
 



l ALGEBRAIC OPERATIONS FOR VECTORS AND 
TENSORS IN CARTESIAN COORDINATES 

(s is a scalar; v and w are vectors; T is a tensor; dot or cross operations enclosed 
within parentheses are scalars, those enclosed in brackets are vectors) 

Note: The above operations may be generalized to cylindrical coordinates by replacing 
(x,  y, z )  by (r, 6, z), and to spherical coordinates by replacing (x, y, z) by ( r ,  6, 4). 
Descriptions of curvilinear coordinates are given in Figures 1.2-2, A.6-1, A.8-1, and 
A.8-2. 

**.DIFFERENTIAL OPERATIONS FOR SCALARS, VECTORS, AND 
TENSORS IN CARTESIAN COORDINATES 

dv, dvy dv, dvZ dvy dux 
[V x v], = - - - [ V x v ]  =---  

Y d z  dx 
[V x v], = ax - - 

d y  d z  aY 
dv, dvy dv, 

( V . v ) = - + - + -  
dx d y  d z  



d2vz d2v, d2vZ 
[V2v], = [V Vv],  = - +- 

ax2 + 3 az2 
dvx dvx dvx [v Vv],  = vx - + v - + v, -- dx Y dy dz 

dvz dv, dvz [v ' Vv],  = vx - + v - + v, - dx Y dy dz 

~(v,v,) a(vyvx) d(v,vX) 
[V vv] ,  = - + ------ + - dx dy dz 

a(vXvy) a(vYvy) ~(v,v,) 
[V . vv], = - +-+- dx dy dz 

a(vXvz) d(vyvz) ~(v,v,) 
[V vv], = ---- +-+- dx d y  d z  

dvx dux dux 
(T : V v )  = rxx - + r - + rxz - dx dy dz 

Note: the differential operations may not be simply generalized to curvilinear coordi- 
nates; see Tables A.7-2 and A.7-3. 
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Preface 

W h i l e  momentum, heat, and mass transfer developed independently as branches of 
classical physics long ago, their unified study has found its place as one of the funda- 
mental engineering sciences. This development, in turn, less than half a century old, con- 
tinues to grow and to find applications in new fields such as biotechnology, 
microelectronics, nanotechnology, and polymer science. 

Evolution of transport phenomena has been so rapid and extensive that complete 
coverage is not possible. While we have included many representative examples, our 
main emphasis has, of necessity, been on the fundamental aspects of this field. More- 
over, we have found in discussions with colleagues that transport phenomena is taught 
in a variety of ways and at several different levels. Enough material has been included 
for two courses, one introductory and one advanced. The elementary course, in turn, can 
be divided into one course on momentum transfer, and another on heat and mass trans- 
fer, thus providing more opportunity to demonstrate the utility of this material in practi- 
cal applications. Designation of some sections as optional (0) and other as advanced (a) 
may be helpful to students and instructors. 

Long regarded as a rather mathematical subject, transport phenomena is most impor- 
tant for its physical significance. The essence of this subject is the careful and compact 
statement of the conservation principles, along with the flux expressions, with emphasis 
on the similarities and differences among the three transport processes considered. Often, 
specialization to the boundary conditions and the physical properties in a specific prob- 
lem can provide useful insight with minimal effort. Nevertheless, the language of trans- 
port phenomena is mathematics, and in this textbook we have assumed familiarity with 
ordinary differential equations and elementary vector analysis. We introduce the use of 
partial differential equations with sufficient explanation that the interested student can 
master the material presented. Numerical techniques are deferred, in spite of their obvi- 
ous importance, in order to concentrate on fundamental understanding. 

Citations to the published literature are emphasized throughout, both to place trans- 
port phenomena in its proper historical context and to lead the reader into further exten- 
sions of fundamentals and to applications. We have been particularly anxious to 
introduce the pioneers to whom we owe so much, and from whom we can still draw 
useful inspiration. These were human beings not so different from ourselves, and per- 
haps some of our readers will be inspired to make similar contributions. 

Obviously both the needs of our readers and the tools available to them have 
changed greatly since the first edition was written over forty years ago. We have made a 
serious effort to bring our text up to date, within the limits of space and our abilities, and 
we have tried to anticipate further developments. Major changes from the first edition 
include: 

transport properties of two-phase systems 

use of "combined fluxes" to set up shell balances and equations of change 

angular momentum conservation and its consequences 

complete derivation of the mechanical energy balance 

expanded treatment of boundary-layer theory 

Taylor dispersion 

improved discussions of turbulent transport 

iii 



iv Preface 

Fourier analysis of turbulent transport at high Pr or Sc 

more on heat and mass transfer coefficients 

enlarged discussions of dimensional analysis and scaling 

matrix methods for multicomponent mass transfer 

ionic systems, membrane separations, and porous media 

the relation between the Boltzmann equation and the continuum equations 

use of the "Q+W convention in energy discussions, in conformity with the lead- 
ing textbooks in physics and physical chemistry 

However, it is always the youngest generation of professionals who see the future most 
clearly, and who must build on their imperfect inheritance. 

Much remains to be done, but the utility of transport phenomena can be expected to 
increase rather than diminish. Each of the exciting new technologies blossoming around 
us is governed, at the detailed level of interest, by the conservation laws and flux expres- 
sions, together with information on the transport coefficients. Adapting the problem for- 
mulations and solution techniques for these new areas will undoubtedly keep engineers 
busy for a long time, and we can only hope that we have provided a useful base from 
which to start. 

Each new book depends for its success on many more individuals than those whose 
names appear on the title page. The most obvious debt is certainly to the hard-working 
and gifted students who have collectively taught us much more than we have taught 
them. In addition, the professors who reviewed the manuscript deserve special thanks 
for their numerous corrections and insightful comments: Yu-Ling Cheng (University of 
Toronto), Michael D. Graham (University of Wisconsin), Susan J. Muller (University of 
California-Berkeley), William B. Russel (Princeton University), Jay D. Schieber (Illinois 
Institute of Technology), and John F. Wendt (Von Kdrm6n Institute for Fluid Dynamics). 
However, at a deeper level, we have benefited from the departmental structure and tra- 
ditions provided by our elders here in Madison. Foremost among these was Olaf An- 
dreas Hougen, and it is to his memory that this edition is dedicated. 

Madison, Wisconsin 
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Chapter 0 

The Subject of Transport 
Phenomena 
90.1 What are the transport phenomena? 

50.2 Three levels at which transport phenomena can be studied 

50.3 The conservation laws: an example 

50.4 Concluding comments 

The purpose of this introductory chapter is to describe the scope, aims, and methods of 
the subject of transport phenomena. It is important to have some idea about the struc- 
ture of the field before plunging into the details; without this perspective it is not possi- 
ble to appreciate the unifying principles of the subject and the interrelation of the 
various individual topics. A good grasp of transport phenomena is essential for under- 
standing many processes in engineering, agriculture, meteorology, physiology, biology, 
analytical chemistry, materials science, pharmacy, and other areas. Transport phenom- 
ena is a well-developed and eminently useful branch of physics that pervades many 
areas of applied science. 

0 .  WHAT ARE THE TRANSPORT PHENOMENA? 

The subject of transport phenomena includes three closely related topics: fluid dynam- 
ics, heat transfer, and mass transfer. Fluid dynamics involves the transport of momenfum, 
heat transfer deals with the transport of energy, and mass transfer is concerned with the 
transport of mass of various chemical species. These three transport phenomena should, 
at the introductory level, be studied together for the following reasons: 

They frequently occur simultaneously in industrial, biological, agricultural, and 
meteorological problems; in fact, the occurrence of any one transport process by it- 
self is the exception rather than the rule. 

The basic equations that describe the three transport phenomena are closely re- 
lated. The similarity of the equations under simple conditions is the basis for solv- 
ing problems "by analogy." 

The mathematical tools needed for describing these phenomena are very similar. 
Although it is not the aim of this book to teach mathematics, the student will be re- 
quired to review various mathematical topics as the development unfolds. Learn- 
ing how to use mathematics may be a very valuable by-product of studying 
transport phenomena. 

The molecular mechanisms underlying the various transport phenomena are very 
closely related. All materials are made up of molecules, and the same molecular 
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motions and interactions are responsible for viscosity, thermal conductivity, and 
diffusion. 

The main aim of this book is to give a balanced overview of the field of transport phe- 
nomena, present the fundamental equations of the subject, and illustrate how to use 
them to solve problems. 

There are many excellent treatises on fluid dynamics, heat transfer, and mass trans- 
fer. In addition, there are many research and review journals devoted to these individual 
subjects and even to specialized subfields. The reader who has mastered the contents of 
this book should find it possible to consult the treatises and journals and go more deeply 
into other aspects of the theory, experimental techniques, empirical correlations, design 
methods, and applications. That is, this book should not be regarded as the complete 
presentation of the subject, but rather as a stepping stone to a wealth of knowledge that 
lies beyond. 

50.2 THREE LEVELS AT WHICH TRANSPORT 
PHENOMENA CAN BE STUDIED 

In Fig. 0.2-1 we show a schematic diagram of a large system-for example, a large piece 
of equipment through which a fluid mixture is flowing. We can describe the transport of 
mass, momentum, energy, and angular momentum at three different levels. 

At the macroscopic level (Fig. 0.2-la) we write down a set of equations called the 
"macroscopic balances," which describe how the mass, momentum, energy, and angular 
momentum in the system change because of the introduction and removal of these enti- 
ties via the entering and leaving streams, and because of various other inputs to the sys- 
tem from the surroundings. No attempt is made to understand all the details of the 
system. In studying an engineering or biological system it is a good idea to start with 
this macroscopic description in order to make a global assessment of the problem; in 
some instances it is only this overall view that is needed. 

At the microscopic level (Fig. 0.2-lb) we examine what is happening to the fluid mix- 
ture in a small region within the equipment. We write down a set of equations called the 
"equations of change," which describe how the mass, momentum, energy, and angular 
momentum change within this small region. The aim here is to get information about ve- 
locity, temperature, pressure, and concentration profiles within the system. This more 
detailed information may be required for the understanding of some processes. 

At the molecular level (Fig. 0.2-lc) we seek a fundamental understanding of the mech- 
anisms of mass, momentum, energy, and angular momentum transport in terms of mol- 

1 Q = heat added to syst 

-- 

W,,, = Work done on the system by 
the surroundings by means 
of moving parts 

Fig. 0.2-1 (a) A macro- 
scopic flow system contain- 
ing N2 and 0,; (b)  a 
microscopic region within 
the macroscopic system 
containing N, and 02, 
which are in a state of flow; 
(c) a collision between a 
molecule of N, and a mole- 
cule of 0,. 
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ecular structure and intermolecular forces. Generally this is the realm of the theoretical 
physicist or physical chemist, but occasionally engineers and applied scientists have to 
get involved at this level. This is particularly true if the processes being studied involve 
complex molecules, extreme ranges of temperature and pressure, or chemically reacting 
systems. 

It should be evident that these three levels of description involve different "length 
scales": for example, in a typical industrial problem, at the macroscopic level the dimen- 
sions of the flow systems may be of the order of centimeters or meters; the microscopic 
level involves what is happening in the micron to the centimeter range; and molecular- 
level problems involve ranges of about 1 to 1000 nanometers. 

This book is divided into three parts dealing with 

Flow of pure fluids at constant temperature (with emphasis on viscous and con- 
vective momentum transport)--Chapters 1-8 

Flow of pure fluids with varying temperature (with emphasis on conductive, con- 
vective, and radiative energy transport)-Chapters 9-16 

Flow of fluid mixtures with varying composition (with emphasis on diffusive and 
convective mass transport)-Chapters 17-24 

That is, we build from the simpler to the more difficult problems. Within each of these 
parts, we start with an initial chapter dealing with some results of the molecular theory 
of the transport properties (viscosity, thermal conductivity, and diffusivity). Then we 
proceed to the microscopic level and learn how to determine the velocity, temperature, 
and concentration profiles in various kinds of systems. The discussion concludes with 
the macroscopic level and the description of large systems. 

As the discussion unfolds, the reader will appreciate that there are many connec- 
tions between the levels of description. The transport properties that are described by 
molecular theory are used at the microscopic level. Furthermore, the equations devel- 
oped at the microscopic level are needed in order to provide some input into problem 
solving at the macroscopic level. 

There are also many connections between the three areas of momentum, energy, 
and mass transport. By learning how to solve problems in one area, one also learns the 
techniques for solving problems in another area. The similarities of the equations in the 
three areas mean that in many instances one can solve a problem "by analogy"-that is, 
by taking over a solution directly from one area and, then changing the symbols in the 
equations, write down the solution to a problem in another area. 

The student will find that these connections-among levels, and among the various 
transport phenomena-reinforce the learning process. As one goes from the first part of 
the book (momentum transport) to the second part (energy transport) and then on to the 
third part (mass transport) the story will be very similar but the "names of the players" 
will change. 

Table 0.2-1 shows the arrangement of the chapters in the form of a 3 x 8 "matrix." 
Just a brief glance at the matrix will make it abundantly clear what kinds of interconnec- 
tions can be expected in the course of the study of the book. We recommend that the 
book be studied by columns, particularly in undergraduate courses. For graduate stu- 
dents, on the other hand, studying the topics by rows may provide a chance to reinforce 
the connections between the three areas of transport phenomena. 

At all three levels of description-molecular, microscopic, and macroscopic-the 
conservation laws play a key role. The derivation of the conservation laws for molecu- 
lar systems is straightforward and instructive. With elementary physics and a mini- 
mum of mathematics we can illustrate the main concepts and review key physical 
quantities that will be encountered throughout this book. That is the topic of the next 
section. 
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Table 0.2-1 Organization of the Topics in This Book 

Type of transport Momentum Energy Mass 

Transport by 1 Viscosity 9 Thermal 17 Diffusivity 
molecular motion and the stress conductivity and the 

(momentum flux) and the heat-flux mass-flux 
tensor vector vectors 

Transport in one 2 Shell momentum 10 Shell energy 18 Shell mass 
dimension (shell- balances and balances and balances and 
balance methods) velocity temperature concentration 

distributions distributions distributions 

Transport in 3 Equations of 11 Equations of 19 Equations of 
arbitrary continua change and their change and change and 
(use of general use their use their use 
transport equations) [isothermal] [nonisothermall [mixtures] 

Transport with two 4 Momentum 12 Energy transport 20 Mass transport 
independent transport with with two with two 
variables (special two independent independent independent 
methods) variables variables variables 

Transport in 5 Turbulent 13 Turbulent 21 Turbulent 
turbulent flow, and momentum energy transport; mass transport; 
eddy transport transport; eddy eddy thermal eddy 
properties viscosity conductivity diffusivity 

Transport across 6 Friction factors; 14 Heat-transfer 22 Mass-transfer 
phase boundaries use of empirical coefficients; use coefficients; use 

correlations of empirical of empirical 
correlations correlations 

Transport in large 7 Macroscopic 15 Macroscopic 23 Macroscopic 
systems, such as balances balances balances 
pieces of equipment [isothermal] [nonisothermall [mixtures] 
or parts thereof 

Transport by other 8 Momentum 16 Energy 24 Mass transport 
mechanisms transport in transport by in multi- 

polymeric radiation component 
liquids systems; cross 

effects 

50.3 THE CONSERVATION LAWS: AN EXAMPLE 

The system we consider is that of two colliding diatomic molecules. For simplicity we as- 
sume that the molecules do not interact chemically and that each molecule is homonu- 
clear-that is, that its atomic nuclei are identical. The molecules are in a low-density gas, 
so that we need not consider interactions with other molecules in' the neighborhood. In 
Fig. 0.3-1 we show the collision between the two homonuclear diatomic molecules, A 
and B, and in Fig. 0.3-2 we show the notation for specifying the locations of the two 
atoms of one molecule by means of position vectors drawn from an arbitrary origin. 

Actually the description of events at the atomic and molecular level should be made 
by using quantum mechanics. However, except for the lightest molecules (H, and He) at 
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Molecule A before collision I 
I 

Fig. 0.3-1 A collision 
between homonuclear 
diatomic molecules, 

/ such as N, and 02. 
/ 

/ Molecule A is made up 
/ Molecule B before collision of two atoms A1 and 
\ A2. Molecule B is made 
\ 
\ up of two atoms B1 

'b and B2. 

Molecule B after collision 

Molecule A after collision 

temperatures lower than 50 K, the kinetic theory of gases can be developed quite satis- 
factorily by use of classical mechanics. 

Several relations must hold between quantities before and after a collision. Both be- 
fore and after the collision the molecules are presumed to be sufficiently far apart that 
the two molecules cannot "feel" the intermolecular force between them; beyond a dis- 
tance of about 5 molecular diameters the intermolecular force is known to be negligible. 
Quantities after the collision are indicated with primes. 

(a) According to the law of conservation of mass, the total mass of the molecules enter- 
ing and leaving the collision must be equal: 

Here m, and mB are the masses of molecules A and B. Since there are no chemical reac- 
tions, the masses of the individual species will also be conserved, so that 

m, = m i  and rn, = mf, (0.3-2) 

(b) According to the law of conservation of momentum the sum of the momenta of all 
the atoms before the collision must equal that after the collision, so that 

in which r,, is the position vector for atom 1 of molecule A, and i,, is its velocity. We 
now write r,, = r, + RA, so that r,, is written as the sum of the position vector for the 

of molecule A 

0 
Arbitrary origin 
fixed in space 

Fig. 0.3-2 Position vectors for the atoms 
A1 and A2 in molecule A. 
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center of mass and the position vector of the atom with respect to the center of mass, and 
we recognize that RA2 = -RA,; we also write the same relations for the velocity vectors. 
Then we can rewrite Eq. 0.3-3 as 

That is, the conservation statement can be written in terms of the molecular masses and 
velocities, and the corresponding atomic quantities have been eliminated. In getting 
Eq. 0.3-4 we have used Eq. 0.3-2 and the fact that for homonuclear diatomic molecules 

1 mAl = mA2 = 5 mA. 

(c) According to the law of conservation of energy, the energy of the colliding pair of 
molecules must be the same before and after the collision. The energy of an isolated mol- 
ecule is the sum of the kinetic energies of the two atoms and the interatomic potential en- 
ergy, +,, which describes the force of the chemical bond joining the two atoms 1 and 2 of 
molecule A, and is a function of the interatomic distance lrA2 - rA,l. Therefore, energy 
conservation leads to 

Note that we use the standard abbreviated notation that el = (fAl . iAl). We now write 
the velocity of atom 1 of molecule A as the sum of the velocity of the center of mass of A 
and the velocity of 1 with respect to the center of mass; that is, r,, = iA + RA,. Then Eq. 
0.3-5 becomes 

in which MA = $mA1~il + $nA2~;, + 4, is the sum of the kinetic energies of the atoms, re- 
ferred to the center of mass of molecule A, and the interatomic potential of molecule A. 
That is, we split up the energy of each molecule into its kinetic energy with respect to 
fixed coordinates, and the internal energy of the molecule (which includes its vibra- 
tional, rotational, and potential energies). Equation 0.3-6 makes it clear that the kinetic 
energies of the colliding molecules can be converted into internal energy or vice versa. 
This idea of an interchange between kinetic and internal energy will arise again when 
we discuss the energy relations at the microscopic and macroscopic levels. 

(dl Finally, the law of conservation of angular momentum can be applied to a collision 
to give 

in which X is used to indicate the cross product of two vectors. Next we introduce the 
center-of-mass and relative position vectors and velocity vectors as before and obtain 

in which 1, = [R,, x m , , ~ ~ , ]  + [ R ~ ~  x mA2~A2] is the sum of the angular momenta of the 
atoms referred to an origin of coordinates at the center of mass of the molecule-that is, 
the "internal angular momentum." The important point is that there is the possibility for 
interchange between the angular momentum of the molecules (with respect to the origin 
of coordinates) and their internal angular momentum (with respect to the center of mass 
of the molecule). This will be referred to later in connection with the equation of change 
for angular momentum. 
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The conservation laws as applied to collisions of monatomic molecules can be ob- 
tained from the results above as follows: Eqs. 0.3-1, 0.3-2, and 0.3-4 are directly applica- 
ble; Eq. 0.3-6 is applicable if the internal energy contributions are omitted; and Eq. 0.3-8 
may be used if the internal angular momentum terms are discarded. 

Much of this book will be concerned with setting up the conservation laws at the mi- 
croscopic and macroscopic levels and applying them to problems of interest in engineer- 
ing and science. The above discussion should provide a good background for this 
adventure. For a glimpse of the conservation laws for species mass, momentum, and en- 
ergy at the microscopic and macroscopic levels, see Tables 19.2-1 and 23.5-1. 

50.4 CONCLUDING COMMENTS 

To use the macroscopic balances intelligently, it is necessary to use information about in- 
terphase transport that comes from the equations of change. To use the equations of 
change, we need the transport properties, which are described by various molecular the- 
ories. Therefore, from a teaching point of view, it seems best to start at the molecular 
level and work upward toward the larger systems. 

All the discussions of theory are accompanied by examples to illustrate how the the- 
ory is applied to problem solving, Then at the end of each chapter there are problems to 
provide extra experience in using the ideas given in the chapter. The problems are 
grouped into four classes: 

Class A: Numerical problems, which are designed to highlight important equa- 
tions in the text and to give a feeling for the orders of magnitude. 

Class B: Analytical problems that require doing elementary derivations using 
ideas mainly from the chapter. 

Class C: More advanced analytical problems that may bring ideas from other chap- 
ters or from other books. 

Class D: Problems in which intermediate mathematical skills are required. 

Many of the problems and illustrative examples are rather elementary in that they in- 
volve oversimplified systems or very idealized models. It is, however, necessary to start 
with these elementary problems in order to understand how the theory works and to de- 
velop confidence in using it. In addition, some of these elementary examples can be very 
useful in making order-of-magnitude estimates in complex problems. 

Here are a few suggestions for studying the subject of transport phenomena: 

Always read the text with pencil and paper in hand; work through the details of 
the mathematical developments and supply any missing steps. 

Whenever necessary, go back to the mathematics textbooks to brush up on calculus, 
differential equations, vectors, etc. This is an excellent time to review the mathemat- 
ics that was learned earlier (but possibly not as carefully as it should have been). 

Make it a point to give a physical interpretation of key results; that is, get in the 
habit of relating the physical ideas to the equations. 

Always ask whether the results seem reasonable. If the results do not agree with 
intuition, it is important to find out which is incorrect. 

Make it a habit to check the dimensions of all results. This is one very good way of 
locating errors in derivations. 

We hope that the reader will share our enthusiasm for the subject of transport phe- 
nomena. It will take some effort to learn the material, but the rewards will be worth the 
time and energy required. 
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QUESTIONS FOR DISCUSSION 

What are the definitions of momentum, angular momentum, and kinetic energy for a single 
particle? What are the dimensions of these quantities? 
What are the dimensions of velocity, angular velocity, pressure, density, force, work, and 
torque? What are some common units used for these quantities? 
Verify that it is possible to go from Eq. 0.3-3 to Eq. 0.3-4. 
Go through all the details needed to get Eq. 0.3-6 from Eq. 0.3-5. 
Suppose that the origin of coordinates is shifted to a new position. What effect would that 
have on Eq. 0.3-7? Is the equation changed? 
Compare and contrast angular velocity and angular momentum. 
What is meant by internal energy? Potential energy? 
Is the law of conservation of mass always valid? What are the limitations? 
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Chapter 1 

Viscosity and the Mechanisms 
of Momentum Transport 
51.1 Newton's law of viscosity (molecular momentum transport) 

2 Generalization of Newton's law of viscosity 

1 . 3  Pressure and temperature dependence of viscosity 

~1.4' Molecular theory of the viscosity of gases at low density 

51.5' Molecular theory of the viscosity of liquids 

51.6' Viscosity of suspensions and emulsions 

1 . 7  Convective momentum transport 

The first part of this book deals with the flow of viscous fluids. For fluids of low molecu- 
lar weight, the physical property that characterizes the resistance to flow is the viscosity. 
Anyone who has bought motor oil is aware of the fact that some oils are more "viscous" 
than others and that viscosity is a function of the temperature. 

We begin in 31.1 with the simple shear flow between parallel plates and discuss how 
momentum is transferred through the fluid by viscous action. This is an elementary ex- 
ample of molecular momentum transport and it serves to introduce "Newton's law of vis- 
cosity" along with the definition of viscosity p. Next in 31.2 we show how Newton's law 
can be generalized for arbitrary flow patterns. The effects of temperature and pressure 
on the viscosities of gases and liquids are summarized in 51.3 by means of a dimension- 
less plot. Then 51.4 tells how the viscosities of gases can be calculated from the kinetic 
theory of gases, and in 51.5 a similar discussion is given for liquids. In 51.6 we make a 
few comments about the viscosity of suspensions and emulsions. 

Finally, we show in 31.7 that momentum can also be transferred by the bulk fluid 
motion and that such convective momentum transport is proportional to the fluid density p. 

51.1 NEWTON'S LAW OF VISCOSITY (MOLECULAR 
TRANSPORT OF MOMENTUM) 

In Fig. 1.1-1 we show a pair of large parallel plates, each one with area A, separated by a 
distance Y. In the space between them is a fluid-either a gas or a liquid. This system is 
initially at rest, but at time t = 0 the lower plate is set in motion in the positive x direc- 
tion at a constant velocity V. As time proceeds, the fluid gains momentum, and ulti- 
mately the linear steady-state velocity profile shown in the figure is established. We 
require that the flow be laminar ("laminar" flow is the orderly type of flow that one usu- 
ally observes when syrup is poured, in contrast to "turbulent" flow, which is the irregu- 
lar, chaotic flow one sees in a high-speed mixer). When the final state of steady motion 
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Fluid initially 
< O at rest 

Lower plate 
f = O  set in motion 

Velocity buildup 
in unsteady flow 

v I 

Fig. 1.1-1 The buildup to 
the steady, laminar velocity 
profile for a fluid contained 
between two plates. The 
flow is called "laminar" be- 
cause the adjacent layers of 
fluid ("laminae") slide past 
one another in an orderly 
fashion. 

Final velocity 
Large t distribution in 

Yt steady flow 

has been attained, a constant force F is required to maintain the motion of the lower 
plate. Common sense suggests that this force may be expressed as follows: 

That is, the force should be proportional to the area and to the velocity, and inversely 
proportional to the distance between the plates. The constant of proportionality p is a 
property of the fluid, defined to be the viscosity. 

We now switch to the notation that will be used throughout the book. First we re- 
place F/A by the symbol T,,, which is the force in the x direction on a unit area perpen- 
dicular to the y direction. It is understood that this is the force exerted by the fluid of 
lesser y on the fluid of greater y. Furthermore, we replace V/Y by -dvx/dy. Then, in 
terms of these symbols, Eq. 1.1-1 becomes 

This equation, which states that the shearing force per unit area is proportional to the 
negative of the velocity gradient, is often called Newton's law of visco~ity.~ Actually we 

Some authors write Eq. 1.1-2 in the form 

in which ryx [=] lbf/ft2, v, [=] ft/s, y [=I  ft, and p [=] lb,/ft. s; the quantityg, is the "gravitational 
conversion factor" with the value of 32.174 poundals/lbf. In this book we will always use Eq. 1.1-2 rather 
than Eq. 1.1-2a. 

Sir Isaac Newton (1643-1727), a professor at Cambridge University and later Master of the Mint, 
was the founder of classical mechanics and contributed to other fields of physics as well. Actually Eq. 
1.1-2 does not appear in Sir Isaac Newton's Philosophiae Naturalis Principia Mathematics, but the germ of 
the idea is there. For illuminating comments, see D. J. Acheson, Elementary Fluid Dynamics, Oxford 
University Press, 1990,§6.1. 
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should not refer to Eq. 1.1-2 as a "law," since Newton suggested it as an empiricism3- 
the simplest proposal that could be made for relating the stress and the velocity gradi- 
ent. However, it has been found that the resistance to flow of all gases and all liquids 
with molecular weight of less than about 5000 is described by Eq. 1.1-2, and such fluids 
are referred to as Newtonian fluids. Polymeric liquids, suspensions, pastes, slurries, and 
other complex fluids are not described by Eq. 1.1-2 and are referred to as non-Newtonian 
fluids. Polymeric liquids are discussed in Chapter 8. 

Equation 1.1-2 may be interpreted in another fashion. In the neighborhood of the 
moving solid surface at y = 0 the fluid acquires a certain amount of x-momentum. This 
fluid, in turn, imparts momentum to the adjacent layer of liquid, causing it to remain in 
motion in the x direction. Hence x-momentum is being transmitted through the fluid in 
the positive y direction. Therefore r,, may also be interpreted as the flux of x-momentum 
in the positive y direction, where the term "flux" means "flow per unit area." This interpre- 
tation is consistent with the molecular picture of momentum transport and the kinetic 
theories of gases and liquids. It also is in harmony with the analogous treatment given 
later for heat and mass transport. 

The idea in the preceding paragraph may be paraphrased by saying that momentum 
goes "downhill" from a region of high velocity to a region of low velocity-just as a sled 
goes downhill from a region of high elevation to a region of low elevation, or the way 
heat flows from a region of high temperature to a region of low temperature. The veloc- 
ity gradient can therefore be thought of as a "driving force" for momentum transport. 

In what follows we shall sometimes refer to Newton's law in Eq. 1.1-2 in terms of 
forces (which emphasizes the mechanical nature of the subject) and sometimes in terms 
of momentum transport (which emphasizes the analogies with heat and mass transport). 
This dual viewpoint should prove helpful in physical interpretations. 

Often fluid dynamicists use the symbol v to represent the viscosity divided by the 
density (mass per unit volume) of the fluid, thus: 

This quantity is called the kinematic viscosity. 
Next we make a few comments about the units of the quantities we have defined. If 

we use the symbol [ = I  to mean "has units of," then in the SI system r,, [=I  N/m2 = Pa, 
v, [= J m/s, and y [=I m, so that 

since the units on both sides of Eq. 1.1-2 must agree. We summarize the above and also 
give the units for the c.g.s. system and the British system in Table 1.1-1. The conversion 
tables in Appendix F will prove to be very useful for solving numerical problems involv- 
ing diverse systems of units. 

The viscosities of fluids vary over many orders of magnitude, with the viscosity of 
air at 20°C being 1.8 x Pa . s and that of glycerol being about 1 Pa . s, with some sili- 
cone oils being even more viscous. In Tables 1.1-2,l. 1-3, and 1.1-4 experimental data4 are 

A relation of the form of Eq. 1.1-2 does come out of the simple kinetic theory of gases (Eq. 1.4-7). 
However, a rigorous theory for gases sketched in Appendix D makes it clear that Eq. 1.1-2 arises as the 
first term in an expansion, and that additional (higher-order) terms are to be expected. Also, even an 
elementary kinetic theory of liquids predicts non-Newtonian behavior (Eq. 1.5-6). 

A comprehensive presentation of experimental techniques for measuring transport properties can be 
found in W. A. Wakeham, A. Nagashima, and J. V. Sengers, Measurement of the Transporf Properties offluids, 
CRC Press, Boca Raton, Fla. (1991). Sources for experimental data are: Landolt-Bornstein, Zahlenwerte und 
Funktionen, Vol. II,5, Springer (1968-1969); International Critical Tables, McGraw-Hill, New York (1926); 
Y. S. Touloukian, P. E. Liley, and S. C. Saxena, Tkermopkysical Properties of Matter, Plenum Press, New York 
(1970); and also numerous handbooks of chemistry, physics, fluid dynamics, and heat transfer. 
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Table 1.1-1 Summary of Units for Quantities 
Related to Eq. 1 .l-2 

-- 

SI c.g.s. British 

Note: The pascal, Pa, is the same as N/m2, and the newton, 
N, is the same as kg - m/s2. The abbreviation for "centipoise" 
is "cp." 

Table 1.1-2 Viscosity of Water and Air at 1 atm Pressure 

Water (liq.)" 

Temperature 
T ("C) 

Viscosity 
p (mPa s) 

1.787 
1.0019 
0.6530 
0.4665 
0.3548 
0.2821 

Kinematic viscosity 
v (cm2/s) 

0.01 787 
0.010037 
0.006581 
0.004744 
0.003651 
0.002944 

Viscosity 
p (mPa. s) 

Kinematic viscosity 
v (cm2/s) 

Talculated from the results of R. C. Hardy and R. L. Cottington, J. Research Nut. Bur. Standards, 42, 
573-578 (1949); and J. F. Swidells, J. R. Coe, Jr., and T. B. Godfrey, J. Research Naf .  Bur. Standards, 48,l-31 
(1952). 
Calculated from "Tables of Thermal Properties of Gases," National Bureau of Standards Circular 464 

(1955), Chapter 2. 

Table 1.1-3 Viscosities of Some Gases and Liquids at Atmospheric Pressurea 
- - -- 

Temperature Viscosity Temperature Viscosity 
Gases T CC) p (mPa s) Liquids T rC) p (mPa. s) 

(C&&,O O 
25 

C6H6 20 
Br2 25 
Hg 20 
C2H50H 0 

25 
50 

H2S0, 25 
Glycerol 25 

Talues  taken from N. A. Lange, Handbook of Chemistry, McGraw-Hill, New York, 15th edition 
(1999), Tables 5.16 and 5.18. 
H. L. Johnston and K. E. McKloskey, J. Phys. Chern., 44,1038-1058 (1940). 

CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, Fla. (1999). 
Landolt-Bornstein Zahlenwerfe und Funktionen, Springer (1969). 
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Table 1.1-4 Viscosities of Some Liquid Metals 

Temperature Viscosity 
Metal T ("(3 p (mPa s) 

-- - -- 

Data taken from The Reactor Handbook, Vol. 2, Atomic 
Energy Commission AECD-3646, U.S. Government 
Printing Office, Washington, D.C. (May 1955), pp. 258 
et seq. 

given for pure fluids at 1 atm pressure. Note that for gases at low density, the viscosity 
increases with increasing temperature, whereas for liquids the viscosity usually decreases 
with increasing temperature. In gases the momentum is transported by the molecules in 
free flight between collisions, but in liquids the transport takes place predominantly by 
virtue of the intermoIecular forces that pairs of molecules experience as they wind their 
way around among their neighbors. In g51.4 and 1.5 we give some elementary kinetic 
theory arguments to explain the temperature dependence of viscosity. 

Compute the steady-state momentum flux T,, in lbf/ft? when the lower plate velocity V in Fig. 
1.1-1 is I ft/s in the positive x direction, the plate separation Y is 0.001 ft, and the fluid viscos- 

Calculation of ity p is 0.7 cp. 
Momentum Flux 

SOLUTION 

Since T ~ ,  is desired in British units, we should convert the viscosity into that system of units. 
Thus, making use of Appendix F, we find p = (0.7 cp)(2.0886 X = 1.46 x Ibf s/ft2. 
The velocity profile is linear so that 

dv, - Av, - -1.0 ft/s 
= -10oos-~ 

dy Ay 0.001 ft 

Substitution into Eq. 1.1-2 gives 
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1 . 2  GENERALIZATION OF NEWTON'S LAW OF VISCOSITY 

In the previous section the viscosity was defined by Eq. 1.1-2, in terms of a simple 
steady-state shearing flow in which v, is a function of y alone, and v, and v, are zero. 
Usually we are interested in more complicated flows in which the three velocity compo- 
nents may depend on all three coordinates and possibly on time. Therefore we must 
have an expression more general than Eq. 1.1-2, but it must simplify to Eq. 1.1-2 for 
steady-state shearing flow. 

This generalization is not simple; in fact, it took mathematicians about a century and a 
half to do this. It is not appropriate for us to give all the details of this development here, 
since they can be found in many fluid dynamics books.' Instead we explain briefly the main 
ideas that led to the discovery of the required generalization of Newton's law of viscosity. 

To do this we consider a very general flow pattern, in which the fluid velocity may 
be in various directions at various places and may depend on the time t. The velocity 
components are then given by 

In such a situation, there will be nine stress components ril (where i and j may take on 
the designations x, y, and z), instead of the component T~ that appears in Eq. 1.1-2. We 
therefore must begin by defining these stress components. 

In Fig. 1.2-1 is shown a small cube-shaped volume element within the flow field, 
each face having unit area. The center of the volume element is at the position x, y, z. At 

Fig. 1.2-1 Pressure and viscous forces acting on planes in the fluid perpendicular to the three 
coordinate systems. The shaded planes have unit area. 

W. Prager, Introduction to Mechanics of Continua, Ginn, Boston (1961), pp. 89-91; R. Aris, Vectors, 
Tensors, and the Basic Equations of Fluid Mechanics, Prentice-Hall, Englewood Cliffs, N.J. (19621, pp. 30-34, 
99-112; L. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, London, 2nd edition (1987), pp. 44-45. 
Lev Davydovich Landau (1908-1968) received the Nobel prize in 1962 for his work on liquid helium and 
superfluid dynamics. 
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any instant of time we can slice the volume element in such a way as to remove half the 
fluid within it. As shown in the figure, we can cut the volume perpendicular to each of 
the three coordinate directions in turn. We can then ask what force has to be applied on 
the free (shaded) surface in order to replace the force that had been exerted on that sur- 
face by the fluid that was removed. There will be two contributions to the force: that as- 
sociated with the pressure, and that associated with the viscous forces. 

The pressure force will always be perpendicular to the exposed surface. Hence in (a) 
the force per unit area on the shaded surface will be a vector p6,-that is, the pressure (a 
scalar) multiplied by the unit vector 6, in the x direction. Similarly, the force on the 
shaded surface in (b) will be p6,, and in (c) the force will be p6,. The pressure forces will 
be exerted when the fluid is stationary as well as when it is in motion. 

The viscous forces come into play only when there are velocity gradients within the 
fluid. In general they are neither perpendicular to the surface element nor parallel to it, 
but rather at some angle to the surface (see Fig. 1.2-1). In (a) we see a force per unit area 
T, exerted on the shaded area, and in (b) and (c) we see forces per unit area T, and 7,. 
Each of these forces (which are vectors) has components (scalars); for example, T, has 
components T,,, T,~, and T,,. Hence we can now summarize the forces acting on the three 
shaded areas in Fig. 1.2-1 in Table 1.2-1. This tabulation is a summary of the forces per 
unit area (stresses) exerted within a fluid, both by the thermodynamic pressure and the 
viscous stresses. Sometimes we will find it convenient to have a symbol that includes both 
types of stresses, and so we define the molecular stresses as follows: 

r . = paii + rii where i and j may be x, y, or z 'I (1.2-2) 

Here Sij is the Kronecker delta, which is 1 if i = j and zero if i # j. 
Just as in the previous section, the r,j (and also the 'rr$ may be interpreted in two ways: 

rZi = pa,, + ril = force in the j direction on a unit area perpendicular to the i direction, 
where it is understood that the fluid in the region of lesser xi is exerting 
the force on the fluid of greater xi 

'rrY = paij + rij = flux of j-momentum in the positive i direction-that is, from the region 
of lesser xi to that of greater xi 

Both interpretations are used in this book; the first one is particularly useful in describ- 
ing the forces exerted by the fluid on solid surfaces. The stresses .rr,, = p + T,,, 5, = p + 
ryy, 'rrzz = p + T,, are called normal stresses, whereas the remaining quantities, IT,, = T,,, 
5, = T ~ ~ ,  . . . are called shear stresses. These quantities, which have two subscripts associ- 
ated with the coordinate directions, are referred to as "tensors," just as quantities (such 
as velocity) that have one subscript associated with the coordinate directions are called 

Table 1.2-1 Summary of the Components of the Molecular Stress Tensor (or Molecular 
Momentum-Flux Tensor)" 

Direction 
normal 
to the 
shaded 

Vector force 
per unit area on the 

shaded face (momentum 
face flux through shaded face) 

X Tr, = pajx + Tw 

Y n, = p6 ,  + T, 

z m, = p6 ,  + T, 

Components of the forces (per unit area) 
acting on the shaded face (components of the 

momentum flux through the shaded face) 

x-component y-component z-component 

" These are referred to as components of the "molecular momentum flux tensor" because they are 
associated with the molecular motions, as discussed in g1.4 and Appendix D. The additional "convective 
momentum flux tensor" components, associated with bulk movement of the fluid, are discussed in 51.7. 
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I, vectors." Therefore we will refer to T as the z~iscous stress tensor (with components T ~ )  

and .rr as the molecular stress tensor (with components qj). When there is no chance for 
confusion, the modifiers "viscous" and "molecular" may be omitted. A discussion of 
vectors and tensors can be found in Appendix A. 

The question now is: How are these stresses rij related to the velocity gradients in 
the fluid? In generalizing Eq. 1.1-2, we put several restrictions on the stresses, as follows: 

The viscous stresses may be linear combinations of all the velocity gradients: 

dvk 
7.. = -CkClp.. - where i, j, k, and 1 may be 1,2,3 (1.2-3) 

11 vk' dx1 

Here the 81 quantities pijkl are "viscosity coefficients." The quantities x,, x,, x3 in 
the derivatives denote the Cartesian coordinates x, y, z, and v,, v,, v, are the same 
as v,, v,, v,. 
We assert that time derivatives or time integrals should not appear in the expres- 
sion. (For viscoelastic fluids, as discussed in Chapter 8, time derivatives or time in- 
tegrals are needed to describe the elastic responses.) 

We do not expect any viscous forces to be present, if the fluid is in a state of pure 
rotation. This requirement leads to the necessity that ri, be a symmetric combina- 
tion of the velocity gradients. By this we mean that if i and j are interchanged, the 
combination of velocity gradients remains unchanged. It can be shown that the 
only symmetric linear combinations of velocity gradients are 

If the fluid is isotropic-that is, it has no preferred direction-then the coefficients 
in front of the two expressions in Eq. 1.2-4 must be scalars so that 

We have thus reduced the number of "viscosity coefficients" from 81 to 2! 

Of course, we want Eq. 1.2-5 to simplify to Eq. 1.1-2 for the flow situation in Fig. 
1.1-1. For that elementary flow Eq. 1.2-5 simplifies to T,, = A dv,/dy, and hence the 
scalar constant A must be the same as the negative of the viscosity p. 

Finally, by common agreement among most fluid dynamicists the scalar constant 
B is set equal to $p - K, where K is called the dilatational viscosity. The reason for 
writing B in this way is that it is known from kinetic theory that K is identically 
zero for monatomic gases at low density. 

Thus the required generalization for Newton's law of viscosity in Eq. 1.1-2 is then 
the set of nine relations (six being independent): 

Here T~~ = T,~, and i and j can take on the values 1,2,3. These relations for the stresses in a 
Newtonian fluid are associated with the names of Navier, Poisson, and ~ t o k e s . ~  If de- 

' C.-L.-M.-H. Navier, Ann. Chimie, 19,244-260 (1821); S.-D. Poisson, I .  ~ c o l e  Polytech., 13, Cahier 20,l-174 
(1831); G. G. Stokes, Trans. Camb. Phil. Soc., 8,287-305 (1845). Claude-Louis-Marie-Henri Navier (1785-1836) 
(pronounced "Nah-vyay," with the second syllable accented) was a civil engineer whose specialty was road 
and bridge building; George Gabriel Stokes (1819-1903) taught at Cambridge University and was president 
of the Royal Society. Navier and Stokes are well known because of the Navier-Stokes equations (see Chapter 
3). See also D. J. Acheson, Elemazta y Fluid Mechanics, Oxford University Press (1990), pp. 209-212,218. 
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sired, this set of relations can be written more concisely in the vector-tensor notation of 
Appendix A as 

in which 6 is the unit tensor with components SV, Vv is the velocity gradient tensor with 
components (d/dxi)vj, (Vv)' is the "transposer' of the velocity gradient tensor with com- 
ponents (d/dxj)vi, and (V . v) is the divergence of the velocity vector. 

The important conclusion is that we have a generalization of Eq. 1.1-2, and this gen- 
eralization involves not one but two coefficients3 characterizing the fluid: the viscosity p 
and the dilatational viscosity K .  Usually, in solving fluid dynamics problems, it is not 
necessary to know K .  If the fluid is a gas, we often assume it to act as an ideal 
monoatomic gas, for which K is identically zero. If the fluid is a liquid, we often assume 
that it is incompressible, and in Chapter 3 we show that for incompressible liquids 
(V v) = 0, and therefore the term containing K is discarded anyway. The dilational vis- 
cosity is important in describing sound absorption in polyatomic gases4 and in describ- 
ing the fluid dynamics of liquids containing gas  bubble^.^ 

Equation 1.2-7 (or 1.2-6) is an important equation and one that we shall use often. 
Therefore it is written out in full in Cartesian (x, y, z), cylindrical (r, 8, z), and spherical 
(r, O f + )  coordinates in Table B.1. The entries in this table for curvilinear coordinates are 
obtained by the methods outlined in 55A.6 and A.7. It is suggested that beginning stu- 
dents not concern themselves with the details of such derivations, but rather concen- 
trate on using the tabulated results. Chapters 2 and 3 will give ample practice in doing 
this. 

In curvilinear coordinates the stress components have the same meaning as in Carte- 
sian coordinates. For example, r,, in cylindrical coordinates, which will be encountered 
in Chapter 2, can be interpreted as: (i) the viscous force in the z direction on a unit area 
perpendicular to the r direction, or (ii) the viscous flux of z-momentum in the positive r 
direction. Figure 1.2-2 illustrates some typical surface elements and stress-tensor compo- 
nents that arise in fluid dynamics. 

The shear stresses are usually easy to visualize, but the normal stresses may cause 
conceptual problems. For example, T,, is a force per unit area in the z direction on a 
plane perpendicular to the z direction. For the flow of an incompressible fluid in the 
convergent channel of Fig. 1.2-3, we know intuitively that v, increases with decreas- 
ing z; hence, according to Eq. 1.2-6, there is a nonzero stress r,, = -2p(dv,/dz) acting 
in the fluid. 

Note on the Sign Convention for the Stress Tensor We have emphasized in connection 
with Eq. 1.1-2 (and in the generalization in this section) that T~~ is the force in the posi- 
tive x direction on a plane perpendicular to the y direction, and that this is the force ex- 
erted by the fluid in the region of the lesser y on the fluid of greater y. In most fluid 
dynamics and elasticity books, the words "lesser" and "greater" are interchanged and 
Eq. 1.1-2 is written as r,, = +p(dv,/dy). The advantages of the sign convention used in 
this book are: (a) the sign convention used in Newton's law of viscosity is consistent 
with that used in Fourier's law of heat conduction and Fick's law of diffusion; (b) the 
sign convention for rij is the same as that for the convective momentum flux p w  (see 

Some writers refer to p as the "shear viscosity," but this is inappropriate nomenclature inasmuch 
as p can arise in nonshearing flows as well as shearing flows. The term "dynamic viscosity" is also 
occasionally seen, but this term has a very specific meaning in the field of viscoelasticity and is an 
inappropriate term for p. 

L. Landau and E. M. Lifshitz, op. cit., Ch. VIII. 
G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press (1963, pp. 253-255. 
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of radius R  
Force by fluid in 
+8 direction on 
surface element 

(RdB)(dz) is 
- ~ ~ o ( ~ = R R d e d z  

Z 

surface element 
(RdNdz )  is 

- 7 , . , ( , . = ~ R d ~ d ~  

Z 
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/ I  
Y a k  

' I 

Solid sphere 
of radius R  
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Solid sphere 
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Force by fluid in 
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(RdMR sin 8  d 4 )  is 

- T ~ + ~ ~ = ~ R ~  sin 8  d8d4 

I 

Force by fluid in 
r  direction on 

surface element 
Solid cone (dr)(r sin a d+) is 
with half 

- r o r ( o = a r  sin ru drd4 

Fig. 1.2-2 (a) Some typical surface elements and shear stresses in the cylindrical coordinate system. 
(b)  Some typical surface elements and shear stresses in the spherical coordinate system. 

51.7 and Table 19.2-2); (c) in Eq. 1.2-2, the terms paij and T~~ have the same sign affixed, 
and the terms p and T~~ are both positive in compression (in accordance with common 
usage in thermodynamics); (d) all terms in the entropy production in Eq. 24.1-5 have 
the same sign. Clearly the sign convention in Eqs. 1.1-2 and 1.2-6 is arbitrary, and either 
sign convention can be used, provided that the physical meaning of the sign convention 
is clearly understood. 
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Fig. 1.2-3 The flow in a converging duct is an example of a situation 
in which the normal stresses are not zero. Since v, is a function of 
r and z,  the normal-stress component T,, = -2p(dv , /dz)  is nonzero. 
Also, since v, depends on r and z, the normal-stress component 
T,, = -2p (dvr /dr )  is not equal to zero. At the wall, however, the 

'z") normal stresses all vanish far fluids described by Eq. 1.2-7 provided 
that the density is constant (see Example 3.1-1 and Problem 3C.2). 

1 . 3  PRESSURE AND TEMPERATURE DEPENDENCE 
OF VISCOSITY 

Extensive data on viscosities of pure gases and liquids are available in various science 
and engineering handbooks.' When experimental data are lacking and there is not time 
to obtain them, the viscosity can be estimated by empirical methods, making use of other 
data on the given substance. We present here a corresponding-states correlation, which fa- 
cilitates such estimates and illustrates general trends of viscosity with temperature and 
pressure for ordinary fluids. The principle of corresponding states, which has a sound 
scientific basis: is widely used for correlating equation-of-state and thermodynamic 
data. Discussions of this principle can be found in textbooks on physical chemistry and 
thermodynamics. 

The plot in Fig. 1.3-1 gives a global view of the pressure and temperature dependence 
of viscosity. The reduced viscosity pr = p / p ,  is plotted versus the reduced temperature T, 
= T / T ,  for various values of the reduced pressure p, = p/p,. A "reduced quantity is one 
that has been made dimensionless by dividing by the corresponding quantity at the criti- 
cal point. The chart shows that the viscosity of a gas approaches a limit (the low-density 
limit) as the pressure becomes smaller; for most gases, this limit is nearly attained at 1 atm 
pressure. The viscosity of a gas at low density increases with increasing temperature, 
whereas the viscosity of a liquid decreases with increasing temperature. 

Experimental values of the critical viscosity p, are seldom available. However, p, 
may be estimated in one of the following ways: (i) if a value of viscosity is known at a 
given reduced pressure and temperature, preferably at conditions near to those of 

- - -- 

J. A. Schetz and A. E. Fuhs (eds.), Handbook of Fluid Dynamics and Fluid Machinery, Wiley- 
Interscience, New York (1996), Vol. 1, Chapter 2; W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, Handbook 
of Heat Transfer, McGraw-Hill, New York, 3rd edition (19981, Chapter 2. Other sources are mentioned in 
fn. 4 of 91.1. 

J. Millat, J. H. Dymond, and C. A. Nieto de Castro (eds.), Transport Properties of Fluids, Cambridge 
University Press (1996), Chapter 11, by E. A. Mason and F. J. Uribe, and Chapter 12, by M. L. Huber and 
H. M. M. Hanley. 
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Fig. 1.3-1 Reduced vis- 
cosity pr = p/p, as a 
function of reduced 
temperature for several 
values of the reduced 
pressure. 10. A. Uye- 
hara and K. M. Watson, 
Nat. Petroleum News, 
Tech. Section, 36,764 
(Oct. 4,1944); revised 
by K. M. Watson (1960). 
A large-scale version of 
this graph is available 
in 0. A. Hougen, 
K. M. Watson, and 
R. A. Ragatz, C. P. P. 
Charts, Wiley, New 
York, 2nd edition 
(1960)l. 

Reduced temperature T,  = T / T ,  

interest, then pc can be calculated from p, = p/pY; or (ii) if critical p-V-T data are avail- 
able, then p, may be estimated from these empirical relations: 

Here p, is in micropoises, p, in atm, Tc in K, and in cm3/g-mole. A tabulation of critical 
viscosities3 computed by method (i) is given in Appendix E. 

Figure 1.3-1 can also be used for rough estimation of viscosities of mixtures. For 
N-component fluids with mole fractions x,, the "pseudocritical" properties4 are: 

That is, one uses the chart exactly as for pure fluids, but with the pseudocritical proper- 
ties instead of the critical properties. This empirical procedure works reasonably well 

". A. Hougen and K. M. Watson, Chemical Process Principles, Part 111, Wiley, New York (1947), 
p. 873. Olaf Andreas Hougen (pronounced "How-gen") (1893-1986) was a leader in the development of 
chemical engineering for four decades; together with K. M. Watson and R. A. Ragatz, he wrote 
influential books on thermodynamics and kinetics. 

0. A. Hougen and K. M. Watson, Chemical Process Principles, Part 11, Wiley, New York (1947), p. 604. 
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unless there are chemically dissimilar substances in the mixture or the critical properties 
of the components differ greatly. 

There are many variants on the above method, as well as a number of other empiri- 
cism~. These can be found in the extensive compilation of Reid, Prausnitz, and Poling.' 

EXAMPLE 1.3-1 Estimate the viscosity of NZ at 50°C and 854 atm, given M = 28.0 g/g-mole, p, = 33.5 atm, and 
T, = 126.2 K. 

Estimation of Viscosity 
from Critica I Properties SOLUTION 

Using Eq. 1.3-1 b, we get 

p, = 7.70(28.0)"~(33.5)~'~(126.2)'/~ 

= 189 micropoises = 189 X poise (1.3-3) 

The reduced temperature and pressure are 

From Fig. 1.3-1, we obtain p, = p/pc = 2.39. Hence, the predicted value of the viscosity is 

p = p,(p/p,) = (189 X 1OP6)(2.39) = 452 X poise (1.3-5) 

The measured value6 is 455 X lop6 poise. This is unusually good agreement. 

1 . 4  MOLECULAR THEORY OF THE VISCOSITY 
OF GASES AT LOW DENSITY 

To get a better appreciation of the concept of molecular momentum transport, we exam- 
ine this transport mechanism from the point of view of an elementary kinetic theory of 
gases. 

We consider a pure gas composed of rigid, nonattracting spherical molecules of di- 
ameter d and mass m, and the number density (number of molecules per unit volume) is 
taken to be n. The concentration of gas molecules is presumed to be sufficiently small 
that the average distance between molecules is many times their diameter d. In such a 
gas it is known1 that, at equilibrium, the molecular velocities are randomly directed and 
have an average magnitude given by (see Problem 1C.1) 

7 

in which K is the Boltzmann constant (see Appendix F). The frequency of molecular 
bombardment per unit area on one side of any stationary surface exposed to the gas is 

R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, McGraw-Hill, New 
York, 4th edition (19871, Chapter 9. 

A. M. J. F. Michels and R. E. Gibson, Proc. Roy. Soc. (London), A134,288-307 (1931). 
' The first four equations in this section are given without proof. Detailed justifications are given in 

books on kinetic theory-for example, E. H. Kennard, Kinetic Theory of Gases, McGraw-Hill, New York 
(1938), Chapters I1 and 111. Also E. A. Guggenheim, Elements of the Kinetic Theory of Gases, Pergamon 
Press, New York (1960), Chapter 7, has given a short account of the elementary theory of viscosity. For 
readable summaries of the kinetic theory of gases, see R. J. Silbey and R. A. Alberty, Physical Chemistry, 
Wiley, New York, 3rd edition (2001), Chapter 17, or R. S. Berry, S. A. Rice, and J. Ross, Physical Chemistry, 
Oxford University Press, 2nd edition (2000), Chapter 28. 



24 Chapter 1 Viscosity and the Mechanisms of Momentum Transport 

The average distance traveled by a molecule between successive collisions is the mean 
free path A, given by 

A = 
1 (1.4-3) 

V?ird2n 

On the average, the molecules reaching a plane will have experienced their last collision 
at a distance a from the plane, where a is given very roughly by 

The concept of the mean free path is intuitively appealing, but it is meaningful only 
when A is large compared to the range of intermolecular forces. The concept is appropri- 
ate for the rigid-sphere molecular model considered here. 

To determine the viscosity of a gas in terms of the molecular model parameters, we 
consider the behavior of the gas when it flows parallel to the m-plane with a velocity 
gradient dvx/dy (see Fig. 1.4-1). We assume that Eqs. 1.4-1 to 4 remain valid in this non- 
equilibrium situation, provided that all molecular velocities are calculated relative to the 
average velocity v in the region in which the given molecule had its last collision. The 
flux of x-momentum across any plane of constant y is found by summing the x-momenta 
of the molecules that cross in the positive y direction and subtracting the x-momenta of 
those that cross in the opposite direction, as follows: 

In writing this equation, we have assumed that all molecules have velocities representa- 
tive of the region in which they last collided and that the velocity profile vx(y) is essen- 
tially linear for a distance of several mean free paths. In view of the latter assumption, 
we may further write 

By combining Eqs. 1.4-2,5, and 6 we get for the net flux of x-momentum in the positive y 
direction 

This has the same form as Newton's law of viscosity given in Eq. 1.1-2. Comparing the 
two equations gives an equation for the viscosity 

1 p = nmiiA = ipiiA (1.4-8) 

Velocity profile vx(y) 

Fig. 1.4-1 Molecular transport 
of x-momentum from the plane at 

x (y - a) to the plane at y. 
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or, by combining Eqs. 1.4-1,3, and 8 

This expression for the viscosity was obtained by Maxwell2 in 1860. The quantity d2 is 
called the collision cross section (see Fig. 1.4-2). 

The above derivation, which gives a qualitatively correct picture of momentum 
transfer in a gas at low density, makes it clear why we wished to introduce the term 
"momentum flux" for rp in §1 .l.  

The prediction of Eq. 1.4-9 that p is independent of pressure agrees with experimen- 
tal data up to about 10 atm at temperatures above the critical temperature (see Fig. 1.3-1). 
The predicted temperature dependence is less satisfactory; data for various gases indi- 
cate that p increases more rapidly than 1/T. To better describe the temperature depen- 
dence of p, it is necessary to replace the rigid-sphere model by one that portrays the 
attractive and repulsive forces more accurately. It is also necessary to abandon the mean 
free path theories and use the Boltzmann equation to obtain the molecular velocity dis- 
tribution in nonequilibrium systems more accurately. Relegating the details to Appendix 
D, we present here the main  result^.^'^^ 

7 of area d2 

, /-- 
/ 

/ 
/ 
I 
I Fig. 1.4-2 When two rigid spheres of diameter d approach 
1 
\ each other, the center of one sphere (at 0') "sees" a circle of 
\ 
\ area md2 about the center of the other sphere (at O), on 

/ which a collision can occur. The area &I2 is referred to as the '\ .---/ / "collision cross section." 

-- - - - - 

James Clerk Maxwell (1831-1879) was one of the greatest physicists of all time; he is particularly 
famous for his development of the field of electromagnetism and his contributions to the kinetic theory 
of gases. In connection with the latter, see J. C. Maxwell, Phil. Mag., 19,19, Prop. XI11 (1860); S. G. Brush, 
Am. J. Phys, 30,269-281 (1962). There is some controversy concerning Eqs. 1.4-4 and 1.4-9 (see S. Chapman 
and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, 3rd 
edition 1970), p. 98; R. E. Cunningham and R. J. J. Williams, Diffusion in Gases and Porous Media, Plenum 
Press, New York (1980), s6.4. 

Sydney Chapman (1888-1970) taught at Imperial College in London, and thereafter was at the 
High Altitude Observatory in Boulder, Colorado; in addition to h s  seminal work on gas kinetic theory, 
he contributed to kinetic theory of plasmas and the theory of flames and detonations. David Enskog 
(1884-1947) (pronounced, roughly, "Ayn-skohg") is famous for his work on kinetic theories of low- and 
highdensity gases. The standard reference on the Chapman-Enskog kinetic theory of dilute gases is 
S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University 
Press, 3rd edition (1970); pp. 407409 give a historical summary of the kinetic theory. See also D. Enskog, 
Inaugural Dissertation, Uppsala (1917). In addition J. H. Ferziger and H. G. Kaper, Mathematical Theory of 
Transport Processes in Gases, North-Holland, Amsterdam (1972), is a very readable account of molecular 
theory. 

The Curtiss-Hirschfelder5 extension of the Chapman-Enskog theory to multicomponent gas 
mixtures, as well as the development of useful tables for computation, can be found in J. 0. Hirschfelder, 
C .  F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York, 2nd corrected printing 
(1964). See also C. F. Curtiss, J. Chem. Phys., 49,2917-2919 (19681, as well as references given in Appendix 
E. Joseph Oakland Hirschfelder (1911-1990), founding director of the Theoretical Chemistry Institute at 
the University of Wisconsin, specialized in intermolecular forces and applications of kinetic theory. 

C. F. Curtiss and J. 0. Hirschfelder, J. Chem. Phys., 17,550-555 (1949). 
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A rigorous kinetic theory of monatomic gases at low density was developed early in 
the twentieth century by Chapman in England and independently by Enskog in Sweden. 
The Chapman-Enskog theory gives expressions for the transport properties in terms of 
the intermolecular potential energy &), where r is the distance between a pair of molecules 
undergoing a collision. The intermolecular force is then given by F(r) = -dp/dr. The 
exact functional form of p(r) is not known; however, for nonpolar molecules a satisfac- 
tory empirical expression is the Lennard-Jones (6-12) potential6 given by 

in which a is a characteristic diameter of the molecules, often called the collision diameter 
and E is a characteristic energy, actually the maximum energy of attraction between a 
pair of molecules. This function, shown in Fig. 1.4-3, exhibits the characteristic features 
of intermolecular forces: weak attractions at large separations and strong repulsions at 
small separations. Values of the parameters a and E are known for many substances; a 
partial list is given in Table E.l, and a more extensive list is available el~ewhere.~ When u 
and E are not known, they may be estimated from properties of the fluid at the critical 
point (c), the liquid at the normal boiling point (b), or the solid at the melting point (m), 
by means of the following empirical relations:" 

Here E/K and T are in K, a is in &tgstriim units (1 A = lop1' m), ?is in ~ rn~ /~ - rno l e ,  and 
p, is in atmospheres. 

The viscosity of a pure monatomic gas of molecular weight M may be written in 
terms of the Lennard-Jones parameters as 

Molecules repel Molecules attract 
one another at one another at 
separations r  < r,, separations r  > r ,  

I 
I 
I 

Whenr -3u, l l c p (  
I has dropped off 

to less than 0.01 E Fig. 1.4-3 Potential energy function 
0 - p(r) describing the interaction of two 

r  spherical, nonpolar molecules. The 
Lennard-Jones (6-12) potential, given 
in Eq. 1.4-10, is one of the many em- 
pirical equations proposed for fitting 
this curve. For r < Y, the molecules 
repel one another, whereas for r > r, 
the molecules attract one another. 

J. E. (Lennard-)Jones, Proc. Roy. Soc., A106,441462,463477 (1924). See also R. J. Silbey and R. A. 
Alberty, Physical Chemistry, Wiley, 2nd edition (2001), §§11.10,16.14, and 17.9; and R. S. Berry, S. A. Rice, 
and J. Ross, Physical Chemistry, Oxford University Press, 2nd edition (2000), g10.2. 
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In the second form of this equation, if T [=I K and a [=I A, then p [=I  g/cm s. The di- 
mensionless quantity (n, is a slowly varying function of the dimensionless temperature 
KT/&, of the order of magnitude of unity, given in Table E.2. It is called the "collision in- 
tegral for viscosity," because it accounts for the details of the paths that the molecules 
take during a binary collision. If the gas were made up of rigid spheres of diameter a (in- 
stead of real molecules with attractive and repulsive forces), then 0, would be exactly 
unity. Hence the function In, may be interpreted as describing the deviation from rigid- 
sphere behavior. 

Although Eq. 1.4-14 is a result of the kinetic theory of monatomic gases, it has been 
found to be remarkably good for polyatomic gases as well. The reason for this is that, in 
the equation of conservation of momentum for a collision between polyatomic mole- 
cules, the center of mass coordinates are more important than the internal coordinates 
[see §0.3(b)l. The temperature dependence predicted by Eq. 1.4-14 is in good agreement 
with that found from the low-density line in the empirical correlation of Fig. 1.3-1. The 
viscosity of gases at low density increases with temperature, roughly as the 0.6 to 1.0 
power of the absolute temperature, and is independent of the pressure. 

To calculate the viscosity of a gas mixture, the multicomponent extension of the 
Chapman-Enskog theory can be used."j5 Alternatively, one can use the following very 
satisfactory semiempirical f~ rmula :~  

in which the dimensionless quantities Qap are 

Here N is the number of chemical species in the mixture, x, is the mole fraction of species 
a, pa is the viscosity of pure species a at the system temperature and pressure, and Ma is 
the molecular weight of species a. Equation 1.4-16 has been shown to reproduce mea- 
sured values of the viscosities of mixtures within an average deviation of about 2%. The 
dependence of mixture viscosity on composition is extremely nonlinear for some mix- 
tures, particularly mixtures of light and heavy gases (see Problem 1A.2). 

To summarize, Eqs. 1.4-14, 15, and 16 are useful formulas for computing viscosities 
of nonpolar gases and gas mixtures at low density from tabulated values of the intermol- 
ecular force parameters a and E / K .  They will not give reliable results for gases consisting 
of polar or highly elongated molecules because of the angle-dependent force fields that 
exist between such molecules. For polar vapors, such as H20, NH,, CHOH, and NOCl, 
an angle-dependent modification of Eq. 1.4-10 has given good  result^.^ For the light 
gases H, and He below about loOK, quantum effects have to be taken into acco~n t .~  

Many additional empiricisms are available for estimating viscosities of gases and 
gas mixtures. A standard reference is that of Reid, Prausnitz, and Poling.'' 

C. R. Wilke, J. Chem. Phys., 18,517-519 (1950); see also J. W. Buddenberg and C. R. Wilke, Ind. Eng. 
Chem., 41,1345-1347 (1949). 

E. A. Mason and L. Monchick, J. Chem. Phys., 35,1676-1697 (1961) and 36,1622-1639,2746-2757 
(1962). 

J. 0. Hirschfelder, C. F. Curtiss, and R. B. Bird, op. cif. ,  Chapter 10; H. T. Wood and C. F. Curtiss, J. 
Chem. Phys., 41,1167-1173 (1964); R. J. Munn, F. J. Smith, and E. A. Mason, J. Chem. Phys., 42,537-539 
(1965); S. Imam-Rahajoe, C. F. Curtiss, and R. B. Bernstein, J. Chem. Phys., 42,530-536 (1965). 

lo R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Propeties of Gases and Liquids, McGraw-Hill, New 
York, 4th edition (1987). 
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Compute the viscosity of C02 at 200,300, and 800K and 1 atm. 

Computation of the SOLUTION 
Viscosity of a Pure 
G~~ at L~~  it^ Use Eq. 1.4-14. From Table E.1, we find the Lennard-Jones parameters for C02 to be E / K  = 

190 K and a = 3.996 A. The molecular weight of C02 is 44.01. Substitution of M and (T into 
Eq. 1.4-14 gives 

in which p [ = I  g/cm . s and T [ = I  K. The remaining calculations may be displayed in a table. 

Viscosity (g/cm . s) 

T (K) KT/& a, fi Predicted Observed" 

Experimental data are shown in the last column for comparison. The good agreement is to be 
expected, since the Lennard-Jones parameters of Table E.l were derived from viscosity data. 

Estimate the viscosity of the following gas mixture at 1 atm and 293K from the given data on 
the pure components at the same pressure and temperature: 

Prediction of the 
Viscosity of a Gas 
Mixture at Low Mole Molecular Viscosity, p, 

Species a fraction, x, weight, M, Density (g/cm. s) 

SOLUTION Use Eqs. 1.4-16 and 15 (in that order). The calculations can be systematized in tabular form, thus: 

" H. L. Johnston and K. E. McCloskey, I. Phys. Chem., 44,1038-1058 (1940). 
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Eq. 1.4-15 then gives 

The observed value12 is 1793 X g/cm s. 

1.5 MOLECULAR THEORY OF THE VISCOSITY OF LIQUIDS 

A rigorous kinetic theory of the transport properties of monatomic liquids was devel- 
oped by Kirkwood and coworkers.' However this theory does not lead to easy-to-use 
results. An older theory, developed by Eyring2 and coworkers, although less well 
grounded theoretically, does give a qualitative picture of the mechanism of momentum 
transport in liquids and permits rough estimation of the viscosity from other physical 
properties. We discuss this theory briefly. 

In a pure liquid at rest the individual molecules are constantly in motion. However, 
because of the close packing, the motion is largely confined to a vibration of each mole- 
cule within a "cage" formed by its nearest neighbors. This cage is represented by an en- 
ergy barrier of height AG;/I;J, in which AG: is the molar free energy of activation for 
escape from the cage in the stationary fluid (see Fig. 1.5-1). According to Eyring, a liquid 
at rest continually undergoes rearrangements, in which one molecule at a time escapes 
from its "cage" into an adjoining "hole," and that the molecules thus move in each of the 

Vacant lattice 
/site or "hole" 

a y e  c /'@ .i 
T 0 V X B  

Layer B - 0 -  I 

Fig. 1.5-1 Illustration of an escape 
In fluid at rest process in the flow of a liquid. 
In fluid under stress T~~ Molecule 1 must pass through a 

t 
"bottleneck to reach the vacant 

x site. 

'* F. Herning and L. Zipperer, Gas- und Wasserfach, 79,49-54,69-73 (1936). 
J. H. Irving and J. G. Kirkwood, J. Chem. Phys., 18,817-823 (1950); R. J. Bearman and J. G. Kirkwood, 

J. Chem. Phys, 28,136146 (1958). For additional publications, see John Gamble Kirkwood, Collected 
Works, Gordon and Breach, New York (1967). John Gamble Kirkwood (1907-1959) contributed much to 
the kinetic theory of liquids, properties of polymer solutions, theory of electrolytes, and thermodynamics 
of irreversible processes. 

' 5. Glasstone, K. J. Laidler, and H. Eyring, Theory of Rate Processes, McGraw-Hill, New York (1941), 
Chapter 9; H. Eyring, D. Henderson, B. J. Stover, and E. M. Eyring, Statistical Mechanics, Wiley, New York 
(1964), Chapter 16. See also R. J. Silbey and R. A. Alberty, Physical Chemisty, Wiley, 3rd edition (2001), 
s20.1; and R. S.  Berry, S. A. Rice, and J. Ross, Physical Chemisty, Oxford University Press, 2nd edition 
(2000), Ch. 29. Henry Eyring (1901-1981) developed theories for the transport properties based on simple 
physical models; he also developed the theory of absolute reaction rates. 
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coordinate directions in jumps of length a at a frequency u per molecule. The frequency 
is given by the rate equation 

In which K and h are the Boltzmann and Planck constants, fi is the Avogadro number, 
and R = NK is the gas constant (see Appendix F). 

In a fluid that is flowing in the x direction with a velocity gradient dv,/dy, the fre- 
quency of molecular rearrangements is increased. The effect can be explained by consid- 
ering the potential energy barrier as distorted under the applied stress T,, (see Fig. 1.5-11, 
so that 

where vis the volume of a mole of liquid, and 2 (a/S)(~,v/2) is an approximation to the 
work done on the molecules as they move to the top of the energy barrier, moving with 
the applied shear stress (plus sign) or against the applied shear stress (minus sign). We 
now define u+ as the frequency of forward jumps and u- as the frequency of backward 
jumps. Then from Eqs. 1.5-1 and 1.5-2 we find that 

The net velocity with which molecules in layer A slip ahead of those in layer B (Fig. 
1.5-1) is just the distance traveled per jump (a) times the net frequency of forward jumps 
(v+ - u-); this gives 

The velocity profile can be considered to be linear over the very small distance S between 
the layers A and B, so that 

By combining Eqs. 1.5-3 and 5, we obtain finally 

KT exp(-~6,'/Rn 2 sinh - )( 2 ' )  
This predicts a nonlinear relation between the shear stress (momentum flux) and the ve- 
locity gradient-that is, non-Newtonian pow. Such nonlinear behavior is discussed further 
in Chapter 8. 

The usual situation, however, is that ~ T , ~ / ~ s R T  << 1. Then we can use the Taylor 
series (see gC.2) sinh x = x + (1 /3!)x3 + (1 /5!)x5 + . and retain only one term. Equation 
1.5-6 is then of the form of Eq. 1.1-2, with the viscosity being given by 

The factor S/a can be taken to be unity; this simplification involves no loss of accuracy, 
since A(?: is usually determined empirically to make the equation agree with experimen- 
tal viscosity data. 

It has been found that free energies of activation, AG:, determined by fitting Eq. 1.5-7 
to experimental data on viscosity versus temperature, are almost constant for a given 
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fluid and are simply related to the internal energy of vaporization at the normal boiling 
point, as  follow^:^ 

AS: - 0.408 A&,, (1.5-8) 

By using this empiricism and setting 6 / a  = 1, Eq. 1.5-7 becomes 

h 
p = T exp (0.408 AU,,/RT) 

v 
The energy of vaporization at the normal boiling point can be estimated roughly from 
Trouton's rule 

With this further approximation, Eq. 1.5-9 becomes 

Equations 1.5-9 and 11 are in agreement with the long-used and apparently successful 
empiricism p = A exp(B/T). The theory, although only approximate in nature, does give 
the observed decrease of viscosity with temperature, but errors of as much as 30% are 
common when Eqs. 1.5-9 and 11 are used. They should not be used for very long slender 
molecules, such as n-C,,H,. 

There are, in addition, many empirical formulas available for predicting the viscos- 
ity of liquids and liquid mixtures. For these, physical chemistry and chemical engineer- 
ing textbooks should be consulted.* 

Estimate the viscosity of liquid benzene, C,H,, at 20°C (293.2K). 

Estimation of the 
Viscosity of a Pure 

SOLUTION 

Liquid Use Eq. 1.5-11 with the following information: 

Since this information is given in c.g.s. units, we use the values of Avogadrofs number and 
Planck's constant in the same set of units. Substituting into Eq. 1.5-11 gives: 

1 . 6  VISCOSITY OF SUSPENSIONS AND EMULSIONS 

Up to this point we have been discussing fluids that consist of a single homogeneous 
phase. We now turn our attention briefly to two-phase systems. The complete descrip- 
tion of such systems is, of course, quite complex, but it is often useful to replace the sus- 
pension or emulsion by a hypothetical one-phase system, which we then describe by 

J. F. Kincaid, H. Eyring, and A. E. Steam, Chem. Revs., 28,301-365 (1941). 
See, for example, J. R. Partington, Treatise on Physical Chemistry, Longmans, Green (1949); or R. C. 

Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, McGraw-Hill, New York, 4th 
edition (1987). See also P. A. Egelstaff, An Introduction to the Liquid State, Oxford University Press, 2nd 
edition (1994), Chapter 13; and J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Academic Press, 
London (1986), Chapter 8. 
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Newton's law of viscosity (Eq. 1.1-2 or 1.2-7) with two modifications: (i) the viscosity p is 
replaced by an effective viscosity pefh and (ii) the velocity and stress components are then 
redefined (with no change of symbol) as the analogous quantities averaged over a vol- 
ume large with respect to the interparticle distances and small with respect to the dimen- 
sions of the flow system. This kind of theory is satisfactory as long as the flow involved 
is steady; in time-dependent flows, it has been shown that Newton's law of viscosity is 
inappropriate, and the two-phase systems have to be regarded as viscoelastic materials.' 

The first major contribution to the theory of the viscosity of suspensions of spheres was 
that of Einstein.' He considered a suspension of rigid spheres, so dilute that the move- 
ment of one sphere does not influence the fluid flow in the neighborhood of any other 
sphere. Then it suffices to analyze only the motion of the fluid around a single sphere, 
and the effects of the individual spheres are additive. The Einstein equation is 

in which po is the viscosity of the suspending medium, and C#I is the volume fraction of 
the spheres. Einstein's pioneering result has been modified in many ways, a few of 
which we now describe. 

For dilute suspensions of particles of various shapes the constant has to be replaced by 
a different coefficient depending on the particular shape. Suspensions of elongated or 
flexible particles exhibit non-Newtonian v isc~s i t~ .~""~  

For concentrated suspensions of spheres (that is, 4 greater than about 0.05) particle in- 
teractions become appreciable. Numerous semiempirical expressions have been devel- 
oped, one of the simplest of which is the Mooney equation7 

in which 4, is an empirical constant between about 0.74 and 0.52, these values corre- 
sponding to the values of 4 for closest packing and cubic packing, respectively. 

For dilute suspensions of rigid spheres, the linear viscoelastic behavior has been studied by 
H. Frohlich and R. Sack, Proc. Roy. Soc., A185,415430 (1946), and for dilute emulsions, the analogous 
derivation has been given by J. G. Oldroyd, Proc. Roy. Soc., A218,122-132 (1953). In both of these 
publications the fluid is described by the Jeffreys model (see Eq. 8.4-4), and the authors found the relations 
between the three parameters in the Jeffreys model and the constants describing the structure of the two- 
phase system (the volume fraction of suspended material and the viscosities of the two phases). For 
further comments concerning suspensions and rheology, see R. B. Bird and J. M. Wiest, Chapter 3 in 
Handbook of Fluid Dynamics and Fluid Machinery, J. A. Schetz and A. E. Fuhs (eds.), Wiley, New York (1996). 

Albert Einstein (1879-1955) received the Nobel prize for his explanation of the photoelectric effect, 
not for his development of the theory of special relativity. His seminal work on suspensions appeared in 
A. Einstein, Ann. Phys. (Leipzig), 19,289-306 (1906); erratum, ibzd., 24,591-592 (1911). In the original 
publication, Einstein made an error in the derivation and got 4 instead of :4. After experiments 
showed that his equation did not agree with the experimental data, he recalculated the coefficient. 
Einstein's original derivation is quite lengthy; for a more compact development, see L. D. Landau and 
E. M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford, 2nd edition (19871, pp. 73-75. The mathematical 
formulation of multiphase fluid behavior can be found in D. A. Drew and S. L. Passman, Theory of 
Multicomponent Fluids, Springer, Berlin (1999). 

' H. L. Frisch and R. Simha, Chapter 14 in Rheology, Vol. 1, (F.  R. Eirich, ed.), Academic Press, New 
York (1956), Sections I1 and 111. 

E. W. Merrill, Chapter 4 in Modern Chemical Engineering, Vol. 1, (A. Acrivos, ed.), Reinhold, New 
York (1963), p. 165. 

E. J. Hinch and L. G. Leal, J .  Fluid Mech., 52,683-712 (1972); 76,187-208 (1976). 
W. R. Schowalter, Mechanics of Non-Newtonian Fluids, Pergamon, Oxford (1978), Chapter 13. 
M. Mooney, J .  Coll. Sci., 6,162-170 (1951). 
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Another approach for concentrated suspensions of spheres is the "cell theory," in 
which one examines the dissipation energy in the "squeezing flow" between the spheres. 
As an example of this kind of theory we cite the Graham equation8 

"ff - 1  +-,$, + -  -- 
Po : : (@(I + ;$)(I l )  + @)2 

in which @ = 2[(1 - -)/-I, where +,,, is the volume fraction corre- 
sponding to the experimentally determined closest packing of the spheres. This expres- 
sion simplifies to Einstein's equation for ,$, + 0 and the Frankel-Acrivos equation9 when 
,$, + ,$,mar 

For concentrated suspensions of nonspherical particles, the Krieger-Dougherty equation'' 
can be used: 

The parameters A and dm,, to be used in this equation are tabulated1' in Table 1.6-1 for 
suspensions of several materials. 

Non-Newtonian behavior is observed for concentrated suspensions, even when the 
suspended particles are spherical." This means that the viscosity depends on the veloc- 
ity gradient and may be different in a shear than it is in an elongational flow. Therefore, 
equations such as Eq. 1.6-2 must be used with some caution. 

Table 1.6-1 Dimensionless Constants for Use in Eq. 1.6-4 

System A &,, Reference 

Spheres (submicron) 
Spheres (40 pm) 
Ground gypsum 
Titanium dioxide 
Laterite 
Glass rods (30 X 700 pm) 
Glass plates (100 X 400 ,urn) 
Quartz grains (53-76 pm) 
Glass fibers (axial ratio 7) 
Glass fibers (axial ratio 14) 
Glass fibers (axial ratio 21) 

a C. G. de Kruif, E. M. F. van Ievsel, A. Vrij, and W. B. Russel, in 
Viscoelasticity and Rheology (A. S. Lodge, M. Renardy, J. A. Nohel, 
eds.), Academic Press, New York (1985). 

H. Giesekus, in Physical Properties ofFoods (J. Jowitt et al., eds.), 
Applied Science Publishers (19831, Chapter 13. 

' R. M. Turian and T.-F. Yuan, AlChE Journal, 23,232-243 (1977). 

* B. Clarke, Trans. Inst. Chem. Eng., 45,251-256 (1966). 

A. L. Graham, Appl. Sci. Res., 37,275-286 (1981). 
N.  A. Frankel and A. Acrivos, Chem. Engr. Sci., 22,847-853 (1967). 

lo I. M. Krieger and T. J. Dougherty, Trans. Soc. Rheol., 3,137-152 (1959). 
" H. A. Barnes, J. F. Hutton, and K. Walters, An Introduction to Rheology, Elsevier, Amsterdam 

(1989), p. 125. 
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For emulsions or suspensions of tiny droplets, in which the suspended material may un- 
dergo internal circulation but still retain a spherical shape, the effective viscosity can be 
considerably less than that for suspensions of solid spheres. The viscosity of dilute emul- 
sions is then described by the Taylor equation:" 

in which pl is the viscosity of the disperse phase. It should, however, be noted that 
surface-active contaminants, frequently present even in carefully purified liquids, can ef- 
fectively stop the internal circulation;13 the droplets then behave as rigid spheres. 

For dilute suspensions of charged spheres, Eq. 1.6-1 may be replaced by the Smolu- 
chowski equafion14 

in which D is the dielectric constant of the suspending fluid, k, the specific electrical con- 
ductivity of the suspension, the electrokinetic potential of the particles, and R the parti- 
cle radius. Surface charges are not uncommon in stable suspensions. Other, less well 
understood, surface forces are also important and frequently cause the particles to form 
loose  aggregate^.^ Here again, non-Newtonian behavior is encountered.'" 

1 . 7  CONVECTIVE MOMENTUM TRANSPORT 

Thus far we have discussed the molecular transport of momentum, and this led to a set of 
quantities .rri,, which give the flux of j-momentum across a surface perpendicular to the i 
direction. We then related the .rrij to the velocity gradients and the pressure, and we 
found that this relation involved two material parameters p and K .  We have seen in Ss1.4 
and 1.5 how the viscosity arises from a consideration of the random motion of the mole- 
cules in the fluid-that is, the random molecular motion with respect to the bulk motion 
of the fluid. Furthermore, in Problem 1C.3 we show how the pressure contribution to 'rrij 

arises from the random molecular motions. 
Momentum can, in addition, be transported by the bulk flow of the fluid, and this 

process is called convective transport. To discuss this we use Fig. 1.7-1 and focus our atten- 
tion on a cube-shaped region in space through which the fluid is flowing. At the center 
of the cube (located at x, y, z) the fluid velocity vector is v. Just as in 51.2 we consider 
three mutually perpendicular planes (the shaded planes) through the point x, y, z, and 
we ask how much momentum is flowing through each of them. Each of the planes is 
taken to have unit area. 

The volume rate of flow across the shaded unit area in (a) is v,. This fluid carries 
with it momentum pv per unit volume. Hence the momentum flux across the shaded 
area is v,pv; note that this is the momentum flux from the region of lesser x to the region 

- -- 

l2 G. I. Taylor, Proc. Roy. Soc., A138,4148 (1932). Geoffrey Ingram Taylor (1886-1975) is famous for 
Taylor dispersion, Taylor vortices, and his work on the statistical theory of turbulence; he attacked many 
complex problems in ingenious ways that made maximum use of the physical processes involved. 

l3  V. G. Levich, Pkysicockemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J. (1962), Chapter 
8. Veniamin Grigorevich Levich (1917-19871, physicist and electrochemist, made many contributions to 
the solution of important problems in diffusion and mass transfer. 

l4 M. von Smoluchowski, Kolloid Zeits., 18,190-195 (1916). 
j5 W. B. Russel, The Dynamics of Colloidal Systems, U, of Wisconsin Press, Madison (1987), Chapter 4; 

W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions, Cambridge University Press 
(1989); R. G. Larson, The Structure and Rkeology of Complex Fluids, Oxford University Press (1998). 
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Fig. 1.7-1 The convective momentum fluxes through planes of unit area perpendicular to the 
coordinate directions. 

of greater x. Similarly the momentum flux across the shaded area in (b) is v p ,  and the 
momentum flux across the shaded area in (c) is v,pv. 

These three vectors-pv,v, pvyv, and pv,v-describe the momentum flux across the 
three areas perpendicular to the respective axes. Each of these vectors has an x-, y-, and 
z-component. These components can be arranged as shown in Table 1.7-1. The quantity 
pv,vy is the convective flux of y-momentum across a surface perpendicular to the x direc- 
tion. This should be compared with the quantity T ~ ,  which is the molecular flux of 
y-momentum across a surface perpendicular to the x direction. The sign convention for 
both modes of transport is the same. 

The collection of nine scalar components given in Table 1.7-1 can be represented as 

Since each component of p w  has two subscripts, each associated with a coordinate di- 
rection, p w  is a (second-order) tensor; it is called the convective momentum-flux tensor. 
Table 1.7-1 for the convective momentum flux tensor components should be compared 
with Table 1.2-1 for the molecular momentum flux tensor components. 

Table 1.7-1 Summary of the Convective Momentum Flux Components 

Direction Flux of momentum Convective momentum flux components 
normal to the through the shaded 
shaded surface surface x-component y-component z-component 
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z A Fig. 1.7-2 The convective momentum flux through a plane 

.C of arbitrary orientation n is (n v)pv = [n pw]. 

- 

Next we ask what the convective momentum flux would be through a surface ele- 
ment whose orientation is given by a unit normal vector n (see Fig. 1.7-2). If a fluid is 
flowing through the surface dS with a velocity v, then the volume rate of flow through 
the surface, from the minus side to the plus side, is (n v)dS. Hence the rate of flow of 
momentum across the surface is (n v)pvdS, and the convective momentum flux is 
(n - v)pv. According to the rules for vector-tensor notation given in Appendix A, this can 
also be written as [n . pwl-that is, the dot product of the unit normal vector n with the 
convective momentum flux tensor pvv. If we let n be successively the unit vectors point- 
ing in the x, y, and z directions (i.e., &,, &,, and &,), we obtain the entries in the second col- 
umn of Table 1.7-1,. 

Similarly, the total molecular momentum flux through a surface of orientation n is 
given by [n . IT] = pn + [n . TI. It is understood that this is the flux from the minus side to 
the plus side of the surface. This quantity can also be interpreted as the force per unit 
area exerted by the minus material on the plus material across the surface. A geometric 
interpretation of [n T I  is given in Problem 1D.2. 

In this chapter we defined the molecular transport of momentum in 91.2, and in this 
section we have described the convective transport of momentum. In setting up shell mo- 
mentum balances in Chapter 2 and in setting up the general momentum balance in 
Chapter 3, we shall find it useful to define the combined momentum flux, which is the sum 
of the molecular momentum flux and the convective momentum flux: 

Keep in mind that the contribution p6 contains no velocity, only the pressure; the combi- 
nation pvv contains the density and products of the velocity components; and the contri- 
bution T contains the viscosity and, for a Newtonian fluid, is linear in the velocity 
gradients. All these quantities are second-order tensors. 

Most of the time we will be dealing with components of these quantities. For exam- 
ple the components of + are 

and so on, paralleling the entries in Tables 1.2-1 and 1.7-1. The important thing to re- 
member is that 

4, = the combined flux of y-momentum across a surface perpendicular to the x 
direction by molecular and convective mechanisms. 

The second index gives the component of momentum being transported and the first 
index gives the direction of transport. 

The various symbols and nomenclature that are used for momentum fluxes are 
given in Table 1.7-2. The same sign convention is used for all fluxes. 
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Table 1.7-2 Summary of Notation for Momentum Fluxes 

Symbol Meaning Reference 

P W  Convective momentum-flux tensor Table 1.7-1 
T Viscous momentum-flux tensof Table 1.2-1 
a=pti+~ Molecular momentum-flux tensorb Table 1.2-1 
+ = a + p w  Combined momentum-flux tensor Eq. 1.7-2 

-- 

T o r  viscoelastic fluids (see Chapter 8), this should be called the viscoelastic 
momentum-flux tensor or the viscoelastic stress tensor. 

This may be referred to as the molecular stress tensor. 

QUESTIONS FOR DISCUSSION 

Compare Newton's law of viscosity and Hooke's law of elasticity. What is the origin of these 
"laws"? 
Verlfy that "momentum per unit area per unit time" has the same dimensions as "force per 
unit area." 
Compare and contrast the molecular and convective mechanisms for momentum trans- 
port. 
What are the physical meanings of the Lennard-Jones parameters and how can they be deter- 
mined from viscosity data? Is the determination unique? 
How do the viscosities of liquids and low-density gases depend on the temperature and pres- 
sure? 
The Lennard-Jones potential depends only on the intermolecular separation. For what kinds 
of molecules would you expect that this kind of potential would be inappropriate? 
Sketch the potential energy function p(r) for rigid, nonattracting spheres. 
Molecules differing only in their atomic isotopes have the same values of the Lennard-Jones 
potential parameters. Would you expect the viscosity of CD, to be larger or smaller than that 
of CH, at the same temperature and pressure? 
Fluid A has a viscosity twice that of fluid B; which fluid would you expect to flow more 
rapidly through a horizontal tube of length L and radius R when the same pressure difference 
is imposed? 
Draw a sketch of the intermolecular force F ( r )  obtained from the Lennard-Jones function 
for &). Also, determine the value of r,, in Fig. 1.4-2 in terms of the Lennard-Jones para- 
meters. 
What main ideas are used when one goes from Newton's law of viscosity in Eq. 1.1-2 to the 
generalization in Eq. 1.2-6? 
What reference works can be consulted to find out more about kinetic theory of gases and liq- 
uids, and also for obtaining useful empiricisms for calculating viscosity? 

PROBLEMS 

lA.l Estimation of dense-gas viscosity. Estimate the 1A.2 Estimation of the viscosity of methyl fluoride. Use 
viscosity of nitrogen at 68°F and 1000 psig by means of Fig. Fig. 1.3-1 to find the viscosity in Pa s of CH3F at 370°C and 
1.3-1, using the critical viscosity from Table E.1. Give the 120 atm. Use the following values1 for the critical con- 
result in units of lbm/ft . s. For the meaning of "psig," see stants: Tc = 4.55"C, p, = 58.0 atm, pc = 0.300 g/cm3. 
Table F.3-2. 
Answer: 1.4 X lbm/fte s K. A. Kobe and R. E. Lynn, Jr., Chem. Revs. 52,117-236 (19531, 

see p. 202. 
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1A.3 Computation of the viscosities of gases at low 
density. Predict the viscosities of molecular oxygen, nitro- 
gen, and methane at 20°C and atmospheric pressure, and 
express the results in mPa . s. Compare the results with ex- 
perimental data given in this chapter. 
Answers: 0.0202,0.0172,0.0107 mPa . s 

1A.4 Gas-mixture viscosities at low density. The fol- 
lowing data2 are available for the viscosities of mixtures of 
hydrogen and Freon-12 (dichlorodifluoromethane) at 25°C 
and 1 atm: 

MolefractionofH,: 0.00 0.25 0.50 0.75 1.00 
p X lo6 (poise): 124.0 128.1 131.9 135.1 88.4 

Use the viscosities of the pure components to calculate the 
viscosities at the three intermediate compositions by 
means of Eqs. 1.4-15 and 16. 
Sample answer: At 0.5, p = 0.01317 cp 

1A.5 Viscosities of chlorine-air mixtures at low den- 
sity. Predict the viscosities (in cp) of chlorine-air mixtures 
at 75°F and 1 atm, for the following mole fractions of chlo- 
rine: 0.00, 0.25, 0.50, 0.75, 1.00. Consider air as a single 
component and use Eqs. 1.4-14 to 16. 
Answers: 0.0183,0.0164,0.0150,0.0139,0.0130 cp 

1A.6 Estimation of liquid viscosity. Estimate the viscosity 
of saturated liquid water at O°C and at lOVC by means of 
(a) Eq. 1.5-9, with AU,, = 897.5 Btu/lb,,, at 100°C, and (b) 
Eq. 1.5-1 1. Compare the results with the values in Table 1 .l-2. 
Answer: (b) 4.0 cp, 0.95 cp 

1A.7 Molecular velocity and mean free path. Compute 
the mean molecular velocity ii (in cm/s) and the mean free 
path h (in cm) for oxygen at 1 atm and 273.2 K. A reason- 
able value for d is 3 A. What is the ratio of the mean free 
path to the molecular diameter under these conditions? 
What would be the order of magnitude of the correspond- 
ing ratio in the liquid state? 
Answers: ii = 4.25 X lo4 cm/s, h = 9.3 X lo-' cm 

lB.l Velocity profiles and the stress components qj. 
For each of the following velocity distributions, draw a 
meaningful sketch showing the flow pattern. Then find all 
the components of T and pvv for the Newtonian fluid. The 
parameter b is a constant. 
(a) v, = by, v, = 0, v, = 0 
(b) u, = by, u, = bx, v, = 0 
(c) v, = -by, v, = bx, v, = 0 
(d) v, = -$bx, v, = -+by, vZ = bz 

1B.2 A fluid in a state of rigid rotation. 
(a) Verify that the velocity distribution (c) in Problem lB.l 
describes a fluid in a state of pure rotation; that is, the fluid 

is rotating like a rigid body. What is the angular velocity of 
rotation? 
(b) For that flow pattern evaluate the symmetric and anti- 
symmetric combinations of velocity derivatives: 

(i) (dv,/dx) + (dv,/dy) 
(ii) (du,/dx) - (dv,/dy) 

(c) Discuss the results of (b) in connection with the devel- 
opment in s1.2. 

1B.3 Viscosity of suspensions. Data of Vand3 for sus- 
pensions of small glass spheres in aqueous glycerol solu- 
tions of ZnI, can be represented up to about q5 = 0.5 by the 
semiempirical expression 

Compare this result with Eq. 1.6-2. 
Answer: The Mooney equation gives a good fit of Vand's 
data if 4, is assigned the very reasonable value of 0.70. 

lC.l Some consequences of the Maxwell-Boltzmann 
distribution. In the simplified kmetic theory in s1.4, sev- 
eral statements concerning the equilibrium behavior of a 
gas were made without proof. In this problem and the 
next, some of these statements are shown to be exact 
consequences of the Maxwell-Boltzmann velocity distri- 
bution. 

The Maxwell-Boltzmann distribution of molecular ve- 
locities in an ideal gas at rest is 

f(u,, u,, u,) = n(rn/2n-~T)~'~ exp(-rnu2/2~T) (1C.1-1) 

in which u is the molecular velocity, n is the number 
density, and f(u,, u,, u,)du,du,du, is the number of mole- 
cules per unit volume that is expected to have velocities 
between u, and u, + du,, u, and u, + du,, u, and u, + du,. 
It follows from this equation that the distribution of the 
molecular speed u is 

f (u) = 4.rm~~(rn/2.rr~T)~'~ exp(-rnu2/2~T) (1C.1-2) 

(a) Verify Eq. 1.4-1 by obtaining the expression for the 
mean speed ii from 

- lom uf (u)du 
u =  r m  (lC.1-3) 

(b) Obtain the mean values of the velocity components &, 
- 
u,, and &. The first of these is obtained from 

r + m  r + 3 o  r + m  

What can one conclude from the results? 

J. W. Buddenberg and C. R. Wilke, Ind. Eng. Chem. 41, 
1345-1347 (1949). 

V .  Vand, J. Phys. Colloid Chem., 52,277-299,300-314, 
314-321 (1948). 
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(c) Obtain the mean kinetic energy per molecule by 

j f(u)du 
0 

The correct result is jrnz = :KT. 

1C.2 The wall collision frequency. It is desired to find 
the frequency Z with which the molecules in an ideal gas 
strike a unit area of a wall from one side only. The gas is at 
rest and at equilibrium with a temperature T and the num- 
ber density of the molecules is n. All molecules have a 
mass m. All molecules in the region x < 0 with u, > 0 will 
hit an area S in the yz-plane in a short time At  if they are in 
the volume Su,At. The number of wall collisions per unit 
area per unit time will be 

J - 3 0  J p m  J O  z = 
SAt 

Verify the above development. 

1C.3 Pressure of an ideal gas." It is desired to get the 
pressure exerted by an ideal gas on a wall by accounting 
for the rate of momentum transfer from the molecules to 
the wall. 
(a) When a molecule traveling with a velocity v collides 
with a wall, its incoming velocity components are u,, u,, u,, 
and after a specular reflection at the wall, its components 
are -u,, u,, u,. Thus the net momentum transmitted to the 
wall by a molecule is 2mux. The molecules that have an x- 
component of the velocity equal to u,, and that will collide 
with the wall during a small time interval At, must be 
within the volume Su,At. How many molecules with ve- 
locity components in the range from u,, uy, U, to u, + Au,, 
u, + Au,, u, + Au, will hit an area S of the wall with a ve- 
locity u, within a time interval At? It will be f(u,, u,, uJdu, 
du,/u, times Su,At. Then the pressure exerted on the wall 
by the gas will be 

1-y /o+m(~ux~t)(2mu,)f(uI. u,, u , ) d u ~ u ~ u ,  

P = S At 
(lC.3-1) 

Explain carefully how this expression is constructed. Ver- 
ify that this relation is dimensionally correct. 

(b) Insert Eq. lC.l-1 for the Maxwell-Boltzmann equilib- 
rium distribution into Eq. 1C.3-1 and perform the integra- 
tion. Verify that this procedure leads to p = ~ K T ,  the ideal 
gas law. 

lD.l Uniform rotation of a fluid. 
(a) Verify that the velocity distribution in a fluid in a state 
of pure rotation (i.e., rotating as a rigid body) is v = [w X 
rl, where w is the angular velocity (a constant) and r is the 
position vector, with components x, y, z. 

(b) What are Vv + (Vv)+ and (V v) for the flow field in (a)? 
(c) Interpret Eq. 1.2-7 in terms of the results in (b). 

1D.2 Force on a surface of arbitrary orientatiom5 (Fig. 
1D.2) Consider the material within an element of volume 
OABC that is in a state of equilibrium, so that the sum of 
the forces acting on the triangular faces AOBC, AOCA, 
AOAB, and AABC must be zero. Let the area of AABC be 
dS, and the force per unit area acting from the minus to the 
plus side of dS be the vector n,. Show that n, = [n nl. 

(a) Show that the area of AOBC is the same as the area of 
the projection AABC on the yz-plane; this is (n .6,)dS. Write 
similar expressions for the areas of AOCA and AOAB. 
(b) Show that according to Table 1.2-1 the force per unit 
area on AOBC is 6,.rr,, + 6 , ~ ~ ~  + 6 , ~ ~ ~ .  Write similar force 
expressions for AOCA and AOAB. 
(c) Show that the force balance for the volume element 
OABC gives 

m, = 2 2 (n . Si)(tijaij) = [n z z 6,S,?r,I (lD.2-1) 
i j i I 

in which the indices i, j take on the values x, y, z. The dou- 
ble sum in the last expression is the stress tensor n written 
as a sum of products of unit dyads and components. 

Fig. 1D.2 Element of volume OABC over which a force 
balance is made. The vector n, = [n . m] is the force per 
unit area exerted by the minus material (material inside 
OABC) on the plus material (material outside OABC). The 
vector n is the outwardly directed unit normal vector on 
face ABC. 

R. J. Silbey and R. A. Alberty, Physical Chemistry, Wiley, 
New York, 3rd edition (20011, pp. 639-640. 

M. Abraham and R. Becker, The Classical Theory of Electricity 
and Magnetism, Blackie and Sons, London (19521, pp. 4445. 



Chapter 2 

Shell Momentum Balances 
and Velocity Distributions 
in Laminar Flow 
92.1 Shell momentum balances and boundary conditions 

92.2 Flow of a falling film 

92.3 Flow through a circular tube 

92.4 Flow through an annulus 

92.5 Flow of two adjacent immiscible fluids 

92.6 Creeping flow around a sphere 

In this chapter we show how to obtain the velocity profiles for laminar flows of fluids in 
simple flow systems. These derivations make use of the definition of viscosity, the ex- 
pressions for the molecular and convective momentum fluxes, and the concept of a mo- 
mentum balance. Once the velocity profiles have been obtained, we can then get other 
quantities such as the maximum velocity, the average velocity, or the shear stress at a 
surface. Often it is these latter quantities that are of interest in engineering problems. 

In the first section we make a few general remarks about how to set up differential 
momentum balances. In the sections that follow we work out in detail several classical 
examples of viscous flow patterns. These examples should be thoroughly understood, 
since we shall have frequent occasions to refer to them in subsequent chapters. Although 
these problems are rather simple and involve idealized systems, they are nonetheless 
often used in solving practical problems. 

The systems studied in this chapter are so arranged that the reader is gradually in- 
troduced to a variety of factors that arise in the solution of viscous flow problems. In 52.2 
the falling film problem illustrates the role of gravity forces and the use of Cartesian co- 
ordinates; it also shows how to solve the problem when viscosity may be a function of 
position. In 52.3 the flow in a circular tube illustrates the role of pressure and gravity 
forces and the use of cylindrical coordinates; an approximate extension to compressible 
flow is given. In 52.4 the flow in a cylindrical annulus emphasizes the role played by the 
boundary conditions. Then in 52.5 the question of boundary conditions is pursued fur- 
ther in the discussion of the flow of two adjacent immiscible liquids. Finally, in 92.6 the 
flow around a sphere is discussed briefly to illustrate a problem in spherical coordinates 
and also to point out how both tangential and normal forces are handled. 

The methods and problems in this chapter apply only to steady flow. By "steady" we 
mean that the pressure, density, and velocity components at each point in the stream do 
not change with time. The general equations for unsteady flow are given in Chapter 3. 
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Fluid containing 

I I tiny particles 
Fig. 2.0-1 (a) Laminar flow, in which fluid 
layers move smoothly over one another in 
the direction of flow, and ( b )  turbulent 
flow, in which the flow pattern is complex 

Direction 
(a) O - L ~ )  of flow 

and time-dependent, with considerable 
motion perpendicular to the principal flow 
direction. 

This chapter is concerned only with laminar flow. "Laminar flow" is the orderly flow 
that is observed, for example, in tube flow at velocities sufficiently low that tiny particles 
injected into the tube move along in a thin line. This is in sharp contrast with the wildly 
chaotic "turbulent flow" at sufficiently high velocities that the particles are flung apart 
and dispersed throughout the entire cross section of the tube. Turbulent flow is the sub- 
ject of Chapter 5. The sketches in Fig. 2.0-1 illustrate the difference between the two flow 
regimes. 

2 . 1  SHELL MOMENTUM BALANCES AND BOUNDARY 
CONDITIONS 

The problems discussed in 52.2 through 52.5 are approached by setting up momentum 
balances over a thin "shell" of the fluid. For steady pow, the momentum balance is 

[te momentum of in ] - r of 1 + r of ] - [rate of 1 + 
momentum out momentum in momentum out force of gravity 

by convective by convective by molecular by molecular acting on system 
transport transport transport transport 

This is a restricted statement of the law of conservation of momentum. In this chapter we 
apply this statement only to one component of the momentum-namely, the component 
in the direction of flow. To write the momentum balance we need the expressions for the 
convective momentum fluxes given in Table 1.7-1 and the molecular momentum fluxes 
given in Table 1.2-1; keep in mind that the molecular momentum flux includes both the 
pressure and the viscous contributions. 

In this chapter the momentum balance is applied only to systems in which there is 
just one velocity component, which depends on only one spatial variable; in addition, 
the flow must be rectilinear. In the next chapter the momentum balance concept is ex- 
tended to unsteady-state systems with curvilinear motion and more than one velocity 
component. 

The procedure in this chapter for setting up and solving viscous flow problems is as 
follows: 

Identify the nonvanishing velocity component and the spatial variable on which it 
depends. 

Write a momentum balance of the form of Eq. 2.1-1 over a thin shell perpendicular 
to the relevant spatial variable. 

Let the thickness of the shell approach zero and make use of the definition of the first 
derivative to obtain the corresponding differential equation for the momentum flux. 
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Integrate this equation to get the momentum-flux distribution. 

Insert Newton's law of viscosity and obtain a differential equation for the velocity. 

Integrate this equation to get the velocity distribution. 

Use the velocity distribution to get other quantities, such as the maximum veloc- 
ity, average velocity, or force on solid surfaces. 

In the integrations mentioned above, several constants of integration appear, and these 
are evaluated by using "boundary conditionsu-that is, statements about the velocity or 
stress at the boundaries of the system. The most commonly used boundary conditions 
are as follows: 

a. At solid-fluid interfaces the fluid velocity equals the velocity with which the solid 
surface is moving; this statement is applied to both the tangential and the normal 
component of the velocity vector. The equality of the tangential components is 
referred to as the "no-slip condition.'' 

b. At a liquid-liquid interfacial plane of constant x, the tangential velocity compo- 
nents v, and v, are continuous through the interface (the "no-slip condition") as 
are also the molecular stress-tensor components p + T,,, rxy, and T,,. 

c. At a liquid-gas interfacial plane of constant x, the stress-tensor components T,, 

and T,, are taken to be zero, provided that the gas-side velocity gradient is not too 
large. This is reasonable, since the viscosities of gases are much less than those of 
liquids. 

In all of these boundary conditions it is presumed that there is no material passing 
through the interface; that is, there is no adsorption, absorption, dissolution, evapora- 
tion, melting, or chemical reaction at the surface between the two phases. Boundary con- 
ditions incorporating such phenomena appear in Problems 3C.5 and llC.6, and 518.1. 

In this section we have presented some guidelines for solving simple viscous flow 
problems. For some problems slight variations on these guidelines may prove to be 
appropriate. 

, 

92.2 FLOW OF A FALLING FILM 

The first example we discuss is that of the flow of a liquid down an inclined flat plate of 
length L and width W, as shown in Fig. 2.2-1. Such films have been studied in connection 
with wetted-wall towers, evaporation and gas-absorption experiments, and applications 
of coatings. We consider the viscosity and density of the fluid to be constant. 

A complete description of the liquid flow is difficult because of the disturbances at 
the edges of the system (z  = 0, z = L, y = 0, y = W). An adequate description can often be 

Entrance disturbance ,> 

Liquid FA- film Liquid in 

T 

I Keservoir 
Exit disturbance - 1 /A " 

-66 Ld 
f 

Direction of 
gravity 

Fig. 2.2-1 Schematic 
diagram of the falling 
film experiment, show- 
ing end effects. 
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obtained by neglecting such disturbances, particularly if W and L are large compared to 
the film thickness 6. For small flow rates we expect that the viscous forces will prevent 
continued acceleration of the liquid down the wall, so that v, will become independent 
of z in a short distance down the plate. Therefore it seems reasonable to postulate that 
v, = v,(x), v, = 0, and v, = 0, and further that p = p(x). From Table B.l it is seen that the 
only nonvanishing components of I are then T,, = T,, = -p(dv,/dx). 

We now select as the "system" a thin shell perpendicular to the x direction (see Fig. 
2.2-2). Then we set up a z-momentum balance over this shell, which is a region of thick- 
ness Ax, bounded by the planes z = 0 and z = L, and extending a distance Win the y di- 
rection. The various contributions to the momentum balance are then obtained with the 
help of the quantities in the "z-component" columns of Tables 1.2-1 and 1.7-1. By using 
the components of the "combined momentum-flux tensor" + defined in 1.7-1 to 3, we 
can include all the possible mechanisms for momentum transport at once: 

rate of z-momentum in 
across surface at z = O (WAX)+~~L=O 
rate of z-momentum out 
across surface at z = L (WAX)&I,=L 
rate of z-momentum in 
across surface at x (LW(+xz)Ix 
rate of z-momentum out 
across surface at x + Ax ( L W ( 4 ~ ~ ) I ~ + ~ ~  
gravity force acting 
on fluid in the z direction ( L  W Ax)(pg cos P) 
By using the quantities +,, and +,, we account for the z-momentum transport by all 
mechanisms, convective and molecular. Note that we take the "in" and "out" directions 
in the direction of the positive x- and z-axes (in this problem these happen to coincide 
with the directions of z-momentum transport). The notation I,,,, means "evaluated at 
x + Ax," and g is the gravitational acceleration. 

When these terms are substituted into the z-momentum balance of Eq. 2.1-1, we get 

, 
/ \ 

y =  W \ 
Direction of 

z = L  gravity 

Fig. 2.2-2 Shell of thickness Ax over which a z-momentum balance is made. Arrows show the 
momentum fluxes associated with the surfaces of the shell. Since v, and v, are both zero, pvxvz 
and pvp, are zero. Since v, does not depend on y and z, it follows from Table B.l that T,, = 0 
and T,, = 0. Therefore, the dashed-underlined fluxes do not need to be considered. Both p 
and pv,v, are the same at z = 0 and z = L, and therefore do not appear in the final equation 
for the balance of z-momentum, Eq. 2.2-10. 
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When this equation is divided by L W Ax, and the limit taken as Ax approaches zero, we 

get 

The first term on the left side is exactly the definition of the derivative of 4,: with respect 
to x. Therefore Eq. 2.2-7 becomes 

At this point we have to write out explicitly what the components +,, and 4,: are, mak- 
ing use of the definition of + in Eqs. 1.7-1 to 3 and the expressions for rxz and T,, in Ap- 
pendix B.1. This ensures that we do not miss out on any of the forms of momentum 
transport. Hence we get 

In accordance with the postulates that v, = v,(x), v, = 0, v, = 0, and p = p(x), we see that 
(i) since v, = 0, the pup, term in Eq. 2.2-9a is zero; (ii) since v, = v,(x), the term 
-2,u(dv,/dz) in Eq. 2.2-9b is zero; (iii) since v, = v,(x), the term pv,v, is the same at z = 0 
and z = L; and (iv) since p = p(x), the contribution p is the same at z = 0 and z = L. Hence 
T,, depends only on x, and Eq. 2.2-8 simplifies to 

I I 1 %  = pg cos p 

This is the differential equation for the momentum flux T,,. It may be integrated to give 

The constant of integration may be-evaluated by using the boundary condition at the 
gas-liquid interface (see 52.1): 

B.C. 1: a tx=O,  r,,=O (2.2-12) 

Substitution of this boundary condition into Eq. 2.2-11 shows that C, = 0. Therefore the 
momentum-flux distribution is 

as shown in Fig. 2.2-3. 
Next we substitute Newton's law of viscosity 

into the left side of Eq. 2.2-13 to obtain 

which is the differential equation for the velocity distribution. It can be integrated to 
give 
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Momentum 

Fig. 2.2-3 Final results for the falling film problem, 
showing the momentum-flux distribution and the 
velocity distribution. The shell of thickness Ax, over 

\ which the momentum balance was made, is also shown. 

The constant of integration is evaluated by using the no-slip boundary condition at the 
solid surface: 

B.C. 2 at x = 6, v, = 0 (2.2-17) 

Substitution of this boundary condition into Eq. 2.2-16 shows that C2 = (pg cos P / 2 4 a 2 .  
Consequently, the velocity distribution is 

I I 

This parabolic velocity distribution is shown in Fig. 2.2-3. It is consistent with the postu- 
lates made initially and must therefore be a possible solution. Other solutions might be 
possible, and experiments are normally required to tell whether other flow patterns can 
actually arise. We return to this point after Eq. 2.2-23. 

Once the velocity distribution is known, a number of quantities can be calculated: 

(i) The maximum velocity vZ,,,, is clearly the velocity at x = 0; that is, 

(ii) The average velocity (v,) over a cross section of the film is obtained as follows: 
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The double integral in the denominator of the first line is the cross-sectional area of the 
film. The double integral in the numerator is the volume flow rate through a differential 
element of the cross section, v,dx dy ,  integrated over the entire cross section. 

(iii) The mass rate of flow w is obtained from the average velocity or by integration of 
the velocity distribution 

p2g ws3 cos p 
w = low IO8 pv,dxdy = pWS(v,) = 

3~ 

(iv) The film thickness S may be given in terms of the average 
rate of flow as follows: 

(2.2-21) 

velocity or the mass 

(v) The force per unit area in the z direction on a surface element perpendicular 
to the x direction is +T,, evaluated at x = 6. This is the force exerted by the fluid (re- 
gion of lesser x)  on the wall (region of greater x) .  The z-component of the force F of the 
fluid on the solid surface is obtained by integrating the shear stress over the fluid-solid 
interface: 

This is the z-component of the weight of the fluid in the entire film-as we would have 
expected. 

Experimental observations of falling films show that there are actually three "flow 
regimes," and that these may be classified according to the Reynolds number,' Re, for the 
flow. For falling films the Reynolds number is defined by Re = 4S(vz)p/p. The three flow 
regime are then: 

laminar flow with negligible rippling Re < 20 
laminar flow with pronounced rippling 20 < Re < 1500 
turbulent flow Re > 1500 

The analysis we have given above is valid only for the first regime, since the analysis 
was restricted by the postulates made at the outset. Ripples appear on the surface of the 
fluid at all Reynolds numbers. For Reynolds numbers less than about 20, the ripples are 
very long and grow rather slowly as they travel down the surface of the liquid; as a re- 
sult the formulas derived above are useful up to about Re = 20 for plates of moderate 
length. Above that value of Re, the ripple growth increases very rapidly, although the 
flow remains laminar. At about Re = 1500 the flow becomes irregular and chaotic, and 
the flow is said to be t~rbulen t .~ ,~  At this point it is not clear why the value of the 

'This dimensionless group is named for Osbome ~ e ~ n b l d s  (1842-19121, professor of engineering at 
the University of Manchester. He studied the laminar-turbulent transition, turbulent heat transfer, and 
theory of lubrication. We shall see in the next chapter that the Reynolds number is the ratio of the inertial 
forces to the viscous forces. 

G. D. Fulford, Adv. Chem. Engr., 5,151-236 (1964); S. Whitaker, Ind. Eng. Chem. Fund., 3,132-142 
(1964); V.  G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J. (1962), s135. 

H.-C. Chang, Ann. Rev. Fluid Mech., 26,103-136 (1994); S.-H. Hwang and H.-C. Chang, Phys. Fluids, 
30,1259-1268 (1987). 
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Reynolds number should be used to delineate the flow regimes. We shall have more to 
say about this in g3.7. 

This discussion illustrates a very important point: theoretical analysis of flow sys- 
tems is limited by the postulates that are made in setting u p  the problem. It is absolutely 
necessary to do experiments in order to establish the flow regimes so as to know when 
instabilities (spontaneous oscillations) occur and when the flow becomes turbulent. 
Some information about the onset of instability and the demarcation of the flow regimes 
can be obtained by theoretical analysis, but this is an extraordinarily difficult subject. 
This is a result of the inherent nonlinear nature of the governing equations of fluid dy- 
namics, as will be explained in Chapter 3. Suffice it to say at this point that experiments 
play a very important role in the field of fluid dynamics. 

An oil has a kinematic viscosity of 2 X m2/s and a density of 0.8 X 10%g/m3. If we want 
to have a falling film of thickness of 2.5 mm on a vertical wall, what should the mass rate of 

CalCulation of Film flow the liquid be? 
Velocity 

SOLUTION 

According to Eq. 2.2-21, the mass rate of flow in kg/s is 

To get the mass rate of flow one then needs to insert a value for the width of the wall in 
meters. This is the desired result provided that the flow is laminar and nonrippling. To 
determine the flow regime we calculate the Reynolds number, making use of Eqs. 2.2-21 
and 24 

This Reynolds number is sufficiently low that rippling will not be pronounced, and therefore 
the expression for the mass rate of flow in Eq. 2.2-24 is reasonable. 

Rework the falling film problem for a position-dependent viscosity p = which arises 
when the film is nonisothermal, as in the condensation of a vapor on a wall. Here po is the vis- 

Falling Film with cosity at the surface of the film and a is a constant that describes how rapidly p decreases as x 
Variable Viscosity increases. Such a variation could arise in the flow of a condensate down a wall with a linear 

temperature gradient through the film. 

SOLUTION The development proceeds as before up to Eq. 2.2-13. Then substituting Newton's law with 
variable viscosity into Eq. 2.2-13 gives 

This equation can be integrated, and using the boundary conditions in Eq. 2.2-17 enables us to 
evaluate the integration constant. The velocity profile is then 

As a check we evaluate the velocity distribution for the constant-viscosity problem (that is, 
when a is zero). However, setting a = 0 gives GO - in the two expressions within parentheses. 
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This difficulty can be overcome if we expand the two exponentials in Taylor series (see §C.2), 
as follows: 

- - pgs2 cos p .-[(-+-a+ 1 1  . . a ) - (  L ~ - I I ' , +  
Po 0-0 2 3 282 383 . . .)I 

which is in agreement with Eq. 2.2-18. 
From Eq. 2.2-27 it may be shown that the average velocity is 

pgs2 cos p 
(vz> = Po [.(A - -$ + 4) - 21 

The reader may verify that this result simplifies to Eq. 2.2-20 when a goes to zero. 

s2.3 FLOW THROUGH A CIRCULAR TUBE 

The flow of fluids in circular tubes is encountered frequently in physics, chemistry, biol- 
ogy, and engineering. The laminar flow of fluids in circular tubes may be analyzed by 
means of the momentum balance described in 52.1. The only new feature introduced 
here is the use of cylindrical coordinates, which are the natural coordinates for describ- 
ing positions in a pipe of circular cross section. 

We consider then the steady-state, laminar flow of a fluid of constant density p and 
viscosity p in a vertical tube of length L and radius R. The liquid flows downward under 
the influence of a pressure difference and gravity; the coordinate system is that shown in 
Fig. 2.3-1. We specify that the tube length be very large with respect to the tube radius, 
so that "end effects" will be unimportant throughout most of the tube; that is, we can ig- 
nore the fact that at the tube entrance and exit the flow will not necessarily be parallel to 
the tube wall. 

We postulate that v, = v,(r), vr = 0, v, = 0, and p = p(z). With these postulates it may 
be seen from Table B.l that the only nonvanishing components of 7 are rrz = rZr = 

-p(dv,/dr). 
We select as our system a cylindrical shell of thickness Ar and length L and we begin 

by listing the various contributions to the z-momentum balance: 

rate of z-momentum in (2~Ar)(#41z=0 (2.3-1) 
across annular surface at z = 0 

rate of z-momentum out (2~rAr)($,,)J,=~ (2.3-2) 
across annular surface at z = L 
rate of z-momentum in (2d)($,)(, = (2flL$,)(, (2.3-3) 
across cylindrical surface at r 

rate of 2-momentum out (2dr  + Ar)L)(+J/r+Ar = (2mL$J/r+Ar (2.3-4) 
across cylindrical surface at r + Ar 

gravity force acting in (2wArL)pg (2.3-5) 
z direction on cylindrical shell 
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4zz),=o =flux 
of z-momentum 

of z-momentum 
outa tz=L 

Fig. 2.3-1 Cylindrical shell of fluid 
over which the z-momentum bal- 
ance is made for axial flow in a cir- 
cular tube (see Eqs. 2.3-1 to 5). The 
z-momentum fluxes 4,  and +,, are 
given in full in Eqs. 2.3-9a and 9b. 

4rzI r + A r  = flux 
of z-momentum 

out at r + Ar 

+ Tube wall 

The quantities +,, and +,, account for the momentum transport by all possible mecha- 
nisms, convective and molecular. In Eq. 2.3-4, (Y + Ar) and (r)l,+,, are two ways of writ- 
ing the same thing. Note that we take "in" and "out" to be in the positive directions of 
the Y- and z-axes. 

We now add up the contributions to the momentum balance: 

When we divide Eq. (2.3-8) by 2.irLAr and take the limit as Ar + 0, we get 

The expression on the left side is the definition of the first derivative of r4,, with respect 
to r. Hence Eq. 2.3-7 may be written as 

Now we have to evaluate the components 4, and +,, from Eq. 1.7-1 and Appendix B.l: 

Next we take into account the postulates made at the beginning of the problem-namely, 
that vz = v,(r), V, = 0, vg = 0, and p = p(z). Then we make the following simplifications: 
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(i) because v, = 0, we can drop the term pqv, in Eq. 2.3-9a; (ii) because v, = v,(r), the term 
pvzvz  will be the same at both ends of the tube; and (iii) because vZ = vZ(r), the term 
-2pdv,/dz will be the same at both ends of the tube. Hence Eq. 2.3-8 simplifies to 

in which 9 = p - p g z  is a convenient abbreviation for the sum of the pressure and gravi- 
tational terms.' Equation 2.3-10 may be integrated to give 

The constant C1 is evaluated by using the boundary condition 

B.C. 1: at r = 0, T , ~  = finite (2.3-12) 

Consequently C1 must be zero, for otherwise the momentum flux would be infinite at the 
axis of the tube. Therefore the momentum flux distribution is 

1 

This distribution is shown in Fig. 2.3-2. 
Newton's law of viscosity for this situation is obtained from Appendix B.2 as 

follows: 

Substitution of this expression into Eq. 2.3-13 then gives the following differential equa- 
tion for the velocity: 

Parabolic velocity 
distribution uz(r) 

Linear momentum- 
flux distribution 

~,,(r) Fig. 2.3-2 The momentum-flux 
distribution and velocity distribu- 

I tion for the downward flow in a 
circular tube. 

' The quantity designated by 9 is called the modified pressure. In general it is defined by 9 = p + pgh, 
where h is the distance "upwardv-that is, in the direction opposed to gravity from some preselected 
reference plane. Hence in this problem h = -z. 
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This first-order separable differential equation may be integrated to give 

The constant C2 is evaluated from the boundary condition 

B.C. 2: at r = R, v, = 0 

From this C, is found to be (Yo - 9 , ) ~ ~ / 4 p L .  Hence the velocity distribution is 

We see that the velocity distribution for laminar, incompressible flow of a Newtonian 
fluid in a long tube is parabolic (see Fig. 2.3-2). 

Once the velocity profile has been established, various derived quantities can be 
obtained: 

(i) 

(ii) 

(iii) 

(iv) 

The maximum velocity v,,,,, occurs at r = 0 and is 

The average velocity (v,) is obtained by dividing the total volumetric flow rate by 
the cross-sectional area 

The mass rate of flow w is the product of the cross-sectional area ,rrR2, the density 
p, and the average velocity (v,) 

This rather famous result is called the Hagen-~oiseuille~ equation. It is used, along 
with experimental data for the rate of flow and the modified pressure difference, 
to determine the viscosity of fluids (see Example 2.3-1) in a "capillary viscometer." 

