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Madrid, Spain

2004

ELSEVIER

Amsterdam – Boston – Heidelberg – London – New York – Oxford

Paris – San Diego – San Francisco – Singapore – Sydney – Tokyo



ELSEVIER B.V. ELSEVIER Inc. ELSEVIER Ltd ELSEVIER Ltd

Sara Burgerhartstraat 25 525 B Street, Suite 1900 The Boulevard, Langford Lane 84 Theobalds Road

P.O. Box 211 San Diego Kidlington, London

1000 AE Amsterdam CA 92101-4495 Oxford OX5 1GB WC1X 8RR

The Netherlands USA UK UK

� 2004 Elsevier Ltd All rights reserved.

This work is protected under copyright by Elsevier Ltd, and the following terms and condi ions apply to its use:

Photocopying

Single photocopies of single chapters may be made for personal use as allowed by national copyright laws. Permission of

the Publisher and payment of a fee is required for all other photocopying, including multiple or systematic copying,

copying for advertising or promotional purposes, resale, and all forms of document delivery. Special rates are available

for educational institutions that wish to make photocopies for non-profit educational classroom use.

Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830,

fax (þ44) 1865 853333, e-mail: permissions@elsevier.com. Requests may also be completed on-line via the Elsevier

homepage (http://www.elsevier.com/locate/permissions).

In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222

Rosewood Drive, Danvers, MA 01923, USA; phone: (þ1) (978) 7508400, fax: (þ1) (978) 7504744, and in the UK through

the Copyright Licensing Agency Rapid Clearance Service (CLARCS), 90 Tottenham Court Road, London W1P 0LP,

UK; phone: (þ44) 20 7631 5555; fax: (þ44) 20 7631 5500. Other countries may have a local reprographic rights agency

for payments.

Derivative Works

Tables of contents may be reproduced for internal circulation, but permission of the Publisher is required for external

resale or distribution of such material. Permission of the Publisher is required for all other derivative works, including

compilations and translations.

Electronic Storage or Usage

Permission of the Publisher is required to store or use electronically any material contained in this work, including any

chapter or part of a chapter.

Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or transmitted in any form

or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the

Publisher.

Address permissions requests to: Elsevier’s Rights Department, at the fax and e-mail addresses noted above.

Notice

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of

products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas

contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification

of diagnoses and drug dosages should be made.

First edition 2004

Library of Congress Cataloging in Publication Data

A catalog record is available from the Library of Congress.

British Library Cataloguing in Publication Data

A catalogue record is available from the British Library.

ISBN: 0-08-043637-4

The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper).

Printed in The Netherlands.



Preface

This book on the fundamentals of creep plasticity is both a review and a critical

analysis of investigations in a variety of areas relevant to creep plasticity. These

areas include five-power-law creep, which is sometimes referred to as dislocation

climb-controlled creep, viscous glide or three-power-law creep in alloys, diffusional

creep, Harper–Dorn creep, superplasticity, second-phase strengthening, and creep

cavitation and fracture. Many quality reviews and books precede this attempt to

write an extensive review of creep fundamentals and improvement was a challenge.

One advantage with this attempt is the ability to describe the substantial work

published subsequent to these earlier reviews. An attempt was made to cover the

basic work discussed in these earlier reviews but especially to emphasize more recent

developments.

The author wishes to acknowledge support from the U.S. Department of Energy,

Basic Energy Sciences under contract DE-FG03-99ER45768. Comments by

Profs. F.R.N. Nabarro, W. Blum, T.G. Langdon, J. Weertman, S. Spigarelli, J.H.

Schneibel and O. Ruano are appreciated. The assistance with the preparation of the

figures by T.A. Hayes and C. Daraio is greatly appreciated. Word processing by Ms.

Peggy Blair was vital.

M.E. Kassner

M.T. Pérez-Prado
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Chapter 1

Introduction

1.1 DESCRIPTION OF CREEP

Creep of materials is classically associated with time-dependent plasticity under a

fixed stress at an elevated temperature, often greater than roughly 0.5Tm, where Tm

is the absolute melting temperature. The plasticity under these conditions is

described in Figure 1 for constant stress (a) and constant strain-rate (b) conditions.

Several aspects of the curve in Figure 1 require explanation. First, three regions are

delineated: Stage I, or primary creep, which denotes that portion where [in (a)] the

creep-rate (plastic strain-rate), _ee ¼ de=dt is changing with increasing plastic strain or

time. In Figure 1(a) the primary-creep-rate decreases with increasing strain, but with

some types of creep, such as solute drag with ‘‘3-power creep,’’ an ‘‘inverted’’

primary occurs where the strain-rate increases with strain. Analogously, in (b), under

constant strain-rate conditions, the metal hardens, resulting in increasing flow

stresses. Often, in pure metals, the strain-rate decreases or the stress increases to a

value that is constant over a range of strain. The phenomenon is termed Stage II,

secondary, or steady-state creep. Eventually, cavitation and/or cracking increase the

apparent strain-rate or decrease the flow stress. This regime is termed Stage III, or

tertiary creep, and leads to fracture. Sometimes, Stage I leads directly to Stage III

and an ‘‘inflection’’ is observed. Thus, care must sometimes be exercised in

concluding a mechanical steady-state (ss).

The term ‘‘creep’’ as applied to plasticity of materials likely arose from the

observation that at modest and constant stress, at or even below the macroscopic

yield stress of the metal (at a ‘‘conventional’’ strain-rate), plastic deformation occurs

over time as described in Figure 1(a). This is in contrast with the general observation,

such as at ambient temperature, where, a material deformed at, for example,

0.1–0.3Tm, shows very little plasticity under constant stress at or below the

yield stress, again, at ‘‘conventional’’ or typical tensile testing strain-rates (e.g.,

10�4�10�3 s�1). {The latter observation is not always true as it has been observed

that some primary creep is observed (e.g., a few percent strain, or so) over relatively

short periods of time at stresses less than the yield stress in some ‘‘rate-sensitive’’ and

relatively low strain-hardening alloys such as titanium [1] and steels [2].}

We observe in Figure 2 that at the ‘‘typical’’ testing strain rate of about 10�4 s�1,

the yield stress is sy1 . However, if we decrease the testing strain-rate to, for example,

10�7 s�1, the yield stress decreases significantly, as will be shown is common for

metals and alloys at high temperatures. To a ‘‘first approximation,’’ we might

3



consider the microstructure (created by dislocation microstructure evolution with

plasticity) at just 0.002 plastic strain to be independent of _ee. In this case, we might

describe the change in yield stress to be the sole result of the _ee change and predicted

by the ‘‘constant structure’’ stress-sensitivity exponent, N, defined by

N ¼ q ln _ee=q lns½ �T ,s ð1Þ

where T and s refer to temperature and the substructural features, respectively.

Sometimes, the sensitivity of the creep rate to changes in stress is described by

a constant structure strain-rate sensitivity exponent, m¼ 1/N. Generally, N is

relatively high at lower temperatures [3] which implies that significant changes

in the strain-rate do not dramatically affect the flow stress. In pure fcc metals,

Figure 1. Constant true stress and constant strain-rate creep behavior in pure and Class M

(or Class I) metals.
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N is roughly between 50 and 250 [3]. At higher temperatures, the values may

approach 10, or so [3–10]. N is graphically described in Figure 3. The trends of N

versus temperature for nickel are illustrated in Figure 4.

Another feature of the hypothetical behaviors in Figure 2 is that (at the identical

temperature) not only is the yield stress at a strain rate of 10�7 s�1 lower than at

10�4 s�1, but also the peak stress or, perhaps, steady-state stress, which is maintained

over a substantial strain range, is less than the yield stress at a strain rate of 10�4 s�1.

(Whether steady-state occurs at, for example, ambient temperature has not been

fully settled, as large strains are not easily achievable. Stage IV and/or

recrystallization may preclude this steady-state [11–13]). Thus, if a constant stress

sss2 is applied to the material then a substantial strain may be easily achieved at a

low strain-rate despite the stress being substantially below the ‘‘conventional’’ yield

stress at the higher rate of 10�4 s�1. Thus, creep is, basically, a result of significant

strain-rate sensitivity together with low strain hardening. We observe in Figure 4 that

N decreases to relatively small values above about 0.5Tm, while N is relatively high

below about this temperature. This implies that we would expect that ‘‘creep’’ would

Figure 2. Creep behavior at two different constant strain-rates.
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Figure 3. A graphical description of the constant-structure strain-rate sensitivity experiment, N (¼ 1/m)

and the steady-state stress exponent, n.

Figure 4. The values of n and N as a function of temperature for nickel. Data from Ref. [7].
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be more pronounced at higher temperatures, and less obvious at lower temperatures,

since, as will be shown subsequently, work-hardening generally diminishes with

increasing temperature and N also decreases (more strain-rate sensitive). The

above description/explanation for creep is consistent with earlier descriptions [14].

Again, it should be emphasized that the maximum stress, sss2 , in a constant

strain rate (_ee) test, is often referred to as a steady-state stress (when it is the result of

a balance of hardening and dynamic recovery processes, which will be discussed

later). The creep rate of 10�7 s�1 that leads to the steady-state stress ðsss2Þ is the same

creep-rate that would be achieved in a constant stress test at sss2 . Hence, at sss2 ,

10�7 s�1 is the steady-state creep rate. The variation in the steady-state creep rate

with the applied stress is often described by the steady-state stress exponent, n,

defined by

n ¼ d ln _eess=d lnsss½ �T ð2Þ

This exponent is described in Figure 3. Of course, with hardening, n is expected to

be less than N. This is illustrated in Figures 3 and 4. As just mentioned, generally,

the lower the strain-rate, or higher the temperature, the less pronounced the

strain hardening. This is illustrated in Figure 5, reproduced from [15], where the

stress versus strain behavior of high-purity aluminum is illustrated over a wide range

of temperatures and strain-rates. All these tests utilize a constant strain-rate. The

figure shows that with increasing temperature, the yield stress decreases, as expected.

Also, for a given temperature, increases in strain rate are associated with increases

in the yield stress of the annealed aluminum. That is, increases in temperature

and strain-rate tend to oppose each other with respect to flow stress. This can be

rationalized by considering plasticity to be a thermally activated process. Figure 5

also illustrates that hardening is more dramatic at lower temperatures (and higher

strain-rates). The general trend that the strain increases with increasing stress to

achieve steady-state (decreasing temperature and/or increasing strain-rate) is also

illustrated.

1.2 OBJECTIVES

There have been other, often short, reviews of creep, notably, Sherby and Burke [16],

Takeuchi and Argon [17], Argon [18], Orlova and Cadek [19], Cadek [20],

Mukherjee, [21], Blum [22], Nabarro and de Villiers [23], Weertman [24,25],

Nix and Ilschner [26], Nix and Gibeling [27], Evans and Wilshire [28], Kassner and

Pérez-Prado [29] and others [30–32]. These, however, often do not include some

important recent work, and have sometimes been relatively brief (and, as a result, are
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not always very comprehensive). Thus, it was believed important to provide a new

description of creep that is both extensive, current and balanced. Creep is discussed

in the context of traditional Five-Power-Law Creep, Nabarro-Herring, Coble,

diffusional creep, Harper-Dorn, low-temperature creep (power-law-breakdown or

PLB) as well as with 3-power Viscous Glide Creep. Each will be discussed separately.

Figure 6 shows a deformation map of silver [33]. Here, several deformation regimes

are illustrated as a function of temperature and grain size. Five-Power-Law Creep

is indicated by the ‘‘dislocation creep’’ regime bounded by diffusional creep (Coble

and Nabarro-Herring) and ‘‘dislocation glide’’ at low temperatures and high

stress. Deformation maps have been formulated for a variety of metals [33].

Additionally, Superplasticity particle-strengthening in creep and Creep Fracture will

be discussed.

Figure 5. The stress versus strain behavior of high-purity aluminum. Data from Ref. [15].
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Figure 6. Ashby deformation map of silver from [33]. grain sizes 32 and 100 mm, _ee¼ 10�8 s�1,

A – dislocation glide, B – Five-Power-Law Creep, C – Coble creep, D – Nabarro-Herring creep,

E – elastic deformation.
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Chapter 2

Five-Power-Law Creep

2.1 MACROSCOPIC RELATIONSHIPS

2.1.1 Activation Energy and Stress Exponents

In pure metals and Class M alloys (similar creep behavior similar to pure metals),

there is an established, largely phenomenological, relationship between the steady-

state strain-rate, _eess, (or creep rate) and stress, sss, for steady-state 5-power-law (PL)

creep:

_eess ¼ A0 exp �Qc=kT½ � sss=Eð Þn ð3Þ

where A0 is a constant, k is Boltzmann’s constant, and E is Young’s modulus

(although, as will be discussed subsequently, the shear modulus, G, can also be used).

This is consistent with Norton’s Law [34]. The activation energy for creep, Qc, has

been found to often be about that of lattice self-diffusion, Qsd. The exponent n is

constant and is about 5 over a relatively wide range of temperatures and strain-rates

(hence ‘‘five-power-law’’ behavior) until the temperature decreases below roughly

0.5–0.6 Tm, where power-law-breakdown (PLB) occurs, and n increases and Qc

generally decreases. steady-state creep is often emphasized over primary or tertiary

creep due to the relatively large fraction of creep life within this regime.

The importance of steady-state is evidenced by the empirical Monkman–Grant

relationship [35]:

_eem
00

ss tf ¼ kMG ð4Þ

where tf is the time to rupture and kMG is a constant.

A hyperbolic sine (sinh) function is often used to describe the transition from PL

to PLB.

_eess ¼ A1 exp �Qc=kT½ � sinh a1ðsss=E Þ½ �5 ð5Þ

(although some have suggested that there is a transition from 5 to 7-power-law

behavior prior to PLB [25,36], and this will be discussed more later). Equations (3)

and (5) will be discussed in detail subsequently. The discussion of 5-power-law

creep will be accompanied by a significant discussion of the lower temperature

companion, PLB.

As discussed earlier, time-dependent plasticity or creep is traditionally described

as a permanent or plastic extension of the material under fixed applied stress. This

13



is usually illustrated for pure metals or Class M alloys (again, similar quantitative

behavior to pure metals) by the constant-stress curve of Figure 1, which also

illustrates, of course, that creep plasticity can occur under constant strain-rate

conditions as well. Stage I, or primary creep, occurs when the material experiences

hardening through changes in the dislocation substructure. Eventually Stage II, or

secondary, or steady-state creep, is observed. In this region, hardening is balanced by

dynamic recovery (e.g., dislocation annihilation). The consequence of this is that the

creep-rate or plastic strain-rate is constant under constant true von Mises stress

(tension, compression or torsion). In a constant strain-rate test, the flow stress is

independent of plastic strain except for changes in texture (e.g., changes in the

average Taylor factor of a polycrystal), often evident in larger strain experiments

(such as e>1) [37–39]. It will be illustrated that a genuine mechanical steady-state is

achievable. As mentioned earlier, this stage is particularly important as large strains

can accumulate during steady-state at low, constant, stresses leading to failure.

Since Stage II or steady-state creep is important, the creep behavior of a material

is often described by the early plots such as in Figure 7 for high purity aluminum

[16]. The tests were conducted over a range of temperatures from near the melting

temperature to as low as 0.57 Tm. Data has been considered unreliable below about

0.3 Tm, as it has recently been shown that dynamic recovery is not the exclusive

Figure 7. The steady-state stress versus strain-rate for high-purity aluminum at four temperatures,

from Ref. [136].
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restoration mechanism [11], since dynamic recrystallization in 99.999% pure Al

has been confirmed. Dynamic recrystallization becomes an additional restoration

mechanism that can preclude a constant flow stress (for a constant strain-rate) or a

‘‘genuine’’ mechanical steady-state, defined here as a balance between dynamic

recovery and hardening. The plots in Figure 7 are important for several reasons.

First, the steady-state data are at fixed temperatures and it is not necessary for the

stress to be modulus-compensated to illustrate stress dependence [e.g., equation (3)].

Thus, the power-law behavior is clearly evident for each of the four temperature sets

of high-purity aluminum data without any ambiguity (from modulus compensation).

The stress exponent is about 4.5 for aluminum. Although this is not precisely five, it

is constant over a range of temperature, stress, and strain-rate, and falls within the

range of 4–7 observed in pure metals and class M alloys. This range has been

conveniently termed ‘‘five power’’. ‘‘Some have referred to Five-Power-Law Creep as

‘‘dislocation climb controlled creep’’, but this term may be misleading as climb

control appears to occur in other regimes such as Harper–Dorn, Superplasticity,

PLB, etc. We note from Figure 7 that slope increases with increasing stress and

the slope is no longer constant with changes in the stress at higher stresses (often

associated with lower temperatures). Again, this is power-law breakdown (PLB) and

will be discussed more later. The activation energy for steady-state creep, Qc,

calculations have been based on plots similar to Figure 7. The activation energy,

here, simply describes the change in (steady-state) creep-rate for a given substructure

(strength), at a fixed applied ‘‘stress’’ with changes in temperature. It will be

discussed in detail later; for at least steady-state, the microstructures of specimens

tested at different temperatures appears approximately identical, by common

microstructural measures, for a fixed modulus-compensated stress, sss/E or sss/G.

[Modulus compensation (modest correction) will be discussed more later]. For

a given substructure, s, and relevant ‘‘stress,’’ sss/E, (again, it is often assumed that a

constant sss/E or sss/G implies constant structure, s) the activation energy for creep,

Qc, can be defined by

Qc¼� k dðln _eessÞ=dð1=T Þ� �
sss=E,s

ð6Þ

It has been very frequently observed that Qc seems to be essentially equal to the

activation energy for lattice self-diffusion Qsd for a large class of materials. This is

illustrated in Figure 8, where over 20 (bcc, fcc, hcp, and other crystal structures)

metals show excellent correlation between Qc and Qsd (although it is not certain that

this figure includes the (small) modulus compensation). Another aspect of Figure 8

which is strongly supportive of the activation energy for Five-Power-Law Creep being

equal toQsd is based on activation volume (�V ) analysis by Sherby andWeertman [5].
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That is, the effect of (high) pressure on the creep rate ðq_eess=qPÞT ,sss=EðorGÞ ¼�Vc is the

same as the known dependence of self-diffusion on the pressure ðqDsd=qPÞT,sss=EðorGÞ.
Other more recent experiments by Campbell, Tao, and Turnbull on lead have shown

that additions of solute that affect self-diffusion also appear to identically affect the

creep-rate [40].

Figure 9 describes the data of Figure 7 on what appears as a nearly single line by

compensating the steady-state creep-rates (_eess) at several temperatures by the lattice

self-diffusion coefficient, Dsd. At higher stresses PLB is evident, where n continually

increases. The above suggests for power-law creep, typically above 0.6 Tm

(depending on the creep rate)

_eess¼ A2exp �Qsd=kT½ �ðsssÞnðffi5Þ ð7Þ

where A2 is a constant, and varies significantly among metals. For aluminum, as

mentioned earlier, n¼ 4.5 although for most metals and class M alloys nffi 5, hence

‘‘five-power’’ (steady-state) creep. Figure 9 also shows that, phenomenologically,

Figure 8. The activation energy and volume for lattice self-diffusion versus the activation energy and

volume for creep. Data from Ref. [26].
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the description of the data may be improved by normalizing the steady-state

stress by the elastic (Young’s in this case) modulus. This will be discussed more later.

{The correlation between Qc and Qsd [the former calculated from equation (6)]

utilized modulus compensation of the stress. Hence, equation (7) actually implies

modulus compensation.}

It is now widely accepted that the activation energy for Five-Power-Law Creep

closely corresponds to that of lattice self-diffusion, Dsd, or QcffiQsd, although this is

not a consensus judgment [41–43]. Thus, most have suggested that the mechanism of

Five-Power-Law Creep is associated with dislocation climb.

Although within PLB, Qc generally decreases as n increases, some still suggest

that creep is dislocation climb controlled, but Qc corresponds to the activation

energy for dislocation-pipe diffusion [5,44,45]. Vacancy supersaturation resulting

from deformation, associated with moving dislocations with jogs, could explain this

decrease with decreasing temperature (increasing stress) and still be consistent with

dislocation climb control [4]. Dislocation glide mechanisms may be important [26]

Figure 9. The lattice self-diffusion coefficient compensated steady-state strain-rate versus the Young’s

modulus compensated steady-state stress, from Ref. [16].
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and the rate-controlling mechanism for plasticity in PLB is still speculative. It will be

discussed more later, but recent studies observe very well-defined subgrain

boundaries that form from dislocation reaction (perhaps as a consequence of the

dynamic recovery process), suggesting that substantial dislocation climb is at least

occurring [11,12,46,47] in PLB. Equation (7) can be extended to additionally

phenomenologically describe PLB including changes in Qc with temperature and

stress by the hyperbolic sine function in equation (5) [44,48].

Figure 10, taken from the reviews by Sherby and Burke [16], Nix and Ilschner [26],

and Mukherjee [21], describes the steady-state creep behavior of hcp, bcc, and

fcc metals (solid solutions will be presented later). The metals all show approximate

five-power-law behavior over the specified temperature and stress regimes. These

plots confirm a range of steady-state stress exponent values in a variety of metals

from 4 to 7 with 5 being a typical value [49].

Normalization of the stress by the shear modulus G (rather than E ) and the

inclusion of additional normalizing terms (k, G, b, T ) for the strain rate will be

discussed in the next section. It can be noted from these plots that for a fixed

Figure 10. (a) The compensated steady-state strain-rate versus modulus-compensated steady-state

stress, based on Ref. [26] for selected FCC metals. (b) The compensated steady-state strain-rate versus

modulus-compensated steady-state stress, based on Ref. [26] for selected BCC metals. (c) The

compensated steady-state strain-rate versus modulus-compensated steady-state stress, based on Ref. [21]

for selected HCP metals.
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Figure 10. Continued.
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steady-state creep-rate, the steady-state flow-stress of metals may vary by over two

orders of magnitude for a given crystal structure. The reasons for this will be dis-

cussed later. A decreasing slope (exponent) at lower stresses may be due to diffusional

creep or Harper–Dorn Creep [50]. Diffusional creep includes Nabarro–Herring [51]

and Coble [52] creep. These will be discussed more later, but briefly, Nabarro–

Herring consists of volume diffusion induced strains in polycrystals while Coble con-

sists of mass transport under a stress by vacancy migration via short circuit diffusion

along grain boundaries. Harper–Dorn is not fully understood [53–55] and appears to

involve dislocations within the grain interiors. There has been some recent contro-

versy as to the existence of diffusional creep [56–61], as well as Harper–Dorn [55].

2.1.2 Influence of the Elastic Modulus

Figure 11 plots the steady-state stress versus the Young’s modulus at a fixed lattice

self-diffusion-coefficient compensated steady-state creep-rate. Clearly, there is an

associated increase in creep strength with Young’s modulus and the flow stress can

be described by,

sssj_eess=Dsd
¼ K0G ð8Þ

Figure 11. The influence of the shear modulus on the steady-state flow stress for a fixed self-diffusion-

coefficient compensated steady-state strain-rate, for selected metals, based on Ref. [26].
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where K0 is a constant. This, together with equation (7), can be shown to imply that

Five-Power-Law Creep is described by the equation utilizing modulus-compensation

of the stress, such as with equation (3),

_eess ¼ A3 exp½�Qsd=kT �ðsss=GÞ5 ð9Þ

where A3 is a constant. Utilizing modulus compensation produces less variability of

the constant A3 among metals, as compared to A2, in equation (7). It was shown

earlier that the aluminum data of Figure 9 could, in fact, be more accurately

described by a simple power-law if the stress is modulus compensated. The modulus

compensation of equation (9) may also be sensible for a given material as the

dislocation substructure is better related to the modulus-compensated stress rather

than just the applied stress. The constant A3 will be discussed more later. Sherby and

coworkers compensated the stress using the Young’s modulus, E, while most others

use the shear modulus, G. The choice of E versus G is probably not critical in terms

of improving the ability of the phenomenological equation to describe the data. The

preference by some for use of the shear modulus may be based on a theoretical

‘‘palatability’’, and is also used in this review for consistency.

Thus, the ‘‘apparent’’ activation energy for creep, Q0
c, calculated from plots such

as Figure 7 without modulus compensation, is not exactly equal to Qsd even if

dislocation climb is the rate-controlling mechanism for Five-Power-Law Creep. This

is due to the temperature dependence of the Elastic Modulus. That is,

Q0
c ¼ Qsdþ5k½dðlnGÞ=dð1=TÞ� ð10Þ

Thus, Q0
c >QsdffiQc the magnitude being material and temperature dependent.

The differences are relatively small near 0.5 Tm but become more significant near the

melting temperature.

As mentioned in advance, dislocation features in creep-deformed metals and alloys

can be related to the modulus-compensated stress. Thus, the ‘‘s’’ in equation (6),

denoting constant structure, can be omitted if constant modulus-compensated stress

is indicated, since for steady-state structures in the power-law regime, a constant

sss/E (or sss/G) will imply, at least approximately, a fixed structure. Figure 12 [6]

illustrates some of the Figure 7 data, as well as additional (PLB) data on a strain-rate

versus modulus-compensated stress plot. This allows a direct determination of

the activation energy for creep, Qc, since changes in _eess can be associated with

changes in T for a fixed structure (or sss/G). Of course, Konig and Blum [62] showed

that with a change in temperature at a constant applied stress, the substructure

changes, due, at least largely, to a change in s/G in association with a change in

temperature. We observe in Figure 12 that activation energies are comparable to that
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of lattice self-diffusion of aluminum (e.g., 123 kJ/mol [63]). Again, below about 0.6

Tm, or so, depending on the strain-rate, the activation energy for creep Qc begins

to significantly decrease below Qsd. This occurs at about PLB where n>5 (>4.5

for Al). Figure 13 plots steady-state aluminum data along with steady-state silver

activation energies [12,44]. Other descriptions of Qc vs T/Tm for Al [64] and Ni [65]

are available that utilize temperature-change tests in which constant structure is

assumed (but not assured) and s/G is not constant. The trends observed

are nonetheless consistent with those of Figure 13. The question as to whether

the activation energy for steady-state and primary (or transient, i.e., from one

steady-state to another) creep are identical does not appear established and this is

an important question. However, some [66,67] have suggested that the activation

energy from primary to steady-state does not change substantially. Luthy et al. [44]

and Sherby and Miller [68] present a Qc versus T/Tm plot for steady-state

deformation of W, NaCl, Sn and Cu that is frequently referenced. This plot suggests

Figure 12. The steady-state strain-rate versus the modulus-compensated stress for six temperatures.

This plot illustrates the effect of temperature on the strain-rate for a fixed modulus-compensated

steady-state stress (constant structure) leading to the calculation for activation energies for creep, Qc.

Based on [6].
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two activation energies, one regime where QcffiQsd (as Figure 13 shows for Ag and

Al) from 0.60 to 1.0 T/Tm. They additionally suggest that, with PLB, Qc is

approximately equal to that of vacancy diffusion through dislocation pipes, QP. That

is, it was suggested that the rate-controlling mechanism for steady-state creep in PLB

is still dislocation climb, but facilitated by short circuit diffusion of vacancies via the

elevated density of dislocations associated with increased stress between 0.3 and

about 0.6 T/Tm. (The interpretation of the NaCl results are ambiguous and may

actually be more consistent with Figure 13 if the original NaCl data is reviewed [16].)

Spingarn et al. [69] also suggest such a transition and use this transition to rationalize

five-power-law exponents. Luthy et al. suggested that aluminum Qc trends are

possible, but caution should be exercised in the PLB interpretations. The situation

for Cu is ambiguous. Raj and Langdon [70] reviewed activation energy data and it

appears that Qc may decrease continuously below at least 0.7 Tm from Qsd, in

contrast to earlier work on Cu that suggested Qc¼Qsd above about 0.7 Tm

Figure 13. The variation of the activation energy for creep versus fraction of the melting temperature for

Al (based on Ref. [44]) and Ag (based on Ref. [12]).
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and ‘‘suddenly’’ decreases to QP. As mentioned earlier, the steady-state torsion

creep data of Luthy et al., on which the lower temperature activation energy

calculations were based, are probably unreliable. Dynamic recrystallization is

certainly occurring in their high purity aluminum along with probable (perhaps

20%) textural softening (decrease in the average Taylor factor, M) along with

adiabatic heating. Use of solid specimens also complicates the interpretation of

steady-state as outer portions may soften while inner portions are hardening. Lower

purity specimens could be used to avoid dynamic recrystallization, but Stage IV

hardening [11,13] may occur and may preclude (although sometimes just postpone) a

mechanical steady-state. Thus, steady-state, as defined here, as a balance between

dislocation hardening and, exclusively, dynamic recovery, is not relevant. Thus, their

activation energies as well as their steady-state stress values below about 0.4 T/Tm

are not used here. Weertman [25] suggested that the Sn results may show an

activation energy transition to a value of Qp over a range of elevated temperatures.

This transition occurs already at about 0.8 Tm and Qc values at temperatures less

than 0.6 Tm do not appear available. Quality activation energy measurements over a

wide range of temperatures both for steady-state and primary creep for a variety of

pure metals are surprisingly unavailable. Thus, the values of activation energy,

between 0.3 and 0.6 Tm (PLB), and the question as to whether these can be related to

the activation energy of dislocation pipe diffusion, are probably unsettled.

Sherby and Burke have suggested that vacancy supersaturation may occur at

lower temperatures where PLB occurs (as have others [71]). Thus, vacancy diffusion

may still be associated with the rate-controlling process despite a low, non-constant,

activation energy. Also, as suggested by others [9,26,41–43], cross-slip or the cutting

of forest dislocations (glide) may be the rate-controlling dislocation mechanisms

rather than dislocation climb.

2.1.3 Stacking Fault Energy and Summary

In the above, the steady-state creep rate for Five-Power-Law Creep was described by,

_eess¼ A4Dsdðsss=GÞ5 ð11Þ

where

Dsd ¼Doexp ð�Qsd=kT Þ: ð12Þ

Many investigators [4,21,26,72] have attempted to decompose A4 into easily

identified constants. Mukherjee et al. [72] proposed that

_eess¼ A5ðDsdGb=kT Þðsss=GÞ5 ð13Þ
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This review will utilize the form of equation (13) since this form has been more

widely accepted than equation (11). Equation (13) allows the expression of the power

law on a logarithmic plot more conveniently than equation (11), due to dimensional

considerations.

The constants A0 through A5 depend on stacking fault energy, in at least

fcc metals, as illustrated in Figure 14. The way by which the stacking fault energy

affects the creep rate is unclear. For example, it does not appear known whether the

climb-rate of dislocations is affected (independent of the microstructure) and/or

whether the dislocation substructure, which affects creep rate, is affected. In any case,

for fcc metals, Mohamed and Langdon [73] suggested:

_eess¼ A6ðw=GbÞ3ðDsdGb=kT Þðsss=GÞ5 ð14Þ

where w is the stacking fault energy.

Thus, in summary it appears that, over five-power creep, the activation energy for

steady-state creep is approximately that of lattice self-diffusion. (Exceptions with

Figure 14. The effect of stacking fault energy on the (compensated) steady-state strain-rate for a variety

of metals and Class M alloys based on Ref. [73].
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pure metals above 0.5 T/Tm have been suggested. One example is Zr, where a glide

control mechanism [74] has been suggested to be rate controlling, but self-diffusion

may still be viable [75], just obscured by impurity effects.) This suggests that

dislocation climb is associated with the rate-controlling process for Five-Power-Law

Creep. The activation energy decreases below about 0.5 Tm, depending, of course,

on the strain-rate. There is a paucity of reliable steady-state activation energies for

creep at these temperatures and it is difficult to associate these energies with specific

mechanisms. The classic plot of effective diffusion coefficient Deff compensated strain

rate versus modulus-compensated stress for aluminum by Luthy et al. may be the

most expansive in terms of the ranges of stress and temperature. It appears in other

creep reviews [23,24] and may have some critical flaws. They modified equation (11)

to a Garofalo (hyperbolic sine) [48] equation to include PLB:

_eess¼ BDeff ½sinh a1ðsss=E Þ�5 ð15Þ

where a1 and B are constants. Here, again, Deff reflects the increased contribution of

dislocation pipe diffusion with decreasing temperature. Deff compensated strain-rate

utilizes a ‘‘composite’’ strain-rate controlled by lattice and dislocation pipe-diffusion.

The contributions of each of these to Deff depend on both the temperature and the

dislocation density (which at steady-state is non-homogeneous, as will be discussed).

Equation (15), above, was later modified by Wu and Sherby [53] for aluminum to

account for Internal stresses although a dramatic improvement in the modeling of

the data of 5-power-law and PLB was not obvious. The subject of Internal stresses

will be discussed later. Diffusion is not a clearly established mechanism for plastic

flow in PLB and Deff is not precisely known. For this reason, this text will avoid the

use of Deff in compensating strain-rate.

Just as PLB bounds the high-stress regime of Five-Power-Law Creep, a diffusional

creep mechanism or Harper–Dorn Creep may bound the low-stress portion of

five-power-law creep (for alloys, Superplasticity [2-power] or viscous glide [3-power]

may also be observed as will be discussed later). For pure aluminum, Harper–Dorn

Creep is generally considered to describe the low-stress regime and is illustrated in

Figure 15. The stress exponent for Harper–Dorn is 1 with an activation energy often

of Qsd, and Harper–Dorn is grain size independent. The precise mechanism for

Harper–Dorn Creep is not understood [53,54] and some have suggested that it may

not exist [55]. Figure 15, from Blum and Straub [76,77], is a compilation of high

quality steady-state creep in pure aluminum and describes the temperature range

from about 0.5 Tm to near the melting temperature, apparently showing three

separate creep regimes. It appears that the range of steady-state data for Al may be

more complete than any other metal. The aluminum data presented in earlier figures

are consistent with the data plotted by Blum and Straub. It is intended that this data
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does not include the temperature/stress regime where Stage IV and recrystallization

may obfuscate recovery-controlled steady-state. This plot also (probably not critical

to the PLB transition) uses the same activation energy, Qsd, (142 kJ mol�1) [76]

over the entire stress/strain-rate/temperature regime. As discussed earlier, Qc

seems to decrease with decreasing temperature (increasing strain-rate) within PLB.

The aluminum data shows a curious undulation at sss/G¼ 2� 10�5, that is not

understood, although impurities were a proposed explanation [76].

There are other metallic systems for which a relatively large amount of data

from several investigators can be summarized. One is copper, which is illustrated in

Figure 16. The summary was reported recently in Ref. [78]. Again, a well-defined

‘‘five’’ power law regime is evident. Again, this data is consistent with the (smaller

quantity of reported) data of Figure 10. Greater scatter is evident here as compared

with Figure 15, as the results of numerous investigators were used and the purity

varied. Copper is a challenging experimental metal as oxygen absorption and

Figure 15. The compensated steady-state strain-rate versus the modulus-compensated steady-state stress

for 99.999 pure Al, based on Refs. [76,77].
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discontinuous dynamic recrystallization can obfuscate steady-state behavior in

five-power-law creep, which is a balance between dislocation hardening and dynamic

recovery.

Also, at this point, it should be mentioned that it has been suggested that

some metals and class M alloys may be deformed by glide-control mechanisms

(e.g., jogged-screw, as will be discussed later in this chapter) [79] as mentioned

earlier. Ardell and Sherby and others [74] suggested a glide mechanism for

zirconium. Recent analysis of zirconium, however, suggests that this HCP metal

behaves as a classic five-power-law metal [80]. Figure 17, just as Figure 16, is

a compilation of numerous investigations on zirconium of various purity. Here,

with zirconium, as with copper, oxygen absorption and DRX can be complicating

Figure 16. Summary of the diffusion-coefficient compensated steady-state strain-rate versus the

modulus-compensated steady-state stress for copper of various high purities from various investigations.

From Ref. [78].
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factors. The lower portion of the figure illustrates lower stress exponent creep (as in

Figure 15), of uncertain origin. Harper–Dorn Creep, grain boundary sliding, and

diffusional creep have all been suggested.

2.1.4 Natural Three-Power-Law

It is probably important to note here that Blum [22] suggests the possibility of some

curvature in the 5-power-law regime in Figure 15. Blum cautioned that the effects of

impurities in even relatively high-purity aluminum could obscure the actual power-

law relationships and that the value of ‘‘strain rate-compensated creep’’ at s/
Gffi 10�5 was consistent with Three-Power-Law creep theory [81]. Curvature was

also suggested by Nix and Ilschner [26] in bcc metals (in Figure 10) at lower stresses,

and suggested a possible approach to a lower slope of 3 or, ‘‘natural’’ power law

Figure 17. The diffusion-coefficient compensated steady-state strain-rate versus modulus-

compensated steady-state stress for polycrystalline zirconium of various purities from various

investigations. From Ref. [80].
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exponent consistent with some early arguments by Weertman [25] (although

Springarn, Barnett and Nix [69] earlier suggest that dislocation core diffusion may

rationalize five-power-law behavior). Both groups interpreted five-power behavior as

a disguised ‘‘transition’’ from Three-Power-Law to PLB. Weertman suggested that

five-power-law behavior is unexpected. The Three-Power-Law exponent, or so-called

natural law, has been suggested to be a consequence of

_ee¼ ð1=2Þ �vvbrm ð16Þ

where �vv is the average dislocation velocity and rm is the mobile dislocation

density. As will be discussed later in a theory section, the dislocation climb-

rate, which controls �vv, is proportional to s. It is assumed that s2 / rm (although

dislocation hardening is not assumed) which leads to 3-power behavior in

equation (16). This text will later attempt to illustrate that this latter equation has

no mandate.

Wilshire [82] and Evans and Wilshire [83] have described and predicted steady-

state creep rates phenomenologically over wide temperature regimes without

assumptions of transitions from one rate-controlling process to another across the

range of temperature/strain-rates/stresses in earlier plots (which suggested to include,

for example, Harper–Dorn Creep, Five-Power-Law Creep, PLB, etc). Although

this is not a widely accepted interpretation of the data, it deserves mention,

particularly as some investigators, just referenced, have questioned the validity

of five-power-law. A review confirms that nearly all investigators recognize that

power-law behavior in pure metals and Class M alloys appears to be generally fairly

well defined over a considerable range of modulus-compensated steady-state stress

(or diffusion coefficient-compensated steady-state creep rate). Although this value

varies, a typical value is 5. Thus, for this review, the designation of ‘‘Five-Power-Law

Creep’’ is judged meaningful.

2.1.5 Substitutional Solid Solutions

Two types of substitutional solutions can be considered; cases where a relatively

large fraction of solute alloying elements can be dissolved, and those cases with small

amounts of either intentional or impurity (sometimes interstitial) elements. The

addition of solute can lead to basically two phenomena within the five-power-law

regime of the solvent. Hardening or softening while maintaining five-power-law

behavior can be observed, or three-power, viscous glide behavior, the latter being

discussed in a separate section, may be evident. Figure 18 shows the effects of

substitutional solid-solution additions for a few alloy systems for which five-power-

law behavior is maintained. This plot was adapted from Mukherjee [21].
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2.2 MICROSTRUCTURAL OBSERVATIONS

2.2.1 Subgrain Size, Frank Network Dislocation Density, Subgrain

Misorientation Angle, and the Dislocation Separation within the Subgrain

Walls in Steady-State Structures

Certain trends in the dislocation substructure evolution have been fairly well

established when an annealed metal is deformed at elevated temperature (e.g., under

constant stress or strain-rate) within the five-power-law regime. Basically, on

commencement of plastic deformation, the total dislocation density increases and

this is associated with the eventual formation of low-misorientation subgrain walls.

Figure 18. The compensated steady-state strain-rate versus modulus-compensated steady-state stress for

a variety of Class M (Class I) alloys. Based on Ref. [21].
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That is, in a polycrystalline aggregate, where misorientations, y (defined here as the

minimum rotation required to bring two lattices, separated by a boundary, into

coincidence), between grains are typically (e.g., cubic metals) 10–62�, the individual

grains become filled with subgrains. The subgrain boundaries are low-energy

configurations of the dislocations generated from creep plasticity.

The misorientations, yl, of these subgrains are generally believed to be low at

elevated temperatures, often roughly 1�. The dislocations within the subgrain

interior are generally believed to be in the form of a Frank network [84–87]. A Frank

network is illustrated in Figure 19 [88]. The dislocation density can be reported

as dislocation line length per unit volume (usually reported as mm/mm3) or

intersections per unit area (usually reported as mm�2). The former is expected to be

about a factor of two larger than the latter. Sometimes the method by which r is

Figure 19. A three-dimensional Frank network of dislocations within a subgrain or grain. Based

on Ref. [88].
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determined is not reported. Thus, microstructurally, in addition to the average

grain size of the polycrystalline aggregate, g, the substructure of materials deformed

within the five-power-law regime is more frequently characterized by the average

Subgrain size l (often measured as an average intercept), the average misorientation

across subgrain boundaries, ylave , and the density of dislocations not associated

with subgrain boundaries, r. Early reviews (e.g., [16]) did not focus on the

dislocation substructure as these microstructural features are best investigated by

transmission electron microscopy (TEM). A substantial amount of early dislocation

substructure characterization was performed using metallographic techniques such

as polarized light optical microscopy (POM) and dislocation etch-pit analysis. As

TEM techniques became refined and widely used, it became clear that the optical

techniques are frequently unreliable, often, for example, overestimating Subgrain

size [89] partly due to a lack of ability (particularly POM) to detect lower-

misorientation-angle subgrain boundaries. Etch-pit-based dislocation density values

may be unreliable, particularly in materials with relatively high r values [90].

