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2 kN'm
1] N
‘5 2 3 4 s ;
2kNLIm-le-—-—Im--+im«—'2kN
Fig. 6-36

For use of the program, it is necessary to number significant points along the length. These are usually
points of application of applied loads. However. here we are asked for the shear and moment at the
midpoint of the distributed load. Thus, we introduce an additional numbered point there with the result
indicated in Fig. 6-36.

The input and output of the computer program are shown below.

PLEASE ENTER THE NUMBER OF SEGMENTS:
2 4

PLEASE ENTER THE LENGTH OF EACH SEGMENT FROM LEFT TQO RIGHT.
1

i B3 ) g

ot et fd

PLEASE ENTER THE NUMBER OF POINT LOADS:
2

)

LOCATIONS AND LOADS:
? 1,2000
LOCATIONS AND LOADS:
? 5,2000

ENTER THE NUMBER OF EXTERNAL MOMENTS:
20

ENTER THE NO. OF DISTRIBUTED LOADED SEGMENTS:
? 2

ENTER THE SEGMENT NO., LOADLEFT, LOADRIGHT
? 2,-2000,-2000
ENTER THE SEGMENT NO., LOADLEFT, LOADRIGHT
? 3,-2000,-2000

LOCATION SHEARLEFT SHEARRIGHT MOMENTLEFT MOMENTRIGHT
1 0 2000 0 0
2 2000 2000 2000 2000
3 0 0 3000 3000
4 -2000 -2000 2000 2000
5 -2000 0 0 0
SRU 0.129 UNTS.

RUN COMPLETE.
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Supplementary Problems

For the cantilever beams loaded as shown in Figs. 6-37 and 6-38, wrile equations for the shearing force and
bending moment at any point along the length of the beam. Also. draw the shearing force and bending moment

diagrams.

6.17.
LkN 2kN
Flm 1 Im
oL__ } ——=2z
Ans.
1kN
Shear V=—-1kN for0<x<l1lm
= —3kN forl<x<2m
Z'N_L_ M= —xKkN-m for0<x<1lm
=—x—-2(x—-1)kN:'m forl<x<2m
Bending
Moment '
1kN-m j-N-m
Fig. 6-37
6.18.
TAKN 1.2kN
3 2] l v
. x
3 | llSkN [
f' Tm T 8at T Lar i
Ans.
Shear 1 V=21kN for0<x<2
21KN — _ - -
' I | V// A jl!kl\l V=21-24=—03kN for2<x<3
i oI V=21-24+15=12 for3<x<4
N M = 21xkN-m for 0 <x<2
M=2I1x - 24(x—2) for2<x<3
Bending M=21x—-24x—-2)+1.5(x—3) for3<x<4
Muoment .
: I].HRN‘m
1
51 kN-m

Fig. 6-38
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For the heams of Problems 6.19 through 6.25 simply supported at the ends and loaded as shown. write
cquations for the shearing foree and bending moment at any point along the length of the beam. Also, draw the
shearing force and bending moment diagrams.

6.19.
o —— & ——-1—-— v
200 Ib/1t
100 Ib/ft
Pabbiidd z
[#] ———
Ans.
TI.\
soo il . V = 500 — 100x Ib for 0<x <4
!— 45 !\mlh V=100=200(x —4) Ib for 4 <v <8t
Shear 4 M = 500x — 50¢ Ib- ft for 0<x <4t
M = 500x — 400(x — 2) — 100{(x — 4)Y' 1b-ft for 4 <x <&t
~ |
/\25 o
[
Bending Moment
Fig. 6-39
6.20.
15 kN/m
z
. 1,
1 | ——
L Jors TR 1 | | PR— TP— m—-'
O 5m
Ans.

T+
NT. \ V =20kN for 0<x<0.5m

Sh

™ |.,_,333m__{\, I:im V=20-15(x—-0.5) for0.5<x<25m

V = —=10kN for 25<xy<45m

23 3kN m M = 20xkN-m for 0<x<0.5m
10 kN-m 20 kN-m "
XK M=20x-75x-05"kN-m for0.5<x<25m
Bending
Moment | M =10z kN-m for0<z<2m

Fig. 6-40
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6.22.

o

An

T

5620 Ib

Shear _L

SHEARING FORCE AND BENDING MOMENT

—~ 20kNm
of N N W W M
Im I m Im 1m

1.375 kN-m

1 kN-m
Fig. 6-41
800 Ib/ft 10,000 1b-fiy
z
- z
Y —_—

L—*dw———lei: '

™~

-L—?.oa'-—-l . IF;

11,940 lb-1t
n
19,700 1b-ft
4

Bending Moment

Fig. 6-42

V =1kN
V=1-2(x—1)kN

V =3kN
M=I1xkN-m

x—1
2

X

M=lx—(x—l}(

Mﬂlx—Z(x—l}(

1)+4
)+4

]

*
—

N ‘

M= Lt—?(x—l)(

V = 5620 — 800x [b
V= —39801b

M = 5620x — 400x* Ib- ft

M = 5620x — 9600(x — 6) Ib- ft
M = 3980z

[CHAP 6

for0<x<1m
for1<x<3
for 3<x<4
for0<x<lm

forl<x<?2

for2<x<3

for3<x<4

for 0<x <121t

for 12 <x <17ft
for0<x<12ft

for 12<x<14ft
for0<z<3fi
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6.23.

TOkN
20 k N/m

o[ S

ok
L—Im 2im _!

Ans.

eo:r!: V = 60 kN forD<x<lm

Shear _{ V =60—70—20(x — 1) kN for 1 <x<3m

G\ls{:m M=60xkN-m for0<x<Im
1OKN -+ for [<x<3m

M=60x—70(x—3)— 10(x —1)’kN-m

Bending Moment

Fig. 6-43
6.24.
a000-6 3500 1b
I.‘Ur l ] ———
s ;
- zﬂ'_"L T TiaA - aa -
Ans.
-

Z//f/ T:}_l;Slb

7 4

6625 1h-fl
_Y .
Fig. 6-44
V=0 for0<x<2ft
Vv =18751Ib for2<x<16ft
V=-331251b for l6<x<18M1
M = 4000 b -t forO<x<2ft
M = 4000 + 187.5(x - 2) Ib-fi for 2<x<16ft

M = 4000 + 187.5(x — 2) — 3500(x — 16) ft  for 16 < x < 181t
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6.25.
1000 b/t
- -z
I 1 .
o —_—
: s
! o]
Ans. v=ﬁn)u—%:i(1mm)1b for 0<x< 12t

1—-\

6000 1b -t

Shear 4 17 V = —6000 + — (1000) Ib for 0< z< 12f1
\|le 24

M = 6000x —;;(Iikll)lb-Il for 0< x< 121t
48,000 b 1 2
_L; Ny 3

Bending Moment M=6000:—;—2Hf)ﬂf})lb-[t for 0< =< 12 fi

Fig. 6-45

For Problems 6.26 through 6.29 use singularity functions to write the equations for shearing force and bending
moment at any point in the beam. Plot the corresponding diagrams.

6.26.

10 kN SkN ISkN
I m

e
A

|| ———i
Ans.
T TKN
I7kN | 2kN V(x) = 17¢x)" - 10{x — 1)° = 5 - 2)"
- T 1 U — 15(x — 3)" kN
13kN
i 3
Shear M(x) = 17¢x)" = 10(x — 1) = 5(x — 2)

— 15(x — 3y kN-m

28 KN-m 26 kN m

} m'7/——-\
[

Bending Moment

Fig. 6-46



CHAP 6] SHEARING FORCE AND BENDING MOMENT
6.27.
2 kN/m
t1s { x
ol | ——
WAV ROS
btmeee 2w m -

2kt I - V(x) = 200" = 2¢e — Y + 2(x — 3 + 200 — 9H"KN
- 1—' M(x) = 200" — 1x — 1)° + 1{x — 3> + 2(x — 4)' kKN-m
M. J2WN

FJkN-m
2kN-m ’2 kN-m
Bending

Moment
Fig. 6-47
6.28.
T
200 Ib/ft
0 4 =z
l-—- 10 10’ —-L— 10" e
Ans.

Vix) = —334(x)" — S(x — 10)° + 2334{x — 20)"

T 5
n:m 1600 |:>|\ M(x) = ~334(x)" - $(x -

Shear Lo J Jse

l

Bending Moment

Fig. 6-48

10Y" + 2334(x — 20)’

151
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6.29,
1000 Njm
A B c
| Im ! im
Ans. (a)
I V = —166.7() + 750(x — 1)°
583N M = —55.6(x)" + 750(x — 1)

L =

167 N :‘_\J:N_—N E]m
|

I

(B) Shear
A _—-i
I 3 |0‘N' m
JS.QET—‘U o

{c) Bending Momeni
Fig. 6-49

6.30. A simply supported beam is subject to the uniform load together with the couple shown in Fig. 6-50. Use
the BASIC program of Problem 6.14 to determine shearing forces and bending moments at significant
points along the length of the beam. Draw approximate representations of these results.

30 b/t
400 b f1
! / 3 4 x
oL 1 |
A \F e
I——zo' 20 !~ 10—
Fig. 6-50

Ans.

LOCATION SHEARLEFT SHEARRIGHT MOMENTLEFT MOMENTRIGHT
2 -47.5 -47.5 -950 -550
3 -47.5 300 -1500 -1500
4 0 0 0 0
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4751b mm|q-\\\\
i —_—

Shear [
aﬂ"di"f $50 1b f1
T !
930 Ilb 4 1500 b fr
4

Fig, 6-51
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6.31. A simply supported beam is subject to the uniform load together with the couple shown in Fig. 6-52. Use
the BASIC program of Problem 6.14 to determine shearing forces and bending moments at significant

points along the length of the beam.

2250 N-m
® kN;m

C FENEREEERE!
i é;ém

S R

Fig, 6-52
Ans.
LOCATION SHEARLEFT SHEARRIGHT MOMENTLEFT
1 0 0 0
2 -8000 11125 -6250

3 -4875 0 0

MOMENTRIGHT
-2250
~-6250

0



Chapter 7

Centroids, Moments of Inertia, and Products of
Inertia of Plane Areas

FIRST MOMENT OF AN ELEMENT OF AREA

The first moment of an element of area about any axis in the plane of the area is given by the
product of the area of the element and the perpendicular distance between the element and the axis.
For example. in Fig. 7-1 the first moment dQ, of the element da about the x-axis is given by

dQ. = yda
About the y-axis the first moment is
dQ, = xda

For applications, see Problems 7.2 and 7.12.

-~ % — i
a1

.

Figo 7"—

FIRST MOMENT OF A FINITE AREA

The first moment of a finite area about any axis in the plane of the area is given by the summation
of the first moments about that same axis of all the elements of area contained in the finite area. This
is frequently evaluated by means of an integral. If the first moment of the finite area is denoted by
Q.. then

0.= f do.

For applications, see Problems 7.1 and 7.3.

CENTROID OF AN AREA
The centroid of an area is defined by the equations

xda vda

A A

=
H

i
IS

154
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where A denotes the area. For a plane area composed of N subareas A, each of whose centroidal
coordinates X; and ¥, are known, the integral is replaced by a summation
N

> %A,
L (7.1
; i

> i

=t (7.2)

N

S

=
I

e
I

For applications see Problems 7.2, 7.3, and 7.12.
The centroid of an area is the point at which the area might be considered to be concentrated and

still leave unchanged the first moment of the area about any axis. For example. a thin metal plate will
balance in a horizontal plane if it is supported at a point directly under its center of gravity.

The centroids of a few areas are obvious. In a symmetrical figure such as a circle or square, the
centroid coincides with the geometric center of the figure.

It is common practice to denote a centroid distance by a bar over the coordinate distance. Thus
X indicates the x-coordinate of the centroid.

SECOND MOMENT, OR MOMENT OF INERTIA, OF AN ELEMENT OF AREA

The second moment, or moment of inertia, of an element of area about any axisin the plane of the area
is given by the product of the area of the element and the square of the perpendicular distance between
the element and the axis. In Fig. 7-1. the moment of inertia d/, of the element about the x-axis is

dl, = y’da
About the y-axis the moment of inertia is
dl, = x*da

SECOND MOMENT, OR MOMENT OF INERTIA, OF A FINITE AREA
The second moment, or moment of inertia, of a finite area about any axis in the plane of the area
is given by the summation of the moments of inertia about that same axis of all of the elements of area

contained in the finite area. This, too, is frequently found by means of an integral. If the moment of
inertia of the finite area about the x-axis is denoted by [, then we have

I = I dl, = I yida (7.3)

I = I dl, = I x’da (7.4)

For a plane area composed of N subareas A, each of whose moment of inertia is known about the x-
and y-axes, the integral is replaced by a summation

L=>), L= (L)
i=1 i=1

For applications, see Problems 7.4, 7.6, 7.7, 7.8, 7.9, and 7.10.
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UNITS

The units of moment of inertia are the fourth power of a length, in® or m®.

PARALLEL-AXIS THEOREM FOR MOMENT OF INERTIA OF A FINITE AREA

The parallel-axis theorem for moment of inertia of a finite area states that the moment of inertia
of an area about any axis is equal to the moment of inertia about a parallel axis through the centroid
of the area plus the product of the area and the square of the perpendicular distance between the two
axes. For the area shown in Fig. 7-2, the axes x; and y pass through the centroid of the plane area.
The x- and y-axes are parallel axes located at distances x, and y, from the centroidal axes. Let A denote
the area of the figure, I, and I, the moments of inertia about the axes through the centroid, and I,
and I, the moments of inertia about the x- and y-axes. Then we have

I, = I+ A()? (7.5)
I, =L+ A(x,)? (7.6)
This relation is derived in Problem 7.5. For applications, see Problems 7.6, 7.8, 7.11, and 7.12.

LY

——

ﬁg- 7"2

RADIUS OF GYRATION

If the moment of inertia of an area A about the x-axis is denoted by 7,, then the radius of gyration
r, is defined by

i
= = 7.7
n=Jz (7.7)
Similarly, the radius of gyration with respect to the y-axis is given by
1,
r, = N A (7.8)

Since [ is in units of length to the fourth power, and A is in units of length to the second power,
then the radius of gyration has the units of length, say in or m. It is frequently useful for comparative
purposes but has no physical significance. See Problems 7.10 and 7.11.
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PRODUCT OF INERTIA OF AN ELEMENT OF AREA

The product of inertia of an element of area with respect to the x- and y-axes in the plane of the
area is given by

dl,, = xyda

where x and y are coordinates of the elemental area as shown in Fig. 7-1.

PRODUCT OF INERTIA OF A FINITE AREA

The product of inertia of a finite area with respect to the x- and y-axes in the plane of the area is
given by the summation of the products of inertia about those same axes of all elements of area
contained within the finite area. Thus

I, = j xy da (7.9)

From this, it is evident that /., may be positive, negative, or zero. For a plane area composed of N
subareas A, each of whose product of inertia is known with respect to specified x- and y-axes, the
integral is replaced by the summation

Ly = (L), (7.10)
i=1

For applications see Problems 7.13 and 7.15.

PARALLEL-AXIS THEOREM FOR PRODUCT OF INERTIA OF A FINITE AREA

The parallel-axis theorem for product of inertia of a finite area states that the product of inertia
of an area with respect to the x- and y-axes is equal to the product of inertia about a set of parallel
axes passing through the centroid of the area plus the product of the area and the two perpendicular
distances from the centroid to the x- and y-axes. For the area shown in Fig. 7.2, the axes x; and y pass
through the centroid of the plane area. The x- and y-axes are parallel axes located at distances x; and
y) from the centroidal axes. Let A represent the area of the figure and I, , . be the product of inertia
about the axes through the centroid. Then we have

IX_U = pr,y(,-'*'Axl)’l (7'If)
This relation is derived in Problem 7.14. For applications see Problems 7.15 and 7.16.

PRINCIPAL MOMENTS OF INERTIA
At any point in the plane of an area there exist two perpendicular axes about which the moments

of inertia of the area are maximum and minimum for that point. These maximum and minimum values
of moment of inertia are termed principal moments of inertia and are given by

—\a
(L oae = (%) + J (%) + (L, (7.12)

(fx.)min = (!I ; fy) - ‘/(%) + (fx_v)z (7.13)

These expressions are derived in Problem 7.17. For application, see Problem 7.18.
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PRINCIPAL AXES

The pair of perpendicular axes through a selected point about which the moments of inertia
of a plane area are maximum and minimum are termed principal axes. For application, see
Problem 7.16.

The product of inertia vanishes if the axes are principal axes. Also, from the integral defining
product of inertia of a finite area, it is evident that if either the x-axis, or the y-axis, or both, are axes
of symmetry, the product of inertia vanishes. Thus, axes of symmetry are principal axes.

Type of section Arca Location of centroid

—r-lbl-.—

% Geomelri¢
Rectangle 1 bh .
(2)
Triangle _T
d 1 h
¥ _l 2 W @
by e
®)
e T Geometnic
come
T_ R’ or EDE center

Semicircle
(d)
Quartrant of circle
2
G 7R - 4R
1 |-¢—R—>|
w | e

e X ] "!
Sector of circle
o

Fig. 7-3
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INFORMATION FROM STATICS

Most texts on statics develop the properties of plane cross-sectional areas shown in Fig. 7-3 that
will be needed in the present chapter. Those areas include (a) the rectangle, (b) the triangle, (¢) the
circle, (d) the semicircle, (e) the quadrant of a circle, and (e) the sector of a circle.

7.1.

and

Solved Problems

The shaded area shown in Fig. 7-4 is bounded by the curves

¥ =%
y=x

Determine the y-coordinate of the centroid of this area which ends at (1.1).
We select an element that is horizontal (thus all points in this element have the same “y") and

=

-".

(0.1)

i
T S20TaTaaTe

Fig. 7-4

extending from curve y, to y; as shown in Fig. 7-4. The height of the element is dy. From the definition

of the location of the centroid,

we can write

in which case we have

y=

Iyda

Y=72

da = (x; — x,)dy

I (2 = x0) () (dy)

1
f (x2—x,)dy
(1

I
f O ~ ) () ()

, = % = 0.229
J' 0" =) dy
0
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Although the integrations involved in this problem are simple, for more complex problems one should
resort to computers. A number of symbolic operations are available on proprietary software that permit
easy and rapid treatments of such computations.

7.2. A circular cross section has a sector having a central angle 26 removed as shown in Fig. 7-5.
Locate the y-coordinate of the centroid of the shaded area.

#=0

s

R

Fig. 7-5 Fig. 7-6

From the summary at the beginning of this chapter, we have for a sector of central angle 26 the area
and centroid given by 6R” and 2Rsin 6/38, respectively (see Fig. 7-6). The area of the entire circle having
its centroid at its geometric center is also given in that summary.

By definition the y-coordinate of the centroid of the shaded area in Fig. 7-4 is given by

S yda o Zyda

YT A r A

Here we consider the shaded area to be composed of the three components consisting of the lower
semicircle (I), the upper semicircle (Z), and the sector that has been removed (3). Thus the net shaded area

is represented as shown in Fig. 7-7.
g v

Fig. 7-7

Using these components in the finite summation (7.1), we have
© &) ®

T 4R) T ,(4R) Z(ZR , )
— —— |+ =R = - —_—
ZR( Iw) 2 3 oR BGsmﬂ

7R? — 6R?

y=

_ £(Rsin 6)
T (76
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7.3.

74.

A thin sheet of metal 600 mm by 1000 mm has its two upper corners folded over along the
inclined lines AC and DF as shown in Fig. 7-8. In the regions bounded by the dotted lines, the

metal thus becomes doubly thick. Determine the y-coordinate of the centroid of the folded
sheet.

t
250 mm
4
1000 mm
x
I0Cmm 30 mm
Fig. 7-8
By definition, the y-coordinate of the centroid is
- d Zy, A
y= ‘[':4 2 o —: :

where the numerator in each expression represents the first moment of the area about the x-axis. In the
numerical evaluation, the triangles ABC and DEF have been removed but replaced by triangles ACG and
DFH accounting for the double thickness. Thus we have

HNBCA NAGC
- (600) (1000) (500) — 2|r% (250) (250) [1000 — %—Dﬁ —+ 2;;(250) (250) [750 + 2%];
¥ (600) (1000)

= 491.3 mm

Determine the moment of inertia of a rectangle about an axis through the centroid and parallel
to the base.

v
-— b —1
-
g SN
T
h
2
|
Fig. 7-9

Let us introduce the coordinate system shown in Fig. 7-9. The moment of inertia I, about the x-axis
passing through the centroid is given by 1, = f y? da. For convenience it is logical to select an element

such that y is constant for all points in the element. The shaded area shown has this characteristic.
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71.5.

7.6.

CENTROIDS, MOMENTS OF INERTIA. PRODUCTS OF INERTIA [CHAP. 7

hal y3 kil l s
I, = hdy = bl 2| = bk
f v [3I 2

This quantity has the dimension of a length to the fourth power, perhaps in* or m®.

Derive the parallel-axis theorem for moments of inertia of a plane area.

Ve
‘; —-ra:'
1= da ¥’ Zg
G t T
"
[
Fig. 7-10

Let us consider the plane area A shown in Fig. 7-10. The axes x; and y; pass through its centroid.,
whose location is presumed to be known. The axes x and y arc located at known distances v, and x,.
respectively, from the axes through the centroid.

For the element of arca da the moment of inertia about the x-axis is given by

dl, = (v, + v Ydua

For the entire area A the moment of inertia about the x-axis is
I = Idlt = I(_‘lﬁ +yv'Yda = f{}’.}’da+ any‘ da +J’(y'}:da

The first integral on the right is cqual to v} f da = v} A because y, is a constant. The second integral on
the right is equal to 2y, | y'da = 2y,(0) = 0 because the axis from which y' is measured passes through

the centroid of the area. The third integral on the right is equal to /.. i.c.. the moment of inertia of the
arca about the horizontal axis through the centroid, Thus

!l = !I.a, + A{_V|)2

A similar consideration in the other direction would show that
= Ll,+ Alx )y

This is the parallcl-axis thcorem for plane areas. 1t is to be noted that one of the axes involved in each
equation must pass through the centroid of the area. In words. this may be stated as follows: The moment
of inertia of an area with reference to an axis not through the centroid of the area is equal to the moment
of inertia about a paralicl axis through the centroid of the arca plus the product of the same arca and the
square of the distance between the two axes.

The moment of incrtia always has a positive value, with a minimum value for axes through the centroid
of the area in question.

Find the moment of inertia of a rectangle about an axis coinciding with the base.
‘The coordinate system shown in Fig. 7-11 is convenicnt. By definition the moment of inertia about the

x-axis is given by /, = f y da. For the clement shown y is constant for all points in the element. Hence

L Ik
I, = y’bdy=b[y—] = Lon
(M 3 3
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'Y
-—b——l

AAAAIAAY, Eftg
'l
3 B

This solution could also have been obtained by applying the parallel-axis theorem to the result
obtained in Problem 7-4. This states that the moment of inertia about the base is equal to the moment of
incrtia about the horizontal axis through the centroid plus the product of the arca and the square of the
distance between these two axes. Thus

Fig. 7-11

1 AN
1_=j'-|- "-':— "+ —-) = — 3
I o T AN lzbh bh(z 3 bh

7.7. Determine the moment of inertia of a triangle about an axis coinciding with the base.

v

fie |

T
b —
Fig. 7-12

LI

Let us introduce the coordinate system shown in Fig. 7-12. The moment of inertia about the horizontal

base is
L=jfm

For the shaded elcment shown the quantity y is constant for all points in the elcment. Thus

h
L= I y'sdy
0

By similar triangles, s/b = (h — y)/h, so that

hb b " " !
L= [ e nay=iln [ va - ["yay] = pow
T m" ) ] 12

7.8. Determine the moment of inertia of a triangle about an axis through the centroid and parallel
to the base.
Let the x-axis pass through the centroid and take the x-axis to coincide with the base as shown in
Fig. 7-13.
From Fig. 7-3(b) the x-axis is located a distance of /3 above the base. Also. the parallcl-axis theorem
tells us that

I,=1_+A(y)
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But {, was determined in Problem 7.7, and A and y, (= h/3) are known. Hence we may solve for the desired
unknown, /, .. Substituting,

I, 1 h\? 1
—_ _ + = — = — 3
lzbh I, zbh(3) or I, bh

“ 36

o b —l
Fig. 7-13

7.9. Determine the moment of inertia of a circle about a diameter.

ﬁgo 7‘14

Let us select the shaded element of area shown in Fig. 7-14, and work with the polar coordinate
system. The radius of the circle is r.

To find 7, we have the definition [, = J' ¥ da.

But y = psin ® and da = pd@dp. Hence

2w £r 2 1 r
I, = J J psin’ Bpdedp = f sin’ Bdﬂ[zp‘]n
11} [1] 1]

4 2w 777"
= %J' sin’ 0d6 = e
[}
If D denotes the diameter of the circle, then D = 2r and I, = 7wD*/64. This is half the value of the polar
moment of inertia of a solid circular area (see Problem 5.1).
The moment of nertia of a semicircular area about an axis coinciding with its base is

1 #D*  =D*

L=3 & =1
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7.10. Determine the moment of inertia about both the x- and y-axes as well as the corresponding radii
of gyration of the plane area shown in Fig. 7-15.

¥
y=64 — x}/25

X dx

_L.—«wm——l-—wmm-—-!
Fig. 7-15

Let us select the shaded element of width dx and altitude y shown in Fig. 7-15. From Problem 7.6 we
have the moment of inertia of this element about the x-axis as

dl, = {bi’ = }(dx)y"*

Now, we must integrate over all values of x from —40 mm to +40 mm to account for all such elements.

Thus,
1 xa)
I, = jd!, = EJ’
x=—40
2 x =40 xz K
A5

= 3.197 ¥ 10° mm*

y'dx
3

The same element may be employed to determine the moment of inertia of the entire area about the
y-axis. By definition we have

dl, = x*da

=40
I,:[df,=f x*ydx
x=-40

x= 30
=2I 12(64—-"-2-)&
x=( 25

= 1.092 x 10 mm*

To determine the radii of gyration, it is first necessary to find the area under the curve. It is
given by
A= f ydx
2

x=40 x ,
=72 - =
J;:O (64 25) dx = 3413 mm

which becomes

from which we have

, \/f:,_ 3197 X 10°mm* _
* A 3413mm?
/i 1.092 % 10° mm*
P b= P dtata LS T X'
" \/; 3413 mm? mm
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7.11. Two channel sections are attached to a cover plate 16 in long by j in thick, as indicated in Fig.
7-16. Locate the centroid of the cross section and determine the moment of inertia and radius
of gyration about an axis parallel to the x-axis and passing through the centroid.

2.6in

0.25in

Axis of
symmetry

——
R—
]
5
o
El

5in Sin —I | 1

—-i Id— 260 - 025=235in

Fig. 7-16 Fig. 7-17

Let us first consider a single channel section. as shown in Fig. 7-17. The area of the cross section is
A = 2(})(2.60 — 0.25) + 10(}) = 4.85in”

and from Problem 7.4 together with the parallel-axis theorem we have the moment of inertia of the channel
about an axis parallel to the x-axis and passing through the centroid of the channel (the x,-axis) as

@ @ ©)
Lo = 13() (10)" + 2{i5(2.35) ()" + (235) () (5 — )
= 73.90in*
where term (1) corresponds to the moment of inertia of the vertical rectangle about the x,-axis, term (2)
corresponds to the moment of inertia of one horizontal rectangle about the x,-axis through the centroid
of the horizontal rectangle, and term (@) indicatcs the transfer term from the parallel axis theorem to pass
from axis x, to axis x,.

Now, we may write the moment of inertia of the entire assembly about the x-axis by applying the result
of Problem 7.6 to the cover plate and applying the parallel axis theorem to /,, to obtain

1, = }(16) (1) + 2{73.87 + 4.85(5.5)"} = 441.8in°
The centroid of the cross section of the entire assembly is determined from the definition

Zyda
A

©) @
16) (3) (5) + 2[(4.85)(5.5 .
_UODE) +AGEN )] _ 500
(16) () +2(4.85]
where the terms represented by () correspond to the horizontal cover plate and the terms numbered (@)
correspond to the channels.

In:
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Now that we have located the centroidal axis x; of the assembly, we may employ the parallel-axis
theorem to transfer from the x- to the xg-axis:

]«I - Il’t, + AG)Z
aa 8in* = 1, + (1776 in%) (3.13 in)°
I, = 268.48in*

The corresponding radius of gyration is

fL [268.48 )
P, = 7"= ——— =38%in

V 17.76

7.12. A plane section is in the form of an equilateral triangle, 200 mm on a side. From it is removed
another equilateral triangle in such a manner that the width of the remaining section is 30 mm
measured perpendicular to the sides of both equilateral triangles. as shown m Fig. 7-18.
Determine the location of the centroid of the remaining (shaded) area as well as the moment
of inertia about the axis through the centroid and parallel to the x-axis.

i 200 ;mm I

Fig. 7-18

It is necessary to determine the size of the inner triangle that has been removed. From the geometry
of Fig. 7-18 it is evident that BE = 60 mm because of the 30° angle between BE and BC. Thus the altitude
h of the “removed™ triangle DEF is

h = 200cos 30 — 30 — 60 = 83.21 mm
The length of a side of this triangle is

83.21
DF = m = 96.08 mm

From symmetry the centroid lies on the y-axis and its location is found by the definition

[yda or ZydA
A A

where the numerator represents the first moment of the area about the x-axis. Using the known location
of the centroid of a triangle and its area, as given in the summary at the beginning of this chapter,
we have

_ 3(200) (200 cos 30) (% cos 30) — 3(96.08) (83.21) {30 + 83.21/3}
v= 1(200) (200 cos 30) — }(96.08) (83.21)

= 57.72 mm
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To determine the moment of inertia of the shaded area in Fig. 7-18, we begin by finding the moment
of inertia of that area about the x-axis. This is accomplished by taking the moment of inertia of the outer
triangle ABC about the x-axis using the result of Problem 7.7, then subtracting the moment of inertia of
the inner triangle D EF about that same axis. This latter value is calculated by first determining the moment
of inertia of DEF about an axis through the centroid of DEF using the result of Problem 7.8, then
employing the parallel-axis theorem to transfer that value to the x-axis. Thus,

I, = $5(200) (200 cos 30)* — [(96.08) (83.21) + 3(96.08) (83.21) [30 + 83.21/31%)
= 71.74 X 10° mm*
Utilizing the parallel-axis theorem, we have
I.=1+AQF)
71.74 X 10° mm* = I, + {3(200) (200 cos 30) — 3(96.08) (83.21)} (57.72 mm)?
I, = 27.35 X 10° mm*

7.13. Determine the product of inertia of a rectangle with respect to the x- and y-axes indicated in
Fig. 7-19.

el

.

"_‘—'l I"u

|
L

—t—

Fig. 7-19

We employ the definition /,, = nyda and consider the shaded element shown. Integrating,

v=h rx=b y=h xl ]
L, = J I xydxdy = f [3] ydy
y=0 Jx=0 y=0 o
b?

2qh p2p2

¥ bh
=} === 1
2[2}0 4 0

7.14. Derive the parallel-axis theorem for product of inertia of a plane area.

In Fig. 7-20. the axes x; and y pass through the centroid of the area A. The axes x and y are located
the known distances y, and x,, respectively, from the axes through the centroid.
For the element of area da the product of inertia with respect to the x- and y-axes is given by

dl,, = (x, +x")(n +y")dxdy

For the entire area the product of inertia with respect to the x- and y-axes becomes

lr;y = Jdlx)' = Ij(xl +x )Y, +y')dxdy

=ij.yldxdy+Ijx'y,dxdy+Ifx,y'drdy+fjx'y'dxdy
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7.15.

| ¥

Fig. 7-20

The first integral on the right side equals x, y, A since x, and y, are constants. The second and third integrals
vanish because x” and y" are measured from the axes through the centroid of the area A. The fourth integral
is equal to /,,,, that is, the product of inertia of the area with respect to axes through its centroid and
parallel to the x- and y-axes, Thus, we have

Ir)=‘rlyl"q+‘rx,_—,y;_-, (1)

This is the parallel-axis theorem for product of inertia of a plane area. It is 10 be noted that the xs- and
Yo-axes must pass through the centroid of the area. Also, x, and y, are positive only when the x- and
y-coordinates have the location relative to the x;-ys system indicated in Fig. 7-20. Thus, care must be taken
with regard to the algebraic signs of x; and y,.

Determine I,, for the angle section indicated in Fig. 7-21.

