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average bulk temperature and po is the viscosity at the arithmetic average wall tempera- 
ture.' Then we may write 

Nu = Nu(Re, Pr, L /  D, pb/po) (14.3-15) 

This type of correlation seems to have first been presented by Sieder and Tate.2 If, in ad- 
dition, the density varies significantly, then some free convection may occur. This effect 
can be accounted for in correlations by including the Grashof number along with the 
other dimensionless groups. This point is pursued further in 914.6. 

Let us now pause to reflect on the significance of the above discussion for con- 
structing heat transfer correlations. *The heat transfer coefficient h depends on eight 
physical quantities (D ,  (v), p, PO, pb, Cp, k, L). However, Eq. 14.3-15 tells us that this de- 
pendence can be expressed more concisely by giving Nu as a function of only four di- 
mensionless groups (Re, Pr, L I D ,  pb/pO). Thus, instead of taking data on h for 5 values 
of each of the eight individual physical quantities (58 tests), we can measure h for 5 
values of the dimensionless groups (5"ests)-a rather dramatic saving of time and 
effort. 

A good global view of heat transfer in circular tubes with nearly constant wall tem- 
perature can be obtained from the Sieder and Tate2 correlation shown in Fig. 14.3-2. This 
is of the form of Eq. 14.3-15. It has been found empiri~ally~,~ that transition to turbulence 
usually begins at about Re = 2100, even when the viscosity varies appreciably in the ra- 
dial direction. 

For highly turbulent flow, the curves for LID > 10 converge to a single curve. For 
Re > 20,000 this curve is described by the equation 

This equation reproduces available experimental data within about ?20% in the ranges 
lo4 < Re < 105and0.6 < Pr < 100. 

For laminar flow, the descending lines at the left are given by the equation 

One can arrive at the viscosity ratio by inserting into the equations of change a temperature- 
dependent viscosity, described, for example, by a Taylor expansion about the wall temperature: 

When the series is truncated and the differential quotient is approximated by a difference quotient, we get 

Thus, the viscosity ratio appears in the equation of motion and hence in the dimensionless correlation. 
E. N. Sieder and G. E. Tate, Ind. Eng. Chem., 28,1429-1435 (1936). 
A. P. Colburn, Trans. AIChE, 29,174-210 (1933). Alan Philip Colburn (1904-1955), provost at the 

University of Delaware (1950-1955), made important contributions to the fields of heat and mass transfer, 
including the "Chilton-Colburn relations." 
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Fig. 14.3-2. Heat transfer coefficients for fully developed flow in smooth tubes. The lines for lami- 
nar flow should not be used in the range RePrD/L < 10, which corresponds to (To - Tb),/(T0 - T,), 
< 0.2. The laminar curves are based on data for RePrD/L >> 10 and nearly constant wall tem- 
perature; under these conditions h, and kl, are indistinguishable. We recommend using k,, as op- 
posed to the h, suggested by Sieder and Tate, because this choice is conservative in the usual heat- 
exchanger design calculations [E. N. Sieder and G. E. Tate, Ind. Eng. Chem., 28,1429-1435 (1936)l. 

which is based on Eq. (C) of Table 14.2-l4 and Problem 12D.4. The numerical coefficient 
in Eq. (C) has been multiplied by a factor of $ to convert from h,,, to hln, and then further 
modified empirically to account for the deviations due to variable physical properties. 
This illustrates how a satisfactory empirical correlation can be obtained by modifying 
the result of an analytical derivation. Equation 14.3-17 is good within about 20% for RePr 
D / L  > 10, but at lower values of RePr D / L  it underestimates hl, considerably. The occur- 
rence of Pr1'3 in Eqs. 14.3-16 and 17 is consistent with the large Prandtl number asymp- 
tote found in 9913.6 and 12.4. 

The transition region, roughly 2100 < Re < 8000 in Fig. 14.3-2, is not well understood 
and is usually avoided in design if possible. The curves in this region are supported by 
experimental measurements2 but are less reliable than the rest of the plot. 

The general characteristics of the curves in Fig. 14.3-2 deserve careful study. Note 
that for a heated section of given L  and D  and a fluid of given physical properties, the or- 
dinate is proportional to the dimensionless temperature rise of the fluid passing 
through-that is, (T,, - T,,)/(T, - Tb)ln Under these conditions, as the flow rate (or 
Reynolds number) is increased, the exit fluid temperature will first decrease until Re 
reaches about 2100, then increase until Re reaches about 8000, and then finally decrease 
again. The influence of L / D  on h,, is marked in laminar flow but becomes insignificant 
for Re > 8000 with L I D  > 60. 

Equation (C) is an asymptotic solution of the Graetz problem, one of the classic problems of heat 
convection: L. Graetz, Ann. d. Physik, 13,79-94 (1883), 25,337-357 (1885); see J. Leveque, Ann. Mines 
(Series 12), 13,201-299,305-362,381415 (1928) for the asymptote in Eq. (C). An extensive summary 
can be found in M. A. Ebadian and Z. F. Dong, Chapter 5 of Handbook of Heat Transfer, 3rd edition, 
(W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, eds.), McGraw-Hill, New York (1998). 
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Note also that Fig. 14.3-2 somewhat resembles the friction-factor plot in Fig. 6.2-2, al- 
though the physical situation is quite different. In the highly turbulent range (Re > 
10,000) the heat transfer ordinate agrees approximately with f/2 for the long smooth 
pipes under consideration. This was first pointed out by Colburn," who proposed the fol- 
lowing empirical analogy for long, smooth tubes: 

where S is the area of the tube cross section, w is the mass rate of flow through the tube, 
and f/2 is obtainable from Fig. 6.2-2 using Re = Dw/Sp = 4w/n-Dp. Clearly the analogy 
of Eq. 14.3-18 is not valid below Re = 10,000. For rough tubes with fully developed tur- 
bulent flow the analogy breaks down completely, because f is affected more by rough- 
ness than j, is. 

One additional remark about the use of Fig. 14.3-2 has to do with the application to 
conduits of noncircular cross section. For highly turbulent flow, one may use the mean 
hydraulic radius of Eq. 6.2-16. To apply that empiricism, D is replaced by 4R, every- 
where in the Reynolds and Nusselt numbers. 

Air at 70°F and 1 atm is to be pumped through a straight 2-in. i.d. tube at a rate of 70 IbJhr. 
A section of the tube is to be heated to an inside wall temperature of 250°F to raise the air tem- 

Design of a perature to 230°F. What heated length is required? 
Heater 

SOLUTION 

The arithmetic average bulk temperature is T,, = 150°F, and the film temperatur_e is Tf = 

i(150 + 250) = 200°F. At this temperature the properties of air are p = 0.052 lb,/ft hr, C, = 0.242 
Btu/lb, F, k = 0.0180 Btu/hr. ft . F, and Pr = Crp/k = 0.70. The viscosities of air at 150°F and 
250°F are 0.049 and 0.055 Ib,/ft . hr, respectively, so that the viscosity ratio is pb/pO = 
0.049/0.055 = 0.89. 

The Reynolds number, evaluated at the film temperature, 200°F, is then 

From Fig. 14.3-1 we obtain 

When this is solved for L/D we get 

Hence the required length is 

If Reb had been much smaller, it would have been necessary to estimate LID before reading 
Fig. 14.3-2, thus initiating a trial-and-error process. 
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Note that in this problem we did not have to calculate h. Numerical evaluation of h is 
necessary, however, in more complicated problems such as heat exchange between two fluids 
with an intervening wall. 

514.4 HEAT TRANSFER COEFFICIENTS FOR FORCED 
CONVECTION AROUND SUBMERGED OBJECTS 

Another topic of industrial importance is the transfer of heat to or from an object around 
which a fluid is flowing. The object may be relatively simple, such as a single cylinder or 
sphere, or it may be more complex, such as a "tube bundle" made up of a set of cylindri- 
cal tubes with a stream of gas or liquid flowing between them. We examine here only a 
few selected correlations for simple systems: the flat plate, the sphere, and the cylinder. 
Many additional correlations may be found in the references cited in the introduction to 
the chapter. 

Flow Along a Flat Plate 

We first examine the flow along a flat plate, oriented parallel to the flow, with its surface 
maintained at To and the approaching stream having a uniform temperature T, and a 
uniform velocity v,. The heat transfer coefficient hlOc = qo/(To - T,) and the friction fac- 
tor fi,, = T , / ; ~ V ~  are shown in Fig. 14.1-1. For the laminar region, which normally exists 
near the leading edge of the plate, the following theoretical expressions are obtained (see 
Eq. 4.4-30 as well as Eqs. 12.4-12,12.4-15, and 12.4-16): 

Fig. 14.4-1. Transfer coefficients for a smooth flat plate in tangential flow. Adapted from H. Schlichting, 
Boundary-Layer Theo y, McGraw-Hill, New York (1955), pp. 438-439. 
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As shown in Table 12.4-1, a more accurate value of the numerical coefficient in Eq. 14.4-2 
is that of Pohlhausen-namely, 0.332. If we use this value, then Eq. 14.4-2 gives 

Since the numerical coefficient in Eq. 14.4-3 is the same as that in Eq. 14.4-1, we then 

€9 

for the Colburn analogy between heat transfer and fluid friction. This was to be ex- 
pected, because there is no "form drag" in this flow geometry. 

Equation 14.4-4 was derived for fluids with constant physical properties.' When the 
physical properties are evaluated at the film temperature Ti = :(To + T,), Eq. 14.4-3 is 
known to work well for gases.* The analogy of Eq. 14.4-4 is accurate within 2% for Pr > 
0.6, but becomes inaccurate at lower Prandtl numbers. 

For highly turbulent flows, the Colburn analogy still holds with fair accuracy, with 
f,,, given by the empirical curve in Fig. 14.4-1. The transition between laminar and turbu- 
lent flow resembles that for pipes in Fig. 14.3-1, but the limits of the transition region are 
harder to predict. For smooth, sharp-edged flat plates in an isothermal flow the transi- 
tion usually begins at a Reynolds number Re, = xv,p/p of 100,000 to 300,000 and is al- 
most complete at a 50% higher Reynolds number. 

Flow Around a Sphere 

In Problem 10B.1 it is shown that the Nusselt number for a sphere in a stationary fluid is 
2. For the sphere with constant surface temperature To in a flowing fluid approaching 
with a uniform velocity v,, the mean Nusselt number is given by the following empiri- 
cism3 

Nu, = 2 + 0.60 ~ e ' / '  Pr1l3 (14.4-5) 

This result is useful for predicting the heat transfer to or from droplets or bubbles. 
Another correlation that has proven successful4 is 

Nu,, = 2 + (0.4 Re'12 + 0 .06Re~/~)Pr~ ,~  (14.4-6) 

in which the physical properties appearing in Nu,, Re, and Pr are evaluated at the ap- 
proaching stream temperature. This correlation is recommended for 3.5 < Re < 7.6 x 
10" 0.71 < Pr < 380, and 1.0 < p,/p, < 3.2. In contrast to Eq. 14.4-5, it is not valid in the 
limit that Pr -, w. 

' The result in Eq. 14.4-1 was first obtained by H. Blasius, Z. Math. Phys., 56,l-37 (1908), and that in 
Eq. 14.4-3 by E. Pohlhausen, Z. angew. Math. Mech., 1,115-121 (1921). 

E. R. G. Eckert, Trans. ASME, 56,1273-1283 (1956). This article also includes high-velocity flows, 
for which compressibility and viscous dissipation become important. 

W. E. Ranz and W. R. Marshall, Jr., Chern. Eng. Prog., 48,141-146,173-180 (1952). N.  Frossling, 
Gerlands Beitr. Geophys., 52,170-216 (1938), first gave a correlation of this form, with a coefficient of 0.552 
in lieu of 0.60 in the last term. 

S. Whitaker, Fundamental Principles of Heat Transfer, Krieger Publishing Co., Malabar, Fla. (1977), 
pp. 340-342; AIChE Journal, 18,361-371 (1972). 
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Flow Around a Cylinder 

A cylinder in a stationary fluid of infinite extent does not admit a steady-state solution. 
Therefore the Nusselt number for a cylinder does not have the same form as that for a 
sphere. Whitaker recommends for the mean Nusselt number4 

Nu, = (0.4 ~ e ' / '  + 0.06 R~'/~))PP' ( i"' 
in the range 1.0 < Re < 1.0 X lo5, 0.67 < Pr < 300, and 0.25 < p,/po < 5.2. Here, as in 
Eq. 14.4-6, the values of viscosity and thermal conductivity in Re and Pr are those at the 
approaching stream temperature. Similar results are available for banks of cylinders, 
which are used in certain types of heat exchangers.' 

Another ~orrelation,~ based on a curve-fit of McAdams' compilation of heat transfer 
coefficient data: and on the low-Re asymptote in Problem 12B.6, is 

[ j7'r) + 4.18 Re]p1i3Re1/3Pr1" Nu, = (0.376 ~ e ' / '  + 0.057 Re2/3)~r"3 + 0.92 In - 

This correlation has the proper behavior in the limit that Pr + m, and also behaves prop- 
erly for small values of the Reynolds number. This result can be used for analyzing the 
steady-state performance of hot-wire anemometers, which typically operate at low 
Reynolds numbers. 

Flow Around Other Objects 

We learn from the preceding three discussions that, for the flow around objects of shapes 
other than those described above, a fairly good guess for the heat transfer coefficients 
can be obtained by using the relation 

Nu, -  NU,^,, = 0.6 Re1l2 Pr1I3 (14.4-9) 

in which Nu,,o is the mean Nusselt number at zero Reynolds number. This generaliza- 
tion, which is shown in Fig. 14.4-2, is often useful in estimating the heat transfer from ir- 
regularly shaped objects. 

- 8 

1.5 Cylinders (Eq. 14.4-8) 

Flat plates (Eq. 14.4-2) 

0.5 

W. E. Stewart (to be published). 
W. H. McAdams, Heat Transmission, 3rd edition, McGraw-Hill, New York (1954), p. 259. 

Spheres (Eq. 14.4-5) and Eq. 14.4-9 Fig. 14.4-2. Graph comparing the 
0 I I I I I Nusselt numbers for flow around flat 
o.l lo loo lo3 lo4 lo5 plates, spheres, and cylinders with 

Reynolds number Eq. 14.4-9. 
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514.5 HEAT TRANSFER COEFFICIENTS FOR FORCED 
CONVECTION THROUGH PACKED BEDS 

Heat transfer coefficients between particles and fluid in packed beds are important in the 
design of fixed-bed catalytic reactors, absorbers, driers, and pebble-bed heat exchangers. 
The velocity profiles in packed beds exhibit a strong maximum near the wall, attribut- 
able partly to the higher void fraction there and partly to the more ordered interstitial 
passages along this smooth boundary. The resulting segregation of the flow into a fast 
outer stream and a slower interior one, which mix at the exit of the bed, leads to compli- 
cated behavior of mean Nusselt numbers in deep packed beds,' unless the tube-to-parti- 
cle diameter ratio D J D ,  is very large or close to unity. Experiments with wide, shallow 
beds show simpler behavior and are used in the following discussion. 

We define hi,, for a representative volume Sdz of particles and fluid by the following 
modification of Eq. 14.1-5: 

Here a is the outer surface area of particles per unit bed volume, as in 96.4. Equations 6.4- 
5 and 6 give the effective particle size D, as 6/a, = 6(1 - &)/a for a packed bed with void 
fraction E. 

Extensive data on forced convection for the flow of gases2 and liquids3 through shal- 
low packed beds have been critically analyzed4 to obtain the following local heat transfer 
correlation, 

j, = 2.19 ~ e - ~ / ~  + 0.78 Re-0,381 (14.5-2) 

and an identical formula for the mass transfer function j, defined in 922.3. Here the 
Chilton-Colburn j, factor and the Reynolds number are defined by 

In this equation the physical properties are all evaluated at the film temperature T f  = 

$(To - TJ, and Go = w / S  is the superficial mass flux introduced in 96.4. The quantity 4 is 
a particle-shape factor, with a defined value of 1 for spheres and a fitted value4 of 0.92 for 
cylindrical pellets. A related shape factor was used by Gamson5 in Re and j,; the present 
factor + is used in Re only. 

For small Re, Eq. 14.5-2 yields the asymptote 

' H. Martin, Chem. Eng. Sci., 33,913-919 (1978). 
B. W. Gamson, G. Thodos, and 0. A. Hougen, Trans. AIChE, 39,l-35 (1943); C. R. Wilke and 0. A. 

Hougen, Trans. AICkE, 41,445451 (1945). 
L. K. McCune and R. H. Wilhelm, Ind. Eng. Chem., 41,1124-1134 (1949); J. E. Williamson, K. E. 

Bazaire, and C. J. Geankoplis, Ind. Eng. Chem. Fund., 2,126-129 (1963); E. J. Wilson and C. J. Geankoplis, 
Ind. Eng. Chem. Fund., 5,9-14 (1966). 

W. E. Stewart, to be submitted. 
B. W. Gamson, Chem. Eng. Prog., 47,19-28 (1951). 
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consistent with boundary layer theory6 for creeping flow with RePr >> 1. The latter re- 
striction gives Nu >> 1 corresponding to a thin thermal boundary layer relative to 
DJ(1 - E)$. This asymptote represents the creeping-flow mass-transfer data for liquids3 
very well. 

The exponent 5 in Eq. 14.5-3 is a high-Pr asymptote given by boundary layer theory 
for steady laminar flows6 and for steadily driven turbulent flows.7 This dependence is 
consistent with the cited data over the full range Pr > 0.6 and the corresponding range of 
the dimensionless group Sc for mass transfer. 

514.6 HEAT TRANSFER COEFFICIENTS FOR 
FREE AND MIXED CONVECTION1 

Here we build on Example 11.4-5 to summarize the behavior of some important sys- 
tems in the presence of appreciable buoyant forces, first by rephrasing the results ob- 
tained there in terms of Nusselt numbers and then by extension to other situations: (1) 
small buoyant forces, where the thin-boundary-layer assumption of Example 11.4-5 
may not be valid; (2) very large buoyant forces, where turbulence can occur in the 
boundary layer, and (3) mixed forced and free convection. We shall confine ourselves to 
heat transfer between solid bodies and a large quiescent volume of surrounding fluid, 
and to the constant-temperature boundary conditions of Example 11.4-5. Discussions of 
other situations, including transient behavior and duct and cavity flows, are available 
elsewhere.' 

In Example 11.4-5 we saw that for the free convection near a vertical flat plate, the 
principal dimensionless group is GrPr, which is often called the Rayleigh number, Ra. If 
we define the area mean Nusselt number as Nu,, = hH/k = qavgH/k(T0 - TI), then Eq. 
11.4-51 may be written as 

Nu, = c ( G ~ P ~ ) " ~  (14.6-1) 

where C was found to be a weak function of Pr. The heat transfer behavior at moderate 
values of Ra = GrPr is governed, for many shapes of solids, by laminar boundary layers 
of the type described in Example 11.4-5, and the results of those discussions are normally 
used directly. 

However, at small values of GrPr direct heat conduction to the surroundings may 
invalidate the boundary layer result, and at sufficiently high values of GrPr the mecha- 
nism of heat transfer shifts toward random local eruptions or plumes of fluid, producing 
turbulence within the boundary layer. Then the Nusselt number becomes independent 
of the system size. The case of combined forced and free convection (normally referred 
to as mixed convection) is more complex: one must now consider Pr, Gr, and Re as inde- 
pendent variables, and also whether the forced and free convection effects are in the 
same or different directions. Only the former seems to be at all well understood. The de- 
scription of the behavior is further complicated by lack of abrupt transitions between the 
various flow regimes. 

' W. E. Stewart, AIChE Journal, 9,528-535 (1963); R. Pfeffer, Ind. Eng. Chem. Fund., 3,380-383 (1964); 
J. P. Sdrensen and W. E. Stewart, Chem. Eng. Sci., 29,833-837 (1974). See also Example 12.4-3. 

W. E. Stewart, AIChE Journal, 33,2008-2016 (1987); corrigenda 34,1030 (1988). 
' G. D. Raithby and K. G. T. Hollands, Chapter 4 in W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, 

eds., Handbook of Heat Transfer, 3rd edition, McGraw-Hill, New York (1998). 
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It has been shown, however, that simple and reliable predictions of heat transfer 
rates (expressed as area mean Nusselt numbers Nu,) may be obtained for this wide vari- 
ety of flow regimes by empirical combinations of asymptotic expressions: 

a.  NU^^, for conduction in the absence of buoyant forces or forced convection 

b. NU:", for thin laminar boundary layers, as in Example 11.4-5 

c. NU~X'~, for turbulent boundary layers 

d.  NU^^, for pure forced convection 

These are dealt with in the following subsections. 

No Buoyant Forces 

The limiting Nusselt number for vanishingly small free and forced convection is ob- 
tained by solving the heat conduction equation (the Laplace equation, V2T = 0) for con- 
stant, uniform temperature over the solid surface and a different constant temperature at 
infinity. The mean Nusselt number then has the general form 

With K equal to zero for all objects with at least one infinite dimension (e.g., infinitely 
long cylinders or infinitely wide plates). For finite bodies K is nonzero, and an important 
case is that of the sphere for which, according to Problem 10B.1, 

with the characteristic length taken to be the sphere diameter. Oblate ellipsoids of revo- 
lution and circular disks are discussed in Problem 14D.1. 

Thin Laminar Boundary Layers 

For thin laminar boundary layers, the isothermal vertical flat plate is a representative 
system, conforming to Eq. 14.6-1. This equation may be generalized to 

Moreover, the function of Pr and shape can be factored into the product 

Representative values',3 of C, and C, are given in Tables 14.6-1 and 2, respectively. Shape 
factors for a wide variety of other shapes are a~ai lable .~,~ For heated horizontal flat sur- 
faces facing downward and cooled horizontal flat surfaces facing upward, the following 
correlation5 is recommended: 

lam = 0.527 
[I + ( I . ~ / P ~ ) ~ / ~ ~ I ~ / ~  

(Gr~r)'/' 

S. W. Churchill and R. Usagi, AIChE Journal, 23,1121-1128 (1972). 
W. E. Stewart, Int. J .  Heat and Mass Transfer, 14,1013-1031 (1971). 

%. Acrivos, AIChE Journal, 6,584-590 (1960). 
T. Fujii, M. Honda, and I. Morioka, Int. J. Heat and Mass Transfer, 15,755-767 (1972). 
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Table 14.6-1 The Factor C1 in Eq. 14.6-5, and the D in the Nusselt 
Number, for Several Representative Shapesa 
- - 

Vertical Horizontal Horizontal 
Shape + plate platea cylinder Sphere 

CI 1 .O 0.835 0.772 0.878 

" D  in Nu Height H Width W Diameter D Diameter D 

" For a hot upper surface and an insulated lower one, or the reverse for cold 
surfaces. 

Table 14.6-2 The Factor C2 as a Function of the Prandtl Number 

Hg Gases Water Oils 

Pr 0.022 0.71 1 .O 2.0 4.0 6.0 50 100 2000 

For the vertical plate with a constant-heat-flux boundary condition, the recommended 
power on GrPr is also 1 / 5 .  

Laminar free-convection heat fluxes tend to be small, and a conduction correction 
is often necessary for accurate predictions. The conduction limit is determined by 
solving the equation V2T = 0 for the given geometry, and this leads to the calculation 

, . Then the combined Nusselt number, of a "conduction Nusselt number,"  NU'""^ 
 NU;^"^, is estimated by combining the two contributing Nusselt numbers by an equa- 
tion of the form1 

cond n I / n  =  NU^"')^ + (Nu,, ) ] (14.6-8) 

Optimum values of n are shape-dependent, but 1.07 is a suggested rough estimate in the 
absence of specific information. 

Turbulent Boundary Layers 

The effects of turbulence increase gradually, and it is common practice to combine the 
laminar and turbulent contributions as follows:' 

N u P  = [ ( ~ ~ z ~ ~ ) ~  + ( N ~ E ~ ) ~ ] ~ / ~  

Thus for the vertical isothermal flat plate, one writes' 

turb - - 
C3(Gr~r)'/3 

1 + (1.4 x 109/Gr) 

with 

and m = 6. The values of m in Eq. 14.6-9 are heavily geometry-dependent. 
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Mixed Free and Forced Convection 

Finally, one must deal with the problem of simultaneous free and forced convection, and 
this is again done through the use of an empirical combining rule? 

This rule appears to hold reasonably well for all geometries and situations, provided 
only that the forced and free convection have the same primary flow direction. 

EXAMPLE 14.6-1 

Heat Loss by Free 
Convection from a 
Horizontal Pipe 

Estimate the rate of heat loss by free convection from a unit length of a long horizontal pipe, 6 
in. in outside diameter, if the outer surface temperature is 100°F and the surrounding air is at 
1 atm and 80°F. 

SOLUTION 

The properties of air at 1 atm and a film temperature Tf  = 90°F = 550"R are 

Other relevant values are D = 0.5 ft, AT = 20°R, and g = 4.17 X lo8 ft/hr2. From these data we 
obtain 

Then from Eqs. 14.6-4 to 6 and Table 14.6-1 we get 

Nu,  = 0.772 0.671 
(11 + (0.492,0.7291~/~~1~/~ 10.4 x I O ~ ) ~ / '  

The heat transfer coefficient is then 

The rate of heat loss per unit length of the pipe is 

This is the heat loss by convection only. The radiation loss for the same problem is obtained in 
Example 16.5-2. 

E. Ruckenstein, Adv. in Chern. Eng., 13,ll-112 (1987) E. Ruckenstein and R. Rajagopalan, Chem. 
Eng. Communications, 4,15-29 (1980). 
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Y Fig. 14.7-1. Film condensation on a verti- 
cal surface (interfacial temperature dis- 
continuity exaggerated). 

Velocity distribution v J y ,  z 

Temperature distribution T(y, z )  

Vapor 
movement 

thickness 
6(z) 

514.7 HEAT TRANSFER COEFFICIENTS FOR CONDENSATION 
OF PURE VAPORS ON SOLID SURFACES 

The condensation of a pure vapor on a solid surface is a particularly complicated heat 
transfer process, because it involves two flowing fluid phases: the vapor and the conden- 
sate. Condensation occurs industrially in many types of equipment; for simplicity, we 
consider here only the common cases of condensation of a slowly moving vapor on the 
outside of horizontal tubes, vertical tubes, and vertical flat walls. 

The condensation process on a vertical wall is illustrated schematically in Fig. 14.7-1. 
Vapor flows over the condensing surface and is moved toward it by the small pressure 
gradient near the liquid surface.' Some of the molecules from the vapor phase strike the 
liquid surface and bounce off; others penetrate the surface and give up their latent heat 
of condensation. The heat thus released must then move through the condensate to the 
wall, thence to the coolant on the other side of the wall. At the same time, the condensate 
must drain from the surface by gravity flow. 

The condensate on the wall is normally the sole important resistance to heat 
transfer on the condensing wall. If the solid surface is clean, the condensate will usu- 
ally form a continuous film over the surface, but if traces of certain impurities are pre- 
sent, (such as fatty acids in a steam condenser), the condensate will form in droplets. 
"Dropwise condensati~n"~ gives much higher rates of heat transfer than "film con- 
densation," but is difficult to maintain, so that it is common practice to assume film 
condensation in condenser design. The correlations that follow apply only to film 
condensation. 

The usual definition of h,, for condensation of a pure vapor on a solid surface of area 
A and uniform temperature To is 

in which Q is the rate of heat flow into the solid surface, and Td is the dew point of the 
vapor approaching the wall surfacethat is, the temperature at which the vapor would 

Note that there occur small but abrupt changes in pressure and temperature at an interface. These 
discontinuities are essential to the condensation process, but are generally of negligible magnitude in 
engineering calculations for pure fluids. For mixtures, they may be important. See R. W. Schrage, 
Interphase Mass Transfer, Columbia University Press (1953). 

Dropwise condensation and boiling are discussed at length by J. G. Collier and J. R. Thome, 
Convective Boiling and Condensation, 3rd edition, Oxford University Press (1996). 
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condense if cooled slowly at the prevailing pressure. This temperature is very nearly that 
of the liquid at the liquid-gas interface. Therefore h, may be regarded as a heat transfer 
coefficient for the liquid film. 

Expressions for h, have been derived3 for laminar nonrippling condensate flow by ap- 
proximate solution of the equations of energy and motion for a falling liquid film (see 
Problem 14C.1). For film condensation on a horizontal tube of diameter D, length L, and 
constant surface temperature To, the result of Nusselt3 may be written as 

Here w/L is the mass rate of condensation per unit length of tube, and it is understood 
that all the physical properties of the condensate are to be calculated at the film tempera- 
ture, Ti = :(T, + To). 

For moderate temperature differences, Eq. 14.7-2 may be rewritten with the aid of an 
energy balance on the condensate to give 

Equations 14.7-2 and 3 have been confirmed experimentally within 2 10% for single hori- 
zontal tubes. They also seem to give satisfactory results for bundles of horizontal tubesf4 
in spite of the complications introduced by condensate dripping from tube to tube. 

For film condensation on vertical tubes or vertical walls of height L, the theoretical re- 
sults corresponding to Eqs. 14.7-2 and 3 are 

and 

respectively. The quantity r in Eq. 14.7-4 is the total rate of condensate flow from the bot- 
tom of the condensing surface per unit width of that surface. For a vertical tube, r = w/nD, 
where w is the total mass rate of condensation on the tube. For short vertical tubes ( L  < 0.5 ft), 
the experimental values of h, confirm the theory well, but the measured values for long ver- 
tical tubes (L  > 8 ft) may exceed the theory for a given T, - To by  as much as 70%. This dis- 
crepancy is attributed to ripples that attain greatest amplitude on long vertical tubes: 

We now turn to the empirical expressions for turbulent condensate flow. Turbulent 
flow begins, on vertical tubes or walls, at a Reynolds number Re = T / p  of about 350. For 
higher Reynolds numbers, the following empirical formula has been pr~posed:~  

This equation is equivalent, for small T, - To, to the formula 

W. Nusselt, Z. Ver. deutsch. Ing., 60,541-546,596-575 (1916). 
* B. E. Short and H. E. Brown, Proc. General Disc. Heat Transfer, London (19511, pp. 27-31. See also 

D. Butterworth, in Handbook of Heat Exchangev Design (G. F. Hewitt, ed.), Oxford University Press, 
London (1977), pp. 426462. 

W. H. McAdams, Heat Transmission, 3rd edition, McGraw-Hill, New York (1954) p. 333. 
U. Grigull, Forsch. lngenieurwesen, 13,49-57 (1942); Z.  Ver. dtsch. Ing., 86,444-445 (1942). 
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Fig. 14.7-2. Correlation of heat transfer data for film condensa- 
tion of pure vapors on vertical surfaces. [H. Grober, S. Erk, and 
U. Grigull, Die Grundgesetze der Wiirmeiibertragung, 3rd edition, 
Springer-Verlag, Berlin (1955), p. 296.1 

Equations 14.7-4 to 7 are summarized in Fig. 14.7-2, for convenience of making calcula- 
tions and to show the extent of agreement with the experimental data. Somewhat better 
agreement could have been obtained by using a family of lines in the turbulent range to 
represent the effect of Prandtl number. However, in view of the scattering of the data, a 
single line is adequate. 

Turbulent condensate flow is very difficult to obtain on horizontal tubes, unless the 
tube diameters are very large or high temperature differences are encountered. Equa- 
tions 14.7-2 and 3 are believed to be satisfactory up to the estimated transition Reynolds 
number, Re = w,/Lp, of about 1000, where w, is the total condensate flow leaving a given 
tube, including the condensate from the tubes above.7 

The inverse process of vaporization of a pure fluid is considerably more complicated 
than condensation. We do not attempt to discuss heat transfer to boiling liquids here, but 
refer the reader to some  review^.^" 

W .  H.  McAdams, Heat Transmission, 3rd edition, McGraw-Hill, New York (1954), pp. 338-339. 
H. D. Baehr and K Stephan, Heat and Mass Transfer, Springer, Berlin (19981, Chapter 4. 
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Condensation of Steam 
on a Vertical Surface 

A boiling liquid flowing in a vertical tube is being heated by condensation of steam on the 
outside of the tube. The steam-heated tube section is 10 ft high and 2 in. in outside diameter. 
If saturated steam is used, what steam temperature is required to supply 92,000 Btu/hr of 
heat to the tube at a tube-surface temperature of 200°F? Assume film condensation. 

SOLUTION The fluid properties depend on the unknown temperature T,. We make a guess of T, = To = 
200°F. Then the physical properties at the film temperature (also 200°F) are 

Assuming that the steam gives up only latent heat (the assumption Td = 7'" = 200°F implies 
this), an energy balance around the tube gives 

in which Q is the heat flow into the tube wall. The film Reynolds number is 

Reading Fig. 14.7-2 at this value of the ordinate, we find that the flow is laminar. Equation 
14.7-2 is applicable, but it is more convenient to use the line based on this equation in Fig. 
14.7-2, which gives 

from which 

Therefore, the first approximation to the steam temperature is Td = 222°F. This result is close 
enough; evaluation of the physical properties in accordance with this result gives T, = 220 as 
a second approximation. It is apparent from Fig. 14.7-2 that this result represents an upper 
limit. On account of rippling, the temperature drop through the condensate film may be as lit- 
tle as half that predicted here. 

QUESTIONS FOR DISCUSSION 

1. Define the heat transfer coefficient, the Nusselt number, the Stanton number, and the Chilton- 
Colburn jw How can each of these be "decorated to indicate the type of temperature-differ- 
ence driving force that is being used? 

2. What are the characteristic dimensionless groups that arise in the correlations for Nusselt 
numbers for forced convection? For free convection? For mixed convection? 

3. To what extent can Nusselt numbers be calculated a priori from analytical solutions? 
4. Explain how one develops an experimental correlation for Nusselt numbers as a function of 

the relevant dimensionless groups. 
5. To what extent can empirical correlations be developed in which the Nusselt number is given 

as the product of the relevant dimensionless groups, each raised to a characteristic power? 
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6. In addition to the Nusselt number, we have met up with the Reynolds number Re, the 
Prandtl number Pr, the Grashof number Gr, the Peclet number Pe, and the Rayleigh number 
Ra. Define each of these and explain their meaning and usefulness. 

7. Discuss the concept of wind-chill temperature. 

PROBLEMS 

14A.1. Average heat transfer coefficients (Fig. 14A.1). 
Ten thousand pounds per hour of an oil with a heat capac- 
ity of 0.6 Btu/lb, . F are being heated from 100°F to 200°F 
in the simple heat exchanger shown in the accompanying 
figure. The oil is flowing through the tubes, which are cop- 
per, 1 in. in outside diameter, with 0.065-in. walls. The 
combined length of the tubes is 300 ft. The required heat is 
supplied by condensation of saturated steam at 15.0 psia 
on the outside of the tubes. Calculate h,, ha, and h,, for the 
oil, assuming that the inside surfaces of the tubes are at the 
saturation temperature of the steam, 213°F. 
Answers: 78,139,190 Btu/hr ft2 F 

Cold + 

oil in 

Steam in + 
+ Hot 

oil out 

+ 
Condensate out 

Fig. 14A.1. A single-pass "shell-and-tube" heat exchanger. 

14A.2. Heat transfer in laminar tube flow. One hundred 
pounds per hour of oil at 100°F are flowing through a 1-in. 
i.d. copper tube, 20 ft long. The inside surface of the tube is 
maintained at 215°F by condensing steam on the outside 
surface. Fully developed flow may be assumed through 
the length of the tube, and the physical properties of the oil 
may be cpnsidered constant at the following values: p = 55 
lbm/ft3, C p  = 0.49 Btu/lbm F, p = 1.42 lbm/hr . ft, k = 
0.0825 Btu/hr. ft . F. 
(a) Calculate Pr. 
(b) Calculate Re. 
(c) Calculate the exit temperature of the oil. 
Answers: (a) 8.44; (b) 1075; (c) 155°F 

14A.3. Effect of flow rate on exit temperature from a 
heat exchanger. 
(a) Repeat parts (b) and (c) of Problem 14A.2 for oil flow 
rates of 200,400,800,1600, and 3200 lbm/hr. 

(b) Calculate the total heat flow through the tube wall for 
each of the oil flow rates in (a). 

14A.4. Local heat transfer coefficient for turbulent 
forced convection in a tube. Water is flowing in a 2-in. 
i.d. tube at a mass flow rate w = 15,000 lb,/hr. The inner 
wall temperature at some point along the tube is 160°F, 
and the bulk fluid temperature at that point is 60°F. What 
is the local heat flux q, at the pipe wall? Assume that h,,, 
has attained a constant asymptotic value. 
Answer: 7 . 8  X lo4 Btu/hr ft2 

14A.5. Heat transfer from condensing vapors. 
(a) The outer surface of a vertical tube 1 in. in outside di- 
ameter and 1 ft long is maintained at 190°F. If this tube is 
surrounded by saturated steam at 1 atm, what will be the 
total rate of heat transfer through the tube wall? 
(b) What would the rate of heat transfer be if the tube 
were horizontal? 
Answers: (a) 8400 Btujhr; (b) 12,000 Btu/hr 

14A.6. Forced-convection heat transfer from an isolated 
sphere. 
(a) A solid sphere 1 in. in diameter is placed in an other- 
wise undisturbed air stream, which approaches at a veloc- 
ity of 100 ft/s, a pressure of 1 atm, and a temperature of 
100°F. The sphere surface is maintained at 200°F by means 
of an imbedded electric heating coil. What must be the rate 
of electrical heating in cal/s to maintain the stated condi- 
tions? Neglect radiation, and use Eq. 14.4-5. 
(b) Repeat the problem in (a), but use Eq. 14.4-6. 
Answer: (a) 12.9W = 3.lcal/s; (b) 16.8W = 4.0 cal/s 

14A.7. Free convection heat transfer from an isolated 
sphere. If the sphere of Problem 14A.6 is suspended in still 
air at 1 atm pressure and 100°F ambient air temperature, and 
if the sphere surface is again maintained at 200°F, what rate 
of electrical heating would be needed? Neglect radiation. 
Answer: 0.80W = 0.20 cal/s 

14A.8. Heat loss by free convection from a horizontal 
pipe immersed in a liquid. Estimate the rate of heat loss 
by free convection from a unit length of a long horizontal 
pipe, 6 in. in outside diameter, if the outer surface temper- 
ature is 100°F and the surrounding water is at 80°F. Com- 
pare the result with that obtained in Example 14.6-1, in 
which air is the surrounding medium. The properties of 
water at a film temperature of 90°F (or 32.3"C) are p = 
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0.7632 cp, ep = 0.9986 cal/g. c and k = 0.363 ~ t ~ / h ~ .  ft . F. in which 1 is the current required to maintain the desired 

Also, the density of water in the neighborhood of 90°F is temperature, is the velocity of the approaching 

T(C) 30.3 31.3 32.3 33.3 
and C is a constant. How well does this equation agree 

34'3 with the predictions of Eq. 14.4-7 or Eq. 14.4-8 for the fluid 
p(gicm3) 0.99558 0'99528 0.99496 0.99463 0'99430 and wire of (a) over a fluid velocity range of 100 to 300 
Answer: Q/L  = 1930 Btu/hr . ft ft/s? What is the significance of the constant C in Eq. 

14A.9. The ice-fisheman on Lake Mendota. Compare 
the rates of heat loss of an ice-fisherman, when he is fish- 
ing in calm weather (wind velocity zero) and when the 
wind velocity is 20 mph out of the north. The ambient air 
temperature is -10°F. Assume that a bundled-up ice-fish- 
erman can be approximated as a sphere 3 ft in diameter. 

14B.1. Limiting local Nusselt number for plug flow 
with constant heat flux. 
(a) Equation 10B.9-1 gives the asymptotic temperature 
distribution for heating a fluid of constant physical proper- 
ties in plug flow in a long tube with constant heat flux at 
the wall. Use this temperature profile to show that the lim- 
iting Nusselt number for these conditions is Nu = 8. 
(b) The asymptotic temperature distribution for the analo- 
gous problem for plug flow in a plane slit is given in Eq. 
108.9-2. Use this to show that the limiting Nusselt number 
is Nu = 12. 

148.2. Local overall heat transfer coefficient. In Prob- 
lem 14A.1 the thermal resistances of the condensed steam 
film and wall were neglected. Justify this neglect by calcu- 
lating the actual inner-surface temperature of the tubes at 
that cross section in the exchanger at which the oil bulk 
temperature is 150°F. You may assume that for the oil bloc 
is constant throughout the exchanger at 190 Btu/hr ft2 . F. 
The tubes are horizontal. 

14B.3. The hot-wire anemometer.' A hot-wire anemome- 
ter is essentially a fine wire, usually made of platinum, 
which is heated electrically and inserted into a flowing 
fluid. The wire temperature, which is a function of the fluid 
temperature, fluid velocity, and the rate of heating, may be 
determined by measuring its electrical resistance. 
(a) A straight cylindrical wire 0.5 in. long and 0.01 in. in 
diameter is exposed to a stream of air at 70°F flowing past 
the wire at 100 ft/s. What must the rate of energy input be 
in watts to maintain the wire surface at 600°F? Neglect ra- 
diation as well as heat conduction along the wire. 
(b) It has been reported2 that for a given fluid and wire at 
given fluid and wire temperatures (hence a given wire 
resistance) 

I ~ = B & + c  (14B.3-1) 

See, for example, G. Comte-Bellot, Chapter 34 in The 
Handbook of Fluid Dynamics (R. W .  Johnson, ed.), CRC Press, Boca 
Raton, Fla. (1999). 

L. V. King, Phil. Trans. Roy. Soc. (London), A214,373-432 
(1914). 

14B.4. Dimensional analysis. Consider the flow system 
described in the first paragraph of s14.3, for which dimen- 
sional analysis has already given the dimensionless veloc- 
ity profile (Eq. 6.2-7) and temperature profile (Eq. 14.3-9). 
(a) Use Eqs. 6.2-7 and 14.3-9 and the definition of cup- 
mixing temperature to get the time-averaged expression. 

Tb2 - Tbl 
= a function of Re, Pr, L /  D (14B.4-1) 

TO - Tbl 

(b) Use the result just obtained and the definitions of the 
heat transfer coefficients to derive Eqs. 14.3-12/13, and 14. 

14B.5. Relation between h,,, and h,,. In many industrial 
tubular heat exchangers (see Example 15.4-2) the tube- 
surface temperature To varies linearly with the bulk fluid 
temperature Tb. For this common situation hloc and hl, may 
be simply interrelated. 
(a) Starting with Eq. 14.1-5, show that 

and therefore that 

(b) Combine the result in (a) with Eq. 14.1-4 to show that 

in which L is the total tube length, and therefore that (if 
(dh,,,/dL), = 0, which is equivalent to the statement that 
axial heat conduction is neglected) 

14B.6. Heat loss by free convection from a pipe. In Ex- 
ample 14.6-1, would the heat loss be higher or lower if the 
pipe-surface temperature were 200°F and the air tempera- 
ture were 180°F? 

14C.1. The Nusselt expression for film condensation 
heat transfer coefficients (Fig. 14.7-1). Consider a laminar 
film of condensate flowing down a vertical wall, and as- 
sume that this liquid film constitutes the sole heat transfer 
resistance on the vapor side of the wall. Further assume 
that (i) the shear stress between liquid and vapor may be 
neglected; (ii) the physical properties in the film may be 
evaluated at the arithmetic mean of vapor and cooling- 
surface temperatures and that the cooling-surface temper- 
ature may be assumed constant; (iii) acceleration of fluid 
elements in the film may be neglected compared to the 
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gravitational and viscous forces; (iv) sensible heat changes, 
C&T, in the condensate film are unimportant compared to 
the latent heat transferred through it; and (v) the heat flux 
is very nearly normal to the wall surface. 
(a) Recall from 52.2 that the average velocity of a film of 
constant thickness 6 is (v,) = pgS2/3p. Assume that this re- 
lation is valid for any value of z. 

(b) Write the energy equation for the film, neglecting film 
curvature and convection. Show that the heat flux through 
the film toward the cold surface is 

(c) As the film proceeds down the wall, it picks up addi- 
tional material by the condensation procps. In this 
process, heat is liberated to the extent of AH,,, per unit 
mass of material that undergoes the change in state. Show 
that equating the heat liberation by condensation with the 
heat flowing through the film in a segment dz of the film 
leads to 

(d) Insert the expression for the average velocity from (a) 
into Eq. 14C.1-2 and integrate from z = 0 to z = L to obtain 

(e) Use the definition of the heat transfer coefficient and 
the result in (d) to obtain Eq. 14.7-5. 
(f) Show that Eqs. 14.7-4 and 5 are equivalent for the con- 
ditions of this problem. 

14C.2. Heat transfer correlations for agitated tanks (Fig. 
14C.2). A liquid of essentially constant physical properties 
is being continuously heated by passage through an agi- 
tated tank, as shown in the accompanying figure. Heat is 
supplied by condensation of steam on the outer wall of the 
tank. The thermal resistance of the condensate film and the 
tank wall may be considered small compared to that of 
the fluid in the tank, and the unjacketed portion of the tank 

t 
Condensate out 

Fig. 14C.2. Continuous heating of a liquid in an agitated 
tank. 

may be assumed to be well insulated. The rate of liquid 
flow through the tank has a negligible effect on the flow 
pattern in the tank. 

Develop a general form of dimensionless heat transfer 
correlation for the tank corresponding to the correlation 
for tube flow in 514.3. Choose the following reference 
quantities: reference length, D, the impeller diameter; ref- 
erence velocity, ND, where N is the rate of shaft rotation in 
revolutions per unit time; reference pressure, ~ P D ~ ,  
where p is the fluid density. 

14D.1. Heat transfer from an oblate ellipsoid of revolu- 
tion. Systems of this sort are best described in oblate ellip- 
soidal coordinates (5; 7, +)' for which 

5 = constant describes oblate ellipsoids (0 5 5 < m )  

77 = constant describes hyperboloids of revolution 
(0 5 77 I 7r) 

+ = constant describes half planes (0 I + < 27r) 

Note that 5 = 6, can describe oblate ellipsoids, with 5, = 0 
being a limiting case of the two-sided disk, and the limit as 
+ a~ being a sphere. In this problem we investigate the 

corresponding two limiting values of the Nusselt number. 
(a) First use Eq. A.7-13 to get the scale factors from the re- 
lation between oblate ellipsoidal coordinates and Carte- 
sian coordinates: 

x = a cosh 5 sin 7 cos + (14D.1-1) 

y = a cosh sin 7 sin + (14D.1-2) 

z = a  sinhc cos 77 (14D.1-3) 

in which a is one-half the distance between the foci. Show 
that 

h,, = a cosh 5 sin 77 (14D.1-5) 

Equations A.7-13 and 14 can then be used to get any of the 
V-operations that are needed. 
(b) Next obtain the temperature profile outside of an 
oblate ellipsoid with surface temperature To, which is em- 
bedded in an infinite medium with the temperature T,  far 
from the ellipsoid. Let O = (T - To)/(T, - To) be a dimen- 
sionless temperature, and show that Laplace's equation 
describing the heat conduction exterior to the ellipsoid is 

, - ,  7 

1 Id (cosh 6 $) + . . = 0 (14D.1-6) 
a2(cosh2 5 - sin2 77) d5 

' For a discussion of oblate ellipsoidal coordinates, see 
P. Moon and D. E. Spencer, Field Theory Handbook, Springer, Berlin 
(1961), pp. 31-34. See also J. Happel and H. Brenner, Low Reynolds 
Number Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J. 
(196.51, pp. 512-516; note that their scale factors are the reciprocals 
of those defined in this book. 
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The terms involving derivatives with respect to 77 and t,b 
have been omitted because they are not needed. Show that 
this equation may be solved with the boundary conditions 
that @(to) = 0 and @(a) = 1 to obtain 

(c) Next, specialize this result for the two-sided disk (that 
is, the limiting case that to = O), and show that the normal 
temperature gradient at the surface is 

where a has been expressed as X, the disk radius. Show fur- 
ther that the total heat loss through both sides of the disk is 

and that the Nusselt number is given by Nu = 16/a = 

5.09. Since Nu = 2 for the analogous sphere problem, we 
see that the Nusselt number for any oblate ellipsoid must 
lie somewhere between 2 and 5.09. 
(d) By dimensional analysis show that, without doing any 
detailed derivation (such as the above), one can predict 
that the heat loss from the ellipsoid must be proportional 
to the linear dimension a rather than to the surface area. Is 
this result limited to ellipsoids? Discuss. 



Chapter 15 

Macroscopic Balances for 
Nonisothermal Systems 

The macroscopic energy balance 

The macroscopic mechanical energy balance 

Use of the macroscopic balances to solve steady-state problems with flat velocity 
profiles 

The d-forms of the macroscopic balances 

Use of the macroscopic balances to solve unsteady-state problems and problems 
with nonflat velocity profiles 

In Chapter 7 we discussed the macroscopic mass, momentum, angular momentum, and 
mechanical energy balances. The treatment there was restricted to systems at constant 
temperature. Actually this restriction is somewhat artificial, since in real flow systems 
mechanical energy is always being converted into thermal energy by viscous dissipation. 
What we really assumed in Chapter 7 is that any heat so produced is either too small to 
change the fluid properties or is immediately conducted away through the walls of the 
system containing the fluid. In this chapter we extend the previous results to describe 
the overall behavior of nonisothermal macroscopic flow systems. 

For a nonisothermal system there are five macroscopic balances that describe the re- 
lations between the inlet and outlet conditions of the stream. They may be derived by in- 
tegrating the equations of change over the macroscopic system: 

L t j  

(eq. of continuity) dV = macroscopic mass balance 

(eq. of motion) dV = macroscopic momentum balance 

(eq. of angular momentum) dV = macroscopic angular momentum balance 

IW (eq. of mechanical energy) dV = macroscopic mechanical energy balance 

Iv(t, (eq. of (total) energy) dV = macroscopic (total) energy balance 

The first four of these were discussed in Chapter 7, and their derivations suggest that 
they can be applied to nonisothermal systems just as well as to isothermal systems. In 
this chapter we add the fifth balance-namely, that for the total energy. This is derived 
in 915.1, not by performing the integration above, but rather by applying the law of con- 
servation of total energy directly to the system shown in Fig. 7.0-1. Then in 915.2 we re- 
visit the mechanical energy balance and examine it in the light of the discussion of the 
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(total) energy balance. Next in 515.3 we give the simplified versions of the macroscopic 
balances for steady-state systems and illustrate their use. 

In 515.4 we give the differential forms (d-forms) of the steady-state balances. In these 
forms, the entry and exit planes 1 and 2 are taken to be only a differential distance apart. 
The "d-forms" are frequently useful for problems involving flow in conduits in which 
the velocity, temperature, and pressure are continually changing in the flow direction. 

Finally, in 515.5 we present several illustrations of unsteady-state problems that can 
be solved by the macroscopic balances. 

This chapter will make use of nearly all the topics we have covered so far and pro- 
vides an excellent opportunity to review the preceding chapters. Once again we take this 
opportunity to remind the reader that in using the macroscopic balances, it may be nec- 
essary to omit some terms and to estimate the values of others. This requires good intu- 
ition or some extra experimental data. 

515.1 THE MACROSCOPIC ENERGY BALANCE 

We consider the system sketched in Fig. 7.0-1 and make the same assumptions that were 
made in Chapter 7 with regard to quantities at the entrance and exit planes: 

(i) The time-smoothed velocity is perpendicular to the relevant cross section. 

(ii) The density and other physical properties are uniform over the cross section. 

(iii) The forces associated with the stress tensor T are neglected. 

(iv) The pressure does not vary over the cross section. 

To these we add (likewise at the entry and exit planes): 

(v) The energy transport by conduction q is small compared to the convective en- 
ergy transport and can be neglected. 

(vi) The work associated with [T . v] can be neglected relative to pv. 

We now apply the statement of conservation of energy to the fluid in the macroscopic 
flow system. In doing this, we make use of the concept of potential energy to account for 
the work done against the external forces (this corresponds to using Eq. 11.1-9, rather 
than Eq. 11.1-7, as the equation of change for energy). 

The statement of the law of conservation of energy then takes the form: 

rate of increase of rate at which internal, kinetic, and 
internal, kinetic, and potential energy enter the system 
potential energy in at plane 1 by flow 
the system 

- @&(v2) + $P*(& + P&s)& (15.1-1) 
rate at which internal, kinetic, and 
potential energy leave the system 
at plane 2 by flow 

+ Q + Wm + (p,(v1)S1 - p*(v2)S*) 
rate at which rate at which work is done on rate at which work is 
heat is added the system by the surroundings done on the system by the 
to the system by means of the moving surroundings at planes 1 
across boundary surfaces and 2 

Here U,, = J p ~ d v ,  Kt,, = J$p2dv, and @,,, = $ p & d ~  are the total internal, kinetic, and 
potential energy in the system, the integrations being performed over the entire volume 
of the system. 
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This equation may be written in a more compact form by introducing the mass rates 
of flow w1 = pl(vl)S1 and w, = p,(v,)S,, and the total energy E,,, = U,,, + Kt,,+ a,,,. We 
thus get for the unsteady state macroscopic energy balance 

It is clear, from the derivation of Eq. 15.1-1, that the "work done on the system by the 
surroundings" consists of two parts: (1) the work done by the moving surfaces W,, ~ n d  
(2) the work done at the ends of the system (planes 1 and 21, which appears as -A(pVw) 
in Eq. 15.1-2. Although we have combined the pV terms with the internal, kinetic, and 
potential energy terms in Eq. 15.1-2, it is inappropriate to say that "pV energy enters 
and leaves the system" at the inlet and outlet. The pV terms originate as work terms and 
should be thought of as such. 

We now consider the situation where the system is operating at steady state so that 
the total energy E,,, is constant, and the mass rates of flow in and out are equal (w, = w, = 

w). Then it is convenient tojntroduce the symbols Q = Q/w (the heat addition per unit 
mass of flowing fluid) and W, = W,/w (the work done on a unit mass of flowing fluid). 
Then the steady state macroscopic energy balance is 

Here we have written 6, = ghl and 6, = gh, where h, and h, are heights above an 
~rbitrariLy chosep datum plane (see the discussion just before Eq. 3.3-2). Similarly, H~ = 

U1 + plVl and H2 = U, + p2V2 are enthalpies per unit mass measured with respect to 
an arbitrarily specified reference state. The explicit formula for the enthalpy is given in 
Eq. 9.8-8. 

For many problems in the chemical industry the kinetic energy, potential energy, 
and work terms are negligibie compare4 with the thermal terms in Eq. 15.1-3, and the 
energy balance simplifies to H2 - H1 = Q, often called an "enthalpy balance." However 
this relation should not be construed as a conservation equation for enthalpy. 

515.2 THE MACROSCOPIC MECHANICAL ENERGY BALANCE 

The macroscopic mechanical energy balance, given in 57.4 and derived in 57.8, is re- 
peated here for comparison with Eqs. 15.1-2 and 3. The unsteady-state macroscopic mechan- 
ical energy balance, as given in Eq. 7.4-2, is 

where E, and E, are defined in Eqs. 7.4-3 and 4. An approximate form of the steady-state 
macroscopic mechanical balance, as given in Eq. 7.4-7, is 

The details of the approximation introduced here are explained in Eqs. 7.8-9 to 12. 
The integral in Eq. 15.2-2 must be evaluated along a "representative streamline" in 

the system. To do this, one must know the equation of state p y p(p, T )  and also how T 
changes with p along the streamline. In Fig. 15.2-1 the surface V = Q(p, T) for an ideal 
gas is shown. In the pT-plane there is shown a curve beginning at pl, T1 (the inlet stream 
conditions) and ending at p,, T2 (the outlet stream conditions). The curve in the pT-plane 
indicates the succession of states through which the gas passes in going from the initial 
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Fig. 15.2-1. Graphical representa- 
tion of the integral in_Eq. 15.2-2. 
The ruled area is SF: Vdp = 

SF; (1 / p )dp .  Note that the value 
of this integral is negative here, 
because we are integrating from 
right to left. 

state to the final state. The integral J: (1 /p) dp is then the projection of the shaded area in 
Fig. 15.2-1 onto the pc-plane. It is evident that the value of this integral changes as the 
"thermodynamic pa th  of the process from plane 1 to 2 is altered. If one knows the path 
and the equation of state then one can compute J: (1 /p) dp. 

In several special situations, it is not difficult to evaluate the integral: 

For isothermal systems, the integral is evaluated by prescribing the isothermal 
equation of s ta te that  is, by giving a relation for p as a function of p. For exam- 
ple, for ideal gases p = pM/RT and 

RT P21 RT P2 1 d p  = - 1 dp = - In - (ideal gases) (15.2-3) 
M PI M PI 

For incompressible liquids, p is constant so that 

1 1,' dp = p (p2 - pl) (incompressible liquids) (15.2-4) 

For frictionless adiabatic flow of ideal gases with constant heat capacity, p and p are 
related by the expression pp-? = constant, in which y = kP/& as shown in Exarn- 
ple 11.4-6. Then the integral becomes 

Hence for this special case of nonisothermal flow, the integration can be per- 
formed analytically. 

We now conclude with several comments involving both the mechanical energy bal- 
ance and the total energy balance. We emphasized in 57.8 that Eq. 7.4-2 (same as Eq. 
15.2-1) is derived by taking the dot product of v with the equation of motion and then in- 
tegrating the result over the volume of the flow system. Since we start with the equation 
of motion-which is a statement of the law of conservation of linear momentum-the 
mechanical energy balance contains information different from that of the (total) energy 
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balance, which is a statement of the law of conservation of energy. Therefore, in general, 
both balances are needed for problem solving. The mechanical energy balance is not "an 
alternative form" of the energy balance. 

In fact, if we subtract the mechanical energy balance in Eq. 15.2-1 from the total en- 
ergy balance in Eq. 15.1-2 we get the macroscopic balance for the internal energy 

This states that the total internal energy in the system changes because of the difference 
in the amount of internal energy entering and leaving the system by fluid flow, because 
of the heat entering (or leaving) the system through walls of the system, because of 
the heat produced (or consumed) within the fluid by compression (or expansion), and 
because of the heat produced in the system because of viscous dissipation heating. 
Equation 15.2-6 cannot be written a priori, since there is no conservation law for inter- 
nal energy. It can, however, be obtained by integrating Eq. 11.2-1 over the entire flow 
system. 

s15.3 USE OF THE MACROSCOPIC BALANCES 
TO SOLVE STEADY-STATE PROBLEMS 
WITH FLAT VELOCITY PROFILES 

The most important applications of the macroscopic balances are to steady-state prob- 
lems. Furthermore, it is usually assumed that the flow is turbulent so that the variation 
of the velocity over the cross section can be safely neglected (see "Notes" after Eqs. 7.2-3 
and 7.4-7). The five macroscopic balances, with these additional restrictions, are summa- 
rized in Table 15.3-1. They have been generalized to multiple inlet and outlet ports to ac- 
commodate a larger set of problems. 

Table 15.3-1 Steady-State Macroscopic Balances for Turbulent Flow in Nonisothermal Systems 

Mass: E w l  - E w 2  = 0 (A) 

Momentum: mW, + p , S h  - m72w2 + p2S2h2 + m ~ g  = FPs (B) 

Angular momentum: E(v,w, + p,S,)[r, X u,l - 2(v2w2 + p2S2)[r2 X u21 + Text = Tf-ts (C) 

Mechanical energy: w, = - W, + E,  + E. (D) 

(Total) energy: + gh, + H&U, - E($v: + gh, + H , ) ~  = - W, - Q (El 

Notes: 
" All formulas here imply flat velocity profiles. 

Xw1 = wla + wlb + w,, + ..., where w,, = p,,v,,S,,, and so on. 
h, and h, are elevations above an arbitrary datum plane. 

and H2 are enthalpies per unit mass relative to some arbitrarily chosen reference state (see Eq. 9.8-8). 

All equations are written for compressible flow; for incompressible flow, E, = 0. The quantities E, and 
E, are defined in Eqs. 7.3-3 and 4. 

f u, and u, are unit vectors in the direction of flow. 
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EXAMPLE 15.3-1 

The Cooling of an 
Ideal Gas 

SOLUTION 

Air out at 0" F and 15 psia Fig. 15.3-1. The cooling of air in a countercurrent 
<v>=? heat exchanger. 

---------- - Plane 2 

liquid in 

10 ft 

Hot - liquid 
---------- out 

- Plane 1 

Air in at 300°F and 30 psia 
<v> = 100 ft sec-' 

Two hundred pounds per hour of dry air enter the inner tube of the heat exchanger shown in 
Fig. 15.3-1 at 300°F and 30 psia, with a velocity of 100 ft/sec. The air leaves the exchanger at 
O"F and 15 psia, at 10 ft above the exchanger entrance. Calculate the rate of energy removal 
across the tube wall. Assume turbulent flow and ideal gas behavior, and use the following ex- 
pression for the heat capacity of air: 

where ?, is in Btu/(lb-mole . R) and T is in degrees R. 

For this system, the macroscopic energy balance, Eq. 15.1-3, becomes 

The enthalpy difference may be obtained from Eq. 9.8-8, and the velocity may be obtained as 
a function of temperature and pressure with the aid of the macroscopic mass balance plv, = 

p2v2 and the ideal gas law p = pRT/M. Hence Eq. 15.3-2 becomes 

The explicit expression for in Eq. 15.3-1 may then be inserted into Eq. 15.3-3 and the inte- 
gration performed. Next substitution of the numerical values gives the heat removal per 
pound of fluid passing through the heat exchanger: 

The rate of heat removal is then 

Note, in Eq. 15.3-4, that the kinetic and potential energy contributions are negligible in com- 
parison with the enthalpy change. 
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I I Fig. 15.3-2. The mixing of two ideal gas 
streams. 

Two steady, turbulent streams of the same ideal gas flowing at different velocities, tempera- 
tures, and pressures are mixed as shown in Fig. 15.3-2. Calculate the velocity, temperature, 

Mixing of Two Ideal and pressure of the resulting stream. 
Gas Streams 

SOLUTION 

The fluid behavior in this example is more complex than that for the incompressible, isother- 
mal situation discussed in Example 7.6-2, because here changes in density and temperature 
may be important. We need to use the steady-state macroscopic energy balance, Eq. 15.2-3, 
and the ideal gas equation of state, in addition to the mass and momentum balances. With 
these exceptions, we proceed as in Example 7.6-2. 

We choose the inlet planes (la and lb) to be cross sections at which the fluids first begin 
to mix. The outlet plane (2) is taken far enough downstream that complete mixing has oc- 
curred. As in Example 7.6-2 we assume flat velocity profiles, negligible shear stresses on the 
pipe wall, and no changes in the potential energy. In addition, we neglect the changes in the 
heat capacity of the fluid and assume adiabatic operation. We now write the following equa- 
tions for this system with two entry ports and one exit port: 

Mass: w1 = wla + wlb = W, (15.3-6) 

Equation of state: P2 = P~RTz/M (15.3-9) 

In this set of equations we know all the quantities at l a  and lb, and the four unknowns are p,, 
T2, p2, and v,. Tref is the reference temperature for the enthalpy. By multiplying Eq. 15.3-6 by 
k p ~ , ,  and adding the result to Eq. 15.3-8 we get 

The right sides of Eqs. 15.3-6,7, and 10 contain known quantities and we designate them by 
w, P, and E, respectively. Note that w, P, and E are not independent, because the pressure, 
temperature, and density of each inlet stream must be related by the equation of state. 

We now solve Eq. 15.3-7 for v, and eliminate p, by using the ideal gas law. In addition we 
write w, as p2v2S2. This gives 

RT2 - P v,+--- 
Mv, w 

This equation can be solved for T,, which is inserted into Eq. 15.3-10 to give 
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in which y = C,/Cv, a quantity which varies from about 1.1 to 1.667 for gases. Here we 
have used the fact that G/R = y / ( y  - 1) for an ideal gas. When Eq. 15.3-12 is solved for v2 
we get 

On physical grounds, the radicand cannot be negative. It can be shown (see Problem 15B.4) 
that, when the radicand is zero, the velocity of the final stream is sonic. Therefore, in general 
one of the solutions for v2 is supersonic and one is subsonic. Only the lower (subsonic) solu- 
tion can be obtained in the turbulent mixing process under consideration, since supersonic 
duct flow is unstable. The transition from supersonic to subsonic duct flow is illustrated in 
Example 11.4-7. 

Once the velocity v, is known, the pressure and temperature may be calculated from Eqs. 
15.3-7 and 11. The mechanical energy balance can be used to get (E ,  + E,). 

515.4 THE d-FORMS OF THE MACROSCOPIC BALANCES 

The estimation of E, in the mechanical energy balance and Q in the total energy balance 
often presents some difficulties in nonisothermal systems. 

For example, for E,,, consider the following two nonisothermal situations: 

a. For liquids, the average flow velocity in a tube of constant cross section is nearly 
constant. However, the viscosity may change markedly in the direction of the 
flow because of the temperature changes, so that f in Eq. 7.5-9 changes with dis- 
tance. Hence Eq. 7.5-9 cannot be applied to the entire pipe. 

b. For gases, the viscosity does not change much with pressure, so that the local 
Reynolds number and local friction factor are nearly constant for ducts of con- 
stant cross section. However, the average velocity may change considerably 
along the duct as a result of the change in density with temperature. Hence Eq. 
7.5-9 cannot be applied to the entire duct. 

Similarly for pipe flow with the wall temperature changing with distance, it may be 
necessary to use local heat transfer coefficients. For such a situation, we can write Eq. 
15.1-3 on an incremental basis and generate a differential equation. Or the cross sectional 
area of the conduit may be changing with downstream distance, and this situation also 
results in a need for handling the problem on an incremental basis. 

It is therefore useful to rewrite the steady-state macroscopic mechanical energy bal- 
ance and the total energy balance by taking planes 1 and 2 to be a differential distance dl 
apart. We then obtain what we call the "d-forms" of the balances: 

The d-Form of the Mechanical Energy Balance 

If we take planes 1 and 2 to be a differential distance apart, then we may write Eq. 15.2-2 
in the following differential form (assuming flat velocity profiles): 

1 * * 
d($v2) + gdh + - dp = d W - d E ,  

P 

Then using Eq. 7.5-9 for a differential length dl, we write 
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in which f is the local friction factor, and Rk is the local value of the mean hydraulic ra- 
dius. In most applications we omit the d~ term, since work is usually done at isolated 
points along the flow path. The term d w would be needed in tubes with extensible walls, 
magnetically driven flows, or systems with transport by rotating screws. 

The d-Form of the Total Energy Balance 

If we write Eq. 15.1-3 in differential form, we have (with flat velocity profiles) 

d($') + gdh + d f i  = d~ + d~ (15.4-3) 

Then using Eq. 9.8-7 for d 6  and Eq. 14.1-8 for d B  we get 

[ A (;;)A "fOczAT dl + d ii ~ d v + g d h + ? ~ d ~ +  V - T -  d p =  

in which U,,, is the local overall heat transfer coefficient, Z is the corresponding local 
conduit perimeter, and AT is the local temperature difference between the fluids inside 
and outside of the conduit. 

The examples that follow illustrate applications of Eqs. 15.4-2 and 15.4-4. 

EXAMPLE 15.4-1 

Parallel- or Counter- 
Flow Heat Exchangers 

SOLUTION 

It is desired to describe the performance of the simple double-pipe heat exchanger shown in 
Fig. 15.4-1 in terms of the heat transfer coefficients of the two streams and the thermal resis- 
tance of the pipe wall. The exchanger consists essentially of two coaxial pipes with one fluid 
stream flowing through the inner pipe and another in the annular space; heat is transferred 
across the wall of the inner pipe. Both streams may flow in the same direction, as indicated in 
the figure, but normally it is more efficient to use counter flow-that is, to reverse the direc- 
tion of one stream so that either wk or w, is negative. Steady-state turbulent flow may be as- 
sumed, and the heat losses to the surroundings may be neglected. Assume further that the 
local overall heat transfer coefficient is constant along the exchanger. 

(a) Macroscopic energy balance for each stream as a whole. We designate quantities refer- 
ring to the hot stream with a subscript h and the cold stream with subscript c. The steady- 
state energy balance in Eq. 15.1-3 becomes, for negligible changes in kinetic and potential 
energy, 

Cold stream in 
T = T,, 

Plane 2 

I I I I 
11r I I I 

Hot stream in 1 ! I I 1 1 I Hot stream out 
T = Thl -1 I I I- 

I I I ,I, 1 T = Th2 

Plane 1 Cold stream out 
T = T,, 

Fig. 15.4-1. A double-pipe heat exchanger. 
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Because there is no heat loss to the surroundings, Qh = -Qc. For incompressible l ip ids  with 
a press_ure Grop that is not too large, or for ideal gases, Eq. 9.8-8 gives for constant C, the rela- 
tion AH = CpAT. Hence Eqs. 15.4-5 and 6 can be rewritten as 

w,$,(T, - Tcl) = Q, = -Qh (15.4-8) 

(b) d-form of the macroscopic energy balance. Application of Eq. 15.4-4 to the hot stream 
gives 

where ro is the outside radius of the inner tube, and Uo is the overall heat transfer coefficient 
based on the radius ro (see Eq. 14.1-8). 

Rearrangement of Eq. 15.4-9 gives 

The corresponding equation for the cold stream is 

Adding Eqs. 15.4-10 and 11 gives a differential equation for the temperature difference of the 
two fluids as a function of I :  

By assuming that U, is independent of 1 and integrating from plane 1 to plane 2, we get 

This expression relates the terminal temperatures to the stream rates and exchanger dimen- 
sions, and it can thus be used to describe the performance of the exchanger. However, it is 
conventional to rearrange Eq. 15.4-13 by taking advantage ofnthe steady-state energy balances 
in Eq. 15.4-7 and 8. We solve each of these equations for wC, and substitute the results into 
Eq. 15.4-13 to obtain 

Here A, is the total outer surface of the inner tube, and (T,, - TC),, is the "logarithmic mean 
temperature difference" between the two streams. Equations 15.4-14 and 15 describe the rate 
of heat exchange between the two streams and find wide application in engineering practice. 
Note that the stream rates do not appear explicitly in these equations, which are valid for 
both parallel-flow and counter-flow exchangers (see Problem 15A.1). 

From Eqs. 15.4-10 and 11 we can also get the stream temperatures as functions of 1 if de- 
sired. Considerable care must be used in applying the results of this example to laminar flow, 
for which the variation of the overall heat transfer coefficient may be quite large. An example 
of a problem with variable U, is Problem 15B.1. 
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EXAMPLE 15.4-2 

Power Requirement 
for Pumping a 
Compressible Fluid 
through a Long Pipe 

I I I 
Cooler 1 I Cooler I 

Natural I 43s -p 
Natural 

gas I 
I 

gas 

Compressor I 1 Compressor I - I I 
I I I 
I I I 

Plane 1 Plane 2 Plane 3 
1=0 1 = 10 miles 

Fig. 15.4-2. Pumping a compressible fluid through a pipeline. 

A natural gas, which may be considered to be pure methane, is to be pumped through a long, 
smooth pipeline with a 2-ft inside diameter. The gas enters the line at 100 psia with a velocity 
of 40 ft/s and at the ambient temperature of 70°F. Pumping stations are provided every 10 
miles along the line, and at each of these stations the gas is recompressed and cooled to its 
original temperature and pressure (see Fig. 15.4-2). Estimate the power that must be ex- 
pended on the gas at each pumping station, assuming ideal gas behavior, flat velocity pro- 
files, and negligible changes in elevation. 

SOLUTION We find it convenient to consider the pipe and compressor separately. First we apply Eq. 15.4- 
2 to a length dl of the pipe. We then integrate this equation between planes 1 and 2 to obtain 
the unknown pressure p2. Once this is known, we may apply Eq. 15.2-2 to the system between 
planes 2 and 3 to obtain the work done by the pump. 

(a) Flow through the pipe. For this portion of the system, Eq. 15.4-2 simplifies to 

where D is the pipe diameter. Since the pipe is quite long, we assume that the fluid is isother- 
mal at 70°F. We may then eliminate both v and p from Eq. 15.4-16 by use of the assumed equa- 
tion of state, p = pRT/M, and the macroscopic mass balance, which may be written pv = p,v,. 
With p and v written in terms of the pressure, Eq. 15.4-16 becomes 

We pointed out in 51.3 that the viscosity of ideal gases is independent of the pressure. From 
this it follows that the Reynolds number of the gas, Re = Dw/Sp, and hence the friction factor 
f, must be constants. We may then integrate Eq. 15.4-17 to obtain 

This equation gives p, in terms of quantities that are already known, except for f, which is eas- 
ily calculated: the kinematic viscosity of methane at 100 psi and 70 F is about 2.61 X fi?/s, 
and therefore Re = Dv/v = (200 ft)(40 ft/s)/(2.61 ft2/s) = 3.07 X lo6. The friction factor can 
then be estimated to be 0.0025 (see Fig. 6.2-2). 

Substituting numerical values into Eq. 15.4-18, we get 
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By solving this equation with p, = 100 psia, we obtain p2 = 86 psia. 

(b) Flow through the compressor. We are now ready to apply the mechanical energy bal- 
ance to the compressor. We start by putting Eq. 15.2-2 into the form 

To evaluate _the integral in this equation, we assume that the compression is adiabatic and 
further that E, between planes 2 and 3 can be neglected. We may use Eq. 15.2-5 to rewrite Eq. 
15.2-21 as 

in which w,, is the energy required of the compressor. By substituting numerical values into 
Eq. 15.4-22, we get 

The power required to compress the fluid is 

The power required would be virtually the same if the flow in the pipeline were adiabatic (see 
Problem 15A.2). 

The assumptions used here-assuming the compression to be adiabatic and neglecting 
the viscous dissipation-are conventional in the design of compressor-cooler combinatiops. 
Note that the energy required to run the compressor is greater than the calculated work, W,, 
by (i) g, between planes 2 and 3, (ii) mechanical losses in the compressor itself, and (iii) errors 
in the assume$ p-p path. Normally the energy required at the pump shaft is at least 15 to 20% 
greater than W,. 

$15.5 USE OF THE MACROSCOPIC BALANCES TO SOLVE 
UNSTEADY-STATE PROBLEMS AND PROBLEMS 
WITH NONFLAT VELOCITY PROFILES 

In Table 15.5-1 we summarize all five macroscopic balances for unsteady state and non- 
flat velocity profiles, and for systems with multiple entry and exit ports. One practically 
never needs to use these balances in this degree of completeness, but it is convenient to 
have the entire set of equations collected in one place. We illustrate their use in the ex- 
amples that follow. 
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Table 15.5-1 Unsteady-State Macroscopic Balances for Flow in Nonisothermal Systems 

Mass: 

Momentum: 

Angular momentum: 

Mechanical energy: 

(Total) energy: 

Notes: 

a CW, = wla + wlb + w,, + - , where w,, = p,,v,,S,,, and so on. 
h, and h, are elevations above an arbitrary datum plane. 

' kl and H> are enthalpies per unit mass relative to some arbitrarily chosen reference state; the formula for k is given in Eq. 9.8-8. 

All equations are written for compressible flow; for incompressible flow, E, = 0. The quantities E, and E ,  are defined in Eqs. 7.3-3 and 4. 

u, and u, are unit vectors in the direction of flow. 

A cylindrical tank capable of holding 1000 ft%f liquid is equipped with an agitator having 
sufficient power to keep the liquid contents at a uniform temperature (see Fig. 15.5-1). Heat is 

Heating of a Liquid in transferred to the contents by means of a coil arranged in such a way that the area available 
an Agitated ~ank'  for heat transfer is proportional to the quantity of liquid in the tank. This heating coil consists 

of 10 turns, 4 ft in diameter, of 1-in. 0.d. tubing. Water at 20°C is fed into this tank at a rate of 
20 lb/min, starting with no water in the tank at time t = 0. Steam at 105OC flows through the 

Steam in 

Instantaneous 
liquid level \ 

Liquid 
inlet 

It4"" 
Fig. 15.5-1. Heating of a liquid in a tank with a 

Condensate out variable liquid level. 

This problem is taken in modified form from W. R. Marshall, Jr., and R. L. Pigford, Applications of 
Differential Equations to Chemical Engineering Problems, University of Delaware Press, Newark, Del. (19471, 
pp. 16-18. 
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SOLUTION 

heating coil, and the overall heat transfer coefficient is 100 Btu/hr ft2 . F. What is the temper- 
ature of the water when the tank is filled? 

We shall make the following assumptions: 

a. The steam temperature is uniform throughout the coil. 

b. The density and heat capacity do not change very much with temperature. 
* h 

c. The fluid is approximately incompressible so that C, = C,. 

d. The agitator maintains uniform temperature throughout the liquid. 

e. The heat transfer coefficient is independent of position and time. 

f. The walls of the tank are perfectly insulated so that no heat loss occurs. 

We select the fluid within the tank as the system to be considered, and we make a time- 
dependent energy balance over this system. Such a balance is provided by Eq. (E) of Table 
15.5-1. On the left side of the equation the time rates of change of kinetic and potential ener- 
gies can be neglected relative to that of the internal energy. On the right side we can normally 
omit the work term, and the kinetic and potential energy terms can be discarded, since they 
will be small compared with the other terms. Inasmuch as there is no outlet stream, we can 
set w2 equal to zero. Hence for this system the total energy balance simplifies to 

This states that the internal energy of the system increases because of the enthalpy added by 
the incoming fluid, and because of the addition of heat through the steam coil. 

Since U,,, and H ,  cannot bengiven absolutely, y e  now select th? inlet temperature TI  as 
the thermal datum plane. Then H1 = 0 and U,,, = pCVV(T - T I )  = pCpV(T - TI ) ,  where T and 
V are the instantaneous temperature and volume of the liquid. Furthermore, the rate of heat 
addition to the liquid Q is given by Q = U d ( T s  - T), in which T, is the steam temperature, 
and A is the instantaneous heat transfer area. Hence Eq. 15.5-1 becomes 

The expressions for V ( t )  and A(t) are 

in which V, and A. are the volume and 
ergy balance equation becomes 

heat transfer area when the tank is full. Hence the en- 

which is to be solved with the initial condition that T = TI at t = 0. 
The equation is more easily solved in dimensionless form. We divide both sides by 

W,?,(T~ - T I )  to get 

This equation suggests that suitable definitions of dimensionless temperature and time are 

@ =  - Udot  and T = - 
P ? , Y O  
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EXAMPLE 15.5-2 

Operation of a Simple 
Temperature Controller 

Fig. 15.5-2. Plot of dimensionless temper- 
ature, O = (T - TJ/(T, - TI), vecsus 
dimensionless time, 7 = (UJ,/pC,V,)t, 
according to Eq. 15.5-10. [W. R. Marshall 
and R. L. Pigford, Application of Differen- 
tial Equations to Chemical Engineering, Uni- 
versity of Delaware Press, Newark, Del. 
(1947), p. 18.1 

Then the equation in Eq. 15.5-5 becomes after some rearranging 

and the initial condition requires that O = 0 at 7 = 0. 
This is a first-order linear differential equation whose solution is (see Eq. C.l-2) 

The constant of integration, C, can be obtained from the initial condition after first multiply- 
ing Eq. 15.5-9 by r. In that way it is found that C = 1, so that the final solution is 

This function is shown in Fig. 15.5-2. 
Finally, the temperature To of the liquid in the tank, whe? it has been filled, is given by 

Eq. 15.5-10 when t = pV,/wl (from Eq. 15.5-3) or T = U&/w,C, (from Eq. 15.5-7). Therefore, 
in terms of the original variables, 

Thus it can be seen tpat the final liquid temperature is determined entirely by the dimension- 
less group U&/wlCr which, for this problem, has the value of 2.74. Knowing this we can 
find from Eq. 15.5-11 that (To - Tl)/(T, - T,) = 0.659, whence To = 76°C. 

A well-insulated agitated tank is shown in Fig. 15.5-3. Liquid enters at a temperature T,(t), 
which may vary with time. It is desired to control the temperature, T,(t), of the fluid leaving 
the tank. It is presumed that the stirring is sufficiently thorough that the temperature in the 
tank is uniform and equal to the exit temperature. The volume of the liquid in the tank, V, 
and the mass rate of liquid flow, w, are both constant. 

To accomplish the desired control, a metallic electric heating coil of surface area A is 
placed in the tank, and a temperature-sensing element is placed in the exit steam to measure 
TJt). These devices are connected to a temperature controller that supplies energy to the 
heating coil at a rate Q, = b(T,,, - TJ, in which T,,, is the maximum temperature for which 
the controller is designed to operate, and b is a known parameter. It may be assumed that the 



s15.5 Use of the Macroscopic Balances to Solve Unsteady-State Problems 469 

SOLUTION 

Power 
supply 

Temperature 
/ indicator 

Temperature 
controller 

Electric 
heater 

Liquid - 
inlet 

\ 

Liquid 
outlet 

- - -  

TI = TI, (for t > 0 )  

Fig. 15.5-3. An agitated tank with a temperature controller. 

liquid temperature T,(t) is always less than T,,, in normal operation. The heating coil sup- 
plies energy to the liquid in the tank at a rate Q = UA(T, - T2), where U is the overall heat 
transfer coefficient between the coil and the liquid, and T, is the instantaneous coil tempera- 
ture, considered to be uniform. 

Up to time t = 0, the system has been operating at steady state with liquid inlet tempera- 
ture TI = TI, and exit temperature T, = T,,. At time t = 0, the inlet stream temperature is sud- 
denly increased to TI = T,, and held there. As a consequence of this disturbance, the tank 
temperature will begin to rise, and the temperature indicator in the outlet stream will signal 
the controller to decrease the power supplied to the heating coil. Ultimately, the liquid tem- 
perature in the tank will attain a new steady-state value Tz,. It is desired to describe the be- 
havior of the liquid temperature T2(f). A qualitative sketch showing the various temperatures 
is given in Fig. 15.5-4. 

We first write the unsteady-state macroscopic energy balances [Eq. (E) of Table 15.5-11 for the 
liquid in the tank and for the heating coil: 

(liquid) 

(coil) 

Note that in applying the macroscopic energy balance to the liquid, we have neglected kinetic 
and potential energy changes as well as the power input to the agitator. 

4 Underdamped 

Overdamped 

I 
1 bitlet 
I temperature 
I T2(t) 
I TI 

I 
I L Fig. 15.5-4. Inlet and outlet temperatures as 

t = O  f functions of time. 



470 Chapter 15 Macroscopic Balances for Nonisothermal Systems 

(a) Steady-state behavior for t < 0. When the time derivatives in Eqs. 15.5-12 and 13 are set 
equal to zero and the equations added, we get for t < 0, where TI = TI,: 

Then from Eq. 15.5-13 we can get the initial temperature of the coil 

(b) Steady-state behavior for t + m. When similar operations are performed with TI = TI,, 
we get 

and 

for the final temperature of the coil. 

(c) Unsteady state behavior for t > 0. It is convenient to define dimensionless variables 
using the steady-state quantities for t < 0 and t + m: 

T2 - T2m 
O2 = = dimensionless liquid temperature (15.5-18) 

T20 - T20: 

T' - T,, 
0, = = dimensionless coil temperature 

Tc, - Tc, 

UAt r = ,-- = dimensionless time 
P C , ~  

In addition we define three dimensionless parameters: 
A 

R = pC,V/p,Cp,Vc = ratio of thermal capacities (15.5-21) 

F = W ~ / U A  = flow-rate parameter (15.5-22) 

b /  U A  = controller parameter (15.5-23) 

In terms of these quantities, the unsteady-state balances in Eqs. 15.5-12 and 13 become (after 
considerable manipulation): 

elimination of 0, between this pair of equations gives a single second-order linear ordinary 
differential equation for the exit liquid temperature as a function of time: 

This equation has the same form as that obtained for the damped manometer in Eq. 7.7-21 
(see also Eq. C.1-7). The general solution is then of the form of Eq. 7.7-23 or 24: 

0, = C+ exp (m+r) + C exp (m-r) (m+ + m-) (15.5-27) 

0, = C, exp rnr + C2r exp r n ~  (m, = m- = m) (15.5-28) 
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EXAMPLE 15.5-3 

Flow of Compressible 
Fluids Through 
Head Meters 

where 

m, = $[-(I + R + F) * d(1 + R + F ) ~  - 4 R ( B  + F ) ]  (15.5-29) 

Thus by analogy with Example 7.7-2, the fluid exit temperature may approach its final value 
as a monotone increasing function (overdamped or critically damped) or with oscillations 
(underdamped). The system parameters appear in the dimensionless time variable, as well as 
in the parameters B, F, and R. Therefore, numerical calculations are needed to determine 
whether in a particular system the temperature will oscillate or not. 

Extend the development of Example 7.6-5 to the steady flow of compressible fluids through 
orifice meters and Venturi tubes. 

SOLUTION 

We begin, as in Example 7.6-5, by writing the steady-state mass and mechanical energy bal- 
ances between reference planes 1 and 2 of the two flow meters shown in Fig. 15.5-5. For com- 
pressible fluids, these may be expressed as 

in which the quantities ai = ( v ~ ) ~ / ( v ~ )  are included to allow for the replacement of the average 
of the cube by the cube of the average. 

. . 

Direction - 
of flow 

1 0 and 2 
I Throat 1 

I 
I Direction - ,*I I I. 7' maximum 

of flow I J 

Fig. 15.5-5. Measurement of mass flow rate by use of (a) an orifice 
meter, and ( b )  a Venturi tube. 
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We next eliminate (v,) and (v,) from the above two equations to get an expression for the 
mass flow rate: 

We now repeat the assumptions of Example 7.6-5: (i) e, = 0, (ii) a, = 1, and (iii) cr2 = (so/s2)'. 
Then Eq. 15.5-32 becomes 

The empirical "discharge coefficient," Cd, is included in this equation to permit correction of 
this expression for errors introduced by the three assumptions and must be determined ex- 
perimentally. 

For Venturi meters, it is convenient to put plane 2 at the point of minimum cross section of 
the meter so that S2 = So. Then a, is very nearly unity, and it has been found experimentally 
that Cd is almost the same for compressible and incompressible fluids-that is, about 0.98 for 
well designed Venturi meters. For orifice meters, the degree of contraction of a compressible 
fluid stream at plane 2 is somewhat less than for incompressible fluids, especially at high flow 
rates, and a different discharge coefficient2 is required. 

In order to use Eq. 15.5-33, the fluid density must be known as a function of pressure. 
That is, one must know both the path of the expansion and the equation of state of the fluid. 
In most cases the assumption of frictionless adiabatic behavior appears to be acceptable. For 
ideal gases, one may write p p P  = constant, where y = CJCV (see Eq. 15.2-5). Then Eq. 15.5- 
33 becomes 

This formula expresses the mass flow rate as a function of measurable quantities and the dis- 
charge coefficient. Values of the latter may be found in engineering  handbook^.^ 

A compressible gas, initially at T = To, p = p,,, and p = po, is discharged from a large station- 
ary insulated tank through a small convergent nozzle, as shown in Fig. 15.5-6. Show how the 

Free Batch fractional remaining mass of fluid in the tank, p/p,, may be determined as a function of time. 
of  a Compressible Fluid Develop working equations, assuming that the gas is ideal. 

SOLUTION For convenience, we divide the tank into two parts, separated by the surface 1 as shown in 
the figure. We assume that surface 1 is near enough to the tank exit that essentially all of the 
fluid mass is to left of it, but far enough from the exit that the fluid velocity through the sur- 
face 1 is negligible. We further assume that the average fluid properties to the left of 1 are 
identical with those at surface 1. We now consider the behavior of these two parts of the sys- 
tem separately. 

(a) The bulk of the fluid in the tank. For the region to the left of surface 1, the unsteady state 
mass balance in Eq. (A) of Table 15.5-1 is 

R. H. Perry, D. W. Green, and J. 0. Maloney, Chemical Engineers' Handbook, 7th Edition, 
McGraw-Hill, New York (1997); see also, Chapter 15 of Handbook of Fluid Dynamics and Fluid Machinery 
(J. A. Schertz and A. E. Fuhs, eds.), Wiley, New York (1996). 
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Insulation Fig. 15.5-6. Free batch expansion of 

Convergent ;, nozzle 

f' 1 Tank volume = V ] 

a ~ompressible fluid.  hes sketch 
shows the locations of surfaces 1 
and 2. 

Ambient pressure = p, 1 

For the same region, the energy balance of Eq. (E) of Table 15.5-1 becomes 

in which V is the total volume in the system being considered, and w1 is the mass rate of flow 
of gas leaving the system. In writing this equation, we have neglected the kinetic energy of 
the fluid. 

Substituting the mass balance into both sides of the energy equation gives 

,. 
For a stationary system under the influence of no external forces other than gravity, d @ , / d t  = 
0, so that Eq. 15.5-37 becomes 

This equation may be combined with the thermal and caloric equations of state for the fluid in 
order to obtain pl(pl) and T,(p,). We find, thus, that the condition of the fluid in the tank de- 
pends only on the degree to which the tank has been emptied and not on t t e  rate of dis- 
charge. For the special case of an ideal gas with constant Cv, for which dU = C d T  and p = 
pRT/M, we may integrate Eq. 15.5-38 to obtain 

in which y = CJC,. This result also follows from Eq. 11.4-57. 

(b) Discharge of the gas through the nozzle. For the sake of simplicity we assume here that 
the flow between surfaces 1 and 2 is both frictionless and adiabatic. Also, since w, is not far 
different from w2, it is also appropriate to consider at any one instant that the flow is quasi- 
steady-state. Then we can use the macroscopic mechanical energy balance in the form of Eq. 
15.2-2 with the second, fourth, and fifth terms omitted. That is, 

Since we are dealing with an ideal gas, we may use the result in Eq. 15.5-34 to get the instan- 
taneous discharge rate. Since in this problem the ratio S2/S1 is very small and its square is 
even smaller, we can replace the denominator under the square root sign in Eq. 15.5-34 by 
unity. Then the p2 outside the square root sign is moved inside and use is made of Eq. 15.5-39. 
This gives 

in which S2 is the cross-sectional area of the nozzle opening. 
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PROBLEMS 1 s ~ ~ .  

Now we use Eq. 15.5-39 to eliminate p, from Eq. 15.5-41. Then we have a first-order dif- 
ferential equation for p,, which may be integrated to give 

From this equation we can obtain the time required to discharge any given fraction of the 
original gas. 

At low flow rates the pressure p2 at the nozzle opening is equal to the ambient pressure. 
However, examination of Eq. 15.5-41 shows that, as the ambient pressure is reduced, the cal- 
culated mass rate of flow reaches a maximum at a critical pressure ratio 

For air ( y  = 1.4), this critical pressure ratio is 0.53. If the ambient pressure is further reduced, 
the pressure just inside the nozzle will remain at the value of p2 calculated from Eq. 15.5-43, 
and the mass rate of flow will become independent of ambient pressure p,. Under these con- 
ditions, the discharge rate is 

Then, for p J p ,  < r, we may write Eq. 15.5-42 more simply: 

If p , / p l  is initially less than r, both Eqs. 15.5-46 and 42 will be useful for calculating the total 
discharge time. 

QUESTIONS FOR DISCUSSION 

Give the physical significance of each term in the five macroscopic balances. 
How are the equations of change related to the macroscopic balances? 
Does each of the four terms within the parentheses in Eq. 15.1-2 represent a form of energy? 
Explain. 
How is the macroscopic (total) energy balance related to the first law of thermodynamics, AU = 

Q +  w? 
Explain how the averages (v) and (v3) arise in Eq. 15.1-1. 
What is the physical significance of E,  and E,? What sign do they have? How are they related 
to the velocity distribution? How can they be estimated? 
How is the macroscopic balance for internal energy derived? 
What information can be obtained from Eq. 15.2-2 about a fluid at rest? 

Heat transfer in double-pipe heat exchangers. 
(a) Hot oil entering the heat exchanger in Example 15.4-1 at surface 2 is to be cooled by water 
entering at surface 1. That is, the exchanger is being operated in countercurrent flow. Compute 
the required exchanger area A, if the heat transfer coefficient U is 200 Btu/hr. ft2 . F and the 
fluid streams have the following properties: 
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Mass flow Heat Temperature 
rate capacity entering leaving 

(lbm / hr) (Btu/lb, . F) (OF) (OF) 

Oil 10,000 0.60 200 100 
Water 5,000 1 .OO 60 - 

(b) Repeat the calculation of part (a) if U, = 50 and U2 = 350 Btu/hr ft2 F. Assume that U 
varies linearly with the water temperature, and use the results of Problem 15B.1. 
(c) What is the minimum amount of water that can be used in (a) and (b) to obtain the de- 
sired temperature change for the oil? What is the minimum amount of water that can be used 
in parallel flow? 
(dl Calculate the required heat exchanger area for parallel flow operation, if the mass rate of 
flow of water is 15,500 Ib,/hr and U is constant at 200 Btu/hr. ft2 SF. 
Answers: (a) 104 ft2; (b) 122 ft2; (c) 4290 lbm/hr, 15,000 lb,/hr; (d) about 101 ft2 

15A.2. Adiabatic flow of natural gas in a pipeline. Recalculate the power requirement wlk in Ex- 
ample 15.4-2 if the flow in the pipeline were adiabatic rather than isothermal. 
(a) Use the result of Problem 15B.3(d) to determine the density of the gas at plane 2. 
(b) Use your answer to (a), along with the result of Problem 15B.3(e), to obtain p2. 
(c) Calculate the power requirement, as in Example 15.4-2. 
Answers: (a) 0.243 lb,/ft3; (b) 86 psia; (c) 504 hp 

15A.3. Mixing of two ideal-gas streams. 
(a) Calculate the resulting velocity, temperature, and pressure when the following two air 
streams are mixed in an apparatus such as that described in Example 15.3-2. The heat capac- 
ity C, of air may be considered constant at 6.97 Btu/lb-mole . F. The properties of the two 
streams are: 

Stream la: 1000 1000 80 1 .OO 
Stream lb: 10,000 100 80 1 .OO 

Answer: (a) 11,000 Ib,/hr; about 110 ft/s; 86.5 OF; 1.00 atrn 
(b) What would the calculated velocity be, if the fluid density were treated as constant? 
(c) Estimate k, for this operation, basing your calculation on the results of part (b). 
Answers: (b) 109 ft/s; (c) 1.4 X lo3 ft Ibf/lb, 

15A.4. Flow through a Venturi tube. A Venturi tube, with a throat 3 in. in diameter, is placed in a 
circular pipe 1 ft in diameter carrying dry air. The discharge coefficient Cd of the meter is 0.98. 
Calculate the mass flow rate of air in the pipe if the air enters the Venturi at 70°F and 1 atrn 
and the throat pressure is 0.75 atm. 
(a) Assume adiabatic frictionless flow and y = 1.4. 
(b) Assume isothermal flow. 
(c) Assume incompressible flow at the entering density. 
Answers: (a) 2.07 lb,/s; (b) 1.96 lbm/s; (c) 2.43 lbm/s 

15A.5. Free batch expansion of a compressible fluid. A tank with volume V = 10 ft3 (see Fig. 15.5-6) 
is filled with air (y = 1.4) at To = 300K and po = 100 atm. At time t = 0 the valve is opened, al- 
lowing the air to expand to the ambient pressure of 1 atrn through a convergent nozzle, with 
a throat cross section S2 = 0.1 ft2. 
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(a) Calculate the pressure and temperature at the throat of the nozzle, just after the start of 
the discharge. 
(b) Calculate the pressure and temperature within the tank when p2 attains its final value of 1 
atm. 
(c) How long will it take for the system to attain the state described in (b)? 

Heating of air in a tube. A horizontal tube of 20 ft length is heated by means of an electrical 
heating element wrapped uniformly around it. Dry air enters at 5'F and 40 psia at a velocity 
75 ft/s and 185 lb,/hr. The heating element provides heat at a rate of 800 Btu/hr per foot of 
tube. At what temperature will the air leave the tube, if the exit pressure is 15 psia? Assume 
turbulent flow and ideal gas behavior. For air in the range of interest the heat capacity at con- 
stant pressure in Btu/lb-mole . F is 

where T is expressed in degrees Rankine. 
Answer: T, = 354°F 

Operation of a simple double-pipe heat exchanger. A cold-water stream, 5400 lb,,/hr at 
70°F, is to be heated by 8100 lb,,/hr of hot water at 200°F in a simple double-pipe heat ex- 
changer. The cold water is to flow through the inner pipe, and the hot water through the an- 
nular space between the pipes. Two 20-ft lengths of heat exchanger are available, and also all 
the necessary fittings. 
(a) By means of a sketch, show the way in which the two double-pipe heat exchangers should 
be connected in order to get the most effective heat transfer. 
(b) Calculate the exit temperature of the cold stream for the arrangement decided on in (a) 
for the following situation: 

(i) The heat-transfer coefficient for the annulus, based on the heat transfer area of the 
inner surface of the inner pipe is 2000 Btu/hr. ft2. F. 

(ii) The inner pipe has the following properties: total length, 40 ft; inside diameter 0.0875 
ft; heat transfer surface per foot, 0.2745 ft2; capacity at average velocity of 1 ft/s is 1345 lb,/hr. 

(iii) The average properties of the water in the inner pipe are: 

(iv) The combined resistance of the pipe wall and encrustations is 0.001 hr . ft2 . F/Btu 
based on the inner pipe surface area. 
(c) Sketch the temperature profile in the exchanger. 
Answer: (b) 136°F 

Performance of a double-pipe heat exchanger with variable overall heat transfer coeffi- 
cient. Develop an expression for the amount of heat transferred in an exchanger of the type 
discussed in Example 15.4-1, if the overall heat transfer coefficient U  varies linearly with the 
temperature of either stream. 
(a) Since Th - T,  is a linear function of both Th and T,, show that 

U - U ,  - A T - A T ,  
- 

U2 - U, AT2 - ATl 

in which AT = Th - T,, and the subscripts 1 and 2 refer to the conditions at control surfaces 1 
and 2. 
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(b) Substitute the result in (a) for T,, - T, into Eq. 15.4-12, and integrate the equation thus ob- 
tained over the length of the exchanger. Use this result to show that1 

15B.2. Pressure drop in turbulent flow in a slightly converging tube (Fig. 15B.2). Consider the tur- 
bulent flow of an incompressible fluid in a circular tube with a diameter that varies linearly 
with distance according to the relation 

At z = 0, the velocity is v,  and may be assumed to be constant over the cross section. The 
Reynolds number for the flow is such that f is given approximately by the Blasius formula of 
Eq. 6.2-13, 

Obtain the pressure drop p, - p2 in terms of v,, D,, D,, p, L, and v = p / p .  

(a) Integrate the d-form of the mechanical energy balance to get 

and then eliminate v, from the equation. 
(b) Show that both v and f are functions of D: 

Of course, D is a function of z according to Eq. 158.2-1. 
(c) Make a change of variable in the integral in Eq. 15B.2-3 and show that 

(d) Combine the results of (b) and (c) to get finally 

(e) Show that this result simplifies properly for Dl = D,. 

Diameter Dl 
I Diameter D2 

I 

u I 
1 - 2 Fig. 15B.2. Turbulent flow in a hori- 

z = O  Direction of flow z = L zontal, slightly tapered tube (Dl is 
(Z direction) slightly greater than D,). 

' A. P. Colburn, Ind. Eng. Chem., 25,873 (1933). 
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15B.3. Steady flow of ideal gases in ducts of constant cross section. 
(a) Show that, for the horizontal flow of any fluid in a circular duct of uniform diameter D, 
the d-form of the mechanical energy balance, Eq. 15.4-1, may be written as 

in which de, = (4f/D)dL. Assume flat velocity profiles. 
(b) Show that Eq. 15B.3-1 may be rewritten as 

Show further that, when use is made of the d-form of the mass balance, Eq. 15B.3-2 becomes 
for isothermal flow of an ideal gas 

2RTdv dv de, = -- - 
M v3 2u 

(c) Integrate Eq. 15B.3-3 between any two pipe cross sections 1 and 2 enclosing a total pipe 
length L. Make use of the ideal gas equation of state and the macroscopic mass balance to 
show that vJv1 = pl/p2 = pI/p2, SO that the "mass velocity" G can be put in the form 

J plpl(1 - r)  
G = plvl = (isothermal flow of ideal gases) (158.3-4) e, - In r 

in which r = (p2/p,I2. Show that, for any given value of e, and conditions at section 1, 
the quantity G reaches its maximum possible value at a critical value of r defined by Inr, t 
(1 - T , ) / Y ,  = e,,. See also Problem 15B.4. 
(d) Show that, for the adiabatic flow of an ideal gas with constant 4 in a horizontal duct of 
constant cross section, the d-form of the total energy balance (Eq. 15.4-4) simplifies to 

+ ( G ) $ v 2  = constant 

where y = C,/CV. Combine this result with Eq. 15B.3-2 to get 

Integrate this equation between sections 1 and 2 enclosing the resistance e,, assuming y con- 
stant. Rearrange the result with the aid of the macroscopic mass balance to obtain the follow- 
ing relation for the mass flux G. 

PlPl 
G = plvl = (adiabatic flow of ideal gases) (15B.3-7) 

in which s = (p2/p,)2. 

(e) Show by use of the macroscopic energy and mass balances that for horizontal adiabatic 
flow of ideal gases with constant 7, 

p2 - p2 1 + ---[ [ l  - (PI/PZ)~IG~ (y2; 1 j] 
Pl PI PlPl 

This equation can be combined with Eq. 158.3-7 to show that, as for isothermal flow, there is a 
critical pressure ratio p2/pI corresponding to the maximum possible mass flow rate. 
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15B.4. The Mach number in the mixing of two fluid streams. 
(a) Show that when the radicand in Eq. 15.3-13 is zero, the Mach number of the final stream is 
unity. Note that the Mach number, Ma, which is the ratio of the local fluid velocity to the ve- 
locity of sound at the local conditions, may be written for an ideal gas as v/v, = v / m  
(see Problem 11C.1). 
(b) Show how the results of Example 15.3-2 may be used to predict the behavior of a gas 
passing through a sudden enlargement of duct cross section. 

15B.5. Limiting discharge rates for Venturi meters. 
(a) Starting with Eq. 15.5-34 (for adiabatic flow), show that as the throat pressure in a Venturi 
meter is reduced, the mass rate of flow reaches a maximum when the ratio r = p,/p, of throat 
pressure to entrance pressure is defined by the expression 

(b) Show that for S1 >> So the mass flow rate under these limiting conditions is 

(c) Obtain results analogous to Eqs. 15B.5-1 and 2 for isothermal pow. 

15B.6. Flow of a compressible fluid through a convergent-divergent nozzle (Fig. 15B.6). In many 
applications, such as steam turbines or rockets, hot compressed gases are expanded through 
nozzles of the kind shown in the accompanying figure in order to convert the gas enthalpy 
into kinetic energy. This operation is in many ways similar to the flow of gases through ori- 
fices. Here, however, the purpose of the expansion is to produce power-for example, by the 
impingement of the fast-moving fluid on a turbine blade, or by direct thrust, as in a rocket 
engine. 

To explain the behavior of such a system and to justlfy the general shape of the nozzle 
described, follow the path of expansion of an ideal gas. Assume that the gas is initially in a 
very large reservoir at essentially zero velocity and that it expands through an adiabatic fric- 
tionless nozzle to zero pressure. Further assume flat velocity profiles, and neglect changes in 
elevation. 
(a) Show, by writing the macroscopic mechanical energy balance or the total energy balance 
between planes 1 and 2, that 

I 
I 
I 
I 
I 
I 
I 
I irection of gas flow Ax%!-!- -.- 

symmetry ; 
I 
I 
I 
I 
I 
I 
I 
I 

P = P2 
T = T, Fig. 15B.6. Schematic cross section of a conver- 
0 = 4. gent-divergent nozzle. 
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(b) Show, by use of the ideal gas law, the steady-state macroscopic mass balance, and Eq. 
15B.6-1, that the cross section S of the expanding stream goes through a minimum at a critical 
pressure 

(c) Show that the Mach number, Ma = v2/v,(T2), of the fluid at this minimum cross section is 
unity (u, for low-frequency sound waves is derived in Problem llC.l). How does the result of 
part (a) above compare with that in Problem 15B.5? 
(d) Calculate fluid velocity v, fluid temperature T,  and stream cross section S as a function of 
the local pressure p for the discharge of 10 lb-moles of air per second from 560°R and 10 atm 
to zero pressure. Discuss the significance of your results. 
Answer: 

15B.7. Transient thermal behavior of a chromatographic device (Fig. 15B.7). You are a consultant 
to an industrial concern that is experimenting, among other things, with transient thermal 
phenomena in gas chromatography. One of the employees first shows you some reprints of a 
well-known researcher and says that he is trying to apply some of the researcher's new ap- 
proaches, but that he is currently stuck on a heat transfer problem. Although the problem is 
only ancillary to the main study, it must nonetheless be understood in connection with his in- 
terpretation of the data and the application of the new theories. 

Chromatographic column 
contained within the coil 

A 

I 

I I 
I I 
I I 
I I 
I I + 

t = O  t = t, Fig. 15B.7. (a) Chromatographic device; 
Time f (b)  temperature response of the chromato- 

(b)  graphic system. 
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A very tiny chromatographic column is contained within a coil, which is in turn inserted 
into a pipe through which a gas is blown to control the temperature (see Fig. 15B.7a). The gas 
temperature will be called T&t). The temperature at the ends of the coil (outside the pipe) is 
To, which is not very much different from the initial value of T,. The actual temperature 
within the chromatographic column (i.e., within the coil) will be called T(t). Initially the gas 
and the coil are both at the temperature T8. Then beginning at time t = 0, the gas temperature 
is increased linearly according to the equation 

where to is a known constant with dimensions of time. 
You are told that, by inserting thermocouples into the column itself, the people in the lab 

have obtained temperature curves that look like those in Fig. 15B.7(b). The T(t) curve seems to 
become parallel to the T&t) curves for large t. You are asked to explain the above pair of 
curves by means of some kind of theory. Specifically you are asked to find out the following: 
(a) At any time t, what will Tg - T be? 
(b) What will the limiting value of T, - T be when t + m? Call this quantity (AT),. 
(c) What time interval t ,  is required for T, - T to come within, say, 1% of (AT),? 
(d) What assumptions had to be made to model the system? 
(e) What physical constants, physical properties, and so on, have to be known in order to 
make a comparison between the measured and theoretical values of (AT),? 

Devise the simplest possible theory to account for the temperature curves and to answer 
the above five questions. 

15B.8. Continuous heating of a slurry in an agitated tank (Fig. 15B.8). A slurry is being heated by 
pumping it through a well-stirred heating tank. The inlet temperature of the slurry is Ti and 
the temperature of the outer surface of the steam coil is T,. Use the following symbols: 

V = volume of the slurry in the tank 
A 

p, C, = density and heat capacity of the slurry 

w = mass rate of flow of slurry through the tank 

U = overall heat transfer coefficient of heating coil 

A = total heat transfer area of the coil 

Assume that the stirring is sufficiently thorough that the fluid temperature in the tank is uni- 
form and the same as the outlet fluid temperature. 

Steam at 
temperature 

Slurrv in at T, 
temperature - 

Ti 

Temperature 
in tank is T( t )  

Exit - temperature 

Condensate out 
is T ( f )  Fig. 158.8. Heating of a slurry in an 

at approximately T, agitated tank. 
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(a) By means of an energy balance, show that the slurry temperature 
differential equation 

T(t) is described by the 

(15B.8-1) 

The variable t is the time since the start of heating. 
(b) Rewrite this differential equation in terms of the dimensionless variables 

where 

What is the physical significance of T,@, and T,? 
(c) Solve the dimensionless equation obtained in (b) for the initial condition that T = Ti at t = 0. 
(d) Check the solution to see that the differential equation and initial condition are satisfied. 
How does the system behave at large time? Is this limiting behavior in agreement with your 
intuition? 
(e) How is the temperature at infinite time affected by the flow rate? Is this reasonable? 

- " - e x y [ - ( ~  + E)~] Answer: (c) ------ - Ti - T ,  &V pV 

Parallel-counterflow heat exchangers (Fig. 15C.1). In the heat exchanger shown in the ac- 
companying figure, the "tube fluid" (fluid A) enters and leaves at the same end of the heat ex- 
changer, whereas the "shell f luid (fluid B) always moves in the same direction. Thus there 
are both parallel flow and counterflow in the same apparatus. This flow arrangement is one 
of the simplest examples of "mixed flow," often used in practice to reduce exchanger length.' 

T ~ 2  T ~ l  

Tube fluid 4 I Shell 
out a 

I I 
I I 

I I I I 74 
- ----- - Shell 

d A  = increment of fluid out 
heat-exchange area TB2 

Fig. l5C.1. A 
parallel-counterflow 
heat exchanger. 

See D. Q. Kern, Process Heat Transfer, McGraw-Hill, New York (1950), pp. 127-189; J. H. Perry, 
Chemical Engineers' Handbook, 3rd edition, McGraw-Hill, New York, (1950), pp. 464-465; W. M. Rohsenow, 
J. P. Hartnett, and Y. I. Cho, Handbook of Heat Transfer, 3rd edition, McGraw-Hill, New York (19981, 
Chapter 17; S. Whitaker, Fundamentals of Heat Transfer, corrected edition, Krieger Publishing Company, 
Malabar, Fla., (1983), Chapter 11. 
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The behavior of this kind of equipment may be simply analyzed by making the following as- 
sumptions: 

(i) Steady-state conditions exist. 
(ii) The overall heat transfer coefficient U and the heat capacities of the two fluids are 

constants. 
(iii) The shell-fluid temperature TB is constant over any cross section perpendicular to the 

flow direction. 
(iv) There is an equal amount of heating area in each tube fluid "passu-that is, for 

streams I and I1 in the figure. 
(a) Show by an energy balance over the portion of the system between planes a and b that 

TB - T,, = R ( T ~  - T;) where R = I W ~ ~ ~ / W ~ ~ ~ ~ I  (15c.1-1) 

(b) Show that over a differential section of the exchanger, including a total heat exchange sur- 
face dA, 

dTi 
- I (TB - Ti) 

da 2 

in which da = (U/wAtPA)d~,  and WA and epA are defined as in Example 15.4-1. 
(c) Show that when Ti and T; are eliminated between these three equations, a differential 
equation for the shell fluid can be obtained: 

in which @(a) = (TB - TB2)/(TB, - TB2). Solve this equation (see Eq. C.l-7) with the boundary 
conditions 

B.C. 1: 

B.C. 2: 

in which A, is the total heat-exchange surface of the exchanger. 
(dl Use the result of part (c) to obtain an expression for dTB/da. Eliminate dTB/da from this 
expression with the aid of Eq. 15C.1-4 and evaluate the resulting equation at a = 0 to obtain 
the following relation for the performance of the exchanger: 

in which = (TA2 - TAl)/(TBl - TAl). 
(e) Use this result to obtain the following expression for the rate of heat transfer in the ex- 
changer: 

in which 
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The quantity Y represents the ratio of the heat transferred in the "1-2 parallel-counterflow ex- 
changer" shown to that transferred in a true counterflow exchanger of the same area and ter- 
minal fluid temperatures. Values of Y(R, W are given graphically in Perry's handbook.' It 
may be seen that Y(R, q) is always less than unity. 

Discharge of air from a large tank. It is desired to withdraw 5 Ib,,/s from a large storage tank 
through an equivalent length of 55 ft of new steel pipe 2.067 in. in diameter. The air undergoes 
a sudden contraction on entering the pipe, and the accompanying contraction loss is not in- 
cluded in the equivalent length of the pipe. Can the desired flow rate be obtained if the air in 
the tank is at 150 psig and 70°F and the pressure at the downstream end of the pipe is 50 psig? 

The effect of the sudden contraction may be estimated with reasonable accuracy by con- 
sidering the entrance to consist of an ideal nozzle converging to a cross section equal to that 
of the pipe, followed by a section of pipe with e, = 0.5 (see Table 7.5-1). The behavior of the 
nozzle can be determined from Eq. 15.5-34 by assuming the cross sectional area S, to be infi- 
nite and Cd to be unity. 
Answer: Yes. The calculated discharge rate is about 6 1bJs if isothermal flow is assumed (see 
Problem 15B.3) and about 6.3 lb,/s for adiabatic flow. The actual rate should be between these 
limits for an ambient temperature of 70°F. 

Stagnation temperature (Fig. 15C.3). A "total temperature probe," as shown in the figure, is 
inserted in a steady stream of an ideal gas at a temperature T ,  and moving with a velocity v,. 
Part of the moving gas enters the open end of the probe and is decelerated to nearly zero veloc- 
ity before slowly leaking out of the bleed holes. This deceleration results in a temperature rise, 
which is measured by the thermocouple. Since the deceleration is rapid, it is nearly adiabatic. 
(a) Develop an expression for the temperature registered by the thermocouple in terms of T, 
and v, by using the steady-state macroscopic energy balance, Eq. 15.1-3. Use as your system a 
representative stream of fluid entering the probe. Draw reference plane 1 far enough up- 
stream that conditions may be assumed unaffected by the probe, and reference plane 2 in the 
probe itself. Assume zero velocity at plane 2, neglect radiation, and neglect conduction of 
heat from the fluid as it passes between the reference planes. 
(b) What is the function of the bleed holes? 
Answer: (a) & - TI = v ; ? / 2 c  Temperature rises within about 2% of those given by this ex- 
pression and may be obtained with well-designed probes. 

The macroscopic entropy balance. 
(a) Show that integration of the equation of change for entropy (Eq. llD.l-3) over the flow 
system of Fig. 7.0-1 leads to 

in which 

Stot = 

No. 30 I-C thermocouple 
Steel 

I 
0.025" sphere 

5 
0.071" 0.095" 

4 Fig. 15C.3. A "total temperature 
Plastic Three 0.023" bleed holes probe." [H. C. Hottel and A. Kalitin- 

equally spaced sky, J. Appl. Mech., 12, A25 (1945).] 
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(b) Give a term-by-term interpretation of the equations in (a). 
(c) IS the term in g,,,, involving the stress tensor the same as the energy dissipation by vis- 
cous heating? 

Derivation of the macroscopic energy balance. Show how to integrate Eq. (N) of Table 11.4- 
1 over the entire volume V of a flow system, which, because of moving parts, may be a func- 
tion of time. With the help of the Gauss divergence theorem and the Leibniz formula for 
differentiating an integral, show that this gives the macroscopic total energy balance Eq. 15.1- 
2. What assumptions are made in the derivation? How is W, to be interpreted? (Hint: Some 
suggestions on solving this problem may be obtained by studying the derivation of the 
macroscopic mechanical energy balance in 97.8.) 

Operation of a heat-exchange device (Fig. 15D.3). A hot fluid enters the circular tube of ra- 
dius R, at position z = 0 and moves in the positive z direction to z = L, where it leaves the 
tube and flows back along the outside of that tube in the annular space. Heat is exchanged be- 
tween the fluid in the tube and that in the annulus. AIso heat is lost from the annulus to the 
air outside, which is at the ambient air temperature T, (a constant). Assume that the density 
and heat capacity are constant. Use the following notation: 

Ul = overall heat transfer coefficient between the fluid in the tube and the fluid in 
the annular space 

LI, = overall heat transfer coefficient between the fluid in the annulus and the air 
at temperature T, 

Tl(z) = temperature of the fluid in the tube 

T2(z) = temperature of the fluid in the annular space 

w = mass flow rate through the system (a constant) 

If the fluid enters at the inlet temperature Ti, what will be the outlet temperature T,? It is sug- 
gested that t$e following dimensionless quantities be used: 0, = (TI - T,)/(T, - T,), Nl = 

2nRlUlL/w Cp, and 5 = z/L. 

Discharge of a gas fr9m a moving tank (Fig. 15.5-6). Equation 15.5-38 in Example 15.5-4 was 
obtained by setting d @ / d t  equal to zero, a procedure justified only because the tank was said 
to be stationary. It is nevertheless true that Eq. 15.5-38 is correct for moving tanks as well. 
This statement can be proved as follows: 
(a) Consider a tank such as that pictured in Fig. 15.5-6, but moving at a velocity v that is 
much larger than the relative velocity of fluid and tank in the region to the left of surface 1. 
Show that for this region of the tank the macroscopic momentum balance becomes 

\ C I 
Fluid temperature T1(d I /  - I 

coefficient Ul ; 

I 
coefficient U2 y 

Air temperature T, 

I 
I 
I 
I 

Fig. 15D.3. A heat- 
Z ~ O  z = L exchange device. 
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in which the fluid velocity is assumed to be uniform and equal to v. Then take the dot prod- 
uct of both sides of Eq. 15D.4-1 with v to obtain 

where & / d l  is neglected. 
(b) Substitute this result into the macroscopic energy balance, and continue as in Example 
15.5-4. 

15D.5. The classical Bernoulli equation. Below Eq. 15.2-5 we have emphasized that the mechanical 
energy balance and the total energy balance contain different information, since the first is a 
consequence of conservation of momentum, whereas the second is a consequence of conser- 
vation of energy. 

For the steady-state flow of a compressible fluid with zero transport properties, both bal- 
ances lead to the classical Bernoulli equation. The derivation based on the equation of motion 
was given in Example 3.5-1. Make a similar derivation for the steady state energy equation, 
assuming zero transport properties, that is, for isentropic flow.3 

R. B. Bird and M. D. Graham, in Handbook of Fluid Dynamics (R. W .  Johnson, ed.), CRC Press, Boca 
Raton, Fla. (19981, p. 3-13. 



Chapter 16 

Energy Transport by Radiation 

516.1 The spectrum of electromagnetic radiation 

916.2 Absorption and emission at solid surfaces 

516.3 Planck's distribution law, Wien's displacement law, and the Stefan-Boltzmann 
law 

516.4 Direct radiation between black bodies in vacuo at different temperatures 

516.5' Radiation between nonblack bodies at different temperatures 

516.6' Radiant energy transport in absorbing media 

We concluded Part I of this book with a chapter about fluids that cannot be described by 
Newton's law of viscosity, but that require various kinds of nonlinear and time-depen- 
dent expressions. We now end Part I1 with a brief discussion of radiative energy trans- 
port, which cannot be described by Fourier's law. 

In Chapters 9 to 15 the transport of energy by conduction and by convection has 
been discussed. Both modes of transport rely on the presence of a material medium. For 
heat conduction to occur, there must be temperature inequalities between neighboring 
points. For heat convection to occur, there must be a fluid that is free to move and trans- 
port energy with it. In this chapter, we turn our attention to a third mechanism for en- 
ergy transport-namely, radiation. Radiation is basically an electromagnetic mechanism, 
which allows energy to be transported with the speed of light through regions of space 
that are devoid of matter. The rate of energy transport between two "black bodies in a 
vacuum is proportional to the difference of the fourth powers of their absolute tempera- 
tures. This mechanism is qualitatively very different from the three transport mecha- 
nisms considered elsewhere in this book: momentum transport in Newtonian fluids, 
proportional to the velocity gradient; energy transport by heat conduction, proportional 
to a temperature gradient; and mass transport by diffusion, proportional to a concentra- 
tion gradient. Because of the uniqueness of radiation as a means of transport and be- 
cause of the importance of radiant heat transfer in industrial calculations, we have 
devoted a separate chapter to this subject. 

A thorough understanding of the physics of radiative transport requires the use of 
several different  discipline^:',^ electromagnetic theory is needed to describe the essen- 
tially wavelike nature of radiation, in particular the energy and pressure associated with 
electromagnetic waves; thermodynamics is useful for obtaining some relations among 

M. Planck, Theory ofHeat, Macmillan, London (1932), Parts 111 and IV. Nobel Laureate Max Karl 
Ernst Ludwig Planck (1858-1947) was the first to hypothesize the quantization of energy and thereby 
introduce a new fundamental constant h (Planck's constant); his name is also associated with the 
"Fokker-Planck" equation of stochastic dynamics. 

W. Heitler, Quantum Theory of Radiation, 2nd edition, Oxford University Press (1944). 
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the "bulk properties" of an enclosure containing radiation; quantum mechanics is neces- 
sary in order to describe in detail the atomic and molecular processes that occur when 
radiation is produced within matter and when it is absorbed by matter; and statistical 
mechanics is needed to describe the way in which the energy of radiation is distributed 
over the wavelength spectrum. All we can do in this elementary discussion is define the 
key quantities and set forth the results of theory and experiment. We then show how 
some of these results can be used to compute the rate of heat transfer by radiant 
processes in simple systems. 

In $16.1 and $16.2 we introduce the basic concepts and definitions. Then in s16.3 
some of the principal physical results concerning black-body radiation are given. In the 
following section, $16.4, the rate of heat exchange between two black bodies is discussed. 
This section introduces no new physical principles, the basic problems being those of 
geometry. Next, 516.5 is devoted to an extension of the preceding section to nonblack 
surfaces. Finally, in the last section, there is a brief discussion of radiation processes in 
absorbing media.3 

516.1 THE SPECTRUM OF ELECTROMAGNETIC RADIATION 

When a solid body is heated-for example, by an electric coil-the surface of the solid 
emits radiation of wavelength primarily in the range 0.1 to 10 microns. Such radiation is 
usually referred to as thermal radiation. A quantitative description of the atomic and mol- 
ecular mechanisms by which the radiation is produced is given by quantum mechanics 
and is outside the scope of this discussion. A qualitative description, however, is possi- 
ble: When energy is supplied to a solid body, some of the constituent molecules and 
atoms are raised to "excited states." There is a tendency for the atoms or molecules to re- 
turn spontaneously to lower energy states. When this occurs, energy is emitted in the 
form of electromagnetic radiation. Because the emitted radiation results from changes in 
the electronic, vibrational, and rotational states of the atoms and molecules, the radiation 
will be distributed over a range of wavelengths. 

