron is the 

density of iron. The effective weight in water (of density w) is Weff = W – gw Vcast. Thus, 

Vcast = (W – Weff)/gw and 

 

eff
cav 2 3 2 3 3

iron

3

6000 N 4000 N 6000 N

(9.8 m/s ) (1000kg/m ) (9.8 m/s ) (7.87 10 kg/m )

0.126 m .

w

W W W
V

g g 

 
   





 

 

46. Due to the buoyant force, the ball accelerates upward (while in the water) at rate a 

given by Newton’s second law: waterVg – ballVg = ballVa, which yields 

 

 water ball(1 / )a g   . 

With ball = 0.300 water, we find that  

 

2 2water

ball

1
1 (9.80 m/s ) 1 22.9 m/s

0.300
a g





   
       

  
. 

 

Using Eq. 2-16 with y = 0.600 m, the speed of the ball as it emerges from the water is 

 

 22 2(22.9 m/s )(0.600 m) 5.24 m/sv a y    . 
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This causes the ball to reach a maximum height hmax (measured above the water surface) 

given by hmax = v
2
/2g (see Eq. 2-16 again).  Thus,  

 

 
2 2

max 2

(5.24 m/s)
1.40 m

2 2(9.80 m/s )

v
h

g
   . 

 

47. (a) If the volume of the car below water is V1 then Fb = wV1g = Wcar, which leads to 

 

  
  

2

3car
1 3 2

1800kg 9.8m s
1.80 m .

1000kg m 9.8m sw

W
V

g
    

 

(b) We denote the total volume of the car as V and that of the water in it as V2. Then 

 

car 2b w wF Vg W V g     

which gives 

 

 3 3 3 3car
2 3

1800kg
0.750m 5.00m 0.800m 4.75 m .

1000kg mw

W
V V

g
        

 

48. Let  be the density of the cylinder (0.30 g/cm
3
 or 300 kg/m

3
) and Fe be the density 

of the iron (7.9 g/cm
3
 or 7900 kg/m

3
).  The volume of the cylinder is  

 

Vc = (612) cm
3
 = 72 cm

3
 = 0.000072 m

3
, 

 

and that of the ball is denoted Vb . The part of the cylinder that is submerged has volume 

 

Vs = (4  12) cm
3
 = 48 cm

3
 = 0.000048 m

3
. 

 

Using the ideas of section 14-7, we write the equilibrium of forces as 

 

gVc  +  Fe gVb  =  w gVs   +  w gVb         Vb = 3.8 cm
3
 

 

where we have used w = 998 kg/m
3
  (for water, see Table 14-1). Using Vb = 

4

3
 r

3
 we 

find r = 9.7 mm. 

 

49. This problem involves use of continuity equation (Eq. 14-23): 1 1 2 2Av A v . 

 

(a) Initially the flow speed is 1.5 m/siv   and the cross-sectional area is iA HD . At 

point a, as can be seen from the figure, the cross-sectional area is 

 

 ( ) ( )aA H h D b h d    . 
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Thus, by continuity equation, the speed at point a is  

 

(14 m)(55 m)(1.5 m/s)

( ) ( ) (14 m 0.80 m)(55 m) (12 m 0.80 m)(30 m)

2.96 m/s 3.0 m/s.

i i i
a

a

Av HDv
v

A H h D b h d
  

     

 

 

 

(b) Similarly, at point b, the cross-sectional area is bA HD bd  , and therefore, by 

continuity equation, the speed at point b is  

 

(14 m)(55 m)(1.5 m/s)
2.8 m/s.

(14 m)(55 m) (12 m)(30 m)

i i i
b

b

Av HDv
v

A HD bd
   

 
 

 

50. The left and right sections have a total length of 60.0 m, so (with a speed of 2.50 m/s) 

it takes 60.0/2.50  = 24.0 seconds to travel through those sections.  Thus it takes (88.8 – 

24.0) s = 64.8 s to travel through the middle section.  This implies that the speed in the 

middle section is  

vmid = (50 m)/(64.8 s) = 0.772 m/s. 

 

Now Eq. 14-23 (plus that fact that A = r
2
) implies rmid = rA (2.5 m/s)/(0.772 m/s)  where 

rA = 2.00 cm.  Therefore, mid 3.60 cmr  . 

 

51. THINK We use the equation of continuity to solve for the speed of water as it leaves 

the sprinkler hole.  

 

EXPRESS Let v1 be the speed of the water in the hose and v2 be its speed as it leaves one 

of the holes. The cross-sectional area of the hose is A1 = R
2
. If there are N holes and A2 

is the area of a single hole, then the equation of continuity becomes 

 

 
2

1
1 1 2 2 2 1 12

2

A R
v A v NA v v v

NA Nr
     

 

where R is the radius of the hose and r is the radius of a hole.  

 

ANALYZE Noting that R/r = D/d (the ratio of diameters) we find the speed to be 

 

 

 
 

22

2 1 22

1.9cm
0.91 m/s 8.1 m/s.

24 0.13cm

D
v v

Nd
    

 

LEARN The equation of continuity implies that the smaller the cross-sectional area of 

the sprinkler hole, the greater the speed of water as it emerges from the hole.  

 

52. We use the equation of continuity and denote the depth of the river as h. Then, 
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          8.2m 3.4m 2.3m s 6.8m 3.2m 2.6m s 10.5m 2.9m sh   

 

which leads to h = 4.0 m. 

 

53. THINK The power of the pump is the rate of work done in lifting the water. 

 

EXPRESS Suppose that a mass m of water is pumped in time t. The pump increases 

the potential energy of the water by U =(m)gh, where h is the vertical distance through 

which it is lifted, and increases its kinetic energy by K = 21
2
( )m v , where v is its final 

speed. The work it does is  

21
( ) ( )

2
W U K m gh m v         

and its power is 

21
.

2

W m
P gh v

t t

   
   

   
 

 

The rate of mass flow is m/ t = wAv, where w is the density of water and A is the area 

of the hose.  

 

ANALYZE The area of the hose is A = r
2
 = (0.010 m)

2
 = 3.14  10

–4
 m

2
 and  

 

wAv = (1000 kg/m
3
) (3.14  10

–4
 m

2
) (5.00 m/s) = 1.57 kg/s. 

 

Thus, the power of the pump is 

 

    
 

2

2 2
5.0m s1

1.57 kg s 9.8m s 3.0m 66 W.
2 2

P Av gh v
  
           

 

 

LEARN The work done by the pump is converted into both the potential energy and 

kinetic energy of the water.   

 

54. (a) The equation of continuity provides (26 + 19 + 11) L/min = 56 L/min for the flow 

rate in the main (1.9 cm diameter) pipe. 

 

(b) Using v = R/A and A = d 
2
/4, we set up ratios: 

 
2

56

2

26

56 / (1.9) / 4
1.0.

26 / (1.3) / 4

v

v




   

 

55. We rewrite the formula for work W (when the force is constant in a direction parallel 

to the displacement d) in terms of pressure: 
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( )
F

W Fd Ad pV
A

 
   

 
 

 

where V is the volume of the water being forced through, and p is to be interpreted as the 

pressure difference between the two ends of the pipe. Thus, 

 
5 3 5(1.0 10 Pa) (1.4 m ) 1.4 10 J.W      

 

56. (a) The speed v of the fluid flowing out of the hole satisfies 21
2

 or 2v gh v gh   . 

Thus, 1v1A1 = 2v2A2, which leads to 

 

1 2
1 1 2 2

2 1

2 2 2.
A

ghA ghA
A


 


     

(b) The ratio of volume flow is 

1 1 1 1

2 2 2 2

1

2

R v A A

R v A A
   . 

 

(c) Letting R1/R2 = 1, we obtain 1 2 2 1 1 22v v A A h h   . Thus, 

 

2 1 4 (12.0 cm)/4 3.00 cmh h   . 

 

57. THINK We use the Bernoulli equation to solve for the flow rate, and the continuity 

equation to relate cross-sectional area to the vertical distance from the hole.   

 

EXPRESS According to the Bernoulli equation:  

 
2 21 1

1 1 1 2 2 22 2
p v gh p v gh        , 

 

where  is the density of water, h1 is the height of the water in the tank, p1 is the pressure 

there, and v1 is the speed of the water there; h2 is the altitude of the hole, p2 is the pressure 

there, and v2 is the speed of the water there. The pressure at the top of the tank and at the 

hole is atmospheric, so p1 = p2. Since the tank is large we may neglect the water speed at 

the top; it is much smaller than the speed at the hole. The Bernoulli equation then 

simplifies to 21
1 2 22

gh v gh    .  

 

ANALYZE (a) With 1 2 0.30 mD h h   , the speed of water as it emerges from the 

hole is 

    2

2 1 22 2 9.8m s 0.30m 2.42m s.v g h h     

 

Thus, the flow rate is  
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A2v2 = (6.5  10
–4

 m
2
)(2.42 m/s) = 1.6  10

–3
 m

3
/s. 

 

(b) We use the equation of continuity: A2v2 = A3v3, where 1
3 22

A A  and v3 is the water 

speed where the area of the stream is half its area at the hole (see diagram below).  

 

 
Thus,  

v3 = (A2/A3)v2 = 2v2 = 4.84 m/s. 

 

The water is in free fall and we wish to know how far it has fallen when its speed is 

doubled to 4.84 m/s. Since the pressure is the same throughout the fall, 
2 21 1
2 2 3 32 2

v gh v gh      . Thus, 

 

   

 

2 22 2

3 2
2 3 2

4.84m s 2.42m s
0.90 m.

2 2 9.8m s

v v
h h

g


     

 

LEARN By combing the two expressions obtained from Bernoulli’s equation and 

equation of continuity, the cross-sectional area of the stream may be related to the 

vertical height fallen as  
2 2

2 2 22

3 2 3 32 2
2 3

3 2

1 1 .
2 2 2

v v v Av A
h h

g g A g A

      
           
        

 

 

58. We use Bernoulli’s equation: 

 2 2

2 1 2

1

2
ip p gD v v      

 

where  = 1000 kg/m
3
, D = 180 m, v1 = 0.40 m/s, and v2 = 9.5 m/s. Therefore, we find p 

= 1.7  10
6
 Pa, or 1.7 MPa. The SI unit for pressure is the pascal (Pa) and is equivalent to 

N/m
2
. 

 

59. THINK The elevation and cross-sectional area of the pipe are changing, so we apply 

the Bernoulli equation and continuity equation to analyze the flow of water through the 

pipe. 
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EXPRESS To calculate the flow speed at the lower level, we use the equation of 

continuity: A1v1 = A2v2. Here A1 is the area of the pipe at the top and v1 is the speed of the 

water there; A2 is the area of the pipe at the bottom and v2 is the speed of the water there. 

As for the pressure at the lower level, we use the Bernoulli equation:  

 
2 21 1

1 1 1 2 2 22 2
p v gh p v gh        , 

 

where  is the density of water, h1 is its initial altitude, and h2 is its final altitude. 

 

ANALYZE (a) From the continuity equation, we find the speed at the lower level to be  

 

v2 = (A1/A2)v1 = [(4.0 cm
2
)/(8.0 cm

2
)] (5.0 m/s) = 2.5m/s. 

 

(b) Similarly, from the Bernoulli equation, the pressure at the lower level is  

 

   2 2

2 1 1 2 1 2

5 3 2 2 3 2

5

1

2

1
1.5 10 Pa (1000kg m ) (5.0m s) (2.5m s) (1000kg m )(9.8m/s )(10 m)

2

2.6 10 Pa.

p p v v g h h     

      

 

 

LEARN The water at the lower level has a smaller speed ( 2 1v v ) but higher pressure 

( 2 1p p ).  

 

60. (a) We use Av = const. The speed of water is 

 

   

 
 

2 2

2

25.0cm 5.00cm
2.50m s 2.40m s.

25.0cm
v


   

 

(b) Since 21
2

const.,p v   the pressure difference is 

 

     
2 22 31 1

1000kg m 2.50m s 2.40m s 245Pa.
2 2

p v       
 

 

 

61. (a) The equation of continuity leads to 
2

1
2 2 1 1 2 1 2

2

r
v A v A v v

r

 
    

 
 

which gives v2 = 3.9 m/s. 

 

(b) With h = 7.6 m and p1 = 1.7  10
5
 Pa, Bernoulli’s equation reduces to 
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 2 2 4

2 1 1 2

1
8.8 10 Pa.

2
p p gh v v        

 

62. (a) Bernoulli’s equation gives 21
air2A Bp p v    However, A Bp p p gh    in 

order to balance the pressure in the two arms of the U-tube. Thus 21
air2

gh v  , or  

 

air

2
.

gh
v




  

(b) The plane’s speed relative to the air is  

 

 3 2

3

air

2 810kg/m (9.8m/s ) (0.260m)2
63.3m/s.

1.03kg/m

gh
v




    

 

63. We use the formula for v obtained in the previous problem: 

 

2

3

air

2 2(180Pa)
1.1 10 m/s.

0.031kg/m

p
v




     

 

64. (a) The volume of water (during 10 minutes) is 

 

       
2 3

1 1 15m s 10min 60s min 0.03m 6.4m .
4

V v t A
 

   
 

 

 

(b) The speed in the left section of pipe is 

 

 
2 2

1 1
2 1 1

2 2

3.0cm
15m s 5.4m s.

5.0cm

A d
v v v

A d

     
        

    
 

(c) Since  
2 21 1

1 1 1 2 2 22 2
p v gh p v gh         

 

and 1 2 1 0,h h p p  , which is the atmospheric pressure, 

 

       
2 22 2 5 3 3

2 0 1 2

5

1 1
1.01 10 Pa 1.0 10 kg m 15m s 5.4m s

2 2

1.99 10 Pa 1.97atm.

p p v v         
 

  

 

 

Thus, the gauge pressure is (1.97 atm – 1.00 atm) = 0.97 atm = 9.8  10
4
 Pa. 

 

65. THINK The design principles of the Venturi meter, a device that measures the flow 

speed of a fluid in a pipe, involve both the continuity equation and Bernoulli’s equation. 
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EXPRESS The continuity equation yields AV = av, and Bernoulli’s equation yields 
2 21 1

2 2
V p v    , where p = p2 – p1 with p2 equal to the pressure in the throat and p1 

the pressure in the pipe.  The first equation gives v = (A/a)V. We use this to substitute for 

v in the second equation and obtain  

 

 
22 21 1

2 2
/V p A a V    . 

 

The equation can be used to solve for V.  

 

ANALYZE (a) The above equation gives the following expression for V:  

 

   

2

2 2 2

2 2
.

1 ( / )

p a p
V

A a a A 

 
 

 
 

 

(b) We substitute the values given to obtain  

 

   

2 4 2 2 3 3

2 2 3 4 2 2 4 2 2

2 2(32 10 m ) (41 10 Pa 55 10 Pa)
3.06m/s.

(1000kg / m ) (32 10 m ) (64 10 m )

a p
V

a A



 

    
  

   
 

 

Consequently, the flow rate is  

 
4 2 2 3(64 10 m )(3.06 m/s) 2.0 10 m /s.R AV        

 

LEARN The pressure difference p between points 1 and 2 is what causes the height 

difference of the fluid in the two arms of the manometer. Note that p = p2 – p1 < 0 

(pressure in throat less than that in the pipe), but a A , so the expression inside the 

square root is positive.  

 

66. We use the result of part (a) in the previous problem. 

 

(a) In this case, we have p = p1 = 2.0 atm. Consequently,  

 
5

2 3 2

2 4(1.01 10 Pa)
4.1m/s.

(( / ) 1) (1000 kg/m ) [(5 / ) 1]

p
v

A a a a

 
  

 
 

 

(b) And the equation of continuity yields V = (A/a)v = (5a/a)v = 5v = 21 m/s. 

 

(c) The flow rate is given by  

4 2 3 3(5.0 10 m ) (4.1 m/s) 8.0 10 m / s.
4

Av  
     
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67. (a) The friction force is  

3 3 2 2(1.0 10  kg/m ) (9.8 m/s ) (6.0m) (0.040 m) 74 N.
4

f A p gdA
 

      
 

 

 

(b) The speed of water flowing out of the hole is v = 2 .gd  Thus, the volume of water 

flowing out of the pipe in t = 3.0 h is 

 
2

2 2 2 3(0.040 m) 2(9.8 m/s ) (6.0 m)  (3.0 h) (3600 s/h) 1.5 10 m .
4

V Avt


     

 

68. (a) We note (from the graph) that the pressures are equal when the value of inverse-

area-squared is 16 (in SI units).  This is the point at which the areas of the two pipe 

sections are equal.  Thus, if A1 = 1/ 16  when the pressure difference is zero, then A2 is 

0.25 m
2
. 

 

(b) Using Bernoulli’s equation (in the form Eq. 14-30) we find the pressure difference 

may be written in the form of a straight line: mx + b where x is inverse-area-squared (the 

horizontal axis in the graph), m is the slope, and b is the intercept (seen to be –300 

kN/m
2
).  Specifically, Eq. 14-30 predicts that b should be  – 

1

2
 v2

2
.  Thus, with  = 1000 

kg/m
3
 we obtain v2 = 600  m/s.  Then the volume flow rate (see Eq. 14-24) is  

 

R = A2 v2 = (0.25 m
2
)( 600  m/s) = 6.12 m

3
/s. 

 

If the more accurate value (see Table 14-1) = 998 kg/m
3 

is used, then the answer is 6.13 

m
3
/s. 

 

69. (a) Combining Eq. 14-35 and Eq. 14-36 in a manner very similar to that shown in the 

textbook, we find 

 
1 2 2 2

1 2

2 p
R A A

A A





 

 

for the flow rate expressed in terms of the pressure difference and the cross-sectional 

areas. Note that p = p1 – p2 = –7.2  10
3
 Pa and 2 2 3 4

1 2 8.66 10 mA A     , so that the 

square root is well defined. Therefore, we obtain R = 0.0776 m
3
/s. 

 

(b) The mass rate of flow is 3 3(900 kg/m )(0.0776 m /s) 69.8 kg/sR   . 

 

70. By Eq. 14-23, the speeds in the left and right sections are 
1

4
 vmid and 

1

9
 vmid, respectively, 

where vmid = 0.500 m/s.  We also note that 0.400 m
3
 of water has a mass of 399 kg (see 

Table 14-1). Then Eq. 14-31 (and the equation below it) gives 
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 2 2

mid 2 2 2 2

1 1 1 1 1 1
(399 kg)(0.50 m/s) 2.50 J.

2 9 4 2 9 4
W mv

   
        

   
 

 

71. (a) The stream of water emerges horizontally (0 = 0° in the notation of Chapter 4) 

with 0 2v gh . Setting y – y0 = –(H – h) in Eq. 4-22, we obtain the “time-of-flight”  

 

2( ) 2
( ).

H h
t H h

g g

 
  


 

 

Using this in Eq. 4-21, where x0 = 0 by choice of coordinate origin, we find  

 

 0

2( )
2 2 ( ) 2 (10 cm)(40 cm 10 cm) 35 cm.

H h
x v t gh h H h

g


        

 

(b) The result of part (a) (which, when squared, reads x
2
 = 4h(H – h)) is a quadratic 

equation for h once x and H are specified. Two solutions for h are therefore 

mathematically possible, but are they both physically possible? For instance, are both 

solutions positive and less than H? We employ the quadratic formula: 

 
2 2 2

2 0
4 2

x H H x
h Hh h

 
      

 

which permits us to see that both roots are physically possible, so long as x  H. Labeling 

the larger root h1 (where the plus sign is chosen) and the smaller root as h2 (where the 

minus sign is chosen), then we note that their sum is simply  

 
2 2 2 2

1 2 .
2 2

H H x H H x
h h H

   
     

 

Thus, one root is related to the other (generically labeled h' and h) by h' = H – h. Its 

numerical value is 40cm  10 cm 30 cm.h    

 

(c) We wish to maximize the function f = x
2
 = 4h(H – h). We differentiate with respect to 

h and set equal to zero to obtain  

 

4 8 0
2

df H
H h h

dh
      

 

or h = (40 cm)/2 = 20 cm, as the depth from which an emerging stream of water will 

travel the maximum horizontal distance. 

 

72. We use Bernoulli’s equation: 
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2 21 1
1 1 1 2 2 22 2

p v gh p v gh        . 

 

When the water level rises to height h2, just on the verge of flooding, 
2v , the speed of 

water in pipe M is given by 

 

 2

1 2 2 2 1 2

1
( )    2 ( ) 13.86 m/s.

2
g h h v v g h h        

 

By the continuity equation, the corresponding rainfall rate is  

 
2

52
1 2

1

(0.030 m)
(13.86 m/s) 2.177 10  m/s 7.8 cm/h.

(30 m)(60 m)

A
v v

A

  
     
 

 

 

73. Equilibrium of forces (on the floating body) is expressed as 

 

body liqui d submerged body totalbF m g gV gV     

which leads to 

submerged body

total liquid

.
V

V




  

 

We are told (indirectly) that two-thirds of the body is below the surface, so the fraction 

above is 2/3. Thus, with body = 0.98 g/cm
3
, we find liquid  1.5 g/cm

3
 — certainly much 

more dense than normal seawater (the Dead Sea is about seven times saltier than the 

ocean due to the high evaporation rate and low rainfall in that region). 

 

74. If the mercury level in one arm of the tube is lowered by an amount x, it will rise by x 

in the other arm. Thus, the net difference in mercury level between the two arms is 2x, 

causing a pressure difference of p = 2Hggx, which should be compensated for by the 

water pressure pw = wgh, where h = 11.2 cm. In these units, w = 1.00 g/cm
3
 and Hg =  

13.6 g/cm
3
 (see Table 14-1). We obtain 

 
3

3

Hg

(1.00 g/cm ) (11.2 cm)
0.412 cm.

2 2(13.6 g/cm )

wgh
x

g




    

 

75. Using m = V, Newton’s second law becomes  

 

waterVg – bubbleVg = bubbleVa, 

or 

 water bubble (1 / )a g    

       

With water = 998 kg/m
3
 (see Table 14-1), we find  

 



  CHAPTER 14 694 

3
3water

bubble 2 2

998 kg/m
975.6 kg/m

1 / 1 (0.225 m/s ) /(9.80 m/s )a g


   

 
. 

 

Using volume V = 
4

3
 r

3
 with 45.00 10 mr    for the bubble, we then find its mass: 

mbubble = 5.11  10
7

 kg. 

 

76. To be as general as possible, we denote the ratio of body density to water density as f 

(so that f = /w = 0.95 in this problem). Floating involves equilibrium of vertical forces 

acting on the body (Earth’s gravity pulls down and the buoyant force pushes up). Thus, 

 

b g w wF F gV gV     

 

where V is the total volume of the body and Vw is the portion of it that is submerged.  

 

(a) We rearrange the above equation to yield  

w

w

V
f

V




   

 

which means that 95% of the body is submerged and therefore 5.0% is above the water 

surface.  

 

(b) We replace w with 1.6w in the above equilibrium of forces relationship, and find  

 

1.6 1.6

w

w

V f

V




   

 

which means that 59% of the body is submerged and thus 41% is above the quicksand 

surface. 

 

(c) The answer to part (b) suggests that a person in that situation is able to breathe. 

 

77. The normal force NF  exerted (upward) on the glass ball of mass m has magnitude 

0.0948 N.  The buoyant force exerted by the milk (upward) on the ball has magnitude  

 

Fb = milk g V 

 

where V = 
4

3
   r

3
  is the volume of the ball.  Its radius is r = 0.0200 m. The milk density is 

milk = 1030 kg/m
3
.  The (actual) weight of the ball is, of course, downward, and has 

magnitude  Fg = mglass g.  Application of Newton's second law (in the case of zero 

acceleration) yields 

                                                  FN + milk g V  mglass g = 0 

 

which leads to mglass = 0.0442 kg.   
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78. Since Fg  = mg =  skier g V and the buoyant force is Fb = snow g V, then their ratio is 

 

Fb

Fg
 =  

snow g V

skier g V
  =  

snow

skier
  = 

96

1020
 = 0.094  (or 9.4%). 

 

79. Neglecting the buoyant force caused by air, then the 30 N value is interpreted as the 

true weight W of the object. The buoyant force of the water on the object is therefore  

(30 – 20) N = 10 N, which means 

 

3 3

3 2

10 N
1.02 10 m

(1000 kg/m )(9.8m/s )
b wF Vg V       

 

is the volume of the object. When the object is in the second liquid, the buoyant force is 

(30 – 24) N = 6.0 N, which implies 

 

2 3

2 2 3 3

6.0 N
6.0 10 kg/m .

(9.8 m/s ) (1.02 10 m )



  


 

 

80. An object of mass m = V floating in a liquid of density liquid is able to float if the 

downward pull of gravity mg is equal to the upward buoyant force Fb = liquidgVsub where 

Vsub is the portion of the object that is submerged. This readily leads to the relation: 

 

sub

iquidl

V

V




  

 

for the fraction of volume submerged of a floating object. When the liquid is water, as 

described in this problem, this relation leads to 

1
w




  

 

since the object “floats fully submerged” in water (thus, the object has the same density 

as water). We assume the block maintains an “upright” orientation in each case (which is 

not necessarily realistic). 

 

(a) For liquid A, 
1

2A




 , so that, in view of the fact that  = w, we obtain A/w = 2. 

 

(b) For liquid B, noting that two-thirds above means one-third below, 
1

3B




 , so that 

B/w = 3. 
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(c) For liquid C, noting that one-fourth above means three-fourths below, 
3

4C




 , so 

that C/w = 4/3. 

 

81. THINK The U-tube contains two types of liquid in static equilibrium. The pressures 

at the interface level on both sides of the tube must be the same.  

 

EXPRESS If we examine both sides of the U-tube at the level where the low-density 

liquid (with  = 0.800 g/cm
3
 = 800 kg/m

3
) meets the water (with w = 0.998 g/cm

3
 = 998 

kg/m
3
), then the pressures there on either side of the tube must agree: 

 

gh = wghw 

 

where h = 8.00 cm = 0.0800 m, and Eq. 14-9 has been used.  Thus, the height of the 

water column (as measured from that level) is hw = (800/998)(8.00 cm) = 6.41 cm.   

 

ANALYZE The volume of water in that column is  

 

V = r
2
hw = (1.50 cm)

2
(6.41 cm) = 45.3 cm

3
. 

 

This is the amount of water that flows out of the right arm.  

 

 

LEARN As discussed in the Sample Problem 14.3 – 

Balancing of pressure in a U-tube, the relationship 

between the densities of the two liquids can be written as  

 X w

l

l d
 


 

The liquid in the left arm is higher than the water in the 

right because the liquid is less dense than water X w  . 

 

 

 
 

82. The downward force on the balloon is mg and the upward force is Fb = outVg. 

Newton’s second law (with m = inV) leads to 

 

out
out in in

in

1 .Vg Vg Va g a


  


 
     

 
 

 

The problem specifies out / in = 1.39 (the outside air is cooler and thus more dense than 

the hot air inside the balloon). Thus, the upward acceleration is  

 

a = (1.39 – 1.00)(9.80 m/s
2
) = 3.82 m/s

2
. 
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83. (a) We consider a point D on the surface of the liquid in the container, in the same 

tube of flow with points A, B, and C. Applying Bernoulli’s equation to points D and C, 

we obtain 

2 21 1

2 2
D D D C C Cp v gh p v gh         

which leads to 

  

2

2

2( )
2 ( ) 2 ( )D C

C D C D

p p
v g h h v g d h




       

 

where in the last step we set pD = pC =  pair and vD/vC  0. Plugging in the values, we 

obtain 
22(9.8 m/s )(0.40 m  0.12 m) 3.2 m/s.Cv     

 

(b) We now consider points B and C: 

 

2 21 1
.

2 2
B B B C C Cp v gh p v gh         

 

Since vB = vC by equation of continuity, and pC = pair, Bernoulli’s equation becomes 

 

air 1 2

5 3 3 2

4

( ) ( )

1.0 10  Pa (1.0 10 kg/m )(9.8 m/s )(0.25 m  0.40 m  0.12 m)

9.2 10  Pa.

B C C Bp p g h h p g h h d       

     

 

 

 

(c) Since pB  0, we must let  

pair – g(h1 + d + h2)  0, 

which yields 

air air
1 1,max 2 10.3 m.

p p
h h d h

 
       

 

84. The volume rate of flow is R = vA where A = r
2
 and r = d/2. Solving for speed, we 

obtain  

2 2

4
.

( / 2)

R R R
v

A d d 
    

 

(a) With R = 7.0  10
–3

 m
3
/s and d = 14  10

–3
 m, our formula yields v = 45 m/s, which is 

about 13% of the speed of sound (which we establish by setting up a ratio: v/vs where vs = 

343 m/s).  

 

(b) With the contracted trachea (d = 5.2  10
–3

 m) we obtain v = 330 m/s, or 96% of the 

speed of sound.  
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85. We consider the can with nearly its total volume submerged, and just the rim above 

water. For calculation purposes, we take its submerged volume to be V = 1200 cm
3
. To 

float, the total downward force of gravity (acting on the tin mass mt and the lead mass 

m ) must be equal to the buoyant force upward: 

 
3 3( ) (1g/cm ) (1200 cm ) 130 gt wm m g Vg m      

 

which yields 1.0710
3
 g for the (maximum) mass of the lead (for which the can still 

floats). The given density of lead is not used in the solution. 

 

86. Before undergoing acceleration, the net force exerted on the block is zero, and 

Newton’s second law gives 

 0 00b bF mg T T F mg       

 

where bF Vg  is the buoyant force from the fluid of density. When the container is 

given an upward acceleration a, the apparent weight of the block becomes ( ),m g a  and 

the corresponding buoyant force is ( )bF V g a   . In this case, Newton’s second-law 

equation is 

( ) 0bF m g a T     

which gives 

 

0( ) ( ) ( ) ( ) (1 / ) (1 / )bT F m g a V g a m g a V m g a g T a g             . 

 

With 0.25 ,a g  we have 0/ 1 / 1.25.T T a g     

 

87. We assume that the top surface of the slab is at the surface of the water and that the 

automobile is at the center of the ice surface. Let M be the mass of the automobile, i be 

the density of ice, and w be the density of water. Suppose the ice slab has area A and 

thickness h. Since the volume of ice is Ah, the downward force of gravity on the 

automobile and ice is (M + iAh)g. The buoyant force of the water is wAhg, so the 

condition of equilibrium is (M + iAh)g – wAhg = 0 and 

 

    
2

3 3

938kg
26.3 m .

998kg m 917kg m 0.441mw i

M
A

h 
  

 
 

 

88. (a) Using Eq. 14-10, we have 

 
3 2 3 7(1025 kg/m )(9.8 m/s )(2.22 10 m) 2.23 10 Pagp gh     . 

  

(b) By definition, the total pressure is 

 
5 7 7

0 1.01 10 Pa 2.23 10 Pa 2.24 10 Pagp p p        . 
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(c) The net force compressing the sphere’s surface is 

 
2 7 2 2 6(4 ) (2.24 10 Pa)4 (6.22 10 m) 1.09 10 N.F pA p R          

 

(d) The upward buoyant force exerted on the sphere by the seawater is 

 

3 3 2 2 34 4
(1025 kg/m )(9.8 m/s ) (6.22 10 m) 10.1 N.

3 3
bF gV g R

 
   

     
 

 

 

(e) Newton’s second law applied to the sphere of mass m = 6.80 kg yields 

 

2 210.1 N
9.8 m/s 8.62 m/s .

8.60 kg

b
b

F
F mg ma a g

m
          

 

The acceleration vector has a magnitude of 8.62 m/s
2
 and the direction is downward. 

 

89. (a) The total weight is 

 
3 2 2 9(1030 kg/m )(9.8 m/s )(255m)(2200m ) 5.66 10 N.W gV ghA       

 

(b) The gauge pressure at this depth is 

3 2

5

1atm
(1030 kg/m )(9.8 m/s )(255m) 25.5atm

1.01 10 Pa
gp gh

 
   

 
. 

90. Using Bernoulli’s equation,  

2 2

1 1 1 2 2 2

1 1

2 2
p v gy p v gy        , 

 

we find the minimum pressure to be (setting 1 2v v )  

 
3 2 4

2 1 1 2( ) (1000 kg/m )(9.8 m/s )(6.59 m 2.16 m) 4.34 10  Pa.p p p g y y          
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Chapter 15 
 

 

 

1. (a) During simple harmonic motion, the speed is (momentarily) zero when the object is 

at a “turning point” (that is, when x = +xm or x = –xm). Consider that it starts at x = +xm 

and we are told that t = 0.25 second elapses until the object reaches x = –xm. To execute a 

full cycle of the motion (which takes a period T to complete), the object which started at x 

= +xm, must return to x = +xm (which, by symmetry, will occur 0.25 second after it was at 

x = –xm). Thus, T = 2t = 0.50 s. 

 

(b) Frequency is simply the reciprocal of the period: f = 1/T = 2.0 Hz. 

 

(c) The 36 cm distance between x = +xm and x = –xm is 2xm. Thus, xm = 36/2 = 18 cm. 

 

2. (a) The acceleration amplitude is related to the maximum force by Newton’s second 

law: Fmax = mam. The textbook notes (in the discussion immediately after Eq. 15-7) that 

the acceleration amplitude is am = 2
xm, where  is the angular frequency ( = 2f since 

there are 2 radians in one cycle). The frequency is the reciprocal of the period: f = 1/T = 

1/0.20 = 5.0 Hz, so the angular frequency is  = 10 (understood to be valid to two 

significant figures). Therefore, 

 

 = = 0.12 10 0.085 =10 . 2 2
F m xmmax  kg  rad / s  m  N b gb g b g  

 

(b) Using Eq. 15-12, we obtain 

 

  
22 2    0.12kg 10  rad/s 1.2 10 N/m.

k
k m

m
         

 

3. The textbook notes (in the discussion immediately after Eq. 15-7) that the acceleration 

amplitude is am = 2
xm, where  is the angular frequency ( = 2f since there are 2 

radians in one cycle). Therefore, in this circumstance, we obtain 

 

    
22 2 2(2 ) 2 6.60 Hz 0.0220 m 37.8 m/s .m m ma x f x       

 

4. (a) Since the problem gives the frequency f = 3.00 Hz, we have  = 2f = 6 rad/s 

(understood to be valid to three significant figures). Each spring is considered to support 

one fourth of the mass mcar so that Eq. 15-12 leads to 

 

  
2 5

car

1
      1450kg 6  rad/s 1.29 10 N/m.

/ 4 4

k
k

m
       
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(b) If the new mass being supported by the four springs is mtotal = [1450 + 5(73)] kg = 

1815 kg, then Eq. 15-12 leads to 

 
5

new new

total

1 1.29 10  N/m
     2.68Hz.

/ 4 2 (1815/ 4) kg

k
f

m





     

 

5. THINK The blade of the shaver undergoes simple harmonic motion. We want to find 

its amplitude, maximum speed and maximum acceleration.  

 

EXPRESS The amplitude xm is half the range of the displacement D. Once the amplitude 

is known, the maximum speed vm is related to the amplitude by vm = xm, where  is the 

angular frequency. Similarly, the maximum acceleration is 2

m ma x .  

 

ANALYZE (a) The amplitude is xm = D/2 = (2.0 mm)/2 = 1.0 mm. 

 

(b) The maximum speed vm is related to the amplitude xm by vm = xm, where  is the 

angular frequency. Since  = 2f, where f is the frequency, 

 

  3= 2 = 2 120 Hz 1.0 10  m = 0.75 m/s.m mv fx    

 

(c) The maximum acceleration is 

 

      
222 3 2 2= = 2 = 2 120 Hz 1.0 10  m = 5.7 10  m/s .m m ma x f x      

 

LEARN In SHM, acceleration is proportional to the displacement xm. 

 

6. (a) The angular frequency  is given by  = 2f = 2/T, where f is the frequency and T 

is the period. The relationship f = 1/T was used to obtain the last form. Thus  

 

 = 2/(1.00 × 10
–5

 s) = 6.28 ×10
5
 rad/s. 

 

(b) The maximum speed vm and maximum displacement xm are related by vm = xm, so 

 

 = =
1.00 10

6.28 10
= 1.59 10 . 

3

5

3x
v

m
m






  m / s

 rad / s
 m  

 

7. THINK This problem compares the magnitude of the acceleration of an oscillating 

diaphragm in a loudspeaker to gravitational acceleration g.  

 

EXPRESS The magnitude of the maximum acceleration is given by am = 2
xm, where  

is the angular frequency and xm is the amplitude.  
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ANALYZE (a) The angular frequency for which the maximum acceleration has a 

magnitude g is given by   g xm/ , so the corresponding frequency is 

 
2

6

1 1 9.8 m/s
498 Hz.

2 2 2 1.0 10 mm

g
f

x



   
   


 

 

(b) For frequencies greater than 498 Hz, the acceleration exceeds g for some part of the 

motion. 

 

LEARN The acceleration am of the diaphragm in a loudspeaker increases with 2
, or 

equivalently, with f
2
.  

 

8. We note (from the graph in the text) that xm = 6.00 cm.  Also the value at t = 0 is xo =  

2.00 cm.   Then Eq. 15-3 leads to



 = cos
1

(2.00/6.00) = +1.91 rad or – 4.37 rad. 

 

The other “root” (+4.37 rad) can be rejected on the grounds that it would lead to a 

positive slope at t = 0. 

 

9. (a) Making sure our calculator is in radians mode, we find 

 

 = 6.0 3 2.0 +
3

= 3.0 . x cos  m
b gF

HG
I
KJ  

  

(b) Differentiating with respect to time and evaluating at t = 2.0 s, we find 

 

 = = 3 6.0 3 2.0 +
3

= 49 . v
dx

dt


F
HG

I
KJ 

b g b gsin  m / s  

 

(c) Differentiating again, we obtain 

 

 = = 3 6.0 3 2.0 +
3

= 2.7 10 . 
2 2 2a

dv

dt


F
HG

I
KJ   

b g b g b gcos  m / s  

 

(d) In the second paragraph after Eq. 15-3, the textbook defines the phase of the motion. 

In this case (with t = 2.0 s) the phase is 3(2.0) + /3  20 rad. 

 

(e) Comparing with Eq. 15-3, we see that  = 3 rad/s. Therefore, f = /2 = 1.5 Hz. 

 

(f) The period is the reciprocal of the frequency: T = 1/f  0.67 s. 
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10. (a) The problem describes the time taken to execute one cycle of the motion. The 

period is T = 0.75 s. 

 

(b) Frequency is simply the reciprocal of the period: f = 1/T  1.3 Hz, where the SI unit 

abbreviation Hz stands for Hertz, which means a cycle-per-second. 

 

(c) Since 2 radians are equivalent to a cycle, the angular frequency  (in radians-per-

second) is related to frequency f by  = 2f so that   8.4 rad/s. 

 

11. When displaced from equilibrium, the net force exerted by the springs is –2kx acting 

in a direction so as to return the block to its equilibrium position (x = 0). Since the 

acceleration 2 2/a d x dt , Newton’s second law yields 

 

 = 2 . 
2

2
m

d x

dt
kx  

 

Substituting x = xm cos(t + ) and simplifying, we find 2 2 / ,k m   where  is in 

radians per unit time. Since there are 2 radians in a cycle, and frequency f measures 

cycles per second, we obtain
 1 2 1 2(7580 N/m)

= = 39.6 Hz.
2 2 2 0.245 kg

k
f

m



  
   

 

12. We note (from the graph) that vm = xm = 5.00 cm/s.  Also the value at t = 0 is vo = 

4.00 cm/s. Then Eq. 15-6 leads to  

 

 = sin
1

(4.00/5.00) = – 0.927 rad or +5.36 rad. 

 

The other “root” (+4.07 rad) can be rejected on the grounds that it would lead to a 

positive slope at t = 0. 

 

13. THINK The mass-spring system undergoes simple harmonic motion. Given the 

amplitude and the period, we can determine the corresponding frequency, angular 

frequency, spring constant, maximum speed and maximum force.    

 

EXPRESS The angular frequency  is given by  = 2f = 2/T, where f is the frequency 

and T is the period, with f = 1/T. The angular frequency is related to the spring constant k 

and the mass m by    k m . The maximum speed vm is related to the amplitude xm by 

vm = xm . 

 

ANALYZE (a) The motion repeats every 0.500 s so the period must be T = 0.500 s. 

 

(b) The frequency is the reciprocal of the period: f = 1/T = 1/(0.500 s) = 2.00 Hz. 

 

(c) The angular frequency is  = 2f = 2(2.00 Hz) = 12.6 rad/s. 
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(d) We solve for the spring constant k and obtain  

 

k = m2
 = (0.500 kg)(12.6 rad/s)

2
 = 79.0 N/m. 

 

(e) The amplitude is xm=35.0 cm = 0.350 m, so the maximum speed is  

 

vm = xm = (12.6 rad/s)(0.350 m) = 4.40 m/s. 

 

(f) The maximum force is exerted when the displacement is a maximum. Thus, we have   

 

Fm = kxm = (79.0 N/m)(0.350 m) = 27.6 N. 

 

LEARN With the maximum acceleration given by 2

m ma x , we see that the magnitude 

of the maximum force can also be written as 2

m m m mF kx m x ma   . Maximum 

acceleration occurs at the endpoints of the path of the block. 

 

14. Equation 15-12 gives the angular velocity: 

 

100 N/m
7.07rad/s.

2.00 kg

k

m
     

 

Energy methods (discussed in  Section 15-4) provide one method of solution. Here, we 

use trigonometric techniques based on Eq. 15-3 and Eq. 15-6. 

 

(a) Dividing Eq. 15-6 by Eq. 15-3, we obtain 

 

 = +  
v

x
t  tanb g  

so that the phase (t + ) is found from 

 

  
1 1 3.415 m/s

tan tan .
7.07 rad/s 0.129 m

v
t

x
 



 
   

          

 

 

With the calculator in radians mode, this gives the phase equal to –1.31 rad. Plugging this 

back into Eq. 15-3 leads to 0.129 m cos( 1.31)    0.500 m.m mx x     

 

(b) Since t +  = –1.31 rad at t = 1.00 s, we can use the above value of  to solve for the 

phase constant . We obtain  = –8.38 rad (though this, as well as the previous result, can 

have 2 or 4 (and so on) added to it without changing the physics of the situation). With 

this value of , we find xo = xm cos  = – 0.251 m. 

 

(c) And we obtain vo = –xmsin = 3.06 m/s. 
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15. THINK Our system consists of two particles undergoing SHM along a common 

straight-line segment. Their oscillations are out of phase.   

 

 EXPRESS Let 

1

2
cos

2

A t
x

T

 
  

 
 

 

be the coordinate as a function of time for particle 1 and 

 

2

2
cos

2 6

A t
x

T

  
  

 
 

 

be the coordinate as a function of time for particle 2. Here T is the period. Note that since 

the range of the motion is A, the amplitudes are both A/2. The arguments of the cosine 

functions are in radians. Particle 1 is at one end of its path (x1 = A/2) when t = 0. Particle 

2 is at A/2 when 2t/T + /6 = 0 or t = –T/12. That is, particle 1 lags particle 2 by one-

twelfth a period.  

 

ANALYZE (a) The coordinates of the particles 0.50 s later (that is, at t = 0.50 s) are 

 

1

2 0.50 s
cos 0.25

2 1.5 s

A
x A

  
   

 
 

and

 
2

2 0.50 s
cos 0.43 .

2 1.5 s 6

A
x A

  
   

 
 

 

Their separation at that time is x = x1 – x2 = 0.25A + 0.43A = 0.18A. 

 

(b) The velocities of the particles are given by 

 

1
1

2
sin

dx A t
v

dt T T

  
    

 
 

and
 

2
2

2
sin .

6

dx A t
v

dt T T

   
    

 
 

 

We evaluate these expressions for t = 0.50 s and find they are both negative-valued, 

indicating that the particles are moving in the same direction. 

 

LEARN The plots of x and v as a function of time for particle 1 (so1id) and particle 2 

(dashed line) are given below. 
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16. They pass each other at time t, at x x xm1 2
1
2   where 

 

x x t x x tm m1 1 2 2   cos( ) cos( ).   and  

 

From this, we conclude that cos( ) cos( )   t t   1 2
1
2 , and therefore that the phases 

(the arguments of the cosines) are either both equal to /3 or one is /3 while the other 

is –/3. Also at this instant, we have v1 = –v2 0 where 

 

v x t v x tm m1 1 2 2          sin( ) sin( ).and  

 

This leads to sin(t + 1) = – sin(t +  2). This leads us to conclude that the phases have 

opposite sign. Thus, one phase is /3 and the other phase is – /3; the wt term cancels if 

we take the phase difference, which is seen to be  /3 – (– /3) = 2 /3. 

 

17. (a) Equation 15-8 leads to 
2

2 123 m/s
35.07 rad/s .

0.100 m

a
a x

x
 


       

 

Therefore, f = /2 = 5.58 Hz. 

 

(b) Equation 15-12 provides a relation between  (found in the previous part) and the 

mass:
 

2

400 N/m
=     0.325kg.

(35.07 rad/s)

k
m

m
     

  

(c) By energy conservation, 1
2

2kxm  (the energy of the system at a turning point) is equal to 

the sum of kinetic and potential energies at the time t described in the problem. 

 

 
1

2
=

1

2
+

1

2
= + . 2 2 2 2 2kx mv kx x

m

k
v xm m  

 

Consequently, 2 2(0.325 kg / 400 N/m)(13.6 m/s) (0.100 m) 0.400 m.mx     
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18. From highest level to lowest level is twice the amplitude xm of the motion. The period 

is related to the angular frequency by Eq. 15-5. Thus,  x dm  1
2  and  = 0.503 rad/h. The 

phase constant  in Eq. 15-3 is zero since we start our clock when xo = xm (at the highest 

point). We solve for t when x is one-fourth of the total distance from highest to lowest 

level, or (which is the same) half the distance from highest level to middle level (where 

we locate the origin of coordinates). Thus, we seek t when the ocean surface is at 

x x dm 1
2

1
4 . With cos( )mx x t   , we obtain 

 

 
1 1 1

cos 0.503 0 cos(0.503 )
4 2 2

d d t t
 

    
 

 

 

which has t = 2.08 h as the smallest positive root. The calculator is in radians mode 

during this calculation. 

 

19. Both parts of this problem deal with the critical case when the maximum acceleration 

becomes equal to that of free fall. The textbook notes (in the discussion immediately after 

Eq. 15-7) that the acceleration amplitude is am = 2
xm, where  is the angular frequency; 

this is the expression we set equal to g = 9.8 m/s
2
. 

 

(a) Using Eq. 15-5 and T = 1.0 s, we have 

 

 
2

= =
4

= 0.25 . 

2 2

2



T
x g x

gT
m m

F
HG
I
KJ   m  

  

(b) Since  = 2f, and xm = 0.050 m is given, we find 

 

 
2 1

2 =        = 2.2 Hz.
2

m

m

g
f x g f

x



   

 

20. We note that the ratio of Eq. 15-6 and Eq. 15-3 is v/x = –tan(t + ) where = 1.20 

rad/s in this problem.  Evaluating this at t = 0 and using the values from the graphs shown 

in the problem, we find  

 

1 10

0

4.00 cm/s
tan tan 1.03 rad (or 5.25 rad).

(2.0 cm)(1.20 rad/s)

v

x




     
      

    
 

One can check that the other “root” (4.17 rad) is unacceptable since it would give the 

wrong signs for the individual values of v0 and x0.  

 

21. Let the spring constants be k1 and k2. When displaced from equilibrium, the 

magnitude of the net force exerted by the springs is |k1x + k2 x| acting in a direction so as 

to return the block to its equilibrium position (x = 0). Since the acceleration a = d
2
x/d

2
, 

Newton’s second law yields
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 = . 
2

2 1 2m
d x

dt
k x k x   

 

Substituting x = xm cos(t + ) and simplifying, we find 

 

 =
+

 2 1 2
k k

m
 

 

where  is in radians per unit time. Since there are 2 radians in a cycle, and frequency f 

measures cycles per second, we obtain
 

 =
2

=
1

2

1 2f
k k

m



 


.  

 

The single springs each acting alone would produce simple harmonic motions of 

frequency

 
1 2

1 2

1 1
= 30 Hz,        = 45 Hz,

2 2

k k
f f

m m 
   

 

respectively. Comparing these expressions, it is clear that 

 
2 2 2 2

1 2 (30 Hz) +(45 Hz) 54 Hz.f f f     

 

22. The statement that “the spring does not affect the collision” justifies the use of elastic 

collision formulas in section 10-5.  We are told the period of SHM so that we can find the 

mass of block 2: 
2

2
2 2

2      0.600 kg.
4

m kT
T m

k



      

 

At this point, the rebound speed of block 1 can be found from Eq. 10-30: 
 

  1

0.200 kg 0.600 kg
| | 8.00 m/s 4.00 m/s

0.200 kg 0.600 kg
fv


 


. 

 

This becomes the initial speed v0 of the projectile motion of block 1.  A variety of choices 

for the positive axis directions are possible, and we choose left as the +x direction and 

down as the +y direction, in this instance.  With the “launch” angle being zero, Eq. 4-21 

and Eq. 4-22 (with  –g replaced with  +g) lead to 

  

0 0 0 2

2 2(4.90 m)
(4.00 m/s)

9.8 m/s

h
x x v t v

g
    . 

 

Since x – x0 = d, we arrive at  d = 4.00 m. 
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23. THINK The maximum force that can be exerted by the surface must be less than the 

static frictional force or else the block will not follow the surface in its motion.  

 

EXPRESS The static frictional force is given by 
s s Nf F , where µs is the coefficient of 

static friction and FN is the normal force exerted by the surface on the block. Since the 

block does not accelerate vertically, we know that FN = mg, where m is the mass of the 

block. If the block follows the table and moves in simple harmonic motion, the 

magnitude of the maximum force exerted on it is given by  

 

F = mam = m2
xm = m(2f)

2
xm, 

 

where am is the magnitude of the maximum acceleration,  is the angular frequency, and 

f is the frequency. The relationship  = 2f was used to obtain the last form.  

 

ANALYZE We substitute F = m(2f)
2
xm and FN = mg into F  µsFN to obtain m(2f)

2
xm 

 µsmg. The largest amplitude for which the block does not slip is 

 

 =
2

=
0.50 9.8

2 2.0
0 031

2

2

2
x

g

f
m

s

 b g
b gc h
b g

 m / s

 Hz
 . .m  

 

LEARN A larger amplitude would require a larger force at the end points of the motion. 

The block slips if the surface cannot supply a larger force. 

 

24. We wish to find the effective spring constant for the combination of springs shown in 

the figure. We do this by finding the magnitude F of the force exerted on the mass when 

the total elongation of the springs is x. Then keff = F/x. Suppose the left-hand spring is 

elongated by x  and the right-hand spring is elongated by xr. The left-hand spring 

exerts a force of magnitude k x  on the right-hand spring and the right-hand spring exerts 

a force of magnitude kxr on the left-hand spring. By Newton’s third law these must be 

equal, so  x xr  . The two elongations must be the same, and the total elongation is 

twice the elongation of either spring:  x x 2  . The left-hand spring exerts a force on 

the block and its magnitude is F k x   . Thus, 

 

k k x x kreff    / /2 2 . 

 

The block behaves as if it were subject to the force of a single spring, with spring 

constant k/2. To find the frequency of its motion, replace keff in f k m 1 2/ /a f eff  with 

k/2 to obtain
 

 =
1

2 2
f

k

m
. 

 

With m = 0.245 kg and k = 6430 N/m, the frequency is f = 18.2 Hz. 
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25. (a) We interpret the problem as asking for the equilibrium position; that is, the block 

is gently lowered until forces balance (as opposed to being suddenly released and allowed 

to oscillate). If the amount the spring is stretched is x, then we examine force-components 

along the incline surface and find 

 

sin (14.0 N)sin 40.0
sin     0.0750 m

120 N/m

mg
kx mg x

k





      

 

at equilibrium. The calculator is in degrees mode in the above calculation. The distance 

from the top of the incline is therefore (0.450 + 0.75) m = 0.525 m. 

 

(b) Just as with a vertical spring, the effect of gravity (or one of its components) is simply 

to shift the equilibrium position; it does not change the characteristics (such as the period) 

of simple harmonic motion. Thus, Eq. 15-13 applies, and we obtain 

 
214.0 N 9.80 m/s

2 0.686 s.
120 N/m

T    

 

26. To be on the verge of slipping means that the force exerted on the smaller block (at 

the point of maximum acceleration) is fmax = µs mg. The textbook notes (in the discussion 

immediately after Eq. 15-7) that the acceleration amplitude is am =2
xm, where 

  k m M/ ( )  is the angular frequency (from Eq. 15-12). Therefore, using Newton’s 

second law, we have 

 =
+

=  ma mg
k

m M
x gm s m s   

which leads to  

 
2( ) (0.40)(9.8 m/s )(1.8 kg 10 kg)

0.23 m 23 cm.
200 N/m

s
m

g m M
x

k

  
     

 

27. THINK This problem explores the relationship between energies, both kinetic and 

potential, with amplitude in SHM. 

 

EXPRESS In simple harmonic motion, let the displacement be  

 

x(t) = xm cos(t + ). 

The corresponding velocity is  

( ) / sin( )mv t dx dt x t      . 

 

Using the expressions for x(t) and v(t), we find the potential and kinetic energies to be 
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2 2 2

2 2 2 2 2 2

1 1
( ) ( ) cos ( )

2 2
1 1 1

( ) ( ) sin ( ) sin ( )
2 2 2

m

m m

U t kx t kx t

K t mv t m x t kx t

 

    

  

    

 

 

where k = m2
  is the spring constant and xm is the amplitude. The total energy is 

 

2 2 2 21 1
( ) ( ) cos ( ) sin ( )

2 2
m mE U t K t kx t t kx            . 

 

ANALYZE (a) The condition ( ) / 2mx t x  implies that cos( ) 1/ 2,t    or 

sin( ) 3 / 2t   . Thus, the fraction of energy that is kinetic is 

 

2

2 3 3
sin ( )

2 4

K
t

E
 

 
     

 
. 

(b) Similarly, we have 

2

2 1 1
cos ( )

2 4

U
t

E
 

 
    

 
. 

 

(c) Since E kxm 1
2

2
 and 21

2
( )U kx t , U/E = x xm

2 2
. Solving x xm

2 2
 = 1/2 for x, we get 

x xm / 2 . 

 

LEARN The figure to the right depicts 

the potential energy (solid line) and 

kinetic energy (dashed line) as a 

function of time, assuming (0) mx x . 

The curves intersect when 

/ 2K U E  , or equivalently,  

 
2 2cos sin 1/ 2t t   .  

 

28. The total mechanical energy is equal to the (maximum) kinetic energy as it passes 

through the equilibrium position (x = 0):  

 
1

2
 mv

2
 = 

1

2
 (2.0 kg)(0.85 m/s)

2
 = 0.72 J. 

 

Looking at the graph in the problem, we see that U(x = 10) = 0.5 J. Since the potential 

function has the form 2( )U x bx , the constant is 3 25.0 10 J/cmb   . Thus, U(x) = 0.72 J 

when x = 12 cm. 

 

(a) Thus, the mass does turn back before reaching x = 15 cm. 

 

(b) It turns back at x = 12 cm. 
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29. THINK Knowing the amplitude and the spring constant, we can calculate the 

mechanical energy of the mass-spring system in simple harmonic motion.  

 

EXPRESS In simple harmonic motion, let the displacement be x(t) = xm cos(t + ). The 

corresponding velocity is  

( ) / sin( )mv t dx dt x t      . 

 

Using the expressions for x(t) and v(t), we find the potential and kinetic energies to be 

 

 

2 2 2

2 2 2 2 2 2

1 1
( ) ( ) cos ( )

2 2
1 1 1

( ) ( ) sin ( ) sin ( )
2 2 2

m

m m

U t kx t kx t

K t mv t m x t kx t

 

    

  

    

 

where k = m2
  is the spring constant and xm is the amplitude. The total energy is 

 

2 2 2 21 1
( ) ( ) cos ( ) sin ( )

2 2
m mE U t K t kx t t kx            . 

 

ANALYZE With 1.3 N/cm 130 N/mk    and 2.4 cm 0.024 m,mx    the 

mechanical energy is 

  

 =
1

2
=

1

2
1.3 10 0.024 = 3.7 10 . 2 2 2 2E kxm    N / m  m  Jc ha f  

 

LEARN An alternative to calculate E is to note that when the block is at the end of its 

path and is momentarily stopped ( 0 0v K   ), its displacement is equal to the 

amplitude and all the energy is potential in nature ( E U K U   ). With the spring 

potential energy taken to be zero when the block is at its equilibrium position, we recover 

the expression 2 / 2mE kx .  

 

30. (a) The energy at the turning point is all potential energy: E kxm 1
2

2
 where E = 1.00 J 

and xm = 0.100 m. Thus,

 
 =

2
= 200 . 

2
k

E

xm

 N / m  

 

(b) The energy as the block passes through the equilibrium position (with speed vm = 1.20 

m/s) is purely kinetic:

 2

2

1 2
1.39 kg.

2
m

m

E
E mv m

v
     

 

(c) Equation 15-12 (divided by 2) yields 
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 =
1

2
191f

k

m
 . .Hz  

 

31. (a) Equation 15-12 (divided by 2) yields 

 

 =
1

2

1

2

1000

5 00
2 25f

k

m 
 

N / m

kg
Hz

.
. . 

 

(b) With x0 = 0.500 m, we have U kx0
1
2 0

2 125  J . 

 

(c) With v0 = 10.0 m/s, the initial kinetic energy is K mv0
1
2 0

2 250  J . 

 

(d) Since the total energy E = K0 + U0 = 375 J is conserved, then consideration of the 

energy at the turning point leads to 

 

 =
1

2

2
= 0.866 . 2E kx x

E

k
m m   m  

 

32. We infer from the graph (since mechanical energy is conserved) that the total energy 

in the system is 6.0 J; we also note that the amplitude is apparently xm = 12 cm = 0.12 m.  

Therefore we can set the maximum potential energy equal to 6.0 J and solve for the 

spring constant k: 
1

2
 k xm

2
 = 6.0 J          k = 8.3 ×10

2
 N/m . 

 

33. The problem consists of two distinct parts: the completely inelastic collision (which is 

assumed to occur instantaneously, the bullet embedding itself in the block before the 

block moves through significant distance) followed by simple harmonic motion (of mass 

m + M attached to a spring of spring constant k). 

 

(a) Momentum conservation readily yields v= mv/(m + M). With m = 9.5 g, M = 5.4 kg, 

and v = 630 m/s, we obtain 1.1 m/s.v    

 

(b) Since v´ occurs at the equilibrium position, then v  = vm for the simple harmonic 

motion. The relation vm = xm can be used to solve for xm, or we can pursue the alternate 

(though related) approach of energy conservation. Here we choose the latter: 

 

    
 

2 2
2 2 2

2

1 1 1 1

2 2 2 2
m m

m v
m M v kx m M kx

m M
    


 

which simplifies to 

 

3
2

3

(9.5 10 kg)(630 m/s)
3.3 10  m.

(6000 N/m)(9.5 10 kg  5.4kg)
m

mv
x

k m M







   

  
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34. We note that the spring constant is  

 

k = 4
2
m1/T 

2
 = 1.97 × 10

5
 N/m. 

 

It is important to determine where in its simple harmonic motion (which “phase” of its 

motion) block 2 is when the impact occurs. Since  = 2/T and the given value of t 

(when the collision takes place) is one-fourth of T, then t = /2 and the location then of 

block 2 is x = xmcos(t + ) where = /2 which gives  

 

x = xmcos(/2 + /2) = –xm. 

 

This means block 2 is at a turning point in its motion (and thus has zero speed right 

before the impact occurs); this means, too, that the spring is stretched an amount of 1 cm 

= 0.01 m at this moment.  To calculate its after-collision speed (which will be the same as 

that of block 1 right after the impact, since they stick together in the process) we use 

momentum conservation and obtain  

 

v = (4.0 kg)(6.0 m/s)/(6.0 kg) = 4.0 m/s. 

 

Thus, at the end of the impact itself (while block 1 is still at the same position as before 

the impact) the system (consisting now of a total mass M = 6.0 kg) has kinetic energy  

 

K = 
1

2
 (6.0 kg)(4.0 m/s)

2
 = 48 J 

and potential energy  

U =  
1

2
 kx

2
 =   

1

2
 (1.97 × 10

5
 N/m)(0.010 m)

2
  10 J, 

 

meaning the total mechanical energy in the system at this stage is approximately E = K + 

U = 58 J.  When the system reaches its new turning point (at the new amplitude X ) then 

this amount must equal its (maximum) potential energy there: E =  
1

2
 (1.97 ×10

5
 N/m) X

 2
.  

Therefore, we find   

5

2 2(58 J)
0.024 m

1.97 10 N/m

E
X

k
  


. 

 

35. The textbook notes (in the discussion immediately after Eq. 15-7) that the 

acceleration amplitude is am = 2
xm, where  is the angular frequency and xm = 0.0020 m 

is the amplitude. Thus, am = 8000 m/s
2
 leads to  = 2000 rad/s. Using Newton’s second 

law with m = 0.010 kg, we have 

 

 = = + = 80 2000
3

 F ma m a t tm  
F
H

I
Kcos  N cos a fc h a f 

 

 

where t is understood to be in seconds. 
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(a) Equation 15-5 gives T = 2/ = 3.1 × 10
–3

 s. 

 

(b) The relation vm = xm can be used to solve for vm, or we can pursue the alternate 

(though related) approach of energy conservation. Here we choose the latter. By Eq. 15-

12, the spring constant is k = 2
m = 40000 N/m. Then, energy conservation leads to 

 

2 21 1
=        = 4.0 m/s.

2 2
m m m m

k
kx mv v x

m
   

  

(c) The total energy is 1
2

2 1
2

2 0 080kx mvm m  . J . 

 

(d) At the maximum displacement, the force acting on the particle is  

 

 4 3(4.0 10 N/m)(2.0 10 m) 80 N.F kx       

 

(e) At half of the maximum displacement, 1.0 mmx , and the force is  

 
4 3(4.0 10 N/m)(1.0 10 m) 40 N.F kx       

 

36. We note that the ratio of Eq. 15-6 and Eq. 15-3 is v/x = tan(t + ) where is 

given by Eq. 15-12. Since the kinetic energy is 
1

2
 mv

2
 and the potential energy is 

1

2
 kx

2
 

(which may be conveniently written as 
1

2
 m2

x
2
) then the ratio of kinetic to potential 

energy is simply  

(v/x)
2
/2 

= tan
2
(t + ), 

 

which at t = 0 is tan
2.  Since  = /6 in this problem, then the ratio of kinetic to potential 

energy at t = 0 is tan
2
() = 1/3. 

 

37. (a) The object oscillates about its equilibrium point, where the downward force of 

gravity is balanced by the upward force of the spring. If   is the elongation of the spring 

at equilibrium, then k mg  , where k is the spring constant and m is the mass of the 

object. Thus k m g  and  

 

f k m g   2 1 2 1 2  a f a f  . 

 

Now the equilibrium point is halfway between the points where the object is momentarily 

at rest. One of these points is where the spring is unstretched and the other is the lowest 

point, 10 cm below. Thus   5 0 0 050. .cm m and 

 
21 9.8  m/s

2.2 Hz.
2 0.050 m

f


   
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(b) Use conservation of energy. We take the zero of gravitational potential energy to be at 

the initial position of the object, where the spring is unstretched. Then both the initial 

potential and kinetic energies are zero. We take the y-axis to be positive in the downward 

direction and let y = 0.080 m. The potential energy when the object is at this point is 

U ky mgy 1
2

2 . The energy equation becomes  

 

0 1
2

2 1
2

2  ky mgy mv . 

We solve for the speed: 

 

    
2

22 2 2 9.8m/s
2 2 2 9.8m/s 0.080m 0.080m

0.050m

0.56m/s

k g
v gy y gy y

m

 
      

 



 

 

(c) Let m be the original mass and m be the additional mass. The new angular frequency 

is    k m m/ ( ) . This should be half the original angular frequency, or  12 k m . We 

solve  

k m m k m/ ( ) /  1
2  

 

for m. Square both sides of the equation, then take the reciprocal to obtain m + m = 4m. 

This gives  

 

m = m/3 = (300 g)/3 = 100 g = 0.100 kg. 

 

(d) The equilibrium position is determined by the balancing of the gravitational and 

spring forces: ky = (m + m)g. Thus y = (m + m)g/k. We will need to find the value of 

the spring constant k using k = m2
 = m(2 f )

2
. Then 

 

 

 

  
  

2

2 2

0.100 kg 0.300 kg 9.80 m/s+
= 0.200 m.

2 0.100 kg 2 2.24 Hz

m m g
y

m f 





 

 

This is measured from the initial position. 

 

38. From Eq. 15-23 (in absolute value) we find the torsion constant: 

 

0.20 N m
0.235 N m/rad .

0.85 rad







     

 

With I = 2mR
2
/5 (the rotational inertia for a solid sphere — from Chapter 11), Eq. 15–23 

leads to
 

  
22 22

55
95 kg 0.15 m

2 2 12 s.
0.235 N m/rad

mR
T  


  


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39. THINK The balance wheel in the watch undergoes angular simple harmonic 

oscillation. From the amplitude and period, we can calculate the corresponding angular 

velocity and angular acceleration.   

 

EXPRESS We take the angular displacement of the wheel to be t = m cos(2t/T), 

where m is the amplitude and T is the period. We differentiate with respect to time to 

find the angular velocity:  

  = d/dt = –(2/T)msin(2t/T). 

 

The symbol   is used for the angular velocity of the wheel so it is not confused with the 

angular frequency.  

 

ANALYZE (a) The maximum angular velocity is 

 

  2  rad2
39.5 rad/s.

0.500 s

m
m

T

 
     

 

(b) When  = /2, then /m = 1/2, cos(2t/T) = 1/2, and 

 

     
22sin 2 1 cos 2 1 1 2 3 2t T t T       

 

where the trigonometric identity cos
2+sin

2= 1 is used. Thus, 

 

 =
2 2

=
2

0.500

3

2
= 34.2 .  

F
H
I
K 
F
H

I
K
F
HG
I
KJ 

  


T

t

T
m sin

 s
 rad  rad / sa f  

 

During another portion of the cycle its angular speed is +34.2 rad/s when its angular 

displacement is /2 rad. 

 

(c) The angular acceleration is

 
 

2 22

2

2 2
cos 2 / .m

d
t T

dt T T

  
   

   
       

   
 

When  = /4, 
2

22
= 124 rad/s ,

0.500 s 4

 


   
     

   
 

or 2| | 124 rad/s .   

 

LEARN The angular displacement, angular velocity and angular acceleration as a 

function of time are plotted next. 
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40. We use Eq. 15-29 and the parallel-axis theorem I = Icm + mh
2
 where h = d, the 

unknown. For a meter stick of mass m, the rotational inertia about its center of mass is Icm 

= mL
2
/12 where L = 1.0 m. Thus, for T = 2.5 s, we obtain 

 

T
mL md

mgd

L

gd

d

g



 2

12
2

12

2 2 2

 
/

. 

 

Squaring both sides and solving for d leads to the quadratic formula: 

 

 =
/ 2 / 2 / 3

2
. 

2 2 4 2

d
g T d T L a f a f 

 

 

Choosing the plus sign leads to an impossible value for d (d = 1.5  L). If we choose the 

minus sign, we obtain a physically meaningful result: d = 0.056 m. 

 

41. THINK Our physical pendulum consists of a disk and a rod. To find the period of 

oscillation, we first calculate the moment of inertia and the distance between the center-

of-mass of the disk-rod system to the pivot.  

 

EXPRESS A uniform disk pivoted at its center has a rotational inertia of 21
2

Mr , where M 

is its mass and r is its radius. The disk of this problem rotates about a point that is 

displaced from its center by r+ L, where L is the length of the rod, so, according to the 

parallel-axis theorem, its rotational inertia is 2 21 1
2 2

( )Mr M L r  . The rod is pivoted at 

one end and has a rotational inertia of mL
2
/3, where m is its mass.  

 

ANALYZE (a) The total rotational inertia of the disk and rod is 

 

2 2 2

2 2 2

2

1 1
( )

2 3

1 1
(0.500kg)(0.100m) (0.500kg)(0.500m 0.100m) (0.270kg)(0.500m)

2 3

0.205kg m .

I Mr M L r mL   

   

 
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(b) We put the origin at the pivot. The center of mass of the disk is 

 

= + = 0.500 m+0.100 m = 0.600 md L r  

 

away and the center of mass of the rod is r L  / ( . ) / .2 0 500 2 0 250m m away, on 

the same line. The distance from the pivot point to the center of mass of the disk-rod 

system is 

 

 =
+

+
=

0.500 0.600 + 0.270 0.250

0.500 + 0.270
= 0.477 . d

M m

M m

d r   kg  m  kg  m

 kg  kg
 m

a fa f a fa f
 

 

(c) The period of oscillation is 

 

 

2

2

0.205 kg m
2 2 1.50 s .

(0.500 kg 0.270 kg)(9.80 m/s )(0.447 m)

I
T

M m gd
 


  

 
 

 

LEARN Consider the limit where 0M  (i.e., uniform disk removed). In this case, 
2 / 3I mL , / 2rd L  and the period of oscillation becomes  

 
2 / 3 2

2 2 2
( / 2) 3

I mL L
T

mgd mg L g
      

 

which is the result given in Eq. 15-32. 

 

42. (a) Comparing the given expression to Eq. 15-3 (after changing notation x  ), we 

see that = 4.43 rad/s.  Since = g/L  then we can solve for the length: L = 0.499 m. 

 

(b) Since vm = xm = Lm = (4.43 rad/s)(0.499 m)(0.0800 rad) and m = 0.0600 kg, then 

we can find the maximum kinetic energy: 
1

2
 mvm

2
 = 9.40   10

4 
J.  

 

43. (a) Referring to Sample Problem 15.5 – “Physical pendulum, period and length,” we 

see that the distance between P and C is h L L L  2
3

1
2

1
6 . The parallel axis theorem 

(see Eq. 15–30) leads to 

 

 =
1

12
+ =

1

12
+

1

36
=

1

9
. 2 2 2 2I mL mh mL mL

F
H

I
K  

 

Equation 15-29 then gives

 
T

I

mgh

L

gL

L

g
  2 2

9

6
2

2

3

2

  
/

/
 

 

which yields T = 1.64 s for L = 1.00 m. 
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(b) We note that this T is identical to that computed in Sample Problem 15.5 – “Physical 

pendulum, period and length.” As far as the characteristics of the periodic motion are 

concerned, the center of oscillation provides a pivot that is equivalent to that chosen in 

the Sample Problem (pivot at the edge of the stick). 

 

44. To use Eq. 15-29 we need to locate the center of mass and we need to compute the 

rotational inertia about A. The center of mass of the stick shown horizontal in the figure is 

at A, and the center of mass of the other stick is 0.50 m below A. The two sticks are of 

equal mass, so the center of mass of the system is 1
2
(0.50 m) 0.25mh   below A, as 

shown in the figure. Now, the rotational inertia of the system is the sum of the rotational 

inertia I1 of the stick shown horizontal in the figure and the rotational inertia I2 of the 

stick shown vertical. Thus, we have 

 

 = + =
1

12
+

1

3
=

5

12
 1 2

2 2 2I I I ML ML ML  

 

where L = 1.00 m and M is the mass of a meter stick (which cancels in the next step). 

Now, with m = 2M (the total mass), Eq. 15-29 yields 

 

T
ML

Mgh

L

g
 2

2
2

5

6

5
12

2

   

 

where h = L/4 was used. Thus, T = 1.83 s. 

 

45. From Eq. 15-28, we find the length of the pendulum when the period is T = 8.85 s: 

 

 =
4

. 
2

2
L

gT


 

 

The new length is L´ = L – d where d = 0.350 m. The new period is 

 
2

2
2 2 2

4

L L d T d
T

g g g g
  




      

which yields T´ = 8.77 s. 

 

46. We require 

o2 2
L I

T
g mgh

    

 

similar to the approach taken in part (b) of Sample Problem 15.5 – “Physical pendulum, 

period and length,” but treating in our case a more general possibility for I. Canceling 2, 

squaring both sides, and canceling g leads directly to the result; Lo = I/mh. 
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47. We use Eq. 15-29 and the parallel-axis theorem I = Icm + mh
2
 where h = d. For a solid 

disk of mass m, the rotational inertia about its center of mass is Icm = mR
2
/2. Therefore, 

 
2 2 2 2 2 2

2

/ 2 2 (2.35 cm) +2(1.75 cm)
2 2 2 0.366 s.

2 2(980 cm/s )(1.75 cm)

mR md R d
T

mgd gd
  

 
     

 

48. (a) For the “physical pendulum” we have 

 

T = 2 
I

mgh
  = 

2

com2
I mh

mgh



. 

 

If we substitute r for h and use item (i) in Table 10-2, we have 

 
2 22

12

a b
T r

rg

 
  . 

 

In the figure below, we plot T as a function of r, for a = 0.35 m and b = 0.45 m. 

 

 
 

(b) The minimum of T can be located by setting its derivative to zero, / 0dT dr  . This 

yields 

 

 
2 2 2 2(0.35 m) (0.45 m)

0.16 m.
12 12

a b
r

 
    

 

(c) The direction from the center does not matter, so the locus of points is a circle around 

the center, of radius [(a
2
 + b

2
)/12]

1/2
. 

 

49. Replacing x and v in Eq. 15-3 and Eq. 15-6 with  and d/dt, respectively, we identify 

4.44 rad/s as the angular frequency Then we evaluate the expressions at t = 0 and 

divide the second by the first: 

        
at 0

/

t

d dt

 

 
 
 

= tan .  
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(a) The value of  at t = 0 is 0.0400 rad, and the value of d/dt then is –0.200 rad/s, so we 

are able to solve for the phase constant:  



= tan
1

[0.200/(0.0400 x 4.44)] = 0.845 rad. 

 

(b) Once is determined we can plug back in to o = mcos to solve for the angular 

amplitude.  We find m= 0.0602 rad. 

 

50. (a) The rotational inertia of a uniform rod with pivot point at its end is I = mL
2
/12 + 

mL
2
 = 1/3ML

2
. Therefore, Eq. 15-29 leads to 

 

 

2 2 2 21
3

2 2

3 3(9.8 m/s )(1.5 s)
2     0.84 m.

2 8 8

ML gT
T L

Mg L


 
      

 

(b) By energy conservation 

 

bottom of swing end of swing m mE E K U    

 

where U Mg ( cos )1   with   being the distance from the axis of rotation to the center 

of mass. If we use the small-angle approximation ( cos  1 1
2

2  with  in radians 

(Appendix E)), we obtain 

  2 21
0.5 kg 9.8 m/s

2 2
m m

L
U 

  
   

  
 

 

where m = 0.17 rad. Thus, Km= Um = 0.031 J. If we calculate (1 – cos) directly (without 

using the small angle approximation) then we obtain within 0.3% of the same answer. 

 

51. This is similar to the situation treated in Sample Problem 15.5 — “Physical pendulum, 

period and length,” except that O is no longer at the end of the stick. Referring to the 

center of mass as C (assumed to be the geometric center of the stick), we see that the 

distance between O and C is h = x. The parallel axis theorem (see Eq. 15-30) leads to 

 
2

2 2 21
.

12 12

L
I mL mh m x

 
    

 
 

Equation 15-29 gives 

T
I

mgh

x

gx

L x

gx

L

 





2 2 2
12

12

2

12

2 2 2

  
c h c h

.  

 

(a) Minimizing T by graphing (or special calculator functions) is straightforward, but the 

standard calculus method (setting the derivative equal to zero and solving) is somewhat 
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awkward. We pursue the calculus method but choose to work with 12gT
2
/2 instead of T 

(it should be clear that 12gT
2
/2 is a minimum whenever T is a minimum). The result is 

 

d

dx

d x

dx

L

x

gT L
x

12

2
2

2

2
2

0
12

12
e j d i

 


    

 

which yields / 12 (1.85 m)/ 12 0.53 mx L    as the value of x that should produce 

the smallest possible value of T.  

 

(b) With L = 1.85 m and x = 0.53 m, we obtain T = 2.1 s from the expression derived in 

part (a). 

 

52. Consider that the length of the spring as shown in the figure (with one of the block’s 

corners lying directly above the block’s center) is some value L (its rest length).  If the 

(constant) distance between the block’s center and the point on the wall where the spring 

attaches is a distance r, then rcos = d/ 2 , and rcos = L defines the angle measured 

from a line on the block drawn from the center to the top corner to the line of r (a straight 

line from the center of the block to the point of attachment of the spring on the wall).  In 

terms of this angle, then, the problem asks us to consider the dynamics that results from 

increasing  from its original value o to o + 3º and then releasing the system and letting 

it oscillate.  If the new (stretched) length of spring is L (when  = o + 3º), then it is a 

straightforward trigonometric exercise to show that  

 

(L)
2
 = r

2
 + (d/ 2 )

2
 – 2r(d/ 2 )cos(o + 3º) = L

2
 + d

2
 – d

2
cos(3º)+ 2 Ldsin(3º)  

 

since o = 45º. The difference between L (as determined by this expression) and the 

original spring length L is the amount the spring has been stretched (denoted here as xm).  

If one plots xm versus L over a range that seems reasonable considering the figure shown 

in the problem (say, from L = 0.03 m to L = 0.10 m) one quickly sees that xm  0.00222 m 

is an excellent approximation (and is very close to what one would get by approximating 

xm as the arc length of the path made by that upper block corner as the block is turned 

through 3º, even though this latter procedure should in principle overestimate xm).  Using 

this value of xm with the given spring constant leads to a potential energy of U = 
1

2
 k xm

2
 =  

0.00296 J.  Setting this equal to the kinetic energy the block has as it passes back through 

the initial position, we have 

K = 0.00296 J =  
1

2
  I m

2
 

 

where m is the maximum angular speed of the block (and is not to be confused with the 

angular frequency  of the oscillation, though they are related by m = o  if  o is 

expressed in radians).  The rotational inertia of the block is I = 
1

6
 Md

2
 = 0.0018 kg·m

2
.  

Thus, we can solve the above relation for the maximum angular speed of the block:  
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2

2 2(0.00296 J)
1.81 rad/s

0.0018 kg m
m

K

I
   


. 

 

Therefore the angular frequency of the oscillation is  = m/o = 34.6 rad/s.  Using Eq. 

15-5, then, the period is T = 0.18 s. 

 

53. THINK By assuming that the torque exerted by the spring on the rod is proportional 

to the angle of rotation of the rod and that the torque tends to pull the rod toward its 

equilibrium orientation, we see that the rod will oscillate in simple harmonic motion.  

 

EXPRESS Let  = –C, where  is the torque,  is the angle of rotation, and C is a 

constant of proportionality, then the angular frequency of oscillation is   C I/  and 

the period is  

2
2

I
T

C





  , 

 

where I is the rotational inertia of the rod. The plan is to find the torque as a function of  

and identify the constant C in terms of given quantities. This immediately gives the 

period in terms of given quantities. Let 0  be the distance from the pivot point to the wall. 

This is also the equilibrium length of the spring. Suppose the rod turns through the angle 

, with the left end moving away from the wall. This end is now (L/2) sin  further from 

the wall and has moved a distance (L/2)(1 – cos ) to the right. The length of the spring is 

now  

2 2 2

0( / 2) (1 cos ) [ ( / 2)sin ]L L     . 

 

If the angle  is small we may approximate cos  with 1 and sin  with  in radians. Then 

the length of the spring is given by 0 / 2L   and its elongation is x = L/2. The 

force it exerts on the rod has magnitude F = kx = kL/2. Since  is small we may 

approximate the torque exerted by the spring on the rod by  = –FL/2, where the pivot 

point was taken as the origin. Thus,  = –(kL
2
/4). The constant of proportionality C that 

relates the torque and angle of rotation is C = kL
2
/4. The rotational inertia for a rod 

pivoted at its center is I = mL
2
/12 (see Table 10-2), where m is its mass.  

 

ANALYZE Substituting the expressions for C and I, we find the period of oscillation to 

be 

T
I

C

mL

kL

m

k
  2 2

12

4
2

3

2

2
  

/

/
. 

 

With m = 0.600 kg and k = 1850 N/m, we obtain T = 0.0653 s. 

 

LEARN As in the case of a simple linear harmonic oscillator formed by a mass and a 

spring, the period of the rotating rod is inversely proportional to k . Our result indicates 
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that the rod oscillates very rapidly, with a frequency 1/ 15.3 Hzf T  , i.e., about 15 

times in one second.   

 

54. We note that the initial angle is o = 7º = 0.122 rad (though it turns out this value will 

cancel in later calculations).  If we approximate the initial stretch of the spring as the arc-

length that the corresponding point on the plate has moved through (x = r o  where r = 

0.025 m) then the initial potential energy is approximately  
1

2
 kx

2
 =  0.0093 J.  This should 

equal to the kinetic energy of the plate ( 
1

2
 I m

2
 where this m  is the maximum angular 

speed of the plate, not the angular frequency ).  Noting that the maximum angular speed 

of the plate is m = o where  = 2/T with T = 20 ms = 0.02 s as determined from the 

graph, then we can find the rotational inertial from 
1

2
 Im

2
 = 0.0093 J. Thus, 

5 21.3 10  kg mI    .  

 

55. (a) The period of the pendulum is given by T I mgd 2 / , where I is its rotational 

inertia, m = 22.1 g is its mass, and d is the distance from the center of mass to the pivot 

point. The rotational inertia of a rod pivoted at its center is mL
2
/12 with L = 2.20 m. 

According to the parallel-axis theorem, its rotational inertia when it is pivoted a distance 

d from the center is I = mL
2
/12 + md

2
. Thus, 

 

T
m L d

mgd

L d

gd






2

12
2

12

12

2 2 2 2

 
( / )

. 

 

Minimizing T with respect to d, dT/d(d) = 0, we obtain d L / 12 . Therefore, the 

minimum period T is 

 

2 2

min 2

12( / 12) 2 2(2.20 m)
2 2 2 2.26 s.

12 ( / 12) 12 12(9.80 m/s )

L L L
T

g L g
  


     

 

(b) If d is chosen to minimize the period, then as L is increased the period will increase as 

well. 

 

(c) The period does not depend on the mass of the pendulum, so T does not change when 

m increases. 

 

56. The table of moments of inertia in Chapter 11, plus the parallel axis theorem found in 

that chapter, leads to 

        

IP =  
1

2
 MR

2
 + Mh

2
  = 

1

2
 (2.5 kg)(0.21 m)

2
 + (2.5 kg)(0.97 m)

2
 = 2.41 kg·m² 

 

where P is the hinge pin shown in the figure (the point of support for the physical 

pendulum), which is a distance h = 0.21 m + 0.76 m away from the center of the disk.  
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(a) Without the torsion spring connected, the period is 

 

T = 2
IP

Mgh
 = 2.00 s . 

 

(b) Now we have two “restoring torques” acting in tandem to pull the pendulum back to 

the vertical position when it is displaced.  The magnitude of the torque-sum is (Mgh + 

) = IPwhere the small-angle approximation (sin in radians) and Newton’s 

second law (for rotational dynamics) have been used.  Making the appropriate adjustment 

to the period formula, we have                                       

T = 2
IP

Mgh + 
  . 

 

The problem statement requires T = T + 0.50 s. Thus, T  = (2.00 – 0.50)s = 1.50 s.  

Consequently, 

  =   
4

2

T 2
 IP – Mgh = 18.5  N·m/rad  . 

 

57. Since the energy is proportional to the amplitude squared (see Eq. 15-21), we find the 

fractional change (assumed small) is 

 

 = =
2

= 2 . 
2

2 2

 


E E

E

dE

E

dx

x

x dx

x

dx

x

m

m

m m

m

m

m

 

 

Thus, if we approximate the fractional change in xm as dxm/xm, then the above calculation 

shows that multiplying this by 2 should give the fractional energy change. Therefore, if 

xm decreases by 3%, then E must decrease by 6.0%. 

 

58. Referring to the numbers in Sample Problem 15.6 – “Damped harmonic oscillator, 

time to decay, energy,” we have m = 0.25 kg, b = 0.070 kg/s, and T = 0.34 s. Thus, when 

t = 20T, the damping factor becomes 

 

e ebt m 
 2 0 070 20 0 34 2 0 25

039
. . / .

. .b gb gb g b g  
 

59. THINK In the presence of a damping force, the amplitude of oscillation of the mass-

spring system decreases with time.  

 

EXPRESS As discussed in 15-8, when a damping force is present, we have  

 

 / 2( ) cos( )bt m

mx t x e t     

where b is the damping constant and the angular frequency is given by  

 
2

24

k b

m m
   . 
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ANALYZE (a) We want to solve e
–bt/2m

 = 1/3 for t. We take the natural logarithm of both 

sides to obtain –bt/2m = ln(1/3). Therefore,  

 

t = –(2m/b) ln(1/3) = (2m/b) ln 3. 

Thus, 

 =
2 1.50

0.230
3 = 14.3 . t

 kg

 kg / s
ln  s

a f
 

(b) The angular frequency is 

     
k

m

b

m

2

2

2

2
4

8 00

150

0 230

4 150
2 31

.

.

.

.
. .

N / m

kg

kg / s

kg
rad / s

a f
a f  

 

The period is T = 2/´ = (2)/(2.31 rad/s) = 2.72 s and the number of oscillations is  

 

t/T = (14.3 s)/(2.72 s) = 5.27. 

 

LEARN The displacement x(t) as a function of time is shown below. The amplitude, 
/ 2bt m

mx e , decreases exponentially with time. 

 
 

60. (a) From Hooke’s law, we have 

 

  2

2
500 kg 9.8 m/s

= 4.9 10 N/cm.
10cm

k    

 

(b) The amplitude decreasing by 50% during one period of the motion implies 

 

e TbT m  


2 1

2

2
where




. 

 

Since the problem asks us to estimate, we let     k m/ . That is, we let 

 

  
49000

500
, 

N / m

kg
9.9 rad / s  
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so that T  0.63 s. Taking the (natural) log of both sides of the above equation, and 

rearranging, we find 

 
  3

2 500 kg2
ln2 0.69 1.1 10  kg/s.

0.63 s

m
b

T
     

 

Note: if one worries about the ´   approximation, it is quite possible (though messy) 

to use Eq. 15-43 in its full form and solve for b. The result would be (quoting more 

figures than are significant) 

 =
2 2

( 2) + 4
= 1086  

2 2
b

mkln

ln
 kg / s


 

 

which is in good agreement with the value gotten “the easy way” above. 

 

61. (a) We set  = d and find that the given expression reduces to xm = Fm/b at 

resonance. 

 

(b) In the discussion immediately after Eq. 15-6, the book introduces the velocity 

amplitude vm = xm. Thus, at resonance, we have vm = Fm/b = Fm/b. 

 

62. With = 2/T then Eq. 15-28 can be used to calculate the angular frequencies for the 

given pendulums.  For the given range of 2.00 <  < 4.00 (in rad/s), we find only two of 

the given pendulums have appropriate values of : pendulum (d) with length of 0.80 m 

(for which  = 3.5 rad/s) and pendulum (e) with length of 1.2 m (for which  = 2.86 

rad/s).  

 

63. With M = 1000 kg and m = 82 kg, we adapt Eq. 15-12 to this situation by writing 

 

2

4

k

T M m


  


. 

 

If d = 4.0 m is the distance traveled (at constant car speed v) between impulses, then we 

may write T = v/d, in which case the above equation may be solved for the spring 

constant: 

 
2

2 2
=     4 .

4

v k v
k M m

d M m d

  
    

  
 

 

Before the people got out, the equilibrium compression is xi = (M + 4m)g/k, and 

afterward it is xf = Mg/k. Therefore, with v = 16000/3600 = 4.44 m/s, we find the rise of 

the car body on its suspension is 

 =
4

=
4

+ 4 2
= 0.050 . 

2

x x
mg

k

mg

M m

d

v
i f

F
H
I
K  m  
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64. Since  = 2f where f = 2.2 Hz, we find that the angular frequency is  = 13.8 rad/s. 

Thus, with x = 0.010 m, the acceleration amplitude is am = xm 2
= 1.91 m/s

2
. We set up 

a ratio: 

 = =
1.91

9.8
= 0.19 . a

a

g
g g gm

m
F
HG
I
KJ
F
H
I
K  

 

65. (a) The problem gives the frequency f = 440 Hz, where the SI unit abbreviation Hz 

stands for Hertz, which means a cycle-per-second. The angular frequency  is similar to 

frequency except that  is in radians-per-second. Recalling that 2 radians are equivalent 

to a cycle, we have  = 2f  2.8×10
3
 rad/s. 

 

(b) In the discussion immediately after Eq. 15-6, the book introduces the velocity 

amplitude vm = xm. With xm = 0.00075 m and the above value for , this expression 

yields vm = 2.1 m/s. 

 

(c) In the discussion immediately after Eq. 15-7, the book introduces the acceleration 

amplitude am = 2
xm, which (if the more precise value  = 2765 rad/s is used) yields am = 

5.7 km/s. 

 

66. (a) First consider a single spring with spring constant k and unstretched length L. One 

end is attached to a wall and the other is attached to an object. If it is elongated by x the 

magnitude of the force it exerts on the object is F = k x. Now consider it to be two 

springs, with spring constants k1 and k2, arranged so spring 1 is attached to the object. If 

spring 1 is elongated by x1 then the magnitude of the force exerted on the object is F = 

k1 x1. This must be the same as the force of the single spring, so k x = k1 x1. We must 

determine the relationship between x and x1. The springs are uniform so equal 

unstretched lengths are elongated by the same amount and the elongation of any portion 

of the spring is proportional to its unstretched length. This means spring 1 is elongated by 

x1 = CL1 and spring 2 is elongated by x2 = CL2, where C is a constant of 

proportionality. The total elongation is  

 

x = x1 + x2 = C(L1 + L2) = CL2(n + 1), 

 

where L1 = nL2 was used to obtain the last form. Since L2 = L1/n, this can also be written 

x = CL1(n + 1)/n. We substitute x1 = CL1 and x = CL1(n + 1)/n into k x = k1 x1 and 

solve for k1. With k = 8600 N/m and n = L1/L2 = 0.70, we obtain  

 

4

1

1 0.70 1.0
(8600 N/m) 20886 N/m 2.1 10 N/m

0.70

n
k k

n

    
       
   

. 

 

(b) Now suppose the object is placed at the other end of the composite spring, so spring 2 

exerts a force on it. Now k x = k2 x2. We use x2 = CL2 and x = CL2(n + 1), then 

solve for k2. The result is k2 = k(n + 1). 
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4

2 ( 1) (0.70 1.0)(8600 N/m) 14620 N/m 1.5 10 N/mk n k        

 

(c) To find the frequency when spring 1 is attached to mass m, we replace k in 

1 2/ /a f k m  with k(n + 1)/n. With f k m 1 2/ /a f , we obtain, for 200 Hzf  and n = 

0.70, 

2

1

1 ( 1) 1 0.70 1.0
= (200 Hz) 3.1 10  Hz.

2 0.70

n k n
f f

nm n

  
     

 

(d) To find the frequency when spring 2 is attached to the mass, we replace k with k(n + 1) 

to obtain 

2

2

1 ( 1)
= 1 0.70 1.0(200 Hz) 2.6 10 Hz.

2

n k
f n f

m


       

 

67. The magnitude of the downhill component of the gravitational force acting on each 

ore car is 

 = 10000 9.8  2wx  kg  m/ s sinb gc h   

 

where  = 30° (and it is important to have the calculator in degrees mode during this 

problem). We are told that a downhill pull of 3x causes the cable to stretch x = 0.15 m. 

Since the cable is expected to obey Hooke’s law, its spring constant is 

 

 =
3

= 9.8 10 . 5k
w

x

x   N / m  

 

(a) Noting that the oscillating mass is that of two of the cars, we apply Eq. 15-12 (divided 

by 2). 
51 1 9.8 10 N / m

1.1 Hz.
2 2 2 20000 kg

k
f

m



  


     

 

(b) The difference between the equilibrium positions of the end of the cable when 

supporting two as opposed to three cars is 

 

 =
3 2

= 0.050 . 


x
w w

k

x x  m  

 

68. (a) Hooke’s law readily yields (0.300 kg)(9.8 m/s
2
)/(0.0200 m) = 147 N/m. 

 

(b) With m = 2.00 kg, the period is  = 2 0 733T
m

k
  . s . 

 

69. THINK The piston undergoes simple harmonic motion. Given the amplitude and 

frequency of oscillation, its maximum speed can be readily calculated. 
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EXPRESS Let the amplitude be xm. The maximum speed vm is related to the amplitude 

by vm = xm, where  is the angular frequency.  

 

ANALYZE We use vm =xm= 2fxm, where the frequency is f = (180 rev)/(60 s) = 3.0 Hz 

and the amplitude is half the stroke, or xm = 0.38 m. Thus,  

 

vm = 2(3.0 Hz)(0.38 m) = 7.2 m/s. 

 

LEARN In a similar manner, the maximum acceleration is 

 

      
222 22 2 3.0 Hz 0.38 m 135 m/s .m m ma x f x       

 

Acceleration is proportional to the displacement xm in SHM. 

 

70. (a) The rotational inertia of a hoop is I = mR
2
, and the energy of the system becomes 

 

E I kx 
1

2

1

2

2 2  

 

and  is in radians. We note that r = v (where v = dx/dt). Thus, the energy becomes 

 

E
mR

r
v kx

F
HG
I
KJ 

1

2

1

2

2

2

2 2  

 

which looks like the energy of the simple harmonic oscillator discussed in Section15-4 if 

we identify the mass m in that section with the term mR
2
/r

2
 appearing in this problem. 

Making this identification, Eq. 15-12 yields 

 

  
k

mR r

r

R

k

m2 2/
. 

 

(b) If r = R the result of part (a) reduces to   k m/ . 

 

(c) And if r = 0 then  = 0 (the spring exerts no restoring torque on the wheel so that it is 

not brought back toward its equilibrium position). 

 

71. Since T = 0.500 s, we note that  = 2/T = 4 rad/s. We work with SI units, so m = 

0.0500 kg and vm = 0.150 m/s. 

 

(a) Since   k m/ , the spring constant is 

 

   
22 4  rad/s 0.0500 kg 7.90 N/m.k m     
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(b) We use the relation vm = xm and obtain 

 

 = =
0.150

4
= 0.0119 . x

v
m

m

 
 m  

 

(c) The frequency is f = /2 = 2.00 Hz (which is equivalent to f = 1/T). 

 

72. (a) We use Eq. 15-29 and the parallel-axis theorem I = Icm + mh
2
 where h = R = 0.126 

m. For a solid disk of mass m, the rotational inertia about its center of mass is Icm = mR
2
/2. 

Therefore, 
2 2/ 2 3

2 2 0.873s.
2

mR mR R
T

mgR g
 


    

 

(b) We seek a value of r  R such that 

 

2
2

2
2

3

2

2 2

 
R r

gr

R

g


  

 

and are led to the quadratic formula: 

 

r
R R R

R
R


 


3 3 8

4 2

2 2a f
or . 

 

Thus, our result is r = 0.126/2 = 0.0630 m. 

 

73. THINK A mass attached to the end of a vertical spring undergoes simple harmonic 

motion. Energy is conserved in the process.    

 

EXPRESS The spring stretches until the magnitude of its upward force on the block 

equals the magnitude of the downward force of gravity: ky0 = mg, where y0 = 0.096 m is 

the elongation of the spring at equilibrium, k is the spring constant, and m = 1.3 kg is the 

mass of the block. As the block oscillate, its speed is a maximum as it passes the 

equilibrium point, and zero at the endpoints. 

 

ANALYZE (a) The spring constant is   

 

k = mg/ y0 = (1.3 kg)(9.8 m/s
2
)/(0.096 m) = 1.33 ×10

2
 N/m. 

 

(b) The period is given by  

 

1 2 1.3 kg
2 2 0.62 s.

133 N / m

m
T

f k


 


      

 

(c) The frequency is f = 1/T = 1/0.62 s = 1.6 Hz. 
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(d) The block oscillates in simple harmonic motion about the equilibrium point 

determined by the forces of the spring and gravity. It is started from rest y = 5.0 cm 

below the equilibrium point so the amplitude is 5.0 cm. 

 

(e) At the initial position,  

 

0 9.6 cm 5.0 cm 14.6 cm 0.146 miy y y      , 

 

the block is not moving but it has potential energy 

 

      
22 21 1

1.3 kg 9.8 m/s 0.146 m 133 N / m 0.146 m 0.44 J.
2 2

i i iU mgy ky         

 

When the block is at the equilibrium point, the elongation of the spring is y0 = 9.6 cm and 

the potential energy is 

 

      
22 2

0 0

1 1
1.3 kg 9.8 m/s 0.096 m 133 N / m 0.096 m

2 2

0.61 J.

fU mgy ky     

 

 

 

We write the equation for conservation of energy as U U mvi f  1
2

2 and solve for v: 

 

   2 2 0.44J 0.61J
0.51m/s.

1.3kg

i fU U
v

m

  
    

 

LEARN Both the gravitational force and the spring force are conservative, so the work 

done by the forces is independent of path. By energy conservation, the kinetic energy of 

the block is equal to the negative of the change in potential energy of the system: 

 

 

2 2

0 0

2 2 2

0 0 0

2

0

2

1
( ) ( ) ( )

2
1 1

( ) ( ) 2
2 2

1
( ) ( )

2
1

( )
2

f i i f i iK U U U U U mg y y k y y

mg y k y y y mg y k y y y

y mg ky k y

k y

            

                   

     

 

 

 

where the relation 0ky mg was used.  

 

74. The distance from the relaxed position of the bottom end of the spring to its 

equilibrium position when the body is attached is given by Hooke’s law:  
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x = F/k = (0.20 kg)(9.8 m/s
2
)/(19 N/m) = 0.103 m. 

 

(a) The body, once released, will not only fall through the x distance but continue 

through the equilibrium position to a “turning point” equally far on the other side. Thus, 

the total descent of the body is 2x = 0.21 m. 

 

(b) Since f = /2, Eq. 15-12 leads to 

 =
1

2
16f

k

m
 . .z  

 

(c) The maximum distance from the equilibrium position gives the amplitude:  

 

xm = x = 0.10 m. 

 

75. (a) Assume the bullet becomes embedded and moves with the block before the block 

moves a significant distance. Then the momentum of the bulletblock system is 

conserved during the collision. Let m be the mass of the bullet, M be the mass of the 

block, v0 be the initial speed of the bullet, and v be the final speed of the block and bullet. 

Conservation of momentum yields mv0 =   (m + M)v, so 

 

 =
+

=
0.050 150

0.050 + 4.0
=1.85 . 0v

mv

m M

 kg  m / s

 kg  kg
 m / s

a fa f
 

 

When the block is in its initial position the spring and gravitational forces balance, so the 

spring is elongated by Mg/k. After the collision, however, the block oscillates with simple 

harmonic motion about the point where the spring and gravitational forces balance with 

the bullet embedded. At this point the spring is elongated a distance  

 

  M m g ka f / , 

 

somewhat different from the initial elongation. Mechanical energy is conserved during 

the oscillation. At the initial position, just after the bullet is embedded, the kinetic energy 

is 1
2

2( )M m v  and the elastic potential energy is 1
2

2k Mg k( / ) . We take the gravitational 

potential energy to be zero at this point. When the block and bullet reach the highest 

point in their motion the kinetic energy is zero. The block is then a distance ym above the 

position where the spring and gravitational forces balance. Note that ym is the amplitude 

of the motion. The spring is compressed by ym   , so the elastic potential energy is 
1
2

2k ym( )  . The gravitational potential energy is (M + m)gym. Conservation of 

mechanical energy yields 

 

 
1

2
+ +

1

2
=

1

2
+ + . 2

2
2

M m v k
Mg

k
k y M m gym ma f b g a fF

H
I
K    
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We substitute   M m g ka f / . Algebraic manipulation leads to 

 

y
m M v

k

mg

k
M mm 


 




 



a f a f

a fa f a fc h a f

2 2

2

2 2

2

2

0 050 4 0 185

500

0 050 9 8

500
2 4 0 0 050

0 166

. . . . .

( )
. .

. .

kg kg m / s

N / m

kg m / s

N / m
kg kg

m

2

 

 

(b) The original energy of the bullet is E mv0
1
2 0

2 1
2

20 050 150 563  ( . )( )kg m / s J . The 

kinetic energy of the bulletblock system just after the collision is 

 

 =
1

2
+ =

1

2
0.050 + 4.0 1.85 = 6.94 . 2 2

E m M va f a fa f kg  kg  m / s  J  

 

Since the block does not move significantly during the collision, the elastic and 

gravitational potential energies do not change. Thus, E is the energy that is transferred. 

The ratio is  

E/E0 = (6.94 J)/(563 J) = 0.0123 or 1.23%. 

 

76. (a)  We note that  

 

 = k/m  = 1500/0.055  = 165.1 rad/s. 

 

We consider the most direct path in each part of this problem.  That is, we consider in 

part (a) the motion directly from   x1 = +0.800xm  at time t1    to   x2 = +0.600xm  at time t2    

(as opposed to, say, the block moving from x1 = +0.800xm through x = +0.600xm, through 

x = 0, reaching x = –xm and after returning back through x = 0 then getting to x2 = 

+0.600xm).   Equation 15-3 leads to  

 

t1 + = cos
1

(0.800) = 0.6435 rad 

 

t2 + = cos
1

(0.600) = 0.9272 rad . 

 

Subtracting the first of these equations from the second leads to  

     

t2 – t1= 0.9272 – 0.6435 = 0.2838 rad . 

 

Using the value for  computed earlier, we find t2 – t1= 1.72  10
3 

s.  

 

(b) Let t3  be when the block reaches x = –0.800xm in the direct sense discussed above.  

Then the reasoning used in part (a) leads here to 

 

t3 – t1= ( 2.4981 – 0.6435) rad = 1.8546 rad 
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and thus to t3 – t1= 11.2  10
3 

s.  

 

77. (a) From the graph, we find xm = 7.0 cm = 0.070 m, and T = 40 ms = 0.040 s.  Thus, 

the angular frequency is  = 2/T = 157 rad/s.  Using m = 0.020 kg, the maximum kinetic 

energy is then 
1

2
 mv

2
 = 

1

2
 m 2 

xm
2
  = 1.2 J. 

 

(b) Using Eq. 15-5, we have f = /2 = 50 oscillations per second. Of course, Eq. 15-2 

can also be used for this. 

 

78. (a) From the graph we see that xm = 7.0 cm = 0.070 m and T = 40 ms = 0.040 s. The 

maximum speed is xm = xm2/T = 11 m/s. 

 

(b) The maximum acceleration is xm
2
 = xm(2/T)

2
 = 1.7  10

3
 m/s

2
. 

 

79. Setting 15 mJ (0.015 J) equal to the maximum kinetic energy leads to vmax = 0.387 

m/s.  Then one can use either an “exact” approach using vmax = max2 (1 cos )gL   or the 

“SHM” approach where  

 

vmax = Lmax = Lmax  = L g/L max 

 

to find L.  Both approaches lead to L = 1.53 m. 

 

80. Its total mechanical energy is equal to its maximum potential energy 
1

2
 kxm

2
, and its 

potential energy at t = 0 is  
1

2
 kxo

2
  where xo = xmcos(/5) in this problem.  The ratio is 

therefore cos
2
(/5) = 0.655 = 65.5%. 

 

81. (a) From the graph, it is clear that xm = 0.30 m. 

 

(b) With F = –kx, we see k is the (negative) slope of the graph — which is 75/0.30 = 250 

N/m. Plugging this into Eq. 15-13 yields 

 

0.50 kg
2 2 0.28 s.

250 N/m

m
T

k
     

 

(c) As discussed in Section 15-2, the maximum acceleration is 

 

2 2 2250 N/m
(0.30 m) 1.5 10  m/s .

0.50 kg
m m m

k
a x x

m


  
      

   
 

 

Alternatively, we could arrive at this result using am = (2/T)
2
 xm. 

 

(d) Also in Section 15-2 is vm = xm so that the maximum kinetic energy is 
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2 2 2 2 21 1 1 1
(250 N/m)(0.30 m) 11.3 J 11 J.

2 2 2 2
m m m mK mv m x kx       

 

We note that the above manipulation reproduces the notion of energy conservation for 

this system (maximum kinetic energy being equal to the maximum potential energy). 

 

82. Since the centripetal acceleration is horizontal and Earth’s gravitational 

g  is 

downward, we can define the magnitude of an “effective” gravitational acceleration using 

the Pythagorean theorem: 

2 2 2( / ) .
eff

g g v R   

 

Then, since frequency is the reciprocal of the period, Eq. 15-28 leads to 

 

f
g

L

g v R

L

eff
 

1

2

1

2

2 4 2

 
.  

 

With v = 70 m/s, R = 50 m, and L = 0.20 m, we have 13.5 s 3.5 Hz.f    

 

83. (a) Hooke’s law readily yields  

 

k = (15 kg)(9.8 m/s
2
)/(0.12 m) = 1225 N/m. 

 

Rounding to three significant figures, the spring constant is therefore 1.23 kN/m. 

 

(b) We are told f = 2.00 Hz = 2.00 cycles/sec. Since a cycle is equivalent to 2 radians, 

we have  = 2(2.00) = 4 rad/s (understood to be valid to three significant figures). 

Using Eq. 15-12, we find 

 
2

1225 N/m
    7.76 kg.

4  rad/s

k
m

m



     

 

Consequently, the weight of the package is mg = 76.0 N. 

 

84. (a) Comparing with Eq. 15-3, we see  = 10 rad/s in this problem. Thus, f = /2 = 

1.6 Hz. 

 

(b) Since vm = xm and xm = 10 cm (see Eq. 15-3), then vm = (10 rad/s)(10 cm) = 100 cm/s 

or 1.0 m/s. 

 

(c) The maximum occurs at t = 0. 

 

(d) Since am = 2
xm, then vm = (10 rad/s)

2
(10 cm) = 1000 cm/s

2
 or 10 m/s

2
. 
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(e) The acceleration extremes occur at the displacement extremes: x = ±xm or x = ±10 cm. 

 

(f) Using Eq. 15-12, we find 

 

 = 010 10 10
2


k

m
k  . .kg rad / s N / ma fa f  

 

Thus, Hooke’s law gives F = –kx = –10x in SI units. 

 

85. Using m = 2.0 kg, T1 = 2.0 s and T2 = 3.0 s, we write 

 

T
m

k
T

m m

k
1 22 2 


 and


. 

 

Dividing one relation by the other, we obtain 

 

 =2

1

T

T

m m

m

 
 

which (after squaring both sides) simplifies to 
2

2 1

1.6kg.
( / ) 1

m
m

T T


 


 

 

86. (a) The amplitude of the acceleration is given by am = 2
xm, where  is the angular 

frequency ( = 2 f since there are 2 radians in one cycle). Therefore, in this 

circumstance, we obtain 

 

 = 2 1000 0.00040 =1.6 10 . 
2 4 2am   Hz  m  m / sa fb g a f   

 

(b) Similarly, in the discussion after Eq. 15-6, we find vm = xm so that 

 

 = 2 1000 0.00040 = 2.5 . vm   Hz  m  m/ sb gc hb g  

 

(c) From Eq. 15-8, we have (in absolute value) 

 

a  = 2 1000 0.00020 = 7.9 10 . 
2 3 2  Hz  m  m/ sb gc h b g   

 

(d) This can be approached with the energy methods of Section 15-4, but here we will use 

trigonometric relations along with Eq. 15-3 and Eq. 15-6. Thus, allowing for both roots 

stemming from the square root, 

 

   
2

2

2
sin 1 cos 1 .

m m

v x
t t

x x
   


           
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Taking absolute values and simplifying, we obtain 

 

 2 2 2 2| | 2 2 1000 0.00040 0.00020 2.2 m/s.mv f x x       

 

87. (a) The rotational inertia is I MR   1
2

2 1
2

2 23 00 0 700 0 735( . )( . ) .kg m kg m . 

 

(b) Using Eq. 15-22 (in absolute value), we find 

 

0.0600 N m
= = = 0.0240 N m/rad.

2.5 rad







  

 

(c) Using Eq. 15-5, Eq. 15-23 leads to 

 

2

0.024N m/rad
0.181 rad/s.

0.735kg mI





  


 

 

88. (a) The Hooke’s law force (of magnitude (100)(0.30) = 30 N) is directed upward and 

the weight (20 N) is downward. Thus, the net force is 10 N upward. 

 

(b) The equilibrium position is where the upward Hooke’s law force balances the weight, 

which corresponds to the spring being stretched (from unstretched length) by 20 N/100 

N/m = 0.20 m. Thus, relative to the equilibrium position, the block (at the instant 

described in part (a)) is at what one might call the bottom turning point (since v = 0) at x 

= –xm where the amplitude is xm = 0.30 – 0.20 = 0.10 m. 

 

(c) Using Eq. 15-13, we have 

 
2(20 N) /(9.8 m/s )

2 2 0.90 s.
100 N/m

m
T

k
     

 

(d) The maximum kinetic energy is equal to the maximum potential energy 1
2

2kxm . Thus, 

 

 = =
1

2
100 0.10 = 0.50 . 

2
K Um m  N / m  m  Ja fa f  

 

89. (a) We require U E 1
2  at some value of x. Using Eq. 15-21, this becomes 

 

 
1

2
=

1

2

1

2
=

2
. 2 2kx kx x

x
m

mF
HG
I
KJ  

 

We compare the given expression x as a function of t with Eq. 15-3 and find xm = 5.0 m. 

Thus, the value of x we seek is x  5 0 2 3 5. / . m. 
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(b) We solve the given expression (with x  5 0 2. / ), making sure our calculator is in 

radians mode: 

 =
4

+
3 1

2
=1.54 . 1t




cos  s F
HG
I
KJ  

 

Since we are asked for the interval teq – t where teq specifies the instant the particle passes 

through the equilibrium position, then we set x = 0 and find 

 

 =
4

+
3

0 = 2.29 . 1teq cos  s




 b g  

 

Consequently, the time interval is teq – t = 0.75 s. 

 

90. Since the particle has zero speed (momentarily) at x  0, then it must be at its turning 

point; thus, xo = xm = 0.37 cm. It is straightforward to infer from this that the phase 

constant  in Eq. 15-2 is zero. Also, f = 0.25 Hz is given, so we have  = 2f = /2 rad/s. 

The variable t is understood to take values in seconds. 

 

(a) The period is T = 1/f = 4.0 s. 

 

(b) As noted above,  = /2 rad/s. 

 

(c) The amplitude, as observed above, is 0.37 cm. 

 

(d) Equation 15-3 becomes x = (0.37 cm) cos(t/2). 

 

(e) The derivative of x is v = –(0.37 cm/s)(/2) sin(t/2)  (–0.58 cm/s) sin(t/2). 

 

(f) From the previous part, we conclude vm = 0.58 cm/s. 

 

(g) The acceleration-amplitude is am = 2
xm = 0.91 cm/s

2
. 

 

(h) Making sure our calculator is in radians mode, we find x = (0.37) cos((3.0)/2) = 0. It 

is important to avoid rounding off the value of  in order to get precisely zero, here. 

 

(i) With our calculator still in radians mode, we obtain v = –(0.58 cm/s)sin((3.0)/2) = 

0.58 cm/s. 

 

91. THINK This problem explores the oscillation frequency of a pendulum under various 

accelerating conditions. 

 

EXPRESS In a room, the frequency for small amplitude oscillations is f g L 1 2/ /a f , 

where L is the length of the pendulum. Inside an elevator, the forces acting on the 

pendulum are the tension force 

T  of the rod and the force of gravity mg


. Newton’s 

second law yields 
  
T mg ma  , where m is the mass and 


a  is the acceleration of the 
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pendulum. Let 
  
a a ae   , where 


ae  is the acceleration of the elevator and 


a  is the 

acceleration of the pendulum relative to the elevator. Newton’s second law can then be 

written ( )em g a T    ma . Relative to the elevator the motion is exactly the same as it 

would be in an inertial frame where the acceleration due to gravity is 
eff eg g a  .  

 

ANALYZE (a) With 2.0 mL  , we find the frequency of the pendulum in a room to be  

 
21 1 9.80 m / s

0.35 Hz.
2 2 2.0 m

g
f

L 
    

 

(b) With the elevator accelerating upward, 

g  and 


ae  are along the same line but in 

opposite directions, we can find the frequency for small amplitude oscillations by 

replacing g with the effective gravitational acceleration geff = g + ae in the expression 

f g L ( / ) /1 2 . Thus, 

f
g a

L

e






1

2

1

2

9 8 2 0

2 0
0 39

 

. .

.
. .

m / s m / s

m
Hz

2 2

 

 

(c) Now the acceleration due to gravity and the acceleration of the elevator are in the 

same direction and have the same magnitude. That is, 
 
g ae  0. To find the frequency 

for small amplitude oscillations, replace g with zero in f g L ( / ) /1 2 . The result is 

zero. The pendulum does not oscillate. 

 

LEARN The frequency of the pendulum increases as geff  increases.    

 

92. The period formula, Eq. 15-29, requires knowing the distance h from the axis of 

rotation and the center of mass of the system. We also need the rotational inertia I about 

the axis of rotation. From the figure, we see h = L + R where R = 0.15 m. Using the 

parallel-axis theorem, we find 

 
221
,

2
I MR M L R    

 

where 1.0 kgM  . Thus, Eq. 15-29, with T = 2.0 s, leads to 

 

2 0 2
1
2

2 2

. 
 




MR M L R

Mg L R

b g
b g  

 

which leads to L = 0.8315 m. 

 

93. (a) Hooke’s law provides the spring constant:  

 

k = (4.00 kg)(9.8 m/s
2
)/(0.160 m) = 245 N/m. 
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(b) The attached mass is m = 0.500 kg. Consequently, Eq. 15-13 leads to 

 

T
m

k
  2 2

0 500

245
0 284 

.
. .s  

 

94. We note (from the graph) that am = 
xm = 4.00 cm/s


.  Also, the value at t = 0 is ao = 

1.00 cm/s

.   Then Eq. 15-7 leads to  

 

 = cos
1

(–1.00/4.00) = +1.82 rad or – 4.46 rad. 

 

The other “root” (+4.46 rad) can be rejected on the grounds that it would lead to a 

negative slope at t = 0. 

 

95. The time for one cycle is T = (50 s)/20 = 2.5 s. Thus, from Eq. 15-23, we find 

 

 =
2

= 0.50
2.5

2
= 0.079 . 

2 2

2I
T


 

F
H
I
K

F
H
I
K a f  kg m  

 

96. The angular frequency of the simple harmonic oscillation is given by Eq. 15-13: 

 

k

m
  . 

 

Thus, for two different masses 1m  and 2m , with the same spring constant k, the ratio of 

the frequencies would be  

11 2

2 12

/

/

k m m

mk m




  . 

In our case, with 1m m  and 2 2.5m m , the ratio is 1 2

2 1

2.5 1.58
m

m




   . 

 

97. (a) The graphs suggest that T = 0.40 s and  = 4/0.2 = 0.02 N·m/rad. With these 

values, Eq. 15-23 can be used to determine the rotational inertia:   

 

I = T
2
/4

2
 = 8.11  10

5
 2kg m . 

 

(b) We note (from the graph) that max = 0.20 rad. Setting the maximum kinetic energy 

( 
1

2
 Imax

2 
) equal to the maximum potential energy (see the hint in the problem) leads to 

max = max /I  = 3.14 rad/s. 

 

98. (a) Hooke’s law provides the spring constant: k = (20 N)/(0.20 m) = 1.0×10
2
 N/m. 
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(b) The attached mass is m = (5.0 N)/(9.8 m/s
2
) = 0.51 kg. Consequently, Eq. 15-13 leads 

to 

0.51kg
2 2 0.45 s.

100 N / m

m
T

k
     

 

99. For simple harmonic motion, Eq. 15-24 must reduce to 

 

  =  L F L Fg gsinc h c h  
 

where  is in radians. We take the percent difference (in absolute value) 

 

  


 

LF LF

LF

g g

g

sin

sin sin

 







d i d i
1  

 

and set this equal to 0.010 (corresponding to 1.0%). In order to solve for  (since this is 

not possible “in closed form”), several approaches are available. Some calculators have 

built-in numerical routines to facilitate this, and most math software packages have this 

capability. Alternatively, we could expand sin   – 3/6 (valid for small ) and thereby 

find an approximate solution (which, in turn, might provide a seed value for a numerical 

search). Here we show the latter approach: 

 

1
6

0 010
1

1 6
1010

3 2



 






  /
. .  

 

which leads to 6(0.01/1.01) 0.24  rad 14.0 .      A more accurate value (found 

numerically) for   that results in a 1.0% deviation is 13.986°. 

 

100. (a) The potential energy at the turning point is equal (in the absence of friction) to 

the total kinetic energy (translational plus rotational) as it passes through the equilibrium 

position: 
2

2 2 2 2 2 2 cm
cm cm cm

2 2 2

cm cm cm

1 1 1 1 1 1

2 2 2 2 2 2

1 1 3

2 4 4

m

v
kx Mv I Mv MR

R

Mv Mv Mv


  

      
  

  

 

 

which leads to Mv kxmcm

2 22 3 /  = 0.125 J. The translational kinetic energy is therefore 
1
2

2 2 3 0 0625Mv kxmcm J / . . 

 

(b) And the rotational kinetic energy is 2 2 21
cm4

/ 6 0.03125J 3.13 10  JmMv kx     . 
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(c) In this part, we use vcm to denote the speed at any instant (and not just the maximum 

speed as we had done in the previous parts). Since the energy is constant, then 

 

 2 2

cm cm cm cm

3 1 3
0

4 2 2

dE d d
Mv kx Mv a kxv

dt dt dt

   
       

   
 

which leads to 

 =
2

3
. a

k

M
xcm 

F
HG
I
KJ  

 

Comparing with Eq. 15-8, we see that   2 3k M/  for this system. Since  = 2/T, we 

obtain the desired result: T M k 2 3 2 / . 

 

101. THINK The block is in simple harmonic motion, so its position relative to the 

equilibrium position can be written as x(t) = xm cos(t + ). 

 

EXPRESS The speed of the block is  

 

( ) / sin( )mv t dx dt x t      . 

 

For a horizontal spring, the relaxed position is the equilibrium position (in a regular 

simple harmonic motion setting); thus, we infer that the given v = 5.2 m/s at x = 0 is the 

maximum value vm=xm where  

480 N/m
20 rad/s

1.2 kg

k

m
    . 

 

ANALYZE (a) Since  = 2 f, we find f = 3.2 Hz. 

 

(b) We have vm = 5.2 m/s = xm = (20 rad/s)xm, which leads to xm = 0.26 m. 

 

(c) With meters, seconds and radians understood, 

 

(0.26 m)cos(20 )

(5.2 m/s)sin(20 ).

x t

v t





 

  
 

 

The requirement that x = 0 at t = 0 implies (from the first equation above) that either  = 

+/2 or  = –/2. Only one of these choices meets the further requirement that v > 0 when 

t = 0; that choice is  = –/2. Therefore, 

 

 (0.26 m)cos 20 (0.26 m)sin 20 .
2

x t t
 

   
 

 

 

LEARN The plots of x and v as a function of time are given next: 
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102. (a) Equation 15-21 leads to 

 

1 2 2(4.0 J)2 0.20 m.
2 200 N / m

m m

E
E kx x

k
      

  

(b) Since 2 / 2 0.80 kg / 200 N / m 0.4 s ,T m k     then the block completes 

10/0.4 = 25 cycles during the specified interval. 

 

(c) The maximum kinetic energy is the total energy, 4.0 J. 

 

(d) This can be approached more than one way; we choose to use energy conservation: 

 

 = + 4.0 =
1

2
+

1

2
. 2 2E K U mv kx  

 

Therefore, when x = 0.15 m, we find v = 2.1 m/s. 

 

103. (a) By Eq. 15-13, the mass of the block is 

 

 =
4

= 2.43 . 0

2

2
m

kT
b


 kg  

 

Therefore, with mp = 0.50 kg, the new period is 

 

T
m m

k

p b



2 0 .44 .s  

 

(b) The speed before the collision (since it is at its maximum, passing through 

equilibrium) is v0 = xm0 where 0 = 2/T0; thus, v0 = 3.14 m/s. Using momentum 

conservation (along the horizontal direction) we find the speed after the collision: 

 

 =
+

= 2.61 .0V v
m

m m

b

p b

 m / s  
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The equilibrium position has not changed, so (for the new system of greater mass) this 

represents the maximum speed value for the subsequent harmonic motion: V = x´m 

where  = 2/T = 14.3 rad/s. Therefore, x´m = 0.18 m. 

 

104. (a) We are told that when 4t T , with T m k  2 2 / /  (neglecting the 

second term in Eq. 15-43),  

2 3

4

bt me  . 

Thus, 

T  2 2 00 10 0 2 81 ( . ) / ( . ) .kg N / m s  

 

and we find 

 

    

 

4 2 2.00 kg 0.2884
ln 0.288 0.102 kg/s.

2 3 4 2.81s

b T
b

m

 
     

 
 

 

(b) Initially, the energy is 2 21 1
o o2 2

(10.0)(0.250) 0.313 JmE kx   . At t = 4T,  

 
231

2 4
( ) 0.176 Jm oE k x  . 

Therefore, Eo – E = 0.137 J. 

 

105. (a) From Eq. 16-12, T m k 2 0 / .45 s. 

 

(b) For a vertical spring, the distance between the unstretched length and the equilibrium 

length (with a mass m attached) is mg/k, where in this problem mg = 10 N and k = 200 

N/m (so that the distance is 0.05 m). During simple harmonic motion, the convention is to 

establish x = 0 at the equilibrium length (the middle level for the oscillation) and to write 

the total energy without any gravity term; that is, E K U  , where 2 / 2.U kx  Thus, as 

the block passes through the unstretched position, the energy is 

 

E k  2 0 0 05 2 251
2

2. ( . ) . J . 

 

At its topmost and bottommost points of oscillation, the energy (using this convention) is 

all elastic potential: 1
2

2kxm . Therefore, by energy conservation, 

 2.25 =
1

2
= 0.15 . 2kx xm m   m  

 

This gives the amplitude of oscillation as 0.15 m, but how far are these points from the 

unstretched position? We add (or subtract) the 0.05 m value found above and obtain 0.10 

m for the top-most position and 0.20 m for the bottom-most position. 

 

(c) As noted in part (b), xm = ±0.15 m. 
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(d) The maximum kinetic energy equals the maximum potential energy (found in part (b)) 

and is equal to 2.25 J. 

 

106. (a) The graph makes it clear that the period is T = 0.20 s. 

 

(b) The period of the simple harmonic oscillator is given by Eq. 15-13:  = 2T
m

k
 . 

 

Thus, using the result from part (a) with k = 200 N/m, we obtain m = 0.203  0.20 kg. 

 

(c) The graph indicates that the speed is (momentarily) zero at t = 0, which implies that 

the block is at x0 = ±xm. From the graph we also note that the slope of the velocity curve 

(hence, the acceleration) is positive at t = 0, which implies (from ma = –kx) that the value 

of x is negative. Therefore, with xm = 0.20 m, we obtain x0 = –0.20 m. 

 

(d) We note from the graph that v = 0 at t = 0.10 s, which implied a = ±am = ±2
xm. Since 

acceleration is the instantaneous slope of the velocity graph, then (looking again at the 

graph) we choose the negative sign. Recalling 2
 = k/m we obtain a = –197  –2.0 ×10

2
 

m/s
2
. 

 

(e) The graph shows vm = 6.28 m/s, so 2 21 1
(0.20 kg)(6.28 m/s) 4.0 J.

2 2
m mK mv    

 

107. The mass is  =
0.108

6.02 10
= 1.8 10 . 

23

25m
 kg

 kg


  Using Eq. 15-12 and the fact that f = 

/2, we have 

   
2

13 13 25 21
1 10  Hz = 2 10 1.8 10 7 10 N/m.

2

k
k

m




        

 

108. Using Hooke’s law, we have .mg k y kh    The frequency of oscillation for the 

mass-spring system is 

1 1

2

k
f

T m
   

 

Similarly, the frequency of oscillation for a simple pendulum is  

 

1 1

2

g
f

T L
  


 

If ,f f   then 
1 1

,
2 2

k g

m L 
  which gives 

 

2.00 cm.
mg kh

L h
k k

     
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109. The rotational inertia for an axis through A is IA = Icm + mhA

2  and that for an axis 

through B is IB = Icm + mhB

2 , where hA and hB are distances from A and B to the center of 

mass. Using Eq. 15-29, 2 / ,T I mgh we require 

 
2 2

cm cm2 2A B
A B

A B

I mh I mh
T T

mgh mgh
 

 
    

 

which (after canceling 2 and squaring both sides) becomes 

 

 
+

=
+

. 
2 2I mh

mgh

I mh

mgh

A

A

B

B

cm cm  

 

Cross-multiplying and rearranging, we obtain 

 

 = =  2 2I h h m h h h h mh h h hB A A B B A A B B Acm   b g c h b g 
 

which simplifies to Icm = mhAhB. We plug this back into the first period formula above 

and obtain 
2

2 2 .A B A B A

A

mh h mh h h
T

mgh g
 

 
   

 

From the figure, we see that hB + hA = L, and (after squaring both sides) we can solve the 

above equation for L: 
2 2 2

2 2

(9.8 m/s )(1.80 s)
0.804 m.

4 4

gT
L

 
    

 

110. Since dm is the amplitude of oscillation, then the maximum acceleration being set to 

0.2g provides the condition: 2
dm = 0.2g.  Since ds is the amount the spring stretched in 

order to achieve vertical equilibrium of forces, then we have the condition kds = mg.  

Since we can write this latter condition as m
2
ds = mg, then 2

 = g/ds.  Plugging this into 

our first condition, we obtain  

 

ds = dm/0.2 = (10 cm)/0.2 = 50 cm. 

 

111. Using Eq. 15-12, we find   k m/ 10 rad / s . We also use vm = xm and am = 

xm
2
. 

 

(a) The amplitude (meaning “displacement amplitude”) is xm = vm/ = 3/10 = 0.30 m. 

 

(b) The acceleration-amplitude is am = (0.30 m)(10 rad/s)
2
 = 30 m/s

2
. 
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(c) One interpretation of this question is “what is the most negative value of the 

acceleration?” in which case the answer is –am = –30 m/s
2
. Another interpretation is 

“what is the smallest value of the absolute-value of the acceleration?” in which case the 

answer is zero. 

 

(d) Since the period is T = 2/ = 0.628 s. Therefore, seven cycles of the motion requires 

t = 7T = 4.4 s. 

 

112. (a) Eq. 15-28 gives 

T
L

g

m
  2 2

17

9 8
8 3 

.
. .

m / s
s

2
 

 

(b) Plugging I = mL
2
 into Eq. 15-25, we see that the mass m cancels out. Thus, the 

characteristics (such as the period) of the periodic motion do not depend on the mass. 

 

113. (a) The net horizontal force is F since the batter is assumed to exert no horizontal 

force on the bat. Thus, the horizontal acceleration (which applies as long as F acts on the 

bat) is a = F/m. 

 

(b) The only torque on the system is that due to F, which is exerted at P, at a distance 

L Lo 
1
2  from C. Since Lo = 2L/3 (see Sample Problem 15-5), then the distance from C to 

P is 2
3

1
2

1
6L L L  . Since the net torque is equal to the rotational inertia (I = 1/12mL

2
 

about the center of mass) multiplied by the angular acceleration, we obtain 

 




  
I

F L

mL

F

mL

1
6

1
12

2

2b g
. 

 

(c) The distance from C to O is r = L/2, so the contribution to the acceleration at O 

stemming from the angular acceleration (in the counterclockwise direction of Fig. 15-13) 

is  r L 1
2  (leftward in that figure). Also, the contribution to the acceleration at O due to 

the result of part (a) is F/m (rightward in that figure). Thus, if we choose rightward as 

positive, then the net acceleration of O is 

 

 =
1

2
=

1

2

2
= 0. a

F

m
L

F

m

F

mL
LO  

F
H
I
K  

 

(d) Point O stays relatively stationary in the batting process, and that might be possible 

due to a force exerted by the batter or due to a finely tuned cancellation such as we have 

shown here. We assumed that the batter exerted no force, and our first expectation is that 

the impulse delivered by the impact would make all points on the bat go into motion, but 

for this particular choice of impact point, we have seen that the point being held by the 

batter is naturally stationary and exerts no force on the batter’s hands which would 

otherwise have to “fight” to keep a good hold of it. 
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114. (a) By energy conservation, the required elastic potential energy stored in the spring 

is 2 21 1
esc2 2

( ) .k y mv   Solving for k, we obtain 

 
2 3

6esc

2 2

(0.170 kg)(11.2 10 m/s)
4.03 10 N/m.

( ) (2.30 m)

mv
k

y


   


 

 

(b) The total applied force on the spring is  

 
6 6( ) (4.03 10 N/m)(2.30 m) 9.27 10 N.aF k y       

 

Thus, the number of people needed to exert this force is 

 
6

4

1

9.27 10 N
1.89 10 .

490 N

aF

F


    

 

115. The period of oscillation is 2 / 3.2 s.T L g   Thus, the length for this simple 

pendulum is 

 
2 2

2 2

(9.80 m)(3.20 s)
2.54 m.

4 4

gT
L

 
    

 

116. (a) A plot of x versus t (in SI units) is shown below:  

 
 

If we expand the plot near the end of that time interval we have 
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This is close enough to a regular sine wave cycle that we can estimate its period (T = 0.18 

s, so  = 35 rad/s) and its amplitude (ym = 0.008 m). 

 

(b) Now, with the new driving frequency (d = 13.2 rad/s), the x versus t graph (for the 

first one second of motion) is as shown below: 

 
 

It is a little more difficult in this case to estimate a regular sine-curve-like amplitude and 

period (for the part of the above graph near the end of that time interval), but we arrive at 

roughly ym = 0.07 m, T = 0.48 s, and  = 13 rad/s. 

 

(c) Now, with d = 20 rad/s, we obtain (for the behavior of the graph, below, near the end 

of the interval) the estimates: ym = 0.03 m, T = 0.31 s, and  = 20 rad/s. 
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Chapter 16 
 

 

1. Let  y1 = 2.0 mm (corresponding to time t1) and y2 = –2.0 mm (corresponding to time t2).  

Then we find  

 

kx + 600t1  +  = sin
1

(2.0/6.0) 

and  

kx + 600t2  +  = sin
1

(–2.0/6.0) . 

 

Subtracting equations gives   

 

600(t1 – t2)  =  sin
1

(2.0/6.0) – sin
1

(–2.0/6.0). 

 

Thus we find t1 – t2  = 0.011 s  (or  1.1 ms). 

 

2. (a) The speed of the wave is the distance divided by the required time. Thus,  

 

 
853 seats

21.87 seats/s 22 seats/s
39 s

v    . 

 

(b) The width w is equal to the distance the wave has moved during the average time 

required by a spectator to stand and then sit. Thus, 

 

(21.87 seats/s)(1.8 s) 39 seatsw vt   . 

 

3. (a) The angular wave number is 12 2
3.49m .

1.80m
k  
  


 

 

(b) The speed of the wave is 
  1.80m 110rad s

31.5m s.
2 2

v f


    
 

 

 

4. The distance d between the beetle and the scorpion is related to the transverse speed tv  

and longitudinal speed v  as 

 t td v t v t   

 

where  tt  and t  are the  arrival times of the wave in the transverse and longitudinal 

directions, respectively. With 50 m/stv   and 150 m/sv  , we have 
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150 m/s
3.0

50 m/s

t

t

t v

t v
   . 

Thus, if  
3 33.0 2.0 4.0 10 s 2.0 10 s ,tt t t t t t t             

 

then 3(150 m/s)(2.0 10 s) 0.30 m 30 cm.d v t       

 

5. (a) The motion from maximum displacement to zero is one-fourth of a cycle. One-

fourth of a period is 0.170 s, so the period is T = 4(0.170 s) = 0.680 s. 

 

(b) The frequency is the reciprocal of the period: 

 

1 1
1.47 Hz.

0.680s
f

T
    

 

(c) A sinusoidal wave travels one wavelength in one period: 

 

1.40m
2.06m s.

0.680s
v

T
  


 

 

6. The slope that they are plotting is the physical slope of the sinusoidal waveshape (not 

to be confused with the more abstract “slope” of its time development; the physical slope 

is an x-derivative, whereas the more abstract “slope” would be the t-derivative).  Thus, 

where the figure shows a maximum slope equal to 0.2 (with no unit), it refers to the 

maximum of the following function: 

 

 sin( ) cos( )m m

dy d
y kx t y k kx t

dx dx
     . 

 
The problem additionally gives t = 0, which we can substitute into the above expression 

if desired.  In any case, the maximum of the above expression is ym k,  where 

 

 
2 2

15.7 rad/m
0.40 m

k
 


   . 

 

Therefore, setting ym k equal to 0.20 allows us to solve for the amplitude ym.  We find 

 

 
0.20

0.0127 m 1.3 cm
15.7 rad/m

my    . 

 

7. (a) From the simple harmonic motion relation um = ym, we have 
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16 m/s
400rad/s.

0.040 m
    

 

Since  = 2f, we obtain f = 64 Hz. 

 

(b) Using v = f, we find  = (80 m/s)/(64 Hz) = 1.26 m 1.3 m . 

 

(c) The amplitude of the transverse displacement is 24.0 cm 4.0 10 m.my      

 

(d) The wave number is k = 2/ = 5.0 rad/m. 

 

(e) As shown in (a), the angular frequency is 2(16 m/s) /(0.040 m) 4.0 10 rad/s.     

  

(f) The function describing the wave can be written as 

 

 0.040sin 5 400y x t     

 

where distances are in meters and time is in seconds. We adjust the phase constant  to 

satisfy the condition y = 0.040 at x = t = 0. Therefore, sin  = 1, for which the “simplest” 

root is  = /2. Consequently, the answer is 

 

0.040sin 5 400 .
2

y x t
 

   
 

 

 

(g) The sign in front of  is minus. 

 

8. Setting x = 0  in  u =  ym cos(k x  t + )  (see Eq. 16-21 or Eq. 16-28) gives 

  

u =  ym cos( t+) 

 
as the function being plotted in the graph.  We note that it has a positive “slope” 

(referring to its t-derivative) at t = 0, or  

 

   2cos sin( 0m m

du d
y t y t

dt dt
                 

 

at t = 0. This implies that – sin > 0 and consequently that  is in either the third or fourth 

quadrant. The graph shows (at t = 0)  u = 4 m/s, and (at some later t)  umax = 5 m/s.  We 

note that umax  = ym . Therefore, 

 

                u = umax cos( t + )|t = 0       =  cos
1 4

5
  =  0.6435 rad  
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(bear in mind that cos = cos()), and we must choose   =  0.64 rad  (since this is 

about  37° and is in fourth quadrant).  Of course, this answer added to 2n is still a valid 

answer (where n is any integer), so that, for example,  = 0.64 + 2 = .64 rad  is also an 

acceptable result. 

 

9. (a) The amplitude ym is half of the 6.00 mm vertical range shown in the figure, that is, 

3.0 mm.my   

 

(b) The speed of the wave is v = d/t = 15 m/s, where d = 0.060 m and t = 0.0040 s.  The 

angular wave number is k = 2 where   = 0.40 m.  Thus,  

 

k = 
2


  =  16 rad/m . 

 

(c) The angular frequency is found from  

 

 = k v = (16 rad/m)(15 m/s) = 2.4×10
2
 rad/s. 

 

(d) We choose the minus sign (between kx and t) in the argument of the sine function 

because the wave is shown traveling to the right (in the +x direction, see Section 16-5).  

Therefore, with SI units understood, we obtain 

 

y = ym sin(kxkvt)  0.0030 sin(16 x  2.4 ×10
2 

 t) . 

 

10. (a) The amplitude is ym = 6.0 cm. 

 

(b) We find  from 2/ = 0.020:  = 1.0×10
2
 cm. 

 

(c) Solving 2f =  = 4.0, we obtain f = 2.0 Hz. 

 

(d) The wave speed is v = f = (100 cm) (2.0 Hz) = 2.0×10
2
 cm/s. 

 

(e) The wave propagates in the –x direction, since the argument of the trig function is kx + 

t instead of kx – t (as in Eq. 16-2). 

 

(f) The maximum transverse speed (found from the time derivative of y) is 

 

  1

max 2 4.0 s 6.0cm 75cm s.mu fy       

 

(g) y(3.5 cm, 0.26 s) = (6.0 cm) sin[0.020(3.5) + 4.0(0.26)] = –2.0 cm. 
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11. From Eq. 16-10, a general expression for a sinusoidal wave traveling along the +x 

direction is  

 ( , ) sin( )my x t y kx t    . 

 

(a) The figure shows that at x = 0, 

(0, ) sin( )my t y t    is a positive sine function, that is, 

(0, ) sin .my t y t  Therefore, the phase constant must 

be   . At t = 0, we then have 

 

( ,0) sin( ) sinm my x y kx y kx    

 

which is a negative sine function. A plot of y(x, 0) is 

depicted on the right. 

 

(b) From the figure we see that the amplitude is ym = 4.0 cm.  

 

(c) The angular wave number is given by k = 2/ = /10 = 0.31 rad/cm. 

 

(d) The angular frequency is  = 2/T = /5 = 0.63 rad/s.  

 

(e) As found in part (a), the phase is   . 

 

(f) The sign is minus since the wave is traveling in the +x direction. 

 

(g) Since the frequency is f = 1/T = 0.10 s, the speed of the wave is v = f = 2.0 cm/s. 

 

(h) From the results above, the wave may be expressed as 

 

 ( , ) 4.0sin 4.0sin
10 5 10 5

x t x t
y x t

   


   
        

   
. 

 

Taking the derivative of y with respect to t, we find 

 

 ( , ) 4.0 cos
10 5

y x t
u x t

t t

     
     
    

 

 

which yields u(0, 5.0) = –2.5 cm/s. 

 

12. With length in centimeters and time in seconds, we have 

 

u =  
du

dt
  = (225) sin (x  15t) . 
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Squaring this and adding it to the square of 15y, we have 

 

u
2
 + (15y)

2
  =  (225 )

2
 [sin

2
 (x  15 t) + cos

2
 (x  15 t)] 

 

so that 

 2 2 2 2(225 ) (15 ) 15 15 .u y y       

 

Therefore, where y = 12, u must be  135.  Consequently, the speed there is 424 cm/s = 

4.24 m/s. 

 

13. Using v = f, we find the length of one cycle of the wave is  

 

 = 350/500 = 0.700 m = 700 mm. 

 

From f = 1/T, we find the time for one cycle of oscillation is T = 1/500 = 2.00  10
–3

 s = 

2.00 ms. 

 

(a) A cycle is equivalent to 2 radians, so that /3 rad corresponds to one-sixth of a cycle. 

The corresponding length, therefore, is /6 = (700 mm)/6 = 117 mm. 

 

(b) The interval 1.00 ms is half of T and thus corresponds to half of one cycle, or half of 

2 rad. Thus, the phase difference is (1/2)2 =  rad. 

 

14. (a) Comparing with Eq. 16-2, we see that k = 20/m and  = 600 rad/s. Therefore, the 

speed of the wave is (see Eq. 16-13) v = /k = 30 m/s. 

 

(b) From Eq. 16–26, we find 

 

2 2

15
0.017kg m 17g m.

30v
   


  

 

15. THINK Numerous physical properties of a traveling wave can be deduced from its 

wave function.   

 

EXPRESS We first recall that from Eq. 16-10, a general expression for a sinusoidal wave 

traveling along the +x direction is  

 

 ( , ) sin( )my x t y kx t     

 

where my  is the amplitude, 2 /k    is the angular wave number, 2 /T   is the 

angular frequency and is the phase constant. The wave speed is given by v =   , 

where  is the tension in the string and  is the linear mass density of the string. 
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ANALYZE (a) The amplitude of the wave is ym=0.120 mm. 

 

(b) The wavelength is  = v/f =   /f and the angular wave number is 

 

  12 0.50kg m
2 2 100Hz 141m .

10 N
k f 
     





 

 

(c) The frequency is f = 100 Hz, so the angular frequency is  

 

 = 2f = 2(100 Hz) = 628 rad/s. 

 

(d) We may write the string displacement in the form y = ym sin(kx + t). The plus sign is 

used since the wave is traveling in the negative x direction.  

 

LEARN In summary, the wave can be expressed as 

 

     1 10.120mm sin 141m  + 628s .y x t  
 

 

 

16. We use /v      to obtain 

 

 
2 2

2
2 1

1

180m/s
120 N 135N.

170m/s

v

v

   
     

  
   

 

17. (a) The wave speed is given by v = /T = /k, where  is the wavelength, T is the 

period,  is the angular frequency (2/T), and k is the angular wave number (2/). The 

displacement has the form y = ym sin(kx + t), so k = 2.0 m
–1

 and  = 30 rad/s. Thus  

 

v = (30 rad/s)/(2.0 m
–1

) = 15 m/s. 

 

(b) Since the wave speed is given by v =   , where  is the tension in the string and  

is the linear mass density of the string, the tension is 

 

   
22 41.6 10 kg m 15m s 0.036 N.v       

 

18. The volume of a cylinder of height  is V = r
2

= d
2

/4. The strings are long, 

narrow cylinders, one of diameter d1 and the other of diameter d2 (and corresponding 

linear densities 1 and 2). The mass is the (regular) density multiplied by the volume: m 

= V, so that the mass-per-unit length is  
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2 24

4

m d d 


 
    

and their ratio is 

 

2
2

1 1 1

2

2 2 2

4
.

4

d d

d d

 

 

 
   

 
 

 

Therefore, the ratio of diameters is 

 1 1

2 2

3.0
3.2.

0.29

d

d




    

 

19. THINK The speed of a transverse wave in a rope is related to the tension in the rope 

and the linear mass density of the rope. 

 

EXPRESS The wave speed v is given by v =   , where  is the tension in the rope 

and  is the rope’s linear mass density, which is defined as the mass per unit length of 

rope  = m/L.  

 

ANALYZE With a linear mass density of 

 

 = m/L = (0.00 kg)/(2.00 m) = 0.0300 kg/m, 

 

we find the wave speed to be 

 
500 N

129m s.
0.0300kg m

v



    

 

LEARN Since 1/v  , the thicker the rope (larger ), the slower the speed of the rope 

under the same tension .   
 

20. From v    , we have 

 
new newnew

old old old

2.
v

v

 

 
   

 

21. The pulses have the same speed v. Suppose one pulse starts from the left end of the 

wire at time t = 0. Its coordinate at time t is x1 = vt. The other pulse starts from the right 

end, at x = L, where L is the length of the wire, at time t = 30 ms. If this time is denoted 

by t0, then the coordinate of this wave at time t is x2 = L – v(t – t0). They meet when x1 = 

x2, or, what is the same, when vt = L – v(t – t0). We solve for the time they meet: t = (L + 

vt0)/2v and the coordinate of the meeting point is x = vt = (L + vt0)/2. Now, we calculate 

the wave speed: 
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(250 N)(10.0m)
158m/s.

0.100kg
  

L
v

m


 

 

Here  is the tension in the wire and L/m is the linear mass density of the wire. The 

coordinate of the meeting point is 

 
310.0m (158m/s) (30.0 10 s)

7.37m.
2

x
 

   

 

This is the distance from the left end of the wire. The distance from the right end is L – x 

= (10.0 m – 7.37 m ) = 2.63 m. 

 

22. (a) The general expression for y (x, t) for the wave is y (x, t) = ym sin(kx – t), which, 

at x = 10 cm, becomes y (x = 10 cm, t) = ym sin[k(10 cm – t)]. Comparing this with the 

expression given, we find  = 4.0 rad/s, or f = /2 = 0.64 Hz. 

 

(b) Since k(10 cm) = 1.0, the wave number is k = 0.10/cm. Consequently, the wavelength 

is  = 2/k = 63 cm. 

 

(c) The amplitude is 5.0 cm.my   

 

(d) In part (b), we have shown that the angular wave number is k = 0.10/cm. 

 

(e) The angular frequency is  = 4.0 rad/s. 

 

(f) The sign is minus since the wave is traveling in the +x direction. 

 

Summarizing the results obtained above by substituting the values of k and  into the 

general expression for y (x, t), with centimeters and seconds understood, we obtain 

 

( , ) 5.0sin (0.10 4.0 ).y x t x t   

 

(g) Since / / ,v k     the tension is 

 
2 1 2

2

2 1 2

(4.0g / cm)(4.0s )
6400g cm/s 0.064 N.

(0.10cm )




    

k

 
  

 

23. THINK Various properties of the sinusoidal wave can be deduced from the plot of its 

displacement as a function of position. 

 

EXPRESS In analyzing the properties of the wave, we first recall that from Eq. 16-10, a 

general expression for a sinusoidal wave traveling along the +x direction is  
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 ( , ) sin( )my x t y kx t     

 

where 
my  is the amplitude, 2 /k    is the angular wave number, 2 /T   is the 

angular frequency and is the phase constant. The wave speed is given by v =   , 

where  is the tension in the string and  is the linear mass density of the string. 

 

ANALYZE (a) We read the amplitude from the graph. It is about 5.0 cm. 

 

(b) We read the wavelength from the graph. The curve crosses y = 0 at about x = 15 cm 

and again with the same slope at about x = 55 cm, so  

 

 = (55 cm – 15 cm) = 40 cm = 0.40 m. 

 

(c) The wave speed is  

3

3.6 N
12 m/s.

25 10 kg/m
v



 
  


 

 

(d) The frequency is f = v/ = (12 m/s)/(0.40 m) = 30 Hz and the period is  

 

T = 1/f = 1/(30 Hz) = 0.033 s. 

 

(e) The maximum string speed is  

 

um = ym = 2fym = 2(30 Hz) (5.0 cm) = 940 cm/s = 9.4 m/s. 

 

(f) The angular wave number is k = 2/ = 2/(0.40 m) = 16 m
–1

. 

 

(g) The angular frequency is  = 2f = 2(30 Hz) = 1.9×10
2
 rad/s . 

 

(h) According to the graph, the displacement at x = 0 and t = 0 is 4.0  10
–2

 m. The 

formula for the displacement gives y(0, 0) = ym sin . We wish to select  so that  

 

(5.0  10
–2

 m)sin  = (4.0  10
–2

 m). 

 

The solution is either 0.93 rad or 2.21 rad. In the first case the function has a positive 

slope at x = 0 and matches the graph. In the second case it has negative slope and does not 

match the graph. We select  = 0.93 rad.  

 

(i) The string displacement has the form y (x, t) = ym sin(kx + t + ). A plus sign appears 

in the argument of the trigonometric function because the wave is moving in the negative 

x direction.  

 



  CHAPTER 16 762 

LEARN Summarizing the results obtained above, the wave function of the traveling 

wave can be written as 

 

 2 1 1( , ) 5.0 10 m sin (16m ) (190s ) 0.93 .       y x t x t  

 

24. (a) The tension in each string is given by  = Mg/2. Thus, the wave speed in string 1 is 

 
2

1

1 1

(500g)(9.80m/s )
28.6m/s.

2 2(3.00g/m)

Mg
v



 
     

 

(b) And the wave speed in string 2 is 

 
2

2

2

(500g)(9.80m/s )
22.1m/s.

2 2(5.00g/m)

Mg
v


    

 

(c) Let 1 1 1 2 2 2/(2 ) /(2 )v M g v M g    and M1 + M2 = M. We solve for M1 and 

obtain 

1

2 1

500g
187.5g 188g.

1 / 1 5.00 / 3.00

M
M

 
   

 
 

 

(d) And we solve for the second mass: M2 = M – M1 = (500 g – 187.5 g)  313 g. 

 

25. (a) The wave speed at any point on the rope is given by v =   , where  is the 

tension at that point and  is the linear mass density. Because the rope is hanging the 

tension varies from point to point. Consider a point on the rope a distance y from the 

bottom end. The forces acting on it are the weight of the rope below it, pulling down, and 

the tension, pulling up. Since the rope is in equilibrium, these forces balance. The weight 

of the rope below is given by gy, so the tension is  = gy. The wave speed is 

/ . v gy gy   

 

(b) The time dt for the wave to move past a length dy, a distance y from the bottom end, is 

dt dy v dy gy   and the total time for the wave to move the entire length of the rope 

is 

0
0

2 2 .

L

L dy y L
t

g ggy
    

 

26. Using Eq. 16–33 for the average power and Eq. 16–26 for the speed of the wave, we 

solve for f = /2: 
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avg

3

21 1 2(85.0W)
198 Hz.

2 2 (7.70 10 m)/ (36.0 N)(0.260kg / 2.70m)m

P
f

y   


  
  

 

 

27. We note from the graph (and from the fact that we are dealing with a cosine-squared, 

see Eq. 16-30) that the wave frequency is f = 
1

2 ms
 = 500 Hz, and that the wavelength = 

0.20 m.  We also note from the graph that the maximum value of dK/dt is 10 W.  Setting 

this equal to the maximum value of Eq. 16-29 (where we just set that cosine term equal to 

1) we find 
1

2
 v 2 

ym
2
 = 10 

 

with SI units understood.  Substituting in  0.002 kg/m,= 2f  and  v = f  , we solve 

for the wave amplitude:  

 
2 3

10
0.0032 m

2
my

f 
  . 

28. Comparing 
1 1( , ) (3.00 mm)sin[(4.00 m ) (7.00 s ) ]y x t x t    

 

to the general expression ( , ) sin( ),my x t y kx t   we see that 14.00 mk  and 

7.00 rad/s  . The speed of the wave is 

  
1/ (7.00 rad/s)/(4.00 m ) 1.75 m/s.v k     

 

29. The wave  
1 1 1/ 2( , ) (2.00 mm)[(20 m ) (4.0 s ) ]y x t x t    

 

is of the form ( )h kx t with angular wave number 120 mk   and angular 

frequency 4.0 rad/s  . Thus, the speed of the wave is 

  
1/ (4.0 rad/s)/(20 m ) 0.20 m/s.v k     

  

30. The wave 1 1( , ) (4.00 mm) [(30 m ) (6.0 s ) ]y x t h x t    is of the form ( )h kx t with 

angular wave number 130 mk   and angular frequency 6.0 rad/s  . Thus, the speed 

of the wave is  
1/ (6.0 rad/s)/(30 m ) 0.20 m/s.v k     

 

31. THINK By superposition principle, the resultant wave is the algebraic sum of the two 

interfering waves.  