The area may be divided into the component rectangles as shown. For rectangle 1 we have, from (1)
of Problem 7.13,

(I,)1 = (10)? (125)% = 39 % 10* mm*

For rectangle 2 we employ (1) of Problem 7.14. The product of inertia of rectangle 2 about axes through
its centroid and parallel 1o the x- and y-axes vanishes because these are axes of symmetry. Thus, for
rectangle 2, I, = 0. The parallel-axis theorem of Problem 7.14 thus becomes

(I.,): = (42.5)(5) (65) (10) = 13.8 X 10* mm*
For the entire angle section we thus have

1, =39 x10* + 13.8 x 10* = 52.8 x 10° mm*

3 ¥o
v 2
10
,.IE'“‘Eq i *“mm
- -
x
125mm e G ¢
¥ |7
1

I 0 10 mm

L @ | [omr . Lol
I 75 mm I |._—15mrn——|

Fig. 7-21 Fig. 7-22
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7.16.

7.17.
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Determine the product of inertia of the angle section of Problem 7.15 with respect to axes
parallel to the x- and y-axes and passing through the centroid of the angle section. See Fig.
7-22.

It is first necessary to locate the centroid of the area, that is, we must find x and y. We have
_125(10) (5) + 65(10) (42.5)

x 125(10) + 65(10) _ L/Bmm
_125(10) (62.5) + 65(10) (5) _
Y= T asa0) 650y e8mm

Now we employ the parallel-axis theorem of Problem 7.13; that is,
IL,=xA+l,,,
In Problem 7.15 we found I,, = 52.8 X 10° mm®. Thus
52.8 X 10* = 17.8(42.8) (1900) + I,
whence

I

AGde

= —92 X 10 mm*

Consider a plane area A and assume that /,, I, and /,, are known. Determine the moments of
inertia /,, and /,, as well as the product of inertia I, ,,, for the set of orthogonal axes x,-y, oriented
as shown in Fig. 7-23. Determine also the maximum and minimum values of 71,,.

Fig. 7-23

The moment of inertia of the area with respect to the x,-axis is

I,= J,yﬁda= J(ycosﬂwxsinﬂ)zda

ms’ﬂjyzda+sinzﬂffda—2ﬂn9msﬁj1yw

= I,cos” 8+ I, sin® § — 21,,.sin Hcos 6

_, (1+cos26 1 - cos26
=L|—— )~ Ll—

) —I,,sin26
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Or
+ -1,
L;=(“ J>’)+("" ”)mmze—nﬁmze )
2 2
Analogously, I,, may be obtained from (/) by replacing 6 by 6+ #/2 to yield
Lq=(hzh)—(hglﬂomze+nﬁmze (2)

The value of 6 that renders /,, maximum or minimum is found by setting the derivative of Eq. (1) with
respect to 6 equal to zero. Thus, since 1., I,, and I,, are constants we have from (7)

dl!

d—; = —(I,—1,)sin26 - 2I,,cos 26 =0
Solving,
fjl
tan26 = - I -1 C))
")
_I:y
Fig. 7-24
Equation (3) has the convenient graphical interpretation shown in Cases 1 and II of Fig. 7-24.
If now the values of 26 given by (3) are substituted into (/), we obtain
L+, L-LV.
= (252) = (552 )+ €y @

where the positive sign refers to Case I and the negative sign to Case II. These maximum and minimum
values of moment of inertia correspond to axes defined by (3). The maximum and minimum values
of moment of inertia are termed principal moments of inertia and the corresponding axes are termed
principal axes.

We may now determine I,,,, from

=fx.y.da
=f(stﬂi-ysinﬂ)(ymﬂ—xsinﬂ)da
= coszﬂfxyda-—sinzﬂfxyda

+sm8mﬂfy’da—sin9cmﬁjx3da

= I, (cos? 8 —sin*8) + (I, — I,) sin Bcos @

=10\ .
=( 3 ’)511126‘+L_vc0529 (5)
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7.18.
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From (5), I,,,, vanishes if

I,

(L, - I!.)
2

which is identical to condition (3). Since (3) defined principal axes, it follows that the product of inertia
vanishes for principal axes.

tan26 = —

A structural aluminum 6 Z 542 section has the nominal dimensions indicated in Fig. 7-25.
Determine /,, 1, I, and also the maximum and minimum values of the moment of inertia with
respect to axes through the point O.

The section may be divided into the component rectangles (1), (2), and ) as indicated. The result
obtained in Problem 7.4, together with the paraliel-axis theorem given in Problem 7.5, may be used to
determine /, and I

I, = 53 (6) + 2[:(3) G + (39 @) 28] = 25.27 in’
I, = 56) @ +2[5@) (3)° + @) (3p) (13)] = 9.08in"

¥
] 83" ——f
e | v
s p
3 2
e @ [ ﬁn !I
I . ~_
8 I B V)
- ™ =
_ a-. AT~
L4 ‘- ,_
V@ 3
s —1 ,
Fig. 7-25 Fig. 7-26

The product of inertia with respect to the x- and y-axes may be determined through use of the
parallel-axis theorem for product of inertia as given in Problem 7.14. It is to be noted that the product of
inertia of each of the component rectangles about axes through the centroid of each component and
parallel to the x- and y-axes vanishes because these are axes of symmetry. Hence, from (7) of Problem 7.14
we have for the entire Z-section

L, = 2[(3) 21 3D ()] = 10L.61in*

The maximum and minimum values of moment of inertia with respect to axes through the point O
may be found from (4) of Problem 7.17. From that equation

G (55%) 2 Y554+ oy

B (25.27 + 9.08)+ ;‘(25.27 - 9.08
2 N 2

(1)) omen = 31,38 in? )
(e )min = 2.98 in* @)

)2 +(11.6)?
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The orientation of these principal moments of inertia is found from (3) of Problem 7.17 to be

'{T}l
tan2f = — m
2
L6
(25.2? - 9.03)
2
6= —27°20", 11720’ A3)

The principal moments of inertia given in () and (2) correspond to the principal axes given by (3). These
principal axes are represented by the dashed lines in Fig. 7-26.

Supplementary Problems

7.19. The structural channel section has welded 1o it a horizontal reinforcing plate as shown in cross section in
Fig. 7-27. Determine the y-coordinate of the centroid of the composite section.  Ans. y = 4.56in

=
E]

E.
o5imd BN

=]
s Al

12m

C5m

—
0.5
n-rl_.—i
5

a1,
Fig. 7-27
7.20. The shaded area shown in Fig. 7-28 is bounded by a circular arc and a chord. Determine the location of
the centroid of the area with respect to the center of the circular arc.

_ 4R (sin’ @)
A =
" Y3726 - sin26)

O

G
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7.21.  An area consists of a circle of radius R from which a rectangle of dimensions a X 3a has been removed,
as shown in Fig. 7-29. Dctermine the moment of inertia of the shaded area about the x- and also the

y-axes.
y
/8
T s m°
. [ 7
> [
-l: F= \
5 b )
j_ :
Fig. 7-30
R aR*  9a*
A T4 AL
ns L=y =3

7.22. The shadcd area in Fig. 7-30 results from removing the central square from the outer square. Determine
the moment of inertia of the net area about the x-axis. Ans. I, =0.0781L"°

7.23. A thin reclangular sheet has semicircular and also triangular areas removed, as shown in Fig. 7-31. Locate
the centroid of the sheet and determine the moment of inertia about the horizontal axis passing through
the centroid.  Ans. ¥ = 370.8 mm, [, = 9937 % 10° mm*

100 mm
Fig. 7-31

7.24. A trapczoidal area has the dimensions indicated in Fig. 7-32. Determine the location of the centroid as well
as the moment of inertia about an axis through the centroid and parallel to the x-axis.
Ans. y=444mm. [, = 2414 x10°mm*

100 mm | 100 nam

= 200 mm

Fig. 7-32
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7.25. A thin-walled section (r < a) has the configuration indicated in Fig. 7-33. Locate the centroid of the cross
section and determine the moment of inertia of the area about an axis passing through the centroid and
parallel to the x-axis.  Ans. y=a, 1, =533a1+arl6

~ F

e
i
|--n-h-|
Fig. 7-33
7.26. An area of circular cross section from which three circular holes have been removed is shown in Fig. 7-34.

Determine the location of the centroid of the section and the moment of inertia of an axis passing through
the centroid and parallel to the x-axis.  Ans. y = —R/10, /., = 0.737R*

Fig. 7-34

7.27. Determine the moment of inertia of the diamond-shaped figure shown in Fig. 7-35 with respect to the
horizontal axis of symmetry.  Ans. I, = 85.4in*

l‘ . — e 2 r:I-
i

.l i, 3'
' t

Fig. 7-35 Fig. 7-36
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7.28. Determine the moment of inertia of a channel-type section about a horizontal axis through the centroid.
Refer to Fig. 7-36. What is the radius of gyration about this same axis?
Ans. I._=231in", r,_ = 240in

7.29. Locate the centroid of the channel-type section shown in Fig. 7-37 and determine the moment of inertia
of the cross-sectional arca about a horizontal axis through the centroid.
Ans. ¥ =3833mm, [, =33 % 10°mm*

50 mm 4 50 mm
—-i =200 mmM-=f200 mm l:t_
N WZS mm
O
T x
Fig. 7-37

7.30. A plane arca has the shape of a parallclogram as shown in Fig, 7-38. The y- and z-axes pass through the
centroid of the area. Determinc /, and /.. Ans. I, = ubh?, I, = Lhb(B? + %)

z —b—

Fig. 7-38 Fig. 7-39

7.31. Determine the product of inertia of a triangle with respect to the x- and y-axes indicated in Fig. 7-39.
Ans. b*H124

7.32. Determine the product of inertia of the triangle shown in Fig. 7-39 with respect to the axes x¢; and yg
passing through the centroid.  Ans. —-B K72

H)
7.33. For the plane area in Fig. 7-40 determine the mo- e
ments of inertia and product of inertia with respect T
to the x¢- and y-axes passing through the centroid. 7Smm /
Also, determine the principal second moments of 1
area with respect to the centroid.
Ans. I, = 400 % 10° mm*; 1, = 147 X 10° mm*
Lye = =58 % 10°mm™  (1,)max = 805 X 10° mm?,; 150 men L.
(L) oun = 142 % 10° mm* G TG
75 mm
i z
"75 mm-}'— 150 rnll—-l

Fig. 7-40



Chapter 8

Stresses in Beams

TYPES OF LOADS ACTING ON BEAMS

Either forces or couples that lie in a plane containing the longitudinal axis of the beam may act
upon the member. The forces are understood to act perpendicular to the longitudinal axis, and the
plane containing the forces is assumed to be a plane of symmetry of the beam.

EFFECTS OF LOADS

The effects of these forces and couples acting on a beam are (@) to impart deflections perpendicular
to the longitudinal axis of the bar and (b) to set up both normal and shearing stresses on any cross
section of the beam perpendicular to its axis. Beam deflections will be considered in Chaps. 9, 10,
and 11.

TYPES OF BENDING

If couples are applied to the ends of the beam and no forces act on the bar, then the bending
is termed pure bending. For example, in Fig. 8-1 the portion of the beam between the two downward
forces is subject to pure bending. Bending produced by forces that do not form couples is called
ordinary bending. A beam subject to pure bending has only normal stresses with no shearing stresses
set up in it; a beam subject to ordinary bending has both normal and shearing stresses acting
within it.

P P
| ]

Fig. 8-1

NATURE OF BEAM ACTION

It is convenient to imagine a beam to be composed of an infinite number of thin longitudinal rods
or fibers. Each longitudinal fiber is assumed to act independently of every other fiber, i.e., there are
no lateral pressures or shearing stresses between the fibers. The beam of Fig. 8-1, for example, will
defiect downward and the fibers in the lower part of the beam undergo extension, while those in the
upper part are shortened. These changes in the lengths of the fibers set up stresses in the fibers. Those
that are extended have tensile stresses acting on the fibers in the direction of the longitudinal axis of
the beam, while those that are shortened are subject to compressive stresses.

177
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NEUTRAL SURFACE

Therc always exists one surface in the beam containing fibers that do not undergo any extension
or compression, and thus are not subject to any tensile or compressive stress. This surface is called the
neutral surface of the beam,

NEUTRAL AXIS

The intersection of the neutral surface with any cross section of the beam pcrpendicular to its
longitudinal axis 1s called the newtral axis. All fibers on one side of the neutral axis are in a state of
tension, while those on the opposite side are in compression.

BENDING MOMENT

The algebraic sum of the moments of the external forces to one side of any cross section of the
beam about an axis through that section is called the bending moment at that section. This concept was
discussed in Chap. 6.

ELASTIC BENDING OF BEAMS

The following remarks apply only if all fibers in the beam are acting within the elastic range of
action of the material.

Normal Stresses in Beams

For any beam having a longitudinal plane of symmetry and subject to a bending moment M at a
certain cross section, the normal stress acting on a longitudinal fiber at a distance y from the neutral
axis of thc beam (see Fig. 8-2) is given by

o=— (8.1)

where I denotes the moment of inertia of the cross-sectional area about the neutral axis. This quantity
was discussed in Chap. 7. The derivation of this equation is discussed in detail in Problem 8.1. For
applications sce Problems 8.2 through 8.18. These stresses vary from zero at the neutral axis of the
beam to a maximum at the outer fibers as shown. The stresses are tensile on one side of the neutral
axis, compressive on the other. These stresses are also called bending, flexural, or fiber siresses.

Fig. 8-2
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Location of the Neutral Axis

When the beam action is entirely elastic the neutral axis passes through the centroid of the cross
section. Hence, the moment of inertia / appearing in the above equation for normal stress is the
moment of inertia of the cross-sectional area about an axis through the centroid of the cross section

of the beam.

Section Modulus

At the outer fibers of the beam the value of the coordinate y is frequently denoted by the symbol
¢. In that case the maximum normal stresses are given by

Mc M
o= 7 or o= (8.2)

The ratio I/c is called the section modulus and is usually denoted by the symbol Z. The units are
in® or m*. The maximum bending stresses may then be represented as

=_ 83
o= (8.3)
This form is convenient because values of Z are available in handbooks for a wide range of standard
structural steel shapes. See Problems 8.5, 8.9, and 8.12.

Assumptions

In the derivation of the above expression for normal stresses it is assumed that a plane section of
the beam normal to its longitudinal axis prior to loading remains plane after the forces and couples
have been applied. Further, it is assumed that the beam is initially straight and of uniform cross section
and that the moduli of elasticity in tension and compression are equal. Again. it is to be emphasized
that no fibers of the beam are stressed beyond the proportional limit.

Shearing Force

The algebraic sum of all the vertical forces to one side of any cross section of the beam is called
the shearing force at that section. This concept was discussed in Chap. 6.

Shearing Stresses in Beams

For any beam subject to a shearing force V (expressed in pounds) at a certain cross section. both
vertical and horizontal shearing stresses 7 are set up. The magnitudes of the vertical shearing stresses
at any cross section are such that these stresses have the shearing force V as a resultant. In the cross
section of the beam shown in Fig. 8-3, the vertical plane of symmetry contains the applied forces and
the neutral axis passes through the centroid of the section. The coordinate y is measured from the
neutral axis. The moment of inertia of the entfire cross-sectional area about the neutral axis is denoted
by I. The shearing stress on all fibers a distance y, from the neutral axis is given by the formula

V L3
T= EI yda (8.4)

ALl

where b denotes the width of the beam at the location where the shearing stress is being calculated.
This expression is derived in Problem 8.19. For applications see Problems 8.20 through 8.23. The
integral in (8.4) represents the first moment of the shaded area of the cross section about the neutral
axis. This quantity was discussed in detail in Chap. 7. More generally, the integral always represents
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__ R

N.A. Vo ‘
!

b— & —
Fig. 8-3

the first moment about the neutral axis of that part of the cross-sectional area of the beam between
the horizontal plane on which the shearing stress 7 occurs and the outer fibers of the beam, i.e., the
area between y, and c.

From (8.4) it is evident that the maximum shearing stress always occurs at the neutral axis of the
beam, whereas the shearing stress at the outer fibers is always zero. In contrast, the normal stress varies
from zero at the neutral axis to a maximum at the outer fibers.

In a beam of rectangular cross section the above equation for shearing stress becomes

v (kh*

where 7 denotes the shearing stress on a fiber at a distance y, from the neutral axis and 4 denotes the
depth of the beam. The distribution of vertical shearing stress over the rectangular cross section is thus
parabolic, varying from zero at the outer fibers to a maximum at the neutral axis. For application see
Problems 8.20 through 8.23.

Both the above equations for shearing stress give the vertical and also the horizontal shearing
stresses at a point, as discussed in Problem 8.19, since the intensities of shearing stresses in these two
directions are always equal.

PLASTIC BENDING OF BEAMS

The following remarks apply if some or all of the fibers of the beam are stressed to the yield point
of the material.

We shall consider a simplified stress-strain curve such as that of Fig. 8-4, where it is assumed that
the proportional limit and the yield point coincide. The yield region, i.e., the horizontal plateau of the
curve, is assumed to extend indefinitely. This conventionalized representation of ductile material
behavior is termed elastic-perfectly plastic behavior. Here, o,, denotes the yield point of the material
and e,, represents the strain corresponding to that stress. We shall assume that material properties are
identical in tension and compression.

ap -t

o
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Elastoplastic Action

For sufficiently large bending moments in a beam the interior fibers will be stressed in the elastic
range of action, whereas the outer fibers will have reached the yield point of the material. Such a stress
distribution may be as indicated in Fig. 8-5.

Fully Plastic Action

As bending moments continue to increase, a limiting case is approached in which all fibers are
stressed to the yield point of the material. This stress distribution appears in Fig. 8-6.

— —

-

-
-

N.A, N.A.
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Location of Neutral Axis

When beam action is entirely elastic, the neutral axis passes through the centroid of the cross
section. However, as plastic action spreads from the outer fibers inward, the neutral axis shifts from
this location to another, which is determined by realizing that the resultant normal force over any cross
section vanishes. In the limiting case of fully plastic action, the neutral axis assumes a position such that
the total cross-sectional area is divided into two equal parts. This is discussed in Problem 8.29.

Fully Plastic Moment

The bending moment corresponding to fully plastic action is termed the fully plastic moment and
will be denoted by M,. For the stress-strain diagram assumed here no greater moment can be

developed.
For a beam of rectangular cross section the fully plastic moment is shown in Problem 8.25 to be

M, = bh?c,,/4 where b represents the width of the beam and h its depth.

Solved Problems

Elastic Bending of Beams

8.1.  Derive an expression for the relationship between the bending moment acting at any section in a
beam and the bending stress at any point in this same section. Assume Hooke's law holds.

The beam shown in Fig. 8-7(a) is lIoaded by the two couples M and consequently is in static
equilibrium. Since the bending moment has the same value at all points along the bar, the beam is said
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to be in a condition of pure bending. To dctermine the distribution of bending stress in the beam, let us
cut the beam by a plane passing through it in a dircction perpendicular to the geometric axis of the bar.
In this manner the forces under investigation become external to the new body formed. ¢ven though they
were internal effects with regard to the original uncut body.

M M M M
(|

> o % [
| E—

{a} (%)

Fig. 8-7

The free-body diagram of the portion of the beam to the left of this cutting plane now appears as in
Fig. 8-7(b). Evidently a moment M must act over the cross section cut by the plane so that the left portion
of the beam will be in static equilibrium. The moment M acting on the cut section represents the effect
of the right portion of the beam on the left portion. Since the right portion has been removed, it must be
replaced by its effect on the left portion and this effect is represented by the moment M. This moment is
the resultant of the moments of forces acting perpendicular to the cut cross section and in the plane of the
page. It is now necessary to make certain assumptions in order to determine the nature of the variation
of these forces over the cross section.

It is convenient to consider the beam to be composed of an infinite number of thin longitudinal rods
or fibers, Tt is assumed that every longitudinal fiber acts independently of every other fiber; that is, there
arc no lateral pressures or shearing stresses between adjacent fibers. Thus each fiber is subject only to axial
tension or compression. Further, it is assumed that a plane section of the beam normal to its axis before
loads are applied remains plane and normal to the axis after loading. Finally, it is assumed that the material
follows Hooke’s law and that the moduli of elasticity in tension and compression are equal.

Let us next consider two adjacent cross scctions aa and bb marked on the side of the beam. as shown
in Fig. 8-8. Prior to Joading, these sections are parallel to each other. After the applied moments have acted
on the beam, these sections are still planes but they have rotated with respect to each other to the positions
shown, where O represcnts the center of curvature of the beam. Evidently the fibers on the upper surface
of the beam are in a state of compression, while those on the lower surface have been extended slightly
and are thus in tension. The line cd is the trace of the surface in which the fibcers do not undergo any strain
during bending and this surface is called the neutral surface, and its intersection with any cross section is
called the newtral axis. The clongation of the longitudinal fiber at a distance v (measured positive
downward) may be found by drawing line de parallel to aa. If p denotes the radius of curvature of the bent
beam, then from the similar triangles ¢Od and edf we find the strain of this fiber to be

== ()

Thus, the strains of the longitudinal fibers are proportional to the distance y from the neutral axis.
Since Hooke's law holds, and thercfore £ = ofe, or o = Ee, it immediately follows that the stresses
existing in the longitudinal fibers are proportional to the distance y from the neutral axis, or

o=t @)
P
Let us consider a becam of rectangular cross section, although the derivation actually holds for any
cross section which has a longitudinal plane of symmetry. In this case, these longitudinal, or bending,
stresses appear as in Fig. 8-9.
Let da represent an element of area of the cross section at a distance y from the neutral axis. The stress
acling on da is given by thc above expression and consequently the force on this element is the product
of the stress and the arca da. that is,

Ey

dF = =2 da 3)
P
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Fig. 8-8 Fig. 8-9
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However, the resultant longitudinal force acting over the cross section is zero (for the case of pure bending)
and this condition may be expressed by the summation of all forces dF over the cross section. This is done

by integration:
E E
J—ydaZ—Jyda=0 4)
P P

Evidently [ yda = 0. However. this integral represents the first moment of the area of the cross section
with respect to the neutral axis, since y is mcasurcd from that axis. But, from Chap. 7 we may write
Jyda = yA, where y is the distance from the neutral axis to the centroid of the cross-sectional area. From
this, yA = (; and since A is not zero, then y = (. Thus the neutral axis always passes through the centroid
of the cross section. provided Hooke’s law holds.

The moment of the elemental force dF about the neutral axis is given by

E
dM=de=y(?yda) (5)

The resultant of the moments of all such elemental forces summed over the entire cross section must be
equal to the bending momem M acting at that section and thus we may write

E 7
M = j Y da ©)
p
But I = [ y*da and thus we have
m=H )
p

It is to be carefully noted that this moment of inertia of the cross-sectional area is computed with respect
to the axis through the centroid of the cross section. But previously we had

Fyv
o= (8)
p
Eliminating p from these last two equations, we obtain
M
o= ©)

This formula gives the so-called bending or flexural stresses in the beam. In it, M is the bending moment
al any section, / the moment of inertia of the cross-sectional area about an axis through the centroid of
the cross section, and y the distance from the neutral axis (which passes through the centroid) to the fiber
on which the stress o acts.

The value of y at the outer fibers of the beam is frequently denoted by ¢. At these fibers the bending
stresses are maximum and there we may write

o=—- (10)
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A beam is loaded by a couple of 12,000 Ib - in at each of its ends, as shown in Fig. 8-10. The beam
is steel and of rectangular cross section 1 in wide by 2 in deep. Determine the maximum bending
stress in the beam and indicate the variation of bending stress over the depth of the beam.

12.000 Ib-in lm B 1]
T Ana. - NA.
: — I
—f17
Fig. 8-10 Fig. 8-11

From Problem 8.1, bending takes place about the horizontal neutral axis denoted by N.A. This axis
passes through the centroid of the cross section. The moment of inertia of the shaded rectangular cross
section about this axis is found by the methods of Chap. 7 to be

I = 5bh* = (1) (2)° = 0.667 in®

Also from Problem 8.1, the bending stress at a distance y from the neutral axis is given by o = My/l,
where y is illustrated in Fig. 8-11. Thus, all longitudinal fibers of the beam at the distance y from the neutral
axis are subject to the same bending stress given by the above formula.

Since M and I are constant along the length of the bar, evidently the maximum bending stress occurs
on those fibers where y takes on its maximum value. These are the fibers along the upper and lower surfaces
of the beam, and from inspection it is obvious that for the direction of loading shown the upper fibers are
in compression and the lower fibers in tension. For the lower fibers, y = 1 in and the maximum bending
stress is

_ 1200001)

= in?
0667 18,000 Ib/in

For the fibers along the upper surface y may be considered to be negative and we have

12,000(~1) .
— —— L — _1 l 2
0.667 8,000 Ibfin

Thus the peak stresses are 18,000 Ib/in? in tension for all fibers along the lower surface of the beam
and 18.000 Ib/in’ in compression for all fibers along the upper surface. According to the formula o = Myjl,
the bending stress varies linearly from zero at the neutral axis to a maximum at the outer fibers and hence
the variation over the depth of the beam may be plotted as in Fig. 8-12.

~= 18,000 1b/in? r-—

7

1"

N.A.

—w» 18,000 Ib/in? L—

Fig. 8-12
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8.3. A beam of circular cross section is 7 in in diameter. It is simply supported at each end and loaded
by two concentrated loads of 20.000 Ib each, applied 12 in from the ends of the beam. Determine
the maximum bending stress in the beam.

20,006 1b 20,000 1b
4 g 4
%
t Ire
20,000 1b 20,000 1b

/// .
4

Bending Moment

Fig. 8-13

Here the moment is not constant along the length of the beam, as it was in Problem 8.2. The loading
is illustratcd in Fig. 8-13 together with the bending moment diagram obtained by the methods of Chap.
6. It is 1o be noted that the portion of the bcam between the two downward loads of 20,0001b is in a
condition termed pure bending and everywherc in that region the bending moment is equal to
20,000(12) = 240,000 Ib-in.

From Problem 7.9 the moment of inertia of the shaded circular cross section about the neutral axis,
which passes through the centroid of the circle, is I = mD%64 = m(7)%64 = 118 in*.

The bending stress at a distance y from the horizontal neutral axis shown is o = My/l. Evidently the
maximum bending stresses occur along the fibers located at the ends of a vertical diameter and designated
as A and B. This maximum stress is the same at all such points between the applied loads. At point B,
y = 3.5in and the stress becomes

~ 240.000(3.5)

=171 2 i
118 20 Ib/in“ tension

At point A the stress is 7120 Ib/in? compression.

8.4. A steel cantilever beam 16 ft 8 in in length is subjected to a concentrated load of 320 1b acting
at the free end of the bar. The beam is of rectangular cross section, 2in wide by 3in deep.
Determine the magnitude and location of the maximum tensile and compressive bending
stresses in the beam.

The bending moment diagram for this type of loading, determined by the techniques of Chap. 6, is
triangular with a maximum ordinate at the supporting wall, as shown below in Fig. 8-14(a). The maximum
bending moment is merely the moment of the 320-1b force about an axis through point B and perpendicular
to the plane of the page. It is —320(200) = —64.0001b-in.

The bending stress at a distance y from the neutral axis, which passes through the centroid of the cross
section, is ¢ = My/I where y is illustrated in Fig. 8-14(b). In this expression / denotes the moment of inertia
of the cross-sectional area about the neutral axis and is given by

I'=33bh* = §5(2) (3)* = 4.50in®
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Fig. 8-14

Thus at the supporting wall, where the bending moment is maximum, the peak tensile stress occurs
at the upper fibers of the beam and is

_ My _ (=64.000)(~1.5)

— ;2
i 450 21.400 Ib/in

It is evident that this stress must be tension because all points of the beam deflect downward. At the lower
fibers adjacent to the wall the peak compressive stress occurs and is equal to 21,400 Ib/in®.

Let us reconsider Problem 8.4 for the case where the rectangular beam is replaced by a
commercially available rolled steel section, designated as a W6 % 153, This standard manner of
designation indicates that the depth of the section is 6 in, that it is a so-called wide-flange section,
and that it weighs 15} 1b per ft of length. Determine the maximum tensile and compressive
bending stresses.

7

N.A.

D

Fig. 8-15

MINN

[ % —— 4 —

Such a beam has the symmetric cross section shown in Fig. 8-15 and bending takes place about the
horizontal neutral axis passing through the centroid. Extensive handbooks listing properties of all available
rolled steel shapes are available to designers and abridged tables are presented at the end of this chapter.
From that table the moment of inertia about the neutral axis is found to be 28.1 in*.

The bending stress at a distance y from the neutral axis is given by o = My/l. At the outer fibers,
v = ¢ and

= —

oM _M

I ¥ ily
The ratio l/c is designated as the section modulus and is usually denoted by the symbol Z. The units are
obviously in'. From the abridged table we find Z to be 9.7 in*. Thus if one is concerned only with bending

stresses occurring at the outer fibers, which is frequently the case since we are often interested only in
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maximum stresses, then the section modulus is a convenient quantity to work with, particularly for
standard structural shapes.

The stresses in the extreme fibers at the section of the beam immediately adjacent to the wall are thus
given by

MM 64,000

= — = —_— in?
TSz Toq - 66Mlbin

Again, since the fibers along the top of the beam are stretching, the stress there will be tension. Along the
lower face of the beam the fibers are shortening and there the stress is compressive.

8.6. A cantilever beam 3 m long is subjected to a uniformly distributed load of 30 kN per meter of
length. The allowable working stress in either tension or compression is 150 MPa. If the cross
section is to be rectangular, determine the dimensions if the height is to be twice as great as the
width.

The bending moment diagram for a uniform load acting over a cantilever beam was determined in
Problem 6.2. It was found to be parabolic, varying from zero at the free end of the beam to a maximum
at the supporting wall. The loaded beam and the accompanying bending moment diagram are shown in
Fig. 8-16. The maximum moment at the wall is given by

M._3 = —30(3)(1.5) = —135kN-m

It is to be noted that this problem involves the design of a beam, whereas all previous problems in
this chapter called for the analysis of stresses acting in beams of known dimensions and subject to various
loadings. The only cross section that need be considered for design purposes is the one where the bending
moment is a maximum, i.e., at the supporting wall. Thus we wish to design a rectangular beam to resist
a bending moment of 135 kN - m with a maximum bending stress of 150 MPa.

Since the cross section is to be rectangular it will have the appearance shown in Fig. 8-17, where the
width is denoted by b and the height by h = 2b, in accordance with the specifications. The moment of
inertia about the neutral axis, which passes through the centroid of the action. is given by

I =5bh® = $b(2b) = 3b°

At the cross section of the beam adjacent to the supporting wall the bending stress in the beam is given
by ¢ = My/l. The maximum bending stress in 1ension occurs along the upper surface of the beam, since
these fibers elongate slightly, and at this surface y = —b and o = 150 MPa. Then

My _ —135 X10°(10°) (—b)

o= —};* or 150 %b“

from which & = 110 mm and A = 2b = 220 mm.

30 kN/m

— R

N.A, A
I35 EN-m _l

Bending Moment

Fig. 8-16 Fig. 8-17



188 STRESSES IN BEAMS [CHAP. 8
8.7. A cantilever beam is of length 1.5 m, loaded by a concentrated force P at its tip as shown
in Fig. 8-18(a), and is of circular cross section (R = 100mm), having two symmetrically
placed longitudinal holes as indicated. The material is titanium alloy, having an allowable
working stress in bending of 600 MPa. Determine the maximum allowable value of the
vertical force P.
A /Ra,diu.s of hola 'g
DG
p /(J L
1 1
: J C ;
, | g
2 15m - Radivs = & = 100 mm
Ee
(a) ®)
Fig. 8-18
It is first necessary to determine the section modulus of the beam. From Chap. 7, Problem 7.9, the
moment of inertia of a solid circular cross section about a diametral axis z is mRY4. Using this value for
the solid section and subtracting the moments of inertia of each of the holes about the same diametral axis
Z (from the parallel-axis theorem of Chap. 7), we have
mR* = [ RY* R\*{R\? .
I= T—Z{I(g) + ﬂ(g) (E) ] = 0.592R
The section modulus from Eq. (8.3) is
Z= 1 = M = 0.592R>
c R
The bending stresses in the uppermost and lowermost fibers, denoted by points A and B, respectively,
in Fig. 8-18(b) are, from Eq. (83) and using R = 0.1 m,
M
Omax = E
1.5m)
600 X 10°N/m? = il
0.592R°
Solving, P = 237 X 10° N, or 237kN.
88. The extruded beam shown in Fig. 8-19 is made of 6061-T6 aluminum alloy having an allowable

working stress in either tension or compression of 90 MPa. The beam is a cantilever, subject to
a uniform vertical load. Determine the allowable intensity of uniform loading.