Actually, thermal radiation represents only a small part of the total spectrum of elec- 
tromagnetic radiation. Figure 16.1-1 shows roughly the kinds of mechanisms that are re- 
sponsible for the various parts of the radiation spectrum. The various kinds of radiation 
are distinguished from one another only by the range of wavelengths they include. In a 
vacuum, all these forms of radiant energy travel with the speed of light c. The wave- 
length A, characterizing an electromagnetic wave, is then related to its frequency v by the 
equation 

in which c = 2.998 x lo8 m/s. In the visible part of the spectrum, the various wave- 
lengths are associated with the "color" of the light. 

For some purposes, it is convenient to think of electromagnetic radiation from a cor- 
puscular point of view. Then we associate with an electromagnetic wave of frequency v a 
photon, which is a particle with charge zero and mass zero with an energy given by 

For additional information on radiative heat transfer and engineering applications, see the 
comprehensive textbook by R. Siege1 and J. R. Howell, Thermal Radiation Heat Transfer, 3rd edition, 
Hemisphere Publishing Co., New York (1992). See also J. R. Howell and M. P. Mengoq, in Handbook of 
Heat Transfer, 3rd edition, (W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, eds.), McGraw-Hill, New York 
(1998), Chapter 7. 
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Electrical conductor 

11 Radio waves - - - - - - - - - - - carrying alternating 8" current 

- - - - Molecular rotations 

Near infrared - - - - - - - - - Molecular vibrations 

~ i b k  3 Displacement of outer 

iolet - - - - - - electrons of an atom 

Displacement of inner 
electrons of an atom 

Displacement of nucleons 
in an atomic nucleus 

Fig. 16.1-1. The spectrum of electromagnetic radiation, showing 
roughly the mechanisms by which various wavelengths of radiation 
are produced (1 A = Angstrom unit = lo-' cm = 0.1 nm; 1 p = 1 mi- 
cron = l ~ - ~  m). 

Here h = 6.626 X J,s is Planck's constant. From these two equations and the infor- 
mation from Fig. 16.1-1, we see that decreasing the wavelength of electromagnetic radia- 
tion corresponds to increasing the energy of the corresponding photons. This fact ties in 
with the various mechanisms that produce the radiation. For example, relatively small 
energies are released when a molecule decreases its speed of rotation, and the associated 
radiation is in the infrared. On the other hand, relatively large energies are released 
when an atomic nucleus goes from a high energy state to a lower one, and the associated 
radiation is either gamma- or x-radiation. The foregoing statements also make it seem 
reasonable that the radiant energy emitted from heated objects will tend toward shorter 
wavelengths (higher energy photons) as the temperature of the body is raised. 

Thus far we have sketched the phenomenon of the emission of radiant energy or pho- 
tons when a molecular or atomic system goes from a high to a low energy state. The re- 
verse process, known as absorption, occurs when the addition of radiant energy to a 
molecular or atomic system causes the system to go from a low to a high energy state. 
The latter process is then what occurs when radiant energy impinges on a solid surface 
and causes its temperature to rise. 



490 Chapter 16 Energy Transport by Radiation 

516.2 ABSORPTION AND EMISSION AT SOLID SURFACES 

Having introduced the concepts of absorption and emission in terms of the atomic pic- 
ture, we now proceed to the discussion of the same processes from a macroscopic view- 
point. We restrict the discussion here to opaque solids. 

Radiation impinging on the surface of an opaque solid is either absorbed or re- 
flected. The fraction of the incident radiation that is absorbed is called the absorptivity 
and is given the symbol a. Also the fraction of the incident radiation with frequency v 
that is absorbed is designated by a,. That is, a and a, are defined as 

in which qt'dv and q!'dv are the absorbed and incident radiation per unit area per unit 
time in the frequency range v to v + dv. For any real body, a, will be less than unity and 
will vary considerably with the frequency. A hypothetical body for which a, is a con- 
stant, less than unity, over the entire frequency range and at all temperatures is called a 
gray body. That is, a gray body always absorbs the same fraction of the incident radiation 
of all frequencies. A limiting case of the gray body is that for which a, = 1 for all frequen- 
cies and all temperatures. This limiting behavior defines a black body. 

All solid surfaces emit radiant energy. The total radiant energy emitted per unit area 
per unit time is designated by q'", and that emitted in the frequency range u to u + dv  is 
called qf'dv. The corresponding rates of energy emission from a black body are given the 
symbols qjf) and qlP,'du. In terms of these quantities, the emissivity for the total radiant-en- 
ergy emission as well as that for a given frequency are defined as 

The emissivity is also a quantity less than unity for real, nonfluorescing surfaces and is 
equal to unity for black bodies. At any given temperature the radiant energy emitted by 
a black body represents an upper limit to the radiant energy emitted by real, nonfluo- 
rescing surfaces. 

We now consider the radiation within an evacuated enclosure or "cavity" with 
isothermal walls. We imagine that the entire system is at equilibrium. Under this condi- 
tion, there is no net flux of energy across the interfaces between the solid and the cavity. 
We now show that the radiation in such a cavity is independent of the nature of the 
walls and dependent solely on the temperature of the walls of the cavity. We connect 
two cavities, the walls of which are at the same temperature, but are made of two differ- 
ent materials, as shown in Fig. 16.2-1. If the radiation intensities in the two cavities were 
different, there would be a net transport of radiant energy from one cavity to the other. 
Because such a flux would violate the second law of thermodynamics, the radiation in- 
tensities in the two cavities must be equal, regardless of the compositions of the cavity 
surfaces. Furthermore, it can be shown that the radiation is uniform and unpolarized 
throughout the cavity. This cavity radiation plays an important role in the development 

Material 1 Material 2 

Fig. 16.2-1. Thought experiment for proof that cavity radi- 
ation is independent of the wall materials. 
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of Planck's law. We designate the intensity of the radiation as q"""). This is the radiant 
energy that would impinge on a solid surface of unit area placed anywhere within the 
cavity. 

We now perform two additional thought experiments. In the first, we put into a cav- 
ity a small black body at the same temperature as the walls of the cavity. There will be 
no net interchange of energy between the black body and the cavity walls. Hence the en- 
ergy impinging on the black-body surface must equal the energy emitted by the black 
body: 

From this result, we draw the important conclusion that the radiation emitted by a black 
body is the same as the equilibrium radiation intensity within a cavity at the same tem- 
perature. 

In the second thought experiment, we put a small nonblack body into the cavity, 
once again specifying that its temperature be the same as that of the cavity walls. There 
is no net heat exchange between the nonblack body and the cavity walls. Hence we can 
state that the energy absorbed by the nonblack body will be the same as that radiating 
from it: 

Comparison of Eqs. 16.2-5 and 6 leads to the result 

The definition of the emissivity e in Eq. 16.2-3 allows us to conclude that 

PI (16.2-8) 

This is Kirchhoff's law,' which states that at a given temperature the emissivity and ab- 
sorptivity of any solid surface are the same when the radiation is in equilibrium with the 
solid surface. It can be shown that Eq. 16.2-8 is also valid for each wavelength separately: 

(16.2-9) 

Values of the total emissivity e for some solids are given in Table 16.2-1. Actually, e de- 
pends also on the frequency and on the angle of emission, but the averaged values given 
there have found widespread use. The tabulated values are, with a few exceptions, for 
emission normal to the surface, but they may be used for hemispheric emissivity, partic- 
ularly for rough surfaces. Unoxidized, clean, metallic surfaces have very low emissivi- 
ties, whereas most nonmetals and metallic oxides have emissivities above 0.8 at room 
temperature or higher. Note that emissivity increases with increasing temperature for 
nearly all materials. 

We have indicated that the radiant energy emitted by a black body is an upper limit 
to the radiant energy emitted by real surfaces and that this energy is a function of the 
temperature. It has been shown experimentally that the total emitted energy flux from a 
black surface is 

- - - 

G. Kirchhoff, Monatsbeu. d. preuss. Akad. d. Wissenschaften, p. 783 (1859); Poggendorffs Annalen, 109, 
275-301 (1860). Gustav Robert Kirchhoff (1824-1887) published his famous laws for electrical circuits 
while still a graduate student; he taught at Breslau, Heidelberg, and Berlin. 
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Table 16.2-1 The Total Emissivities of Various Surfaces for Perpendicular Emissiona 

Aluminum 
Highly polished,98.3% pure 
Oxidized at 1110°F 
Al-coated roofing 

Copper 
Highly polished, electrolytic 
Oxidized at 11 10°F 

Iron 
Highly polished, electrolytic 
Completely rusted 
Cast iron, polished 
Cast iron, oxidized at llOO°F 

Asbestos paper 
Brick 

Red, rough 
Silica, unglazed, rough 
Silica, glazed, rough 

Lampblack, 0.003 in. or thicker 
Paints 

Black shiny lacquer on iron 
White lacquer 
Oil paints, 16 colors 
Aluminum paints, varying age 

and lacquer content 
Refractories, 40 different 

Poor radiators 
Good radiators 

Water, liquid, thick layerb 

"elected values from the table compiled by H. C. Hottel for W. H. McAdams, Heat 
Transmission, 3rd edition, McGraw-Hill, New York (1954), pp. 472479. 

Calculated from spectroscopic data. 

in which T is the absolute temperature. This is known as the Stefan-Boltzmann law.' The 
Stefan-Boltzmann constant u has been found to have the value of 0.1712 X Btu/hr 
ft2 R or 1.355 X 10-l2 cal/s cm2 . K. In the next section we indicate two routes by which 
this important formula has been obtained theoretically. For nonblack surfaces at tempera- 
ture T the emitted energy flux is 

q(e) = euT4 1 (16.2-1 1) 

J. Stefan, Sitzber. Akad. Wiss. Wien, 79, part 2,391428 (1879); L. Boltzmann, Ann. Phys. (Wied. Ann.), 
Ser. 2,22,291-294 (1884). Slovenian-born Josef Stefan (1835-1893), rector of the University of Vienna 
(1876-1877), in addition to being known for the law of radiation that bears his name, also contributed to 
the theory of multicomponent diffusion and to the problem of heat conduction with phase change. 
Ludwig Eduard Boltzmann (1844-1906), who held professorships in Vienna, Graz, Munich, and Leipzig, 
developed the basic differential equation for gas kinetic theory (see Appendix D) and the fundamental 
entropy-probability relation, S = K In W, which is engraved on his tombstone in Vienna; K is called the 
Boltzmann constant. 
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in which e must be evaluated at temperature T. The use of Eqs. 16.2-10 and 11 to calcu- 
late radiant heat transfer rates between heated surfaces is discussed in g516.4 and 5. 

We have mentioned that the Stefan-Boltzmann constant has been experimentally 
determined. This implies that we have a true black body at our disposal. Solids with 
perfectly black surfaces do not exist. However, we can get an excellent approximation 
to a black surface by piercing a very small hole in the wall of an isothermal cavity. The 
hole itself is then very nearly a black surface. The extent to which this is a good ap- 
proximation may be seen from the following relation, which gives the effective emis- 
sivity of the hole, eh,,,, in a rough-walled enclosure in terms of the actual emissivity e 
of the cavity walls and the fraction f of the total internal cavity area that is cut away 
by the hole: 

If e = 0.8 and f = 0.001, then e,,,, = 0.99975. Therefore, 99.975% of the radiation that falls 
on the hole will be absorbed. The radiation that emerges from the hole will then be very 
nearly black-body radiation. 

516.3 PLANCK'S DISTRIBUTION LAW, WIEN'S DISPLACEMENT 
LAW, AND THE STEFAN-BOLTZMANN LAW1r2r3 

The Stefan-Boltzmann law may be deduced from thermodynamics, provided that cer- 
tain results of the theory of electromagnetic fields are known. Specifically, it can be 
shown that for cavity radiation the energy density (that is, the energy per unit volume) 
within the cavity is 

Since the radiant energy emitted by a black body depends on temperature alone, the 
energy density u"' must also be a function of temperature only. It can further be 
shown that the electromagnetic radiation exerts a pressure p(') on the walls of the cav- 
ity given by 

(r) - Z (7) P - 3 u  (16.3-2) 

The preceding results for cavity radiation can also be obtained by considering the cavity 
to be filled with a gas made up of photons, each endowed with an energy hv and mo- 
mentum hv/c. We now apply the thermodynamic formula 

to the photon gas or radiation in the cavity. Insertion of U'" = Vu'" and p'" = $u"' into 
this relation gives the following ordinary differential equation for u(')(T): 

' J. de Boer, Chapter VII in Leerboek der Nafuurkunde, 3rd edition, (R. Kronig, ed.), Scheltema and 
Holkema, Amsterdam (1951). 

H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edition, Wiley, New York 
(1985), pp. 78-79. 

" M. Planck, Vorlesungen uber die Theorie der Wiirmestmhlung, 5th edition, Barth, Leipzig (1923); Ann. 
Phys., 4,553-563,564-566 (1901). 
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This equation can be integrated to give 

in which b is a constant of integration. Combination of this result with Eq. 16.3-1 gives 
the radiant energy emitted from the surface of a black body per unit area per unit time: 

This is the Stefan-Boltzmann law. Note that the thermodynamic development does not 
predict the numerical value of a. 

The second way of deducing the Stefan-Boltzmann law is by integrating the Planck 
distribution law. This famous equation gives the radiated energy flux qg from a black sur- 
face in the wavelength range A to A + dA: 

Here h is Planck's constant. The result can be derived by applying quantum statistics to a 
photon gas in a cavity, the photons obeying Bose-Einstein  statistic^.^,' The Planck distri- 
bution, which is shown in Fig. 16.3-1, correctly predicts the entire energy versus wave- 
length curve and the shift of the maximum toward shorter wavelengths at higher 
temperatures. When Eq. 16.3-7 is integrated over all wavelengths, we get 

In the above integration we changed the variable of integration from A to x = ch/h~T. 
Then the integration over x was performed by expanding l/(ex - 1) in a Taylor series in 
8 (see 5C.2) and integrating term by term. The quantum statistical approach thus gives 
the details of the spectral distribution of the radiation and also the expression for the Ste- 
fan-Boltzmann constant, - 
having the value 1.355 X lo-'' cal/s cm2 . K, which is confirmed within experimental 
uncertainty by direct radiation measurements. Equation 16.3-9 is an amazing formula, 
interrelating as it does the a from radiation, the K from statistical mechanics, the speed of 
light c from electromagnetism, and the h from quantum mechanics. 

In addition to obtaining the Stefan-Boltzmann law from the Planck distribution, we 
can get an important relation pertaining to the maximum in the Planck distribution. First 

- 

J. E. Mayer and M. G. Mayer, Statistical Mechanics, Wiley, New York (1940), pp. 363-374. 
' L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd edition, Part 1, Pergamon, Oxford (1980), §63. 
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A,,, for solar radiation 0.5 micron 

8 ,  

v Wavelength, A, microns 
Visible spectrum 
0.3-0.7 microns 

Fig. 16.3-1. The spectrum of 
equilibrium radiation as given by 
Planck's law. [M. Planck, Veuh. der 
deutschen ahusik. Gesell., 2,202,237 

we rewrite Eq. 16.3-7 in terms of x and then set dqg/dx = 0. This gives the following 
equation for x,,,, which is the value of x for which the Planck distribution shows a maxi- 
mum: 

The solution to this equation is found numerically to be x,, = 4.9651. . . . Hence at a 
given temperature T 

Inserting the values of the universal constants and the value for x,,,, we then get 

This result, originally found experimentally,6 is known as Wien's displacement law. It is 
useful primarily for estimating the temperature of remote objects. The law predicts, in 
agreement with experience, that the apparent color of radiation shifts from red (long 
wavelengths) toward blue (short wavelengths) as the temperature increases. 

Finally, we may reinterpret some of our previous remarks in terms of the Planck dis- 
tribution law. In Fig. 16.3-2 we have sketched three curves: the Planck distribution law 
for a hypothetical black body, the distribution curve for a hypothetical gray body, and a 
distribution curve for some real body. It is thus clear that when we use the total ernissiv- 
ity values, such as those in Table 16.2-1, we are just accounting empirically for the devia- 
tions from Planck's law over the entire spectrum. 

We should not leave the subject of the Planck distribution without pointing out that 
Eq. 16.3-7 was presented at the October 1900 meeting of the German Physical Society as 

W. Wien, Sitzungsber. d .  kglch. preuss. Akad. d .  Wissenschaften, (VI), p. 55-62 (1893). 
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Planck's law (black body) 

Fig. 16.3-2. Comparison of the emit- 
ted radiation from black, gray, and 
real surfaces. 

an empiricism that fitted the available data.7 However, before the end of the year,' Planck 
succeeded in deriving the equation, but at the expense of introducing the radical notion 
of the quantization of energy, an idea that was met with little enthusiasm. Planck himself 
had misgivings, as clearly stated in his textbook.' In a letter in 1931, he wrote: ". . . what I 
did can be described as an act of desperation. . . . I had been wrestling unsuccessfully for 
six years. . . with the problem of equilibrium between radiation and matter, and I knew 
that the problem was of fundamental importance. . ." Then Planck went on to say that 
he was "ready to sacrifice every one of my previous convictions about physical laws" ex- 
cept for the first and second laws of  thermodynamic^.'^ Planck's radical proposal ush- 
ered in a new and exciting era of physics, and quantum mechanics penetrated into 
chemistry and other fields in the twentieth century. 

EXAMPLE 16.3-1 

Temperature and 

For approximate calculations, the sun may be considered a black body, emitting radiation 
with a maximum intensity at h = 0.5 microns (5000 A). With this information, estimate (a) the 
surface temperature of the sun, and (b) the emitted heat flux at the sun's surface. 

Radian t-Energy 
Emission of the Sun SOLUTION 

(a) From Wien's displacement law, Eq. 16.3-12, 

(b) From the Stefan-Boltzmann law, Eq. 16.2-10, 

0. Lummer and E. Pringsheim, Wied. Ann., 63,396 (1897); Ann. der Physik, 3,159 (1900). 
M. Planck, Verhandl. d ,  deutsch. physik. Ges., 2,202 and 237 (1900); Ann. Phys., 4,553-563,564-566 

(1901). 
M. Planck, The Theory of Heat Radiation, Dover, New York (1991), English translation of Vorlesungen 

uber die Theorie der Warmestrahlung (1913), p. 154. 
lo A. Hermann, The Genesis of Quantum Theory, MIT Press (1971), pp. 23-24. 
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Fig. 16.4-1. Radiation at an angle 0 from 
the normal to the surface into a solid angle 
sin 8ddd4. 

516.4 DIRECT RADIATION BETWEEN BLACK BODIES 
IN VACUO AT DIFFERENT TEMPERATURES 

In the preceding sections we have given the Stefan-Boltzmann law, which describes the 
total radiant-energy emission from a perfectly black surface. In this section we discuss 
the radiant-energy transfer between two black bodies of arbitrary geometry and orienta- 
tion. Hence we need to know how the radiant energy emanating from a black body is 
distributed with respect to angle. Because black-body radiation is isotropic, the follow- 
ing relation, known as Lambert's cosine law,' can be deduced: 

in which qg is the energy emitted per unit area per unit time per unit solid angle in a di- 
rection 8 (see Fig. 16.4-1). The energy emitted through the shaded solid angle is then 
q t  sin 8 de d+ per unit area of black solid surface. Integration of the foregoing expression 
for qfj over the entire hemisphere gives the known total energy emission: 

LZT r qf$ sin e ae a+ = , uT4 /021 lo*/' cos B sin e ae d+ 

This justifies the inclusion of the factor of I / T  in Eq. 16.4-1. 
We are now in a position to get the net heat transfer rate from body 1 to body 2, 

where these are black bodies of any shape and orientation (see Fig. 16.4-2). We do this by 
getting the net heat transfer rate between a pair of surface elements dA, and dA, that can 
"see" each other, and then integrating over all such possible pairs of areas. The elements 
dAl and dA2 are joined by a straight line of length r,,, which makes an angle 8, with the 
normal to dA, and an angle 82 with the normal to dA,. 

We start by writing an expression for the energy radiated from dA, into a solid angle 
sin O1 dB1 d+, about r,,. We choose this solid angle large enough that dA2 will lie entirely 
within the "beam" (see Fig. 16.4-2). According to Lambert's cosine law, the energy radi- 
ated per unit time will be 

(9 cos B,)dA, sin el do, d+, 

' H. Lambert, Photometria, Augsburg (1760). 
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Fig. 16.4-2. Radiant interchange 
between two black bodies. 

Of the energy leaving dAl at an angle O,, only the fraction given by the following ratio 
will be intercepted by dA,: 

area of dA2 projected onto a 
plane perpendicular to r,, 

- 
dA2 cos 8 2  

(16.4-4) 

i area formed by the r: sin 6 ,  dBl d 4 ,  
of the solid angle sin 61 dO, d+, 
with a sphere of radius r12 with 
center at dA, 

Multiplication of these last two expressions then gives 

This is the radiant energy emitted by dA, and intercepted by dA, per unit time. In a simi- 
lar way we can write 

UT; cos O1 cos 8, 
dQ, = - dAldA2 

21 $2 

which is the radiant energy emitted by dA2 that is intercepted by dA, per unit time. The 
net rate of energy transport from dA, to dA2 is then 

Therefore, the net rate of energy transfer from an isothermal black body 1 to another 
isothermal black body 2 is 

Here it is understood that the integration is restricted to those pairs of areas dA, and dA2 
that are in full view of each other. This result is conventionally written in the form 
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0.1 0.2 0.30.4 0.6 1.0 2 3 4  6 1 0 -  
z Dimension ratio - 
X 

Fig. 16.4-3. View factors for direct radiation between adjacent rectangles in perpendicular planes 
[H. C. Hottel, Chapter 3 in W. H. McAdams, Heat Transmission, McGraw-Hill, New York (1954), p. 681. 

where A, and A2 are usually chosen to be the total areas of bodies 1 and 2. The dimen- 
sionless quantities F,, and F,,, called view factors (or angle factors or configuration factors), 
are given by 

and the two view factors are related by A,F,, = A,F,,. The view factor F,, represents the 
fraction of radiation leaving body 1 that its directly intercepted by body 2. 

The actual calculation of view factors is a difficult problem, except for some very 
simple situations. In Fig. 16.4-3 and Fig. 16.4-4 some view factors for direct radiation are 
s h ~ w n . ~ , ~ , W h e n  such charts are available, the calculations of energy interchanges by Eq. 
16.4-9 are easy. 

In the above development, we have assumed that Lambert's law and the 
Stefan-Boltzmann law may be used to describe the nonequilibrium transport process, in 
spite of the fact that they are strictly valid only for radiative equilibrium. The errors thus 
introduced do not seem to have been studied thoroughly, but apparently the resulting 
formulas give a good quantitative description. 

H. C. Hottel and A. F. Sarofim, Radiative Transfer, McGraw-Hill, New York (1967). 
H.C. Hottel, Chapter 4 in W. H. McAdams, Heat Transmission, McGraw-Hill, New York (1954). 
' R. Siege1 and J. R. Howell, Thermal Radiation Heat Transfer, 3rd edition, Hemisphere Publishing Co., 

New York (1992). 
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Diameter or shorter side 
Ratio, 

Distance between planes 

Fig. 16.4-4. View factors for direct radiation between opposed identical shapes 
in parallel planes. [H. C. Hottel, Chapter 3 in W. H. McAdams Heat Transmission, 
McGraw-Hill, New York (1954), Third Edition, p. 69.1 

Thus far we have concerned ourselves with the radiative interactions between two 
black bodies. We now wish to consider a set of black surfaces 1,2, . . . , n, which form the 
walls of a complete enclosure. The surfaces are maintained at temperatures TI ,  T,, . . . , 
T,, respectively. The net heat flow from any surface i to the enclosure surfaces is 

n 

Q,, = U A , ~  F,,(Tf - T$) i = 1,2,.  . . ,n  (16.4-12) 
]=I 

In writing the second form, we have used the relations 

The sums in Eqs. 16.4-13 and 14 include the term F,,, which is zero for any object that in- 
tercepts none of its own rays. The set of n equations given in Eq. 16.4-12 (or Eq. 16.4-13) 
may be solved to get the temperatures or heat flows according to the data available. 

A simultaneous solution of Eqs. 16.4-13 and 14 of special interest is that for which 
Q& - Q  4 = . . . =  

7 - Q ,  = 0. Surfaces such as 3,4, . . . , n are here called "adiabatic." In this 
situation one can eliminate the temperatures of all surfaces except 1 and 2 from the heat 
flow calculation and obtain an exact solution for the net heat flow from surface 1 to sur- 
face 2: 

Values of F,, for use in this equation are given in Fig. 16.4-4. These values apply only 
when the adiabatic walls are formed from line elements perpendicular to surfaces 1 and 2. 

The use of these view factors F and T greatly simplifies the calculations for black- 
body radiation, when the temperatures of surfaces 1 and 2 are known to be uniform. The 
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Sun Earth Fig. 16.4-5. Estimation of the solar 
constant. 

1- 92.9 million miles 

reader wishing further information on radiative heat exchange in enclosures is referred 
to the l i t e r a t~ re .~  

The radiant heat flux entering the earth's atmosphere from the sun has been termed the "solar 
constant" and is important in solar energy utilization as well as in meteorology. Designate the 

Estimation of the sun as body 1 and the earth as body 2, and use the following data to calculate the solar con- 
Solar Constant stant: Dl = 8.60 X lo5 miles; rI2 = 9.29 X lo7 miles; qfi) = 2.0 X lo7 Btu/hr. ft2 (from Example 

16.3-1). 

SOLUTION In the terminology of Eq. 16.4-5 and Fig. 16.4-5, 

dQ , 

solar constant = cos O1dAl 

This is in satisfactory agreement with other estimates that have been made. The treatment of 
r:, as a constant in the integrand is permissible here because the distance r12 varies by less 
than 0.5% over the visible surface of the sun. The remaining integral, $ cos B,dA,, is the proL 
jected area of the sun as seen from the earth, or very nearly .rrJ3:/4. 

Two black disks of diameter 2 ft are placed directly opposite one another at a distance of 4 ft. 
Disk 1 is maintained at 2000°R, and disk 2 at 1000°R. Calculate the heat flow between the two 

Radiant Heat Transfer disks (a) when no other surfaces are present, and (b) when the two disks are connected by an 
Between Disks adiabatic right-cylindrical black surface. 

SOLUTION (a) From Eq. 16.4-9 and curve 1 of Fig. 16.4-4, 

Q12 = A1F7p(T? - T;) 
= ~(0.06)(0.1712 X 10-~)[(2000)~ - ( ~ o o o ) ~ ]  

= 4.83 x lo3 Btu/hr 

(b) From Eq. 16.4-15 and curve 5 of Fig. 16.4-4, 
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s16.5 RADIATION BETWEEN NONBLACK BODIES 
AT DIFFERENT TEMPERATURES 

In principle, radiation between nonblack surfaces can be treated by differential analysis 
of emitted rays and their successive reflected components. For nearly black surfaces this 
is feasible, as only one or two reflections need be considered. For highly reflecting sur- 
faces, however, the analysis is complicated, and the distributions of emitted and re- 
flected rays with respect to angle and wavelength are not usually known with enough 
accuracy to justify a detailed calculation. 

A reasonably accurate treatment is possible for a small convex surface in a large, 
nearly isothermal enclosure (i.e., a "cavity"), such as a steam pipe in a room with walls 
at constant temperature. The rate of energy emission from a nonblack surface 1 to the 
surrounding enclosure 2 is given by 

and the rate of energy absorption from the surroundings by surface 1 is 

Here we have made use of the fact that the radiation impinging on surface 1 is very 
nearly cavity radiation or black-body radiation corresponding to temperature T,. Since 
A, is convex, it intercepts none of its own rays; hence F,, has been set equal to unity. The 
net radiation rate from A, to the surroundings is therefore 

1 S usu- In Eq. 16.5-3, e, is the value of the emissivity of surface 1 at TI. The absorptivity a i 
ally estimated as the value of e at T,. 

Next we consider an enclosure formed by n gray, opaque, diffuse-reflecting surfaces 
A,, A,, A3,. . . , A,, at temperatures TI, T,, T,, . . . , T,. Following oppenheiml we define 
the radiosity Ji for each surface A, as the sum of the fluxes of reflected and emitted radiant 
energy from Ai. Then the net radiant flow from Ai to A, is expressed as 

that is, by Eq. 16.4-9 with substitution of radiosities J, in place of the black-body emissive 
powers ac. 

The definition of Ji gives, for an opaque surface, 

in which li is the incident radiant flux on A,. Elimination of li in favor of the net radiant 
flux Qi,/Ai from Ai into the enclosure gives 

whence 

Finally, a steady-state energy balance on each surface gives 

Here Q, is the rate of heat addition to surface A, by nonradiative means. 

' A. K. Oppenheim, Tmns. ASME, 78,725-735 (1956); for earlier work, see G. Poljak, Tech. Phys. 
USSR, 1,555-590 (1935). 
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Fig. 16.5-1. Radiation between two infinite, parallel gray 
Surface 2 at surfaces. 

temperature T2 
with emissivity e2 

Surface 1 at 
temperature TI 

with emissivity el 

Radiation potential: U T ~  h h CTT; 

~I~~ = I - I *  

I I 

I - e l  I 1 I 1-ez Radiation resistance: - 1  - I - 
elAl I A1F12 I e2-42 

I 1 I 
I or - I 
I A2F21 I 

Fig. 16.5-2. Equivalent cir- 

dll cuit for system shown in 
Fig. 16.5-1. 

Equations analogous to Eqs. 16.5-4,7, and 8 arise in the analysis of direct-current cir- 
cuits, from Ohm's law of conduction and Kirchhoff's law of charge conservation. Hence 
we have the following analogies: 

I I 

Electrical 

Current 
Voltage 
Resistance 

Radiative 

This analogy allows easy diagramming of equivalent circuits for visualization of simple 
enclosure radiation problems. For example, the system in Fig. 16.5-1 gives the equivalent 
circuit shown in Fig. 16.5-2 so that the net radiant heat transfer rate is 

The shortcut solution summarized in Eq. 16.4-15 has been similarly generalized to 
non-black-walled enclosures giving 

in place of Eq. 16.5-8, for an enclosure with Qi = 0 for i = 2, 3,. . . , n. The result is like 
that in Eq. 16.5-9, except that F1, must be used instead of F1, to include indirect paths 
from A, to A,, thus giving a larger heat transfer rate. 

Develop an expression for the reduction in radiant heat transfer between two infinite parallel 
gray planes having the same area, A, when a thin parallel gray sheet of very high thermal 

Radiation Shields conductivity is placed between them as shown in Fig. 16.5-3. 
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SOLUTION 

Fig. 16.5-3. Radiation shield. 

The radiation rate between planes 1 and 2 is given by 

since both planes have the same area A and the view factor is unity. Similarly the heat trans- 
fer between planes 2 and 3 is 

These last two equations may be combined to eliminate the temperature of the radiation 
shield, T,, giving 

Then, since Q,, = Q2, = Q,,, we get 

Finally, the ratio of radiant energy transfer with a shield to that without one is 

EXAMPLE 16.5-2 

Radiation and Free- 
Convection Heat Losses 
from a Horizontal Pipe 

Predict the total rate of heat loss, by radiation and free convection, from a unit length of hori- 
zontal pipe covered with asbestos. The outside diameter of the insulation is 6 in. The outer 
surface of the insulation is at 560°R, and the walls and air in the room are at 540°R. 

SOLUTION 

Let the outer surface of the insulation be surface 1 and the walls of the room be surface 2. 
Then Eq. 16.15-3 gives 

Q12 = 4Fl2(e1T? - 4 T ; )  (16.5-16) 



g16.5 Radiation Between Nonblack Bodies at Different Temperatures 505 

Since the pipe surface is convex and completely enclosed by surface 2, F,, is unity. From Table 
16.2-1, we find e, = 0.93 at 560"R and a, = 0.93 at 540 R. Substitution of numerical values into 
Eq. 16.5-12 then gives for 1 ft of pipe: 

By adding the convection heat loss from Example 14.5-1, we obtain the total heat loss: 

Note that in this situation radiation accounts for more than half of the heat loss. If the fluid 
were not transparent, the convection and radiation processes would not be independent, and 
the convective and radiative contributions could not be added directly. 

A body directly exposed to a clear night sky will be cooled below ambient temperature by ra- 
diation to outer space. This effect can be used to freeze water in shallow trays well insulated 

Combined Radiation from the ground. Estimate the maximum air temperature for which freezing is possible, ne- 
and Convection glecting evaporation. 

SOLUTION As a first approximation, the following assumptions may be made: 

a. All heat received by the water is by free convection from the surrounding air, which is 
assumed to be quiescent. 

b. The heat effect of evaporation or condensation of water is not significant. 

c. Steady state has been achieved. 

d. The pan of water is square in cross section. 

e. Back radiation from the atmosphere is neglected. 

The maximum permitted air temperature at the water surface is T ,  = 492"R. The rate of heat 
loss by radiation is 

in which L is the length of one edge of the pan. 
To get the heat gain by convection, we use the relation 

in which h is the heat transfer coefficient for free convection. For cooling atmospheric air by a 
horizontal square facing upward, the heat transfer coefficient is given by2 

in which h is expressed in Btu/hr. ft2. F and the temperature is given in degrees Rankine. 
When the foregoing expressions for heat loss by radiation and heat gain by free convec- 

tion are equated, we get 

95L2 = 0.2L2(Tair - 492)5/4 (16.5-22) 

From this we find that the maximum ambient air temperature is 630°R or 170°F. Except under 
desert conditions, back radiation and moisture condensation from the surrounding air greatly 
lower the required air temperature. 

W. H. McAdams, in Chemical Engineers' Handbook (J.  H.  Perry, Ed.), McGraw-Hill, New York 
(1950), 3rd edition, p. 474. 
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516.6 RADIANT ENERGY TRANSPORT IN ABSORBING MEDIA3 

The methods given in the preceding sections are applicable only to materials that are 
completely transparent or completely opaque. To describe energy transport in nontrans- 
parent media, we write differential equations for the local rate of change of energy as 
viewed from both the material and radiation standpoint. That is, we regard a material 
medium traversed by electromagnetic radiation as two coexisting "phases": a "material 
phase," consisting of all the mass in the system, and a "photon phase," consisting of the 
electromagnetic radiation. 

In Chapter 11 we have already given an energy balance equation for a system con- 
taining no radiation. Here we extend Eq. 11.2-1 for the material phase to take into ac- 
count the energy that is being interchanged with the photon phase by emission and 
absorption processes: 

Here we have introduced % and d, which are the local rates of photon emission and ab- 
sorption per unit volume, respectively. That is, % represents the energy lost by the mate- 
rial phase resulting from the emission of photons by molecules, and d represents the 
local gain of energy by the material phase resulting from photon absorption by the mole- 
cules (see Fig. 16.6-1). The q in Eq. 16.6-1 is the conduction heat flux given by Fourier's 
law. 

For the "photon phase," we may write an equation describing the local rate of 
change of radiant energy density dr': 

in which q"' is the radiant energy flux. This equation may be obtained by writing a radi- 
ant energy balance on an element of volume fixed in space. Note that there is no convec- 

I 

Photon 1 - I 
I 
I 

L/) Photon 

I 
Photon I 

I emission I 
I 
I 

I 
I 
I 
I 
I Fig. 16.6-1. Volume element over which energy 
I - - - - - - - - - - - - - - - - - - - - - - A balances are made; circles represent molecules. 

G. C. Pomraning, Radiation Hydrodynamics, Pergamon Press, New York (1973); R. Siege1 and 
J. R. Howell, Themzal Radiation Heat Transfer, 3rd edition, Hemisphere Publishing Co., New York (1992). 
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tive term in Eq. 16.6-2, since the photons move independently of the local material veloc- 
ity. Note further that the term (8 - d) appears with opposite signs in Eqs. 16.6-1 and 2, 
indicating that a net gain of radiant energy occurs at the expense of molecular energy. 
Equation 16.6-2 can also be written for the radiant energy within a frequency range v to 
v + dv: 

This expression is obtained by differentiating Eq. 16.6-2 with respect to v. 
For the purpose of simplifying the discussion, we consider a steady-state nonflow 

system in which the radiation travels only in the positive z direction. Such a system can 
be closely approximated by passing a collimated light beam through a solution at tem- 
peratures sufficiently low that the emission by the solution is unimportant. (If emissions 
were important, it would be necessary to consider radiation in all directions.) These are 
the conditions commonly encountered in spectrophotometry. For such a system, Eqs. 
16.6-1 and 2 become 

In order to use these equations, we need information about the volumetric absorption 
rate d. For a unidirectional beam a conventional expression is 

in which ma is known as the extinction coeficient. Basically, this states that the rate of pho- 
ton absorption is proportional to the concentration of photons. 

A monochromatic radiant beam of frequency v, focused parallel to the z-axis, passes through 
an absorbing fluid. The local rate of energy absorption is given by mad:), in which m,, is the 

Absorption of a extinction coefficient for radiation of frequency v. Determine the distribution of the radiant 
Monochromatic flux q!)(z) in the system. 
Radiant Beam 

SOLUTION 

We neglect refraction and scattering of the incident beam. Also, we assume that the liquid is 
cooled so that re-radiation can be neglected. Then Eq. 16.6-5 becomes for steady state 

Integration with respect to z gives 

This is Lambert's law of absorption: widely used in spectrophotometry. For any given pure ma- 
terial, m,, depends in a characteristic way on v. The shape of the absorption spectrum is there- 
fore a useful tool for qualitative analysis. 

J. H. Lambert, Photometria, Augsburg (1760). 
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QUESTIONS FOR DISCUSSION 

PROBLEMS 

The "named laws" in this chapter are important. What is the physical content of the laws as- 
sociated with the following scientists' names: Stefan and Boltzmann, Planck, Kirchhoff, Lam- 
bert, Wien? 
How are the Stefan-Boltzmann law and the Wien displacement law related to the Planck 
black-body distribution law? 
Do black bodies exist? Why is the concept of a black body useful? 
In specular (mirrorlike) reflection, the angle of incidence equals the angle of reflection. How 
are these angles related for diffuse reflection? 
What is the physical significance of the view factor, and how can it be calculated? 
What are the units of q'", qt', and qf)? 
Under what conditions is the effect of geometry on radiant heat interchange completely ex- 
pressible in terms of view factors? 
Which of the equations in this chapter show that the apparent brightness of a black body with 
a uniform surface temperature is independent of the position (distance and direction) from 
which it is viewed through a transparent medium? 
What relation is analogous to Eq. 16.3-2 for an ideal monatomic gas? 
Check the dimensional consistency of Eq. 16.3-9. 

16A.1. Approximation of a black body by a hole in a 
sphere. A thin sphere of copper, with its internal surface 
highly oxidized, has a diameter of 6 in. How small a hole 
must be made in the sphere to make an opening that will 
have an absorptivity of 0.99? 
Answer: Radius = 0.70 in. 

16A.2. Efficiency of a solar engine. A device for utilizing 
solar energy, developed by ~bbot,' consists of a parabolic 
mirror that focuses the impinging sunlight onto a Pyrex tube 
containing a high-boiling, nearly black liquid. This liquid is 
circulated to a heat exchanger in which the heat energy is 
transferred to superheated water at 25 atm pressure. Steam 
may be withdrawn and used to run an engine. The most effi- 
cient design requires a mirror 10 ft in diameter to generate 
2 hp, when the axis of the mirror is pointed directly toward 
the sun. What is the overall efficiency of the device? 
Answer: 15% 

16A.3. Radiant heating requirement. A shed is rectangu- 
lar in shape, with the floor 15 ft by 30 ft and the roof 7.5 ft 
above the floor. The floor is heated by hot water running 
through coils. On cold winter days the exterior walls and 
roof are about -10°F. At what rate must heat be supplied 
through the floor in order to maintain the floor temperature 
at 75"F? (Assume that all surfaces of the system are black.) 

16A.4. Steady-state temperature of a roof. Estimate the 
maximum temperature attained by a level roof at 45" north 
latitude on June 21 in clear weather. Radiation from sources 

' C. G. Abbot, in Solar Energy Research (F.  Daniels and 
J. A. Duffie, eds.), University of Wisconsin Press, Madison (1955), 
pp. 91-95; see also U.S. Patent No. 2,460,482 (Feb. 1,1945). 

other than the sun may be neglected, and a convection heat 
transfer coefficient of 2.0 Btu/hr fi? F may be assumed. A 
maximum temperature of 100°F may be assumed for the 
surrounding air. The solar constant of Example 16.4-1 may 
be used, and the absorption and scattering of the sun's rays 
by the atmosphere may be neglected. 
(a) Solve for a perfectly black roof. 
(b) Solve for an aluminum-coated roof, with an absorptiv- 
ity of 0.3 for solar radiation and an ernissivity of 0.07 at the 
temperature of the roof. 

16A.5. Radiation errors in temperature measurements. 
The temperature of an air stream in a duct is being mea- 
sured by means of a thermocouple. The thermocouple 
wires and junction are cylindrical, 0.05 in. in diameter, and 
extend across the duct perpendicular to the flow with the 
junction in the center of the duct. Assuming a junction emis- 
sivity e = 0.8, estimate the temperature of the gas stream 
from the following data obtained under steady conditions: 

Thermocouple junction temperature = 500°F 

Duct wall temperature = 300°F 

Convection heat transfer coefficient 
from wire to air = 50 Btu/hr. fi? . F 

The wall temperature is constant at the value given for 20 
duct diameters upstream and downstream of the thermo- 
couple installation. The thermocouple leads are positioned 
so that the effect of heat conduction along them on the 
junction temperature may be neglected. 

16A.6. Surface temperatures on the Earth's moon. 
(a) Estimate the surface temperature of our moon at the 
point nearest the sun by a quasi-steady-state radiant en- 
ergy balance, regarding the lunar surface as a gray sphere. 
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Neglect radiation and reflection from the planets. The 
solar constant at Earth is given in Example 16.4-1. 
(b) Extend part (a) to give the lunar surface temperature as 
a function of angular displacement from the hottest point. 

16B.1. Reference temperature for effective emissivity. 
Show that, if the emissivity increases linearly with the tem- 
perature, Eq. 16.5-3 may be written as 

Q12 = e ? d l ( G  - 2-3 (16B.1-1) 

in which ey is the emissivity of surface 1 evaluated at a ref- 
erence temperature T o  given by 

16B.2. Radiation across an annular gap. Develop an ex- 
pression for the radiant heat transfer between two long, 
gray coaxial cylinders 1 and 2. Show that 

where A, is the surface area of the inner cylinder. 

16B.3. Multiple radiation shields. 
(a) Develop an equation for the rate of radiant heat transfer 
through a series of n very thin, flat, parallel metal sheets, 
each having a different emissivity e, when the first sheet is 
at temperature T, and the nth sheet is at temperature T,. 
Give your result in terms of the radiation resistances 

for the successive pairs of planes. Edge effects and conduc- 
tion across the air gaps between the sheets are to be ne- 
glected. 
(b) Determine the ratio of the radiant heat transfer rate for 
n identical sheets to that for two identical sheets. 
(c) Compare your results for three sheets with that ob- 
tained in Example 16.5-1. 

The marked reduction in heat transfer rates produced 
by a number of radiation shields in series has led to the use 
of multiple layers of metal foils for high-temperature insu- 
lation. 

16B.4. Radiation and conduction through absorbing 
media. A glass slab, bounded by planes z = 0 and z = 6, is 
of infinite extent in the x and y directions. The tempera- 
tures of the surfaces at z = 0 and z = S are maintained at To 
and T,, respectively. A uniform monochromatic radiant 
beam of intensity q(' in the z direction impinges on the face 
at z = 0. Emission within the slab, reflection, and incident 
radiation in the negative z direction can be neglected. 
(a) Determine the temperature distribution in the slab, as- 
suming m, and k to be constants. 
(b) How does the distribution of the conductive heat flux 
q, depend on m,? 

16B.5. Cooling of a black body in vacuo. A thin black 
body of very high thermal conductivity ha: a volume V, 
surface area A, density p, and heat capacity C,. At time t = 
0, this body at temperature TI is placed in a black enclo- 
sure, the walls of which are maintained permanently at 
temperature T2 (with T2 < TI). Derive an expression for the 
temperature T of the black body as a function of time. 

16B.6. Heat loss from an insulated pipe. A Schedule 40 
two-inch horizontal steel pipe (inside diameter 2.067 in., 
wall thickness 0.154 in.; k = 26 Btu/hr - ft . F) carrying 
steam is insulated with 2 in. of 85% magnesia (k = 0.35 
Btu/hr . ft F) and tightly wrapped with a layer of clean 
aluminum foil (e = 0.05). The pipe is surrounded by air at 
1 atm and 80°F and its inner surface is at 250°F. 
(a) Compute the conductive heat flow per unit length, 
Q"""~'/L, through the pipe wall and insulation for as- 
sumed temperatures, To, of 100°F and 250°F at the outer 
surface of the aluminum foil. 
(b) Compute the radiative and free-convective heat losses, 
Q ( ~ ~ ~ ) / L  and Q""""~/L, for the same assumed outer surface 
temperatures To. 
(c) Plot or interpolate the foregoing results to obtain the 
steady-state values of T,  and Q"""~'/L = Q(rad)/L + Q(~O""' /L. 

16C.1. Integration of the view-factor integral for a pair 
of disks (Fig. 16C.1). Two parallel, perfectly black disks of 
radius R are placed a distance H apart. Evaluate the view- 
factor integrals for this case and show that 

in which B = R/H. 

I I Fig. 16.C-1. Two perfectly 
+R+ black disks. 

16D.1. Heat loss from a wire carrying an electric cur- 
rent.3 An electrically heated wire of length L loses heat to 
the surroundings by radiative heat transfer. If the ends of 
the wire are maintained at a constant temperature To, ob- 
tain an expression for the axial variation in wire tempera- 
ture. The wire can be considered to be radiating into a 
black enclosure at temperature To. 

C. Christiansen, Wiedernann's Ann. d. Physik, 19,267-283 
(1883); see also M. Jakob, Heat Transfer, Vol. 11, Wiley, New York 
(19571, p. 14. 

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 
2nd edition, Oxford University Press (1959), pp. 154-156. 
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Chapter 17 

Diffusivity and the Mechanisms 
of Mass Transport 

Fick's law of binary diffusion (Molecular Mass Transport) 

Temperature and pressure dependence of diffusivities 

Theory of diffusion in gases at low density 

Theory of diffusion in binary liquids 

Theory of diffusion in colloidal suspensions 

Theory of diffusion of polymers 

Mass and molar transport by convection 

Summary of mass and molar fluxes 

The Maxwell-Stefan equations for multicomponent diffusion in 
gases at low density 

In Chapter 1 we began by stating Newton's law of viscosity, and in Chapter 9 we began 
with Fourier's law of heat conduction. In this chapter we start by giving Fick's law of dif- 
fusion, which describes the movement of one chemical species A through a binary mix- 
ture of A and B because of a concentration gradient of A. 

The movement of a chemical species from a region of high concentration to a region 
of low concentration can be observed by dropping a small crystal of potassium perman- 
ganate into a beaker of water. The KMnO, begins to dissolve in the water, and very near 
the crystal there is a dark purple, concentrated solution of KMnO,. Because of the con- 
centration gradient that is established, the KMnO, diffuses away from the crystal. The 
progress of the diffusion can then be followed by observing the growth of the dark pur- 
ple region. 

In 517.1 we give Fick's law for binary diffusion and define the diffusivity BAB for the 
pair A-B. Then we discuss briefly the temperature and pressure dependence of the diffu- 
sivity. After that we give a summary of the theories available to predict the diffusivity 
for gases, liquids, colloids, and polymers. At the end of the chapter we discuss the trans- 
port of mass of a chemical species by convection, thus paralleling the treatments in 
Chapters 1 and 9 for momentum and heat transfer. We also introduce molar units and 
the notation needed for describing diffusion in these units. Finally, we give the 
Maxwell-Stefan equations for multicomponent gases at low densities. 

Before starting the discussion we establish the following conventions. For multicom- 
ponent diffusion, we designate the species with lower-case Greek letters a, P, y, . . . and 
their concentrations with the corresponding subscripts. For bina y diffusion we use the 
capital italic letters A and B. For self-difusion (diffusion of chemically identical species) 
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we label the species A and A*. The "tagged" species A" may differ physically from A by 
virtue of radioactivity or other nuclear properties such as the mass, magnetic moment, or 
spin.' The use of this system of notation enables one to see at a glance the type of system 
to which a given formula applies. 

517.1 FICK'S LAW OF BINARY DIFFUSION 
(MOLECULAR MASS TRANSPORT) 

Consider a thin, horizontal, fused-silica plate of area A and thickness Y. Suppose that ini- 
tially (for time t < 0) both horizontal surfaces of the plate are in contact with air, which 
we regard as completely insoluble in silica. At time t = 0, the air below the plate is sud- 
denly replaced by pure helium, which is appreciably soluble in silica. The helium slowly 
penetrates into the plate by virtue of its molecular motion and ultimately appears in the 
gas above. This molecular transport of one substance relative to another is known as dif- 
fusion (also known as mass diffusion, concentration diffusion, or ordinary diffusion). The air 
above the plate is being replaced rapidly, so that there is no appreciable buildup of he- 
lium there. We thus have the situation represented in Fig. 17.1-1; this process is analo- 
gous to those described in Fig. 1.1-1 and Fig. 9.1-1 where viscosity and thermal 
conductivity were defined. 

In this system, we will call helium "species A and silica "species B." The concentra- 
tions will be given by the "mass fractions" w, and w,. The mass fraction w, is the mass of 
helium divided by the mass of helium plus silica in a given microscopic volume element. 
The mass fraction w~ is defined analogously. 

Thickness of I 
slab of fused silica = Y 

(substance B )  I 

Fig. 17.1-1. Build-up to the 
steady-state concentration pro- 
file for the diffusion of helium 
(substance A) through fused sil- 
ica (substance B). The symbol w~ 
stands for the mass fraction of 
helium, and w,, is the solubility 
of helium in fused silica, ex- 
pressed as the mass fraction. See 
Figs. 1.1-1 and 9.1-1 for the anal- 
ogous momentum and heat 
transport situations. 

Y Large t y X O,=O UA = W~~ 

' E. 0. Stejskal and J. E. Tanner, J. Chem. Phys., 42,288-292 (1965); P. Stilbs, Puog. NMR Spectuos, 19, 
1 4 5  (1987); P. T. Callaghan and J. StepiSnik, Adv. M a p .  Opt. Reson. 19,325388 (1996). 
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For time t less than zero, the mass fraction of helium, w,, is everywhere equal to 
zero. For time t greater than zero, at the lower surface, y = 0, the mass fraction of helium 
is equal to w,,. This latter quantity is the solubility of helium in silica, expressed as mass 
fraction, just inside the solid. As time proceeds the mass fraction profile develops, with 
w, = w,, at the bottom surface of the plate and w, = 0 at the top surface of the plate. As 
indicated in Fig. 17.1-1, the profile tends toward a straight line with increasing t. 

At steady state, it is found that the mass flow w,, of helium in the positive y direc- 
tion can be described to a very good approximation by 

That is, the mass flow rate of helium per unit area (or mass flux) is proportional to the 
mass fraction difference divided by the plate thickness. Here p is the density of the sil- 
ica-helium system, and the proportionality factor 9lAB is the difusivity of the silica-he- 
lium system. We now rewrite Eq. 17.1-1 for a differential element within the slab: 

Here wA,/A has been replaced by jAy, the molecular mass flux of helium in the positive y 
direction. Note that the first index, A, designates the chemical species (in this case, he- 
lium), and the second index indicates the direction in which diffusive transport is taking 
place (in this case, the y direction). 

Equation 17.1-2 is the one-dimensional form of Fick's first law of diffusion.' It is valid 
for any binary solid, liquid, or gas solution, provided that jAy is defined as the mass flux 
relative to the mixture velocity v,. For the system examined in Fig. 17.1-1, the helium is 
moving rather slowly and its concentration is very small, so that v, is negligibly different 
from zero during the diffusion process. 

In general, for a binary mixture 

Thus v is an average in which the species velocities, v, and v,, are weighted according to 
the mass fractions. This kind of velocity is referred to as the mass average velocity. The species 
velocity VA is not the instantaneous molecular velocity of a molecule of A, but rather the 
arithmetic average of the velocities of all the molecules of A within a tiny volume element. 

The mass flux j,, is then defined, in general, as 

The mass flux of B is defined analogously. As the two chemical species interdiffuse there 
is, locally, a shifting of the center of mass in the y direction if the molecular weights of A 
and B differ. The mass fluxes j4 and jBy are so defined that jAy + jBy = 0. In other words, 
the fluxes jA, and jBy are measured with respect to the motion of the center of mass. This 
point will be discussed in detail in ss17.7 and 8. 

If we write equations similar to Eq. 17.1-2 for the x and z directions and then com- 
bine all three equations, we get the vector form of Fick's law: 

A. Fick, Ann. der Physik, 94/59-86 (1855). Fick's second law, the diffusional analog of the heat 
conduction equation in Eq. 11.2-10, is given in Eq. 19.1-18. Adolf Eugen Fick (1829-1901) was a medical 
doctor who taught in Ziirich and Marburg, and later became the Rector of the University of Wiirzburg. 
He postulated the laws of diffusion by analogy with heat conduction, not by experiment. 
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A similar relation can be written for species B: 

j~ = - P ~ B A ~ W B  (17.1-6) 

It is shown in Example 17.1-2 that 9,, = 9,,. Thus for the pair A-B, there is just one dif- 
fusivity; in general it will be a function of pressure, temperatu~e, and composition. 

The mass diffusivity 9,,, the thermal diffusivity a = k/pC,, and the momentum dif- 
fusivity (kinematic viscosity) v = p/p  all have dimensions of (length)'/time. The ratios 
of these three quantities are therefore dimensionless groups: 

,, cpEl. 
The Prandtl number: P r = - = -  

a k 
(17.1-7) 

The Schmidt number:' v El. sc=-=-  
A p9Afl 

The Lewis number:' 

These dimensionless groups of fluid properties play a prominent role in dimensionless 
equations for systems in which competing transport processes occur. (Note: Sometimes 
the Lewis number is defined as the inverse of the expression above.) 

In Tables 17.1-1,2,3, and 4 some values of 9,, in cm2/s are given for a few gas, liq- 
uid, solid, and polymeric systems. These values can be converted easily to m2/s by mul- 
tiplication by lop4. Diffusivities of gases at low density are almost independent of w,, 
increase with temperature, and vary inversely with pressure. Liquid and solid diffusivi- 
ties are strongly concentration-dependent and generally increase with temperature. 
There are numerous experimental methods for measuring diffusivities, and some of 
these are described in subsequent  chapter^.^ 

For gas mixtures, the Schmidt number can range from about 0.2 to 3, as can be seen in 
Table 17.1-1. For liquid mixtures, values up to 40,000 have been ~bserved.~ 

Up to this point we have been discussing isotropic fluids, in which the speed of dif- 
fusion does not depend on the orientation of the fluid mixture. For some solids and 
structured fluids, the diffusivity will have to be a tensor rather than a scalar, so that 
Fick's first law has to be modified thus: 

in which AAD is the (symmetric) dimsivity t e~so r .~ ,~  According to this equation, the mass 
flux is not necessarily collinear with the mass fraction gradient. We do not pursue this 
subject further here. 

These groups were named for: Ernst Heinrich Wilhelm Schmidt (1892-1975), who taught at 
the universities in Gdansk, Braunschweig, and Munich (where he was the successor to Nusselt); 
Warren Kendall Lewis (1882-1975), who taught at MIT and was a coauthor of a pioneering textbook, 
W. H. Walker, W. K. Lewis, and W. H. McAdams, Principles of Chemical Engineering, McGraw-Hill, 
New York (1923). 

For an extensive discussion, see W. E. Wakeham, A. Nagashima, and J. V. Sengers, Measurement 
of the Transport Properties of Fluids: Experimental Thermodynamics, Vol. IlI, CRC Press, Boca Raton, Fla. 
(1991). 

D. A. Shaw and T. J. Hanratty, AIChE Journal, 23,28-37,160-169 (1977); P. Harriott and R. M. 
Hamilton, Chem. Eng. Sci., 20,1073-1078 (1965). 

For flowing polymers, theoretical expressions for the diffusion tensor have been derived using 
kinetic theory; see H. C. Ottinger, AIChE Journal, 35,279-286 (1989), and C. F. Curtiss and R. B. Bird, 
Adv. Polym. Sci., 1-101 (1996), §§6 and 15. 

M. E. Glicksman, Diffusion in Solids: Field Theory, Solid State Principles, and Applications, Wiley, 
New York (2000). 



6j17.1 Fick's Law of Binary Diffusion (Molecular Mass Transport) 517 

Table 17.1-1 Experimental Diffusivitiesa and Limiting Schmidt 
Numbersb of Gas Pairs at 1 Atmosphere Pressure 

Gas pair Temperature 9 AB Sc 
A-B (K) (cm2/s) x ~ + 1  x B + l  

a Unless otherwise indicated, the values are taken from J. 0. Hirschfelder, 
C. F. Curtiss, and R. B. Bird, Molecular T h e o y  of Gases and Liquids, 2nd corrected 
printing, Wiley, New York (1964), p. 579. All values are given for 1 atmosphere 
pressure. 

Calculated using the Lennard-Jones parameters of Table E.1. The parameters 
for sulfur hexafluoride were obtained from second virial coefficient data. 

' Values of aAB for the water and ammonia mixtures are taken from the 
tabulation of R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases 
and Liquids, 4th edition, McGraw-Hill, New York (1987). 

Values of %,, for the hydrocarbon-hydrocarbon pairs are taken from S. Gotoh, 
M. Manner, J. P. Sdrensen, and W. E. Stewart, J .  Chem. Eng. Data, 19,169-171 
(1974). 
"Values of p for water and ammonia were calculated from functions provided 
by T. E. Daubert, R. P. Danner, H. M. Sibul, C. C. Stebbins, J. L. Oscarson, 
R. L. Rowley, W. V. Wilding, M. E. Adams, T. L. Marshall, and N. A. Zundel, 
DIPPR@, Data Compilation of Pure Compound Properties, Design Institute for 
Physical Property Datao, AIChE, New York, N.Y. (2000). 
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Table 17.1-2 Experimental Diffusivities in the Liquid state"' 

Water 

Ethanol Water 

Chlorobenzene Bromobenzene 10.10 0.0332 
0.2642 
0.5122 
0.7617 
0.9652 

39.92 0.0332 
0.2642 
0.5122 
0.7617 
0.9652 
0.131 
0.222 
0.358 
0.454 
0.524 
0.026 
0.266 
0.408 
0.680 
0.880 
0.944 

a The data for the first two pairs are taken from a review article by P. A. Johnson and A. L. Babb, Chem. 
Reus., 56,387453 (1956). Other summaries of experimental results may be found in: P. W. M. Rutten, 
Diffusion in Liquids, Delft University Press, Delft, The Netherlands (1992); L. J. Gosting, Adv. in Protein 
Chem., Vol. X I ,  Academic Press, New York (1956); A. Vignes, I. E. C. Funliamentals, 5,189-199 (1966). 

The ethanol-water data were taken from M. T. Tyn and W. F. Calus, J. Chem. Eng. Data, 20,310-316 
(1975). 

Table 17.1-3 Experimental Diffusivities in the Solid Statea 

Si02 
Pyrex 

" It is presumed that in each of the above pairs, component A is present 
only in very small amounts. The data are taken from R. M. Barrer, Diffusion 
in and through Solids, Macmillan, New York (1941), pp. 141,222, and 275. 
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Table 17.1-4 Experimental Diffusivities of Gases in Polymers." 
Diffusivities, 9AB, are given in units of lop6  (cm2/s). The values 
for N2 and O2 are for 298K, and those for C02 and H2 are for 
198K. 

Polybutadiene 1.1 1.5 1.05 9.6 
Silicone rubber 15 25 15 75 
Trans-l,4-polyisoprene 0.50 0.70 0.47 5.0 
Polystyrene 0.06 0.11 0.06 4.4 

" Excerpted horn D. W. van Krevelen, Properties of Polymers, 3rd edition, 
Elsevier, Amsterdam (1990), pp. 544-545. Another relevant reference is 
S. Pauly, in Polymer Handbook, 4th edition (J. Brandrup and E. H. 
Immergut, eds.), Wiley-Interscience, New York (1999), Chapter VI. 

In this section we have discussed the diffusion that occurs as a result of a concen- 
tration gradient in the system. We refer to this kind of diffusion as concentration diffusion 
or ordinay diffusion. There are, however, other kinds of diffusion: thermal diflusion, 
which results from a temperature gradient; pressure diffusion, resulting from a pressure 
gradient; and forced diffusion, which is caused by unequal external forces acting on the 
chemical species. For the time being, we consider only concentration diffusion, and we 
postpone discussion of the other mechanisms to Chapter 24. Also, in that chapter we 
discuss the use of activity, rather than concentration, as the driving force for ordinary 
diffusion. 

Calculate the steady-state mass flux jAy of helium for the system of Fig. 17.1-1 at 500K. The 
partial pressure of helium is 1 atm at y = 0 and zero at the upper surface of the plate. The 

Difision of thickness Y of the pyrex plate is mm, and its density p'B' is 2.6 g/cm3. The solubility and 
through Pyrex Glass diffusivity of helium in pyrex are reported7 as 0.0084 volumes of gaseous helium per volume 

of glass, and 9,, = 0.2 X cm2/s, respectively. Show that the neglect of the mass average 
velocity implicit in Eq. 17.1-1 is reasonable. 

SOLUTION The mass concentration of helium in the glass at the lower surface is obtained from the solu- 
bility data and the ideal gas law: 

The mass fraction of helium in the solid phase at the lower surface is then 

C. C. Van Voorhis, Phys. Rev. 23,557 (1924), as reported by R. M. Barrer, Diffusion in and through 
Solids, corrected printing, Cambridge University Press (1951). 
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We may now calculate the flux of helium from Eq. 17.1-1 as 

Next, the velocity of the helium can be obtained from Eq. 17.1-4: 

At the lower surface of the plate (y = 0) this velocity has the value 

- 1.05 X 10-I' g/cm2 s 
v ~ y l y = u  - + v,, = 1.98 X lop5 cm/s + vYo (17.1-15) 

5.3 x lop7 g/cm3 

The corresponding value v,, of the mass average velocity of the glass-helium system at y = 0 
is then obtained from Eq. 17.1-3 

Thus it is safe to neglect vy in Eq. 17.1-14, and the analysis of the experiment in Fig. 17.1-1 at 
steady state is accurate. 

Show that only one diffusivity is needed to describe the diffusional behavior of a binary 
mixture. 

The Equivalence of 
9,, and 9, SOLUTION 

We begin by writing Eq. 17.1-6 as follows: 

The second form of this equation follows from the fact that w~ + w, = 1. We next use the vec- 
tor equivalents of Eqs. 17.1-3 and 4 to write 

Interchanging A and B in this expression shows that j A  = -jB. Combining this with the sec- 
ond form of Eq. 17.1-17 then gives 

Comparing this with Eq. 17.1-5 gives 9BA = BAR. We find that the order of subscripts is unim- 
portant for a binary system and that only one diffusivity is required to describe the diffu- 
sional behavior. 

However, it may well be that the diffusivity for a dilute solution of A in B and that for a 
dilute solution of B in A are numerically different. The reason for this is that the diffusivity is 
concentration-dependent, so that the two limiting values mentioned above are the values of 
the diffusivity BRA = 91AB at two different concentrations. 
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517.2 TEMPERATURE AND PRESSURE 
DEPENDENCE OF DIFFUSIVITIES 

In this section we discuss the prediction of the diffusivity 9,, for binary systems by cor- 
responding-states methods. These methods are also useful for extrapolating existing 
data. Comparisons of many alternative methods are available in the literature.'f2 

For binary gas mixtures at low pressure, %,, is inversely proportional to the pressure, 
increases with increasing temperature, and is almost independent of the composition for a 
given gas pair. The following equation for estimating '3,, at low pressures has been devel- 
oped3 from a combination of kinetic theory and corresponding-states arguments: 

Here %,, [ = I  cm2/s, p [ = I  atm, and T [=I  K. Analysis of experimental data gives the di- 
mensionless constants a = 2.745 x lop4 and b = 1.823 for nonpolar gas pairs, excluding 
helium and hydrogen, and a = 3.640 x lop4 and b = 2.334 for pairs consisting of H,O 
and a nonpolar gas. Equation 17.2-1 fits the experimental data at atmospheric pressure 
within an average deviation of 6 to 8%. If the gases A and B are nonpolar and their 
Lennard-Jones parameters are known, the kinetic-theory method described in the next 
section usually gives somewhat better accuracy. 

At high pressures, and in the liquid state, the behavior of %,, is more complicated. 
The simplest and best understood situation is that of self-diffusion (interdiffusion of la- 
beled molecules of the same chemical species). We discuss this case first and then extend 
the results approximately to binary mixtures. 

A corresponding-states plot of the self-diffusivity %AA* for nonpolar substances is 
given in Fig. 17.2-1.4 This plot is based on self-diffusion measurements, supplemented by 
molecular dynamics simulations and by kinetic theory for the low-pressure limit. The or- 
dinate is c5JAA* at pressure p and temperature T, divided by cgAA+ at the critical point. 
This quantity is plotted as a function of the reduced pressure p, = p/p, and the reduced 
temperature T, = T/T,. Because of the similarity of species A and the labeled species A", 
the critical properties are all taken as those of species A. 

From Fig. 17.2-1 we see that c9,* increases strongly with temperature, especially 
for liquids. At each temperature c9,,$ decreases toward zero with increasing pressure. 
With decreasing pressure, ~ 9 ~ "  increases toward a low-pressure limit, as predicted by 
kinetic theory (see 517.3). The reader is warned that this chart is tentative, and that the 
lines, except for the low-density limit, are based on data for a very few substances: Ar, 
Kr, Xe, and CH,. 

The quantity (cBAA.), may be estimated by one of the following three methods: 

(i) Given &AA* at a known temperature and pressure, one can read ( c ~ A A * ) ~  from 
the chart and get (&,,*), = c % ~ ~ * / ( c ~ ~ ~ * ) ~ .  

R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th edition, 
McGraw-Hill, New York (19879, Chapter 11. 

E. N. Fuller, P. D. Shettler, and J. C. Giddings, Ind. Eng. Chem., 58, No. 5,19-27 (1966); Erratum: 
ibid. 58, No. 8,81 (1966). This paper gives a useful method for predicting binary gas diffusivities from the 
molecular formulas of the two species. 

J. C. Slattery and R. B. Bird, AIChE Journal, 4,137-142 (1958). 
Other correlations for self-diffusivity at elevated pressures have appeared in Ref. 3 and in 

L. S. Tee, G. F. Kuether, R. C. Robinson, and W. E. Stewart, API Proceedings, Division of Refining, 235-243 
(1966); R. C. Robinson and W. E. Stewart, IEC Fundamentals, 7,90-95 (1968); J .  L. Bueno, J. Dizy, 
R. Alvarez, and J. Coca, Trans. Insf. Chem. Eng., 68, Part A, 392-397 (1990). 
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Fig. 17.2-1. A corresponding- 
states plot for the reduced 
self-diffusivity. Here ( ~ 5 3 ~ ~ s ) ~  = 

(p9,,,), for Ar, Kr, Xe, and CH, 
is plotted as a function of re- 
duced temperature for several 
values of the reduced pressure. 
This chart is based on diffusiv- 
ity data of J. J. van Loef and 
E. G. D. Cohen, Pkysica A, 156, 
522-533 (1989), the compress- 
ibility function of B. I. Lee and 
M. G. Kesler, AICkE Journal, 21, 
510-527 (1975), and Eq. 17.3-11 
for the low-pressure limit. 

0.6 0.8 1.0 1.5 2 3 4 5  

Reduced temperature, T,  = T / T ,  

(ii) One can predict a value of &hAA* in the low-density region by the methods 
given in 517.3 and then proceed as in (i). 

(iii) One can use the empirical formula (see Problem 17A.9): 

This equation, like Eq. 17.2-1, should not be used for helium or hydrogen isotopes. Here 
c [ = I  g-mole/cm3, 9 ~ ~ ~ *  [ = I  cm2/s, T, [= I  K, and p, [ = I  atm. 

Thus far the discussion of high-density behavior has been concerned with self-diffu- 
sion. We turn now to the binary diffusion of chemically dissimilar species. In the absence 
of other information it is suggested that Fig. 17.2-1 may be used for crude estimation of 
cg,,, with pCA and TcA replaced everywhere by qpcAF?cB and v'Z respectively (see 
Problem 17A.9 for the basis for this empiricism). The ordinate of the plot is then inter- 
preted as ( ~ 9 ~ ~ ) ~  = ~ 9 ~ ~ / ( ~ 9 ~ ~ ) ~  and Eq. 17.2-2 is replaced by 

With these substitutions, accurate results are obtained in the low-pressure limit. At 
higher pressures, very few data are available for comparison, and the method must be 
regarded as provisional. 

The results in Fig. 17.2-1, and their extensions to binary systems, are expressed in 
terms of caAA* and c9,, rather than 9,. and BA,. This is done because the c-multiplied 
diffusion coefficients are more frequently required in mass transfer calculations, and 
their dependence on pressure and temperature is simpler. 
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EXAMPLE 17.2-1 

Estimation of 
Diffusivity a t  Low 
Density 

EXAMPLE 17.2-2 

Estimation of Self- 
Diffusivity a t  High 
Density 

Estimate BAB for the system CO-C02 at 296.1K and 1 atm total pressure. 

SOLUTION 

The properties needed for Eq. 17.2-1 are (see Table E.l): 

Label Species M T, (K) p, (atm) 

Therefore, 

Substitution of these values into Eq. 17.2-1 gives 

This gives QAB = 0.152 cm2/s, in agreement with the experimental value.5 This is unusually 
good agreement. 

This problem can also be solved by means of Fig. 17.2-1 and Eq. 17.2-3, together with the 
ideal gas law p = cRT. The result is BAB = 0.140 cm2/s, in fair agreement with the data. 

Estimate c 9 3 , q A x  for C1402 in ordinary C02 at 171.7 atm and 373K. It is known6 that QAA* = 
0,113 cm2/s at 1.00 atm and 298K, at which condition c = p/ RT = 4.12 X g-mole/cm3. 

SOLUTION 

Since a measured value of 9 A A X  is given, we use method (i). The reduced conditions of the 
measurement are T,  = 298/304.2 = 0.980 and p, = 1.00/72.9 = 0.014. Then from Fig. 17.2-1 we 
get the value ( C Q ~ ~ ) ~  = 0.98. Hence 

At the conditions of prediction (T, = 373/304.2 = 1.23 and p, = 171.7/72.9 = 2.36), we read 
(aAA*), = 1.21. The predicted value is then 

The data of O'Hern and Martin7 give a,,* = 5.89 X g-mole/cm . s at these conditions. 
This good agreement is not unexpected, inasmuch as their low-pressure data were used in the 
estimation of (dBAA.),. 

B. A. Ivakin, P. E. Suetin, Sov. Phys. Tech. Phys. (English translation), 8,748-751 (1964). 
E. B. Wynn, Phys. Rev., 80,1024-1027 (1950). 
H. A. O'Hern and J. J. Martin, Ind. Eng. Chern., 47,2081-2086 (1955). 
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EXAMPLE 17.2-3 

Estimation of Bina y 
Dif i s iv i t y  at  High 
Density 

This problem can also be solved by method (iii) without an experimental value of c9,,*. 
Equation 17.4-2 gives directly 

The resulting predicted value of &,,. is 5.1 X lop6 g-mole/cm . s. 

Estimate c9,, for a mixture of 80 mole% CH, and 20 mole% C2H6 at 136 atm and 313K. It is 
known that, at 1 atm and 293K, the molar density is c = 4.17 X g-mole/cm3 and gAB = 

0.163 cm2/s. 

SOLUTION 

Figure 17.2-1 is used, with method (i). The reduced conditions for the known data are 

From Fig. 17.2-1 at these conditions we obtain = 1.21. The critical value ( ~ 9 , ~ ) ~  is 
therefore 

c9,, (4.17 X 10-~)(0.163) 
(&A,), = - - - 

(BAB)~ 1.21 
= 5.62 X g-mol/cm . s (17.2-10) 

Next we calculate the reduced conditions for the prediction (Tr = 1.30, p, = 2.90) and read the 
value (cg,,), = 1.31 from Fig. 17.2-1. The predicted value of c9,, is therefore 

Experimental measurements8 give c9,, = 6.0 X so that the predicted value is 
23% high. Deviations of this magnitude are not unusual in the estimation of c9,, at high 
densities. 

An alternative solution may be obtained by method (iii). Substitution into Eq. 17.4-3 
gives 

Multiplication by (caAB), at the desired condition gives 

This is in closer agreement with the measured value.8 

V. J. Berry, Jr., and R. C. Koeller, AIChE Journal, 6,274-280 (1960). 
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$17.3 THEORY OF DIFFUSION IN GASES AT LOW DENSITY 

The mass diffusivity BAB for binary mixtures of nonpolar gases is predictable within 
about 5% by kinetic theory. As in the earlier kinetic theory discussions in 951.4 and 9.3, 
we start with a simplified derivation to illustrate the mechanisms involved and then pre- 
sent the more accurate results of the Chapman-Enskog theory. 

Consider a large body of gas containing molecular species A and A*, which are iden- 
tical except for labeling. We wish to determine the self-diffusivity 9,* in terms of the 
molecular properties on the assumption that the molecules are rigid spheres of equal 
mass m, and diameter dA. 

Since the properties of A and A* are nearly the same, we can use the following re- 
sults of the kinetic theory for a pure rigid-sphere gas at low density in which the gradi- 
ents of temperature, pressure, and velocity are small: 

ii = @ = mean molecular speed relative to u (17.3-1) 

Z = inii = wall collision frequency per unit area in a stationary gas (17.3-2) 

A = = mean free path 
f ind2n 

The molecules reaching any plane in the gas have, on the average, had their last collision 
at a distance a from the plane, where 

2 a = $i (17.3-4) 

In these equations n is the number density (total number of molecules per unit volume). 
To predict the self-diffusivity BAA*, we consider the motion of species A in the y di- 

rection under a mass fraction gradient dw,/dy (see Fig. 17.3-I), where the fluid mixture 
moves in the y direction at a finite velocity mass average velocity vy throughout. The 
temperature T and the total molar mass concentration p are considered constant. We as- 
sume that Eqs. 17.3-1 to 4 remain valid in this nonequilibrium situation. The net mass 
flux of species A crossing a unit area of any plane of constant y is found by writing an ex- 
pression for the mass of A crossing the plane in the positive y direction and subtracting 
the mass of A crossing in the negative y direction: 

Here the first term is the mass transport in the y direction because of the mass motion of 
the fluid-that is, the convective transport-and the last two terms give the molecular 
transport relative to vy. 

Y 
Mole-fraction 
profile oA(y) 

// Molecule arriving at y 
after collision at y -a. 
The fraction of such 

\ molecules that are of 
species A is uAl - a Fig. 17.3-1. Molecular transport 

of species A from the plane at 
(y - a) to the plane at y. 
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It is assumed that the concentration profile wA(y) is very nearly linear over distances 
of several mean free paths. Then we may write 

Combination of the last two equations then gives for the combined mass flux at plane y: 

This is the convective mass flux plus the molecular mass flux, the latter being given by Eq. 
17.1-1. Therefore we get the following expression for the self-diffusivity: 

Finally, making use of Eqs. 17.3-1 and 3, we get 

which can be compared with Eq. 1.4-9 for the viscosity and Eq. 9.3-12 for the thermal 
conductivity. 

The development of a formula for %AB for rigid spheres of unequal masses and di- 
ameters is considerably more difficult. We simply quote the result' here: 

That is, l/mA is replaced by the arithmetic average of l / m A  and l/mB, and dA by the 
arithmetic average of dA and dB. 

The preceding discussion shows how the diffusivity can be obtained by mean free 
path arguments. For accurate results the Chapman-Enskog kinetic theory should be 
used. The Chapman-Enskog results for viscosity and thermal conductivity were given in 
551.4 and 9.3, respectively. The corresponding formula for c9,, 

Or, if we approximate c by the ideal gas law p = cRT, we get for 9,, 

In the second line of Eqs. 17.3-11 and 12, 9JAB [=] cm2/s, OAB [=I  A, T [=I K, and p [=I atm. 

A similar result is given by R. D. Present, Kinetic Theory of Gases, McGraw-Hill, New York (1958), p. 55. 
S. Chapman and T. G. Cowling, The MathematicaI Theoy  of Non-Unifovm Gases, 3rd edition, 

Cambridge University Press (19701, Chapters 10 and 14. 
J. 0. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, 2nd corrected 

printing, Wiley, New York (19641, p. 539. 
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The dimensionless quantity a9,,,-the "collisional integral" for diffusion-is a func- 
tion of the dimensionless temperature KT/&,,. The parameters aAB and EAB are those ap- 
pearing in the Lennard-Jones potential between one molecule of A and one of B (cf. Eq. 
1.4-1 0): 

This function In,,,, is given in Table E.2 and Eq. E.2-2. From these results one can com- 
pute that 9JAB increases roughly as the 2.0 power of T at low temperatures and as the 1.65 
power of T at very high temperatures; see the p, -+ 0 curve in Fig. 17.2-1. For rigid 
spheres, would be unity at all temperatures and a result analogous to Eq. 17.3-10 
would be obtained. 

The parameters o,, and EAB could, in principle, be determined directly from accurate 
measurements of 9,, over a wide range of temperatures. Suitable data are not yet avail- 
able for many gas pairs, and one may have to resort to using some other measurable 
property, such as the viscosity4 of a binary mixture of A and B. In the event that there are 
no such data, then we can estimate a,, and E,, from the following combining rules:5 

for nonpolar gas pairs. Use of these combining rules enables us to predict values of 9,, 
within about 6% by use of viscosity data on the pure species A and B, or within about 
10% if the Lennard-Jones parameters for A and B are estimated from boiling point data 
by use of Eq. 1.4-12.~ 

For isotopic pairs, u,,* = UA = a,, and EM. = .FA = that is, the intermolecular 
force fields for the various pairs A-A*, A"-A*, and A-A are virtually identical, and the 
parameters a, and may be obtained from viscosity data on pure A. If, in addition, MA 
is large, Eq. 17.3-11 simplifies to 

I 

The corresponding equation for the rigid-sphere model is given in Eq. 17.3-9. 
Comparison of Eq. 17.3-16 with Eq. 1.4-14 shows that the self-diffusivity BAA* and 

the viscosity p (or kinematic viscosity v) are related as follows for heavy isotopic gas 
pairs at low density: 

in which 0, = 1.1I1,,,* over a wide range of KT/&,, as may be seen in Table E.2. Thus 
9AA* = 1.32~ for the self-difusivify. The relation between v and the binary difusivity '?JAB is 
not so simple, because v may vary considerably with the composition. The Schmidt 
number Sc = p/p9,, is in the range from 0.2 to 5.0 for most gas pairs. 

Equations 17.3-11, 12, 16, and 17 were derived for monatomic nonpolar gases but 
have been found useful for polyatomic nonpolar gases as well. In addition, these equa- 
tions may be used to predict QAB for interdiffusion of a polar gas and a nonpolar gas by 
using combining laws different7 from those given in Eq. 17.3-14 and 15. 

* S. Weissman and E. A. Mason, J. Chem. Pkys., 37,1289-1300 (1962); S. Weissman, J. Ckem. Pkys., 40, 
3397-3406 (1964). 

J. 0. Hirschfelder, R. B. Bird, and E. L. Spotz, Ckem. Revs., 44,205-231 (1949); S. Gotoh, M .  Manner, 
J. P. Sdrensen, and W. E. Stewart, I. Ckem. Eng. Data, 19,169-171 (1974). 

ti R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th edition, 
McGraw-Hill, New York (1987). 

J. 0. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theoy  of Gases and Liquids, 2nd corrected 
printing, Wiley, New York (1964), #.6b and p. 1201. Polar gases and gas mixtures are discussed by E. A. 
Mason and L. Monchick, J. Chem. Pkys. 36,2746-2757 (1962). 
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Predict the value of Eb,, for the system CO-CO, at 296.1K and 1.0 atm total pressure. 

Computation of Mass SOLUTION 
Diffusiviiyfor From Table E.l we obtain the following parameters: 
Density Gases 

co: 
co,: 
The mixture parameters are then estimated from Eqs. 17.3-14 and 15: 

The dimensionless temperature is then K T / s ~ ~  = (296.1)/(144.6) = 2.048. From Table E.2 we 
can find the collision integral for diffusion, flgpB = 1.067. Substitution of the preceding values 
in Eq. 17.3-12 gives 

s17.4 THEORY OF DIFFUSION IN BINARY LIQUIDS 

The kinetic theory for diffusion in simple liquids is not as well developed as that for di- 
lute gases, and it cannot presently give accurate analytical predictions of diffusivities.'-3 
As a result our understanding of liquid diffusion depends primarily on the rather crude 
hydrodynamic and activated-state models. These in turn have spawned a number of em- 
pirical correlations, which provide the best available means for prediction. These corre- 
lations permit estimation of diffusivities in terms of more easily measured properties 
such as viscosity and molar volume. 

The hydrodynamic theory takes as its starting point the Nernst-Einstein equation: 
which states that the diffusivity of a single particle or solute molecule A through a sta- 
tionary medium B is given by 

= KT(~A/FA) (17.4-1) 

in which uA/FA is the "mobility" of a particle A (that is, the steady-state velocity attained 
by the particle under the action of a unit force). The origin of Eq. 17.4-1 is discussed in 
$17.5 in connection with the Brownian motion of colloidal suspensions. If the shape and 
size of A are known, the mobility can be calculated by the solution of the creeping-flow 
equation of motion5 (Eq. 3.5-8). Thus, if A is spherical and if one takes into account the 
possibility of "slip" at the fluid-solid interface, one obtains6 

R. J. Bearman and J. G. Kirkwood,]. Chem. Phys., 28,136-145 (1958). 
R. J. Bearman, J .  Phys. Chem., 65,1961-1968 (1961). 
C. F. Curtiss and R. B. Bird, J .  Chem. Phys., 111,10362-10370 (1999). 
See 517.7 and E. A. Moelwyn-Hughes, Physical Chemistry, 2nd edition, corrected printing, Maanillan, 

New York (1964), pp. 62-74. See also R. J. Silbey and R. A. Alberty, Physical Chemisty, 3rd edtion, Wiley, 
New York (2001), 520.2. Apparently the Nemst-Einstein equation cannot be generalized to polymeric fluids 
with appreciable velocity gradients, as has been noted by H. C. &linger, AKhE Journal, 35,279-286 (1989). 

S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications, Butterworth- 
Heinemann, Boston (1991 ). 

H. Lamb, Hydrodynamics, 6th edition, Cambridge University Press (1932), reprinted (1997), 5337. 
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in which p, is the viscosity of the pure solvent, RA is the radius of the solute particle, and 
PA, is the "coefficient of sliding friction" (formally the same as the p/c of problem 2B.9). 
The limiting cases of DAB = and DAB = 0 are of particular interest: 

a. f iAB = ~4 (no-slip condition) 

In this case Eq. 17.4-2 becomes Stokes' law (Eq. 2.6-15) and Eq. 17.4-1 becomes 

which is usually called the Stokes-Einstein equation. This equation applies well to the dif- 
fusion of very large spherical molecules in solvents of low molecular weight7 and to sus- 
pended particles. Analogous expressions developed for nonspherical particles have been 
used for estimating the shapes of protein  molecule^.^,' 

b. fiAB = 0 (complete slip condition) 

In this case Eq. 17.4-1 leads to (see Eq. 4B.3-4) 

If the molecules A and B are identical (that is, for self-diffusion) and if they can be as- 
sumed to form a cubic lattice with the adjacent molecules just touching, then 2RA = 

and 

Equation 17.4-5 has been found'' to agree with self-diffusion data for a number of liq- 
uids, including polar and associated substances, liquid metals, and molten sulfur, to 
within about 12%. The hydrodynamic model has proven less useful for binary diffusion 
(that is, for A not identical to B) although the predicted temperature and viscosity depen- 
dences are approximately correct. 

Keep in mind that the above formulas apply only to dilute solutions of A in B. Some 
attempts have been made, however, to extend the hydrodynamic model to solutions of 
finite concentrations." 

The Eyring activated-state theory attempts to explain transport behavior via a quasi- 
crystalline model of the liquid state.12 It is assumed in this theory that there is some uni- 
molecular rate process in terms of which diffusion can be described, and it is further 
assumed that in this process there is some configuration that can be identified as the "ac- 
tivated state." The Eyring theory of reaction rates is applied to this elementary process in 
a manner analogous to that described in s1.5 for estimation of liquid viscosity. A modifi- 

- - 

' A. Polson, J .  Pkys. Colloid Ckem., 54,649-652 (1950). 
". J. V. Tyrrell, Diffusion and Heat Flow in Liquids, Butterworths, London (1961), Chapter 6. 
' Creeping motion around finite bodies in a fluid of infinite extent has been reviewed by J. Happel 

and H. Brenner, Low Reynolds Number Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J. (1965); see 
also S. Kim and S. J. Karrila, Microkydrodynarnics: Principles and Selected Applications, Butterworth- 
Heinemann, Boston (1991). G. K. Youngren and A. Acrivos, I. Ckem. Pkys. 63,3846-3848 (1975) have 
calculated the rotational friction coefficient for benzene, supporting the validity of the no-slip condition 
at molecular dimensions. 

'O J. C. M. Li and P. Chang, J.  C k m .  Phys., 23,518-520 (1955). 
I '  C. W. Pyun and M. Fixman, J. Clzem. Pkys., 41,937-944 (1964). 
'' S. Glasstone, K. J. Laidler, and H. Eyring, Tkeoy of Rate Processes, McGraw-Hill, New York (1941), 

Chapter IX. 
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EXAMPLE 17.4-1 

Estimation of Liquid 
Diffusivity 

cation of the original Eyring model by Ree, Eyring, and  coworker^'^ yields an expression 
similar to Eq. 17.4-5 for traces of A in solvent B: 

Here 6 is a "packing parameter," which in the theory represents the number of nearest 
neighbors of a given solvent molecule. For the special case of self-diffusion, 5 is found to 
be very close to 27r, so that Eqs. 17.4-5 and 6 are in good agreement despite the difference 
between the models from which they were developed. 

The Eyring theory is based on an oversimplified model of the liquid state, and con- 
sequently the conditions required for its validity are not clear. However, Bearman has 
shown2 that the Eyring model gives results consistent with statistical mechanics for "reg- 
ular solutions," that is, for mixtures of molecules that have similar size, shape, and inter- 
molecular forces. For this limiting situation, Bearman also obtains an expression for the 
concentration dependence of the diffusivity, 

in which 9,, and pB are the diffusivity and viscosity of the mixture at the composition 
XA, and a, is the thermodynamic activity of species A. For regular solutions, the partial 
molar volumes, VA and V,, are equal to the molar volumes of the pure components. 
Bearman suggests on the basis of his analysis that Eq. 17.4-7 should be limited to regular 
solutions, and it has in fact been found to apply well only to nearly ideal solutions. 

Because of the unsatisfactory nature of the theory for diffusion in liquids, it is neces- 
sary to rely on empirical expressions. For example, the Wilke-Chang equation14 gives the 
diffusivity for small concentrations of A in B as 

Here 6 is the molar volume of the solute A in cm3/g-mole as liquid at its normal boiling 
point, p is the viscosity of the solution in centipoises, t+!~~ is an llassociation parameter" 
for the solvent, and T is the absolute temperature in K. Recommended values of $, are: 
2.6 for water; 1.9 for methanol; 1.0 for benzene, ether, heptane, and other unassociated 
solvents. Equation 17.4-8 is good only for dilute solutions of nondissociating solutes. For 
such solutions, it is usually good within 210%. 

Other empiricisms, along with their relative merits, have been summarized by Reid, 
Prausnitz, and Poling.I5 

Estimate 9,, for a dilute solution of TNT (2,4,6-trinitrotoluene) in benzene at 15°C. 

SOLUTION 

Use the equation of Wilke and Chang, taking TNT as component A and benzene as compo- 
nent B. The required data are 

p = 0 . 7 0 5 ~ ~  (the viscosity for pure benzene) 

VA = 140 cm3/g-mole (for TNT) 

l3 H. Eyring, D. Henderson, B. J. Stover, and E. M. Eyring, Statistical Mechanics and Dynamics, Wiley, 
New York (1964), 516.8. 
'v. R. Wilke, Chem. Eng. Pvog., 45,218-224 (1949); C. R. Wilke and P. Chang, AIChE Journal, 1, 

264-270 (1955). 
'5 R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases find Liquids, 4th edition, 

McGraw-Hill, New York (1987), Chapter 11. 
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$B = 1.0 (for benzene) 
M B  = 78.11 (for benzene) 

Substitution into Eq. 17.4-8 gives 

This result compares well with the measured value of 1.39 X cm2/s. 

517.5 THEORY OF DIFFUSION IN COLLOIDAL S U S P E N S I O N S ~ ~ ~  

Next we turn to the movement of small colloidal particles in a liquid. Specifically we 
consider a finely divided, dilute suspension of spherical particles of material A in a sta- 
tionary liquid B. When the spheres of A are sufficiently small (but still large with respect 
to the molecules of the suspending medium), the collisions between the spheres and the 
molecules of B will result in an erratic motion of the spheres. This random motion is re- 
ferred to as Brownian rnoti~n.~ 

The movement of each sphere can be described by an equation of motion, called the 
Langevin equation: 

in which u, is the instantaneous velocity of the sphere of mass m. The term -luA gives 
the Stokes' law drag force: 5 = 6rpBR, being the "friction coefficient." Finally F(t) is the 
rapidly oscillating, irregular Brownian motion force. Equation 17.5-1 cannot be "solved" 
in the usual sense, since it contains the randomly fluctuating force F(t). Equations such 
as Eq. 17.5-1 are called "stochastic differential equations." 

If it is assumed that (i) F(t) is independent of uA and that (ii) the variations in F(t) are 
much more rapid than those of u,, then it is possible to extract from Eq. 17.5-1 the proba- 
bility W(uA,t;uA0)duA that at time t the particle will have a velocity in the range of uA to 
UA + du,. Physical reasoning requires that the probability density W ( U ~ , ~ ; U ~ ~ )  approach a 
Maxwellian (equilibrium) distribution as t -+ w: 

Here, T is the temperature of the fluid in which the particles are suspended. 

A. Einstein, Ann. d. Phys, 17,549-560 (1905), 19,371-381 (1906); Investigations on the Theory of the 
Brownian Movement, Dover, New York (1956). 

S. Chandrasekhar, Rev. Mod. Phys., 15,l-89 (1943). 
W .  B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions, Cambridge University Press 

(1989); H. C. Ottinger, Stochastic Processes in Polymeric Fluids, Springer, Berlin (1996). 
Named after the botanist R. Brown, Phil. Mag. (4), p. 161 (1828); Ann. d. Phys. u. Chem., 14,294-313 

(1828). Actually the phenomenon had been discovered and reported earlier in 1789 by Jan Ingenhousz 
(1730-1799) in the Netherlands. 

%s can be seen from Example 4.2-1, Stokes' law is valid only for the steady, unidirectional motion 
of a sphere through a fluid. For a sphere moving in an arbitrary manner, there are, in addition to the 
Stokes' contribution, an inertial term and a memory-integral term (the Basset force). See A. 8. Basset, 
Phil. Trans., 179,43-63 (1887); H.  Lamb, Hydrodynamics, 6th edition, Cambridge University Press (1932), 
reprinted (1997), p. 644; H. Villat and J. Kravtchenko, Lecons sur les Fluides Visqueux, Gauthier-Villars, 
Paris (1943), p. 213, Eq. (62); L. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd edition, Pergamon, New 
York (1987), p. 94. In applying the Langevin equation to polymer kinetic theory, the role of the Basset 
force has been investigated by J. D. Schieber, J. Chem. Phys., 94,7526-7533 (1991). 



532 Chapter 17 Diffusivity and the Mechanisms of Mass Transport 

Another quantity of interest that can be obtained from the Langevin equation is the 
probability, W(r,t;ro,uAo)dr, that at time t the particle will have a position in the range r to 
r + dr if its initial position and velocity were ro and UAO. For long times, specifically t >> 
m/{, this probability is given by 

However, this expression turns out to have just the same form as the solution of Fick's 
second law of diffusion (see Eq. 19.1-18 and Problem 20B.5) for the diffusion from a 
point source. One simply has to identify W with the concentration cA, and K T / ~  with B,,. 
In this way Einstein (see Ref. 1 on page 531) arrived at the following expression for the 
diffusivity of a dilute suspension of spherical colloid particles: 

Thus, is related to the temperature and the friction coefficient 5 (the reciprocal of the 
friction coefficient is called the "mobility"). Equation 17.5-4 was already given in Eq. 
17.4-3 for the interdiffusion of liquids. 

s17.6 THEORY OF DIFFUSION OF POLYMERS 

For a dilute solution of a polymer A in a low-molecular-weight solvent B, there is a de- 
tailed theory,' in which the polymer molecules are modeled as bead-spring chains (see 
Fig. 8.6-2). Each chain is a linear arrangement of N beads and N - 1 Hookean springs. 
The beads are characterized by a friction coefficient 6, which describes the Stokes' law 
resistance to the bead motion through the solvent. The model further takes into account 
the fact that, as a bead moves around, it disturbs the solvent in the neighborhood of all 
the other beads; this is referred to as hydrodynamic interaction. The theory ultimately 
predicts that the diffusivity should be proportional to N-I'2 for large N. Since the num- 
ber of beads is proportional to the polymer molecular weight M, the following result is 
obtained: 

The inverse square-root dependence is rather well borne out by experiment.' If hydrody- 
namic interaction among beads were not included, then one would predict %,, - 1 /M. 

The theory of self-diffusion in an undiluted polymer has been studied from several 
points of  vie^.^,^ These theories, which are rather crude, lead to the result that 

' J. G. Kirkwood, Macromolecules, Gordon and Breach, New York (1967), pp. 13,41,76-77,95, 
101-102. The original Kirkwood theory has been reexamined and slightly improved by H. C. &tinger, J. 
Chem. Phys., 87,3156-3165 (1987). 

R. B. Bird, C. F. Curtiss, R. C. Armstrong, and 0. Hassager, Dynamics of Polymeuic Liquids, Vol. 2, 
Kinetic Theory, 2nd edition, Wiley, New York (19871, pp. 174-175. 

P.-G. de Gennes and L. Lbger, Ann. Rev. Phys. Chem., 49-61 (1982); P.-G. de Gennes, Physics Today, 
36,3539 (1983). De Gennes introduced the notion of reptation, according to which the polymer molecules 
move back and forth along their backbones in a snake-like Brownian motion. 

R. B. Bird, C. F. Curtiss, R. C. Armstrong, and 0. Hassager, Dynamics of Polymeric Liquids, Vol. 2,  
Kinetic Theory, 2nd edition, Wiley, New York (1987), pp. 326-327; C. F. Curtiss and R. B. Bird, Puoc. Nat. 
Acad. Sci., 93,7440-7445 (1996). 
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Experimental data agree more or less with this result," but the exponent on the molecular 
weight may be as great as 3 for some polymers. 

Although a very general theory for diffusion of polymers has been de~eloped,~ not 
very much has been done with it. So far it has been used to show that, in flowing dilute 
solutions of flowing polymers, the diffusivity tensor (see Eq. 17.1-1 0) becomes anisotropic 
and dependent on the velocity gradients. It has also been shown how to generalize the 
Maxwell-Stefan equations (see 517.9 and s24.1) for multicomponent polymeric liquids. 
Further advances in this subject can be expected through use of molecular  simulation^.^ 

517.7 MASS AND MOLAR TRANSPORT BY CONVECTION 

In 517.1, the discussion of Fick's (first) law of diffusion was given in terms of mass units: 
mass concentration, mass flux, and the mass average velocity. In this section we extend the 
previous discussion to include molar units. Thus most of this section deals with questions 
of notation and definitions. One might reasonably wonder whether or not this dual set of 
notation is really necessary. Unfortunately, it really is. When chemical reactions are in- 
volved, molar units are usually preferred. When the diffusion equations are solved to- 
gether with the equation of motion, mass units are usually preferable. Therefore it is 
necessary to acquire familiarity with both. In this section we also introduce the concept of 
the convective flux of mass or moles. 

Mass and Molar Concentrations 

Earlier we defined the mass concentration p, as the mass of species a per unit volume of 
solution. Now we define the molar concentration c, = p,/M, as the number of moles of a 
per unit volume of solution. 

Similarly, in addition to the mass fraction o, = pJp, we will use the mole fraction x, = 

c,/c. Here p = Zap, is the total mass of all species per unit volume of solution, and c = 

Z,c, is the total number of moles of all species per unit volume of solution. By the word 
"solution" we mean a one-phase gaseous, liquid, or solid mixture. In Table 17.7-1 we 
summarize these concentration units and their interrelation for multicomponent systems. 

It is necessary to emphasize that p, is the mass concentration of species a in a mix- 
ture. We use the notation p'"i for the density of pure species a when the need arises. 

Mass Average and Molar Average Velocity 

In a diffusing mixture, the various chemical species are moving at different velocities. By v,, 
the "velocity of species a," we do not mean the velocity of an individual molecule of species 
a. Rather, we mean the average of all the velocities of molecules of species a within a small 
volume. Then, for a mixture of N species, the local mass average velocity v is defined as 

P. F. Green, in Diffusion in Polymers (P. Neogi, ed.), Dekker, New York (1996), Chapter 6. 
According to T. P. ~ o d g e ,  Phys. Rev. Letters, 86,3218-3221 (1999), measurements on undiluted polymers 
show that the exponent on the molecular weight should be about 2.3. 

". F. Curtiss and R. B. Bird, Adv. Polym. Sci., 125,l-101 (1996) and J. Chem. Phys., 111,10362-10370 
(1999). 

D. N. Theodorou, in Diffusion in Polymers (P. Neogi, ed.), Dekker, New York (19961, Chapter 2. 
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Table 17.7-1 Notation for Concentrations 

Basic definitions: 

Po = mass concentration of species a (A) 
N 

p = 2 pa = mass density of solution 
a=l 

ma = p,/p = mass fraction of species a (C) 

Ca = molar concentration of species a 
A' 

c = 2 c, = molar density of solution 
a=l 

x, = c,/c = mole fraction of species a 

M = p / c  = molar mean molecular weight of solution (GI 

Algebraic relations: 

Differential relations: 

"Equations (P) and (Q), simplified for binary ystems, are 

Note that pv is the local rate at which mass passes through a unit cross section placed 
perpendicular to the velocity v. This is the local velocity one could measure by means of 
a Pitot tube or by laser-Doppler velocimetry, and corresponds to the v used in the equa- 
tion of motion and in the energy equation in the preceding chapters for pure fluids. 

Similarly, one may define a local molar average velocity v* by 

Note that cv* is the local rate at which moles pass through a unit cross section placed 
perpendicular to the molar velocity v*. Both the mass average velocity and the molar 
average velocity will be used extensively throughout the remainder of this book. Still 
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Table 17.7-2 Notation for Velocities in Multicomponent Systems 

Basic definitions: 

V, velocity of species a with respect to fixed coordinates (A) 
N 

v = 2 O,V, mass average velocity 
a=l 

N 

V* = x X,V, molar average velocity 
a=l 

(C) 

v, - v diffusion velocity of species a with respect to the mass average 
velocity v (D) 

va - v* diffusion velocity of species a with respect to the molar average 
velocity v* (E) 

Additional relations: 

other average velocities are sometimes used, such as the volume average velocity (see 
Problem 17C.1). In Table 17.7-2 we give a summary of the various relations among 
these velocities. 

Molecular Mass and Molar Fluxes 

In 517.1 we defined the molecular mass flux of a as the flow of mass of a through a unit 
area per unit time: j, = p,(v, - v). That is, we include only the velocity of species a rela- 
tive to the mass average velocity v. Similarly, we define the molecular molar flux of 
species a as the number of moles of a flowing through a unit area per unit time: J: = 

cA(vA - vr). Here we include only the velocity of species a relative to the molar average 
velocity v*. 

Then in 517.1 we presented Fick's (first) law of diffusion, which describes how the 
mass of species A in a binary mixture is transported by means of molecular motions. 
This law can also be expressed in molar units. Hence we have the pair of relations for bi- 
nary systems: 

The differences v~ - v and v, - v* are sometimes referred to as diffusion velocities. Equa- 
tion 17.7-4 can be derived from Eq. 17.7-3 by using some of the relations in Tables 17.7-1 
and 2. 

Convective Mass and Molar Fluxes 

In addition to transport by molecular motion, mass may also be transported by the bulk 
motion of the fluid. In Fig. 9.7-1 we show three mutually perpendicular planes of area d S  
at a point P where the fluid mass average velocity is v. The volume rate of flow across the 
plane perpendicular to the surface element dS  perpendicular to the x-axis is v,dS. The 
rate at which mass of species a is being swept across the same surface element is then 
p,v,dS. We can write similar expressions for the mass flows of species a across the sur- 
face elements perpendicular to the y- and z-axes as p,v,dS and p,v,dS, respectively. If we 



536 Chapter 17 Diffusivity and the Mechanisms of Mass Transport 

now multiply each of these expressions by the corresponding unit vector, add them, and 
divide by dS, we get 

as the convective mass flux vector, which has units of kg/m2 . s. 
If one goes back and repeats the story of the preceding paragraph, but using every- 

where molar units and the molar average velocity v*, then we get 

as the convective molar flux vector, which has units of kg-mole/m2 s. 
To get the convective mass and molar fluxes across a unit surface whose normal unit 

vector is n, we form the dot products (n . p,v) and (n . c,v*), respectively. 

517.8 SUMMARY OF MASS AND MOLAR FLUXES 

In Chapters 1 and 9 we introduced the combined momentum flux tensor + and the com- 
bined energy flux vector e, which we found useful in setting up the shell balances and 
equations of change. We give the corresponding definitions here for the mass and molar 
flux vectors. We add together the molecular mass flux vector and the convective mass 
flux vector to get the combined mass flux vector, and similarly for the combined molar flux 
vector: 

Com bined mass flux: 
Combined molar flux: 

In the first three lines of Table 17.8-1 we summarize the definitions of the mass and 
molar fluxes discussed so far. In the shaded squares we also give the definitions of the 
fluxes j: (mass flux with respect to the molar average velocity) and J, (molar flux with re- 
spect to mass average velocity). These "hybrid" fluxes should normally not be used. 

In the remainder of Table 17.8-1 we give a summary of other useful relations, such 
as the sums of the fluxes and the interrelations among the fluxes. By using Eqs. 0) and 
(M) we can rewrite Eqs. 17.8-1 and 2 as 

When simplified for binary systems, these relations can be combined with Eqs. 17.7-3 
and 17.7-4, to get Eqs. (C) and (D) of Table 17.8-2, which are equivalent forms of Fick's 
(first) law. The forms given in Eqs. (E) and (F) of Table 17.8-2, in terms of the relative ve- 
locities of the species, are interesting because they involve neither v nor vr. 

In Chapter 18 we will write Fick's law exclusively in the form of Eq. (D) of Table 
17.8-2. It is this form that has generally been used in chemical engineering. In many 
problems something is known about the relation between NA and N, from the stoi- 
chiometry or from boundary conditions. Therefore N, can be eliminated from Eq. (D), 
giving a direct relation between NA and VxA for the particular problem. 

In s1.7 we pointed out that the total molecular momentum flux through a surface of 
orientation n is the vector In m]. In 59.7 we mentioned the analogous quantity for the mol- 
ecular heat flux-namely, the scalar (n . q). The analogous mass transport quantities are 
the scalars (n * j,) and (n . J:), which give the total mass and molar fluxes through a surface 
of orientation n. Similarly, for the combined fluxes through a surface of orientation n, we 
have for momentum [n +I, for energy (n e), and for species (n . n,) and (n . N,). 
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Table 17.8-1 Notation for Mass and Molar Fluxes* 

*Entries in the shaded boxes, involving the "hybrid fluxes" j,$ and J,, are seldom needed; they are included only for the sake of 
completeness. 

Quantity 

Velocity of species a 
(cm/s) 

Table 17.8-2 Equivalent Forms of Fick's (First) Law of Binary Diffusion 

With respect to 
stationary axes 

V, (A) 

Flux Gradient 

With respect to mass 
average velocity v 

v, - v (B) 

Form of Fick's Law 

With respect to molar 
average velocity v* 

v, - v* (C) 
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517.9 THE MAXWELL-STEFAN EQUATIONS FOR 
MULTICOMPONENT DIFFUSION IN GASES 
AT LOW DENSITY 

For multicomponent diffusion in gases at low density it has been shown1r2 that to a very good 
approximation 

XaXp 1 
Vx, = - C - (v, - vp) = - 2 - (xpNa - x,Np) a = 1,2,3 , .  . . , N (17.9-1) 

p=1 Bop p=1 c%p 

The 9Iap here are the binary diffusivities calculated from Eq. 17.3-11 or Eq. 17.3-12. There- 
fore, for an N-component system, ~ N ( N  - 1) binary diffusivities are required. 

Equations 17.9-1 are referred to as the Maxwell-Stefan equations, since Maxwell3 
suggested them for binary mixtures on the basis of kinetic theory, and Stefanhener- 
alized them to describe the diffusion in a gas mixture with N species. Later Curtiss 
and Hirschfelder obtained Eqs. 17.9-1 from the multicomponent extension of the 
Chapman-Enskog theory. 

For dense gases, liquids, and polymers it has been shown that the Maxwell-Stefan 
equations are still valid, but that the strongly concentration-dependent diffusivities ap- 
pearing therein are not the binary diff~sivities.~ 

There is an important difference between binary diffusion and multicomponent dif- 
f ~ s i o n . ~  In binary diffusion the movement of species A is always proportional to the neg- 
ative of the concentration gradient of species A. In multicomponent diffusion, however, 
other interesting situations can arise: (i) reverse diffusion, in which a species moves 
against its own concentration gradient; (ii) osmotic diffusion, in which a species diffuses 
even though its concentration gradient is zero; (iii) dimsion barrier, when a species does 
not diffuse even though its concentration gradient is nonzero. In addition, the flux of a 
species is not necessarily collinear with the concentration gradient of that species. 

QUESTIONS FOR DISCUSSION 

How is the binary diffusivity defined? How is self-diffusion defined? Give typical orders of 
magnitude of diffusivities for gases, liquids, and solids. 
Summarize the notation for the molecular, convective, and total fluxes for the three transport 
processes. How does one calculate the flux of mass, momentum, and energy across a surface 
with orientation n? 
Define the Prandtl, Schmidt, and Lewis numbers. What ranges of Pr and Sc can one expect to 
encounter for gases and liquids? 
How can you estimate the Lennard-Jones potential for a binary mixture, if you know the pa- 
rameters for the two components of the mixture? 
Of what value are the hydrodynamic theories of diffusion? 
What is the Langevin equation? Why is it called a "stochastic differential equation"? What in- 
formation can be obtained from it? 

' C. F. Curtiss and J. 0. Hirschfelder, J. Chem. Phys., 17,550-555 (1949). 
For applications to engineering, see E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems, 2nd 

edition, Cambridge University Press (1997); R. Taylor and R. Krishna, Multicomyonent Mass Transfer, 
Wiley, New York (1993). 
9. C. Maxwell, Phil. Mag., XIX, 19-32 (1860); XX, 21-32,33-36 (1868). 
9. Stefan, Sitzungsber. h i s .  Akad. Wiss. Wien, LXIII(2), 63-124 (1871); LXV(2), 323-363 (1872). 

C. F. Curtiss and R. 6. Bird, Ind. Eng. Chern. Res., 38,2515-2522 (1999); 40,1791 (2001); J. Chem. 
Phys., 111,10362-10370 (1999). 

H. L. Toor, MChE Journal, 3,198-207 (1959). 
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7. Compare and contrast the relation between binary diffusivity and viscosity for gases and for 
liquids. 

8. How are the Maxwell-Stefan equations for multicomponent diffusion in gases related to the 
Fick equations for binary systems? 

9. In a multicomponent mixture, does the vanishing of N, imply the vanishing of Vx,? 

PROBLEMS 17A.1. Prediction of a low-density binary diffusivity. Estimate BAB for the system methane-ethane 
at 293K and 1 atm by the following methods: 
(a) Equation 17.2-1. 
(b) The corresponding-states chart in Fig. 17.2-1 along with Eq. 17.2-3. 
(c) The Chapman-Enskog relation (Eq. 17.3-12) with Lennard-Jones parameters from 
Appendix E. 
(dl The Chapman-Enskog relation (Eq. 17.3-12) with the Lennard-Jones parameters esti- 
mated from critical properties. 
Answers (all in cm2/s): (a) 0.152; (b) 0.138; (c) 0.146; (d) 0.138. 

17A.2. Extrapolation of binary diffusivity to a very high temperature. A value of 9,, = 0.151 cm2/s 
has been reported1 for the system C0,-air at 293K and 1 atm. Extrapolate 9AR to 1500K by the 
following methods: 
(a) Equation 17.2-1. 
(b) Equation 17.3-10. 
(c) Equations 17.3-12 and 15, with Table E.2, 

What do you conclude from comparing these results with the experimental value' of 
2.45 cm2/s? 
Answers (all in cm2/s): (a) 2.96; (b) 1.75; (c) 2.51 

17A.3. Self-diffusion in liquid mercury. The diffusivity of H~~~~ in normal liquid Hg has been mea- 
sured: along with viscosity and volume per unit mass. Compare the experimentally mea- 
sured with the values calculated with Eq. 17.4-5. 

17A.4. Schmidt numbers for binary gas mixtures at low density. Use Eq. 17.3-11 and the data 
given in Problem 1A.4 to compute Sc = p/pBAB for binary mixtures of hydrogen and Freon- 
12 at x, = 0.00,0.25,0.50,0.75, and 1.00, at 25°C and 1 atm. 
Sample answers: At xA = 0.00, Sc = 3.43; at x, = 1.00, Sc = 0.407 

17A.5. Estimation of diffusivity for a binary mixture at high density. Predict for an equimo- 
lar mixture of N, and C2H6 at 288.2K and 40 atm. 
(a) Use the value of 9,, at 1 atrn from Table 17.1-1, along with Fig. 17.2-1. 
(b) Use Eq. 17.2-3 and Fig. 17.2-1. 
Answers: (a) 5.8 X lop6 g-mole/cm . s; (b) 5.3 X g-mole/cm. s 

' Ts. M. Klibanova, V. V. Pomerantsev, and D. A. Frank-Kamenetskii, I .  Tech. Phys. (USSR), 12,14-30 
(1942), as quoted by C. R. Wilke and C. Y. Lee, Ind. Eng. Chem., 47,1253 (1955). 

R. E. Hoffman, 1. Chem. Phys., 20,1567-1570 (1952). 
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Diffusivity and Schmidt number for chlorine-air mixtures. 
(a) Predict $?JAB for chlorine-air mixtures at 75°F and 1 atrn. Treat air as a single substance 
with Lennard-Jones parameters as given in Appendix E. Use the Chapman-Enskog theory re- 
sults in 517.3. 
(b) Repeat (a) using Eq. 17.2-1. 
(c) Use the results of (a) and of Problem 1A.5 to estimate Schmidt numbers for chlorine-air 
mixtures at 297K and 1 atm for the following mole fractions of chlorine: 0,0.25,0.50,0.75, and 
1.00. 
Answers: (a) 0.121 cm2/s; (b) 0.124 cm2/s; (c) Sc = 1.27,0.832,0.602,0.463,0.372 

The Schmidt number for self-diffusion. 
(a) Use Eqs. 1.3-lb and 17.2-2 to predict the self-diffusion Schmidt number Sc = p/p$?JAA* at 
the critical point for a system with MA = MA*. 
(b) Use the above result, along with Fig. 1.3-1 and Fig. 17.2-1, to predict Sc = p/p9IAA' at the 
following states: 

Phase Gas Gas Gas Liquid Gas Gas 

Tr 0.7 1.0 5.0 0.7 1.0 2.0 
P r  0.0 0.0 0.0 saturation 1.0 1.0 

Correction of high-density diffusivity for temperature. The measured value3 of for a 
mixture of 80 mole% CH, and 20 mole% C,H, at 313K and 136 atm is 6.0 X g-mol/cm. s 
(see Example 17.2-3). Predict c9AB for the same mixture at 136 atm and 351K, using Fig. 17.2-1. 
Answer: 6.3 X lop6 g-mole/cm. s 
Ob~erved:~ 6.33 X g-mol/cm - s 

Prediction of critical c9,, values. Figure 17.2-1 gives the low-pressure limit (c$?JAA,), = 1.01 
at T, = 1 and p, + 0. At this limit, Eq. 17.2-13 gives 

1.01(~9~,.), = 2.2646 x lo-' JT,, (L + l) 1 (17A.9-1) 
MA MA* dA+ a9,AA* 

Here the argument of f19, is reported%s = 1.225 for Ar, Kr, and Xe. We use the 
value 1 /O.77 from Eq. 1.4-11a as a representative average over many fluids. 
(a) Combine Eq. 17A.9-1 with the relations 

and Table E.2 to obtain Eq. 17.2-2 for (dBAA*), 
(b) Show that the approximations 

V,,== CAB== 

for Lennard-Jones parameters for the A-B interaction give 

when the molecular parameters of each species are predicted according to Eqs. 1.4-lla, c. 
Combine these expressions with Eq. 17A.9-1 (with AX replaced by B and TcA by m) to 
obtain Eq. 17.2-3 for (cQ,,),. The corresponding replacement of p, and T, in Fig. 17.2-1 by 

and amounts to regarding the A-B collisions as dominant over collisions of 
like molecules in determining the value of 

V. J. Berry and R. C. Koeller, AIChE Journal, 6,274-280 (1960). 
J. J. van Loef and E. G. D. Cohen, Physica A, 156,522-533 (1989). 



Problems 541 

Estimation of liquid diffusivities. 
(a) Estimate the diffusivity for a dilute aqueous solution of acetic acid at 12.5"C, using the 
Wilke-Chang equation. The density of pure acetic acid is 0.937 g/cm3 at its boiling point. 
(b) The diffusivity of a dilute aqueous solution of methanol at 15OC is about 1.28 X 10-' cm/s. 
Estimate the diffusivity for the same solution at 100°C. 
Answer: (b) 6.7 X cm/s 

Interrelation of composition variables in mixtures. 
(a) Using the basic definitions in Eqs. (A) to (G) of Table 17.7-1, verify the algebraic relations 
in Eqs. (HI to (0). 
(b) Verify that, in Table 17.7-1, Eqs. (P) and (Q) simplify to Eqs. (P') and (Q') for binary 
mixtures. 
(c) Derive Eqs. (P') and (Q') from Eqs. (N) and (0). 

Relations among fluxes in multicomponent systems. Verify Eqs. (K), (O), (T), and (X) of 
Table 17.8-1 using only the definitions of concentrations, velocities, and fluxes. 

Relations between fluxes in binary systems. The following equation is useful for interrelat- 
ing expressions in mass units and those in molar units in two-component systems: 

Verify the correctness of this relation. 

Equivalence of various forms of Fick's law for binary mixtures. 
(a) Starting with Eq. (A) of Table 17.8-2, derive Eqs. (B), (D), and (F). 
(b) Starting with Eq. (A) of Table 17.8-2, derive the folowing flux expressions: 

What conclusions can be drawn from these two equations? 
(c) Show that Eq. (F) of Table 17.8-2 can be written as 

Mass flux with respect to volume average velocity. Let the volume average velocity in an 
N-component mixture be defined by 

in which V,  is the partial molar volume of species a. Then define 

j! = p h ,  - vm) (17C.1-2) 

as the mass flux with respect to the volume average velocity. 
(a) Show that for a binary system of A and B, 

To do this you will need to use the identity cAVA + cBVB = 1 .  Where does this come from? 
(b) Show that Fick's first law then assumes the form 

To verifv this vou will need the relation V,vcA + V,VC, = 0. What is the origin of this? 
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17C.2. Mass flux with respect to the solvent velocity. 
(a) In a system with N chemical species, choose component N to be the solvent. Then define 

to be the mass flux with respect to the solvent velocity. Verify that 

jf = ja - (pa/~N)jN 
(b) For a binary system (labeling B as the solvent), show that 

How does this result simplify for a very dilute solution of A in solvent B? 

17C.3. Determination of Lennard-Jones potential parameters from diffusivity data of a binary gas 
mixture. 
(a) Use the following data5 for the system H,O-0, at 1 atm pressure to determine (TAB and 
&AB/K: 

9AB (cm2/s) 0.47 0.69 0.94 1.22 1.52 1.85 2.20 2.58 

One way to do this is as follows: (i) Plot the data as ~ o ~ ( T ~ ' ~ / % ~ ~ )  versus log Ton a thin sheet 
of graph paper. (ii) Mot versus KT/GAB on a separate sheet of graph paper to the same 
scale. (iii) Superpose the first plot on the second, and from the scales of the two overlapping 
plots, determine the numerical ratios (T/(KT/E,,)) and ((T~'~/%,,)/&,,,). (iv) Use these two 
ratios and Eq. 17.3-11 to solve for the two parameters (TAB and g A B / ~ .  

' R. E. Walker and A. A. Westenberg, J. Chem. Phys., 32,436442 (1960); R. M. Fristrom and 
A. A. Westenberg, Flame Stuuctuue, McGraw-Hill, New York (19651, p. 265. 



Chapter 18 

Concentration Distributions in 
Solids and in Laminar Flow 

Shell mass balances; boundary conditions 

Diffusion through a stagnant gas film 

Diffusion with a heterogeneous chemical reaction 

Diffusion with a homogeneous chemical reaction 

Diffusion into a falling liquid film (gas absorption) 

Diffusion into a falling liquid film (solid dissolution) 

Diffusion and chemical reaction inside a porous catalyst 

Diffusion in a three-component gas system 

In Chapter 2 we saw how a number of steady-state viscous flow problems can be set up 
and solved by making a shell momentum balance. In Chapter 9 we saw further how 
steady-state heat-conduction problems can be handled by means of a shell energy balance. 
In this chapter we show how steady-state diffusion problems may be formulated by shell 
mass balances. The procedure used here is virtually the same as that used previously: 

a. A mass balance is made over a thin shell perpendicular to the direction of mass 
transport, and this shell balance leads to a first-order differential equation, which 
may be solved to get the mass flux distribution. 

b. Into this expression we insert the relation between mass flux and concentration 
gradient, which results in a second-order differential equation for the concentra- 
tion profile. The integration constants that appear in the resulting expression are 
determined by the boundary conditions on the concentration and/or mass flux at 
the bounding surfaces. 

In Chapter 17 we pointed out that several kinds of mass fluxes are in common use. 
For simplicity, we shall in this chapter use the combined flux NA-that is, the number of 
moles of A that go through a unit area in unit time, the unit area being fixed in space. We 
shall relate the molar flux to the concentration gradient by Eq. (D) of Table 17.8-2, which 
for the z-component is 

combined moIecuIar convective 
flux flu flux 

Before Eq. 18.0-1 is used, we usually have to eliminate NBZ. This can be done only if 
something is known beforehand about the ratio Nh/NAZ. In each of the binary diffusion 
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problems discussed in this chapter, we begin by specifying this ratio by physical or 
chemical reasoning. 

In this chapter we study diffusion in both nonreacting and reacting systems. When 
chemical reactions occur, we distinguish between two reaction types: homogeneous, in 
which the chemical change occurs in the entire volume of the fluid, and heterogeneous, in 
which the chemical change takes place only in a restricted region, such as the surface of a 
catalyst. Not only is the physical picture different for homogeneous and heterogeneous 
reactions, but there is also a difference in the way the two types of reactions are described 
mathematically. The rate of production of a chemical species by homogeneous reaction ap- 
pears as a source term in the differential equation obtained from the shell balance, just as 
the thermal source term appears in the shell energy balance. The rate of production by a 
heterogeneous reaction, on the other hand, appears not in the differential equation, but 
rather in the boundary condition at the surface on which the reaction occurs. 

In order to set up problems involving chemical reactions, some information has to 
be available about the rate at which the various chemical species appear or disappear by 
reaction. This brings us to the vast subject of chemical kinetics, that branch of physical 
chemistry that deals with the mechanisms of chemical reactions and the rates at which 
they occur.' In this chapter we assume that the reaction rates are described by means of 
simple functions of the concentrations of the reacting species. 

At this point we need to mention the notation to be used for the chemical rate con- 
stants. For homogeneous reactions, the molar rate of production of species A may be 
given by an expression of the form 

Homogeneous reaction: R - k"' n 
A - ~ C A  (18.0-2) 

in which RA [=I  moles/cm3 . s and cA [=I  moles/cm3. The index n indicates the "order" 
of the rea~tion;~ for a first-order reaction, kp [ = I  l /s.  For heterogeneous reactions, the 
molar rate of production at the reaction surface may often be specified by a relation of 
the form 

Heterogeneous reaction: N A Z I  surface = k;c]12 Isuriace (18.0-3) 

in which NAZ [=I  moles/cm2 . s and c, [ = I  moles/cm3. Here k',' [ = I  cm/s. Note that the 
triple prime on the rate constant indicates a volume source and the double prime a sur- 
face source. 