The z-component of the force, F,, of the fluid on the wetted surface of the pipe is 
just the shear stress 7,, integrated over the wetted area 

This result states that the viscous force F, is counterbalanced by the net pres- 
sure force and the gravitational force. This is exactly what one would obtain 
from making a force balance over the fluid in the tube. 

G. Hagen, Ann. Phys. Chern., 46,423442 (1839); J. L. Poiseuille, Comptes Rendus, 11,961 and 1041 
(1841). Jean Louis Poiseuille (1799-1869) (pronounced "Pwa-zd-yuh," with d is roughly the "00" in 
book) was a physician interested in the flow of blood. Although Hagen and Poiseuille established the 
dependence of the flow rate on the fourth power of the tube radius, Eq. 2.3-21 was first derived by E. 
Hagenbach, Pogg. Annalen der Physik u. Chemie, 108,385-426 (1860). 
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The results of this section are only as good as the postulates introduced at the begin- 
ning of the section-namely, that v, = v,(r) and p = p(z). Experiments have shown that 
these postulates are in fact realized for Reynolds numbers up to about 2100; above that 
value, the flow will be turbulent if there are any appreciable disturbances in the sys- 
tem-that is, wall roughness or  vibration^.^ For circular tubes the Reynolds number is 
defined by Re = D ( V , ) ~ / ~ ,  where D = 2R is the tube diameter. 

We now summarize all the assumptions that were made in obtaining the Hagen- 
Poiseuille equation. 

(a) The flow is laminar; that is, Re must be less than about 2100. 

(b) The density is constant ("incompressible flow"). 
(c) The flow is "steady" (i.e., it does not change with time). 
(d) The fluid is Newtonian (Eq. 2.3-14 is valid). 

(e )  End effects are neglected. Actually an "entrance length," after the tube entrance, 
of the order of L, = 0.035D Re, is needed for the buildup to the parabolic profile. 
If the section of pipe of interest includes the entrance region, a correction must 
be a ~ p l i e d . ~  The fractional correction in the pressure difference or mass rate of 
flow never exceeds L,/L if L > L,. 

(f) The fluid behaves as a continuum-this assumption is valid, except for very di- 
lute gases or very narrow capillary tubes, in which the molecular mean free path 
is comparable to the tube diameter (the "slip flow region") or much greater than 
the tube diameter (the "Knudsen flow" or "free molecule flow" regime).5 

(g) There is no slip at the wall, so that B.C. 2 is valid; this is an excellent assumption 
for pure fluids under the conditions assumed in (0. See Problem 2B.9 for a dis- 
cussion of wall slip. 

Glycerine (CH20H . CHOH . CH20H) at 26.5"C is flowing through a horizontal tube 1 ft long 
and with 0.1 in. inside diameter. For a pressure drop of 40 psi, the volume flow rate w / p  is 

Determination of 0.00398 ft3/min. The density of glycerine at 26.5"C is 1.261 g/cm3. From the flow data, find the 
Viscosity from viscosity of glycerine in centipoises and in Pa. s. 
Capillary Flow Data 

SOLUTION 

From the Hagen-Poiseuille equation (Eq. 2.3-211, we find 

dyn/cm2)(0.05 in. X 
Ibf/in.2 12 in. 

ft3 1 min 0.00398 - X - --- 
min 60 s 

A. A. Draad [Doctoral Dissertation, Technical University of Delft (199611 in a carefully controlled 
experiment, attained laminar flow up to Re = 60,000. He also studied the nonparabolic velocity profile 
induced by the earth's rotation (through the Coriolis effect). See also A. A. Draad and F. T. M. 
Nieuwstadt, J. Fluid. Mech., 361,207-308 (1998). 

9. H. Perry, Chemical Engineers Handbook, McGraw-Hill, New York, 3rd edition (1950), pp. 38S389; 
W. M. Kays and A. L. London, Compact Heat Exchangers, McGraw-Hill, New York (19581, p. 49. 

Martin Hans Christian Knudsen (1871-19491, professor of physics at the University of 
Copenhagen, did key experiments on the behavior of very dilute gases. The lectures he gave at the 
University of Glasgow were published as M. Knudsen, The Kinetic Theory of Gases, Methuen, London 
(1934); G. N. Patterson, Molecular Flow of Gases, Wiley, New York (1956). See also J. H. Ferziger and H. G. 
Kaper, Mathematical Theory of Transport Processes in Gases, North-Holland, Amsterdam (19721, Chapter 15. 
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EXAMPLE 23-2 

Compressible Flow in 
a Horizontal Circular 
lkbe6 

To check whether the flow is laminar, we calculate the Reynolds number 

4(0.00398 -.)(2.54 min ? in. X 12 ~ ~ ( ' ~ ' 1 " ) ( 1 . 2 6 1  ft 6 0 s  cm3 

in. 
= 2.41 (dimensionless) (2.3-24) 

Hence the flow is indeed laminar. Furthermore, the entrance length is 

L, = 0.035D Re = (0.035)(0.1/12)(2.41) = 0.0007 ft 

Hence, entrance effects are not important, and the viscosity value given above has been calcu- 
lated properly. 

Obtain an expression for the mass rate of flow w for an ideal gas in laminar flow in a long cir- 
cular tube. The flow is presumed to be isothermal. Assume that the pressure change through 
the tube is not very large, so that the viscosity can be regarded a constant throughout. 

SOLUTION 

This problem can be solved approximately by assuming that the Hagen-Poiseuille equation 
(Eq. 2.3-21) can be applied over a small length dz of the tube as follows: 

To eliminate p in favor of p, we use the ideal gas law in the form plp = po/po, where po and po 
are the pressure and density at z = 0. This gives 

The mass rate of flow w is the same for all z. Hence Eq. 2.3-27 can be integrated from z = 0 to 
z = L to give 

where pa,, = + pL) is the average density calculated at the average pressure pa,, = 
1 
2@0 + P L ) .  

52.4 FLOW THROUGH AN ANNULUS 

We now solve another viscous flow problem in cylindrical coordinates, namely the 
steady-state axial flow of an incompressible liquid in an annular region between two 
coaxial cylinders of radii KR and R as shown in Fig. 2.4-1. The fluid is flowing upward in 

L. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, 2nd edition (1987), 917, Problem 6. A 
perturbation solution of this problem was obtained by R. K. Prud'homme, T. W. Chapman, and J. R. 
Bowen, Appl. Sci. Res, 43,67-74 (1986). 
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Fig. 2.4-1 The momentum-flux distribution 
and velocity distribution for the upward 
flow in a cylindrical annulus. Note that the 
momentum flux changes sign at the same 
value of r for which the velocity has a 

Velocity 
distribution maximum. 

Shear stress 
or momentum- 
flux distribution 

the t u b e t h a t  is, in the direction opposed to gravity. We make the same postulates as in 
52.3: v, = v,(r), v, = 0, v, = 0, and p = p(z). Then when we make a momentum balance 
over a thin cylindrical shell of liquid, we arrive at the following differential equation: 

This differs from Eq. 2.3-10 only in that 9 = p + pgz here, since the coordinate z is in the 
direction opposed to gravity (i.e., z is the same as the h of footnote 1 in 52.3). Integration 
of Eq. 2.4-1 gives 

just as in Eq. 2.3-1 1. 
The constant C, cannot be determined immediately, since we have no information 

about the momentum flux at the fixed surfaces r = KR and r = R. All we know is that 
there will be a maximum in the velocity curve at some (as yet unknown) plane r = AR at 
which the momentum flux will be zero. That is, 

When we solve this equation for C, and substitute it into Eq. 2.4-2, we get 

The only difference between this equation and Eq. 2.4-2 is that the constant of integration 
C, has been eliminated in favor of a different constant A. The advantage of this is that we 
know the geometrical significance of A. 

We now substitute Newton's law of viscosity, T,, = -p(dv,/dr), into Eq. 2.4-4 to ob- 
tain a differential equation for v, 
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Integration of this first-order separable differential equation then gives 

We now evaluate the two constants of integration, A and C,, by using the no-slip condi- 
tion on each solid boundary: 

B.C. 1: 

B.C. 2: 

Substitution of these boundary conditions into Eq. 2.4-6 then gives two simultaneous 
equations: 

o = K ~ - u ~ I ~ K + c ~ ;  O = 1  +C2 (2.4-9, 10) 

From these the two integration constants A and C2 are found to be 

These expressions can be inserted into Eqs. 2.4-4 and 2.4-6 to give the momentum-flux 
distribution and the velocity distribution' as follows: 

Note that when the annulus becomes very thin (i.e., K only slightly less than unity), these 
results simplify to those for a plane slit (see Problem 2B.5). It is always a good idea to 
check "limiting cases" such as these whenever the opportunity presents itself. 

The lower limit of K + 0 is not so simple, because the ratio ln(R/r)/ln(l/~) will al- 
ways be important in a region close to the inner boundary. Hence Eq. 2.4-14 does not 
simplify to the parabolic distribution. However, Eq. 2.4-17 for the mass rate of flow does 
simplify to the Hagen-Poiseuille equation. 

Once we have the momentum-flux and velocity distributions, it is straightforward 
to get other results of interest: 

(i) The maximum velocity is 

where h2 is given in Eq. 2.4-12. 

(ii) The average velocity is given by 

(iii) The mass rate offlow is w = ~ " ~ ( 1  - K~)~(V,) ,  or 

H. Lamb, Hydrodynamics, Cambridge University Press, 2nd edition (1895), p. 522. 
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(iv) The force exerted by the fluid on  the solid surfaces is obtained by summing the 
forces acting on the inner and outer cylinders, as follows: 

The reader should explain the choice of signs in front of the shear stresses above and also 
give an interpretation of the final result. 

The equations derived above are valid only for laminar flow. The laminar-turbulent 
transition occurs in the neighborhood of Re = 2000, with the Reynolds number defined 
as Re = 2R(1 - ~) (v , )p /p .  

52.5 FLOW OF TWO ADJACENT IMMISCIBLE FLUIDS' 

Thus far we have considered flow situations with solid-fluid and liquid-gas boundaries. 
We now give one example of a flow problem with a liquid-liquid interface (see Fig. 2.5-1). 

Two immiscible, incompressible liquids are flowing in the z direction in a horizontal 
thin slit of length L and width W under the influence of a horizontal pressure gradient 
(po - p,)/L. The fluid flow rates are adjusted so that the slit is half filled with fluid I (the 
more dense phase) and half filled with fluid I1 (the less dense phase). The fluids are flow- 
ing sufficiently slowly that no instabilities occur-that is, that the interface remains ex- 
actly planar. It is desired to find the momentum-flux and velocity distributions. 

A differential momentum balance leads to the following differential equation for the 
momentum flux: 

This equation is obtained for both phase I and phase 11. Integration of Eq. 2.5-1 for the 
two regions gives 

Velocity 
distribution, 

Plane of zero shear stress - - - - - - - 

Shear stress 
or momentum- 
flux distribution 

Fig. 2.5-1 Flow of two immiscible fluids between a pair of horizontal plates under 
the influence of a pressure gradient. 

The adjacent flow of gases and liquids in conduits has been reviewed by A. E. Dukler and M. 
Wicks, 111, in Chapter 8 of Modern Chemical Engineering, Vol. 1, "Physical Operations," A. Acrivos (ed.), 
Reinhold, New York (1963). 
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We may immediately make use of one of the boundary conditions-namely, that the 
momentum flux T,, is continuous through the fluid-fluid interface: 

B.C. 1: at x = 0, 7', = ez (2.5-4) 

This tells us that C: = Cil; hence we drop the superscript and call both integration con- 
stants C,. 

When Newton's law of viscosity is substituted into Eqs. 2.5-2 and 2.5-3, we get 

These two equations can be integrated to give 

The three integration constants can be determined from the following no-slip boundary 
conditions: 

B.C. 2: a tx  = 0, v! = .i' (2.5-9) 

B.C. 3: atx = -b, v; = 0 (2.5-10) 

B.C. 4: atx = +b, v! = 0 (2.5-11) 

When these three boundary conditions are applied, we get three simultaneous equations 
for the integration constants: 

from B.C. 2: C: = C; (2.5-12) 

from B.C. 3: 

from B.C. 4: 

From these three equations we get 

The resulting momentum-flux and velocity profiles are 

I - = 'pa ;pJb [((X - ( )] ( (2.5-17) 
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These distributions are shown in Fig. 2.5-1. If both viscosities are the same, then the ve- 
locity distribution is parabolic, as one would expect for a pure fluid flowing between 
parallel plates (see Eq. 2B.3-2). 

The average velocity in each layer can be obtained and the results are 

From the velocity and momentum-flux distributions given above, one can also calculate 
the maximum velocity, the velocity at the interface, the plane of zero shear stress, and 
the drag on the walls of the slit. 

52.6 CREEPING FLOW AROUND A  SPHERE^^^^^^^ 
In the preceding sections several elementary viscous flow problems have been solved. 
These have all dealt with rectilinear flows with only one nonvanishing velocity compo- 
nent. Since the flow around a sphere involves two nonvanishing velocity components, v, 
and v,, it cannot be conveniently understood by the techniques explained at the begin- 
ning of this chapter. Nonetheless, a brief discussion of flow around a sphere is warranted 
here because of the importance of flow around submerged objects. In Chapter 4 we show 
how to obtain the velocity and pressure distributions. Here we only cite the results and 
show how they can be used to derive some important relations that we need in later dis- 
cussions. The problem treated here, and also in Chapter 4, is concerned with "creeping 
flowu-that is, very slow flow. This type of flow is also referred to as "Stokes flow." 

We consider here the flow of an incompressible fluid about a solid sphere of radius 
R and diameter D as shown in Fig. 2.6-1. The fluid, with density p and viscosity p, ap- 

Radius of sphere = R ' t 
At every point there are 
pressure and friction 
forces acting on the 

Fluid approaches 
from below with 
velocity v, I 

Point in space 
(x ,  y, z) or 
(r, 0 , 4 )  

Projection 
of point on 
xy-plane Fig. 2.6-1 Sphere of radius R 

around which a fluid is flow- 
ing. The coordinates r, 8, and 4 
are shown. For more informa- 
tion on spherical coordinates, 
see Fig. A.8-2. 

G. G. Stokes, Trans. Cambridge Phil. Soc., 9,8-106 (1851). For creeping flow around an object of 
arbitrary shape, see H. Brenner, Chem. Engr. Sci., 19,703-727 (1964). 

L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd edition, Pergamon, London (1987), §20. 
G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press (1967), s4.9. 
S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications, Butterworth- 

Heinemann, Boston (1991), s4.2.3; this book contains a thorough discussion of "creeping flow" problems. 
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proaches the fixed sphere vertically upward in the z direction with a uniform velocity v,. 
For this problem, "creeping flow" means that the Reynolds number Re = Dv,p/p is less 
than about 0.1. This flow regime is characterized by the absence of eddy formation 
downstream from the sphere. 

The velocity and pressure distributions for this creeping flow are found in Chapter 4 
to be 

I 1 

vB =..[-I + t(:) ++(:I sin, 

p = p a  - pgz 
2 R 

cos 8 

In the last equation the quantity pa is the pressure in the plane z = 0 far away from the 
sphere. The term -pgz is the hydrostatic pressure resulting from the weight of the fluid, 
and the term containing v ,  is the contribution of the fluid motion. Equations 2.6-1,2, and 
3 show that the fluid velocity is zero at the surface of the sphere. Furthermore, in the 
limit as r + a, the fluid velocity is in the z direction with uniform magnitude v,; this fol- 
lows from the fact that v, = v, cos 8 - v, sin 8, which can be derived by using Eq. A.6-33, 
and v, = vy = 0, which follows from Eqs. A.6-31 and 32. 

The components of the stress tensor T in spherical coordinates may be obtained from 
the velocity distribution above by using Table B.1. They are 

- rrB - TBr = - - p v m ( ~ ) I  sin B 
2 R  7 

and all other components are zero. Note that the normal stressks for this flow are 
nonzero, except at r = R. 

Let us now determine the force exerted by the flowing fluid on the sphere. Because 
of the symmetry around the z-axis, the resultant force will be in the z direction. There- 
fore the force can be obtained by integrating the z-components of the normal and tan- 
gential forces over the sphere surface. 

Integration of the Normal Force 

At each point on the surface of the sphere the fluid exerts a force per unit area - ( p  + 
T, , )[ ,=~ on the solid, acting normal to the surface. Since the fluid is in the region of 
greater r and the sphere in the region of lesser r, we have to affix a minus sign in 
accordance with the sign convention established in 51.2. The z-component of the force 
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is - ( p  + T,,)(,,~(cos 0). We now multiply this by a differential element of surface 
R2 sin 0 d0 d+ to get the force on the surface element (see Fig. A.8-2). Then we inte- 
grate over the surface of the sphere to get the resultant normal force in the z direction: 

According to Eq. 2.6-5, the normal stress r, is zero5 at r = R and can be omitted in the in- 
tegral in Eq. 2.6-7. The pressure distribution at the surface of the sphere is, according to 
Eq. 2.6-4, 

3 PVw plr=R = po - pgR cos 8 - - - cos 0 
2 R 

(2.6-8) 

When this is substituted into Eq. 2.6-7 and the integration performed, the term contain- 
ing p0 gives zero, the term containing the gravitational acceleration g gives the buoyant 
force, and the term containing the approach velocity v, gives the "form drag" as shown 
below: 

F'"' = $ d 3 p g  + 2~,uRv, (2.6-9) 

The buoyant force is the mass of displaced fluid ( ~ T R ~ ~ )  times the gravitational accelera- 
tion (g). 

Integration of the Tangential Force 

At each point on the solid surface there is also a shear stress acting tangentially. The 
force per unit area exerted in the -0 direction by the fluid (region of greater r) on the 
solid (region of lesser r) is +rY8~,=,. The 2-component of this force per unit area is (T,&~) 
sin 0. We now multiply this by the surface element R2 sin 0 d0d+ and integrate over the 
entire spherical surface. This gives the resultant force in the z direction: 

The shear stress distribution on the sphere surface, from Eq. 2.6-6, is 

Substitution of this expression into the integral in Eq. 2.6-10 gives the "friction drag" 

Hence the total force F of the fluid on the sphere is given by the sum of Eqs. 2.6-9 and 
2.6-12: 

F = $ T R ~ ~ ~  + 2~,uRv, + ~ T ~ R v ,  
buoyant form friction 

force drag drag 

F = F,  + F, = $rR3pg + 6r,uRv, 
buoyant kinetic 

force force 

-- 

In Example 3.1-1 we show that, for incompressible, Newtonian fluids, all three of the normal 
stresses are zero at fixed solid surfaces in all flows. 
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The first term is the buoyant force, which would be present in a fluid at rest; it is the mass 
of the displaced fluid multiplied by the gravitational acceleration. The second term, the 
kinetic force, results from the motion of the fluid. The relation 

is known as Stokes' law.' It is used in describing the motion of colloidal particles under an 
electric field, in the theory of sedimentation, and in the study of the motion of aerosol 
particles. Stokes' law is useful only up to a Reynolds number Re = Dv,p/p of about 0.1. 
At Re = 1, Stokes' law predicts a force that is about 10% too low. The flow behavior for 
larger Reynolds numbers is discussed in Chapter 6. 

This problem, which could not be solved by the shell balance method, emphasizes 
the need for a more general method for coping with flow problems in which the stream- 
lines are not rectilinear. That is the subject of the following chapter. 

Derive a relation that enables one to get the viscosity of a fluid by measuring the terminal ve- 
locity v, of a small sphere of radius R in the fluid. 

Determination of 
Viscosity from the SOLUTION 
Terminal Velocity 
, fa  Falling Sphere If a small sphere is allowed to fall from rest in a viscous fluid, it will accelerate until it reaches 

a constant velocity-the terminal velocity. When this steady-state condition has been reached 
the sum of all the forces acting on the sphere must be zero. The force of gravity on the solid 
acts in the direction of fall, and the buoyant and kinetic forces act in the opposite direction: 

Here p, and p are the densities of the solid sphere and the fluid. Solving this equation for the 
terminal velocity gives 

This result may be used only if the Reynolds number is less than about 0.1. 
This experiment provides an apparently simple method for determining viscosity. How- 

ever, it is difficult to keep a homogeneous sphere from rotating during its descent, and if it 
does rotate, then Eq. 2.6-17 cannot be used. Sometimes weighted spheres are used in order to 
preclude rotation; then the left side of Eq. 2.6-16 has to be replaced by m, the mass of the 
sphere, times the gravitational acceleration. 

QUESTIONS FOR DISCUSSION 

1. Summarize the procedure used in the solution of viscous flow by the shell balance 
method. What kinds of problems can and cannot be solved by this method? How is the defin- 
ition of the first derivative used in the method? 

2. Which of the flow systems in this chapter can be used as a viscometer? List the difficulties 
that might be encountered in each. 

3. How are the Reynolds numbers defined for films, tubes, and spheres? What are the dimen- 
sions of Re? 

4. How can one modify the film thickness formula in 52.2 to describe a thin film falling down 
the interior wall of a cylinder? What restrictions might have to be placed on this modified for- 
mula? 

5. How can the results in s2.3 be used to estimate the time required for a liquid to drain out of a 
vertical tube that is open at both ends? 

6. Contrast the radial dependence of the shear stress for the laminar flow of a Newtonian liquid 
in a tube and in an annulus. In the latter, why does the function change sign? 
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Show that the Hagen-Poiseuille formula is dimensionally consistent. 
What differences are there between the flow in a circular tube of radius R and the flow in the 
same tube with a thin wire placed along the axis? 
Under what conditions would you expect the analysis in s2.5 to be inapplicable? 
Is Stokes' law valid for droplets of oil falling in water? For air bubbles rising in benzene? For 
tiny particles falling in air, if the particle diameters are of the order of the mean free path of 
the molecules in the air? 
Two immiscible liquids, A and B, are flowing in laminar flow between two parallel plates. Is 
it possible that the velocity profiles would be of the following form? Explain. 

12. 

PROBLEMS 2A.1 

2A.2 

b Liquid A 

Liquid B B 
What is the terminal velocity of a spherical colloidal particle having an electric charge e in an 
electric field of strength %? How is this used in the Millikan oil-drop experiment? 

Thickness of a falling film. Water at 20°C is flowing down a vertical wall with Re = 10. 
Calculate (a) the flow rate, in gallons per hour per foot of wall width, and (b) the film thickness 
in inches. 
Answers: (a) 0.727 gal/hr. ft; (b) 0.00361 in. 

Determination of capillary radius by flow measurement. One method for determining the 
radius of a capillary tube is by measuring the rate of flow of a Newtonian liquid through the 
tube. Find the radius of a capillary from the following flow data: 

Length of capillary tube 50.02 cm 
Kinematic viscosity of liquid 4.03 X m2/s 
Density of liquid 0.9552 X 103 kg/m3 
Pressure drop in the horizontal tube 4.829 X lo5 Pa 
Mass rate of flow through tube 2.997 X kg/s 

What difficulties may be encountered in this method? Suggest some other methods for deter- 
mining the radii of capillary tubes. 

Volume flow rate through an annulus. A horizontal annulus, 27 ft in length, has an inner ra- 
dius of 0.495 in. and an outer radius of 1.1 in. A 60% aqueous solution of sucrose (C,2H220,,) 
is to be pumped through the annulus at 20°C. At this temperature the solution density is 80.3 
lb/ft3 and the viscosity is 136.8 lb,/ft hr. What is the volume flow rate when the impressed 
pressure difference is 5.39 psi? 
Answer: 0.110 ft3/s 

Loss of catalyst particles in stack gas. 
(a) Estimate the maximum diameter of microspherical catalyst particles that could be lost in 
the stack gas of a fluid cracking unit under the following conditions: 

Gas velocity at axis of stack = 1.0 ft/s (vertically upward) 

Gas viscosity = 0.026 cp 
Gas density = 0.045 lb/ft3 

Density of a catalyst particle = 1.2 g/cm3 
Express the result in microns (1 micron = 10-~rn = lpm). 
(b) Is it permissible to use Stokes' law in (a)? 
Answers: (a) 110 pm; Re = 0.93 
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2B.1 Different choice of coordinates for the falling film problem. Rederive the velocity profile 
and the average velocity in s2.2, by replacing x by a coordinate F measured away from the 
wall; that is, F = 0 is the wall surface, and ?i = 6 is the liquid-gas interface. Show that the ve- 
locity distribution is then given by 

and then use this to get the average velocity. Show how one can get Eq. 2B.1-1 from Eq. 2.2-18 
by making a change of variable. 

Alternate procedure for solving flow problems. In this chapter we have used the following 
procedure: (i) derive an equation for the momentum flux, (ii) integrate this equation, (iii) insert 
Newton's law to get a first-order differential equation for the velocity, (iv) integrate the latter 
to get the velocity distribution. Another method is: (i) derive an equation for the momentum 
flux, (ii) insert Newton's law to get a second-order differential equation for the velocity profile, 
(iii) integrate the latter to get the velocity distribution. Apply this second method to the falling 
film problem by substituting Eq. 2.2-14 into Eq. 2.2-10 and continuing as directed until the ve- 
locity distribution has been obtained and the integration constants evaluated. 

28.3 Laminar flow in a narrow slit (see Fig. 2B.3). 

Fluid in I 

Fig. 2B.3 Flow through a slit, with B << W << L. 

(a) A Newtonian fluid is in laminar flow in a narrow slit formed by two parallel walls a dis- 
tance 2B apart. It is understood that B << W, so that "edge effects" are unimportant. Make a 
differential momentum balance, and obtain the following expressions for the momentum-flux 
and velocity distributions: 

In these expressions 9 = p + pgh = p - pgz. 
(b) What is the ratio of the average velocity to the maximum velocity for this flow? 
(c) Obtain the slit analog of the Hagen-Poiseuille equation. 
(d) Draw a meaningful sketch to show why the above analysis is inapplicable if B = W. 
(e) How can the result in (b) be obtained from the results of §2.5? 
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2B.4 Laminar slit flow with a moving wall ("plane Couette flow"). Extend Problem 2B.3 by al- 
lowing the wall at x = B to move in the positive z direction at a steady speed v,. Obtain (a) the 
shear-stress distribution and (b)  the velocity distribution. Draw carefully labeled sketches of 
these functions. 

2B.5 Interrelation of slit and annulus formulas. When an annulus is very thin, it may, to a good 
approximation, be considered as a thin slit. Then the results of Problem 2B.3 can be taken over 
with suitable modifications. For example, the mass rate of flow in an annulus with outer wall 
of radius R and inner wall of radius (1 - s)R, where 8 is small, may be obtained from Problem 
2B.3 by replacing 2B by EX, and W by 2 d l  - ;.SIR. In this way we get for the mass rate of flow: 

Show that this same result may be obtained from Eq. 2.4-17 by setting K equal to 1 - every- 
where in the formula and then expanding the expression for w in powers of &. This requires 
using the Taylor series (see 5C.2) 

and then performing a long division. The first term in the resulting series will be Eq. 2B.5-1. Cau- 
tion: In the derivation it is necessary to use the first four terms of the Taylor series in Eq. 2B.5-2. 

2B.6 Flow of a film on the outside of a circular tube (see Fig. 2B.6). In a gas absorption experi- 
ment a viscous fluid flows upward through a small circular tube and then downward in lami- 
nar flow on the outside. Set up a momentum balance over a shell of thickness Ar in the film, 

Velocity 
distribution 

outside 
in film 

4 r 

z-Momentum 
out of shell 
of thickness 

A r 

Gravity force 
acting on 

the volume 
2mArL 

Fig. 2B.6 Velocity distribution and z-momentum 
balance for the flow of a falling film on the outside 
of a circular tube. 
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as shown in Fig. 2B.6. Note that the "momentum in" and "momentum out" arrows are al- 
ways taken in the positive coordinate direction, even though in this problem the momentum 
is flowing through the cylindrical surfaces in the negative r direction. 
(a) Show that the velocity distribution in the falling film (neglecting end effects) is 

(b) Obtain an expression for the mass rate of flow in the film. 
(c) Show that the result in (b) simplifies to Eq. 2.2-21 if the film thickness is very small. 

2B.7 Annular flow with inner cylinder moving axially (see Fig. 2B.7). A cylindrical rod of radius 
KR moves axially with velocity v, = vo along the axis of a cylindrical cavity of radius R as seen 
in the figure. The pressure at both ends of the cavity is the same, so that the fluid moves 
through the annular region solely because of the rod motion. 

Rod of radius KR- 
moving with velocity vo 

L 

Cylinder of inside 

Fig. 2B.7 Annular flow with the inner cylinder moving axially. 

(a) Find the velocity distribution in the narrow annular region. 
(b) Find the mass rate of flow through the annular region. 
(c) Obtain the viscous force acting on the rod over the length L. 
(d) Show that the result in (c) can be written as a "plane slit" formula multiplied by a "curva- 
ture correction." Problems of this kind arise in studying the performance of wire-coating dies.' 

Fluid at modified 
pressure YO 

Fluid at modified 
pressure Yo \ 

v, In (r/R) Answers: (a) - = - 
vo In K 

radius R 
I( 

- 2dpv,  - 
(d) F, = & 

(1 - ;E - As2 + . - .) where E = 1 - K (see Problem 2B.5) 

2B.8 Analysis of a capillary flowmeter (see Fig. 2B.8). Determine the rate of flow (in lb/hr) 
through the capillary flow meter shown in the figure. The fluid flowing in the inclined tube is 

Fig. 2B.8 A capillary flow meter. 

J. B. Paton, P. H. Squires, W. H. Darnell, F. M. Cash, and J. F. Carley, Processing of Themoplastic 
Materials, E. C. Bernhardt (ed.), Reinhold, New York (19591, Chapter 4. 
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water at 20"C, and the manometer fluid is carbon tetrachloride (CCl,) with density 1.594 
g/cm3. The capillary diameter is 0.010 in. Note: Measurements of H and L are sufficient to cal- 
culate the flow rate; 8 need not be measured. Why? 

2B.9 Low-density phenomena in compressible tube flodr3 (Fig. 2B.9). As the pressure is de- 
creased in the system studied in Example 2.3-2, deviations from Eqs. 2.3-28 and 2.3-29 arise. 
The gas behaves as if it slips at the tube wall. It is conventional2 to replace the customary "no- 
slip" boundary condition that v, = 0 at the tube wall by 

in which 5 is the slip coefficient. Repeat the derivation in Example 2.3-2 using Eq. 2B.9-1 as the 
boundary condition. Also make use of the experimental fact that the slip coefficient varies in- 
versely with the pressure ( = Jo/p, in which & is a constant. Show that the mass rate of flow is 

in which pa,, = $(po + p,). 
When the pressure is decreased further, a flow regime is reached in which the mean free 

path of the gas molecules is large with respect to the tube radius (Knudsen flow). In that 
regime3 

in which m is the molecular mass and K is the Boltzmann constant. In the derivation of this re- 
sult it is assumed that all collisions of the molecules with the solid surfaces are diffuse and not 
specular. The results in Eqs. 2.3-29,2B.9-2, and 2B.9-3 are summarized in Fig. 2B.9. 

1 ,Free molecule flow 
1 / or Knudsen flow / 

W 

PO-  " -1 A / Poiseuille flow 

/ 

/ 
/ 

/ 
/ 

+ Fig. 28.9 A comparison of the flow regimes 
Pavg in gas flow through a tube. 

2B.10 Incompressible flow in a slightly tapered tube. An incompressible fluid flows through a tube 
of circular cross section, for which the tube radius changes linearly from R, at the tube en- 
trance to a slightly smaller value RL at the tube exit. Assume that the Hagen-Poiseuille equa- 
tion is approximately valid over a differential length, dz, of the tube so that the mass flow rate is 

This is a differential equation for 9 as a function of z, but, when the explicit expression for 
X(z) is inserted, it is not easily solved. 

E. H. Kennard, Kinetic Theory of Gases, McGraw-Hill, New York (1938), pp. 292-295,300-306. 
M. Knudsen, The Kinetic Theory of Gases, Methuen, London, 3rd edition (1950). See also R. J. Silbey 

and R. A. Alberty, Physicnl Chemistry, Wiley, New York, 3rd edition (2001), 517.6. 
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(a) Write down the expression for R as a function of z. 

(b) Change the independent variable in the above equation to R, so that the equation becomes 

(c) Integrate the equation, and then show that the solution can be rearranged to give 

Interpret the result. The approximation used here that a flow between nonparallel surfaces 
can be regarded locally as flow between parallel surfaces is sometimes referred to as the lubri- 
cation approximation and is widely used in the theory of lubrication. By making a careful 
order-of-magnitude analysis, it can be shown that, for this problem, the lubrication approxi- 
mation is valid as long as4 

2B.11 The cone-and-plate viscometer (see Fig. 2B.11). A cone-and-plate viscometer consists of a 
stationary flat plate and an inverted cone, whose apex just contacts the plate. The liquid 
whose viscosity is to be measured is placed in the gap between the cone and plate. The cone is 
rotated at a known angular velocity a, and the torque T, required to turn the cone is mea- 
sured. Find an expression for the viscosity of the fluid in terms of a, T,, and the angle +0 be- 
tween the cone and plate. For commercial instruments is about 1 degree. 

~ifferential ,,/ / area r dr 

Fig. 2B.11 The cone-and-plate viscometer: 
(a) side view of the instrument; (b) top view 

v- of the cone-plate system, showing a differ- 
ential element r dr d+; (c) an approximate 

( c )  velocity distribution within the differential 

Y region. To equate the systems in (a) and (c), 
we identify the following equivalences: 
V = Or and b = r sin i/io = ri/io. 

R. B. Bird, R. C. Armstrong, and 0. Hassager, Dynamics of Polymeric Liquids, Vol. 1, Wiley- 
Interscience, New York, 2nd edition (19871, pp. 16-18. 
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(a) Assume that locally the velocity distribution in the gap can be very closely approximated 
by that for flow between parallel plates, the upper one moving with a constant speed. Verify 
that this leads to the approximate velocity distribution (in spherical coordinates) 

This approximation should be rather good, because I++, is so small. 
(b) From the velocity distribution in Eq. 28.11-1 and Appendix B.l, show that a reasonable 
expression for the shear stress is 

This result shows that the shear stress is uniform throughout the gap. It is this fact that makes 
the cone-and-plate viscometer quite attractive. The instrument is widely used, particularly in 
the polymer industry. 
(c) Show that the torque required to turn the cone is given by 

This is the standard formula for calculating the viscosity from measurements of the torque 
and angular velocity for a cone-plate assembly with known R and rCr,. 
(d) For a cone-and-plate instrument with radius 10 cm and angle Go equal to 0.5 degree, what 
torque (in dyn . cm) is required to turn the cone at an angular velocity of 10 radians per 
minute if the fluid viscosity is 100 cp? 
Answer: (d) 40,000 dyn . cm 

2B.12 Flow of a fluid in a network of tubes (Fig. 2B.12). A fluid is flowing in laminar flow from A 
to B through a network of tubes, as depicted in the figure. Obtain an expression for the mass 
flow rate w of the fluid entering at A (or leaving at B )  as a function of the modified pressure 
drop gA - 9,. Neglect the disturbances at the various tube junctions. 

3?7(pA - 9B)R4p 
Answer: w = 

20pL 

3 

Fluid in 

6 
Fluid out 

\ - 
d 

4 

"A 
All tubes have the same 

radius X and same length L 
Fig. 2B.12 Flow of a fluid in a network with 
branching. 

2C.1 Performance of an electric dust collector (see Fig. 2C.U5. 
(a) A dust precipitator consists of a pair of oppositely charged plates between which dust- 
laden gases flow. It is desired to establish a criterion for the minimum length of the precipita- 
tor in terms of the charge on the particle e, the electric field strength %, the pressure difference 

-- 

The answer given in the first edition of this book was incorrect, as pointed out to us in 1970 by 
Nau Gab Lee of Seoul National University. 
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X 

z 
Parabolic 
velocity - trajectory 

distribution 

B-:,.'' ' ; ,  ; ..;, , . - '  , *-:. " ",'. , ,  , * - . ' , ~ ' - (  
1 

+ " '  % ,  

f 
Pressure 

Po 

4 
Pressure 

PL 

Fig. 2C.1 Particle trajectory in an electric dust collector. The particle that begins at z = 0 and 
ends at x = + B may not necessarily travel the longest distance in the z direction. 

(po - pJ, the particle mass m, and the gas viscosity p. That is, for what length L will the smallest 
particle present (mass m) reach the bottom just before it has a chance to be swept out of the chan- 
nel? Assume that the flow between the plates is laminar so that the velocity distribution is de- 
scribed by Eq. 2B.3-2. Assume also that the particle velocity in the z direction is the same as the 
fluid velocity in the z direction. Assume further that the Stokes drag on the sphere as well as the 
gravity force acting on the sphere as it is accelerated in the negative x direction can be neglected. 
(b) Rework the problem neglecting acceleration in the x direction, but including the Stokes drag. 
(c) Compare the usefulness of the solutions in (a) and (b), considering that stable aerosol par- 
ticles have effective diameters of about 1-10 microns and densities of about 1 g/cm3. 
Answer: (a) Lmi, = [12(po - pL)2~5m/25p2eCe11'4 

2C.2 Residence time distribution in tube flow. Define the residence time function F ( t )  to be that 
fraction of the fluid flowing in a conduit which flows completely through the conduit in a 
time interval t. Also define the mean residence time t, by the relation 

(a) An incompressible Newtonian liquid is flowing in a circular tube of length L and radius 
R, and the average flow velocity is (v,). Show that 

F(t) = 0 for t 5 (L/2(vZ)) 

F(t) = 1 - (L/2(~,)t)~ fort 2 (L/2(vZ)) 

(b) Show that t, = (L/(v,)). 

2C.3 Velocity distribution in a tube. You have received a manuscript to referee for a technical 
journal. The paper deals with heat transfer in tube flow. The authors state that, because they 
are concerned with nonisothermal flow, they must have a "general" expression for the veloc- 
ity distribution, one that can be used even when the viscosity of the fluid is a function of tem- 
perature (and hence position). The authors state that a "general expression for the velocity 
distribution for flow in a tube" is 

in which y = r/R. The authors give no derivation, nor do they give a literature citation. As the 
referee you feel obliged to derive the formula and list any restrictions implied. 
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2C.4 Falling-cylinder viscometer (see Fig. 2C.4).6 A falling-cylinder viscometer consists of a long 
vertical cylindrical container (radius R), capped at both ends, with a solid cylindrical slug (ra- 
dius KR). The slug is equipped with fins so that its axis is coincident with that of the tube. 

One can observe the rate of descent of the slug in the cylindrical container when the lat- 
ter is filled with fluid. Find an equation that gives the viscosity of the fluid in terms of the ter- 
minal velocity v, of the slug and the various geometric quantities shown in the figure. 

Cylindrical 
slug descends - 
with speed v, 

- Cylindrical container Fig. 2C.4 A falling-cylinder viscom- 
with fluid eter with a tightly fitting solid cylin- 

der moving vertically. The cylinder 
is usually equipped with fins to 

----t 

Y maintain centering within the tube. 
The fluid completely fills the tube, 
and the top and bottom are closed. 

(a) Show that the velocity distribution in the annular slit is given by 

in which 5 = r/R is a dimensionless radial coordinate. 
(b) Make a force balance on the cylindrical slug and obtain 

in which p and p, are the densities of the fluid and the slug, respectively. 
(c) Show that, for small slit widths, the result in (b) may be expanded in powers of E = 1 - K 

to give 

See sC.2 for information on expansions in Taylor series. 

2C.5 Falling film on a conical surface (see Fig. 2C.5).7 A fluid flows upward through a circular 
tube and then downward on a conical surface. Find the film thickness as a function of the dis- 
tance s down the cone. 

- -- 

J. Lohrenz, G. W. Swift, and F. Kurata, AIChE Journal, 6,547-550 (1960) and 7,6S (1961); E. Ashare, 
R. B. Bird, and J. A. Lescarboura, AIChE Journal, 11,910-916 (1965). 

R. B. Bird, in Selected Topics in Transport Phenomena, CEP Symposium Series #58,61,1-15 (1965). 
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I s = downstream distance 

sured from the 

ilm thickness is 

t Fluid in with mass 
flow rate w 

Fig. 2C.5 A falling film on a conical 
surface. 

(a) Assume that the results of 92.2 apply approximately over any small region of the cone sur- 
face. Show that a mass balance on a ring of liquid contained between s and s + As gives: 

(b) Integrate this equation and evaluate the constant of integration by equating the mass rate 
of flow w up the central tube to that flowing down the conical surface at s = L. Obtain the fol- 
lowing expression for the film thickness: 

s = d  3pw (;) 
rp2gL sin 2/3 

2C.6 Rotating cone pump (see Fig. 2C.6). Find the mass rate of flow through this pump as a func- 
tion of the gravitational acceleration, the impressed pressure difference, the angular velocity 
of the cone, the fluid viscosity and density, the cone angle, and other geometrical quantities 
labeled in the figure. 

iredion of flow Fig. 2C.6 A rotating-cone pump. The variable r 
with mass rate of is the distance from the axis of rotation out to 

flow w (Ib, /s) the center of the slit. 
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(a) Begin by analyzing the system without the rotation of the cone. Assume that it is possible 
to apply the results of Problem 2B.3 locally. That is, adapt the solution for the mass flow rate 
from that problem by making the following replacements: 

replace (9, - BJ/L by -dP/dz  

replace W by 2717 = 27rz sin /3 

thereby obtaining 

d p  B3p .2.rrz sin p 
-=5(-z) P 

The mass flow rate w is a constant over the range of z. Hence this equation can be integrated 
to give 

(b) Next, modify the above result to account for the fact that the cone is rotating with angular 
velocity fl. The mean centrifugal force per unit volume acting on the fluid in the slit will have 
a z-component approximately given by 

What is the value of K? Incorporate this as an additional force tending to drive the fluid 
through the channel. Show that this leads to the following expression for the mass rate of flow: 

Here Pi = pi + pgLi cos P. 

2C.7 A simple rate-of-climb indicator (see Fig. 2C.7). Under the proper circumstances the simple 
apparatus shown in the figure can be used to measure the rate of climb of an airplane. The 
gauge pressure inside the Bourdon element is taken as proportional to the rate of climb. For 
the purposes of this problem the apparatus may be assumed to have the following properties: 
(i) the capillary tube (of radius R and length L, with R << L) is of negligible volume but ap- 
preciable flow resistance; (ii) the Bourdon element has a constant volume V and offers negli- 
gible resistance to flow; and (iii) flow in the capillary is laminar and incompressible, and the 
volumetric flow rate depends only on the conditions at the ends of the capillary. 

Rate of climb 

Capillary- 
tube 

Bourdon 
element 

Pressure Pressure 

outside = p, inside = pi Fig. 2C.7 A rate-of-climb indicator. 

(a) Develop an expression for the change of air pressure with altitude, neglecting tempera- 
ture changes, and considering air to be an ideal gas of constant composition. (Hint: Write a 
shell balance in which the weight of gas is balanced against the static pressure.) 
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(b) By making a mass balance over the gauge, develop an approximate relation between 
gauge pressure p, - p, and rate of climb v, for a long continued constant-rate climb. Neglect 
change of air viscosity, and assume changes in air density to be small. 
(c) Develop an approximate expression for the "relaxation time" trel of the indicator-that is, 
the time required for the gauge pressure to drop to l / e  of its initial value when the external 
pressure is suddenly changed from zero (relative to the interior of the gauge) to some differ- 
ent constant value, and maintained indefinitely at this new value. 
(d) Discuss the usefulness of this type of indicator for small aircraft. 
(e) Justify the plus and minus signs in the figure. 
Answers: (a) dp/dz = p g  = -(pM/RT)g 

(b) pi - p, = v Z ( 8 p ~ / ~ 4 ) ( ~ g ~ / ~ , T ) ,  where R,, is the gas constant and M is the mole- 
cular weight. 

(c) to = (128/.ir)(pVL/.rrD4@, where p = $(p, + p,) 

2D.1 Rolling-ball viscometer. An approximate analysis of the rolling-ball experiment has been 
given, in which the results of Problem 28.3 are used.8 Read the original paper and verify the 
results. 

2D.2 Drainage of liquids9 (see Fig. 2D.2). How much liquid clings to the inside surface of a large 
vessel when it is drained? As shown in the figure there is a thin film of liquid left behind on 
the wall as the liquid level in the vessel falls. The local film thickness is a function of both z 
(the distance down from the initial liquid level) and t (the elapsed time). 

Initial level of liquid ---------------- 

6(z, t )  = thickness of film 

- Wall of containing vessel Fig. 2D.2 Clinging of a viscous fluid to wall of 
vessel during draining. 

H. W. Lewis, Anal. Chem., 25,507 (1953); R. B. Bird and R. M. Turian, Ind. Eng. Chem. Fundamentals, 
3,87 (1964); J. &stkk and F. Arnbros, Rheol. Acta, 12,70-76 (1973). 

J. J. van Rossum, Appl. Sci. Research, A7,121-144 (1958); see also V. G. Levich, Physicochemical 
Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J. (1962), Chapter 12. 
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(a) Make an unsteady-state mass balance on a portion of the film between z and z + Az to get 

(b) Use Eq. 2.2-18 and a quasi-steady-assumption to obtain the following first-order partial 
differential equation for 6(z, t) :  

(e)  Solve this equation to get 

What restrictions have to be placed on this result? 



Chapter 3 

The Equations of Change 
for Isothermal Systems 

3 . 1  The equation of continuity 

93.2 The equation of motion 

93.3 The equation of mechanical energy 

93.4' The equation of angular momentum 

93.5 The equations of change in terms of the substantial derivative 

93.6 Use of the equations of change to solve flow problems 

93.7 Dimensional analysis of the equations of change 

In Chapter 2, velocity distributions were determined for several simple flow systems by 
the shell momentum balance method. The resulting velocity distributions were then 
used to get other quantities, such as the average velocity and drag force. The shell bal- 
ance approach was used to acquaint the novice with the notion of a momentum balance. 
Even though we made no mention of it in Chapter 2, at several points we tacitly made 
use of the idea of a mass balance. 

It is tedious to set up a shell balance for each problem that one encounters. What we 
need is a general mass balance and a general momentum balance that can be applied to 
any problem, including problems with nonrectilinear motion. That is the main point of 
this chapter. The two equations that we derive are called the equation of continuity (for the 
mass balance) and the equation of motion (for the momentum balance). These equations 
can be used as the starting point for studying all problems involving the isothermal flow 
of a pure fluid. 

In Chapter 11 we enlarge our problem-solving capability by developing the equa- 
tions needed for nonisothermal pure fluids by adding an equation for the temperature. 
In Chapter 19 we go even further and add equations of continuity for the concentra- 
tions of the individual species. Thus as we go from Chapter 3 to Chapter 11 and on to 
Chapter 19 we are able to analyze systems of increasing complexity, using the com- 
plete set of equations of change. It should be evident that Chapter 3 is a very important 
chapter-perhaps the most important chapter in the book-and it should be mastered 
thoroughly. 

In 53.1 the equation of continuity is developed by making a mass balance over a 
small element of volume through which the fluid is flowing. Then the size of this ele- 
ment is allowed to go to zero (thereby treating the fluid as a continuum), and the desired 
partial differential equation is generated. 
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In 53.2 the equation of motion is developed by making a momentum balance over a 
small element of volume and letting the volume element become infinitesimally small. 
Here again a partial differential equation is generated. This equation of motion can be 
used, along with some help from the equation of continuity, to set up and solve all the 
problems given in Chapter 2 and many more complicated ones. It is thus a key equation 
in transport phenomena. 

In 53.3 and 53.4 we digress briefly to introduce the equations of change for mechani- 
cal energy and angular momentum. These equations are obtained from the equation of 
motion and hence contain no new physical information. However, they provide a conve- 
nient starting point for several applications in this book-particularly the macroscopic 
balances in Chapter 7. 

In 53.5 we introduce the "substantial derivative." This is the time derivative follow- 
ing the motion of the substance (i.e., the fluid). Because it is widely used in books on 
fluid dynamics and transport phenomena, we then show how the various equations of 
change can be rewritten in terms of the substantial derivatives. 

In 53.6 we discuss the solution of flow problems by use of the equations of continu- 
ity and motion. Although these are partial differential equations, we can solve many 
problems by postulating the form of the solution and then discarding many terms in 
these equations. In this way one ends up with a simpler set of equations to solve. In this 
chapter we solve only problems in which the general equations reduce to one or more 
ordinary differential equations. In Chapter 4 we examine problems of greater complexity 
that require some ability to solve partial differential equations. Then in Chapter 5 the 
equations of continuity and motion are used as the starting point for discussing turbu- 
lent flow. Later, in Chapter 8, these same equations are applied to flows of polymeric liq- 
uids, which are non-Newtonian fluids. 

Finally, 53.7 is devoted to writing the equations of continuity and motion in di- 
mensionless form. This makes clear the origin of the Reynolds number, Re, often men- 
tioned in Chapter 2, and why it plays a key role in fluid dynamics. This discussion lays 
the groundwork for scale-up and model studies. In Chapter 6 dimensionless numbers 
arise again in connection with experimental correlations of the drag force in complex 
systems. 

At the end of 52.2, we emphasized the importance of experiments in fluid dynamics. 
We repeat those words of caution here and point out that photographs and other types 
of flow visualization have provided us with a much deeper understanding of flow prob- 
lems than would be possible by theory alone.' Keep in mind that when one derives a 
flow field from the equations of change, it is not necessarily the only physically admissi- 
ble solution. 

Vector and tensor notations are occasionally used in this chapter, primarily for the 
purpose of abbreviating otherwise lengthy expressions. The beginning student will find 
that only an elementary knowledge of vector and tensor notation is needed for reading 
this chapter and for solving flow problems. The advanced student will find Appendix A 
helpful in getting a better understanding of vector and tensor manipulations. With re- 
gard to the notation, it should be kept in mind that we use lightface italic symbols for 
scalars, boldface Roman symbols for vectors, and boldface Greek symbols for tensors. 
Also dot-product operations enclosed in ( ) are scalars, and those enclosed in I I are 
vectors. 

-- 

' We recommend particularly M. Van Dyke, An Album of Fluid Motion, Parabolic Press, Stanford 
(1982); H. Werlk, Ann. Rev. Fluid Mech., 5,361-382 (1973); D. V. Boger and K. Walters, Rheological 
Phenomena in Focus, Elsevier, Amsterdam (1993). 
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Fig. 3.1-1. Fixed volume element Ax Ay 
Az through which a fluid is flowing. The 
arrows indicate the mass flux in and out 

\ I  of the volume at the two shaded faces lo- 
x cated at x and x + Ax. 

3 . 1  THE EQUATION OF CONTINUITY 

This equation is developed by writing a mass balance over a volume element Ax Ay Az, 
fixed in space, through which a fluid is flowing (see Fig. 3.1-1): 

rate of rate of rate of ] = [y] - (3.1-1) 

Now we have to translate this simple physical statement into mathematical language. 
We begin by considering the two shaded faces, which are perpendicular to the 

x-axis. The rate of mass entering the volume element through the shaded face at x is 
(pvx)lxAy Az, and the rate of mass leaving through the shaded face at x + Ax is 
(p~x)lx+AxAy Az. Similar expressions can be written for the other two pairs of faces. The 
rate of increase of mass within the volume element is Ax Ay Az(dp/dt). The mass balance 
then becomes 

By dividing the entire equation by Ax Ay Az and taking the limit as Ax, Ay, and Az go to 
zero, and then using the definitions of the partial derivatives, we get 

This is the equation of continuity, which describes the time rate of change of the fluid den- 
sity at a fixed point in space. This equation can be written more concisely by using vector 
notation as follows: ' 

rate of net rate of mass 
increase of addition per 
mass per unit volume 
unit volume by convection 



78 Chapter 3 The Equations of Change for Isothermal Systems 

Here (V . pv) is called the "divergence of pv," sometimes written as "div pv." The vector 
pv is the mass flux, and its divergence has a simple meaning: it is the net rate of mass ef- 
flux per unit volume. The derivation in Problem 3D.1 uses a volume element of arbitrary 
shape; it is not necessary to use a rectangular volume element as we have done here. 

A very important special form of the equation of continuity is that for a fluid of con- 
stant density, for which Eq. 3.1-4 assumes the particularly simple form 

(incompressible fluid) (V . v) = 0 (3.1-5) 

Of course, no fluid is truly incompressible, but frequently in engineering and biological 
applications, the assumption of constant density results in considerable simplification 
and very little error.'r2 

Show that for any kind of flow pattern, the normal stresses are zero at fluid-solid boundaries, 
for Newtonian fluids with constant density. This is an important result that we shall use 

Normal Stresses a t  often. 
Solid Surfaces for 
~ n c o m ~ r ~ s s i b l ~  SOLUTION 
Newtonian Fluids 

We visualize the flow of a fluid near some solid surface, which may or may not be flat. The 
flow may be quite general, with all three velocity components being functions of all three co- 
ordinates and time. At some point P on the surface we erect a Cartesian coordinate system 
with the origin at P. We now ask what the normal stress r,, is at P. 

According to Table B.l or Eq. 1.2-6, T,, = -2p(dv,/dz), because (V . v) = 0 for incompress- 
ible fluids. Then at point P on the surface of the solid 

First we replaced the derivative dv,/dz by using Eq. 3.1-3 with p constant. However, on the 
solid surface at z = 0, the velocity v, is zero by the no-slip condition (see §2.1), and therefore 
the derivative dv,/dx on the surface must be zero. The same is true of dv,/dy on the surface. 
Therefore T,, is zero. It is also true that T,, and ry, are zero at the surface because of the vanish- 
ing of the derivatives at z = 0. (Note: The vanishing of the normal stresses on solid surfaces 
does not apply to polymeric fluids, which are viscoelastic. For compressible fluids, the nor- 
mal stresses at solid surfaces are zero if the density is not changing with time, as is shown in 
Problem 3C.2.) 

53.2 THE EQUATION OF MOTION 

To get the equation of motion we write a momentum balance over the volume element 
Ax Ay Az in Fig. 3.2-1 of the form 

rate of rate of rate of external 
momentum momentum + force on 

[of 2:E:Eud = [ in ] - [ out ] [the f l U i j  (3'2-1) 

L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford (1987), p. 21, point out 
that, for steady, isentropic flows, commonly encountered in aerodynamics, the incompressibility 
assumption is valid when the fluid velocity is small compared to the velocity of sound (i.e., low Mach 
number). 

Equation 3.1-5 is the basis for Chapter 2 in G. K. Batchelor, An Introduction to Fluid Dynamics, 
Cambridge University Press (1967), which is a lengthy discussion of the kinematical consequences of the 
equation of continuity. 
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z A Fig. 3.2-1. Fixed volume element Ax 
+ Ax, y + Ay, z + Az) Ay Az, with six arrows indicating the 

directions of the fluxes of x-momen- 
turn through the surfaces by all mech- 
anisms. The shaded faces are located 

dx X ~ X + A X  at x and x + Ax. 

Note that Eq. 3.2-1 is an extension of Eq. 2.1-1 to unsteady-state problems. Therefore we 
proceed in much the same way as in Chapter 2. However, in addition to including the 
unsteady-state term, we must allow the fluid to move through all six faces of the volume 
element. Remember that Eq. 3.2-1 is a vector equation with components in each of the 
three coordinate directions x, y, and z. We develop the x-component of each term in Eq. 
3.2-1; the y- and z-components may be treated analogously.1 

First, we consider the rates of flow of the x-component of momentum into and out of 
the volume element shown in Fig. 3.2-1. Momentum enters and leaves Ax Ay Az by two 
mechanisms: convective transport (see §1.7), and molecular transport (see 51.2). 

The rate at which the x-component of momentum enters across the shaded face at 
x by all mechanisms-both convective and molecular-is (4,,)IX Ay Az and the rate at 
which it leaves the shaded face at x + Ax is (t$xx)lx+Ax Ay Az. The rates at which 
x-momentum enters and leaves through the faces at y and y + Ay are ($,,)I, Az Ax and 
( ~ y x ) I y + A y  Az Ax, respectively. Similarly, the rates at which x-momentum enters and 
leaves through the faces at z and z + Az are (+,,)Iz Ax Ay and ( + Z x ) l z + A z  AX Ay. When 
these contributions are added we get for the net rate of addition of x-momentum 

across all three pairs of faces. 
Next there is the external force (typically the gravitational force) acting on the fluid 

in the volume element. The x-component of this force is 

Equations 3.2-2 and 3.2-3 give the x-components of the three terms on the right side of 
Eq. 3.2-1. The sum of these terms must then be equated to the rate of increase of 
x-momentum within the volume element: Ax Ay Az d(pvx)/dt. When this is done, we 
have the x-component of the momentum balance. When this equation is divided by 
Ax Ay Az and the limit is taken as Ax, Ay, and Az go to zero, the following equation 
results: 

' In this book all the equations of change are derived by applying the conservation laws to a region 
Ax Ay Az fixed in space. The same equations can be obtained by using an arbitrary region fixed in space 
or one moving along with the fluid. These derivations are described in Problem 3D.1. Advanced students 
should become familiar with these derivations. 
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Here we have made use of the definitions of the partial derivatives. Similar equations 
can be developed for the y- and z-components of the momentum balance: 

By using vector-tensor notation, these three equations can be written as follows: 

That is, by letting i be successively x, y, and z, Eqs. 3.2-4,5, and 6 can be reproduced. The 
quantities pvi are the Cartesian components of the vector pv, which is the momentum per 
unit volume at a point in the fluid. Similarly, the quantities pgi are the components of the 
vector pg, which is the external force per unit volume. The term - [V $ I i  is the ith com- 
ponent of the vector - [V . $ 1 .  

When the ith component of Eq. 3.2-7 is multiplied by the unit vector in the ith direc- 
tion and the three components are added together vectorially, we get 

which is the differential statement of the law of conservation of momentum. It is the 
translation of Eq. 3.2-1 into mathematical symbols. 

In Eq. 1.7-1 it was shown that the combined momentum flux tensor + is the sum of 
the convective momentum flux tensor p w  and the molecular momentum flux tensor m, 
and that the latter can be written as the sum of p8 and 7. When we insert $ = p w  + p8 + 
T into Eq. 3.2-8, we get the following equation of rnot i~n:~ 

d z p v  = - [ V - p v v ]  - v p  - [ V . s ]  + p g  

rate of rate of momentum rate of momentum addition external force 
increase of addition by by molecular transport on fluid 
momentum convection per unit volume per unit 
per unit per unit volume 
volume volume 

In this equation V p  is a vector called the "gradient of (the scalar) p" sometimes written as 
"grad p." The symbol [V TI is a vector called the "divergence of (the tensor) 7" and 
[V . p w l  is a vector called the "divergence of (the dyadic product) p w . "  

In the next two sections we give some formal results that are based on the equation 
of motion. The equations of change for mechanical energy and angular momentum are 
not used for problem solving in this chapter, but will be referred to in Chapter 7. Begin- 
ners are advised to skim these sections on first reading and to refer to them later as the 
need arises. 

This equation is attributed to A.-L. Cauchy, Ex. de math., 2,108-111 (1827). (Baron) Augustin-Louis 
Cauchy (1789-1857) (pronounced "Koh-shee" with the accent on the second syllable), originally trained 
as an engineer, made great contributions to theoretical physics and mathematics, including the calculus 
of complex variables. 
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53.3 THE EQUATION OF MECHANICAL ENERGY 

Mechanical energy is not conserved in a flow system, but that does not prevent us from 
developing an equation of change for this quantity. In fact, during the course of this 
book, we will obtain equations of change for a number of nonconserved quantities, such 
as internal energy, enthalpy, and entropy. The equation of change for mechanical en- 
ergy, which involves only mechanical terms, may be derived from the equation of mo- 
tion of g3.2. The resulting equation is referred to in many places in the text that follows. 

We take the dot product of the velocity vector v with the equation of motion in Eq. 
3.2-9 and then do some rather lengthy rearranging, making use of the equation of conti- 
nuity in Eq. 3.1-4. We also split up each of the terms containing p and 7 into two parts. 
The final result is the equation of change for kinetic energy: 

d , ($pu2) = - (V . ;pv%) - (V . pv) - p( -v . v) 

rate of rate of addition rate of work rate of reversible 
increase of of kinetic energy done by pressure conversion of 
kinetic energy by convection of surroundings kinetic energy into 
per unit volume per unit volume on the fluid internal energy 

- (V (T v]) - (-T:VV) + p(v g) (3.34)' 
rate of work done rate of rate of work 
by viscous forces irreversible by external force 
on the fluid conversion on the fluid 

from kinetic to 
internal energy 

At this point it is not clear why we have attributed the indicated physical significance to 
the terms p(V . v) and (7:Vv). Their meaning cannot be properly appreciated until one 
has studied the energy balance in Chapter 11. There it will be seen how these same two 
terms appear with opposite sign in the equation of change f9r internal energy. 

A 

We now introduce the potential energy2 (per unit m%ss) @, defined-by g - -V@. Then 
the last term in Eq. 3.3-1 may be rewritten as -p(v V@) = -(V : pv@) + @(V -_pv). The 
equation of continuity in Eq. 3.1-4 m3y now be used to replace + @(V . pv) by -@(dp/dt). 
The latter may be written as -d(p@)/dt, if the potential energy is independent of the 
time. This is tru: for the gravitational field for systems that are located on the surface of 
the earth; then @ = gh, where g is the (constant) gravitational acceleration and h is the el- 
evation coordinate in the gravitational field. 

With the introduction of the potential energy, Eq. 3.3-1 assumes the following form: 

This is an equation of change for kinetic-plus-potential energy. Since Eqs. 3.3-1 and 3.3-2 con- 
tain only mechanical terms, they are both referred to as the equation of change for mechani- 
cal energy. 

The term p(V v) may be either positive or negative depending on whether the fluid 
is undergoing expansion or compression. The resulting temperature changes can be rather 
large for gases in compressors, turbines, and shock tubes. 

' The interpretation under the (T:VV) term is correct only for Newtonian fluids; for viscoelastic 
fluids, such as polymers, this term may include reversible conversion to elastic energy. 

If g = _S,g is a vector of magnitude g in the negative z direction, then the potential energy per 
unit mass is @ = gz, where z is the elevation in the gravitational field. 
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The term (-T:VV) is always positive for Newtonian fluids: because it may be written 
as a sum of squared terms: 

which serves to define the two quantities @, and 9,. When the index i takes on the val- 
ues 1, 2, 3, the velocity components vi become v,, vy, vz and the Cartesian coordinates xi 
become x, y, z. The symbol 6q is the Kronecker delta, which is 0 if i # j and 1 if i = j. 

The quantity (-T:VV) describes the degradation of mechanical energy into thermal 
energy that occurs in all flow systems (sometimes called the viscous dissipation heati~g).~ 
This heating can produce considerable temperature rises in systems with large viscosity 
and large velocity gradients, as in lubrication, rapid extrusion, and high-speed flight. 
(Another example of conversion of mechanical energy into heat is the rubbing of two 
sticks together to start a fire, which scouts are presumably able to do.) 

When we speak of "isothermal systems," we mean systems in which there are no ex- 
ternally imposed temperature gradients and no appreciable temperature change result- 
ing from expansion, contraction, or viscous dissipation. 

The most important use of Eq. 3.3-2 is for the development of the macroscopic me- 
chanical energy balance (or engineering Bernoulli equation) in Section 7.8. 

53.4 THE EQUATION OF ANGULAR MOMENTUM 

Another equation can be obtained from the equation of motion by forming the cross 
product of the position vector r (which has Cartesian components x, y, z )  with Eq. 3.2-9. 
The equation of motion as derived in $3.2 does not contain the assumption that the stress 
(or momentum-flux) tensor T is symmetric. (Of course, the expressions given in $2.3 for 
the Newtonian fluid are symmetric; that is, rii = T ~ ~ . )  

When the cross product is formed, we get-after some vector-tensor manipula- 
tions-the following equation of change for angular momentum: 

Here E is a third-order tensor with components sijk (the permutation symbol defined in 
sA.2). If the stress tensor T is symmetric, as for Newtonian fluids, the last term is zero. 
According to the kinetic theories of dilute gases, monatomic liquids, and polymers, the 
tensor T is symmetric, in the absence of electric and magnetic torques.' If, on the other 
hand, T is asymmetric, then the last term describes the rate of conversion of bulk angular 
momentum to internal angular momentum. 

The assumption of a symmetric stress tensor, then, is equivalent to an assertion that 
there is no interconversion between bulk angular momentum and internal angular mo- 
mentum and that the two forms of angular momentum are conserved separately. This 

%n amusing consequence of the viscous dissipation for air is the study by H. K. Moffatt [Nature, 
404,833434 (2000)l of the way in which a spinning coin comes to rest on a table. 

G. G. Stokes, Trans. Camb. Phil. Soc., 9,&106 (1851), see pp. 57-59. 
' J. S. Dahler and L. E. Scriven, Nature, 192,3637 (1961); S. de Groot and P. Mazur, Nonequilibrium 

Thermodynamics, North Holland, Amsterdam (19621, Chapter XII. A literature review can be found in 
G. D. C. Kuiken, Ind. Eng. Chem. Res., 34,3568-3572 (1995). 
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corresponds, in Eq. 0.3-8, to equating the cross-product terms and the internal angular 
momentum terms separately. 

Eq. 3.4-1 will be referred to only in Chapter 7, where we indicate that the macro- 
scopic angular momentum balance can be obtained from it. 

53.5 THE EQUATIONS OF CHANGE IN TERMS 
OF THE SUBSTANTIAL DERIVATIVE 

Before proceeding we point out that several different time derivatives may be encoun- 
tered in transport phenomena. We illustrate these by a homely example--namely, the ob- 
servation of the concentration of fish in the Mississippi River. Because fish swim around, 
the fish concentration will in general be a function of position (x, y, z)  and time (t). 

The Partial Time Derivative dldt 

Suppose we stand on a bridge and observe the concentration of fish just below us as a 
function of time. We can then record the time rate of change of the fish concentration at a 
fixed location. The result is (d~/dt)l,,~,,, the partial derivative of c with respect to t, at con- 
stant x, y, and z. 

The Total Time Derivative dldt 

Now suppose that we jump into a motor boat and speed around on the river, sometimes 
going upstream, sometimes downstream, and sometimes across the current. All the time 
we are observing fish concentration. At any instant, the time rate of change of the ob- 
served fish concentration is 

in which dx/dt, dy/dt, and dz/dt are the components of the velocity of the boat. 

The Substantial Time Derivative DIDt 

Next we climb into a canoe, and not feeling energetic, we just float along with the cur- 
rent, observing the fish concentration. In this situation the velocity of the observer is the 
same as the velocity v of the stream, which has components v,, vy, and v,. If at any instant 
we report the time rate of change of fish concentration, we are then giving 

The special operator D/Dt = d/dt + v . V is called the substantial derivative (meaning that 
the time rate of change is reported as one moves with the "substance"). The terms mater- 
ial derivative, hydrodynamic derivative, and derivative following the motion are also used. 

Now we need to know how to convert equations expressed in terms of d/dt into 
equations written with D/Dt. For any scalar function f ( x ,  y, z, t) we can do the following 
manipulations: 
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Table 3.5-1 The Equations of Change for Isothermal Systems in the D/Dt-Forma 
Note: At the left are given the equation numbers for the d/dt forms. 

D (3.4-1) p [r X vl = -[V . {r X p ~ J ' ]  - [V . {r x T)'] + [r x pg] (DY 

" Equations (A) through (C) are obtained from Eqs. 3.14,3.2-9, and 3.3-1 with no 
assumptions. Equation (D) is written for symmetrical 7 only. 

The quantity in the second parentheses in the second line is zero according to the equa- 
tion of continuity. Consequently Eq. 3.5-3 can be written in vector form as 

Similarly, for any vector function f(x, y, z,  t), 

d D f 
- (pf) + [V . pvf] = p - dt Dt 

These equations can be used to rewrite the equations of change given in 553.1 to 3.4 in 
terms of the substantial derivative as shown in Table 3.5-1. 

Equation A in Table 3.5-1 tells how the density is decreasing or increasing as one 
moves along with the fluid, because of the compression [(V v) < 01 or expansion of the 
fluid [(V . v) > 01. Equation B can be interpreted as (mass) x (acceleration) = the sum of 
the pressure forces, viscous forces, and the external force. In other words, Eq. 3.2-9 is 
equivalent to Newton's second law of motion applied to a small blob of fluid whose en- 
velope moves locally with the fluid velocity v (see Problem 3D.1). 

We now discuss briefly the three most common simplifications of the equation of 
motion.' 

(i) For constant p and p, insertion of the Newtonian expression for 7 from Eq. 1.2-7 
into the equation of motion leads to the very famous Navier-Stokes equation, first de- 
veloped from molecular arguments by Navier and from continuum arguments by 
Stokes:' 

In the second form we have used the "modified pressure" 9 = p + pgh introduced in 
Chapter 2, where h is the elevation in the gravitational field and gh is the gravitational 

For discussions of the history of these and other famous fluid dynamics relations, see H. Rouse 
and S. Ince, History of Hydraulics, Iowa Institute of Hydraulics, Iowa City (1959). 

L. M. H. Navier, Mkmoires de I'Acadkmie Royale des Sciences, 6,389-440 (1827); G. G. Stokes, Proc. 
Cambridge Phil. Soc, 8,287-319 (1845). The name Navier is pronounced "Nah-vyay." 
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Fig. 3.5-1. The equation of state for a slightly com- 

1 slight?;;mp;sible pressible fluid and an incompressible fluid when T 

~ - p o = K ( p - P o )  is constant. 
where K = constant 

Po - - - - - - - - - - - - - - - - 

potential energy per unit mass. Equation 3.5-6 is a standard starting point for describing 
isothermal flows of gases and liquids. 

It must be kept in mind that, when constant p is assumed, the equation of state (at 
constant T )  is a vertical line on a plot of p vs. p (see Fig. 3.5-1). Thus, the absolute pres- 
sure is no longer determinable from p and T, although pressure gradients and instanta- 
neous differences remain determinate by Eq. 3.5-6 or Eq. 3.5-7. Absolute pressures are 
also obtainable if p is known at some point in the system. 

(ii) When the acceleration terms in the Navier-Stokes equation are neglected-that is, 
when p(Dv/Dt) = 0-we get 

which is called the Stokes flow equation. It is sometimes called the creeping flow equation, be- 
cause the term p[v . Vvl, which is quadratic in the velocity, can be discarded when the 
flow is extremely slow. For some flows, such as the Hagen-Poiseuille tube flow, the term 
p[v - Vvl drops out, and a restriction to slow flow is not implied. The Stokes flow equation 
is important in lubrication theory, the study of particle motions in suspension, flow 
through porous media, and swimming of microbes. There is a vast literature on this 
~ubject.~ 

(iii) When viscous forces are neglected-that is, [V . T I  = 0-the equation of motion 
becomes 

which is known as the Euler equation for "inviscid"  fluid^.^ Of course, there are no truly 
"inviscid" fluids, but there are many flows in which the viscous forces are relatively 
unimportant. Examples are the flow around airplane wings (except near the solid 
boundary), flow of rivers around the upstream surfaces of bridge abutments, some prob- 
lems in compressible gas dynamics, and flow of ocean  current^.^ 

". Happel and H. Brenner, Low Reynolds Number Hydrodynaniics, Martinus Nijhoff, The Hague 
(1983); S. Kim and S. J. Karrila, Microkydrodynamics: Principles and Selected Applications, Butterworth- 
Heinemann, Boston (1991). 

L. Euler, Mim. Acad. Sci. Berlin, 11,217-273,274-315,316-361 (1755). The Swiss-born 
mathematician Leonhard Euler (1707-1783) (pronounced "Oiler") taught in St. Petersburg, Basel, and 
Berlin and published extensively in many fields of mathematics and physics. 

See, for example, D. J. Acheson, Elementary Fluid Mechanics, Clarendon Press, Oxford (1990), 
Chapters 3-5; and G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press (19671, 
Chapter 6. 
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The Bernoulli equation for steady flow of inviscid fluids is one of the most famous equations 
in classical fluid dynami~s.~ Show how it is obtained from the Euler equation of motion. 

The Bernoulli Equation 
for the Steady Flow of SOLUTION 
Inviscid Fluids Omit the time-derivative term in Eq. 3.5-9, and then use the vector identity [v . Vvl = 

iV(v V) - [V X [V X v]] (Eq. A.4-23) to rewrite the equation as 

pV;v2 - p[v X [V X v]] = -Vp - pgVh (3.5-10) 
A 

In writing the last term, we have expressed g as -V@ = -gVh, where h is the elevation in the 
gravitational field. 

Next we divide Eq. 3.5-10 by p and then form the dot product with the unit vector 
s = v//vl in the flow direction. When this is done the term involving the curl of the velocity 
field can be shown to vanish (a nice exercise in vector analysis), and (s . V) can be replaced by 
d/ds, where s is the distance along a streamline. Thus we get 

When this is integrated along a streamline from point 1 to point 2, we get 

which is called the Bernoulli equafion. It relates the velocity, pressure, and elevation of two 
points along a streamline in a fluid in steady-state flow. It is used in situations where it can be 
assumed that viscosity plays a rather minor role. 

53.6 USE OF THE EQUATIONS OF CHANGE 
TO SOLVE FLOW PROBLEMS 

For most applications of the equation of motion, we have to insert the expression for T 
from Eq. 1.2-7 into Eq. 3.2-9 (or, equivalently, the components of T from Eq. 1.2-6 or Ap- 
pendix B.l into Eqs. 3.2-5, 3.2-6, and 3.2-7). Then to describe the flow of a Newtonian 
fluid at constant temperature, we need in general 

The equation of continuity Eq. 3.1-4 
The equation of motion Eq. 3.2-9 
The components of T Eq. 1.2-6 
The equation of state P = P(P) 
The equations for the viscosities p = K = ~ ( p )  

These equations, along with the necessary boundary and initial conditions, determine 
completely the pressure, density, and velocity distributions in the fluid. They are seldom 
used in their complete form to solve fluid dynamics problems. Usually restricted forms 
are used for convenience, as in this chapter. 

If it is appropriate to assume constant density and viscosity, then we use 

The equation of continuity Eq. 3.1-4 and Table B.4 
The Navier-Stokes equation Eq. 3.5-6 and Tables B.5,6,7 

along with initial and boundary conditions. From these one determines the pressure and 
velocity distributions. 

Daniel Bernoulli (1700-1782) was one of the early researchers in fluid dynamics and also the 
kinetic theory of gases. His hydrodynamical ideas were summarized in D. Bernoulli, Hydrodynarnica sive 
de uiribus et motibus fluidovum commentarii, Argentorati (1738), however he did not actually give Eq. 3.5-12. 
The credit for the derivation of Eq. 3.5-12 goes to L. Euler, Histoires de l'Acad6mie de Berlin (1755). 
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In Chapter 1 we gave the components of the stress tensor in Cartesian coordinates, 
and in this chapter we have derived the equations of continuity and motion in Cartesian 
coordinates. In Tables B.1, 4, 5, 6, and 7 we summarize these key equations in three 
much-used coordinate systems: Cartesian (x, y, z), cylindrical (r, 0, z) ,  and spherical (r, 0, 
4). Beginning students should not concern themselves with the derivation of these equa- 
tions, but they should be very familiar with the tables in Appendix B and be able to use 
them for setting up fluid dynamics problems. Advanced students will want to go 
through the details of Appendix A and learn how to develop the expressions for the var- 
ious V-operations, as is done in 55A.6 and A.7. 

In this section we illustrate how to set up and solve some problems involving the 
steady, isothermal, laminar flow of Newtonian fluids. The relatively simple analytical 
solutions given here are not to be regarded as ends in themselves, but rather as a prepa- 
ration for moving on to the analytical or numerical solution of more complex problems, 
the use of various approximate methods, or the use of dimensional analysis. 

The complete solution of viscous flow problems, including proofs of uniqueness and 
criteria for stability, is a formidable task. Indeed, the attention of some of the world's best 
applied mathematicians has been devoted to the challenge of solving the equations of con- 
tinuity and motion. The beginner may well feel inadequate when faced with these equa- 
tions for the first time. All we attempt to do in the illustrative examples in this section is to 
solve a few problems for stable flows that are known to exist. In each case we begin by 
making some postulates about the form for the pressure and velocity distributions: that is, 
we guess how p and v should depend on position in the problem being studied. Then we 
discard all the terms in the equations of continuity and motion that are unnecessary ac- 
cording to the postulates made. For example, if one postulates that v, is a function of y 
alone, terms like dv,/dx and d2v,/dz2 can be discarded. When all the unnecessary terms 
have been eliminated, one is frequently left with a small number of relatively simple equa- 
tions; and if the problem is sufficiently simple, an analytical solution can be obtained. 

It must be emphasized that in listing the postulates, one makes use of intuition. The 
latter is based on our daily experience with flow phenomena. Our intuition often tells us 
that a flow will be symmetrical about an axis, or that some component of the velocity is 
zero. Having used our intuition to make such postulates, we must remember that the 
final solution is correspondingly restricted. However, by starting with the equations of 
change, when we have finished the "discarding process" we do at least have a complete 
listing of all the assumptions used in the solution. In some instances it is possible to go 
back and remove some of the assumptions and get a better solution. 

In several examples to be discussed, we will find one solution to the fluid dynamical 
equations. However, because the full equations are nonlinear, there may be other solutions 
to the problem. Thus a complete solution to a fluid dynamics problem requires the specifi- 
cation of the limits on the stable flow regimes as well as any ranges of unstable behavior. 
That is, we have to develop a "map" showing the various flow regimes that are possible. 
Usually analytical solutions can be obtained for only the simplest flow regimes; the re- 
mainder of the information is generally obtained by experiment or by very detailed nu- 
merical solutions. In other words, although we know the differential equations that govern 
the fluid motion, much is yet unknown about how to solve them. This is a challenging area 
of applied mathematics, well above the level of an introductory textbook. 

When difficult problems are encountered, a search should be made through some of 
the advanced treatises on fluid dynamics.' 

R. Berker, Handbuch der Physik, Volume VIII-2, Springer, Berlin (1963), pp. 1-384; G. K. Batchelor, 
An Infroduction to Fluid Mechanics, Cambridge University Press (1967); L. Landau and E. M. Lifshitz, Fluid 
Mechanics, Pergamon Press, Oxford, 2nd edition (1987); J. A. Schetz and A. E. Fuhs (eds.), Handbook of Fluid 
Dynamics and Fluid Machinery, Wiley-Interscience, New York (1996); R. W. Johnson (ed.), The Handbook of 
Fluid Dynamics, CRC Press, Boca Raton, Fla. (1998); C. Y. Wang, Ann. Revs. Fluid Mech., 23,159-177 (1991). 
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We now turn to the illustrative examples. The first two are problems that were dis- 
cussed in the preceding chapter; we rework these just to illustrate the use of the equa- 
tions of change. Then we consider some other problems that would be difficult to set up 
by the shell balance method of Chapter 2. 

Rework the tube-flow problem of Example 2.3-1 using the equations of continuity and mo- 
tion. This illustrates the use of the tabulated equations for constant viscosity and density in 

in a Long cylindrical coordinates, given in Appendix B. 
Circular Tube 

SOLUTION 

We postulate that v = 6,v,(r, z). This postulate implies that there is no radial flow (v, = 0) and 
no tangential flow (v, = O), and that v, does not depend on 8. Consequently, we can discard 
many terms from the tabulated equations of change, leaving 

equation of continuity dv, -- - 0 dz (3.6-1) 

r-equation of motion d 9  o = - -  
dr (3.6-2) 

&equation of motion d 9  o = - -  
de 

(3.6-3) 

z-equation of motion 

The first equation indicates that v, depends only on r; hence the partial derivatives in the sec- 
ond term on the right side of Eq. 3.6-4 can be replaced by ordinary derivatives. By using the 
modified pressure 9 = p + pgh (where h is the height above some arbitrary datum plane), we 
avoid the necessity of calculating the components of g in cylindrical coordinates, and we ob- 
tain a solution valid for any orientation of the axis of the tube. 

Equations 3.6-2 and 3.6-3 show that 9 is a function of z alone, and the partial derivative 
in the first term of Eq. 3.6-4 may be replaced by an ordinary derivative. The only way that we 
can have a function of r plus a function of z equal to zero is for each term individually to be a 
constant-say, Co-so that Eq. 3.6-4 reduces to 

The 9 equation can be integrated at once. The v,-equation can be integrated by merely "peel- 
ing off" one operation after another on the left side (do not "work out" the compound deriva- 
tive there). This gives 

9 = C+ + C, (3.6-6) 

The four constants of integration can be found from the boundary conditions: 

B.C. I 

B.C. 2 

B.C. 3 

B.C. 4 

atz=O, 9 = Y 0  

at z = L, 9 = 9[, 
at r = A, v, = 0 

at r = 0, v, = finite 

The resulting solutions are: 

9 = go - (yo - gL)(2/L) 
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Equation 3.6-13 is the same as Eq. 2.3-18. The pressure profile in Eq. 3.6-12 was not obtained 
in Example 2.3-1, but was tacitly postulated; we could have done that here, too, but we chose 
to work with a minimal number of postulates. 

As pointed out in Example 2.3-1, Eq. 3.6-13 is valid only in the laminar-flow regime, and 
at locations not too near the tube entrance and exit. For Reynolds numbers above about 2100, 
a turbulent-flow regime exists downstream of the entrance region, and Eq. 3.6-13 is no longer 
valid. 

Set up the problem in Example 2.2-2 by using the equations of Appendix B. This illustrates 
the use of the equation of motion in terms of T. 

Falling Film with 
Variable Viscosity SOLUTION 

As in Example 2.2-2 we postulate a steady-state flow with constant density, but with viscosity 
depending on x. We postulate, as before, that the x- and y-components of the velocity are zero 
and that v, = v,(x). With these postulates, the equation of continuity is identically satisfied. 
According to Table B.l, the only nonzero components of .r are T,, = r,, = -,u(dv,/dx). The 
components of the equation of motion in terms of T are, from Table B.5, 

where /3 is the angle shown in Fig. 2.2-2. 
Integration of Eq. 3.6-14 gives 

p = pgx sin p + f ( y, z) (3.6-1 7) 

in which f (y ,  z) is an arbitrary function. Equation 3.6-15 shows that f cannot be a function of y. 
We next recognize that the pressure in the gas phase is very nearly constant at the prevailing 
atmospheric pressure pa,,. Therefore, at the gas-liquid interface x = 0, the pressure is also 
constant at the value pa,,. Consequently, f can be set equal to pa, and we obtain finally 

Equation 3.5-16 then becomes 

d 
- T,, = pg cos p 
dx 

which is the same as Eq. 2.2-10. The remainder of the solution is the same as in 52.2. 

We mentioned earlier that the measurement of pressure difference vs. mass flow rate through 
a cylindrical tube is the basis for the determination of viscosity in commercial capillary vis- 

Operation of a Couette cometers. The viscosity may also be determined by measuring the torque required to turn a 
Viscometer solid object in contact with a fluid. The forerunner of all rotational viscometers is the Couette 

instrument, which is sketched in Fig. 3.6-1. 
The fluid is placed in the cup, and the cup is then made to rotate with a constant angular 

velocity Ln, (the subscript "0" stands for outer). The rotating viscous liquid causes the sus- 
pended bob to turn until the torque produced by the momentum transfer in the fluid equals 
the product of the torsion constant kt and the angular displacement Ob of the bob. The angular 
displacement can be measured by observing the deflection of a light beam reflected from a 
mirror mounted on the bob. The conditions of measurement are controlled so that there is a 
steady, tangential, laminar flow in the annular region between the two coaxial cylinders 
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1- Torsion wire with torsion constant k ,  

Fig. 3.6-1. (a)Tangential laminar flow of an incompressible fluid in the space between two cylinders; the outer 
one is moving with an angular velocity In,. (b) A diagram of a Couette viscometer. One measures the angular 
velocity Ino of the cup and the deflection oB of the bob at steady-state operation. Equation 3.6-31 gives the vis- 
cosity p in terms of a, and the torque T, = kt&. 

ve is a function of r 

shown in the figure. Because of the arrangement used, end effects over the region including 
the bob height L are negligible. 

To analyze this measurement, we apply the equations of continuity and motion for con- 
stant p and ,u to the tangential flow in the annular region around the bob. Ultimately we want 
an expression for the viscosity in terms of (the z-component of) the torque T, on the inner 
cylinder, the angular velocity a, of the rotating cup, the bob height L, and the radii KR and R 
of the bob and cup, respectively. 

Ir.">- 

SOLUTION 

Fluid inside 

In the portion of the annulus under consideration the fluid moves in a circular pattern. Rea- 
sonable postulates for the velocity and pressure are: v, = v,(r), v, = 0, v, = 0, and p = p(r, 2). 
We expect p to depend on z because of gravity and on r because of the centrifugal force. 

For these postulates all the terms in the equation of continuity are zero, and the compo- 
nents of the equation of motion simplify to 

(a) 

r-component 

z-component 

The second equation gives the velocity distribution. The third equation gives the effect of 
gravity on the pressure (the hydrostatic effect), and the first equation tells how the centrifugal 
force affects the pressure. For the problem at hand we need only the 13-component of the 
equation of m ~ t i o n . ~  

See R. B. Bird, C. F. Curtiss, and W. E. Stewart, Chem. Eng. Sci., 11,114-117 (1959) for a method of 
getting p(r, z) for this system. The time-dependent buildup to the steady-state profiles is given by R. B. 
Bird and C. F. Curtiss, Chem. Eng. Sci., 11,108-113 (1959). 
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A novice might have a compelling urge to perform the differentiations in Eq. 3.6-21 be- 
fore solving the differential equation, but this should not be done. All one has to do is "peel 
off" one operation at a time-just the way you undress-as follows: 

1 rv, = - C,? + C2 
2 

(3.6-25) 

The boundary conditions are that the fluid does not slip at the two cylindrical surfaces: 

B.C. 1 

B.C. 2 

These boundary conditions can be used to get the constants of integration, which are then in- 
serted in Eq. 3.6-26. This gives 

By writing the result in this form, with similar terms in the numerator and denominator, it is clear 
that both boundary conditions are satisfied and that the equation is dimensionally consistent. 

From the velocity distribution we can find the momentum flux by using Table B.2: 

The torque acting on the inner cylinder is then given by the product of the inward momen- 
tum flux (-T,,), the surface of the cylinder, and the lever arm, as follows: 

The torque is also given by T, = kt&,. Therefore, measurement of the angular velocity of the 
cup and the angular deflection of the bob makes it possible to determine the viscosity. The 
same kind of analysis is available for other rotational viscometers." 

For any viscometer it is essential to know when turbulence will occur. The critical 
Reynolds number (LR$2p/p),,, above which the system becomes turbulent, is shown in Fig. 
3.6-2 as a function of the radius ratio K .  

One might ask what happens if we hold the outer cylinder fixed and cause the inner 
cylinder to rotate with an angular velocity ili (the subscript "i" stands for inner). Then 
the velocity distribution is 

This is obtained by making the same postulates (see before Eq. 3.6-20) and solving the 
same differential equation (Eq. 3.6-21), but with a different set of boundary conditions. 

J. R. VanWazer, J. W. Lyons, K. Y. Kim, and R. E. Colwell, Viscosity and Flow Measurement, Wiley, 
New York (1963); K. Walters, Rheomety, Chapman and Hall, London (1975). 
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30 Fig. 3.6-2. Critical Reynolds number for the tangen- 
tial flow in an annulus, with the outer cylinder rotat- 

20 ing and the inner cylinder stationary [H. Schlichting, 
* 

Bounds y Layer Theo y, McGraw-Hill, New York s 
x (1955), p. 3571. 
2 10 g - 
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Equation 3.6-32 describes the flow accurately for small values of Ri. However, when 
Ri reaches a critical value (C&, = 41.3(~/~ ' (1  - K ) ~ " ~ )  for K = 1) the fluid develops a 
secondary flow, which is superimposed on the primary (tangential) flow and which is 
periodic in the axial direction. A very neat system of toroidal vortices, called Taylor vor- 
tices, is formed, as depicted in Figs. 3.6-3 and 3.6-4(b). The loci of the centers of these vor- 
tices are circles, whose centers are located on the common axis of the cylinders. This is 
still laminar motion-but certainly inconsistent with the postulates made at the begin- 
ning of the problem. When the angular velocity Ri is increased further, the loci of the 
centers of the vortices become traveling waves; that is, the flow becomes, in addition, pe- 
riodic in the tangential direction [see Fig. 3.6-4(c)I. Furthermore, the angular velocity of 
the traveling waves is approximately ;ai. When the angular velocity Ri is further in- 
creased, the flow becomes turbulent. Figure 3.6-5 shows the various flow regimes, with 
the inner and outer cylinders both rotating, determined for a specific apparatus and a 

Inner cylinder 
/ rotating 

I 1 

Outer 
I 

, cylinder fixed 

Fig. 3.6-3. Counter-rotating toroidal vor- Fig. 3.6-4. Sketches showing the phe- 
tices, called Taylor vortices, observed in the nomena observed in the annular space 
annular space between two cylinders. The between two cylinders: (a) purely tan- 
streamlines have the form of helices, with gential flow; (b )  singly periodic flow 
the axes wrapped around the common (Taylor vortices); and (c) doubly periodic 
axis of the cylinders. This corresponds to flow in which an undulatory motion is 
Fig. 3.5-4(b). superposed on the Taylor vortices. 
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/ 
Turbulent flow / / 

10,000 

1 8,000 
/ 

Fig. 3.6-5. Flow-regime dia- 
gram for the flow between two 
coaxial cylinders. The straight 
line labeled "Rayleigh" is Lord 
Rayleigh's analytic solution for 
an inviscid fluid. [See D. Coles, 
J. Fluid. Mech., 21,385425 
(1965).1 

specific fluid. This diagram demonstrates how complicated this apparently simple sys- 
tem is. Further details may be found e l ~ e w h e r e . ~ ~ ~  

The preceding discussion should serve as a stern warning that intuitive postulates 
may be misleading. Most of us would not think about postulating the singly and doubly 
periodic solutions just described. Nonetheless, this information is contained in the 
Navier-Stokes equations. However, since problems involving instability and transitions 
between several flow regimes are extremely complex, we are forced to use a combination 
of theory and experiment to describe them. Theory alone cannot yet give us all the an- 
swers, and carefully controlled experiments will be needed for years to come. 

A liquid of constant density and viscosity is in a cylindrical container of radius R as shown in 
Fig. 3.6-6. The container is caused to rotate about its own axis at an angular velocity a. The 

of the Su*face cylinder axis is vertical, so that g, = Or go = 0, and g, = -g, in which g is the magnitude of the 
of a Rotating Liquid gravitational acceleration. Find the shape of the free surface of the liquid when steady state 

has been established. 

The initial work on this subject was done by John William Strutt (Lord Rayleigh) (1842-1919), 
who established the field of acoustics with his Theory of Sound, written on a houseboat on the Nile River. 
Some original references on Taylor instability are: J. W. Strutt (Lord Rayleigh), Proc. Roy. Soc., A93, 
148-154 (1916); G. I. Taylor, Phil. Trans., A223,289-343 (1923) and Proc. Roy. Soc. A157,546-564 (1936); 
P. Schultz-Grunow and H. Hein, Zeits. Flugwiss., 4,28-30 (1956); D. Coles, J. Fluid. Mech. 21,385-425 
(1965). See also R. P. Feynman, R. 8. Leighton, and M. Sands, The Feynman Lectures in Physics, Addison- 
Wesley, Reading, MA (1964),§41-6. 

Other references on Taylor instability, as well as instability in other flow systems, are: L. D. Landau 
and E. M. Lifshitz, Fluid Mechanics, Pergamon, Oxford, 2nd edition (1987), pp. 99-106; S. Chandrasekhar, 
Hydrodynamic and Hydromagnetic Stability, Oxford University Press (1961), pp. 272-342; H. Schlichting 
and K. Gersten, Boundary-Layer Theory, 8th edition (2000), Chapter 15; P. G. Drazin and W. H. Reid, 
Hydrodynamic Stability, Cambridge University Press (1981); M. Van Dyke, An Album of Fluid Motion, 
Parabolic Press, Stanford (1982). 
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+Q 

SOLUTION 

Fig. 3.6-6. Rotating liquid with a free surface, the 
shape of which is a paraboloid of revolution. 

t 

for this problem, and the equations of change are 
given in Tables B.2 and B.6. At steady state we postulate that v, and viare both zero and that 
v, depends only on r. We also postulate that p depends on z because of the gravitational force 
and on r because of the centrifugal force but not on 6. 

These postulates give 0 = 0 for the equation of continuity, and the equation of motion gives: 

R - I  

Cylindrical coordinates are appropriate 

L P = Patm 
\ 

surface I 

\ 

r-component 

i 
z 

z-component 

-, p = p(r, z) 
within fluid 

The 6-component of the equation of motion can be integrated to give 

in which C1 and C2 are constants of integration. Because v, cannot be infinite at r = 0, the con- 
stant C2 must be zero. At r = R the velocity v, is Rfl. Hence C, = 2i2 and 

This states that each element of the rotating liquid moves as an element of a rigid body (we 
could have actually postulated that the liquid would rotate as a rigid body and written down 
Eq. 3.6-37 directly). When the result in Eq. 3.6-37 is substituted into Eq. 3.6-33, we then have 
these two equations for the pressure gradients: 

a p  dP 
- = pf12r and - = -pg 
dr dz 

Each of these equations can be integrated, as follows: 

p = ;pi2'r2 + f,@, z) and p = -pgz + f2(r, 6) (3.6-40,41) 

where f ,  and f2 are arbitrary functions of integration. Since we have postulated that p does not 
depend on 8, we can choose fi = -pgz + C and f2 = $a2$ + C, where C is a constant, and sat- 
isfy Eqs. 3.6-38 and 39. Thus the solution to those equations has the form 

The constant C may be determined by requiring that p = pa,, at r = 0 and z = z,, the latter 
being the elevation of the liquid surface at r = 0. When C is obtained in this way, we get 
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This equation gives the pressure at all points within the liquid. Right at the liquid-air inter- 
face, p = p,,,, and with this substitution Eq. 3.6-43 gives the shape of the liquid-air interface: 

This is the equation for a parabola. The reader can verify that the free surface of a liquid in a 
rotating annular container obeys a similar relation. 

A solid sphere of radius R is rotating slowly at a constant angular velocity R in a large body 
of quiescent fluid (see Fig. 3.6-7). Develop expressions for the pressure and velocity distribu- 

near a Slowly tions in the fluid and for the torque T, required to maintain the motion. It is assumed that the 
Rotating Sphere sphere rotates sufficiently slowly that it is appropriate to use the creeping flow version of the 

equation of motion in Eq. 3.5-8. This problem illustrates setting up and solving a problem in 
spherical coordinates. 

SOLUTION The equations of continuity and motion in spherical coordinates are given in Tables B.4 and 
B.6, respectively. We postulate that, for steady creeping flow, the velocity distribution will 
have the general form v = 6,v,(r, O), and that the modified pressure will be of the form 
9 = 9 (r, 8). Since the solution is expected to be symmetric about the z-axis, there is no depen- 
dence on the angle 4. 

With these postulates, the equation of continuity is exactly satisfied, and the components 
of the creeping flow equation of motion become 

r-component d 9  0 = -- 
dr 

(3.6-45) 

The boundary conditions may be summarized as 

B.C. 1: 

B.C. 2: 

B.C. 3: 

at r = R, v, = 0, v, = 0, v, = Rfl  sin 8 

asr+m,  vr+O,v,+O,vd+O 

asr+m,  9 + p 0  

where 9 = p + pgz, and p, is the fluid pressure far from the sphere at z = 0. 
Equation 3.6-47 is a partial differential equation for v,(r, 0). To solve this, we try a solu- 

tion of the form v, = f (r) sin 0. This is just a guess, but it is consistent with the boundary con- 
dition in Eq. 3.6-48. When this trial form for the velocity distribution is inserted into Eq. 3.6-47 
we get the following ordinary differential equation for f (r): 

Torque T, is required 
to make the sphere 

rotate 

Fig. 3.6-7. A slowly rotating sphere in an infinite expanse 
of fluid. The primary flow is u, = OR(R/U)~ sin 8. 
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This is an "equidimensional equation," which may be solved by assuming a trial solution 
f = rn (see Eq. C.l-14). Substitution of this trial solution into Eq. 3.6-51 gives n = 1, -2. The so- 
lution of Eq. 3.6-51 is then 

,- 

so that 

Application of the boundary conditions shows that C, = 0 and C2 = aR3. Therefore the final 
expression for the velocity distribution is 

v+ = O R  , sin 0 
(R)' 

Next we evaluate the torque needed to maintain the rotation of the sphere. This will be the in- 
tegral, over the sphere surface, of the tangential force (T,&=,)R~ sin 0dBd4 exerted on the fluid 
by a solid surface element, multiplied by the lever arm R sin 0 for that element: 

= J:' 1: (3161 sin B)(R sin B)R2 sin BdBd4 

In going from the first to the second line, we have used Table B.l, and in going from the sec- 
ond to the third line we have done the integration over the range of the 4 variable. The inte- 
gral in the third line is $. 

As the angular velocity increases, deviations from the "primary flow" of Eq. 3.6-54 occur. 
Because of the centrifugal force effects, the fluid is pulled in toward the poles of the sphere 
and shoved outward from the equator as shown in Fig. 3.6-8. To describe this "secondary 
flow," one has to include the [v Vvl term in the equation of motion. This can be done by the 
use of a stream-function m e t h ~ d . ~  

X 

Fig. 3.6-8. Rough sketch showing the secondary flow 

I I I I I I I I  which appears around a rotating sphere as the Reynolds 
Side view number is increased. 

ti See, for example, the development by 0. Hassager in R. B. Bird, R. C. Armstrong, and 0. Hassager, 
Dynamics of Polymeric Liquids, Vol. I., Wiley-Interscience, New York, 2nd edition (1987), pp. 31-33. See also 
L. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, Oxford, 2nd edition (1987), p. 65; and L. G. Leal, 
Laminar Flow and Convective Transport Processes, Butterworth-Heinemann, Boston (1992), pp. 180-181. 
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53.7 DIMENSIONAL ANALYSIS OF THE EQUATIONS OF CHANGE 

Suppose that we have taken experimental data on, or made photographs of, the flow 
through some system that cannot be analyzed by solving the equations of change analyt- 
ically. An example of such a system is the flow of a fluid through an orifice meter in a 
pipe (this consists of a disk with a centered hole in it, placed in the tube, with a pressure- 
sensing device upstream and downstream of the disk). Suppose now that we want to 
scale up (or down) the experimental system, in order to build a new one in which exactly 
the same flow patterns occur [but appropriately scaled up (or down)]. First of all, we 
need to have geometric similarity: that is, the ratios of all dimensions of the pipe and ori- 
fice plate in the original system and in the scaled-up (or scaled-down) system must be 
the same. In addition, we must have dynamic similarity: that is, the dimensionless groups 
(such as the Reynolds number) in the differential equations and boundary conditions 
must be the same. The study of dynamic similarity is best understood by writing the 
equations of change, along with boundary and initial conditions, in dimensionless 

For simplicity we restrict the discussion here to fluids of constant density and vis- 
cosity, for which the equations of change are Eqs. 3.1-5 and 3.5-7 

D p-v = -VY + iLV2v 
Dt 

In most flow systems one can identify the following "scale factors": a characteristic 
length I,, a characteristic velocity v,, and a characteristic modified pressure Po = p, + 
pgh, (for example, these might be a tube diameter, the average flow velocity, and the 
modified pressure at the tube exit). Then we can define dimensionless variables and dif- 
ferential operators as follows: 

We have suggested two choices for the dimensionless pressure, the first one being con- 
venient for high Reynolds numbers and the second for low Reynolds numbers. When 
the equations of change in Eqs. 3.7-1 and 3.7-2 are rewritten in terms of the dimension- 
less quantities, they become 

' G. Birkhoff, Hydrodynamics, Dover, New York (1955), Chapter IV. Our dimensional analysis 
procedure corresponds to Birkhoff's "complete inspectional analysis." 

R. W. Powell, An Elementary Text in Hydraulics and Fluid Mechanics, Macmillan, New York (19511, 
Chapter VIII; and H. Rouse and S. Ince, History of Hydraulics, Dover, New York (1963) have interesting 
historical material regarding the dimensionless groups and the persons for whom they were named. 
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In these dimensionless equations, the four scale factors I,, v,, p, and ,u appear in one dimen- 
sionless group. The reciprocal of this group is named after a famous fluid dynamicist3 

Re = - = Reynolds number ro7n 
The magnitude of this dimensionless group gives an indication of the relative impor- 
tance of inertial and viscous forces in the fluid system. 

From the two forms of the equation of motion given in Eq. 3.7-9, we can gain some 
perspective on the special forms of the Navier-Stokes equation given in 53.5. Equation 
3.7-9a gives the Euler equation of Eq. 3.5-9 when Re + and Eq. 3.7-913 gives the creep- 
ing flow equation of Eq. 3.5-8 when Re << 1. The regions of applicability of these and 
other asymptotic forms of the equation of motion are considered further in s54.3 and 4.4. 

Additional dimensionless groups may arise in the initial and boundary conditions; 
two that appear in problems with fluid-fluid interfaces are 

Fr = - = Froude number n:n 
We = [L] = Weber number 

~ O ~ P  

The first of these contains the gravitational acceleration g, and the second contains the in- 
terfacial tension a, which may enter into the boundary conditions, as described in Prob- 
lem 3C.5. Still other groups may appear, such as ratios of lengths in the flow system (for 
example, the ratio of tube diameter to the diameter of the hole in an orifice meter). 

The flow of an incompressible Newtonian fluid past a circular cylinder is to be studied exper- 
imentally. We want to know how the flow patterns and pressure distribution depend on the 

Transverse Flow cylinder diameter, length, the approach velocity, and the fluid density and viscosity. Show 
around a Circular how to organize the work so that the number of experiments needed will be minimized. 
Cylindefl 

SOLUTION 

For the analysis we consider an idealized flow system: a cylinder of diameter D and length L, 
submerged in an otherwise unbounded fluid of constant density and viscosity. Initially the 
fluid and the cylinder are both at rest. At time t = 0, the cylinder is abruptly made to move 
with velocity v, in the negative x direction. The subsequent fluid motion is analyzed by using 
coordinates fixed in the cylinder axis as shown in Fig. 3.7-1. 

The differential equations describing the flow are the equation of continuity (Eq. 3.7-1) 
and the equation of motion (Eq. 3.7-2). The initial condition for t = 0 is: 

I.C. i f x 2 + y 2 > ~ D 2 0 r i f I z I > ~ ~ ,  v=ij,v, (3.7-13) 

The boundary conditions for t 2 0 and all z are: 

B.C. 1 

B.C. 2 

B.C. 3 

asx2 + y2 + z2-+ 03, v -+ Zixvm 

v = O  

asx+ -03 aty = 0, Y+Y, 

See fn. 1 in s2.2. 
William Froude (1810-1879) (rhymes with "food") studied at Oxford and worked as a civil 

engineer concerned with railways and steamships. The Froude number is sometimes defined as the 
square root of the group given in Eq. 3.7-1 1. 

Moritz Weber (1871-1951) (pronounced "Vayber") was a professor of naval architecture in Berlin; 
another dimensionless group involving the surface tension in the capillary number, defined as Ca = [pvo/u]. 

This example is adapted from R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures 
on Physics, Vol. 11, Addison-Wesley, Reading, Mass. (19641, s41-4. 
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+ Fluid 
+ approaches 

from x = -w  - with uniform 

Fig. 3.7-1. Transverse flow around a cylinder. 

Now we rewrite the problem in terms of variables made dimensionless with the characteristic 
length Dl velocity v,, and modified pressure 9,. The resulting dimensionless equations of 
change are 

1 - ( d . 1 )  = O f  and Y +  [ + a d + ]  = -eO +-V2+ 
d t  Re 

in which Re = Dv,p/p. The corresponding initial and boundary conditions are: 

I.C. 

B.C. 1 

B.C. 2 

B.C. 3 

as i2 + ij2 + i2 + w, +-+ tix 

if k2 + g2 5 ,  and 121 5 ~ ( L / D ) ,  ; = o  
a s f +  - w a t y =  0, 9 + 0  

If we were bright enough to be able to solve the dimensionless equations of change along with 
the dimensionless boundary conditions, the solutions would have to be of the following form: 

+ = +(it ij, i, i, Re, LID)  and @ = @(?, ij,i, i, Re, L I D )  (3.7-23,24) 

That is, the dimensionless velocity and dimensionless modified pressure can depend only 
on the dimensionless parameters Re and L /  D and the dimensionless independent variables 
kf ijf i, and z. 

This completes the dimensional analysis of the problem. We have not solved the flow 
problem, but have decided on a convenient set of dimensionless variables to restate the prob- 
lem and suggest the form of the solution. The analysis shows that if we wish to catalog the 
flow patterns for flow past a cylinder, it will suffice to record them (e.g., photographically) for 
a series of Reynolds numbers Re = Dv,p/p and L / D  values; thus, separate investigations 
into the roles of L, Dl v,, p, and p are unnecessary. Such a simplification saves a lot of time 
and expense. Similar comments apply to the tabulation of numerical results, in the event that 
one decides to make a numerical assault on the p r ~ b l e m . ~ , ~  

Analytical solutions of this problem at very small Re and infinite L/D are reviewed in L. 
Rosenhead (ed.), Laminar Boundary Layers, Oxford University Press (1963), Chapter IV. An important 
feature of this two-dimensional problem is the absence of a "creeping flow" solution. Thus the [v - Vvl- 
term in the equation of motion has to be included, even in the limit as Re + 0 (see Problem 3B.9). This is 
in sharp contrast to the situation for slow flow around a sphere (see g2.6 and g4.2) and around other 
finite, three-dimensional objects. 

For computer studies of the flow around a long cylinder, see F. H. Harlow and J. E. From, Scientific 
American, 212,104-110 (19651, and S. J. Sherwin and G. E. Kamiadakis, Comput. Math., 123,189-229 (1995). 



100 Chapter 3 The Equations of Change for Isothermal Systems 

Experiments involve some necessary departures from the above analysis: the stream 
is finite in size, and fluctuations of velocity are inevitably present at the initial state and 
in the upstream fluid. These fluctuations die out rapidly near the cylinder at Re < 1. For 
Re approaching 40 the damping of disturbances gets slower, and beyond this approxi- 
mate limit unsteady flow is always observed. 

The observed flow patterns at large vary strongly with the Reynolds number as 
shown in Fig. 3.7-2. At Re << 1 the flow is orderly, as shown in (a). At Re of about 10, a 
pair of vortices appears behind the cylinder, as may be seen in (b). This type of flow per- 
sists up to about Re = 40, when there appear two "separation points," at which the 
streamlines separate from the solid surface. Furthermore the flow becomes permanently 
unsteady; vortices begin to "peel off" from the cylinder and move downstream. With 
further increase in Re, the vortices separate regularly from alternate sides of the cylinder, 
as shown in (c); such a regular array of vortices is known as a "von KArmtin vortex 
street." At still higher Re there is a disorderly fluctuating motion (turbulence) in the 
wake of the cylinder, as shown in (d). Finally, at Re near lo6, turbulence appears up- 
stream of the separation point, and the wake abruptly narrows down as shown in (e). 
Clearly, the unsteady flows shown in the last three sketches would be very difficult to 
compute from the equations of change. It is much easier to observe them experimentally 
and correlate the results in terms of Eqs. 3.7-23 and 24. 

Equations 3.7-23 and 24 can also be used for scale-up from a single experiment. Sup- 
pose that we wanted to predict the flow patterns around a cylinder of diameter D, = 5 ft, 
around which air is to flow with an approach velocity (v,), = 30 ft/s, by means of an ex- 

Stagnation point 7eparation point 

Separation point 

Separation point 

von 
Kbmin 
vortex 
street 

I Turbulent 
wake 

Separation point 

Fig. 3.7-2. The types of 
behavior for the flow 
around a cylinder, illus- 
trating the various flow 
regimes that are ob- 
served as the Reynolds 
number increases. Re- 
gions of turbulent flow 
are shaded in gray. 
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periment on a scale model of diameter DII = 1 ft. To have dynamic similarity, we must 
choose conditions such that Re, = ReI. Then if we use the same fluid in the small-scale 
experiment as in the large system, so that p,/fi, = ,uI/pI, we find (v,),, = 150 ft/s as the 
required air velocity in the small-scale model. With the Reynolds numbers thus equal- 
ized, the flow patterns in the model and the full-scale system will look alike: that is, they 
are geometrically similar. 

Furthermore, if Re is in the range of periodic vortex formation, the dimensionless 
time interval t,v,/D between vortices will be the same in the two systems. Thus, the vor- 
tices will shed 25 times as fast in the model as in the full-scale system. The regularity of 
the vortex shedding at Reynolds numbers from about lo2 to lo4 is utilized commercially 
for precise flow metering in large pipelines. 

It is desired to predict the flow behavior in a large, unbaffled tank of oil, shown in Fig. 3.7-3, 
as a function of the impeller rotation speed. We propose to do this by means of model experi- 

Steady Flow in an ments in a smaller, geometrically similar system. Determine the conditions necessary for the 
Agitated Tank model studies to provide a direct means of prediction. 

SOLUTION We consider a tank of radius R, with a centered impeller of overall diameter D. At time t = 0, 
the system is stationary and contains liquid to a height H above the tank bottom. Immediately 
after time t = 0, the impeller begins rotating at a constant speed of N revolutions per minute. 
The drag of the atmosphere on the liquid surface is neglected. The impeller shape and initial 
position are described by the function Si,,(r, 6, z) = 0. 

The flow is governed by Eqs. 3.7-1 and 2, along with the initial condition 

and the following boundary conditions for the liquid region: 

tank bottom a t z = O a n d O ~ r < R ,  v = O  

tank wall a t r = R ,  v = O  
impeller surface at Simp(r, 0 - 27~Nt, z) = 0, v = 2n-Nr6, 

gas-liquid interface at Si&, 6, z, t )  = 0, (n . v) = 0 

and np + [n . T I  = np,,, 

Initial 
liquid 
heights 

Fig. 3.7-3. Long-time average free-surface shapes, with ReI = Rell. 
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Equations 3.7-26 to 28 are the no-slip and impermeability conditions; the surface S,,,(Y, 
8 - 2 ~ N f ,  z) = O describes the location of the impeller after Nt rotations. Equation 3.7-29 is the 
condition of no mass flow through the gas-liquid interface, described by Sin&, 0, Z, t) = 0, 
which has a local unit normal vector n. Equation 3.7-30 is a force balance on an element of this 
interface (or a statement of the continuity of the normal component of the momentum flux ten- 
sor m) in which the viscous contributions from the gas side are neglected. This interface is ini- 
tially stationary in the plane z = H, and its motion thereafter is best obtained by measurement, 
though it is also predictable in principle by numerical solution of this equation system, which 
describes the initial conditions and subsequent acceleration Dv/Dt of every fluid element. 

Next we nondimensionalize the equations using the characteristic quantities v, = ND, 
1, = D, and Po = pa, along with dimensionless polar coordinates = r/D, 19, and i = z/D. 
Then the equations of continuity and motion appear as in Eqs. 3.7-8 and 9, with Re = D2NpIP. 
The initial condition takes the form 

and the boundary conditions become: 

tank bottom a t i = O a n d O < i <  

tank wall 

impeller surface at Simp(?, 6 - 2 ~ i ,  i) = O, 

gas-liquid interface at Sint(i, 8,i, I )  = 0, 

In going from Eq. 3.7-30 to 3.7-36 we have used Newton's law of viscosity in the form of Eq. 
1.2-7 (but with the last term omitted, as is appropriate for incompressible liquids). We have 
also used the abbreviation j = Vv -+ (Vv)+ for the rate-of-deformation tensor, whose dimen- 
sionless Cartesian components are y = d4 /d i i )  + (ai,/d;Fi). 

The quagtities in double brackets are known dimensionless quantities. -The function 
simp(;, 8 - 2rt, 2) is known for a given impeller design. The unknown function Sin,(< 13, i, t) is 
measurable photographically, or in principle is computable from the problem statement. 

By inspection of the dimensionless equations, we find that the velocity and pressure pro- 
files must have the form 

for a given impeller shape and location. The corresponding locus of the free surface is given by 

in which Re = D2NplP and Fr = DN2/g. For time-smoothed observations at large t, the depen- 
dence on t will disappear, as will the dependence on 6 for this axisymmetric tank geometry. 

These results provide the necessary conditions for the proposed model experiment: the 
two systems must be (i) geometrically similar (same values of R/D and H/D, same impeller 
geometry and location), and (ii) operated at the same values of the Reynolds and Froude 
numbers. Condition (ii) requires that 
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in which the kinematic viscosity v = p /p  is used. Normally both tanks will operate in the 
same gravitational field gl = gII, so that Eq. 3.7-41 requires 

Substitution of this into Eq. 3.7-40 gives the requirement 

This is an important result-namely, that the smaller tank (11) requires a fluid of smaller kine- 
matic viscosity to maintain dynamic similarity. For example, if we use a scale model with 
DII = :D,, then we need to use a fluid with kinematic viscosity vl, = vI/V% in the scaled-down 
experiment. Evidently the requirements for dynamic similarity are more stringent here than 
in the previous example, because of the additional dimensionless group Fr. 

In many practical cases, Eq. 3.7-43 calls for unattainably low values of vl,. Exact scale-up 
from a single model experiment is then not possible. In some circumstances, however, the ef- 
fect of one or more dimensionless groups may be known to be small, or may be predictable 
from experience with similar systems; in such situations, approximate scale-up from a single 
experiment is still fea~ible.~ 

This example shows the importance of including the boundary conditions in a dimen- 
sional analysis. Here the Froude number appeared only in the free-surface boundary condi- 
tion Eq. 3.7-36. Failure to use this condition would result in the omission of the restriction in 
Eq. 3.7-42, and one might improperly choose vl, = vl. If one did this, with Re,, = ReI, the 
Froude number in the smaller tank would be too large, and the vortex would be too deep, as 
shown by the dotted line in Fig. 3.7-3. 

EXAMPLE 3.7-3 Show that the mean axial gradient of the modified pressure 9 for creeping flow of a fluid of 
constant p and p through a tube of radius R, uniformly packed for a length L >> D, with 

Pressure Drop for solid particles of characteristic size D, << R, is 
Creeping Flow in a 
Packed Tube -- A@') - P(%) 

L 
- K(geom) (3.7-44) 

D; 

Here (-. .) denotes an average over a tube cross section within the packed length L, and the 
function K(geom) is a constant for a given bed geometry (i.e., a given shape and arrangement 
of the particles). 

SOLUTION We choose D, as the characteristic length and (v,) as the characteristic velocity. Then the i~ t e r -  
stitial fluid motion is determined by Eqs. 3.7-8 and 3.7-913, with ; = v/(v,) and 9 = 

(9 - 90)Dp/p(v,), along with no-slip conditions on the solid syrfaces and the modified pres- 
sure difference A(9) = (9,) - (9,). The solutions for ; and 9 in creeping flow (D,(v,)p/p 
+ 0) accordingly depend only on ;, 6 ,  and i for a given particle arrangement and shape. Then 
the mean axial gradient 

depends only on the bed-geometry as long as R and L are large relative to D,. Inserting the 
foregoing expression for @, we immediately obtain Eq. 3.7-44. 

For an introduction to methods for scale-up with incomplete dynamic similarity, see R. W. Powell, 
A n  Elementary Text in Hydraulics and Fluid Mechanics, Macmillan, New York (1951). 



104 Chapter 3 The Equations of Change for Isothermal Systems 

PROBLEMS 

QUESTIONS FOR DISCUSSION 

What is the physical meaning of the term Ax Ay(pv,)l, in Eq. 3.1-2? What is the physical mean- 
ing of (V . v)? of (V - pv)? 
By making a mass balance over a volume element (Ar)(rAO)(Az) derive the equation of conti- 
nuity in cylindrical coordinates. 
What is the physical meaning of the term Ax Ay(pv,v,)l, in Eq. 3.2-2? What is the physical 
meaning of [V . pwl? 
What happens when f is set equal to unity in Eq. 3.5-4? 
Equation B in Table 3.5-1 is not restricted to fluids with constant density, even though p is to 
the left of the substantial derivative. Explain. 
In the tangential annular flow problem in Example 3.5-3, would you expect the velocity pro- 
files relative to the inner cylinder to be the same in the following two situations: (i) the inner 
cylinder is fixed and the outer cylinder rotates with an angular velocity fl; (ii) the outer cylin- 
der is fixed and the inner cylinder rotates with an angular velocity -a? Both flows are pre- 
sumed to be laminar and stable. 
Suppose that, in Example 3.6-4, there were two immiscible liquids in the rotating beaker. 
What would be the shape of the interface between the two liquid regions? 
Would the system discussed in Example 3.6-5 be useful as a viscometer? 
In Eq. 3.6-55, explain by means of a carefully drawn sketch the choice of limits in the integra- 
tion and the meaning of each factor in the first integrand. 
What factors would need to be taken into account in designing a mixing tank for use on the 
moon by using data from a similar tank on earth? 

3A.1 Torque required to turn a friction bearing (Fig. 
3A.1). Calculate the required torque in lbf ft and power 
consumption in horsepower to turn the shaft in the friction 
bearing shown in the figure. The length of the bearing sur- 
face on the shaft is 2 in, and the shaft is rotating at 200 
rpm. The viscosity of the lubricant is 200 cp, and its den- 
sity is 50 lb,/ft3. Neglect the effect of eccentricity. 
Answers: 0.32 lbf. ft; 0.012 hp = 0.009 kW 

Fig. 3A.1. Friction 
L J bearing. 

3A.2 Friction loss in bearings? Each of two screws on a 
large motor-ship is driven by a 4000-hp engine. The shaft 
that connects the motor and the screw is 16 in. in diameter 

This problem was contributed by Prof. E. J. Crosby, 
University of Wisconsin. 

and rests in a series of sleeve bearings that give a 0.005 in. 
clearance. The shaft rotates at 50 rpm, the lubricant has a 
viscosity of 5000 cp, and there are 20 bearings, each 1 ft in 
length. Estimate the fraction of engine power expended in 
rotating the shafts in their bearings. Neglect the effect of 
the eccentricity. 
Answer: 0.1 15 

3A.3 Effect of altitude on air pressure. When standing 
at the mouth of the Ontonagon River on the south shore of 
Lake Superior (602 ft above mean sea level), your portable 
barometer indicates a pressure of 750 mm Hg. Use the 
equation of motion to estimate the barometric pressure at 
the top of Government Peak (2023 ft above mean sea level) 
in the nearby Porcupine Mountains. Assume that the tem- 
perature at lake Level is 70°F and that the temperature de- 
creases with increasing altitude at a steady rate of 3°F per 
1000 feet. The gravitational acceleration at the south shore 
of Lake Superior is about 32.19 ft/s2, and its variation with 
altitude may be neglected in this problem. 
Answer: 713 mm Hg = 9.49 X lo4 N/m2 

3A.4 Viscosity determination with a rotating-cylinder 
viscometer. It is desired to measure the viscosities of su- 
crose solutions of about 60% concentration by weight at 
about 20°C with a rotating-cylinder viscometer such as 
that shown in Fig. 3.5-1. This instrument has an inner 
cylinder 4.000 cm in diameter surrounded by a rotating 
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concentric cylinder 4.500 cm in diameter. The length L is 
4.00 cm. The viscosity of a 60% sucrose solution at 20°C is 
about 57 cp, and its density is about 1.29 g/cm3. 

On the basis of past experience it seems possible that 
end effects will be important, and it is therefore decided to 
calibrate the viscometer by measurements on some known 
solutions of approximately the same viscosity as those of 
the unknown sucrose solutions. 

Determine a reasonable value for the applied torque 
to be used in calibration if the torque measurements are re- 
liable within 100 dyne/cm and the angular velocity can be 
measured within 0.5%. What will be the resultant angular 
velocity? 

3A.5 Fabrication of a parabolic mirror. It is proposed to 
make a backing for a parabolic mirror, by rotating a pan of 
slow-hardening plastic resin at constant speed until it 
hardens. Calculate the rotational speed required to pro- 
duce a mirror of focal length f = 100 cm. The focal length is 
one-half the radius of curvature at the axis, which in turn 
is given by 

Answer: 21 .I rpm 

3A.6 Scale-up of an agitated tank. Experiments with a 
small-scale agitated tank are to be used to design a geo- 
metrically similar installation with linear dimensions 10 
times as large. The fluid in the large tank will be a heavy 
oil with p = 13.5 cp and p = 0.9 g/cm3. The large tank is to 
have an impeller speed of 120 rpm. 
(a) Determine the impeller speed for the small-scale 
model, in accordance with the criteria for scale-up given in 
Example 3.7-2. 
(b) Determine the operating temperature for the model if 
water is to be used as the stirred fluid. 
Answers: (a) 380 rpm, (b) T = 60°C 

3A.7 Air entrainment in a draining tank (Fig. 3A.7). A 
molasses storage tank 60 ft in diameter is to be built with a 
draw-off line 1 ft in diameter, 4 ft from the sidewall of the 

Fig. 3A.7. Draining of a molasses tank. 

tank and extending vertically upward 1 ft from the tank 
bottom. It is known from experience that, as molasses is 
withdrawn from the tank, a vortex will form, and, as the 
liquid level drops, this vortex will ultimately reach the 
draw-off pipe, allowing air to be sucked into the molasses. 
This is to be avoided. 

It is proposed to predict the minimum liquid level at 
which this entrainment can be avoided, at a draw-off rate 
of 800 gal/min, by a model study using a smaller tank. For 
convenience, water at 68OF is to be used for the fluid in the 
model study. 

Determine the proper tank dimensions and operating 
conditions for the model if the density of the molasses is 
1.286 g/cm3 and its viscosity is 56.7 cp. It may be assumed 
that, in either the full-size tank or the model, the vortex 
shape is dependent only on the amount of the liquid in the 
tank and the draw-off rate; that is, the vortex establishes it- 
self very rapidly. 

38.1 Flow between coaxial cylinders and concentric 
spheres. 
(a) The space between two coaxial cylinders is filled with 
an incompressible fluid at constant temperature. The radii 
of the inner and outer wetted surfaces are KR and R, re- 
spectively. The angular velocities of rotation of the inner 
and outer cylinders are ai and a,. Determine the velocity 
distribution in the fluid and the torques on the two cylin- 
ders needed to maintain the motion. 
(b) Repeat part (a) for two concentric spheres. 