Unambiguous TEM characterization of the dislocation substructure is not trivial.

Although dislocation density measurements in metals may be most reliably

performed by TEM, several short-comings of the technique must be overcome.

Although the TEM can detect subgrain boundaries of all misorientations, larger

areas of thin (transparent to the electron beam) foil must be examined to statistically

ensure a meaningful average intercept, l. The dislocation density within a subgrain

may vary substantially within a given specimen. This variation appears independent

of the specimen preparation procedures. The number of visible dislocations can be

underestimated by a factor of two by simply altering the TEM imaging conditions

[91]. Furthermore, it has been suggested that in high stacking fault energy materials,

such as pure aluminum, dislocations may ‘‘recover’’ from the thin foil, leading, again,

to an underestimation of the original density [92,93]. As mentioned earlier, there

are at least two different means by which the dislocation density is reported; one

is the surface intersection technique where the density is reported as the number

of dislocation-line intersections per unit surface area of foil and another is the

dislocation line length per unit volume [91]. The latter is typically a factor of two

larger than the former. Misorientation angles of subgrain boundaries, yl, have

generally been measured by X-rays, selected area electron diffraction (SAED,

including Kikuchi lines) and, more recently, by electron backscattered

patterns (EBSP) [94] although this latter technique, to date, cannot easily detect

lower (e.g. <2�4�) misorientation boundaries. Sometimes the character of the

subgrain boundary is alternatively described by the average spacing of dislocations,

d, that constitute the boundary. A reliable determination of d is complicated by

several considerations. First, with conventional bright-field or weak-beam TEM,

there are limitations as to the minimum discernable separation of dislocations. This
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appears to be within the range of d frequently possessed by subgrain boundaries

formed at elevated temperatures. Second, boundaries in at least some fcc metals

[95–97] may have 2–5 separate sets of Burgers vectors, perhaps with different

separations, and can be of tilt, twist, or mixed character. Often, the separation of

the most closely separated set is reported. Determination of yl by SAED requires

significant effort since for a single orientation in the TEM, only the tilt angle by

Kikuchi shift is accurately determined. The rotation component cannot be accurately

measured for small total misorientations. yl can only be determined using Kikuchi

lines with some effort, involving examination of the crystals separated by a boundary

using several orientations [42,43]. Again, EBSP cannot detect lower yl boundaries

which may comprise a large fraction of subgrain boundaries.

Figure 20 is a TEM micrograph of 304 austenitic stainless steel, a class M alloy,

deformed to steady-state within the five-power-law regime. A well-defined subgrain

Figure 20. TEMmicrographs illustrating the dislocation microstructure of 304 stainless steel deformed at

the indicated conditions on the compensated steady-state strain-rate versus modulus-compensated steady-

state stress plot. The micrograph on the right is a high magnification image of the subgrain boundaries

such as illustrated on the left. Based on Refs. [98,99]. (Modulus based on 316 values.)
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substructure is evident and the subgrain walls are ‘‘tilted’’ to expose the sets of

dislocations that comprise the walls. The dislocations not associated with subgrain

walls are also evident. Because of the finite thickness of the foil (ffi 100 nm), any

Frank network has been disrupted. The heterogeneous nature of the dislocation

substructure is evident. A high magnification TEM micrograph of a hexagonal array

of screw dislocations comprising a subgrain boundary with one set (of Burgers

vectors) satisfying invisibility [98,99] is also in the figure.

It has long been observed, phenomenologically, that there is an approximate

relationship between the Subgrain size and the steady-state flow stress;

sss=G¼ C1ðlssÞ�1 ð17Þ

It should be emphasized that this relationship between the steady-state stress and

the Subgrain size is not for a fixed temperature and strain rate. Hence, it is not of a

same type of equation as, for example, the Hall–Petch relationship, which relates

the strength to the grain size, g, at a reference T and _ee. That is, equation (17) only

predicts the Subgrain size for a given steady-state stress which varies with the

temperature and strain rate. Some (e.g., [89,100]) have normalized the Subgrain size

in equation (17) by the Burgers vector, although this is not a common practice.

The subgrains contain a dislocation density in excess of the annealed values, and

are often believed to form a three-dimensional, Frank, network. The conclusion of a

Frank network is not firmly established for five-power creep, but indirect evidence

of a large number of nodes in thin foils [54,85,101–103] supports this common

contention [84,104–109]. Analogous to equation (17), there appears to be a

relationship between the density of dislocations not associated with subgrain

boundaries [17] and the steady-state stress:

sss=G¼ C2ðrssÞp ð18Þ

where C2 is a constant and rss is the density of dislocations not associated with

subgrain boundaries. The dislocation density is not normalized by the Burgers vector

as suggested by some [18]. The exponent ‘‘p’’ is generally considered to be about 0.5

and the equation, with some confusion, reduces to:

sss=G¼ C3
ffiffiffiffiffiffi
rss

p ð19Þ

As will be discussed in detail later in this text, this relationship between the steady-

state stress and the dislocation density is not independent of temperature and strain-

rate. Hence, it is not of a same type of microstructure-strength equation as the classic

Taylor relationship which is generally independent of strain-rate and temperature.
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That is, this equation tells us the dislocation density not associated with subgrain

walls that can be expected for a given steady-state stress which varies with the

temperature and strain-rate, analogous to equation (17). However, the flow stress

associated with this density depends on _ee and T.

As mentioned in the discussion of the ‘‘natural stress exponent,’’ rss is sometimes

presumed equal, or at least proportional, to the mobile dislocation density, rm. This
appears unlikely for a Frank network and the fraction mobile over some time

interval, dt, is unknown, and may vary with stress. In Al, at steady-state, rm may

only be about 1/3 r or less [107] although this fraction was not firmly established.

Proponents of dislocation hardening also see a resemblance of equation (19) to

t ¼Gb

‘c
ð20Þ

leading to

t � Gb
ffiffiffiffiffiffi
rss

p

where t is the stress necessary to activate a Frank Read source of critical link length,

‘c. Again, the above equation must be regarded as ‘‘athermal’’ or valid only at a

specific temperature and strain-rate. It does not consider the substantial solute and

impurity strengthening evident (even in 99.999% pure) in metals and alloys, as will

be discussed in Figures 29 and 30, which is very temperature dependent. Weertman

[25] appears to justify equation (19) by the dislocation (all mobile) density necessarily

scaling with the stress in this manner, although he does not regard these dislocations

as the basis for the strength.

The careful TEM data for aluminum by Blum and coworkers [22] for Al alloys

and 304 and 316 stainless steels by others [66,98,103,110,111] are plotted in Figures

21 and 22. Blum and coworkers appear to have been reluctant to measure r in pure

aluminum due to possible recovery effects during unloading and sample preparation

and examination of thin foils. Consequently, Al-5at%Zn alloy, which has basically

identical creep behavior, but possible precipitation pinning of dislocations during

cooling, was used to determine the r vs. sss trends in Al instead. These data (Al and

stainless steel) were used for Figures 21 and 22 as particular reliability is assigned

to these investigations. They are reflective of the general observations of

the community, and are also supportive of equation (17) with an exponent of �1.

Both sets of data are consistent with equation (18) with pffi 0.5. It should, however,

be mentioned that there appears to be some variability in the observed exponent, p,

in equation (18). For example, some TEM work on aFe [112] suggests 1 rather

than 2. Hofmann and Blum [113] more recently suggested 0.63 for Al modeling.
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Figure 21. The average steady-state subgrain intercept, l, density of dislocations not associated with

subgrain walls, r, and the average separation of dislocations that comprise the subgrain boundaries for Al

[and Al-5 at%Zn that behaves, mechanically, essentially identical to Al, but is suggested to allow for a

more accurate determination of r by TEM]. Based on Refs. [22,90].
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Figure 22. The average steady-state subgrain intercept, l, density of dislocations not associated with

subgrain boundaries, r, and average separation of dislocations that comprise the subgrain boundaries,

d, for 304 stainless steel. Data from Refs. [66,98,103,110,111].
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This latter value depicts the general procedure to derive a ‘‘natural three power law.’’

The above two equations, of course, mandate a relationship between the steady-state

Subgrain size and the density of dislocations not associated with subgrain

boundaries,

lss ¼ C4ðrssÞ�p ð21Þ

rendering it difficult, simply by microstructural inspection of steady-state

substructures, to determine which feature is associated with the rate-controlling

process for steady-state creep or elevated temperature strength.

Figures 21 and 22 additionally report the spacing, d, of dislocations that constitute

the subgrain walls. The relationship between d and sss is not firmly established, but

Figures 21 and 22 suggest that

sss

G
ffi d �q ð22Þ

where q may be between 2 and 4. Other [90] work on Fe- and Ni-based alloys

suggests that q may be closer to values near 4. One possible reason for the variability

may be that d (and ylave ) may vary during steady-state as will be discussed in a later

section. Figure 22 relies on d data well into steady-state using torsion tests (�eeffi 1.0).

Had d been selected based on the onset of steady-state, a q value of about 4 would

also have been obtained. It should, of course, be mentioned that there is probably a

relationship between d and yl. Straub and Blum [90] suggested that,

yl ffi 2 arcsinðb=2d Þ ð23Þ

2.2.2 Constant Structure Equations

a. Strain-Rate Change Tests. A discussion of constant structure equations

necessarily begins with strain-rate change tests. The constant-structure strain-rate

sensitivity, N, can be determined by, perhaps, two methods. The first is the strain-

rate increase test, as illustrated in Figure 3, where the change in flow stress with a

‘‘sudden’’ change in the imposed strain-rate (cross-head rate) is measured. The

‘‘new’’ flow stress at a fixed substructure is that at which plasticity is initially

discerned. There are, of course, some complications. One is that the stress at which

plastic deformation proceeds at a ‘‘constant dislocation’’ substructure can be

ambiguous. Also, the plastic strain-rate at this stress is not always the new cross-

head rate divided by the specimen gage length due to substantial machine

compliances. These complications notwithstanding, there still is value in the concept

of equation (1) and strain-rate increase tests.
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Another method to determine N (or m) is with stress-drop (or dip) tests illustrated

in Figure 23 (based on Ref. [10]). In principle, N could be determined by noting the

‘‘new’’ creep-rate or strain-rate at the lower stress for the same structure as just prior

to the stress dip. These stress dip tests originated over 30 years ago by Gibbs [114]

and adopted by Nix and coworkers [115,116] and their interpretation is still

ambiguous [10]. Biberger and Gibeling [10] published an overview of Creep

transients in pure metals following stress drops, emphasizing work by Gibeling and

coworkers [10,87,117–120], Nix and coworkers [27,115–119], and Blum and

coworkers [22,77, 92,121–125] all of whom have long studied this area as well as

several others [66,104,114,126–131]. The following discussion on the stress dip test

relies on this overview.

With relatively large stress drops, there are ‘‘quick’’ contractions that may occur

as a result of an initial, rapid, anelastic component, in addition, of course, to elastic

Figure 23. Description of the strain (a) and strain-rate (b) versus time and strain for stress-dip (drop)

tests associated with relatively small and large decreases in the applied stress. From Ref. [10].
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contractions, followed by slower anelastic backflow [119]. Researchers in this area

tend to report a ‘‘first maximum’’ creep rate which occurs at ‘‘B’’ in Figure 23. It has

been argued that the plastic strain preceding ‘‘B’’ is small and that the dislocation

microstructure at ‘‘B’’ is essentially ‘‘identical’’ to that just prior to the stress drop.

Some investigators have shown, however, that the interior or network density, r,
may be different [131]. Also, since the creep-rate decreases further to a minimum

value at ‘‘C’’ (in Figure 23), the creep at ‘‘B’’ has been, occasionally, termed

‘‘anomalous.’’ _eeC (point ‘‘C’’) has also been referred to as ‘‘constant structure,’’

probably, primarily, as a consequence that the Subgrain size, l, at ‘‘C’’ is probably
very close to the same value as just prior to the stress drop, despite the observation

that the interior dislocation density, r, appears to change [4,6,120,125,132]. Thus,

with the stress dip test, the constant structure stress exponent, N, or related constant-

structure descriptors, such as the activation area, �a, or volume, �V0, [132,133] may

be ambiguous as the strain-rate immediately on unloading is negative, and the

material does not have a fixed substructure at definable stages such as at ‘‘B’’ and

‘‘C.’’ Eventually, the material ‘‘softens’’ to ‘‘D’’ as a consequence of deformation

at the lower stress, to the strain-rate that most investigators have concluded

corresponds to that which would have been obtained on loading the annealed metal

at same temperature and stress although this is not, necessarily, a consensus view,

e.g. [128,134]. Parker and Wilshire [134], for example, find that at lower

temperatures, Cu, with a stress drop, did not return to the creep-rate for the

uninterrupted test. Of course, it is unclear whether the rate would have eventually

increased to the uninterrupted rate with larger strains that can be precluded by

fracture in tensile tests.

The anelastic strains are very small for small stress-reductions and may not be

observed. The creep-rate cannot be easily defined until _eeC and an ‘‘anomalous’’ creep

is generally not observed as with large stress reductions. Again, the material

eventually softens to a steady-state at ‘‘D.’’

The stress-dip test appears to at least be partially responsible for the introduction

of the concept of an internal ‘‘backstress.’’ That is, the backflow associated with the

stress dip, observed in polycrystals and single crystals alike, has been widely

presumed to be the result of an Internal stress. At certain stress reductions, a zero

initial creep-rate can result, which would, presumably, be at an applied stress about

equal to the backstress [81,115,126,135]. Blum and coworkers [22,77,122,125,

135,136], Nix and coworkers [26,115–117], Argon and coworkers [18,137], Morris

and Martin [43,44], and many others [20,53,138] (to reference a few) have suggested

that the backflow or backstress is a result of high local Internal stresses that are

associated with the heterogeneous dislocation substructure, or subgrain walls.

Recent justification for high Internal stresses beyond the stress-dip test has included

X-ray diffraction (XRD) and convergent beam electron diffraction (CBED) [136].
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Gibeling and Nix [117] have performed stress relaxation experiments on aluminum

single crystals and found large anelastic ‘‘backstrains’’, which they believed

were substantially in excess of that which would be expected from a homogeneous

stress state [26,117,139]. This experiment is illustrated in Figure 24 for a stress

drop from 4 to 0.4MPa at 400�C. If a sample of cubic structure is assumed with only

one active slip system, and an orthogonal arrangement of dislocations, with a density

r, and all segments are bowed to a critical radius, then the anelastic unbowing strain

is about

gA ¼ffi pb
ffiffiffi
r

p
8
ffiffiffi
3

p ð24Þ

Figure 18 suggests that gA from the network dislocations would be about 10�4,

about the same as suggested by Nix et al. [26,117,139]. The above equation only

assumes one-third of r are bowing as two-thirds are on planes without a resolved

shear stress. In reality, slip on {111} and {110} [130] may lead to a higher fraction of

bowed dislocations. Furthermore, it is known that the subgrain boundaries are

mobile. The motion may well involve (conservative) glide, leading to line tension

and the potential for substantial backstrain. It is known that substantial elastic

incompatibilities are associated with grain boundaries [140]. Although Nix et al.

suggest that backstrain from grain boundary sliding (GBS) is not a consideration

for single crystals, it has been later demonstrated that for single crystals of Al, in

creep, such as in Figure 24, high angle boundaries are readily formed in the absence

of classic Discontinuous dynamic recrystallization (DRX) [141,142]. These

incompatibility stresses may relax during (forward) creep, but ‘‘reactivate’’ on

Figure 24. The backstrain associated with unloading an aluminum single crystal from 4 to 0.4MPa at

400�C. From Ref. [117].
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unloading, leading to strains that may be a fraction of the elastic strain. This may

explain large (over 500 microstrain) backflow observed in near a T i alloys after just

0.002 strain creep, where subgrains may not form [143], but fine grains are present.

The subject of Internal stress will be discussed more later. Substructural changes

(that almost surely occur during unloading) may lead to the backstrains, not a result

of long-range Internal stress, such as in Figure 24, although it is not clear how these

strains would develop. More recently, Muller et al. [125] suggested that subgrain

boundary motion after a stress-dip may be associated with ‘‘back’’ strain. Hence, the

‘‘back’’ strains of Figure 24 do not deny the possibility for a homogeneous stress

state. The arguments by Nix et al. still seem curious in view of the fact that such

anelastic backstrains, if a result only of Internal stresses from subgrains, as they

suggest, would seem to imply Internal stress value well over an order of magnitude

greater than the applied stress rather than the factor of that 3 Nix et al. suggest. It is

not known to the author of this review as to whether the results of Figure 21 have

been reproduced.

b. Creep Equations. Equations such as (14)

_eess ¼ A6 w=Gbð Þ3 DsdGb=kTð Þ sss=Gð Þ5

are capable of relating, at a fixed temperature, the creep rate to the steady-state flow

stress. However, in associating different steady-state creep rates with (steady-state)

flow stresses, it must be remembered that the dislocation structures are different. This

equation does not relate different stresses and substructures at a fixed temperature

and strain rate as, for example, the Hall–Petch equation.

Sherby and coworkers reasoned that relating the flow stress to the (e.g., steady-

state) substructure at a fixed strain-rate and temperature may be performed with

knowledge of N (or m) in equation (1)

N ¼ q ln _ee
q lns

� �
T ,s

Sherby and coworkers suggested that the flow stress at a fixed elevated temperature

and strain-rate is predictable through [4,6]:

_ee ¼ A7ðl3Þ exp½�Qsd=kT �ðs=E ÞN ð25Þ

for substructures resulting from steady-state creep deformation in the five-power

regime. It was suggested that Nffi 8. Steady-state (ss) subscripts are notably absent

in this equation. This equation is important in that the flow stress can be directly

related to the microstructure at any fixed (e.g., reference) elevated temperature and
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strain-rate. Sherby and coworkers, at least at the time that this equation was

formulated, believed that subgrain boundaries were responsible for elevated-

temperature strength. Sherby and coworkers believed that particular value was

inherent in this equation since if equation (17),

sss

G
¼ C1l

�1
ss

were substituted into equation (25), then the well-established five-power-law

equation [equation (9)] results,

_eess ¼ A3 exp �Qsd=kT½ � sss

G

� 	5
Equation (25) suggests that at a fixed temperature and strain-rate:

s
E

���
_ee,T

¼ C5ðlÞ�3=8 ð26Þ

(Sherby normalized stress with the Young’s modulus although the shear modulus

could have been used.) This equation, of course, does not preclude the importance of

the interior dislocation network over the heterogeneous dislocation substructure (or

subgrain walls) for steady-state substructures (on which equation (25) was based).

This is because there is a fixed relationship between the steady-state Subgrain size

and the steady-state interior dislocation density. Equation (26) could be

reformulated, without a loss in accuracy, as

s
G

���
_ee,T

¼ k2ðrÞ�3p=8ffi�3=16 ð27Þ

c. Dislocation Density and Subgrain-Based Constant-Structure Equations. Equation

(26) for subgrain strengthening does not have a strong resemblance to the well-

established Hall–Petch equation for high-angle grain-boundary strengthening:

sy

��
_ee,T ¼ soþkyg

�1=2 ð28Þ

where sy

��
_ee,T is the yield or flow stress (at a reference or fixed temperature and strain-

rate), and ky is a constant, g is the average grain diameter, and so is the single crystal

strength and can include solute strengthening as well as dislocation hardening.

[Of course, subgrain boundaries may be the microstructural feature associated with

elevated temperature strength and the rate-controlling process for creep, without

obedience to equation (28).] Nor does equation (27) resemble the classic dislocation
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hardening equation [144]:

sy

��
_ee,T ¼ s0

0 þ aMGbðrÞ1=2 ð29Þ

where syj_ee,T is the yield or flow stress (at a reference or fixed temperature and strain-

rate), s0
0 is the near-zero dislocation density strength and can include solute

strengthening as well as grain-size strengthening, and M is the Taylor factor, 1–3.7

and a is a constant, often about 0.3 at ambient temperature. (This constant will be

dependent upon the units of r, as line-length per unit volume, or intersections per

unit area, the latter being a factor of 2 lower for identical structure.) Both equations

(28) and (29) assume that these hardening features can be simply summed to obtain

their combined effect. Although this is reasonable, there are other possibilities [145].

Equation (29) can be derived on a variety of bases (e.g., bowing stress, passing stress

in a ‘‘forest’’ of dislocations, etc.), all essentially athermal, and may not always

include a s0
0 term.

Even with high-purity aluminum experiments (99.999% pure), it is evident in

constant strain-rate mechanical tests, that annealed polycrystal has a yield strength

(0.002 plastic strain offset) that is about one-half the steady-state flow stress [4,146]

that cannot be explained by subgrain (or dislocation) hardening; yet this is not

explicitly accounted in the phenomenological equations (e.g., equations 26 and 27).

When accounted, by assuming that s0 ðor s0
0Þ ¼ syjT ,_ee for annealed metals, Sherby

and coworkers showed that the resulting subgrain-strengthening equation that best

describes the data form would not resemble equation (28), the classic Hall–Petch

equation; the best-fit (1/l) exponent is somewhat high at about 0.7. Kassner and Li

[147] also showed that there would be problems with assuming that the creep

strength could be related to the Subgrain size by a Hall–Petch equation. The

constants in equation (28), the Hall–Petch equation, were experimentally determined

for high-purity annealed aluminum with various (HAB) grain sizes. The predicted

(extrapolated) strength (at a fixed elevated temperature and strain-rate) of aluminum

with grain sizes comparable to those of steady-state Subgrain sizes was substantially

lower than the observed value. Thus, even if low misorientation subgrain walls

strengthen in a manner analogous to HABS, then an ‘‘extra strength’’ in steady-

state, subgrain containing, structures appears from sources other than that provided

by boundaries. Kassner and Li suggested that this extra strength may be due to the

steady-state dislocation density not associated with the subgrains, and dislocation

hardening was observed. Additional discussion of grain-size effects on the creep

properties will be presented later.

The hypothesis of dislocation strengthening was tested using data of high-purity

aluminum as well as a Class M alloy, AISI 304 austenitic stainless steel (19Cr-10Ni)
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[107,148]. It was discovered that the classic dislocation hardening (e.g., Taylor)

equation is reasonably obeyed if s0
0 is approximately equal to the annealed yield

strength. Furthermore, the constant a in equations (29), at 0.29, is comparable to

the observed values from ambient temperature studies of dislocation hardening

[144,149–151] as will be discussed more later. Figure 25 illustrates the polycrystalline

stainless steel results. The l and r values were manipulated by combinations of creep

and cold work. Note that the flow stress at a reference temperature and strain-rate

[that corresponds to nearly within 5-power-law-creep (750�C in Figure 20)] is

independent of l for a fixed r. The dislocation strengthening conclusions are

consistent with the experiments and analysis of Ajaja and Ardell [152,153] and

Shi and Northwood [154,155] also on austenitic stainless steels.

Henshall et al. [156] also performed experiments on Al-5.8at% Mg in the

three-power regime where subgrain boundaries only sluggishly form. Again, the flow

stress was completely independent of the Subgrain size (although these tests were

relevant to three-power creep). The Al-Mg results are consistent with other

Figure 25. The elevated temperature yield strength of 304 stainless steel as a function of the square root

of the dislocation density (not associated with subgrain boundaries) for specimens of a variety of Subgrain

sizes. (Approximately five-power-law temperature/strain-rate combination.) Based on Ref. [148].
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experiments by Weckert and Blum [121] and the elevated temperature In situ TEM

experiments by Mills [157]. The latter experiments did not appear to show

interaction between subgrain walls and gliding dislocations. The experiments of

this paragraph will be discussed in greater detail later.

2.2.3 Primary Creep Microstructures

Previous microstructural trends in this review emphasized steady-state substructures.

This section discusses the development of the steady-state substructure during

primary creep where hardening is experienced. A good discussion of the pheno-

menological relationships that describe primary creep was presented by Evans and

Wilshire [28]. Primary creep is often described by the phenomenological equation,

‘ ¼ ‘o 1þ bt1=3

 �

ew
0t ð30Þ

This is the classic Andrade [158] equation. Here, P is the instantaneous gage length

of a specimen and P0 is the gage length on loading (apparently including elastic

deflection) and b and w0 are constants. This equation leads to equations of the form,

e ¼ at1=3 þ ctþ dt4=3 ð31Þ

which is the common phenomenological equation used to describe primary creep.

Modifications to this equation include [159]

e ¼ at1=3 þ ct ð32Þ

and [160]

e ¼ at1=3bt2=3 þ ct ð33Þ

or

e ¼ atb þ ct ð34Þ

where [161]

0 < b < 1:

These equations cannot be easily justified, fundamentally [23].

For a given steady-state stress and strain-rate, the steady-state microstructure

appears to be independent as to whether the deformation occurs under constant

stress or constant strain-rate conditions. However, there are some differences

between the substructural development during a constant stress as compared to

constant strain-rate primary-creep. Figure 26 shows Al-5at%Zn at 250�C at a
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Figure 26. The constant-stress primary Creep transient in Al-5at%Zn (essentially identical behavior to

pure Al) illustrating the variation of the average subgrain intercept, l, density of dislocations not

associated with subgrain walls, r, and the spacing, d, of dislocations that comprise the boundaries.

The fraction of material occupied by subgrains is indicated by fsub. Based on Ref. [77].
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constant stress of 16MPa [77]. Again, this is a class M alloy which, mechanically,

behaves essentially identical to pure Al. The strain-rate continually decreases to a

strain of about 0.2, where mechanical steady-state is achieved. The density of

dislocations not associated with subgrain boundaries is decreasing from a small

strain after loading (<0.01) to steady-state. This constant-stress trend with the

‘‘free’’ dislocation density is consistent with early etch pit analysis of Fe-3% Si [162],

and the TEM analysis 304 stainless steel [163], a-Fe [164] and Al [165,166]. Some

have suggested that the decrease in dislocation density in association with hardening

is evidence that hardening cannot be associated with dislocations and is undisputed

proof that subgrains influence the rate of plastic deformation [81]. However, as will

be discussed later, this may not be accurate. Basically, Kassner [107,149] suggested

that for constant-stress transients, the network dislocations cause hardening but the

fraction of mobile dislocations may decrease, leading to strain-rate decreases not

necessarily associated with subgrain formation. Figure 26 plots the average Subgrain

size only in areas of grains that contain subgrains. The volume of Al 5at.% Zn is not

completely filled with subgrains until steady-state, at effi 0.2. Thus, the Subgrain size

averaged over the entire volume would show a more substantial decrease during

primary creep. The average spacing, d, of dislocations that comprises subgrain walls

decreases both during primary, and, at least, during early steady-state. This trend in d

and/or yl was also observed by Suh et al. in Sn [167], Morris and Martin [42,43] and

Petry et al. [168] in Al-5at%Zn, Orlova et al. [166] in Al, Karashima et al. [112]

in aFe, and Kassner et al. in Al [146] and 304 stainless steel [98]. These data are

illustrated in Figure 27.

Work-hardening, for constant strain-rate creep, microstructural trends were

examined in detail by Kassner and coworkers [98,107,146,169] and are illustrated in

Figures 28 and 29 for 304 stainless steel and Figure 30 for pure Al. Figure 28 illustrates

the dislocation substructure, quantitatively described in Figure 29. Figure 30(a)

illustrates the small strain region and that steady-state is achieved by �ee¼ 0.2. Figure

30(b) considers larger strains achieved using torsion of solid aluminum specimens.

Figure 31 illustrates a subgrain boundary in a specimen deformed in Figure 30(b) to

an equivalent uniaxial strain (torsion) of 14.3 (a) with all dislocations in contrast in

the TEM under multiple beam conditions and (b) one set out of contrast under two

beam conditions (as in Figure 20). The fact that, at these large strains, the

misorientations of subgrains that form from dislocation reactions remain relatively

low ðylave < 2�Þ and subgrains remain equiaxed suggests boundaries migrate and

annihilate. Here, with constant strain-rate, we observe similar subgrain trends to the

constant stress trends of Blum in Figure 26 at a similar fraction of the absolute melting

temperature. Of course, 304 has a relatively low stacking fault energy while aluminum

is relatively high. In both cases, the average Subgrain size (considering the entire

volume) decreases over primary creep. The lower stacking fault energy 304 austenitic
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stainless steel, however, requires substantially more primary creep strain (0.4 vs. 0.2)

to achieve steady-state at a comparable fraction of the melting temperature. It is

possible that the Subgrain size in 304 stainless steel continues to decrease during

steady-state. Under constant strain-rate conditions, the density of dislocations not

associated with subgrain boundaries monotonically increases with increased flow

stress for both austenitic stainless steel and high-purity aluminum. This is opposite

to constant-stress trends. Similar to the constant-stress trends, both pure Al and

304 stainless steel show decreasing d (increasing y) during primary and ‘‘early’’

steady-state creep. Measurements of ‘‘d ’’ were considered unreliable at strains

beyond 0.6 in Al and only misorientation angles are reported in Figure 30(b).

[It should be mentioned that HABs form by elongation of the starting grains

through geometric dynamic recrystallization, but these are not included in Figure

30(b). This mechanism is discussed in greater detail in a later section.]

Figure 27. The variation of the average misorientation angle across subgrain walls, ylave , and separation

of dislocations comprising subgrain walls with fraction of strain required to achieve steady-state, e/ess for
various metals and alloys. y�l,ave and d* are values at the onset of steady-state.
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2.2.4 Creep Transient Experiments

As mentioned earlier, Creep transient experiments have been performed by several

investigators [127,129,170] on high- and commercial-purity aluminum, where a

steady-state is achieved at a fixed stress/strain-rate followed by a change in the stress/

strain-rate. The strain-rate/stress change is followed by a creep ‘‘transient,’’ which

leads to a new steady-state with, presumably, the characteristic dislocation

substructure associated with an uninterrupted test at the (new) stress/strain-rate.

These investigators measured the Subgrain size during the transient and subsequent

mechanical steady-state, particularly following a drop in stress/strain-rate. Although

Ferriera and Stang [127] found, using less reliable polarized light optical

metallography (POM), that changes in l in Al correlate with changes in _ee following
a stress-drop, Huang and Humphreys [129] and Langdon et al. [170] found the

opposite using TEM; the l continued to change even once a new mechanical steady-

state was reached. Huang and Humphreys [129] and Langdon et al. [170] showed

that the dislocation microstructure changes with a stress drop, but the dislocation

Figure 28. TEM micrographs illustrating the evolution of the dislocation substructure during primary

creep of AISI 304 stainless steel torsionally deformed at 865�C at _�ee�ee¼ 3.2� 10�5 s�1, to strains of 0.027 (a),

0.15 (b), 0.30 (c), and 0.38 (d).
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Figure 29. Work-hardening at a constant strain-rate primary Creep transient in AISI 304 stainless steel,

illustrating the changes in l, r, and d with strain. Based on Ref. [98].
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Figure 30. The work-hardening during a constant strain-rate Creep transient for Al, illustrating

the variation of l, r, d, and ylave over primary and secondary creep. The bracket refers to the range of

steady-state dislocation density values observed at larger strains [e.g., see (b)]. From Ref. [146].
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Figure 30. Continued.
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density follows the changes in creep-rate more closely than the Subgrain size in high-

purity aluminum. This led Huang and Humphreys to conclude as did Evans et al.

[171] the ‘‘free’’ dislocation density to be critical in determining the flow properties of

high-purity aluminum. Parker and Wilshire [134] made similar conclusions for Cu in

the five-power-law regime. Blum [22] and Biberger and Gibeling [10] suggest that

interior dislocations can be obstacles to gliding dislocations, based on stress drop

experiments leading to aluminum activation area calculations.

2.2.5 Internal Stress

One of the important suggestions within the creep community is that of the internal

(or back) stress which, of course, has been suggested for plastic deformation, in

general. The concept of internal or backstress stresses in materials may have first

been discussed in connection with the Bauschinger effect, which is observed both at

high and low temperatures and is illustrated in Figure 32 for Al single crystal

oriented for single slip at � 196�C, from Ref. [172]. The figure illustrates that the

metal strain hardens after some plastic straining. On reversal of the direction of

straining, the metal plastically flows at a stress less in magnitude than in the forward

direction, in contrast to what would be expected based on isotropic hardening.

Figure 31. TEM micrographs of a subgrain boundary in Al deformed at 371�C at _�ee�ee¼ 5.04� 10�4 s�1, to

steady-state under (a) multiple and (b) two-beam diffraction conditions. Three sets of dislocations, of,

apparently, nearly screw character. From Ref. [146].
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Figure 32 shows that not only is the flow stress lower on reversal, but that the

hardening features are different as well. Sleeswyk et al. [173] analyzed the hardening

features in several materials at ambient temperature and found that the hardening

behavior on reversal can be modeled by that of the monotonic case provided a small

(e.g., 0.01) ‘‘reversible’’ strain is subtracted from the early plastic strain associated

with each reversal. This led Sleeswyk and coworkers to conclude the Orowan-type

mechanism (no internal or backstress) [174] with dislocations easily reversing their

motion across cells. Sleeswyk suggested that gliding dislocations, during work

hardening, encounter increasingly effective obstacles and the stress necessary to

activate further dislocation motion as plasticity continually increases. On reversal of

the direction of straining, however, the dislocations will need to only move past those

obstacles they have already surmounted. Thus, the flow stress is initially relatively

low. High temperature work by Hasegawa et al. [175] suggested that dissolution of

the cell/subgrains occurred with a reversal of the strain, indicating an ‘‘unraveling’’

of the substructure in Cu-16 at% Al, perhaps consistent with the ideas of Sleeswyk

and coworkers. Others, as mentioned earlier, have suggested that a nonhomoge-

neous state of (back) stress may assist plasticity on reversal. There are two broad

categories for back or Internal stresses.

In a fairly influential development, Mughrabi [138,176] advanced the concept of

relatively high Internal stresses in subgrain walls and cell structures. He advocated

the simple case where ‘‘hard’’ (high dislocation density walls or cells) and soft

(low dislocation density) elastic-perfectly-plastic regions are compatibly sheared

Figure 32. The hysteresis loop indicating the Bauschinger effect in an Al single crystal deformed at 77K.

From Ref. [172].
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in parallel. The ‘‘composite’’ model is illustrated in Figure 33. Basically, the figure

shows that each component yields at different stresses and, hence, the composite

is under a heterogeneous stress-state with the cell walls (subgrains at high

temperatures) having the higher stress. This composite may also rationalize the

Bauschinger effect. As the ‘‘hard’’ and ‘‘soft’’ regions are unloaded in parallel, the

hard region eventually, while its stress is still positive, places the soft region in

Figure 33. The composite model illustrating the Bauschinger effect. The different stress versus strain

behaviors of the (hard) subgrain walls and the (soft) subgrain interiors are illustrated in (a), while the stress

versus strain behavior of the composite is illustrated in (b). When the composite is completely unloaded,

the subgrain interior is under compressive stress. This leads to a yielding of the softer component in

compression at a ‘‘macroscopic’’ stress less than tyI under initial loading. Hence, a Bauschinger effect due

to inhomogeneous (or internal) stresses is observed. Note that the individual components are elastic-

perfectly-plastic.
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compression. Figure 30 indicates that when the ‘‘total’’ or ‘‘average’’ stress is zero,

the stress in the hard region is positive, while negative in the soft region. Thus, a

Bauschinger effect can be observed, where plasticity occurs on reversal at a lower

‘‘average’’ magnitude of stress than that on initial unloading. This leads to an

interpretation of an inhomogeneous stress-state and ‘‘back-stresses.’’ As will be

discussed subsequently, this ‘‘composite’’ model appears to have been embraced by

Derby and Ashby [177], Blum and coworkers [122,136,178], as well as others for

five-power-law creep.

In situ deformation experiments by Lepinoux and Kubin [179] and the well-known

neutron irradiation experiments by Mughrabi [138] find evidence for such Internal

stresses that are, roughly, a factor of 3 higher than the applied stress. These are based

on dislocation curvature measurements that assume fairly precise measurement

of elastic strain energy of a dislocation and that dislocation configurations are in

equilibrium, neither of which are satisfied.

More recent in situ reversed deformation experiments by Kassner and coworkers

(as well as other experiments), however, suggest that this conclusion may not be

firm [180].

Morris and Martin [42,43] concluded that dislocations are ejected from sources at

the subgrain boundary by high local stresses. High local stresses, perhaps a factor

of 20 higher than the applied stress, were concluded by observing the radius of

curvature of ‘‘ejecting dislocations’’ ‘‘frozen in place’’ (amazingly) by a precipitation

reaction in Al-5at%Zn on cooling from the creep temperature. As mentioned

earlier, stress-dip tests have often been interpreted to suggest Internal stresses

[112,115,116,135].

Another concept of backstress is related to dislocation configurations. This

suggestion was proposed by Argon and Takeuchi [137], and subsequently adopted

by Gibeling and Nix [117] and Nix and Ilschner [26]. With this model, the subgrain

boundaries that form from dislocation reaction, bow under action of the shear stress

and this creates relatively high local stresses. The high stresses in the vicinity of the

boundary are suggested to be roughly a factor of 3 larger than the applied stress.

On unloading, a negative stress in the subgrain interior causes reverse plasticity

(or anelasticity). There is a modest anelastic back-strain that is associated with this

backstress that is illustrated in Figure 24.

One of the most recent developments in this area of Internal stresses in creep-

deformed metals was presented by Straub and coworkers [136] and Borbély and

coworkers [181]. This work consisted of X-ray diffraction (XRD) and convergent

beam electron diffraction (CBED) of specimens creep tested to steady-state. Some

X-ray creep-experiments were performed in situ or under stress. The CBED was

performed at �196�C on unstressed thin (TEM) foils. Basically, both sets of

experiments are interpreted by the investigators to suggest that the lattice parameters
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within the specimens are larger near subgrain (and cell) walls than in the subgrain

interior. These are important experiments.

Basically, X-ray peaks broaden with plastic deformation as illustrated in Figure

34. A ‘‘deconvolution’’ is performed that results in two nearly symmetric peaks. One

peak is suggested to represent the small amount of metal in the vicinity of subgrains

where high local stresses are presumed to increase the lattice parameter, although

there does not appear to be direct evidence of this. The resolution limit of X-rays is

about 10�4 [182], rendering it sensitive to Internal stresses that are of the order or

larger than the applied stress. Aside from resolution difficulties associated with small

changes in the lattice parameter with small changes in stress with X-rays, there may

be inaccuracies in the ‘‘deconvolution’’ or decomposition exercise as suggested by

Levine [183] and others [184]. These observations appear to be principally relevant to

Figure 34. The X-ray diffraction peak in Cu deformed to various strains, showing broadening.

A ‘‘deconvolution’’ is performed that leads to two symmetric peaks that may suggest a heterogeneous

stress state. Based on Ref. [181].
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Cu, with other materials, such as Al, not generally evincing such asymmetry. CBED

can probe smaller areas with a 20 nm beam size rather than the entire sample as with

X-rays and is potentially more accurate. However, the results by Borbély et al. that

suggest high local stresses in the vicinity of subgrain boundaries in copper, based on

CBED, may be speculative. The results in Figure 3 of Ref. [181] are ambiguous.

Of course, there is always the limitation with performing diffraction experiments in

unloaded specimens, as any stress heterogeneities may relax before the diffraction

experiments are completed. Performing a larger number CBED on foils under load

would, although difficult, have been preferable. Recent CBED experiments by

Kassner et al. [185,186] on cyclically deformed Cu and unloaded Al single crystals

deformed at a temperature/strain-rate regime similar to Figure 30 did not detect the

presence of any residual stresses in the vicinity of dislocation heterogeneities.

The importance of the backstress concept also appears within the phenomen-

ological equations where the applied stress is decomposed. Nix and Ilschner [26]

attempted to rationalize power-law breakdown by suggesting that the backstress is

a decreasing fraction of the applied stress with decreasing temperature, particu-

larly below about 0.5 Tm. The decreasing fraction of backstress was attributed to

less-defined subgrains (cell walls) at decreasing stress leading to a dominating

contribution by a glide-controlled mechanism. However, it is now well established

that well-defined subgrains form with sufficient strain even at very low temperatures

[11,12,47].

2.3 RATE-CONTROLLING MECHANISMS

2.3.1 Introduction

The mechanism for plastic flow for Five-Power-Law Creep is generally accepted to be

diffusion controlled. Evidence in addition to the activation energy being essentially

equal to that of lattice self diffusion includes Sherby andWeertman’s analysis showing

that the activation volume for creep is also equal to that of self-diffusion [5]. More

recent elegant experiments by Campbell et al. [40] showed that impurity additions that

alter the self diffusivity also correspondingly affect the creep-rate. However, an

established theory for five-power-law creep is not available although there have been

numerous attempts to develop a fundamental mathematical description based on

dislocation-climb control. This section discusses some selected attempts.

a. Weertman [25,187–189]. This was one of the early attempts to fundamentally

describe creep by dislocation climb. Here, the creep process consists of glide of

dislocations across relatively large distances, �xxg, followed by climb at the rate-

controlling velocity, vc, over a distance, �xxc. The dislocations climb and annihilate at
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a rate predictable by a concentration gradient established between the equilibrium

vacancy concentration,

cv ¼ c0 expð�Qv=kT Þ ð35Þ

and the concentration near the climbing dislocation.

The formation energy for a vacancy, QV, is altered in the vicinity of a dislocation

in a solid under an applied stress, s, due to work resulting from climb,

cdv ¼ c0expð�Qv=kT Þ expð	s�=kTÞ ð36Þ

where � is the atomic volume. Again, the (steady-state) flux of vacancies determines

the climb velocity,

vc ffi 2p
D

b

� �
ðs�=kT Þ‘nðR0=bÞ ð37Þ

where R0 is the diffusion distance, related to the spacing of dislocations [Weertman

suggests r nR0/bffi 3 rn 10].