 

EXPRESS The displacement of the string is given by  
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sin( ) sin( )m my y kx t y kx t           1 1
2 2

2 cos sinmy kx t     , 

 

where we have used  

    
1 1

sin sin 2sin cos
2 2

         . 

 

ANALYZE The two waves are out of phase by  = /2, so the amplitude is  

 

 1
2

2 cosmA y  2 cos( / 4) 1.41m my y   . 

 

LEARN The interference between two waves can be constructive or destructive, 

depending on their phase difference.   

 

32. (a) Let the phase difference be . Then from Eq. 16-52, 2ym cos(/2) = 1.50ym, which 

gives 

1 1.50
2cos 82.8 .

2

m

m

y

y
   
   

 
 

 

(b) Converting to radians, we have  = 1.45 rad. 

 

(c) In terms of wavelength (the length of each cycle, where each cycle corresponds to 2 

rad), this is equivalent to 1.45 rad/2 = 0.230 wavelength. 

 

33. (a) The amplitude of the second wave is 9.00 mmmy  , as stated in the problem. 

 

(b) The figure indicates that  = 40 cm = 0.40 m, which implies that the angular wave 

number is k = 2/0.40 = 16  rad/m.    

 

(c) The figure (along with information in the problem) indicates that the speed of each 

wave is v = dx/t = (56.0 cm)/(8.0 ms) = 70 m/s.  This, in turn, implies that the angular 

frequency is  

 = k v =1100 rad/s = 1.110
3
 rad/s. 

 

(d) The figure depicts two traveling waves (both going in the –x direction) of equal 

amplitude ym.  The amplitude of their resultant wave, as shown in the figure, is ym = 4.00 

mm.  Equation 16-52 applies: 

 

                  ym = 2ym  cos( 
1

2
 )       cos

1
(2.00/9.00) = 2.69 rad. 

 

(e) In making the plus-or-minus sign choice in y = ym sin(k x  t + ), we recall the 

discussion in section 16-5, where it was shown that sinusoidal waves traveling in the –x 

direction are of the form y = ym sin(k x  t + ).  Here,  should be thought of as the 
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phase difference between the two waves (that is,  = 0 for wave 1 and = 2.69 rad for 

wave 2).   

 

In summary, the waves have the forms (with SI units understood): 

 

y1 = (0.00900)sin(16 x t)   and   y2 = (0.00900)sin(16 x  t + ) . 

 

34. (a) We use Eq. 16-26 and Eq. 16-33 with  = 0.00200 kg/m and  ym = 0.00300 m.  

These give 775 m/sv      and   

Pavg = 
1

2
 v 

2
ym

2
 = 10 W. 

 

(b) In this situation, the waves are two separate string (no superposition occurs).  The 

answer is clearly twice that of part (a); P = 20 W. 

 

(c) Now they are on the same string.  If they are interfering constructively (as in Fig. 16-

13(a)) then the amplitude ym is doubled, which means its square ym
2
 increases by a factor 

of 4.  Thus, the answer now is four times that of part (a);  P = 40 W. 

 

(d) Equation 16-52 indicates in this case that the amplitude (for their superposition) is  

2 ymcos(0.2) = 1.618 times the original amplitude ym.  Squared, this results in an increase 

in the power by a factor of 2.618.  Thus, P = 26 W in this case. 

 

(e) Now the situation depicted in Fig. 16-13(b) applies, so P = 0. 

 

35. THINK We use phasors to add the two waves and calculate the amplitude of the 

resultant wave.  

 

EXPRESS The phasor diagram is shown below: y1m and y2m represent the original waves 

and ym represents the resultant wave. The phasors corresponding to the two constituent 

waves make an angle of 90° with each other, so the triangle is a right triangle. 

 

 
 

ANALYZE The Pythagorean theorem gives  
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2 2 2 2 2 2

1 2 (3.0cm) (4.0cm) (25cm)m m my y y     . 

 

Thus, the amplitude of the resultant wave is ym = 5.0 cm. 

 

LEARN When adding two waves, it is convenient to represent each wave with a phasor, 

which is a vector whose magnitude is equal to the amplitude of the wave. The same result, 

however, could also be obtained as follows: Writing the two waves as 1 3sin( )y kx t   

and 2 4sin( / 2) 4cos( )y kx t kx t       , we have, after a little algebra,  

 

1 2

3 4
3sin( ) 4cos( ) 5 sin( ) cos( )

5 5

5sin( )

y y y kx t kx t kx t kx t

kx t

   

 

 
          

 

  

 

 

where 1tan (4 /3)  . In deducing the phase , we set cos 3/5   and sin 4 /5  , and 

use the relation cos sin sin cos sin( )        . 

 

36. We see that y1 and y3  cancel (they are 180º) out of phase, and y2 cancels with y4 

because their phase difference is also equal to  rad (180º).  There is no resultant wave in 

this case. 

 

37. (a) Using the phasor technique, we think of these as two “vectors” (the first of 

“length” 4.6 mm and the second of “length” 5.60 mm) separated by an angle of  = 0.8 

radians (or 144º).  Standard techniques for adding vectors then lead to a resultant vector 

of length 3.29 mm. 

 

(b) The angle (relative to the first vector) is equal to 88.8º (or 1.55 rad).  

 

(c) Clearly, it should in “in phase” with the result we just calculated, so its phase angle 

relative to the first phasor should be also 88.8º (or 1.55 rad). 

 

38. (a) As shown in Figure 16-13(b) in the textbook, the least-amplitude resultant wave is 

obtained when the phase difference is  rad.  

 

(b) In this case, the amplitude is (8.0 mm – 5.0 mm) = 3.0 mm. 

 

(c) As shown in Figure 16-13(a) in the textbook, the greatest-amplitude resultant wave is 

obtained when the phase difference is 0 rad. 

 

(d) In the part (c) situation, the amplitude is (8.0 mm + 5.0 mm) = 13 mm. 

 

(e) Using phasor terminology, the angle “between them” in this case is /2 rad (90º), so 

the Pythagorean theorem applies: 
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2 2(8.0 mm) (5.0 mm)  = 9.4 mm . 

 

39. The phasor diagram is shown to the right. We use the cosine theorem: 

 2 2 2 2 2

1 2 1 2 1 2 1 22 cos 2 cos .m m m m m m m m my y y y y y y y y        

We solve for cos : 
 

2 2 2 2 2 2

1 2

1 2

(9.0mm) (5.0mm) (7.0mm)
cos 0.10.

2 2(5.0mm)(7.0mm)

m m m

m m

y y y

y y


   
  

 

The phase constant is therefore  = 84°. 

 

40. The string is flat each time the particle passes through its 

equilibrium position. A particle may travel up to its positive amplitude point and back to 

equilibrium during this time. This describes half of one complete cycle, so we conclude T 

= 2(0.50 s) = 1.0 s. Thus, f = 1/T = 1.0 Hz, and the wavelength is 

 

10cm/s
10 cm.

1.0Hz

v

f
     

 

41. THINK A string clamped at both ends can be made to oscillate in standing wave 

patterns. 

 

EXPRESS The wave speed is given by ,v    where  is the tension in the string and 

 is the linear mass density of the string. Since the mass density is the mass per unit 

length,  = M/L, where M is the mass of the string and L is its length. The possible 

wavelengths of a standing wave are given by n = 2L/n, where L is the length of the string 

and n is an integer. 

 

ANALYZE (a) The wave speed is  

 

(96.0 N) (8.40 m)
82.0 m/s.

0.120 kg

L
v

M
  


 

 

(b) The longest possible wavelength  for a standing wave is related to the length of the 

string by L = /2 (n = 1), so  = 2L = 2(8.40 m) = 16.8 m. 

 

(c) The corresponding frequency is f1 = v/ = (82.0 m/s)/(16.8 m) = 4.88 Hz. 

 

LEARN The resonant frequencies are given by  

 

1
2 / 2

n

v v v
f n nf

L n L
    ,  
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where f1 = v/ = v/2L. The oscillation mode with n = 1 is called the fundamental mode or 

the first harmonic. 

 

42. Use Eq. 16-66 (for the resonant frequencies) and Eq. 16-26 ( / )v    to find fn: 

 

2 2
n

nv n
f

L L




   

which gives f3 = (3/2L) i  . 

 

(a) When f = 4i, we get the new frequency 

 

3 3

3
2 .

2

f
f f

L




    

 

(b) And we get the new wavelength 3 3

3

2
.

3

v L

f


    


 

 

43. THINK A string clamped at both ends can be made to oscillate in standing wave 

patterns. 

 

EXPRESS Possible wavelengths are given by  n = 2L/n, where L is the length of the 

wire and n is an integer. The corresponding frequencies are fn = v/n = nv/2L, where v is 

the wave speed. The wave speed is given by / ,v L M     where  is the tension 

in the wire,  is the linear mass density of the wire, and M is the mass of the wire.  = 

M/L was used to obtain the last form. Thus,  

 

250 N
 (7.91 Hz).

2 2 2 (10.0 m) (0.100 kg)
n

n L n n
f n

L M LM

 
     

 

ANALYZE (a) The lowest frequency is 1 7.91 Hz.f   

 

(b) The second lowest frequency is 2 2(7.91 Hz) 15.8 Hz.f    

 

(c) The third lowest frequency is 3 3(7.91 Hz) 23.7 Hz.f    

 

LEARN The frequencies are integer multiples of the fundamental frequency f1. This 

means that the difference between any successive pair of the harmonic frequencies is 

equal to the fundamental frequency f1. 
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44. (a) The wave speed is given by 
3

7.00 N
66.1m/s.

2.00  10 kg/1.25m
v


  






 

 

(b) The wavelength of the wave with the lowest resonant frequency f1 is 1 = 2L, where L 

= 125 cm. Thus, 

1

1

66.1 m/s
26.4 Hz.

2(1.25 m)

v
f   


 

 

45. THINK The difference between any successive pair of the harmonic frequencies is 

equal to the fundamental frequency. 

 

EXPRESS The resonant wavelengths are given by n = 2L/n, where L is the length of the 

string and n is an integer, and the resonant frequencies are  

 

fn= v/ = nv/2L = nf1, 

 

where v is the wave speed. Suppose the lower frequency is associated with the integer n. 

Then, since there are no resonant frequencies between, the higher frequency is associated 

with n + 1. The frequency difference between successive modes is 

1 1
2

n n

v
f f f f

L
     . 

 

ANALYZE (a) The lowest possible resonant frequency is 

 

1 1 420 Hz 315 Hz 105 Hzn nf f f f       . 

 

(b) The longest possible wavelength is  = 2L. If f1 is the lowest possible frequency then  

 

v = f1 = (2L)f1 = 2(0.75 m)(105 Hz) = 158 m/s. 

 

LEARN Since 315 Hz = 3(105 Hz) and 420 Hz = 4(105 Hz), the two frequencies 

correspond to n = 3 and n = 4, respectively.   

  

46. The nth resonant frequency of string A is 

 

, ,
2 2

A
n A

A

v n
f n

l L




   

while for string B it is 

, ,

1
.

2 8 4

B
n B n A

B

v n
f n f

l L




    
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(a) Thus, we see f1,A = f4,B. That is, the fourth harmonic of B matches the frequency of A’s 

first harmonic. 

 

(b) Similarly, we find f2,A = f8,B. 

 

(c) No harmonic of B would match 
3,

3 3
.

2 2

A
A

A

v
f

l L




   

 

47. The harmonics are integer multiples of the fundamental, which implies that the 

difference between any successive pair of the harmonic frequencies is equal to the 

fundamental frequency.   Thus,  

f1 = (390 Hz – 325 Hz) = 65 Hz. 

 

This further implies that the next higher resonance above 195 Hz should be (195 Hz + 65 

Hz) = 260 Hz. 

 

48. Using Eq. 16-26, we find the wave speed to be  

 
665.2 10 N

4412m/s.
3.35kg/ m

v





    

 

The corresponding resonant frequencies are 

 

, 1,2,3,
2 2

n

nv n
f n

L L




    

 

(a) The wavelength of the wave with the lowest (fundamental) resonant frequency f1 is 1 

= 2L, where L = 347 m. Thus, 

 

1

1

4412 m/s
6.36 Hz.

2(347 m)

v
f   


 

 

(b) The frequency difference between successive modes is  

 

1

4412 m/s
6.36 Hz.

2 2(347 m)
n n

v
f f f

L
       

 

49. (a) Equation 16-26 gives the speed of the wave: 

 

2

3

150 N
144.34 m/s 1.44 10 m/s.

7.20 10 kg/m
v



 
    


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(b) From the figure, we find the wavelength of the standing wave to be  

 

 = (2/3)(90.0 cm) = 60.0 cm. 

(c) The frequency is 
21.44 10 m/s

241Hz.
0.600m

v
f


  


 

 

50. From the x = 0 plot (and the requirement of an anti-node at x = 0), we infer a standing 

wave function of the form 

( , ) (0.04)cos( )sin( ),y x t kx t   

 

where 2 /  rad/sT    , with length in meters and time in seconds. The parameter k is 

determined by the existence of the node at x = 0.10 (presumably the first node that one 

encounters as one moves from the origin in the positive x direction). This implies k(0.10) 

= /2 so that k = 5 rad/m. 

 

(a) With the parameters determined as discussed above and t = 0.50 s, we find 

 

(0.20 m, 0.50 s) 0.04cos( )sin( ) 0.040m .y kx t    

 

(b) The above equation yields (0.30 m, 0.50 s) 0.04cos( )sin( ) 0 .y kx t    

 

(c) We take the derivative with respect to time and obtain, at t = 0.50 s and x = 0.20 m, 

 

   0.04 cos cos 0
dy

u kx t
dt

     . 

 
 d) The above equation yields u = –0.13 m/s at t = 1.0 s. 

 

(e) The sketch of this function at t = 0.50 s for 0  x  0.40 m is shown next: 
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51. THINK In this problem, in order to produce the standing wave pattern, the two waves 

must have the same amplitude, the same angular frequency, and the same angular wave 

number, but they travel in opposite directions.  

 

EXPRESS We take the two waves to be  

 

y1 = ym sin(kx – t),   y2 = ym sin(kx + t). 

 

The superposition principle gives 

 

 1 2( , ) ( , ) ( , ) sin( ) sin( ) 2 sin cosm m my x t y x t y x t y kx t y kx t y kx t          . 

 

ANALYZE (a) The amplitude ym is half the maximum displacement of the standing 

wave, or (0.01 m)/2 = 5.0  10
–3

 m. 

 

(b) Since the standing wave has three loops, the string is three half-wavelengths long: L = 

3/2, or  = 2L/3. With L = 3.0m,  = 2.0 m. The angular wave number is  

 

k = 2/ = 2/(2.0 m) = 3.1 m
–1

. 

 

(c) If v is the wave speed, then the frequency is 

 
 

3 100m s3
50 Hz.

2 2 3.0m

v v
f

L
   


 

 

The angular frequency is the same as that of the standing wave, or  

 

 = 2 f = 2(50 Hz) = 314 rad/s. 

 

(d) If one of the waves has the form 2( , ) sin( )my x t y kx t  , then the other wave must 

have the form 1( , ) sin( )my x t y kx t  . The sign in front of  for '( , )y x t is minus. 

 

LEARN Using the results above, the two waves can be written as 

 

     3 1 1

1 5.0 10 m sin 3.14m 314sy x t     
 

 

and 

     3 1 1

2 5.0 10 m sin 3.14m 314s .y x t     
 

 

 

52. Since the rope is fixed at both ends, then the phrase “second-harmonic standing wave 

pattern” describes the oscillation shown in Figure 16-20(b), where (see Eq. 16-65) 

 

,
v

L f
L

   . 
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(a) Comparing the given function with Eq. 16-60, we obtain k = /2 and  = 12 rad/s. 

Since k = 2/ then 

2
4.0m 4.0m.

2
L

 
     


 

 

(b) Since  = 2f, then 2 12  rad/s,f    which yields 

 

 6.0Hz       24m/s.f v f      

 

(c) Using Eq. 16-26, we have 

200 N
    24 m/s

/(4.0 m)
v

m




    

which leads to m = 1.4 kg. 

 

(d) With 

3 3(24 m/s)
9.0Hz

2 2(4.0 m)

v
f

L
    

the period is T = 1/f = 0.11 s. 

 

53. (a) The amplitude of each of the traveling waves is half the maximum displacement of 

the string when the standing wave is present, or 0.25 cm. 

 

(b) Each traveling wave has an angular frequency of  = 40 rad/s and an angular wave 

number of k = /3 cm
–1

. The wave speed is  

 

v = /k = (40 rad/s)/(/3 cm
–1

) = 1.2×10
2
 cm/s. 

 

(c) The distance between nodes is half a wavelength: d = /2 = /k = /(/3 cm
–1

) = 3.0 

cm. Here 2/k was substituted for . 

 

(d) The string speed is given by  

 

u(x, t) = y/t = –ymsin(kx)sin(t). 

 

For the given coordinate and time, 

 

 1 1 9
(40  rad/s) (0.50cm) sin cm (1.5cm) sin  40 s s 0.

3 8
u        
                

 

 

54. Reference to point A as an anti-node suggests that this is a standing wave pattern and 

thus that the waves are traveling in opposite directions.  Thus, we expect one of them to 

be of the form y = ym sin(kx + t) and the other to be of the form y = ym sin(kx – t).   
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(a) Using Eq. 16-60, we conclude that ym = 
1

2
 (9.0 mm) = 4.5 mm, due to the fact that the 

amplitude of the standing wave is  
1

2
 (1.80 cm) = 0.90 cm = 9.0 mm.   

 

(b) Since one full cycle of the wave (one wavelength) is 40 cm,  k = 2  16 m
1

.   

 

(c) The problem tells us that the time of half a full period of motion is 6.0 ms, so T = 12 

ms and Eq. 16-5 gives = 5.2 10
2
 rad/s.   

 

(d) The two waves are therefore  

 

                                y1(x, t) = (4.5 mm) sin[(16 m
1

)x +  (520 s
1

)t]     

and 

y2(x, t) = (4.5 mm) sin[(16 m
1

)x –  (520 s
1

)t] . 

 

If one wave has the form ( , ) sin( )my x t y kx t  as in y1, then the other wave must be of 

the form ( , ) sin( )my x t y kx t   as in y2. Therefore, the sign in front of  is minus. 

 

55. Recalling the discussion in section 16-12, we observe that this problem presents us 

with a standing wave condition with amplitude 12 cm.  The angular wave number and 

frequency are noted by comparing the given waves with the form y = ym sin(k x  t).  

The anti-node moves through 12 cm in simple harmonic motion, just as a mass on a 

vertical spring would move from its upper turning point to its lower turning point, which 

occurs during a half-period.  Since the period T is related to the angular frequency by Eq. 

15-5, we have 

2 2
0.500 s.

4.00
T

 

 
     

 

Thus, in a time of  t = 
1

2
 T = 0.250 s, the wave moves a distance x = vt  where the speed of 

the wave is / 1.00 m/s.v k   Therefore, x = (1.00 m/s)(0.250 s) = 0.250 m. 

 

56. The nodes are located from vanishing of the spatial factor sin 5x = 0 for which the 

solutions are 

1 2 3
5 0, ,2 ,3 , 0, , , ,

5 5 5
x x        

 

(a) The smallest value of x that corresponds to a node is x = 0. 

 

 

(b) The second smallest value of x that corresponds to a node is x = 0.20 m. 

 

(c) The third smallest value of x that corresponds to a node is x = 0.40 m. 
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(d) Every point (except at a node) is in simple harmonic motion of frequency f = /2 = 

40/2 = 20 Hz. Therefore, the period of oscillation is T = 1/f = 0.050 s. 

 

(e) Comparing the given function with Eq. 16-58 through Eq. 16-60, we obtain 

 

1 20.020sin(5 40 ) and 0.020sin(5 40 )y x t y x t         

 

for the two traveling waves. Thus, we infer from these that the speed is v = /k = 40/5 

= 8.0 m/s. 

 

(f) And we see the amplitude is ym = 0.020 m. 

 

(g) The derivative of the given function with respect to time is 

 

(0.040)(40 )sin(5 )sin(40 )
y

u x t
t


     


 

 

which vanishes (for all x) at times such as sin(40t) = 0. Thus, 

 

1 2 3
40 0, ,2 ,3 , 0, , , ,

40 40 40
t t        

 

Thus, the first time in which all points on the string have zero transverse velocity is when  

t = 0 s. 

 

(h) The second time in which all points on the string have zero transverse velocity is 

when t = 1/40 s = 0.025 s. 

 

(i) The third time in which all points on the string have zero transverse velocity is when  

t = 2/40 s = 0.050 s. 

 

57. (a) The angular frequency is  = 8.00/2 = 4.00 rad/s, so the frequency is  

 

f = /2 = (4.00 rad/s)/2 = 2.00 Hz. 

 

(b) The angular wave number is k = 2.00/2 = 1.00 m
–1

, so the wavelength is  

 

 = 2/k = 2/(1.00 m
–1

) = 2.00 m. 

 

(c) The wave speed is 

(2.00m)(2.00Hz) = 4.00 m/s.v f    
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(d) We need to add two cosine functions. First convert them to sine functions using cos  

= sin ( + /2), then apply  

 

cos cos sin sin 2sin cos
2 2 2 2

2cos cos .
2 2

   
   

   

            
            

       

    
    

   

 

 

Letting  = kx and  = t, we find 

 

cos( ) cos( ) 2 cos( )cos( ).m m my kx t y kx t y kx t       

 

Nodes occur where cos(kx) = 0 or kx = n + /2, where n is an integer (including zero). 

Since k = 1.0 m
–1

, this means  1
2

(1.00m)x n  . Thus, the smallest value of x that 

corresponds to a node is x = 0.500 m (n = 0).  

 

(e) The second smallest value of x that corresponds to a node is x = 1.50 m (n = 1).  

 

(f) The third smallest value of x that corresponds to a node is x = 2.50 m (n = 2). 

 

(g) The displacement is a maximum where cos(kx) = 1. This means kx = n, where n is 

an integer. Thus, x = n(1.00 m). The smallest value of x that corresponds to an anti-node 

(maximum) is x = 0 (n = 0).  

 

(h) The second smallest value of x that corresponds to an anti-node (maximum) is 

1.00 mx  (n = 1).  

 

(i) The third smallest value of x that corresponds to an anti-node (maximum) is 

2.00 mx  (n = 2). 

 

58. With the string fixed on both ends, using Eq. 16-66 and Eq. 16-26, the resonant 

frequencies can be written as 

 

 , 1,2,3,
2 2 2

nv n n mg
f n

L L L



 
     

 

(a) The mass that allows the oscillator to set up the 4th harmonic ( 4n  ) on the string is  

 

 
2 2 2 2

2 2 2

4

4 4(1.20 m) (120 Hz) (0.00160 kg/m)
0.846 kg

(4) (9.80 m/s )n

L f
m

n g





    

 

(b) If the mass of the block is 1.00 kgm  , the corresponding n is  
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2 2 2 2

2

4 4(1.20 m) (120 Hz) (0.00160 kg/m)
3.68

9.80 m/s

L f
n

g


    

 

which is not an integer. Therefore, the mass cannot set up a standing wave on the string. 

 

59. (a) The frequency of the wave is the same for both sections of the wire. The wave 

speed and wavelength, however, are both different in different sections. Suppose there are 

n1 loops in the aluminum section of the wire. Then,  

 

L1 = n11/2 = n1v1/2f, 

 

where 1 is the wavelength and v1 is the wave speed in that section. In this consideration, 

we have substituted 1 = v1/f, where f is the frequency. Thus f = n1v1/2L1. A similar 

expression holds for the steel section: f = n2v2/2L2. Since the frequency is the same for the 

two sections, n1v1/L1 = n2v2/L2. Now the wave speed in the aluminum section is given 

by 1 1/ ,v    where 1 is the linear mass density of the aluminum wire. The mass of 

aluminum in the wire is given by m1 = 1AL1, where 1 is the mass density (mass per unit 

volume) for aluminum and A is the cross-sectional area of the wire. Thus  

 

1 = 1AL1/L1 = 1A 

 

and 1 1/ .v A   A similar expression holds for the wave speed in the steel section: 

2 2/ .v A   We note that the cross-sectional area and the tension are the same for the 

two sections. The equality of the frequencies for the two sections now leads to 

1 1 1 2 2 2/ / ,n L n L   where A has been canceled from both sides. The ratio of the 

integers is 

 

 

3 3

2 22

3 3
1 1 1

0.866m 7.80 10 kg/m
2.50.

0.600m 2.60 10 kg/m

Ln

n L






  


 

 

The smallest integers that have this ratio are n1 = 2 and n2 = 5. The frequency is 

 

 1 1 1 1 1 1/ 2 / 2 / .f n v L n L A    

 

The tension is provided by the hanging block and is   = mg, where m is the mass of the 

block. Thus, 

 

  
  

2

1

3 3 6 2
1 1

10.0kg 9.80m/s2
324Hz.

2 2 0.600m 2.60 10 kg/m 1.00 10 m

n mg
f

L A 
  

 
 

 



  CHAPTER 16 778 

(b) The standing wave pattern has two loops in the aluminum section and five loops in 

the steel section, or seven loops in all. There are eight nodes, counting the end points. 

 

60. With the string fixed on both ends, using Eq. 16-66 and Eq. 16-26, the resonant 

frequencies can be written as 

 

 , 1,2,3,
2 2 2

nv n n mg
f n

L L L



 
     

 

The mass that allows the oscillator to set up the nth harmonic on the string is  

 

 
2 2

2

4L f
m

n g


 . 

 

Thus, we see that the block mass is inversely proportional to the harmonic number 

squared.  Thus, if the 447 gram block corresponds to harmonic number n, then 

 

447

286.1
  = 

(n + 1)
2

 n
2   =  

n
2
 + 2n + 1

 n
2    =   1 + 

2n + 1

 n
2   . 

 

Therefore,  
447

286.1
  – 1 = 0.5624  must equal an odd integer (2n + 1) divided by a squared 

integer (n
2
).  That is, multiplying 0.5624 by a square (such as 1, 4, 9, 16, etc.) should give 

us a number very close (within experimental uncertainty) to an odd number (1, 3, 5, …).  

Trying this out in succession (starting with multiplication by 1, then by 4, …), we find 

that multiplication by 16 gives a value very close to 9; we conclude n = 4 (so n
2
 = 16 and 

2n + 1 = 9).  Plugging in m = 0.447 kg, n = 4, and the other values given in the problem, 

we find  

 = 0.000845 kg/m = 0.845 g/m. 

 

61. To oscillate in four loops means n = 4 in Eq. 16-65 (treating both ends of the string as 

effectively “fixed”). Thus,  = 2(0.90 m)/4 = 0.45 m. Therefore, the speed of the wave is 

v = f = 27 m/s. The mass-per-unit-length is  

 

 = m/L = (0.044 kg)/(0.90 m) = 0.049 kg/m. 

 

Thus, using Eq. 16-26, we obtain the tension:  

 

 = v
2
  = (27 m/s)

2
(0.049 kg/m) = 36 N. 

 

62. We write the expression for the displacement in the form y (x, t) = ym sin(kx – t).  

 

(a) The amplitude is ym = 2.0 cm = 0.020 m, as given in the problem. 
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(b) The angular wave number k is k = 2/ = 2/(0.10 m) = 63 m
–1

. 

 

(c) The angular frequency is  = 2f = 2(400 Hz) = 2510 rad/s = 2.510
3
 rad/s. 

 

(d) A minus sign is used before the t term in the argument of the sine function because 

the wave is traveling in the positive x direction.  

 

Using the results above, the wave may be written as 

 

        1 1, 2.00cm sin 62.8m 2510s .y x t x t    

 

(e) The (transverse) speed of a point on the cord is given by taking the derivative of y: 

 

   , cosm

y
u x t y kx t

t


   


   

 

which leads to a maximum speed of um = ym = (2510 rad/s)(0.020 m) = 50 m/s. 

 

(f) The speed of the wave is 

2510rad s
40m s.

62.8rad/m
v

T k


     

 

63. (a) Using v = f, we obtain 

240m/s
75 Hz.

3.2m
f    

 

(b) Since frequency is the reciprocal of the period, we find 

 

1 1
0.0133s 13ms.

75Hz
T

f
     

 

64. (a) At x = 2.3 m and t = 0.16 s the displacement is 

 

     ( , ) 0.15sin 0.79 2.3 13 0.16 m = 0.039m.y x t     

 

(b) We choose ym = 0.15 m, so that there would be nodes (where the wave amplitude is 

zero) in the string as a result. 

 

(c) The second wave must be traveling with the same speed and frequency. This implies 
10.79 mk  ,  

 

(d) and 13 rad/s  . 
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(e) The wave must be traveling in the –x direction, implying a plus sign in front of .  

 

Thus, its general form is y´ (x,t) = (0.15 m)sin(0.79x + 13t).  

 

(f) The displacement of the standing wave at x = 2.3 m and t = 0.16 s is 

 

( , ) 0.039m (0.15m)sin[(0.79)(2.3) 13(0.16)] 0.14m.y x t        

 

65. We use Eq. 16-2, Eq. 16-5, Eq. 16-9, Eq. 16-13, and take the derivative to obtain the 

transverse speed u. 

 

(a) The amplitude is ym = 2.0 mm. 

 

(b) Since  = 600 rad/s, the frequency is found to be f = 600/2  95 Hz. 

 

(c) Since k = 20 rad/m, the velocity of the wave is v = /k = 600/20 = 30 m/s in the +x 

direction. 

 

(d) The wavelength is  = 2/k  0.31 m, or 31 cm. 

 

(e) We obtain 

cos( )m m m

dy
u y kx t u y

dt
         

 

so that the maximum transverse speed is um = (600)(2.0) = 1200 mm/s, or 1.2 m/s. 

 

66. Setting x = 0  in  y = ym sin(k x  t + ) gives y = ym sin( t + ) as the function 

being plotted in the graph.  We note that it has a positive “slope” (referring to its t-

derivative) at t = 0, or 

                  

  sin cos 0m m

dy d
y t y t

dt dt
               

 

at t = 0. This implies that  – cos   > 0 and consequently that  is in either the second or 

third quadrant. The graph shows (at t = 0) y = 2.00 mm, and (at some later t) ym = 6.00 

mm.  Therefore, 

y = ym sin( t + )|t = 0        = sin
1

( 
1

3
 ) =  0.34 rad   or   2.8 rad 

 

(bear in mind that sin = sin()), and we must choose  = 2.8 rad  because this is 

about 161° and is in second quadrant. Of course, this answer added to 2n is still a valid 

answer (where n is any integer), so that, for example,  = 2.8 – 2 = 3.48 rad is also an 

acceptable result. 
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67. We compare the resultant wave given with the standard expression (Eq. 16–52) to 

obtain  1 1
2

20m 2 / ,2 cos 3.0mmmk y     , and 1
2

0.820rad . 

 

(a) Therefore,  = 2/k = 0.31 m. 

 

(b) The phase difference is  = 1.64 rad. 

 

(c) And the amplitude is ym = 2.2 mm. 

 

68. (a) Recalling the discussion in Section 16-5, we see that the speed of the wave given 

by a function with argument x – 5.0t (where x is in centimeters and t is in seconds) must 

be 5.0 cm/s . 

 

(b) In part (c), we show several “snapshots” of the wave: the one on the left is as shown 

in Figure 16-44 (at t = 0), the middle one is at t = 1.0 s, and the rightmost one is at 

2.0 st  . It is clear that the wave is traveling to the right (the +x direction). 

 

(c) The third picture in the sequence below shows the pulse at 2.0 s. The horizontal scale 

(and, presumably, the vertical one also) is in centimeters. 

 

 
 

(d) The leading edge of the pulse reaches x = 10 cm at t = (10 – 4.0)/5 = 1.2 s. The 

particle (say, of the string that carries the pulse) at that location reaches a maximum 

displacement h = 2 cm at t = (10 – 3.0)/5 = 1.4 s. Finally, the trailing edge of the pulse 

departs from x = 10 cm at t = (10 – 1.0)/5 = 1.8 s. Thus, we find for h(t) at x = 10 cm 

(with the horizontal axis, t, in seconds): 
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69. THINK We use phasors to add the three waves and calculate the amplitude of the 

resultant wave.  

 

EXPRESS The phasor diagram is shown here: y1, y2, and y3 represent the original waves 

and ym represents the resultant wave.  

 
The horizontal component of the resultant is ymh = y1 – y3 = y1 – y1/3 = 2y1/3. The vertical 

component is ymv = y2 = y1/2.  

 

ANALYZE (a) The amplitude of the resultant is 

 
2 2

2 2 1 1
1 1

2 5
0.83 .

3 2 6
m mh mv

y y
y y y y y

   
        

   
 

 

(b) The phase constant for the resultant is 

 

1 1 11

1

2 3
tan tan tan 0.644 rad 37 .

2 3 4

mv

mh

y y

y y
        
          

   
 

(c) The resultant wave is 

1

5
sin ( 0.644 rad).

6
y y kx t    

 

The graph below shows the wave at time t = 0. As time goes on it moves to the right with 

speed v = /k. 
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LEARN In adding the three sinusoidal waves, it is convenient to represent each wave 

with a phasor, which is a vector whose magnitude is equal to the amplitude of the wave. 

However, adding the three terms explicitly gives, after a little algebra, 

 

1 2 3 1 1 1

1 1 1

1 1

1

1

1 1
sin( ) sin( / 2) sin( )

2 3

1 1
sin( ) cos( ) sin( )

2 3

2 1
sin( ) cos( )

3 2

5 4 3
sin( ) cos( )

6 5 5

5
sin( )

6

y y y y kx t y kx t y kx t

y kx t y kx t y kx t

y kx t y kx t

y kx t kx t

y kx t

    

  

 

 

 

         

     

   

 
    

 

  

 

where  1tan 3/ 4 0.644 rad   . In deducing the phase , we set cos 4 /5   and 

sin 3/5  , and use the relation cos sin sin cos sin( )        . The result indeed 

agrees with that obtained in (c). 

 

70. Setting x = 0  in  ay = –² y, where y = ym sin(k x  t + ) gives  

 

ay = –² ym sin( t + ) 

 

as the function being plotted in the graph.  We note that it has a negative “slope” 

(referring to its t-derivative) at t = 0, or 

                  

   3² sin cos 0
y

m m

da d
y t y t

dt dt
                

 

at  t = 0. This implies that cos < 0 and consequently that  is in either the second or third 

quadrant. The graph shows (at t = 0) ay = 100 m/s², and (at another t) amax = 400 m/s².  

Therefore, 

        

ay = amax sin( t + )|t = 0         =  sin
1

( 
1

4
 ) =  0.25 rad   or   2.9 rad 

 

(bear in mind that sin = sin()), and we must choose  = 2.9 rad  because this is 

about 166° and is in the second quadrant.  Of course, this answer added to 2n is still a 

valid answer (where n is any integer), so that, for example,  = 2.9 – 2 = 3.4 rad is also 

an acceptable result. 
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71. (a) Let the displacement of the string be of the form y(x, t) = ym sin (kx – t). The 

velocity of a point on the string is  

 

u(x, t) = y/t = –ym cos(kx – t) 

 

and its maximum value is um = ym. For this wave the frequency is f = 120 Hz and the 

angular frequency is  = 2f = 2 (120 Hz) = 754 rad/s. Since the bar moves through a 

distance of 1.00 cm, the amplitude is half of that, or ym = 5.00  10
–3

 m. The maximum 

speed is  

um = (754 rad/s) (5.00  10
–3

 m) = 3.77 m/s. 

 

(b) Consider the string at coordinate x and at time t and suppose it makes the angle  with 

the x axis. The tension is along the string and makes the same angle with the x axis. Its 

transverse component is trans =  sin . Now  is given by tan  = y/x = kym cos(kx – t) 

and its maximum value is given by tan m = kym. We must calculate the angular wave 

number k. It is given by k = /v, where v is the wave speed. The wave speed is given by 

/ ,v    where  is the tension in the rope and  is the linear mass density of the rope. 

Using the data given, 

90.0 N
27.4m/s

0.120kg/m
 v  

and 

1754rad/s
27.5m .

27.4m/s
k    

Thus, 
1 3tan (27.5m )(5.00 10 m) 0.138   m  

 

and  = 7.83°. The maximum value of the transverse component of the tension in the 

string is  

trans = (90.0 N) sin 7.83° = 12.3 N. 

 

We note that sin  is nearly the same as tan  because  is small. We can approximate the 

maximum value of the transverse component of the tension by kym. 

 

(c) We consider the string at x. The transverse component of the tension pulling on it due 

to the string to the left is –y/x) = –kym cos(kx – t) and it reaches its maximum value 

when cos(kx – t) = –1. The wave speed is  

 

u = y/t = –ym cos (kx – t) 

 

and it also reaches its maximum value when cos(kx – t) = –1. The two quantities reach 

their maximum values at the same value of the phase. When cos(kx – t) = –1 the value 

of sin(kx – t) is zero and the displacement of the string is y = 0. 
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(d) When the string at any point moves through a small displacement y, the tension does 

work W = trans y. The rate at which it does work is 

 

trans trans .
W y

P u
t t

 
 

  
 

 

 

P has its maximum value when the transverse component trans of the tension and the 

string speed u have their maximum values. Hence the maximum power is (12.3 N)(3.77 

m/s) = 46.4 W. 

 

(e) As shown above, y = 0 when the transverse component of the tension and the string 

speed have their maximum values. 

 

(f) The power transferred is zero when the transverse component of the tension and the 

string speed are zero. 

 

(g) P = 0 when cos(kx – t) = 0 and sin(kx – t) = 1 at that time. The string 

displacement is y = ym = 0.50 cm. 

 

72. We use Eq. 16-52 in interpreting the figure.   

 

(a) Since y’= 6.0 mm when  = 0, then Eq. 16-52 can be used to determine ym = 3.0 mm.   

 

(b) We note that y’= 0 when the shift distance is 10 cm; this occurs because cos() = 0 

there   = rad  or ½ cycle.  Since a full cycle corresponds to a distance of one full 

wavelength, this ½ cycle shift corresponds to a distance of .  Therefore,  = 20 cm   

k= 2/ = 31 m
1

.   

 

(c) Since f = 120 Hz,  = 2f  = 754 rad/s 27.5 10  rad/s.   

 

(d) The sign in front of  is minus since the waves are traveling in the +x direction. 

 

The results may be summarized as y = (3.0 mm) sin[(31.4 m
1

)x – (754 s
1

)t]] (this 

applies to each wave when they are in phase). 

 

73. We note that  

dy/dt = cos(kx – t + ), 

 

which we will refer to as u(x,t). so that the ratio of the function y(x,t) divided by u(x,t)  

is – tan(kx  t + )/.  With the given information (for x = 0 and t = 0) then we can take 

the inverse tangent of this ratio to solve for the phase constant: 

 

 1 1(0,0) (440)(0.0045)
tan tan 1.2 rad.

(0,0) 0.75

y

u


     
     

  
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74. We use 2 2 2 21
2

.mP y vf f     

 

(a) If the tension is quadrupled, then 2 1
2 1 1 1

1 1

4
2 .P P P P  

 

 
 

 

(b) If the frequency is halved, then 

2 2

2 1
2 1 1 1

1 1

/ 2 1
.

4

f f
P P P P

f f

   
     

   
 

 

75. (a) Let the cross-sectional area of the wire be A and the density of steel be . The 

tensile stress is given by /A where  is the tension in the wire. Also,  = A. Thus, 

 
8 2

2max max
max 3

7.00 10 N m
     3.00 10 m s

7800kg m

A
v

 

 


     . 

 

(b) The result does not depend on  the diameter of the wire. 

 

76. Repeating the steps of Eq. 16-47  Eq. 16-53, but applying 

 

cos cos 2cos cos
2 2

   
 

    
     

   
 

 

(see Appendix E) instead of Eq. 16-50, we obtain [0.10cos ]cos4y x t    , with SI units 

understood. 

 

(a) For non-negative x, the smallest value to produce cos x = 0 is x = 1/2, so the answer 

is x = 0.50 m. 

 

(b) Taking the derivative, 

  0.10cos 4 sin4
dy

u x t
dt


       . 

 

We observe that the last factor is zero when 31 1
4 2 4

0, , , ,t   Thus, the value of the first 

time the particle at x = 0 has zero velocity is t = 0. 

 

(c) Using the result obtained in (b), the second time where the velocity at x = 0 vanishes 

would be t = 0.25 s, 

 

(d) and the third time is t = 0.50 s. 
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77. THINK The speed of a transverse wave in the stretched rubber band is related to the 

tension in the band and the linear mass density of the band. 

 

EXPRESS The wave speed v is given by v = F  , where F is the tension in the rubber 

band and  is the band’s linear mass density, which is defined as the mass per unit length 

 = m/L. The fact that the band obeys Hooke’s law implies F k  , where k is the 

spring constant and   is the elongation. Thus, when a force F is applied, the rubber 

band has a length L   , where  is the unstretched length, resulting in a linear 

mass density /( )m   .  

 

ANALYZE (a) The wave speed is 
( )

.
/( )

   
  

 

F k k
v

m m
 

 

(b) The time required for the pulse to travel the length of the rubber band is 

2 ( ) 2 ( )
2 1 .

( ) /

m
t

v kk m

     
    

  
 

 

Thus if / 1 , then / 1/t    . On the other hand, if / 1 , then we 

have 2 / const.t m k   

 

LEARN When  , the applied force F k   is small while / constantm   , 

leading to a small wave speed. On the other hand, when  , /m    and 

/v F    , so that 2 /t m k , which is a constant. 

 

78. (a) For visible light 

 
8

14

min 9

max

3.0 10 m s
4.3 10 Hz

700 10 m

c
f




   
 

 

and 
8

14

max 9

min

3.0 10 m s
7.5 10 Hz.

400 10 m

c
f




   
 

 

(b) For radio waves 
8

min 6

max

3.0 10 m s
1.0m

300 10 Hz

c 
   

 
 

and 
8

2

max 6

min

3.0 10 m s
2.0 10 m.

1.5 10 Hz

c 
    

 
 

 

(c) For X rays 
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8
16

min 9

max

3.0 10 m s
6.0 10 Hz

5.0 10 m

c
f




   
 

 

and 
8

19

max 11

min

3.0 10 m s
3.0 10 Hz.

1.0 10 m

c
f




   
 

 

 

79. THINK A wire held rigidly at both ends can be made to oscillate in standing wave 

patterns. 

 

EXPRESS Possible wavelengths are given by  n = 2L/n, where L is the length of the 

wire and n is an integer. The corresponding frequencies are fn = v/n = nv/2L, where v is 

the wave speed. The wave speed is given by v    where  is the tension in the wire 

and  is the linear mass density of the wire.  

 

ANALYZE (a) The wave speed is 
3

120 N
144 m/s.

8.70 10 kg /1.50m
  


v




 

 

(b) For the one-loop standing wave we have 1 = 2L = 2(1.50 m) = 3.00 m.  

 

(c) For the two-loop standing wave 2 = L = 1.50 m. 

 

(d) The frequency for the one-loop wave is f1 = v/1 = (144 m/s)/(3.00 m) = 48.0 Hz. 

 

(e) The frequency for the two-loop wave is f2 = v/2 = (144 m/s)/(1.50 m) = 96.0 Hz. 

 

LEARN The one-loop and two-loop standing wave patterns are plotted below: 

  
 

80. By Eq. 16–66, the higher frequencies are integer multiples of the lowest (the 

fundamental).  

 

(a) The frequency of the second harmonic is f2 = 2(440) = 880 Hz. 

 

(b) The frequency of the third harmonic is f3 = 3(440) = 1320 Hz.  
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81. (a) The amplitude is ym = 1.00 cm = 0.0100 m, as given in the problem. 

 

(b) Since the frequency is f = 550 Hz, the angular frequency is  = 2f = 3.4610
3
 rad/s. 

 

(c) The angular wave number is 3/ (3.46 10  rad/s) /(330 m/s) 10.5 rad/mk v    . 

 

(d) Since the wave is traveling in the –x direction, the sign in front of  is plus and the 

argument of the trig function is kx + t.  

 

The results may be summarized as 

 

   

   

m m

3

, sin sin 2

0.010m sin 2 550Hz
330m s

            (0.010m) sin[(10.5 rad/s) (3.46 10  rad/s) ].

x
y x t y kx t y f t

v

x
t

x t

 



  
     

  

  
   

  

  

 

 

82. We orient one phasor along the x axis with length 3.0 mm and angle 0 and the other at 

70° (in the first quadrant) with length 5.0 mm. Adding the components, we obtain 

 

 (3.0  mm) (5.0  mm)cos 70 4.71mm along axis

(5.0 mm)sin (70 ) 4.70 mm  along axis.

x

y

  

 
 

 

(a) Thus, amplitude of the resultant wave is 2 2(4.71 mm) (4.70 mm) 6.7mm.    

 

(b) And the angle (phase constant) is tan
–1

 (4.70/4.71) = 45°. 

 

83. THINK The speed of a point on the cord is given by u(x, t) = y/t, where y (x, t) is 

displacement.   

 

EXPRESS We take the form of the displacement to be  

 

y (x, t) = ym sin(kx – t). 

 

The speed of a point on the cord is  

u(x, t) = y/t = –ym cos(kx – t), 

 

and its maximum value is um = ym. The wave speed, on the other hand, is given by v = 

/T = /k.  

 

(a) The ratio of the maximum particle speed to the wave speed is 
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2
.

/

m m m
m

u y y
ky

v k


  






 

 

(b) The ratio of the speeds depends only on ym/, the ratio of the amplitude to the 

wavelength.  

 

LEARN Different waves on different cords have the same ratio of speeds if they have the 

same amplitude and wavelength, regardless of the wave speeds, linear densities of the 

cords, and the tensions in the cords. 

 

84. (a) Since the string has four loops its length must be two wavelengths. That is,  = L/2, 

where  is the wavelength and L is the length of the string. The wavelength is related to 

the frequency f and wave speed v by  = v/f, so L/2 = v/f and  

 

L = 2v/f = 2(400 m/s)/(600 Hz) = 1.3 m. 

 

(b) We write the expression for the string displacement in the form y = ym sin(kx) cos(t), 

where ym is the maximum displacement, k is the angular wave number, and  is the 

angular frequency. The angular wave number is  

 

k = 2/ = 2f/v = 2(600 Hz)/(400 m/s) = 9.4m
–1

 

 

and the angular frequency is  

 

 = 2f = 2(600 Hz) = 3800 rad/s. 

 

With ym = 2.0 mm, the displacement is given by 

 
1 1( , ) (2.0mm)sin[(9.4m ) ]cos[(3800s ) ].y x t x t   

 

85. We make use of Eq. 16-65 with L = 120 cm.  

 

(a) The longest wavelength for waves traveling on the string  if standing waves are to be 

set up is 1 2 /1 240 cm.L    

 

(b) The second longest wavelength for waves traveling on the string  if standing waves 

are to be set up is 2 2 / 2 120 cm.L    

 

(c) The third longest wavelength for waves traveling on the string  if standing waves are 

to be set up is 3 2 /3 80.0 cm.L    

 

The three standing waves are shown next: 
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86. (a) Let the displacements of the wave at (y,t) be z(y,t). Then  

 

z(y,t) = zm sin(ky – t), 

 

where zm = 3.0 mm, k = 60 cm
–1

, and  = 2/T = 2/0.20 s = 10s
–1

. Thus 

 

   1 1( , ) (3.0mm)sin 60cm 10 s .z y t y t       

 

(b) The maximum transverse speed is (2 /0.20s)(3.0mm)=94mm/s.m mu z    

 

87. (a) With length in centimeters and time in seconds, we have 

 

60 cos 4 .
8

dy x
u t

dt

 
      

 
 

 

Thus, when x = 6 and 1
4

t  , we obtain 

60
60 cos 133

4 2
u

  
       

 

so that the speed there is 1.33 m/s. 

 

(b) The numerical coefficient of the cosine in the expression for u is –60. Thus, the 

maximum speed is 1.88 m/s. 

 

(c) Taking another derivative, 

2240 sin 4
8

du x
a t

dt

 
      

 
 

 

so that when x = 6 and t = 1
4

 we obtain a = –2402
 sin(/4), which yields a = 16.7 m/s

2
. 

 

(d) The numerical coefficient of the sine in the expression for a is –240
2
. Thus, the 

maximum acceleration is 23.7 m/s
2
. 

 

88. (a) This distance is determined by the longitudinal speed: 

 

  6 22000m/s 40 10 s 8.0 10 m.d v t        
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(b) Assuming the acceleration is constant (justified by the near-straightness of the curve a 

= 300/40  10
–6

) we find the stopping distance d: 

   
 

2 6

2 2
300 40 10

2
2 300

ov v ad d


     

 

which gives d = 6.010
–3

 m. This and the radius r form the legs of a right triangle (where 

r is opposite from  = 60°). Therefore, 

 

2tan 60 tan 60 1.0 10 m.
r

r d
d

        

89. Using Eq. 16-50, we have 

0.60cos sin 5 200
6 6

y x t
 

 
   

      
   

 

 

with length in meters and time in seconds (see Eq. 16-55 for comparison). 

 

(a) The amplitude is seen to be 0.60cos 0.3 3 0.52m.
6


   

(b) Since k = 5 and  = 200, then (using Eq. 16-12), 40m/s.v
k

 


 

 

(c) k = 2/ leads to  = 0.40 m. 

 

90. (a) The frequency is f = 1/T = 1/4 Hz, so v = f = 5.0 cm/s. 

 

(b) We refer to the graph to see that the maximum transverse speed (which we will refer 

to as um) is 5.0 cm/s. Using the simple harmonic motion relation um = ym = ym2f, we 

have 

1
5.0 2      3.2 cm.

4
m my y
 

    
 

 

  

(c) As already noted, f = 0.25 Hz. 

 

(d) Since k = 2/, we have k = 10 rad/m. There must be a sign difference between the t 

and x terms in the argument in order for the wave to travel to the right. The figure shows 

that at x = 0, the transverse velocity function is 0.050 sin / 2t . Therefore, the function 

u(x,t) is 

( , ) 0.050sin 10
2

u x t t x
 

   
 

 

 

with lengths in meters and time in seconds. Integrating this with respect to time yields 
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 2 0.050
( , ) cos 10

2
y x t t x C

 
     

  
 

 

where C is an integration constant (which we will assume to be zero). The sketch of this 

function at t = 2.0 s for 0  x  0.20 m is shown below. 

 

 
 

91. THINK The rope with both ends fixed and made to oscillate in fundamental mode 

has wavelength 2L  , where L is the length of the rope. 

 

EXPRESS We first observe that the anti-node at x = 1.0 m having zero displacement at t 

= 0 suggests the use of sine instead of cosine for the simple harmonic motion factor. We 

take the form of the displacement to be  

 

y(x, t) = ym sin(kx)sin(t). 

 

A point on the rope undergoes simple harmonic motion with a speed 

  

u(x, t) = y/t = ym sin(kx)cos(t). 

 

It has maximum speed um = ym as it passes through its "middle" point. On the other hand, 

the wave speed is v    where  is the tension in the rope and  is the linear mass 

density of the rope. For standing waves, possible wavelengths are given by n = 2L/n, 

where L is the length of the rope and n is an integer. The corresponding frequencies are fn 

= v/n = nv/2L, where v is the wave speed. For fundamental mode, we set n = 1. 

 

ANALYZE (a) With f = 5.0 Hz, we find the angular frequency to be  = 2f = 10 rad/s.  

Thus, if the maximum speed of a point on the rope is um = 5.0 m/s, then its amplitude is 

 

 
5.0 m/s

0.16 m
10 rad/s

m
m

u
y

 
   . 
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(b) Since the oscillation is in the fundamental mode, we have  = 2L = 4.0 m.  Therefore, 

the speed of waves along the rope is v = f = 20 m/s.  Then, with  = m/L = 0.60 kg/m, 

Eq. 16-26 leads to 

v



       =  v

2
 = 240 N 22.4 10 N  . 

(c) We note that for the fundamental, k = 2/ = /L. Now, if the fundamental mode is the 

only one present (so the amplitude calculated in part (a) is indeed the amplitude of the 

fundamental wave pattern) then we have 

 

 y = (0.16 m) sin 






x

2
 sin (10t) 1(0.16 m)sin[(1.57 m ) ]sin[(31.4 rad/s) ]x t  

 

LEARN The period of oscillation is 1/ 0.20 sT f  . The snapshots of the patterns at 

/ 4 0.05 st T   and 3 / 4 0.15 st T   are given below. At t = T/2 and T, the 

displacement is zero everywhere. 

 
 

/ 4 0.05 st T   

 
 

3 / 4 0.15 st T   

 

92. (a) The wave number for each wave is k = 25.1/m, which means  = 2/k = 250.3 mm. 

The angular frequency is  = 440/s; therefore, the period is T = 2/ = 14.3 ms. We plot 

the superposition of the two waves y = y1 + y2 over the time interval 0  t  15 ms. The 

first two graphs below show the oscillatory behavior at x = 0 (the graph on the left) and at 

x = /8  31 mm. The time unit is understood to be the millisecond and vertical axis (y) is 

in millimeters. 
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The following three graphs show the oscillation at x = /4 =62.6 mm  63 mm (graph on 

the left), at x = 3/8  94 mm (middle graph), and at x = /2  125 mm. 

 

 
 

(b) We can think of wave y1 as being made of two smaller waves going in the same 

direction, a wave y1a of amplitude 1.50 mm (the same as y2) and a wave y1b of amplitude 

1.00 mm. It is made clear in Section 16-12 that two equal-magnitude oppositely-moving 

waves form a standing wave pattern. Thus, waves y1a and y2 form a standing wave, which 

leaves y1b as the remaining traveling wave. Since the argument of y1b involves the 

subtraction kx – t, then y1b travels in the +x direction. 

 

(c) If y2 (which travels in the –x direction, which for simplicity will be called “leftward”) 

had the larger amplitude, then the system would consist of a standing wave plus a 

leftward moving wave. A simple way to obtain such a situation would be to interchange 

the amplitudes of the given waves. 

 

(d) Examining carefully the vertical axes, the graphs above certainly suggest that the 

largest amplitude of oscillation is ymax = 4.0 mm and occurs at x = /4 = 62.6 mm.  

 

(e) The smallest amplitude of oscillation is ymin = 1.0 mm and occurs at x = 0 and at  

 

x = /2 = 125 mm. 

 

(f) The largest amplitude can be related to the amplitudes of y1 and y2 in a simple way: 

 

ymax = y1m + y2m, 

 

where y1m = 2.5 mm and y2m = 1.5 mm are the amplitudes of the original traveling waves. 

 

(g) The smallest amplitudes is  

ymin = y1m – y2m, 

 

where y1m = 2.5 mm and y2m = 1.5 mm are the amplitudes of the original traveling waves. 

 

93. (a) Centimeters are to be understood as the length unit and seconds as the time unit. 

Making sure our (graphing) calculator is in radians mode, we find 
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(b) The previous graph is at t = 0, and this next one is at t = 0.050 s. 

 
 

And the final one, shown below, is at t = 0.010 s. 

 
 

(c) The wave can be written as ( , ) sin( )my x t y kx t  , where /v k  is the speed of 

propagation. From the problem statement, we see that 2 / 0.40 5  rad/s    and 

2 /80 / 40 rad/cmk    . This yields 22.0 10  cm/s 2.0 m/sv   . 

 

(d) These graphs (as well as the discussion in the textbook) make it clear that the wave is 

traveling in the –x direction.  
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94. The speed of the transverse wave along the string is given by Eq. 16-26:  / ,v    

where  is the tension and  is the linear mass density of the string. Applying Newton’s 

second law to a small segment of the string, the radial restoring force is (see Eq. 16-23) 

 

 2( sin )
l

F
R

  


   

 

Since 2( ) / ,TF m v R   where vT is the tangential speed of the segment of mass ,m l    

and R is the radius of the circle, we have 

 
2

2( ) T
T

vl
l v

R R
   


     

 

On the other hand, the fact that /v    implies 2.v   Thus, we must have ,Tv v  

which in this case, is equal to 5.00 cm/s. Note that v is independent of the radius of the 

circular loop. 

 

95. (a) With total reflection, ,A B  and SWR .
A B

A B


 


 

 

(b) With no reflection, 0,B   and SWR 1.
A B A

A B A


  


 

 

(c) In terms of 2( / ) ,R B A  we can rewrite SWR as 

 
2

1 ( / ) 1 SWR 1
SWR

1 ( / ) SWR 11

A B B A R
R

A B B A R

    
      

    
 

 

With SWR = 1.50, we obtain 

 
2 2

SWR 1 1.50 1
0.040 4.0%.

SWR 1 1.50 1
R

    
      

    
 

 

96. (a) The speed of each individual wave is 

 

 
40 N

26.83 m/s.
(0.125 kg)/(2.25 m)

v



    

 

The average rate at which energy is transmitted from one side is 
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 2 2 2 3 2

avg,1

1 1 0.125 kg
(26.83 m/s)(2 120 Hz) (5.0 10 m) 10.6 W.

2 2 2.25 m
mP v y    

     
 

 

 

(b) From both sides, avg avg,12 2(10.6 W) 21.2 W.P P    

 

(c) The rate of change of kinetic energy from one side is given by Eq. 16-30: 

 

2 2 21 1
cos ( ).

2
m

dK
v y kx t

dt
     

 

Integrating over one period for both sides, we obtain  

 

avg2 2 2 2 21

0

2

2 cos ( )
2 2

21.2 W
8.83 10 J.

2(120 Hz)

T

m m

PdK T
K dt v y kx t dt v y

dt f
    



 
     

 

  

 
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Chapter 17 
 

 

1. (a) The time for the sound to travel from the kicker to a spectator is given by d/v, where 

d is the distance and v is the speed of sound. The time for light to travel the same distance 

is given by d/c, where c is the speed of light. The delay between seeing and hearing the 

kick is t = (d/v) – (d/c). The speed of light is so much greater than the speed of sound 

that the delay can be approximated by t = d/v. This means d = v t. The distance from 

the kicker to spectator A is  

 

dA = v tA = (343 m/s)(0.23 s) = 79 m. 

 

(b) The distance from the kicker to spectator B is dB = v tB = (343 m/s)(0.12 s) = 41 m. 

 

(c) Lines from the kicker to each spectator and from one spectator to the other form a 

right triangle with the line joining the spectators as the hypotenuse, so the distance 

between the spectators is 

 

   
2 22 2 79m 41m 89mA BD d d     . 

 

2. The density of oxygen gas is 

3

3

0.0320kg
1.43kg/m .

0.0224m
   

From /v B   we find  

   
22 3 5317m/s 1.43kg/m 1.44 10 Pa.B v     

 

3. (a) When the speed is constant, we have v = d/t where v = 343 m/s is assumed. 

Therefore, with t = 15/2 s being the time for sound to travel to the far wall we obtain d = 

(343 m/s)  (15/2 s), which yields a distance of 2.6 km. 

 

(b) Just as the 1
2

factor in part (a) was 1/(n + 1) for n = 1 reflection, so also can we write 

 

 
  343 1515s

343m/s 1
1

d n
n d

 
    

 
 

 

for multiple reflections (with d in meters). For d = 25.7 m, we find n = 199 22.0 10  . 

 

4. The time it takes for a soldier in the rear end of the column to switch from the left to 

the right foot to stride forward is t = 1 min/120 = 1/120 min = 0.50 s. This is also the time 
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for the sound of the music to reach from the musicians (who are in the front) to the rear 

end of the column. Thus the length of the column is 

 
2(343m/s)(0.50s) =1.7  10 m.l vt    

 

5. THINK The S and P waves generated by the earthquake travel at different speeds. 

Knowing the speeds of the waves and the time difference of their arrival to the 

seismograph allows us to determine the location of the earthquake.    

 

EXPRESS Let d be the distance from the location of the earthquake to the seismograph. 

If vs is the speed of the S waves, then the time for these waves to reach the seismograph is 

ts. = d/vs. Similarly, the time for P waves to reach the seismograph is tp = d/vp. The time 

delay is  

t = (d/vs) – (d/vp) = d(vp – vs)/vsvp, 

 

ANALYZE With 4.5 km/ssv  , 8.0 km/spv   and 3.0 min 180 st   , we find the 

distance to be 

3(4.5  km/s)(8.0km/s)(180 s)
1.9 10 km.

( ) 8.0km/s 4.5km/s

s p

p s

v v t
d

v v


   

 
 

 

LEARN The distance to the earthquake is proportional to the difference in the arrival 

times of the P and S waves. 

 

6. Let  be the length of the rod. Then the time of travel for sound in air (speed vs) will be 

/s st v . And the time of travel for compression waves in the rod (speed vr) will be 

/r rt v . In these terms, the problem tells us that 

 

1 1
0.12s .s r

s r

t t
v v

 
    

 
 

 

Thus, with vs = 343 m/s and vr = 15vs = 5145 m/s, we find 44m . 

 

7. THINK The time elapsed before hearing the splash is the sum of the time it takes for 

the stone to hit the water in the well, and the time it takes for the sound wave to travel 

back to the listener.   

 

EXPRESS Let tf be the time for the stone to fall to the water and ts be the time for the 

sound of the splash to travel from the water to the top of the well. Then, the total time 

elapsed from dropping the stone to hearing the splash is t = tf + ts. If d is the depth of the 

well, then the kinematics of free fall gives  

21

2
fd gt    2 / .ft d g  
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The sound travels at a constant speed vs, so d = vsts, or ts = d/vs. Thus the total time is 

2 / / st d g d v  . This equation is to be solved for d.  

 

ANALYZE Rewriting the above expression as 2 / / sd g t d v   and squaring both 

sides, we obtain  

2d/g = t
2
 – 2(t/vs)d + (1 + 2

sv )d
2
. 

 

Now multiply by g 2

sv  and rearrange to get  

 

gd
2
 – 2vs(gt + vs)d + g 2

sv t
2
 = 0. 

 

This is a quadratic equation for d. Its solutions are 

 

 
22 2 2 22 ( ) 4 4

.
2

s s s s sv gt v v gt v g v t
d

g

   
  

 

The physical solution must yield d = 0 for t = 0, so we take the solution with the negative 

sign in front of the square root. Once values are substituted the result d = 40.7 m is 

obtained. 

 

LEARN The relation between the depth of the well and time is plotted below: 

 
 

8. Using Eqs. 16-13 and 17-3, the speed of sound can be expressed as 

 

 
B

v f


  , 

 

where ( / ) / .B dp dV V    Since , , andV    are not changed appreciably, the frequency 

ratio becomes 
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( / )

( / )

s s s s

i i i i

f v B dp dV

f v B dp dV
   . 

 

Thus, we have  
2 2

( / ) 1
9.00

( / ) 0.333

s i i

i s s

dV dp B f

dV dp B f

   
      

  
. 

 

9. Without loss of generality we take x = 0, and let t = 0 be when s = 0. This means the 

phase is = /2 and the function is s = (6.0 nm)sin(t) at x = 0.  Noting that = 3000 

rad/s, we note that at t = sin
1

(1/3)/ = 0.1133 ms the displacement is s = +2.0 nm.  

Doubling that time (so that we consider the excursion from –2.0 nm to +2.0 nm) we 

conclude that the time required is 2(0.1133 ms) = 0.23 ms.  

 

10. The key idea here is that the time delay t  is due to the distance d that each 

wavefront must travel to reach your left ear (L) after it reaches your right ear (R). 

 

(a) From the figure, we find 
sind D

t
v v


   . 

 

(b) Since the speed of sound in water is now wv , with 90   , we have 

 

sin90
w

w w

D D
t

v v


   . 

 

(c) The apparent angle can be found by substituting / wD v  for t : 

 

sin

w

D D
t

v v


   . 

 

Solving for   with 1482 m/swv   (see Table 17-1), we obtain 

 

 1 1 1343 m/s
sin sin sin (0.231) 13

1482 m/sw

v

v
      
       

  
. 

 

11. THINK The speed of sound in a medium is the product of the wavelength and 

frequency. 

 

EXPRESS The wavelength of the sound wave is given by  = v/f, where v is the speed of 

sound in the medium and f is the frequency,  

 

ANALYZE (a) The speed of sound in air (at 20 C ) is 343 m/sv  . Thus, we find 
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5

6

343m/s
7.62 10 m.

4.50 10 Hz

v

f

    


 

 

(b) The frequency of sound is the same for air and tissue. Now the speed of sound in 

tissue is  1500 m/sv  , the corresponding wavelength is 

  

4

6

1500m/s
3.33 10 m.

4.50 10 Hz

v

f

    


 

 

LEARN The speed of sound depends on the medium through which it propagates. Table 

17-1 provides a list of sound speed in various media. 

 

12. (a) The amplitude of a sinusoidal wave is the numerical coefficient of the sine (or 

cosine) function: pm = 1.50 Pa. 

 

(b) We identify k = 0.9 and  = 315 (in SI units), which leads to f = /2 = 158 Hz. 

 

(c) We also obtain  = 2/k = 2.22 m. 

 

(d) The speed of the wave is v = /k = 350 m/s. 

 

13. The problem says “At one instant...” and we choose that instant (without loss of 

generality) to be t = 0.  Thus, the displacement of “air molecule A” at that instant is  

 

sA = +sm = smcos(kxA  t + )|
t=0

 = smcos(kxA + ), 

 

where xA = 2.00 m. Regarding “air molecule B” we have  

 

sB = + 
1

3
 sm = sm cos( kxB  t + )|

t=0
 = sm cos( kxB + ). 

 

These statements lead to the following conditions: 

 

    kxA +  

kxB + cos
1

(1/3) = 1.231 

 

where xB = 2.07 m. Subtracting these equations leads to  

 

k(xB xA) = 1.231       k = 17.6 rad/m. 

 

Using the fact that k = 2 we find = 0.357 m, which means   

 

f = v/ = 343/0.357 = 960 Hz. 
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Another way to complete this problem (once k is found) is to use  kv =   and then the 

fact that  = f. 

 

14. (a) The period is T  = 2.0 ms (or 0.0020 s) and the amplitude is pm = 8.0 mPa (which 

is equivalent to 0.0080 N/m
2
).  From Eq. 17-15 we get 

 

 96.1 10  mm m
m

p p
s

v v T  

 
   

  
 

 

where  = 1.21 kg/m
3
 and v = 343 m/s. 

 

(b) The angular wave number is k = /v = 2/vT = 9.2 rad/m.   

 

(c) The angular frequency is  = 2/T = 3142 rad/s 33.1 10  rad/s  .  

 

The results may be summarized as s(x, t) = (6.1 nm) cos[(9.2 m
1

)x – (3.1  10
3
 s
1

)t].  

 

(d) Using similar reasoning, but with the new values for density (   = 1.35 kg/m
3
) and 

speed ( v= 320 m/s), we obtain 

 

 95.9 10  m.
(2 / )

m m
m

p p
s

v v T   

 
   

   
 

 

(e) The angular wave number is k = / 2 /v v T    = 9.8 rad/m.   

 

(f) The angular frequency is  = 2/T = 3142 rad/s 33.1 10  rad/s  . 

 

The new displacement function is s(x, t) = (5.9 nm) cos[(9.8 m
1

)x – (3.1  10
3
 s
1

)t]. 

 

15. (a) Consider a string of pulses returning to the stage. A pulse that came back just 

before the previous one has traveled an extra distance of 2w, taking an extra amount of 

time t = 2w/v. The frequency of the pulse is therefore 

 

 
21 343m/s

2.3 10 Hz.
2 2 0.75m

v
f

t w
    


 

 

(b) Since f  1/w, the frequency would be higher if w were smaller. 

 

16. Let the separation between the point and the two sources (labeled 1 and 2) be x1 and 

x2, respectively. Then the phase difference is 
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1 2 1 2
1 2

2 ( ) 2 (4.40m 4.00m)
2 2

(330m/s) / 540Hz

4.12rad.

x x x x
ft ft

 
    

  

    
           

   



 

 

17. Building on the theory developed in Section 17-5, we set / 1/ 2,  1,2,...L n n     

in order to have destructive interference. Since v = f, we can write this in terms of 

frequency: 

min,

(2 1)
( 1/ 2)(286 Hz)

2
n

n v
f n

L


  


 

 

where we have used v = 343 m/s (note the remarks made in the textbook at the beginning 

of the exercises and problems section) and L = (19.5 – 18.3 ) m = 1.2 m. 

 

(a) The lowest frequency that gives destructive interference is (n = 1) 

 

min,1 (1 1/ 2)(286 Hz) 143 Hz.f     

 

(b) The second lowest frequency that gives destructive interference is (n = 2) 

 

min,2 min,1(2 1/ 2)(286 Hz) 429 Hz 3(143 Hz) 3 .f f      

So the factor is 3. 

 

(c) The third lowest frequency that gives destructive interference is (n = 3) 

 

min,3 min,1(3 1/ 2)(286 Hz) 715 Hz 5(143 Hz) 5 .f f      

So the factor is 5. 

 

Now we set 1
2

/L   (even numbers) — which can be written more simply as “(all 

integers n = 1, 2,…)” — in order to establish constructive interference. Thus, 

 

max, (286 Hz).n

nv
f n

L
 


 

 

(d) The lowest frequency that gives constructive interference is (n =1) max,1 (286 Hz).f   

 

(e) The second lowest frequency that gives constructive interference is (n = 2) 

 

max,2 max,12(286 Hz) 572 Hz 2 .f f    

Thus, the factor is 2. 

 

(f) The third lowest frequency that gives constructive interference is (n = 3) 

 



  CHAPTER 17 806 

max,3 max,13(286 Hz) 858 Hz 3 .f f    

Thus, the factor is 3. 

 

18. (a) To be out of phase (and thus result in destructive interference if they superpose) 

means their path difference must be /2 (or 3/2 or 5/2 or …).  Here we see their path 

difference is L, so we must have (in the least possibility) L = /2, or q =L/ = 0.5. 

 

(b) As noted above, the next possibility is L = 3/2, or q =L/ = 1.5. 

 

19. (a) The problem is asking at how many angles will there be “loud” resultant waves, 

and at how many will there be “quiet” ones?  We note that at all points (at large distance 

from the origin) along the x axis there will be quiet ones; one way to see this is to note 

that the path-length difference (for the waves traveling from their respective sources) 

divided by wavelength gives the (dimensionless) value 3.5, implying a half-wavelength 

(180º) phase difference (destructive interference) between the waves.  To distinguish the 

destructive interference along the +x axis from the destructive interference along the –x 

axis, we label one with +3.5 and the other –3.5.  This labeling is useful in that it suggests 

that the complete enumeration of the quiet directions in the upper-half plane (including 

the x axis) is: –3.5, –2.5, –1.5, –0.5, +0.5, +1.5, +2.5, +3.5.  Similarly, the complete 

enumeration of the loud directions in the upper-half plane is: –3, –2, –1, 0, +1, +2, +3.  

Counting also the “other” –3, –2, –1,  0, +1, +2, +3 values for the lower-half plane, then 

we conclude there are a total of  7 + 7 = 14  “loud”  directions. 

 

(b) The discussion about the “quiet” directions was started in part (a).  The number of 

values in the list: –3.5, –2.5, –1.5, –0.5, +0.5, +1.5, +2.5, +3.5 along with  –2.5, –1.5, –0.5, 

+0.5, +1.5, +2.5 (for the lower-half plane) is 14.  There are 14 “quiet” directions. 

 

20. (a) The problem indicates that we should ignore the decrease in sound amplitude, 

which means that all waves passing through point P have equal amplitude.  Their 

superposition at P if d = /4 results in a net effect of zero there since there are four 

sources (so the first and third are /2 apart and thus interfere destructively; similarly for 

the second and fourth sources). 

 

(b) Their superposition at P if d = /2 also results in a net effect of zero there since there 

are an even number of sources (so the first and second being /2 apart will interfere 

destructively; similarly for the waves from the third and fourth sources). 

 

(c) If d =  then the waves from the first and second sources will arrive at P in phase; 

similar observations apply to the second and third, and to the third and fourth sources.  

Thus, four waves interfere constructively there with net amplitude equal to 4sm. 

 

21. THINK The sound waves from the two speakers undergo interference. Whether the 

interference is constructive or destructive depends on the path length difference, or the 

phase difference.  
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EXPRESS From the figure, we see that the distance from the closer speaker to the 

listener is L = d2, and the distance from the other speaker to the listener is 
2 2

1 2L d d   , 

where d1 is the distance between the speakers. The phase difference at the location of the 

listener is  = 2(L’ – L)/, where  is the wavelength. For a minimum in intensity at the 

listener,  = (2n + 1), where n is an integer. Thus,  

 

 
min

min

2 ( ) 2( )
(2 1)

2 1

L L L L
n

n


  



  
    


, 

and the frequency is 

 

   
min

2 2 2 2
min

1 2 2

(2 1) (2 1)(343m/s)
(2 1)(343Hz).

2 2 (2.00m) (3.75m) 3.75m

v n v n
f n

d d d

 
    
    

 

 

Now 20,000/343 = 58.3, so 2n + 1 must range from 0 to 57 for the frequency to be in the 

audible range (20 Hz to 20 kHz). This means n ranges from 0 to 28. 

 

On the other hand, for a maximum in intensity at the listener,  = 2n, where n is any 

positive integer. Thus  2 2

max 1 2 2(1/ )n d d d     and 

 

max
2 2 2 2

max 1 2 2

(343m/s)
(686Hz).

(2.00m) (3.75m) 3.75m

v nv n
f n

d d d
   
    

 

 

Since 20,000/686 = 29.2, n must be in the range from 1 to 29 for the frequency to be 

audible. 

 

ANALYZE (a) The lowest frequency that gives minimum signal is (n = 0) 

min,1 343 Hz.f    

 

(b) The second lowest frequency is (n = 1) 
min,2 min,1[2(1) 1](343 Hz) 1029 Hz 3 .f f     

Thus, the factor is 3.  

 

(c) The third lowest frequency is (n = 2) 
min,3 min,1[2(2) 1](343 Hz) 1715 Hz 5 .f f     

Thus, the factor is 5.  

 

(d) The lowest frequency that gives maximum signal is (n =1) 
max,1 686 Hz.f   

 

(e) The second lowest frequency is (n = 2) max,2 max,12(686 Hz) 1372 Hz 2 .f f    Thus, 

the factor is 2. 
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(f) The third lowest frequency is (n = 3) 
max,3 max,13(686 Hz) 2058 Hz 3 .f f    Thus, the 

factor is 3. 

 

LEARN We see that the interference of the two sound waves depends on their phase 

difference  = 2(L’ – L)/. The interference is fully constructive when  is a multiple of 

2, but fully destructive when  is an odd multiple of . 

 

22. At the location of the detector, the phase difference between the wave that traveled 

straight down the tube and the other one, which took the semi-circular detour, is 

 

2
( 2 ).k d r r


     


  

 

For r = rmin we have  = , which is the smallest phase difference for a destructive 

interference to occur. Thus, 

min

40.0cm
17.5cm.

2( 2) 2( 2)
r


  

   
 

 

23. (a) If point P is infinitely far away, then the small distance d between the two sources 

is of no consequence (they seem effectively to be the same distance away from P). Thus, 

there is no perceived phase difference. 

 

(b) Since the sources oscillate in phase, then the situation described in part (a) produces 

fully constructive interference. 

 

(c) For finite values of x, the difference in source positions becomes significant. The path 

lengths for waves to travel from S1 and S2 become now different. We interpret the 

question as asking for the behavior of the absolute value of the phase difference ||, in 

which case any change from zero (the answer for part (a)) is certainly an increase. 

 

The path length difference for waves traveling from S1 and S2 is 

 
2 2 for 0.d x x x      

 

The phase difference in “cycles” (in absolute value) is therefore 

 
2 2

.
d x x  

  
 

  

 

Thus, in terms of , the phase difference is identical to the path length difference: 

| | 0 . Consider / 2 . Then 
2 2 / 2d x x   . Squaring both sides, 

rearranging, and solving, we find 
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2

.
4

d
x


 


 

 

In general, if  for some multiplier   0, we find 

 
2 1 64.0

2 2

d
x  

 
    


 

 

where we have used d = 16.0 m and  = 2.00 m. 

 

(d) For 0.50 , or 0.50  , we have 0.50) m 127.5 m 128 mx     . 

 

(e) For 1.00 , or 1.00  , we have 1.00) m 63.0 mx    . 

 

(f) For 1.50 , or 1.50  , we have 1.50) m 41.2 mx    . 

 

Note that since whole cycle phase differences are equivalent (as far as the wave 

superposition goes) to zero phase difference, then the  = 1, 2 cases give constructive 

interference. A shift of a half-cycle brings “troughs” of one wave in superposition with 

“crests” of the other, thereby canceling the waves; therefore, the 3 51
2 2 2
, ,   cases 

produce destructive interference. 

 

24. (a) Equation 17-29 gives the relation between sound level  and intensity I, namely 

 

 ( /10dB) 12 2 ( /10dB) 12 ( /10dB) 2

010 (10 W/m )10 10 W/mI I         

 

Thus we find that for a  = 70 dB level we have a high intensity value of Ihigh = 10 W/m
2
.  

 

(b) Similarly, for a  = 50 dB level we have a low intensity value of Ilow = 0.10 W/m
2
. 

 

(c) Equation 17-27 gives the relation between the displacement amplitude and I.  Using 

the values for density and wave speed, we find sm = 70 nm for the high intensity case. 

 

(d) Similarly, for the low intensity case we have sm = 7.0 nm.   

 

We note that although the intensities differed by a factor of 100, the amplitudes differed 

by only a factor of 10. 

 

25. The intensity is given by 2 21
2

,mI v s    where  is the density of air, v is the speed of 

sound in air,  is the angular frequency, and sm is the displacement amplitude for the 

sound wave. Replace  with 2f and solve for sm: 
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6 2
8

2 2 2 3 2

1.00 10 W/m
3.68 10 m.

2 2 (1.21kg/m )(343m/s)(300Hz)
m

I
s

v f




   
 

 

 

26. (a) Since intensity is power divided by area, and for an isotropic source the area may 

be written A = 4r
2
 (the area of a sphere), then we have 

 

2

2

1.0W
0.080W/m .

4 (1.0m)

P
I

A
  


 

 

(b) This calculation may be done exactly as shown in part (a) (but with r = 2.5 m instead 

of r = 1.0 m), or it may be done by setting up a ratio. We illustrate the latter approach. 

Thus, 
22

2

/ 4 ( )

/ 4

I P r r

I P r r

   
   

  
 

 

leads to I = (0.080 W/m
2
)(1.0/2.5)

2
 = 0.013 W/m

2
. 

 

27. THINK The sound level increases by 10 dB when the intensity increases by a factor 

of 10.    

 

EXPRESS The sound level  is defined as (see Eq. 17-29): 

 

 
0

(10 dB) log
I

I
   

where 12 2

0 10 W/mI   is the standard reference intensity. In this problem, let I1 be the 

original intensity and I2 be the final intensity. The original sound level is 

1 1 0(10 dB)log( / )I I   and the final sound level is 2 = (10 dB) log(I2/I0). With 

2 1 30 dB    we have 

 

 (10 dB) log(I2/I0) = (10 dB) log(I1/I0) + 30 dB, 

or  

(10 dB) log(I2/I0) – (10 dB) log(I1/I0) = 30 dB. 

 

The above equation allows us to solve for the ratio I2/I1. On the other hand, combing Eqs. 

17-15 and 17-27 leads to the following relation between the intensity I and the pressure 

amplitude mp : 
 

2

1

2

mp
I

v


 . 

 

ANALYZE (a) Divide by 10 dB and use log(I2/I0) – log(I1/I0) = log(I2/I1) to obtain 

log(I2/I1) = 3. Now use each side as an exponent of 10 and recognize that 
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 2 1log

2 110 /
I I

I I . The result is I2/I1 = 10
3
. The intensity is increased by a factor of 

1.0×10
3
. 

 

(b) The pressure amplitude is proportional to the square root of the intensity so it is 

increased by a factor of 1000 32.  

 

LEARN From the definition of , we see that doubling sound intensity increases the 

sound level by (10 dB)log2 3.01 dB   . 

 

28. The sound level  is defined as (see Eq. 17-29): 

 

 
0

(10 dB) log
I

I
   

where 12 2

0 10 W/mI   is the standard reference intensity. In this problem, let the two 

intensities be I1 and I2 such that 2 1I I . The sound levels are 1 1 0(10 dB)log( / )I I   

and 2 = (10 dB) log(I2/I0). With 
2 1 1.0 dB    we have 

 

 (10 dB) log(I2/I0) = (10 dB) log(I1/I0) + 1.0 dB, 

or  

(10 dB) log(I2/I0) – (10 dB) log(I1/I0) = 1.0 dB. 

 

Divide by 10 dB and use log(I2/I0) – log(I1/I0) = log(I2/I1) to obtain log(I2/I1) = 0.1. Now 

use each side as an exponent of 10 and recognize that 
 2 1log

2 110 /
I I

I I . The result is  

 

 0.12

1

10 1.26
I

I
  . 

 

29. THINK Power is the time rate of energy transfer, and intensity is the rate of energy 

flow per unit area perpendicular to the flow.  

 

EXPRESS The rate at which energy flow across every sphere centered at the source is 

the same, regardless of the sphere radius, and is the same as the power output of the 

source. If P is the power output and I is the intensity a distance r from the source, then 
24P IA r I  , where A = 4r

2
 is the surface area of a sphere of radius r.  

 

ANALYZE With 2.50 mr   and  4 21.91 10 W/mI   , we find the power of the 

source to be  

P = 4(2.50 m)
2
 (1.91  10

–4
 W/m

2
) = 1.50  10

–2
 W. 

 

LEARN Since intensity falls off as 21/ r , the further away from the source, the weaker 

the intensity. 

 



  CHAPTER 17 812 

30. (a) The intensity is given by I = P/4r
2
 when the source is “point-like.” Therefore, at r 

= 3.00 m, 
6

9 2

2

1.00 10 W
8.84 10 W/m .

4 (3.00m)
I




  


 

(b) The sound level there is 
9 2

12 2

8.84 10 W/m
10 log 39.5dB.

1.00 10 W/m





 
  

 
  

 

31. We use  = 10 log (I/Io) with Io = 1  10
–12

 W/m
2
 and I = P/4r

2
 (an assumption we 

are asked to make in the problem). We estimate r  0.3 m (distance from knuckle to ear) 

and find 

   
2 12 2 6.2 64 0.3m 1 10 W/m 10 2 10 W 2 W.P         

 

32. (a) Since  = 2f, Eq. 17-15 leads to 

 

 
     

3

3

1.13 10 Pa
2

2 1665Hz 343m/s 1.21 kg/m
m m mp v f s s 


   


 

 

which yields sm = 0.26 nm. The nano prefix represents 10
–9

. We use the speed of sound 

and air density values given at the beginning of the exercises and problems section in the 

textbook. 

 

(b) We can plug into Eq. 17–27 or into its equivalent form, rewritten in terms of the 

pressure amplitude: 

   
  

2
2 3

2

3

1.13 10 Pa1 1
1.5 nW/m .

2 2 1.21kg/m 343m/s

mp
I

v


    

 

33. We use  = 10 log(I/Io) with Io = 1  10
–12

 W/m
2
 and Eq. 17–27 with  

 

 = 2f = 2(260 Hz), 

v = 343 m/s and  = 1.21 kg/m
3
. 

 

   
28.5 2 7

o

1
10 2       7.6 10 m 0.76 m.

2
m mI I v f s s         

 

34. Combining Eqs.17-28 and 17-29 we have  = 10 log






P

Io4r
2  .  Taking differences (for 

sounds A and B) we find 
 

 = 10 log






PA

Io4r
2   – 10 log







PB

Io4r
2  = 10 log





PA

PB
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using well-known properties of logarithms.  Thus, we see that  is independent of r and 

can be evaluated anywhere.   

 

(a) We can solve the above relation (once we know  = 5.0) for the ratio of powers; we 

find PA /PB  3.2.  

 

(b) At r = 1000 m it is easily seen (in the graph) that  = 5.0 dB.  This is the same  we 

expect to find, then, at r = 10 m.   

 

35. (a) The intensity is 

5 2

2 2

30.0W
5.97 10 W/m .

4 (4 )(200m)

P
I

r

   
 

 

 

(b) Let A (= 0.750 cm
2
) be the cross-sectional area of the microphone. Then the power 

intercepted by the microphone is 

 
5 2 2 4 2 2 90 (6.0 10 W/m )(0.750cm )(10 m /cm ) 4.48 10 W.P IA           

 

36. The difference in sound level is given by Eq. 17-37: 

 

(10 db) log
f

f i

i

I

I
  

 
     

 
. 

 

Thus, if 5.0 db  , then log( / ) 1/ 2f iI I  , which implies that 10f iI I . On the other 

hand, the intensity at a distance r from the source is 
24

P
I

r
 , where P  is the power of 

the source. A fixed P implies that 2 2

i i f fI r I r . Thus, with 1.2 m,ir   we obtain 

 
1/ 2

1/ 4
1

(1.2 m) 0.67 m
10

i
f i

f

I
r r

I

   
         

. 

 

37. (a) The average potential energy transport rate is the same as that of the kinetic energy.  

This implies that the (average) rate for the total energy is 

 







dE

dt avg
  = 2







dK

dt avg
  =  2 ( ¼ A v 2

 sm
2 

) 

 

using Eq. 17-44.  In this equation, we substitute  = 1.21 kg/m
3
, A = r

2
 = (0.020 m)

2
, v 

= 343 m/s, = 3000 rad/s, sm = 12 10
9

 m, and obtain  the answer 3.4  10
10 

W.   
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(b) The second string is in a separate tube, so there is no question about the waves 

superposing.  The total rate of energy, then, is just the addition of the two: 2(3.4  10
10

 

W) = 6.8  10
10 

W. 

 

(c) Now we do have superposition, with = 0, so the resultant amplitude is twice that of 

the individual wave, which leads to the energy transport rate being four times that of part 

(a).  We obtain 4(3.4  10
10 

W) = 1.4  10
9 

W. 

 

(d) In this case = 0.4, which means (using Eq. 17-39)   

 

sm = 2 sm cos() = 1.618sm. 

 

This means the energy transport rate is (1.618)
2
 = 2.618  times that of part (a).  We obtain 

2.618(3.4  10
10

 W) = 8.8  10
10 

W. 

 

(e) The situation is as shown in Fig. 17-14(b).  The answer is zero. 

 

38. The frequency is f = 686 Hz and the speed of sound is vsound = 343 m/s. If L is the 

length of the air-column, then using Eq. 17–41, the water height is (in unit of meters) 

 

(343)
1.00 1.00 1.00 (1.00 0.125 ) m

4 4(686)

nv n
h L n

f
         

 

where n = 1, 3, 5,… with only one end closed. 

 

(a) There are 4 values of n (n = 1, 3, 5, 7) which satisfies h > 0. 

 

(b) The smallest water height for resonance to occur corresponds to 7n   with 

0.125 mh  . 

 

(c) The second smallest water height corresponds to n = 5 with h  = 0.375 m. 

 

39. THINK Violin strings are fixed at both ends. A string clamped at both ends can be 

made to oscillate in standing wave patterns. 

 

EXPRESS When the string is fixed at both ends 

and set to vibrate at its fundamental, lowest 

resonant frequency, exactly one-half of a 

wavelength fits between the ends (see figure to the 

right). The wave speed is given by 

/ ,v f     where  is the tension in the 

string and  is the linear mass density of the string. 

 

 

 

ANALYZE (a) With  = 2L , we find the wave speed to be  
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v = f = 2Lf = 2(0.220 m)(920 Hz) = 405 m/s. 

 

(b) If M is the mass of the (uniform) string, then  = M/L. Thus, the string tension is 



 = v
2
 = (M/L)v

2
 = [(800  10

–6
 kg)/(0.220 m)] (405 m/s)

2
 = 596 N. 

 

(c) The wavelength is  = 2L = 2(0.220 m) = 0.440 m. 

 

(d) If va is the speed of sound in air, then the wavelength in air is  

 

a = va/f = (343 m/s)/(920 Hz) = 0.373 m. 

 

LEARN The frequency of the sound wave in air is the same as the frequency of 

oscillation of the string. However, the wavelengths of the wave on the string and the 

sound waves emitted by the string are different because their wave speeds are not the 

same. 

 

40. At the beginning of the exercises and problems section in the textbook, we are told to 

assume vsound = 343 m/s unless told otherwise. The second harmonic of pipe A is found 

from Eq. 17-39 with n = 2 and L = LA, and the third harmonic of pipe B is found from Eq. 

17-41 with n = 3 and L = LB. Since these frequencies are equal, we have 

 

sound sound2 3 3
.

2 4 4
B A

A B

v v
L L

L L
    

 

(a) Since the fundamental frequency for pipe A is 300 Hz, we immediately know that the 

second harmonic has f = 2(300 Hz) = 600 Hz. Using this, Eq. 17-39 gives  

 

LA = (2)(343 m/s)/2(600 s
1

) = 0.572 m. 

 

(b) The length of pipe B is 3
4

0.429m.B AL L   

 

41. (a) From Eq. 17–53, we have 

 

(1)(250m/s)
833Hz.

2 2(0.150m)

nv
f

L
    

 

(b) The frequency of the wave on the string is the same as the frequency of the sound 

wave it produces during its vibration. Consequently, the wavelength in air is 

 

sound 348m/s
0.418m.

833Hz

v

f
     
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42. The distance between nodes referred to in the problem means that /2 = 3.8 cm, or  

= 0.076 m.  Therefore, the frequency is  

 

f = v/ = (1500 m/s)/(0.076 m)  20  10
3 

Hz. 

 

43. THINK The pipe is open at both ends so there are displacement antinodes at both 

ends.  

 

EXPRESS If L is the pipe length and  is the wavelength then  = 2L/n, where n is an 

integer. That is, an integer number of half-wavelengths fit into the length of the pipe. If v 

is the speed of sound then the resonant frequencies are given by f = v/ = nv/2L. Now L = 

0.457 m, so  

 
(344 m/s)

(376.4 Hz)
2 2(0.457 m)

nv n
f n

L
   . 

 

ANALYZE (a) To find the resonant frequencies that lie between 1000 Hz and 2000 Hz, 

first set f = 1000 Hz and solve for n, then set f = 2000 Hz and again solve for n. The 

results are 2.66 and 5.32, which imply that n = 3, 4, and 5 are the appropriate values of n. 

Thus, there are 3 frequencies.   

 

(b) The lowest frequency at which resonance occurs corresponds to n = 3, or 

  

f = 3(376.4 Hz) = 1129 Hz . 

 

(c) The second lowest frequency at which resonance occurs corresponds to n = 4, or  

 

f = 4(376.4 Hz) = 1506 Hz . 

 

LEARN The third lowest frequency at which resonance occurs corresponds to n = 5, or  

 

f = 5(376.4 Hz) = 1882 Hz . 

 

Changing the length of the pipe can affect the number of resonant frequencies.   

 

44. (a) Using Eq. 17-39 with v = 343 m/s and n = 1, we find f = nv/2L = 86 Hz for the 

fundamental frequency in a nasal passage of length L = 2.0 m (subject to various 

assumptions about the nature of the passage as a “bent tube open at both ends”). 

 

(b) The sound would be perceptible as sound (as opposed to just a general vibration) of 

very low frequency. 

 

(c) Smaller L implies larger f by the formula cited above. Thus, the female's sound is of 

higher pitch (frequency). 
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45. (a) We note that 1.2 = 6/5.  This suggests that both even and odd harmonics are 

present, which means the pipe is open at both ends (see Eq. 17-39). 

 

(b) Here we observe 1.4 = 7/5. This suggests that only odd harmonics are present, which 

means the pipe is open at only one end (see Eq. 17-41). 

 

46. We observe that “third lowest … frequency” corresponds to harmonic number nA = 3 

for pipe A, which is open at both ends. Also,  “second lowest … frequency” corresponds 

to harmonic number nB = 3 for pipe B, which is closed at one end. 

 

(a) Since the frequency of B matches the frequency of A, using Eqs. 17-39 and 17-41, we 

have  

3 3

2 4
A B

A B

v v
f f

L L
    

 

which implies / 2 (1.20 m) / 2 0.60 m.B AL L   Using Eq. 17-40, the corresponding 

wavelength is 

 
4 4(0.60 m)

0.80 m
3 3

BL
    . 

  

The change from node to anti-node requires a distance of /4 so that every increment of 

0.20 m along the x-axis involves a switch between node and anti-node. Since the closed 

end is a node, the next node appears at x = 0.40 m, so there are 2 nodes. The situation 

corresponds to that illustrated in Fig. 17-14(b) with 3n  . 

 

(b) The smallest value of x where a node is present is x = 0. 

 

(c) The second smallest value of x where a node is present is x = 0.40 m. 

 

(d) Using v = 343 m/s, we find f3 = v/ = 429 Hz. Now, we find the fundamental resonant 

frequency by dividing by the harmonic number, f1 = f3/3 = 143 Hz. 

 

47. The top of the water is a displacement node and the top of the well is a displacement 

anti-node. At the lowest resonant frequency exactly one-fourth of a wavelength fits into 

the depth of the well. If d is the depth and  is the wavelength, then  = 4d. The 

frequency is f = v/ = v/4d, where v is the speed of sound. The speed of sound is given by 

/ ,v B   where B is the bulk modulus and  is the density of air in the well. Thus 

(1/ 4 ) /f d B  and 

5

3

1 1 1.33 10 Pa
12.4 m.

4 4(7.00Hz) 1.10kg/m

B
d

f 


    
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48. (a) Since the difference between consecutive harmonics is equal to the fundamental 

frequency (see section 17-6) then  f1 = (390 – 325) Hz = 65 Hz.  The next harmonic after 

195 Hz is therefore (195 + 65) Hz = 260 Hz. 

 

(b) Since fn = nf1,  then n = 260/65 = 4. 

 

(c) Only odd harmonics are present in tube B, so the difference between consecutive 

harmonics is equal to twice the fundamental frequency in this case (consider taking 

differences of Eq. 17-41 for various values of n). Therefore,  

 

f1 = 
1

2
 (1320 – 1080) Hz = 120 Hz. 

 

The next harmonic after 600 Hz is consequently [600 + 2(120)] Hz = 840 Hz. 

 

(d) Since  fn = nf1  (for n odd), then n = 840/120 = 7. 

 

49. THINK Violin strings are fixed at both ends. A string clamped at both ends can be 

made to oscillate in standing wave patterns. 

 

EXPRESS The resonant wavelengths are given by  = 2L/n, where L is the length of the 

string and n is an integer. The resonant frequencies are given by fn = v/ = nv/2L, where v 

is the wave speed on the string. Now /v    , where  is the tension in the string and  

is the linear mass density of the string. Thus ( / 2 ) /nf n L   .  

 

ANALYZE Suppose the lower frequency is associated with n1 and the higher frequency 

is associated with n2 = n1 + 1. There are no resonant frequencies between so you know 

that the integers associated with the given frequencies differ by 1. Thus, 

1 1( / 2 ) /nf n L    and 

2 1

1 11 1 1
.

2 2 2 2
n n

n n
f f

L L L L

   

   


      

 

This means 
2 1

(1/ 2 ) /n nf f L     and 

 

2 1

2 2 2 3 24 ( ) 4(0.300m) (0.650 10 kg/m)(1320Hz 880Hz)

45.3N.

n nL f f      


 

 

LEARN Since the difference between any successive pair of the harmonic frequencies is 

equal to the fundamental frequency: 
1 1

2
n n

v
f f f f

L
     , we find 

 

1 1320Hz 880Hz 440Hzf    . 
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Since 880 Hz = 2(440 Hz) and 1320 Hz = 3(440 Hz), the two frequencies correspond to 

1 2n   and 2 3n  , respectively.   

 

50. (a) Using Eq. 17-39 with n = 1 (for the fundamental mode of vibration) and 343 m/s 

for the speed of sound, we obtain 

 

sound

tube

(1) 343m/s
71.5Hz.

4 4(1.20m)

v
f

L
    

 

(b) For the wire (using Eq. 17-53) we have 

 

wire

wire wire

1

2 2

nv
f

L L




    

 

where  = mwire/Lwire. Recognizing that f = f both the wire and the air in the tube vibrate 

at the same frequency), we solve this for the tension : 
 

2 2 2 3wire
wire wire wire

wire

(2 ) 4 4(71.5Hz) (9.60 10 kg)(0.330m) 64.8N.
m

L f f m L
L

  
     

 
 

 

51. Let the period be T. Then the beat frequency is 1/ 440Hz 4.00beats/s.T    Therefore, 

T = 2.25  10
–3

 s. The string that is “too tightly stretched” has the higher tension and thus 

the higher (fundamental) frequency. 

 

52. Since the beat frequency equals the difference between the frequencies of the two 

tuning forks, the frequency of the first fork is either 381 Hz or 387 Hz. When mass is 

added to this fork its frequency decreases (recall, for example, that the frequency of a 

massspring oscillator is proportional to 1/ m ). Since the beat frequency also decreases, 

the frequency of the first fork must be greater than the frequency of the second. It must be 

387 Hz. 

 

53. THINK Beat arises when two waves detected have slightly different frequencies: 

beat 2 1f f f  . 

 

EXPRESS Each wire is vibrating in its fundamental mode so the wavelength is twice the 

length of the wire ( = 2L) and the frequency is  

 

/ (1/ 2 ) /f v L     , 
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where /v    is the wave speed for the wire,  is the tension in the wire, and  is the 

linear mass density of the wire. Suppose the tension in one wire is  and the oscillation 

frequency of that wire is f1. The tension in the other wire is  +  and its frequency is f2. 

You want to calculate / for f1 = 600 Hz and f2 = 606 Hz. Now, 1 (1/ 2 ) /f L    and 

2 (1/ 2 ) ( ) /f L     , so 

2 1/ ( ) / 1 ( / ).f f           

 

ANALYZE The fractional increase in tension is 

 
2 2

2 1/ ( / ) 1 [(606Hz) /(600Hz)] 1 0.020.f f        

 

LEARN Beat frequency beat 2 1f f f   is zero when 0  . The beat phenomenon is 

used by musicians to tune musical instruments. The instrument tuned is sounded against a 

standard frequency until beat disappears.   

 

54. (a) The number of different ways of picking up a pair of tuning forks out of a set of 

five is 5!/(2!3!) = 10. For each of the pairs selected, there will be one beat frequency. If 

these frequencies are all different from each other, we get the maximum possible number 

of 10. 

 

(b) First, we note that the minimum number occurs when the frequencies of these forks, 

labeled 1 through 5, increase in equal increments: fn = f1 + nf, where n = 2, 3, 4, 5. Now, 

there are only 4 different beat frequencies: fbeat = nf, where n = 1, 2, 3, 4. 

 

55. We use vS = r (with r = 0.600 m and  = 15.0 rad/s) for the linear speed during 

circular motion, and Eq. 17-47 for the Doppler effect (where f = 540 Hz, and v = 343 m/s 

for the speed of sound). 

 

(a) The lowest frequency is  

0
526 Hz

S

v
f f

v v

 
   

 
. 

(b) The highest frequency is 

0
555 Hz

S

v
f f

v v

 
   

 
. 

 

56. The Doppler effect formula, Eq. 17-47, and its accompanying rule for choosing  

signs, are discussed in Section 17-10. Using that notation, we have v = 343 m/s, vD = 2.44 

m/s, f = 1590 Hz, and f = 1600 Hz. Thus, 

 

   ( ) 4.61m/s.D
S D

S

v v f
f f v v v v

v v f

 
       

 
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57. In the general Doppler shift equation, the trooper’s speed is the source speed and the 

speeder’s speed is the detector’s speed. The Doppler effect formula, Eq. 17-47, and its 

accompanying rule for choosing  signs, are discussed in Section 17-10. Using that 

notation, we have v = 343 m/s,  

 

vD = vS =  160 km/h = (160000 m)/(3600 s) = 44.4 m/s, 

 

and f = 500 Hz. Thus, 

343 m/s 44.4 m/s
(500 Hz) 500Hz  0.

343 m/s 44.4 m/s
f f

 
      

 
 

 

58. We use Eq. 17-47 with f = 1200 Hz and v = 329 m/s. 

 

(a) In this case, vD = 65.8 m/s and vS = 29.9 m/s, and we choose signs so that f  is larger 

than f: 

3329 m/s 65.8 m/s
1.58 10 Hz.

329 m/s 29.9 m/s
f f

 
    

 
 

 

(b) The wavelength is  = v/f  = 0.208 m. 

 

(c) The wave (of frequency f ) “emitted” by the moving reflector (now treated as a 

“source,” so vS = 65.8 m/s) is returned to the detector (now treated as a detector, so vD = 

29.9 m/s) and registered as a new frequency f : 

 

3329 m/s 29.9 m/s
2.16 10 Hz.

329 m/s 65.8 m/s
f f

 
    

 
 

 

(d) This has wavelength /v f   = 0.152 m. 

 

59. We denote the speed of the French submarine by u1 and that of the U.S. sub by u2. 

 

(a) The frequency as detected by the U.S. sub is 

 

3 32
1 1

1

5470 km/h 70.00 km/h
(1.000 10 Hz) 1.022  10 Hz.

5470 km/h  50.00 km/h

v u
f f

v u

   
       

   
 

 

(b) If the French sub were stationary, the frequency of the reflected wave would be  

 

fr = f1(v+u2)/(v – u2). 

 

Since the French sub is moving toward the reflected signal with speed u1, then 
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3

1 1 2
1

2

3

( )( ) (1.000 10 Hz)(5470 50.00)(5470 70.00)

( ) (5470)(5470 70.00)

   1.045 10 Hz.

r r

v u v u v u
f f f

v v v u

      
    

  

 

 

 

60. We are combining two effects: the reception of a moving object (the truck of speed u 

= 45.0 m/s) of waves emitted by a stationary object (the motion detector), and the 

subsequent emission of those waves by the moving object (the truck), which are picked 

up by the stationary detector. This could be figured in two steps, but is more compactly 

computed in one step as shown here: 

 

final initial

343m/s  45m/s
(0.150MHz) 0.195MHz.

343m/s  45m/s

v u
f f

v u

   
     

    
 

 

61. As a result of the Doppler effect, the frequency of the reflected sound as heard by the 

bat is 

4 4bat

bat

/ 40
(3.9 10 Hz) 4.1 10 Hz.

/ 40
r

v u v v
f f

v u v v

   
       

   
 

 

62. The “third harmonic” refers to a resonant frequency f3 = 3 f1, where f1 is the 

fundamental lowest resonant frequency. When the source is stationary, with respect to the 

air, then Eq. 17-47 gives  

 1 dv
f f

v

 
   

 
 

 

where dv  is the speed of the detector (assumed to be moving away from the source, in the 

way we’ve written it, above).  The problem, then, wants us to find dv  such that f = f1 

when the emitted frequency is  f = f3.  That is, we require 1 – dv /v = 1/3.  Clearly, the 

solution to this is dv /v = 2/3 (independent of length and whether one or both ends are 

open [the latter point being due to the fact that the odd harmonics occur in both systems]). 

Thus, 

 

(a) For tube 1, dv =2v/3.  

 

(b) For tube 2, dv =2v /3. 

 

(c) For tube 3, dv =2v /3. 

 

(d) For tube 4, dv =2v /3. 
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63. In this case, the intruder is moving away from the source with a speed u satisfying u/v 

 1. The Doppler shift (with u = –0.950 m/s) leads to 

 

beat

2 | | 2(0.95m/s)(28.0 kHz)
) 155Hz

343m/s
r s s

u
f f f f

v
     . 

 

64. When the detector is stationary (with respect to the air) then Eq. 17-47 gives  

 

1 /s

f
f

v v
 


 

 

where vs is the speed of the source (assumed to be approaching the detector in the way 

we’ve written it, above).  The difference between the approach and the recession is 

 

 
2

2 /1 1
  

1 / 1 / 1 ( / )

s

s s s

v v
f f f f

v v v v v v

   
       

     
 

 

which, after setting  ( f f  )/f = 1/2, leads to an equation that can be solved for the ratio 

vs/v.  The result is 5  – 2   = 0.236.  Thus, vs/v = 0.236. 

 

65. The Doppler shift formula, Eq. 17-47, is valid only when both uS and uD are measured 

with respect to a stationary medium (i.e., no wind). To modify this formula in the 

presence of a wind, we switch to a new reference frame in which there is no wind. 

 

(a) When the wind is blowing from the source to the observer with a speed w, we have uS 

= uD = w in the new reference frame that moves together with the wind. Since the 

observer is now approaching the source while the source is backing off from the observer, 

we have, in the new reference frame, 

 

32.0 10 Hz.D

S

v u v w
f f f

v u v w

   
          

 

 

In other words, there is no Doppler shift. 

 

(b) In this case, all we need to do is to reverse the signs in front of both uD and uS. The 

result is that there is still no Doppler shift: 

 

32.0 10 Hz.D

S

v u v w
f f f

v u v w

   
          

 

 

In general, there will always be no Doppler shift as long as there is no relative motion 

between the observer and the source, regardless of whether a wind is present or not. 
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66. We use Eq. 17-47 with f = 500 Hz and v = 343 m/s. We choose signs to produce f  f. 

 

(a) The frequency heard in still air is 

 

343 m/s 30.5 m/s
(500 Hz) 598Hz.

343 m/s 30.5 m/s
f

 
   

 
 

 

(b) In a frame of reference where the air seems still, the velocity of the detector is 30.5 – 

30.5 = 0, and that of the source is 2(30.5). Therefore, 

 

343 m/s 0
(500 Hz) 608Hz.

343 m/s 2(30.5 m/s)
f

 
   

 
 

 

(c) We again pick a frame of reference where the air seems still. Now, the velocity of the 

source is 30.5 – 30.5 = 0, and that of the detector is 2(30.5). Consequently, 

 

343 m/s 2(30.5 m/s)
(500 Hz) 589Hz.

343 m/s 0
f

 
   

 
 

 

67. THINK The girl and her uncle hear different frequencies because of Doppler effect.  

 

EXPRESS The Doppler shifted frequency is given by 

 

,D

S

v v
f f

v v


   

 

where f is the unshifted frequency, v is the speed of sound, vD is the speed of the detector 

(the uncle), and vS is the speed of the source (the locomotive). All speeds are relative to 

the air.  

 

ANALYZE (a) The uncle is at rest with respect to the air, so vD = 0. The speed of the 

source is vS = 10 m/s. Since the locomotive is moving away from the uncle the frequency 

decreases and we use the plus sign in the denominator. Thus 

 

343m/s
(500.0Hz) 485.8Hz.

343m/s + 10.00m/sS

v
f f

v v

 
    

  
 

 

(b) The girl is now the detector. Relative to the air she is moving with speed vD = 10.00 

m/s toward the source. This tends to increase the frequency and we use the plus sign in 

the numerator. The source is moving at vS = 10.00 m/s away from the girl. This tends to 

decrease the frequency and we use the plus sign in the denominator. Thus, (v + vD) =  
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(v + vS) and f = f = 500.0 Hz. 

 

(c) Relative to the air the locomotive is moving at vS = 20.00 m/s away from the uncle. 

Use the plus sign in the denominator. Relative to the air the uncle is moving at vD =  

10.00 m/s toward the locomotive. Use the plus sign in the numerator. Thus 

 

343m/s + 10.00m/s
(500.0Hz) 486.2 Hz.

343m/s + 20.00m/s

D

S

v v
f f

v v

 
    

  
 

 

(d) Relative to the air the locomotive is moving at vS = 20.00 m/s away from the girl and 

the girl is moving at vD = 20.00 m/s toward the locomotive. Use the plus signs in both the 

numerator and the denominator. Thus, (v + vD) = (v + vS) and f = f = 500.0 Hz. 

 

LEARN The uncle, standing near the track, hears different frequencies, depending on the 

direction of the wind. On other hand, since the girl (a detector) is sitting in the train and 

there’s no relative motion between her and the source (locomotive whistle), she hears the 

same frequency as the source regardless of the wind direction. 

 

68. We note that 1350 km/h is vS  = 375 m/s.  Then, with  = 60º, Eq. 17-57 gives v = 

3.310
2
 m/s. 

 

69. THINK  Mach number is the ratio /Sv v , where 

Sv  is the speed of the source and v is the sound speed. 

A mach number of 1.5 means that the jet plane moves 

at a supersonic speed.   

 

EXPRESS The half angle  of the Mach cone is given 

by sin  = v/vS, where v is the speed of sound and vS is 

the speed of the plane. To calculate the time it takes 

for the shock wave to each you after the plane has 

passed directly overhead, let h be the altitude of the 

plane and suppose the Mach cone intersects Earth's 

surface a distance d behind the plane. The situation is shown in the diagram below, with P 

indicating the plane and O indicating the observer. 

 

The cone angle is related to h and d by tan  = h/d, so d = h/tan . The shock wave 

reaches O in the time the plane takes to fly the distance d. 

 

ANALYZE (a) Since vS = 1.5v, sin  = v/1.5v = 1/1.5. This means  = 42°. 

 

(b) The time required for the shock wave to reach you is  

5000 m
11s

tan 1.5(331m/s)tan42

d h
t

v v 
   


. 
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LEARN The shock wave generated by the supersonic jet produces an explosive sound 

called sonic boom, in which the air pressure first increases suddenly, and then drops 

suddenly below normal before returning to normal.  

 

70. The altitude H and the horizontal distance x for the legs of a right triangle, so we have  

 

tan tan 1.25 sinpH x v t vt      

 

where v is the speed of sound, vp is the speed of the plane, and  

 

1 1sin sin 53.1 .
1.25p

v v

v v
  

   
          

 

Thus the altitude is  

 

     4tan 1.25 330m/s 60s tan53.1 3.30 10 m.H x      

 

71. The source being a “point source” means Asphere = 4r
2
 is used in the intensity 

definition I = P/A, which further implies 

 
2

2

2 2 1

2

1 1 2

/ 4
.

/ 4

I P r r

I P r r

 
     

 

 

From the discussion in Section 17-5, we know that the intensity ratio between “barely 

audible” and the “painful threshold” is 10
–12

 = I2/I1. Thus, with r2 = 10000 m, we find  

 
12

1 2 10 0.01m 1 cm.r r     

 

72. The angle is sin
–1

(v/vs) = sin
–1

 (343/685) = 30°. 

 

73. The round-trip time is t = 2L/v, where we estimate from the chart that the time 

between clicks is 3 ms. Thus, with v = 1372 m/s, we find 1
2

2.1 mL vt  . 

 

74. We use /v B   to find the bulk modulus B: 

 

   
2

2 3 3 3 105.4 10 m/s 2.7 10 kg/m 7.9 10 Pa.B v       

 

75. The source being isotropic means Asphere = 4r
2
 is used in the intensity definition I = 

P/A, which further implies 
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2
2

2 2 1

2

1 1 2

/ 4
.

/ 4

I P r r

I P r r

 
     

 

 

(a) With I1 = 9.60  10
–4

 W/m
2
, r1 = 6.10 m, and r2 = 30.0 m, we find  

 

I2 = (9.60  10
–4

 W/m
2
)(6.10/30.0)

2
 = 3.97  10

–5
 W/m

2
. 

 

(b) Using Eq. 17-27 with I1 = 9.60  10
–4

 W/m
2
,  = 2(2000 Hz), v = 343 m/s, and  = 

1.21 kg/m
3
, we obtain 

7

2

2
1.71 10 m.m

I
s

v

  
 

 

 

(c) Equation 17-15 gives the pressure amplitude: 

 

0.893 Pa.m mp v s     

 

76. We use 12 = 1 – 2 = (10 dB) log(I1/I2). 

 

(a) Since 12 = (10 dB) log(I1/I2) = 37 dB, we get  

 

I1/I2 = 10
37 dB/10 dB

 = 10
3.7

 = 5.0  10
3
. 

 

(b) Since m mp s I   , we have 3

1 2 1 2/ / 5.0 10 71.m mp p I I       

 

(c) The displacement amplitude ratio is 1 2 1 2/ / 71.m ms s I I   

 

77. Any phase changes associated with the reflections themselves are rendered 

inconsequential by the fact that there is an even number of reflections. The additional 

path length traveled by wave A consists of the vertical legs in the zig-zag path: 2L. To be 

(minimally) out of phase means, therefore, that 2L = /2 (corresponding to a half-cycle, 

or 180°, phase difference). Thus, L = /4, or L/= 1/4 = 0.25. 

 

78. Since they are approaching each other, the sound produced (of emitted frequency f) by 

the flatcar-trumpet received by an observer on the ground will be of higher pitch f . In 

these terms, we are told f  – f = 4.0 Hz, and consequently that /f f   444/440 = 1.0091. 

With vS designating the speed of the flatcar and v = 343 m/s being the speed of sound, the 

Doppler equation leads to 

 

 
0 1.0091 1

343 m/s 3.1m/s.
1.0091

S

S

f v
v

f v v

  
   


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79. (a) Incorporating a term (/2) to account for the phase shift upon reflection, then the 

path difference for the waves (when they come back together) is 

 

L
2
 + (2d)

2 
  L + /2 = (path) . 

 

Setting this equal to the condition needed to destructive interference (/2, 3/2, 5/2 …) 

leads to d = 0, 2.10 m, …    Since the problem explicitly excludes the d = 0 possibility, 

then our answer is d = 2.10 m. 

 

(b) Setting this equal to the condition needed to constructive interference (, 2, 3 …) 

leads to d = 1.47 m, …   Our answer is d = 1.47 m. 

 

80. When the source is stationary (with respect to the air) then Eq. 17-47 gives  

 

1 dv
f f

v

 
   

 
, 

 

 where vd is the speed of the detector (assumed to be moving away from the source, in the 

way we’ve written it, above).  The difference between the approach and the recession is 

 

 1 1 2d d dv v v
f f f f

v v v

      
            

      
 

 

which, after setting  ( f f  )/f =1/2, leads to an equation that can be solved for the ratio 

vd /v.  The result is 1/4. Thus, vd /v = 0.250. 

 

81. THINK The pressure amplitude of the sound wave depends on the medium it 

propagates through. 

 

EXPRESS The intensity of a sound wave is given by 2 21
2

,mI v s   where  is the 

density of the medium, v is the speed of sound,  is the angular frequency, and sm is the 

displacement amplitude. The displacement and pressure amplitudes are related by pm = 

vsm, so sm = pm/v and I = (pm)
2
/2v. For waves of the same frequency the ratio of 

the intensity for propagation in water to the intensity for propagation in air is 

 
2

,w mw a a

a ma w w

I p v

I p v





 
  

 
 

 

where the subscript a denotes air and the subscript w denotes water.  

 

ANALYZE (a) In case where the intensities are equal, Ia = Iw, the ratio of the pressure 

amplitude is 
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3 3

3

(0.998 10 kg/m )(1482m/s)
59.7.

(1.21kg/m )(343m/s)

mw w w

ma a a

p v

p v

 
  






 

 

The speeds of sound are given in Table 17-1 and the densities are given in Table 14-1. 

 

(b) Now, if the pressure amplitudes are equal: pmw = pma, then the ratio of the 

intensities is 
3

4

3 3

(1.21kg/m )(343m/s)
2.81 10 .

(0.998 10 kg/m )(1482m/s)

w a a

a w w

I v

I v

   





 

 

LEARN The pressure amplitude of sound wave and the intensity depend on the density 

of the medium and the sound speed in the medium.   

 

82. The wave is written as ( , ) cos( )ms x t s kx t  . 

 

(a) The amplitude ms  is equal to the maximum displacement: 0.30 cmms  . 

 

(b) Since  = 24 cm, the angular wave number is 12 / 0.26 cmk     . 

 

(c) The angular frequency is 22 2 (25 Hz) 1.6 10  rad/sf      . 

 

(d) The speed of the wave is v = f = (24 cm)(25 Hz) = 6.0 × 10
2 

cm/s. 

 

(e) Since the direction of propagation is x , the sign is plus, so ( , ) cos( )ms x t s kx t  . 

 

83. THINK This problem deals with the principle of Doppler ultrasound. The technique 

can be used to measure blood flow and blood pressure by reflecting high-frequency, 

ultrasound sound waves off blood cells. 

 

EXPRESS The direction of blood flow can be determined by the Doppler shift in 

frequency. The reception of the ultrasound by the blood and the subsequent remitting of 

the signal by the blood back toward the detector is a two-step process which may be 

compactly written as  

x

x

v v
f f f

v v

 
    

 
 

where blood cos .xv v   If we write the ratio of frequencies as R = (f + f)/f, then the 

solution of the above equation for the speed of the blood is 

 

 

 blood

1

1 cos

R v
v

R 





. 
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ANALYZE (a) The blood is moving towards the right (towards the detector), because the 

Doppler shift in frequency is an increase: f  0. 

 

(b) With v = 1540 m/s,  = 20°, and R = 1 + (5495 Hz)/(5  10
6
 Hz) =1.0011, using the 

expression above, we find the speed of the blood to be 

 

 
 blood

1
0.90m/s

1 cos

R v
v

R


 

 
. 

 

(c) We interpret the question as asking how f (still taken to be positive, since the 

detector is in the “forward” direction) changes as the detection angle  changes. Since 

larger  means smaller horizontal component of velocity vx then we expect f to decrease 

towards zero as  is increased towards 90°. 

 

LEARN The expression for bloodv  can be inverted to give 

 

blood

blood

2 cos

cos

v
f f

v v





 
   

 
. 

 

The plot of the frequency shift f as a function of  is given below. Indeed we find f to 

decrease with increasing . 

 

 
 

84. (a) The time it takes for sound to travel in air is ta = L/v, while it takes tm = L/vm for 

the sound to travel in the metal. Thus, 

 

( )
.m

a m

m m

L v vL L
t t t

v v v v


       

 

(b) Using the values indicated (see Table 17-1), we obtain 

 

1.00s
364m. 

1/ 1/ 1/(343m/s)  1/(5941m/s)m

t
L

v v


  

 
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85. (a) The period is the reciprocal of the frequency: T = 1/f = 1/(90 Hz) = 1.1  10
–2

 s. 

 

(b) Using v = 343 m/s, we find  = v/f = 3.8 m. 

 

86. Let r stand for the ratio of the source speed to the speed of sound.  Then, Eq. 17-55 

(plus the fact that frequency is inversely proportional to wavelength) leads to 

 

2






1

1 + r
   =   

1

1 – r
  . 

 

Solving, we find r = 1/3.  Thus, vs/v = 0.33. 

 

87. THINK The siren is between you and the cliff, moving away from you and towards 

the cliff. You hear two frequencies, one directly from the siren and the other from the 

sound reflected off the cliff.  

 

EXPRESS The Doppler shifted frequency is given by 

 

,D

S

v v
f f

v v


   

 

where f is the unshifted frequency, v is the speed of sound, vD is the speed of the detector, 

and vS is the speed of the source. All speeds are relative to the air. Both “detectors” (you 

and the cliff) are stationary, so vD = 0 in Eq. 17–47. The source is the siren with 

10 m/sSv  . The problem asks us to use v = 330 m/s for the speed of sound. 

 

ANALYZE (a) With f = 1000 Hz, the frequency fy you hear becomes 

 

20 330 m/s
(1000 Hz) 970.6Hz 9.7 10 Hz.

330 m/s 10 m/s
y

S

v
f f

v v

   
       

   
 

 

(b) The frequency heard by an observer at the cliff (and thus the frequency of the sound 

reflected by the cliff, ultimately reaching your ears at some distance from the cliff) is 

 

30 330 m/s
(1000 Hz) 1031.3Hz 1.0 10 Hz.

330 m/s 10 m/s
c

S

v
f f

v v

   
       

   
 

 

(c) The beat frequency is beatf  fc – fy = 60 beats/s (which, due to specific features of the 

human ear, is too large to be perceptible). 

 

LEARN The beat frequency in this case can be written as 
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beat 2 2

2 S
c y

S S S

vvv v
f f f f f f

v v v v v v

   
       

     
 

Solving for the source speed, we obtain 

 

 

2 2

beat

beat

S

f f f
v v

f

   
 
 
 

 

  

For the beat frequency to be perceptible (
beat 20 Hzf  ), the source speed would have to 

be less than 3.3 m/s.  

 

88. When  = 0 it is clear that the superposition wave has amplitude 2pm. For the other 

cases, it is useful to write 

    1 2 sin sin 2 cos sin .
2 2

m mp p p t t p t
   

            
   

 
     

 

The factor in front of the sine function gives the amplitude pr. Thus, 

/ 2cos( / 2).r mp p     

 

(a) When 0  , / 2cos(0) 2.00.r mp p     

 

(b) When / 2  , / 2cos( / 4) 2 1.41.r mp p       

  

(c) When / 3  , / 2cos( / 6) 3 1.73.r mp p       

 

(d) When / 4  , / 2cos( /8) 1.85.r mp p      

 

89. (a) Adapting Eq. 17-39 to the notation of this chapter, we have 

 

sm  =  2 sm cos() = 2(12 nm) cos() = 20.78 nm. 

 

Thus, the amplitude of the resultant wave is roughly 21 nm. 

 

(b) The wavelength ( = 35 cm) does not change as a result of the superposition. 

 

(c) Recalling Eq. 17-47 (and the accompanying discussion) from the previous chapter, we 

conclude that the standing wave amplitude is 2(12 nm) = 24 nm when they are traveling 

in opposite directions. 

 

(d) Again, the wavelength ( = 35 cm) does not change as a result of the superposition. 
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90. (a) The separation distance between points A and B is one-quarter of a wavelength; 

therefore,  = 4(0.15 m) = 0.60 m.  The frequency, then, is   

 

f = v/ =  (343 m/s)/(0.60 m) = 572 Hz. 

 

(b) The separation distance between points C and D is one-half of a wavelength; therefore, 

 = 2(0.15 m) = 0.30 m.  The frequency, then, is   

 

f = v/ =  (343 m/s)/(0.30 m) = 1144 Hz, 

 

or approximately 1.14 kHz. 

 

91. Let the frequencies of sound heard by the person from the left and right forks be fl and 

fr, respectively. 

 

92. If the speeds of both forks are u, then fl,r = fv/(v  u) and 

 

   

   
beat 2 22 2

2 440Hz 3.00m/s 343m/s1 1 2
7.70Hz.

343m/s 3.00m/s
r l

fuv
f f f fv

v u v u v u

 
       

    
 

 

(b) If the speed of the listener is u, then fl,r = f(v  u)/v and 

 

 beat

3.00m/s
2 2 440Hz 7.70Hz.

343m/s
l r

u
f f f f

v

  
      

   
 

 

92. The rule: if you divide the time (in seconds) by 3, then you get (approximately) the 

straight-line distance d. We note that the speed of sound we are to use is given at the 

beginning of the problem section in the textbook, and that the speed of light is very much 

larger than the speed of sound. The proof of our rule is as follows: 

 

sound light sound

sound

.
343m/s 0.343km/s

d d d
t t t t

v
       

 

Cross-multiplying yields (approximately) (0.3 km/s)t = d, which (since 1/3  0.3) 

demonstrates why the rule works fairly well. 

 

93. THINK Acoustic interferometer can be used to demonstrate the interference of sound 

waves.  

 

EXPRESS When the right side of the instrument is pulled out a distance d the path 

length for sound waves increases by 2d. Since the interference pattern changes from a 

minimum to the next maximum, this distance must be half a wavelength of the sound. So 

2d = /2, where  is the wavelength. Thus  = 4d. 
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On the other hand, the intensity is given by 2 21
2

,mI v s   where  is the density of the 

medium, v is the speed of sound,  is the angular frequency, and sm is the displacement 

amplitude. Thus, sm is proportional to the square root of the intensity, and we write 

mI Cs , where C is a constant of proportionality. At the minimum, interference is 

destructive and the displacement amplitude is the difference in the amplitudes of the 

individual waves: sm = sSAD – sSBD, where the subscripts indicate the paths of the waves. 

At the maximum, the waves interfere constructively and the displacement amplitude is 

the sum of the amplitudes of the individual waves: sm = sSAD + sSBD.  

 

ANALYZE (a) The speed of sound is v = 343 m/s, so the frequency is  

 

f = v/ = v/4d = (343 m/s)/4(0.0165 m) = 5.2  10
3
 Hz. 

 

(b) At intensity minimum, we have 100 ( )SAD SBDC s s  , and 900 ( )SAD SBDC s s   at 

the maximum. Adding the equations give 

 

SADs   ( 100 900 / 2 20/ ,C C   

while subtracting them yields  

SBDs   ( 900 100) / 2 10/ .C C   

 

Thus, the ratio of the amplitudes is sSAD/sSBD = 2. 

 

(c) Any energy losses, such as might be caused by frictional forces of the walls on the air 

in the tubes, result in a decrease in the displacement amplitude. Those losses are greater 

on path B since it is longer than path A. 

 

LEARN We see that the sound waves propagated along the two paths in the 

interferometer can interfere constructively or destructively, depending on their path length 

difference. 

 

94. (a) Using m = 7.3  10
7
 kg, the initial gravitational potential energy is 

113.9 10  JU mgy   , where h = 550 m. Assuming this converts primarily into kinetic 

energy during the fall, then K = 3.9  10
11

 J just before impact with the ground. Using 

instead the mass estimate m = 1.7  10
8
 kg, we arrive at K = 9.2  10

11
 J. 

 

(b) The process of converting this kinetic energy into other forms of energy (during the 

impact with the ground) is assumed to take t = 0.50 s (and in the average sense, we take 

the “power” P to be wave-energy/t). With 20% of the energy going into creating a 

seismic wave, the intensity of the body wave is estimated to be 
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 

 
2

21
hemisphere 2

0.20 /
0.63W/m

4

K tP
I

A r


  


 

 

using r = 200  10
3
 m and the smaller value for K from part (a). Using instead the larger 

estimate for K, we obtain I = 1.5 W/m
2
. 

 

(c) The surface area of a cylinder of “height” d is 2rd, so the intensity of the surface 

wave is  

 
 

3 2

cylinder

0.20 /
25 10 W/m

2

K tP
I

A rd


   


 

 

using d = 5.0 m, r = 200  10
3
 m, and the smaller value for K from part (a). Using instead 

the larger estimate for K, we obtain I = 58 kW/m
2
. 

 

(d) Although several factors are involved in determining which seismic waves are most 

likely to be detected, we observe that on the basis of the above findings we should expect 

the more intense waves (the surface waves) to be more readily detected. 

 

95. THINK Intensity is power divided by area. For an isotropic source the area is the 

surface area of a sphere. 

 

EXPRESS If P is the power output and I is the intensity a distance r from the source, 

then P = IA = 4r
2
I, where A = 4r

2
 is the surface area of a sphere of radius r. On the 

other hand, the sound level   can be calculated using Eq. 17-29: 

 

 
0

(10 dB) log
I

I
   

where 12 2

0 10 W/mI   is the standard reference intensity. 

 

ANALYZE (a) With r = 10 m and 3 28.0 10 W/mI   , we have 

 
2 2 3 24 4 (10) (8.0 10 W/m ) 10W.P r I       

 

(b) Using the value of P obtained in (a), we find the intensity at 5.0 mr   to be   

 

2

2 2

10 W
0.032  W/m .

4 4  m

P
I

r
   

  
 

(c) Using Eq. 17–29 with I = 0.0080 W/m
2
, we find the sound level to be 

 
3 2

12 2

8.0 10 W/m
(10 dB)log 99dB

10 W/m






 
  

 
. 
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LEARN The ratio of the sound intensities at two different locations can be written as  

 
22

2

/ 4
.

/ 4

I P r r

I P r r

  
      

 

Similarly, the difference in sound level is given by (10 dB)log
I

I
  

 
      

. 

 

96. We note that waves 1 and 3 differ in phase by  radians (so they cancel upon 

superposition).  Waves 2 and 4 also differ in phase by  radians (and also cancel upon 

superposition).   Consequently, there is no resultant wave. 

 

97. Since they oscillate out of phase, then their waves will cancel (producing a node) at a 

point exactly midway between them (the midpoint of the system, where we choose x = 0). 

We note that Figure 17-13, and the n = 3 case of Figure 17-14(a) have this property (of a 

node at the midpoint). The distance x between nodes is /2, where  = v/f and f = 300 

Hz and v = 343 m/s. Thus, x = v/2f = 0.572 m.  

 

Therefore, nodes are found at the following positions: 

 

(0.572m),  0, 1, 2,...x n x n n       

 

(a) The shortest distance from the midpoint where nodes are found is x = 0.  

 

(b) The second shortest distance from the midpoint where nodes are found is x =0.572 m.  

 

(c) The third shortest distance from the midpoint where nodes are found is 2x = 1.14 m. 

 

98. (a) With f = 686 Hz and v = 343 m/s, then the “separation between adjacent 

wavefronts” is  = v/f = 0.50 m. 

 

(b) This is one of the effects that are part of the Doppler phenomena. Here, the 

wavelength shift (relative to its “true” value in part (a)) equals the source speed sv  (with 

appropriate  sign) relative to the speed of sound v : 

 

 sv

v






  . 

 

In front of the source, the shift in wavelength is  –(0.50 m)(110 m/s)/(343 m/s) = –0.16 m, 

and the wavefront separation is 0.50 m  – 0.16 m = 0.34 m.  

 

(c) Behind the source, the shift in wavelength is  +(0.50 m)(110 m/s)/(343 m/s) = +0.16 m, 

and the wavefront separation is 0.50 m + 0.16 m = 0.66 m. 
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99. We use I  r
–2

 appropriate for an isotropic source. We have 

 

 
2

2

1
,

2

r d

r D d

D dI

I D



 


   

where d = 50.0 m. We solve for  

 

     : 2 / 2 1 2 50.0m / 2 1 171m.D D d      

 

100. Pipe A (which can only support odd harmonics – see Eq. 17-41) has length LA.  Pipe 

B (which supports both odd and even harmonics [any value of n] – see Eq. 17-39) has 

length LB = 4LA . Taking ratios of these equations leads to the condition: 

 







n

2 B
 = ( )nodd

A
 . 

Solving for nB we have nB = 2nodd. 

 

(a) Thus, the smallest value of nB  at which a harmonic frequency of B matches that of A is 

nB = 2(1) = 2.  

 

(b) The second smallest value of nB  at which a harmonic frequency of B matches that of A 

is nB = 2(3) = 6. 

 

(c) The third smallest value of nB  at which a harmonic frequency of B matches that of A is 

nB = 2(5) = 10. 

 

101. (a) We observe that “third lowest … frequency” corresponds to harmonic number n 

= 5 for such a system. Using Eq. 17-41, we have 

 

 
5

750Hz
4 4 0.60 m

nv v
f

L
    

so that v = 3.6×10
2
 m/s. 

 

(b) As noted, n = 5; therefore, f1 = 750/5 = 150 Hz. 

 

102. (a) Let P be the power output of the source. This is the rate at which energy crosses 

the surface of any sphere centered at the source and is therefore equal to the product of 

the intensity I at the sphere surface and the area of the sphere. For a sphere of radius r, P 

= 4r
2
 I and I = P/4r

2
. The intensity is proportional to the square of the displacement 

amplitude sm. If we write 2

mI Cs , where C is a constant of proportionality, then 
2 2/ 4mCs P r  . Thus,  

 2/ 4 / 4 (1/ ).ms P r C P C r     
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The displacement amplitude is proportional to the reciprocal of the distance from the 

source. We take the wave to be sinusoidal. It travels radially outward from the source, 

with points on a sphere of radius r in phase. If  is the angular frequency and k is the 

angular wave number, then the time dependence is sin(kr – t). Letting / 4 ,b P C   the 

displacement wave is then given by 

 

1
( , ) sin( ) sin( ).

4

P b
s r t kr t kr t

C r r
   


   

 

(b) Since s and r both have dimensions of length and the trigonometric function is 

dimensionless, the dimensions of b must be length squared. 

 

103. Using Eq. 17-47 with great care (regarding its  sign conventions), we have 

 

 
340 m/s 80.0 m/s

(440 Hz) 400 Hz
340 m/s 54.0 m/s

f
 

   
 

. 

 

104. The source being isotropic means Asphere = 4r
2
 is used in the intensity definition I = 

P/A. Since intensity is proportional to the square of the amplitude (see Eq. 17-27), this 

further implies 
2 2

2

22 2 1

2

1 1 1 2

/ 4

/ 4

m

m

sI P r r

I s P r r

   
         

 

or sm2/sm1 = r1/r2. 

 

(a) I = P/4r
2
 = (10 W)/4(3.0 m)

2
 = 0.088 W/m

2
. 

 

(b) Using the notation A instead of sm for the amplitude, we find 

 

4

3

3.0m
0.75

4.0m

A

A
  . 

 

105. (a) The problem is asking at how many angles will there be “loud” resultant waves, 

and at how many will there be “quiet” ones?  We consider the resultant wave (at large 

distance from the origin) along the +x axis; we note that the path-length difference (for 

the waves traveling from their respective sources) divided by wavelength gives the 

(dimensionless) value n = 3.2, implying a sort of intermediate condition between 

constructive interference (which would follow if, say, n = 3) and destructive interference 

(such as the n = 3.5 situation found in the solution to the previous problem) between the 

waves.  To distinguish this resultant along the +x axis from the similar one along the –x 

axis, we label one with n = +3.2 and the other n = –3.2.  This labeling facilitates the 

complete enumeration of the loud directions in the upper-half plane: n = –3, –2, –1,  0, +1, 
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+2, +3.  Counting also the “other” –3, –2, –1,  0, +1, +2, +3 values for the lower-half plane, 

then we conclude there are a total of  7 + 7 = 14  “loud”  directions. 

 

(b) The labeling also helps us enumerate the quiet directions.  In the upper-half plane we 

find: n =  –2.5, –1.5, –0.5, +0.5, +1.5, +2.5.  This is duplicated in the lower half plane, so 

the total number of quiet directions is 6 + 6 = 12. 

 

106. We are combining two effects: the reception by a moving target with speed u of 

waves emitted by the stationary transmitter/detector, and the subsequent emission of 

those waves by the moving target, which are picked up by the stationary 

transmitter/detector. The first step gives 

S s

v u
f f

v


   

and the second step leads to  

r S s s

v v u v v u
f f f f

v u v v u v u

  
     
   

 

Solving for u, we get  

 

22.2 kHz 18.0 kHz
(343 m/s) 35.84 m/s

22.2 kHz 18.0 kHz

r s

r s

f f
u v

f f

    
     

   
 

 

107. The cork fillings are collected at the pressure anti-nodes when the standing waves 

are set up. The anti-nodes are separated by half a wavelength, / 2.d   Thus, the speed 

of the sound in the gas is 

 

 3(2 ) 2 2(4.46 10 Hz)(0.0920 m) 821m/sv f f d fd       

 

108. When the layer is at height H, a constructive interference implies that the path length 

difference must be an integer multiple of the wavelength: 

 

 2 2 2 2

1 2 ( / 2) 4n L d H d d H d d          

 

On the other hand, when the layer is at height H + h, a destructive interference implies 

that the path length difference must be an odd multiple of half the wavelength: 

 

2 2 2 2

2

1
2 ( ) ( / 2) 4( )

2
n L d H h d d H h d d
 

           
 

 

 

Subtracting the first equation from the second, we obtain 

 

2 2 2 21
4( ) 4

2
H h d H d       

or  



  CHAPTER 17 840 

 2 2 2 22 4( ) 4 .H h d H d       

 

109. The difference between the sound waves that travel along R1 and thus that bounce 

and travel along R2 is  

d = 25.0
2
 + 12.5

2 
 – 20.0

2
 + 12.5

2 
 + 

1

2
  

 

where the last term is included for the reflection effect (mentioned in the problem).   To 

produce constructive interference at D then we require d = m where m is an integer.  

Since  relates to frequency by the relation = v/f  (with v = 343 m/s) then we have an 

equation for a set of values (depending on m) for the frequency.  We find  

 

 f  =  39.3 Hz   for    m = 1 
 

 f  =  118 Hz    for    m = 2 
 

    f  =  196 Hz    for    m = 3 
 

    f  =  275 Hz    for    m = 4 

and so on.   

 

(a) The lowest frequency is f = 39.3 Hz. 

 

(b) The second lowest frequency is f = 118 Hz. 

 

110. (a) Since the source is moving toward the wall, the frequency of the sound as 

received at the wall is 

 

 
343m/s

' 440Hz 467 Hz.
343m/s 20.0m/sS

v
f f

v v

   
     

   
 

 

(b) Since the person is moving with a speed u toward the reflected sound with frequency  

f , the frequency registered at the source is 

 

 
343m/s 20.0m/s

' 467 Hz 494 Hz.
343m/s

r

v u
f f

v

   
     

   
 

 

111. We find the difference in the two applications of the Doppler formula: 

 

2 1

340 m/s 25 m/s 340 m/s 25 m/s
37 Hz

340m/s 15 m/s 340 m/s 15 m/s 340 m/s 15 m/s
f f f f

   
       

     
 

 

which leads to 24.8 10  Hzf   . 
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Chapter 18 
 

 

1. From Eq. 18-6, we see that the limiting value of the pressure ratio is the same as the 

absolute temperature ratio: (373.15 K)/(273.16 K) = 1.366. 

 

2. We take p3 to be 80 kPa for both thermometers. According to Fig. 18-6, the nitrogen 

thermometer gives 373.35 K for the boiling point of water. Use Eq. 18-5 to compute the 

pressure: 

N 3

373.35K
 (80kPa) = 109.343kPa.

273.16K 273.16K

T
p p

 
   

 
 

 

The hydrogen thermometer gives 373.16 K for the boiling point of water and 

 

H

373.16K
(80kPa) 109.287kPa.

273.16K
p

 
  
 

 

 

(a) The difference is pN pH = 0.056 kPa 0.06 kPa . 

 

(b) The pressure in the nitrogen thermometer is higher than the pressure in the hydrogen 

thermometer.  

 

3. Let TL be the temperature and pL be the pressure in the left-hand thermometer. 

Similarly, let TR be the temperature and pR be the pressure in the right-hand thermometer. 

According to the problem statement, the pressure is the same in the two thermometers 

when they are both at the triple point of water. We take this pressure to be p3. Writing Eq. 

18-5 for each thermometer, 

3 3

(273.16K) and (273.16K) ,L R
L R

p p
T T

p p

   
    

   
 

 

we subtract the second equation from the first to obtain 

 

3

(273.16K) .L R
L R

p p
T T

p

 
   

 
 

 

First, we take TL = 373.125 K (the boiling point of water) and TR = 273.16 K (the triple 

point of water). Then, pL – pR = 120 torr. We solve 

 

3

120 torr
373.125K 273.16K (273.16K) 

p

 
   

 
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for p3. The result is p3 = 328 torr. Now, we let TL = 273.16 K (the triple point of water) 

and TR be the unknown temperature. The pressure difference is pL – pR = 90.0 torr. 

Solving the equation 

90.0 torr
273.16K (273.16K) 

328torr
RT

 
   

 
 

 

for the unknown temperature, we obtain TR = 348 K. 

 

4. (a) Let the reading on the Celsius scale be x and the reading on the Fahrenheit scale be 

y. Then 9
5

32y x  . For x = –71°C, this gives y = –96°F. 

 

(b) The relationship between y and x may be inverted to yield 5
9
( 32)x y  . Thus, for y 

= 134 we find x  56.7 on the Celsius scale. 

 

5. (a) Let the reading on the Celsius scale be x and the reading on the Fahrenheit scale be 

y. Then 9
5

32y x  . If we require y = 2x, then we have 

 

9
2 32        (5) (32) 160 C

5
x x x       

which yields y = 2x = 320°F. 

 

(b) In this case, we require 1
2

y x  and find 

 

1 9 (10)(32)
32        24.6 C

2 5 13
x x x         

 

which yields y = x/2 = –12.3°F. 

 

6. We assume scales X and Y are linearly related in the sense that reading x is related to 

reading y by a linear relationship y = mx + b. We determine the constants m and b by 

solving the simultaneous equations: 

 

 

 

70.00 125.0

30.00 375.0

m b

m b

   

  
 

 

which yield the solutions m = 40.00/500.0 = 8.000  10
–2

 and b = –60.00. With these 

values, we find x for y = 50.00: 

 

50.00 60.00
1375 X.

0.08000

y b
x

m

 
     
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7. We assume scale X is a linear scale in the sense that if its reading is x then it is related 

to a reading y on the Kelvin scale by a linear relationship y = mx + b. We determine the 

constants m and b by solving the simultaneous equations: 

 

373.15 ( 53.5)

273.15 ( 170)

m b

m b

  

  
 

 

which yield the solutions m = 100/(170 – 53.5) = 0.858 and b = 419. With these values, 

we find x for y = 340: 

340 419
92.1 X.

0.858

y b
x

m

 
     

 

8. The increase in the surface area of the brass cube (which has six faces), which had side 

length L at 20°, is 

 
2 2 2 6 2

b

2

6( ) 6 12 12 12 (19 10 / C ) (30cm) (75 C 20 C)

11cm .

A L L L L L L T              


 

 

9. The new diameter is 

 
6

0 1(1 ) (2.725cm)[1+(23 10 / C )(100.0 C 0.000 C)] 2.731cm.AD D T            

 

10. The change in length for the aluminum pole is 

 
6

0 1 (33m)(23 10 / C )(15 C)=0.011m.A T         

 

11. The volume at 30°C is given by 

 
3 6

3

(1 ) (1 3 ) (50.00cm )[1 3(29.00 10 / C ) (30.00 C 60.00 C)]

49.87cm

V V T V T               


 

 

where we have used  = 3. 

 

12. (a) The coefficient of linear expansion  for the alloy is 

 

510.015cm 10.000cm
1.88 10 / C .

(10.01cm)(100 C 20.000 C)

L

L T
  
    

   
 

 

Thus, from 100°C to 0°C we have 

 
5 2(10.015cm)(1.88 10 /C )(0 C 100 C) = 1.88  10 cm.L L T              

 

The length at 0°C is therefore L = L + L = (10.015 cm – 0.0188 cm) = 9.996 cm. 
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(b) Let the temperature be Tx. Then from 20°C to Tx we have 

 
510.009cm 10.000cm = (1.88 10 /C )(10.000cm) ,L L T T         

 

giving T = 48 °C. Thus, Tx = (20°C + 48 °C ) = 68°C. 

 

13. THINK The aluminum sphere expands thermally when being heated, so its volume 

increases. 

 

EXPRESS Since a volume is the product of three lengths, the change in volume due to a 

temperature change T is given by V = 3V T, where V is the original volume and  is 

the coefficient of linear expansion (see Eq. 18-11).  

 

ANALYZE With the volume of the sphere given by V = (4/3)R
3
, where R= 10 cm  is 

the original radius of the sphere and 623 10 / C    ,  then 

 

     
33 6 34

3   = 23 10 / C 4 10cm 100 C 29cm .
3

V R T  
        

 
 

 

The value for the coefficient of linear expansion is found in Table 18-2. 

 

LEARN The change in volume can be expressed as /V V T= , where    is the 

coefficient of volume expansion. For aluminum, we have 63 69 10 / C      . 

 

14. (a) Since A = D
2
/4, we have the differential dA = 2(D/4)dD. Dividing the latter 

relation by the former, we obtain dA/A = 2 dD/D. In terms of 's, this reads 

 

2       for   1.
A D D

A D D

  
  

 

We can think of the factor of 2 as being due to the fact that area is a two-dimensional 

quantity. Therefore, the area increases by 2(0.18%) = 0.36%. 

 

(b) Assuming that all dimensions are allowed to freely expand, then the thickness 

increases by 0.18%. 

 

(c) The volume (a three-dimensional quantity) increases by 3(0.18%) = 0.54%. 

 

(d) The mass does not change. 

 

(e) The coefficient of linear expansion is 
2

50.18 10
1.8 10 C .

100 C

D
/

D T



 

    
 
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15. After the change in temperature the diameter of the steel rod is Ds = Ds0 + sDs0 T 

and the diameter of the brass ring is Db = Db0 + bDb0 T, where Ds0 and Db0 are the 

original diameters, s and b are the coefficients of linear expansion, and T is the 

change in temperature. The rod just fits through the ring if Ds = Db. This means  

 

Ds0 + sDs0 T = Db0 + bDb0 T. 

Therefore, 

 

     
0 0

6 6
0 0

3.000cm 2.992cm

19.00  10 / C 2.992cm 11.00 10 / C 3.000cm

335.0 C.

s b

b b s s

D D
T

D D   

 
  

     

 

 

  

The temperature is T = (25.00°C + 335.0 °C) = 360.0°C. 

 

16. (a) We use  = m/V and  

 
2( / ) ( / ) / ( / ) 3 ( / )m V m 1 V m V V V V L L .                

 

The percent change in density is 

 

3 3(0.23%) 0.69%.
L

L





 
       

 

(b) Since  = L/(LT ) = (0.23  10
–2

) / (100°C – 0.0°C) = 23  10
–6

 /C°, the metal is 

aluminum (using Table 18-2). 

 

17. THINK Since the aluminum cup and the glycerin have different coefficients of 

thermal expansion, their volumes would change by a different amount under the same T.  

 

EXPRESS If Vc is the original volume of the cup, a is the coefficient of linear 

expansion of aluminum, and T is the temperature increase, then the change in the 

volume of the cup is Vc = 3a Vc T (See Eq. 18-11).  

 

On the other hand, if  is the coefficient of volume expansion for glycerin, then the 

change in the volume of glycerin is Vg = Vc T. Note that the original volume of 

glycerin is the same as the original volume of the cup. The volume of glycerin that spills 

is 

        4 6 3

3

3 5.1 10 / C 3 23 10 / C 100cm 6.0 C

                0.26cm .

g c a cV V V T               
 


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LEARN Glycerin spills over because 3 , which gives 0g cV V   . Note that 

since liquids in general have greater coefficients of thermal expansion than solids, 

heating a cup filled with liquid generally will cause the liquid to spill out.    

 

18. The change in length for the section of the steel ruler between its 20.05 cm mark and 

20.11 cm mark is 

 
6(20.11cm)(11 10 /C )(270 C 20 C) = 0.055cm.s s sL L T           

 
Thus, the actual change in length for the rod is  

 

L = (20.11 cm – 20.05 cm) + 0.055 cm = 0.115 cm. 

 

The coefficient of thermal expansion for the material of which the rod is made is then 

60.115 cm
23 10 / C .

270 C  20 C

L

T
 
    
   

 

 

19. The initial volume V0 of the liquid is h0A0 where A0 is the initial cross-section area 

and h0 = 0.64 m. Its final volume is V = hA where h – h0 is what we wish to compute. 

Now, the area expands according to how the glass expands, which we analyze as follows. 

Using 2A r , we obtain 

 

  22 2 2 ( ) 2dA r dr r r dT r dT AdT         . 

 

Therefore, the height is 

 
 

0 liquid

0 glass

1
.

1 2

V TV
h

A A T





 
 

 
 

Thus, with V0/A0 = h0 we obtain 

 

 
  

  

5

liquid 4

0 0 5
glass

1 4 10 101
1 0.64 1.3 10 m.

1 2 1 2 1 10 10

T
h h h

T











     
       

          

 

 

20. We divide Eq. 18-9 by the time increment t and equate it to the (constant) speed v = 

100  10
–9

 m/s. 

0

T
v L

t






 

 

where L0 = 0.0200 m and  = 23  10
–6

/C°. Thus, we obtain 

 

C K
0.217 0.217 .

s s

T

t

 
 


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21. THINK The bar expands thermally when heated. Since its two ends are held fixed, 

the bar buckles upward.   

 

EXPRESS Consider half the bar. Its original length is 0 0 / 2L  and its length after the 

temperature increase is 0 0 T   . The old position of the half-bar, its new position, 

and the distance x that one end is displaced form a right triangle, with a hypotenuse of 

length , one side of length 0 , and the other side of length x. The Pythagorean theorem 

yields  
2 2 2 2 2 2

0 0 0(1 ) .x T       

 

Since the change in length is small we may approximate (1 +  T)
2
 by 1 + 2 T, where 

the small term ( T )
2
 was neglected. Then, 

 
2 2 2 2 2

0 0 0 02 2x T T        

and 0 2x T  . 

 

ANALYZE Substituting the values given, we obtain 

 

  6 2

0

3.77m
2 2 25 10 /C 32 C 7.5 10 m.

2
x T           

 

LEARN The length of the bar changes by 0 T T     . However, to the leading 

order, the vertical distance the bar has risen is proportional to 1/ 2( )T .  

 

22. (a) The water (of mass m) releases energy in two steps, first by lowering its 

temperature from 20°C to 0°C, and then by freezing into ice. Thus the total energy 

transferred from the water to the surroundings is 

 

       74190J/kg K 125kg 20 C 333kJ/kg 125kg 5.2 10 J.w FQ c m T L m          

 

(b) Before all the water freezes, the lowest temperature possible is 0°C, below which the 

water must have already turned into ice. 

 

23. THINK Electrical energy is supplied and converted into thermal energy to raise the 

water temperature. 

 

EXPRESS The water has a mass m = 0.100 kg and a specific heat c = 4190 J/kg·K. 

When raised from an initial temperature Ti = 23°C to its boiling point Tf = 100°C, the 

heat input is given by Q = cm(Tf – Ti). This must be the power output of the heater P 

multiplied by the time t: Q = Pt.  

 

ANALYZE The time it takes to heat up the water is  
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   ( ) 4190J/kg K 0.100kg 100 C 23 C
160s.

200J/s

f icm T TQ
t

P P

    
     

 

LEARN With a fixed power output, the time required is proportional to Q, which is 

proportional to 
f iT T T= . In real life, it would take longer because of heat loss.     

 

24. (a) The specific heat is given by c = Q/m(Tf – Ti), where Q is the heat added, m is the 

mass of the sample, Ti is the initial temperature, and Tf is the final temperature. Thus, 

recalling that a change in Celsius degrees is equal to the corresponding change on the 

Kelvin scale, 

   3

314J
523J/kg K.

30.0 10 kg 45.0 C 25.0 C
c


  

   
 

 

(b) The molar specific heat is given by 

 

    
314J

26.2J/mol K.
0.600mol 45.0 C 25.0 C

m

f i

Q
c

N T T
   

  
 

 

(c) If N is the number of moles of the substance and M is the mass per mole, then m = 

NM, so 
3

3

30.0 10 kg
0.600mol.

50 10 kg/mol

m
N

M






  


 

 

25. We use Q = cmT. The textbook notes that a nutritionist's “Calorie” is equivalent to 

1000 cal. The mass m of the water that must be consumed is 

 

  

3
43500 10 cal

94.6 10 g,
1g/cal C 37.0 C 0.0 C 

Q
m

c T


   

     
 

 

which is equivalent to 9.46  10
4
 g/(1000 g/liter) = 94.6 liters of water. This is certainly 

too much to drink in a single day! 

