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average bulk temperature and u, is the viscosity at the arithmetic average wall tempera-
ture.! Then we may write

Nu = Nu(Re, Pr, L/D, p,/ ) (14.3-15)

This type of correlation seems to have first been presented by Sieder and Tate.? If, in ad-
dition, the density varies significantly, then some free convection may occur. This effect
can be accounted for in correlations by including the Grashof number along with the
other dimensionless groups. This point is pursued further in §14.6.

Let us now pause to reflect on the significance of the above discussion for con-
structing heat transfer correlations. The heat transfer coefficient & depends on eight
physical quantities (D, (v), p, 1o, sy C,, k, L). However, Eq. 14.3-15 tells us that this de-
pendence can be expressed more concisely by giving Nu as a function of only four di-
mensionless groups (Re, Pr, L/D, w,/ uy). Thus, instead of taking data on & for 5 values
of each of the eight individual physical quantities (5° tests), we can measure h for 5
values of the dimensionless groups (5* tests)—a rather dramatic saving of time and
effort.

A good global view of heat transfer in circular tubes with nearly constant wall tem-
perature can be obtained from the Sieder and Tate” correlation shown in Fig. 14.3-2. This
is of the form of Eq. 14.3-15. It has been found empirically*® that transition to turbulence
usually begins at about Re = 2100, even when the viscosity varies appreciably in the ra-
dial direction.

For highly turbulent flow, the curves for L/D > 10 converge to a single curve. For
Re > 20,000 this curve is described by the equation

0.14
Nuy, = 0.026 Re”® Pr1/3(%g) (14.3-16)

This equation reproduces available experimental data within about +20% in the ranges
10* < Re < 10° and 0.6 < Pr < 100.
For laminar flow, the descending lines at the left are given by the equation

1/3 0.14
Nu,, = 1.86<RePr %) (%) (14.3-17)

! One can arrive at the viscosity ratio by inserting into the equations of change a temperature-
dependent viscosity, described, for example, by a Taylor expansion about the wall temperature:

F
w=pyt a—’T‘ T+ (14.3-152)

When the series is truncated and the differential quotient is approximated by a difference quotient, we get

o=+ (B BN - 1) (14.3-15b)
T, —To
or, with some rearrangement,
"o m T -Ty
= 1+ (P«o 1)(Tb — To) (14.3-15¢)

Thus, the viscosity ratio appears in the equation of motion and hence in the dimensionless correlation.
2E. N. Sieder and G. E. Tate, Ind. Eng. Chem., 28, 1429-1435 (1936).
* A. P. Colburn, Trans. AICKE, 29, 174-210 (1933). Alan Philip Colburn (1904-1955), provost at the
University of Delaware (1950-1955), made important contributions to the fields of heat and mass transfer,
including the “Chilton—-Colburn relations.”
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Fig. 14.3-2. Heat transfer coefficients for fully developed flow in smooth tubes. The lines for lami-
nar flow should not be used in the range RePrD/L < 10, which corresponds to (T, — T},),/(Ty — Ty
< 0.2. The laminar curves are based on data for RePrD/L >> 10 and nearly constant wall tem-
perature; under these conditions k, and hy,, are indistinguishable. We recommend using k,,, as op-
posed to the h, suggested by Sieder and Tate, because this choice is conservative in the usual heat-
exchanger design calculations [E. N. Sieder and G. E. Tate, Ind. Eng. Chem., 28, 1429-1435 (1936)].

which is based on Eq. (C) of Table 14.2-1* and Problem 12D.4. The numerical coefficient
in Eq. (C) has been multiplied by a factor of 3 to convert from . to h,, and then further
modified empirically to account for the deviations due to variable physical properties.
This illustrates how a satisfactory empirical correlation can be obtained by modifying
the result of an analytical derivation. Equation 14.3-17 is good within about 20% for RePr
D/L > 10, but at lower values of RePr D/L it underestimates h;,, considerably. The occur-
rence of Pr'/? in Egs. 14.3-16 and 17 is consistent with the large Prandtl number asymp-
tote found in §§13.6 and 12.4.

The transition region, roughly 2100 < Re < 8000 in Fig. 14.3-2, is not well understood
and is usually avoided in design if possible. The curves in this region are supported by
experimental measurements® but are less reliable than the rest of the plot.

The general characteristics of the curves in Fig. 14.3-2 deserve careful study. Note
that for a heated section of given L and D and a fluid of given physical properties, the or-
dinate is proportional to the dimensionless temperature rise of the fluid passing
through—that is, (T, — Ty,1)/(Ty — T})- Under these conditions, as the flow rate (or
Reynolds number) is increased, the exit fluid temperature will first decrease until Re
reaches about 2100, then increase until Re reaches about 8000, and then finally decrease
again. The influence of L/D on hy, is marked in laminar flow but becomes insignificant
for Re > 8000 with L/D > 60.

* Equation (C) is an asymptotic solution of the Graetz problem, one of the classic problems of heat
convection: L. Graetz, Ann. d. Physik, 13, 79-94 (1883), 25, 337-357 (1885); see ]. Lévéque, Ann. Mines
(Series 12), 13, 201-299, 305-362, 381415 (1928) for the asymptote in Eq. (C). An extensive summary
can be found in M. A. Ebadian and Z. F. Dong, Chapter 5 of Handbook of Heat Transfer, 3rd edition,
(W. M. Rohsenow, ]J. P. Hartnett, and Y. I. Cho, eds.), McGraw-Hill, New York (1998).
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Note also that Fig. 14.3-2 somewhat resembles the friction-factor plot in Fig. 6.2-2, al-
though the physical situation is quite different. In the highly turbulent range (Re >
10,000) the heat transfer ordinate agrees approximately with f/2 for the long smooth
pipes under consideration. This was first pointed out by Colburn,’ who proposed the fol-
lowing empirical analogy for long, smooth tubes:

JHIn = i f (Re > 10,000} (14.3-18)
in which

JHIn =

(14.3-19)

Nu, _ h, (ép“)2/3= S (ép“)2/3
k

RePr!/3 (pv}ép k wép

where S is the area of the tube cross section, w is the mass rate of flow through the tube,
and f/2 is obtainable from Fig. 6.2-2 using Re = Dw/Su = 4w/mDpu. Clearly the analogy
of Eq. 14.3-18 is not valid below Re = 10,000. For rough tubes with fully developed tur-
bulent flow the analogy breaks down completely, because f is affected more by rough-
ness than j is.

One additional remark about the use of Fig. 14.3-2 has to do with the application to
conduits of noncircular cross section. For highly turbulent flow, one may use the mean
hydraulic radius of Eq. 6.2-16. To apply that empiricism, D is replaced by 4R, every-
where in the Reynolds and Nusselt numbers.

Air at 70°F and 1 atm is to be pumped through a straight 2-in. i.d. tube at a rate of 70 1b,,/hr.
A section of the tube is to be heated to an inside wall temperature of 250°F to raise the air tem-
perature to 230°F. What heated length is required?

SOLUTION

The arithmetic average bulk temperature is T,, = 150°F, and the film temperature is T; =
3(150 + 250) = 200°F. At this temperature the properties of air are u = 0.052 Ib,,/ft - hr, C, = 0.242
Btu/Ib,, * F, k = 0.0180 Btu/hr « ft - F, and Pr = C,u/k = 0.70. The viscosities of air at 150°F and
250°F are 0.049 and 0.055 Ib,/ft - hr, respectively, so that the viscosity ratio is u,/puy =
0.049/0.055 = 0.89.

The Reynolds number, evaluated at the film temperature, 200°F, is then

Dw _ 4w 4(70) .
= — = = =1, X 3-
Re='5u = mbp ~ w2005y - 2 X0 (14320
From Fig. 14.3-1 we obtain
T, —T -0.14
H T Pr2/3(%) = 0.0039 (14.3-21)
0 b/In
When this is solved for L/D we get
L _ 1 Ty, — Ty) pr2/3 Ho 014
D 4(0.0039) (Ty — Ty, Ho
= 1 (230 — 70) 2/3 -0.14
= 400039) 722 (0.70)~°(0.89)
1 160

= 2(0.0039) 72.8 (0.788)(1.02) = 113 (14.3-22)

Hence the required length is
L=113D = (113)}(2/12) = 19 ft (14.3-23)

If Re, had been much smaller, it would have been necessary to estimate L/D before reading
Fig. 14.3-2, thus initiating a trial-and-error process.
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Note that in this problem we did not have to calculate #. Numerical evaluation of / is
necessary, however, in more complicated problems such as heat exchange between two fluids
with an intervening wall.

§14.4 HEAT TRANSFER COEFFICIENTS FOR FORCED
CONVECTION AROUND SUBMERGED OBJECTS

Another topic of industrial importance is the transfer of heat to or from an object around
which a fluid is flowing. The object may be relatively simple, such as a single cylinder or
sphere, or it may be more complex, such as a “tube bundle” made up of a set of cylindri-
cal tubes with a stream of gas or liquid flowing between them. We examine here only a
few selected correlations for simple systems: the flat plate, the sphere, and the cylinder.
Many additional correlations may be found in the references cited in the introduction to
the chapter.

Flow Along a Flat Plate

We first examine the flow along a flat plate, oriented parallel to the flow, with its surface
maintained at T, and the approaching stream having a uniform temperature T,, and a
uniform velocity v.,. The heat transfer coefficient hy,. = g,/(T; — T.) and the friction fac-
tor fi,. = 7o/3pv% are shown in Fig. 14.1-1. For the laminar region, which normally exists
near the leading edge of the plate, the following theoretical expressions are obtained (see
Eq. 4.4-30 as well as Eqs. 12.4-12, 12.4-15, and 12.4-16):

.LL(f?Ux/f?y)l =0
1 _ Y=L H _ -1/2
3fioe=F+————=f"0 =0.332 Re 14.4-1
2 flOC p’U%o f ( ) zwip X ( )
hioex x aT 37
Nug. =—— = = =2 [ Re/?Pr/’ 14.4-2
0T Tk T T =Ty oy |, 2\ 1260 (14.4-2)
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Fig. 14.4-1. Transfer coefficients for a smooth flat plate in tangential flow. Adapted from H. Schlichting,
Boundary-Layer Theory, McGraw-Hill, New York (1955), pp. 438-439.
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As shown in Table 12.4-1, a more accurate value of the numerical coefficient in Eq. 14.4-2
is that of Pohlhausen—namely, 0.332. If we use this value, then Eq. 14.4-2 gives
Nuloc hloc

. Cop\2/3
Jroe = pp 175 = é = 0.332 Re; /2 (14.4-3)
err
PCY

Since the numerical coefficient in Eq. 14.4-3 is the same as that in Eq. 14.4-1, we then
get

jH,loc = %floc = 0332 Re;l/z (144'4)

for the Colburn analogy between heat transfer and fluid friction. This was to be ex-
pected, because there is no “form drag” in this flow geometry.

Equation 14.4-4 was derived for fluids with constant physical properties.! When the
physical properties are evaluated at the film temperature T; = 3(T, + T..), Eq. 144-3 is
known to work well for gases.” The analogy of Eq. 14.4-4 is accurate within 2% for Pr >
0.6, but becomes inaccurate at lower Prandtl numbers.

For highly turbulent flows, the Colburn analogy still holds with fair accuracy, with
fioc given by the empirical curve in Fig. 14.4-1. The transition between laminar and turbu-
lent flow resembles that for pipes in Fig. 14.3-1, but the limits of the transition region are
harder to predict. For smooth, sharp-edged flat plates in an isothermal flow the transi-
tion usually begins at a Reynolds number Re, = xv..p/u of 100,000 to 300,000 and is al-
most complete at a 50% higher Reynolds number.

Flow Around a Sphere

In Problem 10B.1 it is shown that the Nusselt number for a sphere in a stationary fluid is

2. For the sphere with constant surface temperature T, in a flowing fluid approaching

with a uniform velocity v,,, the mean Nusselt number is given by the following empiri-
(o3

cism

Nu,, = 2 + 0.60 Re'/2 Pr!/3 (14.4-5)
This result is useful for predicting the heat transfer to or from droplets or bubbles.
Another correlation that has proven successful® is

1/4
Nu, =2 + (0.4 Re!/? + 0.06Re2/3)Pr°'4(Z—:) (14.4-6)

in which the physical properties appearing in Nu,, Re, and Pr are evaluated at the ap-
proaching stream temperature. This correlation is recommended for 3.5 < Re < 7.6 X
10, 0.71 < Pr < 380, and 1.0 < o,/ g < 3.2. In contrast to Eq. 14.4-5, it is not valid in the
limit that Pr — oo.

! The result in Eq. 14.4-1 was first obtained by H. Blasius, Z. Math. Phys., 56, 1-37 (1908), and that in
Eq. 14.4-3 by E. Pohlhausen, Z. angew. Math. Mech., 1, 115-121 (1921).

2E. R. G. Eckert, Trans. ASME, 56, 1273-1283 (1956). This article also includes high-velocity flows,
for which compressibility and viscous dissipation become important.

3W.E. Ranz and W. R. Marshall, Jr., Chem. Eng. Prog., 48, 141-146, 173-180 (1952). N. Frossling,
Gerlands Beitr. Geophys., 52, 170-216 (1938), first gave a correlation of this form, with a coefficient of 0.552
in lieu of 0.60 in the last term.

*S. Whitaker, Fundamental Principles of Heat Transfer, Krieger Publishing Co., Malabar, Fla. (1977),
Pp. 340-342; AIChE Journal, 18, 361-371 (1972).
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Flow Around a Cylinder
A cylinder in a stationary fluid of infinite extent does not admit a steady-state solution.
Therefore the Nusselt number for a cylinder does not have the same form as that for a
sphere. Whitaker recommends for the mean Nusselt number*

1/4
Nu,, = (0.4 Re”? + 0.06 Re2/3)Pr°‘4(%> (14.4-7)

in the range 1.0 < Re < 1.0 X 10%, 0.67 < Pr < 300, and 0.25 < .,/ < 5.2. Here, as in
Eq. 14.4-6, the values of viscosity and thermal conductivity in Re and Pr are those at the
approaching stream temperature. Similar results are available for banks of cylinders,
which are used in certain types of heat exchangers.’

Another correlation,” based on a curve-fit of McAdams’ compilation of heat transfer
coefficient data,® and on the low-Re asymptote in Problem 12B.6, is

-1/3
Nu,, = (0.376 Re'/2 + 0.057 Re**)Pr'/? + 0.92[111 (7-‘11{%55) +4.18 Re] Re!/3Pr!/?
(14.4-8)

This correlation has the proper behavior in the limit that Pr — ¢, and also behaves prop-
erly for small values of the Reynolds number. This result can be used for analyzing the
steady-state performance of hot-wire anemometers, which typically operate at low
Reynolds numbers.

Flow Around Other Objects

We learn from the preceding three discussions that, for the flow around objects of shapes
other than those described above, a fairly good guess for the heat transfer coefficients
can be obtained by using the relation

Nu,, — Nu,,, = 0.6 Re!/?Pr'/? (14.4-9)

in which Nu,,, is the mean Nusselt number at zero Reynolds number. This generaliza-
tion, which is shown in Fig. 14.4-2, is often useful in estimating the heat transfer from ir-
regularly shaped objects.

20 l l

1.5~  Cylinders (Eq. 14.4-8) N

2le
S|=
Z1& 1ok Flat plates (Eq. 14.4-2) |

0.5 \ —
Spheres (Eq. 14.4-5) and Eq. 14.4-9 Fig. 14.4-2. Graph comparing the

' ‘ . : ; ' ; 5 Nusselt numbers for flow around flat
0.1 1 10 100 10 10%10°  plates, spheres, and cylinders with

Reynolds number Eq. 14.4-9.

® W. E. Stewart (to be published).
®W. H. McAdams, Heat Transmission, 3rd edition, McGraw-Hill, New York (1954), p. 259.
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§14.5 HEAT TRANSFER COEFFICIENTS FOR FORCED
CONVECTION THROUGH PACKED BEDS

Heat transfer coefficients between particles and fluid in packed beds are important in the
design of fixed-bed catalytic reactors, absorbers, driers, and pebble-bed heat exchangers.
The velocity profiles in packed beds exhibit a strong maximum near the wall, attribut-
able partly to the higher void fraction there and partly to the more ordered interstitial
passages along this smooth boundary. The resulting segregation of the flow into a fast
outer stream and a slower interior one, which mix at the exit of the bed, leads to compli-
cated behavior of mean Nusselt numbers in deep packed beds,' unless the tube-to-parti-
cle diameter ratio D,/ D, is very large or close to unity. Experiments with wide, shallow
beds show simpler behavior and are used in the following discussion.

We define hy, for a representative volume Sdz of particles and fluid by the following
modification of Eq. 14.1-5:

dQ = h, (aSdz)(Ty — T}) (14.5-1)

Here a is the outer surface area of particles per unit bed volume, as in §6.4. Equations 6.4~
5 and 6 give the effective particle size D, as 6/a, = 6(1 — &) /a for a packed bed with void
fraction .

Extensive data on forced convection for the flow of gases® and liquids® through shal-
low packed beds have been critically analyzed* to obtain the following local heat transfer
correlation,

ju=2.19 Re™?? 4+ (.78 Re 0! (14.5-2)

and an identical formula for the mass transfer function j, defined in §22.3. Here the
Chilton—Colburn j, factor and the Reynolds number are defined by

~

h C,u\2/3
o = e (%”) (145-3)
C,Go
DpGO 6G0
Re = =
- oud  apd (14.5-4)

In this equation the physical properties are all evaluated at the film temperature T; =
3(Ty — T)), and G, = w/S is the superficial mass flux introduced in §6.4. The quantity ¥ is
a particle-shape factor, with a defined value of 1 for spheres and a fitted value* of 0.92 for
cylindrical pellets. A related shape factor was used by Gamson® in Re and j,; the present
factor ¢ is used in Re only.

For small Re, Eq. 14.5-2 yields the asymptote

ji =219 Re™*? (14.5-5)
or
hloch
Nuloc = m = 2.19(RePr)1/3 (145-6)

' H. Martin, Chem. Eng. Sci., 33, 913-919 (1978).

2B. W. Gamson, G. Thodos, and O. A. Hougen, Trans. AIChE, 39, 1-35 (1943); C. R. Wilke and O. A.
Hougen, Trans. AIChE, 41, 445-451 (1945).

3L. K. McCune and R. H. Wilhelm, Ind. Eng. Chem., 41, 1124-1134 (1949); ]. E. Williamson, K. E.
Bazaire, and C. J. Geankoplis, Ind. Eng. Chem. Fund., 2, 126-129 (1963); E. ]. Wilson and C. ]. Geankoplis,
Ind. Eng. Chem. Fund., 5, 9-14 (1966).

*W. E. Stewart, to be submitted.

5 B. W. Gamson, Chem. Eng. Prog., 47, 19-28 (1951).
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consistent with boundary layer theory® for creeping flow with RePr >> 1. The latter re-
striction gives Nu >> 1 corresponding to a thin thermal boundary layer relative to
D,/(1 — &) This asymptote represents the creeping-flow mass-transfer data for liquids’
very well.