We begin in 518.1 with a statement of the shell balance and the kinds of boundary 
conditions that may arise in solving diffusion problems. In 518.2 a discussion of diffu- 
sion through a stagnant film is given, this topic being necessary to the understanding of 
the film models of diffusional operations in chemical engineering. Then, in 5518.3 and 
18.4 we given some elementary examples of diffusion with chemical reaction-both het- 
erogeneous and homogeneous. These examples illustrate the role that diffusion plays in 
chemical kinetics and the important fact that diffusion can significantly affect the rate of 
a chemical reaction. In 5518.5 and 6 we turn our attention to forced-convection mass 
transfer-that is, diffusion superimposed on a flow field. Although we have not in- 

' R. J. Silbey and R. A. Alberty, Physical Chemistry, 3rd edition, Wiley, New York (2001), Chapter 18. 
Not all rate expressions are of the simple form of Eq. 18.0-2. The reaction rate may depend in a 

complicated way on the concentration of all species present. Similar remarks hold for Eq. 18.0-3. For 
detailed information on reaction rates see Table of Chemical Kinetics, Homogeneous Reactions, National 
Bureau of Standards, Circular 510 (1951), Supplement No. 1 to Circular 510 (1956). This reference is 
now being supplemented by a data base maintained by NIST at "http://kinetics.nist.gov/." For 
heterogeneous reactions, see R. Mezaki and H. Inoue, Rate Equations of Solid-Catalyzed Renctions, U .  of 
Tokyo Press, Tokyo (1991). See also C. G. Hill, Chemical Engineering Kinetics and Reactor Design: An  
Introduction, Wiley, New York (1977). 



518.2 Diffusion Through a Stagnant Gas Film 545 

cluded an example of free-convection mass transfer, it would have been possible to par- 
allel the discussion of free-convection heat transfer given in 510.9. Next, in 518.7 we dis- 
cuss diffusion in porous catalysts. Finally, in the last section we extend the evaporation 
problem of 518.2 to a three-component system. 

818.1 SHELL MASS BALANCES; BOUNDARY CONDITIONS 

The diffusion problems in this chapter are solved by making mass balances for one or 
more chemical species over a thin shell of solid or fluid. Having selected an appropriate 
system, the law of conservation of mass of species A in a binary system is written over 
the volume of the shell in the form 

rate of rate of rate of production of 
(18.1-1) 

homogeneous reaction 

The conservation statement may, of course, be expressed in terms of moles. The chemical 
species A may enter or leave the system by diffusion (i.e., by molecular motion) and also 
by virtue of the overall motion of the fluid (i.e., by convection), both of these being in- 
cluded in NA. In addition, species A may be produced or consumed by homogeneous 
chemical reactions. 

After a balance is made on a shell of finite thickness by means of Eq. 18.1-1, we then 
let the thickness become infinitesimally small. As a result of this process a differential 
equation for the mass (or molar) flux is generated. If, into this equation, we substitute the 
expression for the mass (or molar) flux in terms of the concentration gradient, we get a 
differential equation for the concentration. 

When this differential equation has been integrated, constants of integration appear, 
and these have to be determined by the use of boundary conditions. The boundary con- 
ditions are very similar to those used in heat conduction (see §10.1): 

a. The concentration at a surface can be specified; for example, xA = x,,. 

b. The mass flux at a surface can be specified; for example, NAz = N,,. If the ratio 
NB,/NAz is known, this is equivalent to giving the concentration gradient. 

c. If diffusion is occurring in a solid, it may happen that at the solid surface sub- 
stance A is lost to a surrounding stream according to the relation 

in which NAO is the molar flux at the surface, CAO is the surface concentration, cAb is 
the concentration in the bulk fluid stream, and the proportionality constant kc is a 
"mass transfer coefficient." Methods of correlating mass transfer coefficients are 
discussed in Chapter 22. Equation 18.1-2 is analogous to "Newton's law of cool- 
ing" given in Eq. 10.1-2. 

d. The rate of chemical reaction at the surface can be specified. For example, if sub- 
stance A disappears at a surface by a first-order chemical reaction, then NA@ = 

k;cA0. That is, the rate of disappearance at a surface is proportional to the surface 
concentration, the proportionality constant k; being a first-order chemical rate 
coefficient. 

$18.2 DIFFUSION THROUGH A STAGNANT GAS FILM 

Let us now analyze the diffusion system shown in Fig. 18.2-1 in which liquid A is evapo- 
rating into gas B. We imagine there is some device that maintains the liquid level at z = 

2,.  Right at the liquid-gas interface, the gas-phase concentration of A, expressed as mole 
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Fig. 18.2-1. Steady-state diffusion of A 
through stagnant B with the liquid- 
vapor interface maintained at a fixed 
position. The graph shows how the 
concentration profiles deviate from 
straight lines because of the convective 
contribution to the mass flux. 

fraction, is xAl. This is taken to be the gas-phase concentration of A corresponding to 
equilibrium1 with the liquid at the interface. That is, xAl is the vapor pressure of A di- 
vided by the total pressure, p F p / p ,  provided that A and B form an ideal gas mixture and 
that the solubility of gas B in liquid A is negligible. 

A stream of gas mixture A-B of concentration XA2 flows slowly past the top of the 
tube, to maintain the mole fraction of A at x,, for z= z2. The entire system is kept at con- 
stant temperature and pressure. Gases A and B are assumed to be ideal. 

We know that there will be a net flow of gas upward from the gas-liquid interface, 
and that the gas velocity at the cylinder wall will be smaller than that in the center of the 
tube. To simplify the problem, we neglect this effect and assume that there is no depen- 
dence of the z-component of the velocity on the radial coordinate. 

When this evaporating system attains a steady state, there is a net motion of A away 
from the interface and the species B is stationary. Hence the molar flux of A is given by 
Eq. 17.0-1 with NBz = 0. Solving for NAz, we get 

A steady-state mass balance (in molar units) over an increment Az of the column states 
that the amount of A entering at plane z equals the amount of A leaving at plane z + Az: 

Here S is the cross-sectional area of the column. Division by SAz and taking the limit as 
Az + 0 gives 

L. J. Delaney and L. C. Eagleton [AICkE Journal, 8,418420 (196211 conclude that, for evaporating 
systems, the interfacial equilibrium assumption is reasonable, with errors in the range of 1.3 to 7.0% 
possible. 



518.2 Diffusion Through a Stagnant Gas Film 547 

Substitution of Eq. 18.2-1 into Eq. 18.2-3 gives 

For an ideal gas mixture the equation of state is p = cRT, so that at constant temperature 
and pressure c must be a constant. Furthermore, for gases aAB is very nearly indepen- 
dent of the composition. Therefore, can be moved to the left of the derivative opera- 
tor to get 

This is a second-order differential equation for the concentration profile expressed as 
mole fraction of A. Integration with respect to z gives 

A second integration then gives 

If we replace C, by -In K, and C2 by -In K,, Eq. 18.2-7 becomes 

The two constants of integration, K, and K,, may then be determined from the boundary 
conditions 

B.C. 1: 
B.C. 2: 

at z = z,, xA = xA, 
at z = z2, x, = x ~ 2  

When the constants have been obtained, we get finally 

The profiles for gas B are obtained by using xB = 1 - x,. The concentration profiles are 
shown in Fig. 18.2-1. It can be seen there that the slope dxA/dz is not constant although 
N, is; this could have been anticipated from Eq. 18.2-1. 

Once the concentration profiles are known, we can get average values and mass 
fluxes at surfaces. For example, the average concentration of B in the region between 2, 

and z, is obtained as follows: 

in which 5 = (z - z,)/(z, - z,) is a dimensionless length variable. This average may be 
rewritten as 

That is, the average value of xB is the logarithmic mean, (x,),,, of the terminal concen- 
trations. 
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Main fluid stream - 
in turbulent flow 

Fig. 18.2-2. Film model for mass transfer; component A 
is diffusing from the surface into the gas stream through 
a hypothetical stagnant gas film. 

The rate of mass transfer at the liquid-gas interface-that is, the rate of evapora- 
tion-may be obtained from Eq. 18.2-1 as follows: 

By combining Eqs. 18.2-13 and 14 we get finally 

This expression gives the evaporation rate in terms of the characteristic driving force 
XAl - x ~ 2 .  

By expanding the solution in Eq. 18.2-15 in a Taylor series, we can get (see 5C.2 and 
Problem 18B.18) 

The expression in front of the bracketed expansion is the result that one would get if the 
convection term were entirely omitted in Eq. 18.0-1. The bracketed expansion then gives 
the correction resulting from including the convection term. Another way of interpreting 
this expression is that the simple result corresponds to joining the end points of the x, 
curve in Fig. 18.2-1 by a straight line, and the complete result corresponds to using the 
curve of x, versus z.  If the terminal mole fractions are small, the correction term in brack- 
ets in Eq. 18.2-16 is only slightly greater than unity. 

The results of this section have been used for experimental determinations of gas 
diffusivities.' Furthermore, these results find use in the "film models" of mass transfer. 
In Fig. 18.2-2 a solid or liquid surface is shown along which a gas is flowing. Near the 
surface is a slowly moving film through which A diffuses. This film is bounded by the 
surfaces z = z, and z = z2 In this "model" it is assumed that there is a sharp transition 
from a stagnant film to a well-mixed fluid in which the concentration gradients are negli- 
gible. Although this model is physically unrealistic, it has nevertheless proven useful as 
a simplified picture for correlating mass transfer coefficients. 

* C. Y. Lee and C. R. Wilke, Ind. Eng. Chem., 46,2381-2387 (1954). 
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Fig. 18.2-3. Evaporation with quasi-steady-state dif- 
fusion. The liquid level goes down very slowly as the 
liquid evaporates. A gas mixture of composition xA2 
flows across the top of the tube. 

Liquid A 

We want now to examine a problem that is slightly different from the one just discussed. In- 
stead of maintaining the liquid-gas interface at a constant height, we allow the liquid level to 

Diffusion with a subside as the evaporation proceeds, as shown in Fig. 18.2-3. Since the liquid retreats very 
Moving Interface slowly, we can use a quasi-steady state method with confidence. 

SOLUTION First we equate the molar rate of evaporation of A from the liquid phase with the rate at 
which moles of A enter the gas phase: 

Here p(A' is the density of pure liquid A and MA is the molecular weight. On the right side of Eq. 
18.2-17 we have used the steady-state evaporation rate evaluated at the current liquid column 
height (this is the quasi-steady-state approximation). This equation can be integrated to give 

in which h(t) = zl(0) - z,(t) is the distance that the interface has descended in time t, and 
H = 2, - q(0) is the initial height of the gas column. When we abbreviate the right side of 
Eq. 18.2-18 by iCt, the equation can be integrated and then solved for h to give 

One can use this experiment to get the diffusivity from measurements of the liquid level as a 
function of time. 

Determination of 
Diffusivity 

The diffusivity of the gas pair 0,-CC1, is being determined by observing the steady-state 
evaporation of carbon tetrachloride into a tube containing oxygen, as shown in Fig. 18.2-1. 
The distance between the CCl, liquid level and the top of the tube is 2, - z, = 17.1 cm. The 
total pressure on the system is 755 mm Hg, and the temperature is 0°C. The vapor pressure of 
CCl, at that temperature is 33.0 mm Hg. The cross-sectional area of the diffusion tube is 0.82 
cm2. It is found that 0.0208 cm3 of CCl, evaporate in a 10-hour period after steady state has 
been attained. What is the diffusivity of the gas pair 02-CCl,? 

SOLUTION Let A stand for CCl, and B for 02. The molar flux of A is then 
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Then from Eq. 18.2-14 we get 

This method of determining gas-phase diffusivities suffers from several defects: the cooling 
of the liquid by evaporation, the concentration of nonvolatile impurities at the interface, the 
climbing of the liquid up the walls of the tube, and the curvature of the meniscus. 

(a) Derive expressions for diffusion through a spherical shell that are analogous to Eq. 18.2-11 
(concentration profile) and Eq. 18.2-14 (molar flux). The system under consideration is shown 

Diffusion through a in pin. 18.2-4. 
Nonisothermal 
Spherical Film 

SOLUTION 

- 
(b) Extend these results to describe the diffusion in a nonisothermal film in which the tem- 
perature varies radially according to 

where TI is the temperature at r = r,. Assume as a rough approximation that varies as the 
$-power of the temperature: 

in which is the diffusivity at T = TI. Problems of this kind arise in connection with dry- 
ing of droplets and diffusion through gas films near spherical catalyst pellets. 

The temperature distribution in Eq. 18.2-22 has been chosen solely for mathematical sim- 
plicity. This example is included to emphasize that, in nonisothermal systems, Eq. 18.0-1 is 
the correct starting point rather than NAz = -gAB(dcA/dz) + xA(NAz + NBz), as has been given 
in some textbooks. 

(a) A steady-state mass balance on a spherical shell leads to 

Fig. 18.2-4. Diffusion through a hypotheti- 
cal spherical stagnant gas film surrounding 
a droplet of liquid A. 
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We now substitute into this equation the expression for the molar flux NAr, with NB, set equal 
to zero, since B is insoluble in liquid A.  his-gives 

For constant temperature the product c 9 A B  is constant, and Eq. 
give the concentration distribution 

From Eq. 18.2-26 we can then get 

(18.2-25) 

18.2-25 may be integrated to 

which is the molar flow of A across any spherical surface of radius r between r1 and r,. 

(b) For the nonisothermal problem, combination of Eqs. 18.2-22 and 23 gives the variation of 
diffusivity with position: 

When this expression is inserted into Eq. 18.2-25 and c is set equal to p/RT, we get 

After integrating between Y, and r,, we obtain (for n # -2) 

For n = 0, this result simplifies to that in Eq. 18.2-27. 

518.3 DIFFUSION WITH A HETEROGENEOUS 
CHEMICAL REACTION 

Let us now consider a simple model for a catalytic reactor, such as that shown in Fig. 
18.3-la, in which a reaction 2A + B is being carried out. An example of a reaction of this 
type would be the solid-catalyzed dimerization of CH,CH = CH,. 

We imagine that each catalyst particle is surrounded by a stagnant gas film 
through which A has to diffuse to reach the catalyst surface, as shown in Fig. 18.3-lb 
At the catalyst surface we assume that the reaction 2A + B occurs instantaneously, 
and that the product B then diffuses back out through the gas film to the main turbu- 
lent stream composed of A and B. We want to get an expression for the local rate of 
conversion from A to B when the effective gas-film thickness and the main stream 
concentrations x,,, and x,, are known. We assume that the gas film is isothermal, al- 
though in many catalytic reactions the heat generated by the reaction cannot be 
neglected. 

For the situation depicted in Fig. 18.3-lb, there is one mole of B moving in the minus 
z direction for every two moles of A moving in the plus z direction. We know this from 
the stoichiometry of the reaction. Therefore we know that at steady state 
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Gas A - Gases 
A and B 
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\ Spheres with coating 1 
of catalytic material I 

(a) I = L  

Edge of hypothetical 
/ stagnant gas film 

Fig. 18.3-1. (a) Schematic 
diagram of a catalytic 
reactor in which A is 
being converted to B. 
(b) Idealized picture 
(or "rn~clel'~) of the dif- 
fusion problem near the 
surface of a catalyst 
particle. 

at any value of z. This relation may be substituted into Eq. 18.0-1, which may then be 
solved for NAZ to give 

Hence, Eq. 18.0-1 plus the stoichiometry of the reaction have led to an expression for Nh 
in terms of the concentration gradient. 

We now make a mass balance on species A over a thin slab of thickness Az in the gas 
film. This procedure is exactly the same as that used in connection with Eqs. 18.2-2 and 3 
and leads once again to the equation 

Insertion of the expression for NAt, developed above, into this equation gives (for con- 
stant %,,) 

Integration twice with respect to z gives 

It is somewhat easier to find the integration constants K,  and K,  than C1 and C2. The 
boundary conditions are 

B.C. 1: 

B.C. 2: 

The final result is then 



s18.3 Diffusion with a Heterogeneous Chemical Reaction 553 

for the concentration profile in the gas film. Equation 18.3-2 may now be used to get the 
molar flux of reactant through the film: 

The quantity N, may also be interpreted as the local rate of reaction per unit area of cat- 
alytic surface. This information can be combined with other information about the cat- 
alytic reactor sketched in Fig. 18.3-l(a) to get the overall conversion rate in the entire 
reactor. 

One point deserves to be emphasized. Although the chemical reaction occurs instan- 
taneously at the catalytic surface, the conversion of A to B proceeds at a finite rate be- 
cause of the diffusion process, which is "in series" with the reaction process. Hence we 
speak of the conversion of A to B as being difision controlled. 

In the example above we have assumed that the reaction occurs instantaneously at 
the catalytic surface. In the next example we show how to account for finite reaction ki- 
netics at the catalytic surface. 

Rework the problem just considered when the reaction 2A -+ B is not instantaneous at the cat- 
alytic surface at z = 6. Instead, assume that the rate at which A disappears at the catalyst- 

with a coated surface is proportional to the concentration of A in the fluid at the interface, 
Heterogeneous 
Reaction NAz = k;cA = k;cxA (18.3-10) 

in which k; is a rate constant for the pseudo-first-order surface reaction. 

SOLUTION We proceed exactly as before, except that B.C. 2 in Eq. 18.3-7 must be replaced by 

B.C. 2': 

NA, being, of course, a constant at steady state. The determination of the integration constants 
from B.C. 1 and B.C. 2' leads to 

From this we evaluate (dxA/dz)l,=, and substitute it into Eq. 18.3-2, to get 

This is a transcendental equation for NAz as a function of xA,, k;, &IAB, and 6. When k; is large, 
the logarithm of 1 - :(~,,/k:c) may be expanded in a Taylor series and all terms discarded 
but the first. We then get 

N A ~  = 2c9~d6 in( ) (k, large) (18.3-14) 
1 + 9,,/k; '~ 1 - PA, 

Note once again that we have obtained the rate of the combined reaction and diffusion process. 
Note also that the dimensionless group 9A,/k;6 describes the effect of the surface reaction ki- 
netics on the overall diffusion-reaction process. The reciprocal of this group is known as the 
second Damkohler number' Da" = k;6/gA,. Evidently we get the result in Eq. 18.3-9 in the limit 
as Dan -+ w. 

' G. Damhohler, Z. Elektrochem., 42,846-862 (1936). 
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Gas A 

Fig. 18.4-1. Absorption of A by B with a 
homogeneous reaction in the liquid phase. 

518.4 DIFFUSION WITH A HOMOGENEOUS 
CHEMICAL REACTION 

As the next illustration of setting up a mass balance, we consider the system shown in 
Fig. 18.4-1. Here gas A dissolves in liquid B in a beaker and diffuses isothermally into the 
liquid phase. As it diffuses, A also undergoes an irreversible first-order homogeneous re- 
action: A + B + AB. An example of such a system is the absorption of CO, by a concen- 
trated aqueous solution of NaOH. 

We treat this as a binary solution of A and B, ignoring the small amount of AB that is 
present (the pseudobinay assumption). Then the mass balance on species A over a thick- 
ness Az of the liquid phase becomes 

in which kq' is a first-order rate constant for the chemical decomposition of A, and S is the 
cross-sectional area of the liquid. The product kq'cA represents the moles of A consumed 
by the reaction per unit volume per unit time. Division of Eq. 18.4-1 by SAz and taking 
the limit as Az -+ 0 gives 

If the concentration of A is small, then we may to a good approximation write Eq. 18.0-1 as 

since the total molar concentration c is virtually uniform throughout the liquid. Combin- 
ing the last two equations gives 

This is to be solved with the following boundary conditions: 

B.C. I: 
B.C. 2: 

at z = 0, C~ = C ~ O  

at z = L, NA, = 0 (or dcn/dz = 0) 

The first boundary condition asserts that the concentration of A at the surface in the liq- 
uid remains at a fixed value c,,. The second states that no A diffuses through the bottom 
of the container at z = L. 

If Eq. 18.4-4 is multiplied by then it can be written in dimensionless vari- 
ables in the form of Eq. C.l-4 
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where r = cA/cAO is a dimensionless concentration, 5 = z/L is a dimensionless length, 
and 4 = d k;"L2/91AB is a dimensionless group, known as the Thiele modulus.' This group 
represents the relative influence of the chemical reaction kycAO and diffusion c ~ ~ ~ ~ ~ / L ~ .  
Equation 18.4-7 is to be solved with the dimensionless boundary conditions that at 5 = 0, 
r = 1, and at 5 = 1, dr/dc = 0. The general solution is 

I' = C, cosh $5 + C, sinh +c (18.4-8) 

When the constants of integration are evaluated, we get 

cosh 4 cosh $5 - sinh 4 sinh 45 cosh[+(l - 5)1 r = - - (18.4-9) 
cosh $ cosh 4 

Then reverting to the original notation 

The concentration profile thus obtained is plotted in Fig. 18.4-1. 
Once we have the complete concentration profile, we may evaluate other quantities, 

such as the average concentration in the liquid phase 

Also, the molar flux at the plane z = 0 can be found to be 

This result shows how the chemical reaction influences the rate of absorption of gas A by 
liquid B. 

The reader may wonder how the solubility cAo and the diffusivity QAB can be de- 
termined experimentally if there is a chemical reaction taking place. First, k r  can 
be measured in a separate experiment in a well-stirred vessel. Then, in principle, cAO 
and 9 A R  can be obtained from the measured absorption rates for various liquid 
depths L. 

Estimate the effect of chemical reaction rate on the rate of gas absorption in an agitated tank 
(see Fig. 18.4-2). Consider a system in which the dissolved gas A undergoes an irreversible 

Gas with first order reaction with the liquid B; that is, A disappears within the liquid phase at a rate 
Chemical Reaction in proportional to the local concentration of A. An example of such a system is the absorption of 
an Agitated Tank2 SO, or H2S in aqueous NaOH solutions. 

E. W. Thiele, Ind. Eng. Chem., 31,916-920 (1939). Ernest William Thiele (pronounced "tee-lee") 
(1895-1993) is noted for his work on catalyst effectiveness factors and his part in the development of the 
"McCabe-Thiele" diagram. After 35 years with Standard Oil of Indiana, he taught for a decade at Notre 
Dame University. 

E. N. Lightfoot, AIChE Journal, 4,499-500 (1958), 8,710-712 (1962). 
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SOLUTION 

Surface area 
of all the 

bubbles is S 

0 0 

Laminar Flow 

Fig. 18.4-2. Gas-absorption apparatus. 

An exact analysis of this situation is not possible because of the complexity of the gas-absorp- 
tion process. However, a useful semiquantitative understanding can be obtained by the 
analysis of a relatively simple model. The model we use involves the following assumptions: 

Each gas bubble is surrounded by a stagnant liquid film of thickness 6 ,  which is small 
relative to the bubble diameter. 

A quasi-steady concentration profile is quickly established in the liquid film after the 
bubble is formed. 

The gas A is only sparingly soluble in the liquid, so that we can neglect the convection 
term in Eq. 18.0-1. 

The liquid outside the stagnant film is at a concentration CA& which changes so slowly 
with respect to time that it can be considered constant. 

The differential equation describing the diffusion with chemical reaction is the same as 
that in Eq. 18.4-4, but the boundary conditions are now 

B.C. 1: 

B.C. 2: 

The concentration cA, is the interfacial concentration of A in the liquid phase, which is as- 
sumed to be at equilibrium with the gas phase at the interface, and cA, is the concentration of 
A in the main body of the liquid. The solution of Eq. 18.4-4 with these boundary conditions is 

c, - sinh 4 cosh +[ + ( B  - cosh 4 sinh 4[) -- 
CAO sinh 4 (18.4-15) 

in which = z / S ,  B = cA8/cA0, and 4 = k',"6'/aAB. This result is plotted in Fig. 18.4-3. 

Gas in 
bubble 

Liquid-gas - 
interface 

Main body 
of liquid 

C~~ 

Fig. 18.4-3. Predicted concentration profile in the 
liquid film near a bubble. 
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Fig. 18.4-4. Gas absorption 
accompanied by an irreversible 
first-order reaction. 

Next we use assumption (d) above and equate the amount of A entering the main body 
of liquid at z = S over the total bubble surface S in the tank to the amount of A consumed in 
the bulk of the liquid by chemical reaction: 

Substitution of cA from Eq. 18.4-15 into Eq. 18.4-16 gives an expression for B: 

B = 
1 

cash 4 + (V/SS)Q, sinh + 
When this result is substituted into Eq. 18.4-15, we obtain an expression for cA/cAO in terms of 
Q, and V/SS. 

From this expression for the concentration profile we can then get the total rate of ab- 
sorption with chemical reaction from NA, = -91AB(dcA/dz) evaluated at z = 0, thus: 

3= N~zlz=o~ - + cosh + - 1 
cA091AB - - sinh Q, ( cosh + (V/SS)4 sinh + ) (18.4-18) 

The result is plotted in Fig. 18.4-4. 
It is seen here that the dimensionless absorption rate per unit area of interface, I?, in- 

creases with + for all finite values of V/SS. At very low values of +-that is, for very slow re- 
actions-I? approaches zero. For this limiting situation the liquid is nearly saturated with 
dissolved gas, and the "driving force" for absorption is very small. At large values of 4 the di- 
mensionless surface mass flux N increases rapidly with 4 and becomes very nearly indepen- 
dent of V/SS. Under the latter circumstances, the reaction is so rapid that almost all of the 
dissolving gas is consumed within the film. Then B is very nearly zero, and the bulk of the liq- 
uid plays no significant role. In the limit as 4 becomes very large, I? approaches +. 

Somewhat more interesting behavior is observed for intermediate values of +. It may be 
noted that, for moderately large V/SS, there is a considerable range of + for which fi is very 
nearly unity. In this region the chemical reaction is fast enough to keep the bulk of the solu- 
tion almost solute free, but slow enough to have little effect on solute transport in the film. 
Such a situation will arise when the ratio V / S S  of bulk to film volume is sufficient to offset the 
higher volumetric reaction rate in the film. The absorption rate is then equal to the physical 
absorption rate (that is, the rate for k'," = 0) for a solute-free tank. This behavior is frequently 
observed in practice, and operation under such conditions has proven a useful means of char- 
acterizing the mass transfer behavior of a variety of gas absorbers.' 



558 Chapter 18 Concentration Distributions in Solids and in Laminar Flow 

Fig. 18.5-1. Absorption of A into a falling film of 
liquid B. 

518.5 DIFFUSION INTO A FALLING LIQUID 
FILM (GAS ABSORPTION)' 

In this section we present an illustration of forced-convection mass transfer, in which vis- 
cous flow and diffusion occur under such conditions that the velocity field can be con- 
sidered virtually unaffected by the diffusion. Specifically, we consider the absorption of 
gas A by a laminar falling film of liquid B. The material A is only slightly soluble in B, so 
that the viscosity of the liquid is unaffected. We shall make the further restriction that 
the diffusion takes place so slowly in the liquid film that A will not "penetrate" very far 
into the film-that is, that the penetration distance will be small in comparison with the 
film thickness. The system is sketched in Fig. 18.5-1. An example of this kind of system 
occurs in the absorption of 0, in H,O. 

Let us now set up the differential equations describing the diffusion process. First, 
we have to solve the momentum transfer problem to obtain the velocity profile vz(x) for 
the film; this has already been worked out in 52.2 in the absence of mass transfer at the 
fluid surface, and we know that the result is 

provided that "end effects" are ignored. 
Next we have to establish a mass balance on component A. We note that cA will be 

changing with both x and z. Hence, as the element of volume for the mass balance, we 
select the volume formed by the intersection of a slab of thickness Az with a slab of thick- 
ness Ax. Then the mass balance on A over this segment of a film of width W becomes 

Dividing by W Ax Az and performing the usual limiting process as the volume element 
becomes infinitesimally small, we get 

S. Lynn, J. R. Straatemeier, and H. Kramers, Chem. Engr. Sci., 4,4947 (1955). 
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Into this equation we now insert the expression for NA, and NA,, making appropriate 
simplifications of Eq. 18.0-1. For the molar flux in the z direction, we write, assuming 
constant c, 

We discard the dashed-underlined term, since the transport of A in the z direction will 
be primarily by convection. We have made use of Eq. (M) in Table 17.8-1 and the fact 
that v is almost the same as vW in dilute solutions. The molar flux in the x direction is 

~ C A  ~ C A  
NAx = - + xA(NAx + NBx) -QAB -- (18.5-5) 

dx -----------..----- dx 
Here we neglect the dashed-underlined term because in the x direction A moves pre- 
dominantly by diffusion, there being almost no convective transport normal to the wall 
on account of the very slight solubility of A in B. Combining the last three equations, we 
then get for constant 9,, 

Finally, insertion of Eq. 18.5-1 for the velocity distribution gives 

as the differential equation for cA(x, z). 
Equation 18.5-7 is to be solved with the following boundary conditions: 

B.C. 1: atz=O, cA=O (18.5-8) 

B.C. 2: at x = 0, c, = c,, (18.5-9) 

B.C. 3: ~ C A  a t x = 6 ,  - = O  dx (18.5-10) 

The first boundary condition corresponds to the fact that the film consists of pure B at the 
top (Z = O), and the second indicates that at the liquid-gas interface the concentration of A 
is determined by the solubility of A in B (that is, cAo). The third boundary condition states 
that A cannot diffuse through the solid wall. This problem has been solved analytically in 
the form of an infinite series? but we do not give that solution here. Instead, we seek only 
a limiting expression valid for "short contact times," that is, for small values of L/vm,,. 

If, as indicated in Fig. 18.5-1, the substance A has penetrated only a short distance 
into the film, then the species A "has the impression" that the film is moving throughout 
with a velocity equal to v,,,. Furthermore if A does not penetrate very far, it does not 
"sense" the presence of the solid wall at x = 6. Hence, if the film were of infinite thick- 
ness moving with the velocity v,,,, the diffusing material "would not know the differ- 
ence." This physical argument suggests (correctly) that we will get a very good result if 
we replace Eq. 18.5-7 and its boundary conditions by 

B.C. 1: 

B.C. 2: 
B.C. 3: 

R. L. Pigford, PhD thesis, University of Illinois (1941). 
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An exactly analogous problem occurred in Example 4.1-1, which was solved by the 
method of combination of variables. It is therefore possible to take over the solution to 
that problem just by changing the notation. The solution is" 

Then the total molar flow of A across the surface at x = 0 (i.e., being absorbed by a liquid 
film of length L and width W) is 

C A X X 
- = 1 - erf = erfc c~~ d49ABz/vrnax v4%ABz/vmax 

The same result is obtained by integrating the product vm,,cA over the flow cross section 
at z = L (see Problem 18C.3). 

Equation 18.5-18 shows that the mass transfer rate is directly proportional to the 
square root of the diffusivity and inversely proportional to the square root of the "expo- 
sure time," texP = L/vrnax. This approach for studying gas absorption was apparently first 
proposed by Higbie.5 

The problem discussed in this section illustrates the "penetration model" of mass 
transfer. This model is discussed further in Chapters 20 and 22. 

(18.5-16) 

Estimate the rate at which gas bubbles of A are absorbed by liquid B as the gas bubbles rise at 
their terminal velocity v, through a clean quiescent liquid. 

Gas Absorption from 
Rising Bubbles 

In these expressions "erf x" and "erfc x" are the "error function" and the "complemen- 
tary error function" of x, respectively. They are discussed in gC.6 and tabulated in stan- 
dard reference works4 

Once the concentration profiles are known, the local mass flux at the gas-liquid in- 
terface may be found as follows: 

The solution is worked out in detail by the method of combination of variables in Example 4.1-1. 
M. Abramowitz and I. A. Stegun, Handbook ofMathematica1 Functions, Dover, New York, 9th printing 

(1973), pp. 310 et seq. 
R. Higbie, Trans. AIChE, 31,365-389 (1935). Ralph Wilmarth Higbie (190&1941), a graduate of the 

University of Michigan, provided the basis for the "penetration model" of mass transfer. He worked at 
E. I. du Pont de Nemours & Co., Inc., and also at Eagle-Picher Lead Co.; then he taught at the University 
of Arkansas and the University of North Dakota. 
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SOLUTION 

Liquid B Fig. 18.5-2. Absorption of gas A into liquid B. 
3 

Gas bubbles of moderate size, rising in liquids free of surface-active agents, undergo a 
toroidal circulation (Rybczynski-Hadamard circulation) as shown in Fig. 18.5-2. The liquid 
moves downward relative to each rising bubble, enriched in species A near the interface in 
the manner of the falling film in Fig. 18.5-1. The depth of penetration of the dissolved gas into 
the liquid is slight over the major part of the bubble, because of the motion of the liquid rela- 
tive to the bubble and because of the smallness of the liquid-phase diffusivity 9AB. Thus, as a 
rough approximation, we can use Eq. 18.5-18 to estimate the rate of gas absorption, replacing 
the exposure time t,,, = L/v,,, for the falling film by D / v ,  for the bubble, where D is the in- 
stantaneous bubble diameter. This gives an estimate5 of the molar absorption rate, averaged 
over the bubble surface, as 

I 

Here cAO is the solubility of gas A in liquid B at the interfacial temperature and partial pres- 
sure of gas A. Interestingly, the result in Eq. 18.5-19 turns out to be correct for potential flow 
of the liquid around the bubble (see Problem 4B.5). This equation has been approximately 
confirmed6 for gas bubbles 0.3 to 0.5 cm in diameter rising through carefully purified water. 

This system has also been analyzed for creeping flow7 and the result is (see Example 
20.3-1) 

instead of Eq. 18.5-19. 
Trace amounts of surface-active agents cause a marked decrease in absorption rates from 

small bubbles, by forming a "skin" around each bubble and thus effectively preventing inter- 
nal circulation. The molar absorption rate in the small-diffusivity limit then becomes propor- 
tional to the $ power of the diffusivity, as for a solid sphere (see $3522.2 and 3). 

A similar approach has been used successfully for predicting mass transfer rates during 
drop formation at a capillary tip.8 

D. Hammerton and F. H. Garner, Trans. Inst. Chem. Engrs. (London), 32, S18-524 (1954). 
V .  G .  Levich, Pkysicockemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J. (1962), p. 408, 

E q .  72.9. This reference gives many additional results, including liquid-liquid mass transfer and 
surfactant effects. 

H. Groothuis and H. Kramers, Chem. Eng. Sci., 4,17-25 (1955). 
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Fig. 18.6-1. Solid A dissolving into a falling film 
of liquid B, moving with a fully developed para- 

Near wall Parabolic bolic velocity profile. 
velocity 

profile of 
fluid B 

Slightly soluble 
wall made of A 

L 
I 

C A ~  = saturation 
concentration 

918.6 DIFFUSION INTO A FALLING LIQUID FILM 
(SOLID DISSOLUTION)1 

We now turn to a falling film problem that is different from the one discussed in the pre- 
vious section. Liquid B is flowing in laminar motion down a vertical wall as shown in 
Fig. 18.6-1. The film begins far enough up the wall so that v, depends only on y for z 0. 
For 0 < z < L the wall is made of a species A that is slightly soluble in B. 

For short distances downstream, species A will not diffuse very far into the falling 
film. That is, A will be present only in a very thin boundary layer near the solid surface. 
Therefore the diffusing A molecules will experience a velocity distribution that is charac- 
teristic of the falling film right next to the wall, y = 0. The velocity distribution is given 
in Eq. 2.2-18. In the present situation cos 8 = 1, and x = 6 - y, and 

At and adjacent to the wall ( ~ / 6 ) ~  << (y/6), so that for this problem the velocity is, to a 
very good approximation, v, = (pg6/p)y = ay. This means that Eq. 18.5-6, which is ap- 
plicable here, becomes for short distances downstream 

~ C A  d2cA ay- = 9,,- 
a2 ay2 

where a = pg6/p. This equation is to be solved with the boundary conditions 

B.C. 1: 

B.C. 2: 
B.C. 3: 

In the second boundary condition, c,, is the solubility of A in B. The third boundary con- 
dition is used instead of the correct one (dc,/dy = 0 at y = 6), since for short contact 
times we feel intuitively that it will not make any difference. After all, since the mole- 

H. Kramers and P. J. Kreyger, Chem. Eng. Sci., 6 ,4248  (1956); see also R. L. Pigford, Chem. Eng. 
Puog. Symposium Series No. 17, Vol. 51, pp. 79-92 (1955) for the analogous heat-conduction problem. 
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cules of A penetrate only slightly into the film, they cannot get far enough to "see" the 
outer boundary of the film, and hence they cannot distinguish between the true bound- 
ary condition and the approximate boundary condition that we use. The same kind of 
reasoning was encountered in Example 12.2-2 and Problem 12B.4. 

The form of the boundary conditions in Eqs. 18.6-3 to 5 suggests the method of com- 
bination of variables. Therefore we try cA/cAO = f($, where 7 = ~ ( a / 9 9 ~ , z ) ' / ~ .  This com- 
bination of the independent variables can be shown to be dimensionless, and the factor 
of "9" is included to make the solution look neater. 

When this change of variable is made, the partial differential equation in Eq. 18.6-2 
reduces to an ordinary differential equation 

with the boundary conditions f(0) = 1 and f (w )  = 0. 
This second-order equation, which is of the form of Eq. C.1-9, has the solution 

The constants of integration can then be evaluated using the boundary conditions, and 
one obtains finally 

I I 

for the concentration profiles, in which ~ ( 2 )  = 0.8930 . . . is the gamma function of $. Next 
the local mass flux at the wall can be obtained as follows 

Then the molar flow of A across the entire mass transfer surface at y = 0 is 

where I?($) = 4 r($) = 1.1907. . . . 
The problem discussed in 518.5 and the one discussed here are examples of two types 

of asymptotic solutions that are discussed further in 920.2 and 520.3 and again in Chapter 
22. It is therefore important that these two problems be thoroughly understood. Note that 
in s18.5, wA K ( Q A B ~ ) 1 / 2 ,  whereas in this section wA cc (%AB~)2 '3 .  The differences in the ex- 
ponents reflect the nature of the velocity gradient at the mass transfer interface: in 518.5, 
the velocity gradient was zero, whereas in this section, the velocity gradient is nonzero. 

518.7 DIFFUSION AND CHEMICAL REACTION 
INSIDE A POROUS CATALYST 

Up to this point we have discussed diffusion in gases and liquids in systems of simple 
geometry. We now wish to apply the shell mass balance method and Fick's first law to 
describe diffusion within a porous catalyst pellet. We make no attempt to describe the 
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I Concentration at  

concentrations 
CAR and CB K 

CAR 

lyst 

Fig. 18.7-1. A spherical catalyst that 
is porous. For a magnified version 
of the inset, see Fig. 18.7-2. 

r \ Solid 

Fig. 18.7-2. Pores in the catalyst, in 
which diffusion and chemical reac- 
tion occur. 

diffusion inside the tortuous void passages in the pellet. Instead, we describe the "aver- 
a g e d  diffusion of the reactant in terms of an "effective diff~sivity."',~,~ 

Specifically, we consider a spherical porous catalyst particle of radius R, as shown in 
Fig. 18.7-1. This particle is in a catalytic reactor, where it is submerged in a gas stream 
containing the reactant A and the product B. In the neighborhood of the surface of the 
particular catalyst particle under consideration, we presume that the concentration is cA, 
moles of A per unit volume. Species A diffuses through the tortuous passages in the cata- 
lyst and is converted to B on the catalytic surfaces, as sketched in Fig. 18.7-2. 

We start by making a mass balance for species A on a spherical shell of thickness Ar 
within a single catalyst particle: 

Here NAr(, is the number of moles of A passing in the r direction through an imaginary 
spherical surface at a distance r from the center of the sphere. The source term X ,  . 
4m2Ar  is the molar rate of production of A by chemical reaction in the shell of thickness 
Ar. Dividing by 437 Ar and letting Ar -+ 0 gives 

or, using the definition of the first derivative, 

This limiting process is clearly in conflict with the fact that the porous medium is granu- 
lar rather than continuous. Consequently, in Eq. 18.7-3 the symbols NAu and RA cannot be 
interpreted as quantities having a meaningful value at a point. Rather we have to inter- 
pret them as quantities averaged over a small neighborhood of the point in question-a 
neighborhood small with respect to the dimension R, but large with respect to the di- 
mensions of the passages within the porous particle. 

' E. W. Thiele, Ind. Eng. Chem., 31,916-920 (1939). 
' R. Aris, Chem. Eng. Sci., 6,265-268 (1957). 

A. Wheeler, Advances in Catalysis, Academic Press, New York (1950), Vol. 3, pp. 250-326. 
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We now define an "effective diffusivity" for species A in the porous medium by 

in which cA is the concentration of the gas A contained within the pores. The effective 
diffusivity 9, must be measured experimentally. It depends generally on pressure and 
temperature and also on the catalyst pore structure. The actual mechanism for diffusion 
in pores is complex, since the pore dimensions may be smaller than the mean free path 
of the diffusing molecules. We do not belabor the question of mechanism here but as- 
sume only that Eq. 18.7-4 can adequately represent the diffusion process (see 524.6). 

When the preceding expression is inserted into Eq. 18.7-3, we get, for constant 
diffusivity 

We now consider the situation where species A disappears according to a first-order 
chemical reaction on the catalytic surfaces that form all or part of the "walls" of the 
winding passages. Let a be the available catalytic surface per unit volume (of solids + 
voids). Then RA = -k','acA, and Eq. 18.7-5 becomes (see Eq. C.l-6) 

This equation is to be solved with the boundary conditions that cA = cA, at r = R, and 
that cA is finite at r = 0. 

Equations containing the operator (1/r2)(d/dr)[r2(d/dr)l can frequently be solved by 
using a "standard trick-namely, a change of variable cA/cA, = (1 /r)f(r). The equation 
for f(r) is then 

This is a standard second-order differential equation, which can be solved in terms of ex- 
ponential~ or hyperbolic functions. When it is solved and the result divided by r we get 
the following solution of Eq. 18.7-6 in terms of hyperbolic functions (see 5C.5): 

Application of the boundary conditions gives finally 

In studies on chemical kinetics and catalysis one is frequently interested in the molar 
flux NAX or the molar flow WAR at the surface r = R: 

When Eq. 18.7-9 is used in this expression, we get 

This result gives the rate of conversion (in moles/sec) of A to B in a single catalyst particle 
of radius R in terms of the parameters describing the diffusion and reaction processes. 
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If the catalytically active surface were all exposed to the stream of concentration c,,, 
then the species A would not have to diffuse through the pores to a reaction site. The 
molar rate of conversion would then be given by the product of the available surface and 
the surface reaction rate: 

WAR,, = ( $ d 3 ) ( a ) (  -k;cAR> (18.7-12) 

Taking the ratio of the last two equations, we get 

TIA=-=-(4 W ~ R  coth 4 - 1) 
w ~ ~ , ~  42 

in which 4 = -R is the Thiele modulus,l encountered in s18.4. The quantity 7, is 
called the efectiveness factor.'-4 It is the quantity by which WAR,, has to be multiplied to ac- 
count for the intraparticle diffusional resistance to the overall conversion process. 

For nonspherical catalyst particles, the foregoing results may be applied approxi- 
mately by reinterpreting R. We note that for a sphere of radius R the ratio of volume to 
external surface is R/3.  For nonspherical particles, we redefine R in Eq. 18.7-13 as 

where Vp and S, are the volume and external surface of a single catalyst particle. The ab- 
solute value of the conversion rate is then given approximately by 

in which the quantity A = -(V,/S,) is a generalized m o d ~ l u s . ~ , ~  
The particular utility of the quantity A may be seen in Fig. 18.7-3. It is clear that 

when the exact theoretical expressions for 17, are plotted as functions of A, the curves 

Fig. 18.7-3. Effectiveness 
factors for porous solid 
catalysts of various shapes 
[R. Aris, Chem. Eng. Sci., 6, 

%. A. Hougen and K. M. Watson, Chemical Process Principles, Wiley, New York (1947), Part 111, Chapter 
XU(. See also CPP Charts, by 0. A. Hougen, K. M. Watson, and R. A. Ragatz, Wiley, New York (1960), Fig. E. 
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have common asymptotes for large and small A and do not differ from one another very 
much for intermediate values of A. Thus Fig. 18.7-3 provides a justification for the use of 
Eq. 18.7-16 to estimate r ] ,  for nonspherical particles. 

$18.8 DIFFUSION IN A THREE-COMPONENT GAS SYSTEM 

Up to this point the systems we have discussed have been binary systems, or ones that 
could be approximated as two-component systems. To illustrate the setting up of multi- 
component diffusion problems for gases, we rework the initial evaporation problem of 
518.2 when liquid water (species 1) is evaporating into air, regarded as a binary mixture 
of nitrogen (2) and oxygen (3) at 1 atrn and 352K. We take the air-water interface to be at 
z = 0 and the top end of the diffusion tube to be at z = L. We consider the vapor pressure 
of water to be known, so that x, is known at z = 0 (that is, x,, = 341/760 = 0.449), and 
the mole fractions of all three gases are known at z = L: x,, = 0.10, x,, = 0.75, x,, = 0.15. 
The diffusion tube has a length L = 11.2 cm. 

The conservation of mass leads, as in 518.2, to the following expressions: 

From this it may be concluded that the molar fluxes of the three species are all constants 
at steady state. Since species 2 and 3 are not moving, we conclude that N2, and N3, are 
both zero. 

Next we need the expressions for the molar fluxes from Eq. 17.9-1. Since x, + x2 + 
x, = 1, we need only two of the three available equations, and we select the equations for 
species 2 and 3. Since N2, = 0 and N,, = 0, these equations simplify considerably: 

Note that the diffusivity Enz3 does not appear here, because there is no relative motion of 
species 2 and 3. These equations can be integrated from an arbitrary height z to the top of 
the tube at L, to give for constant ~ 9 , ~  

Integration then gives 

and the mole fraction profile of water vapor in the diffusion column will be 
I I 

When we apply the boundary condition at z = 0, we get 

which is a transcendental equation for N,,. 
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According to Reid, Prausnitz, and poling,' 9,, = 0.364 cm2/s and Q13 = 0.357 cm2/s 
at 352K and 1 atm. At these conditions c = 3.46 X lov5 g-moles/cm3. To get a quick solu- 
tion to Eq. 18.8-9, we take both diffusivities to be equal2 to 0.36 cm2/s. Then we get 

0.449 = 1 - 0.90 exp - 
Nlz(l 1.2) ( (3.462 X 10-~)(0.36) 

from which we find that N,, = 5.523 X g-moles/cm2 s. This can be used as a first 
guess in solving Eq. 18.8-9 more exactly, if desired. Then the entire profiles can be calcu- 
lated from Eqs. 18.8-6 to 8. 

QUESTIONS FOR DISCUSSION 

1. What arguments are used in this chapter for eliminating NB from Eq. 18.0-l? 
2. Suggest ways in which the diffusivity gAB could be measured by means of the examples in 

this chapter. Summarize possible sources of error. 
3. In what limit do the concentration curves in Fig. 18.2-1 become straight lines? 
4. Distinguish between homogeneous and heterogeneous reactions. Which ones are described 

by boundary conditions and which ones manifest themselves in the differential equations? 
5. Discuss the term "diffusion-controlled reaction." 
6. What kind of "device" would you suggest in the first sentence of 518.2 for maintaining the 

level of the interface constant? 
7. Why is the left-hand term in Eq. 18.2-15 called the "evaporation rate"? 
8. Explain carefully how Eq. 18.2-19 is set up. 
9. Criticize Example 18.2-3. To what extent is it ''just a schoolbook problem"? What do you learn 

from the problem? 
10. In what sense can the quantity NAz in Eq. 18.3-9 be interpreted as a local rate of chemical reac- 

tion? 
11. How does the size of a bubble change as it moves upward in a liquid? 
12. In what connection have you encountered Eq. 18.5-11 before? 
13. What happens if you try to solve Eq. 18.7-8 by using exponentials instead of hyperbolic func- 

tions? How can we make the simpler choice ahead of time? 
14. Compare and contrast the systems discussed in §§18.5 and 6 as regards the physical prob- 

lems, the mathematical methods used to solve them, and the final expressions for the molar 
fluxes. 

PROBLEMS 18A.1 Evaporation rate. For the system shown in Fig. 18.2-1, what is the evaporation rate in g/hr of 
CC1,N02 (chloropicrin) into air at 25OC? Make the customary assumption that air is a "pure 
substance." 

Total pressure 770 mm Hg 
Diffusivity (CC13N02-air) 0.088 cm2/s 
Vapor pressure of CC1,N02 23.81 mm Hg 
Distance from Liquid level to top of tube 11.14 cm 
Density of CC1,N02 1.65 g/cm3 
Surface area of liquid exposed for evaporation 2.29 cm2 
Answer: 0.0139 g/hr 

R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th edition, 
McGraw-Hill, New York (1987), p. 591. 

The solution to ternary diffusion problems in which two of the binary diffusivities are equal was 
discussed by H. L. Toor, AlChE Journal, 3,198-207 (1957). 
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+ R  = 1.4cm Fig. 18A.4. Schematic drawing of a wetted-wall - Water film runs column. 
down the wall 

* Film thickness 6 

- Surface concentration 
assumed equal to the 

saturation concentration 

Sublimation of small iodine spheres in still air. A sphere of iodine, 1 cm in diameter, is 
placed in still air at 40°C and 747 mm Hg pressure. At this temperature the vapor pressure of 
iodine is about 1.03 mm Hg. We want to determine the diffusivity of the iodine-air system by 
measuring the sublimation rate. To help determine reasonable experimental conditions, 
(a) Estimate the diffusivity for the iodine-air system at the temperature and pressure given 
above, using the intermolecular force parameters in Table E.1. 
(b) Estimate the rate of sublimation, basing your calculations on Eq. 18.2-27. (Hint: Assume r, 
to be very large.) 

This method has been used for measuring the diffusivity, but it is open to question be- 
cause of the possible importance of free convection. 

Answer: (a) 9dIldir = 0.0888 cm2/s; (b) W12 = 1.06 X lo-* g-mole/hr 

Estimating the error in calculating the absorption rate. What is the maximum possible error 
in computing the absorption rate from Eq. 18.5-18, if the solubility of A in B is known within 
+5% and the diffusivity of A in B is known within ?15%? Assume that the geometric quanti- 
ties and the velocity are known very accurately. 

Chlorine absorption in a falling film (Fig. 18A.4). Chlorine is being absorbed from a gas in a 
small experimental wetted-wall tower as shown in the figure. The absorbing fluid is water, 
which is moving with an average velocity of 17.7 cm/s. What is the absorption rate in g- 
moles/hr, if the liquid-phase diffusivity of the chlorine-water system is 1.26 X lop5 cm2/s, 
and if the saturation concentration of chlorine in water is 0.823 g chlorine per 100 g water 
(these are the experimental values at 16OC). The dimensions of the column are given in the fig- 
ure. (Hint: Ignore the chemical reaction between chlorine and water.) 
Answer: 0.273 g-moles/hr 

Measurement of diffusivity by the point-source method (Fig. 18C.1).' We wish to design a 
flow system to utilize the results of Problem 18C.1 for the measure of B,,. The approaching 

' This is the most precise method yet developed for measurements of diffusivity at high 
temperatures. For a detailed description of the method, see R. E. Walker and A. A. Westenberg, 1. Chem. 
Phys., 29,1139-1146,1147-1153 (1958). For a summary of measured values and comparisons with the 
Chapman-Enskog theory, see R. M. Fristrom and A. A. Westenberg, Flame Structure, McGraw-Hill, New 
York (1965), Chapter XIII. 
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stream of pure B will be directed vertically upward, and the gas composition will be mea- 
sured at several points along the z-axis. 
(a) Calculate the gas-injection rate W, in g-moles/s required to produce a mole fraction x~ = 
0.01 at a point 1 cm downstream of the source, in an ideal gaseous system at 1 atm and 800°C, 
if v, = 50 cm/s and 9,, = 5 cm2/s. 
(b) What is the maximum permissible error in the radial position of the gas-sampling probe, 
if the measured composition x, is to be within 1% of the centerline value? 

18A.6. Determination of diffusivity for ether-air system. The following data on the evaporation of 
ethyl ether, with liquid density of 0.712 g/cm3, have been tabulated by ~ o s t . ~  The data are for 
a tube of 6.16 mm diameter, a total pressure of 747 mm Hg, and a temperature of 22°C. 

Decrease of the ether level 
(measured from the open 
end of the tube), in mm 

from 9 to 11 
from 14 to 16 
from 19 to 21 
from 24 to 26 
from 34 to 36 
from 44 to 46 

Time, in seconds, required 
for the indicated 
decrease of level 

590 
895 

1185 
1480 
2055 
2655 

The molecular weight of ethyl ether is 74.12, and its vapor pressure at 22°C is 480 mm Hg. It 
may be assumed that the ether concentration at the open end of the tube is zero. Jost has 
given a value of %,, for the ether-air system of 0.0786 cm2/s at 0°C and 760 mm Hg. 
(a) Use the evaporation data to find %,, at 747 mm Hg and 22"C, assuming that the arith- 
metic average gas-column lengths may be used for z, - z, in Fig. 18.2-1. Assume further that 
the ether-air mixture is ideal and that the diffusion can be regarded as binary. 
(b) Convert the result to 9,, at 760 mm Hg and P C  using Eq. 17-2-1. 

18A.7. Mass flux from a circulating bubble. 
(a) Use Eq. 18.5-20 to estimate the rate of absorption of CO, (component A) from a carbon 
dioxide bubble 0.5 cm in diameter rising through pure water (component B )  at 18°C and at a 
pressure of 1 atm. The following data3 may be used: 9,, = 1.46 X 10-%m2/s, c,, = 0.041 g- 
mole/liter, v, = 22 cm/s. 
(b) Recalculate the rate of absorption, using the experimental results of Hammerton and Gar- 
ner: who obtained a surface-averaged kc of 117 cm/hr (see Eq. 18.1-2). 
Answers: (a) 1.17 X lop6 g-mol/cm2 s; (b) 1.33 X lop6 g-mol/cm2 s. 

18B.1. Diffusion through a stagnant film-alternate derivation. In 918.2 an expression for the 
evaporation rate was obtained in Eq. 18.2-14 by differentiating the concentration profile 
found a few lines before. Show that the same results may be derived without finding the con- 
centration profile. Note that at steady state, NA, is a constant according to Eq. 18.2-3. Then Eq. 
18.2-1 can be integrated directly to get Eq. 18.2-14. 

W. Jost Difision, Academic Press, New York (19521, pp. 411413. 
G. Tammann and V. Jessen, Z. anorg. allgem. Chem., 179,125-144 (1929); F. H. Garner and 

D. Hammerton, Chem. Eng. Sci., 3,l-11 (1954). 
D. Hammerton and F. H. Garner, Trans. Inst. Chem. Engrs. (London), 32, S18-S24 (1954). 
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18B.2. Error in neglecting the convection term in evaporation. 
(a) Rework the problem in the text in s18.2 by neglecting the term xA(NA + NJ in Eq. 18.0-1. 
Show that this leads to 

This is a useful approximation if A is present only in very low concentrations. 
(b) Obtain the result in (a) from Eq. 18.2-14 by making the appropriate approximation. 
(c) What error is made in the determination of 9,, in Example 18.2-2 if the result in (a) is used? 
Answer: 0.78% 

18B.3. Effect of mass transfer rate on the concentration profiles. 
(a) Combine the result in Eq. 18.2-11 with that in Eq. 18.2-14 to get 

(b) Obtain the same result by integrating Eq. 18.2-1 directly, using the fact that NA, is constant. 
(c) Note what happens when the mass transfer rate becomes small. Expand Eq. 18B.3-1 in a 
Taylor series and keep two terms only, as is appropriate for small Nh. What happens to the 
slightly curved lines in Fig. 18.2-1 when NA, is very small? 

18B.4. Absorption with chemical reaction. 
(a) Rework the problem discussed in the text in s18.4, but take z = 0 to be the bottom of the 
beaker and z = L at the gas-liquid interface. 
(b) In solving Eq. 18.4-7, we took the solution to be of the sum of two hyperbolic functions. 
Try solving the problem by using the equally valid solution I? = C, exp(c$t) + C2 exp(-&I. 
(c) In what way do the results in Eqs. 18.4-10 and 12 simplify for very large L? For very small 
L? Interpret the results physically. 

18B.5. Absorption of chlorine by cyclohexene. Chlorine can be absorbed from C1,-air mixtures by 
olefins dissolved in CCl,. It was found5 that the reaction of C1, with cyclohexene (C6HI0) is 
second order with respect to Cl, and zero order with respect to C,H1,. Hence the rate of disap- 
pearance of C1, per unit volume is k;"ci (where A designates C12). 

Rework the problem of 518.4 where B is a C,Hl0-CC1, mixture, assuming that the diffu- 
sion can be treated as pseudobinary. Assume that the air is essentially insoluble in the 
C,Hl0-CC1, mixture. Let the liquid phase be sufficiently deep that L can be taken to be infinite. 
(a) Show that the concentration profile is given by 

(b) Obtain an expression for the rate of absorption of C1, by the liquid. 
(c) Suppose that a substance A dissolves in and reacts with substance B so that the rate of dis- 
appearance of A per unit volume is some arbitrary function of the concentration, f(cA). Show 
that the rate of absorption of A is given by 

Use this result to check the result of (b). 

G. H. Roper, Chem. Eng. Sci., 2,18-31,247-253 (1953). 
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Fig. 18B.6. Sketch of a two- 
Stopcock bulb apparatus for measuring 

? gas diffusivities. The stirrers in 
z = -L Z L O  z = L Volume V the two bulbs maintain uni- 

form concentration in the 
bulbs. 

Mole fraction of A in Entire gaseous Mole fraction of A in 
left bulb is x i  = 1 - x i  system is at right bulb is x i  ( t )  

constant p and T 

18B.6. Two-bulb experiment for measuring gas diffusivity-quasi-steady-state analysis6 (Fig. 18B.6). 
One way of measuring gas diffusivities is by means of a two-bulb experiment. The left bulb and 
the tube from z = - L to z = 0 are filled with gas A. The right bulb and the tube from z = 0 to 
z = + L  are filled with gas B. At time t = 0 the stopcock is opened, and diffusion begns; then the 
concentrations of A in the two well-stirred bulbs change. One measures x i  as a function of time, 
and from this deduces 9, , .  We wish to derive the equations describing the diffusion. 

Since the bulbs are large compared with the tube, x i  and x i  change very slowly with time. 
Hence the diffusion in the tube can be treated as a quasi-steady-state problem, with the 
boundary conditions that x, = xi  and z = -L, and that x, = xi at z = +L. 
(a) Write a molar balance on A over a segment Az of the tube (of cross-sectional area S), and 
show that NAz = C,, a constant. 
(b) Show that Eq. 18.0-1 simplifies, for this problem, to 

(c) Integrate this equation, using (a). Call the constant of integration C2. 
(d) Evaluate the constant by requiring that x, = x i  at z = + L. 
(el Next set XA = x i  (or 1 - x i )  at z = -L, and solve for Nh to get finally 

(f) Make a mass balance on substance A over the right bulb to obtain 

(g) Integrate the equation in (f) to get an expression for x,t which contains (?&A5: 

(h) Suggest a method of plotting the experimental data to evaluate 9,,. 

18B.7. Diffusion from a suspended droplet (Fig. 18.2-4). A droplet of liquid A, of radius r,, is sus- 
pended in a stream of gas B. We postulate that there is a spherical stagnant gas film of radius 
r2 surrounding the droplet. The concentration of A in the gas phase is x,, at r = r, and X A ~  at 
the outer edge of the film, r = r,. 
(a) By a shell balance, show that for steady-state diffusion r2NAr is a constant within the gas 
film, and set the constant equal to Y : N ~ ~ ~ ,  the value at the droplet surface. 
(b) Show that Eq. 18.0-1 and the result in (a) lead to the following equation for x,: 

S. P. S. Andrew, Chem. Eng. Sci., 4,269-272 (1955). 
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Fig. 18B.8. Diffusion of helium through pyrex tubing. 
The length of the tubing is L. 

(c) Integrate this equation between the limits r, and r2 to get 

What is the limit of this expression when r, -+ m? 

.8. Method for separating helium from natural gas (Fig. 18B.8). Pyrex glass is almost imperme- 
able to all gases but helium. For example, the diffusivity of He through pyrex is about 25 
times the diffusivity of Hz through pyrex, hydrogen being the closest "competitor" in the dif- 
fusion process. This fact suggests that a method for separating helium from natural gas could 
be based on the relative diffusion rates through  pyre^.^ 

Suppose a natural gas mixture is contained in a pyrex tube with dimensions shown in the 
figure. Obtain an expression for the rate at which helium will "leak" out of the tube, in terms 
the diffusivity of helium through pyrex, the interfacial concentrations of the helium in the 
pyrex, and the dimensions of the tube. 
A .  

% e - ~ ~ r e x ( c ~ e , l  - ~ ~ e , 2 )  
Answer: W,, = 2aL 

In (R2/Rl> 

18B.9. Rate of leachng (Fig. 18B.9). In studying the rate of leaching of a substance A from solid par- 
ticles by a solvent B, we may postulate that the rate-controlling step is the diffusion of A from 
the particle surface through a stagnant liquid film thickness 6 out into the main stream. The 
molar solubility of A in B is c,,, and the concentration in the main stream is c,,. 
(a) Obtain a differential equation for cA as a function of z by making a mass balance on A over 
a thin slab of thickness Az. Assume that 9AB is constant and that A is only slightly soluble in 
B. Neglect the curvature of the particle. 

Solid 
particle 

containing 
A 

Fig. 18B.9. Leaching of A by diffusion into a stagnant 
z = 0 z = 6  liquid film of B. 

Scientific American, 199,52 (1958) describes briefly the method developed by K. B. McAfee of Bell 
Telephone Laboratories. 
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(b) Show that, in the absence of chemical reaction in the liquid phase, the concentration pro- 
file is linear. 
(c) Show that the rate of leaching is given by 

18B.10 Constant-evaporating mixtures. Toluene (1) and ethanol (2) are evaporating at z = 0 in a 
vertical tube, from a binary liquid mixture of uniform composition x, through stagnant nitro- 
gen (3), with pure nitrogen at the top. The unequal diffusivities of toluene and ethanol 
through nitrogen shift the relative evaporation rates in favor of ethanol. Analyze this effect 
for an isothermal system at 60 F and 760 mm Hg total pressure, if the predicted8 diffusivities 
at 60" F are cg12 = 1.53 X BI3 = 2.98 X cg2, = 4.68 X g-moles/cm s. 
(a) Use the Maxwell-Stefan equations to obtain the steady-state vapor-phase mole fraction pro- 
files y,(z) in terms of the molar fluxes No, in this ternary system. The molar fluxes are known to 
be constants from the equations of continuity for the three species. Since nitrogen has a negligible 
solubility in the liquid at the conditions given, N,, = 0. As boundary conditions, set y1 = y2 = 0 at 
z = L, and let y, = ylo and y2 = y2, at z = 0; the latter values remain to be determined. Show that 

A suggested strategy for the calculation is as follows: (i) guess a liquid composition x,; (ii) cal- 
culate ylof y2,, and y3, using lines 2 and 3 of the table; (iii) calculate A from Eq. 18B.10-l, with 
z = 0; (iv) use the result of iii to calculate LN2,, LB, LC, and LD, and finally yl (0) for assumed 
values of LN,,; (v) interpolate the results of iv toy, (0) = y,, to obtain the correct LN,, and LN,, 
for the guessed x,. Repeat steps i-v with improved guesses for x, until N,,/(N,, + N,,) con- 
verges to x,. The final x, is the constant evaporating composition. 

(b) A constant evaporating liquid mixture is one whose composition is the same as that of the 
evaporated material, that is, for which N,,/(N1, + N,) = x,. Use the results of part (a) along 
with the equilibrium data in the table below to calculate the constant-evaporating liquid com- 
position at a total pressure of 760 mm Hg. In the table, row I gives liquid-phase compositions. 
Row I1 gives vapor-phase compositions in two-component experiments; these are expressed 
as nitrogen-free values yl/(y, + y2) for the ternary system. Row I11 gives the sum of the partial 
pressures of toluene and ethanol. 

18B.11. Diffusion with fast second-order reaction (Figs. 18.2-2 and 18B.11). A solid A is dissolving 
in a flowing liquid stream S in a steady-state, isothermal flow system. Assume in accordance 
with the film model that the surface of A is covered with a stagnant liquid film of thickness 6 
and that the liquid outside the film is well mixed (see Fig. 18.2-2). 
(a) Develop an expression for the rate of dissolution of A into the liquid if the concentration 
of A in the main liquid stream is negligible. 
(b) Develop a corresponding expression for the dissolution rate if the liquid contains a sub- 
stance B, which, at the plane z = ~ 6 ,  reacts instantaneously and irreversibly with A: A + B + 

P. (An example of such a system is the dissolution of benzoic acid in an aqueous NaOH solu- 
tion.) The main liquid stream consists primarily of B and Sf with B at a mole fraction of x,,. 

L. Monchick and E. A. Mason, J. Chem. Phys., 35,1676-1697 (1961), with S read as a,,, in Table IV; 
E. A. Mason and L. Monchick, J .  Chern. Phys., 36,2746-2757 (1962); L. S. Tee, S. Gotoh, and W. E. Stewart, 
Ind. Eng. Chern. Fundarn., 5,356-362 (1966). 

0.375 

0.277 

390 

I: x1 

11: yl /(yl + ~ 2 )  

111: pl + p2 (mm Hg) 

0.096 

0.147 

388 

0.155 

0.198 

397 

0.233 

0.242 

397 

0.274 

0.256 

395 
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z = 0 z = KS z = S  
(reaction (outer edge Fig. 18B.11. Concentration profiles for dif- 
plane) of stagnant fusion with rapid second-order reaction. 

liquid film) The concentration of product P neglected. 

(Hint: It is necessary to recognize that species A and B both diffuse toward a thin reaction 
zone as shown in Fig. 18B.11.) 

18B.12. A sectioned-cell experimentg for measuring gas-phase diffusivity (Fig. 18B.12). Liquid A is 
allowed to evaporate through a stagnant gas B at 741 mm Hg total pressure and 25°C. At that 
temperature, the vapor pressure of A is known to be 600 mm Hg. After steady state has been 

Sample ports - 
in cell section - 

Gas manifold with 
stream of pure gas B Gas manifold 

' b x 4 w -  

Liquid reservoir 

Fig. 18B.12. A sectioned-cell experiment for measuring gas diffusivities. (a) Cell configura- 
tion during the approach to steady-state. (b)  Cell configuration for gas sampling at the end of 
the experiment. 

E. J. Crosby, Experiments in Transport Phenomena, Wiley, New York (1961), Experiment 10.a. 
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attained, the cylindrical column of gas is divided into sections as shown. For a 4-section appa- 
ratus with total height 4.22 cm, the analysis of the gas samples thus obtained gives the follow- 
ing results: 

(z - 2,) in cm 
Bottom Top of Mole 

Section of section section fraction of A 

The measured evaporation rate of A at steady state is 0.0274 g-moles/hr. Ideal gas behavior 
may be assumed. 
(a) Verify the following expression for the concentration profile at steady state: 

(b) Plot the mole fraction xB in each cell versus the value of z at the midplane of the cell on 
semilogarithmic graph paper. Is a straight line obtained? What are the intercepts at z, and z,? 
Interpret these results. 
(c) Use the concentration profile of Eq. 18B.12-1 to find analytical expressions for the average 
concentrations in each section of the tube. 
(d) Find the best value of 9JA, from this experiment. 
Answer: (d) 0.155 cm2/s 

18B.13. Tarnishing of metal surfaces. In the oxidation of most metals (excluding the alkali and aIka- 
line-earth metals) the volume of oxide produced is greater than that of the metal consumed. 
This oxide thus tends to form a compact film, effectively insulating the oxygen and metal 
from each other. For the derivations that follow, it may be assumed that 
(a) For oxidation to proceed, oxygen must diffuse through the oxide film and that this diffu- 
sion follows Fick's law. 
(b) The free surface of the oxide film is saturated with oxygen from the surrounding air. 
(c) Once the film of oxide has become reasonably thick, the oxidation becomes diffusion con- 
trolled; that is, the dissolved oxygen concentration is essentially zero at the oxide-metal surface. 
(dl The rate of change of dissolved oxygen content of the film is small compared to the rate of 
reaction. That is, quasi-steady-state conditions may be assumed. 
(e) The reaction involved is ~ X O ,  + M + MO,. 
We wish to develop an expression for rate of tarnishing in terms of oxygen diffusivity 
through the oxide film, the densities of the metal and its oxide, and the stoichiometry of the 
reaction. Let c, be the solubility of oxygen in the film, cf the molar density of the film, and zf 
the thickness of the film. Show that the film thickness is 

This result, the so-called "quadratic law," gives a satisfactory empirical correlation for a num- 
ber of oxidation and other tarnishing reactions.1° Most such reactions are, however, much 
more complex than the mechanism given above.'' 

lo G. Tammann, Z. anorg. allgem. Chemie, 124,2535 (1922). 
" W. Jost, Diffusion, Academic Press, New York (1952), Chapter IX. For a discussion of the oxidation 

of silicon, see R. Ghez, A Primer of Diffusion Problems, Wiley, New York (1988), 52.3. 
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Surface z = + b Fig. 18B.14. Side view of a disk-shaped 
catalyst particle. 

Surface z = - b 

18B.14. Effectiveness factors for thin disks (Fig. 18B.14). Consider porous catalyst particles in the 
shape of thin disks, such that the surface area of the edge of the disk is small in comparison 
with that of the two circular faces. Apply the method of 518.7 to show that the steady-state 
concentration profile is 

where z and b are described in the figure. Show that the total mass transfer rate at the surfaces 
z = +bis 

1 WAI = 21rR*c,,91~h tanh hb (18B.14-2) 

in which h = m. Show that, if the disk is sliced parallel to the xy-plane into n slices, the 
total mass transfer rate becomes 

Obtain the expression for the effectiveness factor by taking the limit 

Express this result in terms of the parameter A defined in 518.6. 

18B.15. Diffusion and heterogeneous reaction in a slender cylindrical tube with a closed end (Fig. 
18B.15). A slender cylindrical pore of length L, cross-sectional area Sf and perimeter P, is in 
contact at its open end with a large body of well-mixed fluid, consisting of species A and B. 
Species A, a minor constituent of this fluid, disappears into the pore, diffuses in the z direc- 
tion and reacts on its walls. The rate of this reaction may be expressed as (n . n,)l,,,,,, = f(oA,); 
that is, at the wall the mass flux normal to the surface is some function of the mass fraction, 
W A ~ ,  of A in the fluid adjacent to the solid surface. The mass fraction w, depends on z, the dis- 
tance from the inlet. Because A is present in low concentration, the fluid temperature and density 
may be considered constant, and the diffusion flux is adequately described by jA = 

(a) Side View End View 

Fig. 18B.15. (a) Diffu- 
sion and heterogeneous 
reaction in a long, non- 
circular cylinder. (b)  Re- 
gion of thickness Az 
over which the mass 
balance is made. 



578 Chapter 18 Concentration Distributions in Solids and in Laminar Flow 

where the diffusivity may be regarded as a constant. Because the pore is long compared to its 
lateral dimension, concentration gradients in the lateral directions may be neglected. Note the 
similarity with the problem discussed in 510.7. 
(a) Show by means of a shell balance that, at steady state, 

(b) Show that the steady-state mass average velocity v, is zero for this system. 
(c) Substitute the appropriate form of Fick's law into Eq. 18.15-1, and integrate the resulting 
differential equation for the special case that f (w,,) = k','wAo. To obtain a boundary condition 
at z = L, neglect the rate of reaction on the closed end of the cylinder; why is this a reasonable 
approximation? 
(dl Develop an expression for the total rate WA of disappearance of A in the cylinder. 
(el Compare the results of parts (c) and (d) with those of s10.7 both from the standpoint of 
the mathematical development and the nature of the assumptions made. 

188.16. Effect of temperature and pressure on evaporation rate. 
(a) In 518.2 what is the effect of a change of temperature and pressure on the quantity x,,? 
(b) If the pressure is doubled, how is the evaporation rate in Eq. 18.2-14 affected? 
(c) How does the evaporation rate change when the system temperature is raised from T to T'? 

18B.17. Reaction rates in large and small particles. 
(a) Obtain the following limits for Eq. 18.7-11: 

Interpret these results physically. 
(b) Obtain the corresponding asymptotes for the system discussed in Problem 18B.14. Com- 
pare them with the results in (a). 

18B.18. Evaporation rate for small mole fraction of the volatile liquid. In Eq. 18.2-15, expand 

in a Taylor series appropriate for small mole fractions of A. First rewrite the logarithm of the 
quotient as the difference of the logarithms. Then expand ln(1 - x,,) and ln(1 - xA2) in Taylor 
series about XAl = 1 and XA2 = 1, respectively. Verify that Eq. 18.2-16 is correct. 

18B.19. Oxygen uptake by a bacterial aggregate. Under suitable circumstances the rate of oxygen 
metabolism by bacterial cells is very nearly zero order with respect to oxygen concentration. 
We examine such a case here and focus our attention on a spherical aggregate of cells, which 
has a radius R. We wish to determine the total rate of oxygen uptake by the aggregate as a 
function of aggregate size, oxygen mass concentration po at the aggregate surface, the meta- 
bolic activity of the cells, and the diffusional behavior of the oxygen. For simplicity we con- 
sider the aggregate to be homogeneous. We then approximate the metabolic rate by an 
effective volumetric reaction rate rO2 = -k! and the diffusional behavior by Fick's law, with 
an effective pseudobinary diffusivity BO2,. Because the solubility of oxygen is very low in this 
system, both convective oxygen transport and transient effects may be neglected.12 

l2 J. A. Mueller, W. C. Boyle, and E. N. Lightfoot, Biotechnol. and Bioengr., 10,331-358 (1968). 
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(a) Show by means of a shell mass balance that the quasi-steady-state oxygen concentration 
profile is described by the differential equation 

where ,y = po2/po, 5 = v/R, and N = 

(b) There may be an oxygen-free core in the aggregate, if N is sufficiently large, such that x = 0 
for 6 < to. Write sufficient boundary conditions to integrate Eq. 18B.19-1 for this situation. To 
do this, it must be recognized that both x and d x / d &  are zero at 6 = 6,. What is the physical 
significance of this last statement? 
(c) Perform the integration of Eq. 18B.19-1 and show how 6, may be determined. 
(d) Sketch the total oxygen uptake rate and 6, as functions of N, and discuss the possibility 
that no oxygen-free core exists. 

N Answer: (c) ,y = 1 - - (1 - p) + for 6 z 6, 2 0, where 6, is determined as a func- 
tion of N from 6 

18C.1. Diffusion from a point source in a moving stream (Fig. 18C.1). A stream of fluid B in lami- 
nar motion has a uniform velocity v,. At some point in the stream (taken to be the origin of 
coordinates) species A is injected at a small rate WA g-moles/s. This rate is assumed to be suf- 
ficiently small that the mass average velocity will not deviate appreciably from v,. Species A 
is swept downstream (in the z direction), and at the same time it diffuses both axially and 
radially. 
(a) Show that a steady-state mass balance on species A over the indicated ring-shaped ele- 
ment leads to the following partial differential equation if '?JAB is assumed to be constant: 

(b) Show that Eq. 18C.1-1 can also be written as 

in which s2 = v2 + z2. 

Uniform 
stream 
velocity 

vo 

Origin of coordinates placed at 
point of iniection; WA moles 
bf A are iijected per second 4 LAZ 

Fig. 18C.1. Diffusion of A 
from a point source into a 
stream of B that moves with 

l+ a uniform velocity. 
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(c) Verify (lengthy!) that the solution 

satisfies the differential equation above. 
(d) Show further that the following boundary conditions are also satisfied by Eq. 18C.1-3: 

B.C. 1: (18C.1-4) 

B.C. 3: at r = 0, ~ C A  - 0 -- 
dr (18C.1-6) 

Explain the physical meaning of each of these boundary conditions. 
(e)  Show how data on cA(r, z )  for given vo and %,, may be plotted, when the preceding solu- 
tion applies, to give a straight line with slope v,/29JA, and intercept In 9,,. 

18C.2. Diffusion and reaction in a partially impregnated catalyst. Consider a catalytic sphere like 
that in g18.7, except that the active ingredient of the catalyst is present only in the annular re- 
gion between r = KR and r = R: 

In region I (0 < r < KR), k" - ,a - 0 

In region I1 (KR < r < R), k;'a = constant > 0 

Such a situation may arise when the active ingredient is put on the particles after pelleting, as 
is done for many commercial catalysts. 
(a) Integrate Eq. 18.7-6 separately for the active and inactive regions. Then apply the appro- 
priate boundary conditions to evaluate the integration constants, and solve for the concentra- 
tion profile in each region. Give qualitative sketches to illustrate the forms of the profiles. 
(b) Evaluate WAR, the total molar rate of conversion of A in a single particle. 

18C.3. Absorption rate in a falling film. The result in Eq. 18.5-18 may be obtained by an alternative 
procedure. 
(a) According to an overall mass balance on the film, the total moles of A transferred per unit 
time across the gas-liquid interface must be the same as the total molar rate of flow of A 
across the plane z  = L. The latter rate is calculated as follows: 

Explain this procedure carefully. 
(b) Insert the solution for cA in Eq. 18.5-15 into the result of (a) to obtain: 

In the second line, the new variable u = X / ~ ~ % , , L / V ~ , ~  has been introduced. 
(c) Change the order of integration in the double integral, to get 

Explain by means of a carefully drawn sketch how the limits are chosen for the integrals The 
integrals may now be done analytically to get Eq. 18.5-18. 
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18C.4. Estimation of the required length of an isothermal reactor (Fig. 18.3-1). Let a be the area of 
catalyst surface per unit volume of a packed-bed catalytic reactor and S be the cross-sectional 
area of the reactor. Suppose that the rate of mass flow through the reactor is w (in lb,/hr, for 
example). 
(a) Show that a steady-state mass balance on substance A over a length dl of the reactor leads to 

(b) Use the result of (a) and Eq. 18.3-9, with the assumptions of constant 6 and %,,, to obtain 
an expression for the reactor length L needed to convert an inlet stream of composition xA(0) 
to an outlet stream of composition x,(L). 
(Hint: Equation (P) of Table 17.8-1 may be useful.) 

18C.5. Steady-state evaporation. In a study of the evaporation of a mixture of methanol (1) and ace- 
tone (2) through air (31, the concentration profiles of the three species in the tube were mea- 
suredl%fter attainment of steady state. In this situation, species 3 is not moving, and species 
1 and 2 are diffusing upward, with the molar fluxes N,, and Nz2, measured in the experi- 
ments. The interfacial concentrations of these two species, x,, and x~~~ were also measured. In 
addition, the three binary diffusion coefficients were known. The interface was located at z = 

0 and the upper end of the diffusion tube was at z = L. 
(a) Show that the Maxwell-Stefan equation for species 3 can be solved to get 

in which A = Vl13 + "223, with vmpy = N , L / c ~ ~ ,  and l = z/L. 
(b) Next verify that the equation for species 2 can be solved to get 

"212 Cx30 x2 = x2,eB[ + --- (1 - eB5) + - (eA5 - eB5) 
B A - B  

where B = vlI2 + y,, and C = yl, - "223. 

(c) Compare the above equations with the published results. 
(d) How well do Eqs. 18C.5-1 and 2 fit the experimental data? 

18D.1. Effectiveness factors for long cylinders. Derive the expression for 7 7 ~  for long cylinders anal- 
ogous to Eq. 18.7-16. Neglect the diffusion through the ends of the cylinders. 

Zl(2N 
Answer: v, = --- 

No(2N' 
where I,, and I,  are "modified Bessel functions" 

18D.2. Gas absorption in a falling film with chemical reaction. Rework the problem discussed in 
518.5 and described in Fig. 18.5-1, when gas A reacts with liquid B by a first-order irreversible 
chemical reaction in the liquid phase, with rate constant k;'. Specifically, find the expression 
for the total absorption rate analogous to that given in Eq. 18.5-18. Show that the result for ab- 
sorption with reaction properly simplifies to that for absorption without reaction. 

Answer: wA = W ~ ~ Z J , , ~  JG [(; + u) e r a  + $ in which u = k;'~/o,,,,. 
k? 

l3 H. A. Wilson, Proc. Camb. Phil. Soc., 12,406423 (1904). 
l4 R. Carty and T. Schrodt, Ind. Eng. Chem., 14,276-278 (1975). 



Chapter 19 

Equations of Change for 
Multicomponent Systems 
519.1 The equations of continuity for a multicomponent mixture 

519.2 Summary of the multicomponent equations of change 

s19.3 Summary of the multicomponent fluxes 

519.4 Use of the equations of change for mixtures 

919.5 Dimensional analysis of the equations of change for binary mixtures 

In Chapter 18, problems in diffusion were formulated by making shell mass balances 
on one or more of the diffusing species. In this chapter we start by making a mass bal- 
ance over an arbitrary differential fluid element to establish the equation of continuity 
for the various species in a multicomponent mixture. Then insertion of mass flux ex- 
pressions gives the diffusion equations in a variety of forms. These diffusion equations 
can be used to set up any of the problems in Chapter 18 and more complicated ones as 
well. 

Then we summarize all of the equations of change for mixtures: the equations of 
continuity, the equation of motion, and the equation of energy. These include the equa- 
tions of change that were given in Chapters 3 and 11. Next we summarize the flux ex- 
pressions for mixtures. All these equations are given in general form, although for 
problem solving we generally use simplified versions of them. 

The remainder of the chapter is devoted to analytical solutions and dimensional 
analyses of mass transfer systems. 

519.1 THE EQUATIONS OF CONTINUITY FOR A 
MULTICOMPONENT MIXTURE 

In this section we apply the law of conservation of mass to each species a in a mixture, 
where a = 1,2,3, . . . , N. The system we consider is a volume element Ax Ay Az fixed in 
space, through which the fluid mixture is flowing (see Fig. 3.1-1). Within this mixture, re- 
actions among the various chemical species may be occurring, and we use the symbol r, 
to indicate the rate at which species a is being produced, with dimensions of mass/vol- 
ume time. 

The various contributions to the mass balance are 

rate of increase of mass of (dp,/Jt)~x ~y AZ 

a in the volume element 

rate of addition of mass of nffrlx AY 
a across face at x 
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rate of removal of mass of n,,l,+~, 4 Az 
a across face at x + Ax 

rate of production of mass of r,Ax Ay Az 
a by chemical reactions 

The combined mass flux n,, includes both the molecular flux and the convective flux. 
There are also addition and removal terms in the y and z directions. When the entire 
mass balance is written down and divided by Ax Ay Az, one obtains, after letting the size 
of the volume element decrease to zero, 

This is the equation of continuity for species a in a multicomponent reacting mixture. It de- 
scribes the change in mass concentration of species a with time at a fixed point in space 
by the diffusion and convection of a, as well as by chemical reactions that produce or 
consume a .  The quantities n,,, n,,, n,, are the Cartesian components of the mass flux vec- 
tor n, = p,v, given in Eq. (D) of Table 17.8-1. 

Equation 19.1-5 may be rewritten in vector notation as 

Alternatively we can use Eq. (S) of Table 17.8-1 to write 
I 

rate of net rate of net rate of rate of 
increase addition addition production 
of mass of mass of of mass of of mass of 
of A per A per unit A per unit A per unit 
unit volume by volume by volume by 
volume convection diffusion reaction 

Addition of all N equations in either Eq. 19.1-6 or 7 gives 

which is the equation of continuity for the mixture. This equation is identical to the equation 
of continuity for a pure fluid given in Eq. 3.1-4. In obtaining Eq. 19.1-8 we had to use Eq. 
(J) of Table 17.8-1 and also the fact that the law of conservation of total mass gives Car, = 

0. Finally we note that Eq. 19.1-8 becomes 

for a fluid mixture of constant mass density p. 
In the preceding discussion we used mass units. However, a corresponding deriva- 

tion is also possible in molar units. The equation of continuity for species a in molar 
quantities is 

' J .  Crank, The Mathematics of Diffusion, 2nd edition, Oxford University Press (1975). 
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where R, is the molar rate of production of a! per unit volume. This equation can be 
rewritten by use of Eq. (V) of Table 17.8-1 to give 

rate of net rate of rate of rate of 
increase addition addition production 
in moles in moles of of moles of of moles of 
of A per A per unit A per unit A per unit 
unit volume by volume by volume by 
volume convection diffusion reaction 

-- - - 

When all N equations in Eq. 19.1-10 or 11 are added we get 

for the equation of continuity for the mixture. To get this we used Eq. (M) of Table 17.8-1. 
We also note that the chemical reaction term does not drop out because the number of 
moles is not necessarily conserved in a chemical reaction. Finally we note that 

for a fluid mixture of constant molar density c. 
We have thus seen that the equation of continuity for species a may be written in 

two forms, Eq. 19.1-7 and Eq. 19.1-11. Using the continuity relations in Eqs. 19.1-8 and 
19.1-12 the reader may verify that the equation of continuity for species a! can be put into 
two additional, equivalent forms: 

These two equations express exactly the same physical content, but they are written in 
two different sets of notation-the first in mass quantities and the second in molar quan- 
tities. To use these equations we have to insert the appropriate expressions for the fluxes 
and the chemical reaction terms. In this chapter we give only the results for binary sys- 
tems with constant p%,,, with constant or with zero velocity. 

Binary Systems with Constant p9lAB 

For this assumption, Eq. 19.1-14 becomes, after inserting Fick's law from Eq. (A) of Table 
17.8-2, 

with a corresponding equation for species B. This equation is appropriate for describing 
the diffusion in dilute liquid solutions at constant temperature and pressure. The left side 
can be written as pDoA/Dt .  Equation 9.1-16 without the r, term is of the same form as 
Eq. 11.2-8 or 9. This similarity is quite important, since it is the basis for the analogies 
that are frequently drawn between heat and mass transport in flowing fluids with con- 
stant physical properties. 
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Binary Systems with Constant &,, 

For this assumption, Eq. 19.1-15 becomes, after inserting Fick's law from Eq. (B) of Table 
17.8-2, 

with a corresponding equation for species B. This equation is useful for low-density gases 
at constant temperature and pressure. The left side can not be written as cDx,/Dt be- 
cause of the appearance of v" rather than v. 

Binary Systems with Zero Velocity 

If there are no chemical reactions occurring, then the chemical production terms are all 
zero. If, in addition v is zero and p constant in Eq. 19.1-16, or v" is zero and c constant in 
Eq. 19.1-17, then we get 

which is called Fick's second law of diffusion, or sometimes simply the diffusion equation. 
This equation is usually used for diffusion in solids or stationary liquids (that is, v = 0 in 
Eq. 19.1-16) and for equimolar counter-diffusion in gases (that is, v" = 0 in Eq. 19.1-17). By 
equimolar counter-diffusion we mean that the net molar flux with respect to stationary 
coordinates is zero; in other words, that for every mole of A that moves, say, in the posi- 
tive z direction, there is a mole of B that moves in the negative z direction. 

Note that Eq. 19.1-18 has the same form as the heat conduction equation in Eq. 11.2-10. 
This similarity is the basis for analogies between many heat conduction and diffusion 
problems in solids. Keep in mind that many hundreds of problems described by Fick's 
second law have been solved. Solutions are tabulated in the monographs of Crank1 and 
of Carslaw and Jaeger.' 

In Tables B-10 and 11 we give Eq. 19.1-14 (multicomponent equation of continuity in 
terms of j,) and Eq. 19.1-16 (binary diffusion equation for constant p and '?JAB) in the 
three standard coordinate systems. Other forms of the equation of continuity can be pat- 
terned after these. 

In Fig. 19.1-1 we show a system in which a liquid, B, moves slowly upward through a slightly 
soluble porous plug of A. Then A slowly disappears by a first-order reaction after it has dis- 
solved. Find the steady-state concentration profile c,(~), where z is the coordinate upward 

and Chemical Reaction3 from the plug. Assume that the velocity profile is approximately flat across the tube. Assume 
further that CAO is the solubility of unreacted A in B. Neglect temperature effects associated 
with the heat of reaction. 

SOLUTION Equation 19.1-16 is appropriate for dilute liquid solutions. Dividing this equation by the mol- 
ecular weight MA and specializing for the one-dimensional steady-state problem at hand, we 
get for constant p: 

H. S. Carslaw and J. C. Jaeger, Conducfion ofHeaf in Solids, 2nd edition, Oxford University Press (1959). 
W. Jost, Diffusion, Academic Press, New York (1952), pp. 58-59. 
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Liquid Fig. 19.1-1. Simultaneous diffusion, convection, and chemi- 
B with cal reaction. 
small 

amounts 

and C 
A + C  

order 
reaction 

Porous plug 
of A (slightly 
soluble in B) 

t 
Liquid 

B 

This is to be solved with the boundary conditions that cA = c,, at z = 0 and c~ = 0 at z = m. 

Equation 19.1-19 is a standard second-order linear differential equation (Eq. C.7) for which 
there is a well-known method of solution. 

A trial function CA = eaz leads to two values of a, one of which violates the boundary con- 
dition at z = a. The final solution is then 

This example illustrates the use of the equation of continuity of A for setting up a diffusion 
problem with convection and chemical reaction. 

519.2 SUMMARY OF THE MULTICOMPONENT 
EQUATIONS OF CHANGE 

In the three main parts of this book we have by stages introduced the conservation laws 
known as the equations of change. In Chapter 3 conservation of mass and conservation 
of momentum in pure fluids were presented. In Chapter 11 we added the conservation 
of energy in pure fluids. In 519.1 we added mass conservation equations for the various 
species present. We now want to summarize the conservation equations for multicom- 
ponent systems. 

We start, in Table 19.2-1, by giving the equations of change for a mixture of N chemical 
species in terms of the combined fluxes with respect to stationary axes. The equation num- 
bers indicate where each equation first appeared. By tabulating the equations of change in 
this way, we can gain an appreciation for the unity of the subject. The only assumption 
made here is that all the species are acted on by the same external force per unit mass, g; 
note (b) of Table 19.2-1 explains the modifications needed when this is not the case. 

The important feature of these equations is that they are all of the form 

rate of net rate rate of 
increase of = of addition + production (19.2-1) 

{entity ] [ofentity ] jOf entity ] 
in which "entity" stands for mass, momentum, or energy, respectively. In each equation 
the net rate of addition of the entity per unit volume is the negative of a divergence term. 
The "rates of production" arise from chemical reactions in the first equation and from 
the external force field in the other two. Each equation is a statement of a conservation 
law. Usually we think of the conservation statements as laws that have gradually 
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Table 19.2-1 Equations of Change for Multicomponent Mixtures in Terms of 
the Combined Fluxes 

Mass of a: 
d p w ,  = -(V . nu) + r, 

(a = 1,2, . . . ,A9 
at 

Momentum: d p v  = - [ V . + ]  + pg 
dt  

(A)" 
(Eq. 19.1-6) 

Energy: d - '  Zp(u + :v2) = - ( V . e )  + ( p v - g )  (CIb 
(Eq. 11.1-6) 

" When all N equations of continuity are added, the equation of continuity for the fluid 
mixture 

is obtained. Here v is the mass average velocity defined in Eq. 17.7-1. 
If species a is acted on by a force per unit volume given by L, then pg has to be 

replaced by X,p,g, in Eq. (B), and (pv . g) has to be replaced by ZJn, g,) in Eq. (C). 
These replacements are required, for example, if some of the species are ions with 
different charges on them, acted on by an electric field. Problems of this sort are 
discussed in Chapter 24. 

evolved by experience and experiment and therefore are generally accepted by the scien- 
tific community.' 

The three "combined fluxes," which appear in Eqs. (A) to (C) of Table 19.2-1, can be 
written as the convective fluxes plus the molecular (or diffusive) fluxes. These various fluxes 
are displayed in Table 19.2-2, where the equation numbers corresponding to their first 
appearance are given. 

When the flux expressions of Table 19.2-2 are substituted into the conservation 
equations of Table 19.2-1 and then converted to the D / D t  form by means of Eqs. 3.5-4 
and 5,  we get the multicomponent equations of change in their usual forms. These are 
tabulated in Table 19.2-3. 

In addition to these conservation equations, one needs also to have the expressions 
for the fluxes in terms of the gradients and the transport properties (the latter being func- 
tions of temperature, density, and composition). Finally one nceds Aalso the thermal 
equation of state, p = p(p, T, x,), and the caloric equation of state, U = U(p, T, x,), and in- 
formation about the rates of any homogeneous chemical reactions occurring2 

Actually the conservation laws for energy, momentum, and angular momentum follow from 
Lagrange's equation of motion, together with the homogeneity of time, the homogeneity of space, and 
the isotropy of space, respectively (Noether's theorem). Thus there is something very fundamental about 
these conservation laws, more than is apparent at first sight. For more on this, see L. Landau and 
E. M. Lifshitz, Mechanics, Addison-Wesley, Reading, Mass. (1960), Chapter 2, and Emrny Noether, Nachr. 
Kgl. Ges. Wiss. Gottingen (Math.-phys. Kl.) (19181, pp. 235-257. Amalie Emmy Noether (1882-1935), after 
doing the doctorate at the University of Erlangen, was a protkgke of Hilbert in Gottingen until Hitler's 
purge of 1933 forced her to move to the United States, where she became a professor of mathematics at 
Bryn Mawr College; a crater on the moon is named after her. 

One might wonder whether or not we need separate equations of motion and energy for species a. 
Such equations can be derived by continuum arguments, but the species momentum and energy fluxes 
are not measurable quantities and molecular theory is required in order to clarify their meanings. 
These separate species equations are not needed for solving transport problems. However, the 
species equations of motion have been helpful for deriving kinetic expressions for the mass fluxes 
in multicomponent systems [see C. F. Curtiss and R. B. Bird, Proc. Nut. Acad. Sci. USA, 93,7440-7445 
(1996) and I. Chem. Phys., 111,10362-10370 (199911. 
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Table 19.2-2 The Combined, Molecular, and Convective Fluxes for 
Multicomponent Mixtures (all with the same sign convention) 

Combined = Molecular + Convective 
Entity flux flux flux 

Mass - - na l m  + PV"a (AY 
( a =  1,2, . . . , A 0  (Eq. 17.8-1) 
Momentum (P m + P W mb - - 

(Eq. 1.7-1) 
Energy e = q + [ m s v 1  + pv(b+$v2) (CY 

(Eq. 9.8-5) 

" The velocity v appearing in all these expressions is the mass average velocity, defined in 
Eq. 17.7-1. 
The molecular momentum flux consists of two parts: TI = p6 + T. 
' The molecular energy flux is made up of the heat flux vector q and the work flux vector 
[P . V] = pv + [7 - v], the latter occurring only in flow systems. 

Table 19.2-3 Equations of Change for Multicomponent Mixtures in Terms of 
the Molecular Fluxes 

Total mass: -- Dp - -p(V . v) 
Dt (A) 

(Eq. (A) of Table 3.5-1) 

Species mass: Dm'? 
PDt = - ( V . j , )  + r, 

(a = 1 ,2 , . . . ,N)  
(BY 

(Eq. 19.1-7a) 

Momentum: Dv 
p- Dt = -Vp - [ V - T ]  + pg (Ob 

(Eq. (B) of Table 3.5-1) 

Energy: P ~t D *  (U + iv 1 2  ) - - -(V 4) - (V . pv) - (8 17. v]) + (pv 8) ( D ) ~  
(Eq. (El of Table 11.4-1) 

a Only N - 1 of these equations are independent, since the sum of the N equations gives 
0 = 0. 
See note (b )  of Table 19.2-1 for the modifications needed when the various species are 

acted on by different forces. 

We conclude this discussion with a few remarks about special forms of the equa- 
tions of motion and energy. In 511.3 it was pointed out that the equation of motion as pre- 
sented in Chapter 3 is in suitable form for setting up forced-convection problems, but 
that an alternate form (Eq. 11.3-2) is desirable for displaying explicitly the buoyant forces 
resulting from temperature inequalities in the system. In binary systems with concentra- 
tion inequalities as well as temperature inequalities, we write the equation of motion as 
in Eq. (B) of Table 3.5-1 and use an approximate equation of state formed by making a 
double Taylor expansion of p(T, w,) about the state &: 
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Table 19.2-4 The Equations of Energy for Multicomponent Systems, with Gravity as the 
Only External Forcearb 

H, 
a For multicomponent mixtures q = -kVT + - j, + q'"', where q'" is a usually negligible term 

w = l  M ,  
associated with the diffusion-thermo effect (see Eq. 24.2-6). 
The equations in this table are valid only if the same external force is acting on all species. If this is not 

the case, then ZJj, g,) must be added to Eq. (A) and Eqs. (D-H), the last term in Eq. (B) has to be 
replaced byZ,(n, . g,), and the last term in Eq. (C) has to be replaced by Z,(v. page). 
Txact only if d&/d t  = 0. 

L. B. Rothfeld, PhD thesis, University of Wisconsin (1961); see also Problem 19D.2. 
'The contribution of q"' to the heat flux vector has been omitted in this equation. 

Here the coefficient 5 = -(l /p)(dp/doA) evaluated at T and relates the density to the 
composition. This coefficient is the mass transfer analog of the coefficient p introduced 
in Eq. 11.3-1. When this approximate equation of state is substituted into the pg term 
(but not into the pDv/Dt term) of the equation of motion, we get the Boussinesq equation 
of motion for a binary mixture, with gravity as the only external force: 

The last two terms in this equation describe the buoyant force resulting from the temper- 
ature and composition variations within the fluid. 

Next we turn to the equation of energy. Recall that in Table 11.4-1 the energy equation 
for pure fluids was given in a variety of forms. The same can be done for mixtures, and a 
representative selection of the many possible forms of this equation is given in Table 
19.2-4. Note that it is not necessary to add a term S, (as we did in Chapter 10) to describe 
the thermal energy released by homogeneous chemical reactions. This information is in- 
cluded implicitly in the functions H and k and appears explicitly as -xaEa~, and 
-X,U,R, in Eqs. (F) and (G). Remember that in calculating H and fi/ the energies of for- 
mation and mixing of the various species must be included (see Example 23.5-1). 
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519.3 SUMMARY OF THE MULTICOMPONENT FLUXES 

The equations of change have been given in terms of the fluxes of mass, momentum, and 
energy. To solve these equations, we have to replace the fluxes by expressions involving 
the transport properties and the gradients of concentration, velocity, and temperature. 
Here we summarize the flux expressions for mixtures: 

Mass: jA = -p9ARV~A binary only 
Momentum: 7 = -,u[Vv + (vv)~] + ($,u - K)(V v)S 

Energy: 

Now we append a few words of explanation: 

a. The mass flux expression given here is for binary mixtures only. For multicom- 
ponent gas mixtures at moderate pressures, we can use the Maxwell-Stefan 
equations of Eq. 17.9-1. There are additional contributions to the mass flux cor- 
responding to driving forces other than the concentration gradients: forced difu- 
sion, which occurs when the various species are subjected to different external 
forces; pressure diffusion, proportional to Vp; and thermal diffusion, proportional 
to VT. These other diffusion mechanisms, the first two of which can be quite 
important, are covered in Chapter 24. 

b. The momentum flux expression is the same for multicomponent mixtures as for 
pure fluids. Once again we point out that the contribution containing the dilata- 
tional viscosity K is seldom important. Of course, for polymers and other vis- 
coelastic fluids, Eq. 19.3-2 has to be replaced by more complex models, as 
explained in Chapter 8. 

c. The energy-flux expression given here for multicomponent fluids consists of two 
terms: the first term is the heat transport by conduction which was given for pure 
materials in Eq. 9.1-4, and the second term describes the heat transport by each of 
the diffusing species. The quantity is the partial molar enthalpy of species a. 
There is actually one further contribution to the energy flux, related to a concen- 
tration driving force-usually quite small-and this diffusion-thermo effect will be 
discussed in Chapter 24. The thermal conductivity of a mixture-the k in Eq. 
19.3-3-is defined as the proportionality constant between the heat flux and the 
temperature gradient in the absence of any mass fluxes. 

We conclude this discussion with a few comments about the combined energy flux e. 
By substituting Eq. 19.3-3 into Eq. (C) of Table 19.2-2, we get after some minor rearranging: 

In some situations, notably in films and low-velocity boundary layers, the contributions 
ipv2v and [T . V] are negligible. Then the dashed-underlined terms may be discarded. 
This leads to 
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Then use of Eqs. (G) and (H) of Table 17.8-1 leads finally to 

Finally, for ideal gas mixtures, this expression can be further simplified by replacing the 
partial molar enthalpies by the molar enthalpies &. Equation 19.3-6 provides a stan- 
dard starting point for solving one-dimensional problems in simultaneous heat and 
mass transfer.' 

The partial molar enthalpy E,, which appears in Eqs. 19.3-3 and 19.3-6, is defined for a multi- 
component mixture as 

The Partial Molar , ~ 

Enthalp y 

in which n, is the number of moles of species a in the mixture, and the subscript np indicates 
that the derivative is to be taken holding the number or moles of each species other than a 
constant. The enthalpy H(n,, n,, n,, . . .) is an "extensive property," since, if the number of 
moles of each component is multiplied by k, the enthalpy itself will be multiplied by k: 

H(kn,, kn,, kn,, . a )  = kH(n,, n,, n,, . .) (19.3-8) 

Mathematicians refer to this kind of function as being "homogeneous of degree 1." For such 
functions Euler's theorem2 can be used to conclude that 

(a) Prove that, for a binary mixture, the partial molar enthalpies at a given mole fraction can 
be determined by plotting the enthalpy per mole as a function of mole fraction, and then de- 
termining the intercepts of the tangent drawn at the mole fraction in question (see Fig. 19.3-1). 
This shows one way to get the partial molar enthalpy from data on the enthalpy of the 
mixture. 

(b) How else could one get the partial molar enthalpy? 

Fig. 19.3-1. The "method of inter- 
cepts" for determining partial molar 
quantities in a binary mixture. 

' T. K. Sherwood, R. L. Pigford, and C. R. Wilke, Mass Transfer, McGraw-Hill, New York (1975), 
Chapter 7. Thomas Kilgore Sherwood (1903-1976) was a professor at MIT for nearly 40 years, and then 
taught at the University of California in Berkeley. Because of his many contributions to the field of mass 
transfer, the Sherwood number (Sh) was named after him. 

M. D. Greenberg, Foundations of Applied Mathematics, Prentice-Hall, Englewood Cliffs, N.J. (1978), 
p. 128; R. J. Silbey and R. A. Alberty, Physical Chemistry, 3rd edition, Wiley, New York (2001), §§1.10,4.9, 
and 6.10. 
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SOLUTION (a) Throughout this example, for brevity we omit the subscripts p, T indicating that these 
quantities are held constant. First we write expressions for the intercepts as follows: 

in which H = H/(nA + n,) = H/n. To verify the correctness of Eq. 19.3-10, we rewrite the ex- 
pression in terms of H: 

NOW the expression HA = (dH/dnA),B implies that H is a function of nA and nB, whereas 
(dH/dxA), implies that His  a function of x, and n. The relation between these kinds of deriva- 
tives is given by the chain rule of partial differentiation. To apply this rule we need the rela- 
tion between the independent variables, which, in this problem, are 

Therefore we may write 

Substitution of this into Eq. 19.3-12 and use of Euler's theorem (H = nAEA + n , ~ , )  then gives 
an identity. This proves the validity of Eq. 19.3-10, and the correctness of Eq. 19.3-11 can be 
proved similarly. 

(b) One can also get HA by using the definition in Eq. 19.3-7 and measuring the slope of the 
curve of H versus n ~ ,  holding n, constant. One can also get HA by measuring the enthalpy of 
mixing and using 

Often the enthalpy of mixing is neglected and the enthalpies of the pure substances are given 
as = c P A ( ~  - T")  and a similar expression for i?,. This is a standard assumption for gas 
mixtures at low to moderate pressures. 

Other methods for evaluating partial molar quantities may be found in current textbooks 
on thermodynamics. 

519.4 USE OF THE EQUATIONS OF CHANGE FOR MIXTURES 

The equations of change in 519.2 can be used to solve all the problems of Chapter 18, and 
more difficult ones as well. Unless the problems are idealized or simplified, mixture 
transport phenomena are quite complicated and usually numerical techniques are re- 
quired. Here we solve a few introductory problems by way of illustration. 

(a) Develop expressions for the mole fraction profile x,(y) and the temperature profile T(y) 
for the system pictured in Fig. 19.4-1, given the mole fractions and temperatures at both film 

Simulfaneous Heat and boundaries (y = 0 and y = 6). Here a hot condensable vapor, A, is diffusing at steady state 
Mass Transporf' through a stagnant film of noncondensable gas, B, to a cold surface at y = 0, where A con- 

denses. Assume ideal gas behavior and uniform pressure. Furthermore assume the physical 

A. P. Colburn and T. B. Drew, Trans. Am. Inst .  Chem. Engrs., 38,197-212 (1937). 
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SOLUTION 

Fig. 19.4-1. Condensation of a hot vapor A 
on a cold surface in the presence of a non- 
condensable gas B. 

Cold 
surface . 

properties to be constant, evaluated at some mean temperature and composition. Neglect ra- 
diative heat transfer. 

(b) Generalize the result for the situation where both A and B are condensing on the wall, 
and allow for unequal film thicknesses for heat and mass transport. 

(a) To determine the desired quantities, we must solve the equations of continuity and en- 
ergy for this system. Simplification of Eq. 19.1-10 and Eq. C of Table 19.2-1 for steady, one- 
dimensional transport, in the absence of chemical reactions and external forces, gives 

Continuity of A: 

Energy: 

Therefore, both NAY and e, are constant throughout the film. 
To determine the mole fraction profile, we need the molar flux for diffusion of A through 

stagnant B: 

Insertion of Eq. 19.4-3 into Eq. 19.4-1 and integration gives the mole fraction profile (see 918.2) 

Here we have taken to be constant, at the value for the mean film temperature. We can 
then evaluate the constant flux NAY from Eqs. 19.4-3 and 4: 

Note that NAY is negative because species A is condensing. The last two expressions may be 
combined to put the concentration profiles in an alternative form: 
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To get the temperature profile, we use the energy flux from Eq. 19.3-6 for an ideal gas along 
with Eq. 9.8-8: 

Here we have chosen To as the reference temperature for the enthalpy. Insertion of this ex- 
pression for e, into Eq. 19.4-2 and integration between the limits T = To at y = 0, and T = T, at 
y = 6 gives 

It can be seen that the temperature profile is not linear for this system except in the limit as 
NA,&/k + 0. Note the similarity between Eqs. 19.4-6 and 8. 

The conduction energy flux at the wall is greater here than in the absence of mass trans- 
fer. Thus, using a superscript zero to indicate the conditions in the absence of mass transfer, 
we may write 

We see then that the rate of heat transfer is directly affected by simultaneous mass transfer, 
whereas the mass flux is not directly affected by simultaneous heat transfer. In applications at 
temperatures below the normal boiling point of species A, the quantity ~ , , & / k  is small, and 
the right side of Eq. 19.4-9 is very nearly unity (see Problem 19A.1). The interaction between 
heat and mass transfer is further discussed in Chapter 22. 

(b) If both A and B are condensing at the wall, then Eqs. 19.4-1 and 2, when integrated, lead 
to NAY = NAO and e, = e,, where the subscript "0" quantities are evaluated at y = 0. We also in- 
tegrate the analog of Eq. 19.4-1 for B to get N,, = NBo and obtain 

In the second of these equations, we replace HA by ?,*(T - To) and by $. (T - To), and 
since the reference temperature is To, we may replace e, by q,, the conductive heat flux at the 
wall. In the first equation, we subtract xAO(NAO + NBO) from both sides to make the equation 
similar in form to the temperature equation just obtained. Thus 

Integration with respect to y and application of the boundary conditions at y = 0 gives 
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These are the concentration and temperature profiles in terms of the mass and heat fluxes. 
Applications of the boundary conditions at the outer edges of the films-that is, at y = 6, and 
y = ST, respectively-give 

These equations relate the fluxes to the film thicknesses and the transport properties. When 
Eq. 19.4-14 is divided by Eq. 19.4-16 and Eq. 19.4-15 is divided by Eq. 19.4-17, we get the con- 
centration profiles in terms of the transport coefficients (analogously to Eqs. 19.4-6 and 8). 
Equations 19.4-16 and 17 will be encountered again in 522.8. 

A catalytic tubular reactor is shown in Fig. 19.4-2. A dilute solution of solute A in a solvent S 
is in fully developed, laminar flow in the region z < 0. When it encounters the catalytic wall 
in the region 0 5 z 5 L, solute A is instantaneously and irreversibly rearranged to an isomer 

in a T d d a r  Reactor B. Write the diffusion equation appropriate for this problem, and find the solution for short 
distances into the reactor. Assume that the flow is isothermal and neglect the presence of B. 

SOLUTION For the conditions stated above, the flowing liquid will always be very nearly pure solvent S. 
The product @BAS can be considered constant, and the diffusion of A in S can be described by 
the steady-state version of Eq. 19.1-14 (ignoring the presence of a small amount of the reaction 
product B). The relevant equations of change for the system are then 

Continuity of A: 

Motion: 

We make the usual assumption that axial diffusion can be neglected with respect to axial con- 
vection, and therefore delete the dashed-underlined term (compare with Eqs. 10.8-11 and 12). 
Equation 19.4-19 can be solved to give the parabolic velocity profile v,(r) = v,,,,,[l - (r/M21. 
When this result is substituted into Eq. 19.4-18, we get 

From z = 0 to z = L the ~ i l ~ t ~  solution of 
inner surface of the tube is A B in 

coated with a catalyst / 

/' 
Fully-developed A + B irreversibly 

laminar flow before and instantaneously 
z = 0 is reached on catalyst surface 

Fig. 19.4-2. Boundary conditions for a tubular reactor. 
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This is to be solved with the boundary conditions 

B.C. 1: 

B.C. 2: 

B.C. 3: 

at z = 0, c, = c,, 
at r = R, c, = 0 

at r = 0, c, = finite 

For short distances z into the reactor, the concentration c, differs from c,, only near the wall, 
where the velocity profile is practically linear. Hence we can introduce the variable y = R - r, 
neglect curvature terms, and replace B.C. 3 by a fictitious boundary condition at y = w (see 
Example 12.2-2 for a detailed discussion of this method of treating the entrance region of the 
tube). 

The reformulated problem statement is then 

with the boundary conditions 

B.C. 1: 

B.C. 2: 

B.C. 3: 

This problem can be solved by the method of combination of independent variables by seeking 
a solution of the form c,/cA0 = f($, where r] = ( y / R ) ( 2 ~ ~ , , , , ~ ~ / 9 ~ ~ ~ z ) " ~ .  One thus obtains the 
ordinary differential equation f "  + 3r12f' = 0, which can be integrated to give (see Eq. C.l-9) 

This problem is mathematically analogous to the Graetz problem of Problem 12D.4, O of that 
problem being analogous to 1 - (c,/c,,) here. 

Experiments of the type described here have proved useful for obtaining mass transfer 
data at high Schmidt numbers.' A particularly attractive reaction is the reduction of ferri- 
cyanide ions on metallic surfaces according to the reaction 

in which ferricyanide and ferrocyanide take the place of A and B in the above development. 
This electrochemical reaction is quite rapid under properly chosen conditions. Furthermore, 
since it involves only electron transfer, the physical properties of the solution are almost en- 
tirely unaffected. The forced diffusion effects neglected here may be suppressed by the addi- 
tion of an indifferent electrolyte in e x ~ e s s . ~ , ~  

Figure 19.4-3 shows schematically how oxygen and carbon monoxide combine at a catalytic 
surface (palladium) to make carbon dioxide, according to the technologically important 

Catalytic Oxidation reaction5 
of Carbon Monoxide 0, + 2C0 + 2C02 (1 9.4-30) 

D. W. Hubbard and E. N. Lightfoot, Ind. Eng. Chem. Fundam., 5,370-379 (1966). 
1. S. Newman, Electrochical Systems, 2nd edition, Prentice-Hall, Englewood Cliffs, N.J. (1991), §1.10. 
J. R. Selman and C. W. Tobias, Advances in Chemical Engineering, 10, Academic Press, New York, 

N.Y. (1978), pp. 212-318. 
%. C. Gates, Catalytic Chemistry, Wiley, New York (1992), pp. 356-362; C. N. Satterfield, 

Heterogeneous Catalysis in Industrial Practice, McGraw-Hill, New York, 2nd edition (1991), Chapter 8. 
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SOLUTION 

Fig. 19.4-3. Three-compo- 
Outer edge of nent system with a catalytic 

stagnant gas film 
,- consisting of chemical reaction. 

For this analysis, the reaction is assumed to occur instantaneously and irreversibly at the cat- 
alytic surface. The gas composition at the outer edge of the film (at z = 0) is presumed 
known, and the catalyst surface is at z = 6. The temperature and pressure are assumed to be 
independent of position throughout the film. We label the chemical species by: O2 = 1, CO = 2, 
co2 = 3. 

For steady-state, one-dimensional diffusion without homogeneous reactions, Eq. 19.1-10 gives 

which tells us that all of the molar fluxes are constants across the film. From boundary condi- 
tions provided by the stoichiometry of the problem we further know that 

The Maxwell-Stefan equations of Eq. 17.9-1 then give: 

These equations have been simplified by using Eq. 19.4-32, and by using the fact that 
9,, - 9,, over a wide range of temperature. The latter may be seen by using Appendix E 
to show that a,, = 3.793A and a,, = 3.714A, and that E ~ ~ / K  = 145K and E,,/K = 146K. 
Since only the mole fraction x3 appears in E q .  19.4-33, this equation may be integrated6 at 
once to give 

x, = -2 + (x, + 2) exp -- ( 2:) 
Combination of the last two equations then gives, after integration 

1 i N3zz ) ( 1  - xI0 - 5 x30) exp [-(2 3 9 1 3  - I)(%)] (19-4-36) x, = 1 - - (x,, + 2) exp -- 
3 2 ~ 9 1 ,  3 

Three-component problems with two diffusivities equal have been discussed by H. L. Toor, AIChE 
Journal, 3,198-207 (1957). 
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EXAMPLE 19.4-4 

Thermal Conductivity 
of a Polyatomic Gas 

SOLUTION 

From this equation and a similar one for x2, we can get x, at z = 8. Then from Eq. 19.4-35 we get 

which gives the rate of production of carbon dioxide at the catalytic surface. This result can 
then be substituted into Eqs. 19.4-35 and 36 and the three mole fractions can be calculated as 
functions of z. 

In 59.3 we pointed out that the thermal conductivities of polyatomic gases deviate from the 
formula for monatomic gases, because of the effects of the internal degrees of freedom in the 
complex molecules. When the Eucken formula for polyatomic gases (Eq. 9.3-15) is divided by 
the formula for monatomic gases (Eq. 9.3-14) and use is made of the ideal gas law, one can 
write the ratio of the polyatomic gas thermal conductivity to that of a monatomic gas as 

Derive a result of this form by modeling the polyatomic gas as an interacting gas mixture, in 
which the various "species" are the polyatomic gas molecules in the various rotational and vi- 
brational states. 

The heat flux for a gas mixture is given in Eq. 19.3-3. All "species" will have the same thermal 
conductivity because they differ only in their internal quantum states. Therefore we expect 
each k, to be Lon. Similarly, the mass flux for each "species" should be given by Fick's law for 
a pure gas j ,  = -pB,,Vw,, with all the a,, having a common value 9,,,. Thus we get 

since the molecular weights of all the "species" are the same. 
If now it is postulated that the distribution over the various quantum states is in equilib- 

rium with the local temperature, then Vx, = (dx,/dT)VT. Then we can define the effective ther- 
mal conductivity of the mixture by 

and write 

kp0ly -- - 1 +  
k o n  

= 1 +  

= 1 +  

Here the temperature-dependent quantity 

can be calculated from the kinetic theory of gases at low density. It varies ogly very slowly 
with temperature, and a suitable mean value is 1.106. The quantity ~ p , p o I y  = dH/dT is the heat 
capacity for a gas in which the equilibrium among the various quantum states is maintained 
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- 
during the change of temperature, whereas Cp,m,, is the heat capacity for a gas in which tran- 
sitions between quantum states are not allowed, so that C,,,,, = $R. When the numerical 
value A = 1.106 is inserted in Eq. 19.4-41, we get finally 

which is the formula recommended by Hir~chfelder.~ Although the predictions of Eq. 19.4-43 
are not much better than those of the older Eucken formula, the above development does at 
least give some feel for the role of the internal degrees of freedom in heat cond~ction.~,~ 

519.5 DIMENSIONAL ANALYSIS OF THE EQUATIONS OF 
CHANGE FOR NONREACTING BINARY MIXTURES 

In this section we dimensionally analyze the equations of change summarized in 519.2, 
using special cases of the flux expressions of 919.3. The discussion parallels that of 511.5 
and serves analogous purposes: to identify the controlling dimensionless parameters of 
representative mass transfer problems, and to provide an introduction to the mass trans- 
fer correlations of Chapter 22. 

Once again we restrict the discussion primarily to systems of constant physical 
properties. The equation of continuity for the mixture then takes the familiar form 

Continuity: (V . v) = 0 (19.5-1) 

The equation of motion may be approximated in the manner of Boussinesq (see g11.3) by 
putting Eqs. 19.3-2 and 19-5.1 into Eq. 19.2-3, and replacing -Vp + pg by - V 9 .  For a 
constant-viscosity Newtonian fluid this gives 

Motion: 

The energy equation, in the absence of chemical reactions, viscous dissipation, and exter- 
nal forces other than gravity, is obtained from Eq. (F) of Table 19.2-4, with Eq. 19.3-3. In 
using the latter we further neglect the diffusional transport of energy relative to the mass 
average velocity. For constant thermal conductivity this leads to 

Energy: 

in which n = k/p?,, is the thermal diffusivity. For nonreacting binary mixtures with con- 
stant p and B,,, Eq. 19.1-14 takes the form 

Continuity of A: 

For the assumptions that have been made, the analogy between Eqs. 19.5-3 and 4 is clear. 

- - - 

J. 0. Hirschfelder, 1. Chem. Phys., 26,274-281 (1957); see also D. Secrest and J. 0. Hirschfelder, 
Physics of Fluids, 4,61-73 (1961) for further development of the theory, in wluch equilibrium among the 
various quantum states is not assumed. 

For a comparison of the two formulas with experimental data, see Reid, Prausnitz, and Poling, 
op. cit., p. 497. The Hirschfelder formula in Eq. 19.4-42 and the Eucken formula of Eq. 9.3-15 tend to 
bracket the observed conductivity values. 

' J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases, North Holland, 
Amsterdam (1977), g511.2 and 3. 



600 Chapter 19 Equations of Change for Multicomponent Systems 

We now introduce the reference quantities I,, v,, and Yo, used in 93.7 and 911.5, the 
reference temperatures To and T, of 511.5, and the analogous reference mass fractions 
o,, and w,,. Then the dimensionless quantities we will use are 

Here it is understood that v is the mass average velocity of the mixture. It should be 
recognized that for some problems other choices of dimensionless variables may be 
preferable. 

In terms of the dimensionless variables listed above, the equations of change may be 
expressed as 

Continuity: (9 . i;) = 0 (1 9.5-8) 

Motion: 

Energy: 

Continuity of A: 

-- 
~i RePr 

DGA - 
I v 2 & A  ~i ReSc 

The Reynolds, Prandtl, and thermal Grashof numbers have been given in Table 11.5-1. 
The other two numbers are new: 

sc = 1-1 = = Schmidt number 
PB AB 

Gr, = [gi(w~l - mAu)C] = diffusional Grashof number 
4 

The Schmidt number is the ratio of momentum diffusivity to mass diffusivity and repre- 
sents the relative ease of molecular momentum and mass transfer. It is analogous to the 
Prandtl number, which represents the ratio of the momentum diffusivity to the thermal 
diffusivity. The diffusional Grashof number arises because of the buoyant force caused 
by the concentration inhomogeneities. The products RePr and ReSc in Eqs. 19.5-10 and 11 
are known as Pkclet numbers, Pk and PkAB, respectively. 

The dimensional analysis of mass transfer problems parallels that for heat transfer 
problems. We illustrate the technique by three examples: (i) The strong similarity be- 
tween Eqs. 19.5-10 and 11 permits the solution of many mass transfer problems by anal- 
ogy with previously solved heat transfer problems; such an analogy is used in Example 
19.5-1. (ii) Frequently the transfer of mass requires or releases energy, so that the heat 
and mass transfer must be considered simultaneously, as is illustrated in Example 19.5-2. 
(iii) Sometimes, as in many industrial mixing operations, diffusion plays a subordinate 
role in mass transfer and need not be given detailed consideration; this situation is illus- 
trated in Example 19.5-3. 

We shall see then that, just as for heat transfer, the use of dimensional analysis for 
the solution of practical mass transfer problems is an art. This technique is normally 
most useful when the effects of at least some of the many dimensionless ratios can be ne- 
glected. Estimation of the relative importance of pertinent dimensionless groups nor- 
mally requires considerable experience. 
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We wish to predict the concentration distribution about a long isothermal cylinder of a 
volatile solid A, immersed in a gaseous stream of a species B, which is insoluble in solid A. 

Concentration The system is similar to that pictured in Fig. 11.5-1, except that here we consider the transfer 
Distribution about a of mass rather than heat. The vapor pressure of the solid is small compared to the total pres- 
Long Cylinder sure in the gas, so that the mass transfer system is virtually isothermal. 