 

26. The work the man has to do to climb to the top of Mt. Everest is given by  

 

W = mgy = (73.0 kg)(9.80 m/s
2
)(8840 m) = 6.32  10

6
 J. 

 

Thus, the amount of butter needed is 

 

 6 1.00cal
4.186J(6.32 10 J) 

250g 0.25 kg.
6000cal/g

m


    
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27. THINK Silver is solid at 15.0° C. To melt the sample, we must first raise its 

temperature to the melting point, and then supply heat of fusion.  

 

EXPRESS The melting point of silver is 1235 K, so the temperature of the silver must 

first be raised from 15.0° C (= 288 K) to 1235 K. This requires heat 

 
4

1 ( ) (236J/kg K)(0.130kg)(1235 C 288 C) 2.91 10 J.f iQ cm T T          

 

Now the silver at its melting point must be melted. If LF is the heat of fusion for silver 

this requires 

  3 4

2 0.130kg 105 10 J/kg 1.36 10 J.FQ mL      

 

ANALYZE The total heat required is  

 

1 2Q Q Q   2.91  10
4
 J + 1.36  10

4
 J  = 4.27  10

4
 J. 

 

LEARN The heating process is associated with the specific heat of silver, while the 

melting process involves heat of fusion. Both the specific heat and the heat of fusion are 

chemical properties of the material itself.  

 

28. The amount of water m that is frozen is 

 

50.2kJ
0.151kg 151g.

333kJ/kgF

Q
m

L
     

 

Therefore the amount of water that remains unfrozen is 260 g – 151 g = 109 g. 

 

29. The power consumed by the system is 

 
3 3 3

4

1 1 (4.18J / g C)(200 10 cm )(1g / cm )(40 C 20 C)

20% 20% (1.0h)(3600s / h)

  2.3 10 W.

cm T
P

t

        
    
   

 

 

The area needed is then 
4

2

2

2.3 10 W
33m .

700W / m
A


   

 

30. While the sample is in its liquid phase, its temperature change (in absolute values) is  

| T | = 30 °C.  Thus, with m = 0.40 kg, the absolute value of Eq. 18-14 leads to 

 

|Q| =  c m |T | = (3000 J/ kg C )(0.40 kg)(30 C ) = 36000 J . 

 

The rate (which is constant) is  

 

P = |Q| / t = (36000 J)/(40 min) = 900 J/min, 
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which is equivalent to 15 W.   

 

(a) During the next 30 minutes, a phase change occurs that is described by Eq. 18-16: 

 

|Q| = P t = (900 J/min)(30 min) = 27000 J =  L m . 

 

Thus, with m = 0.40 kg, we find L = 67500 J/kg    68 kJ/kg. 

 

(b) During the final 20 minutes, the sample is solid and undergoes a temperature change 

(in absolute values) of | T | = 20 C°.  Now, the absolute value of Eq. 18-14 leads to 

 

c = 
|Q|

m |T| 
 = 

P t

m |T| 
 = 

(900)(20)

(0.40)(20)
 = 2250  

J 

kg·C°
    2.3  

kJ 

kg·C°
  . 

 

31. Let the mass of the steam be ms and that of the ice be mi. Then  

 

( 0.0 C) (100 C )F c w c f s s s w fL m c m T m L m c T       , 

 

where Tf = 50°C is the final temperature. We solve for ms: 

 

( 0.0 C) (79.7cal / g)(150g) (1cal / g· C)(150g)(50 C 0.0°C)

(100 C ) 539cal / g (1cal / g C )(100 C 50 C)

    33g.

F c w c f

s

s w f

L m c m T
m

L c T

      
 

        



 

 

32. The heat needed is found by integrating the heat capacity: 

 
15.0 C

2

5.0 C

15.0
2 3

5.0

 (2.09) (0.20 0.14 0.023 )

  (2.0) (0.20 0.070 0.00767 ) (cal)

  82cal.

f f

i i

T T

T T
Q cm dT m cdT T T dT

T T T




    

  



  

 

 

33. We note from Eq. 18-12 that 1 Btu = 252 cal. The heat relates to the power, and to the 

temperature change, through  

Q = Pt = cmT. 

 

Therefore, the time t required is 

 

5

(1000cal / kg C )(40gal)(1000kg / 264gal)(100 F 70 F)(5 C / 9 F)

(2.0 10 Btu / h)(252.0 cal / Btu)(1 h / 60min)

3.0min.

cm T
t

P

       
 





 

 

The metric version proceeds similarly: 
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3 3(4190 J/kg·C )(1000 kg/m )(150 L)(1m /1000 L)(38 C 21 C)

(59000 J/s)(60 s /1min)

 3.0min.

c V T
t

P

    
 





 

 

34. We note that the heat capacity of sample B is given by the reciprocal of the slope of 

the line in Figure 18-34(b) (compare with Eq. 18-14).  Since the reciprocal of that slope is 

16/4 = 4 kJ/kg·C°, then cB = 4000 J/kg·C° = 4000 J/kg·K (since a change in Celsius is 

equivalent to a change in Kelvins).  Now, following the same procedure as shown in 

Sample Problem 18.03  —“Hot slug in water, coming to equilibrium,” we find  

 

                                                 cA mA (Tf   TA) + cB mB (Tf   TB) = 0 

 

  cA (5.0 kg)(40°C – 100°C) + (4000 J/kg·C°)(1.5 kg)(40°C – 20°C) = 0 

 

which leads to cA = 4.0×10
2
 J/kg·K. 

 

35. We denote the ice with subscript I and the coffee with c, respectively. Let the final 

temperature be Tf. The heat absorbed by the ice is  

 

QI = FmI + mIcw (Tf – 0°C), 

 

and the heat given away by the coffee is |Qc| = mwcw (TI – Tf). Setting QI = |Qc|, we solve 

for Tf : 
3(130g) (4190J/kg C ) (80.0 C) (333 10 J/g) (12.0g)

( ) (12.0g +130g )(4190J/kg C°)

66.5 C.

w w I F I
f

I c w

m c T m
T

m m c

     
 

 

 

 

 

Note that we work in Celsius temperature, which poses no difficulty for the J/kg·K values 

of specific heat capacity (see Table 18-3) since a change of Kelvin temperature is 

numerically equal to the corresponding change on the Celsius scale. Therefore, the 

temperature of the coffee will cool by |T | = 80.0°C – 66.5°C = 13.5C°. 

 

36. (a) Using Eq. 18-17, the heat transferred to the water is 

 

      1cal/g C 220g 100 C 20.0 C 539cal/g 5.00g

20.3kcal.

w w w V sQ c m T L m         


 

 

(b) The heat transferred to the bowl is 

 

   0.0923cal/g C 150g 100 C 20.0 C 1.11kcal.b b bQ c m T          
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(c) If the original temperature of the cylinder be Ti, then Qw + Qb = ccmc(Ti – Tf), which 

leads to  

  

20.3kcal + 1.11kcal
100 C = 873 C.

0.0923cal/g C 300g

w b
i f

c c

Q Q
T T

c m


     

 
 

 

37. We compute with Celsius temperature, which poses no difficulty for the J/kg·K 

values of specific heat capacity (see Table 18-3) since a change of Kelvin temperature is 

numerically equal to the corresponding change on the Celsius scale. If the equilibrium 

temperature is Tf, then the energy absorbed as heat by the ice is  

 

QI = LFmI + cwmI(Tf – 0°C), 

 

while the energy transferred as heat from the water is Qw = cwmw(Tf – Ti). The system is 

insulated, so Qw + QI = 0, and we solve for Tf : 

 

.
( )

w w i F I
f

I C w

c m T L m
T

m m c





 

(a) Now Ti = 90°C so 

 
3(4190J / kg C )(0.500kg)(90 C) (333 10 J / kg)(0.500kg)

5.3 C.
(0.500kg 0.500kg)(4190J / kg C )

fT
    

  
  

 

 

(b) Since no ice has remained at 5.3fT C  , we have 0fm  . 

 

(c) If we were to use the formula above with Ti = 70°C, we would get Tf  0, which is 

impossible. In fact, not all the ice has melted in this case, and the equilibrium temperature 

is Tf  = 0°C.  

 

(d) The amount of ice that melts is given by 

 

3

( 0 C) (4190J / kg C )(0.500kg)(70C°)
0.440kg.

333 10 J / kg

w w i
I

F

c m T
m

L

   
   


 

 

Therefore, the amount of (solid) ice remaining is mf = mI – m'I = 500 g – 440 g = 60.0 g, 

and (as mentioned) we have Tf = 0°C (because the system is an ice-water mixture in 

thermal equilibrium). 

 

38. (a)  Equation 18-14 (in absolute value) gives  

 

|Q| = (4190 J/ kg C )(0.530 kg)(40 °C) = 88828 J. 

 

Since /dQ dt is assumed constant (we will call it P) then we have 
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P =  
88828 J

40 min
 = 

88828 J

2400 s
 = 37 W . 

 

(b) During that same time (used in part (a)) the ice warms by 20 C°.  Using Table 18-3 

and Eq. 18-14 again we have 

mice  = 
Q

cice T
 = 

88828

(2220)(20°)
 = 2.0 kg . 

 

(c) To find the ice produced (by freezing the water that has already reached 0°C, so we 

concerned with the 40 min < t < 60 min  time span), we use Table 18-4 and Eq. 18-16: 

 

mwater becoming ice = 
Q 20 min

LF
  = 

44414

333000
 = 0.13 kg. 

 

39. To accomplish the phase change at 78°C,  

 

Q = LVm = (879 kJ/kg) (0.510 kg) = 448.29 kJ 

 

must be removed. To cool the liquid to –114°C,  

 

Q = cm|T| = (2.43 kJ/ kg K ) (0.510 kg) (192 K) = 237.95 kJ 

 

must be removed. Finally, to accomplish the phase change at –114°C,  

 

Q = LFm = (109 kJ/kg) (0.510 kg) = 55.59 kJ 

 

must be removed. The grand total of heat removed is therefore (448.29 + 237.95 + 55.59) 

kJ = 742 kJ. 

 

40. Let mw = 14 kg, mc = 3.6 kg, mm = 1.8 kg, Ti1 = 180°C, Ti2 = 16.0°C, and Tf = 18.0°C. 

The specific heat cm of the metal then satisfies 

 

    2 1 0w w c m f i m m f im c m c T T m c T T      

 

which we solve for cm: 

 

 
   

   

   
2

2 1

14kg 4.18kJ/kg K 16.0 C 18.0 C

(3.6kg) 18.0 C 16.0 C (1.8kg) 18.0 C 180 C

0.41kJ/kg C 0.41kJ/kg K.

w w i f

m

c f i m f i

m c T T
c

m T T m T T

    
 

        

    

 

 

41. THINK Our system consists of both water and ice cubes. Initially the ice cubes are at 

15 C (below freezing temperatures), so they must first absorb heat until 0 C  is reached. 

The final equilibrium temperature reached is related to the amount of ice melted.  

 

EXPRESS There are three possibilities: 
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• None of the ice melts and the water-ice system reaches thermal equilibrium at a 

temperature that is at or below the melting point of ice. 

 

• The system reaches thermal equilibrium at the melting point of ice, with some of the ice 

melted. 

 

• All of the ice melts and the system reaches thermal equilibrium at a temperature at or 

above the melting point of ice. 

 

We work in Celsius temperature, which poses no difficulty for the J/kg·K values of 

specific heat capacity (see Table 18-3) since a change of Kelvin temperature is 

numerically equal to the corresponding change on the Celsius scale.  

 

First, suppose that no ice melts. The temperature of the water decreases from TWi = 25°C 

to some final temperature Tf and the temperature of the ice increases from TIi = –15°C to 

Tf. If mW is the mass of the water and cW is its specific heat then the water rejects heat 

 

| | ( ).W W Wi fQ c m T T   

 

If mI is the mass of the ice and cI is its specific heat then the ice absorbs heat 

 

( ).I I f IiQ c m T T   

 

Since no energy is lost to the environment, these two heats (in absolute value) must be 

the same. Consequently, 

( ) ( ).W W Wi f I I f Iic m T T c m T T    

 

The solution for the equilibrium temperature is 

 

(4190J / kg K)(0.200kg)(25 C) (2220J/kg K)(0.100kg)( 15 C)
   

(4190J/kg K)(0.200kg) (2220J/kg K)(0.100kg)

   16.6 C.

W W Wi I I Ii
f

W W I I

c m T c m T
T

c m c m






     


  

 

 

 

This is above the melting point of ice, which invalidates our assumption that no ice has 

melted. That is, the calculation just completed does not take into account the melting of 

the ice and is in error. Consequently, we start with a new assumption: that the water and 

ice reach thermal equilibrium at Tf = 0°C, with mass m ( mI) of the ice melted. The 

magnitude of the heat rejected by the water is 

 

| | = ,W W WiQ c m T  
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and the heat absorbed by the ice is 

(0 ) ,I I Ii FQ c m T mL    

 

where LF is the heat of fusion for water. The first term is the energy required to warm all 

the ice from its initial temperature to 0°C and the second term is the energy required to 

melt mass m of the ice. The two heats are equal, so 

 

.W W Wi I I Ii Fc m T c m T mL    

 

This equation can be solved for the mass m of ice melted. 

 

ANALYZE (a) Solving for m and substituting the values given, we find the amount of 

ice melted to be 

 

3

2

(4190J / kg K)(0.200kg)(25 C) (2220J / kg K)(0.100kg)( 15 C )

333 10 J / kg

5.3 10 kg 53g.

W W Wi I I Ii

F

c m T c m T
m

L






     




  

 

 

Since the total mass of ice present initially was 100 g, there is enough ice to bring the 

water temperature down to 0°C. This is then the solution: the ice and water reach thermal 

equilibrium at a temperature of 0°C with 53 g of ice melted. 

 

(b) Now there is less than 53 g of ice present initially. All the ice melts and the final 

temperature is above the melting point of ice. The heat rejected by the water is 

 

( )W W W i fQ c m T T   

 

and the heat absorbed by the ice and the water it becomes when it melts is 

 

(0 ) ( 0) .I I Ii W I f I FQ c m T c m T m L      

 

The first term is the energy required to raise the temperature of the ice to 0°C, the second 

term is the energy required to raise the temperature of the melted ice from 0°C to Tf, and 

the third term is the energy required to melt all the ice. Since the two heats are equal, 

 

( ) ( ) .W W W i f I I I i W I f I Fc m T T c m T c m T m L      

The solution for Tf is 

.
( )

W W W i I I Ii I F

f

W W I

c m T c m T m L
T

c m m

 



 

 

Inserting the given values, we obtain Tf = 2.5°C. 
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LEARN In order to melt some ice, the energy released by the water must be sufficient to 

first raise the temperature of the ice to the melting point ( I I I ic m T  required, 0I iT  ), 

with the remaining energy contributing to the heat of fusion. If the remaining energy is 

greater than 
I Fm L , then all ice will be melted and the final temperature will be above 0°C.          

 

42. If the ring diameter at 0.000°C is Dr0, then its diameter when the ring and sphere are 

in thermal equilibrium is 

0 (1 ),r r c fD D T   

 

where Tf is the final temperature and c is the coefficient of linear expansion for copper. 

Similarly, if the sphere diameter at Ti (= 100.0°C) is Ds0, then its diameter at the final 

temperature is 

0 [1 ( )],s s a f iD D T T    

 

where a is the coefficient of linear expansion for aluminum. At equilibrium the two 

diameters are equal, so 

0 0(1 ) [1 ( )].r c f s a f iD T D T T      

 

The solution for the final temperature is 

 

0 0 0

0 0

6

6 6

2.54000cm 2.54508cm (2.54508cm)(23 10 /C )(100.0 C)

(2.54508cm)(23 10 / C ) (2.54000cm) (17 10 /C°)

50.38 C.

r s s a i
f

s a r c

D D D T
T

D D



 



 

 




    


   

 

 

 

The expansion coefficients are from Table 18-2 of the text. Since the initial temperature 

of the ring is 0°C, the heat it absorbs is ,c r fQ c m T  where cc is the specific heat of 

copper and mr is the mass of the ring. The heat released by the sphere is 

 

( )a s i fQ c m T T   

 

where ca is the specific heat of aluminum and ms is the mass of the sphere. Since these 

two heats are equal, 

( ),c r f a s i fc m T c m T T   

 

we use specific heat capacities from the textbook to obtain 

 

3(386J/kg K)(0.0200kg)(50.38 C)
8.71 10 kg.

( ) (900J/kg K)(100 C 50.38 C)

c r f

s

a i f

c m T
m

c T T

 
   

    
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43. (a) One part of path A represents a constant pressure process. The volume changes 

from 1.0 m
3
 to 4.0 m

3
 while the pressure remains at 40 Pa. The work done is 

 
3 3 2(40Pa)(4.0m 1.0m ) 1.2 10 J.AW p V       

 

(b) The other part of the path represents a constant volume process. No work is done 

during this process. The total work done over the entire path is 120 J. To find the work 

done over path B we need to know the pressure as a function of volume. Then, we can 

evaluate the integral W =  p dV. According to the graph, the pressure is a linear function 

of the volume, so we may write p = a + bV, where a and b are constants. In order for the 

pressure to be 40 Pa when the volume is 1.0 m
3
 and 10 Pa when the volume is 4.00 m

3
 

the values of the constants must be a = 50 Pa and b = –10 Pa/m
3
. Thus,  

 

p = 50 Pa – (10 Pa/m
3
)V 

and 

 

   
4 4

2 4

1
1 1

 50 10 50 5 200J 50J 80J  +  5.0J = 75J.BW p dV V dV V V          

 

(c) One part of path C represents a constant pressure process in which the volume 

changes from 1.0 m
3
 to 4.0 m

3
 while p remains at 10 Pa. The work done is 

 
3 3 (10Pa)(4.0m 1.0m ) 30J.CW p V      

 

The other part of the process is at constant volume and no work is done. The total work is 

30 J. We note that the work is different for different paths. 

 

44. During process A  B, the system is expanding, doing work on its environment, so W 

 0, and since Eint  0 is given then Q = W + Eint must also be positive. 

 

(a) Q > 0. 

 

(b) W > 0. 

 

During process B  C, the system is neither expanding nor contracting. Thus, 

 

(c) W = 0. 

 

(d) The sign of Eint must be the same (by the first law of thermodynamics) as that of Q, 

which is given as positive. Thus, Eint > 0. 

 

During process C  A, the system is contracting. The environment is doing work on the 

system, which implies W  0. Also, Eint  0 because  Eint = 0 (for the whole cycle) 



 CHAPTER 18 858 

and the other values of Eint (for the other processes) were positive. Therefore, Q = W + 

Eint must also be negative. 

 

(e) Q < 0. 

 

(f) W < 0. 

 

(g) Eint < 0. 

 

(h) The area of a triangle is 1
2

 (base)(height). Applying this to the figure, we find 

 
31

net 2
| | (2.0m )(20Pa) 20JW   . 

 

Since process C  A involves larger negative work (it occurs at higher average pressure) 

than the positive work done during process A  B, then the net work done during the 

cycle must be negative. The answer is therefore Wnet = –20 J. 

 

45. THINK Over a complete cycle, the internal energy is the same at the beginning and 

end, so the heat Q absorbed equals the work done: Q = W.  

 

EXPRESS Over the portion of the cycle from A to B the pressure p is a linear function of 

the volume V and we may write p a bV  . The work done over this portion of the cycle 

is 

   2 21
  =   = ( )

2

B B

A A

V V

AB B A B A
V V

W pdV a bV dV a V V b V V      . 

 

The BC portion of the cycle is at constant pressure and the work done by the gas is  

 

( )BC B BC B C BW p V p V V    . 

 

The CA portion of the cycle is at constant volume, so no work is done. The total work 

done by the gas is  

W = WAB + WBC + WCA . 

 

ANALYZE The pressure function can be written as 

 

310 20
 Pa  Pa/m ,

3 3
p V

 
   

 
 

 

where the coefficients a and b were chosen so that p = 10 Pa when V = 1.0 m
3
 and p = 30 

Pa when V = 4.0 m
3
. Therefore, the work done going from A to B is 
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 

 

2 2

3 3 3 3 2 3 2

1
( )

2

10 1 20
Pa 4.0 m 1.0 m  Pa/m (4.0 m ) (1.0 m )

3 2 3

10 J 50 J 60 J

AB B A B AW a V V b V V   

   
         

   

  

 

 

Similarly, with 30 PaB Cp p  , 31.0 mCV   and 34.0 mBV  , we have 

 

( )BC B C BW p V V   = (30 Pa)(1.0 m
3
 – 4.0 m

3
) = –90 J. 

 

Adding up all contributions, we find the total work done by the gas to be  

 

W = WAB + WBC + WCA = 60 J – 90 J + 0 = –30 J. 

 

Thus, the total heat absorbed is Q = W = –30 J. This means the gas loses 30 J of energy in 

the form of heat. 

 

LEARN Notice that in calculating the work done by the gas, we always start with Eq. 18-

25: W pdV . For isobaric process where p = constant, W p V , and for isochoric 

process where V = constant, W = 0.  

 

46. (a) Since work is done on the system (perhaps to compress it) we write W = –200 J. 

 

(b) Since heat leaves the system, we have Q = –70.0 cal = –293 J. 

 

(c) The change in internal energy is Eint = Q – W = –293 J – (–200 J) = –93 J. 

 

47. THINK Since the change in internal energy Eint only depends on the initial and final 

states, it is the same for path iaf and path ibf.  

 

EXPRESS According to the first law of thermodynamics, Eint = Q – W, where Q is the 

heat absorbed and W is the work done by the system. Along iaf , we have 

 

Eint = Q – W = 50 cal – 20 cal = 30 cal. 

 

ANALYZE (a) The work done along path ibf  is given by 

 

W = Q – Eint = 36 cal – 30 cal = 6.0 cal. 

 

(b) Since the curved path is traversed from f to i the change in internal energy is 

int 30 calE   , and  

Q = Eint + W = –30 cal – 13 cal = – 43 cal. 
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(c) Let Eint = Eint, f – Eint, i. We then have 

  

Eint, f = Eint + Eint, i = 30 cal + 10 cal = 40 cal. 

 

(d) The work Wbf for the path bf is zero, so  

 

Qbf = Eint, f – Eint, b = 40 cal – 22 cal = 18 cal. 

 

(e) For the path ibf, Q = 36 cal so Qib = Q – Qbf = 36 cal – 18 cal = 18 cal. 

 

LEARN Work W and heat Q in general are path-dependent quantities, i.e., they depend 

on how the finial state is reached. However, the combination Eint = Q – W is path 

independent; it is a state function. 

 

48. Since the process is a complete cycle (beginning and ending in the same 

thermodynamic state) the change in the internal energy is zero, and the heat absorbed by 

the gas is equal to the work done by the gas: Q = W. In terms of the contributions of the 

individual parts of the cycle QAB + QBC + QCA = W and  

 

QCA = W – QAB – QBC = +15.0 J – 20.0 J – 0 = –5.0 J. 

 

This means 5.0 J of energy leaves the gas in the form of heat. 

 

49. We note that there is no work done in the process going from d to a, so Qda = Eint da 

= 80 J.  Also, since the total change in internal energy around the cycle is zero, then  

 

Eint ac + Eint cd   + Eint da = 0 

 

200 J   + Eint cd  + 80 J    = 0 

 

which yields  Eint cd = 120 J.  Thus, applying the first law of thermodynamics to the c to 

d process gives the work done as  

 

Wcd = Qcd Eint cd  = 180 J  – 120 J  = 60 J. 

 

50. (a) We note that process a to b is an expansion, so W > 0 for it.  Thus, Wab = +5.0 J.   

We are told that the change in internal energy during that process is +3.0 J, so application 

of the first law of thermodynamics for that process immediately yields Qab = +8.0 J. 

 

(b) The net work (+1.2 J) is the same as the net heat (Qab + Qbc + Qca), and we are told 

that Qca = +2.5 J.  Thus we readily find Qbc = (1.2 – 8.0 – 2.5) J = 9.3 J. 

 

51. We use Eqs. 18-38 through 18-40. Note that the surface area of the sphere is given by 

A = 4r
2
, where r = 0.500 m is the radius. 

 

(a) The temperature of the sphere is T = (273.15 + 27.00) K = 300.15 K. Thus  
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      
2 44 8 2 4 35.67 10 W m K 0.850 4 0.500m 300.15K 1.23 10 W.rP AT        

 

(b) Now, Tenv = 273.15 + 77.00 = 350.15 K so 

 

   
2 44 8 2 4 3

env (5.67 10 W m K )(0.850)(4 ) 0.500m 350.15K 2.28 10 W.aP AT        

 

(c) From Eq. 18-40, we have 

 
3 3 32.28 10 W 1.23 10 W 1.05 10 W.n a rP P P         

 

52. We refer to the polyurethane foam with subscript p and silver with subscript s. We 

use Eq. 18-32 to find L = kR. 

 

(a) From Table 18-6 we find kp = 0.024 W/m·K, so 

 

       
22= 0.024 W/m K 30ft F h/Btu 1m/3.281ft 5C / 9F 3600s/h 1Btu/1055J

= 0.13m.

p p pL k R

       

 

(b) For silver ks = 428 W/m·K, so 

 

 
 

  3428 30
0.13m 2.3 10 m.

0.024 30

s s
s s s p

p p

k R
L k R L

k R

   
        

  

 

 

53. THINK Energy is transferred as heat from the hot reservoir at temperature TH to the 

cold reservoir at temperature TC. The conduction rate is the amount of energy transferred 

per unit time.  

 

EXPRESS The rate of heat flow is given by 

 

cond ,H CT T
P kA

L


  

 

where k is the thermal conductivity of copper (401 W/m·K), A is the cross-sectional area 

(in a plane perpendicular to the flow), L is the distance along the direction of flow 

between the points where the temperature is TH and TC. The thermal conductivity is found 

in Table 18-6 of the text. Recall that a change in Kelvin temperature is numerically 

equivalent to a change on the Celsius scale. 

 

ANALYZE Substituting the values given, we find the rate to be 
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    4 2

3

cond

401W/m K 90.0 10 m 125 C 10.0 C
1.66 10 J/s.

0.250m
P

    
    

 

LEARN The thermal resistance (R-value) of the copper slab is 

 

4 20.250m
6.23 10 m K/W

401W/m K

L
R

k

    


. 

 

The low value of R is an indication that the copper slab is a good conductor.  

 

54. (a) We estimate the surface area of the average human body to be about 2 m
2
 and the 

skin temperature to be about 300 K (somewhat less than the internal temperature of  

310 K). Then from Eq. 18-37 

 

    
44 8 2 4 2 25.67 10 W/m K 0.9 2.0m 300K 8 10 W.rP AT        

 

(b) The energy lost is given by   2 48 10 W 30s 2 10 J.rE P t        

 

55. (a) Recalling that a change in Kelvin temperature is numerically equivalent to a 

change on the Celsius scale, we find that the rate of heat conduction is 

 

     4 2

cond

401W/m K 4.8 10 m 100 C
16 J/s.

1.2m

H CkA T T
P

L

  
    

 

(b) Using Table 18-4, the rate at which ice melts is 

 

cond 16J/s
0.048g/s.

333J/gF

dm P

dt L
    

 

56. The surface area of the ball is 2 2 3 24 4 (0.020 m) 5.03 10  m .A R       Using Eq. 

18-37 with 35 273 308 KiT     and 47 273 320 KfT    , the power required to 

maintain the temperature is 

 
4 4 8 2 4 3 2 4 4( ) (5.67 10 W/m K )(0.80)(5.03 10  m ) (320 K) (308 K)

0.34W.

r f iP A T T           


 

 

Thus, the heat each bee must produce during the 20-minute interval is  

 

 
(0.34 W)(20 min)(60 s/min)

0.81 J
500

rPtQ

N N
   . 
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57. (a) We use 

cond
H CT T

P kA
L


  

 

with the conductivity of glass given in Table 18-6 as 1.0 W/m·K. We choose to use the 

Celsius scale for the temperature: a temperature difference of 

 

 72 F 20 F 92 FH CT T         

 

is equivalent to 5
9
(92) 51.1C  . This, in turn, is equal to 51.1 K since a change in Kelvin 

temperature is entirely equivalent to a Celsius change. Thus,  

 

  4 2cond

3

51.1 C
1.0W m K 1.7 10 W m .

3.0 10 m

H CP T T
k

A L 

  
     

 
 

 

(b) The energy now passes in succession through 3 layers, one of air and two of glass. 

The heat transfer rate P is the same in each layer and is given by 

 

 
cond

H CA T T
P

L k





 

 

where the sum in the denominator is over the layers. If Lg is the thickness of a glass layer, 

La is the thickness of the air layer, kg is the thermal conductivity of glass, and ka is the 

thermal conductivity of air, then the denominator is 

 

2 2
.

g g a a ga

g a a g

L L k L kLL

k k k k k


    

 

Therefore, the heat conducted per unit area occurs at the following rate: 

 

     

     
cond

3

2

51.1 C 0.026 W m K 1.0 W m K

2 2 3.0 10 m 0.026 W m K 0.075m 1.0 W m K

18W m .

H C a g

g a a g

T T k kP

A L k L k 

   
 

    



 

 

58. (a) The surface area of the cylinder is given by 

 
2 2 2 2 2 2 2

1 1 1 12 2 2 (2.5 10 m) 2 (2.5 10 m)(5.0 10 m) 1.18 10 mA r rh               , 

 

its temperature is T1 = 273 + 30 = 303 K, and the temperature of the environment is Tenv = 

273 + 50 = 323 K. From Eq. 18-39 we have 
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     4 4 2 2 4 4

1 1 env 0.85 1.18 10 m (323K) (303K) 1.4W.P A T T        

 

(b) Let the new height of the cylinder be h2. Since the volume V of the cylinder is fixed, 

we must have 2 2

1 1 2 2V r h r h   . We solve for h2: 

 

 
2 2

1
2 1

2

2.5cm
 5.0cm  125cm 1.25m.

0.50cm

r
h h

r

   
      

  
 

 

The corresponding new surface area A2 of the cylinder is 

 
2 2 2 2

2 2 22 2 2 m) 2 m)(1.25 m) 3.94 10 m .A r r h     

         

 

Consequently, 
2 2

2 2

2 2

1 1

3.94 10 m
3.3.

1.18 10 m

P A

P A






  


 

 

59. We use Pcond = kAT/L  A/L. Comparing cases (a) and (b) in Fig. 18-45, we have  

 

cond cond cond 4 .b a
b a a

a b

A L
P P P

A L

 
  
 

 

 

Consequently, it would take 2.0 min/4 = 0.50 min for the same amount of heat to be 

conducted through the rods welded as shown in Fig. 18-45(b). 

 

60. (a) As in Sample Problem 18.06 — “Thermal conduction through a layered wall,” we 

take the rate of conductive heat transfer through each layer to be the same.  Thus, the rate 

of heat transfer across the entire wall Pw is equal to the rate across layer 2 (P2 ).  Using Eq. 

18-37 and canceling out the common factor of area A, we obtain 

 

TH - Tc

(L1/k1+ L2/k2 + L3/k3)
 =  

T2

(L2/k2)
        

45 C°

(1 + 7/9 + 35/80)
 =  

T2

(7/9)
  

 

which leads to T2 = 15.8 °C.  

 

(b) We expect (and this is supported by the result in the next part) that greater 

conductivity should mean a larger rate of conductive heat transfer. 

 

(c) Repeating the calculation above with the new value for k2 , we have 

 

45 C°

(1 + 7/11 + 35/80)
 =  

T2

(7/11)
  

 



 

  

865 

which leads to T2 = 13.8 °C.  This is less than our part (a) result, which implies that the 

temperature gradients across layers 1 and 3 (the ones where the parameters did not 

change) are greater than in part (a); those larger temperature gradients lead to larger 

conductive heat currents (which is basically a statement of “Ohm’s law as applied to heat 

conduction”). 

 

61. THINK As heat continues to leave the water via conduction, more ice is formed and 

the ice slab gets thicker.  

 

EXPRESS Let h be the thickness of the ice slab and A be its area. Then, the rate of heat 

flow through the slab is  

 
cond

H CkA T T
P

h


 , 

 

where k is the thermal conductivity of ice, TH is the temperature of the water (0°C), and 

TC is the temperature of the air above the ice (–10°C). The heat leaving the water freezes 

it, the heat required to freeze mass m of water being Q = LFm, where LF is the heat of 

fusion for water. Differentiate with respect to time and recognize that dQ/dt = Pcond to 

obtain 

cond .F

dm
P L

dt
  

 

Now, the mass of the ice is given by m = Ah, where  is the density of ice and h is the 

thickness of the ice slab, so dm/dt = A(dh/dt) and 

 

cond .F

dh
P L A

dt
  

 

We equate the two expressions for Pcond and solve for dh/dt: 

 

 
.H C

F

k T Tdh

dt L h





 

 

ANALYZE Since 1 cal = 4.186 J and 1 cm = 1  10
–2 

m, the thermal conductivity of ice 

has the SI value  

 

k = (0.0040 cal/s·cm·K) (4.186 J/cal)/(1  10
–2 

m/cm) = 1.674 W/m·K. 

 

The density of ice is  = 0.92 g/cm
3
 = 0.92  10

3
 kg/m

3
. Thus, we obtain 

 

  

   
6

3 3 3

1.674 W m K 0 C  10 C
1.1 10 m s 0.40cm h.

333 10 J kg 0.92 10 kg m 0.050m

dh

dt


   

   
 
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LEARN The rate of ice formation is proportional to the conduction rate – the faster the 

energy leaves the water, the faster the water freezes. 

 

62. (a) Using Eq. 18-32, the rate of energy flow through the surface is  

 

  6 2

cond 4

300 C 100 C
(0.026 W/m K)(4.00 10  m ) 0.208W 0.21 W.

1.0 10  m

s wkA T T
P

L





   
     


 

 

(Recall that a change in Celsius temperature is numerically equivalent to a change on the 

Kelvin scale.) 

 

(b) With cond ( ) ( ),V V VP t L m L V L Ah     the drop will last a duration of  

 
6 3 6 2 3

cond

(2.256 10  J/kg)(1000 kg/m )(4.00 10  m )(1.50 10  m)
65 s

0.208W

VL Ah
t

P

    
   . 

 

63. We divide both sides of Eq. 18-32 by area A, which gives us the (uniform) rate of 

heat conduction per unit area: 

 

cond 1
1 4

1 4

CHP T TT T
k k

A L L


   

 

where TH = 30°C, T1 = 25°C and TC = –10°C. We solve for the unknown T. 

 

 1 4
1

4 1

4.2 C.C H

k L
T T T T

k L
       

 

64. (a) For each individual penguin, the surface area that radiates is the sum of the top 

surface area and the sides: 

2 2 2r

a
A a rh a h a h a  


      , 

 

where we have used /r a    (from 2a r ) for the radius of the cylinder. For the 

huddled cylinder, the radius is /r Na    (since 2Na r  ), and the total surface area 

is  

2 2 2h

Na
A Na r h Na h Na h N a  


      . 

 

Since the power radiated is proportional to the surface area, we have  

 

 
2 1 2 /

( 2 ) 1 2 /

h h

r r

P A Na h N a h Na

NP NA N a h a h a

 

 

 
  

 
. 
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With 1000N  , 20.34 ma  , and 1.1 m,h   the ratio is 

 
2

2

1 2(1.1 m) /(1000 0.34 m )1 2 /
0.16

1 2 / 1 2(1.1 m) /(0.34 m )

h

r

P h Na

NP h a



 

 
  

 
. 

 

(b) The total radiation loss is reduced by 1.00 0.16 0.84  , or 84%. 

 

65. We assume (although this should be viewed as a “controversial” assumption) that the 

top surface of the ice is at TC = –5.0°C. Less controversial are the assumptions that the 

bottom of the body of water is at TH = 4.0°C and the interface between the ice and the 

water is at TX = 0.0°C. The primary mechanism for the heat transfer through the total 

distance L = 1.4 m is assumed to be conduction, and we use Eq. 18-34: 

 

   
water ice

ice ice ice ice

(0.12) 4.0 0.0 (0.40) 0.0 5.0( ) ( )
     .

1.4

H X X C
A Ak A T T k A T T

L L L L L

    
  

 
 

 

We cancel the area A and solve for thickness of the ice layer: Lice = 1.1 m. 

 

66. The condition that the energy lost by the beverage can be due to evaporation equals 

the energy gained via radiation exchange implies 

 

4 4

rad env( )V

dm
L P A T T

dt
   . 

 

The total area of the top and side surfaces of the can is 

 

 2 2 2 22 (0.022 m) 2 (0.022 m)(0.10 m) 1.53 10  mA r rh          . 

 

With env 32 C 305 KT    , 15 C 288 KT    , and 1  , the rate of water mass loss is 

 
8 2 4 2 2

4 4 4 4

env 6

7

(5.67 10 W/m K )(1.0)(1.53 10  m )
( ) (305 K) (288 K)

2.256 10  J/kg

6.82 10 kg/s 0.68 mg/s.

V

dm A
T T

dt L

  



  
     

  

 

67. We denote the total mass M and the melted mass m. The problem tells us that work/M 

= p/, and that all the work is assumed to contribute to the phase change Q = Lm where L 

= 150  10
3
 J/kg. Thus,  

6

3

5.5 10
    

1200 150 10

p M
M Lm m


  


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which yields m = 0.0306M. Dividing this by 0.30 M (the mass of the fats, which we are 

told is equal to 30% of the total mass), leads to a percentage 0.0306/0.30 = 10%. 

 

68. The heat needed is 

121
(10%) (200,000metric tons) (1000kg / metric ton) (333kJ/kg) 6.7 10 J.

10
FQ mL

 
    

 

 

69. (a) Regarding part (a), it is important to recognize that the problem is asking for the 

total work done during the two-step “path”: a  b followed by b  c. During the latter 

part of this “path” there is no volume change and consequently no work done. Thus, the 

answer to part (b) is also the answer to part (a). Since U for process c  a is –160 J, 

then Uc – Ua = 160 J. Therefore, using the First Law of Thermodynamics, we have 

 

160

40 0 200 .

c b b a

b c b c a b a b

a b

U U U U

Q W Q W

W

   



   

   

   

 

Therefore, Wa  b c = Wa  b = 80 J. 

  

(b) Wa  b = 80 J. 

 

70. We use Q = cmT and m = V. The volume of water needed is 

 

   

    

6

3

3 3

1.00 10 kcal/day 5days
35.7m .

1.00 10 kg/m 1.00kcal/kg 50.0 C 22.0 C

m Q
V

C T


   

     
 

 

71. The graph shows that the absolute value of the temperature change is  | T | = 25 °C.  

Since a watt is a joule per second, we reason that the energy removed is 

 

|Q| = (2.81 J/s)(20 min)(60 s/min) = 3372 J. 

 

Thus, with m = 0.30 kg, the absolute value of Eq. 18-14 leads to 

 

c  =  
|Q|

m |T| 
 = 4.5×10

2
 J/kg K . 

 

72. We use Pcond = kA(TH – TC)/L. The temperature TH at a depth of 35.0 km is 

 

   3 2 3

cond
54.0 10 W/m 35.0 10 m

10.0 C 766 C.
2.50W/m K

H C

P L
T T

kA

 
      


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73. Its initial volume is 5
3
 = 125 cm

3
, and using Table 18-2, Eq. 18-10, and Eq. 18-11, we 

find 
3 6 3(125m ) (3 23 10 / C ) (50.0 C ) 0.432cm .V         

 

74. As is shown Sample Problem 18.03 — “Hot slug in water, coming to equilibrium,” 

we can express the final temperature in the following way: 

 

Tf   =   
mAcATA + mBcBTB

mAcA + mBcB
  =  

cATA + cBTB

cA + cB
  

 

where the last equality is made possible by the fact that mA = mB .  Thus, in a graph of Tf  

versus TA , the “slope” must be cA /(cA + cB), and the “y intercept” is cB /(cA + cB)TB.  From 

the observation that the “slope” is equal to 2/5 we can determine, then, not only the ratio 

of the heat capacities but also the coefficient of TB in the “y intercept”; that is, 

 

cB /(cA + cB)TB  = (1 – “slope”)TB . 

 

(a) We observe that the “y intercept” is 150 K, so  

 

TB = 150/(1 – “slope”) = 150/(3/5) 

 

which yields TB = 2.5×10
2
 K. 

 

(b) As noted already, cA /(cA + cB) = 
2

5
 , so 5 cA  = 2cA + 2cB , which leads to cB /cA = 

3

2
 =1.5. 

 

75. We note that there is no work done in process c  b, since there is no change of 

volume. We also note that the magnitude of work done in process b  c is given, but not 

its sign (which we identify as negative as a result of the discussion in Section 18-8). The 

total (or net) heat transfer is Qnet = [(–40) + (–130) + (+400)] J = 230 J. By the First Law 

of Thermodynamics (or, equivalently, conservation of energy), we have net net ,Q W  or 

 

 230J 0 80J .a c c b b a a cW W W W           

 

Therefore, Wa  c = 3.1×10
2
 J. 

 

76. From the law of cosines, with  = 59.95º, we have 

 

L
2

Invar  = L
2

alum  + L
2

steel  – 2LalumLsteel cos  

 

Plugging in L = L0 (1 + αΔT), dividing by L0 (which is the same for all sides) and 

ignoring terms of order (ΔT)
2
 or higher, we obtain 

 

1 + 2αInvarΔT  =  2 + 2 (αalum + αsteel) ΔT  –  2 (1 + (αalum + αsteel) ΔT) cos   . 
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This is rearranged to yield 

ΔT  =  
cos  - ½

(alum + steel) (1 - cos ) - Invar
  = 46 C  , 

 

so that the final temperature is T = 20.0º + ΔT = 66º C.  Essentially the same argument, 

but arguably more elegant, can be made in terms of the differential of the above cosine 

law expression. 

 

77. THINK The heat absorbed by the ice not only raises its temperature but could also 

change its phase – to water.  

 

EXPRESS Let mI be the mass of the ice cube and cI be its specific heat. The energy 

required to bring the ice cube to the melting temperature (0 C°) is  

 
5

1 (0 C° ) (2220 J/kg K)(0.700 kg)(150 K) 2.331 10 JI I IiQ c m T      . 

 

Since the total amount of energy transferred to the ice is 56.993 10 JQ  , and 1Q Q , 

some or all the ice will melt. The energy required to melt all the ice is 

 

  5 5

2 0.700kg 3.33 10 J/kg 2.331 10 J.I FQ m L      

However, since  
5 5

1 2 4.662 10 J < 6.993 10 JQ Q Q     , 

 

this means that all the ice will melt and the extra energy 

 
5 5 5

1 2( ) 6.993 10 J 4.662 10 J 2.331 10 JQ Q Q Q           

would be used to raise the temperature of the water.  

 

ANALYZE The final temperature of the water is given by waterI fQ m c T . Substituting 

the values given, we have 
5

water

10 J
79.5 C

(0.700 kg)(4186.8 J/kg K)
f

I

Q
T

m c


    

 

LEARN The key concepts in this problem are outlined in the Sample Problem 18.04 – 

“Heat to change temperature and state.” An important difference with part (b) of the 

sample problem is that, in our case, the final state of the H2O is all liquid at Tf > 0.  As 

discussed in part (a) of that sample problem, there are three steps to the total process.  

 

78. (a) Using Eq. 18-32, we find the rate of energy conducted upward to be 

 

 cond

5.0 C
(0.400 W/m C) (16.7 ) W.

0.12 m

H CT TQ
P kA A A

t L

 
      
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Recall that a change in Celsius temperature is numerically equivalent to a change on the 

Kelvin scale. 

 

(b) The heat of fusion in this process is ,FQ L m  where 53.33 10  J/kg.FL    

Differentiating the expression with respect to t and equating the result with 
condP , we have 

 

cond F

dQ dm
P L

dt dt
  . 

 

Thus, the rate of mass converted from liquid to ice is 

 

5cond

5

16.7  W
(5.02 10 ) kg/s

3.33 10  J/kgF

Pdm A
A

dt L

   


. 

 

(c) Since m V Ah   , differentiating both sides of the expression gives 

 

  
dm d dh

Ah A
dt dt dt

   . 

 

Thus, the rate of change of the icicle length is  

 
5 2

8

3

1 5.02 10 kg/m s
5.02 10 m/s

1000 kg/m

dh dm

dt A dt


 

     

 

79. THINK The work done by the expanding gas is given by Eq. 18-24: W =  p dV. 

 

EXPRESS Let iV  and fV be the initial and final volumes, respectively. With 2p aV , 

the work done by the gas is 

 2 3 31

3

f f

i i

V V

f i
V V

W pdV aV dV a V V     . 

 

ANALYZE With 810 N/ma  , 31.0 miV   and 32.0 mfV  , we obtain 

 

   3 3 8 3 3 3 31 1
10 N/m (2.0 m ) (1.0 m ) 23 J

3 3
f iW a V V        . 

 

LEARN In this problem, the initial and final pressures are 

 
2 8 3 2 2

2 8 3 2 2

(10 N/m )(1.0 m ) 10 N/m 10 Pa

(10 N/m )(2.0 m ) 40 N/m 40 Pa

i i

f f

p aV

p aV

   

   
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In this case, since 2p V , the work done would be proportional to 3V  after volume 

integration.  

 

80. We use Q = –Fmice = W + Eint. In this case Eint = 0. Since T = 0 for the ideal gas, 

then the work done on the gas is 

 

(333J/g)(100g) 33.3kJ.F iW W m        

 

81. THINK The work done is the “area under the curve:” W =  p dV. 

 

 

EXPRESS According to the first law of thermodynamics, Eint = Q – W, where Q is the 

heat absorbed and W is the work done by the system. For process 1, 

 

1 ( ) (5.0 ) 4.0i b i i i i i iW p V V p V V pV = = =  

so that  

int 1 10 4.0 6.0i i i i i iE Q W pV pV pV       . 

 

Path 2 involves more work than path 1 (note the triangle in the figure of area 1
2

(4Vi)(pi/2) 

= piVi). Thus, 2 1 5.0i i i iW W pV pV  = . Note that int 6.0 i iE pV   is the same for all three 

paths.  

 

ANALYZE (a) The energy transferred to the gas as heat in process 2 is  

 

2 int 2 6.0 5.0 11 .i i i i i iQ E W pV pV pV       

 

(b) Path 3 starts at a and ends at b (same as paths 1 and 2), so int 6.0 i iE pV  . 

 

LEARN Work W and heat Q in general are path-dependent quantities, i.e., they depend 

on how the finial state is reached. However, the combination Eint = Q – W is path 

independent; it is a state function. 

 

82. (a) We denote TH = 100°C, TC = 0°C, the temperature of the copper–aluminum 

junction by T1. and that of the aluminum-brass junction by T2. Then, 

 

cond 1 1 2 2( ) ( ) ( ).c a b
H c

k A k A k A
P T T T T T T

L L L
       

 

We solve for T1 and T2 to obtain 

 

1

0.00 C 100 C
100 C 84.3 C

1 ( ) / 1 401(235 109) /[(235)(109)]

C H
H

c a b a b

T T
T T

k k k k k

   
      

   
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(b) and 

2

100 C 0.00 C
0.00 C

1 ( ) / 1 109(235 401) /[(235)(401)]

57.6 C.

H C
c

b c a c a

T T
T T

k k k k k

   
    

   

 

 

 

83. THINK The Pyrex disk expands as a result of heating, so we expect 0V  .  

 

EXPRESS The initial volume of the disk (thought of as a short cylinder) is 2

0V r L  

where L = 0.50 cm is its thickness and r = 8.0 cm is its radius. After heating, the volume 

becomes  
2 2 2( ) ( ) 2 ...V r r L L r L r L rL r             

 

where we ignore higher-order terms. Thus, the change in volume of the disk is  

 
2

0 2V V V r L rL r         

  

ANALYZE With L L T    and r r T   , the above expression becomes 

 
2 2 22 3V r L T r L T r L T            . 

 

Substituting the values given ( = 3.2 10
6

/C° from Table 18-2), we obtain 

 
2 2 6

8 3

3 3 (0.080 m) (0.0050 m)(3.2 10 / C)(60 C 10 C)

4.83 10 m

V r L T   



        

 
 

 

LEARN All dimensions of the disk expand when heated. So we must take into 

consideration the change in radius as well as the thickness. 

 

84. (a) The rate of heat flow is 

 

      2

2

cond 2

0.040W/m K 1.8m 33 C 1.0 C
2.3 10 J/s.

1.0 10 m

H CkA T T
P

L 

   
   


 

 

(b) The new rate of heat flow is 

 

  3cond
cond

0.60W/m K (230J/s)
3.5 10 J/s,

0.040W/m K

k P
P

k


    


 

 

which is about 15 times as fast as the original heat flow. 

 

85. THINK Since the system remains thermally insulated, the total energy remains 

unchanged. The energy released by the aluminum lump raises the water temperature.  
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EXPRESS Let Tf be the final temperature of the aluminum lump-water system. The 

energy transferred from the aluminum is ,( )Al Al Al i Al fQ m c T T  . Similarly, the energy 

transferred as heat into water is water water water , water( )f iQ m c T T  . Equating AlQ  with 
waterQ  

allows us to solve for Tf.  

 

ANALYZE With  

, water water , water( ) ( )Al Al i Al f f im c T T m c T T   , 

 

we find the final equilibrium temperature to be  

 

, water water ,water

water water

(2.50 kg)(900J / kg K)(92 C) (8.00 kg)(4186.8J/kg K)(5.0 C)
   

(2.50 kg)(900J / kg K) (8.00 kg)(4186.8J/kg K)

   10.5 C.

Al Al i Al i

f

Al Al

m c T m c T
T

m c m c






    


  

 

 

 

LEARN No phase change is involved in this problem, so the thermal energy transferred 

from the aluminum can only change the water temperature. 

 

86. If the window is L1 high and L2 wide at the lower temperature and L1 + L1 high and 

L2 + L2 wide at the higher temperature, then its area changes from A1 = L1L2 to 

 

   2 1 1 2 2 1 2 1 2 2 1  A L L L L L L L L L L         

 

where the term L1 L2 has been omitted because it is much smaller than the other terms, 

if the changes in the lengths are small. Consequently, the change in area is 

 

2 1 1 2 2 1  .A A A L L L L        

  

If T is the change in temperature then L1 = L1 T and L2 = L2 T, where  is the 

coefficient of linear expansion. Thus 

 

 6 2

1 2 1 2 1 2( ) 2 2 9 10 / C (30cm) (20cm) (30 C) 0.32cm .A L L L L T L L T              

 

87. For a cylinder of height h, the surface area is Ac = 2rh, and the area of a sphere is Ao 

= 4R
2
. The net radiative heat transfer is given by Eq. 18-40. 

 

(a) We estimate the surface area A of the body as that of a cylinder of height 1.8 m and 

radius r = 0.15 m plus that of a sphere of radius R = 0.10 m. Thus, we have A  Ac + Ao = 

1.8 m
2
. The emissivity  = 0.80 is given in the problem, and the Stefan-Boltzmann 

constant is found in Section 18-11:  = 5.67  10
–8

 W/m
2
·K

4
. The “environment” 
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temperature is Tenv = 303 K, and the skin temperature is T = 5
9

(102 – 32) + 273 = 312 K. 

Therefore, 

 4 4

net env 86W.P A T T     

 

The corresponding sign convention is discussed in the textbook immediately after Eq. 18-

40. We conclude that heat is being lost by the body at a rate of roughly 90 W. 

 

(b) Half the body surface area is roughly A = 1.8/2 = 0.9 m
2
. Now, with Tenv = 248 K, we 

find  

 4 4 2

net env| | | | 2.3 10 W.P A T T     

 

(c) Finally, with Tenv = 193 K (and still with A = 0.9 m
2
) we obtain |Pnet| = 3.3×10

2
 W. 

 

88. We take absolute values of Eq. 18-9 and Eq. 12-25: 

 

| | | |  and .
F L

L L T E
A L


     

 

The ultimate strength for steel is (F/A)rupture = Su = 400  10
6
 N/m

2
 from Table 12-1. 

Combining the above equations (eliminating the ratio L/L), we find the rod will rupture 

if the temperature change exceeds 

 

   

6 2

9 2 6

400 10 N/m
| | 182 C.

200 10 N/m 11 10 / C

uS
T

E 


    

  
 

 

Since we are dealing with a temperature decrease, then, the temperature at which the rod 

will rupture is T = 25.0°C – 182°C = –157°C.  

 

89. (a) Let the number of weight lift repetitions be N. Then Nmgh = Q, or (using Eq. 18-

12 and the discussion preceding it) 

 

  

     
4

2

3500Cal 4186J/Cal
1.87 10 .

80.0kg 9.80m/s 1.00m

Q
N

mgh
     

 

(b) The time required is  

   
1.00h

18700 2.00s 10.4h.
3600s

t
 

  
 

 

 

90. For isotropic materials, the coefficient of linear expansion  is related to that for 

volume expansion by 1
3

   (Eq. 18-11). The radius of Earth may be found in the 

Appendix. With these assumptions, the radius of the Earth should have increased by 

approximately 
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   3 5 21
6.4 10 km 3.0 10 / K  (3000K 300K) 1.7 10 km.

3
E ER R T  

         
 

 

 

91. We assume the ice is at 0°C to begin with, so that the only heat needed for melting is 

that described by Eq. 18-16 (which requires information from Table 18-4).  Thus,  

 

Q = Lm = (333 J/g)(1.00 g) = 333 J. 

 

92. One method is to simply compute the change in length in each edge (x0 = 0.200 m 

and y0 = 0.300 m) from Eq. 18-9 (x = 3.6  10 
–5

 m and y = 5.4  10 
–5

 m) and then 

compute the area change: 

 

    5 2

0 0 0 0 0 2.16 10 m .A A x x y y x y         

 

Another (though related) method uses A = 2A0T (valid for 1A A ) which can be 

derived by taking the differential of A = xy and replacing d 's with 's. 

 

93. The problem asks for 0.5% of E, where E = Pt with t = 120 s and P given by Eq. 18-

38. Therefore, with A = 4r
2
 = 5.0  10 

–3
 m

2
, we obtain 

 

    40.005 0.005 8.6 J.Pt AT t   

 

94. Let the initial water temperature be Twi and the initial thermometer temperature be Tti. 

Then, the heat absorbed by the thermometer is equal (in magnitude) to the heat lost by the 

water: 

   .t t f ti w w wi fc m T T c m T T    

 

We solve for the initial temperature of the water: 

 

     

  

0.0550kg 0.837kJ/kg K 44.4 15.0 K
44.4 C 45.5 C.

4.18kJ / kg C 0.300kg

t t f ti

wi f

w w

c m T T
T T

c m

  
      

 
 

 

95. The net work may be computed as a sum of works (for the individual processes 

involved) or as the “area” (with appropriate  sign) inside the figure (representing the 

cycle). In this solution, we take the former approach (sum over the processes) and will 

need the following fact related to processes represented in pV diagrams: 

 

for a straight line: Work
2

i fp p
V


   

 

which is easily verified using the definition Eq. 18-25. The cycle represented by the 

“triangle” BC consists of three processes: 
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• “tilted” straight line from (1.0 m
3
, 40 Pa) to (4.0 m

3
, 10 Pa), with 

 

 3 340Pa  10Pa
Work 4.0m 1.0m 75J

2


    

 

• horizontal line from (4.0 m
3
, 10 Pa) to (1.0 m

3
, 10 Pa), with 

 

  3 3Work 10Pa 1.0m 4.0m 30J     

 

• vertical line from (1.0 m
3
, 10 Pa) to (1.0 m

3
, 40 Pa), with 

 

 3 310Pa 40Pa
Work 1.0m 1.0m 0

2


    

 

(a) and (b) Thus, the total work during the BC cycle is (75 – 30) J = 45 J. During the BA 

cycle, the “tilted” part is the same as before, and the main difference is that the horizontal 

portion is at higher pressure, with Work = (40 Pa)(–3.0 m
3
) = –120 J. Therefore, the total 

work during the BA cycle is (75 – 120) J = – 45 J. 

 

96. (a) The total length change of the composite bar is 

 

 1 2 1 1 2 2 1 1 2 2( ) .L L L L T L T L L T               

 

Writing L L T   and equating the two expressions leads to 1 1 2 2 .
L L

L

 



  

  

(b) The coefficients of thermal expansions are 6

1 11 10 / C     for steel and 
6

2 19 10 / C    for brass. We solve the system of equations 

 
6 6

6 1 2

1 2

1 2

(11 10 / C ) (19 10 / C )
13 10 / C

52.4 cm

L L

L L

L L L


 

     
   



  

 

 

and obtain 1 39.3 cm,L   and  

 

(c) 2 13.1 cm.L   

 

97. The heat required to raise the water of mass m from an initial temperature Ti to final 

temperature Tf  is Q = cm(Tf – Ti), where c is the specific heat of water. On the other hand, 

each shake supplies an energy 1 ,U mgh   where h is the vertical distance the water has 

moved during each shake. Thus, with 27 shakes/min, the time required to raise the water 

temperature to Tf is 
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  

   2
1

3

( ) ( ) 4186.8J/kg C 100 C 19 C

( ) 27shakes/min 9.8m/s 0.32m

4.0 10 min.

f i f icm T T c T TQ
t

R U Rmgh Rgh

      
    



 

 

 

98. Since the combination “p1V1” appears frequently in this derivation we denote it as “x.  

Thus for process 1, the heat transferred is Q1 = 5x = Eint 1 + W1 , and for path 2 (which 

consists of two steps, one at constant volume followed by an expansion accompanied by 

a linear pressure decrease) it is Q2 = 5.5x = Eint 2 + W2. If we subtract these two 

expressions and make use of the fact that internal energy is state function (and thus has 

the same value for path 1 as for path 2) then we have   

5.5x – 5x  = W2  –  W1   =  “area” inside the triangle = 
1

2
 (2 V1 )( p2 – p1) . 

 

Thus, dividing both sides by x (= p1V1), we find 
2 10.5 ( / ) 1,p p   which leads 

immediately to the result:  p2 /p1 = 1.5 . 

 

99. The cube has six faces, each of which has an area of (6.0  10
–6

 m)
2
. Using Kelvin 

temperatures and Eq. 18-40, we obtain 

 

   

4 4

net env

8 10 2 4 4

2 4

9

( )

W
5.67 10 (0.75) 2.16 10 m (123.15 K)   (173.15 K)

m K

6.1 10 W.

P A T T

 



 

 
    

 

  



 

 

100. We denote the density of the liquid as , the rate of liquid flowing in the calorimeter 

as , the specific heat of the liquid as c, the rate of heat flow as P, and the temperature 

change as T. Consider a time duration dt, during this time interval, the amount of liquid 

being heated is dm = dt. The energy required for the heating is  

 

dQ = Pdt = c(dm) T = cTdt. 

Thus, 

   6 3 3 3

3 3

250 W

8.0 10 m / s 0.85 10 kg/m 15 C

2.5 10 J/kg C 2.5 10 J/kg K.

P
c

T 
 

   

      

 

 

101. Consider the object of mass m1 falling through a distance h. The loss of its 

mechanical energy is E = m1gh. This amount of energy is then used to heat up the 

temperature of water of mass m2: E = m1gh = Q = m2cT. Thus, the maximum possible 

rise in water temperature is 
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   

  

2

1

2

6.00kg 9.8m/s 50.0m
1.17 C.

0.600kg 4190J/kg C

m gh
T

m c
    

 
 

 

102. When the temperature changes from T to T + T the diameter of the mirror changes 

from D to D + D, where D = D T. Here  = 3.2  10
–6

/C° is the coefficient of linear 

expansion for Pyrex glass. The range of values for the diameters can be found by setting 

T equal to the temperature range. Thus  

 

 6

4

0.0254 m
(3.2 10 /C°) 170 in. 32 C ( 16 C)

1 in.

6.63 10 m 660 m.

L D T







 
          

 

  

 


103. The change in area for the plate is 

 

6 2 3 2 3 2

( )( ) 2 2

2(32 10 /C°)(1.4 m )(89 C) 7.97 10 m 8.0 10 m .

A a a b b ab a b b a ab T A T 
  

            

      
 

 

104. The relative volume change is 

 

4 3(6.6 10 /C°)(12 C) 7.92 10 .
V

T
V

  
        

 

Since the expansion the glass tube can be ignored, the cross-sectional area of the liquid 

remains unchanged, and we have 37.92 10 .
h V

h V

 
    

 

105. (a) We note that if the pendulum shortens, its frequency of oscillation will increase, 

thereby causing it to record more units of time (“ticks”) than have actually passed during 

an interval. Thus, as the pendulum contracts (this problem involves cooling the brass 

wire), the pendulum will “run fast.”  

 

(b) The period of the pendulum is 2 /L g   (so not to be confused with temperature 

T).  Differentiating  with respect to L gives 

 

1 1
2 2 .

2 2

d d L L

dL dL g L g LLg

 
  

   
         

   
 

Thus, 

1
.

2 2

L
T

L


 


     

 

Substituting the values given, the change in period is 
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61 1 3600 s
(19 10 /C )(23C ) 0.787 s/h.

2 2 1 h
T   

        
 

 

 

106. Recalling that 1 W = 1 J/s, the heat Q which is added to the room in 6.9 h is 

 

63600s
4(100W)(0.73)(6.9h) 7.25 10 J.

1.00h
Q

 
   

 
 

 

107. With 1 Calorie = 1000 cal, we find the athlete's rate of dissipating energy to be 

 

  

  

34000 10 cal 4.1868J/cal
4000Cal/day 193.83W,

1day 86400s/day
P


    

 

which is about 1.9 times as much as the power of a 100 W light bulb. 

 

108. The initial speed of the car is 
1000 m/km

83 km/h (83 km/h) 23.056 m/s.
3600 s/h

iv
 

   
 

 

The deceleration a of the car is given by 2 2 2 2f i iv v v ad    , or 

 
2

2(23.056 m/s)
2.86m/s .

2(93m)
a    

 

The time t it takes for the car to stop is then 

 

2

23.056 m/s
8.07s.

2.86m/s

f iv v
t

a

 
   


 

 

The change in kinetic energy of the car is 

 

2 2 51 1
(1700 kg)(23.056 m/s) 4.52 10  J.

2 2
iK mv         

 

Thus, the average rate at which mechanical energy is transferred to thermal energy is 

 
5

4th 4.52 10  J
5.6 10 W.

8.07 s

E K
P

t t

  
    

 
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Chapter 19 
 

 

1. Each atom has a mass of m = M/NA, where M is the molar mass and NA is the 

Avogadro constant. The molar mass of arsenic is 74.9 g/mol or 74.910
–3

 kg/mol. 

Therefore, 7.50 10
24

 arsenic atoms have a total mass of  

 

(7.50  10
24

) (74.9  10
–3

 kg/mol)/(6.02  10
23

 mol
–1

) = 0.933 kg. 

 

2. (a) Equation 19-3 yields n = Msam/M = 2.5/197 = 0.0127 mol. 

 

(b) The number of atoms is found from Eq. 19-2:  

 

N = nNA = (0.0127)(6.02  10
23

) = 7.64  10
21

. 

 

3. THINK We treat the oxygen gas in this problem as ideal and apply the ideal-gas law. 

 

EXPRESS In solving the ideal-gas law equation pV = nRT for n, we first convert the 

temperature to the Kelvin scale: (40.0 273.15)K 313.15 KiT    , and the volume to SI 

units: 3 3 31000 cm 10 miV   .  

 

ANALYZE (a) The number of moles of oxygen present is 

 

  
  

5 3 3

2
1.01 10 Pa 1.000 10 m

3.88 10 mol.
8.31J/mol K 313.15K

i

i

pV
n

RT




 

   


 

 

(b) Similarly, the ideal gas law pV = nRT leads to 

 

  
  

5 3 3

2

1.06 10 Pa 1.500 10 m
493K.

3.88 10 mol 8.31J/mol K

f

f

pV
T

nR





 
  

 
 

 

We note that the final temperature may be expressed in degrees Celsius as 220°C. 

 

LEARN The final temperature can also be calculated by noting that 
f fi i

i f

p VpV

T T
 , or  

5 3

5 3

1.06 10 Pa 1500 cm
(313.15 K) 493 K

1.01 10 Pa 1000 cm

f f

f i

i i

p V
T T

p V

     
       

    
. 
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4. (a) With T = 283 K, we obtain  

 
3 3100 10 Pa 2.50m

106mol.
8.31J/mol K 283K

pV
n

RT
 

 

(b) We can use the answer to part (a) with the new values of pressure and temperature, 

and solve the ideal gas law for the new volume, or we could set up the gas law in ratio 

form as: 

f f f

i i i

p V T

pV T
  

 

(where ni = nf and thus cancels out), which yields a final volume of  

 

 3 3100kPa 303K
2.50m 0.892 m

300kPa 283K

fi
f i

f i

Tp
V V

p T

      
         

     

. 

 

5. With V = 1.0  10
–6

 m
3
, p = 1.01  10

–13
 Pa, and T = 293 K, the ideal gas law gives 

 

   
  

13 6 3

23
1.01 10  Pa 1.0 10  m

4.1 10 mole.
8.31 J/mol K 293 K

pV
n

RT

 


 

   


 

 

Consequently, Eq. 19-2 yields N = nNA = 25 molecules. We can express this as a ratio 

(with V now written as 1 cm
3
) N/V = 25 molecules/cm

3
. 

 

6. The initial and final temperatures are 5.00 C 278 KiT     and 75.0 C 348 KfT    , 

respectively. Using the ideal gas law with i fV V , we find the final pressure to be  

 

 
348K

1.00 atm 1.25 atm
278K

f f f f

f i

i i i i

p V T T
p p

pV T T

 
     

 
. 

 

7. (a)  Equation 19-45 (which gives 0) implies Q = W.  Then Eq. 19-14, with T = (273 + 

30.0)K leads to gives Q = –3.14  10
3
 J, or | Q | = 3.14  10

3
 J. 

 

(b) That negative sign in the result of part (a) implies the transfer of heat is from the gas. 

 

8. (a) We solve the ideal gas law pV = nRT for n: 

 

  
  

6 3

8
100Pa 1.0 10 m

5.47 10 mol.
8.31J/mol K 220K

pV
n

RT






   

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(b) Using Eq. 19-2, the number of molecules N is 

 

   6 23 1 16

A 5.47 10 mol 6.02 10 mol 3.29 10 molecules.N nN         

 

9. Since (standard) air pressure is 101 kPa, then the initial (absolute) pressure of the air is 

pi = 266 kPa. Setting up the gas law in ratio form (where ni = nf and thus cancels out), we 

have 

f f f

i i i

p V T

pV T
  

which yields  

 
2 3

2 3

1.64 10 m 300K
266kPa 287 kPa

1.67 10 m 273K

fi
f i

f i

TV
p p

V T





     
              

. 

 

Expressed as a gauge pressure, we subtract 101 kPa and obtain 186 kPa. 

 

10. The pressure p1 due to the first gas is p1 = n1RT/V, and the pressure p2 due to the 

second gas is p2 = n2RT/V. So the total pressure on the container wall is 

 

 1 2
1 2 1 2 .

n RT n RT RT
p p p n n

V V V
       

 

The fraction of P due to the second gas is then 

 

  
2 2 2

1 2 1 2

/ 0.5
0.2.

/ 2 0.5

p n RT V n

p n n RT V n n
   

  
 

 

11. THINK The process consists of two steps: isothermal expansion, followed by 

isobaric (constant-pressure) compression. The total work done by the air is the sum of the 

works done for the two steps.  

 

EXPRESS Suppose the gas expands from volume Vi to volume Vf during the isothermal 

portion of the process. The work it does is 

 

1 ln ,
f f

i i

V V f

V V
i

VdV
W p dV nRT nRT

V V
     

 

where the ideal gas law pV = nRT was used to replace p with nRT/V. Now Vi = nRT/pi 

and Vf = nRT/pf, so / /f i i fV V p p . Also replace nRT with piVi to obtain 

 

1 ln .i
i i

f

p
W pV

p
  
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During the constant-pressure portion of the process the work done by the gas is 

2 ( )f i fW p V V  . The gas starts in a state with pressure pf, so this is the pressure 

throughout this portion of the process. We also note that the volume decreases from Vf to 

Vi. Now Vf = piVi/pf, so 

 2
i i

f i f i i

f

pV
W p V p p V

p

 
    

 
 

. 

 

ANALYZE For the first portion, since the initial gauge pressure is 1.03  10
5
 Pa,  

 

pi = 1.03  10
5
 Pa + 1.013  10

5
 Pa = 2.04  10

5
 Pa. 

 

The final pressure is atmospheric pressure:  pf = 1.013  10
5
 Pa. Thus, 

 

  
5

5 3 4

1 5

2.04 10 Pa
2.04 10 Pa 0.14m ln 2.00 10 J.

1.013 10 Pa
W

 
    

 
 

Similarly, for the second portion, we have  

 
5 5 3 4

2 ( ) (1.013 10 Pa 2.04 10 Pa)(0.14m ) 1.44 10 J.f i iW p p V          

 

The total work done by the gas over the entire process is  

 
4 4 3

1 2 2.00 10 J ( 1.44 10 J) 5.60 10 J.W W W          

 

LEARN The work done by the gas is positive when it expands, and negative when it 

contracts.  

 

12. (a) At the surface, the air volume is 

  
2 3 3

1 (1.00 m) (4.00 m) 12.57 m 12.6 mV Ah     . 

 

(b) The temperature and pressure of the air inside the submarine at the surface are 

1 20 C 293 KT     and 1 0 1.00 atmp p  . On the other hand, at depth 80 m,h   we 

have 2 30 C 243 KT      and 

3 2

2 0 5

1.00 atm
1.00 atm (1024 kg/m )(9.80 m/s )(80.0 m)

1.01 10  Pa

1.00 atm 7.95 atm 8.95 atm .

p p gh   


  

 

 

Therefore, using the ideal gas law, pV NkT , the air volume at this depth would be 
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 3 31 1 1 1 2
2 1

2 2 2 2 1

1.00 atm 243K
12.57 m 1.16 m

8.95 atm 293K

pV T p T
V V

p V T p T

     
         

    
. 

 

(c) The decrease in volume is 3

1 2 11.44 mV V V    . Using Eq. 19-5, the amount of air 

this volume corresponds to is  

 

  
   

5 3

3
(8.95 atm) 1.01 10 Pa/atm 11.44m

5.10 10 mol
8.31 J/mol K 243K

p V
n

RT


   


. 

 

Thus, in order for the submarine to maintain the original air volume in the chamber, 
35.10 10 mol  of air must be released. 

 

13. (a) At point a, we know enough information to compute n: 

 

  
   

32500Pa 1.0m
1.5mol.

8.31 J/mol K 200K

pV
n

RT
  


 

 

(b) We can use the answer to part (a) with the new values of pressure and volume, and 

solve the ideal gas law for the new temperature, or we could set up the gas law in terms of 

ratios (note: na = nb and cancels out): 

 

 
3

3

7.5kPa 3.0m
200K

2.5kPa 1.0m

b b b
b

a a a

p V T
T

p V T

  
     

   
 

 

which yields an absolute temperature at b of Tb = 1.8×10
3
 K. 

 

(c) As in the previous part, we choose to approach this using the gas law in ratio form: 

 

 
3

3

2.5kPa 3.0m
200K

2.5kPa 1.0m

c c c
c

a a a

p V T
T

p V T

  
     

   
 

 

which yields an absolute temperature at c of Tc = 6.0×10
2
 K. 

 

(d) The net energy added to the gas (as heat) is equal to the net work that is done as it 

progresses through the cycle (represented as a right triangle in the pV diagram shown in 

Fig. 19-20). This, in turn, is related to  “area” inside that triangle (with 
1
2

area = (base)(height) ), where we choose the plus sign because the volume change at 

the largest pressure is an increase. Thus, 
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   3 3 3

net net

1
2.0m 5.0 10 Pa 5.0 10 J.

2
Q W      

 

14. Since the pressure is constant the work is given by W = p(V2 – V1). The initial volume 

is 2

1 1 1( )V AT BT p  , where T1 = 315 K is the initial temperature, A =24.9 J/K and B = 

0.00662 J/K
2
. The final volume is 2

2 2 2( )V AT BT p  , where T2 = 315 K. Thus  

 
2 2

2 1 2 1

2 2 2

( ) ( )

(24.9 J/K)(325 K 315 K) (0.00662 J/K )[(325 K) (315 K) ] 207 J.

W A T T B T T   

    
 

 

15. Using Eq. 19-14, we note that since it is an isothermal process (involving an ideal gas) 

then Q = W = nRT ln(Vf /Vi) applies at any point on the graph.  An easy one to read is Q = 

1000 J and Vf  = 0.30 m
3
, and we can also infer from the graph that Vi = 0.20 m

3
.  We are 

told that n = 0.825 mol, so the above relation immediately yields T = 360 K. 

 

16. We assume that the pressure of the air in the bubble is essentially the same as the 

pressure in the surrounding water. If d is the depth of the lake and  is the density of 

water, then the pressure at the bottom of the lake is p1 = p0 + gd, where p0 is 

atmospheric pressure. Since p1V1 = nRT1, the number of moles of gas in the bubble is  

 

n = p1V1/RT1 = (p0 + gd)V1/RT1, 

 

where V1 is the volume of the bubble at the bottom of the lake and T1 is the temperature 

there. At the surface of the lake the pressure is p0 and the volume of the bubble is V2 = 

nRT2/p0. We substitute for n to obtain 

 

   
 

02
2 1

1 0

5 3 3 2

3

5

2 3

1.013 10 Pa + 0.998 10 kg/m 9.8m/s 40m293K
20cm

277 K 1.013 10 Pa

1.0 10 cm .

p gdT
V V

T p




   
   
    

 

 

 

17. When the valve is closed the number of moles of the gas in container A is nA = 

pAVA/RTA and that in container B is nB = 4pBVA/RTB. The total number of moles in both 

containers is then 

4
const.A A B

A B

A B

V p p
n n n

R T T

 
     

 
 

 

After the valve is opened, the pressure in container A is pA = RnATA/VA and that in 

container B is pB = RnBTB/4VA. Equating pA and pB, we obtain RnATA/VA = RnBTB/4VA, 

or nB = (4TA/TB)nA. Thus, 
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4 4
1 .A A A B

A B A A B

B A B

T V p p
n n n n n n

T R T T

   
            

   
 

We solve the above equation for nA: 

 

4
.

1 4

A A B B

A

A B

p T p TV
n

R T T
 

 

Substituting this expression for nA into pVA = nARTA, we obtain the final pressure: 

 

54 /
2.0 10 Pa.

1 4 /

A A A B A B

A A B

n RT p p T T
p

V T T

 
    


 

 

18. First we rewrite Eq. 19-22 using Eq. 19-4 and Eq. 19-7: 

 

 

 
A

rms

A

33 3
.

kN TRT kT
v

M mN m
    

 

The mass of the electron is given in the problem, and k = 1.38  10
–23

 J/K is given in the 

textbook. With T = 2.00  10
6
 K, the above expression gives vrms = 9.53  10

6
 m/s. The 

pressure value given in the problem is not used in the solution. 

 

19. Table 19-1 gives M = 28.0 g/mol for nitrogen. This value can be used in Eq. 19-22 

with T in Kelvins to obtain the results. A variation on this approach is to set up ratios, 

using the fact that Table 19-1 also gives the rms speed for nitrogen gas at 300 K (the 

value is 517 m/s). Here we illustrate the latter approach, using v for vrms: 

 

22 2

1 11

3 /
.

3 /

RT Mv T

v TRT M
   

(a) With T2 = (20.0 + 273.15) K  293 K, we obtain  2

293K
517m/s 511m/s.

300K
v    

(b) In this case, we set 1
3 22

v v  and solve 3 2 3 2/ /v v T T  for T3: 

 

 
2 2

3
3 2

2

1
293K 73.0K

2

v
T T

v

   
     

  
 

 

which we write as 73.0 – 273 = – 200°C. 

 

(c) Now we have v4 = 2v2 and obtain 
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  
2

34
4 2

2

293K 4 1.17 10 K
v

T T
v

 
    

 
 

which is equivalent to 899°C. 

 

20. Appendix F gives M = 4.00  10
–3

 kg/mol (Table 19-1 gives this to fewer significant 

figures). Using Eq. 19-22, we obtain 

 

3

rms 3

3 8.31 J/mol K 1000K3
2.50 10 m/s.

4.00 10 kg/mol

RT
v

M
 

 

21. THINK According to kinetic theory, the rms speed is (see Eq. 19-34) 

rms 3 /v RT M , where T is the temperature and M is the molar mass.  

 

EXPRESS The rms speed is defined as 2

rms avg( )v v , where 2 2

avg
0

( ) ( )v v P v dv


  , with 

the Maxwell’s speed distribution function given by  

 

 
2

3/ 2

2 / 2( ) 4
2

Mv RTM
P v v e

RT




 
  

 
. 

 

According to Table 19-1, the molar mass of molecular hydrogen is 2.02 g/mol = 2.02  

10
–3

 kg/mol. 

 

ANALYZE At 2.7 KT  , we find the rms speed to be 

 

   2

rms 3

3 8.31J/mol K 2.7 K
1.8 10 m/s.

2.02 10 kg/mol
v




  


 

 

LEARN The corresponding average speed and most probable speed are 

 

   2

avg 3

8 8.31J/mol K 2.7K8
1.7 10 m/s

(2.02 10 kg/mol)

RT
v

M 


   

  
 

and 

   2

3

2 8.31J/mol K 2.7K2
1.5 10 m/s

2.02 10 kg/mol
p

RT
v

M 


   


, 

respectively. 

 

22. The molar mass of argon is 39.95 g/mol. Eq. 19-22 gives 

 



 

 

889 

  
rms 3

3 8.31J/mol K 313K3
442m/s.

39.95 10 kg/mol

RT
v

M 


  


 

 

23. In the reflection process, only the normal component of the momentum changes, so 

for one molecule the change in momentum is 2mv cos, where m is the mass of the 

molecule, v is its speed, and  is the angle between its velocity and the normal to the wall. 

If N molecules collide with the wall, then the change in their total momentum is 2Nmv 

cos , and if the total time taken for the collisions is t, then the average rate of change of 

the total momentum is 2(N/t)mv cos. This is the average force exerted by the N 

molecules on the wall, and the pressure is the average force per unit area: 

 

   23 1 27 3

4 2

3

2 2
 cos 1.0 10 s 3.3 10 kg 1.0 10 m/s cos55

2.0 10 m

1.9 10 Pa.

N
p mv

A t
  



  
       

    

 

 

We note that the value given for the mass was converted to kg and the value given for the 

area was converted to m
2
. 

 

24. We can express the ideal gas law in terms of density using n = Msam/M: 

 

sam .
M RT pM

pV
M RT

    

 

We can also use this to write the rms speed formula in terms of density: 

 

rms

3 3( / ) 3
.

RT pM p
v

M M




    

 

(a) We convert to SI units:  = 1.24  10
–2

 kg/m
3
 and p = 1.01  10

3
 Pa. The rms speed is 

3(1010) / 0.0124 494 m/s.  

 

(b) We find M from  = pM/RT with T = 273 K. 

 
3

3

(0.0124kg/m ) 8.31J/mol K (273K)
0.0279 kg/mol 27.9 g/mol.

1.01 10 Pa

RT
M

p
 

 

(c) From Table 19.1, we identify the gas to be N2.  

 

25. (a) Equation 19-24 gives  23 21

avg

3
1.38 10 J/K (273K) 5.65 10 J .

2
K       
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(b) For 373 K,T   the average translational kinetic energy is 21

avg 7.72 10 J .K    

  

(c) The unit mole may be thought of as a (large) collection: 6.02  10
23

 molecules of ideal 

gas, in this case. Each molecule has energy specified in part (a), so the large collection 

has a total kinetic energy equal to 

 
23 21 3

mole A avg (6.02 10 )(5.65 10 J) 3.40 10 J.K N K        

 

(d) Similarly, the result from part (b) leads to 

 
23 21 3 

mole (6.02 10 )(7.72 10 J) 4.65 10 J.K       

 

26. The average translational kinetic energy is given by 3
avg 2

K kT , where k is the 

Boltzmann constant (1.38  10
–23

 J/K) and T is the temperature on the Kelvin scale. Thus 

 

23 20

avg

3
(1.38 10 J/K)(1600K) = 3.31 10 J .

2
K      

 

27. (a) We use  = LV/N, where LV is the heat of vaporization and N is the number of 

molecules per gram. The molar mass of atomic hydrogen is 1 g/mol and the molar mass 

of atomic oxygen is 16 g/mol, so the molar mass of H2O is (1.0 + 1.0 + 16) = 18 g/mol. 

There are NA = 6.02  10
23

 molecules in a mole, so the number of molecules in a gram of 

water is (6.02  10
23

 mol
–1

)/(18 g/mol) = 3.34  10
22

 molecules/g. Thus  

 

 = (539 cal/g)/(3.34  10
22

/g) = 1.61  10
–20

 cal = 6.76  10
–20

 J. 

 

(b) The average translational kinetic energy is 

 

23 21

avg

3 3
(1.38 10 J/K)[(32.0+273.15)K] = 6.32 10 J.

2 2
K kT       

 

The ratio /Kavg is (6.76  10
–20

 J)/(6.32  10
–21

 J) = 10.7. 

 

28. Using v = f  with v = 331 m/s (see Table 17-1) with Eq. 19-2 and Eq. 19-25 leads to 

 

   

10 2 A

2

3 3 5
7 7

9

(331m/s) 2 (3.0 10 m)
1

2 ( / )

m m 1.01 10 Pa
8.0 10 8.0 10

s mol s mol 8.31 J/mol K 273.15K

3.5 10 Hz

nNv
f

V

d N V

n

V

  
     
   
 

 

      
          

         

 
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where we have used the ideal gas law and substituted n/V = p/RT. If we instead use v = 

343 m/s (the “default value” for speed of sound in air, used repeatedly in Ch. 17), then the 

answer is 3.7  10
9
 Hz. 

 

29. THINK Mean free path is the average distance traveled by a molecule between 

successive collisions. 

 

EXPRESS According to Eq. 19-25, the mean free path for molecules in a gas is given by 

2

1
,

2 /d N V
 


 

 

where d is the diameter of a molecule and N is the number of molecules in volume V.  

 

ANALYZE (a) Substituting d = 2.0  10
–10

 m and N/V = 1  10
6
 molecules/m

3
, we 

obtain 

12

10 2 6 3

1
6 10 m.

2 (2.0 10 m) (1 10 m ) 
   

  
 

 

(b) At this altitude most of the gas particles are in orbit around Earth and do not suffer 

randomizing collisions. The mean free path has little physical significance. 

 

LEARN Mean free path is inversely proportional to the number density, /N V . The 

typical value of N/V at room temperature and atmospheric pressure for ideal gas is  

 
5

25 3 19 3

23

1.01 10 Pa
2.46 10 molecules/m 2.46 10 molecules/cm .

(1.38 10 J/K)(298K)

N p

V kT 


     



 

This is much higher than that in the outer space. 

 

30. We solve Eq. 19-25 for d: 

 

5 19 3

1 1

2 ( / ) (0.80 10 cm) 2 (2.7 10 / cm )
d

N V
 

   
 

 

which yields d = 3.2  10
–8

 cm, or 0.32 nm. 

 

31. (a) We use the ideal gas law pV = nRT = NkT, where p is the pressure, V is the 

volume, T is the temperature, n is the number of moles, and N is the number of molecules. 

The substitutions N = nNA and k = R/NA were made. Since 1 cm of mercury = 1333 Pa, 

the pressure is p = (10
–7

)(1333 Pa) = 1.333  10
–4

 Pa. Thus, 
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4
16 3 10 3

23

1.333 10 Pa
3.27 10 molecules/m 3.27 10 molecules/cm .

(1.38 10 J/K)(295K)

N p

V kT






     



 

(b) The molecular diameter is d = 2.00  10
–10

 m, so, according to Eq. 19-25, the mean 

free path is 

2 10 2 16 3

1 1
172m.

2 / 2 (2.00 10 m) (3.27 10 m )d N V  
   

   
 

 

32. (a) We set up a ratio using Eq. 19-25: 

 

  
  

2

2 2

22
NArAr

2
N ArN

1/ 2 /
.

1/ 2 /

dd N V

dd N V



 

 
   

 
 

 

Therefore, we obtain 

2

2

6
NAr

6

N Ar

27.5 10  cm
1.7.

9.9 10  cm

d

d





 
  

 
 

 

(b) Using Eq. 19-2 and the ideal gas law, we substitute N/V = NAn/V = NAp/RT into Eq. 

19-25 and find 

2

A

.
2

RT

d pN
 


 

 

Comparing (for the same species of molecule) at two different pressures and temperatures, 

this leads to  

2 2 1

1 1 2

.
T p

T p





   
    
   

 

 

With 1 = 9.9  10
–6

 cm, T1 = 293 K (the same as T2 in this part), p1 = 750 torr, and p2 = 

150 torr, we find 2 = 5.0  10
–5

 cm. 

 

(c) The ratio set up in part (b), using the same values for quantities with subscript 1, leads 

to 2 = 7.9  10
–6

 cm for T2 = 233 K and p2 = 750 torr. 

 

33. THINK We’re given the speeds of 10 molecules. The speed distribution is discrete.  

  

EXPRESS The average speed is ,
v

v
N


  where the sum is over the speeds of the 

particles and N is the number of particles. Similarly, the rms speed is given by 
2

rms   .
v

v
N



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ANALYZE (a) From the equation above, we find the average speed to be 

 

(2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0)km/s
6.5km/s.

10
v

        
   

(b) With 
2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

 [(2.0) (3.0) (4.0) (5.0) (6.0)

(7.0) (8.0) (9.0) (10.0) (11.0) ] km / s 505 km / s

v     

     


 

 

the rms speed is  
2 2

rms

505 km / s
7.1km/s.

10
v    

 

LEARN Each speed is weighted equally in calculating the average and the rms values. 

 

34. (a) The average speed is 

 

avg

[2(1.0) 4(2.0) 6(3.0) 8(4.0) 2(5.0)] cm/s
3.2cm/s.

2 4 6 8 2

i i

i

n v
v

n

    
  

    
 

 

(b) From 
2

rms /i i iv n v n    we get 

 
2 2 2 2 2

rms

2(1.0) 4(2.0) 6(3.0) 8(4.0) 2(5.0)
cm/s 3.4cm/s.

2 4 6 8 2
v

   
 

   
 

 

(c) There are eight particles at v = 4.0 cm/s, more than the number of particles at any 

other single speed. So 4.0 cm/s is the most probable speed. 

 

35. (a) The average speed is 

 

avg

1

1 1
[4(200 m/s) 2(500 m/s) 4(600 m/s)] 420 m/s.

10

N

i

i

v v
N 

      

 

(b) The rms speed is 

 

2 2 2 2

rms

1

1 1
[4(200 m/s) 2(500 m/s) 4(600 m/s) ] 458 m/s

10

N

i

i

v v
N 

      

 

(c) Yes, vrms  vavg. 

 

36. We divide Eq. 19-35 by Eq. 19-22: 
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2 2

rms 11

2 2

33

P
RT Mv T

v TRT M
   

 

which, for 
rms ,Pv v   leads to 

2

2

1 rms

3 3

2 2

PT v

T v

 
  

 
. 

 

37. THINK From the distribution function ( )P v , we can calculate the average and rms 

speeds. 

 

EXPRESS The distribution function gives the fraction of particles with speeds between v 

and v + dv, so its integral over all speeds is unity:  P(v) dv = 1. The average speed is 

defined as avg
0

( )v vP v dv


  . Similarly, the rms speed is given by 2

rms avg( )v v , where 

2 2

avg
0

( ) ( )v v P v dv


  . 

 

ANALYZE (a) Evaluate the integral by calculating the area under the curve in Fig. 19-23. 

The area of the triangular portion is half the product of the base and altitude, or 1
02

av . 

The area of the rectangular portion is the product of the sides, or av0. Thus,  

0 0 0

1 3
( )

2 2
P v dv av av av   , 

 

so 3
02

1av   and av0 = 2/3=0.67. 

 

(b) For the triangular portion of the distribution P(v) = av/v0, and the contribution of this 

portion is 

0

2
2 3 0

0 0
0

0 0

2
,

3 3 9

v ava a
v dv v v

v v
    

 

where 2/3v0 was substituted for a. P(v) = a in the rectangular portion, and the contribution 

of this portion is 

 

 
0

0

2
2 2 2

0 0 0 0

3
4 .

2 2

v

v

a a
a v dv v v v v     

Therefore, we have  

avg

avg 0 0 0

0

2
1.22    1.22

9

v
v v v v

v
     . 
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(c) In calculating  2 2

avgv v P v dv  , we note that the contribution of the triangular section 

is 

0 3 4 2

0 0
0

0 0

1
.

4 6

va a
v dv v v

v v
   

 

The contribution of the rectangular portion is 

 

 
0

0

2
2 3 3 3 2

0 0 0 0

7 14
8 .

3 3 9

v

v

a a
a v dv v v v v     

Thus, 

2 2 rms
rms 0 0 0

0

1 14
1.31   1.31 .

6 9

v
v v v v

v
      

 

(d) The number of particles with speeds between 1.5v0 and 2v0 is given by 
0

0

2

1.5
( )

v

v
N P v dv . 

The integral is easy to evaluate since P(v) = a throughout the range of integration. Thus 

the number of particles with speeds in the given range is  

 

Na(2.0v0 – 1.5v0) = 0.5N av0 = N/3, 

 

where 2/3v0 was substituted for a. In other words, the fraction of particles in this range is 

1/3 or 0.33. 

 

LEARN From the distribution function shown in Fig. 19-23, it is clear that there are 

more particles with a speed in the range 0 02v v v   than 00 v v  . In fact, 

straightforward calculation shows that the fraction of particles with speeds between 1.0v0 

and 2v0 is  

0

0

2

0 0 0
1.0

2
( ) (2 1.0 )

3

v

v
P v dv a v v av    . 

 

38. (a) From the graph we see that vp = 400 m/s.  Using the fact that M = 28 g/mol = 

0.028 kg/mol for nitrogen (N2 )  gas, Eq. 19-35 can then be used to determine the absolute 

temperature.  We obtain T = 
1

2
 Mvp

2
/R = 2.7×10

2
 K. 

 

(b) Comparing with Eq. 19-34, we conclude vrms = 3/2 vp = 4.9×10
2
 m/s. 

 

39. The rms speed of molecules in a gas is given by 3rmsv RT M , where T is the 

temperature and M is the molar mass of the gas. See Eq. 19-34. The speed required for 

escape from Earth's gravitational pull is 2 ev gr , where g is the acceleration due to 

gravity at Earth's surface and re (= 6.37  10
6
 m) is the radius of Earth. To derive this 



  CHAPTER 19 896 

expression, take the zero of gravitational potential energy to be at infinity. Then, the 

gravitational potential energy of a particle with mass m at Earth's surface is 

 
2

ee
U GMm r mgr    , 

 

where 2

eg GM r  was used. If v is the speed of the particle, then its total energy is 

21
2eE mgr mv   . If the particle is just able to travel far away, its kinetic energy must 

tend toward zero as its distance from Earth becomes large without bound. This means E = 

0 and 2 ev gr . We equate the expressions for the speeds to obtain 3 2 eRT M gr . 

The solution for T is T = 2greM /3R.  

 

(a) The molar mass of hydrogen is 2.02  10
–3

 kg/mol, so for that gas 

 

   
 

2 6 3

4
2 9.8m s 6.37 10 m 2.02 10 kg mol

1.0 10 K.
3 8.31J mol K

T

 
  


 

 

(b) The molar mass of oxygen is 32.0  10
–3

 kg/mol, so for that gas 

 

     
 

2 6 3

5
2 9.8m s 6.37 10 m 32.0 10 kg mol

1.6 10 K.
3 8.31J mol K

T

 
  


 

 

(c) Now, T = 2gmrmM / 3R, where rm = 1.74  10
6
 m is the radius of the Moon and gm = 

0.16g is the acceleration due to gravity at the Moon's surface. For hydrogen, the 

temperature is  

 

    
 

2 6 3

2
2 0.16 9.8m s 1.74 10 m 2.02 10 kg mol

4.4 10 K.
3 8.31J mol K

T

 
  


 

 

(d) For oxygen, the temperature is  

 

    
 

2 6 3

3
2 0.16 9.8m s 1.74 10 m 32.0 10 kg mol

7.0 10 K.
3 8.31J mol K

T

 
  


 

 

(e) The temperature high in Earth's atmosphere is great enough for a significant number 

of hydrogen atoms in the tail of the Maxwellian distribution to escape. As a result, the 

atmosphere is depleted of hydrogen.  

 

(f) On the other hand, very few oxygen atoms escape. So there should be much oxygen 

high in Earth’s upper atmosphere. 
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40. We divide Eq. 19-31 by Eq. 19-22: 

 

avg2 2 1

rms1 21

8 8

33

v RT M M

v MRT M


 


 

 

which, for avg2 rms12 ,v v  leads to 

 
2

avg21 1

2 2 rms1

3 3
4.7 .

8 2

vm M

m M v

  
    

 
 

 

41. (a) The root-mean-square speed is given by rms 3v RT M . See Eq. 19-34. The 

molar mass of hydrogen is 2.02  10
–3

 kg/mol, so 

 

   3

rms 3

3 8.31J mol K 4000K
7.0 10 m s.

2.02 10 kg mol
v




  


 

 

(b) When the surfaces of the spheres that represent an H2 molecule and an Ar atom are 

touching, the distance between their centers is the sum of their radii:  

 

d =  r1 + r2 = 0.5  10
–8

 cm + 1.5  10
–8

cm = 2.0  10
–8

 cm. 

 

(c) The argon atoms are essentially at rest so in time t the hydrogen atom collides with all 

the argon atoms in a cylinder of radius d, and length vt, where v is its speed. That is, the 

number of collisions is d
2
vtN/V, where N/V is the concentration of argon atoms. The 

number of collisions per unit time is 

 

    
2

2
10 3 25 3 102.0 10 m 7.0 10 m s 4.0 10 m 3.5 10 collisions s.

d vN

V

 
        

 

42. The internal energy is 

 

    3

int

3 3
1.0mol 8.31 J/mol K 273K 3.4 10 J.

2 2
E nRT      

 

43. (a) From Table 19-3, 5
2VC R  and 7

2pC R . Thus, Eq. 19-46 yields 

 

      37
3.00 8.31 40.0 3.49 10 J.

2
pQ nC T

 
     

 
 

(b) Equation 19-45 leads to 
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      3

int

5
3.00 8.31 40.0 2.49 10 J.

2
VE nC T

 
      

 
 

 

(c) From either W = Q – Eint or W = pT = nRT, we find W = 997 J. 

 

(d) Equation 19-24 is written in more convenient form (for this problem) in Eq. 19-38. 

Thus, the increase in kinetic energy is 

 

  3

trans avg

3
1.49 10 J.

2
K NK n R T

 
       

 
 

 

Since int trans rotE K K    , the increase in rotational kinetic energy is 

 
3 3 3

rot int trans 2.49 10  J 1.49 10  J 1.00 10  JK E K          . 

 

Note that had there been no rotation, all the energy would have gone into the translational 

kinetic energy. 

 

44. Two formulas (other than the first law of thermodynamics) will be of use to us. It is 

straightforward to show, from Eq. 19-11, that for any process that is depicted as a straight 

line on the pV diagram, the work is 

straight
2

i fp p
W V

 
  
 

 

 

which includes, as special cases, W = pV for constant-pressure processes and W = 0 for 

constant-volume processes. Further, Eq. 19-44 with Eq. 19-51 gives 

 

int
2 2

f f
E n RT pV

   
    

   
 

 

where we have used the ideal gas law in the last step. We emphasize that, in order to 

obtain work and energy in joules, pressure should be in pascals (N/m
2
) and volume 

should be in cubic meters. The degrees of freedom for a diatomic gas is f = 5. 

 

(a) The internal energy change is 

 

        3 3 3 3

int int 

3

5 5
2.0 10 Pa 4.0m 5.0 10 Pa 2.0m

2 2

5.0 10 J.

c a c c a aE E p V p V      

  

 

 

(b) The work done during the process represented by the diagonal path is 
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    3 3

diag  =  3.5 10 Pa 2.0m
2

a c
c a

p p
W V V

 
   
 

 

 

which yields Wdiag = 7.0×10
3
 J. Consequently, the first law of thermodynamics gives 

 
3 3 3

diag int diag ( 5.0 10 7.0 10 ) J 2.0 10 J.Q E W           

 

(c) The fact that Eint only depends on the initial and final states, and not on the details of 

the “path” between them, means we can write 3

int int int 5.0 10 Jc aE E E       for the 

indirect path, too. In this case, the work done consists of that done during the constant 

pressure part (the horizontal line in the graph) plus that done during the constant volume 

part (the vertical line): 

 

  3 3 4

indirect 5.0 10 Pa 2.0m 0 1.0 10 J.W       

 

Now, the first law of thermodynamics leads to 

 
3 4 3

indirect int indirect ( 5.0 10 1.0 10 ) J 5.0 10 J.Q E W           

 

45. Argon is a monatomic gas, so f = 3 in Eq. 19-51, which provides 

 

 
3 3 1 cal cal

8.31 J/mol K 2.98
2 2 4.186 J mol C

VC R
 

       
 

 

where we have converted joules to calories, and taken advantage of the fact that a Celsius 

degree is equivalent to a unit change on the Kelvin scale. Since (for a given substance) M 

is effectively a conversion factor between grams and moles, we see that cV (see units 

specified in the problem statement) is related to CV by   V VC c M where AM mN , and 

m is the mass of a single atom (see Eq. 19-4). 

 

(a) From the above discussion, we obtain 

 

23 26

23

/ 2.98/ 0.075
6.6 10 g 6.6 10 kg.

6.02 10

V VC cM
m

N N

 

 

      


 

 

(b) The molar mass is found to be  

 

M = CV/cV = 2.98/0.075 = 39.7 g/mol 

 

which should be rounded to 40 g/mol since the given value of cV is specified to only two 

significant figures. 
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46. (a) Since the process is a constant-pressure expansion,  

 

   2.02mol 8.31 J/mol K 15K 249J.W p V nR T        

 

(b) Now, Cp = 
5

2
 R in this case, so Q = nCpT =  +623 J by Eq. 19-46.  

 

(c) The change in the internal energy is Eint = Q – W = +374 J.  

 

(d) The change in the average kinetic energy per atom is  

 

Kavg = Eint/N = +3.11  10
22 

J. 

 

47. (a) The work is zero in this process since volume is kept fixed. 

 

(b) Since CV = 
3

2
 R for an ideal monatomic gas, then Eq. 19-39 gives Q = +374 J. 

 

(c)  Eint = Q – W = +374 J. 

 

(d) Two moles are equivalent to N = 12 x 10
23

 particles.  Dividing the result of part (c) by 

N gives the average translational kinetic energy change per atom: 3.11  10
22 

J. 

 

48. (a) According to the first law of thermodynamics Q = Eint + W. When the pressure is 

a constant W = p V. So 

 

  
6 3

5 3 3

int 3

1 10 m
20.9 J 1.01 10 Pa 100 cm 50 cm 15.9 J.

1 cm
E Q p V

 
         

 
 

 

(b) The molar specific heat at constant pressure is 

 

 

  

  5 6 3

8.31 J/mol K 20.9J
34.4J mol K.

/ 1.01 10 Pa 50 10 m
p

Q Q R Q
C

n T n p V nR p V 


     

    
 

 

(c) Using Eq. 19-49, CV = Cp – R = 26.1 J/mol·K. 

 

49. THINK The molar specific heat at constant volume for a gas is given by Eq. 19-41: 

int /VC E n T   . Our system consists of three non-interacting gases. 

 

EXPRESS When the temperature changes by T the internal energy of the first gas 

changes by n1 CV1 T, the internal energy of the second gas changes by n2CV2 T, and the 

internal energy of the third gas changes by n3CV3 T. The change in the internal energy of 

the composite gas is  
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Eint = (n1 CV1 + n2 CV2 + n3 CV3) T. 

 

This must be (n1 + n2 + n3) CV T, where CV is the molar specific heat of the mixture. 

Thus, 

1 1 2 2 3 3

1 2 3

.V V V
V

n C n C n C
C

n n n

 


 
 

 

ANALYZE With n1=2.40 mol, CV1=12.0 J/mol·K for gas 1, n2=1.50 mol, CV2=12.8 

J/mol·K for gas 2, and n3=3.20 mol, CV3=20.0 J/mol·K for gas 3, we obtain  

 

(2.40 mol)(12.0 J/mol K) (1.50 mol)(12.8 J/mol K) (3.20 mol)(20.0 J/mol K)

2.40 mol 1.50 mol 3.20 mol

15.8 J/mol K

VC
    


 

 

 

 

for the mixture. 

 

LEARN The molar specific heat of the mixture VC is the sum of each individual ViC  

weighted by the molar fraction.   

 

50. Referring to Table 19-3, Eq. 19-45 and Eq. 19-46, we have 

 

int

5 7
,   .

2 2
V pE nC T nR T Q nC T nR T          

Dividing the equations, we obtain 

int 5
.

7

E

Q


  

 

Thus, the given value Q = 70 J leads to int 50 J.E   

 

51. The fact that they rotate but do not oscillate means that the value of f given in Table 

19-3 is relevant. Thus, Eq. 19-46 leads to 

 

 
7 7

1
2 2

f

p f i i

i

T
Q nC T n R T T nRT

T

    
         

    
 

 

where Ti = 273 K and n = 1.0 mol. The ratio of absolute temperatures is found from the 

gas law in ratio form. With pf = pi we have 

 

2.
f f

i i

T V

T V
   

 

Therefore, the energy added as heat is 
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      37
1.0mol 8.31 J/mol K 273K 2 1 8.0 10 J.

2
Q

 
     

 
 

 

52. (a) Using M = 32.0 g/mol from Table 19-1 and Eq. 19-3, we obtain 

 

sam 12.0 g
0.375 mol.

32.0 g/mol

M
n

M
    

 

(b) This is a constant pressure process with a diatomic gas, so we use Eq. 19-46 and 

Table 19-3. We note that a change of Kelvin temperature is numerically the same as a 

change of Celsius degrees. 

 

     37 7
0.375 mol 8.31 J/mol K 100K 1.09 10 J.

2 2
pQ nC T n R T

   
          

   
 

 

(c) We could compute a value of Eint from Eq. 19-45 and divide by the result from part 

(b), or perform this manipulation algebraically to show the generality of this answer (that 

is, many factors will be seen to cancel). We illustrate the latter approach: 

 

 
 

5
2int

7
2

 5
0.714.

 7

n R TE

Q n R T


  


 

 

53. THINK The molecules are diatomic, with translational and rotational degrees of  

freedom. The temperature change is under constant pressure.  

 

EXPRESS Since the process is at constant pressure, energy transferred as heat to the gas 

is given by Q = nCp T, where n is the number of moles in the gas, Cp is the molar 

specific heat at constant pressure, and T is the increase in temperature. Similarly, the 

change in the internal energy is given by Eint = nCV T, where CV is the specific heat at 

constant volume. For a diatomic ideal gas, 7
2pC R  and 5

2VC R (see Table 19-3).  

  

ANALYZE (a) The heat transferred is  

 

    37 7
4.00mol 8.31J/mol K 60.0K 6.98 10 J.

2 2
p

R
Q nC T n T

 
        

 
 

 

(b) From the above, we find the change in the internal energy to be 

 

    3

int

5 5
4.00mol 8.31J/mol.K 60.0K 4.99 10 J.

2 2
V

R
E nC T n T

 
        

 
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(c) According to the first law of thermodynamics, Eint = Q – W, so the work done by the 

gas is 
3 3 3

int 6.98 10 J 4.99 10 J = 1.99 10 J.W Q E        

 

(d) The change in the total translational kinetic energy is 

 

    33 3
4.00mol 8.31J/mol K 60.0K 2.99 10 J.

2 2
K nR T        

 

LEARN The diatomic gas has three translational and two rotational degrees of freedom 

(making 3 2 5f    ). By equipartition theorem, each degree of freedom accounts for an 

energy of / 2RT  per mole. Thus, ( / 2) 5 / 2VC f R R   and  7 / 2p VC C R R   .  

 

54. The fact that they rotate but do not oscillate means that the value of f given in Table 

19-3 is relevant. In Section 19-11, it is noted that  = Cp/CV so that we find  = 7/5 in this 

case. In the state described in the problem, the volume is 

 

    3

5 2

2.0mol 8.31 J/mol K 300K
0.049 m

1.01 10 N/m

nRT
V

p


  


. 

Consequently, 

  
1.4

5 2 3 3 2.21.01 10 N/m 0.049m 1.5 10 N m .pV       

 

55. (a) Let pi, Vi, and Ti represent the pressure, volume, and temperature of the initial state 

of the gas. Let pf, Vf, and Tf represent the pressure, volume, and temperature of the final 

state. Since the process is adiabatic i i f fpV p V
 
 , so 

 

 
1.4

4.3 L
1.2atm 13.6atm 14 atm.

0.76 L

i
f i

f

V
p p

V


   

        

 

 

We note that since Vi and Vf have the same units, their units cancel and pf has the same 

units as pi. 

 

(b) The gas obeys the ideal gas law pV = nRT, so piVi/pfVf = Ti/Tf and 

 

  

  
  213.6atm 0.76L
310K 6.2 10 K.

1.2atm 4.3L

f f

f i

i i

p V
T T

pV

 
    

 
 

 

56. (a) We use Eq. 19-54 with 1
2

/f iV V   for the gas (assumed to obey the ideal gas law). 
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1.3(2.00)
f i

i i f f

i f

p V
pV p V

p V



   
    

 

 

 

which yields pf = (2.46)(1.0 atm) = 2.46 atm.  

 

(b) Similarly, Eq. 19-56 leads to 

 

  
1

273K 1.23 336K.i
f i

f

V
T T

V



 
   

 



 

 

(c) We use the gas law in ratio form and note that when p1 = p2 then the ratio of volumes 

is equal to the ratio of (absolute) temperatures. Consequently, with the subscript 1 

referring to the situation (of small volume, high pressure, and high temperature) the 

system is in at the end of part (a), we obtain 

 

2 2

1 1

273K
0.813.

336K

V T

V T
    

 

The volume V1 is half the original volume of one liter, so 

 

 2 0.813 0.500L 0.406L.V    

 

57. (a) Equation 19-54, i i f fpV p V
 
 , leads to  

 

  
200L

4.00 atm 1.00atm
74.3L

i
f i

f

V
p p

V

 
   

      
  

 

 

which can be solved to yield 

 

 
 

 

 

ln ln 4.00atm 1.00atm 7
1.4 .

ln 200L 74.3L 5ln

f i

i f

p p

V V
      

 

This implies that the gas is diatomic (see Table 19-3). 

 

(b) One can now use either Eq. 19-56 or use the ideal gas law itself.  Here we illustrate 

the latter approach: 

Pf Vf

 Pi Vi
  =  

nRTf 

 nRTi 
            Tf  =  446 K . 
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(c) Again using the ideal gas law: n = Pi Vi /RTi = 8.10 moles.  The same result would, of 

course, follow from n = Pf Vf /RTf .   

 

58. Let pi, Vi, and Ti represent the pressure, volume, and temperature of the initial state of 

the gas, and let pf, Vf, and Tf be the pressure, volume, and temperature of the final state. 

Since the process is adiabatic i i f fpV p V
 
 . Combining with the ideal gas law, 

pV NkT , we obtain 
1 1 1( / ) constanti i i i i i i i i f fpV p T p p T p T p T               

 

With 4/ 3,   which gives (1 ) / 1/ 4    , the temperature at the end of the adiabatic 

expansion is  
1

1/ 4
5.00 atm

(278 K) 186 K 87 C
1.00 atm

i
f i

f

p
T T

p






   

            

. 

 

59. Since Eint does not depend on the type of process, 

 

   int intpath 2 path 1
.E E    

 

Also, since (for an ideal gas) it only depends on the temperature variable (so Eint = 0 for 

isotherms), then 

   int intpath1 adiabat
.E E    

 

Finally, since Q = 0 for adiabatic processes, then (for path 1) 

 

 

   

int adiabatic expansion

int adiabatic compression

40 J

25 J 25 J.

E W

E W

   

      
 

 

Therefore,  int path 2
40J + 25J = 15J .E    

 

60. Let 1 1, ,p V  and 1T  represent the pressure, volume, and temperature of the air at 

1 4267 m.y   Similarly, let ,p V , and T be the pressure, volume, and temperature of the 

air at 1567 m.y   Since the process is adiabatic, 1 1pV pV  . Combining with the ideal 

gas law, pV NkT , we obtain 

 
1 1 1

1 1( / ) constantpV p T p p T p T p T              . 

 

With 0

ayp p e  and 4/ 3   (which gives (1 ) / 1/ 4    ), the temperature at the end 

of the descent is  
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1
4

1

11

( ) / 4 (1.16 10 /m)(1567 m 4267 m) / 401
1 1 1

0

(268 K)

(1.08)(268 K) 290 K 17 C.

ay
a y y

ay

p ep
T T T e T e

p p e



 




    



  
     
   

   

 

 

61. The aim of this problem is to emphasize what it means for the internal energy to be a 

state function.  Since path 1 and path 2 start and stop at the same places, then the internal 

energy change along path 1 is equal to that along path 2.  Now, during isothermal 

processes (involving an ideal gas) the internal energy change is zero, so the only step in 

path 1 that we need to examine is step 2.  Equation 19-28 then immediately yields  –20 J 

as the answer for the internal energy change. 

 

62. Using Eq. 19-53 in Eq. 18-25 gives 

 

 

1 1

1

f

i

V f i

i i i i
V

V V
W pV V dV pV

 

  



 




 
 . 

 

Using Eq. 19-54 we can write this as 

 

 

1 1/1 ( / )

1

f i

i i

p p
W pV









 

 

In this problem,  = 7/5 (see Table 19-3) and  Pf /Pi = 2.  Converting the initial pressure 

to pascals we find Pi Vi = 24240 J.  Plugging in, then, we obtain W = 1.33  10
4 

J. 

 

63. In the following, 3
2VC R  is the molar specific heat at constant volume, 5

2pC R  is 

the molar specific heat at constant pressure, T is the temperature change, and n is the 

number of moles. 

 

The process 1  2 takes place at constant volume.  

 

(a) The heat added is 

 

    33 3
1.00mol 8.31J/mol K 600K 300K 3.74 10 J.

2 2
VQ nC T nR T          

 

(b) Since the process takes place at constant volume, the work W done by the gas is zero, 

and the first law of thermodynamics tells us that the change in the internal energy is 

 
3

int 3.74 10 J.E Q     
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(c) The work W done by the gas is zero. 

 

The process 2  3 is adiabatic.  

 

(d) The heat added is zero.  

 

(e) The change in the internal energy is 

 

    3

int

3 3
1.00mol 8.31J/mol K 455K 600K 1.81 10 J.

2 2
VE nC T nR T            

 

(f) According to the first law of thermodynamics the work done by the gas is 

 
3

int 1.81 10 J.W Q E      

 

The process 3  1 takes place at constant pressure.  

 

(g) The heat added is 

 

35 5
(1.00 mol)(8.31J/mol K)(300K 455K) 3.22 10 J.  

2 2
pQ nC T nR T           

 

(h) The change in the internal energy is 

 

3

int

3 3
(1.00mol)(8.31J/mol K)(300K 455K) 1.93 10 J.

2 2
VE nC T nR T            

 

(i) According to the first law of thermodynamics the work done by the gas is 

 
3 3 3

int 3.22 10 J 1.93 10 J 1.29 10 J.W Q E           

 

(j) For the entire process the heat added is 

 
3 33.74 10 J 0 3.22 10 J 520 J.Q        

 

(k) The change in the internal energy is 

 
3 3 3

int 3.74 10 J 1.81 10 J 1.93 10 J 0.E         

 

(l) The work done by the gas is 

 
3 30 1.81 10 J 1.29 10 J 520 J.W        
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(m) We first find the initial volume. Use the ideal gas law p1V1 = nRT1 to obtain 

 

2 31
1 5

1

(1.00mol)(8.31J / mol K)(300K)
2.46 10 m .

(1.013 10 Pa)

nRT
V

p


   


 

 

(n) Since 1  2 is a constant volume process, V2 = V1 = 2.46  10
–2

 m
3
. The pressure for 

state 2 is 

 

52
2 2 3

2

(1.00 mol) (8.31J / mol K)(600K)
2.02 10 Pa .

2.46 10 m

nRT
p

V 


   


 

 

This is approximately equal to 2.00 atm.  

 

(o) 3  1 is a constant pressure process. The volume for state 3 is 

 

2 33
3 5

3

(1.00mol)(8.31J / mol K)(455K)
3.73 10 m .

1.013 10 Pa

nRT
V

p


   


 

 

(p) The pressure for state 3 is the same as the pressure for state 1: p3 = p1 = 1.013  10
5
 

Pa (1.00 atm) 

 

64. We write T = 273 K and use Eq. 19-14: 

 

     
16.8

1.00mol 8.31  J/mol K 273K ln
22.4

W
 

   
 

 

 

which yields W = –653 J. Recalling the sign conventions for work stated in Chapter 18, 

this means an external agent does 653 J of work on the ideal gas during this process. 

 

65. (a) We use i i f fpV p V
 
  to compute : 

 

 
 

 
 

5

3 6

ln 1.0atm 1.0 10 atmln 5
.

3ln ln 1.0 10 L 1.0 10 L

i f

f i

p p

V V



  

 
 

 

Therefore the gas is monatomic. 

 

(b) Using the gas law in ratio form, the final temperature is 

 

 
  

  

5 3

4

6

1.0 10 atm 1.0 10 L
273K 2.7 10 K.

1.0atm 1.0 10 L

f f

f i

i i

p V
T T

pV

 
   


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(c) The number of moles of gas present is 

 

  
  

5 3 3

4
1.01 10 Pa 1.0 10 cm

4.5 10 mol.
8.31 J/mol K 273K

i i

i

pV
n

RT

 
   


 

 

(d) The total translational energy per mole before the compression is 

 

   33 3
8.31 J/mol K 273K 3.4 10 J.

2 2
i iK RT      

 

(e) After the compression, 

 

  4 53 3
8.31 J/mol K 2.7 10 K 3.4 10 J.

2 2
f fK RT       

 

(f) Since 2

rmsv T , we have 

2

rms,

2 4

rms,

273K
0.010.

2.7 10 K

i i

f f

v T

v T
  


 

 

66. Equation 19-25 gives the mean free path: 

 

 = 
1

2 d
2
 o (N/V)

  =  
n R T

2 d
2
 o  P N

  

 

where we have used the ideal gas law in that last step.  Thus, the change in the mean free 

path is  

 =   
n R T

2 d
2
 o  P N

  =   
R Q

2 d
2
 o  P N  Cp

  

 

where we have used Eq. 19-46.  The constant pressure molar heat capacity is (7/2)R in 

this situation, so (with N = 9  10
23 

 and  d = 250 10
12 

m) we find 

 

 = 1.52  10
9 

m  = 1.52 nm. 

 

67. (a) The volume has increased by a factor of 3, so the pressure must decrease 

accordingly (since the temperature does not change in this process).  Thus, the final 

pressure is one-third of the original 6.00 atm.  The answer is 2.00 atm. 

 

(b) We note that Eq. 19-14 can be written as PiVi ln(Vf /Vi).  Converting “atm” to “Pa” (a 

pascal is equivalent to a N/m
2
) we obtain W = 333 J. 

 

(c) The gas is monatomic so  = 5/3.  Equation 19-54 then yields Pf  = 0.961 atm. 
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(d) Using Eq. 19-53 in Eq. 18-25 gives 

 
1 1

1 1

f

i

V f i f f i i

i i i i
V

V V p V pV
W pV V dV pV

 

  

 

 


 

  
   

 

where in the last step Eq. 19-54 has been used. Converting “atm” to “Pa,” we obtain 

236 J.W   

 

68. Using the ideal gas law, one mole occupies a volume equal to 

 

    10 3

8

1 8.31 50.0
4.16 10 m .

1.00 10

nRT
V

p 
   


 

 

Therefore, the number of molecules per unit volume is 

 

   23

13A

10 3

1 6.02 10 molecules
1.45 10 .

4.16 10 m

nNN

V V


   


 

 

Using d = 20.0  10
–9

 m, Eq. 19-25 yields 

 

 2

1
38.8 m.

2 N
V

d
  


 

 

69. THINK The net upward force is the difference between the buoyant force and the 

weight of the balloon with air inside. 

 

EXPRESS Let c be the density of the cool air surrounding the balloon and h be the 

density of the hot air inside the balloon. The magnitude of the buoyant force on the 

balloon is b cF gV , where V is the volume of the envelope. The force of gravity is 

hFg W gV  , where W is the combined weight of the basket and the envelope. Thus, 

the net upward force is  

 net b g c hF F F gV W gV      . 

 

ANALYZE With Fnet = 2.67  10
3
 N, W = 2.45  10

3
 N, V = 2.18  10

3
 m

3
, and 

311.9 N/mcg  , we obtain  

 
3 3 3 3 3

3net

3 3

(11.9 N/m )(2.18 10 m ) 2.45 10 N 2.67 10 N
9.55 N/m

2.18 10 m

c
h

gV W F
g

V




      
  




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The ideal gas law gives / /p RT n V . Multiplying both sides by the “molar weight” Mg 

then leads to 

h

pMg nMg
g

RT V
  . 

 

With 51.01 10 Pap    and M = 0.028 kg/m
3
, we find the temperature to be 

 
5 2

3

(1.01 10 Pa)(0.028 kg/mol)(9.8 m/s )
349 K

(8.31J/mol K)(9.55 N/m )h

pMg
T

R g


  


. 

 

LEARN As can be seen from the results above, increasing the temperature of the gas 

inside the balloon increases the value of netF , i.e., the lifting capacity.  

 

70. We label the various states of the ideal gas as follows: it starts expanding 

adiabatically from state 1 until it reaches state 2, with V2 = 4 m
3
; then continues on to 

state 3 isothermally, with V3 = 10 m
3
; and eventually getting compressed adiabatically to 

reach state 4, the final state. For the adiabatic process 1 1 2 21 2 pV p V   , for the 

isothermal process 2  3 p2V2 = p3V3, and finally for the adiabatic process 

3 3 4 43 4 p V p V   . These equations yield 

 

3 3 32 1 2
4 3 2 1

4 3 4 2 3 4

.
V V VV V V

p p p p
V V V V V V

   
          

            
          

 

 

We substitute this expression for p4 into the equation p1V1 = p4V4 (since T1 = T4) to obtain 

V1V3 = V2V4. Solving for V4 we obtain 

 

  3 3

31 3
4 3

2

2.0m 10m
5.0m .

4.0m

VV
V

V
    

 

71. THINK An adiabatic process is a process in which the energy transferred as heat is 

zero.  

 

EXPRESS The change in the internal energy is given by Eint = nCV T, where CV is the 

specific heat at constant volume, n is the number of moles in the gas, and T is the 

change in temperature. According to the first law of thermodynamics, the work done by 

the gas is intW Q E  . For an adiabatic process, 0Q  , and intW E  . 

 

ANALYZE (a) The work done by the gas is 

 

int

3 3
(2.0 mol)(8.31J/mol K)(15.0 K) 374 J

2 2
VW E nC T nR T             . 
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(b) Q = 0 since the process is adiabatic.  

 

(c) The change in internal energy is 
int

3
374 J

2
E nR T    .   

 

(d) The number of atoms in the gas is 
AN nN , where 

AN  is the Avogadro’s number. 

Thus, the change in the average kinetic energy per atom is 

 

 22int int
1 23

374 J
3.11 10 J

(2.00)(6.02 10 / mol)A

E E
K

N nN

 
     


. 

 

LEARN The work done on the system is the negative of the work done by the system: 

int 374 JonW W E      . By work-kinetic energy theorem: 
on intK W E     . 

 

72. We solve 

helium hydrogen

3 3 (293K)RT R

M M
  

 

for T. With the molar masses found in Table 19-1, we obtain 

 

4.0
(293K) 580K

2.02
T

 
  

 
 

 

which is equivalent to 307°C. 

 

73. THINK The collision frequency is related to the mean free path and average speed of 

the molecules. 

 

EXPRESS According to Eq. 19-25, the mean free path for molecules in a gas is given by 

2

1
,

2 /d N V
 


 

 

where d is the diameter of a molecule and N is the number of molecules in volume V. 

Using ideal gas law, the number density can be written as / /N V p kT , where p is the 

pressure, T is the temperature on the Kelvin scale and k is the Boltzmann constant. The 

average time between collisions is avg/ v  , where avg 8 /v RT M , where R is the 

universal gas constant and M is the molar mass. The collision frequency is simply given 

by 1/f  .   

 

ANALYZE With p = 2.02  10
3
 Pa and d = 290  10

12 
m, we find the mean free path to 

be 
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23
8

2 2 12 2 5

1 (1.38 10 J/K)(400 K)
7.31 10 m

2 ( / ) 2 2 (290 10 m) (1.01 10 Pa)

kT

d p kT d p  







     

 
. 

 

Similarly, with M = 0.032 kg/mol, we find the average speed to be  

 

  
avg 3

8 8.31J/mol K 400K8
514m/s

(32 10 kg/mol)

RT
v

M 


  

  
. 

 

Thus, the collision frequency is 
avg 9

8

514 m/s
7.04 10 collisions/s

7.31 10 m

v
f

 
   


. 

 

LEARN This is very similar to the Sample Problem 19.04 – “Mean free path, average 

speed and collision frequency.”  A general expression for f is  

 

 
2

avgspeed 16

distance

v pd R
f

k MT




   . 

 

74. (a) Since n/V = p/RT, the number of molecules per unit volume is 

 

  

5
23 25A

A 3J
mol K

1.01 10 Pa molecules
(6.02 10 ) 2.5 10 .

8.31 293K m

N nN p
N

V V RT 

 
     

 
 

 

(b) Three-fourths of the 2.5  10
25

 value found in part (a) are nitrogen molecules with M 

= 28.0 g/mol (using Table 19-1), and one-fourth of that value are oxygen molecules with 

M = 32.0 g/mol. Consequently, we generalize the Msam = NM/NA expression for these two 

species of molecules and write 

 

25 25 3

23 23

3 28.0 1 32.0
(2.5 10 ) (2.5 10 ) 1.2 10 g 1.2 kg.

4 6.02 10 4 6.02 10
     

 
 

 

75. We note that  3
2

K n R T    according to the discussion in Sections 19-5 and 19-9. 

Also, Eint = nCVT can be used for each of these processes (since we are told this is an 

ideal gas). Finally, we note that Eq. 19-49 leads to Cp = CV + R  8.0 cal/mol·K after we 

convert joules to calories in the ideal gas constant value (Eq. 19-6): R  2.0 cal/mol·K. 

The first law of thermodynamics Q = Eint + W applies to each process. 

 

• Constant volume process with T = 50 K and n = 3.0 mol. 



(a) Since the change in the internal energy is Eint = (3.0)(6.00)(50) = 900 cal, and the 

work done by the gas is W = 0 for constant volume processes, the first law gives Q = 900 

+ 0 = 900 cal. 
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(b) As shown in part (a), W = 0. 

 

(c) The change in the internal energy is, from part (a), Eint = (3.0)(6.00)(50) = 900 cal. 

 

(d) The change in the total translational kinetic energy is 

 

 3
2

(3.0) (2.0) (50) 450cal.K    

 

• Constant pressure process with T = 50 K and n = 3.0 mol. 

 

(e) W = pV for constant pressure processes, so (using the ideal gas law)  

 

W = nRT = (3.0)(2.0)(50) = 300 cal. 

 

The first law gives Q = (900 + 300) cal = 1200 cal. 

 

(f) From (e), we have W = 300 cal. 



(g) The change in the internal energy is Eint = (3.0)(6.00)(50) = 900 cal. 



h) The change in the translational kinetic energy is  3
2

(3.0) (2.0) (50) 450cal.K    

 

• Adiabiatic process with T = 50 K and n = 3.0 mol. 

 

(i) Q = 0 by definition of “adiabatic.” 

 

(j) The first law leads to W = Q – Eint = 0 – 900 cal = –900 cal. 

 

(k) The change in the internal energy is Eint = (3.0)(6.00)(50) = 900 cal. 



(l) As in part (d) and (h),  3
2

(3.0) (2.0) (50) 450cal.K    

 

76. (a) With work being given by  

 

W = pV = (250)(0.60) J = 150 J, 

 

and the heat transfer given as –210 J, then the change in internal energy is found from the 

first law of thermodynamics to be  [–210 – (–150)] J = –60 J. 

 

(b) Since the pressures (and also the number of moles) don’t change in this process, then 

the volume is simply proportional to the (absolute) temperature.  Thus, the final 

temperature is ¼ of the initial temperature.  The answer is 90 K.  
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77. THINK From the distribution function ( )P v , we can calculate the average and rms 

speeds of the gas. 

 

EXPRESS The distribution function gives the fraction of particles with speeds between v 

and v + dv, so its integral over all speeds is unity:  P(v) dv = 1. The average speed is 

defined as avg
0

( )v vP v dv


  . Similarly, the rms speed is given by 2

rms avg( )v v , where 

2 2

avg
0

( ) ( )v v P v dv


  . 

 

ANALYZE (a) By normalizing the distribution function: 

 

 
o o 2 3

0
0 0

1
3

v v C
P v dv Cv dv v     

we find the constant C to be 3

03/C v . 

 

(b) The average speed is 

 
o o o

2
3

avg o3 30 0 0
o o

3 3 3
.

4

v v vv
v vP v dv v dv v dv v

v v

 
    

 
    

 

(c) Similarly, the rms speed is the square root of 

 

 
o o o

2
2 2 4 2

o3 30 0 0
o o

3 3 3
.

5

v v vv
v P v dv v dv v dv v

v v

 
   

 
    

Therefore, rms 3/5 0.775 .v v v 
o o

 

 

LEARN The maximum speed of the gas is max 0v v , as indicated by the distribution 

function. Using Eq. 19-29, we find the fraction of molecules with speed between 1v  and 

2v  to be  

 
2 2 2

1 1 1

3 32
2 2 1

3 3 3

o o o

3 3
frac .

v v v

v v v

v vv
P v dv dv v dv

v v v

  
    

 
    

 

78. (a) In the free expansion from state 0 to state 1 we have Q = W = 0, so Eint = 0, 

which means that the temperature of the ideal gas has to remain unchanged. Thus the 

final pressure is 

0 0 0 0 1
1 0

1 0 0

1 1
  0.333.

3.00 3.00 3.00

p V p V p
p p

V V p
       

 

(b) For the adiabatic process from state 1 to 2 we have p1V1

 =p2V2


, that is, 
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   
1

3
0 0 0 0

1
3.00 3.00

3.00
p V p V

   

 

which gives  = 4/3. The gas is therefore polyatomic. 

 

(c) From T = pV/nR we get 

 
1/32 2 2

1 1 1

3.00 1.44.
K T p

K T p
     

 

79. THINK The compression is isothermal so 0T  . In addition, since the gas is ideal, 

we can use the ideal gas law: pV nRT . 

 

EXPRESS The work done by the gas during the isothermal compression process from 

volume Vi to volume Vf  is given by  

 

ln ,
f f

i i

V V f

V V
i

VdV
W p dV nRT nRT

V V

 
    

 
   

 

where we use the ideal gas law to replace p with nRT/V.   

 

ANALYZE (a) The temperature is T = 10.0°C = 283 K. Then, with n = 3.50 mol, we 

obtain 
3

3

3

0

3.00 m
ln (3.50 mol)(8.31J/mol K)(283 K)ln 2.37 10 J

4.00 m

fV
W nRT

V

   
       

  
. 

 

(b) The internal energy change Eint vanishes (for an ideal gas) when T = 0 so that the 

First Law of Thermodynamics leads to Q = W = –2.37 kJ.  

 

LEARN The work done by the gas is negative since f iV V . Also, the negative value in 

Q implies that the heat transfer is from the sample to its environment.  

 

80. The ratio is  

 
2 2

rms rms

2 2

/ 2 3

mgh gh Mgh

mv v RT
   

 

where we have used Eq. 19-22 in that last step.  With T = 273 K, h = 0.10 m and M = 32 

g/mol = 0.032 kg/mol, we find the ratio equals 9.2  10
6

. 

 

81. (a) The p-V diagram is shown next. Note that to obtain the graph, we have chosen n = 

0.37 moles for concreteness, in which case the horizontal axis (which we note starts not at 

zero but at 1) is to be interpreted in units of cubic centimeters, and the vertical axis (the 

absolute pressure) is in kilopascals.  However, the constant volume temperature-increase 
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process described in the third step (see the problem statement) is difficult to see in this 

graph since it coincides with the pressure axis. 

 

 
 

(b) We note that the change in internal energy is zero for an ideal gas isothermal process, 

so (since the net change in the internal energy must be zero for the entire cycle) the 

increase in internal energy in step 3 must equal (in magnitude) its decease in step 1.  By 

Eq. 19-28, we see this number must be 125 J. 

 

(c) As implied by Eq. 19-29, this is equivalent to heat being added to the gas. 

 

82. (a) The ideal gas law leads to 

 

    
5

1.00mol 8.31J/mol K 273K

1.01 10 Pa

nRT
V

p


 


 

 

which yields V = 0.0225 m
3
 = 22.5 L. If we use the standard pressure value given in 

Appendix D, 1 atm = 1.013  10
5
 Pa, then our answer rounds more properly to 22.4 L. 

 

(b) From Eq. 19-2, we have N = 6.02  10
23

 molecules in the volume found in part (a) 

(which may be expressed as V = 2.24  10
4
 cm

3
), so that 

 
23

19 3

4 3

6.02 10
2.69 10 molecules/cm .

2.24 10 cm

N

V


  


 

 

83. THINK For an isothermal expansion, 0T  . However, if the expansion is adiabatic, 

then 0Q  . 

 

EXPRESS Using ideal gas law: pV nRT , we have 
f f f

i i i

p V T

pV T
 . For isothermal 

process, f iT T , which gives i i
f

f

pV
p

V
 .  The work done by the gas is 
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ln
f f

i i

V V f

V V
i

VdV
W p dV nRT nRT

V V

 
    

 
  . 

 

Now, for an adiabatic process, i i f fpV p V  . The final pressures and temperatures are  

,
f f ii

f i f

f i i

p V TV
p p T

V pV


 

  
 
 

 

The work done is int intW Q E E    . 

 

ANALYZE (a) For the isothermal process, the final pressure is 

 

  32atm 1.0L
8.0atm

4.0L

i i
f

f

pV
p

V
   . 

(b) The final temperature of the gas is the same as the initial temperature: Tf = Ti = 300 K. 

 

(c) The work done is 

 

   5 3 3

3

4.0L
ln ln 32atm 1.01 10 Pa atm 1.0 10 m ln

1.0L

4.4 10 J.

f f

i i i

i i

V V
W nRT pV

V V

     
         

    

 

 

 

(d) For the adiabatic process, the final pressure is ( 5/ 3   for monatomic gas) 

  

 
5 3

1.0L
32atm 3.2atm.

4.0L

i
f i

f

V
p p

V


   

      
  

 

(e) The final temperature is 

 

   

  

3.2atm 4.0L 300K
120K 

32atm 1.0L

f f i

f

i i

p V T
T

pV
   . 

(f) The work done is 

 

int

5 3 3

3

3 3
( )

2 2

3
(3.2atm)(4.0L) (32atm)(1.0L) (1.01 10 Pa atm)(10 m L)

2

2.9 10 J .

f f i iW E nR T p V pV



       

   

 

 

 

(g) If the gas is diatomic, then  = 1.4, and the final pressure is 
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 
1.4

1.0L
32atm 4.6atm

4.0L

i
f i

f

V
p p

V


   

      
  

. 

(h) The final temperature is  

 

 
   

  

4.6atm 4.0L 300K
170K

32atm 1.0L

f f i

f

i i

p V T
T

pV
   . 

(i) The work done is  

 

 

        

int

5 3 3

3

5 5

2 2

5
4.6atm 4.0L 32atm 1.0L 1.01 10 Pa atm 10 m L

2

3.4 10 J.

f f i iW Q E nR T p V pV



       

     

 

 

 

LEARN Comparing (c) with (f), we see that more work is done by the gas if the 

expansion is isothermal rather than adiabatic. 

 

84. (a) With P1 = (20.0)(1.01  10
5
 Pa) and V1 = 0.0015 m

3
, the ideal gas law gives 

 

P1V1 = nRT1       T1 = 121.54 K    122 K. 

 

(b) From the information in the problem, we deduce that T2 = 3T1 = 365 K. 

 

(c) We also deduce that T3 = T1, which means T = 0 for this process.  Since this involves 

an ideal gas, this implies the change in internal energy is zero here. 

 

85. (a) We use pV = nRT. The volume of the tank is 

 

   300g

17 g mol 2 3

6

8.31 J/mol K 350K
3.8 10 m 38L.

1.35 10 Pa

nRT
V

p




    


 

 

(b) The number of moles of the remaining gas is 

 

  
  

5 2 38.7 10 Pa 3.8 10 m
13.5mol.

8.31 J/mol K 293K

p V
n

RT

 
   

 
 

 

The mass of the gas that leaked out is then  

 

m = 300 g – (13.5 mol)(17 g/mol) = 71 g. 

 



  CHAPTER 19 920 

86. To model the “uniform rates” described in the problem statement, we have expressed 

the volume and the temperature functions as follows: 

 

V = Vi  + 






Vf   – Vi

 f
 t ,        T  =  Ti  + 







Tf  – Ti

 f
 t 

  

where Vi = 0.616 m
3
,  Vf  = 0.308 m

3
,   f  = 7200 s, Ti = 300 K, and Tf  = 723 K.   

 

(a) We can take the derivative of V with respect to t and use that to evaluate the 

cumulative work done (from t = 0 until t = ): 
 

W =
nRT dV

pdV dt
V dt

  
   

  
    = 12.2  +  238113 ln(14400  )  2.28 × 10

6
 

 

with SI units understood.  With  = f  our result is W = 77169 J  77.2 kJ, or |W |  

77.2 kJ. 

 

The graph of cumulative work is shown below. The graph for work done is purely 

negative because the gas is being compressed (work is being done on the gas). 

 

 
 

(b) With CV  = 
3

2
 R (since it’s a monatomic ideal gas) then the (infinitesimal) change in 

internal energy is  nCV dT = 
3

2
 nR 







dT 

dt
 dt,  which involves taking the derivative of the 

temperature expression listed above.  Integrating this and adding this to the work done 

gives the cumulative heat absorbed (from t = 0 until t = ): 
 

Q =     






nRT 

V
 






dV

dt
  +  

3

2
 nR 







dT 

dt
 dt = 30.5 + 238113 ln(14400  )  2.28 × 10

6
 

 

with SI units understood. With  = f  our result is Qtotal = 54649 J  5.46×10
4
 J. 
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The graph cumulative heat is shown below.  We see that Q > 0, since the gas is absorbing 

heat.   

 

(c) Defining C = 
Qtotal

n(Tf - Ti)
 , we obtain C = 5.17 J/mol·K.  We note that this is 

considerably smaller than the constant-volume molar heat CV. 

 

We are now asked to consider this to be a two-step process (time dependence is no longer 

an issue) where the first step is isothermal and the second step occurs at constant volume 

(the ending values of pressure, volume, and temperature being the same as before).   

 

(d) Equation 19-14 readily yields W = 43222 J  4.32 ×10
4
 J (or | W |  4.32 ×10

4
 J), 

where it is important to keep in mind that no work is done in a process where the volume 

is held constant.   

 

(e) In step 1 the heat is equal to the work (since the internal energy does not change 

during an isothermal ideal gas process), and in step 2 the heat is given by Eq. 19-39.  The 

total heat is therefore 88595  8.86 ×10
4
 J.   

 

(f) Defining a molar heat capacity in the same manner as we did in part (c), we now arrive 

at C = 8.38 J/ mol·K. 

 

87. For convenience, the “int” subscript for the internal energy will be omitted in this 

solution. Recalling Eq. 19-28, we note that 
cycle

0E  , which gives 

 

0.A B B C C D D E E AE E E E E           

 

Since a gas is involved (assumed to be ideal), then the internal energy does not change 

when the temperature does not change, so 

 

0.A B D EE E     

 

Now, with EEA = 8.0 J given in the problem statement, we have 
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8.0 J 0.B C C DE E      

 

In an adiabatic process, E = –W, which leads to  

 

5.0  J 8.0 J 0,C DE      

and we obtain ECD = –3.0 J. 

 

88. (a) The work done in a constant-pressure process is W = pV. Therefore, 

 

 2 3 325N/m (1.8m 3.0m ) 30J.W     

 
The sign conventions discussed in the textbook for Q indicate that we should write –75 J 

for the energy that leaves the system in the form of heat. Therefore, the first law of 

thermodynamics leads to 

 

int ( 75 J) ( 30 J) 45 J.E Q W          

 

(b) Since the pressure is constant (and the number of moles is presumed constant), the 

ideal gas law in ratio form leads to 

 
3

22
2 1 3

1

1.8m
(300K) 1.8 10 K.

3.0m

V
T T

V

   
      

  
 

 

It should be noted that this is consistent with the gas being monatomic (that is, if one 

assumes 3
2VC R  and uses Eq. 19-45, one arrives at this same value for the final 

temperature). 

 

89. Consider the open end of the pipe. The balance of the pressures inside and outside the 

pipe requires that p + wg(L/2) = p0 + wgh, where p0 is the atmospheric pressure, and p is 

the pressure of the air inside the pipe, which satisfies p(L/2) = p0L, or p = 2p0. We solve 

for h: 
5

0

3 3 2

1.01 10 Pa 25.0m
22.8m.

2 21.00 10 kg/m 9.8m/sw

p p L
h

g
 

 

90. (a) For diatomic gas, 7 / 5.   Using constant,pV    we find the final gas pressure 

to be 
7/5

3

3

50 cm
(15 atm) 1.58 atm

250 cm

i
f i

f

V
p p

V


   

      
  

. 

 

The work done by the gas during the adiabatic expansion process is 
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1 1

5 6 3 5 6 3

1 1

(1.58 atm)(1.01 10 Pa/atm)(250 10 m ) (15 atm)(1.01 10 Pa/atm)(50 10 m )

1 (7 / 5)

89.64 J

f

i

V f i f f i i

i i i i
V

V V p V pV
W pV V dV pV

 

  

 

 



 

 
  

 

    








 

The period for each cycle is (60 s)/(4000) 0.015 s.    Since the time involved in the 

expansion is one-half of the total cycle: 3/ 2 7.5 10 s,t       the average power for the 

expansion is 

 4

3

89.64 J
1.2 10 W.

7.5 10 s

W
P

t 
   
 

 

 

(b) Using the conversion factor 1 hp 746 W,  the power can also be expressed as 16 hp.  

 

91. (a) For adiabatic process, constant,pV    or .p CV   Thus, 

 

 
dp d

B V V CV CV p
dV dV

         . 

 

(b) Using  p = nRT/V = (m/M)RT/V  with  = m/V, we find the speed of sound in an ideal 

gas to be 

( / ) /
.

/
s

B p m M RT V RT
v

m V M

  

 
     

 

92. With p = 1.01  10
5
 Pa and  = 1.29 kg/m

3
, we use the result of part (b) of the 

previous problem to obtain 

  
232

5

1.29kg/m 331m/s
1.40.

1.01 10 Pa

v

p


   


 

 

93. Using /sv RT M , the result obtained in part (b) of problem 91, we find the ratio 

to be 

11 2

2 12

/
.

/

RT Mv M

v MRT M




   

 

94. The speed of sound in the gas is /sv RT M , and the rms speed of the gas is 

rms 3 /v RT M . Thus, the ratio is 
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rms

/ 5.0 2
0.63.

3 3 3 3(5.0 ) 53 /

ps V

V V

CRT Mv C R R R

v C C RRT M

   
        

 

95. The speed of sound is an ideal gas is /sv RT M , which gives 

 

 
2

.sMv

RT
   

 

Since the nodes of the standing waves are separated by half a wavelength, we have 

2(9.57 cm) 19.14 cm 0.1914 m,     and the corresponding speed of sound is 

 

 (0.1914 m)(1000 Hz) 191.4 m/s.sv f    

Thus,  
2 2(0.127 kg/mol)(191.4 m/s)

1.40.
(8.314 J/mol K)(400 K)

sMv

RT
   


 

 

96. The speed of sound is an ideal gas is /sv RT M . Differentiating vs with respect 

to T, we obtain  

1/ 21 1

2 2 2

s sdv vR RT
T

dT M T M T

     

 

Near 0 C 273 K,T     the speed of sound is 331m/s.  Thus, with 1 C 1K,T     the 

change in speed is 

1K
(331m/s) 0.606 m/s 0.61m/s.

2 2(273 K)
s s

T
v v

T


      

 

97. The average speed and rms speed of an ideal gas are given by avg 8 /v RT M  and 

rms 3 /v RT M , respectively.  Thus, 

 

avg 2 2 1

rms1 21

8 8

33

v RT M M

v MRT M




  . 

If avg2 rms12v v , then  

2

avg 21 1

2 2 rms1

3 3
4.71.

8 2

vm M

m M v

  
    

 
 
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Chapter 20              
 

 

1. THINK If the expansion of the gas is reversible and isothermal, then there’s no change 

in internal energy. However, if the process is reversible and adiabatic, then there would 

be no change in entropy.  

 

EXPRESS Since the gas is ideal, its pressure p is given in terms of the number of moles 

n, the volume V, and the temperature T by p = nRT/V. If the expansion is isothermal, the 

work done by the gas is 

2 2

1 1

2

1

ln
V V

V V

VdV
W p dV n RT n RT

V V
    , 

and the corresponding change in entropy is  1S T dQ Q T   ,  where Q is the heat 

absorbed (see Eq. 20-2).  

 

ANALYZE (a) With V2 = 2.00V1 and T = 400 K, we obtain 

 

    3= ln2.00 = 4.00 mol 8.31 J/mol K 400 K ln2.00 = 9.22 10  J.W n RT    

 

(b) According to the first law of thermodynamics, Eint = Q  W. Now the internal energy 

of an ideal gas depends only on the temperature and not on the pressure and volume. 

Since the expansion is isothermal, Eint = 0 and Q = W. Thus, 

 
39.22 10 J

= = = 23.1 J/K.
400 K




W
S

T
 

 

(c) The change in entropy S is zero for all reversible adiabatic processes. 

 

LEARN The general expression for S for reversible processes is given by Eq. 20-4: 

 

ln ln
f f

f i V

i i

V T
S S S n R nC

V T

   
       

   
. 

Note that S does not depend on how the gas changes from its initial state i to the final 

state f.  

 

2. An isothermal process is one in which Ti = Tf, which implies ln (Tf /Ti) = 0. Therefore, 

Eq. 20-4 leads to 

   
22.0

= ln = = 2.75 mol.
8.31 ln 3.4/1.3

 
  

 

f

i

V
S nR n

V
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3. An isothermal process is one in which Ti = Tf, which implies ln(Tf/Ti) = 0. Therefore, 

with Vf/Vi = 2.00, Eq. 20-4 leads to 

 

    = ln = 2.50 mol 8.31 J/mol K ln 2.00 =14.4 J/K.
f

i

V
S nR

V

 
  

 
 

 

4. From Eq. 20-2, we obtain    4= = 405 K 46.0 J/K =1.86 10  J. Q T S  

 

5. We use the following relation derived in Sample Problem 20.01 — “Entropy change of 

two blocks coming to equilibrium:” 

 ln / .f iS mc T T   

 

(a) The energy absorbed as heat is given by Eq. 19-14. Using Table 19-3, we find 

 

   4J
= = 386 2.00 kg 75 K = 5.79 10  J

kg K

 
  

 
Q cm T  

 

where we have used the fact that a change in Kelvin temperature is equivalent to a change 

in Celsius degrees. 

 

(b) With Tf = 373.15 K and Ti = 298.15 K, we obtain 

 

 
J 373.15

= 2.00 kg 386 ln =173 J/K.
kg K 298.15

   
    

   
S  

 

6. (a) This may be considered a reversible process (as well as isothermal), so we use S = 

Q/T where Q = Lm with L = 333 J/g from Table 19-4. Consequently, 

 

S =
333 12.0

273
=14.6

 J / g  g

 K
 J / K.

a fa f
 

 

(b) The situation is similar to that described in part (a), except with L = 2256 J/g, m = 

5.00 g, and T = 373 K. We therefore find S = 30.2 J/K. 

 

7. (a) We refer to the copper block as block 1 and the lead block as block 2. The 

equilibrium temperature Tf satisfies m1c1(Tf  Ti,1) + m2c2(Tf  Ti2) = 0, which we solve 

for Tf : 

 

       

     
1 1 ,1 2 2 ,2

1 1 2 2

+ 50.0 g 386 J/kg K 400 K + 100 g 128 J/kg K 200 K

+ 50.0 g 386 J/kg K + 100 g 128 J/kg K

320 K.

i i

f

m c T m c T
T

m c m c

 
 

 


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(b) Since the two-block system in thermally insulated from the environment, the change 

in internal energy of the system is zero. 

 

(c) The change in entropy is 

     

1 2 1 1 2 2

,1 ,2

ln ln

320 K 320 K
50.0 g 386 J/kg K ln 100 g 128 J/kg K ln

400 K 200 K

1.72 J K.

f f

i i

T T
S S S m c m c

T T

   
            

   

   
      

   

 

 

 

8. We use Eq. 20-1: 

 


10.0

2 3 3

5.00
(10.0) (5.00) 0.0368 J/K.

3

VnC dT nA
S nA T dT

T
         

 

9. The ice warms to 0C, then melts, and the resulting water warms to the temperature of 

the lake water, which is 15C. As the ice warms, the energy it receives as heat when the 

temperature changes by dT is dQ = mcI dT, where m is the mass of the ice and cI is the 

specific heat of ice. If Ti (= 263 K) is the initial temperature and Tf (= 273 K) is the final 

temperature, then the change in its entropy is 

 

  
273 K

ln 0.010 kg 2220 J/kg K ln = 0.828 J/K.
263 K

f

i

T f

I I
T

i

TdQ dT
S mc mc

T T T

 
       

 
   

 

Melting is an isothermal process. The energy leaving the ice as heat is mLF, where LF is 

the heat of fusion for ice. Thus,  

 

S = Q/T = mLF/T = (0.010 kg)(333  10
3
 J/kg)/(273 K) = 12.20 J/K. 

 

For the warming of the water from the melted ice, the change in entropy is 

 

= ln ,
f

w

i

T
S mc

T
  

 

where cw is the specific heat of water (4190 J/kg  K). Thus, 

 

  
288 K

= 0.010 kg 4190 J/kg K ln = 2.24 J/K.
273 K

S
 

   
 

 

 

The total change in entropy for the ice and the water it becomes is 

 

= 0.828 J/K +12.20 J/K + 2.24 J/K =15.27 J/K.S  
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Since the temperature of the lake does not change significantly when the ice melts, the 

change in its entropy is S = Q/T, where Q is the energy it receives as heat (the negative 

of the energy it supplies the ice) and T is its temperature. When the ice warms to 0C, 

 

     = = 0.010 kg 2220 J/kg  K 10 K = 222 J.I f iQ mc T T      

 

When the ice melts, 

 

Q mLF= = 0.010 333 10 = 3.33 10 .3 3     kg  J / kg  Ja fc h  

 

When the water from the ice warms, 

 

Q mc T Tw f i= = 0.010 4190 15 = 629 .    c h a fa fa f kg  J / kg  K  K  J  

 

The total energy leaving the lake water is  

 

Q = 222 J  3.33  10
3
 J  6.29  10

2
 J = 4.18  10

3
 J. 

 

The change in entropy is 
34.18 10  J

= = 14.51 J/K.
288 K

S


    

 

The change in the entropy of the ice–lake system is S = (15.27  14.51) J/K = 0.76 J/K. 

 

10. We follow the method shown in Sample Problem 20.01 — “Entropy change of two 

blocks coming to equilibrium.” Since 

S = 
f

i

T

T

dT
mc

T  = mc ln(Tf /Ti) , 

 

then with S = 50 J/K, Tf = 380 K, Ti = 280 K, and m = 0.364 kg,  we obtain c = 4.5×10
2
 

J/kg
.
K. 

 

11. THINK The aluminum sample gives off energy as heat to water. Thermal 

equilibrium is reached when both the aluminum and the water come to a common final 

temperature Tf.   

 

EXPRESS The energy that leaves the aluminum as heat has magnitude Q = maca(Tai  

Tf), where ma is the mass of the aluminum, ca is the specific heat of aluminum, Tai is the 

initial temperature of the aluminum, and Tf is the final temperature of the aluminum-

water system. The energy that enters the water as heat has magnitude Q = mwcw(Tf  Twi), 

where mw is the mass of the water, cw is the specific heat of water, and Twi is the initial 

temperature of the water. The two energies are the same in magnitude since no energy is 

lost. Thus, 
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   
+

= = .
+

   a a ai w w wi
a a ai f w w f wi f

a a w w

m c T m c T
m c T T m c T T T

m c m c
 

The change in entropy is /S dQ T   .   

 

ANALYZE (a) The specific heat of aluminum is 900 J/kgK and the specific heat of 

water is 4190 J/kgK. Thus, 

 

       

     

0.200 kg 900 J/kg K 100 C 0.0500 kg 4190 J/kg K 20 C

0.200 kg 900 J/kg K 0.0500 kg 4190 J/kg K

57.0 C 330 K.

fT
    


  

  

 

 

(b) Now temperatures must be given in Kelvins: Tai = 393 K, Twi = 293 K, and Tf = 330 K. 

For the aluminum, dQ = macadT and the change in entropy is 

 

  
330 K

ln 0.200 kg 900 J/kg K ln
373 K

22.1 J/K.

f

ai

T f

a a a a a
T

ai

TdQ dT
S m c m c

T T T

   
        

  

 

   

 

(c) The entropy change for the water is 

 

330K
ln (0.0500 kg)(4190 J kg.K) ln

293K

24.9J K.

f

wi

T f

w w w w w
T

wi

TdQ dT
S m c m c

T T T

   
       

  

 

   

 

(d) The change in the total entropy of the aluminum-water system is  

 

S = Sa + Sw = 22.1 J/K + 24.9 J/K = +2.8 J/K. 

 

LEARN The system is closed and the process is irreversible. For aluminum the entropy 

change is negative ( 0aS  ) since f aiT T . However, for water, entropy increases 

because f wiT T . The overall entropy change for the aluminum-water system is positive, 

in accordance with the second law of thermodynamics.  