The exponent 5 in Eq. 14.5-3 is a high-Pr asymptote given by boundary layer theory
for steady laminar flows® and for steadily driven turbulent flows.” This dependence is
consistent with the cited data over the full range Pr > 0.6 and the corresponding range of
the dimensionless group Sc for mass transfer.

§14.6 HEAT TRANSFER COEFFICIENTS FOR
FREE AND MIXED CONVECTION'

Here we build on Example 11.4-5 to summarize the behavior of some important sys-
tems in the presence of appreciable buoyant forces, first by rephrasing the results ob-
tained there in terms of Nusselt numbers and then by extension to other situations: (1)
small buoyant forces, where the thin-boundary-layer assumption of Example 11.4-5
may not be valid; (2) very large buoyant forces, where turbulence can occur in the
boundary layer, and (3) mixed forced and free convection. We shall confine ourselves to
heat transfer between solid bodies and a large quiescent volume of surrounding fluid,
and to the constant-temperature boundary conditions of Example 11.4-5. Discussions of
other situations, including transient behavior and duct and cavity flows, are available
elsewhere.!

In Example 11.4-5 we saw that for the free convection near a vertical flat plate, the
principal dimensionless group is GrPr, which is often called the Rayleigh number, Ra. If
we define the area mean Nusselt number as Nu,, = hH/k = q.,,H/k(T, — T;), then Eq.
11.4-51 may be written as

Nu,, = C(GrPr)'/* (14.6-1)

where C was found to be a weak function of Pr. The heat transfer behavior at moderate
values of Ra = GrPr is governed, for many shapes of solids, by laminar boundary layers
of the type described in Example 11.4-5, and the results of those discussions are normally
used directly.

However, at small values of GrPr direct heat conduction to the surroundings may
invalidate the boundary layer result, and at sufficiently high values of GrPr the mecha-
nism of heat transfer shifts toward random local eruptions or plumes of fluid, producing
turbulence within the boundary layer. Then the Nusselt number becomes independent
of the system size. The case of combined forced and free convection (normally referred
to as mixed convection) is more complex: one must now consider Pr, Gr, and Re as inde-
pendent variables, and also whether the forced and free convection effects are in the
same or different directions. Only the former seems to be at all well understood. The de-
scription of the behavior is further complicated by lack of abrupt transitions between the
various flow regimes.

¢ W. E. Stewart, AICKE Journal, 9, 528-535 (1963); R. Pfeffer, Ind. Eng. Chem. Fund., 3, 380-383 (1964);
J. P. Serensen and W. E. Stewart, Chem. Eng. Sci., 29, 833-837 (1974). See also Example 12.4-3.

”W. E. Stewart, AICKE Journal, 33, 2008-2016 (1987); corrigenda 34, 1030 (1988).

' G. D. Raithby and K. G. T. Hollands, Chapter 4 in W. M. Rohsenow, J. P. Hartnett, and Y. L. Cho,
eds., Handbook of Heat Transfer, 3rd edition, McGraw-Hill, New York (1998).
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It has been shown, however, that simple and reliable predictions of heat transfer
rates (expressed as area mean Nusselt numbers Nu,,) may be obtained for this wide vari-
ety of flow regimes by empirical combinations of asymptotic expressions:

a. Nu®, for conduction in the absence of buoyant forces or forced convection

b. Nu®™, for thin laminar boundary layers, as in Example 11.4-5

c. Nu™, for turbulent boundary layers

d. Nuf™, for pure forced convection

These are dealt with in the following subsections.

The limiting Nusselt number for vanishingly small free and forced convection is ob-
tained by solving the heat conduction equation (the Laplace equation, V*T = 0) for con-
stant, uniform temperature over the solid surface and a different constant temperature at
infinity. The mean Nusselt number then has the general form

Nu@™ = K(shape) (14.6-2)

With K equal to zero for all objects with at least one infinite dimension (e.g., infinitely
long cylinders or infinitely wide plates). For finite bodies K is nonzero, and an important
case is that of the sphere for which, according to Problem 10B.1,

Nuerd = 2 (14.6-3)

with the characteristic length taken to be the sphere diameter. Oblate ellipsoids of revo-
lution and circular disks are discussed in Problem 14D.1.

Thin Laminar Boundary Layers

For thin laminar boundary layers, the isothermal vertical flat plate is a representative
system, conforming to Eq. 14.6-1. This equation may be generalized to

Nuf™ = C(Pr, shape)(GrPr)'/* (14.6-4)
Moreover, the function of Pr and shape can be factored into the product
C = C (shape)C,(Pr) (14.6-5)
with?
C,~ 0.671 (14.6-6)

"1 + (0.492/Pr)*/ 18]+

Representative values'” of C; and C, are given in Tables 14.6-1 and 2, respectively. Shape
factors for a wide variety of other shapes are available.** For heated horizontal flat sur-
faces facing downward and cooled horizontal flat surfaces facing upward, the following
correlation’ is recommended:

lam _ 0.527 (GrPr)/5 (14.6-7)

ul?’l
[1+ (1.9/Pr)>/'0P/°

28, W. Churchill and R. Usagi, AICKE Journal, 23, 1121-1128 (1972).

> W. E. Stewart, Int. |. Heat and Mass Transfer, 14, 1013-1031 (1971).

* A. Acrivos, AICKE Journal, 6, 584-590 (1960).

5T, Fujii, M. Honda, and 1. Morioka, Int. |. Heat and Mass Transfer, 15, 755-767 (1972).
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Table 14.6-1 The Factor C, in Eq. 14.6-5, and the D in the Nusselt
Number, for Several Representative Shapes’

Vertical Horizontal Horizontal
Shape — plate plate” cylinder Sphere
(o 1.0 0.835 0.772 0.878

“D”inNu  Height H Width W Diameter D Diameter D

? For a hot upper surface and an insulated lower one, or the reverse for cold
surfaces.

Table 14.6-2 The Factor C, as a Function of the Prandtl Number

Hg Gases Water Oils

Pr 0.022 0.71 1.0 20 4.0 6.0 50 100 2000

G 0.287 0.515 0.534 0.568 0.595 0.608 0.650 0.656 0.668

For the vertical plate with a constant-heat-flux boundary condition, the recommended
power on GrPr is also 1/5.

Laminar free-convection heat fluxes tend to be small, and a conduction correction
is often necessary for accurate predictions. The conduction limit is determined by
solving the equation VT = 0 for the given geometry, and this leads to the calculation
of a “conduction Nusselt number,” Nu®", Then the combined Nusselt number,
Nu®™, is estimated by combining the two contributing Nusselt numbers by an equa-
tion of the form'

Nu comb —_ [(Nulam)n + (Nucond)n]l/n (14.6-8)

Optimum values of n are shape-dependent, but 1.07 is a suggested rough estimate in the
absence of specific information.

Turbulent Boundary Layers

The effects of turbulence increase gradually, and it is common practice to combine the
laminar and turbulent contributions as follows:'

Nufree — [(Nu;:'?mb)m + (Nuturb)m]l/m (146-9)
Thus for the vertical isothermal flat plate, one writes'

C5(GrPn)'/3

Nulv™® =
1+ (1.4 x10°/Gr)

(14.6-10)

with

0.13Pr%%

14.6-11
(l + 0‘61131.0‘81)0.42 ( )

3=

and m = 6. The values of m in Eq. 14.6-9 are heavily geometry-dependent.
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Mixed Free and Forced Convection

Heat Loss by Free

Convection from a
Horizontal Pipe

Finally, one must deal with the problem of simultaneous free and forced convection, and
this is again done through the use of an empirical combining rule:®

Nuf,?m — [Nuf;ee)a 4 (Nuf,c,’rced)3]l/3 (14.6-12)

This rule appears to hold reasonably well for all geometries and situations, provided
only that the forced and free convection have the same primary flow direction.

Estimate the rate of heat loss by free convection from a unit length of a long horizontal pipe, 6
in. in outside diameter, if the outer surface temperature is 100°F and the surrounding air is at
1 atm and 80°F.

SOLUTION
The properties of air at 1 atm and a film temperature T; = 90°F = 550°R are

p = 0.0190 cp = 0.0460 Ib,,/ft - hr
p=0.07231b,/ft?

C, = 0.241 Btu/Ib,, - R

k = 0.0152 Btu/hr - ft - R

B=1/T;= (1/550R™’

Other relevant values are D = 0.5 ft, AT = 20°R, and g = 4.17 X 10° ft/hr’. From these data we
obtain

B ((0.5)3(0.0723)2(4.17 X 108)(20/550)><(0.241)(0.0460))
GrPr =
(0.0460)* 0.0152
= (4.68 X 10°)(0.729) = 3.4 X 10° (14.6-13)

Then from Egs. 14.6-4 to 6 and Table 14.6-1 we get

0.671
Nu,, = 0.772 (3.4 X 109174
([1 + (0.492/0.729)9“6]4/9>
= 0772 2871 ) 4p 9y = 17.1 (14.6-14)
1.30
The heat transfer coefficient is then
B, = Num% = 17.1(0;8%) = 052 Btu/hr - f€ - F (14.6-15)

The rate of heat loss per unit length of the pipe is

Q  h,AAT _
1=~ 1~ h, mDAT
= (0.52)(3.1416)(0.5)(20) = 16 Btu/hr - ft (14.6-16)

This is the heat loss by convection only. The radiation loss for the same problem is obtained in
Example 16.5-2.

¢ E. Ruckenstein, Adv. in Chem. Eng., 13, 11-112 (1987) E. Ruckenstein and R. Rajagopalan, Cher.
Eng. Communications, 4, 15-29 (1980).
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y Fig. 14.7-1. Film condensation on a verti-
Il cal surface (interfacial temperature dis-
continuity exaggerated).

Velocity distribution v,(y, z)

Temperature distribution T(y, z)
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Vapor
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§14.7 HEAT TRANSFER COEFFICIENTS FOR CONDENSATION
OF PURE VAPORS ON SOLID SURFACES

The condensation of a pure vapor on a solid surface is a particularly complicated heat
transfer process, because it involves two flowing fluid phases: the vapor and the conden-
sate. Condensation occurs industrially in many types of equipment; for simplicity, we
consider here only the common cases of condensation of a slowly moving vapor on the
outside of horizontal tubes, vertical tubes, and vertical flat walls.

The condensation process on a vertical wall is illustrated schematically in Fig. 14.7-1.
Vapor flows over the condensing surface and is moved toward it by the small pressure
gradient near the liquid surface.! Some of the molecules from the vapor phase strike the
liquid surface and bounce off; others penetrate the surface and give up their latent heat
of condensation. The heat thus released must then move through the condensate to the
wall, thence to the coolant on the other side of the wall. At the same time, the condensate
must drain from the surface by gravity flow.

The condensate on the wall is normally the sole important resistance to heat
transfer on the condensing wall. If the solid surface is clean, the condensate will usu-
ally form a continuous film over the surface, but if traces of certain impurities are pre-
sent, (such as fatty acids in a steam condenser), the condensate will form in droplets.
“Dropwise condensation”? gives much higher rates of heat transfer than “film con-
densation,” but is difficult to maintain, so that it is common practice to assume film
condensation in condenser design. The correlations that follow apply only to film
condensation.

The usual definition of k,, for condensation of a pure vapor on a solid surface of area
A and uniform temperature T} is

Q = h, AT, — Ty) = wAH,,,

in which Q is the rate of heat flow into the solid surface, and T} is the dew point of the
vapor approaching the wall surface—that is, the temperature at which the vapor would

(14.7-1)

! Note that there occur small but abrupt changes in pressure and temperature at an interface. These
discontinuities are essential to the condensation process, but are generally of negligible magnitude in
engineering calculations for pure fluids. For mixtures, they may be important. See R. W. Schrage,
Interphase Mass Transfer, Columbia University Press (1953).

? Dropwise condensation and boiling are discussed at length by J. G. Collier and J. R. Thome,
Convective Boiling and Condensation, 3rd edition, Oxford University Press (1996).
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condense if cooled slowly at the prevailing pressure. This temperature is very nearly that
of the liquid at the liquid—gas interface. Therefore k,, may be regarded as a heat transfer
coefficient for the liquid film.

Expressions for h,, have been derived® for laminar nonrippling condensate flow by ap-
proximate solution of the equations of energy and motion for a falling liquid film (see
Problem 14C.1). For film condensation on a horizontal tube of diameter D, length L, and
constant surface temperature T, the result of Nusselt’ may be written as

k3p2gL>1 /3

1w (14.7-2)

by, = o.954<

Here w/L is the mass rate of condensation per unit length of tube, and it is understood
that all the physical properties of the condensate are to be calculated at the film tempera-
ture, T = T, + Ty,

For moderate temperature differences, Eq. 14.7-2 may be rewritten with the aid of an
energy balance on the condensate to give

Kp’gAH,,, \1/4
r3 P) (14.7-3)

B, = 0725 — o
(ﬂD(Td - T[])

Equations 14.7-2 and 3 have been confirmed experimentally within +10% for single hori-
zontal tubes. They also seem to give satisfactory results for bundles of horizontal tubes,*
in spite of the complications introduced by condensate dripping from tube to tube.

For film condensation on vertical tubes or vertical walls of height L, the theoretical re-
sults corresponding to Egs. 14.7-2 and 3 are

Koto\1/3
h,, = % (“3% ) (14.7-4)
and
_ 2V [ P3G |14
h,, = 3 ([.LL(Td =Ty (14.7-5)

respectively. The quantity I' in Eq. 14.7-4 is the total rate of condensate flow from the bot-
tom of the condensing surface per unit width of that surface. For a vertical tube, I' = w/#D,
where w is the total mass rate of condensation on the tube. For short vertical tubes (L < 0.5 ft),
the experimental values of h,, confirm the theory well, but the measured values for long ver-
tical tubes (L > 8 ft) may exceed the theory for a given T; — T, by as much as 70%. This dis-
crepancy is attributed to ripples that attain greatest amplitude on long vertical tubes.®

We now turn to the empirical expressions for turbulent condensate flow. Turbulent
flow begins, on vertical tubes or walls, at a Reynolds number Re = I'/u of about 350. For
higher Reynolds numbers, the following empirical formula has been proposed:®

Bp*e(T,; — TPL\1/2
h, = 0.003(-”—&%—1) (14.7-6)
WAH, .,
This equation is equivalent, for small T, — T, to the formula
ool \1/3
B, = 0.021< e ) (14.7-7)
M

* W. Nusselt, Z. Ver. deutsch. Ing., 60, 541-546, 596-575 (1916).

* B. E. Short and H. E. Brown, Proc. General Disc. Heat Transfer, London (1951), pp. 27-31. See also
D. Butterworth, in Handbook of Heat Exchanger Design (G. F. Hewitt, ed.), Oxford University Press,
London (1977), pp. 426-462.

5 W. H. McAdams, Heat Transmission, 3rd edition, McGraw-Hill, New York (1954) p- 333.

sU. Grigull, Forsch. Ingenieurwesen, 13, 49-57 (1942); Z. Ver. dtsch. Ing., 86, 444445 (1942).
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Fig. 14.7-2. Correlation of heat transfer data for film condensa-
tion of pure vapors on vertical surfaces. [H. Grober, S. Erk, and
U. Grigull, Die Grundgesetze der Wirmeiibertragung, 3rd edition,
Springer-Verlag, Berlin (1955), p. 296.]

Equations 14.7-4 to 7 are summarized in Fig. 14.7-2, for convenience of making calcula-
tions and to show the extent of agreement with the experimental data. Somewhat better
agreement could have been obtained by using a family of lines in the turbulent range to
represent the effect of Prandtl number. However, in view of the scattering of the data, a
single line is adequate.

Turbulent condensate flow is very difficult to obtain on horizontal tubes, unless the
tube diameters are very large or high temperature differences are encountered. Equa-
tions 14.7-2 and 3 are believed to be satisfactory up to the estimated transition Reynolds
number, Re = wr/Lu, of about 1000, where wr is the total condensate flow leaving a given
tube, including the condensate from the tubes above.”

The inverse process of vaporization of a pure fluid is considerably more complicated
than condensation. We do not attempt to discuss heat transfer to boiling liquids here, but
refer the reader to some reviews.”?

”W. H. McAdams, Heat Transmission, 3rd edition, McGraw-Hill, New York (1954), pp- 338-339.
#H. D. Baehr and K Stephan, Heat and Mass Transfer, Springer, Berlin (1998), Chapter 4.
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A boiling liquid flowing in a vertical tube is being heated by condensation of steam on the
outside of the tube. The steam-heated tube section is 10 ft high and 2 in. in outside diameter.
If saturated steam is used, what steam temperature is required to supply 92,000 Btu/hr of
heat to the tube at a tube-surface temperature of 200°F? Assume film condensation.

The fluid properties depend on the unknown temperature T,. We make a guess of T, = T, =
200°F. Then the physical properties at the film temperature (also 200°F) are
AH,,, = 978 Btu/Ib,,
k=0393Btu/hr - ft - F
p=60.11b,/f
n=0.7381b,/ft - hr

Assuming that the steam gives up only latent heat (the assumption T, = T, = 200°F implies
this), an energy balance around the tube gives

Q = wAH,,, = 7DTAH,,, (14.7-8)
in which Q is the heat flow into the tube wall. The film Reynolds number is
r._ @ 22,000 244 (14.7-9)

B aDuAH,, m2/1D07HO78)

Reading Fig. 14.7-2 at this value of the ordinate, we find that the flow is laminar. Equation
14.7-2 is applicable, but it is more convenient to use the line based on this equation in Fig.
14.7-2, which gives

kp2/3gl/3(Td _ To)L

- = 1700 (14.7-10)
w’ AH,,,
from which
5/3 AT
K AI_Ivap
T, — T, = 1700 ———kpz gL
_ (0.738)°/3(978)
(0.393)(60.1)>/3(4.17 % 108)'/3(10)
= 22°F (14.7-11)

Therefore, the first approximation to the steam temperature is T, = 222°F. This result is close
enough; evaluation of the physical properties in accordance with this result gives T, = 220 as
a second approximation. It is apparent from Fig. 14.7-2 that this result represents an upper
limit. On account of rippling, the temperature drop through the condensate film may be as lit-
tle as half that predicted here.

QUESTIONS FOR DISCUSSION

Define the heat transfer coefficient, the Nusselt number, the Stanton number, and the Chilton-
Colburn j;. How can each of these be “decorated” to indicate the type of temperature-differ-
ence driving force that is being used?

What are the characteristic dimensionless groups that arise in the correlations for Nusselt
numbers for forced convection? For free convection? For mixed convection?

To what extent can Nusselt numbers be calculated a priori from analytical solutions?

Explain how one develops an experimental correlation for Nusselt numbers as a function of
the relevant dimensionless groups.

To what extent can empirical correlations be developed in which the Nusselt number is given
as the product of the relevant dimensionless groups, each raised to a characteristic power?
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6. In addition to the Nusselt number, we have met up with the Reynolds number Re, the
Prandtl number Pr, the Grashof number Gr, the Péclet number P¢, and the Rayleigh number
Ra. Define each of these and explain their meaning and usefulness.