Answers: 

(a) v, = - 

3B.2 Laminar flow in a triangular duct (Fig. 3B.2h2 
One type of compact heat exchanger is shown in Fig. 
3B.2(a). In order to analyze the performance of such an 
apparatus, it is necessary to understand the flow in a duct 
whose cross section is an equilateral triangle. This is done 
most easily by installing a coordinate system as shown in 
Fig. 3B.2(b). 
(a) Verify that the velocity distribution for the laminar 
flow of a Newtonian fluid in a duct of this type is given 

by 

An alternative formulation of the velocity profile is given 
by L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, 
Oxford, 2nd edition (19871, p. 54. 
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Fig. 3B.2. (a) Compact heat-exchanger element, showing 
channels of a triangular cross section; (b)  coordinate sys- 
tem for an equilateral-triangular duct. 

(b) From Eq. 3B.2-1 find the average velocity, maximum 
velocity, and mass flow rate. 

3B.3 Laminar flow in a square duct. 
(a) A straight duct extends in the z direction for a length L 
and has a square cross section, bordered by the lines x = 
?B and y = ?B. A colleague has told you that the velocity 
distribution is given by 

vz = - "'" [[I - ($)i][l - (:)I (38.34) 
4 d  

Since this colleague has occasionally given you wrong ad- 
vice in the past, you feel obliged to check the result. Does it 
satisfy the relevant boundary conditions and the relevant 
differential equation? 
(b) According to the review article by BerkerI3 the mass 
rate of flow in a square duct is given by 

Compare the coefficient in this expression with the coeffi- 
cient that one obtains from Eq. 3B.3-1. 

R. Berker, Handbuch der Physik, Vol. VIII/2, Springer, Berlin 
(1963); see pp. 67-77 for laminar flow in conduits of noncirmlar cross 
sections. See also W. E. Stewart, AlChE Journal, 8,425428 (1962). 

id in Fig. 3B.4. Creeping flow in the re- 
gion between two stationary con- 
centric spheres. 

3B.4 Creeping flow between two concentric spheres 
(Fig. 3B.4). A very viscous Newtonian fluid flows in the 
space between two concentric spheres, as shown in the fig- 
ure. It is desired to find the rate of flow in the system as a 
function of the imposed pressure difference. Neglect end 
effects and postulate that v, depends only on r and 8 with 
the other velocity components zero. 
(a) Using the equation of continuity, show that v, sin 8 = 

~ ( r ) ,  where u(r) is a function of r to be determined. 
(b) Write the Bcomponent of the equation of motion for 
this system, assuming the flow to be slow enough that the 
[V VV] term is negligible. Show that this gives 

(c) Separate this into two equations 

d 9  sin 8 - = B; = B (3B.4-2,3) 
dtl 

where B is the separation constant, and solve the two 
equations to get 

B = 
9, - 9, 

2 1n cot is 

u(r) = "' - "')' [(I - 6 )  + (1 - +)] (384-5) 
4p ln cot (s/2) 

where 9, and 9, are the values of the modified pressure at 
0 = E and 8 = .rr - E, respectively. 
(d) Use the results above to get the mass rate of flow 

g(P1 - g2)R3(1 - K ) ~ ~  
w = (3B.4-6) 

12p h cot (c?/2) 

3B.5 Parallel-disk viscometer (Fig. 3B.5). A fluid, whose 
viscosity is to be measured, is placed in the gap of thick- 
ness B between the two disks of radius R. One measures 
the torque T, required to turn the upper disk at an angular 
velocity cC1. Develop the formula for deducing the viscosity 
from these measurements. Assume creeping flow. 
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Disk at z = B rotates 
Fluid with viscosity with angular 
p and density p is 
held in place by 
surface tension 

J velOci'Y 
/Disk at z = 0 is fixed 

Both disks have 
radius R 
and R >> B 

Fig. 3B.5. Parallel-disk viscometer. 

(a) Postulate that for small values of fl the velocity pro- 
files have the form v, = 0, v, = 0, and v, = rf(z); why does 
this form for the tangential velocity seem reasonable? Pos- 
tulate further that 9 = 9(r, z). Write down the resulting 
simplified equations of continuity and motion. 
(b) From the 8-component of the equation of motion, ob- 
tain a differential equation for f(z). Solve the equation for 
f(z) and evaluate the constants of integration. This leads 
ultimately to the result v, = ar(z /B) .  Could you have 
guessed this result? 
(c) Show that the desired working equation for deducing 
the viscosity is p = 22BTZ/dR4. 
(d) Discuss the advantages and disadvantages of this in- 
strument. 

3B.6 Circulating axial flow in an annulus (Fig. 3B.6). A 
rod of radius KR moves upward with a constant velocity v, 
through a cylindrical container of inner radius R contain- 
ing a Newtonian liquid. The liquid circulates in the cylin- 
der, moving upward along the moving central rod and 
moving downward along the fixed container wall. Find 
the velocity distribution in the annular region, far from the 
end disturbances. Flows similar to this occur in the seals of 
some reciprocating machinery-for example, in the annu- 
lar space between piston rings. 

Rod of radius KR 
moves upward with 

velocity vo 

I I Cylinder of length L 
I I , , and inner radius R 
4 I 

I I  I (with L >> R) 

Fig. 3B.6. Circulating 
flow produced by an 
axially moving rod in a 
closed annular region. 

(a) First consider the problem where the annular region is 
quite narrow-that is, where K is just slightly less than 
unity. In that case the annulus may be approximated by a 
thin plane slit and the curvature can be neglected. Show 
that in this limit, the velocity distribution is given by 

where 6 = r / R .  
(b) Next work the problem without the thin-slit assump- 
tion. Show that the velocity distribution is given by 

3B.7 Momentum fluxes for creeping flow into a slot 
(Fig. 3.B-7). An incompressible Newtonian liquid is flow- 
ing very slowly into a thin slot of thickness 2B (in the y di- 
rection) and width W (in the z direction). The mass rate of 
flow in the slot is w. From the results of Problem 2B.3 it can 
be shown that the velocity distribution within the slot is 

at locations not too near the inlet. In the region outside the 
slot the components of the velocity for creepingflow are 

Equations 3B.7-1 to 4 are only approximate in the region 
near the slot entry for both x 2 0 and x 5 0. 

Fig. 3B.7. Flow of a liquid into a slot from a semi-infinite 
region x < 0. 
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(a) Find the components of the convective momentum 
flux p w  inside and outside the slot. 
(b) Evaluate the xx-component of p w  at x = -a, y = 0. 
(c) Evaluate the xy-component of p w  at x = -a, y = fa. 
(d) Does the total flow of kinetic energy through the plane 
x = -a equal the total flow of kinetic energy through the 
slot? 
(e)  Verify that the velocity distributions given in Eqs. 
3B.7-1 to 4 satisfy the relation (V . v) = 0. 
(f) Find the normal stress r,, at the plane y = 0 and also on 
the solid surface at x = 0. 
(g) Find the shear stress r,, on the solid surface at x = 0. 
Is this result surprising? Does sketching the velocity pro- 
file z:, vs, x at some plane y = a assist in understanding the 
result? 

3B.8 Velocity distribution for creeping flow toward a 
slot (Fig. 3B.7): It is desired to get the velocity distribu- 
tion given for the upstream region in the previous prob- 
lem. We postulate that v, = 0, v, = 0, v, = vr(r, O), and 9 = 

9(r, 8). 
(a) Show that the equation of continuity in cylindrical co- 
ordinates gives v, = f (O)/r, where f(8) is a function of 8 for 
which df/d@ = 0 at 0 = 0, and f = 0 at 8 = ~ / 2 .  
(b) Write the r- and 8-components of the creeping flow 
equation of motion, and insert the expression for f(0) 
from (a). 
(c) Differentiate the r-component of the equation of mo- 
tion with respect to 6 and the 8-component with respect to 
r. Show that this leads to 

(d) Solve this differential equation and obtain an expres- 
sion for f(0) containing three integration constants. 
(e) Evaluate the integration constants by using the two 
boundary conditions in (a) and the fact that the total mass- 
flow rate through any cylindrical surface must equal w. 
This gives 

2w c0s2 8 vr = -- (3B.8-2) 
.;rr Wpr 

(f) Next from the equations of motion in (b) obtain P(r, 0) as 

What is the physical meaning of 9,? 

(g) Show that the total normal stress exerted on the solid 
surface at 6 = r / 2  is 

(h) Next evaluate T ~ ,  on the same solid surface. 
(i) Show that the velocity profile obtained in Eq. 3B.8-2 is 
the equivalent to Eqs. 3B.7-2 and 3. 

3B.9 Slow transverse flow around a cylinder (see Fig. 
3.7-1). An incompressible Newtonian fluid approaches a 
stationary cylinder with a uniform, steady velocity v, in 
the positive x direction. When the equations of change 
are solved for creeping flow, the following expressions5 
are found for the pressure and velocity in the immediate 
vicinity of the cylinder (they are not valid at large 
distances): 

v, cos 8 
CP 7 - pgr sin 8 (3B.9-1) 

v, = Cum[+ In (i) - f + cos 8 (38.9-21 

v, = C v ,  - In - + - - - - sin 8 (3B.9-3) [: ( :(:)4 
Here p, is the pressure far from the cylinder at y = 0 and 

with the Reynolds number defined as Re = 2Rv,p/p. 
(a) Use these results to get the pressure p, the shear stress 
r,,, and the normal stress r,, at the surface of the cylinder. 
(b) Show that the x-component of the force per unit area 
exerted by the liquid on the cylinder is 

-plrZR cos 8 + ~ ~ ~ l ~ = ~  sin 8 . (3B.9-5) 

(c) Obtain the force F ,  = 2Cdpv, exerted in the x direc- 
tion on a length L of the cylinder. 

3B.10 Radial flow between parallel disks (Fig. 3B.10). 
A part of a lubrication system consists of two circular 
disks between which a lubricant flows radially. The flow 
takes place because of a modified pressure difference 
9, - 9, between the inner and outer radii r, and r2, 
respectively. 
(a) Write the equations of continuity and motion for this 
flow system, assuming steady-state, laminar, incompress- 
ible Newtonian flow. Consider only the region r, 5 r r r2 
and a flow that is radially directed. 

%Adapted from R. B. Bird, R. C. Armstrong, and 0. Hassager, 
Dynamics of Polymeric Liquids, Vol. 1, Wiley-Interscience, New See G. K. Batchelor, An Introduction to Fluid Dynamics, 
York, 2nd edition (1987), pp. 4243. Cambridge University Press (1967), pp. 244-246,261. 
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( Fluid in 

Radial flow outward ':= between disks 

- - - - - - - - 2 = +b 
C- r - - - - - - - - z = -b 

r = r2 r = r, 

Fig. 3B.10. Outward radial flow in the space between two 
parallel, circular disks. 

(b) Show how the equation of continuity enables one to 
simplify the equation of motion to give 

in which 4 = rv, is a function of z only. Why is 4 indepen- 
dent of r? 
(c) It can be shown that no solution exists for Eq. 3B.10-1 
unless the nonlinear term containing 4 is omitted. Omis- 
sion of this term corresponds to the "creeping flow as- 
sumption." Show that for creeping flow, Eq. 3B.10-1 can be 
integrated with respect to r to give 

(d) Show that further integration with respect to z gives 

(e) Show that the mass flow rate is 

(f) Sketch the curves 9(r) and vr(r, z). 

3B.11 Radial flow between two coaxial cylinders. Con- 
sider an incompressible fluid, at constant temperature, 
flowing radially between two porous cylindrical shells 
with inner and outer radii KR and R. 
(a) Show that the equation of continuity leads to v, = C/r, 
where C is a constant. 
(b) Simplify the components of the equation of motion to 
obtain the following expressions for the modified-pressure 
distribution: 

(c) Integrate the expression for dP/dr above to get 

(dl Write out all the nonzero components of T for this flow. 
(el Repeat the problem for concentric spheres. 

38.12 Pressure distribution in incompressible fluids. 
Penelope is staring at a beaker filled with a liquid, which 
for all practical purposes can be considered as incompress- 
ible; let its density be p,. She tells you she is trying to un- 
derstand how the pressure in the liquid varies with depth. 
She has taken the origin of coordinates at the liquid-air in- 
terface, with the positive z-axis pointing away from the liq- 
uid. She says to you: 

"If I simplify the equation of motion for an incom- 
pressible liquid at rest, I get 0 = -dp/dz - p ~ .  I can solve 
this and get p = pa,, - pgz. That seems reasonablethe 
pressure increases with increasing depth. 

"But, on the other hand, the equation of state for any 
fluid is p = p(p, 79, and if the system is at constant temper- 
ature, this just simplifies to p = p(p). And, since the fluid is 
incompressible, p = p(po), and p must be a constant 
throughout the fluid! How can that be?" 

Clearly Penelope needs help. Provide a useful expla- 
nation. 

3B.13 Flow of a fluid through a sudden contraction. 
(a) An incompressible liquid flows through a sudden con- 
traction from a pipe of diameter Dl into a pipe of smaller 
diameter D2. What does the Bernoulli equation predict for 
9, - 9,, the difference between the modified pressures 
upstream and downstream of the contraction? Does this 
result agree with experimental observations? 
(b) Repeat the derivation for the isothermal horizontal 
flow of an ideal gas through a sudden contraction. 

3B.14 Torricelli's equation for efflux from a tank (Fig. 
3B.14). A large uncovered tank is filled with a liquid to a 
height h. Near the bottom of the tank, there is a hole that 
allows the fluid to exit to the atmosphere. Apply 
Bernoulli's equation to a streamline that extends from the 
surface of the liquid at the top to a point in the exit 

Liquid surface 
at which 

vl = 0 and p = pat, 

Typical streamline 

Fluid exit at which 
v2 = Uefflux and 

P = Patm 

Fig. 3B.14. Fluid draining from a tank. Points "1" and "2" 
are on the same streamline. 
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stream just outside the vessel. Show that this leads to an 
efflux velocity v,,,,, = 1/2gh. This is known as Torricelli's 
equation. 

To get this result, one has to assume incompressibility 
(which is usually reasonable for most liquids), and that the 
height of the fluid surface is changing so slowly with time 
that the Bernoulli equation can be applied at any instant of 
time (the quasi-steady-state assumption). 

3B.15 Shape of free surface in tangential annular flow. 
(a) A liquid is in the annular space between two vertical 
cylinders of radii KR and R, and the liquid is open to the 
atmosphere at the top. Show that when the inner cylinder 
rotates with an angular velocity Cli, and the outer cylinder 
is fixed, the free liquid surface has the shape 

in which z, is the height of the liquid at the outer-cylinder 
wall, and 5 = r/R. 
(b) Repeat (a) but with the inner cylinder fixed and the 
outer cylinder rotating with an angular velocity Cl,. Show 
that the shape of the liquid surface is 

(c) Draw a sketch comparing these two liquid-surface 
shapes. 

3B.16 Flow in a slit with uniform cross flow (Fig. 3B.16). 
A fluid flows in the positive x-direction through a long flat 
duct of length L, width W, and thickness B, where L >> W 
>> B. The duct has porous walls at y = 0 and y = B, so 
that a constant cross flow can be maintained, with v, = v,, 
a constant, everywhere. Flows of this type are important 
in connection with separation processes using the sweep- 
diffusion effect. By carefully controlling the cross flow, 
one can concentrate the larger constituents (molecules, 
dust particles, etc.) near the upper wall. 

t t t t t t t t t  4 ,  - R 

X 
y = o  

t t t t t t t t t  

Fig. 38.16. Flow in a slit of length L, width W, and thick- 
ness B. The walls at y = 0 and y = B are porous, and there 
is a flow of the fluid in they direction, with a uniform 
velocity v, = v,. 

(a) Show that the velocity profile for the system is given by 

in which A = Bv,p/p. 
(b) Show that the mass flow rate in the x direction is 

(c) Verify that the above results simplify to those of Prob- 
lem 2B.3 in the limit that there is no cross flow at all (that 
is, A + 0). 
(dl A colleague has also solved this problem, but taking a 
coordinate system with y = 0 at the midplane of the slit, 
with the porous walls located at y = +b. His answer to 
part (a) above is 

ea'l - 
vx - -- 

rl sinh a! - cosh a 
(3B.16-3) 

(v,) (lla) sinh a - cosh a 

in which a = bv,p/p and rl = y/@. Is this result equivalent 
to Eq. 3B.16-I? 

3C.1 Parallel-disk compression viscometer6 (Fig. 3C.-1). 
A fluid fills completely the region between two circular 
disks of radius R. The bottom disk is fixed, and the upper 
disk is made to approach the lower one very slowly with a 
constant speed vo, starting from a height H, (and H, << R). 
The instantaneous height of the upper disk is H(t). It is de- 
sired to find the force needed to maintain the speed vo. 

This problem is inherently a rather complicated un- 
steady-state flow problem. However, a useful approximate 
solution can be obtained by making two simplifications in 

I 
Upper disk I I 

movesdown- 1 i I 
I ward slowly I I 

at constant I 
speed v,, 1 !I 

! "t ! H(t) 
I 

f l  
Lower disk I 1'17 I 

is fixed I k ~ 4  
Fig. 3C.1. Squeezing flow in a parallel-disk compression 
viscometer. 

J. R. Van Wazer, J. W. Lyons, K. Y. Kim, and R. E. Colwell, 
Viscosity and Flow Measurement, Wiley-Interscience, New York 
(1963), pp. 292-295. 
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the equations of change: (i) we assume that the speed v, is 
so slow that all terms containing time derivatives can be 
omitted; this is the so-called "quasi-steady-state" assump- 
tion; (ii) we use the fact that Ho < < R to neglect quite a few 
terms in the equations of change by order-of-magnitude 
arguments. Note that the rate of decrease of the fluid vol- 
ume between the disks is n-R2v,, and that this must equal 
the rate of outflow from between the disks, which is 
z~TRH(v,)I,,~. Hence 

We now argue that v,(r, z) will be of the order of magni- 
tude of ( ~ , ) l , = ~  and that v,(r, z )  is of the order of magnitude 
of v,, so that 

and hence Iv,l << u,. We may now estimate the order of 
magnitude of various derivatives as follows: as r goes 
from 0 to R, the radial velocity v, goes from zero to approx- 
imately (R/H)v,. By this kind of reasoning we get 

(a) By the above-outlined order-of-magnitude analysis, 
show that the continuity equation and the r-component of 
the equation of motion become (with g, neglected) 

continuity: 

motion 

with the boundary conditions 

B.C. 1: at z = 0, v, = 0, v, = 0 (3C.1-8) 

B.C.2: a tz=H(t ) ,  v,=O, v,=-vo (3C.1-9) 

B.C. 3: at r = R, P = Patm (3C.1-10) 

(b) From Eqs. 3C.1-7 to 9 obtain 

(c) Integrate Eq. 3C.1-6 with respect to z and substitute the 
result from Eq. 3.C.1-11 to get 

(d) Solve Eq. 3C.1-12 to get the pressure distribution 

(el Integrate [(p + T,,) - pat,] over the moving-disk surface 
to find the total force needed to maintain the disk motion: 

This result can be used to obtain the viscosity from the 
force and velocity measurements. 
(f) Repeat the analysis for a viscometer that is operated in 
such a way that a centered, circular glob of liquid never 
completely fills the space between the two plates. Let the 
volume of the sample be V and obtain 

(g) Repeat the analysis for a viscometer that is operated 
with constant applied force, F,. The viscosity is then to be 
determined by measuring H as a function of time, and the 
upper-plate velocity is not a constant. Show that 

3C.2 Normal stresses at solid surfaces for compress- 
ible fluids. Extend example 3.1-1 to compressible fluids. 
Show that 

r2, I Z e O  = ($p + ~ ) ( d  In p/dt)l,-, (3C.2-1) 

Discuss the physical significance of this result. 

3C.3 Deformation of a fluid line (Fig. 3C.3). A fluid is 
contained in the annular space between two cylinders of 
radii KR and R. The inner cylinder is made to rotate with a 
constant angular velocity of fli. Consider a line of fluid 
particles in the plane z = 0 extending from the inner cylin- 
der to the outer cylinder and initially located at 0 = 0, nor- 
mal to the two surfaces. How does this fluid line deform 
into a curve O(r, t)? What is the length, 1, of the curve after 
N revolutions of the inner cylinder? Use Eq. 3.6-32. 

I Answer: - = 
R 

I Fluid curve 

Inner cylinder 
Fixed outer rotating with angular 

cylinder velocity Qi 

Fig. 3C.3. Deformation of a fluid line in Couette flow. 
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3C.4 Alternative methods of solving the Couette vis- 
cometer problem by use of angular momentum concepts 
(Fig. 3.6-1). 
(a) By making a shell angular-momentum balance on a thin 
shell of thickness Ar, show that 

Next insert the appropriate expression for T,, in terms of 
the gradient of the tangential component of the velocity. 
Then solve the resulting differential equation with the 
boundary conditions to get Eq. 3.6-29. 
(b) Show how to obtain Eq. 3C.4-1 from the equation of 
change for angular momentum given in Eq. 3.4-1. 

3C.5 Two-phase interfacial boundary conditions. In 52.1, 
boundary conditions for solving viscous flow problems were 
given. At that point no mention was made of the role of inter- 
facial tension. At the interface between two immiscible fluids, 
I and 11, the following boundary condition should be used: 

This is essentially a momentum balance written for an in- 
terfacial element dS with no matter passing through it, and 
with no interfacial mass or viscosity. Here n' is the unit 
vector normal to dS and pointing into phase I. The quanti- 
ties R, and R, are the principal radii of curvature at dS, and 
each of these is positive if its center lies in phase I. The sum 
(l/R,) + (1/R2) can also be expressed as (V - n'). The quan- 
tity u is the interfacial tension, assumed constant. 
(a) Show that, for a spherical droplet of I at rest in a sec- 
ond medium 11, Laplace's equation 

relates the pressures inside and outside the droplet. Is the 
pressure in phase I greater than that in phase 11, or the re- 
verse? What is the relation between the pressures at a pla- 
nar interface? 
(b) Show that Eq. 3C.5-1 leads to the following dimension- 
less boundary condition 

in which hV = (k - ho)/lo is the dimensionless elevation of 
dS, and are dimensionless rate-of-deformation ten- 
sors, and I?, = R,/lo and R, = R2/lo are dimensionless radii 
of curvature. Furthermore 

In the above, the zero-subscripted quantities are the scale 
factors, valid in both phases. Idenhfy the dimensionless 
groups that appear in Eq. 3C.5-3. 
(c) Show how the result in (b) simplifies to Eq. 3.7-36 
under the assumptions made in Example 3.7-2. 

3D.1 Derivation of the equations of change by integral 
theorems (Fig. 3D.1). 
(a) A fluid is flowing through some region of 3-dimensional 
space. Select an arbitrary "blob of this fluid-that is, a 
region that is bounded by some surface S(t) enclosing a 
volume V(t), whose elements move with the local fluid ve- 
locity. Apply Newton's second law of motion to this sys- 
tem to get 

in which the terms on the right account for the surface and 
volume forces acting on the system. Apply the Leibniz for- 
mula for differentiating an integral (see §A.5), recognizing 
that at all points on the surface of the blob, the surface ve- 
locity is identical to the fluid velocity. Next apply the 
Gauss theorem for a tensor (see 5A.5) so that each term in 
the equation is a volume integral. Since the choice of the 
"blob" is arbitrary, all the integral signs may be removed, 
and the equation of motion in Eq. 3.2-9 is obtained. 
(b) Derive the equation of motion by writing a momen- 
tum balance over an arbitrary region of volume V and sur- 
face S, fixed in space, through which a fluid is flowing. In 
doing this, just parallel the derivation given in 53.2 for a 

L. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, 
Oxford, 2nd edition (1987), Eq. 61.13. More general formulas 
including the excess density and viscosity have been developed 
by L. E. Scriven, Chern. Eng. Sci., 12,98-108 (1960). 

Fig. 3D.1. Moving "blob of fluid to which Newton's sec- 
ond law of motion is applied. Every element of the fluid 
surface dS(t) of the moving, deforming volume element 
V(t) moves with the local, instantaneous fluid velocity v(t). 
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rectangular fluid element. The Gauss theorem for a tensor 
is needed to complete the derivation. 

This problem shows that applying Newton's second law 
of motion to an arbitrary moving "blob of fluid is equivalent 
to setting up a momentum balance over an arbitrary fixed re- 
gion of space through which the fluid is moving. Both (a) and 
(b) give the same result as that obtained in 93.2. 
(c) Derive the equation of continuity using a volume ele- 
ment of arbitrary shape, both moving and fixed, by the 
methods outlined in (a) and (b). 

in which E is a third-order tensor whose components are 
the permutation symbol qjk (see 9A.2) and v = p/p  is the 
kinematic viscosity. 
(b) How do the equations in (a) simplify for two-dimen- 
sional flows? 

3D.3 Alternate form of the equation of motion.' Show 
that, for an incompressible Newtonian fluid with con- 
stant viscosity, the equation of motion may be put into 
the form 

3D.2 The equation of change for vorticity. 4V2p = p(o:wt - j: j )  (3D.3-2) 

(a) By taking the curl of the Navier-Stokes equation of where 
motion (in either the D/Dt form or the d / d t  form), obtain 

y = Vv + (Vv)+ and o = VV - ( V V ) ~  (3D.3-2) 
an equation for the vorticity, w = [V X vl of the fluid; this 
equation may be written in two ways: 

D 
- w = vV2w + [w ' Vv] 
Dt 

(3D.2-1) 

D 
- w = vV2w + [E:[(vv) (vv)]] (3D.2-2) ' P. G. Saffman, Vortex Dynamics, Cambridge University 
Dt Press, corrected edition (1995). 



Chapter 4 

Velocity Distributions with More 
Than One Independent Variable 

4 . 1  Time-dependent flow of Newtonian fluids 

~ 4 . 2 ~  Solving flow problems using a stream function 

94.3O Flow of inviscid fluids by use of the velocity potential 

S4.4O Flow near solid surfaces by boundary-layer theory 

In Chapter 2 we saw that viscous flow problems with straight streamlines can be solved 
by shell momentum balances. In Chapter 3 we introduced the equations of continuity 
and motion, which provide a better way to set up problems. The method was illustrated 
in S3.6, but there we restricted ourselves to flow problems in which only ordinary differ- 
ential equations had to be solved. 

In this chapter we discuss several classes of problems that involve the solutions of 
partial differential equations: unsteady-state flow (94.11, viscous flow in more than one 
direction (§4.2), the flow of inviscid fluids (94.3), and viscous flow in boundary layers 
(s4.4). Since all these topics are treated extensively in fluid dynamics treatises, we pro- 
vide here only an introduction to them and illustrate some widely used methods for 
problem solving. 

In addition to the analytical methods given in this chapter, there is also a rapidly ex- 
panding literature on numerical methods.' The field of computational fluid dynamics is 
already playing an important role in the field of transport phenomena. The numerical 
and analytical methods play roles complementary to one another, with the numerical 
methods being indispensable for complicated practical problems. 

4 . 1  TIME-DEPENDENT FLOW OF NEWTONIAN FLUIDS 

In 53.6 only steady-state problems were solved. However, in many situations the veloc- 
ity depends on both position and time, and the flow is described by partial differential 
equations. In this section we illustrate three techniques that are much used in fluid 
dynamics, heat conduction, and diffusion (as well as in many other branches of physics 
and engineering). In each of these techniques the problem of solving a partial differ- 
ential equation is converted into a problem of solving one or more ordinary differential 
equations. 

-- - 

R. W. Johnson (ed.), The Handbook of Fluid Dynamics, CRC Press, Boca Raton, Fla. (1998); 
C. Pozrikidis, Introduction to Theoretical and Computational Fluid Dynamics, Oxford University Press (1997). 
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The first example illustrates the method of combination of variables (or the method of 
similarity solutions). This method is useful only for semi-infinite regions, such that the ini- 
tial condition and the boundary condition at infinity may be combined into a single new 
boundary condition. 

The second example illustrates the method of separation of variables, in which the partial 
differential equation is split up into two or more ordinary differential equations. The so- 
lution is then an infinite sum of products of the solutions of the ordinary differential 
equations. These ordinary differential equations are usually discussed under the heading 
of "Sturm-Liouville" problems in intermediate-level mathematics textbooks.' 

The third example demonstrates the method of sinusoidal response, which is useful in 
describing the way a system responds to external periodic disturbances. 

The illustrative examples are chosen for their physical simplicity, so that the major 
focus can be on the mathematical methods. Since all the problems discussed here are lin- 
ear in the velocity, Laplace transforms can also be used, and readers familiar with this 
subject are invited to solve the three examples in this section by that technique. 

A semi-infinite body of liquid with constant density and viscosity is bounded below by a hor- 
izontal surface (the xz-plane). Initially the fluid and the solid are at rest. Then at time t = 0, 

Flow near a Wall the solid surface is set in motion in the positive x direction with velocity vo as shown in Fig. 
Suddenly Set in Motion 4.1-1. Find the velocity v, as a function of y and t. There is no pressure gradient or gravity 

force in the x direction, and the flow is presumed to be laminar. 

SOLUTION For this system v, = v,(y, t), v, = 0, and v, = 0. Then from Table B.4 we find that the equation 
of continuity is satisfied directly, and from Table B.5 we get 

t > O  
Fluid in 
unsteady 
flow Fig. 4.1-1. Viscous flow of a flu lid near a wall 

Un suddenly set in motion. 

See, for example, M. D. Greenberg, Foundations of Applied Mathematics, Prentice-Hall, Englewood 
Cliffs, N.J. (19781, g20.3. 



116 Chapter 4 Velocity Distributions with More Than One Independent Variable 

in which v = p / p .  The initial and boundary conditions are 

I.C.: 

B.C. 1: 

B.C. 2: 

at t 5 0, v, = 0 for ally 

at y = 0, v, = v, for all t > 0 

at y = a, v, = 0 for all t > 0 

Next we introduce a dimensionless velocity 4 = v,/v,, so that Eq. 4.4-1 becomes 

with +(y, 0) = 0, +(O, t) = 1, and +(a, t) = 0. Since the initial and boundary conditions con- 
tain only pure numbers, the solution to Eq. 4.1-5 has to be of the form + = +(y, t; v). However, 
since 4 is a dimensionless function, the quantities y, t, and v must always appear in a dimen- 
sionless combination. The only dimensionless combinations of these three quantities are 
y/V% or powers or multiples thereof. We therefore conclude that 

This is the "method of combination of (independent) variables." The " 4  is included so that 
the final result in Eq. 4.1-14 will look neater; we know to do this only after solving the prob- 
lem without it. The form of the solution in Eq. 4.1-6 is possible essentially because there is no 
characteristic length or time in the physical system. 

We now convert the derivatives in Eq. 4.1-5 into derivatives with respect to the "com- 
bined variable" q as follows: 

* - d W r l - d 4  1 d2+ A d24 1 and - 
dy dTdy d 7 7 G  dy2 dq2 4vt 

Substitution of these expressions into Eq. 4.1-5 then gives 

This is an ordinary differential equation of the type given in Eq. C.l-8, and the accompanying 
boundary conditions are 

B.C. 1: 

B.C. 2: 

The first of these boundary conditions is the same as Eq. 4.1-3, and the second includes 
Eqs. 4.1-2 and 4. If now we let d#~/dq = $, we get a first-order separable equation for $, 
and it may be solved to give 

A second integration then gives 

The choice of 0 for the lower limit of the integral is arbitrary; another choice would lead 
to a different value of C,, which is still undetermined. Note that we have been careful 
to use an overbar for the variable of integration (7) to distinguish it from the q in the upper 
limit. 
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Fig. 4.1-2. Velocity distribution, in 
dimensionless form, for flow in the 
neighborhood of a wall suddenly 
set in motion. 

Application of the two boundary conditions makes it possible to evaluate the two inte- 
gration constants, and we get finally 

The ratio of integrals appearing here is called the error function, abbreviated erf 77 (see 9C.6). It 
is a well-known function, available in mathematics handbooks and computer software pro- 
grams. When Eq. 4.1-14 is rewritten in the original variables, it becomes 

in which erfc 7 is called the complementa y mor function. A plot of Eq. 4.1-15 is given in Fig. 4.1-2. 
Note that, by plotting the result in terms of dimensionless quantities, only one curve is needed. 

The complementary error function erfc 7 is a monotone decreasing function that goes 
from 1 to 0 and drops to 0.01 when 77 is about 2.0. We can use this fact to define a "boundary- 
layer thickness" 6 as that distance y for which v, has dropped to a value of 0 .01~~ .  This gives 
6 = 4 6  as a natural length scale for the diffusion of momentum. This distance is a measure 
of the extent to which momentum has "penetrated into the body of the fluid. Note that this 
boundary-layer thickness is proportional to the square root of the elapsed time. 

It is desired to re-solve the preceding illustrative example, but with a fixed wall at a distance b 
from the moving wall at y = 0. This flow system has a steady-state limit as t + m, whereas the 

Unsteady Laminar problem in Example 4.1-1 did not. 
Flow Between Two 
Parallel Plates SOLUTlON 

As in Example 4.1-1, the equation for the x-component of the velocity is 

The boundary conditions are now 

I.C.: 

B.C. 1: 

B.C. 2: 

a t t 5 0 ,  v,=O f o r O S y S b  

at y = 0, v, = v, for all t > 0 

at y = b, v, = 0 for all t > 0 
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It is convenient to introduce the following dimensionless variables: 

The choices for dimensionless velocity and position ensure that these variables will go from 0 
to 1. The choice of the dimensionless time is made so that there will be no parameters occur- 
ring in the transformed partial differential equation: 

The initial condition is C$ = 0 at r = 0, and the boundary conditions are 4 = 1 at 77 = 0 and 
+ = O a t q = l .  

We know that at infinite time the system attains a steady-state velocity profile +,(q) so 
that at 7 = a Eq. 4.1-21 becomes 

for the steady-state limiting profile. 
We then can write 

$47, 7) = +,(77) - 4t(77, 7) 

where 4, is the transient part of the solution, which fades out as time goes to infinity. Substi- 
tution of this expression into the original differential equation and boundary conditions then 
gives for 4, 

with 4, = 4, at T = 0, and 4, = 0 at q = 0 and 1. 
To solve Eq. 4.1-25 we use the "method of separation of (dependent) variables," in which 

we assume a solution of the form 

Substitution of this trial solution into Eq. 4.1-25 and then division by the product fg gives 

The left side is a function of T alone, and the right side is a function of 77 alone. This means that 
both sides must equal a constant. We choose to designate the constant as -c2 (we could equally 
well use c or +c2, but experience tells us that these choices make the subsequent mathematics 
somewhat more complicated). Equation 4.1-27 can then be separated into two equations 

These equations have the following solutions (see Eqs. C.l-1 and 3): 

g = A ~ - ~ ~ ~  

f = B sin cv + C cos CV 

in which A, B, and C are constants of integration. 
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We now apply the boundary and initial conditions in the following way: 

B.C. 1: Because 4, = 0 at q = 0, the function f must be zero at r ]  = 0. Hence C must be zero. 

B.C. 2: Because 4, = 0 at r] = 1, the function f must be zero at 77 = 1. This will be true if B = 0 
or if sin c is zero. The first choice would lead to f = 0 for all r] ,  and that would be physically 
unacceptable. Therefore we make the second choice, which leads to the requirement that c = 

0, ?r, +2r, +3r, - - - - We label these various admissible values of c (called "eigenvalues") as 
c, and write 

c, = nr, with n = 0, 21, +2, +3, - . . (4.1-32) 

There are thus many admissible functions f, (called "eigenfunctions") that satisfy Eq. 4.1-29 
and the boundary conditions; namely, 

f, = B, sin nrq, with n = 0, +I, -C2, k3, . . (4.1-33) 

The corresponding functions satisfying Eq. 4.1-28 are called gn and are given by 

I.C.: The combinations fng, satisfy the partial differential equation for 4, in Eq. 4.1-25, and 
so will any superposition of such products. Therefore we write for the solution of Eq. 
4.1-25 

+ m  

$t = D, exp(-n2.rr2d sin nrr] 
n = - m  

in which the expansion coefficients D, = AnBn have yet to be determined. In the sum, the term 
n = 0 does not contribute; also since sin(-n)q = -sin(+n)q, we may omit all the terms 
with negative values of n. Hence, Eq. 4.1-35 becomes 

m 

+t = x Dn exp(-n2r2r) sin nrq  
n = l  

According to the initial condition, 4, = 1 - r ]  at r = 0, so that 
m 

1 - r] = ,=I x D, sin nrr] 

We now have to determine all the Dn from this one equation! This is done by multiplying 
both sides of the equation by sin mrr], where m is an integer, and then integrating over the 
physically pertinent range from r] = 0 to r] = 1, thus: 

m 1 lo1 (1 - r ] )  sin mrqdr) = C D. sin nrr] sin rnrr]dr] 
n = l  0 

The left side gives l/m.rr; the integrals on the right side are zero when n f m and when n = 

m. Hence the initial condition leads to 

The final expression for the dimensionless velocity profile is obtained from Eqs. 4.1-24, 36, 
and 39 as 

m 

+(r], r) = (1 - r ] )  - x exp(-n2r2r) sin nrr] 
n = l  

The solution thus consists of a steady-state-limit term minus a transient term, which fades out 
with increasing time. 
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Those readers who are encountering the method of separation of variables for the 
first time will have found the above sequence of steps rather long and complicated. 
However, no single step in the development is particularly difficult. The final solution in 
Eq. 4.1-40 looks rather involved because of the infinite sum. Actually, except for very 
small values of the time, only the first few terms in the series contribute appreciably. 

Although we do not prove it here, the solution to this problem and that of the pre- 
ceding problem are closely related.* In the limit of vanishingly small time, Eq. 4.1-40 be- 
comes equivalent to Eq. 4.1-15. This is reasonable, since, at very small time, in this 
problem the fluid is in motion only very near the wall at y = 0, and the fluid cannot 
"feel" the presence of the wall at y = b. Since the solution and result in Example 4.1-1 are 
far simpler than those of this one, they are often used to represent the system if only 
small times are involved. This is, of course, an approximation, but a very useful one. It is 
often used in heat- and mass-transport problems as well. 

A semi-infinite body of liquid is bounded on one side by a plane surface (the xz-plane). Ini- 
tially the fluid and solid are at rest. At time t = 0 the solid surface is made to oscillate sinu- 

Unsteady Laminar soidally in the x direction with amplitude Xo and (circular) frequency o.  That is, the 
Flow near an displacement X of the plane from its rest position is 
Oscillating Plate 

X(t) = Xo sin ot (4.1-41) 

and the velocity of the fluid at y = 0 is then 

dX vx(O, t) = - = Xo w COS wt 
d t 

(4.1-42) 

We designate the amplitude of the velocity oscillation by vo = Xow and rewrite Eq. 4.1-42 as 

v,(O, t )  = v, cos wt = vo%{eiUt} (4.1-43) 

where %{z] means "the real part of z." 
For oscillating systems we are generally not interested in the complete solution, but only 

the "periodic steady state" that exists after the initial "transients" have disappeared. In this 
state all the fluid particles in the system will be executing sinusoidal oscillations with fre- 
quency w, but with phase and amplitude that are functions only of position. This "periodic 
steady state" solution may be obtained by an elementary technique that is widely used. Math- 
ematically it is an asymptotic solution for t + m. 

SOLUTION Once again the equation of motion is given by 

and the initial and boundary conditions are given by 

I.C.: 

B.C. 1: 

B.C. 2: 

at t 5 0, v, = 0 for all y 

at y = 0, v, = ~,%{e'"~) for all t > 0 

a t y = m ,  v,=O for all t > 0 

The initial condition will not be needed, since we are concerned only with the fluid response 
after the plate has been oscillating for a long time. 

We postulate an oscillatory solution of the form 

See H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, 2nd edition 
(1959), pp. 308-310, for a series solution that is particularly good for short times. 
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Here vO is chosen to be a complex function of y, so that v,(y, t) will differ from v,(O, t) both in 
amplitude and phase. We substitute this trial solution into Eq. 4.1-44 and obtain 

Next we make use of the fact that, if %{z,w) = %{z2w}, where 2, and 2, are two complex quan- 
tities and w is an arbitrary complex quantity, then z, = 2,. Then Eq. 4.1-49 becomes 

with the following boundary conditions: 

B.C. 1: 

B.C. 2: 

Equation 4.1-50 is of the form of Eq. C.1-4 and has the solution 

v0 = C l e G y  + cze-Gy 

Since = t (1 /V'?)(l + i), this equation can be rewritten as 

v O  = CleGml+dY + c - v ' i z ( l + i ) y  2e 

The second boundary condition requires that C1 = 0, and the first boundary condition gives 
C, = v,. Therefore the solution to Eq. 4.1-50 is 

From this result and Eq. 4.1-48, we get 

or finally 

vJy, t) = voe-t/w/2v~ cos (ot - l/o/2vy) (4.1-57) 

In this expression, the exponential describes the attenuation of the oscillatory motion-that is, 
the decrease in the amplitude of the fluid oscillations with increasing distance from the plate. 
In the argument of the cosine, the quantity -wy is called the phase shift; that is, it de- 
scribes how much the fluid oscillations at a distance y from the wall are "out-of-step" with the 
oscillations of the wall itself. 

Keep in mind that Eq. 4.1-57 is not the complete solution to the problem as stated in Eqs. 
4.1-44 to 47, but only the "periodic-steady-state" solution. The complete solution is given in 
Problem 4D.1. 

$4.2 SOLVING FLOW PROBLEMS USING A STREAM FUNCTION 

Up to this point the examples and problems have been chosen so that there was only one 
nonvanishing component of the fluid velocity. Solutions of the complete Navier-Stokes 
equation for flow in two or three dimensions are more difficult to obtain. The basic pro- 
cedure is, of course, similar: one solves simultaneously the equations of continuity and 
motion, along with the appropriate initial and boundary conditions, to obtain the pres- 
sure and velocity profiles. 

However, having both velocity and pressure as dependent variables in the equation 
of motion presents more difficulty in multidimensional flow problems than in the sim- 
pler ones discussed previously. It is therefore frequently convenient to eliminate the 
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pressure by taking the curl of the equation of motion, after making use of the vector 
identity [v . Vv] = $V(V v) - [v x [V x v]], which is given in Eq. A.4-23. For fluids of 
constant viscosity and density, this operation gives 

This is the equation of change for the vorticity [V X vl; two other ways of writing it are 
given in Problem 3D.2. 

For viscous flow problems one can then solve the vorticity equation (a third-order 
vector equation) together with the equation of continuity and the relevant initial and 
boundary conditions to get the velocity distribution. Once that is known, the pressure 
distribution can be obtained from the Navier-Stokes equation in Eq. 3.5-6. This method 
of solving flow problems is sometimes convenient even for the one-dimensional flows 
previously discussed (see, for example, Problem 4B.4). 

For planar or axisymmetric flows the vorticity equation can be reformulated by in- 
troducing the stream function +. To do this, we express the two nonvanishing compo- 
nents of the velocity as derivatives of cC, in such a way that the equation of continuity is 
automatically satisfied (see Table 4.2-1). The component of the vorticity equation corre- 
sponding to the direction in which there is no flow then becomes a fourth-order scalar 
equation for +. The two nonvanishing velocity components can then be obtained after 
the equation for the scalar + has been found. The most important problems that can be 
treated in this way are given in Table 4.1-1.' 

The stream function itself is not without interest. Surfaces of constant + contain the 
streamlines: which in steady-state flow are the paths of fluid elements. The volumetric 
rate of flow between the surfaces + = and + = +2 is proportional to +2 - 

In this section we consider, as an example, the steady, creeping flow past a station- 
ary sphere, which is described by the Stokes equation of Eq. 3.5-8, valid for Re < < 1 (see 
the discussion right after Eq. 3.7-9). For creeping flow the second term on the left side of 
Eq. 4.2-1 is set equal to zero. The equation is then linear, and therefore there are many 
methods available for solving the p r ~ b l e m . ~  We use the stream function method based 
on Eq. 4.2-1. 

Use Table 4.2-1 to set up the differential equation for the stream function for the flow of a 
Newtonian fluid around a stationary sphere of radius R at Re << 1. Obtain the velocity and 

around pressure distributions when the fluid approaches the sphere in the positive z direction, as in 
a Sphere Fig. 2.6-1. 

' For a technique applicable to more general flows, see J. M. Robertson, Hydrodynamics in Theory and 
Application, Prentice-Hall, Englewood Cliffs, N.J. (1965), p. 77; for examples of three-dimensional flows 
using two stream functions, see Problem 4D.5 and also J. P. Ssrensen and W. E. Stewart, Chem. Eng. Sci., 
29,8194325 (1974). A. Lahbabi and H.-C. Chang, Chem. Eng. Sci., 40,434447 (1985) dealt with high-Re 
flow through cubic arrays of spheres, including steady-state solutions and transition to turbulence. 
W. E. Stewart and M. A. McClelland, AICkE Journal, 29,947-956 (1983) gave matched asymptotic 
solutions for forced convection in three-dimensional flows with viscous heating. 

See, for example, G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press 
(1967), S2.2. Chapter 2 of this book is an extensive discussion of the kinematics of fluid motion. 

The solution given here follows that given by L. M. Milne-Thomson, Theoretical Hydrodynamics, 
Macmillan, New York, 3rd edition (1955), pp. 555-557. For other approaches, see H. Lamb, Hydrodynamics, 
Dover, New York (1945), §§337,338. For a discussion of unsteady flow around a sphere, see R. Berker, in 
Handbuck der Pkysik, Volume VIII-2, Springer, Berlin (1963), §69; or H. Villat and J. Kravtchenko, 
Leqons sur les Fluides Visqueux, Gauthier-Villars, Paris (1943), Chapter VII. The problem of finding the 
forces and torques on objects of arbitrary shapes is discussed thoroughly by S. Kim and S. J. Karrila, 
Microkydrodynamics: Principles and Selected Applications, Butterworth-Heinemann, Boston (1991), Chapter 11. 
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SOLUTION For steady, creeping flow, the entire left side of Eq. D of Table 4.2-1 may be set equal to zero, 
and the equation for axisymmetric flow becomes 

or, in spherical coordinates 

[ a2  -+-- sin 0 a ( -- I d )I2, = 
dr2 r 2  do sin 0 do 

This is to be solved with the following boundary conditions: 

B.C. 1: 

B.C. 2: 

B.C. 3: 

at r  = R, 1 a* v,= +--=o 
r  sin 9 dr 

The first two boundary conditions describe the no-slip condition at the sphere surface. The 
third implies that v, + v, far from the sphere (this can be seen by recognizing that v, = v, cos 
8 and v, = -v, sin 8 far from the sphere). 

We now postulate a solution of the form 

since it will at least satisfy the third boundary condition in Eq. 4.2-6. When it is substituted 
into Eq. 4.2-4, we get 

The fact that the variable 0 does not appear in this equation suggests that the postulate in Eq. 
4.2-7 is satisfactory. Equation 4.2-8 is an "equidimensional" fourth-order equation (see Eq. 
C.1-14). When a trial solution of the form f(r) = Crn is substituted into this equation, we find 
that n may have the values -1,1,2, and 4. Therefore f(r) has the form 

To satisfy the third boundary condition, C4 must be zero, and C3 has to be -$urn. Hence the 
stream function is 

The velocity components are then obtained by using Table 4.2-1 as follows: 

The first two boundary conditions now give C1 = -$V,X~ and CZ = :V,R, SO that 

v = v  m( 1- -  $1 - + -  ;(:Y) - coso 

Vg = -V,(l - a (:) - a (:)') sin 0 

These are the velocity components given in Eqs. 2.6-1 and 2 without proof. 
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To get the pressure distribution, we substitute these velocity components into the r- and 
6-components of the Navier-Stokes equation (given in Table B.7). After some tedious manip- 
ulations we get 

These equations may be integrated (cf. Eqs. 3.6-38 to 41), and, when use is made of the bound- 
ary condition that as r -+ co the modified pressure 9 tends to po (the pressure in the plane z = 

0 far from the sphere), we get 

This is the same as the pressure distribution given in Eq. 2.6-4. 
In g2.6 we showed how one can integrate the pressure and velocity distributions over 

the sphere surface to get the drag force. That method for getting the force of the fluid on 
the solid is general. Here we evaluate the "kinetic force" F, by equating the rate of doing 
work on the sphere (force X velocity) to the rate of viscous dissipation within the fluid, 
thus 

Fp, = - I:T 1; 1; (~:Vv)&r sin Od6d+ 

Insertion of the function ( - ~ V V )  in spherical coordinates from Table B.7 gives 

Then the velocity profiles from Eqs. 4.2-13 and 14 are substituted into Eq. 4.2-19. When the in- 
dicated differentiations and integrations (lengthy!) are performed, one finally gets 

which is Stokes' law. 
As pointed out in g2.6, Stokes' law is restricted to Re < 0.1. The expression for the drag 

force can be improved by going back and including the [v . Vvl term. Then use of the method 
of matched asymptotic expansions leads to the following result4 

where y = 0.5772 is Euler's constant. This expression is good up to Re of about 1. 

' I. Proudman and J. R. A. Pearson, I. Fluid Mech. 2,237-262 (1957); W. Chester and D. R. Breach, 
1. Fluid. Mech. 37,751-760 (1969). 
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54.3 FLOW OF INVISCID FLUIDS BY USE 
OF THE VELOCITY POTENTIAL' 

Of course, we know that inviscid fluids (i.e., fluids devoid of viscosity) do not actually 
exist. However, the Euler equation of motion of Eq. 3.5-9 has been found to be useful 
for describing the flows of low-viscosity fluids at Re >> 1 around streamlined objects 
and gives a reasonably good description of the velocity profile, except very near the 
object and beyond the line of separation. 

Then the vorticity equation in Eq. 3D.2-1 may be simplified by omitting the term 
containing the kinematic viscosity. If, in addition, the flow is steady and two-dimen- 
sional, then the terms d/dt and [w . Vv] vanish. This means that the vorticity w = [Vx v] 
is constant along a streamline. If the fluid approaching a submerged object has no vortic- 
ity far away from the object, then the flow will be such that w = [V X vl will be zero 
throughout the entire flow field. That is, the flow will be irrotational. 

To summarize, if we assume that p = constant and [V X vl = 0, then we can expect 
to get a reasonably good description of the flow of low-viscosity fluids around sub- 
merged objects in two-dimensional flows. This type of flow is referred to as potential pow. 

Of course we know that this flow description will be inadequate in the neighbor- 
hood of solid surfaces. Near these surfaces we make use of a different set of assump- 
tions, and these lead to boundary-layer the0 y, which is discussed in s4.4. By solving the 
potential flow equations for the "far field and the boundary-layer equations for the 
"near field and then matching the solutions asymptotically for large Re, it is possible to 
develop an understanding of the entire flow field around a streamlined ~b jec t .~  

To describe potential flow we start with the equation of continuity for an incom- 
pressible fluid and the Euler equation for an inviscid fluid (Eq. 3.5-9): 

(continuity) (V-v) = 0 (4.3-1) 

(motion) 

In the equation of motion we have made use of the vector identity [v . Vv] = v;v2 - 
[V X [V X v11 (see Eq. A.4-23). 

For the two-dimensional, irrotational flow the statement that [V x v] = 0 is 

(irrotational) 

and the equation of continuity is 

(continuity) 

The equation of motion for steady, irrotational flow can be integrated to give 

(motion) ip(vz + 4) + P = constant (4.3-5) 

That is, the sum of the pressure and the kinetic and potential energy per unit volume is 
constant throughout the entire flow field. This is the Bernoulli equation for incompress- 
ible, potential flow, and the constant is the same for all streamlines. (This has to be con- 
trasted with Eq. 3.5-12, the Bernoulli equation for a compressible fluid in any kind of 
flow; there the sum of the three contributions is a different constant on each streamline.) 

R. H. Kirchhoff, Chapter 7 in Handbook of Fluid Dynamics (R. W. Johnson, ed.), CRC Press, Boca 
Raton, Fla. (1998). 

M. Van Dyke, Perturbation Methods in Fluid Dynamics, The Parabolic Press, Stanford, Cal. (1975). 
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We want to solve Eqs. 4.3-3 to 5 to obtain v,, v,, and 9 as functions of x and y. We 
have already seen in the previous section that the equation of continuity in two-dimen- 
sional flows can be satisfied by writing the components of the velocity in terms of a 
stream function $(x, y). However, any vector that has a zero curl can also be written as the 
gradient of a scalar function (that is, [V x vl = 0 implies that v = -V+). It is very conve- 
nient, then, to introduce a velocity potential $(x, y). Instead of working with the velocity 
components v, and v,, we choose to work with +(x, y) and +(x, y). We then have the fol- 
lowing relations: 

(stream function) 

(velocity potential) 

Now Eqs. 4.3-3 and 4.3-4 will automatically be satisfied. By equating the expressions for 
the velocity components we get 

These are the Cauchy-Riemann equations, which are the relations that must be satisfied by 
the real and imaginary parts of any analytic function3 w(z) = +(x, y) + i+(x, y), where z = 

x + iy. The quantity w(z) is called the complex potential. Differentiation of Eq. 4.3-10 with 
respect to x and Eq. 4.3-11 with respect to y and then adding gives V2$ = 0. Differentiat- 
ing with respect to the variables in reverse order and then substracting gives V2+ = 0. 
That is, both +(x, y) and +(x, y) satisfy the two-dimensional Laplace eq~at ion.~ 

As a consequence of the preceding development, it appears that any analytic func- 
tion w(z) yields a pair of functions +(x, y) and +(x, y) that are the velocity potential and 
stream function for some flow problem. Furthermore, the curves $(x, y) = constant and 
+(x, y) = constant are then the equipotential lines and streamlines for the problem. The ve- 
locity components are then obtained from Eqs. 4.3-6 and 7 or Eqs. 4.3-8 and 9 or from 

dw 
- = -v, + ivy (4.3-12) dz 

in which dw/dz is called the complex velocity. Once the velocity components are known, 
the modified pressure can then be found from Eq. 4.3-5. 

Alternatively, the equipotential lines and streamlines can be obtained from the in- 
verse function z(w) = x(+, $) + iy($, $), in which z(w) is any analytic function of w. Be- 
tween the functions x($, $) and y($, +) we can eliminate cC/ and get 

- - - - - - 

Some knowledge of the analytic functions of a complex variable is assumed here. Helpful 
introductions to the subject can be found in V. L. Streeter, E. B. Wylie, and K. W. Bedford, Fluid 
Mechanics, McGraw-Hill, New York, 9th ed. (1998), Chapter 8, and in M. D. Greenberg, Foundations of 
Applied Mathematics, Prentice-Hall, Englewood Cliffs, N.J. (1978), Chapters 11 and 12. 

Even for three-dimensional flows the assumption of irrotational flow still permits the definition of 
a velocity potential. When v = -V+ is substituted into (V . v) = 0, we get the three-dimensional Laplace 
equation V2+ = 0. The solution of this equation is the subject of "potential theory," for which there is an 
enormous literature. See, for example, P. M. Morse and H. Feshbach, Methods of Theoretical Physics, 
McGraw-Hill, New York (19531, Chapter 11; and J. M. Robertson, Hydrodynamics in Theory and 
Application, Prentice-Hall, Englewood Cliffs, N.J. (1965), which emphasizes the engineering applications. 
There are many problems in flow through porous media, heat conduction, diffusion, and electrical 
conduction that are described by Laplace's equation. 
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EXAMPLE 4.3-1 

Potential Flow around 
a Cylinder 

SOLUTION 

Similar elimination of 4 gives 

Setting 4 = a constant in Eq. 4.3-13 gives the equations for the equipotential lines for 
some flow problem, and setting $ = constant in Eq. 4.3-14 gives equations for the stream- 
lines. The velocity components can be obtained from 

Thus from any analytic function w(z), or its inverse z(w), we can construct a flow net 
with streamlines $ = constant and equipotential lines 4 = constant. The task of finding 
w(z) or Z(W) to satisfy a given flow problem is, however, considerably more difficult. 
Some special methods are a~ailable"~ but it is frequently more expedient to consult a 
table of conformal  mapping^.^ 

In the next two illustrative examples we show how to use the complex potential w(z) 
to describe the potential flow around a cylinder, and the inverse function z(w) to solve 
the problem of the potential flow into a channel. In the third example we solve the flow 
in the neighborhood of a corner, which is treated further in s4.4 by the boundary-layer 
method. A few general comments should be kept in mind: 

The streamlines are everywhere perpendicular to the equipotential lines. This 
property, evident from Eqs. 4.3-10,11, is useful for the approximate construction 
of flow nets. 

Streamlines and equipotential lines can be interchanged to get the solution of 
another flow problem. This follows from (a) and the fact that both 4 and $ are 
solutions to the two-dimensional Laplace equation. 

Any streamline may be replaced by a solid surface. This follows from the 
boundary condition that the normal component of the velocity of the fluid is 
zero at a solid surface. The tangential component is not restricted, since in po- 
tential flow the fluid is presumed to be able to slide freely along the surface (the 
complete-slip assumption). 

(a) Show that the complex potential 

describes the potential flow around a circular cylinder of radius R, when the approach veloc- 
ity is v, in the positive x direction. 

(b) Find the components of the velocity vector. 

(c) Find the pressure distribution on the cylinder surface, when the modified pressure far 
from the cylinder is 9,. 

(a) To find the stream function and velocity potential, we write the complex potential in the 
form w(z) = +(x ,  y) + i$(x, y): 

J. Fuka, Chapter 21 in K. Rektorys, Survey of Applicable Mathematics, MIT Press, Cambridge, Mass. 
(1969). 

H. Kober, Dictionary of Conformal Representations, Dover, New York, 2nd edition (1957). 
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Hence the stream function is 

To make a plot of the streamlines it is convenient to rewrite Eq. 4.3-18 in dimensionless form 

in which q = cl//v,R, X = x/R, and Y = y/R. 
In Fig. 4.3-1 the streamlines are plotted as the curves ? = constant. The streamline 9 = 0 

gives a unit circle, which represents the surface of the cylinder. The streamline = -: goes 
through the point X = 0, Y = 2, and so on. 

(b) The velocity components are obtainable from the stream function by using Eqs. 4.3-6 and 
7. They may also be obtained from the complex velocity according to Eq. 4.3-12, as follows: 

(COS 20 - i sin 20) 

Therefore the velocity components as function of position are 

(c) On the surface of the cylinder, v = R, and 

v2 = 7.7; + v; 
= v?[(l - cos 2012 + (sin 28)'] 

= 4v5 sin2 13 

When 0 is zero or T, the fluid velocity is zero; such points are known as stagnation points. 
From Eq. 4.3-5 we know that 

Then from the last two equations we get the pressure distribution on the surface of the cylinder 

Fig. 4.3-1. The streamlines for the potential 
flow around a cylinder according to Eq. 4.3-19. 
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Note that the modified pressure distribution is symmetric about the x-axis; that is, for poten- 
tial flow there is no form drag on the cylinder (dfAlembert's para do^).^ Of course, we know 
now that this is not really a paradox, but simply the result of the fact that the inviscid fluid 
does not permit applying the no-slip boundary condition at the interface. 

Show that the inverse function 

Flow Into a Z(W)  = - w b  + + exp(m/bv,) 
11, 

(4.3-26) 
Rectangular Channel 

represents the potential flow into a rectangular channel of half-width b. Here v, is the magni- 
tude of the velocity far downstream from the entrance to the channel. 

SOLUTION First we introduce dimensionless distance variables 

and the dimensionless quantities 

The inverse function of Eq. 4.3-26 may now be expressed in terms of dimensionless quantities 
and split up into real and imaginary parts 

Therefore 

We can now set q equal to a constant, and the streamline Y = Y(X) is expressed parametrically 
in @. For example, the streamline T = 0 is given by 

As @ goes from -a, to +a, X also goes from -m to + m; hence the X-axis is a streamline. 
Next, the streamline 9 = n- is given by 

X = @ - e '  Y = n -  (4.3-34,35) 

As @ goes from - to + a,, X goes from - m to -1 and then back to -a; that is, the stream- 
line doubles back on itself. We select this streamline to be one of the solid walls of the rectan- 
gular channel. Similarly, the streamline ? = -T is the other wall. The streamlines q = C, 
where -n- < C < T, then give the flow pattern for the flow into the rectangular channel as 
shown in Fig. 4.3-2. 

Next, from Eq. 4.3-29 the derivative -dz/dw can be found: 

Comparison of this expression with Eq. 4.3-15 gives for the velocity components 

vyvm 
35 = -(I + e'cos P) -- - - - (e@ sin *) (4.3-37) 

v2 v2 

These equations have to be used in conjunction with Eqs. 4.3-30 and 31 to eliminate @ and ? 
in order to get the velocity components as functions of position. 

Hydrodynamic paradoxes are discussed in G. Birkhoff, Hydrodynamics, Dover, New York (1955). 
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Flow Near a Corner8 

SOLUTION 

Figure 4.3-3 shows the potential flow in the neighborhood of two walls that meet at a cor- 
ner at 0. The flow in the neighborhood of this corner can be described by the complex 
potential 

YA Fig. 4.3-2. The streamlines for the 

in which c is a constant. We can now consider two situations: (i) an "interior corner flow," 
with a > 1; and (ii) an "exterior corner flow," with a < 1. 

(a) Find the velocity components. 

(b) Obtain the tangential velocity at both parts of the wall. 

(c) Describe how to get the streamlines. 

(d) How can this result be applied to the flow around a wedge? 

- - -- -- -_ --- - . 
Y=+T \ pG+-Y= 

+ ---------- -- I * -------- --- 
Y=O 

-I--- 
< I 

(a) The velocity components are obtained from the complex velocity 

, potential flow into a rectangular channel, 
/ 

/ / 
as predicted from potential flow theory in 

/ 
/ Eqs. 4.3-30 and 31. A more realistic flow 

, I +I// 
. _ pattern is shown in Fig. 4.3-5. 

t 

Y, - - - - - - - - - + 
* 

(ii) Fig. 4.3-3. Potential flow near a corner. On 
the left portion of the wall, v, = - c F 1 ,  and 
on the right, v, = +cua-'. (i) Interior-corner 
flow, with a > 1; and (ii) exterior-corner flow, 
with a < 1. 

+ - - - - - - - - - - X 
. 

'. 
\ 

_/--- 
\ 
\ ---- \ 

\ 

' R. L. Panton, Compressible Flow, Wiley, New York, 2nd edition (1996). 



132 Chapter 4 Velocity Distributions with More Than One Independent Variable 

Fig. 4.3-4. Potential flow along a wedge. On 
- the upper surface of the wedge, v, = cxa-' - 

_ _ - _ _ - - -  cxP"'-P). The quantities a and P are related by 
------- P = (2/a)(a - 1). 

------------ 

Streamlines -. . 

Hence from Eq. 4.3-12 we get 

v, = +cara-' cos (a - 1)6 

v, = -cara-' sin (a - 1)6 

(b) The tangential velocity at the walls is 

at 0 = 0: ZIx = vr = Carn-l = C(yp-l  

at 0 = r/a: v, = v, cos 0 + vy sin 6 

= +cara-' cos (a - 1)6 cos 6 - cara-' sin (a - 1)6 sin 0 

= cara-' COS a6 
- - -cays-' (4.3-43) 

Hence, in Case (i), the incoming fluid at the wall decelerates as it approaches the junction, and 
the departing fluid accelerates as it moves away from the junction. In Case (ii) the velocity 
components become infinite at the corner as a - 1 is then negative. 

(c) The complex potential can be decomposed into its real and imaginary parts 

w = 4 + it,b = -cua(cos a6 + i sin a61 (4.3-44) 

Hence the stream function is 

1C, = -cyn sin a0 (4.3-45) 

To get the streamlines, one selects various values for the stream function-say, $,, $,, t,b, . , 
-and then for each value one plots r as a function of 0. 

(d) Since for ideal flow any streamline may be replaced by a wall, and vice versa, the results 
found here for a > 0 describe the inviscid flow over a wedge (see Fig. 4.3-4). We make use of 
this in Example 4.4-3. 

A few words of warning are in order concerning the applicability of potential-flow 
theory to real systems: 

a. For the flow around a cylinder, the streamlines shown in Fig. 4.3-1 do not con- 
form to any of the flow regimes sketched in Fig. 3.7-2. 

b. For the flow into a channel, the predicted flow pattern of Fig. 4.3-2 is unrealistic 
inside the channel and just upstream from the channel entrance. A much better 
approximation to the actual behavior is shown in Fig. 4.3-5. 

Both of these failures of the elementary potential theory result from the phenomenon of 
separation: the departure of streamlines from a boundary surface. 

Separation tends to occur at sharp corners of solid boundaries, as in channel flow, 
and on the downstream sides of bluff objects, as in the flow around a cylinder. Gener- 
ally, separation is likely to occur in regions where the pressure increases in the direction 
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Fig. 4.3-5. Potential flow into a rectangular channel 
with separation, as calculated by H. von Helmholtz, 
Phil. Mag., 36,337-345 (1868). The streamlines for 
!P = -+r separate from the inner surface of the channel. 
The velocity along this separated streamline is con- 
stant. Between the separated streamline and the wall 

X is an empty region. 

Y=-7r 

of flow. Potential-flow analyses are not useful in the separated region. They can, how- 
ever, be used upstream of this region if the location of the separation streamline is known. 
Methods of making such calculations have been highly developed. Sometimes the posi- 
tion of the separation streamline can be estimated successfully from potential-flow the- 
ory. This is true for flow into a channel, and, in fact, Fig. 4.3-5 was obtained in this way.9 
For other systems, such as the flow around the cylinder, the separation point and separa- 
tion streamline must be located by experiment. Even when the position of the separation 
streamline is not known, potential flow solutions may be valuable. For example, the flow 
field of Ex. 4.3-1 has been found useful for estimating aerosol impaction coefficients on 
cylinders.1° This success is a result of the fact that most of the particle impacts occur near 
the forward stagnation point, where the flow is not affected very much by the position of 
the separation streamline. Valuable semiquantitative conclusions concerning heat- and 
mass-transfer behavior can also be made on the basis of potential flow calculations ig- 
noring the separation phenomenon. 

The techniques described in this section all assume that the velocity vector can be 
written as the gradient of a scalar function that satisfies Laplace's equation. The equation 
of motion plays a much less prominent role than for the viscous flows discussed previ- 
ously, and its primary use is for the determination of the pressure distribution once the 
velocity profiles are found. 

54.4 FLOW NEAR SOLID SURFACES 
BY BOUNDARY-LAYER THEORY 

The potential flow examples discussed in the previous section showed how to predict 
the flow field by means of a stream function and a velocity potential. The solutions for 
the velocity distribution thus obtained do not satisfy the usual "no-slip" boundary con- 
dition at the wall. Consequently, the potential flow solutions are of no value in describ- 
ing the transport phenomena in the immediate neighborhood of the wall. Specifically, 
the viscous drag force cannot be obtained, and it is also not possible to get reliable de- 
scriptions of interphase heat- and mass-transfer at solid surfaces. 

To describe the behavior near the wall, we use boundary-layer the0 y. For the descrip- 
tion of a viscous flow, we obtain an approximate solution for the velocity components in 
a very thin boundary layer near the wall, taking the viscosity into account. Then we 
"match this solution to the potential flow solution that describes the flow outside the 

H. von Helmholtz, Phil Mag. (4), 36,337-345 (1868). Herman Ludwig Ferdinand von Helmholtz 
(1821-1894) studied medicine and became an army doctor; he then served as professor of medicine and 
later as professor of physics in Berlin. 

lo  W. E. Ranz, Principles of Inertial Impaction, Bulletin #66, Department of Engineering Research, 
Pennsylvania State University, University Park, Pa. (1956). 
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boundary layer. The success of the method depends on the thinness of the boundary 
layer, a condition that is met at high Reynolds number. 

We consider the steady, two-dimensional flow of a fluid with constant p and p 
around a submerged object, such as that shown in Fig. 4.4-1. We assert that the main 
changes in the velocity take place in a very thin region, the boundary layer, in which the 
curvature effects are not important. We can then set up a Cartesian coordinate system 
with x pointing downstream, and y perpendicular to the solid surface. The continuity 
equation and the Navier-Stokes equations then become: 

dv, dvy -+ - -=o  
dx dy 

Some of the terms in these equations can be discarded by order-of-magnitude argu- 
ments. We use three quantities as "yardsticks": the approach velocity v,, some linear di- 
mension 1, of the submerged body, and an average thickness 60 of the boundary layer. 
The presumption that So << lo allows us to make a number of rough calculations of or- 
ders of magnitude. 

Since vx varies from zero at the solid surface to v, at the outer edge of the boundary 
layer, we can say that 

where 0 means "order of magnitude of." Similarly, the maximum variation in v, over 
the length lo of the surface will be v,, so that 

Here we have made use of the equation of continuity to get one more derivative (we are 
concerned here only with orders of magnitude and not the signs of the quantities). Inte- 
gration of the second relation suggests that vy = 0((6,/1,)v,) << v,. The various terms in 
Eq. 4.4-2 may now be estimated as 

v - - = O -  v - = O - -  d2vx d2v, (3; 2 ((r) - = O ( t )  - = O($) (4.4-6) " dx dx2 dy2 

Approximate outer limit 
of boundary layer where 

V ,  + VJX)  

Fig. 4.4-1. Coordinate system 
for the two-dimensional flow 
around a submerged object. 
The boundary-layer thickness 
is greatly exaggerated for pur- 
poses of illustration. Because 
the boundary layer is in fact 
quite thin, it is permissible to 
use rectangular coordinates lo- 
cally along the curved surface. 
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This suggests that d2vX/dx2 << d2vx/dy2, SO that the former may be safely neglected. In 
the boundary layer it is expected that the terms on the left side of Eq. 4.4-2 should be of 
the same order of magnitude as those on the right side, and therefore 

The second of these relations shows that the boundary-layer thickness is small compared 
to the dimensions of the submerged object in high-Reynolds-number flows. 

Similarly it can be shown, with the help of Eq. 4.4-7, that three of the derivatives in 
Eq. 4.4-3 are of the same order of magnitude: 

Comparison of this result with Eq. 4.4-6 shows that d 9 / d y  << dP/dx. This means that 
the y-component of the equation of motion is not needed and that the modified pressure 
can be treated as a function of x alone. 

As a result of these order-of-magnitude arguments, we are left with the Prandtl 
boundary layer equations:' 

(continuity) 

(motion) 

The modified pressure 9(x) is presumed known from the solution of the corresponding 
potential-flow problem or from experimental measurements. 

The usual boundary conditions for these equations are the no-slip condition (v, = 0 
at y = O), the condition of no mass transfer from the wall (vy = 0 at y = O), and the 
statement that the velocity merges into the external (potential-flow) velocity at the 
outer edge of the boundary layer (vx(x, y) -, v,(x)). The function v,(x) is related to 9(x) 
according to the potential-flow equation of motion in Eq. 4.3-5. Consequently the term 
-(1 /p)(dY /dx) in Eq. 4.4-10 can be replaced by v,(dv,/dx) for steady flow. Thus Eq. 4.4-10 
may also be written as 

dv, dv, dv, d2v, 
vx-+v -=v,-+ V- dx Y dy dx ay2 

The equation of continuity may be solved for v, by using the boundary condition that 
v, = 0 at y = 0 (i.e., no mass transfer), and then this expression for v, may be substituted 
into Eq. 4.4-11 to give 

Y dv, dv, d2v, 
vX3- dx (/, iildy)%= v e Z +  v2 

This is a partial differential equation for the single dependent variable vx. 

' Ludwig Prandtl(18751953) (pronounced "Prahn-t'l), who taught in Hannover and Gottingen and 
later served as the Director of the Kaiser Wilhelm Institute for Fluid Dynamics, was one of the people 
who shaped the future of his field at the beginning of the twentieth century; he made contributions to 
turbulent flow and heat transfer, but his development of the boundary-layer equations was his crowning 
achievement. L. Prandtl, Verhandlungen des III Internationalen Mathematiker-Kongresses (Heidelberg, 19041, 
Leipzig, pp. 484-491; L. Prandtl, Gesammelte Abhandlungen, 2, Springer-Verlag, Berlin (1961), pp. 575-584. 
For an introductory discussion of matched asymptotic expressions, see D. J. Acheson, Elementary Fluid 
Mechanics," Oxford University Press (1990), pp. 269-271. An exhaustive discussion of the subject may be 
found in M. Van Dyke, Perturbation Methods in Fluid Dynamics, The Parabolic Press, Stanford, Cal. (1975). 
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This equation may now be multiplied by p and integrated from y = 0 to y = to 
give the van Ka'rmhn momentum balance2 

Here use has been made of the condition that v,(x, y) -+ v,(x) as y -+ a. The quantity on 
the left side of Eq. 4.4-13 is the shear stress exerted by the fluid on the wall: -~,,l~=~. 

The original Prandtl boundary-layer equations, Eqs. 4.4-9 and 10, have thus been 
transformed into Eq. 4.4-11, Eq. 4.4-12, and Eq. 4.4-13, and any of these may be taken as 
the starting point for solving two-dimensional boundary-layer problems. Equation 4.4- 
13, with assumed expressions for the velocity profile, is the basis of many "approximate 
boundary-layer solutions" (see Example 4.4-1). On the other hand, the analytical or nu- 
merical solutions of Eqs. 4.4-11 or 12 are called "exact boundary-layer solutions" (see Ex- 
ample 4.4-2). 

The discussion here is for steady, laminar, two-dimensional flows of fluids with con- 
stant density and viscosity. Corresponding equations are available for unsteady flow, 
turbulent flow, variable fluid properties, and three-dimensional boundary 

Although many exact and approximate boundary-layer solutions have been ob- 
tained and applications of the theory to streamlined objects have been quite successful, 
considerable work remains to be done on flows with adverse pressure gradients (i.e., 
positive dP/dx) in Eq. 4.4-10, such as the flow on the downstream side of a blunt object. 
In such flows the streamlines usually separate from the surface before reaching the rear 
of the object (see Fig. 3.7-2). The boundary-layer approach described here is suitable for 
such flows only in the region upstream from the separation point. 

Use the von K5rm6n momentum balance to estimate the steady-state velocity profiles near a 
semi-infinite flat plate in a tangential stream with approach velocity v, (see Fig. 4.4-2). For 

Laminar a this system the potential-flow solution is v, = a,. 
Flat Plate (Approximate 
Solution) 

Fluid approaches with 
uniform velocity v, - 

Fig. 4.4-2. Boundary-layer 
development near a flat 
plate of negligible thickness. 

Th. von Ksrmin, Zeits, fur angew. Math. u. Mech., 1,233-252 (1921). Hungarian-born Theodor von 
K h 6 n  taught in Gottingen, Aachen, and California Institute of Technology; he contributed much to the 
theory of turbulence and aerodynamics. 

H. Schlichting and K. Gersten, Boundary-Layer Theory, Springer Verlag, Berlin, 8th edition (2000). 
L. Rosenhead, Laminar Boundary Layers, Oxford University Press, London (1963). 
K. Stewartson, The Theory of Laminar Bounday Layers in Compressible Fluids, Oxford University 

Press (1964). 
' W. H. Dorrance, Viscous Hypersonic Flow, McGraw-Hill, New York (1962). 
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SOLUTION We know intuitively what the velocity profile vx(y) looks like. Hence we can guess a form for 
ux(y) and substitute it directly into the von Karmiin momentum balance. One reasonable choice 
is to let v,(y) by a function of y/6, where S(x) is the "thickness" of the boundary layer. The 
function is so chosen that u, = 0 at y = 0 and v, = v, at y = 6.  This is tantamount to assuming 
geometrical similarity of the velocity profiles for various values of x. When this assumed pro- 
file is substituted into the von Khrman momentum balance, an ordinary differential equation 
for the boundary-layer thickness 6(x) is obtained. When this equation has been solved, the 6(x) 
so obtained can then be used to get the velocity profile and other quantities of interest. 

For the present problem a plausible guess for the velocity distribution, with a reasonable 
shape, is 

for 0 5 y r 6(x) (boundary-layer region) (4.4-14) 

ux -- - 1 for y r 6(x) (potential flow region) (4.4-15) 
urn 

This is "reasonable" because this velocity profile satisfies the no-slip condition at y = 0, and 
dv,/dy = 0 at the outer edge of the boundary layer. Substitution of this profile into the von 
KArmBn integral balance in Eq. 4.4-13 gives 

This first-order, separable differential equation can now be integrated to give for the bound- 
ary-layer thickness 

I 7 

Therefore, the boundary-layer thickness increases as the square root of the distance from the up- 
stream end of the plate. The resulting approximate solution for the velocity distribution is then 

From this result we can estimate the drag force on a plate of finite size wetted on both sides. 
For a plate of width Wand length L, integration of the momentum flux over the two solid sur- 
faces gives: 

The exact solution, given in the next example, gives the same result, but with a numerical co- 
efficient of 1.328. Both solutions predict the drag force within the scatter of the experimental 
data. However, the exact solution gives somewhat better agreement with the measured veloc- 
ity profiles3 This additional accuracy is essential for stability calculations. 

Obtain the exact solution for the problem given in the previous example. 

Laminar Flow along SOLUTION 
a Flat Plate (Exact 
~olution)' This problem may be solved by using the definition of the stream function in Table 4.2-1. In- 

serting the expressions for the velocity components in the first row of entries, we get 

-- - - 

This problem was treated originally by H. Blasius, Zeits. Math. Phys., 56,l-37 (1908). 
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The boundary conditions for this equation for $(x, y) are 

B.C. 1: a+ aty=O, -=v ,=O for x 2 0 dx 
(4.4-21) 

B.C. 2: aty=O, -- d" -u, = 0 fo rx2O (4.4-22) 
JY 

B.C. 3: a* - asy+m, -- -vx + -urn for x 2 0 (4.4-23) 
dy 

B.C. 4: a* - atx=O, --  -vx = -u, for y > 0 (4.4-24) 
JY 

Inasmuch as there is no characteristic length appearing in the above relations, the 
method of combination of independent variables seems appropriate. By dimensional argu- 
ments similar to those used in Example 4.1-1, we write 

The factor of 2 is included to avoid having any numerical factors occur in the differential 
equation in Eq. 4.4-27. The stream function that gives the velocity distribution in Eq. 4.4-25 is 

This expression for the stream function is consistent with Eq. 4.4-25 as may be seen by using 
the relation u, = -d+/dy (given in Table 4.2-1). Substitution of Eq. 4.4-26 into Eq. 4.4-20 gives 

Substitution into the boundary conditions gives 

B.C. 1 and 2: 

B.C. 3 and 4: 

a t q = 0 ,  f = O  and f t = O  

ass-+ m, f l + l  

Thus the determination of the flow field is reduced to the solution of one third-order ordinary 
differential equation. 

This equation, along with the boundary conditions given, can be solved by numerical in- 
tegration, and accurate tables of the solution are a~a i lab le .~ ,~  The problem was originally 
solved by Blasius7 using analytic approximations that proved to be quite accurate. A plot of 
his solution is shown in Fig. 4.4-3 along with experimental data taken subsequently. The 
agreement between theory and experiment is remarkably good. 

The drag force on a plate of width W and length L may be calculated from the dimen- 
sionless velocity gradient at the wall, f "(0) = 0.4696 . . . as follows: 

This result has also been confirmed e~perimentally.~,~ 
Because of the approximations made in Eq. 4.4-10, the solution is most accurate at 

large local Reynolds numbers; that is, Re, = xv,/v >> 1. The excluded region of lower 
Reynolds numbers is small enough to ignore in most drag calculations. More complete 
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Fig. 4.4-3. Predicted and observed velocity profiles for tangential laminar flow along a 
flat plate. The solid line represents the solution of Eqs. 4.4-20 to 24, obtained by Blasius 
[see H. Schlichting, Boundary-Layer Theory, McGraw-Hill, New York, 7th edition (1979), 
p. 1371. 

analyses8 indicate that Eq. 4.4-30 is accurate to within 3% for Lv,/v 2 lo4 and within 0.3% 
for Lv,/v 2 lo6. 

The growth of the boundary layer with increasing x eventually leads to an unstable 
situation, and turbulent flow sets in. The transition is found to begin somewhere in the 
range of local Reynolds number of Re, = xv,/v 2 3 X 10' to 3 X loh, depending on the 
uniformity of the approaching streams8 Upstream of the transition region the flow re- 
mains laminar, and downstream it is turbulent. 

We now want to treat the boundary-layer problem analogous to Example 4.3-3, namely the 
flow near a corner (see Fig. 4.3-4). If cr > 1, the problem may also be interpreted as the flow 

near a Corner along a wedge of included angle Pn-, with a = 2/(2 - P). For this system the external flow v, 
is known from Eqs. 4.3-42 and 43, where we found that 

This was the expression that was found to be valid right at the wall (i.e., at y = 0). Here, it 
is assumed that the boundary layer is so thin that using the wall expression from ideal 
flow is adequate for the outer limit of the boundary-layer solution, at least for small values 
of x .  

Y. H. Kuo, 1. Math. Phys., 32,83-101 (1953); I. Imai,]. Aero. Sci., 24,155-156 (1957). 
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SOLUTION 

Fig. 4.4-4. Velocity profile for 
wedge flow with included 
angle prr. Negative values of 
p correspond to the flow 
around an "external corner" 
[see Fig. 4.3-4(ii)I with slip at 
the wall upstream of the 
corner. 

We now have to solve Eq. 4.4-11, using Eq. 4.4-31 for v,(x). When we introduce the stream 
function from the first row of Table 4.2-1, we obtain the following differential equation for +: 

which corresponds to Eq. 4.4-20 with the term v,(dv,/dx) added. It was discovered9 that this 
equation can be reduced to a single ordinary differential equation by introducing a dimen- 
sionless stream function f(q) by 

*(x, y) = V ' Z T ~ ~ X " ' ~  (4.4-33) 

in which the independent variable is 

Then Eq. 4.4-32 becomes the Falkner-Skan equation9 

This equation has been solved numerically with the appropriate boundary conditions, and 
the results are shown in Fig. 4.4-4. 

It can be seen that for positive values of p, which corresponds to the systems shown in 
Fig. 4.3-4(a) and Fig. 4.3-5, the fluid is accelerating and the velocity profiles are stable. For 
negative values of p, down to p = -0.199, the flows are decelerating but stable, and no sepa- 
ration occurs. However, if p > -0.199, the velocity gradient at the wall becomes zero, and 
separation of the flow occurs. Therefore, for the interior corner flows and for wedge flows, 
there is no separation, but for the exterior corner flows, separation may occur. 

QUESTIONS FOR DISCUSSION 

1. For what types of problems is the method of combination of variables useful? The 
method of separation of variables? 

2. Can the flow near a cylindrical rod of infinite length suddenly set in motion in the 
axial direction be described by the method in Example 4.1-l? 

V. M. Falkner and S. W. Skan, Phil. Mag., 12,865-896 (1931); D. R. Hartree, Proc. Camb. Phil. Soc., 
33, Part 11,223-239 (1937); H. Rouse (ed.), Advanced Mechanics of Fluids, Wiley, New York (19591, Chapter 
VII, Sec. D; H. Schlichting and K. Gersten, Boundary-Layer Theory, Springer-Verlag, Berlin (2000), pp. 
169-173 (isothermal), 220-221 (nonisothermal); W. E. Stewart and R. Prober, Int. J .  Heat Mass Transfer, 5, 
1149-1163 (1962); 6,221-229,872 (1963), include wedge flow with heat and mass transfer. 
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3. What happens in Example 4.1-2 if one tries to solve Eq. 4.1-21 by the method of sepa- 
ration of variables without first recognizing that the solution can be written as the 
sum of a steady-state solution and a transient solution? 

4. What happens if the separation constant after Eq. 4.1-27 is taken to be c or c2 instead of 
-c2? 

5. Try solving the problem in Example 4.1-3 using trigonometric quantities in lieu of 
complex quantities. 

6.  How is the vorticity equation obtained and how may it be used? 
7. How is the stream function defined, and why is it useful? 
8. In what sense are the potential flow solutions and the boundary-layer flow solutions 

complementary? 
9. List all approximate forms of the equations of change encountered thus far, and indi- 

cate their range of applicability. 

PROBLEMS 4A.1 Time for attainment of steady state in tube flow. 
(a) A heavy oil, with a kinematic viscosity of 3.45 X m2/s, is at rest in a long vertical tube 
with a radius of 0.7 cm. The fluid is suddenly allowed to flow from the bottom of the tube by 
virtue of gravity. After what time will the velocity at the tube center be within 10% of its final 
value? 
(b) What is the result if water at 68OF is used? 
Note: The result shown in Fig. 4D.2 should be used. 
Answers: (a) 6.4 X lop2 s; (b) 0.22 s 

4A.2 Velocity near a moving sphere. A sphere of radius R is falling in creeping flow with a termi- 
nal velocity v, through a quiescent fluid of viscosity p. At what horizontal distance from the 
sphere does the velocity of the fluid fall to 1% of the terminal velocity of the sphere? 
Answer: About 37 diameters 

4A.3 Construction of streamlines for the potential flow around a cylinder. Plot the streamlines for 
the flow around a cylinder using the information in Example 4.3-1 by the following procedure: 
(a) Select a value of = C (that is, select a streamline). 
(b) Plot Y = C + K (straight lines parallel to the X-axis) and Y = K(X~ + Y2) (circles with ra- 
dius 1 /2K, tangent to the X-axis at the origin). 
(c) Plot the intersections of the lines and circles that have the same value of K. 
(d) Join these points to get the streamline for = C. 
Then select other values of C and repeat the process until the pattern of streamlines is clear. 

4A.4 Comparison of exact and approximate profiles for flow along a flat plate. Compare the val- 
ues of v,/v, obtained from Eq. 4.4-18 with those from Fig. 4.4-3, at the following values of 
yG: (a) 1.5, (b) 3.0, (c) 4.0. Express the results as the ratio of the approximate to the exact 
values. 
Answers: (a) 0.96; (b) 0.99; (c) 1.01 

4A.5 Numerical demonstration of the von Klirmin momentum balance. 
(a) Evaluate the integrals in Eq. 4.4-13 numerically for the Blasius velocity profile given in 
Fig. 4.4-3. 
(b) Use the results of (a) to determine the magnitude of the wall shear stress T,,(,=~ 
(c) Calculate the total drag force, F,, for a plate of width W and length L, wetted on both 
sides. Cornparme your result with that obtained in Eq. 4.4-30. 
Answers: (a) lo pv,(v, - v,)dy = 0.664- 

IOm p(o, - vJdy = 1 . 7 3 e  
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Use of boundary-layer formulas. Air at 1 atm and 20°C flows tangentially on both sides of a 
thin, smooth flat plate of width W = 10 ft, and of length L = 3 ft in the direction of the flow. 
The velocity outside the boundary layer is constant at 20 ft/s. 
(a) Compute the local Reynolds number Re, = xvm/v at the trailing edge. 
(b) Assuming laminar flow, compute the approximate boundary-layer thickness, in inches, at 
the trailing edge. Use the results of Example 4.4-1. 
(c) Assuming laminar flow, compute the total drag of the plate in lbf. Use the results of Exam- 
ples 4.4-1 and 2. 

Entrance flow in conduits. 
(a) Estimate the entrance length for laminar flow in a circular tube. Assume that the boundary- 
layer thickness 6 is given adequately by Eq. 4.4-17, with v, of the flat-plate problem corre- 
sponding to v,,, in the tube-flow problem. Assume further that the entrance length L, can be 
taken to be the value of x at which 6 = R. Compare your result with the expression for L, cited 
in 52.3-namely, L, = 0.0350 Re. 
(b) Rewrite the transition Reynolds number xvm/v = 3.5 X lo5 (for the flat plate) by inserting 
6 from Eq. 4.4-17 in place of x as the characteristic length. Compare the quantity 6vm/v thus 
obtained with the corresponding minimum transition Reynolds number for the flow through 
long smooth tubes. 
(c) Use the method of (a) to estimate the entrance length in the flat duct shown in Fig. 4C.1. 
Compare the result with that given in Problem 4C.l(d). 

Flow of a fluid with a suddenly applied constant wall stress. In the system studied in Ex- 
ample 4.1-1, let the fluid be at rest before t = 0. At time t = 0 a constant force is applied to the 
fluid at the wall in the positive x direction, so that the shear stress r,, takes on a new constant 
value r0 at y = 0 for t > 0. 
(a) Differentiate Eq. 4.1-1 with respect to y and multiply by -p  to obtain a partial differential 
equation for ryw( y, t). 

(b) Write the boundary and initial conditions for this equation. 
(c) Solve using the method in Example 4.1-1 to obtain 

(d) Use the result in (c) to obtain the velocity profile. The following relation7 will be helpful 

Flow near a wall suddenly set in motion (approximate solution) (Fig. 48.2). Apply a proce- 
dure like that of Example 4.4-1 to get an approximate solution for Example 4.1.1. 
(a) Integrate Eq. 4.4-1 over y to get 

Make use of the boundary conditions and the Leibniz rule for differentiating an integral 
(Eq. C.3-2) to rewrite Eq. 4B.2-1 in the form 

Interpret this result physically. 

' A useful summary of error functions and their properties can be found in H. S. Carslaw and 
J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, 2nd edition (1959), Appendix 11. 
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Fig. 4B.2. Comparison 
of true and approximate 
velocity profiles near a 
wall suddenly set in mo- 
tion with velocity vo. 

vo - vo - 
(a) True solution (b) Boundary-layer approximation 

(b) We know roughly what the velocity profiles look like. We can make the following reason- 
able postulate for the profiles: 

Here 6(t) is a time-dependent boundary-layer thickness. Insert this approximate expression 
into Eq. 4B.2-2 to obtain 

(c) Integrate Eq. 4B.2-5 with a suitable initial value of 6(t), and insert the result into Eq. 4B.2-3 
to get the approximate velocity profiles. 
(d) Compare the values of v,/v, obtained from (c) with those from Eq. 4.1-15 at y/l/4vt = 
0.2,0.5, and 1.0. Express the results as the ratio of the approximate value to the exact value. 
Answer (d) 1.015,1.026,0.738 

4B.3 Creeping flow around a spherical bubble. When a liquid flows around a gas bubble, circula- 
tion takes place within the bubble. This circulation lowers the interfacial shear stress, and, to a 
first approximation, we may assume that it is entirely eliminated. Repeat the development of 
Ex. 4.2-1 for such a gas bubble, assuming it is spherical. 
(a) Show that B.C. 2 of Ex. 4.2-1 is replaced by 

B.C. 2: 

and that the problem set-up is otherwise the same. 
(b) Obtain the following velocity components: 

(c) Next obtain the pressure distribution by using the equation of motion: 

p = po - pgh - - - cos 8 ('Y) (: r 
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(dl Evaluate the total force of the fluid on the sphere to obtain 

This result may be obtained by the method of 52.6 or by integrating the z-component of -[n - IT] 

over the sphere surface (n being the outwardly directed unit normal on the surface of the 
sphere). 

48.4 Use of the vorticity equation. 
(a) Work Problem 2B.3 using the y-component of the vorticity equation (Eq. 3D.2-1) and the 
following boundary conditions: at x = ? B, v, = 0 and at x = 0, v, = v,,,. Show that this 
leads to 

Then obtain the pressure distribution from the z-component of the equation of motion. 
(b) Work Problem 3B.6(b) using the vorticity equation, with the following boundary con- 
ditions: at r = R, v, = 0 and at r = KR, v, = vO. In addition an integral condition is needed 
to state that there is no net flow in the z direction. Find the pressure distribution in the 
system. 
(c) Work the following problems using the vorticity equation: 2B.6,2B.7,3B.lf 3B.1Or3B.16. 

4B.5 Steady potential flow around a stationary ~ p h e r e . ~  In Example 4.2-1 we worked through the 
creeping flow around a sphere. We now wish to consider the flow of an incompressible, invis- 
cid fluid in irrotational flow around a sphere. For such a problem, we know that the velocity 
potential must satisfy Laplace's equation (see text after Eq. 4.3-11). 
(a) State the boundary conditions for the problem. 
(b) Give reasons why the velocity potential 4 can be postulated to be of the form +(r, 6) = 

f(r) cos 19. 
(c) Substitute the trial expression for the velocity potential in (b)  into Laplace's equation for 
the velocity potential. 
(d) Integrate the equation obtained in (c) and obtain the function f(r) containing two con- 
stants of integration; determine these constants from the boundary conditions and find 

1 R  4 = -ZJ,R[(;) + (?)i] cos I9 

(el Next show that 

,, = 4 1  - (;)i] cos I9 

ve = -v.[l + f (:r] sin 6 

(f) Find the pressure distribution, and then show that at the sphere surface 

9 - 9, = $pvi(l - sin2 8) (4B.5-4) 

4B.6 Potential flow near a stagnation point (Fig. 4B.6). 
(a) Show that the complex potential w = -v , ?~  describes the flow near a plane stagnation point. 
(b) Find the velocity components v,(x, y) and v,(x, y). 
(c) Explain the physical significance of v,. 

L. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, Boston, 2nd edition (1987), pp. 21-26, 
contains a good collection of potential-flow problems. 
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Y Fig. 4B.6. Two-dimensional potential flow 
near a stagnation point. 

X 

'stagnation point 

4B.7 Vortex flow. 
(a) Show that the complex potential w = (ir/27r) In z describes the flow in a vortex. Verify 
that the tangential velocity is given by vo = r/2777 and that v, = 0. This type of flow is some- 
times called a free vortex. Is this flow irrotational? 
(b) Compare the functional dependence of v, on r in (a) with that which arose in Example 
3.6-4. The latter kind of flow is sometimes called a forced vortex. Actual vortices, such as those 
that occur in a stirred tank, have a behavior intermediate between these two idealizations. 

48.8 The flow field about a line source. Consider the symmetric radial flow of an incompressible, in- 
viscid fluid outward from an infinitely long uniform source, coincident with the z-axis of a cylin- 
drical coordinate system. Fluid is being generated at a volumetric rate r per unit length of source. 
(a) Show that the Laplace equation for the velocity potential for this system is 

(b) From this equation find the velocity potential, velocity, and pressure as functions of position: 

where 9, is the value of the modified pressure far away from the source. 
(c) Discuss the applicability of the results in (b) to the flow field about a well drilled into a 
large body of porous rock. 
(d) Sketch the flow net of streamlines and equipotential lines. 

4B.9 Checking solutions to unsteady flow problems. 
(a) Verify the solutions to the problems in Examples 4.1-1,2, and 3 by showing that they sat- 
isfy the partial differential equations, initial conditions, and boundary conditions. To show 
that Eq. 4.1-15 satisfies the differential equation, one has to know how to differentiate an inte- 
gral using the Leibniz formula given in gC.3. 
(b) In Example 4.1-3 the initial condition is not satisfied by Eq. 4.1-57. Why? 

4C.1 Laminar entrance flow in a slit? (Fig. 4C.1). Estimate the velocity distribution in the entrance 
region of the slit shown in the figure. The fluid enters at x = 0 with v, = 0 and v, = (v,), where 
(v,) is the average velocity inside the slit. Assume that the velocity distribution in the entrance 
region 0 < x < L, is 

(boundary layer region, 0 < y < 6) 

V" - 1 - - (potential flow region, S < y < B) (4C. 1 -2) 
Ve 

in which 6 and v, are functions of x, yet to be determined. 

A numerical solution to this problem using the Navier-Stokes equation has been given by Y. L. 
Wang and P. A. Longwell, AKhE Journal, 10,323-329 (1964). 
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= 2~ Fig. 4C.1. Entrance flow into a slit. 

y = B  

y = o  

(a) Use the above two equations to get the mass flow rate w through an arbitrary cross sec- 
tion in the region 0 < x < L,. Then evaluate w from the inlet conditions and obtain 

(b) Next use Eqs. 4.4-13,4C.1-1, and 4C.1-2 with replaced by B (why?) to obtain a differen- 
tial equation for the quantity A = S/B: 

(c) Integrate this equation with a suitable initial condition to obtain the following relation be- 
tween the boundary-layer thickness and the distance down the duct: 

(dl Compute the entrance length L, from Eq. 4C.1-5, where LC is that value of x for which 
S(x) = B. 
(e) Using potential flow theory, evaluate 9 - 9, in the entrance region, where go is the value 
of the modified pressure at x = 0. 
Answers: (d) L, = 0.104(v,)B2/v; (e) 9 - 9 - 

O-2 

Torsional oscillatory viscometer (Fig. 4C.2). In the torsional oscillatory viscometer, the fluid 
is placed between a "cup" and "bob as shown in the figure. The cup is made to undergo 
small sinusoidal oscillations in the tangential direction. This motion causes the bob, sus- 
pended by a torsion wire, to oscillate with the same frequency, but with a different amplitude 

Torsion wire 

r 
"Bob 

"Cup" 

%arced oscillation of 
1 outer CYlinder Fig. 4C.2. Sketch of a torsional oscillatory viscometer. 
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and phase. The amplitude ratio (ratio of amplitude of output function to input function) and 
phase shift both depend on the viscosity of the fluid and hence can be used for determining 
the viscosity. It is assumed throughout that the oscillations are of small amplitude. Then the 
problem is a linear one, and it can be solved either by Laplace transform or by the method 
outlined in this problem. 
(a) First, apply Newton's second law of motion to the cylindrical bob for the special case that 
the annular space is completely evacuated. Show that the natural frequency of the system is 
o, = l/iTTI, in which I is the moment of inertia of the bob, and k is the spring constant for the 
torsion wire. 
(b) Next, apply Newton's second law when there is a fluid of viscosity p in the annular 
space. Let OR be the angular displacement of the bob at time t ,  and v, be the tangential velocity 
of the fluid as a function of r and t. Show that the equation of motion of the bob is 

If the system starts from rest, we have the initial conditions 

I.C.:  OR att=O, O R = O  and - = O  
dt 

(4C.2-2) 

(c) Next, write the equation of motion for the fluid along with the relevant initial and bound- 
ary conditions: 

(Fluid) 

LC.: 

B.C. 1: at r = R, v, = R-- 
dt 

(4C.2-5) 

B.C. 2: at r = aR, do,, v, = aR- 
at 

(4C.2-6) 

The function OaR(t) is a specified sinusoidal function (the "input"). Draw a sketch showing OQR 
and OR as functions of time, and defining the amplitude ratio and the phase shift. 
(d) Simplify the starting equations, Eqs. 4C.2-1 to 6, by making the assumption that a is only 
slightly greater than unity, so that the curvature may be neglected (the problem can be solved 
without making this assumption4). This suggests that a suitable dimensionless distance vari- 
able is x = (r - R)/[(a - 1)Rl. Recast the entire problem in dimensionless quantities in such a 
way that 1 /o, = a is used as a characteristic time, and so that the viscosity appears in just 
one dimensionless group. The only choice turns out to be: 

time: T =  $t (4C.2-7) 

velocity: 

viscosity: 

2.rrR4Lp(a - 1) 
reciprocal of moment of inertia: A = 

I 

H. Markovitz, J. Appl. Phys., 23,1070-1077 (1952) has solved the problem without assuming a 
small spacing between the cup and bob. The cup-and-bob instrument has been used by L. J. Wittenberg, 
D. Ofte, and C. F. Curtiss, J .  Chem. Phys., 48,3253-3260 (1968), to measure the viscosity of liquid 
plutonium alloys. 
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Show that the problem can now be restated as follows: 

(bob) 

(fluid) 

From these two equations we want to get 6, and 4 as functions of x and 7, with M and A as 
parameters. 
(e) Obtain the "sinusoidal steady-state" solution by taking the input function BQR (the dis- 
placement of the cup) to be of the form 

in which G = @/on = wV!% is a dimensionless frequency. Then postulate that the bob and 
fluid motions will also be sinusoidal, but with different amplitudes and phases: 

= %{6ieiGr] (6; is complex) (4C.2-14) 

4 ( ~ ,  7) = %(40(x)e~Z;7) is complex) (4C.2-15) 

Verify that the amplitude ratio is given by IB;J /6&, where 1 .  . .I indicates the absolute magni- 
tude of a complex quantity. Further show that the phase angle a is given by tan a = 
3{0i{/M{Bf;j, where % and 3 stand for the real and imaginary parts, respectively. 
(f) Substitute the postulated solutions of (e) into the equations in (d) to obtain equations for 
the complex amplitudes 6 h n d  4". 
(g) Solve the equation for +"(XI and verify that 

(h) Next, solve the 6; equation to obtain 

from which the amplitude ratio lBil /6iR and phase shift a can be found. 
(i) For high-viscosity fluids, we can seek a power series by expanding the hyperbolic func- 
tions in Eq. 4C.2-17 to get a power series in 1 /M. Show that this leads to 

From this, find the amplitude ratio and the phase angle. 
(j) Plot l6;l /6iR versus G for p/p = 10 cm2/s, L = 25 cm, R = 5.5 cm, I = 2500 gm/cm2, k = 4 X 

lo6 dyn cm. Where is the maximum in the curve? 

4C.3 Darcy's equation for flow through porous media. For the flow of a fluid through a porous 
medium, the equations of continuity and motion may be replaced by 

smoothed continuity equation dp 
6 - = -(V ' pvo) 

d t 
(4C.3-1) 

Darcy's equation5 K 
vo = -, (Vp - pg) (4C.3-2) 

' Henry Philibert Gaspard Darcy (1803-1858) studied in Paris and became famous for designing 
the municipal water-supply system in Dijon, the city of his birth. H. Darcy, Les Fontaines Publiques de la 
Ville de Dijon, Victor Dalmont, Paris (1856). For further discussions of "Darcy's law," see J. Happel and 
H. Brenner, Low Reynolds Number Hydrodynamics, Martinus Nihjoff, Dordrecht (1983); and H. Brenner 
and D. A. Edwards, Macrofransporf Processes, Butterworth-Heinemann, Boston (1993). 
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in which E, the porosity, is the ratio of pore volume to total volume, and K is the permeability of 
the porous medium. The velocity v, in these equations is the superficial velocity, which is de- 
fined as the volume rate of flow through a unit cross-sectional area of the solid plus fluid, av- 
eraged over a small region of space-small with respect to the macroscopic dimensions in the 
flow system, but large with respect to the pore size. The density and pressure are averaged 
over a region available to flow that is large with respect to the pore size. Equation 4C.3-2 was 
proposed empirically to describe the slow seepage of fluids through granular media. 

When Eqs. 4C.3-1 and 2 are combined we get 

for constant viscosity and permeability. This equation and the equation of state describe the 
motion of a fluid in a porous medium. For most purposes we may write the equation of state as 

in which p,, is the fluid density at unit pressure, and the following parameters have been given:6 

1. Incompressible liquids m=O p = O  
2. Compressible liquids m = O  p f O  
3. Isothermal expansion of gases /3 = 0 m = 1 
4. Adiabatic expansion of gases /3 = 0 m = C,/Cp = I / y  

Show that Eqs. 4C.3-3 and 4 can be combined and simplified for these four categories to give 
(for gases it is customary to neglect the gravity terms since they are small compared with the 
pressure terms): 

Case 1. V 2 8  = 0 (4C.3-5) 

Case 2. 

Case 3. 

Case 4. 

Note that Case 1 leads to Laplace's equation, Case 2 without the gravity term leads to the heat- 
conduction or diffusion equation, and Cases 3 and 4 lead to nonlinear  equation^.^ 

4C.4 Radial flow through a porous medium (Fig. 4C.4). A fluid flows through a porous cylindri- 
cal shell with inner and outer radii R, and R,, respectively. At these surfaces, the pressures 
are known to be p, and p,, respectively. The length of the cylindrical shell is h. 

Porous medium Fluid 
/ I 

I I 

--- I 1 
fZL----7;i--+ w = mass 
.-+ I I J-- + rate of flow 

---- 1 ------ Y 
I 

1 
I 

\ Fig. 4C.4. Radial flow 
I \ 2 through a porous 

Pressure pl Pressure p2 medium. 

ti M. Muskat, Flow of Homogeneous Fluids Through Porous Media, McGraw-Hill(1937). 
For the boundary condition at a porous surface that bounds a moving fluid, see G. S. Beavers and 

D. D. Joseph, J. Fluid Mech., 30,197-207 (1967) and G. S. Beavers, E. M. Sparrow, and B. A. Masha, AIChE 
Journal, 20,596-597 (1974). 
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(a) Find the pressure distribution, radial flow velocity, and mass rate of flow for an incom- 
pressible fluid. 
(b) Rework (a) for a compressible liquid and for an ideal gas. 

9 - 9, - ln (r/RJ K 9 2  - 91 zm~h(p2 - p1)p 
- Answers: (a) vOr = -- w = 

g2 - 9, In (R,/R,) Pr In (R2/Rl) p In (R2/R,) 

4D.1 Flow near an oscillating wa1L8 Show, by using Laplace transforms, that the complete solu- 
tion to the problem stated in Eqs. 4.1-44 to 47 is 

4D.2 Start-up of laminar flow in a circular tube (Fig. 4D.2). A fluid of constant density and viscos- 
ity is contained in a very long pipe of length L and radius R. Initially the fluid is at rest. At 
time t = 0, a pressure gradient (Yo - YL)/L is imposed on the system. Determine how the ve- 
locity profiles change with time. 

Tube center = 00 
Tube wall 

\ 

Fig. 4D.2. Velocity distribution for the unsteady flow re- 
sulting from a suddenly impressed pressure gradient in a 
circular tube [P. Szymanski, J. Math. Pures Appl., Series 9, 
11,67-107 (1932)l. 

(a) Show that the relevant equation of motion can be put into dimensionless form as follows: 

in which 5 = ?/A, r = pt/pR2, and 4 = [(Yo - 9L)R2/4pLl-'v,. 
(b) Show that the asymptotic solution for large time is 4, = 1 - t2.  Then define 4, by +((, r) = 

+m(t) - +r(e, r), and solve the partial differential equation for 4, by the method of separation 
of variables. 
(c) Show that the final solution is 

in which J,@ is the nth order Bessel function of t ,  and the a, are the roots of the equation 
Jo(an) = 0. The result is plotted in Fig. 4D.2. 

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in  Solids, Oxford University Press, 2nd edition 
(1959), p. 319, Eq. (a), with E = $.rr and G = KU'. 
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Fig. 4D.3. Rotating disk in a circular tube. 

Flows in the disk-and-tube system (Fig. 4D.3): 

(a) A fluid in a circular tube is caused to move tangentially by a tightly fitting rotating disk at 
the liquid surface at z = 0; the bottom of the tube is located at z = L. Find the steady-state veloc- 
ity distribution v&r, z), when the angular velocity of the disk is a. Assume that creeping flow 
prevails throughout, so that there is no secondary flow. Find the limit of the solution as L + a. 

(b) Repeat the problem for the unsteady flow. The fluid is at rest before t = 0, and the disk 
suddenly begins to rotate with an angular velocity at t = 0. Find the velocity distribution 
vJr, Z, t) for a column of fluid of height L. Then find the solution for the limit as L ;. a. 
(c) If the disk is oscillating sinusoidally in the tangential direction with amplitude a,, obtain 
the velocity distribution in the tube when the "oscillatory steady state" has been attained. Re- 
peat the problem for a tube of infinite length. 

Unsteady annular flows. 
(a) Obtain a solution to the Navier-Stokes equation for the start-up of axial annular flow by a 
sudden impressed pressure gradient. Check your result against the published s~lut ion. '~  
(b) Solve the Navier-Stokes equation for the unsteady tangential flow in an annulus. The fluid 
is at rest for t < 0. Starting at t = 0 the outer cylinder begins rotating with a constant angular 
velocity to cause laminar flow for t > 0. Compare your result with the published solution." 

Stream functions for three-dimensional flow. 
(a) Show that the velocity functions pv = [V X A] and pv = [(V+') X (V+JI both satisfy the 
equation of continuity identically for steady flow. The functions +,, +*, and A are arbitrary, 
except that their derivatives appearing in (V . pv) must exist. 

(b) Show that the expression A/p = S3+/h3 reproduces the velocity components for the four 
incompressible flows of Table 4.2-1. Here h, is the scale factor for the third coordinate (see 
5A.7). (Read the general vector v of Eq. A.7-18 here as A.) 
(c) Show that the streamlines of [(Vfi,) X (Vfi2)I are given by the intersections of the surfaces rCI, 
= constant and fi2 = constant. Sketch such a pair of surfaces for the flow in Fig. 4.3-1. 
(d) Use Stokes' theorem (Eq. A.5-4) to obtain an expression in terms of A for the mass flow 
rate through a surface S bounded by a closed curve C. Show that the vanishing of v on C does 
not imply the vanishing of A on C. 

W .  Hort, Z. tech. Phys., 10,213 (1920); C. T. Hill, J. D. Huppler, and R. B. Bird, Chem. Engr. Sci., 21, 
815-817 (1966). 

lo W. Miiller, Zeits. fur angew. Math. u. Mech., 16,227-228 (1936). 
" R. B. Bird and C. F. Curtiss, Chem. Engr. Sci, 11,108-113 (1959). 



Chapter 3 

Velocity Distributions 
in Turbulent Flow 
5 . 1  Comparisons of laminar and turbulent flows 

55.2 Time-smoothed equations of change for incompressible fluids 

55.3 The time-smoothed velocity profile near a wall 

55.4 Empirical expressions for the turbulent momentum flux 

55.5 Turbulent flow in ducts 

55.6' Turbulent flow in jets 

In the previous chapters we discussed laminar flow problems only. We have seen that 
the differential equations describing laminar flow are well understood and that, for a 
number of simple systems, the velocity distribution and various derived quantities can 
be obtained in a straightforward fashion. The limiting factor in applying the equations of 
change is the mathematical complexity that one encounters in problems for which there 
are several velocity components that are functions of several variables. Even there, with 
the rapid development of computational fluid dynamics, such problems are gradually 
yielding to numerical solution. 

In this chapter we turn our attention to turbulent flow. Whereas laminar flow is 
orderly, turbulent flow is chaotic. It is this chaotic nature of turbulent flow that poses 
all sorts of difficulties. In fact, one might question whether or not the equations of 
change given in Chapter 3 are even capable of describing the violently fluctuating mo- 
tions in turbulent flow. Since the sizes of the turbulent eddies are several orders of 
magnitude larger than the mean free path of the molecules of the fluid, the equations 
of change are applicable. Numerical solutions of these equations are obtainable and 
can be used for studying the details of the turbulence structure. For many purposes, 
however, we are not interested in having such detailed information, in view of the 
computational effort required. Therefore, in this chapter we shall concern ourselves 
primarily with methods that enable us to describe the time-smoothed velocity and 
pressure profiles. 

In s5.1 we start by comparing the experimental results for laminar and turbulent 
flows in several flow systems. In this way we can get some qualitative ideas about the 
main differences between laminar and turbulent motions. These experiments help to de- 
fine some of the challenges that face the fluid dynamicist. 

In 55.2 we define several fime-smoothed quantities, and show how these definitions 
can be used to time-average the equations of change over a short time interval. These 
equations describe the behavior of the time-smoothed velocity and pressure. The time- 
smoothed equation of motion, however, contains the turbulent momentum flux. This flux 
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cannot be simply related to velocity gradients in the way that the momentum flux is 
given by Newton's law of viscosity in Chapter 1. At the present time the turbulent mo- 
mentum flux is usually estimated experimentally or else modeled by some type of em- 
piricism based on experimental measurements. 

Fortunately, for turbulent flow near a solid surface, there are several rather general 
results that are very helpful in fluid dynamics and transport phenomena: the Taylor se- 
ries development for the velocity near the wall; and the logarithmic and power law ve- 
locity profiles for regions further from the wall, the latter being obtained by dimensional 
reasoning. These expressions for the time-smoothed velocity distribution are given in 
s5.3. 

In the following section, 55.4, we present a few of the empiricisms that have been 
proposed for the turbulent momentum flux. These empiricisms are of historical interest 
and have also been widely used in engineering calculations. When applied with proper 
judgment, these empirical expressions can be useful. 

The remainder of the chapter is devoted to a discussion of two types of turbulent 
flows: flows in closed conduits (55.5) and flows in jets (55.6). These flows illustrate the 
two classes of flows that are usually discussed under the headings of wall turbulence and 
free turbulence. 

In this brief introduction to turbulence we deal primarily with the description of the 
fully developed turbulent flow of an incompressible fluid. We do not consider the theo- 
retical methods for predicting the inception of turbulence nor the experimental tech- 
niques devised for probing the structure of turbulent flow. We also give no discussion of 
the statistical theories of turbulence and the way in which the turbulent energy is distrib- 
uted over the various modes of motion. For these and other interesting topics, the reader 
should consult some of the standard books on turbulence.l4 There is a growing litera- 
ture on experimental and computational evidence for "coherent structures" (vortices) in 
turbulent flows.7 

Turbulence is an important subject. In fact, most flows encountered in engineering 
are turbulent and not laminar! Although our understanding of turbulence is far from sat- 
isfactory, it is a subject that must be studied and appreciated. For the solution to indus- 
trial problems we cannot get neat analytical results, and, for the most part, such 
problems are attacked by using a combination of dimensional analysis and experimental 
data. This method is discussed in Chapter 6. 

' S. Corrsin, "Turbulence: Experimental Methods," in Handbuch der Physik, Springer, Berlin (19631, 
Vol. VIII/2. Stanley Corrsin (1920-1986), a professor at The Johns Hopkins University, was an excellent 
experimentalist and teacher; he studied the interaction between chemical reactions and turbulence and 
the propagation of the double temperature correlations. 

A. A. Townsend, The Structure of Turbulent Shear Flow, Cambridge University Press, 2nd edition 
(1976); see also A. A. Townsend in Handbook of Fluid Dynamics (V. L. Streeter, ed.), McGraw-Hill(1961) 
for a readable survey. 

J. 0 .  Hinze, Turbulence, McGraw-Hill, New York, 2nd edition (1975). 
H. Tennekes and J. L. Lumley, A First Course in Turbulence, MIT Press, Cambridge, Mass. (1972); 

Chapters 1 and 2 of this book provide an introduction to the physical interpretations of turbulent flow 
phenomena. 

M. Lesieur, La Turbulence, Presses Universitaires de Grenoble (1994); this book contains beautiful 
color photographs of turbulent flow systems. 

Several books that cover material beyond the scope of this text are: W. D. McComb, The Physics of 
Fluid Turbulence, Oxford University Press (1990); T. E. Faber, Fluid Dynamics for Physicists, Cambridge 
University Press (1995); U. Frisch, Turbulence, Cambridge University Press (1995). 

P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems, and 
Symmetry, Cambridge University Press (1996); F. Waleffe, Phys. Rev. Lett., 81,41404148 (1998). 
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5.1 COMPARISONS OF LAMINAR AND TURBULENT FLOWS 

Before discussing any theoretical ideas about turbulence, it is important to summarize 
the differences between laminar and turbulent flows in several simple systems. Specifi- 
cally we consider the flow in conduits of circular and triangular cross section, flow along 
a flat plate, and flows in jets. The first three of these were considered for laminar flow in 
52.3, Problem 3B.2, and 54.4. 

Circular Tubes 

For the steady, fully developed, laminar flow in a circular tube of radius R we know that 
the velocity distribution and the average velocity are given by 

vz 
2 

-- - 1 - (a) and - ( )  - - - I (Re < 2100) 
Vz ,  ma, Vz,max 2 

and that the pressure drop and mass flow rate w are linearly related: 

For turbulent flow, on the other hand, the velocity is fluctuating with time chaotically at 
each point in the tube. We can measure a "time-smoothed velocity" at each point with, 
say, a Pitot tube. This type of instrument is not sensitive to rapid velocity fluctuations, 
but senses the velocity averaged over several seconds. The time-smoothed velocity 
(which is defined in the next section) will have a z-component represented by G, and its 
shape and average value will be given very roughly by1 

This $-power expression for the velocity distribution is too crude to give a realistic veloc- 
ity derivative at the wall. The laminar and turbulent velocity profiles are compared in 
Fig. 5.1-1. 

Tube wall 

Fig. 5.1-1. Qualitative comparison of lami- 
nar and turbulent velocity profiles. For a 
more detailed description of the turbulent 

1 0  0.8 0.6 0.4 0.2 1 0.2 0.4 0.6 0-8 1.0 velocity distributionnear the wall, see 
r/R - Fig. 5.5-3. 

' H. Schlichting, Boundary-Layer Theory, McGraw-Hill, New York, 7th edition (1979), Chapter XX 
(tube flow), Chapters VII and XXI (flat plate flow), Chapters IX and XXIIV (jet flows). 
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Over the same range of Reynolds numbers the mass rate of flow and the pressure 
drop are no longer proportional but are related approximately by 

The stronger dependence of pressure drop on mass flow rate for turbulent flow results 
from the fact that more energy has to be supplied to maintain the violent eddy motion in 
the fluid. 

The laminar-turbulent transition in circular pipes normally occurs at a critical 
Reynolds number of roughly 2100, although this number may be higher if extreme care is 
taken to eliminate vibrations in the system.' The transition from laminar flow to turbu- 
lent flow can be demonstrated by the simple experiment originally performed by 
Reynolds. One sets up a long transparent tube equipped with a device for injecting a 
small amount of dye into the stream along the tube axis. When the flow is laminar, the 
dye moves downstream as a straight, coherent filament. For turbulent flow, on the other 
hand, the dye spreads quickly over the entire cross section, similarly to the motion of 
particles in Fig. 2.0-1, because of the eddying motion (turbulent diffusion). 

Noncircular Tubes 

For developed laminar flow in the triangular duct shown in Fig. 3B.2(b), the fluid parti- 
cles move rectilinearly in the z direction, parallel to the walls of the duct. By contrast, in 
turbulent flow there is superposed on the time-smoothed flow in the z direction (the pri- 
m a y  pow) a time-smoothed motion in the xy-plane (the secondary flow). The secondary 
flow is much weaker than the primary flow and manifests itself as a set of six vortices 
arranged in a symmetric pattern around the duct axis (see Fig. 5.1-2). Other noncircular 
tubes also exhibit secondary flows. 

Flat Plate 

In s4.4 we found that for the laminar flow around a flat plate, wetted on both sides, the 
solution of the boundary layer equations gave the drag force expression 

F = 1.328- (laminar) 0 < Re, < 5 X lo5 (5.1-7) 

in which ReL = Lvmp/,x is the Reynolds number for a plate of length L; the plate width is 
W, and the approach velocity of the fluid is v,. 

Fig. 5.1-2. Sketch showing the secondary flow patterns 
for turbulent flow in a tube of triangular cross section 
[H. Schlichting, Bounda y-Layer Theo y, McGraw-Hill, 
New York, 7th edition (1979), p. 6131. 

0. Reynolds, Phil. Trans. Roy. Soc., 174, Part 111,935-982 (1883). See also A. A. Draad and F. M. T 
Nieuwstadt, J. Fluid Mech., 361,297-308 (1998). 
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Table 5.1-1 Dependence of Jet Parameters on Distance z from Wall 

Laminar flow Turbulent flow 

Width Centerline Mass Width Centerline Mass 
of jet velocity flow rate of jet velocity flow rate 

Circular jet z zpl z z z-I z 

Plane jet z2/3 z-~/3 =1/3 z =-1 /2  z~ /2 

For turbulent flow, on the other hand, the dependence on the geometrical and phys- 
ical properties is quite different:' 

F = 0 . 7 4 ~ p 4 p ~ 4 ~ 5 v ~  (turbulent) (5 X 10' < ReL < lo7) (5.1-8) 

Thus the force is proportional to the $-power of the approach velocity for laminar flow, 
but to the $power for turbulent flow. The stronger dependence on the approach velocity 
reflects the extra energy needed to maintain the irregular eddy motions in the fluid. 

Circular and Plane Jets 

Next we examine the behavior of jets that emerge from a flat wall, which is taken to be 
the xy-plane (see Fig. 5.6-1). The fluid comes out from a circular tube or a long narrow 
slot, and flows into a large body of the same fluid. Various observations on the jets can 
be made: the width of the jet, the centerline velocity of the jet, and the mass flow rate 
through a cross section parallel to the xy-plane. All these properties can be measured as 
functions of the distance z from the wall. In Table 5.1-1 we summarize the properties of 
the circular and two-dimensional jets for laminar and turbulent flow.' It is curious that, 
for the circular jet, the jet width, centerline velocity, and mass flow rate have exactly the 
same dependence on z in both laminar and turbulent flow. We shall return to this point 
later in 55.6. 

The above examples should make it clear that the gross features of laminar and tur- 
bulent flow are generally quite different. One of the many challenges in turbulence the- 
ory is to try to explain these differences. 

55.2 TIME-SMOOTHED EQUATIONS OF CHANGE 
FOR INCOMPRESSIBLE FLUIDS 

We begin by considering a turbulent flow in a tube with a constant imposed pressure 
gradient. If at one point in the fluid we observe one component of the velocity as a func- 
tion of time, we find that it is fluctuating in a chaotic fashion as shown in Fig. 5.2-l(a). 
The fluctuations are irregular deviations from a mean value. The actual velocity can be 
regarded as the sum of the mean value (designated by an overbar) and the fluctuation 
(designated by a prime). For example, for the z-component of the velocity we write 

which is sometimes called the Reynolds decomposition. The mean value is obtained from 
v,(t) by making a time average over a large number of fluctuations 



55.2 Time-Smoothed Equations of Change for Incompressible Fluids 157 

t I 
Time t Time t 

Fig. 5.2-1. Sketch showing the velocity component v, as well as its time-smoothed value & and its fluctuation 
v: in turbulent flow (a) for "steadily driven turbulent flow" in which & does not depend on time, and (b)  for a 
situation in which v does depend on time. 

the period to being long enough to give a smooth averaged function. For the system at 
hand, the quantity &, which we call the time-smoothed velocity, is independent of time, 
but of course depends on position. When the time-smoothed velocity does not depend 
on time, we speak of steadily driven turbulent pow. The same comments we have made for 
velocity can also be made for pressure. 

Next we consider turbulent flow in a tube with a time-dependent pressure gradient. 
For such a flow one can define time-smoothed quantities as above, but one has to under- 
stand that the period to must be small with respect to the changes in the pressure gradi- 
ent, but still large with respect to the periods of fluctuations. For such a situation the 
time-smoothed velocity and the actual velocity are illustrated in Fig. 5.2-l(b).' 