~4———— 23} mm

30 mm —-

150

] i
G
mm
10 mm —ae] o 10 mati

1 w/ Unit length

-

T

Im

(a)

—-l |-n-— 1CG mm
{b)
Fig. 8-19
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It is first necessary to locate the centroid of the cross section. From the methods of Chap. 7.
we have

_ (200) (30) (15) + 3(180) (10) (90) _
(200) (30) + 3(180) (10)

It is next necessary to determine the moment of inertia of the cross section. Let us first work with the
x-axis through the top of the flange. From Chap. 7 the moment of inertia of the entire section about that

axis is

50.5 mm

|

I, = }(200 mm) (30 mm)® + 3{}(10 mm) (180 mm)*}
= 60.12 X 10° mm*

and from the parallel axis theorem of Chap. 7 we may now transfer to the x,; axis through the centroid
of the cross section to find

I, = 60.12 X 10°* mm* — (11,400 mm?) (50.5 mm)*
= 31.05 X 10° mm*
The peak bending moment occurs at the supporting wall and was found in Problem 6.2 to be
wil?
Mawr =5~
Next, applying Eq. (8.7) to the lowermost fibers (A) of the beam since those are the most distant from the
neutral axis through G, we have

[w(3 m)?] [(180 — 50.5) mm] (1 m/1000 mm)
(2)(31.05 x 10° mm*) (1 m/1000 mm)*

90 X 10 N/mn? =

Solving,
w = 4.80 kN/m

8.9. The simply supported beam AD is loaded by a concentrated force of 80kN together with a
couple of magnitude 30 kN - m, as shown in Fig. 8-20. From Table 8-2 at the end of this chapter
select a commercially available steel wide-flange beam capable of carrying these loads if the
peak allowable working stress in tension as well as compression is 160 MPa.

80 m'
C D
Ar |D3n KN-m
i B o

Re

L5m 1.25 m ——==

Im

Fig. 8-20

It is first necessary to determine the reactions at A and C from statics. We have
+J3IM,=—(80kN)(1m)+ R«(2.5m)—30kN-m =0
Re = 4 KkN
2F,=R,+44-80=0
R, = 36kN
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From the methods of Chap. 6. we can now construct the moment diagram which appears as in Fig. 8-21.
From Eq. (8.3) wc have oy, = M/Z. Substituting,

‘ -
160 X 10° N/m® = w

Solving,
Z=225%x10""m? or 225 % 10* mm*

as the minimum acceptable valuc of section modulus. From Table 8-2 we see that the W203 x 28 section
has a Z value of 262 x 10* mm’. which is adequate. Undoubtedly a more complete beam listing would
indicate other sections with a Z value more nearly cqual to the requircd minimum of 225 x 10* mm’. Only
typical beams are listed in Table 8-2 for the sake of brevity.

36kN-m

i
R

Fig. 8-21

30kN-m

|..—..|

If a steel wire 0.5 mm in diameter is coiled around a pulley 400 mm in diameter, determine the
maximum bending stress set up in the wire. Take E = 200 GPa.

Since the radius of curvature of the wirc is constant, 200 mm, it is evident from (7) of Problem &.1,
namely M = EI/R, that thc bending moment M must be constant everywhere in the wire. Thus the wire
acts as a beam subject to pure bending. An cnlarged sketch of a portion of the wire is shown in Fig. 8-22.
For any fiber in the wire at a distancc y from the neutral axis, the normal strain was found in (7) of Problem
8.1 to be

_Y
‘"R
where R denotcs the radius of curvature of the beam at that point.

The maximum strain occurs at the fibers where v assumes its maximum value, that is, %(U‘S) mm from
the neutral axis. The radius of curvature is approximatcly 200 mm. More accurately. this radius should be
measured to the neutral surface of the wire. but the value in that case would only differ from 200 mm by
0.25 mm and this quantity may rcasonably be neglected.

Thus the maximum strain at the outcr fibers of the wire is

(L)

0012
200 0.00125

The longitudinal fibers are subject to tensile stresscs on one side of the wire and compressive on the
other, with no other stresses acting. Hooke’s law may then be used to find the stress:
a = Fe = (200 x 10%)(0.00125) = 250 MPa

‘This is the maximum stress in the wire.
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8.11.

The simply supported beam shown in Fig. 8-23(a) is subject to a uniformly varying load having
a maximum intensity of w N per meter of length at the right end of the bar. If the beam is a
wide-flange section having the dimensions shown in Fig. 8-23, determine the maximum load
intensity w that may be applied if the working stress is 125 MPa in either tension or compression.
Neglect the weight of the beam.

I 154 mam I
| ]

i
,dﬂﬂm,_L z ‘
| |
Rut 6m jﬂz R:L‘”“ _—‘tﬂa
(®)

Fig. 8-23
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—fzh- —fzh—

The reactions R, and R, may readily be determined in terms of the unknown w by replacing the
distributed load by its resultant. Since the average value of the distributed load is w/2 N/m acting over a
length of 6 m, the resultant is a force of magnitude 6(w/2) = 3w N acting through the centroid of the
triangular loading diagram, that is, 4 m to the right of R,. This resultant thus appears as in Fig. 8-23(b).
From statics we immediately have R, = wN and R; = 2wN.

i 1] R PN

' S 1 IR U ) S

Shear Diagram _L Bending Moment
(a) (b) ()

Fig. 8-24

The shearing force and bending moment diagrams for this type of loading were discussed in Problem
6.5. Let us introduce an x-axis coinciding with the beam and having its origin at the left support. Then at
a distance x to the right of the left reaction, the intensity of load is found from similar-triangle relationships
to be (x/6)w N/m. This portion of the loaded beam between R, and the section x appears in Fig. 8-24(a).
In accordance with the procedure explained in Problem 6.5, the shearing force V at the section a distance
x from the left support is given by

Ve _l x) _ __l s
=w 2(6 wx =w lzux

This equation holds for all values of x and from it the shear diagram is readily plotted, as shown in
Fig. 8-24(b). The point of zero shear is found by setting

w—fgwx?=0 fromwhich x=V12=346m

This is also the point where the bending moment assumes its maximum value.
The bending moment M at the section a distance x from the left support is given by

1/x\ x? 1,
M= wx 2(6)w3—wx 3f}wx

Again, this equation holds for all values of x and from it the bending moment diagram may be plotted as
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in Fig. 8-24(c). At the point of zero shear, x = 3.46 m, the bending moment is found by substitution in the
above equation to be

M, 346 = 3.46w — £w(3.46)° = 231w N-m

This is the maximum bending moment in the beam.
The bending stress on any fiber a distance y from the neutral axis of the beam is given by o = My/l.
The moment of inertia I of the beam is found from

_ 150250 [ 652109

L. 12 12

] = 95 x 10* mm*

The maximum tensile stress occurs at the lower fibers of the beam where y = 125 mm at the section where
the bending moment is a maximum. This stress is 125 MPa, and thus o = My/l becomes

(2.31w) (0.125)
b9 — =
125 % 10° <1 F(l - |2) or w =41 kN/m

Determine the section modulus of a beam of rectangular cross section.

Let & denote the depth of the beam and b its width. Bending is assumed to take place about the neutral
axis through the centroid of the cross section. The moment of inertia about the neutral axis is / = bA*/12.

Au the outer fibers the distance to the neutral axis is 4/2, and this is comrmonly denoted by ¢. The
maximum bending stresses at these outer fibers are given by

- Mc _M

Tmax I "E

The ratio I/c is called the section moduius and is usually denoted by Z. Then ¢, = MV Z. For the beam
of rectangular cross section,
_ L bRY12 _ bH

Z=2"m "6

The section modulus Z has units of m® or in®.

A beam is loaded by one couple at each of its ends, the magnitude of each couple being 5 kN -m.
The beam is steel and of T-type cross section with the dimensions indicated in Fig. 8-25(b).
Determine the maximum tensile siress in the beam and its location, and the maximum
compressive stress and its location.

It is first necessary to locate the centroid of the cross-sectional area since the neutral axis is known

to pass through the centroid. To do this we introduce the x-y coordinate system shown and use the methods
of Chap. 7. The y-coordinate of the centroid is defined by

yda
y= A
v
JEN-m A' 4
SkN-m T ; T
’/’4 3
100 mm /ﬁ | =g
-I- /? "!l-i’
ol
@ N

Hg, 625 (b)
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8.14.

where the numerator of the right side represents the first moment of the entire area about the x-axis. The
T-section may be considered to consist of the three rectangles indicated by the dashed lines and this
expresston becomes

_ _ 125(25) (62.5) + 2[50(25) (12.5)]
= =403
¥ 125(25) + 2[25(50)] mm
Thus, the centroid is located 40.3 mm above the x-axis. The horizontal axis passing through this point is

denoted by x as shown.
The moment of inertia about the x-axis is given by the sum of the moments of inertia about this same

axis of each of the three component rectangles comprising the cross section. Thus
I, = §(25) (125)* + 2[350(25)°] = 16.8 X 10° mm*
The moment of inertia about the x-axis may now be found by use of the parallel-axis theorem. Thus
L=1I_+A0)y 16.8 % 10° = I,_+ 5625(40.3))  and I = 7.7 x10*mm?*

Evidently for the loading shown, the fibers below the xg-axis are in tension, while the fibers above
this axis are in compression. Let ¢, and ¢, denote the distances of the extreme fibers from the neutral axis
(x) as shown. Obviously ¢; = 40.3mm and ¢, = 84.7 mm. The maximum tensile stress occurs in those
fibers along B-B and is given by o = Mc,/I, where I denotes the moment of inertia of the entire cross
section about the neutral axis passing through the centroid of the cross section. Thus the maximum tensile
stress is given by

= 5 X 10°(10%) (40.3)/7.7 X 10° = 26.2 MPa

MCl
o B e—
I

The maximum compressive stress occurs in those fibers along A-A and is given by o= Mc/i. To
provide a consistent system of algebraic signs, it is necessary to assign a negative value 1o c, since it lies
on the side of the x;-axis opposite to that of ¢;. Hence

o= _"".’f.% = 5X 10°(10%) (—84.7)/7.7 X 10° = —55 MPa

The negative sign indicates that the stress is compressive.

A simply supported beam is loaded by the couple of 1000 Ib - ft as shown in Fig. 8-26. The beam
has a channel-type cross section as illustrated. Determine the maximum tensile and compressive
stresses in the beam.

The bending moment diagram for this particular loading has been determined in Problem 6.11, where
it was found to appear as in Fig, 8-27.

The techniques of Chap. 7 may be employed to locate the centroid as lying 1.5 in above the x-axis and
the moment of inertia of the entire cross section about the xg-axis as 41.6in*.

In this problem it is necessary to distinguish carefully between positive and negative bending moments.
One method of attack is to consider a cross section of the beam slightly to the left of point B where the
1000 Ib- ft couple is applied. According to the bending moment diagram the moment there is —600 1b- fi

10—t
a ¥

@ 1 4 ] o
l B-I\ | T g v 38" wo
— [ 7 i
“A . L¥ —>2c f
- Rl AT S, 1.5 x 600 16 f1
1000 1b-fr Tb b N
(a) (b) Bending Moment

Fig. 8-26 Fig. 8-27
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and, according to the sign convention adopted in Chap. 6, since the moment is negative the beam is concave
downward at that section, as shown in Fig. 8-28, Thus the upper fibers are in tension and the lower fibers
in compression. Along the upper fibers a-a the bending stress is given by ¢ = My/I. Then

o = (7600)(12) (=3.5)
‘ 41.6

= 605 Ib/in’

Along the lower fibers b-b the value of y in the above formula for bending stress must be taken to be
positive, and there we have

_(=600)(12) (+1.5)
T = 416 N

c— —

Fig. 8-28 Fig. 8-29

—260 1b/in’

It is next necessary to investigate the bending stresses at a section slightly to the right of point B. There
the bending moment is 400 Ib - ft and according to the usual sign convention the beam is concave upward
at that section, as shown in Fig. 8-29. Here the upper fibers are in compression and the lower fibers in
tension. Along the upper fibers a-a the bending stress is

_400(12) (~3.5) _

. _ ‘o2
T, A6 400 Ibfin
Along the lower fibers b-b we have
. 400(12)(1.5) -
b A6 170 Ibfin

‘The maximum tensile and compressive stresses must now be selected from the above four values.
Evidently the maximum tension is 605 Ib/in® occurring in the upper fibers just to the left of point B: the
maximum compression is 400 Ibfin” occurring in the upper fibers also but just to the right of point B.

Consider the beam with overhanging ends loaded by the three concentrated forces shown in
Fig. 8-30. The beam is simply supported and of T-type cross section as shown. The material is
gray cast iron having an allowable working stress in tension of 35 MPa and in compression of
150 MPa. Determine the maximum allowable value of P.

From symmetry each of the reactions denoted by R is equal to P/2. The bending moment diagram
consists of a scries of straight lines connecting the ordinates representing bending moments at the points
A, B, C. D. and E. At B the bending moment is given by the moment of the force P/4 acting at A about
an axis through B. Thus

M, = —(EP)(I) =:§N-m

50 mm
P 73 mm | 75 mm

P P

4 2 4 N l
Yh—2_5m+2.5m “ ;
B C D ] 123 mm 7

I E ) —A A
Hn»#——jm—*lm-l 0 mem
R R

Fig. 8-30
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At C the bending moment is given by the sum of the moments of the forces P/4 and R = P/2 about an axis
through C. Thus

o= ()5 + (£) a5 - Enem

The bending moment at D is equal to that at B by symmetry and the moment at each of the ends A and
E is zero. Hence, the bending moment diagram plots as in Fig. 8-31.

A A_F”g E
7 Xk

Fig. 8-31

Using the techniques described in Problem 8.13, we find the distance from the lower fibers of the
flange to the centroid to be 58.7 mm and the moment of inertia of the area about the ncutral axis passing
through the centroid to be 40 X 10° mm*.

It is perhaps simplest to calculate four values of P based upon the various maximum tensile and
compressive stresses that may exist at each of the points B and C and then select the minimum of these
values. Let us first examine point B. Since the bending moment therc is negative. the beam is concave
downward at that point, as shown in Fig. 8-32. Evidently the upper fibers are in tension and the lower
fibers are subject to compression. We shall first calculate a value of P, assuming that the allowable tensile
stress of 35 MPa is realized in the upper fibers. Applying the flexure formula o = My/I to these upper
fibers, we find

(—Pl4)(0.116)
40 % 10%(10 )

Next we shall calculate a value of P, assuming that the allowable compressive stress of 150 MPa is set up
in the lower fibers. Again applying the flexure formula, we find

(—P/4) (0.0587)

35x10°= P =483kN

- x = =
150 X 10° T
Tension : Compression :
; Compression ; Tension
Fig. 8-32 Fig. 8-33

We shall now examine point C. Since the bending moment there is positive. the beam is concave
upward at that point and appears as in Fig. 8-33. Here, the upper fibers are in compression and the lower
fibers are subject to tension. First we will calculate a value of P, assuming that the allowable tension of
35 MPa is set up in the lower fibers. From the flexure formula we find

(P/8) (0.0587)
40 X 105107 %)

Last, we shall assume that the allowable compression of 150 MPa is set up in the upper fibers. Applying
the flexure formula, we have

(35 % 10°) = P =191 kN

(P/8) (—0.116)
40 X 105109

The mimimum of these four values is P = 48,3 kN. Thus the tensile stress at the points B and D is the
controlling factor in determining the maximum allowable load.

~150x 10° = P = 414kN
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8.16. The cantilever beam A BC supports a uniform load over its right half and is of rectangular cross
section with a square cutout as shown in Fig. 8-34. If the maximum permissible stress in either
tension or compression is 140 MPa, determine the allowable uniform load w per unit length of

the beam.
¥
¥
44 35 mm
\§:
A By 3 ¢ 1 .

% ] C A‘G
N 08m 08m F=35.65 mm
N |

X

(@
Fig. 8-34

It is first necessary to locate the neutral axis (N.A.) of the beam. For entirely elastic action this passes
through the cross section of the beam and is given by (see Chap. 7)

_ _ (80)(50) (40) ~ (30) (30) (55) _
YT e e0 - eoey  emT

Also, by the methods of Chap. 7. the moment of inertia about the x-axis is
1, = 5(50) (80)’ — [12(30) (30)° + (900) (55)’]
= (8193.25) (10)* mm"

Use of the parallel-axis theorem of Chap. 7 leads to the moment of inertia about an axis parallel to x but
passing through the centroid, ie.. the xg; axis:

1. = (8193.25) (10°) mm* — [(3100) (35.65)’] = 4253.39 X 10" mm’

The tensile fibers along the top surface of the beam are at a greater distance (44.35mm) than the
compressive fibers along the lower surface (35.65 mm). For these extreme fibers in tension we have

o Me
i
M(44.35 mm) (m/1000 mm)

140 X 10° N/m? =
0 M~ 425339 x 10° mm? (m/1000 mm)"*

Salving,
M, . =13372N-m
From the loading conditions, M, = M,,,. so

M, = My = (0.8m+04m)w(0.8m)

Salving,
= (13,372N-m)
(1.2m) (0.8 m)
= 13,929.6 N/m
ar w = 13.93 kN/m



CHAP. 8] STRESSES IN BEAMS 197

8.17.

8.18.

The beam shown in Fig. 8-35 is of constant width b but the depth varies in the x-direction and
further the depth is symmetric about the x-axis. Loading is due to a vertical force at the tip of
the beam where x = L and y = 0. Determine the equation of the beam contour y = h(x) so that
outer fiber bending stresses are equal to oy at all points on the contour of the beam.

{(a)

The bending moment equation ’due to the concentrated load is —P(L — x). From Problem 8.12, the
section modulus of any cross section 1s given by bh*/6. The outer fiber bending stresses along the top surface
are, from Eq. (8.3).

_ M _P(L-x) _6P(L—x)
Z  (bH6) bk

Since it is specified that this stress must be equal to oy everywhere along the top surface, we have

6P(L —x)
bk

_ [PE=x
h = bor

This determines the beam contour for constant strength at all points along the length of the beam. This
solution neglects the effect of the singular point (L, 0) at the point of load application on stress distribution
in the immediate vicinity of the force P.

a

Ty

Solving,

A cantilever beam of circular cross section has the dimensions shown in Fig. 8-36. Determine
the peak bending stress in the beam due to the concentrated force applied at the tip A.

To express the moment of inertia of the cross section at any point along the length of the beam in terms
of the given geometry, we must first determine where the extensions of the top and bottom fibers would
meet on the x-axis. From Fig. 8-36 we immediately have from similar triangles:

xg; x+L

d 25d
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Solving,
X, = 2L 1
=73 )
The bending moment at any station located a distance x from this fictitious point of intersection is
L
M=-P [x 2k 2)
3
If we designate the beam diameter by D at this location x. we have from geometry
x _x _ 3
D=4 S0 D= oL 3

so that the cross-sectional moment of inertia at the general location x is

lfr?hD"r ™ 3dx "_( 81d* )x" )
64 64120 (64) (16)L*
From Eq. (8.2) we find the outer fiber bending stresses to be
o= M.  P(x—2L13)(3xd2L) _ 256PL° [x - 2U3] )
I [Blwd®/(64) (16)L]x*  9md? x*

Note that Eqg. (5) indicates that thc peak bending stress does not occur at the clamped end x = L.
To find where the outer fiber stresses reach a maximum value, we take the derivative do/dx and set
it equal to zcro to locate the critical value of x. Thus,

do _ (ﬁﬁpL-‘)[x-‘u) —(x— 2U3)3x2] o
dx  \ 9md’ © -

X
Solving, x = L measured from point Q. Substituting this value of x in Eq. (5). we find the peak outer fiber
bending stress to be

(6}

312

_256PLY[L-2L13] _ 256PL-‘)( 1 )_302PL
T ond” IR '( 9rd? Ra'E

Note that from Eq. (5) the outer fiber bending stress at the clamped end x = (L + 2L./3) is 1.96 PL/d?,
which is less than the peak value.

In a beam loaded by transverse forces acting perpendicular to the axis of the becam, not only
are bending stresses parallel to the axis of the bar produced but shearing stresses also act over
cross sections of the beam perpendicular to the axis of the bar. Express the intensity of these
shearing stresses in terms of the shearing force at the section and the properties of the cross
section.

The theory to be developed applies only to a cross section of rectangular shape. However, the results
of this analysis are commonly used to give approximate values of the shearing stress in other cross sections
having a plane of symmetry.

M M+ dM
\ Pz ¢
c_rv d Yo [4
- - ' ---J—N.A

a b
l—-da:—-l L— b—-l
Fig. 8-37
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Let us consider an clement of length dx cut from a bcam as shown in Fig. 8-37. We shall denote the
bending moment at the left side of the element by M and that at the right side by M + dM. since in general
the bending moment changes slightly as we move from one section to an adjacent section of the beam. If
y is measured upward from the neutral axis, then the bending stress at the left section a-a is given by

_ My

77

where I denotes the moment of inertia of the entire cross section about the neutral axis. This stress
distribution is illustrated above. Similarly, the bending stress at the right section b-b is
(M + dM)y

1

Let us now consider the cquilibrium of the shaded element acdb. The force acting on an area da of
the face ac is merely the product of the intensity of the force and the area: thus

M
ada = —.rzda

The sum of all such forces over the left face ac is found by integration to be

[

¥o

Likewise, the sum of all normal forces over the nght face bd is given by
“(M+
J’ (M !dM)y da
Yu

Evidently, since these two integrals are unequal, some additional horizontal force must act on the shaded
element to maintain equilibrium. Since the top face ab is assumed to be free of any externally applied
horizontal forces, then the only remaining possibility is that there exists a horizontal shearing force along
the lower face cd. This represents the action of the lower portion of the beam on the shaded element. Let
us denote the shearing stress along this face by 7 as shown. Also, let b denote the width of the beam at
the position where 7 acts. Then the horizontal shearing force along the face cd i1s 7h dx. For equilibrium
of the clement acdb we have

‘M (M +dM)y
EF;,=J' -—fyda—f a1+ dM)y +I MY ta+ sbdx =0
¥y Yo

Solving,

- LAM "
T dx Y
But from Problem 6.1 we have V = dM/dx, where V represents the shearing force (in pounds or Newtons)

at the section a-a. Substituting,

Vil

- [ yda (1)

¥u

T

The integral in this last equation represents the first moment of the shaded cross-sectional area about
the neutral axis of the beam. This area is always the portion of the cross section that is above the level at
which the desired shear acts. This first moment of area is sometimes denoted by Q in which case the above
formula becomes

Y

~w @)

T

The units of [ yda or of Q are in* or m*.

The shearing stress 7 just determined acts horizontally as shown in Fig. 8-37. However, let us consider
the equilibrium of a thin element mnop of thickness ¢ cut from any body and subject to a shearing stress
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Ti

1’21 dy ~e 173
dzx

”ﬁo
71

Fig. 8-38

7; on its lower face, as shown in Fig. 8-38. The total horizontal force on the lower face is 7,rdx. For
equilibrium of forces in the horizontal direction, an equal force but acting in the opposite direction must
act on the upper face, hence the shear stress intensity there too is 7;. These two forces give rise to a couple
of magnitude 7,¢dx dy. The only way in which equilibrium of the element can be maintained is for another
couple to act aver the vertical faces. Let the shear stress intensity on these faces be denoted by 7,. The
total force on cither vertical face is 7, ¢dy. For equilibrium of the moments about the center of the element
we have

EM, = nyidxdy ~ 1ytdydx =0 or T =T

Thus we have the interesting conclusion that the shearing stresses on any two perpendicular planes
through a point on a body are equal. Consequently, not only are there shearing stresses 7 acting
horizontally at any point in the beam, but shearing stresses of an equal intensity also act vertically at that
same point.

In summary, when a beam is loaded by transverse forces, both horizontal and vertical shearing stresses
arise in the beam. The vertical shearing stresses are of such magnitudes that their resultant at any cross
section is exactly equal to the shearing force V' at that same section.

A beam of rectangular cross section is simply supported at the ends and subject to the single
concentrated force shown in Fig. 8-39%(a). Determine the maximum shearing stress in the beam.
Also, determine the shearing stress at a point 1 in below the top of the beam at a section 1 ft
to the right of the left reaction.

G20 Ib
4 ) | 2’

C T
s

of
L |
|
2000 Ib 4000 1b —
(@)

The reactions are readily found from statics to be 2000 Ib and 4000 Ib as shown. The shearing force
diagram for this type of loading appears in Fig. 8-39(b).

From the shear diagram. the shearing force acting at a section 1 ft to the right of the left reaction is
2000 Ib. The shcaring stress 7 at any point in this section a distance y, from the neutral axis was shown in
Problem 8.19 and also Eq. (8.5) to be

? Shesring “Teooo s
é s 4000 th_
2 —

L)

Fig. 8-39

55

At a point lin below the top fibers of the beam, y,=1lin. Also, we have h=4in and

I = bh’112 = 2(4)/12 = 10.67 in". Substituting,
01

_———— = = in?
Tyo—1 2(10_67) 2 1 ) 280 Ibh’ln
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85210

From Eq. (I) it is clear that the peak shearing stress occurs at the neutral axis where y, = 0. Thus,
4000 (47

max = ——1) = 750 Ib/in?

Tmax 2(10.67) ( 4 I) "

Note that for a rectangular cross section this peak shearing stress is 50 percent greater than the average
shearing stress, which is given by

4000

— Y 2
Tnean = Ye) 500 Ib/in

Consider the cantilever beam subject to the concentrated load shown in Fig. 8-40. The cross
section of the beam is of T-shape. Determine the maximum shearing stress in the beam and also
determine the shearing stress 25 mm from the top surface of the beam at a section adjacent to
the supporting wall.

The shear force has a constant value of S0kN at all points along the length of the beam. Because of
this simple, constant value the shear diagram need not be drawn.

The location of the centroid and the moment of inertia about the centroidal axis for this particular
cross section were determined in Problem 8.15. The centroid was found to be 58.7 mm above the lower
surface of the beam and the moment of inertia about a horizontal axis through the centroid was found to
be 40 X 10° mm®.

Bmm gq 75 mm

. S50kN '—_Hz-_mmm __Imnr%

V '2]'—"'"““_ 4 J “A116.3 m
7 NaA. P |

58 7 mm [

50 mm

Pl omm—l | | ]

M-ﬂmrﬂ‘“«f

Fig. 8-40 Fig. 8-41

The shearing stress at a distance y, from the neutral axis through the centroid was found in Problem
8.19 ta be

¥ir
Inspection of this equation reveals that the shearing stress is a maximum at the neutral axis. since at that
point y, = 0 and consequently the integral assumes the largest possible value. It is not necessary to
integrate, however, since the integral is known in this case to represent the first moment of the area
between the neutral axis and the outer fibers of the beam about the neutral axis. This area is represented
by the shaded region in Fig. 8-41. The value of the integral could also, of course, be found by taking the
first moment of the unshaded area below the neutral axis about the line, but that calculation would be
somewhat more difficult.

Thus the first moment of the shaded area about the neutral axis is

50(116.3) (58.15) = 3.38 x 10° mm?

and the shearing stress at the neutral axis, where b = 50 mm, is found by substitution in the above general
formula to be

. 50x10°
"7 50(30 % 105

In this formula b was taken to be 50 mm, since that is the width of the beam at the point where the shearing

(3.38 X 10°) = 8.45MPa
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stress is being calculated. Thus the maximum shearing stress is 8.45 MPa and it occurs at all points on the
neutral axis along the entire length of the beam, since the shearing force has a constant value along the
entire length of the beam.

The shearing stress 25 mm from the top surface of the beam is again given by the formula
“ ‘ vda
Now, the integral represents the first moment of the new shaded area shown in Fig. 8-42, about the neutral
axis. Again it is not necessary to integrate to evaluate the integral, since the coordinate of the centroid
of this shaded area is known. It is 103.8 mm above the neutral axis. Thus the first momcnt of this shaded
area about the neutral axis is 50(25) (103.8) = 1.3 X 10* mm"”. and the shearing stress 25 mm below the top
fibers is

T

50 % 10°

- 5y =3
™= Soao 1o (3 10°) = 325 MPa

50 mm
b= 75 m;nj I-']'fu e

25 mm%_i
r 116.3 mm

a | (|

Fig. 8-42

Again, b was taken to be 50 mm since that is the width of the beam at the point where the shearing stress
is being evaluated. Since the shearing force is equal to 50 kN everywhere along the length of the beam,
the shearing stress 25 mm below the top fibers is 3.25 MPa everywhere along the beam.

The vertically oriented wide-flange section shown in Fig. 8-43 is loaded by a single horizontal
concentrated force of 6.5 kN directed parallel to the z-axis. Determine the horizontal shear
stress distribution on a flange at a section 3 m above the lower clamped end in the x-z plane.

20 mm —={ |- 240 mm ~— 20 mm

vy 6SkN
(@)

- _ 1 z
” 3’ T ) Top view
H

(&)

Fig. 8-43 Fig. 8-44
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Figure 8-44 shows a typical horizontal cross section parallel to the x-z planc as well as dimensions of
the web and flange. The shear stress 7in this plane acts in the z-direction and at a distance z from the x-axis.
The specification of 3 m above the x-z plane is unimportant: all that matters is that the equation for shear
stress derived in Problem 8.19 does not apply at horizontal sections near either the bottom or top of the
vertically oriented bar. To apply Eq. (1) of Problem 8.19 to find = we must first determine the moment of
inertia of the cross section about the x-axis. From the methods of Chap. 7, we find

I = %(2) (20 mm) (200 mm)* + {5(240 mm) (20 mm)? = 2683 x 10° mm* (1

We next introduce a coordinate z running from the x-y plane in the direction of the z-axis, and appearing
as in Fig. 8-44. From Problem 8.19 we have here V = 6500 N, and the flange thickness b here is 0.02 m. The
integral in Problem 8.19 represents the first moment of the area extending from z to the extreme fibers
of the flange —that area is shaded in Fig. 8-44. Thus, we nced not integrate and we may cvaluate the first
moment of the shaded arca about the x’-axis by taking the product of the area and the distance of the
centroid of the area from the x’-axis: that is,

1+z

0.
[0.1 - z)(0.04m)]( -

m) or  (0.02)[(0.1) - '] m?

Equation (2) of Problem 8.19 now yields the desired shearing stress as

_ 6500 N
(26.83 x 10" °*m*) (0.02 m) (2)
= 12L.1[(0.1)* - %] (10%) 2)
At the point A where the value of z is zero, the peak shearing stress is found from Eq. (2) to be
74 = (121.1)[(0.1)° - 0] (10%) = 1.21 X 10° N/m* or  1.21 MPa

{(0.02) [(0.1)* — 2°} m’)

Consider a beam having an I-type cross section as shown in Fig. 8-45. A shearing force V of
150 kN acts over the section. Determine the maximum and minimum values of the shearing
stress in the vertical web of the section.

The shearing stress at any point in the cross section is given by

V [y
—}!—?‘[}da

as derived in Problem 8.19. Here, y, represents the location of the section on which 7 acts, and is measured
from the neutral axis as shown. In this expression, / represents the moment of incrtia of the entire cross
section about the neutral axis, which passes through the centroid of the section. I is readily calculated by
dividing the section into rectangles, as indicated by the dashed lines, and we have

= L(10) (350 + 2[5(200) (25)° + 200(25) (187.5)°] = 389 X 10° mm’*

d d |

! 25 mm
c bl [p ¢
Vo 200 mm
NA. _._ﬂ_.._\“_‘_‘._ dl lat [ 200mm g
25 mm

175 mm ¢ bpAb <
__I. 175 mm
25 mm

—-l '--Il]rnrn—r NA __afa A

100 mm—e] 0mm-e! la— i ke 0mm

Fig. 8-45 Fig. 8-46 Fig. 8-47
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Inspection of the general formula for shearing stress reveals that this stress has a maximum value when
¥o = 0, that is, at the neutral axis, since at that point the integral takes on its largest possible value. It 15
not necessary to integrate to obtain the value of f; yda, since this integral is shown to represent the first
moment of the area between y, = 0 (that is, the neutral axis) and the outer fibers of the beam. This area
is shaded in Fig. 8-46. For this area we have, taking its first moment about the neutral axis,

200
[ yda = 175(10) (87.5) + 200(25) (187.5) = 1.1 X 10° mm’
[

Consequently the maximum shearing stress in the web occurs at the section a-a along the neutral axis and
by substituting in the general formula for shearing stress is found 10 be

150 % 10°

The minimum shearing stress in the web occurs at that point in the web farthest from the neutral axis.
i.e.. across the section b-b. To calculate the shearing stress there, it is necessary to evaluate [ yda for the
area between b-b and the outer fibers of the beam. This is the shaded area shown in Fig. 8-47. Apgain, it
1s not necessary to integrate, since this integral merely represents the first moment of this shaded area
about the neutral axis. It is

200
J yda = 200(25) (187.5) = 9.375 X 10° mm?
175

The value of b is still 10 mm, since that is the width of the beam at the position where the shearing stress
is being calculated. Substituting in the general formula

150 x 10°
Towe = T T
100389 % 10°)
It is ta be noted that there is not too great a difference between the maximum and minimum values
of shearing stress in the web of the beam. In fact, it is customary to calculate only an approximate value

of the shearing stress in the web of such an I-beam. This value is obtained by dividing the total shearing
force V by the cross-sectional area of the web alone. This approximate value becomes

_ 100x 10°
Tav = (400) (10)

A more advanced analysis of shearing stresses in an I-beam reveals that the vertical web resists nearly
all of the shearing force V and that the horizontal flanges resist anly a small portion of this force. The shear
stress in the web of an I-beam is specified by various codes at rather low values. Thus some codes specify
70 MPa, others 9 MPa.