 

12. We concentrate on the first term of Eq. 20-4 (the second term is zero because the final 

and initial temperatures are the same, and because ln(1) = 0). Thus, the entropy change is 

 

S =  nR ln(Vf /Vi). 

 

Noting that S = 0 at Vf  = 0.40 m
3
, we are able to deduce that Vi = 0.40 m

3
.  We now 

examine the point in the graph where S = 32 J/K and Vf  = 1.2 m
3
; the above expression 

can now be used to solve for the number of moles.  We obtain n = 3.5 mol. 
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13. This problem is similar to Sample Problem 20.01 — “Entropy change of two blocks 

coming to equilibrium.” The only difference is that we need to find the mass m of each of 

the blocks. Since the two blocks are identical, the final temperature Tf is the average of 

the initial temperatures: 

T T Tf i f=
1

2
+ =

1

2
305.5 + 294.5 = 300.0c h a f K  K  K. 

 

Thus from Q = mcT we find the mass m: 

 

m
Q

c T
= =

215

386 300.0 294.5
= 0.101 .

  

 J

 J / kg K  K  K
 kga fa f  

 

(a) The change in entropy for block L is  

 

  
300.0 K

= ln = 0.101 kg 386 J/kg K ln = 0.710 J/K.
305.5 K

f

L

iL

T
S mc

T

   
     

  
 

 

(b) Since the temperature of the reservoir is virtually the same as that of the block, which 

gives up the same amount of heat as the reservoir absorbs, the change in entropy LS of 

the reservoir connected to the left block is the opposite of that of the left block: LS  = 

SL = +0.710 J/K. 

 

(c) The entropy change for block R is 

 

  
300.0 K

= ln = 0.101 kg 386 J/kg K ln = +0.723 J/K.
294.5 K

f

R

iR

T
S mc

T

   
    

  
 

 

(d) Similar to the case in part (b) above, the change in entropy RS  of the reservoir 

connected to the right block is given by RS  = SR = 0.723 J/K. 

 

(e) The change in entropy for the two-block system is  

 

SL + SR = 0.710 J/K + 0.723 J/K = +0.013 J/K. 

 

(f) The entropy change for the entire system is given by  

 

S = SL + LS  + SR + RS  = SL  SL + SR  SR = 0, 

 

which is expected of a reversible process. 

 

14. (a) Work is done only for the ab portion of the process. This portion is at constant 

pressure, so the work done by the gas is 
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0

0

4

0 0 0 0 0 0

0

(4.00 1.00 ) 3.00   3.00.
V

V

W
W p dV p V V p V

p V
       

 

(b) We use the first law: Eint = Q  W. Since the process is at constant volume, the work 

done by the gas is zero and Eint = Q. The energy Q absorbed by the gas as heat is Q = nCV 

T, where CV is the molar specific heat at constant volume and T is the change in 

temperature. Since the gas is a monatomic ideal gas, 3 / 2VC R . Use the ideal gas law to 

find that the initial temperature is  

0 04b b
b

p V p V
T

nR nR
   

and that the final temperature is  

 

0 0 0 0(2 )(4 ) 8c c
c

p V p V p V
T

nR nR nR
   . 

Thus, 

0 0 0 0
0 0

8 43
= = 6.00 .

2

p V p V
Q nR p V

nR nR

 
 

 
 

 

The change in the internal energy is Eint = 6p0V0 or Eint/p0V0 = 6.00. Since n = 1 mol, 

this can also be written Q = 6.00RT0. 

 

(c) For a complete cycle, Eint = 0. 

 

(d) Since the process is at constant volume, use dQ = nCV dT to obtain 

 

ln .
c

b

T
c

V V
T

b

TdQ dT
S nC nC

T T T
      

 

Substituting 3
2VC R  and using the ideal gas law, we write 

 

0 0

0 0

(2 )(4 )
2.

(4 )

c c c

b b b

T p V p V

T p V p V
    

 

Thus, 3
2

ln 2S nR  . Since n = 1, this is 3
2

ln 2 8.64 J/K.S R    

 

(e) For a complete cycle, Eint = 0 and S = 0. 

 

15. (a) The final mass of ice is (1773 g + 227 g)/2 = 1000 g. This means 773 g of water 

froze. Energy in the form of heat left the system in the amount mLF, where m is the mass 

of the water that froze and LF is the heat of fusion of water. The process is isothermal, so 

the change in entropy is  
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S = Q/T = –mLF/T = –(0.773 kg)(333  10
3
 J/kg)/(273 K) = 943 J/K. 

 

(b) Now, 773 g of ice is melted. The change in entropy is 

 

= = = +943 J/K.FQ mL
S

T T
  

 

(c) Yes, they are consistent with the second law of thermodynamics. Over the entire cycle, 

the change in entropy of the water–ice system is zero even though part of the cycle is 

irreversible. However, the system is not closed. To consider a closed system, we must 

include whatever exchanges energy with the ice and water. Suppose it is a constant-

temperature heat reservoir during the freezing portion of the cycle and a Bunsen burner 

during the melting portion. During freezing the entropy of the reservoir increases by 943 

J/K. As far as the reservoir–water–ice system is concerned, the process is adiabatic and 

reversible, so its total entropy does not change. The melting process is irreversible, so the 

total entropy of the burner–water–ice system increases. The entropy of the burner either 

increases or else decreases by less than 943 J/K. 

 

16. In coming to equilibrium, the heat lost by the 100 cm
3
 of liquid water (of mass mw = 

100 g and specific heat capacity cw = 4190 J/kgK) is absorbed by the ice (of mass mi, 

which melts and reaches Tf  0C). We begin by finding the equilibrium temperature: 

 

      

warm water cools ice melts melted ice warmsice warms to 0

0

+ + + = 0

20 + 0 10 + + 0 = 0w w f i i F i w i f

Q

Q Q Q Q

c m T c m L m c m T



      


 

 

which yields, after using LF = 333000 J/kg and values cited in the problem, Tf = 12.24 

which is equivalent to Tf = 285.39 K. Sample Problem 20.01 — “Entropy change of two 

blocks coming to equilibrium” shows that 

2
temp change

1

= ln
T

S mc
T

 
  

 
 

 

for processes where T = T2 – T1, and Eq. 20-2 gives melt o/FS L m T   for the phase 

change experienced by the ice (with To = 273.15 K). The total entropy change is (with T 

in Kelvins) 

 

system

285.39 273.15 285.39
ln ln ln

293.15 263.15 273.15 273.15

( 11.24 0.66 1.47 9.75)J/K 0.64 J/K.

F i
w w i i i w

L m
S m c m c m c

     
         

     

     

 

 

17. The connection between molar heat capacity and the degrees of freedom of a 

diatomic gas is given by setting f = 5 in Eq. 19-51. Thus, 5 / 2, 7 / 2V pC R C R  , and 
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7 / 5  . In addition to various equations from Chapter 19, we also make use of Eq. 20-4 

of this chapter. We note that we are asked to use the ideal gas constant as R and not plug 

in its numerical value. We also recall that isothermal means constant temperature, so T2 = 

T1 for the 1  2 process. The statement (at the end of the problem) regarding “per mole” 

may be taken to mean that n may be set identically equal to 1 wherever it appears. 

 

(a) The gas law in ratio form is used to obtain 

 

1 1 2
2 1

2 1

1
= =     0.333

3 3

V p p
p p

V p

 
   

 
. 

 

(b) The adiabatic relations Eq. 19-54 and Eq. 19-56 lead to 

 

31 1
3 1 1.4 1.4

3 1

1
= =   0.215

3 3

pV p
p p

V p


 

   
 

. 

(c) Similarly, we find  
1

31 1
3 1 0.4 0.4

3 1

1
  0.644.

3 3

TV T
T T

V T

 
 

     
 

 

 process 1  2 

 

(d) The work is given by Eq. 19-14:  

 

W = nRT1 ln (V2/V1) = RT1 ln3 =1.10RT1. 

 

Thus, W/ nRT1= ln3 = 1.10. 

 

(e) The internal energy change is Eint = 0, since this is an ideal gas process without a 

temperature change (see Eq. 19-45). Thus, the energy absorbed as heat is given by the 

first law of thermodynamics: Q = Eint + W  1.10RT1, or Q/ nRT1= ln3 = 1.10. 

 

(f) Eint = 0 or Eint / nRT1=0 

 

(g) The entropy change is S = Q/T1 = 1.10R, or S/R = 1.10. 

 

 process 2  3 

 

(h) The work is zero, since there is no volume change. Therefore, W/nRT1 = 0. 

 

(i) The internal energy change is 

 

    int1
int 3 2 1 10.4

1

5
= = 1 0.889   0.889.

2 3
V

ET
E nC T T R T RT

nRT

  
          

   
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This ratio (0.889) is also the value for Q/nRT1 (by either the first law of 

thermodynamics or by the definition of CV). 

 

(j) Eint /nRT1= 0.889. 

 

(k) For the entropy change, we obtain 

 
0.4

0.43 3 1

1 1 1

35 5
ln ln (1) ln (1) (1) ln 0 ln (3 ) 1.10 .

2 2

VV C T TS
n n

R V R T T

       
             

      
 

 

 process 3  1 

 

(l) By definition, Q = 0 in an adiabatic process, which also implies an absence of entropy 

change (taking this to be a reversible process). The internal change must be the negative 

of the value obtained for it in the previous process (since all the internal energy changes 

must add up to zero, for an entire cycle, and its change is zero for process 1  2), so 

Eint = +0.889RT1. By the first law of thermodynamics, then,  

 

W = Q  Eint = 0.889RT1, 

or W /nRT1= 0.889. 

 

(m) Q = 0 in an adiabatic process. 

 

(n) Eint /nRT1= 0.889. 

 

(o) S/nR = 0. 

 

18. (a) It is possible to motivate, starting from Eq. 20-3, the notion that heat may be 

found from the integral (or “area under the curve”) of a curve in a TS diagram, such as 

this one. Either from calculus, or from geometry (area of a trapezoid), it is 

straightforward to find the result for a “straight-line” path in the TS diagram: 

 

straight

+
=

2

 
 

 

i fT T
Q S  

 

which could, in fact, be directly motivated from Eq. 20-3 (but it is important to bear in 

mind that this is rigorously true only for a process that forms a straight line in a graph that 

plots T versus S). This leads to  

 

Q = (300 K) (15 J/K) = 4.5×10
3
 J 

 

for the energy absorbed as heat by the gas. 

 

(b) Using Table 19-3 and Eq. 19-45, we find 
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    3

int

3
= = 2.0 mol 8.31 J/mol K 200 K 400 K = 5.0 10  J.

2
E n R T

 
      

 
 

 

(c) By the first law of thermodynamics, W Q E= = 4.5 5.0 = 9.5 .  int  kJ  kJ  kJa f  

 

19. We note that the connection between molar heat capacity and the degrees of freedom 

of a monatomic gas is given by setting f = 3 in Eq. 19-51. Thus, 3 / 2, 5 / 2V pC R C R  , 

and 5/ 3  . 

 

(a) Since this is an ideal gas, Eq. 19-45 holds, which implies Eint = 0 for this process. 

Equation 19-14 also applies, so that by the first law of thermodynamics,  

 

Q = 0 + W = nRT1 ln V2/V1 = p1V1 ln 2      →    Q/p1V1= ln2 = 0.693. 

 

(b) The gas law in ratio form implies that the pressure decreased by a factor of 2 during 

the isothermal expansion process to V2 = 2.00V1, so that it needs to increase by a factor of 

4 in this step in order to reach a final pressure of p2 = 2.00p1. That same ratio form now 

applied to this constant-volume process, yielding 4.00 = T2T1, which is used in the 

following: 

   2
2 1 1 1 1 1 1

1

3 3 3 9
1 4 1

2 2 2 2
V

T
Q nC T n R T T nRT pV pV

T

  
          

   
 

or 1 1/ 9 / 2 4.50Q pV   . 

 

(c) The work done during the isothermal expansion process may be obtained by using Eq. 

19-14:  

W = nRT1 ln V2/V1= p1V1 ln 2.00  →  W/p1V1= ln2 = 0.693. 

 

(d) In step 2 where the volume is kept constant, W = 0. 

 

(e) The change in internal energy can be calculated by combining the above results and 

applying the first law of thermodynamics: 

 

 int total total 1 1 1 1 1 1 1 1

9 9
= = ln 2 + ln 2 + 0 =

2 2
E Q W pV pV pV pV

 
   

 
 

or Eint/p1V1 = 9/2 = 4.50. 

 

(f) The change in entropy may be computed by using Eq. 20-4: 

 

21 1

1 1

2.00 4.00 3
= ln + ln = ln 2.00 + ln (2.00)

2

= ln 2.00 + 3 ln 2.00 = 4 ln 2.00 = 23.0 J/K.

V

V T
S R C R R

V T

R R R

     
      

      
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The second approach consists of an isothermal (constant T) process in which the volume 

halves, followed by an isobaric (constant p) process.  

 

(g) Here the gas law applied to the first (isothermal) step leads to a volume half as big as 

the original. Since ln(1/ 2.00) ln 2.00  , the reasoning used above leads to  

 

Q = – p1V1 ln 2.00    
1 1/ ln 2.00 0.693.Q pV    

 

(h) To obtain a final volume twice as big as the original, in this step we need to increase 

the volume by a factor of 4.00. Now, the gas law applied to this isobaric portion leads to 

a temperature ratio T2/T1 = 4.00. Thus, 

 

   2
2 1 1 1 1 1 1

1

5 5 5 15
= = = 1 = 4 1 =

2 2 2 2
p

T
Q C T R T T RT pV pV

T

 
    

 
 

or Q/p1V1 = 15/2 = 7.50. 

 

(i) During the isothermal compression process, Eq. 19-14 gives  

 

W = nRT1 ln V2/V1= p1V1 ln (1/2.00) = p1V1 ln 2.00     W/p1V1= ln2 = 0.693. 

 

(j) The initial value of the volume, for this part of the process, is 1 / 2iV V , and the final 

volume is Vf = 2V1. The pressure maintained during this process is p = 2.00p1. The work 

is given by Eq. 19-16: 

 

   1 1 1 1 1 1 1

1
= = = 2.00 2.00 = 3.00   / = 3.00.

2
f iW p V p V V p V V pV W pV

 
     

 
 

 

(k) Using the first law of thermodynamics, the change in internal energy is 

 

 int total total 1 1 1 1 1 1 1 1 1 1

15 9
= = ln 2.00 3 ln 2.00 =

2 2
E Q W pV pV pV pV pV

 
     

 
 

 

or Eint/p1V1 = 9/2 = 4.50. The result is the same as that obtained in part (e). 

 

(l) Similarly, = 4 ln 2.00 = 23.0 J/K.S R  the same as that obtained in part (f). 

 

20. (a) The final pressure is 

 

 
 

 
 3 3 31.00 m 2.00 m 1.00 m

= 5.00 kPa = 5.00 kPa 1.84 kPa .
i f

f

V V a
p e e


  

 

(b) We use the ratio form of the gas law to find the final temperature of the gas: 

 



 

  

937 

 
3

3

(1.84 kPa)(2.00 m )
600 K 441 K .

(5.00 kPa)(1.00 m )

f f

f i

i i

p V
T T

pV

 
   

 
 

 

For later purposes, we note that this result can be written “exactly” as Tf = Ti (2e
–1

). In 

our solution, we are avoiding using the “one mole” datum since it is not clear how precise 

it is. 

 

(c) The work done by the gas is 

 

   

    

/ /

1.00 3 1.00 2.00

(5.00 kPa) 5.00 kPa

5.00 kPa 1.00 m

3.16 kJ .

f f
i i

ii

f V VV V a V a V a

Vi V
W pdV e dV e ae

e e e

 

 

      

 



 

 

 

(d) Consideration of a two-stage process, as suggested in the hint, brings us simply to Eq. 

20-4. Consequently, with 3
2VC R  (see Eq. 19-43), we find 

 

 1 1

3

3 3 3 3
ln + ln = ln2 + ln 2 ln2 + ln2 + ln

2 2 2 2

(5000 Pa) (1.00 m ) 5 3
ln 2

600 K 2 2

1.94 J K.

f f i i

i i i

V T pV
S nR n R nR e e

V T T

         
          

        

 
  

 



 

 

21. We consider a three-step reversible process as follows: the supercooled water drop (of 

mass m) starts at state 1 (T1 = 268 K), moves on to state 2 (still in liquid form but at T2 = 

273 K), freezes to state 3 (T3 = T2), and then cools down to state 4 (in solid form, with T4 

= T1). The change in entropy for each of the stages is given as follows:  

 

S12 = mcw ln (T2/T1), 

S23 = mLF/T2, 

S34 = mcI ln (T4/T3) = mcI ln (T1/T2) = mcI ln (T2/T1). 

 

Thus the net entropy change for the water drop is 

 

 

  
  

2
12 23 34

1 2

= + + = ln

1.00 g 333 J/g273 K
= 1.00 g 4.19 J/g K 2.22 J/g K ln

268 K 273 K

= 1.18 J/K.

F
w I

T mL
S S S S m c c

T T

 
      

 

 
    

 


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22. (a) We denote the mass of the ice (which turns to water and warms to Tf) as m and the 

mass of original water (which cools from 80º down to Tf) as m.  From Q = 0 we have 

 

LF m + cm (Tf – 0º) + cm (Tf  – 80º) = 0. 

 

Since LF = 333  10
3
 J/kg, c = 4190 J/(kg·Cº), m = 0.13 kg, and m = 0.012 kg, we find Tf 

= 66.5ºC, which is equivalent to 339.67 K. 

 

(b) Using Eq. 20-2, the process of ice at 0º C turning to water at 0º C involves an entropy 

change of 
Q

T
  = 

LF m

273.15 K
  = 14.6 J/K. 

 

(c) Using Eq. 20-1, the process of m = 0.012 kg of water warming from 0º C to 66.5º C 

involves an entropy change of 

 

 
339.67

273.15

339.67
ln 11.0 J/K

273.15

cmdT
cm

T

 
  

 
 . 

 

(d) Similarly, the cooling of the original water involves an entropy change of 

 

339.67

353.15

339.67
ln 21.2 J/K

353.15

cm dT
cm

T

  
  

 
 . 

 

(e) The net entropy change in this calorimetry experiment is found by summing the 

previous results; we find (by using more precise values than those shown above) ΔSnet = 

4.39 J/K. 

 

23. With TL = 290 k, we find 

L L
H

H

290 K
1

1 1 0.40

T T
T

T



    

 
 

 

which yields the (initial) temperature of the high-temperature reservoir: TH = 483 K. If 

we replace  = 0.40 in the above calculation with  = 0.50, we obtain a (final) high 

temperature equal to H 580 KT   . The difference is 

 

H H = 580 K 483 K = 97 K.T T    

 

24. The answers to this exercise do not depend on the engine being of the Carnot design. 

Any heat engine that intakes energy as heat (from, say, consuming fuel) equal to |QH| = 

52 kJ and exhausts (or discards) energy as heat equal to |QL| = 36 kJ will have these 

values of efficiency  and net work W. 
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(a) Equation 20-12 gives L

H

1 0.31 31% .
Q

Q
      

 

(b) Equation 20-8 gives H L 16 kJ .W Q Q    

 

25. We solve (b) first. 

 

(b) For a Carnot engine, the efficiency is related to the reservoir temperatures by Eq. 20-

13. Therefore, 

H L
H

75 K
= = = 341 K

0.22

T T
T




 

which is equivalent to 68°C.  

 

(a) The temperature of the cold reservoir is TL = TH – 75 = 341 K – 75 K = 266 K. 

 

26. Equation 20-13 leads to 

L

8

H

373 K
=1 =1 = 0.9999995

7 10  K

T

T
  


 

 

quoting more figures than are significant. As a percentage, this is  = 99.99995%. 

 

27. THINK The thermal efficiency of the Carnot engine depends on the temperatures of 

the reservoirs.  

 

EXPRESS The efficiency of the Carnot engine is given by 

 

H L

H

C

T T

T



 , 

where HT  is the temperature of the higher-temperature reservoir, and TL the temperature 

of the lower-temperature reservoir, in kelvin scale. The work done by the engine is 

HW Q . 

 

 ANALYZE (a) The efficiency of the engine is 

 

H L

H

(235 115)K
0.236 23.6% .

(235+273)K
c

T T

T


 
     

 

We note that a temperature difference has the same value on the Kelvin and Celsius 

scales. Since the temperatures in the equation must be in Kelvins, the temperature in the 

denominator is converted to the Kelvin scale. 

 

(b) Since the efficiency is given by  = |W|/|QH|, the work done is given by 
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4 4

H 0.236(6.30 10 J) =1.49 10 J .W Q     

 

LEARN Expressing the efficiency as L H1 /c T T   , we see that 
c  approaches unity 

(100% efficiency) in the limit / 0L HT T  . This is an impossible dream. An alternative 

version of the second law of thermodynamics is: there are no perfect engines.  

 

28. All terms are assumed to be positive. The total work done by the two-stage system is 

W1 + W2. The heat-intake (from, say, consuming fuel) of the system is Q1, so we have (by 

Eq. 20-11 and Eq. 20-8) 

 

   1 2 2 3 31 2

1 1 1

1 .
Q Q Q Q QW W

Q Q Q


  
     

Now, Eq. 20-10 leads to 

31 2

1 2 3

= =
QQ Q

T T T
 

 

where we assume Q2 is absorbed by the second stage at temperature T2. This implies the 

efficiency can be written 

3 1 3

1 1

=1 = .
T T T

T T



  

 

29. (a) The net work done is the rectangular “area” enclosed in the pV diagram: 

 

     0 0 0 0 0 0 0 02 2 .W V V p p V V p p V p        

 

Inserting the values stated in the problem, we obtain W = 2.27 kJ. 

 

(b) We compute the energy added as heat during the “heat-intake” portions of the cycle 

using Eq. 19-39, Eq. 19-43, and Eq. 19-46: 

 

   

   0 0

0 0

3 5
+ 1 +

2 2

3 5 3 5
1 + 2 1 + 4 2

2 2 2 2

13

2

b c b
abc V b a p c b a a

a a a

b c b
a

a a a

T T T
Q nC T T nC T T n R T n R T

T T T

T T T
nRT p V

T T T

p V

      
           

      

      
                  



 

 

where, to obtain the last line, the gas law in ratio form has been used. Therefore, since W 

= p0V0, we have Qabc = 13W/2 = 14.8 kJ. 

 

(c) The efficiency is given by Eq. 20-11: 
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H

2
0.154 15.4%.

13

W

Q
      

 

(d) A Carnot engine operating between Tc and Ta has efficiency equal to 

 

1
1 1 0.750 75.0%

4

a

c

T

T
        

 

where the gas law in ratio form has been used.  

 

(e) This is greater than our result in part (c), as expected from the second law of 

thermodynamics. 

 

30. (a) Equation 20-13 leads to 

L

H

333 K
=1 =1 = 0.107.

373 K

T

T
    

 

We recall that a watt is joule-per-second. Thus, the (net) work done by the cycle per unit 

time is the given value 500 J/s. Therefore, by Eq. 20-11, we obtain the heat input per unit 

time: 

H

0.500 kJ s
4.67 kJ s .

0.107

W

Q
     

 

(b) Considering Eq. 20-8 on a per unit time basis, we find (4.67 – 0.500) kJ/s = 4.17 kJ/s 

for the rate of heat exhaust. 

 

31. (a) We use HW Q  . The heat absorbed is H

8.2kJ
33kJ.

0.25

W
Q


    

  

(b) The heat exhausted is then L H 33kJ 8.2kJ 25kJ.Q Q W      

 

(c) Now we have H

8.2kJ
26kJ.

0.31

W
Q


    

 

(d) Similarly, C H 26kJ 8.2kJ =18kJQ Q W    . 

 

32. From Fig. 20-28, we see QH = 4000 J at TH = 325 K.  Combining Eq. 20-11 with Eq. 

20-13, we have  
W

 QH 
 = 1 – 

TC

 TH 
       W  = 923 J . 
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Now, for HT   = 550 K, we have   

 

 1         1692 J 1.7 kJC
H

H H

TW
Q

Q T
    

 
. 

 

33. THINK Our engine cycle consists of three steps: isochoric heating (a to b), adiabatic 

expansion (b to c), and isobaric compression (c to a).   

 

EXPRESS Energy is added as heat during the portion of the process from a to b. This 

portion occurs at constant volume (Vb), so QH = nCV T. The gas is a monatomic ideal 

gas, so 3 / 2VC R  and the ideal gas law gives  

 

T = (1/nR)(pb Vb – pa Va) = (1/nR)(pb – pa)Vb. 

 

Thus,  3
H 2 b a bQ p p V  . On the other hand, energy leaves the gas as heat during the 

portion of the process from c to a. This is a constant pressure process, so 

 

 L ( )
pa a c c

p p a c p a a c

Cp V p V
Q nC T nC T T nC p V V

nR nR R

 
        

 
. 

 

where pC  is the molar specific heat for constant-pressure process. 

 

ANALYZE (a) Vb and pb are given. We need to find pa. Now pa is the same as pc and 

points c and b are connected by an adiabatic process. With c c b bp V p V   for the adiabat, 

we have ( 5/ 3   for monatomic gas) 

 

 
5 3

6 41
= = = 1.013 10  Pa = 3.167 10  Pa.

8.00

b
a c b

c

V
p p p

V


   

    
  

 

Thus, the energy added as heat is 

 

    6 4 3 3 3

H

3 3
1.013 10  Pa 3.167 10  Pa 1.00 10  m =1.47 10  J.

2 2
b a bQ p p V          

 

(b) The energy leaving the gas as heat going from c to a is  

 

     4 3 3 2

L

5 5
3.167 10  Pa 7.00 1.00 10  m 5.54 10  J

2 2
a a cQ p V V          , 

 

or 2

L| | 5.54 10  JQ   . The substitutions Va – Vc = Va – 8.00 Va = – 7.00 Va and 5
2pC R  

were made. 

 

(c) For a complete cycle, the change in the internal energy is zero and  



 

  

943 

 

W = Q = H LQ Q  = 1.47  10
3
 J – 5.54  10

2
 J = 9.18  10

2
 J. 

 

(d) The efficiency is  

 

 = W/QH = (9.18  10
2
 J)/(1.47  10

3
 J) = 0.624 = 62.4%. 

 

LEARN To summarize, the heat engine in this problem intakes energy as heat (from, say, 

consuming fuel) equal to |QH| = 1.47 kJ and exhausts energy as heat equal to |QL| = 554 J; 

its efficiency and net work are L H1 | | / | |Q Q    and H LW Q Q  . The less the 

exhaust heat | |LQ , the more efficient is the engine. 

  

34. (a) Using Eq. 19-54 for process D  A gives 

 

 0
0 0 0=         8 =

32
D D A A

p
p V p V V p V

    

 

which leads to 8 = 32  5/3   . The result (see Sections 19-9 and 19-11) implies the 

gas is monatomic. 

 

(b) The input heat is that absorbed during process A  B: 

 

 H 0 0

5 5 5
= = 1 = 2 1 =

2 2 2

B
p A A

A

T
Q nC T n R T nRT p V

T

      
        

      
 

 

and the exhaust heat is that liberated during process C  D: 

 

 L
L 0 0

5 5 1 5
= = 1 = 1 2 =

2 2 4 2
p D D

D

T
Q nC T n R T nRT p V

T

      
         

      
 

 

where in the last step we have used the fact that 1
4D AT T  (from the gas law in ratio form). 

Therefore, Eq. 20-12 leads to 

L

H

1
1 1 0.75 75%.

4

Q

Q
        

 

35. (a) The pressure at 2 is p2 = 3.00p1, as given in the problem statement. The volume is 

V2 = V1 = nRT1/p1. The temperature is 

 

2 2 1 1 2
2 1

1

3.00
3.00   3.00.

p V pV T
T T

nR nR T
      
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(b) The process 2  3 is adiabatic, so 1 1

2 2 3 3T V T V   . Using the result from part (a), V3 = 

4.00V1, V2 = V1, and =1.30, we obtain 

 
1 0.30

3 3 2

1 2 3

1
3.00 3.00 1.98

/ 3.00 4.00

T T V

T T V

 
   

      
  

. 

 

(c) The process 4  1 is adiabatic, so 1 1

4 4 1 1T V TV   . Since V4 = 4.00V1, we have  

 
1 0.30

4 1

1 4

1
0.660.

4.00

T V

T V

 
   

     
  

 

 

(d) The process 2  3 is adiabatic, so 2 2 3 3p V p V   or  3 2 3 2p V V p


 . Substituting V3 

= 4.00V1, V2 = V1, p2 = 3.00p1, and = 1.30, we obtain 

 

3

1.30

1

3.00
= 0.495.

(4.00)

p

p
  

 

(e) The process 4  1 is adiabatic, so 4 4 1 1p V pV   and 

 

4 1

1.30

1 4

1
0.165,

(4.00)

p V

p V


 

   
 

 

 

where we have used V4 = 4.00V1.  

 

(f) The efficiency of the cycle is  = W/Q12, where W is the total work done by the gas 

during the cycle and Q12 is the energy added as heat during the 1  2 portion of the cycle, 

the only portion in which energy is added as heat. The work done during the portion of 

the cycle from 2 to 3 is W23 =  p dV. Substitute 2 2p p V V   to obtain 

 

 
3

2

1 12 2
23 2 2 2 3 .

1

V

V

p V
W p V V dV V V


   



   
   

 
  

 

Substitute V2 = V1, V3 = 4.00V1, and p3 = 3.00p1 to obtain 

 

1 1 1
23 1 1

3 1 3 1
= 1 = 1 .

1 4 1 4

pV nRT
W

   

      
       

       
 

 

Similarly, the work done during the portion of the cycle from 4 to 1 is 
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 1 11 1 1 1 1
41 4 1 1 1

1 1
= = 1 = 1 .

1 1 4 1 4

pV pV nRT
W V V


 

   

 

 

        
            

         
 

 

No work is done during the 1  2 and 3  4 portions, so the total work done by the gas 

during the cycle is 

1
23 41 1

2 1
= + = 1 .

1 4

nRT
W W W

 

   
   

   
 

The energy added as heat is  

 

Q12 = nCV (T2 – T1) = nCV (3T1 – T1) = 2nCVT1, 

 

where CV is the molar specific heat at constant volume. Now  

 

 = Cp/CV = (CV + R)/CV = 1 + (R/CV), 

 

so CV = R/( – 1). Here Cp is the molar specific heat at constant pressure, which for an 

ideal gas is Cp = CV + R. Thus, Q12 = 2nRT1/( – 1). The efficiency is 

 

1

1 1

1

2 1 1 1
1 1 .

1 4 2 4

nRT

nRT 




  

 
    

  
 

 

With  = 1.30, the efficiency is  = 0.340 or 34.0%. 

 

36. (a) Using Eq. 20-14 and Eq. 20-16, we obtain 

 

 L 300K 280K
1.0 J 0.071J.

280KC

Q
W

K

 
   

 
 

 

(b) A similar calculation (being sure to use absolute temperature) leads to 0.50 J in this 

case. 

 

(c) With TL = 100 K, we obtain |W| = 2.0 J. 

 

(d) Finally, with the low temperature reservoir at 50 K, an amount of work equal to |W| = 

5.0 J is required. 

 

37. THINK The performance of the refrigerator is related to its rate of doing work.   

 

EXPRESS The coefficient of performance for a refrigerator is given by  

Lwhat we want

what we pay for

Q
K

W
  , 

where QL is the energy absorbed from the cold reservoir as heat and W is the work done 

during the refrigeration cycle, a negative value. The first law of thermodynamics yields 
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QH + QL – W = 0 for an integer number of cycles. Here QH is the energy ejected to the hot 

reservoir as heat. Thus, QL = W – QH. QH is negative and greater in magnitude than W, so 

|QL| = |QH| – |W|. Thus, 

H
.

Q W
K

W


  

The solution for |W| is |W| = |QH|/(K + 1).  

 

ANALYZE In one hour, H| | 7.54 MJQ  . With K = 3.8, the work done is 

7.54MJ
1.57MJ.

3.8 1
W  


 

 

The rate at which work is done is | | /P W t   = (1.57  10
6
 J)/(3600 s) = 440 W. 

 

LEARN The greater the value of K, the less the amount of work | |W  required to transfer 

the heat.  

 

38. Equation 20-10 still holds (particularly due to its use of absolute values), and energy 

conservation implies |W| + QL = QH. Therefore, with TL = 268.15 K and TH = 290.15 K, 

we find 

 H
H L H

L

290.15

268.15

T
Q Q Q W

T

   
     

  
 

 

which (with |W| = 1.0 J) leads to 
H

1
13J.

1 268.15/ 290.15
Q W

 
  

 
 

 

39. THINK A large (small) value of coefficient of performance K means that less (more) 

work would be required to transfer the heat 

 

EXPRESS A Carnot refrigerator working between a hot reservoir at temperature TH and 

a cold reservoir at temperature TL has a coefficient of performance K that is given by  

 

L

H L

T
K

T T



, 

 

where HT  is the temperature of the higher-temperature reservoir, and TL the temperature 

of the lower-temperature reservoir, in Kelvin scale. Equivalently, the coefficient of 

performance is the energy QL drawn from the cold reservoir as heat divided by the work 

done: K = |QL|/|W|. 

 

ANALYZE For the refrigerator of this problem, TH = 96° F = 309 K and TL = 70° F = 

294 K, so  

K = (294 K)/(309 K – 294 K) = 19.6. 
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Thus, with | | 1.0 JW  , the amount of heat removed from the room is 

 

|QL| = K|W| = (19.6)(1.0 J) = 20 J. 

 

LEARN The Carnot air conditioner in this problem (with K = 19.6) are much more 

efficient than that of the typical room air conditioners ( 2.5K  ).  

 

40. (a) Equation 20-15 provides 

L

H L

H L

1 C
C

C

Q K
K Q Q

Q Q K

 
    

  
 

 

which yields |QH| = 49 kJ when KC = 5.7 and |QL| = 42 kJ. 

 

(b) From Section 20-5 we obtain 

 

H L 49.4 kJ 42.0 kJ 7.4 kJW Q Q      

 

if we take the initial 42 kJ datum to be accurate to three figures. The given temperatures 

are not used in the calculation; in fact, it is possible that the given room temperature 

value is not meant to be the high temperature for the (reversed) Carnot cycle — since it 

does not lead to the given KC using Eq. 20-16. 

 

41. We are told K = 0.27KC, where 

 

L

H L

294 K
= = = 23

307 K 294 K
C

T
K

T T 
 

 

where the Fahrenheit temperatures have been converted to Kelvins. Expressed on a per 

unit time basis, Eq. 20-14 leads to 

 

  
L| | / 4000 Btu h

643 Btu h.
0.27 23

W Q t

t K
    

 

Appendix D indicates 1 But/h = 0.0003929 hp, so our result may be expressed as |W|/t = 

0.25 hp. 

 

42. The work done by the motor in t = 10.0 min is |W| = Pt = (200 W)(10.0 min)(60 s/min) 

= 1.20  10
5
 J. The heat extracted is then 

 

   5

L 6

L

H L

270K 1.20 10 J
1.08 10 J.

300K 270K

T W
Q K W

T T


    

 
 

 

43. The efficiency of the engine is defined by  = W/Q1 and is shown in the text to be  
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1 2 1 2

1 1 1

T T T TW

T Q T


 
   . 

 

The coefficient of performance of the refrigerator is defined by K = Q4/W and is shown in 

the text to be  

4 4 4

3 4 3 4

T Q T
K

T T W T T
  

 
. 

Now Q4 = Q3 – W, so  

(Q3 – W)/W = T4/(T3 – T4). 

 

The work done by the engine is used to drive the refrigerator, so W is the same for the 

two. Solve the engine equation for W and substitute the resulting expression into the 

refrigerator equation. The engine equation yields W = (T1 – T2)Q1/T1 and the substitution 

yields 

 
3 3 14

3 4 1 1 2

= 1= 1.
Q Q TT

T T W Q T T
 

 
 

Solving for Q3/Q1, we obtain 

 

 

 
2 13 34 1 2 1 2

1 3 4 1 3 4 1 4 3

1
1 .

1

T TQ TT T T T T

Q T T T T T T T T

       
         

        
 

 

With T1 = 400 K, T2 = 150 K, T3 = 325 K, and T4 = 225 K, the ratio becomes Q3/Q1 = 

2.03. 

 

44. (a) Equation 20-13 gives the Carnot efficiency as 1 – TL /TH .  This gives 0.222 in this 

case.  Using this value with Eq. 20-11 leads to W = (0.222)(750 J) = 167 J. 

 

(b) Now, Eq. 20-16 gives KC = 3.5.  Then, Eq. 20-14 yields |W| = 1200/3.5 = 343 J.   

 

45. We need nine labels: 
 

Label Number of molecules on side 1 Number of molecules on side 2 

I 8 0 

II 7 1 

III 6 2 

IV 5 3 

V 4 4 

VI 3 5 

VII 2 6 

VIII 1 7 

IX 0 8 
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The multiplicity W is computing using Eq. 20-20. For example, the multiplicity for label 

IV is 

     
8! 40320

= = = 56
5! 3! 120 6

W  

 

and the corresponding entropy is (using Eq. 20-21) 

 

   23 23= ln = 1.38 10 J/K ln 56 = 5.6 10 J/K.S k W     

 

In this way, we generate the following table: 

 

Label W S 

I 1 0 

II 8 2.9  10
–23

 J/K 

III 28 4.6  10
–23

 J/K 

IV 56 5.6  10
–23

 J/K 

V 70 5.9  10
–23

 J/K 

VI 56 5.6  10
–23

 J/K 

VII 28 4.6  10
–23

 J/K 

VIII 8 2.9  10
–23

 J/K 

IX 1 0 

 

46. (a) We denote the configuration with n heads out of N trials as (n; N). We use Eq. 20-

20: 

 
  

1450!
25;50 = =1.26 10 .

25! 50 25 !
W 


 

 

(b) There are 2 possible choices for each molecule: it can either be in side 1 or in side 2 

of the box. If there are a total of N independent molecules, the total number of available 

states of the N-particle system is 

 

total = 2 2 2 2 = 2 .NN      

 

With N  = 50, we obtain Ntotal = 2
50 

=1.13  10
15

. 

 

(c) The percentage of time in question is equal to the probability for the system to be in 

the central configuration: 

 
  14

50 15

25;50 1.26 10
25;50 11.1%.

2 1.13 10

W
p


  


 

 

With N = 100, we obtain  

 

(d) W(N/2, N) = N!/[(N/2)!]
2
 = 1.01  10

29
, 
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(e) Ntotal = 2
N
 =1.27 


 

 

(f) and p(N/2; N) = W(N/2, N)/ Ntotal = 8.0%. 

 

Similarly, for N = 200, we obtain  

 

(g) W(N/2, N) = 9.25  10
58

,  

 

(h) Ntotal =1.61 


,  

 

(i) and p(N/2; N) = 5.7%. 

 

(j) As N increases, the number of available microscopic states increases as 2
N
, so there 

are more states to be occupied, leaving the probability less for the system to remain in its 

central configuration. Thus, the time spent there decreases with an increase in N. 

 

47. THINK The gas molecules inside a box can be distributed in many different ways. 

The number of microstates associated with each distinct configuration is called the 

multiplicity.  

 

EXPRESS Given N molecules, if the box is divided into m equal parts, with n1 molecules 

in the first, n2 in the second,…, such that 1 2 ... mn n n N   . There are N! arrangements 

of the N molecules, but n1! are simply rearrangements of the n1 molecules in the first part, 

n2! are rearrangements of the n2 molecules in the second,… These rearrangements do not 

produce a new configuration. Therefore, the multiplicity factor associated with this is 

 

1 2 3

!
.

! ! ! !m

N
W

n n n n
  

 

ANALYZE (a) Suppose there are nL molecules in the left third of the box, nC molecules 

in the center third, and nR molecules in the right third. Using the argument above, we find 

the multiplicity to be 

!

! ! !L C R

N
W

n n n
 . 

Note that L C Rn n n N   . 

 

(b) If half the molecules are in the right half of the box and the other half are in the left 

half of the box, then the multiplicity is 

   
!

= .
2 ! 2 !

B

N
W

N N
 

 

If one-third of the molecules are in each third of the box, then the multiplicity is 
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     
!

= .
3 ! 3 ! 3 !

A

N
W

N N N
 

The ratio is 

   

     

2 ! 2 !
= .

3 ! 3 ! 3 !

A

B

N NW

W N N N
 

(c) For N = 100, 

1650!50!
= = 4.2 10 .

33!33!34!

A

B

W

W
  

 

LEARN The more parts the box is divided into, the greater the number of configurations. 

This exercise illustrates the statistical view of entropy, which is related to W as 

lnS k W .  

 

48. (a) A good way to (mathematically) think of this is to consider the terms when you 

expand:  

(1 + x)
4
 = 1 + 4x + 6x

2
 + 4x

3
 + x

4
. 

 

The coefficients correspond to the multiplicities.  Thus, the smallest coefficient is 1. 

 

(b) The largest coefficient is 6. 

 

(c) Since the logarithm of 1 is zero, then Eq. 20-21 gives S = 0 for the least case. 

 

(d) S = k ln(6) = 2.47  10
23 

J/K. 

 

49. From the formula for heat conduction, Eq. 19-32, using Table 19-6, we have 

 

H  =  kA 
TH - TC

L
  = (401) ( )(0.02)

2
 270/1.50  

 

which yields H = 90.7 J/s.  Using Eq. 20-2, this is associated with an entropy rate-of-

decrease of the high temperature reservoir (at 573 K) equal to  

 

ΔS/t = –90.7/573 = –0.158 (J/K)/s. 

 

And it is associated with an entropy rate-of-increase of the low temperature reservoir (at 

303 K) equal to  

ΔS/t = +90.7/303 = 0.299 (J/K)/s. 

 

The net result is (0.299 – 0.158) (J/K)/s = 0.141 (J/K)/s. 

 

50. For an isothermal ideal gas process, we have Q = W = nRT ln(Vf /Vi ).  Thus,  

 

S = Q/T = W/T = nR ln(Vf /Vi )  
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(a) Vf /Vi = (0.800)/(0.200) = 4.00, S = (0.55)(8.31)ln(4.00) = 6.34 J/K. 

 

(b) Vf /Vi = (0.800)/(0.200) = 4.00, S = (0.55)(8.31)ln(4.00) = 6.34 J/K. 

 

(c) Vf /Vi = (1.20)/(0.300) = 4.00, S = (0.55)(8.31)ln(4.00) = 6.34 J/K. 

 

(d) Vf /Vi = (1.20)/(0.300) = 4.00, S = (0.55)(8.31)ln(4.00) = 6.34 J/K. 

 

51. THINK Increasing temperature causes a shift of the probability distribution function 

P(v) toward higher speed.   

 

EXPRESS According to kinetic theory, the rms speed and the most probable speed are 

(see Eqs. 19-34 and 19035) rms 3 /v RT M , 2 /Pv RT M and where T is the 

temperature and M is the molar mass. The rms speed is defined as 2

rms avg( )v v , where 

2 2

avg
0

( ) ( )v v P v dv


  , with the Maxwell’s speed distribution function given by  

2

3/ 2

2 / 2( ) 4
2

Mv RTM
P v v e

RT




 
  

 
. 

 

Thus, the difference between the two speeds is 

 

 rms

3 2
3 2P

RT RT RT
v v v

M M M
       . 

 

ANALYZE (a) With M = 28 g/mol = 0.028 kg/mol (see Table 19-1), and Ti = 250 K, we 

have 

    (8.31J/mol K)(250 K)
3 2 3 2 87 m/s

0.028 kg/mol

i
i

RT
v

M


      . 

 

(b) Similarly, at Tf = 500 K,  

 

    2(8.31J/mol K)(500 K)
3 2 3 2 122 m/s 1.2 10 m/s

0.028 kg/mol

f

f

RT
v

M


        . 

 

(c) From Table 19-3 we have CV = 5R/2 (see also Table 19-2). For n = 1.5 mol, using Eq. 

20-4, we find the change in entropy to be  

 

500 K
ln ln 0 (1.5 mol)(5 / 2)(8.31 J/mol K)ln

250 K

22 J/K

f f

V

i i

V T
S n R nC

V T

     
          

    


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LEARN Notice that the expression for v implies 2

2
( )

( 3 2)

M
T v

R
 


. Thus, one 

may also express S as  
2

2

( )
ln ln 2 ln

( )

f f f

V V V

i i i

T v v
S nC nC nC

T v v

     
             

. 

 

The entropy of the gas increases as the result of temperature increase.  

 

52. (a) The most obvious input-heat step is the constant-volume process. Since the gas is 

monatomic, we know from Chapter 19 that 
3

2
VC R . Therefore, 

 

   
3 J

1.0 mol 8.31 600 K 300 K 3740 J.
2  mol K

V VQ nC T
  

      
  

 

 

Since the heat transfer during the isothermal step is positive, we may consider it also to 

be an input-heat step. The isothermal Q is equal to the isothermal work (calculated in the 

next part) because Eint = 0 for an ideal gas isothermal process (see Eq. 19-45). 

Borrowing from the part (b) computation, we have 

 

   isotherm H

J
= ln2 = 1 mol 8.31 600 K ln2 = 3456 J.

 mol K
Q nRT

 
 

 
 

 

Therefore, QH = QV + Qisotherm = 7.2  10
3
 J. 

 

(b) We consider the sum of works done during the processes (noting that no work is done 

during the constant-volume step). Using Eq. 19-14 and Eq. 19-16, we have 

 

W nRT
V

V
p V V= +H

max

min

min min maxln
F
HG
I
KJ b g 

 

where, by the gas law in ratio form, the volume ratio is 
V

V

T

T

max

min

H

L

 K

 K
= =

600

300
= 2. 

Thus, the net work is 

 

   

      

max
H min min H L H L

min

2

= ln2 + 1 = ln2 + 1 2 = ln2

J
= 1 mol 8.31 600 K ln2 300 K

 mol  K

= 9.6 10  J.

V
W nRT p V nRT nRT nR T T

V

 
   

 

 
 

 


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(c) Equation 20-11 gives 
H

0.134 13%.
W

Q
     

 

53. (a) If TH is the temperature of the high-temperature reservoir and TL is the 

temperature of the low-temperature reservoir, then the maximum efficiency of the engine 

is 

 

 
H L

H

800 + 40  K
= = = 0.78  or  78%.

800 + 273  K

T T

T



 

 

(b) The efficiency is defined by  = |W|/|QH|, where W is the work done by the engine and 

QH is the heat input. W is positive. Over a complete cycle, QH = W + |QL|, where QL is the 

heat output, so  = W/(W + |QL|) and |QL| = W[(1/) – 1]. Now  = (TH – TL)/TH, where TH 

is the temperature of the high-temperature heat reservoir and TL is the temperature of the 

low-temperature reservoir. Thus, 

 

L L
L

H L H L

1
1 and .

T WT
Q

T T T T
  

 
 

 

The heat output is used to melt ice at temperature Ti = – 40°C. The ice must be brought to 

0°C, then melted, so  

|QL| = mc(Tf – Ti) + mLF, 

 

where m is the mass of ice melted, Tf is the melting temperature (0°C), c is the specific 

heat of ice, and LF is the heat of fusion of ice. Thus,  

 

WTL/(TH – TL) = mc(Tf – Ti) + mLF. 

 

We differentiate with respect to time and replace dW/dt with P, the power output of the 

engine, and obtain  

PTL/(TH – TL) = (dm/dt)[c(Tf – Ti) + LF]. 

 

Therefore, 

 
L

H L

1
= .

f i F

dm PT

dt T T c T T L

  
         

 

 

Now, P = 100  10
6
 W, TL = 0 + 273 = 273 K, TH = 800 + 273 = 1073 K, Ti = –40 + 273 

= 233 K, Tf = 0 + 273 = 273 K, c = 2220 J/kg·K, and LF = 333  10
3
 J/kg, so 

 

  

  

6

3

100 10  J/s 273 K 1
=

1073 K 273 K 2220 J/kg K 273 K 233 K + 333 10  J/kg

82kg/s.

dm

dt

   
   

        


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We note that the engine is now operated between 0°C and 800°C. 

 

54. Equation 20-4 yields  

 

S =  nR ln(Vf /Vi)  +   nCV ln(Tf /Ti)  =  0 + nCV ln(425/380) 

 

where n = 3.20 and CV  =  
3

2
 R  (Eq. 19-43). This gives 4.46 J/K. 

 

55. (a) Starting from 0Q   (for calorimetry problems) we can derive (when no phase 

changes are involved) 

1 1 1 2 2 2

1 1 2 2

+
= = 40.9 C,

+
f

c m T c m T
T

c m c m
  

which is equivalent to 314 K. 

 

(b) From Eq. 20-1, we have 

 

  
314

copper
353

314
386 0.600 ln 27.1 J/K.

353

cmdT
S

T

 
     

 
  

 

(c) For water, the change in entropy is 

 

  
314

water
283

314
4187 0.0700 ln 30.3 J/K.

283.15

cmdT
S

T

 
    

 
  

 

(d) The net result for the system is (30.3 – 27.1) J/K = 3.2 J/K. (Note: These calculations 

are fairly sensitive to round-off errors. To arrive at this final answer, the value 273.15 

was used to convert to Kelvins, and all intermediate steps were retained to full calculator 

accuracy.) 

 

56. Using Hooke’s law, we find the spring constant to be 

 

1.50 N
42.86 N/m

0.0350 m

s

s

F
k

x
   . 

 

To find the rate of change of entropy with a small additional stretch, we use Eq. 20-7 and 

obtain 

3| | (42.86 N/m)(0.0170 m)
2.65 10  J/K m

275 K

dS k x

dx T

     . 

 

57. Since the volume of the monatomic ideal gas is kept constant, it does not do any work 

in the heating process. Therefore the heat Q it absorbs is equal to the change in its inertial 

energy: int

3

2
dQ dE n RdT  . Thus, 
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 
 

3 2 3 3 J 400 K
ln 1.00 mol 8.31 ln

2 2  mol K 300 K

3.59 J/K.

f

i

T f

T
i

TnR dTdQ
S nR

T T T

     
         

    



   

 

58. With the pressure kept constant, 

 

 
3 5

= = + = + = ,
2 2

p VdQ nC dT n C R dT nR nR dT nRdT
 
 
 

 

 

so we need to replace the factor 3/2 in the last problem by 5/2. The rest is the same. Thus 

the answer now is 

 

 
5 5 J 400 K

= ln = 1.00 mol 8.31 ln = 5.98 J/K.
2 2  mol  K 300 K

f

i

T
S nR

T

     
      

    
 

 

59. THINK The temperature of the ice is first raised to 0 C , then the ice melts and the 

temperature of the resulting water is raised to 40 C . We want to calculate the entropy 

change in this process.   

 

EXPRESS As the ice warms, the energy it receives as heat when the temperature 

changes by dT is dQ = mcI dT, where m is the mass of the ice and cI is the specific heat of 

ice. If Ti (= 20 C  = 253 K) is the initial temperature and Tf (= 273 K) is the final 

temperature, then the change in its entropy is 

 

  1

273 K
ln 0.60 kg 2220 J/kg K ln 101 J/K.

253 K

f

i

T f

I I
T

i

TdQ dT
S mc mc

T T T

   
         

  
   

 

Melting is an isothermal process. The energy leaving the ice as heat is mLF, where LF is 

the heat of fusion for ice. Thus,  

  3

2

0.60 kg 333 10  J/kg
732 J/K.

273 K

FmLQ
S

T T


      

For the warming of the water from the melted ice, the change in entropy is 

 

  3

313 K
ln 0.600 kg 4190 J/kg K ln 344 J/K

273 K

f

w

i

T
S mc

T

   
       

  
, 

 

where cw = 4190 J/kg  K is the specific heat of water.  

 

ANALYZE The total change in entropy for the ice and the water it becomes is 
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3

1 2 3 101 J/K 732 J/K 344 J/K 1.18 10  J/KS S S S          . 

 

LEARN From the above, we readily see that the biggest increase in entropy comes from 

2S , which accounts for the melting process. 

 

60. The net work is figured from the (positive) isothermal expansion (Eq. 19-14) and the 

(negative) constant-pressure compression (Eq. 19-48).  Thus, 

 

Wnet = nRTH ln(Vmax/Vmin) +  nR(TL – TH) 

 

where n = 3.4, TH = 500 K, TL = 200 K, and Vmax/Vmin = 5/2  (same as the ratio TH /TL ).  

Therefore, Wnet = 4468 J.  Now, we identify the “input heat” as that transferred in steps 1 

and 2:  

Qin = Q1 + Q2 = nCV (TH – TL)  + nRTH ln(Vmax/Vmin) 

 

where CV  = 5R/2 (see Table 19-3).  Consequently, Qin = 34135 J.  Dividing these results 

gives the efficiency:  Wnet /Qin = 0.131 (or about 13.1%). 

 

61. Since the inventor’s claim implies that less heat (typically from burning fuel) is 

needed to operate his engine than, say, a Carnot engine (for the same magnitude of net 

work), then QH < QH (see Fig. 20-34(a)) which implies that the Carnot (ideal refrigerator) 

unit is delivering more heat to the high temperature reservoir than engine X draws from it.  

This (using also energy conservation) immediately implies Fig. 20-34(b), which violates 

the second law. 

 

62. (a) From Eq. 20-1, we infer Q = ∫ T dS, which corresponds to the “area under the 

curve” in a T-S diagram.  Thus, since the area of a rectangle is (height)(width), we have 

 

Q1→2 = (350)(2.00) = 700 J. 

 

(b) With no “area under the curve” for process 2 → 3, we conclude Q2→3 = 0. 

 

(c) For the cycle, the (net) heat should be the “area inside the figure,” so using the fact 

that the area of a triangle is ½ (base)  (height), we find 

 

Qnet =  
1

2
 (2.00)(50) = 50 J. 

 

(d) Since we are dealing with an ideal gas (so that ΔEint = 0 in an isothermal process), 

then 

W1→2  = Q1→2  = 700 J. 

 

(e) Using Eq. 19-14 for the isothermal work, we have 
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W1→2 = nRT ln 
V2

V1
 . 

 

where T = 350 K.  Thus, if V1 = 0.200 m
3
, then we obtain 

 

V2 = V1 exp (W/nRT)  = (0.200) e
0.12

  = 0.226 m
3
. 

 

(f) Process 2 → 3 is adiabatic; Eq. 19-56 applies with γ = 5/3 (since only translational 

degrees of freedom are relevant here): 

 

T2V2
γ-1

 = T3V3
γ-1

 . 

This yields V3 = 0.284 m
3
. 

 

(g) As remarked in part (d), ΔEint = 0 for process 1 → 2. 

 

(h) We find the change in internal energy from Eq. 19-45 (with CV = 
3

2
 R): 

 

ΔEint  =  nCV (T3 – T2) = –1.25  10
3
 J. 

 

(i) Clearly, the net change of internal energy for the entire cycle is zero.  This feature of a 

closed cycle is as true for a T-S diagram as for a p-V diagram. 

 

(j) For the adiabatic (2 → 3) process, we have W = ΔEint.  Therefore, W = 1.25  10
3
 J.  

Its positive value indicates an expansion.  

 

63. (a) It is a reversible set of processes returning the system to its initial state; clearly, 

Snet = 0. 

 

(b) Process 1 is adiabatic and reversible (as opposed to, say, a free expansion) so that Eq. 

20-1 applies with dQ = 0 and yields S1 = 0. 

 

(c) Since the working substance is an ideal gas, then an isothermal process implies Q = W, 

which further implies (regarding Eq. 20-1) dQ = p dV. Therefore, 

 

 pV

nR

dQ p dV dV
nR

T V
     

 

which leads to 3 ln(1/ 2) 23.0 J K.S nR     

 

(d) By part (a), S1 + S2 + S3 = 0. Then, part (b) implies S2 = S3. Therefore, S2 = 

23.0 J/K. 

 

64. (a) Combining Eq. 20-11 with Eq. 20-13, we obtain 
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 L
H

H

260K
1 500J 1 93.8J.

320K

T
W Q

T

   
       

  
 

 

(b) Combining Eq. 20-14 with Eq. 20-16, we find 

 

   L

H L

L

260K
320K 260K

1000J
231 J.

T

T T

Q
W



    

 

65. (a) Processes 1 and 2 both require the input of heat, which is denoted QH. Noting that 

rotational degrees of freedom are not involved, then, from the discussion in Chapter 19, 

3 / 2, 5 / 2V pC R C R  , and 5/ 3  . We further note that since the working substance 

is an ideal gas, process 2 (being isothermal) implies Q2 = W2. Finally, we note that the 

volume ratio in process 2 is simply 8/3. Therefore, 

 

 H 1 2

8
' ln

3
VQ Q Q nC T T nRT       

 

which yields (for T = 300 K and T' = 800 K) the result QH = 25.5  10
3
 J. 

 

(b) The net work is the net heat (Q1 + Q2 + Q3). We find Q3 from  

 

nCp (T  T') = 20.8  10
3
 J. 

Thus, W = 4.73  10
3
 J. 

 

(c) Using Eq. 20-11, we find that the efficiency is 

 
3

3

H

4.73 10
0.185 or 18.5%.

25.5 10

W

Q



  


 

 

66. (a) Equation 20-14 gives K = 560/150 = 3.73. 

 

(b) Energy conservation requires the exhaust heat to be 560 + 150 = 710 J. 

 

67. The change in entropy in transferring a certain amount of heat Q from a heat reservoir 

at T1 to another one at T2 is S = S1 + S2 = Q(1/T2  1/T1). 

 

(a) S = (260 J)(1/100 K – 1/400 K) = 1.95 J/K. 

 

(b) S = (260 J)(1/200 K – 1/400 K) = 0.650 J/K. 

 

(c) S = (260 J)(1/300 K – 1/400 K) = 0.217 J/K. 

 

(d) S = (260 J)(1/360 K – 1/400 K) = 0.072 J/K. 
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(e) We see that as the temperature difference between the two reservoirs decreases, so 

does the change in entropy. 

 

68. Equation 20-10 gives 

to to

from from

300K
75.

4.0K

Q T

Q T
    

 

69. (a) Equation 20-2 gives the entropy change for each reservoir (each of which, by 

definition, is able to maintain constant temperature conditions within itself).  The net 

entropy change is therefore 

S = 
+|Q|

273 + 24
  + 

|Q|  

273 + 130
  = 4.45 J/K 

 

where we set |Q| = 5030 J.   

 

(b) We have assumed that the conductive heat flow in the rod is “steady-state”; that is, 

the situation described by the problem has existed and will exist for “long times.”  Thus 

there are no entropy change terms included in the calculation for elements of the rod 

itself. 

 

70. (a) Starting from 0Q    (for calorimetry problems) we can derive (when no phase 

changes are involved) 

1 1 1 2 2 2

1 1 2 2

+
= = 44.2 C,

+
f

c m T c m T
T

c m c m
   

which is equivalent to 229 K. 

 

(b) From Eq. 20-1, we have 

 

  
229

tungsten
303

229
= = 134 0.045 ln = 1.69 J/K.

303

cmdT
S

T

 
  

 
  

(c) Also, 

  
229

silver
153

229
= = 236 0.0250 ln = 2.38 J/K.

153

cmdT
S

T

 
  

 
  

 

(d) The net result for the system is (2.38 – 1.69) J/K = 0.69 J/K. (Note: These calculations 

are fairly sensitive to round-off errors. To arrive at this final answer, the value 273.15 

was used to convert to Kelvins, and all intermediate steps were retained to full calculator 

accuracy.) 

 

71. (a) We use Eq. 20-16. For configuration A 
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      
14! 50!

= = =1.26 10 .
2 ! 2 ! 25! 25!

A

N
W

N N
  

 

(b) For configuration B 

   
13! 50!

= = = 4.71 10 .
0.6 ! 0.4 ! [0.6(50)]![0.4(50)]!

B

N
W

N N
  

 

(c) Since all microstates are equally probable, 

 

1265
= = 0.37.

3393

B

A

W
f

W
  

 

We use these formulas for N = 100. The results are 

 

(d) 
      

29! 100!
= = =1.01 10 ,

2 ! 2 ! 50! 50!
A

N
W

N N
  

 

(e) 
   

28! 100!
=1.37 10 ,

0.6 ! 0.4 ! [0.6(100)]![0.4(100)]!
B

N
W

N N
    

 

(f) and f  WB/WA  0.14. 

 

Similarly, using the same formulas for N = 200, we obtain 

 

(g) WA = 9.05  10
58

,  

 

(h) WB = 1.64  10
57

,  

 

(i) and f = 0.018. 

 

(j) We see from the calculation above that f decreases as N increases, as expected. 

 

72. A metric ton is 1000 kg, so that the heat generated by burning 380 metric tons during 

one hour is    6380000 kg 28 MJ kg =10.6 10  MJ.  The work done in one hour is 

 

   6= 750 MJ s 3600 s = 2.7 10  MJW   

 

where we use the fact that a watt is a joule-per-second. By Eq. 20-11, the efficiency is 

 
6

6

2.7 10 MJ
0.253 25%.

10.6 10 MJ



  


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73. THINK The performance of the Carnot refrigerator is related to its rate of doing 

work.   

 

EXPRESS The coefficient of performance for a refrigerator is defined as 

  

Lwhat we want

what we pay for

Q
K

W
  , 

 

where QL is the energy absorbed from the cold reservoir (interior of refrigerator) as heat 

and W is the work done during the refrigeration cycle, a negative value. The first law of 

thermodynamics yields QH + QL – W = 0 for an integer number of cycles. Here QH is the 

energy ejected as heat to the hot reservoir (the room). Thus, 
L H.Q W Q   QH is negative 

and greater in magnitude than W, so |QL| = |QH| – |W|. Thus, 

 

H
.

Q W
K

W


  

 

The solution for | | | | (1 ) | | (1 ) /H LQ W K Q K K    . 

 

ANALYZE (a) From the expression above, the energy per cycle transferred as heat to the 

room is 

1 1 4.60
| | | | (35.0 kJ) 42.6 kJ

4.60
H L

K
Q Q

K

 
   . 

 

(b) Similarly, the work done per cycle is 
| | 35.0 kJ

| | 7.61kJ
4.60

LQ
W

K
   . 

 

LEARN A Carnot refrigerator is a Carnot engine operating in reverse. Its coefficient of 

performance can also be written as  

L

H L

T
K

T T



 

 

The value of K is higher when the temperatures of the two reservoirs are close to each 

other.  

 

74. The Carnot efficiency (Eq. 20-13) depends linearly on TL so that we can take a 

derivative 

L

H L H

1
=1 =

T d

T dT T


     

 

and quickly get to the result. With 0.100d    and TH = 400 K, we find dTL  TL 

= 40 K. 
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75. THINK The gas molecules inside a box can be distributed in many different ways. 

The number of microstates associated with each distinct configuration is called the 

multiplicity.  

 

EXPRESS In general, if there are N molecules and if the box is divided into two halves, 

with nL molecules in the left half and nR in the right half, such that 
L Rn n N  . There 

are N! arrangements of the N molecules, but nL! are simply rearrangements of the nL 

molecules in the left half, and nR! are rearrangements of the nR molecules in the right half. 

These rearrangements do not produce a new configuration. Therefore, the multiplicity 

factor associated with this is 

L R

!
.

! !

N
W

n n
  

The entropy is given by lnS k W . 

 

ANALYZE (a) The least multiplicity configuration is when all the particles are in the 

same half of the box. In this case, for system A with with 3N  , we have 

 

3!
= =1.

3!0!
W  

 

(b) Similarly for box B, with N = 5, W = 5!/(5!0!) = 1 in the “least” case. 

 

(c) The most likely configuration in the 3 particle case is to have 2 on one side and 1 on 

the other. Thus, 

3!
= = 3.

2!1!
W  

 

(d) The most likely configuration in the 5 particle case is to have 3 on one side and 2 on 

the other. Therefore, 

5!
= =10.

3!2!
W  

 

(e) We use Eq. 20-21 with our result in part (c) to obtain 

 

 23 23= ln = 1.38 10 ln3 =1.5 10  J/K.S k W     

 

(f) Similarly for the 5 particle case (using the result from part (d)), we find  

 

S = k ln 10 = 3.2  10
23

 J/K. 

 

LEARN The least multiplicity is W = 1; this happens when Ln N  or L 0n  . On the 

other hand, the greatest multiplicity occurs when L ( 1) / 2n N   or L ( 1) / 2n N  . 
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76. (a) Using ,Q T S   we note that heat enters the cycle along the top path at 400 K, 

and leaves along the bottom path at 250 K. Thus,  

 

 in

out

(400 K)(0.60 J/K 0.10 J/K) 200 J

(250 K)(0.10 J/K 0.60 J/K) 125 J

Q

Q

  

   
 

 

and the net heat transfer is in out 200 J 125 J 75 J.Q Q Q      

 

(b) For cyclic path, int 0.E Q W     Therefore, the work done by the system is 

75 J.W Q   

 

77. The efficiency of an ideal heat engine and coefficient of performance of a reversible 

refrigerator are 

H

H

, .
W Q W

K
Q W




   

Thus,  

H H 1 1
1 1

1

Q W Q
K

W W K





      


 

 

78. (a) The efficiency is defined by  = |W|/|QH|, where W is the work done by the engine 

and QH is the heat input.  In our case, the temperatures of the hot and cold reservoirs are 

H 100 C 373 KT     and L 60 C 333 K,T     respectively. The maximum efficiency of 

the engine is 

H L L

H H

333 K
1 1 0.107.

373 K

T T T

T T



       

Thus, the rate of heat input is 

 

 3H 1 1
(500 W) 4.66 10 W.

0.107

dQ dW

dt dt
     

 

(b) The rate of exhaust heat output is 

 

3 3L H 4.66 10 W 500 W 4.16 10 W.
dQ dQ dW

dt dt dt
        

 

79. The temperatures of the hot and cold reservoirs are H 26 C 299 KT     and 

L 13 C 260 K,T      respectively. Therefore, the theoretical coefficient of performance 

of the refrigerator is 

L

H L

260 K
6.67.

299 K 260 K

T
K

T T
  

 
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Chapter 21 
 

 

1. THINK After the transfer, the charges on the two spheres are Q q  and q.  

 

EXPRESS The magnitude of the electrostatic force between two charges 1q  and 2q  

separated by a distance r is given by the Coulomb’s law (see Eq. 21-1): 

 

1 2

2

q q
F k

r
 , 

where 9 2 2

01/ 4 8.99 10 N m C .k      In our case, 1q Q q   and 2 ,q q so the 

magnitude of the force of either of the charges on the other is  

 

F
q Q q

r


1

4 0

2
b g

. 

 

We want the value of q that maximizes the function f(q) = q(Q – q).  

 

ANALYZE Setting the derivative df/dq equal to zero leads to Q – 2q = 0, or q = Q/2. 

Thus, q/Q = 0.500. 

 

LEARN The force between the two spheres is a maximum when charges are distributed 

evenly between them.   

 

2. The fact that the spheres are identical allows us to conclude that when two spheres are 

in contact, they share equal charge. Therefore, when a charged sphere (q) touches an 

uncharged one, they will (fairly quickly) each attain half that charge (q/2). We start with 

spheres 1 and 2, each having charge q and experiencing a mutual repulsive force 
2 2/F kq r . When the neutral sphere 3 touches sphere 1, sphere 1’s charge decreases to 

q/2. Then sphere 3 (now carrying charge q/2) is brought into contact with sphere 2; a total 

amount of q/2 + q becomes shared equally between them. Therefore, the charge of sphere 

3 is 3q/4 in the final situation. The repulsive force between spheres 1 and 2 is finally 

 
2

2 2

( / 2)(3 / 4) 3 3 3
    0.375.

8 8 8

q q q F
F k k F

r r F


        

 

3. THINK The magnitude of the electrostatic force between two charges 1q  and 2q  

separated by a distance r is given by Coulomb’s law. 

 

EXPRESS  Equation 21-1 gives Coulomb’s law, F k
q q

r
 1 2

2 , which can be used to solve 

for the distance: 
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 1 2| || |k q q
r

F
 . 

 

ANALYZE With 5.70 NF  , 6

1 2.60 10 Cq    and 6

2 47.0 10 C,q     the distance 

between the two charges is 

 

     9 2 2 6 6

1 2
8.99 10 N m C 26.0 10 C 47.0 10 C| || |

1.39 m.
5.70N

k q q
r

F

    
    

 

LEARN The electrostatic force between two charges falls as 21/ r . The same inverse-

square nature is also seen in the gravitational force between two masses.   

 

4. The unit ampere is discussed in Section 21-4. Using i for current, the charge 

transferred is 

  4 62.5 10 A 20 10 s 0.50 C.q it       

 

5. The magnitude of the mutual force of attraction at r = 0.120 m is 

 

 
  6 6

1 2 9 2 2

2 2

3.00 10 C 1.50 10 C
8.99 10 N m C 2.81N.

(0.120 m)

q q
F k

r

  
      

 

6. (a) With a understood to mean the magnitude of acceleration, Newton’s second and 

third laws lead to 

m a m a m2 2 1 1 2

7

7
6 3 10 7 0

9 0
4 9 10  


 




. .

.
.

kg m s

m s
kg.

2

2

c hc h
 

 

(b) The magnitude of the (only) force on particle 1 is 

 

 
2

1 2 9 2 2

1 1 2 2
8.99 10 N m C .

(0.0032 m)

q q q
F m a k

r
      

 

Inserting the values for m1 and a1 (see part (a)) we obtain |q| = 7.1  10
–11

 C. 

 

7. With rightward positive, the net force on q3 is 

 

 
1 3 2 3

3 13 23 2 2

2312 23

.
q q q q

F F F k k
LL L

   


 

 

We note that each term exhibits the proper sign (positive for rightward, negative for 

leftward) for all possible signs of the charges. For example, the first term (the force 

exerted on q3 by q1) is negative if they are unlike charges, indicating that q3 is being 
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pulled toward q1, and it is positive if they are like charges (so q3 would be repelled from 

q1). Setting the net force equal to zero L23= L12 and canceling k, q3, and L12 leads to 

 

1 1
2

2

0     4.00.
4.00

q q
q

q
      

 

8. In experiment 1, sphere C first touches sphere A, and they divided  up their total charge 

(Q/2 plus Q) equally between them. Thus, sphere A and sphere C each acquired charge 

3Q/4. Then, sphere C touches B and those spheres split up their total charge (3Q/4 plus –

Q/4) so that B ends up with charge equal to Q/4. The force of repulsion between A and B 

is therefore 

1 2

(3 / 4)( / 4)Q Q
F k

d
  

 

at the end of experiment 1. Now, in experiment 2, sphere C first touches B, which leaves 

each of them with charge Q/8. When C next touches A, sphere A is left with charge 9Q/16. 

Consequently, the force of repulsion between A and B is 

 

2 2

(9 /16)( /8)Q Q
F k

d
  

at the end of experiment 2. The ratio is 

 

2

1

(9 /16)(1/8)
0.375.

(3/ 4)(1/ 4)

F

F
   

 

9. THINK Since opposite charges attract, the initial charge configurations must be of 

opposite signs. Similarly, since like charges repel, the final charge configurations must 

carry the same sign.  

 

EXPRESS We assume that the spheres are far apart. Then the charge distribution on each 

of them is spherically symmetric and Coulomb’s law can be used. Let q1 and q2 be the 

original charges. We choose the coordinate system so the force on q2 is positive if it is 

repelled by q1. Then the force on q2 is 

 

F
q q

r
k

q q

r
a    

1

4 0

1 2

2

1 2

2
 

 

where 9 2 2

01/ 4 8.99 10 N m Ck      and r = 0.500 m. The negative sign indicates that 

the spheres attract each other. After the wire is connected, the spheres, being identical, 

acquire the same charge. Since charge is conserved, the total charge is the same as it was 

originally. This means the charge on each sphere is (q1 + q2)/2. The force is now 

repulsive and is given by 
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F
r

k
q q

r
b

q q q q

 


 

1

4 40

2 2

2

1 2

2

2

1 2 1 2


d id i b g

.  

 

We solve the two force equations simultaneously for q1 and q2.  

 

ANALYZE The first equation gives the product 

 

   
22

12 2

1 2 9 2 2

0.500m 0.108N
3.00 10 C ,

8.99 10 N m C

ar F
q q

k

      
 

 

and the second gives the sum 

 

q q r
F

k

b
1 2

62 2 0500
0 0360

2 00 10  
 

  .
.

.m
N

8.99 10 N m C
C

9 2 2b g  

 

where we have taken the positive root (which amounts to assuming q1 + q2  0). Thus, the 

product result provides the relation 

 12 2

2

1

3.00 10 C
q

q

 
  

 

which we substitute into the sum result, producing 

 

q
q

1

12

1

6300 10
2 00 10


 


.

.
C

C.
2

 

Multiplying by q1 and rearranging, we obtain a quadratic equation 

 

q q1

2 6

1

122 00 10 300 10 0     . . .C C2c h  

The solutions are 

q1

6 6
2

122 00 10 2 00 10 4 300 10

2


        . . .
.

C C C2c h c h
 

 

If the positive sign is used, q1 = 3.00  10
–6

 C, and if the negative sign is used, 
6

1 1.00 10  Cq   .  

 

(a) Using q2 = (–3.00  10
–12

)/q1 with q1 = 3.00  10
–6

 C, we get 6

2 1.00 10  Cq   .  

 

(b) If we instead work with the q1 = –1.00  10
–6

 C root, then we find 6

2 3.00 10  Cq   .  

 

LEARN Note that since the spheres are identical, the solutions are essentially the same: 

one sphere originally had charge –1.00  10
–6

 C and the other had charge +3.00  10
–6

 C. 

What happens if we had not made the assumption, above, that q1 + q2  0? If the signs of 
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the charges were reversed (so q1 + q2 < 0), then the forces remain the same, so a charge of 

+1.00  10
–6

 C on one sphere and a charge of –3.00  10
–6

 C on the other also satisfies 

the conditions of the problem. 

 

10. For ease of presentation (of the computations below) we assume Q > 0 and q < 0 

(although the final result does not depend on this particular choice).  

 

(a) The x-component of the force experienced by q1 = Q is 

  

  

 
   

1 2 2 2

0 0

| |1 | | / | |
cos 45 1

4 4 2 22
x

Q Q q Q Q q Q q
F

a aa 

 
  

          
 

 

 

which (upon requiring F1x = 0) leads to / | | 2 2Q q  , or / 2 2 2.83.Q q   

 

(b) The y-component of the net force on q2 = q is 

 

 
   2 2

2 2 2 2

0 0

| |1 | | | | 1
sin 45

4 4 | |2 22
y

q Qq q Q
F

a a qa 

 
  

     
  

 

 

 

which (if we demand F2y = 0) leads to / 1/ 2 2Q q  . The result is inconsistent with 

that obtained in part (a). Thus, we are unable to construct an equilibrium configuration 

with this geometry, where the only forces present are given by Eq. 21-1. 

 

11. The force experienced by q3 is 

 

 3 1 3 2 3 4
3 31 32 34 2 22

0

| || | | || | | || |1 ˆ ˆ ˆ ˆj (cos45 i sin 45 j) i
4 ( 2 )

q q q q q q
F F F F

a aa

 
          

 
 

 

(a) Therefore, the x-component of the resultant force on q3 is 

 

 
 

2
7

9 2 23 2
3 42 2

0

2 1.0 10 C| | | | 1
| | 8.99 10 N m C 2 0.17 N.

4 (0.050 m)2 2 2 2
x

q q
F q

a

   
         

   
 

 

(b) Similarly, the y-component of the net force on q3 is 

 

  
 

2
7

9 2 23 2
3 12 2

0

2 1.0 10 C| | | | 1
| | 8.99 10 N m C 1

4 (0.050 m)2 2 2 2

0.046 N.

y

q q
F q

a

   
          

   

 
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12. (a) For the net force to be in the +x direction, the y components of the individual 

forces must cancel. The angle of the force exerted by the q1 = 40 C charge on 

3 20q C  is 45°, and the angle of force exerted on q3 by Q is at – where 

 

1 2.0 cm
tan 33.7 .

3.0 cm
   
   

 
 

 

Therefore, cancellation of y components requires 

 

   
1 3 3

2 2
2 2

| |
sin 45 sin

0.02 2 m (0.030 m) (0.020 m)

q q Q q
k k 



 

 

from which we obtain |Q| = 83 C. Charge Q is “pulling” on q3, so (since q3 > 0) we 

conclude Q = –83 C. 

 

(b) Now, we require that the x components cancel, and we note that in this case, the angle 

of force on q3 exerted by Q is + (it is repulsive, and Q is positive-valued). Therefore, 

 

   
1 3 3

2 2
2 2

cos 45 cos

0.02 2 m (0.030 m) (0.020 m)

q q Qq
k k  



 

 

from which we obtain Q = 55.2 C 55 C . 

 

13. (a) There is no equilibrium position for q3 between the two fixed charges, because it is 

being pulled by one and pushed by the other (since q1 and q2 have different signs); in this 

region this means the two force arrows on q3 are in the same direction and cannot cancel.  

It should also be clear that off-axis (with the axis defined as that which passes through the 

two fixed charges) there are no equilibrium positions. On the semi-infinite region of the 

axis that is nearest q2 and furthest from q1 an equilibrium position for q3 cannot be found 

because |q1| < |q2| and the magnitude of force exerted by q2 is everywhere (in that region) 

stronger than that exerted by q1 on q3. Thus, we must look in the semi-infinite region of 

the axis which is nearest q1 and furthest from q2, where the net force on q3 has magnitude 

 

 
1 3 2 3

22

0 0

q q q q
k k

L L L



 

 

with L = 10 cm and 0L  is assumed to be positive. We set this equal to zero, as required by 

the problem, and cancel k and q3. Thus, we obtain 
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 

2

1 2 0 2

22

0 0 10

3.0 C
0 3.0

1.0 C

q q L L q

L L qL L





  
      

  
 

 

which yields (after taking the square root) 

 

0
0

0

10 cm
3 14cm

3 1 3 1

L L L
L

L


    

 
 

 

for the distance between q3 and q1. That is, 
3q  should be placed at 14 cmx    along the 

x-axis. 

 

(b) As stated above, y = 0.  

 

14. (a) The individual force magnitudes (acting on Q) are, by Eq. 21-1, 

 

   
1 2

2 2

0 0

1 1

4 4/ 2 / 2

q Q q Q

a a a a 


  
 

 

which leads to |q1| = 9.0 |q2|. Since Q is located between q1 and q2, we conclude q1 and q2 

are like-sign. Consequently, q1/q2 = 9.0. 

 

(b) Now we have 

   
1 2

2 2

0 0

1 1

4 43 / 2 3 / 2

q Q q Q

a a a a 


  
 

 

which yields |q1| = 25 |q2|. Now, Q is not located between q1 and q2; one of them must 

push and the other must pull. Thus, they are unlike-sign, so q1/q2 = –25. 

 

15. (a) The distance between q1 and q2 is 

 

       
2 2 2 2

12 2 1 2 1 0.020 m 0.035 m 0.015 m 0.005 m 0.056 m.r x x y y           

 

The magnitude of the force exerted by q1 on q2 is 

 

     9 2 2 6 6

1 2
21 2 2

12

8.99 10 N m C 3.0 10 C 4.0 10 C| |
35  N.

(0.056 m)

q q
F k

r

    
    

 

(b) The vector 

F21  is directed toward q1 and makes an angle  with the +x axis, where 
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1 12 1

2 1

1.5 cm 0.5 cm
tan tan 10.3 10 .

2.0 cm 3.5 cm

y y

x x
     
       

    
 

 

(c) Let the third charge be located at (x3, y3), a distance r from q2. We note that q1, q2, and 

q3 must be collinear; otherwise, an equilibrium position for any one of them would be 

impossible to find. Furthermore, we cannot place q3 on the same side of q2 where we also 

find q1, since in that region both forces (exerted on q2 by q3 and q1) would be in the same 

direction (since q2 is attracted to both of them). Thus, in terms of the angle found in part 

(a), we have x3 = x2 – r cos and y3 = y2 – r sin (which means y3 > y2 since  is negative). 

The magnitude of force exerted on q2 by q3 is 2

23 2 3| |F k q q r , which must equal that of 

the force exerted on it by q1 (found in part (a)). Therefore, 

 

2 3 1 2 3
122 2

12 1

0.0645m 6.45 cm .
q q q q q

k k r r
r r q

      

 

Consequently, x3 = x2 – r cos = –2.0 cm – (6.45 cm) cos(–10°) = –8.4 cm, 

 

(d) and y3 =  y2 – r sin = 1.5 cm – (6.45 cm) sin(–10°) = 2.7 cm. 

 

16. (a) According to the graph, when q3 is very close to q1 (at which point we can 

consider the force exerted by particle 1 on 3 to dominate) there is a (large) force in the 

positive x direction.  This is a repulsive force, then, so we conclude q1 has the same sign 

as q3.  Thus, q3 is a positive-valued charge. 

 

(b) Since the graph crosses zero and particle 3 is between the others, q1 must have the 

same sign as q2, which means it is also positive-valued.  We note that it crosses zero at r  

= 0.020 m (which is a distance d = 0.060 m from q2).  Using Coulomb’s law at that point, 

we have 
2 2

1 3 3 2
2 1 1 12 2

0 0

1 1 0.060 m
9.0

4 4 0.020 m

q q q q d
q q q q

r d r 

   
       

   
, 

or q2/q1 = 9.0. 

 

17. (a) Equation 21-1 gives 

 
 

 

2
6

9 2 21 2
12 22

20.0 10 C
8.99 10 N m C 1.60 N.

1.50m

q q
F k

d


      

 

(b) On the right, a force diagram is shown as well as our choice of 

y axis (the dashed line). 

 

The y axis is meant to bisect the line between q2 and q3 in order to 

make use of the symmetry in the problem (equilateral triangle of 

side length d, equal-magnitude charges q1 = q2 = q3 = q). We see 



 

  

973 

that the resultant force is along this symmetry axis, and we obtain 

 

 
 

 

2
62

9 2 2

22

20.0 10 C
2 cos30 2 8.99 10 N m C cos30 2.77 N

1.50m
y

q
F k

d

 
       

 
. 

 

18. Since the forces involved are proportional to q, we see that the essential difference 

between the two situations is Fa  qB + qC  (when those two charges are on the same side) 

versus Fb  qB + qC  (when they are on opposite sides).  Setting up ratios, we have 

 

a B C

b B C

F q q

F q q



 

        
23

24

1 /2.014 10 N

2.877 10 N 1 /

C B

C B

q q

q q








   
 . 

 

After noting that the ratio on the left hand side is very close to – 7, then, after a couple of 

algebra steps, we are led to 

7 1 8
1.333.

7 1 6

C

B

q

q


  


 

 

19. THINK Our system consists of two charges in a straight line. We’d like to place a 

third charge so that all three charges are in equilibrium. 

 

EXPRESS If the system of three charges is to be in equilibrium, the force on each charge 

must be zero. The third charge q3 must lie between the other two or else the forces acting 

on it due to the other charges would be in the same direction and q3 could not be in 

equilibrium. Suppose q3 is at a distance x from q, and L – x from 4.00q. The force acting 

on it is then given by 

 
3 3

3 22

0

41

4

qq qq
F

x L x

 
  

  

 

 

where the positive direction is rightward. We require F3 = 0 and solve for x.  

 

ANALYZE (a) Canceling common factors yields 1/x
2
 = 4/(L – x)

2
 and taking the square 

root yields 1/x = 2/(L – x). The solution is x = L/3. With L = 9.00 cm, we have x = 3.00 

cm. 

 

(b) Similarly, the y coordinate of q3 is y = 0.  

  

(c) The force on q is 
2

3

2 2

0

1 4.00
.

4
q

qq q
F

x L

 
  

 p
 

 

The signs are chosen so that a negative force value would cause q to move leftward. We 

require Fq = 0 and solve for q3: 



        CHAPTER 21 974 

2

3
3 2

4 4 4
    0.444

9 9

qqx
q q

L q
      

where x = L/3 is used.  

 

LEARN We may also verify that the force on 4.00q also vanishes: 

 

 

 

 

22 2 2 2

0
4 22 2 2 2 2

0 0 0

4 4 941 4 1 4 1 4 4
0

4 4 4 9 4
q

qqqq q q q
F

L L L L LL x  

     
                 

  
. 

 

20. We note that the problem is examining the force on charge A, so that the respective 

distances (involved in the Coulomb force expressions) between B and A, and between C 

and A, do not change as particle B is moved along its circular path.  We focus on the 

endpoints ( = 0º and 180º) of each graph, since they represent cases where the forces (on 

A) due to B and C are either parallel or anti-parallel (yielding maximum or minimum 

force magnitudes, respectively).  We note, too, that since Coulomb’s law is inversely 

proportional to r² then (if, say, the charges were all the same) the force due to C would be 

one-fourth as big as that due to B (since C is twice as far away from A).  The charges, it 

turns out, are not the same, so there is also a factor of the charge ratio  (the charge of C 

divided by the charge of B), as well as the aforementioned ¼ factor.   That is, the force 

exerted by C is, by Coulomb’s law, equal to ±¼ multiplied by the force exerted by B. 

 

(a) The maximum force is 2F0 and occurs when   = 180º  (B is to the left of A, while C is 

the right of A).  We choose the minus sign and write  

 

2 F0 = (1  ¼) F0             = – 4 . 

 

One way to think of the minus sign choice is cos(180º) = –1.  This is certainly consistent 

with the minimum force ratio (zero) at  = 0º since that would also imply 

 

0 = 1 + ¼         = – 4 . 

 

(b) The ratio of maximum to minimum forces is 1.25/0.75 = 5/3 in this case, which 

implies 

5

3
   = 

1 + ¼

1  ¼
           = 16 . 

 

Of course, this could also be figured as illustrated in part (a), looking at the maximum 

force ratio by itself and solving, or looking at the minimum force ratio (¾) at  = 180º 

and solving for . 

 

21. The charge dq within a thin shell of thickness dr is dq dV Adr    where A = 4r
2
. 

Thus, with  = b/r, we have 

q dq b r dr b r r
r

r

   zz 4 2
1

2

2

2

1

2  c h.  
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With b = 3.0 C/m
2
, r2 = 0.06 m, and r1 = 0.04 m, we obtain q = 0.038 C = 3.8  10

8
 C. 

 

22. (a) We note that cos(30º) = 
1

2
 3 , so that the dashed line distance in the figure is 

2 / 3r d .  The net force on q1 due to the two charges q3 and q4 (with |q3| = |q4| = 1.60  

10
19

 C) on the y axis has magnitude 

 1 3 1 3

2 2

0 0

| | 3 3 | |
2 cos(30 )

4 16

q q q q

r d 
  . 

 

This must be set equal to the magnitude of the force exerted on q1 by q2 = 8.00  10
19

 C 

= 5.00 |q3| in order that its net force be zero: 

 

 1 3 1 2

2 2

0 0

3 3 | | | |

16 4 ( )

q q q q

d D d 



             D = d 









2
5

3 3
  1   = 0.9245 d. 

 

Given d = 2.00 cm, this then leads to D = 1.92 cm. 

 

(b) As the angle decreases, its cosine increases, resulting in a larger contribution from the 

charges on the y axis.  To offset this, the force exerted by q2 must be made stronger, so 

that it must be brought closer to q1 (keep in mind that Coulomb’s law is inversely 

proportional to distance-squared).  Thus, D must be decreased. 

 

23. If  is the angle between the force and the x-axis, then  

 

cos  =  
x

x
2
 + d

2  . 

 

We note that, due to the symmetry in the problem, there is no y component to the net 

force on the third particle.  Thus, F represents the magnitude of force exerted by q1 or q2 

on q3. Let e = +1.60  10
19

 C, then q1 = q2 = +2e and q3 = 4.0e and we have 

 

  Fnet  =  2F cos   =  
2(2e)(4e)

4o (x
2
 + d

2
)
  

x

x
2
 + d

2  =  
4e

2
 x

o (x
2
 + d

2 
)
3/2  . 

 

(a) To find where the force is at an extremum, we can set the derivative of this expression 

equal to zero and solve for x, but it is good in any case to graph the function for a fuller 

understanding of its behavior, and as a quick way to see whether an extremum point is a 

maximum or a miminum.  In this way, we find that the value coming from the derivative 

procedure is a maximum (and will be presented in part (b)) and that the minimum is 

found at the lower limit of the interval.  Thus, the net force is found to be zero at x = 0, 

which is the smallest value of the net force in the interval 5.0 m  x   0. 

 

(b) The maximum is found to be at x = d/ 2  or roughly 12 cm. 
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(c) The value of the net force at x = 0 is Fnet  = 0. 

 

(d) The value of the net force at x = d/ 2  is Fnet  = 4.9  10
26 

N. 

 

24. (a) Equation 21-1 gives 

 

F 
  


 






8 99 10 100 10

100 10
8 99 10

9 16
2

2
2

19
. .

.
.

N m C C

m
N.

2 2c hc h
c h

 

 

(b) If n is the number of excess electrons (of charge –e each) on each drop then 

 

n
q

e
   

 








100 10

160 10
625

16

19

.

.
.

C

C
 

 

25. Equation 21-11 (in absolute value) gives n
q

e
 




 





10 10

16 10
6 3 10

7

19

11.

.
. .

C

C
 

 

26. The magnitude of the force is 

 

F k
e

r
  

F
HG

I
KJ




 






2

2

9

19
2

10
2

98 99 10
160 10

2 82 10
2 89 10.

.

.
.

N m

C

C

m
N.

2

2

c h
c h

 

 

27. THINK The magnitude of the electrostatic force between two charges 1q  and 2q  

separated by a distance r is given by Coulomb’s law. 

 

EXPRESS Let the charge of the ions be q. With 1 2 ,q q q    the magnitude of the force 

between the (positive) ions is given by 

F
q q

r
k

q

r
 
b gb g
4 0

2

2

2
, 

 

where 9 2 2

01/ 4 8.99 10 N m C .k      

 

ANALYZE (a) We solve for the charge: 

 

q r
F

k
  



 
 


50 10

37 10

8 99 10
32 1010

9

9

19.
.

.
.m

N

N m C
C.

2 2c h  

 

(b) Let n be the number of electrons missing from each ion. Then, ne = q, or 
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9

19

3.2 10 C
2.

1.6 10 C

q
n

e






  


 

 

LEARN Electric charge is quantized. This means that any charge can be written as 

,q ne  where n is an integer (positive or negative), and 191.6 10 Ce    is the 

elementary charge.  

 

28. Keeping in mind that an ampere is a coulomb per second (1 A = 1 C/s), and that a 

minute is 60 seconds, the charge (in absolute value) that passes through the chest is 

 

| q |  = ( 0.300 C/s ) ( 120 s ) = 36.0 C . 

 

This charge consists of n electrons (each of which has an absolute value of charge equal 

to e).  Thus, 

      n = 
| q |

e
  =  

36.0 C

1.60 x 10
-19 

C
  =  2.25  10

20 
. 

 

29. (a) We note that tan(30) = 1/ 3 .  In the initial (highly symmetrical) configuration, 

the net force on the central bead is in the –y direction and has magnitude 3F where F is 

the Coulomb’s law force of one bead on another at distance d = 10 cm.  This is due to the 

fact that the forces exerted on the central bead (in the initial situation) by the beads on the 

x axis cancel each other; also, the force exerted “downward” by bead 4 on the central 

bead is four times larger than the “upward” force exerted by bead 2.  This net force along 

the y axis does not change as bead 1 is now moved, though there is now a nonzero x-

component Fx .  The components are now related by 

 

                                 tan(30)  =  
Fx

 Fy
        

1

3
    =   

Fx

3F
  

 

which implies Fx = 3 F.  Now, bead 3 exerts a “leftward” force of magnitude F on the 

central bead, while bead 1 exerts a “rightward” force of magnitude F.  Therefore, 

 

F  F = 3 F.            F  =  ( 3  + 1) F . 

 

The fact that Coulomb’s law depends inversely on distance-squared then implies 

 

r
2
 =   

d
2

3 + 1
        r =   

d

3 + 1
  = 

10 cm 10 cm

1.653 1
 


6.05 cm 

 

where r is the distance between bead 1 and the central bead.  This corresponds to 

6.05 cm .x    
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(b) To regain the condition of high symmetry (in particular, the cancellation of x-

components) bead 3 must be moved closer to the central bead so that it, too, is the 

distance r (as calculated in part (a)) away from it. 

 

30. (a) Let x be the distance between particle 1 and particle 3.  Thus, the distance between 

particle 3 and particle 2 is L – x. Both particles exert leftward forces on q3 (so long as it is 

on the line between them), so the magnitude of the net force on q3 is 

 

Fnet =  |F  1 3 
   

 |  +  |F  2 3 
   

 |  =  
|q1 q3|

4o x
2  + 

|q2 q3|

4o (Lx)
2   =  

e
2

o 
 






1

 x
2 + 

27

(L   x)
2  

 

with the values of the charges (stated in the problem) plugged in.  Finding the value of x 

that minimizes this expression leads to x = ¼ L.  Thus, x = 2.00 cm. 

 

(b) Substituting x = ¼ L back into the expression for the net force magnitude and using 

the standard value for e leads to Fnet = 9.21  10
24 

N. 

 

31. The unit ampere is discussed in Section 21-4. The proton flux is given as 1500 

protons per square meter per second, where each proton provides a charge of q = +e. The 

current through the spherical area 4R
2
 = 4 (6.37  10

6
 m)

2
 = 5.1  10

14
 m

2
 would be 

 

i  


F
HG

I
KJ  51 10 1500 16 10 012214 2

2

19. . . .m
protons

s m
C proton Ac h c h  

 

32. Since the graph crosses zero, q1 must be positive-valued: q1 = +8.00e.  We note that it 

crosses zero at r  = 0.40 m.  Now the asymptotic value of the force yields the magnitude 

and sign of q2: 

 

    
q1 q2

4o r
2  = F         

25
2

2

1

1.5 10
q r

kq

 
 
 

  =  2.086  10
18 

C  =  13e .  

 

33. The volume of 250 cm
3
 corresponds to a mass of 250 g since the density of water is 

1.0 g/cm
3
. This mass corresponds to 250/18 = 14 moles since the molar mass of water is 

18. There are ten protons (each with charge q = +e) in each molecule of H2O, so 

 

     23 19 714 14 6.02 10 10 1.60 10 C 1.3 10 C.AQ N q        

 

34. Let d be the vertical distance from the coordinate origin to q3 = q and q4 = q on the 

+y axis, where the symbol q is assumed to be a positive value.  Similarly, d is the 

(positive) distance from the origin q4 =  on the y axis.  If we take each angle  in the 

figure to be positive, then we have  

 

tan = d/R and cos = R/r, 
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where r is the dashed line distance shown in the figure.  The problem asks us to consider 

 to be a variable in the sense that, once the charges on the x axis are fixed in place 

(which determines R), d can then be arranged to some multiple of R, since d = R tan.   

The aim of this exploration is to show that if q is bounded then  (and thus d) is also 

bounded. 

  

From symmetry, we see that there is no net force in the vertical direction on q2 = –e 

sitting at a distance R to the left of the coordinate origin.  We note that the net x force 

caused by q3 and q4 on the y-axis will have a magnitude equal to 

 

 
3

2 2 2

0 0 0

2 cos 2 cos
2 cos

4 4 ( / cos ) 4

qe qe qe

r R R

 


   
   . 

 

Consequently, to achieve a zero net force along the x axis, the above expression must 

equal the magnitude of the repulsive force exerted on q2 by q1 = –e. Thus, 

 
3 2

2 2 3

0 0

2 cos

4 4 2cos

qe e e
q

R R



  
   . 

 

Below we plot q/e as a function of the angle (in degrees):  

 

 
 

The graph suggests that q/e < 5 for  < 60º, roughly.  We can be more precise by solving 

the above equation.  The requirement that q  5e  leads to  

 

3 1/3

1
5 cos

2cos (10)

e
e 


    

 

which yields    62.34º.  The problem asks for “physically possible values,” and it is 

reasonable to suppose that only positive-integer-multiple values of e are allowed for q.  If 

we let q = ne, for n = 1 … 5, then N will be found by taking the inverse cosine of the 

cube root of (1/2n).   
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(a) The smallest value of angle is  = 37.5º (or 0.654 rad). 

 

(b) The second smallest value of angle is  = 50.95º (or 0.889 rad). 

 

(c) The third smallest value of angle is  = 56.6º (or 0.988 rad). 

 

35. THINK Our system consists of 8 Cs
+
 ions at the corners of a cube and a Cl


 ion at the 

cube’s center. To calculate the electrostatic force on the Cl

 ion, we apply the 

superposition principle and make use of the symmetry property of the configuration.    

 

EXPRESS In (a) where all 8 Cs
+
 ions are present, every cesium ion at a corner of the 

cube exerts a force of the same magnitude on the chlorine ion at the cube center. Each 

force is attractive and is directed toward the cesium ion that exerts it, along the body 

diagonal of the cube. We can pair every cesium ion with another, diametrically positioned 

at the opposite corner of the cube.  

 

In (b) where one Cs
+
 ion is missing at the corner, rather than remove a cesium ion, we 

superpose charge –e at the position of one cesium ion. This neutralizes the ion, and as far 

as the electrical force on the chlorine ion is concerned, it is equivalent to removing the 

ion. The forces of the eight cesium ions at the cube corners sum to zero, so the only force 

on the chlorine ion is the force of the added charge. 

 

ANALYZE (a) Since the two Cs
+ 

ions in such a pair exert forces that have the same 

magnitude but are oppositely directed, the two forces sum to zero and, since every cesium 

ion can be paired in this way, the total force on the chlorine ion is zero. 

 

(b) The length of a body diagonal of a cube is 3a , where a is the length of a cube edge. 

Thus, the distance from the center of the cube to a corner is d a 3 2d i . The force has 

magnitude 

F k
e

d

ke

a
  

  


 






2

2

2

2

9 2 2 19
2

9
2

9

3 4

8 99 10 160 10

3 4 0 40 10
19 10b g

c hc h
b gc h

. .

.
. .

N m C C

m
N  

 

Since both the added charge and the chlorine ion are negative, the force is one of 

repulsion. The chlorine ion is pushed away from the site of the missing cesium ion. 

 

LEARN When solving electrostatic problems involving a discrete number of charges, 

symmetry argument can often be applied to simplify the problem. 

 

36. (a) Since the proton is positively charged, the emitted particle must be a positron       

(as opposed to the negatively charged electron) in accordance with the law of charge 

conservation. 
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(b) In this case, the initial state had zero charge (the neutron is neutral), so the sum of 

charges in the final state must be zero.  Since there is a proton in the final state, there 

should also be an electron (as opposed to a positron) so that q = 0. 

 

37. THINK Charges are conserved in nuclear reactions. 

 

EXPRESS We note that none of the reactions given include a beta decay (see Chapter 

42), so the number of protons (Z), the number of neutrons (N), and the number of 

electrons are each conserved. The mass number (total number of nucleons) is defined as 

.A N Z   Atomic numbers (number of protons) and molar masses can be found in 

Appendix F of the text. 

 

ANALYZE (a) 
1
H has 1 proton, 1 electron, and 0 neutrons and 

9
Be has 4 protons, 4 

electrons, and 9 – 4 = 5 neutrons, so X has 1 + 4 = 5 protons, 1 + 4 = 5 electrons, and 0 + 

5 – 1 = 4 neutrons. One of the neutrons is freed in the reaction. X must be boron with a 

molar mass of 5 + 4 = 9 g/mol: 
9
B. 

 

(b) 
12

C has 6 protons, 6 electrons, and 12 – 6 = 6 neutrons and 
1
H has 1 proton, 1 electron, 

and 0 neutrons, so X has 6 + 1 = 7 protons, 6 + 1 = 7 electrons, and 6 + 0 = 6 neutrons. It 

must be nitrogen with a molar mass of 7 + 6 = 13 g/mol: 
13

N. 

 

(c) 
15

N has 7 protons, 7 electrons, and 15 – 7 = 8 neutrons; 
1
H has 1 proton, 1 electron, 

and 0 neutrons; and 
4
He has 2 protons, 2 electrons, and 4 – 2 = 2 neutrons; so X has 7 + 

1 – 2 = 6 protons, 6 electrons, and 8 + 0 – 2 = 6 neutrons. It must be carbon with a molar 

mass of 6 + 6 = 12 g/mol: 
12

C. 

 

LEARN A general expression for the reaction can be expressed as 

 

 31 2 4

1 1 2 2 3 3 4 4
1 2 3 4

AA A A

Z N Z N Z N Z NX X X X    

 

where i i iA Z N  . Since the number of protons (Z), the number of neutrons (N), and the 

number of nucleons (A) are each conserved, we have 1 2 3 4A A A A   , 1 2 3 4Z Z Z Z    

and 1 2 3 4N N N N   . 

 

38. As a result of the first action, both sphere W and sphere A possess charge 
1

2
 qA , where 

qA is the initial charge of sphere A.  As a result of the second action, sphere W has charge 

 

 
1

32
2 2

Aq
e

 
 

 
 . 

 

As a result of the final action, sphere W now has charge equal to 
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1 1
32 48

2 2 2

Aq
e e

  
   

  
 . 

 
Setting this final expression equal to +18e as required by the problem leads (after a 

couple of algebra steps) to the answer: qA = +16e. 

 

39. THINK We have two discrete charges in the xy-plane. The electrostatic force on 

particle 2 due to particle 1 has both x and y components.   

 

EXPRESS Using Coulomb’s law, the magnitude of the force of particle 1 on particle 2 is 

1 2
21 2

q q
F k

r
 , where 2 2

1 2r d d   and 9 2 2

01/ 4 8.99 10 N m C .k      Since both 1q  

and 2q  are positively charged, particle 2 is repelled by particle 1, so the direction of 21F  

is away from particle 1 and toward 2. In unit-vector notation, 
21 21r̂F F , where 

 

 2 1

2 2

1 2

ˆ ˆi j
r̂

d dr

r d d


 


. 

 

The x component of 21F  is 2 2

21, 21 2 1 2/xF F d d d  . 

 

ANALYZE Combining the expressions above, we obtain 

 

1 2 2 1 2 2
21, 3 2 2 3/ 2

1 2

9 2 2 19 19 3

3/ 2
3 2 3 2

22

( )

(8.99 10 N m C )(4 1.60 10 C)(6 1.60 10 C)(6.00 10 m)

(2.00 10 m) (6.00 10 m)

1.31 10 N

x

q q d q q d
F k k

r d d

  

 



 


      


    

 

 

 

LEARN In a similar manner, we find the y component of 21F  to be 

 

1 2 1 1 2 1
21, 3 2 2 3/ 2

1 2

9 2 2 19 19 3

3/ 2
3 2 3 2

22

( )

(8.99 10 N m C )(4 1.60 10 C)(6 1.60 10 C)(2.00 10 m)

(2.00 10 m) (6.00 10 m)

0.437 10 N.

y

q q d q q d
F k k

r d d

  

 



   


      
 

    

  

 

 

Thus, 22 22

21
ˆ ˆ(1.31 10 N)i (0.437 10 N)jF      . 
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40. Regarding the forces on q3 exerted by q1 and q2, one must “push” and the other must 

“pull” in order that the net force is zero; hence, q1 and q2 have opposite signs. For 

individual forces to cancel, their magnitudes must be equal: 

 

   
1 3 2 3

2 2

12 23 23

| || | | || |q q q q
k k

L L L



. 

 

With 23 122.00 ,L L  the above expression simplifies to 
| | | |

.
q q1 2

9 4
  Therefore,  

1 29 / 4q q  , or 1 2/ 2.25.q q    

 

41. (a) The magnitudes of the gravitational and electrical forces must be the same: 

 

1

4 0

2

2 2
q

r
G

mM

r
  

 

where q is the charge on either body, r is the center-to-center separation of Earth and 

Moon, G is the universal gravitational constant, M is the mass of Earth, and m is the mass 

of the Moon. We solve for q: 

q GmM 4 0 .  

 

According to Appendix C of the text, M = 5.98  10
24

 kg, and m = 7.36  10
22

 kg, so 

(using 40 = 1/k) the charge is 

 

q 
   

 
 

6 67 10 7 36 10 598 10

8 99 10
57 10

11 22 24

9

13
. . .

.
.

N m kg kg kg

N m C
C.

2 2

2 2

c hc hc h
 

 

 

(b) The distance r cancels because both the electric and gravitational forces are 

proportional to 1/r
2
. 

 

(c) The charge on a hydrogen ion is e = 1.60  10
–19

 C, so there must be 

 
13

32

19

5.7 10 C
3.6 10 ions.

1.6 10 C

q
n

e 


   


 

 

Each ion has a mass of im  1.67  10
–27

 kg, so the total mass needed is 

 

  32 27 53.6 10 1.67 10 kg 6.0 10 kg.im nm        
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42. (a) A force diagram for one of the balls is shown below. The force of gravity mg


 acts 

downward, the electrical force 

Fe  of the other ball acts to the left, and the tension in the 

thread acts along the thread, at the angle  to the vertical. The ball is in equilibrium, so its 

acceleration is zero. The y component of Newton’s second law yields T cos – mg = 0 

and the x component yields T sin – Fe = 0. We solve the first equation for T and obtain T 

= mg/cos. We substitute the result into the second to obtain mg tan – Fe = 0. 

 
 

Examination of the geometry of the figure shown leads to tan . 


x

L x

2

22 2b g
 

If L is much larger than x (which is the case if  is very small), we may neglect x/2 in the 

denominator and write tan  x/2L. This is equivalent to approximating tan by sin. The 

magnitude of the electrical force of one ball on the other is 

 

F
q

x
e 

2

0

24
 

 

by Eq. 21-4. When these two expressions are used in the equation mg tan = Fe, we 

obtain 
1/3

2 2

2

0 0

1
.

2 4 2

mgx q q L
x

L x mg 

 
    

  
 

 

(b) We solve x
3
 = 2kq

2
L/mg for the charge (using Eq. 21-5): 

 

   

  

323
8

9 2 2

0.010kg 9.8m s 0.050m
2.4 10 C.

2 2 8.99 10 N m C 1.20m

mgx
q

kL

    
 

 

 

Thus, the magnitude is 8| | 2.4 10 C.q    

 

43. (a) If one of them is discharged, there would no electrostatic repulsion between the 

two balls and they would both come to the position  = 0, making contact with each other.  
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(b) A redistribution of the remaining charge would then occur, with each of the balls 

getting q/2. Then they would again be separated due to electrostatic repulsion, which 

results in the new equilibrium separation 

 

 
 

1/3
2 1/3 1/3

0

2 1 1
5.0 cm 3.1 cm.

2 4 4

q L
x x

mg

     
         

     

 

 

44. THINK The problem compares the electrostatic force between two protons and the 

gravitational force by Earth on a proton.  

 

EXPRESS The magnitude of the gravitational force on a proton near the surface of the 

Earth is 
gF mg , where 271.67 10 kgm    is the mass of the proton. On the other hand, 

the electrostatic force between two protons separated by a distance r is 2 / .eF kq r  When 

the two forces are equal, we have kq
2
/r

2
 = mg.  

 

ANALYZE Solving for r, we obtain   

 

 
   

9 2 2
19

27 2

8.99 10 N m C
1.60 10 C 0.119 m.

1.67 10 kg 9.8 m s

k
r q

mg





 
   


 

 

LEARN The electrostatic force at this distance is 261.64 10 Ne gF F    .  

 

45. There are two protons (each with charge q = +e) in each molecule, so 

 

Q N qA      6 02 10 2 160 10 19 1023 19 5. . .c hb gc hC C 0.19 MC.  

 

46. Let 12F  denotes the force on q1 exerted by q2 and 12F be its magnitude. 

 

(a) We consider the net force on q1. 12F  points in the +x direction since q1 is attracted to 

q2. 13F and 14F  both point in the –x direction since q1 is repelled by q3 and q4. Thus, using 

d = 0.0200 m, the net force is 

 

  

 

2

1 12 13 14 2 2 2 2

0 0 0 0

2
9 2 2 19

25

2
2

2 | | (2 )( ) (2 )(4 ) 11

4 4 (2 ) 4 (3 ) 18 4

8.99 10 N m C 1.60 10 C11
3.52 10  N

18 2.00 10 m

e e e e e e e
F F F F

d d d d   








      

  
  



 

 

or 25

1
ˆ(3.52 10  N)i.F    
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(b) We now consider the net force on q2.  We note that 
21 12F F  points in the –x 

direction, and 
23F and 

24F  both point in the +x direction. The net force is 

 

 
23 24 21 2 2 2

0 0 0

4 | | | | 2 | |
0

4 (2 ) 4 4

e e e e e e
F F F

d d d  

  
      . 

 

47. We are looking for a charge q that, when placed at the origin, experiences 

Fnet  0,  

where    
F F F Fnet   1 2 3 .  

 

The magnitude of these individual forces are given by Coulomb’s law, Eq. 21-1, and 

without loss of generality we assume q > 0. The charges q1 (+6 C), q2 (–4 C), and q3 

(unknown), are located on the +x axis, so that we know 

F1  points toward –x, 


F2  points 

toward +x, and 

F3  points toward –x if q3 > 0 and points toward +x if q3 < 0. Therefore, 

with r1 = 8 m, r2 = 16 m and r3 = 24 m, we have 

 

0 1

1

2

2

2

2

3

3

2
   k

q q

r
k

q q

r
k

q q

r

| |
. 

Simplifying, this becomes 

0
6

8

4

16 242 2

3

2
   

q
 

 

where q3 is now understood to be in C. Thus, we obtain q3 = –45 C. 

 

48. (a) Since qA = –2.00 nC and qC = +8.00 nC, Eq. 21-4 leads to 

  
9 2 2 9 9

6

2 2

0

| | | (8.99 10 N m C )( 2.00 10 C)(8.00 10 C) |
| | 3.60 10 N.

4 (0.200 m)

A C
AC

q q
F

d

 
    

     

 

(b) After making contact with each other, both A and B have a charge of 

 

 2.00 4.00
 nC 3.00 nC.

2 2

A Bq q    
   
 

 

 

When B is grounded its charge is zero. After making contact with C, which has a charge 

of +8.00 nC, B acquires a charge of [0 + (–8.00 nC)]/2 = –4.00 nC, which charge C has as 

well. Finally, we have QA = –3.00 nC and QB = QC = –4.00 nC. Therefore, 

 
9 2 2 9 9

6

2 2

0

| | | (8.99 10 N m C )( 3.00 10 C)( 4.00 10 C) |
| | 2.70 10 N.

4 (0.200 m)

A C
AC

q q
F

d

 
     

     
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(c) We also obtain 

 
9 2 2 9 9

6

2 2

0

| | | (8.99 10 N m C )( 4.00 10 C)( 4.00 10 C) |
| | 3.60 10 N.

4 (0.200 m)

B C
BC

q q
F

d

 
     

     

 

49. Coulomb’s law gives 

 

 9 2 2 19 22 2

2 2 15 2

0

8.99 10 N m C (1.60 10 C)| | ( 3)
3.8N.

4 9(2.6 10 m)

q k e
F

r r





  
   

 
 

 

50. (a) Since the rod is in equilibrium, the net force acting on it is zero, and the net torque 

about any point is also zero. We write an expression for the net torque about the bearing, 

equate it to zero, and solve for x. The charge Q on the left exerts an upward force of 

magnitude (1/40) (qQ/h
2
), at a distance L/2 from the bearing. We take the torque to be 

negative. The attached weight exerts a downward force of magnitude W, at a distance 

/ 2x L  from the bearing. This torque is also negative. The charge Q on the right exerts 

an upward force of magnitude (1/40) (2qQ/h
2
), at a distance L/2 from the bearing. This 

torque is positive. The equation for rotational equilibrium is 

 

2 2

0 0

1 1 2
0.

4 2 2 4 2

qQ L L qQ L
W x

h h 

  
    

 
 

The solution for x is 

2

0

1
1 .

2 4

L qQ
x

h W

 
  

 
 

 

(b) If FN is the magnitude of the upward force exerted by the bearing, then Newton’s 

second law (with zero acceleration) gives 

 

2 2

0 0

1 1 2
0.

4 4
N

qQ qQ
W F

h h 
     

 

We solve for h so that FN = 0. The result is 

 

h
qQ

W


1

4

3

0
.  

 

51. The charge dq within a thin section of the rod (of thickness dx) is Adx where 
4 24.00 10 mA    and  is the charge per unit volume. The number of (excess) electrons 

in the rod (of length L = 2.00 m) is n = q/(–e) where e is given in Eq. 21-12. 

 

(a) In the case where  = – 4.00  10
–6

 C/m
3
, we have 
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10

0

| |
 2.00 10

Lq A AL
n dx

e e e

 
    
   . 

 

(b) With  = bx
2
 (b = –2.00  10

–6
 C/m

5
) we obtain 

 
3

2 10

0

| |
1.33 10 .

3

Lb A b AL
n x dx

e e
   
   

 

52. For the Coulomb force to be sufficient for circular motion at that distance (where r = 

0.200 m and the acceleration needed for circular motion is a = v
2
/r) the following 

equality is required: 

 
2

2

04

Qq mv

r r
  . 

 

With q = 4.00  10
6 

C, m = 0.000800 kg, v = 50.0 m/s, this leads to  

 
2 4 2

50

9 2 2 6

4 (0.200 m)(8.00 10 kg)(50.0 m/s)
1.11 10 C

(8.99 10 N m C )(4.00 10 C)

rmv
Q

q

 





      

  
 . 

 

53. (a) Using Coulomb’s law, we obtain 

 

   

 

29 2 22
91 2

22 2

0

8.99 10 N m C 1.00C
8.99 10 N.

4 1.00m

q q kq
F

r r

 
      

 

(b) If r = 1000 m, then 

   

 

29 2 22
31 2

22 2 3
0

8.99 10 N m C 1.00C
8.99 10 N.

4 1.00 10 m

q q kq
F

r r

 
    


 

 

54. Let q1 be the charge of one part and q2 that of the other part; thus, q1 + q2 = Q = 6.0 C. 

The repulsive force between them is given by Coulomb’s law: 

 

1 2 1 1

2 2

0 0

( )

4 4

q q q Q q
F

r r 


   . 

 

If we maximize this expression by taking the derivative with respect to q1 and setting 

equal to zero, we find q1 = Q/2 , which might have been anticipated (based on symmetry 

arguments).  This implies q2 =  Q/2 also. With r = 0.0030 m and Q = 6.0  10
6 

C, we find 
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  

 

2
9 2 2 62

3

22 2 3
0 0

8.99 10 N m C 6.0 10 C( / 2)( / 2) 1 1
9.0 10 N

4 4 4 4 3.00 10 m

Q Q Q
F

r r 





  
    


. 

 

55. The two charges are q = Q (where  is a pure number presumably less than 1 and 

greater than zero) and Q – q = (1 – )Q. Thus, Eq. 21-4 gives 

 

F
Q Q

d

Q

d





1

4

1 1

40

2

2

0

2 

   



b g b gc h b g
.  

 

The graph below, of F versus , has been scaled so that the maximum is 1. In actuality, 

the maximum value of the force is Fmax = Q
2
/160 d 

2
. 

 

 
 

(a) It is clear that 1/ 2   = 0.5 gives the maximum value of F. 

 

(b) Seeking the half-height points on the graph is difficult without grid lines or some of 

the special tracing features found in a variety of modern calculators. It is not difficult to 

algebraically solve for the half-height points (this involves the use of the quadratic 

formula). The results are 

1 2

1 1 1 1
1 0.15   and   1 0.85.

2 22 2
 

   
        

   
 

 

Thus, the smaller value of  is 1 0.15  , 

 

(c) and the larger value of  is 2 0.85  . 

 

56. (a) Equation 21-11 (in absolute value) gives 

 

n
q

e
 




 





2 00 10

160 10
125 10

6

19

13.

.
. .

C

C
electrons  
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(b) Since you have the excess electrons (and electrons are lighter and more mobile than 

protons) then the electrons “leap” from you to the faucet instead of protons moving from 

the faucet to you (in the process of neutralizing your body). 

 

(c) Unlike charges attract, and the faucet (which is grounded and is able to gain or lose 

any number of electrons due to its contact with Earth’s large reservoir of mobile charges) 

becomes positively charged, especially in the region closest to your (negatively charged) 

hand, just before the spark. 

 

(d) The cat is positively charged (before the spark), and by the reasoning given in part (b) 

the flow of charge (electrons) is from the faucet to the cat. 

 

(e) If we think of the nose as a conducting sphere, then the side of the sphere closest to 

the fur is of one sign (of charge) and the side furthest from the fur is of the opposite sign 

(which, additionally, is oppositely charged from your bare hand, which had stroked the 

cat’s fur). The charges in your hand and those of the furthest side of the “sphere” 

therefore attract each other, and when close enough, manage to neutralize (due to the 

“jump” made by the electrons) in a painful spark. 

 

57. If the relative difference between the proton and electron charges (in absolute value) 

were 

q q

e

p e
 0 0000010.  

 

then the actual difference would be q qp e   16 10 25. .C  Amplified by a factor of 29  

3  10
22

 as indicated in the problem, this amounts to a deviation from perfect neutrality of 

 

q     29 3 10 16 10 01422 25c hc h. .C C  

 

in a copper penny. Two such pennies, at r = 1.0 m, would therefore experience a very 

large force. Equation 21-1 gives 

F k
q

r
  

b g2
2

817 10. .N  

 

58. Charge q1 = –80  10
–6

 C is at the origin, and charge q2 = +40  10
–6

 C is at x = 0.20 

m. The force on q3 = +20  10
–6

 C is due to the attractive and repulsive forces from q1 

and q2, respectively. In symbols, 
  
F F F3 31 3 2 net   , where 

 

3 1 3 2
31 322 2

31 3 2

| |
, | | .

q q q q
F k F k

r r
   

 

(a) In this case r31 = 0.40 m and r32 = 0.20 m, with 31F  directed toward –x and 32F  

directed in the +x direction. Using the value of k in Eq. 21-5, we obtain  
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3 1 3 2 1 2
3 net 31 32 32 2 2 2

31 3 2 31 3 2

6 6
9 2 2 6

2 2

| | | |ˆ ˆ ˆ ˆi | | i i i

80 10 C 40 10 C ˆ(8.99 10 N m C )(20 10 C) i
(0.40m) (0.20m)

ˆ(89.9 N)i .

q q q q q q
F F F k k kq

r r r r

 


   
           

   
   

    
     

 



 

 

(b) In this case r31 = 0.80 m and r32 = 0.60 m, with 
31F  directed toward –x and 


F3 2  

toward +x. Now we obtain  

 

3 1 3 2 1 2
3 net 31 32 32 2 2 2

31 3 2 31 3 2

6 6
9 2 2 6

2 2

| | | |ˆ ˆ ˆ ˆi | | i i i

80 10 C 40 10 C ˆ(8.99 10 N m C )(20 10 C) i
(0.80m) (0.60m)

ˆ(2.50 N)i .

q q q q q q
F F F k k kq

r r r r

 


   
           

   
   

    
     

 

 

 

 

(c) Between the locations treated in parts (a) and (b), there must be one where 

F3 0net  . 

Writing r31 = x and r32 = x – 0.20 m, we equate 

F3 1  and 


F3 2 , and after canceling 

common factors, arrive at 

 
1 2

22

| |
.

0.20 m

q q

x x



 

This can be further simplified to 
2

2

2

1

( 0.20 m) 1
.

| | 2

qx

x q


   

 

Taking the (positive) square root and solving, we obtain x = 0.683 m. If one takes the 

negative root and ‘solves’, one finds the location where the net force would be zero if q1 

and q2 were of like sign (which is not the case here). 

 

(d) From the above, we see that y = 0. 

 

59. The mass of an electron is m = 9.11  10
–31

 kg, so the number of electrons in a 

collection with total mass M = 75.0 kg is 

 

31

31

75.0kg
8.23 10 electrons.

9.11 10 kg

M
n

m 
   


 

 

The total charge of the collection is 
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  31 19 138.23 10 1.60 10 C 1.32 10 C.q ne           

 

60. We note that, as result of the fact that the Coulomb force is inversely proportional to 

r
2
, a particle of charge Q that is distance d from the origin will exert a force on some 

charge qo at the origin of equal strength as a particle of charge 4Q at distance 2d would 

exert on qo.  Therefore, q6 = +8e on the –y axis could be replaced with a +2e closer to the 

origin (at half the distance); this would add to the q5 = +2e already there and produce +4e 

below the origin, which exactly cancels the force due to q2 = +4e above the origin.   

 

Similarly, q4 = +4e to the far right could be replaced by a +e at half the distance, which 

would add to q3 = +e already there to produce a +2e at distance d to the right of the 

central charge q7. The horizontal force due to this +2e is cancelled exactly by that of q1 = 

+2e on the –x axis, so that the net force on q7 is zero. 

 

61. (a) Charge Q1 = +80  10
–9

 C is on the y axis at y = 0.003 m, and charge 
9

2 80 10 CQ    is on the y axis at y = –0.003 m. The force on particle 3 (which has a 

charge of q = +18  10
–9

 C) is due to the vector sum of the repulsive forces from Q1 and 

Q2. In symbols, 3 1 3 2 3 ,F F F  where 

 

3 1 3 2
31 3 22 2

3 1 3 2

| |
| | , | | .

q q q q
F k F k

r r
   

 

Using the Pythagorean theorem, we have r31 = r32 = 0.005 m. In magnitude-angle 

notation (particularly convenient if one uses a vector-capable calculator in polar mode), 

the indicated vector addition becomes 

 

     3 0.518 37 0.518 37 0.829 0 .F           

 

Therefore, the net force is 3
ˆ(0.829 N)iF  . 

 

(b) Switching the sign of Q2 amounts to reversing the direction of its force on q. 

Consequently, we have 

 

     3 0.518 37 0.518 143 0.621 90 .F           

 

Therefore, the net force is 3
ˆ(0.621 N)jF  . 

 

62. THINK We have four discrete charges in the xy-plane. We use superposition 

principle to calculate the net electrostatic force on particle 4 due to the other three 

particles.  
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EXPRESS Using Coulomb’s law, the magnitude of the force on particle 4 by particle i is 

4
4 2

4

i
i

i

q q
F k

r
 . For example, the magnitude of 

41F  is 

 
9 2 2 19 19

4 1
41 2 2

41

24

| | | | (8.99 10 N m C )(3.20 10 C)(3.20 10 C)

(0.0300 m)

1.02 10 N

q q
F k

r

 



   
 

 

. 

 

Since the force is attractive, 
41 1 1

ˆ ˆ ˆ ˆ ˆ ˆr̂ cos i sin j cos35 i sin35 j 0.82i 0.57j            . 

In unit-vector notation, we have  

 
24 25 24

41 41 41
ˆ ˆ ˆ ˆr̂ (1.02 10 N)( 0.82i 0.57j) (8.36 10 N)i (5.85 10 N)jF F             . 

 

Similarly,  

 
9 2 2 19 19

4 2
42 2 2

42

24

| | | | (8.99 10 N m C )(3.20 10 C)(3.20 10 C)ˆ ˆj j
(0.0200 m)

ˆ(2.30 10 N)j

q q
F k

r

 



   
   

  

 

and  
9 2 2 19 19

4 3
43 2 2

43

24

| | | | (8.99 10 N m C )(6.40 10 C)(3.20 10 C)ˆ ˆi i
(0.0200 m)

ˆ(4.60 10 N)j.

q q
F k

r

 



   
   

  

 

 

ANALYZE (a) The net force on particle 4 is 

 
24 24

4,net 41 42 43
ˆ ˆ(5.44 10 N)i (2.89 10 N)jF F F F          . 

 

The magnitude of the force is 

 

24 2 24 2 24

4,net ( 5.44 10 N) ( 2.89 10 N) 6.16 10 NF           . 

 

(b) The direction of the net force is at an angle of  

 

 
24

4 ,net1 1

24

4 ,net

2.89 10 N
tan tan 208

5.44 10 N

y

x

F

F



 



    
           

, 

 

measured counterclockwise from the +x axis. 

 

LEARN A nonzero net force indicates that particle 4 will be accelerated in the direction 

of the force.   
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63. The magnitude of the net force on the q = 42  10
–6

 C charge is 

 

k
q q

k
q q1

2

2

20 28 0 44.

| |

.
  

 

where q1 = 30  10
–9

 C and |q2| = 40  10
–9

 C. This yields 0.22 N. Using Newton’s 

second law, we obtain 

m
F

a
 


  0 22

10
2 2 10

3

6.
.

N

100 m s
kg.

2
 

 

64. Let the two charges be q1 and q2. Then q1 + q2 = Q = 5.0  10
–5

 C. We use Eq. 21-1: 

 

 
 

9 2 2

1 2

2

8.99 10 N m C
1.0 N .

2.0 m

q q 
  

 

We substitute q2 = Q – q1 and solve for q1 using the quadratic formula. The two roots 

obtained are the values of q1 and q2, since it does not matter which is which. We get 
51.2 10  C  and 3.8  10

–5
 C. Thus, the charge on the sphere with the smaller charge is 

51.2 10  C . 

 

65. When sphere C touches sphere A, they divide up their total charge (Q/2 plus Q) 

equally between them. Thus, sphere A now has charge 3Q/4, and the magnitude of the 

force of attraction between A and B becomes 

 

19

2

(3 / 4)( / 4)
4.68 10 N.

Q Q
F k

d

    

 

66. With F = meg, Eq. 21-1 leads to 

   
   

2
9 2 2 192

2

231

8.99 10 N m C 1.60 10 C

9.11 10 kg 9.8m se

ke
y

m g





  
 


 

 

which leads to y =   5.1 m. We choose 5.1 my   since the second electron must be 

below the first one, so that the repulsive force (acting on the first) is in the direction 

opposite to the pull of Earth’s gravity. 

 

67. THINK Our system consists of two charges along a straight line. We’d like to place a 

third charge so that the net force on it due to charges 1 and 2 vanishes. 

 

EXPRESS The net force on particle 3 is the vector sum of the forces due to particles 1 

and 2: 3,net 31 32F F F  . In order that 3,net 0,F   particle 3 must be on the x axis and be 
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attracted by one and repelled by another. As the result, it cannot be between particles 1 

and 2, but instead either to the left of particle 1 or to the right of particle 2. Let 
3q  be 

placed a distance x to the right of 
1q  5.00q. Then its attraction to 

1q  particle will be 

exactly balanced by its repulsion from 
2q   +2.00q:  

 

 1 3 2 3
3 ,net 32 2 2 2

5 2
0

( ) ( )
x

q q q q
F k kq q

x x L x x L

   
       

    
. 

 

ANALYZE (a) Cross-multiplying and taking the square root, we obtain 

 

 
5

2

x

x L



 

which can be rearranged to produce 

 2.72 
1 2 / 5

L
x L 


. 

 

(b) The y coordinate of particle 3 is y = 0. 

 

LEARN We can use the result obtained above for consistency check. We find the force 

on particle 3 due to particle 1 to be 

 

1 3 3 3
31 2 2 2

( 5.00 )( )
0.675

(2.72 )

q q q q kqq
F k k

x L L


    . 

 

Similarly, the force on particle 3 due to particle 2 is 

 

2 3 3 3
32 2 2 2

( 2.00 )( )
0.675

(2.72 )

q q q q kqq
F k k

x L L L


   


. 

 

Indeed, the sum of the two forces is zero.   
 

68. The net charge carried by John whose mass is m is roughly 

 

 

 
23 19

5

0.0001

(90kg)(6.02 10 molecules mol)(18 electron proton pairs molecule) (1.6 10 C)
0.0001

0.018 kg mol

8.7 10 C,

AmN Ze
q

M




 


 

 

and the net charge carried by Mary is half of that. So the electrostatic force between them 

is estimated to be 
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 
 

 

5 2
9 2 2 18

22

2 (8.7 10 C)
8.99 10 N m C 4 10 N.

2 30m

q q
F k

d


       

 

Thus, the order of magnitude of the electrostatic force is 1810  N . 

 

69. We are concerned with the charges in the nucleus (not the “orbiting” electrons, if 

there are any). The nucleus of Helium has 2 protons and that of thorium has 90. 

 

(a) Equation 21-1 gives 

 

 9 2 2 19 192
2

2 15 2

8.99 10 N m C (2(1.60 10 C))(90(1.60 10 C))
5.1 10 N.

(9.0 10 m)

q
F k

r

 



   
   


 

 

(b) Estimating the helium nucleus mass as that of 4 protons (actually, that of 2 protons 

and 2 neutrons, but the neutrons have approximately the same mass), Newton’s second 

law leads to 

a
F

m
 




 



51 10

4 167 10
7 7 10

2

27

28.

.
. .

N

kg
m s2

c h  

 

70. For the net force on q1 = +Q to vanish, the x force component due to q2 = q must 

exactly cancel the force of attraction caused by q4 =  –2Q.  Consequently, 

 

 
2

2 2 2
0 0 0

| 2 |
cos 45

4 4 ( 2 ) 4 2

Qq Q Q Q

a a a  
   

 

or q = Q/ 2 . This implies that / 1/ 2 0.707.q Q   

 

71. (a) The second shell theorem states that a charged particle inside a shell with charge 

uniformly distributed on its surface has no net force acting on it due to the shell. Thus, 

inside the spherical metal shell at 0.500 ,r R R   the net force on the electron is zero, 

and therefore, 0.a    

 

(b) The first shell theorem states that a charged particle outside a shell with charge 

uniformly distributed on its surface is attracted or repelled as if the shell’s charge were 

concentrated as a particle at its center. Thus, the magnitude of the Coulomb force on the 

electron at 2.00r R  is 

 
2

2 2

9 2 2 13 2 19

21

| | (4 ) | |
| |

(2.0 )

(8.99 10 N m C ) (6.90 10 C/m )(1.60 10 C)

3.12 10 N,

Q e R e
F k k k e

r R

 


  



  

    

 
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and the corresponding acceleration is  

 
21

9 2

31

3.12 10 N
3.43 10 m s .

9.11 10 kg

F
a

m






   


 

 

72. Since the total energy is conserved,  

 

 
2

2 21 1

2 2
e i e f

f

ke
m v m v

r
   

 

where fr  is the distance between the electron and the proton. For 2 ,f iv v  we solve for 

fr  and obtain 

2 2 9 2 2 19 2

2 2 2 31 5 2

9

2 2 2(8.99 10 N m C )(1.6 10 C)

( ) 3 3(9.11 10 kg)(3.2 10 m/s)

1.64 10 m

f

e f i e i

ke ke
r

m v v m v







  
  

  

 

 

or about 1.6 nm. 

 

73. (a) The Coulomb force between the electron and the proton provides the centripetal 

force that keeps the electron in circular orbit about the proton: 

 
22

2

| | em vk e

r r
  

 

The smallest orbital radius is 12

1 0 52.9 10 m.r a     The corresponding speed of the 

electron is 

 

2 2 9 2 2 19 2

1 31 12

1 0

6

| | | | (8.99 10 N m C )(1.6 10 C)

(9.11 10 kg)(52.9 10 m)

2.19 10 m/s.

e e

k e k e
v

m r m a



 

  
  

 

 

 

 

(b) The radius of the second smallest orbit is 2

2 0 0(2) 4 .r a a   Thus, the speed of the 

electron is  
2 2

6

2 1

2 0

6

| | | | 1 1
(2.19 10 m/s)

(4 ) 2 2

1.09 10 m/s.

e e

k e k e
v v

m r m a
    

 

 

 

(c) Since the speed is inversely proportional to 1/ 2 ,r  the speed of the electron will 

decrease if it moves to larger orbits. 
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74. Electric current i is the rate dq/dt at which charge passes a point. With i = 0.83A, the 

time it takes for one mole of electron to pass through the lamp is 

 

 
23 19

5(6.02 10 )(1.6 10 C)
1.16 10 s 1.3 days.

0.83 A

AN eq
t

i i

  
        

 

75. The electrical force between an electron and a positron separated by a distance r is 
2 2/ .eF ke r  On the other hand, the gravitational force between the two charges is 

2 2/ .g eF Gm r  Thus, the ratio of the two forces is 

 
2 2 2 9 2 2 19 2

42

2 2 2 11 2 2 31 2

/ (8.99 10 N m C )(1.6 10 C)
4.16 10 .

/ (6.67 10 N m kg )(9.11 10 kg)

e

g e e

F ke r ke

F Gm r Gm



 

  
    

  
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Chapter 22 
 

 

1. We note that the symbol q2 is used in the problem statement to mean the absolute value 

of the negative charge that resides on the larger shell. The following sketch is for 1 2q q . 

 
 

The following two sketches are for the cases q1 > q2 (left figure) and q1 < q2 (right figure). 

 

 
 

2. (a) We note that the electric field points leftward at both points. Using
 
F q E 0 , and 

orienting our x axis rightward (so î  points right in the figure), we find 

 

 19 18N ˆ ˆ1.6 10 C 40 i ( 6.4 10 N) i
C

F   
       

 
 

 

which means the magnitude of the force on the proton is 6.4 10
–18

 N and its direction 
ˆ( i)  is leftward. 

 

(b) As the discussion in Section 22-2 makes clear, the field strength is proportional to the 

“crowdedness” of the field lines. It is seen that the lines are twice as crowded at A than at 

B, so we conclude that EA = 2EB. Thus, EB = 20 N/C. 

 

3. THINK Since the nucleus is treated as a sphere with uniform surface charge 

distribution, the electric field at the surface is exactly the same as it would be if the 

charge were all at the center.  
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EXPRESS The nucleus has a radius R = 6.64 fm and a total charge ,q Ze  where 

94Z   for Pu. Thus, the magnitude of the electric field at the nucleus surface is 

 

2 2

0 0

.
4 4

q Ze
E

R R 
 

 
 

 

ANALYZE (a) Substituting the values given, we find the field to be 

 

E
Ze

R
 

  


 



4

8 99 10 94 160 10

6 64 10
307 10

0

2

9 2 2 19

15
2

21



. .

.
. .

N m C C

m
N C

c hb gc h
c h

 

 

(b) The field is normal to the surface. In addition, since the charge is positive, it points 

outward from the surface. 

 

 

 

LEARN The direction of electric field lines is 

radially outward for a positive charge, and radially 

inward for a negative charge. The field lines of our 

nucleus are shown on the right.   

 

 
 

4. With x1 = 6.00 cm and x2 = 21.00 cm, the point midway between the two charges is 

located at x = 13.5 cm. The values of the charge are  

 

q1 = –q2 = – 2.00  10
–7

 C, 

 

and the magnitudes and directions of the individual fields are given by: 

 

 

 

9 2 2 7
51

1 22

0 1

9 2 2 7
52

2 22

0 2

| | (8.99 10 N m C )| 2.00 10 C|ˆ ˆ ˆi i (3.196 10 N C)i
4 ( ) 0.135 m 0.060 m

(8.99 10 N m C )(2.00 10 C)ˆ ˆ ˆi i (3.196 10 N C)i
4 ( ) 0.135 m 0.210 m

q
E

x x

q
E

x x









   
   

 

  
    

 

 

 

Thus, the net electric field is 5

net 1 2
ˆ(6.39 10 N C)iE E E    . 

 

5. THINK The magnitude of the electric field produced by a point charge q is given by 
2

0| | / 4 ,E q r  where r is the distance from the charge to the point where the field has 

magnitude E.  
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EXPRESS From 2

0| | / 4 ,E q r  the magnitude of the charge is 2

04q r E  . 

 

ANALYZE With 2.0 N/CE   at 50 cm 0.50 m,r    we obtain 

 

   
2

2 11

0 9 2 2

0.50m 2.0 N C
4 5.6 10 C.

8.99 10 N m C
q r E     

 
 

 

LEARN To determine the sign of the charge, we would need to know the direction of the 

field. The field lines extend away from a positive charge and toward a negative charge.  

 

6. We find the charge magnitude |q| from E = |q|/40r
2
: 

 

  
2

2 10

0 9 2 2

1.00 N C 1.00m
4 1.11 10 C.

8.99 10 N m C
q Er    

 
 

 

7. THINK Our system consists of four point charges that are placed at the corner of a 

square. The total electric field at a point is the vector sum of the electric fields of 

individual charges. 

 

EXPRESS Applying the superposition principle, the net electric field at the center of the 

square is 

 
4 4

2
1 1 0

1
r̂

4

i
i i

i i i

q
E E

r 

   . 

  

With 1 10 nC,q    2 20 nC,q    3 20 nC,q   and 4 10 nC,q    the x component of the 

electric field at the center of the square is given by, taking the signs of the charges into 

consideration,  

 

31 2 4

2 2 2 2
0

1 2 3 42

0

| || | | | | |1
cos 45

4 ( / 2) ( / 2) ( / 2) ( / 2)

1 1 1
| | | | | | | | .

4 / 2 2

x

qq q q
E

a a a a

q q q q
a





 
     

 

   





 

 

Similarly, the y component of the electric field is  

 

 

31 2 4

2 2 2 2
0

1 2 3 42

0

| || | | | | |1
cos 45

4 ( / 2) ( / 2) ( / 2) ( / 2)

1 1 1
| | | | | | | | .

4 / 2 2

y

qq q q
E

a a a a

q q q q
a





 
      

 

    

 

 

The magnitude of the net electric field is 2 2

x yE E E  . 
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ANALYZE Substituting the values given, we obtain 

  

   1 2 3 42 2

0 0

1 2 1 2
| | | | | | | | 10 nC 20 nC 20 nC 10 nC 0

4 4
xE q q q q

a a 
        

 
 

and  

   

 

1 2 3 42 2

0 0

9 2 2 8

2

5

1 2 1 2
| | | | | | | | 10 nC 20 nC 20 nC 10 nC

4 4

8.99 10  N m / C (2.0 10  C) 2

(0.050 m)

1.02 10  N/C.

yE q q q q
a a 



         

  


 

 

 

Thus, the electric field at the center of the square is 5ˆ ˆj (1.02 10  N/C)j.yE E    

 

LEARN The net electric field at the center of the square is depicted in the figure below 

(not to scale). The field, pointing to the +y direction, is the vector sum of the electric 

fields of individual charges. 

 
 

8. We place the origin of our coordinate system at point P and orient our y axis in the 

direction of the q4 = –12q charge (passing through the q3 = +3q charge). The x axis is 

perpendicular to the y axis, and thus passes through the identical q1 = q2 = +5q charges. 

The individual magnitudes | |, | |, | |,
  
E E E1 2 3  and | |


E4  are figured from Eq. 22-3, where the 

absolute value signs for q1, q2, and q3 are unnecessary since those charges are positive 

(assuming q > 0). We note that the contribution from q1 cancels that of q2 (that is, 

| | | |
 
E E1 2 ), and the net field (if there is any) should be along the y axis, with magnitude 

equal to 


E

q

d

q

d

q

d

q

d
net j j 

F
HG

I
KJ  

F
HG

I
KJ

1

4 2

1

4

12

4

3

0

4

2

3

2

0

2 2  b g
   

 

which is seen to be zero. A rough sketch of the field lines is shown next: 
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9. (a) The vertical components of the individual fields (due to the two charges) cancel, by 

symmetry. Using d = 3.00 m and y = 4.00 m, the horizontal components (both pointing to 

the –x direction) add to give a magnitude of  

 
9 2 2 19

,net 2 2 3/ 2 2 2 3/ 2

0

10

2 | | 2(8.99 10 N m C )(3.20 10  C)(3.00 m)

4 ( ) [(3.00 m) (4.00 m) ]

1.38 10 N/C .

x

q d
E

d y





  
 

 

 

 . 

 

(b) The net electric field points in the –x direction, or 180 counterclockwise from the +x 

axis. 

 

10. For it to be possible for the net field to vanish at some x > 0, the two individual fields 

(caused by q1 and q2) must point in opposite directions for x > 0.  Given their locations in 

the figure, we conclude they are therefore oppositely charged.  Further, since the net field 

points more strongly leftward for the small positive x (where it is very close to q2) then 

we conclude that q2 is the negative-valued charge.  Thus, q1 is a positive-valued charge.  

We write each charge as a multiple of some positive number  (not determined at this 

point).  Since the problem states the absolute value of their ratio, and we have already 

inferred their signs, we have q1 = 4 and q2 = .  Using Eq. 22-3 for the individual fields, 

we find 

Enet  = E1 + E2  =  
4

4o (L + x)
2  –  



4o x
2  

 

for points along the positive x axis.  Setting Enet = 0 at x = 20 cm (see graph) immediately 

leads to L = 20 cm.    

 

(a) If we differentiate Enet with respect to x and set equal to zero (in order to find where it 

is maximum), we obtain (after some simplification) that location:      

 

x = 






2

3
 
3

2  +  
1

3
 
3

4  +  
1

3
L  = 1.70(20 cm) = 34 cm. 

 

We note that the result for part (a) does not depend on the particular value of . 
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(b) Now we are asked to set   = 3e, where e = 1.60 10
19 

C, and evaluate Enet at the 

value of x (converted to meters) found in part (a).  The result is 2.2   10
8 

N/C . 

 

11. THINK Our system consists of two point charges of opposite signs fixed to the x axis. 

Since the net electric field at a point is the vector sum of the electric fields of individual 

charges, there exists a location where the net field is zero. 

 

EXPRESS At points between the charges, the individual electric fields are in the same 

direction and do not cancel. Since charge q2  = 4.00 q1 located at x2 = 70 cm has a greater 

magnitude than q1 = 2.1 10
8 

C located at x1 = 20 cm, a point of zero field must be closer 

to q1 than to q2. It must be to the left of q1.  

 

Let x be the coordinate of P, the point where the field vanishes. Then, the total electric 

field at P is given by 

 
2 1

22

0 2 1

| | | |1

4 ( )

q q
E

x x x x

 
  

   

. 

 

ANALYZE If the field is to vanish, then 

 

   

2

2 1 2 2

2 22

2 11 1

| | | | | | ( )
   .

( ) | |

q q q x x

x x qx x x x


  

  
 

 

Taking the square root of both sides, noting that |q2|/|q1| = 4, we obtain 

 

 
70 cm

2.0
20 cm

x

x





. 

 

Choosing –2.0 for consistency, the value of x is found to be x = 30 cm.   

 

LEARN The results are depicted in the figure below. At P, the field 1E  due to 1q  points 

to the left, while the field 2E  due to 2q  points to the right. Since 1 2| | | |,E E  the net field 

at P is zero. 

 
 

12. The field of each charge has magnitude 

 

 

19
9 2 2 6

22 2

1.60 10 C
(8.99 10 N m C ) 3.6 10 N C.

(0.020 m)0.020m

kq e
E k

r




        
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The directions are indicated in standard format below. We use the magnitude-angle 

notation (convenient if one is using a vector-capable calculator in polar mode) and write 

(starting with the proton on the left and moving around clockwise) the contributions to 
Enet  as follows: 

 

E E E E E             20 130 100 150 0b g b g b g b g b g.  

 

This yields 393 10 76 46. .  c h , with the N/C unit understood. 

 

(a) The result above shows that the magnitude of the net electric field is 
6

net| | 3.93 10  N/C.E    

 

(b) Similarly, the direction of 

Enet  is –76.4 from the x-axis.  

 

13. (a) The electron ec is a distance r = z = 0.020 m away. Thus, 

 
9 2 2 19

6

2 2

0

(8.99 10 N m C )(1.60 10 C)
3.60 10 N/C

4 (0.020 m)
C

e
E

r


  

    . 

 

(b) The horizontal components of the individual fields (due to the two es charges) cancel, 

and the vertical components add to give 

 
9 2 2 19

s,net 2 2 3/ 2 2 2 3/ 2

0

6

2 2(8.99 10 N m C )(1.6 10  C)(0.020 m)

4 ( ) [(0.020 m) (0.020 m) ]

2.55 10 N/C .

ez
E

R z





  
 

 

 

 

 

(c) Calculation similar to that shown in part (a) now leads to a stronger field 
43.60 10  N/CcE    from the central charge. 

 

(d) The field due to the side charges may be obtained from calculation similar to that 

shown in part (b). The result is Es, net = 7.09  10
7 

N/C. 

 

(e) Since Ec is inversely proportional to z
2
, this is a simple result of the fact that z is now 

much smaller than in part (a).  For the net effect due to the side charges, it is the 

“trigonometric factor” for the y component (here expressed as z/ r  ) that shrinks almost 

linearly (as z decreases) for very small z, plus the fact that the x components cancel, 

which leads to the decreasing value of Es, net . 

 

14. (a) The individual magnitudes 

E1  and 


E2  are figured from Eq. 22-3, where the 

absolute value signs for q2 are unnecessary since this charge is positive. Whether we add 

the magnitudes or subtract them depends on whether 

E1  is in the same, or opposite, 
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direction as 

E2 . At points left of q1 (on the –x axis) the fields point in opposite directions, 

but there is no possibility of cancellation (zero net field) since 

E1  is everywhere bigger 

than 

E2  in this region. In the region between the charges (0 < x < L) both fields point 

leftward and there is no possibility of cancellation. At points to the right of q2 (where x > 

L), 

E1  points leftward and 


E2  points rightward so the net field in this range is 

 

 net 2 1
ˆ| | | | iE E E  . 

 

Although |q1| > q2 there is the possibility of 

Enet  0  since these points are closer to q2 

than to q1. Thus, we look for the zero net field point in the x > L region: 

 

 
1 2

1 2 22

0 0

| |1 1
| | | |       

4 4

q q
E E

x x L 
  


 

which leads to 

2

1

2
.

| | 5

qx L

x q


   

Thus, we obtain 2.72
1 2 5

L
x L 


.  

 

(b) A sketch of the field lines is shown in the figure below: 

 

 
 

15. By symmetry we see that the contributions from the two charges q1 = q2 = +e cancel 

each other, and we simply use Eq. 22-3 to compute magnitude of the field due to q3 = +2e.  

 

(a) The magnitude of the net electric field is 

 

net 2 22
0 0 0

19
9 2 2

6 2

1 2 1 2 1 4
| |

4 4 4( / 2)

4(1.60 10 C)
(8.99 10 N m C ) 160 N/C.

(6.00 10  m)

e e e
E

r aa  





  


   


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(b) This field points at 45.0°, counterclockwise from the x axis.  

 

16. The net field components along the x and y axes are 

 

1 2 2
net, net, 2 2 2

0 0 0

cos sin
, .

4 4 4
x y

q q q
E E

R R R

 

  
     

 

 The magnitude is the square root of the sum of the components squared.  Setting the 

magnitude equal to E = 2.00   10
5 

N/C, squaring and simplifying, we obtain 

 

 
2 2

2 1 1 1 2

2 2

0

2 cos

(4 )

q q q q
E

R





 
 . 

 

With R = 0.500 m, q1 = 2.00   10
6 

C, and q2 = 6.00   10
6 

C, we can solve this 

expression for cos   and then take the inverse cosine to find the angle: 

 
2 2 2 2 2

1 1 1 0

1 2

(4 )
cos

2

q q R E

q q


    
  

 
 . 

 There are two answers. 

 

(a) The positive value of angle is  = 67.8. 

 

(b) The positive value of angle is  =  67.8. 

 

17. We make the assumption that bead 2 is in the lower half of the circle, partly because 

it would be awkward for bead 1 to “slide through” bead 2 if it were in the path of bead 1 

(which is the upper half of the circle) and partly to eliminate a second solution to the 

problem (which would have opposite angle and charge for bead 2).  We note that the net 

y component of the electric field evaluated at the origin is negative (points down) for all 

positions of bead 1, which implies (with our assumption in the previous sentence) that 

bead 2 is a negative charge.  

 

(a) When bead 1 is on the +y axis, there is no x component of the net electric field, which 

implies bead 2 is on the –y axis, so its angle is –90°. 

 

(b) Since the downward component of the net field, when bead 1 is on the +y axis, is of 

largest magnitude, then bead 1 must be a positive charge (so that its field is in the same 

direction as that of bead 2, in that situation).  Comparing the values of Ey at 0° and at 90° 

we see that the absolute values of the charges on beads 1 and 2 must be in the ratio of 5 to 

4.  This checks with the 180° value from the Ex graph, which further confirms our belief 

that bead 1 is positively charged.  In fact, the 180° value from the Ex graph allows us to 

solve for its charge (using Eq. 22-3): 
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      q1 = 4or²E = 4( 8.854  10
12 C2

N m2 )(0.60 m)
2 

(5.0  10
4  N

C
 ) = 2.0  10

6 
C . 

 

(c) Similarly, the 0° value from the Ey graph allows us to solve for the charge of bead 2: 

 

 q2 = 4or²E = 4( 8.854  10
12 C2

N m2 )(0.60 m)
2 

(– 4.0  10
4 N

C
 ) = –1.6  10

6 
C . 

 

18. Referring to Eq. 22-6, we use the binomial expansion (see Appendix E) but keeping 

higher order terms than are shown in Eq. 22-7: 

 

  E  =   
q

4o z
2 
















1 + 
d

z
 + 

3

4
 
d

2

z
2 + 

1

2
 
d

3

z
3 + …   









1  
d

z
 + 

3

4
 
d

2

z
2  

1

2
 
d

3

z
3 + …   

 

      =   
q d

2o z
3  +  

q d
3

4o z
5  + … 

 

Therefore, in the terminology of the problem, Enext = q d
3
/ 40z

5
.   

 

19. (a) Consider the figure below. The magnitude of the net electric field at point P is 

 

     
net 1 2 3/ 22 2 22 2

0 0

1 / 2 1
2 sin 2

4 4/ 2 / 2 / 2

q d qd
E E

d r d r d r


 

 
   

      
 

 

 

For r d , we write [(d/2)
2
 + r

2
]
3/2

  r
3
 so the expression above reduces to 

 

net 3

0

1
| | .

4

qd
E

r
  

 

(b) From the figure, it is clear that the net electric field 

at point P points in the j  direction, or 90 from the 

+x axis. 

 

20. According to the problem statement, Eact  is Eq. 22-

5 (with z = 5d)  

 

 act 2 2 2

0 0 0

160

4 (4.5 ) 4 (5.5 ) 9801 4

q q q
E

d d d  
     

and Eapprox is 

approx 3 2

0 0

2 2

4 (5 ) 125 4

qd q
E

d d 
   . 

The ratio is  
Eapprox

 Eact
  = 0.9801    0.98. 
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21. THINK The electric quadrupole is composed of two dipoles, each with a dipole 

moment of magnitude p = qd. The dipole moments point in the opposite directions and 

produce fields in the opposite directions at points on the quadrupole axis.  

 

EXPRESS Consider the point P on the axis, a distance z to the right of the quadrupole 

center and take a rightward pointing field to be positive. Then the field produced by the 

right dipole of the pair is given by qd/20(z – d/2)
3
 while the field produced by the left 

dipole is –qd/20(z + d/2)
3
.  