According to the definition in Eq. 5.2-2, it is easy to verify that the following rela- 
tions are true: 

The quantity 2 will not, however, be zero, and in fact the ratio -/(8,) can be taken to 
be a measure of the magnitude of the turbulent fluctuations. This quantity, known as the 
intensity of turbulence, may have values from 1 to 10% in the main part of a turbulent 
stream and values of 25% or higher in the neighborhood of a solid wall. Hence, it must be 
emphasized that we are not necessarily dealing with tiny disturbances; sometimes the fluc- 
tuations are actually quite violent and large. 

Quantities such as v,:.vi are also nonzero. The reason for this is that the local motions 
in the x and y directions are correlated. In other words, the fluctuations in the x direction 
are not independent of the fluctuations in the y direction. We shall see presently that 
these time-smoothed values of the products of fluctuating properties have an important 
role in turbulent momentum transfer. Later we shall find similar correlations arising in 
turbulent heat and mass transport. 

' One can also define the "overbar" quantities in terms of an "ensemble average." For most 
purposes the results are equivalent or are assumed to be so. See, for example, A. A. Townsend, The 
Structure of Turbulent Shear Flow, Cambridge University Press, 2nd edition (1976). See also P. K. Kundu, 
Fluid Mechanics, Academic Press, New York (1990), p. 421, regarding the last of the formulas given in 
Eq. 5.2-3. 
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Having defined the time-smoothed quantities and discussed some of the properties 
of the fluctuating quantities, we can now move on to the time-smoothing of the equations 
of change. To keep the development as simple as possible, we consider here only the 
equations for a fluid of constant density and viscosity. We start by writing the equations 
of continuity and motion with v replaced by its equivalent F + v' and p by its equivalent 
- 
p + p'. The equation of continuity is then (V . v) = 0, and we write the x-component of the 
equation of motion, Eq. 3.5-6, in the d/dt form by using Eq. 3.5-5: 

d a - d 
- p(vx + v;) = -- (p + p ' )  - p(v, + v:)(v, + v:) + P ( V ,  + v p v ,  + v:) 
d t dx dy 

The y- and z-components of the equation of motion can be similarly written. We next 
time-smooth these equations, making use of the relations given in Eq. 5.2-3. This gives 

+ pV2E, + pg, (5.2-7) dz 

with similar relations for the y- and z-components of the equation of motion. These are 
then the time-smoothed equations of continuity and motion for a fluid with constant density 
and viscosity. By comparing them with the corresponding equations in Eq. 3.1-5 and 
Eq. 3.5-6 (the latter rewritten in terms of d/dt), we conclude that 

a. The equation of continuity is the same as we had previously, except that v is now 
replaced by i. 

b. The equation of motion now has i and p where we previously had v and p. In ad- 
dition there appear the dashed-underlined terms, which describe the momentum 
transport associated with the turbulent fluctuations. 

We may rewrite Eq. 5.2-7 by introducing the turbulent momentum flux tensor 7'') with 
components 

- - - I I - I I 
7;:) = pvxvx T: = pvxvy 7:;) = Pm and so on (5.2-8) 

These quantities are usually referred to as the Reynolds stresses. We may also introduce a 
symbol @" for the time-smoothed viscous momentum flux. The components of this ten- 
sor have the same appearance as the expressions given in Appendices B.l to 8.3, except 
that the time-smoothed velocity components appear in them: 

This enables us then to write the equations of change in vector-tensor form as 

(V . V) = 0 and (V . v') = 0 (5.2-10,ll) 
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Equation 5.2-11 is an extra equation obtained by subtracting Eq. 5.2-10 from the original 
equation of continuity. 

The principal result of this section is that the equation of motion in terms of the 
stress tensor, summarized in Appendix Table B.5, can be adapted for time-smoothed tur- 
bulent flow by changing all vi to Ei and p to P as well as T~ to Tij = 7:' + 7;' in any of the 
coordinate systems given. 

We have now arrived at the main stumbling block in the theory of turbulence. 
The Reynolds stresses 7;' above are not related to the velocity gradients in a simple 
way as are the time-smoothed viscous stresses 7 v  in Eq. 5.2-9. They are, instead, com- 
plicated functions of the position and the turbulence intensity. To solve flow prob- 
lems we must have experimental information about the Reynolds stresses or else 
resort to some empirical expression. In 55.4 we discuss some of the empiricisms that 
are available. 

Actually one can also obtain equations of change for the Reynolds stresses (see Prob- 
1 1 1  lem 5D.1). However, these equations contain quantities like vivj vk. Similarly, the equa- 

! I l tions of change for the vivjvk contain the next higher-order correlation v,!v!v;v;, and so 
on. That is, there is a never-ending hierarchy of equations that must be solved. To solve 
flow problems one has to "truncate" this hierarchy by introducing empiricisms. If we 
use empiricisms for the Reynolds stresses, we then have a "first-order" theory. If we in- 

r I I troduce empiricisms for the vivjv,, we then have a "second-order theory," and so on. 
The problem of introducing empiricisms to get a closed set of equations that can be 
solved for the velocity and pressure distributions is referred to as the "closure problem." 
The discussion in 55.4 deals with closure at the first order. At the second order the "k-E 
empiricism" has been extensively studied and widely used in computational fluid 
mechanics.' 

55.3 THE TIME-SMOOTHED VELOCITY PROFILE NEAR A WALL 

Before we discuss the various empirical expressions used for the Reynolds stresses, we 
present here several developments that do not depend on any empiricisms. We are con- 
cerned here with the fully developed, time-smoothed velocity distribution in the neigh- 
borhood of a wall. We discuss several results: a Taylor expansion of the velocity near the 
wall, and the universal logarithmic and power law velocity distributions a little further 
out from the wall. 

The flow near a flat surface is depicted in Fig. 5.3-1. It is convenient to distinguish 
four regions of flow: 

the viscous sublayer very near the wall, in which viscosity plays a key role 

the buffer layer in which the transition occurs between the viscous and inertial 
sublayers 

the inertial sublayer at the beginning of the main turbulent stream, in which viscos- 
ity plays at most a minor role 

the main turbulent stream, in which the time-smoothed velocity distribution is 
nearly flat and viscosity is unimportant 

It must be emphasized that this classification into regions is somewhat arbitrary. 

J. L. Lumley, Adv. Appl. Mech., 18,123-176 (1978); C. G. Speziale, Ann. Revs. Fluid Mech., 23, 
107-157 (1991); H. Schlichting and K. Gersten, Bounda y-Layer Theoy, Springer, Berlin, 8th edition (2000), 
pp. 560-563. 
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Fig. 5.3-1. Flow regions for describing 
turbulent flow near a wall: @viscous 
sublayer, @buffer layer, @inertial 
sublayer, @ main turbulent stream. 

The Logarithmic and Power Law Velocity Profiles 
in the Inertial Sublayer14 

Let the time-smoothed shear stress acting on the wall y = 0 be called 7, (this is the same 
as -7y.u)y=0). Then the shear stress in the inertial sublayer will not be very different from 
the value 7,. We now ask: On what quantities will the time-smoothed velocity gradient 
d v , / d y  depend? It should not depend on the viscosity, since, out beyond the buffer layer, 
momentum transport should depend primarily on the velocity fluctuations (loosely re- 
ferred to as "eddy motion"). It may depend on the density p, the wall shear stress T,,, and 
the distance y from the wall. The only combination of these three quantities that has the 
dimensions of a velocity gradient is -ly. Hence we write 

- 

in which K is an arbitra dimensionless constant, which must be determined experi- 
mentally. The quantity 3-- ~ , / p  has the dimensions of velocity; it is called the friction veloc- 
ity and given the symbol v,.When Eq. 5.3-1 is integrated we get 

A '  being an integration constant. To use dimensionless groupings, we rewrite Eq. 5.3-2 as 

in which A is a constant simply related to A'; the kinematic viscosity v was included in 
order to construct the dimensionless argument of the logarithm. Experimentally it has 
been found that reasonable values of the constants2 are K = 0.4 and A = 5.5, giving 

L. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, Oxford, 2nd edition (19871, pp. 172-178. 
H. Schlichting and K. Gersten, Boundary-Layer Theory, Springer-Verlag, Berlin, 8th edition (2000), 

g17.2.3. 
T. von KBrmh, Nachr. Ges. Wiss. Gottingen, Math-Phys. Klasse (19301, pp. 58-76; L. Prandtl, Ergeb. 

Aerodyn. Versuch., Series 4, Gottingen (1932). 
%. I. Barenblatt and A. J. Chorin, Proc. Nat. Acad. Sci. USA, 93,6749-6752 (1996) and SIAM Rev., 40, 

265-291 (1981); G. I. Barenblatt, A. J. Chorin, and V. M. Prostokishin, Proc. Nat. Acad. Sci. USA, 94, 
773-776 (1997). See also G. I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics, Cambridge 
University Press (1992), 510.2. 
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This is called the von Urmlin-Prandtl universal logarithmic velocity di~tribution;~ it is intended 
to apply only in the inertial sublayer. Later we shall see (in Fig. 5.5-3) that this function 
describes moderately well the experimental data somewhat beyond the inertial sublayer. 

If Eq. 5.3-1 were correct, then the constants K and h would indeed be "universal con- 
stants," applicable at any Reynolds number. However, values of K in the range 0.40 to 
0.44 and values of A in the range 5.0 to 6.3 can be found in the literature, depending on 
the range of Reynolds numbers. This suggests that the right side of Eq. 5.3-1 should be 
multiplied by some function of Reynolds number and that y could be raised to some 
power involving the Reynolds number. Theoretical arguments have been advanced4 that 
Eq. 5.3-1 should be replaced by 

in which B, = ifi ,  B, = y, and PI = z. When Eq. 5.3-5 is integrated with respect to y, the 
Barenblatt-Chorin universal velocity distribution is obtained: 

Equation 5.3-6 describes regions @and @of Fig. 5.3-1 better than does Eq. 5.3-4.4 Region a is better described by Eq. 5.3-13. 

Taylor-Series Development in the Viscous Sublayer 

We start by writing a Taylor series for E, as a function of y, thus 

To evaluate the terms in this series, we need the expression for the time-smoothed shear 
stress in the vicinity of a wall. For the special case of the steadily driven flow in a slit of 

- 
thickness 2B, the shear stress will be of the form 7,, = 7:: + 7:; = - ~ ~ [ l  - (y/B)I. Then 
from Eqs. 5.2-8 and 9, we have 

Now we examine one by one the terms that appear in Eq. 5.3-7:5 

(i) The first term is zero by the no-slip condition. 

(ii) The coefficient of the second term can be obtained from Eq. 5.3-8, recognizing 
that both v: and v; are zero at the wall so that 

(iii) The coefficient of the third term involves the second derivative, which may be 
obtained by differentiating Eq. 5.3-8 with respect to y and then setting y = 0, as follows, 

2 (5.3-10) 
dy y=O 

since both vi and v; are zero at the wall. 

A. A. Townsend, The Structure of Turbulent Shear Flow, Cambridge University Press, 2nd edition 
(1976), p. 163. 
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(iv) The coefficient of the fourth term involves the third derivative, which may be 
obtained from Eq. 5.3-8, and this is 

Here Eq. 5.2-1 1 has been used. 
There appears to be no reason to set the next coefficient equal to zero, so we find that 

the Taylor series, in dimensionless quantities, has the form 

The coefficient C has been obtained experimentally,' and therefore we have the final result: 

The y3 term in the brackets will turn out to be very important in connection with turbu- 
lent heat and mass transfer correlations in Chapters 13,14,21, and 22. 

For the region 5 < yvJv < 30 no simple analytical derivations are available, and 
empirical curve fits are sometimes used. One of these is shown in Fig. 5.5-3 for circular 
tubes. 

55.4 EMPIRICAL EXPRESSIONS FOR THE 
TURBULENT MOMENTUM FLUX 

We now return to the problem of using the time-smoothed equations of change in Eqs. 
5.2-11 and 12 to obtain the time-smoothed velocity and pressure distributions. As 
pointed out in the previous section, some information about the velocity distribution can 
be obtained without having a specific expression for the turbulent momentum flux F"'. 
However, it has been popular among engineers to use various empiricisms for I"' that 
involve velocity gradients. We mention a few of these, and many more can be found in 
the turbulence literature. 

The Eddy Viscosity of Boussinesq 

By analogy with Newton's law of viscosity, Eq. 1.1-1, one may write for a turbulent shear 
flow1 

C. 5. Lin, R. W. Moulton, and G. L. Putnam, Ind.  Eng.  Chem., 45,636-640 (1953); the numerical 
coefficient was determined from mass transfer experiments in circular tubes. The importance of the yj 
term in heat and mass transfer was recognized earlier by E. V. Murphree, Ind. Eng. Chem., 24,726-736 
(1932). Eger Vaughn Murphree (1898-1962) was captain of the University of Kentucky football team in 
1920 and became President of the Standard Oil Development Company. 

' J. Boussinesq, Mkm. prks. par diu. savants a I'acad. sci, de Paris, 23, #I, 1-680 (1877),24, #2,1-64 (1877). 
Joseph Valentin Boussinesq (1842-19291, university professor in Lille, wrote a two-volume treatise on 
heat, and is famous for the "Boussinesq approximation" and the idea of "eddy viscosity." 
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in which p"' is the turbulent viscosity (often called the eddy viscosity, and given the 
symbol E ) .  As one can see from Table 5.1-1, for at least one of the flows given there, 
the circular jet, one might expect Eq. 5.4-1 to be useful. Usually, however, p(" is a 
strong function of position and the intensity of turbulence. In fact, for some systems2 
p"' may even be negative in some regions. It must be emphasized that the viscosity p 
is a property of the fluid, whereas the eddy viscosity p"' is primarily a property of 
the flow. 

For two kinds of turbulent flows (i.e., flows along surfaces and flows in jets and 
wakes), special expressions for p't' are available: 

(i) Wall turbulence: YV* 0<,<5 
1 4 . 5 ~  

This expression, derivable from Eq. 5.3-13, is valid only very near the wall. It is of con- 
siderable importance in the theory of turbulent heat and mass transfer at fluid-solid 
 interface^.^ 

in which K, is a dimensionless coefficient to be determined experimentally, b is the 
width of the mixing zone at a downstream distance z, and the quantity in parentheses 
represents the maximum difference in the z-component of the time-smoothed veloci- 
ties at that distance z. Prandt14 found Eq. 5.4-3 to be a useful empiricism for jets and 
wakes. 

The Mixing Length of Prandtl 

By assuming that eddies move around in a fluid very much as molecules move around 
in a low-density gas (not a very good analogy) prandt15 developed an expression for mo- 
mentum transfer in a turbulent fluid. The "mixing length" 1 plays roughly the same role 
as the mean free path in kinetic theory (see 51.4). This kind of reasoning led Prandtl to 
the following relation: 

If the mixing length were a universal constant, Eq. 5.4-4 would be very attractive, but in 
fact 1 has been found to be a function of position. Prandtl proposed the following expres- 
sions for I: 

(i) Wall turbulence: I = ~ , y  (y = distance from wall) 

(ii) Free turbulence: I = ~ , b  (b = width of mixing zone) 

in which K ,  and KZ are constants. A result similar to Eq. 5.4-4 was obtained by Taylor6 by 
his "vorticity transport theory" some years prior to Prandtl's proposal. 

J. 0. Hinze, Appl. Sci. Res., 22,163-175 (1970); V.  Kruka and S. Eskinazi, J. Fluid. Mech., 20,555-579 
(1964). 

C. S. Lin, R. W. Moulton, and G. L. Putnam, Ind. Eng. Chem., 45,636-640 (1953). 
L. Prandtl, Zeits. f. angew. Math. u. Mech., 22,241-243 (1942). 
L. Prandtl, Zeits. f. angew. Math. u. Mech., 5,136-139 (1925). 
G. I. Taylor, Phil. Trans. A215,l-26 (1915), and Proc. Roy. Soc. (London), A135,685-701 (1932). 
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The Modified van Driest Equation 

There have been numerous attempts to devise empirical expressions that can describe 
the turbulent shear stress all the way from the wall to the main turbulent stream. Here 
we give a modification of the equation of van D r i e ~ t . ~  This is a formula for the mixing 
length of Eq. 5.4-4: 

This relation has been found to be useful for predicting heat and mass transfer rates in 
flow in tubes. 

In the next two sections and in several problems at the end of the chapter, we illus- 
trate the use of the above empiricisms. Keep in mind that these expressions for the 
Reynolds stresses are little more than crutches that can be used for the representation of 
experimental data or for solving problems that fall into rather special classes. 

Obtain an expression for 7:; = pv:vi as a function of y in the neighborhood of the wall. 

Development of the SOLUTION 
Reyno Ids Stress 
Expression in the (a) We start by making a Taylor series development of the three components of v': 

Vicinity of the Wall 

The first term in Eqs. 5.4-8 and 10 must be zero because of the no-slip condition; the first term 
in Eq. 5.4-9 is zero in the absence of mass transfer. Next we can write Eq. 5.2-11 at y = 0, 

The first and third terms in this equation are zero because of the no-slip condition. Therefore 
we have to conclude that the second term is zero as well. Hence all the dashed-underlined 
terms in Eqs. 5.4-8 to 10 are zero, and we may conclude that 

- 
$j? = PD:Z'j. = AY3 + BY4 + * . . (5.4-12) 

This suggests-but does not proves-that the lead term in the Reynolds stress near a wall 
should be proportional to y3. Extensive studies of mass transfer rates in closed channels9 have, 
however, established that A f 0. 

E. R. van Driest, J .  Aero. Sci., 23,1007-1011 and 1036 (1956). Van Driest's original equation did 
not have the square root divisor. This modification was made by 0. T. Hanna, 0. C. Sandall, and 
P. R. Mazet, AIChE Journal, 27,693-697 (1981) so that the turbulent viscosity would be proportional to 
as y + 0, in accordance with Eq. 5.4-2. 

H. Reichardt, Zeits. f. angew. Math. u. Mech., 31,20&219 (1951). See also J. 0. Hinze, Turbulence, 
McGraw-Hill, New York, 2nd edition (1975), pp. 620-621. 

R. H. Notter and C. A. Sleicher, Chem. Eng. Sci., 26,161-171 (1971); 0. C. Sandal1 and 0. T. Hanna, 
AIChE Journal, 25,190-192 (1979); D. W. Hubbard and E. N. Lightfoot, Ind. Eng. Chem. Fundamentals, 5, 
370-379 (1966). 
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(b) For the flow between parallel plates, we can use the expression found in Eq. 5.3-12 for the 
time-smoothed velocity profile to get the turbulent momentum flux: 

where A = ~C(V,/U)~.  This is in accord with Eq. 5.4-12. 

55.5 TURBULENT FLOW IN DUCTS 

We start this section with a short discussion of experimental measurements for turbulent 
flow in rectangular ducts, in order to give some impressions about the Reynolds stresses. 
In Figs. 5.5-1 -- and 2 are - shown some experimental measurements of the time-smoothed 
quantities vL2, v:~, and v:vi for the flow in the z direction in a rectangular duct. 

In Fig. 5.5-1 note that quite close to the wall, is about 13% of the time-smoothed 
centerline velocity Z,,,,,, whereas is about 5%. This means that, near the wall, the 
velocity fluctuations in the flow direction are appreciably greater than those in the trans- 
verse direction. Near the center of the duct, the two fluctuation amplitudes are nearly 
equal and we say that the turbulence is nearly i sot ro~there .  

In Fig. 5.5-2 the turbulent shear stress 7:; = p:v; is compared with the total shear 
stress 7,, = 7:; + 7:? across the duct. It is evident that the turbulent contribution is the 

Fig. 5.5-1. Measurements of H. Reichardt 
[Naturwissensckaften, 404 (1938), Zeits. 
f. angew. Math. u. Mech., 13,177-180 
(1933), 18,358-361 (1938)l for the turbu- 
lent flow of air in a rectangular duct 
with ?&,, = 100 cm/s. Here the quanti- 

ties a and a are shown. 

Fig. 5.5-2. Measurements of Reichardt 
(see Fig. 5.5-1) for the quantity in a 
rectangular duct. Note that this quan- 
tity differs from ?,,/p only near the 
duct wall. 
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more important over most of the cross section and that the viscous contribution is im- 
portant only in the vicinity of the wall. This is further illustrated in Example 5.5-3. Anal- 
ogous behavior is observed in tubes of circular cross section. 

Apply the results of 95.3 to obtain the average velocity for turbulent flow in a circular tube. 

Estimation of the 
Average Velocity 

SOLUTION 

in a Circular Tube We can use the velocity distribution in the caption to Fig. 5.5-3. To get the average velocity in 
the tube, one should integrate over four regions: the viscous sublayer (y+ < 51, the buffer zone 
5 < y+ < 30, the inertial sublayer, and themain turbulent stream; which is roughly parabolic 
in shape. One can certainly do this, but it has been found that integrating the logarithmic pro- 
file of Eq. 5.3-4 (or the power law profile of Eq. 5.3-6) over the entire cross section gives results 
that are roughly of the right form. For the logarithmic profile one gets 

Fig. 5.5-3. Dimensionless velocity distribution for turbulent flow in circular tubes, presented as vf = 5,/u, vs. y+ = 

yv,p/~,  where v, = and .r, is the wall shear stress. The solid curves are those suggested by Lin, Moulton, 
and Putnam [Ind. Eng. Chem., 45,636-640 (1953)l: 

The experimental data are those of J. Nikuradse for water (0) [VDI Forschungsheft, H356 (1932)l; Reichardt 
and Motzfeld for air (0); Reichardt and Schuh (A) for air [H. Reichardt, NACA Tech. Mem. 1047 (1943)l; and 
R. R. Rothfus, C. C. Monrad, and V. E. Seneca1 for air (H) [Ind. Eng. Chem., 42,2511-2520 (1950)). 
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If this is compared with experimental data on flow rate versus pressure drop, it is found that 
good agreement can be obtained by changing 2.5 to 2.45 and 1.75 to 2.0. This "fudging" of the 
constants would probably not be necessary if the integration over the cross section had been 
done by using the local expression for the velocity in the various layers. On the other hand, 
there is some virtue in having a simple logarithmic relation such as Eq. 5.5-1 to describe pres- 
sure drop vs. flow rate. 

In a similar fashion the power law profile can be integrated over the entire cross section to 
give (see Ref. 4 of 95.3) 

in which a = 3/(2 In Re). This relation is useful over the range 3.07 X lo3 < Re < 3.23 X lo6. 

Show how Eqs. 5.4-4 and 5 can be used to describe turbulent flow in a circular tube. 

Application of SOLUTION 
Prandtl's Mixing 
Length Formula to  Equation 5.2-12 gives for the steadily driven flow in a circular tube, 

Turbulent Flow in a 
Circular Tube 

in which Tr, = 7:' + 72. Over most of the tube the viscous contribution is quite small; here we 
neglect it entirely. Integration of Eq. 5.5-3 then gives 

where ro is the wall shear stress and y = R - r is the distance from the tube wall. 
According to the mixing length theory in Eq. 5.4-4, with the empirical expression in Eq. 

5.4-5, we have for d EJdr negative 

Substitution of this into Eq. 5.5-4 gives a differential equation for the time-smoothed velocity. 
If we follow Prandtl and extrapolate the inertial sublayer to the wall, then in Eq. 5.5-5 it is ap- 
propriate to replace 75; by 70. When this is done, Eq. 5.5-5 can be integrated to give 

- v* v, = - In y + constant 
K1 

(5.5-6) 

Thus a logarithmic profile is obtained and hence the results from Example 5.5-1 can be used; 
that is, one can apply Eq. 5.5-6 as a very rough approximation over the entire cross section of 
the tube. 

Determine the ratio p't'/p at y = R/2 for water flowing at a steady rate in a long, smooth, 
round tube under the following conditions: 

Relative Magnitude of 
Viscosity and Eddy R = tube radius = 3 in. = 7.62 cm 

Viscosity r0 = wall shear stress = 2.36 X lop5 1bf/in.' = 0.163 Pa 

p = density = 62.4 lb,/ft3 = 1000 kg/m3 

v = kinematic viscosity = 1.1 X lop5 ft2/s = 1.02 X lop7 m2/s 

SOLUTION The expression for the time-smoothed momentum flux is 
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This result may be solved for p'f'/p and the result can be expressed in terms of dimensionless 
variables: 

,p) - 
- 1 7rz 

El. El. dE,/dy 
1 

where y+ = y v , p / ~  and v' = &/v,. When y = R/2,  the value of y+ is 

For this value of yt, the logarithmic distribution in the caption of Fig. 5.5-3 gives 

Substituting this into Eq. 5.5-8 gives 

This result emphasizes that, far from the tube wall, molecular momentum transport is negli- 
gible in comparison with eddy transport. 

g5.6 TURBULENT FLOW IN JETS 

In the previous section we discussed the flow in ducts, such as circular tubes; such flows 
are examples of wall turbulence. Another main class of turbulent flows is free turbulence, 
and the main examples of these flows are jets and wakes. The time-smoothed velocity in 
these types of flows can be described adequately by using Prandtl's expression for the 
eddy viscosity in Fig. 5.4-3, or by using Prandtl's mixing length theory with the empiri- 
cism given in Eq. 5.4-6. The former method is simpler, and hence we use it in the follow- 
ing illustrative example. 

A jet of fluid emerges from a circular hole into a semi-infinite reservoir of the same fluid as 
depicted in Fig. 5.6-1. In the same figure we show roughly what we expect the profiles of 

Time-Smoothed the z-component of the velocity to look like. We would expect that for various values of z 
Distribution in the profiles will be similar in shape, differing only by a scale factor for distance and veloc- 

a Circular W a l l  JeP4 ity. We also can imagine that as the jet moves outward, it will create a net radial inflow so 
that some of the surrounding fluid will be dragged along. We want to find the time- 
smoothed velocity distribution in the jet and also the amount of fluid crossing each plane of 
constant z. Before working through the solution, it may be useful to review the information 
on jets in Table 5.1-1. 

' H. Schlichting, Boundary-Layer Theory, McGraw-Hill, New York, 7th edition (19791, pp. 747-750. 
A. A. Townsend, The Structure of Turbulent Shear Flow, Cambridge University Press, 2nd edition 

(19761, Chapter 6. 
9.0. Hinze, Turbulence, McGraw-Hill, New York, 2nd edition (1975), Chapter 6. 

S. Goldstein, Modern Developments in Fluid Dynamics, Oxford University Press (1938), and Dover 
reprint (1965), pp. 592-597. 
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SOLUTION 

Circular hole - 

Fig. 5.6-1. Circular jet 
emerging from a plane 
wall. 

- 
In order to use Eq. 5.4-3 it is necessary to know how b and q,,,, - v,,, vary with z for the cir- 
cular jet. We know that the total rate of flow of z-momentum J will be the same for all values 
of z .  We presume that the convective momentum flux is much greater than the viscous mo- 
mentum flux. This permits us to postulate that the jet width b depends on J, on the density p 
and the kinematic viscosity v of the fluid, and on the downstream distance z from the wall. 
The only combination of these variables that has the dimensions of length is b ~ z / ~ v ~ ,  so 
that the jet width is proportional to z. 

We next postulate that the velocity profiles are "similar," that is, 

which seems like a plausible proposal; here is the velocity along the centerline. When 
this is substituted into the expression for the rate of momentum flow in the jet (neglecting the 
contribution from 7,,) 

we find that 

Since J does not depend on z and since b is proportional to z, then G,,,,, has to be inversely 
proportional to z .  

The &,,, in Eq. 5.4-3 occurs at the outer edge of the jet and is zero. Therefore because b 
z and fi,,,, = z-', we find from Eq. 5.4-3 that /L(') is a constant. Thus we can use the equations 
of motion for laminar flow and replace the viscosity p by the eddy viscosity p(t), or v by dt). 

In the jet the main motion is in the z direction; that is I G, 1 < < I i& 1. Hence we can use a 
boundary layer approximation (see 54.4) for the time-smoothed equations of change and write 

continuity: 

motion: 

These equations are to be solved with the following boundary conditions: 

B.C. 1: 

B.C. 2: 

B.C. 3: 

The last boundary condition is automatically satisfied, inasmuch as we have already found 
that %,,,, is inversely proportional to z. We now seek a solution to Eq. 5.6-5 of the form of Eq. 
5.6-1 with b = z .  
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To avoid working with two dependent variables, we introduce the stream function as 
discussed in g .2 .  For axially symmetric flow, the stream function is defined as follows: 

This definition ensures that the equation of continuity in Eq. 5.6-4 is satisfied. Since we know 
that E, is z-' X some function of 5, we deduce from Eq. 5.6-9 that @ must be proportional to z. 
Furthermore + must have dimensions of (velocity) X (length)2, hence the stream function 
must have the form 

in which F is a dimensionless function of 5 = r / z .  From Eqs. 5.6-9 and 10 we then get 

The first two boundary conditions may now be rewritten as 

B.C. 1: F at[=O, - - F 1 = O  
5 

(5.6-14) 

B.C. 2: F" a t e = 0 ,  - -  
5 

If we expand F in a Taylor series about 5 = 0, 

then the first boundary condition gives a = 0, and the second gives b = d = 0. We will use this 
result presently. 

Substitution of the velocity expressions of Eqs. 5.6-12 and 13 into the equation of motion 
in Eq. 5.6-5 then gives a third-order differential equation for F, 

This may be integrated to give 

FF' F' - = F U - - + C ,  
5 5 

in which the constant of integration must be zero; this can be seen by using the Taylor series 
in Eq. 5.6-16 along with the fact that a, b, and d are all zero. 

Equation 5.6-18 was first solved by Schlichting.' First one changes the independent vari- 
able by setting 6 = In P. The resulting second-order differential equation contains only the de- 
pendent variable and its first two derivatives. Equations of this type can be solved by 
elementary methods. The first integration gives 

Once again, knowing the behavior of F near ( = 0, we conclude that the second constant of in- 
tegration is zero. Equation 5.6-19 is then a first-order separable equation, and it may be solved 
to give 

H. Schlichting, Zeits. f. angew. Math. u. Mech., 13,260-263 (1933). 
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in which C, is the third constant of integration. Substitution of this into Eqs. 5.6-12 and 13 
then gives 

When the above expression for & is substituted into Eq. 5.6-2 for J, we get an expression for 
the third integration constant in terms of J: 

The last three equations then give the time-smoothed velocity profiles in terms of J, p, and v"'. 
A measurable quantity in jet flow is the radial position corresponding to an axial velocity 

one-half the centerline value; we call this half-width b,,,. From Eq. 5.6-21 we then obtain 

Experiments indicate6 that blI2 = 0.08482. When this is inserted into Eq. 5.6-24, it is found that 
C, = 15.1. Using this value, we can get the turbulent viscosity v"' as a function of J and p from 
Eq. 5.6-23. 

Figure 5.6-2 gives a comparison of the above axial velocity profile with experimental 
data. The calculated curve obtained from the Prandtl mixing length theory is also shown.7 
Both methods appear to give reasonably good curve fits of the experimental profiles. The 

Fig. 5.6-2. Velocity distribution in a circular jet in turbulent flow [H. Schlichting, Boundary-Layer Theory, 
McGraw-Hill, New York, 7th edition (1979), Fig. 24.91. The eddy viscosity calculation (curve 1) and the 
Prandtl mixing length calculation (curve 2) are compared with the measurements of H. Reichardt [VDI 
Forschungsheft, 414 (1942), 2nd edition (1951)l. Further measurements by others are cited by S. Corrsin 
["Turbulence: Experimental Methods," in Handbuch der Physik, Vol. VIII/2 Springer, Berlin (1963)l. 

H .  Reichardt, VDI Forschungsheft, 414 (1942). 
W .  Tollmien, Zeifs. f. angew. Math. u.  Mech., 6,468478 (1926). 
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Fig. 5.6-3. Streamline pattern in a circular jet in 
turbulent flow [H. Schlichting, Bounda y-Layer The- 
ory, McGraw-Hill, New York, 7th edition (1979), 
Fig. 24.101. 

eddy viscosity method seems to be somewhat better in the neighborhood of the maximum, 
whereas the mixing length results are better in the outer part of the jet. 

Once the velocity profiles are known, the streamlines can be obtained. From the stream- 
lines, shown in Fig. 5.6-3, it can be seen how the jet draws in fluid from the surrounding mass 
of fluid. Hence the mass of fluid carried by the jet increases with the distance from the source. 
This mass rate of flow is 

This result corresponds to an entry in Table 5.1-1. 
The two-dimensional jet issuing from a thin slot may be analyzed sirnilarily. In that prob- 

lem, however, the turbulent viscosity is a function of position. 

QUESTIONS FOR DISCUSSION 

1. Compare and contrast the procedures for solving laminar flow problems and turbulent flow 
problems. 

2. Why must Eq. 5.1-4 not be used for evaluating the velocity gradient at the solid boundary? 
3. What does the logarithmic profile of Eq. 5.3-4 give for the fluid velocity at the wall? Why does 

this not create a problem in Example 5.5-1 when the logarithmic profile is integrated over the 
cross section of the tube? 

4. Discuss the physical interpretation of each term in Eq. 5.2-12. 
5. Why is the absolute value sign used in Eq. 5.4-4? How is it eliminated in Eq. 5.5-5? 
6. In Example 5.6-1, how do we know that the momentum flow through any plane of constant z 

is a constant? Can you imagine a modification of the jet problem in which that would not be 
the case? 

7. Go through some of the volumes of Ann. Revs. Fluid Mech. and summarize the topics in turbu- 
lent flow that are found there. 

8. In Eq. 5.3-1 why do we investigate the functional dependence of the velocity gradient rather 
than the velocity itself? 

9. Why is turbulence such a difficult topic? 

PROBLEMS 5A.1 Pressure drop needed for laminar-turbulent transition. A fluid with viscosity 18.3 cp and 
density 1.32 g/cm3 is flowing in a long horizontal tube of radius 1.05 in. (2.67 cm). For what 
pressure gradient will the flow become turbulent? 
Answer: 26 psi/mi (1.1 X lo5 Pa/krn) 
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5A.2 Velocity distribution in turbulent pipe flow. Water is flowing through a long, straight, level 
run of smooth 6.00 in. i.d. pipe, at a temperature of 68°F. The pressure gradient along the 
length of the pipe is 1.0 psi/mi. 
(a) Determine the wall shear stress r0 in psi (lbf/in.2) and Pa. 
(b) Assume the flow to be turbulent and determine the radial distances from the pipe wall at 
 which?&/^,,,, = 0.0,0.1,0.2,0.4,0.7,0.85,1.0. 
(c) Plot the complete velocity profile, i&/&,,,, vs. y = R - r. 
(d) Is the assumption of turbulent flow justified? 
(e) What is the mass flow rate? 

5B.1 Average flow velocity in turbulent tube flow. 
(a) For the turbulent flow in smooth circular tubes, the function' 

is sometimes useful for curve-fitting purposes: near Re = 4 X lo3, n = 6; near Re = 1.1 X los, 
n = 7; and near Re = 3.2 X lo6, n = 10. Show that the ratio of average to maximum velocity is 

and verify the result in Eq. 5.1-5. 
(b) Sketch the logarithmic profile in Eq. 5.3-4 as a function of r when applied to a circular 
tube of radius R. Then show how this function may be integrated over the tube cross section 
to get Eq. 5.5-1. List all the assumptions that have been made to get this result. 

58.2 Mass flow rate in a turbulent circular jet. 
(a) Verify that the velocity distributions in Eqs. 5.6-21 and 22 do indeed satisfy the differen- 
tial equations and boundary conditions. 
(b) Verify that Eq. 5.6-25 follows from Eq. 5.6-21. 

5B.3 The eddy viscosity expression in the viscous sublayer. Verify that Eq. 5.4-2 for the eddy vis- 
cosity comes directly from the Taylor series expression in Eq. 5.3-13. 

5C.1 Two-dimensional turbulent jet. A fluid jet issues forth from a slot perpendicular to the xy- 
plane and emerges in the z direction into a semi-infinite medium of the same fluid. The width 
of the slot in the y direction is W. Follow the pattern of Example 5.6-1 to find the time- 
smoothed velocity profiles in the system. 
(a) Assume the similar profiles 

Show that the momentum conservation statement leads to the fact that the centerline velocity 
must be proportional to z-'/*. 

(b) Introduce a stream function J/ such that & = -d+/dx and i, = +d+/dz. Show that the re- 
sult in (a) along with dimensional considerations leads to the following form for +: 

Here F(5) is a dimensionless stream function, which will be determined from the equation of 
motion for the fluid. 

H. Schlichting, Boundary-Layer Theory, McGraw-Hill, New York, 7th edition (1979), pp. 596-600. 
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(c) Show that Eq. 5.4-2 and dimensional considerations lead to the following form for the tur- 
bulent kinematic viscosity: 

Here h is a dimensionless constant that has to be determined from experiments. 
(d) Rewrite the equation of motion for the jet using the expression for the turbulent kine- 
matic viscosity from (c) and the stream function from (b). Show that this leads to the follow- 
ing differential equation: 

For the sake of convenience, introduce a new variable 

and rewrite Eq. 5C.1-4. 
(e) Next vedy that the boundary conditions for Eq. 5C.1-4 are F(0) = 0, F1'(0) = 0, and F f ( ~ )  = 0. 
(f) Show that Eq. 5C.1-4 can be integrated to give 

S F '  - F" = constant (5C.1-6) 

and that the boundary conditions require that the constant be zero. 
(g) Show that further integration leads to 

where C is a constant of integration. 
(h) Show that another integration leads to 

F = -C tanh Cq (5C. 1 -8) 

and that the axial velocity can be found from this to be 

(i) Next show that putting the axial velocity into the expression for the total momentum of 
the jet leads to the value C = $'% for the integration constant. Rewrite Eq. 5C.1-9 in terms of 
h rather than C. The value of h = 0.0102 gives good agreement with the experimental data.' 
The agreement is believed to be slightly better than that for the Prandtl mixing length 
empiricism. 
(j) Show that the mass flow rate across any line z = constant is given by 

5C.2 Axial turbulent flow in an annulus. An annulus is bounded by cylindrical walls at r = aR 
and r = R (where a < 1). Obtain expressions for the turbulent velocity profiles and the mass 
flow rate. Apply the logarithmic profile of Eq. 5.3-3 for the flow in the neighborhood of each 
wall. Assume that the location of the maximum in the velocity occurs on the same cylindrical 
surface r = bR found for laminar annular flow: 

H. Schlichting, Boundary-Layer Theoy, McGraw-Hill, New York, 4th edition (1960), p. 607 and 
Fig. 23.7. 
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Measured velocity profiles suggest that this assumption for b is reasonable, at least for high 
Reynolds numbem3 Assume further that K in Eq. 5.3-3 is the same for the inner and outer 
walls. 
(a) Show that direct application of Eq. 5.3-3 leads immediately to the following velocity pro- 
files4 in the region r < bR (designated by <) and r > bR (designated by >): 

--> (R - r)v: 
?=;ln( ) + A '  where v: = v , , m  
v: 

in which v.+ = d(9, - 9,)R/2Lp. 
(b) Obtain a relation between the constants A <  and A >  by requiring that the velocity be con- 
tinuous at r = bR. 
(c) Use the results of (b) to show that the mass flow rate through the annulus is 

in which B is 

5C.3 Instability in a simple mechanical system (Fig. 5C.3). 
(a) A disk is rotating with a constant angular velocity a. Above the center of the disk a 
sphere of mass rn is suspended by a massless rod of length L. Because of the rotation of the 
disk, the sphere experiences a centrifugal force and the rod makes an angle f3 with the verti- 
cal. By making a force balance on the sphere, show that 

8 cos 8 = - 
ln2L 

What happens when fl goes to zero? 

sphere = rn 

Fig. 5C.3. A simple mechanical system for illustrating concepts 

9, G. Knudsen and D. L. Katz, Fluid Dynamics and Heat Transfer, McGraw-Hill, New York (1958); R. 
R. Rothfus (1948), J. E. Walker (19571, and G. A. Whan (19561, Doctoral theses, Carnegie Institute of 
Technology (now Carnegie-Mellon University), Pittsburgh, Pa. 

W. Tiedt, Berechnung des laminaren u.  turbulenten Reibungswiderstandes konzentrischer u. exzentrischer 
Ringspalten, Technischer Bericht Nr. 4, Inst. f .  Hydraulik u. Hydraulogie, Technische Hochschule, 
Darmstadt (1968); D. M. Meter and R. B. Bird, AIChE Journal, 7,4145 (1961) did the same analysis using 
the Prandtl mixing length theory. 
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(b) Show that, if Q is below some threshold value a,,,, the angle 8 is zero. Above the thresh- 
old value, show that there are two admissible values for 8. Explain by means of a carefully 
drawn sketch of 8 vs. fl. Above a,,, label the two curves stable and unstable. 
(c) In (a) and (b) we considered only the steady-state operation of the system. Next show that 
the equation of motion for the sphere of mass m is 

d28 mL - = r n f 1 2 ~  sin 8 cos 0 - mg sin 8 
d f 2  

(5C.3-2) 

Show that for steady-state operation this leads to Eq. 5C.3-1. We now want to use this 
equation to make a small-amplitude stability analysis. Let 0 = 6, + O,, where O0 is a steady- 
state solution (independent of time) and 8, is a very small perturbation (dependent on 
time). 
(d) Consider first the lower branch in (b), which is 0, = 0. Then sin 1'3 = sin 8, .= 6 ,  and cos 6 = 

cos 8, = 1, so that Eq. 5B.2-2 becomes 

We now try a small-amplitude oscillation of the form 8, = A9?{e-'"tJ and find that 

Now consider two cases: (i) If f12 < g/L, both w+ and w- are real, and hence 8, oscillates; this 
indicates that for f12 < g/L the system is stable. (ii) If f12 > g/L, the root w+ is positive imagi- 
nary and e-'"' will increase indefinitely with time; this indicates that for f12 > g/L the system 
is unstable with respect to infinitesimal perturbations. 
(e) Next consider the upper branch in (b). Do an analysis similar to that in (d). Set up the 
equation for 8, and drop terms in the square of 0, (that is, linearize the equation). Once again 
try a solution of the form 8, = A%{e-'"il. Show that for the upper branch the system is stable 
with respect to infinitesimal perturbations. 
(f) Relate the above analysis, which is for a system with one degree of freedom, to the prob- 
lem of laminar-turbulent transition for the flow of a Newtonian fluid in the flow between two 
counter-rotating cylinders. Read the discussion by Landau and ~ i f s h i t z ~  on this point. 

5D.1 Derivation of the equation of change for the Reynolds stresses. At the end of 55.2 it was 
pointed out that there is an equation of change for the Reynolds stresses. This can be derived 
by (a) multiplying the ith component of the vector form of Eq. 5.2-5 by v; and time smoothing, 
(b) multiplying the jth component of the vector form of Eq. 5.2-5 by vi and time smoothing, and 
(c) adding the results of (a) and (b). Show that one finally gets 

Equations 5.2-10 and 11 will be needed in this development. 

5D.2 Kinetic energy of turbulence. By taking the trace of Eq. 5D.1-1 obtain the following: 

Interpret the eq~a t ion .~  

L. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, Oxford, 2nd edition (1987), §§26-27. 
H. Tennekes and J. L. Lumley, A First Course in Turbulence, MIT Press, Cambridge, Mass. (1972),§3.2. 



Chapter 6 

Interphase Transport 
in Isothermal Systems 

6 . 1  Definition of friction factors 

56.2 Friction factors for flow in tubes 

56.3 Friction factors for flow around spheres 

56.4' Friction factors for packed columns 

In Chapters 2-4 we showed how laminar flow problems may be formulated and solved. 
In Chapter 5 we presented some methods for solving turbulent flow problems by dimen- 
sional arguments or by semiempirical relations between the momentum flux and the 
gradient of the time-smoothed velocity. In this chapter we show how flow problems can 
be solved by a combination of dimensional analysis and experimental data. The tech- 
nique presented here has been widely used in chemical, mechanical, aeronautical, and 
civil engineering, and it is useful for solving many practical problems. It is a topic worth 
learning well. 

Many engineering flow problems fall into one of two broad categories: flow in chan- 
nels and flow around submerged objects. Examples of channel flow are the pumping of 
oil through pipes, the flow of water in open channels, and extrusion of plastics through 
dies. Examples of flow around submerged objects are the motion of air around an air- 
plane wing, motion of fluid around particles undergoing sedimentation, and flow across 
tube banks in heat exchangers. 

In channel flow the main object is usually to get a relationship between the vol- 
ume rate of flow and the pressure drop and/or elevation change. In problems involv- 
ing flow around submerged objects the desired information is generally the relation 
between the velocity of the approaching fluid and the drag force on the object. We 
have seen in the preceding chapters that, if one knows the velocity and pressure dis- 
tributions in the system, then the desired relationships for these two cases may be ob- 
tained. The derivation of the Hagen-Poiseuille equation in 52.3 and the derivation of 
the Stokes equation in 52.6 and s4.2 illustrate the two categories we are discussing 
here. 

For many systems the velocity and pressure profiles cannot be easily calculated, par- 
ticularly if the flow is turbulent or the geometry is complicated. One such system is the 
flow through a packed column; another is the flow in a tube in the shape of a helical coil. 
For such systems we can take carefully chosen experimental data and then construct 
"correlations" of dimensionless variables that can be used to estimate the flow behavior 
in geometrically similar systems. This method is based on 53.7. 
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We start in 56.1 by defining the "friction factor," and then we show in 556.2 and 6.3 
how to construct friction factor charts for flow in circular tubes and flow around spheres. 
These are both systems we have already studied and, in fact, several results from earlier 
chapters are included in these charts. Finally in 56.4 we examine the flow in packed 
columns, to illustrate the treatment of a geometrically complicated system. The more 
complex problem of fluidized beds is not included in this chapter.' 

6 . 1  DEFINITION OF FRICTION FACTORS 

We consider the steadily driven flow of a fluid of constant density in one of two systems: 
(a) the fluid flows in a straight conduit of uniform cross section; (b )  the fluid flows 
around a submerged object that has an axis of symmetry (or two planes of symmetry) 
parallel to the direction of the approaching fluid. There will be a force F+, exerted by the 
fluid on the solid surfaces. It is convenient to split this force into two parts: F,, the force 
that would be exerted by the fluid even if it were stationary; and Fk, the additional force 
associated with the motion of the fluid (see 52.6 for the discussion of F, and Fk for flow 
around spheres). In systems of type (a), Fk points in the same direction as the average ve- 
locity (v) in the conduit, and in systems of type (b), Fk points in the same direction as the 
approach velocity v,. 

For both types of systems we state that the magnitude of the force Fk is proportional 
to a characteristic area A and a characteristic kinetic energy K per unit volume; thus 

Fk = AKf (6.1-1)' 

in which the proportionality constant f is called the friction factor. Note that Eq. 6.1-1 is 
not a law of fluid dynamics, but only a definition for f. This is a useful definition, because 
the dimensionless quantity f can be given as a relatively simple function of the Reynolds 
number and the system shape. 

Clearly, for any given flow system, f is not defined until A and K are specified. Let us 
now see what the customary definitions are: 

(a) For flow in conduits, A is usually taken to be the wetted surface, and K is taken to 
be & v ) ~ .  Specifically, for circular tubes of radius R and length L we define f by 

Generally, the quantity measured is not Fk, but rather the pressure difference po - pL and 
the elevation difference ho - hL. A force balance on the fluid between 0 and L in the direc- 
tion of flow gives for fully developed flow 

Elimination of Fk between the last two equations then gives 

- -- - - - -- - - 

' R. Jackson, The Dynamics of Fluidized Beds, Cambridge University Press (2000). 
For systems lacking symmetry, the fluid exerts both a force and a torque on the solid. For 

discussions of such systems see J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, Martinus 
Nijhoff, The Hague (1983), Chapter 5; H. Brenner, in Adv. Chem. Engr., 6 ,287438 (1966); S .  Kim and 
S. J. Karrila, Microhydrodynarnics: Principles and Selected Applications, Butterworth-Heinemann, Boston 
(1991), Chapter 5. 
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in which D = 2R is the tube diameter. Equation 6.1-4 shows how to calculate f from ex- 
perimental data. The quantity f is sometimes called the Fanning friction f ~ c t o r . ~  

(b) For flow around submerged objects, the characteristic area A is usually taken to be 
the area obtained by projecting the solid onto a plane perpendicular to the velocity of the 
approaching fluid; the quantity K is taken to be ipv:, where v, is the approach velocity 
of the fluid at a large distance from the object. For example, for flow around a sphere of 
radius R, we define f by the equation 

If it is not possible to measure Fb then we can measure the terminal velocity of the 
sphere when it falls through the fluid (in that case, v, has to be interpreted as the termi- 
nal velocity of the sphere). For the steady-state fall of a sphere in a fluid, the force F, is 
just counterbalanced by the gravitational force on the sphere less the buoyant force (cf. 
Eq. 2.6-14): 

Elimination of F, between Eqs. 6.1-5 and 6.1-6 then gives 

This expression can be used to obtain f from terminal velocity data. The friction factor 
used in Eqs. 6.1-5 and 7 is sometimes called the drag coefficient and given the symbol c,. 

We have seen that the "drag coefficient" for submerged objects and the "friction fac- 
tor" for channel flow are defined in the same general way. For this reason we prefer to 
use the same symbol and name for both of them. 

86.2 FRICTION FACTORS FOR FLOW IN TUBES 

We now combine the definition off in Eq. 6.1-2 with the dimensional analysis of 53.7 to 
show what f must depend on in this kind of system. We consider a "test section" of inner 
radius R and length L, shown in Fig. 6.2-1, carrying a fluid of constant density and vis- 
cosity at a steady mass flow rate. The pressures 9, and YL at the ends of the test section 
are known. 

' This friction factor definition is due to J. T. Fanning, A Practical Treatise on Hydraulic and W a t u  
Supply Engineering, Van Nostrand, New York, 1st edition (1877), 16th edition (1906); the name "Fanning" 
is used to avoid confusion with the "Moody friction factor," which is larger by a factor of 4 than the f - - 
used here [L. F. Moody, Trans. ASME, 66,671-684 (19441. 

If we use the "friction velocity" v, = = d(9, - YL)R/2Lp, introduced in s5.3, then Eq. 6.1-4 
assumes the form 

John Thomas Fanning (1837-1911) studied architectural and civil engineering, served as an officer in the 
Civil War, and after the war became prominent in hydraulic engineering. The 14th edition of his book A 
Practical Treatise on Hydraulic and Water-Supply Engineering appeared in 1899. 

For the translational motion of a sphere in three dimensions, one can write approximately 

where n is a unit vector in the direction of v,. See Problem 6C.1. 
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Pressure 
PL 

Fig. 6.2-1. Section of a circular pipe from z = 0 to 
z = L for the discussion of dimensional analysis. 

The system is either in steady laminar flow or steadily driven turbulent flow (i.e., 
turbulent flow with a steady total throughput). In either case the force in the z direction 
of the fluid on the inner wall of the test section is 

In turbulent flow the force may be a function of time, not only because of the turbulent 
fluctuations, but also because of occasional ripping off of the boundary layer from the 
wall, which results in some distances with long time scales. In laminar flow it is under- 
stood that the force will be independent of time. 

Equating Eqs. 6.2-1 and 6.1-2, we get the following expression for the friction factor: 

Next we introduce the dimensionless quantities from s3.7: i: = r/D, i. = z/D, ijz = vZ/(v,), 
= (v,)t/D, @ = (9 - 9,)/p(v,)2, and Re = D(v,)p/p. Then Eq. 6.2-2 may be rewritten as 

This relation is valid for laminar or turbulent flow in smooth circular tubes. We see 
that for flow systems in which the drag depends on viscous forces alone (i.e., no "form 
drag") the product of fRe is essentially a dimensionless velocity gradient averaged 
over the surface. 

Recall now that, in principle, dCZ/di can be evaluated from Eqs. 3.7-8 and 9 along 
with the boundary conditions1 

B.C. 1: 
B.C. 2: 
B.C. 3: 

' Here we follow the customary practice of neglecting the ( d 2 / d i 2 ) v  terms of Eq. 3.7-9, on the basis 
of order-of-magnitude arguments such as those given in s4.4. With those terms suppressed, we do not 
need an outlet boundary condition on v. 
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and appropriate initial conditions. The uniform inlet velocity profile in Eq. 6.2-5 is accu- 
rate except very near the wall, for a well-designed nozzle and upstream system. If Eqs. 
3.7-8 and 9 could be solved with these boundary and initial conditions to get ir and @, the 
solutions would necessarily be of the form 

+ = +(?, 6, 2, t; Re) 

$ = 9 (?, 0, 2, i; Re) 

That is, the functional dependence of + and 9 must, in general, include all the dimen- 
sionless variables and the one dimensionless group appearing in the differential equa- 
tions. No additional dimensionless groups enter via the preceding boundary conditions. 
As a consequence, &?Jd? must likewise depend on ?, 6, i, i, and Re. When deZ/d? is eval- 
uated at i. = and then integrated over 2 and 13 in Eq. 6.2-3, the result depends only on I ,  
Re, and LID (the latter appearing in the upper limit in the integration over 5). Therefore 
we are led to the conclusion that f($ = f (Re, L/D, i), which, when time averaged, becomes 

f = f (Re, L/D) (6.2-9) 

when the time average is performed over an interval long enough to include any long- 
time turbulent disturbances. The measured friction factor then depends only on the 
Reynolds number and the length-to-diameter ratio. 

The dependence off on LID arises from the development of the time-average veloc- 
ity distribution from its flat entry shape toward more rounded profiles at downstream z 
values. This development occurs within an entrance region, of length L, = 0.030 Re for 
laminar flow or L, = 60D for turbulent flow, beyond which the shape of the velocity dis- 
tribution is "fully developed." In the transportation of fluids, the entrance length is usu- 
ally a small fraction of the total; then Eq. 6.2-9 reduces to the long-tube form 

and f can be evaluated experimentally from Eq. 6.1-4, which was written for fully devel- 
oped flow at the inlet and outlet. 

Equations 6.2-9 and 10 are useful results, since they provide a guide for the system- 
atic presentation of data on flow rate versus pressure difference for laminar and turbu- 
lent flow in circular tubes. For long tubes we need only a single curve off plotted versus 
the single combination D(Qp/p. Think how much simpler this is than plotting pressure 
drop versus the flow rate for separate values of D, L, p, and p, which is what the uniniti- 
ated might do. 

There is much experimental information for pressure drop versus flow rate in tubes, 
and hence f can be calculated from the experimental data by Eq. 6.1-4. Then f can be plot- 
ted versus Re for smooth tubes to obtain the solid curves shown in Fig. 6.2-2. These solid 
curves describe the laminar and turbulent behavior for fluids flowing in long, smooth, cir- 
cular tubes. 

Note that the laminar curve on the friction factor chart is merely a plot of the 
Hagen-Poiseuille equation in Eq. 2.3-21. This can be seen by substituting the expression 
for (9, - 9,) from Eq. 2.3-21 into Eq. 6.1-4 and using the relation w = p(&)~R2; this gives 

16 Re < 2100 stable 
f = - {  Re Re > 2100 usually unstable 

in which Re = D(&)p/p; this is exactly the laminar line in Fig. 6.2-2. 
Analogous turbulent curves have been constructed by using experimental data. Some 

analytical curve-fit expressions are also available. For example, Eq. 5.1-6 can be put into 
the form 

0'0791 2.1 X lo3 < Re < lo5 f = ~ e ' / '  (6.2-12) 
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Fig. 6.2-2. Friction factor for tube flow (see definition off in Eqs. 6.1-2 and 6.1-3. [Curves of L. F. Moody, 
Trans. ASME, 66,671-684 (1944) as presented in W. L. McCabe and J. C. Smith, Unit  Operations of C h m i -  
cal Engineering, McGraw-Hill, New York (1954).] 

which is known as the Blasius f o r r n ~ l a . ~  Equation 5.5-1 (with 2.5 replaced by 2.45 and 1.75 
by 2.00) is equivalent to 

1 
- = 4.0 log ,, ~ e q  - 0.4 2.3 X lo3 < Re < 4 X 10" (6.2-13) * 

which is known as the Prandtl f o r r n ~ l a . ~  Finally, corresponding to Eq. 5.5-2, we have 

2 where = 
e 3 1 2 ( f i  + 5a) 

f=v 2"(u(a + l)(a + 2) 

and a = 3/(2 In Re). This has been found to represent the experimental data well for 3.07 
x lo3 < Re < 3.23 X lo6. Equation 6.2-14 is called the Barenblatt f~rmula.~ 

A further relation, which includes the dashed curves for rough pipes in Fig. 6.2-2, is 
the empirical Haaland equation5 

-- 

H. Blasius, Forschungsarbeiten des Ver. Deutsch. Ing., no. 131 (1913). 
%. Prandtl, Essentials of Fluid Dynamics, Hafner, New York (19521, p. 165. 

G. I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptofics, Cambridge University Press 
(1996), s10.2. 

S. E. Haaland, Trans. ASME, JFE, 105,89-90 (1983). For other empiricisms see D. J. Zigrang and 
N. D. Sylvester, AKhE Journal, 28,514-515 (1982). 
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This equation is stated5 to be accurate within 1.5%. As can be seen in Fig. 6.2-2, the fric- 
tional resistance to flow increases with the height, k, of the protuberances. Of course, k 
has to enter into the correlation in a dimensionless fashion and hence appears via the 
ratio k/D. 

For turbulent flow in noncircular tubes it is common to use the following empiricism: 
First we define a "mean hydraulic radius" Rh as follows: 

in which S is the cross section of the conduit and Z is the wetted perimeter. Then we can 
use Eq. 6.1-4 and Fig. 6.2-2, with the diameter D of the circular pipe replaced by 4Rh. That 
is, we calculate pressure differences by replacing Eq. 6.1-4 by 

and getting f from Fig. 6.2-2 with a Reynolds number defined as 

For laminar flows in noncircular passages, this method is less satisfactory. 

EXAMPLE 6.2-1 What pressure gradient is required to cause diethylaniline, C,H,N(C,H,),, to flow in a 
horizontal, smooth, circular tube of inside diameter D = 3 cm at a mass rate of 1028 g/s at 

Pressure 20°C? At this temperature the density of diethylaniline is p = 0.935 g/cm3 and its viscosity is 
for a Given Flow Rate E, = 1.95 cp. 

SOLUTION The Reynolds number for the flow is 

From Fig. 6.2-2, we find that for this Reynolds number the friction factor f has a value of 
0.0063 for smooth tubes. Hence the pressure gradient required to maintain the flow is (ac- 
cording to Eq. 6.1-4) 

Determine the flow rate, in pounds per hour, of water at 68OF through a 1000-ft length of hori- 
zontal 8-in. schedule 40 steel pipe (internal diameter 7.981 in.) under a pressure difference of 

Rate for a Given 3.00 psi. For such a pipe use Fig. 6.2-2 and assume that k/D = 2.3 X 
Pressure Drop 

SOLUTION 

We want to use Eq. 6.1-4 and Fig. 6.2-2 to solve for (v,) when po - pL is known. However, the 
quantity (v,) appears explicitly on the left side of the equation and implicitly on the right side 
in f, which depends on Re = D(v,)p/p. Clearly a trial-and-error solution can be found. 
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However, if one has to make more than a few calculations of (u,), it is advantageous to de- 
velop a systematic approach; we suggest two methods here. Because experimental data are 
often presented in graphical form, it is important for engineering students to use their origi- 
nality in devising special methods such as those described here. 

Method A. Figure 6.2-2 may be used to construct a plot6 of Re versus the group Re*, 
which does not contain (u,): 

-- 

The quantity Re* can be computed for this problem, and a value of the Reynolds number 
can be read from the Re versus Re* plot. From Re the average velocity and flow rate can 
then be calculated. 

Method B. Figure 6.2-2 may also be used directly without any replotting, by devising a 
scheme that is equivalent to the graphical solution of two simultaneous equations. The two 
equations are 

f = f (Re, k/D) curve given in Fig. 6.2-2 (6.2-22) 

The procedure is then to compute ~ e *  according to Eq. 6.2-21 and then to plot Eq. 6.2-23 on 
the log-log plot off versus Re in Fig. 6.2-2. The intersection point gives the Reynolds number 
of the flow, from which (E,) can then be computed. 

For the problem at hand, we have 

Then according to Eq. 6.2-21, 

= 1.63 X lo4 (dimensionless) (6.2-24) 

The line of Eq. 6.2-23 for this value of Re* passes through f = 1.0 at Re = 1.63 X lo4 and 
through f = 0.01 at Re = 1.63 X 10". Extension of the straight line through these points to the 
curve of Fig. 6.2-2 for k/D = 0.00023 gives the solution to the two simultaneous equations: 

Solving for w then gives 

w = (a/4)Dp Re 

= (0.7854)(0.665)(6.93 X 10-4)(36~~)(2.4 X lo5) 

= 3.12 X 105 lb,/hr = 39 kg/s 

A related plot was proposed by T. von K&rm&n, Nackr. Ges. Wiss. Gottingen, Fachgruppen, I, 5,5&76 
(1930). 
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56.3 FRICTION FACTORS FOR FLOW AROUND SPHERES 

In this section we use the definition of the friction factor in Eq. 6.1-5 along with the di- 
mensional analysis of 53.7 to determine the behavior off for a stationary sphere in an in- 
finite stream of fluid approaching with a uniform, steady velocity v,. We have already 
studied the flow around a sphere in s2.6 and 54.2 for Re < 0.1 (the "creeping flow" re- 
gion). At Reynolds numbers above about 1 there is a significant unsteady eddy motion 
in the wake of the sphere. Therefore, it will be necessary to do a time average over a time 
interval long with respect to this eddy motion. 

Recall from 92.6 that the total force acting in the z direction on the sphere can be 
written as the sum of a contribution from the normal stresses (F,) and one from the tan- 
gential stresses (F,). One part of the normal-stress contribution is the force that would be 
present even if the fluid were stationary, F,. Thus the "kinetic force," associated with the 
fluid motion, is 

Fk = (F, - FJ + Ft = Fform + Ffriction (6.3-1) 

The forces associated with the form drag and the friction drag are then obtained from 

Fform(t) = 12= la (-91 r=R cos B)R2 sin B dB d+ 
0 0 

Since v, is zero everywhere on the sphere surface, the term containing dv, /dB is zero. 
If now we split f into two parts as follows 

f = fform + ffriction 

then, from the definition in Eq. 6.1-5, we get 

fform(i) = ' 1'" 1" (-@ cos 8 )  sin B do d+ 
? T o  0 

The friction factor is expressed here in terms of dimensionless variables 

and a Reynolds number defined as 

To evaluate f (i) one would have to know @ and 5, as functions of Y, 0, 4, and t. 
We know that for incompressible flow these distributions can in principle be ob- 

tained from the solution of Eqs. 3.7-8 and 9 along with the boundary conditions 

B.C. 1: 

B.C. 2: 

B.C. 3: 

a tY=l ,  5,=O and Ee=O 

a t ? =  co, 5 , = 1  

atY=m, @ = O  

and some appropriate initial condition on ir. Because no additional dimensionless 
groups enter via the boundary and initial conditions, we know that the dimensionless 
pressure and velocity profiles will have the following form: 

@ = ~ ( i ,  HI+ ,  t; Re) G = +(?, 0, 4, i; Re) (6.3-12) 
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When these expressions are substituted into Eqs. 6.3-5 and 6, it is then evident that the 
friction factor in Eq. 6.3-4 must have the form f(i) = f(Re, i), which, when time aver- 
aged over the turbulent fluctuations, simplifies to 

f = f (Re) (6.3-13) 

by using arguments similar to those in 56.2. Hence from the definition of the friction fac- 
tor and the dimensionless form of the equations of change and the boundary conditions, 
we find that f must be a function of Re alone. 

Many experimental measurements of the drag force on spheres are available, and 
when these are plotted in dimensionless form, Fig. 6.3-1 results. For this system there is 
no sharp transition from an unstable laminar flow curve to a stable turbulent flow curve 
as for long tubes at a Reynolds number of about 2100 (see Fig. 6.2-2). Instead, as the ap- 
proach velocity increases, f varies smoothly and moderately up to Reynolds numbers of 
the order of lo5. The kink in the curve at about Re = 2 X lo5 is associated with the shift of 
the boundary layer separation zone from in front of the equator to in back of the equator 
of the sphere.' 

We have juxtaposed the discussions of tube flow and flow around a sphere to em- 
phasize the fact that various flow systems behave quite differently. Several points of dif- 
ference between the two systems are: 

Flow in Tubes 

Rather well defined laminar-turbulent 
transition at about Re = 2100 

The only contribution to f is the friction . 
drag (if the tubes are smooth) 

No boundary layer separation 

Flow Around Spheres 

No well defined laminar-turbulent 
transition 

Contributions to f from both friction 
and form drag 

There is a kink in the f vs. Re curve 
associated with a shift in the separation 
zone 

The general shape of the curves in Figs. 6.2-2 and 6.3-1 should be carefully remembered. 
For the creeping flow region, we already know that the drag force is given by Stokes' 

law, which is a consequence of solving the continuity equation and the Navier-Stokes 
equation of motion without the pDv/Dt term. Stokes' law can be rearranged into the 
form of Eq. 6.1-5 to get 

Hence for creeping flow around a sphere 

f = -  24 for Re < 0.1 
Re 

and this is the straight-line asymptote as Re + 0 of the friction factor curve in Fig. 6.3-1. 
For higher values of the Reynolds number, Eq. 4.2-21 can describe f accurately up to 

about Re = 1. However, the empirical expression' 

f = (p + 0.5409 for Re < 6000 
Re 

R. K. Adair, The Physics of Baseball, Harper and Row, New York (1990). 
F. F. Abraham, Physics of Fluids, 13,2194 (1970); M .  Van Dyke, Physics of Fluids, 14,103&1039 (1971). 
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Reynolds number Re = Dv, p/p 

Fig. 6.3-1. Friction factor (or drag coefficient) for spheres moving relative to a 
fluid with a velocity v,. The definition off is given in Eq. 6.1-5. [Curve taken 
from C. E. Lapple, "Dust and Mist Collection," in Chemical Engineers' Handbook, 
(J. H. Perry, ed.), McGraw-Hill, New York, 3rd edition (1950), p. 1018.1 

is both simple and useful. It is important to remember that 

f = 0.44 for 5 x lo2 < Re < 1 X lo5 (6.3-17) 

which covers a remarkable range of Reynolds numbers. Eq. 6.3-17 is sometimes called 
Newton's resistance law; it is handy for a seat-of-the-pants calculation. According to this, 
the drag force is proportional to the square of the approach velocity of the fluid. 

Many extensions of Fig. 6.3-1 have been made, but a systematic study is beyond the 
scope of this text. Among the effects that have been investigated are wall effectsvsee 
Prob. 6C.2), fall of droplets with internal circulation,4 hindered settling (i.e., fall of clus- 
ters of particles5 that interfere with one another), unsteady flow: and the fall of non- 
spherical particles7 

Glass spheres of density p,,, = 2.62 g/cm" are to be allowed to fall through liquid CC14 at 
20°C in an experiment for studying human reaction times in making time observations with 

Detemination of the stopwatches and more elaborate devices. At this temperature the relevant properties of CCl, 
Diameter of a Falling are p = 1.59 g/cm3 and p = 9.58 millipoises. What diameter should the spheres be to have a 
Sphere terminal velocity of about 65 cm/s? 

J. R. Strom and R. C. Kintner, AIChE Journal, 4,153-156 (1958). 
L. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, Oxford, 2nd edition (1987), pp. 65-66; 

S. Hu and R. C. Kintner, AIChE Journal, 1,42-48 (1955). 
C. E. Lapple, Fluid and Particle Mechanics, University of Delaware Press, Newark, Del. (19511, 

Chapter 13; R. F. Probstein, Physicochemical Hydrodynamics, Wiley, New York, 2nd edition (1994), g5.4. 
R. R. Hughes and E. R. Gilliland, Chem. Eng. Prog., 48,497-504 (1952); L. Landau and E. M. Lifshitz, 

Fluid Mechanics, Pergamon, Oxford, 2nd edition (19871, pp. 90-91. 
E. S. Pettyjohn and E. B. Christiansen, Chem. Eng. Prog., 44,147 (1948); H .  A. Becker, Can. J .  Chem. 

Eng., 37,885-891 (1959); S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications, 
Butterworth-Heinemann, Boston (19911, Chapter 5. 
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SOLUTION 

Fig. 6.3-2. Graphical procedure used in 
Example 6.3-1. 

To find the sphere diameter, we have to solve Eq. 6.1-7 for D. However, in this equation one 
has to know D in order to get f; and f is given by the solid curve in Fig. 6.3-1. A trial-and-error 
procedure can be used, taking f = 0.44 as a first guess. 

Alternatively, we can solve Eq. 6.1-7 for f and then note that f/Re is a quantity indepen- 
dent of D: 

The quantity on the right side can be calculated with the information above, and we call it C. 
Hence we have two simultaneous equations to solve: 

f = C Re from Eq. 6.3-18 

f = f (Re) from Fig. 6.3-1 

Equation 6.3-19 is a straight line with slope of unity on the log-log plot off versus Re. 
For the problem at hand we have 

Hence at Re = lo5, according to Eq. 6.3-19, f = 1.86. The line of slope 1 passing through 
f = 1.86 at Re = lo5 is shown in Fig. 6.3-2. This line intersects the curve of Eq. 6.3-20 (i.e., the 
curve of Fig. 6.3-1) at Re = Da,p/p = 2.4 X lo4. The sphere diameter is then found to be 

g6.4 FRICTION FACTORS FOR PACKED COLUMNS 

In the preceding two sections we have discussed the friction factor correlations for two 
simple flow systems of rather wide interest. Friction factor charts are available for a 
number of other systems, such as transverse flow past a cylinder, flow across tube 
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banks, flow near baffles, and flow near rotating disks. These and many more are sum- 
marized in various reference works.' One complex system of considerable interest in 
chemical engineering is the packed column, widely used for catalytic reactors and for 
separation processes. 

There have been two main approaches for developing friction factor expressions for 
packed columns. In one method the packed column is visualized as a bundle of tangled 
tubes of weird cross section; the theory is then developed by applying the previous re- 
sults for single straight tubes to the collection of crooked tubes. In the second method the 
packed column is regarded as a collection of submerged objects, and the pressure drop is 
obtained by summing up the resistances of the submerged  particle^.^ The tube bundle 
theories have been somewhat more successful, and we discuss them here. Figure 6.4-l(a) 
depicts a packed column, and Fig. 6.4-l(b) illustrates the tube bundle model. 

A variety of materials may be used for the packing in columns: spheres, cylinders, 
Berl saddles, and so on. It is assumed throughout the following discussion that the pack- 
ing is statistically uniform, so that there is no "channeling" (in actual practice, channeling 
frequently occurs, and then the development given here does not apply). It is further as- 
sumed that the diameter of the packing particles is small in comparison to the diameter of 
the column in which the packing is contained, and that the column diameter is uniform. 

We define the friction factor for the packed column analogously to Eq. 6.1-4: 

in which L is the length of the packed column, D, is the effective particle diameter (de- 
fined presently), and v, is the superficial velocity; this is the volume flow rate divided by 
the empty column cross section, v, = w/pS. 

The pressure drop through a representative tube in the tube bundle model is given 
by Eq. 6.2-17 

Fig. 6.4-1. (a) A cylindrical tube packed with spheres; 
( b )  (b) a "tube bundle" model for the packed column in (a). 

- -  - 

P. C. Carman, Flow of Gases through Porous Media, Butterworths, London (1956); J. G. Richardson, 
section 16 in Handbook of Fluid Dynamics (V. L. Streeter, ed.), McGraw-Hill, New York (1961); M. Kaviany, 
Chapter 21 in The Handbook of Fluid Dynamics (R. W .  Johnson, ed.), CRC Press, Boca Raton, Fla. (1998). 

W .  E. Ranz, Chem. Eng. Prog., 48,274-253 (1952); H.  C. Brinkman, Appl. Sci. Research., Al, 27-34, 
81-86,333-346 (1949). Henri Coenraad Brinkman (1908-1961) did research on viscous dissipation 
heating, flow in porous media, and plasma physics; he taught at the University of Bandung, Indonesia, 
from 1949 to 1954, where he wrote The Application of Spinor Invariants to Atomic Physics. 
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in which the friction factor for a single tube, f,,,, is a function of the Reynolds number 
Reh = 4Rh(v)p/p. When this pressure difference is substituted into Eq. 6.4-1, we get 

In the second expression, we have introduced the void fraction, E, the fraction of space in 
the column not occupied by the packing. Then vo = (v)~, which results from the defini- 
tion of the superficial velocity. We now need an expression for Rh. 

The hydraulic radius can be expressed in terms of the void fraction E and the wetted 
surface a per unit volume of bed as follows: 

R h = (  
cross section available for flow 

wetted perimeter 

= (volume available for flow 
total wetted surface 

volume of voids 

- volume of bed 
- - - 

wetted surface 
volume of bed 

The quantity a is related to the "specific surface" a, (total particle surface per volume of 
particles) by 

The quantity a, is in turn used to define the mean particle diameter Dp as follows: 

This definition is chosen because, for spheres of uniform diameter, Dp is exactly the di- 
ameter of a sphere. From the last three expressions we find that the hydraulic radius is 
Rh = DP&/6(1 - e). When this is substituted into Eq. 6.4-3, we get 

We now adapt this result to laminar and turbulent flows by inserting appropriate ex- 
pressions for ftube. 

(a) For laminar flow in tubes, fbbe = 16/Reh. This is exact for circular tubes only. To 
account for the noncylindrical surfaces and tortuous fluid paths encountered in typical 
packed-column operations, it has been found that replacing 16 by 100/3 allows the tube 
bundle model to describe the packed-column data. When this modified expression for 
the tube friction factor is used, Eq. 6.4-7 becomes 

in which Go = pv, is the mass flux through the system. When this expression for f is sub- 
stituted into Eq. 6.4-1 we get 
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which is the Blake-Kozeny equatiom3 Equations 6.4-8 and 9 are generally good for 
(DpG,/p(l - E)) < 10 and for void fractions less than E = 0.5. 

(b) For highly turbulent flow a treatment similar to the above can be given. We begin 
again with the expression for the friction factor definition for flow in a circular tube. This 
time, however, we note that, for highly turbulent flow in tubes with any appreciable 
roughness, the friction factor is a function of the roughness only, and is independent of 
the Reynolds number. If we assume that the tubes in all packed columns have similar 
roughness characteristics, then the value off,,, may be taken to be the same constant for 
all systems. Taking ftube = 7/12 proves to be an acceptable choice. When this is inserted 
into Eq. 6.4-7, we get 

When this is substituted into Eq. 6.4-1, we get 

which is the Burke-Plummer4 equation, valid for (DpGo/p(l - 8)) > 1000. Note that the 
dependence on the void fraction is different from that for laminar flow. 

(c) For the transition region, we may superpose the pressure drop expressions for (a) 
and (b)  above to get 

For very small vo, this simplifies to the Blake-Kozeny equation, and for very large vo, to 
the Burke-Plummer equation. Such empirical superpositions of asymptotes often lead to 
satisfactory results. Equation 6.4-12 may be rearranged to form dimensionless groups: 

This is the Ergun equation: which is shown in Fig. 6.4-2 along with the Blake-Kozeny and 
Burke-Plummer equations and experimental data. It has been applied with success to 
gas flow through packed columns by using the density p of the gas at the arithmetic av- 
erage of the end pressures. Note that Go is constant through the column, whereas vo 
changes through the column for a compressible fluid. For large pressure drops, however, 
it seems more appropriate to apply Eq. 6.4-12 locally by expressing the pressure gradient 
in differential form. 

The Ergun equation is but one of many6 that have been proposed for describing 
packed columns. For example, the Tallmadge equation7 

is reported to give good agreement with experimental 
(D,G,/~(I - EN < lo5. 

data over the range 0.1 < 

9. C. Blake, Trans. Amer. Inst. Chem. Engrs., 14,415421 (1922); J. Kozeny, Sitzungsber. Akad. Wiss. Wien, 
Abt. 11~1,136,271-306 (1927). 

S. P. Burke and W. B. Plummer, Ind. Eng. Chem., 20,1196-1200 (1928). 
S. Ergun, Chem. Engr. Prog., 48,89-94 (1952). 
I .  F. Macdonald, M. S. El-Sayed, K. Mow, and F. A. Dullien, Ind. Eng. Chem. Fundam., 18,199-208 

(1979). 
' J. A. Tallmadge, AIChE journal, 16,1092-1093 (1970). 
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Fig. 6.4-2. The Ergun equation for flow in packed beds, and the two related asymptotes, the Blake-Kozeny equa- 
tion and the Burke-Plummer equation [S. Ergun, Chem. Eng. Prog., 48,89-94 (195211. 

The above discussion of packed beds illustrates how one can often combine solu- 
tions of elementary problems to create useful models for complex systems. The constants 
appearing in the models are then determined from experimental data. As better data be- 
come available the modeling can be improved. 

QUESTIONS FOR DISCUSSION 

1. How are graphs of friction factors versus Reynolds numbers generated from experimental 
data, and why are they useful? 

2. Compare and contrast the friction factor curves for flow in tubes and flow around spheres. 
Why do they have different shapes? 

3. In Fig. 6.2-2, why does the f versus Re curve for turbulent flow lie above the curve for laminar 
flow rather than below? 

4. Discuss the caveat after Eq. 6.2-18. Will the use of the mean hydraulic radius for laminar flow 
predict a pressure drop that is too high or too low for a given flow rate? 

5. Can friction factor correlations be used for unsteady flows? 
6.  What is the connection, if any, between the Blake-Kozeny equation (Eq. 6.4-9) and Darcy's 

law (Eq. 4C.3-2)? 
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7. Discuss the flow of water through a 1/2-in. rubber garden hose that is attached to a house 
faucet with a pressure of 70 psig available. 

8. Why was Eq. 6.4-12 rewritten in the form of Eq. 6.4-13? 
9. A baseball announcer says: "Because of the high humidity today, the baseball cannot go as far 

through the heavy humid air as it would on a dry day." comment critically on this statement. 

PROBLEMS 

6A.1 Pressure drop required for a pipe with fittings. 
What pressure drop is needed for pumping water at 20°C 
through a pipe of 25 cm diameter and 1234 m length at a 
rate of 1.97 m3/s? The pipe is at the same elevation through- 
out and contains four standard radius 90" elbows and two 
45" elbows. The resistance of a standard radius 90" elbow is 
roughly equivalent to that offered by a pipe whose length is 
32 diameters; a 45" elbow, 15 diameters. (An alternative 
method for calculating losses in fittings is given in g7.5.) 
Answer: 4.7 X lo3 psi = 33 MPa 

(a) Solve by Method A of Example 6.2-2. 
(b) Solve by Method B of Example 6.2-2. 
Answer: 68 U.S. gal/min 

6A.4 Motion of a sphere in a liquid. A hollow sphere, 
5.00 mm in diameter, with a mass of 0.0500 g, is released in 
a column of liquid and attains a terminal velocity of 0.500 
cm/s. The liquid density is 0.900 g/cm3. The local gravita- 
tional acceleration is 980.7 cm/sec2. The sphere is far 
enough from the containing walls so that their effect can 
be neglected. 
(a) Compute the drag force on the sphere in dynes. 
(b) Compute the friction factor. 
(c) Determine the viscosity of the liquid. 
Answers: (a) 8.7 dynes; (b) f = 396; (c) 3.7g/cm-s 

6A.2 Pressure difference required for flow in pipe with 
elevation change (Fig. 6A.2). Water at 68OF is to be 
pumped through 95 ft of standard 3-in. pipe (internal di- 
ameter 3.068 in.) into an overhead reservoir. 
(a) What pressure is required at the outlet of the pump to 

6A.5 Sphere diameter for a given terminal velocity. 
(a) Explain how to find the sphere diameter D corre- 
sponding to given values of v,, p, p,, p, and g by mak- 
ing a direct construction on Fig. 6.3-1. 
(b) Rework Problem 2A.4 by using Fig. 6.3-1. 
(c) Rework (b) when the gas velocity is 10 ft/s. 

Fig. 6A.2. Pipe flow system. 

supply water to the overhead reservoir at a rate of 18 
gal/min? At 68°F the viscosity of water is 1.002 cp and the 
density is 0.9982 g/ml. 
(b) What percentage of the pressure drop is needed for 
overcoming the pipe friction? 
Answer: (a) 15.2 psig 

6A.3 Flow rate for a given pressure drop. How many 
gal/hr of water at 68°F can be delivered through a 1320-ft 
length of smooth 6.00-in. i.d. pipe under a pressure differ- 
ence of 0.25 psi? Assume that the pipe is "hydraulically 
smooth.'' 

6A.6 Estimation of void fraction of a packed column. 
A tube of 146 sq. in. cross section and 73 in. height is 
packed with spherical particles of diameter 2 mm. When a 
pressure difference of 158 psi is maintained across the col- 
umn, a 60% aqueous sucrose solution at 20°C flows 
through the bed at a rate of 244 lb/min. At this tempera- 
ture, the viscosity of the solution is 56.5 cp and its density 
is 1.2865 g/cm3. What is the void fraction of the bed? Dis- 
cuss the usefulness of this method of obtaining the void 
fraction. 
Answer: 0.30 

6A.7 Estimation of pressure drops in annular flow. For 
flow in an annulus formed by cylindrical surfaces of diam- 
eters D and KD (with K < 1) the friction factors for laminar 
and turbulent flow are 

Laminar 
r- 

Turbulent & = G log l,,(~eK@\/f) - H 
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in which the Reynolds number is defined by 

Re, = K 
D(l - K)(ZI,)~ 

P (6A.7-3) 

The values of G, H, and K are given as:' 

Equation 6A.7-2 is based on Problem 5C.2 and reproduces 
the experimental data within about 3% up to Reynolds 
numbers of 20,000. 
(a) Vedy that, for developed laminar flow, Eqs. 6A.7-1 and 
3 with the tabulated K values are consistent with Eq. 2.4-16. 
(b) An annular duct is formed from cylindrical surfaces of 
diameters 6 in. and 15 in. It is desired to pump water at 
60°F at a rate of 1500 cu ft per second. How much pressure 
drop is required per unit length of conduit, if the annulus 
is horizontal? Use Eq. 6A.7-2. 
(c) Repeat (b) using the "mean hydraulic radius" empiri- 
cism. 

6A.8 Force on a water tower in a gale. A water tower 
has a spherical storage tank 40 ft in diameter. In a 100-mph 
gale what is the force of the wind on the spherical tank at 
O°C? Take the density of air to be 1.29 g/liter or 0.08 lb/ft3 
and the viscosity to be 0.017 cp. 
Answer: 1.7 X 1041bf 

6A.9 Flow of gas through a packed column. A horizon- 
tal tube with diameter 4 in. and length 5.5 ft is packed with 
glass spheres of diameter 1/16 in., and the void fraction is 
0.41. Carbon dioxide is to be pumped through the tube at 
300K, at which temperature its viscosity is known to be 
1.495 X W4 g/cm . s. What will be the mass flow rate 
through the column when the inlet and outlet pressures 
are 25 atm and 3 atm, respectively? 
Answer: 480 g/s 

' D. M. Meter and R. B. Bird, AIChE Journal, 7,4145 (1961). 

6A.10 Determination of pipe diameter. What size of cir- 
cular pipe is needed to produce a flow rate of 250 firkins 
per fortnight when there is a pressure drop of 3 x lo5 scru- 
ples per square barleycorn? The pipe is horizontal. (The 
authors are indebted to Professor R. S. Kirk of the Univer- 
sity of Massachusetts, who introduced them to these 
units.) 

6B.1 Effect of error in friction factor calculations. In a 
calculation using the Blasius formula for turbulent flow in 
pipes, the Reynolds number used was too low by 4%. Cal- 
culate the resulting error in the friction factor. 
Answer: Too high by 1% 

6B.2 Friction factor for flow along a flat plate2 
(a) An expression for the drag force on a flat plate, wetted 
on both sides, is given in Eq. 4.4-30. This equation was de- 
rived by using laminar boundary layer theory and is 
known to be in good agreement with experimental data. 
Define a friction factor and Reynolds number, and obtain 
the f versus Re relation. 
(b) For turbulent flow, an approximate boundary layer treat- 
ment based on the 1 /7 power velocity distribution gives 

Fk = O . O ~ ~ ~ V ~ W L ( L V , ~ / ~ ) - ~ ' ~  (6B.2-1) 

When 0.072 is replaced by 0.074, this relation describes the 
drag force within experimental error for 5 X lo5 < Lv,plp. 
< 2 x lo7. Express the corresponding friction factor as a 
function of the Reynolds number. 

6B.3 Friction factor for laminar flow in a slit. Use the 
results of Problem 2B.3 to show that for the laminar flow in 
a thin slit of thickness 2B the friction factor is f = 12/Re, if 
the Reynolds number is defined as Re = 2B(vz)p/p. Com- 
pare this result for f with what one would get from the 
mean hydraulic radius empiricism. 

6B.4 Friction factor for a rotating disk.3 A thin circular 
disk of radius R is immersed in a large body of fluid with 
density p and viscosity p. If a torque T, is required to make 
the disk rotate at an angular velocity 0, then a friction fac- 
tor f may be defined analogously to Eq. 6.1-1 as follows, 

T J R  = AKf (6B.4-1) 

where reasonable definitions for K and A are K = ip(flRI2 
and A = 2(77R2). An appropriate choice for the Reynolds 
number for the system is Re = R 2 Q p / ~ .  

For laminar flow, an exact boundary layer develop- 
ment gives 

T, = 0 . 6 1 6 ~ r p ~ ~ m  (68.4-2) 

- -- - 

H. Schlichting, Baud y-Layer Theo y, McGraw-Hill, New 
York, 7th edition (1979), Chapter XXI. 

T. von Kdrmkn, Zeits.Fr angew. Math. u. Mech., 1,233-252 
(1921). 
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For turbulent flow, an approximate boundary layer treat- 
ment based on the 1 /7 power velocity distribution leads to 

T, = 0 . 0 7 3 ~ C l ~ ~ ~ ~ p , /  (6B.4-3) 

Express these results as relations between f and Re. 

6B.5 Turbulent flow in horizontal pipes. A fluid is 
flowing with a mass flow rate w in a smooth horizontal 
pipe of length L and diameter D as the result of a pressure 
difference po - pL. The flow is known to be turbulent. 

The pipe is to be replaced by one of diameter D/2 but 
with the same length. The same fluid is to be pumped at 
the same mass flow rate w. What pressure difference will 
be needed? 
(a) Use Eq. 6.2-12 as a suitable equation for the friction factor. 
(b) How can this problem be solved using Fig. 6.2-2 if Eq. 
6.2-12 is not appropriate? 
Answer: (a) A pressure difference 27 times greater will be 
needed. 

6B.6 Inadequacy of mean hydraulic radius for laminar 
flow. 
(a) For laminar flow in an annulus with radii KR and R, 
use Eqs. 6.2-17 and 18 to get an expression for the average 
velocity in terms of the pressure difference analogous to 
the exact expression given in Eq. 2.4-16. 
(b) What is the percentage of error in the result in (a) for 
,( = l? 

Answer: 49% 

68.7 Falling sphere in Newton's drag-law region. A 
sphere initially at rest at z = 0 falls under the influence of 
gravity. Conditions are such that, after a negligible inter- 
val, the sphere falls with a resisting force proportional to 
the square of the velocity. 
(a) Find the distance z that the sphere falls as a function of t. 
(b) What is the terminal velocity of the sphere? Assume 
that the density of the fluid is much less than the density of 
the sphere. 
Answer: (a) The distance is z = (l/c2g) In cosh cgt, where 
c2 = ~(0.44)(p/ps& /gR); (b) 1 /c 

68.8 Design of an experiment to verify the f vs. Re chart 
for spheres. It is desired to design an experiment to test 
the friction factor chart in Fig. 6.3-1 for flow around a 
sphere. Specifically, we want to test the plotted value f = 1 
at Re = 100. This is to be done by dropping bronze spheres 
(psph = 8 g/cm3) in water (p = 1 g/cm3, p = lop2 g/cm. s). 
What sphere diameter must be used? 
(a) Derive a formula that gives the required diameter as 
a function of f, Re, g, p, p, and pSph for terminal velocity 
conditions. 
(b) Insert numerical values and find the value of the 
sphere diameter. 

3f Re2 p2 
Answers: (a) D = 3 (b) D = 0.048 cm 

4 ( ~  sph - P)P~ '  r- 

6B.9 Friction factor for flow past an infinite ~yl inder .~  
The flow past a long cylinder is very different from the 
flow past a sphere, and the method introduced in g4.2 can- 
not be used to describe this system. It is found that, when 
the fluid approaches with a velocity v,, the kinetic force 
acting on a length L of the cylinder is 

The Reynolds number is defined here as Re = Dv,p/p. 
Equation 6B.9-1 is valid only up to about Re = 1. In this 
range of Re, what is the formula for the friction factor as a 
function of the Reynolds number? 

6C.1 Two-dimensional particle trajectories. A sphere of 
radius R is fired horizontally (in the x direction) at high ve- 
locity in still air above level ground. As it leaves the pro- 
pelling device, an identical sphere is dropped from the 
same height above the ground (in the y direction). 
(a) Develop differential equations from which the particle 
trajectories can be computed, and that will permit compar- 
ison of the behavior of the two spheres. Include the effects 
of fluid friction, and make the assumption that steady- 
state friction factors may be used (this is a "quasi-steady- 
state assumption"). 
(b) Which sphere will reach the ground first? 
(c) Would the answer to (b) have been the same if the 
sphere Reynolds numbers had been in the Stokes' law 
region? 

dvx 3 vx 2 Pair Answers: (a) - = -s i( my f 
d t 

in which f = f(Re) as given by Fig. 5.3-1, with 

2 ~ w ~ ~ ~ ~  
Re = 

P a i r  

6C.2 Wall effects for a sphere falling in a ~ y l i n d e r . ~ ~  
(a) Experiments on friction factors of spheres are generally 
performed in cylindrical tubes. Show by dimensional 
analysis that, for such an arrangement, the friction factor 
for the sphere will have the following dependence: 

f = f (Re, R/Rcyl) (6C.2-1) 
Here Re = 2Rv,p/p, in which R is the sphere radius, v, is 
the terminal velocity of the sphere, and RCy1 is the inside 

G. K. Batchelor, An Introduction to Fluid Dynamics, 
Cambridge University Press (1967), pp. 244-246,257-261. For 
flow past finite cylinders, see J. Happel and H. Brenner, Low 
Reynolds Number Hydrodynamics, Martinus Nijhoff, The Hague 
(19831, pp. 227-230. 
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radius of the cylinder. For the creeping flow region, it has 
been found empirically that the dependence off on R/RcYI 
may be described by the Ladenburg-Fax& correction? so that 

Wall effects for falling droplets have also been s t ~ d i e d . ~  
(b) Design an experiment to check the graph for spheres 
in Fig. 6.3-1. Select sphere sizes, cylinder dimensions, and 
appropriate materials for the experiment. 

6C.3 Power input to an agitated tank (Fig. 6C.3). Show 
by dimensional analysis that the power, P, imparted by a 
rotating impeller to an incompressible fluid in an agitated 
tank may be correlated, for any specific tank and impeller 
shape, by the expression 

P 2N 
- = @(?, E, N t )  (6C.3-1) 
pN3D5 8 

Here N  is the rate of rotation of the impeller, D is the im- 
peller diameter, t  is the time since the start of the opera- 
tion, and @ is a function whose form has to be determined 
experimentally. 

For the commonly used geometry shown in the figure, 
the power is given by the sum of two integrals represent- 
ing the contributions of friction drag of the cylindrical tank 

Impeller Baffle 
\ 

body and bottom and the form drag of the radial baffles, 
respectively: 

Here T, is the tohue required to turn the impeller, S is the 
total surface area of the tank, A is the surface area of the 
baffles, (considered positive on the "upstream" side and 
negative on the "downstream side"), X is the radial dis- 
tance to any surface element dS or dA from the impeller 
axis of rotation, and n is the distance measured normally 
into the fluid from any element of tank surface dS. 

The desired solution may now be obtained by dimen- 
sional analysis of the equations of motion and continuity 
by rewriting the integrals above in dimensionless form. 
Here it is convenient to use D, DN, and p p ~ 2  for the char- 
acteristic length, velocity, and pressure, respectively. 

6D.1 Friction factor for a bubble in a clean liquid.'r8 
When a gas bubble moves through a liquid, the bulk of the 
liquid behaves as if it were in potential flow; that is, the 
flow field in the liquid phase is very nearly given by Eqs. 
4B.5-2 and 3. 

The drag force is closely related to the energy dissipa- 
tion in the liquid phase (see Eq. 4.2-18) 

Fkv, = E, (6D.l-1) 

Show that for irrotational flow the general expression for 
the energy dissipation can be transformed into the follow- 
ing surface integral: 

E,, = p$(n. Vv2) dS (6D.1-2) 

Next show that insertion of the potential flow velocity pro- 
files into Eq. 6D.1-2, and use of Eq. 6D.1-1 leads to 

A somewhat improved calculation that takes into account 
the dissipation in the boundary layer and in the turbulent 

Side view wake leads to the following result:' 
Top view 

f = -  I--- :( %) (6D.1-4) Fig. 6C.3. Agitated tank with a six-bladed impeller and 
four vertical baffles. This result seems to hold rather well up to a Reynolds 

number of about 200. 

R. Ladenburg, Ann. Pkysik (4), 23,447 (1907); H. FaxCn, 
dissertation, Uppsala (1921). For extensive discussions of wall 
effects for falling spheres, see J. Happel and H. Brenner, Low L. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, 
Reynolds Number Hydrodynamics, Martinus Nijhoff, The Hague Oxford (19871, pp. 182-183. 
(1983). G. K. Batchelor, An Introduction to Fluid Dynamics, 

J. R. Strom and R. C. Kintner, AICkE Journal, 4,153-156 Cambridge University Press, (1963, pp. 367-370. 
(1958). D. W. Moore, J. Fluid Mech., 16, 161-176 (1963). 



Chapter 7 

Macroscopic Balances for 
Isothermal Flow Systems 
7 . 1  The macroscopic mass balance 

97.2 The macroscopic momentum balance 

57.3 The macroscopic angular momentum balance 

97.4 The macroscopic mechanical energy balance 

57.5 Estimation of the viscous loss 

57.6 Use of the macroscopic balances for steady-state problems 

97.7' Use of the macroscopic balances for unsteady-state problems 

57.8' Derivation of the macroscopic mechanical energy balance 

In the first four sections of Chapter 3 the equations of change for isothermal systems w e e  
presented. These equations were obtained by writing conservation laws over a "micro- 
scopic system"-namely, a small element of volume through which the fluid is flowing. In 
this way partial differential equations were obtained for the changes in mass, momentum, 
angular momentum, and mechanical energy in the system. The microscopic system has no 
solid bounding surfaces, and the interactions of the fluid with solid surfaces in specific 
flow systems are accounted for by boundary conditions on the differential equations. 

In this chapter we write similar conservation laws for "macroscopic systems"-that 
is, large pieces of equipment or parts thereof. A sample macroscopic system is shown in 
Fig. 7.0-1. The balance statements for such a system are called the macroscopic balances; for 

in' 
Q = Heat added ,/ 

\2 

to system from 
surroundings 

='I 

Fig. 7.0-1. Macroscopic flow system 
with fluid entering at plane 1 and 
leaving at plane 2. It may be neces- 
sary to add heat at a rate Q to main- 
tain the system temperature 
constant. The rate of doing work on 
the system by the surroundings by 
means of moving surfaces is W,. 
The symbols ul and u, denote unit 
vectors in the direction of flow at 
planes 1 and 2. The quantities r, and 
r, are position vectors giving the lo- 
cation of the centers of the inlet and 
outlet planes with respect to some 
designated origin of coordinates. 

W,,, = Work done 
on system by 

surroundings via 
moving parts 
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unsteady-state systems, these are ordinary differential equations, and for steady-state 
systems, they are algebraic equations. The macroscopic balances contain terms that ac- 
count for the interactions of the fluid with the solid surfaces. The fluid can exert forces 
and torques on the surfaces of the system, and the surroundings can do work W, on the 
fluid by means of moving surfaces. 

The macroscopic balances can be obtained from the equations of change by integrat- 
ing the latter over the entire volume of the flow 

I",,, (eq. of continuity) dV = macroscopic mass balance 

L*o (eq. of motion) dV = macroscopic momentum balance 

I,, (eq. of angular momentum) dV = macroscopic angular momentum balance 

L, (eq. of mechanical energy) dV = macroscopic mechanical energy balance 

The first three of these macroscopic balances can be obtained either by writing the con- 
servation laws directly for the macroscopic system or by doing the indicated integra- 
tions. However, to get the macroscopic mechanical energy balance, the corresponding 
equation of change must be integrated over the macroscopic system. 

In ss7.1 to 7.3 we set up the macroscopic mass, momentum, and angular momentum 
balances by writing the conservation laws. In 57.4 we present the macroscopic mechani- 
cal energy balance, postponing the detailed derivation until 57.8. In the macroscopic me- 
chanical energy balance, there is a term called the "friction loss," and we devote s7.5 to 
estimation methods for this quantity. Then in 57.6 and 57.7 we show how the set of 
macroscopic balances can be used to solve flow problems. 

The macroscopic balances have been widely used in many branches of engineering. 
They provide global descriptions of large systems without much regard for the details of 
the fluid dynamics inside the systems. Often they are useful for making an initial ap- 
praisal of an engineering problem and for making order-of-magnitude estimates of vari- 
ous quantities. Sometimes they are used to derive approximate relations, which can then 
be modified with the help of experimental data to compensate for terms that have been 
omitted or about which there is insufficient information. 

In using the macroscopic balances one often has to decide which terms can be omit- 
ted, or one has to estimate some of the terms. This requires (i) intuition, based on experi- 
ence with similar systems, (ii) some experimental data on the system, (iii) flow 
visualization studies, or (iv) order-of-magnitude estimates. This will be clear when we 
come to specific examples. 

The macroscopic balances make use of nearly all the topics covered thus far; there- 
fore Chapter 7 provides a good opportunity for reviewing the preceding chapters. 

7 .  THE MACROSCOPIC MASS BALANCE 

In the system shown in Fig. 7.0-1 the fluid enters the system at plane 1 with cross section 
S, and leaves at plane 2 with cross section S,. The average velocity is (v,) at the entry 
plane and (v2) at the exit plane. In this and the following sections, we introduce two as- 
sumptions that are not very restrictive: (i) at the planes 1 and 2 the time-smoothed veloc- 

' R. B. Bird, Chem. Eng. Sci., 6,123-131 (1957); Chem. Eng. Educ., 27(2), 102-109 (Spring 1993). 
J. C .  Slattery and R. A. Gaggioli, Chem. Eng. Sci., 17,8934395 (1962). 
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ity is perpendicular to the relevant cross section, and (ii) at planes 1 and 2 the density 
and other physical properties are uniform over the cross section. 

The law of conservation of mass for this system is then 

rate of rate of rate of 
increase mass in mass out 
of mass at plane 1 at plane 2 

Here m,, = J p d V  is the total mass of fluid contained in the system between planes 1 and 
2. We now introduce the symbol w = p(v)S for the mass rate of flow, and the notation 
Aw = w2 - wl (exit value minus entrance value). Then the unsteady-state macroscopic mass 
balance becomes 

If the total mass of fluid does not change with time, then we get the steady-state macro- 
scopic mass balance 

A w = O  (7.1-3) 

which is just the statement that the rate of mass entering equals the rate of mass leaving. 
For the macroscopic mass balance we use the term "steady state" to mean that the 

time derivative on the left side of Eq. 7.1-2 is zero. Within the system, because of the pos- 
sibility for moving parts, flow instabilities, and turbulence, there may well be regions of 
unsteady flow. 

A spherical tank of radius R and its drainpipe of length L and diameter D are completely 
filled with a heavy oil. At time t = 0 the valve at the bottom of the drainpipe is opened. How 

Draining of a S~heticaz long will it take to drain the tank? There is an air vent at the very top of the spherical tank. Ig- 
Tank nore the amount of oil that clings to the inner surface of the tank, and assume that the flow in 

the drainpipe is laminar. 

SOLUTION We label three planes as in Fig. 7.1-1, and we let the instantaneous liquid level above plane 2 
be h(t). Then, at any time t the total mass of liquid in the sphere is 

Airvent $ur%j - - - plane 1 

surface 

4 
----- - Plane 2 

L R  -------- 
/I' Plane 3 Fig. 7.1-1. Spherical tank with drainpipe. 



200 Chapter 7 Macroscopic Balances for Isothermal Flow Systems 

which can be obtained by using integral calculus. Since no fluid crosses plane 1 we know that 
w, = 0. The outlet mass flow rate w,, as determined from the Hagen-Poiseuille formula, is 

The Hagen-Poiseuille formula was derived for steady-state flow, but we use it here since the 
volume of liquid in the tank is changing slowly with time; this is an example of a "quasi- 
steady-state" approximation. When these expressions for mtOt and w, are substituted into Eq. 
7.1-2, we get, after some rearrangement, 

We now abbreviate the constant on the right side of the equation as A. The equation is easier 
to integrate if we make the change of variable H = h + L so that 

We now integrate this equation between t = 0 (when h = 2R or H = 2R + L), and t = teffl,, 
(when h = 0 or H = L). This gives for the efflux time 

in which A is given by the right side of Eq. 7.1-6. Note that we have obtained this result with- 
out any detailed analysis of the fluid motion within the sphere. 

57.2 THE MACROSCOPIC MOMENTUM BALANCE 

We now apply the law of conservation of momentum to the system in Fig. 7.0-1, using the 
same two assumptions mentioned in the previous section, plus two additional assump- 
tions: (iii) the forces associated with the stress tensor T are neglected at planes 1 and 2, 
since they are generally small compared to the pressure forces at the entry and exit planes, 
and (iv) the pressure does not vary over the cross section at the entry and exit planes. 

Since momentum is a vector quantity, each term in the balance must be a vector. We 
use unit vectors u, and u2 to represent the direction of flow at planes 1 and 2. The law of 
conservation of momentum then reads 

rate of rate of rate of pressure pressure force of force of 
increase of momentum momentum force on force on solid gravity 
momentum in at plane 1 out at plane 2 fluid at fluid at surface on fluid 

plane 1 plane 2 on fluid 

Here Pt,, = JpvdV is the total momentum in the system. The equation states that the total 
momentum within the system changes because of the convection of momentum into and 
out of the system, and because of the various forces acting on the system: the pressure 
forces at the ends of the system, the force of the solid surfaces acting on the fluid in the 
system, and the force of gravity acting on the fluid within the walls of the system. The 
subscript "s f" serves as a reminder of the direction of the force. 

By introducing the symbols for the mass rate of flow and the A symbol we finally get 
for the unsteady-state macroscopic momentum balance 

I I 
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If the total amount of momentum in the system does not change with time, then we get 
the steady-state macroscopic momentum balance 

Once again we emphasize that this is a vector equation. It is useful for computing the force 
of the fluid on the solid surfaces, FPs, such as the force on a pipe bend or a turbine blade. 
Actually we have already used a simplified version of the above equation in Eq. 6.1-3. 

Notes regarding turbulent flow: (i) For turbulent flow it is customary to replace (v) by 
(5) and (v2) by (3); in the latter we are neglecting the term (?), which is generally small 
with respect to (3). (ii) Then we further replace ($)/(E) by (E). The error in doing this is 
uite small; for the empirical $ power law velocity profile given in Eq. 5.1-4, (C2)/(E) = 

Yo &), so that the error is about 2%. (iii) When we make this assumption we will normally 
drop the angular brackets and overbars to simplify the notation. That is, we will let 
(el) = v, and (8) = v:, with similar simplifications for quantities at plane 2. 

A turbulent jet of water emerges from a tube of radius R, = 2.5 cm with a speed v, = 6 m/s, 
as shown in Fig. 7.2-1. The jet impinges on a disk-and-rod assembly of mass m = 5.5 kg, 

Force Exerted a let which is free to move vertically. The friction between the rod and the sleeve will be neglected. 
(Part a) Find the height h at which the disk will "float" as a result of the jet.' Assume that the water is 

incompressible. 

SOLUTION To solve this problem one has to imagine how the jet behaves. In Fig. 7.2-l(a) we make the as- 
sumption that the jet has a constant radius, R,, between the tube exit and the disk, whereas in 
Fig. 7.2-l(b) we assume that the jet spreads slightly. In this example, we make the first as- 
sumption, and in Example 7.4-1 we account for the jet spreading. 

We apply the z-component of the steady-state momentum balance between planes 1 and 
2. The pressure terms can be omitted, since the pressure is atmospheric at both planes. The z 
component of the fluid velocity at plane 2 is zero. The momentum balance then becomes 

When this is solved for h, we get (in SI units) 

Disk-rod assembly 

- Plane 3 
Plane 2 

Fig. 7.2-1. Sketches corre- 

----- ----- sponding to the two solutions 
'lane to the jet-and-disk problem. - Tube with radius R1 - In (a) the water jet is assumed 

to have a uniform radius R,. 
In (b)  allowance is made for the 

(a) (b)  spreading of the liquid jet. 

K. Federhofer, Aufgaben aus der Hydrornechanik, Springer-Verlag, Vienna (1954), pp. 36 and 172. 
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57.3 THE MACROSCOPIC ANGULAR MOMENTUM BALANCE 

The development of the macroscopic angular momentum balance parallels that for the 
(linear) momentum balance in the previous section. All we have to do is to replace "mo- 
mentum'' by "angular momentum" and "force" by "torque." 

To describe the angular momentum and torque we have to select an origin of coor- 
dinates with respect to which these quantities are evaluated. The origin is designated by 
" 0  in Fig. 7.0-1, and the locations of the midpoints of planes 1 and 2 with respect to this 
origin are given by the position vectors rl and r,. 

Once again we make assumptions (i)-(iv) introduced in ss7.1 and 7.2. With these as- 
sumptions the rate of entry of angular momentum at plane 1, which is J[r x pv](v . u)dS 
evaluated at that plane, becomes pl(v:)Sl[rl x ul], with a similar expression for the rate 
at which angular momentum leaves the system at 2. 

The unsteady-state macroscopic angular momentum balance may now be written as 

rate of rate of angular rate of angular 
increase of momentum momentum 
angular in at plane 1 out at plane 2 
momentum 

+ pISl[rl X u11 - p2S2[r2 X u21 + T,+ + Text 
torque due to torque due to torque external 
pressure on pressure on of solid torque 
fluid at fluid at surface on fluid 
plane 1 plane 2 on fluid 

Here L,,, = Jp[r X vldV is the total angular momentum within the system, and T,,, = 

J[r x pg] dV is the torque on the fluid in the system resulting from the gravitational force. 
This equation can also be written as 

Finally, the steady-state macroscopic angular momentum balance is 

This gives the torque exerted by the fluid on the solid surfaces. 

A mixing vessel, shown in Fig. 7.3-1, is being operated at steady state. The fluid enters tan- 
gentially at plane 1 in turbulent flow with a velocity v, and leaves through the vertical pipe 

Torque On a Mixing with a velocity u,. Since the tank is baffled there is no swirling motion of the fluid in the verti- 
Vessel cal exit pipe. Find the torque exerted on the mixing vessel. 

SOLUTION The origin of the coordinate system is taken to be on the tank axis in a plane passing through 
the axis of the entrance pipe and parallel to the tank top. Then the vector [r, X u,l is a vector 
pointing in the z direction with magnitude R. Furthermore [r, X up] = 0, since the two vectors 
are collinear. For this problem Eq. 7.3-3 gives 

Thus the torque is just "force X lever arm," as would be expected. If the torque is sufficiently 
large, the equipment must be suitably braced to withstand the torque produced by the fluid 
motion and the inlet pressure. 
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Side view 

Fig. 7.3-1. Torque on a 
tank, showing side view 
and top view. 

Origin of coordinates is on 
tank axis in a plane passing 
through the axis of the entrance 
pipe and parallel to the tank top 

Plane 2 

57.4 THE MACROSCOPIC MECHANICAL ENERGY BALANCE 

Equations 7.1-2,7.2-2, and 7.3-2 have been set up by applying the laws of conservation of 
mass, (linear) momentum, and angular momentum over the macroscopic system in Fig. 
7.0-1. The three macroscopic balances thus obtained correspond to the equations of 
change in Eqs. 3.1-4,3.2-9, and 3.4-1, and, in fact, they are very similar in structure. These 
three macroscopic balances can also be obtained by integrating the three equations of 
change over the volume of the flow system. 

Next we want to set up the macroscopic mechanical energy balance, which corre- 
sponds to the equation of mechanical energy in Eq. 3.3-2. There is no way to do this di- 
rectly as we have done in the preceding three sections, since there is no conservation law 
for mechanical energy. In this instance we must integrate the equation of change of me- 
chanical energy over the volume of the flow system. The result, which has made use of 
the same assumptions (i-iv) used above, is the unsteady-state macroscopic mechanical energy 
balance (sometimes called the engineering Bernoulli equation). The equation is derived in 
97.8; here we state the result and discuss its meaning: 

rate of increase rate at which kinetic rate at which kinetic 
of kinetic and and potential energy and potential energy 
potential energy enter system at plane 1 leave system at plane 2 
in system 

+ (pI(vl)S1 - p2(v2)S2) + W, + 1 p(V. v) dV + (T :W dV (7.4-1) 
V(t) V(t)  

net rate at which the rate of rate at which rate at which 
surroundings do doing mechanical mechanical 
work on the fluid work on energy increases energy 
at planes 1 and 2 by fluid by or decreases decreases 
the pressure moving because of expansion because of 

surfaces or compression viscous 
of fluid dissipation' 

- -- - - 

This interpretation of the term is valid only for Newtonian fluids; polymeric liquids have elasticity 
and the interpretation given above no longer holds. 
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Here Kt,, = Jipv2dv and a,,, = JP& dV are the total kinetic and potential energies within 
the system. According to Eq. 7.4-1, the total mechanical energy (i.e., kinetic plus poten- 
tial) changes because of a difference in the rates of addition and removal of mechanical 
energy, because of work done on the fluid by the surroundings, and because of com- 
pressibility effects and viscous dissipation. Note that, at the system entrance (plane I), 
the force p,S, multiplied by the velocity (v,) gives the rate at which the surroundings do 
work on the fluid. Furthermore, W,, is the work done by the surroundings on the fluid 
by means of moving surfaces. 

The macroscopic mechanical energy balance may now be written more compactly as 
I I 

in which the terms E, and E, are defined as follows: 

E, = - p(V . v) dV and E ,  = - ( ~ V V )  dV I I (7.4-3,4) 
V(t)  V( t )  

The compression term E, is positive in compression and negative in expansion; it is zero 
when the fluid is assumed to be incompressible. The term E, is the viscous dissipation (or 
friction loss) term, which is always positive for Newtonian liquids, as can be seen from Eq. 
3.3-3. (For polymeric fluids, which are viscoelastic, E, is not necessarily positive; these 
fluids are discussed in the next chapter.) 

If the total kinetic plus potential energy in the system is not changing with time, we get 

which is the steady-state macroscopic mechanical energy balance. Here h is the height above 
some arbitrarily chosen datum plane. 

Next, if we assume that it is possible to draw a representative streamline through 
the system, we may combine the A(p/p) and E, terms to get the following approximate re- 
lation (see 57.8) 

Then, after dividing Eq. 7.4-5 by w, = w, = w, we get 

I I 

Here & = W,,/w and i,, = E,/w. Equation 7.4-7 is the version of the steady-state me- 
chanical energy balance that is most often used. For isothermal systems, the integral 
term can be calculated as long as an expression for density as a function of pressure is 
available. 

Equation 7.4-7 should now be compared with Eq. 3.5-12, which is the "classical" 
Bernoulli equation for an inviscid fluid. If, to the right side of Eq. 3.5-12, we jyst add the 
work wrn done by the surroundings and subtract the viscous dissipation term E,, and rein- 
terpret the velocities as appropriate averages over the cross sections, then we get Eq. 7.4-7. 
This provides a "plausibility argument" for Eq. 7.4-7 and still preserves the fundamental 
idea that the macroscopic mechanical energy balance is derived from the equation of mo- 
tion (that is, from the law of conservation of momentum). The full derivation of the macro- 
scopic mechanical energy balance is given in g7.8 for those who are interested. 

Notes for turbulent flow: (i) For turbulent flows we replace (v3) by (v3), and ignore the 
contribution from the turbulent fluctuations. (ii) It is common practice to replace the 
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Force Exerted by  a Jef 
(Part b) 

quotient (fi3)/(E) by (fi)2. For the empirical 3 power law velocity profile given in Eq. 5.1-4, 
43200 it can be shown that (fi3)/(~) = z(0)2, SO that the error amounts to about 6%. (iii) We 

further omit the brackets and overbars to simplify the notation in turbulent flow. 

Continue the problem in Example 7.2-1 by accounting for the spreading of the jet as it moves 
upward. 

SOLUTION 

We now permit the jet diameter to increase with increasing z as shown in Fig. 7.2-l(b). It is 
convenient to work with three planes and to make balances between pairs of planes. The sep- 
aration between planes 2 and 3 is taken to be quite small. 

A mass balance between planes 1 and 2 gives 

Next we apply the mechanical energy balance of Eq. 7.4-5 or 7.4-7 between the same two 
planes. The pressures at planes 1 and 2 are both atmospheric, and there is no work done by 
moving parts W,. We assume that the viscous dissipation term E,  can be neglected. If z is 
measured upward from the tube exit, then gAh = g(h, - h,) = g(h - O), since planes 2 and 3 
are so close together. Thus the mechanical energy balance gives 

We now apply the z-momentum balance between planes 2 and 3. Since the region is very 
small, we neglect the last term in Eq. 7.2-3. Both planes are at atmospheric pressure, so the 
pressure terms do not contribute. The fluid velocity is zero at plane 3, so there are only two 
terms left in the momentum balance 

From the above three equations we get 

from Eq. 7.4-9 

(mg'w2)2) from Eq. 7.4-10 
v: 

= 3 (1 - ( )  from Eq. 7.4-8 
28 

in which rng and v,w, = . rr~:~v:  are known. When the numerical values are substituted into 
Eq. 7.4-10, we get h = 0.77 m. This is probably a better result than the value of 0.87 m obtained 
in Example 7.2-1, since it accounts for the spreading of the jet. We have not, however, consid- 
ered the clinging of the water to the disk, which gives the disk-rod assembly a somewhat 
greater effective mass. In addition, the frictional resistance of the rod in the sleeve has been 
neglected. It is necessary to run an experiment to assess the validity of Eq. 7.4-10. 

57.5 ESTIMATION OF THE VISCOUS LOSS 

This section is devoted to methods for estimating the viscous loss (or friction loss), E,, 
which appears in the macroscopic mechanical energy balance. The general expression 
for E, is given in Eq. 7.4-4. For incompressible Newtonian fluids, Eq. 3.3-3 may be used 
to rewrite E, as 
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which shows that it is the integral of the local rate of viscous dissipation over the volume 
of the entire flow system. 

We now want to examine E, from the point of view of dimensional analysis. The 
quantity a, is a sum of squares of velocity gradients; hence it has dimensions of (~,/1,)~, 
where v, and 1, are a characteristic velocity and length, respectively. We can therefore 
write 

where 6, = (l,/v,)*@, and d p  = li3dV are dimensionless quantities. If we make use of 
the dimensional arguments of 993.7 and 6.2, we see that the integral in Eq. 7.5-2 depends 
only on the various dimensionless groups in the equations of change and on various 
geometrical factors that enter into the boundary conditions. Hence, if the only significant 
dimensionless group is a Reynolds number, Re = l,v,p/p, then Eq. 7.5-2 must have the 
general form 

a dimensionless function of Re 
and various geometrical ratios 

(7.5-3) 

A 

In steady-state flow we prefer to work with the quantity E, = EJw, in which w = p(v)S is 
the mass rate of flow passing through any cross section of the flow system. If we select 
the reference velocity v, to be (v) and the reference length 1, to be %%, then 

in which e,, the friction loss factor, is a function of a Reynolds number and relevant di- 
mensionless geometrical ratios. The factor has been introduced in keeping with the 
form of several related equations. We now want to summarize what is known about the 
friction loss factor for the various parts of a piping system. 

For a straight conduit the friction loss factor is closely related to the friction factor. 
We consider only the steady flow of a fluid of constant density in a straight conduit of 
arbitrary, but constant, cross section S and length L. If the fluid is flowing in the z direc- 
tion under the influence of a pressure gradient and gravity, then Eqs. 7.2-2 and 7.4-7 
become 

(mechanical energy) 1 
EL, = p (PI - p2) + LgZ (7.5-6) 

Multiplication of the second of these by pS and subtracting gives 

If, in addition, the flow is turbulent then the expression for Ff+, in terms of the mean hy- 
draulic radius Rh may be used (see Eqs. 6.2-16 to 18) so that 

in which f is the friction factor discussed in Chapter 6. Since this equation is of the form 
of Eq. 7.5-4, we get a simple relation between the friction loss factor and the friction 
factor 

for turbulent flow in sections of straight pipe with uniform cross section. For a similar 
treatment for conduits of variable cross section, see Problem 7B.2. 
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Table 7.5-1 Brief Summary of Friction Loss Factors for Use with Eq. 7.5-10 
(Approximate Values for Turbulent Flow)" 

Disturbances e, 

Sudden changes in cross-sectional areab 

Rounded entrance to pipe 0.05 
Sudden contraction 

Sudden expansionc 

Orifice (sharp-edged) 

Fittings and valves 

90" elbows (rounded) 0.4-0.9 
90" elbows (square) 1.3-1.9 
45" elbows 0.3-0.4 
Globe valve (open) 610  
Gate valve (open) 0.2 

" Taken from H. Kramers, Physische Transportverschijnselen, Technische Hogeschool Delft, Holland (19581, 
pp. 53-54. 

Here p = (smaller cross-sectional area)/(larger cross-sectional area). 
See derivation from the macroscopic balances in Example 7.6-1. If P = 0, then E, = :(v)', where (v) is the 

velocity upstream from the enlargement. 

Most flow systems contain various "obstacles," such as fittings, sudden changes in 
diameter, valves, or flow measuring devices. These also contribute to the friction loss ED. 
Such additional resistances may be written in the form of Eq. 7.5-4, with e, determined by 
one of two methods: (a) simultaneous solution of the macroscopic balances, or (b)  experi- 
mental measurement. Some rough values of e, are tabulated in Table 7.5-1 for the conven- 
tion that (v) is the average velocity downstream from the disturbance. These e, values are 
for turbulent flow for which the Reynolds number dependence is not too important. 

Now we are in a position to rewrite Eq. 7.4-7 in the approximate form frequently used 
for turbulent flow calculations in a system composed of various kinds of piping and addi- 
tional resistances: 

1 2 L  
:(z$ - v:) + ~ ( 1 ~  - zli + /C $ d p  = hm - Z jiY Rif)i - ( v 2 e )  i (7.5-10) 

sum over all sum over all 
sections of fittings, valves, 
straight conduits meters, etc. 

Here Rh is the mean hydraulic radius defined in Eq. 6.2-16, f is the friction factor defined 
in Eq. 6.1-4, and e, is the friction loss factor given in Table 7.5-1. Note that the v,  and v2 in 
the first term refer to the velocities at planes 1 and 2; the v in the first sum is the average 
velocity in the ith pipe segment; and the v in the second sum is the average velocity 
downstream from the ith fitting, valve, or other obstacle. 

What is the required power output from the pump at steady state in the system shown in Fig. 
7.5-l? Water at 68OF (p  = 62.4 lb,/ft3; p = 1.0 cp) is to be delivered to the upper tank at a rate 

Requirement of 12 ft3/min. All of the piping is 4-in. internal diameter smooth circular pipe. 
for Pipeline Flow 
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SOLUTION 

Fig. 7.5-1. Pipeline flow 
with friction losses be- 
cause of fittings. Planes 
1 and 2 are just under 

- - Plane 2 the surface of the liquid. 

The average velocity in the pipe is 

and the Reynolds number is 

Hence the flow is turbulent. 
The contribution to i, from the various lengths of pipe will be 

The contribution to k, from the sudden contraction, the three 90" elbows, and the sudden ex- 
pansion (see Table 7.5-1) will be 

2 ($v2eJi = $(2.30)~(0.45 + 3(;) + 1) = 8 ft2/s2 (7.5-14) 
I 

Then from Eq. 7.5-10 we get 

0 + (32.2)(105 - 20) + 0 = wrn - 85 - 8 (7.5-15) 

Solving for wrn we get 

This is the work (per unit mass of fluid) done on the fluid in the pump. Hence the pump does 
2830 ft2/s2 or 2830/32.2 = 88 ft lbf/lbrn of work on the fluid passing through the system. The 
mass rate of flow is 

Consequently 

Wrn = W& = (12.5)(88) = 1100 ft lbf/s = 2 hp = 1.5 kW (7.5-18) 

which is the power delivered by the pump. 
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Table 7.6-1 Steady-State Macroscopic Balances for Turbulent Flow in Isothermal Systems 

Mass: CW, - Zw2 = O (A) 

Momentum: X(vlwl + plS1)ul - C(v2~2 + p2S2h2 + mtot!4 = Ff-s (B) 

Mechanical energy: C w2 = - W, + E,  + E ,  (D) 

Notes: 
(a) All formulas here assume flat velocity profiles. 
(b) Zwl = w,, + wlb + wlc + . . . , where w,, = p,,v,,S,,, etc. 

(c) hl and h, are elevations above an arbitrary datum plane. 
(d) All equations are written for compressible flow; for incompressible flow, E, = 0. 

57.6 USE OF THE MACROSCOPIC BALANCES 
FOR STEADY-STATE PROBLEMS 

In 53.6 we saw how to set up the differential equations to calculate the velocity and pres- 
sure profiles for isothermal flow systems by simplifying the equations of change. In this 
section we show how to use the set of steady-state macroscopic balances to obtain the al- 
gebraic equations for describing large systems. 

For each problem we start with the four macroscopic balances. By keeping track of 
the discarded or approximated terms, we automatically have a complete listing of the as- 
sumptions inherent in the final result. All of the examples given here are for isothermal, 
incompressible flow. The incompressibility assumption means that the velocity of the 
fluid must be less than the velocity of sound in the fluid and the pressure changes must 
be small enough that the resulting density changes can be neglected. 

The steady-state macroscopic balances may be easily generalized for systems with 
multiple inlet streams (called la, Ib, lc, . . .) and multiple outlet streams (called 2a, 2b, 
2c, . . .). These balances are summarized in Table 7.6-1 for turbulent flow (where the ve- 
locity profiles are regarded as flat). 