= (9375 X 10°) = 36.2 MPa

= 37.5MPa

Plastic Bending of Beams

8.24. Consider a beam of arbitrary doubly symmetric cross section, as in Fig. 8-48(a), subject to pure
bending. The material is considered to be elastic-perfectly plastic, i.e., the stress-strain diagram
has the appearance shown in Fig. 8-48(b) and stress-strain characteristics in tension and

Cuwp

L Y

(a) (3]
Fig. 8-48
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compression are identical. Determine the moment acting on the beam when all fibers a distance
y1 from the neutral axis have reached the yield point of the material.

Even though bending of thc beam has caused the outer fibers 1o have yielded it is still realistic to
assume that plane sections of the beam normal to the axis before loads are applied remain plane and
normal to the axis after loading. Consequently, normal strains of the longitudinal fibers of the beam still
vary linearly with the distance of the fiber from the neutral axis.

As the value of the applied moment is increased. the extreme fibers of the beam are the first to reach
the yield point of the material and the normal stresses on all interior fibers vary linearly as the distance
of the fiber from the neutral axis, as indicated in Fig. 8-49(a). A further increase in the value of the moment
puts interior fibers at the yield point, with yielding progressing from the outer fibers inward., as indicated
in Fig. 8-49(b). In the limiting case when all fibers (except those along the neutral axis) are stressed to the
yield point the normal stress distribution appears as in Fig. 8-49(c). The bending moment corresponding
1o Fig. 8-49(c) is termed a fully plastic moment. For the type of stress-strain curve shown in Fig. 8-48(b),
no greater moment is possible.

i i F— o
S R -

._r_.__.:.:_.__ e D
LA §'J

Neutral v N

Axis

J )

-

-

o
-

(a) Fully elastic (b) Elasto-plastic (¢) Fully plastic
action in all action action

except outer fibers
Fig. 8-49

For a beam in pure bending, the sum of the normal forces over the cross scction must vanish. Hence,
for the doubly symmetric section under consideration, it is evident from inspection of Fig. 8-49(b) that the
neutral axis must pass through the centroid of such a section; i.e., the area above the neutral axis must be
equal to the area below that axis. However, in Problem 8.29 it will be found that for a more gencral,
nonsymmetric cross section the location of the neutral axis after certain of the fibers have yielded is not
the same as that found for purely clastic action where the neutral axis passes through the centroid of the
Cross section.

From Fig. 8-48(b) we have for y <y,:

2% oo o= o
Yy »n Y

and for y > y,:0 = 0,, = constant. Thus the bending moment is

b Ls
M= Icryda = zj l’-a,,,ydﬁzj o,,yda
1] Y1 i3]

20- M €
=—% | yda+20,,| yda
Y o ¥

For a beam of rectangular cross section determine the moment acting when all fibers a distance
¥ from the neutral axis have reached the yield point of the material.
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Fig. 8-50

From the result of Problem 8-24 for the geometry indicated in Fig. 8-50 we have
cty )

1
M =222 (260) + 20, b0 -3

yi \3
b
= (bcz_g},i)g‘p

For the limiting case when y, = 0 which is indicated by Fig. 8-49(c) of Problem 8.24 the fully plastic
moment of this rectangular beam is
bh*

= Oy (1)

M,l‘! = t}"zo-vp = 4

It is to be noted that the maximum possible elastic moment, i.c.. when the extreme fibers have
just reached the yield point but all interior fibers are in the elastic range of action as indicated by
Fig. 8-49(a), is

— Oy, (2)

Thus, for a rectangular cross section, the fully plastic moment is 50 percent greater than the maximum
possible elastic moment.

Determine the fully plastic moment of a rectangular beam, 1 X 2 in in cross section, of steel with
a yield point of 38,000 Ib/in’. Compare this with the maximum possible elastic moment that this
same section may carry.

From (1) of Problem 8.25, the fully plastic moment is

M, = "j’" (38,000) = 38,0001b - in

From (2) of that samc problem. the maximum possible elastic moment is

ey

M. =~

(38.000) = 25,400 Ib-in

It is evident that M, is 50 percent greater than M..

For a beam of rectangular cross section (Fig. 8-51) determine the relation between the bending
moment and the radius of curvature when all fibers at a distance y, from the neutral axis have
reached the yield point of the material.

As in Problem 8.25, we assume that plane scctions before loading remain plane and normal to the
beam axis after loading. Because of this, normal strains of the longitudinal fibers vary linearly as the
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b
- 1
% NA. 1 .
Fig. 8-51

distance of the fibers from the neutral axis. Thus, if €,,, denotes the strain of the fibers at a distance y, from
the neutral axis and e, represents the outer fiber strain, we have

& _ S o
LI Ut
Consideration of the geometry of an originally rectangular element of length dx along the beam axis,
as shown in Fig. 8-52(a), reveals that after bending it assumes the configuration indicated in Fig. 8-52(b).
From that sketch we have

1 db e
—_—— = 2
R dx «¢ @)
|I___ dz
¢
N.A. .
(a) {b)
Fig. 8-52

dx y Ey,

since the fibers a distance y, from the neutral axis obey Hooke’s law: o, = E€,,. From Problem 8.25, the
moment corresponding to these strains is

n b .\o
M = (bf‘yu -5}’?)—” 4
Yi

Thus, from (3) and (4),

de M

dx  Eby(@-57) )
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Finally, from (2) and (5) we have
1 M
R EKMIM)V3 -2MIM,

where M, = bh* /6 as in Problem 8.25. This is the desired relation between the bending moment M and
the radius of curvature R. Equation (6) plots as shown in Fig. 8-53.

(6)

o[

Fig. 8-53

8.28. Consider a beam of rectangular cross section where b = 25 mm, h = 10 mm. The material is steel
for which ¢,, = 200 MPa and E = 200 GPa. Determine the radius of curvature corresponding
to the maximum possible elastic moment and also the radius of curvature for a moment of
100N -m.

From (2) of Problem 8.25, the maximum possible elastic moment is

_ 0.025(0.01)

M, (200 X 10°) = 83N -m

The curvature corresponding to this moment is found from (6) of Problem 8.27 to be

i 83
LI =02 R=5
R (200 x 10°)[(0.025) (0.01)112) V3 - 2 or m

The value of y, corresponding to a moment of 100 N - m may be found from Problem 8.25 to be 4 mm.
The curvature corresponding to this is found from (6) of Problem 8.27 to be
100

1
R~ (200 X 10°) [(0.025) (0.01)712) V3 — 20083 0312 or R=32Zm

8.29. Consider the more general case of a beam with a cross section symmetric only about the vertical
axis, as shown in Fig. 8-54(a). For fully plastic bending [Fig. 8-54(b)), determine the location of
the neutral axis.

Although the location of the neutral axis is unknown, let us denote the area of that portion of the cross
section lying below that axis by A, and the area of the portion above that axis by 4,. As shown by
Fig. 8-54(b). all fibers in A, are subject to a tensile stress equal to the yield point of the material and all
fibers in A; are subject 10 the same magnitude compressive stress. For horizontal equilibrium of these
forces, we have

UWA|_0.YPA2=0 (})
. A
from which A =A4;= 5 (2)
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8.31.

Fig. 8-54

where A is the area of the entire cross section. Thus, for fully plastic action, the neutral axis divides the
cross section into two equal parts. This is in contrast to the situation for fully elastic action, where the
neutral axis was found in Problem 8.1 to pass through the centroid of the cross section.

Also, the sum of the moments of the tensile and compressive stresses must equal the applted moment
M,, the fully plastic moment. If y; and y, denote the distances from the neutral axis to the centroids of the
areas A, and A,, respectively, then from statics

aypA] ?I + U,pAz?z = MP (3)
From (2) this becomes
A _
"w;()’t +y)) =M, (4
M
= r 5
or % = () Gy +59) <)
This is frequently written in the form
M
Oyp = 'Zf' (6)

where Z, = (A/2) (y; +¥:) is termed the plastic section modulus.

For a W8 X 40 wide-flange section of steel having a yield point of 38,000 lb/in?, determine the
fully plastic moment. Compare this with the maximum possible elastic moment that the same
section can carry.
From Problem 8.29, the fully plastic moment M, is given by
M,=0,2,
where Z, is the plastic section modulus. For selected wide-flange sections Z, is tabulated at the end of this
chapter. In particular, for this section it is found to be 39.9 in*. Thus
M, = 38,000(39.9) = 1,520,0001b - in
The maximum possible elastic moment is M, = o, Z where Z is the usual (elastic) section modulus.
Thus
M, = 38,000(35.5) = 1,350,0001b- in

The plastic moment is only 12.6 percent greater than the maximum elastic moment for this particular
section. In fact, the fully plastic moment usually exceeds the maximum possible elastic moment by
approximately 12 to 15 percent for most wide-flange sections.

Consider the T-section shown in Fig. 8-55(a) in which all fibers in the vertical web at a distance
y: from the neutral axis have reached the yield point of the material, whereas all other fibers
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are still in the elastic range of action. Determine the location of the neutral axis and also the
moment that corresponds to this stress distribution.

The neutral axis (described by the unknown ¢;) may be located by investigating the normal forces over
the cross section as shown in Fig. 8-55(b). From geometry

ag Ty or o 5—q
— T Sr— —_— 0
S5—q »i 0 » »
% _ % ,_4-a
4—¢; W o o »i Tre
Ly p—w—f
el N o
v g v
N ° vat| TP T
4-¢ [
1 — e e R
e
— s — — vo—
{e) (b)
Fig. 8-55

For the resultant normal force to vanish

ZFy = (= y)()oy, +yl(l)(£2£)

{[F2s- ) G | - [ 52

from which we obtain the quadratic equation
A= @n+14)e +0i+43) =0 )

which determines ¢, for any specified value of y,. This locates the neutral axis. Note that since y; occurred
in the denominator in the above derivation, the equation should not be used to locate the neutral axis if
y1 = 0. Thus, when the action is entirely elastic the neutral axis passes through the centroid of the cross
section. As plastification increases (i.c., as y, decreases), the neutral axis shifts to the location indicated
by ().

The moment corresponding to the stresses in Fig. 8-55(#) may be found from

M=J'0'yda

- J.y —ao,(y)(1)dy + Iq a,,(y) (1) dy

(5— c,j- y
— Cl

5 1"‘)(«,,,) )3 dy

{4— ‘-1]

j “ "‘) () (1) @) dy

_CI

or m=22 2 RG s s-ap-2e-ar] @
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8.32.

8.33.

For the T-section of Problem 8.31 determine the location of the neutral axis when the action is
fully plastic over the entire cross section. For fully plastic action determine the moment-carrying

capacity and compare this with the maximum possible elastic moment.

- oy
& -—
A -
N.A, — ~
1" _-:._:
b —of % |

(@) (®
Fig. 8-56

In this case, the normal forces appear as indicated in Fag. 8-56(b). For equilibrium of normal forces
over the cross section, we have

=0 (1) (e} + [0,p(5 — €1} (3) — 7, (4 — 1) ()] = 0

from which ¢; = 3.5 in. Thus, as mentioned in Problem 8.29, for fully plastic action the neutral axis divides

the cross section into two equal parts.
The moment corresponding to this fully plastic action is

M, = Iﬂydﬂ
(4-0q)

€ (5-cy)
jaw(y)<1)dy+ f o, (¥) (3)dy - f o) (2) dy

0 0

= o,,[ci — Te; +21.5]
For ¢; = 3.5 this becomes
M, =925q,,

By setting y; = ¢; in (1) of Problem 8.31, the neutral axis is located for the case of the maximum
possible elastic moment. This location is found to be ¢, = 3.07 in (i.c., the neutral axis passes through the
centroid of the cross section). The maximum possible elastic moment is found from (2) of Problem 8.31

to be
M, =5.320,

‘The fully plastic moment exceeds this value by 74 percent.

A beam is of square cross section, oriented as shown in Fig. 8-57, and carries a vertical load. 1f
only the extreme top and bottom fibers reach the yield point, determine the maximum allowable
elastic bending moment. Also, if the stress reaches yield at all fibers, determine the fully plastic

moment.
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Sils

Fig. 8-57

If tensile yield is reached at fiber B and compressive yield at fiber D, the stress distribution over the

cross section is given by (see Problem 8.1)
Mc
T @)

To determine /, we consider the cross section to consist of triangles ABC and ADC. For cach of these we
have, from Problem 7.7,

I = Lok’ 2)
So for the entire cross section the moment of inertia is
1/ 2a a

1=2(5(35)(35) |

ﬂ,ﬁ
2 3

So from Eq. (1) at the extreme fibers we have
a
M
(35)

(5)

_ (om)a-"\/i
12

Typ =

~M,

For fully plastic action over the entire cross section we have the stress distribution shown in
Fig. 8-58.
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The resultant of the compressive stresses above AC is

)

) g e

which acts at the centroid of triangle ABC, and the resultant of the tensile stresses below AC is

= l(ﬁ)(i)a T,
2 \/i \/i L 20
acting at the centroid of triangle ADC. These forces form a couple of magnitude
2

o (oo () -

It is also of interest to form the ratio M, /M.

(5]

&:—_——-zz
M,

(5

Supplementary Problems

A beam made of titanium, type Ti-6Al-4V, has a yield point of 120,000 Ib/in’. The beam has 1-in X 2-in
rectangular cross section and bends about an axis parallel to the 1-in face. If the maximum bending stress
is 90,000 Ib/in?, find the corresponding bending moment.  Ans.  60,0001b-in

A cantilever beam 3 m long carries a concentrated force of 35 kN at its free end. The material is structural
steel and the maximum bending stress is not to exceed 125 MPa. Determine the required diameter if the
bar is to be circular.  Ans. 204 mm

Two %—in X 8-in cover plates are welded to two channels 10 in high to form the cross section of the beam
shown in Fig. 8-59. Loads are in a vertical plane and bending takes place about a horizontal axis. The
moment of inertia of each channel about a horizontal axis through the centroid is 78.5 in®. If the maximum
allowable elastic bending stress is 18,000 Ib/in’, determine the maximum bending moment that may be
devcloped in the beam.  Ans.  1,232.0001b-in

Vol d sl r et d 3in

10in

LA

A SIIIIIISSD ) 1%‘m

TR
% Z ,4/////5

Bin

Fig. 8-59
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8.38.

8.39.

8.40.

8.41.

8.42.

8.43.

STRESSES IN BEAMS |[CHAP. 8

A 250 mm decp wide-flange section with / = 61 X 10° mm® is used as a cantilever beam. The beam is 2 m
long and the allowable bending stress is 125 MPa. Determine the maximum allowable intensity of uniform
load that may be carried along the entire length of the beam. Ans.  30.5 kN/m

The beam shown in Fig. 8-60 is simply supported at the ends and carries the two symmetrically placed loads

of 60kN ecach. If the working stress in either tension or compression is 125 MPa, what is the required
moment of nertia of area required for a 250-mm-deep beam?  Ans 60X 10° mm*

60 kN 60 kN

{ ‘ ; 1
e LY

Fig. 8-60

Consider the simply supported beam subject to the two concentrated forces (60 kN each) shown in Fig.
8-60. Now, the beam is of hollow circular cross section as shown in Fig. 8-61, with an allowable working
stress in either tension or compression of 125 MPa. Determine the necessary outer diamcter of the
beam. Ans  174mm

20,000 1b
1000 Ib/ft

Fig. 8-61 Fig. 8-62

Consider a simply supported beam carrying the concentrated and uniform loads shown in Fig. 8-62, Select
a suitable wide-flange section to resist these loads based upon a working stress in either tension or
compression of 20,000 Ib/in?>.  Ans. W12 x 25

Select a suitable wide-flange section to act as a cantilever beam 3m long that carries a uniformly
distributed load of 30 kN/m. The working stress in either tension or compression is 150 MPa.
Ans.  W305 X 66

A beam 3 m long is simply supported at each end and carries a uniformly distributed load of 10 kN/m. The
beam is of rectangular cross section, 75 mm X 150 mm. Determine the magnitude and location of the peak
bending stress. Also, find the bending stress at a point 25 mm below the upper surface at the section
midway between supports.  Ans. 40 MPa, —26.8 MPa

Reconsider the steel beam of Problem 8-42. Determine the maximum bending stress if now the weight of
the beam is considered in addition to the load of 10 kN/m. The weight of steel is 77.0 kN/m”.

Ans. 43.6 MPa
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8.44. The two distributed loads are carried by the simply supported beam as shown in Fig. 8-63. The beam is
a W8 X 28 section. Determine the magnitude and location of the maximum bending stress in the beam.
Ans. 9000 1Ib/in?, 5.5 ft from the right support

8.45. A T-beam having the cross section shown in Fig. 8-64 projects 2 m from a wall as a cantilever beam and
carries a uniformly distributed load of 8 kN/m, including its own weight. Determine the maximum tensile
and compressive bending stresses.  Ans.  +38.5MPa, —81 MPa

4

1200 Ib/ft 25 mm

& i i

! 1.

1——-6’—-‘-—6'_4“._ s'_..l S0 mn_'n_zls ml:n_m mm

Fig. 8-63 Fig. 8-64

8.46. The simply supported beam AC shown in Fig. 8-65(a) supports a concentrated load P. The beam section
is rectangular, 60 mm by 100 mm, with two square cutouts as shown in Fig. 8-65(b). If the allowable working
stress is 120 MPa, determine the maximum value of P. Ans. 1.BOKN

L. B HoN ?/ 10 mm

05m |’ 1.5m |l /
(@) 4/?7/

Fig. 8-65

8.47. A simply supported steel beam of channel-type cross section is loaded by both the uniformly distributed
load and the couple shown in Fig. 866. Determine the maximum tensile and compressive stresses.
Ans. 31.2 MPa, —56.8 MPa

0 kN-m =~ |- 225 mm-—l |-

™
—I”;];” 40 mm 200 mm
3m l:ﬁm_.l —l-
Fig. 8-66
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848. A beam of circular cross section has the geometry shown in Fig. 8-67 and is subjected to a single
concentrated vertical force at its midpoint. Determine the location of the point of maximum bending stress
and the value of that stress. Ans. x= LA, a,,, = 0377 PLId?

y P
24
af 4—- - -~
I L L |
2 T 2 o
Fig. 8-67

849. A channel-shape beam with an overhanging end is loaded as shown in Fig. 8-68. The material is gray cast
iron having an allowable working stress of 50001b/in? in tension and 20.0001b/in’ in compression.
Determine the maximum allowable value of P. Ans. 24001b

2}1 P e et 200 Ib/ft t,__
%
S y
|—_ ¢ J'_ "_‘L’"I L J//:/j%‘?// “ R:-t 10 —iﬂz _L Z
Fig. 8-68 Fig. 8-69

8.50. In Fig. 8-69 the simply supported beam of length 10 ft and cross section 4 in X 8 in carries a uniform load
of 200 Ib/ft. Neglecting the weight of the beam, find (a) the maximum normal stress in the beam, (b) the
maximum shearing stress in the beam. and (c¢) the shearing stress at a point 2 ft to the right of R, and 1 in
below the top surface of the beam.  Ans.  (a) 705 Ib/in®, (b) 47 Ibfin?, (¢) 12.3 Ib/in?

8.51. Determine (a) the maximum bending stress and (b) the maximum shearing stress in the simply supported
beam shown in Fig. 8-70. Ans.  (a) 22,000 1b/in?, (b) 1660 Ibfin?

4000 Ib/ft

b
NN f

3

Fig. 8-70

8.52. For a bar of solid circular cross section, determine the amount by which the fully plastic moment exceeds
the moment that jusi causes the yield point to be reached in the extreme fibers. Ans.  69.6 percent
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8.53. Consider bending of a bar of isosceles triangular cross section (Fig. 8-71). The loads lie in the vertical plane
of symmetry. Determine the ratio of the fully plastic moment to the moment that just causes yielding of
the extreme fibers. Ans. 248

8.54. For the T-section shown in Fig. 8-72, determine the location of the neutral axis for fully plastic action.
Ans.  137.5 mm above the lowest fibers of the section

I I _4_25 " Hmm

e S

50 mm S0 mm

I—-— b -
_'1_|_ 150 mm i y:-[ _[t}ﬂrnm

] Tamm|
h

g TrT——
| —-ll's mt_ e 10 mm
Fig. 8-71 Fig. 8-72 Fig. 8-73

8.55. A bar of solid circular cross section of radius r is subject to bending. By what percent does the bending
moment required to cause plastic action at the distance r/2 from the neutral axis exceed that required to
just cause the yield point to be reached in the extreme fibers? Ans.  49.2 percent

8.56. For the section shown in Fig. 8-73 determine the value of y, which represents the point where elastic action
terminates and plastic flow begins, when the beam is subject to a bending moment of 20kN-m.
Also determine the radius of curvature. Take the yield point of the material to be 200 MPa, and
E =200 GPa. Ans. y;,=474mm, R=526m

8.87. A wide-flange section 600 mm high has welded to each of its flanges a 25 mm thick cover plate (see Fig.
8-74). The moment of inertia of the section is 1000 X 10° mm®. At a particular location along the length
of the beam, the transverse shear force is 300 kN. Determine the shear force per unit length existing in each
of the four welds. Ans. 146 N/mm

&00 mm S

. i
i |
25 mm | 320mumn U

Fig. 8-74
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Table 8-1. Properties of Selected Wide-Flange Sections, USCS Units
Weight per fool, Arca, 1 (about x-x axis). Z. I tabout y-y axis),

Designation® [bift in” in® in’ in*

WIS X T 700 20.56 11539 128.2 8.5
W IR x 55 55.0 16.19 BEY 9 982 420
W I2x72 720 21.16 597.4 915 195.3
W 12X 58 58.0 17.06 476.1 8.1 107.4
W12 x50 50.0 14.71 3945 67 56.4
W 12 % 45 45.0 1324 350.8 58.2 500
W 12 x40 400 17 3l 519 44.1
W 12X 36 36.0 10.59 280.8 45.9 237
W12 x 32 320 941 246.8 40.7 20.6
W 12x25 250 7.39 iK3.4 309 14.5
W 10 x 89 890 26.19 5424 99.7 180.6
W 10X 54 5440 15.88 305.7 60.4 103.9
W 10> 49 49.0) 14.40 29 54.6 9.0
W 10 x 45 450 13.24 248.6 49.1 532
W10 x 37 7.0 10.88 196.9 399 422
W 10 x 29 29.0 8.53 157.3 30.8 15.2
Wi x23 230 677 120.6 24.1 1.3
W10x21 21.0 6.19 106.3 215 9.7
W Bx40 0.0 11.76 146.3 355 490
W Bx35 35.0 iu.30 126.5 KNI 4?25
W Rx3l 0 9.12 109.7 274 Ry X)]
W Bx28 280 823 97.8 243 2.6
W 8x27 270 793 94.1 234 208
W Hx24 240 706 82.5 208 18.2
W Bx19 19.0 5.59 64.7 160 79
W 6x 15} 15.5 4.62 28. 9.7 9.7

Z, (plasuc section modulus),

in'
144.7
1n.e

8.1
R6.5
2.6
69
5§76
514
450
50

4.4
67.0
603
550
450
347
337
241

399
347

271
239
231
17.7

1.3

*The first rumbcr after the W 1s the normunal depth of the section in nches. The second number is the weight in pounds per foot of length.
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Table 8-2. Properties of Selected Wide-Flange Sections, SI Units
Mass per meter, Area, I (about x-x axis), z, I {(about y-y axis), Z, (plastic section modulus),
Designation* kg/m mm? 10* mm* 10° mm?* 10* mm?* 10° mm’
W 460 x 103 102.9 13,200 479 2100 326 2370
W 460 x 81 809 10,400 369 1610 17.4 1820
W 305 % 106 105.8 13,600 248 1590 81.0 1770
W 305 x 85 853 11,000 198 1280 44.6 1410
W 305x74 735 9480 164 1060 234 1190
W 305 x 66 66.2 8,530 146 952 20.7 1060
W 305 x 59 588 7.580 129 849 183 942
W 305x 53 529 6,820 117 750 9.83 840
W 305 x 47 47.0 6,060 102 665 8.55 736
W 305 % 37 36.8 4,760 76.1 505 6.02 572
W 254 x 131 1308 16,900 225 1630 749 1870
W 254 x 79 794 10,200 127 988 43.1 1100
W 254 %72 720 9280 113 893 38.6 986
W 254 x 66 66.2 8530 103 803 22.1 899
W 254 x 54 54.4 7.010 8.7 652 17.5 736
W 254 %43 42.6 5,490 653 504 6.31 567
W 254 x 34 338 4,360 50.0 394 4.69 551
W 254 x 31 309 3990 4.1 352 4.02 394
W 203 X 59 588 7,580 60.7 580 203 652
W 203 % 51 514 6,630 52.5 508 17.6 567
W 203 X 46 45.6 5.870 45.5 448 15.4 497
W 203 X 41 41.2 5,300 40.6 397 896 443
W 203 X 40 39.7 5110 39.0 383 863 391
W 203 x 35 353 4,550 34.2 340 7.55% 378
W 203 x 28 279 3,600 26.8 262 3.28 290
W 152%23 228 2,980 117 159 4.02 185

*The first number after the W is the nominal depth of the section in millimeters. The second number is the mass in kilograms per meter of length.



Chapter 9

Elastic Deflection of Beams:
Double-Integration Method

INTRODUCTION

In Chap. 8 it was stated that lateral loads applied to a beam not only give rise to internal bending
and shearing stresses in the bar, but also cause the bar to deflect in a direction perpendicular to its
longitudinal axis. The stresses were examined in Chap. 8 and it is the purpose of this chapter and also
Chap. 10 to examine methods for calculating the deflections.

DEFINITION OF DEFLECTION OF A BEAM

The deformation of a beam is most easily expressed in terms of the deflection of the beam from
its original unloaded position. The deflection is measured from the original neutral surface to the
neutral surface of the deformed beam. The configuration assumed by the deformed neutral surface
is known as the elastic curve of the beam. Figure 9-1 represents the beam in its original undeformed
state and Fig. 9-2 represents the beam in the deformed configuration it has assumed under the action
of the load.

I'P

i
Wé:* . ,,;3,, \0 : — ol

Fig. 9-1 Fig. 9-2

The displacement y is defined as the deflection of the beam. Often it will be necessary to determine
the deflection y for every value of x along the beam. This relation may be written in the form of an
equation which is frequently called the equation of the deflection curve (or elastic curve) of the
beam.

IMPORTANCE OF BEAM DEFLECTIONS

Specifications for the design of beams frequently impose limitations upon the deflections as well
as the stresses. Consequently, in addition to the calculation of stresses as outlined in Chap. 8, it is
essential that the designer be able to determine deflections. For example, in many building codes the
maximum allowable deflection of a beam is not to exceed 55 of the length of the beam. Components
of aircraft usually are designed so that deflections do not exceed some preassigned value, else the
aerodynamic characteristics may be altered. Thus, a well-designed beam must not only be able to carry
the loads to which it will be subjected but it must not undergo undesirably large deflections. Also, the
evaluation of reactions of statically indeterminate beams involves the use of various deformation
relationships. These will be examined in detail in Chap. 11.
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METHODS OF DETERMINING BEAM DEFLECTIONS

Numerous methods are available for the determination of beam deflections. The most commonly
used are the following:

1. Double-integration method
2. Method of singularity functions
3. Elastic energy methods

The first method is described in this chapter, the use of singularity functions is discussed in Chap.
10, and elastic energy methods are treated in Chap. 15. It is to be carefully noted that all of these
methods apply only if all portions of the beam are acting in the elastic range of action.

DOUBLE-INTEGRATION METHOD

The differential equation of the deflection curve of the bent beam is

d'y
EI ™ (9.1)
where x and y are the coordinates shown in Fig. 9-2. That is, y is the deflection of the beam. This
equation is derived in Problem 9.1. In the equation E denotes the modulus of elasticity of the beam
and 7 represents the moment of inertia of the beam cross section about the neutral axis, which passes
through the centroid of the cross section. Also, M represents the bending moment at the distance x
from one end of the beam. This quantity was defined in Chap. 6 to be the algebraic sum of the moments
of the external forces to one side of the section at a distance x from the end about an axis through this
section. Usually, M will be a function of x and it will be necessary to integrate (9.1) twice to obtain an
algebraic equation expressing the deflection of y as a function of x.
Equation (9.7) is the basic differential equation that governs the elastic deflection of all beams
irrespective of the type of applied loading. For applications, see Problems 9.2 through 9.14 and 9.16
through 9.22.

THE INTEGRATION PROCEDURE

The double-integration method for calculating deflections of beams merely consists of integrating
(9.1). The first integration yields the slope dy/dx at any point in the beam and the second integration
gives the deflection y for any value of x. The bending moment M must, of course, be expressed as a
function of the coordinate x before the equation can be integrated. For the cases to be studied here
the integrations are extremely simple.

Since the differential equation (9.7) is of the second order, its solution must contain two constants
of integration. These two constants must be evaluated from known conditions concerning the slope or
deflection at certain points in the beam. For example, in the case of a cantilever beam the constants
would be determined from the conditions of zero change of slope as well as zero deflection at the
built-in end of the beam.

Frequently two or more equations are necessary to describe the bending moment in the various
regions along the length of a beam. This was emphasized in Chap. 6. In such a case, (9./) must be
written for each region of the beam and integration of these equations yields two constants of
integration for each region. These constants must then be determined so as to impose conditions of
continuous deformations and slopes at the points common to adjacent regions. See Problems 9.17
through 9.19.
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SIGN CONVENTIONS

The sign conventions for bending moment adopted in Chap. 6 will be retained here. The quantities
E and I appearing in (9.7) are, of course, positive. Thus, from this equation, if M is positive for a certain
value of x, then d”y/dx” is also positive. With the above sign convention for bending moments, it is
necessary to consider the coordinate x along the length of the beam to be positive to the right and the
deflection y to be positive upward. This will be explained in detail in Problem 9.1. With these algebraic
signs the integration of (9.7) may be carried out to yield the deflection y as a function of x, with the
understanding that upward beam deflections are positive and downward deflections negative.

ASSUMPTIONS AND LIMITATIONS

In the derivation of (9.7) it is assumed that deflections caused by shearing action are negligible
compared to those caused by bending action. Also, it is assumed that the deflections are small
compared to the cross-sectional dimensions of the beam and that all portions of the beam are acting
in the elastic range. Equation (9.7) is derived on the basis of the beam being straight prior to the
application of loads. Beams with slight deviations from straightness prior to loading may be treated by
modifying this equation as indicated in Problem 9.25.

Solved Problems

9.1.  Obtain the differential equation of the deflection curve of a beam loaded by lateral forces.
In Problem 8.1 the relationship

El
M=—= ()
P
was derived. In this expression M denotes the bending moment acting at a particular cross section of the
beam, p the radius of curvature to the neutral surface of the bcam at this same section, £ the modulus of
elasticity, and I the moment of the cross-sectional area about the neutral axijs passing through the centroid
of the cross section. In this book we will usually be concerned with those beams for which £ and [ are
constant along the entire length of the beam, but in general both M and ¢ will be functions of x.
Equation (/) may be written in the form
LM (2
p EI )
where the left side of Eq. (2) represents the curvature of the neutral surface of the beam. Since M will vary
along the length of the beam, the deflection curve will be of variablc curvature.

Let the heavy line in Fig. 9-3 represent the deformed neutral surface of the bent beam. Originally the
beam coincided with the x-axis prior to loading and the coordinate system that is usually found to be most
convenient is shown in the sketch. The deflection y is taken to be positive in the upward direction: hence
for the particular beam shown, all deflections are negative.

Ry mar—

'I
O~ —

Fig. 9-3
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9.2.

An expression for the curvature at any point along the curve representing the deformed beam is
readily available from differential calculus. The exact formula for curvature is
1_ &’ yldx* @3
P L+ (dide)P" )
In this expression, dy/dx represents the slope of the curve at any point; and for small beam deflections this

quantity and in particular its square are small in comparison to unity and may reasonably be neglected.
This assumption of small deflections simplifies the expression for curvature into

1 d
Hence for small deflections, (2) becomes d*y/dx* = M/EI or
d’y
EI=% =M (5)

This is the differential equation of the deflection curve of a beam loaded by lateral forces. In honor of its
codiscoverers, it is called the Euler-Bernoulli equation of bending of a beam. In any problem it is necessary
to integrate this equation to obtain an algebraic relationship between the deflection y and the coordinate
x along the length of the beam. This will be carried out in the following problems.