Weertman approximates the average dislocation velocity, �vv,

�vv ffi vc �xxg= �xxc ð38Þ

_eess ¼ rmb �vv ð39Þ

Weertman assumes

rm ffi sss

Gb

� 	2
ð40Þ

Weertman appears to suggest that the density of dislocations rffi rm and

dislocation interaction suggests that rm should scale with sss by equation (40).

This is also analogous to the phenomenological equation (19), leading to

_eess ¼ K6
Dsd

b2
ðG�=kT Þ �xxg

�xxc

� �
s
G

� 	3
ð41Þ

the classic ‘‘natural’’ or Three-Power-Law equation.

b. Barrett and Nix [190]. Several investigators considered Five-Power-Law Creep

as controlled by the non-conservative (climb) motion of (edge) jogs of screw

dislocations [112,190,191]. The models appear similar to the earlier description by
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Weertman, in that climb motion controls the average dislocation velocity and that

the velocity is dictated by a vacancy flux. The flux is determined by the diffusivity

and the concentration gradient established by climbing jogs.

The model by Barrett and Nix [190] is reviewed as representative of these models.

Here, similar to the previous equation (39),

_ggss ¼ rms �vvb ð42Þ

where _ggss is the steady-state (shear) creep-rate from screws with dragging jogs and

rms is the density of mobile screw dislocations.

For a vacancy producing jog in a screw segment of length, j, the chemical dragging

force on the jog is:

f p ¼ kT

b
‘n

cp

cv
ð43Þ

where cp is the concentration of vacancies in the vicinity of the jogs. The jog is

considered a moving point source for vacancies, and it is possible to express cp as a

function of Dv, and the velocity of the jog, vp,

c�p � cv ¼ vp

4pDvb2
ð44Þ

where c�p is the steady-state vacancy concentration near the jog. Substitution of (44)

into (43) leads to

fp ¼ kT

b
‘n 1þ vp

4pDvb2cv

� 

ð45Þ

and with tbj¼ fp.

vp ¼ 4pDvb
2cv exp

tb2j
kT

� �
� 1

� 

ð46Þ

Of course, both vacancy producing and vacancy absorbing jogs are present but, for

convenience, the former is considered and substituting (46) into (42) yields

_ggss ¼ 4pDb2
b

a0

� �
rms exp

tb2j
kT

� �
� 1

� 

ð47Þ

where a0 is the lattice parameter.
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Barrett and Nix suggest that rms¼A8s
3 (rather than r / s2) and _ggss ffiA9t

4 is

obtained. One difficulty with the theory [equation (47)] is that all (at least screw)

dislocations are considered mobile. With stress drops, the strain rate is predicted to

decrease, as observed. However, rms is also expected to drop (with decreasing rss)
with time and a further decrease in _ggss is predicted, despite the observation that _gg
(and _ggss) increases.

c. Ivanov and Yanushkevich [192]. These investigators were among the first to

explicitly incorporate subgrain boundaries into a fundamental climb-control theory.

This model is widely referenced. However, the described model (after translation) is

less than very lucid, and other reviews of this theory [187] do not provide substantial

help in clarifying all the details of the theory.

Basically, the investigators suggest that there are dislocation sources within

the subgrain and that the emitted dislocations are obstructed by subgrain walls.

The emitted dislocations experience the stress fields of boundary and other emitted

dislocations. Subsequent slip or emission of dislocations requires annihilation of the

emitted dislocations at the subgrain wall, which is climb controlled. The annihilating

dislocations are separated by a mean height,

�hhm ¼ k3
Gb

t
ð48Þ

where the height is determined by equating a calculated ‘‘backstress’’ to the applied

stress, t. The creep-rate

_eess ¼ l2b �vvr0m
�hhm

ð49Þ

where r0m ¼ 1/ �hhml
2; where r0m is the number of dislocation loops per unit volume.

The average dislocation velocity

�vv ¼ k4Dvb
2 expðtb3=kT � 1Þ ð50Þ

similar to Weertman’s previous analysis. This yields,

_eess ¼ k5DsdbG

kT

t
G

� 	3
ð51Þ

In this case, the third power is a result of the inverse dependence of the climb

distance on the applied stress. Modifications to the model have been presented by

Nix and Ilschner, Blum and Weertman [26,193–195].
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d. Network Models (Evans and Knowles [105]). Several investigators have

developed models for five-power-creep based on climb control utilizing dislocation

networks, including early work by McLean and coworkers [84,196], Lagneborg and

coworkers [85,197], Evans and Knowles [105], Wilshire and coworkers [104,126],

Ardell and coworkers [54,86,101,102,152,153], and Mott and others [106,109,

198–200]. There are substantial similarities between the models. A common feature

is that the dislocations interior to the subgrains are in the form of a Frank

network [87]. This is a three-dimensional mesh with an average link length between

nodes of ‘ illustrated in Figure 19. The network coarsens through dislocation climb

and eventually links of a critical length ‘c are activated dislocation sources

(e.g., Frank–Read). Slip is caused by activated dislocations that have a presumed

slip length, �xxg ffi ‘. The emitted dislocations are absorbed by the network and

this leads to mesh refinement. There is a distribution of link lengths inferred from

TEM of dislocation node distributions, such as illustrated in Figure 35 for Al in the

five-power regime. Here f(‘) is the observed frequency function for link-length

distribution.

Evans and Knowles [105] developed a creep equation based on networks,

basically representative of the other models, and this relatively early model is

chosen for illustrative purposes. Analogous to Weertman, discussed earlier,

Evans and Knowles suggest that the vacancy concentration near a climbing

Figure 35. The observed distribution of links in a Frank network [101] in Al. A calculated critical length,

Pc, for 0.15MPa is indicated. The stresses are 0.08, 0.1, and 0.15MPa.
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node or dislocation is

cDv ¼ cv exp
F�

bkT

� 

ð52Þ

They show that the climb rate of nodes is faster than that of the links and the links

are, therefore, controlling. A flux of vacancies leads to a climb velocity

vv‘ ¼ 2pDFb

kT ‘n ‘=2bð Þ ð53Þ

very similar to that of Weertman’s analysis where, here, F is the total force per unit

length of dislocation favoring climb. Three forces are suggested to influence the total

force F; the climb force due to the applied stress (sb/2), elastic interaction forces

from other links (Gb2 /2p(1� n)‘), and a line tension (ffi Gb2 /‘) due to the fact that

with coarsening, the total elastic strain-energy decreases. This leads to the equation

for creep-rate utilizing the usual equation (‘¼ aGb/s) and assuming that the

contribution of dislocation pipe diffusion is not important,

_eess ¼ 4:2
ffiffiffi
3

p
s3
ssb

a22G
2kT

Dsd

‘nða2G=2sÞ
� 


1þ 2

a2
1þ 1

2p 1� nð Þ
� �� 


ð54Þ

This suggests about 3-power behavior. The dislocation line is treated as an ideal

vacancy source rather than each jog.

e. Recovery-Based Models. One shortcoming of the previously discussed models is

that a recovery aspect is not included, in detail. It has been argued by many (e.g.,

[81,201]) that steady-state, for example, reflects a balance between dislocation

hardening processes, suggested to include strain-driven network refinements,

subgrain-size refinement or subgrain-boundary mesh-size refinement, and thermally

activated softening processes that result in coarsening of the latter features.

Maruyama et al. [202] attempted to determine the microstructural feature

associated with the rate-controlling (climb) process for creep by examining the

hardening and recovery rates during transients in connection with the Bailey–

Orowan [203,204] equation,

_eess ¼ rr

hr
ð55Þ

where rr¼ ds/dt is the recovery rate and hr¼ ds/de is the hardening rate.

The recovery rates in several single phase metals and alloys were estimated by

stress reduction tests, while work hardening rates were calculated based on the
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observed network dislocation densities within the subgrains and the average

dislocation separation within the subgrain walls, d. Determinations of _eess were

made as a function of sss. The predictions of equation (35) were inconclusive in

determining whether a subgrain wall or network hardening basis was more

reasonable, although a somewhat better description was evident with the former.

More recently, Daehn et al. [205,206] attempted to formulate a more basic

objective of rationalizing the most general phenomenology such as five-power-law

behavior, which has not been successfully explained. Hardening rates (changes in the

[network] dislocation density) are based on experimentally determined changes in

r with strain at low temperatures,

rtþdt ¼ rt þMr
r
ro

� �c

_ggdt ð56Þ

where Mr is the dislocation breeding constant, and c and ro are constants. Refine-

ment is described by the changes in a substructural length-scale ‘0 (r, d, or l) by,

d‘0

dt
¼ � Mr 
 ð‘0oÞ2cð‘Þ3�2c

2g02

� �
_gg ð57Þ

where ‘0o is presumably a reference length scale, and g0 is a constant.

The flow stress is vaguely related to the substructure by

t ¼ k̂k

b‘0
ð58Þ

Daehn et al. note that if network strengthening is relevant, the above equation

should reduce to the Taylor equation although it is unclear that this group is really

including equation (29), or an ‘‘athermal’’ dislocation relationship without a s0 term.

Coarsening is assumed to be independent of concurrent plastic flow and diffusion

controlled

dð‘0Þmc ¼ KDdt ð59Þ

where mc and K are constants and D is the diffusivity. Constants are based on

microstructural coarsening observations at steady-state, refinement and coarsening

are equal and the authors suggest that

_gg ¼ BD
t
G

� 	n
ð60Þ

results with n¼ 4–6.
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This approach to understanding five-power behavior does seem particularly

attractive and can, potentially, allow descriptions of primary and transient creep.

2.3.2 Dislocation Microstructure and the Rate-Controlling Mechanism

Consistent with the earlier discussion, the details by which the dislocation climb-

control which is, of course, diffusion controlled, is specifically related to the creep-

rate, are not clear. The existing theories (some prominent models discussed earlier)

basically fall within two broad categories: (a) those that rely on the heterogeneous

dislocation substructure (i.e., the subgrain boundaries) and, (b) those that rely on the

more uniform Frank dislocation network (not associated with dislocation hetero-

geneities such as cells or subgrain walls).

a. Subgrains. The way by which investigators rely upon the former approach

varies but, basically, theories that rely on the dislocation heterogeneities believe that

one or more of the following are relevant:

(a) The subgrain boundaries are obstacles for gliding dislocations, perhaps

analogous to suggestions for high angle grain boundaries in a (e.g., annealed)

polycrystal described by the Hall–Petch relation. In this case, the misorientation

across the subgrain boundaries, which is related to the spacing of the dislocations

that constitute the boundaries, has been suggested to determine the effectiveness of

the boundary as an obstacle [207]. [One complication with this line of reasoning is

that it now appears well established that, although these features may be obstacles,

the mechanical behavior of metals and alloys during Five-Power-Law Creep appears

independent of the details of the dislocation spacing, d, or misorientation across

subgrain boundaries yl,ave as shown in Figure 27.]

(b) It has been suggested that the boundary is a source for Internal stresses, as

mentioned earlier. Argon et al. [137], Gibeling and Nix [117], Morris and Martin

[42,43], and Derby and Ashby [177] suggested that subgrain boundaries may bow

and give rise to an internal back stress that is the stress relevant to the rate-

controlling mechanism. Morris and Martin claim to have measured high local

stresses that were 10–20 times larger than the applied stress near Al-5at%Zn

subgrains formed within the five-power-law regime. Their stress calculations were

based on dislocation loop radii measurements. Many have suggested that subgrain

boundaries are important as they may be ‘‘hard’’ regions, such as, according to

Mughrabi [138], discussed earlier, extended to the case of creep by Blum and

coworkers in a series of articles (e.g., [136]). Basically, here, the subgrain wall is

considered three-dimensional with a high-yield stress compared to the subgrain or

cell interior. Mughrabi originally suggested that there is elastic compatibility

between the subgrain wall and the matrix with parallel straining. This gives rise to a
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high internal backstress or Internal stress. These investigators appear to suggest that

these elevated stresses are the relevant stress for the rate-controlling process (often

involving dislocation climb) for creep, usually presumed to be located in the vicinity

of subgrain walls.

(c) Others have suggested that the ejection of dislocations from the boundaries

is the critical step [42,43,202]. The parameter that is important here is basically the

spacing between the dislocations that comprise the boundary which is generally

related to the misorientation angle across the boundary. Some additionally suggest

that the relevant stress is not the applied stress, but the stress at the boundary which

may be high, as just discussed in (b) above.

(d) Similar to (a), it has been suggested that boundaries are important in that they

are obstacles for gliding dislocations (perhaps from a source within the subgrain)

and that, with accumulation at the boundary (e.g., a pile-up at the boundary), a

backstress is created that ‘‘shuts off ’’ the source which is only reactivated once the

number of dislocations within a given pile-up is diminished. It has been suggested

that this can be accomplished by climb and annihilation of dislocations at the same

subgrain boundary [26,192–195]. This is similar to the model discussed in Section

4.1.3. Some suggest that the local stress may be elevated as discussed in (b) above.

b. Dislocations. Others have suggested that the rate-controlling process for creep

plasticity is associated with the Frank dislocation network within the subgrains such

as discussed in 2(C)1(d). That is, the strength associated with creep is related to

the details (often, the density) of dislocations in the subgrain interior [54,84–86,

98,101,102,104–106,108–110,129,146,152,153,155,196–200,208]. One commonly

proposed mechanism by which the dislocation network is important is that

dislocation sources are the individual links of the network. As these bow, they can

become unstable, leading to Frank–Read sources, and plasticity ensues. The density

of links that can be activated sources depends on the link length distribution and,

thus, related to the density of dislocation line length within the subgrains. The

generated dislocation loops are absorbed by the network, leading to refinement or

decreasing P. The network also ‘‘naturally’’ coarsens at elevated temperature and

plasticity is activated as links reach the critically ‘‘long’’ segment length, Pc. Hence,

climb (self-diffusion) control is justified. Some of the proponents of the importance

of the interior dislocation-density have based their judgments on experimental

evidence that shows that creep-strength (resistance) is associated with higher

dislocation density and appears independent of the Subgrain size [110,129,141,153].

c. Theoretical Strength Equations. In view of the different microstructural features

(e.g., l, d, ylave , r, ‘c) that have been suggested to be associated with the strength or
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rate-controlling process for Five-Power-Law Creep, it is probably worthwhile to

assess strength associated with different obstacles. These are calculable from simple

(perhaps simplistic) equations. The various models for the rate-controlling, or

strength-determining process, are listed below. Numerical calculations are based

on pure Al creep deforming as described in Figure 30.

(i) The network stress tN. Assuming a Frank network, the average link length, ‘

(assumed here to be uniformffi ‘c)

tN ffi Gb

‘
ð61Þ

Using typical aluminum values for Five-Power-Law Creep (e.g., P 1/
ffiffiffiffiffiffi
rss

p
)

tNffi 5MPa (fairly close to tssffi 7MPa for Al at the relevant rss).
(ii) If the critical step is regarded as ejection of dislocations from the subgrain

boundary,

tB ffi Gb

d
ð62Þ

tBffi 80MPa, much higher (by an order of magnitude or so) than the applied stress.

(iii) If subgrain boundaries are assumed to be simple tilt boundaries with a single

Burgers vector, an attractive or repulsive force will be exerted on a slip dislocation

approaching the boundary. The maximum stress

tbd ffi 0:44Gb

2ð1� nÞd ð63Þ

from Ref. [88] based on Ref. [209]. This predicts a stress of about tbd¼ 50MPa,

again, much larger than the observed applied stress.

(iv) For dragging jogs resulting from passing through a subgrain boundary,

assuming a spacing ffi jffi d,

tj ffi Ej

b2j
ð64Þ

from Ref. [88]. For Al, Ej, the formation energy for a jog, ffi 1 eV [88] and

tjffi 45MPa, a factor 6–7 higher than the applied stress.

(v) The stress associated with the increase in dislocation line length (jog or kinks)

to pass a dislocation through a subgrain wall (assuming a wall dislocation spacing, d )
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from above, is expected to be

tL ffi Gb3

b2d
ffi Gb

d
ffi 80 MPa ð65Þ

over an order of magnitude larger than the applied stress.

Thus, it appears that stresses associated with ejecting dislocations from, or passing

dislocations through subgrain walls, are typically 30–80MPa for Al within the five-

power-law regime. This is roughly an order of magnitude larger than the applied

stress. Based on the simplified assumptions, this disparity may not be considered

excessive and does not eliminate subgrain walls as important, despite the favorable

agreement between the network-based (using the average link length, P) strength and

the applied stress (Internal stresses not considered). These calculations indicate why

some subgrain-based strengthening models utilize elevated Internal stresses. It must

be mentioned that care must be exercised in utilizing the above, athermal, equations

for time-dependent plasticity. These equations do not consider other hardening

variables (solute, etc.) that may be a substantial fraction of the applied stress, even

in relatively pure metals. Thus, these very simple ‘‘theoretical’’ calculations do not

provide obvious insight into the microstructural feature associated with the rate

controlling process, although a slight preference for network-based models might

be argued as the applied stress best matches network predictions for dislocation

activation.

2.3.3 In situ and Microstructure-Manipulation Experiments

a. In Situ Experiments. In situ straining experiments, particularly those of Calliard

and Martin [95], are often referenced by the proponents of subgrain (or

heterogeneous dislocation arrangements) strengthening. Here thin foils (probably

less than 1 mm thick) were strained at ambient temperature (about 0.32 Tm). It was

concluded that the interior dislocations were not a significant obstacle for gliding

dislocations, rather, the subgrain boundaries were effective obstacles. This is an

important experiment, but is limited in two ways: first, it is of low temperature (i.e.,

ffi 0.32 Tm) and may not be relevant for the five-power-law regime and second, in thin

foils, such as these, as McLean mentioned [84] long ago, a Frank network is

disrupted as the foil thickness approaches ‘. Henderson–Brown and Hale [210]

performed in situ high-voltage transmission electron microscope (HVEM) creep

experiments on Al–1Mg (class M) at 300�C, in thicker foils. Dislocations were

obstructed by subgrain walls, although the experiments were not described in

substantial detail. As mentioned earlier, Mills [157] performed in situ deformation

on an Al–Mg alloy within the three-power or viscous-drag regime and subgrain

boundaries were not concluded as obstacles.
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b. Prestraining experiments. Work by Kassner et al. [98,110,111], discussed earlier,

utilized ambient temperature prestraining of austenitic stainless steel to, first,

show that the elevated temperature strength was independent of the Subgrain size

and, second, that the influence of the dislocation density on strength was reasonably

predicted by the Taylor equation. Ajaja and Ardell [152,153] also performed

prestraining experiments on austenitic stainless steels and showed that the creep rate

was influenced only by the dislocation density. The prestrains led to elevated r,
without subgrains, and ‘‘quasi’’ steady-state creep rates. Presumably, this prestrain

led to decreased average and critical link lengths in a Frank network. [Although,

eventually, a new ‘‘genuine’’ steady-state may be achieved [211], this may not occur

over the convenient strain/time ranges. Hence, the conclusion of a ‘‘steady-state’’

being independent of the prestrain may be, in some cases, ambiguous.]

Others, including Parker and Wilshire [212], have performed prestraining

experiments on Cu showing that ambient temperature prestrain (cold work) reduces

the elevated temperature creep rate at 410�C. This was attributed by the investigators

as due to the Frank network. Well-defined subgrains did not form; rather, cell

walls observed. A quantitative microstructural effect of the cold work was not clear.

2.3.4 Additional Comments on Network Strengthening

Previous work on stainless steel in Figure 25 showed that the density of dislocations

within the subgrain interior or the network dislocations influence the flow stress at a

given strain rate and temperature. The hardening in stainless stress is shown to be

consistent with the Taylor relation if a linear superposition of ‘‘lattice’’ hardening

(to, or the stress necessary to cause dislocation motion in the absence of a dislocation

substructure) and the dislocation hardening (aMGbr1/2) is assumed. The Taylor

equation also applies to pure aluminum (with a steady-state structure), having both a

much higher stacking fault energy than stainless steel and an absence of substantial

solute additions.

If both the phenomenological description of the influence of the strength of

dislocations in high-purity metals such as aluminum have the form of the Taylor

equation and also have the expected values for the constants, then it would appear

that the elevated temperature flow stress is actually provided by the ‘‘forest

dislocations’’ (Frank network).

Figure 21 illustrates the well-established trend between the steady-state dislocation

density and the steady-state stress. From this and from Figure 15, which plots

modulus-compensated steady-state stress versus diffusion-coefficient compensated

steady-state strain-rate, the steady-state flow stress can be predicted at a reference

strain-rate (e.g., 5� 10�4 s�1), at a variety of temperatures, with an associated

steady-state dislocation density. If equation (29) is valid for Al as for 304 stainless
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steel, then the values for a could be calculated for each temperature, by assuming

that the annealed dislocation density and the so values account for the annealed

yield strength reported in Figure 36.

Figure 37 indicates, first, that typical values of a at 0.5 Tm are within the range of

those expected for Taylor strengthening. In other words, the phenomenological

relationship for strengthening of (steady-state) structures suggests that the strength

can be reasonably predicted based on a Taylor equation. We expect the strength we

observe, based only on the (network) dislocation density, completely independent

of the heterogeneous dislocation substructure. This point is consistent with the

observation that the elevated temperature yield strength of annealed polycrystalline

aluminum is essentially independent of the grain size, and misorientation of

boundaries. Furthermore, the values of a are completely consistent with the values of

a in other metals (at both high and low temperatures) in which dislocation hardening

is established [see Table 1]. The fact that the higher temperature a values of Al and

304 stainless steel are consistent with the low temperature a values of Table 1 is also

consistent with the athermal behavior of Figure 37. The non-near-zero annealed

dislocation density observed experimentally may be consistent with the Ardell et al.

suggestion of network frustration creating a lower dislocation density.

One point to note is in Figure 37, the variation in a with temperature depends on

the value selected for the annealed dislocation density. For a value of 2.5� 1011m�2

Figure 36. The yield strength of annealed 99.999% pure Al as a function of temperature. From Ref. [149].

_ee¼ 5� 10�4 s�1.
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(or higher), the values of the a constant are nearly temperature independent,

suggesting that the dislocation hardening is, in fact, theoretically palatable in that

it is expected to be athermal. The annealed dislocation density for which athermal

behavior is observed is that which is very close to the observed value in Figure 27(a)

and by Blum [214]. The suggestion of athermal dislocation hardening is consistent

Figure 37. The values of the constant alpha in the Taylor equation (29) as a function of temperature. The

alpha values depend somewhat on the assumed annealed dislocation density. Dark dots, r¼ 1011m�2;

hollow, r¼ 1010m�2; diamond, r¼ 2.5� 1011m�2.

Table 1. Taylor equation a values for various metals

Metal T/Tm a (Eq. 6) Notes Ref.

304 0.57 0.28 s0 6¼ 0, polycrystal [107]

Cu 0.22 0.31 s0¼ 0, polycrystal [144]

Ti 0.15 0.37 s0ffi 0.25–0.75 flow stress,

polycrystal

[151]

Ag 0.24 0.19–0.34 Stage I and II single crystal [213]

M¼ 1.78 – 1

s0 6¼ 0

Ag 0.24 0.31 s0¼ 0, polycrystal [150]

Al 0.51–0.83 0.20 s0 6¼ 0, polycrystal [149]

Fe — 0.23 s0 6¼ 0, polycrystal [144]

Note: a values of Al and 304 stainless stress are based on dislocation densities of intersections per unit area. The units of

the others are not known and these a values would be adjusted lower by a factor of 1.4 if line-length per unit volume is

utilized.
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with the model by Nes [215], where, as in the present case, the temperature

dependence of the constant (or fixed dislocation substructure) structure flow stress

is provided by the important temperature-dependent s0 term. It perhaps should be

mentioned that if it is assumed both that s0¼ 0 and that the dislocation hardening is

athermal [i.e., equation (19) is ‘‘universally’’ valid] then a is about equal to 0.53, or

about a factor of two larger than anticipated for dislocation hardening. Hence, apart

from not including a s0 term which allows temperature dependence, the alpha terms

appears somewhat large to allow athermal behavior.

The trends in dislocation density during primary creep have been less completely

investigated for the case of constant-strain-rate tests. Earlier work by Kassner et al.

[98,110,111] on 304 stainless steel found that at 0.57 Tm, the increase in flow stress

by a factor of three, associated with increases in dislocation density with strain, is

consistent with the Taylor equation. That is, the r versus strain and stress versus

strain give a s versus r that ‘‘falls’’ on the line of Figure 25. Similarly, the aluminum

primary transient in Figure 30(a) can also be shown consistent with the Taylor

equation. The dislocation density monotonically increases to the steady-state value

under constant strain-rate conditions.

Challenges to the proposition of Taylor hardening for Five-Power-Law Creep in

metals and Class M alloys include the microstructural observations during primary

creep under constant-stress conditions. For example, it has nearly always been

observed during primary creep of pure metals and Class M alloys that the density of

dislocations not associated with subgrain boundaries increases from the annealed

value to a peak value, but then gradually decreases to a steady-state value that is

between the annealed and the peak density [38,92,163–165] (e.g., Figure 26).

Typically, the peak value, rp, measured at a strain level that is roughly one-fourth of

the strain required to attain steady-state (ess/4), is a factor of 1.5–4 higher than the

steady-state rss value. It was believed by many to be difficult to rationalize hardening

by network dislocations if the overall density is decreasing while the strain-rate is

decreasing. Therefore, an important question is whether the Taylor hardening,

observed under constant strain-rate conditions, is consistent with this observation

[169]. This behavior could be interpreted as evidence for most of these dislocations

to have a dynamical role rather than a (Taylor) hardening role, since the initial

strain-rates in constant stress tests may require by the equation,

_ee ¼ ðb=MÞrmv ð66Þ

a high mobile (nonhardening) dislocation density, rm, that gives rise to high initial

values of total density of dislocations not associated with subgrain boundaries, r (v is

the dislocation velocity). As steady-state is achieved and the strain-rate decreases, so

does rm and in turn, r. [We can suggest that rhþ rm¼ r, where r is the total density
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of dislocations not associated with subgrain boundaries and rh are those dislocations
that at any instant are part of the Frank network and are not mobile.]

More specifically, Taylor hardening during primary (especially during constant

stress) creep may be valid based on the following argument.

From equation (66) _ee ¼ rmvb=M: We assume [216]

v ¼ k7s1 ð67Þ

and, therefore, for constant strain-rate tests,

_eess ¼ k7b=M½ �rms ð68Þ

In a constant strain-rate test at yielding ð_ee ¼ _eessÞ, ep (plastic strain) is small, and

there is only minor hardening, and the mobile dislocation density is a fraction f 0
m of

the total density,

f 0
mrðep¼0Þ ¼ rmðep¼0Þ

therefore, for aluminum (see Figure 30a)

rmðep¼0Þ ¼ f 0
m0:64rss ðbased on r at ep ¼ 0:03Þ ð69Þ

f 0
m is basically the fraction of dislocations in the annealed metal that are mobile at

yielding (half the steady-state flow stress) in a constant strain-rate test. Also from

Figure 4 sy/sss¼ 0.53. Therefore, at small strains,

_eess ¼ f 0
m0:34½k7b=M�rsssss ð70Þ

(constant strain-rate at ep¼ 0.03)

At steady-state, s¼sss and rm¼ f s
mrss, where f s

m is the fraction of the total

dislocation density that is mobile and

_eess ¼ f s
m k7b=M½ �rsssss ð71Þ

(constant strain-rate at ep>0.20).

By combining equations (70) and (71) we find that fm at steady-state is about 1/3

the fraction of mobile dislocations in the annealed polycrystals ð0:34 f 0
m ¼ f s

mÞ. This
suggests that during steady-state only 1/3, or less, of the total dislocations (not

associated with subgrain boundaries) are mobile and the remaining 2/3, or more,

participate in hardening. The finding that a large fraction are immobile is consistent

with the observation that increased dislocation density is associated with increased

strength for steady-state and constant strain-rate testing deformation. Of course,

there is the assumption that the stress acting on the dislocations as a function of
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strain (microstructure) is proportional to the applied flow stress. Furthermore, we

have presumed that a 55% increase in r over primary creep with some uncertainty in

the density measurements.

For the constant stress case we again assume

_eeepffi0 ¼ f p
m½k7b=M�rpsssðconstant stressÞ ð72Þ

where f p
m is the fraction of dislocations that are mobile at the peak (total) dislocation

density of rp, the peak dislocation density, which will be assumed equal to the

maximum dislocation density observed experimentally in a r–e plot of a constant

stress test. Since at steady-state,

_eess ffi 0:34f 0
m k7b=M½ �rsssss ð73Þ

by combining with (72),

_eeepffi0=_eess ¼ f p
m

f 0
m

� �
3rp=rss ðconstant stressÞ ð74Þ

ðf p
m=f

0
mÞ is not known but if we assume that at macroscopic yielding, in a constant

strain-rate test, for annealed metal, f 0
m ffi 1, then we might also expect at small strain

levels and relatively high dislocation densities in a constant-stress test, f p
mffi 1. This

would suggest that fractional decreases in _ee in a constant stress test are not equal

to those of r. This apparent contradiction to purely dynamical theories [i.e., based

strictly on equation (66)] is reflected in experiments [92,162–165] where the kind of

trend predicted in this last equation is, in fact, observed. Equation (74) and the

observations of _ee against e in a constant stress test at the identical temperature can be

used to predict roughly the expected constant-stress r–e curve in aluminum at 371�C
and about 7.8MPa; the same conditions as the constant strain-rate test. If we use

small plastic strain levels, effi ess/4 (where r values have been measured in constant

stain-rate tests), we can determine the ratio (e.g., _eee¼ðess=4Þ=_eee¼ess ) in constant stress

tests. This value seems to be roughly 6 at stresses and temperatures comparable to

the present study [92,165,212]. This ratio was applied to equation (74) [assuming

ðf p
m=f

c
mÞ ffi 1]; the estimated r–e tends are shown in Figure 38. This estimate, which

predicts a peak dislocation density of 2.0 rss, is consistent with the general

observations discussed earlier for pure metals and Class M alloys that rp is between
1.5 and 4 rss(1.5–2.0 for aluminum [92]). Thus, the peak behavior observed in the

dislocation density versus strain-rate trends, which at first glance appears to impugn

dislocation network hardening, is actually consistent, in terms of the observed r
values, to Taylor hardening.

Two particular imprecisions in the argument above is that it was assumed (based on

some experimental work in the literature) that the stress exponent for the elevated
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temperature (low stress) dislocation velocity, v, is one. This exponent may not be well

known and may be greater than 1. The ratio rp/rss increases from a value of 3 in

equation (19) to higher values of 3 [2n� 1], where n is defined by v¼sn. This means

that the observed strain-rate ‘‘peaks’’ would predict smaller dislocation peaks or even

an absence of peaks for the observed initial strain-rates in constant-stress tests. In a

somewhat circular argument, the consistency between the predictions of equation (74)

and the experimental observations may suggest that the exponents of 1–2 may be

reasonable. Also, the values of the peak dislocation densities and strain-rates are not

unambiguous, and this creates additional uncertainty in the argument.

2.4 OTHER EFFECTS ON FIVE-POWER-LAW CREEP

2.4.1 Large Strain Creep Deformation and Texture Effects

Traditionally, creep has been associated with tensile tests, and accordingly, with

relatively small strains. Of course, elevated temperature creep plasticity can be

observed in torsion or compression, and the phenomenological expressions

Figure 38. The predicted dislocation density (– – –) in the subgrain interior against strain for

aluminum deforming under constant stress conditions is compared with that for constant strain-rate

conditions (———). The predicted dislocation density is based on equation (74) which assumes

Taylor hardening.
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presented earlier are still valid, only with modification due to different texture

evolution (or changes in the average Taylor factors) with the different deformation

modes. These differences in texture evolution have been discussed in detail by several

investigators [38,217] for lower temperature deformation. Some lower temperature

deformation texture trends may be relevant to Five-Power-Law Creep trends. A fairly

thorough review of elevated temperature torsion tests and texture measurements on

aluminum is presented by Kassner et al. and McQueen et al. [218,219]. Some of the

results are illustrated in Figure 39(a) and (b). Basically, the figure shows that with

torsion deformation, the material hardens to a genuine steady-state that is a balance

between dislocation hardening and dynamic recovery. However, with the relatively

large strain deformation that is permitted by torsion, the flow stress decreases, in this

case, about 17% to a new stress that is invariant even with very large strains to 100 or

so. (Perhaps there is an increase in torque of 4% in some cases with e>10 of

uncertain origin.) These tests were performed on particularly precise testing

equipment. The essentially invariant stress over the extraordinarily large strains

suggests a ‘‘genuine’’ mechanical steady-state. The cause of this softening has been

carefully studied, and dynamic recrystallization and grain boundary sliding (GBS)

were considered. Creep measurements as a function of strain through the ‘‘softened’’

Figure 39. The stress versus strain behavior of Al deformed in torsion to very large strains at two [(a) and

(b)] strain-rates. Based on Ref. [39].
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regime [220], and microstructural analysis using both polarized light optical (POM)

and transmission electron microscopy (TEM) [218] reveal that Five-Power-Law

Creep is occurring throughout the ‘‘softened’’ regime and that the modest decrease in

flow stress is due to a decrease in the average Taylor factor, M.

This has been confirmed by X-ray texture analysis [37] and is also consistent in

magnitude with theoretical texture modeling of deformation in torsion [38,217]. If

compression specimens are extracted from the torsion specimen deformed into the

‘‘softened’’ regime, the flow stress of the compression specimen is actually higher

than the torsion flow stress, again confirming the texture conclusion [218].

The microstructural evolution of specimens deformed to large strains, not

achievable in tension or compression, is quite interesting and has also been

extensively researched in some metals and alloys. The initial high angle grain

boundaries of the aluminum polycrystalline aggregate spiral about the torsion axis

with deformation within the five-power-law regime. At least initially, the total

number of grains in the polycrystalline aggregate remains constant and the grains

quickly fill with subgrains with low misorientation boundaries. The grains thin

until they reach about twice the average subgrain diameter with increasing strain

in torsion. Depending on the initial grain size and the steady-state Subgrain size,

this may require substantial strain, typically about 10. The high angle grain

Figure 39. Continued
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boundaries of the polycrystalline aggregate are serrated (triple points) as a result of

subgrain boundary formation. As the serrated spiraling grains of the polycrystalline

aggregate decrease in width to about twice the Subgrain size, there appears to be

a pinching off of impinging serrated grains. At this point, the area of high angle

boundaries, which was gradually increasing with torsion, reaches a constant value

with increasing strain. Despite the dramatic increase in high angle boundaries,

no change in flow properties is observed (e.g., to diffusional creep or enhanced

strain-rate due to the increased contribution of grain boundary sliding). Figure 40

is a series of POM micrographs illustrating this progression. Interestingly, the

Figure 40. Polarized light optical micrographs of aluminum deformed at 371�C at 5.04� 10�4 s�1 [Figure

30(b)] to equivalent uniaxial strains of (a) 0, (b) 0.2, (c) 0.60, (d) 1.26, (e) 4.05, (f) 16.33. geometric dynamic

recrystallization (GDX) is observed [18].

80 Fundamentals of Creep in Metals and Alloys



Subgrain size is about constant from the ‘‘peak’’ stress at about 0.2 strain to the

very large torsion strains. This, again, suggests that subgrain boundaries are mobile

and annihilate to maintain the equiaxed structure and modest misorientation.

Examination of those boundaries that form from dislocation reaction (excluding the

high-angle boundaries of the starting polycrystal) reveals that the average

misorientation at the onset of steady-state was, as stated earlier, only 0.5�. However,

by a strain of between 1 and 1.5 it had tripled to 1.5� [also see Figure 30(b)], but

appears to be fixed beyond this strain. This is, again, consistent with earlier work

referenced that indicates that ylave may increase (d decreases) during at least early

steady-state. Furthermore, at the onset of steady-state, nearly all of the subgrain

boundaries formed are low-yl dislocation boundaries. However, with very large

strain deformation there is an increase in high-angle boundary area (geometric

dynamic recrystallization or GDX). Nearly a third of the subgrain boundaries are

high-angle boundaries, but these appear to have ancestry back to the initial, or

starting, polycrystal. Notwithstanding, the flow stress is unchanged. That is, at a

strain of 0.2, at about 0.7 Tm and a modest strain-rate, the average Subgrain size is

about 13 mm and the average misorientation angle of subgrain boundaries is about

0.5�. If we increase the plastic strain by nearly two orders of magnitude to about 16,

the Subgrain size and interior or network dislocation density is unchanged, but we

have ‘‘replaced’’ nearly one-third of the subgrain facets with high-angle boundaries

(through GDX) and tripled the misorientation of the remaining one-third. However,

the flow stress is unchanged. This, again, suggests that the details of the subgrain

boundaries are not an important consideration in the rate-controlling process for

Five-Power-Law Creep.

Other elevated temperature torsion tests on other high stacking fault energy alloys

in the five-power-law regime have shown a similar softening as theoretically

predicted [221]. The cause of softening was not ascribed to texture softening by those

investigators but (probably incorrectly) rather to Continuous reactions (continuous

dynamic recrystallization) [222].

Recent work by Hughes et al. [141] showed that polycrystals deformed at elevated

temperature may form geometrically necessary boundaries (GNBs) from dislocation

reactions to accommodate differences in slip within a single grain. Whether these

form in association with GDX is unclear, although it appears that the grain

boundary area with large strain deformation is at least approximately consistent with

grain thinning. HABs, however, have been observed to form in single crystals at

elevated temperature from dislocation reaction [142] and the possibility that these

form from dislocation reaction in polycrystals should also be considered.

It should be also mentioned that it has been suggested that in at least Al and same

Al alloys [130], slip on {110} planes (or non-octahedral slip) can occur, leading to

nontraditional textures such as the cube {(001) type}.
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2.4.2 Effect of Grain Size

First, of course, it has been suggested that with fine-grain size refinement, the

mechanism of plastic flow may change from five-power behavior to Coble creep

[52,223], which, as discussed earlier, is a diffusion creep mechanism relying on short-

circuit diffusion along grain boundaries. However, the role of high-angle grain

boundaries is less clear for Five-Power-Law Creep. Some work has been performed on

the Hall–Petch relationship in copper [224] and aluminum [147] at elevated

temperatures. Some results from these studies are illustrated in Figure 41. Basically,

both confirm that decreasing grain size results in increased elevated temperature

strength in predeformed copper and annealed aluminum (a constant dislocation

density for each grain size was not confirmed in Cu). The temperature and applied

strain rates correspond to Five-Power-Law Creep in these pure metals.

Interestingly, though, the effect of diminishing grain size may decrease with

increasing temperature. Figure 42 shows that the Hall–Petch constant, ky, for high-

purity aluminum significantly decreases with increasing temperature. The explana-

tion for this in unclear. First, if the effect of decreasing grain size at elevated

temperature is purely the effect of a Hall–Petch strengthening (e.g., not GBS), the,

explanation for decreasing Hall–Petch constant would require knowledge of the

precise strengthening mechanism. It is possible, for instance, that increased

strengthening with smaller grain sizes is associated with the increased dislocation

density in the grain interiors due to the activation of dislocation sources [225].

Therefore, thermal recovery may explain a decreased density and less pronounced

strengthening. This is, of course, speculative and one must be careful that other

effects such as grain boundary sliding are not becoming important. For example, it

has been suggested that in aluminum, grain boundary sliding becomes pronounced

above about 0.5 Tm [226,227]. Thus, it is possible that the decreased effectiveness of

high-angle boundaries in providing elevated temperature strength may be the result

of GBS, which would tend to decrease the flow stress. However, the initial Al grain

size decreased from about 250 mm to only about 30 mm through GDX in Figure 40,

but the flow properties at 0.7 Tm appear unchanged since the stress exponent, n, and

activation energy, Q, appear to be unchanged [218,220].

The small effect of grain size changes on the elevated-temperature flow properties

is consistent with some earlier work reported by Barrett et al. on Cu and Garafalo

et al. on 304 stainless steel, where the steady-state creep-rate appeared at least

approximately independent of the starting grain size in the former case and not

substantially dependent in the latter case [228,229]. Thus, it appears that decreasing

grain size has a relatively small effect on increasing the flow stress at high

temperatures over the range of typical grain sizes in single phase metals and alloys.

Figure 43 plots the effect of grain size on the yield stress of annealed

polycrystalline aluminum with the effect of (steady-state structure) Subgrain size

82 Fundamentals of Creep in Metals and Alloys



on the elevated flow stress all at the same temperature and strain-rate. Of course,

while polycrystalline samples had an annealed dislocation density, the steady-state

substructures with various Subgrain sizes had various elevated dislocation-densities

that increased with decreasing Subgrain size. Nonetheless, the figure reveals that for

identical, small-size, the subgrain substructure (typical ylave ffi 0:5� 1�) had higher

strength than polycrystalline annealed aluminum (typical y¼ 30� 35�). There might

Figure 41. The effect on grain size on the elevated temperature strength of (a) pre-strained Cu and

(b) annealed Al [147,224].
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be an initial inclination to suggest that subgrain boundaries, despite the very low

misorientation, are more effective in hardening than high-angle grains of identical

size. However, as discussed earlier, the ‘‘extra’’ strength may be provided by the

network dislocations that are of significantly higher density in steady-state structures

as compared with the annealed metal. This increase in strength appeared at least

approximately predictable based solely on the equation [see equation (29)] for

dislocation strengthening assuming appropriate values for the constants, such as a
[107,148,231]. Wilshire [82] also recently argued that subgrains are unlikely sources

for strength in metals and alloys due to the low strength provided by high-angle

boundaries at elevated temperature.