7. Discuss the concept of wind-chill temperature.

PROBLEMS

14A.1. Average heat transfer coefficients (Fig. 14A.1).
Ten thousand pounds per hour of an oil with a heat capac-
ity of 0.6 Btu/Ib,, * F are being heated from 100°F to 200°F
in the simple heat exchanger shown in the accompanying
figure. The oil is flowing through the tubes, which are cop-
per, 1 in. in outside diameter, with 0.065-in. walls. The
combined length of the tubes is 300 ft. The required heat is
supplied by condensation of saturated steam at 15.0 psia
on the outside of the tubes. Calculate k,, h,, and h, for the
oil, assuming that the inside surfaces of the tubes are at the
saturation temperature of the steam, 213°F.

Answers: 78,139, 190 Btu/hr - ft2- F

Steam in

Hot
oil out

Condensate out

Fig. 14A.1. A single-pass “shell-and-tube” heat exchanger.

14A.2. Heat transfer in laminar tube flow. One hundred
pounds per hour of oil at 100°F are flowing through a 1-in.
i.d. copper tube, 20 ft long. The inside surface of the tube is
maintained at 215°F by condensing steam on the outside
surface. Fully developed flow may be assumed through
the length of the tube, and the physical properties of the oil
may be considered constant at the following values: p = 55
Ib,/ft’, C, = 049 Btu/Ib,, - F, p = 142 Ib,/hr - ft, k =
0.0825 Btu/hr - ft - F.

(a) Calculate Pr.

(b) Calculate Re.

(o) Calculate the exit temperature of the oil.

Answers: (a) 8.44; (b) 1075; (c) 155°F

14A.3. Effect of flow rate on exit temperature from a
heat exchanger.

(a) Repeat parts (b) and (c) of Problem 14A.2 for oil flow
rates of 200, 400, 800, 1600, and 3200 1b,,/ hr.

(b) Calculate the total heat flow through the tube wall for
each of the oil flow rates in (a).

14A4. Local heat transfer coefficient for turbulent
forced convection in a tube. Water is flowing in a 2-in.
i.d. tube at a mass flow rate w = 15,000 Ib,,/hr. The inner
wall temperature at some point along the tube is 160°F,
and the bulk fluid temperature at that point is 60°F. What
is the local heat flux g, at the pipe wall? Assume that #,
has attained a constant asymptotic value.

Answer: —7.8 X 10* Btu/hr - ft2

14A.5. Heat transfer from condensing vapors.

(a) The outer surface of a vertical tube 1 in. in outside di-
ameter and 1 ft long is maintained at 190°F. If this tube is
surrounded by saturated steam at 1 atm, what will be the
total rate of heat transfer through the tube wall?

(b) What would the rate of heat transfer be if the tube
were horizontal?

Answers: (a) 8400 Btu/hr; (b) 12,000 Btu/hr

14A.6. Forced-convection heat transfer from an isolated
sphere.

(a) A solid sphere 1 in. in diameter is placed in an other-
wise undisturbed air stream, which approaches at a veloc-
ity of 100 ft/s, a pressure of 1 atm, and a temperature of
100°F. The sphere surface is maintained at 200°F by means
of an imbedded electric heating coil. What must be the rate
of electrical heating in cal/s to maintain the stated condi-
tions? Neglect radiation, and use Eq. 14.4-5.

(b) Repeat the problem in (a), but use Eq. 14.4-6.
Answer: (a) 12.9W = 3.1cal/s; (b) 16.8W = 4.0 cal/s

14A.7. Free convection heat transfer from an isolated
sphere. If the sphere of Problem 14A.6 is suspended in still
air at 1 atm pressure and 100°F ambient air temperature, and
if the sphere surface is again maintained at 200°F, what rate
of electrical heating would be needed? Neglect radiation.

Answer: 0.80W = 0.20 cal/s

14A.8. Heat loss by free convection from a horizontal
pipe immersed in a liquid. Estimate the rate of heat loss
by free convection from a unit length of a long horizontal
pipe, 6 in. in outside diameter, if the outer surface temper-
ature is 100°F and the surrounding water is at 80°F. Com-
pare the result with that obtained in Example 14.6-1, in
which air is the surrounding medium. The properties of
water at a film temperature of 90°F (or 32.3°C) are u =



~

0.7632 cp, C, = 0.9986 cal/g - Cand k = 0.363 Btu/hr - ft - F.
Also, the density of water in the neighborhood of 90°F is

T(©) 30.3 31.3 323 33.3 34.3
plg/cm®  0.99558 0.99528 0.99496 0.99463  0.99430

Answer: Q/L = 1930 Btu/hr - ft

14A.9. The ice-fisherman on Lake Mendota. Compare
the rates of heat loss of an ice-fisherman, when he is fish-
ing in calm weather (wind velocity zero) and when the
wind velocity is 20 mph out of the north. The ambient air
temperature is —10°F. Assume that a bundled-up ice-fish-
erman can be approximated as a sphere 3 ft in diameter.

14B.1. Limiting local Nusselt number for plug flow
with constant heat flux.

(@ Equation 10B.9-1 gives the asymptotic temperature
distribution for heating a fluid of constant physical proper-
ties in plug flow in a long tube with constant heat flux at
the wall. Use this temperature profile to show that the lim-
iting Nusselt number for these conditions is Nu = 8.

(b) The asymptotic temperature distribution for the analo-
gous problem for plug flow in a plane slit is given in Eq.
10B.9-2. Use this to show that the limiting Nusselt number
is Nu = 12.

14B.2. Local overall heat transfer coefficient. In Prob-
lem 14A.1 the thermal resistances of the condensed steam
film and wall were neglected. Justify this neglect by calcu-
lating the actual inner-surface temperature of the tubes at
that cross section in the exchanger at which the oil bulk
temperature is 150°F. You may assume that for the oil 4,
is constant throughout the exchanger at 190 Btu/hr - ft* - F.
The tubes are horizontal.

14B.3. The hot-wire anemometer." A hot-wire anemome-
ter is essentially a fine wire, usually made of platinum,
which is heated electrically and inserted into a flowing
fluid. The wire temperature, which is a function of the fluid
temperature, fluid velocity, and the rate of heating, may be
determined by measuring its electrical resistance.

(a) A straight cylindrical wire 0.5 in. long and 0.01 in. in
diameter is exposed to a stream of air at 70°F flowing past
the wire at 100 ft/s. What must the rate of energy input be
in watts to maintain the wire surface at 600°F? Neglect ra-
diation as well as heat conduction along the wire.

(b) It has been reported” that for a given fluid and wire at
given fluid and wire temperatures (hence a given wire
resistance)

P =BVuv, +C (14B.3-1)

! See, for example, G. Comte-Bellot, Chapter 34 in The
Handbook of Fluid Dynamics (R. W. Johnson, ed.), CRC Press, Boca
Raton, Fla. (1999).

2L. V. King, Phil. Trans. Roy. Soc. (London), A214, 373-432
(1914).
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in which I is the current required to maintain the desired
temperature, v., is the velocity of the approaching fluid,
and C is a constant. How well does this equation agree
with the predictions of Eq. 14.4-7 or Eq. 14.4-8 for the fluid
and wire of (a) over a fluid velocity range of 100 to 300
ft/s? What is the significance of the constant C in Eq.
14B.3-1?

14B.4. Dimensional analysis. Consider the flow system
described in the first paragraph of §14.3, for which dimen-
sional analysis has already given the dimensionless veloc-
ity profile (Eq. 6.2-7) and temperature profile (Eq. 14.3-9).
(a) Use Egs. 6.2-7 and 14.3-9 and the definition of cup-
mixing temperature to get the time-averaged expression.
To — Ty
Ty— Ty
(b) Use the result just obtained and the definitions of the
heat transfer coefficients to derive Egs. 14.3-12, 13, and 14.

= a functionof Re, Pr, L/D (14B.4-1)

14B.5. Relation between h),. and h;,,. In many industrial
tubular heat exchangers (see Example 15.4-2) the tube-
surface temperature T, varies linearly with the bulk fluid
temperature T,. For this common situation f,. and h;, may
be simply interrelated.
(a) Starting with Eq. 14.1-5, show that
Hio(mDdz)(T, — Ty) = —GaD)(pC,(v)dT,) (14B.5-1)
and therefore that
L A T, (L) - Tb(O)
hodz = 1pC D{v) 2"
J| otz = 308, Di0r o

(b) Combine the result in (a) with Eq. 14.1-4 to show that

1 L
hln = E J;) hlocdz

in which L is the total tube length, and therefore that (if
(Oho./3L), = 0, which is equivalent to the statement that
axial heat conduction is neglected)

(14B.5-2)

(14B.5-3)

dhln
dL

Mocle-1 = P + L (14B.5-4)
14B.6. Heat loss by free convection from a pipe. In Ex-
ample 14.6-1, would the heat loss be higher or lower if the
pipe-surface temperature were 200°F and the air tempera-
ture were 180°F?

14C.1. The Nusselt expression for film condensation
heat transfer coefficients (Fig. 14.7-1). Consider a laminar
film of condensate flowing down a vertical wall, and as-
sume that this liquid film constitutes the sole heat transfer
resistance on the vapor side of the wall. Further assume
that (i) the shear stress between liquid and vapor may be
neglected; (ii) the physical properties in the film may be
evaluated at the arithmetic mean of vapor and cooling-
surface temperatures and that the cooling-surface temper-
ature may be assumed constant; (iii) acceleration of fluid
elements in the film may be neglected compared to the
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gravitational and viscous forces; (iv) sensible heat changes,
CT, in the condensate film are unimportant compared to
the latent heat transferred through it; and (v) the heat flux
is very nearly normal to the wall surface.

(a) Recall from §2.2 that the average velocity of a film of
constant thickness 8 is (v,) = pgd®/3u. Assume that this re-
lation is valid for any value of z.

(b) Write the energy equation for the film, neglecting film
curvature and convection. Show that the heat flux through
the film toward the cold surface is

Td'—T
_qy:k( 5 0)

(c) As the film proceeds down the wall, it picks up addi-
tional material by the condensation process. In this
process, heat is liberated to the extent of AH,,, per unit
mass of material that undergoes the change in state. Show
that equating the heat liberation by condensation with the
heat flowing through the film in a segment dz of the film
leads to

(14C.1-1)

A Td - TQ
pAH,,,d(v,)8) = k( 5

(d) Insert the expression for the average velocity from (a)
into Eq. 14C.1-2 and integrate from z = 0 to z = L to obtain

4k(T, — ToulL \1/4
8(L)=( ( d A 0L >
ngAHvap
(e) Use the definition of the heat transfer coefficient and

the result in (d) to obtain Eq. 14.7-5.

(f) Show that Eqs. 14.7-4 and 5 are equivalent for the con-
ditions of this problem.

)dz (14C.1-2)

(14C.1-3)

14C.2. Heat transfer correlations for agitated tanks (Fig.
14C.2). A liquid of essentially constant physical properties
is being continuously heated by passage through an agi-
tated tank, as shown in the accompanying figure. Heat is
supplied by condensation of steam on the outer wall of the
tank. The thermal resistance of the condensate film and the
tank wall may be considered small compared to that of
the fluid in the tank, and the unjacketed portion of the tank

== Liquid out
Steam in —

Steam jacket Steam jacket

Liquid in — Z=Z2

/

Condensate out

Fig. 14C.2. Continuous heating of a liquid in an agitated
tank.

Interphase Transport in Nonisothermal Systems

may be assumed to be well insulated. The rate of liquid
flow through the tank has a negligible effect on the flow
pattern in the tank.

Develop a general form of dimensionless heat transfer
correlation for the tank corresponding to the correlation
for tube flow in §14.3. Choose the following reference
quantities: reference length, D, the impeller diameter; ref-
erence velocity, ND, where N is the rate of shaft rotation in
revolutions per unit time; reference pressure, pN°D?
where p is the fluid density.

14D.1. Heat transfer from an oblate ellipsoid of revolu-
tion. Systems of this sort are best described in oblate ellip-
soidal coordinates (£, 1, ¥)! for which

£ = constant describes oblate ellipsoids (0 < ¢ < «)

1 = constant describes hyperboloids of revolution

O=n=m)

¢ = constant describes half planes (0 < < 27)
Note that £ = £, can describe oblate ellipsoids, with & = 0
being a limiting case of the two-sided disk, and the limit as
&, —> = being a sphere. In this problem we investigate the
corresponding two limiting values of the Nusselt number.
(a) First use Eq. A.7-13 to get the scale factors from the re-
lation between oblate ellipsoidal coordinates and Carte-
sian coordinates:

x =acosh ¢ sin 9 cos ¢ (14D.1-1)
y=acosh§ sin 5 sin ¢ (14D.1-2)
z=asinh ¢ cos 7 (14D.1-3)

in which a is one-half the distance between the foci. Show
that

he = h, =aVcosh® ¢ — sin’ g (14D.1-4)
hy, =acosh £ sin 7 (14D.1-5)

Equations A.7-13 and 14 can then be used to get any of the
V-operations that are needed.

(b) Next obtain the temperature profile outside of an
oblate ellipsoid with surface temperature T;, which is em-
bedded in an infinite medium with the temperature T., far
from the ellipsoid. Let ® = (T — T)/(T., — Ty) be a dimen-
sionless temperature, and show that Laplace’s equation
describing the heat conduction exterior to the ellipsoid is

1 J 40
a*(cosh? £ — sin’ ) [a_g (COSh fjg) +oe ] =0 (14D.1-6)

! For a discussion of oblate ellipsoidal coordinates, see
P. Moon and D. E. Spencer, Field Theory Handbook, Springer, Berlin
(1961), pp. 31-34. See also ]. Happel and H. Brenner, Low Reynolds
Number Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.]J.
(1965), pp. 512-516; note that their scale factors are the reciprocals
of those defined in this book.



The terms involving derivatives with respect to n and
have been omitted because they are not needed. Show that
this equation may be solved with the boundary conditions
that ©@(£,) = 0 and O(x) = 1 to obtain

i — arctan(sinh 3]

0=1-2 :
sm — arctan(sinh &)

(14D.1-7)

(c) Next, specialize this result for the two-sided disk (that
is, the limiting case that & = 0), and show that the normal
temperature gradient at the surface is

¢=0 TR cos 7

(14D.1-8)

(- VO = (ng : nghlg%

where a has been expressed as R, the disk radius. Show fur-
ther that the total heat loss through both sides of the disk is

Problems 453
Q= -2kf(n-V1)dS
= +2k(Ty — T..)f(n - V@) dS
20 w/2
= 2K(Ty — T,) fo fo (;R—fm)Rz cos 1 sin ndndy
= 8kR(T, — T,) (14D.1-9)

and that the Nusselt number is given by Nu = 16/7 =
5.09. Since Nu = 2 for the analogous sphere problem, we
see that the Nusselt number for any oblate ellipsoid must
lie somewhere between 2 and 5.09.

(d) By dimensional analysis show that, without doing any
detailed derivation (such as the above), one can predict
that the heat loss from the ellipsoid must be proportional
to the linear dimension a rather than to the surface area. Is
this result limited to ellipsoids? Discuss.
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Macroscopic Balances for
Nonisothermal Systems

§15.1 The macroscopic energy balance
§15.2 The macroscopic mechanical energy balance

§15.3 Use of the macroscopic balances to solve steady-state problems with flat velocity
profiles

§15.4 The d-forms of the macroscopic balances

§15.5°  Use of the macroscopic balances to solve unsteady-state problems and problems
with nonflat velocity profiles

In Chapter 7 we discussed the macroscopic mass, momentum, angular momentum, and
mechanical energy balances. The treatment there was restricted to systems at constant
temperature. Actually this restriction is somewhat artificial, since in real flow systems
mechanical energy is always being converted into thermal energy by viscous dissipation.
What we really assumed in Chapter 7 is that any heat so produced is either too small to
change the fluid properties or is immediately conducted away through the walls of the
system containing the fluid. In this chapter we extend the previous results to describe
the overall behavior of nonisothermal macroscopic flow systems.

For a nonisothermal system there are five macroscopic balances that describe the re-
lations between the inlet and outlet conditions of the stream. They may be derived by in-
tegrating the equations of change over the macroscopic system:

f o (eq. of continuity) dV = macroscopic mass balance
f o (eq. of motion) dV = macroscopic momentum balance
t
f o (eq. of angular momentum) dV = macroscopic angular momentum balance
f " (eq. of mechanical energy) dV = macroscopic mechanical energy balance

f (eq. of (total) energy) dV = macroscopic (total) energy balance
20

The first four of these were discussed in Chapter 7, and their derivations suggest that
they can be applied to nonisothermal systems just as well as to isothermal systems. In
this chapter we add the fifth balance—namely, that for the total energy. This is derived
in §15.1, not by performing the integration above, but rather by applying the law of con-
servation of total energy directly to the system shown in Fig. 7.0-1. Then in §15.2 we re-
visit the mechanical energy balance and examine it in the light of the discussion of the
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(total) energy balance. Next in §15.3 we give the simplified versions of the macroscopic
balances for steady-state systems and illustrate their use.

In §15.4 we give the differential forms (d-forms) of the steady-state balances. In these
forms, the entry and exit planes 1 and 2 are taken to be only a differential distance apart.
The “d-forms” are frequently useful for problems involving flow in conduits in which
the velocity, temperature, and pressure are continually changing in the flow direction.

Finally, in §15.5 we present several illustrations of unsteady-state problems that can
be solved by the macroscopic balances.

This chapter will make use of nearly all the topics we have covered so far and pro-
vides an excellent opportunity to review the preceding chapters. Once again we take this
opportunity to remind the reader that in using the macroscopic balances, it may be nec-
essary to omit some terms and to estimate the values of others. This requires good intu-
ition or some extra experimental data.