Determine the deflection at every point of the cantilever beam subject to the single concentrated
force P, as shown in Fig. 9-4.

¥
( ’ | . ﬂ“’ D

— .

Fig. 9-4 Fig. 9-5

The x-y coordinate system shown is introduced. where the x-axis coincides with the original unbent
position of the beam. The deformed beam has the appearance indicated by the heavy line. It is first
necessary to find the reactions exerted by the supporting wall upon the bar, and these are easily found from
statics to be a vertical force reaction P and a moment PL as shown.

The bending moment at any cross section a distance x from the wall is given by the sum of the
moments of these two reactions about an axis through this section. Evidently the upward force P produces
a positive bending moment Px, and the couple PL if acting alone would produce curvature of the bar as
shown in Fig. 9-5. According to the sign convention of Chap. 6. this constitutes negative bending. Hence
the bending moment M at the section x is

M= —-PlL~+ Px
The differential equation of the bent beam is

&y
EIE = M

where E denotes the modulus of elasticity of the material and I represents the moment of inertia of the
cross section about the neutral axis. Substituting,
d’y

_— = +
EI—5=—PL+ Px (1)
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This equation is readily integrated once to yield

d Px?
E:d—i = ~PLx+—+G, )

which represents the equation of the slope, where C, denotes a constant of integration. This constant may
be evaluated by use of the condition that the slope dy/dx of the beam at the wall is zero since the beam
is rigidly clamped there. Thus (dy/dx),-o = 0. Equation (2) is true for all values of x and y, and if the
condition x = 0 is substituted we obtain 0 =0+0+ C, or C, = 0.

Next, integration of (2) yields

2
Ely = —PL5—2—+ f{-+(‘z 3)

where C, is a second constant of integration. Again, the condition at the supporting wall will determine
this constant. There, at x = 0, the deflection y is zero since the bar is rigidly clamped. Substituting
(h-0=0inEq. (3),we find0=0+0+Cor ;=0.

Thus Egs. (2) and (3) with C, = C;, = 0 give the slope dy/dx and deflection y at any point x in the
beam. The deflection is a maximum at the right end of the beam (x = L), under the load P, and from
Eq. (3).

-pL>

Ely.. =
4 3

4

where the negative value denotes that this point on the deflection curve lies below the x-axis. If only the
magnitude of the maximum deflection at x = L is desired, it is usually denoted by A, and we have

PL’

Amax = EEE {5)

The cantilever beam shown in Fig. 9-4 is 3 m long and loaded by an end force of 20 kN. The
cross section is a W203 X 59 steel section, which according to Table 8-2 of Chap. 8 has
I1=60.7%10 °m* and Z = 580 X 10"°* m*. Find the maximum deflection of the beam. Take
E = 200 GPa.

The maximum deflection occurs at the free end of the beam under the concentrated force and was
found in Problem 9.2 to be, by Eq. (4),

PL* (20,000 N) (3 m)*

Ymex = T3ET T T 3(200 x 10° N/m?) (60.7 X 10 5 m?)

= —=0.0148 m or 14.8 mm

The negative sign of course indicates downward deflection. In the derivation of this deflection formula it
was assumed that the material of the beam follows Hooke's law. Actually. from the above calculation alone
there is no assurance that the material is not stressed beyond the proportional limit. If it were then the
basic beam-bending equation El(d”y/dx’) = M would no longer be valid and the above numerical value
would be meaningless. Conseguently, in every problem involving beam deflections it is to be emphasized
that it is necessary to determine that the maximum bending stress in the beam is below the proportional
limit of the material. This is easily done by use of the flexure formula derived in Problem 8.1. According
to this formula

Mc

T
where o denotes the bending stress, M the bending moment, c the distance from the neutral axis to the
outer fibers of the beam, and [ the second moment of area of the beam cross section about the neutral axis.
The maximum bending moment in this problem occurs at the supporting wall and is given by
M = (20,000 N) (3 m) = 60,000 N -m. Using this in the formula for bending stress, we have

M _ 60000N-m
arnnu'-E _SBOXI_O 6[‘[‘]3 = lO3MPa
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Since this value is below the proportional limit of steel, which is approximately 200 MPa, the use of the
beam deflection equation was justifiable.

9.4. Determine the slope of the right end of the cantilever beam loaded as shown in Fig. 9-4. For the
beam described in Problem 9.3, determine the value of this slope.

In Problem 9.2 the equation of the slope was found to be
dy Px?

EI-Z = —PLx+—
dx 2

At the free end, x = L, and

EI(%)FL =-PL*+ -'F—’;:j
The slope at the end is thus
(ﬂ) i %
dxj.., 2EI
For the beam described in Problem 9.3, this becomes

(g’_}:) _ —(20,000 N) (3 m)?
dr),_,  2(200 % 10° N/m?) (60.7 X 106 m")

= (0.0222 rad or 1.27°

9.5. Determine the deflection at every point of a cantilever beam subject to the uniformly distributed
load w per unit length shown in Fig. 9-6.

‘ v
§ w/Unit length

-

L

.

Fig. 9-6

The x-y coordinate system shown is introduced, where the x-axis coincides with the original unbent
position of the beam. The deformed beam has the appearance indicated by the heavy line. The equation
for the bending moment could be determined in a manner analogous to that used in Problem 9.2, but
instead let us seek a slight simplification of that technique. Let us determine the bending moment at the
section a distance x from the wall by considering the forces 1o the right of this section rather than those
to the left.

The force of w/unit length acts over the length L — x to the right of this section and hence the resultant
force is w(L — x) Ib. This force acts at the midpoint of this length of beam to the right of x and thus its
moment arm from x is 3(L — x). The bending moment at the section x is thus given by

M=—%@—ﬂ’

the negative sign being necessary since downward loads produce negative bending.
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The differential equation describing the bent beam is thus

[ —-E*(L—.t)z ()

d?
The first integration yields

\ L |
&y _wEoxy,

El
dx 2 3

G (2)
where C, denotes a constant of integration.

This constant may be evaluated by realizing that the left end of the beam is rigidly clamped. At that
point, x = (), we have no change of slope and hence (dy/dx),_, = 0. Substituting these values in (2), we find
0=wlL¥%6+ C, or C, = —wL%6. We thus have

dy

a _w. . p_ e .
EIS =2 (L-x) ")

The next integration yields
EFly=————"——-—x+0( 3

where C, represents a second constant of integration.
At the clamped end, x = 0, of the beam the deflection is zero and since (3) holds for all values of x
and y, it is permissible to substitute this pair of values in it. Doing this, we obtain
~wh? wil?

0= % + or G, = >

The final form of the deflection curve of the beam is thus

wL3x + wl?
6 24

Ely = 2 (L —x)'~ 3"

The deflection is a maximum at the right end of the bar (x = L) and there we have from (3’)
wl® wL*  wlL®

» - + =
Elyea 6 = 24 8

where the negative value denotes that this point on the deflection curve lies below the x-axis. The
magnitude of the maximum deflection is
wlL?

ama)r. = o 9
8EI “)

A cantilever beam carrying a parabolically distributed load is shown in Fig. 9-7. Determine the
equation of the deflected beam as well as the deflection of the tip.

]xw
3

i
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Let us introduce a coordinate system having its origin at the tip of the beam. The intensity of loading
at any point x to the right of the tip is, from the properties of a parabola,

-

From statics it is known that for any parabolic area such as shown in Fig. 9-8 the area is given by
A = jah and the centroid C is located at x = 3a/4. Accordingly. it is now possible to determine the bending
moment at the point x as the sum of the moments of all loads Lo the left of x about that point. The resultant
of the loading to the left of x is 1xw and this rcsultant, shown by the solid arrow in Fig, 9-7. is located a

32
4

P
|_{

Fig. 9-8

distance 3x/4 from the tip, or. alternatively, (x/4) from position x. Thus, the bending moment at x is found,
with the aid of Eq. (/). to be

1 (x) wox?
— =AW = or

37 \4 NVE
and the differential equation of the deflection curve is
d?y wox?
— = O 2
dx’ 121° @
Integrating the first time, we find
dy  wp x°
& e ste )
When x = L, the slope dy/dx = 0, so from Eq. (3), wc have
3 3
0= Wol, +C, and therefore C, = ol
60
Integrating again, we have
wo X% wyl?
Ely = — —+ + 4
YT e e YT @
When x = L, y =0, so from Eq. (4), we have
W1)L4 W[)L‘ 1
0= ———+ 2 »= — —wyl?
%0 0 + G, and therefore C, 7 wol.
The desired equation of thc deflected beam is
3
Ely = — l .1"+£x -1 wolL*

36017 60 72
and the deflection at the tip is

E!}'],—:o = _%WQL“
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Obtain an expression for the deflection curve of the simply supported beam of Fig. 9-9 subject
to the uniformly distributed load w per unit length as shown.

The x-y coordinate system shown is introduced, where the x-axis coincides with the original unbent
position of the beam. The deformed beam has the appearance indicated by the heavy line. The total load
acting on the beam is wL and, because of symmetry, each of the end reactions is wlL/2. Because of the
symmetry of loading, it is evident that the deflected beam is symmetric about the midpoint x = L/2.

The equation for the bending moment at any section of a beam loaded and supported as this one is
was discussed in Problem 6.3. According to the method indicated there, the portion of the uniform load
to the left of the section a distance x from the left support is replaced by its resultant acting at the midpoint
of the section of length x. The resultant is wx b acting downward and hence giving rise to a negative

bending moment.
v
X ——-
w/Unit length
Tk, -

wL
2

wiL L

2] L

Fig. 9-9

The reaction wiL/2 gives rise to a positive bending moment. Consequently, for any value of x, the bending
moment is

wl X
M=—x—wx=
2x in:2

The differential equation of the bent beam is El{(d?y/dx*) = M. Substituting,
EI~L =22, 25 1)
Integrating,
E2="->--27 s @)

It is to be noted that dy/dx represents the slope of the beam. Since the deflected beam is symmetric
about the center of the span, i.e., about x = L/2, it is evident that the slope must be zero there. That is,
the tangent to the deflected beam is horizontal at the midpoint of the beam. This condition enables us to
determine C,. Substituting this condition in (2), we obtain (dy/dx),.,, = 0,

wlL 12 wl? wl’?
0=——-——+C, or C'=__2T
El—=—x"-—x'-— 2"
Integrating again, we find

Ely=—""~—"— 4G 3)
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9.8.

9.9.

This second constant of integration C; is readily determined by the fact that the deflection y is zero at the
left support. Substituting y,.o =0in (3), we find0=0-0-0+ G or C; = 0.
The final form of the deflection curve of the beam is thus

_wlL w o, wl? .
Ely =437 24" "2 * @)

The maximum deflection of the beam occurs at the center because of symmetry. Substituting x = L/2
in (3'), we obtain

Or, without regard to algebraic sign, we have for the maximum deflection of a uniformly loaded, simply
supported beam

- 4)

A simply supported beam of length 10 ft and rectangular cross section 1inX 3in carries a
uniform load of 200 Ib/ft. The beam is titanium, type Ti-5Al-2.5Sn, having a yield strength of
115,000 Ib/in? and E = 16 X 10° Ib/in’. Determine the maximum deflection of the beam.

From Problem 9.7 the maximum deflection is
5 wl?
Amx = 384 E1
Substituting,
_ S (200/12)(120)’
384 (16 x 10’]%1(1){3)3

Using the methods of Chap. 8, the maximum bending stress is found to be only 20,000 Ib/in?, well
below the nonlinear range of action of the material. Thus the usc of the deflection formula is justified.

= 1.25in

B

Consider the simply supported beam subject to the two end couples M, and M, as shown in Fig.
9-10. Determine the equation of the deflection curve and locate the point of peak deflection if
M 1= 0.

For equilibrium the resultant of the applied couples, that is, (M, — M), must be another couple
corresponding to the vertical reactions at the ends R, and Ry. From statics,

+)EMO=_M1+M2+RHL:0

L*I e M,
M,C‘Z‘ff %%_

Fig. 9-10
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Therefore,
M - M.
Re=—"7—(D
EF,.= —RL+R.R=0
Therefore,
M-M
R, = —‘3—3(1)

The differential equation describing the bent beam is thus

"

d’y
EIE;fi:Ml_RLI U)
dy x
Integrating. E:Z} = Mix— RS +G, 2)

We have no information concerning the slope anywhere in the beam. Hence it is not possible 1o determine
the constant of integration C, at this stage. Let us integrate again:

© R, x
Efy: MI‘Z___;‘§+CII+C2 (3)

We may now determine the two constants of integration through use of the fact that the beam
deflection is zero at each end. Accordingly,
When x = 0. ¥ = 0. so from Eq. (3) we have

0=0-0+0+G, and therefore C, = 0

Next, when x = L, y = 0. so we have from Eq. (3)

L R,
O0=M ———1+
M, > 3 L'+ C L
from which
_ ML ML
G=-73 6

so that the desired equation of the deflection curve is

..._ﬂ_l_l s M."M}_) 3_ (M]L MzL}
Ely = > X ( 6L X N + 6 X (4)
If M, =0, Eq. (4) becomes
MIX’ MzLx
Ely = 2—-—2=— 5
Y= L 6 (5)
d}._szl MzL
and E!dx— T 6 (6)

The point of peak deflection occurs when the slope given by Eq. (6) is zero. Solving Eq. (6) for this
value of x,

=7 (7)
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92.10.

At this point (for M, = 0) thc deflection is given by Eq. (5) to be

M,( L )-‘ M,L( L ) M,1\V3
Elypax == —F/| ——— = - 8
Bow =60 \V3) 76 \ VA 27 ()
Inspection of Eq. (4) for the case M, = M, = M indicates that

Ely = %xz - %x (9)

which indicates a parabolic deflection curve. Yet, Eq. (2) of Problem 9.1 indicates that if M = constant
along the length of the beam, the curvature (1/p) is conslant; i.e., the bar bends into a circular arc. The
reason for the very slight discrepancy is that Eq. (5) of Problem 9.1, thal is,
d’y
El i

incorporates the approximation
1 d%y

T
as explained in Problem 9.1. In reality the numerical difference between the parabola and the circular arc
is very small and in almost all cases may be neglected.

A simply supported beam is loaded by a couple M, as shown in Fig. 9-11. The beam is 2 m long
and of square cross section 50 mm on a side. If the maximum permissible deflection in the beam
is 5mm, and the allowable bending stress is 150 MPa, find the maximum allowable load M,.
Take E = 200 GPa.

It is perhaps simplest to determine two values of M,: onc based upon the assumption that the
deflection of 5 mm is realized. the other based on the assumption that the maximum bending stress in the
bar is 150 MPa. The truc value of M, is then the minimum of these two values.

¥
T —
F3

S ‘

Fig. 9-11

Let us first consider that the maximum deflection in the beam is 5 mm. According to Eq. (8). Problem
9.9, we have

My(2V3

0.005 = 3700 10°) () (0.05) (0.05)°

or M, =203kN-m

We shall now assume that the allowable bending stress of 150 MPa is set up in the outer fibers of the
beam at the section of maximum bending moment. Referring to Problem 9.9, since M, = 0. we find the
reactions at the ends of the beam are

M,

IR =7

so that they have the appearance shown in Fig. 9-12, and the bending moment diagram for the beam is as
shown in Fig. 9-13.
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Lo - ¥
—— = a0

R

Fig. 9-12 Fig. 9-13

The maximum bending moment in the beam is M,. Using the usual flexure formula, o = Mc/l, we have
at the outer fibers of the bar at the right end, i.e., at the section of maximum bending moment,

M,(0.025)
(12) (0.05) (0.05)’

Thus the maximum allowable moment is M, = 2.03kN-m.

150 % 10° =

or M, =3125kN-m

9.11. A simply supported beam is subjected to the sinusoidal loading shown in Fig. 9-14. Determine
the deflection curve of the beam as well as the peak deflection.

y q g = qq sin %
A B
WA O B
I__ ) B d:
| L 1
R, R
Fig. 9-14

It is first necessary to determine the total load on the beam. Let us consider the shaded element a
distance x from the end A and of width dx. If g denotes load per unit length, then the load corresponding
to the shaded element is g dx and the load on the entire beam is found by integrating:

2?01—'

aw

=L L
Load=I qd,t:j qosin%dx=
x 1]

=0

From statics, half of this load is carried at each end reaction. Thus,

L
R, = Ry = 2=
m

The bending moment at the point denoted by x is found as the sum of the moments of all forces to
the left of that point. To determine the moment about x of the portion of the sinusoidal load to the left
of x, it is necessary to introduce another variable of integration, u, corresponding to a second vertical
shaded element of width du, as shown in Fig. 9-15. The variable # must run from u = 0 to u = x so as to
yield the bending moment due to the sinusoidal load to the left of x.
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yy 9=%osiny g=ggsin 7
. /W
1 T i ¢ ¢
& | | [ | x
W dy
. x
2oL %ol
T 3
Fig. 9-15

Remembering the contribution that the left support makes to the bending moment, we have

M ._.ﬁx- Ilmqo[sin"w—-] (due) (x — )
m t={) L @

_qolL u=x ] 4=t g
= 71*—%[ .tsinfd”*“?ﬂj. us:nfdu

=() u=()
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()

In this integration u is a variable and x is to be (temporarily) regarded as a constant. The last integral (5)

in Eq. (/) must be integrated by parts, remembering that

fﬂ(sin 6) d6 = sin 6 — Bcos 6

Here, 6=

~|3

so that the last integral () becomes

If:xusinw—udu = E sinﬁ— ﬂ(:'::vs—w—”]MJr
w=>u L ﬂz L L 'L u=0
—L—z sin = --Ecm;E
v L T '8

The bending moment, Eq. (1), is thus

Lx u=x 2 X X
M=F—"-——qnx(-§)[—cmﬂ] +an [sinﬁ—fﬂcosﬂ—]
a

The differential equation of the deflected beam is thus

dzy (?'QLZ . TX
E"dxz =z sinp

Integrating the first time, we have

dy qol? ( L) x
— T — +
El sl b cos A G

2)

)

“)

)

(6)

As the first boundary condition, from symmetry, when x = L/2, dyfdx = 0. Substituting in Eq. (6), we find

C, = 0. Integrating again,

LS
Ely = — q‘;J (%r) sin%x+ G

(7)
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The second boundary condition is that when x = (), y = 0. Substituting in Eq. (7), we have C, = (. The
equation of the deflected beam is

L* .
Ely = — B> gin

) @

and the peak dcflection, at x = L/2, is

Determine the deflection curve of a simply supported beam subject to the concentrated force
P applied as shown in Fig. 9-16.

v P
¢ b _-l x
& — Tﬁ,
i L
Fig. 9-16

The x-y coordinate system is introduced as shown. The heavy line indicates the configuration of the
deformed beam. From statics the reactions are found to be R, = Pb/L and R, = FalL.

This problem presents one feature that distinguishes it from the other problems solved thus far in this
chapter. Namely, it is essential to consider two different equations describing the bending moment in the
beam. One equation is valid to the left of the load P, the other holds to the right of this force. The
integration of each equation gives rise to two constants of integration and thus there are four constants
of mtegration to be determined. All problems met thus far have offered only two constants.

In the region 10 the left of the force P we have the bending moment M = (Pb/L)x for 0 <x <a. The
differential equation of the bent beam thus becomes

d’y Pb
—5 = <x<
El R for 0O<x<a #))]
The first integration yields
dy PbxX
Eldx—L2+C. (2)

No numerical information is available about the slope dy/dx at any point in this region. Since the load is
not applied at the center of the beam, there is no reason to believe that the slope is zero at x = L/2.
However, for the slope of the beam under the point of application of the force P we can write

dy) Pba’
1 — =—++ 3
E (dt e 2L G )
The next integration of (2) yields
Pb x*
. + +
Ely 5L 3 Cix+ G 4)
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At the left support, y = 0 when x = 0. Substituting these values in (4) we immediately find C; = 0. It is
to be noted that it is not permissible to use the condition y = O at x = L in (4) since (1) is not valid in that
region. We have for the deflection under the point of application of the force P

Pba’

Elyx-m:E-"Cla (5)

In the region to the right of the force P the bending moment equation is M = (Pb/L)x — P(x — a) for
a<x<L. Thus

2z
El%=%x—f’{x—a} for a<x<lL 6)
The first integration of this equation yields
dy PbxX P(x—ay
[—=——-—+( 7
E dx L 2 2 i ()

Although nothing definite may be said about the slope in this portion of the beam., we have for the slope
under the point of application of the force P

dy ) Pba’
7= =
E (dx x=a 2L
Under the concentrated load P the slope as given by (3) must be equal to that given by (8). Consequently
the right sides of these two equations must be equal and we have

Pba’ Pbd*

L TG re o GG

+G (&)

Equation (7) may now be integrated to give

Pbx* P(x-a)
=S Ty
Ely=27% e ©9)

We may write for the deflection under the concentrated load

Pba’
Ely,-o =+ Ga+ G, (10)
The deflection at x = @ given by (5) must equal that given by (/0). Thus the right sides of these two
equations are equal and we have

Since C, = C,;, we have C, = 0.
The condition that y = 0 when x = L may now be substituted in (9), yiclding

Pbl? PP Pb
0= -2 4 GL LIRS
6 6 C3 or CJ 6L(b L)‘

In this manner all four constants of integration are determined. These values may now be substituted
in Egs. (¢) and (9) to give

P
E'ry=6_flx’—(L2—b2}x] for O<x<a )

Pb L
E!J’=E x:;__g(x_a)S_(Lz_bz)x] for a<x<L (9)

These two equations are necessary to describe the deflection curve of the bent beam. Each cquation
is valid only in the region indicated.
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If the load P acts at the center of the beam, the peak deflection which occurs at x = L/2 by symmetry

is given by Eq. (4') as
e B2 444
PL’

Ty “n

The simply supported beam described in Problem 9.12 is 14 ft long and of circular cross section
4 in in diameter. If the maximum permissible deflection is 0.20 in, determine the maximum value
of the load P if a = b = 7 ft. The material is steel for which E = 30 X 10° Ib/in®.

The maximum deflection, given by (I/) of Problem 9.12, is Ay, = PLY48EI For a circular cross
section (see Problem 7.9), I = wD%64 = m4°/64 = 12.6 in®. Also, L = 14 ft = 168 in. Thus,

P(168)°
48(30 x 10°) (12.6)

With this load applied at the center of the beam the reaction at each end is 383 Ib and the bending
moment at the center of the beam is 383(7) = 2681 Ib- ft. This is the maximum bending moment in the
beam and the maximum bending stress occurs at the outer fibers at this central section. The maximum
bending stress is o = Mc/l. Then o, = 2681(12)(2)/12.6 = 5100 Ib/in’. This is below the proportional limit
of the material; hence the use of the deflection equation was permissible.

0.20 = or P="7651b

Consider the simply supported beam described in Problem 9.12. If the cross section is
rectangular, 50 X 100 mm and P = 20kN with a = 1 m, b = 0.5 m. determine the maximum
deflection of the beam. The beam is steel, for which F = 200 GPa.

Since a > b, it is evident that the maximum deflection must occur to the left of the load P. It occurs
at that point where the slope of the beam is zero.
Differentiating Eq. (4') of Problem 9.12, we find that the slope in this region is given by

dy Pb 2 yr2 2
E!dx—ﬁL[Sx (L7~ bY)]

Setting the slope equal to zero, we find x = VL2 — b%3 for the point where the deflection is maximum.
The deflection at this point is found by substituting this value of x in (4'):

V3
7
For the rectangular section I = 50(100)*/12 = 4.167 X 10° mm®*. Substituting,

20X 10°(0.5 X 10°) [(1.5 X 10°) - (0.5 X 10°V°P2(V3) (10°)
Yenax = 27(1.5 X 10°) (4.167 x 10°) (200 X 10°) B

ElY max (L* - b?y*?

—1.45mm

The negative sign indicates that this point on the bent beam lies below the x-axis.
From ¢ = Mc/I the maximum bending stress, which occurs under the load P, is 80 MPa. This is below
the proportional limit of steel, so the above deflection equations are valid.

The beam AC is simply supported at A and at C is pinned to a cantilever beamm CD as shown
in Fig. 9-17(a). Both beams have identical flexural rigidities El. The vertical load of 8 kN acts
at point B. Determine the deflection of point B,

Free-body diagrams of the flexible beams AC and CD appear as in Figs. 9-17(b) and 9-17(c),
respectively. For AC, because of symmetry the reaction at C is 4 kN and by Newton’s law the equal and
opposite force must be exerted at the end C of beam CD as shown in Fig. 9.17(c).
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9.16.

BkN
A C c D
L J Mp
o t
4kN 4kN  4kN 4kN
® (c)

Fig. 9-17

From Problem 9.2 the downward deflection of point C regarded as the tip of beam CD) is

PL* _(4kN)(1.5m)’ 45

A= 3 3E] El

This same deflection must describe the downward displacement of C regarded as the right end of beam
AC. Prior to the deformation of AC due to the 8-kN load, the displacement of point C (on AC) imparts
a downward displacement of half that, namely 2.25/E/ to point B, since the bar during this stage will rotate
as a rigid body about A. Then, the deflection of point B due to the &kN load must be considercd. From
Problem 9.12 this is

PL* _(8kN)(3m)' 45
48FE1  48EI  EI

The resultant deflection at point 8 is thus

45 225 _6.75

- )

A= Ert B T E

Determine the equation of the deflection curve for a cantilever beam loaded by a uniformly
distributed load w per unit length, as well as by a concentrated force P at the free end. See Fig.
9-18.

The deformed beam has the configuration indicated by the heavy line. The x-y coordinate system is
introduced as shown. One logical approach to this problem is to determine the reactions at the wall, then

——
u
e~

w¥ Lipit lengrh

-

e i
Y

b~

4—

Fig. 9-18
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write the differential equation of the bent beam, integrate this equation twice, and determine the constant
of integration from the conditions of zero slope and zero deflection at the wall.

Actually this procedure has already been carried out in Problem 9.2 for the case in which only the
concentrated load acts on the beam. and in Problem 9.5 when only the uniformly distributed load is acting.
For the concentrated force alone the deflection y was found in (3) of Problem 9.2 to be

P

= — —_— —
Ely=—PL> +— (1)

For the uniformly distributed load alonc the deflection y was found in (3°) of Problem 9.5 to be

_oow o wLlt Wl
Ely = 24(!. x) 6 x+ 4
It is possible to obtain the resultant effect of these two loads when they act simultaneously merely by
adding together the effects of each as they act separately. This is called the method of superposition. 1t is
useful in determining deflections of beams subject to a combination of loads, such as we have here.
Essentially it consists in utilizing the results of simpler beam-deflection problems to build up the solutions
of more complicated problems. Thus it is not an independent method of determining beam deflections.
According to this method the deflection at any point of a beam subject to a combination of loads can
be obtained as the sum of the deflections produced at this point by each of the loads acting separately. The
final deflection equation resulting from the combination of loads is then obtained by adding the deflection
cquations for cach load.
For the present beam the final deflection equation is given by adding Egs. () and (2):

(2)

X PYoow wl’ wlL®
_- —_— ——— — . +
Ely=-PLS+ == 2(L-x) =T x+ 20 )

The slope dy/dx at any point in the beam is merely found by differcntiating both sides of (3) with
respect to x.

The method of superposition is valid in all cases where there is a linear relationship between each
separate load and the separate deflection which it produces.

Determine the deflection curve of an overhanging beam subject to a uniform load w per unit
length and supported as shown in Fig. 9-19.

We replace the distributed load by its resultant of wi acting at the midpoint of the length L. Taking
moments about the right reaction, we have

wl? wl.?
M. =R b—- 3 =0 or R'='ﬁ,_
v
]
wfUnit length
Z
A ? 4
B
a b
R,| Iz,
L |
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Summing forces vertically, we find

wl?
TF, ='—2F+R2—WL =0
wl?
or Rz_WL_?b_

The bending moment equation in the left overhanging region is M = —wx’/2 for 0<x<a.
Consequently the differential equation of the bent beam in that region is

dy —wx?
El(d?) = for O<x<a (1)

Two successive integrations yield

d wx®
E"d_i='5T+C‘ )
wxt
Ely = —EE—+C]x+C2 (&)}

The bending moment equation in the region between supports is M = —wx*/2 + R\(x — a). The
differential equation of the bent beam in that region is thus

d’y wx? wl?
—_——= e —— g —— —
El ax 2 2 (x—a) for a<x<L (4)
Two integrations of this equation yield
dy wx' wl’ (x—a)
= ———— "
d« 23 2 2 ? ©)
_ owx* wLl’(x—a)
Ely = P b 3 + Cix+ Gy (6)

Since we started with two second-order differential equations, (1) and (4), and two constants of integration

arose from each, we have four constants C,, C;, C, and C, to evaluate from known conditions concerning

slopes and deflections. These conditions are the following:

1. When x = a, y = 0 in the overhanging region.

2. When x = a, y = 0 in the region between supports,

3. When x = L, y = 0in the region between supports.

4. When x = q, the slope given by (2) must be equal to that given by (5); consequently the right sides
of these equations must be equal when x = a.

Substituting condition (7) in (3), we obtain

0= % +Ca+ G, 7}
Substituting condition {2) in (6), we find
—wa*
0=-—2T+C30+C4 (8}
Substituting condition (3) in (6), we get
—wl® wlL?b®

0=

g TGLtG (9
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Finally. equating slopes at the left reaction by substituting x = a in the right sides of equations (2) and (5),
we obtain
—wa® —wa®

+=
6C'6

+C, (10)

Note that there is no reason for assuming the slope to be zero at the left support, x = a.
These last four Egs. (7). (8), (9), (/0) may now be solved for the four unknown constants C,, C;, C,.
C,. The solution is found to be

w(l'—-a') wl’b

R T 12 ¢
wa® w(L'—a')a wl?ab
GG " T (12)

The two equations describing the deflection curve of the bent bar are found by substituting these
values of the constants in (3) and (6). These equations may be written in the final forms

wx® w(l®—a*)x wl’bx wa* w(lL*—a')a wl’ab
—+ - b +

24 24b 12 24 24b 12
A O3 e — 3 dFS — 4% 4 4 4_ 4 g2
E!y=—£{-+"L(x ay w(L }x_wbe_FE w(lL a)a+uLab

24 12b 24b 12 24 24b 12

Ely = - for0<x<a (39

fora<x<lL
(6")

Problem 9.17, although involving relatively simple geometry and loading, is obviously very tedious

when solved by the method of double integration. Usually the method is well suited only to situations
where a single equation describes the entire deflected beam. Chapter 10 will be based upon use of
singularity functions (see Chap. 6) as a much-simplified approach to beam deflections far better
adapted to more complex conditions of loading and support than is the straightforward double-
integration approach. Also, the singularity function approach is very well adapted to computer
implementation, as will be shown in Chap. 10.

9.18. Determine the equation of the deflection curve for the overhanging beam loaded by the two

equal forces P shown in Fig. 9-20.

The x-y coordinate system is introduced as shown with the x-axis coinciding with the original unbent
position of the bar. The fact that the left end of the bar deflects from the coordinate curve presents no
difficulties. For the condition of symmetry it is evident that each support exerts a vertical force P upon
the bar.

The bending moment in the left overhanging region is

M= —-Px for D<x<a

d

i y
AN - *

« } $

l» lr
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and the differential equation of the bent beam in that region is

EI%= —Px for 0<x<a 73]

The first integration of this equation yields

d X
EIS = ~P5 +C, @)
Nothing definite is known about the slope dy/dx in this region. In particular, it is to be emphasized that
there is no justification for assuming the slope to be zero at the point of support x = a. We may denote
the slope there by the notation

d a
E!(d_i')x-a - _P(?) * Cl (3)
The next integration yields
P/x?
ey=~3(5)+cxrc @)

Since the beam is hinged at the support, it is known that the deflection y is 0 there. Thus, (y)y.. = 0.
Substituting y = 0 when x = a in (4), we find

0=-%+C,a+€z (5)

The bending moment in the central region of the beam between supports is M = ~Pa and the
differential equation of the bent beam in the central region is

d?
Elax_f: ~Pa for a<x<(L-a) (6)
Integrating, we obtain
d
Efay = —Pax+ G, )

Because of the symmetry of loading it is evident that the slope dy/dx must be zero at the midpoint of thc
bar. Thus (dy/dx),.., = 0. Substituting these values in Eq. (7), we find
L Pal.
0= —Pa(—) +C;  or  Cy=— (8)
2 2
Also, from Eq. (7) we may say that the slope of the beam over the left support, x = a, is given by
substituting x = a in this equation, This yields

E:(Q) - —pe+ 2L )

But the slope dy/dx as given by this expression must be equal to that given by Eq. (3), since the bent bar
at that point must have the same slope, no matter which equation is considered. Equating the right sides
of Egs. (3) and (9), we obtain

Paz
B =P PR (10)
2 2
2
or Cl=_.f’i+ﬂ (]I}
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Substituting this value of C; in Eq. (5), we find

=————+
0 6 3 3 +C, (12)
2Pa® Pa'L
o G-
The next integration of Eq. (7) yields
?  Pal
Ely = —Pa%+ —-:——(x)+ C, (13)

Again, it may be said that the deflection y is zero at the left support, where x = a. Although this same
condition was used previously in obtaining Eq. (5), there is no reason why it should not be used again. In
fact, it is essential to use it in order to solve for the constant C, in Eq. (13). Thus, substituting the values
(¥).-« = 0in Eq. (73). we obtain

Pa* Pa*L _Pa® PAL

0=‘-*2—-+ 2 +C, or C; T'—T (14)

Thus two equations were required to define the bending moment in the left and central regions of the
beam. Each equation was used in conjunction with the second-order differential equation describing the
bent beam. and thus two constants of integration arose from the solution of each of these two equations.
It was necessary to utilize four conditions concerning slope and deflection in order to determine these four
constants. These conditions were:

(a) When x = a, y = 0 for the overhanging portion of the beam.