An incompressible fluid flows from a small circular tube into a large tube in turbulent flow, 
as shown in Fig. 7.6-1. The cross-sectional areas of the tubes are S, and S2. Obtain an expres- 

Pressure Rise and sion for the pressure change between planes 1 and 2 and for the friction loss associated with 
Friction Loss in a the sudden enlargement in cross section. Let P = S,/S2, which is less than unity. 
Sudden Enlargement 

Plane 1 Plane 2 
I I 

area S1 surface of area Cylindrical hibe 
s2 - s1 of cross-sectiona~ Fig. 7.6-1. HOW through a sudden 

area S2 enlargement. 
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SOLUTION (a) Mass balance. For steady flow the mass balance gives 

For a fluid of constant density, this gives 

(b) Momentum balance. The downstream component of the momentum balance is 

The force Ff,, is composed of two parts: the viscous force on the cylindrical surfaces parallel 
to the direction of flow, and the pressure force on the washer-shaped surface just to the right 
of plane 1 and perpendicular to the flow axis. The former contribution we neglect (by intu- 
ition) and the latter we take to be p,(S2 - S,) by assuming that the pressure on the washer- 
shaped surface is the same as that at plane 1. We then get, by using Eq. 7.6-1, 

Solving for the pressure difference gives 

or, in terms of the downstream velocity, 

Note that the momentum balance predicts (correctly) a rise in pressure. 

(c) Angular momentum balance. This balance is not needed. If we take the origin of coor- 
dinates on the axis of the system at the center of gravity of the fluid located between 
planes 1 and 2, then [r, X u,l and [r2 X u21 are both zero, and there are no torques on the 
fluid system. 

(dl Mechanical energy balance. There is no compressive loss, no work done via moving 
parts, and no elevation change, so that 

* I 1 
E v  = ,(v: - v:) + - P (p, - p2) 

Insertion of Eq. 7.6-6 for the pressure rise then gives, after some rearrangement, 

which is an entry in Table 7.5-1. 
This example has shown how to use the macroscopic balances to estimate the friction loss 

factor for a simple resistance in a flow system. Because of the assumptions mentioned after 
Eq. 7.6-3, the results in Eqs. 7.6-6 and 8 are approximate. If great accuracy is needed, a correc- 
tion factor based on experimental data should be introduced. 

A diagram of a liquid-liquid ejector is shown in Fig. 7.6-2. It is desired to analyze the mixing 
of the two streams, both of the same fluid, by means of the macroscopic balances. At plane 1 

Petfowance of a the two fluid streams merge. Stream la  has a velocity v, and a cross-sectional area is,, and 
LiPid -L iP id  Ejector stream l b  has a velocity iv, and a cross-sectional area $5,. Plane 2 is chosen far enough down- 

stream that the two streams have mixed and the velocity is almost uniform at v,. The flow is 
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SOLUTION 

Stream lb  

Fig. 7.6-2. Flow in a liquid-liq- 
uid ejector pump. 

turbulent and the velocity profiles at planes 1 and 2 are assumed to be flat. In the following 
analysis F+, is neglected, since it is felt to be less important than the other terms in the mo- 
mentum balance. 

(a )  Mass balance. At steady state, Eq. (A) of Table 7.6-1 gives 

Hence, since S ,  = S2, this equation gives 

for the velocity of the exit stream. We also note, for later use, that w,, = wlb = $w2. 

(b) Momentum balance. From Eq. (B) of Table 7.6-1 the component of the momentum bal- 
ance in the flow direction is 

or using the relation at the end of (a) 

from which 
2 

p2 - PI = $ P o  

This is the expression for the pressure rise resulting from the mixing of the two streams. 

( c )  Angular momentum balance. This balance is not needed. 

(d) Mechanical energy balance. Equation (D) of Table 7.6-1 gives 

or, using the relation at the end of (a), we get 

Hence 

is the energy dissipation per unit mass. The preceding analysis gives fairly good results for 
liquid-liquid ejector pumps. In gas-gas ejectors, however, the density varies significantly and 
it is necessary to include the macroscopic total energy balance as well as an equation of state 
in the analysis. This is discussed in Example 15.3-2. 
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EXAMPLE 7.6-3 

Thrust on a Pipe Bend 

SOLUTION 

Water at 95°C is flowing at a rate of 2.0 ft3/s through a 60" bend, in which there is a contrac- 
tion from 4 to 3 in. internal diameter (see Fig. 7.6-3). Compute the force exerted on the bend if 
the pressure at the downstream end is 1.1 atm. The density and viscosity of water at the con- 
ditions of the system are 0.962 g/cm3 and 0.299 cp, respectively. 

The Reynolds number for the flow in the 3-in. pipe is 

At this Reynolds number the flow is highly turbulent, and the assumption of flat velocity pro- 
files is reasonable. 

(a)  Mass balance. For steady-state flow, w1 = w,. If the density is constant throughout, 

in which /3 is the ratio of the smaller to the larger cross section. 

(b) Mechanical energy balance. For steady, incompressible flow, Eq. (d) of Table 7.6-1 be- 
comes, for this problem, 

According to Table 7.5-1 and Eq. 7.5-4, we can take the friction loss as approximately g(4v:) = 

iv:. Inserting this into Eq. 7.6-20 and using the mass balance we get 

This is the pressure drop through the bend in terms of the known velocity v2 and the known 
geometrical factor P.  
(c) Momentum balance. We now have to consider both the x- and y-components of the mo- 
mentum balance. The inlet and outlet unit vectors will have x- and y-components given by 
ulw = 1, uly = 0, u2 = cos 8, and u,, = sin 8. 

Fluid out 

4" internal Is = 520 
Fig. 7.6-3. Reaction force at a reducing 

diameter bend in a pipe. 
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The x-component of the momentum balance then gives 

where F, is the x-component of F,+. Introducing the specific expressions for w, and u12, we 
get 

F, = v,(pvlS,) - vJPv~SJ cos 0 + plS1 - p2S2 cos 8 

= pv;S2(p - cos 0) + (pl - p2)S1 + p2(S1 - S2 cos 6) (7.6-23) 

Substituting into this the expression for p, - p2 from Eq. 7.6-21 gives 

F,  = pv;S2(@ - cos 6) + pv;s2pp1(& - $p2) 
+ pg(h2 - h,)S2p-' + p2S2(p-' - cos 0) 

= w 2 ( p s 2 ) - ' ( p  - COS 0 + $1 
+ pg(h2 - h1)S2p-' + p2S2(p-' - cos 0) 

The y-component of the momentum balance is 

Fy = -(v2w2 + p2S2) sin 8 - m,,,g 

Fy = -w2(pS2)-I sin 0 - p2S2 sin 0 - vR2Lpg 

in which R and L are the radius and length of a roughly equivalent cylinder. 
We now have the components of the reaction force in terms of known quantities. The nu- 

merical values needed are 

p = 60 lb,/ft3 

w = (2.0)(60) = 1201b,/s 

cos e = ; 
sin 6 = +fi 
p2 = 16.2 lbf/in.' 

With these values we then get 

F = -  (120)2 ( d )  I (16.2)(0.049)(144) 
2(0.049)(32.2) 2 

Hence the magnitude of the force is 

IF I = = d304' + 2342 = 384 Ibf = 1708 N (7.6-29) 

The angle that this force makes with the vertical is 

a = arctan(F,/Fy) = arctan 1.30 = 52" (7.6-30) 

In looking back over the calculation, we see that all the effects we have included are impor- 
tant, with the possible exception of the gravity terms of 2.6 Ibf in F,  and 2.5 Ibi in F,. 
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A rectangular incompressible fluid jet of thickness b, emerges from a slot of width c, hits a flat 
plate and splits into two streams of thicknesses bZa and bZb as shown in Fig. 7.6-4. The emerg- 

The Impinging Jet ing turbulent jet stream has a velocity v,  and a mass flow rate w,. Find the velocities and mass 
rates of flow in the two streams on the plate.' 

SOLUTION We neglect viscous dissipation and gravity, and assume that the velocity profiles of all three 
streams are flat and that their pressures are essentially equal. The macroscopic balances then 
give 

Mass balance 

WI = W2a + W2b 

Momentum balance (in the direction parallel to the plate) 

VlWl COS 6 = 'U2aW2a - v2bW2b (7.6-32) 

Mechanical energy balance 

iv?wl = + & $ b ~ 2 b  (7.6-33) 

Angular momentum balance (put the origin of coordinates on the centerline of the jet and at 
an altitude of gb,; this is done so that there will be no angular momentum of the incoming jet) 

This last equation can be rewritten to eliminate the b's in favor of the w's. Since w1 = pv,b,c 
and w,, = pvzab2,c, we can replace b, - b,, by (w,/pv,c) - (w2,/pv2,c) and replace b, - bZb cor- 
respondingly. Then the angular momentum balance becomes 

Velocity 

ass rate of flow wl 

city 

Mass rate of flow b2b 
Plate 

b2a Mass rate of flow 
W2b W2a 

Fig. 7.6-4. Jet impinging on a wall and splitting into two streams. The point 
0, which is the origin of coordinates for the angular momentum balance, is 
taken to be the intersection of the centerline of the incoming jet and a plane 
that is at an elevation ib,. 

' For alternative solutions to this problem, see G. K. Batchelor, An Introduction to Fluid Dynamics, 
Cambridge University Press (1967), pp. 392-394, and S. Whitaker, Introduction to Fluid Dynamics, 
Prentice-Hall, Englewood Cliffs, N.J. (1968), p. 260. An application of the compressible impinging jet 
problem has been given by J. V. Foa, U.S. Patent 3,361,336 Uan. 2,1968). There, use is made of the fact 
that if the slot-shaped nozzle moves to the left in Fig. 7.6-4 (i.e., left with respect to the plate), then, for a 
compressible fluid, the right stream will be cooler than the jet and the left stream will be warmer. 
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Now Eqs. 7.6-31 
solved we find that 

,32,33, and 36 are four equations with four unknowns. When these are 

Hence the velocities of all three streams are equal. The same result is obtained by applying 
the classical Bernoulli equation for the flow of an inviscid fluid (see Example 3.5-1). 

A common method for determining the mass rate of flow through a pipe is to measure the pres- 
sure drop across some "obstacle" in the pipe. An example of this is the orifice, which is a thin 

~ s o ~ h ~ ~ a l  Flow of a plate with a hole in the middle. There are pressure taps at planes 1 and 2, upstream and d o m -  
Liquid Through an stream of the orifice plate. Fig. 7.6-5(a) shows the orifice meter, the pressure taps, and the gen- 
Orifice era1 behavior of the velocity profiles as observed experimentally. The velocity profile at plane 1 

S, = cross section of pipe = S2 

I Plane 0 I 

PlaAe 1 hhmneter  ~laAe 2 
I I 
I I 

I I 
I I 

Plane 0 Plane 2 

Fig. 7.6-5. (a)A sharp-edged orifice, showing the approximate velocity 
profiles at several planes near the orifice plate. The fluid jet emerging 
from the hole is somewhat smaller than the hole itself. In highly turbu- 
lent flow this jet necks down to a minimum cross section at the vena con- 
tracts. The extent of this necking down can be given by the contraction 
coefficient, C, = (S,,,, c,,,ac,,/S,). According to inviscid flow theory, 
C, = T / ( T  + 2) = 0.611 if So/Sl = 0 [H. Lamb, Hydrodynamics, Dover, 
New York (1945), p. 991. Note that there is some back flow near the wall. 
(b )  Approximate velocity profile at plane 2 used to estimate (vi)/(v2). 
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SOLUTION 

will be assumed to be flat. In Fig. 7.6-5(b) we show an approximate velocity profile at plane 2, 
which we use in the application of the macroscopic balances. The standard orifice meter equa- 
tion is obtained by applying the macroscopic mass and mechanical energy balances. 

(a) Mass balance. For a fluid of constant density with a system for which S, = S ,  = S, the 
mass balance in Eq. 7.1-1 gives 

With the assumed velocity profiles this becomes 

and the volume rate of flow is w = pv,S. 

(b) Mechanical energy balance. For a constant-density fluid in a flow system with no eleva- 
tion change and no moving parts, Eq. 7.4-5 gives 

The viscous loss E, is neglected, even though it is certainly not equal to zero. With the as- 
sumed velocity profiles, Eq. 7.6-43 then becomes 

P2 - P1 ;cv; - v:, + - = 0 P 
(7.6-44) 

When Eqs. 7.6-42 and 44 are combined to eliminate u,, we can solve for v, to get 

We can now multiply by pS to get the volume rate of flow. Then to account for the errors in- 
troduced by neglecting E, and by the assumptions regarding the velocity profiles we include 
a discharge coefficient, Cd, and obtain 

Experimental discharge coefficients have been correlated as a function of So/S and the 
Reynolds n ~ m b e r . ~  For Reynolds numbers greater than lo4, Cd approaches about 0.61 for all 
practical values of So/S. 

This example has illustrated the use of the macroscopic balances to get the general form of 
the result, which is then modified by introducing a multiplicative function of dimensionless 
groups to correct for errors introduced by unwarranted assumptions. This combination of 
macroscopic balances and dimensional considerations is often used and can be quite useful. 

57.7 USE OF THE MACROSCOPIC BALANCES 
FOR UNSTEADY-STATE PROBLEMS 

In the preceding section we have illustrated the use of the macroscopic balances for solv- 
ing steady-state problems. In this section we turn our attention to unsteady-state prob- 
lems. We give two examples to illustrate the use of the time-dependent macroscopic 
balance equations. 

G. L. Tuve and R. E. Sprenkle, Instruments, 6,202-205,225,232-234 (1935); see also R. H. Perry and 
C. H. Chilton, Chemical Engineers' Handbook, McGraw-Hill, New York, 5th edition (1973), Fig. 5-18; Fluid 
Meters: Their Theo y and Applications, 6th edition, American Society of Mechanical Engineers, New York 
(1971), pp. 58-65; Measurement of Fluid Flow Using Small Bore Precision Orifice Meters, American 
Society of Mechanical Engineers, MFC-14-M, New York (1995). 
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An open cylinder of height H and radius R is initially entirely filled with a liquid. At time t = 
0 the liquid is allowed to drain out through a small hole of radius X, at the bottom of the tank 

Acceleration Effects in (see Q. 7.7-1 )*  
Unsteady 'low from a (a) Find the efflux time by using the unsteady-state mass balance and by assuming Torri- 
Cylindrical Tank celli's equation (see Problem 3B.14) to describe the relation between efflux velocity and the in- 

stantaneous height of the liquid. 

SOLUTION 

(b) Find the efflux time using the unsteady-state mass and mechanical energy balances. 

(a) We apply Eq. 7.1-2 to the system in Fig. 7.7-1, taking plane 1 to be at the top of the tank (so 
that w, = 0). If the instantaneous liquid height is h(t), then 

Here we have assumed that the velocity profile at plane 2 is flat. According to Torricelli's 
equation v2 = a, so that Eq. 7.7-1 becomes 

- -  3 2@ 
"- d t ( R )  

When this is integrated from t = 0 to t= t,,,,, we get 

in which N = (R/Ro)4 >> 1. This is effectively a quasi-steady-state solution, since we have 
used the unsteady-state mass balance along with Torricelli's equation, which was derived for 
a steady-state flow. 

(b) We now use Eq. 7.7-1 and the mechanical energy balance in Eq. 7.4-2. In the latter, the terms 
W, and E, are identically zero, and we assume that E, is negligibly small, since the velocity gra- 
dients in the system will be small. We take the datum plane for the potential energy to be at the 
bottom of the tank, so that 6, = gz, = 0; at plane 1 no liquid is entering, and therefore the poten- 
tial energy term is not needed there. Since the top of the tank is open to the atmosphere and the 
tank is discharging into the atmosphere, the pressure contributions cancel one another. 

To get the total kinetic energy in the system at any time t, we have to know the velocity 
of every fluid element in the tank. At every point in the tank, we assume that the fluid is mov- 
ing downward at the same velocity, namely V ~ ( R ~ / R ) ~  so that the kinetic energy per unit vol- 
ume is everywhere $ ~ ; ( R , / R ) ~ .  

To get the total potential energy in the system at any time t, we have to integrate the po- 
tential energy per unit volume pgz over the volume of fluid from 0 to h. This gives ~ R ~ p ~ ( $ h ~ ) .  

Therefore the mechanical energy balance in Eq. 7.4-2 becomes 

From the unsteady-state mass balance, v, = -(R/RJ2(dh/dt). When this is inserted into Eq. 
7.7-4 we get (after dividing by dh/dt) 

&let of radius Ro Fig. 7.7-1. Flow out of a cylindrical tank. 
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This is to be solved with the two initial conditions: 

I.C. 1: at t = 0, h = H  (7.7-6) 

I.C. 2: 

The second of these is Torricelli's equation at the initial instant of time. 
The second-order differential equation for h can be converted to a first-order equation for 

the function u(h) by making the change of variable (dh/dt)' = u. This gives 

The solution to this first-order equation can be verified to be' 

The second initial condition then gives C = -4g/[N(N - 2)HN-2] for the integration constant; 
since N >> 1, we need not concern ourselves with the special case that N = 2. We can next take 
the square root of Eq. 7.7-9 and introduce a dimensionless liquid height 7 = h/H; this gives 

in which the minus sign must be chosen on physical grounds. This separable, first-order 
equation can be integrated from t = 0 to t = t,,,, to give 

- 

The function +(N) gives the deviation from the quasi-steady-state solution obtained in Eq. 
7.7-3. This function can be evaluated as follows: 

The integrations can now be performed. When the result is expanded in inverse powers of N, 
one finds that 

Since N = (R/RJ4 is a very large number, it is evident that the factor 4(N) differs only very 
slightly from unity. 

It is instructive now to return to Eq. 7.7-4 and omit the term describing the change in 
total kinetic energy with time. If this is done, one obtains exactly the expression for efflux 
time in Eq. 7.7-3 (or Eq. 7.7-11, with +(N) = 1. We can therefore conclude that in this type of 
problem, the change in kinetic energy with time can safely be neglected. 

See E. Karnke, Differentialgleichungen: Losungsmethoden und Losungen, Chelsea Publishing 
Company, New York (1948), p. 311, M.94; G. M. Murphy, Ordinay Differential Equations and Their 
Solutions, Van Nostrand, Princeton, N.J. (19601, p. 236, #157. 



57.7 Use of the Macroscopic Balances for Unsteady-State Problems 219 

The liquid in a U-tube manometer, initially at rest, is set in motion by suddenly imposing a 
pressure difference pa - pb. Determine the differential equation for the motion of the 

Manometer manometer fluid, assuming incompressible flow and constant temperature. Obtain an expres- 
Oscillations2 sion for the tube radius for which critical damping occurs. Neglect the motion of the gas 

above the manometer liquid. The notation is summarized in Fig. 7.7-2. 

SOLUTION We designate the manometric liquid as the system to which we apply the macroscopic bal- 
ances. In that case, there are no planes l and 2 through which liquid enters or exits. The free 
liquid surfaces are capable of performing work on the surroundings, W,, and hence play the 
role of the moving mechanical parts in 57.4. We apply the mechanical energy balance of Eq. 
7.4-2, with E, set equal to zero (since the manometer liquid is regarded as incompressible). Be- 
cause of the choice of the system, both w, and w2 are zero, so that the only terms on the right 
side are - W, and - E,. 

To evaluate dKtOt/dt  and E, it is necessary to make some kind of assumption about the ve- 
locity profile. Here we take the velocity profile to be parabolic: 

in which (v) = d h / d t  is a function of time, defined to be positive when the flow is from left to 
right. 

The kinetic energy term may then be evaluated as follows: 

Fig. 7.7-2. Damped oscillations of 
a manometer fluid. 

For a summary of experimental and theoretical work on manometer oscillations, see J. C. Biery, 
AIChE Journal, 9,606-614 (1963); 10,551-557 (1964); 15,631-634 (1969). Biery's experimental data show 
that the assumption made in Eq. 7.7-14 is not very good. 
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Here 1 is a coordinate running along the axis of the manometer tube, and L is the distance 
along this axis from one manometer interface to the other-that is, the total length of the 
manometer fluid. The dimensionless coordinate 6 is r /R ,  and S is the cross-sectional area of 
the tube. 

The change of potential energy with time is given by 

= [(intFEril over portion K+H-h K+H+)I 

below z = 0, which ) + pgS lo z& + pgs lo z dz]  
dt is constant 

The viscous loss term can also be evaluated as follows: 

Furthermore, the net work done by the surroundings on the system is 

Substitution of the above terms into the mechanical energy balance and letting (v) = dh/dt 
then gives the differential equation for k ( t )  as 

which is to be solved with the initial conditions that h = 0 and d h / d t  = 0 at t = 0. This second- 
order, linear, nonhomogeneous equation can be rendered 
new variable k defined by 

Then the equation for the motion of the manometer liquid is 

homogeneous by introducing a 

(7.7-20) 

This equation also arises in describing the motion of a mass connected to a spring and dash- 
pot as well as the current in an RLC circuit (see Eq. C.l-7). 

We now try a solution of the form k = em'. Substituting this trial function into Eq. 7.7-21 
shows that there are two admissible values for m :  

and the solution is 

k = C+em-' + C-em-t when m+ # m -  (7.7-23) 

k = Clemt + C2temf when m+ = m -  = rn (7.7-24) 

with the constants being determined by the initial conditions. 
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The type of motion that the manometer liquid exhibits depends on the value of the dis- 
criminant in Eq. 7.7-22: 

(a) If (6p,/pR2I2 > (6g/L), the system is overdamped, and the liquid moves slowly to its final 
position. 

(b) If ( 6 p , / p ~ ~ ) ~  < (6g/L), the system is underdamped, and the liquid oscillates about its 
final position, the oscillations becoming smaller and smaller. 

(c) If = (6g/L), the system is critically damped, and the liquid moves to its final 
position in the most rapid monotone fashion. 

The tube radius for critical damping is then 

If the tube radius R is greater than R,,, an oscillatory motion occurs. 

57.8 DERIVATION OF THE MACROSCOPIC 
MECHANICAL ENERGY BALANCE' 

In Eq. 7.4-2 the macroscopic mechanical energy balance was presented without proof. In 
this section we show how the equation is obtained by integrating the equation of change 
for mechanical energy (Eq. 3.3-2) over the entire volume of the flow system of Fig. 7.0-1. 
We begin by doing the formal integration: 

I & (iPg + p6) d~ = - (V (iP9 + p6)v) d~ - (V pv) d~ - (V . [r . vl) d~ 
V(t)  

I 
V(t)  

I 
V( t )  

I 
V(t)  

+ I p(V v) dV + 1 (.r:Vv) dV (7.8-1) 
V( t )  V( t )  

Next we apply the 3-dimensional Leibniz formula (Eq. A.5-5) to the left side and the 
Gauss divergence theorem (Eq. A.5-2) to terms 1,2, and 3 on the right side. 

- I (n [T vl) + I p(v . v) d~ + I (.r:vv) d~ (7.8-2) 
S(t) V(t)  V(t)  

The term containing v,, the velocity of the surface of the system, arises from the applica- 
tion of the Leibniz formula. The surface S(t)  consists of four parts: 

the fixed surface Sf (on which both v and v, are zero) 

the moving surfaces S ,  (on which v = v, with both nonzero) 

the cross section of the entry port S1 (where v, = 0) 

the cross section of the exit port S2 (where vs = 0) 

Presently each of the surface integrals will be split into four parts corresponding to these 
four surfaces. 

We now interpret the terms in Eq. 7.8-2 and, in the process, introduce several as- 
sumptions; these assumptions have already been mentioned in $57.1 to 7.4, but now the 
reasons for them will be made clear. 

' R. B. Bird, Korean J. Chem. Eng., 15,105-123 (1998), 93. 
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The term on the left side can be interpreted as the time rate of change of the total ki- 
netic and potential energy (K,, + a,,,) within the "control volume," whose shape and 
volume are changing with time. 

We next examine one by one the five terms on the right side: 
Term I (including the minus sign) contributes only at the entry and exit ports and 

gives the rates of influx and efflux of kinetic and potential energy: 

The angular brackets indicate an average over the cross section. To get this result we 
have to assume that the fluid density and potential energy per unit mass are constant 
over the cross section, and that the fluid is flowing parallel to the tube walls at the entry 
and exit ports. The first term in Eq. 7.8-3 is positive, since at plane 1, (-n . v) = (ul * 
(ulv,)) = v,, and the second term is negative, since at plane 2, (-n v) = (-u, . (u2v2)) = -v2. 

Term 2 (including the minus sign) gives no contribution on Sf since v is zero there. 
On each surface element dS of S, there is a force -npdS acting on a surface moving with 
a velocity v, and the dot product of these quantities gives the rate at which the surround- 
ings do work on the fluid through the moving surface element dS. We use the symbol 
w:' to indicate the sum of all these surface terms. Furthermore, the integrals over the 
stationary surfaces S, and S, give the work required to push the fluid into the system at 
plane 1 minus the work required to push the fluid out of the system at plane 2. Therefore 
term 2 finally gives 

Term 2 = pl(vl)S, - p,(v2)S2 + w?) (7.8-4) 

Here we have assumed that the pressure does not vary over the cross section at the entry 
and exit ports. 

Term 3 (including the minus sign) gives no contribution on Sf since v is zero there. 
The integral over S,, can be interpreted as the rate at which the surroundings do work on 
the fluid by means of the viscous forces, and this integral is designated as w:'. At the 
entry and exit ports it is conventional to neglect the work terms associated with the vis- 
cous forces, since they are generally quite small compared with the pressure contribu- 
tions. Therefore we get 

Term 3 = WI;' (7.8-5) 

We now introduce the symbol W, = w!:) + w:' to represent the total rate at which 
the surroundings do work on the fluid within the system through the agency of the mov- 
ing surfaces. 

Terms 4 and 5 cannot be further simplified, and hence we define 

Term 4 = + p(V . v) dV = -E, 
V(f) 

Term 5 = + I (.r:Vv) dV = - E,  (7.8-7) 
V(D 

For Newtonian fluids the viscous loss EL, is the rate at which mechanical energy is irre- 
versibly degraded into thermal energy because of the yiscosity of the fluid and is always 
a positive quantity (see Eq. 3.3-3). We have already discussed methods for estimating E, 
in 57.5. (For viscoelastic fluids, which we discuss in Chapter 8, E ,  has to be interpreted 
differently and may even be negative.) The compression term E, is the rate at which me- 
chanical energy is reversibly changed into thermal energy because of the compressiblity 
of the fluid; it may be either positive or negative. If the fluid is being regarded as incom- 
pressible, then E, is zero. 
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When all the contributions are inserted into Eq. 7.8-2 we finally obtain the macro- 
scopic mechanical energy balance: 

If, now, we introduce the symbols w1 = pl(vl)Sl and w2 = p2(u2)S2 for the mass rates of 
flow in and out, then Eq. 7.8-8 can be rewritten in the form of Eq. 7.4-2. Several assump- 
tions have been made in this development, but normally they are not serious. If the situ- 
ation warrants, one can go back and include the neglected effects. 

It should be noted that the above derivation of the mechanical energy balance does 
not require that the system be isothermal. Therefore the results in Eqs. 7.4-2 and 7.8-8 are 
valid for nonisothermal systems. 

To get the mechanical energy balance in the form of Eq. 7.4-7 we have to develop an 
approximate expression for E,. We imagine that there is a representative streamline run- 
ning through the system, and we introduce a coordinate s along the streamline. We as- 
sume that pressure, density, and velocity do not vary over the cross section. We further 
imagine that at each position along the streamline, there is a cross section S(s) perpendic- 
ular to the s-coordinate, so that we can write dV = S(s)ds. If there are moving parts in the 
system and if the system geometry is complex, it may not be possible to do this. 

We start by using the fact that (V . pv) = 0 at steady state so that 

Then we use the assumption that the pressure and density are constant over the cross 
section to write approximately 

Even though p, u, and S are functions of the streamline coordinate s, their product, w = pvS, 
is a constant for steady-state operation and hence may be taken outside the integral. This 
gives 

Then an integration by parts can be performed: 

When this result is put into Eq. 7.4-5, the approximate relation in Eq. 7.4-7 is obtained. Be- 
cause of the questionable nature of the assumptions made (the existence of a representative 
streamline and the constancy of p and p over a cross section), it seems preferable to use Eq. 
7.4-5 rather than Eq. 7.47. Also, Eq. 7.45 is easily generalized to systems with multiple inlet 
and outlet ports, whereas Eq. 7.47 is not; the generalization is given in Eq. (D) of Table 7.6-1. 

QUESTIONS FOR DISCUSSION 

1. Discuss the origin, meaning, and use of the macroscopic balances, and explain what assump- 
tions have been made in deriving them. 

2. How does one decide which macroscopic balances to use for a given problem? What auxiliary 
information might one need in order to solve problems with the macroscopic balances? 

3. Are friction factors and friction loss factors related? If so, how? 
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4. Discuss the viscous loss E ,  and the compression term E,, with regard to physical interpreta- 
tion, sign, and methods of estimation. 

5. How is the macroscopic mechanical energy balance related to the Bernoulli equation for in- 
viscid fluids? How is it derived? 

6.  What happens in Example 7.3-1 if one makes a different choice for the origin of the coordinate 
system? 

7. In Example 7.5-1 what would be the error in the final result if the estimation of the viscous 
loss E, were off by a factor of 2? Under what circumstances would such an error be more seri- 
ous? 

8. In Example 7.5-1 what would happen if 5 ft were replaced by 50 ft? 
9. In Example 7.6-3, how would the results be affected if the outlet pressure were 11 atm instead 

of 1.1 atm? 
10. List all the assumptions that are inherent in the equations given in Table 7.6-1. 

PROBLEMS 7A.1 Pressure rise in a sudden enlargement (Fig. 7.6-1). An aqueous salt solution is flowing 
through a sudden enlargement at a rate of 450 US. gal/min = 0.0384 m3/s. The inside 
diameter of the smaller pipe is 5 in. and that of the large pipe is 9 in. What is the pressure rise 
in pounds per square inch if the density of the solution is 63 lb,/ft3? Is the flow in the smaller 
pipe laminar or turbulent? 
Answer: 0.157 psi = 1.08 X lo3 N/m2 

7A.2 Pumping a hydrochloric acid solution (Fig. 7A.2). A dilute HC1 solution of constant density 
and viscosity (p = 62.4 lb,/ft3, p = 1 cp) is to be pumped from tank 1 to tank 2 with no overall 
change in elevation. The pressures in the gas spaces of the two tanks are pl = 1 atm and p, = 4 
atm. The pipe radius is 2 in. and the Reynolds number is 7.11 X lo4. The average velocity in 
the pipe is to be 2.30 ft/s. What power must be delivered by the pump? 
Answer: 2.4 hp = 1.8 kW 

Fig. 7A.2. Pumping of a hydrochloric acid - - 
inside radius 2 " solution. 

7A.3 Compressible gas flow in a cylindrical pipe. Gaseous nitrogen is in isothermal turbulent 
flow at 25°C through a straight length of horizontal pipe with 3-in. inside diameter at a rate of 
0.28 1bJs. The absolute pressures at the inlet and outlet are 2 atm and 1 atm, respectively. 
Evaluate k,, assuming ideal gas behavior and radially uniform velocity distribution. 
Answer: 26.3 Btu/lb, = 6.12 X lo4 J/kg 

7A.4 Incompressible flow in an annulus. Water at 60°F is being delivered from a pump through a 
coaxial annular conduit 20.3 ft long at a rate of 241 U.S. gal/min. The inner and outer radii of 
the annular space are 3 in. and 7 in. The inlet is 5 ft lower than the outlet. Determine the 
power output required from the pump. Use the mean hydraulic radius empiricism to solve 
the problem. Assume that the pressures at the pump inlet and the annular outlet are the 
same. 
Answer: 0.31 hp = 0.23 kW 



Problems 225 

7A.5 Force on a U-bend (Fig. 7A.5). Water at 68°F (p  = 62.4 lb,/ft3, p = 1 cp) is flowing in turbu- 
lent flow in a U-shaped pipe bend at 3 ft3/s. What is the horizontal force exerted by the water 
on the U-bend? 
Answer: 903 lbf 

'lane pz = 19 psia I 
I 

-1 

4 " internal 
diameter 

- I 
Fig. 7A.5. Flow in a U-bend; both arms of the bend are at 

1 PI = 21 psis the same elevation. 

7A.6 Flow-rate calculation (Fig. 7A.6). For the system shown in the figure, calculate the volume 
flow rate of water at 68OF. 

Fig. 7A.6. Flow from a constant-head tank. 

7A.7 Evaluation of various velocity averages from Pitot tube data. Following are some experi- 
mental data1 for a Pitot tube traverse for the flow of water in a pipe of internal radius 3.06 in.: 

Plot these data and find out whether the flow is laminar or turbulent. Then use Simpson's 
rule for numerical integration to compute (v)/v,,,, (v2)/v~,,, and (v3)/vi,,. Are these results 
consistent with the values of 50/49 (given just before Example 7.2-1) and 43200/40817 (given 
just before Example 7.4-I)? 

Distance from Local velocity 
Position tube center (in.) (ft/s) 

' B. Bird, C. E. thesis, University of Wisconsin (1915). 

Distance from Local velocity 
Position tube center (in.) (ft/s) 
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Velocity averages from the power law. Evaluate the velocity ratios in Problem 7A.7 ac- 
cording to the velocity distribution in Eq. 5.1-4. 

Relation between force and viscous loss fpr flow in conduits of variable cross section. 
Equation 7.5-6 gives the relation Ff,, = pSE, between the drag force and viscous loss for 
straight conduits of arbitrary, but constant, cross section. Here we consider a straight horizon- 
tal channel whose cross section varies gradually with the downstream distance. We restrict 
ourselves to axisymmetrical channels, so that the drag force is axially directed. 

If the cross section and pressure at the entrance are S, and pl, and those at the exit are S2 
and p,, then prove that the relation analogous to Eq. 7.5-7 is 

where 

Interpret the results. 

Flow through a sudden enlargement (Fig. 7.6-1). A fluid is flowing through a sudden en- 
largement, in which the initial and final diameters are D, and D2 respectively. At what ratio 
D,/D, will the pressure rise p2 - p1 be a maximum for a given value of v,? 
Answer: D2/Dl = 

Flow between two tanks (Fig. 7B.4). Case I: A fluid flows between two tanks A and B because 
pA > pPB. The tanks are at the same elevation and there is no pump in the line. The connecting 
line has a cross-sectional area S, and the mass rate of flow is w for a pressure drop of (p, - p,),. 

Case 1%. It is desired to replace the connecting line by two lines, each with cross section SII = 
is1. What pressure difference (pA - pJI, is needed to give the same total mass flow rate as in 
Case I? Assume turbulent flow and use the Blasius formula (Eq. 6.2-12) for the friction factor. 
Neglect entrance and exit losses. 

Answer: (p, - p&,/(pA - pdl = z5" 

Circular tube of 
cross section SI 

Mass flow rate w 

Fig. 7B.4. Flow between two tanks. 

Circular tubes of 
cross section SII 

Revised design of an air duct (Fig. 7B.5). A straight, horizontal air duct was to be installed in 
a factory. The duct was supposed to be 4 ft X 4 ft in cross section. Because of an obstruction, 
the duct may be only 2 ft high, but it may have any width. How wide should the duct be to 
have the same terminal pressures and same volume rate of flow? Assume that the flow is tur- 
bulent and that the Blasius formula (Eq. 6.2-12) is satisfactory for this calculation. Air can be 
regarded as incompressible in this situation. 
(a) Write the simplified versions of the mechanical energy balance for ducts I and 11. 
(b) Equate the pressure drops for the two ducts and obtain an equation relating the widths 
and heights of the two ducts. 
(c) Solve the equation in (b) numerically to find the width that should be used for duct 11. 
Answer: (c) 9.2 ft 

1 ?. 
A ,  f t /-x B 

Sum of mass 
flow rates is w 
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I 
PI l 

I 
Plane 1 

I 
p2 I 

I 
Plane 2 

Fig. 7B.5. Installation of an air duct. 

7B.6 Multiple discharge into a common conduip (Fig. 7B.6). Extend Example 7.6-1 to an incom- 
pressible fluid discharging from several tubes into a larger tube with a net increase in cross 
section. Such systems are important in heat exchangers of certain types, for which the expan- 
sion and contraction losses account for an appreciable fraction of the overall pressure drop. 
The flows in the small tubes and the large tube may be laminar or turbulent. Analyze this sys- 
tem by means of the macroscopic mass, momentum, and mechanical energy balances. 

Plane 1 ,, Plane 2 

Fig. 7B.6. Multiple discharge into a 
common conduit. The total cross sec- 
tional area at plane 1 available for 
flow is S, and that at plane 2 is S,. 

7B.7 Inventory variations in a gas reservoir. A natural gas reservoir is to be supplied from a 
pipeline at a steady rate of w, lbm/hr. During a 24-hour period, the fuel demand from the 
reservoir, w,, varies approximately as follows, 

w2 = A + B cos o t  (7B.7-1) 

where wt is a dimensionless time measured from the time of peak demand (approximately 6 
A.M.). 

(a) Determine the maximum, minimum, and average values of w2 for a 24-hour period in 
terms of A and B. 
(b) Determine the required value of w, in terms of A and B. 
(c) Let m,,, = m!,, at t = 0, and integrate the unsteady mass balance with this initial condition 
to obtain m,,, as a function of time. 
(d) If A = 5000 lbm/hr, B = 2000 Ibm/hr, and p = 0.044 lb,,,/ft3 in the reservoir, determine the 
absolute minimum reservoir capacity in cubic feet to meet the demand without interruption. 
At what time of day must the reservoir be full to permit such operation? 
(e)  Determine the minimum reservoir capacity in cubic feet required to permit maintaining at 
least a three-day reserve at all times. 
Answer: 3.47 X lo5 ft3; 8.53 X lo6 ft3 

W. M. Kays, Trans. ASME, 72,1067-1074 (1950). 
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Change in liquid height with time (Fig. 7.1-1). 
(a) Derive Eq. 7.1-4 by using integral calculus. 
(b) In Example 7.1-1, obtain the expression for the liquid height h as a function of time t .  
(c) Make a graph of Eq. 7.1-8 using dimensionless quantities. Is this useful? 

Draining of a cylindrical tank with exit pipe (Fig. 7B.9). 
(a) Rework Example 7.1-1, but with a cylindrical tank instead of a spherical tank. Use the 
quasi-steady-state approach; that is, use the unsteady-state mass balance along with the 
Hagen-Poiseuille equation for the laminar flow in the pipe. 
(b) Rework the problem for turbulent flow in the pipe. 

Answer: (a) tefflux = 

Fig. 7B.9. A cylindrical tank with a long pipe attached. The fluid surface 
and pipe exit are open to the atmosphere. 

Efflux time for draining a conical tank (Fig. 7J3.10). A conical tank, with dimensions given in 
the figure, is initially filled with a liquid. The liquid is allowed to drain out by gravity. Deter- 
mine the efflux time. In parts (a)-(c) take the liquid in the cone to be the "system." 
(a) First use an unsteady macroscopic mass balance to show that the exit velocity is 

(b) Write the unsteady-state mechanical energy balance for the system. Discard the viscous 
loss term and the term containing the time derivative of the kinetic energy, and give reasons 
for doing so. Show that Eq. 7B.10-1 then leads to 

Liquid surface z = z  
at time t 

z = Z  

Fig. 7B.10. A conical container from 
which a fluid is allowed to drain. The 

Datum plane for 
Z = Z2 

quantity r is the radius of the liquid sur- 
\ I  / face at height z,  and F is the radius of 

potential energy \L z = 0 the cone at some arbitrary height Z. 
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(c) Combine the results of (a) and (b). Solve the resulting differential equation with an appro- 
priate initial condition to get the liquid level z as a function of t. From this get the efflux time 

List all the assumptions that have been made and discuss how serious they are. How could 
these assumptions be avoided? 
(d) Rework part (b) by choosing plane 1 to be stationary and slightly below the liquid surface 
at time t. It is understood that the liquid surface does not go below plane 1 during the differ- 
ential time interval dt over which the unsteady mechanical energy balance is made. With this 
choice of plane 1 the derivative d@,,,/dt is zero and there is no work term W,. Furthermore 
the conditions at plane 1 are very nearly those at the liquid surface. Then with the pseudo- 
steady-state approximation that the derivative dK,,,/dt is approximately zero and the neglect 
of the viscous loss term, the mechanical energy balance, with w, = w,, takes the form 

7B.11 Disintegration of wood chips (Fig. 7B.11). In the manufacture of paper pulp the cellulose 
fibers of wood chips are freed from the lignin binder by heating in alkaline solutions under 
pressure in large cylindrical tanks called digesters. At the end of the "cooking" period, a 
small port in one end of the digester is opened, and the slurry of softened wood chips is al- 
lowed to blow against an impact plate to complete the breakup of the chips and the separa- 
tion of the fibers. Estimate the velocity of the discharging stream and the additional force on 
the impact plate shortly after the discharge begins. Frictional effects inside the digester, and 
the small kinetic energy of the fluid inside the tank, may be neglected. (Note: See Problem 
7B.10 for two different methods for selecting the entrance and exit planes.) 
Answer: 2810 lb,/s (or 1275 kg/$; 10,900 lbf (or 48,500 N) 

Diameter of -7 ( 

Fig. 7B.11. Pulp digester. 

7B.12 Criterion for vapor-free flow in a pipeline. To ensure that a pipeline is completely liquid- 
filled, it is necessary that p > p,,, at every point. Apply this criterion to the system in Fig. 7.5-1, 
by using mechanical energy balances over appropriate portions of the system. 



230 Chapter 7 Macroscopic Balances for Isothermal Flow Systems 

7C.1 End corrections in tube viscometers (Fig. 7C.1L3 In analyzing tube-flow viscometric data to 
determine viscosity, one compares pressure drop versus flow rate data with the theoretical 
expression (the Hagen-Poiseuille equation of Eq. 2.3-21). The latter assumes that the flow is 
fully developed in the region between the two planes at which the pressure is measured. In 
an apparatus such as that shown in the figure, the pressure is known at the tube exit (2) and 
also above the fluid in the reservoir (1). However, in the entrance region of the tube, the 
velocity profiles are not yet fully developed. Hence the theoretical expression relating the 
pressure drop to the flow rate is not valid. 

There is, however, a method in which the Hagen-Poiseuille equation can be used, by 
making flow measurements in two tubes of different lengths, LA and LB; the shorter of the two 
tubes must be long enough so that the velocity profiles are fully developed at the exit. Then 
the end section of the long tube, of length L, - LA, will be a region of fully developed flow. If 
we knew the value of Po - 9, for this region, then we could apply the Hagen-Poiseuille 
equation. 

Show that proper combination of the mechanical energy balances, written for the sys- 
tems 1-2,34, and 0 4  gives the following expression for 9, - 9, when each viscometer has 
the same flow rate. 

where 6 0  = po + pgz,. Explain carefully how you would use Eq. 7C.1-1 to analyze experimen- 
tal measurements. Is Eq. 7C.1-1 valid for ducts with noncircular, uniform cross section? 

Run A Run B 

Plane 3 

Fig. 7C.1. Two tube viscometers with 
the same flow rate and the same exit 
pressure. The pressures pA and pB are 

Plane 4 maintained by an inert gas. 

7D.1 Derivation of the macroscopic balances from the equations of change. Derive the macro- 
scopic mass and momentum balances by integrating the equations of continuity and motion 
over the flow system of Fig. 7.0-1. Follow the procedure given in 97.8 for the macroscopic me- 
chanical energy balance, using the Gauss divergence theorem and the Leibniz formula. 

A. G. Fredrickson, PhD Thesis, University of Wisconsin (1959); Principles and Applications of 
Rheology, Prentice-Hall, Englewood Cliffs, N.J. (1964), 59.2. 
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Polymeric Liquids 
8 . 1  Examples of the behavior of polymeric liquids 

98.2 Rheometry and material functions 

58.3 Non-Newtonian viscosity and the generalized Newtonian models 

58.4' Elasticity and the linear viscoelastic models 

58.5. The corotational derivatives and the nonlinear viscoelastic models 

58.6. Molecular theories for polymeric liquids 

In the first seven chapters we have considered only Newtonian fluids. The relations be- 
tween stresses and velocity gradients are described by Eq. 1.1-2 for simple shear flow 
and by Eq. 1.2-6 (or Eq. 1.2-7) for arbitrary time-dependent flows. For the Newtonian 
fluid, two material parameters are needed-the two coefficients of viscosity p and K- 

which depend on temperature, pressure, and composition, but not on the velocity gradi- 
ents. All gases and all liquids composed of "small" molecules (up to molecular weights 
of about 5000) are accurately described by the Newtonian fluid model. 

There are many fluids that are not described by Eq. 1.2-6, and these are called non- 
Newtonian fluids. These structurally complex fluids include polymer solutions, polymer 
melts, soap solutions, suspensions, emulsions, pastes, and some biological fluids. In this 
chapter we focus on polymeric liquids. 

Because they contain high-molecular-weight molecules with many internal degrees 
of freedom, polymer solutions and molten polymers have behavior qualitatively differ- 
ent from that of Newtonian fluids. Their viscosities depend strongly on the velocity gra- 
dients, and in addition they may display pronounced "elastic effects." Also in the steady 
simple shear flow between two parallel plates, there are nonzero and unequal normal 
stresses (rxx, rYY, and T,,) that do not arise in Newtonian fluids. In 58.1 we describe some 
experiments that emphasize the differences between Newtonian and polymeric fluids. 

In dealing with Newtonian fluids the science of the measurement of viscosity is 
called viscomety, and in earlier chapters we have seen examples of simple flow systems 
that can be used as viscometers (the circular tube, the coneplate system, and coaxial cylin- 
ders). To characterize non-Newtonian fluids we have to measure not only the viscosity, 
but the normal stresses and the viscoelastic responses as well. The science of 
measurement of these properties is called rheometry, and the instruments are called 
rheometers. We treat this subject briefly in 58.2. The science of rheology includes all aspects 
of the study of deformation and flow of non-Hookean solids and non-Newtonian liquids. 

After the first two sections, which deal with experimental facts, we turn to the pre- 
sentation of various non-Newtonian "models" (that is, empirical expressions for the 
stress tensor) that are commonly used for describing polymeric liquids. In 58.3 we start 
with the generalized Newtonian models, which are relatively simple, but which can describe 
only the non-Newtonian viscosity (and not the viscoelastic effects). Then in s8.4 we give 
examples of linear viscoelastic models, which can describe the viscoelastic responses, but 
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only in flows with exceedingly small displacement gradients. Next in s8.5 we give several 
nonlinear viscoelastic models, and these are intended to be applicable in all flow situations. 
As we go from elementary to more complicated models, we enlarge the set of observed 
phenomena that we can describe (but also the mathematical difficulties). Finally in 58.6 
there is a brief discussion about the kinetic theory approach to polymer fluid dynamics. 

Polymeric liquids are encountered in the fabrication of plastic objects, and as addi- 
tives to lubricants, foodstuffs, and inks. They represent a vast and important class of liq- 
uids, and many scientists and engineers must deal with them. Polymer fluid dynamics, 
heat transfer, and diffusion form a rapidly growing part of the subject of transport phe- 
nomena, and there are many textbooks,' treatises; and journals devoted to the subject. 
The subject has also been approached from the kinetic theory standpoint, and molecular 
theories of the subject have contributed much to our understanding of the mechanical, 
thermal, and diffusional behavior of these fluids3 Finally, for those interested in the his- 
tory of the subject, the reader is referred to the book by Tanner and Waltem4 

8 . 1  EXAMPLES OF THE BEHAVIOR OF POLYMERIC LIQUIDS 

In this section we discuss several experiments that contrast the flow behavior of New- 
tonian and polymeric fluids.' 

Steady-State Laminar Flow in Circular Tubes 

Even for the steady-state, axial, laminar flow in circular tubes, there is an important dif- 
ference between the behavior of Newtonian liquids and that of polymeric liquids. For 
Newtonian liquids the velocity distribution, average velocity, and pressure drop are 
given by Eqs. 2.3-18,2.3-20, and 2.3-21, respectively. 

For polymeric liquids, experimental data suggest that the following equations are 
reasonable: 

where n is a positive parameter characterizing the fluid, usually with a value less than 
unity. That is, the velocity profile is more blunt than it is for the Newtonian fluid, for 
which n = 1. It is further found experimentally that 

The pressure drop thus increases much less rapidly with the mass flow rate than for 
Newtonian fluids, for which the relation is linear. 

A. S. Lodge, Elastic Liquids, Academic Press, New York (1964); R. B. Bird, R. C. Armstrong, and 
0. Hassager, Dynamics of Polymeric Liquids, Vol. 1 ., Fluid Mechanics, Wiley-Interscience, New York, 2nd 
edition (1987); R. I. Tanner, Engineering Rheology, Clarendon Press, Oxford (1985). 

H. A. Barnes, J. F Hutton, and K. Walters, A n  Introduction to Rheology, Elsevier, Amsterdam (1989); 
H. Giesekus, Phanomenologische Rheologie: Eine Einfiihrung, Springer Verlag, Berlin (1994). Books 
emphasizing the engineering aspects of the subject include Z. Tadmor and C. G. Gogos, Principles of 
Polymer Processing, Wiley, New York (1979), D. G. Baird and D. I. Collias, Polymer Processing: Principles 
and Design, Butterworth-Heinemann, Boston (1995), J. Dealy and K. Wissbrun, Melt Rheology and its RoIe 
in Plastics Processing, Van Nostrand Reinhold, New York (1990). 

R. B. Bird, C. F. Curtiss, R. C. Armstrong, and 0. Hassager, Dynamics of Polymeric Liquids, Vol. 2, 
Kinetic Theoy,  Wiley-Interscience, New York, 2nd edition (1987); C. F. Curtiss and R. B. Bird, Adv. 
Polymer Sci, 125,l-101 (1996) and J. Chem. Phys. 111,10362-10370 (1999). 

R. I. Tanner and K. Walters, Rheology: A n  Historical Perspective, Elsevier, Amsterdam (1998). 
More details about these and other experiments can be found in R. B. Bird, R. C. Armstrong, and 

0. Hassager, Dynamics of Polymeric Liquids, Vol. 1, Fluid Dynamics, Wiley-Interscience, New York, 2nd edition 
(1987), Chapter 2. See also A. S. Lodge, Elastic Liquids, Academic Press, New York (19641, Chapter 10. 
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Fig. 8.1-1. Laminar flow in a circular tube. 
The symbols @ (Newtonian liquid) and @ 
(polymeric liquid) are used in this and the 
next six figures. 

In Fig. 8.1-1 we show typical velocity profiles for laminar flow of Newtonian and 
polymeric fluids for the same maximum velocity. This simple experiment suggests that 
the polymeric fluids have a viscosity that depends on the velocity gradient. This point 
will be elaborated on in s8.3. 

For laminar flow in tubes of noncircular cross section, polymeric liquids exhibit sec- 
ondary flows superposed on the axial motion. Recall that for turbulent Newtonian flows 
secondary flows are also observed-in Fig. 5.1-2 it is shown that the fluid moves toward 
the corners of the conduit and then back in toward the center. For laminar flow of poly- 
meric fluids, the secondary flows go in the opposite direction-from the corners of the 
conduit and then back toward the walls.' In turbulent flows the secondary flows result 
from inertial effects, whereas in the flow of polymers the secondary flows are associated 
with the "normal stresses." 

Recoil after Cessation of Steady-State Flow in a Circular Tube 

We start with a fluid at rest in a circular tube and, with a syringe, we "draw" a dye line 
radially in the fluid as shown in Fig. 8.1-2. Then we pump the fluid and watch the dye 
d e f ~ r r n . ~  

For a Newtonian fluid the dye line deforms into a continuously stretching parabola. 
If the pump is turned off, the dye parabola stops moving. After some time diffusion oc- 
curs and the parabola begins to get fuzzy, of course. 

For a polymeric liquid the dye line deforms into a curve that is more blunt than a 
parabola (see Eq. 8.1-1). If the pump is stopped and the fluid is not axially constrained, 
the fluid will begin to "recoil" and will retreat from this maximum stretched shape; that 

- 
Pumping 
stopped 

here Fig. 8.1-2. Constrained recoil after ces- 
sation of flow in a circular tube, ob- 
served in polymeric liquids, but not in 
Newtonian liquids. 

B. Gervang and P. S. Larsen, J. Non-Newtonian Fluid Mech., 39,217-237 (1991). 
For the details of this experiment see N. N. Kapoor, M.S. thesis, University of Minnesota, 

Minneapolis (1964), as well as A. G. Fredrickson, Principles and Applications of Rheology, Prentice-Hall, 
Englewood Cliffs, N.J. (1964), p. 120. 
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is, the fluid snaps back somewhat like a rubber band. However, whereas a rubber band 
returns to its original shape, the fluid retreats only part way toward its original configu- 
ration. 

If we permit ourselves an anthropomorphism, we can say that a rubber band has 
"perfect memory," since it returns to its initial unstressed state. The polymeric fluid, on 
the other hand, has a "fading memory," since it gradually "forgets" its original state. 
That is, as it recoils, its memory becomes weaker and weaker. 

Fluid recoil is a manifestation of elasticity, and any complete description of poly- 
meric fluids must be able to incorporate the idea of elasticity into the expression for the 
stress tensor. The theory must also include the notion of fading memory. 

"Normal Stress" Effects 

Other striking differences in the behavior of Newtonian and polymeric liquids appear in 
the "normal stress" effects. The reason for this nomenclature will be given in the next 
section. 

A rotating rod in a beaker of a Newtonian fluid causes the fluid to undergo a tan- 
gential motion. At steady state, the fluid surface is lower near the rotating rod. Intu- 
itively we know that this comes about because the centrifugal force causes the fluid to 
move radially toward the beaker wall. For a polymeric liquid, on the other hand, the fluid 
moves toward the rotating rod, and, at steady state, the fluid surface is as shown in Fig. 
8.1-3. This phenomenon is called the Weissenberg rod-climbing effect.4 Evidently some 
kinds of forces are induced that cause the polymeric liquid to behave in a way that is 
qualitatively different from that of a Newtonian liquid. 

In a closely related experiment, we can put a rotating disk on the surface of a fluid in 
a cylindrical container as shown in Fig. 8.1-4. If the fluid is Newtonian, the rotating disk 
causes the fluid to move in a tangential direction (the "primary flow"), but, in addition, 
the fluid moves slowly outward toward the cylinder wall because of the centrifugal 
force, then moves downward, and then back up along the cylinder axis. This superposed 
radial and axial flow is weaker than the primary flow and is termed a "secondary flow." 
For a polymeric liquid, the fluid also develops a primary tangential flow with a weak ra- 

Fig. 8.1-3. The free surface of a liquid near 
a rotating rod. The polymeric liquid shows opposite directions for Newtonian 
the Weissenberg rod-climbing effect. and polymeric fluids. 

Fig. 8.1-4. The secondary flows in a 
cylindrical container with a rotating 
disk at the liquid surface have the 

This phenomenon was first described by F. H. Garner and A. H. Nissan, Nature, 158,634-635 
(1946) and by R. J. Russel, Ph.D. thesis, Imperial College, University of London (1946), p. 58. The 
experiment was analyzed by K. Weissenberg, Nature, 159,310-311 (1947). 
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Fig. 8.1-5. Flow down a tilted semicylindri- ) cal trough. The convexity of the polymeric 

dial and axial secondary flow, but the latter goes in a direction opposite to that seen in 
the Newtonian fluid.5 

In another experiment we can let a liquid flow down a tilted, semi-cylindrical 
trough as shown in Fig. 8.1-5. If the fluid is Newtonian, the liquid surface is flat, except 
for the meniscus effects at the outer edges. For most polymeric liquids, however, the liquid 
surface is found to be slightly convex. The effect is small but repr~ducible.~ 

Some Other Experiments 

The operation of a simple siphon is familiar to everyone. We know from experience that, 
if the fluid is Newtonian, the removal of the siphon tube from the liquid means that the 
siphoning action ceases. However, as may be seen in Fig. 8.1-6, for polymeric liquids the 
siphoning can continue even when the siphon is lifted several centimeters above the liq- 
uid surface. This is called the tubeless siphon effect. One can also just lift some of the fluid 
up over the edge of the beaker and then the fluid will flow upward along the inside of 
the beaker and then down the outside until the beaker is nearly empty.7 

In another experiment a long cylindrical rod, with its axis in the z direction, is made 
to oscillate back and forth in the x direction with the axis parallel to the z axis (see Fig. 

Fig. 8.1-6. Siphoning continues to occur 
when the tube is raised above the surface 
of a polymeric liquid, but not so for a 

- 
\ 

Newtonian liquid. Note the swelling of 
@ "Extrudate the polymeric liquid as it leaves the 

swell" siphon tube. 

C. T. Hill, J. D. Huppler, and R. B. Bird, Chem. Eng. Sci. 21,815-817 (1966); C. T. Hill, Trans. Soc. 
Rheol., 16,213-245 (1972). Theoretical analyses have been given by J. M. Kramer and M. W. Johnson, Jr., 
Trans. Soc. Rheol. 16,197-212 (1972), and by J. P. Nirschl and W. E. Stewart, J .  Non-Newtonian Fluid Mech., 
16,233-250 (1984). 

This experiment was first done by R. I. Tanner, Trans. Soc. Rheol., 14,483-507 (19701, prompted by 
a suggestion by A. S. Wineman and A. C. Pipkin, Acta Mech. 2,104-115 (1966). See also R. I. Tanner, 
Engineering Rheology, Oxford University Press (1985), 102-105. 

D. F. James, Nature, 212,754-756 (1966). 
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Fig. 8.1-7. The "acoustical streaming" 
near a laterally oscillating rod, show- 
ing that the induced secondary flow 
goes in the opposite directions for 
Newtonian and polymeric fluids. 

8.1-7). In a Newtonian fluid, a secondary flow is induced whereby the fluid moves to- 
ward the cylinder from above and below (i.e., from the +y and -y directions, and moves 
away to the left and right (i.e., toward the -x and +x direction). For the polymeric liquid, 
however, the induced secondary motion is in the opposite direction: the fluid moves in- 
ward from the left and right along the x axis and outward in the up and down directions 
along the y axk8 

The preceding examples are only a few of many interesting experiments that have 
been performed.9 The polymeric behavior can be illustrated easily and inexpensively 
with a 0.5% aqueous solution of polyethylene oxide. 

There are also some fascinating effects that occur when even tiny quantities of poly- 
mers are present. The most striking of these is the phenomenon of drag reduction.1° With 
only parts per million of some polymers ("drag-reducing agents"), the friction loss in 
turbulent pipe flow may be lowered dramatically-by 30-50%. Such polymeric drag- 
reducing agents are used by fire departments to increase the flow of water, and by oil 
companies to lower the costs for pumping crude oil over long distances. 

For discussions of other phenomena that arise in polymeric fluids, the reader should 
consult the summary articles in Annual Review of Fluid ~echanics.~' 

98.2 RHEOMETRY AND MATERIAL FUNCTIONS 

The experiments described in 38.1 make it abundantly clear that polymeric liquids do 
not obey Newton's law of viscosity. In this section we discuss several simple, control- 
lable flows in which the stress components can be measured. From these experiments 
one can measure a number of material functions that describe the mechanical response of 
complex fluids. Whereas incompressible Newtonian fluids are described by only one 
material constant (the viscosity), one can measure many different material functions for 
non-Newtonian liquids. Here we show how a few of the more commonly used material 

C. F. Chang and W. R. Schowalter, J. Non-Newtonian Fluid Mech., 6,4747 (1979). 
The book by D. V. Boger and K. Walters, Rheological Phenomena in Focus, Elsevier, Amsterdam 

(1993), contains many photographs of fluid behavior in a variety of non-Newtonian flow systems. 
'O This is sometimes called the Toms phenomenon, since it was perhaps first reported in B. A. Toms, 

Proc. Int. Congress on Rheology, North-Holland, Amsterdam (1949). The phenomenon has also been 
studied in connection with the drag-reducing nature of fish slime [T. L. Daniel, Biol. Bull., 160,376-382 
(1981)], which is thought to explain, at least in part, "Gray's paradoxu-the fact that fish seem to be able 
to swim faster than energy considerations permit. 

" For example, M. M. Denn, Ann. Rev. Fluid Mech., 22,1334 (1990); E. S. G. Shaqfeh, Ann. Rev. Fluid 
Mech., 28,129-185 (1996); G. G. Fuller, Ann. Rev. Fluid Mech., 22,387417 (1992). 
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functions are defined and measured. Information about the actual measurement equip- 
ment and other material functions can be found e1sewhere.l~~ It is assumed throughout 
this chapter that the polymeric liquids can be regarded as incompressible. 

Steady Simple Shear Flow 

We consider now the steady shear flow between a pair of parallel plates, where the ve- 
locity profile is given by vx = jy, the other velocity components being zero (see Fig. 8.2- 
1). The quantity y, here taken to be positive, is called the "shear rate." For a Newtonian 
fluid the shear stress ryx is given by Eq. 1.1-2, and the normal stresses (rxx, r,,, and r,,) are 
all zero. 

For incompressible non-Newtonian fluids, the normal stresses are nonzero and un- 
equal. For these fluids it is conventional to define three material functions as follows: 

in which 7 is the non-Newtonian viscosity, q1 is the first normal stress coefficient, and 
q2 is the second normal stress coefficient. These three quantities-7, TI, q2-are all 
functions of the shear rate y. For many polymeric liquids q may decrease by a factor of 
as much as lo4 as the shear rate increases. Similarly, the normal stress coefficients may 
decrease by a factor of as much as lo7 over the usual range of shear rates. For polymeric 
fluids made up of flexible macromolecules, the functions q( j )  and q,(y) have been found 
experimentally to be positive, whereas !P,(y) is almost always negative. It can be shown 
that for positive TI($ the fluid behaves as though it were under tension in the flow (or 
X) direction, and that the negative !P,(y) means that the fluid is under tension in the 
transverse (or z )  direction. For the Newtonian fluid 7 = p, V, = 0, and q2 = 0. 

The strongly shear-ratedependent non-Newtonian viscosity is connected with the 
behavior given in Eqs. 8.1-1 to 3, as is shown in the next section. The positive 9, is pri- 
marily responsible for the Weissenberg rod-climbing effect. Because of the tangential 
flow, there is a tension in the tangential direction, and this tension pulls the fluid toward 
the rotating rod, overcoming the centrifugal force. The secondary flows in the disk-and- 
cylinder experiment (Fig. 8.1-4) can also be explained qualitatively in terms of the posi- 
tive !PI. Also, the negative !P2 can be shown to explain the convex surface shape in the 
tilted-trough experiment (Fig. 8.1-5). 

Uvver da te  moves at a constant meed 
I I  I 

I 

t 
Fig. 8.2-1. Steady simple shear flow be- 

I tween parallel plates, with shear rate j. 
!d For Newtonian fluids in this flow, r,, = - ,,.. ;, = y y  ryy = r,, = 0, but for polymeric fluids the 

normal stresses are in general nonzero 
and unequal. 

' J. R. Van Wazer, J. W. Lyons, K. Y. Kim, and R. E. Colwell, Viscosity and Flow Measurement, 
Interscience (Wiley), New York (1963). 

K. Walters, Rheometry, Wiley, New York (1975). 
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C- Upper plate oscillates with + Fig. 8.2-2. Small-amplitude oscillatory 
motion. For small plate spacing and 
highly viscous fluids, the velocity pro- 

vJy, t )  = jloy cos ot file may be assumed to be linear. 

Many ingenious devices have been developed to measure the three material func- 
tions for steady shearing flow, and the theories needed for the use of the instruments are 
explained in detail el~ewhere.~ See Problem 8C.1 for the use of the cone-and-plate instru- 
ment for measuring the material functions. 

Small-Amplitude Oscillatory Motion 

A standard method for measuring the elastic response of a fluid is the small-amplitude 
oscillatory shear experiment, depicted in Fig. 8.2-2. Here the top plate moves back and 
forth in sinusoidal fashion, and with a tiny amplitude. If the plate spacing is extremely 
small and the fluid has a very high viscosity, then the velocity profile will be nearly lin- 
ear, so that v,(y, t) = joy cos ot, in which jO, a real quantity, gives the amplitude of the 
shear rate excursion. 

The shear stress required to maintain the oscillatory motion will also be periodic in 
time and, in general, of the form 

T~~ = - q' yo cos of - q"jO sin wt (8.2-4) 

in which 77' and q" are the components of the complex viscosity, q* = q' - iq", which is a 
function of the frequency. The first (in-phase) term is the "viscous response," and the 
second (out-of-phase) term is the "elastic response." Polymer chemists use the curves of 
q'(w) and q"(o) (or the storage and loss moduli, G' = q"w and G = q'o) for "characteriz- 
ing" polymers, since much is known about the connection between the shapes of these 
curves and the chemical s t r~cture .~  For the Newtonian fluid, q' = p and 77'' = 0. 

Steady-State Elongational Flow 

A third experiment that can be performed involves the stretching of the fluid, in which 
the velocity distribution is given by v, = I:z, v, = -$Ex, and vy = -$4y (see Fig. 8.2-31, 
where the positive quantity I: is called the "elongation rate." Then the relation 

defines the elongational viscosity 7, which depends on I:. When I: is negative, the flow is 
referred to as biaxial stretching. For the Newtonian fluid it can be shown that 7 = 3p, and 
this is sometimes called the "Trouton viscosity." 

< 

Fig. 8.2-3. Steady elongational flow 
1 .  1 .  vZ=EZ, vx=--EX, v =- -EY 
2 Y 2 with elongation rate E = dv,/dz. 

J. D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, 3rd edition (1980). 
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Fig. 8.2-4. The material functions q($, 
ql(j), qf(w), and $(w) for a 1.5% poly- 
acrylamide solution in a 50/50 mixture 
of water and glycerin. The quantities 7, 
qt, and 7" are given in Pa - s, and 9, in 
Pa s2. Both j and o are given in s-'. The 
data are from J. D. Huppler, E. Ashare, 
and L. Holmes, Trans. Soc. Rheol., 11, 
159-179 (1967), as replotted by 
J. M. Wiest. The oscillatory normal 
stresses have also been studied ex- 
perimentally and theoretically (see 
M. C. Williams and R. B. Bird, Ind. 
Eng. Chem. Fundam., 3/42-48 (1964); 
M. C. Williams, J.  Chern. Phys., 42, 
2988-2989 (1965); E. B. Christiansen 
and W. R. Leppard, Trans. Soc. Xheol., 
18/65-86 (1974), in which the ordinate 
of Fig. 15 should be multiplied by 39.27. 

log j or log w 

The elongational viscosity 77 cannot be measured for all fluids, since a steady-state 
elongational flow cannot always be attained.4 

The three experiments described above are only a few of the rheometric tests that 
can be performed. Other tests include stress relaxation after cessation of flow, stress 
growth at the inception of flow, recoil, and creep-each of which can be performed in 
shear, elongation, and other types of flow. Each experiment results in the definition of 
one or more material functions. These can be used for fluid characterization and also for 
determining the empirical constants in the models described in gs8.3 to 8.5. 

Some sample material functions are displayed in Figs. 8.2-4 to 8.2-6. Since there 
is a wide range of complex fluids, as regards chemical structure and constitution, 

Fig. 8.2-5. Dependence of the second normal stress co- 
efficient on shear rate for a 2.5% solution of polyacry- 
lamide in a 50/50 mixture of water and glycerin. The 
quantity q2 is given in Pa. s2, and o is in s-l. The data 
of E. B. Christiansen and W. R. Leppard, Trans. Soc. 
Rheol., 18,6546 (1974), have been replotted by 
J. M. Wiest. 

C. J. S. Petrie, Elongational Flows, Pitman, London (1979); J. Meissner, Chem. Engr. Commun., 33, 
159-180 (1985). 
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log i: 
(a) 

-3 -2 -1 0 

log (-a 
(b) 

Fig. 8.2-6. (a) Elongational viscosity for uniaxial stretching of low- and high-density polyeth- 
ylene. [From H. Miinstedt and H. M. Laun, Rheol. Acta, 20,211-221 (1981).1 (b)  Elongational 
viscosity for biaxial stretching of low-density polyethylene, deduced from flow-birefringence 
data. [From J. A. van Aken and H. Janeschitz-Kriegl, Rheol. Acta, 20,419432 (1981).] In both 
graphs the quantity 77 is given in Pa . s and i. is in s-l. 

there are many types of mechanical responses in these various experiments. More 
complete discussions of the data obtained in rheometric experiments are given else- 
where." 

58.3 NON-NEWTONIAN VISCOSITY AND THE 
GENERALIZED NEWTONIAN MODELS 

This is the first of three sections devoted to empirical stress tensor expressions for non- 
Newtonian fluids. One might say, very roughly, that these three sections satisfy three 
different groups of people: 

s8.3 The generalized Newtonian models are primarily used to describe steady-state 
shear flows and have been widely used by engineers for designing flow systems. 

58.4 The linear viscoelastic models are primarily used to describe unsteady-state flows 
in systems with very small displacement gradients and have been used mainly 
by chemists interested in understanding polymer structure. 

58.5 The nonlinear viscoelastic models represent an attempt to describe all types of 
flow (including the two listed above) and have been developed largely by 
physicists and applied mathematicians interested in finding an all-inclusive theory. 

Actually the three classes of models are interrelated, and each is important for understand- 
ing the subject of non-Newtonian flow. In the following discussion of non-Newtonian 
models, we assume throughout that the fluids are incompressible. 

The generalized Newtonian models1 discussed here are the simplest of the three types of 
models to be discussed. However, they can describe only the non-Newtonian viscosity, 
and none of the normal stress effects, time-dependent effects, or elastic effects. Nonethe- 

R. B. Bird, R. C .  Armstrong, and 0. Hassager, Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics, 
Wiley-Interscience, 2nd edition (1987). 

' K. Hohenemser and W. Prager, Zeits. f. Math. u.  Mech., 12,216-226 (1932); J .  G. Oldroyd, Proc. 
Camb. Phil. Soc., 45,595-611 (1949), and 47,410-418 (1950). James Gardner Oldroyd (1921-1982), a 
professor at the University of Liverpool, made many contributions to the theory of non-Newtonian 
fluids, in particular his ideas on the construction of constitutive equations and the principles of 
continuum mechanics. 



58.3 Non-Newtonian Viscosity and the Generalized Newtonian Models 241 

less, in many processes in the polymer industry, such as pipe flow with heat transfer, dis- 
tributor design, extrusion, and injection molding, the non-Newtonian viscosity and its 
enormous variation with shear rate are central to describing the flows of interest. 

For incompressible Newtonian fluids the expression for the stress tensor is given by 
Eq. 1.2-7 with the last term omitted: 

in which we have introduced the symbol j = Vv + (VV)~, the rate-of-strain tensor (or rate- 
of-deformation tensor). The generalized Newtonian fluid model is obtained by simply re- 
placing the constant viscosity p by the non-Newtonian viscosity v, a function of the 
shear rate, which in general can be written as the "magnitude of the rate-of-strain 
tensor" j = m; it is understood that when the square root is taken, the sign must 
be so chosen that j is a positive quantity. Then the generalized Newtonian fluid model is 

The components of the rate-of-strain tensor j can be obtained in Cartesian, cylindrical, 
and spherical coordinates from the right sides of the equations in Table B.l by omitting 
the (V . V) terms as well as the factor (-p) in the remaining terms. 

We now have to give an empiricism for the non-Newtonian viscosity function r](j). 
Dozens of such expressions have been proposed, but we mention only two here: 

(a) The simplest empiricism for ~ ( j )  is the two-parameter power law expression:2 

in which m and n are constants characterizing the fluid. This simple relation describes 
the non-Newtonian viscosity curve over the linear portion of the log-log plot of the vis- 
cosity versus shear rate for many materials (see, for example, the viscosity data in Fig. 
8.2-4). The parameter m has units of Pa sn, and n - 1 is the slope of the log r] vs. log j 
plot. Some sample values of power law parameters are given in Table 8.3-1. 

Although the power law model was proposed as an empirical expression, it will be 
seen in Eq. 8.6-11 that a simple molecular theory leads to a power law expression for 
high shear rates, with n = i. 

Table 8.3-1 Power Law Parameters for Aqueous Solutionsa 

Solution 
- - 

Temperature (K) m(Pa. sn) n(-) 

2.0% hydroxyethylcellulose 293 
313 
333 

0.5% hydroxyethylcellulose 293 
31 3 
333 

1.0% polyethylene oxide 293 
313 
333 

" R. M. Turian, Ph.D. Thesis, University of Wisconsin, Madison (1964), pp. 142-148. 

' W. Ostwald, Kolloid-Zeitschrift, 36,99-117 (1925); A. de Waele, Oil Color Chem. Assoc. J., 6,33-88 
(1923). 
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Table 8.3-2 Parameters in the Carreau Model for Some 

EXAMPLE 8.3-1 

Laminar Flow of an 
Incompressible Power 
Law Fluid in a Circular 
TU be415 

Solutions of Linear Polystyrene in 1-Chloronaphthalenea 

Properties of Parameters in Eq. 8.3-4 
solution (qm is taken to be zero) 
- 
Mu c TO A n 
(g/mol) (g/ml) (Pa. s) (s) (- - -) 

" Values of the parameters are taken from K. Yasuda, R. C. 
Armstrong, and R. E. Cohen, Rheol. Acta, 20,163-178 (1981). 

(b) A better curve fit for most data can be obtained by using the four-parameter Car- 
reau equation: which is 

in which r), is the zero shear rate viscosity, r ] ,  is the infinite shear rate viscosity, h is a pa- 
rameter with units of time, and n is a dimensionless parameter. Some sample parameters 
for the Carreau model are given in Table 8.3-2. 

We now give some examples of how to use the power law model. These are exten- 
sions of problems discussed in Chapters 2 and 3 for Newtonian  fluid^.^ 

Derive the expression for the mass flow rate of a polymer liquid, described by the power law 
model. The fluid is flowing in a long circular tube of radius R and length L, as a result of a 
pressure difference, gravity, or both. 

SOLUTION 

Equation 2.3-13 gives the shear stress distribution for any fluid in developed steady flow in a 
circular tube. Into this expression we have to insert the shear stress for the power law fluid 
(instead of using Eq. 2.3-14). This expression may be obtained from Eqs. 8.3-2 and 3 above. 

Since v, is ostulated to be a function of v alone, from Eq. B.l-13 we find that j = = 

d w e  have to choose the sign for the square root so that j will be positive. Since 
dv,/dr is negative in tube flow, we have to choose the minus sign, so that 

P. J. Carreau, Ph.D. thesis, University of Wisconsin, Madison (1968). See also K. Yasuda, 
R. C. Armstrong, and R. E. Cohen, Rheol. Acta, 20,163-178 (1981). 

For additional examples, including nonisothermal flows, see R. B. Bird, R. C. Armstrong, and 
0. Hassager, Dynamics of Polymeric Liquids, Vol. 1. Fluid Mechanics, Wiley-Interscience, New York, 2nd 
edition (1998), Chapter 4. 

M. Reiner, Deformation, Strain and Flow, Interscience, New York, 2nd edition (19601, pp. 243-245. 
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Combining Eq. 8.3-6 and 2.3-13 then gives the following differential equation for the velocity: 

After taking the nth root the equation may be integrated, and when the no-slip boundary con- 
dition at r = R is used, we get 

for the velocity distribution (see Eq. 8.1-1). When this is integrated over the cross section of 
the circular tube we get 

which simplifies to the Hagen-Poiseuille law for Newtonian fluids (Eq. 2.3-21) when n = 1 
and rn = p. Equation 8.3-9 can be used along with data on pressure drop versus flow rate to 
determine the power law parameters rn and n. 

The flow of a Newtonian fluid in a narrow slit is solved in Problem 2B.3. Find the velocity dis- 
tribution and the mass flow rate for a power law fluid flowing in the slit. 

Flow of a Power Law 
Fluid in a Narrow Slit4 SOLUTION 

The expression for the shear stress T, as a function of position x in Eq. 2B.3-1 can be taken over 
here, since it does not depend on the type of fluid. The power law formula for 7, from Eq. 8.3-3 is 

To get the velocity distribution for 0 5 x 5 B, we substitute rx, from Eq. 8.3-10 into Eq. 2B.3-1 
to get: 

Integrating and using the no-slip boundary condition at x = B gives 

Since we expect the velocity profile to be symmetric about the midplane x = 0, we can get the 
mass rate of flow as follows: 

When n = 1 and rn = p, the Newtonian result in Problem 2B.3 is recovered. Experimental 
data on pressure drop and mass flow rate through a narrow slit can be used with Eq. 8.3-14 to 
determine the power law parameters. 
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Rework Example 3.6-3 for a power law fluid. 

Tangential Annular SOLUTION 
'low of a Power Law Equations 3.6-20 and 3.6-22 remain unchanged for a non-Newtonian fluid, but in lieu of E q  
~ l u i d ~ ~ ~  3.6-21 we write the Bcomponent of the equation of motion in terms of the shear stress by 

using Table B.5: 

For the postulated velocity profile, we get for the power law model (with the help of Table B.l) 

Combining Eqs. 8.3-15 and 16 we get 

Integration gives 

Dividing by r2  and taking the nth root gives a first-order differential equation for the angular 
velocity 

This may be integrated with the boundary conditions in Eqs. 3.6-27 and 28 to give 

The (z-component of the) torque needed on the outer cylinder to maintain the motion is then 

Combining Eqs. 8.3-20 and 21 then gives 

The Newtonian result can be recovered by setting n = 1 and rn = p. Equation 8.3-22 can be used 
along with torque versus angular velocity data to determine the power law parameters rn and n. 

58.4 ELASTICITY AND THE LINEAR VISCOELASTIC MODELS 

Just after Eq. 1.2-3, in the discussion about generalizing Newton's "law of viscosity," we 
specifically excluded time derivatives and time integrals in the construction of a linear 
expression for the stress tensor in terms of the velocity gradients. In this section, we 
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allow for the inclusion of time derivatives or time integrals, but still require a linear rela- 
tion between T and j .  This leads to linear viscoelastic models. 

We start by writing Newton's expression for the stress tensor for an incompressible 
viscous liquid along with Hooke's analogous expression for the stress tensor for an in- 
compressible elastic solid:' 

Newton: 

Hooke: 

In the second of these expressions G is the elastic modulus, and u is the "displacement 
vector," which gives the distance and direction that a point in the solid has moved from 
its initial position as a result of the applied stresses. The quantity y is called the "infini- 
tesimal strain tensor." The rate-of-strain tensor and the infinitesimal strain tensor are re- 
lated by j = dy / d t .  The Hookean solid has a perfect memory; when imposed stresses are 
removed, the solid returns to its initial configuration. Hooke's law is valid only for very 
small displacement gradients, Vu. Now we want to combine the ideas embodied in Eqs. 
8.4-1 and 2 to describe viscoelastic fluids. 

The Maxwell Model 

The simplest equation for describing a fluid that is both viscous and elastic is the follow- 
ing Maxwell model:' 

Here A, is a time constant (the relaxation time) and 17, is the zero shear rate viscosity. 
When the stress tensor changes imperceptibly with time, then Eq. 8.4-3 has the form of 
Eq. 8.4-1 for a Newtonian liquid. When there are very rapid changes in the stress ten- 
sor with time, then the first term on the left side of Eq. 8.4-3 can be omitted, and when 
the equation is integrated with respect to time, we get an equation of the form of Eq. 
8.4-2 for the Hookean solid. In that sense, Eq. 8.4-3 incorporates both viscosity and 
elasticity. 

A simple experiment that illustrates the behavior of a viscoelastic liquid involves 
"silly putty." This material flows easily when squeezed slowly between the palms of the 
hands, and this indicates that it is a viscous fluid. However, when it is rolled into a ball, 
the ball will bounce when dropped onto a hard surface. During the impact the stresses 
change rapidly, and the material behaves as an elastic solid. 

The Jeffreys Model 

The Maxwell model of Eq. 8.4-3 is a linear relation between the stresses and the velocity 
gradients, involving a time derivative of the stresses. One could also include a time de- 
rivative of the velocity gradients and still have a linear relation: 

R. Hooke, Lectures de Potentia Restifutiva (1678). 
* This relation was proposed by J. C. Maxwell, Phil. Trans. Roy. Soc., A157,49-88 (18671, to 

investigate the possibility that gases might be viscoelastic. 
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This Jeffreys modep contains three constants: the zero shear rate viscosity and two time 
constants (the constant A, is called the retardation time). 

One could clearly add terms containing second, third, and higher derivatives of the 
stress and rate-of-strain tensors with appropriate multiplicative constants, to get a still 
more general linear relation among the stress and rate-of-strain tensors. This gives 
greater flexibility in fitting experimental data. 

The Generalized Maxwell Model 

Another way of generalizing Maxwell's original idea is to "superpose" equations of the 
form of Eq. 8.4-3 and write the generalized Maxwell model as 

m 
d ~ ( t )  = ~ ~ ( t )  where TL + A* ;ji h = - 7 k y  (8.4-5/61 

k= 1 

in which there are many relaxation times A, (with A, r A, 2 A,. . .) and many constants 
qk with dimensions of viscosity. Much is known about the constants in this model from 
polymer molecular theories and the extensive experiments that have been done on poly- 
meric l i q ~ i d s . ~  

The total number of parameters can be reduced to three by using the following em- 
pirical  expression^:^ 

in which 7, is the zero shear rate viscosity, A is a time constant, and a is a dimensionless 
constant (usually between 1.5 and 4). 

Since Eq. 8.4-6 is a linear differential equation, it can be integrated analytically, with 
the condition that the fluid is at rest at t = - w. Then when the various lk are summed 
according to Eq. 8.4-5, we get the integral form of the generalized Maxwell model: 

In this form, the "fading memory" idea is clearly present: the stress at time t depends on 
the velocity gradients at all past times t', but, because of the exponentials in the inte- 
grand, greatest weight is given to times t' that are near t; that is, the fluid "memory" is 
better for recent times than for more remote times in the past. The quantity within braces 
{ 1 is called the relaxation modulus of the fluid and is denoted by G(t - t'). The integral ex- 

This model was suggested by H. Jeffreys, The Earth, Cambridge University Press, 1st edition 
(1924), and 2nd edition (1929), p. 265, to describe the propagation of waves in the earth's mantle. The 
parameters in this model have been related to the structure of suspensions and emulsions by H. Frohlich 
and R. Sack, Proc. Roy. Soc., A185,415430 (1946) and by J. G. Oldroyd, Proc. Roy. Soc., AZ18,122-132 
(19531, respectively. Another interpretation of Eq. 8.4-4 is to regard it as the sum of a Newtonian solvent 
contribution ( s )  and a polymer contribution ( p ) ,  the latter being described by a Maxwell model: 

a 
T,= -q,y; T,+A,-T,= - 7 j  at P 

(8.4-4a, b) 

so that T = T, + T ~ .  Then if Eqs. 8.4-4a, 8.4-4b, and A, times the time derivative of Eq. 8.4-4a are added, we 
get the Jeffreys model of Eq. 8.44, with 7, = q, + qp and A, = (%/(q, + ?,))A,. 

* J. D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, 3rd edition (1980). See also 
N. W. Tschoegl, The Phenommological Theory of Linear Viscoelastic Behavior, Springer-Verlag, Berlin (1989); 
and R. B. Bird, R. C. Armstrong, and 0. Hassager, Dynamics of Polymeric Liquids, Vol.  I ,  Fluid Mechanics, 
Wiley-Interscience, New York, 2nd edition (1987), Chapter 5. 

T. W. Spriggs, Chem. Eng. Sci., 20,931-940 (1965). 
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pression in Eq. 8.4-9 is sometimes more convenient for solving linear viscoelastic prob- 
lems than are the differential equations in Eqs. 8.4-5 and 6. 

The Maxwell, Jeffreys, and generalized Maxwell models are all examples of linear 
viscoelastic models, and their use is restricted to motions with very small displacement 
gradients. Polymeric liquids have many internal degrees of freedom and therefore many 
relaxation times are needed to describe their linear response. For this reason, the general- 
ized Maxwell model has been widely used for interpreting experimental data on linear 
viscoelasticity. By fitting Eq. 8.4-9 to experimental data one can determine the relaxation 
function G(t - t'). One can then relate the shapes of the relaxation functions to the mole- 
cular structure of the polymer. In this way a sort of "mechanical spectroscopy" is devel- 
oped, which can be used to investigate structure via linear viscoelastic measurements 
(such as the complex viscosity). 

Models describing flows with very small displacement gradients might seem to 
have only limited interest to engineers. However, an important reason for studying them 
is that some background in linear viscoelasticity helps us in the study of nonlinear vis- 
coelasticity, where flows with large displacement gradients are discussed. 

Obtain an expression for the components of the complex viscosity by using the generalized 
Maxwell model. The system is described in Fig. 8.2-2. 

Small-Amplitude 
Oscillatory Motion 

We use the yx-component of Eq. 8.4-9, and for this problem the yx-component of the rate-of- 
strain tensor is 

dux j,,(t) = - = jU cos wt 
dY 

where w is the angular frequency. When this is substituted into Eq. 8.4-9, with the relaxation 
modulus (in braces) expressed as G(t - t'), we get 

t 

T, = -I-= G(t - t')? cos wt'dt' 

G(s) sin ws ds sin wt I (8.4-1 1) 

in which s = t - t'. When this equation is compared with Eq. 8.2-4, we obtain 

for the components of the complex viscosity r]* = r]' - iq". When the generalized Maxwell ex- 
pression for the relaxation modulus is introduced and the integrals are evaluated, we find that 

If the empiricisms in Eqs. 8.4-7 and 8 are used, it can be shown that both r]' and 7" decrease as 
1 / w ~ - ( ~ / 4  at very high frequencies (see Fig. 8.2-4). 
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Extend Example 4.1-3 to viscoelastic fluids, using the Maxwell model, and obtain the attenua- 
tion and phase shift in the "periodic steady state." 

Unsteady Viscoelastic 
FZOW ~ e b r  an 
Oscillating Plate 

SOLUTION 

For the postulated shearing flow, the equation of motion, written in terms of the stress tensor 
component gives 

The Maxwell model in integral form is like Eq. 8.4-9, but with a single exponential: 

Combining these two equations, we get 

d2v,(y, tr) 
p 2 = (Im {z exp[-(t - ~ Y / A , I  I dt' 

As in Example 4.1-3 we postulate a solution of the form 

where vO(y) is complex. Substituting this into Eq. 8.4-19, we get 

Removing the real operator then gives an equation for vO(y) 

Then if the complex quantity in the brackets [ I is set equal to (a + i~)', the solution to the dif- 
ferential equation is 

Multiplying this by eimt and taking the real part gives 

This result has the same form as that in Eq. 4.1-57, but the quantities a and /3 depend on fre- 
quency: 

That is, with increasing frequency, a decreases and /3 increases, because of the fluid elasticity. 
This result shows how elasticity affects the transmission of shear waves near an oscillating 
surface. 
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Note that there is an important difference between the problems in the last two ex- 
amples. In Example 8.4-1 the velocity profile is prescribed, and we have derived an ex- 
pression for the shear stress required to maintain the motion; the equation of motion was 
not used. In Example 8.4-2 no assumption was made about the velocity distribution, and 
we derived the velocity distribution by using the equation of motion. 

58.5 THE COROTATIONAL DERIVATIVES AND THE 
NONLINEAR VISCOELASTIC MODELS 

In the previous section it was shown that the inclusion of time derivatives (or time inte- 
grals) in the stress tensor expression allows for the description of elastic effects. The lin- 
ear viscoelastic models can describe the complex viscosity and the transmission of 
small-amplitude shearing waves. It can also be shown that the linear models can de- 
scribe elastic recoil, although the results are restricted to flows with negligible displace- 
ment gradients (and hence of little practical interest). 

In this section we introduce the hypothesis',2 that the relation between the stress ten- 
sor and the kinematic tensors at a fluid particle should be independent of the instanta- 
neous orientation of that particle in space. This seems like a reasonable hypothesis; if 
you measure the stress-strain relation in a rubber band, it should not matter whether 
you are stretching the rubber band in the north-south direction or the east-west direc- 
tion, or even rotating as you take data (provided, of course, that you do not rotate so 
rapidly that centrifugal forces interfere with the measurements). 

One way to implement the above hypothesis is to introduce at each fluid particle a 
corotating coordinate frame. This orthogonal frame rotates with the local instantaneous 
angular velocity as it moves along with the fluid particle through space (see Fig. 8.5-1). 
In the corotating coordinate system we can now write down some kind of relation 

\ 
Fluid particle 

at time t 
Fluid particle 

trajectory 

Fig. 8.5-1. Fixed coordinate fra_me*w$h origin at 0, and the coro- 
tating frame with unit vectors iil, &, ti3 that move with a fluid par- 
ticle and rotate with the local, instantaneous angular velocity 
;[v X V] of the fluid. 

-- 

' G. Jaumann, Grundlagen der Bewegungslehve, Leipzig (1905); Sitzungsberichte AM. Wiss. Wien, IIa, 120, 
385-530 (1911); S. Zaremba, Bull. Int. Acad. Sci., Cracovie, 594-614,614-621 (1903). Gustaf Andreas Johannes 
Jaumann (1863-1924) (pronounced "Yow-mahn") who taught at the German university in Briinn (now 
Brno), for whom the "Jaumann derivative" is named, was an important contributor to the field of 
continuum mechanics at the beginning of the twentieth century; he was the first to give the equation of 
change for entropy, including the "entropy flux" and the "rate of entropy production" (see s24.1). 

J. G. Oldroyd, Proc. Roy. Soc., A245,27&297 (1958). For an extension of the corotational idea, see 
L. E. Wedgewood, Rheol. Acfa, 38,91-99 (1999). 



250 Chapter 8 Polymeric Liquids 

between the stress tensor and the rate-of-strain tensor; for example, we can write the Jef- 
freys model and then add some additional nonlinear terms for good measure: 

in which the circumflexes (A )  on the tensors indicate that their components are those 
with respect to the corotating coordinate frame. In Eq. 8.5-1 the constants A,, A,, p,, p,, 
and p, all have dimensions of time. 

Since the equations of continuity and motion are written for the usual xyz-coordinate 
frame, fixed in space, it seems reasonable to transform Eq. 8.5-1 from the 492 frame into 
the xyz frame. This is a purely mathematical problem, which was worked out long ago,' 
and the solution is well known. It can be shown that the partial time derivatives d / d t ,  
d2/dt2, . . . are changed into corotational (or Jaumann14) time derivatives 9/%, 912/9t', . . .  
The corotational time derivative of a second-order tensor is defined as 

in which w = Vv - (Vv)+ is the vorticity tensor, and D/Dt is the substantial time deriva- 
tive defined in 53.5. The tensor dot products appearing in Eq. 8.5-1, with components in 
the f 9 2  frame, transform into the corresponding dot products, with the components 
given in the xyz frame. 

When transformed into the xyz frame, Eq. 8.5-1 becomes 

which is the Oldroyd 6-constant model. This model, then, has no dependence on the local 
instantaneous orientation of the fluid particles in space. It should be emphasized that Eq. 
8.5-3 is an empirical model; the use of the corotating frame guarantees only that the in- 
stantaneous local rotation of the fluid has been "subtracted off." 

With proper choice of these parameters most of the observed phenomena in poly- 
mer fluid dynamics can be described qualitatively. As a result this model has been widely 
used in exploratory fluid dynamics calculations. A 3-constant simplification of Eq. 8.5-3 
with F~ = Alf p2 = hZf and p, = 0 is called the Oldroyd-B model. In Example 8.5-1 we show 
what Eq. 8.5-3 gives for the material functions defined in 58.2. 

Another nonlinear viscoelastic model is the 3-constant Giesekus model," which con- 
tains a term that is quadratic in the stress components: 

Here h is a time constant, v0 is the zero shear rate viscosity, and a is a dimensionless pa- 
rameter. This model gives reasonable shapes for most material functions, and the analyt- 
ical expressions for them are summarized in Table 8.5-1. Because of the (7 .T) term, they 

J. D. Goddard and C. Miller, Rheol. Acta, 5,177-184 (1966). 
R. B. Bird, R. C. Armstrong, and 0. Hassager, Dynamics of Polymeric Liquids, Vol. 2,  Fluid Mechanics, 

Wiley, New York, 1st edition (19771, Chapters 7 and 8; the corotational models are not discussed in the 
second edition of this book, where emphasis is placed on the use of "convected coordinates" and the 
"codeforming" frame. For differential models, either the corotating or codeforming frame can be used, 
but the former is simpler conceptually and mathematically. 

H. Giesekus, J. Non-Newtonian Fluid Mech., 11,69-109 (1982); 12,367-374; Rheol. Acta, 21,366-375 
(1982). See also R. B. Bird and J. M. Wiest, 1. Rheol., 29,519-532 (1985), and R. 8. Bird, R. C. Armstrong, 
and 0. Hassager, Dynamics of Polymeric Liquids, Vol. 1, Fluid Dynamics, Wiley-Interscience, New York, 
2nd edition (1987),§7.3(~). 
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Table 8.5-1 Material Functions for the Giesekus Model 

Steady shear flow: 

q -  - - 
(1 - f )2 

' lo  1 + (1 - 2a) f  

1 f f 1 -- 
2770A d l  - f )  (A y)2 

where 

Small-amplitude oscillatory shear flow: 

- - - 1 rll1 - and - - Aw 
To 1 + rlo 1 + ( A W ) ~  

Steady elongational flow: 

are not particularly simple. Superpositions of Giesekus models can be made to describe 
the shapes of the measured material functions almost q ~ a n t i t a t i v e l ~ . ~  The model has 
been used widely for fluid dynamics calculations. 

EXAMPLE 8.5-1 

Material Functions for 
the Oldroyd 6-Constan 
~ o d e l ~ l ~  

Obtain the material functions for steady shear flow, small amplitude oscillatory motion, and 
steady uniaxial elongational flow. Make use of the fact that in shear flows, the stress tensor 
components 7,, and 7y, are zero, and that in elongational flow, the off-diagonal elements of 

t the stress tensor are zero (these results are obtained by symmetry arguments7). 

SOLUTION 

(a) First we simplify Eq. 8.5-3 for unsteady shear pow, with the velocity distribution v,(y, t )  = 
j ( t ) y .  By writing out the components of the equation we get 

-- - - - -  - - 

W. R. Burghardt, J.-M. Li, B. Khomarni, and B. Yang, J .  Rheol., 147,149-165 (1999). 
See, for example, R. B. Bird, R. C. Armstrong, and 0. Hassager, Dynamics of Polymeric Liquids, 

Vol. I, Fluid Dynamics, Wiley-Interscience, New York, 2nd edition (1987), 33.2. 
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(b) For steady-state shear flow, Eqs. 8.5-7 gives T,, = 0, and the other three equations give a set 
of simultaneous algebraic equations that can be solved to get the remaining stress tensor com- 
ponents. Then with the definitions of the material functions in 98.2, we can obtain 

The model thus gives a shear-rate-dependent viscosity as well as shear-rate-dependent normal- 
stress coefficients. (For the Oldroyd-B model the viscosity and normal-stress coefficients are 
independent of the shear rate.) For most polymers the non-Newtonian viscosity decreases 
with the shear rate, and for such fluids we conclude that 0 < a2 < u,. Moreover, since mea- 
sured values of always increase monotonically with shear rate, we also require that u2 > 
$u1. Although the model gives shear-rate-dependent viscosity and normal stresses, the shapes 
of the curves are not in satisfactory agreement with experimental data over a wide range of 
shear rates. 

If p1 < Al and p2 < A2, the second normal-stress coefficient has the opposite sign of the 
first normal-stress coefficient, in agreement with the data for most polymeric liquids. Since 
the second normal-stress coefficient is much smaller than the first for many fluids and in 
some flows plays a negligible role, setting p, = A, and p2 = A 2  may be reasonable, thereby re- 
ducing the number of parameters from 6 to 4. 

This discussion shows how to evaluate a proposed empirical model by comparing the 
model predictions with experimental data obtained in rheometric experiments. We have also 
seen that the experimental data may necessitate restrictions on the parameters. Clearly this is 
a tremendous task, but it is not unlike the problem that the thermodynamicist faces in devel- 
oping empirical equations of state for mixtures, for example. The rheologist, however, is deal- 
ing with tensor equations, whereas the thermodynamicist is concerned only with scalar 
equations. 

(c) For small-amplitude oscillatoy motion the nonlinear terms in Eqs. 8.5-5 to 8 may be omitted, 
and the material functions are the same as those obtained from the Jeffreys model of linear 
viscoelasticity: 

For 7' to be a monotone decreasing function of the frequency and for q" to be positive (as seen 
in all experiments), we have to require that A, < A,. Here again, the model gives qualitatively 
correct results, but the shapes of the curves are not correct. 

(d) For the steady elongational flow defined in 98.2, the Oldroyd 6-constant model gives 

Since, for most polymers, the slope of the elongational viscosity versus elongation rate curve 
is positive at L. = 0, we must require that p1 > p2. Equation 8.5-14 predicts that the elonga- 
tional viscosity may become infinite at some finite value of the elongation rate; this may pos- 
sibly present a problem in fiber-stretching calculations. 

Note that the time constants A,  and A, do not appear in the expression for elongational vis- 
cosity, whereas the constants po, pl, and p2 do not enter into the components of the complex 
viscosity in Eqs. 8.5-14 and 15. This emphasizes the fact that a wide range of rheometric experi- 
ments is necessary for determining the parameters in an empirical expression for the stress 
tensor. To put it in another way, various experiments emphasize different parts of the model. 
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58.6 MOLECULAR THEORIES FOR POLYMERIC LIQUIDS'~~  

It should be evident from the previous section that proposing and testing empirical 
expressions for the stress tensor in nonlinear viscoelasticity is a formidable task. Recall 
that, in turbulence, seeking empirical expressions for the Reynolds stress tensor is 
equally daunting. However, in nonlinear viscoelasticity we have the advantage that we 
can narrow the search for stress tensor expressions considerably by using molecular 
theory. Although the kinetic theory of polymers is considerably more complicated than 
the kinetic theory of gases, it nonetheless guides us in suggesting possible forms for the 
stress tensor. However, the constants appearing in the molecular expressions must still 
be determined from rheometric measurements. 

The kinetic theories for polymers can be divided roughly into two classes: network 
theories and single-molecule theories: 

a. The network theories3 were originally developed for describing the mechanical 
properties of rubber. One imagines that the polymer molecules in the rubber are joined 
chemically during vulcanization. The theories have been extended to describe molten 
polymers and concentrated solutions by postulating an ever-changing network in which 
the junction points are temporary, formed by adjacent strands that move together for a 
while and then gradually pull apart (see Fig. 8.6-1). It is necessary in the theory to make 
some empirical statements about the rates of formation and rupturing of the junctions. 

b. The single-molecule theories1 were originally designed for describing the poly- 
mer molecules in a very dilute solution, where polymer-polymer interactions are infre- 
quent. The molecule is usually represented by means of some kind of "bead spring" 
model, a series of small spheres connected by linear or nonlinear springs in such a way 
as to represent the molecular architecture; the bead spring model is then allowed to 
move about in the solvent, with the beads experiencing a Stokes' law drag force by the 
solvent as well as being buffeted about by Brownian motion (see Fig. 8.6-2a). Then from 
the kinetic theory one obtains the "distribution function" for the orientations of the mol- 
ecules (modeled as bead spring structures); once this function is known, various macro- 
scopic properties can be calculated. The same kind of theory may be applied to 
concentrated solutions and molten polymers by examining the motion of a single bead 
spring model in the "mean force field" exerted by the surrounding molecules. That is, 

Fig. 8.6-1. Portion of a polymer network 
formed by "temporary junctions," indi- 
cated here by circles. 

R. B. Bird, C. F. Curtiss, R. C. Armstrong, and 0. Hassager, Dynamics of Polymeric Liquids, Vol. 2, 
Kinetic Theory, Wiley-Interscience, New York, 2nd edition (1987). 

M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Clarendon Press, Oxford (1986); 
J. D. Schieber, "Polymer Dynamics," in Encyclopedia of Applied Physics, Vol. 14, VCH Publishers, Inc. 
(1996), pp. 41543.  R. B. Bird and H. C. Ottinger, Ann. Rev. Phys. Chem., 43,371406 (1992). 

A. S, Lodge, Elastic Liquids, Academic Press, New York (1964); Body Tensor Fields in Continuum 
Mechanics, Academic Press, New York (1974); Understanding Elastomer Molecular Network Theory, 
Bannatek Press, Madison, Wis. (1999). 
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Fig. 8.6-2. Single-molecule bead spring models for 
(a) a dilute polymer solution, and (b)  an undiluted 
polymer (a polymer "melt" with no solvent). In 
the dilute solution, the polymer molecule can 
move about in all directions through the solvent. 
In the undiluted polymer, a typical polymer mole- 
cule (black beads) is constrained by the surround- 
ing molecules and tends to execute snakelike 
motion ("reptation") by sliding back and forth 
along its backbone direction. 

because of the proximity of the surrounding molecules, it is easier for the "beads" of the 
model to move in the direction of the polymer chain backbone than perpendicular to it. 
In other words, the polymer finds itself executing a sort of snakelike motion, called "rep- 
tation" (see Fig. 8.6-2b). 

As an illustration of the kinetic theory approach we discuss the results for a simple 
system: a dilute solution of a polymer, modeled as an elastic dumbbell consisting of two 
beads connected by a spring. We take the spring to be nonlinear and finitely extensible, 
with the force in the connecting spring being given by4 

in which His  a spring constant, Q is the end-to-end vector of the dumbbell representing 
the stretching and orientation of the dumbbell, and Qo is the maximum elongation of the 
spring. The friction coefficient for the motion of the beads through the solvent is given 
by Stokes' law as 6 = 6.rr7,a, where a is the bead radius and 7, is the solvent viscosity. Al- 
though this model is greatly oversimplified, it does embody the key physical ideas of 
molecular orientation, molecular stretching, and finite extensibility. 

When the details of the kinetic theory are worked out, one gets the following expres- 
sion for the stress tensor, written as the sum of a Newtonian solvent and a polymer con- 
tribution (see fn. 3 in ~ 8 . 4 ) : ~  

Here 

where n is the number density of polymer molecules (i.e., dumbbells), A, = 5/4H is a 
time constant (typically between 0.01 and 10 seconds), Z = 1 + (3/b)[l - (tr T ~ / ~ ~ K T ) ] ,  
and b = H Q ~ / K T  is the finite extensibility parameter, usually between 10 and 100. The 

* H. R. Warner, Jr., Ind. Eng. Chem. Fundamentals, 11,379-387 (1972); R. L. Christiansen and 
R. B. Bird, J. Nan-Newtonian Fluid Mech., 3,161-177 (1977/1978). 

R. I. Tanner, Trans. Soc. Rheol., 19,3745 (1975); R. B. Bird, P. J. Dotson, and N. L. Johnson, J. Non- 
Newtonian Fluid Mech., 7,213-235 (1980)-in the last publication, Eqs. 58-85 are in error. 
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molecular theory has thus resulted in a model with four adjustable constants: qs, AH, n, 
and b, which can be determined from rheometric experiments. Thus the molecular the- 
ory suggests the form of the stress tensor expression, and the rheometric data are used to 
determine the values of the parameters. The model described by Eqs. 8.6-2, 3, and 4 is 
called the FENE-P model (finitely extensible nonlinear elastic model, in the Peterlin ap- 
proximation) in which (Q/Qo)' in Eq. 8.6-1 is replaced by (Q2)/Qi. 

This model is more difficult to work with than the Oldroyd 6-constant model, be- 
cause it is nonlinear in the stresses. However, it gives better shapes for some of the mate- 
rial functions. Also, since we are dealing here with a molecular model, we can get 
information about the molecular stretching and orientation after a flow problem has 
been solved. For example, it can be shown that the average molecular stretching is given 
by (Q')/Q; = 1 - Z - I  where the angular brackets indicate a statistical average. 

The following examples illustrate how one obtains the material functions for the 
model and compares the results with experimental data. If the model is acceptable, then 
it must be combined with the equations of continuity and motion to solve interesting 
flow problems. This requires large-scale computing. 

Obtain the material functions for the steady-state shear flow and the steady-state elongational 
flow of a polymer described by the FENE-P model. 

Material Functions for 
the FENE-P Model SOLUTION 

(a) For steady-state shear flow the model gives the following equations for the nonvanishing 
components of the poIymer contribution to the stress tensor: 

Here the quantity Z is given by 

These equations can be combined to give a cubic equation for the dimensionless shear stress 
contribution Tvx = %,/3n~T 

in which p = (b/54) + (1/18) and q = (b/108)hHy. This cubic equation may be solved to give6 

T = -2~7'" sinh($ arcsinh qpP3'') 
YX 

(8.6-9) 

The non-Newtonian viscosity based on this function is shown in Fig. 8.6-3 along with some 
experimental data for some polymethyl-methacrylate solutions. From Eq. 8.6-9 we find for 
the limiting values of the viscosity 

For y = 0: 

For j +  m: 

Hence, at high shear rates one obtains a power law behavior (Eq. 8.3-3) with n = i. This can be 
taken as a molecular justification for use of the power law model. 

K. Rektorys, Survey of Applicable Mathematics, MIT Press, Cambridge, MA (19691, pp. 78-79. 
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Fig. 8.6-3. Viscosity and first-normal-stress difference data for polymethylmethacrylate solutions from 
D. D. Joseph, G. S. Beavers, A. Cers, C. Dewald, A. Hoger, and P. T. Than, J. Rheol., 28,325-345 (1984), along 
with the FENE-P curves for the following constants, determined by L. E. Wedgewood: 

Polymer 
concentration qo AH a b 

[%I [Pa. sl [sl [Pal [- - -1 

The quantity a =   KT was taken to be a parameter determined from the rheometric data. 

From Eq. 8.6-5 one finds that ?, is given by ?, = 2(7 - q s ) 2 / n ~ ~ ;  a comparison of this re- 
sult with experimental data is shown in Fig. 8.6-3. The second normal stress coefficient ?? for 
this model is zero. As pointed out above, once we have solved the flow problem, we can also 
get the molecular stretching from the quantity Z. In Fig. 8.6-4 we show how the molecules are 
stretched, on the average, as a function of the shear rate. 

Fig. 8.6-4. Molecular stretching as a function of shear rate y in steady shear flow, according to 
the FENE-P dumbbell model. The experimentally accessible time constant A, = [v,]q,M/RT, 
where [Q] is the zero shear rate intrinsic viscosity, is related to A, by A, = A,b/(b + 3). [From 
R. B. Bird, P. J. Dotson, and N. L. Johnson, J. Non-Newtonian Fluid Mech., 7,213-235 (1980).] 
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Fig. 8.6-5. Steady elongational 
- viscosity Tj as a function of the 

elongation rate .i according to 
the FENE-P dumbbell model. 

100 - - 
The time constant is given 

6- 3% by A, = AHb/(b + 3). [From 
3(70 - VS) - R. B. Bird, P. J. Dotson, and 

N. L. Johnson, I.  Non-Newton- 
- ion Fluid Mech., 7,213-235 

(1980).1 

0.01 0.1 1 10 100 

(b) For steady-state elongational flow we get 

This set of equations leads to a cubic equation for +, - rP,,, from which the elongational vis- 
cosity can be obtained (see Fig. 8.6-5). Limited experimental data on polymer solutions indi- 
cate that the shapes of the curves are probably approximately correct. 

The limiting expressions for the elongational viscosity are 

For E = 0: 

For E -+ m: 

Having found the stresses in the system, we can then get the average stretching of the mole- 
cules as a function of the elongation rate; this is shown in Fig. 8.6-6. 

It is worth noting that for a typical value of b-say, 50-the elongational viscosity can in- 
crease by a factor of about 30 as the elongation rate increases, thereby having a profound ef- 
fect on flows in which there is a strong elongational component.7 

The FENE-P and Giesekus models have been used successfully to describe the details of turbulent 
drag reduction, which is closely related to elongational viscosity, by R. Sureshkumar, A. N. Beris and 
R. A. Handler, Phys. Fluids, 9,743-755 (1997), and C. D. Dimitropoulos, R. Sureshkumar, and A. N. Beris, 
J. Non-Newtonian Fluid Mechanics, 79,433-468 (1998). 

Fig. 8.6-6. Molecular stretching as 
a function of the elongation rate .& 
in steady elongational flow, as 
predicted by the FENE-P dumb- 
bell model. The time constant is 
givenbyhe=A,b/(b+3).[From 
R. B. Bird, P. J. Dotson, and 
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QUESTIONS FOR DISCUSSION 

Compare the behavior of Newtonian liquids and polymeric liquids in the various experi- 
ments discussed in ss8.1 and 8.2. 
Why do we deal only with differences in normal stresses for incompressible liquids (see Eqs. 
8.2-2 and 3)? 
In Fig. 8.2-2 the postulated velocity profile is linear in y. What would you expect the velocity 
distribution to look like if the gap between the plates were not small and the fluid had a very 
low viscosity? 
How is the parameter n in Eq. 8.3-3 related to the parameter n in Eq. 8.3-4? How is it related to 
the slope of the non-Newtonian velocity curve from the dumbbell kinetic theory model in 
@.6? 
What limitations have to be placed on use of the generalized Newtonian models and the lin- 
ear viscoelastic models? 
Compare and contrast Examples 8.4-1 and 2 regarding the geometry of the flow system and 
the assumptions regarding the velocity profiles. 
To what extent does the Oldroyd model in Eq. 8.5-3 include a generalized Newtonian model 
and a linear viscoelastic model? Can the Oldroyd model describe effects that are not de- 
scribed by these other models? 
Why is it necessary to put restrictions on the parameters in the Oldroyd model? What is the 
relation between these restrictions and the subject of rheometry? 
What advantages do molecular expressions for the stress tensor have over the empirical ex- 
pressions? 
For what kinds of industrial problems would you use the various kinds of models described 
in this chapter? 
Why may the power law model be unsatisfactory for describing the axial flow in an annulus? 

PROBLEMS 8A.1 Flow of a polyisoprene solution in a pipe. A 13.5% (by weight) solution of polyisoprene in 
isopentane has the following power law parameters at 323 K: n = 0.2 and rn = 5 X lo3 Pa. sn. 
It is being pumped (in laminar flow) through a horizontal pipe that has a length of 10.2 m and 
an internal diameter of 1.3 cm. It is desired to use another pipe with a length of 30.6 m with 
the same mass flow rate and the same pressure drop. What should the pipe radius be? 

8A.2 Pumping of a polyethylene oxide solution. A 1% aqueous solution of polyethylene oxide at 
333 K has power law parameters n = 0.6 and rn = 0.50 Pa . sn. The solution is being pumped 
between two tanks, with the first tank at pressure p,  and the second at pressure p,. The pipe 
carrying the solution has a length of 14.7m and an internal diameter of 0.27 m. 

It has been decided to replace the single pipe by a pair of pipes of the same length, but 
with smaller diameter. What diameter should these pipes have so that the mass flow rate will 
be the same as in the single pipe? 

8B.1 Flow of a polymeric film. Work the problem in s2.2 for the power law fluid. Show that the 
result simplifies properly to the Newtonian result. 

8B.2 Power law flow in a narrow slit. In Example 8.3-2 show how to derive the velocity distribu- 
tion for the region -B 5 x 5 0. Is it possible to combine this result with that in Eq. 8.3-13 into 
one equation? 

8B.3 Non-Newtonian flow in an annulus. Rework Problem 2B.7 for the annular flow of a power 
law fluid with the flow being driven by the axial motion of the inner cylinder. 
(a) Show that the velocity distribution for the fluid is 
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(b) Verify that the result in (a) simplifies to the Newtonian result when n goes to unity. 
(c) Show that the mass flow rate in the annular region is given by 

(dl What is the mass flow rate for fluids with n = i? 
(e) Simplify Eq. 8B.3-2 for the Newtonian fluid. 

8B.4 Flow of a polymeric liquid in a tapered tube. Work Problem 2B.10 for a power law fluid, 
using the lubrication approximation. 

88.5 Slit flow of a Bingham fluid.' For thick suspensions and pastes it is found that no flow oc- 
curs until a certain critical stress, the yield stress, is reached, and then the fluid flows in such a 
way that part of the stream is in "plug flow." The simplest model of a fluid with a yield value 
is the Bingham model: 

r 
when r 5 TO 

70 when r 2 TO 

Y 

in which r0 is the yield stress, the stress below which no flow occurs, and po is a parameter 
with units of viscosity. The quantity r = is the magnitude of the stress tensor. 

Find the mass flow rate in a slit for the Bingham fluid (see Problem 2B.3 and Example 
8.3-2). The expression for the shear stress r,, as a function of position x in Eq. 2B.3-1 can be 
taken over here, since it does not depend on the type of fluid. We see that IT,,( is just equal to 
the yield stress r0 at x = kxo, where xo is defined by 

(a) Show that the upper equation of Eq. 8B.5-1 requires that dv,/dx = 0 for 1x1 5 x,, since 
rxz = -qdv,/dx and r,, is finite; this is then the "plug-flow" region. Then show that, since for 
x positive, y = -dv,/dx, and for x negative, j = +dv,/dx, the lower equation of Eq. 8B.5-1 
requires that 

-&(dv,/dx) + r0 for +xo 5 x 5 +B 
7x2 = -p&dv,/dx) - 7, for -B s x 5 -xo 

(8B.5-3) 

(b) To get the velocity distribution for +xo 5 x 5 +B, substitute the upper relation from Eq. 
8B.5-3 into Eq. 2B.3-1 and get the differential equation for v,. Show that this may be integrated 
with the boundary condition that the velocity is zero at x = B to give 

What is the velocity in the range 1x1 5 x,? Draw a sketch of v,(x). 
(c) The mass flow rate can then be obtained from 

- - - 

E. C. Bingham, Fluidity and Plasficity, McGraw-Hill, New York (19221, pp. 215-218. See R. 8. Bird, 
G. C. Dai, and B. J. Yarusso, Reviews in Chemical Engineering, 1,l-70 (1982) for a review of models with a 
yield stress. 
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The integration by parts allows the integration to be done more easily. Show that the final 
result is 

Verlfy that, when the yield stress goes to zero, this result simplifies to the Newtonian fluid 
result in Problem 2B.3. 

Derivation of the Buckingham-Reiner e q u a t i ~ n . ~  Rework Example 8.3-1 for the Bingham 
model. First find the velocity distribution. Then show that the mass rate of flow is given by 

in which 7, = (9, - 9,)R/2L is the shear stress at the tube wall. This expression is valid only 
when rR z TO. 

The complex-viscosity components for the Jeffreys fluid. 
(a) Work Example 8.4-1 for the Jeffreys model of Eq. 8.4-4, and show that the results are Eqs. 
8.5-12 and 13. How are these results related to Eqs. (F) and (G) of Table 8.5-I? 
(b) Obtain the complex-viscosity components for the Jeffreys model by using the superposi- 
tion suggested in fn. 3 of s8.4. 

Stress relaxation after cessation of shear flow. A viscoelastic fluid is in steady-state flow be- 
tween a pair of parallel plates, with v, = yy. If the flow is suddenly stopped (i.e., y becomes 
zero), the stresses do not go to zero as would be the case for a Newtonian fluid. Explore this stress 
relaxation phenomenon using a 3-constant Oldroyd model (Eq. 8.5-3 with A, = p2 = = po = 0). 
(a) Show that in steady-state flow 

To what extent does this expression agree with the experimental data in Fig. 8.2-4? 
(b) By using Example 8.5-1 (part a) show that, if the flow is stopped at t = 0, the shear stress 
for t 2 0 will be 

This shows why A, is called the "relaxation time." This relaxation of stresses after the fluid 
motion has stopped is characteristic of viscoelastic materials. 
(c) What is the normal stress 7,, during steady shear flow and after cessation of the flow? 

Draining of a tank with an exit pipe (Fig. 78.9). Rework Problem 7B.9(a) for the power law 
fluid. 

The Giesekus model. 
(a) Use the results in Table 8.5-1 to get the limiting values for the non-Newtonian viscosity 
and the normal stress differences as the shear rate goes to zero. 
(b) Find the limiting expressions for the non-Newtonian viscosity and the two normal-stress 
coefficients in the limit as the shear rate becomes infinitely large. 
(c) What is the steady-state elongational viscosity in the limit that the elongation rate tends to 
zero? Show that the elongational viscosity has a finite limit as the elongation rate goes to infinity. 

E. Buckingham, Proc. ASTM, 21,115P1161 (1921); M. Reiner, Deformation and Flow, Lewis, London 
(1949). 
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8C.1 The cone-and-plate viscometer (Fig. 2B.llL3 Review the Newtonian analysis of the cone- 
and-plate instrument in Problem 2B.11 and then do the following: 
(a) Show that the shear rate j /  is uniform throughout the gap and equal to j = -ye+ = il/q0. 
Because of the uniformity of y, the components of the stress tensor are also constant through- 
out the gap. 
(b) Show that the non-Newtonian viscosity is then obtained from measurements of the 
torque T, and rotation speed il by using 

(c) Show that for the cone-and-plate system the radial component of the equation of mo- 
tion is 

if the centrifugal force term -pv$/r can be neglected. Rearrange this to get 

Then introduce the normal stress coefficients, and use the result of (a) to replace d.lr,,/d In r by 
dn-,,/a In r, to get 

Integrate this from r to R and use the boundary condition n-JR) = pa to get 

in which p, is the atmospheric pressure acting on the fluid at the rim of the cone-and-plate 
instrument. 
(d) Show that the total thrust in the z direction exerted by the fluid on the cone is 

From this one can obtain the first normal-stress coefficient by measuring the force that the 
fluid exerts. 
(e) Suggest a method for measuring the second normal-stress coefficient using results in part 
(c) if small pressure transducers are flush-mounted in the plate at several different radial loca- 
tions. 

8C.2 Squeezing flow between parallel disks (Fig. 3C.1): Rework Problem 3C.l(g) for the power 
law fluid. This device can be useful for determining the power law parameters for materials 
that are highly viscous. Show that the power law analog of Eq. 3C.1-16 is 

R. B. Bird, R. C. Armstrong, and 0. Hassager, Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics, 
Wiley-Interscience, New York, 2nd Edition (19871, pp. 521-524. 

P. J. Leider, Ind. Eng. Chem. Fundam., 13,342-346 (1974); R. J. Grimm, AlChE Journal, 24,427-439 
(1978). 
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8C.3 Verification of Giesekus viscosity f ~ n c t i o n . ~  
(a) To check the shear-flow entries in Table 8.5-1, introduce dimensionless stress tensor com- 
ponents Tij = ( A / ~ , ) T ~  and a dimensionless shear rate r = Aj, and then show that for steady- 
state shear flow Eq. 8.5-4 becomes 

T - 2 - a(T;, + q,) = 0 

T, - a(T& + Ti!,) = 0 

T,, - IT,, - aT,,(T,, + T,) = -I- 

There is also a fourth equation, which leads to T,, = 0. 
(b) Rewrite these equations in terms of the dimensionless normal-stress differences N, = Txl 
- T,, and N2 = Tyy - T,,, and T,,. 
(c) It is difficult to solve the equations in (b) to get the dimensionless shear stress and normal- 
stress differences in terms of the dimensionless shear rate. Instead, solve for N,, T,, and r as 
functions of N,: 

(dl Solve the last equation for N2 as a function of r to get 

where 

Then get the expression for the non-Newtonian viscosity and plot the curve of r](y). 

8C.4 Tube Flow for the Oldroyd 6-Constant Model. Find the mass flow rate for the steady flow 
in a long circular tube6 using Eq. 8.5-3. 

8C.5 Chain Models with Rigid-Rod Connectors. Read and discuss the following publications: 
M. Gottlieb, Computers in Chemisty, 1, 155-160 (1977); 0. Hassager, J. Chem. Phys., 60, 
2111-2124 (1974); X. J. Fan and T. W. Liu, J. Non-Newtonian Fluid Mech., 19, 303-321 (1986); 
T. W. Liu, J. Chem. Phys., 90, 5826-5842 (1989); H. H. Saab, R. B. Bird, and C. F. Curtiss, 
J. Chem. Phys., 77, 4758-4766 (1982); J. D. Schieber, J. Chem. Phys., 87, 49174927, 49284936 
(1987). Why are rodlike connectors more difficult to handle than springs? What kinds of prob- 
lems can be solved by computer simulations? 

H.  Giesekus, J. Non-Newtonian Fluid Mech., 11,69-109 (1982). 
M. C. Williams and R. B. Bird, AlClzE /ouvnal, 8,378-382 (1962). 
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Chapter 9 

Thermal Conductivity and the 
Mechanisms of Energy Transport 

Fourieis law of heat conduction (molecular energy transport) 

Temperature and pressure dependence of heat conductivity 

Theory of thermal conductivity of gases at low density 

Theory of thermal conductivity of liquids 

Thermal conductivity of solids 

Effective thermal conductivity of composite solids 

Convective transport of energy 

Work associated with molecular motions 

It is common knowledge that some materials such as metals conduct heat readily, 
whereas others such as wood act as thermal insulators. The physical property that de- 
scribes the rate at which heat is conducted is the thermal conductivity k. 

Heat conduction in fluids can be thought of as molecular energy transport, inasmuch 
as the basic mechanism is the motion of the constituent molecules. Energy can also be 
transported by the bulk motion of a fluid, and this is referred to as convective energy trans- 
port; this form of transport depends on the density p of the fluid. Another mechanism is 
that of difisive energy transport, which occurs in mixtures that are interdiffusing. In addi- 
tion, energy can be transmitted by means of radiative energy transport, which is quite dis- 
tinct in that this form of transport does not require a material medium as do conduction 
and convection. This chapter introduces the first two mechanisms, conduction and con- 
vection. Radiation is treated separately in Chapter 16, and the subject of diffusive heat 
transport arises in 519.3 and again in g24.2. 

We begin in 59.1 with the definition of the thermal conductivity k by Fourier's law 
for the heat flux vector q. In 59.2 we summarize the temperature and pressure depen- 
dence of k for fluids by means of the principle of corresponding states. Then in the next 
four sections we present information about thermal conductivities of gases, Liquids, 
solids, and solid composites, giving theoretical results when available. 