§15.1 THE MACROSCOPIC ENERGY BALANCE

We consider the system sketched in Fig. 7.0-1 and make the same assumptions that were
made in Chapter 7 with regard to quantities at the entrance and exit planes:
(i) The time-smoothed velocity is perpendicular to the relevant cross section.
(ii) The density and other physical properties are uniform over the cross section.
(iii) The forces associated with the stress tensor 7 are neglected.
(iv) The pressure does not vary over the cross section.
To these we add (likewise at the entry and exit planes):
(v) The energy transport by conduction q is small compared to the convective en-
ergy transport and can be neglected.
(vi) The work associated with [7 - v] can be neglected relative to pv.
We now apply the statement of conservation of energy to the fluid in the macroscopic
flow system. In doing this, we make use of the concept of potential energy to account for
the work done against the external forces (this corresponds to using Eq. 11.1-9, rather

than Eq. 11.1-7, as the equation of change for energy).
The statement of the law of conservation of energy then takes the form:

d ~ N
ar (Ui + Kigt T Do) = (prU{vy) + %Pl(v?) + p®(v, )5,

rate of increase of rate at which internal, kinetic, and
internal, kinetic, and potential energy enter the system
potential energy in at plane 1 by flow
the system . .
1 3
— (pUxA02) + 3pA03) + py®x(1,))S (15.1-1)

rate at which internal, kinetic, and
potential energy leave the system

at plane 2 by flow
+Q + W, + (pr(vDS; — pa{v)S))
rate at which rate at which work is done on rate at which work is
heat is added the system by the surroundings done on the system by the
to the system by means of the moving surroundings at planes 1
across boundary surfaces and 2

Here U, = | piIdV, K = [2pt?dV,and @, = | p<i>dV are the total internal, kinetic, and
potential energy in the system, the integrations being performed over the entire volume
of the system.
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This equation may be written in a more compact form by introducing the mass rates
of flow w; = p,(v})S; and w, = px(v,)S,, and the total energy E,, = U, + Kyt Py We
thus get for the unsteady state macroscopic energy balance
1(v°)

%Em A[(u +pU + Tt c1>) ] +Q+ W, (15.1-2)

It is clear, from the derivation of Eq. 15.1-1, that the “work done on the system by the
surroundings” consists of two parts: (1) the work done by the moving surfaces W,,, and
(2) the work done at the ends of the system (planes 1 and 2), which appears as —A(pVw)
in Eq. 15.1-2. Although we have combined the pV terms with the internal, kinetic, and
potential energy terms in Eq. 15.1-2, it is inappropriate to say that “pV energy enters
and leaves the system” at the inlet and outlet. The pV terms originate as work terms and
should be thought of as such.

We now consider the situation where the system is operating at steady state so that
the total energy E, is constant, and the mass rates of flow in and out are equal (w; = w, =
w). Then it is convenient to introduce the symbols Q Q/w (the heat addition per unit
mass of flowing fluid) and W,, = W,,/w (the work done on a unit mass of flowing fluid).
Then the steady state macroscopic energy balance is

3
A(H + %% + gh) 0+ W, (15.1-3)
Here we have written &)1 = gh; and <I>2 = gh,, where h; and h, are heights above an
arbitrarily chosen datum plane (see the discussion just before Eq. 3.3-2). Similarly, H; =
U, + pV; and H, = U, + p,V, are enthalpies per unit mass measured with respect to
an arbitrarily specified reference state. The explicit formula for the enthalpy is given in
Eq. 9.8-8.

For many problems in the chemical industry the kinetic energy, potential energy,
and work terms are negligible compared with the thermal terms in Eq. 15.1-3, and the
energy balance simplifies to H, — H; = Q, often called an “enthalpy balance.” However
this relation should not be construed as a conservation equation for enthalpy.

§15.2 THE MACROSCOPIC MECHANICAL ENERGY BALANCE

The macroscopic mechanical energy balance, given in §7.4 and derived in §7.8, is re-
peated here for comparison with Eqs. 15.1-2 and 3. The unsteady-state macroscopic mechan-
ical energy balance, as given in Eq. 7.4-2, is

3
%(Ktot+ (Dtot) = - (l@+®+ p

2 o) p) + W, —E.—E, (15.2-1)

where E, and E, are defined in Eqs. 7.4-3 and 4. An approximate form of the steady-state
macroscopic mechanical balance, as given in Eq. 7.4-7, is

1 (0% ’1 o f
A(Z = >> + gAh + fl ﬁdp =W, —E, (15.2-2)
The details of the approximation introduced here are explained in Eqs. 7.8-9 to 12.

The integral in Eq. 15.2-2 must be evaluated along a “representative streamline” in
the system. To do this, one must know the equation of state p = p(p, T) and also how T
changes with p along the streamline. In Fig. 15.2-1 the surface V = V(p, T) for an ideal
gas is shown. In the pT-plane there is shown a curve beginning at p,, T; (the inlet stream
conditions) and ending at p,, T, (the outlet stream conditions). The curve in the pT-plane
indicates the succession of states through which the gas passes in going from the initial
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Fig. 15.2-1. Graphical representa-
tion of the integral in Eq. 15.2-2.
The ruled area is [} Vdp =

% (1/ p)dp. Note that the value
of this integral is negative here,
because we are integrating from
right to left.

17(;7, T)

state to the final state. The integral 7 (1/p) dp is then the projection of the shaded area in
Fig. 15.2-1 onto the pV-plane. It is evident that the value of this integral changes as the
“thermodynamic path” of the process from plane 1 to 2 is altered. If one knows the path
and the equation of state then one can compute [7 (1/p) dp.

In several special situations, it is not difficult to evaluate the integral:

a. For isothermal systems, the integral is evaluated by prescribing the isothermal
equation of state—that is, by giving a relation for p as a function of p. For exam-
ple, for ideal gases p = pM/RT and

Lap-RL["1g R B2
L oy = M, pdp =M In 2 (ideal gases)  (15.2-3)

b. For incompressible liguids, p is constant so that
1 1
f pdp = 5P 120 (incompressible liquids) (15.2-4)
1

c. For frictionless adiabatic flow of ideal gases with constant heat capacity, p and p are
related by the expression pp™" = constant, in which y = C,/Cy as shown in Exam-
ple 11.4-6. Then the integral becomes

21 _p%/'y-l'pz 1 _pl 'y p2 (7‘1)/7_
[ =5 L ey =1 |\m '

_Phy (e
oy —1|\p (15.2-5)

Hence for this special case of nonisothermal flow, the integration can be per-
formed analytically.

We now conclude with several comments involving both the mechanical energy bal-
ance and the total energy balance. We emphasized in §7.8 that Eq. 7.4-2 (same as Eq.
15.2-1) is derived by taking the dot product of v with the equation of motion and then in-
tegrating the result over the volume of the flow system. Since we start with the equation
of motion—which is a statement of the law of conservation of linear momentum—the
mechanical energy balance contains information different from that of the (total) energy
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balance, which is a statement of the law of conservation of energy. Therefore, in general,
both balances are needed for problem solving. The mechanical energy balance is not “an
alternative form” of the energy balance.

In fact, if we subtract the mechanical energy balance in Eq. 15.2-1 from the total en-
ergy balance in Eq. 15.1-2 we get the macroscopic balance for the internal energy

du, .
7*“* =—-AUw+ Q+E, +E, (15.2-6)

This states that the total internal energy in the system changes because of the difference
in the amount of internal energy entering and leaving the system by fluid flow, because
of the heat entering (or leaving) the system through walls of the system, because of
the heat produced (or consumed) within the fluid by compression (or expansion), and
because of the heat produced in the system because of viscous dissipation heating.
Equation 15.2-6 cannot be written a priori, since there is no conservation law for inter-
nal energy. It can, however, be obtained by integrating Eq. 11.2-1 over the entire flow
system.

§15.3 USE OF THE MACROSCOPIC BALANCES
TO SOLVE STEADY-STATE PROBLEMS
WITH FLAT VELOCITY PROFILES

The most important applications of the macroscopic balances are to steady-state prob-
lems. Furthermore, it is usually assumed that the flow is turbulent so that the variation
of the velocity over the cross section can be safely neglected (see “Notes” after Eqs. 7.2-3
and 7.4-7). The five macroscopic balances, with these additional restrictions, are summa-
rized in Table 15.3-1. They have been generalized to multiple inlet and outlet ports to ac-
commodate a larger set of problems.

Table 15.3-1 Steady-State Macroscopic Balances for Turbulent Flow in Nonisothermal Systems

Mass: Nw, — dw, =0 (A)

Momentum: S @y + p1Sou; — 20w, + prSHu, + Mg = Fr, B
Angular momentum: (@, + PSPl X wl — D(v;w, + pS)lry X uy] + Tey = T, (©
Mechanical energy: 2(%0% + gh; + %)wl - E(%v% + ghy, + %)wz =-W,+E+E, (D)

(Total) energy: SR + ghy + Hyw, — XG0} + ghy, + H)w, = —W,, — Q (E)

Notes:

* All formulas here imply flat velocity profiles.

P Sw, = w, + wy, + wy, + +++, where w,, = p1,0,,5., and so on.

© hy and h, are elevations above an arbitrary datum plane.

" H, and H, are enthalpies per unit mass relative to some arbitrarily chosen reference state (see Eq. 9.8-8).

¢ All equations are written for compressible flow; for incompressible flow, E, = 0. The quantities E. and
E, are defined in Eqs. 7.3-3 and 4.

fu, and u, are unit vectors in the direction of flow.
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EXAMPLE15.31
The Cooling of an

Ideal Gas

SOLUTION

Air out at 0° F and 15 psia Fig. 15.3-1. The cooling of air in a countercurrent
<v>=7? heat exchanger.
T——————————7 ™~ Plane 2
Cold -
liquid in |

10 ft

Hot
_‘E:l-—> liquid
L

Yy _ —Plane 1 out

Air in at 300°F and 30 psia
<v> = 100 ft sec™!

Two hundred pounds per hour of dry air enter the inner tube of the heat exchanger shown in
Fig. 15.3-1 at 300°F and 30 psia, with a velocity of 100 ft/sec. The air leaves the exchanger at
0°F and 15 psia, at 10 ft above the exchanger entrance. Calculate the rate of energy removal
across the tube wall. Assume turbulent flow and ideal gas behavior, and use the following ex-
pression for the heat capacity of air:

C,=6.39 + (9.8 X 1079T — (8.18 X 10 9)T* (15.3-1)

where C , is in Btu/(Ib-mole - R) and T is in degrees R.

For this system, the macroscopic energy balance, Eq. 15.1-3, becomes
(F, = Hy) + 3@} = 0 + g, = 1) = Q (15.3-2)

The enthalpy difference may be obtained from Eq. 9.8-8, and the velocity may be obtained as
a function of temperature and pressure with the aid of the macroscopic mass balance p,v, =
0.0 and the ideal gas law p = pRT/M. Hence Eq. 15.3-2 becomes

Piiz -
Mj deT + = [(P T1) - 1] +gth, —h)=Q (15.3-3)

The explicit expression for Cp in Eq. 15.3-1 may then be inserted into Eq. 15.3-3 and the inte-
gration performed. Next substitution of the numerical values gives the heat removal per
pound of fluid passing through the heat exchanger:

—Q = £1(6.39)(300) + 3(9.8 X 1079(5.78 — 2.12)(10°)
—1(8.18 X 1075)(4.39 — 0.97)(10%]

1 10t e (10
+2<(32.2)(778)>[1 (12173 - (778>

=72.0-0.093 — 0.0128
=719 Btu/hr (15.3-4)

The rate of heat removal is then
—Qw = 14,380 Btu/hr (15.3-5)

Note, in Eq. 15.3-4, that the kinetic and potential energy contributions are negligible in com-
parison with the enthalpy change.
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Mixing of Two Ideal
Gas Streams

' ' Fig. 15.3-2. The mixing of two ideal gas

T
streams.
S= S]g P1al
Vg | T
y 2

S=5y 1 T13, P13, V1] 5=5, > P2

~
in
o
Y,

| |
( Plane 1 Plane 2

Two steady, turbulent streams of the same ideal gas flowing at different velocities, tempera-
tures, and pressures are mixed as shown in Fig. 15.3-2. Calculate the velocity, temperature,
and pressure of the resulting stream.

SOLUTION

The fluid behavior in this example is more complex than that for the incompressible, isother-
mal situation discussed in Example 7.6-2, because here changes in density and temperature
may be important. We need to use the steady-state macroscopic energy balance, Eq. 15.2-3,
and the ideal gas equation of state, in addition to the mass and momentum balances. With
these exceptions, we proceed as in Example 7.6-2.

We choose the inlet planes (1a and 1b) to be cross sections at which the fluids first begin
to mix. The outlet plane (2) is taken far enough downstream that complete mixing has oc-
curred. As in Example 7.6-2 we assume flat velocity profiles, negligible shear stresses on the
pipe wall, and no changes in the potential energy. In addition, we neglect the changes in the
heat capacity of the fluid and assume adiabatic operation. We now write the following equa-
tions for this system with two entry ports and one exit port:

Mass: Wy = Wy, + Wy, = W,y (15.3-6)
Momentum: VW, + PoSy; = Uiy, + PraSu T Uty PiSe (15.3-7)
Energy: wlCy(Ty — Ty + 3031 = wi,[CTy, — Toe) + 2031 + w3, [C(Tyy — T + 3031 (15.38)
Eguation of state: P2 = poRT,/M (15.3-9)

In this set of equations we know all the quantities at 1a and 1b, and the four unknowns are p,,
T, p5, and v,. T, is the reference temperature for the enthalpy. By multiplying Eq. 15.3-6 by
C,T.sand adding the result to Eq. 15.3-8 we get

wz[(Apr2 + 303 = wm[épT]u + 30%] + wlb[éple + 30%,] (15.3-10)

The right sides of Egs. 15.3-6, 7, and 10 contain known quantities and we designate them by
w, P, and E, respectively. Note that w, P, and E are not independent, because the pressure,
temperature, and density of each inlet stream must be related by the equation of state.
We now solve Eq. 15.3-7 for v, and eliminate p, by using the ideal gas law. In addition we
write w, as p,v,S,. This gives
RT, p

This equation can be solved for T,, which is inserted into Eq. 15.3-10 to give

2 _ Y \P Y- WE_ .
(7 |:2(7+ 1>w]’02+ 2(7+ 1)w 0 (15.3-12)
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in which y = C,/Cy, a quantity which varies from about 1.1 to 1.667 for gases. Here we
have used the fact that C,/R = y/(y — 1) for an ideal gas. When Eq. 15.3-12 is solved for v,

we get
_{ v \P|, . (Y- 1\wE

On physical grounds, the radicand cannot be negative. It can be shown (see Problem 15B.4)
that, when the radicand is zero, the velocity of the final stream is sonic. Therefore, in general
one of the solutions for v, is supersonic and one is subsonic. Only the lower (subsonic) solu-
tion can be obtained in the turbulent mixing process under consideration, since supersonic
duct flow is unstable. The transition from supersonic to subsonic duct flow is illustrated in
Example 11.4-7.

Once the velocity v, is known, the pressure and temperature may be calculated from Egs.
15.3-7 and 11. The mechanical energy balance can be used to get (E. + E)).

§154 THE d-FORMS OF THE MACROSCOPIC BALANCES

The estimation of E, in the mechanical energy balance and Q in the total energy balance
often presents some difficulties in nonisothermal systems.
For example, for E,, consider the following two nonisothermal situations:

a. For liquids, the average flow velocity in a tube of constant cross section is nearly
constant. However, the viscosity may change markedly in the direction of the
flow because of the temperature changes, so that f in Eq. 7.5-9 changes with dis-
tance. Hence Eq. 7.5-9 cannot be applied to the entire pipe.

b. For gases, the viscosity does not change much with pressure, so that the local
Reynolds number and local friction factor are nearly constant for ducts of con-
stant cross section. However, the average velocity may change considerably
along the duct as a result of the change in density with temperature. Hence Eq.
7.5-9 cannot be applied to the entire duct.

Similarly for pipe flow with the wall temperature changing with distance, it may be
necessary to use local heat transfer coefficients. For such a situation, we can write Eq.
15.1-3 on an incremental basis and generate a differential equation. Or the cross sectional
area of the conduit may be changing with downstream distance, and this situation also
results in a need for handling the problem on an incremental basis.

It is therefore useful to rewrite the steady-state macroscopic mechanical energy bal-
ance and the total energy balance by taking planes 1 and 2 to be a differential distance dl
apart. We then obtain what we call the “d-forms” of the balances:

The d-Form of the Mechanical Energy Balance

If we take planes 1 and 2 to be a differential distance apart, then we may write Eq. 15.2-2
in the following differential form (assuming flat velocity profiles):

d?) + gdh + 5 dp = dW — dE, (15.4-1)
Then using Eq. 7.5-9 for a differential length dl, we write

vdv + gdh + L dp = dW — 22 2] (15.4-2)
P R,
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in which f is the local friction factor, and R;, is the local value of the mean hydraulic ra-
dius. In most applications we omit the d W term, since work is usually done at isolated
points along the flow path. The term dW would be needed in tubes with extensible walls,
magnetically driven flows, or systems with transport by rotating screws.

The d-Form of the Total Energy Balance

EXAMPLE 15.4-1

Parallel- or Counter-
Flow Heat Exchangers

SOLUTION

If we write Eq. 15.1-3 in differential form, we have (with flat velocity profiles)
A + gdh + dH = dQ + dW (15.4-3)
Then using Eq. 9.8-7 for dH and Eq. 14.1-8 for dQ we get

u’“ZAT T A+ AW (15.4-4)

vdo + gdh + CAT + [V T(‘W) ]dp
r
in which U, is the local overall heat transfer coefficient, Z is the corresponding local
conduit perimeter, and AT is the local temperature difference between the fluids inside
and outside of the conduit.
The examples that follow illustrate applications of Eqs. 15.4-2 and 15.4-4.

It is desired to describe the performance of the simple double-pipe heat exchanger shown in
Fig. 15.4-1 in terms of the heat transfer coefficients of the two streams and the thermal resis-
tance of the pipe wall. The exchanger consists essentially of two coaxial pipes with one fluid
stream flowing through the inner pipe and another in the annular space; heat is transferred
across the wall of the inner pipe. Both streams may flow in the same direction, as indicated in
the figure, but normally it is more efficient to use counter flow—that is, to reverse the direc-
tion of one stream so that either w, or w, is negative. Steady-state turbulent flow may be as-
sumed, and the heat losses to the surroundings may be neglected. Assume further that the
local overall heat transfer coefficient is constant along the exchanger.

(a) Macroscopic energy balance for each stream as a whole. We designate quantities refer-
ring to the hot stream with a subscript & and the cold stream with subscript c. The steady-
state energy balance in Eq. 15.1-3 becomes, for negligible changes in kinetic and potential
energy,

wy(H,, — Hy) = Q, (15.4-5)
w(Hy — Hy) = Q. (15.4-6)
Cold stream in
T= Tcl
l Plane 2
|
[ |
J_‘|||' o |
Hot stream in | ]I I Tl 1 Hot stream out
T—_—Thl () : ! ! |[_|| T:Th2
! I B
| ! I gl 1
|
|
Plane 1 Cold stream out
T = Tcz

Fig.15.4-1. A double-pipe heat exchanger.
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Because there is no heat loss to the surroundings, Q, = —Q.. For incompressible liquids with
a pressure drop that is not too large, or for ideal gases, Eq. 9.8-8 gives for constant C, the rela-
tion AH = C,AT. Hence Eqs. 15.4-5 and 6 can be rewritten as

whéph(ThZ —Tiw) = Qs (15.4-7)

wColTy — To) = Qo = —Q, (15.4-8)
(b) d-form of the macroscopic energy balance. Application of Eq. 15.4-4 to the hot stream
gives

UO(ZWO)(TC - Th)

w, di (15.4-9)

épthh =

where r, is the outside radius of the inner tube, and U is the overall heat transfer coefficient
based on the radius r; (see Eq. 14.1-8).
Rearrangement of Eq. 15.4-9 gives

dar; 27ry)dl
T - , &m0 (15.4-10)
c h whcph
The corresponding equation for the cold stream is
ar, 27ro)dl
= u, &m0 (15.4-11)
c h wccpc

Adding Eqgs. 15.4-10 and 11 gives a differential equation for the temperature difference of the
two fluids as a function of I:

AT, ~T) _
T,—-T.

uo( 1, 1 )(Zw—ro)dl (15.4-12)
whcph wccpc

By assuming that U, is independent of  and integrating from plane 1 to plane 2, we get

Ty —T
In (_M) _ UO(_{_ - )(sz)L (15.4-13)
Thz - TCZ whcph wCCPC

This expression relates the terminal temperatures to the stream rates and exchanger dimen-
sions, and it can thus be used to describe the performance of the exchanger. However, it is
conventional to rearrange Eq. 15.4-13 by taking advantage of the steady-state energy balances
in Eq. 15.4-7 and 8. We solve each of these equations for wC, and substitute the results into
Eq. 15.4-13 to obtain

(Thz - Tcz) - (Thl - Tcl) )
= L 15.4-1
Q= Uy, )(m (T = T)/(Tyy — Tl (154-14)
or
Q. = WA(T, — Toin (15.4-15)

Here A, is the total outer surface of the inner tube, and (T, — T,),, is the “logarithmic mean
temperature difference” between the two streams. Equations 15.4-14 and 15 describe the rate
of heat exchange between the two streams and find wide application in engineering practice.
Note that the stream rates do not appear explicitly in these equations, which are valid for
both parallel-flow and counter-flow exchangers (see Problem 15A.1).