(b) When x = a, y = 0 for the central portion of the beam.

{¢) When x = L/2, dy/dx = 0 for the central portion of the beam.

(d) When x = a, the slope dy/dx is the same for the deflection curve on either side of the support.

Finally, the equations of the bent beam may be written in the forms

Px* Pa’x Palx 2P Pi’lL

El =.__E__ > + > + 3 2 for O<x<a (15)
3 3
Ely=_fixi+fﬂfi+‘—p_a——fh£' for a<x<(L-a) (16)

2 2 2 2

Because of the symmetry there is no need to write the equation for the deformed beam in the right
overhanging region.

For the overhanging beam of Problem 9.18, each force P is 4000 1b. The distance a is 3 ft and
the length L is 16 ft. The bar is steel and of circular cross section 4 in in diameter. Determine
the deflection under each load and also the deflection at the center of the beam. Take
E = 30 x 10° 1b/in’.

The moment of inertia is given by [ = 7(4)*/64 = 12.6 in*, according to Problem 7.9 in Chap. 7. Also,
we have ¢ =3ft = 36in, L = 16t = 192 in. The deflection anywhere in the left overhanging region is
given by Eq. (15) of Problem 9.18. Under the concentrated force P we have x = 0, and substituting these
values in Eq. (15) we obtain

30 X 10412.6) (1)s~0 = 2(400? @6y’ 4000(32)’(192)

or (¥)i=o = —0.96in
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9.20.

The deflection anywhere in the central portion between supports is given by Eq. (16) of Problem 9.18.
At the center of the beam we have x = 8ft = 96in and, as before a4 = 36in, L = 192 in, and P = 40001b.
Substituting in Eq. (/6), we find

(30 x 10‘!) (12.6)(¥),_sn = —4000(36) (%)2 + (4000) (36) (192) (96)

2 2
N 4000(36)°  4000(36)° (192)
2 2
Solving
Yr=sn = 0.69in

The maximum bending stress occurs at the outer fibers of the bar everywhere between the supports,
since the bending moment has the constant value of 4000(3) = 12,0001b - ft in this region. This maximum
stress is given by

M, _ (12,000)(12)(2)

= in?
I 126 22,800 Ibfin

o=

This is less than the proportional limit of the material.

A cantilever beam Fig. 9-21(a) lying in a horizontal plane when viewed from the top has the
triangular plan form shown in Fig. 9-21(b). The side view, Fig. 9-21(c), shows the constant
thickness /1 of the beam. Determine the deflection curve of the beam and also the deflection of
the tip due to the weight of the beam, which is vy per unit volume.

-*_
t
|
—_] =

A
S
(SO
T
¢
W!»J»
1

(@) ®) ©

Fig. 9-21

We introduce an x-y-z coordinate system having its origin at point O, the tip of the beam. The location
of an arbitrary cross section is denoted by x and the width there is u, as shown in Fig. 9-21(b). The overall
beam length and base width are denoted by L and b, respectively. From geometry we have

e

and the bending moment at section x is due to the weight of the portion of the triangular beam to the left
of x. That weight is

suxhy

and the resultant force corresponding to this weight acts at a distance x/3 from the cross-section x, as shown
in Fig. 9-21(c). Thus, the bending moment at x due to the weight of material to the left of x is

why x _  x’hy (_b_x) _ by’ )
2 3 6 \LJ L

M=—



244

9.21.

ELASTIC DEFLECTION OF BEAMS: DOUBLE-INTEGRATION METHOD [CHAP. 9

so that the differential equation of the deflected beam is

dax 6L @

However, I is a function of x. Consideration of the cross-section x indicates that I (about an axis z, paraliel
to the z-axis} is

1 1 X
[= L =L (—)h’
IZM 1 b L

so that the differential equation of the beam becomes

A, (x\,: ]y _ _bhy?
E[ub(f_)h]df* 6L ()
& 2

Integrating the first time, we obtain
(5)

and when x = L, dy/dx = 0; hence substituting in Eq. (5}, we have

2yL?

2yL?
3ER?

0= 3ER

+ C, and therefore C, =

Integrating again, we find

= +
3En) a TIERT TG ©

3

- - ( 2y )x‘ LL

As a second boundary condition, when x = L, y = 0, so from Eq. (6) we find
o Lo _ e

=T3R4 + AER +C;  and therefore ;= — SE

Thus, the equation of the deflected beam is

Y e, 2yl 4Lt

= - + _—
Y= Teer" T 3ERY T 2ER
which at the tip becomes
_
Yheo = 35

A cantilever beam is in the form of a circular truncated cone, of length L, diameter d at the small
end, and 24 at the large end, as shown in Fig. 9-22. The beam is loaded only by its own weight,
which is vy per unit volume. Determine the deflection at the free end.

From the geometry, we may extend the sloping sides until they intersect at distance x, from the left
end. By similar triangles we have

d 2
Xag Xao + L
from which x; = L. Also,
y_4d
x 2L
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|
L.Ml‘HI

Fig. 9-22

- (32)*
Y=\aL

The moment of inertia of any circular cross section a distance x from the point O is

mt d“).,
!=_=—
4 4(16L" *

The differential equation of the deflected beam is given by employing Eq. (5) of Problem 9.1 and using
as the bending moment at x the moment of the weight of the solid region ABCD which is found as the
moment of the weight of the complete solid cone OBCQO about x minus the moment of the cone OAD
about that same section. Remembering that the volume of a complete cone is § (base) (altitude) and that
the center of mass of a solid cone lies ; the altitude above the base, we have for the equation of the bent

beam
Elﬂ'ﬁ,-x‘]g=- %nfxy(i—)—%yw(g)zf_(x—gl,)} (1

This simplifies to the form

t_fi_ 16L"y:r[_d_2 L_d:__Bde:} @)
d®  3wd'E 41> X 4xt
The first integration leads to
dy 16L°%y d? 5 1 312d? 1
— T ————— —_—— —— —_— —_—— —_—— _|..
dx 3&5[ 4L=”Ld( 2x’) 4 ( Jx’)} G &
As the first boundary condition, when x = 2L, dy/dx = 0. Substituting in (3), we find
19L%y
C=rE
The next integration gives us
16L%y d X Ld® 1 Ld? 1 1907y
= ——r=— ===t — =} + +
¥ M‘E[ a2z 2 ( x) 4 ( sz)} e "t O )
and the second boundary condition is that when x = 2L, y = 0. From Eq. (¢) we have
29 Lty
= FE
The equation of the deflected beam is thus
164°%y d? Ld® (1 Ld* (1 9Ly  29L%y
() e 2
Y M‘EI s "2 \x) " 8 \&)| T ed?E" 6FE ©)
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The deflection of the tip is found by setting x = L in Eq. (5) and is

yL*
34°E

.V]l-f_ =

The beam of variable rectangular cross section shown in Fig. 9-23 is simply supported at the ends
and loaded by equal magnitude end couples each equal to PL as well as symmetrically placed
transverse forces each equal to 1.5P. The thickness / of the beam is constant. Determine the
manner in which the width must vary so that all outer fibers are stressed to the same value oy,
in both tension and compression. Also determine the central deflection of the beam.

Fig. 9-23

The end reactions are easily found from statics to each be 1.5P, as shown. The bending moment
diagrams corresponding to the force loadings and to the end couples arc found by the methods of Chap.
6 and are illustrated in Figs. 9-24(a) and 9-24(b), respectively. The resultant bending moment diagram is
found by superposition of these two to be that shown in Fig. 9-24(c).

1
I
+ VR T }
9 F 4w
@ ®) ©

Fig. 9-24

The outer fiber bending stresses in each of the regions AB and BC arc found for the rectangular cross

section through use of the results of Problems 8.1 and 8.12 to be
M. _ M _M_6M
YT Tz b )

where for the rectangular bar

bh?
i @)

Figure 9-24(c) together with Eq. (/) indicates that in the region BC (since the bending moment is
constant) the beam width must also be constant. In that region the cross scction must withstand a maximum
bending moment of 2.5PL and the value of the outer fibcr bending stresses is

 6(2.5PL)
Ty = _bmax 12 (&)
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Solving, we find the maximum width everywhere in BC to be

15PL
- 4
max O'nhz ( )
In the end region AB, the bending moment from Fig. 9-24(c) is
M=PL+1.5PL(%) for 0<x <L (5)

where x is measured positive to the right from the support at A. Since x = 0 at A. the width of the beam
there must be sufficient to withstand the bending moment PL. Thus. for the outer fiber bending stresses
at x = 0 to have the magnitude oy, we have

oM 6PL

'brmnhz blTIII'I h:

0y =

Solving,
6PL

Unhz

The same width b,,,, must also exist al the right end x = 3L by symmeitry. Equation (5) indicates a
linear variation of bending moment between A and B so that the width increascs linearly from A to B. The
resulting constant outer fiber bending stress beam thus appears as shown in Fig. 9-25.

Brin 6)

6
buh = Ebﬁ

Fig. 9-25

To find the peak deflection, which, because of symmetry, obviously occurs at the midpoint of BC where
x =3L/2. we must write the differential equations for bending in regions AB and BC. Because of
symmetry of loading and support, there is no need to consider CD since its behavior is symmetric to that

of AB. First,
In AB:
M =15Px + PL
Mc  (PL +1.5Px) (h/2)
and G == Toh 7)
Thus, b= (PL + I‘Sfx) (6) )
ooh

where b denotes the width of the bar at a distance x from A as indicated in Fig. 9-25. The moment of inertia
of the cross section a distance x from A is thus

1 [(PL+15Px)(6)],,
12 [ ah’ ©)
The differcntial equation of the bent beam in AB is
(PL+ 1.5Px)h] d’y
El—————1—==15Px+P
[ 200 0 x + PL (10)
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or
&y 2oy
2 EhC constant (1)
Integrating
d 20,
2 (E—;)1+C, (12)
Integrating a second time
20, x*
Y=g 7 POt G (13)

As a boundary condition, when x = 0, y = 0; hence C; = 0 from Eq. (13). Also, when x = L, the deflection
from Eq. (/3) is

20, L?
Yoot = g5+ CIL (14)
and the slope at x = L is, from ({2)
d}' ZG'OL
—1 =—=+C 5
dxl.., Eh ' ()

In BC. M = 2.5PL. and since the width b, in BC is constanl, the moment of inertia anywhere in
BC is

13bmaxh* (16)

so the bent beam in BC is described by the equation

bax b’ 1 d2y
— |—5 = 25PL 7
[ 12 ]dx’ 7
d’y 30PL
or e Eb i = constant (18)
Integrating,
dy 30PLx
- = +C 19
dx  Ebg,h (79)

As a boundary condition, from symmetry we know that at x = 3L/2. dy/dx = 0. Hence from (19)
we have

45PL°
O B
Integrating again.
30PL \ X 45PL?
v (a3 (m)”“’* (20)
When x = L. the deflections are represented by Egs. (/4) and (20), leading to
2037 orL?
——+CG L=~ + 21
2Eh bt @h

Finally, equating slopes at x = L as given by Eqs (/5) and (/9), we have

20,L c - 30PL?  45PL?
Eh YU Eb W Eb,

(22)



CHAP 9] ELASTIC DEFLECTION OF BEAMS: DOUBLE-INTEGRATION METHOD 249

9.23.

Solving Eqs. (21) and (22), we find

45PL°
== Eb—,mhz and therefore C, =0
Hence in the region BC from Egq. (20), we have
33.75PL°
Yraalesea = =g =5

Consider the bending of a cantilever beam which remains in contact with a rigid cylindrical
surface as it deflects. The tangent to the cantilever is horizontal at point A in Fig. 9-26.
Determine the deflection of the tip B due to the load P.

P i — —— — — — —
—

Fig. 9-26

If the curvature of the cantilever at A is less than the curvature of the rigid cylindrical surface, then
the cantilever touches the surface only at point A and the deflection is exactly as found in Problem 9.2.
From Problem 9.1, the curvature of the beam at A is given by

and thus this curvature must be less than the curvature of the rigid surface, which is 1/R.

If. however, 1/R = PL/EI, then the beam comes into contact with the surface to the right of point A4,
We shall denote by P* the limiting value of the load given by P* = EliRL. For P> P* some region AC
of the beam will be in contact with the surface and at point C the curvature of the rigid surface 1/R is equal
to the curvature of the beam, that is, Px/El = 1/R from which x = EIl/PR.

The deflection at the tip B may now be found as the sum of

1. The deflection of C from the tangent at A, which is given by &, in the diagram and is found from the
relation

(R+8) =R +(L—x)
to be approximately

_ (L —x)?

& 2R
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2. The dcficetion of the portion of the beam of length x acting as a simple cantilever, given by
_ Px*  (ElY
3l 3P°R
3. The deflection owing to the rotation at point C, given by
koo L, )
R PR’ PR

3s

The desired deflection at the tip is thus

£ _ (EIY

5= 548,48 =
A TN TS

A thermostat consists of two strips of different materials of equal thickness bonded together at
their interface. Frequently this configuration takes the form of a cantilever beam, as in Fig. 9-27.
If F, and FE, denote the Young's moduli and @, and @, denote the coefficients of linear
expansion of the two materials, each of thickness A, determine the deflection of the end of the
cantilever assembly due to a temperature rise 7.

i

Fig. 9-27 Fig. 9-28

Let b represent the width of the assembly. As in Problem 8.1, we shall assume that a plane section
prior to deformation remains plane after deformation. The resultant normal forces F acting over each strip
must be numerically equal since no external forces are applied along the length of the beam. Thus a cross
section at any station along the Iength has Fig. 9-28 as its free-body representation.

The normal strain in the lower fibers of the top strip is found as the sum of (a) the strain due to the
normal load. F/FE, bh: (b) the strain duc to bending. which is M ,(h/2)/E,[ from Problem 8.1; and (c) the
strain due to the temperature rise, which is a; 7 as mentioned in Chap. 1. The sum of these strains must
be the same as the strain in the upper fibers of the lower strip. Thus

F M . (hi2) -F  My(h2) .
epnt E1 T TG B T &)
The curvatures at this interface must also be equal. Thus, from Problem 9.1,
1 MA 1 Mﬁ'
— T . - — I — 2
RE1I ™ RTEI @
and since R, = R.. we have
[ E
Mo = (5] M @)
From statics it is evident that
MA + Mﬂ = Fh (4}

from which

Fh Fh

My=——— My=—
71+ (E\E) AT+ (EJE,)

%)
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9.25.

Substituting (5) in (/). we find

_ (02 - {!.) TbhEl Ez(E] + E:)

- 6
F= =B YETULE ©

and from (5) we get

(0‘2 - ﬂ[) Tbhz E% Eg
My=-5 2
EI+ E1+ 14E, E,

(7)

We may now use the result obtained in Problem 9.23 for the deflection § of a point on a cylindrical
surface (which represents the interface, since in pure bending the assembly deforms into a circular

configuration according to Problem 9.1) and express the deflection & of the end of the assembly as
LZ

=— 8

2R (8)

Substituting from Eq. (2),
ML

6
2E,1

From (7) we then get

 6(ay— @) TE, E, L
h(E} + E3 + 14E, E,)

A beam has a slight initial curvature such that the initial configuration (which is stress free) is
described by the relation y, = Kx*. The beam is rigidly clamped at the origin and is subjected
to a concentrated force at its extreme end. as shown in Fig. 9-29. As the force is increased, the
beam deflects downward and the region near the clamped end comes in contact with the rigid
horizontal plane. If the value of the applied force is P. determine the length of the beam in
contact with the horizontal plane and the vertical distance of the extreme end from the
plane.

L a P
v P
} R
ot A _Z
[¢] Z =
. Po b
P + 6EIK IQ

Fig. 9-29 Fig, 9-30

The initial curvature may be determined from the expression y, = Kx' so that the bending
moment arising from straightening the portion of the beam near the support is readily found to be
El(d*y,/dx?) = 6EIKx, where x is the length of beam in contact with the horizontal plane. If this expression
for moment is equated to the moment of the applied load about the point of contact, that is, P(a — x).
we have

FPa

6EIKx = Pla—x) whence x = P eEIR
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Since the beam is considered to be weightless, there is no normal force between the beam and the rigid
horizontal plane between the clamp at O and the extreme point of contact at A. The beam is flat between
O and A, A free-body diagram of the deformed beam thus appears as in Fig. 9.30. A simple statics equation
for equilibrium of moments about point A indicates that the clamp exerts a downward force equal to 6 ETK.
For vertical equilibrium there is a concentrated force reaction Q = P + 6EIK acting on the beam at the
extreme point of contact A.

We now seek the equation of the deflection curve in the region to the right of point A. In Problem
9.1, Eq. (5) indicated that for an initially straight beam bending moment M is proportional to the curvature,
d?yldx*. However, in the present problem it is necessary to modify (5) to say that the bending moment
M is proportional to the change of curvature since the beam is not initially straight, Thus, the
Euler-Bernoulli equation for the portion of the beam to the right of point A is

dz}’n dz}’ _
E"(F dzz)_m’ 2

where a new coordinate Z has been introduced. This coordinate runs along the x-axis but has its origin at
point A_ It is important to note that, as the beam deflects, the curvature decreases from its original value;
hence the quantity in parentheses on the left side of the equation is positive. Accordingly, the right side
must be written as positive. This does not contradict our previous sign convention of downward
forces giving negative moments since it was applied to initially straightr beams. If we substitute
El(d? y/dx*) = 6EIKx, the last equation becomes

d’y Pa
EIEE_Z— = 6EIK[PT&§-'K“+Z] —Pb+ PZ

Integrating twice and imposing the boundary conditions that y = dy/dZ = 0 at Z = 0, we obtain the desired
deflection
36(ElKa)®

Elveo = v sEIKY

The bar ABC in Fig. 9-31 has flexural rigidity E(3/) in region AB and flexural rigidity E7 in
region BC. The bar is pinned at A, supported by a roller at B, and subject to an applied bending
moment My at the free end. Determine the vertical deflection at B.

[ T %—1
)
8° '——P%}vw
uﬁ
T

Fig. 9-31

Let us introduce the x-y coordinate system shown, where x may designate a cross section in either AB
or BC. It is first necessary to delermine the reactions from statics, viz.,

]

+)EMB _M0+RAL=U ‘RA=_(1)

SF,=-R,+Rz=0 SRy ==2(1)
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We first write the differential equation of the deflected bar in region AB:

E(31)§‘%= —Rax for 0O0<x<L

Integrating,
d X
5(31)5” = —RaZ+C )
Integrating again,
R 3
E(3!)y=——2f--%+ Cx+ G )

As the first boundary condition we have: When x = 0, y = . Substituting in Eq. (2), we have
Cz =0
As a second boundary condition we have: When x = L, y = 0, and using R, = My/L we have

M, L?
0= »-‘L—"-—ﬂ—+c..r_+c2

:-;MOL
6

Thus, Cl

Next, we write the differential equation of the deflected beam in region BC:

2
‘EI%=_RAJ‘+R3(K—L) for L<x<(L+¢)
Myx  Mox
=77 + I RsL
:“MO

This result could also have been obtained by taking moments of applied loads to the right of any section
designated by “x™ in BC.
Integrating,
d
Elay = —Myx+C, )
Integrating again,

2
Ely = —M.;,-fz—+ng+C4 ()

As a third boundary condition at x = L, y = 0 in Eq. (4), so from (4)

Lz
0=—M; +CL + C, (5)
As the fourth boundary condition at x = L the slopes dy/dx as given by Egs. (1) and (3) must be equal.
This leads to
1 [Ral? ML) 1
351[ 2 e ]_Ell MoL +Cy] ©)

Solving Eq. (6) for Cj, then (§) for Cy, we find
G= %MQL; 4 = _IzﬁMDLI
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9.29.
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The equations of the deflected beam are thus

Mo 5 ML

E(BDy= _EI + Tx for O<x<L (7)
Ely = —%xz+gMﬂLr—f—3MﬂL2 for L<x<(L+C) (8)
When x = (L + C), we have from Eq. (8) the desired tip deflection:
lhric= %} [(—{%Qj+ gL(L +C) —éLz]
()

Supplementary Problems

The cantilever beam loaded as shown in Problem 9.2 is made of a titanium alloy, having E = 105 GPa. The
load P is 20kN, L = 4 m, and the moment of inertia of the beam cross section is 104 X 10° mm®. Find the
maximum deflection of the beam. Ans. —39mm

Consider the simply supported beam loaded as shown in Problem 9.12. The length of the beam is 20 ft,
a = 15 ft, the load P = 1000 1b, and / = 150 in®. Dctermine the deflection at the center of the beam. Take
E=30%10°Ib/in’.  Ans. —0.044in

Refer to Fig. 9-32. Determine the deflection at every point of the cantilever beam subject to the single
moment M; shown.  Ans. Ely = —M x%/2

"

Fig. 9-32

FEAARSAARAR A S,

The cantilever beam described in Problem 9.29 is of circular cross section, 5 in in diameter. The length of
the beam is 10 ft and the applied moment is 500 Ib- ft. Determine the maximum deflection of the beam.
Take E = 30 10° Ib/in’. Ans. —0.46%in

wiUnil Jeagih
.2 I

Fig. 9-33
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9.31.

9.32.

9.33.

9.34.

9.35.

Refer to Fig. 9-33. Find the cquation of the deflection curve for the cantilever beam subject to the
uniformly varying load shown.

wx'  wlix wl?

+
120L 24 30

Ans. Ely = -

A cantilever beam is loaded by the sinusoidal load indicated in Fig. 9-34. Determine the deflection of the
tip of the beam.  Ans  Ely],_, = —0.07385¢, "

L Ax
N 4= gy sin 5=

L2

Fig. 9-34

A cantilever beam carrying a parabolically distributed load is shown in Fig. 9-35. Determine the equation
of the deflected beam as well as the deflection at the tip.
16 wy o, 8 56

_x(;L"x - _WUL‘

— 56 4 —_
fns s ol LBl = s TR T 0 945

945

The cross section of the cantilever beam loaded as shown in Fig. 9-33 is rectangular, 50 X 75 mm. The bar,
1 m long, is aluminum for which £ = 65 GPa. Dctcrmine the permissible maximum intensity of loading if
the maximum deflection is not to excced 5 mm and the maximum stress is not to exceed 50 MPa,

Ans. w = 14.1kN/m

Refer to Fig. 9-36. Determine the equation of the defiection curve for the simply supported beam
supporting the load of uniformly varying intensity.
L X ?L:.r)

Ans. Ely=w7(

T2 18 180

Fig. 9-35 Fig. 9-36
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9.36. Determine the equation of the deflection curve for the cantilever beam loaded by the concentrated force
P as shown in Fig. 9-37.
PZ Pd P P4’

P
Ans. E.'y=—g(a—x)"—7,t+? for0<x<a;Eiy=—7x+—6— fora<x<lL

P
W |
' a b

/i
!

Fig. 9-37

9.37. For the cantilever beam of Fig. 9-37, take P =5kN, a = 2m, and b = 1 m. The beam is of equilateral
triangular cross section, 150 mm on a side, with a vertical axis of symmertry. Determine the maximum
deflection of the beam. Take E = 200 GPa. Ans. —12.8mm

9.38. The cantilever beam shown in Fig. 9-38 is subjected to a uniform load w per unit length over its right half
BC. Determine the equations of the deflection curve as well as the maximum deflection.

wlx? 3wlix? L
§ o= — { g .( pu—
Ans  Eh T T for O<x 2
w(L —x)* TwLl?x 15wl® L
Ely = - - + fi —<x<L
y 2 FEIERET YR T
41 [wlt
Ay = — | —
384( El )

]
—

w/ Unit length

b=

AR
m-
-

Fig. 9-38

9.39. The simply supported overhanging beam supports the load w per unit length as shown in Fig. 9-39. Find
the equations of the defiection curve of the beam. Take coordinates at the level of the supports.

4 El __ﬂ“_}wL’x_wLx(&_ ) ﬂ‘_waL3+wLa L )2 ; 0<x<
mOEYTET T T s 2 24 48 4(2“ or x=a
wx* wl(x—a)® wl’x wlx (L )2
Ely= — —+ + - =
Y 12 48 4(2 a

+w_a“_waL3+wLa(£_ )2 ; <x<(a+bh)
24 48 4 \2 “ or  asx=la
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9.40.

9.41,

9.42.

9.43.

y w/ Unit length
S
| |
a b ' a
' L
Fig. 9-39

A simply supported beam with overhanging ends is loaded by the uniformly distributed loads shown in
Fig. 9-40. Determine the deflection of the midpoint of the beam with respect to an origin at the level of
the supports.

wa*(L — 2a)’

Ans 16E1

(above level of supports)

w/Unit length wi Unit length
s t e 14y

lL“'i' -

Fig. 9-40

For the beam described in Problem 9.40, determine the deflection of one end of the beam with respect to
an origin at the level of the supports.

wall. 3wad’

Ans. ET T SEI

(below level of supports)

The overhanging beam is loaded by the uniformly distributed load as well as the concentrated force shown
in Fig. 9-41. Determine the deflection of point A of the beam.
~wa’h  Pab® wa*

3EI + 1El " BEl (below level of supports)

Ans.

Figure 9-42 shows a cantilever beam in the form of a circular cone whose length L is large compared to
the base diameter D, If the only force acting is its own weight, which is y per unit volume, determine the
equation of the defiection curve.

2L s op
Ans. y 45ED2(x 2L L x)
w/Unit length r’
T A
a . b . b
? e
L

Fig. 9-41 Fig. 9-42
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9.44. For the overhanging beam treated in Problem 9.17 consider the uniform load to be 120 b/ft, a = 3 ft, and
b = 12 ft. The bar has a 3-in X 4-in rectangular cross section. Determine the maximum deflection of the

beam. Take E = 30 x 10" Ibfin®. Ans. —0.10in at x = 110.4in

945, A cantilever beam when viewed from the top [sce Fig. 9-43(a)] has a triangular configuration. The thickness
h of the beam is constant, as shown in the side view Fig. 9-43(b). Determine the defiection of the beam
due to a concentrated load P at the tip. Neglect the weight of the beam. Ans.  yl..o = —6PL1Ebh?

9.46. A cantilever bcam when viewed from the top has the configuration indicated in Fig. 9-44(a) and is of
constant thickness h. as indicated in Fig. 9-44(b). Find the equation of the deflection curve as the beam
bends under the action of the concentrated force P at the tip. Neglect the weight of the beam.

16P(L - x)'™ 4 . 16PL" (ﬁL"“)

Ans.y l 77 gPL X+ — ] Eh'a"
|, - e
Yoot = T ER "

®)
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9.47.

9.48.

9.49.

Fig. 9-45

A simply supported beam of length L is subjected to a uniformly distributed loading w per unit length.
The width b of the beam is constant and the height varies in such a manner that all outer fibers along both
the top and lower surfaces are subject to the same magnitude normal stress o, Dcterminc the variation
of height of the beam as a function of x. as shown in Fig. 9-45(b). Also determine the maximum deflection

of the beam.

2h, NVIx—?

max

wl?
A h=——— y. u=—0 _
Hs. i ¥ 0.0178 Eb(h)’

The cantilever beam of variable cross section shown in Fig. 9-46 is in the form of a wedge of constant width
b. The midplane of the wedge lies in the horizontal plane x-z. Find the deficction of the tip of the beam
due to its own weight y per unit volume.  Ans.  y|, = —yLYER

Two solid rigid cylinders I and 11 have their geometric axes in a horizontal plane spaced a distance L apart,
as shown in Fig. 9-47. A beam of flexural rigidity ET is then placed across the tops of the cylinders and
loaded by a centrally applied vertical force P. The beam deflects (dotted line) and is tangent to each of
the cylinders at the points designated as A. Determine the angle 6 describing this point of contact.
PL? ( 1 PLR)

4ET

Ans. 0=

16E1

L
| b=
hajb=

LRSI T




Chapter 10

Elastic Deflection of Beams:
Method of Singularity Functions

In Chap. 9 we found the elastic deflections of transversely loaded beams through direct integration
of the second-order Euler-Bernoulli equation. As we saw, the approach is direct but may become very
lengthy even for relatively simple engineering situations.

A more expedient approach is based upon the use of the singularity functions introduced in Chap.
6. The method is direct and may be applied to a beam subject to any combination of concentrated
forces, moments, and distributed loads. One must only remember the definition of the singularity
function given in Chap. 6; i.e., the quantity (x — @) vanishes if x <a but is equal to (x — a) if x > a.

There are several possible approaches for using singularity functions for the determination of beam
deflections. Perhaps the simplest is to employ the approach of Chap. 6 in which the bending moment
is written in terms of singularity functions in the form of one equation valid along the entire length of
the beam. Two integrations of this equation lead to the equation for the deflected beam in terms of
two constants of integration which must be determined from boundary conditions. As noted in Chap.
6. integration of the singularity functions proceeds directly and in the same manner as simple power
functions. Thus, the approach is direct and avoids the problem of the determination of a pair of
constants corresponding to each region of the beam (between loads) as in the case of double
integration exemplified in Chap. 9.

Most important, the singularity function approach leads directly into a computerized approach for
the determination of beam deflections. See Problems 10.16, 10.17, and 10.18.

Solved Problems

10.1. Using singularity functions, determine the deflection curve of the cantilever beam subject to the
loads shown in Fig. 10-1.