Since in Chapters 10 and 11 we will be setting up problems by using the law of con- 
servation of energy, we need to know not only how heat moves into and out of a system 
but also how work is done on or by a system by means of molecular mechanisms. The na- 
ture of the molecular work terms is discussed in 59.8. Finally, by combining the conduc- 
tive heat flux, the convective energy flux, and the work flux we can create a combined 
energy flux vector e, which is useful in setting up energy balances. 
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9 . 1  FOURIER'S LAW OF HEAT CONDUCTION 
(MOLECULAR ENERGY TRANSPORT) 

Consider a slab of solid material of area A located between two large parallel plates a 
distance Y apart. We imagine that initially (for time t < 0) the solid material is at a tem- 
perature To throughout. At t = 0 the lower plate is suddenly brought to a slightly higher 
temperature TI and maintained at that temperature. As time proceeds, the temperature 
profile in the slab changes, and ultimately a linear steady-state temperature distribution 
is attained (as shown in Fig. 9.1-1). When this steady-state condition has been reached, a 
constant rate of heat flow Q through the slab is required to maintain the temperature dif- 
ference AT = TI - To. It is found then that for sufficiently small values of AT the follow- 
ing relation holds: 

That is, the rate of heat flow per unit area is proportional to the temperature decrease 
over the distance Y. The constant of proportionality k is the thermal conductivity of the 
slab. Equation 9.1-1 is also valid if a liquid or gas is placed between the two plates, pro- 
vided that suitable precautions are taken to eliminate convection and radiation. 

In subsequent chapters it is better to work with the above equation in differential 
form. That is, we use the limiting form of Eq. 9.1-1 as the slab thickness approaches zero. 
The local rate of heat flow per unit area (heat flux) in the positive y direction is desig- 
nated by qy. In this notation Eq. 9.1-1 becomes 

This equation, which serves to define k, is the one-dimensional form of Fourier's law of 
heat cond~ction.',~ It states that the heat flux by conduction is proportional to the tempera- 

Solid initially at 
temperature To 

Lower plate 
suddenly raised 

to temperature TI 

Small t 

Large f 
Y y T(y) 

To Tl 

Fig. 9.1-1. Development of the 
steady-state temperature pro- 
file for a solid slab between two 
parallel plates. See Fig. 1.1-1 for 
the analogous situation for mo- 
mentum transport. 
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ture gradient, or, to put it pictorially, "heat slides downhill on the temperature versus 
distance graph." Actually Eq. 9.1-2 is not really a "law" of nature, but rather a sugges- 
tion, which has proven to be a very useful empiricism. However, it does have a theoreti- 
cal basis, as discussed in Appendix D. 

If the temperature varies in all three directions, then we can write an equation like 
Eq. 9.1-2 for each of the coordinate directions: 

If each of these equations is multiplied by the appropriate unit vector and the equations 
are then added, we get 

which is the three-dimensional form of Fourier's law. This equation describes the molec- 
ular transport of heat in isotropic media. By "isotropic" we mean that the material has 
no preferred direction, so that heat is conducted with the same thermal conductivity k in 
all directions. 

Some solids, such as single noncubic crystals, fibrous materials, and laminates, are 
anis~tropic.~ For such substances one has to replace Eq. 9.1-6 by 

in which K is a symmetric second-order tensor called the thermal conductivity tensor. 
Thus, the heat flux vector does not point in the same direction as the temperature gra- 
dient. For polymeric liquids in the shearing flow v,(y, t ) ,  the thermal conductivity may 
increase above the equilibrium value by 20% in the x direction and decrease by 10% in 
the z direction. Anisotropic heat conduction in packed beds is discussed briefly in 59.6. 

J. B. Fourier, Thkorie analytique de la chaleur, CEuvres de Fourier, Gauthier-Villars et Fils, Paris (1822). 
(Baron) Jean-Baptiste-Joseph Fourier (pronounced "Foo-ree-ay") (1768-1830) was not only a brilliant 
mathematician and the originator of the Fourier series and the Fourier transform, but also famous as an 
Egyptologist and a political figure (he was prefect of the province of Issre). 

'Some authors prefer to write Eq. 9.1-2 in the form 

in which J, is the "mechanical equivalent of heat," which displays explicitly the conversion of thermal 
units into mechanical units. For example, in the c.g.s. system one would use the following units: q,, [=I 
erg/cm2 - s, k [=] cal/cm s - C, T [=I  C, y [=] cm, and J,  [=I  erg/cal. We will not use Eq. 9.1-2a in this 
book. 

Although polymeric liquids at rest are isotropic, kinetic theory suggests that when they are 
flowing the heat conduction is anisotropic [see B. H. A. A. van den Brule, Rheol. Acta, 28,257-266 (1989); 
and C. F. Curtiss and R. B. Bird, Advances in Polymer Science, 25,l-101 (1996)l. Experimental 
measurements for shear and elongational flows have been reported by D. C. Venerus, J. D. Schieber, 
H. Iddir, J. D. Guzman, and A. W. Broerman, Phys. Rev. Letters, 82,366-369 (1999); A. W. Broerman, 
D. C. Venerus, and J. D. Schieber, J. Chem. Phys., 111,6965-6969 (1999); H .  Iddir, D. C. Venerus, and 
J. D. Schieber, AIChE Journal, 46,610-615 (2000). For oriented polymer solids, enhanced thermal conductiv- 
ity in the direction of orientation has been measured by B. Poulaert, J.-C. Chielens, C. Vandenhaende, 
J.-P. Issi, and R. Legras, Polymer Comm., 31,14&151(1989). In connection with the bead spring models of 
polymer thermal conductivity, it has been shown by R. B. Bird, C. F. Curtiss, and K. J. Beers [Rheol. Acfa, 
36,269-276 (1997)l that the predicted thermal conductivity is exceedingly sensitive to the form of the 
potential energy used for describing the springs. 
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Another possible generalization of Eq. 9.1-6 is to include a term containing the time 
derivative of q multiplied by a time constant, by analogy with the Maxwell model of lin- 
ear viscoelasticity in Eq. 8.4-3. There seems to be little experimental evidence that such a 
generalization is ~ a r r a n t e d . ~  

The reader will have noticed that Eq. 9.1-2 for heat conduction and Eq. 1.1-2 for vis- 
cous flow are quite similar. In both equations the flux is proportional to the negative of 
the gradient of a macroscopic variable, and the coefficient of proportionality is a physical 
property characteristic of the material and dependent on the temperature and pressure. 
For the situations in which there is three-dimensional transport, we find that Eq. 9.1-6 for 
heat conduction and Eq. 1.2-7 for viscous flow differ in appearance. This difference 
arises because energy is a scalar, whereas momentum is a vector, and the heat flux q is a 
vector with three components, whereas the momentum flux I is a second-order tensor 
with nine components. We can anticipate that the transport of energy and momentum 
will in general not be mathematically analogous except in certain geometrically simple 
situations. 

In addition to the thermal conductivity k, defined by Eq. 9.1-2, a quantity known as 
the thermal difisivity a is widely used. It is defined as 

Here Sp  is the heat capacity at constant pressure; the circumflex (A) over the symbol indi- 
cates a quantity "per unit mass." Occasionally we will need to use the symbol in 
which the tilde (-) over the symbol stands for a quantity "per mole." 

The thermal diffusivity a has the same dimensions as the kinematic viscosity v- 
namely, (length)*/time. When the assumption of constant physical properties is made, 
the quantities v and CY occur in similar ways in the equations of change for momentum 
and energy transport. Their ratio v / a  indicates the relative ease of momentum and en- 
ergy transport in flow systems. This dimensionless ratio 

is called the Prandtl number.%nother dimensionless group that we will encounter in 
subsequent chapters is the Piclet number: P6 = RePr. 

The units that are commonly used for thermal conductivity and related quantities 
are given in Table 9.1-1. Other units, as well as the interrelations among the various sys- 
tems, may be found in Appendix F. 

Thermal conductivity can vary all the way from about 0.01 W/m K for gases to 
about 1000 W/m . K for pure metals. Some experimental values of the thermal con- 

The linear theory of thermoviscoelasticity does predict relaxation effects in heat conduction, 
as discussed by R. M. Christensen, Theory of Viscoelasticity, Academic Press, 2nd edition (1982). The 
effect has also been found from a kinetic theory treatment of the energy equation by R. B. Bird and 
C. F. Curtiss, J. Non-Newtonian Fluid Mechanics, 79,255-259 (1998). 

"his dimensionless group, named for Ludwig Prandtl, involves only the physical properties of 
the fluid. 

Jean-Claude-Eug&ne Pkclet (pronounced "Pay-clay" with the second syllable accented) 
(1 793-1857) authored several books including one on heat conduction. 
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Table 9.1-1 Summary of Units for Quantities in Eqs. 9.1-2 and 9 

SI c.g.s. British 

call cm2 - s Btu/hr. ft2 
C F 
cm ft 
cal/cm - s .  C Btu/hr. ft . F 
cal/C a g Btu/F lb, 
cm2 / s ft2/s 
g/cm. s Ib,/ft - hr 

- 

Note: The watt (W) is the same as J/s, the joule (J) is the same as N - m, 
the newton (N) is kg. m/s2, and the Pascal (Pa) is N/m2. For more 
information on interconversion of units, see Appendix F. 

ductivity of gases, liquids, liquid metals, and solids are given in Tables 9.1-2, 9.1-3, 
9.1-4, and 9.1-5. In making calculations, experimental values should be used when 
possible. In the absence of experimental data, one can make estimates by using the 
methods outlined in the next several sections or by consulting various engineering 
 handbook^.^ 

Table 9.1-2 Thermal Conductivities, Heat Capacities, and Prandtl Numbers of Some 
Common Gases at 1 atm Pressuren 

Temperature Thermal conductivity Heat capacity Prandtl number 
Gas T (K) k (W/m.  K) C, (J/kg K) Pr (-4 

Taken from J. 0. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, 
New York, 2nd corrected printing (1964), Table 8.4-10. The k values are measured, the& values are 
calculated from spectroscopic data, and p is calculated from Eq. 1.4-18. The values of C,, for H, represent 
a 3: 1 ortho-para mixture. 

For example, W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, eds., Handbook of Heat Transfer, 
McGraw-Hill, New York (1998); Landolt-Bornstein, Zahlenwerte und Funktionen, Vol. II,5, Springer 
(1968-1969). 
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Measurement of 
Thermal Conductivity 

Table 9.1-3 Thermal Conductivities, Heat Capacities, and Prandtl Numbers 
for Some Nonmetallic Liquids at Their Saturation Pressuresa 

Thermal Heat Prandtl 
Temperature conductivity Viscosity capacity number 

T k x lo4 S, x lop3 Pr 
Liquid (K) (W/m K) (Pa . s) U/kg + K) (-1 

1 -Pentene 

CCl, 

(C2H5)20 

C2H50H 

Glycerol 

H2O 

a The entries in this table were prepared from functions provided by T. E. Daubert, R. P. Danner, 
H. M. Sibul, C. C. Stebbins, J. L. Oscarson, R. L. Rowley, W. V. Wilding, M. E. Adams, T. L. 
Marshall, and N. A. Zundel, DIPPRB Data Compilation of Pure Compound Properties, Design Institute 
for Physical Property Data@, AIChE, New York, NY (2000). 

A plastic panel of area A = 1 ft2 and thickness Y = 0.252 in. was found to conduct heat at a 
rate of 3.0 W at steady state with temperatures To = 24.00"C and T, = 26.00"C imposed on the 
two main surfaces. What is the thermal conductivity of the plastic in cal/cm. s K at 25"C? 

SOLUTION 

First convert units with the aid of Appendix F: 

A = 144 in.2 X (2.54)' = 929 cm2 

Y = 0.252 in. X 2.54 = 0.640 cm 

Q = 3.0 W X 0.23901 = 0.717 cal/s 

AT = 26.00 - 24.00 = 2.00K 

Substitution into Eq. 9.1-1 then gives 

For AT as small as 2 degrees C, it is reasonable to assume that the value of k applies at the 
average temperature, which in this case is 25°C. See Problem 10B.12 and 10C.l for methods of 
accounting for the variation of k with temperature. 



Table 9.1-4 Thermal Conductivities, Heat Capacities, and Prandtl Numbers of Some Liquid 
Metals at Atmospheric Pressurea 

Temperature Thermal conductivity Heat capacity Prandtl numberc 
Metal T (K) k (W/m K) c, (J/kg . K) Pr (-) 

" Data taken from Liquid Metals Handbook, 2nd edition, US. Government Printing Office, Washington, 
D.C. (1952), and from E. R. G. Eckert and R. M. Drake, Jr., Heat and Mass Transfer, McGraw-Hill, New 
York, 2nd edition (19591, Appendix A. 
* Based on an extrapolated heat capacity. 
' 56% Na by weight, 44% K by weight. 

Table 9.1-5 Experimental Values of Thermal Conductivities of Some Solidsa 

Substance 
Temperature Thermal conductivity 

T (K) k (W/m. K) 

Aluminum 

Cadmium 

Copper 

Steel 

Tin 

Brick (common red) 
Concrete (stone) 
Earth's crust (average) 
Glass (soda) 
Graphite 
Sand (dry) 
Wood (fir) 

parallel to axis 
normal to axis 

" Data taken from the Reactor Handbook, Vol. 2, Atomic Energy Commission AECD-3646, 
U.S. Government Printing Office, Washington, D.C. (May 19551, pp. 1766 et seq. 
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59.2 TEMPERATURE AND PRESSURE DEPENDENCE OF 
THERMAL CONDUCTIVITY 

When thermal conductivity data for a particular compound cannot be found, one can 
make an estimate by using the corresponding-states chart in Fig. 9.2-1, which is based on 
thermal conductivity data for several monatomic substances. This chart, which is similar 
to that for viscosity shown in Fig. 1.3-1, is a plot of the reduced thermal conductivity k, = 

k/k,, which is the thermal conductivity at pressure p and temperature T divided by the 
thermal conductivity at the critical point. This quantity is plotted as a function of the re- 
duced temperature T, = T/T, and the reduced pressure p, = p / ~ , .  Figure 9.2-1 is based 
on a limited amount of experimental data for monatomic substances, but may be used 

Fig. 9.2-1. Reduced thermal conductivity for monatomic substances as a 
function of the reduced temperature and pressure [E. J. Owens and 
G. Thodos, AlChE Journal, 3,454461 (1957)l. A large-scale version of this 
chart may be found in 0. A. Hougen, K. M. Watson, and R. A. Ragatz, 
Chemical Process Principles Charts, 2nd edition, Wiley, New York (1960). 
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for rough estimates for polyatomic materials. It should not be used in the neighborhood 
of the critical point.' 

It can be seen that the thermal conductivity of a gas approaches a limiting function 
of T at low pressures; for most gases this limit is reached at about 1 atm pressure. The 
thermal conductivities of gases at low density increase with increasing temperature, 
whereas the thermal conductivities of most liquids decrease with increasing temperature. 
The correlation is less reliable in the liquid region; polar or associated liquids, such as 
water, may exhibit a maximum in the curve of k  versus T. The main virtue of the 
corresponding-states chart is that one gets a global view of the behavior of the thermal 
conductivity of gases and liquids. 

The quantity kc may be estimated in one of two ways: (i) given k  at a known temper- 
ature and pressure, preferably close to the conditions at which k  is to be estimated, one 
can read k, from the chart and compute kc = k / k , ;  or (ii) one can estimate a value of k  in 
the low-density region by the methods given in 99.3 and then proceed as in (i). Values of 
kc obtained by method (i) are given in Appendix E. 

For mixtures, one might estimate the thermal conductivity by methods analogous to 
those described in 91.3. Very little is known about the accuracy of pseudocritical proce- 
dures as applied to thermal conductivity, largely because there are so few data on mix- 
tures at elevated pressures. 

Estimate the thermal conductivity of ethane at 153'F and 191.9 atm from the experimental 
value2 k  = 0.0159 Btu/hr. ft . F at 1 atm and 153°F. 

Effect of Pressure on 
Thermal Conductivity SOLmON 

Since a measured value of k  is known, we use method (i). First we calculate p, and T ,  at the 
condition of the measured value: 

From Fig. 9.2-1 we read k, = 0.36. Hence kc is 

At 153°F (T,  = 1.115) and 191.9 atm (p ,  = 3.98), we read from the chart k, = 2.07. The predicted 
thermal conductivity is then 

An observed value of 0.0453 Btu/hr ft F has been reported.' The poor agreement shows that 
one should not rely heavily on this correlation for polyatomic substances nor for conditions 
near the critical point. 

In the vicinity of the critical point, where the thermal conductivity diverges, it is customary to 
write k = kb + Ak, where kb is the "background" contribution and Ak is the "critical enhancement'' 
contribution. The kc being used in the corresponding states correlation is the background contribution. 
For the behavior of transport properties near the critical point, see J. V. Sengers and J. Luettmer 
Strathmann, in Transport Properties of Fluids (J. H.  Dymond, J. Millat, and C. A. Nieto de Castro, eds.), 
Cambridge University Press (1995); E. P. Sakonidou, H. R. van den Berg, C. A. ten Seldam, and 
J. V. Sengers, J. Chem. Phys., 105,10535-10555 (1996) and 109,717-736 (1998). 

J. M. Lenoir, W. A. Junk, and E. W. Comings, Chem. Eng. Progr., 49,539-542 (1949). 
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59.3 THEORY OF THERMAL CONDUCTIVITY 
OF GASES AT LOW DENSITY 

The thermal conductivities of dilute monatomic gases are well understood and can be de- 
scribed by the kinetic theory of gases at low density. Although detailed theories for poly- 
atomic gases have been developed,' it is customary to use some simple approximate 
theories. Here, as in 91.5, we give a simplified mean free path derivation for monatomic 
gases, and then summarize the result of the Chapman-Enskog kinetic theory of gases. 

We use the model of rigid, nonattracting spheres of mass m and diameter d. The gas 
as a whole is at rest (v = O), but the molecular motions must be accounted for. 

As in 91.5, we use the following results for a rigid-sphere gas: 

ii = @ = mean molecular speed (9.3-1) 

Z = in@ = wall collision frequency per unit area (9.3-2) 

h = = mean free path 
* d 2 n  

The molecules reaching any plane in the gas have had, on an average, their last collision 
at a distance a from the plane, where 

In these equations K is the Boltzmann constant, n is the number of molecules per unit 
volume, and m is the mass of a molecule. 

The only form of energy that can be exchanged in a collision between two smooth 
rigid spheres is translational energy. The mean translational energy per molecule under 
equilibrium conditions is 

as shown in Prob. 1C.1. For such a gas, the molar heat capacity at constant volume is 

in which R is the gas constant. Equation 9.3-6 is satisfactory for monatomic gases up to 
temperatures of several thousand degrees. 

To determine the thermal conductivity, we examine the behavior of the gas under a 
temperature gradient dT/dy (see Fig. 9.3-1). We assume that Eqs. 9.3-1 to 6 remain valid 
in this nonequilibrium situation, except that $rnZ in Eq. 9.3-5 is taken as the average ki- 
netic energy for molecules that had their last collision in a region of temperature T. The 
heat flux qy across any plane of constant y is found by summing the kinetic energies of 
the molecules that cross the plane per unit time in the positive y direction and subtract- 
ing the kinetic energies of the equal number that cross in the negative y direction: 

' C. S. Wang Chang, G. E. Uhlenbeck, and J. de Boer, Studies in Statistical Mechanics, Wiley- 
Interscience, New York, Vol. I1 (1964, pp. 241-265; E. A. Mason and L. Monchick, J. Chem. Phys., 35, 
1676-1697 (1961) and 36,1622-1639,2746-2757 (1962); L. Monchick, A. N. G. Pereira, and E. A. Mason, 
J .  Chem. Phys., 42,3241-3256 (1965). For an introduction to the kinetic theory of the transport properties, 
see R. S. Berry, S. A. Rice, and J. Ross, Physical Chemistry, 2nd edition (2000), Chapter 28. 
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Fig. 9.3-1. Molecular transport 
of (kinetic) energy from plane 
at (y - a) to plane at y. 

Equation 9.3-7 is based on the assumption that all molecules have velocities representa- 
tive of the region of their last collision and that the temperature profile T(y) is linear for a 
distance of several mean free paths. In view of the latter assumption we may write 

By combining the last three equations we get 

This corresponds to Fourier's law of heat conduction (Eq. 9.1-2) with the thermal con- 
ductivity given by 

k = fn~iih = iP tv i i~  (monatomic gas) (9.3-1 1) 

in which p = nrn is the gas density, and kV = f K / m  (from Eq. 9.3-6). 
Substitution of the expressions for ii and A from Eqs. 9.3-1 and 3 then gives 

k = - - - - tv (monatomic gas) 
,d2 3%- r d 2  

which is the thermal conductivity of a dilute gas composed of rigid spheres of diameter 
d. This equation predicts that k is independent of pressure. Figure 9.2-1 indicates that this 
prediction is in good agreement with experimental data up to about 10 atm for most 
gases. The predicted temperature dependence is too weak, as was the case for viscosity. 

For a more accurate treatment of the monatomic gas, we turn again to the rigorous 
Chapman-Enskog treatment discussed in 51.5. The Chapman-Enskog formula2 for the 
thermal conductivity of a monatomic gas at low density and temperature T is 

k = - vmii 25w?v or k =  1.9891 X 10'- (monatomic gas) (9.3-13) 
32 .rra21nk a 2CRk 

In the second form of this equation, k [=I  cal/cm . s K, T [=I K, a [=I  A, and the "colli- 
sion integral" for thermal conductivity, SZk, is identical to that for viscosity, a, in 51.4. 

J. 0. Hirschfelder, C .  F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New 
York, 2nd corrected printing (19641, p. 534. 
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Values of ilk = a, are given for the Lennard-Jones intermolecular potential in Table E.2 
as a function of the dimensionless temperature KT/&. Equation 9.3-13, together with 
Table E.2, has been found to be remarkably accurate for predicting thermal conductivi- 
ties of monatomic gases when the parameters o and E deduced from viscosity measure- 
ments are used (that is, the values given in Table E.l). 

Equation 9.3-13 is very similar to the corresponding viscosity formula, Eq. 1.4-14. 
From these two equations we can then get 

15 R k = -- 5 - 
p = 2 Cvp (monatomic gas) (9.3-14) 

The simplified rigid-sphere theory (see Eqs. 1.4-8 and 9.3-11) gives k = evP and is thus in 
error by a factor 2.5. This is not surprising in view of the many approximations that were 
made in the simple treatment. 

So far we have discussed only monatomic gases. We know from the discussion in 50.3 
that, in binary collisions between diatomic molecules, there may be interchanges be- 
tween kinetic and internal (i.e., vibrational and rotational) energy. Such interchanges are 
not taken into account in the Chapman-Enskog theory for monatomic gases. It can there- 
fore be anticipated that the Chapman-Enskog theory will not be adequate for describing 
the thermal conductivity of polyatomic molecules. 

A simple semiempirical method of accounting for the energy exchange in poly- 
atomic gases was developed by E ~ c k e n . ~  His equation for thermal conductivity of a 
polyatomic gas at low density is 

k = ( *  C, + - El) - p (polyatomic gas) 

This Eucken formula includes the monatomic formula (Eq. 9.3-14) as a special case, be- 
cause ?, = ~ ( R / M )  for monatomic gases. Hirschfelder4 obtained a formula similar to that 
of Eucken by using multicomponent-mixture theory (see Example 19.4-4). Other theo- 
ries, correlations, and empirical formulas are also a~ai lable .~ ,~  

Equation 9.3-15 provides a simple method for estimating the Prandtl number, de- 
fined in Eq. 9.1-8: - 

This equation is fairly satisfactory for nonpolar polyatomic gases at low density, as can 
be seen in Table 9.3-1; it is less accurate for polar molecules. 

The thermal conductivities for gas mixtures at low density may be estimated by a 
method7 analogous to that previously given for viscosity (see Eqs. 1.4-15 and 16): 

The x, are the mole fractions, and the k, are the thermal conductivities of the pure chem- 
ical species. The coefficients are identical to those appearing in the viscosity equation 

- - 

A. Eucken, Physik. Z., 14,324-333 (1913); "Eucken" is pronounced "Oy-ken." 
J. 0. Hirschfelder, J. Chem. Phys., 26,274-281,282-285 (1957). 
J.  H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in  Gases, North-Holland, 

Amsterdam (1972). 
' R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, McGraw-Hill, New 

York, 4th edition (1987). 
E. A. Mason and S. C. Saxena, Physics of Fluids, 1,361-369 (1958). Their method is an 

approximation to a more accurate method given by J. 0. Hirschfelder, J. Chem. Phys., 26,274-281, 
282-285 (1957). With Professor Mason's approval we have omitted here an empirical factor 1.065 in his 
Qii expression for i # j to establish self-consistency for mixtures of identical species. 



s9.3 Theory of Thermal Conductivity of Gases at Low Density 277 

Table 9.3-1 Predicted and Observed Values of the Prandtl Number for Gases 
at Atmospheric Pressurea 

- -- 

& ~ / k  from ePr / k from observed 
Gas T(K) Eq. 9.3-16 values of C,, p, and k 

N2 
0 2  

Air 
CO 
NO 
c4 

" Calculated from values given by M. Jakob, Heaf Transfer, Wiley, New York (19491, pp. 75-76. 
J. 0. Hirschfelder, C. F. Curtis, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, 

New York, corrected printing (1964), p. 16. 

(see Eq. 1.4-16). All values of k, in Eq. 9.3-17 and p, in Eq. 1.4-16 are low-density values 
at the give; temperature. If viscosity data are not available, they may be estimated 
from k and C, via Eq. 9.3-15. Comparisons with experimental data7 indicate an average 
deviation of about 4% for mixtures containing nonpolar polyatomic gases, including 
02, N2, CO, C2H2, and CH,. 

Compute the thermal conductivity of Ne at 1 atm and 373.2K. 

Computation of the SOLUTION 
lhenal Conductivity From Table E.l the Lennard-Jones constants for neon are u = 2.789 A and E/K  = 35.7K, and 
'fa Monatomic Gas its molecular weight M is 20.183. Then, at 373.2K, we have KT/E = 373.2/35.7 = 10.45. From 
a t  Low Density Table E.2 we find that flk = fl, = 0.821. Substitution into Eq. 9.3-13 gives 

A measured value of 1.35 X cal/cm. s . K has been reported8 at 1 atm and 373.2K. 

W. G. Kannuluik and E. H. Carman, Proc. Phys. Soc. (London), 65B, 701-704 (1952). 
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Estimation of the 
Thermal Conductivity 
of a Polyatomic Gas 
at Low Density 

EXAMPLE 9.3-3 

Prediction of the 
Thermal Conductivity 
of a Gas Mixture a t  
Low Density 

Estimate the thermal conductivity of molecular oxygen at 300K and low pressure. 

SOLUTION 

The molecular weight of O2 is 32.0000; its molar heat capacity tp at 300°K and low pressure is 
7.019 cal/g-mole . K. From Table E.l we find the Lennard-Jones parameters for molecular 
oxygen to be a = 3.433 A and E / K  = 113K. At 300K, then, K T / E  = 300/113 = 2.655. From 
Table E.2, we find R, = 1.074. The viscosity, from Eq. 1.4-14, is 

Then, from Eq. 9.3-15, the Eucken approximation to the thermal conductivity is 

This compares favorably with the experimental value of 0.02657 W/m K in Table 9.1-2. 

Predict the thermal conductivity of the following gas mixture at 1 atm and 293K from the 
given data on the pure components at the same pressure and temperature: 

- - 

Mole Molecular 
fraction weight x lo7 k, x lo7 

Species a X, M ,  (g/cm. s) (cal/cm - s . K) 

SOLUTION 

Use Eq. 9.3-17. We note that the for this gas mixture at these conditions have already been 
computed in the viscosity calculation in Example 1.4-2. In that example we evaluated the fol- 
lowing summations, which also appear in Eq. 9.3-17: 

Substitution in Eq. 9.3-17 gives 

No data are available for comparison at these conditions. 



59.4 Theory of Thermal Conductivity of Liquids 279 

59.4 THEORY OF THERMAL CONDUCTIVITY OF LIQUIDS 

A very detailed kinetic theory for the thermal conductivity of monatomic liquids was 
developed a half-century ago,' but it has not yet been possible to implement it for prac- 
tical calculations. As a result we have to use rough theories or empirical estimation 
methods.' 

We choose to discuss here Bridgman's simple theory3 of energy transport in pure 
liquids. He assumed that the molecules are arranged in a cubic lattice, with a center- 
to-center spacing given by in which ?/N is the volume per molecule. He 
further assumed energy to be transferred from one lattice plane to the next at the 
sonic velocity v, for the given fluid. The development is based on a reinterpretation of 
Eq. 9.3-11 of the rigid-sphere gas theory: 

The heat capacity at constant volume of a monatomic liquid is about the scme as for a 
solid at high temperature, which is given by the Dulong and Petit formula4 Cv = 3(~/m) .  
The mean molecular speed in the y direction, m, is replaced by the sonic velocity us. The 
distance a that the energy travels between two successive collisions is taken to be the lat- 
tice spacing (?/I?)'13. Making these substitutions in Eq. 9.4-1 gives 

which is Bridgrnan's equation. Experimental data show good agreement with Eq. 9.4-2, 
even for polyatomic liquids, but the numerical coefficient is somewhat too high. Better 
agreement is obtained if the coefficient is changed to 2.80: 

This equation is limited to densities well above the critical density, because of the tacit 
assumption that each molecule oscillates in a "cage" formed by its nearest neighbors. 
The success of this equation for polyatomic fluids seems to imply that the energy trans- 
fer in collisions of polyatomic molecules is incomplete, since the heat capacity used here, 
kv = 3(~/rn), is less than the heat capacities of polyatomic liquids. 

The velocity of low-frequency sound is given (see Problem 11C.1) by 

The quantity (dp/dp), may be obtained from isothermal compressibility measurements 
or from an equation of state, and (Cp/Cv) is very nearly unity for liquids, except near the 
critical point. 

' J. H. Irving and J. G. Kirkwood, I. Chem. Phys., 18,817-829 (1950). This theory has been extended 
to polymeric liquids by C. F. Curtiss and R. B. Bird, J .  Chem. Phys., 107,5254-5267 (1997). 

R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, McGraw-Hill, 
New York (1987); L. Riedel, Chemie-1ng.-Techn., 27,209-213 (1955). 

". W. Bridgman, Proc. Am. Acad. Arts and Sci., 59,141-169 (1923). Bridgman's equation is often 
misquoted, because he gave it in terms of a little-known gas constant equal to SK. 

This empirical equation has been justified, and extended, by A. Einstein [Ann. Phys. [41,22, 
180-190 (1907)l and P. Debye [Ann. Phys., [4139,789-839 (1912)l. 

Equation 9.4-3 is in approximate agreement with a formula derived by R. E. Powell, 
W. E. Roseveare, and H. Eyring, Ind. Eng. Chem., 33,430-435 (1941). 
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EXAMPLE 9.4-1 

Prediction of the 

The density of liquid CCI, at 20°C and 1 atm is 1.595 g/cm3, and its isothermal compressibility 
( l /p ) (ap /a~)~  is 90.7 X atm-'. What is its thermal conductivity? 

Thermal Conductivity SOLUTION 
of a Liquid 

First compute 

= 7.00 X lo9 cm2/s2 (using Appendix F) (9.4-5) 

Assuming that CJC, = 1.0, we get from Eq. 9.4-4 

The molar volume is = M / p  = 153.84/1.595 = 96.5 cm3/g-mole. Substitution of these val- 
ues in Eq. 9.4-3 gives 

The experimental value as interpolated from Table 9.1-3 is 0.101 W/m K. 

s9.5 THERMAL CONDUCTIVITY OF SOLIDS 

Thermal conductivities of solids have to be measured experimentally, since they depend 
on many factors that are difficult to measure or predict.' In crystalline materials, the 
phase and crystallite size are important; in amorphous solids the degree of molecular 
orientation has a considerable effect. In porous solids, the thermal conductivity is 
strongly dependent on the void fraction, the pore size, and the fluid contained in the 
pores. A detailed discussion of thermal conductivity of solids has been given by Jakob.' 

In general, metals are better heat conductors than nonmetals, and crystalline materi- 
als conduct heat more readily than amorphous materials. Dry porous solids are very 
poor heat conductors and are therefore excellent for thermal insulation. The conductivi- 
ties of most pure metals decrease with increasing temperature, whereas the conductivi- 
ties of nonmetals increase; alloys show intermediate behavior. Perhaps the most useful 
of the rules of thumb is that thermal and electrical conductivity go hand in hand. 

For pure metals, as opposed to alloys, the thermal conductivity k and the electrical 
conductivity k, are related approximately3 as follows: 

-- - L = constant 
k J  

This is the Wiedemann-Franz-Lorenz equation; this equation can also be explained theoret- 
ically (see Problem 9A.6). The "Lorenz number" L is about 22 to 29 X lop9 volt2/K2 for 

A. Goldsmith, T. E. Waterman, and H. J. Hirschhorn, eds., Handbook of Thermophysical Properfies of 
Solids, Macmillan, New York (1961). 

M. Jakob, Heat Transfer, Vol. 1, Wiley, New York (1949), Chapter 6. See also W. H. Rohsenow, 
J. P. Hartnett, and Y. I. Cho, eds., Handbook of Heat Transfer, McGraw-Hill, New York (1998). 

%. Wiedemann and R. Franz, Ann. Phys. u. Chernie, 89,497-531 (1853); L. Lorenz, Poggendorff's 
Annalen, 147,429-452 (1872). 
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pure metals at 0°C and changes but little with temperatures above O°C, increases of 
10-20% per 1000°C being typical. At very low temperatures (-269.4"C for mercury) met- 
als become superconductors of electricity but not of heat, and L thus varies strongly with 
temperature near the superconducting region. Equation 9.5-1 is of limited use for alloys, 
since L varies strongly with composition and, in some cases, with temperature. 

The success of Eq. 9.5-1 for pure metals is due to the fact that free electrons are the 
major heat carriers in pure metals. The equation is not suitable for nonmetals, in which 
the concentration of free electrons is so low that energy transport by molecular motion 
predominates. 

59.6 EFFECTIVE THERMAL CONDUCTIVITY 
OF COMPOSITE SOLIDS 

Up to this point we have discussed homogeneous materials. Now we turn our attention 
briefly to the thermal conductivity of two-phase solids--one solid phase dispersed in a 
second solid phase, or solids containing pores, such as granular materials, sintered met- 
als, and plastic foams. A complete description of the heat transport through such materi- 
als is clearly extremely complicated. However, for steady conduction these materials can 
be regarded as homogeneous materials with an effective thermal conductivity keff, and the 
temperature and heat flux components are reinterpreted as the analogous quantities av- 
eraged over a volume that is large with respect to the scale of the heterogeneity but small 
with respect to the overall dimensions of the heat conduction system. 

The first major contribution to the estimation of the conductivity of heterogeneous 
solids was by Maxwell.' He considered a material made of spheres of thermal conductiv- 
ity k, embedded in a continuous solid phase with thermal conductivity ko. The volume 
fraction 4 of embedded spheres is taken to be sufficiently small that the spheres do not 
"interact" thermally; that is, one needs to consider only the thermal conduction in a large 
medium containing only one embedded sphere. Then by means of a surprisingly simple 
derivation, Maxwell showed that for small volume fraction 4 

(see Problems llB.8 and llC.5). 
For large volume fraction 4, Rayleigh2 showed that, if the spheres are located at the in- 

tersections of a cubic lattice, the thermal conductivity of the composite is given by 

Comparison of this result with Eq. 9.6-1 shows that the interaction between the spheres 
is small, even at 4 = in, the maximum possible value of 4 for the cubic lattice arrange- 
ment. Therefore the simpler result of Maxwell is often used, and the effects of nonuni- 
form sphere distribution are usually neglected. 

Maxwell's derivation was for electrical conductivity, but the same arguments apply for thermal 
conductivity. See J. C. Maxwell, A Treatise on Electricity and Magnetism, Oxford University Press, 3rd 
edition (1891, reprinted 1998), Vol. 1, s314; H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 
Clarendon Press, Oxford, 2nd edition (1959), p. 428. 

J. W. Strutt (Lord Rayleigh), Phil. Mag. (5), 34,431-502 (1892). 
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For nonspherical inclusions, however, Eq. 9.6-1 does require modification. Thus for 
square arrays of long cylinders parallel to the z axis, ~ a y l e i ~ h ~  showed that the zz com- 
ponent of the thermal conductivity tensor K is 

and the other two components are 

Keff, xx Keff, yy - - 1 + 24 
(9.6-4) 

ko ko kl - ko 
(0.305844~ + 0.0133634~ + . . -1 

That is, 
the composite solid containing aligned embedded cylinders is anisotropic. The effective 
thermal conductivity tensor has been computed up to 0(+') for a medium containing 
spheroidal  inclusion^.^ 

For complex nonspherical inclusions, often encountered in practice, no exact treatment 
is possible, but some approximate relations are a~a i lab le .~ ,~ ,~  For simple unconsolidated 
granular beds the following expression has proven successful: 

in which 

The gk are "shape factors" for the granules of the medium: and they must satisfy g, t 
g2 + g3 = 1. For spheres g1 = g2 = g3 = & and Eq. 9.6-5 reduces to Eq. 9.6-1. For unconsol- 
idated soils? gl = g2 = d and g3 = 2. The structure of consolidated porous beds-for ex- 
ample, sandstones-is considerably more complex. Some success is claimed for 
predicting the effective conductivity of such s~bstances;l.~,~ but the generality of the 
methods is not yet known. 

For solids containing gas  pocket^,^ thermal radiation (see Chapter 16) may be impor- 
tant. The special case of parallel planar fissures perpendicular to the direction of heat 
conduction is particularly important for high-temperature insulation. For such systems it 
may be shown that 

where a is the Stefan-Boltzmann constant, k1 is the thermal conductivity of the gas, and 
L is the total thickness of the material in the direction of the heat conduction. A modifica- 
tion of this equation for fissures of other shapes and orientations is a~ailable.~ 

S.-Y. Lu and S. Kim, AIChE lournal, 36,927-938 (1990). 
". I. Odelevskii, J. Tech. Phys. (USSR), 24,667 and 697 (1954); F. Euler, J. Appl. Phys., 28,1342-1346 

(1957). 
D. A. de Vries, Mededelingen van de Landbouwhogeschool te Wageningen, (1952); see also Ref. 6 and 

D. A. de Vries, Chapter 7 in Physics of Plant Environment, W. R. van Wijk, ed., Wiley, New York (1963). 
W. Woodside and J. H. Messmer, J. Appl. Phys., 32,1688-1699,1699-1706 (1961). 
A. L. Loeb, J. Amer. Ceramic Soc., 37,96-99 (1954). 
Sh. N. Plyat, Soviet Physics JETP, 2,2588-2589 (1957). 
M. Jakob, Heat Transfer, Wiley, New York (1959), Vol. 1,§6.5. 
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For gas-filled granular beds6r9 a different type of complication arises. Since the thermal 
conductivities of gases are much lower than those of solids, most of the gas-phase heat 
conduction is concentrated near the points of contact of adjacent solid particles. As a re- 
sult, the distances over which the heat is conducted through the gas may approach the 
mean free path of the gas molecules. When this is true, the conditions for the develop- 
ments of 59.3 are violated, and the thermal conductivity of the gas decreases. Very effec- 
tive insulators can thus be prepared from partially evacuated beds of fine powders. 

Cylindrical ducts filled with granular materials through which a fluid is flowing (in the z di- 
rection) are of considerable importance in separation processes and chemical reactors. In 
such systems the effective thermal conductivities in the radial and axial directions are 
quite different and are designated1' by K ~ ~ ~ , ~ ~  and K,,,,,. Conduction, convection, and radia- 
tion all contribute to the flow of heat through the porous medium." For highly turbulent 
flow, the energy is transported primarily by the tortuous flow of the fluid in the inter- 
stices of the granular material; this gives rise to a highly anisotropic thermal conductivity. 
For a bed of uniform spheres, the radial and axial components are approximately 

in which vo is the "superficial velocity" defined in 54.3 and 56.4, and D, is the diameter of 
the spherical particles. These simplified relations hold for Re = D,vop/p greater than 
200. The behavior at lower Reynolds numbers is discussed in several references.12 Also, 
the behavior of the effective thermal conductivity tensor as a function of the Pkclet num- 
ber has been studied in considerable detail.13 

59.7 CONVECTIVE TRANSPORT OF ENERGY 

In 59.1 we gave Fourier's law of heat conduction, which accounts for the energy trans- 
ported through a medium by virtue of the molecular motions. 

Energy may also be transported by the bulk motion of the fluid. In Fig. 9.7-1 we 
show three mutually perpendicular elements of area dS at the point P, where the fluid 

Fig. 9.7-1. Three mutually perpendicular surface elements of area dS across which energy is 
being transported by convection by the fluid moving with the velocity v. The volume rate of 
flow across the faceperpendicular to the x-axis is v,dS, and the rate of flow of energy across 
dS is then (ipv2 + pU)v,dS. Similar expressions can be written for the surface elements per- 
pendicular to the y- and z-axes. 

In See Eq. 9.1-7 for the modification of Fourier's law for anisotropic materials. The subscripts rr and 
zz emphasize that these quantities are components of a second-order symmetrical tensor. 

"W. B. Argo and J. M. Smith, Chem. Engr. Progress, 49,443-451 (1953). 
l2 J. Beek, Adv. Chem. Engr., 3,203-271 (1962); H.  Kramers and K. R. Westerterp, Elements of Chemical 

Reacfor Design and Operation, Academic Press, New York (1963), gIII.9; 0. Levenspiel and K. B. Bischoff, 
Adv. Chem. Engr., 4,95-198 (1963). 

l3 D. L. Koch and J. F. Brady, J. Fluid Mech., 154,399427 (1985). 
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velocity is v. The volume rate of flow across the surface element dS perpendicular to the 
x-axis is v,dS. The rate at which energy is being swept across the same surface element is 
then 

in which $pv2 = $p(v: + 4 + vi) is the kinetic energy per unit volume, and pir is the inter- 
nal energy per unit volume. 

The definition of the internal energy in a nonequilibrium situation requires some 
care. From the continuum point of view, the internal energy at position r and time t is as- 
sumed to be the same function of the local, instantaneous density and temperature that 
one would have at equilibrium. From the molecular point of view, the internal energy 
consists of the sum of the kinetic energies of all the constituent atoms (relative to the 
flow velocity v), the intramolecular potential energies, and the intermolecular energies, 
within a small region about the point r at time t. 

Recall that, in the discussion of molecular collisions in 50.3, we found it convenient 
to regard the energy of a colliding pair of molecules to be the sum of the kinetic energies 
referred to the center of mass of the molecule plus the intramolecular potential energy of 
the molecule. Here also we split the energy of the fluid (regarded as a continuum) into 
kinetic energy associated with the bulk fluid motion and the internal energy associated 
with the kinetic energy of the molecules with respect to the flow velocity and the intra- 
and intermolecular potential energies. 

We can write expressions similar to Eq. 9.7-1 for the rate at which energy is being 
swept through the surface elements perpendicular to the y- and z-axes. If we now multi- 
ply each of the three expressions by the corresponding unit vector and add, we then get, 
after division by dS, 

and this quantity is called the convective energy flux vector. To get the convective energy 
flux across a_ unit surface whose normal unit vector is n, we form the dot product 
(n . ($v2 + pU)v). It is understood that this is the flux from the negative side of the sur- 
face to the positive side. Compare this with the convective momentum flux in Fig. 1.7-2. 

g9.8 WORK ASSOCIATED WITH MOLECULAR MOTIONS 

Presently we will be concerned with applying the law of conservation of energy to 
"shells" (as in the shell balances in Chapter 10) or to small elements of volume fixed in 
space (to develop the equation of change for energy in §11.1). The law of conservation of 
energy for an open flow system is an extension of the first law of classical thermodynam- 
ics (for a closed system at rest). In the latter we state that the change in internal energy is 
equal to the amount of heat added to the system plus the amount of work done on the 
system. For flow systems we shall need to account for the heat added to the system (by 
molecular motions and by bulk fluid motion) and also for the work done on the system 
by the molecular motions. Therefore it is appropriate that we develop here the expres- 
sion for the rate of work done by the molecular motions. 

First we recall that, when a force F acts on a body and causes it to move through a 
distance dr, the work done is dW = (F dr). Then the rate of doing work is dW/dt = 

(F . drldt) = (F v)-that is, the dot product of the force times the velocity. We now 
apply this formula to the three perpendicular planes at a point P in space shown in 
Fig. 9.8-1. 

First we consider the surface element perpendicular to the x-axis. The fluid on the 
minus side of the surface exerts a force IT# on the fluid that is on the plus side (see 
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Fig. 9.8-1. Three mutually perpendicular surface elements of area dS at point P along with 
the stress vectors m,, my, n, acting on these surfaces. In the first figure, the rate at which 
work is done by the fluid on the minus side of dS on the fluid on the plus side of dS is then 
(a,. v)dS = [m v],dS. Similar expressions hold for the surface elements perpendicular to 
the other two coordinate axes. 

Table 1.2-1). Since the fluid is moving with a velocity v, the rate at which work is done 
by the minus fluid on the plus fluid is (n, v)dS. Similar expressions may be written for 
the work done across the other two surface elements. When written out in component 
form, these rate of work expressions, per unit area, become 

When these scalar components are multiplied by the unit vectors and added, we get the 
"rate of doing work vector per unit area," and we can call this, for short, the work flux: 

Furthermore, the rate of doing work across a unit area of surface with orientation given 
by the unit vector n is (n . [n - v]). 

Equations 9.8-1 to 9.8-4 are easily written for cylindrical coordinates by replacing 
x, y, z by r,  8, z and, for spherical coordinates by replacing x, y, z by r, 6, 4. 

We now define, for later use, the combined energy flux vector e as follows: 

The e vector is the sum of (a) the convective energy flux, (b) the rate of doing work (per 
unit area) by molecular mechanisms, and (c) the rate of transporting heat (per unit area) 
by molecular mechanisms. All the terms in Eq. 9.8-5 have the same sign convention, so 
that ex is the energy transport in the positive x direction per unit area per unit time. 

The total molecular stress tensor .rr can now be split into two parts: n = p6 + T 
so that [n . v] = pv + [T v]. The term py can then be combined with !he internal 
energy term to give an enthalpy term pUv + pv = p ( ~  + (p/p))v = p(U + pi3v = 

&v, so that 

e = ($pv2 + p k v  + [T . v] + q (9.8-6) 

We shall usually use the e vector in this form. For a surface element dS of orientation n, 
the quantity (n . e) gives the convective energy flux, the heat flux, and the work flux 
across the surface element dS from the negative side to the positive side of dS. 
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Table 9.8-1 Summary of Notation for Energy Fluxes 

Symbol Meaning Reference 

(ipv2 + pinv convective energy flux vector Eq. 9.7-2 

molecular heat flux vector Eq. 9.1-6 

molecular work flux vector Eq. 9.8-4 

e = q + [P . VI + (ipv2 + p k v  combined energy flux vector Eq. 9.8-5,6 
= q + [7 ' "1 + (ipv2 + p k v  

In Table 9.8-1 we summarize the notation for the various energy flux vectors intro- 
duced in this section. All of them have the same sign convention. 

To evaluate the enthalpy in Eq. 9.8-6, we make use of the standard equilibrium ther- 
modynamics formula 

A ($), (z;)~ A 

d H =  - dT+ - dp=C,dT+ V - T  - 
[ A  (:P))p 

When this is integrated from some reference state pol To to the state p, TI we then get1 

in which H" is the enthalpy per unit mass at the reference state. The integral over p is 
zero for a? ideal gas and (l/p)(p - pO) for fluids of constant density. The integral over T 
becomes C,(T - To) if the heat capacity can be regarded as constant over the relevant 
temperature range. It is assumed that Eq. 9.8-7 is valid in nonequilibrium systems, 
where p and Tare the local values of the pressure and temperature. 

QUESTIONS FOR DISCUSSION 

1. Define and give the dimensions of thermal conductivity k, thermal diffusivity a, heat capacity 
C,, heat flux q, and combined energy flux e. For the dimensions use m = mass, I = length, T = 

temperature, and t = time. 
2. Compare the orders of magnitude of the thermal conductivities of gases, liquids, and solids. 
3. In what way are Newton's law of viscosity and Fourier's law of heat conduction similar? Dis- 

similar? 
4. Are gas viscosities and thermal conductivities related? If so, how? 
5. Compare the temperature dependence of the thermal conductivities of gases, liquids, and 

solids. 
6. Compare the orders of magnitudes of Prandtl numbers for gases and liquids. 
7. Are the thermal conductivities of gaseous Ne20 and Ne22 the same? 
8. Is the relation ?, - ?, = R true only for ideal gases, or is it also true for liquids? If it is not 

true for liquids, what formula should be used? 
9. What is the kinetic energy flux in the axial direction for the laminar Poiseuille flow of a New- 

tonian liquid in a circular tube? 
10. What is [P vl = pv + [T vl for Poiseuille flow? 

' See, for example, R. J. Silbey and R. A. Alberty, Physical Chemistry, Wiley, 3rd edition (2001), s2.11. 
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PROBLEMS 

9A.1 Prediction of thermal conductivities of gases at 
low density. 
(a) Compute the thermal conductivity of argon at 100°C 
and atmospheric pressure, using the Chapman-Enskog 
theory and the Lennard-Jones constants derived from vis- 
cosity data. Compare your result with the observed value1 
of 506 X cal/cm. s . K. 
(b) Compute the thermal conductivities of NO and CH, at 
300K and atmospheric pressure from the following data 
for these conditions: 

p X lo7 (g/cm - s) (cal/g-mole . K) 

Compare your results with the experimental values given 
in Table 9.1-2. 

9A.2 Computation of the Prandtl numbers for gases at 
low density. 
(a) By using the Eucken formula and experimental heat 
capacity data, estimate the Prandtl number at 1 atm and 
300K for each of the gases listed in the table. 
(b) For the same gases, compute the Prandtl number di- 
rectly by substituting the following value: of the physical 
properties into the defining formula Pr = C,p/k, and com- 
pare the values with the results obtained in (a). All proper- 
ties are given at low pressure and 300K. 

He 5.193 1.995 0.1546 
Ar 0.5204 2.278 0.01784 
H2 14.28 0.8944 0.1789 
Air 1.001 1.854 0.02614 
(9 0.8484 1.506 0.01661 
H20 1.864 1 .041 0.02250 

The entries in this table were prepared 
from functions provided by T. E. Daubert, 
R. P.Danner, H. M. Sibul, C. C. Stebbins, 
J. L. Oscarson, R. L. Rowley, W. V. Wilding, 
M. E. Adams, T. L. Marshall, and N. A. Zundel, 
DIPPR @ Data Compilation of Pure Compound 
Properties, Design Institute for Physical Property 
Data@, AKkE, New York (2000). 

9A.3. Estimation of the thermal conductivity of a dense 
gas. Predict the thermal conductivity of methane at 110.4 
atm and 127°F by the following methods: 
(a) Use Fig. 9.2-1. Obtain the necessary critical properties 
from Appendix E. 
(b) Use the Eucken formula to get the thermal conductiv- 
ity at 127°F and low pressure. Then apply a pressure cor- 
rection by using Fig. 9.2-1. The experimental value2 is 
0.0282 Btu/hr ft F. 
Answer: (a) 0.0294 Btu/hr. ft - F. 

9A.4. Prediction of the thermal conductivity of a gas 
mixture. Calculate the thermal conductivity of a mixture 
containing 20 mole % C02 and 80 mole % H2 at 1 atm 
and 300K. Use the data of Problem 9A.2 for your cal- 
cula tions. 
Answer: 0.1204 W/m . K 

9A.5. Estimation of the thermal conductivity of a pure 
liquid. Predict the thermal conductivity of liquid H20 at 
40°C and 40 megabars pressure (1 megabar = 10' 
dyn/cm2). The isothermal compressibility, (1 / p) (dp/dp), 
is 38 X megabar-' and the density is 0.9938 g/cm3. 
Assume that 2; = ?,. 
Answer: 0.375 Btu/hr ft . F 
9A.6. Calculation of the Lorenz number. 
(a) Application of kinetic theory to the "electron gas" in a 
metap gives for the Lorenz number 

in which K is the Boltzmann constant and e is the charge 
on the electron. Compute L in the units given under 
Eq. 9.5-1. 
(b) The electrical resistivity, l /k , ,  of copper at 20°C is 
1.72X lop6 ohm cm. Estimate its thermal conduc- 
tivity in W/m e K using Eq. 9A.6-1, and compare 
your result with the experimental value given in 
Table 9.1-4. 
Answers: (a) 2.44 X lop8  volt'/^^; (b) 416 W/m . K 
9A.7. Corroboration of the Wiedemann-Franz-Lorenz 
law. Given the following experimental data at 20°C for 
pure metals, compute the corresponding values of the 
Lorenz number, L, defined in Eq. 9.5-1. 

' J. M. Lenoir, W. A. Junk, and E. W. Comings, Chem. Engr. 
Prog., 49,539-542 (1953). 

' W. G. Kannuluik and E. H. Carman, Proc. Pkys. Soc. J. E. Mayer and M. G. Mayer, Statistical Mechanics, Wiley, 
(London), 65B, 701-704 (1952). New York (1946), p. 412; P. Drude, Ann. Phys., 1,566-613 (1900). 
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Metal (1 /kc) (ohm . cm) k (cal/cm . s . K) 

9A.8. Thermal conductivity and Prandtl number of a 
polyatomic gas. 
(a) Estimate the thermal conductivity of CH, at 1500K and 
1.37 atm. The molar heat capacity at constant pressure4 at 
1500K is 20.71 cal/g-mole . K. 
(b) What is the Prandtl number at the same pressure and 
temperature? 
Answers: (a) 5.06 X lop4 cal/cm s . K; (b) 0.89 

9A.9. Thermal conductivity of gaseous chlorine. Use 
Eq. 9.3-15 to calculate the thermal conductivity of gaseous 
chlorine. To do this you will need to use Eq. 1.4-14 to esti- 
mate the viscosity, and will also need the following values 
of the heat capacity: 

T (K) 200 300 400 500 600 
(cal/g-mole . K) (8.06) 8.12 8.44 8.62 8.74 

Check to see how well the calculated values agree with the 
following experimental thermal conductivity data5 

0. A. Hougen, K. M. Watson, and R. A. Ragatz, Chemical 
Process Principles, Vol. 1, Wiley, New York (1954), p. 253. 

Interpolated from data of E. U. Frank, Z. Elektrochem., 55, 
636 (1951), as reported in Nouveau Trait6 de Chimie Minerale, 
P. Pascal, ed., Masson et Cie, Paris (1960), pp. 158-159. 

9A.10. Thermal conductivity of chlorine-air mixtures. 
Using Eq. 9.3-17, predict thermal conductivities of chlo- 
rine-air mixtures at 297K and 1 atm for the following mole 
fractions of chlorine: 0.25, 0.50, 0.75. Air may be consid- 
ered a single substance, and the following data may be 
assumed: 

Substancea p (Pa s) k (W/m K) e, (J/kg K) 

Air 1.854 X lo-' 2.614 X lo-' 1.001 X lo3 

Chlorine 1.351 X lo-' 8.960 X 4.798 X 10' 

" The entries in this table were prepared from functions provided 
by T. E. Daubert, R. P. Danner, H. M. Sibul, C. C. Stebbins, 
J. L. Oscarson, R. L. Rowley, W. V. Wilding, M. E. Adams, 
T. L. Marshall, and N. A. Zundel, DIPPR @ Data Compilation of 
Pure Compound Properties, Design Institute for Physical Property 
Data@, AIChE, New York (2000). 

9A.11. Thermal conductivity of quartz sand. A typical 
sample of quartz sand has the following properties at 20°C: 

Component Volume fraction 4, k cal/cm s . K 

i = 1: Silica 0.510 20.4 x lo-3 
i = 2: Feldspar 0.063 7.0 X 

Continuous phase (i = 0) is one of the following: 
(i) Water 0.427 1.42 X lop3 
(ii) Air 0.427 0.0615 X lop3 

Estimate the thermal conductivity of the sand (i) when it is 
water saturated, and (ii) when it is completely dry. 
(a) Use the following generalization of Eqs. 9.6-5 and 6: 

Here N is the number of solid phases. Compare the predic- 
tion for spheres (g, = g2 = g3 = i) with the recommenda- 
tion of de Vries (gl = g2 = i; g3 = 9 ) .   he latter gi values 
closely approximate the fitted ones6 for the present sam- 
ple. The right-hand member of Eq. 9A.11-1 is to be multi- 
plied by 1.25 for completely dry sand.6 
(b) Use Eq. 9.6-1 with k, = 18.9 X cal/cm s . K, 
which is the volume-average thermal conductivity of the 
two solids. Observed values, accurate within about 3%, are 

The behavior of partially wetted soil has been treated by 
D. A. de Vries, Chapter 7 in Physics and Plant Environment, 
W. R. van Wijk, ed., Wiley, New York (1963). 
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6.2 and 0.58 x W3 cal/cm . s . K for wet and dry sand, re- These three equations give the density corrections to the 
spe~tively.~ viscosity and thermal conductivity of a hypothetical gas 

Answers in cal/cm. s K for wet and dry sand respectively: made up rigid 

(a) Eq. 9A.11-1 gives keff = 6.3 X 10" and 0.38 x 10" with Enskog further suggested that for real gases, (i) y can 

g, = g, = g3 =$ VS. 6.2 X and 0.54 X with g, = g2 = be given empirically 

and g, = $. (b) Eq. 9.6-1 gives keff = 5.1 X 10" and 0.30 X 

(9C.1-4) 

9A.12. Calculation of molecular diameters from trans- 
port properties. where experimental p - V - ~  data are used, and (ii) bo can be 
(a) Determine the molecular diameter d for argon from Eq. determined by fitting the minimum in the curve of 
1.4-9 and the experimental viscosity given in Problem 9A.2. (p/pO)V versus Y. 
(b) Repeat part (a), but using Eq. 9.3-12 and the measured 
thermal conductivity in Problem 9A.2. Compare this result 
with the value obtained in (a). 
(c) Calculate and compare the values of the Lennard-Jones 
collision diameter a from the same experimental data used 
in (a) and (b), using E / K  from Table E.1. 
(d) What can be concluded from the above calculations? 
Answer: (a) 2.95 A; (b) 1.86 A; (c) 3.415 A from Eq. 1.4-14, 
3.409 A from Eq. 9.3-13 

9C.1. Enskog theory for dense gases. ~ n s k o ~ ~  devel- 
oped a kinetic theory for the transport properties of dense 
gases. He showed that for molecules that are idealized as 
rigid spheres of diameter wo 

(a) A useful way to summarize the equation of state is to 
use the correspon_ding-states presentation8 of Z = Z(p,, 
T,), where Z = pV/XT, p, = plp,, and T, = T/T,. Show 
that the quantity y defined by Eq. 9C.1-4 can be com- 
puted as a function of the reduced pressure and tempera- 
ture from 

1 + (aln Z/aln T , ) ,  
y = z  

1 - (aln Z/aln p,),  - (9C.1-5) 

(b) Show how Eqs. 9C.1-1, 2, and 5, together with the 
Hougen-Watson Z-chart and the Uyehara-Watson p/p, 
chart in Fig. 1.3-1, can be used to develop a chart of k/k,. as 
a function of p, and T,. What would be the limitations of 
the resulting chart? Such a procedure (but using specific 
~ V - T  data instead of the Hougen-Watson Z-chart) was 
used by Comings and Natham9 
(c) How might one use the Redlich and  won^'^ equation 

(9C-1-2) of state 

Here p" and k" are the low-pressure properties (computed, a (c - b) = RT (9C.l-6) 
for example, from Eqs. 1.4-14 and 9.3-13), V is the molar 

and b0 = jnNdf where ' is Avogadro's number' for the same purpose? The quantities a and b are constants 
The quantity y is related to the equation of state of a gas of charactenstic of each gas. 
rigid spheres: 

y = RT - 1 = ($) + 0.6250(!!)2 + 0.2869($r + . 
(9C.1-3) 0. A. Hougen and K. M. Watson, Chemical Process 

Principles, Vol. 11, Wiley, New York (1947), p. 489. 
D. Enskog, Kungliga Svenska Vetenskapsakademiens E. W. Comings and M. F. Nathan, Ind. Eng. Chem., 39, 

Handlingar, 62, No. 4 (1922), in German. See also J. 0. Hirschfelder, 964-970 (1947). 
C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, lo 0. Redlich and J. N. S. Kwong, Chem. Rev., 44,233-244 
2nd printing with corrections (1964), pp. 647-652. (1949). 



Chapter 10 

Shell Energy Balances and 
Temperature Distributions in 
Solids and Laminar Flow 

Shell energy balances; boundary conditions 

Heat conduction with an electrical heat source 

Heat conduction with a nuclear heat source 

Heat conduction with a viscous heat source 

Heat conduction with a chemical heat source 

Heat conduction through composite walls 

Heat conduction in a cooling fin 

Forced convection 

Free convection 

In Chapter 2 we saw how certain simple viscous flow problems are solved by a two-step 
procedure: (i) a momentum balance is made over a thin slab or shell perpendicular to the 
direction of momentum transport, which leads to a first-order differential equation that 
gives the momentum flux distribution; (ii) then into the expression for the momentum 
flux we insert Newton's law of viscosity, which leads to a first-order differential equa- 
tion for the fluid velocity as a function of position. The integration constants that appear 
are evaluated by using the boundary conditions, which specify the velocity or momen- 
tum flux at the bounding surfaces. 

In this chapter we show how a number of heat conduction problems are solved by 
an analogous procedure: (i) an energy balance is made over a thin slab or shell perpen- 
dicular to the direction of the heat flow, and this balance leads to a first-order differential 
equation from which the heat flux distribution is obtained; (ii) then into this expression 
for the heat flux, we substitute Fourier's law of heat conduction, which gives a first-order 
differential equation for the temperature as a function of position. The integration con- 
stants are then determined by use of boundary conditions for the temperature or heat 
flux at the bounding surfaces. 

It should be clear from the similar wording of the preceding two paragraphs that the 
mathematical methods used in this chapter are the same as those introduced in Chapter 
2-only the notation and terminology are different. However, we will encounter here a 
number of physical phenomena that have no counterpart in Chapter 2. 

After a brief introduction to the shell energy balance in §10.1, we give an analysis of 
the heat conduction in a series of uncomplicated systems. Although these examples are 
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somewhat idealized, the results find application in numerous standard engineering cal- 
culations. The problems were chosen to introduce the beginner to a number of important 
physical concepts associated with the heat transfer field. In addition, they serve to show 
how to use a variety of boundary conditions and to illustrate problem solving in Carte- 
sian, cylindrical, and spherical coordinates. In §§10.2-10.5 we consider four kinds of heat 
sources: electrical, nuclear, viscous, and chemical. In 9510.6 and 10.7 we cover two topics 
with widespread applications-namely, heat flow through composite walls and heat 
loss from fins. Finally, in §§10.8 and 10.9, we analyze two limiting cases of heat transfer 
in moving fluids: forced convection and free convection. The study of these topics paves 
the way for the general equations in Chapter 11. 

$10.1 SHELL ENERGY BALANCES; BOUNDARY CONDITIONS 

The problems discussed in this chapter are set up by means of shell energy balances. We 
select a slab (or shell), the surfaces of which are normal to the direction of heat conduc- 
tion, and then we write for this system a statement of the law of conservation of energy. 
For steady-state (i.e., time-independent) systems, we write: 

(rate energy of in ] - [rate energy of out ) + ("te of ] - (rate of ) 
energy in energy out + 

by convective by convective by molecular by molecular 
transport transport transport transport 

rate of 

The convective transport of energy was discussed in 59.7, and the molecular transport (heat 
conduction) in 99.1. The molecular work terms were explained in s9.8. These three terms 
can be added to give the "combined energy flux" el as shown in Eq. 9.8-6. In setting up 
problems here (and in the next chapter) we will use the e vector along with the expres- 
sion for the enthalpy in Eq. 9.8-8. Note that in nonflow systems (for which v is zero) the e 
vector simplifies to the q vector, which is given by Fourier's law. 

The energy production term in Eq. 10.1-1 includes (i) the degradation of electrical en- 
ergy into heat, (ii) the heat produced by slowing down of neutrons and nuclear frag- 
ments liberated in the fission process, (iii) the heat produced by viscous dissipation, and 
(iv) the heat produced in chemical reactions. The chemical reaction heat source will be 
discussed further in Chapter 19. Equation 10.1-1 is a statement of the first law of thermo- 
dynamics, written for an "open" system at steady-state conditions. In Chapter 11 this 
same statement-extended to unsteady-state systems-will be written as an equation of 
change. 

After Eq. 10.1-1 has been written for a thin slab or shell of material, the thickness of 
the slab or shell is allowed to approach zero. This procedure leads ultimately to an ex- 
pression for the temperature distribution containing constants of integration, which we 
evaluate by use of boundary conditions. The commonest types of boundary conditions 
are: 

a. The temperature may be specified at a surface. 

b. The heat flux normal to a surface may be given (this is equivalent to specifying 
the normal component of the temperature gradient). 

c. At interfaces the continuity of temperature and of the heat flux normal to the in- 
terface are required. 
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d. At a solid-fluid interface, the normal heat flux component may be related to the 
difference between the solid surface temperature To and the "bulk" fluid temper- 
ature Tb: 

q = h(To - Td (1 0.1-2) 

This relation is referred to as Newton's law of cooling. It is not really a "law" but 
rather the defining equation for h, which is called the heat transfer coejyrcient. 
Chapter 14 deals with methods for estimating heat-transfer coefficients. 

All four types of boundary conditions are encountered in this chapter. Still other kinds 
of boundary conditions are possible, and they will be introduced as needed. 

910.2 HEAT CONDUCTION WITH AN 
ELECTRICAL HEAT SOURCE 

The first system we consider is an electric wire of circular cross section with radius R and 
electrical conductivity k, ohm-' cm-'. Through this wire there is an electric current with 
current density I amp/cm2. The transmission of an electric current is an irreversible 
process, and some electrical energy is converted into heat (thermal energy). The rate of 
heat production per unit volume is given by the expression 

The quantity S, is the heat source resulting from electrical dissipation. We assume here 
that the temperature rise in the wire is not so large that the temperature dependence of 
either the thermal or electrical conductivity need be considered. The surface of the wire 
is maintained at temperature To. We now show how to find the radial temperature distri- 
bution within the wire. 

For the energy balance we take the system to be a cylindrical shell of thickness Ar 
and length L (see Fig. 10.2-1). Since v = 0 in this system, the only contributions to the en- 
ergy balance are 

Rate of heat in 
across cylindrical (2.1rvL)qrlr) = (2.1rvLqr)l, 
surface at r 
Rate of heat out 
across cylindrical (2dr  + Ar)L)(qrlr+Ar) = (2mLqr)lr+br 
surface at r + Ar 
Rate of thermal 
energy production by (2mArL) S, 
electrical dissipation 

The notation qr means "heat flux in the r direction," and (a . ) l r + 8 r  means "evaluated at 
r + Ar." Note that we take "in" and "out" to be in the positive r direction. 

We now substitute these quantities into the energy balance of Eq. 9.1-1. Division by 
2rLAr and taking the limit as Ar goes to zero gives 

The expression on the left side is the first derivative of rq, with respect to r, so that Eq. 
10.2-5 becomes 
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Fig. 10.2-1. An electrically heated wire, show- 
ing the cylindrical shell over which the energy 

Uniform heat balance is made. 
production 
by electrical 

heating 
st! 

I I I I I I I q4 H q r i r + A r  

1 I Heat in by I I Heat out by 
I l conduction I I conduction 
I I 

I I I I 

I I 

-- 
/ 

I 

This is a first-order differential equation for the energy flux, and it may be integrated to give 

The integration constant C, must be zero because of the boundary condition that 

B.C. 1: at r = 0, q, is not infinite (10.2-8) 

Hence the final expression for the heat flux distribution is 
I I 

This states that the heat flux increases linearly with r. 
We now substitute Fourier's law in the form 9, = -k(dT/dr) (see Eq. B.2-4) into 

Eq. 10.2-9 to obtain 

When k is assumed to be constant, this first-order differential equation can be integrated 
to give 

The integration constant is determined from 

B.C. 2: a t r = R ,  T = T o  (10.2-12) 

Hence C, = (S,~'/4k) + To and Eq. 10.2-11 becomes 

I I 

Equation 10.2-13 gives the temperature rise as a parabolic function of the distance r from 
the wire axis. 
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Once the temperature and heat flux distributions are known, various information 
about the system may be obtained: 

(i) Maximum temperature rise (at r = 0) 

(ii) Average temperature rise 

Thus the temperature rise, averaged over the cross section, is half the maximum temper- 
ature rise. 

(iii) Heat outflow at the surface (for a length L of wire) 

This result is not surprising, since, at steady state, all the heat produced by electrical dis- 
sipation in the volume TR'L must leave through the surface r = R. 

The reader, while going through this development, may well have had the feeling of 
de'ja vu. There is, after all, a pronounced similarity between the heated wire problem and 
the viscous flow in a circular tube. Only the notation is different: 

- 

Tube flow Heated wire 

First integration gives r,(d 9 A y )  

Second integration gives UJY) T(r) - To 
Boundary condition at r = 0  rrz = finite q, = finite 
Boundary condition at r = R v, = 0  T - T o = O  
Transport property E". k 
Source term (9'0 - 9'L)/L s, 
Assumptions p = constant k, k, = constant 

That is, when the quantities are properly chosen, the differential equations and the 
boundary conditions for the two problems are identical, and the physical processes are 
said to be "analogous." Not all problems in momentum transfer have analogs in energy 
and mass transport. However, when such analogies can be found, they may be useful in 
taking over known results from one field and applying them in another. For example, 
the reader should have no trouble in finding a heat conduction analog for the viscous 
flow in a liquid film on an inclined plane. 

There are many examples of heat conduction problems in the electrical industry.' 
The minimizing of temperature rises inside electrical machinery prolongs insulation life. 
One example is the use of internally liquid-cooled stator conductors in very large 
(500,000 kw) AC generators. 

M. Jakob, Heat  Transfer, Vol. 1, Wiley, New York (19491, Chapter 10, pp. 167-199. 
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To illustrate further problems in electrical heating, we give two examples concern- 
ing the temperature rise in wires: the first indicates the order of magnitude of the heating 
effect, and the second shows how to handle different boundary conditions. In addition, 
in Problem 10C.2 we show how to take into account the temperature dependence of the 
thermal and electrical conductivities. 

A copper wire has a radius of 2 mm and a length of 5 m. For what voltage drop would the 
temperature rise at the wire axis be 10°C, if the surface temperature of the wire is 20°C? 

Voltage Required for a 
Given Temperature Rise SOLUTION 
in a Wire Heated by an 
Electric Current Combining Eq. 10.2-14 and 10.2-1 gives 

EXAMPLE 10.2.2 

Heated Wire wi th 
Specified Heat Transfer 

The current density is related to the voltage drop E over a length L by 

Hence 

from which 

For copper, the Lorenz number of 59.5 is k/keTo = 2.23 X lo-' VO~P/K~.  Therefore, the voltage 
drop needed to cause a 10°C temperature rise is 

8 volt v- E = 2(5000 2 mm mm)~2 .23  X 10- - K (293)(10)K 

= (5000)(1.49 X 1oP4)(54.1) = 40 volts 

Repeat the analysis in 510.2, assuming that To is not known, but that instead the heat flux at 
the wall is given by Newton's "law of cooling" (Eq. 10.1-2). Assume that the heat transfer co- 
efficient h and the ambient air temperature Tair are known. 

Coefficient and SOLUTION I 
Ambient Air 
Temperature The solution proceeds as before through Eq. 10.2-11, but the second integration constant is de- 

termined from Eq. 10.1-2: 

B.C. 2': 
dT a t r = R ,  -k-=h(T-TaiJ (10.2-22) 
dr 

Substituting Eq. 10.2-11 into Eq. 10.2-22 gives C2 = (SeR/2h) + (S,R2/4k) + Tair, and the tem- 
perature profile is then 

From this the surface temperature of the wire is found to be Ta,, + SJV2h. 
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SOLUTION II 

Another method makes use of the result obtained previously in Eq. 10.2-13. Although To is 
not known in the present problem, we can nonetheless use the result. From Eqs. 10.1-2 and 
10.2-16 we can get the temperature difference 

Substraction of Eq. 10.2-24 from Eq. 10.2-13 enables us to eliminate the unknown To and gives 
Eq. 10.2-23. 

s10.3 HEAT CONDUCTION WITH A NUCLEAR HEAT SOURCE 

We consider a spherical nuclear fuel element as shown in Fig. 10.3-1. It consists of a 
sphere of fissionable material with radius R'~', surrounded by a spherical shell of alu- 
minum "cladding" with outer radius R"'. Inside the fuel element, fission fragments are 
produced that have very high kinetic energies. Collisions between these fragments and 
the atoms of the fissionable material provide the major source of thermal energy in the 
reactor. Such a volume source of thermal energy resulting from nuclear fission we call S,, 
(cal/cm3. s). This source will not be uniform throughout the sphere of fissionable mater- 
ial; it will be the smallest at the center of the sphere. For the purpose of this problem, we 
assume that the source can be approximated by a simple parabolic function 

Here S,,, is the volume rate of heat production at the center of the sphere, and b is a di- 
mensionless positive constant. 

We select as the system a spherical shell of thickness Ar within the sphere of fission- 
able material. Since the system is not in motion, the energy balance will consist only of 
heat conduction terms and a source term. The various contributions to the energy bal- 
ance are: 

Coolant 

Fig. 10.3-1. A spherical nuclear fuel assembly, showing 
the temperature distribution within the system. 
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Rate of heat out 
by conduction qlF)l r+Ar 4v(r  + A d 2  = (4dq lF ' )  
a t r  + Ar 
Rate of thermal 
energy produced S, - 4 d  Ar 
by nuclear fission 

Substitution of these terms into the energy balance of Eq. 10.1-1 gives, after dividing by 
4 ~ r  Ar and taking the limit as Ar + 0 

Taking the limit and introducing the expression in Eq. 10.3-1 leads to 

The differential equation for the heat flux qlc' in the cladding is of the same form as Eq. 
10.3-6, except that there is no significant source term: 

Integration of these two equations gives 

in which c;" and CjC' are integration constants. These are evaluated by means of the 
boundary conditions: 

B.C. I: 
B.C. 2: 

Evaluation of the constants then leads to 

These are the heat flux distributions in the fissionable sphere and in the spherical-shell 
cladding. 

Into these distributions we now substitute Fourier's law of heat conduction (Eq. 
B.2-7): 
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These equations may be integrated for constant Ic'~' and k(" to give 

The integration constants can be determined from the boundary conditions 

B.C. 3: 
B.C. 4: 

where To is the known temperature at the outside of the cladding. The final expressions 
for the temperature profiles are 

ko find the maximum 
temperature in the sphere of fissionable material, all we have to do is set r equal to zero 
in Eq. 10.3-20. This is a quantity one might well want to know when making estimates of 
thermal deterioration. 

This problem has illustrated two points: (i) how to handle a position-dependent 
source term, and (ii) the application of the continuity of temperature and normal heat 
flux at the boundary between two solid materials. 

510.4 HEAT CONDUCTION WITH A VISCOUS HEAT SOURCE 

Next we consider the flow of an incompressible Newtonian fluid between two coaxial 
cylinders as shown in Fig. 10.4-1. The surfaces of the inner and outer cylinders are main- 
tained at T = To and T = Tb, respectively. We can expect that T will be a function of r 
alone. 

Outer cylinder moves with 
angular velocity 51 ----- 

Fig. 10.4-1. Flow between cylinders with viscous 
heat generation. That part of the system enclosed 
within the dotted lines is shown in modified form 
in Fig. 10.4-2. 
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T~~ surface moves with velocity vb = ~a Fig. 10.4-2. Modification of a portion of the flow 
system in Fig. 10.4-1, in which the curvature of the 
bounding surfaces is neglected. 

X 

~tationar$ surface 

As the outer cylinder rotates, each cylindrical shell of fluid "rubs" against an adja- 
cent shell of fluid. This friction between adjacent layers of the fluid produces heat; that 
is, the mechanical energy is degraded into thermal energy. The volume heat source re- 
sulting from this "viscous dissipation," which can be designated by S,, appears automat- 
ically in the shell balance when we use the combined energy flux vector e defined at the 
end of Chapter 9, as we shall see presently. 

If the slit width b is small with respect to the radius R of the outer cylinder, then the 
problem can be solved approximately by using the somewhat simplified system de- 
picted in Fig. 10.4-2. That is, we ignore curvature effects and solve the problem in Carte- 
sian coordinates. The velocity distribution is then v, = vb(x/b), where vb = flR. 

We now make an energy balance over a shell of thickness Ax, width W, and length L. 
Since the fluid is in motion, we use the combined energy flux vector e as written in Eq. 
9.8-6. The balance then reads 

Dividing by WL Ax and letting the shell thickness Ax go to zero then gives 

This equation may be integrated to give 

Since we do not know any boundary conditions for ex, we cannot evaluate the integra- 
tion constant at this point. 

We now insert the expression for e, f;om Eq. 9.8-6. Since the velocity component in 
the x direction is zero, the term (ipv2 + pLnv can be discarded. The x-component of q is 
-k(dT/dx) according to Fourier's law. The x-component of [T . v] is, as shown in Eq. 
9.8-1, T,,v, + ~~~v~ + T,,v,. Since the only nonzero component of the velocity is v, and 
since T,, = -p(dv,/dx) according to Newton's law of viscosity, the x-component of [T . vl 
is -pu,(dv,/dx). We conclude, then, that Eq. 10.4-3 becomes 

When the linear velocity profile v, = vb(x/b) is inserted, we get 

in which p ( ~ [ , / b ) ~  can be identified as the rate of viscous heat production per unit volume S,. 
When Eq. 10.4-5 is integrated we get 
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The two integration constants are determined from the boundary conditions 

B.C. 1: 
B.C. 2: 

This yields finally, for Tb + To 

Here Br = pz;/k(Tb - To) is the dimensionless Brinkman number,' which is a measure of 
the importance of the viscous dissipation term. If Tb = To, then Eq. 10.4-9 can be written 
as 

and the maximum temperature is at x/b = $. 
If the temperature rise is appreciable, the temperature dependence of the viscosity 

has to be taken into account. This is discussed in Problem 10C.l. 
The viscous heating term S, = p(vb/b)' may be understood by the following argu- 

ments. For the system in Fig. 10.4-2, the rate at which work is done is the force acting on 
the upper plate times the velocity with which it moves, or (-T~=WL)(V~). The rate of en- 
ergy addition per unit volume is then obtained by dividing this quantity by WLb, which 
gives (-7,,vb/b) = p ( ~ ~ / b ) ~ .  This energy all appears as heat and is hence S,. 

In most flow problems viscous heating is not important. However if there are large 
velocity gradients, then it cannot be neglected. Examples of situations where viscous 
heating must be accounted for include: (i) flow of a lubricant between rapidly moving 
parts, (ii) flow of molten polymers through dies in high-speed extrusion, (iii) flow of 
highly viscous fluids in high-speed viscometers, and (iv) flow of air in the boundary 
layer near an earth satellite or rocket during reentry into the earth's atmosphere. The 
first two of these are further complicated because many lubricants and molten plastics 
are non-Newtonian fluids. Viscous heating for non-Newtonian fluids is illustrated in 
Problem 10B. 5. 

510.5 HEAT CONDUCTION WITH A CHEMICAL HEAT SOURCE 

A chemical reaction is being carried out in a tubular, fixed-bed flow reactor with inner 
radius X as shown in Fig. 10.5-1. The reactor extends from z = - to z = + 63 and is di- 
vided into three zones: 

Zone I: Entrance zone packed with noncatalytic spheres 

Zone 11: Reaction zone packed with catalyst spheres, extending from z = 0 to z = L 

Zone 111: Exit zone packed with noncatalytic spheres 

It is assumed that the fluid proceeds through the reactor tube in "plug flowM-that is, 
with axial velocity uniform at a superficial value vo = w / m - ~ ~ ~  (see text below Eq. 6.4-1 
for the definition of "superficial velocity"). The density, mass flow rate, and superficial 

' H. C. Brinkman, Appl. Sci. Research, A2,120-124 (1951), solved the viscous dissipation heating 
problem for the Poiseuille flow in a circular tube. Other dimensionless groups that may be used for 
characterizing viscous heating have been summarized by R. B. Bird, R. C. Armstrong, and 0. Hassager, 
Dynamics of Polymeric Liquids, Vol. 1,2nd edition, Wiley, New York (1987), pp. 207-208. 
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Insulated Inert Catalyst Inert 
wall \ particles particles qAzr particles 

- Zone I Zone I1 A Zone I11 --+ 

z = 0 z = L  

Fig. 10.5-1. Fixed-bed axial-flow reactor. Reactants enter at 
z = - m and leave at z = + m. The reaction zone extends 
from z = 0 to z = L. 

velocity are all treated as independent of r and z. In addition, the reactor wall is assumed 
to be well insulated, so that the temperature can be considered essentially independent 
of r. It is desired to find the steady-state axial temperature distribution T(z) when the 
fluid enters at z = -03 with a uniform temperature TI. 

When a chemical reaction occurs, thermal energy is produced or consumed when 
the reactant molecules rearrange to form the products. The volume rate of thermal en- 
ergy production by chemical reaction, s,, is in general a complicated function of pres- 
sure, temperature, composition, and catalyst activity. For simplicity, we represent S, 
here as a function of temperature only: S, = SclF(Q), where Q = (T - To)/(Tl - To). Here 
T is the local temperature in the catalyst bed (assumed equal for catalyst and fluid), and 
S,, and To are empirical constants for the given reactor inlet conditions. 

For the shell balance we select a disk of radius R  and thickness Az in the catalyst 
zone (see Fig. 10.5-I), and we choose Az to be much larger than the catalyst particle di- 
mensions. In setting up the energy balance, we use the combined energy flux vector e inas- 
much as we are dealing with a flow system. Then, at steady state, the energy balance is 

Next we divide by r R 2  AZ and take the limit as Az goes to zero. Strictly speaking, this op- 
eration is not "legal," since we are not dealing with a continuum but rather with a gran- 
ular structure. Nevertheless, we perform this limiting process with the understanding 
that the resulting equation describes, not point values, but rather average values of e, 
and S, for reactor cross sections of constant z. This gives 

Now we substitute the z-component of Eq. 9.8-6 into this equation to get 

We now use Fourier's law for q,, Eq. 1.2-6 for r,,, and the enthalpy expression in Eq. 9.8-8 
(with the assumption that the heat capacity is constant) to get 

in which the effective thermal conductivity in the z direction K , ~ ~ , ~ ~  has been used (see Eq. 
9.6-9). The first, fourth and fifth terms on the left side may be discarded, since the veloc- 
ity is not changing with z. The third term may be discarded if the pressure does not 
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change significantly in the axial direction. Then in the second term we replace v, by the 
superficial velocity v,, because the latter is the effective fluid velocity in the reactor. Then 
Eq. 10.5-4 becomes 

This is the differential equation for the temperature in zone 11. The same equation ap- 
plies in zones I and I11 with the source term set equal to zero. The differential equations 
for the temperature are then 

Zone I 

Zone I1 

Zone I11 

Here we have assumed that we can use the same value of the effective thermal conduc- 
tivity in all three zones. These three second-order differential equations are subject to the 
following six boundary conditions: 

B.C. 1: atz=--03, T1=T1 
B.C. 2: at z = 0, = TII 

B.C. 3: 

B.C. 4: at z = L, ~ 1 1  = ~ " 1  (10.5-12) 

B.C. 5: a tz  = L, dTn - d T"' 
Keff,zz - - Keff,zz - dz dz 

B.C. 6: a tz  = m, TI" = finite (10.5-14) 

Equations 10.5-10 to 13 express the continuity of temperature and heat flux at the bound- 
aries between the zones. Equations 10.5-9 and 14 specify requirements at the two ends of 
the system. 

The solution of Eqs. 10.5-6 to 14 is considered here for arbitrary F(O). In many cases 
of practical interest, the convective heat transport is far more important than the axial 
conductive heat transport. Therefore, here we drop the conductive terms entirely (those 
containing K , ~ ~ , ~ ~ ) .  This treatment of the problem still contains the salient features of the 
solution in the limit of large P6 = RePr (see Problem 10B.18 for a fuller treatment). 

If we introduce a dimensio_nless axial coordinate Z = z / L  and a dimensionless 
chemical heat source N = ScIL/pC,~ti(Tl - TO), then Eqs. 10.5-6 to 8 become 

Zone I 
dO1 

(Z < 0) = 0 (10.5-15) 

Zone 11 ( o < z < I )  -- d@I1 - j,gqO) 
dZ 

(10.5-16) 

d@III 
Zone I11 (Z>1)  -- - 0 (10.5-17) 

dZ 

for which we need three boundary conditions: 

B.C. 1: 
B.C. 2: 
B.C. 3: 
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Zone I1 in which heat 
is produced by 

Zone I chemical reaction Zone I11 

Dimensionless axial coordinate Z = z/L 

Fig. 10.5-2. Predicted temperature profiles in a fixed-bed 
axial-flow reactor when the heat production varies linearly 
with the temperature and when there is negligible axial 
diffusion. 

The above first-order, separable differential equations, with boundary conditions, are 
easily solved to get 

Zone I 

Zone I1 

Zone I11 

These results are shown in Fig. 10.5-2 for a simple choice for the source function- 
namely, F ( 0 )  = @-which is reasonable for small changes in temperature, if the reaction 
rate is insensitive to concentration. 

Here in this section we ended up discarding the axial conduction terms. In Problem 
10B.18, these terms are not discarded, and then the solution shows that there is some 
preheating (or precooling) in region I. 

510.6 HEAT CONDUCTION THROUGH COMPOSITE WALLS 

In industrial heat transfer problems one is often concerned with conduction through 
walls made up of layers of various materials, each with its own characteristic thermal 
conductivity. In this section we show how the various resistances to heat transfer are 
combined into a total resistance. 

In Fig. 10.6-1 we show a composite wall made up of three materials of different 
thicknesses, x, - x,, x, - x,, and x, - x,, and different thermal conductivities k,,, k,,, and 
k2,. At x = x,, substance 01 is in contact with a fluid with ambient temperature T,, and at 
x = x,, substance 23 is in contact with a fluid at temperature Tb. The heat transfer at the 
boundaries x = xo and x = x, is given by Newton's "law of cooling" with heat transfer 
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Sub- 
Substance stance Substance 

1 

Fluid 

------ 
0 xo XI x2 x3 

Distance, x --+ 

Fig. 10.6-1. Heat conduction through a composite wall, located be- 
tween two fluid streams at temperatures T, and Tb. 

coefficients ho and h3, respectively. The anticipated temperature profile is sketched in Fig. 
10.6-1. 

First we set up the energy balance for the problem. Since we are dealing with heat 
conduction in a solid, the terms containing velocity in the e vector can be discarded, and 
the only relevant contribution is the q vector, describing heat conduction. We first write 
the energy balance for a slab of volume WH Ax 

Region 01 : ~ x ~ x W  - q x l x + ~ x ~  = 0 (10.6-1) 

which states that the heat entering at x must be equal to the heat leaving at x + Ax, since 
no heat is produced within the region. After division by WH Ax and taking the limit as 
Ax + 0, we get 

Region 01 : dqx -- - 0 (10.6-2) 
dx 

Integration of this equation gives 

Region 01 : q, = q, (a constant) (1 0.6-3) 

The constant of integration, qo, is the heat flux at the plane x = xo. The development in 
Eqs. 10.6-1,2, and 3 can be repeated for regions 12 and 23 with continuity conditions on 
q, at interfaces, so that the heat flux is constant and the same for all three slabs: 

Regions 01,12,23: qX = 40 (10.6-4) 

with the same constant for each of the regions. We may now introduce a Fourier's law 
for each of the three regions and get 

Region 01: - 

Region 12: - 

Region 23: - 
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We now assume that k,,, k,,, and k2, are constants. Then we integrate each equation over 
the entire thickness of the relevant slab of material to get 

Region 01: 

Region 12: 

Region 23: 

In addition we have the two statements regarding the heat transfer at the surfaces ac- 
cording to Newton's law of cooling: 

At surface 0: 

At surface 3: 

Addition of these last five equations then gives 

Sometimes this result is rewritten in a form reminiscent of Newton's law of cooling, ei- 
ther in terms of the heat flux qo (J/m2 s) or the heat flow Q, U/s): 

The quantity U, called the "overall heat transfer coefficient," is given then by the follow- 
ing famous formula for the "additivity of resistances": 

Here we have generalized the formula to a system with n slabs of material. Equations 
10.6-15 and 16 are useful for calculating the heat transfer rate through a composite wall 
separating two fluid streams, when the heat transfer coefficients and thermal conductivi- 
ties are known. The estimation of heat transfer coefficients is discussed in Chapter 14. 

In the above development it has been tacitly assumed that the solid slabs are con- 
tiguous with no intervening "air spaces." If the solid surfaces touch each other only at 
several points, the resistance to heat transfer will be appreciably increased. 

Develop a formula for the overall heat transfer coefficient for the composite cylindrical pipe 
wall shown in Fig. 10.6-2. 

Composite Cylindrical 
Walls SOLUTION 

An energy balance on a shell of volume 2m-L Ar for region 01 is 

Region 01: q,l, - 2mL - q,l,+A,. 2 r ( r  + Ar)L = 0 
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which can also be written as 

Region 01: 

Fig. 10.6-2. Heat conduction through a lami- 
nated tube with a fluid at temperature T, in- 
side the tube and temperature Tb outside. 

Dividing by 2.rrL Ar and taking the limit as Ar goes to zero gives 

Region 01: d F ('4,) = 0 (10.6-19) 

Integration of this equation gives 

in which ro is the inner radius of region 01, and 90 is the heat flux there. In regions 12 and 23, 
rq, is equal to the same constant. Application of Fourier's law to the three regions gives 

Region 01: dT -kolr - = r,q, (10.6-21) 
dr 

Region 12: dT 
- k,,r - = r,qo (10.6-22) 

dr 

Region 23: dT 
- k 2 3 ~  - = TogD 

dr 
(10.6-23) 

If we assume that the thermal conductivities in the three annular regions are constants, then 
each of the above three equations can be integrated across its region to give 

Region 10: 

Region 12: 



s10.7 Heat Conduction in a Cooling Fin 307 

Region 23: 

At the two fluid-solid interfaces we can write Newton's law of cooling: 

Surface 0: 

Surface 3: 

Addition of the preceding five equations gives an equation for T, - T,. Then the equation is 
solved for qo to give 

We now define an "overall heat transfer coefficient based on the inner surface" Uo by 

Combination of the last two equations gives, on generalizing to a system with n annular 
layers, 

The subscript "0" on Uo indicates that the overall heat transfer coefficient is referred to the 
radius ro. 

510.7 HEAT CONDUCTION IN A COOLING FIN' 

Another simple, but practical application of heat conduction is the calculation of the effi- 
ciency of a cooling fin. Fins are used to increase the area available for heat transfer be- 
tween metal walls and poorly conducting fluids such as gases. A simple rectangular fin 
is shown in Fig. 10.7-1. The wall temperature is T,  and the ambient air temperature is T,. 

wall temperature 
known to be T,  

Fig. 10.7-1. A simple cooling fin with 
B<<LandB<< W. 

For further information on fins, see M. Jakob, Heat Transfer, Vol. I ,  Wiley, New York (19491, 
Chapter 11; and H. D. Baehr and K. Stephan, Heat and Mass Transfeu, Springer, Berlin (1998), 52.2.3. 
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A reasonably good description of the system may be obtained by approximating the 
true physical situation by a simplified model: 

True situation Model 

1. T is a function of x, y, and z, but the 1. 
dependence on z is most important. 

2. A small quantity of heat is lost from the 2. 
fin at the end (area 2BW) and at the 
edges (area (2BL + 2BL). 

3. The heat transfer coefficient is a function 3. 
of position. 

T is a function of z alone. 

No heat is lost from the end or from the 
edges. 

The heat flux at the surface is given by 
q, = h(T - T,), where h is constant and 
T depends on z. 

The energy balance is made over a segment Az of the bar. Since the bar is stationary, the 
terms containing v in the combined energy flux vector e may be discarded, and the only 
contribution to the energy flux is q. Therefore the energy balance is 

Division by 2BW Az and taking the limit as Az approaches zero gives 

We now insert Fourier's law (q, = -kdT/dz), in which k is the thermal conductivity of 
the metal. If we assume that k is constant, we then get 

This equation is to be solved with the boundary conditions 

B.C. 1: at z = 0, T = T ,  

B.C. 2: a t z = L ,  -- d T O  
dz 

We now introduce the following dimensionless quantities: 

T - T, 
@=-- - dimensionless temperature 

Tw - T', 
Z 5 = - 
L 

= dimensionless distance 

2 - hL2 N - - = dimensionless heat transfer coefficient2 
kB 

(10.7-8) 

The problem then takes the form 

-- d2@ - N20 with @ I i = .  = 1 and - (10.7-9,10,11) 
d l 2  

The quantity may be rewritten as N2 = (hL/k)(L/B) = Bi(L/B), where Bi is called the Biot 
number, named after Jean Baptiste Biot (1774-1862) (pronounced "Bee-oh"). Professor of physics at the 
CollPge de France, he received the Rumford Medal for his development of a simple, nondestructive test 
to determine sugar concentration. 



s10.7 Heat Conduction in a Cooling Fin 309 

Equation 10.7-9 may be integrated to give hyperbolic functions (see Eq. C.l-4 and 9C.5). 
When the two integration constants have been determined, we get 

O = cosh N{ - (tanh N) sinh N{ (10.7-12) 

This may be rearranged to give 

cosh N(1 - 5) 
cosh N 

This result is reasonable only if the heat lost at the end and at the edges is negligible. 
The "effectiveness" of the fin surface is defined3 by 

actual rate of heat loss from the fin " = rate of heat loss from an isothermal fin at T,. 
(10.7-14) 

For the problem being considered here is then 

in which N is the dimensionless quantity defined in Eq. 10.7-8. 

In Fig. 10.7-2 a thermocouple is shown in a cylindrical well inserted into a gas stream. Esti- 
mate the true temperature of the gas stream if 

Error in Thermocouple 
Measurement TI = 500°F = temperature indicated by thermocouple 

T, = 350°F = wall temperature 

h = 120 Btu/hr. ft2 F = heat transfer coefficient 

k = 60 Btu/hr ft3 . F = thermal conductivity of well wall 

B = 0.08 in. = thickness of well wall 

L = 0.2 ft = length of well 

Thermocouvle wires 

Pipe wall at T,. + to potentlometer 

Well wall of - thickness B - 
Thermocouple Fig. 10.7-2. A thermocouple in a cylindrical 
junction at well. 

M. Jakob, Heat Transfer, Vol. I ,  Wiley, New York (19491, p. 235. 
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SOLUTION 

The thermocouple well wall of thickness B is in contact with the gas stream on one side only, 
and the tube thickness is small compared with the diameter. Hence the temperature distribu- 
tion along this wall will be about the same as that along a bar of thickness 2B, in contact with 
the gas stream on both sides. According to Eq. 10.7-13, the temperature at the end of the well 
(that registered by the thermocouple) satisfies 

Hence the actual ambient gas temperature is obtained by solving this equation for T,: 

and the result is 

Therefore, the reading is 10 I?' too low. 
This example has focused on one kind of error that can occur in thermometry. Fre- 

quently a simple analysis, such as the foregoing, can be used to estimate the measurement 
errors4 

510.8 FORCED CONVECTION 

In the preceding sections the emphasis has been placed on heat conduction in solids. 
In this and the following section we study two limiting types of heat transport in flu- 
ids: forced convection and free convection (also called natural convection). The main dif- 
ferences between these two modes of convection are shown in Fig. 10.8-1. Most 
industrial heat transfer problems are usually put into either one or the other of these 
two limiting categories. In some problems, however, both effects must be taken into 
account, and then we speak of mixed convection (see 514.6 for some empiricisms for 
handling this situation). 

In this section we consider forced convection in a circular tube, a limiting case of 
which is simple enough to be solved analyti~all~. ' ,~ A viscous fluid with physical prop- 
erties (p, k, p, Cp) assumed constant is in laminar flow in a circular tube of radius R. For 
z < 0 the fluid temperature is uniform at the inlet temperature TI. For z > 0 there is a 
constant radial heat flux q, = -qo at the wall. Such a situation exists, for example, when a 
pipe is wrapped uniformly with an electrical heating coil, in which case qo is positive. If 
the pipe is being chilled, then q,, has to be taken as negative. 

As indicated in Fig. 10.8-1, the first step in solving a forced convection heat transfer 
problem is the calculation of the velocity profiles in the system. We have seen in 52.3 

For further discussion, see M. Jakob, Heat Transfer, Vol. 11, Wiley, New York (1949), Chapter 33, 
pp. 147-201. 

A. Eagle and R. M. Ferguson, Proc. Roy. Soc. (London), A127,540-566 (1930). 
S. Goldstein, Modern Developments in Fluid Dynamics, Oxford University Press (1938), Dover 

Edition (1965), Vol. 11, p. 622. 
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Forced Convection 
Heat Transfer 

Heat swept to right by forced 
stream of air 

1. The flow patterns are 
determined primarily by 
some external force 

2 First, the velocity profiles are 
found; then they are used to 
find the temperature profiles 
(usual procedure for fluids 
with constant physical 
properties) 

3. The Nusselt number depends 
on the Reynolds and Prandtl 
numbers (see Chapter 14) 

Free Convection 
Heat Transfer 

Heat transported upward by 
heated air that rises 

1. The flow patterns are 
determined by the buoyant 
force on the heated fluid 

2. The velocity profiles and 
temperature profiles are 
interdependent 

3. The Nusselt number depends 
on the Grashof and Prandtl 
numbers (see Chapter 14) 

Fig. 10.8-1. A comparison of forced and free convection in non- 
isothermal systems. 

how this may be done for tube flow by using the shell balance method. We know that 
the velocity distribution so obtained is v, = 0, v, = 0, and 

This parabolic distribution is valid sufficiently far downstream from the inlet that the en- 
trance length has been exceeded. 

In this problem, heat is being transported in both the r and the z directions. There- 
fore, for the energy balance we use a "washer-shaped" system, which is formed by the 
intersection of an annular region of thickness Ar with a slab of thickness Az (see Fig. 10.8- 
2). In this problem, we are dealing with a flowing fluid, and therefore all terms in the e 
vector will be retained. The various contributions to Eq. 10.1-1 are 

Total energy in at r e,l, 2mAz = (2me,)Jr Az (10.8-2) 

Total energy out at r + Ar erlr+hr 27dr + Ar)Az = ( 2 ~ r e , ) ) , + ~ ~  AZ (10.8-3) 

Total energy in at z ezlZ -2mAr (10.8-4) 

Total energy out at z + Az eZlz+~, 2m.A~ (10.8-5) 

Work done on fluid by gravity pv,g, 2.rruArA.z (10.8-6) 

The last contribution is the rate at which work is done on the fluid within the ring by 
gravity-that is, the force per unit volume pg, times the volume 2 m  Ar Az multiplied by 
the downward velocity of the fluid. 
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I u Fluid inlet 

temperature T: 

Fig. 10.8-2. Heating of a fluid in laminar flow through a cir- 
cular tube, showing the annular ring over which the energy 
balance is made. 

The energy balance is obtained by summing these contributions and equating the 
sum to zero. Then we divide by 2v Ar Az to get 

In the limit as Ar and Az go to zero, we find 

The subscript z in g, has been omitted, since the gravity vector is acting in the + z  direc- 
tion. 

Next we use Eqs. 9.8-6 and 9.8-8 to write out the expressions for the r- and z-compo- 
nents of the combined energy flux vector, using the fact that the only nonzero compo- 
nent of v is the axial component v,: 

Substituting these flux expressions into Eq. 10.8-8 and using the fact that v, depends only 
on r gives, after some rearrangement, 

The second bracket is exactly zero, as can be seen from Eq. 3.6-4, which is the z-component 
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term containing the viscosity is the viscous heating, which we shall neglect in this dis- 
cussion. The last term in the first bracket, corresponding to heat conduction in the axial 
direction, will be omitted, since we know from experience that it is usually small in com- 
parison with the heat convection in the axial direction. Therefore, the equation that we 
want to solve here is 

This partial differential equation, when solved, describes the temperature in the fluid as 
a function of r and z. The boundary conditions are 

B.C. 1: at r = 0, T = finite (10.8-13) 

B.C. 2: dT at r = R, k - = qo (constant) dr 
(10.8-14) 

B.C. 3: at z = 0, T = TI (10.8-15) 

We now put the problem statement into dimensionless form. The choice of the dimen- 
sionless quantities is arbitrary. We choose 

Generally one tries to select dimensionless quantities so as to minimize the number of 
parameters in the final problem formulation. In this problem the choice of 5 = r/R is a 
natural one, because of the appearance of r/R in the differential equation. The choice for 
the dimensionless temperature is suggested by the second and third boundary condi- 
tions. Having specified these two dimensionless variables, the choice of dimensionless 
axial coordinate follows naturally. 

The resulting problem statement, in dimensionless form, is now 

with boundary conditions 

B.C. 1: at t = 0, (3 = finite (10.8-20) 

B.C. 2: - 1 a t ( =  I, --- 

a t  
(10.8-21) 

B.C. 3: at 5 = 0, a = o (10.8-22) 

The partial differential equation in Eq. 10.8-19 has been solved for these boundary condi- 
tions: but in this section we do not give the complete solution. 

It is, however, instructive to obtain the asymptotic solution to Eq. 10.8-19 for large 5. 
After the fluid is sufficiently far downstream from the beginning of the heated section, 
one expects that the constant heat flux through the wall will result in a rise of the fluid 
temperature that is linear in 5. One further expects that the shape of the temperature pro- 
files as a function of ,$ will ultimately not undergo further change with increasing (see 
Fig. 10.8-3). Hence a solution of the following form seems reasonable for large 6: 

in which C, is a constant to be determined presently. 

%. Siegel, E. M. Sparrow, and T. M. Hallman, Appl. Sci. Research, A7,386-392 (1958). See Example 
12.2-1 for the complete solution and Example 12.2-2 for the asymptotic solution for small 5. 



314 Chapter 10 Shell Energy Balances and Temperature Distributions in Solids and Laminar Flow 

Tube wall 

z = o  

Region of 
small z 

Region of 
large z 

- slope at r = R 
same for all z 

Shape of profiles 
is same-they 
are displaced 
upward with 
increasing z  

Fig. 10.8-3. Sketch showing how one expects the temperature 
T(r, z )  to look for the system shown in Fig. 10.8-2 when the 
fluid is heated by means of a heating coil wrapped uniformly 
around the tube (corresponding to qo positive). 

The function in Eq. 10.8-23 is clearly not the complete solution to the problem; it 
does allow the partial differential equation and boundary conditions 1 and 2 to be satis- 
fied, but clearly does not satisfy boundary condition 3. Hence we replace the latter by an 
integral condition (see Fig. 10.8-41, 

Condition 4: 21~Xzq~ = /021 loR - T,)u,r dr dB (1 0.8-24) 

or, in dimensionless form, 

This condition states that the energy entering through the walls over a distance 5 is the 
same as the difference between the energy leaving through the cross section at 5 and that 
entering at 5 = 0. 

Substitution of the postulated function of Eq. 10.8-23 into Eq. 10.8-19 leads to the fol- 
lowing ordinary differential equation for (see Eq. C.l-11): 



s10.8 Forced Convection 315 

Uniform Plane at arbitrary 
temperature TI downstream position z 

No energy enters here, ~ e a t ' i n  by Energy leaving here is 
since datum temperature heating coil 

was chosen to be TI is 2rRzqO 

Fig. 10.8-4. Energy balance used for boundary condition 4 
given in Eq. 10.8-24. 

This equation may be integrated twice with respect to 5 and the result substituted into 
Eq. 10.8-23 to give 

The three constants are determined from the conditions 1,2, and 4 above: 

B.C. 1: 

B.C. 2: 
Condition 4: 

Substitution of these values into Eq. 10.8-27 gives finally 

Both averages are functions of z. The quantity ( T )  is the arithmetic average of the temper- 
atures over the cross section at z. The "bulk temperature" Tb is the temperature one 
would obtain if the tube were chopped off at z and if the fluid issuing forth were col- 
lected in a container and thoroughly mixed. This average temperature is sometimes re- 
ferred to as the "cup-mixing temperature" or the "flow-average temperature." 

O(&[) = 45 + 3 - at4 - 5 (10.8-31) 

This result gives the dimensionless temperature as a function of the dimensionless radial 
and axial coordinates. It is exact in the limit as 5 + m; for 5 > 0.1, it predicts the local 
value of O to within about 2%. 

Once the temperature distribution is known, one can get various derived quantities. 
There are two kinds of average t$mperatures commonly used in connection with the 
flow of fluids with constant p and C,: 
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Now let us evaluate the local heat transfer driving force, To - Tb, which is the differ- 
ence between the wall and bulk temperatures at a distance z down the tube: 

where D is the tube diameter. We may now rearrange this result in the form of a dimen- 
sionless wall heat flux 

which, in Chapter 14, will be identified as a Nusselt number. 
Before leaving this section, we point out that the dimensionless axial coordinate l in- 

troduced above may be rewritten in the following way: 

Here D is the tube diameter, Re is the Reynolds number used in Part I, and Pr and Pi. are 
the Prandtl and Pkclet numbers introduced in Chapter 9. We shall find in Chapter 11 that 
the Reynolds and Prandtl numbers can be expected to appear in forced convection prob- 
lems. This point will be reinforced in Chapter 14 in connection with correlations for heat 
transfer coefficients. 

510.9 FREE CONVECTION 

In 510.8 we gave an example of forced convection. In this section we turn our attention 
to an elementary free convection problem-namely, the flow between two parallel walls 
maintained at different temperatures (see Fig. 10.9-1). 

A fluid with density p and viscosity p is located between two vertical walls a dis- 
tance 2B apart. The heated wall at y = -B is maintained at temperature T,, and the 
cooled wall at y = + B is maintained at temperature TI. It is assumed that the tempera- 
ture difference is sufficiently small that terms containing (An2 can be neglected. 

Because of the temperature gradient in the system, the fluid near the hot wall rises 
and that near the cold wall descends. The system is closed at the top and bottom, so that 
the fluid is continuously circulating between the plates. The mass rate of flow of the 

Fig. 10.9-1. Laminar free convection flow between 
two vertical plates at two different temperatures. The 
velocity is a cubic function of the coordinate y. 
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fluid in the upward-moving stream is the same as that in the downward-moving 
stream. The plates are presumed to be very tall, so that end effects near the top and bot- 
tom can be disregarded. Then for all practical purposes the temperature is a function of 
y alone. 

An energy balance can now be made over a thin slab of fluid of thickness Ay, using 
the y-component of the combined energy flux vector e as given in Eq. 9.8-6. The term 
containing the kinetic energy and enthalpy can be disregarded, since the y-component of 
the v vector is zero. The y-component of the term [T . vl is rYv, = -p(dv,/dy)v,, which 
would lead to the viscous heating contribution discussed in 510.4. However, in the very 
slow flows encountered in free convection, this term will be extremely small and can be 
neglected. The energy balance then leads to the equation 

for constant k. The temperature equation is to be solved with the boundary conditions: 

B.C. 1: 
B.C. 2: 

The solution to this problem is 

in which AT = T, - TI is the difference of the wall temperatures, and = +(T, + T2) is 
their arithmetic mean. 

By making a momentum balance over the same slab of thickness Ay, one arrives at a 
differential equation for the velocity distribution 

Here the viscosity has been assumed constant (see Problem 10B.ll for a solution with 
temperature-dependent viscosity). 

The phenomenon of free convection results from the fact that when the fluid is 
heated, the density (usually) decreases and the fluid rises. The mathematical description 
of the system must take this essential feature of the phenomenon into account. Because 
the temperature difference AT = T2 - TI is taken to be small in this problem, it can be ex- 
pected that the density changes in the system will be small. This suggests that we should 
expand p in a Taylor series about the temperature T = f (T, + T2) thus: 

Here 5 and p are the density and coefficient of volume expansion evaluated at the tem- 
perature T .  The coefficient of volume expansion is defined as 

We now introduce the "Taylor-made" equation of state of Eq. 10.9-6 (keeping two terms 
only) into the equation of motion in Eq. 10.9-5 to get 
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This equation describes the balance amonx the viscous force, the pressure force, the 
gravity force, and the buoyant force -&3(T - T )  (all per unit volume). Into this we 
now substitute the temperature distribution given in Eq. 10.9-4 to get the differential 
equation 

which is to be solved with the boundary conditions 

B.C. 1: 

B.C. 2: 

a t y =  -B, v,=O 

aty = +B, v, = 0 

The solution is 

We now require that the net mass flow in the z direction be zero, that is, 

Substitution of v, from Eq. 10.9-12 and p from Eqs. 10.9-6 and 4 into this integral leads to 
the conclusion that 

when terms containing the square of the small quantity AT are neglected. Equation 10.9- 
14 states that the pressure gradient in the system is due solely to the weight of the fluid, 
and the usual hydrostatic pressure distribution prevails. Therefore the second term on 
the right side of Eq. 10.9-12 drops out and the final expression for the velocity distribu- 
tion is 

The average velocity in the upward-moving stream is 

The motion of the fluid is thus a direct result of the buoyant force term in Eq. 10.9-8, as- 
sociated with the temperature gradient in the system. The velocity distribution of Eq. 
10.9-15 is shown in Fig. 10.9-1. It is this sort of velocity distribution that occurs in the air 
space in a double-pane window or in double-wall panels in buildings. It is also this kind 
of flow that occurs in the operation of a Clusius-Dickel column used for separating iso- 
topes or organic liquid mixtures by the combined effects of thermal diffusion and free 
convection.' 

Thermal diffusion is the diffusion resulting from a temperature gradient. For a lucid discussion 
of the Clusius-Dickel column see K. E. Grew and T. L. Ibbs, Thermal Diffusion in Gases, Cambridge 
University Press (1952), pp. 94-106. 
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The velocity distribution in Eq. 10.9-15 may be rewritten using a dimensionless ve- 
locity 6, = Bv,p/p and a dimensionless coordinate 5 = y/B thus: 

Here Gr is the dimensionless Gmshof number: defined by 

where Ap = p, - p,. The second form of the Grashof number is obtained from the first 
form by using Eq. 10.9-6. The Grashof number is the characteristic group occurring in 
analyses of free convection, as is shown by dimensional analysis in Chapter 11. It arises 
in heat transfer coefficient correlations in Chapter 14. 

QUESTIONS FOR DISCUSSION 

1. Verify that the Brinkman, Biot, Prandtl, and Grashof numbers are dimensionless. 
2. To what problem in electrical circuits is the addition of thermal resistances analogous? 
3. What is the coefficient of volume expansion for an ideal gas? What is the corresponding ex- 

pression for the Grashof number? 
4. What might be some consequences of large temperature gradients produced by viscous heat- 

ing in viscometry, lubrication, and plastics extrusion? 
5. In 510.8 would there be any advantage to choosing the dimensionless temperature and di- 

mensionless axial coordinate to be O = (T - T1)/Tl and { = z/R? 
6. What would happen in s9.9 if the fluid were water and T were 4"C? 
7. Is there any advantage to solving Eq. 9.7-9 in terms of hyperbolic functions rather than expo- 

nential functions? 
8. In going from Eq. 10.8-11 to Eq. 10.8-12 the axial conduction term was neglected with respect 

to the axial convection term. To justify this, put in some reasonable numerical values to esti- 
mate the relative sizes of the terms. 

9. How serious is it to neglect the dependence of viscosity on temperature in solving forced con- 
vection problems? Viscous dissipation heating problems? 

10. At steady state the temperature profiles in a laminated system appear thus: 
Which material has the higher thermal conductivity? 

Distance - 
11. Show that Eq. 10.6-4 can be obtained directly by rewriting Eq. 10.6-1 with x + Ax replaced by 

x,. Similarly, one gets Eq. 10.6-20 from Eq. 10.6-17, with r + Ar replaced by r,. 

Named for Franz Grashof (1826-1893) (pronounced "Grahss-hoff). He was professor of applied 
mechanics in Karlsruhe and one of the founders of the Verein Deutscher Ingenieure in 1856. 
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PROBLEMS 10A.1. Heat loss from an insulated pipe. A standard schedule 40,2-in. steel pipe (inside diameter 
2.067 in. and wall thickness 0.154 in.) carrying steam is insulated with 2 in. of 85% magnesia 
covered in turn with 2 in. of cork. Estimate the heat loss per hour per foot of pipe if the inner 
surface of the pipe is at 250°F and the outer surface of the cork is at 90°F. The thermal 
conductivities (in Btu/hr ft . F) of the substances concerned are: steel, 26.1; 85% magnesia, 
0.04; cork, 0.03. 
Answer: 24 Btu/ hr - ft 

10.A.2. Heat loss from a rectangular fin. Calculate the heat loss from a rectangular fin (see Fig. 10.7-1) 
for the following conditions: 

Air temperature 
Wall temperature 
Thermal conductivity of fin 
Thermal conductivity of air 
Heat transfer coefficient 
Length of fin 
Width of fin 
Thickness of fin 
Answer: 2074 Btu/hr 

350°F 
500°F 
60 Btu/hr. ft . F  
0.0022 Btu/hr ft F 
120 Btu/hr ft? . F 
0.2 ft 
1.0 ft 
0.16 in. 

10A.3. Maximum temperature in a lubricant. An oil is acting as a lubricant for a pair of cylindrical 
surfaces such as those shown in Fig. 10.4-1. The angular velocity of the outer cylinder is 7908 
rpm. The outer cylinder has a radius of 5.06 cm, and the clearance between the cylinders is 
0.027 cm. What is the maximum temperature in the oil if both wall temperatures are known to 
be 15S°F? The physical properties of the oil are assumed constant at the following values: 

Viscosity 92.3 cp 
Density 1.22 g/cm3 
Thermal conductivity 0.0055 cal/s . cm - C 
Answer: 174°F 

10A.4. Current-carrying capacity of wire. A copper wire of 0.040 in. diameter is insulated uni- 
formly with plastic to an outer diameter of 0.12 in. and is exposed to surroundings at 100°F. 
The heat transfer coefficient from the outer surface of the plastic to the surroundings is 1.5 
Btu/hr ft? . F. What is the maximum steady current, in amperes, that this wire can carry 
without heating any part of the plastic above its operating limit of 200°F? The thermal and 
electrical conductivities may be assumed constant at the values given here: 

Copper 220 5.1 x lo5 
Plastic 0.20 0.0 

Answer: 13.4 amp 

10A.5. Free convection velocity. 
(a) Verify the expression for the average velocity in the upward-moving stream in Eq. 10.9-16. 
(b) Evaluate p for the conditions given below. 
(c) What is the average velocity in the upward-moving stream in the system described in Fig. 
10.9-1 for air flowing under these conditions? 

Pressure 1 atm 
Temperature of the heated wall 100°C 
Temperature of the cooled wall 20°C 
Spacing between the walls 0.6 cm 
Answer: 2.3 cm/s 
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Plastic panel has 
thermal conductivity 
k = 0.075 
Btu/hr ft . "F 
(average value between 
TI and T2) 

Fig. 10A.6. Determination of the thermal resistance of 
a wall. 

10A.6. Insulating power of a wall (Fig. 10A.6). The "insulating power" of a wall can be measured 
by means of the arrangement shown in the figure. One places a plastic panel against the wall. 
In the pane1 two thermocouples are mounted flush with the panel surfaces. The thermal con- 
ductivity and thickness of the plastic panel are known. From the measured steady-state tem- 
peratures shown in the figure, calculate: 
(a) The steady-state heat flux through the wall (and panel). 
(b) The "thermal resistance" (wall thickness divided by thermal conductivity). 
Answers: (a) 14.3 Btu/hr ft2; (b) 4.2 f?. hr . F/Btu 

10A.7. Viscous heating in a ball-point pen. You are asked to decide whether the apparent decrease 
in viscosity in ball-point pen inks during writing results from "shear thinning" (decrease in 
viscosity because of non-Newtonian effects) or "temperature thinning" (decrease in viscosity 
because of temperature rise caused by viscous heating). If the temperature rise is less than lK, 
then "temperature thinning" will not be important. Estimate the temperature rise using Eq. 
10.4-9 and the following estimated data: 

Clearance between ball and holding cavity 5 X in. 
Diameter of ball I mrn 
Viscosity of ink lo4 CP 
Speed of writing 100 in. /min 
Thermal conductivity of ink (rough guess) 5 X cal/s cm . C 

10A.8. Temperature rise in an electrical wire. 
(a) A copper wire, 5 mm in diameter and 15 ft long, has a voltage drop of 0.6 volts. Find the 
maximum temperature in the wire if the ambient air temperature is 25°C and the heat transfer 
coefficient h is 5.7 Btu/hr. f@.  F. 
(b) Compare the temperature drops across the wire and the surrounding air. 

10B.l. Heat conduction from a sphere to a stagnant fluid. A heated sphere of radius R is sus- 
pended in a large, motionless body of fluid. It is desired to study the heat conduction in the 
fluid surrounding the sphere in the absence of convection. 
(a) Set up the differential equation describing the temperature Tin the surrounding fluid as a 
function of r, the distance from the center of the sphere. The thermal conductivity k of the 
fluid is considered constant. 
(b) Integrate the differential equation and use these boundary conditions to determine the in- 
tegration constants: at r = R, T = TR; and at r = w, T = T,. 
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Fig. 10B.3. Temperature distribution in a cylindrical fuel- 
rod assembly. 

(c) From the temperature profile, obtain an expression for the heat flux at the surface. Equate 
this result to the heat flux given by "Newton's law of cooling" and show that a dimensionless 
heat transfer coefficient (known as the Nusselt number) is given by 

in which D is the sphere diameter. This well-known result provides the limiting value of Nu 
for heat transfer from spheres at low Reynolds and Grashof numbers (see s14.4). 
(d) In what respect are the Biot number and the Nusselt number different? 

10B.2. Viscous heating in slit flow. Find the temperature profile for the viscous heating problem 
shown in Fig. 10.4-2, when given the following boundary conditions: at x = 0, T = T,; at x = b, 
qx = 0. 

Answer: - - 

10B.3 Heat conduction in a nuclear fuel rod assembly (Fig. 10B.3). Consider a long cylindrical nu- 
clear fuel rod, surrounded by an annular layer of aluminum cladding. Within the fuel rod 
heat is produced by fission; this heat source depends on position approximately as 

Here Sno and b are known constants, and r is the radial coordinate measured from the axis of 
the cylindrical fuel rod. Calculate the maximum temperature in the fuel rod if the outer sur- 
face of the cladding is in contact with a liquid coolant at temperature TL. The heat transfer co- 
efficient at the cladding-coolant interface is h,, and the thermal conductivities of the fuel rod 
and cladding are k, and kc. 

Answer: TF,max - TL = - 

10B.4. Heat conduction in an annulus (Fig. 10B.4). 
(a) Heat is flowing through an annular wall of inside radius r,, and outside radius r,. The 
thermal conductivity varies linearly with temperature from ko at To  to k, at TI .  Develop an ex- 
pression for the heat flow through the wall. 
(b) Show how the expression in (a) can be simplified when (r, - r,)/r, is very small. Interpret 
the result physically. 
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'i! Fig. 10B.4. Temperature profile in an annular wall. 

10B.5. Viscous heat generation in a polymer melt. Rework the problem discussed in 510.4 for a 
molten polymer, whose viscosity can be adequately described by the power law model (see 
Chapter 8). Show that the temperature distribution is the same as that in Eq. 10.4-9 but with 
the Brinkrnan number replaced by 

Br, = 

10B.6. Insulation thickness for a furnace wall (Fig. 10B.6). A furnace wall consists of three layers: 
(i) a layer of heat-resistant or refractory brick, (ii) a layer of insulating brick, and (iii) a steel 
plate, 0.25 in. thick, for mechanical protection. Calculate the thickness of each layer of brick to 
give minimum total wall thickness if the heat loss through the wall is to be 5000 ~ t u / f t ~  hr, 
assuming that the layers are in excellent thermal contact. The following information is 
available: 

Maximum Thermal conductivity 
allowable (Btu/hr ft - F) 

Material temperature at 100°F at 2000°F 

Refractory brick 2600°F 1.8 3.6 
Insulating brick 2000°F 0.9 1.8 
Steel - 26.1 - 

Answer: Refractory brick, 0.39 ft; insulating brick, 0.51 ft. 

10B.7. Forced-convection heat transfer in flow between parallel plates (Fig. 10B.7). A viscous fluid 
with temperature-independent physical properties is in fully developed laminar flow be- 
tween two flat surfaces placed a distance 2B apart. For z < 0 the fluid temperature is uniform 
at T = T,. For z > 0 heat is added at a constant, uniform flux qo at both walls. Find the temper- 
ature distribution T(x, z )  for large z. 
(a) Make a shell energy balance to obtain the differential equation for T(x, z). Then discard 
the viscous dissipation term and the axial heat conduction term. 

Steel plate, 
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Fig. 10B.7. Laminar, incompressible flow 
between parallel plates, both of which are 
being heated by a uniform wall heat flux q, 
starting at z = 0. 

(b) Recast the problem in terms of the dimensionless quantities 

(c) Obtain the asymptotic solution for large z: 

10B.8. Electrical heating of a pipe (Fig. 10B.8). In the manufacture of glass-coated steel pipes, it is 
common practice first to heat the pipe to the melting range of glass and then to contact the hot 
pipe surface with glass granules. These granules melt and wet the pipe surface to form a 
tightly adhering nonporous coat. In one method of preheating the pipe, an electric current is 
passed along the pipe, with the result that the pipe is heated (as in g10.2). For the purpose of 
this problem make the following assumptions: 

(i) The electrical conductivity of the pipe k, is constant over the temperature range of in- 
terest. The local rate of electrical heat production S, is then uniform throughout the pipe wall. 

(ii) The top and bottom of the pipe are capped in such a way that heat losses through 
them are negligible. 

(iii) Heat loss from the outer surface of the pipe to the surroundings is given by New- 
ton's law of cooling: q, = h(T, - T,). Here h is a suitable heat transfer coefficient. 

How much electrical power is needed to maintain the inner pipe surface at some desired 
temperature, TK, for known k, Tat h, and pipe dimensions? 