2.4.3 Impurity and Small Quantities of Strengthening Solutes

It appears that the same solute additions that strengthen at ambient temperature

often provide strength at five-power-law temperatures. Figure 44 shows the

relationship between stress and strain-rate of high purity (99.99) and lower purity

(99.5%) aluminum. The principal impurities were not specified, but probably

included a significant fraction of Fe and some second phases may be present. The

strength increases with decreasing purity for a fixed strain-rate. Interestingly, Figure

45 shows that the Subgrain size is approximately predictable mostly on the basis of

the stress, independent of composition for Al.

Staub and Blum [90] also showed that the subgram size depends only on

the modulus-compensated stress in Al and several dilute Al alloys although the

Figure 42. The variation of the Hall–Petch constant in Al with temperature. Based on Ref. [147].
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stress/strain-rate may change substantially with the purity at a specific strain-rate/

stress and temperature. If the lss vs sss/G in Figures 21 and 22 were placed in the

same graph, it would be evident that, for identical Subgrain sizes, the aluminum,

curiously, would have higher strength. (The opposite is true for fixed rss)

Figure 43. (a) The variation of the yield strength of annealed aluminum with various grain sizes, g,

and creep deformed aluminum with various Subgrain sizes, l, at 350�C. Both l and g data are described

by the Hall–Petch equation. The annealed aluminum data is from Figure 41(b) and the ‘‘subgrain

containing Al strength data at a fixed T, _ee is based on interpolation of data from [4,230] and which is also

summarized in [147,148,231]. (b) As in (a) but at 400�C and less pure Al, based on [147,148,232]. The

subgrain containing metal here and (a), above, is stronger than expected based on Hall–Petch

strengthening by the subgrains alone.
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Figure 45. A plot of the variation of the steady-state Subgrain size versus modulus-compensated

steady-state flow stress for Al of different purities. The relationship between sss and lss for less pure Al is

at least approximately described by the high-purity relationship.

Figure 44. The steady-state strain-rate versus steady-state stress for Al of different purities. Data from

Figure 21 and Perdrix et al. [233].
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Furthermore, it appears that l is not predictable only on the basis of sss/G for

dispersion strengthened Al [90]. Steels do not appear to have lss values predictable
on the basis of aFe lss versus sss/G trends, although this failure could be a result of

carbides present in some of the alloys. Thus, the aluminum trends may not be as

evident in other metals. It should, however, be mentioned that for a wide range of

single phase metals, there is a ‘‘rough’’ relationship between the subgrain size and

stress [77],

l ¼ 23Gb=s ð75Þ

Of course, sometimes ambient-temperature strengthening interstitials (e.g., C in

n-Fe) can weaken at elevated temperatures. In the case of C in n-Fe, Dsd increases

with C concentration and _eess correspondingly increases [16].

2.4.4 Sigmoidal Creep

Sigmoidal creep behavior occurs when in a, e.g., single phase alloy, the creep-rate

decreases with strain (time), but with further strain curiously increases. This increase

is followed by, again, a decrease in creep-rate. An example of this behavior is

Figure 46. Transient creep curves obtained at 324�C for 70–30 a-brass, where ts is the time to the start of

steady-state creep. From Ref. [235].
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illustrated in Figure 46 taken from Evans and Wilshire of 70–30 a-brass [234,235].
This behavior was also observed in the Cu–Al alloy described elsewhere [175] and

also in Zr of limited purity [236]. The sigmoidal behavior in all of these alloys

appears to reside within certain (temperature)/(stress/strain-rate) regimes. The

explanations for Sigmoidal creep are varied. Evans and Wilshire suggest that the

inflection is due to a destruction in short-range order in a-brass leading to higher

creep rates. Hasegawa et al. [175], on the other hand, suggest that changes in the

dislocation substructure in Cu–Al may be responsible. More specifically, the increase

in strain-rate prior to the inflection is associated with an increase in the total

dislocation density, with the formation of cells or subgrains. The subsequent

decrease is associated with cellular tangles (not subgrains) of dislocations. Evans and

Wilshire suggest identical dislocation substructures with and without sigmoidal

behavior, again, without subgrain formation. Warda et al. [236] attributed the

behavior in Zr to dynamic strain-aging. In this case oxygen impurities give rise to

solute atmospheres. Eventually, the slip bands become depleted and normal five-

power behavior resumes. Dramatic increases in the activation energy are suggested

to be associated with the sigmoidal behavior. Thus, the explanation for sigmoidal

behavior is unclear. One common theme may be very planar slip at the high

temperatures.
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Chapter 3

Diffusional-Creep

Creep at high temperatures (T�Tm ) and very low stresses in fine-grained materials

was attributed 50 years ago by Nabarro [237] and Herring [51] to the mass transport

of vacancies through the grains from one grain boundary to another. Excess

vacancies are created at grain boundaries perpendicular to the tensile axis with

a uniaxial tensile stress. The concentration may be calculated using [23]

c ¼ cv exp
sb3

kT

� �
� 1

� 

ð76Þ

where cv is the equilibrium concentration of vacancies. Usually (sb3/kT ) / 1, and

therefore equation (76) can be approximated by

c ¼ cv
sb3

kT

� �� 

ð77Þ

These excess vacancies diffuse from the grain boundaries lying normal to the tensile

direction toward those parallel to it, as illustrated in Figure 47. Grain boundaries act

as perfect sources and sinks for vacancies. Thus, grains would elongate without

dislocation slip or climb. The excess concentration of vacancies per unit volume is,

then, (cvs/kT ). If the linear dimension of a grain is ‘‘g’’, the concentration gradient is

(cvs/kTg). The steady-state flux of excess vacancies can be expressed as (Dvcvs/kTg).
where g is the grain size. The resulting strain-rate is given by,

_eess ¼ Dsdsb3

kTg2
ð78Þ

In 1963, Coble [52] proposed a mechanism by which creep was instead controlled

by grain-boundary diffusion. He suggested that, at lower temperatures (T<0.7Tm),

the contribution of grain-boundary diffusion is larger than that of self-diffusion

through the grains. Thus, diffusion of vacancies along grain boundaries controls

creep. The strain-rate suggested by Coble is

_eess ¼ a3Dgbsb4

kTg3
ð79Þ
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where Dgb is the diffusion coefficient along grain boundaries and a3 is a constant of

the order of unity. The strain-rate is proportional to g�2 in the Nabarro–Herring

model whereas it is proportional to g�3 in the Coble model. In recent years more

profound theoretical analyses of diffusional creep have been reported [238].

Greenwood [238] formulated expressions which allow an approximation of the

strain-rate in materials with non-equiaxed grains under multiaxial stresses for both

lattice and grain-boundary diffusional creep.

Several studies reported the existence of a threshold stress for diffusional creep

below which no measurable creep is observed [239–242]. This threshold stress has

a strong temperature dependence that Mishra et al. [243] suggest is inversely

proportional to the stacking fault energy. They proposed a model based on grain-

boundary dislocation climb by jog nucleation and movement to account for the

existence of the threshold stress.

The occurrence of Nabarro–Herring creep has been reported in polycrystalline

metals [244–247] and in ceramics [248–252]. Coble creep has also been claimed to

occur in Mg [251], Zr and Zircaloy-2 [253], Cu [254], Cd [255], Ni [255], copper–

nickel [256], copper–tin [256], iron [257], magnesium oxide [258,259], bCo [242], aFe
[240], and other ceramics [260]. The existence of diffusional creep must be inferred

from indirect experimental evidence, which includes agreement with the rate

equations developed by Nabarro–Herring and Coble, examination of marker lines

Figure 47. Nabarro–Herring model of diffusional flow. Arrows indicate the flow of vacancies through the

grains from boundaries lying normal to the tensile direction to parallel boundaries. Thicker arrows

indicate the tensile axis.
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visible at the specimen surface that lie approximately parallel to the tensile axis [261],

or by the observation of some microstructural effects such as precipitate-denuded

zones (Figure 48). These zones are predicted to develop adjacent to the grain

boundaries normal to the tensile axis in dispersion-hardened alloys. Denuded zones

were first reported by Squires et al. [263] in a Mg-0.5wt.%Zr alloy. They suggested

that magnesium atoms would diffuse into the grain-boundaries perpendicular to the

tensile axis. The inert zirconium hydride precipitates act as grain-boundary markers.

The authors proposed a possible relation between the appearance of these zones

and diffusional creep. Since then, denuded zones have been observed on numerous

occasions in the same alloy and suggested as proof of diffusional creep.

The existence of diffusional creep has been questioned [264] over the last decade by

some investigators [59,61,265–270] and defended by others [56–58,60,261,271,272].

One major point of disagreement is the relationship between denuded zones and

Figure 48. Denuded zones formed perpendicular to the tensile direction in a hydrated Mg-0.5%Zr alloy

at 400�C and 2.1MPa [262].
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diffusional creep. Wolfenstine et al. [59] suggest that previous studies on the

Mg-0.5wt.%Zr alloy [273] are sometimes inconsistent and incomplete since they

do not give information regarding the stress exponent or the grain-size exponent.

By analyzing data from those studies, Wolfenstine et al. [59,265] suggested that

the stress exponents corresponded to a higher-exponent-power-law creep regime.

Wolfenstine et al. also suggested that the discrepancy in creep rates calculated from

the width of denuded zones and the average creep rates (the former being sometimes

as much as six times lower than the latter) as evidence of the absence of correlation

between denuded zones and diffusional creep. Finally, the same investigators

[59,265,266] claim that denuded zones can also be formed by other mechanisms

including the redissolution of precipitates due to grain-boundary sliding accom-

panied by grain-boundary migration and the drag of solute atoms by grain-

boundary migration.

Several responses to the critical paper of Wolfenstine et al. [59] were published

defending the correlation between denuded zones and diffusional creep [57,58,271].

Greenwood [57] suggests that the discrepancies between theory and experiments can

readily be interpreted on the basis of the inability of grain boundaries to act as

perfect sinks and sources for vacancies. Bilde-Sørensen et al. [58] agree that denuded

zones may be formed by other mechanisms than diffusional creep but they claim

that, if the structure of the grain boundary is taken into consideration, the

asymmetrical occurrence of denuded zones is fully compatible with the theory of

diffusional creep. Similar arguments were presented by Kloc [271].

Recently McNee et al. [274] claim to have found additional evidence of the

relationship between diffusional creep and denuded zones. They studied the

formation of precipitate free zones in a fully hydrided magnesium ZR55 plate

around a hole drilled in the grip section. The stress state around the hole is not

uniaxial, as shown in Figure 49. They observed a clear dependence of the orientation

of denuded zones on the direction of the stress in the region around the hole.

Figure 49. Orientation of stresses around a hole.
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Precipitate free zones were mainly observed in boundaries perpendicular to the

loading direction at each location. They claim that this relationship between

the orientation of the denuded zones and the loading direction is consistent with the

mechanism of formation of these zones being diffusional creep.

Ruano et al. [266–268], Barrett et al. [269], and Wang [270] suggest that the

dependence of the creep-rate on stress and grain size is not always in agreement with

that of diffusional creep theory. A reinterpretation of several data reported in

previous studies led Ruano et al. to propose that the creep mechanism is that of

Harper–Dorn Creep in some cases and grain-boundary sliding in others, reporting

a better agreement between experiments and theory using these models.

This suggestion has been contradicted by Burton et al. [64], Owen et al. [56], and

Fiala et al. [272].

McNee et al. [275] have recently reported direct microstructural evidence of

diffusional creep in an oxygen free high conductivity (OHFC) copper tensile tested

at temperatures between 673 and 773K, and stresses between 1.6 and 8MPa. The

temperature and stress dependencies were found to be consistent with diffusional

creep. SEM surface examination revealed, first, displacement of scratches at grain

boundaries and, second, widened grain boundary grooves on grain boundaries

transverse to the applied stress in areas associated with scratch displacements. In

principle, both diffusional creep, as well as some alternative mechanism involving

grain-boundary sliding, could be responsible for the observed scratch displacements.

The use of atomic force microscopy (AFM) to profile lines traversing boundaries both

parallel and perpendicular to the tensile axis led to the conclusion that the scratch

displacements originated from the deposition of material at grain boundaries trans-

verse to the tensile axis and the depletion of material at grain boundaries parallel to

the tensile axis. The investigators claimed that these features can only be attributed

to the operation of a diffusional flow mechanism. However, a strain-rate with an

order of magnitude higher than that predicted by Coble creep was found. Thus, the

investigators questioned the direct applicability of the diffusional creep theory.

Nabarro recently suggested that Nabarro–Herring creep may be accompanied by

other mechanisms (including GBS and Harper–Dorn) [276,277]. Lifshitz [278]

already in 1963 pointed out the necessity of grain-boundary sliding for maintaining

grain coherency during diffusional creep in a polycrystalline material More recent

theoretical studies have also emphasized the essential role of grain boundary sliding

for continuing steady-state diffusional creep [279–282]. The observations reported

by McNee et al. [275] may, in fact, reflect the cooperative operation of both

mechanisms. Many studies have been devoted to assess the separate contributions

from diffusional creep and grain-boundary sliding to the total strain [283–292]. Some

claim that both diffusional creep and grain-boundary sliding contribute to the

overall strain and that they can be distinctly separated [284–288]; others claim that
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one of them is an accommodation process [289–292]. Many of these studies are based

on several simplifying assumptions, such as the equal size of all grains and that the

total strain is achieved in a single step. Sahay et al. [282] claimed that when the

dynamic nature of diffusional creep is taken into account (changes in grain size, etc.,

that take place during deformation), separation of the strain contributions from

diffusion and sliding becomes impossible.
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Chapter 4

Harper–Dorn Creep

Another mechanism for creep at high temperatures and low stresses was proposed in

1957 by Harper and Dorn [50] based on previous studies by Mott [295] and

Weertman [189]. This mechanism has since been termed Harper–Dorn Creep. By

performing creep tests on aluminum of high purity and large grain sizes, these

investigators found that steady-state creep increased linearly with the applied stress

and the activation energy was that of self-diffusion. However, the observed creep

process could not be ascribed to Nabarro–Herring or Coble creep. They reported

creep rates as high as a factor of 1400 greater than the theoretical rates calculated by

the Nabarro–Herring or Coble models. The same observations were reported

some years later by Barrett et al. [269] and Mohamed et al. [294], as summarized

in Figure 50. Additionally, they observed a primary stage of creep, which would

not be expected according to the Nabarro–Herring model since the concentration

of vacancies immediately upon stressing cannot exceed the steady-state value.

Furthermore, grain-boundary shearing was reported to occur during creep and

similar steady-state creep-rates were observed in aluminum single crystals and in

polycrystalline specimens with a 3.3mm grain size. Strains as high as 0.12 were

reported [199]. This evidence led these investigators to conclude that low-stress creep

at high temperatures in materials of large grain sizes occurred by a dislocation climb

mechanism.

The relation between the applied stress and the steady-state creep rate for

Harper–Dorn creep is phenomenologically described by [295]

_eess ¼ AHD
DsdGb

kT

� �
s
G

� 	1
ð80Þ

where AHD is a constant.

Since these early observations [50], Harper–Dorn Creep has been reported to

occur in a large number of metals and alloys (Al and Al alloys [269,295,296], Pb

[294], a-Ti [297], a-Fe [240], a-Zr [298], and b-Co [299]) as well as a variety of

ceramics and ice [300–315]. (The Harper–Dorn Creep behavior of MgCl2
6H2O

(CO0.5Mg0.5)O and CaTiO3 was recently questioned by Berbon and Langdon [316].)

Several studies have been published over the last 20 years with the objective of

establishing the detailed mechanism of Harper–Dorn Creep [295,296,317]. Mohamed

[317] concluded that both Harper–Dorn and Nabarro–Herring creep are indepen-

dent processes and that the predominance of one or the other would depend on the

grain size. The former would be rate controlling for grain sizes higher than a critical
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grain size (gt) and the latter for lower grain sizes. Yavari et al. [295] provided

evidence that the Harper–Dorn Creep-rate is independent of the specimen grain size.

Similar rates were observed both in polycrystalline materials and in single crystals.

They determined, by etch-pits, that the dislocation density was relatively low, at

about 5� 107m�2, and independent of the applied stress. Recently, Owen and

Langdon [56] corrected the values of the dislocation density to near 109m�2.

(Dislocations were found to be predominantly close to edge orientation.) Nes [215],

however, found that the dislocation density cannot be accurately measured by TEM

due to the low values of r, and X-ray topography apparently showed that r was

dependent of stress though only scaled by s1.3. Mohamed et al. [296] suggested that

the transition between Nabarro–Herring and Harper–Dorn Creep may, thus, take

place only when the grain size exceeds a critical value and the dislocation density is

relatively low.

The fact that the activation energy for Harper–Dorn Creep is about equal to that

of self-diffusion suggests that vacancy diffusion is rate-controlling. The failure of

Figure 50. Comparison between the diffusion-coefficient compensated strain-rate versus modulus-

compensated stress for pure aluminum based on [50,269,294], with theoretical predictions for

Nabarro–Herring creep [295].
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the Nabarro–Herring model to predict the experimental creep-rates, together with

the independence of the creep-rate on grain size, suggests that dislocations may be

sources and sinks of vacancies. Accordingly, Langdon et al. and Wang et al.

[318,319] proposed that Harper–Dorn Creep occurs by climb of edge dislocations.

Weertman and Blacic [320] suggest that creep is not observed at constant

temperatures, but only with low amplitude temperature fluctuations, where the

vacancy concentration would not be in thermal equilibrium, thus leading to climb

stresses on edge dislocations of the order 3–6MPa. Although clever, this explanation

does not appear widely accepted, partly due to activation energy disparities

(Q 6¼Qsd) and that H–D creep is consistently observed by a wide assortment of

investigators, presumably with different temperature control abilities [321]. The fact

that both within the Harper–Dorn and the five-power-law regime, the underlying

mechanism of plastic flow appeared to be diffusion controlled, led Wu and Sherby

[53] to propose a unified relation to describe the creep behavior over both ranges.

This model incorporates an Internal stress that arises from the presence of random

stationary dislocations present within subgrains. At any time during steady-state

flow, half of the dislocations moving under an applied stress are aided by the Internal

stress field (the Internal stress adds to the applied stress), whereas the motion of the

other half is inhibited by the Internal stress. It is also assumed that each group of

dislocations are contributing to plastic flow independent of each other. The Internal

stress is calculated from the dislocation density by the dislocation hardening

equation (t¼ aGb
ffiffiffi
r

p
where affi 0.5). The unified equation is [322]

_eess ¼ 1

2
A10

Deff

b2
sþ si

E

� 	n
þ s� sij j

s� sið Þ
s� si

E

��� ���n� �
ð81Þ

where A10 is a constant and si is the Internal stress. At high stresses, where s�si,

si is negligible compared to s and equation (81) reduces to the (e.g., five-power-law)

relation:

_eess ¼ A10
Deff

b2
s
E

� 	n
ð82Þ

At low stresses, where s n si (Harper–Dorn regime), equation (81) reduces to

equation (80). A reasonable agreement has been suggested between the predictions

from this model and experimental data [53,322] for pure aluminum, g-Fe and b-Co.
The Internal stress model was criticized by Nabarro [321], who claimed that a unified

approach to both five-power-law and Harper–Dorn Creep is not possible since none

of these processes are, in themselves, well understood and unexplained dimensionless

constants were introduced in order to match theoretical predictions with

experimental data. Also, the dislocation density in Harper–Dorn Creep is constant,
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whereas it increases with the square of the stress in the power-law regime. Thus, the

physical processes occurring in both regimes must be different (although Ardell [54]

attempts to rationalize this using network creep models). Nabarro [321] proposed a

newmechanism for plastic flow during Harper–Dorn Creep. According to this model,

an equilibrium concentration of dislocations is established during steady-state creep

which exerts a stress on its neighbors equal to the Peierls stress. The mechanism of

plastic flow would be the motion of these dislocations controlled by climb.

The Internal stress model was also criticized by Wang [323], who proposed that

the transition between power-law creep and Harper–Dorn Creep takes place instead

at a stress (s) equal to the ‘‘Peierls stress (sp)’’ [324,325] (which simply appears to

equal the yield stress of the annealed material). Wang [326] suggests that the steady-

state dislocation density is related to the Peierls stress in the following way: in

equilibrium, the stress due to the mutual interaction of moving dislocations is in

balance not only with the applied stress but also with lattice friction which fluctuates

with an amplitude of the Peierls stress. As a result, the steady-state dislocation

density r in dislocation creep can be written as:

br1=2 ¼ 1:3
t
G

� 	2
þ tp

G

� 	2� 
1=2
ð83Þ

where t is referred to as the applied shear stress. Accordingly, when t� tp, the
dislocation density is proportional to the square of the applied stress, and five-

(or three-) power-law creep is observed. Conversely, when t� tp, the dislocation

density is independent of the applied stress and Harper–Dorn occurs. Wang [327]

suggested that the transition between Harper–Dorn Creep and Nabarro–Herring

creep was influenced by sp since it was observed to be inversely proportional to the

critical grain size, gt. Therefore, he predicted that Harper–Dorn Creep would be

observed in polycrystalline materials with high sp values, such as ceramic oxides,

carbides, and silicates, when the grain sizes are small. Conversely, Nabarro–Herring

creep would predominate in materials with low sp values such as f.c.c. metals, even

when g is very large. Wang [328] suggests that Harper–Dorn Creep may be a

combination of dislocation glide and climb, described by equation (61), with the

dimensionless factor AHD given by

AHD ¼ 1:4
sp

G

� 	2
ð84Þ

Wang compared available experimental data to equation (84) and obtained the

empirical values of AHD. Wang utilizes the Weertman description for climb-control

with rm/sp¼ constant, thus a ‘‘one-power’’ stress dependence is derived. A

different approach to Harper–Dorn is based on the dislocation network theory by

Ardell and coworkers [54,86,101,329]. The dislocation link length distribution

102 Fundamentals of Creep in Metals and Alloys



contains no segments that are long enough to glide or climb freely. Harper–Dorn is,

therefore, a phenomenon in which all the plastic strain in the crystal is a consequence

of stress-assisted dislocation network coarsening, during which the glide and climb

of dislocations is constrained by the requirement that the forces acting on the links

are balanced by the line tension on the links. Accidental collisions between these

links can refine the network and stimulate further coarsening. The transition stress

between power-law creep and Harper–Dorn Creep (sT) is determined by the

magnitude of a critical dislocation link length, Pc, inversely related to the stress

required to activate a Frank–Read or Bardeen–Herring source [54],

sT

G
¼ b

gð‘c=3Þ
ð1þ nÞð1� 2nÞ� �1=2

ð1� nÞ ‘n
‘c=3ð Þ
2b

ð85Þ

When s<sT, Pc is larger than the maximum link length, Pm. The critical

dislocation link length is related to the dislocation density by the equation

‘c
3
¼ b3

r1=2
ð86Þ

where b is a constant of the order of unity. The independence of r with s is a

consequence of the frustration of the dislocation network coarsening, which arises

because of the exhaustion of Burgers vectors that can satisfy Frank’s rule at the

nodes. Some have suggested that it is not clear as to how r is self-consistently

determined [277]. The correlation between the predicted and measured transition

stress appears reasonable [54].

4.1 THE SIZE EFFECT

Blum et al. [55] recently questioned the existence of Harper–Dorn Creep, not having

been able to observe the decrease of the stress exponent to a value of 1 when

performing compression tests with changes in stress in pure aluminum (99.99%

purity). Nabarro [330] responded to these reservations claiming that the lowest stress

used by Blum et al. (0.093MPa) was still too high to observe Harper–Dorn.

Therefore, Blum et al. [331] performed compression tests using even lower stresses

(as low as 0.06MPa), failing again to observe n¼ 1 stress exponents. Instead,

exponents close to 5 were measured. It is interesting to note that Blum et al. used

relatively large compression specimens measuring 35mm in length and with a cross

section of about 29� 29mm. The strain was accurately measured using a contactless

optical device consisting of a laser beam that scans the distance between two markers

in the compression specimen. Blum et al. suggest that the n¼ 1 exponents reported
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previously by other investigators might be due to a size effect. At the high

temperatures at which Harper–Dorn occurs, the dislocation structural spacings are

no longer small compared with the dimensions of a conventional creep specimen.

For example, at a stress of 0.03MPa, a stable Subgrain size of about 3.7mm is

expected [331]. Also, the average spacing between dislocations inside subgrains is

about 0.16mm. Thus, the grains, usually in the cm size range, as well as many

subgrains, extend up to the surface of the specimens. Under these circumstances, the

average distance a mobile dislocation migrates, 1, is very large and in some cases

comparable to the specimen size. Following is the analysis made by Blum et al. [201]

to show how this effect could lead to the observation of n¼ 1 exponents when testing

at very high temperatures and low stresses.

Harper–Dorn Creep experiments are usually performed in high-purity specimens

with a very low dislocation density. Upon loading a strain burst takes place and,

thus, a significant amount of initially mobile dislocations are introduced, as

demonstrated by Ardell and coworkers [54,86,101]. Subsequently, under dynamic

conditions of metal plasticity, the network evolution (dislocation evolution), _rr, is a
consequence of the combined effect of the athermal storage of dislocations, _rrþ, and
dynamic recovery, _rr�dynamic. Dynamic recovery consists on the local annihilation

processes between mobile dislocations and network dislocations. Additionally, since

H–D creep takes place at extremely high temperatures and low stresses, static

recovery (or network growth due to stored line energy) also has a significant effect

on the network evolution and, therefore, should be taken into account. Thus, the

equation for the dislocation network evolution during H–D creep is [201]

_rr ¼ _rrþ þ _rr�dynamic þ _rr�static ð87Þ

Following the Nes and Marthinsen’s model [215,332,333], dynamic recovery in a

Frank network consists of the collapse of dislocation dipoles of separation lg where

the dipoles are a result of interactions between mobile dislocations and dislocations

stored in the network. Thus, equation (87) can be written as:

_rr ¼ 2

b‘
g� ngr� BFNr2

Gb3

kT

� �
Dsd ð88Þ

where ‘ is the average distance a mobile dislocation migrates from the source to the

site where it is stored in the network, ng is the dislocation collapse frequency, and

BFN is a parameter of order unity. In pure metals, the collapse reaction is expected

to be driven by the sharp curvatures resulting from dipole pinch-off reactions. The

pinched-off segments will subsequently climb due to the large curvature forces. The

dislocation collapse frequency can be written as ng¼ 2nc
ffiffiffi
r

p
, where nc is the climb
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speed given by:

nc ¼ nDb2Bpcj exp
�Qsd

kT

� �
2 sinh

fb2

kT
�

� 2nDb2Brcj
fb2

kT

� �
exp

�Qsd

kT

� �
ð89Þ

where nD is the Debye frequency, Br is a constant of order unity, f is the driving force

generated by the curved network segments, and cj represents the concentration of

trailing jogs controlling the climb rate of the curved segments.

In order to consider the size effect on the substructure evolution, Blum et al.

redefined equation (88) introducing a new parameter S(S¼R2/((Rþ1)2�R2)l0 þR2

where R¼ specimen radius and l0 is a parameter expected to be of the order of 1,

reflecting surface conditions) in the following way:

_rr ¼ S
2

b‘
_gg� S 3=2ngr� BFNr2

Gb3

kT

� �
Dsd ð90Þ

The parameter S is introduced to exclude phantom sources of dislocations that

are taken into account in equation (88) when the slip-length becomes comparable to,

or larger than, the specimen radius. The parameter S should fulfill the following

boundary conditions to account for a size effect: when 1�R, S! 1 [(equation (88)

would still hold in this case], and when 1�R, S! 0, i.e., there is no storage of

dislocations at all and the dynamic recovery rate approaches 0. In summary, almost

all the dislocations would exit the specimen when the slip-length is much larger than

the specimen radius. It can be noted that the static recovery rate is not affected by

any size effect. Finally, Blum assumes that the thermal component (e.g., s0) of the

flow stress is negligible and the athermal component can be written as t¼ aGb
ffiffiffiffi
s

p
and the creep-rate may be expressed as [201]:

_gg ¼ C1

2a2b2
Gb3

kT

� �
BFN

S

t
G

� 	3
DSD þ

ffiffiffiffi
S

p 13:6b2

a
x2Br

t
G

� 	4
nD exp

�Qsd

kT

� �� 

ð91Þ

where C1 is a constant larger than 1, x is a scaling parameter larger than 1, and the rest

have the usual meaning. When 1�R (and l� 1), it can be shown that equation (91)

reduces to a linear dependency of the strain-rate with respect to the applied stress,

which is a constitutive equation forHarper–DornCreep. Therefore, Blum et al. suggest

that the observation of n¼ 1 exponents is due to the use of specimens with a cross

section similar or smaller than the slip length. Thus, using larger specimens higher

stress exponents would be observed. Themodel proposed by Blum et al. suggests static

recovery as the predominant restoration mechanism during Harper–Dorn Creep.
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4.2 THE EFFECT OF IMPURITIES

Recently, Mohamed et al. [334–336] suggested that impurities may play an essential

role in so-called ‘‘Harper–Dorn Creep.’’ They performed large strain (up to 10%)

creep tests at stresses lower than 0.06MPa in Al polycrystals of 99.99 and 99.9995

purity. They only observed H–D creep in the latter material. Accelerations in the

creep curve corresponding to the high-purity grade Al are apparent, as illustrated in

Figure 51. These accelerations are absent in the 99.99 Al creep curve.

Mohamed et al. report also that the microstructure of the 99.9995 Al is formed by

wavy grain boundaries, an inhomogeneous dislocation density distribution, small

new grains forming at the specimen surface and large dislocation density gradients

across grain boundaries. Well-defined subgrains are not observed. However, the

microstructure of the deformed 99.99 Al is formed by a well-defined array of

subgrains.

These observations have led Mohamed et al. to conclude that the restoration

mechanism taking place during Harper–Dorn Creep is dynamic recrystallization.

Nucleation of recrystallized grains would take place at the specimens surfaces and,

due to the low amount of impurities, highly mobile boundaries would migrate

toward the specimen interior. This restoration mechanism would give rise to the

periodic accelerations observed in the creep curve, by which most of the strain is

produced. Therefore, Mohamed et al. believed that two essential prerequisites for the

occurrence of ‘‘Harper-Dorn creep’’ are high purity and low dislocation density

(of the order of 107m�2 to 3� 107m�2), that favor dynamic recrystallization.

Figure 51. Creep curve corresponding to 99.9995 Al deformed at a stress of 0.01MPa at 923K.
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It is difficult to accurately determine the stress exponent due to the appearance

of periodic accelerations in the creep curves. Mohamed et al. [335] claim that n¼ 1

exponents are only obtained if creep curves up to small strains (1–2%) are analyzed,

as was done in the past. Mohamed et al. estimated a stress exponent of about 2.5

at larger strains.

The work by Mohamed et al. has received some criticism. Langdon [337] argues

that the jumps in the creep curves are not very clearly defined. Also, he claims that

dynamic recrystallization occurs during creep of very high purity metals at regular

strain increments, whereas the incremental strains corresponding to the accelerations

reported by Mohamed et al. tend to be relatively nonuniform. He suggests that grain

growth might be a more appropriate restoration mechanism.

The restoration mechanism predominant during Harper–Dorn Creep is, thus, not

well established at this point. Blum et al. [201] support static recovery, Mohamed

et al. [335] favor dynamic recrystallization, and Langdon [337] grain growth. Further

work needs to be done in this area in order to clarify this issue.
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Chapter 5

Three-Power-Law Viscous Glide Creep

Creep of solid solution alloys (designated Class I [16] or class A alloys [338]) at

intermediate stresses and under certain combinations of materials parameters, which

will be discussed later, can often be described by three regions [36,339,340]. This is

illustrated in Figure 52. With increasing stress, the stress exponent, n, changes in

value from 5 to 3 and again to 5 in regions I, II, and III, respectively. This section

will focus on region II, the so-called Three-Power-Law regime.

The mechanism of deformation in region II is viscous glide of dislocations [36].

This is due to the fact that the dislocations interact in several possible ways with the

solute atoms, and their movement is impeded [343]. There are two competing

mechanisms over this stress range, dislocation climb and glide, and glide is slower

Figure 52. steady-state creep rate vs. applied stress for an Al-2.2 at%Mg alloy at 300�C. Three different
creep regimes, I, II, and III, are evident. Based on Refs. [341,342].
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and thus rate controlling. A Three-Power-Law may follow naturally then from

equation (16) [24,344,345],

_ee ¼ 1=2 �vv b rm

It has been theoretically suggested that �vv is proportional to s [346,347] for solute

drag viscous glide. It has been determined empirically that rm is proportional to s2

for Al–Mg alloys [76,93,118,318,341,348]. Nabarro [23], Weertman [344,345],

Horiuchi et al. [349] have suggested a possible theoretical explanation for this

relationship. Thus, _ee / s3. More precisely, following the original model of

Weertman [344,345], Viscous Glide Creep is described by the equation

_eess ffi 0:35

A
G

s
G

� 	3
ð92Þ

where A is an interaction parameter which characterizes the particular viscous drag

process controlling dislocation glide.

There are several possible viscous drag (by solute) processes in region II, or Three-

Power-Law regime [344,350–353]. Cottrell and Jaswon [350] proposed that the

dragging process is the segregation of solute atmospheres to moving dislocations.

The dislocation speed is limited by the rate of migration of the solute atoms. Fisher

[351] suggested that, in solid solution alloys with short-range order, dislocation

motion destroys the order creating an interface. Suzuki [352] proposed a dragging

mechanism due to the segregation of solute atoms to stacking faults. Snoek and

Schoeck [353,354] suggested that the obstacle to dislocation movement is the stress-

induced local ordering of solute atoms. The ordering of the region surrounding a

dislocation reduces the total energy of the crystal, pinning the dislocation. Finally,

Weertman [344] suggested that the movement of a dislocation is limited in long-

range-ordered alloys since the implied enlargement of an anti-phase boundary results

in an increase in energy. Thus, the constant A in equation (92) is the sum of the

different possible solute–dislocation interactions described above, such as

A ¼ AC�J þAF þAS þASn þAAPB ð93Þ

Several investigators proposed different three-power models for viscous glide

where the principal force retarding the glide of dislocations was due to Cottrell–

Jaswon interaction (AC�JþAFþASþASnþAAPB) [87,118,345,355]. In one of the

first theories, Weertman [345] suggested that dislocation loops are emitted by sources

and sweep until they are stopped by the interaction with the stress field of loops on

different planes, and dislocation pile-ups form. The leading dislocations can,

however, climb and annihilate dislocations on other slip planes. Mills et al. [118]

modeled the dislocation substructure as an array of elliptical loops, assuming that no
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drag force exists on the pure screw segments of the loops. Their model intended to

explain transient three-power creep behavior. Takeuchi and Argon [355] proposed a

dislocation glide model based on the assumption that once dislocations are emitted

from the source, they can readily disperse by climb and cross-slip, leading to a

homogeneous dislocation distribution. They suggested that both glide and climb are

controlled by solute drag. The final relationship is similar to that by Weertman.

Mohamed and Langdon [357] derived the following relationship that is frequently

referenced for Three-Power-Law viscous creep when only a Cottrell–Jaswon

dragging mechanism is considered

_eess ffi p 1� nð ÞkT ~DD

6e2Cb5G

s
G

� 	3
ð94Þ

where e is the solute–solvent size difference, C is the concentration of solute atoms

and ~DD is the diffusion coefficient for the solute atoms, calculated using Darken’s [358]

analysis. Later Mohamed [359] and Soliman et al. [360] suggested that Suzuki and

Fischer interactions are necessary to predict the Three-Power-Law creep behavior of

several Al–Zn, Al–Ag, and Ni–Fe alloys with accuracy. They also suggested that the

diffusion coefficients defined by Fuentes-Samaniego and coworkers [361] should be

used, rather than Darken’s equations.

Region II has been reported to occur preferentially in materials with a relatively

large atom size mismatch [362,363]. Higher solute concentrations also favor the

occurrence of Three-Power-Law creep [338,340,344,357]. As illustrated in Figure 53,

for high enough concentrations, region III can even be suppressed. The difference

between the creep behaviors corresponding to Class I (A) and Class II (M) is evident

in Figure 54 [349] where strain-rate increases with time with the former and decreases

with the latter. Others have observed even more pronounced primary creep features

in Class I (A) Al–Mg [156,364]. Alloys with 0.6% and 1.1 at.%Mg are Class II (M)

alloys and those with 3.0%, 5.1%, and 6.9% are Class I (A) alloys. Additionally,

inverse Creep transient behavior is observed in Class I (A) alloys [118,349,365,366]

and illustrated in Figure 55 [349]. A drop in stress is followed by a decrease in the

strain rate in pure aluminum, which then increases with a recovering dislocation

substructure until steady-state at the new, lower, stress. However, with a stress

decrease in Class I (A) alloys [Figures 55(b) and (c)], the strain rate continually

decreases until the new steady-state. Analogous disparities are observed with stress

increases [i.e., decreasing strain-rate to steady-state in Class II (M) while increasing

rates with Class I (A).] Horiuchi et al. [349] argued that this is explained by the

strain-rate being proportional to the dislocation density and the dislocation velocity.

The latter is proportional to the applied stress while the square root of the former is

proportional to the stress. With a stress drop, the dislocation velocity decreases to
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Figure 53. steady-state creep-rate vs. applied stress for three Al–Mg alloys (Al-0.52 at.%Mg, n; Al-1.09

at.%Mg, lAl-3.25 at.%Mg, s) at 323�C [356].

Figure 54. Creep behavior of several aluminum alloys with different magnesium concentrations: 0.6 at.%

and 1.1 at.% (class II (M)) and 3.0 at.%, 5.1 at.%, and 6.9 at.% (class I (A)). The tests were performed at

359�C and at a constant stress of 19MPa [349].
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the value corresponding to the lower stress. The dislocation density continuously

decreases, also leading to a decrease in strain-rate. It is presumed that nearly all the

dislocations are mobile in Class I (A) alloys while this may not be the case for Class

II (M) alloys and pure metals. Sherby et al. [367] emphasize that the transition from

strain softening to strain hardening at lower stresses in class I alloys is explained by

taking into account that, within the viscous glide regime, the mobile dislocation

density controls the creep-rate. Upon a stress drop, the density of mobile

dislocations is higher than that corresponding to steady-state, and thus it will be

lowered by creep straining, leading to a gradual decrease in strain-rate (strain

hardening). If the stress is increased, the initial mobile dislocation density will be low,

and, thus, the creep strength will be higher than that corresponding to steady-state.

More mobile dislocations will be generated as strain increases, leading to an increase

in the creep-rate, until a steady-state structure is achieved (strain softening). The

existence of Internal stresses during Three-Power-Law creep is also not clearly

established. Some investigators have reported Internal stresses as high as 50% of the

applied stress [368]. Others, however, suggest that Internal stresses are negligible

compared with the applied stress [121,349].

The transitions between regions I and II and between regions II and III are

now well established [362]. The condition for the transition from region I (n¼ 5,

climb-controlled creep behavior) to region II (n¼ 3, viscous glide) with increasing

Figure 55. Effect of changes in the applied stress to the creep rate in (a) high-purity aluminum, (b) Al-3.0

at.%Mg (class I (A) alloy), and (c) Al-6.9 at.%Mg (class I (A)alloy), at 410�C [349].
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applied stress is, in general, represented by [359]

kT

DgbA
¼ C

w
Gb

� 	3 Dc

Dg

� �
t
G

� 	2
t

ð95Þ

where Dc and Dg are the diffusion coefficients for climb and glide, respectively, C is a

constant and (t/G)t is the normalized transition stress. If only the Cottrell-Jaswon

interaction is considered [357,359], equation (95) reduces to

kT

ec1=2Gb3

� �2

¼ C
c

Gb

� 	3 Dc

Dg

� �
t
G

� 	2
t

ð96Þ

The transition between regions II (n¼ 3, viscous glide) and III (n¼ 5, climb-

controlled creep) has been the subject of several investigations [36,344,345,369–372].

It is generally agreed that it is due to the breakaway of dislocations from solute

atmospheres and are thus able to glide at a much faster velocity. The large difference

in dislocation speed between dislocations with and without clouds has been

measured experimentally [373]. Figure 56 (from Ref. [373]) shows the s vs. e and _ee
vs. e curves corresponding to Ti of commercial purity, creep tested at 450�C at

different stresses after initial loading at 10�3 s�1. Instead of a smooth transition to

steady-state creep, a significant drop in strain-rate takes place upon the beginning of

the creep test, which is associated with the significant decrease in dislocation speed

due to the formation of solute clouds around dislocations. Thus, after a critical

breakaway stress is exerted on the material, glide becomes faster than climb and the

latter is, then, rate-controlling in region III. Friedel [87] predicted that the

breakaway stress for unsaturated dislocations may be expressed as

tb ¼ A11
W2

m

kTb3

� �
C ð97Þ

where A11 is a constant, Wm is the maximum interaction energy between a solute

atom and an edge dislocation and C is the solute concentration. Endo et al. [342]

showed, using modeling of mechanical experiments, that the critical velocity, vcr, at

breakaway agrees well with the value predicted by the Cottrell relationship

vcr ¼ DkT

eGbR3
S

ð98Þ

where RS is the radius of the solvent atom and e is the misfit parameter.

It is interesting that the extrapolation of Stage I (five-power) predicts signifi-

cantly lower Stage III (also five-power) stress than observed (see Figure 52).