From Eqs. 15.4-10 and 11 we can also get the stream temperatures as functions of [ if de-
sired. Considerable care must be used in applying the results of this example to laminar flow,
for which the variation of the overall heat transfer coefficient may be quite large. An example
of a problem with variable U, is Problem 15B.1.
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Power Requirement
for Pumping a
Compressible Fluid
through a Long Pipe

SOLUTION

Cooler | | Cooler |
Natual M Nt
Compressor Compressor :
1
| ! |
| | |
Plane 1 Plane 2 Plane 3
=0 I =10 miles

Fig. 15.4-2. Pumping a compressible fluid through a pipeline.

A natural gas, which may be considered to be pure methane, is to be pumped through a long,
smooth pipeline with a 2-ft inside diameter. The gas enters the line at 100 psia with a velocity
of 40 ft/s and at the ambient temperature of 70°F. Pumping stations are provided every 10
miles along the line, and at each of these stations the gas is recompressed and cooled to its
original temperature and pressure (see Fig. 15.4-2). Estimate the power that must be ex-
pended on the gas at each pumping station, assuming ideal gas behavior, flat velocity pro-
files, and negligible changes in elevation.

We find it convenient to consider the pipe and compressor separately. First we apply Eq. 15.4-
2 to a length dI of the pipe. We then integrate this equation between planes 1 and 2 to obtain
the unknown pressure p,. Once this is known, we may apply Eq. 15.2-2 to the system between
planes 2 and 3 to obtain the work done by the pump.

(a) Flow through the pipe. For this portion of the system, Eq. 15.4-2 simplifies to

2
vdv + — dp + —fdl 0 (15.4-16)

where D is the pipe diameter. Since the pipe is quite long, we assume that the fluid is isother-
mal at 70°F. We may then eliminate both v and p from Eq. 15.4-16 by use of the assumed equa-
tion of state, p = pRT/M, and the macroscopic mass balance, which may be written pv = p,v;.
With p and v written in terms of the pressure, Eq. 15.4-16 becomes

T, 2
1y B0 g 5l =0 (15.4-17)

PP Mpoy

We pointed out in §1.3 that the viscosity of ideal gases is independent of the pressure. From
this it follows that the Reynolds number of the gas, Re = Dw/Spu, and hence the friction factor
f, must be constants. We may then integrate Eq. 15.4-17 to obtain

. P2 2% RT, 2L _

This equation gives p, in terms of quantities that are already known, except for f, which is eas-
ily calculated: the kinematic viscosity of methane at 100 psi and 70 F is about 2.61 X 107° f£#/s,
and therefore Re = Dv/v = (200 t)(40 ft/s)/(2.61 ft*/s) = 3.07 X 10°. The friction factor can
then be estimated to be 0.0025 (see Fig. 6.2-2).

Substituting numerical values into Eq. 15.4-18, we get

P21 [(Pz) 1] (1545)(530)(32.2)  (2)(0.0025)(52,800)
Pt Pi (16.04)(40)* (2.00)

~In =0 (15.4-19)
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or

2
~In 24 513[(33) - 1] +132=0 (15.4-20)
4 14
By solving this equation with p; = 100 psia, we obtain p, = 86 psia.

(b) Flow through the compressor. We are now ready to apply the mechanical energy bal-
ance to the compressor. We start by putting Eq. 15.2-2 into the form

~ Ps ~
Wo=2i- o+ [“Lap+ E, 15.4-21)
P2

To evaluate the integral in this equation, we assume that the compression is adiabatic and
further that E, between planes 2 and 3 can be neglected. We may use Eq. 15.2-5 to rewrite Eq.
15.2-21 as

1/
p? (r
P2 Pz

_Z)% B E 2 E v ﬁ (7—1)/7_
= [1 (p2>] v st [(p2> 1] (15.4-22)

in which W,,, is the energy required of the compressor. By substituting numerical values into
Eq. 15.4-22, we get

Wy =33 = + 75 | dp

(1545)(530) 1.

o= GO ey 4 U430 13 ) g ca0ans gy
"= 3322) 16 03
= —9 + 7834 = 7825 ft Ib,/Ib, (15.4-23)

The power required to compress the fluid is

- (7D? pMY A
wW,, = (T)( RT, )vl W
_ 7(100)(16.04)(40)

(10.73)(530)
= 277,000 ft Ib;/s = 504 hp (15.4-24)

(7825) ft Iby/s

The power required would be virtually the same if the flow in the pipeline were adiabatic (see
Problem 15A.2).

The assumptions used here—assuming the compression to be adiabatic and neglecting
the viscous dissipation—are conventional in the design of compressor—cooler combinations.
Note that the energy required to run the compressor is greater than the calculated work, W,,
by (i) E, between planes 2 and 3, (i) mechanical losses in the compressor itself, and (iii) errors
in the assumed p—p path. Normally the energy required at the pump shaft is at least 15 to 20%
greater than W,

§15.5 USE OF THE MACROSCOPIC BALANCES TO SOLVE
UNSTEADY-STATE PROBLEMS AND PROBLEMS
WITH NONFLAT VELOCITY PROFILES

In Table 15.5-1 we summarize all five macroscopic balances for unsteady state and non-
flat velocity profiles, and for systems with multiple entry and exit ports. One practically
never needs to use these balances in this degree of completeness, but it is convenient to
have the entire set of equations collected in one place. We illustrate their use in the ex-
amples that follow.
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Table 15.5-1 Unsteady-State Macroscopic Balances for Flow in Nonisothermal Systems

Mass: m = 2wy — 2w; = 2py(vn)S: — 2ps0:)S, (A)
Momentum: %Ptot 2(@ w, + p;S; ju ) 2(2 2; w, + p252>u2 + mg — Fp (B)
Angular momentum: %Lm = E(EU—O w;, + p,S )[r1 X w] — E(E 3 w, + p;,_52>[r2 X ] + Tor — T ©
Mechanical energy: %(Km +d,) = 2( 2 1; +gh + )wl 2(1 zvgi + gh, + i >w2 + W, — E, - E, (D)
(Total) energy: ;t (Kt + P + U = 2(; 2 ; + ghy + H1>w1 2<~§v—2> + gh, + H2>w2 + W,+Q (B
Notes:

f 2w = wy, + wy, +wy, T -0+, where wy, = p 01,51, and so on.
b h1 and h2 are elevations above an arbitrary datum plane.
“H, and H, are enthalpies per unit mass relative to some arbitrarily chosen reference state; the formula for His givenin Eq. 9.8-8.
¢ All equations are written for compressible flow; for incompressible flow, E, = 0. The quantities E, and E, are defined in Egs. 7.3-3 and 4.

1, and u, are unit vectors in the direction of flow.

A cylindrical tank capable of holding 1000 ft* of liquid is equipped with an agitator having
sufficient power to keep the liquid contents at a uniform temperature (see Fig. 15.5-1). Heat is
Heatmg of a Ltquld M transferred to the contents by means of a coil arranged in such a way that the area available
an Agitated Tank' for heat transfer is proportional to the quantity of liquid in the tank. This heating coil consists
of 10 turns, 4 ft in diameter, of 1-in. o.d. tubing. Water at 20°C is fed into this tank at a rate of
20 Ib/min, starting with no water in the tank at time t = 0. Steam at 105°C flows through the

EXAMPLE 1551

Steam in

Instantaneous
liquid level

v
r Fig. 15.5-1. Heating of a liquid in a tank with a
Condensate out variable liquid level.

! This problem is taken in modified form from W. R. Marshall, Jr., and R. L. Pigford, Applications of
Differential Equations to Chemical Engineering Problems, University of Delaware Press, Newark, Del. (1947),
pp. 16-18.
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heating coil, and the overall heat transfer coefficient is 100 Btu/hr - ft* - F. What is the temper-
ature of the water when the tank is filled?

We shall make the following assumptions:

The steam temperature is uniform throughout the coil.

SR

The density and heat capacity do not change very much with temperature.
The fluid is approximately incompressible so that ép r= év.
The agitator maintains uniform temperature throughout the liquid.

The heat transfer coefficient is independent of position and time.

- Bon

The walls of the tank are perfectly insulated so that no heat loss occurs.

We select the fluid within the tank as the system to be considered, and we make a time-
dependent energy balance over this system. Such a balance is provided by Eq. (E) of Table
15.5-1. On the left side of the equation the time rates of change of kinetic and potential ener-
gies can be neglected relative to that of the internal energy. On the right side we can normally
omit the work term, and the kinetic and potential energy terms can be discarded, since they
will be small compared with the other terms. Inasmuch as there is no outlet stream, we can
set w, equal to zero. Hence for this system the total energy balance simplifies to

% Uior = wiHy + Q (15.5-1)
This states that the internal energy of the system increases because of the enthalpy added by
the incoming fluid, and because of the addition of heat through the steam coil.

Since U, and H, cannot be given absolutely, we now select the inlet temperature T, as
the thermal datum plane. Then H, = 0 and Uy, = pC, V(T — T;) = pC,V(T — T}), where T and
V are the instantaneous temperature and volume of the liquid. Furthermore, the rate of heat
addition to the liquid Q is given by Q = U A(T, — T), in which T is the steam temperature,
and A is the instantaneous heat transfer area. Hence Eq. 15.5-1 becomes

oC, % V(T - T)) = U,A(T, — T) (15.5-2)

The expressions for V(t) and A(f) are

_ AP :
Vi) = 5 t Al = 7 Ay = Ve Ap (15.5-3)
in which V; and A, are the volume and heat transfer area when the tank is full. Hence the en-
ergy balance equation becomes

~ “ t
wCt (T =Ty + w, ST - Ty = 25 UalT, — 1) (15.5-4)
dt pVO
which is to be solved with the initial condition that T = T; at t = 0.

_ The equation is more easily solved in dimensionless form. We divide both sides by
w,C(Ts — Ty to get

d(T—Tl> (T—T1> UOADt<TS—T>
t - + = — (15-5'5)
dt\T, — Ty T,.- T, pCpVO .- T,
This equation suggests that suitable definitions of dimensionless temperature and time are
T-T UpAqt
e = ( 1) and =22t (15.5-6,7)
Ts - T

pCpVO
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EXAMPLE 1552

Operation of a Simple
Temperature Controller

1.0 Fig. 15.5-2. Plot of dimensionless temper-
ature, ® = (T — T))/(T, — Ty), versus

0.9 — dimensionless time, T = (UpAy/pC,Vt,

0.8 ol according to Eq. 15.5-10. [W. R. Marshall
s and R. L. Pigford, Application of Differen-

0.7 e tial Equations to Chemical Engineering, Uni-

0.6 / versity of Delaware Press, Newark, Del.

/ (1947), p. 18.]

© 05 /
0.4
0.3

0.2 /
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0
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Then the equation in Eq. 15.5-5 becomes after some rearranging

T

4o 1
e <1 + ;>® =1 (15.5-8)

and the initial condition requires that @ = 0 at 7 = 0.
This is a first-order linear differential equation whose solution is (see Eq. C.1-2)

1-Ce”
1-ce’

0=1 (15.5-9)

The constant of integration, C, can be obtained from the initial condition after first multiply-
ing Eq. 15.5-9 by 7. In that way it is found that C = 1, so that the final solution is

1—e"
T

O=1- (15.5-10

This function is shown in Fig. 15.5-2.

Finally, the temperature T of the liquid in the tank, when it has been filled, is given by
Eq. 15.5-10 when t = pV,/w, (from Eq. 15.5-3) or 7 = UyA,/w,C, (from Eq. 15.5-7). Therefore,
in terms of the original variables,

;" - 77:1 _ L opCUAG) (15.5-11)
s 0 UpAy/w,C,

Thus it can be seen that the final liquid temperature is determined entirely by the dimension-
less group UyA,/w,C, which, for this problem, has the value of 2.74. Knowing this we can
find from Eq. 15.5-11 that (T, — T})/(T, — T;) = 0.659, whence T, = 76°C.

A well-insulated agitated tank is shown in Fig. 15.5-3. Liquid enters at a temperature T,(t),
which may vary with time. It is desired to control the temperature, T,(t), of the fluid leaving
the tank. It is presumed that the stirring is sufficiently thorough that the temperature in the
tank is uniform and equal to the exit temperature. The volume of the liquid in the tank, V,
and the mass rate of liquid flow, w, are both constant.

To accomplish the desired control, a metallic electric heating coil of surface area A is
placed in the tank, and a temperature-sensing element is placed in the exit steam to measure
T,(t). These devices are connected to a temperature controller that supplies energy to the
heating coil at a rate Q, = b(T,,, — T,), in which T,,, is the maximum temperature for which
the controller is designed to operate, and b is a known parameter. It may be assumed that the
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Temperature
indicator

O <
Power
supply . N
o}
Liquid
Temperature T j’ outlet
controller

Electric
heater Agitator
Liquid ___
inlet
T =T (fort <0)
T, =T (fort > 0)

Fig. 15.5-3. An agitated tank with a temperature controller.

liquid temperature Ty(¢) is always less than T, in normal operation. The heating coil sup-
plies energy to the liquid in the tank at a rate Q = UA(T, — T,), where U is the overall heat
transfer coefficient between the coil and the liquid, and T, is the instantaneous coil tempera-
ture, considered to be uniform.

Up to time t = 0, the system has been operating at steady state with liquid inlet tempera-
ture T; = T,y and exit temperature T, = T,,. At time ¢ = 0, the inlet stream temperature is sud-
denly increased to T; = Ti.. and held there. As a consequence of this disturbance, the tank
temperature will begin to rise, and the temperature indicator in the outlet stream will signal
the controller to decrease the power supplied to the heating coil. Ultimately, the liquid tem-
perature in the tank will attain a new steady-state value T,... It is desired to describe the be-
havior of the liquid temperature T,(t). A qualitative sketch showing the various temperatures
is given in Fig. 15.5-4.

We first write the unsteady-state macroscopic energy balances [Eq. (E) of Table 15.5-1] for the
liquid in the tank and for the heating coil:

~ dT -
(liquid) pCPVd—: = wC(T, — T,) + UA(T, — T)) (15.5-12)
. ol ch
(coil) p.CoV. i b(Tyox — Ty — UA(T. — T) (15.5-13)

Note that in applying the macroscopic energy balance to the liquid, we have neglected kinetic
and potential energy changes as well as the power input to the agitator.

Underdamped

Overdamped

Tz !
| Outlet
| temperature
|
I Lo T
Inlet temperature

T4(®)

. Fig. 15.5-4. Inlet and outlet temperatures as
0 t functions of time.
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(a) Steady-state behavior for t < 0. When the time derivatives in Egs. 15.5-12 and 13 are set
equal to zero and the equations added, we get for t <0, where T; = T}

WG, Ty + bl

20 x (15.5.14)
wC, +b
Then from Eq. 15.5-13 we can get the initial temperature of the coil
_ _ b bT s
To= Tzo(l UA) + UA (15.5-15)
(b) Steady-state behavior for t — . When similar operations are performed with T, = T,
we get
wapTlm +b Tmax
Ty == (15.5-16)
wC, + b
and
b\ PToax
= —_—— |+ 5
T... Tzw(l UA) A (15.5-17)

for the final temperature of the coil.

(c) Unsteady state behavior for t > 0. It is convenient to define dimensionless variables
using the steady-state quantities for t < 0 and t — o:

T, - T)s . I
0, = =+ = = dimensionless liquid temperature (15.5-18)
Ty — Twe
TE - T[TOC . » .
0 = N dimensionless coil temperature (15.5-19)
c0 7 Lo
= L{At = dimensionless time (15.5-20)
pCV
In addition we define three dimensionless parameters:
R= pé WV / pcépch = ratio of thermal capacities (15.5-21)
F= wé,,/ UA = flow-rate parameter (15.5-22)
b/UA = controller parameter (15.5-23)

In terms of these quantities, the unsteady-state balances in Egs. 15.5-12 and 13 become (after
considerable manipulation):

0
d—df =-(0+F06,+ 1 - B)O, (15.5-24)
e,

=R(@®, -0, (15.5-25)
dr

elimination of ®, between this pair of equations gives a single second-order linear ordinary
differential equation for the exit liquid temperature as a function of time:
d°0,

dr?

ao
+(14+R+D Tz +R(B+ PO, =0 (15.5-26)
T
This equation has the same form as that obtained for the damped manometer in Eq. 7.7-21
(see also Eq. C.1-7). The general solution is then of the form of Eq. 7.7-23 or 24:

®,=C,exp(m,7) + C_exp (m_1) (m, #m_) (15.5-27)
0, =C, expmr + C,7 exp mr m, =m_=m) (15.5-28)
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Fluids Through
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where

m,=53-(1+R+F=V(1+R+F?—-4RB + P] (15.5-29)

Thus by analogy with Example 7.7-2, the fluid exit temperature may approach its final value
as a monotone increasing function (overdamped or critically damped) or with oscillations
(underdamped). The system parameters appear in the dimensionless time variable, as well as
in the parameters B, F, and R. Therefore, numerical calculations are needed to determine
whether in a particular system the temperature will oscillate or not.

Extend the development of Example 7.6-5 to the steady flow of compressible fluids through
orifice meters and Venturi tubes.

SOLUTION

We begin, as in Example 7.6-5, by writing the steady-state mass and mechanical energy bal-
ances between reference planes 1 and 2 of the two flow meters shown in Fig. 15.5-5. For com-
pressible fluids, these may be expressed as

w = pvS; = py(va)S: (15.5-30)
(vo)? _ (v fz 1 1.2, —
2a2 zal + . 5 dp + 2<U2> e, = 0 (15.5'31)

in which the quantities «; = (v;)’/(v?) are included to allow for the replacement of the average
of the cube by the cube of the average.