 

ANALYZE Use the binomial expansions 

  

 (z – d/2)
–3

  z
–3

 – 3z
–4

(–d/2)  
 

(z + d/2)
–3

  z
–3

 – 3z
–4

(d/2) 

we obtain 
2

3 3 3 4 3 4 4

0 0 0 0

1 3 1 3 6
.

2 ( / 2) 2 ( / 2) 2 2 2 4

qd qd qd d d qd
E

z d z d z z z z z   

 
          

 

 

Since the quadrupole moment is 22 ,Q qd  we have E
Q

z


3

4 0

4
.  

 

LEARN For a quadrupole moment Q, the electric field varies with z as 4/E Q z . For a 

point charge q, the dependence is 2/ ,E q z  and for a dipole p, we have 3/E p z .  

 

22. (a) We use the usual notation for the linear charge density:  = q/L.  The arc length is 

L = r  with is expressed in radians.  Thus,  

 

L = (0.0400 m)(0.698 rad) = 0.0279 m. 

 

With q = 300(1.602   10
19 

C), we obtain  =  1.72   10
15 

C/m. 

 

(b) We consider the same charge distributed over an area A = r
2
 = (0.0200 m)

2
 and 

obtain  

 = q/A = 3.82   10
14 

C/m². 

 

(c) Now the area is four times larger than in the previous part (Asphere = 4r
2
) and thus 

obtain an answer that is one-fourth as big:  

 

 = q/Asphere = 9.56   10
15 

C/m². 

 

(d) Finally, we consider that same charge spread throughout a volume of V = 4r
3
/3 and 

obtain the charge density  = /q V  = 1.43   10
12 

C/m
3
. 

 

23. We use Eq. 22-3, assuming both charges are positive. At P, we have 
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 
1 2

left ring right ring 3/ 2 2 2 3/ 22 2
00

(2 )
  

4 [(2 ) ]4

q R q R
E E

R RR R
  

 
 

 

Simplifying, we obtain 
3/ 2

1

2

2
2 0.506.

5

q

q

 
  

 
 

 

24. (a) It is clear from symmetry (also from Eq. 22-16) that the field vanishes at the 

center. 

 

(b) The result (E = 0) for points infinitely far away can be reasoned directly from Eq. 22-

16 (it goes as 1/z² as z  ) or by recalling the starting point of its derivation (Eq. 22-11, 

which makes it clearer that the field strength decreases as 1/r² at distant points). 

 

(c) Differentiating Eq. 22-16 and setting equal to zero (to obtain the location where it is 

maximum) leads to 

 

   

2 2

3/ 2 5/ 2
2 2 2 2

00

2
0 0.707

4 24

d qz q R z R
z R

dz z R z R

 
       

  
 

. 

 

(d) Plugging this value back into Eq. 22-16 with the values stated in the problem, we find 

Emax = 3.46  10
7 
N/C.  

 

25. The smallest arc is of length L1 = r1 /2 = R/2; the middle-sized arc has length 

2 2 / 2 (2 ) / 2L r R R     ; and, the largest arc has L3 = R)/2.  The charge per unit 

length for each arc is  = q/L where each charge q is specified in the figure.  Thus, we 

find the net electric field to be  

 

 31 2
net 2 2

0 1 0 2 0 3 0

(2sin 45 )(2sin 45 ) (2sin 45 )

4 4 4 2

Q
E

r r r R

 

    

 
     

 

which yields Enet = 1.62  10
 
 N/C . 

 

(b) The direction is – 45º, measured counterclockwise from the +x axis. 

 

26. Studying Sample Problem 22.03 — “Electric field of a charged circular rod,” we see 

that the field evaluated at the center of curvature due to a charged distribution on a 

circular arc is given by 

0

sin
4

E
r








 

  
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along the symmetry axis, with  = q/r with  in radians. In this problem, each charged 

quarter-circle produces a field of magnitude 

 
/ 4

2
/ 40 0

| | 1 1 2 2 | |
| | sin .

/ 2 4 4

q q
E

r r r






   

 


 

 

That produced by the positive quarter-circle points at –45°, and that of the negative 

quarter-circle points at +45°.  

 

(a) The magnitude of the net field is 

 

net, 2 2

0 0

9 2 2 12

2 2

1 2 2 | | 1 4| |
2 cos 45

4 4

(8.99 10 N m C )4(4.50 10 C)
20.6 N/C.

(5.00 10  m)

x

q q
E

r r   







 
   

 

  
 



 

 

(b) By symmetry, the net field points vertically downward in the ĵ direction, or 90   

counterclockwise from the +x axis.   

 

27. From symmetry, we see that the net field at P is twice the field caused by the upper 

semicircular charge )q R    (and that it points downward). Adapting the steps leading 

to Eq. 22-21, we find 

 
90

net 2 2
900 0

ˆ ˆ2 j sin j.
4

q
E

R R


 



 

 
    

 




 

 

(a) With R = 8.50   10
2 

m and q = 1.50   10
8 

C, net| | 23.8 N/C.E   

 

(b) The net electric field netE  points in the ĵ direction, or 90  counterclockwise from 

the +x axis. 

 

28. We find the maximum by differentiating Eq. 22-16 and setting the result equal to zero. 

 

d

dz

qz

z R

q R z

z R4 4

2
0

0

2 2
3 2

0

2 2

2 2
5 2

  

F
H
GG

I
K
JJ 






c h c h/ /
 

 

which leads to z R / 2 . With R = 2.40 cm, we have z = 1.70 cm. 

 

29. First, we need a formula for the field due to the arc.  We use the notation  for the 

charge density,  = Q/L.  Sample Problem 22.03 — “Electric field of a charged circular 
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rod” illustrates the simplest approach to circular arc field problems.  Following the steps 

leading to Eq. 22-21, we see that the general result (for arcs that subtend angle ) is 

 

 arc

0 0

2 sin( / 2)
sin( / 2) sin( / 2)

4 4
E

r r

  
 

 
    . 

 

Now, the arc length is L = r if is expressed in radians. Thus, using R instead of r, we 

obtain 

arc 2

0 0 0

2( / )sin( / 2) 2( / )sin( / 2) 2 sin( / 2)

4 4 4

Q L Q R Q
E

r r R

   

   
   . 

 

The problem asks for the ratio  Eparticle / Earc,  where Eparticle is given by Eq. 22-3: 

 
2

particle 0

2

arc 0

/ 4

2 sin( / 2) / 4 2sin( / 2)

E Q R

E Q R

 

   
  . 

 

With , we have 

 
particle

arc

1.57.
2

E

E


   

 

30. We use Eq. 22-16, with “q” denoting the charge on the larger ring: 

 

 

3/ 2

2 2 3/ 2 2 2 3/ 2

0 0

13
0 4.19

4 ( ) 4 [ (3 ) ] 5

qz qz
q Q Q

z R z R 

 
       

   
. 

 

Note: We set z = 2R in the above calculation. 

 

31. THINK Our system is a non-conducting rod with uniform charge density. Since the 

rod is an extended object and not a point charge, the calculation of electric field requires 

an integration. 

 

EXPRESS The linear charge density  is the charge per unit length of rod. Since the total 

charge q  is uniformly distributed on the rod of length L, we have / .q L    To 

calculate the electric at the point P shown in the figure, we position the x-axis along the 

rod with the origin at the left end of the rod, as shown in the diagram below.  
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Let dx be an infinitesimal length of rod at x. The charge in this segment is dq dx  . The 

charge dq may be considered to be a point charge. The electric field it produces at point P 

has only an x component and this component is given by 

 

dE
dx

L a x
x 

 

1

4 0

2


b g .  

 

The total electric field produced at P by the whole rod is the integral 

 

 

   

20
00 0 0

0 0

1 1 1

4 4 4

,
4 4

LL

x

dx
E

L a x a L aL a x

L q

a L a a L a

  

 

    
    

       

 
 

   


 

 

upon substituting q L  .  

 

ANALYZE (a) With q = 4.23  10
15

 C, L = 0.0815 m, and a = 0.120 m, the linear 

charge density of the rod is 
15

144.23 10  C
5.19 10  C/m.

0.0815 m

q

L



  

     

(b) Similarly, we obtain  

 

 

9 2 2 15
3

0

(8.99 10 N m C )(4.23 10 C)
1.57 10  N/C

4 (0.120 m)(0.0815 m 0.120 m)
x

q
E

a L a


   

   
  

, 

 

or  3| | 1.57 10  N/CxE   . 

 

(c) The negative sign in xE indicates that the field points in the –x direction, or 180 

counterclockwise from the +x axis. 

 

(d) If a is much larger than L, the quantity L + a in the denominator can be approximated 

by a, and the expression for the electric field becomes 

 

E
q

a
x  

4 0

2
. 

 

Since 50 m  0.0815 m,a L   the above approximation applies and we have 
81.52 10  N/CxE   , or 8| | 1.52 10  N/CxE   . 

 

(e) For a particle of charge 154.23 10  C,q    the electric field at a distance a = 50 m 

away has a magnitude 8| | 1.52 10  N/CxE   . 
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LEARN At a distance much greater than the length of the rod ( a L ), the rod can be 

effectively regarded as a point charge ,q  and the electric field can be approximated as 

2

0

.
4

x

q
E

a


  

 

32. We assume q > 0. Using the notation  = q/L we note that the (infinitesimal) charge 

on an element dx of the rod contains charge dq =  dx. By symmetry, we conclude that all 

horizontal field components (due to the dq’s) cancel and we need only “sum” (integrate) 

the vertical components. Symmetry also allows us to integrate these contributions over 

only half the rod (0  x  L/2) and then simply double the result. In that regard we note 

that sin  = R/r where 2 2r x R  .  

 

(a) Using Eq. 22-3 (with the 2 and sin  factors just discussed) the magnitude is 

 

 

 

 

2 2

2 2 2 2 20 0
0 0

/ 2
2

3 2 2 2 20 2 2
0 0 0

2 2 22
0 0

2
2 sin

4 4

2 2

2 1

2 2 42

L L

L
L

dq dx y
E

r x R x R

q L RR dx x

R x Rx R

q L q

LR R L RL R


 

 

 

    
      

     


  



 


 

  

 

where the integral may be evaluated by elementary means or looked up in Appendix E 

(item #19 in the list of integrals). With 127.81 10  Cq   , 0.145 m,L and R = 0.0600 m, 

we have | | 12.4 N/CE  .  

 

(b) As noted above, the electric field E  points in the +y direction, or 

90 counterclockwise from the +x axis. 

 

33. Consider an infinitesimal section of the rod of length dx, a 

distance x from the left end, as shown in the following 

diagram. It contains charge dq =dx and is a distance r from P. 

The magnitude of the field it produces at P is given by 

 

2

0

1
.

4

dx
dE

r



 

 

The x and the y components are 
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2

1
sin

4
x

dx
dE

r





 


 

and  

2

1
cos

4
y

dx
dE

r





 


, 

 

respectively. We use  as the variable of integration and substitute r = R/cos , 

tanx R  and dx =  (R/cos
2
 ) d. The limits of integration are 0 and /2 rad. Thus, 

 

0
00 0 0

sin cos
4 4 4

xE d
R R R

  
  

  

  

      

and 
/ 2

0
00 0 0

cos sin .
4 4 4

yE d
R R R

  
  

  

 

       

 

We notice that Ex = Ey no matter what the value of R. Thus, 

E  makes an angle of 45° 

with the rod for all values of R. 

 

34. From Eq. 22-26, we obtain 

 

     

26
3

12 2 22 2 2 2
0

5.3 10 C m 12cm
1 1 6.3 10 N C.

2 2 8.85 10 C /N m 12cm 2.5cm

z
E

z R









 
          

     

 

35. THINK Our system is a uniformly charged disk of radius R. We compare the field 

strengths at different points on its axis of symmetry. 

 

EXPRESS At a point on the axis of a uniformly charged disk a distance z above the 

center of the disk, the magnitude of the electric field is given by Eq. 22-26: 

 

E
z

z R
 



L
NM

O
QP



2
1

0
2 2

 

         

where R is the radius of the disk and  is the surface charge density on the disk. The 

magnitude of the field at the center of the disk (z = 0) is Ec = /20. We want to solve for 

the value of z such that E/Ec = 1/2. This means 

 

2 2 2 2

1 1
1 .

2 2

z z

z R z R
   

 
 

 

ANALYZE Squaring both sides, then multiplying them by z
2
 + R

2
, we obtain z

2
 = (z

2
/4) 

+ (R
2
/4). Thus, z

2
 = R

2
/3, or z R 3 . With R = 0.600 m, we have z = 0.346 m. 



    CHAPTER 22 1016 

 

LEARN The ratio of the electric field strengths, 2/ 1 ( / ) / ( / ) 1,cE E z R z R    as a 

function of / ,z R  is plotted below. From the plot, we readily see that at 

/ (0.346 m) /(0.600 m) 0.577,z R    the ratio indeed is 1/2. 

 
 

36. From dA = 2r dr (which can be thought of as the differential of A = r²) and dq =  

dA (from the definition of the surface charge density ), we have 

 

dq = 






Q

R
2  2r dr 

 

where we have used the fact that the disk is uniformly charged to set the surface charge 

density equal to the total charge (Q) divided by the total area (R
2
).  We next set r = 

0.0050 m and make the approximation dr  30  10
6 

m. Thus we get dq  2.4  10
16 

C. 

 

37. We use Eq. 22-26, noting that the disk in Figure 22-57(b) is effectively equivalent to 

the disk in Figure 22-57(a) plus a concentric smaller disk (of radius R/2) with the 

opposite value of . That is,  

E(b) = E(a) – 


2o
 








1  
2R

(2R)
2
 + (R/2)

2   

where  

E(a) =  


2o
 








1  
2R

(2R)
2
 + R

2   . 

 

We find the relative difference and simplify: 

 

E(a) – E(b)

 E(a)
   = 

1 2 / 4 1/ 4 1 2 / 17 / 4 0.0299
0.283

0.10561 2 / 4 1 1 2 / 5

  
  

  
   

 

or approximately 28%. 

 

38. We write Eq. 22-26 as  

 
2 2 1/ 2

max

1
( )

E z

E z R
 


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and note that this ratio is 
1

2
  (according to the graph shown in the figure) when z = 4.0 cm.  

Solving this for R we obtain R = z 3  = 6.9 cm. 

 

39. When the drop is in equilibrium, the force of gravity is balanced by the force of the 

electric field: mg = qE, where m is the mass of the drop, q is the charge on the drop, and 

E is the magnitude of the electric field. The mass of the drop is given by m = (4/3)r
3, 

where r is its radius and  is its mass density. Thus, 

 

    
 

3 3 26
3

19

5

4 1.64 10 m 851kg m 9.8m s4
8.0 10 C

3 3 1.92 10 N C

mg r g
q

E E





 

        


 

 

and q/e = (8.0  10
–19

 C)/(1.60  10
–19

 C) = 5, or 5q e  . 

 

40. (a) The initial direction of motion is taken to be the +x direction (this is also the 

direction of 

E ). We use v v a xf i

2 2 2    with vf = 0 and 
  
a F m eE me    to solve for 

distance x: 

x
v

a

m v

eE

i e i







  

  
 







2 2 31

19

2

2 2

911 10

2 160 10
712 10

.

.
.

kg 5.00 10 m s

C 1.00 10 N C
m.

6
2

3

c hc h
c hc h  

 

(b) Equation 2-17 leads to 

t
x

v

x

vi

  



 



 

avg

m

m s
s.

2 2 712 10

500 10
2 85 10

2

6

8
.

.
.

c h
 

 

(c) Using v
2
 = 2ax with the new value of x, we find 

 

 

   

  

21 2
2

2 2 2 21
2

19 3 3

2
31 6

2 2

2 1.60 10 C 1.00 10 N C 8.00 10 m
      0.112.

9.11 10 kg 5.00 10 m s

e

i e i i i e i

m vK v a x eE x

K m v v v m v

 



    
   

   
 

 

 

 

Thus, the fraction of the initial kinetic energy lost in the region is 0.112 or 11.2%. 

 

41. THINK In this problem we compare the strengths between the electrostatic force and 

the gravitational force.  

 

EXPRESS The magnitude of the electrostatic force on a point charge of magnitude q is 

given by F = qE, where E is the magnitude of the electric field at the location of the 

particle.  On the other hand, the force of gravity on a particle of mass m is .gF mg  
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ANALYZE (a) With 92.0 10 Cq     and 63.0 10 N,F   the magnitude of the electric 

field strength is 

E
F

q
 




 





30 10

2 0 10
15 10

6

9

3.

.
.

N

C
N C.  

 

In vector notation, F qE . Since the force points downward and the charge is negative, 

the field E  must points upward (in the opposite direction of F ). 

 

(b) The magnitude of the electrostatic force on a proton is 

 

   19 3 161.60 10 C 1.5 10 N C 2.4 10 N.elF eE         

 

(c) A proton is positively charged, so the force is in the same direction as the field, 

upward. 

 

(d) The magnitude of the gravitational force on the proton is 

 

   227 261.67 10 kg 9.8 m s 1.6 10 N.gF mg        

 

The force is downward. 

 

(e) The ratio of the forces is 
16

10

26

2.4 10 N
1.5 10 .

1.64 10 N

el

g

F

F






  


 

 

LEARN The force of gravity on the proton is much smaller than the electrostatic force on 

the proton due to the field of strength 31.5 10 N C.E    For the two forces to have equal 

strength, the electric field would have to be very small: 

 

 
27 2

7

19

(1.67 10 kg)(9.8 m/s )
1.02 10 N/C.

1.6 10 C

mg
E

q







   


 

 

42. (a) Fe = Ee = (3.0  10
6
 N/C)(1.6  10

–19
 C) = 4.8  10 

– 13
 N. 

 

(b) Fi = Eqion = Ee = (3.0  10
6
 N/C)(1.6  10

–19
 C) = 4.8  10 

– 13
 N. 

 

43. THINK The acceleration of the electron is given by Newton’s second law: ,F ma  

where F is the electrostatic force.  
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EXPRESS The magnitude of the force acting on the electron is F = eE, where E is the 

magnitude of the electric field at its location. Using Newton’s second law, the 

acceleration of the electron is 

.
F eE

a
m m

   

 

ANALYZE With 191.6 10 C,e   42.00 10 N/C,E    and 319.11 10 kg,m    we find 

the acceleration to be 

 

  19 4

215

31

1.60 10 C 2.00 10 N C
3.51 10 m s .

9.11 10 kg

eE
a

m





 
   


 

 

LEARN In vector notation, / / ,a F m eE m    so a  is in the opposite direction of .E  

The magnitude of electron’s acceleration is proportional to the field strength E: the 

greater the value of E, the greater the acceleration.  

  

 

 

 

44. (a) Vertical equilibrium of forces leads to the equality 

 

.
2

mg
q E mg E

e
    

 

Substituting the values given in the problem, we obtain  

 
27 2

7

19

(6.64 10 kg)(9.8 m/s )
2.03 10 N C

2 2(1.6 10 C)

mg
E

e







   


. 

 

(b) Since the force of gravity is downward, then qE


 must point upward. Since q > 0 in 

this situation, this implies 

E  must itself point upward. 

 

45. We combine Eq. 22-9 and Eq. 22-28 (in absolute values). 

 

3 3

0

2

2

p kep
F q E q

z z

 
   

 
 

 

where we have used Eq. 21-5 for the constant k in the last step. Thus, we obtain 

 

   

 

9 2 2 19 29

15

3
9

2 8.99 10 N m C 1.60 10 C 3.6 10 C m
6.6 10 N

25 10 m
F

 





    
  


. 
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If the dipole is oriented such that 

p  is in the +z direction, then 


F  points in the –z 

direction. 

 

46. Equation 22-28 gives 


 


E

F

q

ma

e

m

e
a 


 
F
HG
I
KJb g  

 

using Newton’s second law.  

 

(a) With east being the i  direction, we have 

 

 
31

29

19

9.11 10 kg ˆ ˆ1.80 10 m s i ( 0.0102 N C) i
1.60 10 C

E




 
     

 
 

 

which means the field has a magnitude of 0.0102 N/C . 

 

(b) The result shows that the field E  is directed in the –x direction, or westward. 

 

47. THINK The acceleration of the proton is given by Newton’s second law: 

,F ma where F is the electrostatic force.  

 

EXPRESS The magnitude of the force acting on the proton is F = eE, where E is the 

magnitude of the electric field. According to Newton’s second law, the acceleration of the 

proton is a = F/m = eE/m, where m is the mass of the proton. Thus, 

 

.
F eE

a
m m

   

 

We assume that the proton starts from rest ( 0 0v  ) and apply the kinematic equation 

v v ax2

0

2 2   (or else x at
1

2

2  and v = at). Thus, the speed of the proton after having 

traveling a distance x is 2 .v ax  

 

ANALYZE (a) With 191.6 10 C,e   42.00 10 N/C,E    and 271.67 10 kg,m    we 

find the acceleration to be 

 

  19 4

212

27

1.60 10 C 2.00 10 N C
1.92 10 m s .

1.67 10 kg

eE
a

m





 
   


 

 

(b) With 21.00 cm 1.0 10  m,x     the speed of the proton is 

 



 

  

1021 

v ax    2 2 192 10 0 0100 196 1012 5. . .m s m m s.
2d ib g  

 

LEARN The time it takes for the proton to attain the final speed is 

 
5

7

12 2

1.96 10 m/s
1.02 10 s.

1.92 10 m/s

v
t

a


   


 

 

The distance the proton travels can be written as  

 

2 21 1

2 2

eE
x at t

m

 
   

 
. 

 

48. We are given  = 4.00  10
6 

C/m
2
 and various values of z (in the notation of Eq. 22-

26, which specifies the field E of the charged disk). Using this with F = eE (the 

magnitude of Eq. 22-28 applied to the electron) and F = ma, we obtain / /a F m eE m  . 

 

(a) The magnitude of the acceleration at a distance R is  

 

a = 
e (  )

4 m o
 = 1.16  10

16
 m/s

2 
 . 

 

(b) At a distance R/100, a =  
e (10001 10001 )

20002 m o
 = 3.94  10

16 
m/s

2 
 . 

  

(c) At a distance R/1000, a  =  
e (1000001 1000001 )

2000002 m o
 = 3.97  10

16 
m/s

2 
 . 

 

(d) The field due to the disk becomes more uniform as the electron nears the center point.  

One way to view this is to consider the forces exerted on the electron by the charges near 

the edge of the disk; the net force on the electron caused by those charges will decrease 

due to the fact that their contributions come closer to canceling out as the electron 

approaches the middle of the disk. 

 

49. (a) Using Eq. 22-28, we find 

 

     

   

5 3 5ˆ ˆ8.00 10 C 3.00 10 N C i 8.00 10 C 600 N C j

ˆ ˆ0.240 N i 0.0480 N j.

F       

 
 

 

Therefore, the force has magnitude equal to 

 

   
2 22 2 0.240 N 0.0480 N 0.245 N.x yF F F       
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(b) The angle the force F makes with the +x axis is  

 

1 1 0.0480 N
tan tan 11.3

0.240 N

y

x

F

F
     
      

  
 

 

measured counterclockwise from the +x axis. 

 

(c) With m = 0.0100 kg, the (x, y) coordinates at t = 3.00 s can be found by combining 

Newton’s second law with the kinematics equations of Chapters 2–4. The x coordinate is 

 

  

 

22
2

0.240 N 3.00 s1
108 m.

2 2 2 0.0100 kg

x
x

F t
x a t

m
     

 

(d) Similarly, the y coordinate is 

 

 
  

 

22

2
0.0480 N 3.00 s1

21.6 m.
2 2 2 0.0100 kg

y

y

F t
y a t

m


     

 

50. We assume there are no forces or force-components along the x direction. We 

combine Eq. 22-28 with Newton’s second law, then use Eq. 4-21 to determine time t 

followed by Eq. 4-23 to determine the final velocity (with –g replaced by the ay of this 

problem); for these purposes, the velocity components given in the problem statement are 

re-labeled as v0x and v0y, respectively. 

 

(a) We have / ( / ) ,a qE m e m E   which leads to 

 
19

213

31

1.60 10 C N ˆ ˆ120 j (2.1 10 m s ) j.
9.11 10 kg C

a




   
     

   
 

 

(b) Since vx = v0x in this problem (that is, ax = 0), we obtain 

 

  
m

1.5 10 m s
s

m s m s 1.3 10 s

5

2

t
x

v

v v a t

x

y y y

 


 

       







0

7

0

3 13 7

0 020
13 10

30 10 21 10

.
.

. .d ic h
 

 

which leads to vy = –2.8  10
6
 m/s. Therefore, the final velocity is 

 
5 6ˆ ˆ(1.5 10  m/s) i (2.8 10  m/s) j.v      
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51. We take the charge 45.0 pCQ   of the bee to be concentrated as a particle at the 

center of the sphere. The magnitude of the induced charges on the sides of the grain is 

| | 1.000 pC.q   

 

(a) The electrostatic force on the grain by the bee is  

 

2 2 2 2

( ) 1 1
| |

( / 2) ( / 2) ( / 2) ( / 2)

kQq kQ q
F kQ q

d D D D d D

 
     

  
 

 

where 1.000 cmD  is the diameter of the sphere representing the honeybee, and 

40.0 md   is the diameter of the grain. Substituting the values, we obtain 

 

 9 2 2 12 12

3 2 3 2

10

1 1
8.99 10 N m C (45.0 10 C)(1.000 10 C)

(5.00 10  m) (5.04 10  m)

2.56 10 N .

F  

 



 
       

  

  

 

The negative sign implies that the force between the bee and the grain is attractive. The 

magnitude of the force is 10| | 2.56 10 NF   . 

 

(b) Let | | 45.0 pCQ   be the magnitude of the charge on the tip of the stigma. The force 

on the grain due to the stigma is  

 

2 2 2 2

| | | | ( ) 1 1
| || |

( ) ( ) ( ) ( )

k Q q k Q q
F k Q q

d D D D d D

   
           

 

 

where 1.000 mmD  is the distance between the grain and the tip of the stigma. 

Substituting the values given, we have 

 

 9 2 2 12 12

3 2 3 2

8

1 1
8.99 10 N m C (45.0 10 C)(1.000 10 C)

(1.000 10  m) (1.040 10  m)

3.06 10 N .

F  

 



 
        

  

  

 

The negative sign implies that the force between the grain and the stigma is attractive. 

The magnitude of the force is 8| | 3.06 10 NF    . 

 

(c) Since | | | | ,F F   the grain will move to the stigma. 

 

52. (a) Due to the fact that the electron is negatively charged, then (as a consequence of 

Eq. 22-28 and Newton’s second law) the field E  


  pointing in the same direction as the 

velocity leads to deceleration.  Thus, with t = 1.5  10
9 

s, we find  
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19
4 9

0 0 31

4

(1.6 10 C)(50 N/C)
| | 4.0 10 m/s (1.5 10 s)

9.11 10 kg

2.7 10 m/s .

eE
v v a t v t

m







       



 

 

 

(b) The displacement is equal to the distance since the electron does not change its 

direction of motion.  The field is uniform, which implies the acceleration is constant.  

Thus, 

50 5.0 10 m.
2

v v
d t 
    

 

53. We take the positive direction to be to the right in the figure. The acceleration of the 

proton is ap = eE/mp and the acceleration of the electron is ae = –eE/me, where E is the 

magnitude of the electric field, mp is the mass of the proton, and me is the mass of the 

electron. We take the origin to be at the initial position of the proton. Then, the coordinate 

of the proton at time t is x a tp 1
2

2  and the coordinate of the electron is x L a te  1
2

2 .  

They pass each other when their coordinates are the same, or  

 

2 21 1
.

2 2
p ea t L a t   

 

This means t
2
 = 2L/(ap – ae) and 

   

 
31

31 27

5

9.11 10 kg
0.050 m

9.11 10 kg 1.67 10 kg

2.7 10 m.

p p e

p e e pp e

a eE m m
x L L L

a a m meE m eE m



 



 
       

 
 

   

 

 

 

54. Due to the fact that the electron is negatively charged, then (as a consequence of Eq. 

22-28 and Newton’s second law) the field E  


  pointing in the +y direction (which we will 

call “upward”) leads to a downward acceleration.  This is exactly like a projectile motion 

problem as treated in Chapter 4 (but with g replaced with a = eE/m = 8.78  10
11 

m/s
2
).  

Thus, Eq. 4-21 gives 

 6

6

0 0

3.00 m
1.96 10 s

cos (2.00 10 m/s)cos40.0

x
t

v 

   
 

. 

    

This leads (using Eq. 4-23) to  

 
6 11 2 6

0 0

5

sin (2.00 10 m/s)sin40.0 (8.78 10 m/s )(1.96 10 s)

4.34 10 m/s .

yv v at       

  
  

 

Since the x component of velocity does not change, then the final velocity is  
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 v  


  = (1.53  10
6
 m/s) i

^
  (4.34  10

5
 m/s) j

^
 . 

 

55. (a) We use x = vavgt = vt/2: 

 

v
x

t
 




 





2 2 2 0 10

15 10
2 7 10

2

8

6 .

.
.

m

s
m s.

c h
 

 

(b) We use x at 1
2

2  and E = F/e = ma/e: 

 

E
ma

e

xm

et
  

 

 
 

 

 

2 2 2 0 10

160 10
10 10

2

2 31

19 8

3 .

.
.

m 9.11 10 kg

C 1.5 10 s
N C.

2

c hc h
c hc h

 

 

56. (a) Equation 22-33 leads to   pE sin0 0. 

 

(b) With   90 ,  the equation gives 

 

          pE 2 16 10 85 1019 9 22. .C 0.78 10 m 3.4 10 N C N m.6c hc he jc h  

 

(c) Now the equation gives   pE sin180 0.  

 

57. THINK The potential energy of the electric dipole placed in an electric field depends 

on its orientation relative to the electric field.  

 

EXPRESS The magnitude of the electric dipole moment is ,p qd where q is the 

magnitude of the charge, and d is the separation between the two charges. When placed in 

an electric field, the potential energy of the dipole is given by Eq. 22-38: 

 

 ( ) cosU p E pE      . 

  

Therefore, if the initial angle between p  and E  is 0  and the final angle is ,  then the 

change in potential energy would be 

 

 0 0( ) ( ) cos cosU U U pE         . 

   

ANALYZE (a) With 91.50 10 Cq    and 66.20 10  m,d   we find the magnitude of 

the dipole moment to be 

 

p qd        150 10 9 30 109 6 15. .C 6.20 10 m C m.c hc h  
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(b) The initial and the final angles are 
0 0  (parallel) and 180    (anti-parallel), so we 

find U  to be 

 

      15 11180 0 2 2 9.30 10 C m 1100 N/C 2.05 10 J.U U U pE             

 

LEARN The potential energy is a maximum ( maxU pE  ) when the dipole is oriented 

antiparallel to ,E  and is a minimum (
minU pE  ) when it is parallel to .E    

 

58. Examining the lowest value on the graph, we have (using Eq. 22-38)  

 

U =   p  


 · E  


 =  1.00  10
28 

J. 

 

If E = 20 N/C, we find p = 5.0  10
28 

C·m.  

 

59. Following the solution to part (c) of Sample Problem 22.05 — “Torque and energy of 

an electric dipole in an electric field,” we find 

 

        0 0 0 0 0

25

23

cos cos 2 cos

2(3.02 10 C m)(46.0 N/C)cos64.0

1.22 10  J.

W U U pE pE    





      

   

 

 

 

60. Using Eq. 22-35, considering  as a variable, we note that it reaches its maximum 

value when  = 90: max = pE.  Thus, with E = 40 N/C and max = 100  10
28 

N·m 

(determined from the graph), we obtain the dipole moment: p = 2.5  10
28 

C·m.   

 

61. Equation 22-35   pE sinb g  captures the sense as well as the magnitude of the 

effect. That is, this is a restoring torque, trying to bring the tilted dipole back to its 

aligned equilibrium position. If the amplitude of the motion is small, we may replace sin 

 with  in radians. Thus,   pE .  Since this exhibits a simple negative 

proportionality to the angle of rotation, the dipole oscillates in simple harmonic motion, 

like a torsional pendulum with torsion constant   pE.  The angular frequency  is 

given by 


2  
I

pE

I
 

 

where I is the rotational inertia of the dipole. The frequency of oscillation is 

 

1
.

2 2

pE
f

I



 
   

 

62. (a) We combine Eq. 22-28 (in absolute value) with Newton’s second law: 
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a
q E

m
 





F
HG

I
KJ 
F
HG

I
KJ  





| | .

.
. . .

160 10

911 10
140 10 2 46 10

19

31

6 17 2C

kg

N

C
m s  

 

(b) With v
c

  
10

300 107. m s , we use Eq. 2-11 to find 

7
10o

17 2

3.00 10 m/s
1.22 10 s.

2.46 10 m/s

v v
t

a

 
   


 

 

(c) Equation 2-16 gives 

 
 

2
72 2

3o

17 2

3.00 10 m/s
1.83 10 m.

2 2 2.46 10 m/s

v v
x

a




    


 

 

63. (a) Using the density of water ( = 1000 kg/m
3
), the weight mg of the spherical drop 

(of radius r = 6.0  10
–7

 m) is 

 

W Vg  
F
HG

I
KJ    1000

4

3
6 0 10 9 8 887 103 7

3
2 15kg m m m s Nc h c h c h

. . . .  

 

(b) Vertical equilibrium of forces leads to mg = qE = neE, which we solve for n, the 

number of excess electrons: 

n
mg

eE
 










887 10

462
120

15

19

.
.

N

1.60 10 C N Cc hb g  

 

64. The two closest charges produce fields at the midpoint that cancel each other out.  

Thus, the only significant contribution is from the furthest charge, which is a distance 

3 / 2r d  away from that midpoint.  Plugging this into Eq. 22-3 immediately gives the 

result: 

2 22
0 00

4

4 3 44 ( 3 / 2)

Q Q Q
E

r dd 
   . 

 

65. First, we need a formula for the field due to the arc.  We use the notation  for the 

charge density,  = Q/L. Sample Problem 22.03 — “Electric field of a charged circular 

rod,“ illustrates the simplest approach to circular arc field problems.  Following the steps 

leading to Eq. 22-21, we see that the general result (for arcs that subtend angle ) is 

 

 arc

0 0

2 sin( / 2)
sin( / 2) sin( / 2)

4 4
E

r r

  
 

 
    . 

 

Now, the arc length is L = r with  expressed in radians.  Thus, using R instead of r, we 

obtain 
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arc 2

0 0 0

2( / )sin( / 2) 2( / )sin( / 2) 2 sin( / 2)

4 4 4

Q L Q R Q
E

R R R

   

   
    . 

 

Thus, the problem requires Earc = 
1

2
  Eparticle, where Eparticle is given by Eq. 22-3.  Hence, 

 

2 2

0 0

2 sin( / 2) 1
sin

4 2 4 2 4

Q Q

R R

  

  
    

       

where we note, again, that the angle is in radians.  The approximate solution to this 

equation is  = 3.791 rad  217. 

 

66. We denote the electron with subscript e and the proton with p. From the figure below 

we see that 
 
E E

e

d
e p 

4 0

2
 

 

where d = 2.0  10
–6

 m. We note that the components along the y axis cancel during the 

vector summation. With k = 1/40 and 60   , the magnitude of the net electric field is 

obtained as follows: 

 
 

 

 

 

192
9

net 22 2 6
0

2

1.6 10  CN m
2 cos 2 cos 2 8.99 10 cos 60

4 C 2.0 10  m

3.6 10  N C.

x e

e
E E E

d
 







   
        

    

 

 

 

67. A small section of the distribution that has charge dq is  dx, where  = 9.0  10
–9

 

C/m. Its contribution to the field at xP = 4.0 m is 

 

dE
dq

x xP




4 0

2 b g  
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pointing in the +x direction. Thus, we have 

 

 

3.0m

20
0

î
4 P

dx
E

x x





l

p
 

 

which becomes, using the substitution u = x – xP, 

 


E

du

u
 










F
HG

I
KJ

z



4 4

1

10

1

4 00

24 0

1 0

0 
 i

m m
i

m

m

.

. 
. .

  

 

which yields 61 N/C in the +x direction. 

 

68. Most of the individual fields, caused by diametrically opposite charges, will cancel, 

except for the pair that lie on the x axis passing through the center.  This pair of charges 

produces a field pointing to the right  

 

  
 

9 2 2 19

5

22 2

0 0

3 8.99 10 N m C 1.60 10 C3 3ˆ ˆ ˆ ˆi i i (1.08 10 N/C)i
4 4 0.020m

q e
E

d d 




  

     . 

 

69. (a) From symmetry, we see the net field component along the x axis is zero; the net 

field component along the y axis points upward. With  = 60,   

 

 
net, 2

0

sin
2

4
y

Q
E

a




  . 

 

Since sin(60) = 3 /2 , we can write this as Enet  = kQ 3 /a
2
 (using the notation of the 

constant k defined in Eq. 21-5).  Numerically, this gives roughly 47 N/C. 

 

(b) From symmetry, we see in this case that the net field component along the y axis is 

zero; the net field component along the x axis points rightward. With  = 60,   

 

net, 2

0

cos
2

4
x

Q
E

a




 . 

 

Since cos(60) = 1/2, we can write this as Enet  = kQ/a
2
 (using the notation of Eq. 21-5).  

Thus, Enet  27 N/C. 

 

70. Our approach (based on Eq. 22-29) consists of several steps. The first is to find an 

approximate value of e by taking differences between all the given data. The smallest 

difference is between the fifth and sixth values:  

 

18.08  10 
–19

 C – 16.48  10 
– 19

 C = 1.60  10
–19

 C 
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which we denote eapprox. The goal at this point is to assign integers n using this 

approximate value of e: 

 
19

1

approx

19

2

approx

19

3

approx

19

4

approx

19

5

approx

6.563 10 C
datum1 4.10 4

8.204 10 C
datum2 5.13 5

11.50 10 C
datum3 7.19 7

13.13 10 C
datum4 8.21 8

16.48 10 C
datum5 10.30 10

n
e

n
e

n
e

n
e

n
e












  


  


  


  


  

 

19

6

appeox

19

7

approx

19

8

approx

19

9

approx

18.08 10 C
datum6 11.30 11

19.71 10 C
datum7 12.32 12

22.89 10 C
datum8 14.31 14

26.13 10 C
datum9 16.33 16

n
e

n
e

n
e

n
e










  


  


  


  

 

 

Next, we construct a new data set (e1, e2, e3, …) by dividing the given data by the 

respective exact integers ni (for i = 1, 2, 3, …): 

 

 
19 19 19

1 2 3

1 2 3

6.563 10 C 8.204 10 C 11.50 10 C
, , , , , ,e e e

n n n

     
 
 

 

 

which gives (carrying a few more figures than are significant) 

 

 19 19 191.64075 10 C, 1.6408 10 C, 1.64286 10 C,      

 

as the new data set (our experimental values for e). We compute the average and standard 

deviation of this set, obtaining 

 

e e eexptal avg C      1641 0 004 10 19. .b g  

 

which does not agree (to within one standard deviation) with the modern accepted value 

for e. The lower bound on this spread is eavg – e = 1.637  10
–19

 C, which is still about 

2% too high. 

 

71. Studying Sample Problem 22.03 — “Electric field of a charged circular rod,” we see 

that the field evaluated at the center of curvature due to a charged distribution on a 

circular arc is given by 

0

sin
4

E
r








 



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along the symmetry axis, where   q q r   with  in radians. Here   is the length of 

the arc, given as   4 0. m . Therefore, the angle is     r 4 0 2 0 2 0. . . rad . Thus, with 

q = 20  10
–9

 C, we obtain 
1.0 rad

1.0 rad0

( / )
sin 38 N/C

4

q
E

r


 

 


. 

 

72. The electric field at a point on the axis of a uniformly charged ring, a distance z from 

the ring center, is given by 

E
qz

z R


4 0

2 2
3 2

 c h /
 

 

where q is the charge on the ring and R is the radius of the ring (see Eq. 22-16). For q 

positive, the field points upward at points above the ring and downward at points below 

the ring. We take the positive direction to be upward. Then, the force acting on an 

electron on the axis is 

F
eqz

z R
 

4 0

2 2
3 2

 c h /
.  

 

For small amplitude oscillations z R  and z can be neglected in the denominator. Thus, 

 

F
eqz

R
 

4 0

3
.  

 

The force is a restoring force: it pulls the electron toward the equilibrium point z = 0. 

Furthermore, the magnitude of the force is proportional to z, just as if the electron were 

attached to a spring with spring constant k = eq/40R
3
. The electron moves in simple 

harmonic motion with an angular frequency given by 

 




 
k

m

eq

mR4 0

3
 

 

where m is the mass of the electron. 

 

73. THINK We have a positive charge in the xy plane. From the electric fields it 

produces at two different locations, we can determine the position and the magnitude of 

the charge.    

 

EXPRESS Let the charge be placed at 0 0( , ).x y  In Cartesian coordinates, the electric 

field at a point ( , )x y  can be written as 
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 0 0

3/ 2
2 2

0
0 0

ˆ ˆ( )i ( ) jˆ ˆi j
4 ( ) ( )

x y

x x y yq
E E E

x x y y

  
  

    

. 

The ratio of the field components is  

 0

0

y

x

E y y

E x x





. 

 

ANALYZE (a) The fact that the second measurement at the location (2.0 cm, 0) gives 
ˆ(100 N/C)iE   indicates that 

0 0,y   that is, the charge must be somewhere on the x axis. 

Thus, the above expression can be simplified to 

 

0

3/ 2
2 2

0
0

ˆ ˆ( )i j

4 ( )

x x yq
E

x x y

 


   

. 

 

On the other hand, the field at (3.0 cm, 3.0 cm) is ˆ ˆ(7.2 N/C)(4.0i 3.0j),E    which gives 

/ 3/ 4.y xE E   Thus, we have 

0

3 3.0 cm

4 3.0 cm x



 

which implies 0 1.0 cm.x    

 

(b) As shown above, the y coordinate is y0 = 0. 

 

(c) To calculate the magnitude of the charge, we note that the field magnitude measured 

at (2.0 cm, 0) (which is r = 0.030 m from the charge) is 

 

2

0

1
100 N C.

4

q
E

r
   

Therefore,  
2

2 11

0 9 2 2

(100 N C)(0.030 m)
4 1.0 10 C.

8.99 10 N m C
q E r    

 
 

 

LEARN Alternatively, we may calculate q by noting that at (3.0 cm, 3.00 cm) 

 

 2

3/ 2
2 2

0 0

0.040 m
28.8 N/C 320 / m

4 4(0.040 m) (0.030 m)
x

q q
E

 
  

  

. 

This gives  

11

9 2 2 2

28.8 N/C
1.0 10 C,

(8.99 10 N m C )(320 / m )
q   

 
 

 

in agreement with that calculated above.  
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74. (a) Let E = /20 = 3  10
6
 N/C. With  = |q|/A, this leads to 

 

   
 

2
2 62

2 2 7

0 9 2 2

2.5 10 m 3.0 10 N C
2 1.0 10 C ,

2 2 8.99 10 N m C

R E
q R R E

k
  




 

     
 

 

 

where  9 2 2

01/ 4 8.99 10 N m C .k      

 

(b) Setting up a simple proportionality (with the areas), the number of atoms is estimated 

to be 

 
2

2

17

18 2

2.5 10 m
1.3 10 .

0.015 10 m
n

 




  


 

(c) The fraction is 

   

7
6

17 19

1.0 10 C
5.0 10 .

1.3 10 1.6 10 C

q

Ne







  

 
 

 

75. On the one hand, the conclusion (that Q = +1.00 C) is clear from symmetry. If a 

more in-depth justification is desired, one should use Eq. 22-3 for the electric field 

magnitudes of the three charges (each at the same distance r a 3 from C) and then 

find field components along suitably chosen axes, requiring each component-sum to be 

zero. If the y axis is vertical, then (assuming Q > 0) the component-sum along that axis 

leads to 2 22 sin30 / /kq r kQ r   where q refers to either of the charges at the bottom 

corners. This yields Q = 2q sin 30° = q and thus to the conclusion mentioned above. 

 

76. Equation 22-38 gives U p E pE    
 

cos . We note that i = 110° and f = 70.0°. 

Therefore, 

  21cos70.0 cos110 3.28 10 J.U pE          

 

77. (a) Since the two charges in question are of the same sign, the point x = 2.0 mm 

should be located in between them (so that the field vectors point in the opposite 

direction). Let the coordinate of the second particle be x' (x' > 0). Then, the magnitude of 

the field due to the charge –q1 evaluated at x is given by E = q1/40x
2
, while that due to 

the second charge –4q1 is E' = 4q1 /40(x' – x)
2
. We set the net field equal to zero: 

 
E E Enet      0  

so that 

q

x

q

x x

1

0

2

1

0

2
4

4

4  


 b g .  

 

Thus, we obtain x' = 3x = 3(2.0 mm) = 6.0 mm. 
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(b) In this case, with the second charge now positive, the electric field vectors produced 

by both charges are in the negative x direction, when evaluated at x = 2.0 mm. Therefore, 

the net field points in the negative x direction, or 180, measured counterclockwise from 

the +x axis. 

 

78. Let q1 denote the charge at y = d and q2 denote the charge at y = –d. The individual 

magnitudes 

E1  and 


E2  are figured from Eq. 22-3, where the absolute value signs for q 

are unnecessary since these charges are both positive. The distance from q1 to a point on 

the x axis is the same as the distance from q2 to a point on the x axis: r x d 2 2 . By 

symmetry, the y component of the net field along the x axis is zero. The x component of 

the net field, evaluated at points on the positive x axis, is 

 

2 2 2 2
0

1
2

4
x

q x
E

x d x d

   
    

     
 

 

where the last factor is cos = x/r with  being the angle for each individual field as 

measured from the x axis. 

 

(a) If we simplify the above expression, and plug in x = d, we obtain 

 

2 2 3 2

0

.
2 ( 1)

x

q
E

d



 



 

 

(b) The graph of E = Ex versus  is shown below. For the purposes of graphing, we set d 

= 1 m and q = 5.56  10
–11

 C. 

 

 
 

(c) From the graph, we estimate Emax occurs at about  = 0.71. More accurate 

computation shows that the maximum occurs at   1 2 .  

 

(d) The graph suggests that “half-height” points occur at   0.2 and   2.0. Further 

numerical exploration leads to the values:  = 0.2047 and  = 1.9864. 
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79. We consider pairs of diametrically opposed charges. The net field due to just the 

charges in the one o’clock (–q) and seven o’clock (–7q) positions is clearly equivalent to 

that of a single –6q charge sitting at the seven o’clock position. Similarly, the net field 

due to just the charges in the six o’clock (–6q) and twelve o’clock (–12q) positions is the 

same as that due to a single –6q charge sitting at the twelve o’clock position. Continuing 

with this line of reasoning, we see that there are six equal-magnitude electric field vectors 

pointing at the seven o’clock, eight o’clock, … twelve o’clock positions. Thus, the 

resultant field of all of these points, by symmetry, is directed toward the position midway 

between seven and twelve o’clock. Therefore, 

Eresultant  points toward the nine-thirty 

position. 

 

80. The magnitude of the dipole moment is given by p = qd, where q is the positive 

charge in the dipole and d is the separation of the charges. For the dipole described in the 

problem, 

p        160 10 4 30 10 688 1019 9 28. . . C  m  C mc hc h . 

 

The dipole moment is a vector that points from the negative toward the positive charge. 

 

81. (a) Since 

E  points down and we need an upward electric force (to cancel the 

downward pull of gravity), then we require the charge of the sphere to be negative. The 

magnitude of the charge is found by working with the absolute value of Eq. 22-28: 

 

4.4N
| | 0.029C

150 N C

F mg
q

E E
    , 

or 0.029 C.q    

 

(b) The feasibility of this experiment may be studied by using Eq. 22-3 (using k for 

1/40). We have 2| | /E k q r  with 

3

sulfur sphere

4

3
r m

 
  

 
 

 

Since the mass of the sphere is 4.4/9.8  0.45 kg and the density of sulfur is about  

2.1  10
3
 kg/m

3
 (see Appendix F), then we obtain 

 
1 3

sphere 11

2

sulfur

3
0.037m 2 10 N C

4

m q
r E k

r

 
      

 
 

 

which is much too large a field to maintain in air. 

 

82. We interpret the linear charge density, | | /Q L  , to indicate a positive quantity (so 

we can relate it to the magnitude of the field).  Sample Problem 22.03 — “Electric field 

of a charged circular rod” illustrates the simplest approach to circular arc field problems.  
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Following the steps leading to Eq. 22-21, we see that the general result (for arcs that 

subtend angle ) is 

 arc

0 0

2 sin( / 2)
sin( / 2) sin( / 2)

4 4
E

r r

  
 

 
    . 

 

Now, the arc length is L = r with is expressed in radians.  Thus, using R instead of r, 

we obtain 

arc 2

0 0 0

2(| | / )sin( / 2) 2(| | / )sin( / 2) 2 | | sin( / 2)

4 4 4

Q L Q R Q
E

R R R

   

   
    . 

 

With 12| | 6.25 10  CQ   , 2.40 rad 137.5 ,    and 29.00 10  mR   , the magnitude of 

the electric field is 5.39 N/CE  . 

 

83. THINK The potential energy of the electric dipole placed in an electric field depends 

on its orientation relative to the electric field. The field causes a torque that tends to align 

the dipole with the field. 

 

EXPRESS When placed in an electric field ,E  the potential energy of the dipole p is 

given by Eq. 22-38: 

 ( ) cosU p E pE      . 

  

The torque caused by the electric field is (see Eq. 22-34) .p E    

 

ANALYZE (a) From Eq. 22-38 (and the facts that  i i = 1  and  j i = 0 ), the potential 

energy is 

    30

26

ˆ ˆ ˆ3.00i 4.00j 1.24 10 C m 4000 N C i

1.49 10 J.

U p E 



           
  

  

 

 

(b) From Eq. 22-34 (and the facts that  i i 0   and   j i = k  ), the torque is 

 

      30 26ˆ ˆ ˆ ˆ3.00i 4.00j 1.24 10 C m 4000 N C i 1.98 10 N m k.p E               
  

 

 

(c) The work done is 

 

W U p E p p Ei f      

       

 





 
    d i d i

e j e j c h b g300 4 00 124 10 4000

347 10

30

26

.   .   . 

.

i 4.00j i 3.00j C m N C i

J.
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LEARN The work done by the agent is equal to the change in the potential energy of the 

dipole.  

 

84. (a) The electric field is upward in the diagram and the charge is negative, so the force 

of the field on it is downward. The magnitude of the acceleration is a = eE/m, where E is 

the magnitude of the field and m is the mass of the electron. Its numerical value is 

 

a 
 


 





160 10

911 10
351 10

19

31

14
.

.
. .

C 2.00 10 N C

kg
m s

3

2c hc h
 

 

We put the origin of a coordinate system at the initial position of the electron. We take 

the x axis to be horizontal and positive to the right; take the y axis to be vertical and 

positive toward the top of the page. The kinematic equations are 

 

2

0 0 0

1
cos , sin , and sin .

2
yx v t y v t at v v at        

 

First, we find the greatest y coordinate attained by the electron. If it is less than d, the 

electron does not hit the upper plate. If it is greater than d, it will hit the upper plate if the 

corresponding x coordinate is less than L. The greatest y coordinate occurs when vy = 0. 

This means v0 sin  – at = 0 or t = (v0/a) sin  and 

 

 

 

2
6 22 2 2 2 2 2

0 0 0
max 2 214

2

6.00 10 m s sin 45sin sin sin1 1

2 2 2 3.51 10 m s

2.56 10 m.

v v v
y a

a a a

  



 
   



 

 

 

Since this is greater than d = 2.00 cm, the electron might hit the upper plate. 

 

(b) Now, we find the x coordinate of the position of the electron when y = d. Since 

 

v0

6 66 00 10 4 24 10sin m s sin45 m s    . .c h  

and 

2 2 351 10 0 0200 140 1014 13 2
ad    . . .m s m m s

2 2d ib g  

 

the solution to d v t at 0
1
2

2sin  is 

 

 
2 26 6 13 22 2

0 0

214

9

(4.24 10 m s) 4.24 10 m s 1.40 10 m ssin sin 2

3.51 10 m s

6.43 10 s.

v v ad
t

a

 



     
 



 
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The negative root was used because we want the earliest time for which y = d. The x 

coordinate is  

 

  6 9 2

0 cos 6.00 10 m s 6.43 10 s cos45 2.72 10 m.x v t         

 

This is less than L so the electron hits the upper plate at x = 2.72 cm. 

 

85. (a) If we subtract each value from the next larger value in the table, we find a set of 

numbers that are suggestive of a basic unit of charge: 1.64  10
19

, 3.3  10
19

, 

1.63  10
19

, 3.35  10
19

, 1.6  10
19

, 1.63  10
19

, 3.18  10
19

, 3.24 10
19

, where the 

SI unit Coulomb is understood. These values are either close to a common 
191.6 10 Ce    value or are double that.  Taking this, then, as a crude approximation to 

our experimental e we divide it into all the values in the original data set and round to the 

nearest integer, obtaining n = 4, 5, 7, 8,10, 11, 12, 14, and 16. 

 

(b) When we perform a least squares fit of the original data set versus these values for n 

we obtain the linear equation: 

                                                    q = 7.18  10
21

 + 1.633  10
19

n . 

 

If we dismiss the constant term as unphysical (representing, say, systematic errors in our 

measurements) then we obtain e = 1.63  10
19 

when we set n = 1 in this equation. 

 

86. (a) From symmetry, we see the net force component along the y axis is zero. 

 

(b) The net force component along the x axis points rightward. With  = 60,   

 

F3  =  3 1

2

0

cos
2

4

q q

a




. 

Since cos(60) =1/2, we can write this as  

 

 
9 2 2 12 12

123 1
3 2 2

(8.99 10 N m C )(5.00 10 C)(2.00 10 C)
9.96 10 N.

(0.0950 m)

kq q
F

a

 
   

     

 

87. (a) For point A, we have (in SI units) 

 

   

9 12 9 12

1 2

2 22 2
2 2

0 1 0 2

(8.99 10 )(1.00 10 C) (8.99 10 ) | 2.00 10 C|ˆ ˆ ˆ( i) ( i) ( i)
4 4 5.00 10 2 5.00 10

ˆ( 1.80 N C)i .

A

q q
E

r r 

 

 

      
       

   

 

  

(b) Similar considerations leads to  
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   

 

 

 

9 12 9 12

1 2

2 22 2
2 2

0 1 0 2

8.99 10 1.00 10 C 8.99 10 | 2.00 10 C|| | ˆ ˆ ˆi i i
4 4 0.500 5.00 10 0.500 5.00 10

ˆ(43.2 N C)i .

B

q q
E

r r 

 

 

     
    

    



 

 

(c) For point C, we have 

 

   

 

 

 

9 12 9 12

1 2

2 22 2
2 2

0 1 0 2

8.99 10 1.00 10 C 8.99 10 | 2.00 10 C|| | ˆ ˆ ˆi i i
4 4 2.00 5.00 10 5.00 10

ˆ(6.29 N C)i .

C

q q
E

r r 

 

 

     
    

   

 

 

 

(d) The field lines are shown to the right. Note that there 

are twice as many field lines “going into” the negative 

charge 2q as compared to that flowing out from the 

positive charge +q.  



1040 

 

 

Chapter 23 
 

 

1. THINK This exercise deals with electric flux through a square surface.  

 

EXPRESS The vector area 

A  and the electric field 


E  are shown on the diagram below.  

 

 
 

The electric flux through the surface is given by cos .E A EA      

 

EXPRESS The angle  between 

A  and 


E  is 180° – 35° = 145°, so the electric flux 

through the area is 

 

  
2

3 2 2cos 1800 N C 3.2 10  m cos145 1.5 10  N m C.EA             

 

LEARN The flux is a maximum when 

A  and 


E  points in the same direction ( 0  ), 

and is zero when the two vectors are perpendicular to each other ( 90  ). 

 

2. We use   z 
 
E dA  and note that the side length of the cube is (3.0 m–1.0 m) = 2.0 m. 

 

(a) On the top face of the cube y = 2.0 m and   ĵdA dA . Therefore, we have 

  2ˆ ˆ ˆ ˆ4i 3 2.0 2 j 4i 18jE      . Thus the flux is 

 

      
2 2 2

top top top

ˆ ˆ ˆ4i 18j j 18 18 2.0 N m C 72 N m C.E dA dA dA                 

 

(b) On the bottom face of the cube y = 0 and  dA dA

 b ge jj . Therefore, we have 

 E     4 3 0 2 4 62   i j i jc h . Thus, the flux is 

 

      
2 2 2

bottom bottom bottom

ˆ ˆ ˆ4i 6j j 6 6 2.0 N m C 24 N m C.E dA dA dA              
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(c) On the left face of the cube   îdA dA  . So 

 

      
2 2 2

left left bottom 

ˆ ˆ ˆˆ 4i j i 4 4 2.0 N m C 16 N m C.yE dA E dA dA                
 

(d) On the back face of the cube   k̂dA dA  . But since E  has no z component 

0E dA  . Thus,  = 0. 

 

(e) We now have to add the flux through all six faces. One can easily verify that the flux 

through the front face is zero, while that through the right face is the opposite of that 

through the left one, or +16 N·m
2
/C. Thus the net flux through the cube is  

 

 = (–72 + 24 – 16 + 0 + 0 + 16) N·m
2
/C = – 48 N·m

2
/C. 

 

3. We use   
 
E A , where 


A A  . j m j

2
140b g . 

 

(a)    
2ˆ ˆ6.00 N C i 1.40 m j 0.     

 

(b)    
2 2ˆ ˆ2.00 N C j 1.40 m j 3.92 N m C.        

 

(c)      
2ˆ ˆ ˆ3.00 N C i 400 N C k 1.40 m j 0      

 
. 

 

(d) The total flux of a uniform field through a closed surface is always zero. 

 

4. The flux through the flat surface encircled by the rim is given by 2 .a E   Thus, the 

flux through the netting is 

 
2 3 4 2(0.11 m) (3.0 10  N/C) 1.1 10  N m /Ca E               . 

 

5. To exploit the symmetry of the situation, we imagine a closed Gaussian surface in the 

shape of a cube, of edge length d, with a proton of charge 191.6 10  Cq    situated at 

the inside center of the cube. The cube has six faces, and we expect an equal amount of 

flux through each face. The total amount of flux is net = q/0, and we conclude that the 

flux through the square is one-sixth of that. Thus,  

 
19

9 2

12 2 2

0

1.6 10  C
3.01 10  N m C.

6 6(8.85 10  C N m )

q









     

 
 

 

6. There is no flux through the sides, so we have two “inward” contributions to the flux, 

one from the top (of magnitude (34)(3.0)
2
) and one from the bottom (of magnitude 
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(20)(3.0)
2
). With “inward” flux being negative, the result is  = – 486 Nm

2
/C. Gauss’ 

law then leads to  

 
12 2 2 2 9

enc 0 (8.85 10 C /N m )( 486 N m C) 4.3 10 C.q              

 

7. We use Gauss’ law: 0 q   , where   is the total flux through the cube surface and q 

is the net charge inside the cube. Thus, 

 
6

5 2

12 2 2

0

1.8 10  C
2.0 10  N m C.

8.85 10  C N m

q








     

 
 

 

8. (a) The total surface area bounding the bathroom is 

 

      22 2.5 3.0 2 3.0 2.0 2 2.0 2.5 37 m .A         

 

The absolute value of the total electric flux, with the assumptions stated in the problem, is  

 
2 3 2| | | | | | (600 N/C)(37 m ) 22 10  N m / C.E A E A         

 

By Gauss’ law, we conclude that the enclosed charge (in absolute value) is 
7

enc 0| | | | 2.0 10  C.q       Therefore, with volume V = 15 m
3
, and recognizing that we 

are dealing with negative charges, the charge density is  

 
7

8 3enc

3

2.0 10  C
1.3 10  C/m .

15 m

q

V



 

      

 

(b) We find (|qenc|/e)/V = (2.0  10
–7 

C/1.6  10
–19 

C)/15 m
3
 = 8.2  10

10
 excess electrons 

per cubic meter. 

 

9. (a) Let A = (1.40 m)
2
. Then 

 

           
2 2

=0 1.40

ˆ ˆ ˆ ˆ3.00 j j 3.00 j A j 3.00 1.40 1.40 8.23 N m C.
y y

y A y


          

 

(b) The charge is given by 

 

  12 2 2 2 11

enc 0 8.85 10 C / N m 8.23 N m C 7.29 10  Cq           . 

 

(c) The electric field can be re-written as 0
ˆ3.00 jE y E  , where 0

ˆ ˆ4.00i 6.00jE     is a 

constant field which does not contribute to the net flux through the cube. Thus   is still 

8.23 Nm
2
/C. 
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(d) The charge is again given by 

 

  12 2 2 2 11

enc 0 8.85 10 C / N m 8.23 N m C 7.29 10  Cq           . 

 

10. None of the constant terms will result in a nonzero contribution to the flux (see Eq. 

23-4 and Eq. 23-7), so we focus on the x dependent term only. In Si units, we have 

      

Enonconstant =  3x i
^
  . 

 

The face of the cube located at x = 0 (in the yz plane) has area A = 4 m
2
 (and it “faces” the 

+i
^
 direction) and has a “contribution” to the flux equal to   Enonconstant A = (3)(0)(4) = 0. 

The face of the cube located at x = 2 m has the same area A (and this one “faces” the –i
^
  

direction) and a contribution to the flux:   

 

Enonconstant A = (3)(2)(4) = 24 N·m/C
2
. 

 

Thus, the net flux is  = 0 + 24 = 24 N·m/C
2
.  According to Gauss’ law, we therefore 

have qenc =  = 2.13  10
10 

C.  

 

11. None of the constant terms will result in a nonzero contribution to the flux (see Eq. 

23-4 and Eq. 23-7), so we focus on the x dependent term only: 

      

Enonconstant =  (4.00y
2 

)
 
 i
^
  (in SI units) . 

 

The face of the cube located at y = 4.00 has area A = 4.00 m
2
 (and it “faces” the +j

^
  

direction) and has a “contribution” to the flux equal to   

 

Enonconstant A = (4)(4
2
)(4) = –256 N·m/C

2
. 

 

The face of the cube located at y = 2.00 m has the same area A (however, this one “faces” 

the –j
^
 direction) and a contribution to the flux:   

 

Enonconstant A =  (4)(2
2
)(4) =  N·m/C

2
. 

 

Thus, the net flux is  = (256 + 64) N·m/C
2
 = 192 N·m/C

2
.  According to Gauss’s law, 

we therefore have   

 
12 2 2 2 9

enc 0 (8.85 10 C /N m )( 192 N m C) 1.70 10 C.q              

 

12. We note that only the smaller shell contributes a (nonzero) field at the designated 

point, since the point is inside the radius of the large sphere (and E = 0 inside of a 

spherical charge), and the field points toward the x direction. Thus, with R = 0.020 m 

(the radius of the smaller shell), L = 0.10 m and x = 0.020 m, we obtain 
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 

2 2

2 2

2 2 2

0 0 0

2 6 2
4

12 2 2 2

4ˆ ˆ ˆ ˆ( j) j j j
4 4 ( ) ( )

(0.020 m) (4.0 10 C/m ) ˆ ˆj 2.8 10 N/C j .
(8.85 10 C /N m )(0.10 m 0.020 m)

R Rq
E E

r L x L x

  

  





    
 


   

  

 

 

13. THINK A cube has six surfaces. The total flux through the cube is the sum of fluxes 

through each individual surface. We use Gauss’ law to find the net charge inside the cube.  

 

EXPRESS Let A be the area of one face of the cube, Eu be the magnitude of the electric 

field at the upper face, and El  be the magnitude of the field at the lower face. Since the 

field is downward, the flux through the upper face is negative and the flux through the 

lower face is positive. The flux through the other faces is zero (because their area vectors 

are parallel to the field), so the total flux through the cube surface is 

 

( ).uA E E    

The net charge inside the cube is given by Gauss’ law: 0 .q    

 

ANALYZE Substituting the values given, we find the net charge to be  

 
12 2 2 2

0 0

6

( ) (8.85 10  C / N m )(100 m) (100 N/C 60.0 N/C)

  3.54 10  C 3.54 C.

uq A E E 







       

  
 

 

LEARN Since 0,   we conclude that the cube encloses a net positive charge.  

 

14. Equation 23-6 (Gauss’ law) gives qenc .   

 

(a) Thus, the value 5 22.0 10 N m /C    for small r leads to  

 
12 2 2 5 2 6 6

central 0 (8.85 10 C /N m )(2.0 10 N m /C) 1.77 10 C 1.8 10 Cq                

 

(b) The next value that  takes is 5 24.0 10 N m /C     , which implies that 
6

enc 3.54 10 C.q    But we have already accounted for some of that charge in part (a), so 

the result for part (b) is  

qA = qenc – qcentral = – 5.3  10
6 

C. 

 

(c) Finally, the large r value for  is 5 26.0 10 N m /C    , which implies that 
6

total enc 5.31 10 C.q    Considering what we have already found, then the result is 

total enc central 8.9 .Aq q q C    

 

15. The total flux through any surface that completely surrounds the point charge is q/0.  
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(a) If we stack identical cubes side by side and directly on top of each other, we will find 

that eight cubes meet at any corner. Thus, one-eighth of the field lines emanating from 

the point charge pass through a cube with a corner at the charge, and the total flux 

through the surface of such a cube is q/80. Now the field lines are radial, so at each of 

the three cube faces that meet at the charge, the lines are parallel to the face and the flux 

through the face is zero.  

 

(b) The fluxes through each of the other three faces are the same, so the flux through each 

of them is one-third of the total. That is, the flux through each of these faces is (1/3)(q/80) 

= q/240. Thus, the multiple is 1/24 = 0.0417. 

 

16. The total electric flux through the cube is E dA  . The net flux through the two 

faces parallel to the yz plane is  

 

 
   

2 2

1 1

2 2

1 1

1 3

2 1
0 1

1 3

0 1

( ) ( ) 10 2(4) 10 2(1)

6 6(1)(2) 12.

y z

yz x x
y z

y z

y z

E x x E x x dydz dy dz

dy dz

 

 

 

 

        

  

  

 
 

 

Similarly, the net flux through the two faces parallel to the xz plane is 

 
2 2

1 1

4 3

2 1
1 1

( ) ( ) [ 3 ( 3)] 0
x z

xz y y
x z

E y y E y y dxdz dy dz
 

 
              , 

 

and the net flux through the two faces parallel to the xy plane is 

 

    
2 2

1 1

4 1

2 1
1 0

( ) ( ) 3 2 (3)(1) 6 .
x y

xy z z
x y

E z z E z z dxdy dx dy b b b b
 

 
            

 

Applying Gauss’ law, we obtain 

 

 enc 0 0 0 0( ) (6.00 0 12.0) 24.0xy xz yzq b             

 

which implies that b = 2.00 N/C m . 

 

17. THINK The system has spherical symmetry, so our Gaussian surface is a sphere of 

radius R with a surface area 24 .A R  

 

EXPRESS The charge on the surface of the sphere is the product of the surface charge 

density  and the surface area of the sphere: 2(4 ).q A R     We calculate the total 

electric flux leaving the surface of the sphere using Gauss’ law: 0 .q    

 

ANALYZE (a) With (1.20 m) / 2 0.60 mR    and 6 28.1 10  C/m ,    the charge on 

the surface is  
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 
22 6 2 54 4 0.60 m (8.1 10  C/m ) 3.7 10  C.q R           

 

(b) We choose a Gaussian surface in the form of a sphere, concentric with the conducting 

sphere and with a slightly larger radius. By Gauss’s law, the flux is 

 
5

6 2

12 2 2

0

3.66 10  C
4.1 10 N m /C .

8.85 10  C / N m

q








     

 
 

 

LEARN Since there is no charge inside the conducting sphere, the total electric flux 

through the surface of the sphere only depends on the charge residing on the surface of 

the sphere.   

 

18. Using Eq. 23-11, the surface charge density is 

 

  5 12 2 2 6 2

0 2.3 10  N C 8.85 10 C / N m 2.0 10  C/m .E           

 

19. (a) The area of a sphere may be written 4R
2
= D

2
. Thus, 

 

 

6
7 2

22

2.4 10  C
4.5 10  C/m .

1.3 m

q

D





   
 

 

(b) Equation 23-11 gives 
7 2

4

12 2 2

0

4.5 10  C/m
5.1 10  N/C.

8.85 10  C / N m
E










   

 
 

 

20. Equation 23-6 (Gauss’ law) gives qenc.   

 

(a) The value 5 29.0 10 N m /C      for small r leads to qcentral = – 7.97  10
6 

C  or 

roughly – 8.0 C.   

 

(b) The next (nonzero) value that  takes is 5 24.0 10 N m /C     , which implies 
6

enc 3.54 10 C.q     But we have already accounted for some of that charge in part (a), so 

the result is  

qA = qenc – qcentral = 11.5  10
6 

C 12 C . 

 

(c) Finally, the large r value for  is 5 22.0 10 N m /C,      which implies 
6

total enc 1.77 10 C.q    Considering what we have already found, then the result is   

 

qtotal enc  – qA    qcentral  =  –5.3 C. 

 

21. (a) Consider a Gaussian surface that is completely within the conductor and surrounds 

the cavity. Since the electric field is zero everywhere on the surface, the net charge it 
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encloses is zero. The net charge is the sum of the charge q in the cavity and the charge qw 

on the cavity wall, so q + qw = 0 and qw = –q = –3.0  10
–6

C. 

  

(b) The net charge Q of the conductor is the sum of the charge on the cavity wall and the 

charge qs on the outer surface of the conductor, so Q = qw + qs and 

 

   6 6 510 10  C 3.0 10  C 1.3 10 C.sq Q q
             

 

22. We combine Newton’s second law (F = ma) with the definition of electric field 

( F qE ) and with Eq. 23-12 (for the field due to a line of charge).  In terms of 

magnitudes, we have (if r = 0.080 m and 66.0 10 C/m   )  

 

    ma = eE =  
e 

2o r
            a = 

e 

2o r m
  = 2.1  10

17 
 m/s

2
  . 

 

23. (a) The side surface area A for the drum of diameter D and length h is given by 

A Dh . Thus,  

 

    

0

12 2 2 5

7

8.85 10 C /N m 2.3 10  N/C 0.12 m 0.42 m

3.2 10 C.

q A Dh EDh  

 



  

   

 

 

 

(b) The new charge is 

 

 
  

  
7 7

8.0 cm 28 cm
3.2 10 C 1.4 10 C.

12 cm 42 cm

A D h
q q q

A Dh





 
      

          
      

 

 

24. We imagine a cylindrical Gaussian surface A of radius r and unit length concentric 

with the metal tube. Then by symmetry enc

0

2 .
A

q
E dA rE


     

(a) For r < R, qenc = 0, so E = 0.  

 

(b) For r > R, qenc = , so 0( ) / 2 .E r r   With 82.00 10  C/m   and r = 2.00R = 

0.0600 m, we obtain  

 

 
  

8

3

12 2 2

2.0 10 C/m
5.99 10 N/C.

2 0.0600 m 8.85 10 C / N m
E






  

  
 

 

(c) The plot of E vs. r is shown to the right. Here, the 

maximum value is  
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 
  

8

4

max 12 2 2
0

2.0 10 C/m
1.2 10 N/C.

2 2 0.030 m 8.85 10 C / N m
E

r  






   

 
 

 

25. THINK Our system is an infinitely long line of charge. Since the system possesses 

cylindrical symmetry, we may apply Gauss’ law and take the Gaussian surface to be in 

the form of a closed cylinder. 

 

EXPRESS We imagine a cylindrical Gaussian surface A of radius r and length h 

concentric with the metal tube. Then by symmetry, 

 

0

2 ,
A

q
E dA rhE


    

  

where q is the amount of charge enclosed by the Gaussian cylinder. Thus, the magnitude 

of the electric field produced by a uniformly charged infinite line is  

 

0 0

/

2 2

q h
E

r r



 
   

 

where  is the linear charge density and r is the distance from the line to the point where 

the field is measured.  

 

ANALYZE Substituting the values given, we have  

 

   12 2 2 4

0

6

2 2 8.85 10 C / N m 4.5 10 N/C 2.0 m

5.0 10 C/m.

Er   



    

 
 

 

LEARN Since 0,   the direction of E  is radially outward from the line of charge. 

Note that the field varies with r as 1/ ,E r  in contrast to the 21/ r  dependence due to a 

point charge.    

 

26. As we approach r = 3.5 cm from the inside, we have 

 

internal

0

2
1000 N/C

4
E

r




  . 

    

And as we approach r = 3.5 cm from the outside, we have 

 

external

0 0

2 2
3000 N/C

4 4
E

r r

 

 


     . 
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Considering the difference (Eexternal  –  Einternal ) allows us to find  (the charge per unit 

length on the larger cylinder).  Using r = 0.035 m, we obtain  = –5.8  10
9 

C/m.   

 

27. We denote the radius of the thin cylinder as R = 0.015 m. Using Eq. 23-12, the net 

electric field for r > R is given by 

 

net wire cylinder

0 02 2
E E E

r r

 

 


   

 
 

 

where – = –3.6 nC/m is the linear charge density of the wire and ' is the linear charge 

density of the thin cylinder. We note that the surface and linear charge densities of the 

thin cylinder are related by 

 

cylinder  (2 ) (2 ).q L RL R          

 

Now, Enet outside the cylinder will equal zero, provided that 2R = , or 

 
6

8 23.6 10  C/m
3.8 10  C/m .

2 (2 )(0.015 m)R









   


 

 

28. (a) In Eq. 23-12,  = q/L where q is the net charge enclosed by a cylindrical Gaussian 

surface of radius r. The field is being measured outside the system (the charged rod 

coaxial with the neutral cylinder) so that the net enclosed charge is only that which is on 

the rod. Consequently, 

 
9

2

0 0

2(2.0 10 C/m)
2.4 10  N/C.

4 4 (0.15 m)
E

r



 

 
     

 

(b) Since the field is zero inside the conductor (in an electrostatic configuration), then 

there resides on the inner surface charge –q, and on the outer surface, charge +q (where q 

is the charge on the rod at the center). Therefore, with ri = 0.05 m, the surface density of 

charge is 
9

9 2

inner

2.0 10 C/m
6.4 10  C/m

2 2 2 (0.050 m)i i

q

r L r




  


 

         

 

for the inner surface.  

 

(c) With ro = 0.10 m, the surface charge density of the outer surface is 

 

9 2

outer 3.2 10  C/m .
2 2o o

q

r L r




 


      
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29. THINK The charge densities of both the conducting cylinder and the shell are 

uniform, and we neglect fringing effect. Symmetry can be used to show that the electric 

field is radial, both between the cylinder and the shell and outside the shell. It is zero, of 

course, inside the cylinder and inside the shell. 

 

EXPRESS We take the Gaussian surface to be a cylinder of length L, coaxial with the 

given cylinders and of radius r. The flux through this surface is 2 ,rLE    where E is 

the magnitude of the field at the Gaussian surface. We may ignore any flux through the 

ends. Gauss’ law yields 
enc 0 02 ,q r LE      where qenc is the charge enclosed by the 

Gaussian surface. 

 

ANALYZE (a) In this case, we take the radius of our Gaussian cylinder to be  

 
3 2

2 12.00 20.0 (20.0)(1.3 10  m) 2.6 10  m.r R R         

 

The charge enclosed is  

qenc = Q1+Q2 = –Q1 = –3.4010
12 

C. 

 

Consequently, Gauss’ law yields  
12

enc

12 2 2 2

0

3.40 10  C
0.214 N/C,

2 2 (8.85 10  C / N m )(11.0 m)(2.60 10 m)

q
E

Lr 



 

 
   

   
 

 

or | | 0.214 N/C.E   

 

(b) The negative sign in E indicates that the field points inward.  

 

(c) Next, for r = 5.00 R1, the charge enclosed by the Gaussian surface is qenc = Q1 = 

3.4010
12 

C. Consequently, Gauss’ law yields 0 enc2 ,r LE q    or 

 
12

enc

12 2 2 3

0

3.40 10  C
0.855 N/C.

2 2 (8.85 10  C / N m )(11.0 m)(5.00 1.30 10 m)

q
E

Lr 



 


  

   
 

 

(d) The positive sign indicates that the field points outward.  

 

(e) We consider a cylindrical Gaussian surface whose radius places it within the shell 

itself. The electric field is zero at all points on the surface since any field within a 

conducting material would lead to current flow (and thus to a situation other than the 

electrostatic ones being considered here), so the total electric flux through the Gaussian 

surface is zero and the net charge within it is zero (by Gauss’ law). Since the central rod 

has charge Q1, the inner surface of the shell must have charge Qin = –Q1 = –3.4010
12 

C.  

 

(f) Since the shell is known to have total charge Q2 = –2.00Q1, it must have charge Qout = 

Q2 – Qin = –Q1 = –3.4010
12 

C on its outer surface. 
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LEARN Cylindrical symmetry of the system allows us to apply Gauss’ law to the 

problem. Since electric field is zero inside the conducting shell, by Gauss’ law, any net 

charge must be distributed on the surfaces of the shells.     

 

30. We reason that point P (the point on the x axis where the net electric field is zero) 

cannot be between the lines of charge (since their charges have opposite sign).  We 

reason further that P is not to the left of “line 1” since its magnitude of charge (per unit 

length) exceeds that of “line 2”; thus, we look in the region to the right of “line 2” for P.  

Using Eq. 23-12, we have 

 1 2
net 1 2

0 0

2 2

4 ( / 2) 4 ( / 2)
E E E

x L x L

 

 
   

 
 . 

                   
Setting this equal to zero and solving for x we find  

 

 1 2

1 2

6.0 C/m ( 2.0 C/m) 8.0 cm
8.0 cm

2 6.0 C/m ( 2.0 C/m) 2

L
x

   

   

     
     

    
. 

 

31. We denote the inner and outer cylinders with subscripts i and o, respectively. 

 

(a) Since ri < r = 4.0 cm < ro, 

 
6

6

12 2 2 2

0

5.0 10  C/m
( ) 2.3 10  N/C.

2 2 (8.85 10  C / N m )(4.0 10  m)

iE r
r



 



 


   

  
 

 

(b) The electric field

E r( )  points radially outward. 

 

(c) Since r > ro, 

 
6 6

5

12 2 2 2

0

5.0 10  C/m 7.0 10  C/m
( 8.0 cm) 4.5 10  N/C,

2 2 (8.85 10  C / N m )(8.0 10  m)

i oE r
r

 

 

    
     

    
 

 

or 5| ( 8.0 cm) | 4.5 10  N/C.E r     

 

(d) The minus sign indicates that ( )E r  points radially inward. 

 

32. To evaluate the field using Gauss’ law, we employ a cylindrical surface of area 2 r L 

where L is very large (large enough that contributions from the ends of the cylinder 

become irrelevant to the calculation). The volume within this surface is V =  r
2
 L, or 

expressed more appropriate to our needs: 2 .dV rLdr  The charge enclosed is, with 
6 52.5 10 C/mA   , 

2 4

enc
0

 2 .
2

r

q Ar r L dr ALr


    
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By Gauss’ law, we find enc 0| | (2 ) / ;E rL q      we thus obtain 
3

0

.
4

Ar
E


  

 

(a) With r = 0.030 m, we find | | 1.9 N/C.E   

 

(b) Once outside the cylinder, Eq. 23-12 is obeyed. To find  = q/L we must find the total 

charge q. Therefore, 
0.04

2 11

0

1
 2 1.0 10  C/m.

q
Ar r L dr

L L
     

 

And the result, for r = 0.050 m, is 0| | /2 3.6 N/C.E r    

 

33. We use Eq. 23-13. 

 

(a) To the left of the plates:  

 

 0
ˆ/ 2 ( i)E     (from the right plate) 0

ˆ( / 2 )i   (from the left one) = 0. 

 

(b) To the right of the plates:  

 

 0
ˆ/ 2 iE    (from the right plate)  0

ˆ/ 2 ( i)   (from the left one) = 0. 

 

(c) Between the plates: 

 

 

 

22 2

12 2 2

0 0 0

11

7.00 10 C/mˆ ˆ ˆ ˆ( i) i ( i) i
2 2 8.85 10 C /N m

ˆ7.91 10 N/C i.

E
  

  







       
              

       

  

 

 

34. The charge distribution in this problem is equivalent to that of an infinite sheet of 

charge with surface charge density 4.50 10
12 

C/m
2 

plus a small circular pad of 

radius R = 1.80 cm located at the middle of the sheet with charge density –. We denote 

the electric fields produced by the sheet and the pad with subscripts 1 and 2, respectively. 

Using Eq. 22-26 for 2E , the net electric field E  at a distance z = 2.56 cm along the 

central axis is then 

 

 
1 2

2 2 2 2
0 0 0

12 2 2

12 2 2 2 2 2 2

ˆ ˆ ˆk 1 k k
2 2 2

(4.50 10 C/m )(2.56 10  m) ˆ ˆk (0.208 N/C) k.
2(8.85 10 C /N m ) (2.56 10  m) (1.80 10  m)

z z
E E E

z R z R

 

  

 

  

  
       

    

 
 

    
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35. In the region between sheets 1 and 2, the net field is E1 – E2 + E3  = 2.0  10
5  

N/C . 

 

In the region between sheets 2 and 3, the net field is at its greatest value: 

 

E1 + E2 + E3  = 6.0  10
5  

N/C . 

 

The net field vanishes in the region to the right of sheet 3, where E1 + E2 = E3 .  We note 

the implication that 3 is negative (and is the largest surface-density, in magnitude).  

These three conditions are sufficient for finding the fields: 

           

E1 =  1.0  10
5  

N/C ,  E2 =  2.0  10
5  

N/C ,   E3 =  3.0  10
5  

N/C . 

  

From Eq. 23-13, we infer (from these values of E) 

 

|3|

|2|
  = 

3.0 x 10
5  

N/C

2.0 x 10
5  

N/C
  = 1.5. 

 

Recalling our observation, above, about 3, we conclude that  
3

2
 = –1.5. 

 

36. According to Eq. 23-13 the electric field due to either sheet of charge with surface 

charge density  10
22 

C/m
2
 is perpendicular to the plane of the sheet (pointing 

away from the sheet if the charge is positive) and has magnitude E = /20. Using the 

superposition principle, we conclude: 

 

(a) E = /0 = (10
22

 C/m
2
)/(8.85 10

12 2 2C /N m ) = 2.0010
11 

N/C, pointing in 

the upward direction, or 11 ˆ(2.00 10  N/C)jE   ; 

 

(b) E = 0; 

 

(c) and, E = /0, pointing down, or 11 ˆ(2.00 10  N/C)jE   . 

 

37. THINK To calculate the electric field at a point very close to the center of a large, 

uniformly charged conducting plate, we replace the finite plate with an infinite plate 

having the same charge density. Planar symmetry then allows us to apply Gauss’ law to 

calculate the electric field. 

 

EXPRESS Using Gauss’ law, we find the magnitude of the field to be E = /0, where  

is the area charge density for the surface just under the point. The charge is distributed 

uniformly over both sides of the original plate, with half being on the side near the field 

point. Thus, / 2 .q A   

 

ANALYZE (a) With 66.0 10 Cq    and 2(0.080 m) ,A   we obtain 
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6
4 2

2

6.0 10  C
4.69 10  C/m .

2 2(0.080 m)

q

A





     

 

The magnitude of the field is 

 
4 2

7

12 2 2

0

4.69 10  C/m
5.3 10  N/C.

8.85 10  C / N m
E










   

 
 

 

The field is normal to the plate and since the charge on the plate is positive, it points 

away from the plate. 

 

(b) At a point far away from the plate, the electric field is nearly that of a point particle 

with charge equal to the total charge on the plate. The magnitude of the field is 
2 2

0/ 4 /E q r kq r  , where r is the distance from the plate. Thus, 

 

  
 

9 2 2 6

2

8.99 10 N m / C 6.0 10 C
60 N/C.

30 m
E

  
   

 

LEARN In summary, the electric field is nearly uniform ( 0/E   ) close to the plate, 

but resembles that of a point charge far away from the plate.   

 

38. The field due to the sheet is E = 


2
 .  The force (in magnitude) on the electron (due to 

that field) is F = eE, and assuming it’s the only force then the acceleration is 

 

        a = 
e

2o m
  = slope of the graph  ( = 2.0  10

5 
m/s divided by 7.0  10

12 
s)  . 

 

Thus we obtain  = 2.9 10
6 

C/m
2
. 

 

39. THINK Since the non-conducting charged ball is in equilibrium with the non-

conducting charged sheet (see Fig. 23-49), both the vertical and horizontal components of 

the net force on the ball must be zero.    

 

EXPRESS The forces acting on the ball are shown in the diagram 

to the right. The gravitational force has magnitude mg, where m is 

the mass of the ball; the electrical force has magnitude qE, where q 

is the charge on the ball and E is the magnitude of the electric field 

at the position of the ball; and the tension in the thread is denoted 

by T. The electric field produced by the plate is normal to the plate 

and points to the right. Since the ball is positively charged, the 

electric force on it also points to the right. The tension in the thread 

makes the angle  (= 30°) with the vertical. Since the ball is in 
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equilibrium the net force on it vanishes. The sum of the horizontal components yields 

  

qE – T sin  = 0 

 

and the sum of the vertical components yields  

 

cos 0T mg   . 

 

We solve for the electric field E and deduce , the charge density of the sheet, from E = 

/20 (see Eq. 23-13). 

 

ANALYZE The expression T = qE/sin , from the first equation, is substituted into the 

second to obtain qE = mg tan . The electric field produced by a large uniform sheet of 

charge is given by E = /20, so 

0

tan
2

q
mg





  

and we have 

   12 2 2 6 2

0

8

9 2

2 8.85 10 C / N m 1.0 10 kg 9.8 m/s tan 302 tan

2.0 10 C

5.0 10 C/m .

mg

q

 


 





   
 



 

 

 

LEARN Since both the sheet and the ball are positively charged, the force between them 

is repulsive. This is balanced by the horizontal component of the tension in the thread. 

The angle the thread makes with the vertical direction increases with the charge density 

of the sheet.    

 

 

40. The point where the individual fields cancel cannot be in the region between the sheet 

and the particle (d < x < 0) since the sheet and the particle have opposite-signed charges.  

The point(s) could be in the region to the right of the particle (x > 0) and in the region to 

the left of the sheet (x < d); this is where the condition 

 

 
2

0 0

| |

2 4

Q

r



 
  

 

must hold.  Solving this with the given values, we find r = x = ± 3/2   ± 0.691 m.  

 

If d = 0.20 m (which is less than the magnitude of r found above), then neither of the 

points (x  ± 0.691 m) is in the “forbidden region” between the particle and the sheet.  

Thus, both values are allowed. Thus, we have 

 

(a) x = 0.691 m on the positive axis, and  
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(b) x = 0.691 m on the negative axis. 

 

(c) If, however, d = 0.80 m (greater than the magnitude of r found above), then one of the 

points (x  0.691 m) is in the “forbidden region” between the particle and the sheet and 

is disallowed.  In this part, the fields cancel only at the point x  +0.691 m. 

 

41. The charge on the metal plate, which is negative, exerts a force of repulsion on the 

electron and stops it. First find an expression for the acceleration of the electron, then use 

kinematics to find the stopping distance. We take the initial direction of motion of the 

electron to be positive. Then, the electric field is given by E = /0, where  is the surface 

charge density on the plate. The force on the electron is F = –eE = –e/0 and the 

acceleration is 

0

F e
a

m m




    

 

where m is the mass of the electron. The force is constant, so we use constant acceleration 

kinematics. If v0 is the initial velocity of the electron, v is the final velocity, and x is the 

distance traveled between the initial and final positions, then 2 2

0 2 .v v ax   Set v = 0 and 

replace a with –e/0m, then solve for x. We find 

 
2 2

0 0 0 .
2 2

v mv
x

a e




    

 

Now 21
02

mv  is the initial kinetic energy K0, so 

 

  
  

12 2 2 17

40 0

19 6 2

8.85 10 C / N m 1.60 10 J
4.4 10 m.

1.60 10 C 2.0 10 C/m

K
x

e





 



 

  
   

 
 

 

42. The surface charge density is given by 

 

 12 2 2 10 2

0 0/ 8.85 10 C /N m (55 N/C) 4.9 10  C/m .E E              

 

Since the area of the plates is 21.0 mA , the magnitude of the charge 

on the plate is 104.9 10  C.Q A     

 

43. We use a Gaussian surface in the form of a box with rectangular 

sides. The cross section is shown with dashed lines in the diagram to 

the right. It is centered at the central plane of the slab, so the left and 

right faces are each a distance x from the central plane. We take the 

thickness of the rectangular solid to be a, the same as its length, so 

the left and right faces are squares.  
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The electric field is normal to the left and right faces and is uniform over them. Since  = 

5.80 fC/m
3
 is positive, it points outward at both faces: toward the left at the left face and 

toward the right at the right face. Furthermore, the magnitude is the same at both faces. 

The electric flux through each of these faces is Ea
2
. The field is parallel to the other faces 

of the Gaussian surface and the flux through them is zero. The total flux through the 

Gaussian surface is 22 .Ea   The volume enclosed by the Gaussian surface is 2a
2
x and 

the charge contained within it is 22q a x . Gauss’ law yields 

 

20Ea
2
 = 2a

2
x. 

 

We solve for the magnitude of the electric field: 0/ .E x   

 

(a) For x = 0, E = 0. 

 

(b) For x = 2.00 mm = 2.00  10
3

 m, 

 
15 3 3

6

12 2 2

0

(5.80 10 C/m )(2.00 10  m)
1.31 10  N/C.

8.85 10 C /N m

x
E





 




 
   

 
 

 

(c) For x = d/2 = 4.70 mm = 4.70  10
3

 m, 

 
15 3 3

6

12 2 2

0

(5.80 10 C/m )(4.70 10  m)
3.08 10  N/C.

8.85 10 C /N m

x
E





 




 
   

 
 

 

(d) For x = 26.0 mm = 2.60  10
2

 m, we take a Gaussian surface of the same shape and 

orientation, but with x > d/2, so the left and right faces are outside the slab. The total flux 

through the surface is again 22Ea   but the charge enclosed is now q = a
2
d. Gauss’ 

law yields 20Ea
2
 = a

2
d, so 

 
15 3 3

6

12 2 2

0

(5.80 10 C/m )(9.40 10  m)
3.08 10  N/C.

2 2(8.85 10 C /N m )

d
E





 




 
   

 
 

 

44. We determine the (total) charge on the ball by examining the maximum value (E = 

5.0  10
7 

N/C) shown in the graph (which occurs at r = 0.020 m).  Thus, from 
2

0/ 4 ,E q r  we obtain 

 
2 7

2 6

0 9 2 2

(0.020 m) (5.0 10 N/C)
4 2.2 10 C

8.99 10 N m C
q r E 
   

 
 . 

 

45. (a) Since r1 = 10.0 cm <  r = 12.0 cm < r2 = 15.0 cm, 
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  
 

9 2 2 8

41

22

0

8.99 10  N m /C 4.00 10  C1
( ) 2.50 10  N/C.

4 0.120 m

q
E r

r

  
     

 

(b) Since r1 < r2 < r = 20.0 cm, 

 

   
 

9 2 2 8

41 2

2 2
0

8.99 10  N m / C 4.00 2.00 1 10  C1
( ) 1.35 10  N/C.

4 0.200 m

q q
E r

r

   
     

 

46. The field at the proton’s location (but not caused by the proton) has magnitude E.  

The proton’s charge is  e.  The ball’s charge has magnitude q.  Thus, as long as the proton 

is at r  R then the force on the proton (caused by the ball) has magnitude 

 

F = eE = e 






q

 4o r
2   =  

e q

4o r
2  

 

where r is measured from the center of the ball (to the proton). This agrees with 

Coulomb’s law from Chapter 22.   We note that if r = R then this expression becomes 

 

FR  =  
e q

4o R
2 . 

 

(a) If we require F = 
1

2
 FR , and solve for r, we obtain r = 2 R.  Since the problem asks 

for the measurement from the surface then the answer is  2 R  – R = 0.41R.  

 

(b) Now we require Finside = 
1

2
 FR where Finside = eEinside and Einside is given by Eq. 23-20.  

Thus, 

 e 






q

 4o R
2  r  = 

1

2
  

e q

4o R
2               r = 

1

2
 R = 0.50 R . 

 

47. THINK The unknown charge is distributed uniformly over the surface of the 

conducting solid sphere. 

 

EXPRESS The electric field produced by the unknown charge at points outside the 

sphere is like the field of a point particle with charge equal to the net charge on the sphere. 

That is, the magnitude of the field is given by E = |q|/40r
2
, where |q| is the magnitude of 

the charge on the sphere and r is the distance from the center of the sphere to the point 

where the field is measured.  

 

ANALYZE Thus, we have 

   
2 3

2 9

0 9 2 2

0.15 m 3.0 10  N/C
| | 4 7.5 10  C.

8.99 10  N m / C
q r E 


    

 
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The field points inward, toward the sphere center, so the charge is negative, i.e., 
97.5 10 C.q     

 

 

LEARN The electric field strength as a 

function of r is shown to the right. Inside 

the metal sphere, E = 0; outside the sphere, 
2| | / ,E k q r  where 

01/ 4 .k   

 

 
 

48. Let EA designate the magnitude of the field at r = 2.4 cm.  Thus EA = 2.0  10
7 

N/C, 

and is totally due to the particle. Since 2

particle 0/ 4 ,E q r  then the field due to the 

particle at any other point will relate to EA  by a ratio of distances squared.  Now, we note 

that at r = 3.0 cm the total contribution (from particle and shell) is 8.0  10
7 

N/C.  

Therefore, 

Eshell + Eparticle =  Eshell  +  (2.4/3)
2 
EA = 8.0  10

7 
N/C . 

 

Using the value for EA noted above, we find Eshell = 6.6  10
7 

N/C.  Thus, with r = 0.030 

m, we find the charge Q using 2

shell 0/ 4E Q r : 

 
2 2 7

2 6shell
0 shell 9 2 2

(0.030 m) (6.6 10 N/C)
4 6.6 10 C

8.99 10 N m C

r E
Q r E

k
 

    
 

 

 

49. At all points where there is an electric field, it is radially outward. For each part of the 

problem, use a Gaussian surface in the form of a sphere that is concentric with the sphere 

of charge and passes through the point where the electric field is to be found. The field is 

uniform on the surface, so 24E dA r E   , where r is the radius of the Gaussian surface. 

 

For r < a, the charge enclosed by the Gaussian surface is q1(r/a)
3
. Gauss’ law yields 

 
3

2 1 1

3

0 0

4 .
4

q q rr
r E E

a a


 

  
    

  
 

 

(a) For r = 0, the above equation implies E = 0. 

 

(b) For r = a/2, we have  

 

 
9 2 2 15

21

3 2 2

0

( / 2) (8.99 10 N m /C )(5.00 10 C)
5.62 10  N/C.

4 2(2.00 10 m)

q a
E

a






  
   


 

 

(c) For r = a, we have  
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9 2 2 15

1

2 2 2

0

(8.99 10 N m /C )(5.00 10 C)
0.112 N/C.

4 (2.00 10 m)

q
E

a





  
  


 

 

In the case where a < r < b, the charge enclosed by the Gaussian surface is q1, so Gauss’ 

law leads to 

2 1 1

2

0 0

4 .
4

q q
r E E

r


 
    

(d) For r = 1.50a, we have  

 
9 2 2 15

1

2 2 2

0

(8.99 10 N m /C )(5.00 10 C)
0.0499 N/C.

4 (1.50 2.00 10 m)

q
E

r





  
  

 
 

 

(e) In the region b < r < c, since the shell is conducting, the electric field is zero. Thus, for 

r = 2.30a, we have E = 0.  

 

(f) For r > c, the charge enclosed by the Gaussian surface is zero. Gauss’ law yields 
24 0 0.r E E     Thus, E = 0 at r = 3.50a. 

 

(g) Consider a Gaussian surface that lies completely within the conducting shell. Since 

the electric field is everywhere zero on the surface, 
 
E dA z 0  and, according to Gauss’ 

law, the net charge enclosed by the surface is zero. If Qi is the charge on the inner surface 

of the shell, then q1 + Qi = 0 and Qi = –q1 = –5.00 fC.  

 

(h) Let Qo be the charge on the outer surface of the shell. Since the net charge on the shell 

is –q, Qi + Qo = –q1. This means  

 

Qo = –q1 – Qi = –q1 –(–q1) = 0. 

 

50. The point where the individual fields cancel cannot be in the region between the 

shells since the shells have opposite-signed charges.  It cannot be inside the radius R of 

one of the shells since there is only one field contribution there (which would not be 

canceled by another field contribution and thus would not lead to zero net field).  We note 

shell 2 has greater magnitude of charge (|2|A2) than shell 1, which implies the point is 

not to the right of shell 2 (any such point would always be closer to the larger charge and 

thus no possibility for cancellation of equal-magnitude fields could occur).  Consequently, 

the point should be in the region to the left of shell 1 (at a distance r > R1 from its center); 

this is where the condition 

     1 2
1 2 2 2

0 0

| | | |

4 4 ( )

q q
E E

r r L 
  


 

or  

1 1 2 2

2 2

0 0

| |

4 4 ( )

A A

r r L

 

 



 . 
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Using the fact that the area of a sphere is A = 4R
2
,  this condition simplifies to 

 

r = 
L

(R2 /R1) |2|/1   1
   =  3.3 cm . 

 

We note that this value satisfies the requirement r > R1.  The answer, then, is that the net 

field vanishes at x = r  = 3.3 cm. 

 

51. THINK Since our system possesses spherical symmetry, to calculate the electric field 

strength, we may apply Gauss’ law and take the Gaussian surface to be in the form of a 

sphere of radius r.  

 

EXPRESS To find an expression for the electric field inside the shell in terms of A and 

the distance from the center of the shell, choose A so the field does not depend on the 

distance. We use a Gaussian surface in the form of a sphere with radius rg, concentric 

with the spherical shell and within it (a < rg < b). Gauss’ law will be used to find the 

magnitude of the electric field a distance rg from the shell center. The charge that is both 

in the shell and within the Gaussian sphere is given by the integral q dVs  z  over the 

portion of the shell within the Gaussian surface. Since the charge distribution has 

spherical symmetry, we may take dV to be the volume of a spherical shell with radius r 

and infinitesimal thickness dr: dV r dr 4 2 . Thus, 

 

 2 2 2 24 4   4    2  .
g g gr r r

s g
a a a

A
q r dr r dr A r dr A r a

r
            

 

The total charge inside the Gaussian surface is 

 
2 2

enc 2 ( ).s gq q q q A r a      

 

The electric field is radial, so the flux through the Gaussian surface is 24 ,gr E   where 

E is the magnitude of the field. Gauss’ law yields  

 
2 2 2

enc 0 0/ 4 2 ( ).g gq Er q A r a         

 

We solve for E: 

E
q

r
A

Aa

rg g

  
L
NMM

O
QPP

1

4
2

2

0

2

2

2
 


  .  

 

ANALYZE For the field to be uniform, the first and last terms in the brackets must 

cancel. They do if q – 2Aa
2
 = 0 or A = q/2a

2
. With a = 2.00  10

2 
m and q = 45.0  

10
15 

C, we have 11 21.79 10 C/m .A    
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LEARN The value we have found for A ensures the uniformity of the field strength 

inside the shell. Using the result found above, we can readily show that the electric field 

in the region a r b   is 

 
11 2

12 2 2

0 0

2 1.79 10 C/m
1.01 N/C.

4 2 2(8.85 10 C /N m )

A A
E



 






   

 
 

 

52. The field is zero for 0  r  a as a result of Eq. 23-16. Thus, 

 

(a) E = 0 at r = 0, 

 

(b) E = 0 at r = a/2.00, and  

 

(c) E = 0 at r = a.  

 

For a  r  b the enclosed charge qenc (for a  r  b) is related to the volume by 

 

q
r a

enc  
F
HG

I
KJ

 4

3

4

3

3 3

. 

Therefore, the electric field is 

 

E
q

r r

r a r a

r
  

F
HG

I
KJ 

1

4 4

4

3

4

3 30

2

0

2

3 3

0

3 3

2





  



enc  

for a  r  b.  

 

(d) For r = 1.50a, we have  

 
3 3 9 3

2 12 2 2

0 0

(1.50 ) 2.375 (1.84 10 C/m )(0.100 m) 2.375
7.32 N/C.

3 (1.50 ) 3 2.25 3(8.85 10 C /N m ) 2.25

a a a
E

a

 

 





    
      

    
 

 

(e) For r = b = 2.00a, the electric field is  

 
3 3 9 3

2 12 2 2

0 0

(2.00 ) 7 (1.84 10 C/m )(0.100 m) 7
12.1 N/C.

3 (2.00 ) 3 4 3(8.85 10 C /N m ) 4

a a a
E

a

 

 





    
      

    
 

 

(f) For r  b we have 2

total / 4E q r  or 

 
3

2

0

.
3

b a
E

r






  

 

Thus, for r = 3.00b = 6.00a, the electric field is  
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3 3 9 3

2 12 2 2

0 0

(2.00 ) 7 (1.84 10 C/m )(0.100 m) 7
1.35 N/C.

3 (6.00 ) 3 36 3(8.85 10 C /N m ) 36

a a a
E

a

 

 





    
      

    
 

 

53. (a) We integrate the volume charge density over the volume and require the result be 

equal to the total charge: 

 

2

0
4  .

R

dx dy dz dr r Q        

 

Substituting the expression  =sr/R, with s= 14.1 pC/m
3
, and performing the integration 

leads to 
4

4
4

s R
Q

R




  
  

  
 

or 

 3 12 3 3 15(14.1 10  C/m )(0.0560 m) 7.78 10  C.sQ R         

 

(b) At r = 0, the electric field is zero (E = 0) since the enclosed charge is zero. 

 

At a certain point within the sphere, at some distance r from the center, the field (see Eq. 

23-8 through Eq. 23-10) is given by Gauss’ law: 

 

enc

2

0

1

4

q
E

r
  

 

where qenc is given by an integral similar to that worked in part (a): 

 
4

2

enc
0

4 4 .
4

r
s r

q dr r
R


  

  
    

  
  

Therefore, 
4 2

2

0 0

1 1

4 4

s sr r
E

Rr R

 

 
  . 

 

(c) For r = R/2.00, where R = 5.60 cm, the electric field is 

 
2

0 0

9 2 2 12 3

3

( / 2.00)1 1

4 4 4.00

(8.99 10 N m C ) (14.1 10 C/m )(0.0560 m)

4.00

5.58 10 N/C.

s sR R
E

R

 

 

 



 

  


 

 

 

(d) For r = R, the electric field is 

 



    CHAPTER 23 1064 

2
9 2 2 12 3

0 0

2

1
(8.99 10 N m C ) (14.1 10 C/m )(0.0560 m)

4 4

2.23 10 N/C.

s sR R
E

R

 


 





     

 

 

 

(e) The electric field strength as a function of r is depicted below: 

 

 
 

54. Applying Eq. 23-20, we have 

 

1 1 1
1 13 3 2

0 0 0

| | | | | |1

4 4 2 2 4

q q qR
E r

R R R  

 
   

 
 . 

 

Also, outside sphere 2 we have  

2 2
2 2 2

0 0

| | | |

4 4 (1.50 )

q q
E

r R 
   . 

Equating these and solving for the ratio of charges, we arrive at  
q2

q1
  =  

9

8
  = 1.125.  

 

55. We use 

2enc

2 2 0
0 0

1
( )  ( )4

4 4

rq
E r r r dr

r r


 
    

 

to solve for (r) and obtain 

 


 

( ) ( ) .r
r

d

dr
r E r

r

d

dr
Kr K r  0

2

2 0

2

6

0

36c h  

 

56. (a) There is no flux through the sides, so we have two contributions to the flux, one 

from the x = 2 end (with 2 = +(2 + 2)( (0.20)
2
) = 0.50 N·m

2
/C) and one from the x = 0 

end (with 0 = –(2)( (0.20)
2
)).  

 

(b) By Gauss’ law we have qenc = 0 (2 + 0) = 2.2  10
–12

 C. 
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57. (a) For r < R, E = 0 (see Eq. 23-16). 

 

(b) For r slightly greater than R, 

 

  

 

29 2 7

4

22 2

0 0

8.99 10 N m C 2.00 10 C1
2.88 10 N C.

4 4 0.250m
R

q q
E

r R 

  
      

 

(c) For r > R,  
22

4

2

0

1 0.250  m
2.88 10 N C 200 N C.

4 3.00 m
R

q R
E E

r r

  
      

   
 

 

58. From Gauss’s law, we have  

 
2 9 2 2

2enc

12 2 2

0 0

(8.0 10 C/m ) (0.050 m)
7.1 N m /C

8.85 10 C /N m

q r 

 






     

 
 . 

 

59. (a) At x = 0.040 m, the net field has a rightward (+x) contribution (computed using Eq. 

23-13) from the charge lying between x = –0.050 m and x = 0.040 m, and a leftward (–x) 

contribution (again computed using Eq. 23-13) from the charge in the region from 

0.040 mx  to x = 0.050 m. Thus, since  = q/A = V/A = x in this situation, we have 

 
9 3

12 2 2

0 0

(0.090m) (0.010m) (1.2 10 C/m )(0.090m 0.010m)
5.4 N C.

2 2 2(8.85 10 C /N m )
E

 

 





 
   

 
 

 

(b) In this case, the field contributions from all layers of charge point rightward, and we 

obtain 
9 3

12 2 2

0

(0.100m) (1.2 10 C/m )(0.100m)
6.8N C.

2 2(8.85 10 C /N m )
E










  

 
 

 

60. (a) We consider the radial field produced at points within a uniform cylindrical 

distribution of charge. The volume enclosed by a Gaussian surface in this case is L r 2 . 

Thus, Gauss’ law leads to 

 2

enc

0 cylinder 0 0

| || | | |
.

(2 ) 2

L rq r
E

A rL

  

   
    

 

(b) We note from the above expression that the magnitude of the radial field grows with r. 

 

(c) Since the charged powder is negative, the field points radially inward. 

 

(d) The largest value of r that encloses charged material is rmax = R. Therefore, with 

| | .  0 0011 C m3  and R = 0.050 m, we obtain 
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3
6

max 12 2 2

0

| | (0.0011 C m )(0.050 m)
3.1 10 N C.

2 2(8.85 10 C /N m )

R
E



 
   

 
 

 

(e) According to condition 1 mentioned in the problem, the field is high enough to 

produce an electrical discharge (at r = R). 

 

61. THINK Our system consists of two concentric metal shells. We apply the 

superposition principle and Gauss’ law to calculate the electric field everywhere. 

 

EXPRESS At all points where there is an electric field, it is radially outward. For each 

part of the problem, use a Gaussian surface in the form of a sphere that is concentric with 

the metal shells of charge and passes through the point where the electric field is to be 

found. The field is uniform on the surface, so  

 

2 enc

0

4
q

E dA r E


     , 

 

where r is the radius of the Gaussian surface. 

 

ANALYZE (a) For r < a, the charge enclosed is enc 0,q   so E = 0 in the region inside 

the shell. 

 

(b) For a < r < b, the charged enclosed by the Gaussian surface is enc ,aq q  so the field 

strength is 24 .aE q r   

 

(c) For r > b, the charged enclosed by the Gaussian surface is enc ,a bq q q   so the field 

strength is 2

0( ) / 4 .a bE q q r   

 

(d) Since E = 0 for r < a the charge on the inner surface of the inner shell is always zero. 

The charge on the outer surface of the inner shell is therefore qa. Since E = 0 inside the 

metallic outer shell the net charge enclosed in a Gaussian surface that lies in between the 

inner and outer surfaces of the outer shell is zero. Thus the inner surface of the outer shell 

must carry a charge –qa, leaving the charge on the outer surface of the outer shell to be 

b aq q . 

 

LEARN The concepts involved in this problem are discussed in Section 23-9 of the text. 

In the case of a single shell of radius R and charge q, the field strength is 0E   for r < R, 

and 2

0/ 4E q r  for r R  (see Eqs. 23-15 and 23-16).  

 

62. (a) The direction of the electric field at P1 is away from q1 and its magnitude is 
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9 2 2 7
6

2 2

0 1

(8.99 10 N m C )(1.0 10 C)
4.0 10 N C.

4 (0.015m)

q
E

r

  
     

 

(b) 0E  , since P2 is inside the metal. 

 

63. The proton is in uniform circular motion, with the electrical force of the sphere on the 

proton providing the centripetal force. According to Newton’s second law, F = mv
2
/r, 

where F is the magnitude of the force, v is the speed of the proton, and r is the radius of 

its orbit, essentially the same as the radius of the sphere. The magnitude of the force on 

the proton is F = e|q|/40r
2
, where |q| is the magnitude of the charge on the sphere. Thus, 

 
2

2

0

1 | |

4

e q mv

r r
  

so 

    

  

2
27 52

90

9 2 2 9

1.67 10  kg 3.00 10  m/s 0.0100 m4
| | 1.04 10  C.

8.99 10  N m / C 1.60 10  C

mv r
q

e








 
   

  
 

 

The force must be inward, toward the center of the sphere, and since the proton is 

positively charged, the electric field must also be inward. The charge on the sphere is 

negative: q = –1.04  10
–9

 C. 

 

64. We interpret the question as referring to the field just outside the sphere (that is, at 

locations roughly equal to the radius r of the sphere). Since the area of a sphere is A = 

4r
2
 and the surface charge density is  = q/A (where we assume q is positive for brevity), 

then 

2 2

0 0 0

1 1

4 4

q q
E

r r



   

 
   

 
 

 

which we recognize as the field of a point charge (see Eq. 22-3). 

 

65. (a) Since the volume contained within a radius of  
1

2
 R is one-eighth the volume 

contained within a radius of R, the charge at 0 < r < R/2  is Q/8. The fraction is 1/8 = 

0.125.  

 

(b) At r = R/2, the magnitude of the field is 

 

 
2 2

0 0

/ 8 1

4 ( / 2) 2 4

Q Q
E

R R 
   

 

and is equivalent to half the field at the surface. Thus, the ratio is 0.500. 
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66. (a) The flux is still 2750 N m /C  , since it depends only on the amount of charge 

enclosed. 

 

(b) We use 0/q    to obtain the charge q: 

 

  12 2 2 2 9

0 8.85 10 C /N m 750 N m / C 6.64 10  C.q              

 

67. THINK The electric field at P is due to the charge on the surface of the metallic 

conductor and the point charge Q.   

 

EXPRESS The initial field (evaluated “just outside the outer surface” which means it is 

evaluated at R2 = 0.20 m, the outer radius of the conductor) is related to the charge q on 

the hollow conductor by Eq. 23-15: 2

initial 0 2/ 4 .E q R  After the point charge Q is placed 

at the geometric center of the hollow conductor, the final field at that point is a 

combination of the initial and that due to Q (determined by Eq. 22-3): 

 

final initial 2

0 2

.
4

Q
E E

R
    

 

ANALYZE (a) The charge on the spherical shell is  

 

 
2

2 9

0 2 initial 9 2 2

(0.20 m) (450 N/C)
4 2.0 10 C.

8.99 10 N m C
q R E    

 
 

 

(b) Similarly, using the equation above, we find the point charge to be 

 

 
2

2 9

0 2 final initial 9 2 2

(0.20 m) (180 N/C 450 N/C)
4 1.2 10 C.

8.99 10 N m C
Q R E E 
     

 
 

 

(c) In order to cancel the field (due to Q) within the conducting material, there must be an 

amount of charge equal to –Q distributed uniformly on the inner surface (of radius R1). 

Thus, the answer is +1.2  10
9 

C. 

 

(d) Since the total excess charge on the conductor is q and is located on the surfaces, then 

the outer surface charge must equal the total minus the inner surface charge. Thus, the 

answer is 2.0  10
9 

C – 1.2  10
9 

C = +0.80  10
9 

C. 

 

LEARN The key idea here is to realize that the electric field inside the conducting shell 

( 1 2R r R  ) must be zero, so the charge must be distributed in such a way that the 

charge enclosed by a Gaussian sphere of radius r ( 1 2R r R  ) is zero. 

 

68. Let 0

310 N m C2 . The net flux through the entire surface of the dice is given by 
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              
 

 n

n

n

n

n
1

6

0 0 0

1

6

1 1 2 3 4 5 6 3b g b g . 

 

Thus, the net charge enclosed is 

 

  12 2 2 3 2 8

0 0 03 3 8.85 10 C /N m 10 N m /C 2.66 10 C.q              

 

69. Since the fields involved are uniform, the precise location of P is not relevant; what is 

important is it is above the three sheets, with the positively charged sheets contributing 

upward fields and the negatively charged sheet contributing a downward field, which 

conveniently conforms to usual conventions (of upward as positive and downward as 

negative). The net field is directed upward ˆ( j) , and (from Eq. 23-13) its magnitude is 

 
6 2

431 2

12 2 2

0 0 0

1.0 10 C/m
| | 5.65 10 N C.

2 2 2 2(8.85 10 C /N m )
E

 

  






     

 
 

 

In unit-vector notation, we have 4 ˆ(5.65 10  N/C)jE   . 

 

70. Since the charge distribution is uniform, we can find the total charge q by multiplying 

 by the spherical volume ( 
4

3
 r

3
 ) with r = R =  0.050 m.  This gives q = 1.68 nC. 

 

(a) Applying Eq. 23-20 with r = 0.035 m, we have 3

internal 3

0

| |
4.2 10 N/C

4

q r
E

R
   . 

      

(b) Outside the sphere we have (with r = 0.080 m)  

 
9 2 2 9

3

external 2 2

0

| | (8.99 10 N m C )(1.68 10 C)
2.4 10 N/C

4 (0.080 m)

q
E

r

  
     . 

 

71. We choose a coordinate system whose origin is at the center of the flat base, such that 

the base is in the xy plane and the rest of the hemisphere is in the z > 0 half space. 

 

(a)  2 2 2 2ˆ ˆk k (0.0568 m) (2.50 N/C) 0.0253 N m /C.R E R E           

 

(b) Since the flux through the entire hemisphere is zero, the flux through the curved 

surface is 2 2

base 0.0253 N m /C.c R E     p  

 

72. The net enclosed charge q is given by 

 

   12 2 2 2 10

0 8.85 10 C /N m 48 N m C 4.2 10 C.q              
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73. (a) From Gauss’ law, we get   
 3

enc

3 3

0 0 0

4 31 1
.

4 4 3

r rq r
E r r

r r

 

  
    

 

(b) The charge distribution in this case is equivalent to that of a whole sphere of charge 

density  plus a smaller sphere of charge density – that fills the void. By superposition 

 

 
   

E r
r r a ab g b g

 
 












3 3 30 0 0

( )
.  

 

74. (a) The cube is totally within the spherical volume, so the charge enclosed is  

 

qenc =  Vcube = (500  10
–9

 C/m
3
)(0.0400 m)

3
 = 3.20  10

–11
 C. 

 

By Gauss’ law, we find  = qenc/0 = 3.62 N·m
2
/C. 

 

(b) Now the sphere is totally contained within the cube (note that the radius of the sphere 

is less than half the side-length of the cube). Thus, the total charge is  

 

qenc =  Vsphere = 4.5  10
–10

 C. 

 

By Gauss’ law, we find  = qenc/0 = 51.1 N·m
2
/C. 

 

75. The electric field is radially outward from the central wire. We want to find its 

magnitude in the region between the wire and the cylinder as a function of the distance r 

from the wire. Since the magnitude of the field at the cylinder wall is known, we take the 

Gaussian surface to coincide with the wall. Thus, the Gaussian surface is a cylinder with 

radius R and length L, coaxial with the wire. Only the charge on the wire is actually 

enclosed by the Gaussian surface; we denote it by q. The area of the Gaussian surface is 

2RL, and the flux through it is 2 .RLE   We assume there is no flux through the 

ends of the cylinder, so this   is the total flux. Gauss’ law yields q = 20RLE. Thus, 

 

 12 2 2 4 92 8.85 10 C /N m (0.014 m)(0.16 m) (2.9 10  N/C) 3.6 10  C.q          

 

76. (a) The diagram shows a cross section (or, perhaps more 

appropriately, “end view”) of the charged cylinder (solid circle).  

 

Consider a Gaussian surface in the form of a cylinder with radius 

r and length ,  coaxial with the charged cylinder. An “end view” 

of the Gaussian surface is shown as a dashed circle. The charge 

enclosed by it is 2 ,q V r     where 2V r   is the volume 

of the cylinder. If   is positive, the electric field lines are radially 
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outward, normal to the Gaussian surface and distributed uniformly along it. Thus, the 

total flux through the Gaussian cylinder is cylinder (2 ).EA E r    Now, Gauss’ law 

leads to 

2

0

0

2 .
2

r
r E r E


  


    

 

(b) Next, we consider a cylindrical Gaussian surface of radius r > R. If the external field 

Eext then the flux is ext2 .r E   The charge enclosed is the total charge in a section of 

the charged cylinder with length . That is, 2q R  . In this case, Gauss’ law yields 

 
2

2

0 ext ext

0

2 .
2

R
r E R E

r


  


    

 

77. THINK The total charge on the conducting shell is equal to the sum of the charges on 

the shell’s inner surface and the outer surface. 

 

EXPRESS Let qin be the charge on the inner surface and qout the charge on the outer 

surface. The net charge on the shell is in out .Q q q   

 

ANALYZE (a) In order to have net charge Q = –10 C when the charge on the outer 

surface is out 14 C,q    then there must be  

 

in out 10 C ( 14 C) 4 Cq Q q            

 

on the inner surface (since charges reside on the surfaces of a conductor in electrostatic 

situations). 

 

(b) Let q be the charge of the particle. In order to cancel the electric field inside the 

conducting material, the contribution from the in 4 Cq   on the inner surface must be 

canceled by that of the charged particle in the hollow, that is, enc in 0.q q q    Thus, the 

particle’s charge is in 4 C.q q      

 

LEARN The key idea here is to realize that the electric field inside the conducting shell 

must be zero. Thus, in the presence of a point charge in the hollow, the charge on the 

shell must be redistributed between its inner and outer surfaces in such a way that the net 

charge enclosed by a Gaussian sphere of radius r ( 1 2R r R  , where R1 is the inner 

radius and R2 is the outer radius) remains zero. 

 

78. (a) Outside the sphere, we use Eq. 23-15 and obtain  

 
9 2 2 12

2 2

0

1 (8.99 10 N m C )(6.00 10 C)
15.0 N C.

4 (0.0600 m)

q
E

r

  
    
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(b) With q = +6.00  10
–12

 C, Eq. 23-20 leads to 25.3N CE  . 

 

79. (a) The mass flux is wdv = (3.22 m) (1.04 m) (1000 kg/m
3
) (0.207 m/s) = 693 kg/s. 

 

(b) Since water flows only through area wd, the flux through the larger area is still 

693 kg/s.  

 

(c) Now the mass flux is (wd/2)v = (693 kg/s)/2 = 347 kg/s. 

 

(d) Since the water flows through an area (wd/2), the flux is 347 kg/s. 

 

(e) Now the flux is     cos 693kg s cos34 575 kg swd v     . 

 

80. The field due to a sheet of charge is given by Eq. 23-13. Both sheets are horizontal 

(parallel to the xy plane), producing vertical fields (parallel to the z axis). At points above 

the z = 0 sheet (sheet A), its field points upward (toward +z); at points above the z = 2.0 

sheet (sheet B), its field does likewise. However, below the z = 2.0 sheet, its field is 

oriented downward. 

 

(a) The magnitude of the net field in the region between the sheets is 

 
9 2 9 2

2

12 2 2

0 0

8.00 10 C/m 3.00 10 C/m
| | 2.82 10 N C.

2 2 2(8.85 10 C /N m )

A BE
 

 

 



  
    

 
 

 

(b) The magnitude of the net field at points above both sheets is 

 
9 2 9 2

2

12 2 2

0 0

8.00 10 C/m 3.00 10 C/m
| | 6.21 10 N C.

2 2 2(8.85 10 C /N m )

A BE
 

 

 



  
    

 
 

 

81. (a) The field maximum occurs at the outer surface:  

 

Emax = 






|q|

4o r 2
at r = R

  = 
|q|

4o R 2  

Applying Eq. 23-20, we have      

Einternal  =  
|q|

4o R 3 r = 
1

4
 Emax         r  = 

R

4
 = 0.25 R. 

 

(b) Outside sphere 2 we have  

 

Eexternal = 
|q|

4o r 2  =  
1

4
 Emax           r  = 2.0R.  
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Chapter 24 
 

 

1. THINK Ampere is the SI unit for current. An ampere is one coulomb per second. 

 

EXPRESS To calculate the total charge through the circuit, we note that 1 A 1C/s  and 

1 h 3600 s.    

  

ANALYZE (a) Thus, 

84 84 3600 30 105 A h
C h

s

s

h
 C 

F
HG

I
KJ
F
HG
I
KJ  . .  

 

(b) The change in potential energy is U = q V = (3.0  10
5
 C)(12 V) = 3.6  10

6
 J. 

 

LEARN Potential difference is the change of potential energy per unit charge. Unlike 

electric field, potential difference is a scalar quantity. 

 

2. The magnitude is U = eV = 1.2  10
9
 eV = 1.2 GeV. 

 

3. (a) The change in energy of the transferred charge is 

 

U = q V = (30 C)(1.0 10
9
 V) = 3.0  10

10
 J. 

 

(b) If all this energy is used to accelerate a 1000-kg car from rest, then 21
2

,U K mv    

and we find the car’s final speed to be 

 

 
10

32 2 2(3.0 10 J)
7.7 10 m/s.

1000 kg

K U
v

m m

 
      

 

4. (a)     15 19 4 43.9 10 N 1.60 10 C 2.4 10 N C 2.4 10 V/m.E F e           

 

(b) V E s    2 4 10 012 2 9 104 3. . . .N C m Vc hb g  

 

5. THINK The electric field produced by an infinite sheet of charge is normal to the 

sheet and is uniform. 

 

EXPRESS The magnitude of the electric field produced by the infinite sheet of charge is 

E = /20, where  is the surface charge density. Place the origin of a coordinate system 

at the sheet and take the x axis to be parallel to the field and positive in the direction of 

the field. Then the electric potential is 



    CHAPTER 24 1074   

 

V V E dx V Exs

x

s   z0 ,  

 

where Vs is the potential at the sheet. The equipotential surfaces are surfaces of constant x; 

that is, they are planes that are parallel to the plane of charge. If two surfaces are 

separated by x then their potentials differ in magnitude by  

 

V = Ex = (/20)x. 

 

ANALYZE Thus, for 6 20.10 10 C m   and 50 V,V   we have 

  




x
V

 
 


 





2 2 885 10 50

010 10
88 100

12 2

6

3



.

.
. .

C N m V

C m
m

2

2

c hb g
 

 

LEARN Equipotential surfaces are always perpendicular to the electric field lines. Figure 

24-5(a) depicts the electric field lines and equipotential surfaces for a uniform electric 

field.  

 

6. (a) VB – VA = U/q = –W/(–e) = – (3.94  10
–19

 J)/(–1.60  10
–19

 C) = 2.46 V. 

 

(b) VC – VA = VB – VA = 2.46 V. 

 

(c) VC – VB = 0 (since C and B are on the same equipotential line). 

 

7. We connect A to the origin with a line along the y axis, along which there is no change 

of potential (Eq. 24-18: 
 
E ds z 0). Then, we connect the origin to B with a line along 

the x axis, along which the change in potential is 

 

V E ds x dx
x

      
F
HG
I
KJzz   

4 00 4 00
4

2

2

0

4

0

4

. .  

 

which yields VB – VA = –32.0 V. 

 

8. (a) By Eq. 24-18, the change in potential is the negative of the “area” under the curve. 

Thus, using the area-of-a-triangle formula, we have 

 

V E ds
x

    
z10

1

2
2 20

0

2   b gb g  
which yields V = 30 V. 

 

(b) For any region within 0 3m,x E ds     is positive, but for any region for which  

x > 3 m it is negative. Therefore, V = Vmax occurs at x = 3 m. 
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V E ds
x

    
z10

1

2
3 20

0

3   b gb g  
which yields Vmax = 40 V. 

 

(c) In view of our result in part (b), we see that now (to find V = 0) we are looking for 

some X > 3 m such that the “area” from x = 3 m to x = X is 40 V. Using the formula for a 

triangle (3 < x < 4) and a rectangle (4 < x < X), we require 

 

1

2
1 20 4 20 40b gb g b gb g  X .  

Therefore, X = 5.5 m. 

 

9. (a) The work done by the electric field is  

 
19 12 2

0 0
0 12 2 20

0 0

21

(1.60 10 C)(5.80 10 C/m )(0.0356 m)

2 2 2(8.85 10 C /N m )

1.87 10 J.

f d

i

q q d
W q E ds dz

 

 

 





 
    

 

 

   

 

(b) Since  

V – V0 = –W/q0 = –z/20, 

 

with V0 set to be zero on the sheet, the electric potential at P is 

  

    
12 2

2

12 2 2

0

(5.80 10 C/m )(0.0356 m)
1.17 10  V.

2 2(8.85 10 C /N m )

z
V











   

 
 

 

10. In the “inside” region between the plates, the individual fields (given by Eq. 24-13) 

are in the same direction (i ): 

 
9 2 9 2

3

in 12 2 2 12 2 2

50 10 C/m 25 10 C/m ˆ ˆi (4.2 10 N/C)i
2(8.85 10 C /N m ) 2(8.85 10 C /N m )

E
 

 

  
      

    
. 

 

In the “outside” region where x > 0.5 m, the individual fields point in opposite directions: 

 
9 2 9 2

3

out 12 2 2 12 2 2

50 10 C/m 25 10 C/mˆ ˆ ˆi i (1.4 10 N/C)i .
2(8.85 10 C /N m ) 2(8.85 10 C /N m )

E
 

 

 
     

   
 

 

Therefore, by Eq. 24-18, we have 

 

     
0.8 0.5 0.8

3 3

in out
0 0 0.5

3

4.2 10 0.5 1.4 10 0.3

2.5 10 V.

V E ds E dx E dx           

 

    
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11. (a) The potential as a function of r is  

 

     
2

3 30 0
0 0

9 2 2 15 2
4

3

0 0
4 8

(8.99 10 N m C )(3.50 10 C)(0.0145 m)
2.68 10  V.

2(0.0231 m)

r r qr qr
V r V E r dr dr

R R 




    

  
   

 
 

 

(b) Since V = V(0) – V(R) = q/80R, we have  

 

 
9 2 2 15

4

0

(8.99 10 N m C )(3.50 10 C)
6.81 10  V.

8 2(0.0231 m)

q
V R

R


  

     

 

12. The charge is 

9

0 9 2 2
m /C

(10m)( 1.0V)
4 1.1 10 C.

8.99 10 N
q RV 




   


 

 

13. (a) The charge on the sphere is 

 

9

0 9 2 2

(200 V)(0.15 m)
4 3.3 10  C.

8.99 10 N m C
q VR    

 
 

 

(b) The (uniform) surface charge density (charge divided by the area of the sphere) is 

 

 

9
8 2

22

3.3 10  C
1.2 10  C/m .

4 4 0.15 m

q

R


 




     

 

14. (a) The potential difference is 

 

  6 9 2 2

0 0

3

1 1
1.0 10  C 8.99 10 N m C

4 4 2.0 m 1.0 m

4.5 10  V.

A B

A B

q q
V V

r r 

  
        

 

  

 

 

(b) Since V(r) depends only on the magnitude of 

r , the result is unchanged. 

 

15. THINK The electric potential for a spherically symmetric charge distribution falls off 

as 1/ ,r  where r is the radial distance from the center of the charge distribution. 

 

EXPRESS The electric potential V at the surface of a drop of charge q and radius R is 

given by V = q/40R.  
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ANALYZE (a) With V = 500 V and 1230 10  C,q    we find the radius to be 

 

  9 2 2 12

4

0

8.99 10  N m / C 30 10  C
5.4 10  m.

4 500 V

q
R

V




  

     

 

(b) After the two drops combine to form one big drop, the total volume is twice the 

volume of an original drop, so the radius R' of the combined drop is given by (R')
3
 = 2R

3
 

and R' = 2
1/3

R. The charge is twice the charge of the original drop: q' = 2q. Thus, 

 

 



   V

q

R

q

R
V

1

4

1

4

2

2
2 2 500 790

0 0

1 3

2 3 2 3

   /

/ / (  V)  V.  

 

LEARN A positively charged configuration produces a positive electric potential, and a 

negatively charged configuration produces a negative electric potential. Adding more 

charge increases the electric potential. 

 

16. In applying Eq. 24-27, we are assuming V  0 as r  .  All corner particles are 

equidistant from the center, and since their total charge is  

 

2q1– 3q1+ 2 q1– q1 = 0, 

 

then their contribution to Eq. 24-27 vanishes.  The net potential is due, then, to the two 

+4q2 particles, each of which is a distance of a/2 from the center: 

 

 

9 2 2 12

2 2 2

0 0 0

4 4 161 1 16(8.99 10 N m C )(6.00 10 C)

4 / 2 4 / 2 4 0.39 m

2.21 V.

q q q
V

a a a  

  
   



 

 

17. A charge –5q is a distance 2d from P, a charge –5q is a distance d from P, and two 

charges +5q are each a distance d from P, so the electric potential at P is  

 
9 2 2 15

2

0 0

4

1 1 1 1 (8.99 10 N m C )(5.00 10 C)

4 2 8 2(4.00 10  m)

5.62 10 V.

q q
V

d d d d d 







   
         

 

 

 

The zero of the electric potential was taken to be at infinity. 

 

18. When the charge q2 is infinitely far away, the potential at the origin is due only to the 

charge q1 : 

V1 = 1

04

q

d
 =  5.76 × 10

7 
V. 
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Thus, q1/d = 6.41 × 10
17 

C/m.  Next, we note that when q2 is located at x = 0.080 m, the 

net potential vanishes (V1 + V2 = 0).  Therefore,  

 

 2 10
0.08 m

kq kq

d
   

 

Thus, we find q2 = 1( / )(0.08 m)q d = –5.13 × 10
18 

C =  –32 e. 

 

19. First, we observe that V (x) cannot be equal to zero for x > d. In fact V (x) is always 

negative for x > d. Now we consider the two remaining regions on the x axis: x < 0 and  

0 < x < d.  

 

(a) For 0 < x < d we have d1 = x and d2 = d – x. Let 

 

V x k
q

d

q

d

q

x d x
( )  
F
HG

I
KJ  





F
HG

I
KJ   1

1

2

2 04

1 3
0


 

 

and solve: x = d/4. With d = 24.0 cm, we have x = 6.00 cm. 

 

(b) Similarly, for x < 0 the separation between q1 and a point on the x axis whose 

coordinate is x is given by d1 = –x; while the corresponding separation for q2 is d2 = d – x. 

We set 

V x k
q

d

q

d

q

x d x
( )  
F
HG

I
KJ  






F
HG

I
KJ   1

1

2

2 04

1 3
0


 

 

to obtain x = –d/2. With d = 24.0 cm, we have x = –12.0 cm. 

 

20. Since according to the problem statement there is a point in between the two charges 

on the x axis where the net electric field is zero, the fields at that point due to q1 and q2 

must be directed opposite to each other. This means that q1 and q2 must have the same 

sign (i.e., either both are positive or both negative). Thus, the potentials due to either of 

them must be of the same sign. Therefore, the net electric potential cannot possibly be 

zero anywhere except at infinity. 

 

21. We use Eq. 24-20: 

 

   

 

9 2 2 30

5

22 9
0

8.99 10 N m C 1.47 3.34 10 C m1
1.63 10 V.

4 52.0 10 m

p
V

r







    
   


 

 

22. From Eq. 24-30 and Eq. 24-14, we have (for i = 0º)  
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  2 2 2

0 0 0

coscos cos
cos 1

4 4 4

i
a

pp ep
W q V e

r r r

 


  

 
      

 
 

 

with r = 20 × 10
9 

m.  For  = 180º the graph indicates Wa = 4.0 × 10
30 

J, from which 

we can determine p.  The magnitude of the dipole moment is therefore 5.6  10
37 

C m . 

 

23. (a) From Eq. 24-35, we find the potential to be 

 

2 2

0

2 2

9 2 2 12

2 

/ 2 ( / 4)
2 ln

4

(0.06 m / 2) (0.06 m) / 4 (0.08 m)
2(8.99 10 N m C )(3.68 10 C/m) ln

0.08 m

2.43 10 V.

L L d
V

d





  
  

  

  
     

  

 

 

 

(b) The potential at P is V = 0 due to superposition. 

 

24. The potential is  

 
9 2 2 12

2 rod  rod
0 0 0

1 1 (8.99 10 N m C )(25.6 10 C)

4 4 4 3.71 10  m

6.20 V.

P

dq Q
V dq

R R R  





   
   

  



   

 

We note that the result is exactly what one would expect for a point-charge –Q at a 

distance R. This “coincidence” is due, in part, to the fact that V is a scalar quantity. 

 

25. (a) All the charge is the same distance R from C, so the electric potential at C is 

 
9 2 2 12

1 1 1

2

0 0

6 51 5(8.99 10 N m C )(4.20 10 C)
2.30 V,

4 4 8.20 10  m

Q Q Q
V

R R R 





   
     

   
 

 

where the zero was taken to be at infinity. 

 

(b) All the charge is the same distance from P. That distance is 2 2 ,R D  so the electric 

potential at P is  

2

1 1 1

2 2 2 2 2
0

0

9 2 2 12

2 2 2 2

6 51

4 4

5(8.99 10 N m C )(4.20 10 C)

(8.20 10  m) (6.71 10  m)

1.78 V.

Q Q Q
V

R D R D R D 



 

 
    

   

  
 

  

 
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26. The derivation is shown in the book (Eq. 24-33 through Eq. 24-35) except for the 

change in the lower limit of integration (which is now x = D instead of x = 0).  The result 

is therefore (cf. Eq. 24-35)  

              

V =  


4o
 ln






L + L

2
 + d

2

 D + D
2
 + d

2   = 
6

0

2.0 10 4 17
ln

4 1 2

   
   

 = 2.18  10
4
 V. 

 

27. Letting d denote 0.010 m, we have 

 

 

9 2 2 9

1 1 1 1

0 0 0 0

4

3 3 (8.99 10 N m C )(30 10 C)

4 2(0.01 m)

1.3 10  V.

Q Q Q Q
V

d d d d   

  
    

   

 

 

 

28. Consider an infinitesimal segment of the rod, located between x and x + dx. It has 

length dx and contains charge dq =  dx, where  = Q/L is the linear charge density of the 

rod. Its distance from P1 is d + x and the potential it creates at P1 is 

 

0 0

1 1
.

4 4

dq dx
dV

d x d x



 
 

 
 

 

To find the total potential at P1, we integrate over the length of the rod and obtain: 

 

0
00 0 0

9 2 2 15

3

ln( ) ln 1
4 4 4

(8.99 10 N m C )(56.1 10 C) 0.12 m
ln 1

0.12 m 0.025 m

7.39 10  V.

LL dx Q L
V d x

d x L d

 

  





 
     

     

    
  

 

 



 

 

29. Since the charge distribution on the arc is equidistant from the point where V is 

evaluated, its contribution is identical to that of a point charge at that distance. We 

assume V  0 as r   and apply Eq. 24-27: 

 

1 1 1 1

0 0

9 2 2 12

2

4 21 1 1 1

4 4 2 4 4

(8.99 10 N m C )(7.21 10 C)

2.00 m

3.24 10  V.

Q Q Q Q
V

R R R R    





  
   

  


 

 

 

30. The dipole potential is given by Eq. 24-30 (with  = 90º in this case)  

 



 

  

1081 

 
2 2

0 0

cos cos90
0

4 4

p p
V

r r



 


    

 

since cos(90º) = 0 . The potential due to the short arc is 1 0 1/ 4q r   and that caused by the 

long arc is 2 0 2/ 4q r .  Since q1 = +2 C, r1 = 4.0 cm, q2 = 3 C, and r2 = 6.0 cm, the 

potentials of the arcs cancel.  The result is zero. 

 

31. THINK Since the disk is uniformly charged, when the full disk is present each 

quadrant contributes equally to the electric potential at P.  

 

EXPRESS Electrical potential is a scalar quantity. The potential at P due to a single 

quadrant is one-fourth the potential due to the entire disk. We first find an expression for 

the potential at P due to the entire disk. To do so, consider a ring of charge with radius r 

and (infinitesimal) width dr. Its area is 2r dr and it contains charge dq = 2r dr. All the 

charge in it is at a distance 2 2r D from P, so the potential it produces at P is 

 

2 2 2 2
0 0

1 2
.

4 2

rdr rdr
dV

r D r D

 

 
 

 

p

p
 

 

ANALYZE Integrating over r, the total potential at P is 

 

2 2 2 2

2 20
00 0 0

.
2 2 2

RR rdr
V r D R D D

r D

  

  
      
 

  

 

Therefore, the potential Vsq at P due to a single quadrant is  

 
15 2

2 2 2 2

12 2 2

0

5

(7.73 10 C/m )
(0.640 m) (0.259 m) 0.259 m

4 8 8(8.85 10 C /N m )

4.71 10  V.

sq

V
V R D D











         
    

 
 

LEARN Consider the limit .D R  The potential becomes 

 
2

2 2

2

0 0

2 2

0 0 0

1
1

8 8 2

/ 4

8 2 4 4

sq

sq

R
V R D D D D

D

qR R

D D D

 

 

  

  

               

  

 

 

where 
2 / 4sqq R   is the charge on the quadrant. In this limit, we see that the potential 

resembles that due to a point charge .sqq  

 

32. Equation 24-32 applies with dq =  dx = bx dx (along 0  x  0.20 m). 
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(a) Here r = x > 0, so that 

V
bx dx

x

b
 z1

4

0 20

40

0 20

   

.. b g
 = 36 V. 

 

(b) Now r x d 2 2  where d = 0.15 m, so that 

 

 
0.20

0.20
2 2

2 20
0

1

4 4

bxdx b
V x d

x d 
  




 

 = 18 V. 

 

33. Consider an infinitesimal segment of the rod, located between x and x + dx. It has 

length dx and contains charge dq =  dx = cx dx. Its distance from P1 is d + x and the 

potential it creates at P1 is 

 

dV
dq

d x

cx dx

d x







1

4

1

40 0  
.  

 

To find the total potential at P1, we integrate over the length of the rod and obtain 

 

0
00 0 0

9 2 2 12 2

2

[ ln( )] ln 1
4 4 4

0.120 m
(8.99 10 N m C )(28.9 10 C/m ) 0.120 m (0.030 m) ln 1

0.030 m

1.86 10  V.

LLc xdx c c L
V x d x d L d

d x d  





  
        

   

  
       

  

 

  

 

 

34. The magnitude of the electric field is given by 

 

22(5.0V)
| | 6.7 10 V m.

0.015m

V
E

x


    


 

 

At any point in the region between the plates, 

E  points away from the positively charged 

plate, directly toward the negatively charged one. 

 

35. We use Eq. 24-41: 

 

E x y
V

x x
x y x

E x y
V

y y
x y y

x

y

( , ) ( . ) . ) ( . ) ;

( , ) ( . ) . ) ( . ) .

 



 




  

 



 




 

2 0 30 2 2 0

2 0 30 2 30

2 2

2 2

V / m V / m V / m

V / m V / m V / m

2 2 2

2 2 2

c h

c h
 

 

We evaluate at x = 3.0 m and y = 2.0 m to obtain  
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ˆ ˆ( 12 V/m)i (12 V/m)jE    . 

 

36. We use Eq. 24-41. This is an ordinary derivative since the potential is a function of 

only one variable. 

 

2 2ˆ ˆ ˆ ˆi (1500 )i ( 3000 )i ( 3000V/m )(0.0130m)i

ˆ( 39V/m)i.

dV d
E x x

dx dx

 
       

 

 

 

 

(a) Thus, the magnitude of the electric field is E = 39 V/m. 

 

(b) The direction of E is î , or toward plate 1. 

 

37. THINK The component of the electric field E in a given direction is the negative of 

the rate at which potential changes with distance in that direction. 

 

EXPRESS With 22.00 ,V xyz  we apply Eq. 24-41 to calculate the x, y, and z 

components of the electric field: 

2

2

2.00

2.00

4.00

x

y

z

V
E yz

x

V
E xz

y

V
E xyz

z


   




   




   



 

 

which, at (x, y, z) = (3.00 m, –2.00 m, 4.00 m), gives  

 

(Ex, Ey, Ez) = (64.0 V/m, –96.0 V/m, 96.0 V/m). 

 

ANALYZE The magnitude of the field is therefore 

 
2 2 2 2 2 2(64.0 V/m) ( 96.0 V/m) (96.0 V/m)

150V m 150 N C.

x y zE E E E      

 
 

 

LEARN If the electric potential increases along some direction, say x, with / 0,V x    

then there is a corresponding nonvanishing component of E  in the opposite direction 

( 0xE  ).  

 

38. (a) From the result of Problem 24-28, the electric potential at a point with coordinate 

x is given by 
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0

ln .
4

Q x L
V

L x

 
  

 
 

At x = d we obtain   

 

 

9 2 2 15

0

3

(8.99 10 N m C )(43.6 10 C) 0.135 m
ln ln 1

4 0.135 m

0.135 m
(2.90 10  V) ln 1 .

Q d L
V

L d d

d







      
     

   

 
   

 


 

 

(b) We differentiate the potential with respect to x to find the x component of the electric 

field: 

 

2

0 0 0

9 2 2 15 4 2

1
ln

4 4 4 ( )

(8.99 10 N m C )(43.6 10 C) (3.92 10 N m C)
,

( 0.135 m) ( 0.135 m)

x

V Q x L Q x x L Q
E

x L x x L x L x x x x L

x x x x

  

 

      
           

      

    
   

 

  
 

or 
4 2(3.92 10 N m C)

| | .
( 0.135 m)

xE
x x

 



 

 

(c) Since 0xE  , its direction relative to the positive x axis is 180 .  

 

(d) At x = d = 6.20 cm, we obtain 

 
4 2(3.92 10 N m C)

| | 0.0321 N/C.
(0.0620 m)(0.0620 m 0.135 m)

xE
 

 


 

 

(e) Consider two points an equal infinitesimal distance on either side of P1, along a line 

that is perpendicular to the x axis. The difference in the electric potential divided by their 

separation gives the transverse component of the electric field. Since the two points are 

situated symmetrically with respect to the rod, their potentials are the same and the 

potential difference is zero. Thus, the transverse component of the electric field Ey is zero. 

 

39. The electric field (along some axis) is the (negative of the) derivative of the potential 

V with respect to the corresponding coordinate.  In this case, the derivatives can be read 

off of the graphs as slopes (since the graphs are of straight lines).  Thus, 

 

500 V
2500 V/m 2500 N/C

0.20 m

300 V
1000 V/m 1000 N/C.

0.30 m

x

y

V
E

x

V
E

y

  
     

  

  
     

  
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These components imply the electric field has a magnitude of 2693 N/C and a direction 

of –21.8º (with respect to the positive x axis).  The force on the electron is given by 

F qE  where q = –e.  The minus sign associated with the value of q has the implication 

that F  


 points in the opposite direction from E  


 (which is to say that its angle is found by 

adding 180º to that of E  


 ).  With e = 1.60 × 10
–19 

C, we obtain 

 

 19 16 16ˆ ˆ ˆ ˆ( 1.60 10 C)[(2500 N/C)i (1000 N/C)j] ( 4.0 10 N)i (1.60 10  N)jF            . 

 

40. (a) Consider an infinitesimal segment of the rod from x to x + dx. Its contribution to 

the potential at point P2 is 

 

dV
x dx

x y

cx

x y
dx






1

4

1

40
2 2

0
2 2 





( )
.  

Thus,  

 

 

 

2 2

2 2rod 0
0 0

9 2 2 12 2 2 2

2

4 4

(8.99 10 N m C )(49.9 10 C/m ) (0.100 m) (0.0356 m) 0.0356 m

3.16 10  V.

L

P

c x c
V dV dx L y y

x y 





    


     

 

  

 

 

(b) The y component of the field there is 

 

 2 2

2 2
0 0

9 2 2 12 2

2 2

1
4 4

0.0356 m
(8.99 10 N m C )(49.9 10 C/m ) 1

(0.100 m) (0.0356 m)

0.298 N/C.

P
y

V c d c y
E L y y

y dy L y 



 
        
     

 
     
  



 

 

(c) We obtained above the value of the potential at any point P strictly on the y-axis. In 

order to obtain Ex(x, y) we need to first calculate V(x, y). That is, we must find the 

potential for an arbitrary point located at (x, y). Then Ex(x, y) can be obtained from 

( , ) ( , ) /xE x y V x y x   . 

 

41. We apply conservation of energy for the particle with q = 7.5  10
6

 C (which has 

zero initial kinetic energy): 

U0  = Kf  + Uf , 

where U  =  
q Q

4or
 . 
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(a) The initial value of r is 0.60 m and the final value is (0.6 + 0.4) m = 1.0 m (since the 

particles repel each other).  Conservation of energy, then, leads to Kf  = 0.90 J. 

 

(b) Now the particles attract each other so that the final value of r is 0.60  0.40 = 0.20 m.  

Use of energy conservation yields Kf  = 4.5 J in this case. 

 

42. (a) We use Eq. 24-43 with q1 = q2 = –e and r = 2.00 nm: 

 

 9 2 2 19 22
191 2

9

8.99 10 N m C (1.60 10 C)
1.15 10 J.

2.00 10 m

q q e
U k k

r r







  
    


 

 

(b) Since U > 0 and U  r
–1

 the potential energy U decreases as r increases. 

 

43. THINK The work required to set up the arrangement is equal to the potential energy 

of the system. 

 

EXPRESS We choose the zero of electric potential to be at infinity. The initial electric 

potential energy Ui of the system before the particles are brought together is therefore 

zero. After the system is set up the final potential energy is 

 
2 2

0 0

1 1 1 1 1 1 2 1
2 .

4 42 2 2
f

q q
U

a a a a aa a 

   
           

   p p
 

 

Thus the amount of work required to set up the system is given by  

 

 
2 9 2 2 12 2

0

13

2 1 2(8.99 10 N m C )(2.30 10 C) 1
2 2

4 0.640 m2 2

1.92 10 J.

f i f

q
W U U U U

a





     
          

   

  



 

LEARN The work done in assembling the system is negative. This means that an 

external agent would have to supply 13

ext 1.92 10 JW   in order to take apart the 

arrangement completely.  

 

44. The work done must equal the change in the electric potential energy.  From Eq. 24-

14 and Eq. 24-26, we find (with r = 0.020 m) 

 

 
 9 2 2 19 2

25

0

8.99 10 N m C (18)(1.60 10 C)(3 2 2 )(6 )
2.1 10  J

4 0.020 m

e e e e
W

r




   

    . 

 

45. We use the conservation of energy principle. The initial potential energy is Ui = 

q
2
/40r1, the initial kinetic energy is Ki = 0, the final potential energy is Uf = q

2
/40r2, 
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and the final kinetic energy is K mvf 
1
2

2 , where v is the final speed of the particle. 

Conservation of energy yields 

     
q

r

q

r
mv

2

0 1

2

0 2

2

4 4

1

2  
  .  

The solution for v is 

 

2 9 2 2 6 2

6 3 3

0 1 2

3

2 1 1 (8.99 10 N m C )(2)(3.1 10 C) 1 1

4 20 10 kg 0.90 10 m 2.5 10 m

2.5 10 m s.

q
v

m r r



  

      
      

    

 

p

 

46. Let r = 1.5 m, x = 3.0 m, q1 = –9.0 nC, and q2 = –6.0 pC. The work done by an 

external agent is given by 

 

W U
q q

r r x
  



F
HG

I
KJ

     
F

HG
I
KJ  



L

N
MM

O

Q
PP

 

 



 1 2

2 2

9 12

10

4

1

9 0 10 6 0 10
1

15

1

15 30

18 10

 

1

    C C  8.99 10
N m

C  m  m  m

   J.

9
2

2 2 2
. .

. . .

.

c hc h
b g b g

 

 

47. The escape speed may be calculated from the requirement that the initial kinetic 

energy (of launch) be equal to the absolute value of the initial potential energy (compare 

with the gravitational case in Chapter 14).  Thus, 

 

 2

0

1

2 4

eq
mv

r
  

 

where  m = 9.11  10
31 

kg, e = 1.60  10
19 

C, q = 10000e, and r = 0.010 m.  This yields 

v = 22490 m/s 42.2 10  m/s  .   

 

48. The change in electric potential energy of the electron-shell system as the electron 

starts from its initial position and just reaches the shell is U = (–e)(–V) = eV. Thus from 

U K m ve i  1
2

2  we find the initial electron speed to be 

 
19

6

31

2 2 2(1.6 10 C)(125 V)
6.63 10  m/s.

9.11 10 kg
i

e e

U eV
v

m m





 
    


 

 

49. We use conservation of energy, taking the potential energy to be zero when the 

moving electron is far away from the fixed electrons. The final potential energy is then 
2

02 / 4fU e d , where d is half the distance between the fixed electrons. The initial 
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kinetic energy is K mvi 
1
2

2 ,  where m is the mass of an electron and v is the initial speed 

of the moving electron. The final kinetic energy is zero. Thus, 

 

Ki = Uf     
2 2

0

1
2 / 4 .

2
mv e d   

Hence, 

v
e

dm
 

  


 





4

4

8 99 10 4 160 10

0 010
32 10

2 9 19

31

2

 

. .

.
.

 N m C  C

 m 9.11 10  kg
m s.

2 2
2c hb gc h

b gc h  

 

50. The work required is 

 

1 2 1 1

0 0

( / 2)1 1
0.

4 2 4 2

q Q q Q q Q q Q
W U

d d d d 

   
        

   
 

 

51. (a) Let   015. m  be the length of the rectangle and w = 0.050 m be its width. Charge 

q1 is a distance   from point A and charge q2 is a distance w, so the electric potential at A 

is 
6 6

9 2 21 2

0

4

1 5.0 10 C 2.0 10 C
(8.99 10 N m / C )

4 0.15m 0.050 m

6.0 10 V.