Can the results of Example 11.5-1 be used to make the desired prediction? 

SOLUTION The results of Example 11.5-1 are applicable if it can be shown that suitably defined dimen- 
sionless concentration profiles in the mass transfer system are identical to the temperature 
profiles in the heat transfer system: 

ijA(X, ij, 2) = f(X, ij, i) (19.5-14) 

This equality will be realized if the differential equations and boundary conditions for the 
two systems can be put into identical form. 

We therefore begin by choosing the same reference length, velocity, and pressure as in 
Example 11.5-1, and an analogous composition function: ij, = (w, - w ~ ~ ) / ( o ~ ~  - ~ ~ ~ 1 .  Here 
w,, is the mass fraction of A in the gas adjacent to ths interface, and wAco is the value far from 
the cylinder. We also specify that ZA = w,, so that & = 0. The equations of change needed 
here are then Eqs. 19.5-8,9, and 11. Thus the differential equations here and in Problem 11.5-1 
are analogous except for the viscous heating term in Eq. 11.5-3. 

As for the boundary conditions, we have here: 

B.C. 1: as X2 + ij2 + m, c + tix + 1 (19.5-15) 

B.C. 2: at f2  + ij2 = Z 1 (wA0 - @Am) v=- Vij, ijA = 0 (19.5-16) 
ReSc (I - wA0) 

The boundary condition on +, obtained with the help of Fick's first law, states that there is an 
interfacial radial velocity resulting from the sublimation of A. 

If we compare the above description with that for heat transfer in Example 11.5-1, we see 
that there is no mass transfer counterpart of the viscous dissipation term in the energy equa- 
tion and no heat transfer counterpart to the interfacial radial velocity component in the 
boundary condition of Eq. 19.5-16. The descriptions are otherwise analogous, however, with 
G,, Sc, and Gr, taking the places of T, Pr, and Gr. 

When the Brinkman number is sufficiently small, viscous dissipation will be unimpor- 
tant, and that term in the energy equation can be neglected. Neglecting the Brinkman number 
term is appropriate, except for flows of very viscous fluids with large velocity gradients, or in 
hypersonic boundary layers (510.4). Similarly, when (l/ReSc)[(w,, - wA,)/(l - wAo)l is very 
small, it may be set equal to zero without introducing appreciable error. If these limiting con- 
ditions are met, analogous behavior will be obtained for heat and mass transfer. More pre- 
cisely, the dimensionless concentration G, will have the same dependence on i, q,Z, i, Re, Pr, 
and Gr, as the dimensionless temperature ? will have on f ,  jl, i, t, Re, Pr, and Gr. The concen- 
tration and temperature profiles will then be identical at a given Re whenever Sc = Pr and 
Gr, = Gr. 

The thermal Grashof number can, at least in principle, be varied at will by changing To - 
T,. Hence it is likely that the desired Grashof numbers can be obtained. However, it can be 
seen from Tables 9.1-1 and 17.1-1 that Schmidt numbers for gases can vary over a considerably 
wide range than can the Prandtl numbers. Hence it may be difficult to obtain a satisfactory 
thermal model of the mass transfer process, except in a limited range of the Schmidt number. 

Another possibly serious obstacle to achieving similar heat and mass transfer behavior is 
the possible nonuniformity of the surface temperature. The heat of sublimation must be ob- 
tained from the surrounding gas, and this in turn will cause the solid temperature to become 
lower than that of the gas. Hence it is necessary to consider both heat and mass transfer si- 
multaneously. A very simple analysis of simultaneous heat and mass transfer is discussed in 
the next example. 
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EXAMPLE 19.5-2 

Fog Formation during 
Dehumidification 

SOLUTION 

Refrigerant 
vapor out at Tr  

Air in at d / 

Liquefied refrigerant 
in at T,  

Fig. 19.5-1. Schematic representation of a dehumidifier. Air enters with 
inlet temperature TI and humidity owl (the mass fraction of water vapor). 
It leaves with outlet temperature T2 and humidity ow, Because the heat 
transfer to the refrigerant is very effective, the temperature at the air- 
condensate interface is close to the refrigerant temperature T,. 

Wet air is being simultaneously cooled and dehumidified by passage through a metal tube 
chilled by the boiling of a liquid refrigerant. The tube surface is below the dew point of the 
entering air and therefore becomes covered with a water film. Heat transfer from the refriger- 
ant to this condensate layer is sufficiently effective that the free water surface may be consid- 
ered isothermal and at the boiling point of the refrigerant. This system is shown in Fig. 19.5-1. 

We wish to determine the range of refrigerant temperatures that may be used without 
danger of fog formation. Fog is undesirable, because most of the tiny water droplets constitut- 
ing the fog will pass through the cooling tube along with the air unless special collectors are 
provided. Fog can form if the wet air become supersaturated at any point in the system. 

Let species A be air and W be water. It is convenient here to choose the dimensionless variables 

The subscripts are further defined in Fig. 19.5-1. 
For the air-water system at moderate temperatures, the assumption of constant p and BAW 

is reasonable, with air regarded as a single species. The heat capacities of water vapor and air 
are unequal, but the diffusional transport of energy is expected to be small. Hence Eqs. 19.5-9 
to 11 provide a reasonably reliable description of the dehumidification process. The boundary 
conditions needed to integrate these equations include L, = i = 1 at the tube inlet, Lw = !f = 

0 at the gas-liquid boundary, and no-slip and inlet conditions on the velocity G. 
We find then that the dimensionless profiles are related by 

ijw(f, 9, if Re, Gr,, Gr, Sc, Pr) = ?(?, ij, 2, Re, Gr, Gr,, Pr, Sc) (19.5-19) 

Thus ZiW is the same function of its arguments as f is of its arguments in the exact order given. 
Since in general Gr, is not equal to Gr and Sc is not equal to Pr, the two profiles are not simi- 
lar. This general result is too complex to be of much value. 

However, for the air-water system, at moderate temperatures and near-atmospheric 
pressure, Sc is about 0.6 and Pr is about 0.71. 

If we assume for the moment that Sc and Pr are equal, the dimensional analysis becomes 
much simpler. For this special situation, the energy and species continuity equations are iden- 
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Fig. 19.5-2. A representative dehumidifica- 
tion path. The dehumidification path 
shown here corresponds to T,,,,,, the low- 
est refrigerant temperature ensuring the 
absence of fog. The dehumidification path 
for this situation is a tangent to the satura- 
tion curve through the point (w,,, T,), rep- 
resenting the given inlet-air conditions. 
Calculated dehumidification paths for 
lower refrigerant temperatures would 
cross the saturation curve. Saturation water 
vapor concentrations would then be ex- 
ceeded, making fog formation possible. 

0 L 
30 40 50 60 70 80 90 

Temperature, O F  

tration and temperature profiles are then identical. It should be noted that equality of Gr, and 
Gr is not required. This is because the Grashof numbers affect the concentration and tempera- 
ture profiles only by way of the velocity v, which appears in both the continuity equation and 
the energy equation in the same way. 

Therefore, with the assumption that Sc = Pr, we have 

at each point in the system. This means, in turn, that evey concentration-temperature pair in 
the tube lies on a straight line between (owl, Tl) and (ow, T,) on a psychrometric chart. This is 
shown graphically in Fig. 19.5-2 for a representative set of conditions. Note that (w,,., Tr) must 
lie on the saturation curve, since equilibrium is very closely approximated. 

It follows that there can be no fog formation if a straight line drawn between (w,, TI) 
and (w,,, T,) does not cross the saturation curve. Then the lowest refrigerant temperature that 
cannot produce fog is represented by the point of tangency of a straight line through (ow, TI) 
with the saturation curve. 

It should be noted that all of the conditions along the line from the inlet (ow,, TI) to (w,, 
T,) will occur in the gas even though the bulk or cup-mixing conditions vary only from (w,, 
TI) to (o,, T,). Thus some fog can form even if saturation is not reached in the bulk of the 
flowing gas. For air entering at 90°F and 50% relative humidity, the minimum safe refrigerant 
temperature is about 45°F. It may also be seen from Fig. 19.5-2 that it is not necessary to bring 
all of the wet air to its dew point in order to dehumidify it. It is only necessary that the air be 
saturated at the cooling surface. The exit bulk conditions (w,, T,) can be anywhere along the 
dehumidification path between (w,, TI) and (w,, TJ, depending on the effectiveness of the 
apparatus used. Calculations based on the assumed equality of Sc and Pr have proven very 
useful for the air-water system. 

In addition, it can be seen, by considering the physical significance of the Schmidt and 
Prandtl numbers, that the above-outlined calculation procedure is conservative. Since the 
Schmidt number is slightly smaller than the Prandtl number, dehumidification will proceed 
proportionally faster than cooling, and concentration-temperature pairs will lie slightly 
below the dehumidification path drawn in Fig. 19.5-2. In condensing organic vapors from air, 
the reverse situation often occurs. Then the Schmidt numbers tend to be higher than the 
Prandtl numbers, and cooling proceeds faster than condensation. Conditions then lie above 
the straight line of Fig. 19.5-2, and the danger of fog formation is increased. 
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Fig. 19.5-3. Blending of miscible fluids. At zero time, the 

z = H upper half of this tank is solute free, and the lower half 
contains a uniform distribution of solute at a dimen- 
sionless concentration of unity, and the fluid is motion- 
less. The impeller is caused to turn at a constant rate of 

H rotation N for all time greater than zero. Positions in the 
z = -  

2 tank are given by the coordinates r, 8, z, with r measured 
radially from the impeller axis, and z upward from the 
bottom of the tank. 

Develop by dimensional analysis the general form of a correlation for the time required to 
blend two miscible fluids in an agitated tank. Consider a tank of the type described in Fig. 

of 19.5-3, and assume that the two fluids and their mixtures have essentially the same physical 
Fluids properties. 

SOLUTION It will be assumed that the achievement of "equal degrees of blending" in any two mixing op- 
erations means obtaining the same dimensionless concentration profile in each. That is, the 
dimensionless solute concentration &, is the same function of suitable dimensionless coordi- 
nates (?, 0,i) of the two systems when the degrees of blending are equal. These concentration 
profiles will depend on suitably defined dimensionless groups appearing in the pertinent 
conservation equations and their boundary conditions, and on a dimensionless time. 

In this problem we select the following definitions for the dimensionless variables: 

Here D is the impeller diameter, N is the rate of rotation of the impeller in revolutions per 
unit time, and p, is the prevailing atmospheric pressure. The dimensionless pressure j3 is used 
here rather than the quantity 9 defined in 53.7; the formulation with ji is simpler and gives 
equivalent results. Note that i is equal to the total number of turns of the impeller since the 
start of mixing. 

The conservation equations describing this system are Eqs. 19.5-8, 9, and 11 with zero 
Grashof numbers. The dimensionless groups arising in these equations are Re, Fr, and Sc. The 
boundary conditions include the vanishing of v on the tank wall and of p on the free liquid 
surface. In addition we have to specify the initial conditions 

C. 1: 1 H  H atf 5 0 ,  &,=O fo r - -<?<-  
2 0  D 

(19.5-22) 

C. 2: 1 H a t t  5 0 ,  1 f o r O < i < - -  
2 0  

(19.5-23) 

and the requirement of no slip on the impeller (see Eq. 3.7-34). 
We find then that the concentration profiles are functions of Re, Sc, Fr, the dimensionless 

time t ,  the tank geometry (via H/D and B/D), and the relative proportions of the two fluids. 
That is, 

&, = f (Re, Fr, Sc, t, geometry, initial conditions) (19.5-25) 

It is frequently possible to reduce the number of variables to be investigated. 
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It has been observed that, if the tank is properly baffled,' no vortices of importance occur; 
that is, the free liquid surface is effectively level. Under these circumstances, or in the absence 
of a free liquid surface, the Froude number does not appear in the system description, as we 
found in 53.7. 

It is further found, in most operations on low-viscosity liquids, that the rate-limiting step 
is the creation of a finely divided dispersion of one fluid in the other. In such a dispersion, the 
diffusional processes take place over very small distances. As a result, molecular diffusion is 
not rate limiting, and the Schmidt number (Sc) has little importance. It is further found that 
the effect of the Reynolds number (Re) is negligible under most commonly encountered con- 
ditions. This is because most of the mixing takes place in the interior of the tank where vis- 
cous effects are small, rather than in the boundary layers adjacent to the tank and impeIler 
surfaces, where they are large.' 

For most impeller-tank combinations in common use, the Reynolds number (Re) is 
unimportant when its value is above about lo4. This behavior has been substantiated by a 
number of  investigator^.^ 

We thus arrive, after extensive experimentation, at a surprisingly simple result. When all of 
the assumptions above are valid, the concentration profile depends only on I .  Hence the di- 
mensionless time required to produce any desired degree of mixing is a constant for a given system 
geometry. In other words, the total number of turns of the impeller during the mixing process 
determines the degree of blending, independently of Re, Fr, Sc, and tank size-provided, of 
course, that the tanks and impellers are geometrically similar. 

For the same reasons, in a properly baffled tank, the dimensionless velocity distribution 
and the volumetric pumping efficiency of the impeller are nearly independent of the Froude 
number (Fr) and of the Reynolds number (Re), when Re > lo4. 

QUESTIONS FOR DISCUSSION 

1. How do the various equations of change given in Chapters 3 and 11 have to be modified for 
reacting mixtures? 

2. What modifications in the flux expressions given in Chapters 3 and 11 are needed to describe 
chemically reacting mixtures? 

3. Under what conditions is (V . v) = O? (V . v") = O? 
4. Equations 19.1-24 and 15 are physically equivalent. For what kinds of problems is there a 

preference for one form over the other? 
5. Interpret physically each term in the equations in Table 19.2-3. 
6. The thermal conductivity of a mixture is defined as the ratio of the heat flux to the negative of 

the temperature gradient when all the diffusional mass fluxes are zero. Interpret this state- 
ment in terms of Eq. 19.3-3. 

A common and effective baffling arrangement for vertical cylindrical tanks with axially mounted 
impellers is a set of four evenly spaced strips along the tank wall, with their flat surfaces in planes 
through the tank axis, extending from the top to the bottom of the tank and at least two-tenths of the 
distance to the tank center. 

The insensitivity of the required mixing time to the Reynolds number can be seen intuitively from 
the fact that the term ( l /~e)?% in Eq. 19.5-9 becomes small compared to the acceleration term LX/DZ at 
large Re. Such intuitive arguments are dangerous, however, and the effect of Re is always important in 
the immediate neighborhood of solid surfaces. Here the amount of mixing taking place in the immediate 
neighborhood of solid surfaces is small and can be neglected. 

The insensitivity of the required mixing time to the Schmidt number can be seen from the time- 
averaged equation of continuity in Chapter 21. At large Re, the turbulent mass flux is much greater than 
that due to molecular diffusion, except in the immediate neighborhood of the solid surfaces. 

E. A. Fox and V. E. Gex, AlChE Journal, 2,539-544 (1956); H. Kramers, G. M. Baars, and 
W. H. Knoll, Chem. Eng Sci, 2,3542 (1955); J. G. van de Vusse, Chem. Eng. Sci., 4,178-200,209-220 (1955). 
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7. Discuss the similarities and differences between heat transfer and mass transfer. 
8. Go through all the steps in converting Eq. 19.3-4 into Eq. 19.3-6. Why is the latter (approxi- 

mate) result important? 
9. Comment on the statement at the end of Example 19.4-1 that the rate of heat transfer is di- 

rectly affected by simultaneous mass transfer, whereas the reverse is not true. 

PROBLEMS 19A.1. Dehumidification of air (Fig. 19.4-1). For the system of Example 19.4-1, let the vapor be H,O 
and the stagnant gas be air. Assume the following conditions (which are representative in air 
conditioning): (i) at y = 6, T = 80°F and XHzo = 0.018; (ii) at y = 0, T = 50°F. 
(a) For p = 1 atm, calculate the right side of Eq. 19.4-9. 
(b) Compare the conductive and diffusive heat flux at y = 0. What is the physical significance 
of your answer? 
Answer: (a) 1.004 

19B.1. Steady-state evaporation (Fig. 18.2-1). Rework the problem solved in 518.2, dealing with the 
evaporation of liquid A into gas B, starting from Eq. 19.1-17. 
(a) First obtain an expression for v*, using Eq. (M) of Table 17.8-1, as well as Fick's law in the 
form of Eq. (D) of Table 17.8-2. 
(b) Show that Eq. 19.1-17 then becomes the following nonlinear second-order differential 
equation: 

(c) Solve this equation to get the mole fraction profile given in Eq. 18.2-11. 

19B.2. Gas absorption with chemical reaction (Fig. 18.4-1). Rework the problem solved in 518.4, by 
starting with Eq. 19.1-16. What assumptions do you have to make in order to get Eq. 18.4-4? 

19B.3. Concentration-dependent diffusivity. A stationary liquid layer of B is bounded by planes 
z = 0 (a solid wall) and z = b (a gas-liquid interface). At these planes the concentration of 
A is cAo and CAb respectively. The diffusivity 9 A B  is a function of the concentration of A. 
(a) Starting from Eq. 19.1-5 derive a differential equation for the steady-state concentration 
distribution. 
(b) Show that the concentration distribution is given by 

(c) Show that the molar flux at the solid-liquid surface is 

(dl Now assume that the diffusivity can be expressed as a Taylor series in the concentration 

in which 2, = +(cAo + c,) and gA, = QAB(CA). Then, show that 

(e) How does this result simplify if the diffusivity is a linear function of the concentration? 
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Fig. 198.4. Oxidation of silicon. 

19B.4. Oxidation of silicon (Fig. 19B.4).' A slab of silicon is exposed to gaseous oxygen (species A) 
at pressure p, producing a layer of silicon dioxide (species B). The layer extends from the sur- 
face z = 0, where the oxygen dissolves with concentration CAO = Kp, to the surface at z = SW, 
where the oxygen and silicon undergo a first-order reaction with rate coefficient k;(. The thick- 
ness 6(t) of the growing oxide layer is to be predicted. A quasi-steady-state method is useful 
here, inasmuch as the advancement of the reaction front is very slow. 
(a) First solve the diffusion equation of Eq. 19.1-18, with the term dc,/dt neglected, and apply 
the boundary conditions to obtain 

in which the concentration CAS at the reaction plane is as yet unknown. 
(b) Next use an unsteady-state molar 0, balance on the region 0 < z < 6(t) to obtain, with the 
aid of the Leibniz formula of gC.3, 

(c) Now write an unsteady-state molar balance on SiO, in the same region to obtain 

(d) In Eq. 19B.4-2, evaluate dS/dt from Eq. 19B.4-3 and dc,/dz from Eq. 19B.4-I. This will 
yield an equation for CA,: 

Inserting numerical values into Eq. 19B.4-4 shows that the quadratic term can safely be 
neglected. ' 
(e) Combine Eqs. 19B.4-3 and 19B.4-4 (without the quadratic term) to get a differential equa- 
tion for S(t). Show that this leads to 

which agrees with experimental data.' Interpret the result. 

19B.5. The Maxwell-Stefan equations for multicomponent gas mixtures. In Eq. 17.9-1 the 
Maxwell-Stefan equations for the mass fluxes in a multicomponent gas system are given. Show 
that these equations simplify for a binary system to Fick's first law, as given in Eq. 17.1-5. 

19B.6. Diffusion and chemical reaction in a liquid. 
(a) A solid sphere of substance A is suspended in a liquid B in which it is slightly soluble, 
and with which A undergoes a first-order chemical reaction with rate constant k y .  At steady 

' R. Ghez, A Primer of Diffusion Problems, Wiley-Interscience, New York (1988), pp. 46-55; this book 
discusses a number of problems that arise in the microelectronics field. 
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state the diffusion is exactly balanced by the chemical reaction. Show that the concentration 
profile is 

in which R is the radius of the sphere, cAo is the molar solubility of A in B, and b2 = kyR2/9,,. 
(b) Show by quasi-steady-state arguments how to calculate the gradual decrease in diameter 
of the sphere as A dissolves and reacts. Show that the radius of the sphere is given by 

in which Ro is the sphere radius at time to, and p,,, is the density of the sphere. 

19B.7. Various forms of the species continuity equation. 
(a) In this chapter the species equation of continuity is given in three different forms: Eq. 
19.1-7, Eq. (A) of Table 19.2-1, and Eq. (B) in Table 19.2-3. Show that these three equations are 
equivalent. 
(b) Show hdv  to get Eq. 19.1-15 from Eq. 19.1-11. 

19C.1. Alternate form of the binary diffusion equation. In the absence of chemical reactions, Eq. 
19.1-17 can be written in terms of v rather than v* by using a different measure of concentra- 
tion-namely, the logarithm of the mean molecular weight:' 

in which M = xAMA + xBMB. (Caution: Solution is lengthy.) 
Equation 19C.1-1 is difficult to solve even for the stagnant gas film of 518.2, because of 

the variable mass density p that appears in the continuity equation (Eq. A of Table 19.2-3). 

19D.1. Derivation of the equation of continuity. In s19.1 the species equation of continuity is de- 
rived by making a mass balance on a small rectangular volume Ax Ay Az fixed in space. 
(a) Repeat the derivation for an arbitrarily shaped volume element V with a sufficiently 
smooth fixed boundary S. Show that the species mass balance can be written as 

Use the Gauss divergence theorem to convert the surface integral to a volume integral, and 
then obtain Eq. 19.1-6. 
(b) Repeat the derivation using a region of fluid contained within a surface, each point of 
which is moving with local mass average velocity. 

19D.2. Derivation of the equation of change for temperature for a multicomponent system. De- 
rive Eq. (F) in Table 19.2-4 from Eq. (E). We suggest the following sequence of steps: 
(a) Since the enthalpy is an extensive thermodynamic property, we can write 

in which the m, are the masses of the various species, is the sum of the ma, and the w, = 

m,/m are the corresponding mass fractions. Both Hand Hare understood to be functions of T 
and p as well as of composition. Use the chain rule of partial differentiation to show that 

C. H. Bedingfield, Jr., and T. 8. Drew, Ind. Eng. Chem., 42,1164-1173 (1950). 
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Subtraction then gives for a # N 

The subscript w, means "holding all other mass fractions constant." 
(b) The left side of Eq. (E) can be expanded by regarding the enthalpy per unit mass to be a 
function of p, T,  and the first (N - 1) mass fractions: 

Next, verify that the coefficients of the substantial derivatives can be identified as 

The coefficient of p(Dw,/ Dt) has already been given in Eq. 19D.2-4. 
(c) Substitute the coefficients into Eq. 19D.2-5, and then use Eq. 19.1-14 to eliminate 
p(Dw,/Dt), and verify that (dH/dma)p,T,,y is the same as (HJM,). The summation on a, which 
goes from 1 to N - 1, now has to be appropriately rewritten as a summation from 0 to N, by 
using Eq. (K) of Table 17.8-1 and the fact that Z,ra = 0. 
(d) Then combine the results of (a), (b), and (c) with Eq. (E) to get Eq. (F). 

19D.3. Gas separation by atmolysis or "sweep diffusion" (Fig. 19D.3). When two gases A and B are 
forced to diffuse through a third gas C, there is a tendency of A and B to separate because of 
the difference in their diffusion rates. This phenomenon was first studied by Hertz? and later 
by Maier.* Benedict and Boas5 studied the economics of the process particularly with regard 
to isotope separation. Keyes and pigford6 contributed further to both theory and experiment. 

Diffusion tube 4' in 
length and 1 " in diameter, 
packed with glass wool 

A + B + C  A + B + C  , 1 1 ~ n i ' 2  I Cc , 1 , 
Feed A + B 

Make-up 
Separator for C Separator 

Raffinate A + B I Products A + B I 
Fig. 19D.3. The Keyes-Pigford experiment for studying atmolysis. 

G. Hertz, Zeits. f. Phys., 91,810-815 (1934). 
G. G. Maier, Mechanical Concentration of Gases, US. Bureau of Mines Bulletin 431 (1940). 
M. Benedict and A. Boas, Chem. Eng. Prog., 47,5142,111-122 (1951). 
J. J. Keys, Jr., and R. L. Pigford, Chem. Eng. Sci., 6,215-226 (1957). 
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In their experimental arrangement, C was a condensable vapor, which could be separated 
from A and B by lowering the temperature so that C would be liquefied. 

We want to study the details of the three-component diffusion taking place in the diffu- 
sion tube of length L, when the apparatus is operated at steady state. Obtain an expression re- 
lating the concentrations x,, and xB1 at the feed end of the tube to the concentrations X,q and 
xB2 at the product end. This expression will contain the molar fluxes of the three species, 
which are controlled by the rates of addition of materials in the two entering streams. 

Use the following notation for dimensionless quantities: 5 = z / L  for the distance down 
the tube from the feed entrance; rA = 9lAB/BAc and r, = g A B / 9 B C  for the diffusivity ratios; and 
v, = N , , L / c ~ ~ ~  for the molar fluxes (with a = A, B, C). 

(a) Shows that, in terms of these dimensionless quantities, the Maxwell-Stefan equations for 
the diffusion are 

where YAA = vz + rA(vA + vC), YAS = vA(rA - I ) ,  and YA = -YAVA, and the remaining quantities 
are obtained by interchanging A and B. 
(b) By using Laplace transforms, solve Eqs. 19D.3-1 and 2 to get the concentration profiles for 
A and B in the tube. 
(c) Show that the terminal concentrations are interrelated thus, 

XA(~AI, XRI; 0 )  + XA(~AI,  xm; p+)  exp p+ XA(xA1, r,,; p-)  exp p- 
X ~ 2  = P+P- 

+ 
p+(p+ - p- )  

(19D.3-3) 
P-(P- - p+) 

in which 

A similar expression may be obtained for xB2. Keyes and Pigford6 give further results for spe- 
cial cases. 

19D.4. Steady-state diffusion from a rotating disk.7 A large disk is rotating with an angular veloc- 
ity fl in an infinite expanse of liquid B. The surface is coated with a material A that is slightly 
soluble in B. Find the rate at which A dissolves in B. (The solution to this problem can be ap- 
plied to a disk of finite radius R with negligible error.) 

The fluid dynamics of this problem was developed by von KBrmBn8 and later corrected by 
C~chran .~  It was found that the velocity components can be expressed, except near the edge, as 

in which 5 = z m v .  The functions F, G, and H have the following expansions: 

in which a = 0.510 and b = -0.616. It is further known that, in the limit as l + m, H + 

-0.886, and F,  G, F', and G' all approach zero. Also it is known that the boundary layer thick- 
ness is proportional to m, except near the edge of the disk. 

' V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J. (1962), §11. 
T. von Kirmhn, Zeits. f.  angew. Math. u. Mech.,l, 244-247 (1921). 
W .  G. Cochran, Proc. Camb. Phil. Soc., 30,365-375 (1934). 
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The diffusion equation of Eq. 19.1-16 with the known velocity components is to be solved 
under the boundary conditions that: p, = p,, at z = 0; p, = 0 at z = m; and dp,/dr = 0 at r = 
0, m. Since there can be but one solution to this linear problem, it may be seen that a solution 
of the form p,(z) can be found that satisfies the differential equation and all the boundary con- 
ditions. Thus, the solution for p~ does not depend on the radial coordinate in the region 
considered. 
(a)  Show that at steadystate Eq. 19.1-16 gives 

(b) Solve Eq. 19D.4-5 to get, for large Schmidt number, 

(c) Show that the mass flux at the surface of the disk is7 

for large Schmidt number. Clearly, if desired, one could use higher terms in the series expan- 
sion for H and extend the Schmidt-number range.10 This system has been used for studying 
the removal of solid behenic acid from stainless-steel surfaces." 

10 D. Schuhmann, Physicochemical Hydrodynamics (V. G. Levich Fextschrift), Vol. 1 (D. B. Spalding ed.), 

Advance Publications Ltd., London (1977), pp. 44.5459; see also K.-T. Liu and W. E. Stewart, Intl. Jnl. 
Heat and Mass Trf., 15,187-189 (1972). 

" C. S. Grant, A. T. Perka, W. D. Thomas, and R. Caton, AIChE Journal, 42,1465-1476 (1996). 



Chapter 20 

Concentration Distributions 
with More Than One 
Independent Variable 
520.1 Time-dependent diffusion 

520.2~ Steady-state transport in binary boundary layers 

520.3. Steady-state boundary layer theory for flow around objects 

520.4. Boundary layer mass transport with complex interfacial motion 

520.5. Taylor dispersion in laminar tube flow 

Most of the diffusion problems discussed in the preceding two chapters led to ordinary 
differential equations for the concentration profiles. In this chapter we use the general 
equations of Chapter 19 to set up and solve some diffusion problems that lead to partial 
differential equations. 

A large number of diffusion problems can be solved by simply looking up the solu- 
tions to the analogous problems in heat conduction. When the differential equations and 
the boundary and initial conditions for the diffusion process are of exactly the same form 
as those for the heat conduction process, then the heat conduction solution may be taken 
over with appropriate changes in notation. In Table 20.0-1 the three main heat transport 
equations used in Chapter 12 are shown along with their mass transport analogs. Many 
solutions to the nonflow equations may be found in the monographs of Carslaw and 
Jaeger' and of Crank.' 

Because the diffusion problems described by the equations in Table 20.0-1 are analo- 
gous to the problems of Chapter 12, we do not discuss them extensively here. Instead, 
we focus primarily on problems involving diffusion with chemical reactions, diffusion 
with a moving interface, and diffusion with rapid mass transfer. 

In 920.1 we discuss a variety of time-dependent diffusion problems. In s20.2 we pre- 
sent some steady-state boundary layer problems involving binary mixtures. This is fol- 
lowed by two boundary layer analyses for more complicated systems: the diffusion in 
steady flow around arbitrary objects in 920.3, and the diffusion in flows yvith complex in- 
terfacial motion in 920.4. Finally, in 520.5 we explore an asymptotic solution to the "Tay- 
lor dispersion" problem. 

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd edition, Oxford University Press 
(1959). 

J. Crank, The Mathematics of Di@sion, 2nd edition, Clarendon Press, Oxford (1975). 
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Table 20.0-1 Analoges Between Special Forms of the Heat Conduction and Diffusion Equations 

B 
Unsteady-state nonflow Steady-state flow a Steady-state nonflow 

g .9 §12.1-Exact solutions 512.2-Exact solutions .s fi 
s12.3-Exact solutions 

I QJ 

+ 2 512.4--Boundary layer in two dimensions by 
$ 0  solutions analytic functions 

g 
Heat conduction in Heat conduction in Steady heat conduction b 

.A d 

a solids laminar incompressible solids 
9 flow 

. .d 1. k = constant 1. k, p = constants 1. k = constant 
2 .v=O 2. No viscous dissipation 2. v  = 0  

2 
4 3. Steady state 3. Steady state 

2 Diffusion of traces of 
'8 A through B 
.* - 
a 
2 

1. %ABr p = constants 8 
g 2 . v = o  

3. No chemical reactions 
4 
V) 

OR Equimolar counter- .* - 
B .- 4 

diffusion in low 
a 2 density gases 

Diffusion in laminar Steady diffusion in 
flow (dilute solutions of solids 
A in B )  

1. 9AB, p = constants 1. %ABI p = constants 
2. Steady state 2. Steady state 
3. No chemical reactions 3. No chemical reactions 

4.v  = 0 

I. BAB, c = constants 
.4 + 2 2. v* = 0 
5 3. No chemical reactions 
4 

$20.1 TIME-DEPENDENT DIFFUSION 

In this section we give four examples of time-dependent diffusion. The first deals with 
evaporation of a volatile liquid and illustrates the deviations from Fick's second law that 
arise at high mass-transfer rates. The second and third examples deal with unsteady- 
state diffusion with chemical reactions. In the last example we examine the role of inter- 
facial-area changes in diffusion. The method of combination of variables is used in 
Examples 20.1-1,2, and 4, and Laplace transforms are used in Example 20.1-3. 

We wish to predict the rate at which a volatile liquid A evaporates into pure B in a tube of in- 
finite length. The liquid level is maintained at z = 0  at all times. The temperature and pres- 

Unsteady-State sure are assumed constant, and the vapors of A and B form an ideal gas mixture. Hence the 
Evaporation of a Liquid molar density c is constant throughout the gas phase, and BAB may be considered to be con- 
(the "Amold Problem'') stant. It is further assumed that species B is insoluble in liquid A, and that the molar average 

velocity in the gas phase does not depend on the radial coordinate. 
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SOLUTION For this system the equation of continuity for the mixture, given in Eq. 19.1-12, becomes 

in which v: is the z-component of the molar average velocity. Integration with respect to z gives 

Here and elsewhere in this problem, the subscript "0" indicates a quantity evaluated at z = 0. 
According to Eq. (M) of Table 17.8-1, this velocity can be written in terms of the molar fluxes 
of A and B as 

However, N,,, is zero because of the insolubility of species B in liquid A. Then use of Eq. (D) 
of Table 17.8-2 gives finally 

in which XAO is the interfacial gas-phase concentration, evaluated here on the assumption of 
interfacial equilibrium. For an ideal gas mixture this is just the vapor pressure of pure A di- 
vided by the total pressure. 

The equation of continuity of Eq. 19.1-17 then becomes 

This is to be solved with the initial and boundary conditions: 

LC.: 
B.C. 1: 

B.C. 2: 

We can try the same kind of combination of variables used in Example 4.1-1; namely, X = 

xA/xA0 and Z = z / - .  However, since Eq. 20.1-5 contains the parameter X A ~ ,  we can an- 
ticipate that X will depend not only on Z but also parametrically on xAo. 

In terms of these dimensionless variables, Eq. 20.1-5 can be written as 

Here the quantity 

is a dimensionless molar average velocity, 9 = v : m ,  as can be seen by comparing Eqs, 
20.1-10 and 20.1-4. The initial and boundary conditions in Eqs. 20.1-6 to 8 now become 

B.C. 1: 

B.C. 2 and I.C.: 

Equation 20.1-9 can be attacked by first letting d X / d Z  = Y. This gives a first-order differential 
equation for Y that can be solved to obtain 
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This gives on integration 

Combining this result with Eqs. 20.1-11 and 12, we get 

Then we use the definition of the error function and some of the properties of this function, in 
particular, -erf(-cp) = erf cp and erf = 1 (see 5C.6). This leads to the final expression for the 
mole fraction distribution:' 

erf(Z - cp) + erf cp 1 - erf(Z - cp) 
X(Z) = 1 - - - 

erf + erf cp 1 + erf cp 

To get the function cp(xA0), this mole fraction distribution has to be substituted into Eq. 20.1-10. 
This gives 

Rather than solving this to get (D as a function of xAo, it is easier to evaluate xAo as a function of 9: 

1 
X~~ = 

1 + [l/;f(l + erf q)cp exp cp21-' 

A small table of p(xAo) is given in Table 20.1-1, and the concentration profiles are shown in 
Fig. 20.1-1. 

We can now calculate the rate of production of vapor from a surface of area S. If VA is the 
volume of A produced by evaporation up to time t, then 

Table 20.1-1   able' of (p(xAo) and $(xA,) 

' J. H. Arnold, Trans. AIChE, 40,361-378 (1944). Jerome Howard Arnold (1907-1974) taught at MIT, 
the University of Minnesota, the University of North Dakota, and the University of Iowa; he worked for 
Standard Oil of California (1944-1948) and was the director of the Contra Costa Transit District 
(1956-1960). 
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Fig. 20.1-1. Concentration profiles in time-dependent evaporation, showing 
that the d e v i a t i ~  from Fick's law increases with the volatility of the evapo- 
rating liquid. 

Integration with respect to t then gives 

This relation can be used to calculate the diffusivity from the rate of evaporation (see Problem 
20A.1). 

We can now assess the importance of including the convective transport of species A in 
the tube. If Fick's second law (Eq. 19.1-18) had been used to determine X, we would have ob- 
tained 

Thus we can rewrite Eq. 20.1-20 as 

The factor I) = (Pfi/~AO, tabulated in Table 20.1-1, is a correction for the deviation from the 
Fick's second law results caused by the nonzero molar average velocity. We see that the devi- 
ation becomes especially significant when xAO is large-that is, for liquids with large volatility. 

In the preceding analysis it is assumed that the system is isothermal. Actually, the inter- 
face will be cooled by the evaporation, particularly at large values of xA0. This effect can be 
minimized by using a small-diameter tube made of a good thermal conductor. For applica- 
tion to other mass transfer systems, however, the analysis given here needs to be extended by 
including the solution to the energy equation, so that the interfacial temperature and compo- 
sitions can be calculated (see Problem 20B.2). 

This analysis can be extended2 to include interphase transfer of both species, with any 
time-independent flux ratio NAzO/NBzo and any initial gas composition x,,. A simple example 
of such a system is the diffusion-controlled reaction 2A -+ B on a catalytic solid at z = 0, with 

W. E. Stewart, J. B. Angelo, and E. N. Lightfoot, AlChE Journal, 16,771-786 (19701, have 
generalized this example and the following one to forced convection in three-dimensional flows, 
including turbulent systems. 
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EXAMPLE 20.1-2 

Gas Absorption with 
Rapid 

the heat of reaction removed through the solid. The concentration profile is a generalization 
of that in Eq. 20.1-16: 

n =  x, - x,, - - erf(Z - c p )  + erf cp  
X ~ m  - x~~ 1 + erf cp 

The dimensionless flux c p  now depends on XA,, xAm, and the ratio N,,,/NAZ,: 

1 (XAO - XA=)(NA~O + NB~o) dII 
c P = -  2 NAz0 - x,,(Nh, + NB,) *Z Iz=, (20.1 -24) 

The relation between the interfacial fluxes and the terminal compositions is 

(xAO - X A ~ ) ( N A ~ O  + NB~o) = + erf c p ) c p  exp cp2 
NA~O - XAO(NA~O + NB~o) 

Equations 20.1-16,10, and 18 are included as special cases of the last three equations. The last 
one is a key result for mass transfer calculations (see 522.8). 

Gas A is absorbed by a stationary liquid solvent S, the latter containing solute B. Species A re- 
acts with B in an instantaneous irreversible reaction according to the equation aA + bB + 

Products. It may be assumed that Fick's second law adequately describes the diffusion 
processes, since A, B, and the reaction products are present in S in low concentrations. Obtain 
expressions for the concentration profiles. 

Because of the instantaneous reaction of A and B, there will be a plane parallel to the 
liquid-vapor interface at a distance z ,  from it, which separates the region containing no A 
from that containing no B. The distance z, is a function of t, since the boundary between A 
and B retreats as B is used up in the chemical reaction. 

The differential equations for c, and c, are then 

d c ~  d2cB 
- = BBS - for z,(t) 5 z < 
df dz2 

These are to be solved with the following initial and boundary conditions: 

LC.: a t t  = 0, CB = Cgm forz > 0 (20.1-28) 

B.C. 1: at z = 0, CA = C~~ (20.1-29) 

B.C. 2,3: at z = z,(f), CA = cB = 0 (20.1-30) 

B.C. 4: 

B.C. 5: a tz  = m, (20.1-32) 

Here c,, is the interfacial concentration of A, and c,, is the original concentration of B. The 
fourth boundary condition is the stoichiometric requirement that a moles of A consume b 
moles of B (see Problem 20B.2). 

T. K. Sherwood, R. L. Pigford, and C. R. Wilke, Absorption and Extraction, 3rd edition, McGraw- 
Hill, New York (1975), Chapter 8. See also G. Astarita, Mass Transfer with Chemical Reaction, Elsevier, 
Amsterdam (1967), Chapter 5. 

For related problems with moving boundaries associated with phase changes, see H. S. Carslaw 
and J. C. Jaeger, Conduction of Heat in Solids, 2nd edition, Oxford University Press (1959). See also S. G. 
Bankoff, Advances in Chemical Engineering, Academic Press, New York (1964), Vol. 5, pp. 76-150; J. Crank, 
Free and Moving Bounday Problems, Oxford University Press (1984). 
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The absence of a characteristic length in this problem, and the fact that c, = c,, both at 
t = 0 and z = w, suggests trying a combination of variables. Comparison with the previous 
example (without the v: term) suggests the following trial solutions: 

c A -- Z 
- C, + C,erf- for 0 I z 5 zR(t) 

CAO v"GJ 
C~ Z - = C3 + C4erf- for zR(t) 5 z < 

C B ~  V ' q J  

These functions satisfy the differential equations, and if the constants of integration, C1 to C4, 
can be so chosen that the initial and boundary conditions are satisfied, we will have the com- 
plete solution to the problem. 

Application of the initial condition and the first three boundary conditions permits the 
evaluation of the integration constants in terms of zR(t), thereby giving 

1 - erf(~/V'49,~t) 
for z&) 5 z < w 

1 - e r f ( z R / w )  

B.C. 5 is then automatically satisfied. Finally, insertion of these solutions into B.C. 4 gives the 
following implicit equation from which zR(t) can be obtained: 

Here y is a constant equal to z;/4t. Thus zR increases as V% 
To calculate the concentration profiles, one first solves Eq. 20.1-37 for G, and then in- 

serts this value for z , / f i  in Eqs. 20.1-35 and 36. Some calculated concentration profiles are 
shown in Fig. 20.1-2 (for a = b), to illustrate the rate of movement of the reaction zone. 

From the concentration profiles we can calculate the rate of mass transfer at the interface: 

Distance from interface (mm) 

Fig. 20.1-2. Gas absorption with rapid chemical reaction, with concen- 
tration profiles given by Eqs. 20.1-35 to 37 (for a = b). This calculation 
was made for 9,, = 3.9 X ft2/hr and '3,, = 1.95 X lop5 fP/hr [T. K. 
Sherwood and R. L. Pigford, Absorption and Extraction, McGraw-Hill, 
New York (1952), p. 3361. 
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The average rate of absorption up to time t is then 

Hence the average rate up to time t is just twice the instantaneous rate. 

When species A diffuses in a liquid medium B and reacts with it irreversibly (A + B + C) ac- 
cording to a pseudo-first-order reaction, then the process of diffusion plus reaction is de- 

Unsteady Diffusion scribed by 
with First-Order 
Homogeneous 
~ e a c t i o n ~ - ~  

SOLUTION 

provided that the solution of A is dilute and that not much C is produced. Here kr is the rate 
constant for the homogeneous reaction. Equation 20.1-40 is frequently encountered with the 
initial and boundary conditions 

and with a velocity profile independent of time. For such problems show that the solution is 

Here f is the solution of Eqs. 20.1-40 to 42 with k: = 0 and o,, = 0, whereas g is the solution 
with ky = 0 and o,, = 0. 

This problem is linear in o,. It may, therefore, be solved by a superposition of two simpler 
problems: 

W A  = 02) + 02) (20.1-44) 

with wg' described by the equations 

j P. V. Danckwerts, Trans. Faraday Soc., 47,1014-1023 (1951). Peter Victor Danckwerts (1916-1984) 
was bomb disposal officer for the Port of London during "the Blitz" and was wounded in a mine field in 
Italy during WWII; while teaching at Imperial College in London and at Cambridge University he 
directed research on residence-time distribution, diffusion and chemical reaction, and the role of 
diffusion in gas absorption. 

A. Giuliani and F. P. Foraboschi, Atti. Acad. Sci. Inst. Bologna, 9,l-16 (1962); F. P. Foraboschi, ibid., 
11,l-14 (1964); F. P. Foraboschi, AlCkE Journal, 11,752-768 (1965). 

E. N. Lightfoot, AIChE Journal, 10,278-284 (1964). 
". E. Stewart, Ckem. Eng. Sci., 23,483487 (1968); corrigenda, ibid., 24,1189-1190 (1969). There this 

approach was generalized to time-dependent flows with homogeneous and heterogeneous first-order 
reactions. 
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and wy) described by 

We now proceed to solve these two auxiliary problems by means of Laplace transform. 
Taking the Laplace transform of the equations for w$' gives 

P.D.E. + I.C.: (p + k;")w2' - uAI(x, y, Z) + i~ VW?)) = 9JABV 2-(1) W A  (20.1-51) 
- 

B.C. at surfaces: = 0 (20.1-52) 

Now, the function g in Eq. 20.1-43 is the solution for "2' with k;" replaced by zero. Corre- 
spondingly the Laplace transform satisfies Eqs. 20.1-51 and 52 with p  + k;" replaced by p: 

Hence by taking $e inverse Laplace transform we get 

which is the first part of the solution. 
Next, taking the Laplace transform of Eqs. 20.1-48 to 50 gives 

P.D.E. + I.C.: (p + k;")Gz' + (V ' V W ~ ' )  = %ABV2Gg' 

B.C. at surfaces: (20.1-56) 

The Laplace transform f satisfies the same two equations with k;" replaced by zero. That is, if 
we now use s for the transform variable in lieu of p, we have 

P.D.E. + 1.C.: sj + (v vf ) = GJABv2f (20.1-57) 

B.C. at surfaces: - 1 f = s ~ A O ( X I  y, 2) (20.1-58) 

We see that the function sf satisfies the same boundary condition as p@ and that the differ- 
ential equations for sf and pWf)  are identical when s = p + k"'. Hence 

Taking the inverse transform then gives 

as the second part of the solution. Addition of the two parts of the solution, wg' and my), then 
gives Eq. 20.1-43 directly. 

Equation 20.1-43 provides a means for predicting concentration profiles in reacting sys- 
tems from calculations or experiments on nonreacting systems at the same flow conditions. 
Several extensions of this treatment are available, including multicomponent systems: turbu- 
lent and more general boundary  condition^.^-^ 

Y.-H. Pao, AIM Journal, 2,1550-1559 (1964); Ckem. Eng. Sci., 19,694-696 (1964); ibid., 20,665469 
(1965). 
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Fig. 20.1-3. Time-dependent diffusion from a 
soluble wall of A into a semi-infinite column of 
liquid B. 

Figure 20.1-3 shows schematically the concentration profiles for the diffusion of A from a 
slightly soluble wall into a semi-infinite body of liquid above it. If the density and diffusivity 

Infruence of Changing areconstants, then this problem is the mass transfer analog of the problems discussed in gg4.1 
Interfacial Area on and 12.1. The diffusion is described by the one-dimensional version of Fick's second law, Eq. 
Mass Transfer a t  an 19.1-18, 
~nterfacel~," 

SOLUTION 

along with the initial condition that cA = 0 throughout the liquid, and the boundary condi- 
tions that cA = cA, at the solid-liquid interface and c, = 0 infinitely far from the interface. The 
solution to this problem is 

from which we can get the interfacial flux 

Equation 20.1-63 is the mass transfer analog of Eqs. 4.1-15 and 12.1-8. 
In Fig. 20.1-4 we depict a similar problem in which the interfacial area is changing with 

time as the liquid spreads out in the x and y directions, so that the interfacial area is a function 
of time, SO). The initial and boundary conditions for the concentration are kept the same. We 
wish to know the function cA(z, t )  for this system. 

The velocity distribution for this varying interfacial area problem is v, = +$ax, v, = +;fly, 
v, = -az, where a = d In S/d t .  Then the diffusion equation for this system is 

'" D. Ilkovic', Collec. Czechoslov. Chem. Comm., 6,498-513 (1934). The final result in this section was 
obtained by Ilkovit in connection with his work on the dropping-mercury electrode. 

"V. G. Levich, Physicochemical Hydrodynamics, 2nd edition (English translation), Prentice-Hall, 
Englewood Cliffs N.J. (1962), $108. This book contains a wealth of theoretical and experimental results on 
diffusion and flow phenomena in liquids and two-phase systems. 
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Semi-infinite medium 
in region z 2 0. The 

mass transfer surface 
S( t )  changes with time / 

Fig. 20.1-4. Time-dependent diffusion across a mass transfer interface 
S(t) that is changing with time. The liquid B, in the region above the 
plane z = 0, has a velocity distribution v, = ++ax, v, = +$ay, and 
vZ = -az, where a = d In S/d t .  

7 

Since Eq. 20.1-62 is solved by the method of combination of variables, the same technique can 
be tried here. We postulate 

' A Z 
- = g(5) with 5 = -- 
' A ,  8 0 )  

Substitution of this trial solution into Eq. 20.1-65 gives 

If we set the expression within the brackets equal to unity, then we accomplish two things: (i) 
we obtain an equation for g that has the same form as Eq. 4.1-9, to which the solution is 
known; (ii) we get an equation for 8 as a function of t :  

This equation may be integrated to give 

The lower limit on the left side is chosen so as to ensure that c, = 0 initially throughout the 
fluid. This choice then leads to 

and we get finally for the concentration profiles 

The interfacial mass flux is then obtained by differentiating Eq. 20.1-71 to get 
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The total number of moles of A that have crossed the interface at time t through the surface 
S(t) can be obtained from integration of Eq. 20.1-71 as follows: 

An equivalent expression can be obtained by integrating Eq. 20.1-72: 

Both Eq. 21.1-73 and Eq. 21.1-74 can be checked by verifying that dMA/dt = N,,,(t)S(t). 
If S(t) = atn, where a is a constant, the above results simplify to 

For the diffusion into the surrounding liquid from a gas bubble whose volume is increasing 
linearly with time, n = $ and 2n + 1 = g. This is of course an approximate result, in which cur- 
vature has been neglected, and is therefore valid only for short contact times. Related results 
have been obtained for interfaces of arbitrary shapesr2,12 and experimentally verified for sev- 
eral laminar and turbulent ~ysterns.~,'~ 

520.2 STEADY-STATE TRANSPORT IN 
BINARY BOUNDARY LAYERS 

In 512.4 we discussed the application of boundary layer analysis to nonisothermal flow 
of pure fluids. The equations of continuity, motion, and energy were presented in 
boundary layer form and were solved for some simple situations. In this section we ex- 
tend the set of boundary layer equations to binary reacting mixtures, adding the equa- 
tion of continuity for species A so that the concentration profiles can be evaluated. Then 
we analyze three examples for the flat-plate geometry: one on forced convection with a 
homogeneous reaction, one on rapid mass transfer, and one on analogies for small mass- 
transfer rates. 

"J. B. Angelo, E. N. Lightfoot, and D. W. Howard, AKhE Journal, 12,751-760 (1966). 
l3  W. E. Stewart, in Physicochemical Hydrodynamics (D. B. Spalding, ed.), Advance Publications Ltd., 

London, Vol. I (1977), pp. 22-63. 
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Consider the steady, two-dimensional flow of a binary fluid around a submerged ob- 
ject, such as that in Fig. 4.4-1. In the vicinity of the solid surface, the equations of change 
given in 5918.2 and 3 may be simplified as follows, provided that p, p, k, ep, and 9AB are 
essentially constant (except in the pg term), and that viscous dissipation can be neglected: 

Continuity: 

Motion: 

Energy: 

Continuity of A: 

dv, dv, 
-- + - = 0 
dx dy 

The equation of ~ontinuity is the same as Eq. 12.4-1. The equation of motion, obtained 
from Eq. 19.2-3, differs from Eq. 12.4-2 by the addition of the binary buoyant force term 
%z(oA - oAm). The energy equation, obtained from Eq. (F) of Table 19.2-4, differs from 
Eq. 12.4-3 by the addition of the chemical heat-source term -[(KIM,) - (%/~,)lr,.,. 
Equation 20.2-4 is obtained from Eq. 19.1-16 by setting oA = wA(x, y) and neglecting the 
diffusion in the x direction. More complete equations, valid for high-velocity, variable- 
property boundary layers, are available elsewhere.' 

The usual boundary conditions on v, are that v, = 0 at the solid surface, and v, = 

v,(x) at the outer edge of the velocity boundary layer. The usual boundary conditions on T 
in Eq. 20.2-3 are that T = T,(x) at the solid surface, and T = T ,  at the outer edge of the 
thermal boundary layer. The corresponding boundary conditions on w, in Eq. 20.2-4 are 
that o, = w,,(x) at the surface and o, = o,, at the outer edge of the difusional boundary 
layer. Thus there are now three boundary layers to consider, each with its own thickness. 
In fluids with constant physical properties and large Prandtl and Schmidt numbers, the 
thermal and diffusional boundary layers usually lie within the velocity boundary layer, 
whereas for Pr < 1 and Sc < 1 they may extend beyond it. 

For mass transfer systems the velocity vy at the surface is usually not zero, but de- 
pends on x. Hence we set vy = v,(x) at y = 0. This boundary condition is appropriate when- 
ever there is a net mass flux between the surface and the stream, as in melting, drying, 
sublimation, combustion of the wall, or transpiration of the fluid through a porous wall. 
Clearly, some of these processes are possible with pure fluids, but for simplicity we have 
deferred their consideration to this chapter (see also 5918.3 and 22.8 for related analyses). 

With the help of the equation of continuity, Eqs. 20.2-1 to 4 can be formally inte- 
grated, with the boundary conditions just given, to obtain the following set of boundary 
layer balances: 

Continuity + motion: 

Continuity + energy: 

See, for example, W. H. Dorrance, Viscous Hypersonic Flow, McGraw-Hill, New York (1962), and 
K. Stewartson, The Theory of Laminar Boundary Layers in Compressible Fluids, Oxford University Press (1964). 
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Continuity + continuity of A: 

These equations are extensions of the von Ka'rmtin balances of 554.4 and 12.4 and may be 
similarly applied, as shown in Example 20.2-1. 

Boundary layer techniques have been of considerable value in developing the the- 
ory of high-speed flight, separations processes, chemical reactors, and biological mass 
transfer systems. A few of the interesting problems that have been studied are chemical 
reactions in hypersonic boundary layers: mass transfer from dropletsI2 electrode polar- 
ization in forced convection2 and free convection,3 reverse-osmosis water desalination: 
and interphase transfer in packed-bed reactors and distillation c ~ l u m n s . ~  

EXAMPLE 20.2-1 

Diffusion and Chemical 

An appropriate mass transfer analog to the problem discussed in Example 12.4-1 would be 
the flow along a flat plate that contains a species A slightly soluble in the fluid B. The concen- 
tration at the plate surface would be c,,, the solubility of A in B, and the concentration of A far 

I h ~ t i o n  in I s ~ t ~ ~ ~ a l  from the plate would be cA,. In this example we let c,, = 0 and break the analogy with Exam- 
Laminar Flow Along a ple 12.4-1 by letting A react with B by an nth order homogeneous reaction, so that RA = 
Soluble Flat Plate -k,"'c;. The concentration of dissolved A is assumed to be small, so that the physical proper- 

ties p, p, and %,, are virtually constant throughout the fluid. We wish to analyze the system, 
sketched in Fig. 20.2-1, by the von KArmAn method. 

SOLUTION We begin by postulating forms for the velocity and concentration profiles. To minimize the 
algebra and still illustrate the method, we select simple functions (clearly one can suggest 
more realistic functions): 

approaches with ~ Z = O  
velocity /,8,(~) 

71 

Fig. 20.2-1. Assumed velocity and con- 
centration profiles for the laminar bound- 
ary layer with homogeneous chemical 

' Concentration C,O reictibn. 

V. G. Levich, Physicochemical Hydrodynamics, 2nd edition (English translation), Prentice-Hall, 
Englewood Cliffs, N.J. (1962). 

C. R. Wilke, C. W. Tobias, and M. Eisenberg, Chem. Eng. Prog., 49,66-74 (1953). 
W. N. Gill, D. Zeh, and C. Tien, Ind. Eng. Chem. Fund., 4,433439 (1965); ibid., 5,367-370 (1966). 

See also P. L. T. Brian, ibid., 4,439445 (1965). 
J. P. Sdrensen and W. E. Stewart, Chem. Eng. Sci., 29,833-837 (1974); W.  E. Stewart and 

D. L. Weidman, ibid., 45,2155-2160 (1990); T .  C. Young and W. E. Stewart, AIChE Journal, 38,592-602, 
1302 (1992). 
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Note that we use different thicknesses, 6 and a,, for the velocity and concentration boundary 
layers. In order to relate this problem to that of Example 12.4-1, we introduce the quantity 
A = 6J6, which in this case is a function of x because of the chemical reaction occurring. We 
restrict the discussion to A 5 1, for which the concentration boundary layer lies entirely 
within the velocity boundary layer. We can also neglect the interfacial velocity vo = v,l,=,, 
which is small here because of the small solubility of A. Insertion of these expressions into 
Eqs. 20.2-5 and 7 then gives the differential equations 

for the boundary layer thicknesses 6 and 6, = SA. 
Equation 20.2-10 is readily integrated to give 

I 

Insertion of this regult into Eq. 20.2-11 and multiplication by -6A/vc,, gives 

as the differential equation for A. Thus A depends on the Schmidt number, Sc = p/pQAB, and 
on the dimensionless position coordinate shown in the square brackets. The bracketed quan- 
tity is 1 /(n + 1) times the first Damkohler number6 based on the distance x. 

When no reaction is occurring, ky is zero, and Eq. 20.2-13 becomes a linear first-order reac- 
tion for A3. When that equation is integrated, we get 

in which C is a constant of integration. Because A does not become infinite as x --+ 0, we obtain 
in the absence of chemical reaction (cf. Eq. 12.4-15): 

That is, when there is no reaction and Sc > 1, the concentration and velocity boundary layer 
thicknesses bear a constant ratio to one another, dependent only on the value of the Schmidt 
number. 

When a slow reaction occurs (or when x is small), a series solution to Eq. 20.2-13 can be ob- 
tained: 

A = S C ~ ' / ~ ( ~  + a,t + a2t2 + . . a) 

in which 

Substitution of this expression into Eq. 20.2-13 gives 

Because a, is negative, the concentration boundary layer thickness is diminished by the chem- 
ical reaction. 

G. Damkohler, Zeits. f. Electrochemie, 42,846-862 (1936); W .  E. Stewart, Chem. Eng. Prog. Symp. 
Series, #58, 61,16-27 (1965). 
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When a fast reaction occurs (or when x is very large), a series solution in I / (  is more ap- 
propriate. For large t ,  we assume that the dominant term is of the form A = const. e 5" where 
rn < 0. Substitution of this trial function into Eq. 20.2-13 then shows that 

A = ( s c@-~ /~  for large 5 (20.2-19) 

Combination of Eqs. 20.2-12 and 19 shows that, at large distances from the leading edge, 
the concentration boundary layer thickness 6, = 6 A  becomes a constant independent of v, 
and v. 

Once A@, Sc) is known, then the concentration profiles and the mass transfer rate at 
the surface may be found. A more refined treatment of this problem has been given else- 
where.7 

The laminar boundary layer on a flat plate (see Fig. 20.2-2) has been a popular system for heat 
and mass transfer studies. In this example, we give an analysis of subsonic forced convection 

Forced Convection from in this geometry at high mass-transfer rates, and discuss the analogies that hold in this situa- 
a Flat Plate at High tion. This example is an extension of Example 4.4-2. 
Mass-Transfer Rates 

SOLUTION 

Consider the nonisothermal, steady, tyo-dimensional flow of a binary fluid in the system of 
Fig. 20.2-2. The fluid properties p, p, C,, k, and 9,+, are considered constant, viscous dissipa- 
tion is neglected, and there are no homogeneous chemical reactions. The Prandtl boundary 
layer equations for the laminar region are 

Continuity: 

Motion: 

Energy: 

Continuity of A. 

dv, dv, d2vx 
v,--+v - = v -  

dx Y dy dy2 

Outer flow: 11,  = 1 Transition 
+ 1 1 ,  = 1 region I. 

1 1 ,  = 1 

Line of constant I1 

Y Fig. 20.2-2. TangentiaI flow along a 
sharp-edged semi-infinite flat plate 

, , with mass transfer into the stream. 
The laminar-turbulent transition 

I I T  = 0 usually occurs at a length Reynolds 
Leading edge 11, = 0 number (xv,/v),,,, on the order of 

'The boundary layer below the plate 1s omitted here lo5 to lo6. 

-- 

P. L. Chambre and J. D. Young, Physics of Fluids, 1,48-54 (1958). Catalytic surface reactions in 
boundary layers have been studied by P. L. Chambr6 and A. Acrivos, J. Appl. Pkys., 27,1322-1328 (1956). 
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The boundary conditions are taken to be: 

Here the function vO(x) stands for V&X, y) evaluated at y = 0 and describes the distribution of 
mass transfer rate along the surface. This function will be specified later. 

Equation 20.2-20 can be integrated, with the boundary condition of Eq. 20.2-26, to give 

This expression isto be inserted for v, into Eqs. 20.2-21 to 23. 
To capitalize on the analogous form of Eqs. 20.2-21 to 23 and the first six boundary condi- 

tions, we define the dimensionless profiles 

and the dimensionless physical property ratios 

With these definitions, and the above equation for v,, Eqs. 20.2-21 to 23 all take the form 

and the boundary conditions on the dependent variables reduce to the following: 

Thus the dimensionless velocity, temperature, and composition profiles all satisfy the same 
equation, but with their individual values of A. 

The form of the boundary conditions on n suggests that a combination of variables be 
tried. By analogy with Eq. 4.4-20 we select the combination: 

Then by treating l7 and as functions of 77 (see Problem 20B.3), we obtain the differential 
equation 

with the boundary conditions 
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From the last three equations we conclude that the profiles will be expressible in terms of the 
single coordinate q, if and only if the interfacial velocity vo(x) is of the form 

Any other functional form for v,(x) would cause the left side of Eq. 20.2-34 to depend on both 
x and q, SO that a combination of variables would not be possible. The boundary layer equa- 
tions would then require integration in two dimensions, and the calculations would become 
more difficult. Equation 20.2-37 specifies that vo(x) vary as 1 / f i ,  and thus, inversely with the 
boundary layer thickness 6 of Eq. 4.4-17.This equation has the same range of validity as Eq. 
20.2-34, that is, 1 << (v,x/v) < (v,x/v),,, (see Fig. 20.2-2). 

Fortunately the condition in Eq. 20.3-37 is a useful one. It corresponds to a direct propor- 
tionality of pv, to the interfacial fluxes 70, qO, and jAO. Conditions of this type arise naturally in 
diffusion-controlled surface reactions, and also in certain cases of drying and transpiration 
cooling. The determination of K for these situations is considered at the end of this example. 
Until then we treat K as given. 

With the specification of v,(x) according to Eq. 20.2-37, the problem statement is com- 
plete, and we are ready to discuss the calculation of the profiles. This is best done by numeri- 
cal integration, with specified values of the parameters A and K. 

The first step in the solution is to evaluate the velocity profile ll,. For this purpose it is 
convenient to introduce the function 

which is a generalization of the dimensionless stream function f used in Example 4.4-2. Then 
setting A = 1 in Eq. 20.2-34 and making the substitutions f' = df/dq = II,, f" = d2f/dV2 = 

dII,/dv, and so on, gives the equation of motion in the form 

and Eqs. 20.2-35,36, and 38 give the boundary conditions 

Equation 20.2-39 can be solved numerically with these boundary conditions to obtain f as a 
function of q for various values of K. 

Once the function f(q, K )  has been evaluated, we can integrate Eq. 20.2-34 with the 
boundary conditions in Eqs. 20.2-35 and 36 to obtain 

Some profiles calculated from this equation by numerical integration are given in Fig. 20.2- 
3. The velocity profiles are given by the curves for A = 1. The temperature and composition 
profiles for various Prandtl and Schmidt numbers are given by the curves for the corre- 
sponding values of A. Note that the velocity, temperature, and composition boundary lay- 
ers get thicker when K is positive (as in evaporation) and thinner when K is negative (as in 
condensation). 
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Fig. 20.2-3. Velocity, temperature, and composition profiles in the laminar boundary layer on a 
flat plate with mass transfer at the wall [H. S. Mickley, R. C. Ross, A. L. Squyers, and W. E. Stew- 
art, NACA Technical Note 3208 (1954).1 

The gradients of the velocity, temperature, and composition at the wall are obtainable 
from the derivative of Eq. 20.2-43: 

Some values computed from this formula by numerical integration are then given in Table 
20.2-1. 

Table 20.2-1 Dimensionless Gradients of Velocity, Temperature, and Composition in Laminar Flow Along a Flat Plate" 

" Taken from the following sources: E. Elzy and R. M. Sisson, Engineering Experiment Station Bulletin No. 40, Oregon State University, 
Corvallis, Or. (1967); H. L. Evans, Int. J. Heat and Mass Transfer, 3,321-339 (1961); W .  E. Stewart and R. Prober, Int. J. Heat and Mass 
Transfer, 5,1149-1163 (1962) and 6,872 (1963). More complete results, and reviews of earlier work, are given in these references. 

The value K = 0.87574 is the largest positive mass transfer rate attainable in this geometry with steady laminar flow. See 
H. W. Emmons and D. C. Leigh, Interim Technical Report No. 9, Combustion Aerodynamics Laboratory, Harvard University (1953). 
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The molecular fluxes of momentum, energy, and mass at the wall are then given by the 
dimensionless expressions 

with the tabulated values of lI'(0, A, K). Thus the fluxes can be computed directly when K 
is known. These expressions are obtained from the flux expressions of Newton, Fourier, 
and Fick, and the profiles as given in Eq. 20.2-43. The energy flux qo here corresponds to 
the conduction term -kVT of Eq. 19.3-3; the diffusive flux j,, is obtained by using Eq. 20.2-47 
above. 

The fluid properties p, p, ep, k, and PA, have been treated as constants in this develop 
ment. However, Eqs. 20.2-45 to 47 have been found to agree closely with the corresponding 
variable-property  calculation^,^'^ provided that K is generalized as follows, 

and that p, p, $, k, and are evaluated at the "reference conditions" Ti = :(T, + T.) and 
U A ~  = $ b A O  + @Am). 

In many situations, one of the following dimensionless quantities 

is known or readily computed. These flux ratios, R, are independent of x under the present 
boundary conditions and are related to A and K as follows, 

according to Eqs. 20.2-45 to 51. From Eq. 20.2-52 we see that the dimensionless interfacial 
mass flux K can be tabulated as a function of R and A, by use of the results in Table 20.2-1. 
Then K can be found by interpolation if the numerical values of R and A are given for one of 
the three profiles (i.e., if we can specify R,, or R, and Pr, or R, and Sc.) Convenient plots of 
these relations are given in Figures 22.8-5 to 7. 

As a simple illustration, suppose that the flat plate is porous and is saturated with liquid 
A, which vaporizes into a gaseous stream of A and B. Suppose also that gas B is noncondens- 
able and insoluble in liquid A, and that wAo and o,, are given. Then R, can be calculated from 

- - 

For calculations of momentum and energy transfer in gas flows with K = 0, see E. R. G. Eckert, 
Trans. A.S.M.E., 78,1273-1283 (1956). 

For calculations of momentum and mass transfer in binary and multicomponent gas mixtures, see 
W. E. Stewart and R. Prober, Ind. Eng. Chem. Fundamentals, 3,224-235 (1964); improved reference 
conditions are provided by T. C. Young and W. E. Stewart, ibid., 25,276482 (19861, as noted in 922.9. 

lo For other methods of applying Eq. 20.2-47 to variable-property fluids, see 0. T. Hanna, AIChE 
Joltrnnl, 8,278-279 (1962); 11,706-712 (1965). 
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Table 20.2-2 Coefficients for the Approximate Flat-Plate Formulas," Eqs. 20.2-54 and 55 

" Taken from H. J. Merk, Appl. Sci. Res., A8,237-277 (1959), and R. Prober and W. E. Stewart, Int. 1. Heat and Mass Transfer, 6,221-229, 

Eq. 20.2-51 with n, = 0, and K can be found by ihterpolating the function K(R, A) to R = A, 
and A = p/pQAB. 

For moderate values of K, the calculations can be simplified by representing II'(0, A, K) 
as a truncated Taylor series in the parameter K: 

This expansion can be written more compactly as 

in which a and b are slowly varying functions of A, given in Table 20.2-2. Insertion of 
Eq. 20.2-54 into Eq. 20.2-52 gives the convenient expression for the dimensionless interfa- 
cial mass flux K 

for calculations with unknown parameter K. This result is easy to use and fairly accurate. The 
predicted function K(R, A) is within 1.6% of that found from Table 20.2-1 for (R( < 0.25 and 
A > 0.1. 

This example illustrates the related effects of the interfacial velocity v, on the velocity, 
temperature, and composition profiles. The effect of vo on a given profile, II, is small if R << 
1 for that profile (as in most separation processes) and large if R 2 1 (as in many combustion 
and transpiration cooling processes). Some applications are given in Chapter 22. 

EXAMPLE 20.2-3 

Approximate Analogies 
for the Flat Plate a t  
Low Mass-Transfer 
Rates 

Pohlhausen" solved the energy equation for the system of Example 12.1-2 and curve-fitted 
his results for the heat transfer rate Q (see third line of Table 12.4-1). Compare his result with 
Eq. 20.2-46, and derive the corresponding results for the momentum and mass fluxes. 

SOLUTION 

By inserting the coefficient 0.664 in place of v148/315 in Eq. 12.4-17, and setting 2Wqo(x) = 

(dQldL)I,,,, we get 

This result is subject to the boundary condition v,,(x) = 0, which corresponds to K = 0 in the 
system of Example 20.2-2. 

" E. Pohlhausen, Zeits. f. angew. Math. Mech., 1,115-121 (1921). 



520.3 Steady-State Boundary Layer Theory for Flow Around Objects 633 

Equation 20.2-56 is obtainable from Eq. 20.2-46 when K = 0 by setting IIf(O, Pr, 0) = 
0.4696~r"~; this agrees with Table 20.2-2 at A = 1. Making comparable substitutions in Eqs. 
20.2-45 and 46, we get the convenient analogy 

which has been recommended by Chilton and Colburn12 for this flow situation (cf. 5514.3 and 
22.3). The expression for agrees with the exact solution at K = 0, and the results for qo and 
j,, are accurate within 22% at K =O for A > 0.5. 

520.3 STEADY-STATE BOUNDARY LAYER THEORY 
FOR FLOW AROUND OBJECTS 

In 9518.5 and 6 we discussed two related mass transfer problems of boundary layer type. 
Now we want to enlarge'-7 on the ideas presented there and consider the flow around 
objects of other shapes such as the one shown in Fig. 12.4-2. Although we present the 
material in this section in terms of mass transfer, it is understood that the results can be 
taken over directly for the analogous heat transfer problem by appropriate changes of 
notation. The concentration boundary layer is presumed to be very thin, which means 
that the results are restricted either to small diffusivity or to short exposure times. The 
results are applicable only to the region between the forward stagnation locus (from 
which x is measured) and the region of separation or turbulence, if any, as indicated in 
Figure 12.4-2. 

The concentration of the diffusing species is called c,, and its concentration at the 
surface of the object is c,,. Outside the concentration boundary layer, the concentration 
of A is zero. 

Proceeding as in Example 12.4-3, we adopt an orthogonal coordinate system for the 
concentration boundary layer, in which x is measured along the surface everywhere in 
the direction of the streamlines. The y-coordinate is perpendicular to the surface, and the 
z-coordinate is measured along the surface perpendicular to the streamlines. These are 
"general orthogonal coordinates," as described in Eqs. A.7-10 to 18, but with h, = 1, and 
h, = hx(x, z )  and h, = h,(x, z). Since the flow near the interface does not have a velocity 
component in the z direction, the equation of continuity there is 

'' T. H. Chilton and A. P. Colburn, Ind. Eng. Chem., 26,1183-1187 (1934). 
' A. Acrivos, Chem. Eng. Sci., 17,457-465 (1962). 
W .  E. Stewart, AKhE Journal, 9,528-535 (1963). 
D. W. Howard and E. N. Lightfoot, AlChE lournal, 14,458-467 (1968). 
W .  E. Stewart, J. B. Angelo, and E. N. Lightfoot, AlChE Journal, 16,771-786 (1970). 
E. N. Lightfoot, in Lecfures in Transport Phenomena, American Institute of Chemical Engineers, New 

York (1969). 
E. Ruckenstein, Chem. Eng. Sci., 23,363-371 (1968). 
W .  E. Stewart, in Physicochemical Hydrodynamics, Vol. 1 (D. B. Spalding, ed.), Advance 

Publications, Ltd., London (1977), pp. 22-63. 
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according to Eq. A.7-16. The diffusion equation for the concentration boundary layer is then 

where Eqs. A.7-15 and 17 have been used. In writing these equations it has been as- 
sumed that: (i) the x- and z-components of the diffusion flux are negligible, (ii) the 
boundary layer thickness is small compared to the local interfacial radii of curvature, 
and (iii) the density and diffusivity are constant. We now want to get formal expressions 
for the concentration profiles and mass fluxes for two cases that are generalizations of 
the problems solved in 518.5 and 518.6. When we get the expressions for the local molar 
flux at the interface, we will find that the dependences on the diffusivity ($power in 
518.5 and the $-power in 918.6) correspond to cases (a) and (b) below. This turns out to be 
of great importance in the establishment of dimensionless correlations for mass transfer 
coefficients, as we shall see in Chapter 22. 

Zero Velocity Gradient at the Mass Transfer Surface 

This situation ariges in a surfactant-free liquid flowing around a gas bubble. Here vx does 
not depend on y, and v, can be obtained from the equation of continuity given above. 
Therefore, for small mass-transfer rates we can write general expressions for the velocity 
components as 

V, = v,(x, Z) (20.3-3) 

where y depends on x and z. When this is used in Eq. 20.3-2, we get for the diffusion in 
the liquid phase 

which is to be solved with the boundary conditions 

B.C. 1: 
B.C. 2: 
B.C. 3: 

The nature of the boundary conditions suggests that a combination of variables treatment 
might be appropriate. However, it is far from obvious how to construct an appropriate di- 
mensionless combination. Hence we try the following: let cA/cA0 = f ir)) ,  where 77 = y/6,(x, z), 
and 6,(x, z) is the boundary layer thickness for species A, to be determined later. 

When the indicated combination of variables is introduced into Eq. 20.3-5, the equa- 
tion becomes 

with the boundary conditions: f(0) = 1 and f(w) = 0. If, now, the coefficient of the 
r)(df/dr)) term were a constant, then Eq. 20.3-9 would have the same form as Eq. 4.1-9, 
which we know how to solve. For convenience we specify the constant as 

Next we insert the expression for y from Eq. 20.3-4 and rearrange the equation thus: 
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Linear Velocity Profi 

This is a linear, first-order equation for 6:, which has to be solved with the boundary 
condition 6, = 0 at x = 0. Integration of Eq. 20.3-11 gives 

as the thickness function for the diffusional boundary layer. Since Eq. 20-3-9 and the bound- 
ary conditions then contain 7 as the only independent variable, the postulated combination 
of variables is valid, and the concentration profiles are given by the solution of Eq. 20.3-9: 

2 T  
f(7) = 1 - -- exp (-7') dTj = 1 - erfq * 0 

Equations 20.3-12 and 13 are the solution to the problem at hand. 
Next, we combine this solution with Fick's first law to evaluate the molar flux of 

species A at the interface: 

This result shows the same dependence of the mass flux on the .$power of the diffusivity 
that arose in Eq. 18.5-17, for the much simpler gas absorption problem solved there. In 
fact, if we set the scale factors h, and h, equal to unity and replace v, by v,,,, we recover 
Eq. 18.5-17 exactly. 

.le Near the Mass-Transfer Surface 

This velocity function is appropriate for mass transfer at a solid surface (see Example 
12.4-3) when the concentration boundary layer is very thin. Here v, depends linearly on 
y within the concentration boundary layer, and vy can be obtained from the equation of 
continuity. Consequently, when the net mass flux through the interface is small, the ve- 
locity components in the concentration boundary layer are 

in which y depends on x and z. Substituting these expressions into Eq. 20.3-2 gives the 
diffusion equation for the liquid phase 

which is to be solved with the boundary conditions 

B.C. 1: 
B.C. 2: 

B.C. 3: 

atx = 0, CA = 0 

aty = 0, C~ = C ~ o  
asy+m,  cA+O 

Once again, we use the method of combination of variables, by setting cA/cA0 = f(q), 
where 7 = y/SA(x, z). 

When the change of variables is made, the diffusion equation becomes 
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EXAMPLE 20.3-1 

Mass Transfer for 
Creeping Flow Around 
a Gas Bubble 

with the boundary conditions: f(0) = 1 and f(m) = 0. A solution of the form f(q) is possi- 
ble only if the factor in parentheses is a constant. Setting the constant equal to 3 reduces 
Eq. 20.3-21 to Eq. 18.6-6, for which the solution is known. Therefore we now get the 
boundary layer thickness by requiring that 

The solution of this first-order, linear equation for 61 is 

Hence the solution to the problem in this subsection is 
< 

/vmexp (-ij3) di j  
c A 
- = f(q) = 
C~~ r (3 

which reduces to Eq. 18.6-10 for the system considered there. 
Finally, we get the expression for the molar flux at the interface, which is 

For a plane surface, with h, = h, = 1 and P = constant, Eq. 20.3-26 reduces to Eq. 18.6-11. 

A liquid B is flowing very slowly around a spherical bubble of gas A of radius R. Find the rate 
of mass transfer of A into the surrounding fluid, if the solubility of gas A in liquid B is c~,. 
(a) Show how to use Eq. 20.3-14 to get the mass flux at the gas-liquid interface for this system. 
(b) Then get the average mass flux over the entire spherical surface. 

SOLUTION 

(a) Select as the origin of coordinates the upstream stagnation point, and define the coordi- 
nates x and z as follows: x = RO and z = R(sin 8)4, in which 6 and 4 are the usual spherical 
coordinates. The y direction is then the same as the r direction of spherical coordinates. The 
interfacial velocity is obtained from Eq. 4B.3-3 as v, = iv, sin 8, where v, is the approach 
velocity. 

When these quantities are inserted into Eq. 20.3-14 we get 

(R sin 13)~(iv, sin 8)' 
0 = 

(R)(R sin 8)2(:v, sin 8)d(R8) 
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(b) To get the surface-averaged value of the mass flux, we integrate the above expression 
over all 8 and 4 and divide by the sphere surface: 

R sin 8 d8 d+ 

In going from the second to the third line, we made the change of variable cos 8 = u, and 
to get the fourth line, we factored out (1 - u)  from the numerator and denominator. Equa- 
tion 20.3-28 was cited in Eq. 18.5-20 in connection with absorption from gas bubbles.' This 
equation is referred to again in Chapter 22 in connection with the subject of mass transfer 
coefficients. 

520.4 BOUNDARY LAYER MASS TRANSPORT WITH 
COMPLEX INTERFACIAL 

Time-dependent interfacial motions and turbulence are common in fluid-fluid transfer 
operations. Boundary layer theory gives useful insight and asymptotic relations for these 
systems, utilizing the thinness of the concentration boundary layers for small 9,, (as in 
liquids) or for flows with frequent boundary layer separation (as at rippling or oscillating 
interfaces). Mass transfer with simple interfacial motions has been discussed in 918.5 for a 
laminar falling film and a circulating bubble, and in Example 20.1-4 for a uniformly ex- 
panding interface. Here we consider mass transfer with more general interfacial motions. 

Consider the time-dependent transport of species A between two fluid phases, with 
initially uniform but different compositions. We start with the binary continuity equa- 
tion for constant p and 9,, (Eq. 19.1-16, divided by p): 

We now want to reduce this to boundary layer form for small %,,, and then present so- 
lutions for various forced-convection problems with controlling resistance in one phase. 

We use the following boundary layer approximations: 

(i) that the diffusive mass flux is collinear with the unit vector n normal to the 
nearest interfacial element. (This approximation is used throughout the bound- 
ary layer sections of this book. Higher-order approximations: not treated here, 
are appropriate for describing boundary layer diffusion near edges, wakes, and 
separation loci.) 

9. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J. (1962), p. 408, 
Eq. 72.9. 

' J. B. Angelo, E. N. Lightfoot, and D. W. Howard, AKhE Journal, 12,751-760 (1966). 
* W. E. Stewart, J. B. Angelo, and E. N. Lightfoot, NChE Journal, 16,771-786 (1970). 

W. E. Stewart, AKhE Journal, 33,2008-2016 (1987); 34,1030 (1988). 
J. Newman, Electroanal. Chem. and Interfacial Electrochem., 6,187-352 (1973). 
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(ii) that the tangential fluid velocity relative to the interface is negligible within the 
concentration boundary layer. (This approximation is satisfactory for 
fluid-fluid systems free of surfactants, when the interfacial drag is not too 
large.) 

(iii) that the concentration boundary layer along each interface is thin relative to the 
local radii of interfacial curvature. 

(iv) that the concentration boundary layers on nonadjacent interfacial elements do 
not overlap. 

Each of these approximations is asymptotically valid for small 9,, in nonrecirculating 
flows with nonrigid interfaces and nonzero Dw,/Dt-that is, with time-dependent con- 
centration as viewed by an observer moving with the fluid. The systems considered in 
part (a) of 520.3 are thus included, because they are time-dependent for such an observer 
(though steady for a stationary one). 

Interfacially embedded coordinates are used in this discussion, with a piecewise 
smooth interfacial grid as in Fig. 20.4-1. Each interfacial element in the system is perma- 
nently labeled with surface coordinates (u, w), and its position vector is r,(u, w, t). Each 
point in a boundary layer is identified by its distance y from the nearest interfacial point, 
together with the surface coordinates (u, w) of that point. The instantaneous position 
vector of each point (u, w, y) at time t is then 

relative to a stationary origin, as illustrated in Fig. 20.4-2. The function r,(u, w, t) gives 
the trajectory of each interfacial point (u, w, O), and the associated function n(u, w, t )  = 

(d/dy)r gives the instantaneous normal vector from each surface element toward its posi- 
tive side. These functions are computable from fluid mechanics for simple flows, and 
provide a framework for analyzing experiments in complex flows. 

Drop 1 

Drop 2 

Composite 
drop 

Fig. 20.4-1. Schematic illustration of embedded coordinates in a simple coa- 
lescence process. W.E. Stewart, J.B. Angelo, and E.N. Lightfoot, AIChE Jour- 
nal, 14,458467 (1968). 
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Time t ' 

4' Time t 

origin of // A 

Stationary 
4 I+ 
dy coordinates &' 

Fig. 20.4-2. Element dS (shaded) of a deforming interfacial area shown at two different times, 
t' and t, with the adjacent boundary layer. The vectors are (at time t): 

8' = r&u, w, t) = position vector of a point on the interface 

8 = yn(u, w, t) = vector of lengthy normal to the interface locating a point in 
the boundary layer 

+ 
OQ = r(u, W, y, t) = position vector for a point in the boundary layer 

The element of interfacial area consists of the same material particles as it moves through 

space. The magnitude of the area changes with time and is given by dS = 1 2 du X 

Similarly, the magnitude of the volume of that part of the boundary layer between y and 

y+dyisdV= 

The instantaneous volume of a spatial element du dw dy in the boundary layer (see 
Fig. 20.4-2) is 

dV = vg(u, W, y, t) du dw dy (20.4-3) 

in which dg(u, w, y, t) is the following product of the local interfacial base vectors, 
(d/du)r, and (d/dv)r,, and the normal unit vector (d/dy)r, = n, 

and is considered nonnegative in this discussion. The second equality follows because n 
is collinear with the vector product of the local interfacial base vectors, which lie in the 
plane of the interface. Correspondingly, the instantaneous area of the interfacial element 
du dw in Fig. 20.4-2 is 

in which s(u, w, t )  is the following product of the interfacial basis vectors: 
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In these interfacially embedded coordinates, the mass average velocity V relative to sta- 
tionary coordinate axes takes the form 

In this section, v is the mass average fluid velocity relative to an observer at (u, w, y), and 
(d/at)r(u, w, y, t )  is the velocity of that observer relative to the stationary origin. Taking 
the divergence of this equation gives the corollary2 (see Problem 20D.5) 

This equation states that the divergence of V differs from that of v by the local rate of ex- 
pansion or contraction of the embedded coordinate frame. 

The last term in Eq. 20.4-8 arises when interfacial deformation occurs. Its omission in 
such problems gives inaccurate predictions, which ~ i g b i e ~  and ~ a n c k w e r t s ~ , ~  then ad- 
justed by introducing hypothetical surface residence times5f6 or surface rej~venation.~ 
Such hypotheses are not needed in the present analysis. 

~pplication'of Eq. 20.4-8 at y = 0 and use of the constant-density condition 

along with the no-slip condition on the tangential part of v, gives the derivative 

Hence, the truncated Taylor expansion 

describes the normal component of v in an incompressible fluid near a deforming 
interface. 

The corresponding expansion for the tangential part of v gives 

in which B 11 (u, w, t )  is the interfacial y-derivative of v 1 1 .  With these results (neglecting 
the 0 ( y 2 )  terms) and approximation (i), we can write Eq. 20.4-1 for wA(u, w, y, t )  as 

Here (V, n) is the surface divergence of n at the nearest interfacial point and is the sum 
of the principal curvatures of the surface there. The + . . . stands for terms of higher 
order, which are here neglected. 

To select the dominant terms in Eq. 20.4-13, we introduce a dimensionless coordinate 

' R. Higbie, Trans. AIChE, 31,365-389 (1935). 
P. V. Danckwerts, ind. Eng. Chem., 43,1460-1467 (1951). 
P. V. Danckwerts, AIChE Journal, 1,456-463 (1955). 
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in which K is an average thickness of the concentration boundary layer. When Eq. 20.4-14 
is written in terms of this new variable, we get 

for w, in terms of u, w, Y, and t. Since, on physical grounds, K will decrease with decreas- 
ing %ABf the dominant terms for small gAB are those of lowest order in K-namely, all but 
the B 11 and (V, . n) contributions. The subdominance of the latter terms confirms the as- 
ymptotic validity of approximations (ii) and (iii) in non-recirculating flows. 

Now, the coefficients of all the dominant terms must be proportional over the range 
of BAB, in order that these terms remain of comparable size in the small-EbAB limit. Such a 
"dominant balance principle" was applied previously in 513.6. Here it gives the orders 
of magnitude 

9AB/~2  = o(1) and V ~ , / K  = o(1) (20.4-16, 17) 

for the terms of the lowest order with respect to K. Equation 20.4-16 is consistent with the 
previous examples of $power dependence of the diffusional boundary layer thickness 
on 9,, in free-surface flows. It also confirms the asymptotic correctness of assumption 
(iv) for small values of aAB.  Equation 20.4-17 is consistent with the proportionality of v: 
to shown under Eq. 20.1-10 for the Arnold problem. Thus, the boundary layer 
equation for o, in either phase near a deforming interface is 

to lowest order in K. At the next order of approximation, terms proportional to K would 
appear, and these involve the tangential velocity yB I and the interfacial curvature 
(V, n). The latter term appears in Problems 20C.1 and 20C.2. 

Multiplication of Eq. 20.4-18 by p/MA (a constant for the assumptions made here), 
and use of z as the coordinate normal to the interface as in Example 20.1-1, give the cor- 
responding equation for the molar concentration cA(u, w, z, t )  

which allows convenient extension of several earlier examples. Another useful corollary 
is the binary boundary layer equation in terms of xA and v* 

in which c and 9IAB have been treated as constants, as in Example 20.1-1. 

EXAMPLE 20.4-1 

Mass Transfer with 

Equation 20.4-19 readily gives a generalized form of Eq. 20.1-65, by omitting the reaction 
source term RA and neglecting the normal velocity term v,, (thus assuming the interfacial 
net mass flux to be small). The equation thus obtained has the form of Eq. 20.1-65, except 

Nonuniform Interfacial that the total surface growth rate d In S / d t  is replaced by the local growth rate, given by 
Deformation d In s(u, w, t)/dt. The resulting partial differential equation has two additional space vari- 

ables (u and w), but is solvable in the same manner, since no derivatives with respect to the 
added variables appear. 
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SOLUTION Rewriting Eq. 20.1-66 with a boundary layer thickness function Nu, w, t) leads by analogous 
steps to the relation 

EXAMPLE 20.4-2 

Gas Absorption with 
Rapid Reaction and 
Intetfacial Deformation 

and the corresponding generalizations of Eqs. 20.1-71 and 72: 

CA --  z 
- 1 - erf (20.4-22) 

c~~ d4?bAB Sb [s(u, Wr ~) /s(u,  W/ t)12 di 

These solutions, unlike Eq. 20.1-71 and Eq. 20.1-72, include the spatial variations of the 
boundary layer thickness and interfacial molar flux NAZO that occur in nonuniform flows. 
Local stretching of the interface (as at stagnation loci) thins the boundary layer and enhances 
NAzO. Local interfacial shrinkage (at separation loci) diminishes NAz0, but also ejects stale fluid 
from the boundary layer, allowing its mixing into the interior of the same phase. Observa- 
tions of mass transler enhancement by such mixing have been interpreted by some workers 
as "surface renewal," even though creation of new surface elements in an existing surface is 
not permitted in continuum fluid mechanics. 

These results, and others for negligible v,,, are obtainable conveniently by introducing 
the following new variables into Eq. 20.4-19: 

Z = ZS(U, W, t) and 7 = (20.4-24/25) 

In the absence of chemical reactions, the resulting differential equation for the concentration 
function c,(u, w, Z, 7) becomes 

This is a generalization of Fick's second law to an asymptotic relation for forced convection in 
free-surface flows. 

Show how to generalize Example 20.1-2 to flow systems, by using Eq. 20.4-26 for the two re- 
action-free zones. 

SOLUTION 

Using Eq. 20.4-26, we get the following replacements for Eqs. 20.1-26 and 27: 

Now the reaction plane z = z, of the original example is a time-dependent suuface, Z = Z,, or 
z,(u, w, t) = Z,/S(U, W, t). The initial and boundary conditions remain as before, subject to this 
generalization of the reaction-front location. 

The solutions for c, and cB then take the forms in Eqs. 20.1-35 and 36, with z / l h  replaced 
by z/G, and z R / ~  by qY. The latter constant is again given by Eq. 20.1-37. The enhance- 
ment of the absorption rate by the chemical reaction accordingly parallels the expressions that 
will be given in Eq. 22.5-10, and simplified in Eqs. 22.5-11 through 13. 
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520.5 "TAYLOR DISPERSION" IN LAMINAR TUBE FLOW 

Here we discuss the transport and spreading of a solute "pulse" of material A intro- 
duced into fluid B in steady laminar flow through a long, straight tube of radius R, as 
shown in Fig. 20.5-1. A pulse of mass m, is introduced at the inlet z = 0 over a very short 
period near time t = 0, and its progress through the tube is to be analyzed in the long- 
time limit. Problems of this type arise frequently in process control (see Problem 20C.41, 
medical diagnostic procedures,' and in a variety of environmental applications.2 

A short distance downstream from the inlet, the &dependence of the mass fraction 
distribution will die out. Then the diffusion equation for oA(r, z, t) in Poiseuille flow with 
constant p, p, and a,, takes the form 

This equation is to be solved with the boundary conditions 

B.C. 1 and 2: ~ W A  a t r = O a n d a t r = R ,  -- dr - 0 (20.5-2) 

which express the radial symmetry of the mass fraction profile and the impermeability of 
the tube wall to diffusion. For this long-time analysis it is not necessary to speclfy the exact 
shape of the pulse injected at t = 0. No exact analytical solution is available for the mass 
fraction profile wA(r, z, t)-even if an initial condition were clearly formulated-but Tay- 
l0$r4 gave a useful approximate analysis that we summarize here. This involves getting 
from Eq. 20.5-1 a partial differential equation for the cross-sectional average mass fraction 

which can then be solved to describe the behavior at long times. 

' J. B. Bassingthwaighte and C. A. Goresky, in Section 2, Volume 3 of Handbook of Physiology, 2nd 
edition, American Physiological Society, Bethesda, Md. (1984). 

P. C. Chatwin and C. M. Allen, Ann. Rev. Fluid Mech., 17,119-150 (1985); B. E. Logan, 
Environmental Transport Processes, Wiley-Interscience, New York (1999), Chapters 10 and 11; J. H. 
Seinfeld, Advances in Chemical Engineering, Academic Press, New York (1983), pp. 209-299. 

G. I. Taylor, Proc. Roy. Soc. A219,186-203 (1953). 
G. I. Taylor, Proc. Roy. Soc., A225,473-477 (1954). 
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Taylor began by neglecting the axial molecular diffusion term (dashed underlined 
term in Eq. 20.5-I), and subsequently showed4 that this is permissible if the P6clet num- 
ber PhAB = R(vZ)/9IAB is of the order of 70 or greater, and if the length Lp(t) of the region 
occupied by the pulse, measured visually in Taylor's experimentsf3 is of the order of 
170R or greater. Here (v,) = $v,,,,~ is the mean speed of the flow. 

Taylor sought a solution valid for long times. He estimated the condition for the va- 
lidity of his result to be 

When the pulse length Lp attains this range, enough time has elapsed that the initial 
shape of the pulse no longer matters. 

In order to follow the development of the concentration profile as the fluid moves 
downstream, it is useful to introduce the shifted axial coordinate 

When this is used in Eq. 20.5-1 (without the dashed-underlined term), we get the follow- 
ing diffusion equalion for wA(rf Z, t ) ,  

in which 6 = r/R is the dimensionless radial coordinate. The time derivative here is under- 
stood to be taken at constant 2, and, under the condition of Eq. 20.5-4, it may be neglected 
relative to the radial diffusion term. As a result we have a quasi-steady-state equation 

For the condition of Eq. 20.5-4, the mass fraction can be expressed as 

where (w,) is a function of 2 and t. Substituting this expression into the right side of Eq. 
20.5-7, and accordingly neglecting wi, we then get 

from which the radial dependence of the mass fraction can be obtained under the condi- 
tion of Eq. 20.5-4. 

Integration of Eq. 20.5-9 with the boundary conditions of Eq. 20.5-2 then yields 

The average of this profile over the cross section is 
f l  

Subtracting this equation from the previous one, and replacing v,,,,, by 2(vz), gives finally 

as Taylor's approximate solution of Eq. 20.5-6. 
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The total mass flow of A through a plane of constant Z (that is, the flow relative to 
the average velocity (v,)) is 

Next we note that, with the assumption of p = constant, p(wA(vz)) = (pA)(v,) and 
p(oAvz) = (pAvA,) = (nAz). (Replacing v, by VAz is allowed here because, with axial mol- 
ecular diffusion neglected, species A and B are moving with the same axial speed). 
Therefore when Eq. 20.5-13 is divided by T R ~ ,  we obtain the averaged mass flux 
expression 

relative to stationary coordinates. Here K is an axial dispersion coefficient, given by Tay- 
lor's analysis as 

This formula indicates that axial dispersion (in the range P6 >> 1 considered so far) is 
enhanced by the radial variation of v, and reduced by radial molecular diffusion. 

Although Eq. 20.5-14 has the form of Fick's law in Eq. (C) of Table 17.8-2, the present 
equation does not include any axial molecular diffusion. Also it should be emphasized 
that K is not a property of the fluid mixture, but depends on R and (v,) as well as on %,,. 

Next we write the equation of continuity of Eq. 19.1-6, averaged over the tube cross 
section, as 

When the expression for the mass flux of A from Eq. 20.5-14 is inserted, we get the fol- 
lowing axial dispersion equation: 

This equation can be solved to get the shape of the traveling pulse resulting from a 6- 
function input of a mass m~ of solute A into a stream of otherwise pure B: 

This can be used along with Eq. 20.5-15 to extract gAB from data on the concentrations in 
the traveling pulse. In fact, this is probably the best method for reasonably quick mea- 
surements of liquid diffusivities. 

Taylor's development laid the foundation for an extensive literature on convective dis- 
persion. However, it remained to study the approximations made and to determine their 
range of validity. ~ r i s ~  gave a detailed treatment of dispersion in tubes and ducts, covering 
the full range of t and including diffusion in the z and 0 directions. His long-time asymptote 

R. Aris, PYOC. Roy. SOC., A235,67-77 (1956). 
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Fig. 20.5-2. Sketch showing the limits of the Taylor (Eq. 20.3-15) 
and Aris (Eq. 20.5-19) expressions for the axial dispersion 
coefficient. This figure is patterned after one in Ref. 6. 

is an important extension of Eq. 20.5-15. From this result, we see that molecular diffusion 
enhances the axial dispersion when the Pkclet number Pk = R ( V , ) / % ~  is less than V'% 
and inhibits axial dispersion at larger Peclet numbers, where Taylor's mode of transport 
predominates. 

The ranges of validity of the Taylor and Aris dispersion formulas have been studied 
thoroughly by finite difference calculationsb and by orthogonal coll~cation.~ Figure 20.5- 
2 shows the useful ranges of Eq. 20.5-15 and 19. The latter formula has been widely used 
for measurements of binary diffusivities, and an extension of it8 has been used to mea- 
sure ternary diffusivities in liquids. 

Several further investigations on convective dispersion will be mentioned here. 
Coiled tubes give reduced longitudal dispersion, as shown by the experiments of Koutsky 
and Adler9 and analyzed for laminar flow by Nunge, Lin, and Gill.'' This effect is impor- 
tant in chemical reactor design and in diffusivity measurements, where coiling is often 
necessary to get enough tube length into a compact apparatus. 

Extra-column dispersion, caused by the pump and connecting tubing of chromato- 
graphic systems, was investigated by Shankar and ~enhoff" with detailed predic- 

V. Ananthakrishnan, W. N. Gill, and A. J. Barduhn, AlChE Journal, 11,1063-1072 (1965). 
J. C. Wang and W. E. Stewart, AKhE Journal, 29,493497 (1983). 
Ph. W. M. Rutten, Diffusion in Liquids, Delft University Press, Delft, The Netherlands (1992). 
J. A. Koutsky and R. J. Adler, Can. J. Chem. Eng., 42,239-246 (1964). 

lo R. J. Nunge, T. S. Lin, and W. N. Gill, 1. Fluid Mech., 51,363-382 (1972). 
"A. Shankar and A. M. Lenhoff, J. Chromatography, 556,235-248 (1991). 
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tions and precise experiments. Their experiments showed that the form of radial av- 
eraging is important at times shorter than the recommended range shown in Fig. 
20.5-2 for the Taylor-Aris formula. Depending on the type of analyzer used, the data 
may be better described either by a cup-mixing average p,b or by the area average 
(p,) used above. 

Hoagland and Prud'homme12 have analyzed laminar longitudinal dispersion in 
tubes of sinusoidally varying radius, R(z) = R,(1 f E sin(2m/A)), to model dispersion in 
packed-bed processes. Their results parallel Eq. 20.5-19, when the variations have small 
relative amplitude 8 and long relative wavelength A/&. One might think that the axial 
dispersion in a packed column would be similar to that in tubes of sinusoidally varying 
radius, but that is not the case. Instead of Eq. 20.3-19, one finds K .= 2.59,,PeAB, with the 
first power of the P6clet number appearing, instead of the second power and with K in- 
dependent of 9JAB.13 Brenner and Edwards14 have given analyses of convective disper- 
sion and reaction in various geometries, including tubes and spatially periodic packed 
beds. 

Dispersion has also been investigated in more complex flows. For turbulent flows in 
straight tubes, Taylor15 derived and experimentally verified the axial dispersion formula 
K/Rv* = 10.1, where v* is the friction velocity used in Eq. 5.3-2. Bassingthwaighte and 
Goresky' investigated models of solute and water exchange in the cardiovascular sys- 
tem, and Chatwin and Allen2 give mathematical models of turbulent dispersion in rivers 
and estuaries. 

Equations 20.5-1 and 19 are limited to the conditions of Eqs. 20.5-2 and 4. Therefore, 
they are not appropriate for describing entrance regions of steady-state reactor opera- 
tions or systems with heterogeneous reactions. Equation 20.5-1 is a better starting point 
for laminar flows. 

QUESTIONS FOR DISCUSSION 

1. What experimental difficulties might be encountered in using the system in Example 20.1-1 to 
measure gas-phase diffusivities? 

2. What problems do you foresee in using the Taylor dispersion technique of s20.5 for measur- 
ing liquid-phase diffusivities? 

3. Show that Eq. 20.1-16 satisfies the partial differential equation as well as the initial and 
boundary conditions. 

4. What do you conclude from Table 20.1-l? 
5. Why are Laplace transforms useful in solving the problem in Example 20.1-3? Could Laplace 

transforms be used to solve the problem in Example 20.1-I? 
6. How is the velocity distribution in Example 20.1-4 obtained? 
7. Describe the method of solving the variable surface area problem in Example 20.1-4. 
8. Perform the check suggested after Eq. 20.1-74. 
9. What effects do chemical reactions have on the boundary layer? 

10. Discuss the Chilton-Colburn expressions in Eq. 20.2-57. Would you expect these same rela- 
tions to be valid for flows around cylinders and spheres? 

'' D. A. Hoagland and R. K. Prud'homme, AlChE Journal, 31,236-244 (1985). 
l3 A. M. Athalye, J. Gibbs, and E. N. Lightfoot, J. Chromatog. 589,71-85 (1992). 
l4 H. Brenner and D. A. Edwards, Macrotransport Processes, Butterworth-Heinemann, Boston (1993). 
l5 G. I. Taylor, Proc. Roy. Soc., A223,446467 (1954). 
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PROBLEMS 20A.1. Measurement of diffusivity by unsteady-state evaporation. Use the following data to 
determine the diffusivity of ethyl propionate (species A) into a mixture of 20 mole% air and 
80 mole% hydrogen (this mixture being treated as a pure gas B).' 

Increase in vapor volume (cm3) ~ (sl") 

These data were obtained1 by using a glass tube 200 cm long, with an inside diameter 1.043 
cm; the temperature was 27.9OC and the pressure 761.2 mm Hg. The vapor pressure of ethyl 
propionate at this temperature is 41.5 mm Hg. Note that t is the actual time from the start of 
the evaporation, whereas the volume increase is measured from t =. 240 s. 

20A.2. Absorption of oxygen from a growing bubble (Fig. 20A.2). Oxygen is being injected into 
pure water from a capillary tube. The system is virtually isothermal and isobaric at 25OC and 
1 atm. The solubility of oxygen in the liquid phase is o,, = 7.78 X and the liquid-phase 
diffusivity for the oxygen-water pair is 9,, = 2.60 X cm2/s. Calculate the instantaneous 
total absorption rate in g/s, for a bubble of 1 mm diameter and age t = 2 s, assuming 
(a) Constant volumetric growth rate 
(b) Constant radial growth rate drJd t  

Fig. 20A.2. Gas absorption from a 
growing bubble, idealized as a sphere. 

Answers: (a) 7.6 X lo-' g/s; (b) 1.11 X lop7 g/s 

20A.3. Rate of evaporation of n-octane. At 20°C, how many grams of liquid n-octane will evaporate 
into N2 in 24.5 hr in a system such as that studied in Example 20.1-1 at system pressures of (a) 
1 atm, and (b) 2 atm? The area of the liquid surface is 1.29 cm2, and the vapor pressure of n- 
octane at 20°C is 10.45 mm Hg. 
Answer: (a) 6.71 mg 

D. F. Fairbanks and C. R. Wilke, Ind. Eng. Chem. 42,471475 (1950). 
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20A.4. Effect of bubble size on interfacial composition (Fig. 20A.2). Here we examine the assump- 
tion of time-independent interfacial composition, WA~, for the system in Fig. 20A.2. We note 
that, because of the interfacial tension, the gas pressure p, depends on the instantaneous 
bubble radius r,. The equilibrium expression 

is adequate unless dr,/dt is very large. Here p, is the ambient liquid pressure at the mean ele- 
vation of the bubble, and CT is the interfacial tension. 

For a sparingly soluble solute, the interfacial liquid composition WAO depends on pA ac- 
cording to Henry's law 

in which the Henry's law constant, H, depends on the two species and on the liquid tempera- 
ture and pressure. This expression may be combined with Eq. 20A.4-1 to obtain the depen- 
dence of w,, on r,. 

For a gas bubble dissolving in liquid water to T = 25OC and p, = 1 atm, how small must 
the bubble be in order to obtain a 10% increase in above the value for a very large bubble? 
Assume u = 72 dyn/cm over the relevant composition range. 
Answer: 1.4 microns 

20A.5. Absorption with rapid second-order reaction (Fig. 20.1-2). Make the following calculations 
for the reacting system depicted in the figure: 
(a) Verify the location of the reaction zone, using Eq. 20.1-37. 
(b) Calculate NAO at t = 2.5 s. 

20A.6. Rapid forced-convection mass transfer into a laminar boundary layer. Calculate the evapo- 
ration rate nAo(x) for the system described under Eq. 20.2-52, given that w,, = 0.9, w,, = 0.1, 
n&) = 0 and Sc = 2.0. Use Fig. 22.8-5 with R calculated as R, from Eq. 20.2-51, to find the di- 
mensionless mass flux (denoted by 4, for diffusional calculations with mass fractions). 
Then use Eq. 22.8-21 and Table 20.2-1 to calculate K, and Eq. 20.2-48 to calculate nAo(x). 
Answer: nAo(x) = 0 . 3 3 a  

20A.7. Slow forced-convection mass transfer into a laminar boundary layer. This problem illus- 
trates the use of Eqs. 20.2-55 and 57 and tests their accuracy against that of Eq. 20.2-47. 
(a) Estimate the local evaporation rate, n,, as a function of x for the drying of a porous water- 
saturated slab, shaped as in Fig. 20.2-2. The slab is being dried in a rapid current of air, under 
conditions such that w,, = 0.05, w,, = 0.01, and Sc = 0.6. Use Eq. 20.2-55 for the calculation. 
(b) Make an alternate calculation of n,, using Eq. 20.2-57. 
(c) For comparison with the preceding approximate results, calculate n,, from Eq. 20.2-47 
and Table 20.2-1. The K values found in (a) will be sufficiently accurate for looking up II'(0, 
Sc, K). 

Answers: (a) nA0(x) = 0 . 0 1 8 8 w ;  (b) nAO(x) = 0.0196-; 
(c) nA0(x) = 0.0188- 

20B.1. Extension of the Arnold problem to account for interphase transfer of both species. Show 
how to obtain Eqs. 20.1-23,24, and 25 starting with the equations of continuity for species A 
and B (in molar units) and the appropriate initial and boundary conditions. 

20B.2. Extension of the Arnold problem to nonisothermal diffusion. In the situation described in 
Problem 20B.1, find the analogous result for the temperature distribution T(z, f). 
(a) Show that the energy equation [Eq. (H) of Table 19.2-41 reduces to 
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provided that k, p, and c (or p)  are essentially constant, and that = &(p, T )  and C,, = G, = 

constant; consequently a is then a constant. Here the dissipation term (7:Vv) and the work 
term CJj, . gJ are appropriately neglected. (Hint: Use the species equation of continuity of 
Eq. 19.1-10.) 
(b) Show that the solution of Eq. 208.2-1, with the initial condition that T = T, at t = 0, and 
the boundary conditions that T = To at z = 0 and T = T, at z = a, is 

with 
r 

z Z, = -- and qr = v: 
V ' G  

(c) Show that the interfacial mass and energy fluxes are related to To and T ,  by 

so that NAo/qo and NRo/qo are constant for t > 0. This nifty result arises because there is no 
characteristic length or time in the mathematical model of the system. 

Stoichiometric boundary condition for rapid irreversible reaction. The reactant fluxes in 
Example 20.1-2 must satisfy the stoichiometric relation 

in which vR = dzR/dt. Show that this relation leads to Eq. 20.1-31 when use is made of Fick's 
first law, with the assumptions of constant c and instantaneous irreversible reaction. 

Taylor dispersion in slit flow (Fig. 2B.3). Show that, for laminar flow in a plane slit of width 
2B and length L, the Taylor dispersion coefficient is 

Diffusion from an instantaneous point source. At time t = 0, a mass m, of species A is in- 
jected into a large body of fluid B. Take the point of injection to be the origin of coordinates. 
The material A diffuses radially in all directions. The solution may be found in Carslaw and 
~ a e g e r : ~  

(a) Verify that Eq. 20B.5-1 satisfies Fick's second law. 
(b) Verify that Eq. 20B.5-1 satisfies the boundary conditions at r = w .  

(c) Show that Eq. 20B.5-1, when integrated over all space, gives m,, as required. 
(d) What happens to Eq. 20B.5-1 when t + O? 

Unsteady diffusion with first-order chemical reaction. Use Eq. 20.1-43 to obtain the concen- 
tration profile for the following situations: 

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd edition, Oxford University Press 
(1959), p. 257. 
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(a) The catalyst particle of Problem 188.14, in time-dependent operation with the boundary 
conditions as given before, but with the initial condition that c, = 0 at t = 0. The differential 
equation for CA is 

where is the interior void fraction for the particle. The necessary solution with kra = 0 may 
be found from the result of Example 12.1-2. 
(b) Diffusion and reaction of a solute, A, injected at t = 0 at the point r = 0 (in spherical coor- 
dinates) in an infinite stationary medium. Here the functiong of Eq. 20.1-43 is given as 

and the function f vanishes. 

20B.7. Simultaneous momentum, heat, and mass transfer: alternate boundary conditions (Fig. 
20B.7). The dimensionless profiles N q ,  A, K) in Eq. 20.2-43 are applicable to a variety of situ- 
ations. Use Eqs. 20.2-49 to 52 to obtain implicit equations for the evaluation of the dimension- 
less net mass flux K for the following steady-state operations: 
(a) Evaporation of pure liquid A from a saturated porous plate into a gaseous stream of A 
and B. Substance B is insoluble in liquid A. 
(b) Instantaneous irreversible reaction of gas A with a solid plate of C to give gaseous B, ac- 
cording to the reaction A + C + 2B. The molecular weights of A and B are equal. 
(c) Transpiration cooling of a porous-walled hollow plate, as shown in the figure. The fluid is 
pure A throughout, and the injected fluid is distributed so as to maintain the whole outer sur- 
face of the plate at a uniform temperature To. 

Approaching stream of 
gas A at temperature 

T, and velocity v, 
b 

Injection velocity vo (x) 

Surface at uniform 
A temperature To 

I t *  / Porous wall \ 

- ' 

,-Gas A at uniform temperature T, - Gas A in 

I + y  Porous wall / 

Fig. 20B.7. 
A transpiration-cooled 
porous plate. 

Answers: (a) K = - ( W ~ O  - @,")nr (0, SC, N; (b) )K = 1 II (0, SC, K )  
Sc 1 - o,, Sc 
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20B.8. Absorption from a pulsating bubble. Use the results of Example 20.1-4 to calculate 6(t) and 
NAO(t) for a bubble whose radius undergoes a square-wave pulsation: 

r, = R, for 2n < wt < 2n + 1 

r, = R, for 2n + 1 < ot  < 2n + 2 

Here w is a characteristic frequency, and n = 0,1,2, . . . . 
20B.9. Verification of the solution of the Taylor-dispersion equation. Show that the solution to Eq. 

20.5-17, given in Eq. 20.5-18, satisfies the differential equation, the initial condition, and the 
boundary  condition^.^ The latter are that at z = ? m, 

d 
(PA)  = 0 and ,~z bA) = 0 

The initial condition is that, at t = 0, the solute pulse, of mass mA, is concentrated at z = 0, 
with no solute anywhere else in the tube, so that for all times, 

(a) Show that Eq. 20.5-17 can be reduced to the one-dimensional form of Fick's second law by 
the coordinate transformation 

(b) Show that Eq. 20.5-18 satisfies the equation derived in (a). 
(c) Show that Eqs. 20B.9-1 and 2 are also satisfied. 

20C.1. Order-of-magnitude analysis of gas absorption from a growing bubble (Fig. 20A.2). 
(a) For the growth of the spherical bubble of Problem 20A.2(a) in a liquid of constant density, 
show that in the liquid phase the radial velocity is v, = C,/r2 according to the equation of con- 
tinuity. Then use the boundary condition that v, = drJdt at r = rs(t) to obtain 

(b) Next, using the species equation of continuity in spherical coordinates with diffusion in 
the radial direction only, show that 

and indicate suitable initial and boundary conditions. 
(c) For short contact times, the effective diffusion zone is a relatively thin layer, so that it is 
convenient to introduce a variable y = r - r,(t). Show that this leads to 

(1) (2) (3) (4) (5) (6)  (7) 

(d) From Example 20.1-4 we can see that the contributions of terms (11, (2), and (4) are all of 
the same order of magnitude in the concentration boundary layer, that is, at y = O(6,) = 
o(-). Taking these terms to be of order 0(1), estimate the orders of magnitude of the re- 
maining terms shown in Eq. 20C.1-3. 

See, for example, H. S. Carslaw and J. C. Jaeger, Heat Conduction in Solids, 2nd edition, Oxford 
University Press (1959),§10.3. For the effects of finite tube length, see H. Brenner, Ckem. Eng. Sci., 17, 
229-243 (1961). 
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(el Show that the terms of the two leading orders in Eq. 20C.l-3 give 

-..-- ---------- 
the second-order terms being designated by dashed underlines. 
(e) This equation has been analyzed thoroughly in the electrochemical l i terat~re.~ The results 
for nAo are further considered in Problem 20C.2. 

20C.2. Effect of surface curvature on absorption from a growing bubble (Fig. 20A.2). Pure gas A is 
flowing from a small capillary into a large reservoir of initially pure liquid B at a constant 
molar flow rate WA. The interfacial molar flux of A into the liquid is predictable from the 
Levich-Koutecky-Newman equation 

in which 

for purely radial motion and a spherical bubble. Equation 20C.2-1 is a consequence of Eq. 
20C.1-4. 
(a) Give an expression for the number of moles of A absorbed over a bubble lifetime to. 
(b) Use Eq. 20C.2-1 to obtain more accurate results for the absorption rates in Problem 20A.2. 

20C.3. Absorption with chemical reaction in a semi-infinite medium. A semi-infinite medium of 
material B extends from the plane boundary x = 0 to x = m.  At time t = 0 substance A is 
brought into contact with this medium at the plane x = 0, the surface concentration being cA, 
(for absorption of gas A by liquid B, for example, c ~ ,  would be the saturation concentration). 
Substances A and B react to produce C according to the irreversible first-order reaction A + B 
+ C. It is assumed that A is present in such a small concentration that the equation describing 
the diffusion plus chemical reaction process is 

in which k;' is the first-order rate constant. This equation has been solved for the initial condi- 
tion that C A  = 0 at t = 0, and the boundary conditions that cA = c,, at x = 0, and cA = 0 at x = 
w . The solution is5 

(a) Verify that Eq. 20C.3-2 satisfies the differential equation and the boundary conditions. 
(b) Show that the molar flux at the interface x = 0 is 

J. Kouteckj, Czech. 1. Phys., 2,50-55 (1953). See also V. Levich, Physicochemical Hydrodynamics, 2nd 
edition, Prentice-Hall, Englewood Cliffs, N.J. (1962). The right sides of Levich's Eqs. 108.17 and 108.18 
should be multiplied by t2'! See also J. S. Newman, ElectrochemicaI Systems, 2nd edition, Prentice-Hall, 
Englewood Cliffs, N.J. (1991). 

P. V. Danckwerts, Trans. Faraday Soc., 46,300-304 (1950). 
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(c) Show further that the total moles absorbed across area A up to time t is 

(d) Show that, for large values of kyt, the expression in (c) reduces asymptotically to 

This result6 is good within 2% for values of kyt greater than 4. 

20C.4. Design of fluid control circuits. It is desired to control a reactor via continuous analysis of a 
side stream. Calculate the maximum frequency of concentration changes that can be detected 
as a function of the volumetric withdrawal rate, if the stream is drawn through a 10 cm length 
of tubing with an internal diameter of 0.5 mm. Suggestion: Use as a criterion that the standard 
deviation of a pulse duration be no more than 5% of the cycle time to = 2n-/w, where w is the 
frequency it is desired to detect. 

20C.5. Dissociation of a gas caused by a temperature gradient. A dissociating gas (for example, 
Na, + 2Na) is endosed in a tube, sealed at both ends, and the two ends are maintained at dif- 
ferent temperatures. Because of the temperature gradient established, there will be a continu- 
ous flow of Na, molecules from the cold end to the hot end, where they dissociate into Na 
atoms, which in turn flow from the hot end to the cold end. Set up the equations to find the 
concentration profiles. Check your results against those of D i r a ~ . ~  

20D.1. Two-bulb experiment for measuring gas diffusivities-analytical solution (Fig. 188.6). 
This experiment, described in Problem 18B.6, is analyzed there by a quasi-steady-state 
method. The method of separation of variables gives the exact solution8 for the compositions 
in the two bulbs as 

in which y,, is the nth root of y tan y = N, and N = SL/V. Here the 2 sign corresponds to the 
reservoirs attached at t L. Make a numerical comparison between Eq. 20D.1-1 and the experi- 
mental measurements of and re^.^ Also compare Eq. 20D.1-1 with the simpler result in Eq. 
18B.6-4. 

20D.2. Unsteady-state interphase diffusion. Two immiscible solvents I and I1 are in contact at the 
plane z = 0. At time t = 0 the concentration of A is c, = cf in phase I and c,, = cg in phase 11. 
For t > 0 diffusion takes place across the liquid-liquid interface. It is to be assumed that the 
solute is present only in small concentration in both phases, so that Fick's second law of diffu- 
sion is applicable. We therefore have to solve the equations 

R. A. T. 0. Nijsing, Absovptie van gassen in vloeistoffen, zonder en met chemische reactie, Academisch 
Proefschrift, Technische Universiteit Delft (1957). 

P. A. M. Dirac, Proc. Camb. Phil. Soc., 22, Part 11,132-137 (1924). This was Dirac's first publication, 
written while he was a graduate student. 

R. B. Bird, Advances in Chemical Engineering, Vol. 1, Academic Press, New York (1956), pp. 156-239; 
errata, Vol. 2 (1958), p. 325. The result at the bottom of p. 207 is in error, since the factor of (-1)"" is 
missing. See also H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd edition, Oxford 
University Press (1959), p. 129. 

S. P. S. Andrew, Chem. Eng. Sci., 4,269-272 (1955). 
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in which c1 and cII are the concentrations of A in phases I and 11, and and BII are the corre- 
sponding diffusivities. The initial and boundary conditions are: 

atz = -w, cI = cp 
atz = +w, CII = cPI 

The first boundary condition at z = 0 is the statement of equilibrium at the interface, m being 
the "distribution coefficient" or "Henry's law constant." The second boundary condition is a 
statement that the molar flux calculated at z = 0- is the same as that at z = 0'; that is, there is 
no loss of A at the liquid-liquid interface. 
(a) Solve the equations simultaneously by Laplace transform or other appropriate means to 
obtain: 

(b) Obtain the expression for the mass transfer rate at the interface. 

20D.3. Critical size of an autocatalytic system. It is desired to use the result of Example 20.1-3 to dis- 
cuss the critical size of a system in which an "autocatalytic reaction" is occurring. In such a sys- 
tem the reaction products increase the rate of reaction. If the ratio of the system surface to the 
system volume is large, then the reaction products tend to escape from the boundaries of the sys- 
tem. If the surface to volume ratio is small, however, the rate of escape may be less than the rate 
of creation, and the reaction rate will increase rapidly. For a system of a given shape, there will 
be a critical size for which the rate of production just equals the rate of removal. 

One example is that of nuclear fission. In a nuclear pile the rate of fission depends on the 
local neutron concentration. If neutrons are produced at a rate that exceeds the rate of escape 
by diffusion, the reaction is self-sustaining and a nuclear explosion occurs. 

Similar behavior is also encountered in many chemical systems, although the behavior 
here is generally more complicated. An example is the thermal decomposition of acetylene 
gas, which is thermodynamically unstable according to the overall reaction. 

This reaction appears to proceed by a branched-chain, free-radical mechanism, in which the 
free radicals behave qualitatively as the neutrons in the preceding paragraph, so that the de- 
composition is autocatalytic. 

However, the free radicals are effectively neutralized by contact with an iron surface, so 
that the free-radical concentration is maintained near zero at such a surface. Acetylene gas 
can then be stored safely in an iron pipe below a "critical" diameter, which is smaller the 
higher the pressure or temperature of the gas. If the pipe is too large, the formation of even 
one free radical is likely to cause a rapidly increasing rate of decomposition, which may result 
in a serious explosion. 
(a) Consider a system enclosed in a long cylinder in which the diffusion and reaction process 
is described by 
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with cA = 0 at r = R, and CA = f(r) at t = 0, in which f(r) is some function of r. Use the result of 
Example 20.1-3 to get a solution for cA(r, t) .  
(b) Show that the critical radius for the system is 

in which a, is the first zero of the zero-order Bessel function 1,. 
(c) For a bare cylindrical nuclear reactor core,'' the effective value of k:))/gAB is 9 X ~ m - ~ .  
What is the critical radius? 
Answer: (c) R,, = 25.3 cm 

20D.4. Dispersion of a broad pulse in steady, laminar axial flow in a tube. In the Taylor dispersion 
problem, consider a distributed solute pulse of substance A introduced into a tube of length L 
containing a fluid in steady, laminar flow. Now the inlet boundary condition is that 

with the same con~traints of negligible diffusion across the tube inlet and outlet as in Problem 
20B.9. Note now that each element of solute acts independently of all the others. 
(a) Using the result of Problem 20B.9, show that the exit concentration is given by 

(b) Specialize this result for a square pulse: 

f = fo for 0 < t < to; f = 0 for t  > to (20D.4-3) 

Sketch the result for several values of (v,)t,/L. 

20D.5. Velocity divergence in interfacially embedded coordinates. Consider a closed domain 
D(u, w, y) in the interfacially embedded coordinates of Fig. 20.4-2. 
(a) Integrate Eq. 20.4-7 over the boundary surface of D to obtain 

in which d S ,  is a vector element of area, having magnitude dS, and the direction of the out- 
ward normal to the boundary of the domain D. 
(b) The integrand of the last term is the velocity of the boundary element dSD. Hence, the last 
integral is the rate of change of the volume of D. Rewrite this integral accordingly with the 
aid of Eq. 20.4-3, giving 

The second equality is obtained by the Leibniz rule, noting that u, w, and y are independent of 
t on each surface element dSD. 
(c) Use the result of (b) and the Gauss-Ostrogradskii divergence theorem of sA.5 to express 
Eq. 20D.5-1 as the vanishing of a sum of three volume integrals over D(u, w, y). Show that this 
result, and the arbitrariness of the choice of D, yield Eq. 20.4-8. 

lo R. L. Murray, Nuclear Reactor Physics, Prentice-Hall, Englewood Cliffs, N.J. (1957), pp. 23,30,53. 