1 0 2
| | |
t 1
|
|
' ; Approximate
Direction Vena contracta  boundary of
of flow id j
| fluid jet
|
|
T’\ Pressure taps/v‘-’J
Manometer
(@)
1 Qand 2
I Throat :
Direction | , i
25_30° | 7° maximum
of flow |

Manometer

(b

Fig. 15.5-5. Measurement of mass flow rate by use of (2) an orifice
meter, and (b) a Venturi tube.
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Free Batch Expansion
of a Compressible Fluid

SOLUTION

We next eliminate (v,) and (v,) from the above two equations to get an expression for the
mass flow rate:

2
~20, [ (1/pp
1

(15.5-32)
1 — (az/ap)(p;5:/p1 51 + ase,

W= p,5,

We now repeat the assumptions of Example 7.6-5: (i) e, = 0, (ii) &; = 1, and (iii) a, = (S,/ S,
Then Eq. 15.5-32 becomes

2
-2 f /pyp

—_— 15.5-33
1- (sto/P151)2 ( )

w = Cyp2So

The empirical “discharge coefficient,” C,, is included in this equation to permit correction of
this expression for errors introduced by the three assumptions and must be determined ex-
perimentally.

For Venturi meters, it is convenient to put plane 2 at the point of minimum cross section of
the meter so that S, = S;. Then «, is very nearly unity, and it has been found experimentally
that C, is almost the same for compressible and incompressible fluids—that is, about 0.98 for
well designed Venturi meters. For orifice meters, the degree of contraction of a compressible
fluid stream at plane 2 is somewhat less than for incompressible fluids, especially at high flow
rates, and a different discharge coefficient® is required.

In order to use Eq. 15.5-33, the fluid density must be known as a function of pressure.
That is, one must know both the path of the expansion and the equation of state of the fluid.
In most cases the assumption of frictionless adiabatic behavior appears to be acceptable. For
ideal gases, one may write pp”” = constant, where y = C,/Cy, (see Eq. 15.2-5). Then Eq. 15.5-
33 becomes

b — DI — y—1/y
o= Cs, \/ (t1/ply/ Gy = DI = (po/p)™ 777 15530

1- (50/51)2(P2/P1)2/y

This formula expresses the mass flow rate as a function of measurable quantities and the dis-
charge coefficient. Values of the latter may be found in engineering handbooks.

A compressible gas, initially at T = Ty, p = p,, and p = py, is discharged from a large station-
ary insulated tank through a small convergent nozzle, as shown in Fig. 15.5-6. Show how the
fractional remaining mass of fluid in the tank, p/p,, may be determined as a function of time.
Develop working equations, assuming that the gas is ideal.

For convenience, we divide the tank into two parts, separated by the surface 1 as shown in
the figure. We assume that surface 1 is near enough to the tank exit that essentially all of the
fluid mass is to left of it, but far enough from the exit that the fluid velocity through the sur-
face 1 is negligible. We further assume that the average fluid properties to the left of 1 are
identical with those at surface 1. We now consider the behavior of these two parts of the sys-
tem separately.

(@) The bulk of the fluid in the tank. For the region to the left of surface 1, the unsteady state
mass balance in Eq. (A) of Table 15.5-1 is

d
o V) = —w, (15.5-35)

*R. H. Perry, D. W. Green, and J. O. Maloney, Chemical Engineers’ Handbook, 7th Edition,
McGraw-Hill, New York (1997); see also, Chapter 15 of Handbook of Fluid Dynamics and Fluid Machinery
(J. A. Schertz and A. E. Fuhs, eds.), Wiley, New York (1996).
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Insulation Fig. 15.5-6. Free batch expansion of

a compressible fluid. The sketch
Convergent  ghows the locations of surfaces 1
nozzle and 2.

Tank volume =V

Ambient pressure = p, 1

For the same region, the energy balance of Eq. (E) of Table 15.5-1 becomes
%(pr(iI1 +d)) = —wl(iI + % + él) (15.5-36)

in which V is the total volume in the system being considered, and w, is the mass rate of flow
of gas leaving the system. In writing this equation, we have neglected the kinetic energy of
the fluid.

Substituting the mass balance into both sides of the energy equation gives

(1 48 e

dt | dt P gt (15.5-37)

For a stationary system under the influence of no external forces other than gravity, Ad,/dt =
0, so that Eq. 15.5-37 becomes

dll
h_h (15.5-38)

dpi  p;
This equation may be combined with the thermal and caloric equations of state for the fluid in
order to obtain p,(p;) and T;(p,). We find, thus, that the condition of the fluid in the tank de-
pends only on the degree to which the tank has been emptied and not on the rate of dis-
charge. For the special case of an ideal gas with constant Cy, for which dll = CpdT and p =
pRT /M, we may integrate Eq. 15.5-38 to obtain

pio1 " = popo” (15.5-39)

in which y = C,/C,. This result also follows from Eq. 11.4-57.

(b) Discharge of the gas through the nozzle. For the sake of simplicity we assume here that
the flow between surfaces 1 and 2 is both frictionless and adiabatic. Also, since w, is not far
different from w,, it is also appropriate to consider at any one instant that the flow is quasi-
steady-state. Then we can use the macroscopic mechanical energy balance in the form of Eq.
15.2-2 with the second, fourth, and fifth terms omitted. That is,

2
12+ f %dp =0 (15.5-40)
1

Since we are dealing with an ideal gas, we may use the result in Eq. 15.5-34 to get the instan-
taneous discharge rate. Since in this problem the ratio S,/S; is very small and its square is
even smaller, we can replace the denominator under the square root sign in Eq. 15.5-34 by
unity. Then the p; outside the square root sign is moved inside and use is made of Eq. 15.5-39.
This gives

d
Wy = LZ] SN 2ppily/ (y — Dllpa/po)¥™ — (p2/ o) 777 (15.5-41)

in which S, is the cross-sectional area of the nozzle opening.
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Now we use Eq. 15.5-39 to eliminate p; from Eq. 15.5-41. Then we have a first-order dif-
ferential equation for p;, which may be integrated to give
f= V/S, fl d(p:/ py)
V 2(}70/130)[’)’/(')’ = DI n/e \/(Pz/p[))z/y(/h/P())yi1 - (Pz/Po)(yq)/y

From this equation we can obtain the time required to discharge any given fraction of the
original gas.

At low flow rates the pressure p, at the nozzle opening is equal to the ambient pressure.
However, examination of Eq. 15.5-41 shows that, as the ambient pressure is reduced, the cal-
culated mass rate of flow reaches a maximum at a critical pressure ratio

/(y—1)
, = (%) - (le)y ’ (15.5-43)
crit

For air (y = 1.4), this critical pressure ratio is 0.53. If the ambient pressure is further reduced,
the pressure just inside the nozzle will remain at the value of p, calculated from Eq. 15.5-43,
and the mass rate of flow will become independent of ambient pressure p,. Under these con-

ditions, the discharge rate is
2 (y+1)/(y—1)
Wrax = S2.. [ P1p1Y! S+ (15.5-44)

Then, for p,/p, < r, we may write Eq. 15.5-42 more simply:

(15.5-42)

V/S, f Y odx

t= Vo por2/ Gy + DY 072 (15.5-45)

or

V/S, ( 2 )l:(m)(l—y)/z :I
- P -1 /P < (15.5-46)
VRT, M2/ (y + D)7 77D \y — 1) \Po (Pa/p1 <1)

If p,/p; is initially less than r, both Egs. 15.5-46 and 42 will be useful for calculating the total
discharge time.

QUESTIONS FOR DISCUSSION

Give the physical significance of each term in the five macroscopic balances.

How are the equations of change related to the macroscopic balances?

3. Does each of the four terms within the parentheses in Eq. 15.1-2 represent a form of energy?
Explain.

4, How is the macroscopic (total) energy balance related to the first law of thermodynamics, AU =
Q+ Wz

5. Explain how the averages (v} and (v°) arise in Eq. 15.1-1.

6. What is the physical significance of E. and E,? What sign do they have? How are they related

to the velocity distribution? How can they be estimated?

How is the macroscopic balance for internal energy derived?

8. What information can be obtained from Eq. 15.2-2 about a fluid at rest?

M=

N

PROBLEMS 15A.1. Heat transfer in double-pipe heat exchangers.
(a) Hot oil entering the heat exchanger in Example 15.4-1 at surface 2 is to be cooled by water
entering at surface 1. That is, the exchanger is being operated in countercurrent flow. Compute
the required exchanger area A, if the heat transfer coefficient U is 200 Btu/hr - ft* - F and the
fluid streams have the following properties:
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15A.3.

15A.4.

15A.5.
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Mass flow Heat Temperature
rate capacity entering  leaving
(Ib,,/hr) (Btu/lb,, * F) P P
Oil 10,000 0.60 200 100
Water 5,000 1.00 60 —

(b) Repeat the calculation of part (a) if U; = 50 and U, = 350 Btu/hr - ft* - F. Assume that U
varies linearly with the water temperature, and use the results of Problem 15B.1.

(c) What is the minimum amount of water that can be used in (a) and (b) to obtain the de-
sired temperature change for the oil? What is the minimum amount of water that can be used
in parallel flow?

(d) Calculate the required heat exchanger area for parallel flow operation, if the mass rate of
flow of water is 15,500 1b,,/hr and U is constant at 200 Btu/hr - ft* ‘F.

Answers: (a) 104 ft% (b) 122 ft% (c) 4290 Ib,,/hr, 15,000 Ib,,/hr; (d) about 101 ft*

Adiabatic flow of natural gas in a pipeline. Recalculate the power requirement wW in Ex-
ample 15.4-2 if the flow in the pipeline were adiabatic rather than isothermal.

(a) Use the result of Problem 15B.3(d) to determine the density of the gas at plane 2.
(b) Use your answer to (a), along with the result of Problem 15B.3(e), to obtain p,.
() Calculate the power requirement, as in Example 15.4-2.

Answers: (a) 0243 1b,,/ft>; (b) 86 psia; (c) 504 hp

Mixing of two ideal-gas streams.

(a) Calculate the resulting velocity, temperature, and pressure when the following two air
streams are mixed in an apparatus such as that described in Example 15.3-2. The heat capac-
ity C, of air may be considered constant at 6.97 Btu/Ib-mole - F. The properties of the two
streams are:

w(lb,/hr) v (ft/s) T (P p (atm)

Stream 1la: 1000 1000 80 1.00
Stream 1b: 10,000 100 80 1.00

Answer: (a) 11,000 1b,,/hr; about 110 ft/s; 86.5°F;, 1.00 atm

(b) What would the calculated velocity be, if the fluid density were treated as constant?
(c) Estimate E, for this operation, basing your calculation on the results of part (b).
Answers: (b) 109 ft/s; (c) 1.4 X 10° ft1b;/1b,,

Flow through a Venturi tube. A Venturi tube, with a throat 3 in. in diameter, is placed in a
circular pipe 1 ft in diameter carrying dry air. The discharge coefficient C, of the meter is 0.98.
Calculate the mass flow rate of air in the pipe if the air enters the Venturi at 70°F and 1 atm
and the throat pressure is 0.75 atm.

(a) Assume adiabatic frictionless flow and y = 1.4

(b) Assume isothermal flow.

(c) Assume incompressible flow at the entering density.

Answers: (a) 2.07 1b,,/s; (b)1.961b,,/s; (¢)2.431b,,/s

Free batch expansion of a compressible fluid. A tank with volume V = 10 ft* (see Fig. 15.5-6)
is filled with air (y = 1.4) at T, = 300K and p, = 100 atm. At time t = 0 the valve is opened, al-
lowing the air to expand to the ambient pressure of 1 atm through a convergent nozzle, with
a throat cross section S, = 0.1 ft°.



476 Chapter15 Macroscopic Balances for Nonisothermal Systems

15A.6.

15A.7.

15B.1.

(a) Calculate the pressure and temperature at the throat of the nozzle, just after the start of
the discharge.

(b) Calculate the pressure and temperature within the tank when p, attains its final value of 1
atm.

(c) How long will it take for the system to attain the state described in (b)?

Heating of air in a tube. A horizontal tube of 20 ft length is heated by means of an electrical
heating element wrapped uniformly around it. Dry air enters at 5°F and 40 psia at a velocity
75 ft/s and 185 Ib,,/hr. The heating element provides heat at a rate of 800 Btu/hr per foot of
tube. At what temperature will the air leave the tube, if the exit pressure is 15 psia? Assume
turbulent flow and ideal gas behavior. For air in the range of interest the heat capacity at con-
stant pressure in Btu/lb-mole * F is

C, =639 + (9.8 X 1079T - (8.18 X 10 T (15A.6-1)

where T is expressed in degrees Rankine.
Answer: T, = 354°F

Operation of a simple double-pipe heat exchanger. A cold-water stream, 5400 1b,,/hr at
70°F, is to be heated by 8100 Ib,,/hr of hot water at 200°F in a simple double-pipe heat ex-
changer. The cold water is to flow through the inner pipe, and the hot water through the an-
nular space between the pipes. Two 20-ft lengths of heat exchanger are available, and also all
the necessary fittings.
(a) By means of a sketch, show the way in which the two double-pipe heat exchangers should
be connected in order to get the most effective heat transfer.
(b) Calculate the exit temperature of the cold stream for the arrangement decided on in (a)
for the following situation:

(i) The heat-transfer coefficient for the annulus, based on the heat transfer area of the
inner surface of the inner pipe is 2000 Btu/hr - ft*+ F.

(ii) The inner pipe has the following properties: total length, 40 ft; inside diameter 0.0875
ft; heat transfer surface per foot, 0.2745 ft*; capacity at average velocity of 1 ft/s is 1345 1b,,/hr.

(iii) The average properties of the water in the inner pipe are:

s =045¢cp =1.091b,,/hr-ft

~

C,=1.00Btu/Ib,, - F
k=0376Btu/hr-ft*F
p=6151b,/ft?

(iv) The combined resistance of the pipe wall and encrustations is 0.001 hr - ft* - F/Btu
based on the inner pipe surface area.

(c) Sketch the temperature profile in the exchanger.
Answer: (b) 136°F

Performance of a double-pipe heat exchanger with variable overall heat transfer coeffi-
cient. Develop an expression for the amount of heat transferred in an exchanger of the type
discussed in Example 15.4-1, if the overall heat transfer coefficient U varies linearly with the
temperature of either stream.

(a) Since T, — T, is a linear function of both T}, and T, show that

u - U] AT - AT]
= 15B.1-1
UZ - u1 ATZ - AT] ( )

in which AT = T}, — T,, and the subscripts 1 and 2 refer to the conditions at control surfaces 1
and 2.
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(b) Substitute the result in (a) for T, — T, into Eq. 15.4-12, and integrate the equation thus ob-
tained over the length of the exchanger. Use this result to show that'
U]ATZ - UZAT]
Q.=A (15B.1-2)
In(ULAT,/ ULAT))

Pressure drop in turbulent flow in a slightly converging tube (Fig. 15B.2). Consider the tur-
bulent flow of an incompressible fluid in a circular tube with a diameter that varies linearly
with distance according to the relation

D=D,+ D, - Dl)% (15B.2-1)

At z = 0, the velocity is v; and may be assumed to be constant over the cross section. The
Reynolds number for the flow is such that f is given approximately by the Blasius formula of
Eq. 6.2-13,

f= Re'/? (15B.2-2)
Obtain the pressure drop p, — p,interms of v;, D}, D,, p, L, and v = u/p.
(a) Integrate the d-form of the mechanical energy balance to get
1 Lo’f
b pr—p = - ) +2 f —dz (15B.2-3)

and then eliminate v, from the equation.
(b) Show that both v and f are functions of D:

_ (D)2 _ 00791 (D\V*
o vl(D>’ F= D/ (D) (o524

Of course, D is a function of z according to Eq. 15B.2-1.
(c) Make a change of variable in the integral in Eq. 15B.2-3 and show that

L 72 D, 72
WL vf

,D%=5-1,), 0P (15B.2-5)

(d) Combine the results of (b) and (c) to get finally

1, . y_1 (D1} _ 2[v?  15(0.0791) D, \15/4 _
5P —p) zvl[(DZ) l] * DD, Do o7 | \D, 1| (15B.2-6)

(e) Show that this result simplifies properly for D, = D,.

Diameter D, Diameter D,

i a‘
h 2 Fig. 15B.2. Turbulent flow in a hori-
2=0 Direction of flow z=L zontal, slightly tapered tube (D; is
(z direction) slightly greater than D,).

L A. P. Colburn, Ind. Eng. Chem., 25, 873 (1933).
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15B.3. Steady flow of ideal gases in ducts of constant cross section.

(a) Show that, for the horizontal flow of any fluid in a circular duct of uniform diameter D,
the d-form of the mechanical energy balance, Eq. 15.4-1, may be written as

vy + %dp + 12de = 0 (15B.3-1)

in which de, = (4f/D)dL. Assume flat velocity profiles.
(b) Show that Eq. 15B.3-1 may be rewritten as

vdo + d(;) + (;)dp + 50%de, = 0 (15B.3-2)
Show further that, when use is made of the 4-form of the mass balance, Eq. 15B.3-2 becomes
for isothermal flow of an ideal gas

2RT dv dv

de, = ™M ;}3 -2 o (15B.3-3)

(c) Integrate Eq. 15B.3-3 between any two pipe cross sections 1 and 2 enclosing a total pipe
length L. Make use of the ideal gas equation of state and the macroscopic mass balance to
show that v,/v; = p,/p, = p1/p», so that the “mass velocity” G can be put in the form

pipa(1 — 1) . )
G=pv = = —Inr (isothermal flow of ideal gases) (15B.3-4)

in which r = (p,/p))> Show that, for any given value of e, and conditions at section 1,
the quantity G reaches its maximum possible value at a critical value of r defined by Inr, +
(1 —r)/r.= e, See also Problem 15B.4.

(d) Show that, for the adiabatic flow of an ideal gas with constant ép in a horizontal duct of
constant cross section, the d-form of the total energy balance (Eq. 15.4-4) simplifies to

A -1
pV + (7 5 )%vz = constant (15B.3-5)
where y = C,/Cy. Combine this result with Eq. 15B.3-2 to get
Y+ 14y P 7—]12 dv
S Z(E + (A,y—>§v1 5 —de, (15B.3-6)

Integrate this equation between sections 1 and 2 enclosing the resistance ¢,, assuming vy con-
stant. Rearrange the result with the aid of the macroscopic mass balance to obtain the follow-
ing relation for the mass flux G.

_ _ PP C . )
G=pv = e [y~ D/2y1In s RES (adiabatic flow of ideal gases)  (15B.3-7)
1-s 2y

in which s = (p,/p;).
(e} Show by use of the macroscopic energy and mass balances that for horizontal adiabatic
flow of ideal gases with constant v,

P2 p [1—(o/p)Y1G* [y —1
P p [1 M 2 (15B.3-8)

This equation can be combined with Eq. 15B.3-7 to show that, as for isothermal flow, there isa
critical pressure ratio p,/p; corresponding to the maximum possible mass flow rate.
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The Mach number in the mixing of two fluid streams.