A

q q
V

w

     
       

    

 

 

 

(b) Charge q1 is a distance w from point b and charge q2 is a distance ,  so the electric 

potential at B is 

 
6 6

9 2 21 2

0

5

1 5.0 10 C 2.0 10 C
(8.99 10 N m / C )

4 0.050 m 0.15m

7.8 10 V.

B

q q
V

w

     
       

    

  

 

 

(c) Since the kinetic energy is zero at the beginning and end of the trip, the work done by 

an external agent equals the change in the potential energy of the system. The potential 

energy is the product of the charge q3 and the electric potential. If UA is the potential 

energy when q3 is at A and UB is the potential energy when q3 is at B, then the work done 

in moving the charge from B to A is  

 

W = UA – UB = q3(VA – VB) = (3.0  10
–6

 C)(6.0  10
4
 V + 7.8  10

5
 V) = 2.5 J. 

 

(d) The work done by the external agent is positive, so the energy of the three-charge 

system increases. 

 

(e) and (f) The electrostatic force is conservative, so the work is the same no matter 

which path is used. 
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52. From Eq. 24-30 and Eq. 24-7, we have (for  = 180º)  

 

 
2 2

0 0

cos

4 4

p ep
U qV e

r r



 

 
    

 
 

 

where r = 0.020 m. Using energy conservation, we set this expression equal to 100 eV 

and solve for p.  The magnitude of the dipole moment is therefore  p = 4.5  10
12 

C m .  

 

53. (a) The potential energy is 

 

U
q

d
 

  


2 9 6

4

8 99 10 50 10

100
0 225

 

. .

.
.

 N m C  C

 m
 J

2 2
2c hc h

 

 

relative to the potential energy at infinite separation. 

 

(b) Each sphere repels the other with a force that has magnitude 

 

F
q

d
 

  


2

2

9 6

4

8 99 10 50 10
0 225

 

. .
.

 N m C  C

1.00 m
 N.

2 2
2

2

c hc h
b g  

 

According to Newton’s second law the acceleration of each sphere is the force divided by 

the mass of the sphere. Let mA and mB be the masses of the spheres. The acceleration of 

sphere A is 

a
F

m
A

A

 





0 225
450

3

.
.

 N

5.0 10  kg
 m s2  

 

and the acceleration of sphere B is 

 

a
F

m
B

B

 





0 225
22 5

3

.
. .

 N

10 10  kg
 m s2  

 

(c) Energy is conserved. The initial potential energy is U = 0.225 J, as calculated in part 

(a). The initial kinetic energy is zero since the spheres start from rest. The final potential 

energy is zero since the spheres are then far apart. The final kinetic energy is 
1
2

2 1
2

2m v m vA A B B ,  where vA and vB are the final velocities. Thus, 

 

U m v m vA A B B 
1

2

1

2

2 2 .  

Momentum is also conserved, so 

 

0  m v m vA A B B .  
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These equations may be solved simultaneously for vA and vB. Substituting 

( / )B A B Av m m v  , from the momentum equation into the energy equation, and collecting 

terms, we obtain  

U m m m m vA B A B A 1
2

2( / )( ) .  

Thus, 

 
3

3 3 3

2 2(0.225 J)(10 10  kg)
7.75 m/s.

( ) (5.0 10  kg)(5.0 10  kg 10 10  kg)

B
A

A A B

Um
v

m m m



  


  

    
 

 

We thus obtain 
3

3

5.0 10  kg
  (7.75 m/s) 3.87 m/s,

10 10  kg

A
B A

B

m
v v

m





 
      

 
 

 

or | | 3.87 m/s.Bv   

 

54. (a) Using U = qV we can “translate” the graph of voltage into a potential energy 

graph (in eV units).  From the information in the problem, we can calculate its kinetic 

energy (which is its total energy at x = 0) in those units: Ki = 284 eV.  This is less than 

the “height” of the potential energy “barrier” (500 eV high once we’ve translated the 

graph as indicated above).  Thus, it must reach a turning point and then reverse its motion. 

 

(b) Its final velocity, then, is in the negative x direction with a magnitude equal to that of 

its initial velocity.  That is, its speed (upon leaving this region) is 1.0  10
7 

m/s. 

      

55. Let the distance in question be r. The initial kinetic energy of the electron is 

K m vi e i 1
2

2 ,  where vi = 3.2  10
5
 m/s. As the speed doubles, K becomes 4Ki. Thus 

 

 U
e

r
K K K K m vi i i e i


        

2
2

4
4 3

3

2 
( ) ,  

or 

 

   

  

2
19 9 2 22

9

22 19 5
0

2 1.6 10  C 8.99 10 N m C2
1.6 10 m.

3 4 3 9.11 10  kg 3.2 10  m se i

e
r

m v







  
   

 
 

 

56. When particle 3 is at x = 0.10 m, the total potential energy vanishes.  Using Eq. 24-43, 

we have (with meters understood at the length unit) 

 

 1 3 3 21 2

0 0 0

0
4 4 ( 0.10 m) 4 (0.10 m)

q q q qq q

d d  
  


 

This leads to  
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1 2 1 2
3

0.10 m 0.10 m

q q q q
q

d d

 
   

 
 

 

which yields q3 = 5.7 C.  

 

57. THINK Mechanical energy is conserved in the process.   

 

EXPRESS The electric potential at (0, y) due to the two charges Q held fixed at ( ,0x ) 

is 

2 2

0

2

4

Q
V

x y



. 

 

Thus, the potential energy of the particle of charge q at (0, y) is  

 

2 2

0

2

4

Qq
U qV

x y
 


. 

 

Conservation of mechanical energy (Ki + Ui  =  Kf  + Uf ) gives 

 

2 2 2 2
0

2 1 1

4
f i i f i

i f

Qq
K K U U K

x y x y

 
      
  
 

, 

 

where iy  and fy  are the initial and final coordinates of the moving charge along the y 

axis. 

 

ANALYZE (a) With 615 10 C,q     Q = 50  10
6

 C, x = 3 m, yi = 4 m, and 0,fy   

we obtain 

 

6 6

12 2 2 2 2 2

2(50 10 C)( 15 10 C) 1 1
1.2 J

4 (8.85 10 C /N m ) (3.0 m) (4.0 m) (3.0 m)

3.0 J.

fK


 



   
   
    



  

 

(b) We set Kf  = 0 and solve for fy  (choosing the negative root, as indicated in the 

problem statement): 

2 2 2 2

0 0

2 2
1.2 J

4 4
i i f

i f

Qq Qq
K U U

x y x y 
    

 
 . 

 

Substituting the values given, we have 2.7 J,iU    and fy  = 8.5 m.  
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LEARN The dependence of the final kinetic energy of the particle on y is plotted below. 

From the plot, we see that 3.0 JfK   at y = 0, and 0fK  at y = 8.5 m. The particle 

oscillates between the two end-points 8.5 m.fy    

 
 

58. (a) When the proton is released, its energy is K + U = 4.0 eV + 3.0 eV (the latter 

value is inferred from the graph).  This implies that if we draw a horizontal line at the 7.0 

volt “height” in the graph and find where it intersects the voltage plot, then we can 

determine the turning point.  Interpolating in the region between 1.0 cm and 3.0 cm, we 

find the turning point is at roughly x = 1.7 cm. 

 

(b) There is no turning point toward the right, so the speed there is nonzero, and is given 

by energy conservation:  

 

v = 
2(7.0 eV)

m
  = 

2(7.0 eV)(1.6 x 10
-19 

J/eV)

1.67 x 10
-27

 kg
 = 20 km/s. 

 

(c) The electric field at any point P is the (negative of the) slope of the voltage graph 

evaluated at P. Once we know the electric field, the force on the proton follows 

immediately from F 


 = q E 


 , where q = +e for the proton. In the region just to the left of x 

= 3.0 cm, the field is E 


 = (+300 V/m) î  and the force is F = +4.8  10
17 

N. 

 

(d) The force F  points in the +x direction, as the electric field E . 

 

(e) In the region just to the right of x = 5.0 cm, the field is E 


 =(–200 V/m) î  and the 

magnitude of the force is F = 3.2  10
17 

N. 

 

(f) The force F  points in the x direction, as the electric field E . 

 

59. (a)  The electric field between the plates is leftward in Fig, 24-59 since it points 

toward lower values of potential. The force (associated with the field, by Eq. 23-28) is 

evidently leftward, from the problem description (indicating deceleration of the rightward 

moving particle), so that q > 0 (ensuring that F  


is parallel to E  


); it is a proton. 

 

(b) We use conservation of energy: 
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K0 + U0 = K + U       
1

2
 mpv

2
0  + qV1= 

1

2
 mpv

2
 + qV 2  . 

 

Using q = +1.6  10
19

 C, mp = 1.67  10
27

 kg, v0 = 90  10
3
 m/s, V1 = 70 V, and 

2 50 VV  , we obtain the final speed v = 6.53  10
4
 m/s.  We note that the value of d is 

not used in the solution. 

 

60. (a) The work done results in a potential energy gain: 

 

W = q V  = (e) 






Q

4o R
  =  + 2.16  10

13 
J . 

 

With R = 0.0800 m, we find Q =  –1.20  10
5 

C. 

 

(b) The work is the same, so the increase in the potential energy is U =  + 2.16  10
13 

J.   

 

61. We note that for two points on a circle, separated by angle  (in radians), the direct-

line distance between them is r = 2R sin(/2). Using this fact, distinguishing between the 

cases where N = odd and N = even, and counting the pair-wise interactions very carefully, 

we arrive at the following results for the total potential energies. We use k 1 4  .  For 

configuration 1 (where all N electrons are on the circle), we have 

 

   

1
1

2 22 2

1, even 1, odd

1 1

1 1 1
,    

2 sin 2 2 2 sin 2

N N

N N

j j

Nke Nke
U U

R j R j 




 

 

   
     
   
   
   

   

 

where 
2

.
N


   For configuration 2, we find 

 

 

 

 

 

3
12 22 2

2, even 2, odd

1 1

1 11 1 5
2 ,

2 sin 2 2 sin 2 2

N N

N N

j j

N ke N ke
U U

R j R j 




 

 

   
       

       
   

   

 

where 
2

.
1N





 The results are all of the form 

U
ke

R
1

2

2
or 2 a pure number.  

 

In our table below we have the results for those “pure numbers” as they depend on N and 

on which configuration we are considering. The values listed in the U rows are the 

potential energies divided by ke
2
/2R. 
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N 4 5 6 7 8 9 10 11 12 13 14 15 

U1 3.83 6.88 10.96 16.13 22.44 29.92 38.62 48.58 59.81 72.35 86.22 101.5 

U2 4.73 7.83 11.88 16.96 23.13 30.44 39.92 48.62 59.58 71.81 85.35 100.2 

 

We see that the potential energy for configuration 2 is greater than that for configuration 

1 for N < 12, but for N  12 it is configuration 1 that has the greatest potential energy. 

 

(a) N = 12 is the smallest value such that U2 < U1. 

 

(b) For N = 12, configuration 2 consists of 11 electrons distributed at equal distances 

around the circle, and one electron at the center. A specific electron e0 on the circle is R 

distance from the one in the center, and is 

 

2 sin 0.56
11

r R R
 

  
 

 

 

distance away from its nearest neighbors on the circle (of which there are two — one on 

each side). Beyond the nearest neighbors, the next nearest electron on the circle is 

 

2
2 sin 1.1

11
r R R

 
  

 
 

 

distance away from e0. Thus, we see that there are only two electrons closer to e0 than the 

one in the center. 

 

62. (a) Since the two conductors are connected V1 and V2 must be equal to each other. 

 

Let V1 = q1/40R1 = V2 = q2/40R2 and note that q1 + q2 = q and R2 = 2R1. We solve for 

q1 and q2:  q1 = q/3, q2 = 2q/3, or 

 

(b) q1/q = 1/3 = 0.333. 

 

(c) Similarly, q2/q = 2/3 = 0.667. 

 

(d) The ratio of surface charge densities is 

2
2

1 1 1 1 2

2

2 2 2 2 1

4
 2.00.

4

q R q R

q R q R





   
     

   

p

p
 

 

63. THINK The electric potential is the sum of the contributions of the individual 

spheres.  

 

EXPRESS Let q1 be the charge on one, q2 be the charge on the other, and d be their 

separation. The point halfway between them is the same distance d/2 (= 1.0 m) from the 

center of each sphere.  
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For parts (b) and (c), we note that the distance from the center of one sphere to the 

surface of the other is d – R, where R is the radius of either sphere. The potential of either 

one of the spheres is due to the charge on that sphere as well as the charge on the other 

sphere. 

 

ANALYZE (a) The potential at the halfway point is 

 

  9 2 2 8 8

21 2
8.99 10  N m C 1.0 10 C 3.0 10 C

1.8 10 V.
4 2 1.0 m

q q
V

d

     
    

0p
 

 

(b) The potential at the surface of sphere 1 is 

 

 
8 8

9 2 2 31 2
1

0

1 1.0 10 C 3.0 10 C
8.99 10 N m C 2.9 10 V.

4 0.030m 2.0m 0.030m

q q
V

R d R

    
             

 

(c) Similarly, the potential at the surface of sphere 2 is 

 

 
8 8

9 2 2 31 2
2

0

1 1.0 10 C 3.0 10 C
8.99 10 N m C 8.9 10 V.

4 2.0m 0.030m 0.030m

q q
V

d R R

    
              

 

LEARN In the limit where ,d   the spheres are isolated from each other and the 

electric potentials at the surface of each individual sphere become 

 
9 2 2 8

31
10

0

(8.99 10 N m C )(1.0 10 C)
3.0 10 V,

4 0.030m

q
V

R

  
     

and  
9 2 2 8

32
20

0

(8.99 10 N m C )( 3.0 10 C)
8.99 10 V.

4 0.030m

q
V

R

   
      

 

64. Since the electric potential throughout the entire conductor is a constant, the electric 

potential at its center is also +400 V. 

 

65. THINK If the electric potential is zero at infinity, then the potential at the surface of 

the sphere is given by V = Q/40R, where Q is the charge on the sphere and R is its 

radius.  

 

EXPRESS From V = Q/40R, we find the charge to be 04 .Q RV  

 

ANALYZE With 0.15 mR  and 1500 V,V   we have  

 

   8

0 9 2 2

0.15 m 1500 V
4 2.5 10 C.

8.99 10  N m C
Q RV    

 
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LEARN A plot of the electric potential as a function of 

r is shown to the right with 01/ 4k  . Note that the 

potential is constant inside the conducting sphere. 

 

66. Since the charge distribution is spherically 

symmetric we may write 

 

enc

0

1
( ) ,

4

q
E r

r
  

 

where qenc is the charge enclosed in a sphere of radius r centered at the origin.  

 

(a) For r = 4.00 m, R2 = 1.00 m, and R1 = 0.500 m, with r > R2 > R1 we have 

 

 
9 2 2 6 6

31 2

2 2

0

(8.99 10 N m C )(2.00 10 C 1.00 10 C)
1.69 10  V/m.

4 (4.00 m)

q q
E r

r

      
     

 

(b) For R2 > r = 0.700 m > R2, 

 

 
9 2 2 6

41

2 2

0

(8.99 10 N m C )(2.00 10 C)
3.67 10  V/m.

4 (0.700 m)

q
E r

r

  
     

 

(c) For R2 > R1 > r, the enclosed charge is zero. Thus, E = 0. 

 

The electric potential may be obtained using Eq. 24-18:  

 

V r V r E r dr
r

rb g b g b g  
z .  

 

(d) For r = 4.00 m > R2 > R1, we have 

 

 
9 2 2 6 6

31 2

0

(8.99 10 N m C )(2.00 10 C 1.00 10 C)
6.74 10  V.

4 (4.00 m)

q q
V r

r

      
     

 

(e) For r = 1.00 m = R2 > R1, we have 

 

 
9 2 2 6 6

41 2

0

(8.99 10 N m C )(2.00 10 C 1.00 10 C)
2.70 10  V.

4 (1.00 m)

q q
V r

r

      
     

 

(f) For R2 > r = 0.700 m > R2,  
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 
6 6

9 2 21 2

0 2

4

1 2.00 10 C 1.00 10 C
(8.99 10 N m C )

4 0.700 m 1.00 m

3.47 10  V.

q q
V r

r R

     
        

  

 

 

 

(g) For R2 > r = 0.500 m = R2,  

 

 
6 6

9 2 21 2

0 2

4

1 2.00 10 C 1.00 10 C
(8.99 10 N m C )

4 0.500 m 1.00 m

4.50 10  V.

q q
V r

r R

     
        

  

 

 

 

(h) For R2 > R1 > r,  

 
6 6

9 2 21 2

0 1 2

4

1 2.00 10 C 1.00 10 C
(8.99 10 N m C )

4 0.500 m 1.00 m

4.50 10  V.

q q
V

R R

     
        

  

 

 

 

(i) At r = 0, the potential remains constant, 44.50 10  V.V    

 

(j) The electric field and the potential as a function of r are depicted below: 

 

 
 

67. (a) The magnitude of the electric field is 

 

  
 

8 9 2 2

4

22

0 0

3.0 10 C 8.99 10 N m C
1.2 10 N C.

4 0.15m

q
E

R



 

  
      

 

(b) V = RE = (0.15 m)(1.2  10
4
 N/C) = 1.8  10

3
 V. 

 

(c) Let the distance be x. Then 

 

V V x V
q

R x R
  




F
HG

I
KJ  b g

4

1 1
500

 
V,  
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which gives 

x
R V

V V

 




 
  



015 500

1800 500
58 10 2

.
.

m V

V V
m.

b gb g
 

 

68. The potential energy of the two-charge system is 

 

   

   

   

9 2 2 6

1 2

2 2 2 2

1 2 1 2

8.99 10 N m C 3.00 C 4.00 10 C1

4 3.50 2.00 0.500 1.50 cm

1.93 J.

q q
U

x x y y

 



    
 

      

 

 

 

Thus, –1.93 J of work is needed. 

 

69. THINK To calculate the potential, we first apply Gauss’ law to calculate the electric 

field of the charged cylinder of radius R. The Gaussian surface is a cylindrical surface 

that is concentric with the cylinder. 

 

EXPRESS We imagine a cylindrical Gaussian surface A of radius r and length h 

concentric with the cylinder. Then, by Gauss’ law, 

 

enc

0

2 ,
A

q
E dA rhE


    

  

where encq is the amount of charge enclosed by the Gaussian cylinder. Inside the charged 

cylinder ( ),r R enc 0,q   so the electric field is zero. On the other hand, outside the 

cylinder (r > R), encq h so the magnitude of the electric field is 

 

0 0

/

2 2

q h
E

r r



 
   

 

where  is the linear charge density and r is the distance from the line to the point where 

the field is measured. The potential difference between two points 1 and 2 is  

 

     
2

1
2 1 .

r

r
V r V r E r dr    

 

ANALYZE (a) The radius of the cylinder (0.020 m, the same as RB) is denoted R, and the 

field magnitude there (160 N/C) is denoted EB. From the equation above, we see that the 

electric field beyond the surface of the cylinder is inversely proportional with r: 

 

, .B
B B

R
E E r R

r
   
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Thus, if r = RC = 0.050 m, we obtain  

 

 
0.020 m

160 N/C 64 N C.
0.050 m

B
C B

C

R
E E

R

 
   

 
 

 

(b) The potential difference between VB and VC is 

 

0.050 m
ln (160 N/C)(0.020 m) ln

0.020 m

2.9V.

B

C

R
CB B

B C B B
R

B

RE R
V V dr E R

r R

   
       

  



  

 

(c) The electric field throughout the conducting volume is zero, which implies that the 

potential there is constant and equal to the value it has on the surface of the charged 

cylinder: VA – VB = 0. 

 

LEARN The electric potential at a distance Br R  can be written as 

 

( ) lnB B B

B

r
V r V E R

R

 
   

 
. 

 

We see that ( )V r  decreases logarithmically with r.  

 

70. (a) We use Eq. 24-18 to find the potential: wall

R

r
V V Edr  , or 

 

 2 2

0 0

0        .
2 4

R

r

r
V V R r

 

 

 
      

 
  

 

Consequently, V = (R
2
 – r

2
)/40. 

 

(b) The value at r = 0 is 

 

Vcenter

3C m

C V m
m V.

 

 
   





11 10

4 885 10
0 05 0 7 8 10

3

12

2 4.

.
. .c h b ge j  

 

Thus, the difference is 4

center| | 7.8 10 V.V    

 

71. THINK The component of the electric field E in any direction is the negative of the 

rate at which potential changes with distance in that direction. 

 

EXPRESS From Eq. 24-30, the electric potential of a dipole at a point a distance r away 

is  
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2

0

1 cos

4

p
V

r




  

 

where p is the magnitude of the dipole moment p  and   is the angle between p  and the 

position vector of the point. The potential at infinity is taken to be zero.  

 

ANALYZE On the dipole axis  = 0 or , so |cos | = 1. Therefore, magnitude of the 

electric field is 

E r
V

r

p d

dr r

p

r
b g  






F
HG
I
KJ 4

1

22 3   
.  

 

LEARN Take the z axis to be the dipole axis. For 0r z  ( 0  ), 3

0/ 2 .E p z  On 

the other hand, for 0r z    (  ), 3

0/ 2 .E p z   

 

72. Using Eq. 24-18, we have 

 

ΔV  =  
3

42
 

A
dr

r
  =  

3 3

1 1

3 2 3

A  
 

 
= A(0.029/m

3
). 

 

73. (a) The potential on the surface is 

 

  6 9 2 2

5

0

4.0 10 C 8.99 10 N m C
3.6 10 V .

4 0.10m

q
V

R

  
   


 

 

(b) The field just outside the sphere would be 

 

E
q

R

V

R
  


 

4

36 10

010
36 10

2

5
6

 

.

.
. ,

V

m
V m  

 

which would have exceeded 3.0 MV/m. So this situation cannot occur. 

 

74. The work done is equal to the change in the (total) electric potential energy U of the 

system, where 

 3 2 1 31 2

0 12 0 23 0 134 4 4

q q q qq q
U

r r r  
    

 

and the notation r13 indicates the distance between q1 and q3 (similar definitions apply to 

r12 and r23).   
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(a) We consider the difference in U where initially r12 = b and r23 = a, and finally r12 = a 

and r23 = b  (r13 doesn’t change).  Converting the values given in the problem to SI units 

(C to C, cm to m), we obtain U =  – 24 J. 

 

(b) Now we consider the difference in U where initially r23 = a and r13 = a, and finally r23 

is again equal to a and r13 is also again equal to a  (and of course, r12 doesn’t change in 

this case).  Thus, we obtain U = 0. 

 

75. Assume the charge on Earth is distributed with spherical symmetry. If the electric 

potential is zero at infinity then at the surface of Earth it is V = q/40R, where q is the 

charge on Earth and R = 6.37  10
6
 m is the radius of Earth. The magnitude of the electric 

field at the surface is E = q/40R
2
, so  

 

V = ER = (100 V/m) (6.37  10
6
 m) = 6.4  10

8
 V. 

 

76. Using Gauss’ law, q =  nC.  Consequently,  

 
9 2 2 7

4

0

(8.99 10 N m C )(4.958 10 C)
3.71 10  V.

4 0.120 m

q
V

r

  
   


 

 

77. The potential difference is  

 

V = Es = (1.92  10
5
 N/C)(0.0150 m) = 2.90  10

3
 V. 

 

78. The charges are equidistant from the point where we are evaluating the potential — 

which is computed using Eq. 24-27 (or its integral equivalent). Equation 24-27 implicitly 

assumes V  0 as r  . Thus, we have 

 

1 1 1 1

9 2 2 12

2 3 21 1 1 1

4 4 4 4

2(8.99 10 N m C )(4.52 10 C)
0.956 V.

0.0850 m

Q Q Q Q
V

R R R R      



  
   

   

  
 

 

 

79. The electric potential energy in the presence of the dipole is 

 

 dipole 2 2

0 0

cos ( )( )cos

4 4

qp e ed
U qV

r r

 

 


    . 

 

Noting that i = f = 0º, conservation of energy leads to 

 

Kf + Uf  =  Ki + Ui        v = 
2 e

2

4o m d
 






1

25
  

1

49
  = 7.0 510  m/s . 
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80. We treat the system as a superposition of a disk of surface charge density  and 

radius R and a smaller, oppositely charged, disk of surface charge density – and radius r. 

For each of these, Eq 24-37 applies (for z > 0) 

 

V z R z z r z   


 






2 20

2 2

0

2 2e j e j.  
 

This expression does vanish as r  , as the problem requires. Substituting r = 0.200R 

and z = 2.00R and simplifying, we obtain 

 
12 2

12 2 2

2

5 5 101 (6.20 10 C/m )(0.130 m) 5 5 101

10 8.85 10 C /N m 10

1.03 10  V.

R
V













     
           

 

 

 

81. (a) When the electron is released, its energy is   

 

K + U = 3.0 eV 6.0 eV 

 

(the latter value is inferred from the graph along with the fact that U = qV and q = e).  

Because of the minus sign (of the charge) it is convenient to imagine the graph multiplied 

by a minus sign so that it represents potential energy in eV.  Thus, the 2 V value shown at 

x = 0 would become –2 eV, and the 6 V value at x = 4.5 cm becomes –6 eV, and so on.  

The total energy (3.0 eV) is constant and can then be represented on our (imagined) 

graph as a horizontal line at 3.0 V.  This intersects the potential energy plot at a point 

we recognize as the turning point.  Interpolating in the region between 1.0 cm and 4.0 cm, 

we find the turning point is at x = 1.75 cm  1.8 cm.  

 

(b) There is no turning point toward the right, so the speed there is nonzero.  Noting that 

the kinetic energy at x = 7.0 cm is  

 

K = 3.0 eV (5.0 eV) = 2.0 eV, 

 

we find the speed using energy conservation:  

 

  19

5

31

2 2.0 eV 1.60 10  J/eV2
8.4 10 m/s.

9.11 10  kge

K
v

m






   


 

 

(c) The electric field at any point P is the (negative of the) slope of the voltage graph 

evaluated at P.  Once we know the electric field, the force on the electron follows 

immediately from F qE , where q = e for the electron. In the region just to the left of 

4.0 cmx , the electric field is ˆ( 133 V/m)iE    and the magnitude of the force is 
172.1 10  NF   . 
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(d) The force points in the +x direction. 

 

(e) In the region just to the right of x = 5.0 cm, the field is E 


 = +100 V/m î  and the force 

is F 


 = ( –1.6 x 10
17 

N) î . Thus, the magnitude of the force is 171.6 10  NF   . 

 

(f) The minus sign indicates that F 


 points in the –x direction. 

 

82. (a) The potential would be 

 

    

2

0 0

6 2 9 9 2 2

4
4

4 4

4 6.37 10 m 1.0electron m 1.6 10 C electron 8.99 10 N m C

0.12V.

e e e
e e e

e e

Q R
V R k

R R

 
 

 

 

  

     

 

 

 

(b) The electric field is 

                E
V

R

e e

e

   


   

 0

8012
18 10

.
. ,

V

6.37 10 m
N C

6
 

or  8| | 1.8 10 N C.E    

 

(c) The minus sign in E indicates that 

E  is radially inward. 

 

83. (a)  Using d = 2 m, we find the potential at P: 

 
9 2 2 19

0 0 0

10

2 2 (8.99 10 N m C )(1.6 10 C)

4 4 (2 ) 4 2.00 m

7.192 10 V.

P

e e e
V

d d d  





   
   

 

 . 

 

Note that we are implicitly assuming that V  0 as r  . 

 

(b) Since U = qV , then the movable particle's contribution of the potential energy when it 

is at r =  is zero, and its contribution to Usystem when it is at P is  

 
19 10 282(1.6 10 C)(7.192 10 V) 2.30 10  JPU qV         . 

 

Thus, the work done is approximately equal to Wapp = 2.30  10
28

 J. 

 

(c) Now, combining the contribution to Usystem from part (b) and from the original pair of 

fixed charges 
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9 2 2 19 2

fixed
2 2

0

28

1 (2 )( 2 ) (8.99 10 N m C )(4)(1.60 10 C)

4 20.0 m(4.00 m) (2.00 m)

2.058 10  J

e e
U







   
 



  

 

 

we obtain 

Usystem =  Wapp + Ufixed = 2.43  10
–29

 J. 

 

84. The electric field throughout the conducting volume is zero, which implies that the 

potential there is constant and equal to the value it has on the surface of the charged 

sphere: 

 
04

A S

q
V V

R
   

 

where q = 30  10
9

 C and R = 0.030 m.  For points beyond the surface of the sphere, the 

potential follows Eq. 24-26: 

04
B

q
V

r
  

where r = 0.050 m. 

 

(a) We see that 

VS – VB  =
0

1 1

4

q

R r

 
 

 
= 3.6  10

3
 V. 

 

(b) Similarly,  

 VA – VB = 
0

1 1

4

q

R r

 
 

 
= 3.6  10

3
 V. 

 

85. We note that the net potential (due to the "fixed" charges) is zero at the first location 

("at ") being considered for the movable charge q (where q = +2e).  Thus, with D = 4.00 

m and e = 1.60  10
19

 C, we obtain 

 

 

9 2 2 19

0 0 0

10

2 2 (8.99 10 N m C )(2)(1.60 10 C)

4 (2 ) 4 4 4.00 m

7.192 10 V .

e e e
V

D D D  





    
   

 

  

 

The work required is equal to the potential energy in the final configuration:   

 

Wapp = qV = (2e)(7.192  10
10

 V) = 2.30  10
28

 J. 

 

86. Since the electric potential is a scalar quantity, this calculation is far simpler than it 

would be for the electric field.  We are able to simply take half the contribution that 
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would be obtained from a complete (whole) sphere.  If it were a whole sphere (of the 

same density) then its charge would be qwhole = 8.00 C.  Then  

 

V  =  
1

2
 Vwhole = 

1

2
  

qwhole

4o r
 =  

1

2
  

8.00 x 10
-6 

C

4o(0.15 m)
 = 2.40  10

5
 V . 

 

87. THINK The work done is equal to the change in potential energy. 

 

EXPRESS The initial potential energy of the system is 

 

 
2

0

0

2

4
i

q
U U

L
   

 

where q is the charge on each particle, L is the length of the triangle side, and U0 is the 

potential energy associated with the interaction of the two fixed charges. After moving to 

the midpoint of the line joining the two fixed charges, the final energy of the 

configuration is  
2

0

0

2

4 ( / 2)
f

q
U U

L
  . 

 

Thus, the work done by the external agent is  

 
2 2

0 0

2 2 1 2
.

4 4
f i

q q
W U U U

L L L 

 
       

 
 

 

ANALYZE Substituting the values given, we have 

 

 
2 9 2 2 2

8

0

2 2(8.99 10 N m C )(0.12 C)
1.5 10  J.

4 1.7 m

q
W

L

 
      

 

At a rate of P = 0.83  10
3 

joules per second, it would take W/P = 1.8  10
5 

seconds or 

about 2.1 days to do this amount of work. 

 

LEARN Since all three particles are positively charged, positive work is required by the 

external agent in order to bring them closer.  

 

88. (a) The charges are equal and are the same distance from C. We use the Pythagorean 

theorem to find the distance  

r d d d  2 2 2
2 2b g b g .  

 

The electric potential at C is the sum of the potential due to the individual charges but 

since they produce the same potential, it is twice that of either one: 
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    9 2 2 6

6

8.99 10 N m C 2 2 2.0 10 C2 22 2

4 4 0.020 m

2.5 10 V.

qq
V

d d 

  
  

 

    

 

(b) As you move the charge into position from far away the potential energy changes 

from zero to qV, where V is the electric potential at the final location of the charge. The 

change in the potential energy equals the work you must do to bring the charge in: 

 

  6 62.0 10 C 2.54 10 V 5.1 J.W qV       

 

(c) The work calculated in part (b) represents the potential energy of the interactions 

between the charge brought in from infinity and the other two charges. To find the total 

potential energy of the three-charge system you must add the potential energy of the 

interaction between the fixed charges. Their separation is d so this potential energy is 

q d2 4  .  The total potential energy is 

 

  
2

9 2 2 62 8.99 10 N m C 2.0 10 C
5.1 J 6.9 J.

4 0.020m

q
U W

d

  
    


 

 

89. The net potential at point P (the place where we are to place the third electron) due to 

the fixed charges is computed using Eq. 24-27 (which assumes V  0 as r  ): 

 

0 0 0

2

4 4 4
P

e e e
V

d d d  

 
    . 

 

Thus, with d = 2.00  10
6

 m and e = 1.60  10
19

 C, we find  

 
9 2 2 19

3

6

0

2 (8.99 10 N m C )(2)(1.60 10 C)
1.438 10 V .

4 2.00 10  m
P

e
V

d






  
      


 

 

Then the required “applied” work is, by Eq. 24-14, 

 

Wapp = (e) VP  = 2.30  10
22

 J. 

 

90. The particle with charge –q has both potential and kinetic energy, and both of these 

change when the radius of the orbit is changed. We first find an expression for the total 

energy in terms of the orbit radius r. The charge Q provides the centripetal force required 

for –q to move in uniform circular motion. The magnitude of the force is F = Qq/40r
2
. 

The acceleration of –q is v
2
/r, where v is its speed. Newton’s second law yields 

 



 

  

1107 

2
2

2

0 0

,
4 4

qQ mv Qq
mv

r r r 
    

and the kinetic energy is 

2

0

1

2 8

Qq
K mv

r
  . 

 

The potential energy is U = –Qq/40r, and the total energy is 

 

E K U
Qq

r

Qq

r

Qq

r
     

8 4 80 0 0    
. 

 

When the orbit radius is r1 the energy is E1 = –Qq/80r1 and when it is r2 the energy is 

E2 = –Qq/80r2. The difference E2 – E1 is the work W done by an external agent to 

change the radius: 

W E E
Qq

r r

Qq

r r
    

F
HG
I
KJ  

F
HG
I
KJ2 1

2 1 1 28

1 1

8

1 1

   
.  

 

91. The initial speed vi of the electron satisfies  

 

K m v e Vi e i 1
2

2  ,  

which gives 

 

v
e V

m
i

e

 



 





2 2 160 10

911 10
148 10

19

31

7 .

.
.

 J 625 V

 kg
m s.

c hb g
 

 

92. The net electric potential at point P is the sum of those due to the six charges: 

 

   

   
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
     

   

 

 

 

 

93. THINK To calculate the potential at point B due to the charged ring, we note that all 

points on the ring are at the same distance from B.  

 

EXPRESS Let point B be at  (0, 0, z). The electric potential at B is given by 
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V
q

z R


4 2 2 
 

 

 where q is the charge on the ring. The potential at infinity is taken to be zero. 

 

ANALYZE With q = 16  10
–6

 C, z = 0.040 m, and R = 0.0300 m, we find the potential 

difference between points A (located at the origin) and B to be 

 

2 2
0

9 2 2 6

2 2

6

1 1

4

1 1
(8.99 10 N m C )(16.0 10 C)

0.030 m(0.030 m) (0.040 m)

1.92 10 V.

B A

q
V V

Rz R



 
   

 

 
     
  

  

 

 

LEARN In the limit ,z R  the potential approaches its “point-charge” limit: 

 

0

.
4

q
V

z
  

 

94. (a) Using Eq. 24-26, we calculate the radius r of the sphere representing the 30 V 

equipotential surface: 

 
9 2 2 8

0

(8.99 10 N m C )(1.50 10 C)
4.5m.

4 30 V

q
r

V

  
    

 

(b) If the potential were a linear function of r then it would have equally spaced 

equipotentials, but since V r1  they are spaced more and more widely apart as r 

increases. 

 

95. THINK To calculate the electric potential, we first apply Gauss’ law to calculate the 

electric field of the spherical shell. The Gaussian surface is a sphere that is concentric 

with the shell. 

 

EXPRESS At all points where there is an electric field, it is radially outward. For each 

part of the problem, use a Gaussian surface in the form of a sphere that is concentric with 

the sphere of charge and passes through the point where the electric field is to be found. 

The field is uniform on the surface, so the flux through the surface is given by 
2

enc 04 / ,E dA r E q        where r is the radius of the Gaussian surface and encq  is 

the charge enclosed. (i) In the region 1,r r  the enclosed charge is enc 0q   and therefore, 
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E = 0. (ii) In the region r1 < r < r2, the volume of the shell is 4 3 2

3

1

3b gc hr r , so the 

charge density is 

 


3

4 2

3

1

3

Q

r rc h ,  

 

where Q is the total charge on the spherical shell. Thus, the charge enclosed by the 

Gaussian surface is 

 
3 3

3 3 1
enc 1 3 3

2 1

4
.

3

r r
q r r Q

r r




  
     

   
 

 

Gauss’ law yields 

 

3 3 3 3
2 1 1

0 3 3 2 3 3
2 1 0 2 1

4 .
4

r r r rQ
r E Q E

r r r r r




  
    

   
 

 

(iii) In the region 2 ,r r  the charge enclosed is enc ,q Q  and the electric field is like that 

of a point charge: 

2

0

1
.

4

Q
E

r
  

 

ANALYZE (a) For r > r2 the field is like that of a point charge, and so is the potential: 

 

V
Q

r


1

4 0
,  

 

where the potential was taken to be zero at infinity. 

 

(b) In the region r1 < r < r2, we have  

 

3 3

1

2 3 3
0 2 1

.
4

r rQ
E

r r r




 
 

 

If Vs is the electric potential at the outer surface of the shell (r = r2) then the potential a 

distance r from the center is given by 

 

V V E dr V
Q

r r
r

r

r
dr

V
Q

r r

r r r

r

r

r

s s
r

r

r

r

s

   



F
HG
I
KJ

 


  
F
HG

I
KJ

z z4

1

4

1

2 2

0 2

3

1

3

1

3

2

0 2

3

1

3

2

2

2

1

3

1

3

2

2 2






.

 

 

The potential at the outer surface is found by placing r = r2 in the expression found in 

part (a). It is Vs = Q/40r2. We make this substitution and collect terms to find 
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V
Q

r r

r r r

r



 

F
HG

I
KJ4

1 3

2 20 2

3

1

3

2

2 2

1

3


.  

 

Since   3 4 2

3

1

3Q r rc h  this can also be written as 

 
2 32

2 1

0

3
( ) .

3 2 2

r rr
V r

r





 
   

 
 

 

(c) For 1,r r  the electric field vanishes in the cavity, so the potential is everywhere the 

same inside and has the same value as at a point on the inside surface of the shell. We put 

r = r1 in the result of part (b). After collecting terms the result is 

 

V
Q r r

r r




4

3

20

2

2

1

2

2

3

1

3

c h
c h ,  

 

or in terms of the charge density V r r 


2 0

2

2

1

2c h. 
 

(d) Using the expression for V(r) found in (b), we have 

 

 
2 2 3 2 2

2 22 1 1 2 1
1 2 1

0 1 0 0

3 3 3
( )

3 2 2 3 2 2 2

r r r r r
V r r r

r

  

  

   
         

  
 

and 

 

 
2 2 3 3

2 3 32 2 1 1
2 2 2 1

0 2 0 2 0 2 0 2 0 2

3 3 / 4
( )

3 2 2 3 3 3 4

r r r r Q Q
V r r r r

r r r r r

   

    

   
           

   
. 

 

So the solutions agree at r = r1 and at r = r2. 

 

LEARN Electric potential must be continuous at the boundaries at r = r1 and r = r2. In 

the region where the electric field is zero, no work is required to move the charge around. 

Thus, there’s no change in potential energy and the electric potential is constant. 

 

96. (a) We use Gauss’ law to find expressions for the electric field inside and outside the 

spherical charge distribution. Since the field is radial the electric potential can be written 

as an integral of the field along a sphere radius, extended to infinity. Since different 

expressions for the field apply in different regions the integral must be split into two parts, 

one from infinity to the surface of the distribution and one from the surface to a point 

inside.  
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Outside the charge distribution the magnitude of the field is E = q/40r
2 

and the 

potential is V = q/40r, where r is the distance from the center of the distribution. This is 

the same as the field and potential of a point charge at the center of the spherical 

distribution. To find an expression for the magnitude of the field inside the charge 

distribution, we use a Gaussian surface in the form of a sphere with radius r, concentric 

with the distribution. The field is normal to the Gaussian surface and its magnitude is 

uniform over it, so the electric flux through the surface is 4r
2
E. The charge enclosed is 

qr
3
/R

3
. Gauss’ law becomes 

3
2

0 3 3

0

4 .
4

qr qr
r E E

R R



  


 

 

If Vs is the potential at the surface of the distribution (r = R) then the potential at a point 

inside, a distance r from the center, is 

 

V V E dr V
q

R
r dr V

qr

R

q

R
s

R

r

s
R

r

s      z z4 8 80

3

2

0

3

0    
.  

 

The potential at the surface can be found by replacing r with R in the expression for the 

potential at points outside the distribution. It is Vs = q/40R. Thus, 

 

V
q

R

r

R R

q

R
R r  

L
NM

O
QP  

4

1

2

1

2 8
3

0

2

3

0

3

2 2

  
c h.  

 

(b) The potential difference is 

0 0 0

2 3
,

8 8 8
s c

q q q
V V V

R R R  
      

  
 

or 0| | /8V q R  . 

 

97. THINK The increase in electric potential at the surface of the copper sphere is 

proportional to the increase in electric charge.  

 

EXPRESS The electric potential at the surface of a sphere of radius R is given by 

0/ 4 ,V q R  where q is the charge on the sphere. Thus, 04 .q RV  The number of 

electrons entering the copper sphere is / ,N q e  but this must be equal to ( / 2) ,t  where 

 is the decay rate of the nickel.   

 

ANALYZE (a) With R = 0.010 m, when V = 1000 V, the net charge on the sphere is 

 

9

0 9 2 2

(0.010 m)(1000 V)
4 1.11 10 C.

8.99 10 N m C
q RV    

 
 

 

Dividing q by e yields  
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9 19 9(1.11 10 C)/(1.6 10 C) 6.95 10N        

 

electrons that entered the copper sphere.  So the time required is 

 

 
9

8

6.95 10
38 s

/ 2 (3.7 10 / s) / 2

N
t




  


. 

 

(b) The energy deposited by each electron that enters the sphere is 0E  100 keV = 1.6  

10
14

 J. Using the given heat capacity, we note that a temperature increase of T = 5.0 K 

= 5.0 ºC required  

(14 J/K)(5.0 K) 70 JE C T     

 

of energy. Dividing this by 0E  gives the number of electrons needed to enter the sphere 

(in order to achieve that temperature change): 

 

 15

14

0

70 J
4.375 10

1.6 10  J

E
N

E 
    


 

Thus, the time needed is 
15

7

8

4.375 10
2.36 10 s

/ 2 (3.7 10 / s) / 2

N
t



 
    


 

or roughly 270 days.  

 

LEARN As more electrons get into copper, more energy is deposited, and the copper 

sample gets hotter.  

 

98. (a) The potential difference is 

 
6 6

9 2 2

0 0

5

1 1 15 10  C 5.0 10  C
(8.99 10 N m C )

4 4 0.060 m 0.030 m

7.49 10  V.

Q q
V

R r 

   
       

 

 

 

 

(b) By connecting the two metal spheres with a wire, we now have one conductor, and 

any excess charge must reside on the surface of the conductor. Therefore, the charge on 

the small sphere is zero. 

 

(c) Since all the charges reside on the surface of the large sphere, we have 

 

15.0 C 5.00 C 20.0 C.Q Q q          

 

99. (a) The charge on every part of the ring is the same distance from any point P on the 

axis. This distance is r z R 2 2 , where R is the radius of the ring and z is the distance 

from the center of the ring to P. The electric potential at P is 
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2 2 2 2
0 0 0

2 2
0

1 1 1 1

4 4 4

1
.

4

dq dq
V dq

r z R z R

q

z R

  



  
 




  
 

 

(b) The electric field is along the axis and its component is given by 

 

2 2 1/ 2 2 2 3/ 2

0 0

2 2 3/ 2

0

1
( ) ( ) (2 )

4 4 2

.
4 ( )

V q q
E z R z R z

z z

q z

z R

 



    
       

   




 

 

This agrees with Eq. 23-16. 

 

100. The distance r being looked for is that where the alpha particle has (momentarily) 

zero kinetic energy.  Thus, energy conservation leads to 

 

K0 + U0 = K + U     (0.48  10
12

 J) + 
(2e)(92e)

40 r0
 = 0 + 

(2e)(92e)

40 r
   . 

 

If we set r0 =  (so U0 = 0) then we obtain r = 8.8  10
14

 m. 

 

101. (a) Let the quark-quark separation be r. To “naturally” obtain the eV unit, we only 

plug in for one of the e values involved in the computation: 

 

     
 

9 2 2 19

up up 15
0

5

4 8.99 10 N m C 1.60 10 C2 / 3 2 / 31 4

4 9 9 1.32 10 m

4.84 10 eV 0.484MeV.

e e ke
U e e

r r



 

  
  



  

 

 

(b) The total consists of all pair-wise terms: 

 

        

0

2 / 3 2 / 3 / 3 2 / 3 / 3 2 / 31
0.

4

e e e e e e
U

r r r

  
    

 
 

 

102. We imagine moving all the charges on the surface of the sphere to the center of the 

the sphere. Using Gauss’ law, we see that this would not change the electric field outside 

the sphere.  

 

The magnitude of the electric field E of the uniformly charged sphere as a function of r, 

the distance from the center of the sphere, is thus given by E(r) = q/(40r
2
) for r > R. 
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Here R is the radius of the sphere. Thus, the potential V at the surface of the sphere 

(where r = R) is given by 

 

   
   

2

2

9 8N m

C

2

2

8.99 10 1.50 10 C

4 4 0.160m

8.43 10 V.

R

r
R

q q
V R V E r dr dr

r R 







 

 
    

 

   

 

103. Since the electric potential energy is not changed by the introduction of the third 

particle, we conclude that the net electric potential evaluated at P caused by the original 

two particles must be zero: 

 1 2

0 1 0 2

0
4 4

q q

r r 
  . 

 

Setting r1 = 5d/2 and r2 = 3d /2 we obtain q1 = – 5q2/3, or 1 2/ 5/3 1.7q q   . 
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Chapter 25 
 

 

1. (a) The capacitance of the system is 

 

C
q

V
  


70

20
35

pC

V
pF..  

 

(b) The capacitance is independent of q; it is still 3.5 pF. 

 

(c) The potential difference becomes 

 

V
q

C
  

200

35
57

pC

pF
V.

.
 

 

2. Charge flows until the potential difference across the capacitor is the same as the 

potential difference across the battery. The charge on the capacitor is then q = CV, and 

this is the same as the total charge that has passed through the battery. Thus,  

 

q = (25  10
–6

 F)(120 V) = 3.0  10
–3

 C. 

 

3. THINK The capacitance of a parallel-plate capacitor is given by C = 0A/d, where A is 

the area of each plate and d is the plate separation.  

 

EXPRESS Since the plates are circular, the plate area is A = R
2
, where R is the radius 

of a plate. The charge on the positive plate is given by q = CV, where V is the potential 

difference across the plates. 

 

ANALYZE (a) Substituting the values given, the capacitance is 

 

   
2

12 22
100

3

8.85 10 F m 8.2 10 m
1.44 10 F 144 pF.

1.3 10 m

R
C

d

 
 





 
    


 

 

(b) Similarly, the charge on the plate when V = 120 V is  

 

q = (1.44  10
–10

 F)(120 V) = 1.73  10
–8

 C = 17.3 nC. 

 

LEARN Capacitance depends only on geometric factors, namely, the plate area and plate 

separation.   

 

4. (a) We use Eq. 25-17: 
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  

  
2

2

0 9 N m

C

40.0mm 38.0mm
4 84.5 pF.

8.99 10 40.0mm 38.0mm

ab
C

b a



  

  
 

 

(b) Let the area required be A. Then C = 0A/(b – a), or 

 

    

 
2

12 2 2
0

84.5pF 40.0mm 38.0mm
191cm .

8.85 10 C /N m

C b a
A

 

 
  

 
 

 

5. Assuming conservation of volume, we find the radius of the combined spheres, then 

use C = 40R to find the capacitance. When the drops combine, the volume is doubled. It 

is then V = 2(4/3)R
3
. The new radius R' is given by 

 

 
3 34 4

2     
3 3

R R  
p p

    R R21 3 . 

 

The new capacitance is 
1 3

0 0 04 4 2 5.04 .C R R R     p p p  

 

With R = 2.00 mm, we obtain   12 3 135.04 8.85 10 F m 2.00 10 m 2.80 10 FC         . 

 

6. (a) We use C = A0/d. The distance between the plates is 

 

  2 12 2 2

120
1.00m 8.85 10 C /N m

8.85 10 m.
1.00F

A
d

C





 

     

 

(b) Since d is much less than the size of an atom ( 10
–10

 m), this capacitor cannot be 

constructed. 

 

7. For a given potential difference V, the charge on the surface of the plate is  

 

 ( )q Ne nAd e   

 

where d is the depth from which the electrons come in the plate, and n is the density of 

conduction electrons. The charge collected on the plate is related to the capacitance and 

the potential difference by q CV  (Eq. 25-1). Combining the two expressions leads to 

 

 
C d

ne
A V
 . 

 

With 14 / / 5.0 10 m/Vs sd V d V     and 28 38.49 10 / mn    (see, for example, Sample 

Problem 25.01 — “Charging the plates in a parallel-plate capacitor”), we obtain 
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28 3 19 4 2(8.49 10 / m )(1.6 10 C)(5.0 10 14 m/V) 6.79 10 F/m
C

A

        . 

 

8. The equivalent capacitance is given by Ceq = q/V, where q is the total charge on all the 

capacitors and V is the potential difference across any one of them. For N identical 

capacitors in parallel, Ceq = NC, where C is the capacitance of one of them. Thus, 

/NC q V  and 

   
3

6

1 00C
9 09 10

110V 1 00 10 F

q .
N . .

VC . 
   


 

 

9. The charge that passes through meter A is 

 

q C V CV   eq F V C.3 3 250 4200 0 315. .b gb g  

 

10. The equivalent capacitance is 

 

C C
C C

C C
eq F

F F

F F
F. 


 


3

1 2

1 2

4 00
10 0 500

10 0 500
7 33.

. .

. .
.

 

 


b gb g
 

 

11. The equivalent capacitance is 

 

    1 2 3

eq

1 2 3

10.0 F 5.00 F 4.00 F
3.16 F.

10.0 F 5.00 F 4.00 F

C C C
C

C C C

  


  

 
  

   
 

 

12. The two 6.0 F capacitors are in parallel and are consequently equivalent to 

eq 12 FC  .  Thus, the total charge stored (before the squeezing) is  

 

 total eq 12 F (10 0V) 120 C.q C V .     

 

(a) and (b)  As a result of the squeezing, one of the capacitors is now 12 F (due to the 

inverse proportionality between C and d in Eq. 25-9), which represents an increase of 

6.0 F  and thus a charge increase of  

 

 total eq 6 0 F (10 0V) 60 C .q C V . .      

 

13. THINK Charge remains conserved when a fully charged capacitor is connected to an 

uncharged capacitor.  

 

EXPRESS The charge initially on the charged capacitor is given by q = C1V0, where C1 

= 100 pF is the capacitance and V0 = 50 V is the initial potential difference. After the 

battery is disconnected and the second capacitor wired in parallel to the first, the charge 
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on the first capacitor is q1 = C1V, where V = 35 V is the new potential difference. Since 

charge is conserved in the process, the charge on the second capacitor is q2 = q – q1, 

where C2 is the capacitance of the second capacitor.  

 

ANALYZE Substituting C1V0 for q and C1V for q1, we obtain q2 = C1(V0 – V). The 

potential difference across the second capacitor is also V, so the capacitance of the second 

capacitor is 

 02
2 1

50V 35V
100pF 42.86 pF 43pF.

35V

V Vq
C C

V V

 
      

 

LEARN Capacitors in parallel have the same potential difference. To verify charge 

conservation explicitly, we note that the initial charge on the first capacitor is 

1 0 (100 pF)(50 V) 5000 pC.q CV    After the connection, the charges on each capacitor 

are   

1 1

2 2

(100 pF)(35 V) 3500 pC

(42.86 pF)(35 V) 1500 pC.

q CV

q C V

  

  
 

Indeed, q = q1 + q2. 

 

14. (a) The potential difference across C1 is V1 = 10.0 V. Thus,  

 

q1 = C1V1 = (10.0 F)(10.0 V) = 1.00  10
–4

 C. 

 

(b) Let C = 10.0 F. We first consider the three-capacitor combination consisting of C2 

and its two closest neighbors, each of capacitance C. The equivalent capacitance of this 

combination is 

2
eq

2

1 50 
C C

C C . C.
C C

  


 

 

Also, the voltage drop across this combination is 

 

1 1
1

eq

0 40
1 50 

CV CV
V . V .

C C C . C
  

 
 

 

Since this voltage difference is divided equally between C2 and the one connected in 

series with it, the voltage difference across C2 satisfies V2 = V/2 = V1/5. Thus 

 

  5

2 2 2

10 0V
10 0 F 2 00 10 C.

5

.
q C V . .  
    

 
 

 

15. (a) First, the equivalent capacitance of the two 4.00 F capacitors connected in series 

is given by 4.00 F/2 = 2.00 F. This combination is then connected in parallel with two 

other 2.00-F capacitors (one on each side), resulting in an equivalent capacitance C = 

3(2.00 F) = 6.00 F. This is now seen to be in series with another combination, which 



 

  

1119 

consists of the two 3.0-F capacitors connected in parallel (which are themselves 

equivalent to C' = 2(3.00 F) = 6.00 F). Thus, the equivalent capacitance of the circuit 

is 

   
eq

6 00 F 6 00 F
3 00 F.

6 00 F 6 00 F

. .CC
C .

C C . .

 


 


  

 
 

 

(b) Let V = 20.0 V be the potential difference supplied by the battery. Then  

 

q = CeqV = (3.00 F)(20.0 V) = 6.00  10
–5

 C. 

 

(c) The potential difference across C1 is given by 

 

   
1

6 00 F 20 0V
10 0V

6 00 F 6 00 F

. .CV
V . .

C C . .



 
  

 
 

 

(d) The charge carried by C1 is q1 = C1V1= (3.00 F)(10.0 V) = 3.00  10
–5

 C. 

 

(e) The potential difference across C2 is given by V2 = V – V1 = 20.0 V – 10.0 V = 10.0 V.  

 

(f) The charge carried by C2 is q2 = C2V2 = (2.00 F)(10.0 V) = 2.00  10
–5

 C. 

 

(g) Since this voltage difference V2 is divided equally between C3 and the other 4.00-F 

capacitors connected in series with it, the voltage difference across C3 is given by V3 = 

V2/2 = 10.0 V/2 = 5.00 V.  

 

(h) Thus, q3 = C3V3 = (4.00 F)(5.00 V) = 2.00  10
–5

 C. 

 

16. We determine each capacitance from the slope of the appropriate line in the graph.  

Thus, C1 = (12 C)/(2.0 V) = 6.0 F.  Similarly, C2 = 4.0 F and C3 = 2.0 F.  The total 

equivalent capacitance is given by 

 

1 2 3

123 1 2 3 1 2 3

1 1 1

( )

C C C

C C C C C C C

 
  

 
, 

or  

1 2 3
123

1 2 3

( ) (6.0 F)(4.0 F 2.0 F) 36
 F 3.0 F

6.0 F 4.0 F 2.0 F 12

C C C
C

C C C

  
 

  

 
   

   
. 

 

This implies that the charge on capacitor 1 is 1q  (3.0 F)(6.0 V) = 18 C.  The voltage 

across capacitor 1 is therefore V1 = (18 C)/(6.0 F) = 3.0 V.  From the discussion in 

section 25-4, we conclude that the voltage across capacitor 2 must be 6.0 V – 3.0 V = 3.0 

V.  Consequently, the charge on capacitor 2 is (4.0 F)(3.0 V) = 12 C.   

 

17. (a) and (b) The original potential difference V1 across C1 is 
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  eq

1

1 2

3.16 F 100.0V
21.1V.

10.0 F 5.00 F

C V
V

C C



 
  

 
 

 

Thus V1 = 100.0 V – 21.1 V = 78.9 V and  

 

q1 = C1V1 = (10.0 F)(78.9 V) = 7.89  10
–4

 C. 

 

18. We note that the voltage across C3 is V3 = (12 V – 2 V – 5 V) = 5 V.  Thus, its charge 

is q3  = C3 V3 = 4 C.  

 

(a) Therefore, since C1, C2 and C3 are in series (so they have the same charge), then 

 

C1 =  
4 C

2 V
 = 2.0 F . 

(b) Similarly, C2 = 4/5 = 0.80 F. 

 

19. (a) and (b) We note that the charge on C3 is q3 = 12 C – 8.0 C = 4.0 C.  Since the 

charge on C4 is q4 = 8.0 C, then the voltage across it is q4/C4 = 2.0 V.  Consequently, the 

voltage V3 across C3 is 2.0 V  C3 = q3/V3 = 2.0 F.   

 

Now C3 and C4  are in parallel and are thus equivalent to 6 F capacitor which would then 

be in series with C2 ; thus, Eq 25-20 leads to an equivalence of  2.0 F which is to be 

thought of as being in series with the unknown C1 .  We know that the total effective 

capacitance of the circuit (in the sense of what the battery “sees” when it is hooked up) is 

(12 C)/Vbattery = 4 F/3.  Using Eq 25-20 again, we find 

 
1

2F
  +  

1

C1
  = 

3

4F
         C1  = 4.0 F . 

 

20. For maximum capacitance the two groups of plates must face each other with 

maximum area. In this case the whole capacitor consists of (n – 1) identical single 

capacitors connected in parallel. Each capacitor has surface area A and plate separation d 

so its capacitance is given by C0 = 0A/d. Thus, the total capacitance of the combination is  

 

 
  12 2 2 4 2

0 12

0 3

1 (8 1)(8.85 10 C /N m )(1.25 10  m )
1 2.28 10 F.

3.40 10  m

n A
C n C

d

  




    
     


 

 

21. THINK After the switches are closed, the potential differences across the capacitors 

are the same and they are connected in parallel.  

 

EXPRESS The potential difference from a to b is given by Vab = Q/Ceq, where Q is the 

net charge on the combination and Ceq is the equivalent capacitance.  
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ANALYZE (a) The equivalent capacitance is Ceq = C1 + C2 = 4.0  10
–6

 F. The total 

charge on the combination is the net charge on either pair of connected plates. The initial 

charge on capacitor 1 is 

  6 4

1 1 1.0 10 F 100V 1.0 10 Cq CV        

 

and the initial charge on capacitor 2 is 

 

  6 4

2 2 3.0 10 F 100V 3.0 10 C.q C V        

 

With opposite polarities, the net charge on the combination is  

 

Q = 3.0  10
–4

 C – 1.0  10
–4

 C = 2.0  10
–4

 C. 

 

The potential difference is 
4

6

eq

2.0 10 C
50V.

4.0 10 F
ab

Q
V

C






  


 

 

(b) The charge on capacitor 1 is now 
1q C1Vab = (1.0  10

–6
 F)(50 V) = 5.0  10

–5
 C. 

 

(c) The charge on capacitor 2 is now 
2q C2Vab = (3.0  10

–6
 F)(50 V) = 1.5  10

–4
 C. 

 

LEARN The potential difference 50 VabV   is half of the original V ( = 100 V), so the 

final charges on the capacitors are also halved.  

 

22. We do not employ energy conservation since, in reaching equilibrium, some energy is 

dissipated either as heat or radio waves. Charge is conserved; therefore, if Q = C1Vbat = 

100 C, and q1, q2 and q3 are the charges on C1, C2 and C3 after the switch is thrown to 

the right and equilibrium is reached, then 

 

Q = q1 + q2 + q3. 

 

Since the parallel pair C2 and C3 are identical, it is clear that q2 = q3.  They are in parallel 

with C1 so that V1=V3, or 

 31

1 3

qq

C C
  

 

which leads to q1 =  q3/2.  Therefore, 

 

 3 3 3 3( / 2) 5 / 2Q q q q q     

 

which yields q3 = 2 /5 2(100 C) /5 40 CQ     and consequently q1 = q3/2 = 20 C. 
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23. We note that the total equivalent capacitance is C123 = [(C3)
1 + (C1 + C2)

1]
1

 = 6 F.   

 

(a) Thus, the charge that passed point a is C123 Vbatt = (6 F)(12 V) = 72 C.  Dividing this 

by the value e = 1.60  10
19 

C gives the number of electrons: 4.5  10
14

, which travel to 

the left, toward the positive terminal of the battery.   

 

(b) The equivalent capacitance of the parallel pair is C12 = C1 + C2 = 12 F.  Thus, the 

voltage across the pair (which is the same as the voltage across C1 and C2 individually) is 

 

72 C

12 F
  = 6 V. 

Thus, the charge on C1 is  

1q  (4 F)(6 V) = 24 C, 

 

and dividing this by e gives 14

1 1 / 1.5 10N q e   , the number of electrons that have 

passed (upward) through point b.  

 

(c) Similarly, the charge on C2 is 2q   (8 F)(6 V) = 48 C, and dividing this by e gives 

14

2 2 / 3.0 10N q e   , the number of electrons which have passed (upward) through 

point c. 

 

(d) Finally, since C3 is in series with the battery, its charge is the same charge that passed 

through the battery (the same as passed through the switch).  Thus, 4.5  10
14

 electrons 

passed rightward though point d.  By leaving the rightmost plate of C3, that plate is then 

the positive plate of the fully charged capacitor, making its leftmost plate (the one closest 

to the negative terminal of the battery) the negative plate, as it should be.  

 

(e) As stated in (b), the electrons travel up through point b. 

 

(f) As stated in (c), the electrons travel up through point c. 

 

24. Using Equation 25-14, the capacitances are   

 
12 2 2

0 1
1

1 1

12 2 2

0 2
2

2 2

2 2 (8.85 10 C /N m )(0.050 m)
2.53 pF

ln( / ) ln(15 mm/5.0 mm)

2 2 (8.85 10 C /N m )(0.090 m)
3.61 pF .

ln( / ) ln(10 mm/2.5 mm)

L
C

b a

L
C

b a

 

 





 
  

 
  

 

 

Initially, the total equivalent capacitance is  

 

1 2 1 2
12

12 1 2 1 2 1 2

1 1 1 (2.53 pF)(3.61 pF)
1.49 pF

2.53 pF 3.61 pF

C C C C
C

C C C C C C C


      

 
, 
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and the charge on the positive plate of each one is (1.49 pF)(10 V) = 14.9 pC.  Next, 

capacitor 2 is modified as described in the problem, with the effect that  

 

 
12 2 2

0 2
2

2 2

2 2 (8.85 10 C /N m )(0.090 m)
2.17 pF .

ln( / ) ln(25 mm/2.5 mm)

L
C

b a

   
   


 

 

The new total equivalent capacitance is  

 

1 2
12

1 2

(2.53 pF)(2.17 pF)
1.17 pF

2.53 pF 2.17 pF

C C
C

C C


   

 
 

 

and the new charge on the positive plate of each one is (1.17 pF)(10 V) = 11.7 pC.  Thus 

we see that the charge transferred from the battery (considered in absolute value) as a 

result of the modification is 14.9 pC – 11.7 pC = 3.2 pC.  

 

(a) This charge, divided by e gives the number of electrons that pass point P.  Thus,  

 

 
12

7

19

3.2 10 C
2.0 10

1.6 10 C
N






  


. 

 

(b) These electrons move rightward in the figure (that is, away from the battery) since the 

positive plates (the ones closest to point P) of the capacitors have suffered a decrease in 

their positive charges. The usual reason for a metal plate to be positive is that it has more 

protons than electrons.  Thus, in this problem some electrons have “returned” to the 

positive plates (making them less positive).  

 

25. Equation 23-14 applies to each of these capacitors.  Bearing in mind that  = q/A, we 

find the total charge to be 

 

qtotal  = q1 + q2 =  1 A1 +  2 A2 = o E1 A1  + o E2 A2 = 3.6 pC 

 

where we have been careful to convert cm
2
 to m

2
 by dividing by 10

4
. 

 

26. Initially the capacitors C1, C2, and C3 form a combination equivalent to a single 

capacitor which we denote C123. This obeys the equation 

 

 1 2 3

123 1 2 3 1 2 3

1 1 1

( )

C C C

C C C C C C C

 
  

 
 . 

 

Hence, using q = C123V and the fact that q = q1 = C1 V1 , we arrive at 

 

 123 2 31
1

1 1 1 1 2 3

C C Cq q
V V V

C C C C C C


   

 
 . 
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(a) As C3   this expression becomes V1 = V.  Since the problem states that V1 

approaches 10 volts in this limit, so we conclude V = 10 V. 

 

(b) and (c)   At C3 = 0, the graph indicates V1 = 2.0 V. The above expression consequently 

implies C1 = 4C2.  Next we note that the graph shows that, at C3 = 6.0 F, the voltage 

across C1 is exactly half of the battery voltage.  Thus, 

 

1

2
  = 

C2 + 6.0 F

 C1 + C2 + 6.0 F
 =  

C2 + 6.0 F

 4C2 + C2 + 6.0 F
  

 

which leads to C2 = 2.0 F.  We conclude, too, that C1  = 8.0 F.  

 

27. (a) In this situation, capacitors 1 and 3 are in series, which means their charges are 

necessarily the same: 

 

     1 3
1 3

1 3

1.00 F 3.00 F 12.0V
9.00 C.

1.00 F+3.00 F

C C V
q q

C C

 


 
   


 

 

(b) Capacitors 2 and 4 are also in series: 

 

     
2 4

2 4

2 4

2.00 F 4.00 F 12.0V
16.0 C.

2.00 F 4.00 F

C C V
q q

C C

 


 
   

 
 

 

(c) 3 1 9.00 C.q q    

 

(d) 4 2 16.0 C.q q    

 

(e) With switch 2 also closed, the potential difference V1 across C1 must equal the 

potential difference across C2 and is 

 

  3 4
1

1 2 3 4

3.00 F 4.00 F 12.0V
8.40 V.

1.00 F 2.00 F 3.00 F 4.00 F

C C
V V

C C C C

 

   


  

     
 

 

Thus, q1 = C1V1 = (1.00 F)(8.40 V) = 8.40 C.  

 

(f) Similarly, q2 = C2V1 = (2.00 F)(8.40 V) = 16.8 C. 

 

(g) q3 = C3(V – V1) = (3.00 F)(12.0 V – 8.40 V) = 10.8 C. 

 

(h) q4 = C4(V – V1) = (4.00 F)(12.0 V – 8.40 V) = 14.4 C. 

 

28. The charges on capacitors 2 and 3 are the same, so these capacitors may be replaced 

by an equivalent capacitance determined from 
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1 1 1

2 3

2 3

2 3C C C

C C

C Ceq

  


.  

 

Thus, Ceq = C2C3/(C2 + C3). The charge on the equivalent capacitor is the same as the 

charge on either of the two capacitors in the combination, and the potential difference 

across the equivalent capacitor is given by q2/Ceq. The potential difference across 

capacitor 1 is q1/C1, where q1 is the charge on this capacitor. The potential difference 

across the combination of capacitors 2 and 3 must be the same as the potential difference 

across capacitor 1, so q1/C1 = q2/Ceq.  

 

Now, some of the charge originally on capacitor 1 flows to the combination of 2 and 3. If 

q0 is the original charge, conservation of charge yields q1 + q2 = q0 = C1 V0, where V0 is 

the original potential difference across capacitor 1.  

 

(a) Solving the two equations 

1 2

1 eq

1 2 1 0

q q

C C

q q C V



 

 

for q1 and q2, we obtain 

 

 22 2
1 2 3 01 0 1 0

1
2 3eq 1 1 2 1 3 2 3

1

2 3

.
C C C VC V C V

q
C CC C C C C C C C

C
C C


  

  




 

 

With V0 = 12.0 V, C1= 4.00 F, C2= 6.00 F and C3 =3.00 F, we find Ceq = 2.00 F and 

q1 = 32.0 C. 

 

(b) The charge on capacitors 2 is 

 

2 1 0 1 (4.00 F)(12.0 V) 32.0 C 16.0 Cq CV q        . 

 

(c) The charge on capacitor 3 is the same as that on capacitor 2: 

 

3 1 0 1 (4.00 F)(12.0 V) 32.0 C 16.0 Cq CV q        . 

 

29. The energy stored by a capacitor is given by U CV 1
2

2 , where V is the potential 

difference across its plates. We convert the given value of the energy to Joules. Since 

1 J 1 W s,   we multiply by (10
3
 W/kW)(3600 s/h) to obtain 710 kW h 3.6 10  J   . Thus, 

 

C
U

V
 




2 2 36 10

1000
72

2

7

2

. J

V
F.

c h
b g  
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30. Let  = 1.00 m
3
. Using Eq. 25-25, the energy stored is 

 

   
2

22 12 3 8

0 2

1 1 C
8.85 10 150V m 1.00m 9.96 10 J.

2 2 N m
U u E   
      

 
 

 

31. THINK The total electrical energy is the sum of the energies stored in the individual 

capacitors.  

 

EXPRESS The energy stored in a charged capacitor is 

 

 
2

21
.

2 2

q
U CV

C
   

 

Since we have two capacitors that are connected in parallel, the potential difference V 

across the capacitors is the same and the total energy is  

 

  2

tot 1 2 1 2

1
.

2
U U U C C V     

 

ANALYZE Substituting the values given, we have 

 

    
22 6 6

1 2

1 1
2.0 10 F 4.0 10 F 300V 0.27J.

2 2
U C C V          

 

LEARN The energy stored in a capacitor is equal to the amount of work required to 

charge the capacitor.     

 

32. (a) The capacitance is 

 

  12 2 2 4 2

110

3

8.85 10 C /N m 40 10 m
3.5 10 F 35pF.

1.0 10 m

A
C

d


 





  
    


 

 

(b) q = CV = (35 pF)(600 V) = 2.1  10
–8

 C = 21 nC. 

 

(c) U CV    1
2

2 1
2

2 635 21 6 3 10pF nC J = 6.3 J.b gb g .   

 

(d) E = V/d = 600 V/1.0  10
–3

 m = 6.0  10
5
 V/m. 

 

(e) The energy density (energy per unit volume) is 
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  

6
3

4 2 3

6.3 10 J
1.6 J m .

40 10 m 1.0 10 m

U
u

Ad



 


  

 
 

 

33. We use 2

0/ 4 /E q R V R  . Thus 

 
2 22

2 12 3

0 0 2

1 1 1 C 8000V
8.85 10 0.11 J/m .

2 2 2 N m 0.050 m

V
u E

R
      

        
    

 

 

34. (a) The charge q3 in the figure is 4

3 3 (4.00 F)(100 V) 4.00 10 Cq C V      . 

 

(b) V3 = V = 100 V. 

 

(c) Using U CVi i i 1
2

2 , we have 2 21
3 3 32

2.00 10 JU C V    . 

 

(d) From the figure,  

 

41 2
1 2

1 2

(10.0 F)(5.00 F)(100 V)
3.33 10 C.

10.0 F 5.00 F

C C V
q q

C C

 

 

    
 

 

 

(e) V1 = q1/C1 = 3.33  10
–4

 C/10.0 F = 33.3 V. 

 

(f) 2 31
1 1 12

5.55 10 JU CV    .  

 

(g) From part (d), we have 4

2 1 3.33 10 C.q q     

 

(h) V2 = V – V1 = 100 V – 33.3 V = 66.7 V. 

 

(i) 2 21
2 2 22

1.11 10 JU C V    . 

 

35. The energy per unit volume is 

 

u E
e

r

e

r
 

F
HG

I
KJ 

1

2

1

2 4 32
0

2

0 2

2
2

0

4
 

  


.  

 

(a) At 31.00 10 mr   , with 191.60 10 Ce    and 12 2 2

0 8.85 10  C /N m    , we have  

18 39.16 10  J/mu   . 

 

(b) Similarly, at 61.00 10 mr   , 6 39.16 10  J/mu   . 

 

(c) At 91.00 10 mr   , 6 39.16 10  J/mu   . 
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(d) At 121.00 10 mr   , 18 39.16 10  J/mu   . 

 

(e) From the expression above, u  r
–4

. Thus, for r  0, the energy density u  . 

 

36. (a) We calculate the charged surface area of the cylindrical volume as follows: 

 
2 2 22 2 m)(0.10 m) m) 0.25 mA rh r           

 

where we note from the figure that although the bottom is charged, the top is not. 

Therefore, the charge is q = A = –0.50 C on the exterior surface, and consequently 

(according to the assumptions in the problem) that same charge q is induced in the 

interior of the fluid. 

 

(b) By Eq. 25-21, the energy stored is 

 

U
q

C
 




 






2 7

12

3

2

50 10

2 35 10
36 10

( .

(
.

C)

F)
J.

2

 

 

(c) Our result is within a factor of three of that needed to cause a spark. Our conclusion is 

that it will probably not cause a spark; however, there is not enough of a safety factor to 

be sure. 

 

37. THINK The potential difference between the plates of a parallel-plate capacitor 

depends on their distance of separation. 

 

EPXRESS Let q be the charge on the positive plate. Since the capacitance of a parallel-

plate capacitor is given by 0 ,i i
C A d  the charge is 0i i i i i

q CV AV d  . After the 

plates are pulled apart, their separation is fd and the final potential difference is Vf. Thus, 

the final charge is 0 2 .f f f
q AV d  Since charge remains unchanged, ,i fq q  we have 

 

0

0 0

.
f f f f

f f i i

f i i

q d d dA
V q V V

C A A d d



 
     

 

ANALYZE (a) With 33.00 10 m,id   6.00 ViV  and 38.00 10 m,fd    the final 

potential difference is 16.0 VfV  . 

 

(b) The initial energy stored in the capacitor is  

 
2 12 2 2 4 2 2

2 0

3

11

1 (8.85 10 C /N m )(8.50 10  m )(6.00 V)

2 2 2(3.00 10  m)

4.51 10  J.

i
i i

i

AV
U CV

d

  





  
  



 
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(c) The final energy stored is 
2

2
2 20 0 01 1 1

.
2 2 2

f f fi
f f f f i i

f f i i i i

d d dA A AV
U C V V V U

d d d d d d

     
       

   
 

 

With / 8.00 / 3.00f id d  , we have 101.20 10  J.fU    

 

(d) The work done to pull the plates apart is the difference in the energy:  

 

W = Uf – Ui = 117.52 10  J.  

 

LEARN In a parallel-plate capacitor, the energy density (energy per unit volume) is 

given by 2

0 / 2u E  (see Eq. 25-25), where E is constant at all points between the plates. 

Thus, increasing the plate separation increases the volume (= Ad), and hence the total 

energy of the system. 

 

38. (a) The potential difference across C1 (the same as across C2) is given by 

 

  3
1 2

1 2 3

15.0 F 100V
50.0V.

10.0 F 5.00 F 15.0 F

C V
V V

C C C



  
   

   
 

 

Also, V3 = V – V1 = V – V2 = 100 V – 50.0 V = 50.0 V. Thus, 

 

  

  

4

1 1 1

4

2 2 2

4 4 4

3 1 2

10.0 F 50.0V 5.00 10 C

5.00 F 50.0V 2.50 10 C

5.00 10 C 2.50 10 C 7.50 10 C.

q C V

q C V

q q q









  

   

   

       

 

 

(b) The potential difference V3 was found in the course of solving for the charges in part 

(a). Its value is V3 = 50.0 V. 

 

(c) The energy stored in C3 is   
22 2

3 3 3 / 2 15.0 F 50.0V / 2 1.88 10 J.U C V       

 

(d) From part (a), we have 4

1 5.00 10 Cq   , and 

 

(e) V1 = 50.0 V, as shown in (a). 

 

(f) The energy stored in C1 is   
22 2

1 1 1

1 1
10.0 F 50.0V 1.25 10 J.

2 2
U CV       

 

(g) Again, from part (a), 4

2 2.50 10 Cq   . 
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(h) V2 = 50.0 V, as shown in (a). 

 

(i) The energy stored in C2 is   
22 3

2 2 2

1 1
5.00 F 50.0V 6.25 10 J.

2 2
U C V       

 

39. (a) They each store the same charge, so the maximum voltage is across the smallest 

capacitor. With 100 V across 10 F, then the voltage across the 20 F capacitor is 50 V 

and the voltage across the 25 F capacitor is 40 V. Therefore, the voltage across the 

arrangement is 190 V. 

 

(b) Using Eq. 25-21 or Eq. 25-22, we sum the energies on the capacitors and obtain Utotal 

= 0.095 J. 

 

40. If the original capacitance is given by C = 0A/d, then the new capacitance is 

0' / 2C A d  . Thus C'/C = /2 or  

 

 = 2C'/C = 2(2.6 pF/1.3 pF) = 4.0. 

 

41. THINK Our system, a coaxial cable, is a cylindrical capacitor filled with polystyrene, 

a dielectric. 

 

 EXPRESS Using Eqs. 25-17 and 25-27, the capacitance of a cylindrical capacitor can be 

written as 

0
0

2
,

ln( / )

L
C C

b a


   

 

where C0 is the capacitance without the dielectric,  is the dielectric constant, L is the 

length, a is the inner radius, and b is the outer radius.  

 

ANALYZE With  = 2.6 for polystyrene, the capacitance per unit length of the cable is 

 
12

1102 2 F/m)
8.1 10 F/m 81 pF/m.

ln( / ) ln[(0.60 mm)/(0.10 mm)]

C

L b a

  


      

 

LEARN When the space between the plates of a capacitor is completely filled with a 

dielectric material, the capacitor increases by a factor , the dielectric constant 

characteristic of the material. 

 

 

42. (a) We use C = 0A/d to solve for d: 

 

 12 2 2 2

20

12

8.85 10 C /N m (0.35 m )
6.2 10 m.

50 10 F

A
d

C








 
   


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(b) We use C  . The new capacitance is  

 

C' = C(/air) = (50 pf)(5.6/1.0) = 2.810
2
 pF. 

 

43. The capacitance with the dielectric in place is given by C = C0, where C0 is the 

capacitance before the dielectric is inserted. The energy stored is given by 

U CV C V 1
2

2 1
2 0

2 , so 

6

2 12 2

0

2 2(7.4 10 J)
4.7.

(7.4 10 F)(652 V)

U

C V







  


 

 

According to Table 25-1, you should use Pyrex. 

 

44. (a) We use Eq. 25-14: 

 

 2

2

9 N m

C

(4.7)(0.15 m)
2 0.73 nF.

ln( / ) 2 8.99 10 ln(3.8 cm/3.6 cm)

L
C

b a
 


  


 

 

(b) The breakdown potential is (14 kV/mm) (3.8 cm – 3.6 cm) = 28 kV. 

 

45. Using Eq. 25-29, with  = q/A, we have 

 

E

q

A
  
 0

3200 10 N C  

 

which yields q = 3.3  10
–7

 C. Eq. 25-21 and Eq. 25-27 therefore lead to 

 

U
q

C

q d

A
    

2 2

0

5

2 2
6 6 10


. .J  

 

46. Each capacitor has 12.0 V across it, so Eq. 25-1 yields the charge values once we 

know C1 and C2.  From Eq. 25-9, 

 

C2 = 0 A

d


  =  2.21  10

11
 F  , 

and from Eq. 25-27, 

C1 = 0 A

d


  =  6.64  10

11
 F  . 

 

This leads to  

q1 = C1V1 = 8.00  10
10

 C,  q2 = C2V2 = 2.66  10
10

 C. 

 

The addition of these gives the desired result: qtot = 1.06  10
9

 C.  Alternatively, the 

circuit could be reduced to find the qtot. 
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47. THINK Dielectric strength is the maximum value of the electric field a dielectric 

material can tolerate without breakdown.  

 

EXPRESS The capacitance is given by C = C0 = 0A/d, where C0 is the capacitance 

without the dielectric,  is the dielectric constant, A is the plate area, and d is the plate 

separation. The electric field between the plates is given by E = V/d, where V is the 

potential difference between the plates. Thus, d = V/E and C = 0AE/V. Therefore, we 

find the plate area to be 

A
CV

E

 0

.  

 

ANALYZE For the area to be a minimum, the electric field must be the greatest it can be 

without breakdown occurring. That is, 

 

A 
 

 






( .

. ( .
. .

7 0 10

2 8 885 10
0 63

8

12

2F)(4.0 10 V)

F / m)(18 10 V / m)
m

3

6
 

 

LEARN If the area is smaller than the minimum value found above, then electric 

breakdown occurs and the dielectric is no longer insulating and will start to conduct. 

 

48. The capacitor can be viewed as two capacitors C1 and C2 in parallel, each with 

surface area A/2 and plate separation d, filled with dielectric materials with dielectric 

constants 1 and 2, respectively. Thus, (in SI units), 

 

0 1 0 2 0 1 2
1 2

12 2 2 4 2
12

3

( / 2) ( / 2)

2

(8.85 10 C /N m )(5.56 10  m ) 7.00 12.00
8.41 10  F.

5.56 10  m 2

A A A
C C C

d d d

      

 




 
      

 

    
   

  

 

 

49. We assume there is charge q on one plate and charge –q on the other. The electric 

field in the lower half of the region between the plates is 

 

E
q

A
1

1 0


 

,  

 

where A is the plate area. The electric field in the upper half is 

 

E
q

A
2

2 0


 

.  

 

Let d/2 be the thickness of each dielectric. Since the field is uniform in each region, the 

potential difference between the plates is 
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V
E d E d qd

A

qd

A
   

L
NM

O
QP 

1 2

0 1 2 0

1 2

1 22 2 2

1 1

2   

 

 
,  

so 

C
q

V

A

d
 



2 0 1 2

1 2

  

 
.  

 

This expression is exactly the same as that for Ceq of two capacitors in series, one with 

dielectric constant 1 and the other with dielectric constant 2. Each has plate area A and 

plate separation d/2. Also we note that if 1 = 2, the expression reduces to C = 10A/d, 

the correct result for a parallel-plate capacitor with plate area A, plate separation d, and 

dielectric constant 1. 

 

With 4 27.89 10 mA   , 34.62 10 md   , 1 11.0,  and 2 12.0,   the capacitance is 

 
12 2 2 4 2

11

3

2(8.85 10 C /N m )(7.89 10  m ) (11.0)(12.0)
1.73 10 F.

4.62 10  m 11.0 12.0
C

 




  
  

 
 

 

50. Let  

  C1 = 0(A/2)1/2d = 0A1/4d,  

C2 = 0(A/2)2/d = 0A2/2d,  

                                                 C3 = 0A3/2d. 

 

Note that C2 and C3 are effectively connected in series, while C1 is effectively connected 

in parallel with the C2-C3 combination. Thus, 

 

     0 2 32 3 0 1 0 2 3
1 1

2 3 2 3 2 3

2 2 2
.

4 2 2 4

A dC C A A
C C

C C d d

      


   

 
      

   
 

 

With 3 21.05 10 m ,A    33.56 10 m,d    1 21.0,  2 42.0  and 3 58.0,   we find the 

capacitance to be 

 
12 2 2 3 2

11

3

(8.85 10 C /N m )(1.05 10  m ) 2(42.0)(58.0)
21.0 4.55 10 F.

4(3.56 10  m) 42.0 58.0
C

 




    
    

  
 

 

51. THINK We have a parallel-plate capacitor, so the capacitance is given by C = C0 = 

0A/d, where C0 is the capacitance without the dielectric,  is the dielectric constant, A is 

the plate area, and d is the plate separation. 

 

EXPRESS The electric field in the region between the plates is given by E = V/d, where 

V is the potential difference between the plates and d is the plate separation. Since the 
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separation can be written as 
0 / ,d A C  we have 

0/ .E VC A  The free charge on the 

plates is qf = CV. 

  

ANALYZE (a) Substituting the values given, we find the magnitude of the field strength 

to be 

E
VC

A
 



 
 



  0

12

12 4 2

4
50 100 10

54 885 10 100 10
10 10

V F

F m m
V m

b gc h
c hc h. .

. .  

 

(b) Similarly, we have qf = CV = (100  10
–12

 F)(50 V) = 5.0  10
–9

 C. 

 

(c) The electric field is produced by both the free and induced charge. Since the field of a 

large uniform layer of charge is q/20A, the field between the plates is 

 

E
q

A

q

A

q

A

q

A

f f i i   
2 2 2 20 0 0 0   

,  

 

where the first term is due to the positive free charge on one plate, the second is due to 

the negative free charge on the other plate, the third is due to the positive induced charge 

on one dielectric surface, and the fourth is due to the negative induced charge on the other 

dielectric surface. Note that the field due to the induced charge is opposite the field due to 

the free charge, so they tend to cancel. The induced charge is therefore 

 

   9 12 4 2 4

0

9

5.0 10 C 8.85 10 F m 100 10 m 1.0 10 V m

4.1 10 C 4.1nC.

i fq q AE   



       

  
 

 

LEARN An alternative way to calculate the induced charge is to apply Eq. 25-35:  

 

1 1
1 (5.0nC) 1 4.1nC.

5.4
i fq q



   
       

   
 

 

Note that there’s no induced charge ( 0iq  ) in the absence of dielectric ( = 1). 

 

52. (a) The electric field E1 in the free space between the two plates is E1 = q/0A while 

that inside the slab is E2 = E1/ = q/0A. Thus, 

 

V E d b E b
q

A
d b

b
0 1 2   

F
HG
I
KJ  
F
HG

I
KJb g

 0

,  

and the capacitance is 

 

 

   

    

12 2 2 4 2

0

0

8.85 10 C /N m 115 10 m 2.61
13.4pF.

2.61 0.0124m 0.00780m 0.00780m

Aq
C

V d b b

 



   
   

   
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(b) q = CV = (13.4  10
–12

 F)(85.5 V) = 1.15 nC. 

 

(c) The magnitude of the electric field in the gap is 

 

  

9
4

1 12 2 2 4 2
0

1.15 10 C
1.13 10 N C.

8.85 10 C /N m 115 10 m

q
E

A



 


   

  
 

 

(d) Using Eq. 25-34, we obtain 

 

E
E

2
1

4
3113 10

2 61
4 33 10 


 



.

.
. .

N C
N C  

 

53. (a) Initially, the capacitance is 

 

 12 2 2 2

0
0 2

8.85 10 C /N m (0.12 m )
89 pF.

1.2 10 m

A
C

d






 
  


 

 

(b) Working through Sample Problem 25.06 — “Dielectric partially filling the gap in a 

capacitor” algebraically, we find: 

 

 12 2 2 2

20

2 3

8.85 10 C /N m (0.12m )(4.8)
1.2 10 pF.

( ) (4.8)(1.2 0.40)(10 m) (4.0 10 m)

A
C

d b b

 





 

 
   

    
 

 

(c) Before the insertion, q = C0V (89 pF)(120 V) = 11 nC.  

 

(d) Since the battery is disconnected, q will remain the same after the insertion of the slab, 

with q = 11 nC. 

 

(e) 9 12 2 2 2

0/ 11 10 C/(8.85 10 C /N m )(0.12 m ) 10 kV/m.E q A         

 

(f) E' = E/ = (10 kV/m)/4.8 = 2.1 kV/m. 

 

(g) The potential difference across the plates is  

 

V = E(d – b) + E'b = (10 kV/m)(0.012 m – 0.0040 m)+ (2.1 kV/m)(0.40  10
–3

 m) = 88 V. 

 

(h) The work done is 

 
2 9 2

7

ext 12 12

0

1 1 (11 10 C) 1 1
1.7 10 J.

2 2 89 10 F 120 10 F

q
W U

C C




 

   
           

   
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54. (a) We apply Gauss’s law with dielectric: q/0 = EA, and solve for : 

 

   

7

12 2 2 6 4 2
0

8.9 10 C
7.2.

8.85 10 C /N m 1.4 10 V m 100 10 m

q

EA






  


  

   
 

 

(b) The charge induced is   
F
HG
I
KJ   

F
HG
I
KJ   q q 1

1
8 9 10 1

1

7 2
7 7 107 7


.

.
.C C.c h  

 

55. (a) According to Eq. 25-17 the capacitance of an air-filled spherical capacitor is given 

by  

0 04 .
ab

C
b a


 

  
 

 

 

When the dielectric is inserted between the plates the capacitance is greater by a factor of 

the dielectric constant . Consequently, the new capacitance is 

 

0 9 2 2

23.5 (0.0120 m)(0.0170 m)
4 0.107 nF.

8.99 10 N m C 0.0170 m 0.0120 m

ab
C

b a


 
    

    
 

 

(b) The charge on the positive plate is (0.107 nF)(73.0 V) 7.79 nC.q CV    

 

(c) Let the charge on the inner conductor be –q. Immediately adjacent to it is the induced 

charge q'. Since the electric field is less by a factor 1/ than the field when no dielectric is 

present, then – q + q' = – q/. Thus, 

 

  0

1 23.5 1.00
4 1 (7.79 nC) 7.45 nC.

23.5

ab
q q V

b a


  



  
      

  
 

 

56. (a)  The potential across C1 is 10 V, so the charge on it is 

 

q1 = C1V1 = (10.0 F)(10.0 V) = 100 C. 

 

(b) Reducing the right portion of the circuit produces an equivalence equal to 6.00 F, 

with 10.0 V across it.  Thus, a charge of 60.0 C is on it, and consequently also on the 

bottom right capacitor.  The bottom right capacitor has, as a result, a potential across it 

equal to 

V  = 
q

C
 = 

60 C

10 F




 = 6.00 V 

 

which leaves 10.0 V  6.00 V = 4.00 V across the group of capacitors in the upper right 

portion of the circuit.  Inspection of the arrangement (and capacitance values) of that 

group reveals that this 4.00 V must be equally divided by C2 and the capacitor directly 

below it (in series with it). Therefore, with 2.00 V across C2 we find 
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q2 = C2V2 = (10.0 F)(2.00 V) = 20.0 C. 

 

57. THINK Figure 25-51 depicts a system of capacitors. The pair C3 and C4 are in 

parallel. 

 

EXPRESS Since C3 and C4 are in parallel, we replace them with an equivalent 

capacitance 
34 3 4 30 F.C C C     Now, C1, C2, and C34 are in series, and all are 

numerically 30 F, we observe that each has one-third the battery voltage across it.  

Hence, 3.0 V is across C4.  

 

ANALYZE The charge on capacitor 4 is q4  = C4V4  = (15 F)(3.0 V) = 45 C. 

 

LEARN Alternatively, one may show that the equivalent capacitance of the arrangement 

is given by 

1234 1 2 34

1 1 1 1 1 1 1 1

30 F 30 F 30 F 10 FC C C C    
        

 

or 1234 10 F.C   Thus, the charge across C1, C2, and C34 are  

 

 1 2 34 1234 1234 (10 F)(9.0 V) 90 nC.q q q q C V        

 

Now, since C3 and C4 are in parallel, and 
3 4 ,C C the charge on C4 (as well as on C3) is 

3 4 34 / 2 (90 F) / 2 45 F.q q q       

 

58. (a) Here D is not attached to anything, so that the 6C and 4C capacitors are in series 

(equivalent to 2.4C). This is then in parallel with the 2C capacitor, which produces an 

equivalence of 4.4C. Finally the 4.4C is in series with C and we obtain 

 

  
eq

4.4
0.82 0.82(50 F) 41 F

4.4

C C
C C

C C
    


 

 

where we have used the fact that C = 50 F. 

 

(b) Now, B is the point that is not attached to anything, so that the 6C and 2C capacitors 

are now in series (equivalent to 1.5C), which is then in parallel with the 4C capacitor (and 

thus equivalent to 5.5C). The 5.5C is then in series with the C capacitor; consequently, 

 

C
C C

C C
Ceq F


 

b gb g55

55
085 42

.

.
. .  

 

59. The pair C1 and C2 are in parallel, as are the pair C3 and C4; they reduce to equivalent 

values 6.0 F and 3.0 F, respectively.  These are now in series and reduce to 2.0 F, 
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across which we have the battery voltage. Consequently, the charge on the 2.0 F 

equivalence is (2.0 F)(12 V) = 24 C.  This charge on the 3.0 F equivalence (of C3 and 

C4) has a voltage of 

V = 
q

C
 = 

24 C

3 F




 = 8.0 V. 

 

Finally, this voltage on capacitor C4 produces a charge (2.0 F)(8.0 V) = 16 C. 

 

60. (a) Equation 25-22 yields 

 

U CV      1

2

1

2
200 10 7 0 10 4 9 102 12 3

2
3F V Jc hc h. . .  

 

(b) Our result from part (a) is much less than the required 150 mJ, so such a spark should 

not have set off an explosion. 

 

61. Initially the capacitors C1, C2, and C3 form a series combination equivalent to a single 

capacitor, which we denote C123. Solving the equation 

 

1 2 2 3 1 3

123 1 2 3 1 2 3

1 1 1 1 C C C C C C

C C C C C C C

 
    , 

 

we obtain C123 = 2.40 F.  With V = 12.0 V, we then obtain q = C123V = 28.8 C.  In the 

final situation, C2 and C4 are in parallel and are thus effectively equivalent to 

24 12.0 FC  .  Similar to the previous computation, we use   

 

1 24 24 3 1 3

1234 1 24 3 1 24 3

1 1 1 1 C C C C C C

C C C C C C C

 
     

 

and find C1234 = 3.00 F.  Therefore, the final charge is q = C1234V = 36.0 C.   

 

(a) This represents a change (relative to the initial charge) of q = 7.20 C. 

 

(b) The capacitor C24 which we imagined to replace the parallel pair C2 and C4, is in series 

with C1 and C3 and thus also has the final charge q =36.0 C found above.  The voltage 

across C24 would be  

 24

24

36.0 C
3.00 V

12.0 F

q
V

C




   . 

 

This is the same voltage across each of the parallel pairs. In particular, V4 = 3.00 V 

implies that q4 = C4 V4 = 18.0 C.  

 

(c) The battery supplies charges only to the plates where it is connected. The charges on 

the rest of the plates are due to electron transfers between them, in accord with the new 
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distribution of voltages across the capacitors. So, the battery does not directly supply the 

charge on capacitor 4. 

 

62. In series, their equivalent capacitance (and thus their total energy stored) is smaller 

than either one individually (by Eq. 25-20). In parallel, their equivalent capacitance (and 

thus their total energy stored) is larger than either one individually (by Eq. 25-19).  Thus, 

the middle two values quoted in the problem must correspond to the individual capacitors.  

We use Eq. 25-22 and find 

 

(a) 100 J  = 
1

2
 C1 (10 V)

2
     C1  = 2.0 F; 

 

(b) 300 J  = 
1

2
 C2 (10 V)

2
     C2  = 6.0 F. 

 

63. Initially, the total equivalent capacitance is C12 = [(C1)
1 + (C2)

1]
1

 = 3.0 F, and the 

charge on the positive plate of each one is (3.0 F)(10 V) = 30 C.  Next, the capacitor 

(call is C1) is squeezed as described in the problem, with the effect that the new value of 

C1 is 12 F (see Eq. 25-9). The new total equivalent capacitance then becomes  

 

C12 = [(C1)
1 + (C2)

1]
1

 = 4.0 F, 

 

and the new charge on the positive plate of each one is (4.0 F)(10 V) = 40 C. 

 

(a) Thus we see that the charge transferred from the battery as a result of the squeezing is 

40 C  30 C = 10 C. 

 

(b) The total increase in positive charge (on the respective positive plates) stored on the 

capacitors is twice the value found in part (a) (since we are dealing with two capacitors in 

series): 20 C.  

 

64. (a) We reduce the parallel group C2, C3 and C4, and the parallel pair C5 and C6, 

obtaining equivalent values C' = 12 F and C'' = 12 F, respectively. We then reduce the 

series group C1, C' and C'' to obtain an equivalent capacitance of Ceq = 3 F hooked to 

the battery. Thus, the charge stored in the system is qsys = CeqVbat = 36 C. 

 

(b) Since qsys = q1, then the voltage across C1 is 

 

V1 =  
q1

C1
 = 

36 C

6.0 F




 =  6.0 V. 

 

The voltage across the series-pair C' and C'' is consequently Vbat  V1 = 6.0 V.  Since C' = 

C'', we infer V' = V'' = 6.0/2 = 3.0 V, which, in turn, is equal to V4, the potential across 

C4.  Therefore, 

q4 = C4V4 = (4.0 F)(3.0 V) = 12 C. 
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65. THINK We may think of the arrangement as two capacitors connected in series. 

 

EXPRESS Let the capacitances be C1 and C2, with the former filled with the 1 3.00   

material and the latter with the 2 = 4.00 material. Upon using Eq. 25-9, Eq. 25-27, and 

reducing C1 and C2 to an equivalent capacitance, we have 

 

 1 2

eq 1 2 1 0 2 0 1 2 0

1 1 1 1 1

/ /

d

C C C A d A d A

 

      

 
      

 
 

 

or 01 2
eq

1 2

A
C

d

 

 

 
  

 
. The charge stored on the capacitor is q = CeqV. 

 

ANALYZE Substituting the values given, we find  

 

01 2
eq

1 2

A
C

d

 

 

 
  

 
  =  1.52  10

10
 F, 

 

Therefore, q = CeqV = 1.06  10
9

 C. 

 

LEARN In the limit where 1 2 ,     our expression for eqC  becomes 0
eq ,

2

A
C

d


  

where 2d is the plate separation.  

 

66. We first need to find an expression for the energy stored in a cylinder of radius R and 

length L, whose surface lies between the inner and outer cylinders of the capacitor (a < R 

< b). The energy density at any point is given by u E 1
2 0

2 , where E is the magnitude of 

the electric field at that point. If q is the charge on the surface of the inner cylinder, then 

the magnitude of the electric field at a point a distance r from the cylinder axis is given 

by (see Eq. 25-12) 

02

q
E

Lr
 , 

 

and the energy density at that point is 
2

2

0 2 2 2

0

1
.

2 8

q
u E

L r


 
   

 

The corresponding energy in the cylinder is the volume integral .RU ud   Now, 

2d rLdr  , so 
2 2 2

2 2 2

0 0 0

2 ln .
8 4 4

R R

R
a a

q q dr q R
U rLdr

L r L r L a


   

 
    

  
   
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To find an expression for the total energy stored in the capacitor, we replace R with b: 

 
2

0

ln .
4

b

q b
U

L a

 
  

 
 

 

We want the ratio UR/Ub to be 1/2, so 

ln ln
R

a

b

a


1

2
 

 

or, since 1
2
ln / ln / , ln / ln /b a b a R a b ab g d i b g d i  . This means / /R a b a or 

R ab . 

 

67. (a) The equivalent capacitance is C
C C

C C
eq

F F

F F
F





1 2

1 2

6 00 4 00

6 00 4 00
2 40

. .

. .
. .

 

 


b gb g
 

 

(b) q1 = CeqV = (2.40 F)(200 V) = 4.80  10
4

 C. 

 

(c) V1 = q1/C1 = 4.80  10
4

 C/6.00 F = 80.0 V. 

 

(d) q2 = q1 = 4.80  10
4

 C. 

 

(e) V2 = V – V1 = 200 V – 80.0 V = 120 V. 

 

68. (a) Now Ceq = C1 + C2 = 6.00 F + 4.00 F = 10.0 F. 

 

(b) q1 = C1V = (6.00 F)(200 V) = 1.20  10
–3

 C. 

 

(c) V1 = 200 V. 

 

(d) q2 = C2V = (4.00 F)(200 V) = 8.00  10
–4

 C. 

 

(e) V2 = V1 = 200 V. 

 

69. We use U CV 1
2

2 . As V is increased by V, the energy stored in the capacitor 

increases correspondingly from U to U + U: U U C V V   1
2

2( ) . Thus,  

(1 + V/V)
2
 = 1 + U/U, or 

 

 V

V

U

U
      1 1 1 10% 1 4 9%. .  

 

70. (a) The length d is effectively shortened by b so C' = 0A/(d – b) = 0.708 pF. 
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(b) The energy before, divided by the energy after inserting the slab is 

 
2

0

2

0

/( )/ 2 5.00
1.67.

/ 2 / 5.00 2.00

A d bU q C C d

U q C C A d d b





 
     
   

 

 

(c) The work done is 

 
2 2 2

0 0

1 1
( ) 5.44 J.

2 2 2

q q q b
W U U U d b d

C C A A 

 
              

 

 

(d) Since W < 0, the slab is sucked in. 

 

71. (a) C' = 0A/(d – b) = 0.708 pF, the same as part (a) in Problem 25-70. 

 

(b) The ratio of the stored energy is now 

 
21

02

21
02

/ 5.00 2.00
0.600.

/( ) 5.00

CV A dU C d b

U C V C A d b d





 
     
   

 

 

(c) The work done is 

 
2

2 2 90 01 1 1
( ) 1.02 10 J.

2 2 2 ( )

A AbV
W U U U C C V V

d b d d d b

   
            

  
 

 

(d) In Problem 25-70 where the capacitor is disconnected from the battery and the slab is 

sucked in, F is certainly given by dU/dx. However, that relation does not hold when the 

battery is left attached because the force on the slab is not conservative. The charge 

distribution in the slab causes the slab to be sucked into the gap by the charge distribution 

on the plates. This action causes an increase in the potential energy stored by the battery 

in the capacitor. 

 

72. (a) The equivalent capacitance is Ceq = C1C2/(C1 + C2). Thus the charge q on each 

capacitor is 

 

41 2
1 2 eq

1 2

(2.00 F)(8.00 F)(300V)
4.80 10 C.

2.00 F 8.00 F

C C V
q q q C V

C C

 

 

      
 

 

 

(b) The potential difference is V1 = q/C1 = 4.80  10
–4

 C/2.0 F = 240 V. 

 

(c) As noted in part (a), 4

2 1 4.80 10 C.q q     

 

(d) V2 = V – V1 = 300 V – 240 V = 60.0 V. 
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Now we have q'1/C1 = q'2/C2 = V' (V' being the new potential difference across each 

capacitor) and q'1 + q'2 = 2q. We solve for q'1, q'2 and V: 

 

(e) 
4

41
1

1 2

2 2(2.00 F)(4.80 10 )
1.92 10 C.

2.00 F 8.00 F

C q C
q

C C



 




    
 

 

 

(f) 
4

1
1

1

1.92 10
96.0V.

2.00 F

q C
V

C 

 
    

 

(g) 4

2 12 7.68 10 .q q q C      

 

(h) 2 1 96.0V.V V    

 

(i) In this circumstance, the capacitors will simply discharge themselves, leaving q1 =0, 

 

(j) V1 = 0,  

 

(k) q2 = 0, 

 

(l) and V2 = V1 = 0. 

 

73. The voltage across capacitor 1 is 

 

V
q

C
1

1

1

30

10
30  





C

F
V. .  

 

Since V1 = V2, the total charge on capacitor 2 is 

 

q C V2 2 2 20 2 60   F V Cb gb g ,  

 

which means a total of 90 C of charge is on the pair of capacitors C1 and C2. This 

implies there is a total of 90 C of charge also on the C3 and C4 pair. Since C3 = C4, the 

charge divides equally between them, so q3 = q4 = 45 C. Thus, the voltage across 

capacitor 3 is 

V
q

C
3

3

3

45

20
2 3  





C

F
V. .  

 

Therefore, |VA – VB| = V1 + V3 = 5.3 V. 

 

74. We use C = 0A/d  /d. To maximize C we need to choose the material with the 

greatest value of /d. It follows that the mica sheet should be chosen. 
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75. We cannot expect simple energy conservation to hold since energy is presumably 

dissipated either as heat in the hookup wires or as radio waves while the charge oscillates 

in the course of the system “settling down” to its final state (of having 40 V across the 

parallel pair of capacitors C and 60 F). We do expect charge to be conserved. Thus,  if 

Q is the charge originally stored on C and q1, q2 are the charges on the parallel pair after 

“settling down,” then 

 

      1 2 100V 40V 60 F 40VQ q q C C       

 

which leads to the solution C = 40 F. 

 

76. One way to approach this is to note that since they are identical, the voltage is evenly 

divided between them.  That is, the voltage across each capacitor is V = (10/n) volt.  With 

C = 2.0  10
6

 F, the electric energy stored by each capacitor is 
1

2
 CV

2
.  The total energy 

stored by the capacitors is n times that value, and the problem requires the total be equal 

to 25  10
6

 J.  Thus, 

n

2
 (2.0  10

6
) 






10

n

2

 = 25  10
6

, 

which leads to n = 4. 

 

77. THINK We have two parallel-plate capacitors that are connected in parallel. They 

both have the same plate separation and same potential difference across their plates. 

 

EXPRESS The magnitude of the electric field in the region between the plates is given 

by E = V/d, where V is the potential difference between the plates and d is the plate 

separation. The surface charge density on the plate is / .q A   

 

ANALYZE (a) With d = 0.00300 m and V = 600 V, we have 

 

 5

3

600 V
2.00 10 V/m.

3.00 10  m
A

V
E

d 
   


 

 

(b) Since d = 0.00300 m and V = 600 V in capacitor B as well, 52.00 10 V/m.BE    

 

(c) For the air-filled capacitor, Eq. 25-4 leads to 

 

12 2 2 50 0
0

6 2

( / )
(8.85 10 C /N m )(2.00 10 V/m)

1.77 10 C m .

A A
A A

A d V Vq C V
E

A A A d

 
  



        

 

 

 

(d) For the dielectric-filled capacitor, we use Eq. 25-29: 

 
12 2 2 5 6 2

0 (2.60)(8.85 10 C /N m )(2.00 10 V/m) 4.60 10 C m .B BE           
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(e) Although the discussion in Section 25-8 of the textbook is in terms of the charge 

being held fixed (while a dielectric is inserted), it is readily adapted to this situation 

(where comparison is made of two capacitors that have the same voltage and are identical 

except for the fact that one has a dielectric). The fact that capacitor B has a relatively 

large charge but only produces the field that A produces (with its smaller charge) is in 

line with the point being made (in the text) with Eq. 25-34 and in the material that 

follows. Adapting Eq. 25-35 to this problem, we see that the difference in charge 

densities between parts (c) and (d) is due, in part, to the (negative) layer of charge at the 

top surface of the dielectric; consequently, 

 
6 2 6 2 6 2

ind (1.77 10 C m ) (4.60 10 C m ) 2.83 10 C m .A B               

 

LEARN We note that the electric field in capacitor B is produced by both the charge on 

the plates ( )B A  and the induced charges ind( ),A  while the field in capacitor A is 

produced by the charge on the plates alone ( ).A A  Since ,A BE E  we have 

ind ,A B     or ind .A B     

 

78. (a) Put five such capacitors in series. Then, the equivalent capacitance is 2.0 F/5 = 

0.40 F. With each capacitor taking a 200-V potential difference, the equivalent capacitor 

can withstand 1000 V. 

 

(b) As one possibility, you can take three identical arrays of capacitors, each array being a 

five-capacitor combination described in part (a) above, and hook up the arrays in parallel. 

The equivalent capacitance is now Ceq = 3(0.40 F) = 1.2 F. With each capacitor taking 

a 200-V potential difference, the equivalent capacitor can withstand 1000 V. 

 

79. (a) For a capacitor with surface area A and plate separation x its capacitance is given 

by C0 = 0A/x. The energy stored in the capacitor can be written as 

 

 
2 2 2

0 0

.
2 2( / ) 2

q q q x
U

C A x A 
    

 

The change in energy if the separation between plates increases to x dx  is  

 
2

0

.
2

q
dU dx

A
  

Thus, the force between the plates is  

 
2

0

.
2

dU q
F

dx A
     

 

The negative sign means that the force between the plates is attractive.  
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(b) The magnitude of the electrostatic stress is 

 
2

2 2
2

0 02

0 0 0

| | 1 1

2 2 2 2

F q
E

A A

 
 

  

 
    

 
 

 

where 
0/E    is the magnitude of the electric field in the region between the plates.  

 

80. The energy initially stored in one capacitor is 2

0 0 / 2 4.00 J.U q C   After a second 

capacitor is connected to it in parallel, with 1 2 0 / 2,q q q   the energy stored in the first 

capacitor becomes  
22

0 01
1

( / 2)
1.00 J

2 2 4

q Uq
U

C C
     

 

which is the same as that stored in the second capacitor. Thus, the total energy is 

 

0
1 2 2.00 J.

2

U
U U U     

 

(b) The wires connecting the capacitors have resistance, so some energy is converted to 

thermal energy in the wires, as well as electromagnetic radiation. 
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Chapter 26 
 

 

1. (a) The charge that passes through any cross section is the product of the current and 

time. Since t = 4.0 min = (4.0 min)(60 s/min) = 240 s,  

 

q = it = (5.0 A)(240 s) = 1.2 10
3
 C. 

 

(b) The number of electrons N is given by q = Ne, where e is the magnitude of the charge 

on an electron. Thus, 

 

N = q/e = (1200 C)/(1.60  10
–19

 C) = 7.5  10
21

. 

 

2. Suppose the charge on the sphere increases by q in time t. Then, in that time its 

potential increases by 

0

,
4

q
V

r


   

 

where r is the radius of the sphere. This means 04 .q r V    Now, q = (iin – iout) t, 

where iin is the current entering the sphere and iout is the current leaving. Thus, 

 

  

  
0

9
in out in out

3

0.10 m 1000 V4

8.99 10 F/m 1.0000020 A 1.0000000 A

5.6 10 s.

r Vq
t

i i i i






   

   

 

 

 

3. We adapt the discussion in the text to a moving two-dimensional collection of charges. 

Using  for the charge per unit area and w for the belt width, we can see that the transport 

of charge is expressed in the relationship i = vw, which leads to 

 

  



 





i

vw

100 10

30 50 10
6 7 10

6

2

6A

m s m
C m

2

b gc h . .  

 

4. We express the magnitude of the current density vector in SI units by converting the 

diameter values in mils to inches (by dividing by 1000) and then converting to meters (by 

multiplying by 0.0254) and finally using 

 

2 2

4
.

i i i
J

A R D 
    
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For example, the gauge 14 wire with D = 64 mil = 0.0016 m is found to have a 

(maximum safe) current density of J = 7.2  10
6
 A/m

2
. In fact, this is the wire with the 

largest value of J allowed by the given data. The values of J in SI units are plotted below 

as a function of their diameters in mils. 

 

 
 

5. THINK The magnitude of the current density is given by J = nqvd, where n is the 

number of particles per unit volume, q is the charge on each particle, and vd is the drift 

speed of the particles.  

 

EXPRESS In vector form, we have (see Eq. 26-7) .dJ nqv  Current density J  is 

related to the current i by (see Eq. 26-4): i J dA  .    

 

ANALYZE (a) The particle concentration is n = 2.0  10
8
/cm

3
 = 2.0  10

14
 m

–3
, the 

charge is  

q = 2e = 2(1.60  10
–19

 C) = 3.20  10
–19

 C, 

 

and the drift speed is 1.0  10
5
 m/s. Thus, we find the current density to be 

 

J     2 10 32 10 10 10 6 414 19 5/ . . . .m C m/ s A / m2c hc hc h  

 

(b) Since the particles are positively charged the current density is in the same direction 

as their motion, to the north. 

 

(c) The current cannot be calculated unless the cross-sectional area of the beam is known. 

Then i = JA can be used. 

 

LEARN That the current density is in the direction of the motion of the positive charge 

carriers means that it is in the opposite direction of the motion of the negatively charged 

electrons. 

 

6. (a) Circular area depends, of course, on r
2
, so the horizontal axis of the graph in Fig. 

26-24(b) is effectively the same as the area (enclosed at variable radius values), except 

for a factor of .  The fact that the current increases linearly in the graph means that i/A = 

J = constant.   Thus, the answer is “yes, the current density is uniform.” 
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(b) We find  i/(r
2
) = (0.005 A)/(4 10

6 
m

2
) = 398  4.0  10

2
 A/m

2
. 

 

7. The cross-sectional area of wire is given by A = r
2
, where r is its radius (half its 

thickness). The magnitude of the current density vector is  

 
2/ / ,J i A i r   

so 

 
4

4 2

0.50 A
1.9 10 m.

440 10 A/m

i
r

J 

   


 

 

The diameter of the wire is therefore d = 2r = 2(1.9  10
–4

 m) = 3.8  10
–4

 m. 

 

8. (a) The magnitude of the current density vector is 

 

 

 

10

5 2

22 3

4 1.2 10 A
2.4 10 A/m .

/ 4 2.5 10 m

i i
J

A d 








    


 

 

(b) The drift speed of the current-carrying electrons is 

 

v
J

ne
d  



 
 





2 4 10

8 47 10 160 10
18 10

5

28 19

15.

. / .
.

A / m

m C
m / s.

2

3c hc h  

 

9. We note that the radial width r = 10 m is small enough (compared to r = 1.20 mm) 

that we can make the approximation 

 

 2 2Br rdr Br r r    

 

Thus, the enclosed current is 2Br
2
r = 18.1 A.  Performing the integral gives the same 

answer. 

 

10. Assuming 

J  is directed along the wire (with no radial flow) we integrate, starting 

with Eq. 26-4, 

 2 4 4

9 /10

1
| | ( )2 0.656

2

R

R
i J dA kr rdr k R R       

 

where k = 3.0  10
8
 and SI units are understood. Therefore, if R = 0.00200 m, we 

obtain 32.59 10 Ai   . 

 

11. (a) The current resulting from this non-uniform current density is 
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2 3 2 4 20
0

cylinder 0

2 2
2 (3.40 10 m) (5.50 10 A/m )

3 3

1.33 A.

R

a

J
i J dA r rdr R J

R
         



  . 

 

(b) In this case, 

 

2 3 2 4 2

0 0
cylinder 0

1 1
1 2 (3.40 10 m) (5.50 10 A/m )

3 3

0.666 A.

R

b

r
i J dA J rdr R J

R
    

       
 



   

 

(c) The result is different from that in part (a) because Jb is higher near the center of the 

cylinder (where the area is smaller for the same radial interval) and lower outward, 

resulting in a lower average current density over the cross section and consequently a 

lower current than that in part (a). So, Ja has its maximum value near the surface of the 

wire. 

 

12. (a) Since 1 cm
3
 = 10

–6
 m

3
, the magnitude of the current density vector is 

 

J nev 
F
HG

I
KJ    



 8 70

10
160 10 470 10 654 10

6

19 3 7.
. . .

m
C m / s A / m

3

2c hc h  

 

(b) Although the total surface area of Earth is 24 ER  (that of a sphere), the area to be used 

in a computation of how many protons in an approximately unidirectional beam (the solar 

wind) will be captured by Earth is its projected area. In other words, for the beam, the 

encounter is with a “target” of circular area 2

ER . The rate of charge transport implied by 

the influx of protons is 

 

   
2

2 6 7 2 76.37 10 m 6.54 10 A/m 8.34 10 A.Ei AJ R J          

 

13. We use vd = J/ne = i/Ane. Thus, 

 

       14 2 28 3 19

2

0.85m 0.21 10 m 8.47 10 / m 1.60 10 C

/ 300A

8.1 10 s 13min.

d

L L LAne
t

v i Ane i

   
   

  

 

 

14. Since the potential difference V and current i are related by V = iR, where R is the 

resistance of the electrician, the fatal voltage is V = (50  10
–3

 A)(2000 ) = 100 V. 

 

15. THINK The resistance of the coil is given by R = L/A, where L is the length of the 

wire,  is the resistivity of copper, and A is the cross-sectional area of the wire.  

 

EXPRESS Since each turn of wire has length 2r, where r is the radius of the coil, then  
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L = (250)2r = (250)(2)(0.12 m) = 188.5 m. 

 

If rw is the radius of the wire itself, then its cross-sectional area is  

 
2

wA r  = (0.65  10
–3

 m)
2
 = 1.33  10

–6
 m

2
. 

 

According to Table 26-1, the resistivity of copper is 81.69 10 m    .  

 

ANALYZE Thus, the resistance of the copper coil is 

 

R
L

A
 

 








 169 10 1885

133 10
2 4

8

6 2

. .

.
. .




m m

m

c hb g
 

 

LEARN Resistance R is the property of an object (depending on quantities such as L and 

A), while resistivity is a property of the material.  

 

16. We use R/L = /A = 0.150 /km. 

 

(a) For copper J = i/A = (60.0 A)(0.150 /km)/(1.69  10
–8

 · m) = 5.32  10
5
 A/m

2
. 

 

(b) We denote the mass densities as m. For copper,  

 

(m/L)c = (mA)c = (8960 kg/m
3
) (1.69  10

–8
 · m)/(0.150 /km) = 1.01 kg/m. 

 

(c) For aluminum J = (60.0 A)(0.150 /km)/(2.75  10
–8

 · m) = 3.27  10
5
 A/m

2
. 

 

(d) The mass density of aluminum is 

 

(m/L)a = (mA)a = (2700 kg/m
3
)(2.75  10

–8
 · m)/(0.150 /km) = 0.495 kg/m. 

 

17. We find the conductivity of Nichrome (the reciprocal of its resistivity) as follows: 

 




    


  


1 10

10 10
2 0 10

6 2

6L

RA

L

V i A

Li

VA/

.

.
. / .b g

b gb g
b gc h

m 4.0 A

2.0 V m
m  

 

18. (a) i = V/R = 23.0 V/15.0  10
–3

  = 1.53  10
3
 A. 

 

(b) The cross-sectional area is 2 21
4

A r D   . Thus, the magnitude of the current 

density vector is 

 

 

3

7 2

22 3

4 1.53 10 A4
5.41 10 A/m .

6.00 10 m

i i
J

A D 






    


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(c) The resistivity is 

 
3 3 2

8(15.0 10 ) (6.00 10 m)
10.6 10  m.

4(4.00 m)

RA

L




 
  

      

 

(d) The material is platinum. 

 

19. THINK The resistance of the wire is given by / ,R L A  where  is the resistivity 

of the material, L is the length of the wire, and A is its cross-sectional area.  

 

EXPRESS In this case, the cross-sectional area is  

 

A r      2 3
2

7050 10 7 85 10. . .m m2c h  

 

ANALYZE Thus, the resistivity of the wire is 

 

   3 7 2

8
50 10 7.85 10 m

2.0 10 m.
2.0m

RA

L


 


  

      

 

LEARN Resistance R is the property of an object (depending on quantities such as L and 

A), while resistivity is a property of the material itself. The equation /R L A  implies 

that the larger the cross-sectional area A, the smaller the resistance R. 

 

20. The thickness (diameter) of the wire is denoted by D. We use R  L/A (Eq. 26-16) 

and note that 2 21
4

.A D D   The resistance of the second wire is given by 

 

R R
A

A

L

L
R

D

D

L

L
R R2

1

2

2

1

1

2

2

2

1

2
2

1

2
2

F
HG
I
KJ
F
HG
I
KJ 
F
HG
I
KJ
F
HG
I
KJ 

F
HG
I
KJ b g .  

 

21. The resistance at operating temperature T is R = V/i = 2.9 V/0.30 A = 9.67 . Thus, 

from R – R0 = R0 (T – T0), we find 

 

3

0 3

0

1 1 9.67
1 20 C 1 1.8 10  C

4.5 10 K 1.1

R
T T

R 

     
              

     
. 

 

Since a change in Celsius is equivalent to a change on the Kelvin temperature scale, the 

value of  used in this calculation is not inconsistent with the other units involved. Table 

26-1 has been used. 

 

22. Let 2.00 mmr  be the radius of the kite string and 0.50 mmt  be the thickness of 

the water layer. The cross-sectional area of the layer of water is 
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 2 2 3 2 3 2 6 2( ) [(2.50 10  m) (2.00 10  m) ] 7.07 10  mA r t r               . 

 

Using Eq. 26-16, the resistance of the wet string is 

 

   10

6 2

150 m 800 m
1.698 10 .

7.07 10 m

L
R

A





    


 

 

The current through the water layer is  

 

 
8

3

10

1.60 10 V
9.42 10 A

1.698 10

V
i

R


   

 
. 

 

23. We use J = E/, where E is the magnitude of the (uniform) electric field in the wire, J 

is the magnitude of the current density, and  is the resistivity of the material. The 

electric field is given by E = V/L, where V is the potential difference along the wire and L 

is the length of the wire. Thus J = V/L and 

 

  
8

8 2

115 V
8.2 10 m.

10 m 1.4 10 A m

V

LJ
     


 

 

24. (a)  Since the material is the same, the resistivity  is the same, which implies (by Eq. 

26-11) that the electric fields (in the various rods) are directly proportional to their 

current-densities.  Thus, J1: J2: J3 are in the ratio 2.5/4/1.5  (see Fig. 26-25).  Now the 

currents in the rods must be the same (they are “in series”) so  

 

J1 A1  = J3 A3 ,      J2 A2  = J3 A3   . 

 

Since A = r
2
, this leads (in view of the aforementioned ratios) to  

 

4r2
2
  = 1.5r3

2
 ,      2.5r1

2
  = 1.5r3

2
 . 

 

Thus, with r3 = 2 mm, the latter relation leads to r1 = 1.55 mm. 

 

(b) The 4r2
2
  = 1.5r3

2
 relation leads to r2 = 1.22 mm. 

 

25. THINK The resistance of an object depends on its length and the cross-sectional area.  

 

EXPRESS Since the mass and density of the material do not change, the volume remains 

the same. If L0 is the original length, L is the new length, A0 is the original cross-sectional 

area, and A is the new cross-sectional area, then L0A0 = LA and  

 

A = L0A0/L = L0A0/3L0 = A0/3. 

 

ANALYZE The new resistance is 
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R
L

A

L

A

L

A
R   

  3

3
9 90

0

0

0

0
/

,  

 

where R0 is the original resistance. Thus, R = 9(6.0 ) = 54 . 

 

LEARN In general, the resistances of two objects made of the same material but different 

cross-sectional areas and lengths may be related by 

 

1 2
2 1

2 1

.
A L

R R
A L

  
   

  
 

 

26. The absolute values of the slopes (for the straight-line segments shown in the graph of 

Fig. 26-25(b)) are equal to the respective electric field magnitudes.  Thus, applying Eq. 

26-5 and Eq. 26-13 to the three sections of the resistive strip, we have 

 

   J1  =  
i

A
  =  1 E1  =  1 (0.50  10

3
 V/m) 

 

   J2  =  
i

A
  =  2 E2 =  2 (4.0  10

3
 V/m) 

 

   J3  =  
i

A
  =  3 E3  =  3 (1.0  10

3
 V/m)  . 

 

We note that the current densities are the same since the values of i and A are the same 

(see the problem statement) in the three sections, so J1  = J2  = J3 .   

 

(a) Thus we see that 1 = 23  = 2 (3.00  10
7
(· m)

1 
) = 6.00  10

7
  (· m)

1
. 

 

(b) Similarly, 2 = 3/4  =  (3.00  10
7
(· m)

1 
)/4 = 7.50  10

6
 (· m)

1
 . 

 

27. THINK In this problem we compare the resistances of two conductors that are made 

of the same materials.  

 

EXPRESS The resistance of conductor A is given by 

 

2
,A

A

L
R

r




  

 

where rA is the radius of the conductor. If ro is the outside diameter of conductor B and ri 

is its inside diameter, then its cross-sectional area is 2 2( ),o ir r   and its resistance is 

 

 2 2
.B

o i

L
R

r r







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ANALYZE The ratio of the resistances is 

 

R

R

r r

r

A

B

o i

A








2 2

2

2 2

2

1 050

050
30

. .

.
. .

0mm mm

mm

b g b g
b g  

 

LEARN The resistance R of an object depends on how the electric potential is applied to 

the object. Also, R depends on the ratio L/A, according to / .R L A   

 

28. The cross-sectional area is A = r
2
  = (0.002 m)

2
.  The resistivity from Table 26-1 is   

= 1.69  10
8 
· m.  Thus, with L = 3 m, Ohm’s Law leads to V = iR = iL/A, or 

 

   12  10
6 

V  = i (1.69  10
8 
· m)(3.0 m)/(0.002 m)

2
 

 

which yields i = 0.00297 A or roughly 3.0 mA. 

 

29. First we find the resistance of the copper wire to be 

 

  8

5

3 2

1.69 10 m 0.020 m
2.69 10 .

(2.0 10 m)

L
R

A











 
    


 

 

With potential difference 3.00 nVV  , the current flowing through the wire is 

 
9

4

5

3.00 10 V
1.115 10 A

2.69 10

V
i

R







   

 
. 

 

Therefore, in 3.00 ms, the amount of charge drifting through a cross section is 

 
4 3 7(1.115 10 A)(3.00 10 s) 3.35 10 CQ i t            . 

 

30. We use R  L/A. The diameter of a 22-gauge wire is 1/4 that of a 10-gauge wire. 

Thus from R = L/A we find the resistance of 25 ft of 22-gauge copper wire to be  

 

R = (1.00 )(25 ft/1000 ft)(4)
2
 = 0.40 . 

 

31. (a) The current in each strand is i = 0.750 A/125 = 6.00  10
–3

 A. 

 

(b) The potential difference is V = iR = (6.00  10
–3

 A) (2.65  10
–6

 ) = 1.59  10
–8

 V. 

 

(c) The resistance is Rtotal = 2.65  10
–6

 /125 = 2.12  10
–8

 . 

 

32. We use J =  E = (n+ + n–)evd, which combines Eq. 26-13 and Eq. 26-7. 

 



CHAPTER 26 1156  

(a) The magnitude of the current density is 

 

J =  E = (2.70  10
–14

 / · m) (120 V/m) = 3.24  10
–12

 A/m
2
. 

 

(b) The drift velocity is 

 

 

  

   

14

3 19

2.70 10 m 120 V m
1.73 cm s.

620 550 cm 1.60 10 C
d

E
v

n n e





 

 
  

    

 

 

33. (a) The current in the block is i = V/R = 35.8 V/935  = 3.83  10
–2

 A. 

 

(b) The magnitude of current density is  

 

J = i/A = (3.83  10
–2

 A)/(3.50  10
–4

 m
2
) = 109 A/m

2
. 

 

(c) vd = J/ne = (109 A/m
2
)/[(5.33  10

22
/m

3
) (1.60  10

–19
 C)] = 1.28  10

–2
 m/s. 

 

(d) E = V/L = 35.8 V/0.158 m = 227 V/m. 

 

34. The number density of conduction electrons in copper is n = 8.49 × 10
28 

/m
3
.  The 

electric field in section 2 is (10.0 V)/(2.00 m) = 5.00 V/m.  Since = 1.69 × 10
8 
· m 

for copper (see Table 26-1) then Eq. 26-10 leads to a current density vector of magnitude 

 

J2 = (5.00 V/m)/(1.69 × 10
8 
· m) = 296 A/m

2
 

 

in section 2.  Conservation of electric current from section 1 into section 2 implies 

 

 2 2

1 1 2 2 1 2(4 ) ( )J A J A J R J R     

 

(see Eq. 26-5). This leads to J1  = 74 A/m
2
.  Now, for the drift speed of conduction-

electrons in section 1, Eq. 26-7 immediately yields  

 

 91 5.44 10 m/sd

J
v

ne

    

 

35. (a) The current i is shown in Fig. 26-30 entering the truncated cone at the left end and 

leaving at the right. This is our choice of positive x direction. We make the assumption 

that the current density J at each value of x may be found by taking the ratio i/A where A 

= r
2
 is the cone’s cross-section area at that particular value of x.  

 

The direction of 

J  is identical to that shown in the figure for i (our +x direction). Using 

Eq. 26-11, we then find an expression for the electric field at each value of x, and next 

find the potential difference V by integrating the field along the x axis, in accordance with 

the ideas of Chapter 25. Finally, the resistance of the cone is given by R = V/i. Thus, 
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2

i E
J

r 
   

 

where we must deduce how r depends on x in order to proceed. We note that the radius 

increases linearly with x, so (with c1 and c2 to be determined later) we may write 

r c c x 1 2 . 

 

Choosing the origin at the left end of the truncated cone, the coefficient c1 is chosen so 

that r = a (when x = 0); therefore, c1 = a. Also, the coefficient c2 must be chosen so that 

(at the right end of the truncated cone) we have r = b (when x = L); therefore, 

2 ( ) /c b a L  . Our expression, then, becomes 

r a
b a

L
x 

F
HG
I
KJ .  

 

Substituting this into our previous statement and solving for the field, we find 

 
2

.
i b a

E a x
L






 

  
 

 

 

Consequently, the potential difference between the faces of the cone is 

 

2 1

0 0

0

1 1
.

L

L Li b a i L b a
V E dx a x dx a x

L b a L

i L i L b a i L

b a a b b a ab ab

 

 

  

  

 
    

         
   

 
    

  

 
 

 

The resistance is therefore 

 
2

5

3 3

(731 m)(1.94 10  m)
9.81 10  

(2.00 10  m)(2.30 10  m)

V L
R

i ab



 



 

 
     

 
 

 

Note that if b = a, then R = L/a
2
 = L/A, where A = a

2
 is the cross-sectional area of 

the cylinder. 

 

36. Since the current spreads uniformly over the hemisphere, the current density at any 

given radius r from the striking point is 2/ 2J I r . From Eq. 26-10, the magnitude of 

the electric field at a radial distance r is 

 

 
22

w
w

I
E J

r





  , 

 



CHAPTER 26 1158  

where 30 mw   is the resistivity of water. The potential difference between a point at 

radial distance D and a point at D r is 

 

2

1 1

2 2 2 ( )

D r D r
w w w

D D

I I I r
V Edr dr

r D r D D D r

  

  

   
         

  
  , 

 

which implies that the current across the swimmer is 

 

| |

2 ( )

wIV r
i

R R D D r





 
 


. 

 

Substituting the values given, we obtain 

 
4

2

3

(30.0 m)(7.80 10 A) 0.70 m
5.22 10 A

2 (4.00 10 ) (35.0 m)(35.0 m 0.70 m)
i



 
  

  
. 

 

37. From Eq. 26-25,   –1
  veff. The connection with veff is indicated in part (b) of 

Sample Problem 26.05 —“Mean free time and mean free distance,” which contains 

useful insight regarding the problem we are working now. According to Chapter 20, 

v Teff  .  Thus, we may conclude that   T .  

 

38. The slope of the graph is P = 5.0  10
4 

W.  Using this in the P = V
2
/R relation leads 

to V = 0.10 Vs. 

 

39. Eq. 26-26 gives the rate of thermal energy production: 

 

(10.0A)(120V) 1.20 kW.P iV    

 

Dividing this into the 180 kJ necessary to cook the three hotdogs leads to the result 

150 s.t   

 

40. The resistance is R = P/i
2
 = (100 W)/(3.00 A)

2
 = 11.1 . 

 

41. THINK In an electrical circuit, the electrical energy is dissipated through the resistor 

as heat.  

 

EXPRESS Electrical energy is converted to heat at a rate given by 2 / ,P V R  where V is 

the potential difference across the heater and R is the resistance of the heater.  

 

ANALYZE With 120 VV  and R = 14 , we have 

 

P    
(

. .
120

14
10 10 103V)

W kW.
2


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(b) The cost is given by (1.0kW)(5.0h)(5.0cents/kW h) US$0.25.   

 

LEARN The energy transferred is lost because the process is irreversible. The thermal 

energy causes the temperature of the resistor to rise.  

 

42. (a) Referring to Fig. 26-33, the electric field would point down (toward the bottom of 

the page) in the strip, which means the current density vector would point down, too (by 

Eq. 26-11).  This implies (since electrons are negatively charged) that the conduction 

electrons would be “drifting” upward in the strip. 

 

(b) Equation 24-6 immediately gives 12 eV, or (using e = 1.60  10
19 

C) 1.9  10
18 

J for 

the work done by the field (which equals, in magnitude, the potential energy change of 

the electron). 

 

(c) Since the electrons don’t (on average) gain kinetic energy as a result of this work done, 

it is generally dissipated as heat.  The answer is as in part (b): 12 eV or 1.9  10
18 

J. 

 

43. The relation P = V 
2
/R implies P  V 

2
. Consequently, the power dissipated in the 

second case is 

P 
F
HG

I
KJ 

150
0540 0135

2

.
( . .

V

3.00 V
W) W.  

 

44. Since P = iV, the charge is  

 

q = it = Pt/V = (7.0 W) (5.0 h) (3600 s/h)/9.0 V = 1.4  10
4
 C. 

 

45. THINK Let P be the power dissipated, i be the current in the heater, and V be the 

potential difference across the heater. The three quantities are related by P = iV.  

 

EXPRESS The current is given by / .i P V  Using Ohm’s law ,V iR  the resistance of 

the heater can be written as  
2

.
/

V V V
R

i P V P
    

 

ANALYZE (a) Substituting the values given, we have i
P

V
  

1250
10 9

W

115 V
A..  

(b) Similarly, the resistance is 
2 2(115 V)

10.6 .
1250 W

V
R

P
     

 

(c) The thermal energy E generated by the heater in time t = 1.0 h = 3600 s is 
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6(1250W)(3600s) 4.50 10 J.E Pt     

 

LEARN Current in the heater produces a transfer of mechanical energy to thermal energy, 

with a rate of the transfer equal to 2 / .P iV V R     

 

46. (a) Using Table 26-1 and Eq. 26-10 (or Eq. 26-11), we have 

 

 8 2

6 2

2.00A
| | | | 1.69 10 m 1.69 10 V/m.

2.00 10 m
E J  



 
      

 
 

 

(b) Using L = 4.0 m, the resistance is found from Eq. 26-16:  

 

R = L/A = 0.0338 . 

 

The rate of thermal energy generation is found from Eq. 26-27:  

 

P = i
2
 R = (2.00 A)

2
(0.0338 ) = 0.135 W. 

 

Assuming a steady rate, the amount of thermal energy generated in 30 minutes is found to 

be (0.135 J/s)(30  60 s) = 2.43  10
2
 J. 

 

47. (a) From P = V 
2
/R = AV 

2
 / L, we solve for the length: 

 

L
AV

P
 



 






2 6

7

2 60 10 750

500 10
585



( . )( .

( .
.

m V)

m)(500 W)
m.

2 2


 

 

(b) Since L  V 
2
 the new length should be  

F
HG
I
KJ 

F
HG

I
KJ L L

V

V

2 2

585 10 4( . .m)
100 V

75.0 V
m.  

 

48. The mass of the water over the length is  

 

 3 5 2(1000 kg/m )(15 10  m )(0.12 m) 0.018 kgm AL     , 

 

and the energy required to vaporize the water is  

 

 4(2256 kJ / kg)(0.018 kg) 4.06 10  JQ Lm    . 

 

The thermal energy is supplied by joule heating of the resistor: 

 

 2Q P t I R t    . 

 

Since the resistance over the length of water is  
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   5

5 2

150 m 0.120 m
1.2 10

15 10 m

wL
R

A





    


, 

 

the average current required to vaporize water is  

 
4

5 3

4.06 10  J
13.0 A

(1.2 10 )(2.0 10 s)

Q
I

R t 


  

   
. 

 

49. (a) Assuming a 31-day month, the monthly cost is  

 

(100 W)(24 h/day)(31days/month) (6 cents/kW h)   446 cents US$4.46 . 

 

(b) R = V 
2
/P = (120 V)

2
/100 W = 144 . 

 

(c) i = P/V = 100 W/120 V = 0.833 A. 

 

50. The slopes of the lines yield P1 = 8 mW and P2 = 4 mW.  Their sum (by energy 

conservation) must be equal to that supplied by the battery: Pbatt = (8 + 4) mW = 12 mW. 

 

51. THINK Our system is made up of two wires that are joined together. To calculate the 

electrical potential difference between two points, we first calculate their resistances. 

 

EXPRESS The potential difference between points 1 and 2 is 12 ,CV iR   where CR  is 

the resistance of wire C. Similarly, the potential difference between points 2 and 3 is 

23 ,DV iR   where DR  is the resistance of wire D. The corresponding rates of energy 

dissipation are 2

12 CP i R  and 2

23 ,DP i R  respectively. 

 

ANALYZE (a) Using Eq. 26-16, we find the resistance of wire C to be 

 

6

2 2

1.0 m
(2.0 10 m) 2.55

 m

C
C C

C

L
R

r


 

     
 

. 

 

Thus, 12 (2.0 A)(2.55 ) 5.1V.CV iR      

 

(b) Similarly, the resistance for wire D is 

 

6

2 2

1.0 m
(1.0 10 m) 5.09

 m

D
D D

D

L
R

r


 

     
 

 

 

and the potential difference is 23 (2.0 A)(5.09 ) 10.2V 10VDV iR      . 

 

(c) The power dissipated between points 1 and 2 is 2

12 10W.CP i R   
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(d) Similarly, the power dissipated between points 2 and 3 is 2

23 20W.DP i R   

 

LEARN The results may be summarized in terms of the following ratios: 

 

  
2

223 23

12 12

1
1 2 2.

2

CD D D

C C C D

P V rR L

P V R L r





 
         
  

 

 

52. Assuming the current is along the wire (not radial) we find the current from Eq. 26-4: 

 

i  =  | J  


| dA = 2

0
2

R

kr rdr  =  
1

2
 kR

4
 = 3.50 A 

 

where k = 2.75  10
10

 A/m
4
 and R = 0.00300 m.  The rate of thermal energy generation is 

found from Eq. 26-26: P = iV = 210 W. Assuming a steady rate, the thermal energy 

generated in 40 s is Q P t   (210 J/s)(3600 s) = 7.56  10
5
 J. 

 

53. (a) From P = V 
2
/R we find R = V 

2
/P = (120 V)

2
/500 W = 28.8 . 

 

(b) Since i = P/V, the rate of electron transport is 

 

i

e

P

eV
 


 



500
2 60 10

19

19W

(1.60 10 C)(120 V)
s.. /  

 

54. From 2 /P V R , we have  

R = (5.0 V)
2
/(200 W) = 0.125 . 

 

To meet the conditions of the problem statement, we must therefore set 

 

0
5.00  

L

x dx = 0.125    

Thus, 

     
5

2
 L

2
 = 0.125          L = 0.224 m. 

 

55. THINK Since the resistivity of Nichrome varies with temperature, the power 

dissipated through the Nichrome wire will also depend on temperature.    

 

EXPRESS Let RH be the resistance at the higher temperature (800°C) and let RL be the 

resistance at the lower temperature (200°C). Since the potential difference is the same for 

the two temperatures, the power dissipated at the lower temperature is PL = V 
2
/RL, and 

the power dissipated at the higher temperature is 2 / ,H HP V R  so ( / )L H L HP R R P . Now, 
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 

 

0
0

0
0

1 ( )

1 ( )

H
H H

L
L L

LL
R T T

A A

LL
R T T

A A







   

   

 

so that 

,L H HR R R T    

 

where T is the temperature difference: TL – TH = –600 C° = –600 K.  

 

ANALYZE Thus, the dissipation rate at 200°C is 

 

P
R

R R T
P

P

T
L

H

H H

H
H







  


  1

500

4 0 10 600
660

4

W

1 K)( K)
W.

( . /
 

 

LEARN Since the power dissipated is inversely proportional to R, at lower temperature 

where ,L HR R  we expect a higher rate of energy dissipation: .L HP P  

 

56. (a) The current is 

 
2 2 2

8

V)[(0.0400in.)(2.54 10 m/in.)]
1.74 A.

/ 4 4(1.69 10 m)(33.0 m)

V V Vd
i

R L A L



 





 
    

 
 

 

(b) The magnitude of the current density vector is 

 

6 2

2 2 2

4 4(1.74 A)
| | 2.15 10 A/m .

in.)(2.54 10 m/in.)]

i i
J

A d  
    

 
 

 

(c) E = V/L = 1.20 V/33.0 m = 3.63  10
–2

 V/m. 

 

(d) P = Vi = (1.20 V)(1.74 A) = 2.09 W. 

 

57. We find the current from Eq. 26-26:  i = P/V = 2.00 A.  Then, from Eq. 26-1 (with 

constant current), we obtain 

q =  it = 2.88  10
4
 C . 

 

58. We denote the copper rod with subscript c and the aluminum rod with subscript a. 

 

(a) The resistance of the aluminum rod is 

 

R
L

A
a 

 


 






2 75 10 13

52 10
13 10

8

3
2

3
. .

.
. .




m m

m

c hb g
c h
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(b) Let R = cL/(d 
2
/4) and solve for the diameter d of the copper rod: 

 

  

 

8

3
4 1.69 10 m 1.3 m4

4.6 10 m.cLd
R



 







 
   

 
 

59. (a) Since  

 
2 3 3 2

8( / 4) (1.09 10 ) (5.50 10 m) / 4
1.62 10  m

1.60 m

RA R d

L L

 


 
  

      , 

 

the material is silver. 

 

(b) The resistance of the round disk is 

 
8 3

8

2 2

4 4(1.62 10 m)(1.00 10 m)
5.16 10 .

m)

L L
R

A d




 

 




  
     


 

 

60. (a) Current is the transport of charge; here it is being transported “in bulk” due to the 

volume rate of flow of the powder. From Chapter 14, we recall that the volume rate of 

flow is the product of the cross-sectional area (of the stream) and the (average) stream 

velocity. Thus, i = Av where  is the charge per unit volume. If the cross section is that 

of a circle, then i = R
2
v. 

 

(b) Recalling that a coulomb per second is an ampere, we obtain 

 

     
23 3 51.1 10 C/m m 2.0m/s 1.7 10 A.i        

 

(c) The motion of charge is not in the same direction as the potential difference computed 

in problem 70 of Chapter 24. It might be useful to think of (by analogy) Eq. 7-48; there, 

the scalar (dot) product in P F v 
 

 makes it clear that P = 0 if 
 
F v . This suggests that 

a radial potential difference and an axial flow of charge will not together produce the 

needed transfer of energy (into the form of a spark). 

 

(d) With the assumption that there is (at least) a voltage equal to that computed in 

problem 70 of Chapter 24, in the proper direction to enable the transference of energy 

(into a spark), then we use our result from that problem in Eq. 26-26: 

 

P iV    17 10 7 8 10 135 4. . . .A V Wc hc h  

 

(e) Recalling that a joule per second is a watt, we obtain (1.3 W)(0.20 s) = 0.27 J for the 

energy that can be transferred at the exit of the pipe. 
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(f) This result is greater than the 0.15 J needed for a spark, so we conclude that the spark 

was likely to have occurred at the exit of the pipe, going into the silo. 

 

61. THINK The amount of charge that strikes the surface in time t is given by q = i t, 

where i is the current.  

 

EXPRESS Since each alpha particle carries charge q = +2e, the number of particles that 

strike the surface is 

.
2 2

q i t
N

e e

 
   

 

For part (b), let N   be the number of particles in a length L of the beam. They will all 

pass through the beam cross section at one end in time t = L/v, where v is the particle 

speed. The current is the charge that moves through the cross section per unit time. That 

is,  

 
2 2

.
eN eN v

i
t L

 
   

Thus N   = iL/2ev. 

 

ANALYZE (a) Substituting the values given, we have 

 

  

 

6

12

19

0.25 10 A 3.0s
2.34 10 .

2 2 2 1.6 10 C

q i t
N

e e





 
    


 

 

(b) To find the particle speed, we note the kinetic energy of a particle is 

 

        K       20 20 10 160 10 32 106 19 12MeV eV J / eV J .c hc h. .  

 

Since 21
2

,K mv  the speed is v K m 2 . The mass of an alpha particle is (very nearly) 

4 times the mass of a proton, or m = 4(1.67  10
–27

 kg) = 6.68  10
–27

 kg, so 

 

 12

7

27

2 3.2 10 J
3.1 10 m/s.

6.68 10 kg
v






  


 

 

Therefore, the number of particles in a length L = 20 cm of the beam is 

 

  
  

6 2

3

19 7

0.25 10 20 10 m
5.0 10 .

2 2 1.60 10 C 3.1 10 m/s

iL
N

ev

 



 
    

 
 

 

(c) We use conservation of energy, where the initial kinetic energy is zero and the final 

kinetic energy is 20 MeV = 3.2  10
–12

 J. We note too, that the initial potential energy is 
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Ui = qV = 2eV, 

 

and the final potential energy is zero. Here V is the electric potential through which the 

particles are accelerated. Consequently, 2 ,f iK U eV   which gives 

 

 

12
7

19

3.2 10 J
1.0 10 V.

2 2 1.60 10 C

fK
V

e






   


 

 

LEARN By the work-kinetic energy theorem, the work done on 122.34 10 such alpha 

particles is  
12 12 12(2.34 10 )(20 MeV) (2.34 10 )(3.2 10  J) 7.5 J.W        

 

The same result can also be obtained from 

 

 6 7( ) (0.25 10 A)(3.0s)(1.0 10 V) 7.5 JW q V i t V          . 

 

62. We use Eq. 26-28:
2 2(200 V)

13.3
3000 W

V
R

P
    . 

 

63. Combining Eq. 26-28 with Eq. 26-16 demonstrates that the power is inversely 

proportional to the length (when the voltage is held constant, as in this case).  Thus, a 

new length equal to 7/8 of its original value leads to 

 

P = 
8

7
 (2.0 kW) = 2.4 kW. 

 

64. (a) Since P = i
2
 R = J 

2
 A

2
 R, the current density is 

 

   
2

5 2 3

5 2

1 1 1.0 W

/ 3.5 10 m 2.0 10 m 5.0 10 m

1.3 10 A/m .

P P P
J

A R A L A LA    
   

    

 

 

 

(b) From P = iV = JAV we get 

 

   
2

22 3 5 2

1.0W
9.4 10 V.

5.0 10 m 1.3 10 A/m

P P
V

AJ r J 




    

 
 

 

65. We use P = i
2 

R = i
2L/A, or L/A = P/i

2.  

 

(a) The new values of L and A satisfy 
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L

A

P

i

P

i

L

A

F
HG
I
KJ 
F
HG
I
KJ 

F
HG
I
KJ 

F
HG
I
KJ

new new old old

2 2 2

30

4

30

16 
.  

 

Consequently, (L/A)new = 1.875(L/A)old, and   

 

 new
new old old

old

1.875 1.37       1.37
L

L L L
L

    . 

 

(b) Similarly, we note that (LA)new = (LA)old, and   

 

new
new old old

old

1/1.875 0.730     0.730
A

A A A
A

    . 

 

66. The horsepower required is
(10A)(12 V)

0.20 hp.
0.80 (0.80)(746 W/hp)

iV
P     

 

67. (a) We use P = V 
2
/R  V 

2
, which gives P  V 

2
  2V V. The percentage change 

is roughly  

P/P = 2V/V = 2(110 – 115)/115 = –8.6%. 

 

(b) A drop in V causes a drop in P, which in turn lowers the temperature of the resistor in 

the coil. At a lower temperature R is also decreased. Since P  R
–1

 a decrease in R will 

result in an increase in P, which partially offsets the decrease in P due to the drop in V. 

Thus, the actual drop in P will be smaller when the temperature dependency of the 

resistance is taken into consideration. 

 

68. We use Eq. 26-17:  – 0 = (T – T0), and solve for T: 

 

T T  
F
HG
I
KJ   




F
HG

I
KJ  

0

0

3

1
1 20

1

4 3 10

58

50
1 57






C

K
C

. /
.




 

 

We are assuming that /0 = R/R0. 

 

69. We find the rate of energy consumption from Eq. 26-28: 

 
2 2(90 V)

20.3 W
400

V
P

R
  


 

 

Assuming a steady rate, the energy consumed is (20.3 J/s)(2.00  3600 s) = 1.46  10
5
 J. 

 

70. (a) The potential difference between the two ends of the caterpillar is 
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   

 

8 2

4

2
3

12 A 1.69 10 m 4.0 10 m
3.8 10 V.

5.2 10 m/2

L
V iR i

A




 





  
    


 

 

(b) Since it moves in the direction of the electron drift, which is against the direction of 

the current, its tail is negative compared to its head. 

 

(c) The time of travel relates to the drift speed: 

 

     
2

2 3 28 3 192 1.0 10 m 5.2 10 m 8.47 10 / m 1.60 10 C

4 4(12A)

238s 3min 58s.

d

L lAne Ld ne
t

v i i


     

   

 

 

 

71. THINK The resistance of copper increases with temperature.   

 

EXPRESS According to Eq. 26-17, the resistance of copper at temperature T can be 

written as 

 0
01 ( )

LL
R T T

A A


     

 

where 
0 20 CT    is the reference temperature. Thus, the resistance is 0 0 /R L A at 

0 20 C.T    The temperature at which 02R R  (or equivalently, 02  ) can be found 

by solving 

0 0

0

2 1 ( ) ( ) 1
R

T T T T
R

        . 

 

ANALYZE (a) From the above equation, we find the temperature to be 

T T    


 
0 3

1
20

1

4 3 10
250


C

K
C.

. /
 

 

(b) Since a change in Celsius is equivalent to a change on the Kelvin temperature scale, 

the value of  used in this calculation is not inconsistent with the other units involved.  

 

LEARN It is worth noting that our result agrees well with Fig. 26-10.  

 

72. Since 100 cm = 1 m, then 10
4
 cm

2
 = 1 m

2
. Thus, 

 

R
L

A
 

  








 300 10 10 0 10

56 0 10
0536

7 3

4 2

. .

.
. .




m m

m

c hc h
 

 

73. The rate at which heat is being supplied is  
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P = iV = (5.2 A)(12 V) = 62.4 W. 

 

Considered on a one-second time frame, this means 62.4 J of heat are absorbed by the 

liquid each second.  Using Eq. 18-16, we find the heat of transformation to be 

 

 6

6

62.4 J
3.0 10 J/kg

21 10 kg

Q
L

m 
   


. 

 

74. We find the drift speed from Eq. 26-7: 

 
6 2

4

28 3 19

| | 2.0 10 A/m
1.47 10 m/s .

(8.49 10 /m )(1.6 10 C)
d

J
v

ne






   

 
 

 

At this (average) rate, the time required to travel L = 5.0 m is 

 

4

4

5.0 m
3.4 10 s.

1.47 10 m/sd

L
t

v 
   


 

 

75. The power dissipated is given by the product of the current and the potential 

difference: 

P iV    ( .7 0 10 5603 A)(80 10 V) W.3  

 

76. (a) The current is 4.2  10
18 

e divided by 1 second.  Using e = 1.60  10
19 

C we 

obtain 0.67 A for the current. 

 

(b) Since the electric field points away from the positive terminal (high potential) and 

toward the negative terminal (low potential), then the current density vector (by Eq. 26-

11) must also point toward the negative terminal.  

 

77. For the temperature of the gas to remain unchanged, the rate of the thermal energy 

dissipated through the resistor, 2 ,RP i R  must be equal to the rate of increase of 

mechanical energy of the piston, ( / )mP mg dh dt mgv  . Thus, 

 
2 2

2

2

(0.240 A) (550 )
0.27 m/s.