Chapter 21 

Concentration Distributions 
in Turbulent Flow 
521.1 Concentration fluctuations and the time-smoothed concentration 

521.2 Time-smoothing of the equation of continuity of A 

521.3 Semi-empirical expressions for the turbulent mass flux 

521.4' Enhancement of mass transfer by a first-order reaction in turbulent flow 

521.5. Turbulent mixing and turbulent flow with second-order reaction 

In preceding chapters we have derived the equations for diffusion in a fluid or solid, and 
we have shown how one can obtain expressions for the concentration distribution, pro- 
vided no fluid turbulence is involved. Next we turn our attention to mass transport in 
turbulent flow. 

The discussion here is quite similar to that in Chapter 13, and much of that material 
can be taken over by analogy. Specifically, 5513.4, 13.5, and 13.6 can be taken over di- 
rectly by replacing heat transfer quantities by mass transfer quantities. In fact, the prob- 
lems discussed in those sections have been tested more meaningfully in mass transfer, 
since the range of experimentally accessible Schmidt numbers is considerably greater 
than that for Prandtl numbers. 

We restrict ourselves here to isothermal binary systems, and make the assumption 
of constant mass density and diffusivity. Therefore the partial differential equation de- 
scribing diffusion in a flowing fluid (Eq. 19.1-16) is of the same form as that for heat con- 
duction in a flowing fluid (Eq. 11.2-9), except for the inclusion of the chemical reaction 
term in the former. 

,1 CONCENTRATION FLUCTUATIONS AND 
THE TIME-SMOOTHED CONCENTRATION 

The discussion in 513.1 about temperature fluctuations and time-smoothing can be taken 
over by analogy for the molar concentration c,. In a turbulent stream, c, will be a rapidly 
oscillating function that can be written as the sum of a time-smoothed value ZA and a tur- 
bulent concentration fluctuation c: 

which is analogous to Eq. 13.1-1 for the temperature. -- By virtue of the definition of c; we 
see that = 0. However, quantities such as vick, v$;, and a are not zero, because the 
local fluctuations in concentration and velocity are not independent of one another. 

The time-smoothed concentration profiles G(x, y, z, t) are those measured, for exam- 
ple, by the withdrawal of samples from the fluid stream at various points and various 
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times. In tube flow with mass transfer at the wall, one expects that the time-smoothed 
concentration CA will vary only slightly with position in the turbulent core, where the 
transport by turbulent eddies predominates. In the slowly moving region near the bound- 
ary surface, on the other hand, the concentration % will be expected to change within a 
small distance from its turbulent-core value to the wall value. The steep concentration 
gradient is then associated with the slow molecular diffusion process in the viscous sub- 
layer in contrast to the rapid eddy transport in the turbulent core. 

521.2 TIME-SMOOTHING OF THE EQUATION 
OF CONTINUITY OF A 

We begin with the equation of continuity for species A, which we presume is disappearing 
by an nth-order chemical reaction.' Equation 19.1-16 then gives, in rectangular coordinates, 

Here k r  is the reaction rate coefficient for the nth-order chemical reaction, and is pre- 
sumed to be independent of position. In subsequent equations we shall consider n = 1 
and n = 2 to emphasize the difference between reactions of first and higher order. 

When cA is replaced by & + c;, and vi by Ei + ul!, we obtain after time-averaging 

Comparison of this equation with Eq. 21.2-1 indicates that the time-smoothed equation 
differs in the appearance - of some extra terms, marked here with dashed underlines. The 
terms containing vlc; describe the turbulent mass transport and we designate them by 
FA!, the ith component of the turbulent molar flux vector. We have now met the third of 
the turbulent fluxes, and we may summarize their components thus: 

- - 
turbulent molar flux (vector) Ti; = ui c; (21.2-3) 

- - 
turbulent momentum flux (tensor) .$) = Pv;v; (21.2-4) 

- 
turbulent heat flux (vector) 4i ct) - - P  c v ! ~ t  (21.2-5) 

All of these are defined as fluxes with respect to the mass average velocity. 
It is interesting to note that there is an essential difference between the behaviors of 

chemical reactions of different orders. The first-order reaction has the same form in the 
time-smoothed equation as in the original equation. The second-order reaction, on the 
other hand, contributes on time-smoothing an extra term -k;"c, this being the manifes- 
tation of the interaction between the chemical kinetics and the turbulent fluctuations. 

We now summarize all three of the time-smoothed equations of change for turbu- 
lent flow of an isothermal, binary fluid mixture with constant p, gA,, and p: 

continuity (V -5) = 0 (21.2-6) 

motion 

continuity of A 

Here J$) = and it is understood that the op'erator DIE is to be written with the 
time-smoothed velocity V in it. 

S. Corrsin, Physics of Fluids, 1 ,4247  (1958). 
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521.3 SEMI-EMPIRICAL EXPRESSIONS FOR 
THE TURBULENT MASS FLUX 

In the preceding section we showed that the time-smoothing of the equation of conti- 
I I 

nuity of A gives rise to a turbulent mass flux, with components 7;; = G. To solve 
mass transport problems in turbulent flow, it may be useful to postulate a relation be- 
tween 2; and the time-smoothed concentration gradient. A number of empirical expres- 
sions can be found in the literature, but we present here only the two most popular ones. 

Eddy Diffusivity 

By analogy with Fick's first law of diffusion, we may write 

as the defining equation for the turbulent diffusivity @&, also called the eddy diffusivity. As 
is the case with the eddy viscosity and the eddy thermal conductivity, the eddy diffusiv- 
ity is not a physical property characteristic of the fluid, but depends on position, direc- 
tion, and the nature of the flow field. 

The eddy diffusivity 92)B and the eddy kinematic viscosity v"' = p't'/p have the same 
dimensions-namely, length squared divided by time. Their ratio 

is a dimensionless quantity, known as the turbulent Schmidt number. As is the case with 
the turbulent Prandtl number, the turbulent Schmidt number is of the order of unity 
(see the discussion in 513.3). Thus the eddy diffusivity may be estimated by replacing it 
by the turbulent kinematic viscosity, about which a fair amount is known. This is done 
in 921.4, which follows. 

The Mixing-Length Expression of Prandtl and Taylor 

According to the mixing-length theory of Prandtl, momentum, energy, and mass are all 
transported by the same mechanism. Hence by analogy with Eqs. 5.4-4 and 13.3-3 we 
may write 

where I is the Prandtl mixing length introduced in Chapter 5. The quantity 121 dE,/dyl ap- 
pearing here corresponds to 9zL of Eq. 21.3-1, and to the expressions for v'" and a'" im- 
plied by Eqs. 5.4-4 and 13.3-3. Thus, the mixing-length theory satisfies the Reynolds 
annIogy v(f) = = 9") AB, or ~ r ' ~ )  = SC") = 1. 

521.4 ENHANCEMENT OF MASS TRANSFER BY A FIRST-ORDER 
REACTION IN TURBULENT FLOW' 

We now examine the effect of the chemical reaction term in the turbulent diffusion equa- 
tion. Specifically we study the effect of the reaction on the rate of mass transfer at the 
wall for steadily driven turbulent flow in a tube, where the wall (of material A) is slightly 

' 0. T. Hanna, 0. C. Sandall, and C. L. Wilson, Ind. Eng. Chem. Research, 26,2286-2290 (1987). An 
analogous problem dealing with falling films is given by 0. C. Sandall, 0. T. Hanna, and F. J. Valeri, 
Chem. Eng. Communications, 16,135-147 (1982). 
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soluble in the fluid (a liquid B) flowing through the tube. Material A dissolves in liquid B 
and then disappears by a first-order reaction. We shall be particularly interested in the 
behavior with high Schmidt numbers and rapid reaction rates. 

For tube flow with axial symmetry and with EA independent of time, Eq. 21.2-8 
becomes 

Here we have made the customary assumption that the axial transport by both molecu- 
lar and turbulent diffusion can be neglected. We want to find the mass transfer rate at 
the wall 

where C A ~  and are the concentrations of A at the wall and at the tube axis. As 
pointed out in the preceding section, the turbulent diffusivity is zero at the wall, and 
consequently does not appear in Eq. 21.4-2. The quantity kc is a mass transfer coefficient, 
analogous to the heat transfer coefficient h. The coefficient h was discussed in Chapter 14 
and mentioned in Chapter 9 in connection with "Newton's law of cooling." As a first ap- 
proximation' we take to be zero, assuming that the reaction is sufficiently rapid 
that the diffusing species never reaches the tube axis; then dZA/dr must also be zero at 
the tube axis. After analyzing the system under this assumption, we will relax the as- 
sumption and give computations for a wider range of reaction rates. 

We now define the dimensionless reactant concentration C = ZA/cA0. Then under 
the further assumption' that, for large z, the concentration will be independent of z, 
Eq. 21.4-1 becomes 

This equation may now be multiplied by r and integrated from an arbitrary position to 
the tube wall to give 

Here the boundary conditions at r = 0 have been used, as well as the definition of the 
mass transfer coefficient. Then a second integration from r = 0 to r = R gives 

Here we have used the boundary conditions C = 0 at r = 0 and C = 1 at r = R. 
Next we introduce the variable y = R - r, since the region of interest is right next to 

the wall. Then we get 

in which C(y) is not the same function of iJi as C(7) is of 7. For large Sc the integrands are 
important only in the region where y << R, so that R - y may be safely approximated 
by R. Furthermore, we can use the fact that the turbulent diffusivity in the neighborhood 
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of the wall is proportional to the third power of the distance from the wall. When the in- 
tegrals are rewritten in terms of a = y/R, we get the dimensionless equation 

This equation contains several dimensionless groupings: the Schmidt number Sc = v/9,,, 
a dimensionless reaction-rate parameter Rx = k;"R2/v, and a dimensionless mass transfer 
coefficient Sh = k,D/gAB known as the Sherwood number ( D  being the tube diameter). 

In the limit that Rx + m, the solution to Eq. 21.4-3 under the given boundary condi- 
tions is C = exp(-Shu/2). Substitution of this solution into Eq. 21.4-7 then gives after 
straightforward integration 

in which 

This can be solved' to give Sh as a function of Sc, Rx, and K. 
The foregoing solution of Eq. 21.4-3 is reasonable when Sc, Rx, and z are sufficiently 

large, and is an improvement over the result given by Vieth, Porter and Sherwo~d.~  
However, in the absence of chemical reaction, Eq. 21.4-3 fails to describe the downstream 
increase of C caused by the transfer of species A into the fluid. Thus, the mass-transfer 
enhancement by the chemical reaction cannot be assessed realistically from the results of 
either Ref. 1 or Ref. 2. 

For a better analysis of the enhancement problem, we use Eq. 21.4-1 to get a more 
complete differential equation for C: 

The assumption that C = 0 at r = 0 is then replaced by the zero-flux condition dC/dr = 0 
there. We represent '3:b in this geometry as l2 IdEJdrl for fully developed flow, by use of 
a position-dependent mixing length 1 as in Eq. 21.3-3. Introducing dimensionless nota- 
tions v+ = EJv,, z+ = zv,/v, r+ = rv,/v, and It' = lv,/v based on the friction velocity 
v, = of 95.3, we can then express Eq. 21.4-11 in the dimensionless form 

in which a Damkohler number Da = kyv/v$ has been introduced. 
An excellent model for the mixing length 1 is available in Eq. 5.4-7, developed by 

Hanna, Sandall, and Mazet3 by modifying the model given by van Dr i e~ t .~  This model 

-- 

W. R. Vieth, J. H. Porter, and T. K. Sherwood, Ind. Eng. Chem. Fundam., 2,l-3 (1963). 
%. T. Hanna, 0. C. Sandall, and P. R. Mazet, A K h E  Journal, 27,693-697 (1981). 

E. R. van Driest, 1. Aero. Sci., 23,1007-1011,1036 (1956). 



662 Chapter 21 Concentration Distributions in Turbulent Flow 

will give smooth concentration profiles, provided that we use a velocity function with 
continuous radial derivative, rather than the piecewise continuous expressions given in 
Fig. 5.5-3. Such a function is obtainable by integrating the differential equation 

in the dimensionless variables u+ = &/u ,  and y+ = y v J v  of Fig. 5.5-3, with the bound- 
ary conditions u f  = 0 at y+ = 0 (the wall) and du+/dy+ = 0 at y+ = R+ (the centerline). 
Equation 21.4-13 is obtained (see Problem 21B.5) by combining the cylindrical-coordinate 
versions of Eqs. 5.5-3 and 5.4-4 with the dimensionless form 

of the mixing-length model shown in Eq. 5.4-7. Equation 21.4-13 is solvable via the qua- 
dratic formula to give 

and v+ is then computable by quadrature using, for example, the subroutines trapzd and 
qtrap of Press et aL5 The resulting v+ function closely resembles the plotted line in Fig. 
5.5-3, with small changes near y' = 30 where the plotted line has a slope discontinuity, 
and near the centerline where the calculated v+ function attains a maximum value de- 
pendent on the dimensionless wall radius R+ whereas the line in Fig. 5.5-3 improperly 
does not. 

Equations 21.4-12 through 15 were solved numerically6 for fully developed flow of a 
fluid of kinematic viscosity v  = 0.6581 cm2/s in a smooth tube of 3 cm inner diameter, at 
Re = 10,000, Sc = 200 and various Damkohler numbers Da. These calculations were 
done with the software package Athena Visual W~rkbench.~ The resulting Sherwood 
numbers Sh = kcD/9,,, based on kc as defined in Eq. 21.4-2, are plotted in Fig. 21.4-1 as 

Axial position, zi 

Fig. 21.4-1. Calculated 
Sherwood numbers, 
Sh = k,D/QAB, for turbulent 
mass transfer from the wall 
of a tube, with and without 
homogeneous first-order 
chemical reaction. Results 
calculated at Re = 10,000 and 
Sc = 200, as functions of 
axial position zf = zv,/D 
and Damkohler number 
Da = kyv/v:. 

W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. flannery, Numerical Recipes in FORTRAN, 
Cambridge University Press, 2nd edition (1992). 

M. Caracotsios, personal communication. 
Information on this package is available at www.athenavisual.com and from 

stewart~associates.msn.com. 
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functions of z+ for various values of the Damkohler number Da. These results lead to the 
following conclusions: 

1. In the absence of reaction (that is, when Da = O), the Sherwood number falls off 
rapidly with increasing distance into the mass-transfer region. This behavior is 
consistent with the results of Sleicher and  ribu us' for a corresponding heat trans- 
fer problem, and confirms that the convection term of Eq. 21.4-11 is essential for 
this system. This term was neglected in References 2 and 3 by regarding the con- 
centration profiles as "fully developed." 

2. In the presence of a pseudo-first-order homogeneous reaction of the solute (that is, 
when Da > O), the Sherwood number falls off downstream less rapidly, and ulti- 
mately attains a constant asymptote that depends on the Damkohler number. 
Thus, the enhancement factor, defined as Sh (with reaction)/Sh (without reaction), 
can increase considerably with increasing distance into the mass-transfer region. 

g21.5 TURBULENT MIXING AND TURBULENT 
FLOW WITH SECOND-ORDER REACTION 

We now consider processes occurring within turbulent fluid systems, with particular ref- 
erence to the two mixers shown in Fig. 12.5-1. In Fig. 12.5-l(a) is shown a steady state sys- 
fem, in which two input streams enter a system of fixed geometry at constant rates, and 
in Fig. 12.5-l(b) an unsteady state system, in which two initially stationary, segregated, 
miscible fluids are mixed by turning an impeller at a constant angular velocity, starting at 
time t = 0. One stream [in (a)] or one initial region [in (b)] contains solute A in solvent S, 
and the other contains solute B in solvent S. All solutions are sufficiently dilute that the 
solutes do not appreciably affect the viscosity, density, or species diffusivities. Then the 
behavior of the solute (A or B )  in either system [(a) or (b)] is described by the non-time- 
smoothed diffusion equations 

with suitable initial and boundary conditions. 
For these systems, we may write that at z = 0 [in (a)] or t = 0 [in (b)]  

C,  = C,O and c, = 0 (21.5-3,4) 

over the A inlet port [in (a)] or the initial region [in (b)], and 

C,  = cBO and c, = 0 (21.5-5,6) 

over the B inlet port [in (a)] or the initial region [in (b)] .  In addition, we consider all con- 
fining surfaces to be inert and impenetrable.' 

No Reaction Occurring 

For this situation, the terms RA and RB are identically zero. We now define a single new 
independent variable 

C. A. Sleicher and M. Tribus, Trans. ASME, 79,789-797 (1957). 
In system (a), these boundary conditions are only approximations. The indicated values of c~ and 

c, are regarded as asymptotic values for z << 0. 
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Then both Eqs. 21.5-1 and 2 take the following form over the whole system: 

Here the subscript i can represent either solute A or solute B, and 

r = 0 for (a) the entering A-rich stream, or 
(b) initially A-rich region (21.5-9) 

r = 1 for (a) the entering B-rich stream, or 
(b) initially B-rich region (21.5-10) 

It follows that, for equal diffusivities, the time-smoothed concentration profiles, - 
T(x ,  y, z, t) are identical for both solutes, where 

However, the fluctuating quantities r' are also of interest, as they are measures of "un- 
mixedness." These can be equal only in a statistical sense. To show this, we subtract Eq. 
21.5-11 from Eq. 21.5-7, and then square the result and time-smooth it to give 

Here d(x, y, z, t) is a dimensionless decay function, which decreases toward zero at large z 
[for the motionless mixer in Fig. 21.5-l(a)I, or at large t [for the mixing tank of Fig. 21.5- 
I@)]. Cross-sectional averages of this quantity can be measured, and are shown in Fig. 
21.5-2. 

It remains to determine the functional dependence of the decay function, and to do 
this we introduce the dimensionless variables: 

Then Eq. 21.5-8 becomes 

D r  - 1 +zr 
D ReSc 

in which Re = I,u,p/p. 
In order to be able to draw specific conclusions, we now focus our attention on mix- 

ing tanks [see Fig. 21.5(b)], and further assume low-viscosity liquids and low-molecular- 
weight solutes. For these systems 1, is normally chosen to be the diameter of the 
impeller, and v, to be I&, where N is the rate of impeller rotation in revolutions per unit 
time. 

1 

B+ 
Fig. 21.5-1. Two types 
of mixers: (a) a baffled 

(a) 
mixer with no moving 
parts; (b)  a batch mixer 

(b) with a stirrer. 
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Fig. 21.5-2. The decay function for a 
specific device for the mixing of two 
streams emerging from a tube and 
from an annular region. This figure 
is patterned after one by E. L. Cus- 
sler, Diffusion: Mass Transfer in Fluid 
Systems, Cambridge University Press 
(1997), p. 422, based on data of R. S. 
Brodkey, Turbulence in Mixing Opera- 
tions, Academic Press, New York 
(1975), p. 65, Fig. 6, upper curve. The 
radius of the outer tube is fi times 
that of the inner one. 

It is now useful to consider experience gained in the study of such systems and to 
classify the overall mixing process as  follow^:^ 

(i) macromixing, in which large-scale motions spread the A-rich and B-rich fluids 
over the entire tank region, into subregions that are large compared to the dis- 
tances solute molecules have moved by diffusion. 

(ii) micromixing, in which diffusion provides the final blending over scales of mole- 
cular dimensions. 

It has been found1 that macromixing is normally much the slower process, and this ob- 
servation can be explained in terms of dimensional analysis. This finding is consistent 
with experience in large-scale mixing. 

For industrial systems, Reynolds numbers are normally well over lo4 and Schmidt 
numbers on the order of lo5. The diffusion term in Eq. 21.5-14 thus tends to be small al- 
most everywhere in the system. This term is negligible during the period of macromix- 
ing, where diffusion, and hence the Schmidt number, have no significant effect. Then for 
many practical purposes one may write 

We may then relax the requirement of equal diffusivities in extrapolating experience to a 
new system. It follows that Reynolds numbers as well as Schmidt numbers should have 
no significant effect on the macromixing process, and that the effective degree of un- 
mixedness, d2, depends mainly on the dimensionless time. 

For large-scale mixing tanks, this prediction is amply ~onfirmed.~ These normally 
operate at large Reynolds numbers (typically greater than lo4), where the large-scale mo- 
tions, expressed in terms of +(?, jl, if t ) ,  are observed to be independent of both Reynolds 
number and system size. Thus a very large number of investigators have observed using 

M. L. Hanks and H. L. Toor, Ind. Eng. Chem. Res., 34,3252-3256 (1995). 
J. Y. Oldshue, Fluid Mixing Technology, McGraw-Hill, New York (1983); H. Benkreira, Fluid Mixing, 

Institution of Chemical Engineers, Rugby, UK, Vol. 4 (1990), Vol. 6 (1999); I. Bouwmans and H. E. A. van 
den Akker, in Vol. 4 of Fluid Mixing, Institution of Chemical Engineers, Rugby, UK (1990), pp. 1-12. 
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many different mixer geometries, that the product of the required mixing time t,, and 
rotation rate N is a constant independent of mixer size and Reynolds number: 

That is, the required mixing time t,, corresponds, for a given tank geometry, essen- 
tially to the required number of turns of the impeller. This expectation is confirmed by 
experience. 

This finding is consistent with observations2 that both the dimensionless volume 
flow rate through the impeller, Q/ND~, and the tank friction factor, plpIV3D5, are con- 
stants, depending only on the tank and impeller geometries (see Problem 6C.3). Here Q 
is the volumetric flow in the jet produced by the impeller, and P is the power required to 
turn it. 

Similar remarks usually apply to motionless mixers, where increasing the flow ve- 
locities typically has little effect on the degree of mixing. However, approximations like 
this must be tested, and such tests should be considered as first steps in an experimental 
program. As a practical matter, these approximations are almost always reliable on 
scale-up, since Reynolds numbers normally increase with equipment size. 

Reaction Occurring 

We next consider the effects of a homogeneous, irreversible chemical reaction, and for 
simplicity we write this as A + B 4 products. Again we assume dilute solutions, so that 
the heat of reaction and the presence of reaction products have no significant effect. In 
addition, we assume equal diffusivities for the two solutes. 

We next define 

Then when we subtract Eq. 21.5-2 from Eq. 21.5-1, we find that the description of ~,e,cti,, 

is identical to that for its nonreactive counterpart. Hence 

By subtracting from this its time-smoothed counterpart, we find that an equation like Eq. 
21.5-18 must hold for the fluctuations: 

( 4 - 4 )  =(") 
CAO + CBO reactive nonreactive 

The time-smoothed mean square of the quantity on the right side is equal to d2, which is 
measurable as illustrated in Fig. 21.5-2, and therefore we have a way of predicting the 
corresponding quantity for reacting systems. 

Equation 21.5-19 suggests that the fluctuations in cA and cB in reactive problems 
occur on the same time and distance scales as for nonreactive problems. Note that this is 
true for arbitrary geometry, flow conditions, and reaction kinetics. We are now ready to 
consider special cases. 

We begin with a fast reaction, for which the two solutes cannot coexist, and the rate 
of the reaction is controlled by the diffusion of the species toward each other. Then, for 
the first (macromixing) stage of the blending process, where diffusion is very slow com- 
pared to the larger-scale convective processes, there is no significant reaction. In this, 
typically dominant, stage of the blending process 

(") =(") 
reactive nonreactive 
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It has been suggested4 that Eq. 21.5-20 is also true for the micromixing stage. Where this 
can be assumed (e.g., in the common situation where macromixing is rate controlling), it 
follows that reactive and nonreactive processes lead to identical descriptions of solute 
fluctuations. 

In practice, fast reactions (e-g., neutralization of acids with bases) are often used to 
determine the effectiveness of mixers, as these are much easier to follow experimentally 
than nonreactive mixing. Frequently one can use simple macroscopic measures such as 
temperature rise or an indicator color change. However, the measurement of concentra- 
tion fluctuations can provide more insight into the nature and the course of the mixing 
process. 

Slow reactions are also important, and we consider the special case of irreversible sec- 
ond-order kinetics, defined by 

When this is time-smoothed, we get 

We find, therefore, that the fluctuations in solute concentration increase the time- 
smoothed reaction rate relative to that when a simple product of time-smoothed concen- 
trations is used. It is, however, difficult to assess the practical importance of this effect. 

We illustrate this point by a simple order-of-magnitude analysis, beginning with the 
definition of a reaction time constant tA for one of the reactants, here solute A: 

To a first approximation, we may write 

tA = l/krcB0 

Fast and slow reactions may then be defined as those for which 

t,, >> tA fast reaction 

t,, < < tA slow reaction 

We have already discussed the case of fast reaction. For slow reactions, turbulence has 
no significant effect, because fluctuations become negligible before any appreciable reac- 
tion has taken place. 

If the mixing and reaction time constants are of the same order of magnitude, a 
deeper analysis than the above is needed. Such an analysis must include a model for the 
turbulent motion, and does not appear to be presently available. 

QUESTIONS FOR DISCUSSION 

1. Discuss the similarities and differences between turbulent heat and mass transport. 
2. Discuss the behavior of first- and higher-order reactions in the time-smoothing of the equa- 

tion of continuity for a given species. What are the consequences of this? 
3. To what extent are the turbulent momentum flux, heat flux, and mass flux similar in form? 
4. What empiricisms are available for describing the turbulent mass flux? 
5. How can eddy diffusivities be measured, and on what do they depend? 
6. Would you expect to get trustworthy results for mass transfer in turbulent tube flow without 

chemical reaction just by setting Rx = 0 in Eq. 21.4-8? 

- - - - 

K.-T. Li and H.  L. Toor, Ind. Eng. Chem. Fundam., 25,719-723 (1986). 
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PROBLEMS 21~.1. Determination of eddy diffusivity (Figs. 18C.1 and 21A.1). In Problem 18C.1 we gave the 
formula for the concentration profiles in diffusion from a point source in a moving stream. In 
isotropic highly turbulent flow, Eq. 18C.1-2 may be modified by replacing 9,, by the eddy 
diffusivity 9zL. This equation has been found to be useful for determining the eddy 
diffusivity. The molar flow rate of carbon dioxide is 1/1000 that of air. 
(a) Show that if one plots lnsc, versus s - z the slope is -vo/29$b. 
(b) Use the data on the diffusion of CO, from a point source in a turbulent air stream shown 
in Fig. 21A.1 to get a$), for these conditions: pipe diameter, 15.24 cm; v, = 1512 cm/s. 
(c) Compare the value of 9jfL with the molecular diffusivity BAB for the system C02-air. 
(d) List all assumptions made in the calculations. 
Answer: (b) 9jf', = 19 cm2/s 

Heat and mass transfer analogy. Write the mass transfer analog of Eq. 13.4-19. What are the 
limitations of the resulting equation? 

Wall mass flux for turbulent flow with no chemical reactions. Use the diffusional analog of 
Eq. 13.4-20 for turbulent flow in circular tubes, and the Blasius formula for the friction factor, 
to obtain the following expression for the Sherwood number, 

valid for large Schmidt numbers.' 

Alternate expressions for the turbulent mass flux. Seek an asymptotic expression for the 
turbulent mass flux for long circular tubes with a boundary condition of constant wall mass 
flux. Assume that the net mass transfer across the wall is small. 
(a) Parallel the approach to laminar flow heat transfer in 510.8 to write 

in which 6 = r /D ,  5 = (z/D)/ReSc, o,, is the inlet mass fraction of A, and j,, is the interfacial 
mass flux of A into the fluid. 

Fig. 21A.1. Concentration traverse data for 
C02 injected into a turbulent air stream with 
Re = 119,000 in a tube of diameter 15.24 cm. 
The circles are concentrations at a distance 
z = 112.5 cm downstream from the injection 
point, and the crosses are concentrations at 
z = 152.7 cm. [Experimental data are taken 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 from W. L. Towle and T. K. Sherwood, Ind. 
r/R - Eng. Chem., 31,457462 (1939).] 

- 

' 0. T. Hanna, 0. C. Sandall, and C. L. Wilson, Ind. Eng. Chem. Res., 28,2286-2290 (1987). 
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(b) Next use the equation of continuity for species A to obtain 

in which Sc"' = p'"/p9$~. This equation is to be integrated with the boundary conditions that 
I I ,  is finite at 5 = 0 and dI I , /d f  = -1 at 5 = i. 
( c )  Integrate once with respect to [ to obtain 

dn, - t - 4 It1'' (vz/(vz))[dt 
-- - (21 B.2-3) 

d 5  f [ 1  + (Sc/S~(~ ')(~ '~ ' /p) l  

An asymptotic expression for the turbulent mass flux.' Start with the final result of Problem 
21B.2, and note that for sufficiently high Sc all curvature of the concentration profile will take 
place very near the wall, where v,/(v,) = 0 and 5 = i. Assume that Sdt' = 1 and use Eq. 5.4-2 
to obtain 

dn, - -- - 1 - - 1 (21B.3-1) 
4 [I + S C ( ~ ' " / ~ ) I  1 + sc(yv*/14.5~)~ 

Introduce the new coordinate 77 = S~"~(yv,/14.5~) into Eq. 21B.3-1 to get an equation for d I I / d v  
valid within the laminar sublayer. Then integrate from q = 0 (where w, = w,,) to 77 = (where 
o, = w,,) to obtain an explicit relation for the wall mass flux jAO. Compare with the analog of 
Eq. 13.4-20 obtained in Problem 21A.2. 

Deposition of silver from a turbulent stream (Fig. 21B.3). An approximately 0.1 N solution of 
KNO, containing 1.00 X lop6 g-equiv. AgNO, per liter is flowing between parallel Ag plates, 

- Movement of electrons --+ 

r" Ag + Ag' + e- 
Anode 

4 

Cathode 1 4 

Fig. 218.3. (a) Electrodeposition of Ag' from a turbulent stream flowing in the positive z direction between two 
parallel plates. (b) Concentration gradients in electrodeposition of Ag at an electrode. 

' C. S. Lin, R. W. Moulton, and G. L. Putnam, Ind. Eng. Chem., 45,636 (1953). 



670 Chapter 21 Concentration Distributions in Turbulent Flow 

as shown in Fig. 21B.3(a). A small voltage is applied across the plates to produce a deposition 
of Ag on the cathode (lower plate) and to polarize the circuit completely (that is, to maintain 
the Agt concentration at the cathode very nearly zero). Forced diffusion may be ignored, and 
the Ag+ may be considered to be moving to the cathode by ordinary (that is, Fickian) diffu- 
sion and eddy diffusion only. Furthermore, this solution is sufficiently dilute that the effects 
of the other ionic species on the diffusion of Agf are negligible. 
(a) Calculate the Ag' concentration profile, assuming that (i) the effective binary diffusivity 
of Ag+ through water is 1.06 X lop5 cm2/s; (ii) the truncated Lin, Moulton, and Putnam ex- 
pression of Eq. 5.4-2 for the turbulent velocity distribution in round tubes is valid for "slit 
flow" as well, if four times the h draulic radius is substituted for the tube diameter; (iii) the 
plates are 1.27 cm apart, and & is 11.4 cm/s. 
(b) Estimate the rate of deposition of Ag on the cathode, neglecting all other electrode reactions. 
(c) Does the method of calculation in part (a) predict a discontinuous slope for the concentra- 
tion profile at the center plane of the system? Explain. 
Answers: (a) See Fig. 218.3(b); (b) 6.7 X lo-'* equiv/cm2. s 

21B.5. Mixing-length expression for the velocity profile. 
(a) Start with Eq. 5.5-3, and show that for steadily driven, fully developed turbulent flow in 
a tube 

(b) Next set 7, = 72' + 72, where 7:) is given by the cylindrical coordinate analog of Eq. 5.2-9, 
and ?:' by Eq. 5.5-5. Show that Eq. 21B.5-1 then becomes 

(c) Obtain Eq. 21.4-13 from Eq. 21B.5-2 by introducing the dimensionless symbols used in the 
former equation. 



Chapter 22 

Interphase Transport in 
Nonisothermal Mixtures 

Definition of transfer coefficients in one phase 

Analytical expressions for mass transfer coefficients 

Correlation of binary transfer coefficients in one phase 

Definition of transfer coefficients in two phases 

Mass transfer and chemical reactions 

Combined heat and mass transfer by free convection 

Effects of interfacial forces on heat and mass transfer 

Transfer coefficients at high net mass transfer rates 

Matrix approximations for multicomponent mass transport 

Here we build on earlier discussions of binary diffusion to provide means for predicting 
the behavior of mass transfer operations such as distillation, absorption, adsorption, ex- 
traction, drying, membrane filtrations, and heterogeneous chemical reactions. This chap- 
ter has many features in common with Chapters 6 and 14. It is particularly closely 
related to Chapter 14, because there are many situations where the analogies between 
heat and mass transfer can be regarded as exact. 

There are, however, important differences between heat and mass transfer, and we 
will devote much of this chapter to exploring these differences. Since many mass transfer 
operations involve fluid-fluid interfaces, we have to deal with distortions of the interfa- 
cial shape by viscous drag and by surface tension gradients resulting from inhomo- 
geneities in temperature and composition. In addition, there may be interactions 
between heat and mass transfer, and there may be chemical reactions occurring. Further- 
more, at high mass transfer rates, the temperature and concentration profiles may be dis- 
torted. These effects complicate and sometimes invalidate the neat analogy between heat 
and mass transfer that one might otherwise expect. 

In Chapter 14 the interphase heat transfer involved the movement of heat to or from 
a solid surface, or the heat transfer between two fluids separated by a solid surface. Here 
we will encounter heat and mass transfer between two contiguous phases: fluid-fluid or 
fluid-solid. This raises the question as to how to account for the resistance to diffusion 
provided by the fluids on both sides of the interface. 

We begin the chapter by defining, in 522.1, the mass and heat transfer coefficients 
for binary mixtures in one phase (liquid or gas). Then in 522.2 we show how analytical 
solutions to diffusion problems lead to explicit expressions for mass transfer coefficients. 
In that section we give some analytic expressions for mass transfer coefficients at high 
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Schmidt numbers for a number of relatively simple systems. We emphasize the different 
behavior of systems with fluid-fluid and solid-fluid interfaces. 

In 522.3 we show how dimensional analysis leads to predictions involving the Sher- 
wood number (Sh) and the Schmidt number (Sc), which are the analogs of the Nusselt 
number (Nu) and the Prandtl number (Pr) defined in Chapter 14. Here the emphasis is 
on the analogies between heat transfer in pure fluids and mass transfer in binary mix- 
tures. Then in 522.4 we proceed to the definition of mass transfer coefficients for systems 
with diffusion in two adjoining phases. We show there how to apply the information 
about mass transfer in single phases to the understanding of mass transfer between two 
phases. 

Finally, in the last five sections of the chapter, we take up some effects that are pecu- 
liar to mass transfer systems: mass transfer with chemical reactions (§22.5), the interac- 
tion of heat and mass transfer processes in free convection (§22.6), the complicating 
factors of interfacial tension forces and Marangoni effects (522.71, the distortions of tem- 
perature and concentration profiles that arise in systems with large net mass transfer 
rates across the interface (S22.8); and finally the matrix analysis of mass transport in mul- 
ticomponent systems. In this chapter the emphasis is on the non-analogous behavior of 
heat and mass transfer systems. 

In this chapter we have limited the discussion to a few key topics on mass transfer 
and transfer coefficient correlations. Further information is available in specialized text- 
books on these and related topics.14 

g22.1 DEFINITION OF TRANSFER COEFFICIENTS IN ONE PHASE 

In this chapter we relate the rates of mass transfer across phase boundaries to the rele- 
vant concentration differences, mainly for binary systems. These relations are analogous 
to the heat transfer correlations of Chapter 14 and contain mass transfer coeficients in 
place of the heat transfer coefficients of that chapter. The system may have a true phase 
boundary, as in Fig. 22.1-1,2, or 4, or an abrupt change in hydrodynamic properties, as 
in the system of Fig. 22.1-3, containing a porous solid. Figure 22.1-1 shows the evapora- 
tion of a volatile liquid, often used in experiments to develop mass transfer correlations. 
Figure 22.1-2 shows a permselective membrane, in which a selectively permeable sur- 
face permits more effective transport of solvent than of a solute that is to be retained, as 
in ultrafiltration of protein solutions and the desalting of sea water. Figure 22.1-3 shows 
a macroscopically porous solid, which can serve as a mass transfer surface or can pro- 
vide sites for adsorption or reaction. Figure 22.1-4 shows an idealized liquid-vapor con- 
tactor where the mass transfer interface may be distorted by viscous or surface-tension 
forces. 

Stream of gas B 
h 

t Vapor A moving 
into gas stream Fig. 22.1-1. Example of 

Interface + 
mass transfer across a 
plane boundary: drying of 
a saturated slab. 

' T. K. Sherwood, R. L. Pigford, and C. R. Wilke, Mass Transfer, McGraw-Hill, New York (1975). 
R. E. Treybal, Mass Transfer Operations, 3rd edition, McGraw-Hill, New York (1980). 

%. L. Cussler, Diffusion: Mass Transfer in Fluid Systems, 2nd edition, Cambridge University Press 
(1997). 

9. E. Rosner, Transport Processes in Chemically Reacting Flow Systems (Unabridged), Dover, New 
York (2000). 
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Representative Membrane Processes 

P e k  1: 
Dialysis 
Blood oxygenation 

re'>> 1: 
Microfiltration 
Ultrafiltration 
Nanofiltration 
Reverse osmosis 

Membrane 4 
Fig. 22.1-2. Two rather typical kinds of membrane separators, 
classified here according to a Peclet number, P6 = 6v/geff, for 
the flow through the membrane. Here 6 is the membrane 
thickness, v is the velocity at which solvent passes through 
the membrane, and '& is the effective solute diffusivity 
through the membrane. The heavy line represents the mem- 
brane, and the arrows represent the flow along or through the 
membrane. 

Stream of hot gas A 
Injected gas A moving 
/ away from wall 

Cold gas A pumped 
through wall 

Upward- - 
moving gas 

At interface 
r = R  
y = 0 

and 
= N ~ O  

N B  = NBO 

Fig. 22.1-3. Example of 
mass transfer through a 
porous wall: transpira- 
tion cooling. 

Tube wall 

Fig. 22.1-4. Example of a gas-liquid con- 
tacting device: the wetted-wall column. 
Two chemical species A and B are mov- 
ing from the downward-flowing liquid 
stream into the upward-flowing gas 
stream in a cylindrical tube. 



674 Chapter 22 Interphase Transport in Nonisothermal Mixtures 

In each of these systems, there will be both heat and mass transfer at the interface, 
and each of these fluxes will have a molecular (diffusive) and a convective term (here we 
have moved the convective term to the left side of the equation): 

These equations are just Eq. 18.0-1 and Eq. 19.3-6 written at the mass transfer interface 
(y = 0). They describe the interphase molar flux of species A and the interphase flux of 
energy (excluding the kinetic energy and the contribution from [T . vl). Both NAo and e, 
are defined as positive for transfer into the local phase except in 522.4 where the fluxes in 
each phase are defined as positive for transfer toward the liquid. 

In Chapter 14 we defined the heat transfer coefficient in the absence of mass transfer 
by Eq. 14.1-1 (Q = hA AT). For surfaces with mass and heat transfer, Eqs. 22.1-1 and 2 
suggest that the following definitions are appropriate: 

Here WAo is the number of moles of species A per unit time going through the transfer 
surface at y = 0, and E, is the total amount of energy going through the surface. The 
transfer coefficients kxA and h are not defined until the area A and the driving forces Ax, 
and AT have been specified. All the comments in Chapter 14 regarding these definitions 
may be taken over in this chapter, with the result that a subscript 1, In, a, m, or loc can be 
added to make clear the type of driving force that is used. In this chapter, however, we 
shall mainly use the local transfer coefficients and occasionally the mean transfer coeffi- 
cients. Also, in this chapter, molar fluxes of the species will be used, since in chemical en- 
gineering this is traditional. The relations between the mass-transfer expressions in 
molar and mass units are summarized in Table 22.2-1. 

Local transfer coefficients are defined by writing Eqs. 22.1-3 and 4 for a differential 
area. Since d WA,/dA = NAO and dE,/dA = e,, we get the definitions 

Next, we note that the left side of Eq. 22.1-5 is J;,, and that the left side of a similar equa- 
tion written for species B is J&. However, since J;, = -J& and AX, = -AxB, we find that 
kxA,loc = kxB,loc, and therefore we can write both mass transfer coefficients as kx,lOc, which 
has units of (moles)/(area)(time). - Furthermore, if the heat of mixing is zero (as in ideal 
gas mixtures), we can replace HA, by (?,,,(T, - To), where To is an arbitrarily chosen ref- 
erence temperature, as explained in Example 19.3-1. A similar replacement may be made 
for &,. With these changes we get 

We remind the reader that rapid mass transfer across phase boundaries can distort the 
velocity, temperature, and concentration profiles, as we have already seen in 518.2 and 
in Example 19.4-1. The correlations provided in s22.2, as well as their analogs in Chap- 
ters 6 and 14, are all for small net mass-transfer rates, that is, for situations in which the 
convective terms in Eqs. 22.1-7 and 8 are negligible relative to the first term. Such situa- 
tions are common, and most correlations in the literature suffer from the same limita- 
tion. In 522.8 we consider the deviations associated with high net mass-transfer rates and 
decorate the transfer coefficients at these conditions with a superscript "*" (see 522.8). 
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In much of the chemical engineering literature, the mass transfer coefficients are de- 
fined by 

The relation of this "apparent" mass transfer coefficient to that defined by Eq. 22.1-7 is 

in which r = NBo/NAo. Other widely used mass transfer coefficients are defined by 

for liquids and 

for gases. In the limit of low solute concentrations and low net mass transfer rates, for 
which most correlations have been obtained, 

The superscript 0 indicates that these quantities are applicable only for small mass-trans- 
fer rates and small mole fractions of species A. 

In many industrial contactors, the true interfacial area is not known. An example of 
such a system would be a column containing a random packing of irregular solid parti- 
cles. In such a situation, one can define a volumetric mass transfer coefficient, k g ,  incor- 
porating the interfacial area for a differential region of the column. The rate at which 
moles of species A are transferred to the interstitial fluid in a volume Sdz of the column is 
then given by 

Here the interfacial area, a, per unit volume is combined with the mass transfer coeffi- 
cient, S is the total column cross section, and z is measured in the primary flow direction. 
Correlations for predicting values of these coefficients are available, but they should be 
used with caution. Rarely do they include all the important parameters, and as a result 
they cannot be safely extrapolated to new systems. Furthermore, although they are usu- 
ally described as "local," they actually represent a poorly defined average over a wide 
range of interfacial 

We conclude this section by defining a dimensionless group widely used in the 
mass-transfer literature and in the remainder of this book: 

which is called the Sherwood number based on the characteristic length lo. This quantity 
can be "decorated with subscripts 1, a, m, In, and loc in the same manner as h. 

' J. Stichlmair and J. F. Fair, Distillation Principles and Practice, Wiley, New York (1998). 
H. Z. Kister, Distillation Design, McGraw-Hill, New York (1992). 
J. C. Godfrey and M. M. Slater, Liquid-Liquid Extraction Equipment, Wiley, New York (1994). 

". H. Perry and D. W. Green, Chemical Engineers' Handbook, 8th edition, McGraw-Hill, New York 
(1997). 

J. E. Vivian and C. J. King, in Modem Chemical Engineering (A. Acrivos, ed.), Reinhold, New York (1963). 
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522.2 ANALYTICAL EXPRESSIONS FOR 
MASS TRANSFER COEFFICIENTS 

In the preceding chapters we obtained a number of analytical solutions for concentra- 
tion profiles and for the associated molar fluxes. From these solutions we can now derive 
the corresponding mass transfer coefficients. These are usually presented in dimensionless 
form in terms of Sherwood numbers. We summarize these analytical expressions here for 
use in later sections of this chapter. All of the results given in this section are for systems 
with a slightly soluble component A, small diffusivities %AB, and small net mass-transfer 
rates, as defined in 9322.1 and 8. It may be helpful at this point to refer to Table 22.2-1, 
where the dimensionless groups for heat and mass transfer have been summarized. 

Mass Transfer in Falling Films on Plane Surfaces 

For the absorption of a slightly soluble gas A into a falling film of pure liquid B, we can 
put the result of Eq. 18.5-18 into the form of Eq. 22.1-3 (appropriately modified for molar 
concentration units in the manner of Eq. 22.1-ll), thus 

Table 22.2-1 Analogies Among Heat and Mass Transfer at Low Mass-Transfer Rates 

Heat transfer Binary mass transfer Binary mass transfer 
quantities quantities (isothermal quantities (isothermal 
(pure fluids) fluids, molar units) fluids, mass units) 

Profiles T *A w A 

Diffusivity a = k/pCp 9 AB 9 AB 

Effect of profiles 
on density 

Transfer coefficient Q h = -  
A AT 

Dimensionless groups Re = I,v,p/p Re = l,v@/p 
common to all three Fr = v;/gl ,  Fr = v;/gl, 
correlations 

Dimensionless groups Nu = hlO/k Sh = kxlO/&dAB Sh = ~ , ~ O / P ~ A B  
that are different ~r = & p / k  Sc = p /pgAB Sc = p/pEbAB 

Gr = l&2gpAT/p2 Gr, = I&2g5A~A/p2 Gr, = l~p2g[Aw,/p2 
P6 = RePr = l,v,~,/k P6 = ReSc = IOvo/9AB P6 = ReSc = I , v , , / ~ ~ ,  

Notes: (a) The subscript 0 on I ,  and v, indicates the characteristic length and velocity respectively, whereas the subscript 0 on the mole 
(or mass) fraction and molar (or mass) flux means "evaluated at the interface." (b) All three of these Grashof numbers can be written as 
Gr = lipg AplP2, provided that the density change is caused only by a difference of temperature or composition. 
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Then, when the characteristic area is chosen to be the area of the interface WL, we see 
that 

Sh,  = - 

= 1 .128 (~e~c ) "~  (22.2-2) 

This equation expresses the Sherwood number (the dimensionless mass transfer coeffi- 
cient) in terms of the Reynolds number and the Schmidt number, with Re defined in 
terms of the maximum velocity v,,, in the film and the film length L. The Reynolds num- 
ber could also be defined in terms of the average film velocity with a different numerical 
coefficient. 

Similarly, for the dissolution of a slightly soluble material A from the wall into a 
falling liquid film of pure B, we can put Eq. 18.6-10 into the form of Eq. 22.1-3 as 
follows: 

Then, using the definition a = ~ g 6 / p  given just after Eq. 18.6-1 and the expression 
for the maximum velocity in the film in Eq. 2.2-19, we find the Sherwood 
follows: 

In this instance we have not only the Reynolds number and Schmidt number 
but also the ratio of the film length to the film thickness. 

number as 

(22.2-4) 

appearing, 

These two problems-gas absorption by a falling film and the dissolution of a solid 
wall into a falling film-illustrate two important situations. In the first problem, there is 
no velocity gradient at the gas-liquid interface, and the quantity ReSc appears to the 
$-power in the expression for the Sherwood number. In the second problem, there is a 
velocity gradient at the solid-liquid interface, and the quantity ReSc appears to the 

in the Sherwood number expression. 

Mass Transfer for Flow Around Spheres 

Next we consider the diffusion that occurs in the creeping flow around a spherical gas 
bubble and around a solid sphere of diameter D. This pair of systems parallels the two 
systems discussed in the previous subsection. 

For the gas absorption from a gas bubble surrounded by a liquid in creeping flow, 
we can put Eq. 20.3-28 in the form of Eq. 22.1-5 thus: 

The Sherwood number is then 

Here the Reynolds number is defined using the approach velocity v, of the fluid (or, al- 
ternatively, the terminal velocity of the rising bubble). 
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For the creeping flow around a solid sphere with a slightly soluble coating that dis- 
solves into the approaching fluid, we may modify the result in Eq. 12.4-34 to get 

This result may be rewritten in terms of the Sherwood number as 

As in the preceding subsection we have ReSc to the :-power for the gas-liquid system 
and ReSc to the $-power for the liquid-solid system. 

Both Eq. 22.2-6 and Eq. 22.2-8 are valid only for creeping flow. However, they are 
not valid in the limit that Re goes to zero. As we know from Problem 10B.l and Eq. 14.4- 
5, if there is no flow past the solid sphere or the spherical bubble, Sh, = 2. It has been 
found that a satisfactory description of the mass transfer all the way down to Re = 0 can 
be obtained by using the simple superpositions: Sh,, = 2 + 0.6415(~e~c) ' /~ and Sh, = 

2 + 0.991 ( ~ e S c ) ' / ~  in lieu of Eqs. 22.2-6 and 8. 

Mass Transfer in Steady, Nonseparated Boundary 
Layers on Arbitrarily Shaped Objects 

For systems with a fluid-fluid interface and no velocity gradient at the interface, we 
found the mass flux at the surface to be given by Eq. 20.3-14: 

The local Sherwood number is 

in which the constant, 1 /G, is equal to 0.5642 and Re = lovop/p. 
Similarly for systems with fluid-solid interfaces and a velocity gradient at the inter- 

face, the mass flux expression is given in Eq. 20.3-26 as 

The analogous Sherwood number expression is 

where the numerical coefficient has the value 0.5384. In these equations 1, and v, are a 
characteristic length and a characteristic velocity that can be chosen after the shape of 
the body has been defined. Here again we see that the on ReSc appears in the 
fluid-fluid system, and the $-power on ReSc appears in the fluid-solid system- 
regardless of the shape. The radicands of the Sherwood number expressions are 
dimensionless. 
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Mass Transfer in the Neighborhood of a Rotating Disk 

For a disk of diameter D coated with a slightly soluble material A rotating with angular 
velocity fl in a large region of liquid B, the mass flux at the surface of the disk is inde- 
pendent of position. According to Eq. 19D.4-7 we have 

This may be expressed in terms of the Sherwood number as 

Here the characteristic velocity in the Reynolds number is chosen to be DO. 

522.3 CORRELATION OF BINARY TRANSFER 
COEFFICIENTS IN ONE PHASE 

In this section we show that correlations for binary mass transfer coefficients at low 
mass-transfer rates can be obtained directly from their heat transfer analogs simply by a 
change of notation. These correspondences are quite useful, and many heat transfer cor- 
relations have, in fact, been obtained from their mass transfer analogs. 

To illustrate the background of these useful analogies and the conditions under 
which they apply, we begin by presenting the diffusional analog of the dimensional 
analysis given in 514.3. Consider the steadily driven, laminar or turbulent isothermal 
flow of a liquid solution of A in B, in the tube shown in Fig. 22.3-1. The fluid enters the 
tube at z = 0 with velocity uniform out to very near the wall and with a uniform inlet 
composition XAl From z = 0 to z = L, the tube wall is coated with a solid solution of 
A and B, which dissolves slowly and maintains the interfacial liquid composition con- 
stant at xAO. For the moment we assume that the physical properties p, p, c, and 9 A B  are 
constant. 

The mass transfer situation just described is mathematically analogous to the heat 
transfer situation described at the beginning of 514.3. To emphasize the analogy, we pre- 
sent the equations for the two systems together. Thus the rate of heat addition by con- 
duction between 1 and 2 in Fig. 14.3-1 and the molar rate of addition of species A by 

Nozzle 

Fluid enters 
with uniform 4 

composition XA, ; composition XAb2 -k - C - - 

assumed to be small 

Fig. 22.3-1. Mass transfer in a pipe with a soluble wall. 
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diffusion between 1 and 2 in Fig. 22.3-1 are given by the following expressions, valid for 
either laminar or turbulent flow: 

heat transfer: 

Equating the left sides of these equations to hl(.rrDL)(To - TI) and kxl(.rrDL)(xAo - xA1) re- 
spectively, we get for the transfer coefficients 

heat transfer: 
h,(t) = .rrDL(To - TI) IL o /2w(+k$r=JR o 

dB dz 

/ L / 2 * ( + c 9 A B $ i r = J ~ d ~ d z  mass transfer: kXl(f) = - xA,) 

We now introduce the dimensionless variables ? = r/D, i = z / D ,  f = (T - To)/(Tl - To), 
and ?A = (x, - xAO)/(xAl - xAO) and rearrange to obtain 

heat transfer: hlD /""["(-g NU,@) = - = - 
k 2nL/Do dr ?=+ 

mass transfer: kXlD - / "" lo2" (-5 1 di Shl(t) = 7 - ------- 
&JAB 2vLID o dr -,=? 

Here Nu is the Nusselt number for heat transfer without mass transfer, and Sh is the 
Sherwood number for isothermal mass transfer at small mass-transfer rates. The Nus- 
selt number is a dimensionless temperature gradient integrated over the surface, and 
the Sherwood number is a dimensionless concentration gradient integrated over the 
surface. 

These gradients can, in principle, be evaluated from Eqs. 11.5-7, 8, and 9 (for heat 
transfer) and Eqs. 19.5-8, 9, and 11 (for mass transfer), under the following boundary 
conditions (with ir and 6' defined as in 514.3 and with time averaging of the solutions if 
the flow is turbulent): 

velocity and pressure: 

at i = 0, ir = 6, f o r O ~ ? < f  
" 1 a t r= , , i r=O for5 L 0 

a t?=Oand i = O , @  = O  

temperature: 

concentration: 

The boundary condition in Eq. 22.3-8, on the velocity at the wall, is accurate for the heat- 
transfer system and also for the mass-transfer system provided that xA&WAO + WBO) is 
small; the latter criterion is discussed in 5322.1 and 8. No boundary conditions are 
needed at the outlet plane, z = L/D, when we neglect the d2/dz2 terms of the consenra- 
tion equations in the manner of 34.4 and 514.3. 
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If we can neglect the heat production by viscous dissipation in Eq. 11.5-9 and if there 
is no production of A by chemical reaction as in Eq. 19.5-11, then the differential equa- 
tions for heat and mass transport are analogous along with the boundary conditions. It 
follows then that the dimensionless profiles of temperature and concentration (time 
smoothed, when necessary) are similar, 

? = F(F, 8,i, Re, Pr); 2, = F(?, O,i, Re, Sc) (22.3-14,15) 

with the same form of F in both systems. Thus, to get the concentration profiles from the 
temperature profiles, one replaces $! by k, and Pr by Sc. 

Finally, inserting the profiles into Eqs. 22.3-5 and 6 and performing the integrations 
and then time-averaging give for forced convection 

Nu, = G(Re, Pr, LID); Shl = G(Re, Sc, LID) (22.3-1 6,171 

Here G is the same function in both equations. The same formal expression is obtained 
for Nu,, Nul,, Nu,,, as well as for the corresponding Sherwood numbers. This important 
analogy permits one to write down a mass transfer correlation from the corresponding 
heat transfer correlation merely by replacing Nu by Sh, and Pr by Sc. The same can be 
done for any geometry and for both laminar and turbulent flow. Note, however, that to 
get this analogy one has to assume (i) constant physical properties, (ii) small net mass- 
transfer rates, (iii) no chemical reactions, (iv) no viscous dissipation heating, (v) no ab- 
sorption or emission of radiant energy, and (vi) no pressure diffusion, thermal diffusion, 
or forced diffusion. Some of these effects will be discussed in subsequent sections of this 
chapter; others will be treated in Chapter 24. 

For free convection around objects of any given shape, a similar analysis shows that 

Nu, = H(Gr, Pr); Sh, = H(Gr,, Sc) (22.3-18,191 

Here H is the same function in both cases, and the Grashof numbers for both processes 
are defined analogously (see Table 22.2-1 for a summary of the analogous quantities for 
heat and mass transfer). 

To allow for the variation of physical properties in mass transfer systems, we extend 
the procedures introduced in Chapter 14 for heat transfer systems. That is, we generally 
evaluate the physical properties at some kind of mean film composition and tempera- 
ture, except for the viscosity ratio pb/pO. 

We now give three illustrations of how to "translate" from heat transfer to mass 
transfer correlations: 

Forced Convection Around Spheres 

For forced convection around a solid sphere, Eq. 14.4-5 and its mass-transfer analog are: 

Nu, = 2 + 0.60 ~ e ~ / ~  Pr1/3; Sh,,, = 2 + 0.60 Sc'l3 (22.3-20,21) 

Equations 22.3-20 and 21 are valid for constant surface temperature and composition, re- 
spectively, and for small net mass-transfer rates. They may be applied to simultaneous 
heat and mass transfer under restrictions (i)-(vi) given after Eq. 22.3-17. 

Forced Convection along a Flat Plate 

As another illustration of the use of analogies, we can cite the extension of Eq. 14.4-4 for 
the laminar boundary layer along a flat plate, to include mass transfer: 
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The Chilton-Colburn j-factors, one for heat transfer and one for diffusion, are defined as1 

The three-way analogy in Eq. 22.3-22 is accurate for Pr and Sc near unity (see Table 
12.4-1) within the limitations mentioned after Eq. 22.3-17. For flow around other objects, 
the friction factor part of the analogy is not valid because of the form drag, and even for 
flow in circular tubes the analogy with ifio, is only approximate (see 514.4). 

The Chilton-Colburn Analogy 

The more widely applicable empirical analogy 

j, = j, = a function of Re, geometry, and boundary conditions (22.3-25) 

has proven to be useful for transverse flow around cylinders, flow through packed beds, 
and flow in tubes at high Reynolds numbers. For flow in ducts and packed beds, the 
"approach velocity" v, has to be replaced by the interstitial velocity or the superficial ve- 
locity. Equation 22.3-25 is the usual form of the Chilton-Colburn analogy. It is evident 
from Eqs. 22.3-20 and 21, however, that the analogy is valid for flow around spheres 
only when Nu and Sh are replaced by (Nu - 2) and (Sh - 2). 

It would be very misleading to leave the impression that all mass transfer coeffi- 
cients can be obtained from the analogous heat transfer coefficient correlations. For mass 
transfer we encounter a much wider variety of boundary conditions and other ranges of 
the relevant variables. Non-analogous behavior is addressed in gs22.5-8. 

A spherical drop of water, 0.05 cm in diameter, is falling at a velocity of 215 cm/s through 
dry, still air at 1 atm pressure with no internal circulation. Estimate the instantaneous rate of 

from a evaporation from the drop, when the drop surface is at To = 70°F and the air (far from the 
Freely Falling Drop drop) is at T, = 140°F. The vapor pressure of water at 70°F is 0.0247 atm. Assume quasi- 

steady state conditions. 

SOLUTION Designate water as species A and air as species B. The solubility of air in water may be ne- 
glected, so that WBO = 0. Then assuming that the evaporation rate is small, we may write Eq. 
22.1-3 for the entire spherical surface as 

The mean mass transfer coefficient, k,,, may be predicted from Eq. 22.3-21 in the assumed ab- 
sence of internal circulation. 

The film conditions needed for estimating the physical properties are obtained as 
follows: 

T. H. Chilton and A. P. Colburn, Ind. Eng. Chem., 26,1183-1187 (1934). 
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In computing xAfr we have assumed ideal gas behavior, equilibrium at the interface, and com- 
plete insolubility of air in water. The mean mole fraction, xAf, of the water vapor is sufficiently 
small that it can be neglected in evaluating the physical properties at the film conditions: 

c = 3.88 X lop5 g-moles/cm3 

p = 1.12 x g/cm3 

p = 1.91 X lod4 g/cm . s (from Table 1.1-1) 

%AB = 0.292 cm2/s (from Eq. 17.2- 1) 

When these values are used in Eq. 22.3-21 we get 

Sh, = 2 + 0.60(63)~/~(0.58)'/~ = 5.96 

and the mean mass transfer coefficient is then 

C ~ A B  (3.88 X 1OP5)(O.292) (5.96) kxm = - 
D 

Sh, = 
0.05 

Then from Eq. 22.3-26 the evaporation rate is found to be 

This result corresponds to a decrease of 1.23 X lop3 cm/s in the drop diameter and indicates 
that a drop of this size will fall a considerable distance before it evaporates completely. 

In this example, for simplicity, the velocity and surface temperature of the drop were 
given. In general, these conditions must be calculated from momentum and energy balances, 
as discussed in Problem 22B.1. 

EXAMPLE 22.3-2 

The Wet  and D y Bulb 

We next turn to a problem for which the analogy between heat and mass transfer leads to a sur- 
prisingly simple and useful, if approximate, result. The system, shown in Fig. 22.3-2, is a pair of 
thermometers, one of which is covered with a cylindrical wick kept saturated with water. The 

Psychrometer wick will cool by evaporation into the moving air stream and for steady operation will ap- 
proach an asymptotic value known as the wet bulb temperature. The bare thermometer, on the 
other hand, will tend to approach the actual temperature of the approaching air, and this value 
is called the dry bulb temperature. Develop an expression for determining the humidity of the air 
from the wet and dry bulb temperature readings neglecting radiation and assuming that the re- 
placement of the evaporating water has no significant effect on the wet bulb temperature mea- 
surement. In Problem 228.2 we will see how radiation can be taken into account. 

SOLUTION For simplicity, we assume that the fluid velocity is high enough that the thermometer read- 
ings are unaffected by radiation and by heat conduction along the thermometer stems, but 
not so high that viscous dissipation heating effects become significant. These assumptions are 
usually satisfactory for glass thermometers and for gas velocities of 30 to 100 ft/s. The dry 
bulb temperature is then the same as the temperature T ,  of the approaching gas, and the wet 
bulb temperature is the same as the temperature To of the outside of the wick. 

Let species A be water and species B be air. An energy balance is made on a system that 
contains a length L of the wick (the distance between planes 1 and 2 in the figure). The rate of 
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Dry-bulb Wet-bulb 
/ thermometer thermometer \ 

q Surface 2 

Wick saturated 

Fig. 22.3-2. Sketch of a wet-bulb and dry-bulb psychrometer installation. It is assumed that no heat or mass 
moves across plane 2. 

heat addition to the system by the gas stream is h,(nDL)(T, - To). Enthalpy also enters via 
plane 1 at a rate WAIHAl in the liquid phase and leaves at the mass transfer surface at a rate 
w ~ ~ J ~ ~ ,  both of these occurring at a temperature To. Hence the energy balance gives 

since the water enters the system at plane 1 at the same rate that it leaves as water vapor at 
the mass transfer interface 0. To a very good approximation, HA, - HA, may be replaced by 
A&,,, the molar heat of vaporization of water. 

From the definition of the mass transfer coefficient 

in which WBo = 0 as in the preceding example. Combination of Eqs. 22.2-32 and 33 gives then 

Then using the definitions of Nu, and Sh,, and noting that p?p = ct,, we may rewrite Eq. 
22.3-34 as 

Because of the analogy between heat and mass transfer, we can expect that the mean Nusselt 
and Sherwood numbers will be of the same form: 

Nu, = F(Re)Prn; Sh, = F(Re)Scn (22.3-36,37) 

where F is the same function of Re in both expressions. Therefore, knowing the dry and wet 
bulb temperatures and the mole fraction of the water vapor adjacent to the wick (x,,), we can 
calculate the upstream composition XA, of the air stream from 

The exponent n depends to a slight extent on the geometry, but is not far from & and the 
quantity (Sc/PrI1-" is not far from unity.* Furthermore, the wet bulb temperature is seen to be 

A somewhat different equation, with 1 - n = 0.56, was recommended for measurements in air by 
C. H. Bedingfield and T. B. Drew, Ind. Eng. Chem., 42,1164-1173 (1950). 
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independent of the Reynolds number under the assumption introduced in Eqs. 22.3-36 and 
37. This result would also have been obtained by using the Chilton-Colburn relations, which 
would give n = $ directly. 

The interfacial gas composition xAo can be accurately predicted, at low mass-transfer 
rates, by neglecting the heat and mass transfer resistance of the interface itself (see s22.4 
for further discussion of this point). One can then represent xAO by the vapor-liquid 
equilibrium relationship: 

A relation of this kind will hold for given species A and B if the Iiquid is pure A as assumed 
above A commonly used approximation of this relationship is 

in which PA,",, is the vapor pressure of pure A at temperature To. This relation assumes tacitly 
that the presence of B does not alter the partial pressure of A at the interface, and that A and B 
form an ideal gas mixture. 

If an air-water mixture at 1 atm pressure gives a wet bulb temperature of 70°F and a dry 
bulb temperature of 140°F, then 

pA,vap = 0.0247 atm 

xA0 = 0.0247, from Eq. 22.3-40 

C, = 6.98 Btu/lb-mole. F at 105"F, the film temperature 

A&, = 18,900 Btu/lb-mole at 70°F 

Sc = 0.58 (see Example 22.2-1) 

Pr = 0.74, from Eq. 9.3-16 

Substitution into Eq. 22.3-37, with n = $, then gives 

From this the mole fraction of water in the approaching air is 

Since we assumed that the film concentration was X A  = 0 as a first approximation, we 
could go back and make a second approximation by using an average film concentration 
of i(0.0247 + 0.0033) = 0.0140 in the physical property calculations. The physical proper- 
ties are not known accurately enough here to justify recalculation. 

The calculated result in Eq. 22.3-43 is in only fair agreement with published humidity 
charts, because these are typically based on the adiabatic saturation temperature rather than 
the wet bulb tem~erature.~ 

EXAMPLE 22.3-3 

Mass Transfer in 
Creeping Flow Through 

Many important adsorptive operations, from purification of proteins in modern biotechnol- 
ogy to the recovery of solvent vapor by dry-cleaning establishments, occur in dense particu- 
late beds and are typically carried out in steady creeping flow-that is, at Re = D,vg/p < 20. 
Here D, is the effective particle diameter and v, is the superficial velocity, defined as volumet- 

Packed Beds ric flow rate divided by the total cross section of the bed (see 56.4). It follows that the dimen- 
sionless velocity v/vo will have a spatial distribution independent of the Reynolds number. 
Detailed information is available only for spherical packing particles. 

0. A. Hougen, K. M. Watson, and R. A. Ragatz, Chemical Process Principles, Part I ,  2nd edition, 
Wiley, New York, (1954), p. 120. 
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SOLUTION 

Using the dimensional analysis discussion at the beginning of this section, predict the 
form of the steady-state mass transfer coefficient correlation for creeping flow. 

The dimensional analysis procedure in s19.5 may be used, with Dp as the characteristic length 
and v, the characteristic velocity. Then, from Eq. 19.5-11, we see that the dimensionless con- 
centration depends only on the product ReSc, in addition to the dimensionless position coor- 
dinates and the geometry of the bed. 

The most extensive data are for creeping flow at large Peclet numbers. Experimental data 
on the dissolution of benzoic acid spheres in water4 have yielded the result 

1 09 Sh, = E (R~sc )"~  ReSc >> 1 (22.3-43) 

where E is the volume fraction of the bed occupied by the flowing fluid. Equation 22.3-43 is 
reasonably consistent with the relation 

Sh, = 2 + 0.991(Re~c)~'~ (22.3-44) 

which incorporates the creeping flow solution for flow around an isolated sphere5 (E = 1) (see 
5522.2b). This suggests that the flow pattern around an isolated sphere is not much different 
from that around a sphere surrounded by other spheres, particularly near the sphere surface 
where most of the mass transport takes place. 

No reliable data are available for the limiting behavior at very low values of ReSc, but 
numerical calculations for a regular packing6 predict that the Sherwood number asymptoti- 
cally approaches a constant near 4.0 if based on a local difference between interfacial and bulk 
compositions. 

Behavior within the solid phase is far more complex, and no simple approximation is 
wholly trustworthy. However, experiments to date7 show that where intraparticle mass trans- 
port is described by Fick's second law, one can use the approximation 

where kc, is the effective mass transfer coefficient within the solid phase and 9,, is the diffu- 
sivity of A in the solid phase. The equation is for "slow" changes in the solute concentration 
bathing the particle. This is an asymptotic solution for a linear change of surface concentra- 
tion with time: and has been justified9 by calculations. For a Gaussian (bell-shaped) concen- 
tration wave, "slow" means that the passage time (temporal standard deviation) of the wave 
is long relative to the particle diffusional response time, which is of the order of D;/69,,. 
Fick's second law must be solved with the detailed history of surface concentration when this 
inequality is not satisfied. 

In packed beds, as with tube flow, one must keep in mind the fact that there will be 
nonuniformities in the concentration as a function of the radial coordinate. This was dis- 
cussed in 514.5 and s20.3. 

E. J. Wilson and C. J. Geankopolis, Ind. Eng. Chem. Fundamentals, 5,9-14 (1966). See also 
J. R. Selman and C. W. Tobias, Advances in Chemical Engineering, 10,212-318 (1978), for an extensive 
summary of mass transfer coefficient correlations obtained by electrochemical measurements. 

V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J. (1962), §14. 
J. P. s e n s e n  and W. E. Stewart, Chem. Eng. Sci., 29,811-837 (1974). 
A. M. Athalye, J. Gibbs, and E. N. Lightfoot, J.  Chromatography, 589,7145 (1992). 
H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd edition, Oxford University Press 

(19591, s9.3, Eqs. 10 and 11. 
J. F. Reis, E. N. Lightfoot, P. T. Noble, and A. S. Chiang, Sep. Sci. Tech., 14,367-394 (1979). 
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In both gas-liquid10 and liquid-liquid" contactors, sprays of liquid drops or clouds of bubbles 
are frequently encountered. Contrast their mass transfer behavior with that of solid spheres. 

Mass Transfer to  Drops 
and Bubbles SOLUTION 

Many different types of behavior are encountered, and surface forces can play a very impor- 
tant role. We discuss surface forces in some detail in 522.7. Here we consider only some limit- 
ing cases and refer readers to the above-cited references. 

Very small drops and bubbles behave like solid spheres and can be treated by the corre- 
lations in Example 22.3-3 and in Chapter 14. However, if both adjacent phases are free of sur- 
factants and small particulate contaminants, the interior phase circulates and carries the 
adjacent regions of the exterior phase along. This stress-driven "Hadamard-Rybczinski circu- 
lation"12 increases the mass transfer rates markedly, often by almost an order of magnitude, 
and the rates can be estimated from of the "penetration model" discussed in 
518.5. Thus, for a spherical bubble of gas A with diameter D rising through a clean l ik id  B, 
the Shenvood number on the liquid side lies in the range16 

where v, is the terminal velocity (see Eqs. 18.5-19 and 20). 
The size at which the transition from the solid-like behavior to circulation occurs de- 

pends on degree of surface contamination and is not easily predicted. 
Very large drops or bubbles ~scillate,'~ and both phases follow a modified penetration 

model, 

with angular frequency of o~cillation'~ 

where u is the interfacial tension, and p~ and p, are the densities of the drops and the continu- 
ous medium. 

The success of this model implies that the boundary layer is refreshed once every oscilla- 
tion, but there is also a small effect of periodic stretching of the surface. 

522.4 DEFINITION OF TRANSFER COEFFICIENTS 
IN TWO PHASES 

Recall that in g10.6 we introduced the concept of an overall heat transfer coefficient, U, to 
describe the heat transfer between two streams separated from each other by a wall. This 
overall coefficient accounted for the thermal resistance of the wall itself, as well as the 
thermal resistance in the fluids on either side of the wall. 

lo J. Stichlmair and J. F. Fair, Distillation Principles and Practice, Wiley, New York (1998). 
I' J. C. Godfrey and M. M. Slater, Liquid-Liquid Extraction Equipment, Wiley, New York (1994). 
l2 J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, Martinus Nijhoff, The Hague (1983). 
l3 J. B. Angelo, E. N. Lightfoot, and D. W. Howard, R I C h E  Journal, 12,751-760 (1966). 
l4 J. B. Angelo and E. N. Lightfoot, AlCkEJournal, 14,531-540 (1968). 
l5 W. E. Stewart, J. B. Angelo, and E. N. Lightfoot, MCkE Journal, 16,771-786 (1970). 
l6 R. Higbie, Trans. AICkE, 31,365-389 (1935). 
l7 R. R. Schroeder and R. C. Kintner, AlCkE Journal, 11,5-8 (1965). 
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Fig. 22.4-1. Concentration profiles 
in the neighborhood of a gas-liquid 
interface 

Distance from interface 

We now treat the analogous situation for mass transfer, except that here we are con- 
cerned with two fluids in intimate contact with one another, so that there is no wall resis- 
tance or interfacial resistance. This is the situation most commonly met in practice. Since 
the interface itself contains no significant mass, we may begin by assuming continuity of 
the total mass flux at the interface for any species being transferred. Then for the system 
shown in Fig. 22.4-1 we write 

for the interfacial flux of A toward the liquid phase. Then using the definition given in 
Eq. 22.1-9, we get 

in which we are now following the tradition of using x for mole fractions in the liquid 
phase and y for mole fractions in the gas phase. We now have to interrelate the interfa- 
cial compositions in the two phases. 

In nearly all situations this can be done by assuming equilibrium across the inter- 
face, so that adjacent gas and liquid compositions lie on the equilibrium curve (see Fig. 
22.4-2), which is regarded as known from solubility data: 

8 Equilibrium curve 

F 
aJ 
S 
s. 
.3 

T 
'C 
0 

.3 Y 

U 

2 
a, - : 
II 

2 

xA = mole fraction of A in the liquid 

Fig. 22.4-2. Relations 
among gas- and liquid- 
phase compositions, and 
the graphical interpreta- 
tions of m, and my. 
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Exceptions to this are: (i) extremely high mass-transfer rates, observed for gas phases at 
high vacuum, where N,, approaches p A O / s ~ ,  the equilibrium rate at which gas 
molecules impinge on the interface; and (ii) interfaces contaminated with high concen- 
trations of adsorbed particles or surfactant molecules. Situation (i) is quite rare, and situ- 
ation (ii) normally acts indirectly by changing the flow behavior rather than causing 
deviations from equilibrium. In extreme cases surface contamination can provide addi- 
tional transport resistances. 

To describe rates of interphase transport, one can either use Eqs. 22.4-2 and 3 to cal- 
culate interface concentrations and then proceed to use the single-phase coefficients, or 
else work with overall mass transfer coefficients 

Here yAe is the gas phase composition in equilibrium with a liquid at composition xAb, 
and x,, is the liquid phase composition in equilibrium with a gas at composition yAb. The 
quantity q,Io, is the overall mass transfer coefficient "based on the gas phase," and e,,,, 
is the overall mass transfer coefficient "based on the liquid phase." Here again the molar 
flux NAO is taken to be positive for transfer to the liquid phase. 

Equating the quantities in Eqs. 22.4-2 and 4 gives two relations 

connecting the two-phase coefficients with the single-phase coefficients. 
The quantities xA, and yAe introduced in the above three relations may be used to de- 

fine quantities m, and my as follows: 

As we can see from Fig. 22.4-2, m, is the slope of the line connecting points (xAO, yAO) 
and (x,,, yAb) on the equilibrium curve, and my is the slope of the line from (xAb, yAe) to 
(~'40, YAO). 

From the above relations we can then eliminate the concentrations and get relations 
among the single-phase and two-phase mass transfer coefficients: 

The first of these was obtained from Eqs. 22.4-5,2, and 7, and the second from Eqs. 22.4- 
6,2, and 8. If the equilibrium curve is nearly linear over the range of interest, then m, = 

my = m, which is the local slope of the curve at the interfacial conditions. We see, then, 
that the expressions in Eqs. 22.4-9, 10 both contain a ratio of single-phase coefficients 
weighted with a quantity m. This quantity is of considerable importance: 

If k~,loc/rnk~,lo, << 1, the mass-transport resistance of the gas phase has little ef- 
fect, and it is said that the mass transfer is liquid-phase controlled. In practice, this 
means that the system design should favor liquid-phase mass transfer. 

If kO,,loc/m$,loc >> 1, then the mass transfer is gas-phase controlled. In a practical 
situation, this means that the system design should favor gas-phase mass 
transfer. 

If 0.1 < ko,,loc/m$,loc < 10, roughly, one must be careful to consider the interac- 
tions of the two phases in calculating the two-phase transfer coefficients. Out- 
side this range the interactions are usually unimportant. We return to this point 
in the example below. 
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The mean two phase mass transfer coefficients must be defined carefully, and we con- 
sider here only the special case where bulk concentrations in the two adjacent phases do 
not change significantly over the total mass-transfer surface S. We may then define e,,, by 

so that, when Eq. 22.3-9 is used, 

Frequently area mean overall mass transfer coefficients are calculated from area mean 
coefficients for the two adjoining phases: 

The two mean values in Eqs. 22.4-12 and 13 can be significantly different (see Example 
22.4-3). 

Oxygen is to be removed from water using nitrogen gas at atmospheric pressure and 20°C in 
the form of bubbles exhibiting internal circulation, as shown in Fig. 22.4-3. Estimate the rela- 

Determination of the tive importance of the two mass transfer coefficients k: ,<,, and k: ,,,<. Let A stand for O,, B for 
Controlling Resistance H,O, and c for N ~ .  

SOLUTION We can do this by assuming that the penetration model (see s18.5) holds in each phase, so that 
7 

where c, and cg are the total molar concentrations in the liquid and gas phases, respectively. 
The effective exposure time, t,,,, is the same for each of the phases. 

Nitrogen 
gas 

Oxygen- , containing 
water 

Fig. 22.4-3. Schematic diagram of an oxygen stripper, in 
which oxygen from the water diffuses into the nitrogen 
gas bubbles. 
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The solubility of 0, in water at 20°C is 1.38 X moles per liter at an oxygen partial 
pressure of 760 mm Hg, the vapor pressure of water is 17.535 mm Hg, and the total pressure 
in the solubility measurements is 777.5 mm Hg. At 20°C, the diffusivity of O2 in water is 
91AB = 2.1 X lop5 cm2/s, and in the gas phase the diffusivity for O2 - N2 is = 0.2 cm2/s. 
We can then write 

(22.4-15) 

Into this we must substitute 

It follows that 

Therefore, only the liquid-phase resistance is significant, and the assumption of penetration 
behavior in the gas phase is not critical to the determination of liquid-phase control. It may 
also be seen that the dominant factor is the low solubility of oxygen in water. One may gener- 
alize and state that absorption or desorption of sparingly soluble gases is almost always liq- 
uid-phase controlled. Correction of the gas-phase coefficient for net mass transfer is clearly 
not significant, and the correction for the liquid phase is negligible. 

EXAMPLE 22.4-2 

Interaction of Phase 

There are many situations for which the one-phase transfer coefficients are not available for 
the boundary conditions of the two-phase mass transfer problem, and it is common practice 
to use one-phase models in which interfacial boundary conditions are assumed, without re- 

Resistances gard to the interaction of the diffusion processes in the two phases. Such a simplification can 
introduce significant errors. Test this approximate procedure for the leaching of a solute A 
from a solid sphere of B of radius R in an incompletely stirred fluid C, so large in volume that 
the bulk fluid concentration of A can be neglected. 

SOLUTION The exact description of the leaching process is given by the solution of Fick's second law 
written for the concentration of A in the solid in the region 0 < r < R: 

The boundary and initial conditions are: 

B.C. 1: at r = 0, 

B.C. 2: at u = R, 

I.C.: at t = 0, 

The diffusional process on the liquid side of the solid-liquid interface is described in terms of 
a mass transfer coefficient, defined by 

in which c,,(t) is the concentration in the liquid phase adjacent to the interface. The behavior of 
the diffusion in the two phases is coupled through Eq. 22.4-22, which describes the equilibrium 
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at the interface. Because of the coupling, it is convenient to use the method of Laplace trans- 
form. First, however, we restate the problem in dimensionless form, using ,$ = r/R, T = 

BABt/R2, Cs = CAs/Co, C1 = (mCAl + b)/Co, and N = k$./m%AB. E ~ s .  22.3-20 and 24 become 

with C, finite at the sphere center, C, = C1 at the sphere surface, and C, = 1 throughout the 
sphere initially. 

When we take the Laplace transform of this problem, we get 

with Cs finite at the sphere center, and C, = Cl at the sphere surface. The solution of Eqs. 22.4- 
27 (which is a nonhomogeneous analog of Eq. C.l-6a) and 28 is 

The Laplace transform of MA, the total amount of A within the sphere at any time t, is 

Inversion by using the Heaviside partial fractions expansion theorem for repeated roots' gives 

The constants A, and B, are found to be, for finite kc (or N), 

I\IZ sin2 A, A, cot A, - (1 - N) = 0; B = - 
hi (A, - sin A, cos A,) 

(22.4-32,33) 

and for infinite kc (or N), 

Note that we have succeeded in getting the total amount of A transferred across the interface, 
MA(t), without finding the expression for the concentration profile in the system. This is an 
advantage in using the Laplace transform. 

We may now define two overall mass transfer coefficients: (i) the correct overall coeffi- 
cient for this system based on the solid phase 

where cAb is the volume-average concentration of A in the solid phase, and (ii) an approximate 
overall coefficient, based on the separately calculated behavior of the two phases, calculated 
by Eq. 22.4-13, 

where the superscript 0 indicates "zero external resistance" and kc is the liquid-phase transfer 
coefficient. 

A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of Integral Transforms, McGraw- 
Hill (1954), p. 232, Formula 21. 
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1.15 Fig. 22.4-4. Ratio of exact to approxi- 
Y 

fi mate overall mass transfer coefficient = .Y 
d2 a% in the leaching of a solute from a 
z $ 8 1.10 solute from a sphere, for large m o :: 

W S ~ I  9*,t/R2, plotted versus the dimen- 
0 0% 
0 7+ E; 
'3 a* sionless ratio md9,,/3RkC. 
a 1.05 
T% * a 

E 
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We can now make a comparison between K, and Ks,app,ox. We do this only for large values 
of 9,,t/R2, for which the leading term of the sum in Eq. 22.4-31 suffices. For this situation, we 
obtain 

and 

where A, is to be calculated for the actual value of kc; keep in mind that A, is obtained from Eq. 
22.4-32, in which N = kJ!/mgA,. A plot of Eq. 22.4-39 is shown in Fig. 22.4-4. There we see 
that the maximum error in the two-film model occurs near r 2 / 3 N  = 1, and that departures 
from the two-film theory are appreciable but not very large. 

Consider a characteristic section of a packed tower for which the separately measured single- 
phase mass transfer coefficients yield a calculated ratio 

Area Averagin$ ln 

but in which the liquid phase wets only half of the packing surface. Here the subscript m 
refers to the mean value over a typical area S of the packing surface. The gas-phase transfer 
coefficient, on the other hand, is uniform over the entire surface. This hypothetical example is 
a special case of nonuniform wetting. Calculate the true and approximate values of k:,,/C, 
according to Eqs. 12.4-12 and 13. 

SOLUTION We begin with Eq. 22.4-12 and note that for half of the area = 0, and that over the other 
half 

whereas, for the gas phase 

k!,~oc = k0ym 

Eq. 22.4-12 thus yields 

C .  J. King, AIChE Journal, 10,671-677 (1964). 
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From this and Eqs. 22.4-40 and 22.4-9, we find that the correct value for k;,/grn is 

whereas the approximate value from Eq. 22.4-13 is 

Thus the maldistribution of the liquid-phase mass transfer coefficient halves the rate of mass 
transfer, even though the liquid phase resistance "on the average" is very low. The general 
unavailability of such detailed information is one more reason for the uncertainty in predict- 
ing the behavior of complex contactors. 

522.5 MASS TRANSFER AND CHEMICAL REACTIONS 

Many mass transfer operations are accompanied by chemical reactions, and the reaction 
kinetics can have a profound effect on transport rates. Important examples include ab- 
sorption of reactive gases and reactive distillation. There are two situations of particular 
interest: 

(i) Absorption of a sparingly soluble substance A into a phase containing a second 
reactant B in large concentration. Absorption of carbon dioxide into NaOH or 
amine solutions is an industrially important example, and here the reaction 
may be considered pseudo-first-order because reactant B is present in great 
excess: 

An example of this type of problem was given in 918.4. 

(ii) Absorption of a rapidly reacting solute A into a solution of B. Here to a first ap- 
proximation it may be assumed that the two species react so rapidly that they 
cannot coexist. An illustration of this was given in Example 20.1-2. 

We shall be particularly interested in liquid boundary layers, and heat-of-reaction 
effects tend to be modest because the ratio of Sc to Pr is usually very large. Macroscopic 
heating effects do occur, and these are discussed in Chapter 23. Here we limit ourselves 
to a few illustrative examples showing how one can use models of absorption with 
chemical reaction to predict the performance of operating equipment.' 

EXAMPLE 22.5-1 

Estimation of the 

Mass transfer measurements with irreversible first-order reaction have often been used to es- 
timate interfacial area in complex mass transfer equipment. Show here how this method can 
be justified. 

Interfacial Area in a 
Packed Coluwn SOLUTION 

The system we consider here is the absorption of carbon dioxide into a caustic solution, which 
is limited by hydration of dissolved C02 according to the reaction 

' T. K. Shemood, R. L. Pigford, and C. R. Wilke, Mass Transfer, McGraw-Hill, New York (1975), 
Chapter 8. 
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The carbonic acid then reacts with NaOH at a rate proportional to carbon dioxide concentra- 
tion. The kinetics of this reaction are well characterized.' 

The solution of this diffusion problem has been given in Problem 20C.3. From Eq. 20.3-3, 
we find that for long times2r3 

WAD = (22.5-3) 

which can be solved for the total surface area. It follows that the total surface area A under 
consideration is given by 

here MA,tot is the number of moles of carbon dioxide absorbed by time t. 
This development is readily extended to a falling film of length L and surface velocity v,, 

provided that k,L/v, >> 1. First-order reaction in mass transfer boundary layers is discussed 
in Example 18.4-1 for a simple film model and in Example 20.1-3. The development can be 
further extended to estimate the interfacial area in packed columns, in which the liquid phase 
is supported as a falling film on solid surfaces, a common design. 

We next consider gas absorption with first-order reaction in an agitated tank and take as a 
starting point the reaction 

Estimation of 
Volumetric Mass O2 + 2Na2S03 + 2Na2S04 (22.5-5) 

Transfer Coefficients already discussed in Example 18.4-1, using a thin stagnant film of liquid as a mass transfer 
model. 

SOLUTION This is not a realistic model, but the development in Example 18.4-1 can be rephrased in a 
model-insensitive form by writing 

so that 

The subscript AB should be changed to 02S, where S represents the sulfite solution. 
One can now test the model sensitivity of the system by comparing the film model with 

the penetration model. This is done in Fig. 22.5-1, where it can be seen that there is no signifi- 
cant difference between the two.4 Moreover, there is a substantial region of parameter space 
where the predicted rate of oxygen absorption is identical to that for physical absorption in 
an oxygen-free tank. This chemical system has therefore proven a popular means for estimat- 
ing volumetric mass transfer coefficients. It has long been used to characterize the oxygena- 
tion effectiveness of aerobic biorea~tors.~ 

P. V. Danckwerts, Trans. Faraday Soc., 46,300-304 (1950). 
R. A. T. 0. Nijsing, Absorptie van gassen in vloeistoffen, zonder en met chemiscke reactie, Academisch 

Proefschrift, Delft (1957). 
E. N. Lightfoot, AlChE Journal, 8,710-712 (1962). 
A. M. Friedman and E. N. Lightfoot, Ind. Eng. Chern., 49,1227-1230 (1957); J. E. Bailey and 

D. F. Ollis, Biochemical Engineering Fundamentals, McGraw-Hill, New York (1986); V. Linek, P. Benes, 
and J. Sinkule, Biotechno1.-Bioen, 35,766-770 (1990). 
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Fig. 22.5-1. Effect of irreversible first-order reaction on 
pseudosteady-state absorption of a sparingly soluble gas 
in an agitated tank. Comparison of the penetration and 
stagnant-film models. 

Next consider the absorption with rapid irreversible reaction, and seek to simplify and gener- 
alize the discussion of Example 20.1-2. Do this in terms of the Hatta numbeuqefined as 

Model-Insensitive 
Correlations for Ha = - N ~ o  

j p h v s  
(22.5-8) 

Absorption wi th  A O' 

~ a ~ i d  Reaction here the superscript phys denotes absorption of solute A in the same system but without reac- 
tion. This dimensionless group provides a convenient measure of the promoting effect of 
chemical reaction on the rate of absorption. 

SOLUTION In the absence of solute B, species A would undergo physical absorption (that is, absorption 
without reaction) at a rate 

since e r f V ' x  goes to unity with decreasing c,,/c,,,. We now divide the result in Eq. 20.1- 
39 by Eq. 22.5-9 to get 

which can be further simplified in the following 

S. Hatta, Technological Reports of TGhoku University, 10,613462 (1932). ShirBji Hatta (1895-1973) 
taught at TBhoku University from 1925 to 1958 and in 1954 he was appointed Dean of Engineering; after 
"retiring" he accepted a position at Chiyoda Chemical Engineering and Construction Co. He served as 
editor-in-chief of Kagaku K6gaku and as president of Kagaku K6gakkai. 

E. N. Lightfoot, Chem. Eng. Sci., 17,1007-1011 (1962). 
D. H. Cho and W. E. Ranz, Chem. Eng. Puog. Symposium Series # 72,63,3745 and 46-58 (1967). 
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(i) For small values of cB,/c,,, or for equal diffusivities, 

acgm 
H a = 1 + -  

~ C A O  

(ii) For large values of cBZ/cAO, 

(iii) For all values of cB,,/cAO (approximate), 

Equation 22.5-11 is particularly useful, since it is accurate for the common situation of nearly 
equal diffusivities as well as for small cBm /cAO. Equation 22.5-13 is useful because it is valid for 
both large and very small values of a ~ , , ~ , ~ / b c ~ ~ ~ , , .  In addition, the exact solution always 
lies in the space between the curve of Eq. 22.5-13 and those portions of the curves of Eqs. 22.5- 
11 and 12 that are closest to it. This is shown in Fig. 22.5-2, where these bounding approxima- 
tions are compared to the exact solution. 

We next note that we can replace the diffusivity ratio by the corresponding ratio of non- 
reactive Sherwood numbers, 

where the superscript 0 denotes the observed Sherwood number in the absence of chemical 
reaction. We may thus obtain a set of model-insensitive bounding solutions 

These equations have been shown7 to provide convenient bounds for laminar and turbulent 
boundary layers as well as the penetration model of Example 20.1-2. They thus form a highly 
model-insensitive correlation and are widely useful. 

Fig. 22.5-2. Model- 
insensitive correlations 
for absorption with 
rapid chemical reaction, 
derived from the pene- 

0.01 0.1 1 10 100 tration model, foithe 
Stoichiometric ratio, acB,/bcAo case that BAS = 29IBs. 
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522.6 COMBINED HEAT AND MASS TRANSFER 
BY FREE CONVECTION 

In this section we consider briefly some important interactions among the transfer 
processes, with emphasis on free convection. This is an extension of our earlier discus- 
sion of free-convection heat transfer in 514.6 and is reasonably well understood. 

Combined heat and mass transfer by free convection is among the simple examples 
of interaction between all three transport phenomena. The dimensionless equations de- 
scribing them have been given in Eqs. 19.5-8 to ll. Numerical integration of these equa- 
tions is possible,' but we can obtain simple, useful results via boundary layer theory. We 
consider two particularly simple problems in the examples that follow. 

Develop an expression for the combined free-convection heat and mass transfer for the spe- 
cial case of equal Prandtl and Schmidt numbers. Assume that transfer is between a surface of 

of Grashof constant temperature and composition, and a large uniform surrounding fluid. 
Numbers 

SOLUTION 

This is a direct extension of the boundary conditions of Example 11.4-5. Then if the dimen- 
sionless temperature and composition are defined analogously, it follows that ? = 5, every- 
where within the system under investigation. 

It then follows that the solution of this mixed convection problem is identical to that for 
heat or mass transfer alone, but with Gr or Gr, replaced by the sum (Gr + Gr,). This simplifi- 
cation is widely used for the air-water system, where the small difference between the Sc and 
Pr numbers does not have a significant effect. 

Thus for evaporation from a water-wetted vertical plate (with Sc = 0.61 and Pr = 0.73), 
one may use Eq. 11.4-11 with C = 0.518 to obtain 

Nu, = 0.518[0.73(Gr + ~ r , ) ] ' / ~  

Sh, = 0.518[0.61(Gr + ~ r , ) ] ' / ~  

Note that the i-th powers of Pr and Sc are 0.92 and 0.88, respectively. This difference is 
hardly significant in view of the uncertainties of any actual situation and the boundary layer 
model on which these results are based. Note also that the thermal Grashof number is nor- 
mally by far the larger, so that neglect of this interaction would greatly underestimate the 
evaporation rates. 

There are many situations-for example, the evaporation of solvents with low volatility- 
where thermal Grashof numbers are much larger than their mass transfer counterparts (Gr > 

Free-Convecti0n Heat Gr,) and the Schmidt numbers exceed the Prandtl numbers (Sc > Pr). Under these conditions, 
Transfer as a Source of the thermal buoyant forces provide a momentum source, which in turn provides a convective 
Forced-Convection flow to drive mass transfer. It has been shown2 that the thermally induced gradient of up- 
Mass Transfer ward velocity at the surface of a vertical flat plate of length L is given by 

Here z is the distance measured upward along the plate, y is measured outward into the fluid, 
and AT is the difference between the plate temperature and the temperature of the surround- 
ings. This is an asymptotic expression for large Prandtl number, but is also useful for gases. 
Develop expressions for the local and mean Sherwood numbers. 

' W. R. Wilcox, Chem. Eng. Sci., 13,113-119 (1961). 
A. Acrivos, Pkys. Fluids, 3,657-658 (1960). 
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SOLUTION The thermal free convection provides a velocity field within which the mass transfer bound- 
ary layer develops. Given this velocity field, we may use the mass transfer analog of Eqs. 
12.4-30 and 29 along with the definition NuIoc = D/I'($)& to obtain a description of the mass 
transfer rate in two-dimensional flow: 

Here 

is the dimensionless velocity gradient at the wall ( I ,  and v, are arbitrary reference quantities 
used in the definition of the Reynolds number). For free convection it is convenient to use the 
plate height L for I ,  and v/L for v,. Then the Reynolds number is unity, and the quantity To is 
To = (L2/v)(dv,/dy)ly,,. Then Eq. 22.6-4 becomes 

The mean Sherwood number, obtained by averaging over the plate surface, is 

Sh,  = 0.79(GrS~)"~ - w2 
Note that these last two equations show features of both free and forced convection in lami- 
nar boundary layers: the $-power of the Grashof number for free convection and the $power 
of the Schmidt number for forced convection. 

Moreover, we can now test the effect of Sc/Pr, because we know from the preceding ex- 
ample and Table 14.6-1 that, for Pr = Sc, 

Sh, = 0.67(GrS~)'/~ (22.6-8) 

in which the coefficient is lower than that in Eq. 22.6-7 by the ratio 0.85. The Sherwood num- 
ber Sh, will lie between the predictions of Eqs. 22.6-7 and 8 for Sc r Pr and Pr >> 1. 

Arguments similar to those used in Eq. 14.6-6 now suggest the following extension of 
Eqs. 22.67 and 68, 

Sh, = 0.73(1 + 0.1) 
(G~SC)'/~(SC/P~)"'* 

[ l  + ( 0 . 4 9 2 / ~ r ) ~ / ' ~ ] ~ ' ~  

for Sc r Pr and Pr 1 0.73. This result is correct for the limits Pr = 0.73 and Pr = and hence 
can include the evaporation of solvents in air. This analysis can also be extended to other 
shapes. 

522.7 EFFECTS OF INTERFACIAL FORCES 
ON HEAT AND MASS TRANSFER 

In this section we consider briefly some important interactions among the three transfer 
processes, with emphasis on the effects of variable interfacial tension (Marangoni effects). 
The importance of this subject stems from the prevalence of direct fluid-fluid contact in 
mass transfer systems, but it can also be important in similar heat transfer operations. 
Still poorly understood diffusional processes permit violation of the no-slip condition on 
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fluid flow over solid surfaces in the neighborhood of advancing menisci.' As for the dis- 
torting effects of surface tension gradients on mass and heat transfer in gas-liquid con- 
tacting, these will enter through a description of the boundary conditions. 

According to Eq. llC.6-4, if the stresses in the gas (phase 11) are ignored, the interfa- 
cial tangential stresses acting on an interface with normal unit vector n are given bf 

[(6 - nn) [n 711 = -VSa (22.7-1) 

where u is the surface tension V9s the two-dimensional gradient operator in the inter- 
face, and (8 - nn) is a "projection operator" that selects those components of [n - 71 that 
lie in the interfacial tangent plane. For example, if n is taken to be the unit vector in the z 
direction, Eq. 22.7-1 gives 

which are the interfacial tension forces in the x and y directions acting in the xy-plane. 
The surface-tension-induced stresses are typically of the same order as their hydro- 

dynamic counterparts, and the flow phenomena that may result from them are known 
collectively as Marangoni  effect^.^ It has been shown4 that mass transfer rates can be in- 
creased up to threefold by Marangoni effects, but can also be reduced in other circum- 
stances. 

The nature and extent of Marangoni effects depend strongly on the system geometry 
and the transport properties, and it will be convenient to consider here four specific 
examples: 

(i) drops and bubbles surrounded by a liquid continuum 

(ii) sprays of drops in a gaseous continuum 

(iii) supported liquid films in a gaseous or liquid continuum 

(iv) foams of gas bubbles in a liquid continuum 

These systems, each important in practice, show very different behavior from one an- 
other. 

For drops and bubbles moving through a liquid continuum, the primary problems 
are surfactants or microscopic particles that can reduce or eliminate the "Hadamard- 
Rybczinski circulation" and also hinder the periodic mixing accompanying oscillation in 

V. Ludviksson and E. N. Lightfoot, AlCkE Journal, 14,674-677 (1968); P. A. Thompson and 
S. M. Troian, Phys. Rev. Letters, 63,766-769 (1997); A. Marmur, in Modern Approach to Wettability: Theory 
and Applications (M. E. Schrader and G. Loeb, eds.), Plenum Press (1992); D. Schaeffer and P.-Z. Wong, 
Phys. Rev. Letters, 80,3069-3072 (1998). 

In Eq. 3.2-6 of D. A. Edwards, H. Brenner, and D. T. Wasan, Interfacial Transport Processes and 
Rheology, Butterworth-Heinemann, Boston (1991), the operator (8 - nn) is called the "dyadic surface 
idemfactor"; the same quantity is called the "projection tensor" by J. C. Slattery, Interfacial Transport 
Phenomena, Springer Verlag, New York (1990), p. 1086. Both books contain a wealth of information on 
surface tension, surface viscosity, surface viscoelasticity, and other properties of interfaces and their 
methods of measurement. 

C. G. M. Marangoni, Tipographia deifrntelli Fusi, Pavia (1865); Ann. Phys. (Poggendorf), 143,337-354 
(1871). Historical articles on the Marangoni effects are L. E. Scriven and C. V. Sternling, Nature, 187, 
186-188 (1960), and S. Ross and P. Becher, J. Coll. Interfac. Sci., 149,575-579 (1992). 

A good overview of Marangoni effects and related phenomena, with emphasis on liquid-liquid 
systems, is provided in J. C. Godfrey and M. J. Slater, Liquid-Liquid Extraction Equipment, Wiley, New 
York (1994), pp. 68-75. A theory offered by C. V. Sternling and L. E. Scriven, AlChE Journal, 5,514-523 
(1959), provides useful insight but is considered too simple to give reliable predictions of the onset of 
instabilities. 
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larger drops or  bubble^.^ These are discussed briefly in Example 22.3-4. These situations 
are important in gas absorbers and liquid extractors. For sprays of drops in a gas, impor- 
tant in large distillation columns, Marangoni forces play no significant role.6 

Foam beds, important in smaller distillation columns, and supported films, impor- 
tant in a wide variety of packed columns, are particularly interesting. Both are strongly 
affected by surface-tension gradients resulting from the changes of surface tension with 
composition of the adjoining streams. 

Foam beds are stabilized when the buik liquid has a lower surface tension than that in 
equilibrium with the bulk gas, called a "positive system." In such a situation, interfacial 
tension tends to be higher where bubbles are close together than where they are far apart, 
and the shrinking of high-surface-tension regions tends to drive the bubbles apart, thus 
stabilizing the foam. Where there are only small differences in surface tension, or where 
the direction is reversed, a "negative system," there is no stabilizing effect and the foaming 
is poor. Concentration of ethanol from water is interesting, because it has strong positive 
surface tension gradients where the relative volatility is high, but becomes very nearly 
neutral as the azeotrope is approached. Thus, for a bubble-cap column, stage efficiencies 
are high where least needed and low as the azeotropic composition is approached. 

In packed columns, where the descending liquid is supported on solid surfaces as 
thin films, the situation is quite different. Here the surface tension of the descending liq- , 

uid decreases downward for a positive system and is subject to hydrodynamic instabil- 
ity to form narrow rivulets. These markedly decrease interfacial area and mass transfer 
effectiveness. In negative systems, on the other hand, films are stabilized, and mass 
transfer is more effective than for neutral systems. No quantitative analysis of this situa- 
tion appears to be available, but it has been shown that instabilities found by Zuiderweg 
and Harmens for wetted-wall columns can be predicted by linearized stability analy~is .~  
Stability analysis also suggests that the presence of a positive surface-tension gradient 
should improve the efficiency of condensers. Another study of stability for very small 
films opens up new possibilities for microfluidic processors.8 

EXAMPLE 22.7-1 

Elimination of 

The presence of surfactants can stop Hadamard-Rybczinski circulation in a rising gas bubble. 
Explain this phenomenon (see Fig. 22.7-1). 

Circulation in a SOLUTION 
Rising Gas Circulation results in stretching of the surface at the top of a rising bubble and shrinking of 

the surface at the bottom. As a result, surfactant accumulates at the bottom, producing a 
higher than average concentration there, whereas a lower-than-average concentration exists 
at the top. Since surfactants reduce surface tension, this results in a surface-tension-induced 
stress (in spherical coordinates) 

tending to oppose the interfacial deformation (see Eq. 22.7-1). If the magnitude of this stress 
reaches the value that would occur on a rising solid sphere (see Eq. 2.6-6) 

- 3 w ' m  
rrol r=R - 7 sin 0 

circulation will stop. 

J. B. Angelo and E. N. Lightfoot, AICkE Journal, 12,751-760 (1966). 
F. J. Zuiderweg and A. Harmens, Chem. Eng. Sci., 9,89-103 (1958). 
K. H. Wang, V. Ludviksson, and E. N. Lightfoot, AIChE Journal, 17,1402-1408 (1971). 
D. E. Kataoka and M. S. Troian, Nature, 402,794-797 (16 December 1999). 
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Surfactant 
adsorption 

Surfactant 
release 

Fig. 22.7-.1 Surfactant transport during Hadamard- 
Rybuynski circulation 

As a practical matter, even small amounts of surfactant prevent circulation. Small con- 
centration of microscopic suspended particulates have a similar effect, being swept to the rear 
of bubbles and forming a rigid surface. 

Among the simplest mass-transfer-induced Marangoni effects is instability in a falling film re- 
sulting from counterflow adsorption of vapors with a high heat of solution. An important 

Marangoni Instability representative example is the counterflow absorption of HCI vapor into water, which is so in- 
in a Falling Film efficient that cocurrent flow is preferable. Explain this effect. 

S 0 L UTION This situation can be simulated by allowing a film of water to flow down a plate that is colder 
at the top than at the bottom. If sufficient care is taken, one can obtain a sinusoidally varying 
film thickness, as shown9 by interferometry in Fig. 22.7-2(a). Here each new dark line repre- 
sents a line of constant thickness, differing from its neighbors by one-half wavelength of light 
in the water. 

This situation corresponds to a series of parallel roll cells of the type pictured in Fig. 22.7- 
2(b), driven by lateral surface tension gradients. These gradients, in turn, result from small 
variations in film thickness caused by inevitable small spatial variations of surface velocity: 
the thicker regions move faster and thus tend to be colder than the thin regions. A simple per- 
turbation analysis1 shows that perturbations of some widths grow faster than others, and the 
fastest growing ones tend to dominate. The periods of the sinusoidal lines in Fig. 22.7-2(a) 
correspond to these fastest growing disturbances. 

Such regularity is, however, seldom observed in practice. More commonly one sees occa- 
sional thick rivulets surrounded by large thin regions. These thin regions, taking up most of 
the available surface, are both slowly moving and quickly saturated and are thus ineffective 
for mass transfer. Only the rivulets are effective, and their total surface area is very small. 
Similar behavior is observed for surface-tension gradients caused by vertical variations in 
composition. However, in that case the behavior is more complicated and requires an analy- 
sis of interphase mass t ran~fer .~ 
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Fig. 22.7-2. (a) Initiation of Marangoni instability 
in a draining liquid fluid film. (b )  Fully developed 
Marangoni instability. (c) Qualitative picture of 
vertical roll-cell disturbances [V. Ludviksson and 
E. N. Lightfoot, AIChE Journal, 14,620-626 (1968)l. 

522.8 TRANSFER COEFFICIENTS AT HIGH 
NET MASS TRANSFER RATES 

High net mass transfer rates across phase boundaries distort the boundary-layer profiles 
of velocity and temperature as well as species concentration, and they also alter the 
boundary layer thicknesses. Both of these effects tend to increase friction factors and the 
heat and mass transfer coefficients, if the mass transfer is toward the boundary, and to 
reduce them in the reverse situation. These usual trends are reversed, however, in free 
convection and in flows driven by a rotating surface. The magnitudes of such changes 
are dependent on the system geometry, boundary conditions, and the magnitudes of the 
governing parameters such as the Reynolds, Prandtl, and Schmidt numbers, and they 
are accompanied by the effects of changes in physical properties. They can also either in- 
crease or decrease the hydrodynamic stability. Accurate allowance for the effects of net 
mass transfer thus requires extensive calculation and/or experimentation, but some of 
the more salient features can be illustrated by using idealized physical models, and this 
is the approach we follow here. 

We begin with the classic stagnant-film model, which provides simple estimates of the 
profile distortion, but is incapable of predicting changes in the effective film thickness. 
We then discuss the perzetratiorz model and the flat-plate laminar boundary layer model. We 
conclude with several illustrative examples, the last of which is a complete numerical ex- 
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ample of boundary layers on a spinning disk. This example will provide a useful ap- 
praisal of model sensitivity. 

As pointed out in 922.1, when high net mass transfer rates are being considered, we 
introduce a modified notation for the transfer coefficients: 

The black dots in k;,,,, and hioc imply that the distortions of the concentration and temper- 
ature profiles resulting from high net mass transfer rates are being included. 

The relations between these transfer coefficients and those defined in Eqs. 22.1-7 and 8 
are 

= lim &,,oc 
4'10c NAo+NB,,-+O 

(22.8-2a) 

This shows explicitly the limiting process that relates the two types of transfer coefficients. 

The Stagnant-Film 

We have already discussed this model briefly in 518.2 and more fully in Example 19.4-1. 
By combining the expressions in Eqs. 19.4-16 and 17 with the definitions in Eqs. 22.8-la 
and lb, we get for the system in Fig. 22.8-1 

Interface 

Velocity Temperature Concentration 
profile profile profile 

Fig. 22.8-1. Steady flow along a flat surface with rapid mass trans- 
fer into the stream. The unbroken curves represent the true pro- 
files, and the broken curves are predicted by the film model. 

' W. K. Lewis and K. C. Chang, Trans. AIChE, 21,127-136 (1928). 
' G. Ackerman, Forschungsheft, 382,l-16 (1937). 
A. P. Colburn and T. B. Drew, Trans. AIChE, 33,197-212 (1937). 
H. S. Mickley, R. C. Ross, A. L. Squyers, and W. E. Stewart, NACA Tech. Note 3208 (1954). 
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By following the limiting processes indicated in Eqs. 22.8-2a and 2b, we then get expres- 
sions for the transfer coefficients in the low net mass transfer limit: 

These limiting values are found by expanding the right sides of Eqs. 22.8-3 and 4 in Tay- 
lor series and retaining two terms. Substitution of Eqs. 22.7-5 and 6 into Eqs. 19.4-16 and 
17 enables us to eliminate the film thicknesses (which are ill-defined) in favor of the 
transfer coefficients at low mass-transfer rates (which are measurable): 

These equations are the principal results of the film model. They show how the conduc- 
tive energy flux and the diffusion flux at the wall depend on NAo and NBo. In this model, 
the effects of net mass transfer on the conductive and diffusive interfacial fluxes are 
clearly analogous. Although these relations were derived for laminar flow and constant 
physical properties, they are also useful for turbulent flow and for variable physical 
properties (see Problem 22B.3). 

The results for heat and mass transfer can be summarized in two equations: 

Equation 22.8-9 gives the correction factors 6, and OT by which the coefficients kX,,,, and 
bloc must be multiplied to obtain the coefficients at high net mass transfer rates. Equation 
22.8-10 gives the concentration and temperature profiles. The meanings of the symbols 
are summarized in Table 22.8-1. 

Table 22.8-1 Summary of Dimensionless Quantities to be Used for All 
Models Discussed in 522.8. Mass-based versions appear in 520.2 and s22.9. 

--  

0 = correction factors R = flux ratios 
4 = rate factors II = profiles 
7 = dimensionless distance from wall 

Mass transfer Heat transfer 
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Fig. 22.8-2. The variation of the transfer 
coefficients with mass transfer rate, as 
given by the film model (see Eq. 22.8-9). 

Equation 22.8-9 is given graphically in Fig. 22.8-2. This shows that for net transfer of 
A and B into the stream (positive +), the transfer coefficients decrease, whereas net trans- 
fer of A and B out of the stream (negative 4) causes the transfer coefficients to increase. 

Some sample profiles from Eq. 22.8-10 are shown in Fig. 22.8-3. In the limit of small 
mass-transfer rates (i.e., 4 + 0 or R + O), Eq. 22.8-10 becomes simply IT = q. The film 
model regards the region outside the film as perfectly mixed, thus giving a profile that is 
flat beyond q = 1. 

The Penetration Model 

We next turn to the transfer coefficient at large net mass transfer rates for systems in 
which there is no significant drag at the interface. We have already studied several sys- 
tems of this type: gas absorption into a falling liquid film and from a rising bubble 
(§18.5), and unsteady-state evaporation (520.1). These systems are generally lumped to- 
gether under the heading of penetration theory. 

Fig. 22.8-3. Temperature and concentra- 
1.0 tion profiles in a laminar film, as calcu- 

lated by the film model (see Eq. 22.8-10). 
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A falling film system is shown in Fig. 22.8-4. The time of travel from the liquid inlet 
to the liquid outlet (the "exposure time") is sufficiently short that the diffusing species 
does not penetrate very far into the liquid. In such a situation, we can (from a mathemat- 
ical point of view) regard the falling film as infinitely thick. We may then take over the 
results from Example 20.1-1. 

Equation 20.1-23 gives the concentration profiles for a corresponding unsteady-state 
system with large net mass transfer rate, and an analogous equation can be written 
down for the temperature profiles: 

T - To erf(qT - 9,) + erf (0, 
rIT = - - 

Tm - TO 1 + erf p, 

Here Q = y/m and q, = y/G are dimensionless distances from the interface, 
and p in each formula is a dimensionless molar average velocity at the interface: 

From these results and the definitions for the transfer coefficients in Eqs. 22.8-1 and 2, we 
may now get the rate factors 4, the flux ratios R, and the correction factors 0, defined in 
the preceding subsection: 

From the definitions in Eqs. 22.8-1 and 2 and the profiles in Eqs. 22.8-11 and 12, we can 
also get the expressions for the transfer coefficients at low net mass transfer rates: 

z = distance into liquid film 

Liquid 

Liquid 

in 

out 

Fig. 22.8-4. Diffusion into a 
falling liquid film. Here tmp is 
the total time of exposure of a 
typical element of volume near 
the surface. 
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The corresponding coefficients at high net mass transfer rates can be obtained by multi- 
plying by the correction factor in Eq. 22.8-16. 

From the last two equations we get the relation 

A similar relation, with an exponent of $ (instead of 3 )  is obtained from the Chilton-Col- 
burn relations given in Eqs. 22.3-23 to 25. The latter are valid for flows adjacent to rigid 
boundaries, whereas Eq. 22.8-19 pertains to fluid-fluid systems with no velocity gradient 
at the interface. 

The proportionality of k,,,,, to the square root of the diffusivity, given in Eq. 22.8-17, 
has been confirmed experimentally for the liquid phase in several gas-liquid mass trans- 
fer systems, including short wetted-wall columns, packed columns, and liquids around 
gas bubbles in certain instances. The penetration model has also been applied to absorp- 
tion with chemical reactions (see Example 20.1-2). 

The Flat-Plate Boundary Layer Model 

The steady-state transport in the boundary layer along a flat plate for a fluid with con- 
stant physical properties was discussed in g20.2. The eneral expression for the profiles, 
n(q, A, K), was given in Eq. 20.2-43. There q = y e vJ2vx is a dimensionless position co- 
ordinate measured from the plate, A is the physical property group (i.e., 1, Pr, or Sc), and 
K = ( v , / v , ) w  is a dimensionless net mass flux from the plate. 

Once again we introduce the notations defined in Table 22.8-1. Then for the bound- 
ary layer calculation we have 

In the boundary layer calculation it was assumed that the heat capacities of both species 
are identical. 

The momentum, heat, and mass fluxes for the flat plate are given in Fig. 22.8-5. Then 
in the following two figures, Figs. 22.8-6 and 22.8-7, two plots are given, comparing the 
correction factors, 8, for the film model, the penetration model, and the boundary layer 
model. The boundary layer model gives a dependence on A that is not found in the other 
models, because this model includes the effect of the tangential velocity profiles on the 
temperature and concentration profiles. The film model predicts the smallest depen- 
dence of the transfer coefficients on net mass-transfer rate. 

Correction factors considerably different from 1 arise when either $J or R is of mag- 
nitude 1 or greater for T or XA; see Figures 22.8-6, 7 and 8, and the relation 0 = +/R. 
Large net interfacial mass fluxes, by these measures, are common when the mass trans- 
fer is mechanically driven as in ultrafiltration (Example 22.8-5) and transpiration cooling 
(Problem 20B.7(c)). Large net mass fluxes can also occur in vaporization, condensation, 
melting and other changes of state, and in heterogeneous chemical reactions, when ac- 
companied by correspondingly large temperature differences or radiation intensities to 
transfer the requisite latent heat or energy of reaction. More moderate net fluxes, and 
correction factors near unity, are common in multistage and packed-column separation 
processes, where the differences of temperature and composition within a separation 
stage or flow cross-section are normally rather small. The energy flux ratio R, is an im- 
portant criterion for assessing the net-flux corrections, as illustrated in Examples 22.8-2 
and 3. 
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l + R f o r R < O  Asymptote for 4 + -m: R + -1 

Fig. 22.8-6. The variation of the 
transfer coefficients with mass 
transfer rate as predicted by 
various models. The line for 
A + w holds for the nonsepa- 
rated, steady state boundary- 
layer regions on rigid surfaces, 
whatever their geometry. 
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Fig. 22.8-5. Heat and mass fluxes between a flat plate and a laminar 
boundary layer [W. E. Stewart, ScD thesis, Massachusetts Institute of 

/ 
, , , , , , , , , , , , , , , , . , , , , , , , , , 

For positive R, read positive + from lower curves..- 
For negative R, read negative + on upper curves. -- 
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Fig. 22.8-7. The variation of the 
transfer coefficients with the 
flux ratio R as predicted by var- 
ious models. The line for A += 03 

holds for the nonseparated, 
steady state boundary-layer re- 
gions on smooth rigid surfaces, 
whatever their geometry. 

EXAMPLE 22.8-1 

Rapid Evaporation 
of a Liquid from a 

Solvent A is evaporating out of a coat of lacquer on a plane surface exposed to a tangential 
stream of noncondensable gas B. At a given point on the surface, the gas-phase mass transfer 
coefficient k,,,,, at the prevailing average fluid properties is given as 0.1 lb-mole/hr . ft2; the 
Schmidt number is Sc = 2.0. The interfacial gas composition is XAO = 0.80. Estimate the local 

Plane Surfnce rate of evaporation, using (a) the stagnant film model, (b) the flat-plate boundary layer 
model, and (c) the uncorrected mass transfer coefficient k,,,,,. 

SOLUTION (a) Since B is noncondensable, NBo = 0. Application of Eq. 22.8-7 (which is the same as 1 + 
R, = exp 4,) to the gas phase then gives 

From this we get, after taking the logarithm, 

as the result of the stagnant-film model. This corresponds to a correction factor 8, = +,/R, = 

0.40. 

(b) As in part (a), R, = 4.0. Then from Fig. 22.8-5, at R, = 4.0 and A, = 2.0, we find that 4, = 

1.3. By setting NBo = 0 in the formula for 4, in Table 22.8-1, we get 

as the result of the flat-plate boundary layer model. The corresponding correction factor 0, is 
0.33. 

(c) If the mass transfer coefficient k,,l,, is used without correction for the net interfacial flux, 
we get from Eq. 22.1-5, with NBO = 0 

whence NAO = 0.400. This result is much too high and shows that the corrections for net molar 
flux are important at these conditions. The boundary layer solution in part (b) should be accu- 
rate if the flow is laminar and the variation in the physical properties is not too great. 
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Adjust the results of Example 22.3-1 for the net molar flux by applying the correction factors 
6, and 19, from the film model and from the flat-plate boundary layer model. 

Correction Factors in 
Droplet Evaporation 

SOLUTION 

In Example 22.3-3 the molar flux ratio R, at any point on the surface of the drop is 

From Eq. 22.8-9 (film model) or Fig. 22.8-7 (flat-plate boundary layer model), the predicted 
correction factor 6, is about 0.99 at all points on the drop. Hence the corrected mass transfer 
rate is (by adjustment of Eq. 22.3-31) 

This result differs only slightly from that obtained in Example 22.3-1. Thus the assumption of 
a small mass-transfer rate was satisfactory under the given conditions. 

Extend the analysis of Example 22.3-2 to include the corrections for net mass-transfer rate, 
using the stagnant film model. 

Wet-Bulb Performance 
Corrected for  ass- 
Transfer Rate SOLUTION 

By rewriting the energy balance, Eq. 22.3-32, for any point on the wick, we obtain for finite 
mass-transfer rate 

Multiplication of both sides by CpA/(AiiArVaphioc) gives, since Nm = 0, 

NAO& - &(T- - To) 
R T = ~ -  

bloc ~ ~ A , u a p  

The right-hand member of this equation is easily calculated if TO, T,, and p are given. 
Next we write the expression r#~ = ln(1 + R) for both heat and mass transfer, taking into 

account the fact that NBO = 0: 

Solving both equations for NA, and equating the resulting expressions gives 

hloc In(1 + RJ = - ln(1 + R,) (22.8-33) 
kx,locC,A 

Then substituting the expressions for R, and RT from Table 22.8-1 yields 

This equation shows that xAo and To will be constant over the surface of the wick if 
h,,/(k&,,,) is constant and thus equal to h,,,/(k,,l<,A). This constancy is assumed here for 
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EXAMPLE 22.8-4 

Comparison of Film 
and Penetration 
Models for Unsteady 
Evaporation in a 
Long Tube 

simplicity. Such an assumption is particularly satisfactory for the water-air system, for which 
Pr and Sc are nearly equal. With this substitution, Eq. 22.8-34 becomes 

This solution simplifies exactly to Eq. 22.3-35 at low mass-transfer rates. 
For the numerical problem in Example 22.3-2, the following values apply: 

xAo = 0.0247 

CPA = 8.03 Btu/lb-mole . F for water vapor at 105°F 

h,/k,, = 5.93 Btu/lb-mole . F from the Chilton-Colburn analogy (Eq. 22.3-25) 

Insertion of these values into Eq. 22.8-35 gives 

Solving this equation, we get 

x,, = 0.0034 (22.8-37) 

This result differs only slightly from the value 0.0033 obtained in Example 22.3-2 and justifies 
the previous omission of the correction factors under the given conditions. 

Numerical studies indicate that the simple Eq. 22.3-34 gives a close approximation to Eq. 
22.8-35 for the air-water system under all likely wet-bulb conditions. Eqs. 22.3-32 and 33 
overestimate the mass transfer rate almost equally, and when these equations are combined, 
the errors largely compensate. 

Compare the effects of net mass transfer for the unsteady evaporation system described in 
Example 20.1-1 with the predictions of (a) the generalized penetration model, and (b) the 
stagnant-film model introduced above. The latter calculation amounts to a quasi-steady-state 
treatment of this time-dependent system. 

SOLUTION 

We begin by noting that for this system x,, = 0 and N,, = 0. It follows from Eq. 22.8-la and 
Table 22.8-1 that 

The correction factor 8, is thus the ratio of the flux corrected for net mass transfer to the un- 
corrected flux. 

(a )  The penetration model. We note that the concentration gradient at the liquid surface can 
be obtained by differentiating Eq. 20.1-16 and rewriting the result in terms of x, and z. The re- 
sult is 

2 exp(-q2) x,, 
1 + erf cp .\/= 

For negligible net mass transfer, cp = 0. Thus, the ratio of the mass flux in the presence of net 
mass transfer to the flux in the absence of net mass transfer is 
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Table 22.8-2 Comparison of Film and Penetration Models. 

8, from penetration model 8, from film model 
X~~ (Eq. 22.8-41) (Eq. 22.8-42) 

in agreement with Eqs. 22.8-14 and 16. To get 8, as a function of x,,, we may use Fig. 22.8-7, or 
use Eq. 20.1-17 to write 

8, = (1 - xAO)+(xAO) (penetration model) (22.8-41) 

where +(xAO) is the quantity defined just after Eq. 20.1-22 and given in Table 20.1-1. 