The explanation for this is unclear. TEM and etch-pit observations within the
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three-Power-Law creep regime [118,338,374–377] show a random distribution of

bowed long dislocation lines, with only a sluggish tendency to form subgrains.

However, subgrains eventually form in Al–Mg [121,156,378], as illustrated in Figure

57 for Al-5.8%Mg.

Class I (A) alloys have an intrinsically high strain-rate sensitivity (m¼ 0.33) within

regime II and therefore are expected to exhibit high elongations due to resistance to

necking [379–381]. Recent studies by Taleff et al. [382–385] confirmed an earlier

correlation between the extended ductility achieved in several binary and ternary

Al-Mg alloys and their high strain-rate sensitivity. The elongations to failure for

single phase Al–Mg can range from 100% to 400%, which is sufficient for many

manufacturing operations, such as the warm stamping of automotive body panels

[385]. These elongations can be achieved at lower temperatures than those necessary

for conventional Superplasticity in the same alloys and still at reasonable strain

rates. For example, enhanced ductility has been reported to occur at 10�2 s�1 in a

Figure 56. s vs. e and _ee vs. e curves corresponding to Ti of commercial purity, creep tested at 450�C at

different stresses after initial loading at 10�3 s�1. The circles mark the end of loading/beginning of creep

testing. From Refs. [373].
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Figure 57. Al-5.8 at.%Mg deformed in torsion at 425�C to (a) 0.18 and (b) 1.1 strain in the

three-power regime.

118 Fundamentals of Creep in Metals and Alloys



coarse-grained Al–Mg alloy [385] at a temperature of 390�C, whereas a temperature

of 500�C is necessary for Superplasticity in the same alloy with a grain size ranging

from 5 to 10 mm. The expensive grain refinement processing routes necessary to

fabricate superplastic microstructures are unnecessary. The solute concentration in a

binary Al–Mg alloy does not affect significantly mechanical properties such as tensile

ductility, strain-rate sensitivity, or flow stress [386]. For example, under conditions of

viscous-glide creep, variations in Mg concentration ranging from 2.8 to 5.5wt. pct.

only change the strain-rate sensitivity from 0.29 to 0.32, which does not have a

substantial effect on the elongation to failure [382]. McNelley et al. [378] attributed

this observation to the saturation effect of Mg atoms in the core of the moving

dislocation. However, ternary additions of Mn, Fe, and Zr seem to significantly

affect the mechanical behavior of Al–Mg alloys [382]. The stress exponent increases

and ductility decreases significantly, especially for Mn concentrations higher than

0.46wt. pct. Ternary additions above the solubility limit favor the formation of

second phase particles around which cavities tend to nucleate preferentially. Thus, a

change in the failure mode from necking-controlled to cavity-controlled may occur,

accompanied by a decrease in ductility [382]. Also, Mn atoms may interfere with the

solute drag. The hydrostatic stress by which an atom interacts with a dislocation is

determined by the volumetric size factor (�). The � values corresponding to Mg and

Mn in Al are [363]: � Al–Mg¼þ40.82 and � Al–Mn¼�46.81. Both factors are nearly

equal in magnitude and of opposite sign. Therefore, each added Mn atom acts as a

sink for one atom of Mg, thus reducing the effective Mg concentration [382]. If Mn is

added in sufficient quantities that the effective Mg concentration is lower than that

required for viscous-drag creep, the stress exponent would increase and the ductility

would consequently decrease significantly. This effect seems to be less important than

the change in failure mode described above [382].

Class I behavior has been reported to occur in a large number of metallic alloys.

These include Al–Mg [16,357,379,387], Al–Zn [362], Al–Cu [388],Cu–Al [389], Au–

Ni [372], Mg- [324, 386, 390-392], Pb- [372], In- [372], and Nb- [393,394] based alloys.

Viscous-glide creep has also been observed in dispersion strengthened alloys.

Sherby et al. [367] attribute the differences in the creep behavior between pure

Al–Mg and DS Al–Mg alloys to the low mobile dislocation density of the latter. Due

to the presence of precipitates, dislocations are pinned and their movement is

impeded. Therefore, at a given strain-rate (_gg¼ brn) the velocity of the dislocations is

very high. Thus, much higher temperatures are required for solute atoms to form

clouds around dislocations. The viscous glide regime is, therefore, observed at higher

temperatures than in the pure Al–Mg alloys. A value of n ¼ 3 has been observed in

intermetallics with relatively coarse grain sizes (g>50 mm), such as Ni3Al [395],

Ni3Si [396], TiAl [397], Ti3Al [398], Fe3Al [399,400], FeAl [401], and CoAl [402]. The

mechanism of creep, here, is still not clear. Yang [403] has argued that, since the glide
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of dislocations introduces disorder, the steady-state velocity is limited by the rate at

which chemical diffusion can reinstate order behind the gliding dislocations. Other

explanations are based on the non-stoichiometry of intermetallics, and the frequent

presence of interstitial impurities, such as oxygen, nitrogen, and carbon. Finally,

dislocation drag has also been attributed to lattice friction effects [402]. Viscous glide

has also been reported to occur in metal matrix composites [404], although this is

still controversial [405].
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Chapter 6

Superplasticity

6.1 INTRODUCTION

Superplasticity is the ability of a polycrystalline material to exhibit, in a generally

isotropic manner, very high tensile elongations prior to failure (T>0.5Tm) [406].

The first observations of this phenomenon were made as early as 1912 [407]. Since

then, Superplasticity has been extensively studied in metals. It is believed that both

the arsenic bronzes, used in Turkey in the Bronze Age (2500 B.C.), and the

Damascus steels, utilized from 300 B.C. to the end of the nineteenth century, were

already superplastic materials [408]. One of the most spectacular observations of

Superplasticity is perhaps that reported by Pearson in 1934 of a Bi–Sn alloy that

underwent nearly 2000% elongation [409]. He also claimed then, for the first time,

that grain-boundary sliding was the main deformation mechanism responsible for

superplastic deformation. The interest in Superplasticity has increased due to the

recent observations of this phenomenon in a wide range of materials, including some

materials (such as nanocrystalline materials [410], ceramics [411,412], metal matrix

composites [413], and intermetallics [414]) that are difficult to form by conventional

forming. Recent extensive reviews on Superplasticity are available [415–418].

There are two types of superplastic behavior. The best known and studied, fine-

structure Superplasticity (FSS), will be briefly discussed in the following sections.

The second type, Internal stress Superplasticity (ISS), refers to the development of

Internal stresses in certain materials, which then deform to large tensile strains under

relatively low externally applied stresses [418].

6.2 CHARACTERISTICS OF FINE STRUCTURE SUPERPLASTICITY

Fine structure superplastic materials generally exhibit a high strain-rate sensitivity

exponent (m) during tensile deformation. Typically, m is larger than 0.33. Thus, n in

equation (3), is usually smaller than 3. In particular, the highest elongations have

been reported to occur when m
 0.5 (n
 2) [418]. Superplasticity in conventional

materials usually occurs at low strain rates ranging from 10�3 s�1 to 10�5 s�1.

However, it has been reported in recent works that large elongations to failure may

also occur in selected materials at strain rates substantially higher than 10�2 s�1

[419]. This phenomenon, termed high-strain-rate Superplasticity (HSRSP), has been

observed in some conventional metallic alloys, in metal matrix composites and in
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mechanically alloyed materials [420], among others. This will be discussed in Section

6.5. Very recently, HSRSP has been observed in cast alloys prepared by ECA (equal

channel angular) extrusion [421–424]. In this case, very high temperatures are not

required and the grain size is very small (<1 mm). The activation energies for fine

structure superplasticity tend to be low, close to the value for grain boundary

diffusion, at intermediate temperatures. At high temperatures, however, the

activation energy for superplastic flow is about equal to that for lattice diffusion.

The microscopic mechanism responsible for superplastic deformation is still not

thoroughly understood. However, since Pearson’s first observations [409], the most

widely accepted mechanisms involve grain-boundary sliding (GBS) [425–432]. GBS

is generally modeled assuming sliding takes place by the movement of extrinsic

dislocations along the grain boundary. This would account for the observation that

the amount of sliding is variable from point to point along the grain boundary [433].

Dislocation pile-ups at grain boundary ledges or triple points may lead to stress

concentrations. In order to avoid extensive cavity growth, GBS must be aided by an

accommodation mechanism [434]. The latter must ensure rearrangement of grains

during deformation in order to achieve strain compatibility and relieve any stress

concentrations resulting from GBS. The accommodation mechanism may include

grain boundary migration, recrystallization, diffusional flow or slip. The accom-

modation process is generally believed to be the rate-controlling mechanism.

Over the years a large number of models have emerged in which the

accommodation process is either diffusional flow or dislocation movement [435].

The best known model for GBS accommodated by diffusional flow, depicted

schematically in Figure 58, was proposed by Ashby and Verral [436]. This model

Figure 58. Ashby–Verral model of GBS accommodated by diffusional flow [436].
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explains the experimentally observed switching of equiaxed grains throughout

deformation. However, it fails to predict the stress dependence of the strain-rate.

According to this model,

_eess ¼ K1 b=gð Þ2Deff ðs� sTHs
=EÞ ð99Þ

where Deff¼Dsd 9 [1þ (3.3w/g)(Dgb/Dsd)], K1 is a constant, sTHs
is the threshold

stress and w is the grain boundary width. The threshold stress arises since there is an

increase in boundary area during grain switching when clusters of grains move from

the initial position (Figure 58(a)) to the intermediate one (Figure 58(b)).

Several criticisms of this model have been reported [437–442]. According to

Spingarn and Nix [437] the grain rearrangement proposed by Ashby–Verral cannot

occur purely by diffusional flow. The diffusion paths are physically incorrect. The

first models of GBS accommodated by diffusional creep were proposed by Ball and

Hutchison [443], Langdon [444], and Mukherjee [445]. Among the most cited are

those proposed by Mukherjee and Arieli [446] and Langdon [447]. According to

these authors, GBS involves the movement of dislocations along the grain

boundaries, and the stress concentration at triple points is relieved by the generation

and movement of dislocations within the grains (Figure 59). Figure 60 illustrates the

model proposed by Gifkins [448], in which the accommodation process, which also

consists of dislocation movement, only occurs in the ‘‘mantle’’ region of the grains,

i.e., in the region close to the grain boundary. According to all these GBS

accommodated by slip models, n¼ 2 in a relationship such as

_eess ¼ K2 b=gð Þ p0D s=Eð Þ2 ð100Þ

Figure 59. Ball–Hutchinson model of GBS accommodated by dislocation movement [443].
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where p0 ¼ 2 or 3 depending on whether the dislocations move within the lattice or

along the grain boundaries, respectively. K2 is a constant, which varies with each of

the models and the diffusion coefficient, D, can be Dsd or Dgb, depending on whether

the dislocations move within the lattice or along the grain boundaries to

accommodate stress concentrations from GBS. In order to rationalize the increase

in activation energy at high temperatures, Fukuyo et al. [449] proposed a model

based on the GBS mechanism in which the dislocation accommodation process takes

place by sequential steps of climb and glide. At intermediate temperatures, climb

along the grain boundaries is the rate-controlling mechanism due to the pile-up

stresses. Pile-up stresses are absent and the glide of dislocations within the grain

is the rate-controlling mechanism at high temperatures. It is believed that slip in

Superplasticity is accommodating and does not contribute to the total strain [450].

Thus, GBS is traditionally believed to account for all of the strain in Superplasticity

[451]. However, recent studies, based on texture analysis, indicate that slip may

contribute to the total elongation [452–467].

The proposed mechanisms predict some behavior but have not succeeded in fully

predicting the dependence of the strain rate on s, T, and g during superplastic

deformation. Ruano and Sherby [468,469] formulated the following phenomeno-

logical equations, which appear to describe the experimental data from metallic

materials,

_eess ¼ K3 b=gð Þ2Dsd s=Eð Þ2 ð101Þ

_eess ¼ K4 b=gð Þ3Dgb s=Eð Þ2 ð102Þ

Figure 60. Gifkins ‘‘core and mantle’’ model [448].
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where K3 and K4 are constants. These equations, with n¼ 2, correspond to a

mechanism of GBS accommodated by dislocation movement. Equation (101)

corresponds to an accommodation mechanism in which the dislocations would move

within the grains (g2) and equation (102) corresponds to an accommodation

mechanism in which the dislocations would move along the grain boundaries (g3).

Only the sliding of individual grains has been considered. However, currently the

concept of cooperative grain-boundary sliding (CGBS), i.e., the sliding of blocks of

grains, is gaining increasing acceptance. Several deformation models that account

for CGBS are described in Ref. [421].

6.3 MICROSTRUCTURE OF FINE STRUCTURE SUPERPLASTIC MATERIALS

The microstructures associated with fine structure superplasticity are well established

for conventional metallic materials. They are, however, less clearly defined for

intermetallics, ceramics, metal matrix composites, and nanocrystalline materials.

6.3.1 Grain Size and Shape

GBS in metals is favored by the presence of equiaxed small grains that should

generally be smaller than 10 mm. Consistent with equations (99–102), the strain-rate

is usually inversely proportional to grain size, according to

_eess ¼ K5 g
�p0 ð103Þ

where p0 ¼ 2 or 3 depending, perhaps, on the accommodation mechanism and K5 is a

constant. Also, for a given strain-rate, the stress decreases as grain size decreases.

grain size refinement is achieved during the thermomechanical processing by

successive stages of warm and cold rolling [468–473]. However, the present

understanding of microstructural control in engineering alloys during industrial

processing by deformation and recrystallization is still largely empirical.

6.3.2 Presence of a Second Phase

The presence of small second-phase particles uniformly distributed in the matrix

prevents rapid grain growth that can occur in single-phase materials within the

temperature range over which Superplasticity is observed.

6.3.3 Nature and Properties of Grain Boundaries

GBS is favored along high-angle disordered (not CSL) boundaries. Additionally,

sliding is influenced by the grain boundary composition. For example, a heterophase

Superplasticity 127



boundary (i.e., a boundary which separates grains with different chemical

composition) slides more readily than a homophase boundary. Stress concentrations

develop at triple points and at other obstacles along the grain boundaries as a

consequence of GBS. mobile grain boundaries may assist in relieving these stresses.

Grain boundaries in the matrix phase should not be prone to tensile separation.

6.4 TEXTURE STUDIES IN SUPERPLASTICITY

texture analysis has been utilized to further study the mechanisms of Superplasticity

[442–467,474], using both X-ray texture analysis and computer-aided EBSP

techniques [475]. Commonly, GBS, involving grain rotation, is associated with a

decrease in texture [417], whereas crystallographic slip leads to the stabilization of

certain preferred orientations, depending on the number of slip systems that are

operating [476,477].

It is interesting to note that a large number of investigations based on texture

analysis have led to the conclusion that crystallographic slip (CS) is important in

superplastic deformation. According to these studies, CS is not merely an

accommodation mechanism for GBS, but also operates in direct response to the

applied stress. Some investigators [453–458,474] affirm that both GBS and CS

coexist at all stages of deformation; other investigators [459–461] conclude that CS

only operates during the early stages of deformation, leading to a microstructure

favoring GBS. Others [462–467] even suggest that CS is the principal deformation

mechanism responsible for superplastic deformation.

6.5 HIGH STRAIN-RATE SUPERPLASTICITY

High strain-rate Superplasticity (HSRS) has been defined by the Japanese Standards

Association as Superplasticity at strain-rates equal to or greater than 10�2 s�1

[418,478,479]. This field has awakened considerable interest in the last 15 years since

these high strain-rates are close to the ones used for commercial applications

(10�2 s�1 to 10�1 s�1). Higher strain-rates can be achieved by reducing the grain size

[see equation (100)] or by engineering the nature of the interfaces in order to make

them more suitable for sliding [478,479]. High strain-rate Superplasticity was first

observed in a 20%SiC whisker reinforced 2124 Al composite [419]. Since then, it has

been achieved in several metal–matrix composites, mechanically alloyed materials,

conventional alloys that undergo Continuous reactions or (continuous dynamic

recrystallization), alloys processed by power consolidation, by physical vapor

deposition, by intense plastic straining [480] (for example, equal channel angular
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pressing (ECAP), equal channel angular extrusion (ECAE), torsion straining under

high pressure), or, more recently, by friction stir processing [481]. The details of the

microscopic mechanism responsible for high strain-rate Superplasticity are not yet

well understood, but some recent theories are reviewed below.

6.5.1 High Strain-Rate Superplasticity in Metal–Matrix Composites

High strain-rate Superplasticity has been achieved in a large number of metal–matrix

composites. Some of them are listed in Table 2 and more complete lists can be found

elsewhere [478,482]. The microscopic mechanism responsible for high strain-rate

Superplasticity in metal–matrix composites is still a matter of controversy. Any

theory must account for several common features of the mechanical behavior of

metal–matrix composites that undergo high strain-rate Superplasticity, such as [491]:

(a) Maximum elongations are achieved at very high temperatures, sometimes even

slightly higher than the incipient melting point.

(b) The strain-rate sensitivity exponent changes at such high temperatures from


0.1 (n
10) (low strain-rates) to 
0.3 (n
3) (high strain-rates).

(c) High apparent activation energy values are observed. Values of 920 kJ/mol and

218 kJ/mol have been calculated for SiCw/2124Al at low and high strain-rates,

respectively. These values are significantly higher than the activation energy for

self-diffusion in Al (140 kJ/mol).

Both grain-boundary sliding and interfacial sliding have been proposed as the

mechanisms responsible for HSRS. The significant contribution of interfacial sliding

is evidenced by extensive fiber pullout apparent on fracture surfaces [491]. However,

an accommodation mechanism has to operate simultaneously in order to avoid

Table 2. Superplastic characteristics of some metal–matrix composites exhibiting high strain-rate super-

plasticity.

Material Temperature (�C) Strain rate (s�1) Elongation (%) Reference

SiCw/2124 Al 525 0.3 
300 [419]

SiCw/2024 Al 450 1 150 [483]

SiCw/6061 Al 550 0.2 300 [484]

SiCp/7075 Al 520 5 300 [485]

SiCp/6061 Al 580 0.1 350 [486]

Si3N4w/6061 Al 545 0.5 450 [487]

Si3N4w/2124 Al 525 0.2 250 [488]

Si3N4w/5052 Al 545 1 700 [489]

AlN/6061 Al 600 0.5 350 [490]

(w¼whisker; p¼ particle).
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cavitation at such high strain-rates. The nature of this accommodation mechanism,

that enables the boundary and interface mobility, is still uncertain.

A fine matrix grain size is necessary but not sufficient to explain high strain-rate

Superplasticity. In fact, HSRS may or may not appear in two composites having the

same fine-grained matrix and different reinforcements. For example, it has been

found that a 6061 Al matrix with b-Si3N4 whiskers does experience HSRS, whereas

the same matrix with b-SiC does not [491]. The nature, size, and distribution of the

reinforcement are critical to the onset of high strain-rate Superplasticity.

a. Accommodation by a Liquid Phase. Rheological Model. Nieh and Wadsworth

[491] have proposed that the presence of a liquid phase at the matrix-reinforcement

interface and at grain boundaries within the matrix is responsible for accommodation

of interface sliding during HSRS and thus for strain-rate enhancement. The presence

of this liquid phase would be responsible for the observed high activation energies. A

small grain size would favor HSRS since the liquid phase would then be distributed

along a larger surface area and thus can have a higher capillarity effect, preventing

decohesion. The occurrence of partial melting even during tests at temperatures

slightly below solvus has been explained in two different ways. First, as a consequence

of solute segregation, a low melting point region could be created at the matrix-

reinforcement interfaces. Alternatively, local adiabatic heating at the high strain-rates

used could contribute to a temperature rise that may lead to local melting.

It has been suggested [492] that high strain-rate Superplasticity with the aid of a

liquid phase can be modeled in rheological terms in a similar way to semi-solid metal

forming. A fluid containing a suspension of particles behaves like a non-Newtonian

fluid, for which the strain-rate sensitivity and the shear strain-rate are related by

t ¼ K7 
 _ggm ð104Þ

where t is the shear stress, and K7 and m are both materials constants, m being the

strain-rate sensitivity of the material. The shear stress and strain rate of a semi-solid

that behaves like a non-Newtonian fluid are related to the shear viscosity by the

following equations:

� ¼ K7 
 _gg�u ð105Þ
� ¼ t=_gg ð106Þ

where � is the shear viscosity and u is a constant of the material, related to the strain-

rate sensitivity by the expression m¼1� u. The viscosity of several Al-6.5%Si metal

matrix composites was measured experimentally [418] at 700�C as a function of shear

rate. High strain sensitivity values similar to those reported for MMCs (
0.3–0.5) in
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the HSRS regime were obtained at very high shear strain rates (200–1000 s�1). These

data support the rheological model. The temperature used, however, is higher than

the temperatures at which high strain-rate Superplasticity is observed.

The role of a liquid phase as an accommodation mechanism for interfacial and

grain-boundary sliding has been supported by other authors [493–498]. It is sugges-

ted that the liquid phase acts as an accommodation mechanism, relieving stresses

originated by sliding and thus preventing cavity formation. However, in order to

avoid decohesion, it is emphasized that the liquid phase must either be distributed

discontinuously or be present in the form of a thin layer. The optimum amount of

liquid phase may depend on the nature of the grain boundary or interface. Direct

evidence of local melting at the reinforcement–matrix interface was obtained using

In situ transmission electron microscopy by Koike et al. [495] in a Si3N4p/6061Al.

The rheological model was criticized by Mabuchi et al. [493], arguing that testing the

material at a temperature within the solid–liquid region is not sufficient to achieve

high strain-rate Superplasticity. For example, an unreinforced 2124 alloy fails to

exhibit high tensile ductility when tested at a temperature above solvus. Addi-

tionally, it has been observed experimentally that ductility decreases when testing

above a certain temperature.

b. Accommodation by Interfacial Diffusion. Mishra et al. [499–502] rationalized the

mechanical behavior of HSRS metal–matrix composites by taking into account the

presence of a threshold stress. This analysis led them to conclude that the mechanism

responsible for HSRS in metal–matrix composites is grain-boundary sliding

accommodated by interfacial diffusion along matrix–reinforcement interfaces. It is

important to note that the particle size is often comparable to grain size, and

therefore interfacial sliding is geometrically necessary, as illustrated in Figure 61.

Partial melting, especially if it is confined to triple points, may be beneficial for

superplastic deformation, but it is not necessary to account for the superplastic

elongations observed.

Threshold stresses are often used to explain the variation of the strain-rate

sensitivity exponent with strain-rate in creep deformation studies. The presence of a

threshold stress would explain the transition to a lower strain-rate sensitivity value

(and, thus, to a higher n) at low strain rates that takes place during HSRS in metal–

matrix composites. Calculating threshold stresses and a (true–) stress exponent, nhsrs,

that describes the predominant deformation mechanism is a non-trivial process,

as explained in Ref. [500]. Mishra et al. [500,501] concluded that a true stress

exponent of 2 would give the best fit for their data, suggesting the predominance

of grain-boundary sliding as a deformation mechanism responsible for HSRS in

metal–matrix composites. Additionally, activation energies (Qhsrs) of the order of
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300 kJ/mol were obtained from this analysis. Both parametric dependencies (nhsrs¼ 2

and Qhsrsffi 300 kJ/mol) are best predicted by Arzt’s model for ‘‘interfacial diffusion-

controlled diffusional creep’’ [503]. Mishra et al. [502] suggested that, since both

diffusional creep and grain-boundary sliding are induced by the movement of grain-

boundary dislocations, and the atomic processes involved are similar for both

processes, it is reasonable to think that the parametric dependencies would be similar

in both interfacial diffusion-controlled diffusional creep and interfacial diffusion-

controlled Superplasticity. Thus, the latter is invoked to be responsible for HSRS.

Figure 61 illustrates this deformation mechanism.

The phenomenological constitutive equation proposed by Mishra et al. for HSRS

in metal–matrix composites is the following:

_eess ¼ A12
DiGb

kT

b2

gmgp

� �
s� sTHhsrs

E

� 	2
ð107Þ

where Di is the coefficient for interfacial diffusion, gm is the matrix grain size and gp
is the particle/reinforcement size, sTHhsrs

is the threshold stress for high strain-rate

Superplasticity, and A12 is a material constant. An inverse grain size and reinforce-

ment size dependence is suggested.

According to this model [501], as temperature rises, the accommodation

mechanism would change from slip accommodation (at temperatures lower than

the optimum) to interfacial diffusion accommodation. The need for very high

temperatures to attain HSRS is due to the fact that grain-boundary diffusivity

increases with temperature. Therefore, the higher the temperature, the faster

interface diffusion, which leads to less cavitation and thus, higher ductility.

Mabuchi et al. [504,505] claim the importance of a liquid phase in HSRS arguing

that, when introducing threshold stresses, the activation energy for HSRS at

Figure 61. Interfacial diffusion-controlled grain-boundary sliding. The ceramic phase would not allow

slip accommodation.
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temperatures at which no liquid phase is present is similar to that corresponding to

lattice self-diffusion in Al. However, at higher temperatures, at which partial melting

has taken place, the activation energy increases dramatically. It is at these

temperatures that the highest elongations are observed. The origin of the threshold

stress for Superplasticity is not well known. Its magnitude depends on the shape and

size of the reinforcement and it generally decreases with increasing temperature.

c. Accommodation by Grain-Boundary Diffusion in the Matrix. The Role of Load

Transfer. The two theories described above were critically examined by Li and

Langdon [506–508]. First, the rheological model was questioned, since HSRS had

been recently found in Mg–Zn metal–matrix composites at temperatures below the

incipient melting point, where no liquid phase is present [509]. Second, Li et al. [506]

claim that it is hard to estimate interfacial diffusion coefficients at ceramic–matrix

interfaces, and therefore validation of the interfacial diffusion-controlled grain-

boundary sliding mechanism is difficult. These investigators used an alternative

method for computing threshold stresses, described in detail in Ref. [506], which does

not require an initial assumption of the value of n. This methodology also rendered a

true stress exponent of 2 and true activation energy values that were higher than

that for matrix lattice self-diffusion and grain boundary self-diffusion. These results

were explained by the occurrence of a transfer of load from the matrix to the

reinforcement. Following this approach, that was used before to rationalize creep

behavior in metal–matrix composites [510], a temperature-dependent load-transfer

coefficient a0 was incorporated in the constitutive equation as follows:

_eess ¼ A0000DGb

kT

b

g

� �p0 1�a0ð Þ s� sTHhsrs


 �
G

� 
n
ð108Þ

where A0000 is a dimensionless constant. In their calculations, Li et al. assumed that D

is equal to Dgb and the remaining constants and variables have the usual meaning.

Load-transfer coefficients are expected to vary between 0 (no load-transfer) and 1

(all the load is transferred to the reinforcement). It was found that the load-transfer

coefficients obtained decreased with increasing temperature, becoming 0 at tempera-

tures very close to the incipient melting point. This indicates that load transfer would

be inefficient in the presence of a liquid phase. The effective activation energies Q*

calculated by introducing the load-transfer coefficient into the rate equation for flow

are similar to those corresponding to grain-boundary diffusion within the matrix

alloys (until up to a few degrees from the incipient melting point). Therefore, Li and

Langdon proposed that the mechanism responsible for HSRS is grain-boundary

sliding controlled by grain-boundary diffusion in the matrix. This mechanism, that
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is characteristic of conventional Superplasticity at high temperatures, would be

valid up to temperatures close to the incipient melting point.

The origin of the threshold stress is still uncertain. It has been shown that it

decreases with increasing temperature, and that it depends on the shape and size

of the reinforcement [502]. The temperature dependence of the threshold stress may

be expressed by an Arrhenius-type equation of the form:

sTHhsrs

G
¼ Bexp

QTHhsrs

RT

� �
ð109Þ

where sTHhsrs
is the threshold stress for high strain-rate Superplasticity, B is a

constant, and QTHhsrs
is an energy term which seems to be associated with the process

by which the mobile dislocations surpass the obstacles in the glide planes.

(The threshold stress concept will be discussed again in Chapter 8.)

Li and Langdon [508] claim that the threshold stress values obtained in metal–

matrix composites tested under HSRS and under creep conditions may have

the same origin. They showed that similar values of QTHhsrs
are obtained under

these two conditions when, in addition to load transfer, substructure strengthening

is introduced into the rate equation for flow. Substructure strengthening may

arise, for example, from an increase in the dislocation density due to the thermal

mismatch between the matrix and the reinforcement or to the resistance of the

reinforcement to plastic flow. The ‘‘effective stress’’ acting on the composite in the

presence of load-transfer and substructure strengthening is given by,

se ¼ 1��ð Þs� sTHhsrs
ð110Þ

where � is a temperature-dependent coefficient. At low temperatures at which creep

tests are performed, the value of � may be negligible, but since HSRS takes place at

very high temperatures, often close to the melting point, the temperature dependence

of � must be taken into account to obtain accurate values of QTHhsrs
. In fact, when

the temperature dependence of � is considered, QTHhsrs
values close to 20–30 kJ/mol,

typical of creep deformation of MMCs, are obtained under HSRS conditions.

6.5.2 High Strain-Rate Superplasticity in Mechanically Alloyed Materials

HSRS has also been observed in some mechanically alloyed (MA) materials that are

listed in Table 3.

As can be observed in Table 3, mechanically alloyed materials attain superplastic

elongations at higher strain-rates than metal–matrix composites. Such high strain

rates are often attributed to the presence of a very fine microstructure (with average

grain size of about 0.5 mm) and oxide and carbide dispersions approximately 30 nm
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in diameter that have an interparticle spacing of about 60 nm [418]. These particle

dispersions impart stability to the microstructure. The strain-rate sensitivity

exponent (m) increases with temperature reaching values usually higher than 0.3 at

the temperatures where the highest elongations are observed. Optimum superplastic

elongations are often obtained at temperatures above solvus.

After introducing a threshold stress, n¼ 2 and the activation energy is equal to

that corresponding to grain-boundary diffusion. These values are similar to those

obtained for conventional Superplasticity and would indicate that the main

deformation mechanism is grain-boundary sliding accommodated by dislocation

slip. The rate-controlling mechanism would be grain-boundary diffusion

[502,506,517]. Mishra et al. [502] claim that the small size of the precipitates

allows for diffusion relaxation of the stresses at the particles by grain-boundary

sliding, as illustrated in Figure 62. Higashi et al. [517] emphasize the importance of

the presence of a small amount of liquid phase at the interfaces that contributes to

stress relaxation and thus enhanced superplastic properties at temperatures above

solvus. Li et al. [506] state that, given the small size of the particles, no load transfer

Table 3. Superplastic properties of some mechanically alloyed materials.

Material Temperature (�C) Strain-rate (s�1) Elongation (%) Reference

IN9021 450 0.7 300 [511]

IN90211 475 2.5 505 [512,513]

IN9052 590 10 330 [514]

IN905XL 575 20 190 [515]

SiC/IN9021 550 50 1250 [515]

MA754 1100 0.1 200 [516]

MA6000 1000 0.5 308 [516]

Figure 62. grain-boundary sliding accommodated by boundary diffusion-controlled dislocation slip.
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takes place and thus the values obtained for the activation energy after introducing

a threshold stress are the true activation energies. According to Li et al., the same

mechanism (GBS rate controlled by grain-boundary diffusion) predominates during

HSRS in both metal–matrix composites and mechanically alloyed materials.

6.6 SUPERPLASTICITY IN NANO AND SUBMICROCRYSTALLINE MATERIALS

The development of grain size reduction techniques in order to produce

microstructures capable of achieving Superplasticity at high strain rates and low

temperatures has been the focus of significant research in recent years [480,518–522].

Some investigations on the mechanical behavior of sub-microcrystalline

(1 mm> g>100nm) and nanocrystalline (g<100nm) materials have shown that

superplastic properties are enhanced in these materials, with respect to microcrystal-

line materials of the same composition [518–530]. Improved superplastic properties

have been reported in metals [518–522,524–529], ceramics [523], and intermetallics

[527,529,530]. The difficulties in studying Superplasticity in nanomaterials arise from

(a) increasing uncertainty in grain size measurements, (b) difficulty in preparing bulk

samples, (c) high flow stresses may arise, that may approach the capacity of the

testing apparatus, and (d) the mechanical behavior of nanomaterials is very sensitive

to the processing, due to their metastable nature.

The microscopic mechanisms responsible for Superplasticity in nanocrystalline

and sub-microcrystalline materials are still not well understood. Together with

superior superplastic properties, significant work hardening and flow stresses larger

than those corresponding to coarser microstructures have often been observed

[526–528]. Figure 63 shows the stress–strain curves corresponding to Ni3Al deformed

at 650 �C and 725�C at a strain rate of 1� 10�3 s�1 [Figure 63(a)] and to Al-1420

deformed at 300�C at 1� 10�2 s�1, 1� 10�1 s�1, and 5� 10�1 s�1 [Figure 63(b)].

It is observed in Figure 63(a) that nanocrystalline Ni3Al deforms superplastically

at temperatures which are more than 400�C lower than those corresponding to the

microcrystalline material [532]. The peak flow stress, that reaches 1.5GPa at 650�C,
is the highest flow stress ever reported for Ni3Al. Significant strain hardening can be

observed. In the same way, Figure 63(b) shows that the alloy Al-1420 undergoes

superplastic deformation at temperatures about 150�C lower than the microcrystal-

line material [533], and at strain-rates several orders of magnitude higher

(1� 10�1 s�1 vs. 4� 10�4 s�1). High flow stresses and considerable strain hardening

are also apparent.

The origin of these anomalies is still unknown. Mishra et al. [528,531] attributed

the presence of high flow stresses to the difficulty in slip accommodation in

nanocrystalline grains. Islamgaliev et al. [529] support this argument. The difficulty
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of dislocation motion in nanomaterials has also been previously reported in

Ref. [534]. The stress necessary to generate the dislocations responsible for

dislocation accommodation is given by Ref. [528]:

t ¼ Gb

4pl 1� nð Þ ln
lp
b

� �
� 1:67

� �
ð111Þ

Figure 63. Stress–strain curves corresponding to (a) Ni3Al deformed at 650�C (dotted line) and 725�C
(full line) at a strain rate of 1� 10�3 s�1 and (b) to Al-1420 deformed at 300�C at 1�10�2 s�1, 1� 10�1 s�1,

and 5� 10�1 s�1. From Refs. [529] and [531].
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where lp is the distance between the pinning points and t is the shear stress required
to generate the dislocations (see Figure 64). Figure 65 is a plot showing the variation

with grain size of the stress calculated from equation (111) and the flow stress

required for overall superplastic deformation [obtained from equation (100)

assuming the main deformation mechanism is GBS accommodated by lattice

diffusion-controlled slip]. It can be observed that, for coarser grain sizes, the flow

stress is high enough to generate dislocations for the accommodation of grain-

boundary sliding. For submicrocrystalline and nanocrystalline grain sizes, however,

the stress required for slip accommodation is higher than the overall flow stress. This

is still a rough approximation to the problem, since equation (111) does not include

strain-rate dependence, temperature dependence other than the modulus, as well as

the details for dislocation generation from grain boundaries. However, Mishra et al.

use this argument to emphasize that the microcrystalline behavior can apparently

Figure 65. Theoretical stress for slip accommodation and flow stress for overall Superplasticity vs. grain

size in a Ti-6Al-4V alloy deformed at 1� 10�3 s�1. From Ref. [531]. (Full line: theoretical stress for slip

accommodation; dashed line: predicted stress from empirical correlation _eess ¼ 5� 109 s=Eð Þ2 Dsd=g
2ÞÞ


.

Figure 64. Generation of dislocations for slip accommodation of GBS. From Ref. [531].
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not be extrapolated to nanomaterials. Instead, there may be a transition between

both kinds of behavior. The large strain hardening found during Superplasticity of

nanocrystalline materials has still not been thoroughly explained.

A classification of nanomaterials according to the processing route has been

made by the same authors [528,531]. Nanomaterials processed by mechanical defor-

mation (such as ECAP) are denoted by ‘‘D’’ (for deformation) and nanomaterials

processed by sintering of powders are denoted by ‘‘S’’. In the first, a large amount

of dislocations are already generated during processing, which can contribute to

deformation by an ‘‘exhaustion plasticity’’ mechanism. Thus, the applied stress,

which at the initial stage of deformation is not enough to generate new dislocations

for slip accommodation, moves the previously existing dislocations. As the easy

paths of grain-boundary sliding become exhausted, the flow stress increases until it is

high enough to generate new dislocations. ‘‘S’’ nanomaterials may not be suitable for

obtaining large tensile strains, due to the absence of pre-existing dislocations.

A significant amount of grain growth takes place during deformation even

when Superplasticity occurs at lower temperatures. In fact, the transition from low

plasticity to Superplasticity in nanomaterials is often accompanied by the onset of

grain growth. This seems unavoidable, since both grain growth and grain-boundary

sliding are thermally activated processes. It has been found that a reduction of the

superplastic temperature is usually offset by a reduction of grain-growth temperature

[527]. As the grain size decreases, the surface area of grain boundaries increases,

and thus the reduction of grain-boundary energy emerges as a new driving force

for grain growth. This force is much less significant for coarser grain sizes

(which, in turn, render higher superplastic temperatures). Thus, the possibility of

observing Superplasticity in nanomaterials, that remain nanoscale after deformation,

seems small.
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Chapter 7

Recrystallization

7.1 INTRODUCTION

The earlier chapters have described creep as a process where dislocation hardening is

accompanied by dynamic recovery. It should be discussed at this point that dynamic

recovery is not the only (dynamic) restoration mechanism that may occur with

dislocation hardening. Recrystallization can also occur and this process can also

‘‘restore’’ the metal and reduce the flow stress. Often, recrystallization during

deformation (dynamic recrystallization) is observed at relatively high strain rates

which is outside the common creep realm. However, any complete discussion of

elevated temperature creep, and particularly, a discussion of high-temperature

plasticity must include this restoration mechanism. An understanding of the

hotworking (high strain-rates and high temperatures) requires an appreciation of

both dynamic recovery and recrystallization processes. Some definitions are

probably useful, and we will use those definitions adopted by Doherty et al. [222].

During deformation, energy is stored in the material mainly in the form of

dislocations. This energy is released in three main processes, those of recovery,

recrystallization, and grain coarsening (subsequent to recyrstallization). The usual

definition of recrystallization [222] is the formation and migration of high-angle

boundaries, driven by the stored energy of deformation. The definition of recovery

includes all processes releasing stored energy that do not require the movement of

high-angle boundaries. In the context of the processes we have discussed, creep is

deformation accompanied only by dynamic recovery. Typical recovery processes

involve the rearrangement of dislocations to lower their energy, for example by the

formation of low-angle subgrain boundaries, and annihilation of dislocation line

length in the subgrain interior, such as by Frank network coarsening. Grain

coarsening is the growth of the mean grain size driven by the reduction in grain-

boundary area.

It is now recognized that recrystallization is not a Gibbs I transformation that

occurs by classic nucleation and growth process as described by Turnbull [535] and

Christian [536]. �G* and r*, the critical Gibb’s free energy and critical-sized

embryos are unrealistically large if the proper thermodynamic variables are used. As

a result of this disagreement, it is now universally accepted [537], as first proposed by

Cahn [538], that the new grains do not nucleate as totally new grains by the atom by

atom construction assumed in the classic kinetic models. Rather, new grains grow

from small regions, such as subgrains, that are already present in the deformed
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microstructure. Special grains do not have to form. These embryos are present in the

starting structure. Only subgrains with a high misorientation angle to the adjacent

deformed material appear to have the necessary mobility to evolve into new

recrystallized grains. Typical nucleation sites include pre-existing high-angle

boundaries, shear bands, and highly misoriented deformation zones around hard

particles. Misoriented ‘‘transition’’ bands (or geometric necessary boundaries) inside

grains are a result of different parts of the grain having undergone different lattice

rotations due to different slip systems being activated. Figure 66 (from Ref. [222])

illustrates an example of recrystallization in 40% compressed pure aluminum. New

grains 3 and 17 are only growing into the deformed regions A and B, respectively,

with which they are strongly misoriented and not into regions with which they share

a common misorientation; 17 has a low-angle misorientation with A and 3 with B.

It should be mentioned that recrystallization often leads to a characteristic texture(s),

Figure 66. static recrystallization in aluminum cold worked 40%. A large grain has fragmented into two

regions, A and B. From Doherty et al. [222].
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usually different that any texture developed as a consequence of the prior deforma-

tion that is the driving force for any recrystallization.

7.2 DISCONTINUOUS DYNAMIC RECRYSTALLIZATION (DRX)

Recrystallization can occur under two broad conditions; static and dynamic.

Basically, static occurs in the absence of external plasticity during the recrystalliza-

tion. The most common case for static is heating cold-worked metal leading to a

recrystallized microstructure. Dynamic recrystallization occurs with concomitant

plasticity. This distinction is complicated, somewhat, by the more recent suggestion

of metadynamic recrystallization (MRDX) [539] that can follow dynamic recrystal-

lization, generally at elevated temperature. Although it occurs without external

plasticity, it can occur, quickly. It is distinguished from static recrystallization (SRX)

in that MDRX is relatively sensitive to prior strain-rate but insensitive to prestrain

and temperature. static recrystallization depends on prestrain and temperature, but

only slightly on strain-rate. The recrystallization remarks in the previous section are

equally valid for these two cases (although Figure 66 was a static recrystallization

example) although differences are apparent. Dynamic recrystallization is more

important to discuss in the context of creep plasticity.