(12 kg)(9.8 m/s )

i R
i R mgv v

mg


      

 

78. We adapt the discussion in the text to a moving two-dimensional collection of charges. 

Using  for the charge per unit area and w for the belt width, we can see that the transport 

of charge is expressed in the relationship i = vw, which leads to 

 

  



 





i

vw

100 10

30 50 10
6 7 10

6

2

6A

m s m
C m

2

b gc h . .  



CHAPTER 26 1170  

 

79. (a) The total current density is equal to the sum of the contributions from the alpha 

particles and the electron. Using the general expression ,J nqv  and noting that 2en n  

(two electrons for each  particle), we have 

 

total

21 3 19

5 2 2

(2 ) (2 )( ) 2 ( )

2(2.80 10 / m )(1.6 10 C)(88 m/s 25 m/s)

1.01 10 A/m 10.1 A/cm

e e e e eJ n q v n q v n e v n e v n e v v       



     

   

  

 

 

(b) The direction of the current is eastward (same as the motion of the alpha particles). 

 

80. (a) Let T be the change in temperature and  be the coefficient of linear expansion 

for copper. Then L = L T and 

 




L

L
T       ( . / . .17 10 17 105 5K)(1.0 C)  

 

This is equivalent to 0.0017%. Since a change in Celsius is equivalent to a change on the 

Kelvin temperature scale, the value of  used in this calculation is not inconsistent with 

the other units involved.  

 

(b) Incorporating a factor of 2 for the two-dimensional nature of A, the fractional change 

in area is 




A

A
T      2 2 17 10 34 105 5 ( . / .K)(1.0 C)  

which is 0.0034%.  

 

(c) For small changes in the resistivity , length L, and area A of a wire, the change in the 

resistance is given by 

   R
R R

L
L

R

A
A












 .  

 

Since R = L/A, R/ = L/A = R/, R/L = /A = R/L, and R/A = –L/A
2
 = –R/A. 

Furthermore, / = T, where  is the temperature coefficient of resistivity for copper 

(4.3  10
–3

/K = 4.3  10
–3

/C°, according to Table 27-1). Thus, 

 

3 5 3

( 2 ) ( )

(4.3 10 / C 1.7 10 / C )(1.0 C ) 4.3 10 .

R L A
T T

R L A


    


  

   
         

       

 

 

This is 0.43%, which we note (for the purposes of the next part) is primarily determined 

by the / term in the above calculation. 
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(d) The fractional change in resistivity is much larger than the fractional change in length 

and area. Changes in length and area affect the resistance much less than changes in 

resistivity. 

 

81. (a) Using / ( / ),i dq dt e dN dt   we obtain 

 

 
6

13

19

15 10 A
9.4 10 / s.

1.6 10 C

dN i

dt e






   


 

 

(b) The rate of thermal energy production is 

 
13

13

1

1.6 10 J
(9.4 10 / s)(16 MeV) 240 W.

1 MeV

dU dN
P U

dt dt

  
      

   
 

 

82. (a) The charge q that flows past any cross section of the beam in time t is given by q 

= it, and the number of electrons is N = q/e = (i/e) t. This is the number of electrons 

that are accelerated. Thus, 

N 



 





( .

.
. .

050

160 10
31 10

6

19

11A)(0.10 10 s)

C
 

 

(b) Over a long time t the total charge is Q = nqt, where n is the number of pulses per unit 

time and q is the charge in one pulse. The average current is given by iavg = Q/t = nq. 

Now q = it = (0.50 A) (0.10  10
–6

 s) = 5.0  10
–8

 C, so 

 

iavg s)(5.0 10 C) A.    ( / .500 2 5 108 5  

 

(c) The accelerating potential difference is V = K/e, where K is the final kinetic energy of 

an electron. Since K = 50 MeV, the accelerating potential is V = 50 kV = 5.0  10
7
 V. 

During a pulse the power output is 

 

P iV    ( . .050 25 107A)(5.0 10 V) W.7  

 

This is the peak power. The average power is 

 

P i Vavg avg

7A)(5.0 10 V) W.     ( . .2 5 10 13 105 3  

 

83. With the voltage reduced by 6.00% while resistance remains unchanged, the current 

through the heating element also decreases by 6.00% ( 0.94i i  ). The power delivered is 

now 

 2 2 2(0.94 ) 0.884 0.884 ,P i R i R i R P      
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where 2P i R  is the power delivered to the heating element under normal circumstance. 

Since the energy required to heat the water remains the same in both cases, ,P t P t     

the time required becomes 

100 min
113 min.

0.884

P
t t

P

 
     

 
 

 

84. (a) The mass of the water is 3 3 3(1000 kg/m )(2.0 L)(10 m / L) 2.00 kg.m V      

The energy required to raise the water temperature to the boiling point is 

 

 5

1 (2.00 kg)(4187 J/kg C )(100 C 20 C) 6.70 10  J.Q mc T            

 

With P = 400 W at 80% efficiency, we find the time needed to be 

 
5

31
1

eff

6.70 10  J
2.09 10 s 35 min.

(0.80)(400 W)

Q
t

P


       

 

(b) The energy required to vaporize half of the water is 

 
6 6

2 ( / 2) (2.256 10  J/kg)(2.00 kg/2) 2.256 10  J.VQ L m      

 

Thus, the additional time elapsed is 

 
6

32
2

eff

2.256 10  J
7.05 10 s 118 min,

(0.80)(400 W)

Q
t

P


       

or about 1.96 h. 

 

85. (a) At t = 0.500 s, the charge on the capacitor is 

 

 

2 6 2

6

(6.00 4.00 2.00 ) (30 10 F) 6.00 4.00(0.500) 2.00(0.500)

225 10 C 225 C.

q CV C t t







         

  
 

 

(b) The current flowing into the capacitor is 

 

 

 

2

6 6

6.00 4.00 2.00 (4.00 4.00 )

(30 10 F) 4.00 4.00(0.500) 60.0 10 A 60.0 A.

dq dV d
i C C t t C t

dt dt dt

 

      

     

 

 

(c) The corresponding power output is  

 
6 2 4(60.0 10 A) 6.00 4.00(0.500) 2.00(0.500) 4.50 10 W.P iV            
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Chapter 27 
 

 

1. THINK The circuit consists of two batteries and two resistors. We apply Kirchhoff’s 

loop rule to solve for the current. 

 

EXPRESS Let i be the current in the circuit and take it to be positive if it is to the left in 

R1. Kirchhoff’s loop rule gives  

1 – iR2 – iR1 – 2 = 0. 

 

For parts (b) and (c), we note that if i is the current in a resistor R, then the power 

dissipated by that resistor is given by 2P i R . 

 

ANALYZE (a) We solve for i: 

 

i
R R












 1 2

1 2

12 6 0

8 0
050

V V

4.0
A

.

.
. .

 
 

 

A positive value is obtained, so the current is counterclockwise around the circuit. 

 

(b) For R1, the dissipation rate is P1 = 2

1i R  (0.50 A)
2
(4.0 ) = 1.0 W.  

 

(c) For R2, the rate is P2 = 2

2i R   (0.50 A)
2
 (8.0 ) = 2.0 W. 

 

If i is the current in a battery with emf , then the battery supplies energy at the rate P = 

i provided the current and emf are in the same direction. On the other hand, the battery 

absorbs energy at the rate P = i  if the current and emf are in opposite directions.  

 

(d) For 1, P1 = 1i   (0.50 A)(12 V) = 6.0 W. 

 

(e) For 2, P2 = 2i   (0.50 A)(6.0 V) = 3.0 W.  

 

(f) In battery 1 the current is in the same direction as the emf. Therefore, this battery 

supplies energy to the circuit; the battery is discharging.  

 

(g) The current in battery 2 is opposite the direction of the emf, so this battery absorbs 

energy from the circuit. It is charging. 

 

LEARN Multiplying the equation obtained from Kirchhoff’s loop rule by idt  leads to 

the “energy-method” equation discussed in Section 27-4: 

 



CHAPTER 27 1174 

 2 2

1 1 2 2 0.i dt i R dt i R dt i dt      

 

The first term represents the rate of work done by battery 1, the second and third terms 

the thermal energies that appear in resistors R1 and R2, and the last term the work done on 

battery 2.  

 

2. The current in the circuit is  

 

i = (150 V – 50 V)/(3.0  + 2.0 ) = 20 A. 

 

So from VQ + 150 V – (2.0 )i = VP, we get  

 

VQ = 100 V + (2.0 )(20 A) –150 V = –10 V. 

 

3. (a) The potential difference is V =  + ir = 12 V + (50 A)(0.040 ) = 14 V. 

 

(b) P = i
2
r = (50 A)

2
(0.040 ) = 1.0×10

2
 W. 

 

(c) P' = iV = (50 A)(12 V) = 6.0×10
2
 W. 

 

(d) In this case V =  – ir = 12 V – (50 A)(0.040 ) = 10 V. 

 

(e) Pr = i
2
r =(50 A)

2
(0.040 ) = 1.00

2
 W. 

 

4. (a) The loop rule leads to a voltage-drop across resistor 3 equal to 5.0 V (since the total 

drop along the upper branch must be 12 V).  The current there is consequently  

i = (5.0 V)/(200 ) = 25 mA.  Then the resistance of resistor 1 must be (2.0 V)/i  = 80 . 

 

(b) Resistor 2 has the same voltage-drop as resistor 3; its resistance is 200 . 

 

5. The chemical energy of the battery is reduced by E = q, where q is the charge that 

passes through in time t = 6.0 min, and  is the emf of the battery. If i is the current, 

then q = i t and  

 

E = i t = (5.0 A)(6.0 V) (6.0 min) (60 s/min) = 1.1  10
4
 J. 

 

We note the conversion of time from minutes to seconds. 

 

6. (a) The cost is (100 W · 8.0 h/2.0 W · h) ($0.80) = $3.2 0
2
. 

 

(b) The cost is (100 W · 8.0 h/10
3
 W · h) ($0.06) = $0.048 = 4.8 cents. 

 

7. (a) The energy transferred is 
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U Pt
t

r R
 







 2 22 0 2 0 60

50
80

( . ( . min) (

.
.

V) s / min)

1.0
J

 
 

 

(b) The amount of thermal energy generated is 

 

  


F
HG
I
KJ 



F
HG

I
KJ U i Rt

r R
Rt2

2 2

2 0

50
50 2 0 60 67

 .

.
( . ) ( . min) (

V

1.0
s / min) J.

 
  

 

(c) The difference between U and U', which is equal to 13 J, is the thermal energy that is 

generated in the battery due to its internal resistance. 

 

8. If P is the rate at which the battery delivers energy and t is the time, then E = P t is 

the energy delivered in time t. If q is the charge that passes through the battery in time 

t and  is the emf of the battery, then E = q. Equating the two expressions for E and 

solving for t, we obtain 

(120A h)(12.0V)
14.4 h.

100W

q
t

P

 
     

 

9. (a) The work done by the battery relates to the potential energy change: 

 

 12.0V 12.0 eV.q V eV e     

 

(b) P = iV = neV = (3.40  10
18

/s)(1.60  10
–19

 C)(12.0 V) = 6.53 W. 

 

10. (a) We solve i = (2 – 1)/(r1 + r2 + R) for R: 

 

R
i

r r


  



   



 2 1
1 2 3

230 2 0
30 30 9 9 10

. .
. . . .

V V

1.0 10 A
    

 

(b) P = i
2
R = (1.0  10

–3
 A)

2
(9.9  10

2
 ) = 9.9  10

–4
 W. 

 

11. THINK As shown in Fig. 27-29, the circuit contains an emf device X. How it is 

connected to the rest of the circuit can be deduced from the power dissipated and the 

potential drop across it. 

 

EXPRESS The power absorbed by a circuit element is given by P = iV, where i is the 

current and V is the potential difference across the element. The end-to-end potential 

difference is given by  

VA – VB = +iR + , 
 

where  is the emf of device X and is taken to be positive if it is to the left in the diagram. 

 

ANALYZE (a) The potential difference between A and B is 
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V
P

i
  

50

10
50

W

A
V.

.
 

 

Since the energy of the charge decreases, point A is at a higher potential than point B; that 

is, VA – VB = 50 V. 

 

(b) From the equation above, we find the emf of device X to be 

 

 = VA – VB – iR = 50 V – (1.0 A)(2.0 ) = 48 V. 

 

(c) A positive value was obtained for , so it is toward the left. The negative terminal is at 

B. 

 

LEARN Writing the potential difference as ,A BV iR V    we see that our result is 

consistent with the resistance and emf rules. Namely, starting at point A, the change in 

potential is iR  for a move through a resistance R in the direction of the current, and the 

change in potential is   for a move through an emf device in the opposite direction of 

the emf arrow (which points from negative to positive terminals).   

 

12. (a) For each wire, Rwire = L/A where A = r
2
.  Consequently, we have  

 

Rwire =  (1.69  10
8

m )(0.200 m)/(0.00100 m)
2
 = 0.0011 . 

 

The total resistive load on the battery is therefore  

 

totR = 2Rwire + R =0.0011 6.00  . 

 

Dividing this into the battery emf gives the current  

 

 
tot

12.0 V
1.9993 A

6.0022
i

R


  


. 

 

The voltage across the R = 6.00 resistor is therefore  

 

 V iR  (1.9993 A)(6.00 ) = 11.996 V  12.0 V. 

 

(b) Similarly, we find the voltage-drop across each wire to be  

 

wire wireV iR  (1.9993 A)(0.0011 ) = 2.15 mV. 

 

(c) P = i
2
R = (1.9993 A)(6.00 )

2
 = 23.98 W  24.0 W. 

 

(d) Similarly, we find the power dissipated in each wire to be 4.30 mW. 
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13. (a) We denote L = 10 km and  = 13 /km. Measured from the east end we have  

 

R1 = 100  = 2(L – x) + R, 

 

and measured from the west end R2 = 200  = 2x + R. Thus,  

 

x
R R L




 


 2 1

4 2

200 100

4 13

10

2
6 9



 

 km

km
km.b g .  

(b) Also, we obtain 

 

R
R R

L


 


 1 2

2

100 200

2
13 10 20

 
 km kmb gb g . 

 

14. (a) Here we denote the battery emf’s as V1 and V2 .  The loop rule gives 

 

V2 – ir2 + V1 – ir1 – iR  = 0      2 1

1 2

V V
i

r r R




 
  . 

 

The terminal voltage of battery 1 is V1T and (see Fig. 27-4(a)) is easily seen to be equal to 

V1 ir1 ; similarly for battery 2.  Thus,  

 

V1T  = V1  –
1 2 1

1 2

( )r V V

r r R



 
,  V2T  = V2 – 1 2 1

1 2

( )r V V

r r R



 
  . 

 

The problem tells us that V1 and V2 each equal 1.20 V.  From the graph in Fig. 27-32(b) 

we see that V2T  = 0 and V1T  = 0.40 V for R = 0.10 .  This supplies us (in view of the 

above relations for terminal voltages) with simultaneous equations, which, when solved, 

lead to r1 = 0.20 . 

 

(b) The simultaneous solution also gives r2 = 0.30 . 

 

15. Let the emf be V. Then V = iR = i'(R + R'), where i = 5.0 A, i' = 4.0 A, and R' = 2.0 . 

We solve for R: 

(4.0 A)(2.0 )
8.0 .

5.0 A 4.0 A

i R
R

i i

  
   

 
 

 

16. (a) Let the emf of the solar cell be  and the output voltage be V. Thus, 

 

V ir
V

R
r   

F
HG
I
KJ   

for both cases. Numerically, we get  
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0.10 V =  – (0.10 V/500 )r 

   0.15 V =  – (0.15 V/1000 )r. 

We solve for  and r.   

 

(a) r = 1.00
3
 . 

 

(b)  = 0.30 V. 

 

(c) The efficiency is 

 

     

2
3

2 3 2
received

/ 0.15V
2.3 10 0.23%.

1000 5.0cm 2.0 10 W/cm

V R

P




   

 
 

 

17. THINK A zero terminal-to-terminal potential difference implies that the emf of the 

battery is equal to the voltage drop across its internal resistance, that is, .ir   

 

EXPRESS To be as general as possible, we refer to the individual emf’s as 1 and 2 and 

wait until the latter steps to equate them (1 = 2 = ). The batteries are placed in series in 

such a way that their voltages add; that is, they do not “oppose” each other. The total 

resistance in the circuit is therefore Rtotal = R + r1 + r2 (where the problem tells us r1 > r2), 

and the “net emf” in the circuit is 1 + 2. Since battery 1 has the higher internal resistance, 

it is the one capable of having a zero terminal voltage, as the computation in part (a) 

shows. 

 

ANALYZE (a) The current in the circuit is 

 

i
r r R




 

 1 2

1 2

,  

 

and the requirement of zero terminal voltage leads to 1 1ir  , or 

 

2 1 1 2

1

(12.0 V)(0.016 ) (12.0 V)(0.012 )
0.0040 

12.0 V

r r
R

 



   
    . 

 

Note that R = r1 – r2 when we set 1 = 2.  

 

(b) As mentioned above, this occurs in battery 1.  

 

LEARN If we assume the potential difference across battery 2 to be zero and repeat the 

calculation above, we would find R = r2 – r1 < 0, which is physically impossible. Thus, 

only the potential difference across the battery with the larger internal resistance can be 

made zero with suitable choice of R. 

 

18. The currents i1, i2 and i3 are obtained from Eqs. 27-18 through 27-20: 
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1 2 3 2 3
1

1 2 2 3 1 3

1 3 2 1 2
2

1 2 2 3 1 3

( ) (4.0V)(10 5.0 ) (1.0V)(5.0 )
0.275 A,

(10 )(10 ) (10 )(5.0 ) (10 )(5.0 )

( ) (4.0 V)(5.0 ) (1.0 V)(10 5.0 )

(10 )(10 ) (10 )(5.0 ) (10 )(5.0 )

R R R
i

R R R R R R

R R R
i

R R R R R R

 

 

     
  

         

     
  

         

3 2 1

0.025 A,

0.025A 0.275A 0.250A .i i i     

 

 

Vd – Vc can now be calculated by taking various paths. Two examples: from Vd – i2R2 = 

Vc we get  

Vd – Vc = i2R2 = (0.0250 A) (10 ) = +0.25 V; 

 

from Vd + i3R3 + 2 = Vc we get  

 

Vd – Vc = i3R3 – 2 = – (– 0.250 A) (5.0 ) – 1.0 V = +0.25 V. 

 

19. (a) Since Req < R, the two resistors (R = 12.0  and Rx) must be connected in parallel: 

 

R
R R

R R

R

R

x

x

x

x

eq  





300
12 0

12 0
.

.

.
.





b g
 

 

We solve for Rx: Rx = ReqR/(R – Req) = (3.00 )(12.0 )/(12.0  – 3.00 ) = 4.00 . 

 

(b) As stated above, the resistors must be connected in parallel. 

 

20. Let the resistances of the two resistors be R1 and R2, with R1 < R2. From the 

statements of the problem, we have 

 

R1R2/(R1 + R2) = 3.0  and R1 + R2 = 16 . 

 

So R1 and R2 must be 4.0  and 12 , respectively. 

 

(a) The smaller resistance is R1 = 4.0 



(b) The larger resistance is R2 = 12  

 

21. The potential difference across each resistor is V = 25.0 V. Since the resistors are 

identical, the current in each one is  

 

i = V/R = (25.0 V)/(18.0 ) = 1.39 A. 
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The total current through the battery is then itotal = 4(1.39 A) = 5.56 A. One might 

alternatively use the idea of equivalent resistance; for four identical resistors in parallel 

the equivalent resistance is given by 

1 1 4

R R Req

  . 

 

When a potential difference of 25.0 V is applied to the equivalent resistor, the current 

through it is the same as the total current through the four resistors in parallel. Thus  

 

itotal = V/Req = 4V/R = 4(25.0 V)/(18.0 ) = 5.56 A. 

 

22. (a) Req (FH) = (10.0 )(10.0 )(5.00 )/[(10.0 )(10.0 ) + 2(10.0 )(5.00 )] = 

2.50 . 

 

(b) Req (FG) = (5.00 ) R/(R + 5.00 ), where  

 

R = 5.00  + (5.00 )(10.0 )/(5.00  + 10.0 ) = 8.33 . 

 

So Req (FG) = (5.00 )(8.33 )/(5.00  + 8.33 ) = 3.13 . 

 

23. Let i1 be the current in R1 and take it to be positive if it is to the right. Let i2 be the 

current in R2 and take it to be positive if it is upward.  

 

(a) When the loop rule is applied to the lower loop, the result is 

 

2 1 1 0i R   . 

The equation yields 

i
R

1
2

1

50
0 050  

 .
.

 V

100
 A.


 

 

(b) When it is applied to the upper loop, the result is 

 

  1 2 3 2 2 0   i R . 

The equation gives 

1 2 3
2

2

6.0 V 5.0 V 4.0 V
0.060 A

50
i

R

     
   


, 

 

or 2| | 0.060 A.i  The negative sign indicates that the current in R2 is actually downward.  

 

(c) If Vb is the potential at point b, then the potential at point a is Va = Vb + 3 + 2, so  

 

Va – Vb = 3 + 2 = 4.0 V + 5.0 V = 9.0 V. 

 

24. We note that two resistors in parallel, R1 and R2, are equivalent to 
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1 2
12

12 1 2 1 2

1 1 1
.

R R
R

R R R R R
   


 

 

This situation consists of a parallel pair that are then in series with a single R3 = 2.50  

resistor. Thus, the situation has an equivalent resistance of 

 

eq 3 12

(4.00 )(4.00 )
2.50 4.50 .

4.00 4.00
R R R

 
     

 
 

 

25. THINK The resistance of a copper wire varies with its cross-sectional area, or its 

diameter.  

 

EXPRESS Let r be the resistance of each of the narrow wires. Since they are in parallel 

the equivalent resistance eqR  of the composite is given by 

 

eq

1 9
,

R r
  

 

or Req = r/9. Now each thin wire has a resistance 24 / ,r d  where  is the resistivity 

of copper, and A = d
2
/4 is the cross-sectional area of a single thin wire. On the other 

hand, the resistance of the thick wire of diameter D is 24 / ,R D  where the cross-

sectional area is D
2
/4.  

 

ANALYZE If the single thick wire is to have the same resistance as the composite of 9 

thin wires, eq ,R R  then 

 
2 2

4 4
.

D d

 


 
 

Solving for D, we obtain D = 3d. 

 

LEARN The equivalent resistance eqR  is smaller than r by a factor of 9. Since 

21/ 1/ ,r A d  increasing the diameter of the wire threefold will also reduce the 

resistance by a factor of 9.  

 

26. The part of R0 connected in parallel with R is given by R1 = R0x/L, where L = 10 cm. 

The voltage difference across R is then VR = R'/Req, where R' = RR1/(R + R1) and  

 

Req = R0(1 – x/L) + R'. 

Thus, 

 

   

 

 

2 22
1 1 0

2
2

0 1 1
0

1001
,

1 100 10

R
R

RR R R R x RV
P

R R R x L RR R R R R x x

  
         
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where x is measured in cm. 

 

27. Since the potential differences across the two paths are the same, 
1 2V V  (

1V  for the 

left path, and 
2V  for the right path), we have 

1 1 2 2i R i R , where 1 2 5000 Ai i i   . With 

/R L A  (see Eq. 26-16), the above equation can be rewritten as 

  

1 2 2 1( / )i d i h i i d h   . 

 

With / 0.400d h  , we get 
1 3571Ai   and 

2 1429 Ai  . Thus, the current through the 

person is 
1 3571Ai  , or approximately 3.6 kA . 

 

28. Line 1 has slope R1 = 6.0 k.  Line 2 has slope R2 = 4.0 k.  Line 3 has slope R3 = 

2.0 k.  The parallel pair equivalence is R12 = R1R2/(R1+R2) = 2.4 k.  That in series with 

R3 gives an equivalence of  

 

123 12 3 2.4 k 2.0 k 4.4 k .R R R       

 

The current through the battery is therefore 
123/i R  (6 V)/(4.4 k) and the voltage 

drop across R3 is (6 V)(2 k)/(4.4 k) = 2.73 V. Subtracting this (because of the loop 

rule) from the battery voltage leaves us with the voltage across R2.  Then Ohm’s law 

gives the current through R2: (6 V – 2.73 V)/(4 k) = 0.82 mA. 

 

29. (a)  The parallel set of three identical R2 = 18  resistors reduce to R = 6.0 , which 

is now in series with the R1 = 6.0  resistor at the top right, so that the total resistive load 

across the battery is R' = R1 + R = 12 .  Thus, the current through R' is (12V)/R' = 1.0 A, 

which is the current through R.  By symmetry, we see one-third of that passes through 

any one of those 18  resistors; therefore, i1 = 0.333 A. 

 

(b) The direction of  i1 is clearly rightward. 

 

(c) We use Eq. 26-27:  P = i
2
R' = (1.0 A)

2
(12 ) = 12 W.  Thus, in 60 s, the energy 

dissipated is (12 J/s)(60 s) = 720 J. 

 

30. Using the junction rule (i3 = i1 + i2) we write two loop rule equations: 

 

10.0 V – i1R1 – (i1 + i2) R3 = 0 
 

5.00 V – i2R2 – (i1 + i2) R3 = 0. 

 

(a) Solving, we find i2 = 0, and 

 

(b) i3 = i1 + i2 = 1.25 A (downward, as was assumed in writing the equations as we did). 
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31. THINK This problem involves a multi-loop circuit. We first simplify the circuit by 

finding the equivalent resistance. We then apply Kirchhoff’s loop rule to calculate the 

current in the loop, and the potentials at various points in the circuit.   

 

EXPRESS We first reduce the parallel pair of identical 2.0- resistors (on the right side) 

to R' = 1.0 , and we reduce the series pair of identical 2.0- resistors (on the upper left 

side) to R'' = 4.0 . With R denoting the 2.0- resistor at the bottom (between V2 and V1), 

we now have three resistors in series which are equivalent to  

 

eq 7.0R R R R       

 

across which the voltage is 2 1   = 7.0 V (by the loop rule, this is 12 V – 5.0 V), 

implying that the current is  

 2 1

eq

7.0 V
1.0 A

7.0
i

R

 
  


. 

 

The direction of i is upward in the right-hand emf device. Knowing i allows us to solve 

for V1 and V2.  

 

ANALYZE (a) The voltage across R' is (1.0 A)(1.0 ) = 1.0 V, which means that 

(examining the right side of the circuit) the voltage difference between ground and V1 is 

12 V – 1.0 V = 11 V. Noting the orientation of the battery, we conclude that 1 11 VV  . 

 

(b) The voltage across R'' is (1.0 A)(4.0 ) = 4.0 V, which means that (examining the left 

side of the circuit) the voltage difference between ground and V2 is 5.0 V + 4.0 V = 9.0 V. 

Noting the orientation of the battery, we conclude V2 = –9.0 V.  

 

LEARN The potential difference between points 1 and 2 is  

 

 2 1 9.0 V ( 11.0 V) 2.0 V,V V       

 

which is equal to (1.0 A)(2.0 ) 2.0 V.iR     

 

32. (a) For typing convenience, we denote the emf of battery 2 as V2 and the emf of 

battery 1 as V1.   The loop rule (examining the left-hand loop) gives V2 + i1 R1  – V1 = 0.  

Since V1 is held constant while V2 and i1 vary, we see that this expression (for large 

enough V2) will result in a negative value for i1, so the downward sloping line (the line 

that is dashed in Fig. 27-43(b)) must represent i1.  It appears to be zero when V2 = 6 V.  

With i1  = 0, our loop rule gives V1 = V2, which implies that V1 = 6.0 V. 

 

(b) At V2 = 2 V (in the graph) it appears that i1 = 0.2 A.  Now our loop rule equation (with 

the conclusion about V1 found in part (a)) gives R1 = 20 . 
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(c) Looking at the point where the upward-sloping i2 line crosses the axis (at V2 = 4 V), 

we note that i1 = 0.1 A there and that the loop rule around the right-hand loop should give 

 

V1 – i1 R1 = i1 R2 

 

when  i1 = 0.1 A  and i2 = 0. This leads directly to R2 = 40 . 

 

33. First, we note in V4, that the voltage across R4 is equal to the sum of the voltages 

across R5 and R6:  

V4 = i6(R5 +R6)= (1.40 A)(8.00  + 4.00 ) = 16.8 V. 

 

The current through R4 is then equal to i4 = V4/R4 = 16.8 V/(16.0 ) = 1.05 A. 

 

By the junction rule, the current in R2 is  

 

i2 = i4 + i6 =1.05 A + 1.40 A = 2.45 A, 

 

so its voltage is V2 = (2.00 )(2.45 A) = 4.90 V. 

 

The loop rule tells us the voltage across R3 is V3 = V2 + V4 = 21.7 V (implying that the 

current through it is i3 = V3/(2.00 ) = 10.85 A). 

 

The junction rule now gives the current in R1 as  

 

i1 = i2 + i3 = 2.45 A + 10.85 A = 13.3 A, 

 

implying that the voltage across it is V1 = (13.3 A)(2.00 ) = 26.6 V. Therefore, by the 

loop rule,  

 = V1 + V3 = 26.6 V + 21.7 V = 48.3 V. 

 

34. (a) By the loop rule, it remains the same.  This question is aimed at student 

conceptualization of voltage; many students apparently confuse the concepts of voltage 

and current and speak of “voltage going through” a resistor – which would be difficult to 

rectify with the conclusion of this problem. 

 

(b) The loop rule still applies, of course, but (by the junction rule and Ohm’s law) the 

voltages across R1 and R3 (which were the same when the switch was open) are no longer 

equal.  More current is now being supplied by the battery, which means more current is in 

R3, implying its voltage drop has increased (in magnitude).  Thus, by the loop rule (since 

the battery voltage has not changed) the voltage across R1 has decreased a corresponding 

amount.  When the switch was open, the voltage across R1 was 6.0 V (easily seen from 

symmetry considerations).  With the switch closed, R1 and R2 are equivalent (by Eq. 27-

24) to 3.0 , which means the total load on the battery is 9.0 .  The current therefore is 

1.33 A, which implies that the voltage drop across R3 is 8.0 V.  The loop rule then tells us 

that the voltage drop across R1 is 12 V – 8.0 V = 4.0 V.  This is a decrease of 2.0 volts 

from the value it had when the switch was open. 
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35. (a) The symmetry of the problem allows us to use i2 as the current in both of the R2 

resistors and i1 for the R1 resistors. We see from the junction rule that i3 = i1 – i2. There 

are only two independent loop rule equations: 

 

 
2 2 1 1

1 1 1 2 3

0

2 0

i R i R

i R i i R





  

   
 

 

where in the latter equation, a zigzag path through the bridge has been taken. Solving, we 

find i1 = 0.002625 A, i2 = 0.00225 A and i3 = i1 – i2 = 0.000375 A. Therefore,  

 

VA – VB = i1R1 = 5.25 V. 

 

(b) It follows also that VB – VC = i3R3 = 1.50 V. 

 

(c) We find VC – VD = i1R1 = 5.25 V. 

 

(d) Finally, VA – VC = i2R2 = 6.75 V. 

 

36. (a) Using the junction rule (i1 = i2 + i3) we write two loop rule equations: 

 





1 2 2 2 3 1

2 3 3 2 3 1

0

0

   

   

i R i i R

i R i i R

b g
b g .

 

 

Solving, we find i2 = 0.0109 A (rightward, as was assumed in writing the equations as we 

did), i3 = 0.0273 A (leftward), and i1 = i2 + i3 = 0.0382 A (downward). 

 

(b) The direction is downward. See the results in part (a). 

 

(c) i2 = 0.0109 A . See the results in part (a). 

 

(d) The direction is rightward. See the results in part (a). 

 

(e) i3 = 0.0273 A. See the results in part (a). 

 

(f) The direction is leftward. See the results in part (a). 

 

(g) The voltage across R1 equals VA: (0.0382 A)(100 ) = +3.82 V. 

 

37. The voltage difference across R3 is V3 = R' /(R' + 2.00 ), where  

 

R' = (5.00 R)/(5.00  + R3). 

Thus, 
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  

 

 

22 2
2 2

3
3

3 3 3 3 3

2

3

2.00 5.001 1
1

2.00 1 2.00 5.00

RV R
P

R R R R R R R

f R

  





     
        

          



 

 

where we use the equivalence symbol  to define the expression f(R3). To maximize P3 

we need to minimize the expression f(R3). We set 

 

  2
3

2

3 3

4.00 49
0

25

df R

dR R


     

 

to obtain   2

3 4.00 25 49= 1.43 .R     

 

38. (a) The voltage across R3 = 6.0  is V3 = iR3= (6.0 A)(6.0 ) = 36 V.  Now, the 

voltage across R1 = 2.0  is  

(VA – VB) – V3 = 78  36 = 42 V, 

 

which implies the current is i1 = (42 V)/(2.0 ) = 21 A.  By the junction rule, then, the 

current in R2 = 4.0  is  

i2 = i1 i  = 21 A  6.0 A = 15 A. 

 

The total power dissipated by the resistors is (using Eq. 26-27) 

 
2

1i (2.0 ) + 2

2i (4.0 ) + 2i (6.0 ) = 1998 W    2.0 kW. 

 

By contrast, the power supplied (externally) to this section is PA = iA (VA  VB) where iA = 

i1 = 21 A.  Thus, PA = 1638 W.  Therefore, the "Box" must be providing energy. 

 

(b) The rate of supplying energy is (1998  1638 )W = 3.6×10
2
 W. 

 

39. (a) The batteries are identical and, because they are connected in parallel, the 

potential differences across them are the same. This means the currents in them are the 

same. Let i be the current in either battery and take it to be positive to the left. According 

to the junction rule the current in R is 2i and it is positive to the right. The loop rule 

applied to either loop containing a battery and R yields 

 

2 0 .
2

ir iR i
r R


     


 

 

The power dissipated in R is 
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P i R
R

r R
 


( )

( )
.2

4

2

2
2

2


 

 

We find the maximum by setting the derivative with respect to R equal to zero. The 

derivative is 

dP

dR r R

R

r R

r R

r R












4

2

16

2

4 2

2

2

3

2

3

2

3

  

( ) ( )

( )

( )
.  

 

The derivative vanishes (and P is a maximum) if R = r/2. With r = 0.300 , we have 

0.150 R  .  

 

(b) We substitute R = r/2 into P = 42R/(r + 2R)
2
 to obtain 

 
2 2 2

max 2

4 ( / 2) (12.0 V)
240 W.

[ 2( / 2)] 2 2(0.300 )

r
P

r r r

 
   

 
 

 

40. (a) By symmetry, when the two batteries are connected in parallel the current i going 

through either one is the same. So from  = ir + (2i)R with r = 0.200  and R = 2.00r, we 

get  

 
2 2(12.0V)

2 24.0 A.
2 0.200 2(0.400 )

Ri i
r R


   

  
 

 

(b) When connected in series 2 – iRr – iRr – iRR = 0, or iR = 2/(2r + R). The result is 

 

2 2(12.0V)
2 30.0 A.

2 2(0.200 ) 0.400
Ri i

r R


   

   
 

 

(c) They are in series arrangement, since R > r. 

 

(d) If R = r/2.00, then for parallel connection, 

 

2 2(12.0V)
2 60.0 A.

2 0.200 2(0.100 )
Ri i

r R


   

  
 

 

(e) For series connection, we have  

 

2 2(12.0V)
2 48.0 A.

2 2(0.200 ) 0.100
Ri i

r R


   

   
 

 

(f) They are in parallel arrangement, since R < r. 
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41. We first find the currents. Let i1 be the current in R1 and take it to be positive if it is to 

the right. Let i2 be the current in R2 and take it to be positive if it is to the left. Let i3 be 

the current in R3 and take it to be positive if it is upward. The junction rule produces 

 

i i i1 2 3 0   .  

 

The loop rule applied to the left-hand loop produces 

 

1 1 1 3 3 0i R i R     

 

and applied to the right-hand loop produces 

 

2 2 2 3 3 0.i R i R     

 

We substitute i3 = –i2 – i1, from the first equation, into the other two to obtain 

 

1 1 1 2 3 1 3 0i R i R i R      

and 

2 2 2 2 3 1 3 0.i R i R i R      

 

Solving the above equations yield 

 

1 2 3 2 3
1

1 2 1 3 2 3

( ) (3.00 V)(2.00 5.00 ) (1.00 V)(5.00 )
0.421 A.

(4.00 )(2.00 ) (4.00 )(5.00 ) (2.00 )(5.00 )

R R R
i

R R R R R R

      
  

         

 

 

2 1 3 1 3
2

1 2 1 3 2 3

( ) (1.00 V)(4.00 5.00 ) (3.00 V)(5.00 )
0.158 A.

(4.00 )(2.00 ) (4.00 )(5.00 ) (2.00 )(5.00 )

R R R
i

R R R R R R

      
   

         

 

 

2 1 1 2
3

1 2 1 3 2 3

(1.00 V)(4.00 ) (3.00 V)(2.00 )
0.263 A.

(4.00 )(2.00 ) (4.00 )(5.00 ) (2.00 )(5.00 )

R R
i

R R R R R R

    
     

         

 

Note that the current i3 in R3 is actually downward and the current i2 in R2 is to the right. 

The current i1 in R1 is to the right.  

 

(a) The power dissipated in R1 is    
22

1 1 1 0.421A 4.00 0.709W.P i R     

 

(b) The power dissipated in R2 is 2 2

2 2 2 ( 0.158A) (2.00 ) 0.0499W 0.050 W.P i R       

 

(c) The power dissipated in R3 is    
22

3 3 3 0.263A 5.00 0.346W.P i R      
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(d) The power supplied by 1 is i31 = (0.421 A)(3.00 V) = 1.26 W. 

 

(e) The power “supplied” by 2 is i22 = (–0.158 A)(1.00 V) = –0.158 W. The negative 

sign indicates that 2 is actually absorbing energy from the circuit. 

 

42. The equivalent resistance in Fig. 27-52 (with n parallel resistors) is  

 

 
eq

1R n
R R R

n n

 
    

 
 . 

 

The current in the battery in this case should be  

 

battery battery

eq 1
n

V Vn
i

R n R
 


. 

 

If there were n +1 parallel resistors, then  

 

battery battery

1

eq

1

2
n

V Vn
i

R n R



 


 . 

 

For the relative increase to be 0.0125 ( = 1/80 ), we require 

 

in+ 1 – in
 in 

 =  
 in+ 1 

 in 
  – 1 =  

( 1) /( 2)
1

/( 1)

n n

n n

 



 =  

1

80
  . 

 

This leads to the second-degree equation  n
2
 + 2n – 80  = (n + 10)(n – 8) = 0. 

 

Clearly the only physically interesting solution to this is n = 8. Thus, there are eight 

resistors in parallel (as well as that resistor in series shown toward the bottom) in Fig. 27-

52. 

 

43. Let the resistors be divided into groups of n resistors each, with all the resistors in the 

same group connected in series. Suppose there are m such groups that are connected in 

parallel with each other. Let R be the resistance of any one of the resistors. Then the 

equivalent resistance of any group is nR, and Req, the equivalent resistance of the whole 

array, satisfies 

1 1

1R nR

m

nR

m

eq

  .  

 

Since the problem requires Req = 10  = R, we must select n = m. Next we make use of 

Eq. 27-16. We note that the current is the same in every resistor and there are n · m = n
2
 

resistors, so the maximum total power that can be dissipated is Ptotal = n
2
P, where 

1.0 WP  is the maximum power that can be dissipated by any one of the resistors. The 
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problem demands Ptotal  5.0P, so n
2
 must be at least as large as 5.0. Since n must be an 

integer, the smallest it can be is 3. The least number of resistors is n
2
 = 9. 

 

44. (a) Resistors R2, R3, and R4 are in parallel. By finding a common denominator and 

simplifying, the equation 1/R = 1/R2 + 1/R3 + 1/R4 gives an equivalent resistance of 

 

2 3 4

2 3 2 4 3 4

(50.0 )(50.0 )(75.0 )

(50.0 )(50.0 ) (50.0 )(75.0 ) (50.0 )(75.0 )

18.8 .

R R R
R

R R R R R R

  
 

         

 

 

 

Thus, considering the series contribution of resistor R1, the equivalent resistance for the 

network is Req = R1 + R = 100  + 18.8  = 118.8  119 . 

 

(b) i1 = /Req = 6.0 V/(118.8 ) = 5.05  10
–2

 A.  

 

(c) i2 = ( – V1)/R2 = ( – i1R1)/R2 = [6.0V – (5.05  10
–2

 A)(100)]/50  = 1.90  10
–2

 A.  

 

(d) i3 = ( – V1)/R3 = i2R2/R3 = (1.90  10
–2

 A)(50.0 /50.0 ) = 1.90  10
–2

 A.  

 

(e) i4 = i1 – i2 – i3 = 5.05  10
–2

 A – 2(1.90  10
–2

 A) = 1.25  10
–2

 A. 

 

45. (a) We note that the R1 resistors occur in series pairs, contributing net resistance 2R1 

in each branch where they appear. Since 2 = 3 and R2 = 2R1, from symmetry we know 

that the currents through 2 and 3 are the same: i2 = i3 = i. Therefore, the current through 

1 is i1 = 2i. Then from Vb – Va = 2 – iR2 = 1 + (2R1)(2i) we get 

 

 
2 1

1 2

4.0V 2.0V
0.33A.

4 4 1.0 2.0
i

R R

  
  

   
 

 

Therefore, the current through 1 is i1 = 2i = 0.67 A. 

 

(b) The direction of i1 is downward.  

 

(c) The current through 2 is i2 = 0.33 A. 

 

(d) The direction of i2 is upward. 

 

(e) From part (a), we have i3 = i2 = 0.33 A. 

 

(f) The direction of i3 is also upward. 

 

(g) Va – Vb = –iR2 + 2 = –(0.333 A)(2.0 ) + 4.0 V = 3.3 V. 
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46. (a) When R3 = 0 all the current passes through R1 and R3 and avoids R2 altogether.  

Since that value of the current (through the battery) is 0.006 A (see Fig. 27-55(b)) for R3 

= 0 then (using Ohm’s law)  

 

R1 = (12 V)/(0.006 A) = 2.010
3 
. 

 

(b) When R3 =   all the current passes through R1 and R2 and avoids R3 altogether.  Since 

that value of the current (through the battery) is 0.002 A (stated in problem) for R3 =  

then (using Ohm’s law)  

 

R2 = (12 V)/(0.002 A) – R1 = 4.010
3
 . 

 

47. THINK The copper wire and the aluminum sheath are connected in parallel, so the 

potential difference is the same for them.  

 

EXPRESS Since the potential difference is the product of the current and the resistance, 

iCRC = iARA, where iC is the current in the copper, iA is the current in the aluminum, RC is 

the resistance of the copper, and RA is the resistance of the aluminum. The resistance of 

either component is given by R = L/A, where  is the resistivity, L is the length, and A is 

the cross-sectional area. The resistance of the copper wire is RC = CL/a
2
, and the 

resistance of the aluminum sheath is RA = AL/(b
2
 – a

2
). We substitute these expressions 

into iCRC = iARA, and cancel the common factors L and  to obtain 

 

2 2 2
.C C A Ai i

a b a

 



 

 

We solve this equation simultaneously with i = iC + iA, where i is the total current. We 

find 

i
r i

r r r
C

C C

A C C C A


 

2

2 2 2



 c h  

and 

i
r r i

r r r
A

A C C

A C C C A




 

2 2

2 2 2

c h
c h



 
.  

 

ANALYZE (a) The denominators are the same and each has the value 

 

       

   

2 2
2 2 2 3 3 8

2
3 8

15 3

0.380 10 m 0.250 10 m 1.69 10 m

0.250 10 m 2.75 10 m

3.10 10 m .

C Ab a a    

 



        
  

   

  

 

Thus, 
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iC 
  

 


 



0 250 10 2 75 10 2 00

310 10
111

3
2

8

15

. . .

.
.

m m A

m
A

3

c h c hb g


. 

 

(b) Similarly, 

 

       
2 2

3 3 8

15 3

0.380 10 m 0.250 10 m 1.69 10 m 2.00A
0.893A.

3.10 10 m
Ai

  



     
   

 
 

 

(c) Consider the copper wire. If V is the potential difference, then the current is given by 

V = iCRC = iCCL/a
2
, so the length of the composite wire is 

 

L
a V

iC C

 


 






 2 3
2

8

0 250 10 12 0

111 169 10
126



b gc h b g
b gc h

. .

. .

m V

A m
m.


 

 

LEARN The potential difference can also be written as V = iARA = iAAL/(b
2
 – a

2
). Thus,  

 

 

  

3 2 3 22 2

8

(0.380 10 m) (0.250 10 m) 12.0 V)
126 m,

0.893 A 2.75 10 mA A

b a V
L

i





 



        
 

 

 

in agreement with the result found in (c). 

 

48. (a) We use P = 2/Req, where 

 

  

      
eq

12.0 4.00
7.00 .

12.0 4.0 12.0 4.00

R
R

R R

 
 

     
 

 

Put P = 60.0 W and  = 24.0 V and solve for R: R = 19.5 . 

 

(b) Since P  Req, we must minimize Req, which means R = 0. 

 

(c) Now we must maximize Req, or set R = . 

 

 

(d) Since Req, min = 7.00 , Pmax = 2/Req, min = (24.0 V)
2
/7.00  = 82.3 W. 

 

(e) Since Req, max = 7.00  + (12.0 )(4.00 )/(12.0  + 4.00 ) = 10.0 , 

 

Pmin = 2/Req, max = (24.0 V)
2
/10.0  = 57.6 W. 

 

49. (a) The current in R1 is given by 
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i
R R R R R

1

1 2 3 2 3

50

4 0 6 0 4 0 6 0
114

 


 




/

.

( . ) ( . ) / ( . . )
.b g

V

2.0
A.

    
 

 

Thus, 

i
V

R

i R

R
3

1

3

1 1

3

50 114 2 0

6 0
0 45










  . ( . ( . )

.
.

V A)
A.




 

 

(b) We simply interchange subscripts 1 and 3 in the equation above. Now 

 

        3

3 2 1 2 1

5.0V
0.6818A

/ 6.0 2.0 4.0 / 2.0 4.0
i

R R R R R


  

      
 

and 

i1
50 0 6818

2 0
0 45




. .

.
.

V A 6.0
A,

b gb g


 

the same as before. 

 

50. Note that there is no voltage drop across the ammeter. Thus, the currents in the 

bottom resistors are the same, which we call i (so the current through the battery is 2i and 

the voltage drop across each of the bottom resistors is iR). The resistor network can be 

reduced to an equivalence of 

R
R R

R R

R R

R R
Req 







2

2

7

6

b gb g b gb g
 

 

which means that we can determine the current through the battery (and also through 

each of the bottom resistors): 

eq eq

3
2 .

2 2(7 / 6) 7
i i

R R R R

   
      

 

By the loop rule (going around the left loop, which includes the battery, resistor 2R, and 

one of the bottom resistors), we have 

 

 2 22 0 .
2

R R

iR
i R iR i

R





      

 

Substituting i = 3/7R, this gives i2R = 2/7R. The difference between i2R and i is the 

current through the ammeter. Thus, 

 

ammeter
ammeter 2

3 2 1
      0.143.

7 7 7 / 7
R

i
i i i

R R R R

  


         

 

51. Since the current in the ammeter is i, the voltmeter reading is  

 

V’ =V+ i RA= i (R + RA), 
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or R = /V i  – RA = R' – RA, where /R V i   is the apparent reading of the resistance. 

Now, from the lower loop of the circuit diagram, the current through the voltmeter is 

eq 0/( )Vi R R  , where 

  

    
eq

eq

300 85.0 3.001 1 1
    68.0 .

300 85.0 3.00

V A

V A V A

R R R
R

R R R R R R R

   
      

     
 

 

The voltmeter reading is then  

 

 
eq

eq

eq 0

(12.0 V)(68.0 )
4.86 V.

68.0 100
V

R
V i R

R R

 
   

  
 

(a) The ammeter reading is  

 

4.86 V
0.0552 A.

85.0 3.00A

V
i

R R


  

  
 

 

(b) As shown above, the voltmeter reading is 4.86 V.V    

 

(c) /R V i   = 4.86 V/(5.52  10
–2

 A) = 88.0 . 

 

(d) Since AR R R  , if RA is decreased, the difference between R  and R decreases. In 

fact, when RA = 0, .R R    

 

52. (a) Since i = /(r + Rext) and imax = /r, we have Rext = R(imax/i – 1) where r = 1.50 

V/1.00 mA = 1.50  10
3
 . Thus,  

 

 3 4

ext (1.5 10 )(1/ 0.100 1) 1.35 10R        . 

 

(b) 3 3

ext (1.5 10 )(1/ 0.500 1) 1.5 10R        . 

 

(c) 3

ext (1.5 10 )(1/ 0.900 1) 167R       . 

 

(d) Since r = 20.0  + R, R = 1.50  10
3
  – 20.0  = 1.48  10

3
 . 

 

53. The current in R2 is i. Let i1 be the current in R1 and take it to be downward. 

According to the junction rule the current in the voltmeter is i – i1 and it is downward. We 

apply the loop rule to the left-hand loop: 

 

    iR i R ir2 1 1 0.  

 

Similarly, applying the loop rule to the right-hand loop gives 
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i R i i RV1 1 1 0  b g .  

The second equation yields 

i
R R

R
iV

V


1

1.  

We substitute this into the first equation to obtain 

 

 
 

 
R r R R

R
i R i

V

V

2 1

1 1 1 0
b gb g

.  

This has the solution 

i
R

R r R R R R

V

V V

1

2 1 1


  



b gb g .  

 

The reading on the voltmeter is 

 

   

     

     

3

1
1 1 3 3

2 1 1

3.0V 5.0 10 250

300 100 250 5.0 10 250 5.0 10

1.12 V.

V

V V

R R
i R

R r R R R R

   
 

           



 

The current in the absence of the voltmeter can be obtained by taking the limit as RV 

becomes infinitely large. Then 

 

  
1

1 1

1 2

3.0V 250
1.15V.

250 300 100

R
i R

R R r

 
  

    
 

 

The fractional error is (1.12 – 1.15)/(1.15) = –0.030, or –3.0%. 

 

54. (a)  = V + ir = 12 V + (10.0 A) (0.0500 ) = 12.5 V. 

 

(b) Now  = V' + (imotor + 8.00 A)r, where  

 

V' = i'ARlight = (8.00 A) (12.0 V/10 A) = 9.60 V.  

Therefore, 

motor

12.5V 9.60V
8.00A 8.00A 50.0A.

0.0500

V
i

r

  
    


 

 

55. Let i1 be the current in R1 and R2, and take it to be positive if it is toward point a in R1. 

Let i2 be the current in Rs and Rx, and take it to be positive if it is toward b in Rs. The loop 

rule yields (R1 + R2)i1 – (Rx + Rs)i2 = 0. Since points a and b are at the same potential, 

i1R1 = i2Rs. The second equation gives i2 = i1R1/Rs, which is substituted into the first 

equation to obtain 
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    21
1 2 1 1

1

.s
x s x

s

R RR
R R i R R i R

R R
      

 

56. The currents in R and RV are i and i' – i, respectively. Since V = iR = (i' – i)RV we 

have, by dividing both sides by V, 1 = (i' /V – i/V)RV = (1/R' – 1/R)RV. Thus, 

 

1 1 1
    .V

V V

RR
R

R R R R R
   

 
 

 

The equivalent resistance of the circuit is 
eq 0 0

V
A A

V

RR
R R R R R R

R R
     


. 

 

(a) The ammeter reading is 

 

       eq 0

2

12.0V

3.00 100 300 85.0 300 85.0

7.09 10 A.

A V V

i
R R R R R R R

 



   
        

 

 

 

(b) The voltmeter reading is  

 

V = – i' (RA + R0) = 12.0 V – (0.0709 A) (103.00 ) = 4.70 V. 

 

(c) The apparent resistance is R' = V/i' = 4.70 V/(7.09  10
–2

 A) = 66.3 .  

 

(d) If RV is increased, the difference between R and R  decreases. In fact, R R  as 

VR  . 

 

57. Here we denote the battery emf as V.  Then the requirement stated in the problem that 

the resistor voltage be equal to the capacitor voltage becomes iR = Vcap, or 

 

Ve
t /RC

 = V(1  e
t/RC

) 

 

where Eqs. 27-34 and 27-35 have been used.  This leads to t = RC ln2, or  t =  0.208 ms. 

 

58. (a)  = RC = (1.40  10
6
 )(1.80  10

–6
 F) = 2.52 s. 

 

(b) qo = C = (12.0 V)(1.80  F) = 21.6 C. 

 

(c) The time t satisfies q = q0(1 – e
–t/RC

), or 

 

 0

0

21.6 C
ln 2.52s ln 3.40s.

21.6 C 16.0 C

q
t RC

q q



 

   
     

   
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59. THINK We have an RC circuit that is being charged. When fully charged, the charge 

on the capacitor is equal to .C   

 

EXPRESS During charging, the charge on the positive plate of the capacitor is given by 

 

q C e t   1c h,  

 

where C is the capacitance,  is applied emf, and  = RC is the capacitive time constant. 

The equilibrium charge is qeq = C, so we require q = 0.99qeq = 0.99C.  
 

ANALYZE The time required to reach 99% of its final charge is given by 

 

099 1. .  e t   
 

Thus, e t  001. .  Taking the natural logarithm of both sides, we obtain t/ = – ln 0.01 = 

4.61 or t = 4.61. 
 

LEARN The corresponding current in a charging capacitor is given by 

 

.tdq
i e

dt R

    

 

The current has an initial value / R  but decays exponentially to zero as the capacitor 

becomes fully charged. The plots of q(t) and i(t) are shown in Fig. 27-16 of the text.  

 

60. (a) We use q = q0e
–t/

, or t =  ln (q0/q), where  = RC is the capacitive time constant. 

Thus,  

0 1/3
1/3

0

3
ln ln 0.41 0.41.

2 / 3 2

q t
t

q
  



   
       

  
 

 

(b) 0 2/3
2/3

0

ln ln3 1.1 1.1.
/ 3

q t
t

q
  



 
     

 
 

 

61. (a) The voltage difference V across the capacitor is V(t) = (1 – e
–t/RC

). At t = 1.30 s 

we have V(t) = 5.00 V, so 5.00 V = (12.0 V)(1 – e
–1.30 s/RC

), which gives  

 

 = (1.30  s)/ln(12/7) = 2.41 s. 

 

(b) The capacitance is C = /R = (2.41 s)/(15.0 k = 161 pF. 

 

62. The time it takes for the voltage difference across the capacitor to reach VL is given 

by V eL

t RC   1c h . We solve for R: 
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R
t

C VL





 

 
ln

.

. ln . . .
.

 b g c h b g
0500

0150 10 950 950 72 0
2 35 10

6

6s

F V V V
  

 

where we used t = 0.500 s given (implicitly) in the problem. 

 

63. THINK We have a multi-loop circuit with a capacitor that’s being charged. Since at t 

= 0 the capacitor is completely uncharged, the current in the capacitor branch is as it 

would be if the capacitor were replaced by a wire.  

 

EXPRESS Let i1 be the current in R1 and take it to be positive if it is to the right. Let i2 

be the current in R2 and take it to be positive if it is downward. Let i3 be the current in R3 

and take it to be positive if it is downward. The junction rule produces 
1 2 3,i i i   the loop 

rule applied to the left-hand loop produces 

 

1 1 2 2 0,i R i R     

 

and the loop rule applied to the right-hand loop produces 

 

2 2 3 3 0.i R i R   

 

Since the resistances are all the same we can simplify the mathematics by replacing R1, 

R2, and R3 with R.  

 

ANALYZE (a) Solving the three simultaneous equations, we find 

 

i
R

1

3

6

32

3

2 12 10

3 0 73 10
11 10 




   .

.
.

V
A

c h
c h , 

 

(b) 
 

3
4

2 6

1.2 10 V
5.5 10 A,

3 3 0.73 10
i

R

 
   

 
  

 

(c) and 4

3 2 5.5 10 A.i i     

 

At t =  the capacitor is fully charged and the current in the capacitor branch is 0. Thus, 

i1 = i2, and the loop rule yields 1 1 1 2 0.i R i R     

 

(d) The solution is 
 

3
4

1 6

1.2 10 V
8.2 10 A

2 2 0.73 10
i

R

 
   

 
 

(e) and 4

2 1 8.2 10 A.i i     

 

(f) As stated before, the current in the capacitor branch is i3 = 0. 
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We take the upper plate of the capacitor to be positive. This is consistent with current 

flowing into that plate. The junction equation is i1 = i2 + i3, and the loop equations are 

 

1 2

3 2

0

0.

i R i R

q
i R i R

C

   

   
 

 

We use the first equation to substitute for i1 in the second and obtain  

 

 – 2i2R – i3R = 0. 

 

Thus i2 = ( – i3R)/2R. We substitute this expression into the third equation above to 

obtain  

–(q/C) – (i3R) + (/2) – (i3R/2) = 0. 

 

Now we replace i3 with dq/dt to obtain 

 

3
.

2 2

R dq q

dt C


   

 

This is just like the equation for an RC series circuit, except that the time constant is  = 

3RC/2 and the impressed potential difference is /2. The solution is 

 

 2 31 .
2

t RCC
q e

    

The current in the capacitor branch is 

2 3

3( ) .
3

t RCdq
i t e

dt R

    

 

The current in the center branch is 

 

 2 3 2 33
2 ( ) 3

2 2 2 6 6

t RC t RCi
i t e e

R R R R

           

 

and the potential difference across R2 is  2 3

2 2( ) 3 .
6

t RCV t i R e
     

 

(g) For 2 30, 1t RCt e   and   3 2

2 3 1.2 10 V 3 4.0 10 VV      . 

 

(h) For 2 3, 0t RCt e   and  3 2

2 2 1.2 20 V 2 6.0 10 VV      . 

 

(i) A plot of V2 as a function of time is shown in the following graph. 
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LEARN A capacitor that is being charged initially behaves like an ordinary connecting 

wire relative to the charging current. However, a long time later after it’s fully charged, it 

acts like a broken wire. 

 

64. (a) The potential difference V across the plates of a capacitor is related to the charge q 

on the positive plate by V = q/C, where C is capacitance. Since the charge on a 

discharging capacitor is given by q = q0 e
–t/

, this means V = V0 e
–t/

 where V0 is the initial 

potential difference. We solve for the time constant  by dividing by V0 and taking the 

natural logarithm: 

     
t

V Vln

s

ln V V
s.

0

10 0

100 100
217b g b g b g

.

.
.    

 

(b) At t = 17.0 s, t/ = (17.0 s)/(2.17 s) = 7.83, so 

 

V V e et     

0

7 83 2100 396 10 V Vb g . . .  

 

65. In the steady state situation, the capacitor voltage will equal the voltage across R2 = 

15 k: 

 0 2

1 2

20.0V
15.0 k 12.0V.

10.0 k 15.0 k
V R

R R

  
    

   
 

 

Now, multiplying Eq. 27-39 by the capacitance leads to V = V0e
–t/RC

 describing the 

voltage across the capacitor (and across R2 = 15.0 k) after the switch is opened (at t = 0). 

Thus, with t = 0.00400 s, we obtain 

 

V e 
  

12 616
0 004 15000 0 4 10 6b g b ge j. .

. V.  

 

Therefore, using Ohm’s law, the current through R2 is 6.16/15000 = 4.11  10
–4

 A. 
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66. We apply Eq. 27-39 to each capacitor, demand their initial charges are in a ratio of 

3:2 as described in the problem, and solve for the time. With 

 
6 4

1 1 1

6 5

2 2 2

(20.0 )(5.00 10 F) 1.00 10 s

(10.0 )(8.00 10 F) 8.00 10 s ,

R C

R C





 

 

     

     
 

 

we obtain 

 4

1 1 4 1 4 1

2 1

ln(3/ 2) ln(3/ 2)
1.62 10 s

1.25 10 s 1.00 10 s
t

 



   
   

   
. 

 

67. The potential difference across the capacitor varies as a function of time t as 
/

0( ) t RCV t V e . Using V = V0/4 at t = 2.0 s, we find 

 

R
t

C V V
 


 

ln

s

2.0 10 F ln40
6

52 0
7 2 10b g c h

.
. .  

 

68. (a) The initial energy stored in a capacitor is given by 2

0 / 2 ,CU q C where C is the 

capacitance and q0 is the initial charge on one plate. Thus 

 

q CUC0

6 32 2 10 10 050 10 10     . . .F J C .c hb g  

 

(b) The charge as a function of time is given by q q e t 

0

 , where  is the capacitive time 

constant. The current is the derivative of the charge 

 

0 ,tqdq
i e

dt





   

 

and the initial current is i0 = q0/. The time constant is  

 

RC     6 61.0 10 F 1.0 10 1.0 s    . 

 

Thus i0

3 310 10 10 10 10    . . .C s Ac h b g . 

 

(c) We substitute 0

tq q e   into VC = q/C to obtain 

 

 
3

1.0 s 3 1.00

6

1.0 10 C
1.0 10 V ,

1.0 10 F

t t t

C

q
V e e e

C




  



 
    

 
 

 

where t is measured in seconds.  
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(d) We substitute i q e t 

0  b g  into VR = iR to obtain  

 

  
 

3 6

1.0 s 3 1.00
1.0 10 C 1.0 10

1.0 10 V ,
1.0s

t t t

R

q R
V e e e





  
  

     

 

where t is measured in seconds. 

 

(e) We substitute  i q e t 

0  b g  into P i R 2  to obtain 

 

   
 

 

2
3 62

2 2 1.0 s 2.00

22

1.0 10 C 1.0 10
1.0 W ,

1.0s

t t tq R
P e e e





  
  

    

 

where t is again measured in seconds. 

 

69. (a) The charge on the positive plate of the capacitor is given by 

 

q C e t   1c h,  

 

where  is the emf of the battery, C is the capacitance, and  is the time constant. The 

value of  is  

 = RC = (3.00  10
6
 )(1.00  10

–6
 F) = 3.00 s. 

 

At t = 1.00 s, t/ = (1.00 s)/(3.00 s) = 0.333 and the rate at which the charge is increasing 

is 

  6

0.333 7
1.00 10 F 4.00V

9.55 10 C s.
3.00s

tdq C
e e

dt







  


     

 

(b) The energy stored in the capacitor is given by 
2

,
2

C

q
U

C
  and its rate of change is 

 

dU

dt

q

C

dq

dt

C  .  

Now 

q C e et          1 100 10 4 00 1 113 106 0 333 6c h c hb gc h. . ..V C,  

 

so 

 
6

7 6

6

1.13 10 C
9.55 10 C s 1.08 10 W.

1.00 10 F

CdU q dq

dt C dt


 



 
     

 
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(c) The rate at which energy is being dissipated in the resistor is given by P = i
2
R. The 

current is 9.55  10
–7

 A, so 

 

P      9 55 10 300 10 2 74 107
2

6 6. . .A W.c h c h  

 

(d) The rate at which energy is delivered by the battery is 

 

i     9 55 10 4 00 382 107 6. . .A V W.c hb g  

 

The energy delivered by the battery is either stored in the capacitor or dissipated in the 

resistor. Conservation of energy requires that i = (q/C) (dq/dt) + i
2
R. Except for some 

round-off error the numerical results support the conservation principle. 

 

70. (a) From symmetry we see that the current through the top set of batteries (i) is the 

same as the current through the second set. This implies that the current through the R = 

4.0  resistor at the bottom is iR = 2i. Thus, with r denoting the internal resistance of each 

battery (equal to 4.0 ) and  denoting the 20 V emf, we consider one loop equation (the 

outer loop), proceeding counterclockwise: 

 

3 2 0   ir i Rb g b g .  

 

This yields i = 3.0 A. Consequently, iR = 6.0 A. 

 

(b) The terminal voltage of each battery is  – ir = 8.0 V. 

 

(c) Using Eq. 27-17, we obtain P = i = (3)(20) = 60 W. 

 

(d) Using Eq. 26-27, we have P = i
2
r = 36 W. 

 

71. (a) If S1 is closed, and S2 and S3 are open, then  ia = /2R1 = 120 V/40.0  = 3.00 A. 

 

(b) If S3 is open while S1 and S2 remain closed, then   

 

Req = R1 + R1 (R1 + R2) /(2R1 + R2) = 20.0  + (20.0 )  (30.0 )/(50.0 ) = 32.0 , 

 

so ia = /Req = 120 V/32.0  = 3.75 A. 

 

(c) If all three switches S1, S2, and S3 are closed, then Req = R1 + R1 R'/(R1 + R') where  

 

R' = R2 + R1 (R1 + R2)/(2R1 + R2) = 22.0 , 

that is,  

Req = 20.0  + (20.0 ) (22.0 )/(20.0  + 22.0 ) = 30.5 , 

 

so ia = /Req = 120 V/30.5  = 3.94 A. 
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72. (a)  The four resistors R1, R2, R3, and R4 on the left reduce to  

 

 3 41 2
eq 12 34

1 2 3 4

7.0 3.0 10
R RR R

R R R
R R R R

       
 

. 

 

With 30 V  across Req the current there is i2 = 3.0 A. 

 

(b) The three resistors on the right reduce to  

 

5 6
eq 56 7 7

5 6

(6.0 )(2.0 )
1.5 3.0

6.0 2.0

R R
R R R R

R R

 
        

  
. 

 

With 30 V   across eqR the current there is i4 = 10 A. 

 

(c) By the junction rule, i1 = i2 + i4 = 13 A. 

 

(d) By symmetry, i3 = 
1

2 i2 = 1.5 A. 

 

(e) By the loop rule (proceeding clockwise), 

 

30V – i4(1.5 ) – i5(2.0 )  =  0 

 

readily yields i5 = 7.5 A. 

 

73. THINK Since the wires are connected in series, the current is the same in both wires. 

 

EXPRESS Let i be the current in the wires and V be the applied potential difference. 

Using Kirchhoff’s loop rule, we have 0.A BV iR iR    Thus, the current is 

/( ),A Bi V R R   and the corresponding current density is  

 

.
A B

i V
J

A R R
 


 

 

 ANALYZE (a) For wire A, the magnitude of the current density vector is 

 

   

 

  
2

3
1 2

27

4 60.0V4

0.127 0.729 2.60 10 m

1.32 10 A m .

A

A B

i V V
J

A R R A R R D  
   

     

 

 

 

(b) The potential difference across wire A is 
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VA = iRA = V RA/(RA + RB) = (60.0 V)(0.127 )/(0.127  + 0.729 ) = 8.90 V. 

 

(c) The resistivity of wire A is  

 
2 3 2

8(0.127 )(2.60 10 m)
1.69 10 m .

4 4(40.0m)

A A
A

A A

R A R D

L L

 



 

       

 

So wire A is made of copper. 

 

(d) Since wire B has the same length and diameter as wire A, and the currents are the 

same, we have
271.32 10 A m .B AJ J    

 

(e) The potential difference across wire B is VB = V – VA = 60.0 V – 8.9 V = 51.1 V. 

 

(f) The resistivity of wire B is 

 
2 3 2

8(0.729 )(2.60 10 m)
9.68 10 m

4 4(40.0m)

B B
B

B B

R A R D

L L

 



 

      , 

 

so wire B is made of iron. 

 

LEARN Resistance R is the property of an object (depending on quantities such as L and 

A), while resistivity is a property of the material itself. Knowing the value of  allows us 

to deduce what material the wire is made of.   

 

74. The resistor by the letter i is above three other resistors; together, these four resistors 

are equivalent to a resistor R = 10  (with current i). As if we were presented with a 

maze, we find a path through R that passes through any number of batteries (10, it turns 

out) but no other resistors, which — as in any good maze — winds “all over the place.” 

Some of the ten batteries are opposing each other (particularly the ones along the outside), 

so that their net emf is only  = 40 V.  

 

(a) The current through R is then i = /R = 4.0 A. 

 

(b) The direction is upward in the figure. 

 

75. (a) In the process described in the problem, no charge is gained or lost. Thus, q = 

constant. Hence,  

  31
1 1 2 2 2 1

2

150
200 3.0 10 V.

10

C
q CV C V V V

C

 
       

 
 

 

(b) Equation 27-39, with  = RC, describes not only the discharging of q but also of V. 

Thus, 
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   9 120
0

3000
ln 300 10 10 10 F ln

100

t V
V V e t RC

V

    
         

  
 

 

which yields t = 10 s. This is a longer time than most people are inclined to wait before 

going on to their next task (such as handling the sensitive electronic equipment). 

 

(c) We solve  V V e t RC 

0 for R with the new values V0 = 1400 V and t = 0.30 s. Thus, 

 

R
t

C V V
 


 

ln

.

ln
. .

0
12

100 30

10 10 1400 100
11 10b g c h b g

s

F
  

 

76. (a)  We reduce the parallel pair of resistors (at the bottom of the figure) to a single R’ 

=1.00  resistor and then reduce it with its series ‘partner’ (at the lower left of the figure) 

to obtain an equivalence of R= 2.00  +1.00 =3.00 .  It is clear that the current 

through R  is the i1 we are solving for.  Now, we employ the loop rule, choose a path 

that includes R  and all the batteries (proceeding clockwise).  Thus, assuming i1 goes 

leftward through R , we have 

 

5.00 V + 20.0 V 10.0 V  i1R”  = 0 

 

which yields i1 = 5.00 A. 

 

(b) Since i1 is positive, our assumption regarding its direction (leftward) was correct. 

 

(c) Since the current through the 1 = 20.0 V battery is “forward”, battery 1 is supplying 

energy. 

 

(d) The rate is P1 = (5.00 A)(20.0 V) = 100 W.  

 

(e) Reducing the parallel pair (which are in parallel to the 2 = 10.0 V battery) to a single 

R' = 1.00  resistor (and thus with current i' = (10.0 V)/(1.00 ) = 10.0 A downward 

through it), we see that the current through the battery (by the junction rule) must be i = i' 

 i1 = 5.00 A upward (which is the "forward" direction for that battery). Thus, battery 2 is 

supplying energy. 

 

(f) Using Eq. 27-17, we obtain P2 = 50.0 W.  

 

(g) The set of resistors that are in parallel with the 3 = 5 V battery is reduced to R= 

0.800  (accounting for the fact that two of those resistors are actually reduced in series, 

first, before the parallel reduction is made), which has current i''’ = (5.00 V)/(0.800 ) = 

6.25 A downward through it.  Thus, the current through the battery (by the junction rule) 

must be i = i''’ + i1 = 11.25 A upward (which is the "forward" direction for that battery). 

Thus, battery 3 is supplying energy. 
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(h) Equation 27-17 leads to P3 = 56.3 W.  

 

77. THINK The silicon resistor and the iron resistor are connected in series. Both 

resistors are temperature-dependent, but we want the combination to be independent of 

temperature. 

 

EXPRESS We denote silicon with subscript s and iron with i. Let T0 = 20°. The 

resistances of the two resistors can be written as 

 

           0 0 0 01 , 1s s s i i iR T R T T T R T R T T T             . 

 

The resistors are in series connection so  

 

             

         

0 0 0 0

0 0 0 0 0

1 1

.

s i s s i i

s i s s i i

R T R T R T R T T T R T T T

R T R T R T R T T T

 

 

             

      

 

 

Now, if ( )R T is to be temperature-independent, we must require that Rs(T0)s + Ri(T0)i 

= 0. Also note that Rs(T0) + Ri(T0) = R = 1000 .  

 

ANALYZE (a) We solve for Rs(T0) and Ri(T0) to obtain 

 

 
   3

0 3 3

1000 6.5 10 / K
85.0 .

(6.5 10 / K) ( 70 10 / K)

i
s

i s

R
R T



 



 

 
   

    
 

 

(b) Similarly, Ri(T0) = 1000  – 85.0  = 915 . 

 

LEARN The temperature independence of the combined resistor was possible because i 

and s, the temperature coefficients of resistivity of the two materials have opposite signs, 

so their temperature dependences can cancel.  

 

78. The current in the ammeter is given by  

 

iA = /(r + R1 + R2 + RA). 

 

The current in R1 and R2 without the ammeter is i = /(r + R1 + R2). The percent error is 

then 

1 2

1 2 1 2

0.10
1

2.0 5.0 4.0 0.10

0.90%.

A A

A A

i i r R R Ri

i i r R R R r R R R

   
    

         



 

 

79. THINK As the capacitor in an RC circuit is being charged, some energy supplied by 

the emf device also goes to the resistor as thermal energy.   
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EXPRESS The charge q on the capacitor as a function of time is q(t) = (C)(1 – e
–t/RC

), 

so the charging current is i(t) = dq/dt = (/R)e
–t/RC

. The rate at which the emf device 

supplies energy is .P i dt   

 

ANALYZE (a) The energy supplied by the emf is then 

 
2

2

0 0 0
2t RC

CU P dt i dt e dt C U
R




 

  
        

 

where U CC 
1

2

2  is the energy stored in the capacitor. 

 

(b) By directly integrating i
2
R we obtain 

 

U i Rdt
R

e dt CR

t RC  
 zz 2

2
2

00

21

2


 .  

 

LEARN Half of the energy supplied by the emf device is stored in the capacitor as 

electrical energy, while the other half is dissipated in the resistor as thermal energy.  

 

80. In the steady state situation, there is no current going to the capacitors, so the resistors 

all have the same current.  By the loop rule, 

 

20.0 V  =  (5.00 )i + (10.0 )i + (15.0 )i 

 

which yields i = 
2

3 A.  Consequently, the voltage across the R1 = 5.00  resistor is (5.00 

)(2/3 A) = 10/3 V, and is equal to the voltage V1 across the C1 = 5.00 F capacitor.  

Using Eq. 26-22, we find the stored energy on that capacitor: 

 

 

2

2 6 5

1 1 1

1 1 10
(5.00 10  F) V 2.78 10  J

2 2 3
U CV   

     
 

. 

 

Similarly, the voltage across the R2 = 10.0  resistor is (10.0 )(2/3 A) = 20/3 V and is 

equal to the voltage V2 across the C2 = 10.0 F capacitor. Hence, 

 
2

2 6 5

2 2 2

1 1 20
(10.0 10  F) V 2.22 10  J

2 2 3
U C V   

     
 

 

 

Therefore, the total capacitor energy is U1  + U2  = 2.50  10
4

 J. 

 

81. The potential difference across R2 is 
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V iR
R

R R R
2 2

2

1 2 3

12 4 0

30 4 0 50
4 0 

 


 


 V
V.

b gb g.

. . .
.



  
 

 

82. From Va – 1 = Vc – ir1 – iR and i = (1 – 2)/(R + r1 + r2), we get 

 

 1 2
1 1 1 1

1 2

( )

4.4V 2.1V
4.4V (2.3 5.5 )

5.5 1.8 2.3

2.5V.

a cV V i r R r R
R r r

 
 

 
       

  

 
    

   



 

 

83. THINK The time constant in an RC circuit is ,RC   where R is the resistance and 

C is the capacitance. A greater value of  means a longer discharging time. 

 

EXPRESS The potential difference across the capacitor varies as a function of time t as 

/

0( ) ,tV t V e   where .RC   Thus, 
 0

.
ln

t
R

C V V
  

 

ANALYZE (a) Then, for the smaller time interval tmin = 10.0 s 

 

   
min

10.0 s
24.8 .

0.220 F ln 5.00 0.800
R




    

 

(b) Similarly, for the larger time interval tmax = 6.00 ms, 

 

   

3
4

max

6.00 10 s
1.49 10 .

0.220 F ln 5.00 V 0.800 V
R




     

 

LEARN The two extrema of the resistances are related by  

 

max max

min min

.
R t

R t
  

 

The larger the value of R for a given capacitance, the longer the discharging time. 

 

84. (a) Since   2

tank 140 , 12V 10 140 8.0 10 AR i        . 

 

(b) Now, Rtank = (140  + 20 )/2 = 80 , so i = 12 V/(10  + 80 ) = 0.13 A. 

 

(c) When full, Rtank = 20  so i = 12 V/(10  + 20 ) = 0.40 A. 
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85. THINK One of the three parts could be defective: the battery, the motor, or the cable. 

 

EXPRESS All three circuit elements are connected in series, so the current is the same in 

all of them. The battery is discharging, so the potential drop across the terminals is 

battery ,V ir   where  is the emf and r is the internal resistance. On the other hand, the 

resistances in the cable and the motor are 
cable cable /R V i  and motor motor / ,R V i  respectively. 

 

ANALYZE The internal resistance of the battery is  

 

 
battery 12 V 11.4 V

0.012
50 A

V
r

i

  
     

  

which is less than 0.020 . So the battery is OK. For the motor, we have 

 

motor
motor

11.4 V 3.0 V
0.17

50 A

V
R

i


     

 

which is less than 0.20 . So the motor is OK. Now, the resistance of the cable is 

 

cable
cable

3.0 V
0.060

50 A

V
R

i
     

 

which is greater than 0.040 . So the cable is defective. 

 

LEARN In this exercise, we see that a defective component has a resistance outside its 

the range of acceptance. 

 

86. When connected in series, the rate at which electric energy dissipates is Ps = 2
/(R1 + 

R2). When connected in parallel, the corresponding rate is Pp = 2
(R1 + R2)/R1R2. Letting 

Pp/Ps = 5, we get (R1 + R2)
2
/R1R2 = 5, where R1 = 100 . We solve for R2: R2 = 38  or 

260 . 

 

(a) Thus, the smaller value of R2 is 38 



(b) The larger value of R2 is 260  

 

87. When S is open for a long time, the charge on C is qi = 2C. When S is closed for a 

long time, the current i in R1 and R2 is  

 

i = (2 – 1)/(R1 + R2) = (3.0 V – 1.0 V)/(0.20  + 0.40 ) = 3.33 A. 

 

The voltage difference V across the capacitor is then  
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V = 2 – iR2 = 3.0 V – (3.33 A) (0.40 ) = 1.67 V. 

 

Thus the final charge on C is qf = VC. So the change in the charge on the capacitor is  

 

q = qf – qi = (V – 2)C = (1.67 V – 3.0 V) (10  F) = – 13  C. 

 

88. Using the junction and the loop rules, we have 

 

 

1 1 3 3

1 1 2 2

2 3 1

20.0 0

20.0 50 0

i R i R

i R i R

i i i

  

   

 

 

 

Requiring no current through the battery 1 means that i1= 0, or i2 = i3. Solving the above 

equations with 1 10.0R    and 
2 20.0R   , we obtain  

 

 3
1 3

3

40 3 40
0      13.3

20 3 3

R
i R

R


     


. 

 

89. The bottom two resistors are in parallel, equivalent to a 2.0R resistance.  This, then, is 

in series with resistor R on the right, so that their equivalence is R' = 3.0R.  Now, near the 

top left are two resistors (2.0R and 4.0R) that are in series, equivalent to R'' = 6.0R.  

Finally, R' and R'' are in parallel, so the net equivalence is 

 

Req = 
(R') (R'')

R' + R''
 = 2.0R = 20  

 

where in the final step we use the fact that R = 10 . 

 

90. (a) Using Eq. 27-4, we take the derivative of the power P = i
2
R with respect to R and 

set the result equal to zero: 

 

dP

dR

d

dR

R

R r

r R

R r




F
HG

I
KJ 






 2

2

2

3
0

( )

( )

( )
 

 

which clearly has the solution R = r. 

 

(b) When R = r, the power dissipated in the external resistor equals 

 

P
R

R r r
R r

max
( )

.






 2

2

2

4
 

 

91. (a)  We analyze the lower left loop and find  

 



CHAPTER 27 1212 

i1 = 1/R = (12.0 V)/(4.00 ) = 3.00 A. 

 

(b) The direction of  i1 is downward. 

 

(c) Letting R = 4.00 , we apply the loop rule to the tall rectangular loop in the center of 

the figure (proceeding clockwise): 

 

      2
2 1 2 2 0

2

i
i R i R R i R

 
         

 
. 

 

Using the result from part (a), we find i2 = 1.60 A. 

 

(d) The direction of  i2 is downward (as was assumed in writing the equation as we did). 

 

(e) Battery 1 is supplying this power since the current is in the "forward" direction 

through the battery. 

 

(f) We apply Eq. 27-17: The current through the 1 = 12.0 V battery is, by the junction 

rule, 3.00 A + 1.60 A = 4.60 A and  

 

P = (4.60 A)(12.0 V) = 55.2 W. 

 

(g) Battery 2 is supplying this power since the current is in the "forward" direction 

through the battery. 

 

(h) P = i2(4.00 V) = 6.40 W. 

 

92. The equivalent resistance of the series pair of R3 = R4 = 2.0 is R34= 4.0 , and the 

equivalent resistance of the parallel pair of R1 = R2 = 4.0 is R12= 2.0 . Since the 

voltage across R34 must equal that across R12:  

 

34 12 34 34 12 12 34 12

1
          

2
V V i R i R i i      

 

This relation, plus the junction rule condition 12 34 6.00 A,I i i    leads to the solution 

12 4.0 Ai  . It is clear by symmetry that 1 12 / 2 2.00 Ai i  . 

 

93. (a) From P = V 
2
/R we find V PR  10 010 10W V.b gb g. .  

 

(b) From i = V/R = ( – V)/r we find 

 

 
1.5V 1.0V

0.10 0.050 .
1.0V

V
r R

V

    
      

   
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94. (a) Req(AB) = 20.0 /3 = 6.67  (three 20.0  resistors in parallel). 

 

(b) Req(AC) = 20.0 /3 = 6.67  (three 20.0  resistors in parallel). 

 

(c) Req(BC) = 0 (as B and C are connected by a conducting wire). 

 

95. The maximum power output is (120 V)(15 A) = 1800 W. Since 1800 W/500 W = 3.6, 

the maximum number of 500 W lamps allowed is 3. 

 

96. Here we denote the battery emf as V.  Eq. 27-30 leads to 

 

 
6

6

12 V 8.0 10  C
2.50 A.

4.0 (4.0 )(4.0 10 F)

q
i

R RC

 




    

  
 

 

97. THINK To calculate the current in the resistor R, we first find the equivalent 

resistance of the N batteries. 

 

EXPRESS When all the batteries are connected in parallel, the emf is  and the 

equivalent resistance is parallel / ,R R r N  so the current is  

 parallel

parallel

.
/

N
i

R R r N NR r

  
  

 
 

 

Similarly, when all the batteries are connected in series, the total emf is N and the 

equivalent resistance is 
series .R R Nr  Therefore,  

 

series

series

.
N N

i
R R Nr

 
 


 

 

ANALYZE Comparing the two expressions, we see that the two currents paralleli  and seriesi  

are equal if ,R r with  

parallel series .
( 1)

N
i i

N r


 


 

 

LEARN In general, the current difference is 

 

parallel series

( 1)( )
.

( )( )

N N N N r R
i i

NR r R Nr NR r R Nr

    
   

   
 

If R > r, then parallel series.i i  

 

98. THINK The rate of energy supplied by the battery is .i  So we first calculate the 

current in the circuit.  
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EXPRESS With R2 and R3 in parallel, and the combination in series with R1, the 

equivalent resistance for the circuit is 

 

 2 3 1 2 1 3 2 3
eq 1

2 3 2 3

R R R R R R R R
R R

R R R R

 
  

 
 

and the current is  

2 3

eq 1 2 1 3 2 3

( )
.

R R
i

R R R R R R R

 
 

 
 

 

The rate at which the battery supplies energy is  

 
2

2 3

1 2 1 3 2 3

( )
.

R R
P i

R R R R R R





 

 
 

  

To find the value of R3 that maximizes P, we differentiate P with respect to R3. 

 

ANALYZE (a) With a little algebra, we find 

 
2 2

2

2

3 1 2 1 3 2 3

.
( )

RdP

dR R R R R R R


 

 
 

 

The derivative is negative for all positive value of R3. Thus, we see that P is maximized 

when R3 = 0. 

  

(b) With the value of R3 set to zero, we obtain 
2 2

1

(12.0 V)
14.4 W.

10.0
P

R


  


 

 

LEARN Mathematically speaking, the function P is a monotonically decreasing function 

of R3 (as well as R2 and R1), so P is a maximum at R3 = 0.  

 

99. THINK A capacitor that is being charged initially behaves like an ordinary 

connecting wire relative to the charging current. 

 

EXPRESS The capacitor is initially uncharged. So immediately after the switch is closed, 

by the Kirchhoff’s loop rule, there is zero voltage (at t = 0) across the R2 = 10 k resistor, 

and that  = 30 V is across the R1 =20 k resistor.  

 

ANALYZE (a) By Ohm’s law, the initial current in R1 is 

 

i10 =  / R1 = (30 V)/(20 k) = 1.5  10
–3

 A. 

 

(b) Similarly, the initial current in R2 is i20 = 0. 
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(c) As t   the current to the capacitor reduces to zero and the R1 = 20 k and R2 = 10 

k resistors behave more like a series pair (having the same current), equivalent to  

 

Req = R1 + R2 = 30 k. 

 

The current through them, then, at long times, is  

 

i = /Req = (30 V)/(30 k) = 1.0  10
–3

 A. 

 

LEARN A long time later after a capacitor is being fully charged, it acts like a broken 

wire. 

 

100. (a)  Reducing the bottom two series resistors to a single R’ = 4.00  (with current i1 

through it), we see we can make a path (for use with the loop rule) that passes through R, 

the 4 = 5.00 V battery,  the 1 = 20.0 V battery, and the 3 = 5.00 V.  This leads to 

 

i1 = 1 3 4 20.0 V 5.00 V 5.00 V

40.0R

     


 
 = 

30.0 V

 4.0 
 =  7.50 A. 

 

(b) The direction of i1 is leftward. 

 

(c) The voltage across the bottom series pair is i1R’ = 30.0 V.  This must be the same as 

the voltage across the two resistors directly above them, one of which has current i2 

through it and the other (by symmetry) has current 
1

2 i2 through it.  Therefore, 

 

30.0 V = i2 (2.00 ) + 
1

2 i2 (2.00 ) 

 

which leads to i2 = (30.0 V)/(3.00 ) = 10.0 A. 

 

(d) The direction of  i2 is also leftward. 

 

(e) We use Eq. 27-17:  P4 = (i1 + i2)4 = (7.50 A 10.0 A)(5.00 V)   87.5 W. 

 

(f) The energy is being supplied to the circuit since the current is in the "forward" 

direction through the battery. 

 

101. Consider the lowest branch with the two resistors R4 = 3.00  and R5 = 5.00 . The 

voltage difference across R5 is 

 

  5
5 5

4 5

120V 5.00
7.50V.

3.00 5.00

R
V i R

R R

 
   

  
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102. (a) Here we denote the battery emf as V.  See Fig. 27-4(a): VT  = V ir. 

 

(b) Doing a least squares fit for the VT  versus i values listed, we obtain  

 

VT = 13.61  0.0599i 

which implies V = 13.6 V. 

 

(c) It also implies the internal resistance is 0.060 . 

 

103. (a) The loop rule (proceeding counterclockwise around the right loop) leads to 2 – 

i1R1 = 0 (where i1 was assumed downward). This yields i1 = 0.0600 A. 

 

(b) The direction of i1 is downward. 

 

(c) The loop rule (counterclockwise around the left loop) gives 

 

     1 1 1 2 2 0i R i R       

 

where i2 has been assumed leftward. This yields i3 = 0.180 A. 

 

(d) A positive value of i3 implies that our assumption on the direction is correct, i.e., it 

flows leftward. 

 

(e) The junction rule tells us that the current through the 12 V battery is 0.180 + 0.0600 = 

0.240 A. 

 

(f) The direction is upward. 

 

104. (a) Since P = 2/Req, the higher the power rating the smaller the value of Req. To 

achieve this, we can let the low position connect to the larger resistance (R1), middle 

position connect to the smaller resistance (R2), and the high position connect to both of 

them in parallel. 

 

(b) For P = 300 W, Req = R1R2/(R1 + R2) = (144 )R2/(144  + R2) = (120 V)
2
/(300 W). 

We obtain R2 = 72 . 

 

(c) For P = 100 W, Req = R1 = 2/P = (120 V)
2
/100 W = 144 ;  

 

105. (a) The six resistors to the left of 1 = 16 V battery can be reduced to a single resistor 

R = 8.0 , through which the current must be iR = 1/R = 2.0 A. Now, by the loop rule, 

the current through the 3.0  and 1.0  resistors at the upper right corner is 

 

 



i

16 0 8 0

10
2 0

. .

.
.

V V

3.0
A

 
 

 



 

  

1217 

in a direction that is “backward” relative to the 2 = 8.0 V battery. Thus, by the junction 

rule, i i iR1 4 0    . A . 

 

(b) The direction of i1 is upward (that is, in the “forward” direction relative to 1). 

 

(c) The current i2 derives from a succession of symmetric splittings of iR (reversing the 

procedure of reducing those six resistors to find R in part (a)). We find 

 

2

1 1
0. 50A

2 2
Ri i

 
  

 
. 

 

(d) The direction of i2 is clearly downward. 

 

(e) Using our conclusion from part (a) in Eq. 27-17, we have  

 

P = i11 = (4.0 A)(16 V) = 64 W. 

 

(f) Using results from part (a) in Eq. 27-17, we obtain P = i'2 = (2.0 A)(8.0 V) = 16 W. 

 

(g) Energy is being supplied in battery 1. 

 

(h) Energy is being absorbed in battery 2. 
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Chapter 28 
 

 

1. THINK The magnetic force on a charged parti014cle is given by ,BF qv B   where 

v  is the velocity of the charged particle and B  is the magnetic field. 

 

EXPRESS The magnitude of the magnetic force on the proton (of charge +e) is 

sin ,BF evB   where  is the angle between v  and .B  

 

ANALYZE (a) The speed of the proton is 

 

v
F

eB

B 


  
 



 sin

.

. . sin .
. .



650 10

160 10 2 60 10 230
4 00 10

17

19 3

5N

C T
m sc hc h  

 

(b) The kinetic energy of the proton is 

 

  
2

2 27 5 161 1
1.67 10 kg 4.00 10 m s 1.34 10 J

2 2
K mv        , 

 

which is equivalent to  

 

K = (1.34  10
– 16

 J) / (1.60  10
– 19

 J/eV) = 835 eV. 

 

LEARN from the definition of B  given by the expression ,BF qv B   we see that the 

magnetic force BF  is always perpendicular to v  and .B  

 

2. The force associated with the magnetic field must point in the j  direction in order to 

cancel the force of gravity in the j  direction. By the right-hand rule, 

B  points in the 

 k  direction (since   i k j  e j ). Note that the charge is positive; also note that we need 

to assume By = 0. The magnitude |Bz| is given by Eq. 28-3 (with  = 90°). Therefore, with 
21.0 10 kgm   , 42.0 10 m/s,v    and 58.0 10 Cq   , we find 

 

ˆ ˆ ˆk k ( 0.061 T)kz

mg
B B

qv

 
     

 
. 

 

3. (a) The force on the electron is 
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     

       

 

19 6 6

14

ˆ ˆ ˆ ˆi j i k

= 1.6 10 C 2.0 10 m s 0.15 T 3.0 10 m s 0.030 T

ˆ6.2 10 N k.

B x y x y x y y xF qv B q v v B B j q v B v B





       

      
 

 

 

 

Thus, the magnitude of 

FB  is 6.2  10

14
 N, and 


FB  points in the positive z direction. 

 

(b) This amounts to repeating the above computation with a change in the sign in the 

charge. Thus,

FB  has the same magnitude but points in the negative z direction, namely,  

 14 ˆ6.2 10 N k.BF     

 

4. (a) We use Eq. 28-3:  

 

FB = |q| vB sin  = (+ 3.2  10
–19

 C) (550 m/s) (0.045 T) (sin 52°) = 6.2  10
–18

 N. 

 

(b) The acceleration is  

 

a = FB/m = (6.2  10
– 18

 N) / (6.6  10
– 27

 kg) = 9.5  10
8
 m/s

2
. 

 

(c) Since it is perpendicular to 
 
v FB,  does not do any work on the particle. Thus from the 

work-energy theorem both the kinetic energy and the speed of the particle remain 

unchanged. 

 

5. Using Eq. 28-2 and Eq. 3-30, we obtain 

 

F q v B v B q v B v Bx y y x x x y x   d i b gd i k k3  

 

where we use the fact that By = 3Bx. Since the force (at the instant considered) is Fz
k  

where Fz = 6.4  10
–19

 N, then we are led to the condition 

 

 
 

3 .
3

z
x y x z x

x y

F
q v v B F B

q v v
   


 

 

Substituting vx = 2.0 m/s, vy = 4.0 m/s, and q = –1.6  10
–19

 C, we obtain  

 
19

19

6.4 10 N
2.0 T.

(3 ) ( 1.6 10 C)[3(2.0 m/s) 4.0 m]

z
x

x y

F
B

q v v






   

   
 

 

6. The magnetic force on the proton is given by ,F qv B   where  q = +e . Using Eq. 3-

30 this becomes 
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(4  10
17 

)i
^
  + (2  10

17
)j
^
  = e[(0.03vy + 40)i

^
  + (20 – 0.03vx)j

^
  – (0.02vx + 0.01vy)k

^
]   

 

with SI units understood.  Equating corresponding components, we find  

 

(a) vx = 3.50
3
 m/s, and 

 

(b) vy = 7.00
3
 m/s. 

 

7. We apply 
    
F q E v B m ae   d i  to solve for 


E : 

 
   
E

m a

q
B ve  


 

 
  

   





911 10 2 00 10

160 10
400 12 0 150

114 6 00 4 80

31 12 2

19

. . 

.
 .  . 

.  .  .  .

kg m s i

C
T i km s j km s k

i j k V m

c hd i b g b g b g
e j

  

 

8. Letting 
   
F q E v B   d i 0 , we get sinvB E  . We note that (for given values of 

the fields) this gives a minimum value for speed whenever the sin  factor is at its 

maximum value (which is 1, corresponding to  = 90°). So 

  

 
3

3

min

1.50 10 V/m
3.75 10 m/s

0.400 T

E
v

B


    . 

 

9. Straight-line motion will result from zero net force acting on the system; we ignore 

gravity. Thus, 
   
F q E v B   d i 0 . Note that 

 
v B  so 

 
v B vB  . Thus, obtaining the 

speed from the formula for kinetic energy, we obtain  

 

     

3
4

3 19 31

100 V /(20 10 m)
2.67 10 T.

2 / 2 1.0 10 V 1.60 10 C / 9.11 10 kge

E E
B

v K m




 


    

  
 

 

In unit-vector notation, 4 ˆ(2.67 10  T)kB   . 

 

10. (a) The net force on the proton is given by 

 

       

 

19 3

18

ˆ ˆ ˆ1.60 10 C 4.00V m k+ 2000m s j 2.50 10 T i

ˆ1.44 10 N k.

E BF F F qE qv B  



          
 

 

 

(b) In this case, we have 
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       

 

19

19

ˆ ˆ ˆ1.60 10 C 4.00V m k 2000m s j 2.50 mT i

ˆ1.60 10 N k.

E BF F F qE qv B





    

      
 

 

 

 

(c) In the final case, we have 

 

       

   

19

19 19

ˆ ˆ ˆ1.60 10 C 4.00V m i+ 2000m s j 2.50 mT i

ˆ ˆ6.41 10 N i+ 8.01 10 N k.

E BF F F qE qv B



 

    

    
 

  

 

 

11. Since the total force given by 
   
F e E v B  d i  vanishes, the electric field 


E  must be 

perpendicular to both the particle velocity 

v  and the magnetic field 


B . The magnetic 

field is perpendicular to the velocity, so 
 
v B  has magnitude vB and the magnitude of 

the electric field is given by E = vB. Since the particle has charge e and is accelerated 

through a potential difference V, 2 / 2mv eV  and 2 .v eV m  Thus, 

 

 
  

 

19 3

5

27

2 1.60 10 C 10 10 V2
1.2 T 6.8 10 V m.

9.99 10 kg

eV
E B

m





 
   


 

 

12. (a) The force due to the electric field  ( F qE )  is distinguished from that associated 

with the magnetic field ( F qv B  )  in that the latter vanishes when the speed is zero 

and the former is independent of speed. The graph shows that the force (y-component) is 

negative at v = 0 (specifically, its value is –2.0  10
–19 

N there), which (because q = –e) 

implies that the electric field points in the +y direction.  Its magnitude is   

 

 
19

net,

19

2.0 10 N
1.25 N/C 1.25 V/m

| | 1.6 10 C

yF
E

q






   


. 

 

(b) We are told that the x and z components of the force remain zero throughout the 

motion, implying that the electron continues to move along the x axis, even though 

magnetic forces generally cause the paths of charged particles to curve (Fig. 28-11).  The 

exception to this is discussed in Section 28-3, where the forces due to the electric and 

magnetic fields cancel.  This implies (Eq. 28-7) B = E/v = 2.50  10
2 

T.  

 

For F qv B  to be in the opposite direction of F qE  we must have v B  in the 

opposite direction from ,E  which points in the +y direction, as discussed in part (a).   

Since the velocity is in the +x direction, then (using the right-hand rule) we conclude that 
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the magnetic field must point in the +z direction ( i
^
  k

^
  = j

^
 ). In unit-vector notation, we 

have 2 ˆ(2.50 10  T)kB   . 

 

13. We use Eq. 28-12 to solve for V: 

 

  

   
6

28 3 19

23A 0.65 T
7.4 10 V.

8.47 10 m 150 m 1.6 10 C

iB
V

nle 




   

 
 

 

14. For a free charge q inside the metal strip with velocity 

v  we have 

   
F q E v B  d i . 

We set this force equal to zero and use the relation between (uniform) electric field and 

potential difference. Thus, 

 

v
E

B

V V d

B

x y xy
 






 




 

390 10

120 10 0850 10
0 382

9

3 2

.

. .
. .

V

T m
m s

c h
c hc h  

 

15. (a) We seek the electrostatic field established by the separation of charges (brought on 

by the magnetic force). With Eq. 28-10, we define the magnitude of the electric field as 

 

  | | | | 20.0 m/s 0.030 T 0.600 V/mE v B   . 

 

Its direction may be inferred from Figure 28-8; its direction is opposite to that defined by 
 
v B . In summary,  

ˆ(0.600V m)kE   

 

which insures that 
   
F q E v B  d i  vanishes. 

 

(b) Equation 28-9 yields (0.600 V/m)(2.00 m) 1.20 VV Ed   . 

 

16. We note that B 


 must be along the x axis because when the velocity is along that axis 

there is no induced voltage.  Combining Eq. 28-7 and Eq. 28-9 leads to  

 

V V
d

E vB
   

 

where one must interpret the symbols carefully to ensure that , ,d v  and B  are mutually 

perpendicular.  Thus, when the velocity if parallel to the y axis the absolute value of the 

voltage (which is considered in the same “direction” as d ) is 0.012 V, and  

 

0.012 V
0.20 m

(3.0 m/s)(0.020 T)
zd d   . 
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On the other hand, when the velocity is parallel to the z axis the absolute value of the 

appropriate voltage is 0.018 V, and  

 

0.018 V
0.30 m

(3.0 m/s)(0.020 T)
yd d   . 

Thus, our answers are 

 

(a) dx = 25 cm (which we arrive at “by elimination,” since we already have figured out dy 

and dz ), 

 

(b) dy = 30 cm, and 

 

(c) dz  = 20 cm. 

 

17. (a) Using Eq. 28-16, we obtain 

 

v
rqB

m

eB
  

 


 

 




2

4 00

2 4 50 10 160 10 120

4 00 166 10
2 60 10

2 19

27

6

.

. . .

. .
. .

u

m C T

u kg u
m s

c hc hb g
b gc h  

 

(b) T = 2r/v = 2(4.50  10
–2

 m)/(2.60  10
6
 m/s) = 1.09  10

–7
 s. 

 

(c) The kinetic energy of the alpha particle is 

 

K m v 
 


 





1

2

4 00 166 10 2 60 10

2 160 10
140 102

27 6
2

19

5



. . .

.
. .

u kg u m s

J eV
eV

b gc hc h
c h  

 

(d) V = K/q = 1.40  10
5
 eV/2e = 7.00  10

4
 V. 

 

18. With the 

B  pointing “out of the page,” we evaluate the force (using the right-hand 

rule) at, say, the dot shown on the left edge of the particle’s path, where its velocity is 

down. If the particle were positively charged, then the force at the dot would be toward 

the left, which is at odds with the figure (showing it being bent toward the right). 

Therefore, the particle is negatively charged; it is an electron. 

 

(a) Using Eq. 28-3 (with angle  equal to 90°), we obtain 

 

6| |
4.99 10 m s.

| |

F
v

e B
    

 

(b) Using either Eq. 28-14 or Eq. 28-16, we find r = 0.00710 m. 

 

(c) Using Eq. 28-17 (in either its first or last form) readily yields T = 8.93  10
–9

 s. 
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19. Let  stand for the ratio ( / | |m q ) we wish to solve for. Then Eq. 28-17 can be written 

as T = 2/B.   Noting that the horizontal axis of the graph (Fig. 28-37) is inverse-field 

(1/B) then we conclude (from our previous expression) that the slope of the line in the 

graph must be equal to 2.  We estimate that slope is 7.5  10
9 

T
.
s, which implies   

 

 9/ | | 1.2 10  kg/Cm q    

 

20. Combining Eq. 28-16 with energy conservation (eV = 
1

2
 mev

2
 in this particular 

application) leads to the expression 

2e

e

m eV
r

eB m
  

 

which suggests that the slope of the r versus V  graph should be 22 /em eB . From Fig. 

28-38, we estimate the slope to be 5  10
5 

in SI units. Setting this equal to 22 /em eB  

and solving, we find B = 6.7  10
2 

T. 

 

21. THINK The electron is in circular motion because the magnetic force acting on it 

points toward the center of the circle.  

 

EXPRESS The kinetic energy of the electron is given by 21
,

2
eK m v  where me is the 

mass of electron and v is its speed. The magnitude of the magnetic force on the electron is 

BF evB  which is equal to the centripetal force: 

 

 
2

.em v
evB

r
  

ANALYZE (a) From K m ve
1

2

2  we get 

 

v
K

me

 
 


 





2 2 120 10 160 10

911 10
2 05 10

3 19

31

7
. .

.
. .

eV eV J

kg
m s

c hc h
 

 

(b) Since 2 / ,eevB m v r  we find the magnitude of the magnetic field to be 

 

  
  

31 7

4

19 2

9.11 10 kg 2.05 10 m s
4.67 10 T.

1.60 10 C 25.0 10 m

em v
B

er





 

 
   

 
 

 

(c) The “orbital” frequency is 
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 

7
7

2

2.07 10 m s
1.31 10 Hz.

2 2 25.0 10 m

v
f

r  


   


 

 

(d) The period is simply equal to the reciprocal of frequency: 

 

T = 1/f = (1.31  10
7
 Hz)

–1
 = 7.63  10

–8
 s. 

 

LEARN The period of the electron’s circular motion can be written as 

 

2 2 2
.

| | | |

r mv m
T

v v e B e B

  
    

 

The period is inversely proportional to B. 

 

22. Using Eq. 28-16, the radius of the circular path is 

 

2mv mK
r

qB qB
   

 

where 2 / 2K mv  is the kinetic energy of the particle. Thus, we see that K = (rqB)
2
/2m 

 q
2
m

–1
.  

 

(a)        
2 2

2 1 4 1.0MeV;p p p p pK q q m m K K K       

 

(b)        
2 2

1 1 2 1.0 MeV 2 0.50MeV.d d p p d p pK q q m m K K     

 

23. From Eq. 28-16, we find 

 

  
  

31 6

5

19

9.11 10 kg 1.30 10 m s
2.11 10 T.

1.60 10 C 0.350 m

em v
B

er







 
   


 

 

24. (a) The accelerating process may be seen as a conversion of potential energy eV into 

kinetic energy. Since it starts from rest, 
1

2

2m v eVe   and 

 

  19

7

31

2 1.60 10 C 350 V2
1.11 10 m s.

9.11 10 kge

eV
v

m






   


 

 

(b) Equation 28-16 gives 
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  
  

31 7

4

19 3

9.11 10 kg 1.11 10 m s
3.16 10 m.

1.60 10 C 200 10 T

em v
r

eB





 

 
   

 
 

 

25. (a) The frequency of revolution is 

 

f
Bq

me

 
 


 

 

2

350 10 160 10

2 911 10
9 78 10

6 19

31

5

 

. .

.
.

T C

kg
Hz.

c hc h
c h  

 

(b) Using Eq. 28-16, we obtain 

 

r
m v

qB

m K

qB

e e
  

 

 


 

 

2 2 911 10 100 160 10

160 10 350 10
0 964

31 19

19 6

. .

. .
. .

kg eV J eV

C T
m

c hb gc h
c hc h  

 

26. We consider the point at which it enters the field-filled region, velocity vector 

pointing downward. The field points out of the page so that 
 
v B  points leftward, which 

indeed seems to be the direction it is “pushed’’; therefore, q > 0 (it is a proton). 

 

(a) Equation 28-17 becomes p2 / | |T m e B , or  

 

 
 

 

27

9

19

2 1.67 10
2 130 10

1.60 10 | |B







 
 


 

which yields 

B  0 252. T . 

 

(b) Doubling the kinetic energy implies multiplying the speed by 2 . Since the period T 

does not depend on speed, then it remains the same (even though the radius increases by a 

factor of 2 ). Thus, t = T/2 = 130 ns. 

 

27. (a) We solve for B from m = B
2
qx

2
/8V (see Sample Problem 28.04 — “Uniform 

circular motion of a charged particle in a magnetic field”): 

 

B
Vm

qx


8
2

.  

 

We evaluate this expression using x = 2.00 m: 

 

B 
 








8 100 10 392 10

320 10 2 00
0 495

3 25

19 2

V kg

C m
T

c hc h
c hb g

.

. .
. .  
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(b) Let N be the number of ions that are separated by the machine per unit time. The 

current is i = qN and the mass that is separated per unit time is M = mN, where m is the 

mass of a single ion. M has the value 

 

M 


 


100 10

3600
2 78 10

6
8kg

s
kg s. .  

Since N = M/m we have 

 

i
qM

m
 

 


 

 




320 10 2 78 10

392 10
2 27 10

19 8

25

2
. .

.
. .

C kg s

kg
A

c hc h
 

 

(c) Each ion deposits energy qV in the cup, so the energy deposited in time t is given by 

 

E NqV t
iqV

q
t iV t     .  

For t = 1.0 h, 

E     2 27 10 100 10 3600 817 102 3 6. . .A V s Jc hc hb g  

 

To obtain the second expression, i/q is substituted for N. 

 

28. Using 2 /F mv r  (for the centripetal force) and 2 / 2K mv , we can easily derive 

the relation 

K = 
1

2
 Fr. 

 

With the values given in the problem, we thus obtain K = 2.09  10
22 

J. 

 

29. Reference to Fig. 28-11 is very useful for interpreting this problem. The distance 

traveled parallel to B 


 is  d|| =  v||T  = v||(2me /|q|B) using Eq. 28-17.  Thus, 

 

v|| = 
2 e

d eB

m
 = 50.3 km/s 

 

using the values given in this problem.  Also, since the magnetic force is |q|Bv, then we 

find v = 41.7 km/s.  The speed is therefore v = 2 2v v   = 65.3 km/s.  

 

30. Eq. 28-17 gives T = 2me /eB.  Thus, the total time is 

 







T 

 2 1
 + tgap + 







T 

 2 2
 = 
me 

e 





1

B1
 + 

1

B2
  +  tgap . 
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The time spent in the gap (which is where the electron is accelerating in accordance with 

Eq. 2-15) requires a few steps to figure out: letting t = tgap then we want to solve 

 

 2 20
0

21 1
0.25 m

2 2e e

K e V
d v t at t t

m m d

 
      

 
 

  

for t.  We find in this way that the time spent in the gap is t  6 ns. Thus, the total time is 

8.7 ns.   

 

31. Each of the two particles will move in the same circular path, initially going in the 

opposite direction. After traveling half of the circular path they will collide. Therefore, 

using Eq. 28-17, the time is given by  

 

 
 

 

31

9

3 19

9.11 10 kg
5.07 10 s.

2 (3.53 10 T) 1.60 10 C

T m
t

Bq






 


    

 
 

 

32. Let cosv v  . The electron will proceed with a uniform speed v||  in the direction of 

B  while undergoing uniform circular motion with frequency f in the direction 

perpendicular to B:  f = eB/2me. The distance d is then 

 

     

  

7 31

||

|| 19 3

2 1.5 10 m s 9.11 10 kg cos10cos 2
0.53m.

1.60 10 C 1.0 10 T

e
v v m

d v T
f eB




 

   
    

 
 

 

33. THINK The path of the positron is helical because its velocity v  has components 

parallel and perpendicular to the magnetic field .B  

 

EXPRESS If v is the speed of the positron then v sin  is the component of its velocity in 

the plane that is perpendicular to the magnetic field. Here  = 89° is the angle between 

the velocity and the field. Newton’s second law yields eBv sin  = me(v sin )
2
/r, where r 

is the radius of the orbit. Thus r = (mev/eB)sin . The period is given by 

 

22
.

sin

emr
T

v eB


   

 

The equation for r is substituted to obtain the second expression for T. For part (b), the 

pitch is the distance traveled along the line of the magnetic field in a time interval of one 

period. Thus p = vT cos . 

 

ANALYZE (a) Substituting the values given, we find the period to be 
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 
  

31

10

19

2 9.11 10 kg2
3.58 10 s.

1.60 10 C 0.100T

em
T

eB







 
   


 

 

(b) We use the kinetic energy, K m ve 1
2

2 , to find the speed:  

 

  3 19

7

31

2 2.00 10 eV 1.60 10 J eV2
2.65 10 m s .

9.11 10 kge

K
v

m





 
   


 

 

Thus, the pitch is   7 10 42.65 10 m s 3.58 10 s cos 89 1.66 10 m .p         

 

(c) The orbit radius is 

 

  
  

31 7

3

19

9.11 10 kg 2.65 10 m s sin89sin
1.51 10 m .

1.60 10 C 0.100 T

em v
R

eB








  
   


 

 

LEARN The parallel component of the velocity, cos ,v v   is what determines the 

pitch of the helix. On the other hand, the perpendicular component, sin ,v v    

determines the radius of the helix. 

 

34. (a)  Equation 3-20 gives = cos
1

(2/19) = 84. 

 

(b) No, the magnetic field can only change the direction of motion of a free 

(unconstrained) particle, not its speed or its kinetic energy. 

 

(c) No, as reference to Fig. 28-11 should make clear. 

 

(d) We find v = v sin  = 61.3 m/s, so r = mv /eB =  5.7 nm. 

 

35. (a)  By conservation of energy (using qV for the potential energy, which is converted 

into kinetic form) the kinetic energy gained in each pass is 200 eV. 

 

(b) Multiplying the part (a) result by n = 100 gives K = n(200 eV) = 20.0 keV. 

 

(c) Combining Eq. 28-16 with the kinetic energy relation (n(200 eV) = mpv
2
/2 in this 

particular application) leads to the expression 

 

r = 
mp

e B
 

2n(200 eV)

mp
  

 

which shows that r is proportional to n . Thus, the percent increase defined in the 

problem in going from n = 100 to n = 101 is 101/100  – 1  = 0.00499 or 0.499%.  
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36. (a) The magnitude of the field required to achieve resonance is 

 

 6 27

19

2  Hz) 1.67 10 kg2
0.787T.

1.60 10 C

pfm
B

q






 
  


 

 

(b) The kinetic energy is given by 

 

   
22 27 2 2 6 21

2

12 6

1 1
2 1.67 10 kg 4 (0.530 m) (12.0 10  Hz)

2 2

1.33 10 J 8.34 10 eV.

K mv m Rf 



     

   

 

 

(c) The required frequency is 

  

 

19

7

27

1.60 10 C 1.57T
2.39 10 Hz.

2 2 1.67 10 kgp

qB
f

m 






   


 

 

(d) The kinetic energy is given by 

 

   
22 27 2 2 7 21

2

12 7

1 1
2 1.67 10 kg 4 (0.530 m) (2.39 10  Hz)

2 2

5.3069 10 J 3.32 10 eV.

K mv m Rf 



     

   

 

 

37. We approximate the total distance by the number of revolutions times the 

circumference of the orbit corresponding to the average energy. This should be a good 

approximation since the deuteron receives the same energy each revolution and its period 

does not depend on its energy. The deuteron accelerates twice in each cycle, and each 

time it receives an energy of qV = 80  10
3
 eV. Since its final energy is 16.6 MeV, the 

number of revolutions it makes is 

n 





16 6 10

2 80 10
104

6

3

.
.

eV

eVc h  

 

Its average energy during the accelerating process is 8.3 MeV. The radius of the orbit is 

given by r = mv/qB, where v is the deuteron’s speed. Since this is given by v K m 2 , 

the radius is 

r
m

qB

K

m qB
Km 

2 1
2 .  

For the average energy 

 

r 
  




 



2 8 3 10 160 10 334 10

160 10 157
0 375

6 19 27

19

. . .

. .
.

eV J eV kg

C T
m .

c hc hc h
c hb g  
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The total distance traveled is about  

 

n2r = (104)(2)(0.375) = 2.4  10
2
 m. 

 

38. (a) Using Eq. 28-23 and Eq. 28-18, we find 

 

  

 

19

7

osc 27

1.60 10 C 1.20T
1.83 10 Hz.

2 2 1.67 10 kgp

qB
f

m 






   


 

 

(b) From r m v qB m k qBp P  2  we have  

 

     

  

2
192

7

27 19

0.500m 1.60 10 C 1.20T
1.72 10 eV.

2 2 1.67 10 kg 1.60 10 J eVp

rqB
K

m



 

 
    

 
 

 

39. THINK The magnetic force on a wire that carries a current i is given by ,BF iL B   

where L  is the length vector of the wire and B  is the magnetic field. 

 

EXPRESS The magnitude of the magnetic force on the wire is given by FB = iLB sin , 

where  is the angle between the current and the field.  

 

ANALYZE (a) With  = 70°, we have 

 

   65000A 100m 60.0 10 T sin 70 28.2 N.BF     

 

(b) We apply the right-hand rule to the vector product 
  
F iL BB    to show that the force 

is to the west. 

 

LEARN From the expression ,BF iL B   we see that the magnetic force acting on a 

current-carrying wire is a maximum when L  is perpendicular to B  ( 90  ), and is zero 

when L  is parallel to B  ( 0   ).  

 

40. The magnetic force on the (straight) wire is 

 

       sin 13.0A 1.50T 1.80m sin 35.0 20.1N.BF iBL      

 

41. (a) The magnetic force on the wire must be upward and have a magnitude equal to the 

gravitational force mg on the wire. Since the field and the current are perpendicular to 

each other the magnitude of the magnetic force is given by FB = iLB, where L is the 

length of the wire. Thus, 
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  
  

20.0130kg 9.8m s
0.467A.

0.620m 0.440T

mg
iLB mg i

LB
      

 

(b) Applying the right-hand rule reveals that the current must be from left to right. 

 

42. (a) From symmetry, we conclude that any x-component of force will vanish 

(evaluated over the entirety of the bent wire as shown). By the right-hand rule, a field in 

the k  direction produces on each part of the bent wire a y-component of force pointing in 

thej  direction; each of these components has magnitude 

 

| | | | sin30 (2.0 A)(2.0 m)(4.0 T)sin30 8N.yF i B      

 

Therefore, the force on the wire shown in the figure is ˆ( 16j) N . 

 

(b) The force exerted on the left half of the bent wire points in the  k  direction, by the 

right-hand rule, and the force exerted on the right half of the wire points in the  k  

direction. It is clear that the magnitude of each force is equal, so that the force (evaluated 

over the entirety of the bent wire as shown) must necessarily vanish. 

 

43. We establish coordinates such that the two sides of the right triangle meet at the 

origin, and the y  50  cm side runs along the +y axis, while the x 120  cm side runs 

along the +x axis. The angle made by the hypotenuse (of length 130 cm) is  

 

 = tan
–1

 (50/120) = 22.6°, 

 

relative to the 120 cm side. If one measures the angle counterclockwise from the +x 

direction, then the angle for the hypotenuse is 180° – 22.6° = +157°. Since we are only 

asked to find the magnitudes of the forces, we have the freedom to assume the current is 

flowing, say, counterclockwise in the triangular loop (as viewed by an observer on the +z 

axis. We take 

B  to be in the same direction as that of the current flow in the hypotenuse. 

Then, with B B 


0 0750. T,  

cos 0.0692T , sin 0.0288T.x yB B B B        

 

(a) Equation 28-26 produces zero force when 
 
L B||  so there is no force exerted on the 

hypotenuse of length 130 cm.  

 

(b) On the 50 cm side, the Bx component produces a force i By x k,  and there is no 

contribution from the By component. Using SI units, the magnitude of the force on the  y  

side is therefore 

4 00 0500 0 0692 0138. . . .A m T N.b gb gb g   
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(c) On the 120 cm side, the By component produces a force i Bx y k,  and there is no 

contribution from the Bx component. The magnitude of the force on the  x  side is also  

 

4 00 120 0 0288 0138. . . .A m T N.b gb gb g   

 

(d) The net force is 

i B i By x x y   ,k k  0  

 

keeping in mind that Bx < 0 due to our initial assumptions. If we had instead assumed 

B  

went the opposite direction of the current flow in the hypotenuse, then Bx  0 , but By < 0 

and a zero net force would still be the result. 

 

44. Consider an infinitesimal segment of the loop, of length ds. The magnetic field is 

perpendicular to the segment, so the magnetic force on it has magnitude dF = iB ds. The 

horizontal component of the force has magnitude  

 

 ( cos )hdF iB ds  

 

and points inward toward the center of the loop. The vertical component has magnitude 

 

( sin )ydF iB ds  

 

and points upward. Now, we sum the forces on all the segments of the loop. The 

horizontal component of the total force vanishes, since each segment of wire can be 

paired with another, diametrically opposite, segment. The horizontal components of these 

forces are both toward the center of the loop and thus in opposite directions. The vertical 

component of the total force is 

 
3 3

7

sin 2 sin 2 (0.018 m)(4.6 10  A)(3.4 10  T)sin 20

6.0 10  N.

vF iB ds aiB    



     

 

 p
 

 

We note that i, B, and  have the same value for every segment and so can be factored 

from the integral. 

 

45. The magnetic force on the wire is 

 

   
       

 3 3

ˆ ˆ ˆ ˆ ˆi j k j k

ˆ ˆ0.500A 0.500m 0.0100T j 0.00300T k

ˆ ˆ2.50 10 j 0.750 10 k N.

B y z z yF iL B iL B B iL B B

 

       

   
 

    
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46. (a) The magnetic force on the wire is FB = idB, pointing to the left. Thus  

 

 

3 2 2

5

2

(9.13 10 A)(2.56 10 m)(5.63 10 T)(0.0611s)

2.41 10 kg

3.34 10 m/s.

BF t idBt
v at

m m

  





  
   



 

 

 

(b) The direction is to the left (away from the generator). 

 

47. (a) The magnetic force must push horizontally on the rod to overcome the force of 

friction, but it can be oriented so that it also pulls up on the rod and thereby reduces both 

the normal force and the force of friction. The forces acting on the rod are: 

F ,  the force 

of the magnetic field; mg, the magnitude of the (downward) force of gravity; 
NF , the 

normal force exerted by the stationary rails upward on the rod; and 

f ,  the (horizontal) 

force of friction. For definiteness, we assume the rod is on the verge of moving eastward, 

which means that 

f  points westward (and is equal to its maximum possible value sFN). 

Thus, 

F  has an eastward component Fx and an upward component Fy, which can be 

related to the components of the magnetic field once we assume a direction for the 

current in the rod. Thus, again for definiteness, we assume the current flows northward. 

Then, by the right-hand rule, a downward component (Bd) of 

B  will produce the 

eastward Fx, and a westward component (Bw) will produce the upward Fy. Specifically, 

 

, .x d y wF iLB F iLB   

 

Considering forces along a vertical axis, we find 

 

N y wF mg F mg iLB     

 

so that 

f f mg iLBs s w  , .max  b g  
 

It is on the verge of motion, so we set the horizontal acceleration to zero: 

 

 0 .x d s wF f iLB mg iLB      

 

The angle of the field components is adjustable, and we can minimize with respect to it. 

Defining the angle by Bw = B sin and Bd = B cos (which means  is being measured 

from a vertical axis) and writing the above expression in these terms, we obtain 

 

 
 

cos sin
cos sin

s
s

s

mg
iLB mg iLB B

iL


  

  
   


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which we differentiate (with respect to ) and set the result equal to zero. This provides a 

determination of the angle: 

 

     tan tan . .1 1 0 60 31sb g b g  

Consequently, 

  
   

2

min

0.60 1.0kg 9.8m s
0.10T.

50A 1.0m cos31 0.60sin31
B  

  
 

 

(b) As shown above, the angle is    1 1tan tan 0.60 31 .s       

 

48. We use dF idL BB

  
  , where dL dx


 i and


B B Bx y  i j . Thus,  

 

 

      
3.0

2

1.0

ˆ ˆ ˆ ˆi i j k

ˆ ˆ5.0A 8.0 m mT k ( 0.35N)k.

f f

i i

x x

B x y y
x x

F idL B idx B B i B dx

x dx

     

    

  


 

 

49. THINK Magnetic forces on the loop produce a torque that rotates it about the hinge 

line. Our applied field has two components: Bx  0  and Bz  0.  

 

EXPRESS Considering each straight segment of the rectangular coil, we note that Eq. 

28-26 produces a nonzero force only for the component of 

B  which is perpendicular to 

that segment; we also note that the equation is effectively multiplied by N = 20 due to the 

fact that this is a 20-turn coil. Since we wish to compute the torque about the hinge line, 

we can ignore the force acting on the straight segment of the coil that lies along the y axis 

(forces acting at the axis of rotation produce no torque about that axis). The top and 

bottom straight segments experience forces due to Eq. 28-26 (caused by the Bz 

component), but these forces are (by the right-hand rule) in the ±y directions and are thus 

unable to produce a torque about the y axis. Consequently, the torque derives completely 

from the force exerted on the straight segment located at x = 0.050 m, which has length L 

= 0.10 m and is shown in Fig. 28-45 carrying current in the –y direction.  

 

Now, the Bz component will produce a force on this straight segment which points in 

the –x direction (back toward the hinge) and thus will exert no torque about the hinge. 

However, the Bx component (which is equal to B cos where B = 0.50 T and  = 30°) 

produces a force equal to F = NiLBx which points (by the right-hand rule) in the +z 

direction.  

 

ANALYZE Since the action of the force F is perpendicular to the plane of the coil, and is 

located a distance x away from the hinge, then the torque has magnitude 

 

        cos 20 0.10 A 0.10 m 0.050 m 0.50 T cos30

0.0043 N m .
xNiLB x NiLxB    

 
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Since ,r F    the direction of the torque is –y. In unit-vector notation, the torque is 

3 ˆ( 4.3 10  N m)j      

 

LEARN An alternative way to do this problem is through the use of Eq. 28-37: 

.B    The magnetic moment vector is 

   2 2ˆ ˆ ˆ( ) k 20 0.10A 0.0050m k (0.01A m )k.NiA         

 

The torque on the loop is 

 

2

3

ˆ ˆ ˆ ˆ( k) ( cos i sin k) ( cos ) j

ˆ(0.01A m )(0.50 T)cos30 j

ˆ( 4.3 10  N m)j.

B B B B      



       

   

   

 

 

50. We use 2

max max| | ,B B i r B        and note that i = qf = qv/2r. So 

 

2 19 6 11 3

max

26

1 1
(1.60 10 C)(2.19 10 m/s)(5.29 10 m)(7.10 10 T)

2 2 2

6.58 10 N m.

qv
r B qvrB

r
   



 
       
 

  

p
p  

 

51. We use Eq. 28-37 where 

  is the magnetic dipole moment of the wire loop and 


B  is 

the magnetic field, as well as Newton’s second law. Since the plane of the loop is parallel 

to the incline the dipole moment is normal to the incline. The forces acting on the 

cylinder are the force of gravity mg, acting downward from the center of mass, the 

normal force of the incline FN, acting perpendicularly to the incline through the center of 

mass, and the force of friction f, acting up the incline at the point of contact. We take the 

x axis to be positive down the incline. Then the x component of Newton’s second law for 

the center of mass yields 

mg f masin .    

 

For purposes of calculating the torque, we take the axis of the cylinder to be the axis of 

rotation. The magnetic field produces a torque with magnitude B sin, and the force of 

friction produces a torque with magnitude fr, where r is the radius of the cylinder. The 

first tends to produce an angular acceleration in the counterclockwise direction, and the 

second tends to produce an angular acceleration in the clockwise direction. Newton’s 

second law for rotation about the center of the cylinder,  = I, gives 

 

fr B I   sin .  

 

Since we want the current that holds the cylinder in place, we set a = 0 and  = 0, and use 

one equation to eliminate f from the other. The result is .mgr B  The loop is 
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rectangular with two sides of length L and two of length 2r, so its area is A = 2rL and the 

dipole moment is (2 ).NiA Ni rL    Thus, 2mgr NirLB  and 

 

i
mg

NLB
  

2

0 250 9 8

2 10 0 0100 0500
2 45

. .

. . .
.

kg m s

m T
A.

2b gc h
b gb gb g  

 

52. The insight central to this problem is that for a given length of wire (formed into a 

rectangle of various possible aspect ratios), the maximum possible area is enclosed when 

the ratio of height to width is 1 (that is, when it is a square). The maximum possible value 

for the width, the problem says, is x =  4 cm (this is when the height is very close to zero, 

so the total length of wire is effectively 8 cm).  Thus, when it takes the shape of a square 

the value of x must be ¼ of 8 cm; that is, x = 2 cm when it encloses maximum area 

(which leads to a maximum torque by Eq. 28-35 and Eq. 28-37) of A = (0.020 m)
2
 = 

0.00040 m
2
.  Since N = 1 and the torque in this case is given as 4.8  10

4 
N m , then the 

aforementioned equations lead immediately to i = 0.0030 A. 

 

53. We replace the current loop of arbitrary shape with an assembly of small adjacent 

rectangular loops filling the same area that was enclosed by the original loop (as nearly as 

possible). Each rectangular loop carries a current i flowing in the same sense as the 

original loop. As the sizes of these rectangles shrink to infinitesimally small values, the 

assembly gives a current distribution equivalent to that of the original loop. The 

magnitude of the torque

  exerted by 


B  on the nth rectangular loop of area An is given 

by   n nNiB A sin .  Thus, for the whole assembly 

 

sin .n n

n n

NiB A NiAB         

 

54. (a) The kinetic energy gained is due to the potential energy decrease as the dipole 

swings from a position specified by angle  to that of  being aligned (zero angle) with the 

field. Thus, 

K U U B Bi f        cos cos .0b g  

 

Therefore, using SI units, the angle is 

 




 
F
HG
I
KJ  

F
HG

I
KJ   cos cos

.

. .
.1 11 1

0 00080

0 020 0 052
77

K

B b gb g  

 

(b) Since we are making the assumption that no energy is dissipated in this process, then 

the dipole will continue its rotation (similar to a pendulum) until it reaches an angle  = 

77° on the other side of the alignment axis. 

 

55. THINK Our system consists of two concentric current-carrying loops. The net 

magnetic dipole moment is the vector sum of the individual contributions.  
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EXPRESS The magnitude of the magnetic dipole moment is given by NiA  , where N 

is the number of turns, i is the current in each turn, and A is the area of a loop. Each of the 

loops is a circle, so the area is 2 ,A r  where r is the radius of the loop. 

 

ANALYZE (a) Since the currents are in the same direction, the magnitude of the 

magnetic moment vector is 

 

     
2 22 2 2

1 1 2 2 7.00A 0.200m 0.300m 2.86A m .n n

n

i A r i r i        
   

 

 (b) Now, the two currents flow in the opposite directions, so the magnitude of the 

magnetic moment vector is 

  

     
2 22 2 2

2 2 1 1 7.00A 0.300m 0.200m 1.10A m .r i r i       
 

 

 

LEARN In both cases, the directions of the dipole moments are into the page. The 

direction of   is that of the normal vector n  to the plane of the coil, in accordance with 

the right-hand rule shown in Fig. 28-19(b). 

 

56. (a)     NAi r i  2 2
2 60 0184m A A m2b g b g. . . 

 

(b) The torque is 

 

  2sin 0.184 A m 12.0T sin 41.0 1.45N m.B B            

 

57. THINK Magnetic forces on a current-carrying loop produce a torque that tends to 

align the magnetic dipole moment with the magnetic field. 

 

EXPRESS The magnitude of the magnetic dipole moment is given by NiA  , where N 

is the number of turns, i is the current in each turn, and A is the area of a loop. In this case 

the loops are circular, so A = r
2
, where r is the radius of a turn.  

 

ANALYZE (a) Thus, the current is  

 

i
N r

 





 2 2

2 30

160 0 0190
12 7

.

.
.

A m

m
A .

2

b gb gb g  

 

(b) The maximum torque occurs when the dipole moment is perpendicular to the field (or 

the plane of the loop is parallel to the field). It is given by 

 

  2 3 2

max 2.30 A m 35.0 10 T 8.05 10 N m.B           
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LEARN The torque on the coil can be written as ,B    with | | sin ,B      

where  is the angle between   and .B  Thus,  is a maximum when 90 ,    and zero 

when 0 .    

 

58. From  = NiA = ir
2
 we get 

 

i
r

 



 



   2

22

2

98 00 10
2 08 10

.
.

J T

m
A.

c h
 

 

59. (a) The area of the loop is A   1
2

230 40 60 10cm cm cm2b gb g . , so 

 

     iA 50 6 0 10 0 302. . . .A m A m2 2b gc h  

 

(b) The torque on the loop is 

 

        Bsin . sin .0 30 80 10 90 2 4 103 2A m T N m.2c hc h  

 

60. Let a = 30.0 cm, b = 20.0 cm, and c = 10.0 cm. From the given hint, we write 

 

            

 

1 2

2

ˆ ˆ ˆ ˆ ˆ ˆk j j k 5.00A 0.300m 0.100m j 0.200m k

ˆ ˆ0.150j 0.300k A m .

iab iac ia c b            
 

  
 

 

61. THINK Magnetic forces on a current-carrying coil produce a torque that tends to 

align the magnetic dipole moment with the field. The magnetic energy of the dipole 

depends on its orientation relative to the field. 

 

EXPRESS The magnetic potential energy of the dipole is given by ,U B    where   

is the magnetic dipole moment of the coil and B  is the magnetic field. The magnitude of 

  is ,NiA   where i is the current in the coil, N is the number of turns, A is the area of 

the coil. On the other hand, the torque on the coil is given by the vector product 

.B    

 

ANALYZE (a) By using the right-hand rule, we see that   is in the –y direction. Thus, 

we have 

 3 2 2ˆ ˆ ˆ( )( j) (3)(2.00 A)(4.00 10  m )j (0.0240 A m )jNiA         . 

 

The corresponding magnetic energy is  

 
2 3 5( 0.0240 A m )( 3.00 10  T) 7.20 10  Jy yU B B                 . 
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(b) Using the fact that ˆ ˆ ˆ ˆ ˆ ˆ ˆj i 0, j j 0, and j k i,       the torque on the coil is 

 

 2 3 2 3

5 5

ˆ ˆi k

ˆ ˆ( 0.0240 A m )( 4.00 10 T)i ( 0.0240 A m )(2.00 10 T)k

ˆ ˆ(9.60 10 N m)i (4.80 10 N m)k.

y z y xB B B   

 

 

   

        

     

 

 

LEARN The magnetic energy is highest when   is in the opposite direction of B , and 

lowest when   lines up with B . 

 

62. Looking at the point in the graph (Fig. 28-51(b)) corresponding to i2 = 0 (which 

means that coil 2 has no magnetic moment) we are led to conclude that the magnetic 

moment of coil 1 must be 5 2

1 2.0 10 A m .     Looking at the point where the line 

crosses the axis (at i2 = 5.0 mA) we conclude (since the magnetic moments cancel there) 

that the magnitude of coil 2’s moment must also be 5 2

2 2.0 10 A m     when 

2 0.0050 A,i   which means (Eq. 28-35)  

 
5 2

3 22
2 2

2

2.0 10 A m
4.0 10 m

0.0050 A
N A

i

 
 

    . 

 

Now the problem has us consider the direction of coil 2’s current changed so that the net 

moment is the sum of two (positive) contributions, from coil 1 and coil 2, specifically for 

the case that i2 = 0.007 A.  We find that total moment is  

 

  (2.0  10
5 

A·m
2
) + (N2A2 i2) = 4.8  10

5 
A·m

2
. 

 

63. The magnetic dipole moment is 

  0 60 080.  . i je j , where  

 

 = NiA = Nir
2
 = 1(0.20 A)(0.080 m)

2
 = 4.02  10

–4
 A·m

2
. 

 

Here i is the current in the loop, N is the number of turns, A is the area of the loop, and r 

is its radius. 

 

(a) The torque is 

 
  
  





     

     

   

B 0 60 080 0 25 0 30

0 60 0 30 080 0 25 080 0 30

018 0 20 0 24

.  .  .  . 

. .   . .   . .  

.  .  .  .

i j i k

i k j i j k

j k i

e j e j
b gb ge j b gb ge j b gb ge j  
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Here      i k j, j i k,       and   j k i   are used. We also use  i i = 0 . Now, we 

substitute the value for  to obtain 

 

 4 4 4ˆ ˆ ˆ9.7 10 i 7.2 10 j 8.0 10 k N m.            

 

(b) The orientation energy of the dipole is given by 

 

       4ˆ ˆ ˆ ˆ0.60i 0.80j 0.25i+0.30k 0.60 0.25 0.15 6.0 10 J.U B                   

 

Here   ,   ,  i i i k j i = 0,    1 0  and  j k  0  are used. 

 

64. Eq. 28-39 gives U = B   = B cos, so at = 0 (corresponding to the lowest 

point on the graph in Fig. 28-52) the mechanical energy is  

 

K + U = Ko + (B) = 6.7  10
4 

J + (5  10
4 

J) = 1.7  10
4 

J. 

 

The turning point occurs where K = 0, which implies Uturn = 1.7  10
4 

J.  So the angle 

where this takes place is given by 

 
4

1 1.7 10  J
cos 110

B





  

    
 

 

 

where we have used the fact (see above) that  B = 5  10
4 

J. 

 

65. THINK The torque on a current-carrying coil is a maximum when its dipole moment 

is perpendicular to the magnetic field. 

 

EXPRESS The magnitude of the torque on the coil is given by | | sin ,B      where 

 is the angle between   and .B  The magnitude of   is ,NiA   where i is the current 

in the coil, N is the number of turns, A is the area of the coil. Thus, if N closed loops are 

formed from the wire of length L, the circumference of each loop is L/N, the radius of 

each loop is R = L/2N, and the area of each loop is  

 

A R L N L N     2 2 2 22 4b g . 

 

ANALYZE (a) For maximum torque, we orient the plane of the loops parallel to the 

magnetic field, so the dipole moment is perpendicular (i.e., at a 90 angle) to the field.  

 

(b) The magnitude of the torque is then 

 

  
F
HG
I
KJ NiAB Ni

L

N
B

iL B

N
b g

2

2

2

4 4 
.  
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To maximize the torque, we take the number of turns N to have the smallest possible 

value, 1. Then  = iL
2
B/4. 

 

(c) The magnitude of the maximum torque is 

 

 
2 3 2 3

7(4.51 10  A)(0.250 m) (5.71 10 T)
1.28 10  N m

4 4

iL B


 

 
 

     . 

 

LEARN The torque tends to align   with .B  The magnitude of the torque is a maximum 

when the angle between   and B  is 90 ,    and is zero when 0 .     

 

66. The equation of motion for the proton is 

 
  



F qv B q v v v B qB v v

m a m
dv

dt

dv

dt

dv

dt

x y z z y

p p
x y z

       

 
F
HG
I
KJ 
F
HG
I
KJ 
F
HG
I
KJ

L
NM

O
QP

     

   .

i j k i j k

i j k

e j e j
 

Thus, 

0,   ,   ,
yx z

z y

dvdv dv
v v

dt dt dt
     

 

where  = eB/m. The solution is vx = v0x, vy= v0y cos t, and vz = –v0y sin t. In summary, 

we have  

v t v v t v tx y yb g b g b g  0 0 0

 cos  sin i j k  . 

 

67. (a) We use 
  
   B,  where 


  points into the wall (since the current goes clockwise 

around the clock). Since 

B  points toward the one-hour (or “5-minute’’) mark, and (by 

the properties of vector cross products) 

  must be perpendicular to it, then (using the 

right-hand rule) we find 

  points at the 20-minute mark. So the time interval is 20 min. 

 

(b) The torque is given by 

 

    
22 3

2

| | sin90 6 2.0A 0.15m 70 10 T

5.9 10 N m.

B B NiAB Nir B     



      

  
 

 

68. The unit vector associated with the current element (of magnitude d ) is j . The 

(infinitesimal) force on this element is 

 

dF i d y y


   .  j i + 0.4 je j e j0 3  
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with SI units (and 3 significant figures) understood. Since   j i k    and  j j  0 , we 

obtain 

 4 2ˆ ˆ0.3 k 6.00 10 N m k.dF iy d y d    

 

We integrate the force element found above, using the symbol  to stand for the 

coefficient 6.00  10
–4

 N/m
2
, and obtain 

 
2

0.25
5

0

0.25ˆ ˆ ˆk k (1.88 10 N)k .
2

F dF ydy   
     

 
   

 

69. From m = B
2
qx

2
/8V we have m = (B

2
q/8V)(2xx). Here x Vm B q 8 2 , which we 

substitute into the expression for m to obtain 

 

  m
B q

V

mV

B q
x B

mq

V
x

F
HG
I
KJ 

2

28
2

8

2
.  

 

Thus, the distance between the spots made on the photographic plate is 

 

    
   

27 3

27 19

3

37 u 35u 1.66 10 kg u 2 7.3 10 V2

0.50T 36u 1.66 10 kg u 1.60 10 C

8.2 10 m.

m V
x

B mq



 



  
  

 

 

 

70. (a) Equating the magnitude of the electric force (Fe = eE) with that of the magnetic 

force (Eq. 28-3), we obtain B = E / v sin . The field is smallest when the sin  factor is at 

its largest value; that is, when  = 90°. Now, we use K mv
1

2

2  to find the speed: 

 

v
K

me

 
 


 





2 2 2 5 10 160 10

911 10
2 96 10

3 19

31

7
. .

.
. .

eV J eV

kg
m s

c hc h
 

Thus, 

B
E

v
 




  10 10

2 96 10
34 10

3

7

4V m

m s
T.

.
.  

 

The direction of the magnetic field must be perpendicular to both the electric field ( ĵ ) 

and the velocity of the electron ( î ). Since the electric force ( )eF e E  points in the ĵ  

direction, the magnetic force ( )BF e v B    points in the ĵ direction. Hence, the 

direction of the magnetic field is k̂ . In unit-vector notation, 4 ˆ( 3.4 10 T)k.B      
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71. The period of revolution for the iodine ion is  

 

T = 2r/v = 2m/Bq, 

 

which gives 

m
BqT

 
  




  

2

450 10 160 10 129 10

7 2 166 10
127

3 19 3

27 

. . .

.

T C s

kg u
u.

c hc hc h
b gb gc h  

 

72. (a) For the magnetic field to have an effect on the moving electrons, we need a non-

negligible component of 

B  to be perpendicular to 


v  (the electron velocity). It is most 

efficient, therefore, to orient the magnetic field so it is perpendicular to the plane of the 

page. The magnetic force on an electron has magnitude FB = evB, and the acceleration of 

the electron has magnitude a = v
2
/r. Newton’s second law yields evB = mev

2
/r, so the 

radius of the circle is given by r = mev/eB in agreement with Eq. 28-16. The kinetic 

energy of the electron is K m ve 1
2

2 , so v K me 2 . Thus, 

 

r
m

eB

K

m

m K

e B

e

e

e 
2 2

2 2
. 

 

This must be less than d, so 
2

2 2

m K

e B
de  , or B

m K

e d

e
2

2 2
.  

 

(b) If the electrons are to travel as shown in Fig. 28-53, the magnetic field must be out of 

the page. Then the magnetic force is toward the center of the circular path, as it must be 

(in order to make the circular motion possible). 

 

73. THINK The electron moving in the Earth’s magnetic field is being accelerated by the 

magnetic force acting on it. 

 

EXPRESS Since the electron is moving in a line that is parallel to the horizontal 

component of the Earth’s magnetic field, the magnetic force on the electron is due to the 

vertical component of the field only. The magnitude of the force acting on the electron is 

given by F = evB, where B represents the downward component of Earth’s field. With F 

= mea, the acceleration of the electron is a = evB/me.  

 

ANALYZE (a) The electron speed can be found from its kinetic energy 21
:

2
eK m v   

 

v
K

me

 
 


 





2 2 12 0 10 160 10

911 10
6 49 10

3 19

31

7
. .

.
. .

eV J eV

kg
m s

c hc h
 

Therefore,  
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     19 7 6

31

2 214 14

1.60 10 C 6.49 10 m s 55.0 10 T

9.11 10 kg

6.27 10 m s 6.3 10 m s .

e

evB
a

m

 



  
 



   

 

 

(b) We ignore any vertical deflection of the beam that might arise due to the horizontal 

component of Earth’s field. Then, the path of the electron is a circular arc. The radius of 

the path is given by 2 / ,a v R or 

 

 
2 7 2

14 2

(6.49 10 m/s)
6.72 m.

6.27 10 m/s

v
R

a


  


 

The dashed curve shown represents the path. Let 

the deflection be h after the electron has traveled a 

distance d along the x axis. With sind R  , we 

have 

 
 

 

2

2

(1 cos ) 1 1 sin

1 1 ( / ) .

h R R

R d R

     

  

 

 
Substituting R = 6.72 m and d = 0.20 m into the expression, we obtain h = 0.0030 m.  

 

LEARN The deflection is so small that many of the technicalities of circular geometry 

may be ignored, and a calculation along the lines of projectile motion analysis (see 

Chapter 4) provides an adequate approximation: 

 

9

7

0.200m
3.08 10 s

6.49 10 m s

d
d vt t

v

     


. 

 

Then, with our y axis oriented eastward, 

 

   
2

2 14 91 1
6.27 10 3.08 10 0.00298m 0.0030 m.

2 2
h at        

 

74. Letting Bx = By = B1 and Bz = B2 and using Eq. 28-2 ( F qv B  ) and Eq. 3-30, we 

obtain (with SI units understood) 

 

      2 1 1 2 1 1
ˆ ˆ ˆ ˆ ˆ ˆ4i 20j 12k 2 4 6 i 6 2 j 2 4 k .B B B B B B         

 

Equating like components, we find B1 = –3 and B2 = –4. In summary, 

 

 ˆ ˆ ˆ3.0i 3.0j 4.0k T.B      
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75. Using Eq. 28-16, the radius of the circular path is 

 

2mv mK
r

qB qB
   

 

where 2 / 2K mv  is the kinetic energy of the particle. Thus, we see that r mK qB .  

 

(a) 
2.0u

2 1.4 ,
1.0u

pd d d

p p p d

qr m K e

r m K q e
    and  

 

(b) 
4.0u

1.0.
1.0u 2

p

p p p

qr m K e

r m K q e

  



    

 

76. Using Eq. 28-16, the charge-to-mass ratio is 
q v

m B r



. With the speed of the ion 

given by /v E B (using Eq. 28-7), the expression becomes 

 

/q E B E

m B r BB r
 

 
. 

 

77. THINK Since both electric and magnetic fields are present, the net force on the 

electron is the vector sum of the electric force and the magnetic force.  

 

EXPRESS The force on the electron is given by ( ),F e E v B     where E  is the 

electric field, B  is the magnetic field, and v  is the velocity of the electron. The fact that 

the fields are uniform with the feature that the charge moves in a straight line, implies 

that the speed is constant. Thus, the net force must vanish.  

 

ANALYZE The condition 0F  implies that 

 

500V m.E vB   

 

Its direction (so that 0F  ) is downward, or ĵ , in the “page” coordinates. In unit-vector 

notation, ˆ( 500 V/m)jE    

 

LEARN Electron moves in a straight line only when the condition E vB  is met. In 

many experiments, a velocity selector can be set up so that only electrons with a speed 

given by /v E B  can pass through. 

 



 

  

1247 

78. (a) In Chapter 27, the electric field (called EC in this problem) that “drives” the 

current through the resistive material is given by Eq. 27-11, which (in magnitude) reads 

EC = J. Combining this with Eq. 27-7, we obtain 

 

E nevC d  .  

 

Now, regarding the Hall effect, we use Eq. 28-10 to write E = vdB. Dividing one equation 

by the other, we get E/Ec = B/ne. 

 

(b) Using the value of copper’s resistivity given in Chapter 26, we obtain 

 

   
3

28 3 19 8

0.65 T
2.84 10 .

8.47 10 m 1.60 10 C 1.69 10 mc

E B

E ne



 
   

   
 

 

79. THINK We have charged particles that are accelerated through an electric potential 

difference, and then moved through a region of uniform magnetic field. Energy is 

conserved in the process.   

 

EXPRESS The kinetic energy of a particle is given by K = qV, where q is the particle’s 

charge and V is the potential difference. With 2 / 2,K mv  the speed of the particle is  

 

 
2 2

.
K qV

v
m m

   

 

In the region with uniform magnetic field, the magnetic force on a particle of charge q is 

qvB, which according to Newton’s second law, is equal to 2 / ,mv r  where r is the radius 

of the orbit. Thus, we have 

 
2 2

.
mv m K mK

r
qB qB m qB

    

 

ANALYZE (a) Since K = qV we have  1
2

as 2 ,p pK K q K   or / 0.50.pK K   

 

(b) Similarly, 2 ,  / 0.50.d dq K K K    

 

(c) Since r mK q , we have 

 

 

 

2.00 u
10 2 cm 14 cm.

1.00 u

p pd d
d p p

p p d p

q Km K
r r r

m K q K
     

 

(d) Similarly, for the alpha particle, we have 
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 

   

4.00u
10 2 cm 14 cm.

1.00u 2 2

p

p p

p p

q Km K e
r r r

m K q K e

 


 

     

 

LEARN The radius of the particle’s path, given by 2 / ,r mK qB  depends on its mass. 

kinetic energy, and charge, in addition to the field strength.  

 

80. (a) The largest value of force occurs if the velocity vector is perpendicular to the field. 

Using Eq. 28-3,  

 

FB,max = |q| vB sin (90°) = ev B = (1.60  10
– 19

 C) (7.20  10
6
 m/s) (83.0  10

– 3
 T) 

= 9.56  10
– 14

 N. 

 

(b) The smallest value occurs if they are parallel: FB,min = |q| vB sin (0) = 0. 

 

(c) By Newton’s second law, a = FB/me = |q| vB sin  /me, so the angle  between 

v  and  

B  is 

 

 
F
HG
I
KJ 

 

  

L
N
MM

O
Q
PP   



 
sin sin

. .

. . .
. .1 1

31 14 2

16 6 3

911 10 4 90 10

160 10 7 20 10 830 10
0 267

m a

q vB

e
kg m s

C m s T

c hd i
c hc hc h  

 

81. The contribution to the force by the magnetic field  ˆ ˆi ( 0.020 T)ixB B    is given 

by Eq. 28-2: 

 

      
 

ˆ ˆ ˆ ˆ ˆ ˆ17000i i 11000j i 7000k i

ˆ ˆ220k 140j

B x x xF qv B q B B B

q

        

  

 

 

in SI units. And the contribution to the force by the electric field  ˆ ˆj 300j V/myE E   is 

given by Eq. 23-1:

F qEE y j . Using q = 5.0  10

–6
 C, the net force on the particle is  

 
ˆ ˆ(0.00080j 0.0011k) N.F    

 

82. (a) We use Eq. 28-10: vd = E/B = (10  10
–6

V/1.0  10
–2

 m)/(1.5 T) = 6.7  10
–4

 m/s. 

 

(b) We rewrite Eq. 28-12 in terms of the electric field: 

 

n
Bi

V e

Bi

Ed e

Bi

EAe
  

 b g  
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where we use A d  . In this experiment, A = (0.010 m)(10  10
–6

 m) = 1.0  10
–7

 m
2
. By 

Eq. 28-10, vd equals the ratio of the fields (as noted in part (a)), so we are led to 

 

   
29 3

4 7 2 19

3.0A
2.8 10 m .

6.7 10 m s 1.0 10 m 1.6 10 Cd

Bi i
n

E Ae v Ae   
    

  
 

 

(c) Since a drawing of an inherently 3-D situation can be misleading, we describe it in 

terms of horizontal north, south, east, west and vertical up and down directions. We 

assume 

B  points up and the conductor’s width of 0.010 m is along an east-west line. We 

take the current going northward. The conduction electrons experience a westward 

magnetic force (by the right-hand rule), which results in the west side of the conductor 

being negative and the east side being positive (with reference to the Hall voltage that 

becomes established). 

 

83. THINK The force on the charged particle is given by ,F qv B   where q is the 

charge, B  is the magnetic field, and v  is the velocity of the electron. 

 

EXPRESS We write îB B  and take the velocity of the particle to be ˆ ˆi j .x yv v v  Thus,  

 
ˆ ˆ ˆ ˆ( i j ) ( i) k.x y yF qv B q v v B qv B        

 

For the force to point along k̂ , we must have q < 0.  

 

ANALYZE The charge of the particle is 

 

 2

3

0.48 N
4.0 10 C

(4.0 10 m/s)(sin37 )(0.0050 T)y

F
q

v B

      
 

. 

 

LEARN The component of the velocity, vx, being parallel to the magnetic field, does not 

contribute to the magnetic force ;F  only vy, the component of v  that is perpendicular to 

B , contributes to .F  

 

84. The current is in the i  direction. Thus, the i  component of 

B  has no effect, and 

(with x in meters) we evaluate 

 

     
3

1
2 2

0

1ˆ ˆ ˆ ˆ3.00A 0.600T m i j 1.80 A T m k ( 0.600N)k.
3

F x dx
 

         
 

  

 

85. (a) We use Eq. 28-2 and Eq. 3-30: 
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        

        
               

   

19

21 22

ˆ ˆ ˆi j k

ˆ1.60 10 4 0.008 6 0.004 i+

ˆ ˆ6 0.002 2 0.008 j 2 0.004 4 0.002 k

ˆ ˆ1.28 10 i 6.41 10 j

y z z y z x x z x y y xF qv B e v B v B v B v B v B v B



 

        

    

      

   

 

 

with SI units understood. 

 

(b) By definition of the cross product, 
 
v F . This is easily verified by taking the dot 

(scalar) product of 

v  with the result of part (a), yielding zero, provided care is taken not 

to introduce any round-off error.  