(b) The stagnant-film model. The film model result may be obtained from Eq. 22.8-9 in the 
form 8 = (1 /R) ln(1 + R) to obtain 

1 - XAO 

X ~ O  
lxAO) (film model) 0, = - ln - 

Numerical values for both models are provided in Table 22.8-2 and also in Fig. 22.8-7. 
It is seen that the penetration model predicts a stronger correction 8, for net mass transfer 

than does the film model. This is in part because the net flow thickens the boundary layer, an 
effect that the film model does not consider. It may also be noted that this example is a realis- 
tic use of the penetration model, as there is little effect of solute concentration on the physical 
properties in this simple isothermal system. A much different situation is seen in the next 
example. 

Ultrafiltration of proteins is a concentration process, in which water from an aqueous protein 
solution is forced through a membrane impermeable to the protein but permeable to water 

Concentration and small solutes such as inorganic salts. Protein then accumulates in a polarization layer, or 
Polarization in region of high protein concentration adjacent to the membrane surface, as indicated in Fig. 
Ultrafiltration 22.8-8. Determine the relation between water permeation velocity and the transmembrane 

Protein boundary layer 
Membrane 

\ /n 

PP - 

Po Fig. 22.8-8. A spinning- 
pa disk ultrafilter. 
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SOLUTION 

pressure difference. Describe the effect of net mass transfer on the mass transfer coefficient for 
protein transport. Assume that the membrane is completely impermeable to protein so that 
the net transport of protein across the membrane surface is zero. 

For simplicity we choose a spinning-disk geometry as shown in Fig. 22.8-8, for which the pro- 
tein concentration will be a function only of the distance y from the disk surface and not of ra- 
dial position5 (see Problem 19D.4). However, we will have to consider the dependence of 
density, viscosity, and protein-water diffusivity on the protein concentration, and we will 
need the concept of osmotic pres~ure.~ 

The basis for our solution is the concept of hydraulic permeability of the filtration 
membrane: 

Here v, is the velocity, or volumetric flux, of the solvent leaving the downstream surface of 
the membrane. Equation 22.8-43 defines KH, the hydraulic permeability of the membrane. The 
quantities p, and p6 are the hydrodynamic pressures against the membrane as indicated in 
Fig. 22.8-8, and 7~ is the osmotic pressure at the upstream surface of the membrane. The inclu- 
sion of .rr recognizes that it is really the total thermodynamic potential that drives the trans- 
membrane transport (this point will be discussed further in Chapter 24.) 

For this situation, the interfacial protein velocity is zero, so that a solvent mass balance 
across the protein boundary layer gives 

in which y is the distance from the upstream membrane surface into the protein boundary 
layer. The quantity p'S' is the density of the pure solvent, and pso = PS(y=O and vso = vSy(y=O are 
the mass concentration and velocity of solvent at the upstream membrane surface. 

The osmotic pressure ?.r is a function of the protein concentration p,, and we will provide 
an example of this in Problem 22C.1. We find then that the water flux across the membrane 
depends on the protein concentration at the membrane surface as well as the hydrodynamic 
pressure drop across the membrane. This concentration, in turn, can be related to v, through 
the membrane impermeability condition for the protein and the definition of the mass trans- 
fer coefficient. Then at y = 0, we describe the impermeability of the membrane to protein by 

where k;, has been defined analogously to k;.. Combination with Eq. 22.8-44 then gives 

This equation may now be solved for the filtrate velocity: 

Here p, = pp, + pso and 0 = & / k p  is a mass transfer correction factor, analogous to O,, which 
now must include the effects of property changes as well as the net velocity correction intro- 
duced in Table 22.8-1. We return to a discussion of this quantity below (see Eq. 22.8-48). The 
term p,, is the solution density at the upstream membrane surface. 

We can now calculate the desired quantities, v, and the transmembrane pressure differ- 
ence, if we have sufficient information about the transport and equilibrium properties. Here 
we consider the approaching protein concentration pp, to be given, and for convenience we 

D. R. Olander, J .  Heat Transfer, 84,185 (1972). 
R. J. Silbey and R. A. Alberty, Physical Chemistry, 3rd edition, Wiley, New York (20011, p. 206. 
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begin by selecting values of the protein concentration p,, at the membrane surface over the 
range between p,, and the solubility limit of the protein: 

(i) For any chosen value of pp,, we can calculate the corresponding value of v, from Eq. 
22.8-47 with appropriate values for k, and 8. These values also permit calculation of 
osmotic pressure 7~ from the appropriate equilibrium relationship. 

(ii) We may then calculate the transmembrane pressure difference required for this flow 
from Eq. 22.8-43 and an appropriate value of K,. 

The strong effects of protein concentration on system properties mean that the solution must 
be obtained numerically. 

We content ourselves here to summarize the results of Kozinski and Lightfoot7 for 
bovine serum albumin; they were the first to make such calculations and seem still to have 
provided the best documentation. In their publications it is shown that the effective mass 
transfer coefficient can be expressed as the product of two factors, one accounting for the con- 
centration effects and another taking account of the additional effect of property variations: 

where, over the parameter space investigated, 

and 

Equations 22.8-49 to 52 must be considered empirical. Equation 22.8-47 overpredicts us for 
small polarization levels, but for that situation the effect of osmotic pressure on flow is small. 
The subscript re1 means "relative to the free-stream value." 

The mass transfer coefficient in the limit of slow mass transfer and small property varia- 
tions is given7 as 

v(m) kpL = 0.6205(&)1/2(-)1'3 Sh ,  = Shl,, = - 
9 p J w )  v(a) %ps(m) 

in which L is the disk diameter and IR is the rate of rotation in radians per unit time. The inde- 
pendence of mass transfer rate on disk size is the reason that this geometry is so popular for 
careful mass transfer studies. Other geometries are considered briefly by Kozinski and Light- 

A comparison of a priori predictions from the above model with experimental data is 
shown in Fig. 22.8-9, where we see that the two agree well. This good agreement may result 
in part because the albumin molecules behave much like incompressible particles at the high 
solvent ionic strength at which the data were taken. It may also be seen that osmotic effects 
are negligible below pressure drops of about 5 psi; here the predicted behavior is indistin- 
guishable from that of the protein-free solvent, essentially water. It is only in this unimpor- 
tant region that Eq. 22.8-48 is unreliable. Details of the calculations are provided in Problem 
22C.1. 

The effect of increasing pressure difference across the protein boundary layer is quite dif- 
ferent from that for a nonselective membrane. At first, the concentration boundary layer gets 
thinner, as would be expected, and the mass transfer coefficient &, increases. However, with 

A. A. Kozinski, PhD thesis, University of Wisconsin (1971); A. A. Kozinski and E. N. Lightfoot, 
AIChE Journal, 18,1030-1040 (1972). 
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Fig. 22.8-9. Protein ultrafiltration 
with a spinning disk at 273 rpm. 
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further increase in the pressure difference the boundary layer thickness, k; and 19, all approach 
asymptotic limits. In practice, these asymptotes are closely approached before the effect of po- 
larization becomes appreciable, relative to the membrane flow resistance, and these asymp- 
totes suffice to predict the relation between the transmembrane pressure difference and 
transmembrane flow. 

The behavior can be seen more clearly inserting Eq. 22.8-48 and 49 and the approximate 
formula 

into Eq. 22.8-47. Then, to a surprisingly good approximation, Eq. 22.8-47 takes the form 

06 lo  20 30 40 

1 

The quantity in the first set of parentheses has the form of the simple film model, but with k, 
multiplied by 1.39. It is probably Eq. 22.8-55 that has made the simple film model attractive to 
many for correlating ultrafiltration and reverse osmosis data. However, neglect of the multi- 
plier 1.39 has caused corresponding underestimation of v,, even before addressing the effects 
of property variations. 

Bovine serum 
albumin, 2.2 g/lOO ml 

522.9 MATRIX APPROXIMATIONS FOR MULTICOMPONENT 
MASS TRANSPORT 

Multicomponent mass transport occurs widely in chemical, physiological, biological, 
and environmental processes and is analyzed by various mathematical methods. Here 
we review some matrix approximation methods for mass transport by convection and 
ordinary diffusion in multicomponent gases. A fuller treatment, including mass trans- 
port in liquids, is given in the text by Taylor and Krishna.' 

Multicomponent mass transport problems are commonly approximated by lin- 
earization-that is, by replacing the variable properties in the governing equations with 
constant reference values. This approach is a useful complement to purely numerical 
methods, especially for complex flows, and can give good predictions when the property 

R. Taylor and R. Krishna, Multicomponent Mass Transfer, Wiley, New York (1993). 
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variations are not too large. Multicomponent analyses of this sort have been presented 
by many investigators, for quiescent media2 and for forced-convection systems."' 

We begin with the species continuity equations as given in Eq. 19.1-15, and apply 
them to an N-component gas system with N - 1 independent mole fractions x, and an 
equal number of independent diffusion fluxes J:. Let [XI and [J"] denote, respectively, 
the column arrays of independent mole fractions x,, . . . , x,-, and independent diffusion 
fluxes J:, . . . , JG-,; then approximating the molar density c in Eq. 19.1-15 by a reference 
value c,,, gives the linearized equation system 

for laminar or turbulent flows free of homogeneous chemical reactions. 
For multicomponent ordinary diffusion, the flux expression may be written either as 

a matrix generalization2f4 of Fick's first law (Eq. B of Table 17.8-2), 

or as a matrix statement3t5 of the Maxwell-Stefan equation (Eq. 17.9-1): 

The matrices [Dl and [A] must be (N - 1) X (N - 1) and nonsingular to give the stated 
number of independent fluxes (in Eq. 22.9-2), and of independent mole fractions (in Eq. 
22.9-3). Consistency of these two equations then requires that [Dl = [Alp' at any given 
state. 

In the moderate-density gas region, the elements of the matrix [A] are predictable 
accurately from Eq. 17.9-1, giving 

in which the divisors BOP are the binary diffusivities of the corresponding pairs of 
species. In the first approximation of the Chapman-Enskog kinetic theory of gases, the 
coefficient for a given pair a ,  p depends only on c and T,  as in Eq. 17.3-11. These simple 
expressions lead us to prefer Eq. 22.9-3 over Eq. 22.9-2, unless measurements of [Dl are 
available at the desired conditions. Formally similar equations may be written in mass- 
or volume-based compositions and fluxes, after appropriate transformation of the coeffi- 
cient matrix [A] or [Dl. Mass units are preferred if the equation of motion is included in 
the problem formulation, since the mass average velocity is then essential as indicated in 
919.2. 

L. Onsager, Ann. N.Y. Acad. Sci., 46,241-265 (1948); P. J. Dunlop and L. J. Gosting, J .  Phys. 
Chem., 63,86-93 (1959); J .  S. Kirkaldy, Can. J. Phys., 37,30-34 (1959); S. R. de Groot and P. Mazur, 
Non-Equilibrium Thermodynamics, North-Holland, Amsterdam (1961); J. S. Kirkaldy, D. Weichert, and 
Zia-U1-Haq, Can. J. Phys., 41,2166-2173 (1963); E. L. Cussler, Jr., and E. N. Lightfoot, AKhE Journal, 10, 
702-703,783-785 (1963); H. T. Cullinan, Ind. Eng. Chem. Fund., 4,133-139 (1965). 

R. Prober, PhD thesis, Univ. of Wisconsin (1961). 
H. L. Toor, A K h E  Journal, 10,460465 (1964). 
W. E. Stewart and R. Prober, Ind. Eng. Chem. Fund., 3,224-235 (1964). 
9, Tambour and B. Gal-Or, Physics of Fluids, 19,219-225 (1976). 
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For multicomponent systems (N 2 31, each of these flux expressions normally has a 
nondiagonal coefficient matrix, giving a coupled system of diffusion equations. Equation 
22.9-3 can be decoupled by use of the transformation 

[PI -'[A] [PI = [" . v ] (22.9-5) 
AN- 1 

" " 
in which [PI is the matrix of column eigenvectors of [A], and A,, . . . , A,-, are the corre- 
sponding eigenvalues. These eigenvalues, the roots of the equation det[A - A11 = 0, are 
positive at any locally stable state of the mixture; they are also invariant to similarity 
transformations of [A] to other composition units. Here I is the unit matrix of order N - 1. 
The matrix [Dl, when used, is reducible in like manner with the same matrix [PI, and its 
eigenvalues Dl, . . . , DN-, are the reciprocals of A,, . . . , AN-,. For economy of effort, [A] 
(or [Dl) and the arrays derived therefrom will always be evaluated at reference property 
values, so will not need the subscript ,,*; however, a subscript w will be added in [A], [Dl, 
[PI, and [PI-' when these arrays are based on quantities in mass units. 

Equation 22.9-5 suggests that the following transformed compositions and trans- 
formed diffusion fluxes should be useful: 

Hereafter, an accent (') will be placed on such transformed yariabks and on the corre- 
sponding diagonal matrix elements, including the eigenvalues A, and D,. Premultiplication 
of Eq. 22.9-3 by [PI-' and use of Eqs. 22.9-5 through 9 then gives uncoupled flux equations 

formally equivalent to Fick's first law for N - 1 binary systems. The multicomponent 
continuity equation 22.9-1 correspondingly transforms to 

Thus, the transformed compositions %a and fluxes j: for each a satisfy the continuity and 
flux equations of a binary problem with the same v" function (laminar or turbulent) as the 
multicomponent system, and with a diffusivity 91AB equal to the eigenvalue D, = 1 /A,. 

The initial and boundary conditions on [?I and [j'] are obtained from those on 1x1 
and [ J"1 by application of Eqs. 22.9-6 and 8. The resulting quasi-binary problems may 
then be solved, using theory or correlations of experiments, and the results combined5 
via Eqs. 22.9-7 and 9 to get the multicomponent solution in terms of [XI and [ J"]. 

Local mass transfer rates in binary systems are expressible in the form 

as indicated in Eq. 22.1-7 and s22.8. The notation . . . after 9,, stands for any additional 
variables (such as 4, of 922.8) on which the binary mass transfer coefficient k; may de- 
pend. The corresponding set of equations in the notation of Eqs. 22.9-10 and 11 is 
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or in matrix form, 

Transformation of this result into the original variables gives the interfacial diffusion 
fluxes J:,, . . . , J&,,, into the gas phase as 

or the composition differences for given fluxes Jao as 

Here [kl is the diagonal matrix shown in Eq. 22.9-14, and [h-' is formed from the reci- 
procals of the same diagonal elements. 

As for binary systems, further information is needed to calculate the species fluxes 
N,, relative to the interface, which give the local transfer rates. A flux ratio r = NAo/NBo 
was specified in Eq. 21.1-9 to solve for N,,; analogous specifications are required for 
multicomponent systems. The calculation of the fluxes N,, from diffusion fluxes co and 
relative transfer rates is called the "bootstrap problem,"',7 and is treated well in Ref. 1. 
This problem becomes simpler if Eq. 22.9-14 is rewritten as follows, using the array [No] 
of interfacial molar fluxes N,,,, . . . , NN-l,O relative to the interface, 

to allow direct insertion of relations among the species transfer rates. The corresponding 
result for the array [no] of interfacial mass fluxes n,,,, . . . , n,-,,, relative to the interface 
is: 

Several special forms of these results will now be given. 
For systems with no net molar interfacial flux, the N-term summation in Eq. 22.9-17 

vanishes, and this equation takes the convenient form 

in which the diagonal array [ k ]  needs no net-flux correction. This result can be extended 
to moderate net molar interfacial flux by approximating each transfer coefficient kx(Da, $,,I 
in Eq. 22.9-14 as a linear function of the net molar interfacial flux, using the tangent line 
at 4 = 0 of the 8-curve in Fig. 22.8-2 for the chosen mass transfer model. This gives the 
linear equation system8 

for the stagnant-film model given in 322.8. In the same manner, one obtains 

' R. Krishna and G. L. Standart, Chem. Eng. Commun., 3,201-275 (1979). 
W .  E. Stewart, AlChE Journal, 19,398400 (1973); Erratum, 25,208 (1979). 
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for the penetration model given in g20.4 and 522.8, and 

for the limit A + w in laminar boundary layers, shown in Figs. 22.8-5,6 and valid for non- 
separated boundary layers in three-dimensional steady flows.9 

In systems with no net mass interfacial pux, as in steady-state solid-catalyzed reac- 
tions, Eq. 22.9-18 reduces to 

The elements of the matrix $ can be predicted from expressions for the binary Sherwood 
number or j, factor as defined for mass-based units in Table 22.2-1, with eigenvalues f im 
inserted in place of binary diffusivities a,,. 

For a given flow field, the product [ ~ ] [ k , l [ ~ l ~ '  in Eqs. 22.9-19 through 22 is a func- 
tion of the matrix [A]. This matrix triple product, here called [k,], is non-diagonal for 
N r 3 whereas [ k l  is diagonal as noted above. A simple, efficient method for approxi- 
mating such functions has been developed by Alopaeus and Nord6n.lo Let f be a scalar 
real-valued function defined on the eigenvalues of a matrix [A], in which the diagonal el- 
ements are dominant as in Eq. 22.9-4. The proposed approximations to the elements of 
the matrix [B] = f [A] are then as follows: 

for diagonal elements, Bii = f(Aii) (22.9-24) 

df(Aii) 
A" d ~ ,  if A~~ = A~~ 

for off-diagonal elements, Bij = 
f(AJ - f(Aji) 

(22.9-25) 

Aij A - A , .  otherwise. 
" I1 

Alopaeus and Nordenlo tested these approximations to mass-transfer coefficient matrices 
[k,] of the form b[DI1-P or the form b[AlP-', and to the corresponding fluxes N,,, in sys- 
tems of 3 to 25 gaseous species. Exponents p from 0.25 to 0.66 were used; values from 0 to 
0.5 appear in the mass transfer expressions of this chapter. Comparisons were made 
against exact calculations of elements kxap and N,, via Eq. 22.9-19, and against a film model 
given by Krishna and Standart" in which each element kXop is calculated independently 
with the corresponding binary diffusivity gap. The calculations from Eqs. 22.9-24 and 25 
were 3 to 5 times quicker than those with Eq. 22.9-19 and proved quite accurate (relative 
errors typically less than 1% and seldom as large as lo%), especially when done directly 
from the diagonally dominant Stefan-Maxwell matrix [A] rather than from its inverse, [Dl. 
Calculations with the Krishna-Standart film model were slower than those with Eqs. 22.9- 
24 and 25, and the typical errors were several times as large. Therefore, Eqs. 22.9-24 and 25 
are recommended as practical approximations to the elements of the product matrix 
[B] = [~l[k,][P]-' in Eqs. 22.9-19 through 22 whenever Eq. 22.9-4 is used. This approxima- 
tion may be used in Eq. 22.9-23 also, with [Bl transformed at the end into mass-based 
units; however, Eq. 22.9-20 or 22 will be more convenient and comparably accurate at the 
moderate net molar fluxes normally encountered in heterogeneous catalysis. 

The accuracy of the linearized solutions depends on the choice of the reference prop- 
erty values, especially when the property variations are large. In the following discus- 
sion all properties are evaluated at a common reference state, with composition given as 
a mole fraction 

[xref1 = a,[xb1 + (1 - a,)[xol (22.9-26) 

W. E. Stewart, AlChE Jouvnal, 9,528-535 (1963). 
lo V. Alopaeus and H. V. Norden, Computers O. Chemical Engineering, 23,1177-1182 (1999). 
" R. Krishna and G. L. Standart, MChE Journal, 22,383-389 (1976). 
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or a mass fraction 

[wref1 = ao[mb1 + (1 - a,)[w,I (22.9-27) 

Note that [x,,,] remains open to choice even for Eq. 22.9-20, 21, or 22, since the average 
compositions shown there provide net-flux corrections and not physical property values. 

Equations 22.9-17, 18 and several other approximations for multicomponent mass 
transfer have been tested" against detailed variable-property integrations for isothermal 
systems. The conclusions from this study were as follows: 

For twenty problems of unsteady-state gaseous diffusion, covering a wide range 
of net mass transfer rates, linearization in molar units approximated the exact so- 
lutions best. Rates of isobutane evaporation and condensation, for the system i- 
C4H,,-N2-H, in the geometry of Example 20.1-1, were approximated with a 
standard deviation of 1.6% by Eq. 22.9-17, using reference mole fractions calcu- 
lated from Eq. 22.9-26 with a, = 0.5. Linearization in mass-based units, via Eq. 
22.9-18, proved inferior because of the large variations in p and [A,]. This 
method, with its preferred a, value of 0.8, gave a standard deviation of 3.8% for 
the interfacial fluxes N,, of the single transferable species (isobutane). Quasi- 
steady-state film approximations proved less accurate; use of correction factors 
Ox, = $,,/(exp$,, - 1) (as given by Stewart and Prober5 for the film model of 
522.8) gave a standard deviation of 7.88% with n, optimized to 1.0. The film 
model of Krishna and Standart,'' which does not use linearization, gave a stan- 
dard deviation of 14.3% independent of a, and a,. These results favor the use of 
Eq. 22.9-17 (or, for moderate transfer rates, Eq. 22.9-21) with a, = 0.5 for the gas 
phase in transfer operations described by a penetration model. 

2. For twenty problems of momentum and mass transfer in laminar gaseous bound- 
ary layers of Hz, Nz and CO, on a porous flat plate, solved accurately by Prober; 
linearization in mass-based units approximated the exact solutions best. The de- 
tailed variable-property solutions for n,, were approximated12 for all three 
species with a standard deviation of 0.55% by Eq. 22.9-18, using mass transfer co- 
efficients ib predicted via Eq. 20.2-47 and 22.9-27 with a, optimized to 0.4. The 
film models of Stewart and Prober5 and of Standart and ~ r i s h n a ' ~  gave standard 
deviations of 4.78% (with a, = 1.0) and 8.25%, respectively, for the species trans- 
fer rates. 

The methods presented here are coming into widespread use in the engineering of 
multicomponent separation processes. Advances in computing technology have facili- 
tated the use of these methods and stimulated investigations toward better ones, to deal 
with nonlinear phenomena including complex chemical reactions. 

QUESTIONS FOR DISCUSSION 

1. Under what conditions can the analogies in Table 22.2-1 be applied? Can they be applied in 
systems with chemical reaction? 

2. Why is the heat transfer coefficient in Eq. 22.1-6 defined differently from that in Eq. 14.1-1-or 
is it? 

3. Some of the mass transfer coefficients in this chapter have a superscript 0 and others have a 
superscript *. Explain carefully what these superscripts denote. 

4. What conclusions can you draw from the analytical calculations of mass transfer coefficients 
in §22.2? 

l2 T. C. Young and W. E. Stewart, Ind. Eng. Chenz. Res., 25,476-482 (1986). 
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PROBLEMS 2 2 ~ . 1 .  

What is the significance of the 2 in Eqs. 22.3-20 and 21? 
What is the meaning of the subscripts 0, e, and b in §22.4? 
What is meant by the term "model insensitive"? 
In what way does surface tension have an influence on interphase mass transfer? How is sur- 
face tension defined? How does surface tension depend on temperature? 
Discuss the physical basis for the film model, the penetration model, and the boundary layer 
model for heat and mass transfer. 
How are the heat and mass transfer coefficients affected by high mass-transfer rates across 
the interface? 

Prediction of mass transfer coefficients in closed channels. Estimate the gas-phase mass 
transfer coefficients for water vapor evaporating into air at 2 atm and 25"C, and a mass flow 
rate of 1570 IbJhr, in the systems that follow. Take a,, = 0.130 cm2/s. 
(a) A 6-in. i.d. vertical pipe with a falling film of water on the wall. Use the following correla- 
tion' for gases in a wetted-wall column: 

Sh,,, = 0.023 Re0.83~~0.44 (Re > 2000) (22A.1-1) 

(b) a 6-in.-diameter packed bed of water-saturated spheres, with a = 100 W' 

Calculation of gas composition from psychrometric data. A stream of moist air has a wet- 
bulb temperature of 80°F and a dry-bulb temperature of 130°F, measured at 800 mm Hg total 
pressure and high air velocity. Compute the mole fraction of water vapor in the air stream. 
For simplicity, consider water as a trace component in estimating the film properties. 
Answer x,, = 0.0158 (using n = 0.44 in Eq. 22.3-38) 

Calculating the inlet air temperature for drying in a fixed bed. A shallow bed of water-satu- 
rated granular solids is to be dried by blowing dry air through it at 1.1 atm pressure and a su- 
perficial velocity of 15 ft/s. What air temperature is required initially to keep the solids at a 
surface temperature of 60"F? Neglect radiation. See 514.5 for forced-convection heat transfer 
coefficients in fixed beds. 

Rate of drying of granular solids in a fixed bed. Calculate the initial rate of water removal in 
the drying operation described in Problem 22A.3, if the solids are cylinders with a = 180 ft-l. 

Evaporation of a freely falling drop. A drop of water, 1.00 mm in diameter, is falling freely 
through dry, still air at pressure of 1 atm and a temperature of 100°F with no internal circula- 
tion. Assume quasi-steady-state behavior and a small mass-transfer rate to compute (a) the 
velocity of the falling drop, (b) the surface temperature of the drop, and (c) the rate of change 
of the drop diameter in cm/s. Assume that the film properties are those of dry air at 80°F. 
Answers: (a) 390 cm/s; (b) 54°F; (c) 5.6 X W4 cm/s 

Effect of radiation on psychrometric measurements. Suppose that a wet-bulb and dry-bulb 
thermometer are installed in a long duct with constant inside surface temperature T, and that 
the gas velocity is small. Then the dry-bulb temperature Tdb and the wet-bulb temperature TWb 
should be corrected for radiation effects. We assume, as in Example 22.3-2, that the ther- 
mometers are so installed that the heat conduction along the glass stems can be neglected. 
(a) Make an energy balance on a unit area of the dry bulb to obtain an equation for the gas 
temperature T, in terms of T,,, T,, h,,, e,,, and adb (these last two are the emissivity and absorp- 
tivity of the dry bulb). 

' E. R. Gilliland and T. K. Sherwood, Ind. Eng. Chem., 26,516-523 (1934). 
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(b) Make an energy balance on a unit area of the wet bulb and obtain an expression for the 
evaporation rate. 
(c) Compute x,, for the pressure and thermometer readings of Example 22.3-2, with the ad- 
ditional information that v, = 15 ft/s, T, = 130°F, edb = adb = eWb = aWb = 0.93, dry-bulb diame- 
ter = 0.1 in., and wet-bulb diameter = 0.15 in. including the wick. 
Answer: (c) xAm = 0.0021 

22B.3. Film theory with variable transport properties. 
(a) Show that for systems in which the transport properties are functions of y, Eqs. 19.4-12 
and 13 may be integrated to give for y a 6, or y 5 6 ,  respectively, 

(b) Make the corresponding changes in Eqs., 19.4-16 and 17 as well as in Eqs. 22.8-5 and 6. 
Then verify that Eqs. 22.8-7 and 8 remain valid. Thus it is not necessary to work with the inte- 
grals in calculating transfer rates if hloc and kX,,,, can be predicted. 
(c) Show that h,,, and kx,loc have to be evaluated in terms of the physical properties and flow 
regime (laminar or turbulent) that prevail at the conditions for which hi,, and k&, are desired. 

22B.4. An evaporative ice maker. Consider a circular shallow dish of water 0.5 m in diameter and 
filled to the brim, resting on an insulating layer, such as loose straw, and in a windless area. 
At what air temperature can the water be cooled to freezing if the relative humidity of the air 
is 30%? Make the following assumptions: (i) neglect radiation, (ii) consider radiation to a 
night sky of effective temperature 150K, and (iii) assume that the dish has a lip around the 
edge 2 mm high. 

228.5. Oxygen stripping. Calculate the rate at which oxygen transfers from quiescent oxygen- 
saturated water at 20°C to a bubble of pure nitrogen 1 mm in diameter, if the bubble acts as 
a rigid sphere. Note that it will first be necessary to determine the bubble velocity of rise 
through the water. 

22B.6. Controlling diffusional resistance. Water drops 2 mm in diameter are being oxygenated by 
falling freely through pure oxygen at 20°C and a pressure of 1 atm. Do you need to know the 
gas-phase diffusivity to calculate the rate of oxygen transport? Why? The solubility of oxy- 
gen under these conditions is 1.39 mmols/liter, and its diffusivity in the liquid phase is 
about 2.1 x cm2/s. 

Curve fit: 
log ~ H ~ O  = 0.6715 + 0.030 T 

- 0.0000798 T' 

Fig. 22B.7. Water vapor pres- 
sure under its own vapor data 
from Lange's Handbook of 
Chemistry 0. Dean, ed.), 
15th edition, McGraw-Hill, 

Temperature, C New York (1999). 
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22B.7. Determination of diffusivity (Fig. 22B.7). The diffusivity of water vapor in nitrogen is to be 
determined at a pressure of 1 atm over the temperature range from 0°C to 100°C by means of 
the "Arnold experiment" of Example 20.1-1. It will, therefore, be necessary to use the correc- 
tion factor OA, to the penetration model. Calculate this factor as a function of temperature. The 
vapor pressure of water in this range may be obtained from Fig. 22B.7 or calculated from 

where p~~~ is the vapor pressure in mm Hg, and T is the temperature in degrees centigrade. 

22B.8. Marangoni effects in condensation of vapors. In many situations the heat transfer coeffi- 
cient for condensing vapors is given as h = k/S, where k is the thermal conductivity of the 
condensate film, and 6 is the film thickness. Correlations available in the literature are nor- 
mally based on the assumption of zero shear stress at the free surface of the film, but if the 
surface temperature decreases downward, there will be a shear stress 7, = duldz, where u is 
the surface tension, and z is measured downward, that is, in the direction of flow. How much 
will this effect change a heat transfer coefficient of 5000 kcal/hr m2 . C for a water film? The 
kinematic viscosity of water may be assumed to be 0.0029 cm2/s, the density is 0.96 g/cm3, 
the thermal conductivity 0.713 kcal/hr. m . C, and du/dT = -0.2 dynes/cm C for the pur- 
poses of this problem. 

(p:i2)( 3 b ) Partial Answer: p(v,) = - I + - -  
2 P@ 

The term in .r, represents the effect of surface tension gradients, and when this term is 
small, its denominator will be near the value for no gradient. For the conditions of this prob- 
lem, pg6 = 14.3 dyn/cm2. Surface tension effects will thus be small for systems such as the 
one under consideration, where the surface tension increases downward. In the opposite 
case, however, even small gradients can cause hydrodynamic instabilities and thus can 
have major effects. 

22B.9. Film model for spheres. Derive the results that correspond to Eqs. 22.8-3,4 for simultaneous 
heat and mass transfer in a system with spherical symmetry. That is, assume a spherical mass 
transfer surface and assume that T and X A  depend only on the radial coordinate r. Show that 
Eqs. 22.8-7 and 8 do not need to be changed. What difficulties would be encountered if one 
tried to use the film theory to calculate the drag on a sphere? 

22B.10. Film model for cylinders. Derive the results that correspond to Eqs. 22.8-3, 4 for a system 
with cylindrical symmetry. That is, assume a cylindrical mass transfer surface and assume 
that T and X A  depend only on r. Verify that Eqs. 22.8-7,8 do not need to be changed. 

22C.1. Calculation of ultrafiltration rates. Check the accuracy of the predictions shown in Fig. 22.8-9 
for the following data and physical properties: 

Physical system: 
Rotation rate of disk filter = 273 rpm 
Bovine serum albumin at p, = 2.2 g/100 ml 
Diffusivity in phosphate buffer (at pH 6.7) = 7.1 X cm2/s 
Kinematic viscosity of buffer = 0.01 cm2/s 
Partial specific volumes of protein and buffer are 0.75 and 1.00 ml/g, respectively 
Hydraulic permeability, KH = 0.0098 cm/min psi 

Effect of protein concentration: 
Solution density p = 0.997 + 0 . 2 2 4 ~ ~  in g/ml 
Protein-buffer diffusivity ratio '9ps(0)/9ps(pp) = 21.34,/tanh(21.34$, where 4, = 

w ~ ~ ~ / ( w ~ + ~  + uses) is the volume fraction of protein, with cp and Vs being the par- 
tial specific volumes of protein and solvent 

Protein-buffer viscosity ratio ~(O)/p(p,) = 1.11 - 0.054p, + 0.00067p$, with pp in g/100 ml 
Osmotic pressure .rr = 0.013& in psi (100 rnl/g)' 
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The operating data are as follows: 

Transmembrane 
pressure difference, 
(PO - psh psi 

4.0 

Percolation velocity 
vfir cmlmin 

0.032 
0.049 
0.049 
0.061 
0.066 
0.074 
0.078 
0.079 
0.081 
0.082 



Chapter 23 

Macroscopic Balances for 
Multicomponent Systems 
523.1 The macroscopic mass balances 

523.2' The macroscopic momentum and angular momentum balances 

523.3 The macroscopic energy balance 

523.4 The macroscopic mechanical energy balance 

523.5 Use of the macroscopic balances to solve steady-state problems 

523.6O Use of the macroscopic balances to solve unsteady-state problems 

Applications of the laws of the conservation of mass, momentum, and energy to engi- 
neering flow systems have been discussed in Chapter 7 (isothermal systems) and Chap- 
ter 15 (nonisothermal systems). In this chapter we continue the discussion by 
introducing three additional factors not encountered in the earlier chapters: (a) the fluid 
in the system is composed of more than one chemical species; (b) chemical reactions may 
be occurring, along with changes of composition and production or consumption of 
heat; and (c) mass may be entering the system through the bounding surfaces (that is, 
across surfaces other than planes 1 and 2). Various mechanisms by which mass may 
enter or leave through the bounding surfaces of the system are shown in Fig. 23.0-1. 

Fig. 23.0-1. Ways in which mass may enter or leave Water in Heated CH4, 4 ,  and 
through boundary surfaces: (a) benzoic acid enters Air + NH, + H,O ,/ combustion products 

system by dissolution of the wall; (b) water vapor en- - - Surface 2 
ters the system, defined as the gas phase, by evapo- 
ration, and ammonia vapor leaves by absorption; 
(c )  oxygen enters the system by transpiration 
through a porous wall. 

Ho 
Surface 1 Surface 2 

Aqueous 
Water benzoic - Surface 1 acid 

Cold CH4 
N H ~  Aqueous 

ammonia out 

(a )  (b)  (4 

Surface 2 

Surface 1 
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In this chapter we summarize the macroscopic balances for the more general situa- 
tion described above. Each of these balances will now contain one extra term, to account 
for mass, momentum, or energy transport across the bounding surfaces. The balances 
thus obtained are capable of describing industrial mass transfer processes, such as ab- 
sorption, extraction, ion exchange, and selective adsorption. Inasmuch as entire treatises 
have been devoted to these topics, all we try to do here is to show how the material dis- 
cussed in the preceding chapters paves the way for the study of mass transfer opera- 
tions. The reader interested in pursuing these topics further should consult the available 
textbooks and treatises.'-" 

The main emphasis on this chapter is on the mass balances for mixtures. For that 
reason, 523.1 is accompanied by five examples, which illustrate problems arising in envi- 
ronmental science, isotope separation, economic evaluation, and biomedical science. In 
ss23.2 to 23.4 the other macroscopic balances are given. In Table 23.5-1 they are summa- 
rized for systems with multiple inlets and outlets. The last two sections of the chapter il- 
lustrate applications of the macroscopic balances to more complex systems. 

523.1 THE MACROSCOPIC MASS BALANCES 

The statement of the law of conservation of mass of chemical species a in a multicompo- 
nent macroscopic flow system is 

This is a generalization of Eq. 7.1-2. Here ma,,, is the instantaneous total mass of a in the 
system, and -Awn = w,, - w,, = p,l(v,)S, - pa2(v2)S2 is the difference between the mass 
rates of flow of species a across planes 1 and 2. The quantity w,,, is the mass rate of addi- 
tion of species a to the system by mass transfer across the bounding surface. Note that 
w,,, is positive when mass is added to the system, just as Q and W, are taken to be posi- 
tive in the total energy balance when heat is added to the system and work is done on 
the system by moving parts. Finally, the symbol r,,t,, stands for the net rate of produc- 
tion of species a by homogeneous and heterogeneous reactions within the system.' 

Recall that in Table 15.5-1 the molecular and eddy transport of momentum and en- 
ergy across surfaces 1 and 2 in the direction of flow were neglected with respect to the 
convective transport. The same is done everywhere in this chapter-in Eq. 23.1-1 and in 
the other macroscopic balances presented here. 

W. L. McCabe, J. C. Smith, and P. Harriot, Unit Operations of Chemical Engineering, McGraw-Hill, 
New York, 6th edition (2000). 

T. K. Sherwood, R. L. Pigford, and C. R. Wilke, Mass Transfer, McGraw-Hill, New York (1975). 
R. E. Treybal, Mass Transfer Operations, 3rd edition, McGraw-Hill, New York (1980). 
C. J. King, Separation Processes, McGraw-Hill, New York (1971). 
C. D. Holland, Multicomponent Distillation, McGraw-Hill, New York (1963). 
T. C. Lo, M. H. I. Baird, and C. Hanson, eds., Handbook of Solvent Extracfion, Wiley-Interscience, 

New York (1983). 
R. T. Yang, Gas Separations by Adsorption Processes, Butterworth, Boston (1987). 
J. D. Seader and E. J. Henley, Separation Process Principles, Wiley, New York (1998). 
The quantities ma,,,, w,,, and r,,,, may be expressed as integrals: 

in which n is the outwardly directed unit normal vector, and So is that portion of the bounding surface 
on which mass transfer occurs. The integrands in r,,,, are the net rates of production of species a by 
homogeneous and heterogeneous reactions, respectively. 
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If all N equations in Eq. 23.1-1 are summed, we get 

in which w, = Saw,,,, and use has been made of the law of conservation of mass in the 
form Z,r,,,, = 0. 

It is often convenient to write Eq. 23.1-1 in molar units: 

Here the capital letters represent the molar counterparts of the lowercase symbols in Eq. 
23.1-1. When Eq. 23.1-3 is summed over all species, the result is 

Note that the last term is not in general zero, because moles are produced or consumed 
in many reaction systems. 

In some applications, such as spatially continuous mass transfer operations, it is cus- 
tomary to rewrite Eq. 23.1-1 or 3 for a differential element of the system (that is, in the 
"d-form" discussed in 515.4). Then the differentials dw,, , or d W,, can be expressed in 
terms of local mass transfer coefficients. 

A fluid stream emerges from a chemical plant with a constant mass flow rate w and dis- 
charges into a river (Fig. 23.1-la). It contains a waste material A at mass fraction w,,, which is 

Disposal of an unstable and decomposes at a rate proportional to its concentration according to the expres- 
Unstable Waste sion r, = -k';bA-that is, by a first-order reaction. 
Product To reduce pollution it is decided to allow the effluent stream to pass through a holding 

tank of volume V, before discharging into the river (Fig. 23.1-lb). The tank is equipped with 

Volume flow rate Q = w / p  
p 

Concentration of A 
-+ 

in effluent PAO 

(a) 

Volume flow 
rate Q = w / p  

Concentration, 

Well-stirred tank 
with volume V 

(b)  

Fig. 23.1-1. (a) Waste stream with unstable pollutant emptying directly into a river. (b)  Waste stream with 
holding tank that allows the unstable pollutant to decay prior to going into the river. (c)  Sketch showing the 
concentration of pollutant being discharged into the river after the holding tank has been filled (the dimen- 
sionless quantity K is k;"V/Q). 
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SOLUTION 

an efficient stirrer that keeps the fluid in the tank at very nearly uniform composition. At time 
t = 0 the fluid begins to flow into the empty tank. No liquid flows out until the tank has been 
filled up to the volume V. 

Develop an expression for the concentration of the fluid in the tank as a function of time, 
both during the tank-filling process and after the tank has been completely filled. 

(a) We begin by considering the period during which the tank is being filled-that is the pe- 
riod t 5 pV/w, where p is the density of the fluid mixture. We apply the macroscopic mass 
balance of Eq. 23.1-1 to the holding tank. The quantity mA,tot on the left side is wto, at time t. 
The mass rate of flow entering the tank is wwAo, and there is no outflow during the tank-filling 
stage. No A is entering or leaving through a mass transfer interface. The mass rate of produc- 
tion of species A is Y,,~,, = (wt/p)(-k;"pA) = -k~m,,t,t. Therefore the macroscopic mass balance 
for species A during the filling period is 

This first-order differential equation can be solved with the initial condition that mA,tot = 0 at 
t = 0 to give 

This may be written in terms of the instantaneous mass fraction of A in the tank by using the 
relation mA,tot = wtw,: 

The mass fraction of A at the instant when the tank is full, o,, is then given by 

in which K = kYpv/w = k;"V/Q. 

(b) The mass balance on the tank after it has been filled is 

or, in dimensionless form, with T = (w/pV)t, 

This first-order differential equation can be solved with the initial condition that w, = w,, at 
r = 1 to give 

This shows that as time progresses the mass fraction of the pollutant being discharged into 
the river decreases exponentially, with a limiting value of 

The curve for the mass concentration as a function of time after the filling of the tank is shown 
in Fig. 23.1-l(c). This curve can be used to determine conditions such that the effluent concen- 
tration will be in the permitted range. Equation 23.1-12 can be used to decide on the size of 
holding tank that is required. 
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product Fig. 23.1-2. Binary splitter, in which a feed stream is split into 
P,  y, Y a product stream and a waste stream. 

EXAMPLE 23.1-2 

Bind y Splitters 

Describe the operation of a binary splitter, one of the commonest and simplest separation de- 
vices (see Fig. 23.1-2). Here a binary mixture of A and B enters the apparatus in a feed stream 
at a molar rate F, and by some separation mechanism it is split into a product stream with a 
molar rate P and a waste stream with molar rate W. The mole fraction of A (the desired com- 
ponent) in the feed stream is z,  and the mole fractions in the product and waste streams are y 
and x, respectively. 

SOL UTION We start by writing the steady-state macroscopic mass balances for component A and for the 
entire fluid as 

ZF =yP  + XW (23.1-13) 

F = P + W  (23.1-14) 

It is customary to define the ratio 0 = P/F of the molar rates of the product and feed streams 
as the cut. Equation 23.1-13 then becomes, after eliminating W by use of Eq. 23.1-14, 

Normally the cut 0 and the feed composition z are taken to be known. 
We now need a relation between the feed and waste compositions, and it is conventional 

to write an equation relating the compositions of the two outgoing streams: 

Here a is known as the separation facfor, also usually taken as known, and which characterizes 
the separation capability of the splitter. Here Y and X are the mole ratios defined by 

Y x = -  and X = - x 
1 - x  

(23.1-17,18) 
1 - Y  

In terms of the mole fractions, Eq. 23.1-16 may be written as 

Equations 23.1-15 and 19 (or 20) describe completely the splitter operation. 
For vapor-liquid splitting-that is, equilibrium distillation-it is typical to define the 

ideal splitter in terms of an operation in which the product and waste streams are in equilib- 
rium. For this situation, a is the relative volatility, and for thermodynamically ideal systems, it 
is just the ratio of the component vapor pressures. Even for nonideal systems, a changes rela- 
tively slowly with composition. 

For real splitters one can then define a in terms of an empirical correction factor-for ex- 
ample, the eficiency-defined by 

a = Ea* (23.1-21) 

where a* is the separation factor for the ideal model, and E is a correction factor that accounts 
for the failure of the actual system to meet the ideal behavior. 

We thus find that, for a given feed composition, the enrichment (y - z)/z produced by the 
splitter is a function of the cut 0 and the separation factor a. The enrichment can be calculated 
from the following equation, which is obtained by combining Eqs. 23.1-15 and 20: 



s23.1 The Macroscopic Mass Balances 731 

Fig. 23.1-3. Behavior of a binary 
splitter. 

N 

1 
N 
I 
3 
0 
In 

0 = cut 

This is a quadratic equation for y that can be solved when z is given, and then the enrichment 
(y - z)/z is obtained. An example is given in Fig. 23.1-3 where both (y - z ) / z  and 58(y - z ) / z  
are plotted as functions of 8 for z = 5 and a = 1.25 (a reasonable value for many processes). It 
may be seen that, whereas the maximum enrichment (y - z)/z is obtained for vanishingly 
small cuts, the product of enrichment and product rate is greatest at an intermediate 9 value. 
Finding an optimum 8 value is a problem that must be addressed on economic grounds. 

Simple splitters of the general type pictured in Fig. 23.1-2 are very widely used as build- 
ing blocks in multistage separation processes. These include evaporators and crystallizers, 
which typically have a very high separation factor a per stage, and systems for distillation, 
gas absorption, and liquid extraction, where a can vary widely. All of these applications are 
well covered in standard texts on unit operations. 

Membrane processes are rapidly increasing in importance, and many of the design prin- 
ciples were developed for the isotope fractionation industry.' Discussions of modern applica- 
tions are also a~ailable.~ 

EXAMPLE 23.1-3 

The Macroscopic 
Balances and Dirac's 
"Separative Capacity" 
and "Value Function" 

During the Manhattan Project of World War 11, the British physicist D i r a ~ ~ , ~ , ~  used the macro- 
scopic mass balances for a binary splitter to develop a criterion for comparing the effective- 
ness of different separation processes-for example, thermal diffusion and centrifugation. 
The same criterion has also proven useful in the evaluation of bioseparations. 

We imagine the simple separation system shown in Fig. 23.1-2 in which F is the molar 
rate of flow of the feed stream, which contains a binary mixture of A and B, and P and Ware 
the molar rates of flow of the product and waste streams. The mole fractions of species A in 
the three streams are z, y, and x, respectively. 

In the system there is some mechanism (for example, a membrane) for increasing the 
concentration of A in the product stream and decreasing it in the waste stream. We then may 
define a separation factor a as in Eqs. 23.1-16 to 18 

E. Von Halle and J. Schacter, Diffusion Separation Methods, in Volume 8 of Kirk-Othmer Encyclopedia 
of Chemical Technology ( M .  Howe-Grant, ed.), 4th edition, Wiley, New York (19931, pp. 149-203. 

W. S. W. Ho and K. K. Sirkar, Membrane Handbook, Van Nostrand Reinhold, New York (1992), 
p. 954; R. D. Noble and S. A. Stern, Membrane Separations Technology, Elsevier, Amsterdam (19951, p. 718. 

P. A. M. Dirac, British Ministry of Supply (1941); this is reprinted in The Collected Works of P. A. M .  
Dirac (1924-19481, (R. H.  Dalitz, ed.) Cambridge University Press (1995). Nobel Laureate Paul Adrien 
Maurice Dirac (1902-1984), one of the leaders in the development of quantum mechanics, developed the 
relativistic wave equation and predicted the existence of the positron. 

K. Cohen, Theory of Isotope Separation, McGraw-Hill, New York (1951). 
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SOLUTION 

We have written this in a second form, because we will consider only systems in which there 
is only a slight enrichment of species A, so that a - 1 is a very small quantity. When Eq. 23.1- 
23 is solved for y as a function of x we then get 

Next we define the Dirac separative capacity A of the system as the net increase in "value" 
(this could, for example, be the monetary value) of the streams that are participating in the 
system: 

in which v(x) is the Dirac value function. (In the separation science literature, the separative ca- 
pacity is often given the symbol 6U.) 

Show how the separative capacity and value function can be obtained by using the defin- 
ition in Eq. 23.1-25 along with the mass balances for the system. 

The total mass balance and the mass balance for species A are: 

We now divide Eq. 23.1-27 by F, and then use Eq. 23.1-26 to eliminate W. Then introducing 
the quantity 8 = P/F (called the "cuV), we get 

Next we divide Eq. 23.1-25 by F and introduce 8 to get 

Inasmuch as the differences between the concentrations of the streams are quite small, we can 
expand v(y) and v(x) about z and get 

where the primes indicate differentiation with respect to z. When these expressions are put 
into Eq. 23.1-29 and we use Eq. 23.1-28, we get 

When we use Eq. 23.1-24, this last equation becomes 

We now assume that the separative capacity of the system is virtually independent of concen- 
tration. Therefore we set the concentration-dependent factor in Eq. 23.1-33 equal to unity, so 
that 

is the final expression for the separative capacity. According to this expression, the separative 
capacity has a maximum when the system is operated at 0 = f .  

It remains to obtain the Dirac value function, which must satisfy the differential equation 
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When this equation is integrated, we get 

The two integration constants may be assigned arbitrarily, and several different choices have 
been used. However, the most common choice is v($) = 0 and v1(;) = 0. This leads to 

which is the symmetrical solution, in the sense that v(l - z) = v(z) and vl(l - z) = -vl(z). 
The value function v(z) and the separative capacity A have proven useful in comparing 

separations made in different kinds of equipment as well as different concentration ranges. 
From an economic standpoint v(z) as given by Eq. 23.1-37 has been found useful for determin- 
ing price differences for isotope mixtures of differing purity. 

EXAMPLE 23.1-4 

Compartmental 

One of the simplest and most useful applications of the species macroscopic mass balance is 
compartmental analysis, in which a complex system is treated as a network of perfect mixers, 
each of constant volume, connected by ducts of negligible volume, with no dispersion occur- 

Analysis ring in the connecting ducts. Imagine mixing units, labeled 1, 2,3, . . . , n, . . . , N, containing 
various species (labeled with indices a, P, y, . . .). Then the mass concentration p,, of species a 
in unit n changes with time according to the equation 

Here V ,  is the volume of unit n, Q,, is the volumetric flow rate of solvent flow from unit m to 
unit n, and r,, is the rate of formation of species a per unit volume in unit n. 

Show how such a model can be specialized to describe the removal of toxic metabolic 
products (that is, the toxic materials resulting from the human metabolism) from a patient by 
hemodialysis. Hemodialysis is the periodic removal of toxic metabolites achieved by contacting 
the blood and a dialysis fluid in countercurrent flow, separated by a cellophane membrane 
that is permeable to the metabolite. 

SOLUTION The simple two-compartment model of Fig. 23.1-4 has been found to be adequate for repre- 
senting the hemodialysis system. Here the large block, or compartment 1 (labeled "body") rep- 
resents the combined body fluids, except for those in the blood, which are represented by 
compartment 2. The blood circulates via a branching system of vessels through compartment 1 
at a volumetric rate Q, and in the process extracts solute across the vessel walls. This process is 
highly efficient, and a single solute is assumed to leave compartment 1 at concentration p,, 
equal to the concentration throughout that compartment. At the same time, the solute is being 
formed within the body fluids at a constant rate GI and during dialysis it is being extracted 
from the blood by the dialyzer at a rate Dp,. The proportionality constant D is known as the 
"dialyzer clearance" and is fixed by the dialyzer design and operating conditions. 

Fig. 23.1-4. Two-compartment model 
used to analyze the functioning of a 
dialyzer. 



734 Chapter 23 Macroscopic Balances for Multicomponent Systems 

The very complex process actually taking place is modeled by the two equations 

with D = 0 between the dialysis periods. Because we are considering a single solute, the con- 
centrations have only one subscript to indicate the compartment. We measure the time t from 
the start of a dialysis procedure, when the blood and body fluids are very nearly in equilib- 
rium with each other, so that we may write the initial conditions as 

1. C.: at t = 0, PI = P2 = Po (23.1-41) 

where p, is a constant. We now want to get an explicit expression for the toxic metabolite con- 
centration in the blood as a function of time. 

We start by adding Eqs. 23.1-39 and 40 and solving for dp,/dt. The latter is then substi- 
tuted into the time derivative of Eq. 23.1-40 to obtain a differential equation for the metabolite 
concentration in the blood: 

with 

I. C.: at t = 0, 

The second initial condition is obtained by use of Eqs. 23.1-40 and 41. 
This equation is now to be solved with the following specific parameter values, which 

are typical for the removal of creatinine from a 70-kg adult human: 

v1 v2 Q D G Po 
Quantity (liters) (liters) (liters per min) (liters per min) (g/min) (g per liter) 

Magnitude 43 4.5 5.4 0.3 0.0024 0.140 

The differential equation and initial conditions now take the form: 

I. C.: at time t = 0, P2 = Po and dp2 = -0.00933 (23.1-45) 

in which concentration is in grams per liter and time is in minutes. The complementary func- 
tion that satisfies the associated homogeneous equation is 

P,,~, = C, exp(0.006043t) + C2 exp(1.386t) (23.1-46) 

and the particular integral is 

p2,pi = 0.0080 

The complete solution to the nonhomogeneous equation is given by the sum of the comple- 
mentary function and the particular integral. When the constants of integration are deter- 
mined from the initial conditions, we get 

during the dialysis period. 
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For the recovery period following dialysis, we assume here that the patient has no kid- 
ney function, so the clearance D is zero. Equation 23.1-42 takes the simpler form 

where p' is the concentration during the recovery period. The complementary function and 
particular integral are 

I Gt' 
= v1 + v2 

in which t' is the time measured from the start of the recovery period. Inserting the numer- 
ical values, we then get for the concentration during the recovery period and its time 
derivative 

The integration constants are to be determined from the matching conditions at t' = 0, 

We need a second initial condition for determining the integration constants in Eq. 23.1-53. 
This can be obtained from Eq. 23.1-40 and the corresponding equation for p; (i.e., with D = O), 
combined with the two relations in Eqs. 23.1-55 and 56. This relation is 

For illustrative purposes, we shall end the dialysis at 50 min, for which 

We now have enough information to determine the constants of integration, and therefore we 
get for the concentration in the blood during the recovery period 

Equations 23.1-48 and 59 are plotted in Fig. 23.1-5. 
Of perhaps more interest is Fig. 23.1-6, which shows the application of Eqs. 23.1-39 and 

40 to an actual patient. Here the points represent data and the lines are the model predictions. 
Here only the dialyzer clearance and the creatinine concentrations are known, and the data of 
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18 Fig. 23.1-6. Experimental (dots) and 
simulated creatinine data (solid curve) 

16 for a dialysis patient [R. L. Bell, K. Cur- 

2 14 tiss, and A. L. Babb, Trans. Amer. Soc. 
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the first cycle are used to estimate the remaining parameters. The resulting model is then 
used to predict the next three cycles. We see that this approach does an excellent job of corre- 
lating the data and has predictive value. Note that the sudden rise in creatinine concentration 
at 50 min results from the fact that the dialyzer is no longer removing it from the blood. As a 
result, the disequilibrium between the blood and the rest of the body then becomes smaller. 

Similar compartmental models have wide application in medicine, where they are re- 
ferred to as pharmacokinetic model~ .~  A priori pharmacokinetic modeling, where model para- 
meters are determined separately from the process being modeled, was pioneered by Bischoff 
and Dedr i~k .~  

In the foregoing example it is clear, even on casual inspection, that neither the body fluids nor 
the circulating blood have much in common with ideal mixing tanks, and it is therefore of 

Time and some interest to examine the success of the simple compartmental model critically. To make a 
Ahdel Insensitivity start in that direction, compare the response (that is, the output concentration) of two quite 

different systems in Fig. 23.1-7 to an exponentially decaying solute input: one in which the en- 

PFR 

Dimensionless time r = t / tO  

Fig. 23.1-7. Responses of the PFR and the CSTR to a pulse input. 

P. G. Welling, Pharmacokinetics, American Chemical Society (1997). 
K. B. Bischoff and R. L. Dedrick, J. Pkarm. Sci., 87, 1347-1357 (1968); AIChE Symposium Series, 64, 

32-44 (1968). 
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SOLUTION 

tering fluid moves through in plug flow (a plug flow reactor, PFR), and another that acts as a 
perfect mixer (or continuous stirred tank reactor, CSTR). As shown in Fig. 23.1-7, the responses 
to a pulse input are quite different for the PFR and the CSTR. Assume steady flow at a volu- 
metric flow rate Q through each system, and further assume that the tracer being followed is 
too dilute to affect the flow behavior of the carrier solvent. Assume that no reaction is occurring. 

For both systems we assume that the concentration is initially zero throughout and that the 
concentration of species a in the inlet stream is 

pa = PO exp(- t/to) (23.1 -60) 

where p, and t, are constants, specific to the problem. 
For the PFR, the exit stream concentration shows only a time delay and decay, and we 

may write at once for X = p,/po 

X = 0 for t < t,,, (23.1-61) 

where t,,, = V/Q is the mean solute residence time, a second time constant imposed on the sys- 
tem. The result for longer time is 

which is of more interest to us here. 
For the CSTR we begin with the basic differential equation 

with the initial condition that X = 0 at t = 0. This first-order linear differential equation has 
the solution 

in which a = to/t,,, and .r = t/to. Exit concentrations are plotted in Fig. 23.1-8 as functions of 
the dimensionless time r = t/t, for each reactor and for l /a  = t,,,/to of 0.1 and 1.0. 

It may be seen that for l / a  = t,,,/t, = 1.0 the two reactors produce much different efflu- 
ent concentrations, as one might expect. However, for t,,,/to << 1 and t significantly greater 
than t,,,, the effluent curves for the two reactors are virtually indistinguishable. This is the re- 
gion of validity for compartmental analysis, and we see that in addition to the time constants 
imposed by the system itself, there is also another time constant tabs, the time at which the ob- 

PFR 

Fig. 23.1-8. Response of the PFR 
and the CSTR to an exponentially 
decaying input. 
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servations of the effluent concentration begin. We may then define the range of validity of 
compartmental analysis by the inequalities 

Thus, compartmental analysis is most useful as a long-time approximate description of a sys- 
tem that responds slowly relative to solute residence times of its component units. It may im- 
mediately be seen that these conditions are met in Example 23.1-4, where the long-time 
metabolite concentrations are of primary interest. 

Equation 23.1-66 summarizes the requirements for pharmacokinetics, which are met in a 
very wide variety of biological transport-reaction problems. They are also satisfied in a great 
many environmental situations.' 

523.2 THE MACROSCOPIC MOMENTUM AND 
ANGULAR MOMENTUM BALANCES 

The macroscopic statements of the laws of conservation of momentum and angular mo- 
mentum for a fluid mixture, with gravity as the only external force, are 

These (seldom used) equations are the same as Eqs. 7.2-2 and 7.3-2, except for the addi- 
tion of the terms Fo and To, which are the net influxes' of momentum and angular mo- 
mentum into the system by mass transfer. For most mass transfer processes these terms 
are so small that they can be safely neglected. 

523.3 THE MACROSCOPIC ENERGY BALANCE 

For a fluid mixture, the macroscopic statement of the law of conservation of energy is 

I I 

This equation is the same as Eq. 15.1-2, except that an additional term Qo has been 
added.' This term accounts for addition of energy to the system as a result of mass trans- 

' F. H. Shair and K. L. Heitner, Envir. Sci. and Tech., 8,444-451 (1974). 
These terms may be written as integrals, 

F, = - [n . p w ]  dS; I To = - [n . {r x p w ] ]  dS I (23.2-1 a, b) 
so 50 

in which n is the outwardly directed unit normal vector. 
This term may be written as an integral, 

in which n is the outwardly directed unit normal vector. The origin of this term may be seen by referring 
to Eq. 19.3-5 and Eq. (H) of Table 17-8-1. 
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fer. It may be of considerable importance, particularly if material is entering through the 
bounding surface at a much higher or lower temperature than that of the fluid inside the 
flow system, or if it reacts chemically in the system. 

When chemical reactions are occurring, considerable heat may be released or ab- 
sorbed. This heat of reaction is automatically taken into account in the calculation of the 
enthalpies of the entering and leaving streams (see Example 23.5-1). 

In some applications, in which the energy transfer rates across the surface are func- 
tions of position, it is more convenient to rewrite Eq. 23.3-1 in the d-form-that is, over a 
differential portion of the flow system as described in 915.4. Then the increment of heat 
added, dQ, is expressible in terms of a local heat transfer coefficient. 

523.4 THE MACROSCOPIC MECHANICAL ENERGY BALANCE 

A careful examination of the derivation of the mechanical energy balance in g7.8 shows 
that the result obtained there applies to mixtures as well as to pure fluids. If we now in- 
clude the surface So, then we get 

I I 

This is the same as Eq. 7.4-2, except for the addition of the term B,, which accounts for 
the mechanical energy transport across the mass transfer boundary.' The use of this 
equation is illustrated in Example 22.5-3. 

823.5 USE OF THE MACROSCOPIC BALANCES 
TO SOLVE STEADY-STATE PROBLEMS 

The macroscopic balances are summarized in Table 23.5-1 for systems with more than 
one entry and exit plane. The terms with subscript 0 describe the addition or removal 
of mass, momentum, angular momentum, energy, and mechanical energy at mass- 
transfer surfaces. Usually these balances are not used in their entirety, but it is conve- 
nient to have a complete listing of them for problem-solving purposes. For steady-state 
problems, the left sides of the equations may be omitted. As we saw in Chapters 7 and 
15, considerable intuition is required in using the macroscopic balances, and some- 
times it is necessary to supplement the equations with experimental observations. 

EXAMPLE 23.5-1 

Energy Balances for a 
Sulfur Dioxide 
Converter 

Hot gases from a sulfur burner enter a converter, in which the sulfur dioxide present is to be 
oxidized catalytically to sulfur trioxide, according to the reaction SO2 + ;o, S SO3. How 
much heat must be removed from the converter per hour to permit a 95% conversion of the 
SO, for the conditions shown in Fig. 23.5-I? Assume that the converter is large enough for the 
components of the exit gas to be in thermodynamic equilibrium with one another. That is, the 
partial pressures of the exit gases are related by the equilibrium constraint 

In terms of a surface integral, this term is given by 
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Table 23.5-1 Unsteady-State Macroscopic Balances for Nonisothermal 
Multicomponent Systems 

Mass of species a: 

d - dt %,tot = Zw.1 - Zw,, + w,, + r.tot = 1.2,3,.  . .N 

Momentum: 

Angular momentum: 

Mechanical energy: 

(Total) energy: 

Notes: 

(a) Bw,, = w,,, + walb + wale + . . , where w,,, = p,,,v,,S,,, and so on; Equations (A) and (B) can be written 
in molar units by replacing the lowercase symbols by capital letters and adding to Eq. (A) the term Z,R,,t,, to 
account for the fact that moles need not be conserved in a chemical reaction. 

(b) h, and h, are elevations above an arbitrary datum plane. 

(c) HI and H2 are enthalpies per unit mass (for the mixture) relative to some arbitrarily chosen reference 
state; see Example 19.3-1. 

(d) All equations are written for compressible flow; for incompressible flow, E, = 0. The quantities E, and E, 
are defined in Eqs. 7.3-3 and 4. 

(e) u, and u2 are unit vectors in the direction of flow. 

2 
1 T 2 = ?  

c----, I h = 1-00 atm 

I - SO3-rich gas 

1 (;== - + Coolant out .-/' 

SO,, 7.80 lb-moles hr-' 
02, 10.80 lb-moles hr-I 

N2, 81.40 lb-moles hr-' f Converter 

Coolant in 

i 
TI  = 440°C 
pl = 1.05 atm 

Fig. 23.5-1. Catalytic oxidation 
of sulfur dioxide. 
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SOLUTION 

Approximate values of K, for this reaction are 

It is convenient to divide this problem into two parts: (a) first we use the mass balance and 
equilibrium expression to find the desired exit temperature, and then (b) we use the energy 
balance to determine the required heat removal. 

( a )  ~etermination' of T,. We begin by writing the steady-state macroscopic mass balance, 
Eq. 23.1-3, for the various constituents in the two streams in the form: 

In addition, we take advantage of the two stoichiometric relations 

We can now get the desired molar flow rates through surface 2: 

Next, substituting numerical values into the equilibrium expression Eq. 23.5-1 gives 

This value of K, corresponds to an exit temperature T2 of about 510°C, according to the equi- 
librium data given above. 

(b) Calculation of the required heat removal. As indicated by the results of Example 15.3-1, 
changes in kinetic and potential energy may be neglected here in comparison with changes in 
enthalpy. In addition, for the conditions of this example, we may assume ideal gas behavior. 
Then, for each constituent, = ~ I , ( T ) .  We may then write the macroscopic energy balance, 
Eq. 23.3-1, as 

For each of the individual constituents we may write 

= H", + - P)  

Here H", is the standard enthalpy of formation2 of species a from its constituent elements 
at the enthalpy reference temperature To, and (C,,),,, is the enthalpy-mean heat capacityz 
of the species between T and To. For the conditions of this problem, we may use the 

' See 0. A. Hougen, K. M. Watson, and R. A. Ragatz, Chemical Process Principles, Part II,2nd edition, 
Wiley, New York (1959), pp. 1017-1018. 

See, for example, 0. A. Hougen, K. M. Watson, and R. A. Ragatz, Chemical Process Principles, Part I ,  
2nd edition, Wiley, New York (19591, pp. 257,296. 
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EXAMPLE 23.5-2 

Height of a Packed- 
Tower ~bsorber? 

SOLUTION 

following2 numerical values for these physical properties (the last two columns are ob- 
tained from Eq. 23.5-12): 

[~al/~:more. Cl H:: from 25°C to 
cal/g-mole (w,H,), ( w,H,), 

Species at 25°C 440°C 510°C Btu/hr Btu/hr 

SO2 - 70,960 11 .05 11.24 -931,900 -44,800 
SO3 -94,450 - 15.87 0 1,158,700 

0 2  0 7.45 7.53 60,100 46,600 
N2 0 7.12 7.17 433,000 509,500 

Totals -438,800 - 647,400 

Substitution of the preceding values into Eq. 23.5-11 gives the required rate of heat 
removal: 

It is desired to remove a soluble gas A from a mixture of A and an insoluble gas B by contact- 
ing the mixture with a nonvolatile liquid solvent L in the apparatus shown in Fig. 23.5-2. The 
apparatus consists essentially of a vertical pipe filled with a randomly arranged packing of 
small rings of a chemically inert material. The liquid L is sprayed evenly over the top of the 
packing and trickles over the surfaces of these small rings. In so doing, it is intimately con- 
tacted with the gas mixture that is passing up the tower. This direct contacting between the 
two streams permits the transfer of A from the gas to the liquid. 

The gas and liquid streams enter the apparatus at molar rates of - WG and W,, respec- 
tively, on an A-free basis. Note that the gas rate is negative, because the gas stream is flowing 
from plane 2 to plane 1 in this problem. The molar ratio of A to G in the entering gas stream is 
YA2 = yA2/(1 - yA2), and the molar ratio of A to L in the entering liquid stream is X,, = 

xAl/(l - xAl). Develop an expression for the tower height z required to reduce the molar ratio 
YA in the gas stream from YA2 to Y,,, in terms of the mass transfer coefficients in the two 
streams and the stream rates and compositions. 

Assume that the concentration of A is always small in both streams, so that the operation 
may be considered isothermal and so that the high mass-transfer rate corrections to the mass 
transfer coefficients are not needed, and the mass transfer coefficients, k: and k!, defined in the 
second line of Eq. 22.2-14 can be used. 

Since the behavior of a packed tower is quite complex, we replace the true system by a hypo- 
thetical model. We consider the system to be equivalent to two streams flowing side-by-side 
with no back-mixing, as shown in Fig. 23.5-3, and in contact with one another across an inter- 
facial area a per unit volume of packed column (see Eq. 22.1-14). 

We further assume that the fluid velocity and composition of each stream are uniform 
over the tower cross section, and neglect both eddy and molecular transport in the flow direc- 
tion. We also consider the concentration profiles in the direction of flow to be continuous 
curves, not appreciably affected by the placement of the individual packing particles. 

The model resulting from these simplifying assumptions is probably not a very satisfac- 
tory description of a packed tower. The neglect of back-mixing and fluid-velocity nonunifor- 
mity are probably particularly serious. However, the presently available correlations for mass 

J. D. Seader and E. J. Henley, Separation Process Principles, Wiley, New York (1998). 
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Liquid stream in: 
Solute-free liquid rate = WL 
Mole ratio of solute = Xal 1 Gas stream out: 

Solute-free gas rate = WG 
Mole ratio of solute = YAl 

Distributor &- 

Gas stream in: 
Solute-free gas rate = WG - 
Mole ratio of solute = YA2 

'/'Liquid steam out: 
Solute-free liquid rate = WL 
Mole ratio of solute = XA2 

(a) Overall section 
of column 

(b)  Close-up view of 
typical random 

packing 

(c) Flow over individual 
packing particles 

Fig. 23.5-2. A packed-column mass transfer apparatus in which the descending phase is dis- 
persed. Note that in this drawing WG is negative; that is, the gas is flowing from 2 toward 1. 

transfer coefficients have been calculated on the basis of this model, which should therefore 
be employed when these correlations are used. 

We are now in a position to develop an expression for the column height, and we do this 
in two stages: (a) First we use the overall macroscopic mass balance to determine the exit 
liquid-phase composition and the relation between bulk compositions of the two phases at 

Liquid stream in: Gas stream out: 
Solute-free liquid rate = WL I t  Solute-free gas rate = WG 
Mole ratio of solute = XAl Mole ratio of solute = YAl 

Liquid steam out: I I Gas stream in: 
Solute-free liquid rate = WL Solute-free gas rate = WG 
Mole ratio of solute = XA2 Mole ratio of solute = YA2 

Fig. 23.5-3. Schematic representa- 
tion of a packed-tower absorber, 
showing a differential element on 
which a mass balance is made. 
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each point in the tower. (b) We then use these results along with the differential form of the 
macroscopic mass balance to determine the interfacial conditions and the required tower 
height. 

(a) Overall macroscopic mass balances. For the solute A we write the macroscopic mass bal- 
ance of Eq. 23.1-3 for each stream of the system between planes l and 2 as 

liquid stream 

gas stream 

Here the subscripts A1 and Ag refer to the solute A in the liquid and gas streams, respectively. 
Since the number of moles leaving the liquid stream must enter the gas stream across the in- 
terface, WAlr0 = - W,,,,, and Eqs. 23.5-14 and 15 may be combined to give 

This can now be rewritten in terms of the compositions of the entering and leaving streams by 
setting WAl2 = WLXA2, and so on, and then rearrangement gives 

Thus we have found the concentration of A in the exit liquid stream. 
By replacing plane 2 by a plane at a distance z down the column, Eq. 23.5-17 may be used 

to obtain an expression relating bulk stream compositions at any point in the tower: 

Equation 23.5-18 (the "operating line") is shown in Fig. 23.5-4 along with the equilibrium dis- 
tribution for the conditions of Problem 23A.2. 

(b) Application of the macroscopic-balances in the d-form. We now apply Eq. 23.1-3 to a dif- 
ferential increment dz of the tower, first to estimate the interfacial conditions and then deter- 
mine the tower height required for a given separation. 

(i) Determination of interfacial conditions. Because only A is transferred across the in- 
terface, we may write, according to the second line of Eq. 22.1-14 (which presumes 
low concentrations of A and small mass-transfer rates): 

Here a is the interfacial area per unit volume of the packed bed tower, S is the cross- 
sectional area of the tower, XAO and yAO are the interfacial mole fractions of A in the 
liquid and gas phases, respectively, and xA and yA are the corresponding bulk con- 
centrations (the index b is being omitted here, so that XA, yA, XA, and YA are all bulk 
compositions). 

Then, since (for the dilute solutions considered here) xA = XA/(XA + 1) = XA 
and yA = YA/(YA + 1) = YA, Eqs. 23.5-19 and 20 may be combined to give 

This equation enables us to determine YAO as a function of YA. For any YA, one may 
locate XA on the operating line (mass balance). One then draws a straight line of 
slope -(@a)/($a) through the point (YA, XA), as shown in Fig. 23.5-4. The intersec- 
tion of this line with the equilibrium curve then gives the local interfacial composi- 
tions (YAO, XAO). 
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Fig. 23.5-4. Calculation of interfacial conditions in the absorption of 
cyclohexane from air in a packed column (see Problem 23A.2). 

(ii) Determination of required column height. Application of Eq. 23.1-1 to the gas 
stream in a volume S dz of the tower gives 

WG~YA = ~ W A , O  (23.5-22) 

This expression may be combined with Eq. 23.5-20 for the dilute solutions being 
considered to obtain 

- WGdYA = (kyOa)(YA - YAO)S dz (23.5-23) 

This equation may now be rearranged and integrated from z = 0 to z = Z: 

Equation 23.5-24 is the desired expression for the column height required to effect the speci- 
fied separation. In writing Eq. 23.5-24 we have neglected the variation of the mass transfer co- 
efficient k: with composition. This is usually permissible only for dilute solutions. 

In general, Eq. 23.5-24 must be integrated by numerical or graphical procedures. How- 
ever, for dilute solutions, it may frequently be assumed that the operating and equilibrium 
lines of Fig. 23.5-4 are straight. If, in addition, the ratio @/k; is constant, then YA - Y,, varies 
linearly with Y,. We may then integrate Eq. 23.5-24 to obtain (see Problem 23B.1) 

where 

Equation 23.5-25 can be rearranged to give 
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Comparison of Eq. 23.5-27 and Eq. 15.4-15 shows the close analogy between packed towers 
and simple heat exchangers. Expressions analogous to Eq. 23.5-24 but containing the overall 
mass transfer coefficient K! may also be derived (see Problem 23B.1). Again, we may use the 
final results, Eqs. 23.5-25 or 27, for either cocurrent or countercurrent flow. Keep in mind, 
however, that the simplified model used to describe the packed tower is not as reliable as the 
corresponding one used for heat exchangers. 

EXAMPLE 23.5-3 

Linear Cascades 

We saw in Example 23.1-2 that the degree of separation possible in a simple binary splitter 
can be quite limited, and it is therefore often desirable to combine individual splitters in a 
countercurrent cascade such as that shown in Fig. 23.5-5. Here the feed to any splitter stage is 
the sum of the waste stream from the splitter immediately above it and the product from the 
splitter immediately below. 

Show how such an arrangement can increase the degree of separation relative to that ob- 
tained in a single splitter. 

SOLUTION For the system as a whole we can write a mass balance for the desired product and for the so- 
lution as a whole. That is, we treat the entire system as a splitter and write 

It will be assumed here that all of quantities in these equations are given, so that the problem 
is specified as far as the overall mass balances are concerned. It remains for us to determine 
the number of stages required to meet these conditions. 

We begin by writing a set of mass balances over the top portion of the column, here the 
top two stages for illustrative purposes (see Fig. 23.5-5): 

Here U, and D, are the upflowing and downflowing streams from stage n, and y, and x,, are 
the corresponding mole fractions of the desired solute. When P is eliminated between Eqs. 
23.5-3 and 31, we get 

This equation gives the relation between the compositions of the downflowing and upflowing 
streams passing each other at any column cross section above the feed stage, in terms of the cor- 
responding flow rates. This relation, when shown on an x-y plot (which is called a McCabe-Tkiele 
diag~arn~,~) is known as the operating line for the system. We concentrate for the moment on com- 
positions and return later to the problem of determining stream rate ratios. 

F $ 4  

I 

5 
Fig. 23.5-5. A linear cascade. Upward flows are shown by solid 

:+ lines, and downward flows by dashed lines. 

W. L. McCabe and E. W. Thiele, Ind. Eng. Chem., 17,605411 (1925). 
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The phase compositions in each stage are assumed to satisfy an equilibrium relation such 
as (see Eq. 23.1-19) 

or, more generally, y,, = f (xJ, where f ( x )  is taken to be a known function. 
Equations 23.5-32 and 33 (or its generalization) now permit determination of all composi- 

tions in the portion of the column above the feed point, usually known as the rectifying section, 
and similar calculations can be made for the stripping section, the portion below the feed point. 
We may then determine the number of stages required for the separation under consideration 
and the proper location of the feed stage. 

First, however, we need to determine the stream rate ratios required in Eq. 23.5-32, and 
we consider three special cases here: 

(a) Total reflux. This special mode of operation, in which P and Ware zero, is important, as 
it provides the smallest possible number of stages that can yield the desired output composi- 
tions. Here 

Un = Dn-l (23.5-34) 

for all n, and the operating line is given by 

This simple relation holds for all physical systems. The stage compositions are plotted in Fig. 
23.5-6 (for a product mole fraction of 0.9 and a waste mole fraction of 0.0, along with an equi- 
librium curve of the form of Eq. 23.5-33 with a = 2.5. 

The steplike lines between the equilibrium and operating lines in this figure suggest a 
graphical method of determining stage compositions: each "step" between the equilibrium 
and operating lines represents an incremental one-component splitter or stage. The diagram 
thus suggests that six stages are required for this rather simple separation. However, for the 
situation of total reflux and constant relative volatility a, it is simplest to recognize that 

For the situation pictured in Fig. 23.5-6, we have then 

0'9/0'1 = (N - 1) log 2.5 
log (m) 

log 81 
N = 1 + - = 5.796 

log 2.5 

which is more accurate but virtually equal to the graphical estimate. 

0.2 0.4 0.6 0.8 1 
Lower phase mole fraction, x 

Fig. 23.5-6. McCabe-Thiele diagram for 
total reflux, with a = 2.5 and 0.1 < x < 0.9. 
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If products are to be withdrawn, it is necessary to calculate the stream-rate ratios, and the 
means for doing so vary with the specific operation considered. 

(b) Thermodynamic constraints: adiabatic cascades and minimum reflux. For most of the 
common stagewise operations, stream ratios are determined by thermodynamic constraints, 
and these are thoroughly discussed in a wide variety of unit operations texts. We need not re- 
peat this readily accessible information here, but we briefly consider distillation, the most 
widely used of all, by way of example. In principle, stream ratios in distillation are deter- 
mined by assuming adiabatic columns and a set of "enthalpy balances" (see last paragraph of 
s15.1) corresponding to the mass balances just introduced. 

However, it is very often permissible to assume equal molar heats of vaporizatio_n for the 
various species and to neglect "sensible heats" (i.e., the CpAT contributions to AH). With 
these simplifications the stream rates U, and D, are constants. We may then write for any po- 
sition above the feed plate 

U =  D + P and y,_lU=x,D +ypP (23.5-39/40) 

and below the feed plate 

D = U+ W and x,D = y,, ,U + x,W (23.5-41/42) 

Here the stage indices n and rn refer respectively to the upper or rectifying section (above the 
feed point) and to the lower or stripping section of the column (below the feed point). 

By way of example we consider the system in part (a) for a saturated liquid feed, equimo- 
lar in the two species involved, and operated at minimum reflux: the smallest amount of re- 
turning liquid from the top plate that can produce the desired separation. This situation will 
occur when the operating line touches the equilibrium curve, and in the system being consid- 
ered, this "pinch will occur first at the feed plate. The vapor composition on the feed plate is 
then given by 

The operating line then has two branches, one above and one below the feed plate, as shown 
in Fig. 23.5-7. 

Any real column must operate between the limits of total and minimum reflux, but nor- 
mal operation is just a few percent above the minimum. This is because the cost of individual 
plates tends to be much lower than the costs associated with increasing the reflux (the liquid 
returned to the column by condensation of vapor from the top plate): increasing the steam 
load required to return vapor from the liquid leaving the bottom plate, the condenser load to 
return the overhead vapor, and the capital costs of larger column diameter, larger reboiler, to 
return vapor at the bottom, and condenser, to return liquid at the top. 

"0 0.2 0.4 0.6 0.8 1 
Lower phase mole composition, x 

Fig. 23.5-7. McCabe-Thiele diagram for min- 
imum reflux, with a = 2.5 and 0.1 < x < 0.9. 
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0.2 0.4 0.6 0.8 1 
Mole fraction of lower phase, x 

Fig. 23.5-8. McCabe-Thiele diagram for an 
ideal cascade, with a = 2.5 and 0.1 < x < 0.9. 

(c) Transport constraints and ideal cascades. For separation via selectively permeable mem- 
branes, the ratio of the product to waste streams is governed by the pressure exerted across 
the membrane, and the energy required to produce this pressure must be renewed for every 
stage of the cascade. This gives the designer an extra degree of freedom and has led to a wide 
variety of cascade configurations. First developed for isotopes; membrane cascades have 
now been developed for industrial gas separations6 and appear promising for many other 
applications. 

We consider here by example ideal cascades, which are those in which only streams of 
identical composition are mixed. In the terms of this example, that means 

and, by extension, 

It follows that just twice as many stages are needed as at total reflux, and that the operating 
line lies halfway between the "equilibrium" curve and the 45" line. As shown in Fig. 23.5-8, 
the operating line has a continuous derivative across the feed stage. 

Ideal cascades provide the smallest possible total stage stream flows, but the flows now 
vary with position: they are highest at the feed stage and decrease toward the ends of the cas- 
cade. For this reason these systems are known as tapered cascades (see Problem 23B.6). 

An equimolar mixture of CO, and Hz is confined at lOOOK and 1.50 atm in the large insulated 
pressure tank shown in Fig. 15.5-9. Under these conditions the reaction 

Expansion of a 
Reactive Gas Mixture C02 + H, & CO + H20 (23.5-47) 

ntrough a may take place. After being stored in the tank long enough for the reaction to proceed to equi- 
Adiabatic Nozzle librium, the gas is allowed to escape through the small converging nozzle shown to the ambi- 

ent pressure of 1 atm. 

E. von Halle and J. Schacter, Diffirsion Separation Methods, in Kirk-Othmer Encyclopedia of Chemical 
Technology, Volume 8, Wiley, New York (1993), pp. 149-203. 

R. Agrawal, Ind. Eng. Ckem. Research, 35,3607-3617 (1996); R. Agrawal and J. Xu, AlChE Journal, 42, 
2141-2154 (1996). 
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SOLUTION 

Estimate the temperature and velocity of the escaping gas through the nozzle throat (a) 
assuming that no appreciable reaction takes place during passage of gas through the nozzle, 
and (b)  assuming instant attainment of thermodynamic equilibrium at all points in the nozzle. 
In each case, assume that the expansion is adiabatic and frictionless. 

We begin by assuming quasi-steady-state operation, flat velocity profiles, and negligible 
changes in potential energy. We also assume constant heat capacities and ideal gas behavior, 
and we neglect diffusion in the direction of flow. We may then write the macroscopic energy 
balance, Eq. 23.3-1, in the form 

Here the subscripts 1 and 2 refer to conditions in the tank and at the nozzle throat, respec- 
tively, and, as in Example 15.5-4, the fluid velocity in the tank is assumed to be zero. 

To determine the enthalpy change, we equate d(iv2) from the d-form of the steady-state 
energy balance (Eq. 23.3-1) to d($v2) of the d-form of the steady-state mechanical energy bal- 
ance (Eq. 23.4-1) to get 

This result also follows from Eq: E of Table 19.2-4. In addition to Eq. 23.5-49, we use the ideal 
gas law and %n expression for H(T), obtained with the help of Table 17.1-1, Eq. 19.3-16, and 
the relation pH = ch, to get 

Here x, is the mole fraction of the species a at temperature T,and & is the molar enthalpy of 
species a at the reference temperature To. The evaluation of His  discussed separately for the 
two approximations. 

Approximation (a):Assumption of very slow chemical reaction. Here the x, are constant 
at the equilibrium values for 1000K, and we may write Eq. 23.5-51 as 

Hence we may write Eq. 23.5-49 in the form 

- 
Since x, and C,, are assumed constant, this equation may 
to get 

T (23.5-53) 

be integrated from (p,, T,) to (p,, T J  

We may now combine this expression with Eqs. 23.5-48 and 51 to obtain the desired expres- 
sion for the gas velocity at plane 2: 
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By substituting numerical values into Eqs. 23.5-54 and 55, we obtain (see Problem 23A.1) T2 = 

920K and v, = 1726 ft/s. It may be seen that this treatment is very similar to that presented in 
Example 15.5-4. It is also subject to the restriction that the throat velocity must be subsonic; 
that is, the pressure in the nozzle throat cannot fall below that fraction of p, required to pro- 
duce sonic velocity at the throat (see Eq. 15B.6-2). If the ambient pressure falls below this criti- 
cal value of p,, the throat pressure will remain at the critical value, and there will be a shock 
wave beyond the nozzle exit. 

Approximation 0: Assumption of ve y rapid reaction. We may proceed here as in part 
(a), except that the mole fractions x, must now be considered functions of the temperature de- 
fined by the equilibrium relation 

and the stoichiometric relations 

The quantity KJT)  in Eq. 23.5-56 is the known equilibrium constant for the reaction. It may be 
considered as a function only of temperature, because of the assumed ideal gas behavior and 
because the number of moles present is not affected by the chemical reaction. Equations 23.5- 
57 and 58 follow from the stoichiometry of the reaction and the composition of the gas origi- 
nally placed in the tank. 

The expression for the final temperature is now considerably more complicated. For this 
reaction, where C.,x,M, is constant, Eqs. 23.5-49 and 50 may be combined to give 

where, with the heat capacities approximated as constar~ts, 

In general, the integral in Eq. 23.5-60 must be evaluated numerically, since the x, and the 
dx,/dT are all complicated functions of temperature governed by Eqs. 23.5-56 to 59. Once T2 
has been determined from Eq. 23.5-61, however, v, may be obtained by use of Eqs. 23.548 
and 51. By substituting numerical values into these expressions, we obtain (see Problem 
23B.2) T2 = 937K and v2 = 1752 ft /s. 

We find, then, that both the exit temperature and the velocity from the nozzle are greater 
when chemical equilibrium is maintained throughout the expansion. The reason for this is 
that the equilibrium shifts with decreasing temperature in such a way as to release heat of re- 
action to the system. Such a release of energy will occur with decreasing temperature in any 
system at chemical equilibrium, regardless of the reactions involved. This is one consequence 
of the famous rule of Le Chatelier. In this case, the reaction is endothermic as written and the 
equilibrium constant decreases with falling temperature. As a result, CO and H,O are par- 
tially reconverted to H, and C02 on expansion, with a corresponding release of energy. 

It is interesting that in rocket engines the exhaust velocity, hence the engine thrust, are 
also increased if rapid equilibration can be obtained, even though the combustion reactions 
are strongly exothermic. The reason for this is that the equilibrium constants for these reac- 
tions increase with falling temperature so that the heat of reaction is again released on expan- 
sion. This principle has been suggested as a method for improving the thrust of rocket 
engines. The increase in thrust potentially obtainable in this way is quite large. 

This example was chosen for its simplicity. Note in particular that if a change in the num- 
ber of moles accompanies the chemical reaction, then the equilibrium constant, and hence the 
enthalpy, are functions of the pressure. In this case, which is quite common, the variables p 
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and T implicit in Eq. 23.5-60 cannot be separated, and a step-by-step integration of this equa- 
tion is required. Such integrations have been performed, for example, for the prediction of the 
behavior of supersonic wind tunnels and rocket engines, but the calculations involved are too 
lengthy for here. 

523.6 USE OF THE MACROSCOPIC BALANCES TO 
SOLVE UNSTEADY-STATE PROBLEMS 

In 523.5 the discussion was restricted to steady state. Here we move on to the transient 
behavior of multicomponent systems. Such behavior is important in a large number of 
practical operations, such as leaching and drying of solids, chromatographic separations, 
and chemical reactor operations. In many of these processes heats of reaction as well as 
mass transfer must be considered. A complete discussion of these topics is outside the 
scope of this text, and we restrict ourselves to several simple examples. More extensive 
discussions may be found elsewhere.' 

EXAMPLE 23.6-1 

Start-up of a Chemical 
Reactor 

SOLUTION 

It is desired to produce a substance B from a raw material A in a chemical reactor of volume V 
equipped with a stirrer that is capable of keeping the entire contents of the reactor fairly ho- 
mogeneous. The formation of B is reversible, and the forward and reverse reactions may be 
considered first order, with reaction-rate constants kyB and k;;, respectively. In addition, B un- 
dergoes an irreversible first-order decomposition, with a reaction-rate constant kqc, to a third 
component C. The chemical reactions of interest may be represented as 

At zero time, a solution of A at a concentration cA, is introduced to the initially empty reactor 
at a constant mass flow rate w. 

Develop an expression for the amount of B in the reactor, when it is just filled to its ca- 
pacity V, assuming that there is no B in the feed solution and neglecting changes of fluid 
properties. 

We begin by writing the unsteady-state macroscopic mass balances for species A and B. In 
molar units these may be expressed as 

Next we eliminate MA,tot from Eq. 23.6-3. First we differentiate this equation with respect to t 
to get 

In this equation, we replace dMA,tOt/dt by the right side of Eq. 23.6-2, and then use Eq. 23.6-3 
to eliminate MArtot. In this way we obtain a linear second-order differential equation for M,,,, 
as a function of time: 

' W. R. Marshall, Jr., and R. L. Pigford, The Application of Differential Equations to Chemical Engineering 
Problems, University of Delaware Press, Newark, Del. (1947); B. A. Ogunnaike and W. H. Ray, Process 
Dynamics, Modeling, and Control, Oxford University Press (1994). 
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This equation is to be solved with the initial conditions 

This equation can be integrated to give 

where 
111 111 2.+ = -(k'l:, + kli, + kyc) 2 d( kyA + kk',i, + ky;l2 - 4 ~ I B ~ I C  (23.6-9) - 

Equations 23.6-8 and 9 give the total mass of B in the reactor as a function of time, up to the 
time at which the reactor is completely filled. These expressions are very similar to the equa- 
tions obtained for the damped manometer in Example 7.7-2 and the temperature controller in 
Example 15.5-2. It can be shown, however, that s+ and s- are both real and negative, and 
therefore MB,tot cannot oscillate (see Problem 23B.3). 

EXAMPLE 23.62 

Unsteady Operation 
of a Packed Column 

There are many industrially important processes in which mass transfer takes place between 
a fluid and a granular porous solid: for example, recovery of organic vapors by adsorption on 
charcoal, extraction of caffeine from coffee beans, and separation of aromatic and aliphatic 
hydrocarbons by selective adsorption on silica gel. Ordinarily, the solid is held fixed, as indi- 
cated in Fig. 23.6-1, and the fluid is allowed to percolate through it. The operation is thus in- 
herently unsteady, and the solid must be periodically replaced or "regenerated," that is, 
returned to its original condition by heating or other treatment. To illustrate the behavior of 
such fixed-bed mass transfer operations, we consider as a physically simple case, the removal 
of a solute from a solution by passage through an adsorbent bed. 

In this operation, a solution containing a single solute A at mole fraction x,, in a solvent 
B is passed at a constant volumetric flow rate w / p  through a packed tower. The tower pack- 
ing consists of a granular solid capable of adsorbing A from the solution. At the start of the 

Fluid phase in: 
Total molar flow rate = WL 
Solute concentration = CAO A- 

T 
Fluid phase out: 

Total molar flow rate = WL 
Solute concentration = cA(Z, t )  

(a) 

Fig. 23.6-1. A fixed-bed 
absorber: (a) pictorial 
representation of equipment; 
(b) a typical effluent curve. 
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SOLUTION 

percolation, the interstices of the bed are filled with pure liquid B, and the solid is free of A. 
The percolating fluid displaces this solvent evenly so that the solution concentration of A is 
always uniform over any cross section. For simplicity, it is assumed that the equilibrium 
concentration of A adsorbed on the solid is proportional to the local concentration of A in the 
solution. It is also assumed that the concentration of A in the percolating solution is always 
small and that the resistance of the porous solid to intraparticle mass transport is negligible. 

Develop an expression for the concentration of A in the column as a function of time and 
of distance down the column. 

Paralleling the treatment of the gas absorber in Example 23.5-2, we think of the two phases as 
being continuous and existing side by side as pictured in Fig. 23.6-2. We again define the con- 
tact area per unit packed volume of column as a. Now, however, one of the phases is station- 
ary, and unsteady-state conditions prevail. Because of this locally unsteady behavior, the 
macroscopic mass balances are applied locally over a small column increment of height Az. 
We may use Eq. 23.1-3 and the assumption of dilute solutions to state that the molar rate of 
flow of solvent, WE, is essentially constant over the length of the column and the time of oper- 
ation. We now proceed to use Eq. 23.1-3 to write the mass conservation relations for species A 
in each phase for a column increment of height Az. 

For the solid phase in this increment of column we may apply Eq. 22.3-3 locally, keeping 
in mind that now MA,,,, depends on both z and t: 

Here use has been made of Eq. 22.1-14, and the symbols have the following meaning: 

E = volume fraction of column occupied by the liquid 

S = cross-sectional area of (empty) column 

c,, = moles of adsorbed A per unit volume of the solid phase 

x,  = bulk mole fraction of A in the liquid phase 

xAo = interfacial mole fraction of A in the fluid phase, assumed to be in equilibrium with cA, 

= fluid-phase mass transfer coefficient, defined in Eq. 22.1-14, for small mass-transfer rates 

Fluid in at total 
molar rate WL 

1 

Fig. 23.6-2. Schematic model for a fixed-bed absorber, 
Fluid ou; at total showing a differential element over which a mass balance 

molar rate WL is made. 
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Note that, in writing Eq. 23.6-11, we have neglected convective mass transfer through the 
solid-fluid interface. This is reasonable if xAO is much smaller than unity. We have also as- 
sumed that the particles are small enough so that the concentration of the solution surround- 
ing any given particle is essentially constant over the particle surface. 

For the fluid phase, in the column increment under consideration, Eq. 23.1-3 becomes 

Here c is the total molar concentration of the liquid. Equation 23.6-13 may be rewritten by the 
introduction of a modified time variable, defined by 

It may be seen that, for any position in the column, t' is the time measured from the instant 
that the percolating solvent "front" has reached the position in question. By rewriting Eqs. 
23.6-13 and 11 in terms of t', we get 

Equations 23.6-15 and 16 combine the equations of conservation of mass for each phase with 
the assumed mass transfer rate expression. These two equations are to be solved simultane- 
ously along with the interphase equilibrium distribution, xAO = mcAsl in which m is a constant. 
The boundary conditions are 

B.C. 1: at t' = 0, 

B.C. 2: at z = 0, 
cAs = 0 for all z > 0 

xA = XA, for all t' > 0 

Before solving these equations, it is convenient to rewrite them in terms of the following di- 
mensionless variables: 

In terms of these variables, the differential equations and boundary conditions take the form 

with the boundary conditions Y(f; 0) = 0 and X(0, r )  = 1. 
The solution2 to Eqs. 23.6-23 and 24 for these boundary conditions is 

Here JO(ix) is a zero-order Bessel function of the first kind. This solution is presented graphi- 
cally in several available  reference^.^ 

' This result was first obtained by A. Anzelius, Z. angew. Math. u. Mech., 6,291-294 (1926), for the 
analogous problem in heat transfer. One method of obtaining this result is outlined in Problem 23D.1. See 
also H. Bateman, Partial Differential Equations of Mathematical Physics, Dover, New York (19441, pp. 123-125. 

See, for example, 0. A. Hougen and K. M. Watson, Chemical Process Principles, Part 111, Wiley, New 
York (1947), p. 1086. Their y/yo, b ~ ,  and aZ correspond to our X, 7, and l. 
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For many complex systems, complete descriptions are either infeasible or unnecessary, and it 
is sufficient to obtain only a few basic characteristics. Specifically, we may ask how one may 

The of Low- determine the system volume V and the volume flow rate Q through it from observations of 
Order Moments short tracer pulses of mass m introduced at the inlet and then measured at the outlet. Con- 

sider for this purpose the macroscopically steady flow through a closed system of arbitrary 
geometry, but with a single inlet and outlet, such as that suggested in Fig. 7.0-1, except that 
there are no moving surfaces. The flow and diffusional behavior are arbitrary, except that the 
tracer distribution must be described by the diffusion equation (Eq. 19.1-7 with Eq. 17.7-3 in- 
serted for the mass flux) 

in which p, is the local tracer concentration and 9Ts is the pseudobinary diffusivity for the 
tracer moving through the solution that fills the system. Turbulent systems may be included 
by using time-smoothed quantities and an effective turbulent diffusivity. 

In developing the macroscopic balances we shall need to use the condition that there is 
no flow or diffusion through the walls of the enclosure 

(n . v) = 0 and (n V p T )  = 0 (23.6-27,281 

and that the diffusive flux of the tracer is small compared to the convective flux at the inlet 
and outlet to the system 

Here n is the outwardly directed unit normal vector. We take the inlet tracer concentration to 
be zero up to t = 0 and also after some finite time t = t,. In practice the concentration pulse 
duration should be quite short. 

SOLUTION The analysis4 is based on the moments I"') of the tracer concentration with respect to time, de- 
fined by: 

We now multiply Eq. 23.6-26 by t" and integrate with respect to time over the range of 
nonzero exit tracer concentration 

When the first term is integrated by parts and we make use of the notation introduced in Eq. 
23.6-30, we get 

for all systems that give finite moments. We now have a hierarchy of equations for the I'"' in 
terms of the lower-order moments, and the structure of these equations is very convenient. 

In physical terms, it was first noted by Spalding5 that Eq. 23.6-32 has the same form as the 
diffusion equation with chemical reaction, Eq. 19.1-16, but with the concentration replaced by 
I(") and the reaction term replaced by nI'"-~". Hence we can integrate these equations over the 
entire volume of the flow system and thereby develop a new set of macroscopic balances. 

E. N. Lightfoot, A. M. Lenhoff, and R. I. Rodrigues, Chem. Eng. Sci., 36,954-956 (1982). 
D. B. Spalding, Chem. Eng. Sci., 9,74-77 (1958). 
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We begin by integrating Eq. 23.6-33, for n = 0, over the entire volume of the flow system 
between planes 1 and 2: 

The volume integrals may be converted into surface integrals by using the Gauss divergence 
theorem to get 

where S = Sf + S, + SZ. The integral over the fixed surface Sf is zero according to Eq. 23.6-27 
and 28, and the integrals over the inlet and outlet planes S, and S2 can be simplified, so that 
we get 

Here we have made use of Eq. 23.6-29 to drop the diffusive terms at planes 1 and 2. If we as- 
sume that to' is constant over a cross section, we may remove it from the integral, and then 
we get 

For an incompressible fluid, the volume rate of flow, Q, is constant, so that (u,)S, = (v&, and 

That is, I"' evaluated at plane 1 is the same as Po' at plane 2, and at every point in the system. 
It is standard notation to abbreviate this quantity as Mo, the zeroth (absolute) moment. Equa- 
tion 23.6-38 is analogous to Eq. 23.1-2 for a steady-state system with no mass transport across 
the walls. Next we evaluate 4" for the introduction of a mass m of tracer over a time interval 
that is very small with respect to the mean tracer residence time t,,, = V/Q: 

The replacement, in the second step, of the upper limit by Q/V is permitted by the finite du- 
ration of the tracer pulse. From the last two equations we then get 

This provides the possibility of measuring blood flow rate from the mass of an injected tracer 
and the value of Go' = M,. The latter can be obtained by means of a catheter inserted into the 
blood vessel or by NMR techniques. 

This simple formula6 was first introduced in 1829 and has been extensively used since 
1897 for measurement of blood-flow rates,7 including cardiac output.' It is also widely used for 
many environmental systems, such as rivers, and also for systems in the process industries. 

Next we turn to Eq. 23.6-32, and integrate it over the volume of the flow system, once 
again making use of the fact that the diffusive tern over the inlet and outlet is much smaller 
than the convective term. This gives 

E. Hering, Zeits, f. Physik, 3,85-126 (1829). 
G. N. Stewart, J. Physiol. (London), 22,159-183 (1897). 
K. Zierler, Ann. Biomed. Eng., 28,836-848 (2000). 
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or, if I'"' is assumed constant over a cross-section, 

-n(+ I ~ ' ) ( r ,  t ) ~ )  = + ((v~)s~$) - ( v ~ ) s ~ @ ) )  (23.6-42) 
v 

Then, defining the quantity in parentheses on the left side as the volume average, we get 
finally3 

Now, if we set n = 1, we get the following: 

If the tracer is injected as a delta-function input, so that I'," = 0, we can use the notation I':' = MI 
(the first moment), and the last equation becomes 

This result, used in conjunction with Eq. 23.6-40, has long been applied by cardiologists for de- 
termining blood volume. It has since found many other environmental and process-industry 
calculations. 

Higher moments have also proven useful, in particular the central moments 

These are commonly applied for the special case of an impulsive tracer input. Then the nor- 
malized second central moment, or variance, is 

This is the square of the standard deviation, when the exit tracer profile is a Gaussian distrib- 
ution. The third central moment is a measure of the asymmetry about ire,, and the fourth a 
measure of the kurtosis. In practice, the fourth moment is nearly impossible to determine ac- 
curately from experimental data, and obtaining even the third proves to be quite difficult. 

Use of the second moment has found some very important applications in studying 
tracer dynamics of biological tissue? and again the large literature in the medical field has 
been extended to many other applications. It is also interesting to note the additivity relation- 
ships in serially connected systems. Thus Mo is invariant to the number of included subsys- 
tems, and M,, p2, and p3 are additive, but higher-order moments are not. 

QUESTIONS FOR DISCUSSION 

1. How are the macroscopic balances for multicomponent mixtures derived? How are they re- 
lated to the equations of change? 

2. In Eq. 23.1-1, how are homogeneous and heterogeneous reactions accounted for? What is the 
physical meaning of w,,? 

3. Give a specific example of a system in which the last term in Eq. 23.1-4 is zero. 
4. In using Table 23.5-1 one normally specifies the directions of the streams (that is, whether they 

are input or output streams). How could one proceed if the flow directions change with time? 

F. Chinard, Ann. Biomed Eng., 28,849-859 (2000). 
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5. Summarize the calculation procedures for the enthalpy per unit mass, fi = + in Eq. 23.3-1 
and the partial molar enthalpy in Eq. 23.3-la. What are these quantities for ideal gas mixtures? 

6. Review the derivation of the mechanical energy balance in s7.8. What would have to be 
changed in that derivation, if one wishes to apply it to a nonisothermal, reacting mixture in a 
flow system with no mass transfer surfaces? 

7. To what extent does this chapter provide the background for studying unit operations, such 
as absorption, extraction, distillation, and crystallization? 

8. What changes would have to be made in this chapter to describe processes in a space ship or 
on the surface of the moon? 

PROBLEMS 23A.1. Expansion of a gas mixture: very slow reaction rate. Estimate the temperature and velocity 
of the water-gas mixture at the discharge end of the nozzle in Example - 23.5-4 - if the reaction 
rate - is very slow. - Use the following data: loglo K, = -0.15, CprHz = 7.217, Cp,CO, = 12.995, 
Cp,HZO = 9.861, Cp,,, = 7.932 (all heat capacities are in Btu/lb-mole - F. Is the nozzle exit 
pressure equal to the ambient pressure? 
Answers: 920K, 1726 ft/s; yes, the nozzle flow is subsonic. 

23A.2. Height of a packed-tower absorber. A packed tower of the type described in Example 23.5-2 
is to be used for removing 90% of the cyclohexane from a cyclohexane-air mixture by absorp- 
tion into a nonvolatile light oil. The gas stream enters the bottom of the tower at a volumetric 
rate of 363 ft3/min, at 30°C, and at 1.05 atm pressure. It contains 1% cyclohexane by volume. 
The oil enters the top of the tower at a rate of 20 lb-mol/hr, also at 30°C, and it contains 0.3% 
cyclohexane on a molar basis. The vapor pressure of cyclohexane at 30°C is 121 mm Hg, and 
solutions of it in the oil may be considered to follow Raoult's law. 
(a) Construct the operating line for the column. 
(b) Construct an equilibrium curve for the range of operation encountered here. Assume the 
operation to be isothermal and isobaric. 
(c) Determine the interfacial conditions at each end of the column. 
(d) Determine the required tower height using Eq. 23.5-24 if k!a = 0.32 moles/hr . ft3, 
kia = 14.2 moles/hr . ft3, and the tower cross section S is 2.00 fi?. 

(e) Repeat part (d), using Eq. 23.5-25. 

Answer: (d) ca. 62 ft; (el 60 ft 

23B.1. Effective average driving forces in a gas absorber. Consider a packed-tower gas absorber of 
the type discussed in Example 23.5-2. Assume that the solute concentration is always low and 
that the equilibrium and operating lines are both very nearly straight. Under these conditions, 
both k;a and k:a may be considered constant over the mass-transfer surface. 
(a) Show that (YA - Y,,) varies linearly with YA. Note that Y, is the bulk mole ratio of A in 
the gas phase and Y,, is the equilibrium gas-phase mole ratio over a liquid of bulk composi- 
tion X, (see Fig. 22.4-2). 

(b) Repeat part (a) for (Y, - YAO). 
(c) Use the results of parts (a) and (b) to show that 

The overall mass transfer coefficient I$ is defined by Eq. 22.4-4. Note that this part of the 
problem may be solved by analogy with the development in Example 15.4-1. 

23B.2. Expansion of a gas mixture: very fast reaction rate. Estimate the temperature and velocity of 
the water-gas mixture at the discharge end of the nozzle in Example 23.5-4 if the reaction rate 
may be considered infinitely fast. Use the data supplied in Problem 23A.1 as well as 
the following: at 900K, loglo K,  = -0.34; 3H2 = +6340; HHz0(@ = -49,378; &, = -16,636; 
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ho, = -83,242 (all enthalpies are given in cal/g-mole). For simplicity, neglect the effect of 
temperature on heat capacity, and assume that loglo K, varies linearly with temperature 
between 900 and 1000K. The following simplified procedure is recommended: 
(a) It may be seen in advance that T2 will be higher than for slow reaction rates, and hence 
greater than 920K (see Problem 23A.1). Show that, over the temperature range to be encoun- 
tersd, fi varies very nearly linearly with the temperature according to the expression 
(dH/dT',,, = 12.40 cal/gm-mol K. 
(b) Substitute the result in (a) into Eq. 23.5-41 to show that T, = 937K. 
(c) Calculate HI and & and show by use of Eq. 23.5-29 that v, = 1750 ft/s. 

Startup of a chemical reactor. 
(a) Integrate Eq. 23.6-5 along with the given initial conditions to show that Eq. 23.6-8 cor- 
rectly describes MB,tot as a function of time. 
(b) Show that s+ and s- in Eq. 23.6-9 are real and negative. Hint: Show that 

(c) Obtain expressions for MA,t,, and Mc,tot as functions of time. 

Irreversible first-order reaction in a continuous reactor. A well-stirred reactor of volume V 
is initially completely filled with a solution of solute A in a solvent S at concentration cAo. At 
time t = 0, an identical solution of A in S is introduced at a constant mass flow rate w. A small 
constant stream of dissolved catalyst is introduced at the same time, causing A to disappear 
according to an irreversible first-order reaction with rate constant k y  sec-'. The rate constant 
may be assumed independent of composition and time. Show that the concentration of A in 
the reactor (assumed isothermal) at any time is 

in which t;' = [(w/pV) + k y ] .  

Mass and enthalpy balances in an adiabatic splitter. One hundred pounds of 40% by mass of 
superheated aqueous ammonia with a specific enthalpy of 420 Btu/lb is to be flashed adiabati- 
cally to a pressure of 10 atm. Calculate the compositions and masses of the liquid and vapor pro- 
duced. For the purposes of this problem you may assume that at thermodynamic equilibrium 

where YNHi and XNH3 are the mass ratios of ammonia to water. The enthalpies of saturated liq- 
uid and vapor at 10 atm may be assumed to be 

Btu/lb of saturated vapor, and 

Btu/lb of saturated liquid. Here xNH3 and yNH, are mass fractions of ammonia. 
A 

Answer: P = 36.5 Ibs,yp = 0.713, Hp = 877 Btu/lb,; W = 63.6 Ib,, x, = 0.22, h ,  = 157 Btu/lb, 

Flow distribution in an ideal cascade. Determine the upflowing and downflowing stream 
flows of individual stages for the ideal cascade described in Example 23.5-3. Express your re- 
sults as fractions of the feed rate, and start from the bottom of the cascade. Use 12 stages as 
the closest integer providing the desired separation. It is suggested that you begin by calculat- 
ing the upflowing and downflowing stream compositions and then use the mass balances 

below the feed plate and the corresponding balances above it. Use 10 stages with the bottoms 
(W) composition equal to a mole fraction of 0.1. 
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23B.7. Isotope separation and the value function. You wish to compare an existing isotope frac- 
tionator that processes 50 moles/hr of a feed containing 1.0 mole% of the desired isotope to a 
product of 90% purity and a waste of 10% with another that processes 50 moles/hr of 10 
mole% material to product and waste of 95% and 2%, respectively. Which fractionation is 
more effective? Assume the Dirac separative capacity to be an accurate measure of effectiveness. 

Irreversible second-order reaction in an agitated tank. Consider a system similar to that dis- 
cussed in Problem 23B.4, except that the solute disappears according to a second-order reac- 
tion; that is, RA,t,, = -k;'Vci. Develop an expression for c, as a function of time by the 
following method: 
(a) Use a macroscopic mass balance for the tank to obtain a differential equation describing 
the evolution of cA with time. 
(b) Rewrite the differential equation and the accompanying initial condition in terms of the 
variable 

The nonlinear differential equation obtained in this way is a Bernoulli difj'erential equation. 
(c) Now put v = l / u  and perform the integration. Then rewrite the result in terms of the 
original variable c,. 

23C.2. Protein purification (Fig. 23C.2). It is desired to purify a binary protein mixture using an 
ideal cascade of individual ultrafiltration stages of the type shown in the figure. The larger of 
the two membrane units is the source of separation and each protein flux across the mem- 
brane is expressed by 

where Ni is the transmembrane protein flux of species i, ci is its concentration in the upstream 
solution (assumed to be well mixed), v is the transmembrane superficial velocity, and Si is a 
protein-specific sieving factor. The smaller membrane unit is used solely to maintain a solvent 
balance and can be ignored for the purposes of this problem. 
(a) Show that the enrichment of protein 1 relative to 2 is given by 

where Y ,  and XI are the mole ratios of protein 1 to protein 2 in the product and waste 
streams, respectively, and a,, = S,/S2. 
(b) Determine the number of stages required in an ideal cascade to produce 99% pure protein 
1 from a 90% feed in 95% yield as a function of a,,. It is suggested that a,, be varied from 2 to 
200. 
(c) Calculate the output concentrations, yield, and stream flow rates for a three-stage cascade, 
with a,, = 40, and with a feed of 90% purity to the middle stage. 

(d) Compare the Dirac separative capacity of this three-stage cascade with that of a single 
unit with the same molar ratio of product to feed. 

23C.3. Physical significance of the zeroth and first moments. Consider some simple flow systems, 
such as plug flow and well-stirred vessels, individually and in series or parallel arrange- 
ments. Show that flow rates and volumes can be obtained from the moments defined in Ex- 
ample 23.6-3. 

F = P + W  
z F = y P + x W  

return 
Fig. 23C.2. A membrane-based binary splitter. 
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Fig. 23C.4. A schematic 
representation of a 
"sandwich-type'' cross- 
flow heat exchanger. 

23C.4. Analogy between the unsteady operation of an adsorption column and a cross-flow heat 
exchanger1 (Fig. 23C.4). In the heat exchanger shown in the figure, the two fluid streams flow 
at right angles to one another, and the heat flux parallel to the wall is neglected. Here ex- 
change of heat is clearly less than for a countercurrent exchanger of the same surface and 
overall heat transfer coefficient under otherwise identical conditions. The heat flow in these 
exchangers may be expressed for constant Ul,, as 

Here Q is the total rate of heat transfer, A is the heat transfer surface area, and ATl, is the loga- 
rithmic mean of (T,ll - T,,) and (T,, - Tcl), as defined in the figure. Note that Th2 and T,, are 
the flow-averaged temperatures of the two exit streams. We may then regard Y as the ratio of 
heat transferred in cross flow to that which would be transferred in counterflow. 

Use Eq. 23.6-27 to write an expression for Y as a function of the stream rates, physical 
properties, heat transfer area, and localpve~all heat transfer coefficient. Express the result in 
terms of definite integrals, and assume Cphr Cpcr and U,,, to be constant. 

23D.1. Unsteady-state operation of a packed column. Show that Eq. 23.6-25 is a valid solution of 
Eqs. 23.6-23 and 24. The following approach is recommended: 
(a) Take the Laplace transform of Eqs. 23.6-23 and 24 with respect to r. Eliminate the trans- 
form of Y from the resulting expressions. Show that the transform of X may be written for the 
given boundary conditions as 

- 
X = l , [s/(s+l)lt 

s (23D.1-1) 

in which k is the Laplace transform of X. 

W. Nusselt, Tech. Math. Therm., 1,417 (1930); D. M. Smith, Engineering, 138,479 (1934). 
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(b) Rewrite this expression in the form 

Invert this expression to obtain Eq. 23.6-25 by making use of the identity 

23D.2. Additivity of the lower moments. Consider a pair of flow systems meeting the requirements 
of Example 23.6-3 arranged in series. Show that (i) the zeroth moment is the same at the sys- 
tem inlets and outlets of the first and second systems, and (ii) the first absolute moment and 
the second and third central moments, but not the fourth central moment, are additive. Sug- 
gestion: For the second and higher moments it is helpful to recognize that the output from the 
second unit, following a pulse input to the first may be obtained by the use of the convolution 
integral 

where k is a system response to a pulse input. A simple way of proceeding is to recognize that 
the Laplace transform of c(t) may be written as 

It then follows that 

and similarly for the higher derivatives. Now it may also be shown that 

23D.3. Start-up of a chemical reactor. Rework Example 23.6-1 by use of Laplace transforms of Eqs. 
23.6-2 and 3. 

23D.4. Transient behavior of N reactors in ~ e r i e s . ~  There are N identical chemical reactors of vol- 
ume V connected in series, each equipped with a perfect stirrer. Initially, each tank is filled 
with pure solvent S. At zero time, a solution of A in S is introduced to the first tank at a con- 
stant volumetric flow rate Q and a constant concentration c,(O). This solution also contains a 
small amount of a dissolved catalyst, introduced just prior to discharge into the first tank, 
which causes the following first-order reactions to occur: 

k;Ls kYhc 
A S B S C  (23D.4-1) 

A ki'b 
The rate constants in these reactions are assumed constant throughout the system. Let h = Q/V, 
the inverse of the "effective residence time" in each tank. Obtain an expression for c,(n), the 
concentration of chemical species n in the nth tank at any time t. 

A. Acrivos and N. R. Amundson, Ind. Eng. Chem., 47,1533-1541 (1955). 
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In Chapter 1 we stated that the molecular transport of momentum is related to the veloc- 
ity gradient by Newton's law of viscosity. In Chapter 8 we gave Fourier's law, which 
says that molecular heat transport occurs because of a gradient in temperature. How- 
ever, when we discussed mixtures in Chapter 19, we pointed out an extra contribution to 
the molecular heat flux that accounts for the amount of enthalpy transported by the in- 
terdiffusion of the various species. In Chapter 17 we gave Fick's (first) law of diffusion, 
which says that molecular mass transport occurs as the result of a concentration gradi- 
ent. We indicated there that other driving forces may contribute to the mass flux. The 
purposes of this chapter are to describe the most important of these additional driving 
forces and to illustrate some applications. 

Important among these forces are the gradients of electrical potential and pressure, 
which govern the behavior of ionic systems and permselective membranes as well as ul- 
tracentrifuges. Electrokinetic phenomena in particular are rapidly gaining in importance. 
Induced dipoles can produce separations, such as dielectrophoresis and magnetophoresis, 
which are useful in specialized applications. In addition, we shall find that temperature 
gradients can cause mass fluxes by a process known as thermal diffusion1 or the Soret ef- 
fect, and that concentration gradients can produce heat transfer by the diffusion-therrn~,~ 
or the Dufour, effect. Finally, it is important to realize that in systems containing three or 
more components, the behavior of any one species is influenced by the concentration 
gradients of all other species present. 

Fortunately the wide range of behavior resulting from these various driving forces 
can be described compactly via the framework provided by nonequilibrium thermody- 

' The effect was first observed in liquids by C. Ludwig, Sitzber. Akad. Wiss. Wien 20,539 (1856), but 
is named after Ch. Soret, Arch. Sci. Phys. Nat., Genhe ,  2,4841 (1879); 4,209-213 (1880); Comptes Rendus 
Acad. Sci., Paris, 91,289-291 (1880). The first observations in gases were made by S. Chapman and 
F. W. Dootson, Phil. Mag., 33,248-253 (1917). 

L. Dufour, Arch. Sci. Pkys. Nut. Gentve, 45,9-12 (1872); Ann. Phys. (5) 28,490492 (1873). 
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narni~s;~ this topic is summarized in gg24.1 and 2. This discussion concludes with the 
generalized Maxwell-Stefan equations. In the remaining sections we show how various 
specializations of these equations can be used to provide convenient descriptions of se- 
lected diffusional processes. 

Those who do not wish to read the first two sections can go directly to the later sec- 
tions, where the essential results of nonequilibrium thermodynamics are summarized. 

524.1 THE EQUATION OF CHANGE FOR ENTROPY 

Nonequilibrium thermodynamics makes use of four postulates above and beyond those 
of equilibrium thermodynamics:' 

The equilibrium thermodynamic relations apply to systems that are not in equi- 
librium, provided that the gradients are not too large (quasi-equilibrium postulate). 

All fluxes in the system may be written as linear relations involving all the forces 
(linearity postulate). 

No coupling of fluxes and forces occurs if the difference in tensorial order of the 
flux and force is an odd number (Curie's postulate).' 

In the absence of magnetic fields the matrix of the coefficients in the flux-force re- 
lations is symmetric (Onsager's reciprocal relationsh3 

In this and the following section we will use these postulates, which arose from a need to 
describe various observed phenomena and also from kinetic theory developments. Note 
that the nonequilibrium theory we are using excludes consideration of non-Newtonian 
 fluid^.^ 

In Problem 11D.1 we saw how to derive Jaumann's entropy balance equation, 

in which s is the entropy per unit mass of a multicomponent fluid, s is the entropy-flux 
vector, and g, is the rate of entropy production per unit volume. At this point we do not 
know what s and g, are, and hence our first task is to find expressions for these quantities 

The discussion here is for multicomponent systems. A discussion for binary systems can be found 
in L. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd edition, Pergamon Press (1987), Chapter VI. See also 
R. B. Bird, Korean J .  Chem. Eng., 15,105-123 (1998). 

S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam (1962). 
See also H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, Wiley, New York (1985), 
Chapter 14. 

' P. Curie, Oeuvres, Paris (1903), p. 129. 
Nobel laureate Lars Onsager (1903-1976) studied chemical engineering at the Technical University 

of Trondheim; after working with Peter Debye in Ziirich for two years, he held teaching positions at 
several universities before moving on to Yale University. His contributions to the thermodynamics of 
irreversible processes are to be found in L. Onsager, Pkys. Rev., 37,405426 (1931); 38,2265-2279 (1931). 
A summary of experimental verifications of the Onsager reciprocal relations has been given by 
D. G. Miller, in Transporf Phenomena in Fluids (H. J. M. Hanley, ed.), Marcel Dekker, New York (19691, 
Chapter 11. 

TO describe nonlinear viscoelastic fluids one has to generalize the thermodynamic theory, as 
described in A. N. Beris and B. J. Edwards, Thermodymmics of Flowing Systems with Internal Microstructure, 
Oxford University Press (1994); M. Grmela and H. C. Ottinger, Pkys. Rev., E56,6620-6632 (1997); 
H.  C. Ottinger and M. Grmela, Phys. Rev., E56,66334655 (1997); B. J. Edwards, H. C. Ottinger, and 
R. J. J. Jongschaap, J .  Non-Equilibrium Thermodynamics, 27,356-373 (1997); H. C. Ottinger, Pkys. Rev., E57, 
1416-1420 (1998); H. C. Ottinger, Applied Rheology, 9,17-26 (1999). 
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in terms of the fluxes and gradients in the system. To do this we have to use the 
assumption that the equations of equilibrium thermodynamics are valid locally (the 
"quasi-equilibrium postulate"), which means that equations such as 

can be used in a system that is not too far from equilibrium. In this equation & is the 
partial molar Gibbs free energy and M, the molecular weight of species a. We now 
apply this relation to a fluid element moving with the mass average velocity v. Then we 
can replace the differential operators by substantial derivative operators. In that form, 
Eq. 24.1-2 enables us to express D S / D ~  in terms of DU/D~,  D(l/p)/DL, and Dw,/Dt. 
Then the equation of change for internal energy [Eq. (D) of Table 19.2-41, the overall 
equation of continuity [Eq. (A) of Table 19.2-31, and the equation of continuity for species 
a [Eq. (B) of Table 19.2-31 can be used for the three substantial derivatives that have been 
introduced. Thus, after considerable rearranging, we find 

The entropy production has been written as a sum of products of fluxes and forces. 
However, there are only N - 1 independent mass fluxes j,, and, because of the Gibbs- 
Duhem equation, there are also only N - 1 independent forces. When we take into ac- 
count this lack of independencef5 we may rewrite the entropy flux and the entropy 
production in the following form: 

N 

~ g ~  = - (@) . Vln T ) -  2 j, - -  
a=l ( '::dm) -(T:vv)- 

in which q(h) is the heat flux with the diffusional enthalpy flux subtracted off, 

and 

The second form in Eq. 24.1-8 is obtained5 by using the relation d< = RTd In a,, where a, 
is the activity. In the operation V In a,, the derivative is to be taken at constant T and p, 
and the quantity 4, = c,K is the volume fraction of species a. The d, introduced here 
are called diffusional driving forces, and they account for the concentration diffusion (term 

For the intermediate steps, see C. F. Curtiss and R. B. Bird, Ind. Eng. Chem. Research, 38,2515-2522 
(19991, errata 40,1791 (2001). 
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with V In a,), pressure diffusion (term with Vp), and forced diffusion (term with g). The d, 
are so defined that Z,d, = 0. 