A single broad stress peak, where the material hardens to a peak stress, followed

by significant softening is often evidenced in DRX. The softening is largely

attributable to the nucleation of growing, ‘‘new,’’ grains that annihilate dislocations

during growth. This is illustrated in Figure 67. The restoration is contrasted by

dynamic recovery, where the movement of, and annihilation of, dislocations at, high-

angle boundaries is not important. DRX may commence well before the peak stress.

This becomes evident without microstructural examination by examining the

hardening rate, y, as a function of flow stress. For customary Stage III hardening,

y decreases at a constant or decreasing ‘‘rate’’ with stress. DRX, on the other hand,

causes an ‘‘acceleration’’ of the decrease in hardening rate.

Sometimes the single peak in the stress versus strain behavior in DRX is not

observed; rather multiple peaks may be evident leading to the appearance of

undulations in the stress versus strain behavior that ‘‘dampen’’ into an effective

‘‘steady-state.’’ This is also illustrated in Figure 67. It has been suggested that the

cyclic behavior indicates that grain coarsening is occurring while a single peak is

associated with grain refinement [540].

Although DRX is frequently associated with commercial metal-forming strain

rates (e.g., 1 s�1 and higher), Figure 67 illustrates that DRX can occur at more

modest rates that approach those in ordinary creep conditions. This explains why

some ambiguity has been experienced in interpreting creep deformation where both
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dynamic recovery and recrystallization are both occurring. As some recent analysis

has indicated, some of the creep data of Figure 17 of Zr may include some data for

which some DRX may be occurring. Metals such as pure Ni and Cu frequently

exhibit DRX [7,78].

7.3 GEOMETRIC DYNAMIC RECRYSTALLIZATION

The starting grains of the polycrystalline aggregate distort with relatively large strain

deformation. These boundaries may thin to the dimensions of the subgrain diameter

with strain approaching 2–10 (depending on the starting grain size), achievable

Figure 67. DRX in Ni and Ni–Co alloys in torsion [13].
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in torsion or compression. In the case of Al, the starting HABs (typically 35�

misorientation) are serrated as a result of subgrain-boundary formation, in

association with DRV, where the typical misorientations are about a degree, or

so. As the grains thin to about twice the subgrain diameter, nearly 1/3–1/2 of the

subgrain facets have been replaced by high-angle boundaries, which have ancestry to

the starting polycrystal. The remaining two-thirds are still of low misorientation

polygonized boundaries typically of a degree or so. As deformation continues,

‘‘pinching off’’ may occur which annihilates HABs and the high-angle boundary area

remains constant. Thus, with GDX, the HAB area can dramatically increase but not

in the same discontinuous way as DRX. GDX has been confused with DRX, as well

and CR (discussed in a later section), but has been confirmed in Al and Al–Mg alloys

[146,156], and may occur in other alloys as well, including Fe-based and Zr [221,541].

Figure 40 showed the progression in Al at elevated temperature in torsion [18].

7.4 PARTICLE-STIMULATED NUCLEATION (PSN)

As pointed out by Humphreys [222], an understanding of the effects of second-

phase particles on recrystallization is important since most industrial alloy contain

second-phase particles and such particles have a strong influence on the recrystalliza-

tion kinetics, microstructure, and texture. Particles are often known for their ability to

impede the motions of high-angle boundaries during high-temperature annealing or

deformation (Zener pinning). During the deformation of a particle-containing alloy,

the enforced strain gradient in the vicinity of a non-deforming particle creates a region

of high dislocation density and large orientation gradient, which is an ideal site for the

development of a recrystallization nucleus. The mechanisms of recrystallization in

two-phase alloys do not differ from those in single-phase alloys. There are not a great

deal of systematic measurements of these zones, but it appears that the deformation

zone may extend a diameter of the particle, or so, into the matrix and lead to

misorientations of tens of degrees from the adjacent matrix.

7.5 CONTINUOUS REACTIONS

According to McNelley [222], it is now recognized that refined grain structures may

evolve homogeneously and gradually during the annealing of deformed metals, either

with or without concurrent straining. This can occur even when the heterogeneous

nucleation and growth stages of primary recrystallization do not occur. ‘‘Continuous

reactions’’ is a term that is sometimes used in place of others that imply at least similar

process such as ‘‘continuous recrystallization’’, ‘‘In situ recrystallization’’, and
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‘‘extended recovery.’’ It is often commonly observed that deformation textures

sharpen and components related to the stable orientations within the prior deforma-

tion textures are retained [542]. These observations are consistent with recovery as the

sole restoration mechanism, suggesting that the term ‘‘Continuous reactions’’ may be

more meaningful a description than ‘‘continuous recrystallization.’’

Mechanisms proposed to explain the role of recovery in high-angle boundary

formation include subgrain growth via dislocation motion [540], the development of

higher-angle boundaries by the merging of lower-angle boundaries during subgrain

coalescence [542] and the increase of boundary misorientation through the

accumulation of dislocations into the subgrain boundaries [540]. These processes

have been envisioned to result in a progressive buildup of boundary misorientation

during (static or dynamic) annealing, resulting in a gradual transition in boundary

character and formation of high-angle grain boundaries.
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Chapter 8

Creep Behavior of Particle-Strengthened Alloys

8.1 INTRODUCTION

This chapter will discuss the behavior of two types of materials that have creep

properties enhanced by second phases. These materials contain particles with square

or spherical aspect ratios that are both coherent and, but generally, incoherent with

the matrix, and of relatively low volume fractions. This chapter is a review of work

in this area, but it must be recognized that other reviews have been published and

this chapter reflects the particularly high-quality reviews by Reppich and coworkers

[543–545] and Arzt [546,547] and others [548–554]. It should also be mentioned that

this chapter will emphasize those cases where there are relatively wide separations

between the particles, or, in otherwords, the volume fraction of the precipitate

discussed here is nearly always less than 30% and usually less than 10%. This

contrasts the case of some g/g0 alloys where the precipitate, g0 occupies a substantial

volume fraction of the alloys.

8.2 SMALL VOLUME-FRACTION PARTICLES THAT ARE

COHERENT AND INCOHERENT WITH

THE MATRIX WITH SMALL ASPECT RATIOS

8.2.1 Introduction and Theory

It is well known that second-phase particles provide enhanced strength at

lower temperatures and there have been numerous discussions on the source

of this strength. A relatively recent review of, in particular, low-temperature

strengthening by second-phase particles was published by Reppich [544]. Although

a discussion of the mechanisms of lower temperature second-phase strengthening

is outside the scope of this chapter, it should be mentioned that the strength

by particles has been believed to be provided in two somewhat broad categories

of strengthening, Friedel cutting or Orowan bypassing. Basically, the former

involves Coherent particles and the flow stress of the alloy is governed by the

stress required for the passage of the dislocation through particle. The Orowan

stress is determined by the bypass stress based on an Orowan loop mechanism. In the

case of oxide dispersion strengthened (ODS) alloys, in which the particles are

incoherent, the low-temperature yield stress is reasonably predicted by the Orowan
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loop mechanism [544,555]. The Orowan bowing stress is approximated by the classic

equation,

tor ¼ Gb=L ¼ 2Td

bL

� �
ð112Þ

where tor is the bowing stress, L is the average separation between particles, and Td is

the dislocation line tension. This equation, of course, assumes that the elastic strain

energy of a dislocation can be estimated by Gb2/2, which, though reasonable, is not

firmly established.

This chapter discusses how the addition of second phases leads to enhanced

strength (creep resistance) at elevated temperature. This discussion is important

for at least two reasons: First, as Figure 68 illustrates, the situation at elevated

Figure 68. Compressive 0.2% yield stress versus temperature. Shaded: Orowan stress given as

low-temperature yield-stress increment due to oxide dispersoids. (a) ODS Superalloy MA 754,

(b) Pt-based ODS alloys. From Ref. [544].

152 Fundamentals of Creep in Metals and Alloys



temperature is different than at lower temperatures. This figure illustrates that the

yield stress of the single-phase matrix is temperature dependent, of course, but there

is a superimposed strengthening (suggested in the figure to be approximately

athermal) by Orowan bowing [555]. It is generally assumed that the bowing process

cannot be thermally activated, but the non-shearable particles can be negotiated by

climb. At higher temperatures, it is suggested that the flow stress becomes only a

fraction of this superimposed stress and an understanding of the origin is a

significant focus of this chapter. Second, in the previous chapters it was illustrated

how solute additions, basically obstacles, lead to increased creep strength. There is,

essentially, a roughly uniform shifting of the power law, power-law-breakdown and

low-stress exponent regimes to higher stresses. This is evident in Figure 69 where the

additions of Mg to Al are described. In the case of alloys with second-phase particles,

however, there is often a lack of this uniform shift and sometimes the appearance

what many investigators have termed a ‘‘threshold stress,’’ sTH. The intent of this

term is illustrated in Figure 70, based on the data of Lund and Nix and additional

interpretations by Pharr and Nix [557,558]. Figure 70 reflects ‘‘classic’’ particle

Figure 69. Steady-state relation between strain-rate _ee and flow stress for the alloys of this work compared

to literature data from slow tests (Al, Al–Mg, Al–Mn). Adapted from Ref. [556].
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strengthening by oxide dispersoids (ThO2) in a Ni–Cr solid solution matrix. These

particles, of course, are incoherent with the matrix. The ‘‘pure’’ solid solution alloy

behavior is also indicated. Particle strengthening is evident at all steady-state stress

levels, but at the lower stresses there appears a modulus-compensated stress below

which creep does not appear to occur or is at least very slow. Again, this has been

termed the ‘‘threshold stress,’’ sTH. In otherwords, there is not a uniform shift of the

strengthening on logarithmic axes; there appears a larger fraction of the strength

provided by the particles at lower stress (high temperatures) than at higher stresses

(lower temperatures). In fact, the concept of a threshold stress was probably

originally considered one of athermal strengthening. This will be discussed more

later, but this ‘‘coarse’’ description identifies an aspect of particle strengthening that

appears generally different from dislocation substructure strengthening and solution

strengthening (although the latter, in certain temperature regimes, may have a nearly

athermal strengthening character). The ‘‘threshold stress’’ of Figure 70 is only about

half the Orowan bowing stress, suggesting that Orowan bowing may not be the basis

of the threshold. Activation energies appear relatively high (greater than lattice

self-diffusion of the matrix) as well as the stress exponents being relatively high

(n� 5) in the region where a threshold is apparent.

Figure 70. The normalized steady-state creep-rate versus modulus-compensated steady-state stress.

Adapted from Ref. [557,558].
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Particle strengthening is also illustrated in Figure 69, based on a figure from Ref.

[556], where there is, again, a non-uniform shift in the behavior of the particle-

strengthened Al. The figure indicates the classic creep behavior of high-purity Al.

Additionally, the behavior of Mg (4.8wt.%)-solute strengthened Al is plotted (there

is additionally about 0.05wt.% Fe and Si solute in this alloy). The Mg atoms

significantly strengthen the Al. The strengthening may be associated with viscous

glide in some temperature ranges in this case. However, an important point is that at

higher modulus-compensated stresses, the Al–Mn alloy (strengthened by incoherent

Al6Mn particles) has slightly greater strength than pure Al (there is also an

additional 0.05wt.% Fe and Si solute in this alloy). It does not appear to have as

high a strength as the solute strengthened Al-4.8 Mg alloy. However, at lower

applied stresses (lower strain rates) or higher temperatures, the second-phase

strengthened alloy has higher strength than both the pure matrix and the solution-

strengthened alloy. As with the ODS alloy of Figure 70, a ‘‘threshold’’ behavior is

evident. The potential technological advantage of these alloys appears to be provided

by this threshold-like behavior. As the temperature is increased, the flow stress does

not experience the magnitudes of decreases as by the other (e.g., solute and

dislocation) strengthening mechanisms.

Basically, the current theories for the threshold stress fall into one of two main

categories; a threshold arising due to increased dislocation line length with climb

over particles and the detachment stress to remove the dislocation from the particle

matrix interface after climb over the particle.

8.2.2 Local and General Climb of Dislocations over Obstacles

It was presumed long ago, by Ansell and Weertman [559], that dislocation climb

allowed for passage at these elevated temperatures and relatively low stresses. The

problem with this early climb approach is that the creep-rate is expected to have a

low stress-dependence with an activation energy equivalent to that of lattice self-

diffusion. As indicated in the figures just presented in this chapter, the stress

dependence in the vicinity of the ‘‘threshold’’ is relatively high and the activation

energy in this ‘‘threshold’’ regime can be much higher than that of lattice self-

diffusion. More recent analysis has attempted to rationalize the apparent threshold.

One of the earlier approaches suggested that for stresses below the cutting, sct

(relevant for some cases of coherent precipitates) or Orowan bowing stress, sor, the

dislocation must, as Ansell and Weertman originally suggested, climb over the

obstacle. This climbing process could imply an increase in dislocation line length

and, hence, total elastic strain energy, which would act as an impediment to plastic

flow [560–565]. The schemes by which this has been suggested are illustrated in

Figure 71, adapted from Ref. [543]. Figure 72, also from Ref. [543], shows an edge
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dislocation climbing, with concomitant slip, over a spherical particle. As the

dislocation climbs, work is performed by the applied shear. The total energy change

can be described by

dE ffi ðGb2=2ÞdL� tbLdx� snbLdy� dEel ð113Þ

The first term is the increase in elastic strain energy associated with the increase in

dislocation line length. This is generally the principal term giving rise to the

(so-called or apparent) threshold stress. The second term is the work done by

the applied stress as the dislocation glides. The third term is the work done by the

normal component of the stress as the dislocation climbs. The fourth term

accounts for any elastic interaction between the dislocation and the particle [566],

Figure 71. Compilation by Blum and Reppich [543] of models for dislocation climb over second-phase

particles.
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which does not, in its original formulation, appear to include coherency stresses,

although this would be appropriate for Coherent particles. This equation is often

simplified to

dE ¼ ðGb2=2ÞdL� tbLdx ð114Þ

The critical stress for climb of the dislocation over the particle is defined under the

condition where

ðdE=dxÞ ¼ 0

or

tc ¼ Gb=Lð0:5a0Þ ð115Þ

Arzt and Ashby defined the a0 parameter¼ (dL/dx)max as the climb resistance and

tc can be regarded as the apparent threshold stress. Estimates have been made of a0

by relating the volume fraction of the particles, and the particle diameter to the value

of L in equation (115). Furthermore, tyre is a statistical distribution of particle

spacings and Arzt and Ashby suggest,

tc=ðGb=LÞ ¼ a0=ð1:68þ a0Þ ð116Þ

Figure 72. (a) Climb of an edge dislocation over a spherical particle; (b) top view. From Ref. [543].
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while Blum and Reppich use a similar relationship which includes the so-called

‘‘Friedel correction’’

tc=ðGb=LÞ ¼ a01:5=ð2
ffiffiffi
2

p
þ

ffiffiffiffiffiffi
a03

p
Þ ð117Þ

These equations (115–117), together with the values of a0, allow a determination of

the threshold stress. Note that for general climb there is the suggestion that tc is

particle size independent.

The determination of a0 will depend on whether climb is local or general; both

cases are illustrated in Figure 71. The portion of the dislocation that climbs can be

either confined to the particle–matrix interfacial region (local), or the climbing region

can extend beyond the interfacial region, well into the matrix (general). This

significantly affects the a0 calculation.
First, equation (115) suggests that a maximum value for a0 which corresponds to

the Orowan bowing stress. It has been suggested that the Orowan stress can be

altered based on randomness and elastic interaction considerations [561,564], giving

values of 0.5< a0 <1.0. For local climb, the value of a0 depends on the shape of the

particle, with 0.77< a0 <1.41, from spherical to square shapes [560,561,564]. For

extended or general climb, which is a more realistic configuration in the absence of

any particular attraction to the particle [567], the a0 is one order of magnitude, or so,

smaller. Additionally, the value of a0 will be dependent on the volume fraction, f,

as f 1/2 and values of a0 range from 0.047 to 0.14 from 0.01< f<0.10 [543]. Blum

and Reppich suggested that for these circumstances,

for local climb tc¼ 0.19 [Gb/L]

and for general climb tc¼ 0.004 to 0.02 [Gb/L]

This implies that there is a threshold associated with the simple climbing of a

dislocation over particle-obstacles, without substantial interaction. This ‘‘threshold’’

stress is a relatively small fraction of the Orowan stress. There is the implicit

suggestion in all of this analysis that the stress calculated from the above equations is

athermal in nature and this will be discussed subsequently.

8.2.3 Detachment Model

In connection with the above, however, there has been evidence that dislocations

may interact with incoherent particles. This was observed by Nardone and Tien [568]

and later by Arzt and Schroder [569] and others [571] using TEM of creep-deformed

ODS alloys. Figures 73 and 74 illustrate this. The dislocations must undergo local

climb over the precipitate and then the dislocation must undergo ‘‘detachment’’.

Srolovitz et al. [571] suggested that incoherent particles have interfaces that may slip
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and can attract dislocations by reducing the total elastic strain energy. Thus, there is

a detachment stress that reflects the increase in strain energy of the dislocation on

leaving the interface. Basically, Arzt and coworkers suggest that the incoherent

dispersoids strengthen by acting as, essentially, voids. Arzt and coworkers [562,573–

575] analyzed the detachment process in some detail and estimated td as,

td ¼ ½1� k2R�1=2ðGb=LÞ ð118Þ

where kR is the relaxation factor described by

ðGb2Þp ¼ kRðGb2Þm ð119Þ

Figure 73. The mechanism of interfacial pinning. (a) Perspective view illustrating serial local climb over

spherical particles of mean (planar) radius rs and spacing l and subsequent detachment. (b) Circumstantial

TEM evidence in the creep-exposed ferritic ODS superalloy PM 2000 [570].
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where ‘‘p’’ refers to the particle interface and ‘‘m’’ the matrix. In the limit that

kR¼ 1, there is no detachment process.

Reppich [532] modified the Arzt et al. analysis slightly, using Fleischer–Friedel

obstacle approximation and suggested that:

td ¼ 0:9ð1� k2RÞ3=4
�

1þ ð1� k2RÞ3=4
� �ðGb=LÞ ð120Þ

This decreases the values of equation (118) roughly by a factor of two. Note that

as with general climb, td and tc are independent of the particle size. It was suggested,
by both of the above groups, that this detachment process could be thermally

activated. This equation suggests the td is roughly Gb/3L, substantially higher than

tc for general climb, as later illustrated in Figure 80. Arzt and Wilkinson [562]

showed that if kR is such that there is just a 6%, or less, reduction in the elastic strain

energy, then local climb becomes the basis of the threshold stress instead of

detachment. For general climb, the transition point is kR about equal to one.

Rosler and Arzt [575] extended the detachment analysis to a ‘‘full kinetic model’’

and suggested a constitutive equation for ‘‘detachment-controlled’’ creep,

_ee ¼ _ee0 exp ð�Gbr2s=kT Þð1� kRÞ3=2ð1� s=sdÞ3=2
� � ð121Þ

where

_ee0 ¼ C2DvLrm=2b,

and rs is the particle radius. This was shown to be valid for random arrays of

particles. Figure 75 plots this equation for several values of kR as a function of

Figure 74. TEM evidence of an attractive interaction between dislocation and dispersoid particles:

(a) dislocation detachment from a dispersoid particle in a Ni alloy; (b) dissociated superdislocation

detaching from dispersoid particles in the intermetallic compound Ni3Al. From Refs. [547,569,572].
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strain-rate. Threshold behavior is apparent for modest values of kR. This model

appears to reasonably predict the creep behavior of various dispersion-strengthened

Al alloys [546,576] with reasonable kR values (0.75–0.95). As Arzt points out, this

model, however, does not include the effects of dislocation substructure. Arzt noted

from this equation that an optimum particle size is predicted. This results from the

probability of thermally activated detachment being raised for small dispersoids and

that large particles (for a given volume fraction) have a low Orowan stress and,

hence, small detachment stress [546]. It should be noted that Figure 75 does not

suggest a ‘‘pure’’ threshold stress (below which plasticity does not occur). Rather,

thermally activated detachment is suggested, and this will be discussed more later.

More recently, Reppich [545] reviewed the reported In situ straining experiments in

an ODS alloys at elevated temperature and concluded that the observations of

the detachment are essentially in agreement with the above description (thermal

activation aside). In situ straining experiments by Behr et al. at 1000�C in the TEM

also appear to confirm this detachment process in dispersion-strengthened

intermetallics [572], as shown in Figure 74.

Figure 75. Theoretical prediction of the creep-rate (normalized) as a function of stress (normalized) on

the basis of thermally activated dislocation detachment from attractive dispersoids, as a function of

interaction parameter k. The change of curvature at high strain rates (broken line) indicates the transition

to the creep behavior of dispersoid-free material and does not follow from the equation [574].

Creep Behavior of Particle-Strengthened Alloys 161



8.2.4 Constitutive Relationships

The suggestion of the above is that Particle-strengthened Alloys can be

approximately described by relationships that include the threshold stress. A

common relationship that is used to describe the steady-state behavior of second-

phase strengthened alloys (at a fixed temperature) is,

_eess ¼ A0ðs� sthÞnm ð122Þ

where sth is the threshold stress and nm is the steady-state stress exponent of

the matrix. Figure 76 [577] graphically illustrates this superposition strategy. As

will be discussed subsequently, this equation is widely used to assess the value of

the threshold stress. Additional data that illustrates the value of equation (122)

for superalloys is illustrated in Figure 77 adapted from Ajaja et al. [578]. Figure 78

(adapted from Ref. [579]) illustrates that at higher stresses, above tor, decreases in

stress (and strain-rate) illustrate a threshold behavior. That is, a plot of _ee1=n versus

Figure 76. Comparison of the creep behavior of ZrO2 dispersion strengthened Pt-based alloys at 1250�C:
(a) Double-logarithmic Norton plot of creep rate _ee versus stress s; (b) Lagneborg–Bergman plot;

(c) dependence of sTH on _ee. The shaded bands denote the ratio sp/sor. From Ref. [572].
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s extrapolates to tor, an ‘‘apparent sTH.’’ However, as s decreases below tor, a
new threshold appears and this, then, is the sTH relevant to creep plasticity. A sTH

can be estimated with low-stress plots such as Figure 78 [580,581] (also see Figure 80).

These give rise to estimates of sTH and allow plots such as Figure 77. However,

Figure 76(b) and (c) illustrate that the high temperature sTH is not a true threshold

and creep occurs below sTH. This is why sTH estimates based on plots such as

Figure 78 decrease with increasing temperature.

An activation energy term can be included in the form of,

_eess ¼ A00 expð�Q=kT Þ s� sth

G

� 	nm ð123Þ

or

_eess ¼ A00DGb

kT

s� sth

G

� 	nm ð124Þ

where D is the diffusion coefficient. However, the use of D works in some cases

while not in others for both coherent and incoherent particles. Figure 79, taken from

Figure 77. Double-logarithmic plot of creep-rate versus reduced stress s�sTH for various superalloys.

After Ajaja et al. [578].
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Ref. [582], illustrates somewhat different behavior from Figure 70 in that the data do

not appear to reduce to a single line when the steady-state stress is modulus-

compensated and the steady-state creep-rates are lattice self-diffusion compensated.

The activation energy for creep is reported to be relatively high at 537 kJ/mol (as

compared to 142 kJ/mol for lattice self-diffusion). Cadek and coworkers [583,584]

illustrate that for experiments on ODS Cu, the (modulus-compensated) threshold

stress, determined by the extrapolation procedure described in Figure 79, is

temperature-dependent. They propose that the activation energies should be

determined using the usual equation but at constant (s�sth)/G rather than s/G
as used in typical (especially five-power-law for single-phase metals and alloys) creep

activation energy calculations. The activation energies calculated using this

procedure reasonably correspond to lattice or dislocation-core self-diffusion. Thus,

the investigators argued that the activation energy for diffusion could reasonably be

used as the activation energy term such as in equation (123).

As discussed earlier, Figure 80 is an idealized plot by Blum and Reppich that

illustrates many of the features and parameters for particle strengthening. This is

Figure 78. _ee1=n versus s-plot for determination of sTH in g’-hardened Nimonic PE 16 by back

extrapolation (arrows). From Ref. [579].
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a classic logarithmic plot of the steady-state creep- (strain-) rate versus the steady-

state stress. sor is indicated and apparent threshold behavior is observed above this

stress. A second threshold-like behavior is evident below the Orowan stress; one for

incoherent particles and another for Coherent particles at particularly low stresses

(high temperature). The incoherent particles evince interfacial pinning and the more

effective (or higher) threshold-like behavior is observed in the absence of a

detachment stress. There has been some discussion as to what mechanism may be

applicable at stresses below the apparent threshold, and it appears that grain-

boundary sliding and even diffusional creep have been suggested [585,586]. These,

however, are speculative as even single crystals appear to show sub-threshold

plasticity. Figure 75 was basically an attempt to explain creep below the apparent

sTH through thermally activated detachment. This approach has become fairly

popular [587], although recently it has been applied below, but not above, an

apparent threshold. A difficulty with this approach is that Figures 73 and 74 suggest

that a considerable length of dislocation is trapped in the interface which would

appear to imply a very large activation energy for detachment, much larger than that

for Dv, in equation (121). In at least some instances, the plasticity below the apparent

threshold is due to a change in deformation mechanism [588]. Dunand and Jansen

Figure 79. Lack of convergence of the different dispersion-strengthened creep curves with Qsd

compensation.
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[589,590] suggested that for larger volume fractions of second-phase particles (e.g.,

25%) dislocation pile-ups become relevant and additional stress terms must be added

to the conventional equations. However, those considerations do not appear relevant

to the volume fractions being typically considered here.

8.2.5 Microstructural Effects

a. Transient Creep Behavior and Dislocation Structure. The strain versus time

behavior of Particle-strengthened Alloys during primary and transient creep is

similar to that of single-phase materials in terms of the strain-rate versus strain

trends as illustrated in Figure 81. Figure 81(a) illustrates Incoloy 800H [549] and (b)

Nimonic PE 16 [579]. Both generally evince Class M behavior although the carbide-

strengthened Incoloy shows an inverted transient (such as a Class A alloy) but this

was suggested to be due to particle structure changes, which must be considered with

prolonged high-temperature application. The Nimonic alloy at the lowest stress also

shows such an inverted transient and this was suggested as possibly being due to

particle changes in this initially coherent g0-strengthened alloy.

Figure 80. Creep behavior of particle-strengthened materials (schematic). The stress is given in units of

the classical Orowan stress. From Ref. [543].
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There has been relatively little discussed in the literature regarding Creep

transients. Blum and Reppich suggest that the transients between steady-states

with stress-drops and stress-jumps are analogous to the single phase metals both in

terms of the nature of the mechanical (e.g., strain-rate versus strain) trends and the

final steady-state strain-rate values, as well as the final substructural dimensions.

The dislocation structure of Particle-strengthened Alloys has been examined, most

particularly by Blum and coworkers [543,556]. The Subgrain size in the particle-

strengthened Al–Mn alloy are essentially identical to those of high purity Al at the

same modulus-compensated stresses. Similar findings were reported for Incoloy

800H [591] and TD–Nichrome [563]. These results show that the total stress level

affects the subgrain substructure, even if there is an interaction between the particles

and the subgrain boundaries. Blum and Reppich suggest, however, that the density

of dislocations within the subgrains seem to depend on s�sTH rather than s,
suggesting that particle hardening diminishes the network dislocation density

compared to the single-phase alloy at the same value of sss/G. Some of these trends

are additionally evident from Figure 82 taken from Straub et al. [90]. One

interpretation of this observation is that the Subgrain size reflects the stress but does

not determine the strength. In contrast, Arzt suggests that only at higher stresses,

where the alloys approach the behavior of dispersoid-free matrix, have dislocation

substructures been reported [582]. Blum, however, suggests that this may be due

to insufficient strain to develop the substructure that would ultimately form in the

absence of interdiction by fracture [592].

b. Effect of Volume Fraction. As expected [585], higher volume fractions, for

identical particle sizes, are associated with greater strengthening and, of course,

threshold behavior. Others [593] have also suggested that the volume fraction of the

second-phase particles can affect the value of the threshold stress.

Figure 81. Half-logarithmic plot of creep rate _ee versus (true) strain of a single-phase material and

particle-strengthened material (a) Incoloy 800 H; (b) Nimonic PE 16. Adapted from Refs. [543,579,591].
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c. Grain Size Effects. Lin and Sherby [553], Stephens and Nix [588], and Gregory

et al. [594] examined the effects of grain size on the creep properties of dispersion-

strengthened Ni–Cr alloys and found that smaller grain size material may not exhibit

a threshold behavior and evince stress exponents more typical of single-phase

polycrystalline metals with high elongations [595]. In fact, Nix [596] suggests that this

decrease in stress exponent may be due to grain-boundary sliding and possibly

Superplasticity [596]. Again, however, Arzt [546] reports this sigmoidal behavior

occurs in single crystals as well and the loss in strength (presumably below that of

thermally activated detachment) involves other poorly understood processes

including changes in the size or number of particles.

8.2.6 Coherent Particles

Strengthening from Coherent particles can occur in a variety of ways that usually

involves particle cutting. This cutting can be associated with (a) the creation of

Figure 82. Steady-state dislocation spacings of Ni-based alloys. Adapted from Ref. [90].
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antiphase boundaries [e.g., g� g0 superalloys], (b) the creation of a step in the particle,

(c) differences in the stacking fault energy between the particle and the matrix, (d) the

presence of a stress field around the particle, and (e) other changes in the ‘‘lattice

friction stress’’ to the dislocation and the particle [133].

Most of the earlier work referenced was relevant to incoherent particles. This is

probably in part due to the fact that Coherent particles are often precipitated from

the matrix, as opposed to added by mechanical alloying, etc. Precipitates may be

unstable at elevated temperatures and, as a consequence, the discussion returns to

that of incoherent particles. Of course, exceptions include the earlier referenced g� g0

of superalloys and, more recently, the AlSc3 precipitates in Al–Sc alloys by Seidman

et al. [597]. In this latter work, Coherent particles are precipitated. The elevated

temperature strengths are much less than the Orowan bowing stress and also less

than expected based on the shearing mechanism. Thus, it was presumed that the

rate-controlling process is general climb over the particle, consistent with other

literature suggestions. This, as discussed in the previous section, is associated with a

relatively low threshold stress that is a small fraction of the Orowan bowing stress at

about 0.03sor, and, as discussed, is independent of the particle size. Seidman et al.

found that the normalized threshold stress increases significantly with the particle

size and argued that this could only be rationalized by elastic interaction effects, such

as coherency strain and modulus effects. Detachment is not important. The results

are illustrated in Figure 83. They also found that subgrains may or may not form.

They do appear to obey the standard equations that relate the steady-state stress

to Subgrain size when they are observed. Seidman et al. do appear to suggest that

steady-state was achieved without the formation of subgrains.

Figure 83. Normalized threshold stress versus coherent precipitate radius. From Ref. [598].

Creep Behavior of Particle-Strengthened Alloys 169



This Page Intentionally Left Blank



Chapter 9

Creep of Intermetallics

9.1. Introduction 173

9.2. Titanium Aluminides 175

9.2.1. Introduction 175

9.2.2. Rate Controlling Creep Mechanisms in FL TiAl

Intermetallics During ‘‘Secondary’’ Creep 178

9.2.3. Primary Creep in FL Microstructures 186

9.2.4. Tertiary Creep in FL Microstructures 188

9.3. Iron Aluminides 188

9.3.1. Introduction 188

9.3.2. Anomalous Yield Point Phenomenon 190

9.3.3. Creep Mechanisms 194

9.3.4. Strengthening Mechanisms 197

9.4. Nickel Aluminides 198

9.4.1. Ni3Al 198

9.4.2. NiAl 208



This Page Intentionally Left Blank



Chapter 9

Creep of Intermetallics

9.1 INTRODUCTION

The term ‘‘intermetallics’’ has been used to designate the intermetallic phases and

compounds which result from the combination of various metals, and which form a

large class of materials [598]. There are mainly three types of superlattice structures

based on the f.c.c. lattice, i.e. L12 (with a variant of L012 in which a small interstitial

atom of C or N is inserted at the cube center), L10, and L12-derivative long-period

structures such as DO22 or DO23. The b.c.c.-type structures are B2 and DO3 or L21.

The DO19 structure is one of the most typical superlattices based on h.c.p. symmetry.

Table 4 lists the crystal structure, lattice parameter and density of selected inter-

metallic compounds [599]. A comprehensive review on the physical metallurgy and

processing of intermetallics can be found in [600].

Intermetallics often have high melting temperatures (usually higher than 1000�C),
due partly to the strong bonding between unlike atoms, which is, in general, a mixture

between metallic, ionic and covalent to different extents. The presence of these strong

bonds also results in high creep resistance. Another factor that contributes to the

superior strength of intermetallics at elevated temperature is the high degree of long-

range order [602]. The effect of order is, first, to slow diffusivity. The reason for this

is that the number of atoms per unit cell is large in a material with long-range order.

Therefore in alloys in which dislocation climb is rate-controlling, a decrease in

the diffusion rate would result in a drop in the creep rate and therefore in an increase

Table 4. Crystal structure, lattice parameters and density of selected intermetallic compounds.

Alloy

Structure

(Bravais lattice)

Lattice Parameters

Density

(g/cm3)a (nm) c (nm)

Ni3Al L12 (simple cubic) 0.357 – 7.40

NiAl B2 (simple cubic) 0.288 – 5.96

Ni2AlTi DO3 0.585 – 6.38

Ti3Al DO19 0.577 0.464 4.23

TiAl L10 0.398 0.405 3.89

Al3Ti DO22 0.395 0.860 3.36

FeAl B2 (simple cubic) 5.4–6.7 [601]

Fe3Al DO3 5.4–6.7 [601]

MoSi2 C11b 6.3
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of the creep resistance. Secondly, the presence of a high degree of long-range order

may retard the viscous motion of dislocations. This is due to the fact that, when a

dislocation moves in a non-perfect lattice, the long-range order is damaged and this

leads to an increase in energy or a dragging force. Thus, the presence of order results

in a decrease of the creep rate in the intermetallic alloys in which the mechanism of

viscous glide of dislocations is rate-controlling.

One major disadvantage of these materials, that is limiting their industrial

application, is brittleness [603]. This is attributed to several factors. First, the strong

atomic bonds as well as the long-range order give rise to high Peierls stresses.

Transgranular cleavage will occur in a brittle manner if the latter are larger than

the stress for nucleation of a crack. Second, grain boundaries are intrinsically weak.

The low boundary cohesion results in part from the directionality of the distribution

of the electronic charge in ordered alloys [600]. The strong atomic bonding between

the two main alloy constituents is related to the p-d orbital hibridization, which

leads to a strong directionality in the charge distribution. In grain boundaries

the directionality is reduced and thus the bonding becomes much weaker.

Other factors that may contribute to the brittleness in intermetallics are the limited

number of operative slip systems, segregation of impurities at grain boundaries, a

high work hardening rate, planar slip, and the presence of constitutional defects. The

latter may be, for example, atoms occupying sites of a sublattice other than their

own sublattice (antisites) or vacancies of deficient atomic species (constitutional

vacancies). The planar faults, dislocation dissociations, and dislocation core

structures typical of intermetallics were summarized by Yamaguchi and Umakoshi

[604]. Other so-called extrinsic factors that cause brittleness are the presence of

segregants, interstitials, moisture in the environment, poor surface finish, and

hydrogen [605]. It appears that those intermetallics with more potential as high-

temperature structural materials, i.e., those which are less brittle, are compounds

with high crystal symmetry and small unit cells. Thus, Nickel aluminides, Titanium

Aluminides, and Iron aluminides have been the subject of the most activities in

research and development over the last two decades. These investigations were

stimulated by both the possibility of industrial application and scientific interest

[598–607].

Creep resistance is a critical property in materials used for high temperature

structural applications. Some intermetallics may have the potential to replace nickel

superalloys in parts such as the rotating blades of gas turbines or jet engines [608]

due to their higher melting temperatures, high oxidation and corrosion resistance,

high creep resistance, and, in some cases, lower density. The creep behavior of

intermetallics is more complicated than that of pure metals and disordered

solid solution alloys due to their complex structures together with the varieties of

chemical composition [609–610]. The rate-controlling mechanisms are still not
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fully understood in spite of significant efforts over the last couple of decades

[598,604,611–619].

In the following, the current understanding of creep of intermetallics will be

reviewed, placing special emphasis on investigations published over the last decade

and related to the compounds with potential for structural applications such as

Titanium Aluminides, Iron aluminides and Nickel aluminides.

9.2 TITANIUM ALUMINIDES

9.2.1 Introduction

Titanium aluminide alloys have the potential for replacing heavier materials in high-

temperature structural applications such as automotive and aerospace engine

components. This is due, first, to their low density (lower than that of most other

intermetallics), high melting temperature, good elevated temperature strength and

high modulus, high oxidation resistance and favorable creep properties [620,621].

Second, they can be processed through conventional manufacturing methods such as

casting, forging and machining [607]. In fact, TiAl turbocharger turbine wheels have

recently been used in automobiles [607]. Table 5 (from [621]) compares the properties

between Titanium Aluminides, titanium-based conventional alloys and superalloys

(see phase diagram below for phase compositions).

Many investigations have attempted to understand the creep mechanisms in

Titanium Aluminides over the last two decades. Several excellent reviews in this area

include [607,622,623]. The creep behavior of Titanium Aluminides depends strongly

Table 5. Properties of Titanium Aluminides, titanium-based conventional alloys and superalloys.

Property

Ti-based

alloys

Ti3Al-based

a2 alloys
TiAl-based

g alloys superalloys

Density (g/cm3) 4.5 4.1–4.7 3.7–3.9 8.3

RT modulus (GPa) 96–115 120–145 160–176 206

RT Yield strength (MPa) 380–1115 700–990 400–630 250–1310*

RT Tensile strength (MPa) 480–1200 800–1140 450–700 620–1620*

Highest temperature with

high creep strength (�C)
600 750 1000 1090

Temperature of oxidation (�C) 600 650 900–1000 1090

Ductility (%) at RT 10–20 2–7 1–3 3–5

Ductility (%) at high T High 10–20 10–90 10–20

Structure hcp/bcc DO19 L10 Fcc/L12

*Data added to the table provided in [621].
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on alloy composition and microstructure. The different Ti-Al microstructures are

briefly reviewed in the following sections.

Figure 84, the Ti-Al phase diagram, illustrates the following phases: g-TiAl

(ordered face-centered tetragonal, L10), a2-Ti3Al (ordered hexagonal, DO19), a-Ti
(h.c.p., high-temperature disordered), and b-Ti (b.c.c., disordered). Gamma (g)
or near g-TiAl alloys have compositions with 49–66 at.% Al, depending on

temperature. a2 alloys contain from 22 at.% to approximately 35 at.% Al. Two-

phase (g�TiAlþa2-Ti3Al) alloys contain between 35 at.% and 49 at.% Al. The

morphology of the two phases depends on thermomechanical processing [607].

Alloys, for example, with nearly stoichiometric or Ti-rich compositions that are cast

or cooled from the b phase, going through the a single phase region and a!aþ g
and aþ g! a2þ g reactions, have fully lamellar (FL) microstructures, as illustrated

in Fig. 85. An FL microstructure consists of ‘‘lamellar grains’’ or colonies, of size gl,

that are equiaxed grains composed of thin alternating lamellae of g and a2. The
average thickness of the lamellae, termed the lamellar interface spacing, is denoted

by ll. The g and a2 lamellae are stacked such that {111} planes of the g lamellae are

parallel to (0001) planes of the a2 lamellae and the closely packed directions on the

former are parallel to those of the latter. The lamellar structure is destroyed if an FL

microstructure is annealed or hot worked at temperatures higher than 1150�C within

Figure 84. Ti-Al phase diagram [600].
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the (aþg) phase fields. A bimodal microstructure develops, consisting of lamellar

grains alternating with g grains (or grains exclusively of g-phase). Depending on the

amount of g-grains, the microstructure is termed ‘‘nearly lamellar’’ (NL) when the

fraction of g-grains is small, or duplex (DP) when the fractions of lamellar and

g-grains are comparable. Detailed studies of the microstructures of TiAl alloys

are described in [624–625].

Overall, two-phase g-TiAl alloys have more potential for high-temperature

applications than a-Ti3Al alloys due to their higher oxidation resistance and Elastic

Modulus [621]. Simultaneously, two-phase g-TiAl alloys have comparatively lower

creep strength at high temperature than a-Ti3Al alloys and therefore significant

efforts have been devoted in recent years to improve the creep behavior of g-TiAl. It

is now well established that the optimum microstructure for creep resistance in two-

phase TiAl alloys is fully lamellar (FL) [626–628]. As will be explained in the

following sections, this microstructure shows the highest creep resistance, the lowest

minimum creep rate, and the best primary creep behavior (i.e., longer times to attain

a specified strain). Figure 86 (from [626]) illustrates the creep curves at 760�C and

240 MPa corresponding to a Ti-48%Al alloy with several different microstructures.

The FL microstructure shows superior creep resistance. Lamellar microstructures

also have superior fracture toughness and fatigue resistance in comparison to duplex

(DP) structures, although the latter have, in general, better ductility [607]. This

section will review the fundamentals of creep deformation in FL Ti-Al alloys.

Emphasis will be placed on describing prominent recent creep models, rather than on

compiling the extensive experimental data [622,623,626].