}‘I

P 2p

[ c
1 |

[ I i

4
Fig. 10-1

A

S,

el
o

In this case it is not necessary to determine the reactions of the wall supporting the beam at C.
From the techniques of Chap. 6 we find the bending moment along the entire length of the beam to
be given by

M= +P(x>'—2p(x-§‘-)l 1))

where the angular brackets have the meanings given in the section “Singularity Functions™ of Chap. 6,
pages 135-136. Thus, the differential equation for the bent beam is
d?y L\’
El—= = -P)' = 2P (x~—
dx? b <x 4) @)

260
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The first integration yields

(%)

dy &
i P2 2P 5 +C,

where C, is a constant of integration. The next integration leads to

L 3
POy ("_'Z>

El

261

(&)

)

)

(6)

(7)

)

= + +
Ely 23 2P 26) G0+ G
where G, is a second constant of integration. These two constants may be determined from the boundary
conditions:
(@) When x = L, dyldx = 0, so from (3):
PL? 3L\?
O0=——-—-P|— | +C
2 ( 4 ) !
(b) Whenx= L,y =10, so from (4):
PL® P(3L\}
0=_T_§(T) GL+G
Solving (5) and (6),
17 145
C, =—PL% C=— PL?
‘16 27 192
The desired deflection curve is thus
P P Ly 17 145
Ely=-—0V—-—{x—=) +—PL*x)— —PL?
y=-%® 3(" 4} TRAAART>

For example, the deflection at point B where x = L/4 is found from (8) to be

3
s 2] 0 Lo (L) -1y

6\a 16 " \a) 192
94.5PL3 0.492pP1°
er Vet = — 1921 or  ——p—

10.2. The cantilever beam ABC shown in Fig. 10-2 is subject to a uniform load w per unit length
distributed over its right half, together with a concentrated couple wiL?/2 applied at C. Using

singularity functions, determine the deflection curve of the beam.

w/Unit length

§ By 4 b b ¢ |
G e
M

\
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It is first necessary to find from statics the shear and moment reactions exerted by the wall on the beam
at A. From statics we have

wl? L\ (3L
-+ -~ — —— =
DEMa=Ms-— w(z)(4) 0
Twl?
M=%
L wi,
EF‘,—RA W(E]—U. RA—'T

By the singularity function approach we may write the bending moment along the entire length of the
beam as

7 2
wL WL o+

gy

: o)

wlL
M——z*(x}

where, again, the singularity functions are as defined in Chap. 6. Thus the differential equation of the bent
beam is

L 1
X —=
dzy Tsz wl? L\ L '( 2)
EI ! 04 ~=Y—w(x-< 2
e (x) )+ ( 2) W(x 2) 3 (2)
Integrating,
L 1 L k]
dy wL (P Twl’ wl? (x' 5) w ("_ E)
—_=— - + - +
=722 g W3 1 2 3 G )
The first boundary condition is: When x = 0, dy/dx = 0. Substituting in (3), we find C, = 0.
Integrating again,
L\*? L\
o WL WL GF | wl (X_ 5) w (‘_ 5) i .
Y43 8 2 T2 2 6 4 2 )
The second boundary condition is: When x = 0, y = 0. Substituting in (4), we find C, = 0.
Thus, the desired deflection equation is
_wl ';'w]'_2 2, wil? Ly? w( L\*
Ely = a0 =T+ 5= (x-5) ~5:(x-3) 5)

This yields the deflection at the tip to be

El __wL‘ 'II"w.L"_‘_wi’f(L)2 w(L 4

Ner= "6 2 \2) 2 2)
by = - 13

or Y-t = = 3e0Fr

Consider a simply supported beam subject to a uniform load distributed over a portion of its
length, as indicated in Fig. 10-3. Use singularity functions to determine the deflection curve of

the beam.
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v
wo/Unit length
] —=
B
. » 4
R, L R,

Fig. 10-3

From statics the reactions are found to be

Wo

LZ__bZ
2L ¢ )

R, =
R, = woa—E(Lz b

The bending moment at any point x along the length of the beam is

M=R,x—1"2—°(x>2+~'§9(x—a}2 @)

Note that the last term on the right is required to cancel the distributed load represented by the term

- L;-" (xy
for all values of x greater than x = a. Thus
dz
E F =M = Ry(x)’ -—{x)z (1 —ay (2)
Integrating,
d
E1 = 2y - 2y + -0y 4 3)
dx 6
Finally,
_ R, s Wo, 4 Mo,
6(;) 24(x} +24(x ay'+ Cix+ G (4)
To determine C, and C,, we impose the boundary conditions that y = 0 at x = 0 and x = L. From (4) we
thus find
_ WDL]' Wob‘ WoL 2 2
C=% a1z &Y
Cz =0

The deflection curve is accordingly

)

3 4 2
Ely = wol?  wgb® wolb ]x

W, w,
12— p? 3_ 0, na 0, na _ -
121_( DY =g @ H @ +[ % 2L 12
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10.4. Consider the overhanging beam shown in Fig. 10-4. Determine the equation of the deflection
curve using singularity functions.

- 3
2

|
A —— | b,

Fig. 10-4 Fig. 10-5

From statics the reactions are first found to be R, = Pb/a and R, = P[1 + (bia)], acting as indicated
in Fig. 10-5. The bending moment at any point x along the entire length of the beam is

4y _p= 1 . 2
Thus EIF_M_ —Ri{(x) + Ryx — a) ( )
from which
dy IRI 2 RZ 2
——— T — — - +
Efdx 5 {xy + 2 {x—ay + C, 3)
R
Ely = "t + =0y + x4 4)
The boundary conditions are y = 0 at x = 0 and x = a. From these conditions, C, and C, are found from
(4) to be
Pab
C1 = -6— Cz =0

The deflection curve is thus

P, ., P b Pabx

= =P+ —=|1+=-|{x—ap+ — 5
Ely (x) 6(1 a)(x a +— (%)

10.5. Through the use of singularity functions determine the equation of the deflected cantilever
beam subject to the triangular loading together with the couple indicated in Fig. 10-6.

Fig. 106
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We must first determine the reactions at point A through the use of statics. There will be a vertical

shear reaction R, as well as a moment M, to prevent angular rotation at point A. From statics

wol?  wy

2 2

IEM, =M, - (LYGL)=0

Therefore
M, = iw,L?

W()L -
> 0

3F, = Ry~

Therefore

wy L

R, = 2

To write the expression for bending moment, let us first examine the contribution from the distributed
loading. At any position x to the right of point A, the load intensity from geometry is w = wy(x/L}) and the

resultant (shown by the dotted vector in Fig. 10-7) is of magnitude

2

LI
2 2L
and acts at a point distance $x from A. Thus, the moment at x due only to the triangular loading is
o x? (L) or - wpx®
°2L\3 6L

where the negative sign is inserted because this downward loading gives negative bending moment.

wor
2L
1
1

T—- —_—

? L)
bel

Fig. 10-7

Due to all loadings, that is, M,, R,, and the triangular load, the bending moment at any

location x is

5 wol  wex? x w.;,U( SL)”
M= —2w,[*+ - S+ =
6" T2 L 3T T2\ T
50 that the differential equation of the deflected beam is

d’y 5 wy L wox? wan( BL)U
W, - x——

2 el T 2 4
Integrating the first time, we obtain

dy 5 . . wl x¥ wg x* wﬂLl( 3L)'
_ = —— +———— e ——— —
e T R T B

(1)

2)

(3)
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As the first boundary condition, we have dy*/dx = 0 at x = 0 which when substituted in Eq. (3) yields
C, = 0. Integrating a sccond time, we obtain

vy (4)

4 3 2L 5 * 4
The second boundary condition, y = 0 at x = 0, leads. upon substitution in Eq. (4), to C; = 0. Thus the
beam deflection equation is

] 5 2 2
Ely = -]izwomu_“’“"-*__ﬂ,i wolL <__3L) G

5 , wol 5 wg w, L2 < SL)"
= — —w LAt L - RS 0=
Ely == w5l "4 \*
The deflection at the tip. x = L. is found from Eq. (5) to be

%)

E.l’y]_t= e = - 0.326‘-’”{, L‘t

10.6.

Using singularity functions, determine the equation of the deflection curve of the beam simply
supported at points B and C and subject to the triangular loading shown in Fig. 10-8.

x

To determine the external vertical rcactions at points B and C, we may replace the entire loading by
its resultant which acts through the centroid of the triangle. The magnitude of the entire load is the average

load per unit length, wy/2, multiplied by the beam length L, or w,L/2. This acts at a distance 2L/3 from
the left end A and is shown by the dotted vector in Fig. 10-8. From statics

Zp-=

L L2 L
+‘)EM”=R""—__W0 ( )

2 2 \37 4 =0
Therefore
wy L
R.=—2=
L .12
Swol  wyl
SF, =Rg+ ——=0
Fo=Ra =5 2
Therefore
_wyL
Ry = 12

At any station x measured from the origin at A, thc bending moment in terms of singularity functions
is given as the sum of the moments of all forces to the left of that station. Let us examine a portion of the
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triangular load of horizontal length x. The resultant of that much of the loading is shown by the dotted
vector in Fig. 10-9 and the resultant is of magnitude

Yoo XX
2 ‘L 2

and acts at a point distance {x from A. Thus, thc moment at x due only to the triangular loading is
WESIE SR
2L 3 6L

where the minus sign is inserted because according to our bending moment sign conventions in Chap. 6
downward loads give rise to negative bending moment.

Fig. 10-9

reactions) is

In terms of singularity functions, the bending moment at any station x due to all loadings (including

wolx?®  wol ( L) Sw,L < 3L)
M=—-———+— +—(x—— !
6L 12 \" 4 2 \*7 3 ()
so that the differential equation of the bent beam is
d*y welx)®  wol L> SwolL ( 3L
El—=———+—{x——) + f—— 2
dx’ o Tz etz 4) @
Integrating the first time, we obtain
dy Wo , s, Wol L\? S5w,L < 3..‘1,)2
- = ——=) + —=) + 3
Bl ™ 2™t g ( 4) w \\ ) o &)
and integrating again, we find
=m£L.s££(_L” 5 (_%’
Ely IZDL{JJ + 72 \X 4) + nw,,L x=) Cix+ G (4)
As boundary conditions, when x = L/4. y = (), so substituting in Eq. (4) we obtain
wy (L )5 L
= - —2 +C—+C» 5
120!..( i) TOqTe ©)
Also, when x = 3L/4, y = 0, and substitution in Eq. (¢) yields
Wy 3L 3 11’{1.[. (L)3 3L
- T = + + e C‘i 6
120L(4) ) TG te (6)
Solving Egs. (5) and (6), we obtain

C, = 0.0004666w,L*

» = —0.0001085w,, L*
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so that the equation of the deflected beam is

wo , s WoL [ L)“ Swy L Eh[.)3
— )+ -—=) + -
oL 7 <" i/ T\

+ 0.0004666w, Lx — 0.0001085w,, L* (7)

Ely = -

10.7. If the beam subject to triangular loading in Problem 10.6 is a W203 X 40 steel section, of length
L =4m, I=739>x10°mm* and w, = 80 kN/m, determine the deflection at the point D.
Using Eq. (7) of Problem 10.6, we have
_ wolL? . wplL (3_1_)‘ . Swol (&)3
120 72 \ 4 72 \ 4
+ 0.0004666w, L* — 0.0001085w, L*
~ 0.001031wy L
~ 0.001031w, L*
El
_ _ (0.001031) (80,000 N/m) (4 m)*
(200 % 10° N/m?) (39 X 10-° m°)
— 0.0027 m or —2.7mm

E}[ylx=L =

)

g

1

10.8. The beam AD in Fig. 10-10 is simply supported at A and C, loaded by a uniform load from B
to D, and also by a couple applied as shown at D. Determine the equation of the deflection curve
through the use of singularity functions,

;Qw B JuON 139_"

RA - R(_'

¥
l w,/Uinit length wolL?

Fig. 10-10

The reactions at A and C are assumed to be positive in the directions shown and are found from the
two statics equations 1o be

)EMA:RC(%]-%(%)}W';LQO 1)
2L
Solving,
R, = wol R, = wol
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The singularity approach lets us write the equation of the entire defiectcd beam in the form
( L
Wol X — =

oy

d’y 1
EIE = EWDL(X)I -

The applied couple does not appear directly in this equation but its effect is incorporated in the statics
equations (/) and (2). Integrating the first time

(-3) wrl-%)
2 xX== Ty
E;d_y= wLL.ﬂ_ﬂ 3 + woL - + Cyx) (4)

dx 6 2 2 3 2 2

L\? 20\
wol (x}* wy o 3) wo L (x_ 3 (x)*
0
Ely 12 3 6 4 4 3 G 2 G )

As boundary conditions we have: when x = 0, y = 0, from which Eq. (5) leads to C, = 0. Also, when
x = 2L, y =0, from which Eq. (5) gives us

C|_ = _0.03472W.[|L2
The required equation of the deflected beam is thus

woL{(x¥®  wy I\ wyL 2L>" s
- L R A 6
Ely 24(.r 3) P (x 3 woL’x (6)

10.9. In Problem 10-8 if the beam is a steel wide-flange section W203 % 51 (having I = 52.5 X 10° mm*
from Table 8-2 of Chap. 8), of length 6 m, and subject to a uniform load over BD of intensity
22 kN/m, determine the deflection at point B.
From the general equation of the deflection curve, Eq. (6) of Problem 10.8, we may write the
expression for the deflection at y = L/3 as

wol L L?
Elyliorn = % 57 0+0- 0.01736w, L2 (?)
= "O.MWQL‘
Substituting,
(22,000 Nfm) (6 m) (6 m)* (zz.om N ) , ( 6m )2
: -0.01736 6m)* | —
oo 36 27 m e
Yha=trs (200 % 10° N/im?) (52.5 % 10 °m*)

=-244x10?m or -244mm

10.10. The cantilever beam AD is loaded by the applied couples M, and M,/3, as shown in Fig. 10-11.
Use the method of singularities to determine the equation of the deflected beam.
For static equilibrium, there must be a reactive couple M, acting at point A, as well as possibly a
shear-type reactive force R,. From statics we find

+)ZM,,=M,,—M1+%=O and therefore MA=§M|

SF,=Ry=0
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X
|

: A P A~
MJ‘ T 1 é—hx

4 2 4

N

Fig. 10-11

The bending moment for any valuc of x is

N 2 o _ L 11 MI 3L L]
M= §M|<«t} +M|<l :“) "3—(15 T) ()
so that the differential equation of the deflected beam is
dy 2 o L\" M, KT AN
Efdx’ = 3M,(x) + M, (x 4> 3 (x 2 ) (2)
Integrating the first time, we obtain
dy 2 ' LAY M/ 3L\!

and the first boundary condition is that dy/dx = 0 when x = 0. Hence, C, = 0.
Integrating a sccond time

2 My L\' M,/ 3L\
Ely = 3M.2+2<x 4) ﬁ(x 4>+Cz (4)

and the second boundary condition is that y = 0 when x = (). Hence ¢, = 0.
The equation describing the deflected beam is finally

Moy | @(I _£>- M, <x_3i_)-

3 7 a ()

Ely = —

10.11. The cantilever beam in Problem 10-10 is a steel wide-flange section W254 x 31, having

I =44.1x10"°m* and a length of 2m. Determine M, if the deflection at point D is to be
3 mm.
We employ Eq. (5) of Problem 10.10 and simplify it for the deflection at x = L to find

M, L?
16

Ely],_; = —

Substituting the given numerical values, we find the tip deflection to be

My(2m)’

B } 2 . = (M
(16) (200 x 10° N/m?) (44.1 x 10 * m?) 0.003m

Vlear =

Solving,
M, = 106 kN-m

10.12. Through the use of singularity functions determine the equation of the deflection curve of the

simply supported beam of Fig. 10-12 subject to the couple applied at B plus the linearly varying
load in CD.
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Fig. 10-12

Denoting the reactions at A and C by R, and R, assumed positive in the dircctions indicatcd and
writing the two statics equations for this parallel force system, we obtain

) 2L wofL\(2L 2 L
+)EMA=WHL"—R(_-(T)—?‘)(?)(T‘Fi'?)=0 (f)
w L
EF\.=R,,-R(.—?-;=0 2)

Solving, R, = ¥w,L and R, = Zw,L. Since ecach of these is positive, the assumed directions are
correct.
In terms of singularity functions, the differential cquation of the deficcted beam is

d’y 13 L\" 23 2L\

(-5 5)6) - 5)

— Wy . (3}
5) 3

where the cffect of the triangular loading in CD is represented as the last term in Eq. (7) using the
technique for triangular load discussed in Problem 10.6 and illustrated in Fig. 10-9.

L ) ! 2‘ - “’” 3

_"’“L'(x_? T 2 2L 4

dy 13 )
El'dx =3 wol )

+ G, #)

We have no boundary conditions on slope; hence we arc unable to determine C, at this time. Integrating
the second time

L)2 ( 2L>-‘ < 21_)-‘
_L o2 L 2L
13 ) ,(‘ 3/ 3, A 3

Ely = ggmol =3~ wold T3 T 3 8L~ 5

x+Ch
is 3 > + Cix +C (5)

As boundary conditions, we have x = 0 at y = 0, so from Eq. (5) we find C; = 0. Also, when x = 2L/3,
y = 0, from which we have from Eq. (5)

13 8L} wyl?® I7? 2L
0—'571W(}L(§) e 0—0+C|(?)
Solving,
C] = _n.nzsquLB
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The deflecction curve of the bent beam is thus

-

13 w,L? L\ 23 200w, 207
Elv = — 3T =) {x——) - L {x=-==3% —0.023 Lro%
y 54w.,L(x) 5 (.1. 3> IDSW"I <r 3 ) 0L (.x 3 ) 0.02366w, L(x)

10.13. Determine the equation of the deflection curve of the simply supported beam shown in
Fig. 10-13(a). Use singularity functions.

tv 200N 200N
' . ™~

o 100N oN-m  fOON/
z
1

! ) |
V I!F'Zn 2m im
im|] Iim 2m im Rlv Rs
(a) (b)

Fig. 10-13

The free-body diagram is shown in Fig. 10-13(b). From statics the reactions are readily found to be
R, =225N. R, = 525N.
Writing the bending moment corresponding to Fig. 10-13(b) in terms of singularity functions, we have

®
d? N 1 I 2 _ 2
EI-——dt‘; =M= =2250)" + 100(x — 1) - 00(*2 2y 100(12 Vs 5250 - ' ()
where the term denoted by @ is neccssary to annul the effect of the 100 N/M load to the right of
x=4m.
Integrating,
dy 225 ., 0, a0 5, 525 2
E!dx— 2{x)+l{)0(.1 1) 3(.1 2}+3(x 4y = 2 x—4y +C, (2)
225, ., 100 50 50 525
=)t — =1 ==+ ==+ =4+ 3
Ely g WG DT S A S = G G (%)

The boundary conditions are y = 0 at x = (. x = 4m. Using these conditions in (3) to determine C,
and C,, we find C, = 504, G, = 0.
The desired deflection curve is thus

225, 100 , S50 .. 50 ., 525 \
=t — -1 - -2 A (-
Ely = ===+ === 17 = = 2004 = 4 = 4+ 504 (4)

10.14. The elastic beam AD shown in Fig. 10-14 is simply supported at B and C and subject to an
applied couple M, at point A together with a uniformly distributed load in the overhanging
region CD. Find the equation of the deformed beam as well as the deflection at point A.

From statics the rcactions Ry and R, are found to be
Ry = HwL (1) Rc = awL(1)

Using the mcthod of singularity functions, we find that the differential cquation of the bent beam is

2

dly 1 ., 73 L 91 5 w 5 \-
— =—wl*—— — =) +— —= -—{x—=L I
E!dxz 2wL 48wL (x 4) 48wL (.r 8L> 5 <.1 P > (I
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10.15.

Fig. 10-14

Integrating the first timc, we have

dy 1 73 L\ S A\T_wl 5.\
Ejd_iJ':EWE(x)_%WL(I_Z) +%WL<I—§L) —E(x-gL) +C, (2)

3

Integrating a second time

1 &Y 73 Ly 91 5V 0w 5 \¢
EIy:EWLT_PZBEWL(x‘_E) +-——WL<I—§L) —i(x—§L> +Cix+ G (3)
As boundary conditions to determine €, and C,, we have

First: When x = L/4, y = 0. Substituting in Eq. (3), we have

wl L? L
0—T°E—0+0—0+C|I+C2 (4)

Second: When x = 5L/8, y = 0. Substituting in Eq. (3), wc have

wi? 25 . 73 270
=7 @l ws" i

+0+%LC.+C2 (5)

Solving Egs. (4) and (5), we obtain
C, = —01831wl? C, = 0.03015wl?

The equation of the deflected beam, for all values of x, is

owL? 73 Ly 91 S5 Y w5 . .
Ely = 2 {x) 788 wi. (.r 3 ) + wl, (Jz L) 24 (.1 8L> 0.1831wL"x + 0.03015wL
()

At the left end, x = 0, and the deflection there is
Ely),_o = 0.03015w, L*

Use singularity functions to determine the equation of the deflection curve of the simply
supported beam subject to a uniformly varying load as in Fig. 10-15(a). What is the central
defiection of the beam?

The free-body diagram with the reactions found from statics is shown in Fig. 10-15(b).
If we refer to Problem 10.6, we can write the bending moment at any location x in the form

WQL ' Wy a 2W0 L>3
MEx) = + 0% 00! 2+ S (xS o
where the second term on the right side of (1) represents a uniformly varying load extending completely
across the beam as indicated by the triangle OAB in Fig. 10-16. To remove the portion of this loading
represented by triangle ABD, we add the third term on the right side, which leaves the true load
represented by triangle ODB.
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¥ v
f 1
wy/ Unit length wi/ Unit length
O - 4z
A I
L |
E 1 E ]
{a) (b}
Fig. 10-15
y A
D c
B x
0
L L
2 | ;
Fig. 10-16
Thus
d’y wy L W 2w, L\?
ElI—S=M=+—)'—— P+ —(x—= 2
dx’ PR AR Y) (x 2) @)
from which
dy wy L Wy Wp Ly?
Fl—=+—0)P ——0)F+—{x—=) + 3
ax - Ty W™ 6L(x 2) G )

From symmetry we have as a boundary condition dy/dx =0 at x = L/2. From (3) we find that
C, = —5w,L*192. Integrating again we get the desired deflection curve.

wol 4 owy o Wy ( L):s 5 R
= 0 s M BN 2 s
Ely 2 (x) GDL(l) +3{]L X 5 lgzuﬂL x+ G (%)
Since y = 0 at x = 0, it follows that C, = 0. The central deflection is found from (4) to be
_ WnLd
Y~ T 120E1

Statically Determinate Beams— Computerized Solutions

Problems 10.1 through 10.15 have demonstrated the efficiency of the method of singularity
functions for the determination of beam deflections. The technique is very well suited to computer
implementation because there is a direct correspondence between the singularity function {x — a)
defined as
0 if x<a
(x —a) ifx>a

&-®=[

and the “if” statement in FORTRAN. This feature is utilized extensively in the computerized approach
in Problem 10.16.

10.16. Write a FORTRAN program for determination of slope and deflection at selected points along
the length of a beam of constant cross section, simply supported at two arbitrary points, and
loaded by arbitrary concentrated forces, moments, and uniformly distributed loads.
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F()
M(h) =
| N
cedd | |
R R,
FCOORIX)
MCODRD(1)
RCOORD2
PDCOORDI(H
DCOORD(T)
LEN
Fig. 10-17

Let us employ the terminology shown in Fig. 10-17. See Table 10-1.
A complete listing of the program based upon numerical solution of the beam bending equation

d’y
Ly _

Ef o

utilizing singularity functions follows. One must introduce all parameters of beam loading, geometry, and
elastic properties. The program will then print out the slope and deflection (with appropriate algebraic
sign) at each of the (NUM + 1) points along the length of the beam as well as values of the reactions R,

and R,.
Table 10-1
Units USCS or SI
E Young’s modulus
I Moment of inertia of beam cross section about the neutral axis
LEN Length of beam
NF Number of applied concentrated forces (not including reactions)
NM Number of applied moments
ND Number of uniformly distributed loads
NUM Number of segments into which length of beam is divided for
purpose of analysis
RCOORD1 Coordinate locating reaction R
RCOORD2 Coordinate locating reaction R
FCOORD(I) Coordinate locating applied concentrated force I
FMAG(I) Magnitude of concentrated force I
MCOORD( I} Coordinate of locating moment I
MMAG(I) Magnitude of moment I
DDCOORD1(I) Left coordinate of distributed load I
DDCOORD2(I) Right coordinate of distributed load I
MCOORD(I) Magnitude (load/unit length) of uniformly distributed load I
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QO0QLOARARARARARRARRARAAANRAARRRARARARRAAARARARRAAAARRARRAARRARARARARRAARARRARARRARARRRAR

PROGRAM BEND (INPUT,QUTPUT)
OO03OARRARARRAR AR AR ARRRRARRARRAARR A A AR AR AR R AR R AN A AN AR AR AR AR AR AARARRARRARAARR

00020

00040*
00050*
00060*
00070*
00080+
00090*
00100*
00110%*
00120*
00130*
00140*
00150*
00160*
00170%*
00180*
00190+
00200*
00210*
00220*
00230*
00240*
00250#*
00260*
00270#
00280+
00290*
00300*
00310#*
00320%*
00330+
00340*
00350+
00360+
00370+
00380+
00390+
00400+
00410+
00420*
00430*
00440+
00450+
00460+
00470*
00480*
00490+
00500*
00510*
00520+
00530+
00540+
00550+
00560*
00570#*
00580*

AUTHOR: KATHLEEN DERWIN
DATE : JANUARY 29,1989

BRIEF DESCRIPTION:

THIS PROGRAM CONSIDERS THE BENDING OF BEAMS DUE TO CONCENTRATED
FORCES, CONCENTRATED MOMENTS, AND UNIFORMLY DISTRIBUTED LOADS. FIRST,

THE PIN REACTION FORCES ARE FOUND, AND THEN THE SLOPE AND DEFLECTION OF

THE LOADED BEAM AT VARIOUS INCREMENTS ALONG ITS LENGTH ARE DETERMINED.
NOTE, THIS PROGRAM WAS DEVELOPED TO CONSIDER GENERAL LOADING, AND THE
PINS DO NOT HAVE TO BE AT THE ENDPOINTS OF THE BEAM.

INPUT:

THE USER MUST FIRST ENTER IF USCS OF SI UNITS ARE DESIRED. THEN,
THE MOMENT OF INERTIA, YOUNG'S MODULUS, AND THE LENGTH OF THE BEAM
ARE ENTERED. FINALLY, THE NUMBER, MAGNITUDE, AND LOCATION OF ALL
LOAD TYPES, AND THE NUMBER OF INCREMENTS TO PERFORM THE SLOPE AND

DEFLECTION CALCULATIONS
OUTPUT:

ARE INPUTTED.

THE PROGRAM PRINTS THE MAGNITUDE AND SENSE OF THE TWO REACTION
FORCES, AS WELL AS THE SLOPE AND DEFLECTION AT SUCCESSIVE INTERVALS

ALONG THE BEAM.

VARIABLES:
E,INER,LEN ——

NUM
RCOORD1 , RCOORD2 -

Rl,R2 ——
FCOORD(I),FMAG({I) ==~
DDCOORD1(I) ,DCOORD2(I)~

DINT(I) —
MCOORD(I),MMAG(I) ---

DX ——

Wl,W?;...WS =
SLF(I),DF(I),.SLM(I),
DM(I),SLD(I),DD(I)==~

SLRI.SLRZ ,DRI.DRZ ——
DFX , DMX, DDX
C1,c2 ———
SL(I).D(I) i
NF,NM,ND —

FSUM, MSUM -

DDIST(I),LOAD(I) ---

BIG -
ANS -—-

YOUNG'S MODULUS, MOMENT OF INERTIA, LENGTH
OF BEAM

NUMBER OF INCREMENTS TO DO CALCULATIONS ON
LOCATION OF THE PINS

MAGNITUDE OF THE PIN REACTION FORCES
LOCATION AND MAGNITUDE OF CONCENTRATED FORCE
LOCATION OF DISTRIBUTED LOADS

INTENSITY OF DISTRIBUTED LOADS

LOCATION AND MAGNITUDE OF MOMENTS
INCREMENTAL STEP ALONG BEAM (LENGTH/NUM)
THE 'BRACKET TERMS' OF THE SINGULARITY FNCTS

THE SUMMING ARRAYS FOR SLOPE AND DEFLECTION
DUE TO EACH APPLIED FORCE AT A PARTICULAR PT
THE EFFECTS OF THE REACTION FORCES AT A POIN
THE TOTAL SLOPE AND DEFLECTION DUE TO BOTH
APPLIED AND REACTIVE FORCES AT A POINT

THE CONSTANTS OF INTEGRATION

THE FINAL SLOPE AND DEFLECTION AT ANY POINT
THE NUMBER OF CONCENTRATED FORCES (NOT
INCLUDING REACTIONS), APPLIED MOMENTS, AND
UNIFORMLY DISTRIBUTED LOADS

THE SUM OF THE FORCES AND MOMENTS, USED TO
COMPUTE THE REACTIVE FORCES

THE DISTANCE EACH DISTRIBUTED LOAD SPANS, AN
THE MAGNITUDE OF THE RESULTING FORCE

GIVES THE LARGEST NUMBER OF ALL FORCE TYPES
DENOTES IF USCS OR SI UNITS ARE DESIRED

D0SG0ARARRAARARRARRRRARARARARNRARARNAARRRARANNRRARRNARRARRRRARAANRRRANRARARRARE
00600r*AARRARAR
QOGLOARRAARRRARRARRRARARRAAANARARIAARAAARARRRRAR AR R AARARRARARARAARAARRARANA RS

00620*
00630*
00640*
00650
00660

MAIN PROGRAM RAARRRA AN AR

VARIABLE DECLARATIONS

REAL E,INER,LEN,NUM,RCOORD1,RCOORDZ,FCOORD(10),FMAG(10),MCOORD(10)
REAL MMAG(10),DCOORD1({10),DCOORD2(10),DINT(10),DX,X,XX,VV1l,VV2
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00670 REAL VV3,VV4,VVS,VV6,SLF(10),SLD(10),SLM(10),DF(10),DD(10),DM(10)
00680 REAL SLR1,SLR2,DR1,DR2,R1,R2,SLFX,SLDX,SLMX,DFX,DDX, DMX

00690 REAL C1,C2,FSUM,MSUM,DDIST(10),LOAD(10),SL(100),D(100)

00700 INTEGER NF,ND,NM,BIG,ANS

00710%

00720* INITIALIZING VARIABLES TO ZERO

00730*

00740 FCOORD(10)=0.0

00750 FMAG(10)=0.0

00760 MCOORD(10)=0.0

00770 MMAG(10)=0.0

00780 DCOORD1 (10)=0.0

00790 DCOORD2(10)=0.0

00800 DINT(10)=0.0

00810 SLF(10)=0.0

00820 SLD(10)=0.0

00830 SLM(10)=0.0

00840 DF(10)=0.0

00850 DD(10)=0.0

00860 DM(10)=0.0

00870 SL(100)=0.0

00880 D(100)=0.0

00890 SLFX=0.0

00500 SLDX=0.0

00910 SLMX=0.0

00920 DFX =0.0

00930 DDX =0.0

00940 DMX =0.0

00950*

00960*## 4% USER INPUT ARanr

00970+

00980 PRINT*, 'PLEASE INDICATE YOUR CHOICE OF UNITS:'

00990 PRINT*,'1 - USCS'

01000 PRINT*,'2 - SI'

01010 PRINT#*,* °

01020 PRINT*, "ENTER 1,2:°'

01030 READ* , ANS

01040 IF (ANS.EQ.1) THEN

01050 PRINT*, 'PLEASE INPUT ALL DATA IN UNITS OF POUND AND/OR INCH...'
01060 ELSE

01070 PRINT*, 'PLEASE INPUT ALL DATA IN UNITS OF NEWTON AND/OR METER...
01080 ENDIF

01090+

01100

01110 PRINT*,' '

01120 PRINT*, 'ENTER THE VALUES FOR E,I,LEN,NF,ND,NM,NUM:'

01130 READ(*,*)E, INER, LEN, NF,ND, NM, NUM

01140 PRINT*,"' °

01150 PRINT*, 'ENTER THE COORDINATES OF THE ALL FORCE TYPES AS DISTANCES'
01160 PRINT#,'FROM THE LEFT END OF THE BEAM...ALSO, CONSIDER FORCES'
01170 PRINT*, 'DIRECTED DOWNWARD, AND MOMENTS ACTING CLOCKWISE AS POSITIVE
01180 PRINT*,' *

01190 PRINT*, 'ENTER THE COORDINATES OF THE REACTION POINTS:'

01200 READ( *, * )RCOORD1 , RCOORD2

01210 IF (NF.GT.0) THEN

01220 PRINT#*, 'ENTER THE COORDINATE AND MAGNITUDE OF ALL CONCENTRATED '
01230 PRINT*, ' FORCES: '

01240 READ(*,*)(FCOORD(I),FMAG(I),I=1,NF)

01250 ENDIF

01260 IF (NM.GT.0) THEN

01270 PRINT*, 'ENTER THE COORDINATE AND MAGNITUDE OF ALL CONCENTRATED °
01280 PRINT*, ' MOMENTS: '

01290 READ(*,*) (MCOORD(I),MMAG(I),I=1,NM)

01300 ENDIF

01310 IF (ND.GT.0) THEN

01320

PRINT*,'ENTER THE FIRST AND SECOND COORDINATE AND THEN INTENSITY °
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01330 PRINT*,'OF ALL DISTRIBUTED LOADS:"'

01340 READ( *,*) (DCOORD1 (I),DCOORD2(I),DINT(I),I=1,ND)

01350 ENDIF

01360%

01370#*%ann END USER INPUT LT

01380*

01390 PRINT*,' '

01400 PRINT*,' THE MAGNITUDES OF THE TWO REACTIVE FORCES (LB OR NEWTONS)
1

01420%44%%  CALCULATIONS  ##sees

01430*

01440*

01450* CALCULATING THE MAGNITUDE AND DIRECTION OF THE PIN REACTION

01460+ FORCES

01470*

01480 FSUM=0.0

01490 MSUM=0.0

01500 DO 15 I=1,ND

01510 DDIST(I)= DCOORD2(I) - DCOORD1(I)

01520 LOAD(I) = DINT(I)*DDIST(I)

01530 FSUM = LOAD(I) + FSUM

01540 MSUM =(((0.5*DDIST(I) + DCOORD1(I)) - RCOORD1) * LOAD(I)) + MSUM

01550 15 CONTINUE

01560 DO 20 I = 1,NF

01570 FSUM = FSUM + FMAG(I)

01580 MSUM =( (FCOORD(I) - RCOORD1)*FMAG(I)) + MSUM

01590 20 CONTINUE

01600 DO 30 I = 1,NM

01610 MSUM = MSUM + MMAG(I)

01620 30 CONTINUE

01630 R2 = -{MSUM/(RCOORD2-RCOORD1) )

01640 Rl = -(FSUM+R2)

01650+

01660* PRINTING THE REACTION FORCES

01670+

01680 PRINT*,' '

01690 PRINT*,'R1 = ',R1," R2 = ',R2

01700 PRINT*,"' '

01710*

01720% CALCULATING THE LARGEST NUMBER OF EITHER FORCES, DISTRIBUTED

01730* LOADS, OR MOMENTS

01740*

01750 IF (NF.GE.ND) THEN

01760 IF (NF.GE.NM) THEN

01770 BIG=NF

01780 ELSE

01790 BIG=NM

01800 ENDIF

01810 ELSE

01820 IF (ND.GE.NM) THEN

01830 BIG=ND

01840 ELSE

01850 BIG=NM

01860 ENDIF

01870 ENDIF

01880*

01890*

01900+ THE FOLLOWING SECTION OF THIS PROGRAM PERFORMS THE CALCULATIONS

01910* THAT DETERMINE THE SLOPE AND DEFLECTION AT SEVERAL INTERVALS ALONG

01920+ THE BEAM. THE METHOD OF SINGULARITY FUNCTIONS AND INTEGRATION IS

01930% EMPLOYED, AND THE PRINCIPAL OF SUPERPOSITION ALLOWS EACH TYPE OF

01940+ FORCE TO BE CONSIDERED SEPARATELY AND THEN SUMMED TO PRODUCE

019504 THE NET EFFECT ON THE BEAM.

01960*

01970 DX=LEN/NUM

01980 J=1

01990 10 DO 50 XX=0,LEN,DX



CHAP. 10) ELASTIC DEFLECTION OF BEAMS: METHOD OF SINGULARITY FUNCTIONS 279

02000
02010*
02020*
02030+
02040+
02050%
02060
02070
02080*
02090+
02100*
02110
02120
02130
02140
02150
02160
02170
02180*
02190*
02200*
02210+
02220+
02230
02240
02250
02260
02270
02280
02290*
02300*
02310+
02320%*
02330
02340
02350
02360
02370
02380
02390
02400
02410
02420*
02430*
02440+
02450+
02460
02470
02480
02490
02500*
02510%
02520+
02530+
02540
02550
02560
02570
02580
02590
02600
02610
02620
02630
02640
02650

60

40

X=XX

THE FUNCTIONS ARE FIRST SOLVED FOR THE INITIAL CONDITIONS OF ZEROQ
DISPLACEMENT AT THE TWO PIN REACTION POINTS, RCOORD1 AND RCOORD2,
THAT THE CONSTANTS OF INTEGRATION MAY BE DETERMINED.