The entropy production in Eq. 24.1-6, which is a sum of products of fluxes and 
forces, is the starting point for the nonequilibrium thermodynamics development. Ac- 
cording to the "linearity postulate" each of the fluxes in Eq. 24.1-6 (q'"', j,, 7, and - 
G,/M,) can be written as a linear function of all the forces (VT, d,, Vv, and r,). How- 
ever, because of "Curie's postulate," each of the j, must depend linearly on all of the 
d, as well as on VT, and q(h) must depend linearly on VT as well as on all the d,, but 
neither j, nor q(h) can depend on Vv or r,. Similarly the stress tensor .r will depend on 
the tensor Vv, and also on the scalar driving forces r, multiplied by the unit tensor. 
Since the "coupling" between .r and the chemical reactions has not been studied, we 
omit any further consideration of it. In the next section we discuss the coupling among 
all the vector forces and vector fluxes and the consequences of applying the "Onsager 
reciprocal relations." 

524.2 THE FLUX EXPRESSIONS FOR HEAT AND MASS 

We now employ the "linearity postulate" to obtain for the vector fluxes 

In these equations the quantities a,,,, a,,, a,,, and asp are the "phenomenological coeffi- 
cients" (that is, the transport properties). Because the j, and d, are not all independent, it 
must be required that a,, + 2,a,, = 0, where the sums are over all y (except y = P) from 
1 to N. Now according to the Onsager reciprocal relations, a,, = a,, and nap = a,, for all 
values of cr and /3 from 1 to N. 

Next we relate the phenomenological coefficients to the transport coefficients. First 
we relabel a,, and ao, as D:, the multicomponent thermal diffusion coefficients. These have 
the property that 2 ,~ :  = 0. Then we define the multicomponent Fick difisivities,' ID,,, by 
D,, = -cRTaap/papp. These diffusivities are symmetric (Elap = D,,) and obey the rela- 
tions C,U,D,~ = 0. Then Eq. 24.2-2 becomes 

, 

for the multicomponent mass fluxes. These are the generalized Fick equations. When the 
second form of Eq. 24.1-8 is substituted into Eq. 24.2-3 we see that there are four contri- 
butions to the mass-flux vector j,: the concentration diffusion term (containing the activ- 
ity gradient), the pressure diffusion term (containing the pressure gradient), the forced 
diffusion term (containing the external forces), and the thermal diffusion term (propor- 
tional to the temperature gradient). 

C. F. Curtiss, J. Chem. Pkys., 49,2917-2919 (1968); see also D. W. Condiff, 1. Chem. Pkys., 51, 
42094212 (1969), and C. F. Curtiss and R. B. Bird, Ind. Eng. Chem. Research, 39,2515-2522 (1999); errata 
41,1791 (2001). The Dap used here are the negatives of the Curtiss D,~, which, in turn, are different from 
the DaB used by J. 0. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theo y of Gases and Liquids, 
Wiley, New York (1954), second corrected printing (1964, Chapter 11. 
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Equation 24.2-3 can be turned "wrong-side out"',' and solved for the driving forces d,: 

These are the generalized Maxwell-Stefan equations, a special case of which was given in 
Eq. 17.9-1. The Bop are called the mulficomponent Maxwell-Stefan diffusivities, and they 
have been proven to be ~ymrnetric;~ their relation to the Dap will be discussed presently. 

When the expression for d, in Eq. 24.2-4 is substituted into Eq. 24.2-1, we get 

The thermal conductivity of a mixture is defined to be the coefficient of proportionality 
between the heat-flux vector and the temperature gradient when there are no mass 
fluxes in the system. Thus, the quantity in brackets is, by general agreement, the thermal 
conductivity k times the absolute temperature T. If we combine this result with the defin- 
ition in Eq. 24.1-7, w get for the final expression for the heat flux:3 

We see that the heat flux vector q consists of three terms: the heat conduction term (con- 
taining the thermal conductivity), the heat diffusion term (containing the partial molar 
enthalpies and the mass fluxes), and finally the Dufour term (containing the thermal dif- 
fusion coefficients and the mass fluxes). The heat diffusion term, already encountered in 
Eq. 19.3-3, is generally important in diffusing systems. The Dufour term is usually small 
and can usually be neglected. 

Equations 24.2-3,4, and 6 are the principal results of nonequilibrium thermodynam- 
ics. We now have the mass- and heat-flux vectors expressed in terms of the transport 
properties and the fluxes. 

Next we discuss the relation between the matrix of Fick diffusivities Dep and that of 
the Maxwell-Stefan diffusivities Bag. Both matrices are symmetric and of order N X N, 
and both have ~ N ( N  - 1) independent elements. The Bap are obtained thus:3 

in which (Ba)pY = - DPy + Day-that is, the p y-component of a matrix called B,, which is 
of order (N - 1) x (N - 1)-and adj B, is the matrix adjoint to B,. For binary and ternary 

H. J. Merk, Appl. Sci. Res., A8,73-99 (1959); E. Helfand, J. Chem. Phys., 33,319-322 (1960). Hendrik 
Jacobus Merk (1920-1988) performed the inversion of the mass-flux expressions when he was a graduate 
student in engineering physics at the Technical University of Delft; from 1953 to 1987 he was a professor 
at the same institution. 

C. F. Curtiss and R. B. Bird, Ind. Eng. C h m .  Research, 38,2515-2522 (1999); errata, 40,1791 (2001). 
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Table 24.2-1 Summary1 of Expressions for the Dmp in Terms of the Rp. [Note: Additional 
entries may be generated by cyclic permutation of the indices. Formulas for four-component 
systems are given in the references.] 

Binary: 

Ternary: 

systems, the explicit interrelations are given in Tables 24.2-1 and 2. In Eq. (C) of Table 
24.2-1, it can be seen that for a binary mixture the Dap and Bap differ by a factor that is a 
function of the concentration. However, they do have the same sign, which explains why 
the plus sign was chosen in Eq. 24.2-3 instead of a minus sign. 

We are now in a position to present the three final results of this section that are use- 
ful as starting points for solving diffusion problems. For multicomponent diffusion in gases 
OY liquids, combining Eqs. 24.1-8 and 24.2-4 gives 

This equation has been written in terms of the difference of molecular velocities, v, - v,+ 
Equations (D) to (I) of Table 17.8-1 may then be used to write this equation in terms of 
any desired mass or molar fluxes. 

Table 24.2-2 Summary' of Expressions for the R1, in Terms of the map. [Note: Additional 
entries can be generated by cyclic permutation of the indices. See the original references for 
four-component systems.] 

Xlx2 D12D33 - D13D23 Ternary: QI2 = - 
W1°2 DI2 + IDs3 - DI3 - [Di23 



770 Chapter 24 Other Mechanisms for Mass Transport 

If one wishes to designate one species y as being special (for example, the solvent), 
then Eq. 24.2-8 can be rewritten thus (see Problem 24C.1): 

Note that in Eq. 24.2-8 there are N(N - 1)/2 symmetric diffusivities, Boa, and that the 
Go, do not appear and are hence not defined. However, in Eq. 24.2-9, there are 
N(N + 1)/2 symmetric diffusivities, but the B,, (N of them) now appear, and therefore 
we have to supply an auxiliary relation Z,(x,/Bffp) = 0, in which the sum is over all a. 
Equation 24.2-9, with the auxiliary relation, is equivalent to Eq. 24.2-8, and both of these 
generalized Maxwell-Stefan equations are equivalent to the generalized Fick equations 
of Eq. 24.2-3, together with its auxiliary relation. 

For multicomponent diffusion in gases at low density, the activity may be replaced by the 
mole fraction, and furthermore, to a very good approximation, the Bop may be replaced 
by 5?hap. These are the binary diffusivities for all pairs of species in the mixture. Since the 
Bffp vary only slightly with concentration, whereas the DUp are highly concentration- 
dependent, it is preferable to use the Maxwell-Stefan form (Eq. 24.2-4) rather than the 
Fick form (Eq. 24.2-3). 

For binary diffusion in gases or liquids, Eq. (C) of Table 24.2-1 and Eq. 17B.3-1 may be 
used to simplify Eq. 24.2-8 as follows: 

In this equation we have introduced the thermal difusion ratio, defined by k,  = - = 

+ ( D i / & B ) ( ~ A ~ B / ~ A ~ B ) .  Other quantities encountered are the thermal diffusion factor a,  
and the Soret coefficient a,, defined by k ,  = cu, x,x, = a, xAxBT. For gases a, is almost inde- 
pendent of composition, and a, is the quantity preferred for liquids. When k, is positive, 
species A moves toward the colder region, and when it is negative, species A moves toward 
the warmer region. Some sample values of k,  for gases and liquids are given in Table 24.2-3. 

For binary mixtures of dilute gases, it is found by experiment that the species with 
the larger molecular weight usually goes to the colder region. If the molecular weights 
are about equal, then usually the species with the larger diameter moves to the colder re- 
gion. In some instances there is a change in the sign of the thermal diffusion ratio as the 
temperature is lowered." 

In the remainder of the chapter, we explore some of the consequences of the mass- 
flux expressions in Eqs. 24.2-8,9, and 10. 

EXAMPLE 24.2-1 

Thermal Diffusion and 
the Clusius-Dickel 
- - 

In this example we discuss the diffusion of species under the influence of a temperature gra- 
dient. To illustrate the phenomenon we consider the system shown in Fig. 24.2-1, two bulbs 
joined together by an insulated tube of small diameter and filled with a mixture of ideal gases 
A and B. The bulbs are maintained at constant temperatures TI and T,, respectively, and the 

Column diameter of the insulated tube is small enough to eliminate convection currents substantially. 
Ultimately the system arrives at a steady state, with gas A enriched at one end of the tube and 
depleted at the other. Obtain an expression for xA2 - x,,, the difference of the mole fractions 
at the two ends of the tube. 

%. Chapman and T. G. Cowling, The Mathemnticnl Theory of Non-Uniform Gases, 3rd edition, 
Cambridge University Press (1970), p. 274. 
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SOLUTION 

Table 24.2-3 Experimental Thermal Diffusion Ratios 
for Liquids and Low-Density Gas Mixtures 

Liquids:" 

Components A-B 
C2H,C14-n-C6H14 
C2H,Br2-C2H4C12 
C2H2C14-CC14 
CBr,-CCl, 
CC14-CH30H 
CH30H-H20 
C Y C ~ O - C ~ H ~ ~ < ~ H ~  

Gases: 

Components A-B T (K) X A 

~ e - ~ e ~  330 0.80 
0.40 

N2-H2C 264 0.706 
0.225 

D,-H~~ 327 0.90 
0.50 
0.10 

a R. L. Saxton, E. L. Dougherty, and H. G. Drickamer, J. Chem. 
Phys., 22,1166-1168 (1954); R. L. Saxton and H. G. Drickamer, 
J. Chem. Phys., 22,1287-1288 (1954); L. J .  Tichacek, W. S. 
Kmak, and H. G. Drickamer, J. Phys. Chem., 60,660-665 (1956). 

B. E. Atkins, R. E. Bastick, and T. L. Ibbs, PYOC. Roy. SOC. 
(London), A172,142-158 (1939). 

' T .  L. Ibbs, K. E. Grew, and A. A. Hirst, Proc. Roy. Soc. 
(London), A173,543-554 (1939). 

H. R. Heath, T. L. Ibbs, and N. E. Wild, Proc. Roy. SOC. 
(London), A178,380-389 (1941). 

After steady state has been achieved, there is no net motion of either A or B, so that Jz = 0. If 
we take the tube axis to be in the z direction, then from Eq. 24.2-10 we get 

Here the activity aA has been replaced by the mole fraction xA, as is appropriate for an ideal 
gas mixture. Usually the degree of separation in an apparatus of this kind is small. We may 
therefore ignore the effect of composition on kT and integrate this equation to get 

This bulb maintained This bulb maintained 
at temperature TI at temperature T2 7 

Fig. 24.2-1. Steady-state binary thermal diffu- 
sion in a two-bulb apparatus. The mixture of 
gases A and B tends to separate under the in- 
fluence of the thermal gradient. 
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Because the dependence of k, on T is rather complicated, it is customary to assume k, constant 
at the value for some mean temperature T,. Equation 24.2-12 then gives (approximately) 

The recommended5 mean temperature is 

Equations 23.2-13 and 14 are useful for estimating the order of magnitude of thermal diffu- 
sion effects. 

Unless the temperature gradient is very large, the separation will normally be quite 
small. Therefore it has been advantageous to combine the thermal diffusion effect with free 
convection between two vertical walls, one heated and the other cooled. The heated stream 
then ascends, and the cooled one descends. The upward stream will be richer in one of the 
components-say, A-and the downward stream will be richer in B. This is the principle of 
the operation of the Clusius-Dickel c ~ l u r n n . ~ ~  By coupling many of these columns together in a 
"cascade" it is possible to perform a separation. During World War I1 this was one of the 
methods used for separating the uranium isotopes by using uranium hexafluoride gas. The 
method has also been used with some success in the separation of organic mixtures, where 
the components have very nearly the same boiling points, so that distillation is not an option. 

The thermal diffusion ratio can also be obtained from the Dufour (diffusion-thermo) ef- 
fect, but the analysis of the experiment is fraught with problems and experimental errors dif- 
ficult to avoid.9 

Next we examine diffusion in the presence of a pressure gradient. If a sufficiently large pres- 
sure gradient can be established, then a measurable separation can be effected. One example 

Pressure Diffus ion and of this is the ultracentrifuge, which has been used to separate enzymes and proteins. In Fig. 
the Ultra C e n t q g e  24.2-2 we show a small cylindrical cell in a very high-speed centrifuge. The length of the cell, 

and B 

Fig. 24.2-2. Steady-state pressure diffusion in a 
centrifuge. The mixture in the diffusion cell tends 
to separate by virtue of the pressure gradient pro- 

in diffusion cell duced in the centrifuge. 

H. Brown, Phys. Rev., 58,661-662 (1940). 
K. Clusius and G. Dickel, Z. Phys. Chem., B44,397450,451473 (1939). 
K. E. Grew and T. L. Ibbs, Thermal Difision in Gases, Cambridge University Press (1952); K. E. Grew, 

in Transport Phenomena in Fluids ( H .  J. M .  Hanley, ed.), Marcel Dekker, New York (1969), Chapter 10. 
R. B. Bird, Advances in Chemical Engineering, 1,155-239 (1956), 9.D.2; errata, 2,325 (1958). 
S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases, 3rd edition, 

Cambridge University Press (19701, pp. 268-271. 
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L, is short with respect to the radius of rotation R,, and the solution density may be consid- 
ered a function of composition only. Determine the distribution of the two components at 
steady state in terms of their partial molar volumes and the pressure gradient. The latter is 
obtained from the equation of motion as 

For simplicity, we assume that the partial molar volumes and the activity coefficients are con- 
stant over the range of conditions existing in the cell. 

At steady state j, = 0, and the relevant terms in Eq. 24.2-10 give for species A 

Inserting the appropriate expression for the pressure gradient and then multiplying by 
(V5/xA)dz, we get for species A 

Then we write a similar equation for species B, which is 

Subtracting Eq. 24.2-18 from Eq. 24.2-17 we get 

We now integrate this equation from z = 0 to some arbitrary value of z, taking account of the 
fact that the mole fractions of A and B at z = 0 are XAO and xBU, respectively. This gives 

If g, is treated as constant over the range of integration, then we get 

Then we take the exponential of both sides to find 

This describes the steady-state concentration distribution for a binary system in a constant 
centrifugal force field. Note that, since this result contains no transport coefficients at all, the 
same result can be obtained by an equilibrium thermodynamics analysis." However, if one 
wishes to analyze the time-dependent behavior of a centrifugation, then the diffusivity for the 
mixing A-B will appear in the result, and the problem cannot be solved by equilibrium 
thermodynamics. 

l o  E. A. Guggenheim, Thermodynamics, North-Holland, Amsterdam (1950), pp. 356-360. 
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524.3 CONCENTRATION DIFFUSION AND DRIVING FORCES 

In Chapter 17 we wrote Fick's first law by stating that the mass (or molar) flux is propor- 
tional to the gradient of the mass (or mole) fraction, as summarized in Table 17.8-2. 

On the other hand, in Eq. 24.2-10 it appears that the thermodynamics of irreversible 
processes dictates using the activity gradient as the driving force for concentration diffu- 
sion. In this section we show that either the activity gradient or the mass (or mole) frac- 
tion gradient driving force may be used, but that each choice requires a different 
diffusivity. These two diffusivities are related, and we illustrate this for a binary mixture. 

When we drop the pressure-, thermal-, and forced-diffusion terms from Eq. 24.2-10, 
we get 

This may be rewritten by making use of the fact that the activity coefficient is a function 
of xA to obtain 

d l n  UA 
J; = -cgAB(-) d In XA T,P vxA 

The activity may be written as the product of the activity coefficient and the mole frac- 
tion (a, = yAxA) SO that 

If the mixture is "ideal," then the activity coefficient is equal to unity, Eq. 24.3-3 becomes 
the same as Eq. (B) of Table 17.8-2, and BA, = 9,,. 

If the mixture is "nonideal," one can express the binary diffusivity 9AB as 

then Eq. 24.3-2 and 3 become 

which is one of the forms of Fick's law (see Eq. (B) of Table 17.8-2). In order to measure 
B,,, one has to have measurements of the activity as a function of concentration, and for 
this reason BAB has not been popular. 

a: Toluene (A) - Benzene (B) 
cn b: Toluene (A) - Carbon tetrachloride ( B )  
Y . + 
G c: Decane (A)  - Hexadecane ( B )  
1 rn 

0.0 1 I I I I I I I I I 

0.0 0.2 0.4 0.6 0.8 1 .O 
Mole fraction xA 

Fig. 24.3-1. Diffusivity in ideal liquid mixtures at 
25°C [P. W. M. Rutten, Diffusion in Liquids, Delft Uni- 
versity Press (1992), p. 311. 

Mole fraction of acetone 

Fig. 24.3-2. Diffusivity in a nonideal liquid mixture 
(acetone-chloroform (at 25°C) [P. W. M. Rutten, Dif- 
firsion in Liquids, Delft University Press (1992), p. 321. 
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Fig. 24.3-3. Effect of activity on the product of viscosity and 

1 .0 diffusivity for liquid mixtures of chloroform and diethyl 
0 1.0 ether [R. E. Powell, W. E. Roseveare, and H. Eyring, Ind. 

Mole fraction ether Eng. Chem., 33,430435 (194111. 

For ideal mixtures ?hAB and GAB are identical, and are nearly linear functions of the 
mole fraction as shown in Fig. 24.3-1. For nonideal mixtures 9 A B  and RB are different 
nonlinear functions of the mole fraction; an example is shown in Fig. 24.3-2. However, 
the product pGAB has been found for some nonideal mixtures to be very nearly linear in 
the mole fraction, whereas /&JAB is not (see Fig. 24.3-3). There is no compelling reason to 
prefer one diffusivity over the other. Most of the diffusivities reported in the literature 
are and not BAB. 

924.4 APPLICATIONS OF THE GENERALIZED 
MAXWELL-STEFAN EQUATIONS 

The generalized Maxwell-Stefan equations were given in Eq. 24.2-4 in terms of the diffu- 
sional driving forces d,, and the expression for d, was given in Eq. 24.1-8. When these 
are combined we get the Maxwell-Stefan equations in terms of the activity gradient, the 
pressure gradient, and the external forces acting on the various species, given (Eqs. 24.2- 
8 or 9): 

X,Xfi 
- d, = - (v, - vp) + thermal diffusion terms 

n=1 g o o  

The thermal diffusion terms have not been displayed here, since they will not be needed 
in this section. The symbols m,, = c N l / ,  and w, designate, respectively, the volume frac- 
tion and mass fraction of species a. As explained in SS24.1 and 2, several auxiliary rela- 
tions have to be kept in mind: 

The first of these relations follows from the definition of the d,, the second is a conse- 
quence of the Onsager reciprocal relations, and the third is needed because of the intro- 
duction of an especially designated species y. The choice as to which species is 
designated as y is arbitrary; often setting y equal to a is convenient. The choice depends 
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on the nature of the system under study, and this point will be illustrated in the exam- 
ples that follow. 

In all previous chapters, the only external force that has been considered has been 
the gravitational force. In this section we set the external force per unit mass g,  equal to a 
sum of forces 

Here g is the gravitational acceleration, z, is the elementary charge on species a (for ex- 
ample, -1 for the chloride ion C1-), F = 96485 abs.-coulombs/g-equivalent is the Fara- 
day constant, 4 is the electrostatic potential, and the subscript m on the Kronecker delta 
S,, refers to any mechanically restrained matrix, such as a permselective membrane. 

In sum, for solving multicomponent diffusion problems in isothermal systems, we 
now have N mass-flux equations (of which only N - 1 are independent), the species 
equations of continuity, and the equation of motion. This set of equations has proven to 
be useful for solving wide classes of mass transfer problems, and we discuss some of 
these in the following examples. 

Of course, in order to solve multicomponent diffusion problems one needs the 
Maxwell-Stefan diffusivities Bmp that occur in Eq. 24.4-1. Very few measurements have 
been made of these quantities, which require the simultaneous measurement of the ac- 
tivity as a function of concentration. Among the few examples of such measurements are 
those made by ~utten. '  

EXAMPLE 24.4-1 

Centrifugation of 
Proteins 

Protein molecules are large enough that they can be concentrated by centrifugation against 
the dispersive tendencies of Brownian motion, and this process has proven useful for molecu- 
lar weight determination as well as for small-scale preparative separations. Show how the be- 
havior of protein molecules in a centrifugal field can be predicted, and the kind of 
information that can be obtained from their behavior in a centrifuge tube (see Fig. 24.4-1). As 
we shall see in Example 24.4-3, we may treat the protein and its attendant counter-ions as a 
single large electrically neutral molecule. Choose the protein as species y and begin with the 
mass-flux equation for it. The small ionic species needed for protein stability play no signifi- 
cant role in this development and can be ignored. 

SOLUTION We consider here a pseudobinary system of a single globular protein P in a solvent W, which 
is primarily water, and initially we restrict the discussion to a dilute solution rotating in a 
tube perpendicular to the axis of rotation (Fig. 24.,4-la) at a constant angular velocity R. For 
such a system x, = 1 and the solute flow field with respect to stationary axes will be that of 
rigid-body rotation-namely, v, = 6,Ru. 

f Initial protein band 

2 4- 

2 
y.. 
0 

.II 
2 

Fig. 24.4-1. Ultracentrifugation of proteins, with two possi- 
I 

ble orientations of the centrifuge tube. 

Ph. W. M. Rutten, Diffusion in Liquids, Delft University Press, Delft, The Netherlands (1992). 
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Then the radial diffusion of the protein is described by the r-component of the simplified 
Maxwell-Stefan equation 

We see immediately that the protein will move in the positive radial direction if its mass frac- 
tion is greater than its volume fraction-that is, if it is denser than the solvent. If Eq. 24.4-6 is 
multiplied through by cB,,, we get 

in which the usual pseudobinary Fickian diffusivity 9,+,, is introduced. The diffusivity in Eq. 
24.4-7 can be estimated from Eq. 17.4-3 as 

in which Rp is the radius of a sphere having the volume of the protein molecule, ,uw is the sol- 
vent (water) viscosity, and fp is a hydrodynamic shape factor (that is, a correction factor to ac- 
count for the nonsphericity of the protein molecule). 

From the equation of motion for the solution, we get the pressure gradient in terms of the 
angular velocity of the ultracentrifuge, thus 

The term pf12r will not vary significantly over the length of the centrifugation tube, which is 
small compared with the radius of the ultracentrifuge rotor. 

Now we want to get an appreciation of the molecular weight dependence of the pressure- 
gradient term in Eq. 24.4-7. To do that we introduce the following approximations, valid in the 
dilute solution limit, common in protein processing: 

Here kp = V , / M ~  is the partial specific volume of the protein. The p?rtial specific volume of 
the solvent may be taken as 1 ml/g without significant error, and V ,  for globular proteins 
is usually in the neighborhood of 0.75 ml/g. We see then that the decisive factor in permit- 
ting effective centrifugation is the ratio of molecular weights rather than the specific vol- 
umes, as the latter are not greatly different for the two species. 

When Eqs. 24.4-7,8,10, and 11 are combined, the protein flux takes the form 

which somewhat resembles Fick's first law. Here, the "migration velocity" for the protein is 

Note that the radial molar flux of water greatly exceeds that of protein, and that the convec- 
tive protein flux cpv,,,,,, is very small. 
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Next we substitute the molar flux of Eq. 24.4-11 into the species equation of continuity 

or, for constant 9,, 

which is the equation we want to solve for several specific situations. 

(a) Transient Behavior. We first consider migration of a thin protein band under conditions 
where fractional changes in r are small and no significant amount of protein reaches the far 
end of the tube. Then we can introduce a new independent variable u = r - v,,,t that enables 
us to transform cp(r, t )  into cp(u, t). The diffusion equation becomes 

along with the initial condition 

where C is a constant that tells how much protein is contained in the band, and the boundary 
conditions 

Equation 24.4-17 is a long-tube approximation widely used in this application. 
Equations 24.4-15 to 17 describe a Gaussian distribution of the protein about its center 

of mass, resulting from diffusion and moving with the velocity vmig,. The migration velocity 
can be measured, and this measurement yields a product of protein diffusivity and molecu- 
lar weight. The broadness of the band in turn provides an independent measure of the dif- 
fusivity, and thus, combined with knowledge of the migration velocity and specific 
volumes, the molecular weight.2 If the molecular weight is known, for example, from mass 
spectrometry, the shape factor f, can be determined. This, in turn, is a useful measure of 
protein shape. 

(b) Steady Polarization. We next consider long-time behavior when the protein has been 
concentrated at the end of the tube and has attained a steady state. Under these circum- 
stances, there is no radial motion and Eqs. 24.4-6,9, and 10 give 

The concentration gradient may be measured, and all other quantities except for Mp may be 
determined independently of the centrifugation process. Protein activity coefficients may, for 
example, be obtained from osmotic pressure data. Therefore the molecular weight of the pro- 
tein may be unambiguously determined. Only mass spectrometry can provide better accu- 
racy, and it is not suitable for all proteins. 

(c) Preparative Operation. The speed of centrifugal separation can be greatly increased 
by tilting the tube as in Fig. 24.4-1b. Here the protein is forced toward the outer boundary 
of the tube by centrifugal action, and the resulting density gradient causes an axial bulk 

R. J. Silbey and R. A. Alberty, Physical Chemisty, 3rd edition, Wiley, New York (2001), p. 801. 



924.4 Applications of the Generalized Maxwell-Stefan Equations 779 

transport by free convection, a process similar to that used for larger particles in disk 
 centrifuge^.^ 

Show that the results of the last example are equivalent to treating the proteins as small hy- 
drodynamic particles. 

Proteins as 
Hydrodynamic SOLUTION 
Particles 

If, in the previous example, we had not used the simplifications in Eqs. 24.4-9 and 10, we 
would have obtained for the migration velocity in steady-state operation 

If now we restrict ourselves to dilute solutions so that the activity coefficient is very close to 
unity, we can set Bp,, to 9,, and use Eq. 24.4-8 for the diffusivity and Eq. 24.4-9 for the pres- 
sure gradient. Then the migration velocity becomes 

Next we recognize that L12r = gey (an effective body force per unit mass resulting from the 
centrifugal field) and that K /  R = N (Avogadro's number), and we get 

where we have used the approximation w,  = pp/(pp + pw) = pp/pw for a dilute protein_solu- 
tion. Next we set kp = ($TR$?, the volume per mole of protein, and pp/cP = ($.rr~;)(p(~))N, the 
mass per mole of protein; here p'P' is the pure protein density. When these quantities are in- 
serted into Eq. 24.4-21 we get 

Comparison with Eq. 2.6-17 shows that the migration velocity for a nonspherical protein in a 
centrifugal field is the same as the terminal velocity for a sphere in a corresponding gravita- 
tionaI field (divided by the factor f p  to account for deviation from sphericity). 

One may also start with an equation of motion for a particle P initially at rest in a suspen- 
sion sufficiently dilute that particle-particle interactions are negligible. Then the particle ve- 
locity relative to a large body of quiescent fluid F is 

Here n, is the number concentration of particles, V ,  and R, are the particle volume and ra- 
dius, and the subscript m refers to the conditions "far" from the particle (that is, outside the 
hydrodynamic boundary layer). Equation 24.4-23 is the equation of motion with an added 
term for Brownian motion, which is important, for example, in aerosol c~llection.~ The sym- 
bol F,, stands for the electromagnetic force per particle. 

See, for example, Perry's Chemical Engineers' Handbook, McGraw-Hill, New York, 7th edition (1997), 
p. 18-113. 

See L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford (1987), pp. 90-91, 
Problem 7. 
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EXAMPLE 24.4-3 

Diffusion of Salts in an 
Aqueous Solution 

SOLUTION 

The diffusivity 9,, in this example corresponds to 9,, of Example 24.4-1, and it may be 
seen that there is a very close analogy between the molecular and particulate descriptions. 
There are, in fact, only three significant differences: 

1. The thermodynamic activity coefficient is considered to be unity for the particle. 

2. The instantaneous acceleration of the molecule is neglected. 

3. The effects of past history (that is, the Basset force given by the integral in Eq. 24.4-23) 
are neglected for the molecule. 

In practice, activity coefficients tend to approach unity in dilute solutions, and the Basset 
forces tend to be small even for large particles. However, the instantaneous effects of accelera- 
tion can be appreciable for particles greater than about one micron in diameter. 

Consider now for simplicity a 1-1 electrolyte M'X-, such as sodium chloride, diffusing in 
a system such as that shown in Fig. 24.4-2. Here well-mixed reservoirs at two different salt 
concentrations are joined by a constriction in which diffusional transfer between the two 
reservoirs takes place. The potentiometer shown in the figure measures the potential dif- 
ference A+ between the electrodes, without drawing any current from the system. Show 
how the generalized Maxwell-Stefan equations can be used to describe the diffusional 
behavior. 

The salt ( S )  is considered to be fully dissociated, so that the system is being regarded as 
ternary, with Mi, Xp, and water as the three species. We neglect the pressure diffusion term: 
the reference pressure cRT in Eq. 24.4-1 is approximately 1350 atmospheres under normal am- 
bient conditions, and the pressure differences occurring in systems such as that pictured are 
of negligible importance. 

The assumption of electroneutrality and no current flow provide the following 
constraints: 

XM- = xx = xS = 1 xw (24.4-24) 

NM+ = Nx = Ns (24.4-25) 

Here the mole fractions of the cation M ' and the anion X are equal to that of the salt S. 

I 
I 
I 
I 
I 
I 
I 
I 

- A  

Fig. 24.4-2. Salt diffusion and diffu- 
Diffusion path siin potentials. The symbol G denotes 

(arbitrary geometry and flow conditions) a galvanometer. 
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We may then select species y in Eq. 24.4-1 to be species a, and use Eqs. 24.4-5 and 24 to 
obtain for the cation and the anion 

Next we use the expression for g, in Eq. 24.4-5, as well as Eqs. 24.4-24 and 25, to get: 

Note that the ion-ion diffusivity does not appear, because there is no velocity difference be- 
tween the two ions when there is no current. 

The electrostatic potential 4 may be eliminated between these two equations by adding 
them together. The resulting flux expression 

may be put into the form of Fick's law 

by introducing the definition of the concentration-based diffusivity 

and, since as = aM+ax = and y2 = G, 

which is the mean ionic activity coefficient. 
The ion-water diffusivities may in turn be estimated from limiting equivalent conduc- 

tances in the form 

A,, = lim z,B, wF2 
x,-o RT 

As a practical matter, diffusivities vary much less with concentration than do conductances, 
and salt diffusivities can be estimated with fair accuracy up to about IN  concentrations from 
limiting conductances. A basic reason for this is that ion-ion diffusional interactions, which 
always occur when a current flows, become appreciable at even modest salt concentrations 
(see Problem 24C.3). 

Eq. 24.4-32 shows that the slower ion tends to dominate in determining the salt diffusiv- 
ity, and this fact is the justification for treating the protein as a large neutral molecule in Ex- 
ample 24.4-1. Soluble proteins are nearly always charged, but they and their attendant 
counter-ions behave like a neutral salt, and its diffusivity is dominated by the protein moiety, 
which in turn acts very much like a hydrodynamic particle. 

In a concentration gradient, the faster of the two ions tends to get ahead of the slower. 
However, this results in the formation of a potential gradient tending to speed the slower ion 
and slow the faster one. It can be shown (see Problem 24B.2) that this so-called junction poten- 
tial is described by 

However, these potentials cannot be measured directly, as the electrodes needed to complete 
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However, these potentials cannot be measured directly, as the electrodes needed to complete 
the electric circuit affect the measurement (see Problem 24C.3). One can obtain an approxi- 
mate value through the use of potassium chloride salt  bridge^.^ 

This elementary example is only a very bare introduction to a complex and impor- 
tant subject. The interested reader is referred to the large literature on electr~chemistry.~ 

EXAMPLE 24.4-4 

Departures from Local 
ElectroneutraZity: 
~lectro-Osmosis6 

It is already clear from the preceding discussion of diffusion potential that local departures 
from electroneutrality do exist in diffusing electrolytes, and they are not always negligible. To 
examine this situation, consider a long tube of circular cross section containing an electrolyte, 
at least one component of which is adsorbed on the tube wall. This adsorption results in a 
fixed surface charge and a region of net charge, the diffuse double layer, in the solution adjacent 
to the tube wall. This net charge will produce an electric field within the tube that varies with 
radial, but not axial, position. If a potential difference is applied across the ends of the tube, 
the result will be a fluid flow, known as electro-osmosis. Conversely, if a hydrodynamic pres- 
sure is used to produce a flow, it will result in a potential difference, known as a streaming po- 
tential, developing across the ends of the tube. These phenomena are representative of a class 
known as electrokinetic phenomena. Develop an expression for the electro-osmotic flow de- 
veloped in the absence of an axial pressure gradient. 

SOLUTION Our first problem is now to develop an expression for the electrostatic potential distribution, 
after which we can calculate the electro-osmotic flow. 

The starting point for the electrostatic potential calculation is the Poisson equation 

Here p, is the electrical charge density 

and E is the dielectric permittivity of the solution. For the problem at hand, Eq. 24.4-36 re- 
duces to 

Now, following Newman6 we assume that the concentration of charge follows a Boltzmann 
distribution 

and use a truncated Taylor expansion, known as the Debye-Hiickel approximation, so that 
we can obtain an explicit solution. Here the subscript w can be considered to indicate the cen- 
terline of the tube, because, as we shall see, the charge density drops off very rapidly with the 
distance from the tube wall. For the same reason we may neglect the wall curvature and as- 
sume that the net charge at the centerline is zero so that 

d2'$ - 4 F2 -1/2 

where h = 
dy2 h2 

R. A. Robinson and R. H. Stokes, Electrolyte Solutions, revised edition, Butterworth, London (19651, 
p. 571. This venerable reference contains a great detail of useful data. 

See, for example, J. S. Newman, Electrochemical Systems, 2nd edition, Prentice-Hall, Englewood 
Cliffs, N.J. (1991). Example 24.4-4 is taken from p. 215. 
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Here y = R - r is the distance measured into the fluid from the wall, and h is the Debye length, 
which tends to be very small. Thus for a 1-1 electrolyte 

where the units of Debye length h and the salt concentration cs are Angstroms and molarity, 
respectively. Thus for a 0.1 N solution, the Debye length is only about 10 A. As a result, de- 
partures from neutrality can usually be neglected in macroscopic systems. Similarly, concen- 
tration imbalances are very small for junction potentials, which are typically no more than 
tens of millivolts (see also Problem 24C.4). 

We now need boundary conditions to integrate Eq. 24.4-38, and the first is just the as- 
sumption of electroneutrality at large distances from the wall: 

Y B.C. 1: AS - + a, 4 - 0  (24.4-43) 
h 

The second is obtained from Gauss's law (see ~ewman' ,  p. 75), assuming there is no potential 
gradient within the solid surface itself, 

B.C. 2: At y = 0, 

where q, is the surface charge per unit area. Integration of Eq. 24.4-40 then gives 

Newman6 gives a more rigorous development that allows for surface curvature, but for any 
tube of radius greater than tens of nanometers, this is really not necessary. 

We are now ready to put these results into the equation of motion, and we shall here as- 
sume steady laminar flow, so that 

in which the axial electric field strength is 

Neglecting the pressure gradient and using Eq. 24.4-36 to eliminate p,, we find 

Now, if curvature is again neglected, this equation may be integrated to give 

The quantity in the first set of parentheses may be considered to be an experimentally de- 
termined property of the system, and exp(-y/h) is negligible over the bulk of the tube 
cross section for essentially all tubes. Thus the velocity is uniform except very near the 
wall. 

Such electro-osmotic flows are being widely used in microscopic flow reactors and sepa- 
rators-for example, in diagnostic devices-and they offer the advantage of negligible con- 
vective dispersion. Note that the velocity is effectively independent of the tube radius. Thus 
electro-osmosis especially useful in tubes of small radii, where large pressure gradients 
would otherwise be required to produce the same flow velocity. 
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EXAMPLE 24.4-5 

Additional Mass 
Transfer Driving Forces 

We have now covered all of the mass transfer mechanisms normally considered in a nonequi- 
librium thermodynamic framework, but there are other possibilities that have proven signifi- 
cant. Here we consider three: the force on a charged particle moving across a magnetic field, 
and the forces of electrical or magnetic induction. These contain nonlinear terms-that is, 
products of species velocities and force fields-and therefore they are, strictly speaking, out- 
side the scope of irreversible thermodynamics. However, it has been found permissible to 
add them to the body forces appearing in Eq. 24.4-1. Develop a specific form for the resulting 
equation, and show how it can be used to describe mass transfer processes affected by one or 
more of these additional forces. 

SOLUTION We begin by defining an extended driving force for mass transfer, d,,,, to include these addi- 
tional forces: 

Here B is the magnetic induction, E = VI$ the electric field, Ti' the electric susceptibility, and 
l7,"""he magnefic susceptibility. 

The origin of the terms containing [v, X B] and [E VEI in Eq. 24.4-50 is in the Lorentz 
relation 

where qo is the electric charge. This is shown explicitly in Eq. 24.4-51 for a charged particle 
moving through a magnetic field (see Problem 24B.1), but only indirectly for the electric in- 
duction [E . VE], which is based on the interaction of a nonuniform field with an electric dipole. 

To show the origin of the [E . VEI term in Eq. 24.4-50, consider, for example, the one- 
dimensional situation pictured in Fig. 24.4-3. An electric field will tend to align dipoles that 
are normally randomized by Brownian motion, and, if the field is nonuniform, there will be a 
net force on an aligned dipole of magnitude 

where qo is the magnitude of the charge at either end of the dipole and 1 is the distance be- 
tween the two centers of charge. 

In some cases-for example, the zwitterion form of amino acids-one can determine 
both q0 and I from molecular theory. However, for particles and most molecules, one finds 
only induced dipoles: a partial charge separation resulting from the presence of the field. Under 
the conditions of interest here, only a small fraction of intrinsic dipoles is aligned with the 
field, and both the fractional alignment of these and the strength of the induced dipoles are 

Unaligned dipoles 
(in absence of an electric field) 
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z = 0 Fig. 24.4-3. Origin of the dielectro- 
Position, z phoretic force given in Eq. 24.4-52. 
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normally assumed to be proportional to the field strength. All these factors are collected into 
what is usually an experimentally determined quantity, the electric susceptibility. The origin of 
the magnetophoresis term is analogous. We now turn to brief discussions of applications of 
these new separation mechanisms. 

The behavior of ions moving across a magnetic field is the basis of classic mass spectrom- 
etry, although time-of-flight mass spectrometers are also in widespread use. Both types of 
spectrometers are highly developed and find extensive applications for analyzing mixtures 
from simple inorganic gases to complex nonvolatile biological molecules such as proteins. In 
fact, where applicable, they provide the most accurate means available for determining pro- 
tein molecular weight, often within one dalton for a molecular weight typically of the order of 
tens of thousands. 

Both dielectro- and magnetophoresis have long been used on a large process scale for re- 
moving small particles suspended in fluids. Nonuniform fields are achieved in the case of di- 
electrophoresis by using a packing of small dielectric particles, such as glass beads, between 
electrodes (see, for example, Problem 24B.1). Because particles always move toward the 
stronger field, one can use alternating current, usually at some tens of kilovolts, and thus 
avoid electrode reactions. Current flows are extremely small and can normally be neglected. 
In magnetophoresis, a nonuniform field is achieved by placing ferromagnetic meshes be- 
tween poles of an electromagnet, which can of course work only with paramagnetic or ferro- 
magnetic materials. A classic example is the removal of color bodies consisting of magnetic 
iron oxides to whiten clay. 

New uses for dielectrophoresis have been developing very rapidly in the fields of biol- 
~ g y , ~  advanced materials: including nanotechnology, and environmental monitoring? They 
include classification, quantitative analysis, and manipulation, including the formation of or- 
dered arrays. 

Many of these applications require major extensions of Eq. 24.4-50 to include quadrupo- 
lar and even octopolar forces.1° Moreover, there are strong interactions between electrical 
forces and hydrodynamics, and both device and particle shape can have profound effects." 

524.5 MASS TRANSFER ACROSS SELECTIVELY 
PERMEABLE MEMBRANES 

Membranes may be viewed physically as thin sheets, usually separating two bulk phases 
and controlling mass transfer between them. In addition, the membrane is typically kept 
stationary against external pressure gradients and internal viscous drag by some me- 
chanical constraint, typically a wire mesh or equivalent structure. Membranes consist of 

C. Polk, IEEE Transactions on Plasma Science, 28,6-14 (2000); J. Suehiro et al., 1. Physics D: Applied 
Physics, 32,2814-2320 (1999); J. P. H. Bert, R. Pethig, and M. S. Talary, Trans. Inst. Meas. Control, 20,82-91 
(1998); A. P. Brown, W. B. Betts, A. B. Harrison, and J. G. O'Neill, Biosensors and Bioelectronics, 14,341-351 
(1999); 0. D. Velev and E. W. Kaler, Langmuir, 15,3693-3698 (1999); T. Yamamoto, et al., Conference 
Record, IAS Annual Meeting (IEEE Industry Applications Society), 3,1933-1940 (1998); M. S. Talary, et al., 
Med. and Bio. Eng. and Computing, 33,235-237 (1995); H.  Morgan and N. G. Green, J .  Electrostafics, 42, 
279-293 (1997). 

L. Cui and H. Morgan, J .  Micromech. Microeng., 10,72-79 (2000); M .  Hase et al., Proc. Intl. Soc. 
Optical Eng., 3673,133-140 (1999); C. A. Randall, IEEE Intl. Symp. on Applications of Ferroelectrics, 
Piscataway, N.J. (1996). 

P, Baron, ASTM Special Technical Publication, 147-155 (1999); R. J. Han, 0. R. Moss, and B. A. Wong, 
Aerosol Sci. Tech., 241-258 (1994). 

'' C. Reichle et al., J. Phys. D: Appl. Phys., 32,2128-2135 (1999); A. Ramos et al., J .  Electrostatics, 47, 
71-81 (1999); M Washizu and T. B. Jones, J .  Electrostatics, 33,187-198 (1994); 8. Khusid and A. Acrivos, 
Phys. Rev. E, 54,5428-5435 (1996). 

" S. Kim and S. J. Karrila, Microhydrodynamics, Butterworth-Heinemann, Boston (1 991); 
D. W. Howard, E. N. Lightfoot, and J. 0. Hirschfelder, AIChE Journal, 22,794-798 (1976). 
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an insoluble, selectively permeable matrix rn and one or more mobile permeating species 
a, Pf . . . . Mathematically they are defined by three constraints: 

1. Negligible curvature 

where 6 is the membrane thickness, and R,,,, is the membrane surface radius of 
curvature. It follows that mass transport is unidirectional and perpendicular to 
the membrane surface. 

2. Immobility of the matrix 

where v, is the velocity of the matrix, which serves as the coordinate reference. 

3. Pseudosteady behavior 

where a is any contained species, including the matrix m. This really means that 
the diffusional response times within the membrane are short compared to those 
in the adjacent solutions. 

We now wish to show how these constraints can be used to specialize the Maxwell- 
Stefan equations and to produce compact but reliable descriptions of transport in 
membranes. 

We begin by recognizing that the matrix must be considered to be one of the diffus- 
ing species, and we choose to use the Maxwell-Stefan equations only for the mobile 
species. We may then use Eqs. 24.4-1 and 5 and write for a mixture of N mobile species: 

Note that cr has been chosen as the reference species in the equation for each a and that the 
force holding the membrane stationary-that is, the last term in Eq. 24.4-5-has resulted in 
the elimination of the mass-fraction term in the expression for pressure diffusion.' 

We next note that, from a thermodynamic point of view, the number of components 
is the number of independent mobile species in the solutions bathing the membrane, be- 
cause it is the external solution that determines the state of the membrane at equilibrium. 
We also recognize that, for most situations, the effective molecular weight of the matrix 
cannot be determined. We thus define the internal system as including only the mobile 
species and define mole fractions of these species to sum to unity. However, since the in- 
teraction of each species with the membrane is quite significant, we also define BLM by 

Equation 24.5-5 completes the specialization of the Maxwell-Stefan equations for mem- 
brane transport, but we still have to select a generally applicable set of boundary conditions. 

These conditions are obtained by requiring the total "potential" of each species to be 
continuous across the boundary 

E. M. Scattergood and E. N. Lightfoot, Trans. Faraday Soc., 64,1135-1146 (1968). 
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Here the subscripts rn and e refer to conditions within the membrane and in the external 
solution, respectively. The activity a, is to be calculated at the composition of the mem- 
brane phase but at the pressure of the external solution, and 

In practice, the solutes are normally considered incompressible and v, to be constant 
across the interface. 

Often conditions inside the membrane are very difficult, or even impossible, to de- 
termine, and Eq. 24.5-6 is primarily useful under these circumstances to obtain a qualita- 
tive understanding of membrane behavior. Partly for this reason complete descriptions 
of membrane transport are rare (see, however, Scattergood and Lightfoot'). Highly sim- 
plified, but often directly useful, introductions to membrane transport are available in a 
variety of One venerable approximation, found especially useful by biolo- 
gists, is that of Kedem and Katchalsky." 

However, rapid progress is being made in obtaining fundamental data, and much of 
this is reported in the Journal of Membrane Science. One important area is that of micro- 
porous  membrane^.^ One can also expect advances in modeling behavior. It has long been 
known7 that the generalized Lorentz reciprocal theorem for creeping flows8 provides a 
sound basis for extending hydrodynamic diffusion theory of 517.4 to multicomponent 
diffusion in microporous membranes. Recently developed computational techniques9 
should make the necessary computations tractable enough to provide real predictive 
power. These techniques can also be used to develop self-assembling str~ctures,'~ which 
offer new possibilities for highly selective membranes. 

This field offers an extremely wide variety of membrane types and of mass transfer 
processes taking place in them. One can distinguish between biological" and synthetic12 
membranes, but there are very wide ranges of composition and behavior within each of 
these categories. Among the synthetic group there are "homogeneous" membranes, in 
which the matrix acts as a true solvent for permeating species, and "microporous" mem- 
branes, in which the permeating species are confined to matrix-free regions, as well as 
mixtures of the two types. These factors are important from a materials standpoint, but 
the formalisms needed to describe their transport behavior are much the same for all. 

E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems, 2nd edition, Cambridge University Press 
(1997), p. 580. 

W. M. Deen, Analysis of Transport Phenomena, Oxford University Press (1998), p. 597. 
J. D. Seader and E. J. Henley, Separation Process Principles, Wiley, New York (1998). 
0. Kedem and A. Katchalsky, Biochem. Biophys. Acta, 27,229 (1958). 
K. Kaneko, J. Membrane Sci., 96,5949 (1994); K. Sakai, J. Membrane Sci., 96,91-130 (1994); S. Nakao, 

J.  Membrane Sci., 96,181-165 (1994). 
E. N. Lightfoot, J. B. Bassingthwaighte, and E. F. Grabowski, Ann. Biomed. Eng., 4,78-90 (1976). 
J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, Prentice-Hall(1965), Martinus 

Nijhoff (1983), p. 62, p. 85. 
S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications, Butterworth- 

Heinemann, Boston (1991). 
lo  I. Mustakis, S. C. Clear, P. F. Nealey, and S. Kim, ASME Fluids Engineering Division Summer 

Meeting, FEDSM, June 22-26 (1997). 
"B. Alberts et al., The Molecular Biology of the Cell, Garland, New York (19991, Chapters 10 and 11. 
l2 W. S. W. Ho and K. K. Sirkar, Membrane Handbook, Van Nostrand Reinhold, New York (19921, 

p. 954; R. D. Noble and S. A. Stern, Membrane Separations Technology, Membrane Science and Technology 
Series, 2, Elsevier (Amsterdam), p. 718; R. van Reis and A. L. Zydney, "Protein Ultrafiltration" in 
Encyclopedia of Bioprocess Technology (M. C. Flickinger and S. W. Drew, eds.), Wiley, New York (1999), 
pp. 2197-2214; L. J. Zeman and A. L. Zydney, Microfiltration and Ultrafiltration, Marcel Dekker, New York 
(1996). 
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There are also a wide variety of process conditions in widespread use. Here we consider 
only a few examples to illustrate commonly encountered situations. 

EXAMPLE 24.5-1 

Concentration 
Diffusion Between 
Preexisting Bulk Phases 

Consider "solute" A diffusing through a membrane placed between binary solutions of solute 
A in solvent B under the influence of concentration gradients alone. This is a commonly encoun- 
tered situation, including dialysis, blood oxygenation, and many gas-separation systems.I3 
There are many variants, including facilitated d i f i s i o n  (see Problem 24C.8). Hemodialysis is a 
special case, where pressure differences are used to drive water across the membrane, but 
concentration diffusion of solutes is of primary interest from the present standpoint. Assume 
for the moment that the flux of solvent, NB, is already known. Develop an analog to Fick's 
first law for this system. 

SOLUTION We are primarily concerned here with solute A, and the Maxwell-Stefan equation for it takes 
the form 

This may be rearranged to give 

This is reminiscent of Fick's law, with the first term on the right corresponding to the Fickian 
diffusive flux and the second to the convective term. However, the effective diffusivity now 
contains a membrane contribution, and the convective term is now weighted by a ratio of dif- 
fusivities. This situation corresponds to the situation pictured in Fig. 24.5-1. The arrow point- 
ing to the right represents the diffusion relative to the solvent, modified by the interaction 
with the matrix, while the arrow pointing to the left represents the "drag" of the membrane, 
which tends to reduce the transport relative to the convection occurring in the absence of the 
membrane matrix-namely, xA(NA + NB). Note that, in general, there are mass transfer 
boundary layers on both sides of the membrane. 

There are several limiting situations of interest. If the membrane interacts only very 
weakly with the solute, B h  >> BAB. Then 

Diffusion relative to 
solvent, and interaction 
with membrane 

(dialysis processes) Fig. 24.5-1. Intramembrane 
mass transport. 

'%. J. Koros and G. K. Fleming, J. Membrane Sci., 83,l-80 (1993). 
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which is exactly Fick's law. However, it must be remembered that both molar concentration 
and diffusivity are those in the membrane phase. We next look at a limiting situation, where 

x*(NA + NB) << N* (24.5-1 1) 

and the distribution between membrane and solution is linear, so that 

= K ~ c ~ m  (25.5-12) 

where the subscripts e and m refer to the external solution and membrane phases, respec- 
tively, and KD is the distribution coefficient for the two phases. We may then write 

NA = P(c/.eO - cAe& (24.5-13) 

where 

is known as the membrane permeability, and 

D ~ , e f f  = (a;, + J1 + 

The subscripts AeO and refer to the solute concentrations at the "upstreamr' and "down- 
stream" sides of the membrane. 

EXAMPLE 24.5-2 

Ultrafiltration and 

Now consider the filtration processes, in which it is desired to remove a solvent selectively 
relative to a solute by pressure-driven flow across a solute-rejecting membrane. Applications 
include ultrafiltration and reverse osmosis, the former dealing with macromolecular and the 

Reverse Osmosis latter with small solutes.14 Microfiltration and nanofiltration are formally similar, but the par- 
ticulate nature of the entities being removed presents additional complications we do not 
wish to consider here.I2 Develop a framework for describing solvent flow rate and filtrate 
composition as functions of driving pressure. 

SOLUTION Inevitably some solute moves through the membrane along with the solvent, as indicated in 
Fig. 24.5-1, and it will now be necessary to consider the Maxwell-Stefan equations for both 
species. However, membrane filtration is a complex process requiring a great deal of informa- 
tion to obtain a complete a priori description, and we therefore begin with an overview of 
characteristic behavior using Fig. 24.5-2 as a point of departure. Here both the flow through 
the membrane and the composition of the filtrate are shown schematically as functions of the 

Transmembrane pressure drop 
Fig. 24.5-2. Ultrafiltration: flow 
and solute rejection. 

- -- 

l 4  R. J. Petersen, I. Membrane Sci., 83,81-150 (1993). 
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transmembrane pressure drop. First we note that the flow increases with pressure drop, 
slowly at first, but approaching a linear relation asymptotically, and the asymptote crosses 
the line of zero velocity at a finite pressure drop, The ratio of the filtrate solute concen- 
tration to the feed concentration drops with increasing pressure drop, from unity toward an 
asymptote,15 which is normally much lower than unity. Our main concern in this brief intro- 
duction is to explain this characteristic behavior in terms of key thermodynamic and trans- 
port behavior. 

This situation differs fundamentally from that just described, in that pressure diffusion 
now comes into play, and in that the downstream solution is produced by the transmem- 
brane mass transfer. Hence the downstream ratio of solute to solvent is the same as the ratio 
of the corresponding mass transfer rates. There is, therefore, no boundary layer on the down- 
stream side of the membrane, and it is an almost universal practice to use a composite struc- 
ture. Such composite membranes consist of a very thin selective layer on the upstream face, 
and a comparatively thick, highly porous, nonselective backing that provides mechanical 
strength. This backing can be ignored in the present example. 

We begin by focusing on the intramembrane behavior for which the Maxwell-Stefan 
equations, modified from Eq. 24.5-4, assume the forms 

Here the subscripts S and W refer to the partially rejected solute and solvent (usually water) 
respectively. The terms x , ~ ,  have been replaced by c,v,/c, to make the presence of the vol- 
ume fractions 

4, = c x  (24.5-18) 

explicit. In addition, the first term on the right has been rewritten as a reminder that the de- 
rivative represents the gradient of the partial molar free energy 

with composition, temperature, and pressure being held constant. 
We begin by examining flow behavior, and to do this we add Eqs. 24.5-16 and 17 to get a 

relation between species transport rates and intramembrane pressure gradient 

The subscript m on pressure is a reminder that we have so far calculated only the pressure 
drop inside the membrane. Here advantage has been taken of the Gibbs-Duhem equation 

and the fact that the volume fractions sum to unity. 
To obtain the directly measurable difference between upstream and downstream solu- 

tion pressures, we must go back to Eq. 24.5-6, which takes the form 

'%ctually there is a continuing, very slow drop of filtrate solute concentration even at very high 
pressure drops, presumably resulting from the compression of the membrane. However, we shall not 
attempt to deal with this small effect here. 
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Looking at the upstream side of the membrane, for example, Eq. 24.5-22 states that a finite 
pressure drop across the membrane interface is required to drive the solute against an in- 
crease in the thermodynamic activity. Then the measurable transmembrane pressure drop is 

where 6 is the membrane thickness, and 

where the subscripts 0 and 6 refer to the upstream and downstream sides of the membrane, 
respectively. The intramembrane osmotic pressures are seldom known, but they are substan- 
tially smaller than the corresponding solution values (see Problems 24C.7 and 8). At the pres- 
ent state of understanding, Eq. 24.5-24 explains why there is a finite intercept to the 
asymptotic flow behavior, and an elimination of the membrane contributions provides an 
upper limit to it. It also provides some insight into intramembrane behavior from experimen- 
tal observations, but not an a priori prediction of the intercept. 

Next we eliminate the pressure gradient from Eq. 24.5-16 with the aid of Eq. 24.5-23 

This expression can be integrated to obtain the solute concentration profile (see, for example, 
Problems 24C.7 and 8). In general the concentration profile shows an increasingly negative 
slope in the flow direction, and this feature becomes more pronounced as the flow rate 
through the membrane increases-that is, as the transmembrane pressure drop becomes 
larger. 

At very low flow rates, Ns and Nw are relatively small and diffusion is relatively fast. 
There is only a small drop in solute concentration across the membrane, and the result is the 
poor rejection seen for low pressure drops in Fig. 24.5-2. This behavior is suggested by the 
zero-flow concentration profile in Fig. 24.5-1. 

At very high flow rates, on the other hand, concentration gradients are large and diffu- 
sion is weak, except very close to the downstream boundary of the membrane, where a very 
large negative concentration gradient develops. Near the upstream boundary, the two mass- 
flux terms are large compared to their difference, and one may neglect concentration gradi- 
ents in calculating the mass-flux ratio: 

The bases of solute exclusion now become clear: 

1. Thermodynamic exclusion, defined by the ratio x s / x ,  

2. Frictional differentiation, defined by differences in the interaction terms with the 
- - 

membrane (Vs/Vw)(3kM/Bh,). 

Both effects are used in practice and are illustrated in the problems. 

Consider now membranes containing immobilized charges consisting of polyelectrolyte gels. 
Such gels contain repeated covalently bound ionic groups, as pictured in Fig. 24.5-3. The 

Charged Membranes membrane interior may then be viewed as a solution containing spatially bound fixed charges, 
and l b m ~ ~  ~xclusion'~ mobile counter-ions, invading electrolyte, and water. For simplicity assume that the fixed 

l6 H. Strathmann, "Electrodialysis," Section V in Membrane Handbook (W. W .  S. Ho and K. K. Sirkar, 
eds.), Van Nostrand Reinhold, New York (1992). 
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SOLUTION 

Fig. 24.5-3. A sulfonic acid based ion- 
exchange membrane. 

Membrane Molecular structure 

charges are anions, written as X-, and the counter-ions are cations, written as M'. The exter- 
nal solution is aqueous M+X-, and it provides the invading electrolyte M'X-. Show how the 
presence of fixed charges produces an exclusion of invading electrolyte. 

This system is dominated by the behavior at the membrane boundary, and we therefore return 
to Eq. 24.5-6, written for the water and for the salts S or M Y .  The expression for water is 

where the subscripts e and m refer to the external solution and the membrane, respectively. 
Since the intramembrane electrolyte concentration is always higher than the external, thus re- 
sulting in a lower internal chemical activity for water, the membrane interior is at a higher 
pressure than the external solution (see, for example, Problem 248.4). 

The corresponding equation for the salt S yields 

or 

It follows that 

- X ~ ' e X ~ - e  Y5e 
-- - = exp(% A n )  

X ~ - m X ~  In Y~wi 

and therefore that the concentration of salt in the membrane phase is less than that in the so- 
lution. This suppression of invading electrolyte by the presence of fixed charges is known as 
Donnan exclusion (see Problem 248.3). 

The preponderance of counter-ions, here M+, inside the membrane, tends to cause them 
to diffuse out to the external solution, whereas the co-ions, here X-, tend to diffuse into the 
membrane. The result is the development of an electrical potential difference between the 
membrane and external solution. This is normaIly estimated, by negIecting osmotic effects 
and assuming activity coefficients of unity, as 

Equations 24.5-27 to 30 also apply to the relations between solutions on opposite sides of a 
membrane containing a partiaIly excluded solute on one side, which now corresponds to the 
membrane phase of the above development. Equation 24.5-31 is often used for lack of knowl- 
edge of the neglected effects. 
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Thus Eq. 24.5-31 is particularly widely used by biologists to explain the origin of the 
ubiquitous potentials observed across biological membranes.'' However, the means by which 
biological membranes can produce and control ion selectivity are extremely sophisticated and 
are only beginning to be understood.17 

524.6 MASS TRANSPORT IN POROUS MEDIA 

Porous media are important in many mass transfer applications, some of which, such as 
catalysis1 have already been touched on in this text (§18.7), and they exhibit a very wide 
variety of morph~logies.~,~ Adsorptive processes, such as chromatography, usually take 
place in granular beds and the absorbent particles themselves are often porous solids. Sec- 
ondary recovery of crude petroleum typically involves mass transfer in porous rock, and 
freeze drying, or lyophilization, of foods and pharmaceuticals4 depends on the transport of 
water vapor through a porous layer of dried solids. Related transport processes occur 
throughout the large field of particle technology,5 and, as already indicated in S24.5, some 
membranes may be considered as microporous structures. Microporous structures abound 
in living organisms and contribute importantly to both water and solute distribution3 

Discussion of porous solids also brings us full circle, back to the discussions of mo- 
mentum transfer with which this text began. Many of the models used to describe mass 
transfer in porous media are hydrodynamic in origin, and sometimes the concepts of 
mass and momentum transfer become blurred. 

Predicting the transport of liquids and gases in porous media is a difficult and chal- 
lenging problem, and no completely satisfactory theory is available. Mass is transported 
in a porous medium by a variety of mechanisms: (i) by ordinary diffusion, described by 
the MaxwellStefan equations; (ii) by Knudsen diffusion; (iii) by viscous flow according 
to the Hagen-Poiseuille equation; (iv) by surface diffusion-that is, the creeping of ad- 
sorbed molecules along the surfaces of the pores; (v) by thermal transpiration, which is 
the thermal analog of viscous slip; and (vi) by thermal diffusion. In this discussion, we 
neglect the last three of these mechanisms. 

This problem has been attacked by many investigators: and summarized by othem7 
We give here the principal results of their work. Available models are based either on 

l7 B. Hill, Ionic Channels of Excitable Membranes, Sinauer Associates, Sunderland, Mass. (1992); 
F. M. Ashcroft, Ion Channels and Disease: Channelopathies, Academic Press, New York (1999); D. J. Aidley, 
The Physiology of Excitable Cells, Cambridge University Press (1998). 

(a) R. Aris, The Mathematical Tkeoy of Diffusion and Reaction in Permeable Catalysts, Vols. 1 and 2 Oxford 
University Press (1975); (b) 0 .  Levenspiel, Chemical Reaction Engineering, 3rd edition, Wiley, New York (1999). 

M. Sahimi, Flow and Transport in Porous Media and Fractured Rock, Verlagsgesellschaft, Weinheim, 
Germany (1995); V. StanPk, Fixed Bed Operations, Ellis Horwood, Chichester, England (1994). 

F. E. Curry, R. H. Adamson, Bing-Mei Fu, and S. Weinbaum, Bioengineering Conference (Sun River, 
Oregon), ASME, New York (1997). 

(a) L. Rey and J. C. May, "Freeze-Drying/Lyophilization of Pharmaceutical and Biological 
Products" in Drugs and the Pharmaceutical Sciences ( J .  Swarbrick, ed.), Marcel Dekker, New York (1999); 
(b) P. Sheehan and A. I. Liabis, Biotech. and Bioeng., 60,712-728 (1998). 

M. Rhodes, Introduction to Particle Technology, Wiley, New York (1998). 
J. Hoogschagen, J. Chem. Phys., 21,2096 (1953), Ind. Eng. Chem., 47,906-913 (1955); D. S. Scott 

and F. A. L. Dullien, AIChE Journal, 8,113-117 (1962); L. B. Rothfeld, AIChE Journal, 9,19-24 (1963); 
P. L. Silveston, AIChE Journal, 10,132-133 (1964); R. D. Gunn and C. J. King, AIChE Journal, 15,507-514 
(1969); C. Feng and W. E. Stewart, Ind. Eng. Chem. Fund., 12,143-147 (1973); C. F. Feng, V. V. Kostrov, 
and W. E. Stewart, Ind. Eng. Chem. Fund., 13,5-9 (1974). 

E. A. Mason and R. B. Evans, II1,J. Chem. Ed., 46,358-364 (1969); R. B. Evans 111, L. D. Love, and 
E. A. Mason, J. Chem. Ed., 46,423427 (1969); R. Jackson, Transport in Porous Catalysts, Elsevier, Amsterdam 
(1977); R. E. Cunningham and R. J. J. Williams, Diffusion in Gases and Porous Media, Plenum Press, New 
York (1980); Chapter 6 of this book gives a summary of the history of the subject of diffusion. 
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cylindrical channels or aggregates of spheroidal particles, and we shall review a few rep- 
resentative examples here. We shall also restrict the discussion to two limiting situations 
within the pores of the solid matrix: 

(i) Free-molecule flow of gases, in which the molecular diameters are short and mean 
free paths are long relative to the characteristic dimensions of the pores. Under 
these conditions, there is no significant interaction between the intrapore 
species. 

(ii) Continuum flow of gases or liquids, in which both the diameters and the spacing 
of the intrapore molecules are short compared to the pore dimensions. Here the 
intrapore fluid can be described by the generalized hydrodynamic theory,%nd 
the generalized Maxwell-Stefan equations for multicomponent diffusion can 
be used. 

There are also phenomena for gas transport, known as the slip-flow phenomena, in which 
the mean free paths are comparable to the pore dimensions: but we shall not discuss 
these here. 

Free-Molecule Transport 

Transport of rarefied gases is an example of Knudsen flow, already presented in Prob- 
lem 2B.9. For a long capillary tube of radius a the Knudsen formula takes the form 

Here pA is the partial pressure of species A in any mixture. Note that Eq. 24.6-1 states that 
the transport of any individual species under these limiting conditions is unaffected by 
the presence of others. Thus the total molar flow rate W A  in a tube is proportional to the 
cube of the tube radius and to the inverse square root of the molecular weight. This de- 
pendence on molecular weight is known as Graham's law. 

Equation 24.6-1 can be rewritten as 

which defines the "Knudsen diffusivity" DAK. However, this must be considered as a bi- 
nary diffusivity for species A relative to the porous medium that is not consistent with 
Fick's law, because the molar flux contains no convective term. As a result DAK is not a 
state property, containing as it does, the tube radius a. To allow for the tortuous nature 
of the channels in a porous medium and the limited cross-sectional area available for 
flow, the flux expression must be further modified by writing 

where 

D s  = (&/7)DAK 

and (NA)  is the molar flux based on the total cross section of the porous medium. In this 
expression 8 is the fractional void space in the porous material, and r is a tortuosity fac- 

E. N. Lightfoot, J. B. Bassingthwaighte, and E. F. Grabowski, Ann. Biomed. Eng., 4,78-90 (1976). 
R. Jackson, Transport in Porous Catalysts, Elsevier, Amsterdam (1977); R. E. Cunningham and 

R. J. J. Williams, Diffxsion in Gases and Porous Media, Plenum Press, New York (1980). 
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tor. Although models existla,'"for estimating the magnitude of T, it must normally be de- 
termined experimentally." 

As an alternative to Eq. 24.6-4 for the effective Knudsen diffusivity, one may treat the 
aggregate as a collection of large immobile spheres (or "giant gas molecules"), and use 
the Chapman-Enskog kinetic theory.'' Problem 24B.6 shows that this approach yields 
predictions very similar to those of Eq. 24.6-4. There is remarkable model insensitivity. 

EXAMPLE 24.6-1 

Knudsen Diffusion 

Two large well-stirred reservoirs, each of volume V, are joined by a short duct of cross- 
sectional area S and length L, filled with a porous solid as indicated in Figure 24.6-1. Initially 
reservoir 1 is filled with hydrogen at uniform pressure p, and reservoir 2 with nitrogen, also 
at p,. The entire system is maintained at a constant temperature. At time t = 0 a small valve in 
the duct is opened, and the two reservoirs are allowed to equilibrate with each other. Develop 
an expression for the total pressure in each reservoir as a function of time, assuming that the 
flow of each gas through the connecting duct follows Eq. 24.6-1, and that the ideal gas law 
holds throughout the system. 

SOLUTION We begin by assuming quasi-steady-state behavior in the duct so that, for either gas, the rate 
of transfer from reservoir 1 to reservoir 2 is given by 

where W,, is the molar rate of flow of species A (either nitrogen or hydrogen) and a is the ef- 
fective radius of the pores in the plug joining the two reservoirs. Now a macroscopic mass 
balance for reservoir 2 gives 

Now a mass balance over the whole system yields 

The initial conditions are that at time t = 0, 

These initial conditions complete the specification of the system behavior, and we see that the 
distributions of the two gases are independent of each other. 

For nitrogen we can define the dimensionless variables t,b = pN/po and 7 = (RTKN/V)t. 
Then we may write Eq. 24.6-7 for nitrogen in compartment 2 

with the initial condition $hN2(0) = 1. The solution to this problem is then 

lo W. E. Stewart and M. F. L. Johnson, 7. Catalysis, 4,248-252 (1965). 
" J. B. Butt, Reaction Kinetics and Reactor Design, 2nd edition, Marcel Dekker, New York (19991, 

p. 500, Table 7.4. 
l2 R. B. Evans 111, G. M. Watson, and E. A. Mason, 1. Chem. Phys., 35,2076-2083 (1961). 
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Connecting 
tube filled with 
a porous solid w Two interconnected 

reservoirs each 
with volume V 

0 1 2 3 4 
Dimensionless time, T 

Fig. 24.6-1. Knudsen flow. 

For hydrogen we note that KH = a~~ = 3.74K,. Hence the differential equation for hy- 
drogen is 

with the initial condition $,,(O) = 0. The solution to the differentia1 equation is then 

The results are plotted in Fig. 24.6-1. 
The ratio N A / N B  = -- of molar fluxes obtained here was first observed by Gra- 

ham13 in 1833 and rediscovered by ~ o o ~ s c h a ~ e n '  in 1953. Though derived here for Knudsen 
flow, this relation is valid also for isobaric diffusion well outside the Knudsen region. It has 
been derived from kinetic theory by several investigators and verified experimentally in 
tubes and porous media6,7,'3,14 up to very large ratios of passage width to mean free path. Two 
sets of confirmatory data are shown in Table 24.6-1. In both sets of e~~eriments, '~. '~ an appa- 
ratus similar to that in Fig. 24.6-1 was used, and various tests gases were used against air. The 
flux ratios N,,,/N,,, were initial values, when each reservoir contained only air or the test gas. 

Continuum Transport 

To date, fluid mechanical modeling of intrapore transport has been limited to binary so- 
lutions in which molecules of the minor constituent (solute) are large compared to those 
of the solvent. Models for this situation are based on hydrodynamic diffusion theory ex- 
tended to porous  structure^.^ Descriptions are obtained by solving the creeping flow 
equations of motion for spheres (representing the solute) through a continuum (repre- 
senting the solvent) in closed channels.15 Important effects include partial exclusion of 
solute at the channel entrance and selective interaction with the channel wall. Result to 
date are limited to single solutes, but the rapid development of computational tech- 
n i q u e ~ ' ~  should permit extension to more complex systems. Hydrodynamic diffusion 

'q. Graham, Phil. Mag., 2,175,269,351 (1833). Thomas Graham (1805-1869), son of a prosperous 
manufacturer, attended the University of Clasgow from 1819 to 1826; in 1837, he was named professor of 
chemistry, University College, London, became a Fellow of the Royal Society in 1834, and in the same 
year was named Master of the Mint. 

l4 E. A. Mason and B. Kronstadt, IMP-ARO(D)-12, University of Maryland, Institute for Molecular 
Physics, March 20,1967. 

l5 Z.-Y Yan, S. Weinbaum, and R. Pfeffer, J .  Fluid Mech., 162,415438 (1986). 
'' S. Kim and S. J. Karrila, Microhydvodynamics: Principles and Selected Applications, Butterworth- 

Heinemann, Boston (1991). 
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Table 24.6-1 Experimental Verification of Graham's Law 
IT. Graham, Phil. Mag., 2,175,269,351 (1833); E. A. Mason 
and B. Kronstadt, IMP-ARO(D)-12, University of Maryland, 
Institute for Molecular Physics, March 20,19671. 

Gas Grahama Mason and ~ronstadtl' \%) 

calculations can be used for microporous membranes, but only if there are no significant 
intermolecular forces between the solutes and the pore walls. 

Modeling viscous flow in these systems has already been discussed in 56.4, and it is 
common practice to describe such a flow, for the low Reynolds numbers of most interest 
here, by the Blake-Kozeny expression (Eq. 6.4-9) [see however Rhodes5 (Chapter 5), 
Sahimi2 (Chapter 6), Stanitk2 (Chapter 3) ] :  

Here v, is the superficial mass-average velocity. Note from the discussion of 519.2 that 
the velocity used here is the mass-average velocity of the fluid through the porous 
material. 

To obtain macroscopic descriptions we may use the generalized Maxwell-Stefan 
equations (Eq. 24.5-4), and we shall restrict ourselves here to concentration- and 
pressure-driven flow. Moreover, when the mobile species are small relative to pore di- 
mensions, the boundary conditions simplify to continuity of species concentration and 
pressure at the interface between the external and "intrapore" fluid. 

Simplify the Maxwell-Stefan equations for the diffusion of a binary dilute solution, of a large 
solute species A in a solvent B, through a macroporous medium M, a matrix with pores large 

Transport *om a compared to the diameters of both mobile species, but small enough that lateral concentration 
Binary External gradients within each pore may be neglected. 
Solution 

SOLUTION 

We begin by determining the pressure-flow relationship and note that we have two ways of 
doing this: the Blake-Kozeny equation (Eq. 24.6-14), and the diffusion-based result (Eq. 24.5- 
20) of the previous section. 

For high velocities through the porous material and pores large relative to molecular di- 
mensions, it is the mass-average velocity that must be proportional to the pressure gradient, 
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and we may assume that the Blake-Kozeny equation governs the flow. We begin by rewriting 
Eq. 24.6-14) as 

and Eq. 24.5-20 as 

Equating the coefficients of v, and v ,  in these two equations then yields descriptions of Di, 
and BLM, respectively. If the pores are small relative to the molecular dimensions and the 
mass-average velocity is not large relative to the diffusional velocities v, - v, one is in a still 
poorly studied flow region, and one must resort either to experiment or to an appropriate 
molecular model.17 

To determine the rate of solute transport, we turn to Eq. 24.5-25 noting that the diffusivities 
of that section already include the factor E/T. However, if the pore dimensions are very large with 
respect to the effective diameters of the solute and solvent molecules, the ratio BAB/BLM will 
be very small. We can thus obtain 

in which 

where the superscript ext refers to conditions in the external solution of the same composition 
as the pore fluid. Equation 24.6-17 may in turn be rewritten as 

which is Fick's first law modified for void fraction and tortuosity. It is widely used. 
Exactly as in unconfined fluids, one cannot determine net flow, or pressure drop, from 

diffusional considerations alone. One needs a flux ratio or equivalent. A specific example is 
supplied by freeze-drying, where water vapor must diffuse through a porous region of dried 
solid and where inert gases may be assumed stagnant. This region is also interesting in that 
conditions can vary from simple continuum diffusion, as here, through the slip-flow region, 
and on to the Knudsen region.4b 

It must be remembered that Eq. 24.6-19 and the equations leading up to it represent only 
the direct effect of molecular diffusion. The convective dispersion resulting from interparticle 
mixing and local departures from rectilinear flow must be added when using the volume- 
averaged convective equation (see 520.5, Butt12 g5.2.5, and ~ e v e n s ~ i e l ' ~  513.2). 

QUESTIONS FOR DISCUSSION 

How does equilibrium thermodynamics have to be supplemented in order to study non- 
equilibrium systems, such as those that involve velocity, temperature, and concentration 
gradients? 
What new transport coefficients arise in multicomponent mixtures and what do they 
describe? 
To what extent does this chapter explain the origin of Eq. 19.3-3? Is that equation completely 
correct? 
Is Eq. 24.1-6 really the starting point for the derivation of the complete expressions for the 
fluxes? Discuss its origin. 

l7 Z.-Y. Yan, S. Weinbaum, and R. Pfeffer, J .  Fluid Mech., 162,415438 (1986). 
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5. How are the thermal diffusion coefficient, the thermal diffusion ratio, and the Soret coeffi- 
cient defined? Can the signs of these quantities be predicted a priori? 

6. How can one start with Eq. 24.2-8 and obtain Eq. 17.9-I? What restrictions have to be placed 
on Eq. 17.9-I? 

7. What is the proper driving force for diffusion: the gradient of the concentration, the gradient 
of the activity, or some other quantity? 

8. Discuss the Clusius-Dickel column for isotope separation. 
9. To describe the steady-state operation of an ultracentrifuge it is not necessary to know any 

transport properties. Does this seem odd? 
10. What various physical phenomena need to be understood in order to describe diffusion in 

porous media? 

PROBLEMS 24A.1. Thermal diffusion. 
(a) Estimate the steady-state separation of H, and D2 occurring in the simple thermal diffu- 
sion apparatus shown in Fig. 24.2-1 under the following conditions: T, is 200K, T, is 600K, the 
mole fraction of deuterium is initially 0.10, and the effective average kT is 0.0166. 
(b) At what temperature should this average kT have been evaluated? 

Answers: (a) The mole fraction of H2 is higher by 0.0183 in the hot bulb 
(b) 330K 

24A.2. Ultracentrifugation of proteins. Estimate the steady-state concentration profile when a typi- 
cal albumin solution is subjected to a centrifugal field 50,000 times the force of gravity under 
the following conditions: 

Cell length = 1.0 cm 

Molecular weight of albumin = 45,000 

Apparent density of albumin in solution = M ~ / V ~  = 1.34 g/cm3 

Mole fraction of albumin (at z = O), XAO = 5 X 

Apparent density of water in the solution = 1.00 g/cm3 

Temperature = 75°F 
Answer: xA = 5 X exp(-22.7z), with z in cm 

24A.3. Ionic diffusivities. The limiting (that is, at zero concentration) equivalent ionic conduc- 
tances, in dimensions of cm2/ohm e g-equiv for the following ions at 25°C are:' Na', 50.10; K', 
73.5; C1-, 76.35. Calculate the corresponding ionic diffusivities from the definion 

Note that F = 96,500 coulombs/g-equiv, RT/F = 25.692 mv at 25OC, and 1 coulomb = 1 am- 
pere. s. 

24B.1. The dimensions of the Lorentz force. Show how the Lorentz force on a charge moving 
through a magnetic field corresponds to the first term added to the linear d, of Eq. 25.4-51 
and gives a consistent set of units for this quantity. Suggestion: Note that cRTd, represents the 
motive force for diffusive motion of species a per unit volume and that the usual dimensions 
of the magnetic induction are 1 Weber = 1 Newton-second/Coulomb-meter. 

24B.2. Junction potentials. Consider two well-mixed reservoirs of aqueous salt at 25OC, as in Fig. 
24.4-2, separated by a stagnant region. Salt concentrations are 1.0 N on the left (1) and 0.1 N 
on the right (2). Estimate junction potentials for NaCl and for KC1 using the ion diffusivities 

R. A. Robinson and R. H. Stokes, Electrolyte Solutions, revised edition, Butterworths, London 
(1965), Table 6.1. 
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of Problem 24A.3. Assume constant ion activity coefficients. Which compartment will be the 
more positive? Why? 

Donnan exclusion. The sulfonic acid membrane used by scattergood' had the following 
equilibrium internal composition when immersed in 0.1 N NaC1: 

Organic sulfonic acid polymer c, = 1.03 g-equiv/liter 
Water c, = 13.2 g-equiv/liter 
Chloride ion c,-- = 0.001 g-equiv/liter 
Sodium ion c,,+ = 1.031 g-equiv/liter 

Calculate the distribution coefficient of sodium chloride 

Note that the concentration of water in the external solution is about 55.5 g-mol/liter. 
Answer: 0.064 

Osmotic pressure. Typical sea water, containing 3.45% by weight of dissolved salts, has a 
vapor pressure 1.84% below that of pure water. Estimate the minimum possible transmem- 
brane pressure required to produce pure water, if the membrane is ideally selective. 
Answer: about 25 atm 

Permeability of a perfectly selective filtration membrane. Develop an expression for the hy- 
draulic permeability of the perfectly selective membrane described in Example 22.8-5 in terms 
of the diffusional parameters introduced in 324.5. 
Answer: KH = BLJRTS, where 6 is the membrane thickness 

Model insensitivity. In modeling a porous medium as a parallel network of channels one 
must allow both for the toruous nature ("tortuosity" 7) of real systems and also the restriction 
of the transport to the fraction s of the cross section that is available for flow. Equation 24.6-3 
then must be modified to 

An alternate approach is to consider the transport process to be a diffusion of species A 
through an immobilized set of giant molecules3 (these particles comprising the porous 
medium). This model yields the expression 

Compare these two equations, noting that the value of is often about 0.4. 

Expressions for the mass flux. 
(a) Show how to transform the left side of Eq. 24.2-8 into the left side of Eq. 24.2-9. First 
rewrite the former as follows: 

Rewrite the second term as a sum over all p, and then add a term to compensate for the modi- 
fication of the sum. Note that this change has introduced into the sum a term containing Baa, 

E. M. Scattergood and E. N. Lightfoot, Trans. Faraday Soc., 64,1135-1146 (1968). 
R. B. Evans, 111, G. M. Watson, and E. A. Mason, J. Chem. Phys., 35,2076-2083 (1961). 
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which was not defined because it was not needed. Now, we are at liberty to define B,, in any 
way we choose, and the choice we make is 

XP - - X -  or -- XP 

Baa p=lDap 
X - = o  

P=1 Rp 
O f ,  all p 

This choice enables us to obtain the left side of Eq. 24.2-9, and also the auxiliary relation given 
after Eq. 24.2-9 is, in fact, just Eq. 24C.1-3 above. 

(b) Next repeat the above derivation by replacing vP by [vP + (DE/pp)V In TI, and verify that 
both the diffusion terms and the thermal diffusion terms of Eq. 24.2-8 may be transformed 
into the corresponding terms in Eq. 24.2-9. 

24C.2. Differential centrifugation. The lysing (bursting) of E. coli cells has produced a dilute sus- 
pension of inclusion bodies, hard insoluble aggregates of a desired protein, unlysed cells, and 
unwanted dissolved proteins. For purposes of this problem all may be considered as spheres 
with the properties indicated here. 

Cells Inclusion bodies Proteins 

Mass or equivalent 1.89 x 10 l2 g 2.32 X 1 0  l5 g 50 kilodaltons 

Density (g/ml) 1 .07 1.3 1.3 

Can these materials be effectively separated by centrifugation? Explain. 

24C.3. Transport characteristics of sodium chloride. In the accompanying table1 equivalent con- 
ductance, diffusivity, and thermodynamic activity coefficients are given for sodium chloride 
at 25°C. The first two are given as functions of the molarity (M), and the third for molality (m). 
It may be assumed for the purposes of this problem that M/m = 1 - 0.019m. Limiting ionic 
equivalent conductances (that is, at infinite dilution) are 50.10 and 76.35, respectively. The salt 
equivalent conductance in turn is defined as 

where the specific conductance KSp = L/AR, where X is the resistance of a volume of solution 
of length L and cross-sectional area A. Use these data to discuss the sensitivity of the solution 
behavior to the three diffusivities BNa1,, B,, , ,  and BK,lcl needed to describe this response 
to solution concentration. 

-- 

Electrochemical characteristics of aqueous NaCl solution at 25OC 

Equivalent 
Molar conductance Diffusivity Molal Activity 
concentration (cm2/ohm-equiv) cm2/s x lo5 concentration coefficient 
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Electrochemical characteristics of aqueous NaCl solution at 25OC (continued) 
- 

Equivalent 
Molar conductance Diffusivity Molal Activity 
concentration (cm2/ohm-equiv) cm2 /s X 1 O5 concentration coefficient 

24C.4. Departures from electroneutrality. Following Newman, estimate the departures from elec- 
troneutrality in the stagnant region between the reservoirs of Problem 24B.2 as follows. First 
calculate the electric field gradient d24/dz2, where z is the distance measured from reservoir 1 
toward reservoir 2, assuming that the salt concentration in g-moles/liter is given by 

where L is the length of the stagnant region. Then put the result into Poisson's equation 

Here E is the dielectric constant, and F/E may be taken to be 1.392 X 1016 volt-cm/g-equiv 
(see Newman4, pp. 74 and 256), which corresponds to a relative dielectric constant of 78.303. 
For this problem, the summation reduces to (c, - c-). 

24C.5. Dielectrophoretic driving forces. When an electric potential is imposed across an uncharged 
nonconducting medium, one may write 

where E is the dielectric constant. 
Show how this equation can be used to calculate the distribution of electric field E in the 

region between two coaxial cylindrical metal electrodes of outer and inner radii R, and R,, re- 
spectively. You may neglect variations in the dielectric constant. Toward which electrode will 
particles of positive susceptibility migrate, and how will their migration velocity vary with 
position? 

- - 

J. S. Newman, Electrochemical Systems, 2nd edition, Prentice-Hall, New York (19911, p. 256. 
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Effects of small inclusions in a dielectric medium. The production of field nonlinearities by 
embedded particles can be illustrated by considering the limiting case of a single particle of 
radius R in an otherwise uniform field. The field distribution in both the external medium 
and the particle are defined by Laplace's equation, V2+ = 0, and by the boundary condition 
on the sphere surface (here the indices s and c stand for sphere and continuum). 

Develop expressions for 4, and +,, if 4, -. ArcosO for large r. 

Frictionally induced selective filtration. Describe the glucose rejection behavior of a cello- 
phane516 that shows no thermodynamic rejection. You may assume glucose mole fraction in 
the feed to the membrane to be 0.01 and the following properties: 

Here the subscripts g, w, and rn refer to glucose, water, and the membrane matrix, respectively. 
Partial answer: The high-flow-limiting mole fraction of sugar in the filtrate is 0.00242. 

Thermodynamically induced selective filtration. Describe the behavior of the hypothetical 
membrane for which KD = 1.0, solute activity coefficients are unity, and B,',/B~,, = v,,/V,. 
Partial answer: The high-flow limiting product solute concentration is 0.1 times that in the 
feed. 

Facilitated transport. Consider here the transport of a solute S across a homogeneous mem- 
brane from one external solution to another as a complex CS with a carrier C unable to leave 
the membrane phase. The solute S may be considered to be insoluble in the membrane and 
convection to be negligible (see Fig. 24C.8). Assume further that: 

1. Equilibrium exists at both membrane surfaces according to 

ccs = K ~ c ~ c s  (24C.9-1) 
where the concentration of S is that in the external solution, and those of C and CS are in 
the membrane.7 

2. Both C and CS follow the simple rate expression Ni = D,,Aci. 

Develop a general expression for the transport rate of S in terms of the total amount of carrier 
plus carrier complex present in the membrane, the solution concentrations of S, the quantity 
K,, and the diffusivities. What is the maximum rate of transport of S (that is, as its concentra- 
tion at the left of the diagram becomes very high and that at the right is zero)? 

I 
Membrane 

I 

Fig. 24C.8. Elementary facilitated transport. Concentra- 
tion profiles for the solute (S), the carrier (C), and the 

Distance - complex (CS). 

B. Z. Ginzburg and A. Katchalsky, J. Gen. Physiol., 47,403418 (1963). 
T .  G. Kaufmann and E. F. Leonard, AlChE Journal, 14,110-117 (1968). 
See, however, J. D. Goddard, J. S. Schultz, and R. J. Bassett, Chem. Eng. Sci., 25,665-683 (1970), and 

W. D. Stein, The Movement of Molecules across Cell Membranes, Academic Press, New York (1984). 
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24D.1. Entropy flux and entropy production. 
(a) Verify that Eqs. 24.1-3 and 4 follow from Eqs. 24.1-1 and 2. 
(b) Show that one can go backward from Eqs. 21.4-5 through 8 to Eqs. 24.1-3 and 4. To do this 
it may be necessary to use one form of the Gibbs-Duhem equation, 



Postface 

Of all the messages we have tried to convey in this long text, the most important is to 
recognize the key role of the equations of change, developed in Chapters 3,11, and 19. Writ- 
ten at the microscopic continuum level, they are the key link between the very complex 
motions of individual molecules and the observable behavior of most systems of engi- 
neering interest. They can be used to determine velocity, pressure, temperature, and 
concentration profile, as well as the fluxes of momentum, energy, and mass, even in 
complicated time-dependent systems. They are applicable to turbulent systems, and 
even when complete a priori solutions prove infeasible, simplify the efficient use of data 
through dimensional analysis. Integrated forms of the equations of change provide the 
macroscopic balances. 

No introductory text can, however, meet the needs of every reader. We have at- 
tempted, therefore, to provide a solid basis in the fundamentals needed to tackle presently 
unforeseen applications of transport phenomena in an intelligent way. We have also 
given extensive references to sources where additional information can be found. Some 
of these references contain specialized data or introduce powerful problem-solving tech- 
niques. Others show how transport analysis can be incorporated into equipment and 
process design. 

We have therefore concentrated on relatively simple examples that illustrate the 
characteristics of the equations of change and the kinds of questions they are capable of 
answering. This has required largely neglecting the very powerful numerical techniques 
available for solving difficult problems. Fortunately, there are now many monographs on 
numerical techniques and packaged programs of greater or lesser generality. Graphics 
programs are also available, which greatly simplify the presentation of data and simula- 
tions. 

It should also be recognized that great advances are being made in the molecular 
theory of transport phenomena, ranging from improved techniques for predicting the 
transport properties to the development of new materials. Molecular dynamics and Brown- 
ian dynamics simulation techniques are proving to be very powerful for understanding 
such varied systems as ultra-low density gases, thin films, small pores, interfaces, col- 
loids, and polymeric liquids. 

Simple models of turbulent transport have been included, but these are only a modest 
introduction to a large and important field. Highly sophisticated techniques have been 
developed for specialized areas, such as predicting the forces and torques on aircraft, the 
combustion processes in automobiles, and the performance of fluid mixers. It is hoped 
that the interested reader will not stop with our very limited introductory discussion. 

Conversely, we have greatly expanded our coverage of boundary-layer phenomena, 
because its importance and power are now being recognized in many applications. Once 
primarily the province of aerodynamicists, boundary-layer techniques are now widely 
used in many fields of heat and mass transfer, as well as in fluid mechanics. Applications 
abound in such varied fields as catalysis, separation processes, and biology. 

Of great and increasing importance is non-Newtonian behavior, encountered in the 
preparation and use of films, lubricants, adhesives, suspensions, and emulsions. Biologi- 
cal examples are exceedingly important, ranging from the operation of the joints to drag- 
reducing slimes on marine animals, and down to the very basic problem of digesting 
foodstuffs. 

No music and no oral communication would be possible without compressible pow, an 
area we have neglected because of space limitations. Compressible flow is also of critical 
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importance in the design of airplanes, re-entry vehicles in our space program, and in pre- 
dicting meteorological phenomena. The awesome destructive power of tornadoes is a 
challenging example of the latter. 

Some problems involving transport phenomena in chemically reacting systems have 
been presented. For simplicity, we have taken the chemical kinetics expressions to be of 
rather idealized forms. For in combustion, flame propagation, and explosion 
phenomena more realistic descriptions of the kinetics will be needed. The same is true in 
biological systems, and the understanding of the functioning of the human body will re- 
quire much more detailed descriptions of the interactions among chemical kinetics, 
catalysis, diffusion, and turbulence. 

In basic terms, each of us is internally powered by the close equivalent of fuel cells, 
with current carried primarily by cations, in particular protons, rather than electrons. 
There are also complex electrical transport phenomena taking place in the now ubiquitous 
microelectronic devices such as computers and cellular phones. We have provided a 
very modest introduction to electrotransport, but again the reader is urged to go on to 
more specialized sources. 

No engineering project can be conceived, let alone completed, purely through use of 
the descriptive disciplines, such as transport phenomena and thermodynamics. Engi- 
neering, in the last analysis, depends heavily on heuristics to supplement incomplete 
knowledge. Transport phenomena can, however, prove immensely helpful by providing 
useful approximations, starting with order-of-magnitude estimates, and going on to suc- 
cessively more accurate approximations, such as those provided by boundary-layer the- 
ory. It is therefore important, perhaps in a second reading of this text, to seek shape- and 
model-insensitive descriptions by examining the numerical behavior of our model systems. 
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Vector and Tensor ~otation' 
Vector operations from a geometrical viewpoint 

Vector operations in terms of components 

Tensor operations in terms of components 

Vector and tensor differential operations 

Vector and tensor integral theorems 

Vector and tensor algebra in curvilinear coordinates 

Differential operations in curvilinear coordinates 

Integral operations in curvilinear coordinates 

Further comments on vector-tensor notation 

The physical quantities encountered in transport phenomena fall into three categories: 
scalars, such as temperature, pressure, volume, and time; vectors, such as velocity, mo- 
mentum, and force; and (second-order) tensors, such as the stress, momentum flux, and 
velocity gradient tensors. We distinguish among these quantities by the following 
notation: 

s = scalar (lightface Italic) 

v = vector (boldface Roman) 

T = second-order tensor (boldface Greek) 

In addition, boldface Greek symbols with one subscript (such as i3J are vectors. 
For vectors and tensors, several different kinds of multiplication are possible. Some 

of these require the use of special multiplication signs to be defined later: the single dot 
(m), the double dot (:), and the cross (X).  We enclose these special multiplications, or sums 
thereof, in different kinds of parentheses to indicate the type of result produced: 

( ) = scalar 
[ 1 = vector 

( } = second-order tensor 

No special significance is attached to the kind of parentheses if the only operations en- 
closed are addition and subtraction, or a multiplication in which ., :, and x do not ap- 
pear. Hence (v w) and (.r:Vv) are scalars, [V x v] and [I v] are vectors, and {v . VT}  and 

' This appendix is very similar to Appendix A of R. B. Bird, R. C. Armstrong, and 0. Hassager, 
Dynamics of Polymeric Liquids, Vol. I ,  Fluid Mechanics, 2nd edition, Wiley-Interscience, New York (1987). 
There, in 98, a discussion of nonorthogonal coordinates is given. Also in Table A.7-4, there is a summary 
of the del operations for bipolar coordinates. 
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{a T + 7 . a} are second-order tensors. On the other hand, v - w may be written as 
(V - w), [V - w], or {V - w}, since no dot or cross operations appear. Similarly vw, (vw), 
[vwl, and {vw) are all equivalent. 

Actually, scalars can be regarded as zero-order tensors and vectors as first-order ten- 
sors. The multiplication signs may be interpreted thus: 

Multiplication Sign Order of Result 

None 
X 

in which C represents the sum of the orders of the quantities being multiplied. For exam- 
ple, ST is of the order 0 + 2 = 2, vw is of the order 1 + 1 = 2,6,6, is of the order 1 + 1 = 
2,[vxwlisoftheorder1 + 1 - 1 = l ,(a:.r)isoftheorder2+2 - 4 = O , a n d ( o . ~ } i s o f  
the order 2 + 2 - 2 = 2. 

The basic operations that can be performed on scalar quantities need not be elabo- 
rated on here. However, the laws for the algebra of scalars may be used to illustrate 
three terms that arise in the subsequent discussion of vector operations: 

a. For the multiplication of two scalars, r and s, the order of multiplication is imma- 
terial so that the commutative law is valid: rs = sr. 

b. For the successive multiplication of three scalars, q, r, and s, the order in which 
the multiplications are performed is immaterial, so that the associative law is 
valid: (qr)s = q(rs). 

c. For the multiplication of a scalar s by the sum of scalars p, q, and r, it is immater- 
ial whether the addition or multiplication is performed first, so that the distribu- 
tive law is valid: s(p + q + r) = sp + sq + sr. 

These laws are not generally valid for the analogous vector and tensor operations de- 
scribed in the following paragraphs. 

A VECTOR OPERATIONS FROM 
A GEOMETRICAL VIEWPOINT 

In elementary physics courses, one is introduced to vectors from a geometrical stand- 
point. In this section we extend this approach to include the operations of vector multi- 
plication. In 9A.2 we give a parallel analytic treatment. 

Definition of a Vector and Its Magnitude 

A vector v is defined as a quantity of a given magnitude and direction. The magnitude of 
the vector is designated by Ivl or simply by the corresponding lightface symbol v. Two 
vectors v and w are equal when their magnitudes are equal and when they point in the 
same direction; they do not have to be collinear or have the same point of origin. If v and 
w have the same magnitude but point in opposite directions, then v = -w. 

Addition and Subtraction of Vectors 

The addition of two vectors can be accomplished by the familiar parallelogram construc- 
tion, as indicated by Fig. A.l-la. Vector addition obeys the following laws: 
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Commutative: 
Associative: 

Fig. A.1-1. (a) Addition of vectors; 
(b) subtraction of vectors. 

v 

Vector subtraction is performed by reversing the sign of one vector and adding; thus 
v - w = v + (-w). The geometrical construction for this is shown in Fig. A.1-lb. 

Multiplication of a Vector by a Scalar 

When a vector is multiplied by a scalar, the magnitude of the vector is altered but its di- 
rection is not. The following laws are applicable 

Commutative: sv = vs (A.1-3) 
Associative: r(sv) = (rs)v (A. 1-4) 
Distributive (q  + r + S)V = qv + rv + sv (A.1-5) 

Scalar Product (or Dot Product) of Two Vectors 

The scalar product of two vectors v and w is a scalar quantity defined by 

(v w) = vw cos +,, (A.1-6) 

in which +, is the angle between the vectors v and w. The scalar product is then the 
magnitude of w multiplied by the projection of v on w, or vice versa (Fig. A.1-2a). Note 
that the scalar product of a vector with itself is just the square of the magnitude of the 
vector 

The rules governing scalar products are as follows: 

Commutative: 
Not Associative: 
Distributive: 

The length of this vector equals 

w ,4, 

Area (v . w) 

(A.1-7) 

(A. 1-8) 
(A. 1-9) 

(A.1-10) 

Fig. A.1-2. Products of two vectors: (a) the scalar product; (b) the vec- 
tor product. 
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Vector Product (or Cross Product) of Two Vectors 

The vector product of two vectors v and w is a vector defined by 

[V X WI = IVW sin +,,In,, (A.1-11) 

in which n,, is a vector of unit length (a "unit vector") perpendicular to both v and w 
and pointing in the direction that a right-handed screw will move if turned from v to- 
ward w through the angle +,,. The vector product is illustrated in Fig. A.l-2b. The mag- 
nitude of the vector product is just the area of the parallelogram defined by the vectors v 
and w. It follows from the definition of the vector product that 

Note the following summary of laws governing the vector product operation: 

Not Commutative: [v X w] = -[w X v] 

Not Associative: [U X [V X w]] # [[u X V] X W] 

Distributive: [{u + v} X wl = [u X w] + [v X w] 

Multiple Products of Vectors 

Somewhat more complicated are multiple products formed by combinations of the mul- 
tiplication processes just described: 

The geometrical interpretations of the first three of these are straightforward. The magni- 
tude of (u . [v X w]) can easily be shown to represent the volume of a parallelepiped 
with edges defined by the vectors u, v, and w. 

EXERCISES I. What are the "orders" of the following quantities: (v - w), (v - u)w, (ab:cd), [v . pwu], [[a X f ]  
x [b x gll? 

2. Draw a sketch to illustrate the inequality in Eq. A.l-9. Are there any special cases for which it 
becomes an equality? 

3. A mathematical plane surface of area S has an orientation given by a unit normal vector n, 
pointing downstream of the surface. A fluid of density p flows through this surface with a ve- 
locity v. Show that the mass rate of flow through the surface is w = p(n - v)S. 

4. The angular velocity W of a rotating solid body is a vector whose magnitude is the rate of an- 
gular displacement (radians per second) and whose direction is that in which a right-handed 
screw would advance if turned in the same direction. The position vector r of a point is the 
vector from the origin of coordinates to the point. Show that the velocity of any point in a ro- 
tating solid body is v = [W X rl, relative to an origin located on the axis of rotation. 

5. A constant force F acts on a body moving with a velocity v, which is not necessarily collinear 
with F. Show that the rate at which F does work on the body is W = (F . v). 

5A.2 VECTOR OPERATIONS IN TERMS OF COMPONENTS 

In this section a parallel analytical treatment is given to each of the topics presented geo- 
metrically in sA.1. In the discussion here we restrict ourselves to rectangular coordinates 
and label the axes as 1, 2, 3 corresponding to the usual notation of x, y, z; only right- 
handed coordinates are used. 
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Many formulas can be expressed compactly in terms of the Kronecker delta Sii and the 
permutation symbol sljk These quantities are defined thus: 

6, = +I, i f i  = j 
i f i Z j  

cijk = +I, if ijk = 123,231, or 312 (A.2-3) 
= -1 , if ijk = 321,132, or 213 (A.2-4) 

sijk = 0, if any two indices are alike (A.2-5) 

Note also that qjk. = (1/2)(i - j)(j - k)(k - i). 
Several relations involving these quantities are useful in proving some vector and 

tensor identities 
? ? 

Note that a three-by-three determinant may be written in terms of the qjk 

The quantity s,jk thus selects the necessary terms that appear in the determinant and af- 
fixes the proper sign to each term. 

The Unit Vectors 

Let 6,, 62, 63 be the "unit vectors" (i.e., vectors of unit magnitude) in the direction of the 
1,2,3 axes1 (Fig. A.2-1). We can use the definitions of the scalar and vector products to 
tabulate all possible products of each type 

Fig. A.2-1. The unit 
2 vectors 6,; each vector 

is of unit magnitude 
and points in the ith 

1 1 1 direction. 

' In most elementary texts the unit vectors are called i ,  j, k. We prefer to use 6,, 6,, 6, because the 
components of these vectors are given by the Kronecker delta. That is, the component of 6, in the 1- 
direction is S,, or unity; the component of 6, in the 2-direction is SI2 or zero. 
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All of these relations may be summarized by the following two relations: 

(A.2-14) 

in which aii is the Kronecker delta, and eijk is the permutation symbol defined in the in- 
troduction to this section. These two relations enable us to develop analytic expressions 
for all the common dot and cross operations. In the remainder of this section and in the 
next section, in developing expressions for vector and tensor operations all we do is to 
break all vectors up into components and then apply Eqs. A.2-14 and 15. 

Expansion of a Vector in Terms of its Components 

Any vector v can be completely specified by giving the values of its projections v,, v,, v,, 
on the coordinate axes 1,2,3 (Fig. A.2-2). The vector can be constructed by adding vecto- 
rially the components multiplied by their corresponding unit vectors: 

Note that a vector associates a scalar with each coordinate dire~tion.~ The vi are called the 
"components of the vector v" and they are scalars, whereas the 6,vi are vectors, which 
when added together vectorially give v. 

The magnitude of a vector is given by 

[ v [ = v = d v ~ + v ~ + v $ =  f i  (A.2-17) 

Two vectors v and w are equal if their components are equal: v, = w,, v2 = w,, and v3 = 

w3. Also v = -w, if vl = -wl, and so on. 

Addition and Subtraction of Vectors 

The sum or difference of vectors v and w may be written in terms of components as 

Geometrically, this corresponds to adding up the projections of v and w on each individ- 
ual axis and then constructing a vector with these new components. Three or more vec- 
tors may be added in exactly the same fashion. 

Fig. A.2-2. The components vi of the vector v are the pro- 
1 jections of the vector on the coordinate axes 1,2, and 3. 

For a discussion of the relation of this definition of a vector to the definition in terms of the rules 
for transformation of coordinates, see W. Prager, Mechanics of Continua, Ginn, Boston (1961). 
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Multiplication of a Vector by a Scalar 

Multiplication of a vector by a scalar corresponds to multiplying each component of the 
vector by the scalar: 

Scalar Product (or Dot Product) of Two Vectors 

The scalar product of two vectors v and w is obtained by writing each vector in terms of 
components according to Eq. A.2-16 and then performing the scalar-product operations 
on the unit vectors, using Eq. A.2-14 

Hence the scalar product of two vectors is obtained by summing the products of the cor- 
responding components of the two vectors. Note that (v . v) (sometimes written as v2 or 
as v2) is a scalar representing the square of the magnitude of v. 

Vector Product (or Cross Product) of Two Vectors 

The vector product of two vectors v and w may be worked out by using Eqs. A.2-16 and 15: 

Here we have made use of Eq. A.2-8. Note that the ith-component of [v X w] is given by 

xi 2, ~ ~ ~ k v ~ w ~ ;  this result is often used in proving vector identities. 

Multiple Vector Products 

Expressions for the multiple products mentioned in sA.1 can be obtained by using the 
preceding analytical expressions for the scalar and vector products. For example, the 
product (u . [v X wl) may be written 

Then, from Eq. A.2-8, we obtain 

(U [V X wI) = 

The magnitude of (u . [v X wl) is the volume of a parellelepiped defined by the vectors 
u, v, w drawn from a common origin. Furthermore, the vanishing of the determinant is a 
necessary and sufficient condition that the vectors u, v, and w be coplanar. 

u1 u2 u3 

~1 v2 v3 
w1 w2 w3 

(A.2-23) 
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The Position Vector 

The usual symbol for the position vector-that is, the vector specifying the location of a 
point in s p a c e i s  r. The components of r are then x,, x,, and x3, so that 

This is an irregularity in the notation, since the components have a s mbol different 
from that for the vector. The magnitude of r is usually called r = 4 + xz +x$ and this r 
is the radial coordinate in spherical coordinates (see Fig. A.6-1). 

+ 
The analytical expressions for dot and cross products may be used to prove vector identities; 
for example, verify the relation 

Proof of a Vector 
Identity [U x [v x w]] = V(U - W) - W(U - v) (A.2-25) 

SOLUTION The i-component of the expression on the left side can be expanded as 

We may now use Eq. A.2-7 to complete the proof 

which is just the i-component of the right side of Eq. A.2-25. In a similar way one may verify 
such identities as 

(U [v X w]) = (v [w X u]) (A.2-28) 

([u X v] , [W X z]) = (U w)(v . z) - (u z)(v - w) (A.2-29) 

[[u X V] X [W X z]] = ([u X vl Z)W - ([u X v] w)z (A.2-30) 

EXERCISES 1. Write out the following summations: 

A vector v has components v, = 1, vy = 2, v, = -5. A vector w has components w, = 3, w, = -1, 
w, = 1. Evaluate: 

(a) (V W) 

(b) [v x wl 
(c) The length of v 

(d) (61 . V) 

(4 [61 x wl 

(f 4 " W  
(g) [r X v], where r is the position vector. 
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4. Show that Eq. A.2-6 is valid for the particular case i = 1, h = 2. 
Show that Eq. A.2-7 is valid for the particular case i = j = m = 1, n = 2. 

5. Verify that zy==, xi_, qjkcyk = 0 if ajk = akv 

6. Explain carefully the statement after Eq. A.2-21 that the ith component of [v X wl is 

Ej Ek &llkv1wk. 

7. Verify that ([v X w] [v X w]) + (v - w)' = v2w2 (the "identity of Lagrange"). 

sA.3 TENSOR OPERATIONS IN TERMS OF COMPONENTS 

In the last section we saw that expressions could be developed for all common dot and 
cross operations for vectors by knowing how to write a vector v as a sum zi ijivi, and by 
knowing how to manipulate the unit vectors tji. In this section we follow a parallel pro- 
cedure. We write a tensor T as a sum zi xj tiiZijrij, and give formulas for the manipulation 
of the unit dyads in this way, expressions are developed for the commonly occur- 
ring dot and cross operations for tensors. 

The Unit Dyads 

These results are easy to remember: one simply takes the dot (or cross) product of the 
nearest unit vectors on either side of the dot (or cross); in Eq. A.3-1 two such operations 
are performed. 

The unit vectors 6i were defined in the preceding discussion and then the scalar p~oducts 
(tii tij) and vector products [ai X Sj] were given. There is a third kind of product that can 
be formed with the unit vectors-namely, the dyadic products 6i6j (written without multi- 
plication symbols). According to the rules of notation given in the introduction to Ap- 
pendix A, the products are tensors of the second order. Since tii and tij are of unit 
magnitude, we will refer to the products tji6, as unit dyads. Whereas each unit vector in 
Fig. A.2-1 represents a single coordinate direction, the unit dyads in Fig. A.3-1 represent 
ordered pairs of coordinate directions. 

(In physical problems we often work with quantities that require the simultaneous 
specification of two directions. For example, the flux of x-momentum across a unit area 
of surface perpendicular to the y direction is a quantity of this type. Since this quantity is 
sometimes not the same as the flux of y-momentum perpendicular to the x direction, it is 
evident that specifying the two directions is not sufficient; we must also agree on the 
order in which the directions are given.) 

The dot and cross products of unit vectors were introduced by means of the geomet- 
rical definitions of these operations. The analogous operations for the unit dyads are in- 
troduced formally by relating them to the operations for unit vectors 

(6i61:6k61) = (6, ' 6k)(6i ' 61) = 6jksil (A.3-1) 
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Fig. A.3-1. The unit dyads 

jP2 )L2 )- &ti,. The solid arrows repre- 
sent the first unit vector in 
the dyadic product, and the 
hollow vectors the second. 
Note that 6,6, is not the 

6161 6162 6163 same as €i26,. 

1 1 1 

3 3 3 

Expansion of a Tensor in Terms of Its Components 

In Eq. A.2-16 we expanded a vector in terms of its components, each component being 
multiplied by the appropriate unit vector. Here we extend this idea and define' a (sec- 
ond-order) tensor as a quantity that associates a scalar with each ordered pair of coordinate di- 
rections in the following sense: 

The scalars ri j are referred to as the "components of the tensor 7." 
There are several special kinds of second-order tensors worth noting: 

1. If ri i = rj,, the tensor is said to be symmetric. 

2. If rii = - T ~ ~ ,  the tensor is said to be antisymmetric. 

3. If the components of a tensor are taken to be the components of T, but with the in- 
dices transposed, the resulting tensor is called the transpose of T and given the 
symbol I+: 

' Tensors are often defined in terms of the transformation rules; the connections between such a 
definition and that given above is discussed by W. Prager, Mechanics of Continua, Ginn, Boston (1961). 
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4. If the components of the tensor are formed by ordered pairs of the components of 
two vectors v and w, the resulting tensor is called the dyadic product of v and w 
and given the symbol vw: 

Note that vw # wv, but that ( vw)~  = wv. 

5. If the components of the tensor are given by the Kronecker delta S,., the resulting 
tensor is called the unit tensor and given the symbol 6: 

The magnitude of a tensor is defined by 

1 7 1 = 7 = v $ ( T : T t )  

I 

Addition of Tensors and Dyadic Products 

Two tensors are added thus: 

a + T = 2 2 6i9u, + 2 x = 2 2 6,S,(u, + rij) (A.3-12) 
1 i i i j 

That is, the sum of two tensors is that tensor whose components are the sums of the cor- 
responding components of the two tensors. The same is true for dyadic products. 

Multiplication of a Tensor by a Scalar 

Multiplication of a tensor by a scalar corresponds to multiplying each component of the 
tensor by the scalar: 

ST = s 

The same is true for dyadic products. 

The Scalar Product (or Double Dot Product) of Two Tensors 

Two tensors may be multiplied according to the double dot operation 

in which Eq. A.3-1 has been used. Similarly, we may show that 
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The Tensor Product (the Single Dot Product) of Two Tensors 

Two tensors may also be multiplied according to the single dot operation 

= z 2 C Sjk&%I17kl = 2 z rib 2 uijrjl 
t j k l  i I ( j  ) (A.3-17) 

That is, the il-component of {u T} is Xi uijrj1. Similar operations may be performed with 

dyadic products. It is common practice to write {u  . a} as u2, {u u21 as u3, and so on. 

The Vector Product (or Dot Product) of a Tensor with a Vector 

When a tensor is dotted into a vector, we get a vector 

That is, the ith component of [I . v] is 2, rVvi' Similarly, the ith component of [v TI is 

zj vj9.  Clearly, [T . v] Z [v . TI unless T is symmetric. 

Recall that when a vector v is multiplied by a scalar s, the resultant vector sv points 
in the same direction as v but has a different length. However, when T is dotted into v, 
the resultant vector [T V] differs from v in both length and direction; that is, the tensor I 
"deflects" or "twists" the vector v to form a new vector pointing in a different direction. 

The Tensor Product (or Cross Product) of a Tensor with a Vector 

When a tensor is crossed with a vector, we get a tensor: 

Hence, the il-component of {T x v) is Xi 2, Similarly the lk-component of {v x T) 

is Zt xj qjpirjk 

Other Operations 

From the preceding results, it is not difficult to prove the following identities: 

[S . v] = [v -61 = v 

[uv ' w ]  = u(v ' w) 

[W ' uv] = ( w  ' u)v 

(uv:wz) = (uw:vz) = (u . z)(v . w )  
(7:uv) = ([T ' ul ' v) 

(uv:7) = (u ' [v ' TI) 
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EXERCISES 1. The components of a symmetric tensor T are 

The components of a vector v are 

3. If a is symmetrical and P is antisymmetrical, show that (a$) = 0. 

4. Explain carefully the statement after Eq. A.3-17 that the il-component of {cr T) is 2, (JjjT,p 

5. Consider a rigid structure composed of point particles joined by massless rods. The particles 
are numbered 1,2,3,. . . , N, and the particle masses are m, (v = 1,2, . . . , N). The locations of 
the particles with respect to the center of mass are R,. The entire structure rotates on an axis 
passing through the center of mass with an angular velocity W. Show that the angular mo- 
mentum with respect to the center of mass is 

Then show that the latter expression may be rewritten as 

where 

is the moment-of-inertia tensor. 

6. The kinetic energy of rotation of the rigid structure in Exercise 5 is 

where R, = [W x R,] is the velocity of the vth particle. Show that 

5A.4 VECTOR AND TENSOR DIFFERENTIAL OPERATIONS 

The vector differential operator V, known as "nabla" or 'Idel," is defined in rectangular 
coordinates as 

in which the 6, are the unit vectors and the xi are the variables associated with the 1,2,3 
axes (i.e., the x,, x,, x, are the Cartesian coordinates normally referred to as x, y, z). The 
symbol V is a vector-operator-it has components like a vector but it cannot stand alone; 
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it must operate on a scalar, vector, or tensor function. In this section we summarize the 
various operations of V on scalars, vectors, and tensors. As in 5sA.2 and A.3, we decom- 
pose vectors and tensors into their components and then use Eqs. A.2-14 and 15, and 
Eqs. A.3-1 to 6. Keep in mind that in this section equations written out in component 
form are valid only for rectangular coordinates, for which the unit vectors are con- 
stants; curvilinear coordinates are discussed in 9SA.6 and 7. 

The Gradient of a Scalar Field 

If s is a scalar function of the variables x,, x,, x,, then the operation of V on s is 

The vector thus constructed from the derivatives of s is designated by Vs (or grad s) and 
is called the gradient of the scalar field s. The following properties of the gradient opera- 
tion should be noted. 

Not Commutative: 
Not Associative: 
Distributive: 

The Divergence of a Vector Field 

If the vector v is a function of the space variables x,, x,, x,, then a scalar product may be 
formed with the operator V; in obtaining the final form, we use Eq. A.2-14: 

This collection of derivatives of the components of the vector v is called the divergence of v 
(sometimes abbreviated div v). Some properties of the divergence operator should be noted 

Not Commutative: (V . v) # (v . V) 

Not Associative: (V . sv) # (Vs V) 

Distributive: (V . {v + w}) = (V v)  + (V W) 

The Curl of a Vector Field 

A cross product may also be formed between the V operator and the vector v, which is a 
function of the three space variables. This cross product may be simplified by using Eq. 
A.2-15 and written in a variety of forms 
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The vector thus constructed is called the curl of v. Other notations for [V x v] are curl v 
and rot v, the latter being common in the German literature. The curl operation, like the 
divergence, is distributive but not commutative or associative. Note that the ith compo- 
nent of [V X vl is ZjZk .sijk(d/dxj)vk. 

The Gradient of a Vector Field 

In addition to the scalar product (V . v) and the vector product [V X v] one may also 
form the dyadic product Vv: 

This is called the gradient of the vector v and is sometimes written grad v. It is a second- 
order tensor whose ij-component1 is (d/dxi)vj. Its transpose is 

whose ij-component is (d/dxj)v,. Note that Vv # vV and (Vv)+ Z vV. 

The Divergence of a Tensor Field 

If the tensor 7 is a function of the space variables x,, x,, x,, then a vector product may be 
formed with operator V; in obtaining the final form we use Eq. A.3-3: 

This is called the divergence of the tensor T, and is sometimes written div 7 .  The kth com- 

ponent of [V . T] is Xi (d/dxi)rik). If T is the product svw, then 

The Laplacian of a Scalar Field 

If we take the divergence of a gradient of the scalar function s, we obtain 

The collection of differential operators operating on s in the last line is given the symbol 
V2; hence in rectangular coordinates 

This is called the Laplacian operator. (Some authors use the symbol A for the Laplacian 
operator, particularly in the older German literature; hence (V . Vs), (V V)s, V2s, and As 

Caution: Some authors define the ij-component of Vv to be (d/dx,)v,. 
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are all equivalent quantities.) The Laplacian operator has only the distributive property, 
as do the gradient, divergence, and curl. 

The Laplacian of a Vector Field 

If we take the divergence of the gradient of the vector function v, we obtain 

That is, the kth component of [V . Vvl is, in Cartesian coordinates, just V2vk. Alternative 
notations for [V . Vvl are (V . V)v and V2v. 

Other Differential Relations 

Numerous identities can be proved using the definitions just given: 

Vrs = rVs + sVr 
(V - SV) = (VS ' V) + s(V ' V) 

(V [v X w]) = (w . [V X v]) - (v ' [V X w]) 
[V x sv] = [Vs X vl + s[V X vl 
[V Vv] = V(V . v) - [V X [V X v]] 
[v ' Vv] = iV(v ' v) - [v X [V X v]] 

[V . vw] = [v ' Vw] + w(V ' v) 
(s6:Vv) = s(V . v) 
[V . s61 = Vs 
[V 'ST] = [VS '71 f s[V '71 

V(v . W) = [(Vv) ' w] + [(Vw) ' vl 

Prove that for symmetric T: 

Proof of a Tensor 
Identity 

SOLUTION 

First we write out the right side in terms of components: 

The left side may be written as 

the second form resulting from the symmetry of T. Subtraction of Eq. A.4-31 from Eq. A.4-30 
will give Eq. A.4-32. 



5A.4 Vector and Tensor Differential Operations 823 

Now that we have given all the vector and tensor operations, including the various 
V operations, we want to point out that the dot and double dot operations can be written 
down at once by using the following simple rule: a dot implies a summation on adjacent in- 
dices. We illustrate the rule with several examples. 

To interpret (v w), we note that v and w are vectors, whose components have one 
index. Since both symbols are adjacent to the dot, we make the indices for both of them 
the same and then sum on them: (v . w) = Ziv,wi. For double dot operations such as 
(T:VV), we proceed as follows. We note that T, being a tensor, has two subscripts, 
whereas V and v each have one. We therefore set the second subscript of T equal to the 
subscript on V and sum; then we set the first subscript of T equal to the subscript on v 
and sum. Hence we get (T:VV) = SiZj.rji(d/dxi)vj. Similarly, (v [V - 11) can be written 
down at once as ZiC,vi(d/dxi).r,, by performing the operation in the inner enclosure (the 
brackets) before the outer (the parentheses). 

To get the ith component of a vector quantity, we proceed in exactly the same way. 
To evaluate [T vIi we set the second index of the tensor T equal to the index on v and 
sum to get Zjrijvj. Similarly, the ith component of [V . pvvl is obtained as Ci(d/dxi)(pv,vi). 
Becoming skilled with this method can save a great deal of time in interpreting'the dot 
and double dot operations in Cartesian coordinates. 

EXERCISES 1. Perform all the operations in Eq. A.4-6 by writing out all the summations instead of using the 
notation. 

2. A field v(x, y, z )  is said to be ivvotational if [V X v] = 0. Which of the following fields are irrota- 
tional? 
(a) v, = by v,=O v,=O 
(b) v, = bx v!, = 0 vz = 0 

(c) v, = by v, = bx vZ = 0 
( d ) v x = - b y  z~,,=bx v Z = O  

3. Evaluate (V . v), Vv, and [V . vv] for the four fields in Exercise 2. 

4. A vector v has components 

with ail = aji and x:=, ail = 0; the ap are constants. Evaluate (V v), [V x vl, Vv, (Vv)', and 

[V . vvl. (Hint: In connection with evaluating [V X v], see Exercise 5 in 5A.2.) 

5. Verify that V2(v . V) = (V - (V2v)), and that [V (Vv)+] = V(V v). 

6. Verify that (V [V x v]) = 0 and [V x Vs] = 0. 

7. If r is the position vector (with components x,, x,, x3) and v is any vector, show that 
(a) (V . r) = 3 
(b) [V X rl = 0 
(c) [r X [V . vvll = [V - v[r X v]] (where v is a function of position) 

8. Develop an alternative expression for [V X [V . swll. 

9. If r is the position vector and r is its magnitude, verify that 
1 r (a) V - = -- 
r y" 

(c) V(a. r) = a if a is a constant vector 
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10. Write out in full in Cartesian coordinates 
d 

(a) -pv = -[V-pwl - Vp - [ V - T I  + pg 
d t  

(b) T = -p{Vv + ( V V ) ~  - $(V . v)6] 

5A.5 VECTOR AND TENSOR INTEGRAL THEOREMS 

For performing general proofs in continuum physics, several integral theorems are ex- 
tremely useful. 

The Gauss-Ostrogradskii Divergence Theorem 

If V is a closed region in space enclosed by a surface S, then 

in which n is the outwardly directed unit normal vector. This is known as the divergence 
theorem of Gauss and Ostrogradskii. Two closely allied theorems for scalars and tensors 
are 

The last relation is also valid for dyadic products vw. Note that, in all three equations, V 
in the volume integral is just replaced by n in the surface integral. 