(a) Show that when the radicand in Eq. 15.3-13 is zero, the Mach number of the final stream is
unity. Note that the Mach number, Ma, which is the ratio of the local fluid velocity to the ve-
locity of sound at the local conditions, may be written for an ideal gas as v/v, = v/VyRT/M
(see Problem 11C.1).

(b) Show how the results of Example 15.3-2 may be used to predict the behavior of a gas
passing through a sudden enlargement of duct cross section.

Limiting discharge rates for Venturi meters.
(a) Starting with Eq. 15.5-34 (for adiabatic flow), show that as the throat pressure in a Venturi
meter is reduced, the mass rate of flow reaches a maximum when the ratio r = p,/p, of throat
pressure to entrance pressure is defined by the expression
v+1 2 y—1 _
v Y (S, /8, )
(b) Show that for S, >> §, the mass flow rate under these limiting conditions is

M G D/ G-1)
w = C9,5, \/ 17{— (v_ﬂ%) (15B.5-2)
1

(c) Obtain results analogous to Eqgs. 15B.5-1 and 2 for isothermal flow.

(15B.5-1)

Flow of a compressible fluid through a convergent-divergent nozzle (Fig. 15B.6). In many
applications, such as steam turbines or rockets, hot compressed gases are expanded through
nozzles of the kind shown in the accompanying figure in order to convert the gas enthalpy
into kinetic energy. This operation is in many ways similar to the flow of gases through ori-
fices. Here, however, the purpose of the expansion is to produce power—for example, by the
impingement of the fast-moving fluid on a turbine blade, or by direct thrust, as in a rocket
engine.

To explain the behavior of such a system and to justify the general shape of the nozzle
described, follow the path of expansion of an ideal gas. Assume that the gas is initially in a
very large reservoir at essentially zero velocity and that it expands through an adiabatic fric-
tionless nozzle to zero pressure. Further assume flat velocity profiles, and neglect changes in
elevation.

(a) Show, by writing the macroscopic mechanical energy balance or the total energy balance

between planes 1 and 2, that
RT. -1/
g R 7 [1 _ (%) ] (15B.6-1)

symmetry | e

Throat

|
!
[
|
|
|
|
|
|
1

P=P1 P=p2
T=T; T=T, Fig. 15B.6. Schematic cross section of a conver-
v=0 v=v;.  gent-divergent nozzle.
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(b) Show, by use of the ideal gas law, the steady-state macroscopic mass balance, and Eq.
15B.6-1, that the cross section S of the expanding stream goes through a minimum at a critical
pressure

¥/ (y=1
Paerit = P1 m (15B.6-2)

(c) Show that the Mach number, Ma = v,/v(T,), of the fluid at this minimum cross section is
unity (v, for low-frequency sound waves is derived in Problem 11C.1). How does the result of
part (a) above compare with that in Problem 15B.5?

(d) Calculate fluid velocity v, fluid temperature T, and stream cross section S as a function of
the local pressure p for the discharge of 10 Ib-moles of air per second from 560°R and 10 atm
to zero pressure. Discuss the significance of your results.

Answer:

p, atm 10 9 8 7 6 528 5 4 3 2 1 0

v,ftsec™ 0 449 645 807 956 1058 1099 1245 1398 1574 1798 2591

T,°R 560 543 525 506 484 466 459 431 397 353 290 0

S, ft? o 0.977 0.739 0.650 0.613 0.606 0.607 0.628 0.688 0.816 1.171 =

Transient thermal behavior of a chromatographic device (Fig. 15B.7). You are a consultant
to an industrial concern that is experimenting, among other things, with transient thermal
phenomena in gas chromatography. One of the employees first shows you some reprints of a
well-known researcher and says that he is trying to apply some of the researcher’s new ap-
proaches, but that he is currently stuck on a heat transfer problem. Although the problem is
only ancillary to the main study, it must nonetheless be understood in connection with his in-
terpretation of the data and the application of the new theories.

Chromatographic column
contained within the coil

Temperature T

Fig. 15B.7. (a) Chromatographic device;
(b) temperature response of the chromato-
graphic system.
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A very tiny chromatographic column is contained within a coil, which is in turn inserted
into a pipe through which a gas is blown to control the temperature (see Fig. 15B.7a). The gas
temperature will be called T,(t). The temperature at the ends of the coil (outside the pipe) is
T,, which is not very much different from the initial value of T,. The actual temperature
within the chromatographic column (i.e., within the coil) will be called T(#). Initially the gas
and the coil are both at the temperature T,. Then beginning at time ¢ = 0, the gas temperature
is increased linearly according to the equation

T ) = (1 + lf) (15B.7-1)

where t, is a known constant with dimensions of time.

You are told that, by inserting thermocouples into the column itself, the people in the lab
have obtained temperature curves that look like those in Fig. 15B.7(b). The T(t) curve seems to
become parallel to the T,(t) curves for large t. You are asked to explain the above pair of
curves by means of some kind of theory. Specifically you are asked to find out the following:

(a) Atany time t, what will T, — T be?

(b) What will the limiting value of T, — T be when  — «? Call this quantity (AT)..
(c) What time interval #, is required for T, — T to come within, say, 1% of (AT)..?
(d) What assumptions had to be made to model the system?

(e) What physical constants, physical properties, and so on, have to be known in order to
make a comparison between the measured and theoretical values of (AT)..?

Devise the simplest possible theory to account for the temperature curves and to answer
the above five questions.

Continuous heating of a slurry in an agitated tank (Fig. 15B.8). A slurry is being heated by
pumping it through a well-stirred heating tank. The inlet temperature of the slurry is T; and
the temperature of the outer surface of the steam coil is T,. Use the following symbols:

V = volume of the slurry in the tank

P (AZF, = density and heat capacity of the slurry

w = mass rate of flow of slurry through the tank

U = overall heat transfer coefficient of heating coil

A = total heat transfer area of the coil

Assume that the stirring is sufficiently thorough that the fluid temperature in the tank is uni-
form and the same as the outlet fluid temperature.

Steam at
temperature
Slurry in at T,
temperature — l
T;
Temperature
intankis T®) ~ [
Exit
l — temperature
is T(H) . . .
Condensate out Fig. 15B.8. Heating of a slurry in an

at approximately T, agitated tank.
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(a) By means of an energy balance, show that the slurry temperature T(t) is described by the
differential equation

dT UA w
ar _(UA g _ ()71 15B.8-1
- (pcp‘)( .~ (pv)( ) (15B.8-1)

The variable ¢ is the time since the start of heating.
(b) Rewrite this differential equation in terms of the dimensionless variables

_wt _TI-T. ¥
e (15B.8-2, 3)
where
(UA/wC T, + T,
— (15B.8-4)

(UA/wC,) + 1
What is the physical significance of 7, ®, and T..?
() Solve the dimensionless equation obtained in (b) for the initial condition that T = T;at ¢t = 0.
(d) Check the solution to see that the differential equation and initial condition are satisfied.
How does the system behave at large time? Is this limiting behavior in agreement with your
intuition?
(e) How is the temperature at infinite time affected by the flow rate? Is this reasonable?

Answer: (c) %T]];“— = expl:—< L}A + ﬂv)t]

i ® pCpV P
Parallel-counterflow heat exchangers (Fig. 15C.1). In the heat exchanger shown in the ac-
companying figure, the “tube fluid” (fluid A) enters and leaves at the same end of the heat ex-
changer, whereas the “shell fluid” (fluid B) always moves in the same direction. Thus there

are both parallel flow and counterflow in the same apparatus. This flow arrangement is one
of the simplest examples of “mixed flow,” often used in practice to reduce exchanger length.

Tar T
Tube fluid
out I

Shell

Tube {4

fuid i | s_h;u__b Fig. 15C.1. A
o mT dA = increment of fluid out parallel-counterflow
Al heat-exchange area Ty, heat exchanger.

?See D. Q. Kern, Process Heat Transfer, McGraw-Hill, New York (1950}, pp- 127-189; ]. H. Perry,
Chemical Engineers” Handbook, 3rd edition, McGraw-Hill, New York, (1950), pp. 464-465; W. M. Rohsenow,
J. P. Hartnett, and Y. 1. Cho, Handbook of Heat Transfer, 3rd edition, McGraw-Hill, New York (1998),
Chapter 17; S. Whitaker, Fundamentals of Heat Transfer, corrected edition, Krieger Publishing Company,
Malabar, Fla., (1983), Chapter 11.
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The behavior of this kind of equipment may be simply analyzed by making the following as-
sumptions:

(i) Steady-state conditions exist.

(ii) The overall heat transfer coefficient U and the heat capacities of the two fluids are
constants.

(iii) The shell-fluid temperature T} is constant over any cross section perpendicular to the
flow direction.

(iv) There is an equal amount of heating area in each tube fluid “pass”—that is, for
streams I and II in the figure.

(a) Show by an energy balance over the portion of the system between planes a and b that
Ty— Toy=R(TE— Ty  whereR = [w,Coa/wsCl (15C.1-1)

(b) Show that over a differential section of the exchanger, including a fotal heat exchange sur-
face dA,

dT, 1 .
=y T TY (15C.1-2)
dT4
4la_1 (T4 — Tp) (15C.1-3)
da 2

14Ty _ _ 1 1

in which da = (LI/ wAépA)dA, and w, and épA are defined as in Example 15.4-1.

() Show that when T. and T} are eliminated between these three equations, a differential
equation for the shell fluid can be obtained:

-
—2+R—_—®—O (15C15)

in which O(a) = (T — Ty /(Tp; — Tpy). Solve this equation (see Eq. C.1-7) with the boundary
conditions

B.C. 1: ata =0, 0=1 (15C.1-6)
B.C.2: ata = UAr/wsC,p), ©=0 (15C.1-7)

in which Ay is the total heat-exchange surface of the exchanger.

(d) Use the result of part (c) to obtain an expression for dT/da. Eliminate dT3/da from this
expression with the aid of Eq. 15C.1-4 and evaluate the resulting equation at & = 0 to obtain
the following relation for the performance of the exchanger:

L _UAr 1 ln[z—\I’(R+l—\/R2+l)]
" wl, VRAD 2-WR+1+ VR

in which ¥ = (T, — Ta)/ Ty = Ta).

(e) Use this result to obtain the following expression for the rate of heat transfer in the ex-

changer:

(15C.1-8)

Q = UAGT), - Y (15C.1-9)
in which

(Tgy — Tap) — (Tga — Tay)
In[(Tp; — Tap)/ (T, — Tapl

2 —_— —
v VR + 11n[(1 ~ ¥)/(1 — R¥)] (15C.1-11)

(R_l)ln[2—‘I'(R+l—\/R2+l)]
2-¥R+1+ VR +1)

AD, = (15C.1-10)
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The quantity Y represents the ratio of the heat transferred in the “1-2 parallel-counterflow ex-
changer” shown to that transferred in a true counterflow exchanger of the same area and ter-
minal fluid temperatures. Values of Y(R, ¥) are given graphically in Perry’s handbook.” It
may be seen that Y(R, ¥) is always less than unity.

Discharge of air from a large tank. It is desired to withdraw 51b,,/s from a large storage tank
through an equivalent length of 55 ft of new steel pipe 2.067 in. in diameter. The air undergoes
a sudden contraction on entering the pipe, and the accompanying contraction loss is not in-
cluded in the equivalent length of the pipe. Can the desired flow rate be obtained if the air in
the tank is at 150 psig and 70°F and the pressure at the downstream end of the pipe is 50 psig?
The effect of the sudden contraction may be estimated with reasonable accuracy by con-
sidering the entrance to consist of an ideal nozzle converging to a cross section equal to that
of the pipe, followed by a section of pipe with e, = 0.5 (see Table 7.5-1). The behavior of the
nozzle can be determined from Eq. 15.5-34 by assuming the cross sectional area S, to be infi-
nite and C, to be unity.
Answer: Yes. The calculated discharge rate is about 6 1b,, /s if isothermal flow is assumed (see
Problem 15B.3) and about 6.3 Ib,,/s for adiabatic flow. The actual rate should be between these
limits for an ambient temperature of 70°F.

Stagnation temperature (Fig. 15C.3). A “total temperature probe,” as shown in the figure, is
inserted in a steady stream of an ideal gas at a temperature T; and moving with a velocity v,.
Part of the moving gas enters the open end of the probe and is decelerated to nearly zero veloc-
ity before slowly leaking out of the bleed holes. This deceleration results in a temperature rise,
which is measured by the thermocouple. Since the deceleration is rapid, it is nearly adiabatic.
(a) Develop an expression for the temperature registered by the thermocouple in terms of T,
and v; by using the steady-state macroscopic energy balance, Eq. 15.1-3. Use as your system a
representative stream of fluid entering the probe. Draw reference plane 1 far enough up-
stream that conditions may be assumed unaffected by the probe, and reference plane 2 in the
probe itself. Assume zero velocity at plane 2, neglect radiation, and neglect conduction of
heat from the fluid as it passes between the reference planes.

(b) What is the function of the bleed holes?

Answer: @) T, — T, = v}/ Zép. Temperature rises within about 2% of those given by this ex-
pression and may be obtained with well-designed probes.

The macroscopic entropy balance.
(a) Show that integration of the equation of change for entropy (Eq. 11D.1-3) over the flow
system of Fig. 7.0-1 leads to

d & 1
Et Stot = —A(S + pU—T)w + &stot + QS (15D.1-1)
in which
St = f pSdV (15D.1-2)
‘r/
Soror = — f %((q ‘Vin T) + (m:V)dV (15D.1-3)
‘/
No. 30 I-C thermocouple
Steel 0.025" sphere
' 0.071" 0.095"

e Fig. 15C.3. A “total temperature
Plastic  Three 0.023" bleed holes probe.” [H. C. Hottel and A. Kalitin-
equally spaced sky, J. Appl. Mech., 12, A25 (1945).]
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(b) Give a term-by-term interpretation of the equations in (a).

(o) Is the term in g, ., involving the stress tensor the same as the energy dissipation by vis-
cous heating?

Derivation of the macroscopic energy balance. Show how to integrate Eq. (N) of Table 11.4-
1 over the entire volume V of a flow system, which, because of moving parts, may be a func-
tion of time. With the help of the Gauss divergence theorem and the Leibniz formula for
differentiating an integral, show that this gives the macroscopic total energy balance Eq. 15.1-
2. What assumptions are made in the derivation? How is W,, to be interpreted? (Hint: Some
suggestions on solving this problem may be obtained by studying the derivation of the
macroscopic mechanical energy balance in §7.8.)

Operation of a heat-exchange device (Fig. 15D.3). A hot fluid enters the circular tube of ra-
dius R, at position z = 0 and moves in the positive z direction to z = L, where it leaves the
tube and flows back along the outside of that tube in the annular space. Heat is exchanged be-
tween the fluid in the tube and that in the annulus. Also heat is lost from the annulus to the
air outside, which is at the ambient air temperature T, (a constant). Assume that the density
and heat capacity are constant. Use the following notation:

U, = overall heat transfer coefficient between the fluid in the tube and the fluid in
the annular space

U, = overall heat transfer coefficient between the fluid in the annulus and the air
at temperature T,
T,(z) = temperature of the fluid in the tube
T,(z) = temperature of the fluid in the annular space

w = mass flow rate through the system (a constant)

If the fluid enters at the inlet temperature T;, what will be the outlet temperature T,? It is sug-
gested that the following dimensionless quantities be used: @, = (T; — T))/(T; — T)), N, =
2aRUL/w C,, and { = z/L.

Discharge of a gas from a moving tank (Fig. 15.5-6). Equation 15.5-38 in Example 15.5-4 was
obtained by setting d®/dt equal to zero, a procedure justified only because the tank was said
to be stationary. It is nevertheless true that Eq. 15.5-38 is correct for moving tanks as well.
This statement can be proved as follows:

(a) Consider a tank such as that pictured in Fig. 15.5-6, but moving at a velocity v that is
much larger than the relative velocity of fluid and tank in the region to the left of surface 1.
Show that for this region of the tank the macroscopic momentum balance becomes

—(Ff—')S + Uy f p1d5> - mtot(dd_v - g) (15D.4'1)
5
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15D.5.

in which the fluid velocity is assumed to be uniform and equal to v. Then take the dot prod-
uct of both sides of Eq. 15D.4-1 with v to obtain

dK dq)) (15D.4-2)

W, = mtot(ﬁ + ar
where 0®/t is neglected.

(b) Substitute this result into the macroscopic energy balance, and continue as in Example
15.5-4.

The classical Bernoulli equation. Below Eq. 15.2-5 we have emphasized that the mechanical
energy balance and the total energy balance contain different information, since the first is a
consequence of conservation of momentum, whereas the second is a consequence of conser-
vation of energy.

For the steady-state flow of a compressible fluid with zero transport properties, both bal-
ances lead to the classical Bernoulli equation. The derivation based on the equation of motion
was given in Example 3.5-1. Make a similar derivation for the steady state energy equation,
assuming zero transport properties, that is, for isentropic flow.?

®R. B. Bird and M. D. Graham, in Handbook of Fluid Dynamics (R. W. Johnson, ed.), CRC Press, Boca
Raton, Fla. (1998), p. 3-13.



Chapter 16

Energy Transport by Radiation

§16.1 The spectrum of electromagnetic radiation
§16.2 Absorption and emission at solid surfaces

§16.3 Planck’s distribution law, Wien’s displacement law, and the Stefan-Boltzmann
law

§l6.4 Direct radiation between black bodies in vacuo at different temperatures
§16.5° Radiation between nonblack bodies at different temperatures

§16.6° Radiant energy transport in absorbing media

We concluded Part I of this book with a chapter about fluids that cannot be described by
Newton’s law of viscosity, but that require various kinds of nonlinear and time-depen-
dent expressions. We now end Part II with a brief discussion of radiative energy trans-
port, which cannot be described by Fourier’s law.

In Chapters 9 to 15 the transport of energy by conduction and by convection has
been discussed. Both modes of transport rely on the presence of a material medium. For
heat conduction to occur, there must be temperature inequalities between neighboring
points. For heat convection to occur, there must be a fluid that is free to move and trans-
port energy with it. In this chapter, we turn our attention to a third mechanism for en-
ergy transport—namely, radiation. Radiation is basically an electromagnetic mechanism,
which allows energy to be transported with the speed of light through regions of space
that are devoid of matter. The rate of energy transport between two “black” bodies in a
vacuum is proportional to the difference of the fourth powers of their absolute tempera-
tures. This mechanism is qualitatively very different from the three transport mecha-
nisms considered elsewhere in this book: momentum transport in Newtonian fluids,
proportional to the velocity gradient; energy transport by heat conduction, proportional
to a temperature gradient; and mass transport by diffusion, proportional to a concentra-
tion gradient. Because of the uniqueness of radiation as a means of transport and be-
cause of the importance of radiant heat transfer in industrial calculations, we have
devoted a separate chapter to this subject.