Figure 85. Fully lamellar (FL) microstructure corresponding to a Ti-Al based alloy with a nearly

stoichiometric composition [607].
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9.2.2 Rate Controlling Creep Mechanisms in FL TiAl

Intermetallics During ‘‘Secondary’’ Creep

Several investigations have attempted to determine the rate-controlling mechanisms

during creep of fully lamellar TiAl intermetallics [622–623,626–633]. Most creep

studies were performed in the temperature range 676�C–877�C [623] and the stress

range 80–500MPa, relevant to the anticipated service conditions [629]. Clarifying

the rate controlling creep mechanisms in FL TiAl alloys is difficult for several

reasons. First, rationalization of creep data by conventional methods such as

analysis of steady-state stress exponents is controversial, since usually an

unambiguous secondary creep stage is not observed. Instead, a minimum strain

rate (_eemin) is measured, and the ‘‘secondary creep rate’’ or ‘‘steady-state rate’’ is

presumed close to the minimum rate. Second, a continuous increase in the slope of

the curve is observed (i.e., the stress exponent increases steadily as stress increases)

when minimum strain-rates are plotted versus modulus-compensated stress over a

wide stress-range. Figure 87 illustrates a minimum strain rate vs. stress plot for a FL

Ti-48Al-2Cr-2Nb at 760�C. The stress exponent varies from n¼ 1, at low stresses, to

n¼ 10 at high stresses. Stress exponents as high as 20 have been measured at elevated

stresses [621]. Third, the analysis of creep data is a very difficult task because of the

complex microstructures of FL TiAl alloys. Microstructural parameters such as

Figure 86. Creep curves at 760�C and 240MPa corresponding to several near g-TiAl alloys with different

microstructures. (a) Ti-48Al alloy with a fully lamellar (FL) microstructure; (b) Ti-48Al alloy with a nearly

lamellar (NL) microstructure; (c) Ti-48Al alloy with a duplex microstructure [626].
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lamellar grain size (gl), lamellar interface spacing (ll), lamellar orientation,

precipitate volume fraction and grain boundary morphology all have significant

influences on the creep properties that are difficult to incorporate into the tradi-

tional creep models that have been discussed earlier. Nevertheless, a variety of

rate-controlling mechanisms of FL TiAl alloys has been proposed over the last

few years.

a. High Stress-High Temperature Regime. Beddoes et al. [622] suggested, based on

their own results and data from other investigators, that the gradual increase in the

stress exponent with increasing stress might be due to changes in the creep

mechanisms from diffusional creep at low stresses, to dislocation climb as the stress

increases, and finally to power-law breakdown at very high stresses. (A note should

be made of the fact that the creep data analyzed by Beddoes et al. originated from

strain-rate change tests, rather than from independent creep tests). Thus, these

investigators claim that dislocation climb would most likely be rate-controlling

during creep of FL microstructures at stresses higher than about 200MPa and

temperatures higher than about 700�C. They suggested that this argument is

consistent with the previous work on the creep of single phase g-TiAl alloys by

Wolfenstine and González-Doncel [634]. These investigators analyzed the creep data

of Ti-50 at.%Al, Ti-53.4 at.%Al and Ti-49 at.%Al tested from 700�C to 900�C, and
concluded that the creep behavior of these materials could be described by a single

Figure 87. Minimum strain rate vs. stress curve of a Ti-48Al-2Cr-2Nb alloy deformed at 760�C
(from [626]).
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mechanism by incorporating a threshold stress. The stress exponent was found to be

close to 5 and the activation energy equal to 313 kJ/mol, a value close to that for

lattice diffusion of Ti in g-TiAl (291 kJ/mole) [635]. Additionally, several other

studies on creep of FL TiAl alloys reported activation energies of roughly 300 kJ/

mole [635]. Therefore the creep of FL TiAl alloys appears to be controlled by lattice

diffusion of Ti. The activation energy for lattice diffusion of Al in g-TiAl has not

been measured but it is believed to be significantly higher than that of Ti [636].

Es-Souni et al. [627] also suggested the predominance of a recovery-type dislocation-

climb mechanism based on microstructural observations of the formation of

dislocation arrangements (similar to subgrains) during creep. Several possible

explanations have been suggested to reconcile the proposition of dislocation climb

and the observation of high stress exponents (n>5). First, it has been suggested

[622] that back-stresses may arise within lamellar microstructures due to the trapping

of dislocation segments at the lamellar interfaces, which leads to bowing of

dislocations between interfaces. The shear stress required to cause bowing, which

was suggested as a source of backstresses during creep, is inversely proportional to

the lamellar interface spacing (ll). Second, it has been proposed [637] that the

occurrence of microstructural instabilities such as dynamic recrystallization during

deformation may contribute to a rise in the strain rate, thus rendering stress

exponents with less physical meaning in terms of a single, rate-controlling

restoration mechanism. Finally, it has been suggested [622] that the Subgrain size

corresponding to a specific creep stress if dislocation climb were rate-controlling

could be larger than the lamellar spacing, ll, which remains constant with stress.

Thus, ll may actually become the ‘‘effective Subgrain size’’. These circumstances are

similar to constant structure creep, which is associated with a relatively high stress

exponent of 8 or higher.

Beddoes et al. [626] later more precisely delineated the stress range in which

dislocation climb was rate controlling by performing stress reduction tests on FL TiAl

alloys. Figure 88 illustrates the results of the reduction tests on a Ti-48Al-2Cr-2Nb

alloy at 760�C, with an initial stress of 277MPa. Data are illustrated for two different

FL microstructures, both with a (lamellar) grain size of 300 mm, but with different

lamellar interface spacing (120 nm and 450 nm). Deformation at a lower rate was

observed upon reduction of the stress. An incubation period was observed for

reduced stresses lower than a given stress (indicated with a dotted line) before

deformation would continue. This was attributed [626] to the predominance of

dislocation climb in the low stress regime (below the dotted line), and to the

predominance of dislocation glide in the high stress regime (above the dotted line).

The stress at which the change in mechanism occurs depends on the lamellar interface

spacing. It was suggested that a decrease in the lamellar interface spacing results in an

increase of the stress below which dislocation climb becomes rate-controlling.
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Beddoes et al. [626] proposed an explanation for the decrease in the minimum creep

rate with decreasing lamellar interface spacing for a given stress. First, for two

microstructures deforming in the glide-controlled creep regime (for example, for

stresses higher than 190MPa in Fig. 88), narrower spacings would increase the creep

resistance since the mean free path for dislocations would significantly decrease. The

lamellae interfaces would thus act as obstacles for gliding dislocations. In fact,

dislocation pile-ups have been observed at interfaces in FL structures [628]. Second,

there is a stress range (for example, stresses between 130MPa and 190MPa in Fig. 88)

for which the rate-controlling creep mechanism in microstructures with very narrow

lamellae would be dislocation climb (associated with lower strain-rates) whereas in

others with wider lamellae it would be dislocation glide. This was attributed to the

different backstresses originating at lamellae of different thickness. A larger Orowan

stress is necessary to bow dislocations in narrow lamellae than in wider lamellae.

Thus, an applied stress of 130–190MPa would be high enough to cause dislocation

bowing in the material with wider lamellae. Dislocation glide would be controlled by

the interaction between dislocations and interfaces rather than climb. However, in

narrower lamellae, the applied stress is not sufficient to cause dislocation bowing and

dislocation movement is then controlled by climb.

Recently Viswanathan et al. [638,639] studied the creep properties of a FL

Ti-48Al-2Cr-2Nb alloy at high stresses (207MPa) and high temperatures (around

Figure 88. Incubation period following stress reduction tests to different final stresses (from [626]). Tests

performed at 760�C in two Ti-48Al-2Cr-2Nb alloys with the same lamellar grain size (300mm) but two

different lamellar interface spacings (120 nm and 450 nm). Initial stress of 280MPa.
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800�C), particularly examining the dislocation structures developed during deforma-

tion. They mainly observed unit a/2 [110] dislocations with jogs pinning the screw

segments. They found that a distribution of lamellae spacings exists in a FL micro-

structure. A higher dislocation density was observed in the wider lamellae, suggesting,

to these investigators, that wider lamellae contribute more to creep strain than

thinner lamellae. Additionally, no subgrains were observed at the minimum creep-

rate (at strains of about 1.5% to 2%). The absence of subgrain formation during

secondary creep of single phase TiAl alloys under conditions where an activation

energy similar to that of self-diffusion was observed (thus suggesting the

predominance of dislocation climb), was also reported in [636,640]. In order to

rationalize this apparent discrepancy between the behavior of single phase Ti-Al

alloys and pure metals, Viswanathan et al. [639] proposed a modification of the

jogged-screw creep model discussed in a previous chapter. The original model

[641,642] suggests that the non-conservative motion of pinned jogs along screw

dislocations is the rate-controlling process. Using this model, the ‘‘natural’’ stress

exponent is derived. The conventional jogged-screw creep model predicts strain-rates

that are several orders of magnitude higher than the measured values in TiAl

[639]. The modification proposed by Viswanathan et al. [639] incorporates the

presence of tall jogs instead of assuming that the jog height is equal to Burgers

vector. Additionally, it is proposed that there should be an upper bound for the jog

height, above which the jog becomes a source of dislocations. This maximum jog

height, hd, depends on the applied stress and can be approximated by the following

expression,

hd ¼ Gb

8p 1� nð Þt� �
 !

ð125Þ

This is suggested to reasonably predict the strain rates in single phase TiAl alloys and

could account for the absence of subgrain formation during secondary creep. At the

same time, by introducing this additional stress dependence in the equation for the

strain rate, the phenomenological stress exponent of 5 is obtained at intermediate

stresses. This exponent increases with increasing stress. Viswanathan et al. [638]

claim that the same model can be applied to creep of FL microstructures, where

deformation mainly occurs within the wider g-laths by jogged a/2 [110] unit

dislocation slip.

Wang et al. [643] observed that, together with dislocation activity and some

twinning, thinning and dissolution of a2 lamellae and coarsening of g-lamellae

occurred during creep of two FL TiAl alloys at high stresses (e.g.>200MPa at

800�C and>400MPa at 650�C). They proposed a creep model based on the
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movement of ledges (or steps) at lamellar interfaces to rationalize these observations.

Wang et al. [643] observed the presence of ledges at the lamellar interfaces already

before deformation. Two such ledges of height hL are illustrated in Figure 89 (from

[643]). Growth of the g phase at the expense of the a2 phase could occur by ledge

movement as a consequence of the applied stress. Ledge motion was suggested to

involve glide of misfit dislocations and climb of misorientation dislocations. Ledge

motion leading to the transformation from a2 to g may account for a significant

amount of the creep deformation since, first, as mentioned above, it requires

dislocation movement and, second, it also involves a volume change from a2 to g? At

high stresses, multiple ledges (i.e., ledges that are several {111} planes in thickness)

are suggested to be able to form and dissolve and, thus, deformation may occur.

Diffusion of atoms is needed since the climb of misorientation dislocations is

necessary for a ledge to move. Also, diffusion is also needed for the composition

change associated with the phase transformation from a2 to g. Thus, lattice self-

diffusion becomes rate-controlling, in agreement with previous observations of

activation energies close to QSD.

Alloy additions are another factor that may influence the creep rate are. It is well

known that additions of W greatly improve creep resistance [623]. It has been

suggested that solute hardening by W occurs within the glide-controlled creep

regime, whereas the addition of W may lower the diffusion rate, thus reducing the

dislocation climb-rate in the climb-controlled creep regime. The effect of ternary or

quaternary additions on the creep resistance may be more important than that of the

lamellar interface spacing [626]. Additions of W, Si, C, N favor precipitation

hardening [644–647], which may hinder dislocation motion and stabilize the lamellar

microstructure. Other suggested hardening elements are Nb and Ta [623]. The

Figure 89. Interface separating g and a2 lamellae (from [643]). Ledge size is denoted by hL.
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addition of B does not seem to have any effect on the minimum strain-rate of FL

microstructures [623].

The lamellar orientation also has a significant influence on the creep properties of

FL TiAl alloys. Hard orientations (i.e., those in which the lamellae are parallel or

perpendicular to the tensile axis) show improved creep resistance and low strain to

failure soft orientations (those in which the lamellae form an angle of 30� to 60�

with the tensile axis) are weaker but are more ductile [607]. The different behavior

can be rationalized by considering changes in the Taylor factors and Hall-Petch

strengthening [607]. Basically, in soft orientations the shear occurs parallel to the

lamellar boundaries. In hard orientations, however, the resolved shear stress in the

planes parallel to the lamellae is very low and therefore other systems are activated.

Thus, the mean free path for dislocations is larger in soft orientations than in hard

orientations [648–649].

b. Low Stress Regime. Hsiung and Nieh [629] investigated the rate-controlling

creep mechanisms during ‘‘secondary creep’’ (or minimum creep-rate) at low stresses

in a FL Ti-47Al-2Cr-2Nb alloy. In particular, they studied the stress/temperature

range where stress exponents between 1 and 1.5 were observed. They reported an

activation energy equal to 160 kJ/mol within this range, which is significantly lower

than the activation energy for lattice diffusion of Ti in g-TiAl (291 kJ/mole) [635] and

much lower than the activation energy for lattice diffusion of Al in g-TiAl. They

suggested that dislocation climb is less important at low stresses. They also discarded

grain boundary sliding as a possible deformation mechanism due to the presence of

interlocking grain boundaries such as those shown in Fig. 85. These are boundaries

in which there is not a unique boundary plane. Instead, the lamellae from adjacent

(lamellar) grains are interpenetrating at the boundary, thus creating steps and

preventing easy sliding [626]. TEM examination revealed both lattice dislocations

(including those which are free within the g-laths and threading dislocations which

have their line ends within the lamellar interfaces) and interfacial (Shockley)

dislocations, the density of the latter being much larger. They proposed that, due to

the fine lamellar interface spacing (ll<300 nm), the operation and multiplication of

lattice dislocations at low stresses is very sluggish. Dislocations can only move small

distances (�ll) and the critical stress to bow threading dislocation lines (which is

inversely proportional to the lamellar interface spacing) is, on average, higher than

the applied stress. Thus, Hsiung and Nieh [629] concluded that dislocation slip

by threading dislocations could not rationalize the observed creep strain in alloys

with thin laths. They proposed that the predominant deformation mechanism was

interfacial sliding at lamellae interfaces caused by the viscous glide of interfacial

(Shockley) dislocation arrays. These arrays might eventually be constituted by an

odd number of partials, in which case a stacking fault is created at the interface.
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Stacking faults are indeed observed by TEM [629]. Glide of pairs of partials would

not create a stacking fault since the passage of the second partial along the fault

created by the first one would regenerate it. Segregation of solute atoms may cause

Suzuki locking. Thus, according to Hsiung and Nieh [629], the viscous glide of

interfacial dislocations (dragged by solute atoms) is the rate-controlling mechanism.

It was suggested that further reduction of the lamellar interface spacing (in the range

of ll� 300 nm) would not significantly affect the creep rate once the g-laths are thin
enough for interfacial sliding to occur.

Zhang and Deevi [623] recently analyzed creep data of several TiAl alloys with Al

concentrations ranging from 46 to 48 at.% compiled from numerous other studies.

They proposed expressions relating the minimum creep-rate and the stress that could

reasonably predict most of the data. They recognized that using the classical

constitutive equations and power law models could be misleading, due to the large

and gradual variations of the stress exponent with stress. Alternatively, they utilized,

_eemin ¼ _ee sinh
s
sint

� �
ð126Þ

where s is the applied stress, and _ee0 and sint are both temperature and materials

dependent constants. Additionally,

_ee0 / rsrD0 exp ¼ �Qsd

kT

� �
ð127Þ

where rsr is the dislocation source density. The physical meaning of Eq. (127) is

based on a viscous glide process. The modeling suggested [623] that sint and _ee0 are

independent of the lamellar interface spacing for FL microstructures with

ll>0.3 mm and that sint and _ee0 increase with decreasing l when ll <0.3 mm _ee0 is

temperature dependent and Qsd is about 375 kJ/mol for microstructures with

different lamellar interface spacing. This value is slightly higher than the activation

energy for diffusion of Ti in TiAl (291 kJ/mol). Zhang and Deevi [623] attributed this

discrepancy to the fact that the dislocation source density, rs, may not be constant as

assumed in Eq. (127), and that the creep of TiAl may be controlled by diffusion of

both Ti and Al in TiAl. Since the activation energy for self-diffusion of Al is higher

than that of Ti, a combination of diffusion of both species could justify the higher Q

values measured. In any case the activation energies have doubtful physical meaning

since the stress exponent varies with stress.

However, the above equations do not fit the creep data of FL TiAl alloys obtained

at both stresses lower than about 150MPa and low temperatures. This was suggested

to be due to grain boundary sliding being the dominant mechanism [629]. In this

stress-temperature range, Zhang and Deevi found that most of the creep data

Creep of Intermetallics 185



could be described by:

_eeminðGBÞ ¼ 63:4 expð�2:18� 105=kTÞg�2s2 ð128Þ

Despite being a thorough overview of creep results, this paper [623] works out well in

bringing out trends but fails in the modeling aspects.

9.2.3 Primary Creep in FL Microstructures

g-TiAl alloys are characterized by a pronounced primary creep regime. Depending

on the temperature, the primary creep strain may exceed the acceptable limits

for certain industrial applications. Thus, several investigations have focused on

understanding the microstructural evolution during primary creep [626,631,637,

648,650,651].

Figure 90 (from [626]) illustrates the creep curves corresponding to a TiAl binary

alloy deformed at 760�C and at an applied stress of 240MPa. The creep curves

correspond to a duplex (DP) microstructure and a fully lamellar (FL) micro-

structure. The FL microstructure shows lower strain-rates during primary creep. It

has been suggested [637] that the pronounced primary creep regime in FL

microstructures is due to the presence of a high density of interfaces and dislocations,

since both may act as sources of dislocations. Careful TEM examination by Chen

et al. [648] showed that dislocations formed loops that expand from the interface to

the next lamellar interface. Other processes that may occur during primary creep

Figure 90. Primary creep behavior of a binary TiAl alloy deformed at 760�C at an applied stress of

240MPa. The creep curves corresponding to duplex (DP) and fully lamellar (FL) microstructures are

illustrated [626].
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of TiAl alloys are twinning and stress-induced phase transformations (SIPT)

(�2 ! g or g ! �2). SIPT consists of the transformation of a2 laths into g laths

(or vice versa). This transformation, which is aided by the applied stress, has been

suggested to occur by the movement of ledge dislocations at the g/a2 interfaces, as

illustrated in Fig. 89 [646]. The SIPT may be associated with a relatively large creep

strain. The finding that the primary strain in microstructures with narrow lamellae

(FLn) is not higher than the primary strain in alloys with wider lamellae (FLw)

suggests that the contribution of interface boundary sliding by the motion of pre-

existing interfacial dislocations [629] is less important [631]. It is possible that a

sufficient number of interfacial dislocations need to be generated during primary

creep before the onset of sliding.

Zhang and Deevi recently analyzed primary creep of TiAl based alloys [631] and

concluded that the primary creep strain depends dramatically on stress. At stresses

lower than a critical value scr, the primary strain is low (about 0.1–0.2%), indepen-

dent of the microstructure, temperature and composition. The relevant stresses

anticipated for industrial applications are usually below scr and therefore primary

creep strain would be of less concern [631]. scr seems to be mainly related to the

critical stress to activate dislocation sources, twinning and stress-induced phase

transformations. This value increases with W additions, with lamellar refinement

and with precipitation of fine particles along lamellar interfaces [631]. For example,

the value of scr at 760�C for a FL Ti-47 at.%Al-2 at.%Nb-2 at.%Cr alloy with

a lamellar spacing of 0.1 mm is close to 440MPa, whereas the same alloy with a

lamellar spacing larger than 0.3 mm has a scr value of 180MPa [631]. Primary creep

strain increases significantly above the threshold stress. In order to investigate

additional factors influencing the primary creep strain, Zhang and Deevi modeled

primary creep of various TiAl alloys using the following expression, also utilized

previously in other works [622,650],

ep ¼ e00 þ A0ð1� expð��0tÞÞ ð129Þ

This expression reflects that primary creep strain consists of an ‘‘instantaneous’’

strain (e00) that occurs immediately upon loading and a transient strain that is time

dependent. Zhang and Deevi suggested that the influence of temperature on e00, A
0,

and a0 could be modeled using the relation X¼X0 exp(�Q/RT), where X represents

any of the three parameters. They obtained that Q¼ 190 kJ/mol for A0, and Q¼
70 kJ/mol for e00 and a0. The physical basis for the temperature dependence is unclear.

The effect of composition and microstructure on these parameters is also complex

[631]. It is accepted that aging treatments before creep deformation have a beneficial

effect in increasing the primary creep resistance [631,646,651]. Precipitation at

lamellar interfaces has been suggested to hinder dislocation generation [631] and
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reduces the ‘‘instantaneous’’ strain and the strain hardening constant, A0.
Additionally, the presence of fine precipitates may inhibit interface sliding and

even twinning. Finally, the contribution of stress-induced phase transformation to

the primary creep strain decreases in samples heat treated before creep deformation

since metastable phases are eliminated [631].

9.2.4 Tertiary Creep in FL Microstructures

Several investigations have studied the effect of the microstructure on tertiary creep

of FL TiAl alloys [622,626,648]. It has been suggested that tertiary creep is initiated

due to strain incompatibilities between lamellar grains with soft and hard orienta-

tions leading to particularly elevated stresses [626]. These incompatibilities may lead

to intergranular and interlamellar crack formation. Crack growth is prevented when

lamellar grains are smaller than 200 mm (lamellar grain sizes are typically 500 mm in

diameter), since cracks can be arrested by grain boundaries or by triple points. Thus,

the creep life is improved due to an increase of the extent of tertiary creep. Grain

boundary morphology also significantly influences tertiary creep behavior. In FL

microstructures with wide lamellae, the latter bend close to grain boundaries and

form a well interlocked lamellae network [626]. However, narrow lamellae are more

planar. Grain boundaries in which lamellae are well interlocked offer greater

resistance to cracking and allow larger strains to accummulate within the grains.

In summary, the creep behavior of FL TiAl alloys is influenced by many different

microstructural features and it is difficult to formulate a model that incorporates all

of the relevant variables. An optimum creep behavior may require [626]:

(a) a lamellar or colony grain size smaller than about 200 mm that helps to improve

creep life by preventing early fracture.

(b) a narrow interlamellar spacing, that reduces the minimum strain rate during

secondary creep.

(c) interlocked lamellar grain boundaries.

(d) stabilized microstructure.

(e) presence of alloying additions such as W, Nb, Mo, V (solution hardening) and

C, B, N (precipitation hardening).

9.3 IRON ALUMINIDES

9.3.1 Introduction

Fe3Al and FeAl based ordered intermetallic compounds have been extensively

studied due to their excellent oxidation and corrosion resistance as well as other

favorable properties such as low density, favorable wear resistance, and potentially
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lower cost than many other structural materials. Fe3Al has a DO3 structure. FeAl is a

B2 ordered intermetallic phase with a simple cubic lattice with two atoms per lattice

site, an Al atom at position (x, y, z) and a Fe atom at position (xþ 1/2, yþ 1/2,

zþ 1/2). Several recent reviews summarizing the physical, mechanical and corrosion

properties of these intermetallics are available [598,600,601,603,605–607,652–654].

Iron aluminides are especially attractive for applications at intermediate tempera-

tures in the automotive and aerospace industry due to their high specific strength and

stiffness. Additionally, they may replace stainless steels and nickel alloys to build

long-lasting furnace coils and heat exchangers due to superior corrosion properties.

The principal limitations of Fe-Al intermetallic compounds are low ambient tempe-

rature ductility (due mainly to the presence of weak grain boundaries and environ-

mental embrittlement) and only moderate creep resistance at high temperatures

[654]. Many efforts have been devoted in recent years to overcome these difficulties.

The present review will discuss the strengthening mechanisms of Iron aluminides as

well as other high temperature mechanical properties of these materials.

Figure 91 illustrates the Fe-Al phase diagram. The Fe3Al phase, with a DO3

ordered structure, corresponds to Al concentrations ranging from approximately

22 at.% and 35 at.%. A phase transformation to an imperfect B2 structure takes

place above 550�C. The latter ultimately transforms to a disordered solid solution

Figure 91. Fe-Al phase diagram [655].
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with increasing temperature. This, in turn, leads to the degradation of creep and

tensile resistance at high temperatures. The FeAl phase, which has a B2 lattice, is

formed when the amount of Al in the alloy is between 35 at.% and 50 at.%.

9.3.2 Anomalous Yield Point Phenomenon

An anomalous peak in the variation of the yield stress with temperature has been

observed in Fe-Al alloys with an Al concentration ranging from 25 at.% up to

45at.%. The peak appears usually at intermediate temperatures, between 400�C and

600�C [607,653–654,656–676]. This phenomenon is depicted in Figure 92 (from [661]),

which illustrates the dependence of the yield strength with temperature for several

large-grain Fe-Al alloys in tension at a strain rate of 10�4 s�1. Several mechanisms

have been proposed to rationalize the yield-strength peak but the origin of this

phenomenon is still not well understood. The different models are briefly described in

the following. More comprehensive reviews on this topic as well as critical analyses

of the validity of the different strengthening mechanisms are [653,656].

a. Transition from Superdislocations to Single Dislocations. Stoloff and Davies [662]

suggested that the stress peak was related to the loss of order that occurs in Fe3Al

alloys at intermediate temperatures (transition between the DO3 to the B2 structure).

According to their model, at temperatures below the peak, superdislocations

would lead to easy deformation, whereas single dislocations would, in turn, lead

to easy deformation at high temperatures. At intermediate temperatures, both

Figure 92. Variation of the yield strength with temperature for several large grain FeAl alloys strained in

tension at a strain rate of 10�4 s�1 (from [661]).
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superdislocations and single dislocations would move sluggishly, giving rise to the

strengthening observed. It has been suggested, however, that this model cannot

explain the stress peak observed in FeAl alloys, where no disordering occurs at

intermediate temperatures and the B2 structure is retained over a large temperature

interval. Recently, Morris et al. also questioned the validity of this model [659]. They

observed that the stress peak occurred close to the disordering temperature at low

strain-rates in two Fe3Al alloys (Fe-28Al-5Cr-1Si-1Nb-2B and Fe-25Al, all atomic

percent). For high strain-rates the stress peak occurred at higher temperatures than

that corresponding to the transition. Thus, they concluded that the disordering

temperature being about equal to the peak stress temperature at low strain rates

was coincidental. Stein et al. [676] also did not find a correlation between these

temperatures in several binary, ternary and quaternary DO3-ordered Fe-26Al alloys.

b. Slip Plane Transitions f110g ! f112g. Umakoshi et al. [663] suggested that the

origin of the stress peak was the cross slip of h111i superdislocations from {110}

planes to {112} planes, where they become pinned. Experimental evidence supporting

this observation was also reported by Hanada et al. [664] and Schroer et al. [665].

Since cross slip is thermally activated, dislocation pinning would be more pronounced

with increasing temperatures, giving rise to an increase in the yield strength.

c. Decomposition of h111i Superdislocations: Climb Locking Mechanism. The yield

stress peak has often been associated with a change in the nature of dislocations

responsible for deformation, from h111i superdislocations (dislocations formed by

pairs of superpartial dislocations separated by an antiphase boundary) at low

temperatures, to h100i ordinary dislocations at temperatures above the stress peak

[666]. The h100i ordinary dislocations are sessile at temperatures below those

corresponding to the stress peak and thus may act as pinning points for h111i
superdislocations. The origin of the h100i dislocations has been attributed to the

combination of two a/2[111] superdislocations or to the decomposition of h111i
superdislocations on {110} planes into h110i and h100i segments on the same {110}

planes. As the temperature increases, decomposition may take place more easily, and

thus the amount of pinning points would increase leading to a stress peak. Experi-

mental evidence consistent with this mechanism has been reported by Morris and

Morris [667]. However, this mechanism was also later questioned by Morris et al.

[659], where detailed TEM microstructural analysis suggested that anomalous

strengthening is possible without the h111i to h100i transition in some Fe3Al alloys.

d. Pinning of h111i Superdislocations by APB Order Relaxation. An alternative

mechanism for the appearance of the anomalous yield stress peak is the loss of order
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within APBs of mobile h111i superdislocations with increasing temperature [668].

This order relaxation may consist of structural changes as well as variations in the

chemical composition. Thus, the trailing partial of the superdislocation would no

longer be able to restore perfect order. A frictional force would therefore be created

that will hinder superdislocation movement. With increasing temperature APB

relaxation would be more favored and thus increasing superdislocation pinning

would take place, leading to the observed stress peak.

e. Vacancy Hardening Mechanism. The concentration of vacancies in FeAl is in

general very high, and it increases in Al-rich alloys. Constitutional vacancies are

those required to maintain the B2 structure in Al-rich non-stoichiometric FeAl

alloys. Thermal vacancies are those excess vacancies generated during annealing at

high temperature and retained upon quenching. For example, the vacancy

concentration is 40 times larger at 800�C than that corresponding to a conventional

pure metal at the melting temperature. Constitutional vacancies may occupy up to

10% of the lattice sites (mainly located in the Fe sublattice) for Fe-Al compositions

with high Al content (>50%at.) [669]. The high vacancy concentration is due to the

low value of the formation enthalpy of a vacancy as well as to the high value of the

formation entropy (around 6 k) [670]. Vacancies have a substantial influence on the

mechanical properties of Iron aluminides [671].

It has been suggested that the anomalous stress peak is related to vacancy

hardening in FeAl intermetallics [672]. According to this model, with rising tempe-

ratures a larger number of vacancies are created. These defects pin superdislocation

movement and lead to an increase in yield strength. At temperatures higher than

those corresponding to the stress peak the concentration of thermal vacancies is

very large and vacancies are highly mobile. Thus, they may aid dislocation climb

processes instead of acting as pinning obstacles for dislocations [673] and softening

occurs.

The vacancy hardening model is consistent with many experimental observations.

Recently Morris et al. [658] reported additional evidence for this mechanism in a

Fe-40 at % Al alloy. First, they observed that some time is required at high tempe-

rature for strengthening to be achieved. This is consistent with the need of some time

at high temperature to create the equilibrium concentration of vacancies required for

hardening. Second, they noted that the stress peak is retained when the samples are

quenched and tested at room temperature. They concluded that the point defects

created after holding the specimen at high temperature for a given amount of time

are responsible for the strengthening, both at high and low temperatures.

Additionally, careful TEM examination suggested that vacancies were not present

in the form of clusters. The small dislocation curvature observed, instead, suggested
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that single-vacancies were mostly present, which act as relatively weak obstacles to

dislocation motion.

The concentration of thermal vacancies increases with increasing Al content and

thus the effect of vacancy hardening would be substantially influenced by alloy

composition. Additionally, the vacancy hardening mechanism implies that the

hardening should be independent of the strain rate, since it only depends

on the amount of point defects present. In a recent investigation, Morris et al.

[659] analyzed the effect of strain rate on the flow stress of two Fe3Al alloys

with compositions Fe-28Al-5Cr-1Si-1Nb-2B and Fe-25Al-5Cr-1Si-1Nb-2B (at.%).

The variation of the flow stress with temperature and strain rate (ranging

from 4� 10�6 s�1 to 1 s�1) for the Fe-28 at.%Al alloy is illustrated in Fig. 93. It

can be observed that the ‘‘strengthening’’ part of the peak is rather insensitive to

strain rate, consistent with the predictions of the vacancy hardening model.

However, the investigators were skeptical regarding the effectiveness of this mecha-

nism in Fe3Al alloys, where the vacancy concentration is much lower than in FeAl

alloys and, moreover, where the vacancy mobility is higher. Highly mobile vacancies

are not as effective obstacles to dislocation motion. Another limitation of the

vacancy model is that it fails to explain the orientation dependence of the stress

anomaly as well as the tension-compression asymmetry in single crystals [657]. Thus,

the explanation of the yield stress peak remains uncertain. On the other hand, it

is evident in Fig. 93 that the softening part of the peak is indeed highly dependent

Figure 93. Variation of the yield stress with temperature and strain rate corresponding to the cast and

homogeneized Fe-28 at%Al alloy (from [659]).
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on strain rate. This is attributed to the onset of diffusional processes at high

temperatures, where creep models may be applied and rate dependence may be more

substantial [657,659].

9.3.3 Creep Mechanisms

The creep behavior of Iron aluminides is still not well understood despite the large

amount of creep data available on these materials [e.g. 654,677–689]. The values of

the stress exponents and activation energies corresponding to several creep studies

are summarized in Table 6 (based on [654] with added data). There are several

factors that complicate the formulation of a general creep behavior of Fe-Al alloys.

First, creep properties are significantly influenced by composition. Second, as

discussed in [600,690], both the stress exponent and the activation energy have been

observed to depend on temperature, in some cases. This suggests that several

mechanisms may control creep of Fe-Al and Fe3Al alloys. Other reasons may be the

frequent absence of genuine steady-state conditions as well as the simultaneous

occurrence of grain growth and discontinuous dynamic recrystallization. Never-

theless, in general terms, it can be inferred from Table 6 that diffusional creep or

Harper-Dorn creep may be the predominant deformation mechanism at very low

stresses and high temperatures. At intermediate temperatures and stresses, either

diffusion controlled dislocation climb or viscous drag have been suggested

[654,678,679,685].

a. Superplasticity in Iron Aluminides. Superplasticity has been observed in both

FeAl and Fe3Al with coarse grains ranging from 100 mm to 350 mm [691–695].

Elongations as high as 620% were achieved in a Fe-28 at%Al-2 at%Ti alloy

deformed at 850�C and at a strain rate of 1.26� 10�3 s�1. The corresponding n

value was equal to 2.5. Also, a maximum elongation of 297% was reported for a

Fe-36.5 at.%Al-2 at.%Ti alloy with an n value close to 3. Moreover, Lin et al. [695]

have reported an increasing number of boundaries misoriented between 3� and 6�

with deformation. They suggest that these could be formed as a consequence of

dislocation interaction, by a process of continuous recrystallization. The unusually

large starting grain sizes as well as the values of the stress exponents (close to 3)

would be consistent with a viscous drag deformation mechanism. However,

significant grain refinement has been observed during deformation [694–695]. The

correlation of grain refinement and large ductilities may, in turn, be indicative of the

occurrence of grain boundary sliding, to some extent. Grain boundary sliding is

favored when a large area fraction of grain boundaries is present and thus occurs

readily in fine-grained microstructures.
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Table 6. Stress exponents, activation energies, and suggested deformation mechanisms from various creep studies on Iron aluminides [654,677–686].

Alloy T (�C) Q (kJ/mol) n Mechanism suggested Ref.

Fe-19.4Al 500–600 305 4.6–6* Diffusion controlled [677]

Fe-27.8Al 550–615

Higher T

276

418

– Controlled by state of order

Fe-15/20Al >500

<500

260 to 305*

s dependent

Diffusion controlled

Motion of jogged screw

dislocations

[678]

Fe-28Al 625 347 3.5 (low s)
7.7 (high s)

Viscous glide

Climb

Fe-28Al-2Mo 650 335 1.4 (low s)
6.8 (high s)

Diffusional flow

Climb

[679]

Fe-28Al-1Nb-0.013Zr 650 335 1.8 (low s)
19.0 (high s)

Diffusional flow

Dispersion strengthening

FA-180 593 627 7.9 Precipitation strengthening [680]

Fe-28Al 600–675 – 3.4 Viscous glide [654]

Fe-26Al-0.1C 600–675

480–540

305

403

3.0

6.2

Viscous glide

–

Fe-28Al-2Cr 600–675 325 3.7 Viscous glide

Fe-28Al-2Cr-0.04B 600–675 304 3.7 Viscous glide

Fe-28Al-4Mn 600–675 302 2.6 Viscous glide

FA-129 500–610 380–395 4–5.6 [681]

Fe-24Al-0.42 Mo-0.05B-0.09

C-0.1 Zr

650–750 – 5.5 [682]

FA-129 900–1200 335 4.81 [683]

Fe-39.7Al-0.05Zr-50ppmB 500

700

260–300

425–445

11

11

Dispersion strengthening

Climb

[684]

Fe-27.6Al Fe-28.7Al-2.5Cr

Fe-27.2Al-3.6Ti

425–625

425–625

425–625

375

325

375

2.7–3.4

3.5–3.8

3.4–3.7

Viscous glide

Viscous glide

Viscous glide

[685]
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Table 6. Continued.

Alloy T (�C) Q (kJ/mol) n Mechanism suggested Ref.

Fe-24Al-

0.42Mo-0.1

Zr-0.005B-0.11C-

0.31O

800–1150

1150

(Strain rate

< 0.1s�1)

340–430

365

4–7

3.3

Diffusion-controlled (climb)

Diffusion-controlled

(superplasticity)

[686]

Fe-30.2Al-3.9Cr-

0.94Ti-1.9B-0.20Mn-0.16C

600–900 280 3.3 Viscous glide [687]

Fe-47.5Al 827–1127

(g¼ 36 mm)

487 6.3–7.2 [688]

Fe-43.2Al 927–1127

g¼ 20 mm
368 5.6–9.7 [688]

*Dependent on Al concentration

1
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9.3.4 Strengthening Mechanisms

The rather low creep strength of Iron aluminides is an area that has received

particular attention. Several strategies to increase the creep resistance have been

suggested, that are reviewed in [690]. One possibility is the reduction of the high

diffusion coefficient of the rate-controlling mechanism, which has been attempted by

micro- and macroalloying with limited success. Another way to achieve

strengthening is to add alloying elements that may hinder dislocation motion by

forming solute atmospheres around dislocations or by modifying lattice order. For

example, additions of Mn, Co, Ti and Cr moderately increase the creep resistance

due to solid solution strengthening. Finally, the most promising strengthening

mechanism seems to be the introduction of dispersions of second phases, such as

carbides, intermetallic particles or oxide dispersions. Dislocation movement is

hindered due to the attractive dislocation-particle interactions and thus the creep

rate may be reduced. A sufficient volume fraction of precipitate phases (around

1–3%) must be present in order for this mechanism to be effective and the precipi-

tates should be stable at the service temperatures. Alloying elements such as Zr, Hf,

Nb, Ta and B have been effective in improving creep resistance of FeAl by precipi-

tation hardening. Dispersoid particles also strengthen effectively Iron aluminides

[696–698].

Baligidad et al. [698–699] have reported that improved creep strength is obtained

in a Fe-16wt.%Al-0.5wt.%C possibly due to combined carbon solid-solution

strengthening and mechanical constraint from the Fe3AlC0.5 precipitates. They

claim that creep is recovery controlled and that climb assists the recovery. Morris-

Muñoz [700] analyzed the creep mechanisms in an oxide-dispersion-strengthened

Fe-40 at.%Al intermetallic containing Y2O3 particles at 500�C and 700�C. The

absence of substructure formation at either temperature suggested, to the

investigators, constant-structure creep with a temperature-dependent threshold

stress. Particle-dislocation interactions were also apparent. It was concluded that the

threshold stress based on particle-dislocation interactions operates at 500�C
(where dislocations are predominantly h111i superdislocations) and that climb-

controlled processes occur at 700�C, where h100i dislocations are mainly present.

The decrease in creep resistance observed between 500�C and 700�C was attributed

to the rapid increase in diffusivity at high temperatures. Recently Sundar et al. [701]

reported creep resistance values for two Fe-40 at.%Al alloys (with additions of Mo,

Zr, and Ti for solute strengthening and additions of C and B for particle

strengthening) that were comparable to, if not better than, those of many

conventional Fe-based alloys. According to Sundar et al. [701], a combination of

strengthening mechanisms is perhaps the best way to improve creep resistance of

Iron aluminides.
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9.4 NICKEL ALUMINIDES

9.4.1 Ni3Al

The Ni-Al binary phase diagram is illustrated in Fig. 94. Ni3Al forms at Al

concentrations between 25 at.% and 27 at.%. This compound has a simple cubic

Bravais lattice with four atoms per lattice site: one Al atom, located in the (x, y, z)

position, and three Ni atoms, located, respectively, at the (xþ 1/2, y, z), (x, yþ 1/2, z),

and (x, y, zþ 1/2) positions. (This intermetallic received substantial attention since it

is the main strengthening phase in superalloys. Furthermore it has been considered to

be a technologically important structural intermetallic alloy system especially after its

successful ductilization by microalloying with boron [702]. Additionally, it exhibits a

flow stress anomaly, i.e., the yield stress increases with increasing temperature over

intermediate temperatures (230�C–530�C) as with Iron aluminides. Thus, it has often

been used as a model material for understanding intermetallic compounds in general.

Commercialization of Ni3Al for selected applications is underway [605,702].

The crystal structure of Ni3Al is an ordered L12 (f.c.c.) structure having Al atoms

at the unit cell corners and Ni atoms at the face centers. Similar to pure f.c.c. metals,

the planes of easy glide are the octahedral planes {111}. Slip along {001} planes is

Figure 94. Binary Ni-Al phase diagram [655].
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more difficult, since they are less compact, but it may occur by thermal activation

[703]. Figure 95 illustrates an octahedral plane of this ordered structure. A perfect

dislocation associated with primary octahedral glide has a Burgers vector, b¼
a h110i, that is twice as large as that corresponding to a unit dislocation in the

disordered f.c.c. lattice, and is termed ‘‘superdislocation.’’ These dissociate into

‘‘super-partial’’ dislocations, with b¼ a/2 h110i, and the latter may, in turn, disso-

ciate into Shockley dislocations, with b¼ a/6 h112i, as depicted in Fig. 95.