The Stokes Curl Theorem 

If S is a surface bounded by the closed curve C, then 

in which t is a unit tangential vector in the direction of integration along C; n is the 
unit normal vector to S in the direction that a right-hand screw would move if its 
head were twisted in the direction of integration along C. There is a similar relation 
for tensors.' 

The Leibniz Formula for Differentiating a Volume integral2 
Let V be a closed moving region in space enclosed by a surface S; let the velocity of any 
surface element be v,. Then, if s(x, y, z, t )  is a scalar function of position and time, 

' See P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York (1953), 
p. 66. 

M. D. Greenberg, Foundations of Applied Mathematics, Prentice-Hall, Englewood Cliffs, N.J. (1978), 
pp. 163-164. 
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This is an extension of the Leibniz formula for differentiating a single integral (see Eq. C.3- 
2); keep in mind that V = V(t) and S = S t ) .  Equation A.5-5 also applies to vectors and 
tensors. 

If the integral is over a volume, the surface of which is moving with the local fluid 
velocity (so that v, = v), then use of the equation of continuity leads to the additional 
useful result: 

in which p is the fluid density. Equation A.5-6 is sometimes called the Reynolds transport 
theorem. 

EXERCISES 1. Consider the vector field 

Evaluate both sides of Eq. A.5-1 over the region bounded by the planes xl = 0, x1 = 1; x2 = 0, 
x2 = 2; x3 = 0, X3 = 4. 

2. Use the same vector field to evaluate both sides of Eq. A.5-4 for the face x, = 1 in Exercise 1. 

3. Consider the time-dependent scalar function: 

Evaluate both sides of Eq. A.5-5 over the volume bounded by the planes: x = 0, x = t; y = 0, 
y = 2t; z = 0, z = 4t. The quantities x, y, z, t are dimensionless. 

4. Use Eq. A.5-4 (with v replaced by T )  to show that, when 7 k i  = zj ~ i j k  xj, 

where r is the position vector locating a point on C with respect to the origin. 

5. Evaluate both sides of Eq. A.5-2 for the function s(x, y, z) = x2 + y2 + z2. The volume V is the 
triangular prism lying between the two triangles whose vertices are (2,0, O), (2,1, O), (2,0,3), 
and(-2,0,0),(-2,1,0),(-2,0,3). 

5A.6 VECTOR AND TENSOR ALGEBRA 
IN CURVILINEAR COORDINATES 

Thus far we have considered only Cartesian coordinates x, y, and z. Although formal de- 
rivations are usually made in Cartesian coordinates, for working problems it is often 
more natural to use curvilinear coordinates. The two most commonly occurring mrvilin- 
ear coordinate systems are the cylindrical and the spherical. In the following we discuss 
only these two systems, but the method can also be applied to all orthogonal coordinate 
systems-that is, those in which the three families of coordinate surfaces are mutually 
perpendicular. 

We are primarily interested in knowing how to write various differential operations, 
such as Vs, [V x v], and (T:VV) in curvilinear coordinates. It turns out that we can do this 
in a straightforward way if we know, for the coordinate system being used, two things: 
(a) the expression for V in curvilinear coordinates; and (b) the spatial derivatives of the 
unit vectors in curvilinear coordinates. Hence, we want to focus our attention on these 
two points. 
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- 

Fig. A.6-1. (a) Cylindrical coordinates' with 0 s 7 < w, 0 s 0 < 2~r, -a < Z < a. 
(b) Spherical coordinates with 0 5 r < m, 0 5 0 5 T, 0 5 4 < 27~. Note that T and $ in 
cylindrical coordinates are not the same as r and 0 in spherical coordinates. Note carefully 
how the position vector r and its length r are written in the three coordinate systems: 

Rectangular: r = 6,x + 6,y + 6,z; r = v\/Jc2 + y2 + z2 

Cylindrical: r = 6,F + 6,Z; r = V ' F T ~  
Spherical: r = 6 7 ;  r = r 

Cylindrical Coordinates 

In cylindrical coordinates, instead of designating the coordinates of a point by x, y, z, we 
locate the point by giving the values of r, 0, z. These coordinates1 are shown in Fig. A.6- 
la. They are related to the Cartesian coordinates by 

x = r cos 0 (A.6-1) r = + d x 2  + y2 (A.6-4) 
y = r sin 0 (A.6-2) 0 = arctan (y/x) (A.6-5) 
z = z  (A.6-3) z = z (A.6-6) 

To convert derivatives of scalars with respect to x, y, z into derivatives with respect to r, 
0, z, the "chain rule" of partial differentiation2 is used. The derivative operators are read- 
ily found to be related thus: 

d sin 0 d d (COSO)-+  ( 0 ) d Z  
dr  

d d { & = (sin 0) + ('7) + io), 

' Caution: We have chosen to use the familiar r, 0, z-notation for cylindrical coordinates rather than 
to switch to some less familiar symbols, even though there are two situations in which confusion can 
arise: (a) occasionally one has to use cylindrical and spherical coordinates in the same problem, and the 
symbols r and I3 have different meanings in the two systems; Cb) occasionally one deals with the position 
vector r in problems involving cylindrical coordinates, but then the magnitude of r is not the same as the 
coordinate r, but rather m. In such situations, as in Fig. Ah-1, we can use overbars for the 
cylindrical coordinates and write T ,  8 , ~ .  For most discussions bars will not be needed. 

For example, for a scalar function ~ ( x ,  y, z )  = +(r, 0, z): 

Note that we are careful to use different symbols ,y and I,//, since x is a different function of x, y, z than I,!I is 
of r, 13, and z! 
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Y Fig. A.6-2. Unit vectors in rectangular and 
cylindrical coordinates. The z-axis and the unit 

6~ vector 6, have been omitted for simplicity. 
6, 

/ 

/ 
/ 

/ 
/ 

H P(x ,  y, Z) or P(Y, 0, Z) 
/ 
/ 

/ 
/ 

/ 

/ -/\" 
X 

With these relations, derivatives of any scalar functions (including, of course, compo- 
nents of vectors and tensors) with respect to x, y, and z can be expressed in terms of de- 
rivatives with respect to r, 0, and z. 

Having discussed the interrelationship of the coordinates and derivatives in the two 
coordinate systems, we now turn to the relation between the unit vectors. We begin by 
noting that the unit vectors ti,, 6,, 6, (or 6,, 6,, 6, as we have been calling them) are inde- 
pendent of position-that is, independent of x, y, z. In cylindrical coordinates the unit 
vectors 6, and 6, will depend on position, as we can see in Fig. A.6-2. The unit vector 6, is 
a vector of unit length in the direction of increasing r; the unit vector 6, is a vector of unit 
length in the direction of increasing 8. Clearly as the point P is moved around on the xy- 
plane, the directions of 6, and 6, change. Elementary trigonometrical arguments lead to 
the following relations: 

6, = ( cos 0)S, + ( sin O)Sy + (OM, 
6, = (- sin 0)6, + (cos 0)6, + (016, 
6, = (016, + (016, + (116, 

These may be solved for 6,, S,, and 6, to give 

The utility of these two sets of relations will be made clear in the next section. 
Vectors and tensors can be decomposed into components with respect to cylindrical 

coordinates as was done for Cartesian coordinates in Eqs. A.2-16 and A.3-7 (i.e., v = 6,v, 
+ 6,v, + 6 , ~ ~ ) .  Also, the multiplication rules for the unit vectors and unit dyads are the 
same as in Eqs. A.2-14 and 15 and A.3-1 to 6. Consequently the various dot and cross 
product operations (but ~ o t  the differential operations!) are performed as described in 
55A.2 and 3. For example, 

+ etc. 
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Spherical Coordinates 

We now tabulate for reference the same kind of information for spherical coordinates r, 
0,4. These coordinates are shown in Figure A.6-lb. They are related to the Cartesian co- 
ordinates by 

x  = r sin 8 cos 4 (A.6-19) r = + U x 2  + y2 + z2 (A.6-22) 
y = r sin 0 sin 4 (A.6-20) 0 = a r c t a n ( m / z )  (A.6-23) 
z = r cos 8 (A.6-21) + = arctan(y/x) (A.6-24) 

For the spherical coordinates we have the following relations for the derivative 
operators: 

COS 8 cos 4 
= (sin 0 cos 4) 

d r  
(A.6-25) 

sin 0 d d  (c0s8)++ ( i ) z  + (01% 
d r  

The relations between the unit vectors are 

6, = (sin 0 cos +)ti, + (sin 0 sin +)ijy + ( cos 8% (A.6- 28) 
6, = (COS 8 cos 4)6, + (cos 0 sin 4)6y + (- sin @6, (A.6-29) 
6, = (- sin 4)6, + ( cos 4)GY + ( O P z  (A.6-30) 

and 

6, = (sin 8 cos 4)6, + (cos 8 cos $)So + (- sin 4)6+ (A.6-31) 
Sy = (sin 8 sin +)fir + ( cos 0 sin 4)S, + ( cos (A.6-32) 
6, = (cos 8)Fr + (- sin 0)60 + ( O N +  (A.6-33) 

And, finally, some sample operations in spherical coordinates are 

That is, the relations (not involving V!) given in ssA.2 and 3 can be written directly in 
terms of spherical components. 

EXERCISES 1. Show that 

lozT j: 6, sin B do = o 

lozT j: s,s, sin 0 d~ d4 =  ti 

where 6, is the unit vector in the r  direction in spherical coordinates. 

2. Verify that in spherical coordinates 6 = 63, + 6,6, + 6+6+. 
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5A.7 DIFFERENTIAL OPERATIONS 
IN CURVILINEAR COORDINATES 

We now turn to the use of the V-operator in curvilinear coordinates. As in the previous sec- 
tion, we work out in detail the results for cylindrical and spherical coordinates. Then we sum- 
marize the procedure for getting the V-operations for any orthogonal curvilinear coordinates. 

Cylindrical Coordinates 

From Eqs. A.6-10,11, and 12 we can obtain expressions for the spatial derivatives of the 
unit vectors 6,, 6,, and 6,: 

(A. 7-2) 

The reader would do well to interpret these derivatives geometrically by considering the 
way 6,, 6,, 6, change as the location of P is changed in Fig. A.6-2. 

We now use the definition of the V-operator in Eq. A.4-1, the expressions in Eqs. A.6- 
13, 14, and 15, and the derivative operators in Eqs. A.6-7,8, and 9 to obtain the formula 
for V in cylindrical coordinates 

d sin 0 d 
= (6, cos 0 - S, sin 0) 

d + (6, sin 0 + 6, cos 0) 

When this is multiplied out, there is considerable simplification, and we get 

for cylindrical coordinates. This may be used for obtaining all differential operations in cylin- 
drical coordinates, provided that Eqs. A.7-1,2, and 3 are used to differentiate any unit vectors 
on which V operates. This point will be made clear in the subsequent illustrative example. 

Spherical Coordinates 

The spatial derivatives of 6, 6,, and 6, are obtained by differentiating Eqs. A.6-28/29, and 30: 

d d  d 
- 6, = 6, sin 0 - 6, = 6+ cos 0 - 6+ = -6, sin 0 - S, cos 8 

d 9  d+ 
(A.7-8) 
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Use of Eqs. A.6-31,32, and 33 and Eqs. A.6-25,26, and 27 in Eq. A.4-1 gives the following 
expression for the V-operator: 

in spherical coordinates. This expression may be used for obtaining differential opera- 
tions in spherical coordinates, provided that Eqs. A.7-6,7, and 8 are used for differentiat- 
ing the unit vectors. 

General Orthogonal Coordinates 

Thus far we have discussed the two most-used curvilinear coordinate systems. We now 
present without proof the relations for any orthogonal curvilinear coordinates. Let the 
relation between Cartesian coordinates xi and the curvilinear coordinates q, be given by 

These can be solved for the q, to get the inverse relations q, = q,(xi). ~ h e n l  the unit vec- 
tors in rectangular coordinates and the 6,  in curvilinear coordinates are related thus: 

in which the "scale factors" h, are given by 

The spatial derivatives of the unit vectors 6,  can then be found to be 

d6, - 6p dhp 3 Gr dh, 
&p E -- 

ha a% y=1 hr dqr 
I I 

and the V-operator is 
I I 

The reader should verify that Eqs. A.7-14 and 15 can be used to get Eqs. A.7-1 to 3, A.7-5 
and A.7-6 to 9. 

From Eqs. A.7-15 and 14 we can now get the following expressions for the simplest 
of the V-operations: 

P. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York (1953), p. 26 and 
p. 115. 
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EXAMPLE A.7-1 

Differential Operations 
in Cylindrical 
Coordinates 

In the last expression, the unit vectors are those belonging to the curvilinear coordinate 
system. Additional operations may be found in Morse and Feshbach.' 

The scale factors introduced above also arise in the expressions for the volume and 
surface elements d V  = h,h,h,dqldq2dq, and dSap = hohpdqadqp(a # P); here dSap is a surface 
element on a surface of constant y, where y Z a and y # p. The reader should verify that 
the volume elements and various surface elements in cylindrical and spherical coordi- 
nates can be found in this way. 

In Tables A.7-1,2, and 3 we summarize the differential operations most commonly en- 
countered in Cartesian, cylindrical, and spherical coordinates.* The curvilinear coordinate 
expressions given can be obtained by the method illustrated in the following two examples. 

Derive expressions for (V v) and Vv in cylindrical coordinates. 

SOLUTION 

(a) We begin by writing V in cylindrical coordinates and decomposing v into its components 

Expanding, we get 

We now use the relations given in Eqs. A.7-1,2, and 3 to evaluate the derivatives of the unit 
vectors. This gives 

Since (6, 6,) = 1, (6,. 6,) = 0, and so on, the latter simplifies to 

which is the same as Eq. A of Table A.7-2. The procedure is a 
forward. 

(A. 7-22) 

bit tedious, but is is straight- 

' For other coordinate systems see the extensive compilation of P. Moon and D. E. Spencer, Field 
Theory Handbook, Springer, Berlin (1961). In addition, an orthogonal coordinate system is available in 
which one of the three sets of coordinate surfaces is made up of coaxial cones (but with noncoincident 
apexes); all of the V-operations have been tabulated by the originators of this coordinate system, 
J. F. Dijksman and E. P. W. Savenije, Rheol. Acta, 24,105-118 (1985). 
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Table A.7-1 Summary of Differential Operations Involving the V-Operator in Cartesian 
Coordinates (x, y, z) 

dux dv, dv, 
( V . v ) = - + - + -  

dx dy dz 

d2s d2s d2s (V2s) = - + - + - 
dx2 dy2 dz2 

+ 7 vx (3) ax + 'YY ("y) + y2 (3) 

ds 
[Vs], = - 

dx 

as [Vs], = - 
dY 

ds 
[Vs], = - 

dz 

dv, JVy 
[V x v], = - - - 

dy dz 

dux dvz 
[V x v]" = - - - - dZ dx 

dvy dv, 
[V x v], = - - - 

dx dy 

d7,, J7,, a~ , ,  
[V.T],=-+--+- 

dx dy dz 

d7xy d7yy d7Zy 
[V .T]  =-+--+- 

Y dx dy dz 

d7,, d7y2 d7,, 
[V.7],=-+-+- 

dx dy dz 

a2vX d2v, d2vX 
[V2v], = - + - + - 

dx2 dy2 dz2 

d2vy d2vy d2vy 
[V2v] = - + - + - 

b x 2  dy2 dz2 

d2vZ d2v, d2v, 
[V2v], = --- + - + - 

dx2 dy2 dz2 

[v  Vw], = v,($) + vy(%) + %(%) 
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d d d where the operator (v . V) = v, - + v - + v, - 
dx Y dy dz 
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Table A.7-2 Summary of Differential Operations Involving the V-Operator in Cylindrical 
Coordinates (r, 6, z )  

1 d 1 (9% dvz ( V - v )  = --(rv,) + -- + - r dr r d o  dz 

1 dv, (T:VV) = rrr($) + rr,(rdB - 4)  + r r 2 ( 2 )  

+ Tor(z) + roe(+ 3 + :) + roZ(g) 

ds [Vs], = - dr 

1 ds [Vs], = - - 
r d o  

ds [Vs], = - dz 

1 dvz dv, [V Xv],=---- 
r d o  dz 
dv, dv, 

[ V x v l  - - d y  * -  dz 

1 d 1 Jv, [V x v], = --(rue) - -- r dr r a0 

1 d 1 d d Too [V ' 71, = - - (rr,,) + - - Tor + - rzr - - r dr r d o  dz r 

1 d 1 d d 7 e r  - 7 r e  [V ' 'TIe = - - + - - Tee + - Tze + p 

? dr r d e  dz r 

1 d 1 d d [V . 71, = - - (rr,) + - - roz + - r,, r dr r a0 dz 

[vbl, = ~ i ~ ( ~ z )  + L & + %  
r dr r2 do2 dz2 
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V @  
(v ' V7)," = (v ' V)r,, + y T,, (11) 

(v VT),, = (v v)T,, (JJ) 
d v, d d where the operator (v . V) = v, - + - - + v, - 
dr  r a6 az 
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Table A.7-3 Summary o f  Differential Operations Involving the V-Operator in Spherical Coordinates (r, 8 , 4 )  

ds [Vsl, = - dr 

1 ds 
[Vsl, = - - d8 

1 ds [VsI+ = v - 
r sin 8 d 4  

1 d [V xv l ,=- -  
1 dvO 

(v ,  sin 8 )  - - 

r sin 0 dd  r sin 8 d 4  
1 dvr 1 d [V x v ] ,  = - - - - ( r v &  

r sin 8 d+ r dr 

1 il 1 dv, [V x vl, = -- (rv,) - -- r dr r d8 

1 d 1 d 1 d 7 0 8  + 74, [V - I ] ,  = - - (?rJ + v - (rBr sin 8 )  + ------ - 
r2 dr r sin 8 dB r sin 8 d+ r+r - Y 

1 d 1 d 1 d (rer - rr0) - 744 cot 0 
[V -11, = - - (r3rr,) + -- - (roo sin 8 )  + - - 

r3 dr r sin 0 d6 r sin 8 a4 "' + r 

I d  3 1 d 1 d (T,, - rr4) + rdo cot 8 
[V . 714 = 3 - (r rr+) + v - (r,+ sin 8 )  + ------ - 

r dr r sin 8 d8 r sin 8 d+ r4' + 
r 

1 
r2vr) + - - 1 d2v, 2 (7 2 dv+ 

,V2vlr = - (- - ( ) ( s i n 8 % ) + + s i n 2 ( j d + 2  ? s i n e d *  
(v ,  sin 8) - - -- 

dr r2 dr r2 sin 8 d o  ? sin 8 d 4  

(v, sin 8 )  + 1 #vB I 2 dvr 2 cot e ) $ s i n ' ~ d + ~  r 2 d 8  r 2 s i n 8 d 6  

(v ,  sin 8 )  + 1 d2v, +--+---- 2 dvr 2 cot 8 due ) ? s i n 2 8 d 4 '  r 2 s i n 8 d 6  r 2 s i n 0 d $  

1 dw 1 dw, W ,  
[V ' = + v,(T % - :) + v4(=% - ?) 
[V . ,w,, = ,.(?) + ,,(; 2 + ?) + 2 - 8 )  

1 dw* w w, 
+I+, cot 8 [V VWI+ = v r ( 2 )  + v,(+ 2) + v4(- r 
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1 duo 7'4 
- cot 8 { V ~ i + o  = - r 

1 dv+ vr v, {VV},,,,~ = - - + y + y ~ 0 t 8  
r sin 8 d+ 

d Ve d + d where the operator ( v  V) = vr - + -- + - - dr r d8 r sin 0 d+ 
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(b) Next we examine the dyadic product Vv: 

Hence, the rr-component is dvr/dr, the re-component is dv,/dr, and so on, as given in Table 
A.7-2. 

Find the r-component of [V . T ]  in spherical coordinates. 

Differential Operations SOLUTION 
in Spherical 
Coordinates Using Eq. A.7-9 we have 

[o . TI, = [ {6 ,  $ + 6, { g & ~ ~ ,  + wo~ro + 8,6+7,+ 

+ 606r7e, + 6&371j8 + 6&+70+ f 6+6r7+r + 6$07,0 + 6+647++) I (A.7-24) 

We now use Eqs. A.7-6, 7, 8 and Eq. A.3-3. Since we want only the r-component, we select 
only those terms that contribute to the coefficient of 6,: 

I d 
[6,  f $ 6,6rr,r] = 16, . 6,8,] - r - dB nr + other term (A.7-26) 

+ other term [a+ L r sin 0 d+ .6&74,] = 16, - 6+6.l a (A.7-27) 

[6 ,  i $ . 6T6r7] = $ ( 6  {$ 6 , h ]  + [61 6. {$6r}]  

1 6r6rrrr] = [ S ,  . {& 6,}6,] [a+ -- - . r sin 9 d+ r sin 0 

- 7 r r  -- 7 r r  
[6, 64 sin 8 6,l = 6, 

r sin 0 

[a ,  
$ . 6&&7,,] = 6 , .  ~;g) + other term 

Tor COS 9 
r sin 9 

1 d 

[6+ 
d0 6+6,7++] = 6 , ( ~ )  + other terms 
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Combining the above results we get 

Note that this expression is correct whether or not T is symmetric. 

EXERCISES 1. If r is the instantaneous position vector for a particle, show that the velocity and acceleration 
of the particle are given by (use Eq. A.7-2): 

in cylindrical coordinates. The dots indicate time derivatives of the coordinates. 

2. Obtain (V . v), [V X v], and Vv in spherical coordinates, and [V . TI in cylindrical coordinates. 

3. Use Table A.7-2 to write down directly the following quantities in cylindrical coordinates: 
(a) (V . pv), where p is a scalar (b) [V . pwl,, where p is a scalar 
(c) [V p6l0, where p is a scalar (dl (V . [T v]) 
(e) [v. Vvl, (f) VV + ( V d t  

4. Venfy that the entries for V2v in Table A.7-2 can be obtained by any one of the following methods: 
(a) First verify that, in cylindrical coordinates the operator (V V) is 

and then apply the operator to v. 

(b) Use the expression for [V TI in Table A.7-2, but substitute the components for Vv in place 
of the components of T, SO as to obtain [V . Vvl. 
(c) Use Eq. A.4-22: 

and use the gradient, divergence, and curl operations in Table A.7-2 to evaluate the opera- 
tions on the right side. 

sA.8 INTEGRAL OPERATIONS 
IN CURVILINEAR COORDINATES 

In performing the integrations of sA.5 in curvilinear coordinates, it is important to un- 
derstand the construction of the volume elements, as is shown for cylindrical coordi- 
nates in Fig. A.8-1 and for spherical coordinates in Fig. A.8-2. 

In doing volume integrals, the simplest situations are those in which the bounding 
surfaces are surfaces of the coordinate system. For cylindrical coordinates, a typical vol- 
ume integral of a function f(r, 0, z) would be of the form 

and for spherical coordinates a typical volume integral of a function g(r, 0, +) would be 

lo: 1,; g(r, 0, +)? dr sin 0 d0 d+ 
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Fig. A.8-1. Differential 
volume element r dr dB dz 
in cylindrical coordinates, 

Cylindfical surface and differential line ele- 
of radius r ments dr, r do, and dz. The 

differential surface ele- 
Differential ments are: (r d0)(dz) per- 

volume element pendicular to the r direction 
(dr)(rdO)(dz) (intermediate shading); 

(dz)(dr) perpendicular to the 
8 direction (darkest shad- 
ing); and (dr)(r de) perpen- 
dicular to the z direction 
(lightest shading). 

Since the limits in these integrals (r,, r,, S,, S2, etc.) are constants, the order of the integra- 
tion is immaterial. 

In doing surface integrals, the simplest situations are those in which the integration is 
performed on one of the surfaces of the coordinate system. For cylindrical coordinates 
ihere are three possibilities: 

On the surface r = r,: 

On the surface 0 = 80: 

On the surface z = 2,: 

/I Spherical surface 
X with radius r 

Fig. A.8-2. Differential vol- 
ume element r2 sin 8 dr d0 d+ 
in spherical coordinates, 
and the differential line ele- 
ments dr, r do, and r sin 8 d+. 
The differential surface ele- 
ments are: (r d8)(r sin 8 d+) 
perpendicular to the r direc- 
tion (lightest shading); (r sin 8 
d+)(dr) perpendicular to the 
0 direction (darkest shad- 
ing); and (dr)(r do) perpen- 
dicular to the 4 direction 
(intermediate shading). 
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Similarly, for spherical coordinates: 

On the surface C$ = &: Ir: g(r, 8, C$&r2 dr sin B do 

The reader should try making sketches to show exactly what areas are described by each 
of the above six surface integrals. 

If the area of integration in a surface integral is not one of the surfaces of the coordi- 
nate system, then a book on differential and integral calculus should be consulted. 

sA.9 FURTHER COMMENTS ON VECTOR-TENSOR NOTATION 

The boldface notation used in this book is called Gibbs notation.' Also widely used is an- 
other notation referred to as Cartesian tensor n~ t a t i on .~  As shown in Table A.9-1, a few 
examples suffice to compare the two systems. The two outer columns are just two differ- 
ent ways of abbreviating the operations described explicitly in the middle column in 
Cartesian coordinates. The rules for converting from one system to another are as 
follows. 

To convert from expanded notation to Cartesian tensor notation: 

1. Omit all summation signs (the "Einstein summation convention") 

2. Omit all unit vectors and unit dyads. 

3. Replace d / d x ,  by di. 

Table A.9-1 

Expanded notation in terms of 
Gibbs notation unit vectors and unit dyads Cartesian tensor notation 

' J. W. Gibbs, Vector Analysis, Dover Reprint, New York (1960). 
' W. Prager, Mechanics of Continua, Ginn, Boston (1961). 
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To convert from Cartesian tensor notation to expanded notation: 

1. Supply summation signs for all repeated indices. 

2. Supply unit vectors and unit dyads for all nonrepeated indices; in each term of a 
tensor equation the unit vectors must appear in the same order in the unit dyads. 

3. Replace d i  by d/dxi. 

The Gibbs notation is compact, easy to read, and devoid of any reference to a particular 
coordinate system; however, one has to know the meaning of the dot and cross opera- 
tions and the use of boldface symbols. The Cartesian tensor notation indicates the nature 
of the operations explicitly in Cartesian coordinates, but errors in reading or writing sub- 
scripts can be most aggravating. People who know both systems equally well prefer the 
Gibbs notation for general discussions and for presenting results, but revert to Cartesian 
tensor notation for doing proofs of identities. 

Occasionally matrix notation is used to display the components of vectors and ten- 
sors with respect to designated coordinate systems. For example, when v, = jy, vy = 0, v, 
= 0, V v  can be written in two ways: 

The second "=" is not really an "equals" sign, but has to be interpreted as "may be dis- 
played as." Note that this notation is somewhat dangerous since one has to infer the unit 
dyads that are to be multiplied by the matrix element-in this case, 6,6,, tixsy, and so 
on. If we had used cylindrical coordinates, V v  would be represented by the matrix 

y sin 8 cos 6 - y sin2 6 
(A.9-2) 

0 

where the matrix elements are understood to be multiplied by 6,6, 6,6e, and so on, and 
then added together. 

Despite the hazard of misinterpretation and the loose use of "=," the matrix nota- 
tion enjoys widespread use, the main reason being that the "dot" operations correspond 
to standard matrix multiplication rules. For example, 

Of course such matrix multiplications are meaningful only when the components are re- 
ferred to the same unit vectors. 
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The Fluxes and the Equations 
of Change 

Newton's law of viscosity 

Fourier's law of heat conduction 

Fick's (first) law of binary diffusion 

The equation of continuity 

The equation of motion in terms of T 

The equation of motion for a Newtonian fluid with constant p and p 

The dissipation function a, for Newtonian fluids 

The equation of energy in terms of q 

The equation of energy for pure Newtonian fluids with constant p and k 

The equation of continuity for species a in terms of j, 

The equation of continuity for species A in terms of w, for constant p9,, 

1 NEWTON'S LAW OF VISCOSITY 
[T = -p (Vv + (VvIt) + (&u - K)(V. v)81 

Cartesian coordinates (x, y, z): 

in which 

(B.1-1)" 

(B. 1 -2)" 

(B. 1-3)" 

(B. 1 -4) 

(B.l-5) 

(B.l-6) 

(B.l-7) 

" When the fluid is assumed to have constant density, the term containing (V . v) may be omitted. For 
monatomic gases at low density, the dilatational viscosity K is zero. 

843 
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1 NEWTON'S LAW OF VISCOSITY (continued) 

Cylindrical coordinates (r, 0 , ~ ) :  

in which 

" When the fluid is assumed to have constant density, the term containing (V . v) may be omitted. For 
monatomic gases at low density, the dilatational viscosity K is zero. 

Spherical coordinates (r, 0 , 4 ) :  

in which 

+ ($p - K)(V V) (B.l-15)" 

(B.l-16)" 

vr  + v, cot 0 
r + (ip - K)(V V) (B.l-17)" 

(B.1-18) 

(B.1-19) 

[ 1 
+ . (")I T + ~  = rr4 = -p v- (B.l-20) 

r sm 6 d+ dr r 

1 d 1 8% (u, sin 8 )  + ---- - (V mv) = --(r2vr) +-- (B.1-21) 
r 2  dr r sin 8 d0 r sin 8 d 4  

" When the fluid is assumed to have constant density, the term containing (V - v) may be omitted. For 
monatomic gases at low density, the dilatational viscosity K is zero. 
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sB.2 FOURIER'S LAW OF HEAT CONDUCTIONa 

[q = -kVTI 

Cartesian coordinates (x, y, 2): 

Cylindrical coordinates (r, 8 , ~ ) :  

Spherical coordinates (r, 8'4): 

1 dT q+ = -k-- 
r sin 8 d4 

a For mixtures, the term z,(E,/M,)~, must be added to q (see Eq. 19.3-3). 
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5B.3 FICK'S (FIRST) LAW OF BINARY DIFFUSIONa 

[ j A  = -P%ABVWAI 

Cartesian coordinates (x ,  y, z): 

Cylindrical coordinates tr, 8 , ~ ) :  

Spherical coordinates tr, 8,4) :  

" To get the molar fluxes with respect to the molar average velocity, replace j,, p, and w, by J:, c, and x,. 

5B.4 THE EQUATION OF CONTINUITYa 

[ d p / d t  + (V . pv) = 01 

Cartesian coordinates (x, y, z): 

Cylindrical coordinates (r, 8 , ~ ) :  

Spherical coordinates (r, 8, 4): 

1 d (pv, sin 8) + - - (pv+) = 0 3 + -- (p?ur) + -- 
dt y2 dr r sin 8 d8 r sin 8 dr$ 

" When the fluid is assumed to have constant mass density p, the equation simplifies to (V . v) = 0. 
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9B.5 THE EQUATION OF MOTION IN TERMS OF T 

Cartesian coordinates (x, y, z): a 

" These equations have been written without making the assumption that 7 is symmetric. This means, for 
example, that when the usual assumption is made that the stress tensor is symmetric, 7 ,  and ry, may be 
interchanged. 

Cylindrical coordinates (r, 8, z ) : ~  

dv0 V ~ V ,  "+rv@) [: :r av,+v-+9-+v + =--- - + - I - d + - d ~~0 + 
' d r  r d 0  " d z  r 

- - 
r de  a2 

These equations have been written without making the assumption that 7 is symmetric. This means, for example, that when the usual 
assumption is made that the stress tensor is symmetric, rrO - = 0. 

Spherical coordinates (r, 8,4):' 

av, av, v ,  dv, v ,  dvr + v$ dp 
+ ' + -- + -- - --) = -- at dr r d8 r sin 8 d 4  r dr 

1 Toe + 74, (rOr sin 0 )  + L- a - (r2rrJ + - - 
r sin 8 88 r sm 8 d 4  r4r r 

1 d (rer - ~ ~ 0 )  - ~ 4 4  cot 8 
(% sin e) + --- - (r3rr,) + - - 

r sin 8 d e  r sin e d e  r$" + 
r ) + P& 

+ 

v,vr + v,v, cot 8 1 dP 
r r sin 8 dg5 

1 d (r,, - rr+) + 740 Cot 6 
(q, sin 8 )  + --- - 

r sin 8 d8 r sin 8 '" + r ] + P84 

These equations have been written without malung the assumption that 7 is symmetric. This means, for example, that when the usual 
assumption is made that the stress tensor is symmetric, T , ~  - r8, = 0. 
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5B.6 EQUATION OF MOTION FOR A NEWTONIAN FLUID 
WITH CONSTANT p AND p 

[pDv/ Dt = - V p  + pV2v + pg] 

Cartesian coordinates (x, y, 2): 

d t 
+ pgx (B.6-1) 

dv, dv, dv, 
p(-+vx-+ v - + V ,  - = - + p + + + pgz (B.6-3) dt dx dy @) dz [ 

Cylindrical coordinates (r, 6, z): 

1 
r2 dr2 r2 sin B d o  

dv, dv, v, dv v+ dv, v p ,  - v: cot 6 
p - f u r - + - A + - -  + ( dt dr r d o  r sin B ad r 

1 d2v, 2 dv (v, sin 6 )  + ) r 2 s i n 2 6 d ~ '  r2do  r 2 s i n 6 d 9  

dv+ v dv, v, dv, + v+v, + v,v+ cot 6 1 d P  
p - + v , - + A p + - -  (dd: dr r d6 r sin 6 d+ r r sin 0 d+ 

(v, sin 6) + 1 d2v+ dv7 + %] + pg+ (8.64) +-- ) r 2 s i n 2 8 d ~ '  r 2 s i n 6 M  r 2 s i n 6 d 9  

a The quantity in the brackets in Eq. B.6-7 is not what one would expect from Eq. (M) for [V . Vv] in Table A.7-3, because we have added 
to Eq. (M) the expression for (2/r)(V - v),  which is zero for fluids with constant p. This gives a much simpler equation. 
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sB.7 THE DISSIPATION FUNCTION @v FOR NEWTONIAN 
FLUIDS (SEE EQ. 3.3-3) 

- -- 

Cartesian coordinates ( x ,  y, 2): 

2 

(B. 7-1 ) 

- - 

Cylindrical coordinates (r ,  6 , ~ ) :  

(B. 7-2) 

Spherical coordinates (r ,  6, 4 ) :  

[(:T ( ) ( I ~ V ~ + V . + V ~ E O ~ ~  @ , = 2  - + --+-  + 
r sin 6 d 4  r 

1 d - 2 [ld(l'vd + -- 
3 y2dr r sin 8 d6 

5B.8 THE EQUATION OF ENERGY IN TERMS OF q 

I ~ ? ~ D T / D ~  = - ( V .  q) - (d In p/d in n P D p / D t  - (7:Vv)l 
- -- 

Cartesian coordinates ( x ,  y, 2): 

Cylindrical coordinates (r, 6 ,  z): 

d~ v n d ~  d ~ ) = [ l d  1 dqo d l n  p p c  -+v , -+- -+v , -  
* P ( d T  at dr r d6 dz  r ar r d6 dz 

- - (rq,) + - - + (B.8-2>" 

-- - - 

Spherical coordinates (r, 6 , 4 ) :  

" The viscous dissipation term, -(T:VV), is given in Appendix A, Tables A.7-1,2,3. This term may usually be neglected, except for 
systems with very large velocity gradients. The term containing (d In p / d  In 'I), is zero for fluid with constant p. 
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sB.9 THE EQUATION OF ENERGY FOR PURE NEWTONIAN 
FLUIDS WITH CONSTANTa p AND k 

Cartesian coordinates ( x ,  y, z): 

Cylindrical coordinates (r, 0 , ~ ) :  

Spherical coordinates (r,  8 ,4):  

" This form of the energy equation is also valid under the less stringent assumptions k = constant and (d In p / d  In T),,Dp/Dt = 0. The 
assumption p = constant is given in the table heading because it is the assumption more often made. 

The function @,, is given in sB.7. The term p@, is usually negligible, except in systems with large velocity gradients. 

sB.10 THE EQUATION OF CONTINUITY FOR SPECIES a 
IN TERMSa OF ja 

[pDo, /Dt  = -(V . j,) + r,] 

Cartesian coordinafes ( x ,  y, z): 

Cylindrical coordinafes (r, 8, z): 

-- - 

Spherical coordinates (r, 8,+): 

d o ,  dw, us d o ,  Urn 1 d .  
= [L a (r2j,r) + - fur-+--+--- dt dr Y r sm 8 a+ r 2  dr r sin 0 ('"' Y sln 0 aia'i.m]+r, d+ (8.10-3) sin 0) + - 

" To obtain the corresponding equations in terms of J,* make the following replacements: 

Replace P v 



sB.11 The Equation of Continuity for Species A in Terms of w, for Constant p%,, 851 

gB.11 THE EQUATION OF CONTINUITY FOR SPECIES A 
IN TERMS OF oA FOR CONSTANTa pBAB 

- - 

Cartesian coordinates (x, y, 2): 

Cylindrical coordinates (r, 19, z): 

Spherical coordinates (r ,  O,+): 

1 
r2  sin 0 d o  

(B.11-3) 

" To obtain the corresponding equations in terms of x,, make the following replacements: 

Replace P 0, v re 
N 

by c X, V* R, - x, 1 Rp 
p=1 



Appendix c 

Mathematical Topics 
1 Some ordinary differential equations and their solutions 

5C.2 Expansions of functions in Taylor series 

5C.3 Differentiation of integrals (the Leibniz formula) 

3C.4 The gamma function 

92.5 The hyperbolic functions 

5C.6 The error function 

In this appendix we summarize information on mathematical topics (other than vectors 
and tensors) that are useful in the study of transport phenomena.' 

1 SOME ORDINARY DIFFERENTIAL EQUATIONS 
AND THEIR SOLUTIONS 

We assemble here a short list of differential equations that arise frequently in transport 
phenomena. The reader is assumed to be familiar with these equations and how to solve 
them. The quantities a, b, and c are real constants and f and g are functions of x. 

Equation Solution 

y = C1 cosh ax + C2 sinh ax or 

Some useful reference books on applied mathematics are: M. Abramowitz and I. A. Stegun, 
Handbook of Mathematical Functions, Dover, New York, 9th printing (1973); G. M. Murphy, Ordinary 
Differential Equations and Their Solutions, Van Nostrand, Princeton, N.J. (1960); J. J. Tuma, Engineering 
Mathematics Handbook, 3rd edition, McGraw-Hill, New York (1987). 
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Solve the equation n2 + an + b = 0, and 
get the roots n= n+ and n = n-. Then (a) if 
n+ and n- are real and unequal, 
y = Clexp(n+x) + C2exp(n-x) 

(b) if n+ and n- are real and equal to n, 
y = enx(Clx + C2) 
(c) if n+ and n are complex: ni = p t iq, 
y = ePx(C, cos qx + C2 sin qx) 

((2.1-6a) 

(C.l-6b) 

(C.1-7a) 

(C.l-7b) 

(C. 1 - 7 ~ )  

(C.1-8) 

(C.l-9) 

(C.1-10) 

(C.1-11) 

(C.1-12) 

(C.1-13) 

(C.1-14) 

y = C,x"l + C2xn2 + C3xn3, where the n, are the roots of 
the equation n(n - l)(n - 2) + an(n - 1) + bn + c = 0, 
provided that all roots are distinct. 

Notes: 

" In Eqs. C.l-4 and C.l-6 the decisions as to whether to use the exponential forms or the trigonometric (or 
hyperbolic) functions are usually made on the basis of the boundary conditions on the problem or the 
symmetry properties of the solution. 

Equations C.l-5 and C.l-6 are solved by making the substitution y(x) = u ( x ) / x  and then solving the 
resulting equation for u(x).  
In Eqs. C.1-8 to C.1-13, it may be convenient or necessary to change the lower limits of the integrals to 

some value other than zero. 

5C.2 EXPANSIONS OF FUNCTIONS IN TAYLOR SERIES 

In physical problems we often need to describe a function y(x) in the neighborhood of 
some point x = x,. Then we expand the function y(x) in a "Taylor series about the point 
x = xo": 
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The first term gives the value of the function at x = x,. The first two terms give a straight- 
line fit of the curve at x = x,. The first three terms give a parabolic fit of the curve at 
x = x, and so on. The Taylor series is often used when only the first several terms are 
needed to describe the function adequately. 

Here are a few Taylor series expansions of standard functions about the point x = 0: 

x x2 X3 e i x = l t - + - + - +  . . .  
I !  2! - 3! 

(C.2-2) 

x2 x3 x4 l n ( l + x ) = x - - + - - - + . e e  
2 3 4  

(C.2.3) 

x2 x4 x6 e r f x = p  1 - - + - - - + . . .  
2x ( 1!3 2!5 3!7 

(C.2-4) 
VG 

1 1 . 1  2 1 ' 1 ' 3 x 3 - . . .  V " F i = l + - x - x  + 
2 2 . 4  2 . 4 . 6  

(C.2-5) 

Further examples may be found in calculus textbooks and handbooks. Taylor series can 
also be written for functions of two or more variables. 

5C.3 DIFFERENTIATION OF INTEGRALS 
(THE LEIBNIZ FORMULA) 

Suppose we have a function f (x, t )  that depends on a space variable x and the time t .  
Then we can form the integral 

P(t)  

I(t) = I f(x, t )  dx (C.3-1) 
d t )  

which is a function of t [see Fig. C.3-l(a)] .  If we want to differentiate this function with 
respect to t without evaluating the integral, we can use the Leibniz formula 

Figure C.3-l(b) shows the meanings of the operations performed here: the first term on 
the right side gives the change in the integral because the function itself is changing with 

a ( t )  a ( t  + At) P( t )  P(t  + At) 

Fig. C.3-1. (a) The shaded area represents I(t) = J f ( x ,  t)dx at an 
df) 

instant t (Eq. C.3-1). (b )  To get dI/dt, we form the difference 
I(t + At) - I(t), divide by  At, and then let At + 0. The three shaded 
areas correspond to the three terms on the right side of Eq. C.3-2. 
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time; the second term accounts for the gain in area as the upper limit is moved to the 
right; and the third term shows the loss in area as the lower limit is moved to the right. 
This formula finds many uses in science and engineering. The three-dimensional analog 
is given in Eq. A.5-5. 

5C.4 THE GAMMA FUNCTION 

The gamma function appears frequently as the result of integrations: 

Several formulas for gamma functions are important: 

T(n + 1) = nT(n) (used to define T(n) for negative n) 

T(n) = (n - l)!' (when n is an integer greater than 0) 

The gamma function is displayed in Fig. C.4-1. 

+ 
4 n 

Fig. C.4-1. The gamma function. 
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Unit circle 
x2 + Y2 = 1 

6 = 2 x shaded area 

Unit hyperbola 
*2-$= 1 

= L POQ I c1 -- -- 
tan e = PQIOQ 19 = 2 x shaded area tanh 9 = pQ/OQ 
co t e=  l/tanO coth I9 = l/coth I9 
sec 6 = l/cos 6 sech I9 = I /cosh 0 
csc 19 = l/sin I9 csch 8 = l/sinh I9 

Fig. C.5-1. Comparison of circular and hyperbolic functions. 

5C.5 THE HYPERBOLIC FUNCTIONS . 
The hyperbolic sine (sinh x), the hyperbolic cosine (cosh x), and the hyperbolic tangent 
(tanh x) arise frequently in science and engineering problems. They are related to the hy- 
perbola in very much the same way that the circular functions are related to the circle 
(see Fig. C.5-1). The circular functions (sin x and cos x) are periodic, oscillating functions, 
whereas their hyperbolic analogs are not (see Fig. C.5-2). 

The hyperbolic functions are related to the exponential function as follows: 

cosh x = :(e" + e-"); sinh x = $(ex - e-"1 (C.5-1,2) 

The corresponding relations for the circular functions are: 

One can derive a variety of standard relations for the hyperbolic functions, such as 

cosh2 x - sinh2 x = 1 

cosh(x * y) = cosh x cosh y 2 sinh x sinh y 
sinh(x ? y) = sinh x cosh y 2 cosh x sinh y 

Fig. C.5-2. Comparison of the shapes of the hyperbolic 
functions. 
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cosh ix = cos x; sinh ix = i sin x (C.5-8,9) 

J cosh x dx = sinh x; J sinh x dx = cosh x (C.5-12,13) 

It should be kept in mind that cosh x and cos x are both even functions of x, whereas 
sinh x and sin x are odd functions of x. 

5C.6 THE ERROR FUNCTION 

The error function is defined as 

This function, which arises naturally in numerous transport problems, is monotone in- 
creasing, going from erf 0 = 0 to erf = 1, and has the value of 0.99 at about x = 2. The 
Taylor series expansion for the error function about x = 0 is given in Eq. C.2-4. It is also 
worth noting that erf ( - x )  = -erf x, and that 

by applying the Leibniz formula to Eq. C.6-1. 
The closely related function erfc x = 1 - erf x is called the "complementary error 

function.'' 
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The Kinetic Theory of Gases 
5D.1 The Boltzmann equation 

9D.2 The equations of change 

5D.3 The molecular expressions for the fluxes 

5D.4 The solution to the Boltzmann equation 

5D.5 The fluxes in terms of the transport properties 

5D.6 The transport properties in terms of the intermolecular forces 

5D.7 Concluding comments 

In Chapters 1,9, and 17 we gave a brief account of the use of mean free path arguments 
to get approximate expressions for the transport properties. Then we gave the rigorous 
results from the Chapman-Enskog development for dilute monatomic gases. In this ap- 
pendix we give a brief description of the Chapman-Enskog theory, just enough to show 
what the theory involves and to show how it gives a sense of unity to the subject of 
transport phenomena in gases. The reader who wishes to pursue the subject further can 
consult the standard references.' 

D l  THE BOLTZMANN  EQUATION^ 
The starting point for the kinetic theory of low-density, nonreacting mixtures of 
monatomic gases is the Boltzmann equation for the velocity distribution function f& r, t). 
The quantity f&, r, t) dk,dr is the probable number of molecules of species a, which at 
time t are located in the volume element dr at position r, and have velocities within the 
range dib. about i.,. The Boltzmann equation, which describes how fa evolves with time, is 

' J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases, North-Holland, 
Amsterdam (1972); S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, 3rd 
edition, Cambridge University Press (1970); J. 0. Hirschfelder, C. F. Curtiss, and R. 8. Bird, Molecular 
Theory of Gases and Liquids, 2nd corrected printing, Wiley, New York (1964), Chapter 7; E. M. Lifshitz and 
L. P. Pitaevskii, Physical Kinetics, Pergamon, Oxford (1981), Chapter 1. 

L. Boltzmann, Sitzungsberichte Keiserl. Akad. der Wissenschaften, 66 (2), 275-370 (1872); C. 
Cercignani, The Boltzmann Equation and Its Applications, Springer-Verlag, New York (1988). C. F. Curtiss, 
J .  Chem. Phys., 97,1416-1423,7679-7686 (1992), found it necessary to modify the Boltzmann equation to 
account for the possibility of orbiting pairs of molecules; the modification, important only at very low 
temperatures, was found to give much better agreement with the limited low-temperature experimental 
data. 
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in which d/dr is identical to the V-operator, and d/d& is a similar operator involving ve- 
locities rather than positions. The quantity g, is the external force per unit mass acting on 
a molecule of species a ,  and J, is a very complicated five-fold integral term accounting 
for the change in f, because of molecular collisions. The J ,  term involves the intermolecu- 
lar potential energy function (e.g., the Lennard-Jones potential) and the details of the col- 
lision trajectories. The Boltzmann equation may be thought of as a continuity equation in 
the six-dimensional position-velocity space, and J, serves as a source term. The veloc- 
ity distribution function is "normalized" to the number density of species a; that is, 
Sf,(&, r, t)dra = n a b  t). 

5D.2 THE EQUATIONS OF CHANGE 

When the Boltzmann equation is multiplied by some molecular property rl/,(r,) and then 
integrated over all molecular velocities, the general equation of change is obtained: 

An integration by parts is performed to get this result, and use is made of the fact that fa 
is zero at infinite velocities. If $, is a quantity that is conserved during a collision (see 
§0.3), then the term containing J ,  can be shown to be zero.' 

Now let be successively the conserved quantities for monatomic molecules: the 
mass ma, the momentum ma&, and the energy $m,(i, . r,). When these are substituted for 
+, into Eq. D.2-1, and when a sum over all species a is performed for the second and 
third of these, we get the equations of change for mass of a, momentum, and energy as 
follows: 

In the last of these equations the internal energy per unit volume is defined to be 

Thus we see that the equations of continuity, motion, and energy are direct conse- 
quences of the conservation laws for mass, momentum, and energy discussed in Chapter 
0. Equations D.2-2 to 4 should be compared with Eqs. 19.1-7,3.2-9, and Eq. (B) and foot- 
note (b) of Table 19.2-4, which were derived by continuum arguments. 

5D.3 THE MOLECULAR EXPRESSIONS FOR THE FLUXES 

At the same time the equations of change are obtained, the molecular expressions for the 
fluxes are generated as integrals over the distribution function: 

at equilibrium 
j,<r, t) = m,S(r, - v)fadr, -0 (D.3-I) 

at equilibrium 
d r ,  t) = m$(& - v)( ib. - v)f,dL - 

a 

at equilibrium 
q(r, t) = $m,J.(ib, - v)'(+, - v)f,dr, - 0 

a 
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In these expressions the fluxes involve integrals over the products of mass, momentum, 
and energy with the "diffusion velocity" (i; - v) of species a. Note the similarity be- 
tween the structure of these molecular fluxes (or "diffusive fluxes") and that of the con- 
vective fluxes of mass p,v, momentum pw,  and kinetic energy ipv2v appearing in the 
equations of change, where v is the local instantaneous mass average velocity of the gas 
mixture. Thus the molecular fluxes represent the diffusive movement of mass, momen- 
tum, and energy above and beyond that described by the convective fluxes. Note also 
that the molecular theory automatically generates the molecular work term - (V [m . v]) 
in the energy equation. 

5D.4 THE SOLUTION TO THE BOLTZMANN EQUATION 

If the gas mixture were at rest, the velocity distribution function would be given by the 
Maxwell-Boltzmann distribution function (known from equilibrium statistical mechan- 
ics). Then we would find, as shown in 5D.3, that j, = 0, that .rr = pi3 = n~T6,  and that 
q = 0. The derivation of p =   KT is given in Problem 1C.3. 

On the other hand, when there are concentration, velocity, and temperature gradi- 
ents, the distribution function is given as the Maxwell-Boltzmann distribution multi- 
plied by a "correction factor": 

where 4, << 1. In this expression n,, v, and T are functions of position r and time t. 
Since the deviations from equilibrium result from the temperature, velocity, and concen- 
tration gradients, $,(r,, r, t) can be represented, near equilibrium, as a linear function of 
the various gradients, 

in which the vector A,, the tensor B,, and the vectors Cap, all functions of r,, r, and t, are 
given as the solutions of integrodifferential equations.' The quantities d, are "general- 
ized diffusional driving forces" that include concentration gradients, the pressure gradi- 
ent, and external force differences, defined as 

in which x,, w,, and p, are the mole fraction, mass fraction, and partial pressure, respec- 
tively. Equation D.4-3, valid only for a mixture of monatomic gases at low density, is 
generalized for other fluids in the discussion of the thermodynamics of irreversible 
processes in 524.1. 

5D.5 THE FLUXES IN TERMS OF THE TRANSPORT PROPERTIES 

When Eqs. D.4-1 to 3 are substituted into Eqs. D.3-1 to 3, we get the expressions for the 
fluxes in terms of d,, Vv, and VT: 
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In these equations the transport properties appear: the viscosity p, the thermal conduc- 
tivity k, the multicomponent thermal diffusion coefficients D:, and the multicomponent 
Fick diffusivities Dap (the Bop are the Maxwell-Stefan diffusivities, closely related to the 
Dm&. Thus the kinetic theory predicts the "cross effects": the transport of mass resulting 
from a temperature gradient (thermal diffusion) and the transport of energy resulting 
from a concentration gradient (the diffusion-thermo effect). 

The pressure term in Eq. D.5-2 comes from the first term in the expansion in Eq. D.4- 
1 (that is, the Maxwell-Boltzmann distribution), and the viscosity term comes from the 
second term (that is, the +, term containing the gradients). The kinetic theory of 
monatomic gases at low density predicts that the dilatational viscosity will be zero. 

5D.6 THE TRANSPORT PROPERTIES IN TERMS 
OF THE INTERMOLECULAR FORCES 

The transport properties in Eqs. D.5-1 to 3 are given by the kinetic theory as complicated 
multiple integrals involving the intermolecular forces that describe binary collisions in 
the gas mixture. Once an expression has been chosen for the intermolecular force law 
(such as the Lennard-Jones (6-12) potential of Eq. 1.4-lo), these integrals can be evalu- 
ated numerically. For a pure gas, the three transport properties-self-diffusivity, viscos- 
ity, and thermal conductivity-are then given by: 

The dimensionless "collision integrals" a, = flk .= 1.1% contain all the information 
about the intermolecular forces and the binary collision dynamics. They are given in 
Table E.2 as functions of KT/&. If we set the collision integrals equal to unity, we then get 
the transport properties for a gas composed of rigid spheres. 

Thus the transport properties, needed in the equations of change, have been obtained 
from kinetic theory in terms of the two parameters u an< E of the in_termolecular potential 
energy function. From these expressions we get Pr = C,p/k = $(c,/C,) = $(;) = and 
Sc = p/p9 = z(fl,/o,) = $, these values being quite 
good for pure monatomic gases. 

sD.7 CONCLUDING COMMENTS 

The above discussion emphasizes the close connections among mass, momentum, and 
energy transport, and it is seen how all three transport phenomena can be explained in 
terms of a molecular theory for low-density, monatomic gases. It is also important to see 
that the continuum equations of continuity, motion, and energy can all be derived from 
one starting point-the Boltzmann equation-and that the molecular expressions for the 
fluxes and transport properties are generated in the process. In addition, the discussion 
of the dependence of the fluxes on the driving forces is very closely related to the irre- 
versible thermodynamics approach in Chapter 24. 

This appendix has dealt only with low-density, monatomic gases. Similar discus- 

C. F. Curtiss, J. Chem. Phys., 24,225-241 (1956); C. Muckenfuss and C. F. Curtiss, J. Chem. Phys., 29, 
1257-1277 (1958); L. A. Viehland and C. F. Curtiss, 1. Chem. Phys., 60,492-520 (1974); D. Russell and C. F. 
Curtiss, 1. Chem. Phys., 60,514-520 (1974). 

J. H. Irving and J. G. Kirkwood, J. Chem. Phys., 18,817-829 (1950); R. J. Bearman and J. G. 
Kirkwood, J. Chem. Phys., 28,136-145 (1958). 

C. F. Curtiss and R. B. Bird, Adv. Polymer Sci., 125, 1-101 (1996); Proc. Nat. Acad. Sci., 93,7440-7445 
(1996); J. Chem. Phys., 106,9899-9921 (1997), 107,5254-5267 (1997), 111,10362-10370 (1999). 
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sions are available for polyatomic gases? monatomic liquids? and polymeric liquids5 In 
kinetic theories for monatomic liquids, the expressions for the momentum and heat 
fluxes contain terms similar to those in Eqs. D.3-2 and 3, but also contributions associ- 
ated with forces between molecules; for polymers, one has the latter contribution, but 
also additional forces within the polymer chain. In all of these theories one can derive 
the equations of change from an equation for a distribution function and then get formal 
expressions for the transport properties. 



Appendix 

Tables for Prediction 
Transport Properties 

E l  Intermolecular force parameters and critical properties 

5E.2 Functions for prediction of transport properties of gases at low densities 



Table E.l  Lennard-Jones (6-12) Potential Parameters and Critical Properties 

Molecular 
Weight 

Substance M 

Light elements: 

H2 2.016 
He 4.003 

Noble gases: 

Ne 20.180 
Ar 39.948 
Kr 83.80 
Xe 131.29 

Simple polyatomic gases: 

Air 2 8 . 9 ~ ~  

N2 28.013 
0 2  31.999 
CO 28.010 

co2 44.010 
NO 30.006 

No 44.012 
so2 64.065 
F2 37.997 
c12 70.905 
Br2 159.808 
12 253.809 

Hydrocarbons: 

CH4 
C H g H  
CH2=CH2 

C2H6 
CH,C=CH 
CH3CH=CH2 
C3H8 
n--C4H10 

Lennard-Jones 
parameters 

IT E / K  Ref. 
(A, (K) 

Critical properties8,h 

Tc PC k 
(K) (atm) (cm3/g-mole) 



Other organic compounds: 

cH4 16.04 
CH3C1 50.49 
CH2C12 84.93 
CHC1, 119.38 
CCl, 153.82 
C2N2 52.034 
COS 60.076 

cs2 76.143 
CC12F2 120.91 

a J. 0 .  Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theoy of Gases and Liquids, corrected printing with notes added, Wiley, New York (1964). 
L. S. Tee, S. Gotoh, and W. E. Stewart, Ind. Eng. Chem. Fundamentals, 5,356-363 (1966). The values for benzene are from viscosity data on that substance. 

The values for other substances are computed from Correlation (iii) of the paper. 
" L. Monchick and E. A. Mason, J .  Chem. Phys., 35,1676-1697 (1961); parameters obtained from viscosity. 

L. W. Flynn and G. Thodos, AIChE Journal, 8,362-365 (1962); parameters obtained from viscosity. 
' R. A. Svehla, NASA Tech. Report R-132 (1962); parameters obtained from viscosity. This report provides extensive tables of Lennard-Jones parameters, heat 
capacities, and calculated transport properties. 

Values of the critical constants for the pure substances are selected from K. A. Kobe and R. E. Lynn, Jr., Chem. Rev., 52,117-236 (1962); Amer. Petroleum Inst. 
Research Proj. 44, Thermodynamics Research Center, Texas A&M University, College Station, Texas (1966); and Thermodynamic Functions of Gases, F. Din 
(editor), Vols. 1-3, Butterworths, London (1956,1961,1962). 
R Values of the critical viscosity are from 0. A. Hougen and K. M. Watson, Chemical Process Principles, Vol. 3, Wiley, New York (1947), p. 873. 
hValues of the critical thermal conductivity are from E. J. Owens and G. Thodos, AlChE Journal, 3,454-461 (1957). 

For air, the molecular weight M and the pseudocritical properties have been computed from the average composition of dry air as given in COESA, U.S. 
Standard Atmosphere 1976, U.S. Government Printing Office, Washington, D.C. (1976). 



Table E.2 Collision Integrals for Use with the Lennard-Jones (6-12) Potential for the 
Prediction of Transport Properties of Gases at Low ~ensities",~,' 

a, = ak 
KT/& (for viscosity %AB 

or and thermal (for 
K T / & ~ ,  conductivity) diffusivity) 

a, = I(Zk 
KT/& (for viscosity %,A, 

or and thermal (for 
K T / E ~ ~  conductivity) diffusivity) 

" The values in this table, applicable for the Lennard-Jones (6-12) potential, are interpolated from the results of 
L. Monchick and E. A. Mason, J. Chem. Phys., 35,1676-1697 (1961). The Monchick-Mason table is believed to be slightly 
better than the earlier table by J. 0. Hirschfelder, R. B. Bird, and E. L. Spotz, J. Chem. Phys., 16,968-981 (1948). 

This table has been extended to lower temperatures by C. F. Curtiss, J. Chem. Phys., 97,7679-7686 (1992). Curtiss 
showed that at low temperatures, the Boltzmann equation needs to be modified to take into account "orbiting pairs" 
of molecules. Only by making this modification is it possible to get a smooth transition from quantum to classical 
behavior. The deviations are appreciable below dimensionless temperatures of 0.30. 

'The collision integrals have been curve-fitted by P. D. Neufeld, A. R. Jansen, and R. A. Aziz, J. Chem. Phys., 57, 
1100-1102 (1972), as follows: 

where F = KT/&. 



Appendix F 

Constants and Conversion Factors 
5F.1 Mathematical constants 

5F.2 Physical constants 

5F.3 Conversion factors 

1 MATHEMATICAL CONSTANTS 

5F.2 PHYSICAL CONSTANTS' 

Gas law constant (R)  

Standard acceleration 
of gravity (go) 

Joule's constant (I,) 
(mechanical equivalent of heat) 

Avogadro's number (N) 
Boltzmann's constant 

(K = R/ I ; I )  

Faraday's constant ( F )  

Planck's constant (h) 

Stefan-Boltzmann 
constant (a) 

Electron charge (e) 

Speed of light in a 
vacuum (c) 

J/g-mole K 
kg.  m2/s2. kg-mol . K 
g . cm2/s2. g-mo1 K 
cal/ g-mol . K 
cm3 atm/g-mol . K 
lb, f$/s2 lb-mol . R 
ft . lbf/lb-mol . R 

molecules /g-mol 

C / g-equivalent 

J . s  
erg . s 

W/m2. K~ 
cal/s . cm2K4 
Btu/hr ft2R4 

E. R. Cohen and B. N. Taylor, Physics Today (August 1996), pp. BG9-BG13; R. A. Nelson, 
Physics Today (August 1996), pp. BG15-BG16. 867 
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5F.3 CONVERSION FACTORS 

In the tables that follow, to convert any physical quantity from one set of units to an- 
other, multiply it by the appropriate table entry. For example, suppose that p is given as 
10 1bf/in.*, and we wish to have p in poundals/ft2. From Table F.3-2 the result is 

The entries in the shaded rows and columns are those that are needed for converting 
from and to SI units. 

In addition to the tables, we give a few of the commonly used conversion factors 
here: 

Given a quantity 
in these units: Multiply by: To get quantity in these units: 

Pounds 
Kilograms 

Inches 
Meters 

Gallons (U.S.) 
Gallons (U.S.) 
Gallons (U.S.) 
Cubic feet 

Kelvins 
Degrees Rankine 

Grams 
Pounds 

Centimeters 
Inches 

Liters 
Cubic inches 
Cubic feet 
Liters 

Degrees Rankine 
Kelvins 

Table F.3-1 Conversion Factors for Quantities Having Dimensions of F or ML/t2 



Table F.3-2 Conversion Factors for Quantities Having Dimensions of F/L2 or M / L ~ ~  (pressure, momentum flux) 

6.8947 X lo4 4.6330 X lo3 144 1 6.8046 X lop2 5.1715 X 10' 2.0360 
atm 1.0133 x lo6 6.8087 X lo4 2.1162 x lo3 14.696 1 760 29.921 

1.3332 X lo3 8.9588 X 10' 2.7845 1.9337 X lo-' 1.3158 X lop3 1 3.9370 X lo-' 
3.3864 X lo4 2.2756 X lo3 7.0727 X 10' 4.9116 X lo-' 3.3421 X lop2 25.400 1 

" This unit is preferably abbreviated "psia" (pounds per square inch absolute) or "psig" (pounds per square inch gage). Gage pressure is absolute pressure minus the prevailing 
barometric pressure. Sometimes the pressure is reported in '%arsrs"; to convert from bars to pascals, multiply by lo5, and to convert from bars to atmospheres, multiply by 0.98692. 

Table F.3-3 Conversion Factors for Quantities Having Dimensions of FL or M L ~ / ~ ~  (energy, work, torque) 

Given a Multiply by 
quantity in table value foot 

foot poundals = lb, ft2/s 3.1081 X 1.0072 X 3.9942 X 1.5698 X lo-' 1.1706 X lo-" 
1.3558 X lo7 32.1740 1 3.2405 X lo-' 1.2851 X lop3 5.0505 X 3.7662 X 

thermochemical caloriesa 4.1840 X lo7 9.9287 X 10' 3.0860 1 3.9657 X 1.5586 X lop6 1.1622 X 

British thermal units 1.0550 X 10'' 2.5036 X lo4 778.16 2.5216 X lo2 1 3.9301 X 2.9307 X 

Horsepower hours 2.6845 x 1013 6.3705 x lo7 1.9800 x lo6 6.4162 x lo5 2.5445 X lo3 1 7.4570 X lo-' 
kilowatt hours 3.6000 X 1013 8.5429 X lo7 2.6552 X lo6 8.6042 X lo5 3.4122 X lo3 1.3410 1 

" This unit, abbreviated "cal," is used in some chemical thermodynamic tables. To convert quantities expressed in International Steam Table calories (abbreviated "I. T. cal") to this 
unit, multiply by 1.000654. 



Table F.3-4 Conversion Factors for Quantities Having dimensionsa of M/Lt or Ft/L2 (viscosity, density times diffusivity) 

" When moles appear in the given and the desired units, the conversion factor is the same as for the corresponding mass units. 

Table F.3-5 Conversion Factors for Quantities Having Dimensions of ML/t3T or F/tT (thermal conductivity) 

Given a Multiply by 

8.0068 X lo5 3.2174 X 10' 1 1.9137 X lo-' 4.6263 
cal/s . cm . K 4.1840 X lo7 1.6813 X lo3 5.2256 X 10' 1 2.4175 X 10' 
Btu/hr ft . F 2.1616 X lo-' 4.1365 X lop3 1 



Table F.3-6 Conversion Factors for Quantities Having Dimensions of L2/t  (momentum 
diffusivity, thermal diffusivity, molecular diffusivity) 

Table F.3-7 Conversion Factors for Quantities Having Dimensions of M / t 3 ~  or F/LtT (heat transfer coefficients) 

Table F.3-8 Conversion Factors for Quantities Having Dimensionsa of M / L ~ ~  or F ~ / L ~  (mass transfer coefficients k, or k,,,) 

" When moles appear in the given and the desired units, the conversion factor is the same as for the corresponding mass units. 



Notation 

Numbers in parentheses refer to equations, sections, or tables in which the symbols are 
defined or first used. Dimensions are given in terms of mass (M), length (L), time (t), 
temperature (T),  and dimensionless (-). Boldface symbols are vectors or tensors (see 
Appendix A). Symbols that appear infrequently are not listed. 

A = area, L2 
a = absorptivity (16.2-I),- 
a = interfacial area per unit volume of packed bed (6.4-4), L-' 

a, = activity of species a (24.1-8),- 
C, = heat capacity at constant pressure (9.1-71, ML'/~'T 
Cv = heat capacity at constant volume (9.3-61, M L ~ / ~ ~ T  

c = speed of light (16.1-I), L/t 
c = total molar concentration (§17.7), moles/L3 

c, = molar concentration of species a,  (§17.7), moles/L3 
D = diameter of cylinder or sphere, L 

D, = particle diameter in packed bed, (6.4-6), L 
QAB = binary diffusivity for system A-B (17.1-2), L2/t 
Qap = binary diffusivity for the pair a-P in a multicomponent system 

(17.9-I), L2/t 
Dnp = Maxwell-Stefan multicomponent diffusivity (24.2-4), L2/ t 
EDmp = Fick multicomponent diffusivity (24.2-3), L'/ t 
D: = multicomponent thermal diffusion coefficient (24.2-3), M/Lt 

d = molecular diameter (1.4-3), L 
d, = diffusional driving force for species a (24.149, L-' 

Etot = U,, + Ktot + a,,, = total energy in a macroscopic system (15.1-2), 
M L ~ / ~ ~  

E, = compression term in mechanical energy balance (7.4-31, ML2/t3 
E ,  = viscous dissipation term in mechanical energy balance (7.4-4), 

ML2/t3 
e = 2.71828. . . 
e = emissivity (16.2-3),- 
e = combined energy flux vector (9.8-5), M/t3 

F,,, F,, = direct, indirect view factor (16.4-91, (16.5-151,- 
F,+ = force exerted by the solid on the fluid (7.2-I), ML/t2 

f = friction factor (or drag coefficient) (6.1-I),- 
G = H - TS = Gibbs free energy (24.1-2), ML2/t2 
G = (pv) = mass velocity (6.4-8), M / L ~ ~  
g = gravitational acceleration (3.2-8), ~ / t ~  

g, = body force per unit mass acting on species a (Table 19.2-I), L/t2 
H = U + pV = enthalpy (9.8-6), M L ' / ~ ~  
h = Planck's constant (14.1-2), ML2/t 
h = elevation (2.3-lo), L 

h, hl, hl,, hl,,, h,, h ,  = heat transfer coefficients (14.1-1 to 6), M / ~ ~ T  
i = (4.1-43),- 

J,, J: = molar fluxes (Table 17.8-1 ), moles/12f 
j,, jz = mass fluxes (Table 17.8-11, M/L2t 
j,, j, = Chilton-Colburn j-factors (14.3-19, Table 22.2-I),- 
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K = kinetic energy (7.4-I), ML'/~' 
K,, K, = two-phase mass transfer coefficients (22.4-4), moles/ t12 

K = R / N  = Boltzmann's constant (1.4-1)' ML2/t2T 
k = thermal conductivity (9.1-1 and 24.2-6)' ML/PT 

k, = single-phase mass transfer coefficients (22.1-7,22.3-4, Table 22.2-I), 
moles / t L2 

k:, k: = mass transfer coefficient for small mass-transfer rates and small 
species concentration (22.1-9,22.4-21, moles/ t12 

k; = mass transfer coefficient for high net mass-transfer rates (22.8-2a), 
moles / t L2 

k ,  = thermal diffusion ratio (24.2-lo),- 
k, = electrical conductivity (9.5-I), ohm-' cm-' 
k: = heterogeneous chemical reaction rate coefficient (18.0-3), 

moles1-"/ L2-3"t 
kr = homogeneous chemical reaction rate coefficient (18.0-2), 

moles1" / L3p3n t 
L = length of film, tube, or slit (2.2-22), L 

L,,, = total angular momentum within a macroscopic system (7.3-I), 
M L ~ I ~  

1 = mixing length (5.4-4), L 
I ,  = characteristic length in dimensional analysis (3.7-3), L 

M = molar mean molecular weight (Table 17.7-I), M/mole 
M, = molecular weight of species a (Table 17.7-I), M/mole 

Ma,,,, = total number of moles of species a in macroscopic system (23.1-3), 
moles 

rn = mass of a molecule (1.4-1)' M 
m, n = parameters in power law viscosity model (8.3-3), M/Lt2-",- 
ma,,,, = total mass of species a in macroscopic system (23.1-I), M 

N = rate of shaft rotation (3.7-28), tpl 
N = number of species in a multicomponent mixture (17.7-I),- 
I? = Avogadro's number, (g-mole)-' 

N, = combined molar flux vector for species a (17.8-2), moles/L2t 
n = unit normal vector (A.5-I),-- 

n, = combined mass flux vector for species a (17.8-1)' M/L'~ 
n = molecular concentration or number density (1.4-2), LV3 

P,,, = total momentum in a macroscopic flow system (7.2-I), ML/t 
9 = p + pgh = modified pressure (for constant p and g) (2.3-10)' 

M / L ~ *  
9, = characteristic pressure used in dimensional analysis (3.7-4), 

 MIL^^ 
p = fluid pressure, M/ Lt2 
Q = rate of heat flow across a surface (9.1-1,15.1-I), ML'/ t3 

QG = radiant energy flow from surface 1 to surface 2 (16.4-5), 
ML'/ t3 

Q12 = net radiant energy interchange between surface 1 and surface 2 
(16.4-8), ML'/ t3 

q = heat flux vector (9.1-4), M/t3 
q0 = interfacial heat flux (10.8-14), M/t3 
R = gas constant (in = RT), ML2/t2T mole 
R = radius of a cylinder or a sphere, L 

R, = molar rate of production of species a by homogeneous chemical 
reaction (18.0-2), moles/t13 

Rh = mean hydraulic radius (6.2-16), L 
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R = real part (of complex quantity) (4.1-43) 
r = position vector (3.4-I), L 
r = = radial coordinate in cylindrical coordinates, L 
r = Vx2 + y2 + z2 = radial coordinate in spherical coordinates, L 

r, = mass rate of production of species a by homogeneous chemical 
reaction (19.1-5), M/tL" 

S,, S, = cross-sectional area at planes 1 and 2 (7.1-11, L2 
S = entropy (11D.1-l,24.1-I), ML2/t2T 
T = absolute temperature, T 

T,,f = torque exerted by a solid boundary on the fluid (7.3-I), M L ~ / ~ '  
T,,, = external torque acting on system (7.3-11, M L ' / ~ ~  

TI - To = characteristic temperature difference used in dimensional analysis 
(1 1.5-51, T 

t = time, t 
U = internal energy (9.7-I), ML'/~' 
U = overall heat-transfer coefficient (10.6-151, M/t3T 
- 
u = arithmetic mean molecular speed (1 &I), L /  t 
u = unit vector in direction of flow (7.2-I),- 
V = volume, L3 
v = mass average velocity (17.7-I), L/t 
V* = molar average velocity (17.7-2), L /  t 
v, = velocity of species a (17.1-3, Table 17.7-I), L/t 
v, = characteristic velocity in dimensional analysis (3.7-4), L/t 
v, = speed of sound (9.4-2,llC.l-4), L/t 
v, = a = friction velocity (5.3-2), L/ t 
W = molar rate of flow across a surface, (23.1-4), moles/t 

W, = molar rate of flow of species a across a surface (23.1-3), moleslt 
W,, = rate of doing work on a system by the surroundings via moving 

parts (7.4-I), M L ~ / ~ ~  
w = mass rate of flow across a surface (2.2-21), M/t 

w, = mass flow rate of species a across a surface (23.1-I), M/t 
x, = mole fraction of species a (Table 17.7-I),- 

x, y, z = Cartesian coordinates 
y = distance from wall (in boundary layer theory and turbulence) 

(54.41, L 
y, = mole fraction of species a (22.4-2),- 
Z = wall collision frequency (1.4-2), ~ - ~ t - '  
z, = ionic charge, (24.4-5), equiv/mole 

alpha a = k / &  = thermal diffusivity (9.1-7). L2/t 
beta p = thermal coefficient of volume expansion (10.9-61, T-' 

p = velocity gradient at a surface (12.4-6), s-' 
gamma y = Cp/CV = heat capacity ratio (11.4-56),- 

9 = Vv + (Vv)+ = rate-of-deformation tensor (8.3-I), tp' 
delta AX = X2 - XI = difference between exit and entry values 

6 = falling-film thickness (2.2-22), boundary layer thickness 
(4.4-14), L 

B = unit tensor (1.2-2, A.3-lo),- 
6, = unit vector in the i direction (A.2-9),- 
6,; = Kronecker delta (A.2-I),- 

epsilon s = fractional void space (6.4-3),- 
F, sAB = maximum attractive energy between two molecules (1.4-10, 

17.3-13), M L ~ / ~ ~  
silk = permutation symbol (A.2-3),- 
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zeta 

efa 

6 = composition coefficient of volume expansion (19.2-2 and Table 
22.2-I),- 

7 = non-Newtonian viscosity (8.2-I), M/Lf 
q', qrr = components of the complex viscosity (8.2-4), M/Lt 

- 
7 = elongational viscosity (8.2-5), M/Lt 

q0 = zero shear rate viscosity (8.3-4), M/Lt 
theta 8 = arctan(y/x) = angle in cylindrical coordinates (A.6-5),- 

8 = a r c t a n ( m / z )  = angle in spherical coordinates (A.6-23),- 

kappa K = dilatational viscosity (1.2-6), M/Lt 
K, KO, KI, KZ = dimensionless constants used in turbulence (5.3-1,5.4-3,5.4-5,5.4-6) 

lambda A, A,, A ,  A, = diffusivity ratios (20.2-29),- 
A = wavelength of electromagnetic radiation (16.1-I), L 
A = mean free path (1.4-31, L 

A, A,, A,, A,, A, = time constants in rheological models (58.4 to §8.6), t 
mu J.L = viscosity (1.1-11, M/Lt 
nu Y = , u / p  = kinematic viscosity (1 .I-3), ~ ~ / t  

Y = frequency of electromagnetic radiation (16.1-I), t-' 
xi 6 = composition coefficient of volume expansion (Table 22.2-I),- 
pi II, II,, II,, II, = dimensionless profiles (4.4-25,12.4-21,20.2-28),- 

IT = 3.14159. . . 
.rr = T + pi5 = molecular momentum flux tensor, molecular stress 

tensor (1.2-2,1.7-I), M/L~' 
rho p = density, M/L3 

p, = mass of species a per unit volume of mixture (Table 17.7-I), M / L ~  
sigma a = Stefan-Boltzmann constant, M /  t3T4 

a = surface tension (3.7-12), M/t2 
a, = collision diameter (1.4-10,17.3-11), L 

tau .r = (viscous) momentum f l u  tensor, (viscous) stress tensor (1.2-2), M/Lt2 
= magnitude of shear stress at fluid-solid interface (5.3-I), M/Lt2 

phi 0 = potential energy (3.3-2), M L ~ / ~ ~  
0, = viscous dissipation function (3.3-3), tp2 
+ = n + p w  = combined momentum flux tensor (1.7-I), M/Lt2 
6 = arctan y/x = angle in spherical coordinates (A.6-24),- 
6 = electrostatic potential (24.4-5), volts 

= intermolecular potential energy (1 &lo), M L ~ / ~ ~  
psi TI, T2 = first, second normal stress coefficient (8.2-2,3), MIL 

T, = viscous dissipation function (3.3-3), t-* 
+ = stream function (Table 4.2-I), dimensions depend on the 

coordinate system 
omega R,, R,, R, = collision integrals (1.4-14,9.3-13, 17.3-11),- 

o, = mass fraction of species a (17.1-2, Table 17.7-I),- 
o,, - w,, = characteristic mass fraction difference used in dimensional 

analysis (1 9.5-7),- 
Overlines - 

X = per mole 
X = per unit mass 
2 = partial molar (19.3-3,24.1-2) - 

X = time smoothed (5.1-4) 
2 = dimensionless (3.7-3) 

Brackets 
(X) = average value over a flow cross section 

( X ) ,  [XI, ( X )  = used in vector-tensor operations when the brackets enclose dot or 
cross operations (Appendix A) 
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[[ = dimensionless groupings 
[=I  = has the dimensions of 

Superscripts 
Xt = transpose of a tensor 

X"' = turbulent (5.2-8) 
X'"' = viscous (5.2-9) 
X' = fluctuating quantity (5.2-1) 

Subscripts 
A, B = species A and B in binary systems 

a, /3, . . . = species in multicomponent systems 
a = arithmetic-mean driving force or associated transfer coefficient 

(14.1-3) 
b = bulk or "cup-mixing" value for an enclosed stream (10.8-33,14.1-2) 
c = evaluated at the critical point (1.3-1) 

In = logarithmic-mean driving force or associated transfer coefficient 
(14.1-4) 

loc = local driving force or associated transfer coefficient (14.1-5) 
rn = mean transfer coefficient for a submerged object (14.1-6) 
r = reduced, relative to critical value (§I .3) 

tot = total amount of entity in a macroscopic system 
0 = evaluated at a surface 

1,2 = evaluated at cross-sections 1 and 2 (7.1-1) 
Named dimensionless groups designated with two letters 

Br = Brinkman number (10.4-9, Table 11.5-2) 
Ec = Eckert number (Table 11.5-2) 
Fr = Froude number (3.7-1 1) 
Gr = Grashof number (10.9-18, Table 11.5-2) 

Gr,, Gr, = Diffusional Grashof number (19.5-13, Table 22.2-1) 
Ha = Hatta number (20.1-41) 
Le = Lewis number (17.1-9) 

Ma = Mach number (11.4-71) 
Nu = Nusselt number (14.3-10 to 15) 
Pk = Pkclet number (Table 11.5-2) 
Pr = Prandtl number (9.1-8, Table 11.5-2) 
Ra = Rayleigh number (Table 11.5-2) 
Re = Reynolds number (3.7-10) 
Sc = Schmidt number (17.1-8) 
Sh = Sherwood number (22.1-5) 

We = Weber number (3.7-12) 
Mathematical operations 

D / D t  = substantial derivative (3.5-2), tF' 
9 / 9 t  = corotational derivative (8.5-2), tF1 

V = del operator (A.4-I), L-' 
In x = the logarithm of x to the base e 

log,, x = the logarithm of x to the base 10 
exp x = ex = the exponential function of x 
erf x = error function of x (4.1-14, SC.6) 
T(x) = the (complete) gamma function (12.2-24, sC.4) 

T(x, U) = the incomplete gamma function (12.2-24) 
0(. . .) = "of the order of" 
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transverse flow around, 98,108, 

195,440 
unsteady heat conduction, 377 
with rotating disk, 151,234 

D'Alembert's paradox, 130 
Darcy's law, 148 
Debye-Hiickel approximation, 782 
Debye length, 783 
Decay function in turbulence, 664 
Deformation rate tensor, 112,241 
Dehumidification, 602 
Derivative following the motion, 83 
d-forms of macroscopic balances, 

461,744 
Dialysis, 673 
Dielectrophoresis, 785 
Differential equations solutions, 852 
Differentiation of vectors and 

tensors, 819,829,830,832 
Diffusion (see also Forced diffusion, 

Pressure diffusion, Self 
diffusion,Thermal diffusion) 

aqueous salt solution, 780 
barrier, 538 
driving forces for, 766,774,860 
equation, 584,608,851 
Fick's first law of, 515 
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Fick's second law of, 585 
generalized Fick's law, 767 
from bubble, 623 
from instantaneous point source, 

650 
from point source in stream, 579 
from rotating disk, 610 
from suspended droplet, 572 
Graham's law of, 796,797 
multicomponent, 538,567,581, 

716,767,768 
osmotic, 538 
reverse, 538 
Taylor, 643 
unsteady interphase, 654 
with chemical reaction, 551,571, 

574,577,581,585,595,596,617, 
619,625,653,659,663,696 

Diffusion-thermo effect, 590 
Diffusive flux (see Molecular flux) 
Diffusivity, binary, 515,520,871 

concentration dependent, 606 
corresponding states and, 521 
experimental values, 517,518,519 
gas kinetic theory for, 525 
ionic, 799 
liquid kinetic theories for, 528 
matrix, 71 7 
Maxwell-Stefan, 768,861 
measurement, 549,570,572,575, 

648,654,724 
multicomponent generalizations, 

767,768,769,860 
tensor, 516 
thermal, 268,516 

Dilatational viscosity, 18,82,351 
of liquids containing gas bubbles, 

19 
Dimensional analysis 

and heat transfer coefficients, 433 
and mass transfer coefficients, 679 
of equations of change, 97,353, 

599 
of interfacial boundary conditions, 

112,371 
Dimensionless groups, summary of, 

355,356 
Disk-and-cylinder system, 151,234 
Dispersion, Taylor (axial), 643,650 
Dissipation function, 82,849 
Divergence operator, 820,821,824, 

830,832 
Dominant balance, 419,641 
Donnan exclusion, 791,800 
Drag coefficient (see friction factor) 

Drag force, on cylinder, 108 
on flat plate, 137,138,139 
on sphere, 60,125 

Drag reduction (by polymers), 236, 
257 

Drainage of liquids, 73 
Drop(let), evaporation from, 682, 

722 
freezing of, 366 
mass transfer to, 687 

Ducts, noncircular, 105,155,437 
turbulent flow in, 165 

Dulong and Petit formula, 279 
Dumbbell models for polymers, 254 
Dust collector, 68 
Dynamic similarity, 97 

Eckert number, 355 
Eddy diffusivity, 659,668 

thermal conductivity, 410 
viscosity, 162,167 

Effective diffusivity, 565 
thermal conductivity, 81,370 

Effectiveness factor in catalyst, 566, 
577,581 

Efficiency of separation, 730 
Efflux from a tank, 109,199,217,228 
Eigenfunctions and eigenvalues, 119, 

376,383,404,430,431 
Einstein summation convention, 

841 
Einstein suspension viscosity, 32 
Ejector, 210,460 
Elastic response of polymers, 238, 

244 
Electric analog of radiation, 503 
Electric charge, 776 

susceptibility, 784 
Electromagnetic radiation spectrum, 

488,489 
Electro-osmosis, 782 
Electrostatic potential, 776,781,782 
Ellipsoid, heat transfer from, 452 
Elongational (or extensional) flow, 

238 
viscosity, 240,251,252,257 

Elongation rate, 238 
Emission of radiation, 490 
Emissivity, 492,493 
Emulsion viscosity, 31,34 
End effects, 52,229 
Energy (see internal energy, 

kinetic energy, potential 
energy, energy conservation, 
mechanical energy) 

Energy conservation, in continuum, 
335,587,589 

in macroscopic system, 455,461, 
738 

in molecular collisions, 6 
in shell balances, 291 
relation to homogeneity of time, 

587 
Energy equation, 335,849,850 

boundary layer form of, 387,624 
derivation, 333 
in terms of temperature, 337,589, 

608 
for multicomponent systems, 589 
various forms of, 340,341,589 

Energy fluxes, combined, 285,335 
convective, 265,283,291 
molecular, 265,291,768 
radiative, 265 
work, 285 

Energy production, 291,334,589 
Enlargement, flow in, 209,226 
Enrichment (in separation process), 

730 
Enskog theory of dense gases, 289 
Enthalpy, appearance in combined 

energy flux, 285 
equation of change for, 337,340, 

341,589 
evaluation of, 286 
partial molar, 591 

Entrance length, 52,142,145 
Entropy, equation of change for, 341, 

372,765 
flux and production, 372,766 
macroscopic balance for, 484,485 

Equation of state, 289 
Equations of change (see also, 

continuity, motion, energy, 
angular momentum, vorticity, 
entropy, mechanical energy) 

derivation by integral theorems, 
112,373,608 

from Boltzmann equation, 859 
macroscopic balances from, 198, 

454 
summary tables, 84,340,341,588, 

843 
time-smoothed, 156,408,658 

Equimolar counter-diffusion, 572, 
585 

Equipotential line, 127 
Ergun equation, 191 
Error function, 117,375,857 
Eucken correction, 275,599 



888 Subject Index 

Euler constant, 399 
Euler equation of motion, 85,399 
Evaporation, from a plane surface, 

710,723 
from droplet, 711 
loss from tank, 326 
steady-state, 545,578,581 
three-component, 567 
unsteady-state, 549,613,712 

Extensional flow (see elongational 
flow) 

Extinction coefficient, 507 
Eyring activated state theory, 29,529 

Facilitated transport, 803 
Fading memory in viscoelastic 

fluids, 246 
Falkner-Skan equation, 139 
Falling cylinder viscometer, 70 
Falling film, Marangoni instability, 

702 
nonisothermal, 344,363,397,403 
on cone, 70 
on inclined flat plate, 42,89 
on outside of circular tube, 64 
on vertical wall, 73 
Sherwood number for, 676 
with chemical reaction, 581 
with dissolution from wall, 562 
with gas absorption, 558 

Faraday constant, 76,867 
FENE-P dumbbell model for 

polymer, 254 
Fick's (first) law of diffusion, 514, 

537,846 
multicomponent generalization, 

717,767 
Fick's (second) diffusion law, 585 
Film model of mass transfer, 548, 

704,712,719,723,724 
Film temperature, 432 
Finite slab, unsteady heating of, 376 

with heat production, 398 
Flat plate, approximate analogies, 632 

Blasius (exact) solution, 137 
free convection near, 346 
friction factor for, 194 
heat transfer coefficient, 438 
heat transfer for flow along, 388, 

390,391 
mass transfer with reaction, 625 
turbulent flow along, 155 
von KBrmAn momentum balance, 

136 
with high mass-transfer rate, 627 

Flow-average temperature, 315 
Flow reactor, temperature profile in, 

300,328 
Fluctuations in turbulent flow, 156, 

407,416,657 
Fluxes, molecular, 13,266,372,515, 

535,766,859 
combined, 36,285,537 
convective, 34,283,535 
turbulent, 158,408,658 

Fog formation, 602 
Force, buoyant, 318 

external, 80,776 
intermolecular, 26 
on cylinder, 195 
on flat plate, 138,156 
on sphere, 60,125,186 

Forced convection heat transfer, 310 
heat transfer coefficients, 428,433, 

438,441 
in slit flow, 323,328 
in tube flow, 328 

Forced convection mass transfer, 
analogy with heat transfer, 613 

for flow around arbitrary objects 
678 

for flow around spheres, 677 
for flow near a rotating disk 679 
in falling films, 676 
in tube flow, 659 

Forced diffusion, 519,590,776 
Forced vortex, 145 
Form drag, 60 
Fourier analysis of turbulent energy 

transport, 416 
Fourier's law of heat conduction, 

266,590,845 
Free convection, 310,325,326 

Boussinesq approximation, 338, 
589 

heat transfer and forced 
convection mass transfer, 698 

heat transfer coefficients, 442 
horizontal plate, 358 
vertical plate, 346,443 

Free-molecule flow, 52,794 
Free turbulence (versus wall 

turbulence), 163,415 
Free vortex, 145 
Freezing of a spherical drop, 366 
Friction coefficient, 531 
Friction drag, 60 
Friction factor, definition, 178 

for flow along flat plate, 194 
for flow around cylinder, 195 

for flow around spheres, 185 
for flow in a flat slit, 194 
for gas bubble in a liquid, 196 
for noncircular tubes, 183 
for packed columns, 188 
for rotating disk, 194 
for tube flow, 179 

Frictionless adiabatic flow, 349,362 
Friction loss factor, 206 
Friction velocity, 160,409 
Froude number, 98,355 

Gamma function, 855 
Gas absorption (see Absorption) 
Gases, kinetic theory of, 23,274,525, 

858 
Gauss's law, 783 
Gauss-Ostrogradskii theorem, 824 
Generalized Newtonian models, 240, 

430,431 
Geometric similarity, 97 
Gibbs-Duhem equation, 766,804 
Giesekus model for polymers, 250, 

251,260,262 
Gradient operator, 820,824,832 
Graetz number, 405,430,431 
Graetz-Nusselt problem, 382,403, 

405 
Graham's law of diffusion, 796 
Grashof numbers, 319,355 

additivity of, 698 
diffusional, 600 

Haaland friction factor equation, 
182 

Hadamard-Rybczinski circulation, 
540,561,700,701 

Hagen-Poiseuille equation, 51,53, 
181,243 

Hatta number, 696 
Head meters, 471 
Heat capacity, 268,269,274 
Heat conduction, equation, 338,373 

in annulus, 322 
in chemical reactor, 300 
in cooling fin, 307 
in electric wire, 292 
in fluid with viscous heating, 298 
in nuclear fuel rod assembly, 296, 

322 
in polymer melt, 323 
product solutions, 400 
through composite walls, 303, 

305 
unsteady (in solids), 374 
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with forced convection, 310 
with phase change, 367,401 
with temperature-dependent 

thermal conductivity, 326,370 
Heat conductivity (see thermal 

conductivity) 
Heat exchanger, 450,462,476,482, 

485 
Heat flux vector, 266,767,860 

turbulent, 408,411 
Heating coil, surface temperature of, 

360 
Heat sources, 334 

chemical, 300,328,589 
electrical, 292,329 
nuclear, 296 
viscous, 298,330,331,363,373 

Heat transfer, at high net mass- 
transfer rates, 703 

boundary-layer theory for, 387 
combined with mass transfer, 698 
combined radiant and convective, 

504,505,509 
effects of interfacial forces on, 

699 
for flow along flat plate, 388,390 
from ellipsoid, 452 
in forced convection, 310 
in free convection, 316 
in turbulent tube flow, 41 1 
large Prandtl number asymptote, 

391,392 
Heat transfer coefficients (see also 

Nusselt number) 
appearing in boundary condition, 

292 
calculation from data, 426 
definitions, 423 
effect of high mass-transfer rates, 

703,709 
for condensing vapors, 446 
for packed beds, 441 
for submerged objects, 438 
for tubes and slits, 428,430,431, 

433 
free and forced convection, 442 
from boundary-layer model, 708 
from penetration model, 707 
from stagnant film model, 704 
in mass-transfer systems, 672 
numerical values of, 425 
overall, 305 
turbulent flow, 435 
with temperature dependent 

physical properties, 434 

Heaviside partial fractions 
expansion theorem, 381,692 

Hemodialysis, 733 
Heterogeneous reaction (see also 

Diffusion with chemical 
reaction), 544,551 

High net mass-transfer rates, 627 
Homogeneous reaction (see also 

Diffusion with chemical 
reaction), 544,554 

Hooke's law of elasticity, 245 
Hot-wire anemometer, 327,451 
Hydraulic radius, 183,195 
Hydrodynamic derivative, 83 

interaction, 532 
theory for liquid diffusion, 528 

Hyperbolic functions, 856 

Ideal gas, adiabatic frictionless 
phenomena, 349,351 

cooling of, 459 
duct flow of, 478 
equation of energy for, 337 
flow and mixing in nozzle, 479 

Incompressible fluid, equation of 
continuity for, 78 

equation of energy for, 338 
equation of motion for, 84 
equation of state for, 85 

Inertial sublayer (in turbulence), 159, 
409 

Infinitesimal strain tensor, 295 
Instability, in Couette flow, 93 

in fluid heated from below, 358 
in simple mechanical system, 175 
Marangoni, 72,703 

Intercepts, method of, 591 
Integral theorems, 824 

derivation of equations of change 
by, 1 13,373,608 

derivation of macroscopic energy 
balance by, 221 

Interface, concentration profiles 
near, 688 

gas, liquid compositions at, 688 
Interfacial area as function of time, 

621,639 
boundary conditions, 112,371,700 
deformation and mass transfer, 

637,641,642,687 
motion and mass transfer, 637,641 

Interfacial tension, 98,112, 372 
drops and bubbles, 687 
effect on heat and mass transfer, 

699 

Intermolecular potential energy, 6, 
263 276,527 

Internal angular momentum, 6,82 
Internal energy, equation of change 

for, 336,589 
of fluid, 284,334 
of ideal gas, 859 
of molecules, 6 

Inviscid fluids, Bernoulli equation 
for, 86,109,486 

flow of, 126 
Ionic activity coefficient, 781 
Irrotational flow, 126 
Isotope separation, 732,761,770 
Isotropic turbulence, 165 

Jaumann (corotational) derivative, 
249 

Jeffreys model of linear 
viscoelasticity, 245,260 

Jets, impinging on plate, 201,205, 
214 

laminar and turbulent flow in, 156 
turbulent temperature profiles in, 

415 
turbulent velocity profiles in, 168, 

1 74 
experimental results (turbulent), 

171 
Junction potential, 781,799 

Kinematic viscosity, 13,268,516 
Kinetic energy, 334,819 

equation of change for, 340,341, 
589 

in mechanical energy equation, 81, 
340 

in molecular motions, 6 
Kinetic theory (see molecular 

theory) 
Kirchhoff's law, 491 
Knudsen flow, 66,793,795 
Kronecker delta, 17/81 1 

Lambert's laws, 497,507 
Laminar flow, 41 

contrasted with turbulent flow, 
154 

friction factors for, 181 
heat transfer coefficients for, 428 
mass transer coefficients for, 676 
with heat conduction, 381 

Laminar-turbulent transition, 46/52, 
56,139,186,436 

Langevin equation, 531 
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Laplace equation, for electrostatic 
potential, 782 

for diffusion, 613 
for heat flow, 385,613 
for interfacial pressures, 112 
for porous media flow, 149 
for stream function and velocity 

potential, 127 
Laplace transform, 380,619,692 
Laplacian operator, 821,822,832 
Leibniz formula, 824,854 

for deriving equations of change, 
112,373,608 

for deriving mechanical energy 
balance, 221 

Lennard-Jones (6-12) potential, 26, 
276,527,861,864,866 

combining rules for unlike 
molecules, 527 

Levich-Koutecky-Newman equation, 
745 

Lewis number, 516 
Line source of heat, 396 
Liquid-liquid ejector, 210 
Liquid metals, 271,429 
Local transfer coefficients, 424,674 
Logarithmic, mean concentration 

difference, 745 
mean temperature difference, 424 
temperature profile, 410 
velocity profile, 160,167 

Lorentz force, 784,799 
Lorenz number, 280 
Low-order moments, use of, 756, 

761,763 
Lubrication approximation, 67 

Mach number, 352,479 
Macromixing, 665 
Macroscopic balances by 

integration of equation of 
change, 198,454,484 

d-form of, 461,744 
for angular momentum, 202,738 
for energy, 455,462,485,738 
for entropy, 484 
for internal energy, 458 
for mass, 198,727 
for mechanical energy, 203,207, 

221,456,461,739 
for momentum, 200,738 
summary of equations, 209,458, 

466,740 
Magnetic susceptibility, 784 
Magnetophoresis, 785 

Manometer oscillations, 220 
Marangoni effect 371,700,702,724 
Mass average velocity, 515,533 
Mass conservation, in continuum, 

77,583 
in macroscopic systems, 198,727 
in molecular collisions, 5 
in shell balances, 545 

Mass diffusion (see Diffusion) 
Mass flow rate, 46,51,55 
Mass flux, combined, 536,537 

convective, 535,537 
molecular (or diffusive), 515,537, 

767,860 
turbulent, 658 

Mass transfer, and chemical 
reactions, 694 

boundary-layer model for, 708 
changing interfacial area, 621 
Chilton-Colburn relation for, 682 
combined with heat transfer, 698 
correlations ,679 
creeping flow around bubble, 636 
effect of interfacial forces on, 699 
enhancement by reactions, 659 
examples of, 672,673 
falling films, 676, 677 
flow along flat plate, 681 
flow around arbitrary objects, 678 
flow around spheres, 677,681 
flow near rotating disk, 679 
gas-phase controlled, 689 
interaction of phase resistances, 

691 
liquid-phase controlled, 689 
multicomponent, 716 
penetration model for, 706 
stagnant-film model, 704 
with complex interfacial motion, 

637,641 
Mass transfer coefficients (see also 

Sherwood number), 545,672 
analytical expressions for, 676 
apparent, 675 
area averaging of, 693 
at high net mass transfer rates, 

703,709 
binary, two-phase ,687 
for drops and bubbles, 687 
for packed beds, 686 
overall, 689 
volumetric, 695 

Matched asymptotic expansions, 125 
Material derivative, 83 
Material functions (for polymers), 236 

Matrix methods for mass transport, 
71 6 

Maxwell equation for composites, 
28 1 

model of linear viscoelasticity, 245, 
246 

Maxwell-Boltzmann distribution, 38,, 
860 

Maxwell-Stefan equations, 538,567, 
581 

applications of, 775 
diffusivities in, 768,861 
generalized, 768 
in matrix form, 717 

McCabe-Thiele diagram, 747,748, 
749 

Mean free path, 24,274,525 
Mean hydraulic radius, 183,195, 

437 
Mechanical energy, d-form of 

macroscopic balance for, 461, 
641 

equation of change for, 81,340, 
341,589 

macroscopic balance for, 203,207, 
221,739 

Membrane separation, 713,761,785, 
788,791 

Memory of viscoelastic fluids, 234, 
246 

Micromixing, 665 
Migration velocity, 777 
Mixed convection, 310,445,698 
Mixing length, 163,410,659 

modified van Driest equation for, 
164,661 

Mixing of two ideal gas streams, 460 
Mixing vessel, torque on, 202 

chemical reaction in, 663 
Mobile interfaces, 637 
Mobility, 532 
Model sensitivity, 695,696,736,800 
Modified pressure, 50,84 
Modified van Driest equation, 164, 

661 
Modulus, of elasticity, 245 

storage and loss, 238 
Molar average velocity, 533,535 
Molar flux, 535,536,537 
Molecular collisions, 5 
Molecular flux, of energy, 265,286, 

588,860 
mass, 515,588,860 
momentum, 17,37,588,860 
work, 860 
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Molecular theory, for gases, 23,274, 
525,858 

for liquids, 29,279,528 
for polymers, 253,532 

Molecular velocity, 23,38,274 
Moment of inertia (tensor), 147,817 
Moments, use of lower, 756,761 
Momentum conservation, in 

continuum, 78,340,341 
in macroscopic system, 200,738 
in molecular collisions, 5 
in shell balances, 41 
relation to homogeneity of space, 

587 
Momentum flux, 13 
Momentum flux tensor (see also 

stress tensor), 13,17,24,34,37, 
588,860 

Mooney equation, 32 
Motion, equation of 

alternative form for, 113 
boundary layer, 135,387 
Boussinesq, 339 
derivation from Newton's law, 112 
Euler, 85 
for free convection, 338,589 
from Boltzmann equation, 859 
in terms of stress tensor, 80,340, 

341,587,588,845 
in terms of viscosity, 84,846 
multicomponent systems, 589 
Navier-Stokes, 84 
turbulent, 158 

Multicomponent mixtures, diffusion 
in, 538,581,716,767 

entropy flux and production in 766 
equations of change for, 588,859 
flux expressions, 590,767 
matrix methods for, 716 
thermal conductivity, 276,768 
viscosity (gases), 27 

Natural convection (see free 
convection) 

Navier-Stokes equation, 84,848 
Nernst-Einstein equation, 528 
Network theory for polymers, 253 
Neumann-Stefan problem, 401 
Newtonian fluids, 12,13,17,19 
Newton's drag law for spheres, 187, 

195 
Newton's law of cooling, 292,322 
Newton's law of viscosity, 12,245, 

843 
generalization of, 16/18 

Noether's theorem, 587 
Nonequilibrium thermodynamics, 

765 
Non-Newtonian fluids, 13,30,240, 

244,249 
heat transfer in, 400,430,431 

Normal stress coefficients, 237,239, 
251,252 

Normal stresses, 17,21,59,78,111 
in polymers, 234,251,252 

No-slip boundary condition, 42 
Nozzle, adiabatic frictionless, 749 
Nusselt number (see also heat 

transfer coefficients), 316,322, 
413,420,428,680 

Oldroyd models for polymers, 250, 
251,262 

Onsager's reciprocal relations, 765 
Ordinary diffusion (see Diffusion) 
Orifice, 215,471 
Oscillating, cup-and-bob viscometer, 

147 
cylinder, 236 
manometer, 21 9 
motion and complex viscosity, 

238,247 
motion and viscosity, 262 
motion and viscous heating, 402 
normal stresses, 239 
wall, flow near, 120,150,248 
wall temperature, 379 

Oscillatory steady state, 151,379 
Osmotic diffusion, 538 

pressure, 714,800 
Ostwald-de Waele model for 

viscosity, 241 
Overall heat transfer coefficient, 305, 

425,476 
Overall mass transfer coefficient, 689 
Overdamped system, 221,471 

Packed bed (or column), absorber 
height, 742,759 

creeping flow in, 103 
estimation of interfacial area in, 

694 
friction factor for, 189 
heat transfer coefficients for, 441 
mass transfer coefficients for, 685 
thermal conductivity of, 283 
unsteady operation, 753 

Parallel-disk, compression 
viscometer, 1 10 

viscometer, 106 

Parallel disks, radial flow between, 
108 

Parallel plates (see slit) 
Partial molar properties, 591,766 
Particle diameter, 190 
Particle trajectories, 69,195 
Pkclet number, 268,316,355,600,676 
Penetration model of mass transfer, 

560,706,712,720 
Penetration thickness, 117,375,402 
Periodic steady state, 120,151,248 
Permeability, 149 
Permselective membrane, 776 
Permutation symbol, 82,113,811 
Phase shift, 121,248 
Pipe (see tube) 
Pipe bend, thrust on, 212 
Pipeline flow, 207,464 
Pitot tube, 154,225 
Manck distribution law, 493,495 
Planck's constant, 494,867 
Plane Couette flow, 64 
Plate, oscillating, 120 
Plug flow, 259 

forced convection heat transfer, 325 
reactor, 737 

Poiseuille's law, 51,53,181,243 
Polymeric fluid, anisotropic thermal 

conductivity, 267 
elongational flow of, 251,252,257 
FENE-P dumbbell model for, 254 
linear viscoelastic properties, 244 
molecular theories for, 253 
network theories for, 253 
Nusselt numbers for, 430,431 
normal stress coefficients, 251,252 
viscosity, 241,251,252,255 
viscous heating in, 300 

Porosity, 149 
Porous medium, Darcy's law for 

flow in, 148 
mass transport in, 793 

PotentiaI energy, 334 
in energy equation, 336,340,589 
in mechanical energy equation, 81, 

340 
of interaction between molecules, 

26 
Potential flow, of fluids, 126 

of heat, 385 
Power law expression, for polymer 

flow in tubes, 232 
for polymer viscosity, 241,242, 

243,244 
for turbulent flow in tubes, 154,167 
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Power requirements for pumping, 
207 

Prandtl, boundary-layer equations, 
135,387,624 

friction factor expression, 182 
mixing length, 163,410,659 
number, 268,316,355,516,676 
number (turbulent), 410 

Pressure, ideal gas, 39,860 
modified, 50,84 
reduced, 21,272,521 
thermodynamic, 17 

Pressure diffusion, 519,590,772 
Products of vectors and tensors, 809, 

810,813,817,818,827 
Protein, centrifugation, 776,799 

purification, 761 
viewed as hydrodynamic particle, 

779 
Pseudocritical properties, 21 
Pseudo-steady-state (see Quasi- 

steady-state) 
Psychrometer, 683,711,722 

Quasi-steady-state assumption, 74, 
110,111,195,200,217,228,367, 
473,572,576,607,608,795 

Radiation, absorption and emission, 
490 

between black bodies in vacuo, 497 
between nonblack bodies, 502 
black body, 490 
effect on psychrometer, 722 
heat transfer by, 487 
shield, 503,509 
spectrum of electromagnetic, 488 
transport in absorbing media, 506 

Radius of curvature, 112 
Rate-of-climb indicator, 72 
Rate of strain tensor, 112,241 
Rayleigh number, 348,355,359,442 
Reaction enhancement of mass 

transfer, 617,642,659 
Reactor, continuous stirred tank, 737, 

760 
plug flow, 737 
start up, 752,760 

Recoil of polymers, 233 
Rectifying section of column, 747 
Reduced variables, 21,272,521 
Reflux, 747 
Relative volatility, 730 
Relaxation modulus, 246,247 

time, 245 

Reptation, 532 
Residence time distribution, 69 
Resistances, additivity of, 305,687 
Retardation time, 246 
Reverse diffusion, 538 
Reverse osmosis, 789 
Reynolds analogy, 410,659 
Reynolds decomposition 

(turbulence), 156,407,657 
Reynolds number, 98,355,676 

critical, 46,52,56,59,92,139 
Reynolds stresses, 158 

equation of change for, 176 
in ducts, 165 
in vicinity of wall, 164 

Rheometry, 231,236 
Rigid sphere model, gas diffusivity, 

526 
gas thermal conductivity, 274 
gas viscosity, 25 

Rippling of films, 46,703 
Rod climbing by polymers, 234,237 
Rolling-ball viscometer, 73 
Rotating cone pump, 71 
Rotating disk, diffusion from, 610 

for ultrafiltration, 713 
friction factor for, 194 
Sherwood number for, 679 

Rotating liquid, shape of surface of, 
93,110 

Rotating sphere, flow near, 95 
Rybczynski-Hadamard circulation, 

540,700,701 

Scale factors, 97,392 
Scale-up, 360 
Schmidt number, 420,516,600,676 
Secondary flow, in noncircular 

tubes, 155,233,234,236 
in tangential annular flow, 92 
near oscillating cylinder, 236 
near rotating sphere, 96 

Second viscosity, 18,19,82,351 
Self diffusion and self diffusivity, 

513,521 
corresponding states and, 522 
gas kinetic theory for, 526,861 
in liquids, 529 
in undiluted polymers, 532 

Semi-infinite slab, unsteady heating 
of, 375,397 

with sinusoidal wall heat flux, 
379 

with variable thermal 
conductivity, 400 

Separation factor, 730,731 
locus, 100,392 

Separation of variables, 115,376,383 
Separative capacity, 731 
Shear rate, 237 

stress, 17,60 
thinning, 239,240 
waves (effect of elasticity), 243 

Shell balance method, 40,291,543 
Sherwood number (see also Mass 

transfer coefficient), 420,675, 
676 

Shock wave, stationary, 350 
Silicon oxidation, 607 
Similarity, dynamic and geometric, 

97 
Similarity solutions (see combination 

of variables) 
Simultaneous heat and mass 

transport, 592 
Sinusoidal response method, 115, 

379, 
Slip coefficient, 66 

flow, 52,794 
Slit. Bingham flow in, 259 

flow with uniform cross flow, 110 
forced convection heat transfer, 

323,325,405 
free convection heat transfer, 316, 

326,328 
friction factor for flow in, 194 
heat transfer coefficients, 428 
laminar Newtonian flow in, 63 
polymer flow in, 243,258 
potential flow into, 130 
Taylor dispersion in, 650 
unsteady flow in, 117 

Slot, flow toard and into, 107 
Solar constant, 501 

heat penetration, 402 
Solids, steady potential flow of heat 

in, 386 
unsteady heating of, 378,379,400 

Soret coefficient, 770 
Sound, propagation of, 369 

velocity of, 279 
Source terms in energy equation, 

292,296,298,300,334,589 
Specific, internal energy, 335 

surface, 190 
Sphere, cooling by immersion in 

liquid, 379 
falling in a cylinder, 195 
flow around stationary, 58,122, 

1 44 
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flow near rotating, 95 
friction factor for, 185 
heat transfer coefficients, 424,439 
heat transfer from, 393 
Sherwood number for, 677 
unsteady heating or cooling, 368, 

377,379 
Spherical bubble, creeping flow 

around, 143 
Spherical shell, heat conduction in, 

363 
Spinning disk (see Rotating disk) 
Splitters, binary, 730,746,760 
Square duct, flow in, 106 
Squeezing flow, 110,261 
Stagnant film model for mass 

transfer, 584,704,712,719,723, 
724 

Stagnation point, 100,129,144 
temperature, 484 

Stanton number, 428 
Stefan-Boltzmann constant, 282,492, 

493,494,867 
Stefan-Boltzmann law, 492 
Stefan-Maxwell equations (see 

Maxwell-Stefan equations) 
Stokes-Einstein equation, 529 
Stokes flow (see Creeping flow) 
Stokes' law for flow around sphere, 

61,125,186 
Strain-rate tensor, 112,241 
Strain tensor (infinitesimal), 245 
Stream function, 121,127 

equations satisfied by, 123,151 
for three dimensional flow, 122,151 
in turbulent flow, 170,173 

Streamline, 122,127 
Bernoulli equation for, 86 

Stress, normal, 17,21,59,78,111, 
234,237,239 

shear, 17 
viscous, 17 

Stress relaxation, 260 
Stress tensor, combined, 37,588 

components of, 17 
molecular, 17,34,37,857 
sign conventions for, 19,588 
symmetry of, 18,82 
turbulent, 158 

Stripping section of column, 747 
Sturm-Liouville problems, 115,383 
Substantial derivative, 83 
Sulfur dioxide converter, 739 
Sun, radiant energy from, 501 

temperature of, 496 

Superficial velocity, 149,189 
Supersonic flow, 461 
Surface tension (see interfacial 

tension) 
Suspensions, viscosity of, 31 
Sweep diffusion, 609 

Tallmadge equation, 191 
Tank, draining of, 109,199,217,228 

gas discharge from, 484,485 
holding (pollution control), 728 

Tapered tube, 66,259 
Taylor, dispersion, 643,650 

series, 853 
vortices, 92 

Temperature, equation of change for, 
337,340,589,608,850 

errors in measurement, 508 
fluctuations in turbulence, 408 
reduced, 21,272,521 
stagnation, 484 

Temperature controller, 468 
Temperature distribution, annulus, 

322 
chemical reactor, 300,326,327,328 
cone-and-plate viscometer, 331 
composite wall, 303,305 
cooling fin, 307,332 
electrically heated wire, 292,295, 

329 
embedded sphere, 365 
falling film, 343 
flow around a cylinder, 356 
forced convection slit flow, 323, 

328,330 
forced convection tube flow, 310, 

328,332 
free convection annular flow, 325 
free convection slit flow, 316 
hot-wire anemometer, 327 
in boundary layers, 387,388,391 
in oscillatory flow, 402 
in solids, 375,376,379,386,397, 

398,400 
in systems with phase change, 401 
in turbulent jets, 415 
near wall in turbulent flow, 409 
nuclear fuel assembly, 296,322 
plug flows, 325 
polymer flow in slit, 323 
slit flow with viscous heating, 298, 

322,323 
sphere, 368 
tangential annular flow, 343 
tube flow, 383,384 

transpiration cooling, 344 
viscous heating, 363 

Tensor, moment of inertia, 817 
momentum flux, 17,37 
rate of deformation, 241 
strain (infinitesimal), 245 
stress, 17,37 
symmetric, 816 
unit, 817 
velocity gradient, 19 

Terminal velocity, 61 
Thermal conductivity, Bridgman's 

equation, 279 
definition, 266,768 
Eucken correction, 275,598 
experimental data, 269,270,271 
for anisotropic materials, 267,283 
for monatomic gas, 275,861 
for polyatomic gas, 276,598 
gas kinetic theory, 274,861 
of composites, 281,370 
of dense gases, 289 
of solids, 280 
pressure dependence, 272 
temperature dependence, 272 
units, 269,870 

Thermal diffusion, 519,590 
Clusius-Dickel column for, 318, 

770 
factor, 770 
ratio, 770,771 

Thermal diffusivity, 268,516 
measurement of, 395,396 

Thermal radiation, 488 
Thermocouple, 309 
Thermodynamics of irreversible 

processes, 765 
Thiele modulus, 555,566 
Tilted trough experiment, 235 
Time derivatives, 83,249 
Time smoothed, quantities (in 

turbulence), 157,407,657 
equations of change, 158,408,658 
velocity near wall, 159 

Torque, in coaxial annular system, 
91,244 

on mixing vessel, 202 
on rotating cone, 67 
on rotating disk, 107 
on rotating rod, 105 
on rotating sphere, 96,105 

Torricelli's law, 109 
Torsional oscillatory viscometer, 

146 
Transpiration cooling, 344,365,673 



894 Subject Index 

Transport properties (see also 
viscosity, thermal conductivity, 
diffusivity, thermal diffusion 
coefficient), 861,864 

Triangular duct, flow in, 105,155 
Tube, Bingham flow in, 260 

compressible flow in, 53 
flow caused by rotating disk in, 

151 
forced convection heat transfer, 

323,325,328,332,342,406 
heat transfer coefficients, 423,428, 

433 
laminar and turbulent flow in, 154 
laminar flow in, 48,69,88 
noncircular, 155 
nonisothermal flow in, 383,384, 

400,411,416 
polymer flow in, 232,242 
recoil of polymers in, 233 
start-up of flow in, 150 
tapered, 66,259 
Taylor diffusion in, 643 
turbulent flow in, 165 
velocity for turbulent flow in, 166 

Tubeless siphon, 235 
Tubular reactor, 595 
Turbulence, chemical reactions and, 

658,659,663 
free and wall, 163 
intensity of, 157 
isotropic, 165 
kinetic energy of, 176 
nonisothermal systems, 407 

Turbulent, diffusivity, 659 
flow, 41,154,165,168,175 
friction factors, 181 
heat flux, 408,410 
heat transfer coefficients, 429,435 
mass flux, 658,659 
momentum flux, 158 
Prandtl number, 410 
Schmidt number, 659 
thermal conductivity, 410 
viscosity, 162,167 

Two-bulb experiment (diffusion), 
572,654,795 

Ultracentrifuge, 772 
Ultrafiltration, 673,713,789,799 
Underdamped system, 221,471 

Value function (of Dirac), 732,761 
Van Driest equation for mixing 

length, 164,414,661 

Vector-tensor notation, 807,841 
Velocity, average molecular, 23 

correlations (in turbulence), 157 
diffusion, 535 
fluctuations (in turbulence), 156 
friction, 160 
mass average, 515,535 
migration, 777 
molar average, 534,535 
of sound, 279 
superficial, 149, 189 
time-smoothed, 157 
volume average velocity, 541 

Velocity distribution, axial annular 
flow, 53,64,65,151,174,325 

cone-and-plate viscometer, 67 
Couette flow, 64 
falling cylinder viscometer, 70 
falling film, 42,64,70,89 
flow around bubble, 143 
flow around cylinder, 128 
flow around sphere, 58,95,122, 

145 
flow in slit, 63,68,117,316 
flow into slit, 130,145 
flow near a corner, 131,139 
flow near a flat plate, 136 
flow of stratified fluids, 56 
flow through tube, 48,69,88,150, 

166 
in disc-and-tube system, 151 
in free convection, 318,347 
in jet, 168,173 
in porous medium, 148 
in shock wave, 352 
in turbulent jets, 171 
in turbulent tube flow, 166 
near a line source, 145 
near an oscillating plate, 120,150 
near wall suddenly set in motion, 

115,142 
tangential annular flow, 89,151 

Velocity gradient tensor, 19,245 
Velocity potential, 127 
Vena contracta, 215,471 
Venturi meter, 471,479 
Vertical plate free convection, 346 
View factors (in radiation), 499 
Viscoelasticity, linear, 244 

nonlinear, 249,253,262 
stress relaxation, 260 

Viscometer, capillary, 52,229 
cone-and-plate, 67,261 
Couette, 89,112 
falling cylinder, 70 

parallel-disk, 106,110,261 
rolling ball, 73 
torsional oscillatory, 146 
viscous heating in, 300 

Viscosity, Carreau equation for, 242 
complex, 238,239,247,251,252, 

260 
dilatational, 18 
elongational (or extensional), 238, 

251,252,257 
emulsion, 31 
gas kinetic theory for, 23,26,861 
kinematic, 13,268,516,871 
liquid kinetic theory for, 29 
Newton's law of, 12 
of dense gases, 289 
of polymers, 237,251,252,255 
of various fluids, 14,15 
position dependent, 47 
power law for polymers, 242 
pressure dependence, 21 
reduced, 21 
shear-rate-dependent, 239 
suspension, 21 
temperature dependence, 21 
Trouton, 238 
units for, 14,870,871 

Viscous dissipation, for flow around 
a sphere, 125 

heating, 300,321,334,363,373,402 
in mechanical energy equation, 82 
in polymer melt, 323 

Viscous losses, 295 
Viscous m'omentum flux, 37 
Viscous sublayer (in turbulence), 

159,409 
velocity distribution in, 161 

Volatility, evaporation rate and, 616 
Volume average velocity, 541 
Volumetric mass transfer 

coefficients, 695 
Von KBrmBn momentum balance, 

136 
Von KBrmBn-Prandtl velocity 

profile, 161 
Von KArmdn vortex street, 100 
Vortices, free and forced, 145 

Taylor, 92 
Vorticity, equation of change for, 

113,122,144 
tensor, 250 

Wall collision frequency, 23,39,274 
Wall effect for sphere falling in 

cylinder, 195 



Subject Index 895 

Wall suddenly set in motion, flow 
near, 115,142 

Wall turbulence, 153,159 
contrasted with free turbulence, 163 
heat transfer in, 41 1,416 
mass transfer in, 661 

Wavelength of radiation, 488 
Weber number, 98 
Wedge, flow over, 133,139 

Weissenberg rod-climbing effect, 234 Wilke-Chang diffusivity equation, 
Wenzel-Kramers-Brillouin method, 530 

404 Wire, heat conduction in, 364 
Wet and dry bulb psychrometer, 683, radiant heat loss from, 509 

711,722 Work flux, 285 
Wetted-wall column, 673 
Wiedemann-Franz-Lorenz equation, Yield stress 

280 Bingham model for fluids with, 
Wien displacement law, 495 259,260 



l *MOLECULAR FLUX EXPRESSIONS (SEE APPENDIX B.l, B.2, AND B.3) 

Momentum (p = constant, Newtonian fluid): 

m = p6 - p(Vv + (Vv)+) or T- 11 = pa- 11 - p 

Heat (pure fluid only): 

q = -kVT or q .  = -kg dxi  

Mass (for a binary mixture of A and B): 
d@A 

j~ = - P ~ A B ~ @ A  Or A = P ~ A B  dx, 

l l .CONVECTED FLUX EXPRESSIONS (SEE §§I .7,9.7,17.7) 

Momentum: 

PVV or pvpj 

Energy: 

+ $v2)v or + $vZ)vi 

Mass: 

P @ A ~  or PUAVi 

l l COMBINED FLUX EXPRESSIONS 

Momentum: 

Energy: 

e = p(U + fv2)v + q + [ n 0 v ]  

= p(ii + f ~ ) v  + + [ v v ]  
Mass: 

nA = pwAv + jA 

Note: The quantity [.rr v] is the molecular work flux (see g9.81, and n = pa + T (see 
Table 1.2-21). All fluxes obey the same sign convention: they are positive when the 
entity being transported is moving from the negative side of a surface to the positive 
side. 



***EQUATIONS OF CHANGE IN TERMS OF THE COMBINED FLUXES 

These equations are valid only for systems in which gravity is the only external 
force. More information may be found in 519.2. 

Momentum: 

a p v =  -[V-+I +pg  
d t  (Eq. 3.2-8) 

Energy: 

d A  - p ( ~ +  fv2) = -(V.e) + p(v*g) 
d t  (Eq. 11.1-6) 

Mass: 

d  -P@A = -(V nA) + rA d t  (Eq. 19.1-6) 

l l *EQUATIONS OF CHANGE (SPECIAL FORMS) 
- - 

Momentum (for Newtonian fluids with constant p and p): (53.6) 

Energy (for Newtonian fluids with constant p and k): (SB.9) 

Mass (for binary mixtures of A and B with constant pgAB): (SB.11) 

l l DIMENSIONLESS GROUPS 

(1, and vo are a characteristic length and a characteristic velocity, respectively) 

Re = &v,p/p Pr = CPp/k SC = p/p%B 

Ra = GrPr Gr = g@AT/v2 Gr, = gll:Aw,/ v 2  

Nu = hlo/k P6 = RePr PkAB = ReSc 

Sh = kcIo/9AB j, = N U / R ~ P ~ ' / ~  j, = s ~ / R ~ s c ' / ~  
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