1 -  I Ambient air 
L 

1 -  
temperature Ta 

1 Pipe wall 

Electrical heating of a pipe. - Fig. 10B.8. 
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rR2(1 - K ~ ) L ( T ~  - To) 
Answer: P = 

10B.9. Plug flow with forced-convection heat transfer. Very thick slurries and pastes sometimes 
move in channels almost as a solid plug. Thus, one can approximate the velocity by a con- 
stant value v, over the conduit cross section. 
(a) Rework the problem of 510.8 for plug flow in a circular tube of radius R. Show that the 
temperature distribution analogous to Eq. 10.8-31 is 

in which [ = ~ Z / ~ ? ~ V , R ~ ,  and @ and are defined as in 510.8. 
(b) Show that for plug flow in a plane slit of width 2B the temperature distribution analogous 
to Eq. 10B.7-4 is 

in which 5 = k ~ / ~ ~ , v , ~ ~ ,  and O and a are defined as in Problem 108.7. 

10B.lO. Free convection in an annulus of finite height (Fig. 10B.10). A fluid is contained in a vertical 
annulus closed at the top and bottom. The inner wall of radius KR is maintained at the tem- 
perature T,, and the outer wall of radius R is kept at temperature TI.  Using the assumptions 
and approach of 510.9, obtain the velocity distribution produced by free convection. 
(a) First derive the temperature distribution 

in which l =  r/R. 
(b) Then show that the equation of motion is 

in which A = (~~/p)(dp/dz  + pig) and B = ((p1gp,AT)R2/p In K) where AT = TI - T,. 
(c) Integrate the equation of motion (see Eq. C.l-11) and apply the boundary conditions to 
evaluate the constants of integration. Then show that A can be evaluated by the requirement 
of no net mass flow through any plane z = constant, with the final resdt that 

Fig. 10B.10. Free convection pattern in an annular space 
with TI > T,. 
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Free convection with temperature-dependent viscosity. Rework the problem in 510.9, tak- 
ing into account the variation of viscosity with temperature. Assume that the "fluidity" (reci- 
procal of viscosity) is the following linear function of the temperature 

Use the q, &, and Gr defined in 510.9 (but with ji instead of p) and in addition 

b, = :PAT, b, = %,AT and P = 

and show that the differential equation for the velocity distribution is 

Follow the procedure in 510.9, discarding terms containing the third and higher powers of 
AT. Show that this leads to P = & Grb, + & Grb, and finally: 

Sketch the result to show how the velocity profile becomes skewed because of the tempera- 
ture-dependent viscosity. 

Heat conduction with temperature-dependent thermal conductivity (Fig. 108.12). The 
curved surfaces and the end surfaces (both shaded in the figure) of the solid in the shape of a 
half-cylindrical shell are insulated. The surface 0 = 0, of area (r2 - r,)L, is maintained at tem- 
perature To, and the surface at 8 = T, also of area (r, - rJL, is kept at temperature T,. 

The thermal conductivity of the solid varies linearly with temperature from ko at T = To 
tok,at T =  T,. 
(a) Find the steady-state temperature distribution. 
(b) Find the total heat flow through the surface at 8 = 0. 

Flow reactor with exponentially temperature-dependent source. Formulate the function 
F(O) of Eq. 10.5-7 for a zero-order reaction with the temperature dependence 

in which K and E are constants, and R is the gas constant. Then insert F(O) into Eqs. 10.5-15 
through 20 and solve for the dimensionless temperature profile with kz,e, neglected. 

Evaporation loss from an oxygen tank. 
(a) Liquefied gases are sometimes stored in well-insulated spherical containers vented to the 
atmosphere. Develop an expression for the steady-state heat transfer rate through the walls of 
such a container, with the radii of the inner and outer walls being r, and r, respectively and 

~urface'L r2 

at T, 
1 - r  '\ 

Surface at To 

Fig. 10B.12. Tangential heat conduction in an annular shell. 
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the temperatures at the inner and outer walls being To and TI. The thermal conductivity of the 
insulation varies linearly with temperature from ko at To to k, at TI. 
(b) Estimate the rate of evaporation of liquid oxygen from a spherical container of 6 ft inside 
diameter covered with a 1-ft-thick annular evacuated jacket filled with particulate insulation. 
The following information is available: 

Temperature at inner surface of insulation - 183°C 
Temperature at outer surface of insulation 0°C 
Boiling point of O2 - 183°C 
Heat of vaporization of 0, 1636 cal/g-mol 
Thermal conductivity of insulation at 0°C 9.0 X Btu/hr ft . F 
Thermal conductivity of insulation at -183°C 7.2 X Btu/hr. ft . F 

ko + k1 To - TI 
Answers: (a) Q, = 4morl ( - ) (  - - . (b) 0.198 k g h r  

10B.15. Radial temperature gradients in an annular chemical reactor. A catalytic reaction is being 
carried out at constant pressure in a packed bed between coaxial cylindrical walls with inner 
radius ro and outer radius r,. Such a configuration occurs when temperatures are measured 
with a centered thermowell, and is in addition useful for controlling temperature gradients if 
a thin annulus is used. The entire inner wall is at uniform temperature To, and it can be as- 
sumed that there is no heat transfer through this surface. The reaction releases heat at a uni- 
form volumetric rate S, throughout the reactor. The effective thermal conductivity of the 
reactor contents is to be treated as a constant throughout. 
(a) By a shell energy balance, derive a second-order differential equation that describes the 
temperature profiles, assuming that the temperature gradients in the axial direction can be 
neglected. What boundary conditions must be used? 
(b) Rewrite the differential equation and boundary conditions in terms of the dimensionless 
radial coordinate and dimensionless temperature defined as 

Explain why these are logical choices. 
(c) Integrate the dimensionless differential equation to get the radial temperature profile. To 
what viscous flow problem is this conduction problem analogous? 
(d) Develop expressions for the temperature at the outer wall and for the volumetric average 
temperature of the catalyst bed. 
(e) Calculate the outer wall temperature when r, = 0.45 in., r, = 0.50 in., k,, = 0.3 Btu/hr. ft . 
F, To = 900°F, and S, = 4800 cal/hr cm3. 
(f) How would the results of part (e) be affected if the inner and outer radii were doubled? 
Answer: (e) 888°F 

10B.16. Temperature distribution in a hot-wire anemometer. A hot-wire anemometer is essentially 
a fine wire, usually made of platinum, which is heated electrically and exposed to a flowing 
fluid. Its temperature, which is a function of the fluid temperature, fluid velocity, and the rate 
of heating, may be determined by measuring its electrical resistance. It is used for measuring 
velocities and velocity fluctuations in flow systems. In this problem we analyze the tempera- 
ture distribution in the wire element. 

We consider a wire of diameter D and length 2L supported at its ends (z  = -L and z = 
+L) and mounted perpendicular to an air stream. An electric current of density I amp/cm2 
flows through the wire, and the heat thus generated is partially lost by convection to the air 
stream (see Eq. 10.1-2) and partially by conduction toward the ends of the wire. Because of 
their size and their high electrical and thermal conductivity, the supports are not appreciably 
heated by the current, but remain at the temperature TL , which is the same as that of the ap- 
proaching air stream. Heat loss by radiation is to be neglected. 
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(a) Derive an equation for the steady-state temperature distribution in the wire, assuming 
that T depends on z alone; that is, the radial temperature variation in the wire is neglected. 
Further, assume uniform thermal and electrical conductivities in the wire, and a uniform heat 
transfer coefficient from the wire to the air stream. 
(b) Sketch the temperature profile obtained in (a). 
(c) Compute the current, in amperes, required to heat a platinum wire to a midpoint temper- 
ature of 50°C under the following conditions: 

TL = 20°C h = 100 Btu/hr. ft2 F 

D = 0.127 mm k = 40.2 Btu/hr ft F 

L = 0.5 cm k, = 1.00 x lo5 ohm-' cm-' 

Answers: (a) T - T - - 1 - cOsh?!h!!?); (c)  1.01 amp 
- ( c o s h d 4 h / k ~ ~  

10B.17. Non-Newtonian flow with forced-convection heat transfer? For estimating the effect of 
non-Newtonian viscosity on heat transfer in ducts, the power law model of Chapter 8 gives 
velocity profiles that show rather well the deviation from parabolic shape. 
(a) Rework the problem of 510.8 (heat transfer in a circular tube) for the power law model 
given in Eqs. 8.3-2,3. Show that the final temperature profile is 

in which s = 1 /n. 
(b) Rework Problem 10B.7 (heat transfer in a plane slit) for the power law model. Obtain the 
dimensionless temperature profile: 

Note that these results contain the Newtonian results (s = 1) and the plug flow results (s = to). 

See Problem 10D.2 for a generalization of this approach. 

10B.18. Reactor temperature profiles with axial heat flux2 (Fig. 10B.18). 
(a) Show that for a heat source that depends linearly on the temperature, Eqs. 10.5-6 to 14 
have the solutions (for m+ # m-) 

m+m-(exp m+ - exp m-) 
@ ' = I +  

2 2 exp [(m, + m-)Zl 
m+ exp m+ - m- exp m- 

m+ (exp m+)(exp m-Z) - m- (exp mdexp m+Z) 0" = (m+ + m-) (10B.18-2) 
m: exp m+ - m2_ exp m- 

2 m: - m -  
@"I = 

2 exp (m, + m-) m: exp m+ - m exp m- 

Here mf = iB(1 i dl - (4N/B), in which B = pvo~p~ /~e f f , , , .  Some profiles calculated from 
these equations are shown in Fig. 108.18. 

-- 

I R. B. Bird, Chem.-Ing. Technik, 31,569-572 (1959). 
Taken from the corresponding results of G. Damkohler, Z. Elektrochem., 43,l-8,9-13 (1937), and 

J. F. Wehner and R. H. Wilhelm, Chern. Engr. Sci., 6,89-93 (1956); 8,309 (1958), for isothermal flow reactors 
with longitudinal diffusion and first-order reaction. Gerhard Damkohler (190&1944) achieved fame for 
his work on chemical reactions in flowing, diffusing systems; a key publication was in Der Chemie- 
Ingenieur, Leipzig (19371, pp. 359485. Richard Herman Wilhelm (1909-1968), chairman of the Chemical 
Engineering Department at Princeton University, was well known for his work on fixed-bed catalytic 
reactors, fluidized transport, and the "parametric pumping" separation process. 



Problems 329 

Zone I1 in which heat is produced 
Zone I by chemical reaction Zone I11 

". - 
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 

Dimensionless axial coordinate Z = z / L  

Fig. 10B.18. Predicted temperature profiles in a fixed-bed axial-flow 
reactor for B = 8 and various values of N. 

(b) Show that, in the limit as B goes to infinity, the above solution agrees with that in Eqs. 
10.5-21,22, and 23. 
(c) Make numerical comparisons of the results in Eq. 10.5-22 and Fig. 10B.18 for N = 2 at Z = 0.0, 
0.5,0.9, and 1.0. 
(dl Assuming the applicability of Eq. 9.6-9, show that the results in Fig. 10B.18 correspond to 
a catalyst bed length L of 4 particle diameters. Since the ratio L I D ,  is seldom less than 100 in 
industrial reactors, it follows that the neglect of K,,,,~, is a reasonable assumption in steady- 
state design calculations. 

10C.l. Heating of an electric wire with temperature-dependent electrical and thermal conductiv- 
 it^.^ Find the temperature distribution in an electrically heated wire when the thermal and 
electrical conductivities vary with temperature as follows: 

Here ko and k,  are the values of the conductivities at temperature To, and O = (T - To) /To  is a 
dimensionless temperature rise. The coefficients ai and Pi are constants. Such series expan- 
sions are useful over moderate temperature ranges. 
(a) Because of the temperature gradient in the wire, the electrical conductivity is a function of 
position, k,(r). Therefore, the current density is also a function of Y :  I(r) = ke(r) . (EIL) ,  and the 
electrical heat source also is position dependent: Se(r) = k,(r) (EIL)'. The equation for the 
temperature distribution is then 

- -  --- 

The solution given here was suggested by L. J. F. Broer (personal communication, 20 August 1958). 
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Now introduce the dimensionless quantities 6 = r / R  and B = kJ?.2E2/k,,~2~o and show that 
Ea. 10C.l-3 then becomes 

When the power series expressions for the conductivities are inserted into this equation we get 

This is the equation that is to be solved for the dimensionless temperature distribution. 
(b) Begin by noting that if all the ai and Pi were zero (that is, both conductivities constant), 
then Eq. 10C.l-5 would simplify to 

When this is solved with the boundary conditions that @ = finite at 4 = 0,-and O = 0 at 5 = 1, 
we get 

0 = $B(l - f )  (lOC.l-7) 

This is Eq. 10.2-13 in dimensionless notation. 
Note that Eq. 10C.-5 will have the solution in Eq. 10C.l-7 for small values of B-that is, 

for weak heat sources. For stronger heat sources, postulate that the temperature distribution 
can be expressed as a power series in the dimensionless heat source strength B: 

Here the 0, are functions of 6 but not of B. Substitute Eq. 10C.1-8 into Eq. 10C.l-5, and equate 
the coefficients of like powers of B to get a set of ordinary differential equations for the @,,,with 
n = 1,2,3, . . . . These may be solved with the boundary conditions that O,, = finite at 6 = 0 and 
0, = 0 at 5 = 1. In this way obtain 

where 0(B2) means "terms of the order of B2 and higher." 
(c) For materials that are described by the Wiedemann-Franz-Lorenz law (see §9.5), the ratio 
k / k J  is a constant (independent of temperature). Hence 

Combine this with Eqs. 10C.l-1 and 2 to get 

Equate coefficients of equal powers of the dimensionless temperature to get relations among 
the ai and the Pi: a, = PI - I, a, = p, + p,, and so on. Use these relations to get 

10C.2. Viscous heating with temperature-dependent viscosity and thermal conductivity (Figs. 
10.4-1 and 2). Consider the flow situation shown in Fig. 10.4-2. Both the stationary surface 
and the moving surface are maintained at a constant temperature To. The temperature depen- 
dences of k and p are given by 

in which the ai and Pi are constants, rp = is the fluidity, and the subscript "0" means 
"evaluated at T = To." The dimensionless temperature is defined as @ = (T - To)/T,,. 
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(a) Show that the differential equations describing the viscous flow and heat conduction may 
be written in the forms 

in which 4 = vz/vb, 5 = X/  b, and Br = pod/hTo (the Brinkman number). 
(b) The equation for the dimensionless velocity distribution may be integrated once to give 
d~$/dt = C, . (v/&, in which C, is an integration constant. This expression is then substituted 
into the energy equation to get 

Obtain the first two terms of a solution in the form 

It is further suggested that the constant of integration C1 also be expanded as a power series 
in the Brinkman number, thus 

(c) Repeat the problem, changing the boundary condition at y = b to q, = 0 (instead of speci- 
fying the temperat~re).~ 
Answers: (b) 4 = 5 - & ~ r p , ( t  - 35' + 2t3) + . . . 

@ = i ~ r ( t  - e2) - t ~ r ~ ~ y , ( f  - 2t3 + 9) - & ~ 3 p ~ ( ~  - 25' + 2t3 - $) + . . 
(c) 4 = 6 - : ~ r ~ , ( 2 (  - 35' + P )  + . 

@ = Br(& - $5') - ~ ~ r ' a ~ ( 4 [ ~  - 4$ + $) + &~rZp,(-8{ + 8 9  - 4e3 + e4) + . . 
10C.3. Viscous heating in a cone-and-plate viscometer? In Eq. 2B.11-3 there is an expression for 

the torque 9 required to maintain an angular velocity fl in a cone-and-plate viscometer 
with included angle t,b0 (see Fig. 2B.11). It is desired to obtain a correction factor to account 
for the change in torque caused by the change in viscosity resulting from viscous heating. 
This effect can be a disturbing factor in viscometric measurements, causing errors as large 
as 20%. 
(a) Adapt the result of Problem 10C.2 to the cone-and-plate system as was done in Problem 
2B.ll(a). The boundary condition of zero heat flux at the cone surface seems to be more realis- 
tic than the assumption that the cone and plate temperatures are the same, inasmuch as the 
plate is thermostatted and the cone is not. 
(b) Show that this leads to the following modification of Eq. 2B.11-3: 

where = pof12R2/koT, is the Brinkman number. The symbol po stands for the viscosity at 
the temperature To. 

R. M. Turian and R. B. Bird, Chem. Eng. Sci., 18,689-696 (1963). 
%. M. Turian, Chem. Eng. Sci., 20,771-781 (1965); the viscous heating correction for non-Newtonian 

fluids is discussed in this publication (see also R. B. Bird, R. C. Armstrong, and 0. Hassager, Dynamics of 
Polymeric Liquids, Vol. 1,2nd edition, Wiley-Interscience, New York (1987), pp. 223-227. 
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Fig. 10D.l. Circular fin on a 
perature T = To at r = Ro heated pipe. 

Heat loss from a circular fin (Fig. 10D.1). 
(a) Obtain the temperature profile T(r) for a circular fin of thickness 2B on a pipe with outside 
wall temperature To. Make the same assumptions that were made in the study of the rectan- 
gular fin in 510.7. 
(b) Derive an expression for the total heat loss from the fin. 

Duct flow with constant wall heat flux and arbitrary velocity distribution. 
(a) Rework the problem in 510.8 for an arbitrary fully developed, axisyrnrnetric flow velocity 
distribution v,/v,,,,, = 4(6), where 5 = r/R.  venfy that the temperature distribution is given by 

in which 

Show that C1 = 0 and C0 = [I(l)]-'. Then show that the remaining constant is 

Venfy that the above equations lead to Eqs. 10.8-27 to 30 when the velocity profile is parabolic. 
These results can be used to compute the temperature profiles for the fully developed 

tube flow of any kind of material as long as a reasonable estimation can be made for the ve- 
locity distribution. As special cases, one can get results for Newtonian flow, plug flow, non- 
Newtonian flow, and even, with some modifications, turbulent flow (see §13.4).6 
(b) Show that the dimensionless temperature difference driving force O, - Ob is 

(c) Verify that the dimensionless wall heat flux is 

and that, for the laminar flow of Newtonian fluids, this quantity has the value g. 
(d) What is the physical interpretation of IU)? 

R. N. Lyon, Chem. Engr. Prog., 47,75-59 (1951); note that the definition of +(&) used here is different 
from that in Tables 14.2-1 and 2. 



Chapter 11 

The Equations of Change for 
Nonisothermal Systems 
911.1 The energy equation 

911.2 Special forms of the energy equation 

511.3 The Boussinesq equation of motion for forced and free convection 

911.4 Use of the equations of change to solve steady-state problems 

511.5 Dimensional analysis of the equations of change for nonisothermal systems 

In Chapter 10 we introduced the shell energy balance method for solving relatively sim- 
ple, steady-state heat flow problems. We obtained the temperature profiles, as well as 
some derived properties such as average temperature and energy fluxes. In this chapter 
we generalize the shell energy balance and obtain the equation of energy, a partial differ- 
ential equation that describes the transport of energy in a homogeneous fluid or solid. 

This chapter is also closely related to Chapter 3, where we introduced the equation 
of continuity (conservation of mass) and the equation of motion (conservation of mo- 
mentum). The addition of the equation of energy (conservation of energy) allows us to 
extend our problem-solving ability to include nonisothermal systems. 

We begin in §11.1 by deriving the equation of change for the total energy. As in 
Chapter 10, we use the combined energy flux vector e in applying the law of conserva- 
tion of energy. In 511.2 we subtract the mechanical energy equation (given in 53.3) from 
the total energy equation to get an equation of change for the internal energy. From the 
latter we can get an equation of change for the temperature, and it is this kind of energy 
equation that is most commonly used. 

Although our main concern in this chapter will be with the various energy equa- 
tions just mentioned, we find it useful to discuss in 511.3 an approximate equation of 
motion that is convenient for solving problems involving free convection. 

In 511.4 we summarize the equations of change encountered up to this point. Then 
we proceed to illustrate the use of these equations in a series of examples, in which we 
begin with the general equations and discard terms that are not needed. In this way we 
have a standard procedure for setting up and solving problems. 

Finally, in 511.5 we extend the dimensional analysis discussion of 53.7 and show 
how additional dimensionless groups arise in heat transfer problems. 

$11.1 THE ENERGY EQUATION 

The equation of change for energy is obtained by applying the law of conservation of en- 
ergy to a small element of volume Ax Ay Az (see Fig. 3.1-1) and then allowing the dimen- 
sions of the volume element to become vanishingly small. The law of conservation of 
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energy is an extension of the first law of classical thermodynamics, which concerns the 
difference in internal energies of two equilibrium states of a closed system because of 
the heat added to the system and the work done on the system (that is, the familiar 
A u = Q + W ) . '  

Here we are interested in a stationary volume element, fixed in space, through 
which a fluid is flowing. Both kinetic energy and internal energy may be entering and 
leaving the system by convective transport. Heat may enter and leave the system by heat 
conduction as well. As we saw in Chapter 9, heat conduction is fundamentally a molecu- 
lar process. Work may be done on the moving fluid by the stresses, and this, too, is a 
molecular process. This term includes the work done by pressure forces and by viscous 
forces. In addition, work may be done on the system by virtue of the external forces, 
such as gravity. 

We can summarize the preceding paragraph by writing the conservation of energy 
in words as follows: 

net rate of kinetic net rate of heat E; kinetic and of = [nd energy internal addition + [;:=by molecular + 
by convective 
transport (conduction) 

rate of work rate of work 
done on system done on system 
by molecular + by external 

(mechanisms (i.e., by stresses) L r c e s  (e.g., by gravity) 1 (11.1-1) 

In developing the energy equation we will use the e vector of Eq. 9.8-5 or 6, which in- 
cludes the first three brackets on the right side of Eq. 11.1-1. Several comments need to 
be made before proceeding: 

(i) By kinetic energy we mean that energy associated with the observable motion of 
the fluid, which is ipv2 = gp(v . v), per unit volume. Here v is the fluid velocity 
vector. 

(ii) By internal energy we mean the kinetic energies of the constituent molecules cal- 
culated in a frame moving with the velocity v, plus the energies associated with 
the vibrational and rotational motions of the molecules and also the energies of 
interaction among all the molecules. It is assumed that the internal energy U for 
a flowing fluid is the same function of temperature and density as that for a 
fluid at equilibrium. Keep in mind that a similar assumption is made for the 
thermodynamic pressure p(p, T )  for a flowing fluid. 

(iii) The potential energy does not appear in Eq. 11.1-1, since we prefer instead to 
consider the work done on the system by gravity. At the end of this section, 
however, we show how to express this work in terms of the potential energy. 

(iv) In Eq. 10.1-1 various source terms were included in the shell energy balance. In 
510.4 the viscous heat source S, appeared automatically, because the mechani- 
cal energy terms in e were properly accounted for; the same situation prevails 
here, and the viscous heating term -(T:VV) will appear automatically in Eq. 
11.2-1. The chemical, electrical, and nuclear source terms (S,, S,, and S,) do not 
appear automatically, since chemical reactions, electrical effects, and nuclear 

- -  -- -- 

I R. J. Silbey and R. A. Albert~, Physical Chemistry, Wiley, New York, 3rd edition (2001),§2.3. 
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disintegrations have not been included in the energy balance. In Chapter 19, 
where the energy equation for mixtures with chemical reactions is considered, 
the chemical heat source S, appears naturally, as does a "diffusive source 
term," ZJj, . g,). 

We now translate Eq. 11.1-1 into mathematical terms. The rate of increase of kinetic 
and internal energy within the volume element Ax Ay Az is 

Here is the internalAenergy per unit mass (sometimes called the "specific internal en- 
ergy"). The product pU is the internal energy per unit volume, and $v2 = ;p(vz + vi + v:) 
is the kinetic energy per unit volume. 

Next we have to know how much energy enters and leaves across the faces of the 
volume element Ax Ay Az. 

Keep in mind that the e vector includes the convective transport of kinetic and internal 
energy, the heat conduction, and the work associated with molecular processes. 

The rate at which work is done on the fluid by the external force is the dot product 
of the fluid velocity v and the force acting on the fluid (p Ax Ay Az)g, or 

We now insert these various contributions into Eq. 11.1-1 and then divide by Ax Ay 
Az. When Ax, Ay, and Az are allowed to go to zero, we get 

This equation may be written more compactly in vector notation as 

Next we insert the expression for the e vector from Eq. 9.8-5 to get the equation of energy: 

rate of increase of 
energy per unit 
volume 

- (V . pv) 
rate of work 
done on fluid per 
unit volume by 
pressure forces 

rate of energy addition rate of energy addition 
per unit volume by per unit volume by 
convective transport heat conduction 

- (V . [T . vl) + p(v g) 
rate of work done rate of work done 
on fluid per unit on fluid per unit 
volume by viscous volume by external 
forces forces 

This equation does not include nuclear, radiative, electromagnetic, or chemical forms of 
energy. For viscoelastic fluids, the next-to-last term has to be reinterpreted by replacing 
"viscous" by "viscoelastic." 

Equation 11.1-7 is the main result of this section, and it provides the basis for the re- 
mainder of the chapter. Th? equation can be written in another form to include the poten- 
tial energy per unit mass, @, which has been defined earlier by g = -V@ (see 33.3). For 
moderate elevation changes, this gives 6 = gh, where h is a coordinate in the direction 
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opposed to the gravitational field. For terrestrial problems, where the gravitational field is 
independent of time, we can write 

p(v g) = - (pv . v&) (1 1 .l-8) 
= -(V . pv6) + &V . pv) Use vector identity in Eq. A.4-19 

Use Eq. 3.1-4 

d "  
= -(V spv9) - &3@) Use 6 independent of t 

When this result is inserted into Eq. 11.1-7 we get 

d  
(&u2 + pii  + p6) = -(V . (ipv2 + pG + ,06)v) 

- (v . q) - (0 . pv) - (V [T - v]) (11.1-9) 

Sometimes it is convenient to have the energy equation in this form. 

511.2 SPECIAL FORMS OF THE ENERGY EQUATION 

The most useful form of the energy equation is one in which the temperature appears. 
The object of this section is to arrive at such an equation, which can be used for predic- 
tion of temperature profiles. 

First we subtract the mechanical energy equation in Eq. 3.3-1 from the energy equa- 
tion in 11.1-7. This leads to the following equation of change for internal energy: 

rate of net rate of rate of internal 
increase in addition of energy addition 
internal internal energy by heat conduction, 
energy by convective per unit 
per unit transport, volume 
volume per unit volume 

- p(V v) - (T:VV) 
reversible rate irreversible rate 
of internal of internal energy 
energy increase increase per unit 
per unit volume volume by 
by compression viscous dissipation 

It is now of interest to compare the mechanical energy equation of Eq. 3.3-1 and the in- 
ternal energy equation of Eq. 11.2-1. Note that the terms p(V . v) and (T:VV) appear in 
both equations-but with opposite signs. Therefore, these terms describe the intercon- 
version of mechanical and thermal energy. The term p(V . v) can be either positive or 
negative, depending on whether the fluid is expanding or contracting; therefore it repre- 
sents a reversible mode of interchange. On the other hand, for Newtonian fluids, the 
quantity - (T:VV) is always positive (see Eq. 3.3-3) and therefore represents an irreversible 
degradation of mechanical into internal energy. For viscoelastic fluids, discussed in 
Chapter 8, the quantity -(T:VV) does not have to be positive, since some energy may be 
stored as elastic energy. 

We pointed out in s3.5 that the equations of change can be written somewhat more 
compactly by using the substantial derivative (see Table 3.5-1). Equation 11.2-1 can be 
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put in the substantial derivative form by using Eq. 3.5-4. This gives, with no further 
assumptions 

Next it is convenient to switch from intynalnenergy to ythalpy, as we did at the very 
end of 59.8. That is, in Eq. 11.2-2 we set U = H - pV = H - (p/p), making the standard 
assumption that thermodynamic formulas derived from equilibrium thermodynamics 
may be applied locally for nonequilibrium systems. When we substitute this formula 
into Eq. 11.2-2 and use the equation of continuity (Eq. A of Table 3.5-I), we get 

Next we may use Eq. 9.8-7, which presumes that the enthalpy is a function of p and T 
(this restricts the subsequent development to Newtonian fluids). Then we may get an ex- 
pression for the change in the enthalpy in an element of fluid moving with the fluid ve- 
locity, which is 

Equating the right sides of Eqs. 11.2-3 and 11.2-4 gives 

This is the equation of change for temperature, in terms of the heat flux vector q and the 
viscous momentum flux tensor T. To use this equation we need expressions for these 
fluxes: 

(i) When Fourier's law of Eq. 9.1-4 is used, the term -(V q) becomes +(V . kVT), 
or, if the thermal conductivity is assumed constant, +kV2T. 

(ii) When Newton's law of Eq. 1.2-7 is used, the term -(T:VV) becomes pa, + KIP,, 
the quantity given explicitly in Eq. 3.3-3. 

We do not perform the substitutions here, because the equation of change for tempera- 
ture is almost never used in its complete generality. 

We now discuss several special restricted versions of the equation of change for tem- 
perature. In all of these we use Fourier's law with constant k, and we omit the viscous 
dissipation term, since it is important only in flows with enormous velocity gradients: 

(i) For an ideal gas, (d In p/d In T), = -1, and 

Or, if use is made of the relation ?, - rv = R, the equation of state in the form 
pM = pXT, and the equation of continuity as written in Eq. A of Table 3.5-1, we get 
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(ii) For a fluid flowing in a constant pressure system, Dp/Dt = 0, and 

(iii) For a fluid with constant density,' (d In p/d In Dp = 0, and 

(iv) For a stationa y solid, v is zero and 

- d l -  pC - = kV2T 
P dt 

(1 1.2-10) 

These last five equations are the ones most frequently encountered in textbooks and re- 
search publications. Of course, one can always go back to Eq. 11.2-5 and develop less re- 
strictive equations when needed. Also, one can add chemical, electrical, and nuclear 
source terms on an ad hoc basis, as was done in Chapter 10. 

Equation 11.2-10 is the heat conduction equation for solids, and much has been writ- 
ten about this famous equation developed first by ~ o u r i e r . ~  The famous reference work 
by Carslaw and Jaeger deserves special mention. It contains hundreds of solutions of this 
equation for a wide variety of boundary and initial conditions." 

g11.3 THE BOUSSINESQ EQUATION OF MOTION 
FOR FORCED AND FREE CONVECTION 

The equation of motion given in Eq. 3.2-9 (or Eq. B of Table 3.5-1) is valid for both 
isothermal and nonisothermal flow. In nonisothermal flow, the fluid density and viscos- 
ity depend in general on temperature as well as on pressure. The variation in the density 
is particularly important because it gives rise to buoyant forces, and thus to free convec- 
tion, as we have already seen in s10.9. 

The buoyant force appears automatically when an equation of state is inserted into 
the equation of motion. For example, we can use the simplified equation of state intro- 
duced in Eq. 10.9-6 (this is called the Boussinesq approximation)' 

in which p is -(l/p)(~p/dTIP evaluated at T = T. This equation is obtained by writing 
the Taylor series for p as a function of T,  considering the pressure p to be constant, and 
keeping only the first two terms of the series. When Eq. 11.3-1 is substituted into the pg 
term (but not into the p(Dv/Dt) term) of Eq. B of Table 3.5-1, we get the Boussinesq equation: 

' The assumption of constant density is made here, instead of the less stringent assumption that 
(d In p/d In T), = 0, since Eq. 11.2-9 is customarily used along with Eq. 3.1-5 (equation of continuity for 
constant density) and Eq. 3.5-6 (equation of motion for constant density and viscosity). Note that the 
hypothetical equation of state p = constant has to be supplemented by the statement that (dp/dT), = 

finite, in order to permit the evaluation of certain thermodynamic derivatives. For example, the relation 

leads to the result that k, = k, for the "incompressible fluid thus defined. 
J. B. Fourier, T'hkdie analytique de la chalhr, CEuvres de Fourier, Gauthier-Villars et Fils, Paris (1822). 
H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, 2nd edition (1959). 

' J. Boussinesq, Thkorie Analytique de Chaleur, Vol. 2, Gauthier-Villars, Paris (1903). 
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This form of the equation of motion is very useful for heat transfer analyses. It describes 
the limiting cases of forced convection and free convection (see Fig. 10.8-I), and the re- 
gion between these extremes as well. In forced convection the buoyancy term -@&T - T )  
is neglected. In free convection (or natural convection) the term (-Vp + pg) is small, and 
omitting it is usually appropriate, particularly for vertical, rectilinear flow and for the 
flow near submerged objects in large bodies of fluid. Setting (-Vp + pg) equal to zero is 
equivalent to assuming that the pressure distribution is just that for a fluid at rest. 

It is also customary to replace p on the left side of Eq. 11.3-2 by p. This substitution has 
been successful for free convection at moderate temperature differences. Under these con- 
ditions the fluid motion is slow, and the acceleration term Dv/Dt is small compared to g. 

However, in systems where the acceleration term is large with respect to g, one must 
also use Eq. 11.3-1 for the density on the left side of the equation of motion. This is par- 
ticularly true, for example, in gas turbines and near hypersonic missiles, where the term 
(p - p)Dv/Dt may be at least as important as pg. 

$11.4 USE OF THE EQUATIONS OF CHANGE 
TO SOLVE STEADY-STATE PROBLEMS 

In 593.1 to 3.4 and in 591 1.1 to 11.3 we have derived various equations of change for a 
pure fluid or solid. It seems appropriate here to present a summary of these equations 
for future reference. Such a summary is given in Table 11.4-1, with most of the equations 
given in both the d / d t  form and the D/Dt form. Reference is also made to the first place 
where each equation has been presented. 

Although Table 11.4-1 is a useful summary, for problem solving we use the equa- 
tions written out explicitly in the several commonly used coordinate systems. This has 
been done in Appendix B, and readers should thoroughly familiarize themselves with 
the tables there. 

In general, to describe the nonisothermal flow of a Newtonian fluid one needs 

the equation of continuity 

the equation of motion (containing p and K) 

the equation of energy (containing p, K ,  and k) 
the thermal equation of state (p = p(p, TI) 

the caloric equation of state (4 = k&p, T)) 

as well as expressions for the density and temperature dependence of the viscosity, di- 
latational viscosity, and thermal conductivity. In addition one needs the boundary and 
initial conditions. The entire set of equations can then-in principle-be solved to get the 
pressure, density, velocity, and temperature as functions of position and time. If one 
wishes to solve such a detailed problem, numerical methods generally have to be used. 

Often one may be content with a restricted solution, for making an order-of-magni- 
tude analysis of a problem, or for investigating limiting cases prior to doing a complete 
numerical solution. This is done by making some standard assumptions: 

(i) Assumption of constant physical properties. If it can be assumed that all physical 
properties are constant, then the equations become considerably simpler, and 
in some cases analytical solutions can be found. 

(ii) Assumption of zero fluxes. Setting T and q equal to zero may be useful for (a) adi- 
abatic flow processes in systems designed to minimize frictional effects (such as 
Venturi meters and turbines), and (b) high-speed flows around streamlined ob- 
jects. The solutions obtained would be of no use for describing the situation 
near fluid-solid boundaries, but may be adequate for analysis of phenomena 
far from the solid boundaries. 



Table 11.4-1 Equations of Change for Pure Fluids in Terms of the Fluxes 

Special form In terms of D / D t  Comments 

Table 3.5-1 

(A) 

For p = constant, simplifies to 

(V.v) = 0 
Cont. 

-- 

For T = 0 this becomes Euler's 

equation 

Displays buoyancy term 

Motion General Table 3.5-1 

(B) 

Approximate 

Exact only for @ time independent Energy In terms of 
k+ i r+6  

In terms of 

K + U  

DIZ p --- = -(v . Vp) - (v . [V .TI) + p(v. g) 
Dt 

From equation of motion Table 3.5-1 

(F) 

In terms of 
I;: = fv2 

Term containing (V . v) is zero for 

constant p 

H = u + (PIP) 

In terms of 

ir 

In terms of 

H 

In terms of 

e,, and T 

For an ideal gas T(dp/dT), = p 

For an ideal gas (6' In pld In T ) ,  = - 1 In terms of 
?, and T 



Cont. 

Motion 

Energy 

Entropy 

General 

In terms of a p ( ~  + C +  6 )  = - v ~ +  H 6 - ( v - q )  - (V.[T.V]) 

I;l+u+$J 

In terms of d p ( k +  ir) = v v - v - (v - [T .v ) I  +p(vag) 

i + u  I 
In terms of 
1;: = i V 2  

In terms of 

u 
In terms of 

il Dt 

For p = constant, simplifies to 

(V - v) = 0 

For T = 0 this becomes Euler's 

equation 
-- 

Displays buoyancy term 

Exact only for @ time independent 

Exact only for time independent 

From equation of motion 

From equation of motion 

Term containing (V v) is zero for 

constant p 

Last two terms describe entropy 

production 
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EXAMPLE 11.4-1 

Steady-State Forced- 
Convection Heat 
Transfer in Laminar 
Flow in a Circular Tube 

EXAMPLE 11.4-2 

Tangential Flow in an 
Annulus with Viscous 
Heat Generation 

To illustrate the solution of problems in which the energy equation plays a signifi- 
cant role, we solve a series of (idealized) problems. We restrict ourselves here to steady- 
state flow problems and consider unsteady-state problems in Chapter 12. In each 
problem we start by listing the postulates that lead us  to simplified versions of the equa- 
tions of change. 

Show how to set up the equations for the problem considered in 510.8-namely, that of find- 
ing the fluid temperature profiles for the fully developed laminar flow in a tube. 

SOLUTION 

We assume constant physical properties, and we postulate a solution of the following form: 
v = 6,v,(r), 9 = Wz), and T = T(r, z). Then the equations of change, as given in Appendix B, 
may be simplified to 

Continuity: 0 = 0 (11.4-1) 

Motion: 

Energy: 

The equation of continuity is automatically satisfied as a result of the postulates. The equation 
of motion, when solved as in Example 3.6-1, gives the velocity distribution (the parabolic ve- 
locity profile). This expression is then substituted into the convective heat transport term on 
the left side of Eq. 11.4-3 and into the viscous dissipation heating term on the right side. 

Next, as in 510.8, we make two assumptions: (i) in the z direction, heat conduction is 
much smaller than heat convection, so that the term d2T/dz2 can be neglected, and (ii) the 
flow is not sufficiently fast that viscous heating is significant, and hence the term p(dv,/dr)2 
can be omitted. When these assumptions are made, Eq. 11.4-3 becomes the same as Eq. 10.8- 
12. From that point on, the asymptotic solution, valid for large z only, proceeds as in s10.8. 
Note that we have gone through three types of restrictive processes: (i) postulates, in which 
a tentative guess is made as to the form of the solution; (ii) assumptions, in which we elimi- 
nate some physical phenomena or effects by discarding terms or assuming physical proper- 
ties to be constant; and (iii) an asymptotic solution, in which we obtain only a portion of the 
entire mathematical solution. It is important to distinguish among these various kinds of 
restrictions. 

Determine the temperature distribution in an incompressible liquid confined between two 
coaxial cylinders, the outer one of which is rotating at a steady angular velocity Q, (see 510.4 
and Example 3.6-3). Use the nomenclature of Example 3.6-3, and consider the radius ratio K to 
be fairly small so that the curvature of the fluid streamlines must be taken into account. 

The temperatures of the inner and outer surfaces of the annular region are maintained at 
T, and TI, respectively, with T,  # T,. Assume steady laminar flow, and neglect the tempera- 
ture dependence of the physical properties. 

This is an example of a forced convection problem: The equations of continuity and mo- 
tion are solved to get the velocity distribution, and then the energy equation is solved to get 
the temperature distribution. This problem is of interest in connection with heat effects in 
coaxial cylinder viscometers' and in lubrication systems. 

' J. R. Van Wazer, J. W. Lyons, K. Y. Kim, and R. E. Colwell, Viscosity and Flow Measurement, Wiley, 
New York (1963), pp. 82-85. 
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SOLUTION We begin by postulating that v = Zi,v,(r), that 9 = 9(r, z), and that T = T(r). Then the simplifi- 
cation of the equations of change leads to Eqs. 3.6-20,21, and 22 (the r-, 8-, and z-components 
of the equation of motion), and the energy equation 

When the solution to the 0-component of the equation of motion, given in Eq. 3.6-29, is substi- 
tuted into the energy equation, we get 

This is the differential equation for the temperature distribution. It may be rewritten in terms 
of dimensionless quantities by putting 

The parameter N is closely related to the Brinkman number of 910.4. Equation 11.4-5 now 
becomes 

This is of the form of Eq. C.l-11 and has the solution 

The integration constants are found from the boundary conditions 

B.C. 1: 

B.C. 2: 

Determination of the constants then leads to 

When N = 0, we obtain the temperature distribution for a motionless cylindrical shell of 
thickness R(1 - K) with inner and outer temperatures T,  and TI. If N is large enough, there 
will be a maximum in the temperature distribution, located at 

with the temperature at this point greater than either T, or TI. 
Although this example provides an illustration of the use of the tabulated equations of 

change in cylindrical coordinates, in most viscometric and lubrication applications the clear- 
ance between the cylinders is so small that numerical values computed from Eq. 11.4-13 will 
not differ substantially from those computed from Eq. 10.4-9. 

EXAMPLE 11.4-3 A liquid is flowing downward in steady laminar flow along an inclined plane surface, as 
shown in Figs. 2.2-1 to 3. The free liquid surface is maintained at temperature To, and the solid 

Steady Flow in a surface at x = 6 is maintained at T,. At these temperatures the liquid viscosity has values po 
Nonisothermal Film and pb, respectively, and the liquid density and thermal conductivity may be assumed con- 

stant. Find the velocity distribution in this nonisothermal flow system, neglecting end effects 
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and recognizing that viscous heating is unimportant in this flow. Assume that the tempera- 
ture dependence of viscosity may be expressed by an equation of the form p = AeBIT, with A 
and B being empirical constants; this is suggested by the Eyring theory given in 51.5. 

We first solve the energy equation to get the temperature profile, and then use the latter 
to find the dependence of viscosity on position. Then the equation of motion can be solved to 
get the velocity profile. 

SOLUTION We postulate that T = T(x) and that v = 6,vJx). Then the energy equation simplifies to 

This can be integrated between the known terminal temperatures to give 

The dependence of viscosity on temperature may be written as 

in which B is a constant, to be determined from experimental data for viscosity versus tem- 
perature. To get the dependence of viscosity on position, we combine the last two equations 
to get 

The second expression is a good approximation if the temperature does not change greatly 
through the film. When this equation is combined with Eq. 11.4-17, written for T = T,, we 
then get 

This is the same as the expression used in Example 2.2-2, if we set a equal to -ln(p,/p,). 
Therefore we may take over the result from Example 2.2-2 and write the velocity profile as 

This completes the analysis of the problem begun in Example 2.2-2, by providing the appro- 
priate value of the constant a. 

EXAMPLE 11.4-4 

Transpiration cooling2 

A system with two concentric porous spherical shells of radii KR and R is shown in Fig. 11.4- 
1. The inner surface of the outer shell is at temperature T,, and the outer surface of the inner 
shell is at a lower temperature TK. Dry air at TK is blown outward radially from the inner shell 
into the intervening space and then through the outer shell. Develop an expression for the re- 
quired rate of heat removal from the inner sphere as a function of the mass rate of flow of the 
gas. Assume steady laminar flow and low gas velocity. 

In this example the equations of continuity and energy are solved to get the temperature 
distribution. The equation of motion gives information about the pressure distribution in the 
system. 

M. Jakob, Heat Transfer, Vol. 2, Wiley, New York (1957), pp. 394-415. 
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SOLUTION 

Porous spherical shells 

h L-I 

Air in 
at TK 

Air flow out 

Fig. 11.4-1. Transpiration cooling. The 
inner sphere is being cooled by means 
of a refrigeration coil to maintain its 
temperature at TK. When air is blown 
outward, as shown, less refrigeration is 
required. 

We postulate that for this system v = 6pr(r), T = T(r), and 9 = Wr). The equation of continuity 
in spherical coordinates then becomes 

This equation can be integrated to give 

2 wr r pv, = const. = - 
4Tr 

Here w, is the radial mass flow rate of the gas. 
The r-component of the equation of mofion in spherical coordinates is, from Eq. B.6-7, 

The viscosity term drops out because of Eq. 11.4-21. Integration of Eq. 11.4-23 then gives 

Hence the modified pressure 8 increases with r, but only very slightly for the low gas veloc- 
ity assumed here. 

The energy equation in terms of the temperature, in spherical coordinates, is, according to 
Eq. B.9-3, 

Here we have used Eq. 11.2-8, for which we assume that the thermal conductivity is constant, 
the pressure is constant, and there is no viscous dissipation-all reasonable assumptions for 
the problem at hand. 

When Eq. 11.4-22 for the velocity distribution is used for v, in Eq. 11.4-25, we obtain the 
following differential equation for the temperature distribution T(r) in the gas between the 
two shells: 
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"3 1.0 Fig. 11.4-2. The effect of transpira- 
f tion cooling. 
> 0.8 
.r( L1 

$6 
z 0.6 
a'01 F: 
.2 b 0.4 
3% - 0.2 r 

0 
0 1 2 3 4 

Dimensionless transpiration rate, 4 

We make the change of variable u = r2(dT/dr) and obtain a first-order, separable differential 
equation for uW. This may be integrated, and when the boundary conditions are applied, we 

get 

in which Ro = w,Cp/4?~k is a constant with units of length. 
The rate of heat flow toward the inner sphere is 

and this is the required rate of heat removal by the refrigerant. Insertion of Fourier's law for 
the r-component of the heat flux gives 

Next we evaluate the temperature gradient at the surface with the aid of Eq. 11.4-27 to obtain 
the expression for the heat removal rate. 

In the limit that the mass flow rate of the gas is zero, so that R, = 0, the heat removal rate 
becomes 

The fractional reduction in heat removal as a result of the transpiration of the gas is then 

Here 4 = Ro(l - K)/KR = w,Cp(l - K ) / ~ T K R ~  is the "dimensionless transpiration rate." 
Equation 11.4-32 is shown graphically in Fig. 11.4-2. For small values of 6, the quantity 
(Qo - Q)/Qo approaches the asymptote $4. 

EXAMPLE 11.4-5 

Free-Convection Heat 

A flat plate of height Hand width W (with W >> H )  heated to a temperature To is suspended 
in a large body of fluid, which is at ambient temperature TI. In the neighborhood of the 
heated plate the fluid rises because of the buoyant force (see Fig. 11.4-3). From the equations 

Transfer from a of change, deduce the dependence of the heat loss on the system variables. The physical prop- 
Vertical Plate erties of the fluid are considered constant, except that the change in density with temperature 

will be accounted for by the Boussinesq approximation. 
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SOLUTION 

Fig. 11.4-3. The temperature and velocity profiles 
the neighborhood of a vertical heated plate. 

We postulate that v = 6,v,(y, z )  + 6,v,(y, z) and that T = T(y, 2). We assume that the heated 
fluid moves almost directly upward, so that v, << v,. Then the x- and y-components of Eq. 
11.3-2 give p = p(z), so that the pressure is given to a very good approximation by - d p / d z  - 
pg = 0, which is the hydrostatic pressure distribution. The remaining equations of change are 

Continuity 

Motion 

Energy 
----- 

in which p and p are evaluated at the ambient temperature TI. The dashed-underlined terms 
will be omitted on the ground that momentum and energy transport by molecular processes 
in the z direction is small compared with the corresponding convective terms on the left side 
of the equations. These omissions should give a satisfactory description of the system except 
for a small region around the bottom of the plate. With this simplification, the following 
boundary conditions suffice to analyze the system up to z = H: 

B.C. 1: 

B.C. 2: 

B.C. 3: 

aty=O, v,=v,=O and T = T ,  

asy+ ?m, v,+O and T+T1 

at z = 0, v, = 0 

Note that the temperature rise appears in the equation of motion and that the velocity distrib- 
ution appears in the energy equation. Thus these equations are "coupled." Analytic solutions 
of such coupled, nonlinear differential equations are very difficult, and we content ourselves 
here with a dimensional analysis approach. 

To do this we introduce the following dimensionless variables: 

T - TI 0 = --- = dimensionless temperature 
To - TI 

2 5 = - = dimensionless vertical coordinate 
H 

(1 1  .4-40) 
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1 /4 

,r, = (&) y = dimensionless horizontal coordinate 

9, = (--&)1'2uz = dimensionless vertical velocity (1 1.4-42) 

pH 
dy = (z) vy = dimensionless horizontal velocity (1 1.4-43) 

in which a = k/& and B = F ~ ~ ( T ~  - TI). 
When the equations of change, without the dashed-underlined terms, are written in 

terms of these dimensionless variables, we get 

Continuity 

Motion 

Energy 

The preceding boundary conditions then become 

B.C. 1: 

B.C. 2: 

B.C. 3: 

One can see immediately from these equations and boundary conditions that the dimension- 
less velocity components $ and 4, and the dimensionless temperature @ will depend on 7 
and l and also on the Prandtl number, Pr. Since the flow is usually very slow in free convec- 
tion, the terms in which Pr appears will generally be rather small; setting them equal to zero 
would correspond to the "creeping flow assumption." Hence we expect that the dependence 
of the solution on the Prandtl number will be weak. 

The average heat flux from one side of the plate may be written as 

The integral may now be written in terms of the dimensionless quantities 

in which the grouping Ra = GrPr is referred to as the Rayleigk number. Because O is a function 
of 77, l, and Pr, the derivative dO/dv is also a function of ,r,, l, and Pr. Then dO/dq, evaluated 
at ,r, = 0, depends only on l and Pr. The definite integral over 5 is thus a function of Pr. From 
the remarks made earlier, we can infer that this function, called C, will be only a weak func- 
tion of the Prandtl number-that is, nearly a constant. 

The preceding analysis shows that, even without solving the partial differential equa- 
tions, we can predict that the average heat flux is proportional to the $-power of the tempera- 
ture difference (To - TI) and inversely proportional to the +-power of H. Both predictions 
have been confirmed by experiment. The only thing we could not do was to find C as a func- 
tion of Pr. 
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Adiabatic Frictionless 
Processes in an 
Ideal Gas 

To determine that function, we have to make experimental measurements or solve Eqs. 
11.4-44 to 49. In 1881, Lorenz3 obtained an approximate solution to these equations and found 
C = 0.548. Later, more refined calculations4 gave the following dependence of C on Pr: 

Pr 0.73 (air) 1 10 100 1000 
C 0.518 0.535 0.620 0.653 0.665 0.670 

These values of C are nearly in exact agreement with the best experimental measurements in 
the laminar flow range (i.e., for GrPr < lo9h5 

Develop equations for the relationship of local pressure to density or temperature in a stream 
of ideal gas in which the momentum flux .r and the heat flux q are negligible. 

SOLUTION 

With 7 and q neglected, the equation of energy [Eq. (1) in Table 11.4-11 may be rewritten as 

For an ideal gas, = RT/M, where M is the molecular weight of the gas, and Eq. 11.4-52 
becomes 

Dividing this equation by p and assuming the molar heat capacity $ = MS to be constant, 
we can again use the ideal gas law to get 

Hence the quantity in parentheses is a constant along the path of a fluid element, as is its an- 
tilogarithm, so that we have 

TC,/R 1 = p constant (1 1.4-55) 

This relation applies to all thermodynamic states p, T that a fluid element encounters as it 
moves along with the fluid. 

Introducing the definition y = tp/Pv and the ideal gas relations $ - Sv = R and p = 

pRT/M, one obtains the related expressions 

p'y-l"y~-' = constant (1 1.4-56) 

and 

pp-Y = constant (1 1.4-57) 

These last three equations find frequent use in the study of frictionless adiabatic processes in 
ideal gas dynamics. Equation 11.4-57 is a famous relation well worth remembering. 

L. Lorenz, Wiedemann's Ann. der Physik u. Chemie, 13,42247,582406 (1881). See also U. Grigull, 
Die Grundgesetze der Warrneiibertragung, Springer-Verlag, Berlin, 3rd edition (1955), pp. 263-269. 

%ee S. Whitaker, Fundamental Principles of Heat Transfer, Krieger, Malabar Fla. (1977), g5.11. The 
limiting case of Pr + w has been worked out numerically by E. J. LeFevre [Heat Div. Paper 113, Dept. 
Sci. and Ind. Res., Mech. Engr. Lab. (Great Britain), Aug. 19561 and it was found that 

Equation 11.4-51a corresponds to the value C = 0.670 above. This result has been verified experimentally 
by C. R. Wilke, C. W. Tobias, and M. Eisenberg, J. Electrochem. Soc., 100,513-523 (1953), for the analogous 
mass transfer problem. 

For an analysis of free convection in three-dimensional creeping flow, see W. E. Stewart, Int. J. Heat 
and Mass Transfer, 14,1013-1031 (1971). 
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EXAMPLE 11.47 

One-Dimensional 
Compressible Flow: 
Velocity, Temperature, 
and Pressure Profiles 
in a Stationa y Shock 
Wave 

When the momentum flux T and the heat flux q are zero, there is no change in entropy 
following an element of fluid (see Eq. 11D.1-3). Hence the derivative d In p/d In T = y/(y - 1) 
following the fluid motion has to be understood to mean (d In p/d In T)s = y/(y - 1). This 
equation is a standard formula from equilibrium thermodynamics. 

We consider here the adiabatic expansion6-lo of an ideal gas through a convergent-divergent 
nozzle under such conditions that a stationary shock wave is formed. The gas enters the noz- 
zle from a reservoir, where the pressure is po, and discharges to the atmosphere, where the 
pressure is p,. In the absence of a shock wave, the flow through a well-designed nozzle is vir- 
tually frictionless (hence isentropic for the adiabatic situation being considered). If, in addi- 
tion, p,/po is sufficiently small, it is known that the flow is essentially sonic at the throat (the 
region of minimum cross section) and is supersonic in the divergent portion of the nozzle. 
Under these conditions the pressure will continually decrease, and the velocity will increase in 
the direction of the flow, as indicated by the curves in Fig. 11.4-4. 

However, for any nozzle design there is a range of p,/po for which such an isentropic 
flow produces a pressure less than p, at the exit. Then the isentropic flow becomes unstable. 
The simplest of many possibilities is a stationary normal shock wave, shown schematically in 
the Fig. 11.4-4 as a pair of closely spaced parallel lines. Here the velocity falls off very rapidly 

I gas I P = PO 
I t  
I 

Nozzle 

Mach 

Distance 

Fig. 11.4-4. Formation of a shock wave in a nozzle. 

. Isentropic path 

+ X  

' Isentropic path 

' H. W. Liepmann and A. Roshko, Elements of Gas Dynamics, Wiley, New York (1957), 995.4 and 13.13. 
J. 0. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York, 

2nd corrected printing (1964), pp. 791-797. 
M. Morduchow and P. A. Libby, J. Aeronautical Sci., 16,674-684 (1948). 
R. von Mises, J. Aeronautical Sci., 17,551-554 (1950). 

' O  G. S. S. Ludford, J. Aeronautical Sci., 18,830-834 (1951). 
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SOLUTION 

to a subsonic value, while 60th the pressure and the density rise. These changes take place in 
an extremely thin region, which may therefore be considered locally one-dimensional and 
laminar, and they are accompanied by a very substantial dissipation of mechanical energy. 
Viscous dissipation and heat conduction effects are thus concentrated in an extremely small 
region of the nozzle, and it is the purpose of the example to explore the fluid behavior there. 
For simplicity the shock wave will be considered normal to the fluid streamlines; in practice, 
much more complicated shapes are often observed. The velocity, pressure, and temperature 
just upstream of the shock can be calculated and will be considered as known for the pur- 
poses of this example. 

Use the three equations of change to determine the conditions under which a shock wave 
is possible and to find the velocity, temperature, and pressure distributions in such a shock 
wave. Assume steady, one-dimensjonal flow of an ideal gas, neglect the dilatational viscosity 
K ,  and ignore changes of p, k, and Cp with temperature and pressure. 

The equations of change in the neighborhood of the stationary shock wave may be simpli- 
fied to 

Continuity: d ;s; PV, = 0 (1 1.4-58) 

Motion: 

Energy: 

The energy equation is in the form of Eq. J of Table 11.4-1, written for an ideal gas in a steady- 
state situation. 

The equation of continuity may be integrated to give 

in which p1 and v1 are quantities evaluated a short distance upstream from the shock. 
In the energy equation we eliminate pv, by use of Eq. 11.4-61 and dp/dx by using the 

equation of motion to get (after some rearrangement) 

We next move the second term on the right side over to the left side and divide the entire 
equation by p,v,. Then each term is integrated with respect to x to give 

A 

in which C, is a constant of integration and Pr = C,p/k. For most gases Pr is between 0.65 and 
0.85, with an average value close to 0.75. Therefore, to simplify the problem we set Pr equal to 
3 z.  Then Eq. 11.4-63 becomes a first-order, linear ordinary differential equation, for which the 
solution is 

Since t ,T  + iv ;  cannot increase without limit in the positive x direction, the second integra- 
tion constant CI1 must be zero. The first integration constant is evaluated from the upstream 
conditions, so that 

Of course, if we had not chosen Pr to be 2, a numerical integration of Eq. 11.4-63 would have 
been required. 
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Next we substitute the integrated continuity equation into the equation of motion and in- 
tegrate once to obtain 

Evaluation of the constant CIIl from upstream conditions, where dv,/dx = 0, gives CIII = 

plv: + pl = plIv: + (RTl/M)I. We now multiply both sides by vx and divide by plvl. Then, 
with the help of the ideal gas law, p = pRT/M, and Eqs. 11.4-61 and 65, we may eliminate p 
from Eq. 11.4-60 to obtain a relation containing only v, and x as variables: 

This equation can, after considerable rearrangement, be rewritten in terms of dimensionless 
variables: 

The relevant dimensionless quantities are 

v x  4 = - = dimensionless velocity 
Vl  

(1 1.4-69) 

X 5 = - = dimensionless coordinate 
h 

(1 1.4-70) 

Ma - Vl 
= Mach number at the upstream condition 

I-- 
(1 1.4-71) 

The reference length h is the mean free path defined in Eq. 1.4-3 (with d2 eliminated by use of 
Eq. 1.4-9): 

We may integrate Eq. 11.4-68 to obtain 

- ' = explPMa1(l - a)(( - &)I (a < 4 < 1) (4 - a)" 

This equation describes the dimensionless velocity distribution 4(5) containing an integration 
constant to = x,/h, which specifies the position of the shock wave in the nozzle; here to is con- 
sidered to be known. It can be seen from the plot of Eq. 11.4-85 in Fig. 11.4-5 that shock waves 

Fig. 11.4-5. Velocity distri- 
bution in a stationary shock 

(X - xo), cm x lo5 wave. 
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o 0.00025 in. wire 
A 0.002 in. wire 

Theory, equations of 

Dimensionless position in flow direction 

Fig. 11.4-6. Semi-log plot of the temperature profile through a shock 
wave, for helium with Ma, = 1.82. The experimental values were 
measured with a resistance-wire thermometer. [Adapted from 
H. W. Liepmann and A. Roshko, Elements of Gas Dynamics, Wiley, 
New York (1957), p. 3331 

are indeed very thin. The temperature and pressure distributions may be determined from 
Eq. 11.4-75 and Eqs. 11.4-65 and 66. Since 4 must approach unity as 6 -+ -a, the constant a is 
less than 1. This can be true only if Ma, > 1-that is, if the upstream flow is supersonic. It can 
also be seen that for very large positive 6, the dimensionless velocity 4 approaches a. The 
Mach number Ma, is defined as the ratio of v, to the velocity of sound at TI (see Problem 
11C.1). 

In the above development we chose the Prandtl number Pr to be z, but the solution has 
been extended8 to include other values of Pr as well as the temperature variation of the vis- 
cosity. 

The tendency of a gas in supersonic flow to revert spontaneously to subsonic flow is im- 
portant in wind tunnels and in the design of high-velocity systems-for example, in turbines 
and rocket engines. Note that the changes taking place in shock waves are irreversible and 
that, since the velocity gradients are so very steep, a considerable amount of mechanical en- 
ergy is dissipated. 

In view of the thinness of the predicted shock wave, one may question the applicability 
of the analysis given here, based on the continuum equations of change. Therefore it is desir- 
able to compare the theory with experiment. In Fig. 11.4-6 experimental temperature mea- 
surements for a shock wave in helium are compared with the theory for y = z, Pr = z, and 
p - We can see that the agreement is excellent. Nevertheless we should recognize that 
this is a simple system, inasmuch as helium is monatomic, and therefore internal degrees of 
freedom are not involved. The corresponding analysis for a diatomic or polyatomic gas 
would need to consider the exchange of energy between translational and internal degrees of 
freedom, which typically requires hundreds of collisions, broadening the shock wave consid- 
erably. Further discussion of this matter can be found in Chapter 11 of Ref. 7. 

511.5 DIMENSIONAL ANALYSIS OF THE EQUATIONS 
OF CHANGE FOR NONISOTHERMAL SYSTEMS 

Now that we have shown how to use the equations of change for nonisothermal systems 
to solve some representative heat transport problems, we discuss the dimensional analy- 
sis of these equations. 
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Just as the dimensional analysis discussion in 53.7 provided an introduction for the 
discussion of friction factors in Chapter 6, the material in this section provides the back- 
ground needed for the discussion of heat transfer coefficient correlations in Chapter 14. 
As in Chapter 3, we write the equations of change and boundary conditions in dimen- 
sionless form. In this way we find some dimensionless parameters that can be used to 
characterize nonisothermal flow systems. 

We shall see, however, that the analysis of nonisothermal systems leads us to a 
larger number of dimensionless groups than we had in Chapter 3. As a result, greater re- 
liance has to be placed on judicious simplifications of the equations of change and on 
carefully chosen physical models. Examples of the latter are the Boussinesq equation of 
motion for free convection (511.3) and the laminar boundary layer equations (512.4). 

As in 53.7, for the sake of simplicity we restrict ourselves to a fluid with constant p, 
k, and tp. The density is taken to be p = p - ?F(T - n in the pg term in the equation of 
motion, and p = p everywhere else (the "Boussinesq approximation"). The equations of 
change then become with p + sgh expressed as 9, 

Continuity: (V v) = 0 (1 1.5-1) 

Motion: 

Energy: 

We now introduce quantities made dimensionless with the characteristic quantities (sub- 
script 0 or 1) as follows: 

Here lo, v,, and Po are the reference quantities introduced in s3.7, and T,  and TI are 
temperatures appearing in the boundary conditions. In Eq. 11.5-2 the value 7. is the 
temperature around which the density p was expanded. 

In terms of these dimensionless variables, the equations of change in Eqs. 11.5-1 to 3 
take the forms 

Energy: 

The characteristic velocity can be chosen in several ways, and the consequences of the 
choices are summarized in Table 11.5-1. The dimensionless groups appearing in Eqs. 
11.5-8 and 9, along with some combinations of these groups, are summarized in Table 
11.5-2. Further dimensionless groups may arise in the boundary conditions or in the 
equation of state. The Froude and Weber numbers have already been introduced in 93.7, 
and the Mach number in Ex. 11.4-7. 

We already saw in Chapter 10 how several dimensionless groups appeared in the 
solution of nonisothermal problems. Here we have seen that the same groupings appear 
naturally when the equations of change are made dimensionless. These dimensionless 
groups are used widely in correlations of heat transfer coefficients. 
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Table 11.5-1 Dimensionless Groups in Equations 11.5-7,8, and 9 

Special Forced Free Free 
cases + convection Intermediate convection convection 

(A) (B) 
Choice 
for vo -+ Vo Vo v/10 a /lo 

1 1 - - 
RePr RePr 

Neglect Neglect 

Notes: 

" For forced convection and forced-plus-free ("intermediate") convection, v, is generally 
taken to be the approach velocity (for flow around submerged objects) or an average 
velocity in the system (for flow in conduits). 
For free convection there are two standard choices for v,, labeled as A and B. In g10.9, 

Case A arises naturally. Case B proves convenient if the assumption of creeping flow is 
appropriate, so that D + / D ~  can be neglected (see Example 11.5-2). Then a new 
dimensionless pressure difference 9 = Pry, different from 9 in Eq. 3.7-4, can be 
introduced, so that when the equation of motion is divided by Pr, the only dimensionless 
group appearing in the equation is GrPr. Note that in Case B, no dimensionless groups 
appear in the equation of energy. 

It is sometimes useful to think of the dimensionless groups as ratios of various 
forces or effects in the system, as shown in Table 11.5-3. For example, the inertia1 term in 
the equation of motion is p[v . Vvl and the viscous term is To get "typical" values 
of these terms, replace the variables by the characteristic "yardsticks" used in construct- 
ing dimensionless variables. Hence replace p[v - Vv] by p@lo, and replace /AV% by 
, !~v~ / l i  to get rough orders of magnitude. The ratio of these two terms then gives the 
Reynolds number, as shown in the table. The other dimensionless groups are obtained in 
similar fashion. 

Table 11.5-2 Dimensionless Groups Used in 
Nonisothermal Systems 

Re = [lov,p/p]l = [lov,/v]l = Reynolds number 
Pr = [epp/k] = [v/a]  = Prandtl number 
Gr = bp(T, - T,)I;/S?] = Grashof number 
Br = [ [ p v ~ / k ( ~ l  - To)] = Brinkman number 
Pe = RePr = Pkclet number 
Ra = GrPr = Rayleigh number 
Ec = &-/R =Z&erf number 
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Table 11.5-3 Physical Interpretation of Dimensionless Groups 

~v?j/lo - inertial force Re=-- 
v 0 /  viscous force 

pv?j/Io - inertial force Fr=-- 
P8 gravity force 

Gr - pg/3(Tl - To) - buoyant force -- - 
Re2 PV?~ / 10 inertial force 

~ C , V & T ~  - TJ / 10 heat transport by convection 
Pk = RePr = - -- 

( - ) heat transport by conduction 

p(vo/lo)2 heat production by viscous dissipation 
Br = - - 

kU-1 - To)/G heat transport by conduction 

A low value for the Reynolds number means that viscous forces are large in compar- 
ison with inertial forces. A low value of the Brinkrnan number indicates that the heat 
produced by viscous dissipation can be transported away quickly by heat conduction. 
When ~ r / ~ e *  is large, the buoyant force is important in determining the flow pattern. 

Since dimensional analysis is an art requiring judgment and experience, we give 
three illustrative examples. In the first two we analyze forced and free convection in sim- 
ple geometries. In the third we discuss scale-up problems in a relatively complex piece 
of equipment. 

EXAMPLE 125-1 

Temperature 
Distribution about a 
Long Cylinder 

It is desired to predict the temperature distribution in a gas flowing about a long, internally 
cooled cylinder (system I) from experimental measurements on a one-quarter scale model 
(system 11). If possible the same fluid should be used in the model as in the full-scale system. 
The system, shown in Fig. 11.5-1, is the same as that in Example 3.7-1 except that it is now 
nonisothermal. The fluid approaching the cylinder has a speed v, and a temperature T,, and 
the cylinder surface is maintained at To, for example, by the boiling of a refrigerant contained 
within it. 

Show by means of dimensional analysis how suitable experimental conditions can be 
chosen for the model studies. Perform the dimensional analysis for the "intermediate case" in 
Table 11.5-1. 

SOLUTION The two systems, I and 11, are geometrically similar. To ensure dynamical similarity, as 
pointed out in 53.7, the dimensionless differential equations and boundary conditions must 
be the same, and the dimensionless groups appearing in them must have the same numerical 
values. 

Here we choose the characteristic length to be the diameter D of the cylinder, the charac- 
teristic velocity to be the approach velocity v, of the fluid, the characteristic pressure to be the 
pressure at x = - 03 and y = 0, and the characteristic temperatures to be the temperature T, of 
the approaching fluid and the temperature To of the cylinder wall. These characteristic quan- 
tities will carry a label I or I1 corresponding to the system being described. 

Both systems are described by the dimensionless differential equations given in Eqs. 
11.5-7 to 9, and by boundary conditions 

B.C. 1 

B.C. 2 

B.C. 3 
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(b) Small system (System 11): 
(~.JII 

Fig. 11.5-1. Temperature profiles about long heated cylin- 
ders. The contour lines in the two figures represent surfaces 
of constant temperature. 

in which ? = (T - To)/(T, - To). For this simple geometry, the boundary conditions contain 
no dimensionless groups. Therefore, the requirement that the differential equations and 
boundary conditions in dimensionless form be identical is _that the following dimensionless 
groups be equal in the two systems: Re = Dv,p/p, Pr = C,p/k,  Br = pv;/k(T, - To), and 
Gr = p2g/3(T, - T , ) D ~ / ~ ~ .  In the latter group we use the ideal gas expression /3 = 1/T. 

To obtain the necessary equality for the four governing dimensionless groups, we may 
use different values of the four disposable parameters in the two systems: the approach veloc- 
ity v,, the fluid temperature T,, the approach pressure P,, and the cylinder temperature To. 

The similarity requirements are then (for D1 = 4D11): 

Equality of Pr 

Equality of Re 

Equality of Gr 

Equality of Br 

2 T-11 (T, - To11 

(2) = " (T, - To),, 

* 

Here v = p/p is the kinematic viscosity and a = k/pC, is the thermal diffusivity. 
The simplest way to satisfy Eq. 11.5-13 is to use the same fluid at the same approach pres- 

sure 8, and temperature T, in the two systems. If that is done, Eq. 11.5-14 requires that the 
approach velocity in the small model (11) be four times that used in the full-scale system (I). If 
the fluid velocity is moderately large and the temperature differences small, the equality of Pr 
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and Re in the two systems provides a sufficient approximation to dynamic similarity. This is 
the limiting case of forced convection with negligible viscous dissipation. 

If, however, the temperature differences T ,  - To are large, free-convection effects may be 
appreciable. Under these conditions, according to Eq. 11.5-15, temperature differences in the 
model must be 64 times those in the large system to ensure similarity. 

From Eq. 11.5-16 it may be seen that such a ratio of temperature differences will not per- 
mit equality of the Brinkman number. For the latter a ratio of 16 would be needed. This con- 
flict will not normally arise, however, as free-convection and viscous heating effects are 
seldom important simultaneously. Free-convection effects arise in low-velocity systems, 
whereas viscous heating occurs to a significant degree only when velocity gradients are very 
large. 

EXAMPLE 11.5-2 

Free Convection in a 
Horizontal Fluid Layer; 

We wish to investigate the free-convection motion in the system shown in Fig. 11.5-2. It con- 
sists of a thin layer of fluid between two horizontal parallel plates, the lower one at tempera- 
ture T,, and the upper one at T,, with T ,  < To. In the absence of fluid motion, the conductive 
heat flux will be the same for all z, and a nearly uniform temperature gradient will be estab- 

Formation of &kard lished at steady state. This temperature gradient will in turn cause a density gradient. If the 
Ce l 1s density decreases with increasing z, the system will clearly be stable, but if it increases a po- 

tentially unstable situation occurs. It appears possible in this latter case that any chance dis- 
turbance may cause the more dense fluid to move downward and displace the lighter fluid 
beneath it. If the temperatures of the top and bottom surfaces are maintained constant, the re- 
sult may be a continuing free-convection motion. This motion will, however, be opposed by 
viscous forces and may, therefore, occur only if the temperature difference tending to cause it 
is greater than some critical minimum value. 

Determine by means of dimensional analysis the functional dependence of this fluid mo- 
tion and the conditions under which it may be expected to arise. 

SOLUTION The system is described by Eqs. 11.5-1 to 3 along with the following boundary conditions: 

B.C. 1: 

B.C. 2: 

B.C. 3: 

Top view 

Side view 

Fig. 11.5-2. Bknard cells 
formed in the region between 
two horizontal parallel plates, 
with the bottom plate at a 
higher temperature than the 
upper one. If the Rayleigh 
number exceeds a certain 
critical value, the system 
becomes unstable and 
hexagonal Bknard cells 
are produced. 
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We now restate the problem in dimensionless form, using lo = h. We use the dimensionless 
quantities listed under Case B in Table 11.5-1, and we select the reference temperature T to be 
1 ,(To + TI), so that 

Continuity: (9 . ir) = 0 (1 1.5-20) 

Motion: 

Energy: 

with dimensionless boundary conditions 

B.C. 1: 

B.C. 2: 

B.C. 3: 

If the above dimensionless equations could be solved along with the dimensionless boundary 
conditions, we would find that the velocity and temperature profiles would depend only on 
Gr, Pr, and R/h. Furthermore, the larger the ratio R/h is, the less prominent its effect will be, 
and in the limit of extremely large horizontal plates, the system behavior will depend solely 
on Gr and Pr. 

If we consider only steady creeping flows, then the term Dt/D; may be set equal to zero. 
Then we define a new dimensionless pressure difference as @ = ~ r 8 .  With the left side of Eq. 
11.5-21 equal to zero, we may now divide by Pr and the resulting equation contains oniy one 
dimensionless group, namely the Rayleigh number' Ra = GrPr = p2gp(~, - ~ , ) h ~ c ? / ~ k ,  
whose value will determine the behavior of the system. This illustrates how one may reduce 
the number of dimensionless groups that are needed to describe a nonisothermal flow system. 

The preceding analysis suggests that there may be a critical value of the Rayleigh num- 
ber, and when this critical value is exceeded, fluid motion will occur. This suggestion has 
been amply confirmed e~per imenta l l~~,~  and the critical Rayleigh number has been found to 
be 1700 2 51 for R/h>>l. For Rayleigh numbers below the critical value, the fluid is station- 
ary, as evidenced by the observation that the heat flux across the liquid layer is the same as 
that predicted for conduction through a static fluid: q, = k(To - TJ/h. As soon as the critical 
Rayleigh number is exceeded, however, the heat flux rises sharply, because of convective en- 
ergy transport. An increase of the thermal conductivity reduces the Rayleigh number, thus 
moving Ra toward its stable range. 

The assumption of creeping flow is a reasonable one for this system and is asymptoti- 
cally correct when Pr + c - ~ .  It is also very convenient, inasmuch as it allows analytic solutions 
of the relevant equations of ~ h a n g e . ~  One such solution, which agrees well with experiment, 
is sketched qualitatively in Fig. 11.5-2. This flow pattern is cellular and hexagonal, with up- 
flow at the center of each hexagon and downflow at the periphery. The units of this fascinat- 
ing pattern are called Bknard cells.5 The analytic solution also confirms the existence of a 
critical Rayleigh number. For the boundary conditions of this problem and very large R/h it 
has been calculated4 to be 1708, which is in excellent agreement with the experimental result 
cited above. 

The Rayleigh number is named after Lord Rayleigh 0. W. Strutt), Phil. Mag., (6) 32,529-546 (1916). 
' P. L. Silveston, Forsch. Ingenieur-Wesen, 24,2932,5949 (1958). 
S. Chandrasekhar, Hydrodynamic and Hydromagnetic Instability, Oxford University Press (1961); 

T. E. Faber, Fluid Dynamics for Physicists, Cambridge University Press (1995), 58.7. 
A. Pellew and R. V. Southwell, Proc. Roy. Soc., A176,312-343 (1940). 
H.  Benard, Revue gt!nt!rale des sciences pures et appliquies, 11,1261-1271,1309-1328 (1900); Annales de 

Chimie et de Physique, 23,62-144 (1901). 
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Similar behavior is observed for other boundary conditions. If the upper plate of Fig. 
11.5-2 is replaced by a liquid-gas interface, so that the surface shear stress in the liquid is neg- 
ligible, cellular convection is predicted theoretically3 for Rayleigh numbers above about 1101. 
A spectacular example of this type of instability occurs in the occasional spring "turnover" of 
water in northern lakes. If the lake water is cooled to near freezing during the winter, an ad- 
verse density gradient will occur as the surface waters warm toward 4"C, the temperature of 
maximum density for water. 

In shallow liquid layers with free surfaces, instabilities can also arise from surface-ten- 
sion gradients. The resulting surface stresses produce cellular convection superficially similar 
to that resulting from temperature gradients, and the two effects may be easily confused. In- 
deed, it appears that the steady flows first seen by Bhard, and ascribed to buoyancy effects, 
may actually have been produced by surface-tension  gradient^.^ 

EXAMPLE 11.5-3 

Surface Temperature 

An electrical heating coil of diameter D is being designed to keep a large tank of liquid above 
its freezing point. It is desired to predict the temperature that will be reached at the coil sur- 

of face as a function of the heating rate Q and the tank surface temperature To. This prediction is 
an Electrical Heating to be made on the basis of experiments with a smaller, geometrically similar apparatus filled 
Coil with the same liquid. 

Outline a suitable experimental procedure for making the desired prediction. Tempera- 
ture dependence of the physical properties, other than the density, may be neglected. The en- 
tire heating coil surface may be assumed to be at a uniform temperature T,. 

SOLUTION This is a free-convection problem, and we use the column labeled A in Table 11.5-1 for the di- 
mensionless groups. From the equations of change and the boundary conditions, we know 
that the dimensionless temperature T = (T - To) / (T ,  - To) must be a function of the dimen- 
sionless coordinates and depend on the dimensionless groups Pr and Gr. 

The total energy input rate through the coil surface is 

Here r is the coordinate measured outward from and normal to the coil surface, S is the sur- 
face area of the coil, and the temperature gradient is that of the fluid immediately adjacent to 
the coil surface. In dimensionless form this relation is 

in which $ is a function of Pr = k P p / k  and Gr = p2gp(T, - ~ , ) ~ ~ / / l r  Since the large-scale and 
small-scale systems are geometrically similar, the dimensionless function S describing the 
surface of integration will be the same for both systems and hence does not need to be in- 
cluded in the function $. Similarly, if we write the boundary conditions for temperature, ve- 
locity, and pressure at the coil and tank surfaces, we will obtain only size ratios that will be 
identical in the two systems. 

We now note that the desired quantity (TI - To)  appears on both sides of Eq. 11.5-27. If 
we multiply both sides of the equation by the Grashof number, then (T,  - To)  appears only 
on the right side: 

' C. V. Sternling and L. E. Scriven, MChE journal, 5,514-523 (1959); L. E. Scriven and C. V. Sternling, 
j. Fluid Mech., 19,321-340 (1964). 
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In principle, we may solve Eq. 11.5-28 for Gr and obtain an expression for (TI - To). Since we 
are neglecting the temperature dependence of physical properties, we may consider the 
Prandtl number constant for the given fluid and write 

Here 4 is an experimentally determinable function of the group ~ p ' g p ~ ~ / k ~ ~ .  We may then 
construct a plot of Eq. 11.5-29 from the experimental measurements of TI, To, and D for the 
small-scale system, and the known physical properties of the fluid. This plot may then be 
used to predict the behavior of the large-scale system. 

Since we have neglected the temperature dependence of the fluid properties, we may go 
even further. If we maintain the ratio of the Q values in the two systems equal to the inverse 
square of the ratio of the diameters, then the corresponding ratio of the values of (TI - To) 
will be equal to the inverse cube of the ratio of the diameters. 

QUESTIONS FOR DISCUSSION 

1. Define energy, potential energy, kinetic energy, and internal energy. What common units are 
used for these? 

2. How does one assign the physical meaning to the individual terms in Eqs. 11.1-7 and 11.2-I? 
3. In getting Eq. 11.2-7 we used the relation $ - S, = R, which is valid for ideal gases. What is the 

corresponding equation for nonideal gases and liquids? 
4. Summarize all the steps required in obtaining the equation of change for the temperature. 
5. Compare and contrast forced convection and free convection, with regard to methods of 

problem solving, dimensional analysis, and occurrence in industrial and meteorological prob- 
lems. 

6. If a rocket nose cone were made of a porous material and a volatile liquid were forced slowly 
through the pores during reentry into the atmosphere, how would the cone surface tempera- 
ture be affected and why? 

7. What is Archimedes' principle, and how is it related to the term &$(T - T )  in Eq. 11.3-2? 
8. Would you expect to see Bknard cells while heating a shallow pan of water on a stove? 
9. When, if ever, can the equation of energy be completely and exactly solved without detailed 

knowledge of the velocity profiles of the system? 
10. When, if ever, can the equation of motion be completely solved for a nonisothermal system 

without detailed knowledge of the temperature profiles of the system? 

PROBLEMS 11A.1. Temperature in a friction bearing. Calculate the maximum temperature in the friction bear- 
ing of Problem 3A.1, assuming the thermal conductivity of the lubricant to be 4.0 X cal/s 
cm . C, the metal temperature 200°C, and the rate of rotation 4000 rpm. 

Answer: About 217°C (from both Eq. 11.4-13 and Eq. 10.4-9) 

llA.2. Viscosity variation and velocity gradients in a nonisothermal film. Water is falling down a 
vertical wall in a film 0.1 mm thick. The water temperature is 100°C at the free liquid surface 
and 80°C at the wall surface. 
(a) Show that the maximum fractional deviation between viscosities predicted by Eqs. 11.4-17 
and 18 occurs when T = a. 
(b) Calculate the maximum fractional deviation for the conditions given. 
Answer: (b) 0.5% 
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Transpiration cooling. 
(a) Calculate the temperature distribution between the two shells of Example 11.4-4 for radial 
mass flow rates of zero and g/s for the following conditions: 

R = 500 microns T ,  = 300°C 

KR = 100 microns T, = 100°C 

k = 6.13 X cal/cm s . C 

ep = 0.25 cal/g . C 

(b) Compare the rates of heat conduction to the surface at KR in the presence and absence of 
convection. 

Free-convection heat loss from a vertical surface. A small heating panel consists essentially 
of a flat, vertical, rectangular surface 30 cm high and 50 cm wide. Estimate the total rate of 
heat loss from one side of this panel by free convection, if the panel surface is at 150°F, and 
the surrounding air is at 70°F and 1 atm. Use the value C = 0.548 of Lorenz in Eq. 11.4-51 and 
the value of C recommended by Whitaker, and compare the results of the two calculations. 
Answer: 8.1 cal/sec by Lorenz expression 

Velocity, temperature, and pressure changes in a shock wave. Air at 1 atm and 70°F is flow- 
ing at an upstream Mach number of 2 across a s ta t iong  shock wave. Calculate the following 
quantities, assuming that y is constant at 1.4 and that C, = 0.24 Btu/lb, . F: 
(a) The initial velocity of the air. 
(b) The velocity, temperature, and pressure downstream from the shock wave. 
(c) The changes of internal and kinetic energy across the shock wave. 
Answer: (a) 2250 ft/s 

(b) 844 ft/s; 888 R; 4.48 atm 
(c) AO = f61.4 Btu/lb,; ~k - 86.9 Btu/lb, 

Adiabatic frictionless compression of an ideal gas. Calculate the temperature attained by 
compressing air, initially at 100°F and 1 atm, to 0.1 of its initial volume. It is assumed that y = 
1.40 and that the compression is frictionless and adiabatic. Discuss the result in relation to the 
operation of an internal combustion engine. 
Answer: 950°F 

Effect of free convection on the insulating value of a horizontal air space. Two large parallel 
horizontal metal plates are separated by a 2.5 cm air gap, with the air at an average temperature 
of 100°C. How much hotter may the lower plate be (than the upper plate) without causing the 
onset of the cellular free convection discussed in Example 11.5-2? How much may this tempera- 
ture difference be increased if a very thin metal sheet is placed midway between the two plates? 
Answers: Approximately 3 and 48"C, respectively. 

Adiabatic frictionless processes in an ideal gas. 
\ 

(a) Note that a gas that obeys the ideal gas law may deviate appreciably from C, = constant. 
Hence, rework Example 11.4-6 using a molar heat capacity expression of the form 

(b) Determine the final pressure, p,, required if methane (CH,) is to be heated from 300K and 
1 atm to 800K by adiabatic frictionless compression. The recommended empirical constants' 

0. A. Hougen, K. M. Watson, and R. A. Ragatz, Chemical Process Principles, Part I ,  2nd edition, Wiley, 
New York (1958), p. 255. See also Part 11, pp. 646-653, for a fuller discussion of isentropic process calculations. 
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for methane are: a = 2.322 cal/g-mole . K, b = 38.04 X cal/g-mole K2, and c = -10.97 X 

lop6 cal/g-mole K3. 
Answers: (a) exp[-(b/R)T - ( c /2R)~~l  = constant; 

(b) 270 atm 

llB.2. Viscous heating in laminar tube flow (asymptotic solutions). 
(a) Show that for fully developed laminar Newtonian flow in a circular tube of radius R, the 
energy equation becomes 

if the viscous dissipation terms are not neglected. Here v,,,, is the maximum velocity in the 
tube. What restrictions have to be placed on any solutions of Eq. 118.2-I? 
(b) For the isothermal wall problem (T = To at r = R for z > 0 and at z = 0 for all r), find the as- 
ymptotic expression for T(r) at large z. Do this by recognizing that dT/dz will be zero at large 
z. Solve Eq. 118.2-1 and obtain 

(c) For the adiabatic wall problem (9, = 0 at r = R for all z)  an asymptotic expression for large z 
may be found as follows: Multiply by rdr and then integrate from r = 0 to r = R. Then inte- 
grate the resulting equation over z to get 

in which T, is the inlet temperature at z = 0. Postulate now that an asymptotic temperature 
profile at large z is of the form 

Substitute this into Eq. llB.2-1 and integrate the resulting equation for f(r) to obtain 

after determining the integration constant by an energy balance over the tube from 0 to z. 
Keep in mind that Eqs. llB.2-2 and 5 are valid solutions only for large z. The complete solu- 
tions for small z are discussed in Problem llD.2. 

11B.3. Velocity distribution in a nonisothermal film. Show that Eq. 11.4-20 meets the following 
requirements: 
(a) At x = 6, v, = 0. 
(b) ~t x = 0, av,/ax = 0. 

llB.4. Heat conduction in a spherical shell (Fig. llB.4). A spherical shell has inner and outer radii 
R, and R,. A hole is made in the shell at the north pole by cutting out the conical segment in 
the region 0 5 8 5 81. A similar hole is made at the south pole by removing the portion (.rr - 
8,) 5 8 5 T. The surface 6 = is kept at temperature T = T I ,  and the surface at 8 = T - 81 is 
held at T = T2. Find the steady-state temperature distribution, using the heat conduction 
equation. 
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01 01 
Solid 

Hole at top 

/ (at "north pole") 

Fig. llB.4. Heat conduction in a spherical shell: (a) cross section 
containing the z-axis; (b) view of the sphere from above. 

118.5. Axial heat conduction in a wire2 (Fig. llB.5). A wire of constant density p moves downward 
with uniform speed v into a liquid metal bath at temperature T,. It is desired to find the tem- 
perature profile T(z). Assume that T = T ,  at z = 03, and that resistance to radial heat conduc- 
tion is negligible. Assume further that the wire temperature is T = To at z = 0. 
(a) First solve the problem for constant physical properties e, and k. Obtain 

(b) Next solve the problqn when C p  and k are known functions of the dimensionless temper- 
ature @: k = k,K(@) and C, = C,,L(@). Obtain the temperature profile, 

(c) Verify that the solution in (b) satisfies the differential equation from which it was derived. 

\ ~ e m ~ e r a t u r e  of wire far 
from liquid metal 

surface is T, 

Wire moves downward 
with constant speed v 

Liauid metal surface 
/ at temperature Tn 

Fig. llB.5. Wire moving into a liquid metal bath. 

- 

Suggested by Prof. G. L. Borman, Mechanical Engineering Department, University of Wisconsin. 
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118.6. Transpiration cooling in a planar system. Two large flat porous horizontal plates are sepa- 
rated by a relatively small distance L. The upper plate at y = L is at temperature TL, and the 
lower one at y = 0 is to be maintained at a lower temperature To. To reduce the amount of 
heat that must be removed from the lower plate, an ideal gas at To is blown upward through 
both plates at a steady rate. Develop an expression for the temperature distribution and the 
amount of heat qo that must be removed from the cold plate p_er unit area as a function of the 
fluid properties and gas flow rate. Use the abbreviation 4 = pC,v,L/k. 

T - TL e 4 ~ l L  - e4 
- Answer: ----- - 

TO - TL 1 - e6 ; q o =  L 

l lB.7.  Reduction of evaporation losses by transpiration (Fig. llB.7). It is proposed to reduce the 
rate of evaporation of liquefied oxygen in small containers by taking advantage of transpira- 
tion. To do this, the liquid is to be stored in a spherical container surrounded by a spherical 
shell of a porous insulating material as shown in the figure. A thin space is to be left between 
the container and insulation, and the opening in the insulation is to be stoppered. In opera- 
tion, the evaporating oxygen is to leave the container proper, move through the gas space, 
and then flow uniformly out through the porous insulation. 

Calculate the rate of heat gain and evaporation loss from a tank 1 ft in diameter cov- 
ered with a shell of insulation 6 in. thick under the following conditions with and without 
transpiration. 

Temperature of liquid oxygen -297°F 
Temperature of outer surface of insulation 30°F 
Effective thermal conductivity of insulation 0.02 Btu/hr. ft F 
Heat of eyaporation of oxygen 91.7 Btu/lb 
Average C, of 0, flowing through insulation 0.22 Btu/lb. F 

Neglect the thermal resistance of the liquid oxygen, container wall, and gas space, and ne- 
glect heat losses through the stopper. Assume the particles of insulation to be in local thermal 
equilibrium with the gas. 
Answers: 82 Btu/hr without transpiration; 61 Btu/hr with transpiration 

l lB.8. Temperature distribution in an embedded sphere. A sphere of radius R and thermal conduc- 
tivity k, is embedded in an infinite solid of thermal conductivity ko. The center of the sphere is 
located at the origin of coordinates, and there is a constant temperature gradient A in the posi- 
tive z direction far from the sphere. The temperature at the center of the sphere is To. 

The steady-state temperature distributions in the sphere T, and in the surrounding 
medium To have been shown to be:3 

,Tank wall 

Fig. l lB.7.  Use of transpiration to reduce the 
evaporation rate. 

L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd edition, Pergamon Press, Oxford (1987), p. 199. 
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Conical 
surfaces I---, 

Fig. 11B.9. Body formed from the intersection of two 
cones and a sphere. 

(a) What are the partial differential equations that must be satisfied by Eqs. 11B.8-1 and 2? 
(b) Write down the boundary conditions that apply at r = R. 
(c) Show that T,  and To satisfy their respective partial differential equations in (a). 
(d) Show that Eqs. llB.8-1 and 2 satisfy the boundary conditions in (b). 

l lB.9 .  Heat flow in a solid bounded by two conical surfaces (Fig. 11B.9). A solid object has the 
shape depicted in the figure. The conical surfaces O1 = constant and 0, = constant are held at 
temperatures TI and T,, respectively. The spherical surface at r = R is insulated. For steady- 
state heat conduction, find 
(a) The partial differential equation that T(0) must satisfy. 
(b) The solution to the differential equation in (a) containing two constants of integration. 
(c) Expressions for the constants of integration. 
(dl The expression for the 0-component of the heat flux vector. 
(e) The total heat flow (cal/sec) across the conical surface at 0 = 0,. 

2.rrXk(T1 - T2) 
Answer: (e) Q = 

11B.10. Freezing of a spherical drop (Fig. 118.10). To evaluate the performance of an atomizing noz- 
zle, it is proposed to atomize a nonvolatile liquid wax into a stream of cool air. The atomized 
wax particles are expected to solidify in the air, from which they may later be collected and 

Fig. l lB.lO. Temperature profile in the freez- 
ing of a spherical drop. 
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examined. The wax droplets leave the atomizer only slightly above their melting point. Esti- 
mate the time tf required for a drop of radius R to freeze completely, if the drop is initially at 
its melting point To and the surrounding air is at T,. Heat is lost from the drop to the sur- 
rounding air according to Newton's law of cooling, with a constant heat-transfer coefficient h. 
Assume that there is no volume change in the solidification process. Solve the problem by 
using a quasi-steady-state method. 
(a) First solve the steady-state heat conduction problem in the solid phase in the region be- 
tween r = R f  (the liquid-solid interface) and r = R (the solid-air interface). Let k be the ther- 
mal conductivity of the solid phase. Then find the radial heat flow Q across the spherical 
surface at r = R. 
(b) Then write an unsteady-state energy balance, by equating the heat liberation at r = Rf(t) 
resulting from the freezing of the liquid to the heat flow Q across the spherical surface at r = 
R. Integrate the resulting separable, first-order differential equ9tion between the limits 0 and 
R, to obtain the time that it takes for the drop to solidify. Let AHf be the latent heat of freezing 
(per unit mass). 

h . 4nR2(T0 - T,) 
Answers: (a) Q = 

[I - (hR/k)] + ( h ~ ~ / k ~ $ ) ;  (b) 

l l B . l l .  Temperature rise in a spherical catalyst pellet (Fig. 11B.11). A catalyst pellet has a radius R 
and a thermal conductivity k (which may be assumed constant). Because of the chemical reac- 
tion occurring within the porous pellet, heat is generated at a rate of S, cal/cm3. s. Heat is lost 
at the outer surface of the pellet to a gas stream at constant temperature T, by convective heat 
transfer with heat transfer coefficient h. Find the steady-state temperature profile, assuming 
that S, is constant throughout. 
(a) Set up the differential equation by making a shell energy balance. 
(b) Set up the differential equation by simplifying the appropriate form of the energy equation. 
(c) Integrate the differential equation to get the temperature profile. Sketch the function T(r). 
(dl What is the limiting form of T(r) when h + a? 

(e) What is the maximum temperature in the system? 
(f) Where in the derivation would one modify the procedure to account for variable k and 
variable S,? 

llB.12. Stability of an exothermic reaction ~ystern.~ Consider a porous slab of thickness 2B, width 
W, and length L, with B << W and B << L. Within the slab an exothermic reaction occurs, 
with a temperature-dependent rate of heat production S,(T) = Sco exp A(T - To). 
(a) Use the energy equation to obtain a differential equation for the temperature in the slab. 
Assume constant physical properties, and postulate a steady-state solution T(x). 
(b) Write the differential equation and boundary conditions in terms of these dimensionless 
quantities: 8 = x/B, O = A(T - To), and A = Sc,,AB2/k; here A is a constant. 
(c) Integrate the differential equation (hint: first multiply by 2dO/d() to obtain 

in which On is an auxiliary constant representing the value of O at ( = 0. 

-7 -  
R 

-1- 

Fig. l l B . l l .  Sphere with internal heat generation. 
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(d) Integrate the result of (c) and make use of the boundary conditions to obtain the relation 
between the slab thickness and midplane temperature 

(el Calculate A at Oo = 0.5, 1.0, 1.2, 1.4, and 2.0; graph these results to find the maximum 
value of A for steady-state conditions. If this value of h is exceeded, the system will explode. 

Laminar annular flow with constant wall heat flux. Repeat the development of s10.8 for 
flow in an annulus of inner and outer radii KR and R, respectively, starting with the equations 
of change. Heat is added to the fluid through the inner cylinder wall at a rate qo (heat per unit 
per unit time), and the outer cylinder wall is thermally insulated. 

Unsteady-state heating of a sphere. A sphere of radius R and thermal diffusivity a is initially 
at a uniform temperature To. For t > 0 the sphere is immersed in a well-stirred water bath main- 
tained at a temperature TI > To. The temperature within the sphere is then a function of the ra- 
dial coordinate r and the time t. The solution to the heat conduction equation is given by? 

T - To m 

-- - 1 + 2 2 (-1)" exp ( - c ~ n ~ ~ ~ t / ~ ~ )  (llB.14-1) 
TI - TO n = l  

It is desired to verlfy that this equation satisfies the differential equation, the boundary condi- 
tions, and the initial condition. 
(a) Write down the differential equation describing the problem. 
(b) Show that Eq. llB.14-1 for T(r, t )  satisfies the differential equation in (a). 
(c) Show that the boundary condition at r = R is satisfied. 
(dl Show that T is finite at r = 0. 
(el To show that Eq. 118.14-1 satisfies the initial condition, set t = 0 and T = To and obtain the 
following: 

To show that this is true, multiply both sides by (r/R)sin(rnm/R), where rn is any integer 
from 1 to m, and integrate from r = 0 to r = R. In the integration all terms with rn # n vanish 
on the right side. The term with m = n, when integrated, equals the integral on the left side. 

Dimensionless variables for free con~ection.~ The dimensionless variables in Eqs. 11.4-39 to 
43 can be obtained by simple arguments. The form of O is dictated by the boundary condi- 
tions and that of 5 is suggested by the geometry. The remaining dimensionless variables may 
be found as follows: 

(a) Set 77 = y/yo, 4z = vz/vzo, and 4, = vY/v@, the subscript-zero quantities being constants. 
Then the differential equations in Eqs. 11.4-33 to 35 become 

with the boundary conditions given in Eqs. 11.4-47 to 49. 

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd edition, Oxford University Press 
(1959), p. 233, Eq. (4). 

The procedure used here is similar to that suggested by J. D. Hellums and S. W. Churchill, AIChE 
Journal, 10,110-114 (1964). 
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(b) Choose appropriate values of v, v,,, and yo to convert the equations in (a) into Eqs. 11.4-44 
to 46, and show that the definitions in Eqs. 11.441 to 43 follow directly. 
(c) Why is the choice of variables developed in (b) preferable to that obtained by setting the 
dimensionless groups in Eqs. llB.15-1 and 2 equal to unity? 

llC.l. The speed of propagation of sound waves. Sound waves are harmonic compression waves 
of very small amplitude traveling through a compressible fluid. The velocity of propagation 
of such waves may be estimated by assuming that the momentum flux tensor 7 and the heat 
flux vector q are zero and that the velocity v of the fluid is small.6 The neglect of T and q is 
equivalent to assuming that the entropy is constant following the motion of a given fluid ele- 
ment (see Problem 11D.1). 
(a) Use equilibrium thermodynamics to show that 

in which y = CJC,. 
(b) When sound is being propagated through a fluid, there are slight perturbations in the 
pressure, density, and velocity from the rest state: p = po + p', p = po + p', and v = vo + v', 
the subscript-zero quantities being constants associated with the rest state (with vo being 
zero), and the primed quantities being very small. Show that when these quantities are substi- 
tuted into the equation of continuity and the equation of motion (with the I and g terms omit- 
ted) and products of the small primed quantities are omitted, we get 

Equation of continuity dp 
- = -p0(V . v) 
dt 

(11C.l-2) 

Equation of motion dv p,, - = -Vp 
dt 

(11C.l-3) 

(c) Next use the result in (a) to rewrite the equation of motion as 

in which v: = y(dp/dp),. 
(d) Show how Eqs. llC.1-2 and 4 can be combined to give 

(el Show that a solution of Eq. llC.1-5 is 

p = po[l + A sin (F o - v,t))] 

This solution represents a harmonic wave of wavelength h and amplitude p d  traveling in the 
z direction at a speed v,. More general solutions may be constructed by a superposition of 
waves of different wavelengths and directions. 

11C.2. Free convection in a slot. A fluid of constant viscosity, with density given by Eq. 11.3-1, is 
confined in a rectangular slot. The slot has vertical walls at x = + B, y = + W, and a top and 
bottom at z = _tH, with H >> W >> B. The walls are nonisothermal, with temperature dis- 
tribution T, = T + Ay, so that the fluid circulates by free convection. The velocity profiles 
are to be predicted, for steady laminar flow conditions and small deviations from the mean 
density p. 

See L. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd edition, Pergamon, Oxford (1987), Chapter 
VIII; R. J. Silbey and R. A. Alberty, Physical Chernisfy, 3rd edition, Wiley, New York (2001),§17.4. 
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(a) Simplify the equations of continuity, motion, and energy according to the postulates: 
v = 6,v,(x, y), d2v,/d$ << d2vZ/dx2, and T = T(y). These postulates are reasonable for slow 
flow, except near the edges y = -C Wand z = ?H. 
(b) List the boundary conditions to be used with the problem as simplified in (a). 
(c) Solve for the temperature, pressure, and velocity profiles. 
(d) When making diffusion measurements in closed chambers, free convection can be a seri- 
ous source of error, and temperature gradients must be avoided. By way of illustration, com- 
pute the maximum tolerable temperature gradient, A, for an experiment with water at 20°C in 
a chamber with B = 0.1 mm, W = 2.0 mm, and H = 2 cm, if the maximum permissible convec- 
tive movement is 0.1% of H in a one-hour experiment. 

- PSPA 
Answers: (c) v,(x, y) = - (B2 - x2)y; (dl 2.7 X K/cm 

2~ 
Tangential annular flow of a highly viscous liquid. Show that Eq. 11.4-13 for flow in an an- 
nular region reduces to Eq. 10.4-9 for plane slit flow in the limit as K approaches unity. Com- 
parisons of this kind are often useful for checking results. 

The right side of Eq. 11.4-13 is indeterminate at K = 1, but its limit as K + 1 can be ob- 
tained by expanding in powers of E = 1 - K. To do this, set K = 1 - s and 5 = 1 - s[l - 
(x/b)l; then the range K 5 8 % 1 in Problem 11.4-2 corresponds to the range 0 % x 5 b in 310.4. 
After making the substitutions, expand the right side of Eq. 11.4-13 in powers of s (neglecting 
terms beyond 8') and show that Eq. 10.4-9 is obtained. 

Heat conduction with variable thermal conductivity. 
(a) For steady-state heat conduction in solids, Eq. 11.2-5 becomes (O - q) = 0, and insertion of 
Fourier's law gives (V . kVT) = 0. Show that the function F = JkdT -+ const, satisfies the 
Laplace equation V2F = 0, provided that k depends only on T. 
(b) Use the result in (a) to solve Problem 108.12 (part a), using an arbitrary function k(7'). 

Effective thermal conductivity of a solid with spherical inclusions (Fig. 11C.5). Derive Eq. 
9.6-1 for the effective thermal conductivity of a two-phase system by starting with Eqs. 
llB.8-1 and 2. We construct two systems both contained within a spherical region of radius 
R': (a) the "true" system, a medium with thermal conductivity ko, in which there are embed- 
ded n tiny spheres of thermal conductivity k, and radius R; and (b) an "equivalent" system, 
which is a continuum, with an effective thermal conductivity k,,,. Both of these systems are 
placed in a temperature gradient A, and both are surrounded by a medium with thermal 
conductivity ko. 

Medium 0 with 
thermal conductivity ko 

Medium 0 
n spheres of 
material 1 
of radius R 
and thermal 
conductivity k, 

Sphere of radius R '  

Medium 0 with 
thermal conductivity ko 

Sphere of radius 
R'  of a hypothetical 
"smoothed out" 
material equivalent 
to the granular 
material in (a) 

Thermal conductivity is keff 

Fig. llC.5. Thought experiment used by Maxwell to get the thermal conductiv- 
ity of a composite solid: (a) the "true" discrete system, and (b) the "equivalent" 
continuum system. 
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(a) For the "true" system we know that at a large distance L from the system (i.e., L >> R'), 
the temperature field will be given by a slight modification of Eq. llB.8-2, provided that the 
tiny occluded spheres are very "dilute" in the true system: 

Explain carefully how this result is obtained. 
(b) Next, for the "equivalent system," we can write from Eq. llB.8-2 

(c) Next derive the relation n~~ = 4Rf3, in which 4 is the volume fraction of the occlusions in 
the "true system." 
(d) Equate the right sides of Eqs. 11C.5-1 and 2 to get Maxwell's equation7 in Eq. 9.6-1. 

11C.6. Interfacial boundary conditions. Consider a nonisothermal interfacial surface S(t) be- 
tween pure phases I and I1 in a nonisothermal system. The phases may consist of two im- 
miscible fluids (so that no material crosses S(t)), or two different pure phases of a single 
substance (between which mass may be interchanged by condensation, evaporation, freez- 
ing, or melting). Let n1 be the local unit normal to S(t) directed into phase I. A superscript I 
or I1 will be used for values along S in each phase, and a superscript s for values in the in- 
terface itself. The usual interfacial boundary conditions on tangential velocity v, and tem- 
perature T on S are 

v~ - - v II (no slip) (11C.6-1) 

T' = TI1 (continuity of temperature) (llC.6-2) 

In addition, the following simplified conservation equations are suggesteds for surfactant-free 
interfaces: 

Interfacial mass balance 

(nl. {p'(vl - J )  - p'l(v'l - J)}) = 0 (1 lC.6-3) 

Interfacial momentum balance 

Interfacial internal energy balance 

(n' . pl{v' - $})[(I? - 9) + i(v" - vU2)] + (d . {cf - qll}) = o(VS . vS) (1 1C.6-5) 

The momentum balance of Eq. 3C.5-1 has been extended here to include the surface gradient 
VSu of the interfacial tension; the resulting tangential force gives rise to a variety of interfacial 
flow phenomena, known as Marangoni  effect^.^,'^ Equation llC.6-5 is obtained in the manner 
of 511.2, from total and mechanical energy balances on S, neglecting interfacial excess energy 
Ij", heat flux qS, and viscous dissipation (.rS:VV); fuller results are given elsewhere.' 

J. C. Maxwell, A Treatise on Electricity and Magnetism, Vol. 1, Oxford University Press (1891, 
reprinted 1998), 5314. 

J. C. Slattery, Advanced Transport Phenomena, Cambridge University Press (1999), pp. 58,435; more 
complete conditions are given in Ref. 10. 

C. G. M. Marangoni, Ann. Phys. (Poggendorf), 3,337-354 (1871); C. V. Sternling and L. E. Scriven, 
AIChE J o u ~ ~ l ,  5,514-523 (1959). 

lo D. A. Edwards, H. Brenner, and D. T. Wasan, interfacial Transport Processes and Rheology, 
Butterworth-Heinemann, Stoneham, Mass. (1991). 
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(a) Verify the dimensional consistency of each interfacial balance equation. 
(b) Under what conditions are v1 and v" equal? 
(c) Show how the balance equations simplify when phases I and I1 are two pure immiscible 
liquids. 

(d) Show how the balance equations simplify when one phase is a solid. 

Effect of surface-tension gradients on a falling film. 
(a) Repeat the determination of the shear-stress and velocity distributions of Example 2.1-1 in 
the presence of a small temperature gradient dT/dz in the direction of flow. Assume that this 
temperature gradient produces a constant surface-tension gradient du/dz = A but has no 
other effect on system physical properties. Note that this surface-tension gradient will pro- 
duce a shear stress at the free surface of the film (see Problem llC.6) and, hence, will require a 
nonzero velocity gradient there. Once again, postulate a stable, nonrippling, laminar film. 
(b) Calculate the film thickness as a function of the net downward flow rate and discuss the 
physical significance of the result. 

Answer: (a) T,, = pgx cos p + A; v, = 

Equation of change for entropy. This problem is an introduction to the thermodynamics of 
irreversible processes. A treatment of multicomponent mixtures is given in 5524.1 and 2. 

(a) Write an entropy balance for the fixed volume element Ax Ay Az. Let s be the entropy flux 
vector, measured with respect to the fluid velocity vector v. Further, let the rafe of entropy pro- 
duction per unit volume be designated by gs. Show that when the volume element Ax Ay Az is 
allowed to become vanishingly small, one finally obtains an equation of change for entropy in ei- 
ther of the following two forms:" 

in which 2 is the entropy per unit mass. 
(b) If one assumes th$ the thermodynamic qua;tities can be defined locally in a nonequilib- 
riym sityation,;hen U can be related to S and V according to the thermodynamic relation 
d LI = TdS - pdV. Combine this relation with Eq. 11.2-2 to get 

(c) The local entropy flux is equal to the local energy flux divided by the local 
that is, s = q / T .  Once this relation between s and q is recognized, we can compare Eqs. llD.l-2 
and 3 to get the following expression for the rate of entropy production per unit volume: 

" G. A. J. Jaurnann, Sitzungsbeu. der Math.-Natuvwiss. Klasse der Kaiserlichen A h d .  der Wissenschaften 
(Wien), 102, Abt. IIa, 385-530 (1911). 

l2 Carl Henry Eckart (1902-1973), vice-chancellor of the University of California at San Diego 
(1965-1969), made fundamental contributions to quantum mechanics, geophysical hydrodynamics, 
and the thermodynamics of irreversible processes; his key contributions to transport phenomena are 
in C. H. Eckart, Phys. Rev., 58,267-268,269-275 (1940). 

l3 C. F. Curtiss and J. 0. Hirschfelder, I .  Chem. Phys., 18,171-173 (1950). 
l4 J. G. Kirkwood and B. L. Crawford, Jr., I. Phys. Chem. 56,1048-1051 (1952). 
l5 S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam (1962). 
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The first term on the right side is the rate of entropy production associated with heat trans- 
port, and the second is the rate of entropy production resulting from momentum transport. 
Equation llD.l-4 is the starting point for the thermodynamic study of the irreversible 
processes in a pure fluid. 
(d) What conclusions can be drawn when Newton's law of viscosity and Fourier's law of 
heat conduction are inserted into Eq. 11D.1-4? 

11D.2. Viscous heating in laminar tube flow. 
(a) Continue the analysis begun in Problem IlB.2-namely, that of finding the temperature 
profiles in a Newtonian fluid flowing in a circular tube at a speed sufficiently high that vis- 
cous heating effects are important. Assume that the velocity profile at the inlet (z = 0) is fully 
developed, and that the inlet temperature is uniform over the cross section. Assume all physi- 
cal properties to be constant. 
(b) Repeat the analysis for a power law non-Newtonian viscosity.16 

llD.3. Derivation of the energy equation using integral theorems. In s11.1 the energy equation is 
derived by accounting for the energy changes occurring in a small rectangular volume ele- 
ment Ax Ay Az. 
(a) Repeat the derivation using an arbitrary volume element V with a fixed boundary S by 
following the procedure outlined in Problem 3D.1. Begin by writing the law of conservation 
of energy as 

Then use the Gauss divergence theorem to convert the surface integral into a volume integral, 
and obtain Eq. 11.1-6. 
(b) Do the analogous derivation for a moving "blob" of fluid. 

l6 R. B. Bird, Soc. Plastics Engrs. Journal, 11,3540 (1955). 
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Temperature Distributions with 
More Than One Independent 
Variable 
512.1 Unsteady heat conduction in solids 

512.2' Steady heat conduction in laminar, incompressible flow 

512.3' Steady potential flow of heat in solids 

512.4O Boundary layer theory for nonisothermal flow 

In Chapter 10 we saw how simple heat flow problems can be solved by means of shell 
energy balances. In Chapter 11 we developed the energy equation for flow systems, 
which describes the heat transport processes in more complex situations. To illustrate 
the usefulness of the energy equation, we gave in 511.4 a series of examples, most of 
which required no knowledge of solving partial differential equations. 

In this chapter we turn to several classes of heat transport problems that involve 
more than one dependent variable, either two spatial variables, or one space variable 
and the time variable. The types of problems and the mathematical methods parallel 
those given in Chapter 4. 

512.1 UNSTEADY HEAT CONDUCTION IN SOLIDS 

For solids, the energy equation of Eq. 11.2-5, when combined with Fourier's law of heat 
conduction, becomes 

If the thermal conductivity can be assumed to be independent of the temperature and 
position, then Eq. 12.1-1 becomes 

in which a = k/& is the thermal diffusivity of the solid. Many solutions to this equa- 
tion have been worked out. The treatise of Carslaw and Jaeger' contains a thorough dis- 

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd edition, Oxford University Press 
(1959). 
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cussion of solution methods as well as a very comprehensive tabulation of solutions for 
a wide variety of boundary and initial conditions. Many frequently encountered heat 
conduction problems may be solved just by looking u p  the solution in this impressive 
reference work. 

In this section we illustrate four important methods for solving unsteady heat con- 
duction problems: the method of combination of variables, the method of separation of 
variables, the method of sinusoidal response, and the method of Laplace transform. The 
first three of these were also used in 54.1. 

A solid material occupying the space from y = 0 to y = is initially at temperature To. At 
time t = 0, the surface at y = 0 is suddenly raised to temperature TI and maintained at that 

Heating a Semi-Infinite temperature for t > 0. Find the time-dependent temperature profiles T(y, t). 
Slab 

SOLUTION 

For this problem, Eq. 12.1-2 becomes 

Here a dimensionless temperature difference O = (T - To)/(T, - To) has been introduced. 
The initial and boundary conditions are then 

LC.: 

B.C. 1: 

B.C. 2: 

a t t sO,  0 = 0  forally 

at y = 0, O = 1 for all t > 0 

a t y =  m, 0 = 0  forallt>O 

This problem is mathematically analogous to that formulated in Eqs. 4.1-1 to 4. Hence the so- 
lution in Eq. 4.1-15 can be taken over directly by appropriate changes in notation: 

T - To 
-- Y - 1 - erf- 
Tl - To a 

The solution shown in Fig. 4.1-2 describes the temperature profiles when the ordinate is la- 
beled (T - To)/(Tl - To) and the abscissa y/*. 

Since the error function reaches a value of 0.99 when the argument is about 2, the thermal 
penetration thickness 6T is 

That is, for distances y > 6 ,  the temperature has changed by less than 1% of the difference 
T, - To. If it is necessary to calculate the temperature in a slab of finite thickness, the solution 
in Eq. 12.1-8 will be a good approximation when 6 ,  is small with respect to the slab thickness. 
However, when 8, is of the order of magnitude of the slab thickness or greater, then the series 
solution of Example 12.1-2 has to be used. 

The wall heat flux can be calculated from Eq. 12.1-8 as follows: 

Hence, the wall heat flux varies as t-"2, whereas the penetration thickness varies as t1I2 
b 
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EXAMPLE 12.1-2 

Heating of a Finite Slab 

A solid slab occupying the space between y = -b and y = + b is initially at temperature To. At 
time t = 0 the surfaces at y = ?b are suddenly raised to T, and maintained there. Find T(y, t ) .  

SOLUTION 

For this problem we define the following dimensionless variables: 

TI - T 
Dimensionless temperature 0 =- 

T, - To 

Dimensionless coordinate Y 
'7 =i  (12.1-12) 

Dimensionless time 

With these dimensionless variables, the differential equation and boundary conditions are 

I.C.: at 7 = 0, 0 = 1 

B.C. 1 and 2: at q = +I, O = 0  for^> 0 

Note that no parameters appear when the problem is restated thus. 
We can solve this problem by the method of separation of variables. We start by postulat- 

ing that a solution of the following product form can be obtained: 

Substitution of this trial function into Eq. 12.1-14 and subsequent division by the product 
f (q)g(d gives 

The left side is a function of 7 alone, and the right side is a function of '7 alone. This can be 
true only if both sides equal a constant, which we call -c2. If the constant is called +c2, +c, or 
-c, the same final result is obtained, but the solution is a bit messier. Equation 12.1-18 can 
then be separated into two ordinary differential equations 

These equations are of the form of Eq. C.l-1 and 3 and may be integrated to give 

g = A exp (-c27) 

f = Bsincq + Ccoscv 

in which A, El, and C are constants of integration. 
Because of the symmetry about the xz-plane, we must have @(q, T )  = @(-'7, r), and thus 

f (7) = f (-7). Since the sine function does not have this kind of behavior, we have to require 
that B be zero. Use of either of the two boundary conditions gives 

Ccos c = 0 (12.1-23) 

Clearly C cannot be zero, because that choice leads to a physically inadmissible solution. 
However, the equality can be satisfied by many different choices of c, which we call c,: 



s12.1 Unsteady Heat Conduction in Solids 377 

Hence Eq. 12.1-14 can be satisfied by 

1 2  2 @,, = A,,C, exp[-(n + ,) .rr TI cos (n + f).rrrl (12.1-25) 

The subscripts n remind us that A and C may be different for each value of n. Because of the 
linearity of the differential equation, we may now superpose all the solutions of the form of 
Eq. 12.1-25. In doing this we note that the exponentials and cosines for n have the same values 
as those for -(n + I), so that the terms with negative indices combine with those with posi- 
tive indices. The superposition then gives 

in which D,  = A,&, + A-(n+l,C-~,+l,. 
The D,, are now determined by using the initial condition, which gives 

Multiplication by cos(m + $).rrrl and integration from 77 = -1 to 7 = +1 gives 

When the integrations are performed, all integrals on the right side are identically zero, ex- 
cept for the term in which n = m. Hence we get 

After inserting the limits, we may solve for Dm to get 

sin (m + i).rrrl T +l  $(m + ;).rrrl + $ sin 2(m + $).rrr) / = ~ m  

Substitution of this expression into Eq. 12.1-26 gives the temperature profiles, which we now 
rewrite in terms of the original variables2 

? = + I  

(12.1-29) 

The solutions to many unsteady-state heat conduction problems come out as infinite series, 
such as that just obtained here. These series converge rapidly for large values2 of the dimen- 
sionless time, at/b2. For very short times the convergence is very slow, and in the limit as 
cut/b2 approaches zero, the solution in Eq. 12.1-31 may be shown to approach that given in Eq. 
12.1-8 (see Problem 12D.1). Although Eq. 12.1-31 is unwieldy for some practical calculations, 
a graphical presentation, such as that in Fig. 12.1-1, is easy to use (see Problem 12A.3). From 
the figure it is clear that when the dimensionless time r = at/b2 is 0.1, the heat has "pene- 
trated" measurably to the center plane of the slab, and that at r = 1.0 the heating is 90% com- 
plete at the center plane. 

Results analogous to Fig. 12.1-1 are given for infinite cylinders and for spheres in Figs. 
12.1-2 and 3. These charts can also be used to build up the solutions for the analogous heat 
conduction problems in rectangular parallelepipeds and cylinders of finite length (see Prob. 
12C.1). 

(m + +)T ~ = - 1  (m + ;)a q=-1 

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd edition, Oxford University Press 
(1959), p. 97, Eq. (8); the alternate solution in Eq. (9) converges rapidly for small times. 
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Fenter Of 

Surface of slab 
\ 

Fig. 12.1-1. Temperature profiles for unsteady-state 
heat conduction in a slab of finite thickness 2b. The 
initial temperature of the slab is To, and T, is the tempera- 
ture imposed at the slab surfaces for time t > 0. 
[H. S. Carslaw and J. C. Jaeger, Conduction of Heat in 
Solids, 2nd edition, Oxford University Press (1959), 
p. 101.1 

Axis of cylinder Surface of cylinder 
/ \ 

Fig. 12.1-2. Temperature profiles for unsteady-state 
heat conduction in a cylinder of radius R. The initial 
temperature of the cylinder is To, and TI is the tempera- 
ture imposed at the cylinder surface for time t > 0. 
[H. S. Carslaw and J. C. Jaeger, Conduction of Heat in 
Solids, 2nd edition, Oxford University Press (1959), 
p. 200.1 

Center of sphere Surface of sphere 
/ \ 

Fig. 12.1-3. Temperature profiles for unsteady-state 
heat conduction in a sphere of radius R. The initial 
temperature of the sphere is To, and T1 is the tempera- 
ture imposed at the sphere surface for time t > 0. 
[H. S. Carslaw and J. C. Jaeger, Conduction of Heat in 
Solids, 2nd edition, Oxford University Press (1959), 
p. 234.1 
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A solid body occupying the space from y = 0 to y = oo is initially at temperature To. Beginning 
at time t = 0, a periodic heat flux given by 

Unsteady Heat 
Conduction near a q, = qo cos ot = qo%{eiwfl (12.1-32) 

with Sinusoidal is imposed at y = 0. Here q,, is the amplitude of the heat flux oscillations, and o is the (circu- 
Heat Flux lar) frequency. It is desired to find the temperature in this system, T(y, t), in the "periodic 

steady state" (see Problem 4.1-3). 

SOLUTION For one-dimensional heat conduction, Eq. 12.1-2 is 

Multiplying by -k and operating on the entire equation with d/dy gives 

or, by making use of 9, = -k(dT/dy), 

Hence q, satisfies the same differential equation as T.  The boundary conditions are 

B.C. 1: 

B.C. 2: 

This problem is formally exactly the same as that given in Eqs. 4.1-44,46, and 47. Hence the 
solution in Eq. 4.1-57 may be taken over with appropriate notational changes: 

- 

Then by integrating Fourier's law 

Substitution of the heat flux distribution into the right side of this equation gives after inte- 
gration 

Thus, at the surface y = 0, the temperature oscillations lag behind the heat flux oscillations by 
~ / 4 .  

This problem illustrates a standard procedure for obtaining the "periodic steady state" in 
heat conduction systems. It also shows how one can use the heat conduction equation in 
terms of the heat flux, when boundary conditions on the heat flux are known. 

A homogeneous solid sphere of radius R, initially at a uniform temperature TI, is suddenly 
immersed at time t = 0 in a volume Vf  of well-stirred fluid qf temperature To in an insulated 

of a tank. It is desired to find the thermal diffusivity a, - ks/psC,, of the solid by observing the 
in Contact w i th  a change of the fluid temperature Tf with time. We use the following dimensionless variables: 
Well-Stirred Fluid 

7'1 - Ts 
- dimensionless solid temperature @,(5,7) = - - (12.1-41) 

TI - To 
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SOLUTION 

Tl - Tf 
Of(d = - = dimensionless fluid temperature 

TI - To 

Y 
,$ = - = dimensionless radial coordinate 

R 

f f s t  
T = - = dimensionless time x2 

The reader may verify that the problem stated in dimensionless variables is 

Solid 

in which B = pf~plli , /p,~ps~S, the V's representing the volume of the fluid and of the solid. 
Linear problems with complicated boundary conditions and/or coupling between equa- 

tions are often solved readily by the Laplace transform method. We now take the Laplace 
transform of the preceding equations and their boundary conditions to get: 

Fluid 

At r=O,@,  = 0 (12.1-46) 

Atc$= I,@, = af (12.1-47) 

At 6 = 0,@, = finite (12.1-48) 

I Solid I Fluid I 

A t 7 = 0 , 0 f = 1  (12.1-50) 

~ t t =  l , % = o r  (12.1-52) 
At 5 = 0,@ = finite (12.1-53) 

Here p is the transform ~ar iab le .~  The solution to Eq. 12.1-51 is 

Because of the boundary condition at ,$ = 0, we must set C, equal to zero. Substitution of this 
result into Eq. 12.1-54 then gives 

Next, we insert these last two results into the boundary condition at 5 = 1, in order to deter- 
mine C,. This gives us for 6 

We now divide the numerator and denominator within the parentheses by p, and take the in- 
verse Laplace transform to get 
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Fig. 12.1-4. Variation of the fluid tem- 
perature with time after a sphere of ra- 
dius R at temperature T,  is placed in a 
well-stirred fluid initially at a tempera- 
ture To. The dimensionless parameter B 
is defined in the text following Eq. 
12.1-50. [H. S. Carslaw and J. C .  Jaeger, 
Conduction of Heat in Solids, 2nd edi- 
tion, Oxford University Press (1959), 
p. 241.1 

It can be shown that D(p) has a single root at p = 0, and roots at V'& = ib, (with k = 1, 2, 
3, .  . . , m), where the bk are the nonzero roots of tan bk = 3bk/(3 + Bb:). The Heaviside partial 
fractions expansion theorem4 may now be used with 

to get 

0 -- + 6 ~ 5  exp (- bk2d 
- 1 + B ,=I 9(1 + B) + B2b: 

Equation 12.1-61 is shown graphically in Fig. 12.1-4. In this result the only place where the 
thermal diffusivity of the solid a, appears is in the dimensionless time T = a,t/R2, SO that the 
temperature rise of the fluid can be used to determine experimentally the thermal diffusivity 
of the solid. Note that the Laplace transform technique allows us to get the temperature his- 
tory of the fluid without obtaining the temperature profiles in the solid. 