 

(c) There are several ways to proceed. It may be worthwhile to note, first, that if Bz were 

6.00 mT instead of 8.00 mT then the two vectors would be exactly antiparallel. Hence, 

the angle  between 

B  and 


v  is presumably “close” to 180°. Here, we use Eq. 3-20: 

 

 1 1 68
θ cos cos 173

| || | 56 84

v B

v B

 
   

      
  

. 

 

86. (a) We are given 5ˆ ˆi (6 10 T)ixB B    , so that 
 
v B v By x   k  where vy = 410

4
 m/s. 

We note that the magnetic force on the electron is  e v By xb ge jk  and therefore points in 

the  k  direction, at the instant the electron enters the field-filled region. In these terms, 

Eq. 28-16 becomes 

r
m v

e B

e y

x

  0 0038. m.  

 

(b) One revolution takes T = 2r/vy = 0.60 s, and during that time the “drift” of the 

electron in the x direction (which is the pitch of the helix) is x = vxT = 0.019 m where vx 

= 32  10
3
 m/s. 

 

(c) Returning to our observation of force direction made in part (a), we consider how this 

is perceived by an observer at some point on the –x axis. As the electron moves away 

from him, he sees it enter the region with positive vy (which he might call “upward’’) but 

“pushed” in the +z direction (to his right). Hence, he describes the electron’s spiral as 

clockwise. 

 

87. (a) The magnetic force on the electrons is given by .F qv B   Since the field B  

points to the left, and an electron (with q e  ) is forced to rotate clockwise (out of the 

page at the top of the rotor), using the right-hand-rule, the direction of the magnetic force 

is up the figure. 
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(b) The magnitude of the magnetic force can be written as ,F evB e rB   where  is 

the angular velocity and r is the distance from the axis. Since ,F r  the force is greater 

near the rim.  

 

(c) The work per unit charge done by the force in moving the charge along the radial line 

from the center to the rim, or the voltage, is  

 

 

2 2 2

0

3 2

1 1 1
(2 )

2 2

(4000 /s)(60 10 T)(0.250 m) 47.1 V.

RW
V e Brdr BR f BR fBR

e e
   

 

    

  

  

 

(d) The emf of the device is simply equal to the voltage calculated in part (c): 47.1 V.   

 

(e) The power produced is 3(50.0 A)(47.1V) 2.36 10 W.P iV     

 

88. The magnetic force exerted on the U-shaped wire is given by .F iLB  Using the 

impulse-momentum theorem, we have 

 

 ,p m v Fdt iLBdt LB idt LBq          

 

where q is the charge in the pulse. Since the wire is initially at rest, the speed at which the 

wire jumps is / .v LBq m  On the other hand, energy conservation gives 21
2

.mv mgh  

Combining the above expressions leads to 
22 1

2 2

v LBq
h

g g m

 
   

 
 

Solving for q, we find 

 
2(0.0100 kg) 2(9.80 m/s )(3.00 m)2

3.83 C.
(0.200 m)(0.100 T)

m gh
q

LB
    

 

89. Just before striking the plate, the electric force on the electron is / ,EF eE eV d   in 

the upward direction. Since the kinetic energy of the electron is 21
2

,K mv eV   

2 / .v eV m  On the other hand, the magnetic force is  

 

2
B

eV
F evB eB

m
   

 

in the downward direction. To prevent the electron from striking the plate, we require 

,B EF F  or 
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2

2

2 2

eV eV V m mV
eB B

m d d eV ed
     

 

90. The average current in the loop is 
2 / 2

q q qv
i

T r v r 
    and its magnetic dipole 

moment is  

2 1
( ) .

2 2

qv
iA r qvr

r
 



 
   

 
 

 

With ,B   we find the maximum torque exerted on the loop by a uniform magnetic 

field to be 

max

1
.

2
B qvrB    

 

91. When the electric and magnetic forces are in balance, ,deE ev B  where vd is the drift 

speed of the electrons. In addition, since the current density is ,dJ nev  we solve for n 

and find  

.
( / )d

J J JB
n

ev e E B eE
    

 

92. With Fz = vz  = Bx = 0, Eq. 28-2 (and Eq. 3-30)  gives  

 

Fx i
^
  +  Fy j

^
  =  q ( vyBz i

^
  vxBz j

^
  + vxBy k

^
  ) 

 

where q = e for the electron. The last term immediately implies By = 0, and either of the 

other two terms (along with the values stated in the problem, bearing in mind that “fN” 

means femto-newtons or 10
15

 N) can be used to solve for Bz : 

 

 
15

19

4.2 10 N
0.75 T.

(1.6 10 C)(35,000 m/s)

x
z

y

F
B

ev





 
  
  

 

We therefore find that the magnetic field is given by ˆ(0.75 T)k.B   
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Chapter 29 
 

 

1. (a) The magnitude of the magnetic field due to the current in the wire, at a point a 

distance r from the wire, is given by 

B
i

r

0

2
.  

With r = 20 ft = 6.10 m, we have 

 

B 
 

  
4 100

2
33 10 336

 
 

 T m A A

m
T T.

c hb g
b g . .   

 

(b) This is about one-sixth the magnitude of the Earth’s field. It will affect the compass 

reading. 

 

2. Equation 29-1 is maximized (with respect to angle) by setting  = 90º ( = /2 rad). Its 

value in this case is  

 0
max 24

i ds
dB

R




 . 

 

From Fig. 29-35(b), we have 12

max 60 10  T.B    We can relate this Bmax to our dBmax by 

setting “ds” equal to 1   10
6 

m and R = 0.025 m.  This allows us to solve for the current: 

i = 0.375 A.  Plugging this into Eq. 29-4 (for the infinite wire) gives B = 3.0 T. 

 

3. THINK The magnetic field produced by a current-carrying wire can be calculated 

using the Biot-Savart law. 

 

EXPRESS The magnitude of the magnetic field at a distance r from a long straight wire 

carrying current i is, using the Biot-Savart law, 0 2 .B i r   

 

ANALYZE (a) The field due to the wire, at a point 8.0 cm from the wire, must be 39 T 

and must be directed due south. Therefore, 

 

i
rB

 


 



2 2 39 10

4
16

0

6  
 

m T

T m A
A.

b gc h
 

 

(b) The current must be from west to east to produce a field that is directed southward at 

points below it. 

 

LEARN The direction of the current is given by the right-hand rule: grasp the element in 

your right hand with your thumb pointing in the direction of the current. The direction of 



CHAPTER 29 1254 

the field due to the current-carrying element corresponds to the direction your fingers 

naturally curl. 

 

4. The straight segment of the wire produces no magnetic field at C (see the straight 

sections discussion in Sample Problem 29.01 — “Magnetic field at the center of a 

circular arc of current”). Also, the fields from the two semicircular loops cancel at C (by 

symmetry). Therefore, BC = 0. 

 

5. (a) We find the field by superposing the results of two semi-infinite wires (Eq. 29-7) 

and a semicircular arc (Eq. 29-9 with  =  rad). The direction of 

B  is out of the page, as 

can be checked by referring to Fig. 29-7(c). The magnitude of 

B  at point a is therefore 

 
7

30 0 0 1 1 (4 10 T m/A)(10 A) 1 1
2 1.0 10  T

4 2 2 2(0.0050 m) 2
a

i i i
B

R R R

    

   


      

           
     

 

 

upon substituting i = 10 A and R = 0.0050 m.  

 

(b) The direction of this field is out of the page, as Fig. 29-7(c) makes clear. 

 

(c) The last remark in the problem statement implies that treating b as a point midway 

between two infinite wires is a good approximation. Thus, using Eq. 29-4, 

 
7

40 0 (4 10 T m/A)(10 A)
2 8.0 10 T.

2 (0.0050 m)
b

i i
B

R R

  

 


  

     
 

 

 

(d) This field, too, points out of the page. 

 

6. With the “usual” x and y coordinates used in Fig. 29-38, then the vector  r  


  pointing 

from a current element to P is ˆ ˆi j .r s R    Since îds ds , then | | .ds r Rds   

Therefore, with 2 2r s R  ,  Eq. 29-3 gives 

 

 0

2 2 3/ 24 ( )

iR ds
dB

s R







. 

 

 (a) Clearly, considered as a function of s  (but thinking of “ds” as some finite-sized 

constant value), the above expression is maximum for s = 0.  Its value in this case is 
2

max 0 / 4dB i ds R  .  

 

(b) We want to find the s value such that max /10dB dB . This is a nontrivial algebra 

exercise, but is nonetheless straightforward. The result is s = 10
2/3

  1 R. If we set 

2.00 cm,R   then we obtain s = 3.82 cm. 
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7. (a) Recalling the straight sections discussion in Sample Problem 29.01 — “Magnetic 

field at the center of a circular arc of current,” we see that the current in the straight 

segments collinear with P do not contribute to the field at that point. Using Eq. 29-9 (with 

 = ) and the right-hand rule, we find that the current in the semicircular arc of radius b 

contributes  0 4i b  (out of the page) to the field at P. Also, the current in the large 

radius arc contributes  0 4i a  (into the page) to the field there. Thus, the net field at P 

is 

0 1 1 (4 T m A)(0.411A)(74 /180 ) 1 1

4 4 0.107m 0.135m

1.02 T.

i
B

b a

  



      
      

   

 

-7

-7

p 10

10

 

 

(b) The direction is out of the page. 

 

8. (a) Recalling the straight sections discussion in Sample Problem 29.01 — “Magnetic 

field at the center of a circular arc of current,” we see that the current in segments AH and 

JD do not contribute to the field at point C. Using Eq. 29-9 (with  = ) and the right-

hand rule, we find that the current in the semicircular arc H J contributes 0 14i R  (into 

the page) to the field at C. Also, arc D A contributes 0 24i R  (out of the page) to the 

field there. Thus, the net field at C is  

 

0

1 2

1 1 (4 T m A)(0.281A) 1 1
1.67 T.

4 4 0.0315m 0.0780m

i
B

R R

      
        

  

-7
-6p 10

10  

 

(b) The direction of the field is into the page. 

 

9. THINK The net magnetic field at a point half way between the two long straight wires 

is the vector sum of the magnetic fields due to the currents in the two wires. 

 

EXPRESS Since the magnitude of the magnetic field at a distance r from a long straight 

wire carrying current i is given by 0 2 ,B i r  at a point half way between the two sires, 

the magnetic field is 1 2 ,B B B   where 1 2 0 2B B i r    (assuming the two wires to 

be 2r apart). The directions of 1B  and 2B are determined by the right-hand rule.   

 

ANALYZE (a) The currents must be opposite or anti-parallel, so that the resulting fields 

are in the same direction in the region between the wires. If the currents are parallel, then 

the two fields are in opposite directions in the region between the wires. Since the 

currents are the same, the total field is zero along the line that runs halfway between the 

wires. 

 

(b) The total field at the midpoint has magnitude B = 0i/r and  
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  6m 300 10 T
30A.

4 T m A

rB
i




  

 -7

0

p 0.040p

p 10
 

 

LEARN For two parallel wires carrying currents in the opposite directions, a point that is 

a distance d from one wire and 2r – d from the other, the magnitude of the magnetic field 

is  

 0 0 0
1 2

1 1

2 2 (2 ) 2 2

i i i
B B B

d r d d r d

  

  

 
      

  
. 

 

10. (a) Recalling the straight sections discussion in Sample Problem 29.01 — “Magnetic 

field at the center of a circular arc of current,” we see that the current in the straight 

segments collinear with C do not contribute to the field at that point. 

 

Equation 29-9 (with  = ) indicates that the current in the semicircular arc contributes 

0 4i R  to the field at C. Thus, the magnitude of the magnetic field is 

 

0 (4 T m A)(0.0348A)
1.18 T.

4 4(0.0926m)

i
B

R

  
   

-7
-7p 10

10  

 

(b) The right-hand rule shows that this field is into the page. 

 

11. (a) 
1 0 1 1/ 2PB i r   where i1 = 6.5 A and r1 = d1 + d2 = 0.75 cm + 1.5 cm = 2.25 cm, 

and 
2 0 2 2/ 2PB i r   where r2 = d2 = 1.5 cm. From BP1 = BP2 we get 

 

 2
2 1

1

1.5 cm
6.5A 4.3A.

2.25 cm

r
i i

r

   
     

  
 

 

(b) Using the right-hand rule, we see that the current i2 carried by wire 2 must be out of 

the page. 

 

12. (a) Since they carry current in the same direction, then (by the right-hand rule) the 

only region in which their fields might cancel is between them. Thus, if the point at 

which we are evaluating their field is r away from the wire carrying current i and is d – r 

away from the wire carrying current 3.00i, then the canceling of their fields leads to 

 

0 0 (3 ) 16.0 cm
  4.0 cm.

2 2 ( ) 4 4

i i d
r

r d r

 

 
    


 

 

(b) Doubling the currents does not change the location where the magnetic field is zero. 

 

13. Our x axis is along the wire with the origin at the midpoint. The current flows in the 

positive x direction. All segments of the wire produce magnetic fields at P1 that are out of 
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the page. According to the Biot-Savart law, the magnitude of the field any (infinitesimal) 

segment produces at P1 is given by 

dB
i

r
dx

 0

24
sin

 

 

where  (the angle between the segment and a line drawn from the segment to P1) and r 

(the length of that line) are functions of x. Replacing r with x R2 2  and sin  with 

R r R x R 2 2 ,  we integrate from x = –L/2 to x = L/2. The total field is 

 

   

  

 

2 2
0 0 0

3 2 1 22 2 22 2 2 2 2 2

8

2 2

1

4 4 2 4

4 T m A 0.0582 A 0.180m
5.03 10 T.

m (0.180m) 4(0.131m)

L L

L L

iR iR idx x L
B

R R L Rx R x R

  
 



  
 

 
  





-7

p p p

p 10

2p 0.131

 

 

14. We consider Eq. 29-6 but with a finite upper limit (L/2 instead of ).  This leads to  

 

 0

2 2

/ 2

2 ( / 2)

i L
B

R L R





. 

 

In terms of this expression, the problem asks us to see how large L must be (compared 

with R) such that the infinite wire expression B (Eq. 29-4) can be used with no more 

than a 1% error.  Thus we must solve 

B – B

B
 = 0.01. 

 

This is a nontrivial algebra exercise, but is nonetheless straightforward. The result is  

 

200
14.1     14.1

201

R L
L R

R
    . 

 

15. (a) As discussed in Sample Problem 29.01 — “Magnetic field at the center of a 

circular arc of current,” the radial segments do not contribute to 

BP  and the arc segments 

contribute according to Eq. 29-9 (with angle in radians). If k  designates the direction 

“out of the page” then 

  

 

  

 
0 0 6

0.40A rad 0.80A 2 / 3radˆ ˆ ˆk k (1.7 10  T)k
4 0.050m 4 0.040m

B
   

 

      

 

or 6| | 1.7 10 TB   . 

 

(b) The direction is k̂ , or into the page. 
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(c) If the direction of i1 is reversed, we then have 

 

  

 

  

 
0 0 6

0.40A rad 0.80A 2 / 3radˆ ˆ ˆk k (6.7 10  T)k
4 0.050m 4 0.040m

B
   

 

       

 

or 6| | 6.7 10 T.B     

 

(d) The direction is k̂ , or into the page. 

 

16. Using the law of cosines and the requirement that B = 100 nT, we have 

 

 
2 2 2

1 1 2

1 2

cos 144
2

B B B

B B
    
   

 
, 

 

where Eq. 29-10 has been used to determine B1
 
(168 nT) and B2 (151 nT). 

 

17. THINK We apply the Biot-Savart law to calculate the magnetic field at point P2. An 

integral is required since the length of the wire is finite.  

 

EXPRESS We take the x axis to be along the wire with the origin at the right endpoint. 

The current is in the +x direction. All segments of the wire produce magnetic fields at P2 

that are out of the page. According to the Biot-Savart law, the magnitude of the field any 

(infinitesimal) segment produces at P2 is given by  

 

dB
i

r
dx

 0

24
sin

 

 

where  (the angle between the segment and a line drawn from the segment to P2) and r 

(the length of that line) are functions of x. Replacing r with x R2 2  and sin  with 

R r R x R 2 2 ,  we integrate from x = –L to x = 0.  

 

ANALYZE The total field is 

 

   

  

 

0 0
0 0

3 2 1 22 2 22 2 2 2

7

2 2

1

4 4 4

4 T m A 0.693 A 0.136 m
1.32 10 T.

m (0.136 m) (0.251 m)

L L

iR iR idx x L
B

R R L Rx R x R

  

 





  
    

 
  

  


 

 

LEARN In calculating B at P2, we could have chosen the origin to be at the left endpoint. 

This only changes the integration limit, but the result remains the same: 
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   
0 0

3 2 1 22 2 20 2 2 2 2 0

1

4 4 4

L LiR iR idx x L
B

R R L Rx R x R

  
  

 




  
. 

 

18. In the one case we have Bsmall + Bbig = 47.25 T, and the other case gives Bsmall – Bbig 

= 15.75 T (cautionary note about our notation: Bsmall refers to the field at the center of 

the small-radius arc, which is actually a bigger field than Bbig!).  Dividing one of these 

equations by the other and canceling out common factors (see Eq. 29-9) we obtain 

 

 
small big small big

small big small big

(1/ ) (1/ ) 1 ( / )
3

(1/ ) (1/ ) 1 ( / )

r r r r

r r r r

 
 

 
 . 

 

The solution of this is straightforward: rsmall = rbig /2. Using the given fact that the 

big 4.00 cm,r   then we conclude that the small radius is small 2.00 cm.r   

 

19. The contribution to netB  from the first wire is (using Eq. 29-4) 

 

 
7

60 1
1

1

(4 10 T m/A)(30 A)ˆ ˆ ˆk k (3.0 10  T)k.
2 2 (2.0 m)

i
B

r



 


 

     

 

The distance from the second wire to the point where we are evaluating netB  is r2 = 4 m  

2 m = 2 m.  Thus, 
7

60 2
2

2

(4 10 T m/A)(40 A)ˆ ˆ ˆi i (4.0 10  T)i.
2 2 (2.0 m)

i
B

r



 


 

     

 

and consequently is perpendicular to 1B .  The magnitude of netB  is therefore 

 

 6 2 6 2 6

net| | (3.0 10  T) (4.0 10  T) 5.0 10  TB         . 

 

20. (a) The contribution to BC from the (infinite) straight segment of the wire is 

 

B
i

R
C1

0

2




. 

 

The contribution from the circular loop is B
i

R
C2

0

2



.  Thus, 

 

  
 

3

70
1 2

4 T m A 5.78 10 A1 1
1 1 2.53 10 T.

2 2 m
C C C

i
B B B

R



 




     

          
   

 


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 
BC  points out of the page, or in the +z direction. In unit-vector notation, 

7 ˆ(2.53 10 T)kCB    

 

(b) Now, 
 
B BC C1 2  so 

 

  
 

3

2 2 70
1 2

4 T m A 5.78 10 A1 1
1 1 2.02 10 T.

2 2 m
C C C

i
B B B

R






 

  
       

 

-7p 10

0.0189
 

 

and 

BC  points at an angle (relative to the plane of the paper) equal to 

 

1 11

2

1
tan tan 17.66 .C

C

B

B 

    
     

  
 

In unit-vector notation,  

 

 7 7 8ˆ ˆ ˆ ˆ2.02 10 T(cos17.66 i sin17.66 k) (1.92 10 T)i (6.12 10 T)kCB            . 

 

21. Using the right-hand rule (and symmetry), we see that B 


net points along what we will 

refer to as the y axis (passing through P), consisting of two equal magnetic field y-

components.  Using Eq. 29-17, 

0
net| | 2 sin

2

i
B

r





  

where i = 4.00 A, r = 2 2

2 1 / 4 5.00 m,r d d    and 

 

 1 1 12

1

4.00 m 4
tan tan tan 53.1

/ 2 6.00 m / 2 3

d

d
        
         

    
. 

Therefore, 

0
net

(4 T m A)(4.00 A)
| | sin sin53.1 2.56  T

( m)

i
B

r

 


 


 

    


. 

 

22. The fact that By = 0 at x = 10 cm implies the currents are in opposite directions.  Thus, 

 

 0 1 0 2 0 2 4 1

2 ( ) 2 2
y

i i i
B

L x x L x x

  

  

 
    

  
 

 

using Eq. 29-4 and the fact that 1 24i i . To get the maximum, we take the derivative with 

respect to x and set equal to zero.  This leads to 3x
2
 – 2Lx – L

2
 = 0, which factors and 

becomes (3x + L)(x  L) = 0, which has the physically acceptable solution: x = L .  This 

produces the maximum By: oi2/2L. To proceed further, we must determine L.   
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Examination of the datum at x = 10 cm in Fig. 29-50(b) leads (using our expression 

above for By and setting that to zero) to L = 30 cm. 

 

(a) The maximum value of By occurs at x = L = 30 cm. 

 

(b) With i2 = 0.003 A we find o i2 /2L = 2.0 nT. 

 

(c) and  (d) Figure 29-50(b) shows that as we get very close to wire 2 (where its field 

strongly dominates over that of the more distant wire 1) By points along the –y direction. 

The right-hand rule leads us to conclude that wire 2’s current is consequently is into the 

page.  We previously observed that the currents were in opposite directions, so wire 1’s 

current is out of the page. 

 

23. We assume the current flows in the +x direction and the particle is at some distance d 

in the +y direction (away from the wire). Then, the magnetic field at the location of a 

proton with charge q is 0
ˆ( / 2 )k.B i d   Thus, 

 
   
F qv B

iq

d
v   

0

2
 .ke j  

 

In this situation, 

v v je j  (where v is the speed and is a positive value), and  q > 0. Thus, 

 

  
19

0 0 (4 T m A)(0.350A)(1.60 10 C)(200m/s)ˆ ˆ ˆ ˆj k i i
2 2 2 (0.0289 m)

ˆ( 7.75 N)i.

iqv iqv
F

d d

 



  
    

  

-7

-23

p 10

p p

10

 

 

24. Initially, we have Bnet,y = 0 and Bnet,x = B2 + B4 = 2(o i /2d) using Eq. 29-4, where 

0.15 md  . To obtain the 30º condition described in the problem, we must have  

 

 0
net, net, 1 3tan(30 ) 2 tan(30 )

2
y x

i
B B B B

d





 
      

 
 

 

where B3 = o i /2d and 1 0 / 2 .B i d    Since tan(30º) = 1/ 3 , this leads to 

 

 
3

0.464
3 2

d d d  


. 

 

(a) With d = 15.0 cm, this gives d  = 7.0 cm.  Being very careful about the geometry of 

the situation, then we conclude that we must move wire 1 to x = 7.0 cm.  

 

(b) To restore the initial symmetry, we would have to move wire 3 to x = +7.0 cm.   
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25. THINK The magnetic field at the center of the circle is the vector sum of the fields of 

the two straight wires and the arc.  

 

EXPRESS Each of the semi-infinite straight wires contributes straight 0 4B i R   (Eq. 

29-7) to the field at the center of the circle (both contributions pointing “out of the page”). 

The current in the arc contributes a term given by Eq. 29-9: 0
arc

i
B

R

 





, pointing into the 

page. 

 

 ANALYZE The total magnetic field is 

 

 0 0 0
straight arc2 2 2 .

4 4

i i i
B B B

R R R

   


  

 
      

 
 

 

Therefore,  = 2.00 rad would produce zero total field at the center of the circle.  

 

LEARN The total contribution of the two semi-infinite wires is the same as that of an 

infinite wire. Note that the angle  is in radians rather than degrees. 

 

26. Using the Pythagorean theorem, we have 

 
2 2

2 2 2 0 1 0 2
1 2

2

i i
B B B

R R

  

 

   
      

   
 

 

which, when thought of as the equation for a line in a B
2  

versus i2
2
 graph, allows us to 

identify the first term as the “y-intercept” (1   10
10

)  and the part of the second term that 

multiplies i2
2
 as the “slope” (5   10

10
).  The latter observation leads to  

 

 

22

10 2 2 0 4 T m A
5.00 10 T /A

2 2R R



 


    

     
   

 

or 
2 2 2

2 2 3

10 2 2

4.00 T m A
8.00 m 8.94 10  m 8.9 mm.

5.00 10 T /A
R R


 



 
      


 

 

The other observation about the “y-intercept” determines the angle subtended by the arc:  

 
22

10 2 2 11 2 20 1

3

(4 T m A)(0.50 A)
1.00 10 T (3.13 10 ) T

4 4 (8.94 10 m)

i

R

  
 

 


 



   
      

   
 

 

or  
10 2

2

11 2

1.00 10 T
3.19 1.79 rad 1.8 rad.

3.13 10 T
 






    


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
27. We use Eq. 29-4 to relate the magnitudes of the magnetic fields B1 and B2 to the 

currents (i1 and i2, respectively) in the two long wires.  The angle of their net field is 

 

 = tan
1

(B2 /B1) = tan
1

(i2 /i1) = 53.13º. 

 

The accomplish the net field rotation described in the problem, we must achieve a final 

angle  = 53.13º  – 20º  = 33.13º.  Thus, the final value for the current i1 must be i2 /tan 
= 61.3 mA.  

 

28. Letting “out of the page” in Fig. 29-56(a) be the positive direction, the net field is 

 

 0 1 0 2

2 ( / 2)

i i
B

R R

  

 
 


 

 

from Eqs. 29-9 and 29-4. Referring to Fig. 29-56, we see that B = 0 when  i2 = 0.5 A, so 

(solving the above expression with B set equal to zero) we must have 

 

 = 4(i2 /i1)  = 4(0.5/2) = 1.00 rad (or 57.3º). 

 

29. THINK Our system consists of four long straight wires whose cross section form a 

square of length a. The magnetic field at the center of the square is the vector sum of the 

fields of the four wires.  

 

EXPRESS Each wire produces a field with magnitude given by B = 0i/2r, where r is 

the distance from the corner of the square to the center. According to the Pythagorean 

theorem, the diagonal of the square has length 2a , so r a 2  and B i a 0 2 . 

The fields due to the wires at the upper left (wire 1) and lower right (wire 3) corners both 

point toward the upper right corner of the square. The fields due to the wires at the upper 

right (wire 2) and lower left (wire 4) corners both point toward the upper left corner.  

 

ANALYZE The horizontal components of the fields cancel and the vertical components 

sum to 

  

 
0

net

5

2 4 T m A 20 A
4 cos 45

m2

8.0 10 T.

i i
B

aa

 






 
   

  

 

 

 

In the calculation, cos 45° was replaced with 1 2 . The total 

field points upward, or in the +y direction. Thus, 
5

net
ˆ(8.0 10 T)j.B    

 

LEARN In the figure to the right, we show the contributions from 

the individual wires. The directions of the fields are deduced using the right-hand rule. 
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30. We note that when there is no y-component of magnetic field from wire 1 (which, by 

the right-hand rule, relates to when wire 1 is at 90º = /2 rad), the total y-component of 

magnetic field is zero (see Fig. 29-58(c)).  This means wire #2 is either at  +/2 rad or  

/2 rad.  

 

(a) We now make the assumption that wire #2 must be at /2 rad (90º, the bottom of 

the cylinder) since it would pose an obstacle for the motion of wire #1 (which is needed 

to make these graphs) if it were anywhere in the top semicircle.   

 

(b) Looking at the 1 = 90º datum in Fig. 29-58(b)), where there is a maximum in Bnet x 

(equal to +6 T), we are led to conclude that 1 6.0 T 2.0 T 4.0 TxB       in that 

situation.  Using Eq. 29-4, we obtain  

 

 
6

1
1 7

0

2 2 (0.200 m)(4.0 10  T)
4.0 A

4 10 T m/A

xRB
i

 

 






  

 
. 

 

(c) The fact that Fig. 29-58(b) increases as 1 progresses from 0 to 90º implies that wire 

1’s current is out of the page, and this is consistent with the cancellation of Bnet y at 

1 90   , noted earlier (with regard to Fig. 29-58(c)).   

 

(d) Referring now to Fig. 29-58(b) we note that there is no x-component of magnetic field 

from wire 1 when 1 = 0, so that plot tells us that B2x = +2.0 T. Using Eq. 29-4, we find 

the magnitudes of the current to be 

 
6

2
2 7

0

2 2 (0.200 m)(2.0 10  T)
2.0 A

4 10 T m/A

xRB
i

 

 






  

 
. 

 

(e) We can conclude (by the right-hand rule) that wire 2’s current is into the page.   

 

31. (a) Recalling the straight sections discussion in Sample Problem 29.01 — “Magnetic 

field at the center of a circular arc of current,” we see that the current in the straight 

segments collinear with P do not contribute to the field at that point. We use the result of 

Problem 29-21 to evaluate the contributions to the field at P, noting that the nearest wire 

segments (each of length a) produce magnetism into the page at P and the further wire 

segments (each of length 2a) produce magnetism pointing out of the page at P. Thus, we 

find (into the page) 

 

  

 
0 0 0

2 4 T m A 13 A2 2 2
2 2

8 8 8 8 m

1.96 T 2.0 T.

P

i i i
B

a a a

  



    
         

   

   

-7

-5 -5

p 10

p p 2 p 0.047

10 10

 

 

(b) The direction of the field is into the page. 
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32. Initially we have 

 0 0

4
i

i i
B

R r

   

 
 


 

 

using Eq. 29-9.  In the final situation we use Pythagorean theorem and write 

 
2 2

2 2 2 0 0

4
f z y

i i
B B B

R r

   

 

   
      

   
. 

If we square Bi and divide by Bf

2
, we obtain  

 

 

2
2

2 2

[(1/ ) (1/ )]

(1/ ) (1/ )

i

f

B R r

B R r

  
    

 . 

 

From the graph (see Fig. 29-60(c), note the maximum and minimum values) we estimate 

Bi /Bf = 12/10 = 1.2, and this allows us to solve for r in terms of R: 

 

r = R 
1  1.2 2 – 1.2

2
 

 1.2
2
 – 1

   =  2.3 cm   or   43.1 cm. 

 

Since we require r < R, then the acceptable answer is r = 2.3 cm.  

 

33. THINK The magnetic field at point P produced by the current-carrying ribbon 

(shown in Fig. 29-61) can be calculated using the Biot-Savart law. 

 

EXPRESS Consider a section of the ribbon of thickness dx located a distance x away 

from point P. The current it carries is di = i dx/w, and its contribution to BP is 

 

dB
di

x

idx

xw
P  

 0 0

2 2 
.  

 

ANALYZE Integrating over the length of the ribbon, we obtain  

 

 

6

0 0

11

(4 T m A)(4.61 10 A) 0.0491
ln 1 ln 1

2 2 2 m 0.0216

2.23 10 T.

d w

P P
d

i idx w
B dB

w x w d

 



 




     
        

     

 

 

 

and 

BP  points upward. In unit-vector notation, 11 ˆ(2.23 10 T)jPB   . 

 

LEARN In the limit where ,d w using  

 
2ln(1 ) / 2 ,x x x     

the magnetic field becomes 
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0 0 0ln 1
2 2 2

P

i i iw w
B

w d w d d

  

  

 
     

 
 

 

which is the same as that due to a thin wire. 

 

34. By the right-hand rule (which is “built-into” Eq. 29-3) the field caused by wire 1’s 

current, evaluated at the coordinate origin, is along the +y axis.  Its magnitude B1 is given 

by Eq. 29-4.  The field caused by wire 2’s current will generally have both an x and a y 

component, which are related to its magnitude B2 (given by Eq. 29-4), and sines and 

cosines of some angle.  A little trig (and the use of the right-hand rule) leads us to 

conclude that when wire 2 is at angle 2 (shown in Fig. 29-62) then its components are  

 

 2 2 2 2 2 2sin , cos .x yB B B B     

 

The magnitude-squared of their net field is then  (by Pythagoras’ theorem) the sum of the 

square of their net x-component and the square of their net y-component: 

 
2 2 2 2 2

2 2 1 2 2 1 2 1 2 2( sin ) ( cos ) 2 cos .B B B B B B B B         

 

(since sin
2 + cos

2 =1), which we could also have gotten directly by using the law of 

cosines.  We have  

 0 1 0 2
1 260 nT, 40 nT.

2 2

i i
B B

R R

 
   

 
 

 

With the requirement that the net field have magnitude B = 80 nT, we find 

 
2 2 2

1 11 2
2

1 2

cos cos ( 1/ 4) 104 ,
2

B B B

B B
    

     
 

 

 

where the positive value has been chosen. 

 

35. THINK The magnitude of the force of wire 1 on wire 2 is given by 

21 0 1 2 / 2 ,F i i L r   where i1 is the current in wire 1, i2 is the current in wire 2, and r is the 

distance between the wires. 

 

EXPRESS The distance between the wires is 2 2

1 2 .r d d   The x component of the 

force is 21, 21 cos ,xF F   where 2 2

2 1 2cos / .d d d    

 

ANALYZE Substituting the values given, the x component of the force per unit length is 
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7 3 3
21, 0 1 2 2

2 2 2 2

1 2

11

(4 10 T m/A)(4.00 10 A)(6.80 10 A)(0.050 m)

2 ( ) 2 [(0.0240 m) (0.050 m) ]

8.84 10 N/m.

xF i i d

L d d



 

  



   
 

 

 

 

 

LEARN Since the two currents flow in the opposite directions, the force between the 

wires is repulsive. Thus, the direction of 
21F  is along the line that joins the wire and is 

away from wire 1. 

 

36. We label these wires 1 through 5, left to right, and use Eq. 29-13. Then, 

 

(a) The magnetic force on wire 1 is 

 

 

  

 

2
2 2

0 0
1 2

4

25 4 T m A 3.00A (10.0m)251 1 1 1 ˆ ˆ ˆj j j
2 2 3 4 24 24 8.00 10 m

ˆ(4.69 10 N) j.

i l i l
F

d d d d d

 

  







  
      

 

 

 

 

(b) Similarly, for wire 2, we have 

 
2 2

40 0
2

51 1 ˆ ˆ ˆj j (1.88 10 N) j.
2 2 3 12

i l i l
F

d d d

 

 

 
     

 
 

 

(c) F3 = 0 (because of symmetry). 

 

(d) 4

4 2
ˆ( 1.88 10 N)jF F     , and 

 

(e) 4

5 1
ˆ(4.69 10 N)jF F    . 

 

37. We use Eq. 29-13 and the superposition of forces: 
   
F F F F4 14 24 34   . With  = 45°, 

the situation is as shown on the right. 

 

The components of 

F4  are given by 

 
2 2 2

0 0 0
4 43 42

cos 45 3
cos

2 42 2
x

i i i
F F F

a aa

  



    

p pp
 

and 
2 2 2

0 0 0
4 41 42

sin 45
sin .

2 42 2
y

i i i
F F F

a aa

  



    

p pp
 

Thus, 
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 
  

 

1 2 22 2
2 2 2

1 2
2 2 0 0 0

4 4 4

4

10 4 T m A 7.50A3 10

4 4 4 4 0.135m

1.32 10 N/m

x y

i i i
F F F

a a a

  





      
          
     

 

 

  

 

and 

F4  makes an angle  with the positive x axis, where 

 

 
F
HG
I
KJ  

F
HG
I
KJ   tan tan .1 4

4

1 1

3
162

F

F

y

x

 

 

In unit-vector notation, we have 

 

1
ˆ ˆ ˆ ˆ(1.32 N/m)[cos162 i sin162 j] ( 1.25 N/m)i (4.17 N/m)jF          -4 -4 -510 10 10  

 

38. (a) The fact that the curve in Fig. 29-65(b) passes through zero implies that the 

currents in wires 1 and 3 exert forces in opposite directions on wire 2.  Thus, current i1 

points out of the page.  When wire 3 is a great distance from wire 2, the only field that 

affects wire 2 is that caused by the current in wire 1; in this case the force is negative 

according to Fig. 29-65(b).  This means wire 2 is attracted to wire 1, which implies (by 

the discussion in Section 29-2) that wire 2’s current is in the same direction as wire 1’s 

current: out of the page.  With wire 3 infinitely far away, the force per unit length is given 

(in magnitude) as 6.27   10
7 

N/m.  We set this equal to 12 0 1 2 / 2F i i d  . When wire 3 

is at x = 0.04 m the curve passes through the zero point previously mentioned, so the 

force between 2 and 3 must equal F12 there.  This allows us to solve for the distance 

between wire 1 and wire 2:  

 

d = (0.04 m)(0.750 A)/(0.250 A) = 0.12 m. 

 

Then we solve 6.27   10
7 

N/m= o i1 i2 /2d and obtain i2 = 0.50 A.  

 

(b) The direction of i2 is out of the page. 

 

39. Using a magnifying glass, we see that all but i2 are directed into the page. Wire 3 is 

therefore attracted to all but wire 2. Letting d = 0.500 m, we find the net force (per meter 

length) using Eq. 29-13, with positive indicated a rightward force: 

 

0 3 51 2 4| |

2 2 2

i ii i iF

d d d d





 
     

 
 

 

which yields 7| | / 8.00 10 N/mF   . 

 

40. Using Eq. 29-13, the force on, say, wire 1 (the wire at the upper left of the figure) is 

along the diagonal (pointing toward wire 3, which is at the lower right). Only the forces 
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(or their components) along the diagonal direction contribute. With  = 45°, we find the 

force per unit meter on wire 1 to be 

 

  

 

2 2 2

0 0 0
1 12 13 14 12 13

2

2

3
| | 2 cos 2 cos 45

2 2 2 2 2

4 T m A 15.0A3
1.12 N/m.

8.50 10 m2 2

i i i
F F F F F F

a aa

  




 

   
          

   

 
  







 

 


 

 

The direction of 
1F  is along ˆ ˆˆ (i j) / 2r   . In unit-vector notation, we have  

 

 
1

(1.12 N/m) ˆ ˆ ˆ ˆ(i j) (7.94 N/m)i ( 7.94 N/m)j
2

F


      
-3

-4 -410
10 10  

 

41. The magnitudes of the forces on the sides of the rectangle that are parallel to the long 

straight wire (with i1 = 30.0 A) are computed using Eq. 29-13, but the force on each of 

the sides lying perpendicular to it (along our y axis, with the origin at the top wire and +y 

downward) would be figured by integrating as follows: 

 

F
i i

y
dy

a

a b





 zsides
2 0 1

2




.  

 

Fortunately, these forces on the two perpendicular sides of length b cancel out. For the 

remaining two (parallel) sides of length L, we obtain 

 

 

     
 

0 1 2 0 1 2

7 2

3

1 1

2 2

4 10 T m/A 30.0A 20.0A 8.00cm 300 10 m
3.20 10 N,

2 1.00cm 8.00cm

i i L i i b
F

a a d a a b

 

 





 



 
   

  

  
  



 

 

and 

F  points toward the wire, or ĵ . That is, 3 ˆ(3.20 10 N)jF    in unit-vector notation.  

 

42. The area enclosed by the loop L is A d d d 1
2

24 3 6( )( ) . Thus 

 

    
27 2 6

0 0 4 T m A 15A m 6 0.20m 4.5 10 T m.
c
B ds i jA               

 

43. We use Eq. 29-20 2

0 / 2B ir a   for the B-field inside the wire ( r a ) and Eq. 29-17 

0 / 2B i r   for that outside the wire (r > a).  

 

(a) At 0,r   0B . 
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(b) At 0.0100mr  , 
7

40

2 2

(4 10 T m/A)(170A)(0.0100m)
8.50 10 T.

2 2 (0.0200m)

ir
B

a

 

 


 

     

 

(c) At 0.0200mr a  , 
7

30

2 2

(4 10 T m/A)(170A)(0.0200m)
1.70 10 T.

2 2 (0.0200m)

ir
B

a

 

 


 

     

 

(d) At 0.0400mr  , 
7

40 (4 10 T m/A)(170A)
8.50 10 T.

2 2 (0.0400m)

i
B

r

 

 


 

     

 

44. We use Ampere’s law: 
 
B ds i z 0 , where the integral is around a closed loop and i 

is the net current through the loop.  

 

(a) For path 1, the result is 

 

   7 6

0
1

5.0A 3.0A (4 10 T m/A) 2.0A 2.5 10 T m.B ds                

 

(b) For path 2, we find 

 

   7 5

0
2

5.0A 5.0A 3.0A (4 10 T m/A) 13.0A 1.6 10 T m.B ds                

 

45. THINK The value of the line integral B ds  is proportional to the net current 

enclosed. 

 

EXPRESS By Ampere’s law, we have 
0 enc ,B ds i  where enci  is the current enclosed 

by the closed path.  

 

ANALYZE (a) Two of the currents are out of the page and one is into the page, so the 

net current enclosed by the path, or “Amperian loop” is 2.0 A, out of the page. Since the 

path is traversed in the clockwise sense, a current into the page is positive and a current 

out of the page is negative, as indicated by the right-hand rule associated with Ampere’s 

law. Thus, 

 

 7 6

0 (4 10 T m/A) 2.0A 2.5 10 T m.B ds i              

 

(b) The net current enclosed by the path is zero (two currents are out of the page and two 

are into the page), so 
 
B ds i  z 0 0enc . 

 

LEARN The value of B ds  depends only on the current enclosed, and not the shape of 

the Amperian loop. 
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46. A close look at the path reveals that only currents 1, 3, 6 and 7 are enclosed. Thus, 

noting the different current directions described in the problem, we obtain 

 

    7 3 8

0 07 6 3 5 5 4 10 T m/A 4.50 10 A 2.83 10 T m.B ds i i i i i                  

 

47. For r a , 

   
2

0 enc 0 0 0 0
0

0 0
2 2 .

2 2 2 3

r ri J rr
B r J r rdr J rdr

r r a a

    
    

 
 p p

p p p
 

 

(a) At 0,r   0B . 

 

(b) At / 2r a , we have  

 

 
2 7 2 3 2

70 0

3

(4 10 T m/A)(310A/m )(3.1 10 m / 2)
1.0 10 T.

3 3(3.1 10 m)

J r
B r

a

   




  
   


 

 

(c) At ,r a  

 
7 2 3

70 0 (4 10 T m/A)(310A/m )(3.1 10 m)
4.0 10 T.

3 3

J a
B r a

  
  

      

 

48. (a) The field at the center of the pipe (point C) is due to the wire alone, with a 

magnitude of 

 
0 wire 0 wire .

2 3 6
C

i i
B

R R

 

 
   

 

For the wire we have BP, wire > BC, wire. Thus, for BP = BC = BC, wire, iwire must be into the 

page: 

 
0 wire 0

,wire ,pipe .
2 2 2

P P P

i i
B B B

R R

 

 
     

 

Setting BC = –BP we obtain iwire = 3i/8 = 3 33(8.00 10 A) /8 3.00 10 A    . 

 

(b) The direction is into the page. 

 

49. (a) We use Eq. 29-24. The inner radius is r = 15.0 cm, so the field there is 

 

   

 

7

40
4 10 T m/A 0.800A 500

5.33 10 T.
2 2 0.150m

iN
B

r



 




 

     

 

(b) The outer radius is r = 20.0 cm. The field there is 
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   

 

7

40
4 10 T m/A 0.800A 500

4.00 10 T.
2 2 0.200m

iN
B

r



 




 

     

 

50. It is possible (though tedious) to use Eq. 29-26 and evaluate the contributions (with 

the intent to sum them) of all 1200 loops to the field at, say, the center of the solenoid. 

This would make use of all the information given in the problem statement, but this is not 

the method that the student is expected to use here. Instead, Eq. 29-23 for the ideal 

solenoid (which does not make use of the coil radius) is the preferred method: 

 

B in i
N

 
F
HG
I
KJ 0 0 

 

 

where i = 3.60 A, 0.950 m,  and N = 1200. This yields B = 0.00571 T. 

 

51. It is possible (though tedious) to use Eq. 29-26 and evaluate the contributions (with 

the intent to sum them) of all 200 loops to the field at, say, the center of the solenoid. 

This would make use of all the information given in the problem statement, but this is not 

the method that the student is expected to use here. Instead, Eq. 29-23 for the ideal 

solenoid (which does not make use of the coil diameter) is the preferred method: 

 

B in i
N

 
F
HG
I
KJ 0 0 

 

 

where i = 0.30 A, 0.25 m, and N = 200. This yields 43.0 10  TB   . 

 

52. We find N, the number of turns of the solenoid, from the magnetic field 

0 /oB in iN   : 0/ .N B i  Thus, the total length of wire used in making the 

solenoid is 

2
2 2 2 60 10 230 10 130

18 0
108

0

2 3


 


rN

rB

i
 

 

 


 







. . .

.

m T m

2 4 10 T m / A A
m.

7

c hc hb g
c hb g  

 

53. The orbital radius for the electron is 

 

r
mv

eB

mv

e ni
 

0

 

which we solve for i: 

 

   
    

31 8

19 7 2
0

9.11 10 kg 0.0460 3.00 10 m s

1.60 10 C 4 T m A 100 0.0100m 2.30 10 m

0.272A.

mv
i

e nr



  

 
 

   


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54. As the problem states near the end, some idealizations are being made here to keep 

the calculation straightforward (but are slightly unrealistic).  For circular motion (with 

speed, v, which represents the magnitude of the component of the velocity perpendicular 

to the magnetic field [the field is shown in Fig. 29-20]), the period is (see Eq. 28-17) 

 

T = 2r/v = 2m/eB. 

 

Now, the time to travel the length of the solenoid is /t L v  where v|| is the component 

of the velocity in the direction of the field (along the coil axis) and is equal to v cos    

where = 30º.  Using Eq. 29-23 (B = 0in) with n = N/L, we find the number of 

revolutions made is t /T = 1.6  10
6
. 

 

55. THINK The net field at a point inside the solenoid is the vector sum of the fields of 

the solenoid and that of the long straight wire along the central axis of the solenoid.   

 

EXPRESS The magnetic field at a point P is given by ,s wB B B   where 

Bs  and 


Bw  

are the fields due to the solenoid and the wire, respectively. The direction of 

Bs  is along 

the axis of the solenoid, and the direction of 

Bw  is perpendicular to it, so the two fields 

are perpendicular to each other, 
 
B Bs w . For the net field 


B  to be at 45° with the axis, 

we must have Bs = Bw.  

 

ANALYZE (a) Thus, 

0
0 ,

2

w
s w s

i
B B i n

d


  


 

 

which gives the separation d to point P on the axis: 

 

d
i

i n

w

s

 



2

6 00

2 20 0 10 10
4 77

3 

.

.
. .

A

A turns cm
cmc hb g  

 

(b) The magnetic field strength is 

 

   7 3 52 2 4 10 T m A 20.0 10 A 10 turns 0.0100 m 3.55 10 T.sB B           

 

LEARN In general, the angle B  makes with the solenoid axis is give by 

 

 1 1 10

0

/ 2
tan tan tan

2

w w w

s s s

B i d i

B i n d ni

 


 

       
       

     
. 

 

56. We use Eq. 29-26 and note that the contributions to 

BP  from the two coils are the 

same. Thus, 
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 

   

 

72
60 0

3 2
22

8 4 10 T m/A (200) 0.0122A2 8
8.78 10 T.

5 5 5 5 0.25m2 2
P

iR N Ni
B

RR R

 



 

    
 
 

 

 
BP  is in the positive x direction. 

 

57. THINK The magnitude of the magnetic dipole moment is given by  = NiA, where N 

is the number of turns, i is the current, and A is the area.  

 

EXPRESS The cross-sectional area is a circle, so A = R
2
, where R is the radius. The 

magnetic field on the axis of a magnetic dipole, a distance z away, is given by Eq. 29-27: 

B
z


 0

32
.  

 

ANALYZE (a) Substituting the values given, we find the magnitude of the dipole 

moment to be 

    
22 2300 4.0A 0.025m 2.4A m .Ni R        

 

(b) Solving for z, we obtain 

 

  
 

13
7 213

0

6

4 10 T m A 2.36A m
46cm.

2 2 5.0 10 T
z

B

 




    
           

 

 

LEARN Note the similarity between 0

3
,

2
B

z

 



the magnetic field of a magnetic dipole 

 and 
3

0

1
,

2

p
E

z
  the electric field of an electric dipole p (see Eq. 22-9).   

 

58. (a) We set z = 0 in Eq. 29-26 (which is equivalent using to Eq. 29-10 multiplied by 

the number of loops). Thus, B(0)  i/R. Since case b has two loops, 

 

2 2
4.0b b a

a a b

B i R R

B i R R
   . 

 

(b) The ratio of their magnetic dipole moments is 

 
22

2

2 2 1 1
2 0.50.

2 2

b b b

a a a

iA R

iA R





 
     

 
 

 

59. THINK The magnitude of the magnetic dipole moment is given by  = NiA, where N 

is the number of turns, i is the current, and A is the area.  
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EXPRESS The cross-sectional area is a circle, so A = R
2
, where R is the radius.  

 

ANALYZE With N = 200, i = 0.30 A, and R = 0.050 m, the magnitude of the dipole 

moment is 

    
2 2200 0.30A m 0.47A m .       

 

LEARN The direction of   is that of the normal vector n  to the plane of the coil, in 

accordance with the right-hand rule shown in Fig. 28-19. 

 

60. Using Eq. 29-26, we find that the net y-component field is 

 

 
2 2

0 1 0 2

2 2 3/ 2 2 2 3/ 2

1 2

,
2( ) 2( )

y

i R i R
B

R z R z

 
 

 
 

 

where  z1
2
 = L

2
 (see Fig. 29-74(a)) and z2

2
 = y

2
 (because the central axis here is denoted y 

instead of z).  The fact that there is a minus sign between the two terms, above, is due to 

the observation that the datum in Fig. 29-74(b) corresponding to By = 0 would be 

impossible without it (physically, this means that one of the currents is clockwise and the 

other is counterclockwise).   

 

(a) As y  , only the first term contributes and (with By = 7.2  10
6 

T given in this case) 

we can solve for i1: 

 
2 2 3/ 2 2 3/ 2

1

1 2

0 0

2 3/ 2 6

2( ) 2 [1 ( / ) ]

2(0.040 m)[1 (0.030 m / 0.040 m) ] (7.2 10  T)
0.895 A 0.90 A.

4 T m A

y yR z B R L R B
i

R 







 
 

 
  

 

 

 

(b) With loop 2 at y = 0.06 m (see Fig. 29-74(b)) we are able to determine i2 from 

 
2 2

0 1 0 2

2 2 3/ 2 2 2 3/ 2
.

2( ) 2( )

i R i R

R L R y

 


 
 

 

We obtain i2 = (117 13 /50  2.7 A. 

 

61. (a) We denote the large loop and small coil with subscripts 1 and 2, respectively. 

 

B
i

R
1

0 1

1

7

5

2

4 10 15

2 012
7 9 10 

 
 



  T m A A

m
T.

c hb g
b g.

.  

 

(b) The torque has magnitude equal to 
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     
2

2 2 5

2 1 2 1 2 2 2 1 2 2 2 1

6

| | sin90 1.3A 0.82 10 m 7.9 10 T

1.1 10 N m.

B B N i A B N i r B      



        

  

 

62. (a) To find the magnitude of the field, we use Eq. 29-9 for each semicircle ( =  rad), 

and use superposition to obtain the result: 

 

 7

0 0 0

7

(4 10 T m/A) 0.0562A1 1 1 1

4 4 4 0.0572m 0.0936m

4.97 10 T.

i i i
B

a b a b

    

 





    
       
    

 

 

 

(b) By the right-hand rule, 

B  points into the paper at P (see Fig. 29-7(c)). 

 

(c) The enclosed area is 2 2( ) / 2,A a b    which means the magnetic dipole moment 

has magnitude 

 

2 2 2 2 3 2(0.0562A)
| | ( ) [(0.0572m) (0.0936m) ] 1.06 10 A m .

2 2

i
a b

 
         

 

(d) The direction of 

  is the same as the 


B  found in part (a): into the paper.  

 

63. By imagining that each of the segments bg and cf (which are shown in the figure as 

having no current) actually has a pair of currents, where both currents are of the same 

magnitude (i) but opposite direction (so that the pair effectively cancels in the final sum), 

one can justify the superposition. 

 

(a) The dipole moment of path abcdefgha is 

 

  
  

2 2

2 2 2

ˆ ˆ ˆ ˆj i i j

ˆ ˆ6.0A 0.10m j (6.0 10 A m ) j .

bc f gb abgha cde f c ia ia   



      

   

 

 

(b) Since both points are far from the cube we can use the dipole approximation. For  

(x, y, z) = (0, 5.0 m, 0), 

 
6 2 2

110

3 3

ˆ(1.26 10 T m/A)(6.0 10 m A) j ˆ(0, 5.0 m, 0) (9.6 10  T) j .
2 2 m)

B
y

 

 

 
   

   


 

 

64. (a) The radial segments do not contribute to ,PB  and the arc segments contribute 

according to Eq. 29-9 (with angle in radians).  If k
^
 designates the direction "out of the 

page" then 
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0 0(7 / 4 rad) (7 / 4 rad)ˆ ˆk k
4 (4.00 m) 4 (2.00 m)

P

i i
B

   

 
   

 

where i = 0.200 A.  This yields B 


 = 2.75  10
8

 k
^
 T, or | B 


| = 2.75  10

8
  T. 

 

(b) The direction is k̂ , or into the page. 

 

65. Using Eq. 29-20, 

 0

2
| |

2

i
B r

R





 
  
 

, 

 

we find that r = 0.00128 m gives the desired field value. 

 

66. (a) We designate the wire along y = rA = 0.100 m wire A and the wire along y = rB = 

0.050 m wire B. Using Eq. 29-4, we have 

 

60 0
net

ˆ ˆ ˆk k ( 52.0 10 T)k.
2 2

A B
A B

A B

i i
B B B

r r

        
p p

 

 

(b) This will occur for some value rB < y < rA such that 

 

 0 0

2 2

i

r y

i

y r

A

A

B

B 


b g b g .  
 

Solving, we find y = 13/160  0.0813 m. 

 

(c) We eliminate the y < rB possibility due to wire B carrying the larger current. We 

expect a solution in the region y > rA where 

 

 0 0

2 2

i

y r

i

y r

A

A

B

B 


b g b g .  
 

Solving, we find y = 7/40  0.0175 m. 

 

67. Let the length of each side of the square be a. The center of a square is a distance a/2 

from the nearest side. There are four sides contributing to the field at the center. The 

result is   

   

0

center
22

2 2
4 .

2 2 4 2

i ia
B

a aa a

 



  
   

    

0

p
 

 

On the other hand, the magnetic field at the center of a circular wire of radius R is 

0 / 2i R  (e.g., Eq. 29-10). Thus, the problem is equivalent to showing that 
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0 02 2 4 2 1

2

i i

a R a R

 

 
    . 

 

To do this we must relate the parameters a and R. If both wires have the same length L 

then the geometrical relationships 4a = L and 2R = L provide the necessary connection: 

 

4 2 .
2

R
a R a


    

Thus, our proof consists of the observation that 

 

4 2 8 2 1

 a R R
  ,  

 

as one can check numerically (that 8 2 1  ). 

 

68. We take the current (i = 50 A) to flow in the +x direction, and the electron to be at a 

point P, which is r = 0.050 m above the wire (where “up” is the +y direction). Thus, the 

field produced by the current points in the +z direction at P. Then, combining Eq. 29-4 

with Eq. 28-2, we obtain  
 
F e i r ve   0 2b ge j .k  

 

(a) The electron is moving down: 

v v  j  (where v = 1.0  10

7
 m/s is the speed) so 

 

  160 ˆ ˆi (3.2 10 N) i
2

e

e iv
F

r

 
   

p
, 

or 16| | 3.2 10 NeF   . 

 

(b) In this case, the electron is in the same direction as the current: 

v v i  so 

 

  160 ˆ ˆj (3.2 10 N) j
2

e

e iv
F

r






    , 

or 16| | 3.2 10 NeF   . 

 

(c) Now, 

v v  k  so 


Fe     .k k 0  

 

69. (a) By the right-hand rule, the magnetic field 

B1  (evaluated at a) produced by wire 1 

(the wire at bottom left) is at  = 150° (measured counterclockwise from the +x axis, in 

the xy plane), and the field produced by wire 2 (the wire at bottom right) is at  = 210°. 

By symmetry 
 
B B1 2d i  we observe that only the x-components survive, yielding 
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50
1 2

ˆ ˆ2 cos 150 i ( 3.46 10 T)i 
2

i
B B B





 
       

 
 

 

where i = 10 A,   = 0.10 m, and Eq. 29-4 has been used. To cancel this, wire b must 

carry current into the page (that is, the  k  direction) of value 

 

 5

7

0

2 2 (0.087 m)
3.46 10  T 15A

4 10 T m/A
b

r
i B

 

 




   

 
 

 

where r  3 2 0 087 .  m and Eq. 29-4 has again been used. 

 

(b) As stated above, to cancel this, wire b must carry current into the page (that is, the z  

direction). 

 

70. The radial segments do not contribute to B 


(at the center), and the arc segments 

contribute according to Eq. 29-9 (with angle in radians).  If  k
^
 designates the direction 

"out of the page" then 

 

0 0 0(  rad) ( / 2 rad) ( / 2 rad)ˆ ˆ ˆk k k
4 (4.00 m) 4 (2.00 m) 4 (4.00 m)

i i i
B

     

  
    

 

where i = 2.00 A.  This yields B 


 = (1.57  10
7

 T) k
^
, or 7| | 1.57 10 TB   . 

 

71. Since the radius is R = 0.0013 m, then the i = 50 A produces 

 
7

30 (4 10 T m/A)(50 A)
7.7 10 T

2 2 (0.0013 m)

i
B

R



 


 

     

 

at the edge of the wire. The three equations, Eq. 29-4, Eq. 29-17, and Eq. 29-20, agree at 

this point. 

 

72. (a) With cylindrical symmetry, we have, external to the conductors, 

 

B

i

r

0 enc

2
 

which produces ienc = 25 mA from the given information. Therefore, the thin wire must 

carry 5.0 mA. 

 

(b) The direction is downward, opposite to the 30 mA carried by the thin conducting 

surface. 

 

73. (a) The magnetic field at a point within the hole is the sum of the fields due to two 

current distributions. The first is that of the solid cylinder obtained by filling the hole and 
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has a current density that is the same as that in the original cylinder (with the hole). The 

second is the solid cylinder that fills the hole. It has a current density with the same 

magnitude as that of the original cylinder but is in the opposite direction. If these two 

situations are superposed the total current in the region of the hole is zero. Now, a solid 

cylinder carrying current i, which is uniformly distributed over a cross section, produces a 

magnetic field with magnitude 

B
ir

R


0

22
 

 

at a distance r from its axis, inside the cylinder. Here R is the radius of the cylinder. For 

the cylinder of this problem the current density is 

 

J
i

A

i

a b
 

 2 2c h ,  

 

where A = (a
2
 – b

2
) is the cross-sectional area of the cylinder with the hole. The current 

in the cylinder without the hole is 

I JA Ja
ia

a b
1

2
2

2 2
  


  

 

and the magnetic field it produces at a point inside, a distance r1 from its axis, has 

magnitude 

B
I r

a

ir a

a a b

ir

a b
1

0 1 1

2

0 1

2

2 2 2

0 2

2 22 2 2
 






  

  c h c h .  
 

The current in the cylinder that fills the hole is 

I Jb
ib

a b
2

2
2

2 2
 


  

 

and the field it produces at a point inside, a distance r2 from the its axis, has magnitude 

 

B
I r

b

ir b

b a b

ir

a b
2

0 2 2

2

0 2

2

2 2 2

0 2

2 22 2 2
 






  

  c h c h .  
 

At the center of the hole, this field is zero and the field there is exactly the same as it 

would be if the hole were filled. Place r1 = d in the expression for B1 and obtain 

 

 
 7

50

2 22 2

(4 10 T m/A) 5.25A (0.0200m)
1.53 10 T

2 [(0.0400m) (0.0150m) ]2

id
B

a b








 

   


 

 

for the field at the center of the hole. The field points upward in the diagram if the current 

is out of the page. 
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(b) If b = 0 the formula for the field becomes B
id

a

0

22
.  This correctly gives the field of 

a solid cylinder carrying a uniform current i, at a point inside the cylinder a distance d 

from the axis. If d = 0 the formula gives B = 0. This is correct for the field on the axis of a 

cylindrical shell carrying a uniform current. 

 

Note: One may apply Ampere’s law to show that the magnetic field in the hole is uniform. 

Consider a rectangular path with two long sides (side 1 and 2, each with length L) and 

two short sides (each of length less than b). If side 1 is directly along the axis of the hole, 

then side 2 would also be parallel to it and in the hole. To ensure that the short sides do 

not contribute significantly to the integral in Ampere’s law, we might wish to make L 

very long (perhaps longer than the length of the cylinder), or we might appeal to an 

argument regarding the angle between 

B  and the short sides (which is 90° at the axis of 

the hole). In any case, the integral in Ampere’s law reduces to 

 
 

   

B ds i

B ds B ds i

B B L

side

rectangle
enclosed

side
in hole

side1 side2

z
z z

 

   

 





0

1 2
0

0d i
 

 

where Bside 1 is the field along the axis found in part (a). This shows that the field at off-

axis points (where Bside 2 is evaluated) is the same as the field at the center of the hole; 

therefore, the field in the hole is uniform. 

 

74. Equation 29-4 gives 

i
RB

 


 



2 2 7 30 10

4
321

6  
 



m T

T m A
A.

b gc h.
.  

 

75. THINK In this problem, we apply the Biot-Savart law to calculate the magnetic field 

due to a current-carrying segment at various locations. 

 

EXPRESS The Biot-Savart law can be written as  

 

  0 0

2 3

r̂
, , .

4 4

i s i s r
B x y z

r r

 

 

   
   

 

With  

s s j  and ˆ ˆ ˆi j k,r x y z    their cross product is 

 
ˆ ˆ ˆ ˆ ˆ ˆ( j) ( i j k) ( i k)s r s x y z s z x           
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where we have used ˆ ˆ ˆ ˆ ˆj i k, j j 0,      and ˆ ˆ ˆj k i.   Thus, the Biot-Savart equation 

becomes 

 
 

 

0

3 2
2 2 2

ˆ ˆi k
, , .

4

i s z x
B x y z

x y z

  


  
 

 

ANALYZE (a) The field on the z axis (at x = 0, y = 0, and z = 5.0 m) is 

 

 
    

  

7 2

10

3/ 2
22 2

ˆ4 10 T m/A 2.0A 3.0 10 m 5.0 m i
ˆ0, 0, 5.0 m (2.4 10 T)i.

4 0 0 5.0 m

B

 


  

  

 





 

 

(b) Similarly, 

B (0, 6.0 m, 0) = 0, since x = z = 0. 

 

(c) The field in the xy plane, at (x, y, z) = (7 m, 7 m, 0), is 

 

 
    

2
11

3/ 2
2 2 2

ˆ(4 T m/A)(2.0A)(3.0 10 m)( 7.0m)k ˆ7.0 m,7.0 m,0 ( 4.3 10 T)k.

4 7.0 m 7.0 m 0

B
 

   
   

  

 

 

(d) The field in the xy plane, at (x, y, z) = (–3, –4, 0), is 

 

 
    

2
10

3/ 2
2 2 2

ˆ(4 T m/A)(2.0A)(3.0 10 m)(3.0m)k ˆ3.0m, 4.0m, 0 (1.4 10 T )k.

4 m 4.0m 0

B
 

  
    

    

 

 

LEARN Along the x and z axes, the expressions for B  simplify to 

 

   0 0

2 2
ˆ ˆ,0,0 k, 0,0, i.

4 4

i s i s
B x B z

x z

 

 

 
    

 

The magnetic field at any point on the y axis vanishes because the current flows in the +y 

direction, so r̂ 0.ds    

 

76. We note that the distance from each wire to P is r d 2 0 071. m.  In both parts, 

the current is i = 100 A. 

 

(a) With the currents parallel, application of the right-hand rule (to determine each of 

their contributions to the field at P) reveals that the vertical components cancel and the 

horizontal components add, yielding the result: 

 

402 cos 45.0 4.00 10 T
2

i
B

r

  
    

 p
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and directed in the –x direction. In unit-vector notation, we have 4 ˆ( 4.00 10 T)iB    . 

 

(b) Now, with the currents anti-parallel, application of the right-hand rule shows that the 

horizontal components cancel and the vertical components add. Thus, 

 

402 sin 45.0 4.00 10 T
2

i
B

r

  
    

 p
 

 

and directed in the +y direction. In unit-vector notation, we have 4 ˆ(4.00 10 T)jB   . 

 

77. We refer to the center of the circle (where we are evaluating 

B ) as C. Recalling the 

straight sections discussion in Sample Problem 29.01 — “Magnetic field at the center of 

a circular arc of current,” we see that the current in the straight segments that are collinear 

with C do not contribute to the field there. Eq. 29-9 (with  = /2 rad) and the right-hand 

rule indicates that the currents in the two arcs contribute 

 

 0 0
0

i

R

i

R

 


 


b g b g
   

 

to the field at C. Thus, the nonzero contributions come from those straight segments that 

are not collinear with C. There are two of these “semi-infinite” segments, one a vertical 

distance R above C and the other a horizontal distance R to the left of C. Both contribute 

fields pointing out of the page (see Fig. 29-7(c)). Since the magnitudes of the two 

contributions (governed by Eq. 29-7) add, then the result is 

 

B
i

R

i

R

F
HG
I
KJ 2

4 2

0 0 

 
 

 

exactly what one would expect from a single infinite straight wire (see Eq. 29-4). For 

such a wire to produce such a field (out of the page) with a leftward current requires that 

the point of evaluating the field be below the wire (again, see Fig. 29-7(c)). 

 

78. The points must be along a line parallel to the wire and a distance r from it, where r 

satisfies B
i

r
Bwire ext 

0

2
,  or 

r
i

B
 

 


 



0

3

3

2

100

2
4 0 10


 

  



ext

T m A A

T
m.

c hb g
c h .  

 

79. (a) The field in this region is entirely due to the long wire (with, presumably, 

negligible thickness). Using Eq. 29-17, 
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
B

i

r

w   0 3

2
4 8 10


. T  

where iw = 24 A and r = 0.0010 m. 

 

(b) Now the field consists of two contributions (which are anti-parallel) — from the wire 

(Eq. 29-17) and from a portion of the conductor (Eq. 29-20 modified for annular area): 

 
2 2

0 0 enc 0 0

2 2

0

| |
2 2 2 2

w w c i

i

i i i i r R
B

r r r r R R

     

     

 
     

 
 

 

where r = 0.0030 m, Ri = 0.0020 m, Ro = 0.0040 m, and ic = 24 A. Thus, we find 
4| | 9.3 10 T.B    

 

(c) Now, in the external region, the individual fields from the two conductors cancel 

completely (since ic = iw): 

B  0.  

 

80. Using Eq. 29-20 and Eq. 29-17, we have 

 

0 0
1 1 22

2

| |     | |
2 2

i i
B r B

R r

  
  
 p p

 

 

where 4

1 1 20.0040m, 2.8 10 T, 0.010m,r B r     and | | .

B2

42 0 10   T.  Point 2 is 

known to be external to the wire since | | | |
 
B B2 1 . From the second equation, we find i = 

10 A. Plugging this into the first equation yields R = 5.3  10
–3

 m. 

 

81. THINK The objective of this problem is to calculate the magnetic field due to an 

infinite current sheet by applying Ampere’s law.  

EXPRESS The “current per unit x-length” may be viewed as current density multiplied 

by the thickness y of the sheet; thus,  = Jy. Ampere’s law may be (and often is) 

expressed in terms of the current density vector as follows: 

 
   
B ds J dAz z  0  

 

where the area integral is over the region enclosed by the path relevant to the line integral 

(and 

J  is in the +z direction, out of the paper). With J uniform throughout the sheet, then 

it is clear that the right-hand side of this version of Ampere’s law should reduce, in this 

problem, to  

0JA = 0J yx = 0x. 

 

ANALYZE (a) Figure 29-84 certainly has the horizontal components of 

B  drawn 

correctly at points P and P', so the question becomes: is it possible for 

B  to have vertical 

components in the figure?  
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Our focus is on point P.  Suppose the magnetic field is not parallel to the sheet, as shown 

in the upper left diagram. If we reverse the direction of the current, then the direction of 

the field will also be reversed (as shown in the upper middle diagram). Now, if we rotate 

the sheet by 180  about a line that is perpendicular to the sheet, the field will rotate and 

point in the direction shown in the diagram on the upper right. The current distribution 

now is exactly the same as the original; however, comparing the upper left and upper 

right diagrams, we see that the fields are not the same, unless the original field is parallel 

to the sheet and only has a horizontal component. That is, the field at P must be purely 

horizontal, as drawn in Fig. 29-84. 

 

(b) The path used in evaluating 
 
B dsz   is rectangular, of horizontal length x (the 

horizontal sides passing through points P and P', respectively) and vertical size y > y. 

The vertical sides have no contribution to the integral since 

B  is purely horizontal (so the 

scalar dot product produces zero for those sides), and the horizontal sides contribute two 

equal terms, as shown next. Ampere’s law yields 

 

0 0

1
2 .

2
B x x B         

 

LEARN In order to apply Ampere’s law, the system must possess certain symmetry. In 

the case of an infinite current sheet, the symmetry is planar. 

 

82. Equation 29-17 applies for each wire, with r R d 2 2
2/b g  (by the Pythagorean 

theorem). The vertical components of the fields cancel, and the two (identical) horizontal 

components add to yield the final result 

 

  
60 0

22

/ 2
2 1.25 10  T

2 2 / 2

i idd
B

r r R d

 

 

   
     

   
, 

 

where (d/2)/r is a trigonometric factor to select the horizontal component. It is clear that 

this is equivalent to the expression in the problem statement. Using the right-hand rule, 

we find both horizontal components point in the +x direction. Thus, in unit-vector 

notation, we have 6 ˆ(1.25 10  T)iB   . 

 

83. THINK The magnetic field at P is the vector sum of the fields of the individual wire 

segments.  
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EXPRESS The two small wire segments, each of length a/4, shown in Fig. 29-86 nearest 

to point P, are labeled 1 and 8 in the figure (below left). Let k̂  be a unit vector pointing 

into the page. 

 

 

 

We use the result of Problem 29-17: namely, the magnetic field at P2 (shown in Fig. 29-

44 and upper right) is  

2 2 24
P

i L
B

R L R







. 

 

Therefore, the magnetic fields due to the 8 segments are 

 

B B
i

a

i

a

B B
i

a

i

a

B B
i

a

a

a a

i

a

P P

P P

P P

1 8

0 0

4 5

0 0

2 7

0

2 2
1 2

0

2

8 4

2

2

2

8 3 4

2

6

4 4

3 4

3 4 4

3

10

  

  

  





 

 

 

 

 

 

b g

b g

b g b g b g

,

,

,

 

and 

B B
i

a

a

a a

i

a
P P3 6

0

2 2
1 2

0

4 3 4

4

4 3 4 3 10
  




 

 b g b g b g
.  

 

ANALYZE Adding up all the contributions, the total magnetic field at P is 

 

   

 

 

8
0

1

4

2 2 3 1ˆ ˆ( k) 2 ( k)
2 6 10 3 10

2 4 T m A 10A 2 2 3 1 ˆ( k)
2 6m 10 3 10

ˆ2.0 10 T ( k).

P Pn

n

i
B B

a













 
        

 

   
        

  









 
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LEARN If point P is located at the center of the square, then each segment would 

contribute 

0
1 2 8

2
,

4
P P P

i
B B B

a




    

 making the total field  

0
center 1

8 2
8 .

4
P

i
B B

a




   

 

84. (a) All wires carry parallel currents and attract each other; thus, the “top” wire is 

pulled downward by the other two: 

 

  

 

  

 
0 05.0A 3.2A 5.0A 5.0A

2 0.10m 2 0.20m

L L
F

 

 
   

 

where L = 3.0 m. Thus, 

F   17 10 4. N.  

 

(b) Now, the “top” wire is pushed upward by the center wire and pulled downward by the 

bottom wire: 

  

 

  

 
0 0 5

5.0A 3.2A 5.0A 5.0A
| | 2.1 10 N

2 0.10m 2 0.20m

L L
F

 
   

 
. 

 

85. THINK The hollow conductor has cylindrical symmetry, so Ampere’s law can be 

applied to calculate the magnetic field due to the current distribution.   

 

EXPRESS Ampere’s law states that 
0 enc ,B ds i  where enci  is the current enclosed by 

the closed path, or Amperian loop. We choose the Amperian loop to be a circle of radius 

r and concentric with the cylindrical shell. Since the current is uniformly distributed 

throughout the cross section of the shell, the enclosed current is 

 
2 2 2 2

enc 2 2 2 2

r b r b
i i i

a b a b





    
   

    
. 

 

ANALYZE (a) Thus, in the region b < r < a, we have 

 
2 2

0 enc 0 2 2
2

r b
B ds rB i i

a b
  

 
     

 
  

which gives B
i

a b

r b

r




F
HG

I
KJ

0

2 2

2 2

2c h . 

 

(b) At r = a, the magnetic field strength is 
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 0

2 2

2 2

0

2 2

i

a b

a b

a

i

a 

F
HG

I
KJ c h .  

 

At r b B r b  ,  2 2 0 . Finally, for b = 0 

 

B
i

a

r

r

ir

a
 

 0

2

2

0

22 2 
 

 

which agrees with Eq. 29-20. 

 

(c) The field is zero for r < b and is equal to Eq. 29-17 for r > a, so this along with the 

result of part (a) provides a determination of B over the full range of values. The graph 

(with SI units understood) is shown below. 

 

 
 

LEARN For r < b, the field is zero, and for r > a, the field decreases as 1/r. In the region 

b < r < a, the field increases with r as 2 / .r b r    

 

86. We refer to the side of length L as the long side and that of length W as the short side. 

The center is a distance W/2 from the midpoint of each long side, and is a distance L/2 

from the midpoint of each short side. There are two of each type of side, so the result of 

Problem 29-17 leads to 

 

B
i

W

L

L W

i

L

W

W L






2

2 2 4 2
2

2 2 4 2

0

2 2

0

2 2

 

 b g b g b g b g
.  

 

The final form of this expression, shown in the problem statement, derives from finding 

the common denominator of the above result and adding them, while noting that 

 

L W

W L
W L

2 2

2 2

2 2


  .  
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87. (a) Equation 29-20 applies for r < c. Our sign choice is such that i is positive in the 

smaller cylinder and negative in the larger one. 

 

0

2
,  .

2

ir
B r c

c




   

 

(b) Equation 29-17 applies in the region between the conductors: 

 

0 ,  .
2

i
B c r b

r




    

 

(c) Within the larger conductor we have a superposition of the field due to the current in 

the inner conductor (still obeying Eq. 29-17) plus the field due to the (negative) current in  

that part of the outer conductor at radius less than r. The result is 

 
2 2

0 0

2 2
,   .

2 2

i i r b
B b r a

r r a b

 

 

 
    

 
 

 

If desired, this expression can be simplified to read 

 

B
i

r

a r

a b






F
HG

I
KJ

0

2 2

2 22
.  

 

(d) Outside the coaxial cable, the net current 

enclosed is zero. So B = 0 for r  a. 

 

(e) We test these expressions for one case. If 

a  and b  (such that a > b) then we 

have the situation described on page 696 of 

the textbook. 

 

(f) Using SI units, the graph of the field is 

shown to the right. 

 

 

88. (a) Consider a segment of the projectile between y and y + dy. We use Eq. 29-12 to 

find the magnetic force on the segment, and Eq. 29-7 for the magnetic field of each semi-

infinite wire (the top rail referred to as wire 1 and the bottom as wire 2). The current in 

rail 1 is in the i  direction, and the current in rail 2 is in the i  direction. The field (in 

the region between the wires) set up by wire 1 is into the paper (the  k  direction) and 

that set up by wire 2 is also into the paper. The force element (a function of y) acting on 

the segment of the projectile (in which the current flows in the j  direction) is given 

below. The coordinate origin is at the bottom of the projectile. 
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     

 

1 2 1 2 1 2

0 0

ˆ ˆ ˆj j i

î .
4 2 4

dF dF dF idy B dy B i B B dy

i i
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R w y y

 

 

         

 
  

   

 

 

Thus, the force on the projectile is 

 
2 2

0 01 1 ˆ ˆi ln 1 i.
4 2 2

R w

R

i i w
F dF dy

R w y y R

     
       

      
   

 

(b) Using the work-energy theorem, we have  

 

K mv W F ds FLf   z  1
2

2

ext

 
.  

 

Thus, the final speed of the projectile is 
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Chapter 30 
 

 

1. The flux B BA cos  does not change as the loop is rotated. Faraday’s law only 

leads to a nonzero induced emf when the flux is changing, so the result in this instance is 

zero. 

 

2. Using Faraday’s law, the induced emf is 

 

   

   

2

2

2 0.12m 0.800T 0.750m/s

0.452V.

B
d rd BAd dA dr

B B rB
dt dt dt dt dt


 




         

  



 

 

3. THINK Changing the current in the solenoid changes the flux, and therefore, induces a 

current in the coil. 

 

EXPRESS Using Faraday’s law, the total induced emf is given by  

 

2

0 0 0( ) ( )Bd dB d di di
N NA NA ni N nA N n r

dt dt dt dt dt
    

  
     

 
 

 

By Ohm’s law, the induced current in the coil is ind | | / ,i R  where R is the resistance of 

the coil. 

 

ANALYZE Substituting the values given, we obtain 

  

 
22

0

1.5 A
( ) (120)(4 T m A)(22000/m) 0.016 m

0.025 s

0.16V.

di
N n r

dt
     
       

 



 

 

Ohm’s law then yields ind

| | 0.016 V
0.030 A.

5.3
i

R


  


 

 

LEARN The direction of the induced current can be deduced from Lenz’s law, which 

states that the direction of the induced current is such that the magnetic field which it 

produces opposes the change in flux that induces the current.  

 

4. (a) We use  = –dB/dt = –r
2
dB/dt. For 0 < t < 2.0 s: 
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 
22 20.5T

0.12m 1.1 10 V.
2.0s

dB
r

dt
  
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 
p p  

 

(b) For 2.0 s < t < 4.0 s:   dB/dt = 0. 

 

(c) For 4.0 s < t < 6.0 s: 

 

    




F
HG

I
KJ    r

dB

dt

2 2 2012
05

6 0 4 0
11 10.

.

. .
. .m

T

s s
Vb g  

 

5. The field (due to the current in the straight wire) is out of the page in the upper half of 

the circle and is into the page in the lower half of the circle, producing zero net flux, at 

any time. There is no induced current in the circle. 

 

6. From the datum at t = 0 in Fig. 30-37(b) we see 0.0015 A = Vbattery /R, which implies 

that the resistance is  

R = (6.00 V)/(0.0015 A) = 0.0040 . 

 

Now, the value of the current during 10 s < t < 20 s  leads us to equate 

  

(Vbattery +  induced)/R = 0.00050 A. 

 

This shows that the induced emf is  induced = 4.0 V.  Now we use Faraday’s law: 

 

 =  
dΦB

dt
 =  A 

dB

dt
 = A a . 

 

Plugging in  = 4.0 ×10
6 

V and A = 5.0 × 10
4 

m
2
, we obtain a = 0.0080 T/s. 

 

7. (a)  The magnitude of the emf is 

 

        
d

dt

d

dt
t t tB

6 0 7 0 12 7 0 12 2 0 7 0 312. . . . .c h b g mV.  

 

(b) Appealing to Lenz’s law (especially Fig. 30-5(a)) we see that the current flow in the 

loop is clockwise. Thus, the current is to the left through R. 

 

8. The resistance of the loop is 

 

 
 

 
8 3
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m
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
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 
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
      


 

 

We use i = ||/R = |dB/dt|/R = (r
2
/R)|dB/dt|. Thus 
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  
 

3

22

10A 1.1 10
1.4 T s.

m

dB iR

dt r 

 
  

0.05
 

 

9. The amplitude of the induced emf in the loop is 

 
6 2

0 0

4

(6.8 10 m )(4 T m A)(85400 / m)(1.28 A)(212 rad/s)

1.98 10 V.

m A ni   



    

 

-7p 10
 

 

10. (a) The magnetic flux B  through the loop is given by  

 

  22 2 cos45B B r     2 2r B . 

Thus, 

 
2

22 2 3

3

2

3.7 10 m 0 76 10 T

4.5 10 s2 2 2

5.1 10 V.

Bd d r B r B

dt dt t

 


 





       
           

     

 

 

 

(a) The direction of the induced current is clockwise when viewed along the direction of 
B . 

 

11. (a) It should be emphasized that the result, given in terms of sin(2 ft), could as easily 

be given in terms of cos(2ft) or even cos(2ft + ) where  is a phase constant as 

discussed in Chapter 15. The angular position  of the rotating coil is measured from 

some reference line (or plane), and which line one chooses will affect whether the 

magnetic flux should be written as BA cos, BA sin or BA cos( + ). Here our choice is 

such that B BA cos . Since the coil is rotating steadily,  increases linearly with time. 

Thus,  = t (equivalent to  = 2ft) if  is understood to be in radians (and would be 

the angular velocity). Since the area of the rectangular coil is A=ab, Faraday’s law leads 

to  

   
 

cos cos 2
2 sin 2

d BA d ft
N NBA N Bab f ft

dt dt

 
        

 

which is the desired result, shown in the problem statement. The second way this is 

written (0 sin(2ft)) is meant to emphasize that the voltage output is sinusoidal (in its 

time dependence) and has an amplitude of 0 = 2f NabB. 

 

(b) We solve  

0 = 150 V = 2f NabB 

 

when f = 60.0 rev/s and B = 0.500 T. The three unknowns are N, a, and b which occur in 

a product; thus, we obtain Nab = 0.796 m
2
.  
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12. To have an induced emf, the magnetic field must be perpendicular (or have a nonzero 

component perpendicular) to the coil, and must be changing with time.   

 

(a) For 2 ˆ(4.00 10 T/m) kB y  , / 0dB dt   and hence  = 0. 

 

(b) None. 

 

(c) For 2 ˆ(6.00 10 T/s) kB t  ,  

 

 =  
dΦB

dt
  =  A 

dB

dt
 =  (0.400 m × 0.250 m)(0.0600 T/s) = 6.00 mV, 

 

or || = 6.00 mV. 

 

(d) Clockwise. 

 

(e) For 2 ˆ(8.00 10 T/m s) kB yt   ,  B = (0.400)(0.0800t) ydy  = 31.00 10 t , 

 

in SI units. The induced emf is / 1.00 mV,d B dt    or || = 1.00 mV. 

 

(f) Clockwise. 

 

(g) 0    0B     . 

 

(h) None. 

 

(i) 0    0B     . 

 

(j) None. 

 

13. The amount of charge is 

 
3 2

2

1 1.20 10 m
( ) [ (0) ( )] [ (0) ( )] [1.60T ( 1.60T)]

13.0

2.95 10 C .

B B

A
q t t B B t

R R






       



 

 

 

14. Figure 30-42(b) demonstrates that /dB dt  (the slope of that line) is 0.003 T/s.  Thus, 

in absolute value, Faraday’s law becomes 

 

 
( )Bd d BA dB

A
dt dt dt




       
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where A = 8 ×10
4

 m
2
.  We related the induced emf to resistance and current using Ohm’s 

law.  The current is estimated from Fig. 30-42(c) to be i = /dq dt = 0.002 A (the slope of 

that line).  Therefore, the resistance of the loop is 

 

 
4 2| | | / | (8.0 10  m )(0.0030 T/s)

0.0012
0.0020 A

A dB dt
R

i i

 
     . 

 

15. (a) Let L be the length of a side of the square circuit. Then the magnetic flux through 

the circuit is B L B 2 2/ , and the induced emf is 

 
2

.
2

B
i

d L dB

dt dt



     

 

Now B = 0.042 – 0.870t and dB/dt = –0.870 T/s. Thus, 

 

 i 
( .

( . /
2 00

2
0870

m)
T s) = 1.74 V.

2

 

 

The magnetic field is out of the page and decreasing so the induced emf is 

counterclockwise around the circuit, in the same direction as the emf of the battery. The 

total emf is  

 + i = 20.0 V + 1.74 V = 21.7 V. 

 

(b) The current is in the sense of the total emf (counterclockwise). 

 

16. (a) Since the flux arises from a dot product of vectors, the result of one sign for B1 

and B2 and of the opposite sign for B3 (we choose the minus sign for the flux from B1 and 

B2, and therefore a plus sign for the flux from B3).  The induced emf is 

 

=   
dΦB

dt
  =  A 







dB1

dt
  +  

dB2

dt
   

dB3

dt
 

=(0.10 m)(0.20 m)(2.0 × 10
6 

T/s  + 1.0 ×10
6 

T/s 5.0×10
6 

T/s) 

=4.0×10
8 

V. 

 

The minus sign means that the effect is dominated by the changes in B3. Its magnitude 

(using Ohm’s law) is || /R = 8.0 A.  

 

(b) Consideration of Lenz’s law leads to the conclusion that the induced current is 

therefore counterclockwise.   

 

17. Equation 29-10 gives the field at the center of the large loop with R = 1.00 m and 

current i(t). This is approximately the field throughout the area (A = 2.00  10
–4

 m
2
) 

enclosed by the small loop. Thus, with B = 0i/2R and i(t) = i0 + kt, where i0 = 200 A and  
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k = (–200 A – 200 A)/1.00 s = – 400 A/s, 

we find 

 

(a) 
  

 

7

40 0
4 10 H/m 200A

( 0) 1.26 10 T,
2 2 1.00m

i
B t

R







      

 

(b) 
    

 

74 10 H/m 200A 400A/s 0.500s
( 0.500s) 0,

2 1.00m
B t

   
   and 

 

(c) 
    

 

7

4
4 10 H/m 200A 400A/s 1.00s

( 1.00s) 1.26 10 T,
2 1.00m

B t
 


   

     

 

or 4| ( 1.00s)| 1.26 10 T.B t     

 

(d) Yes, as indicated by the flip of sign of B(t) in (c). 

 

(e) Let the area of the small loop be a. Then B Ba ,  and Faraday’s law yields 

 

4 4
4 2

8

( )

1.26 10 T 1.26 10 T
(2.00 10 m )

1.00 s

5.04 10 V .

Bd d Ba dB B
a a

dt dt dt t


 




  
         

 

    
    

 

 

 

 

18. (a) The “height” of the triangular area  enclosed by the rails and bar is the same as the 

distance traveled in time v: d = vt, where v = 5.20 m/s. We also note that the “base” of 

that triangle (the distance between the intersection points of the bar with the rails) is 2d. 

Thus, the area of the triangle is 

 

A vt vt v t  
1

2

1

2
2 2 2( ( )( ) .base)(height)  

 

Since the field is a uniform B = 0.350 T, then the magnitude of the flux (in SI units) is  

 

B = BA = (0.350)(5.20)
2
t
2
 = 9.46t

2
. 

 

At t = 3.00 s, we obtain B = 85.2 Wb. 

 

(b) The magnitude of the emf is the (absolute value of) Faraday’s law: 
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   
d

dt

dt

dt
tB

9 46 18 9
2

. .  

 

in SI units. At t = 3.00 s, this yields  = 56.8 V. 

 

(c) Our calculation in part (b) shows that n = 1. 

 

19. First we write B = BA cos . We note that the angular position  of the rotating coil 

is measured from some reference line or plane, and we are implicitly making such a 

choice by writing the magnetic flux as BA cos  (as opposed to, say, BA sin ). Since the 

coil is rotating steadily,  increases linearly with time. Thus,  = t if  is understood to 

be in radians (here,  = 2f is the angular velocity of the coil in radians per second, and f 

= 1000 rev/min  16.7 rev/s is the frequency). Since the area of the rectangular coil is A = 

(0.500 m)  (0.300 m) = 0.150 m
2
, Faraday’s law leads to 

 




    N
d BA

dt
NBA

d ft

dt
NBA f ft

cos cos
sin

b g b g b g2
2 2


   

 

which means it has a voltage amplitude of 

 

    2 3

max 2 2 16.7rev s 100turns 0.15m 3.5T 5.50 10 V .fNAB       

 

20. We note that 1 gauss = 10
–4

 T. The amount of charge is 

 

4 2
5

2 cos 20
( ) [ cos 20 ( cos 20 )]

2(1000)(0.590 10 T) (0.100m) (cos 20 )
1.55 10 C .

85.0 140

N NBA
q t BA BA

R R





    

  
  

 

 

 

Note that the axis of the coil is at 20°, not 70°, from the magnetic field of the Earth. 

 

21. (a) The frequency is 

 

 
(40 rev/s)(2  rad/rev)

40 Hz
2 2

f
 

 
   . 

 

(b) First, we define angle relative to the plane of Fig. 30-46, such that the semicircular 

wire is in the  = 0 position and a quarter of a period (of revolution) later it will be in the 

 = /2 position (where its midpoint will reach a distance of a above the plane of the 

figure). At the moment it is in the  = /2 position, the area enclosed by the “circuit” will 

appear to us (as we look down at the figure) to that of a simple rectangle (call this area A0, 

which is the area it will again appear to enclose when the wire is in the  = 3/2 position). 
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Since the area of the semicircle is a
2
/2, then the area (as it appears to us) enclosed by the 

circuit, as a function of our angle , is 

A A
a

 0

2

2


cos  

 

where (since  is increasing at a steady rate) the angle depends linearly on time, which 

we can write either as  = t or  = 2ft if we take t = 0 to be a moment when the arc is 

in the  = 0 position. Since 

B  is uniform (in space) and constant (in time), Faraday’s law 

leads to 

   
2 2

0 ( / 2)cos cos 2

2

B
d A a d ftd dA a

B B B
dt dt dt dt

 


  
         

 

which yields  = B2
a

2
f sin(2ft). This (due to the sinusoidal dependence) reinforces the 

conclusion in part (a) and also (due to the factors in front of the sine) provides the voltage 

amplitude:  

 2 2 2 2 3(0.020 T) (0.020 m) (40/ s) 3.2 10 V.m B a f        

 

22. Since 
cos

sin
d d

dt dt

 
  , Faraday's law (with N = 1) becomes  

 

 
( cos )

sin
d d BA d

BA
dt dt dt

 
 


     . 

 

Substituting the values given yields | = 0.018 V. 

 

23. THINK Increasing the separation between the two loops changes the flux through the 

smaller loop and, therefore, induces a current in the smaller loop. 

 

EXPRESS The magnetic flux through a surface is given by ,B B dA    where B  is 

the magnetic field and dA  is a vector of magnitude dA that is normal to a differential area 

dA. In the case where B  is uniform and perpendicular to the plane of the loop, .B BA    

 

In the region of the smaller loop the magnetic field produced by the larger loop may be 

taken to be uniform and equal to its value at the center of the smaller loop, on the axis. 

Equation 29-27, with z = x (taken to be much greater than R), gives 

B

iR

x

0

2

32
i , where 

the +x direction is upward in Fig. 30-47. The area of the smaller loop is A = r
2
. 

 

ANALYZE (a) The magnetic flux through the smaller loop is, to a good approximation, 

the product of this field and the area of the smaller loop: 
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2 2

0

3
.

2
B

ir R
BA

x


    

(b) The emf is given by Faraday’s law: 

 


  

   
F
HG

I
KJ
F
HG
I
KJ  
F
HG

I
KJ 
F
HG

I
KJ 

d

dt

ir R d

dt x

ir R

x

dx

dt

ir R v

x

B   0

2 2

3

0

2 2

4

0

2 2

42

1

2

3 3

2
.  

 

(c) As the smaller loop moves upward, the flux through it decreases. The induced current 

will be directed so as to produce a magnetic field that is upward through the smaller loop, 

in the same direction as the field of the larger loop. It will be counterclockwise as viewed 

from above, in the same direction as the current in the larger loop. 

 

LEARN The situation in this problem is like that shown in Fig. 30-5(d). The induced 

magnetic field is in the same direction as the initial magnetic field. 

 

24. (a) Since 

B B i  uniformly, then only the area “projected” onto the yz plane will 

contribute to the flux (due to the scalar [dot] product). This “projected” area corresponds 

to one-fourth of a circle. Thus, the magnetic fluxB  through the loop is 

 

B B dA r B  z   1

4

2 .  

Thus, 

 
2

2 2 3 51 1
| | m) (3.0 10 T / s) 2.4 10 V .

4 4 4

Bd d r dB
r B

dt dt dt


      
        

 
 

 

(b) We have a situation analogous to that shown in Fig. 30-5(a). Thus, the current in 

segment bc flows from c to b (following Lenz’s law). 

 

25. (a) We refer to the (very large) wire length as L and seek to compute the flux per 

meter: B/L. Using the right-hand rule discussed in Chapter 29, we see that the net field 

in the region between the axes of anti-parallel currents is the addition of the magnitudes 

of their individual fields, as given by Eq. 29-17 and Eq. 29-20. There is an evident 

reflection symmetry in the problem, where the plane of symmetry is midway between the 

two wires (at what we will call x   2 , where   20 0020mm m. ); the net field at any 

point 0 2 x   is the same at its “mirror image” point  x . The central axis of one of 

the wires passes through the origin, and that of the other passes through x   . We make 

use of the symmetry by integrating over 0 2 x   and then multiplying by 2: 

 

   
2 2 2

0 0 2
2 2 2

d

B
d

B dA B Ldx B Ldx       
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where d = 0.0025 m is the diameter of each wire. We will use R = d/2, and r instead of x 

in the following steps. Thus, using the equations from Ch. 29 referred to above, we find 

 

/ 2
0 0 0 0

20

0 0

5 5

2 2
2 2 ) 2 2 )

1 2ln ln
2

0.23 10 T m 1.08 10 T m

R
B

R

i i i i
r dr dr

L R r r r

i iR R

R

   

   

 

 

 

   
      

      

      
      

    

     

 

 

 

which yields B/L = 1.3  10
–5

 T·m or 1.3  10
–5

 Wb/m. 

 

(b) The flux (per meter) existing within the regions of space occupied by one or the other 

wire was computed above to be 0.23  10
–5

 T·m. Thus, 

 
5

5

0.23 10 T m
0.17 17% .

1.3 10 T m





 
 

 
 

 

(c) What was described in part (a) as a symmetry plane at x   / 2  is now (in the case of 

parallel currents) a plane of vanishing field (the fields subtract from each other in the 

region between them, as the right-hand rule shows). The flux in the 0 2 x  /  region is 

now of opposite sign of the flux in the  / 2  x  region, which causes the total flux (or, 

in this case, flux per meter) to be zero. 

 

26. (a) First, we observe that a large portion of the figure contributes flux that “cancels 

out.” The field (due to the current in the long straight wire) through the part of the 

rectangle above the wire is out of the page (by the right-hand rule) and below the wire it 

is into the page. Thus, since the height of the part above the wire is b – a, then a strip 

below the wire (where the strip borders the long wire, and extends a distance b – a away 

from it) has exactly the equal but opposite flux that cancels the contribution from the part 

above the wire. Thus, we obtain the non-zero contributions to the flux: 

 

 0 0 ln .
2 2

a

B
b a

i ib a
BdA bdr

r b a

 


   
      

    
   

 

Faraday’s law, then, (with SI units and 3 significant figures understood) leads to 

 

 

0 0

20

0

ln ln
2 2

9
ln 10

2 2

9 10
ln .

2

B
ib bd d a a di

dt dt b a b a dt

b a d
t t

b a dt

b t a

b a

 


 









     
         

     

   
     

   

   
  

 
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With a = 0.120 m and b = 0.160 m, then, at t = 3.00 s, the magnitude of the emf induced 

in the rectangular loop is 

 

 
 



F
HG

I
KJ  




4 10 016 9 3 10

2

012

016 012
598 10

7

7




c hb g b gc h.
ln

.

. .
. .V  

 

(b) We note that / 0di dt   at t = 3 s. The situation is roughly analogous to that shown in 

Fig. 30-5(c). From Lenz’s law, then, the induced emf (hence, the induced current) in the 

loop is counterclockwise. 

 

27. (a) Consider a (thin) strip of area of height dy and width   0 020. m . The strip is 

located at some 0  y  . The element of flux through the strip is 

 

d BdA t y dyB   4 2c hb g  

 

where SI units (and 2 significant figures) are understood. To find the total flux through 

the square loop, we integrate: 

 

 2 2 3

0
4 2 .B Bd t y dy t       

 

Thus, Faraday’s law yields 

  
d

dt
tB

4 3 .  

 

At t = 2.5 s, the magnitude of the induced emf is 8.0  10
–5

 V.  

 

(b) Its “direction” (or “sense’’) is clockwise, by Lenz’s law. 

 

28. (a) We assume the flux is entirely due to the field generated by the long straight wire 

(which is given by Eq. 29-17). We integrate according to Eq. 30-1, not worrying about 

the possibility of an overall minus sign since we are asked to find the absolute value of 

the flux. 

/ 2
0 0

/ 2

/ 2
| | ( ) ln .

2 2 / 2

r b

B
r b

i ia r b
a dr

r r b

 

 





   
     

  
  

 

When 1.5r b , we have  

 

 8(4 T m A)(4.7A)(0.022m)
| | ln(2.0) 1.4 10 Wb.

2
B



 
   

-7p 10
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(b) Implementing Faraday’s law involves taking a derivative of the flux in part (a), and 

recognizing that /dr dt v . The magnitude of the induced emf divided by the loop 

resistance then gives the induced current: 

 

0 0
loop 2 2

3

4 2

5

/ 2
ln

2 / 2 2 [ ( / 2) ]

(4 T m A)(4.7A)(0.022m)(0.0080m)(3.2 10 m/s)

2 (4.0 10 )[2(0.0080m) ]

1.0 10 A.

ia iabvd r b
i

R R dt r b R r b

 

 











 
    

  

  


 

 


 

 

29. (a) Equation 30-8 leads to 

 

   BLv ( . .0350 00481T)(0.250 m)(0.55 m/ s) V . 

 

(b) By Ohm’s law, the induced current is  

 

i = 0.0481 V/18.0  = 0.00267 A. 

 

By Lenz’s law, the current is clockwise in Fig. 30-52. 

 

(c) Equation 26-27 leads to P = i
2
R = 0.000129 W. 

 

30. Equation 26-28 gives 
2
/R as the rate of energy transfer into thermal forms (dEth /dt, 

which, from Fig. 30-53(c), is roughly 40 nJ/s).  Interpreting  as the induced emf (in 

absolute value) in the single-turn loop (N = 1) from Faraday’s law, we have 

 

 
( )Bd d BA dB

A
dt dt dt




   . 

 

Equation 29-23 gives B = oni for the solenoid (and note that the field is zero outside of 

the solenoid, which implies that A = Acoil), so our expression for the magnitude of the 

induced emf becomes 

  coil
coil 0 coil 0 coil

didB d
A A ni nA

dt dt dt
     . 

 

where Fig. 30-53(b) suggests that dicoil/dt = 0.5 A/s. With n = 8000 (in SI units) and Acoil 

= (0.02)
2
  (note that the loop radius does not come into the computations of this problem, 

just the coil’s), we find V = 6.3 V. Returning to our earlier observations, we can now 

solve for the resistance:  

R = 
 2

/(dEth /dt) = 1.0 m. 

 

31. THINK Thermal energy is generated at the rate given by P = 2
/R (see Eq. 27-23), 

where  is the emf in the wire and R is the resistance of the wire.  
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EXPRESS Using Eq. 27-16, the resistance is given by R = L/A, where the resistivity is 

1.69  10
–8

 ·m (by Table 27-1) and A = d
2
/4 is the cross-sectional area of the wire (d = 

0.00100 m is the wire thickness). The area enclosed by the loop is 

 

A r
L

loop loop

2 
F
HG
I
KJ 

2

2

 

 

since the length of the wire (L = 0.500 m) is the circumference of the loop. This enclosed 

area is used in Faraday’s law to give the induced emf: 

 
2

loop
4

Bd dB L dB
A

dt dt dt



     


. 

 

ANALYZE The rate of change of the field is dB/dt = 0.0100 T/s. Thus, we obtain 

 

 
22 2 2 2 2 3 3 2 3

2

2 8

6

| | ( / 4 ) ( / ) (1.00 10  m) (0.500 m)
0.0100 T/s

/( / 4) 64 64 (1.69 10 m)

3.68 10 W.

L dB dt d L dB
P

R L d dt

 

   







 
    

  

 

 

 

LEARN The rate of thermal energy generated is proportional to 2( / ) .dB dt  

 

32. Noting that |B| = B, we find the thermal energy is 

 
2 22 2 2

thermal

4 2 2 6 2
10

6 3

1 1

(2.00 10 m ) (17.0 10 T)
7.50 10 J.

(5.21 10 )(2.96 10 s)

Bdt B A B
P t t A t

R R dt R t R t



 


 

    
          

   

 
  

  

 

 

33. (a) Letting x be the distance from the right end of the rails to the rod, we find an 

expression for the magnetic flux through the area enclosed by the rod and rails. By Eq. 

29-17, the field is B = 0i/2r, where r is the distance from the long straight wire. We 

consider an infinitesimal horizontal strip of length x and width dr, parallel to the wire and 

a distance r from it; it has area A = x dr and the flux is 

 

0

2
B

i
d BdA xdr

r




   . 

 

By Eq. 30-1, the total flux through the area enclosed by the rod and rails is 

 

0 0 ln .
2 2

a L

B
a

ix ixdr a L

r a

 

 

  
    

 
  
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According to Faraday’s law the emf induced in the loop is 

 

   

0 0

7

4

ln ln
2 2

4 10 T m/A 100A 5.00m/s 1.00cm 10.0cm
ln 2.40 10 V.

2 1.00cm

B
i ivd dx a L a L

dt dt a a

 


 









     
     

   

   
   

 

 

 

(b) By Ohm’s law, the induced current is 

 

   4 4/ 2.40 10 V / 0.400 6.00 10 A.i R         

 

Since the flux is increasing, the magnetic field produced by the induced current must be 

into the page in the region enclosed by the rod and rails. This means the current is 

clockwise. 

 

(c) Thermal energy is being generated at the rate  

 

   
2

2 46.00 10 A 0.400P i R      71.44 10 W.  

  

(d) Since the rod moves with constant velocity, the net force on it is zero. The force of the 

external agent must have the same magnitude as the magnetic force and must be in the 

opposite direction. The magnitude of the magnetic force on an infinitesimal segment of 

the rod, with length dr at a distance r from the long straight wire, is  

 

BdF  i B dr   0 / 2 .i i r dr   

 

We integrate to find the magnitude of the total magnetic force on the rod: 

 

   

0 0

7 4

8

ln
2 2

4 10 T m/A 6.00 10 A 100A 1.00cm 10.0cm
ln

2 1.00cm

2.87 10 N.

a L

B
a

i i i idr a L
F

r a

 

 







 



 
   

 

    
  

 

 



 

 

Since the field is out of the page and the current in the rod is upward in the diagram, the 

force associated with the magnetic field is toward the right. The external agent must 

therefore apply a force of 2.87  10
–8

 N, to the left. 

 

(e) By Eq. 7-48, the external agent does work at the rate  
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P = Fv = (2.87  10
–8

 N)(5.00 m/s) = 1.44  10
–7

 W. 

 

This is the same as the rate at which thermal energy is generated in the rod. All the 

energy supplied by the agent is converted to thermal energy. 

 

34. Noting that Fnet = BiL – mg = 0, we solve for the current: 

 

i
mg

BL R R

d

dt

B

R

dA

dt

Bv L

R

B t    
| |

,
 1 

 

 

which yields vt = mgR/B
2
L

2
. 

 

35. (a) Equation 30-8 leads to 

 

(1.2T)(0.10 m)(5.0 m/s) 0.60 V .BLv     

 

(b) By Lenz’s law, the induced emf is clockwise. In the rod itself, we would say the emf 

is directed up the page. 

 

(c) By Ohm’s law, the induced current is i = 0.60 V/0.40  = 1.5 A. 

 

(d) The direction is clockwise. 

 

(e) Equation 26-28 leads to P = i
2
R = 0.90 W. 

 

(f) From Eq. 29-2, we find that the force on the rod associated with the uniform magnetic 

field is directed rightward and has magnitude 

 

F iLB  ( . )( . .15 010 018A m)(1.2 T) N .  

 

To keep the rod moving at constant velocity, therefore, a leftward force (due to some 

external agent) having that same magnitude must be continuously supplied to the rod. 

 

(g) Using Eq. 7-48, we find the power associated with the force being exerted by the 

external agent:  

P = Fv = (0.18 N)(5.0 m/s) = 0.90 W, 

 

which is the same as our result from part (e). 

 

36. (a) For path 1, we have 

 

     
22 31 1 1

1 1 1 1
1

3

0.200m 8.50 10 T/s

1.07 10 V.

Bd dB dBd
E ds B A A r

dt dt dt dt
  




       

 

  

 



CHAPTER 30 1306 

(b) For path 2, the result is 

 

    
22 3 32 2

2
2

0.300m 8.50 10 T/s 2.40 10 VBd dB
E ds r

dt dt
   

        . 

 

(c) For path 3, we have 

 
     
E ds E ds E ds            z z z   

3 1

3 3 3

2
107 10 2 4 10 133 10. . .V V Vc h . 

 

37. THINK Changing magnetic field induces an electric field. 

 

EXPRESS The induced electric field is given by Eq. 30-20: .Bd
E ds

dt


    

 

ANALYZE (a) The point at which we are evaluating the field is inside the solenoid, so  

 

2 1
(2 ) ( ) .

2

dB dB
E r r E r

dt dt
       

 

The magnitude of the induced electric field is  

 

  3 51 1
| | 6.5 10 T/s 0.0220 m 7.15 10 V/m.

2 2

dB
E r

dt

       

 

(b) Now the point at which we are evaluating the field is outside the solenoid, so 

 
2

2 1
(2 ) ( ) .

2

dB dB R
E r R E

dt dt r
       

The magnitude of the induced field is  

 

 
 

2
2

3 4
0.0600m1 1

| | 6.5 10 T/s 1.43 10 V/m.
2 2 0.0820m

dB R
E

dt r

       

 

LEARN The magnitude of the induced electric field as a 

function of r is shown to the right. Inside the solenoid, r < 

R, the field |E| is linear in r. However, outside the solenoid, 

r > R, | | 1/ .E r  

 

38. From the “kink” in the graph of Fig. 30-57, we 

conclude that the radius of the circular region is 2.0 cm.  

For values of r less than that, we have (from the absolute 

value of Eq. 30-20) 



 

  

1307 

2( )
(2 ) Bd d BA dB

E r A r a
dt dt dt

 


     

 

which means that E/r = a/2.  This corresponds to the slope of that graph (the linear 

portion for small values of r) which we estimate to be 0.015 (in SI units). Thus, 

0.030 T/s.a   

 

39. The magnetic field B can be expressed as 

 

B t B B tb g b g  0 1 0sin ,   

 

where B0 = (30.0 T + 29.6 T)/2 = 29.8 T and B1 = (30.0 T – 29.6 T)/2 = 0.200 T. Then 

from Eq. 30-25 

 

E
dB

dt
r

r d

dt
B B t B r t

F
HG
I
KJ     

1

2 2

1

2
0 1 0 1 0sin cos .    b g b g  

 

We note that  = 2f and that the factor in front of the cosine is the maximum value of 

the field. Consequently, 

 

      2

max 1

1 1
2 0.200T 2 15 Hz 1.6 10 m 0.15 V/m.

2 2
E B f r       

 

40. Since NB = Li, we obtain 

 

B

Li

N
 

 
 

 


8 0 10 50 10

400
10 10

3 3

7
. .

.
H A

Wb.
c hc h

 

 

41. (a) We interpret the question as asking for N multiplied by the flux through one turn: 

 

 turns T m Wb.       N NBA NB rB  2 3 2 330 0 2 60 10 0100 2 45 10c h b gc hb gb g. . . .  

 

(b) Equation 30-33 leads to 

L
N

i

B 


 


 2 45 10

380
6 45 10

3
4.

.
.

 Wb

A
H.  

 

42. (a) We imagine dividing the one-turn solenoid into N small circular loops placed 

along the width W of the copper strip. Each loop carries a current i = i/N. Then the 

magnetic field inside the solenoid is  

 
7

70
0 0

(4 10 T m/A)(0.035A)
2.7 10 T.

0.16m

iN i
B n i

W N W


 


   

        
  
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(b) Equation 30-33 leads to 

 

 2 22 7 2
0 90

/ (4 10 T m/A)(0.018m)
8.0 10 H.

0.16m

B
R i W RR B

L
i i i W

   


    
        

 

43. We refer to the (very large) wire length as   and seek to compute the flux per meter:  

B / .  Using the right-hand rule discussed in Chapter 29, we see that the net field in the 

region between the axes of antiparallel currents is the addition of the magnitudes of their 

individual fields, as given by Eq. 29-17 and Eq. 29-20. There is an evident reflection 

symmetry in the problem, where the plane of symmetry is midway between the two wires 

(at x = d/2); the net field at any point 0 < x < d/2 is the same at its “mirror image” point 

d – x. The central axis of one of the wires passes through the origin, and that of the other 

passes through x = d. We make use of the symmetry by integrating over 0 < x < d/2 and 

then multiplying by 2: 

 

   
/ 2 / 2

0 0
2 2 2

d a d

B
a

B dA B dx B dx       

 

where d = 0.0025 m is the diameter of each wire. We will use r instead of x in the 

following steps. Thus, using the equations from Ch. 29 referred to above, we find 

 

   

/ 2
0 0 0 0

20

0 0

2 2
2 2 2 2

1 2 ln ln
2

a d
B

a

i i i i
r dr dr

a d r r d r

i id a d a

d a

   

   

 

 

   
             

      
      

    

 
 

 

where the first term is the flux within the wires and will be neglected (as the problem 

suggests). Thus, the flux is approximately B i d a a 0  / ln / . b gc h  Now, we use Eq. 

30-33 (with N = 1) to obtain the inductance per unit length: 

 
7

60 (4 10 T m/A) 142 1.53
ln ln 1.81 10 H/m.

1.53

BL d a

i a

 

 


       

       
   

 

 

44. Since  = –L(di/dt), we may obtain the desired induced emf by setting 

 

60V
5.0A/s,

12H

di

dt L


       

 

or | / | 5.0A/s.di dt   We might, for example, uniformly reduce the current from 2.0 A to 

zero in 40 ms. 
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45. (a) Speaking anthropomorphically, the coil wants to fight the changes—so if it wants 

to push current rightward (when the current is already going rightward) then i must be in 

the process of decreasing. 

 

(b) From Eq. 30-35 (in absolute value) we get 

 

L
di dt

    

/
.

17
68 10 4V

2.5kA / s
H.  

 

46. During periods of time when the current is varying linearly with time, Eq. 30-35 (in 

absolute values) becomes | | | / | .L i t     For simplicity, we omit the absolute value 

signs in the following. 

 

(a) For 0 < t < 2 ms, 

  



 


L

i

t





4 6 7 0 0

2 0 10
16 10

3

4
. .

.
.

H A

s
V.

b gb g
 

(b) For 2 ms < t < 5 ms, 

  



 


L

i

t





4 6 50 7 0

50 2 0 10
31 10

3

3
. . .

. .
.

H A A

s
V.

b gb g
b g  

(c) For 5 ms < t < 6 ms, 

  



 


L

i

t





4 6 0 50

6 0 50 10
2 3 10

3

4
. .

. .
.

H A

s
V.

b gb g
b g  

 

47. (a) Voltage is proportional to inductance (by Eq. 30-35) just as, for resistors, it is 

proportional to resistance. Since the (independent) voltages for series elements add (V1 + 

V2), then inductances in series must add, eq 1 2L L L  , just as was the case for resistances. 

Note that to ensure the independence of the voltage values, it is important that the 

inductors not be too close together (the related topic of mutual inductance is treated in 

Section 30-12). The requirement is that magnetic field lines from one inductor should not 

have significant presence in any other. 

 

(b) Just as with resistors, L Lnn

N

eq   .
1

 

 

48. (a) Voltage is proportional to inductance (by Eq. 30-35) just as, for resistors, it is 

proportional to resistance. Now, the (independent) voltages for parallel elements are 

equal (V1 = V2), and the currents (which are generally functions of time) add (i1 (t) + i2 (t) 

= i(t)). This leads to the Eq. 27-21 for resistors. We note that this condition on the 

currents implies 

di t

dt

di t

dt

di t

dt

1 2b g b g b g
  . 
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Thus, although the inductance equation Eq. 30-35 involves the rate of change of current, 

as opposed to current itself, the conditions that led to the parallel resistor formula also 

apply to inductors. Therefore, 

1 1 1

1 2L L Leq

  .  

 

Note that to ensure the independence of the voltage values, it is important that the 

inductors not be too close together (the related topic of mutual inductance is treated in 

Section 30-12). The requirement is that the field of one inductor not to have significant 

influence (or “coupling’’) in the next. 

 

(b) Just as with resistors, 
1eq

1 1N

n nL L

 . 

 

49. Using the results from Problems 30-47 and 30-48, the equivalent resistance is 

 

 
2 3

eq 1 4 23 1 4

2 3

(50.0 mH)(20.0 mH)
30.0 mH 15.0 mH

50.0 mH 20.0 mH

59.3 mH.

L L
L L L L L L

L L
        

 



 

 

50. The steady state value of the current is also its maximum value, /R, which we denote 

as im. We are told that i = im/3 at t0 = 5.00 s. Equation 30-41 becomes  0 /
1 ,Lt

mi i e


   

which leads to 

 L

m

t

i i
 


 


0

1

500

1 3
12 3

ln /

.

/
.b g b g

s

ln 1
s.  

 

51. The current in the circuit is given by 0
Lt

i i e


 , where i0 is the current at time t = 0 

and L is the inductive time constant (L/R). We solve for L. Dividing by i0 and taking the 

natural logarithm of both sides, we obtain 

 

ln .
i

i

t

L0

F
HG
I
KJ     

This yields 

 L

t

i i
   




ln /

.

ln / .
.

0
3

10

10 10 10
0 217b g c h b ge j

s

A A
s. 

 

Therefore, R = L/L = 10 H/0.217 s = 46 . 

 

52. (a) Immediately after the switch is closed,  – L = iR. But i = 0 at this instant, so L = 

, or L/ = 1.00. 
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(b) 2.0 2.0( ) 0.135 ,L L Lt

L t e e e             or L/ = 0.135. 

 

(c) From ( ) Lt

L t e
  

  we obtain 

 

ln ln 2 ln 2 0.693       / 0.693.L L L

L L

t
t t


  

 

 
       

 
 

 

53. THINK The inductor in the RL circuit initially acts to oppose changes in current 

through it. 

 

EXPRESS If the battery is switched into the circuit at t = 0, then the current at a later 

time t is given by 

 /
1 ,Lt

i e
R

 
   

where L = L/R.  

 

(a) We want to find the time at which i = 0.800/R. This means 

 
/ /

0.800 1 0.200.L Lt t
e e

  
     

 

Taking the natural logarithm of both sides, we obtain  

 

–(t/L) = ln(0.200) = –1.609. 

Thus, 
6

9

3

1.609 1.609(6.30 10 H)
1.609 8.45 10 s.

1.20 10
L

L
t

R





    
 

 

 

(b) At t = 1.0L the current in the circuit is 

 

 1.0 1.0 3

3

14.0V
1 (1 ) 7.37 10 A.

1.20 10
i e e

R

    
      

  
 

 

LEARN At t = 0, the current in the circuit is 

zero. However, after a very long time, the 

inductor acts like an ordinary connecting wire, so 

the current is 

 

0 3

14.0V
0.0117 A.

1.20 10
i

R


  

 
 

 

The current as a function of / Lt   is plotted to the 

right. 
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54. (a) The inductor prevents a fast build-up of the current through it, so immediately 

after the switch is closed, the current in the inductor is zero. It follows that 

 

1

1 2

100V
3.33A.

10.0 +20.0
i

R R


  

  
 

(b) 2 1 3.33A.i i   

 

(c) After a suitably long time, the current reaches steady state. Then, the emf across the 

inductor is zero, and we may imagine it replaced by a wire. The current in R3 is i1 – i2. 

Kirchhoff’s loop rule gives 

 

1 1 2 2

1 1 1 2 3

0

0.

i R i R

i R i i R





  

   
 

 

We solve these simultaneously for i1 and i2, and find  

 

    

        
2 3

1

1 2 1 3 2 3

100V 20.0 30.0

10.0 20.0 10.0 30.0 20.0 30.0

4.55A,

R R
i

R R R R R R

   
 

         



 

 

(d) and 

  

        
3

2

1 2 1 3 2 3

100V 30.0

10.0 20.0 10.0 30.0 20.0 30.0

2.73A.

R
i

R R R R R R

 
 

         



 

 

(e) The left-hand branch is now broken. We take the current (immediately) as zero in that 

branch when the switch is opened (that is, i1 = 0).  

 

(f) The current in R3 changes less rapidly because there is an inductor in its branch. In 

fact, immediately after the switch is opened it has the same value that it had before the 

switch was opened. That value is 4.55 A – 2.73 A = 1.82 A. The current in R2 is the same 

but in the opposite direction as that in R3, that is, i2 = –1.82 A. 

 

A long time later after the switch is reopened, there are no longer any sources of emf in 

the circuit, so all currents eventually drop to zero. Thus, 

 

(g) i1 = 0, and  

 

(h) i2 = 0. 

 

55. THINK The inductor in the RL circuit initially acts to oppose changes in current 

through it. 
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EXPRESS Starting with zero current at t = 0 (the moment the switch is closed) the 

current in the circuit increases according to 

 

i
R

e t L   1 / ,c h  

 

where L = L/R is the inductive time constant and  is the battery emf.  

 

ANALYZE To calculate the time at which i = 0.9990/R, we solve for t: 

 

   /
0.990 1 ln 0.0010    6.91.Lt

L L

t t
e

R R

 

 


       

 

LEARN At t = 0, the current in the circuit is zero. However, after a very long time, the 

inductor acts like an ordinary connecting wire, so the current is 0 / .i R The current (in 

terms of 0/i i ) as a function of / Lt   is plotted below. 

 

 
 

56. From the graph we get /i = 2 ×10
4 

in SI units.  Therefore, with N = 25, we find the 

self-inductance is L = N/i  = 5 × 10
3 

H.  From the derivative of Eq. 30-41 (or a 

combination of that equation and Eq. 30-39) we find (using the symbol V to stand for the 

battery emf) 

di

dt
 = 

V

R

R

L
  e

t/L = 
V

L
e
t/L = 7.1 × 10

2 
A/s . 

 

57. (a) Before the fuse blows, the current through the resistor remains zero. We apply the 

loop theorem to the battery-fuse-inductor loop:  – L di/dt = 0. So i = t/L. As the fuse 

blows at t = t0, i = i0 = 3.0 A. Thus, 

 

  0
0

3.0A 5.0H
1.5 s.

10V

i L
t


    

 

(b) We do not show the graph here; qualitatively, it would be similar to Fig. 30-15. 
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58. Applying the loop theorem, 

 
F
HG
I
KJ L

di

dt
iR ,  

 

we solve for the (time-dependent) emf, with SI units understood: 

 

         

 

3.0 5.0 3.0 5.0 6.0 5.0 3.0 5.0 4.0

42 20 .

di d
L iR L t t R t

dt dt

t

         

 

 

 

59. THINK The inductor in the RL circuit initially acts to oppose changes in current 

through it. We are interested in the currents in the resistor and the current in the inductor 

as a function of time.  

 

EXPRESS We assume i to be from left to right through the closed switch. We let i1 be 

the current in the resistor and take it to be downward. Let i2 be the current in the inductor, 

also assumed downward. The junction rule gives i = i1 + i2 and the loop rule gives i1R – 

L(di2/dt) = 0. According to the junction rule, (di1/dt) = – (di2/dt). We substitute into the 

loop equation to obtain 

L
di

dt
i R1
1 0  .  

 

This equation is similar to Eq. 30-46, and its solution is the function given as Eq. 30-47: 

i i e Rt L

1 0  ,  where i0 is the current through the resistor at t = 0, just after the switch is 

closed. Now just after the switch is closed, the inductor prevents the rapid build-up of 

current in its branch, so at that moment i2 = 0 and i1 = i. Thus i0 = i. 

 

ANALYZE (a) The currents in the resistor and the inductor as a function of time are: 

 

 1 2 1, 1 .Rt L Rt Li ie i i i i e       

(b) When i2 = i1, we have 

1
1 .

2

Rt L Rt L Rt Le e e       

 

Taking the natural logarithm of both sides and using  ln 1/ 2 ln 2 , we obtain 

 

ln 2 ln 2.
Rt L

t
L R

 
   

 
 

 

LEARN A plot of 1 /i i  (solid line, for resistor) and 2 /i i  (dashed line, for inductor) as a 

function of / Lt   is shown next. 
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60. (a) Our notation is as follows: h is the height of the toroid, a its inner radius, and b its 

outer radius. Since it has a square cross section, h = b – a = 0.12 m – 0.10 m = 0.02 m. 

We derive the flux using Eq. 29-24 and the self-inductance using Eq. 30-33: 

 

0 0 ln
2 2

b b

B
a a

Ni Nih b
B dA hdr

r a

 

 

   
      

  
   

and  

 
2

0 ln
2

B
N hN b

L
i a

  
   

  
. 

 

Now, since the inner circumference of the toroid is l = 2a = 2(10 cm)  62.8 cm, the 

number of turns of the toroid is roughly N  62.8 cm/1.0 mm = 628. Thus 

 

     
272

40
4 10 H m 628 0.02m 12

ln ln 2.9 10 H.
2 2 10

N h b
L

a



 




   

      
   

 

 

(b) Noting that the perimeter of a square is four times its sides, the total length   of the 

wire is   628 4 2 0 50b g b g. cm m , and the resistance of the wire is  

 

R = (50 m)(0.02 /m) = 1.0 . 

Thus, 

 L

L

R
 


 


2 9 10

2 9 10
4

4.
.

H

1.0
s.


 

 

61. THINK Inductance L is related to the inductive time constant of an RL circuit by 

,LL R  where R is the resistance in the circuit. The energy stored by an inductor 

carrying current i is given by 2 / 2.BU Li  

 

EXPRESS If the battery is applied at time t = 0 the current is given by 

 

i
R

e t L   1c h ,  
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where  is the emf of the battery, R is the resistance, and L is the inductive time constant 

(L/R). This leads to 

e
iR t iRt

L

L      
F
HG
I
KJ



  
1 1ln .  

Since 

ln ln
. .

.
. ,1 1

2 00 10 10 0 10

50 0
05108

3 3


F
HG
I
KJ  

 L
N
MM

O
Q
PP  


iR



A

V

c hc h
 

 

the inductive time constant is L = t/0.5108 = (5.00  10
–3

 s)/0.5108 = 9.79  10
–3

 s. 

 

ANALYZE (a) The inductance is 

 

  3 39.79 10 s 10.0 10 97.9H.LL R        

 

(b) The energy stored in the coil is 

 

  
2

2 3 41 1
97.9H 2.00 10 A 1.96 10 J.

2 2
BU Li        

 

LEARN Note the similarity between 21

2
BU Li  and 

2

,
2

C

q
U

C
  the electric energy 

stored in a capacitor.  

 

62. (a) From Eq. 30-49 and Eq. 30-41, the rate at which the energy is being stored in the 

inductor is 

 

 
   

21 2
2 1

1 1 .L L L Lt t t tB

L

d LidU di
Li L e e e e

dt dt dt R R R

     



     
       

  
 

Now,  

L = L/R = 2.0 H/10  = 0.20 s 

 

and  = 100 V, so the above expression yields dUB/dt = 2.4  10
2
 W when t = 0.10 s. 

 

(b) From Eq. 26-22 and Eq. 30-41, the rate at which the resistor is generating thermal 

energy is 

P i R
R

e R
R

et tL L

thermal      2
2

2

2
2

2

1 1
  c h c h . 

 

At t = 0.10 s, this yields Pthermal = 1.5  10
2
 W. 
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(c) By energy conservation, the rate of energy being supplied to the circuit by the battery 

is 

P P
dU

dt

B
battery thermal W.   39 102.  

 

We note that this result could alternatively have been found from Eq. 28-14 (with Eq. 30-

41). 

 

63. From Eq. 30-49 and Eq. 30-41, the rate at which the energy is being stored in the 

inductor is 

 

 
   

2 2/ 2 1
1 1L L L Lt t t tB

L

d LidU di
Li L e e e e

dt dt dt R R R

     



     
       

  
 

 

where L = L/R has been used. From Eq. 26-22 and Eq. 30-41, the rate at which the 

resistor is generating thermal energy is 

 

P i R
R

e R
R

et tL L

thermal      2
2

2

2
2

2

1 1
  c h c h . 

 

We equate this to dUB/dt, and solve for the time: 

 

     
2 2

2

1 1 ln 2 37.0ms ln 2 25.6ms.L L Lt t t

Le e e t
R R

   
  

        

 

64. Let U t Li tBb g b g 1
2

2 . We require the energy at time t to be half of its final value: 

U t U t LiB fb g b g  1
2

1
4

2 . This gives i t i fb g  2 . But 
/

( ) (1 )Lt

fi t i e


  , so 

 

1 1
1       ln 1 1.23.

2 2

Lt

L

t
e





  
      

 
 

 

65. (a) The energy delivered by the battery is the integral of Eq. 28-14 (where we use Eq. 

30-41 for the current): 

   

       

2 2
  

battery
 0  0

6.70 2.00 s 5.50 H2

1 1

5.50H 110.0V
2.00 s

6.70 6.70

18.7 J.

t t
Rt L Rt LL

P dt e dt t e
R R R

e

  

 

 
     

 

 
  
  
 



 

 

 

(b) The energy stored in the magnetic field is given by Eq. 30-49: 



CHAPTER 30 1318 

 

        

22
22 6.70 2.00 s 5.50 H21 1 1 10.0V

1 5.50H 1
2 2 2 6.70

5.10 J .

Rt L

BU Li t L e e
R

                  



 

 

(c) The difference of the previous two results gives the amount “lost” in the resistor:  

18.7 J – 5.10 J = 13.6 J. 

 

66. (a) The magnitude of the magnetic field at the center of the loop, using Eq. 29-9, is 

 

  

 

7

30

3

4 10 H m 100A
1.3 10 T .

2 2 50 10 m

i
B

R









   


 

 

(b) The energy per unit volume in the immediate vicinity of the center of the loop is 

 

 
 

2
32

3

7
0

1.3 10 T
0.63 J m .

2 2 4 10 H m
B

B
u

 






  


 

 

67. THINK The magnetic energy density is given by uB = B
2
/20, where B is the 

magnitude of the magnetic field at that point.  

 

EXPRESS Inside a solenoid, the magnitude of the magnetic field is B = 0ni, where  

 

n = (950 turns)/(0.850 m) = 1.118  10
3
 m

–1
. 

 

Thus, the energy density is 
22

2 20
0

0 0

( ) 1
.

2 2 2
B

niB
u n i




 
    

 

Since the magnetic field is uniform inside an ideal solenoid, the total energy stored in the 

field is UB = uB, where  is the volume of the solenoid. 

 

ANALYZE (a) Substituting the values given, we find the magnetic energy density to be 

 

u n iB       1

2

1

2
4 10 1118 10 6 60 34 20

2 2 7 3 1
2 2 3

  T m A m A J mc hc h b g. . . .  

 

(b) The volume  is calculated as the product of the cross-sectional area and the length. 

Thus, 

UB     34 2 17 0 10 0850 4 94 10
3 4 2 2. . . . .J m m m Jd ic hb g  
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LEARN Note the similarity between 
2

0

,
2

B

B
u


  the energy density at a point in a 

magnetic field, and  2

0

1
,

2
Eu E  the energy density at a point in an electric field. Both 

quantities are proportional to the square of the fields. 

 

68. The magnetic energy stored in the toroid is given by U LiB 
1
2

2 , where L is its 

inductance and i is the current. By Eq. 30-54, the energy is also given by UB = uB, 

where uB is the average energy density and  is the volume. Thus 

 

i
u

L

B 





2 2 70 0 0 0200

90 0 10
558

3 3

3

 . .

.
. .

J m m

H
A

c hc h
 

 

69. We set u E u BE B  1
2 0

2 1
2

2

0   and solve for the magnitude of the electric field: 

 

  
8

12 7
0 0

0.50T
1.5 10 V m .

8.85 10 F m 4 H m

B
E

   
   

 
 

 

70. It is important to note that the x that is used in the graph of Fig. 30-67(b) is not the x 

at which the energy density is being evaluated.  The x in Fig. 30-67(b) is the location of 

wire 2. The energy density (Eq. 30-54) is being evaluated at the coordinate origin 

throughout this problem.  We note the curve in Fig. 30-67(b) has a zero; this implies that 

the magnetic fields (caused by the individual currents) are in opposite directions (at the 

origin), which further implies that the currents have the same direction. Since the 

magnitudes of the fields must be equal (for them to cancel) when the x of Fig. 30-67(b) is 

equal to 0.20 m, then we have (using Eq. 29-4) B1 = B2, or  

 

 0 1 0 2

2 2 (0.20 m)

i i

d

 

 
  

      

which leads to (0.20 m) /3d   once we substitute 1 2 / 3i i  and simplify.  We can also 

use the given fact that when the energy density is completely caused by B1 (this occurs 

when x becomes infinitely large because then B2 = 0) its value is uB = 1.96  × 10
9 

(in SI 

units) in order to solve for B1: 

 1 02 BB   . 

 

(a) This combined with 1 0 1 / 2B i d   allows us to find wire 1’s current: i1  23 mA. 

 

(b) Since i2 = 3i1 then i2 = 70 mA (approximately). 
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71. (a) The energy per unit volume associated with the magnetic field is 

 

  

 

272 22
30 0

22 2 2 3
0 0

4 10 H m 10A1
1.0 J m .

2 2 2 8 8 2.5 10 m 2
B

i iB
u

R R

 

    





 
     

  
 

 

(b) The electric energy density is 

 

      
2

222 12 30 0
0

315

1 1
8.85 10 F m 10A 3.3 10 m

2 2 2 2

4.8 10 J m .

E

iR
u E J

 
  



            

 

 

 

Here we used J = i/A and R A   to obtain J iR  . 

 

72. (a) The flux in coil 1 is 

  
1 1

1

25mH 6.0mA
1.5 Wb.

100

L i

N
   

 

(b) The magnitude of the self-induced emf is 

 

   21
1 25mH 4.0 A s 1.0 10 mV.

di
L

dt
    

(c) In coil 2, we find 

 
  

1
21

2

3.0mH 6.0mA
90nWb

200

Mi

N
    . 

 

(d) The mutually induced emf is 

 

  1
21 3.0mH 4.0 A s 12mV.

di
M

dt
     

 

73. THINK If two coils are near each other, mutual induction can take place whereby a 

changing current in one coil can induce an emf in the other. 

 

EXPRESS The mutual inductance is given by 

 

2
1

di
M

dt
    

 

where 1 is the induced emf in coil 1 due to the changing current in coil 2. The flux 

linkage in coil 2 is 2 21 1.N Mi   
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ANALYZE (a) From the equation above, we find the mutual inductance to be 

 

1

2

| | 25.0mV
1.67mH.

15.0A s
M

di dt


    

 

(b) Similarly, the flux linkage in coil 2 is 

 

  2 21 1 1.67mH 3.60A 6.00mWb.N Mi     

 

LEARN The emf induced in one coil is proportional to the rate at which current in the 

other coil is changing: 

2 1
1 12 2 21,

di di
M M

dt dt
     . 

 

 The proportionality constants, 12M  and 21,M  are the same, 12 21 ,M M M  so we 

simply write  

2 1
1 2,

di di
M M

dt dt
     . 

 

74. We use 2 = –M di1/dt  M|i/t| to find M: 

 

M
i t

 









 1

3

3

30 10

6 0
13

V

A 2.5 10 s
H

.
.c h  

 

75. The flux over the loop cross section due to the current i in the wire is given by 

 

0 0
wire ln 1 .

2 2

a b a b

a a

il il b
B ldr dr

r a

 

 

   
    

 
   

Thus, 

M
N

i

N l b

a
  

F
HG
I
KJ

 0

2
1


ln .  

 

From the formula for M obtained above, we have 

 

   7

5
100 4 10 H m 0.30m 8.0

ln 1 1.3 10 H .
2 1.0

M







  

    
 

 

 

76. (a) The coil-solenoid mutual inductance is 

 



CHAPTER 30 1322 

 2

0 2

0 .
scs

cs

s s

N i n RN
M M R nN

i i

 
 


     

 

(b) As long as the magnetic field of the solenoid is entirely contained within the cross 

section of the coil we have sc = BsAs = BsR
2
, regardless of the shape, size, or possible 

lack of close-packing of the coil. 

 

77. THINK To find the equivalent inductance, we calculate the total emf across both 

coils. 

 

EXPRESS We assume the current to be changing at (nonzero) a rate di/dt. The induced 

emf’s can take on the following form: 

 

   1 1 2 2,
di di

L M L M
dt dt

        

 

The relative sign between L and M depends on how the coils are connected, as we shall 

see below. 

 

ANALYZE (a) The connection is shown in Fig. 30-70. First consider coil 1. The 

magnetic field due to the current in that coil points to the right. The magnetic field due to 

the current in coil 2 also points to the right. When the current increases, both fields 

increase and both changes in flux contribute emfs in the same direction. Thus, the 

induced emfs are 

   1 1 2 2, .
di di

L M L M
dt dt

        

 

Therefore, the total emf across both coils is 

 

       1 2 1 2 2L L M
di

dt
b g  

 

which is exactly the emf that would be produced if the coils were replaced by a single 

coil with inductance Leq = L1 + L2 + 2M. 

 

(b) We imagine reversing the leads of coil 2 so the current enters at the back of the coil 

rather than the front (as pictured in Fig. 30-70). Then the field produced by coil 2 at the 

site of coil 1 is opposite to the field produced by coil 1 itself. The fluxes have opposite 

signs. An increasing current in coil 1 tends to increase the flux in that coil, but an 

increasing current in coil 2 tends to decrease it. The emf across coil 1 is 

 

1 1  L M
di

dt
b g .  

Similarly, the emf across coil 2 is 
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 2 2  L M
di

dt
b g .  

The total emf across both coils is 

    L L M
di

dt
1 2 2b g .  

 

This is the same as the emf that would be produced by a single coil with inductance  

 

Leq = L1 + L2 – 2M. 

 

LEARN The sign of the mutual inductance term is determined by the senses of the coil 

winding. The induced emfs can either reinforce one another (L + M), or oppose one 

another (L M). 

 

78. Taking the derivative of Eq. 30-41, we have 

 

/ / /
(1 )L L Lt t t

L

di d
e e e

dt dt R R L

    



   
    

 
. 

 

With L = L/R (Eq. 30-42), L = 0.023 H and   = 12 V, t = 0.00015 s, and di/dt = 280 A/s, 

we obtain e
t/L = 0.537.  Taking the natural log and rearranging leads to R = 95.4 . 

 

79. THINK The inductor in the RL circuit initially acts to oppose changes in current 

through it. 

 

EXPRESS When the switch S is just closed, V1 =  and no current flows through the 

inductor. A long time later, the currents have reached their equilibrium values and the 

inductor acts as an ordinary connecting wire; we can solve the multi-loop circuit problem 

by applying Kirchhoff’s junction and loop rules.  

 

ANALYZE (a) Applying the loop rule to the left loop gives 1 1 0,i R    so 

 

i1 = /R1 = 10 V/5.0  = 2.0 A. 

 

(b) Since now L = , we have i2 = 0. 

 

(c) The junction rule gives is = i1 + i2 = 2.0 A + 0 = 2.0 A. 

 

(d) Since VL = , the potential difference across resistor 2 is V2 =  – L = 0. 

 

(e) The potential difference across the inductor is VL =  = 10 V. 

 

(f) The rate of change of current is 2 10 V
2.0 A/s

5.0 H

Ldi V

dt L L


    .  
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(g) After a long time, we still have V1 = , so i1 = 2.0 A. 

 

(h) Since now VL = 0, i2 = R2 = 10 V/10  = 1.0 A. 

 

(i) The current through the switch is now is = i1 + i2 = 2.0 A + 1.0 A = 3.0 A. 

 

(j) Since VL = 0, V2 =  – VL =  = 10 V. 

 

(k) With the inductor acting as an ordinary connecting wire, we have VL = 0. 

 

(l) The rate of change of current in resistor 2 is 2 0Ldi V

dt L
  .  

 

LEARN In analyzing an RL circuit immediately after closing the switch and a very long 

time after that, there is no need to solve any differential equation.  

 

80. Using Eq. 30-41:  1 ,Lt
i e

R

 
   where L = 2.0 ns, we find 

 

1
ln 1.0 ns.

1 /
Lt

iR




 
  

 
 

 

81. Using Ohm’s law, we relate the induced current to the emf and (the absolute value of) 

Faraday’s law: 

 
| | 1 d

i
R R dt

 
  . 

 

As the loop is crossing the boundary between regions 1 and 2 (so that “x” amount of its 

length is in region 2 while “D – x” amount of its length remains in region 1) the flux is 

 

         B = xHB2 + (D – x)HB1= DHB1 + xH(B2 – B1) 

which means  

 
dΦB

dt
  = 

dx

dt
H(B2 – B1) = vH(B2 – B1)       i = vH(B2 – B1)/R. 

 

Similar considerations hold (replacing “B1” with 0 and  “B2” with B1) for the loop 

crossing initially from the zero-field region (to the left of Fig. 30-72(a)) into region 1.   

 

(a) In this latter case, appeal to Fig. 30-72(b) leads to  

 

     3.0 × 10
6 

A = (0.40 m/s)(0.015 m) B1 /(0.020 ) 

 

which yields B1 = 10 T. 
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(b) Lenz’s law considerations lead us to conclude that the direction of the region 1 field is 

out of the page. 

 

(c) Similarly, i = vH(B2 – B1)/R leads to 2 3.3 TB  .  

 

(d) The direction of 
2B   is out of the page.  

 

82. Faraday’s law (for a single turn, with B changing in time) gives  

 

2( )Bd d BA dB dB
A r

dt dt dt dt
 


        . 

 

In this problem, we find  /0 tBdB
e

dt





  .   Thus, 2 /0 tB
r e  



 .  

 

83. Equation 30-41 applies, and the problem requires 

 

iR = L 
di

dt
 =  – iR 

 

at some time t (where Eq. 30-39 has been used in that last step).  Thus, we have 2iR = , 
or 

  / /
2 2 (1 ) 2 1L Lt t
iR e R e

R

 
   
     

 
 

 

where Eq. 30-42 gives the inductive time constant as L = L/R.  We note that the emf  
cancels out of that final equation, and we are able to rearrange (and take the natural log) 

and solve.  We obtain t = 0.520 ms. 

 

84. In absolute value, Faraday’s law (for a single turn, with B changing in time) gives  

 

 2( )Bd d BA dB dB
A R

dt dt dt dt



    

 

for the magnitude of the induced emf.  Dividing it by R
2
 then allows us to relate this to 

the slope of the graph in Fig. 30-73(b) [particularly the first part of the graph], which we 

estimate to be 80 V/m
2
.  

 

(a) Thus,  
dB1

dt
  =  (80 V/m

2
)/    25 T/s . 

 

(b) Similar reasoning for region 2 (corresponding to the slope of the second part of the 

graph in Fig. 30-73(b)) leads to an emf equal to 
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2 21 2 2
1

dB dB dB
r R

dt dt dt
 

 
  

 
  

 

which means the second slope (which we estimate to be 40 V/m
2
) is equal to 2dB

dt
 .  

Therefore, 
 dB2

dt
  = (40 V/m

2
)/  13 T/s. 

 

(c) Considerations of Lenz’s law leads to the conclusion that B2 is increasing. 

 

85. THINK Changing magnetic field induces an electric field. 

 

EXPRESS The induced electric field is given by Eq. 30-20: 

 

 .Bd
E ds

dt


    

 

The electric field lines are circles that are concentric with the cylindrical region. Thus, 

 

2 1
(2 ) ( ) .

2

dB dB
E r r E r

dt dt
       

 

The force on the electron is ,F eE  so by Newton’s second law, the acceleration is 

/ .a eE m   

  

 ANALYZE (a) At point a,  

 

2 3 41
(5.0 10 m)( 10 10 T s) 2.5 10 V/m.

2 2

r dB
E

dt

   
       

 
 

 

With the normal taken to be into the page, in the direction of the magnetic field, the 

positive direction for E  is clockwise. Thus, the direction of the electric field at point a is 

to the left, that is 4 ˆ(2.5 10 V/m)i.E    The resulting acceleration is 

 

 
19 4

7 2

31

( 1.60 10 C)( 2.5 10 V/m) ˆ ˆi (4.4 10 m/s )i.
9.11 10 kg

a

eE
a

m

 



    
   


 

 

The acceleration is to the right.  

 

(b) At point b we have rb = 0, so the acceleration is zero. 
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(c) The electric field at point c has the same magnitude as the field in a, but with its 

direction reversed. Thus, the acceleration of the electron released at point c is  

 
7 2 ˆ(4.4 10 m s )i .c aa a    

 

LEARN Inside the cylindrical region, the induced electric field increases with r. 

Therefore, the greater the value of r, the greater the magnitude of acceleration. 

 

86. Because of the decay of current (Eq. 30-45) that occurs after the switches are closed 

on B, the flux will decay according to 

 

 1 2
/ /

1 10 2 20,L Lt t
e e

  
     

 

where each time constant is given by Eq. 30-42.  Setting the fluxes equal to each other 

and solving for time leads to 

 

20 10

2 2 1 1

ln( / ) ln(1.50)
81.1 s

( / ) ( / ) (30.0 / 0.0030 H) (25 / 0.0050 H)
t

R L R L


 
  

   
 . 

 

87. THINK Changing the area of the loop changes the flux through it. An induced emf is 

produced to oppose this change.  

 

EXPRESS The magnetic flux through the loop is B BA  , where B is the magnitude of 

the magnetic field and A is the area of the loop. According to Faraday’s law, the 

magnitude of the average induced emf is 

 

avg

| |
.B Bd B A

dt t t


   
  

 
 

 

 ANALYZE (a) substituting the values given, we obtain 

 

  
2

avg

2.0 T 0.20 m| |
0.40V.

0.20 s

B A

t



  


 

 

(b) The average induced current is i
R

avg

avg V

20 10
A. 






 0 40
20

3

.


 

 

LEARN By Lenz’s law, the more rapidly the area is changing, the greater the induced 

current in 

 

88. (a)  From Eq. 30-28, we have  
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9 2

3

(150)(50 10  T m )
3.75 mH

2.00 10 A

N
L

i





  
  


. 

 

(b) The answer for L (which should be considered the constant of proportionality in  

Eq. 30-35) does not change; it is still 3.75 mH. 

 

(c) The equations of Chapter 28 display a simple proportionality between magnetic field 

and the current that creates it.  Thus, if the current has doubled, so has the field (and 

consequently the flux).  The answer is 2(50) = 100 nWb. 

 

(d) The magnitude of the induced emf is (from Eq. 30-35)  

 

 3

max

(0.00375 H)(0.0030 A)(377 rad/s) 4.24 10 V
di

L
dt

   . 

 

89. (a) i0 = /R = 100 V/10  = 10 A. 

 

(b)   
22 21 1

02 2
2.0H 10A 1.0 10 JBU Li    . 

 

90. We write 0
Lt

i i e


  and note that i = 10% i0. We solve for t: 

 

t
i

i

L

R

i

i

i

i
L
F
HG
I
KJ 
F
HG
I
KJ 

F
HG

I
KJ  ln ln

.
ln

.
. .0 0 0

0

2 00

0100
154

H

3.00
s


 

 

91. THINK We have an RL circuit in which the inductor is in series with the battery.  

 

EXPRESS As the switch closes at t = 0, the current being zero in the inductor serves as 

an initial condition for the building-up of current in the circuit.  

 

ANALYZE (a) At t = 0, the current through the battery is also zero. 

 

(b) With no current anywhere in the circuit at t = 0, the loop rule requires the emf of the 

inductor L to cancel that of the battery ( = 40 V). Thus, the absolute value of Eq. 30-35 

yields 

2bat | | 40 V
8.0 10 A s .

0.050 H

L
di

dt L


     

 

(c) This circuit becomes equivalent to that analyzed in Section 30-9 when we replace the 

parallel set of 20000  resistors with R = 10000 . Now, with L = L/R = 5  10
–6

 s, we 

have t/L = 3/5, and we apply Eq. 30-41: 

 

 3 5 3

bat 1 1.8 10 A.i e
R

       
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(d) The rate of change of the current is figured from the loop rule (and Eq. 30-35): 

 

bat | | 0.Li R     

 

Using the values from part (c), we obtain |L|  22 V. Then, 

 

2bat | | 22 V
4.4 10 A s .

0.050 H

L
di

dt L


     

 

(e) As t  , the circuit reaches a steady-state condition, so that dibat/dt = 0 and L = 0. 

The loop rule then leads to 

3

bat bat

40 V
| | 0   4.0 10 A.

10000
Li R i        


 

 

(f) As t  , the circuit reaches a steady-state condition, dibat/dt = 0. 

 

LEARN In summary, at t = 0 immediately after the switch is closed, the inductor 

opposes any change in current, and with the inductor and the battery being connected in 

series, the induced emf in the inductor is equal to the emf of the battery, .L   A long 

time later after all the currents have reached their steady-state values, 0,L   and the 

inductor can be treated as an ordinary connecting wire. In this limit, the circuit can be 

analyzed as if L were not present.     

 

92. (a) L = /i = 26  10
–3

 Wb/5.5 A = 4.7  10
–3

 H. 

 

(b) We use Eq. 30-41 to solve for t: 

 

  3

3

2.5A 0.754.7 10 H
ln 1 ln 1 ln 1

0.75 6.0V

2.4 10 s.

L

iR L iR
t

R


 





    
            

     

 

 

 

93. The energy stored when the current is i is 21

2
BU Li , where L is the self-inductance.  

The rate at which this is developed is  

 

BdU di
Li

dt dt
  

 

where i is given by Eq. 30-41 and /di dt  is obtained by taking the derivative of that 

equation (or by using Eq. 30-37).  Thus, using the symbol V to stand for the battery 

voltage (12.0 volts) and R for the resistance (20.0 ), we have, at 1.61 ,Lt   
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   
2 2

/ / 1.61 1.61(12.0 V)
1 1 1.15 W

20.0
L Lt tBdU V

e e e e
dt R

        


. 

 

94. (a) The self-inductance per meter is 

 

     
2 22

0 4 H m 100turns cm 1.6cm 0.10H m.
L

n A      

 

(b) The induced emf per meter is 

 



 
  

L di

dt
010 13 13. . .H m A s V mb gb g  

 

95. (a) As the switch closes at t = 0, the current being zero in the inductors serves as an 

initial condition for the building-up of current in the circuit. Thus, the current through any 

element of this circuit is also zero at that instant. Consequently, the loop rule requires the 

emf (L1) of the L1 = 0.30 H inductor to cancel that of the battery. We now apply (the 

absolute value of) Eq. 30-35 

di

dt L

L
  
 1

1

6 0

0 30
20

.

.
.A s  

 

(b) What is being asked for is essentially the current in the battery when the emfs of the 

inductors vanish (as t  ). Applying the loop rule to the outer loop, with R1 = 8.0 , 

we have 

1 1 2

1

6.0V
0 0.75A.L Li R i

R
          

 

96. Since 2 ,A   we have / 2 /dA dt d dt . Thus, Faraday's law, with N = 1, becomes  

 

( )
2Bd d BA dA d

B B
dt dt dt dt




         

 

which yields = 0.0029 V. 

 

97. The self-inductance and resistance of the coil may be treated as a "pure" inductor in 

series with a "pure" resistor, in which case the situation described in the problem may be 

addressed by using Eq. 30-41.  The derivative of that solution is 

 

/ / /
(1 )L L Lt t t

L

di d
e e e

dt dt R R L

    



   
    

 
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With L = 0.28 ms (by Eq. 30-42), L = 0.050 H, and  = 45 V, we obtain di/dt = 12 A/s 

when t = 1.2 ms. 

 

98. (a)  From Eq. 30-35, we find L = (3.00 mV)/(5.00 A/s) = 0.600 mH. 

 

(b) Since N = iL (where = 40.0 Wb and i = 8.00 A), we obtain N = 120. 

 

99. We use 1 ly = 9.46  10
15

 m, and use the symbol  for volume. 

 

U u
B

B B  
 


 




 2

0

15
3

10
2

36

2

9 46 10 1 10

2 4
3 10



.
.

m T

H m
J

c h c h
c h 

 

 

100. (a) The total length of the closed loop formed by the two radii plus the arc is 

 

2 (2 ),L r r r      

 

where r is the radius. The total resistance is 

 

 

8

6 2

3

(2 ) (1.7 10 m)(0.24 m)(2 )

1.20 10 m

(3.4 10 )(2 ) .

L r
R

A A

   









   
  



   

 

 

(b) The area of the loop is 21
2

.A r   Thus, the magnetic flux through the loop is 

 

2 2 31 1
(0.150 T)(0.240 m) (4.32 10 ) Wb.

2 2
B BA Br          

 

(c) The induced emf is 

 

2 2 21 1 1

2 2 2

Bd d d
Br Br Br

dt dt dt


  

  
        

 
 

which gives 
2 2 2

3 3 2

| |

2 2(3.4 10 )(2 ) 2(3.4 10 )(2 / 2)

Br Br Br t
i

R R t

   

  
   

   
 

 

as the magnitude of the induced current. Note that in the last step, we have substituted 

t   and 21
2

,t   for constant angular acceleration . Differentiating i with respect 

to t gives  
2 2

3 2 2

(4 )
.

(3.4 10 )(4 )

di Br t

dt t

 






 
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The induced current is at a maximum when 24 0,t   or 4/ .t   At this instant, the 

angle is 

 21 1 4
2.0 rad.

2 2
t  



 
   

 
 

 

(d) When current is at a maximum, 4/ 4 .t        Thus,  

 
2 22 2 2

max 3 3

(0.150 T)(0.24 m) 4(12 rad/s )4 4
2.20 A.

2 2 2(3.4 10 )(2 ) 2(3.4 10 )(2 2.0)

Br Br Br
i

R R

  

 
    

   

 

101. (a) We use U LiB 
1
2

2  to solve for the self-inductance: 

 

L
U

i

B 









2 2 250 10

60 0 10
139

2

3

3
2

.

.
.

J

A
H.

c h
c h

 

 

(b) Since UB  i
2
, for UB to increase by a factor of 4, i must increase by a factor of 2. 

Therefore, i should be increased to 2(60.0 mA) = 120 mA. 

 