A thorough understanding of the physics of radiative transport requires the use of
several different disciplines:'” electromagnetic theory is needed to describe the essen-
tially wavelike nature of radiation, in particular the energy and pressure associated with
electromagnetic waves; thermodynamics is useful for obtaining some relations among

"'M. Planck, Theory of Heat, Macmillan, London (1932), Parts IIl and 1V. Nobel Laureate Max Karl
Ernst Ludwig Planck (1858-1947) was the first to hypothesize the quantization of energy and thereby
introduce a new fundamental constant i (Planck’s constant); his name is also associated with the
“Fokker—-Planck” equation of stochastic dynamics.

2 W. Heitler, Quantum Theory of Radiation, 2nd edition, Oxford University Press (1944).
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the “bulk properties” of an enclosure containing radiation; quantum mechanics is neces-
sary in order to describe in detail the atomic and molecular processes that occur when
radiation is produced within matter and when it is absorbed by matter; and statistical
mechanics is needed to describe the way in which the energy of radiation is distributed
over the wavelength spectrum. All we can do in this elementary discussion is define the
key quantities and set forth the results of theory and experiment. We then show how
some of these results can be used to compute the rate of heat transfer by radiant
processes in simple systems.

In 816.1 and §16.2 we introduce the basic concepts and definitions. Then in §16.3
some of the principal physical results concerning black-body radiation are given. In the
following section, §16.4, the rate of heat exchange between two black bodies is discussed.
This section introduces no new physical principles, the basic problems being those of
geometry. Next, §16.5 is devoted to an extension of the preceding section to nonblack
surfaces. Finally, in the last section, there is a brief discussion of radiation processes in
absorbing media.’

§16.1 THE SPECTRUM OF ELECTROMAGNETIC RADIATION

When a solid body is heated—for example, by an electric coil—the surface of the solid
emits radiation of wavelength primarily in the range 0.1 to 10 microns. Such radiation is
usually referred to as thermal radiation. A quantitative description of the atomic and mol-
ecular mechanisms by which the radiation is produced is given by quantum mechanics
and is outside the scope of this discussion. A qualitative description, however, is possi-
ble: When energy is supplied to a solid body, some of the constituent molecules and
atoms are raised to “excited states.” There is a tendency for the atoms or molecules to re-
turn spontaneously to lower energy states. When this occurs, energy is emitted in the
form of electromagnetic radiation. Because the emitted radiation results from changes in
the electronic, vibrational, and rotational states of the atoms and molecules, the radiation
will be distributed over a range of wavelengths.

Actually, thermal radiation represents only a small part of the total spectrum of elec-
tromagnetic radiation. Figure 16.1-1 shows roughly the kinds of mechanisms that are re-
sponsible for the various parts of the radiation spectrum. The various kinds of radiation
are distinguished from one another only by the range of wavelengths they include. In a
vacuum, all these forms of radiant energy travel with the speed of light c. The wave-
length A, characterizing an electromagnetic wave, is then related to its frequency v by the
equation

A= (16.1-1D)

<o

in which ¢ = 2.998 X 10* m/s. In the visible part of the spectrum, the various wave-
lengths are associated with the “color” of the light.

For some purposes, it is convenient to think of electromagnetic radiation from a cor-
puscular point of view. Then we associate with an electromagnetic wave of frequency va
photon, which is a particle with charge zero and mass zero with an energy given by

e=hv (16.1-2)

* For additional information on radiative heat transfer and engineering applications, see the
comprehensive textbook by R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 3rd edition,
Hemisphere Publishing Co., New York (1992). See also J. R. Howell and M. P. Mengéc, in Handbook of
Heat Transfer, 3rd edition, (W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, eds.), McGraw-Hill, New York
(1998), Chapter 7.
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Fig. 16.1-1. The spectrum of electromagnetic radiation, showing
roughly the mechanisms by which various wavelengths of radiation
are produced (1 A = Angstrom unit = 10* cm = 0.1 nm; 1w = 1 mi-
cron = 107° m).

Here h = 6.626 X 107 J's is Planck’s constant. From these two equations and the infor-
mation from Fig. 16.1-1, we see that decreasing the wavelength of electromagnetic radia-
tion corresponds to increasing the energy of the corresponding photons. This fact ties in
with the various mechanisms that produce the radiation. For example, relatively small
energies are released when a molecule decreases its speed of rotation, and the associated
radiation is in the infrared. On the other hand, relatively large energies are released
when an atomic nucleus goes from a high energy state to a lower one, and the associated
radiation is either gamma- or x-radiation. The foregoing statements also make it seem
reasonable that the radiant energy emitted from heated objects will tend toward shorter
wavelengths (higher energy photons) as the temperature of the body is raised.

Thus far we have sketched the phenomenon of the emission of radiant energy or pho-
tons when a molecular or atomic system goes from a high to a low energy state. The re-
verse process, known as absorption, occurs when the addition of radiant energy to a
molecular or atomic system causes the system to go from a low to a high energy state.
The latter process is then what occurs when radiant energy impinges on a solid surface
and causes its temperature to rise.
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§16.2 ABSORPTION AND EMISSION AT SOLID SURFACES

Having introduced the concepts of absorption and emission in terms of the atomic pic-
ture, we now proceed to the discussion of the same processes from a macroscopic view-
point. We restrict the discussion here to opaque solids.

Radiation impinging on the surface of an opaque solid is either absorbed or re-
flected. The fraction of the incident radiation that is absorbed is called the absorptivity
and is given the symbol a. Also the fraction of the incident radiation with frequency v
that is absorbed is designated by 4,. That is, 4 and a, are defined as

(a) (@)
4= q—() a, = ‘L() (16.2-1,2)

q 9
in which ¢¥dv and 4”dv are the absorbed and incident radiation per unit area per unit
time in the frequency range v to v + dv. For any real body, a, will be less than unity and
will vary considerably with the frequency. A hypothetical body for which 4, is a con-
stant, less than unity, over the entire frequency range and at all temperatures is called a
gray body. That is, a gray body always absorbs the same fraction of the incident radiation
of all frequencies. A limiting case of the gray body is that for which 4, = 1 for all frequen-
cies and all temperatures. This limiting behavior defines a black body.

All solid surfaces emit radiant energy. The total radiant energy emitted per unit area
per unit time is designated by ¢, and that emitted in the frequency range » to v + dv is
called 4?dv. The corresponding rates of energy emission from a black body are given the
symbols i and g{odv. In terms of these quantities, the emissivity for the total radiant-en-
ergy emission as well as that for a given frequency are defined as

@ ©

e=T- =T (16.2-3, 4)
qb qbv

The emissivity is also a quantity less than unity for real, nonfluorescing surfaces and is
equal to unity for black bodies. At any given temperature the radiant energy emitted by
a black body represents an upper limit to the radiant energy emitted by real, nonfluo-
rescing surfaces.

We now consider the radiation within an evacuated enclosure or “cavity” with
isothermal walls. We imagine that the entire system is at equilibrium. Under this condi-
tion, there is no net flux of energy across the interfaces between the solid and the cavity.
We now show that the radiation in such a cavity is independent of the nature of the
walls and dependent solely on the temperature of the walls of the cavity. We connect
two cavities, the walls of which are at the same temperature, but are made of two differ-
ent materials, as shown in Fig. 16.2-1. If the radiation intensities in the two cavities were
different, there would be a net transport of radiant energy from one cavity to the other.
Because such a flux would violate the second law of thermodynamics, the radiation in-
tensities in the two cavities must be equal, regardless of the compositions of the cavity
surfaces. Furthermore, it can be shown that the radiation is uniform and unpolarized
throughout the cavity. This cavity radiation plays an important role in the development

Material 1 Material 2

Fig. 16.2-1. Thought experiment for proof that cavity radi-
ation is independent of the wall materials.
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of Planck’s law. We designate the intensity of the radiation as ¢**”. This is the radiant
energy that would impinge on a solid surface of unit area placed anywhere within the
cavity.

We now perform two additional thought experiments. In the first, we put into a cav-
ity a small black body at the same temperature as the walls of the cavity. There will be
no net interchange of energy between the black body and the cavity walls. Hence the en-
ergy impinging on the black-body surface must equal the energy emitted by the black
body:

q(cav) — qgé’) (162'5)

From this result, we draw the important conclusion that the radiation emitted by a black
body is the same as the equilibrium radiation intensity within a cavity at the same tem-
perature.

In the second thought experiment, we put a small nonblack body into the cavity,
once again specifying that its temperature be the same as that of the cavity walls. There
is no net heat exchange between the nonblack body and the cavity walls. Hence we can
state that the energy absorbed by the nonblack body will be the same as that radiating
from it:

aq ™ =q° (16.2-6)
Comparison of Eqs. 16.2-5 and 6 leads to the result
a= gg (16.2-7)
o
The definition of the emissivity e in Eq. 16.2-3 allows us to conclude that
e=a (16.2-8)

This is Kirchhoff's law,' which states that at a given temperature the emissivity and ab-
sorptivity of any solid surface are the same when the radiation is in equilibrium with the
solid surface. It can be shown that Eq. 16.2-8 is also valid for each wavelength separately:

e, =4, (16.2-9)

Values of the total emissivity e for some solids are given in Table 16.2-1. Actually, e de-
pends also on the frequency and on the angle of emission, but the averaged values given
there have found widespread use. The tabulated values are, with a few exceptions, for
emission normal to the surface, but they may be used for hemispheric emissivity, partic-
ularly for rough surfaces. Unoxidized, clean, metallic surfaces have very low emissivi-
ties, whereas most nonmetals and metallic oxides have emissivities above 0.8 at room
temperature or higher. Note that emissivity increases with increasing temperature for
nearly all materials.

We have indicated that the radiant energy emitted by a black body is an upper limit
to the radiant energy emitted by real surfaces and that this energy is a function of the
temperature. It has been shown experimentally that the total emitted energy flux from a
black surface is

g¥ = oT* (16.2-10)

! G. Kirchhoff, Monatsber. d. preuss. Akad. d. Wissenschaften, p. 783 (1859); Poggendorffs Annalen, 109,
275-301 (1860). Gustav Robert Kirchhoff (1824-1887) published his famous laws for electrical circuits
while still a graduate student; he taught at Breslau, Heidelberg, and Berlin.
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a

Table 16.2-1 The Total Emissivities of Various Surfaces for Perpendicular Emission

T(°R) e T(°R) e

Aluminum

Highly polished,98.3% pure 900 0.039 1530 0.057

Oxidized at 1110°F 850 0.11 1570 0.19

Al-coated roofing 560 0.216
Copper

Highly polished, electrolytic 636 0.018

Oxidized at 1110°F 850 0.57 1570 0.57
Iron

Highly polished, electrolytic 810 0.052 900 0.064

Completely rusted 527 0.685

Cast iron, polished 852 0.21

Cast iron, oxidized at 1100°F 850 0.64 1570 0.78
Asbestos paper 560 0.93 1160 0.945
Brick

Red, rough 530 0.93

Silica, unglazed, rough 2292 0.80

Silica, glazed, rough 2472 0.85
Lampblack, 0.003 in. or thicker 560 0.945 1160 0.945
Paints

Black shiny lacquer on iron 536 0.875

White lacquer 560 0.80 660 0.95

Oil paints, 16 colors 672 0.92-0.96

Aluminum paints, varying age 672 0.27-0.67
and lacquer content
Refractories, 40 different

Poor radiators 1570 0.65-0.70 2290 0.75
Good radiators 1570 0.80-0.85 2290 0.85-0.90
Water, liquid, thick layerb 492 0.95 672 0.963

? Selected values from the table compiled by H. C. Hottel for W. H. McAdams, Heat
Transmission, 3rd edition, McGraw-Hill, New York (1954), pp. 472-479.

¥ Calculated from spectroscopic data.

in which T is the absolute temperature. This is known as the Stefan—Boltzmann law.> The
Stefan-Boltzmann constant o has been found to have the value of 0.1712 X 107® Btu/hr -
ft?+ R or 1.355 X 10 " cal/s * cm? - K. In the next section we indicate two routes by which
this important formula has been obtained theoretically. For nonblack surfaces at tempera-
ture T the emitted energy flux is

4° = eoT* (16.2-11)

27, Stefan, Sitzber. Akad. Wiss. Wien, 79, part 2, 391-428 (1879); L. Boltzmann, Ann. Phys. (Wied. Ann.),
Ser. 2, 22, 291-294 (1884). Slovenian-born Josef Stefan (1835-1893), rector of the University of Vienna
(1876-1877), in addition to being known for the law of radiation that bears his name, also contributed to
the theory of multicomponent diffusion and to the problem of heat conduction with phase change.
Ludwig Eduard Boltzmann (1844-1906), who held professorships in Vienna, Graz, Munich, and Leipzig,
developed the basic differential equation for gas kinetic theory (see Appendix D) and the fundamental
entropy-probability relation, S = K In W, which is engraved on his tombstone in Vienna; K is called the
Boltzmann constant.



§16.3 Planck’s Distribution Law, Wien's Displacement Law, and the Stefan-Boltzmann Law 493

in which e must be evaluated at temperature T. The use of Egs. 16.2-10 and 11 to calcu-
late radiant heat transfer rates between heated surfaces is discussed in §§16.4 and 5.

We have mentioned that the Stefan-Boltzmann constant has been experimentally
determined. This implies that we have a true black body at our disposal. Solids with
perfectly black surfaces do not exist. However, we can get an excellent approximation
to a black surface by piercing a very small hole in the wall of an isothermal cavity. The
hole itself is then very nearly a black surface. The extent to which this is a good ap-
proximation may be seen from the following relation, which gives the effective emis-
sivity of the hole, ey, in a rough-walled enclosure in terms of the actual emissivity e
of the cavity walls and the fraction f of the total internal cavity area that is cut away
by the hole:

- & -
Chole = et Al —e) (16.2-12)

If e = 0.8 and f = 0.001, then ey, = 0.99975. Therefore, 99.975% of the radiation that falls
on the hole will be absorbed. The radiation that emerges from the hole will then be very
nearly black-body radiation.

§16.3 PLANCK'S DISTRIBUTION LAW, WIEN’'S DISPLACEMENT
LAW, AND THE STEFAN-BOLTZMANN LAW'??

The Stefan-Boltzmann law may be deduced from thermodynamics, provided that cer-
tain results of the theory of electromagnetic fields are known. Specifically, it can be
shown that for cavity radiation the energy density (that is, the energy per unit volume)
within the cavity is

u =

IS

g9 (16.3-1)

Since the radiant energy emitted by a black body depends on temperature alone, the
energy density #” must also be a function of temperature only. It can further be
shown that the electromagnetic radiation exerts a pressure p*’ on the walls of the cav-
ity given by

p =10 (16.3-2)

The preceding results for cavity radiation can also be obtained by considering the cavity
to be filled with a gas made up of photons, each endowed with an energy #» and mo-
mentum h»/c. We now apply the thermodynamic formula

u) _ %Py _
(BV)T = T(&T>V p (16.3-3)
to the photon gas or radiation in the cavity. Insertion of U” = Vu® and p = 5u® into
this relation gives the following ordinary differential equation for #"”(T):

()
Ly = %T%u? ~ 10 (16.3-4)

']. de Boer, Chapter VII in Leerboek der Natuurkunde, 3rd edition, (R. Kronig, ed.), Scheltema and
Holkema, Amsterdam (1951).

2 H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edition, Wiley, New York
(1985), pp. 78-79.

M. Planck, Vorlesungen iiber die Theorie der Wiirmestrahlung, 5th edition, Barth, Leipzig (1923); Ann.
Phys., 4, 553-563, 564-566 (1901).
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This equation can be integrated to give
u" = pT* (16.3-5)

in which b is a constant of integration. Combination of this result with Eq. 16.3-1 gives
the radiant energy emitted from the surface of a black body per unit area per unit time:

g = u" = % T=oT* (16.3-6)
This is the Stefan—-Boltzmann law. Note that the thermodynamic development does not
predict the numerical value of .

The second way of deducing the Stefan—Boltzmann law is by integrating the Planck
distribution law. This famous equation gives the radiated energy flux g3 from a black sur-
face in the wavelength range A to A + dA:

€ _ 2’7TC2h 1
2.
A5 eMAT _

(16.3-7)

Here h is Planck’s constant. The result can be derived by applying quantum statistics to a
photon gas in a cavity, the photons obeying Bose-Einstein statistics.*” The Planck distri-
bution, which is shown in Fig. 16.3-1, correctly predicts the entire energy versus wave-
length curve and the shift of the maximum toward shorter wavelengths at higher
temperatures. When Eq. 16.3-7 is integrated over all wavelengths, we get

g9 = fo gda

= 2mc?h X Wd)\

= 27;(}?4 fow exxj 1 dx

-2 (3 )

_ 27;2‘34 (%‘) (16.3-8)

In the above integration we changed the variable of integration from A to x = ch/AKT.
Then the integration over x was performed by expanding 1/(¢* — 1) in a Taylor series in
¢* (see §C.2) and integrating term by term. The quantum statistical approach thus gives
the details of the spectral distribution of the radiation and also the expression for the Ste-
fan—-Boltzmann constant,

x*

fod /8

N
3

(16.3-9)

g =

1

w

having the value 1.355 X 107*2 cal/s + cm® - K, which is confirmed within experimental
uncertainty by direct radiation measurements. Equation 16.3-9 is an amazing formula,
interrelating as it does the o from radiation, the K from statistical mechanics, the speed of
light ¢ from electromagnetism, and the h from quantum mechanics.

In addition to obtaining the Stefan-Boltzmann law from the Planck distribution, we
can get an important relation pertaining to the maximum in the Planck distribution. First

*]. E. Mayer and M. G. Mayer, Statistical Mechanics, Wiley, New York (1940), pp. 363-374.
*L.D. Landau and E. M. Lifshitz, Statistical Physics, 3rd edition, Part 1, Pergamon, Oxford (1980), §63.
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we rewrite Eq. 16.3-7 in terms of x and then set dg{y/dx = 0. This gives the following

equation for x,,,,, which is the value of x for which the Planck distribution shows a maxi-

mum:
Xppax = D(1 — e~ m=x) (16.3-10)
The solution to this equation is found numerically to be x,,,, = 4.9651.... Hence at a
given temperature T
_ch
Amax] = 1y (16.3-11)

Inserting the values of the universal constants and the value for x_,,, we then get
Amax] = 0.2884 cm K (16.3-12)

This result, originally found experimentally,® is known as Wien's displacement law. It is
useful primarily for estimating the temperature of remote objects. The law predicts, in
agreement with experience, that the apparent color of radiation shifts from red (long
wavelengths) toward blue (short wavelengths) as the temperature increases.

Finally, we may reinterpret some of our previous remarks in terms of the Planck dis-
tribution law. In Fig. 16.3-2 we have sketched three curves: the Planck distribution law
for a hypothetical black body, the distribution curve for a hypothetical gray body, and a
distribution curve for some real body. It is thus clear that when we use the total emissiv-
ity values, such as those in Table 16.2-1, we are just accounting empirically for the devia-
tions from Planck’s law over the entire spectrum.

We should not leave the subject of