512.2 STEADY HEAT CONDUCTION IN LAMINAR, 
INCOMPRESSIBLE FLOW 

In the preceding discussion of heat conduction in solids, we needed to use only the en- 
ergy equation. For problems involving flowing fluids, however, all three equations of 
change are needed. Here we restrict the discussion to steady flow of incompressible, 
Newtonian fluids with constant fluid properties, for which the relevant equations of 
change are: 

Continuity 

Motion 

Energy 

(V v) = 0 

p[v . VV] = - VP 
p@v. VT) = k V 2 ~  + pa, 

A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of Integral Transforms, Vol. 1, 
McGraw-Hill, New York (1954), p. 232, Eq. 20; see also C. R. Wylie and L. C. Barrett, Advanced Engineering 
Mathematics, McGraw-Hill, New York, 6th Edition (1995), s10.9. 
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In Eq. 12.2-3, a, is the dissipation function given in Eq. 3.3-3. To get the temperature 
profiles for forced convection, a two-step procedure is used: first Eqs. 12.2-1 and 2 are 
solved to obtain the velocity distribution v(r, t); then the expression for v is substi- 
tuted into Eq. 12.2-3, which may in turn be solved to get the temperature distribution 
T(r, t). 

Many analytical solutions of Eqs. 12.2-1 to 3 are available for commonly encoun- 
tered  situation^.'-^. One of the oldest forced-convection problems is the Graetz-Nusselt 
problem,' describing the temperature profiles in tube flow where the wall temperature 
undergoes a sudden step change at some position along the tube (see Problems 
12D.2, 3, and 4). Analogous solutions have been obtained for arbitrary variations of 
wall temperature and wall flux.9 The Graetz-Nusselt problem has also been extended 
to non-Newtonian fluids.'' Solutions have also been developed for a large class of 
laminar heat exchanger problems,ll in which the wall boundary condition is provided 
by the continuity of heat flux across the surfaces separating the two streams. A fur- 
ther problem of interest is duct flow with significant viscous heating effects (the 
Brinkman problem12). 

In this section we extend the discussion of the problem treated in §10.8-namely, the 
determination of temperature profiles for laminar flow of an incompressible fluid in a 
circular tube. In that section we set up the problem and found the asymptotic solution 
for distances far downstream from the beginning of the heated zone. Here, we give the 
complete solution to the partial differential equation as well as the asymptotic solution 
for short distances. That is, the system shown in Fig. 10.8-2 is discussed from three view- 
points in this book: 

a. Complete solution of the partial differential equation by the method of separa- 
tion of variables (Example 12.2-1). 

b. Asymptotic solution for short distances down the tube by the method of combi- 
nation of variables (Example 12.2-2). 

c. Asymptotic solution for large distances down the tube (s10.8). 

' M. Jakob, Heat Transfer, Vol. I ,  Wiley, New York (1949), pp. 451464. 
H. Grober, S. Erk, and U. Grigull, Die Grundgesetze der Wiivmeiiberfragung, Springer, Berlin (1961), 

Part 11. 
' R. K. Shah and A. L. London, Laminar Flow Forced Convection in Ducts, Academic Press, New York 

(1978). 
L. C. Burmeister, Convective Xeat Transfer, Wiley-Interscience, New York (1983). 
L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, Oxford (1987), Chapter 5. 
L. G. Leal, Laminar Flow and Convective Transport Processes, Butterworth-Heinemann (1992), 

Chapters 8 and 9. 
W. M. Deen, Analysis of Transport Phenomena, Oxford University Press (1998), Chapters 9 

and 10. 
L. Graetz, Ann. Pkys. (N.F.), 18, 79-94 (1883), 25,337-357 (1885); W. Nusselt, Zeits. Ver. deutch. Ing., 

54,11541158 (1910). For the "extended Graetz problem," which includes axial conduction, see E. 
Papoutsakis, D. Ramkrishna, and H. C. Lim, Appl. Sci. Res., 36,13-34 (1980). 

E. N. Lightfoot, C. Massot, and F. Irani, Chem. Eng. Progress Symp. Series, Vol. 61, No. 58 (1965), 
pp. 28-60. 

B. Bird, R. C. Armstrong, and 0. Hassager, Dynamics of Polymeric Liquids, Wiley-Interscience 
(1987), 2nd edition, Vol. 1, g4.4. 

" R. J. Nunge and W. N. Gill, AIChE Journal, 12,279-289 (1966). 
l2 H. C. Brinkman, Appl. Sci. Research, A2,120-124 (1951); R. B. Bird, SPE Journal, 11,3540 (1955); 

H. L. Toor, Ind. Eng. Chem., 48,922-926 (1956). 
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Solve Eq. 10.8-19 with the boundary conditions given in Eqs. 10.8-20,21, and 22. 

Laminar Tube Flow 
with Constant Heat SOLUTION 
Flux a t  the Wal l  The complete solution for the temperature is postulated to be of the following form: 

in which Om((, l) is the asymptotic solution given in Eq. 10.8-31, and Od((, 5) is a function that 
will be damped out exponentially with 5. By substituting the expression for @(& 5) in Eq. 12.2- 
4 into Eq. 10.8-19, it may be shown that the function Od(& 5) must satisfy Eq. 10.8-19 and also 
the following boundary conditions: 

B.C. 1: 

B.C. 2: 

B.C. 3: at l =  0, Od = Om(& 0) (12.2-7) 

We anticipate that a solution to the equation for O&, will be factorable, 

Then Eq. 10.8-19 can be separated into two ordinary differential equations 

in which -c2 is the separation constant. Since the boundary conditions on X are dX/dt = 0 at 
6 = 0, 1, we have a Sturm-Liouville problem.13 Therefore we know there will be an infinite 
number of eigenvalues ck and eigenfunctions Xk, and that the final solution must be of the 
form: 

where 

The problem is thus reduced to finding the eigenfunctions Xk(O by solving Eq. 12.2-10, and 
then getting the eigenvalues ck by applying the boundary condition at 6 = 1. This has been 
done for k up to 7 for this problem.14 

l3  M. D. Greenberg, Advanced Engineering Mathematics, Prentice-Hall, Upper Saddle River, N.J., 
Second Edition (1998), s17.7. 

I%. Siegel, E. M. Sparrow, and T. M. Hallman, Appl. Sci. Research, A7,386-392 (1958). 
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Note that the sum in Eq. 12.2-11 converges rapidly for large z but slowly for small z. Develop 
an expression for T(r, z )  that is useful for small values. 

Laminar Tube Flow 
with Constant Heat 
Flux at the Wall: 
~~~~~~i~ solution For small z  the heat addition affects only a very thin region near the wall, so that the follow- 

for the Region ing three approximations lead to results that are accurate in the limit as z  + 0: 

a. Curvature effects may be neglected and the problem treated as though the wall were 
flat; call the'distance from the wall y = R - r. 

b. The fluid may be regarded as extending from the (flat) heat transfer surface (y = 0) to 
y = m. 

c. The velocity profile may be regarded as linear, with a slope given by the slope of the 
parabolic velocity profile at the wall: v,(y) = voy/R, in which v, = (Po - P,)R2/2p~. 

This is the way the system would appear to a tiny "observer" who is located within the very 
thin shell of heated fluid. To this observer, the wall would seem flat, the fluid would appear 
to be of infinite extent, and the velocity profile would seem to be linear. 

The energy equation then becomes, in the region just slightly beyond z = 0, 

Actually it is easier to work with the corresponding equation for the heat flux in the y direc- 
tion (q, = -k dT/dy). This equation is obtained by dividing Eq. 12.2-13 by y and differentiat- 
ing with respect to y: 

It is more convenient to work with dimensionless variables defined as 

Then Eq. 12.2-14 becomes 

with these boundary conditions: 

B.C. 1: 

B.C. 2: 

B.C. 3: 

ath =0 ,  Q = O  

a tq=O,  $ = I  

a sv+m,  Q + O  

This problem can be solved by the method of combination of variables (see Examples 4.1-1 
and 12.1-1) by using the new independent variable x = v/$"%. Then Eq. 12.2-16 becomes 

The boundary conditions are: at x = 0, IC, = 1, and as x + m, Q + 0. The solution of Eq. 12.2-20 
is found by first letting d+/dx = p, and getting a first-order equation for p. The equation for p 
can be solved and then I) is obtained as 
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The temperature profile may then be obtained by integrating the heat flux: 

or, in dimensionless form, 

Then the expression for cC, is inserted into the integral, and the order of integration in the dou- 
ble integral can be reversed (see Problem 12D.7). The result is 

Here r($) is the (complete) gamma function, and r($, X3) is an incomplete gamma function.15 
To compare this result with that in Example 12.2-1, we note that 17 = 1 - 8 and A = if. The di- 
mensionless temperature is defined identically in 510.8, in Example 12.2-1, and here. 

812.3 STEADY POTENTIAL FLOW OF HEAT IN SOLIDS 

The steady flow of heat in solids of constant thermal conductivity is described by 

Fourier's law q = -kVT 
Heat conduction equation V2T = 0 

These equations are exactly analogous to the expression for the velocity in terms of the 
velocity potential (v = -V+), and the Laplace equation for the velocity potential (V24 = 
0), which we encountered in 54.3. Steady heat conduction problems can therefore be 
solved by application of potential theory. 

For two-dimensional heat conduction in solids with constant thermal conductivity, 
the temperature satisfies the two-dimensional Laplace equation: 

We now use the fact that any analytic function w(z) = fix, y) + ig(x, y) provides two scalar 
functions f and g, which are solutions of Eq. 12.3-3. Curves off = constant may be interpreted 
as lines of heat flow, and curves of g = constant are the corresponding isothermals for some 
heat flow problems. These two sets of curves are orthogonal-that is, they intersect at right 
angles. Furthermore, the components of the heat flux vector at any point are given by 

Given an analytic function, it is easy to find heat flow problems that are described by it. 
But the inverse process of finding an analytic function suitable for a given heat flow 
problem is generally very difficult. Some methods for this are available, but they are out- 
side the scope of this textbook.',* 

l5 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, Dover, New York, 9th 
Printing (1973), pp. 255 et seq. 

' H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd edition, Oxford University Press 
(1959), Chapter XVI. 

M. D. Greenberg, Advanced Engineering Mathematics, Prentice-Hall, Upper Saddle River, N.J., 2nd 
Edition (19981, Chapter 22. 
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For every complex function w(z), two heat flow nets are obtained by interchanging 
the lines of constant f and the lines of constant g. Furthermore, two additional nets are 
obtained by working with the inverse function z(w) as illustrated in Chapter 4 for ideal 
fluid flow. 

Note that potential fluid flow and potential heat flow are mathematically similar, the 
two-dimensional flow nets in both cases being described by analytic functions. Physi- 
cally, however, there are certain important differences. The fluid flow nets described in 
54.3 are for a fluid with no viscosity (a fictitious fluid!), and therefore one cannot use 
them to calculate the drag forces at surfaces. On the other hand, the heat flow nets de- 
scribed here are for solids that have a finite thermal conductivity, and therefore the r e  
sults can be used to calculate the heat flow at all surfaces. Moreover, both the velocity 
components (in Cartesian coordinates!) of 54.3 and the temperature profiles of this sec- 
tion satisfy the Laplace equation. Further information about analogous physical pro- 
cesses described by the Laplace equation is available in books on partial differential 
eq~at ions .~  

Here we give just one example to provide a glimpse of the use of analytic functions; 
further examples may be found in the references cited. 

Consider a wall of thickness b extending from 0 to w in they direction, and from - co to + w  in 
the direction perpendicular to the x and y directions (see Fig. 12.3-1). The surfaces at x = + i b  

Temperature are held at temperature To, whereas the bottom of the wall at the surface y = 0 is maintained 
Distribution at temperature T,. Show that the imaginary part of the function4 
in a Wall 

SOLUTION 

(sin m/b) - 1 
(sin m/b) + 1 

gives the steady temperature distribution Wx, y) = (T - To)/(Tl - To). 

The imaginary part of w(z) in Eq. 12.3-5 is 

~ ( x ,  y) = , arctan (E;;!) 
in which the arctangent is in the range from 0 to :. When x = +fb, Eq. 12.3-6 gives O = 0, and 
when y = 0, it gives O = ( 2 / d  arctan = 1. 

Fig. 12.3-1. Steady two-dimensional temper- 
T = T 1 o r O = l  ature distribution in a wall. 

I. N. Sneddon, Elements of Partial Differential Equations, Dover, New York (1996), Chapter 4. 
R. V. Churchill, Introduction to Complex Variables and Applications, McGraw-Hill, New York (1948), 

Chapter IX. See also C. R. Wylie and L. C. Barrett, Advanced Engineering Mathematics, McGraw-Hill, New 
York, 6th Edition (1995), Chapter 20. 
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From Eq. 12.3-6 the heat flux through the base of the wall may be obtained: 

812.4 BOUNDARY LAYER THEORY FOR 
NONISOTHERMAL FLOW112f3 

In 54.4 the use of boundary layer approximations for steady, laminar flow of incom- 
pressible fluids at constant temperature was discussed. We saw that, in the neighbor- 
hood of a solid surface, the equations of continuity and motion could be simplified, and 
that these equations may be solved to get "exact boundary layer solutions" and that an 
integrated form of these equations (the von KBrmdn momentum balance) enables one to 
get "approximate boundary layer solutions." In this section we extend the previous de- 
velopment by including the boundary layer equation for energy transport, so that the 
temperature profiles near solid surfaces can be obtained. 

As in 54.4 we consider the steady two-dimensional flow around a submerged object 
such as that shown in Fig. 4.4-1. In the vicinity of the solid surface the equations of 
change may be written (omitting the bars over p and P )  as: 

Continuity 

Motion 

Energy 

dv, avy --+--TO 
dx dy 

Here p, p, k, and 4 are regarded as constants, and p(dv,/dy)' is the viscous heating ef- 
fect, which is henceforth disregarded. Solutions of these equations are asymptotically ac- 
curate for small mpmentum diffusivity v = p/p in Eq. 12.4-2, and for small thermal 
diffusivity a = k/pCp in Eq. 12.4-3. 

Equation 12.4-1 is the same as Eq. 4.4-1. Equation 12.4-2 differs from Eq. 4.4-2 be- 
cause of the inclusion of the buoyant force term (see 511.3), which can be significant even 
when fractional changes in density are small. Equation 12.4-3 is obtained from Eq. 11.2-9 
by neglecting the heat conduction in the x direction. More complete forms of the bound- 
ary layer equations may be found elsewhere.*," 

The usual boundary conditions for Eqs. 12.4-1 and 2 are that v, = v, = 0 at the solid 
surface, and that the velocity merges into the potential flow at the outer edge of the veloc- 
ity boundary layer, so that v, + v,(x). For Eq. 12.4-3 the temperature T is specified to be To 
at the solid surface and T ,  at the outer edge of the thermal bounda y layer. That is, the ve- 
locity and temperature are different from v,(x) and T ,  only in thin layers near the solid 
surface. However, the velocity and temperature boundary layers will be of different 
thicknesses corresponding to the relative ease of the diffusion of momentum and heat. 
Since Pr = v /a ,  for Pr > 1 the temperature boundary layer usually lies inside the veloc- 

H.  Schlichting, Boundary-Layer Theory, 7th edition, McGraw-Hill, New York (1979), Chapter 12. 
IS. Stewartson, The Theory of Laminar Boundary Layers in Compressible Fluids, Oxford University 

Press (1964). 
E. R. G. Eckert and R. M. Drake, Jr., Analysis of Heat and Mass Transfer, McGraw-Hill, New York, 

(1972), Chapters 6 and 7. 
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EXAMPLE 12.4-1 

Heat Transfer in 
Laminar Forced 
Convection along a 
Heated Flat Plate 
(von Karmhn Integral 
Method) 

ity boundary layer, whereas for Pr < 1 the relative thicknesses are just reversed (keep in 
mind that for gases Pr is about $, whereas for ordinary liquids Pr > 1 and for liquid met- 
als Pr << 1). 

In 94.4 we showed that the boundary layer equation of motion could be integrated 
formally from y = 0 to y = m, if use is made of the equation of continuity. In a similar 
fashion the integration of Eqs. 12.4-1 to 3 can be performed to give 

Energy 

Equations 12.4-4 and 5 are the uon U r m h  momentum and energy balances, valid for 
forced-convection and free-convection systems. The no-slip condition vy = 0 at y = 0 has 
been used here, as in Eq. 4.4-4; nonzero velocities at y = 0 occur in mass transfer systems 
and will be considered in Chapter 20. 

As mentioned in 94.4, there are two approaches for solving boundary layer prob- 
lems: analytical or numerical solutions of Equations 12.4-1 to 3 are called "exact bound- 
ary layer solutions," whereas solutions obtained from Eqs. 12.4-4 and 5, with reasonable 
guesses for the velocity and temperature profiles, are called "approximate boundary 
layer solutions." Often considerable physical insight can be obtained by the second 
method, and with relatively little effort. Example 12.4-1 illustrates this method. 

Extensive use has been made of the boundary layer equations to establish correla- 
tions of momentum- and heat-transfer rates, as we shall see in Chapter 14. Although in 
this section we do not treat free convection, in Chapter 14 many useful results are given 
along with the appropriate literature citations. 

Obtain the temperature profiles near a flat plate, along which a Newtonian fluid is flowing, as 
shown in Fig. 12.4-1. The wetted surface of the plate is maintained at temperature To and the 
temperature of the approaching fluid is T,. 

SOLUTION 

In order to use the von KhrmAn balances we first postulate reasonable forms for the velocity 
and temperature profiles. The following polynomial form gives 0 at the wall and 1 at the 
outer limit of the boundary layer, with a slope of zero at the outer limit: 

That is, we assume that the dimensionless velocity and temperature profiles have the same 
form within their respective boundary layers. We further assume that the boundary layer 
thicknesses 6(x) and 6,(x) have a constant ratio, so that A = 6,(x)/6(x) is independent of x. 
Two possibilities have to be considered: A 5 1 and A 2 1. We consider here A 5 1 and rele- 
gate the other case to Problem 12D.8. 
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Fluid approaches 
with velocity v, - 

Fig. 12.4-1. Boundary layer development for the flow 
along a heated flat plate, showing the thermal boundary 
layer for A = 6 T ( ~ ) / 6 ( ~ )  < 1. The surface of the plate is 
at temperature To, and the approaching fluid is at T,. 

The use of Eqs. 12.4-4 and 5 is now straightforward but tedious. Substitution of Eqs. 
12.4-6 through 9 into the integrals gives (with v, set equal to v, here) 

In these integrals r] = y/6(x) and vT = y/aT(x) = y/AS(x). Next, substitution of these integrals 
into Eqs. 12.4-4 and 5 gives differential equations for the boundary layer thicknesses. These 
first-order separable differential equations are easily integrated, and we get 

6 ~ ( x )  = J,, 
The boundary layer thicknesses are now determined, except for the evaluation of A in Eq. 
12.4-13. The ratio of Eq. 12.4-12 to Eq. 12.4-13 gives an equation for A as a function of the 
Prandtl number: 

When this sixth-order algebraic equation is solved for A as a function of Pr, it is found that the 
solution may be curve-fitted by the simple relation4 

within about 5%. 

H. Schlichting, Boundary-Layer Theory, 7th edition, McGraw-Hill, New York (19791, pp. 292-308. 
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Table 12.4-1 Comparison of Boundary Layer Heat Transfer Calculations for Flow along a 
Flat Plate 

Value of numerical coefficient in 
expression for heat transfer rate 

Method in Eq. 12.4-17 

Von Kiirmiin method with profiles of Eqs. 12.4-9 to 12 = 0.685 
Exact solution of Eqs. 12.4-1 to 3 by Pohlhausen 0.657 at Pr = 0.6 

0.664 at Pr = 1.0 
0.670 at Pr = 2.0 

Curve fit of exact calculations (Pohlhausen) 0.664 
Asymptotic solution of Eqs. 12.4-1 to 3 for Pr >> 1 0.677 

The temperature profile is then finally given (for A 5 1) by 

in which A = ~ r - " ' ~  and S(x) = d(1260/37)(vx/v,). The assumption of laminar flow made 
here is valid for x < xCyitr where x,,,,v,p/p is usually greater than lo5. 

Finally, the rate of heat loss from both sides of a heated plate of width Wand length L 
can be obtained from Eqs. 12.4-5,11,12,15, and 16: 

= 2~p$v,(T~ - T,)(%A - &A' + &~A~)&(L) 

= m(2 NL)(T0 - T,) (12.4-17) 

in which ReL = L v , p / p  Thus the boundary layer approach allows one to obtain the depen- 
dence of the rate of heat loss Q on the dimensions of the plate, the flow conditions, and the 
thermal properties of the fluid. 

Eq. 12.4-17 is in good agreement with more detailed solutions based on Eqs. 12.4-1 to 3. The 
asymptotic solution for Q at large Prandtl numbers, given in the next example? has the same 
form except that the numerical coefficient = 0.685 is replaced by 0.677. The exact so- 
lution for Q at finite Prandtl numbers, obtained numerically? has the same form except that 
the coefficient is replaced by a slowly varying function C(Pr), shown in Table 12.4-1. The 
value C = 0.664 is exact at Pr = 1 and good within 52% for Pr > 0.6. 

The proportionality of Q to ~ r " ~ ,  found here, is asymptotically correct in the limit as 
Pr + w, not only for the flat plate but also for all geometries that permit a laminar, nonsepa- 
rating boundary layer, as illustrated in the next example. Deviations from Q - Pr'I3 occur at 
finite Prandtl numbers for flow along a flat plate and even more so for flows near other- 
shaped objects and near rotating surfaces. These deviations arise from nonlinearity of the ve- 
locity profiles within the thermal boundary layer. Asymptotic expansions for the Pr 
dependence of Q have been presented by Merk and  other^.^ 

M. J. Lighthill, Proc. Roy. Soc., A202,359-377 (1950). 
E. Pohlhausen, Zeits. f. angew. Math. u. Mech., 1,115-121 (1921). 
H. J. Merk, J. Fluid Mech., 5,460480 (1959). 
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EXAMPLE 12.4-2 

Heat Transfer in 
Laminar Forced 
Convection along a 
Heated Flat Plate 
(Asymptotic Solution 
for Large Prandtl 
Nu~nbers)~ 

In the preceding example we used the von KArmAn boundary layer integral expressions. Now 
we repeat the same problem but obtain an exact solution of the boundary layer equations in 
the limit that the Prandtl number is large-that is, for liquids (see 59.1). In this limit, the outer 
edge of the thermal boundary layer is well inside the velocity boundary layer. Therefore it can 
safely be assumed that v, varies linearly with y throughout the entire thermal boundary layer. 

SOLUTION 

By combining the boundary layer equations of continuity and energy (Eqs. 12.4-1 and 3) we get 

,. 
in which a = k / p C p .  The leading term of a Taylor expansion for the velocity distribution near 
the wall is 

in which the constant c = 0 . 4 6 9 6 / ~  = 0.332 can be inferred from Eq. 4.4-30. 
Substitution of this velocity expression into Eq. 12.4-18 gives 

This has to be solved with the boundary conditions that T = To at y = 0, and T = T ,  at x = 0. 
This equation can be solved by the method of combination of variables. The choice of the 

dimensionless variables 

makes it possible to rewrite Eq. 12.4-20 (see Eq. C.l-9) as 

Integration of this equation with the boundary conditions that Il = 0 at 7 = 0 and II + 1 as 

for the dimensionless temperature distribution. See 5C.4 for a discussion of the gamma func- 
tion Un) .  

For the rate of heat loss from both sides of a heated plate of width Wand length L, we get 

= (2 WL)(To - T,) - --- - pr'13 ~ e ; "  (t I;:, (;r31 
which is the same result as that in Eq. 12.4-17 aside from a numerical constant. The quantity 
within brackets equals 0.677, the asymptotic value that appears in Table 12.4-1. 
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Fluid approaching with temperature T, and velocity v, + + + + + + + + + + + + + + + + + +  
Stagnation locus 

Approximate limit of 
thermal boundary layer x 

/ 
/ 

/ 
/ 

/ 

. Separated flow ;egion 

Fig. 12.4-2. Heat transfer from a three-dimensional surface. 
The asymptotic analysis applies upstream of the separated and 
turbulent flow regions. These regions are illustrated for cylin- 
ders in Fig. 3.7-2. 

The technique introduced in the preceding example has been extended to flow around objects 
of arbitrary shape. Consider the steady flow of a fluid over a stationary object as shown in 

Forced Convection Fig. 12.4-2. The fluid approaches at a uniform temperature T,, and the solid surface is main- 
in Steady Three- tained at a uniform temperature To. The temperature distribution and heat transfer rate are to 
Dimensional Flow be found for the region of laminar flow, which extends downstream from the stagnation locus 
at  High Prandtl to the place where turbulence or flow separation begins. The velocity profiles are considered 
~ u m b e r s " ~  to be known. 

The thermal boundary layer is considered to be very thin. This implies that the isotherms 
nearly coincide with the solid surface, so that the heat flux q is nearly normal to the surface. 
It also implies that the complete velocity profiles are not needed here. We need to know the 
state of the motion only near the solid surface. 

To capitalize on these simplifications, we choose the coordinates in a special way (see 
Fig. 12.4-2). We define y as the distance from the surface into the fluid just as in Fig. 12.4-1. 
We further define x and z as the coordinates of the nearest point on the surface, measured 
parallel and perpendicular to the tangential motion next to the surface. We express elements 
of arc in the x and z directions as h$x and hdz, where h, and h, are position-dependent "scale 
factors" discussed in 5A.7. Since we are interested here in the region of small y, the scale fac- 
tors are treated as functions only of x and z evaluated at y = 0, with h, = 1. 

With this choice of coordinates, the velocity components for small y become 

Here P(x, z) is the local value of dv,/dy on the surface; it is positive in the nonseparated re- 
gion, but may vanish at points of stagnation or separation. These equations are obtained by 
writing Taylor series for v, and v,, retaining terms through the first degree in y, and then inte- 

W. E. Stewart, AlChE Journal, 9,528-535 (1963). 
For related two-dimensional analyses, see M. J. Lighthill, Proc. Roy. Soc., A202,359-377 (1950); 

V.  G. Levich, Physico-Chemical Hydrodynamics, Chapter 2, Prentice-Hall, Englewood Cliffs, N.J. (1962); 
A. Acrivos, Physics of Fluids, 3,657-658 (1960). 
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SOLUTION 

grating the continuity equation with the boundary condition vy = 0 at the surface to obtain v,. 
These results are valid for Newtonian or non-Newtonian flow with temperature-independent 
density and visc~sity. '~ 

By a procedure analogous to that used in Example 12.4-2, one obtains a result similar to 
that given in Eq. 12.4-24. The only difference is that 7 is defined more generally as 77 = y/ST, 
where ST is the thermal boundary layer thickness given by 

and xl(z) is the upstream limit of the heat transfer region. From Eqs. 12.4-24 and 25 the local 
surface heat flux qo and the total heat flow for a heated region of the form x,(z) < x < x2(z), 
z, < z < 2, are 

This last result shows how Q depends on the fluid properties, the velocity profiles, and the 
geometry of the system. We see that Q is proportional to the temperature difference, to 

= ~ / ~ ~ ~ ' ~ e i / ~ ,  and to the of a mean velocity gradient over the surface. 
Show how the above results can be used to obtain the heat transfer rate from a heated 

sphere of radius R with a viscous fluid streaming past it in creeping flow" (see Example 
4.2-1 and Fig. 2.6-1). 

The boundary-layer coordinates x, y, and z may be identified here with .rr - 8, r - R, and 4 of 
Fig. 2.6-1. Then stagnation occurs at 8 = n-, and separation occurs at 8 = 0. The scale factors 
are h, = R, and h, = R sin 0. The interfacial velocity gradient p is 

Insertion of the above into Eqs. 12.4-29 and 31 gives the following results for forced convec- 
tion heat transfer from an isothermal sphere of diameter D: 

(T - 8 + sin 28)1/3 
= ( z ) 1 / 3 ~ ( ~ e  sin 8 

31'3k(~o - T,) /02T (- j: 
Q = zff1/3r(;) 

zv, sin 0 R2 sin 0 d8 1213 d6 

The constant in brackets is 0.991. 
The behavior predicted by Eq. 12.4-33 is sketched in Fig. 12.4-3. The boundary layer 

thickness increases steadily from a small value at the stagnation point to an infinite value at 
separation, where the boundary layer becomes a wake extending downstream. The analysis 
here is most accurate for the forward part of the sphere, where 6, is small; fortunately, that is 

Temperature-dependent properties have been included by Acrivos, loc. cit. 
The solution to this problem was first obtained by V. G. Levich, loc. cit. It has been extended to 

somewhat higher Reynolds numbers by A. Acrivos and T. D. Taylor, Phys. Fluids, 5,387-394 (1962). 
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Fig. 12.4-3. Forced-convection heat transfer from a 
sphere in creeping flow. The shaded region shows 
the thermal boundary layer (defined by II, 5 0.99 
or y 5 1.56,) for P6 = RePr .= 200. 

t t t t t t t t t  
Fluid approaching with velocity v, 

and temperature T,  

also the region where most of the heat transfer occurs. The result for Q is good within about 
5% for RePr > 100; this limits its use primarily to fluids with Pr > 100, since creeping flow is 
obtained only at Re of the order of 1 or less.12 

Results of the same form as Eq. 12.4-34 are obtained for creeping flow in other geome- 
tries, including packed beds."13 

It should be emphasized that the asymptotic solutions are particularly important: they 
are relatively easy to obtain, and for many applications they are sufficiently accurate. We will 
see in Chapter 14 that some of the standard heat transfer correlations are based on asymptotic 
solutions of the type discussed here. 

QUESTIONS FOR DISCUSSION 

How does Eq. 12.1-2 have to be modified if there is a heat source within the solid? 
Show how Eq. 12.1-10 is obtained from Eq. 12.1-8. What is the viscous flow analog of this 
equation? 
What kinds of heat conduction problems can be solved by Laplace transform and which can- 
not? 
In Example 12.1-3 the heat flux and the temperature both satisfy the "heat conduction equa- 
tion." Is this always true? 
Draw a carefully labeled sketch of the results in Eqs. 12.1-38 and 40 showing what is meant by 
the statement that the "temperature oscillations lag behind the heat flux oscillations by .rr/4." 
Verify that Eq. 12.1-40 satisfies the boundary conditions. Does it have to satisfy an initial con- 
dition? If so, what is it? 
In Ex. 12.2-1, would the method of separation of variables work if applied directly to the func- 
tion 0 (5 ,0  rather than to ad(& c)? 
In Example 12.2-2, how does the wall temperature depend on the downstream coordinate z? 
By means of a carefully labeled diagram, show what is meant by the two cases A 5 1 and A 2 

1 in 512.4. Which case applies to dilute polyatomic gases? Organic liquids? Molten metals? 
Summarize the situations in which the four mathematical methods in 512.1 are applicable. 

'' A review of analyses for a wide range of P6 = RePr is given by S. K. Friedlander, AlChE Journal, 7, 
347-348 (1961). 

l3 J. P. Smensen and W. E. Stewart, Chem. Eng. Sci., 29,833-837 (1974). 
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PROBLEMS 12A.1. Unsteady-state heat conduction in an iron sphere. An iron sphere of 1-in. diameter has the 
following physical properties: k = 30 Btu/hr ft F, cp = 0.12 Btu/lb, F. and p = 436 lb,/ft3. 
Initially the sphere is at a temperature of 70°F. 
(a) What is the thermal diffusivity of the sphere? 
(b) If the sphere is suddenly plunged into a large body of fluid of temperature 270°F, how 
much time is needed for the center of the sphere to attain a temperature of 128"F? 
(c) A sphere of the same size and same initial temperature, but made of another material, re- 
quires twice as long for its center to reach 128°F. What is its thermal diffusivity? 
(d) The chart used in the solution of (b) and (c) was prepared from the solution to a partial 
differential equation. What is that differential equation? 
Answers: (a) 0.574 ft2/hr; (b) 1.1 sec; (c) 0.287 fP/hr 

12A.2 Comparison of the two slab solutions for short times. What error is made by using Eq. 12.1-8 
(based on the semi-infinite slab) instead of Eq. 12.1-31 (based on the slab of finite thickness), 
when at/b2 = 0.01 and for a position 0.9 of the way from the midplane to the slab surface? 
Use the graphically presented solutions for making the comparison. 
Answer: 4% 

12A.3 Bonding with a thermosetting adhesive1 (Fig. 12A.3). It is desired to bond together two 
sheets of a solid material, each of thickness 0.77 cm. This is done by using a thin layer of thermo- 
setting material, which fuses and forms a good bond at 160°C. The two plates are inserted in a 
press, with both platens of the press maintained at a constant temperature of 220°C. How 
long will the sheets have to be held in the press, if they are initially at 20"C? The solid sheets 
have a thermal diffusivity of 4.2 X 10-%m2/s. 
Answer: 85 s 

124.4. Quenching of a steel billet. A cylindrical steel billet 1 ft in diameter and 3 ft long, initially at 
1000°F, is quenched in oil. Assume that the surface of the billet is at 200°F during the quench- 
ing process. The steel has the following properties, which may be assumed to be independent 
of the temperature: k = 25 Btu/hr . ft . F, p = 7.7 g/cm3, and C, = 0.12 cal/g. C. 

Estimate the temperature of the hottest point in the billet after five minutes of quenching. 
Neglect end effects; that is, make the calculation for a cylinder of the given diameter but of in- 
finite length. See Problem 12C.1 for the method for taking end effects into account. 
Answer: 750°F 

12A.5. Measurement of thermal diffusivity from amplitude of temperature oscillations. 
(a) zt is desired to use the results of Example 12.1-3 to measure the thermal diffusivity a = 

k/pC,  of a solid material. This may be done by measuring the amplitudes A, and A, at two 

Thermosetting adhesive 

I / Upper platen (heated) I 

I Lower platen (heated) Fig. 12A.3. Two sheets of solid material with a thin I layer of adhesive in between. 

' This problem is based on Example 10 of J. M. McKelvey, Chapter 2 of Processing of Thermoplasfic 
Materials (E.  C. Bernhardt, ed.), Reinhold, New York (1959), p. 93. 
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points at distances y, and y2 from the periodically heated surface. Show that the thermal dif- 
fusivity may then be estimated from the formula 

(b) Calculate the thermal diffusivity a when the sinusoidal surface heat flux has a frequency 
0.0030 cycles/s, if y2 - y, = 6.19 cm and the amplitude ratio A,/A2 is 6.05. 
Answer: a = 0.111 cm2/s 

12A.6. Forced convection from a sphere in creeping flow. A sphere of diameter D, whose surface is 
maintained at a temperature To, is located in a fluid stream approaching with a velocity v, and 
temperature T,. The flow around the sphere is in the "creeping flow" regimethat is, with the 
Reynolds number less than about 0.1. The heat loss from the sphere is described by Eq. 12.4-34. 
(a) Verify that the equation is dimensionally correct. 
(b) Estimate the rate of heat transfer, Q, for the flow around a sphere of diameter 1 mm. The 
fluid is an oil at T ,  = 50°C moving at a velocity 1.0 cm/sec with respect to the sphere, the sur- 
face of which is at a temperature of 100°C. The oil has the following properties: p = 0.9 g/cm3, e, = 0.45 cal/g. K, k = 3.0 X lop4 cal/s - cm K, and p = 150 cp. 

12B.1. Measurement of thermal diffusivity in an unsteady-state experiment. A solid slab, 1.90 cm 
thick, is brought to thermal equilibrium in a constant-temperature bath at 20.O"C. At a given 
instant (t = 0) the slab is clamped tightly between two thermostatted copper plates, the sur- 
faces of which are carefully maintained at 40.0°C, The midplane temperature of the slab is 
sensed as a function of time by means of a thermocouple. The experimental data are: 

t (sec) 0 120 240 360 480 600 
T (C) 20.0 24.4 30.5 34.2 36.5 37.8 

Determine the perma1 diffusivity and thermal conductivity of the slab, given that p = 

1.50 g/cm3 and Cp = 0.365 cal/g. C. 
Answer: a = 1.50 x cm2/s; k = 8.2 X cal/s. cm C or 0.20 Btu/hr ft F 

Two-dimensional forced convection with a line heat source. A fluid at temperature T, 
flows in the x direction across a long, infinitesimally thin wire, which is heated electrically at 
a rate Q/L (energy per unit time per unit length). The wire thus acts as a line heat source. It is 
assumed that the wire does not disturb the flow appreciably. The fluid properties (density, 
thermal conductivity, and heat capacity) are assumed constant and the flow is assumed uni- 
form. Furthermore, radiant heat transfer from the wire is neglected. 
(a) Simplify the energy equation to the appropriate form, by neglecting the heat conduction 
in the x direction with respect to the heat transport by convection. Verify that the following 
conditions on the temperature are reasonable: 

T +  T ,  as y + co for all x 

T = T, at x < 0 for ally 

(b) Postulate a solution of the form (for x > 0) 

Show by means of Eq. 12B.2-3 that f (x) = C1/6(x). Then insert Eq. 12B.2-4 into the energy 
equation and obtain 

(c) Set the quantity in brackets in Eq. 12B.2-5 equal to 2 (why?), and then solve to get S(x). 
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(d) Then solve the equation for g(77). 

(e) Finally, evaluate the constant C,, and thereby complete the derivation of the temperature 
distribution. 

12B.3. Heating of a wall (constant wall heat flux). A very thick solid wall is initially at the tempera- 
ture To. At time t = 0, a constant heat flux qo is applied to one surface of the wall (at y = O), 
and this heat flux is maintained. Find the time-dependent temperature profiles T(y, I) for 
small times. Since the wall is very thick it can be safely assumed that the two wall surfaces are 
an infinite distance apart in obtaining the temperature profiles. 
(a) Follow the procedure used in going from Eq. 12.1-33 to Eq. 12.1-35, and then write the ap- 
propriate boundary and initial conditions. Show that the analytical solution of the problem is 

(b) Verify that the solution is correct by substituting it into the one-dimensional heat conduc- 
tion equation for the temperature (see Eq. 12.1-33). Also show that the boundary and initial 
conditions are satisfied. 

12B.4. Heat transfer from a wall to a falling film (short contact time limitI2 (Fig. 12B.4). A cold liq- 
uid film flowing down a vertical solid wall, as shown in the figure, has a considerable cooling 
effect on the solid surface. Estimate the rate of heat transfer from the wall to the fluid for such 
short contact times that the fluid temperature changes appreciably only in the immediate 
vicinity of the wall. 
(a) Show that the velocity distribution in the falling film, given in 52.2, may be written as 
v, = vZ,,,,[2(y/6) - (y/6)2], in which v,,,, = pg13~/2~. Then show that in the vicinity of the 
wall the velocity is a linear function of y given by 

Downflowing 
liquid film 

enters at uniform 
temperature, To 

Outer edge of 
film is at y = 6 

Note that the fluid 
temperature is different 
from To only in the 
neighborhood of the 
wall, where v, is 
almost linear. 

Fig. 12B.4. Heat transfer to a film 
falling down a vertical wall. 

R. L. Pigford, Chemical Engineering Progress Symposium Series, 51, No. 17,79-92 (1955). Robert 
Lamar Pigford (1917-1988), who taught at both the University of Delaware and the University of 
California in Berkeley, researched many aspects of diffusion and mass transfer; he was the founding 
editor of Industrial and Engineering Chemisty Fundamentals. 
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(b) Show that the energy equation for this situation reduces to 

List all the simplifying assumptions needed to get this result. Combine the preceding two 
equations to obtain 

in which fi  = pk/p2?pgt3. 
(c) Show that for short contact times we may write as boundary conditions 

B.C. 1: 

B.C. 2: 

B.C. 3: 

T = T o  forz=O and y>O 

T = To for y = w and z finite 

T = T ,  fory=O and z > 0  

Note that the true boundary condition at y = S is replaced by a fictitious boundary condition 
at y = w .  This is possible because the heat is penetrating just a very short distance into the 
fluid. 

(d) Use the dimensionless variables W77) = (T - To)/(Tl - To) and 7 = y/m to rewrite 
the differential equation as (see Eq. C.l-9): 

Show that the boundary conditions are O = 0 for 77 = co and O = 1 at 7 = 0. 
(el In Eq. 12B.4-7, set dO/dq = p and obtain an equation for p(rl). Solve that equation to get 
d@/dq = p(7) = C1 exp (FT3). Show that a second integration and application of the bound- 
ary conditions give 

(f) Show that the average heat flux to the fluid is 

where use is made of the Leibniz formula in sC.3. 

Temperature in a slab with heat production. The slab of thermal conductivity k in Example 
12.1-2 is initially at a temperature To. For time t > 0 there is a uniform volume production of 
heat So within the slab. 
(a) Obtain an expression for the dimensionless temperature k(T - To)/Sob2 as a function of 
the dimensionless coordinate 77 = y/b and the dimensionless time by looking up the solution 
in the book by Carslaw and Jaeger. 
(b) What is the maximum temperature reached at the center of the slab? 
(c) How much time elapses before 90% of the temperature rise occurs? 
Answer: (c) t = b2/a 

Forced convection in slow flow across a cylinder (Fig. 12B.6). A long cylinder of radius R is 
suspended in an infinite fluid of constant properties p, p, 5, and k. The fluid approaches with 
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Fluid approaches 
with velocity v, 
and temperature T ,  

urface of cylinder at 
uniform temperature To Fig. 12B.6. Heat transfer from a long 

cylinder of radius R. 

temperature T ,  and velocity v,. The cylindrical surface is maintained at temperature To. For 
this system the velocity distribution has been determined by Lamb3 in the limit of Re << 1. 
His result for the region close to the cylinder is 

in which 1(1 is the first polar-coordinate stream function in Table 4.2-1. The dimensionless 
quantity S is given by S = $ - y + ln(8/Re), where y = 0.5772. is "Euler's constant," and 
Re = Dv,p/p. 
(a) For this system, determine the interfacial velocity gradient P defined in Example 12.4-3. 
(b) Determine the rate of heat loss Q from a length L of the cylinder using the method of Ex- 
ample 12.4-3. Note that 

where B(m, n) = r(m)r(n)/r(m + n)  is the "beta function." 
(c) Determine S,/R at 0 = 0, in-, and n-. 

2v, sin 0 
Answers: (a) /3 = 

RS 

T J ( $ ) ( Y ) " ~  (Evaluate the constant C) 

1 /3  
(,-)!T= (s) f(8);f = ($)1/3,1.1981,m 

R RePr 

12B.7. Timetable for roasting turkey 
(a) A homogeneous solid body of arbitrary shape is initially at temperature To throughout. At 
t = 0 it is immersed in a fluid medium of temperature T,. Let L be a characteristic length in 
the solid. Show that dimensional analysis predicts that 

O = O(5' q, 5, T, and geometrical ratios) (12B.7-1) 

where O = (T - T,)/(T, - To), 6 = x/L, 7 = y/L, 5 = z / L ,  and T =  at/^'. Relate this result to 
the graphs given in 512.1. 

' H.  Lamb, Phil. Mag., (6) 21,112-110 (1911). For a survey of more detailed analyses, see 
L. Rosenhead (ed.), Laminar Boundary Layers, Oxford University Press, London (19631, Chapter 4. 
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(b) A typical timetable for roasting turkey at 350°F is4 

Mass of turkey Time required per unit mass 
(lb,) (min/lb,) 

Compare this empirically determined cooking schedule with the results of part (a), for geo- 
metrically similar turkeys at an initial temperature To, cooked with a given surface tempera- 
ture T, to the same dimensionless temperature distribution @ = @(<, q, [). 

Use of asymptotic boundary layer solution. Use the results of Ex. 12.4-2 to obtain 6, and q, 
for the system in Problem 12D.4. By comparing ST with D, estimate the range of applicability 
of the solution obtained in Problem 12D.4. 

Non-Newtonian heat transfer with constant wall heat flux (asymptotic solution for small axial 
distances). Rework Example 12.2-2 for a fluid whose non-Newtonian behavior is described ade 
quately by the power law model. Show that the solution given in Eq. 12.2-2 may be taken over 
for the power law model simply by an appropriate modification in the definition of v,. 

Product solutions for unsteady heat conduction in solids. 
(a) In Example 12.1-2 the unsteady state heat conduction equation is solved for a slab of 
thickness 2b. Show that the solution to Eq. 12.1-2 for the analogous problem for a rectangular 
block of finite dimensions 2a, 2b, and 2c may be written as the product of the solutions for 
three slabs of corresponding dimensions: 

in which @(y/b, at/b2) is the right side of Eq. 12.1-31. 
(b) Prove a similar result for cylinders of finite length; then rework Problem 12A.4 without 
the assumption that the cylinder is infinitely long. 

Heating of a semi-infinite slab with variable thermal conductivity. Rework Example 12.1-1 
for a solid whose thermal conductivity varies with temperature as follows: 

in which ko is the thermal conductivity at temperature To, and P is a constant. Use the follow- 
ing approximate procedure: 
(a) Let @ = (T - T,)/(T, - To) and r ]  = y/S(t), where S(t) is a boundary layer thickness that 
changes with time. Then assume that 

in which the function @(q) gives the shapes of the "similar" profiles. This is tantamount to as- 
suming that the temperature profiles have the same shape for all values of P, which, of 
course, is not really true. 
(b) Substitute the above approximate profiles into the heat conduction equation and obtain 
the following differential equation for the boundary layer thickness: 

Woman's Home Companion Cook Book, Garden City Publishing Co., (19461, courtesy of Jean Stewart. 
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in which a, = ko/pC, and 

Then solve for the function S( t ) .  
(c) Now let @(v) = 1 - z7) + iq3. Why is this a felicitous choice? Then find the time-depen- 
dent temperature distribution T(y, t) as well as the heat flux at y = 0. 

12C.3. Heat conduction with phase change (the Neumann-Stefan problem) (Fig. 12C.3)5. A liquid, 
contained in a long cylinder, is initially at temperature T,. For time t 2 0, the bottom of the 
container is maintained at a temperature To, which is below the melting point T,. We want to 
estimate the movement of the solid-liquid interface, Z(t), during the freezing process. 

A 

For the sake of simplicity, we assume here that the physicalgroperties p, k, and C, are 
constants and the same in both the soljd zpd liquid phases. Let AHf be the heat of fusion per 
gram, and use the abbreviation A = AHf/C,(T, - To). 
(a) Write the equation for heat conduction for the liquid ( L )  and solid (S )  regions; state the 
boundary and initial conditions. 
(b) Assume solutions of the form: 

(c) Use the boundary condition at z = 0 to show that C, = 0, and the condition at z = to 
show that C3 = 1 - C4. Then use the fact that Ts = TL = T, at z = Z(t) to conclude that Z(t) = 
A-, where h is some (as yet undetermined) constant. Then get Cg and C4 in terms of A. Use 
the remaining boundary condition to get A in terms of A and 0, = (T, - To)/(T, - To): 

Liquid 

(Initially at 
temperature 

Tl 
throughout) 

0, 1 - 0, 
6 h h  exph2 = - - 

erf A 1 - erf A 

Liquid 

t=O V t>O 
Temperature 

To at z = 0 

Liquid 
T L k ,  t) 

Temperature 
=?,I 

..- interfa& 
located at 

Z(t) 

Moving 

Fig. 12C.3. Heat conduction 
with solidification. 

For literature references and related problems, see H. S. Carslaw and J. C. Jaeger, Conduction of 
Heat in Solids, 2nd edition, Oxford University Press (1959), Chapter XI; on pp. 283-286 the problem 
considered here is worked out for the situation that the physical properties of the liquid and solid phases 
are different. See also S. G. Bankoff, Advances in Chemical Engineering, Vol. 5, Academic Press, New York 
(1964), pp. 75-150; J. Crank, Free and Moving Bounda y Problems, Oxford University Press (1984); J. M. Hill, 
One-Dimensional Stefan Problems, Longmans (1987). 
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What is the final expression for Z(t)? (Note: In this problem it has been assumed that a phase 
change occurs instantaneously and that no supercooling of the liquid phase occurs. It turns 
out that in the freezing of many liquids, this assumption is untenable. That is, to describe the 
solidification process correctly, one has to take into account the kinetics of the crystallization 
pro~ess.~) 

12C.4. Viscous heating in oscillatory flow.7 Viscous heating can be a disturbing factor in viscosity 
measurements. Here we see how viscous heating can affect the measurement of viscosity in 
an oscillating-plate system. 

A Newtonian fluid is located in the region between two parallel plates separated by a 
distance b. Both plates are maintained at a temperature To. The lower plate (at z = 0) is made 
to oscillate sinusoidally in the z direction with a velocity amplitude vo and a circular fre- 
quency o. Estimate the temperature rise resulting from viscous heating. Consider only the 
high-frequency limit. 
(a) Show that the velocity distribution is given by 

sinh a(l - 6) cos a(l - 6) sinh a cos a 
cos ot  + sin a(l - 6) cosh a(l - 6) sin a cosh a 

- sin a(l - 6) cosh a(l - 6) sinh a cos a 
sin ot  

v,(x, t )  - +sinh a(1 - 6) cos a(1 - 0 sin a cosh a 
-- (12C.4-1) 

Vo sinh2 a cos a + cosh2 a sin a 

where a = dPwb2/2p and 6 = x /  b. 
(b) Next calculate the dissipation function a, for the velocity profile in Eq. 12C.4-1. Then ob- 
tain a time-averaged dissipation function &,, by averaging over one cycle. Use the formulas 

-- 

cos2 wt = sin2 wt = $ and sin of cos wt = 0 (12C.4-2) 

which may be verified. Then simplify the result for high frequencies (i.e., for large values of a) 
to obtain 

(c) Next take a time average of the heat conduction equation to obtain 

in which is the temperature averaged over one cycle. Solve this to get 

This shows how the temperature in the slit depends on position. From this function, the max- 
imum temperature rise can be calculated. For reasonably high frequencies, T - & = pv;/4k. 

12C.5. Solar heat penetration. Many desert animals protect themselves from excessive diurnal tem- 
perature fluctuations by burrowing sufficiently far underground that they can maintain 

H. Janeschitz-Kriegl, Plastics and Rubber Processing and Applications, 4,145-158 (1984); 
H. Janeschitz-Kriegl, in One-Hundred Years of Chemical Engineering (N. A. Peppas, ed.), Kluwer Academic 
Publishers, Dordrecht (Netherlands) (1989), pp. 111-124; H. Janeschitz-Kriegl, E. Ratajski, and G. Eder, 
Ind. Eng. Chem. Res., 34,3481-3487 (1995); G. Astarita and J. M. Kenny, Chem. Eng. Comm., 53,6944 
(1 987). 

R. B. Bird, Chem. Eng. Prog. Symposium Series, Vol. 61, No. 58 (1965), pp. 13-14; see also F. Ding, 
A. J. Giacomin, R. B. Bird, and C-B Kweon, J. Non-Newtonian Fluid Mech., 86,359-374 (1999). 
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themselves at a reasonably steady temperature. Let the temperature in the ground be T(y, t), 
where y is the depth below the surface of the earth and t is the time, measured from the time 
of maximum temperature To. Further, let the temperature far beneath the surface be T,, and 
let the surface temperature be given by 

T(0, t) - T, = 0 for t < 0 

T(0, t) - T, = (To - T,) cos o t  for t 2 0 (12C.5-1) 

Here o = 2n-/t,,,, in which tp,, is the time for one full cycle of the oscillating tempera ture  
namely, 24 hours. Then it can be shown that the temperature at any depth is given by 

This equation is the heat conduction analog of Eq. 4D.1-1, which describes the response of the 
velocity profiles near an oscillating plate. The first term describes the "periodic steady state" 
and the second the "transient" behayior. Assume the following properties for the soil:' p = 

1515 kg/m" k = 0.027 W/m K, and C, = 800 J/kg. K. 
(a) Assume that the heating of the earth's surface is exactly sinusoidal, and find the ampli- 
tude of the temperature variation beneath the surface at a distance y. To do this, use only the 
periodic steady state term in Eq. 12C.5-2. Show that at a depth of 10 cm, this amplitude has 
the value of 0.0172. 
(b) Discuss the importance of the transient term in Eq. 12C.5-2. Estimate the size of this con- 
tribution. 
(c) Next consider an arbitrary formal expression for the daily surface temperature, given as a 
Fourier series of the form 

T(0, t) - T, " 
= (an cos not + b, sin not) 

To - Tm n = O  

How many terms in this series are used to solve part (a)? 

12C.6. Heat transfer in a falling non-Newtonian film. Repeat Problem 12B.4 for a polymeric fluid 
that is reasonably well described by the power law model of Eq. 8.3-3. 

12D.1. Unsteady-state heating of a slab (Laplace transform method). 
(a) Re-solve the problem in Example 12.1-2 by using the Laplace transform, and obtain the 
result in Eq. 12.1-31. 
(b) Note that the series in Eq. 12.1-31 does not converge rapidly at short times. By inverting 
the Laplace transform in a way different from that in (a), obtain a different series that is 
rapidly convergent for small times9 
(c) Show how the first term in the series in (b) is related to the "short contact time" solution 
of Example 12.1-1. 

12D.2. The Graetz-Nusselt problem (Table 12D.2). 
(a) A fluid (Newtonian or generalized Newtonian) is in laminar flow in a circular tube of ra- 
dius R. In the inlet region z < 0, the fluid temperature is uniform at T,. In the region z > 0, the 
wall temperature is maintained at To. Assume that all physical properties are constant and 

W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, eds., Handbook of Heat Transfer, 3rd edition, 
McGraw-Hill (1998), p. 2.68. 

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd edition, Oxford University Press 
(1959), pp. 308-310. 
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that viscous dissipation and axial heat conduction effects are negligible. Use the following di- 
mensionless variables: 

Show that the temperature profiles in this system are 

in which Xi and Pi are the eigenfunctions and eigenvalues obtained from the solution to the 
following equation: 

with boundary conditions X = finite at 5 = 0 and X = 0 at 5 = 1. Show further that 

(b) Solve Eq. 12D.2-3 for the Newtonian fluid by obtaining a power series solution for Xi. Cal- 
culate the lowest eigenvalue by solving an algebraic equation. Check your result against that 
given in Table 12D.2. 
(c) From the work involved in (b) in computing P: it can be inferred that the computation of 
the higher eigenvalues is quite tedious. For eigenvalues higher than the second or third the 
Wenzel-Kramers-Brillouin (WKB) method" can be used; the higher the eigenvalue, the more 
accurate the WKB method is. Read about this method, and verify that for the Newtonian fluid 

A similar formula has been derived for the power law model.'' 

Table 12D.2 Eigenvalues @; for the Graetz-Nusselt Problem for Newtonian Fluidsa 

By Stodola and 
i By direct calculationb By WKB m e t h o d V i a n e l l o  methodd 

1 3.67 3.56 3.661" 
2 22.30 22.22 - 

3 56.95 56.88 - 
4 107.6 107.55 - 

" The P? here correspond to in W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, Handbook of 
Heat Transfer, McGraw-Hill (New York), Table 5.3 on p. 510. 

Values taken from K. Yamagata, Memoirs of the Faculty of Engineering, Kyfishfi University, 
Volume VIII, No. 6, Fukuoka, Japan (1940). 
' Computed from Eq. 12D.2-5. 

For the particular trial function in part (d) of the problem. 

lo J. Heading, An Introduction to Phase-Integral Methods, Wiley, New York (1962); J. R. Sellars, 
M. Tribus, and J. S. Klein, Trans. ASME, 78,44148 (1956). 

"I. R. Whiteman and W. B. Drake, Trans. ASME, 80,728-732 (1958). 
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(d) Obtain the lowest eigenvalue by the method of Stodola and Vianello. Use Eqs. 71a and 
72b on p. 203 of Hildebrand's book,'2 with 4 = 2(1 - E2) for Newtonian flow and XI = 1 - P 
as a simple, but suitable, trial function. Show that this leads quickly to the value P: = 3.661. 

12D.3. The Graetz-Nusselt problem (asymptotic solution for large 2). Note that, in the limit of very 
large z, only one term (i = 1) is needed in Eq. 12D.2-2. It is desired to use this result to com- 
pute the heat flux at the wall, qO, at large z and to express the result as 

qo = (a function of system and fluid properties) X (Tb - To) (12D.3-1) 

where Tb is the "bulk fluid temperature" defined in Eq. 10.8-33. 
(a) First verify that 

Here O is the same as in Problem 12D.2, and Ob = (T!, - To)/(Tl - To). 
(b) Show that for large z, Eq. 12D.3-2 and Eq. 12D.2-2 both give 

Hence for large z, all one needs to know is the first eigenvalue; the eigenfunctions need not be 
calculated. This shows how useful the method of Stodola and Vianello12 is for computing the 
limiting value of a heat flux. 

12D.4. The Graetz-Nusselt problem (asymptotic solution for small 2) .  

(a) Apply the method of Example 12.2-2 to the solution of the problem discussed in Problem 
12D.2. Consider a Newtonian fluid and use the following dimensionless quantities: 

Show that the method of combination of variables gives 

in which q = ( A J c T ~ / ~ ~ ) ' / ~ .  
(b) Show that the wall flux is 

The quantity (Re Pr D/z) = (4/m-)(wtp/kz) appears frequently; the grouping Gz = (wi',/kz) is 
called the Graetz number. Compare this result with that in Eq. 12D.3-3, with regard to the de- 
pendence on the dimensionless groups. 
(c) How may the results be written so that they are valid for any generalized Newtonian 
model? 

12D.5. The Graetz problem for flow between parallel plates. Work through Problems 12D.2,3, and 
4 for flow between parallel plates (or flow in a thin rectangular duct). 

12D.6. The constant wall heat flux problem for parallel plates. Apply the methods used in §10.8, 
Example 12.2-1, and Ex. 12.2-2 to the flow between parallel plates. 

- - 

I2 F. B. Hildebrand, Advanced Calculus for Applications, Prentice-Hall, Englewood Cliffs, N.J. (19631, 
55.5. 
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12D.7. Asymptotic solution for small z for laminar tube flow with constant heat flux. Fill in the 
missing steps between Eq. 12.2-23 and Eq. 12.2-24. Insertion of the expression for I) into Eq. 
12.2-23 gives 

Why do we introduce the symbols X and F? Next, exchange the order of integration to get 

Then perform the integration over and obtain 

Then use the definitions T(a) = J," t"-'ecfdt and r(a, x )  = J," t"-'ectdt for the complete and in- 
complete gamma functions. 

12D.8. Forced conduction heat transfer from a flat plate (thermal boundary layer extends beyond 
the momentum boundary layer). Show that the result analogous to Eq. 12.4-14 for A > 1 isI3 

l3 H. Schlichting, Boundary-Layer Theory, 7th edition, McGraw-Hill, New York (19791, p. 306. 



Chapter 13 

Temperature Distributions 
in Turbulent Flow 

913.1 Time-smoothed equations of change for incompressible nonisothermal flow 

913.2 The time-smoothed temperature profile near a wall 

513.3 Empirical expressions for the turbulent heat Aux 

913.4~ Temperature distribution for turbulent flow in tubes 

913.5~ Temperature distribution for turbulent flow in jets 

g13.6' Fourier analysis of energy transport in tube flow at large Prandtl numbers 

In Chapters 10 to 12 we have shown how to obtain temperature distributions in solids 
and in fluids in laminar motion. The procedure has involved solving the equations of 
change with appropriate boundary and initial conditions. 

We now turn to the problem of finding temperature profiles in turbulent flow. This 
discussion is quite similar to that given in Chapter 5. We begin by time-smoothing the 
equations of change. In the time-smoothed energy equation there appears a turbulent 
heat flux q(t), which is expressed in terms of the correlation of velocity and temperature 
fluctuations. There are several rather useful empiricisms for ij't', which enable one to pre- 
dict time-smoothed temperature distributions in wall turbulence and in free turbulence. 
We use heat transfer in tube flow to illustrate the method. 

The most apparent influence of turbulence on heat transport is the enhanced trans- 
port perpendicular to the main flow. If heat is injected into a fluid flowing in laminar 
flow in the z direction, then the movement of heat in the x and y directions is solely by 
conduction and proceeds very slowly. On the other hand, if the flow is turbulent, the heat 
"spreads out" in the x and y directions extremely rapidly. This rapid dispersion of heat is 
a characteristic feature of turbulent flow. This mixing process is worked out in some de- 
tail here for flow in tubes and in circular jets. 

Although it has been conventional to study turbulent heat transport via the time- 
smoothed energy equation, it is also possible to analyze the heat flux at a wall by use of a 
Fourier transform technique without time-smoothing. This is set forth in the last section. 

513.1 TIME-SMOOTHED EQUATIONS OF CHANGE FOR 
INCOMPRESSIBLE NONISOTHERMAL FLOW 

In s5.2 we introduced the notions of time-smoothed quantities and turbulent fluctua- 
tions. In this chapter we shall be primarily concerned with the temperature profiles. We 
introduce the time-smoothed temperature T and temperature fluctuation T', and write 
analogously to Eq. 5.2-1 

T = T + T '  (13.1-1) 
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-- 

Clearly T' averages to zero so that = Of but quantities like v:T', viT', and will not 
be zero because of the "correlation" between the velocity and temperature fluctuations 
at any point. 

For a nonisothermal pure fluid we need three equations of change, and we want to 
discuss here their time-smoothed forms. The time-smoothed equations of continuity and 
motion for a fluid with constant density and viscosity were given in Eqs. 5.2-10 and 12, 
and need not be repeated here. For a fluid with constant p, p, $ and k, Eq. 11.2-5, when 
put in the d/dt  form by using Eq. 3.5-4, and with Newton's and Fourier's law included, 
becomes 

in which only a few sample terms in the viscous dissipation term -(T:VV) = p@, have 
been written (see Eq. B.7-1 for the complete expression). 

In Eq. 13.1-2 we replace T by T = T + T', v, by Ex + v:, and so on. Then the equation 
is time-smoothed to give 

Comparison of this equation with the preceding one shows that the time-smoothed 
equation has the same form as the original equation, except for the appearance of the 
terms indicated by dashed underlines, which are concerned with the turbulent fluctua- 
tions. We are thus led to the definition of the turbulent heat flux q"' with components 

- A -  A -  A -  

(t) - C v ' ~ f  ( t )  - C v ' ~ f  (t) - C v ' ~ '  qx - P  p I %J - P  P Y q z  - P  p z  (13.1-4) 

and the turbulent energy dissipation function 8:): 

The similarity between the components of q") in Eq. 13.1-4 and those of ?"' in Eq. 5.2-8 
should be noted. In Eq. 13.1-5, v,', vi, and vi are synonymous with v:, v;, and vi, and x,, 
x2, and x, have the same meaning as x, y, and z. 

To summarize, we list all three time-smoothed equations of change for turbulent 
flows of pure fluids with constant p, p, 5 and k in their D/Dt form (the first two were 
given in Eqs. 5.2-10 and 12): 

Continuity (V V) = 0 (13.1-6) 

Motion DV p - = -vp - [V (5'"' + ?"')I + pg 
Dt 

(13.1-7) 

Energy 
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in which it is understood that D/Dt = d / d t  + ?. V. Here q'"' = - k ~ ? ,  and @" is the vis- 
cous dissipation function of Eq. B.7-1, but with all the vi replaced by 6. 

In discussing turbulent heat flow problems, it has been customary to drop the vis- 
cous dissipation terms. Then, one sets up a turbulent heat transfer problem as for lami- 
nar flow, except that .r and q are replaced by ?'") + l@' and q'"' + q(", respectively, and 
time-smoothed p, 7, and T are used in the remaining terms. 

913.2 THE TIME-SMOOTHED TEMPERATURE 
PROFILE NEAR A WALL' 

Before giving empiricisms for q(" in the next section, we present a short discussion of 
some results that do not depend on any empiricism. 

We consider the turbulent flow along a flat wall as shown in Fig. 13.2-1, and we in- 
quire as to the temperature in the inertial sublayer. We pattern the development after 
that for Eq. 5.3-1. We let the heat flux into the fluid at y = 0 be qo = G(y=O and we postulate 
that the heat flux in the inertial sublayer will not be very different from that at the wall. 

We seek to relate q, to the time-smoothed temperature gradient in the inertial sub- 
layer. Because transport in this region is dominated by turbulent convection, the viscos- 
ity p and the thermal conductivity k will not play an im orta$ role. Therefore the only 
parameters on which dT/dy can depend are qo, v, = * %/p ,  p, C,, and y. We must further 
use the fact that the linearity of the energy equation implies that dT/dy must be propor- 
tional to qo. The only combination that satisfies these requirements is 

in which K is the dimensionless constant in Eq. 5.3-1, and P is an additional constant 
(which turns out1 to be the turbulent Prandtl number ~ r " '  = ~ ' ~ ) / c u ( ' ) ) .  

When Eq. 13.2-1 is integrated we get 

- Pqo To-T=,-lny+C 
KPC~.U, 

where To is the wall temperature and C is a constant of integration. The constant is to be 
determined by matching the logarithmic expression with the expression for T(y) that 

i 
i 
I 

Fig. 13.2-1. Temperature profile in a 
tube with turbulent flow. The regions are +-k (1) viscous sublayer, (2) buffer layer, 

y = R (3) inertial sublayer, and (4) main turbu- 
Y r = 0 lent stream. 

L. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd edition, Pergamon Press, New York (1987), 554. 
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holds at the junction with the viscous sublayer. The latter expression will involve both p 
and k; hence C will n~cessarily contain p and k, and will therefore include the dimen- 
sionless group Pr = C,p/k. If, in addition, we introduce the dimensionless coordinate 
yv,/u, then Eq. 13.2-2 can be rewritten as 

YV* for, > 1 

in which f(Pr) is a function representing the thermal resistance between the wall and the 
inertial sublayer. Landau and Lifshitz (see Ref. 1 on page 409) estimate, from a mixing- 
length argument (see Eq. 13.3-3), that, for large Prandtl numbers, f(Pr) = constant . ~3~''; 
however, Example 13.3-1 implies that the function f(Pr) = constant ~r'/"s better. Keep 
in mind that Eq. 13.2-3 can be expected to be valid only in the inertial sublayer and that it 
should not be used in the immediate neighborhood of the wall. 

s13.3 EMPIRICAL EXPRESSIONS FOR THE TURBULENT HEAT FLUX 

In g13.1 we saw that the time-smoothing of the energy equation gives rise to a turbulent 
heat flux q't'. In order to solve the energy equation for the time-smoothed temperature 
profiles, it is customary to postulate a relation between q'" and the time-smoothed tem- 
perature gradient. We summarize here two of the most popular empirical expressions; 
more of these can be found in the heat transfer literature. 

Eddy Thermal Conductivity 

By analogy with the Fourier law of heat conduction we may write 

in which the quantity k't' is called the turbulent therrnal conductivity or the eddy thennal 
conductivity. This quantity is not a physical property of the fluid, but depends on posi- 
tion, direction, and the nature of the turbulent flow. 

The eddy kinematic viscosity df' = p't'/p and the eddy thermal diffusivity a"' = 

k'"/pCP have the same dimensions. Their ratio is a dimensionless group 

called the turbulent Pvandtl number. This dimensionless quantity is of the order of unity, 
values in the literature varying from 0.5 to 1 .O. For gas flow in conduits, ranges from 
0.7 to 0.9 (for circular tubes the value 0.85 has been recommended1), whereas for flow in 
jets and wakes the value is more nearly 0.5. The assumption that ~ r " '  = 1 is called the 
Reynolds analogy. 

The Mixing-Length Expression of Prandtl and Taylor 

According to Prandtl's mixing-length theory, momentum and energy are transferred in 
turbulent flow by the same mechanism. Hence, by analogy with Eq. 5.4-4, one obtains 

W. M. Kays and M. E. Crawford, Convective Heat arid Mass Tvunsfer, 3rd edition, McGraw-Hill, 
New York (1993), pp. 259-266. 
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where 1 is the Prandtl mixing length introduced in Eq. 5.4-4. Note that this expression 
predicts that ~ r ' "  = 1. The Taylor vorticity transport theory2 gives ~ r " '  = $. 

Use the Reynolds analogy (df' = a"'), along with Eq. 5.4-2 for the eddy viscosity, to estimate 
the wall heat flux qo for the turbulent flow in a tube of diameter - D = 2R. Express the result in 

An Approximate terms of the temperature-difference driving force To - TR, where To is the temperature at 
Relation for the Wall the wall (y = 0) and TR is the time-smoothed temperature at the tube axis (y = R). 
Heat Flux for Turbulent 
Flow in a Tube SOLUTION 

The time-smoothed radial heat flux in a tube is given by the sum of IfZ") and 4;': 

Here we have used Eq. 13.3-1 and the Reynolds analogy, and we have switched to the coordi- 
nate y, which is the distance from the wall. We now use the empirical expression of Eq. 5.4-2, 
which applies across the viscous sublayer next to the wall: 

where i jr  = -i$ has been used. 
If now we approximate the heat flux in Eq. 13.3-5 by its wall value qo, then integration 

from y = 0 to y = R gives 

For very large Prandtl numbers, the upper limit R in the integral can be replaced by m, since 
the integrand is decreasing rapidly with increasing y. Then when the integration on the left 
side is performed and the result is put into dimensionless form, we get 

in which Eq. 6.1-4a has been used to eliminate v, in favor of the friction factor. 
The above development is only approximate. We have not taken into account the change 

of the bulk temperature as the fluid moves axially through the tube, nor have we taken into 
account the change in the heat flux throughout the tube. Furthermore, the result is restricted 
to very high Pr, because of the extension of the integration to y = m. Another derivation is 
given in the next section, which is free from these assumptions. However, we will see that at 
large Prandtl numbers the result in Eq. 13.4-20 simplifies to that in Eq. 13.3-7 but with a differ- 
ent numerical constant. 

513.4 TEMPERATURE DISTRIBUTION FOR 
TURBULENT FLOW IN TUBES 

In 510.8 we showed how to get the asymptotic behavior of the temperature profiles for 
large z in a fluid in laminar flow in a circular tube. We repeat that problem here, but for a 
fluid in fully developed turbulent flow. The fluid enters the tube of radius R at an inlet 
temperature T,. For z > 0 the fluid is heated because of a uniform radial heat flux q, at 
the wall (see Fig. 13.4-1). 

G. I .  Taylor, Proc. Roy. Soc. (London), A135,685-702 (1932); Phil. Trans., A215,l-26 (1915). 
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Fluid at temperature TI in fully 
developed turbulent flow 

I Electrical heating coil to provide 
z = O  constant wall flux qo 

Fig. 13.4-1. System used for heating a liquid in fully developed 
turbulent flow with constant heat flux for z > 0. 

We start from the energy equation, Eq. 13.1-8, written in cylindrical coordinates 

Then insertion of the expression for the radial heat flux from Eq. 13.3-4 gives 

This is to be solved with the boundary conditions 

B.C. 1: at r = 0, T = finite 

B.C. 2: 
- 

dT at r = R, +k - = q, (a constant) dr 
- 

B.C. 3: atz=O, T = T l  (13.4-5) 

We now use the same dimensionless variables as already given in Eqs. 10.8-16 to 18 
(with T in place of T in the definition of the dimensionless temperature). Then Eq. 13.4-2 
in dimensionless form is 

in which +(,$I = EZ/v,,, is the dimensionless turbulent velocity profile. This equation is 
to be solved with the dimensionless boundary conditions 

B.C. 1: at 6 = 0, O = finite (13.4-7) 

B.C. 2: a@ a t [ = l ,  + -=I  
d5 

(13.4-8) 

B S .  3: atC=O, 0 = 0  (13.4-9) 

The complete solution to this problem has been given,' but we content ourselves here 
with the solution for large z. 

We begin by assuming an asymptotic solution of the form of Eq. 10.8-23 

which must satisfy the differential equation, together with B.C. 1 and 2 and Condition 4 
in Eq. 10.8-24 (with T and v, = vmax(l - f )  replaced by T and v, = urn,,+(()). The result- 
ing equation for !!! is 

R. H. Notter and C. A. Sleicher, Chem. Eng. Sci., 27,2073-2093 (1972). 
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Integrating this equation twice and then constructing the function O using Eq. 13.4-10, 
we get 

o = c ~ + c ~ /  ' dz + C, 1' 1 d$ + C2 (13.4-12) 
0 Z[I + ( L ~ ( ~ ) / ~ ) I  0 4[1 + (a't)/a)~ 

in which it is understood that a"' is a function of $, and @) is shorthand for the integral 

The constant of integration C1 is set equal to zero in order to satisfy B.C. 1. The constant 
C, is found by applying B.C. 2, which gives 

The remaining constant, C2, can, if desired, be obtained from Condition 4, but we shall 
not need it here (see Problem 13D.1). 

We next get an expression for the dimensionless temperature difference Oo - Ob, the 
"driving force" for the heat transfer at the tube wall: 

In the second line, the order of integration of the double integral has been reversed. 
The inner integral in the second term on the right is just 10) - I@, and the portion 
containing I(1) exactly cancels the first term in Eq. 13.4-15. Hence when Eq. 13.4-14 is 
used, we get 

But the quantity I(1) appearing in Eq. 13.4-16 has a simple interpretation: 

Finally, we want to get the dimensionless wall heat flux, 

the reciprocal of which is2 

To use this result, it is necessary to have an expression for the time-smoothed velocity 
distribution (which appears in I([)), the turbulent kinematic viscosity v"' as a function 
of position, and a postulate for the turbulent Prandtl number Pr"'. 

Equation 13.4-19 was first developed by R. N. Lyon, Chem. Eng. Prog., 47, 75-79 (1950) in a 
paper on liquid-metal heat transfer. The left side of Eq. 13.4-19 is the reciprocal of the Nusselt 
number, Nu = h D / k ,  which is a dimensionless heat transfer coefficient. This nomenclature is 
discussed in the next chapter. 
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A Deissler & Eian (1952) 

Allen & Eckert (1964) 
o Malina & Sparrow (1964) 
A Friend & Metzner (1958) 
o Harriott & Hamilton (1965) 

Fig. 13.4-2. Comparison of the expression in Eq. 13.4-20 for the wall heat flux in fully developed turbulent 
flow with the experimental data of R. G. Deissler and C. S. Eian, NACA Tech. Note #2629 (1952); R. W. Allen 
and E. R. G. Eckert, J. Heat Transfer, Trans. ASME, Ser. C., 86,301-310 (1964); J. A. Malina and E. M. Sparrow, 
Chem. Eng. Sci, 19,953-962 (1964); W. L. Friend and A. B. Metzner, AlChE Journal, 4,393402 (1958); P. Har- 
riott and R. M. Hamilton, Chem. Eng. Sci., 20,1073-1078 (1965). The data of Harriott and Hamilton are for the 
analogous mass transfer experiment, for which Eq. 13.4-20 also applies. 

Extensive calculations based on Eq. 13.4-19 were performed by Sandall, Hanna, and 
~ a z e t . ~  These authors took the turbulent Prandtl number to be unity. They divided the 
region of integration into two parts, one near the wall and the other for the turbulent 
core. In the "wall region" they used the modified van Driest equation of Eq. 5.4-7 for the 
mixing length, and in the "core region" they used a logarithmic velocity distribution. 
Their final result3 is given as 

In obtaining this result, Eq. 6.1-4a has been used. 
Equation 13.4-20 agrees with the available data on heat transfer (and mass transfer) 

within 3.6 and 8.1% over the range 0.73 < Pr < 590, depending on the sets of data stud- 
ied. The analogous mass transfer expression, containing Sc = p/p%,, instead of Pr, was 
reported3 to agree with the mass transfer data within 8% over the range 452 < Sc < 
97600. The agreement of the theory with the heat transfer and mass transfer data, shown 
in Fig. 13.4-2, is quite convincing. 

0. C. Sandall, 0. T. Hanna, and P. R. Mazet, Canad. J. Chem. Eng., 58,443-447 (1980). See also 0. T. 
Hanna and 0. C. Sandall, AIChE Jouvnal, 18,527-533 (1972). 
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513.5 TEMPERATURE DISTRIBUTION FOR 
TURBULENT FLOW IN JETS' 

In 55.6 we derived an expression for the velocity distribution in a circular fluid jet dis- 
charging into an infinite expanse of the same fluid (see Fig. 5.6-1). Here we wish to ex- 
tend this problem by considering an incoming jet with temperature To higher than that 
of the surrounding fluid TI. The problem then is to find the time-smoothed temperature 
distribution T(r, z) in a steadily driven jet. We expect that this distribution will be monot- 
one decreasing in both the r and z directions. 

We start by assuming that viscous dissipation is negligible, and we neglect the con- 
tribution $"' to the heat flux as well as the axial contribution to q"'. Then Eq. 13.1-8 takes 
the time-averaged form 

Then we express the turbulent heat flux in terms of the turbulent thermal conductivity 
introduced in Eq. 13.3-1: 

When Eq. 13.5-1 is written in terms of a dimensionless temperature function 

it becomes 

Here it has been assumed that the turbulent Prandtl number and the turbulent kinematic 
viscosity are constants (see the discussion after Eq. 5.6-3). This equation is to be solved 
with the boundary conditions: 

B.C. 1: 
B.C. 2: 

B.C. 3: 

atz=O, @ = 1  
at r = 0, @ is finite 
a t r = m ,  O = O  

Next we introduce the expressions for the time-smoothed velocity components 5, and Ez 
in terms of a stream function F([), as given in Eqs. 5.6-12 and 13, and a trial expression 
for the dimensionless time-smoothed temperature function: 

Here 5 = r/z and 5 = (pv't'/w)z, where w is the total mass flow rate in the jet. The pro- 
posal in Eq. 13.5-8 is motivated by the expression for 5, that was found in Eq. 5.6-21. 

When these expressions for the velocity components and the dimensionless temper- 
ature are substituted into Eq. 13.5-1, some terms cancel and others can be combined, and 
as a result, the following rather simple equation is obtained: 

' J. 0. Hinze, Turbulence, 2nd edition, McGraw-Hill, New York (1975), pp. 531-546. 



416 Chapter 13 Temperature Distributions in Turbulent Flow 

This equation can be integrated once to give 

The constant of integration may be set equal to zero, since, 
at 8 = 0. A second integration from 0 to 5 then gives 

according to E, 

Finally, comparison of Eqs. 13.5-12 and 13.5-8 with Eq. 5.6-21 shows that the shapes of 
the time-smoothed temperature and axial velocity profiles are closely related, 

an equation attributed to Reichardt.' This theory provides a moderately satisfactory ex- 
planation for the shapes of the temperature profiles.' The turbulent Prandtl (or Schmidt) 
number deduced from temperature (or concentration) measurements in circular jets is 
about 0.7. 

The quantity C3 appearing in Eq. 13.5-12 was given explicitly in Eq. 5.6-23 as C3 = 

w m ( 1  /dt)), where J is the rate of momentum flow in the jet, defined in Eq. 5.6- 
2. Similarly, an expression for the quantity f(0) in Eq. 13.5-12 can be found by equating 
the energy in the incoming jet to the energy crossing any plane downstream: 

Insertion of the expressions for the velocity and temperature profiles and integrating 
then gives 

Combining Eqs. 13.5-3, 13.5-8,5.6-23, 13.5-12, and 13.5-15 then gives the complete expres- 
sion for the temperature profiles T(r, z) in the circular turbulent jet, in terms of the total 
momentum of the jet, the turbulent viscosity, the turbulent Prandtl number, and the 
fluid density. 

13.6 FOURIER ANALYSIS OF ENERGY TRANSPORT IN 
TUBE FLOW AT LARGE PRANDTL NUMBERS 

In the preceding two sections we analyzed energy transport in turbulent systems by use 
of time-smoothed equations of change. Empirical expressions were then required to de- 
scribe the turbulent fluxes in terms of time-smoothed profiles, using eddy transport coef- 

- - - - - -- 

H. Reichardt, Zeits. f. angew. Math. u. Mech., 24,268-272 (1944). 
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ficients estimated from experiments. In this section we analyze a turbulent energy trans- 
port problem without time-smoothing-that is, by direct use of the energy equation with 
fluctuating velocity and temperature fields. The Fourier transform1 is well suited for 
such problems, and the "method of dominant balanceu2 gives useful information with- 
out detailed computations. 

The specific question considered here is the influence of the thermal diffusivity, a = 

k/&, on the expected distribution and fluctuations of the fluid temperature in turbulent 
forced convection near a wall.3 This topic was discussed in Example 13.3-1 by an approx- 
imate procedure. 

Let us consider a fluid with constant p, $ and k in turbulent flow through a tube of 
inner radius R = ;D. The flow enters at z = - 03 with uniform temperature TI and exits at 
z = L. The tube wall is adiabatic for z < 0, and isothermal at To for 0 5 z 5 L. Heat con- 
duction in the z direction is neglected. The temperature distribution T(r, 8, z, t )  is to be 
analyzed in the long-time limit, in the thin thermal boundary layer that forms for z > 0 
when the molecular thermal diffusivity a is small (as in a Newtonian fluid when the 
Prandtl number, Pr = Spp/k = p/pa, is large). A stretching function ~ ( a )  will be derived 
for the average thickness of the thermal boundary layer without introducing an eddy 
thermal diffusivity df'. 

In the limit as cu + 0, the thermal boundary layer lies entirely within the viscous sub- 
layer, where the velocity components are given by truncated Taylor expansions in the 
distance y = R - r from the wall (compare these expansions with those in Eqs. 5.4-8 to 10) 

Here the coefficients p, and p, are treated as given functions of 8, z, and t. These velocity 
expressions satisfy the no-slip conditions and the wall-impermeability condition at y = 0 
and the continuity equation at small y, and are consistent with the equation of motion to 
the indicated orders in y. The energy equation can then be written as 

with the usual boundary layer approximation for VZT, and with the following boundary 
conditions on T(y, 6, z, t ) :  

Inlet condition: at z = 0, T(y, 8,0, t )  = T, for 0 < y r R (1 3.6-5) 
Wall condition: at y = 0, T(0, 0, z, t )  = To for 0 I z 5 L (13.6-6) 

The initial temperature distribution T(y, 6, z, 0) is not needed, since its effect disappears 
in the long-time limit. 

To obtain results asymptotically valid for a + 0, we introduce a stretched coordi- 
nate Y = y/~(cu), which is the distance from the wall relative to the average boundary 
layer thickness ~ ( a ) .  The range of Y is from 0 at y = 0 to w at y = R in the limit as a + 0. 

' R. N. Bracewell, The Fourier Transform and its Applications, 2nd edition, McGraw-Hill, New York 
(1978). 

This method is well presented in C. M. Bender and S. A. Orzag, Advanced Mathematical Methods for 
Scientists and Engineers, McGraw-Hill, New York (1978), pp. 435437. 

W. E. Stewart, AIChE Journal, 33,2008-2016 (1987); errata, ibid., 34, 1030 (1988); W. E. Stewart and 
D. G. O'Sullivan, AKhE Journal (to be submitted). 
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Use of KY in place of y, and introduction of the dimensionless temperature function O(Y, 
0, z, t) = (T - T,)/(To - TI), enable us to rewrite Eq. 13.6-4 as 

with boundary conditions as follows: 

Inlet condition: at z = 0, O(Y, 0,0, t) = 0 for Y > 0 (13.6-8) 
Wall condition: at Y = 0, W0, 8, z, t) = 1 for 0 5 z 5 L (13.6-9) 

Equation 13.6-7 contains an unbounded derivative d@/dt with a coefficient 1 indepen- 
dent of a. Thus a change of variables is needed to analyze the influence of the parameter 
a in this problem. For this purpose we turn to the Fourier transform, a standard tool for 
analyzing noisy processes. 

We choose the following definition1 for the Fourier transform of a function g(t) into 
the domain of frequency v at a particular position Y, 8, z: 

The corresponding transforms for the t-derivative and for products of functions of t are 

and the latter integral is known as the convolution of the transforms and h. 
Before taking the Fourier transforms of Eqs. 13.6-7 to 9, we express each included 

function g(t) as a time average g plus a fluctuating function gf(t) and expand each prod- 
uct of such functions. The resulting expressions have the following Fourier transforms: 

Here 6(v) is the Dirac delta function, obtained as the Fourier transform of the function 
g(t) = 1 in the long-duration limit. The leading term in the last line is a real-valued im- 
pulse at v = 0, coming from the time-independent product 8. The next two terms are 
complex-valued functions of the frequency v. The convolution term j' * h' may contain 
complex-valued functions of v, along with a real-valued impulse ~ ( v ) g ' h '  coming from 
time-independent products of simple harmonic oscillations present in g' and h'. 

Taking the Fourier transform of Eq. 13.6-7 by the method just given and noting that 
dG/dt is identically zero, we obtain the differential equation 
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for the Fourier-transformed temperature 6 ( ~ ,  0, z, v). The transformed boundary condi- 
tions are 

Inlet condition: at z = 0, O(Y, 0, z, v) = 0 for Y > 0 (13.6-16) 

Wall condition: at Y = 0, O(Y, 6,  z, v) = S(v) for 0 5 z I L (13.6-17) 

Here again, the unit impulse function 6(v) appears as the Fourier transform of the func- 
tion g(t) = 1 in the long-duration limit. 

Two types of contributions appear in Eq. 13.6-15: real-valued zero-frequency im- 
pulses S(v) from functions and products independent of t, and complex-valued functions 
of v from time-dependent product terms. We consider these two types of contributions 
separately here, thus decoupling Eq. 13.6-15 into two equations. 

We begin with the zero-frequency impulse terms. In addition to the explicit 6(v) 
terms of Eq. 13.6-15, implicit impulses arise in the convolution terms from synchronous 
oscillations A -  of velocity and temperature, giving rise to the turbulent energy flux $" = 

pC,v'T1 discussed in s13.2. The coefficients of all the impulse terms must be proportional 
functions of a, in order that the dominant terms at each point remain balanced (i.e., of 
comparable size) as a + 0. Therefore, the coefficient K of the convective impulse terms, 
including those from synchronous fluctuations, must be proportional to the coefficient 
a / K 2  of the conductive impulse term, giving K cc or 

for the dependence of the average thermal boundary layer thickness on the Prandtl number. 
The remaining terms in Eq. 13.6-15 describe the turbulent temperature fluctuations. 

They include the accumulation term 2n-iv6' and the remaining convection and conduc- 
tion terms. The coefficients of all these terms (including 271-i~ in the leading term) must 
be proportional functions of a in order that these terms likewise remain balanced as a + 

0. This reasoning confirms Eq. 13.6-18 and gives the further relation v cc K ,  or 

for the frequency bandwidth Av of the temperature fluctuations. Consequently, the 
stretched frequency Pr1'3v and stretched time ~ r - " ~ t  are natural variables for reporting 
Fourier analyses of turbulent forced convection. Shaw and Hanratty4 reported turbu- 
lence spectra for their mass transfer experiments analogously, in terms of a stretched fre- 
quency variable proportional to sc1I3 v (here Sc = p/p9AB is the Schmidt number, the 
mass transfer analog of the Prandtl number, which contains the binary diffusivity 9AR, to 
be introduced in Chapter 16). 

Thus far we have considered only the leading term of a Taylor expansion in K for 
each term in the energy equations. More accurate results are obtainable by continuing 
the Taylor expansions to higher powers of K, and thus of Pr-'13D. The resulting formal 
solution is a perturbation expansion 

for the distribution of the fluctuating temperature over position and frequency in a given 
velocity field. 

The expansion for T (the long-time average of the temperature) corresponding to Eq. 
13.6-20 is obtained from the zero-frequency part of 6, 

- - 
0 = @,(Y, 8 , ~ )  + K ~ , ( Y ,  8,Z) + ' . (13.6-21) 

D. A. Shaw and T. J. Hanratty, AIChE Journal, 23,160-169 (1977); D. A. Shaw and T. J. Hanratty, 
NChE Journal, 23,28--37 (1977). 
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From this we can calculate the local time-averaged heat flux at the wall: 

and the local Nusselt number is then 

Then the mean Nusselt number over the wall surface for heat transfer, and the analo- 
gous quantity for mass transfer, are 

- 

In this last equation Sh,, O,, and Sc are the mass transfer analogs of Nu,, 0, and Pr. We 
give the mass transfer expression here (rather than wait until Part 111) because electrochem- 
ical mass transfer experiments give better precision than heat transfer experiments and the 
available range of Schmidt numbers is much greater than that of Prandtl numbers. 

If the expansions in Eq. 13.6-24 and 25 are truncated to one term, we are led to 
Nu, cc and Sh, S C ~ ' ~ .  These expressions are essential ingredients in the famous 
Chilton-Colburn relations5 (see Eqs. 14.3-18 and 19, and Eqs. 22.3-22 to 24). The first term 
in Eq. 13.6-24 or 25 also corresponds to the high Prandtl (or Schmidt) number asymptote 
of Eq. 13.4-20.6 

With the development of electrochemical methods of measuring mass transfer at 
surfaces, it has become possible to investigate the second term in Eq. 13.6-25. In 
Fig. 13.6-1 are shown the data of Shaw and Hanratty, who measured the diffusion- 
limited current to a wall electrode for values of the Schmidt number Sc = p/p9, ,  from 
693 to 37,200. These data are fitted3 very well by the expression 

Fig. 13.6-1. Turbulent 
mass-transfer data of 
D. A. Shaw and T. J. Han- 
ratty [AlChE Journal, 28, 
23-37,160-169 (1977)I 
compared to a curve 
based on Eq. 13.6-25 (solid 
curve). Shown also is a 
simple power law function 
obtained by Shaw and 
Hanratty. 

T. H. Chilton and A. P. Colburn, Ind. Eng. Chem., 26,1183-1187 (1934). Thomas Hamilton Chilton 
(1899-1972) had his entire professional career at the E. I. du Pont de Nemours Company, Inc., in 
Wilmington, Delaware; he was President of AIChE in 1951. After "retiring" he was a guest professor at a 
dozen or so universities. 

See also 0. C. Sandall and 0. T. Hanna, AIChE Journal, 25,290-192 (1979). 
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in which f(Re) is the friction factor defined in Chapter 6. Equation 13.6-26 combines the 
observed Re number dependence of the Sherwood number with the two leading terms 
of Eq. 13.6-25 (that is, the coefficients a,, a,, . . . are proportional to  em). Equation 
13.6-26 lends itself to clear physical interpretation: The leading term corresponds to a 
diffusional boundary layer so thin that the tangential velocity is linear in y and the wall 
curvature can be neglected, whereas the second term accounts for wall curvature and the 
y2 terms in the tangential velocity expansions of Eqs. 13.6-1 and 2). In higher approxima- 
tions, special terms can be expected to arise from edge effects as noted by ~ e w r n a n ~  and 
Stewart .3 

QUESTIONS FOR DISCUSSION 

1. Compare turbulent thermal conductivity and turbulent viscosity as to definition, order of 
magnitude, and dependence on physical properties and the nature of the flow. 

2. What is the "Reynolds analogy," and what is its significance? 
3. Is there any connection between Eq. 13.2-3 and Eq. 13.4-12, after the integration constants in 

the latter have been evaluated? 
4. Is the analogy between Fourier's law of heat conduction and Eq. 13.3-1 a valid one? 
5. What is the physical significance of the fact that the turbulent Prandtl number is of the order 

of unity? 

PROBLEMS 

13B.1. Wall heat flux for turbulent flow in tubes (ap- 
proximate). Work through Example 13.3-1, and fill in the 
missing steps. In particular, verify the integration in going 
from Eq. 13.3-6 to Eq. 13.3-7. 

13B.2. Wall heat flux for turbulent flow in tubes. 
(a) Summarize the assumptions in 513.4. 
(b) Work through the mathematical details of that section, 
taking particular care with the steps connecting Eq. 13.4-12 
and Eq. 13.4-16. 
(c) When is it not necessary to find the constant C, in Eq. 
13.4-12? 

13C.1. Wall heat flux for turbulent flow between two 
parallel plates. 
(a) Work through the development in g13.4, and then per- 
form a similar derivation for turbulent flow in a thin slit 
shown in Fig. 2B.3. Show that the analog of Eq. 13.4-19 is 

5 - -  
in which [ = x / B  and J(0 = I +([Id[. 

0 

(b) Show how the result in (a) simplifies for laminar flow 
of Newtonian fluids, and for "plug flow" (flat velocity pro- 
files). 
Answer: (b) g, 3 

13D.1. The temperature profile for turbulent flow in 
tubes. To calculate the temperature distribution for turbu- 
lent flow in circular tubes from Eq. 13.4-12, it is necessary 
to know C,. 
(a) Show how to get C2 by applying B.C. 4 as was done in 
510.8. The result is 

(b) Verify that Eq. 13D.1-1 gives C, = & for a Newtonian 
fluid. 

J. S. Newman, Electroanalytical Chemistry, 6, 187-352 (1973). 



Chapter 14 

Interphase Transport in 
Nonisothermal Svstems 

Definitions of heat transfer coefficients 

Analytical calculations of heat transfer coefficients for forced convection through 
tubes and slits 

Heat transfer coefficients for forced convection in tubes 

Heat transfer coefficients for forced convection around submerged objects 

Heat transfer coefficients for forced convection through packed beds 

Heat transfer coefficients for free and mixed convection 

Heat transfer coefficients for condensation of pure vapors on solid surfaces 

In Chapter 10 we saw how shell energy balances may be set up for various simple 
problems and how these balances lead to differential equations from which the tem- 
perature profiles may be calculated. We also saw in Chapter 11 that the energy bal- 
ance over an arbitrary differential fluid element leads to a partial differential 
equation-the energy equation-which may be used to set up more complex prob- 
lems. Then in Chapter 13 we saw that the time-smoothed energy equation, together 
with empirical expressions for the turbulent heat flux, provides a useful basis for 
summarizing and extrapolating temperature profile measurements in turbulent sys- 
tems. Hence, at this point the reader should have a fairly good appreciation for the 
meaning of the equations of change for nonisothermal flow and their range of applic- 
ability. 

It should be apparent that all of the problems discussed have pertained to systems 
of rather simple geometry and furthermore that most of these problems have contained 
assumptions, such as temperature-independent viscosity and constant fluid density. For 
some purposes, these solutions may be adequate, especially for order-of-magnitude esti- 
mates. Furthermore, the study of simple systems provides the stepping stones to the dis- 
cussion of more complex problems. 

In this chapter we turn to some of the problems in which it is convenient or necessary 
to use a less detailed analysis. In such problems the usual engineering approach is to for- 
mulate energy balances over pieces of equipment, or parts thereof, as described in Chapter 
15. In the macroscopic energy balance thus obtained, there are usually terms that require 
estimating the heat that is transferred through the system boundaries. This requires know- 
ing the heat transfer coefficient for describing the interphase transport. Usually the heat 
transfer coefficient is given, for the flow system of interest, as an empirical correlation of 
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the Nusselt number' (a dimensionless wall heat flux or heat transfer coefficient) as a func- 
tion of the relevant dimensionless quantities, such as the Reynolds and Prandtl numbers. 

This situation is not unlike that in Chapter 6, where we learned how to use dimen- 
sionless correlations of the friction factor to solve momentum transfer problems. How- 
ever, for nonisothermal problems the number of dimensionless groups is larger, the 
types of boundary conditions are more numerous, and the temperature dependence of 
the physical properties is often important. In addition, the phenomena of free convec- 
tion, condensation, and boiling are encountered in nonisothermal systems. 

We have purposely limited ourselves here to a small number of heat transfer formulas 
and correlations-just enough to introduce the reader to the subject without attempting to 
be encyclopedic. Many treatises and handbooks treat the subject in much greater depth."3,4,5~6 

514.1 DEFINITIONS OF HEAT TRANSFER COEFFICIENTS 

Let us consider a flow system with the fluid flowing either in a conduit or around a solid 
object. Suppose that the solid surface is warmer than the fluid, so that heat is being trans- 
ferred from the solid to the fluid. Then the rate of heat flow across the solid-fluid inter- 
face would be expected to depend on the area of the interface and on the temperature 
drop between the fluid and the solid. It is customary to define a proportionality factor h 
(the heat transfer coefficient) by 

Q=hAAT (14.1-1) 

in which Q is the heat flow into the fluid (J/hr or Btu/hr), A is a characteristic area, and AT 
is a characteristic temperature difference. Equation 14.1-1 can also be used when the fluid 
is cooled. Equation 14.1-1, in slightly different form, has been encountered in Eq. 10.1-2. 
Note that h is not defined until the area A and the temperature difference AT have been 
specified. We now consider the usual definitions for h for two types of flow geometry. 

As an example of flow in conduits, we consider a fluid flowing through a circular tube 
of diameter D (see Fig. 14.1-I), in which there is a heated wall section of length L and 
varying inside surface temperature To(z), going from To, to To,. Suppose that the bulk 
temperature Tb of the fluid (defined in Eq. 10.8-33 for fluids with constant p and ep) in- 
creases from Tbl to T,, in the heated section. Then there are three conventional definitions 
of heat transfer coefficients for the fluid in the heated section: 

This dimensionless group is named for Ernst Kraft Wilhelm Nusselt (1882-19571, the German 
engineer who was the first major figure in the field of convective heat and mass transfer. See, for 
example, W. Nusselt, Zeits. d. Ver. deutsck. Ing., 53,1750-1755 (19091, Forschungsarb. a. d. Geb. d .  
Ingenieurwes., No. 80,l-38, Berlin (1910), and Gesundkeits-kg., 38,477482,490496 (1915). 

M. Jakob, Heat Transfer, Vol. 1 (1949) and Vol. 2 (19571, Wiley, New York. 
W. M. Kays and M. E. Crawford, Convective Heat and Mass Transfer, 3rd edition, McGraw-Hill, 

New York (1993). 
H. D. Baehr and K. Stephan, Heat and Mass Transfer, Springer, Berlin (1998). 
9. M. Rohsenow, J. P. Hartnett, and Y. I. Cho (eds.), Handbook of Heat Transfer, McGraw-Hill, 

New York (1998). 
' H. Grober, S. Erk, and U. Grigull, Die Grundgesetze der Warmeiibertragung, Springer, Berlin, 3rd 

edition (1961). 
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"1" Element of "2" Fig. 14.1-1. Heat trans- 
fer in a circular tube. 

Inner surface /' I I \ ~nner  surface -L- 
at To1 I Heated section I at To2 

I .  I I with inner surface I 
temperature 

TOM 

That is, h, is based on the temperature difference AT, at the inlet, ha is based on the arith- 
metic mean AT, of the terminal temperature differences, and h,, is based on the corre- 
sponding logarithmic mean temperature difference AT,,. For most calculations h,, is 
preferable, because it is less dependent on L/D than the other two, although it is not al- 
ways used.' In using heat transfer correlations from treatises and handbooks, one must 
be careful to note the definitions of the heat transfer coefficients. 

If the wall temperature distribution is initially unknown, or if the fluid properties 
change appreciably along the pipe, it is difficult to predict the heat transfer coefficients 
defined above. Under these conditions, it is customary to rewrite Eq. 14.1-2 in the differ- 
ential form: 

dQ = h,oc(~Ddz)(To - Tb) hl,,(~Ddz)AT1, (14.1-5) 

Here dQ is the heat added to the fluid over a distance dz along the pipe, ATloc is the local 
temperature difference (at position z), and h,,, is the local heat transfer coefficient. This 
equation is widely used in engineering design. Actually, the definition of h,,, and AT,,, is 
not complete without specifying the shape of the element of area. In Eq. 14.1-5 we have 
set dA = ~ D d z ,  which means that h,,, and ATl,, are the mean values for the shaded area 
dA in Fig. 14.1-1. 

As an example of flow around submerged objects, consider a fluid flowing around a 
sphere of radius R, whose surface temperature is maintained at a uniform value To. Sup- 
pose that the fluid approaches the sphere with a uniform temperature T,. Then we 
may define a mean heat transfer coeficient, h,, for the entire surface of the sphere by the re- 
lation 

Q = ~ , ( ~ T R ~ ) ( T ,  - T,) (14.1-6) 

The characteristic area is here taken to be the heat transfer surface (as in Eqs. 14.1-2 to 5), 
whereas in Eq. 6.1-5 we used the sphere cross section. 

A local coefficient can also be defined for submerged objects by analogy with Eq. 
14.1-5: 

dQ = hloc(dA)(To - T,) (14.1-7) 

This coefficient is more informative than h, because it predicts how the heat flux is dis- 
tributed over the surface. However, most experimentalists report only h,,, which is easier 
to measure. 

If ATJAT, is between 0.5 and 2.0, then AT, may be substituted for ATl,, and h, for h,,, with a 
maximum error of 4%. This degree of accuracy is acceptable in most heat transfer calculations. 
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Table 14.1-1 Typical Orders of Magnitude for Heat 
Transfer Coefficientsa 

h 
(W/m2 K) or h 

System (kcal/m2. hr C )  (Btu/ft2 hr . F) 

Free convection 
Gases 3-20 1 4  
Liquids 100-600 20-120 
Boiling water 1000-20,000 200-4000 

Forced convection 
Gases 1 0-1 00 2-20 
Liquids 50-500 10-300 
Water 500-10,000 100-2000 

Condensing vapors 1000-1 00,000 200-20,000 

Taken from H. Grober, S. Erk, and U. Grigull, Wiirmeubertragung, 
Springer, Berlin, 3rd edition (19551, p. 158. When given k in 
kcal/m2. hr . C, multiply by 0.204 to get h in Btu/ft2 . hr . F, and 
by 1.162 to get h in W/m2. K. For additional conversion factors, 
see Appendix F. 

Let us emphasize that the definitions of A and AT must be made clear before h is de- 
fined. Keep in mind, also, that h is not a constant characteristic of the fluid medium. On 
the contrary, the heat transfer coefficient depffnds in a complicated way on many vari- 
ables, including the fluid properties (k, p, p, CJ, the system geometry, and the flow ve- 
locity. The remainder of this chapter is devoted to predicting the dependence of h on 
these quantities. Usually this is done by using experimental data and dimensional analy- 
sis to develop correlations. It is also possible, for some very simple systems, to calculate 
the heat transfer coefficient directly from the equations of change. Some typical ranges of 
h are given in Table 14.1-1. 

We saw in 510.6 that, in the calculation of heat transfer rates between two fluid 
streams separated by one or more solid layers, it is convenient to use an overall heat trans- 
fer coefficient, U,, which expresses the combined effect of the series of resistances through 
which the heat flows. We give here a definition of U, and show how to calculate it in the 
special case of heat exchange between two coaxial streams with bulk temperatures Th 
("hot") and T,  ("cold), separated by a cylindrical tube of inside diameter Do and outside 
diameter D,: 

1 1 +ln(D,/Do) + 1 ) - = (- 
DoUo D&" 2k"l Dlhl loc 

Note that Uo is defined as a local coefficient. This is the definition implied in most design 
procedures (see Example 15.4-1). 

Equations 14.1-8 and 9 are, of course, restricted to thermal resistances connected 
in series. In some situations there may be appreciable parallel heat flux at one or both 
surfaces by radiation, and Eqs. 14.1-8 and 9 will require special modification (see 
Example 16.5-2). 

To illustrate the physical significance of heat transfer coefficients and illustrate one 
method of measuring them, we conclude this section with an analysis of a hypothetical 
set of heat transfer data. 
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EXAMPLE 14.1-1 

Calculation of Heat 
Transfer Coeficients 
from Experimental 
Data 

SOLUTION 

Isothermal Heated 
section , section 

Fig. 14.1-2. Series of experiments 
for measuring heat transfer coef- " 
ficients. 

Pipe with 
heated section 
of length LA 

Pipe with 
heated section 

I 
of length L, , I 

I I I 

Pipe with 
heated section 
of length LC 

I I I I 

A series of simulated steady-state experiments on the heating of air in tubes is shown in Fig. 
14.1-2. In the first experiment, air at Tbl = 200.0°F is flowing in a 0.5-in. i.d. tube with fully de- 
veloped laminar velocity profile in the isothermal pipe section for z < 0. At z = 0 the wall 
temperature is suddenly increased to To = 212.O"F and maintained at that value for the re- 
maining tube length LA. At z = LA the fluid flows into a mixing chamber in which the cup- 
mixing (or "bulk) temperature T,, is measured. Similar experiments are done with tubes of 
different lengths, L,, LC, and so on, with the following results: 

Experiment A B C D E F G 

L (in.) 1.5 3.0 6.0 12.0 24.0 48.0 96.0 

In all experiments, the air flow rate w is 3.0 lb,,/hr. Calculate h,, h,, h,,, and the exit value of 
h,,, as functions of the L/D ratio. 

First we make a steady-state energy balance over a length L of the tube, by stating that the 
heat in through the walls plus the energy entering at z = 0 by convection equals the energy 
leaving the tube at z = L. The axial energy flux at the tube entry and exit may be calculated 
from Eq. 9.8-6. For fully developed flow, changes in the kinetic energy flux gpv2v and the 
work term [ T .  vl will be negligible relative to changes in the enthalpy flux. We also assume 
that q, << pHv,, so that the axial heat conduction term may be neglected. Hence the only con- 
tribution to the energy flux entering and leaving with the flow will be the term containing the 
enthalpy, which can be computed with the help of Eq. 9.8-8 and the assumptions that the heat 
capacity and density of the fluid are constant throughout. Therefore the steady-state energy 
balance becomes simply "rate of energy flow in = rate of energy flow out," or 

Using Eq. 14.1-2 to evaluate Q and rearranging gives 
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from which 

hl =- 
aD2 (To - Tbl) 

This gives us the formula for calculating h1 from the data given above. 
Analogously, use of Eqs. 14.1-3 and 14.1-4 gives 

WG ("2 - (r) h, = --- 
nD2 (To - Tb)a 

for obtaining h, and h,, from the data. 
To evaluate h,,,, we have to use the preceding data to construct a continuous curve Tb(z), 

as in Fig. 14.1-2, to represent the change in bulk temperature with z in the longest (96-in.) 
tube. Then Eq. 14.1-10 becomes 

By differentiating this expression with respect to z and combining the result with Eq. 14.1-5, 
we get 

Since To is constant, this becomes 

The derivative in this equation is conveniently determined from a plot of In(T, - Tb) versus 
z/L. Because a differentiation is involved, it is difficult to determine hlo, precisely. 

The calculated results are shown in Fig. 14.1-3. Note that all of the coefficients decrease 
with increasing LID, but that hi,, and hl, vary less than the others. They approach a common 
asymptote (see Problem 14B.5 and Fig. 14.1-3). Somewhat similar behavior is observed in tur- 
bulent flow with constant wall temperature, except that h,, approaches the asymptote much 
more rapidly (see Fig. 14.3-2). 

LID 

Fig. 14.1-3. Heat transfer coefficients calculated in Example 14.1-1. 
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314.2 ANALYTICAL CALCULATIONS OF HEAT TRANSFER 
COEFFICIENTS FOR FORCED CONVECTION 
THROUGH TUBES AND SLITS 

Recall from Chapter 6, where we defined and discussed friction factors, that for some 
very simple laminar flow systems we could obtain analytical formulas for the (dimen- 
sionless) friction factor as a function of the (dimensionless) Reynolds number. We would 
like to do the same for the heat transfer coefficient, h, which, however, is not dimension- 
less. Nonetheless we can construct with it a dimensionless quantity, Nu = hD/k, the 
Nusselt number, using the fluid thermal conductivity k and a characteristic length D that 
must be specified for each flow system. Two other related dimensionless groups are 
commonly used: the Stanton number, St = Nu/RePr, and the Chilton-Colbum j-fnctor for 
heat transfer, j, = N u / ~ e ~ r " ~ .  Each of these dimensionless groups may be "decorated 
with subscript 1, a, In, or m, corresponding to the subscript on the Nusselt number. 

By way of illustration, let us return to 310.8 where we discussed the heating of a 
fluid in laminar flow in a tube, with all the fluid properties being considered constant. 
From Eq. 10.8-33 and Eq. 10.8-31 we can get the difference between the wall temperature 
and the bulk temperature: 

in which R and D are the radius and diameter of the tube. Solving for the wall flux we 
get 

Then making use of the definition of the local heat transfer coefficient hlo,-namely, that 
q0 = h,,,(To - T&we find that 

This result is the entry in Eq. (L) of Table 14.2-1-namely, for the laminar flow of a con- 
stant-property fluid with a constant wall heat flux, for very large z. The other entries in 
Table 14.2-1 and 2 may be obtained in a similar way.' Some Nusselt numbers for New- 
tonian fluids with constant physical properties are shown in Fig. 14.2-1.' 

' These tables are taken from R. B. Bird, R. C. Armstrong, and 0. Hassager, Dynamics of Polymeric 
Liquids, Vol. 1 ,  Fluid Mechanics, 1st edition, Wiley, New York, (1987), pp. 212-213. They are based, in turn, 
on W. J. Beek and R. Eggink, De Ingenieur, 74, (35) Ch. 81-Ch. 89 (1962) and J. M. Valstar and W. J. Beek, 
De Ingenieur, 75, (I), Ch. 1-Ch. 7 (1963). 

The correspondence between the entries of Tables 14.2-1 and 2 and problems in this book is as 
follows ( 0  = circular tube, (1 = plane slit): 

Eq. (C) Problem 12D.4 0 ;  12D.5 11 Laminar Newtonian 
Eq. (F) Problem 12D.3 0 ;  12D.5 ) I  Laminar Newtonian 
Eq. (G) Problem 10B.9(a) 0; 10B.9(b) 11 Plug flow 
Eq. (I) Problem 12D.7 0; 12D.6 11 Laminar Newtonian 
Eq. (K) Problem 10D.2 0 Laminar non-Newtonian 
Eq. (L) Problem 12D.6 11 Laminar Newtonian 

Equations analogous to Eqs. (K) in Tables 14.2-1 and 2 are given for turbulent flow in Eqs. 13.4-19 and 
13C.1-1. 
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ruz crz 
(tube) or - (slit) 

(v,D2 (%P2 

Fig. 14.2-1. The Nusselt number for fully developed, laminar flow of Newtonian 
fluids with constant physical properties: NuIoc = hlOcD/k for circular tubes of diameter 
D, and Nul,, = 4hlocB/k for slits of half-width B. The limiting expressions are given in 
Tables 14.2-1 and 14.2-2. 

For turbulent pow in a circular tube with constant heat flux, the Nusselt number can 
be obtained from Eq. 13.4-20 (which in turn originated with Eq. (K) of Table 14.2-I):3 

This is valid only for az/(v,)D2 >> 1, for fluids with constant physical properties, and 
for tubes with no roughness. It has been applied successfully over the Prandtl-number 
range 0.7 < Pr < 590. Note that, for very large Prandtl numbers, Eq. 14.2-4 gives 

The Pr1l3 dependence agrees exactly with the large Pr limit in 513.6 and Eq. 13.3-7. For 
turbulent flow there is little difference between Nu for constant wall temperature and for 
constant wall heat flux. 

For the turbulent flow of liquid metals, for which the Prandtl numbers are generally 
much less than unity, there are two results of importance. Notter and Sleicher4 solved 
the energy equation numerically, using a realistic turbulent velocity profile, and ob- 
tained the rates of heat transfer through the wall. The final results were curve-fitted to 
simple analytical expressions for two cases: 

Constant wall temperature: Nul,, = 4.8 + 0.0156 (14.2-6) 

Constant wall heat flux: Nu,,, = 6.3 + 0.0167 ~ e " - " ~  (14.2-7) 

These equations are limited to L/D > 60 and constant physical properties. Equation 14.2- 
7 is displayed in Fig. 14.2-2. 

0. C. Sandall, 0. T. Hanna, and P. R. Mazet, Canad. I .  Chem. Eng., 58,443447 (1980). 
R. H. Notter and C. A. Sleicher, Chem. Eng. Sci, 27,2073-2093 (1972). 



Table 14.2-1 Asymptotic Results for Local Nusselt Numbers (Tube  low)".^; Nu,,, = h , , , ~ / k  

Constant wall heat flux Constant wall temperature 

4 TI  [+z 3 
z = o  T o 2  

All values are 
local Nu numbers 

Thermal entrance 
regionc 

Plug flow Plug flow 

Laminar non- 
Newtonian flow 

Laminar non- 
Newtonian flow 

Laminar 
Newtonian flow 

Laminar 
Newtonian flow 

Plug flow Plug flow 

Nu = &, where p, is the lowest 
eigenvalue of 

Laminar non- 
Newtonian flow 

Thermally fully 
developed flow 

Laminar non- 
Newtonian flow 

Laminar 
Newtonian flow 

Laminar 
Newtonian flow 

L 

a Note: c#&$) = v,/(v,), where 6 = r/R and R = D/2; for Newtonian fluids (v,)D2/az = RePr(D/z) with Re = D(v,)p/p. Here a = k/&. 
W. J. Beek and R. Eggink, De Ingenieur, 74, No. 35, Ch. 81-89 (1962); erratum, 75, No. 1, Ch. 7 (1963). 

T h e  grouping (v,)D2/az is sometimes written as Gz (L/z) where Gz = (v,)D2/cuL is called the Graetz number; here L is the length of the pipe past z = 0. Thus the 
thermal entry region corresponds to large Graetz number. 



Table 14.2-2 Asymptotic Results for Local Nusselt Numbers (Thin-Slit   low)".^; Nul,, = 4hl,,B/k 

All values are 
local Nu numbers 

Thermal entrance 
regionc 

Thermally fully 
developed flow 

Constant wall temperature 

Plug flow 

Laminar non- 
Newtonian flow 

Laminar 
Newtonian flow 

Plug flow 

Laminar non- 
Newtonian flow 

Laminar 
Newtonian flow 

Nu = 4&, where p, is the lowest 
eigenvalue of 

Plug flow 

Laminar non- 
Newtonian flow 

Laminar 
Newtonian flow 

Plug flow 

Laminar non- 
Newtonian flow 

Laminar 
Newtonian flow 

Constant wall heat flux 

a Note: +) = vv,/(vz), where u = y / B; for Newtonian fluids (vz)D2/cuz = 4 RePr(B/z) with Re = 4B(v,)p/p. Here cx = klp~,. 
' J. M. Valstar and W. J. Beek, De Ingenieur, 75, No. 1, Ch. 1-7 (1963). 
' The grouping (vz)B2/az is sometimes written as Gz - (L/z) where Gz = (vz)B2/aL is called the Graetz number; here L is the length of the slit past z = 0. Thus the 
thermal entry region corresponds to large Graetz number. 
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It has been emphasized that all the results of this section are limited to fluids with 
constant physical properties. When there are large temperature differences in the sys- 
tem, it is necessary to take into account the temperature dependence of the viscosity, 
density, heat capacity, and thermal conductivity. Usually this is done by means of an 
empiricism-namely, by evaluating the physical properties at some appropriate average 
temperature. Throughout this chapter, unless explicitly stated otherwise, it is under- 
stood that all physical properties are to be calculated at the film temperature Tf defined 
as  follow^:^ 

a. For tubes, slits, and other ducts, 

Fig. 14.2-2. Nusselt numbers 
for turbulent flow of liquid 

Pr metals in circular tubes, 
/,/0-06 based on the theoretical calcu- - 0.02 
<-0.01 lations of R. H. Notter and 
'-0.004 C. A. Sleicher, Chem. Eng. Sci., 

27,2073-2093 (1972). 

lo2 

Nu 

10 

in which To, is the arithmetic average of the surface temperatures at the two ends, 
To, = ;(T,, + To,), and Tb, is the arithmetic average of the inlet and outlet bulk 
temperatures, Tb, = ; ( T ~ ,  + Tb2). 

lo2 1 o3 104 
PC = PCclet number = RePr 

- I I I I I I I , ,  I I 1 1  , 1 1 1 1  

- 

//@@@; : 

- Laminar 

I I 

It is also recommended that the Reynolds number be written as Re = D(pv)/ 
p = Dw/Sp, in order to account for viscosity, velocity, and density changes over 
the cross section of area S. 

b. For submerged objects with uniform surface temperature To in a stream of liquid 
approaching with uniform temperature T,, 

Tf = $(T, + T,) 

For flow systems involving more complicated geometries, it is preferable to use ex- 
perimental correlations of the heat transfer coefficients. In the following sections we 
show how such correlations can be established by a combination of dimensional analysis 
and experimental data. 

j W. J. M. Douglas and S. W. Churchill, Chem. Eng. Pvog. Symposium Series, No. 18,52,23-28 (1956); 
E. R. G. Eckert, Recent Advances in Heat and Mass Transfer, McGraw-Hill, New York (1961), pp. 51-81, 
Eq. (20); more detailed reference states have been proposed by W. E. Stewart, R. Kilgour, and K.-T. Liu, 
University of Wisconsin-Madison Mathematics Research Center Report #I310 (June 1973). 
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514.3 HEAT TRANSFER COEFFICIENTS FOR 
FORCED CONVECTION IN TUBES 

In the previous section we have shown that Nusselt numbers for some laminar flows can 
be computed from first principles. In this section we show how dimensional analysis 
leads us to a general form for the dependence of the Nusselt number on various dimen- 
sionless groups, and that this form includes not only the results of the preceding section, 
but turbulent flows as well. Then we present a dimensionless plot of Nusselt numbers 
that was obtained by correlating experimental data. 

First we extend the dimensional analysis given in 511.5 to obtain a general form for 
correlations of heat transfer coefficients in forced convection. Consider the steadily driven 
laminar or turbulent flow of a Newtonian fluid through a straight tube of inner radius R, 
as shown in Fig. 14.3-1. The fluid enters the tube at z = 0 with velocity uniform out to very 
near the wall, and with a uniform inlet temperature TI (= Tbl). The tube wall is insulated 
except in the region 0 I z r L, where a uniform inner-surface temperature To is main- 
tained by heat from vapor condensing 02 the outer surface. For the moment, we assume 
constant physical properties p, p, k, and C,. Later we will extend the empiricism given in 
$14.2 to provide a fuller allowance for the temperature dependence of these properties. 

We follow the same procedure used in 56.2 for friction factors. We start by writing 
the expression for the instantaneous heat flow from the tube wall into the fluid in the 
system described above, 

which is valid for laminar or turbulent flow (in laminar flow, Q would, of course, be in- 
dependent of time). The + sign appears here because the heat is added to the system in 
the negative r direction. 

Equating the expressions for Q given in Eqs. 14.1-2 and 14.3-1 and solving for h,, we get 

Next we introduce the dimensionless quantities i. = r/D, i = z/D, and ? = (T - To)/ 
(Tbl - TO), and multiply by D/k to get an expression for the Nusselt number Nul = hlD/k: 

Thus the (instantaneous) Nusselt number is basically a dimensionless temperature gradient 
averaged over the heat transfer surface. 

Condenser 

Fluid enters 4 b j _  Fluid leaves 
at uniform - D I with bulk 

temperature T temperature Tb2 

I 

/ I 
Heated section 

I 
I I 

"1" with uniform surface "2" 
temperature To 

Fig. 14.3-1. Heat transfer in the entrance region of a tube. 
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The dimensionless temperature gradient appearing in Eq. 14.3-3 could, in principle, 
be evaluated by differentiating the expression for ? obtained by solving Eqs. 11.5-7, 8, 
and 9 with the boundary conditions 

where i7 = v/(uZ), and 9 = (9 - 91)/p(v,)~. As in s6.2, we have neglected the d 2 / d i 2  
terms of the equations of change on the basis of order-of-magnitude reasoning similar to 
that in 94.4. With those terms suppressed, upstream transport of heat and momentum 
are excluded, so that the solutions upstream of plane 2 in Fig. 14.3-1 do not depend on 
L/D. 

From Eqs. 11.5-7,8, and 9 and these boundary conditions, we conclude that the di- 
mensionless instantaneous temperature distribution must be of the following form: 

? = ?(?, 8, i, i; Re, Pr, Br) for 0 5 i 5 L/D (14.3-9) 

Substitution of this relation into Eq. 14.3-3 leads to the conclusion that  NU,(^) = Nul(Re, 
Pr, Br, L/D, i). When time-averaged over an interval long enough to include all the tur- 
bulent disturbances, this becomes 

Nul = Nul(Re, Pr, Br, L / D )  (14.3-10) 

A similar relation is valid when the flow at plane 1 is fully developed. 
If, as is often the case, the viscous dissipation heating is small, the Brinkman number 

can be omitted. Then Eq. 14.3-10 simplifies to 

Nu, = Nul(Re, Pr, L /  D) (14.3-1 1) 

Therefore, dimensional analysis tells us that, for forced-convection heat transfer in circu- 
lar tubes with constant wall temperature, experimental values of the heat transfer coeffi- 
cient h1 can be correlated by giving Nu, as a function of the Reynolds number, the 
Prandtl number, and the geometric ratio L/D. This should be compared with the similar, 
but simpler, situation with the friction factor (Eqs. 6.2-9 and 10). 

The same reasoning leads us to similar expressions for the other heat transfer coeffi- 
cients we have defined. It can be shown (see Problem 14.B-4) that 

Nu, = Nu,(Re, Pr, LID) 
Nul, = Nu,(Re, Pr, LID) 

Nuloc = Nul,,(Re, Pr, z/  D) 

in which Nu, = h,D/k, Nul, = hl,D/k, and Nu,,, = hl,,D/k. That is, to each of the heat 
transfer coefficients, there is a corresponding Nusselt number. These Nusselt numbers 
are, of course, interrelated (see Problem 14.B-5). These general functional forms for the 
Nusselt numbers have a firm scientific basis, since they involve only the dimensional 
analysis of the equations of change and boundary conditions. 

Thus far we have assumed that the physical properties are constants over the tem- 
perature range encountered in the flow system. At the end of s14.2 we indicated that 
evaluating the physical properties at the film temperature is a suitable empiricism. How- 
ever, for very large temperature differences, the viscosity variations may result in such a 
large distortion of the velocity profiles that it is necessary to account for this by introduc- 
ing an additional dimensionless group, pb/po, where pb is the viscosity at the arithmetic 
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