IF (J.EQ.1) X=RCOORD1
IF (J.EQ.2) X=RCOORD2

EVALUATING THE °'BRACKET TERMS' USED WITH THE SINGULARITY FUNCTIONS

DO 60 I=1,BIG
VV1=X-FCOORD(I)
VV2=X-DCOORD1 (I)
VV3=X-DCOORD2(1I)
VV4=X-RCOORD1
VV5=X~RCOORD2
VV6=X-MCOORD (1)

RECALL, WITH SINGULARITY FUNCTIONS IF THE QUANTITY IN THE
BRACKETS IS LESS THAN OR EQUAL TO ZERO, THAT TERM MAKES NO
CONTRIBUTION TO THE SLOPE AND/OR DEFLECTION AT THAT POINT.

IF (VV1.LE.O) VV1=0
IF (VV2.LE.0) VV2=0
IF (VV3.LE.Q0) VV3=0
IF (VV4.LE.Q0) VV4=0
IF (VVS.LE.Q) VV5=0
IF (VV6.LE.0) VV6=0

DETERMINING THE SLOPE AND DISPLACEMENT DUE TO EACH FORCE AT A
PARTICULAR POINT ON THE BEAM

SLF(I) = FMAG(I)/2*(VVl**2)
DF(I) = FMAG(I)/6*(VV1t#3)

SLD(I) = (DINT(I)/6*(VV2*#3)) - (DINT(I)/6#(VV3#43))
DD(I) = (DINT(I)/24*(VV2#*4)) - (DINT(I)/24*(VV3*#3))

SLM(I) = MMAG(I)*VV6
DM(I) = MMAG(I)/2*(VV6%#2)
CONTINUE

DETERMINING THE SLOPE AND DISPLACEMENT DUE TO THE REACTION FORCE
AT A PARTICULAR POINT ON THE BEAM

SLR1 = R1/2 * (VV4##2)
SLR2 = R2/2 * (VV5#*#*2)
DR1 = R1/6 * (VV4*#*3)
DR2 = R2/6 * (VV5**3)

SUMMING THE EFFECTS OF ALL FORCE CONTRIBUTIONS OF THE SLOPE AND
DISPLACEMENT AT A PARTICULAR POINT ON TEE BEAM

DO 40 I=1,BIG
SLFX= SLFX+ SLF(I)
SLDX= SLDX+ SLD(I)
SLMX= SLMX+ SLM(I)
DFX = DFX + DF(I)
DDX = DDX + DD(I)
DMX = DMX + DM(I)

CONTINUE

SL(J) = SLFX + SLDX + SLMX + SLR1 + SLR2
D(J) = DFX + DDX + DMX + DRl + DR2
J =J+1
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02660*

02670* SETTING THE SLOPE AND DISPLACEMENT SUMS BACK TO ZERO BEFORE
02680%* MOVING TO REXT POINT ON BEAM

02690*

02700 SLFX=0.0

02710 SLDX=0.0

02720 SLMX=0.0

02730 DFX =0.0

02740 DDX =0.0

02750 DMX =0.0

02760 IF (J.EQ.3) GO TO 10

02770*

02780* REPEAT THIS PROCEDURE FOR NEXT POINT ON BEAM
02790 50 CONTINUE

02800%*

02810+ CALCULATING THE CONSTANTS OF INTEGRATION FROM THE INITIAL
02820%* CONDITIONS OF ZERO DISPLACEMENT AT THE PINS.
02830*

02840 c1 = (D(2) - D(1))/({RCOORD1 - RCOORD2)

02850 C2 =(-D(1) - (C1*RCOORD1l))

02860

02870 X=0.0

02880*

02890* FINALLY, DETERMINING THE SLOPE AND DISPLACEMENT AT EVERY POIN
02900+ BY CONSIDERING ALL THE FORCE CONTRIBUTIONS AT EACH RESPECTIVE
02910* POINT, AND THE CONSTANTS OF INTEGRATION.
02920*

02930 DO 80 1=3,J-1

02940 SL(I) =(SL(I) + Cl)/(E*INER)

02950 D(I) =(D(I) + (C1*X) + C2)/(E*INER)

02960* PRINT* ,SL(1),D{I)

02970 X=X+DX

02980 80 CONTINUE

02990*

03000+ PRINTING THE SLOPE AND DELECTION AT INCREMENTS ALONG THE BEAM
03010*

03020 PRINT 82, "NODE', 'LOCATION', 'SLOPE', 'DEFLECTION'
03030 IF (ANS.EQ.1) THEN

03040 PRINT 83

03050 ELSE

03060 PRINT B4

03070 ENDIF

03080 X=0.0

03090*

03100 DO B5 I=3,J-1

03110 PRINT 90,I-2,X,SL({(I),D(I)

03120 X=X+DX

03130 85 CONTINUE

03140%

03150* FORMAT STATEMENTS

03160*

03170 82 FORMAT(//.2X,A4,5X,A8,5X,A5,6X,RA10)

03180 83 FORMAT(3X,'NO',9X,"'IN',8X," 'IN/IN',10X," 'IN")
03190 84 FORMAT(3X,'NO',9X,'M’',9X,' M/M ',10X,'M')
03200 90 FORMAT(3X,I12,6X,F8.3,3X,E10.3,4X,E10.3)
03210 STOP

03220 END

10.17. A beam 12 m long is supported at knife edge reactions and loaded by a concentrated moment
of 8000 N -m together with a concentrated force of 8500 N as shown in Fig. 10-18. Use the
FORTRAN program of Problem 10.16 to determine the defiection by considering 25 segments
along the length of the beam. The beam is of rectangular cross section 60 mm wide and 280 mm
high and E = 200 GPa.
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The input into the program is shown in Table 10-2.
Input of these parameters into the program leads to the following output:

PLEASE INDICATE YOUR CHOICE OF UNITS:
1 - USCs
2 — SI

ENTER 1.2:
? 2
PLEASE INPUT ALL DATA IN UNITS OF NEWTON AND/OR METER...

ENTER THE VALUES FOR E,I,LEN,NF,ND,NM,NUM:
? 200E+9,109E-6,12,1,0,1,25

ENTER THE COORDINATES OF ALL THE FORCE TYPES AS DISTANCES
FROM THE LEFT END OF THE BEAM...ALSO, CONSIDER FORCES
DIRECTED DOWNWARD, AND MOMENTS ACTING CLOCKWISE AS POSITIVE.

ENTER THE COORDINATES OF THE REACTION POINTS:
? 0,8

Table 10-2
Units SI
200 X 10°
35 (0.06m) (0.28m)°=109X10°m*
LEN 12
NF 1
ND 0
NM 1
NUM 25
RCOORD1 0
RCOORD2 2]
FCOORD(1I) 12
FMAG(I) 8500
MCOORD(I}) 4
MMAG({I) BOOO
DCOORD1(1) 0
DCOORD2(1I} (]
DMAG(I) 0

281
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ENTER THE COORDINATE AND MAGNITUDE OF ALL CONCENTRATED
FORCES:

2 12,8500

ENTER THE COORDINATE AND MAGNITUDE OF ALL CONCENTRATED
MOMENTS :

? 4,8000

THE MAGNITUDES OF THE TWO REACTIVE FORCES (LB OR NEWTONS):

R1 = 5250. R2 = -13750.
NODE LOCATION SLOPE DEFLECTION
NO M M/M M

1 .000 -.294E-02 -000E+00

2 -480 -.291E-02 -.140E-02

3 960 -.282E-02 -.27BE-02

4 1.440 -.269E-02 -.411E-02

5 1.920 ~.249E-02 -.535E-02

6 2.400 -.224E-02 -.649E-02

7 2.880 -.194E-02 -.750E-02

8 3.360 -.158E-02 -.834E-02

9 3.840 -.116E-02 -.900E-02
10 4.320 -.571E-03 -.943E-02
11 4.800 .132E-03 -.954E-02
12 5.28B0 -B%1E-03 -.929E-02
13 5.760 -171E-02 -.B67E-02
14 6.240 .257E-02 -.765E-02
15 6.720 .350E-02 -.619E-02
16 7.200 .448E-02 -.428BE-02
17 7.680 .552E-02 -.188E-D2
18 8.160 .660E-02 -103E-02
19 B8.640 -763E-02 -445E-02
20 9.120 .856E-02 .B33E-02
21 9.600 .941E-02 .127E-01
22 10.080 -102E-01 .174E-01
23 10.560 -108E-01 .224E-01
24 11.040 .114E-01 -277E-01
25 11.520 .119E-01 -333E-01
26 12.000 .123E-01 «391E-01

SRU 1.2B4 UNTS.

RUN COMPLETE.

From the printout we note that the deflection under the 8500-N force is 0.0391 m or 39.1 mm and
under the 8000-N - m moment located between nodes 9 and 10 it is approximately —0.0092 m or —9.2 mm.

10.18. A beam 100 in long and of rectangular cross section with / = 3.375 in“ is loaded and supported
as shown in Fig. 10-19. Use the FORTRAN program of Problem 10.16 to determine the
deflections if the beam is represented by 50 segments along its length. Take E = 30 % 10° Ib/in®.

3000 b

125 Ibvin 8000 Bb-in

L
lnmm l 3im I

Fig. 10-19

50 in——
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The input to the program is shown in Table 10-3.

Table 10-3
Units uscs
30 X 10°

I 3.375
LEN 100
NF 1
ND 1
NM 1
NUM 50
RCOORD1 20
RCOORD2 50
FCOORD(I) 0
FMAG(I) 3000
MCOORD( T ) 100
MMAG(I) -B000
DCOORD1(1) | 20
DCOORD2(1) | 50
DMAG(I) 125

Input of these parameters into the program leads to the following output:

run

PLEASE INDICATE YOUR CHOICE OF UNITS:
1 - UsCs

2 —- S1

ENTER 1.2:
21
PLEASE INPUT ALL DATA IN UNITS OF POUND AND/OR INCH...

ENTER THE VALUES FOR E,I,LEN,NF,ND,NM,NUM:
? 30E6,3.375,100,1,1,1,50

ENTER THE COORDINATES OF ALL THE FORCE TYPES AS DISTANCES
FROM THE LEFT END OF THE BEAM...ALSO, CONSIDER FORCES
DIRECTED DOWNWARD, AND MOMENTS ACTING CLOCKWISE AS POSITIVE.

ENTER THE COORDINATES OF THE REACTION POINTS:

? 20,50

ENTER THE COORDINATE AND MAGNITUDE OF ALL CONCENTRATED
FORCES:

? 0,3000

ENTER THE COORDINATE AND MAGNITUDE OF ALL CONCENTRATED
MOMENTS :

2 100,-8000

ENTER THE FIRST AND SECOND COORDINATE AND THEN MAGNITUDE

OF ALL DISTRIBUTED LOADS:
? 20,50,125

283
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THE MAGNITUDES OF THE TWO REACTIVE FORCES (LB OR NEWTONS):

Rl = -7141.666666667 R2 = 391.6666666667

NODE LOCATION SLOPE DEFLECTION
NO IN IN/IN IN
1 .000 -.101E-01 .162E+00
2 2.000 -.100E-01 .142E+00
3 4.000 -.983E-02 .122E+00
4 6.000 -.953E-02 .103E+00
5 8.000 -.912E~-02 .83BE-01
6 10.000 -.859E-02 .661E-01
7 12.000 -.793E-02 -496E-01
8 14.000 -.716E-02 -345E-01
9 16.000 -.628BE-02 .210E-01
10 18.000 -.527E-02 .943E~02
11 20.000 -.414E-02 .000E+00
12 22.000 -.304E-02 -.715E-02
13 24.000 -.209E-02 -.123E-01
14 26.000 -.12BE-02 -.156E-01
15 28.000 -.605E-03 -.175E-01
16 30.000 -.556E-04 -.1B1E-01
17 32.000 .380E-03 -.178E-01
18 34.000 .710E-03 -.166E-01
19 36.000 .946E-03 -.150E-01
20 38.000 .110E-02 ~.129E-01
21 40.000 .117E-02 ~.106E-01
22 42.000 .119E-02 -.826E-02
23 44.000 .114E-02 -.592E~-02
24 46.000 .106E-02 -.371E-02
25 48.000 .933E-03 -.172E-02
26 50.000 .7B4E-03 .000E+00
27 52.000 .626E-03 -141E-02
28 54.000 .468E-03 .250E-02
29 56.000 .310E-03 .328E-02
30 58.000 .152E-03 .374E-02
31 60.000 -.617E-05 .389E-02
32 62.000 -.164E-03 .372E-02
33 64.000 -.322E-03 .323E-02
34 66.000 -.480E-03 .243E-02
35 68.000 -.638E-03 -131E-02
36 70.000 -.796E-03 -.123E-03
37 72.000 -.954E-03 -.1B7E-02
38 74.000 ~.111E-02 -.394E-02
39 76.000 -.127E-02 -.632E-02
40 78.000 ~.143E-02 -.902E-02
41 80.000 -.159E-02 -.120E-01
42 82.000 -.174E~-02 -.154E-01
43 84.000 -.190E-02 -.190E-01
44 86.000 -.206E-02 -.230E-01
45 88.000 -.222E-02 -.273E-01
46 90.000 ~-.238E-02 -.319E-01
47 92.000 -.253E-02 -.368E-01
48 94.000 -.269E-02 -.420E-01
49 96.000 -.285E-02 -.475E=-01
50 98.000 -.301E-02 -.534E-01
51 100.000 -.317E-02 -.596E-01
SRU 1.305 UNTS.

RUN COMPLETE.



CHAP. 10] ELASTIC DEFLECTION OF BEAMS: METHOD OF SINGULARITY FUNCTIONS 285

10.19.

10.20.

10.21.

Supplementary Problems

The cantilever beam ABC is loaded by a uniformly distributed load w per unit length over the right half
BC as shown in Fig. 10-20. Use singularity functions to determine the deflection curve of the bent beam.
Also, determine the deflection at the tip C.

b
—_—

wi Unit length
 — LL_LJ'_‘}'
C

L I
2 |

o~

RAMMUNREIRINRRNNY
S

e [y g

_wL . 3 2(":)2_K< L)“
Ans. Ely 2 {x) BwL > 243'

41
Elylier = _ﬁ

Consider a simply supported beam subject to a uniform load acting over a portion of the beam as indicated
in Fig. 10-21. Use singularity functions to determine the equation of the deflection curve.
_wh(b . W s W R
Ans. Ely= 6L(2+C)(X> 240: ay +24(x a—b)
w wbl (b
+ 41— _ 4 IR ) — +
il -y - - 1= 2= (34 ) o
1
w/Unit length
' ﬂ'
(] b e
L}
L
Fig. 10-21

The beam ABCD is pinned at B, rests on a roller at C. and is subjected to the tip loads each of magnitude
P as shown in Fig. 10-22. Use the method of singularity functions to determine the deflection curve of the
beam, which is symmetric about the midlength of the beam. Also, determine the deflection at point A.

P P
Ans Ely= - 0P+ lemar +pe- @ LY+ (50250

2 PLA
Elylo= 3P0’ ——
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Fig. 10-22

Use singularity functions to determine the equation of the deflected beams in Problems 10.22 through 10.25.

10.22. See Fig. 10-23.

Ans. Ely = — %{x}“ - 234(.\:)" + %a —ay + %‘f(x—a)u %wa{x - 2a)’ —%"{x ~ 3ay’ +%w¢r‘{x '
1023, Sce Fig. 10-24,
¥
0,8 w
Y B &

[-3
-
[-3
na~
3
b=
¥

Fig. 10-23 Fig. 10-24

L)" _ W_U(x>l

wil s W w(
_— | —— +— ——
Ans. Ely =)= 0"+ (X = 7) ~ o2

10.24. See Fig. 10-25.

wy L
24

W
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5
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Fig. 10-25
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10.25.

Sce Fig. 10-26.

Ans. Ely = —52(x)" + 3300(x — 3’ - 3Fx — 6)" + 30¢x — 9)* + Z0(x — 9)* + 10,175x

v
1000 Wb/t
w 13,200 Ib-ft
[ 1 »| 4
3 3 3 ar
!
Fig. 10-26

10.26. The beam AC in Fig. 10-27 is 15 ft long, 3 in X 4 in in rectangular cross section, is subject to a uniform load

10.27.

10.28.

of 1201b/ft, and has E = 30 x 10 Ib/in’. Use the FORTRAN program of Problem 10.16 to determine
(a) the defiection at the left end of the beam and (b) the maximum deflection of the beam.
Ans. (a) 0.065in, (b) —0.10in at x = 110in

1

Fig. 10-27

Through the use of singularity functions, determine the cquation of the deflection curve of the beam simply
supported at B and C and subject to the triangular loading shown in Fig. 10-28.

3

<.r - %) — 0.02050wo L*x + 0.01042w, L*

)’ il

Ans. 1801, 16

Ely =

The beam shown in Fig. 10-29 is simply supported and subject to a concentrated force, the moment, and
the uniformly distributed load indicated. The material has £ = 200 GPa and the beam cross section has
[ =20%10"°m". Use the FORTRAN program of Problem 10.16 to determine the deflection under the
point of application of the 4200-N force.

Ans. 19.8 mm

rznoﬂ iy, e
: Z i\ ;_,

Fig. 10-29



Chapter 11

Statically Indeterminate Elastic Beams

STATICALLY DETERMINATE BEAMS

In Chaps. 8, 9, and 10 the deflections and stresses were determined for beams having various
conditions of loading and support. In the cases treated it was always possible to completely determine
the reactions exerted upon the beam merely by applying the equations of static equilibrium. In these
cases the beams are said to be starically determinate.

STATICALLY INDETERMINATE BEAMS

In this chapter we shall consider those beams where the number of unknown reactions exceeds the
number of equilibrium equations available for the system. In such a case it is necessary to supplement
the equilibrium equations with additional equations stemming from the deformations of the beam. In
these cases the beams are said to be statically indeterminate.

TYPES OF STATICALLY INDETERMINATE BEAMS

Several common types of statically indeterminate beams are illustrated below. Although a wide
variety of such structures exists in practice, the following four diagrams will illustrate the nature of an
indeterminate system. For the beams shown below the reactions of each constitute a parallel force
system and hence there are two equations of static equilibrium available. Thus the determination of
the reactions in each of these cases necessitates the use of additional equations arising from the
deformation of the beam.

] -
. T "I T n. . k :EDMI
R,

v, -
}

A
¥y

Fig. 11-1 Fig. 112

In the case (Fig. 11-1) of a beam fixed at one end and supported at the other, sometimes termed
a supported cantilever, we have as unknown reactions R,, R;, and M,. The two statics equations
must be supplemented by one equation based upon deformations. For applications, see Problems
11.1 and 11.3.

In Fig. 11-2 the beam is fixed at one end and has a flexible springlike support at the other. In the
case of a simple linear spring the flexible support exerts a force proportional to the beam deflection
at that point. The unknown reactions are again R;, R,, and M,. The two statics equations must be
supplemented by one equation stemming from deformations. For applications see Problems 11.2 and
11.16.

288
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Wi ' { {

1 1
M) f M, f f
R, R, R, R, Ry
Fig. 11-3 Fig. 11-4

As shown in Fig. 11-3, a beam fixed or clamped at both ends has the unknown reactions R,, R,,
M,, and M,. The two statics equations must be supplemented by two equations arising from the
deformations. For applications, see Problems 11.4, 11.6, and 11.12.

In Fig. 11-4 the beam is supported on three supports at the same level. The unknown reactions are
Ry, R;, and R,. The two statics equations must be supplemented by one equation based upon
deformations. A beam of this type that rests on more than two supports is called a continuous
beamn.

Solved Problems

1L1. A beam is clamped at A, simply supported at B, and subject to the concentrated force shown
in Fig. 11-5. Determine all reactions.

CIA l ol

R, Ry
Fig. 11-§
The reactions are R,, R, and M ,. From statics we have
+)EMys=M,~Pa+R,L=0 (1)
ZF,=Rs+Rg—P=0 2)

Thus there are two equations in the three unknowns R,, Rs, and M,. We can supplement the statics
equations with an equation stemming from deformations using the method of singularity functions to
describe the bent beam. This is
dy - 0
EI‘&;E = Ralx) = Max)° ~ P(x — a) 3)
Integrating the first time, we have

d 2 P
E:Ey =R, %)— ~Mal) -+ G, @)
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The first boundary condition is that at x = 0, dy/dx = 0, and thus €, = 0. Integrating again,

Ry (x) x* pix—a)
Ely=-22" _pq, 2t B2 2
L T T B R
The second boundary condition is that at x = (), y = 0. and we find C, = 0.
The third boundary condition is that at x = L, y = 0. Substituting in Eq. (§), we have

+ G, (5)

6 G ©)

Simultancous solution of the three equations (1), (2). and (6) leads to

P
Ra=5550L = %)

Pa?
=2 +
Ry =551 +b)

FPb

Ma=ops

(12— %)

11.2. The beam AB in Fig. 11-6 is clamped at A, spring supported at B, and loaded by the uniformly

distributed load w per unit length. Prior to application of the load, the spring is stress free. The
spring constant is 345 kN/m. To determine the flexural nigidity EI of the beam, an experiment
is conducted without the uniform load w and also without the spring being present. In this
experiment it is found that a vertical force of 10,000 N applied at end B deflects that point
50 mm. The spring is then attached to the beam at B and a uniform load of magnitude 5 kN/m
is applied between A and B. Determine the deflection of point B under these conditions.

¥

w/Unit length ca
RN RE RSN

Fig. 11-6

The forces acting on the beam when it is uniformly loaded as well as spring supported at its tip are
shown in Fig. 11-6. The force Rj represents the force exerted by the spring on the beam. The differential
equation of the bent beam in terms of singularity functions is

d*y

EI5 = ~ M)+ Rl — 5 ¢ )

Integrating the first time, we find
d R
E15) = —Ma0' + =207~ 2 (07 + 6 @)
dx 2 6

Now, invoking the boundary condition that when x = 0, dy/dx = 0. we find from Eq. (2) that C, = 0. The
second integration yiclds

Ely =~ 2260 + 2200 - e €, Q)
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11.3.

and the second boundary condition is that x = 0 when y = 0, so from Eq. (3) we have C. = 0. From Eq.
(3) we have the deflection at B due to the uniform load plus the presence of the spring to be given by
_ MAL2+ R,.L3_r_v£’

2 6 24 )

Ellyl-o =

But for linear action of the spring we have the usual relation

Rp=—klylr = +kA, )
Also, from statics for this parallel force system we have the two equilibrium equations
L!
+IIMy=Ma+ Ryl =75 =0 (6)
ZF,=R,+ Ry~ (5000N/m)(3m) =0 (7)

Simultaneous solution of Eqgs. (4), (6), and (7) indicates that

R (g+£) _ElwL 5wlL®
Nk 3 k 24
The flexural rigidity Ef is easily found by consideration of the experimental evidence. The tip
deflection of a tip-loaded cantilever beam is

(&)

PL*

3EI
which becomes, for this experiment,

(10,000 N) (3 m)?

0.050m =
m 3EI
from which
El=18%X10°N-m? (9

If this value together with the spring constant of 345,000 N/m is substituted in Eq. (§). we find that
R, = 11,440N. From Eq. (7) we find that Rz = 3560 N, so that the spring equation (J5) indicates the
displacement of point B to be
3560 N

= ——n—— = 0.010 10.3 1
345,000 N/m 0.01032 m or 0.3 mm (10)

Ay

Consider the overhanging beam shown in Fig. 11-7. Determine the magnitude of the supporting
force at B.

There are two statics equations

+ 2
)EMA=M1+Rza—m2—ﬂ-=O )
ZF,=R +R,—-wla+b)=10 (2)
Let us employ the method of singularity functions to write the differential equation of the bent beam
d? ,
EI-&T{ = —Myx)° + Ry(x)' — %(x}' + Ryfx — ' 3)

Note that in (1) a negative sign is assigned to M, since. as we work from left to right starting at the origin
A, the reactive moment M, tends to bend the portion of the beam to the right of A into a configuration
having curvature concave downward, which is negative according to the bending moment sign convention
given in Chap. 6.
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1U

to Ib/unit length

Fig. 11-7
Integrating
d R, .. w R
EI-Ei: = =M+ SH - S+ - a + Gy C)

But when x = 0, dy/dx = 0; hence C, = 0. Integrating again,
Ml 2 Rl 3 W 3 -R2 3
Ely > () 5 {x} 24(x} +< (x—ay+ G 3)

But when x =0, y = 0. so that (; =0.
Since the support at point B is unyielding, y must vanish in (5) when x = 4. Substituting, we find

M@ R,a@ wd . a wa
= —— e ———— = —_———
0 2 6 o from which M, = R, 3 12
Solving this in conjunction with the statics equations, we find
2
R1=§wa—%2 Rz=%wa+wb+BWb

11.4. The clamped end beam is loaded as shown in Fig. 11-8 by a couple M, Determine all

reactions.
A Tangent a1 A
M,

=~

Fig. 11-8

Under the action of the couple, the initially straight beam bends into the configuration shown by the
curved line. Tangents to the deformed configuration remain horizontal at ends A and B and of course there
is zero vertical displacement at each of these ends. This gives rise to the reactions shown in which the
vertical (shear) reactions are of equal magnitude for vertical equilibrium, This leaves only one equation
from statics, namely,

+)EMy= M —M,— Mg+ Ry(a+b) =0 1)

This equation contains R,, M,, and M, as unknowns. Since there are no more statics equations available,
we must supplement Eq. (/) with two additional equations stemming from deformations of the system. We
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1L5.

employ the method of singularity functions and write the bending moment at any point along the length
of the beam as

M= —M{(x)* + Ry{x) — Mylx — a)° 2)
The differential equation of the bent beam is thus
d’y 0 0
El—5 = ~M(x)° + Rix) — Mofx - a) @)

Integrating the first time, we obtain

d ) {x —a)!
Ef&—i = fM.(x) + R,TJ' “M——+G (4)
As the first boundary condition, when x = 0, dy/dx = 0; hence from (4) we have C, = 0. Integrating
again
«? R (x —ay
= — = -
Ely= M.~ 55~ Mo
The second boundary condition states that when x = 0, y = 0. Substituting these values in Eq. (5), we find
Cz ={.
The third boundary condition is that when x = L, dy/dx = 0. Thus from Eq. (¢) we have

R, [?

+C, (5)

0= _M|L+

— Mgb (6)

The fourth and last boundary condition is that when x = L, y = 0. From Eq. (5) we obtain
M, R L b’

—— L+ ———-My— 7
27" 276 2 i

It is now possible to solve Egs. (/). (6}, and (7} simultaneously to obtain the desired reactions

0=

6Myab

R| == L]'
Mo(2ab — b?

M, = % &)
My(2ab — a*

M, = ol ", )

There may have been a temptation to say that the deflection under the point of application of the
couple, at B, is zero. There is no reason for making such an assumption and, in fact, we may now return
to the deflection Eq. (5) and calculate the deflection at x = & and find that 1t is

Mod®(2ab — b?)  M,a*b
EI{)’]"’ = . 2L2 + UL’]

9)

which is clearly nonzero.

The horizontal beam shown in Fig. 11-9(a) is simply supported at the ends and is connected to
a composite elastic vertical rod at its midpoint. The supports of the beam and the top of the
copper rod are originally at the same elevation, at which time the beam is horizontal. The
temperature of both vertical rods is then decreased 40°C. Find the stress in each of the vertical
rods. Neglect the weight of the beam and of the rods. The cross-sectional area of the copper rod
is 500 mm?2, E., = 100 GPa, and a,, = 20 X 10%/°C. The cross-sectional area of the aluminum
rod is 1000mm?, E, =70GPa, and a,=25X10"%°C. For the beam, E = 10GPa and
I =400 X 10° mm®,
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1L.6.
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(b}

Fig. 11-9

A free-body diagram of the horizontal beam appears as in Fig. 11-9(b). Here. P denotes the force
exerted upon the beam by the copper rod. Since this force is initially unknown, there are three forces acting
upon the beam. but only two equations of equilibrium for a parallel force system; hence the problem is
statically indeterminate. It will thus be necessary to consider the deformations of the system.

A free-body diagram of the two vertical rods appears as in Fig. 11-9(c). The simplest procedure is
temporarily to cut the connection between the beam and the copper rod, and then allow the vertical rods
to contract freely because of the decrease in temperature. If the horizontal beam offers no restraint, the
copper rod will contract an amount

ﬂ'm = (20 x lU-h] (]03) (40) = 08 mm
and the aluminum rod will contract by an amount

A, = (25> 10 %) (500) (40) = 0.5 mm

However, the beam exerts a tensile force P upon the copper rod and the same force acts in the
aluminum rod as shown in Fig. 11-9(¢). Thesc axial forces elongate the vertical rods and this elongation
(see Problem 1.1) is

P(10%) (10~ P(500) (10°)
5000100 % 10%) ~ 10°%(70 x 10%)

The downward force P exerted by the copper rod upon the horizontal beam causes a vertical
deflection of the beam. In Problem 9.12 this central deflection was found to be A = PLY48EL

Actually, of course, the connection between the copper rod and the horizontal beam is not cut in the
true problem and we realize that the resultant shortening of the vertical rods is exactly equal to the
downward vertical deflection of the midpoint of the beam. This change of length of the vertical rods is
caused partially by the decrease in temperature and partially by the axial force acting in the rods. For the
shortening of the rods to be equal to the deflection of the beam we must have

P(10%) (10°) +P(5{J{J')(10“) _ PEAX10(10°
500(100 x 10%) 10-‘(70><10"}]

(0.8 + 0.5) — l 48(10 X 10°) (400 X 10°)

Solving, P = 3.61 kN; then,
0., = 3.61 % 10°/500 = 7.22 MPa and T = 3.61 X 1071000 = 3.61 MPa

The beam of flexural rigidity £I shown in Fig. 11-10 is clamped at both ends and subjected to
a uniformly distributed load extending along the region BC of length 0.6L. Determine all
reactions.

Atend A as well as C the supporting walls exert bending moments M, and M- plus shearing forces
R, and R as shown. For such a plane, parallel force system there are two equations of static equilibrium