The creep behavior of Ni3Al has drawn relatively little interest, perhaps due to

inadequate creep strength as compared to that of commercial nickel-based

superalloys and other intermetallic alloy systems such as NiAl and TiAl. The

creep behavior of Ni3Al will be briefly reviewed in the following.

a. Creep Curves. Creep tests have been performed on both single crystal [703–718]

and polycrystalline [715–717,719–733] Ni3Al alloys in tension and compression.

Figure 95. The octahedral {111} plane of the L12 crystal structure. The small circles are atoms one

plane out (above) of the page. Unit dislocations, b¼ ah110i, can dissociate into superpartial dislocations

with b¼ a/2h110i. The superpartials alter the neighboring lattice positions creating an antiphase

boundary (APB). Superpartials can dissociate into Shockley partial dislocations, with b¼ a/6h112i,
that are connected by a complex stacking fault (CSF) that includes both an APB and an ordinary

stacking fault [703].
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Most creep curves exhibit a normal shape, which consists of the conventional three

stages. However, some [e.g. 719–721] show Sigmoidal creep, where the creep-rate

decreases quickly to a minimum and this is followed by a continuous increase in the

creep-rate with strain. A steady state may or may not be achieved before reaching

tertiary creep after Sigmoidal creep. This creep behavior is also frequently termed

‘‘inverse creep’’ among the intermetallics community. Primary creep is often limited

to very small strains [612,708,718]. Figure 96 illustrates the creep curve of a Ni3Al

alloy (with 1 at.% Hf and 0.24 at.% B) deformed at 643�C at a constant stress of

745MPa [703]. Initially, the creep rate decreases with increasing strain and normal

primary creep occurs. This is followed by an extended region where the strain rate

continually increases with strain. Steady state may or may not be reached afterwards,

as will be explained later.

High-temperature creep refers to creep deformation at temperatures higher than

Tp, the temperature at which the peak yield stress is observed. This temperature

varies with alloy composition [732] and crystal orientation [704] but is typically

observed from 0.5 to 0.6Tm. Intermediate temperature creep usually refers to creep

deformation at temperatures lower than (but close to) Tp. A steady-state regime is

usually observed during high-temperature creep. The relationship between the strain

rate and the stress in the high-temperature range usually follows a power-

law relationship with a stress exponent of about 3. This may suggest that the

viscous glide of dislocations is the rate-controlling mechanism [600]. However, at

Figure 96. Sigmoidal creep curve corresponding to a Ni3Al alloy (with 1 at.%Hf and 0.24 at.%B)

deformed at 643�C at a constant stress of 745MPa [703]. Normal primary creep is followed by a

continuous increase in the strain rate. This creep behavior has been also termed ‘‘inverse creep’’.
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intermediate temperatures, from about 0.3 Tm to 0.6 Tm, Sigmoidal creep may occur

depending on both the temperature and the stress [720,721]. Nicholls and Rawlings

[724] suggested that different creep mechanisms should operate below and above Tp.

b. Sigmoidal (or Inverse) Creep. Sigmoidal creep has been observed in both single-

and polycrystalline Ni3Al alloys [703,710,712,719–721], as well as in some other

intermetallics, e.g. Ni3Ga [735] and TiAl [721]. The onset of Sigmoidal creep (i.e., the

increase in the creep-rate after primary creep) usually takes place at very small

strains. This strain-rate increase may extend over a large strain interval, leading

directly to tertiary creep in the absence of a steady-state stage [703,710,719], as

illustrated in Fig. 96, or it may occur only for a small strain previous to the steady

state [705,720].

The conditions under which Sigmoidal creep occurs are relatively narrow. Rong

et al. [720] concluded that its occurrence depends on both temperature and stress.

It is generally accepted that Sigmoidal creep is more frequent and more pronounced

at intermediate temperatures [721]. Smallman et al. [721] suggested that sigmoidal

creep only occurs at temperatures below but very close to Tp and at stresses close

to the yield stress.

Hemker et al. [703] and, previously, Nicholls and Rawling [724], observed a

decrease of creep strength with increasing temperature in a single crystal alloy, with

composition Ni-22.18 at.%Al-1 at.%Hf-0.24 at.%B [703], in the temperature regime

where the yield strength is known to increase anomalously with temperature. This

observation led them to infer that different dislocation mechanisms would be

responsible for yielding (small strains) and for creep (large strains) and stimulated

a detailed investigation of the deformation mechanisms. It is now well established

that the yield stress anomaly in Ni3Al is due to the operation of octahedral slip of

h110i superdislocations that are retarded by cross-slip onto a cube plane at

temperatures below Tp [598]. Slip on cube planes is thermally activated and is not

favored at temperatures below Tp. However, superdislocations gliding on {111}

planes have a tendency to cross slip onto cube planes due to the presence of a torque

caused by their anisotropic elastic fields. When the screw segment of a super-

dislocation is cross slipped onto a cube plane its mobility decreases significantly and

this leads to an increase of the yield stress. Slip on cube planes becomes thermally

activated and takes place easily at temperatures higher than Tp, leading to a decrease

in the yield stress. Hemker et al. [703] proposed a model to explain the Sigmoidal

creep of Ni3Al based on careful microstructural examination. They suggested

that octahedral slip during primary creep is exhausted by the formation of Kear-

Wilsdorf (KW) locks, due to thermally activated cube cross-slip of the screw

segments. Thus the strain rate is progressively reduced until the cross-slipped
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segments become thermally activated and are able to bow out and glide on the cube

cross-slip plane. The KW locks act as Frank-Read type dislocation sources for glide

on the {001} cube planes. The dislocation generation and subsequent glide on the

cube planes leads to an increasing mobile dislocation density and thus to a larger

strain rate and Sigmoidal creep occurs. An alternative dislocation model for

Sigmoidal creep was proposed by Hazzledine and Schneibel [736]. They suggested

that two highly stressed octahedral slip systems which share a common cube cross-

slip plane, may interact ‘‘symbiotically’’ and unlock each other’s superdislocations

giving rise to an increasing number of h001i dislocations that are glissile on the

cube plane. Thus, Sigmoidal creep occurs.

Smallman et al. [721] pointed out that cube cross-slip is a necessary but not

sufficient condition for Sigmoidal creep. The operation of this mechanism, which

leads to a strain rate increase under some conditions, is compensated by the strain

rate decrease due to the exhaustion of dislocations on the octahedral slip systems. In

fact, Smallman et al. [721] observed cube cross-slip in a polycrystalline Ni3Al alloy

creep deformed at 380�C ðT � TpÞ, where Sigmoidal creep was not apparent.

Zhu et al. [704] also reported cube cross-slip in the absence of Sigmoidal creep in

single crystals of Ni3Al with different orientations. In order to rationalize these

observations, Rong et al. [720] suggested that Sigmoidal creep would occur only

when the length of a significant number of screw segments cross-slipped onto cube

planes from octahedral planes, as suggested by Hemker et al. [703], is larger than a

critical value. In this case, the density of mobile dislocations on the cube cross-slip

planes would increase significantly, leading to an increase in the creep-rate. Rong et

al. [720] also observed an anomalous temperature dependence of the creep strength

in a polycrystalline Ni3Al alloy, contrary to what Hemker et al. [703] had reported

for their single crystal alloy. Rong et al. [720] found this anomalous dependence

consistent with their TEM observations of a larger density of dislocations on cube

cross-slip planes at the lower temperatures. They suggested that the average length

of the screw segments on cube cross-slip planes would increase with decreasing

temperature. Thus, at low temperatures, there would be more dislocations with

lengths larger than the critical value or a higher mobile dislocation density and this

would lead to a lower creep resistance.

The occurrence of Sigmoidal creep has not only been found to depend on

temperature and stress, but also on the prior deformation and processing history.

For example, Sigmoidal creep disappears in a Ni3Al alloy prestrained 3% at ambient

temperature [719]. A recent investigation on a single crystal of Ni3Al(0.5%Ta)

indicated that the temperature of pre-creep deformation also affects the subsequent

creep behavior [714]. The implications of these observations in terms of the creep

mechanisms occurring have not been discussed.
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c. Steady State Creep. In Ni3Al alloys, steady state creep can start very early and

extend over a considerable strain range (up to 20%) at high [708] as well as at inter-

mediate temperatures [704,718]. Occasionally this stage may be delayed or even absent

at intermediate temperatures if Sigmoidal creep occurs, as described above. As in

many other intermetallic systems, the minimum creep rate is used to calculate the

stress exponent and the activation energy for creep, using the well-established power-

law relations described elsewhere in this book, when clear steady state is not observed.

Table 7 summarizes some of the creep data obtained in various investigations on

Ni3Al-based alloys, mostly at high temperatures [706–711,715–718,722–725,

727–731,737–741]. This section will mainly focus on single phase alloys. The stress

exponent, n, ranges mostly between 3.2 and 4.4 in both single crystal and poly-

crystalline alloys. A lower value of about 1 was reported at low stresses in a

polycrystalline Ni3Al(Hf, B) [725,728]. A few studies have reported higher values of

6.7 [718], 8 [730] and 9 [742]. The values of the activation energy Qc for creep ranged

from 263 to 530 kJ/mol, but are generally between 320 and 380 kJ/mol. It is not

possible to normalize all the creep data of various Ni3Al alloys in a single plot, such

as in earlier chapters, due to the lack of diffusion coefficient and modulus of elasticity

values at various temperatures over the large variety of compositions investigated.

The rate-controlling mechanism during creep of Ni3Al intermetallics is still

unclear. Based on the analysis of the stress exponents, several studies suggested

dislocation glide (n� 3) [709–710,723,727,729], while others propose that dislocation

climb predominates (n� 4–5) [710,714,722,731], and yet others point toward Coble

or Nabarro-Herring creep (n¼ 1) [725,728]. However, others have questioned the

predominance of a single mechanism, since the stress exponents vary from 3 to 5.

Also, the Qc values have been found to be stress-dependent, in some cases [717], and

values are often much higher than the activation energy for diffusion (the activation

energy for diffusion of Ni in Ni3Al varies from 273 to 301 kJ/mol [743]). The

diffusivity of Al in NiAl is believed to be higher but it has still not been measured

directly due to the lack of suitable radioactive tracers [744].

Several TEM studies have been performed to investigate the microstructural

evolution of Ni3Al alloys during steady-state creep. In general, subgrains do not

readily form. Wolfenstine et al. [710] observed randomly distributed, curved,

dislocations in the n¼ 3 region between 810�C and 915�C, and a homogeneous

dislocation distribution with some evidence for subgrain formation in the n¼ 4.3

region (lower stresses) but no evidence for subgrain formation in the n¼ 3 region

(higher stresses) between 1015�C and 1115�C. Knobloch et al. [745] examined the

microstructure of [001], [011], and [111] oriented Ni3Al single crystals creep deformed

at 850�C at a stress of 350MPa. They observed an homogeneous dislocation

distribution for all orientations and creep stages. Stress exponents and activation

energies were not calculated. As mentioned above, the most common slip systems
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operative during creep of Ni3Al are the h110i{111} (octahedral slip) and h110i{100}
(cube slip) [107,149], although dislocation glide on h100i{100} [747] and h110i{110}
[745,748] systems has also been reported. This suggests that multiple slip takes place

and that dislocation interactions may be important during creep [708,745].

d. Effect of Some Microstructural Parameters on Creep Behavior. Crystal orienta-

tion has a considerable influence on the creep behavior [704–708,718,746–748] and

Table 7. Creep data of Ni3Al alloys.

Alloy Structure T (�C) n Qc (kJ/mol) Ref.

Single-Phase

Ni3Al(10Fe) P 871–1177 3.2 327 [723]

Ni3Al(11Fe) P 680–930 2.6 355 [724]

Ni3Al(Zr, B) P 860–965 4.4 406 [722]

Ni3Al(Hf, B) P 760 2-3 (HS)

1 (LS)

–

–

[725]

Ni3Al(Zr, B) P 760–860 2.9 339–346 [716]

Ni3Al(8Cr, Zr, B) P 760–860 3.3 391–400 [716]

Ni3Al(5V) P 850–950 2.89–3.37 – [727]

Ni3Al(Hf, B) P 760–867 1 (LS) 313 [728]

Ni3Al(Ta) P 950–1100 3.3 383 [729]

Ni3(Al, 4Ti) P 750 8 – [730]

Ni3Al(8Cr, Hf, Ta, Mo. . .) P 650–900 4.7 327 [731]

Ni3Al(Hf, B) S 924–1075 4.3 378 [708]

Ni-23.5Al S 982 3.5 – [707]

Ni3Al(Cr, Ta, Ti, W, Co) S 900–1000 3.5 380 [709]

Ni3(Al, 4Ti) S 852–902 3.3 282 [711]

Ni3Al(Ta, B) S 810–915 3.2 320 [710]

Ni3Al(Ta, B) 1015–1115 3.2 (HS)

4.3 (LS)

360

530

[710]

Ni3Al(Ta, B) S 850–1000 3.5 420 [706]

Ni3Al(X), X¼Ti, Hf, Cr, Si S 850–950 3.01–4.67 263–437 [715]

Ni3Al(4Cr) S 760–860 – 362–466 [717]

Ni3Al(Ti, 2Ta) S 850 1150 6.7 3.3 383

–

[718]

Multi-Phase (Precipitation Strengthed)

Ni3(Al, 4Ti) g/g0 650, 750 31, 22 – [730]

Ni-20.2Al-8.2Cr-2.44Fe g/g0–a(Cr) 777–877 4.1 301 [737]

Oxide-Dispersion Strengthened Ni3Al

Ni3Al(5Cr, B) 2 vol.% Y2O3 1000–1200 7.2, 7.8 650, 697 [738]

[739]

Ni3Al(5Cr, B) 2 vol.% Y2O3 649 732,

816 982

13.5 5.1 (LS)

22, 13 (HS) 9.1

–

239

[740]

[741]

P¼polycrystalline; S¼ single crystal; HS¼ high stress; LS¼ low stress.
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this influence is highly dependent on temperature. At high temperatures, [001] is the

weakest orientation, showing the highest creep rate; [111] is the strongest orientation

associated with the lowest creep rate, about 1/5 to 1/2 of that of the [001] orientation.

Finally, the [011] and [123] orientations show an intermediate strength and the creep

rate is about 1/3 to 1/2 of the creep rate of the [001] orientation [705, 707–708,

718,745]. At intermediate temperatures, the [111] orientation is softer than the [001],

and the [123] has, again, an intermediate creep strength [704,708]. Thus, the

orientation dependence of creep strength at intermediate temperatures is opposite to

that at high temperatures. Models considering the operation of octahedral slip, cube

slip, and multiple slip have been proposed to explain and predict the creep

anisotropy at different temperatures [605,707,749]. However, it seems that the crystal

orientation has no obvious influence on the stress exponent n [706–707,718] and on

the activation energy Qc for creep [706,718].

Only a few studies on the influence of grain size on the creep of Ni3Al have been

published. Schneibel et al. [725] observed a grain size dependence of the creep rate of

a cast Ni3Al(Hf,B) alloy creep deformed at 760�C. They tested specimens with

average grain sizes of 12 mm, 50 mm, and 120 mm. Figure 97 illustrates the strain rate

vs. stress data from tests performed at high stresses in the samples with larger grain

sizes. The stress exponent is 3 for small grain sizes (50 mm) and significantly higher

for larger grain sizes (120 mm). The increase in the stress exponents is attributed to

scatter of the experimental data corresponding to the lowest strain rate. Thus, the

Figure 97. Stress dependence of the creep rate of Ni-23.5 at.%Al-0.5 at.% Hf-0.2 at.%B at high stresses

for two grain sizes (from [725]).
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authors assume a stress exponent around 3 to be characteristic of the high stress

regime, which would be consistent with viscous glide over the investigated grain

sizes. The shear strain-rate in the samples with large grain sizes (>50 mm) was found

to be proportional to g�1.9 at low stresses (s<10MPa). This observation, together

with the finding of a stress value equal to 1, may suggest Nabarro-Herring creep. For

smaller grain sizes (12 mm), Coble creep may predominate, although conclusive

evidence was not presented [725]. Hall-Petch strengthening was not discussed.

Hayashi et al. [727] and Miura et al. [715] investigated the effects of off-

stoichiometry on the creep behavior of binary and ternary Ni3Al alloys. They

reported that, in both single- and polycrystalline alloys, the creep resistance increases

with increasing Ni concentration on both sides of the stoichiometric composition

and a discontinuity exists in the variation at the stoichiometric composition.

The values of the activation energy Qc for creep were also found to be strongly

dependent on the Ni concentration and the alloying additions [715–716,727]. The

characteristic variation in creep resistance with Ni concentration was explained

by the strong concentration dependence of the activation energy for creep [727].

The n values (mostly about 3–4), however, appear nearly independent of the

stoichiometric composition and the alloying additions [715,727].

Attempts have been made to improve the creep strength of Ni3Al by adding

various alloying elements [709,712,715,723,725,727,750–753]. Several solutes have

been found to be beneficial, such as Hf, Cr, Zr and Ta [600]. In some cases the

improvement in creep strength was accompanied by a non-desirable increase in

density [600]. However, solid-solution strengthening has not been effective enough to

increase creep resistance of Ni3Al alloys above the typical values of Ni-based

superalloys [709,752,754,755]. Therefore, research efforts have been directed to

develop multiphase alloys based on Ni3Al through precipitation strengthening

[730,737] or dispersion strengthening (with addition of nonmetallic particles or

fibers, e.g. oxides, borides, and carbides) [738–741].

A few investigations of creep in multiphase Ni3Al alloys [730,737–741] are listed

in Table 7. Three ranges of n and Qc values were reported for multiphase alloys,

i.e. n¼ 4.1–5.1 (Qc¼ 239 kJ/mol), n¼ 7.2–9.1 (Qc¼ 301 kJ/mol), and n¼ 13–31

(Qc¼ 650–697 kJ/mol). The deformation mechanism governing creep of multiphase

Ni3Al alloys is still unclear. The steady state creep in a precipitation strengthened

Ni3Al alloy Ni-20.2 at.%Al–8.2 at.%Cr–2.44 at.%Fe [737], where n¼ 4.1 and

Qc¼ 301 kJ/mol were observed, was suggested to be controlled by diffusion-

controlled climb of dislocation loops at Cr precipitate interfaces. In an oxide-

dispersion strengthened (ODS) Ni3Al alloy [738–741] the n values were shown to be

strongly dependent on the temperature and the stress. The stress exponents increased

from 5.1 (with Qc¼ 239 kJ/mol) at low stresses to 13
22 at high stresses at

temperatures of 732�C and 815�C [740,741], which are quite typical of ODS alloys
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as discussed earlier. At higher temperatures (from 1000 to 1273�C) [738,739] the

stress exponents were 7.2 and 7.8 (with Qc¼ 650 and 697 kJ/mol, respectively). It was

suggested that the stress exponent of 5.1 in the ODS Ni3Al should not be considered

indicative of dislocation climb controlled creep as observed in pure metals and Class

M alloys and as proposed for some single phase Ni3Al alloys. Carreño et al. [738]

emphasized that both Arzt and co-workers’ Detachment model (described in the

chapter on second phase strengthening) and incorporating a threshold stress in any

model [605] are not appropriate approaches to describe the creep behavior of ODS

Ni3Al at higher temperatures. There is relatively poor agreement between the data

and the predictions by these models. Alternatively, they developed a ‘‘ñ-model’’

approach, which separates the contribution of the particles and that from the matrix.

They assume the measured stress exponent is equal to the sum of the stress exponent

corresponding to the matrix, termed hñ, and an additional stress exponent, ñ, that is

necessary in order to account for the dislocation-particle interactions. The measured

activation energy can be obtained by multiplying the activation energy correspond-

ing to the matrix deformed under the same stress and temperature conditions by a

factor equal to (hñþ ñ/h). This approach satisfactorily models the data.

Figure 98 illustrates a comparison of the creep properties of an ODS Ni3Al alloy,

Ni-19 at.%Al-5 at.%Cr-0.1 at.%B with 2 vol.% of Y2O3 (filled circles) with a single

crystal Ni3Al alloy and two nickel-based superalloys, NASAIR 100 and MA6000.

Figure 98. Comparison of the creep behavior corresponding to an ODS Ni3Al alloy of composition Ni-

19 at.%Al-5 at.%Cr-0.1 at.%B with 2 vol.% of Y2O3 (g
400mm) [739] with a single crystal Ni3Al alloy

[708] and with the Ni superalloys NASAIR 100 [756], and MA6000 [757].

Creep of Intermetallics 207



Although the introduction of an oxide dispersion contributed to strengthening of the

Ni3Al alloy with respect to the single crystal alloy, the creep performance of ODS

Ni3Al was still poorer than that of commercial nickel-based superalloys.

9.4.2 NiAl

a. Introduction. NiAl is a B2 ordered intermetallic phase with a simple cubic lattice

with two atoms per lattice site, an Al atom at position (x, y, z) and a Ni atom at

position (xþ 1/2, yþ 1/2, zþ 1/2). This is a very stable structure that remains

ordered until nearly the melting temperature. As illustrated in the phase diagram of

Fig. 94, NiAl forms at Al concentrations ranging from 40 to about 55 at.%.

Excellent reviews of the physical and mechanical properties of NiAl are available in

[600,758,759].

NiAl alloys are attractive for many applications due to their favorable oxidation,

carburization and nitridation resistance, as well as their high thermal and electrical

conductivity. They are currently used to make electronic metallizations in advanced

semiconductor heterostructures, surface catalysts, and high current vacuum circuit

breakers [758]. Additionally, these alloys are attractive for aerospace structural

applications due to their low density (5.98 g/cm3) and high melting temperature [605].

However, two major limitations of single phase NiAl alloys are precluding their

application as structural materials, namely poor creep strength at high temperatures

and brittleness below about 400�C (brittle-ductile transition temperature). The

following sections of this chapter will review the deformation mechanisms during

creep of single-phase NiAl and the effects of different strengthening mechanisms.

b. Creep of Single-Phase NiAl. Most of the available creep data of NiAl were

obtained from compression tests at constant strain rate or constant load [760–780].

Only limited data from tensile tests are available [768,781]. It is generally accepted

that creep in single-phase NiAl is diffusion controlled. This has been inferred, first,

from the analysis of the stress exponents and activation energies. The values for these

parameters are listed in Table 8. In most cases, the stress exponents range from 4 to

7.5. Figure 99 illustrates the creep behavior of several binary NiAl alloys. Evidence

for the predominance of dislocation climb was also inferred from the values of the

activation energies which, in many investigations, are close to 291 kJ/mol, the value of

the activation energy for bulk diffusion of Ni in NiAl. Additionally, subgrain

formation during deformation has been observed [770], consistent with climb control.

However, occasionally stress exponents different from those mentioned above

have been reported. For example, values as low as 3 were measured in NiAl single

crystals by Forbes et al. [782] and Vanderwoort et al. [778], who suggested that both
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viscous glide and dislocation climb would operate. The contributions of each

mechanism would depend on texture, stress and temperature [778]. Recently, Raj

[782] reported stress exponents as high as 13 in a Ni-50 at.%Al alloy tested in tension

at 427�C, 627�C and 727�C and at constant stresses of 100–170MPa, 40–80MPa,

and 35–65MPa, respectively. Although no clear explanations for this high stress

exponent value are provided by Raj [782], he notes that the creep behavior of NiAl in

tension (his research) and compression (most of the previous works) is significantly

different. For example, Raj observed that NiAl material creeps much faster in

tension than in compression, especially at the lower temperatures.

Table 8. Creep parameters for NiAl (from [759] with additional data from recent publications).

Al, at.% Grain size, mm T (�C) n Q, kJ/mol Ref.

48.25 5–9 727–1127 6.0–7.5 313 [774]

44–50.6 15–20 727–1127 5.75 314 [775]

50 12 927–1027 6 350 [776]

50 450 800–1045 10.2–4.6 283 [770]

50 500 900 4.7 [777]

50.4 1000 802–1474 7.0–3.3 230–290 [778]

50 Single crystal [720] 750–950 7.7–5.4 [779]

50 Single crystal 750–1055 4.0–4.5 293 [780]

49.8 39 727 5 260 [781]

Figure 99. Creep behavior of several binary NiAl alloys [600].
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Diffusional creep has been suggested to occur in NiAl when tested at low stresses

(s<30MPa) and high temperatures (T>927�C) [783,784]. Stress exponents between
1 and 2 were reported under these conditions.

c. Strengthening Mechanisms. Several strengthening mechanisms have been utilized

in order to improve the creep strength of NiAl alloys. Solid solution of Fe, Nb, Ta,

Ti and Zr produced only limited strengthening. The presence of these solute atoms

caused the lowering of the stress exponent. Therefore the solute strengthening effects

are only significant at very high stresses [760,785]. Solute strengthening must be

combined with other strengthening mechanisms in order to obtain improved creep

strength. Precipitation hardening by additions of Nb, Ta or Ti renders NiAl more

creep resistant than solid solution strengthening (i.e., alloys with the same com-

position and same alloying elements in smaller quantities) but still significant

improvements are not achieved [761].

An alternative, more effective, strengthening method than solute or precipitation

strengthening is dispersion strengthening. Artz and Grahle [764] mechanically

alloyed dispersed particles in a NiAl matrix and obtained favorable creep strength

up to 1427�C. Figure 100 (from [764]) compares the creep strengths of an ODS

NiAl-Y2O3 alloy with a ferritic Superalloy (MA956) and a precipitation strengthened

NiAl alloy in which the composition of the precipitates is AlN at 1200�C. The ODS

Ni alloy is more creep resistant than the Ni Superalloy MA956 at these high

Figure 100. Comparison of the creep behavior of a coarse-grained (g¼ 100mm) ODS NiAl alloy [764]

with the ferritic ODS Superalloy MA956 and with a precipitation strengthened NiAl-AlN alloy produced

by cryomilling [767].

210 Fundamentals of Creep in Metals and Alloys



temperatures. The ODS NiAl alloy is also more resistant than the precipitation

strengthened alloy at low strain rates. Artz and Grahle [764] also observed that the

creep behavior of ODS NiAl is significantly influenced by the grain size. In a coarse

grain size (g¼ 100 mm) ODS NiAl-Y2O3 alloy, the creep behavior showed the usual

characteristics of dispersion strengthened systems, i.e., high stress exponents (n¼ 17)

and activation energies much higher than that of lattice self-diffusion (Q¼ 576 kJ/

mol). However, intermediate stress exponents of 5 and very high activation energies

(Q¼ 659 kJ/mol) were measured in an ODS NiAl-Y2O3 alloy with a grain size of

0.9 mm. This creep data could not be easily modeled using established relationships

for diffusional or for detachment-controlled dislocation creep [764]. Arzt and Grahle

[764] suggest that the presence of particles at grain boundaries partially suppresses

the sink/source action of grain boundaries by pinning the grain boundary

dislocations and, thus, hinders Coble creep. However, the low stress exponent

indicates that Coble creep is not completely suppressed. Arzt and Grahle [764]

proposed a phenomenological model based on the coupling between Coble creep and

the grain boundary dislocation-dispersoid interaction (controlled by thermally

activated dislocation detachment from the particles, as indicated in an earlier

chapter). The predictions of this model agree satisfactorily with the experimental

data. HfC and HfB2 can also provide significant particle strengthening [760].

Matrix reinforcement by larger particles such as TiB2 and Al2O3 or whiskers also

increases significantly the strength of NiAl alloys [760,765,786]. Xu and Arsenault

[765] investigated the creep mechanisms of NiAl matrix composites with 20 vol.% of

TiB2 particles of 5 and 150 mm diameter, with 20 vol.% of Al2O3 particles of 5 and

75 mm diameter, and with 20 vol.% of Al2O3 whiskers. They measured stress

exponents ranging from 7.6 to 8.4 and activation energies similar to that of lattice

diffusion of Ni in NiAl. They concluded that the deformation mechanism is the same

in unreinforced and reinforced materials, i.e., dislocation climb is rate-controlling in

NiAl matrix composites during deformation at high temperature. Additionally,

TEM examination revealed long screw dislocations with superjogs. Xu and

Arsenault [765] suggested, based on computer simulation, that the jogged screw

dislocation model, described previously in this book, can account for the creep

behavior of NiAl metal matrix composites.
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Chapter 10

Creep Fracture

10.1 BACKGROUND

Creep plasticity can lead to tertiary or Stage III creep and failure. It has been

suggested that Creep Fracture can occur by w or Wedge-type cracking, illustrated in

Figure 101(a), at grain-boundary triple points. Some have suggested that w-type

cracks form most easily at higher stresses (lower temperatures) and larger grain sizes

[786] when grain-boundary sliding is not accommodated. Some have suggested that

the Wedge-type cracks nucleate as a consequence of grain-boundary sliding. Another

mode of fracture has been associated with r-type irregularities or cavities illustrated

in Figure 102. The Wedges may be brittle in origin or simply an accumulation of

r-type voids [Figure 101(b)] [787]. These Wedge cracks may propagate only by r-type

void formation [788,789]. Inasmuch as w-type cracks are related to r-type voids, it is

sensible to devote this short summary of Creep Fracture to cavitation.

There has been, in the past, a variety of reviews of Creep Fracture by Cocks

and Ashby [790], Nix [791], and Needleman and Rice [792] and a series of articles

in a single issue of a journal [793–794], chapter by Cadek [20] and particularly books

by Riedel [795] and Evans [30], although most of these were published 15–20 years

ago. This chapter will review these and, in particular, other more recent works.

Figure 101. (a) Wedge (or w-type) crack formed at the triple junctions in association with grain-boundary

sliding. (b) illustrates a Wedge crack as an accumulation of spherical cavities.
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Some of these works are compiled in recent bibliographies [800] and are quite

extensive, of course, and this chapter is intended as a balanced and brief summary.

The above two books are considered particularly good references for further reading.

This chapter will particularly reference those works published subsequent to these

reviews.

Creep Fracture in uniaxial tension under constant stress has been described by the

Monkman–Grant relationship [35], which states that the fracture of creep-deforming

materials is controlled by the steady-state creep rate, _eess, equation (4),

_eem
00

ss tf ¼ kMG

where kMG is sometimes referred to as the Monkman–Grant constant and m00 is a
constant typically about 1.0. Some data that illustrates the basis for this

phenomenological relationship is in Figure 103, based on Refs. [30,801]. Although

not extensively validated over the past 20 years, it has been shown recently to be

valid for creep of dispersion-strengthened cast aluminum [802] where cavities

nucleate at particles and not located at grain boundaries. Modifications have been

suggested to this relationship based on fracture strain [803]. Although some more

recent data on Cr–Mo steel suggests that equation (4) is valid [804], the same data

has been interpreted to suggest the modified version. The Monkman–Grant (pheno-

menological) relationship, as will be discussed subsequently, places constraints on

creep cavitation theories.

Figure 102. Cavitation (r-type) or voids at a transverse grain boundary. Often, c is assumed to be

approximately 70�.
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Figure 103. (a) The steady-state creep-rate (strain-rate) versus time-to-rupture for Cu deformed over a

range of temperatures, adapted from Evans [30], and (b) dispersion-strengthened cast aluminum, adapted

from Dunand et al. [615].
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Another relationship to predict rupture time utilizes the Larson–Miller parameter

[805] described by

LM ¼ T ½logtr þ CLM� ð130Þ

This equation is not derivable from the Monkman–Grant or any other relationship

presented. The constant CLM is phenomenologically determined as that value that

permits LM to be uniquely described by the logarithm of the applied stress. This

technique appears to be currently used for zirconium alloy failure time prediction

[806]. CLM is suggested to be about 20, independent of the material.

One difficulty with these equations is that the constants determined in a creep

regime, with a given rate-controlling mechanism may not be used for extrapolation

to the rupture times within another creep regime where the constants may change

[806]. The Monkman–Grant relationship appears to be more popular.

The fracture mechanisms that will be discussed are those resulting from the nuclea-

tion of cavities followed by growth and interlinkage, leading to catastrophic failure.

Figure 104 illustrates such creep cavitation in Cu, already apparent during steady-

state (i.e., prior to Stage III or tertiary creep). It will be initially convenient to discuss

fracture by cavitation as consisting of two steps, nucleation and subsequent growth.

10.2 CAVITY NUCLEATION

It is still not well established by what mechanism cavities nucleate. It has generally

been observed that cavities frequently nucleate on grain boundaries, particularly on

those transverse to a tensile stress, e.g. [788,807–811]. In commercial alloys, the

cavities appear to be associated with second-phase particles. It appears that cavities

do not generally form in some materials such as high-purity (99.999% pure) Al.

Cavitation is observed in lower purity metal such as 99% Al [812] (in high-purity Al,

boundaries are serrated and very mobile). The nucleation theories fall into several

categories that are illustrated in Figure 105: (a) grain-boundary sliding leading to

voids at the head (e.g., triple point) of a boundary or formation of voids by ‘‘tensile’’

GB ledges, (b) vacancy condensation, usually at grain boundaries at areas of high

stress concentration, (c) the cavity formation at the head of a dislocation pile-up

such as by a Zener–Stroh mechanism (or anti-Zener–Stroh mechanism [813]). These

mechanisms can involve particles as well (d).

10.2.1 Vacancy Accumulation

Raj and Ashby [814] developed an earlier [815] idea that vacancies can agglomerate

and form stable voids (nuclei) as in Figure 88(b). Basically, the free energy terms are
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Figure 104. Micrograph of cavities in Cu deformed at 20MPa and 550�C to a strain of about 0.04

(within stage II, or steady-state).
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the work performed by the applied stress with cavity formation balanced by two

surface energy terms. The change in total free energy is given by,

�GT ¼ �s�N þ Avgm � Agbggb ð131Þ

where N is the number of vacancies, Av and Agb are the surface areas of the void and

(displaced) area of grain boundary, and gm and ggb are surface and interfacial energy

terms of the metal and grain boundary. (Note: all stresses and strain-rates are

equivalent uniaxial and normal to the grain boundary in the equations in this

chapter.)

Figure 105. Cavity nucleation mechanism. (a) Sliding leading to cavitation from ledges (and triple

points). (b) Cavity nucleation from vacancy condensation at a high-stress region. (c) Cavity nucleation

from a Zener–Stroh mechanism. (d) The formation of a cavity from a particle-obstacle in conjunction with

the mechanisms described in (a–c).
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This leads to a critical radius, a�, and free energy, �G�
T, for critical-sized cavities

and a nucleation rate,

_NN ffi n�Dgb ð132Þ

where n� ¼ no expð��G�
T=kT Þ, Dgb is the diffusion coefficient at the grain boundary

and n0 is the density of potential nucleation sites. (The nucleation rate has the

dimensions, m2 s�1.) (Some [24,799] have included a ‘‘Zeldovich’’ factor in equation

(132) to account for ‘‘dissolution’’ of ‘‘supercritical’’ nuclei a> a*.)

Some have suggested that vacancy supersaturation may be a driving force rather

than the applied stress, but it has been argued that sufficient vacancy super-

saturations are unlikely [799] in conventional deformation (in the absence of

irradiation or Kirkendall effects).

This approach leads to expressions of nucleation rate as a function of stress (and

the shape of the cavity). An effective threshold stress for nucleation is predicted.

Argon et al. [816] and others [799] suggest that the Cavity nucleation by vacancy

accumulation (even with modifications to the Raj–Ashby nucleation analysis to

include, among other things, a Zeldovich factor) requires large applied (threshold)

stresses (e.g., 104MPa), orders of magnitude larger than observed stresses leading to

fracture, which can be lower than 10MPa in pure metals [799].

Cavity nucleation by vacancy accumulation thus appears to require significant

stress concentration. Of course, with elevated temperature plasticity, relaxation by

creep plasticity and/or diffusional flow will accompany the elastic loading and relax

the stress concentration. The other mechanisms illustrated in Figure 105 can involve

Cavity nucleation by direct ‘‘decohesion’’ which, of course, also requires a stress

concentration.

10.2.2 Grain-Boundary Sliding

Grain boundary sliding (GBS) can lead to stress concentrations at triple points and

hard particles on the grain boundaries, although it is unclear whether the local

stresses are sufficient to nucleate cavities [20,817]. These mechanisms are illustrated

in Figures 88(a), (b) and (d). Another sliding mechanism includes (tensile) ledges

[Figure 88(a)] where tensile stresses generated by GBS may be sufficient to cause

Cavity nucleation [818], although some others [819] believed the stresses are

insufficient. The formation of ledges may occur as a result of slip along planes

intersecting the grain boundaries.

One difficulty with sliding mechanisms is that transverse boundaries (perpendi-

cular to the principal tensile stress) appear to have a propensity to cavitate.

Cavitation has been observed in bicrystals [820] where the boundary is perpendicular
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to the applied stress, such that there is no resolved shear and an absence of sliding.

Hence, it appears that sliding is not a necessary condition for Cavity nucleation.

Others [794,807,821], however, still do not appear to rule out a relationship between

GBS and cavitation along transverse boundaries. The ability to nucleate cavities

via GBS has been demonstrated by prestraining copper bicrystals in an orientation

favoring GBS, followed by subjecting the samples to a stress normal to the

previously sliding grain boundary and comparing those results to tests on bicrystals

that had not been subjected to GBS [818]. Extensive cavitation was observed in the

former case while no cavitation was observed in the latter. Also, as will be discussed

later, GBS (and concomitant cavitation) can lead to increased stress on transverse

boundaries, thereby accelerating the cavitation at these locations. More recently,

Ayensu and Langdon [807] found a relation between GBS and cavitation

at transverse boundaries, but also note a relationship between GBS and strain.

Hence, it is unclear whether GBS either nucleates or grows cavities in this case. Chen

[635] suggested that transverse boundaries may slide due to compatibility

requirements.

10.2.3 Dislocation Pile-ups

As transverse boundaries may not readily slide, perhaps the stress concentration

associated with dislocation pile-ups against, particularly, hard second-phase particles

at transverse grain boundaries, has received significant acceptance [798,823,824] as a

mechanism by which vacancy accumulation can occur. Pile-ups against hard

particles within the grain interiors may nucleate cavities, but these may grow

relatively slowly without short-circuit diffusion through the grain boundary and may

also be of lower (areal) density than at grain boundaries.

It is still not clear, however, whether vacancy accumulation is critical to the

nucleation stage. Dyson [798] showed that tensile creep specimens that were

prestrained at ambient temperature appeared to have a predisposition for creep

cavitation. This suggested that the same process that nucleates voids at ambient

temperature (that would not appear to include vacancy accumulation) may influence

or induce void nucleation at elevated temperatures. This could include a Zener–Stroh

mechanism [Figure 88(c)] against hard particles at grain boundaries. Dyson [798]

showed that the nucleation process can be continuous throughout creep and that

the growth and nucleation may occur together, a point also made by several other

investigators [797,819,825,826]. This and the effect of prestrain are illustrated in

Figure 106. The impact of cavitation rate on ductility is illustrated in Figure 107. Thus,

the nucleation process may be controlled by the (e.g., steady-state) plasticity. The

suggestion that Cavity nucleation is associated with plastic deformation is consistent

with the observation by Nieh and Nix [825], Watanabe et al. [827], Greenwood et al.
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[828], and Dyson et al. [826] that the cavity spacing is consistent with regions of high

dislocation activity (slip-band spacing). Goods and Nix [829] also showed that if

bubbles are implanted, the ductility decreases. Davanas and Solomon [815] argue that

if continuous nucleation occurs, modeling of the fracture process can lead to a

Monkman–Grant relationship (diffusive and plastic coupling of cavity growth and

cavity interaction considered). One consideration against the slip band explanations is

that In situ straining experiments in the TEM by Dewald et al. [821] suggested that

slip dislocations may easily pass through a boundary in a pure metal and the stress

concentrations from slip may be limited. This may not preclude such a mechanism in

combination with second-phase particles. Kassner et al. [2] performed Creep Fracture

experiments on high-purity Ag at about 0.25Tm. Cavities appeared to grow by

(unstable) plasticity rather than diffusion. Nucleation was continuous, and it was

noted that nucleation only occurred in the vicinity of high-angle boundaries where

obstacles existed (regions of highly twinned metal surrounded by low twin-density

metal). High-angle boundaries without barriers did not appear to cavitate. Thus,

Figure 106. The variation of the cavity concentration versus creep strain in Nimonic 80A (Ni–Cr alloy

with Ti and Al) for annealed and pre-strained (cold-worked) alloy. Adapted from Dyson [611]. Cavities

were suggested to undergo unconstrained growth.
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nucleation (in at least transverse boundaries) appears to require obstacles and

a Zener–Stroh or anti-Zener–Stroh appeared the most likely mechanism.

10.2.4 Location

It has long been suggested that (transverse) grain boundaries and second-phase

particles are the common locations for cavities. Solute segregation at the boundaries

may predispose boundaries to Cavity nucleation [794]. This can occur due to the

decrease in the surface and grain boundary energy terms.

Some of the more recent work that found cavitation associated with hard second-

phase particles in metals and alloys includes [830–838]. Second-phase particles can

result in stress concentrations upon application of a stress and increase Cavity

nucleation at a grain boundary through vacancy condensation by increasing the grain

boundary free energy. Also, particles can be effective barriers to dislocation pile-ups.

Figure 107. Creep ductility versus the ‘‘rate’’ of cavity production with strain. Adapted from Dyson [611]

(various elevated temperatures and stresses).
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The size of critical-sized nuclei is not well established but the predictions based on

the previous equations is about 2–5 nm [20], which are difficult to detect. SEM under

optimal conditions can observe (stable) creep cavities as small as 20 nm [839]. It has

been suggested that the small angle neutron scattering can characterize cavity

distributions from less than 10 nm to almost 1 mm) [20]. TEM has detected stable

cavities (gas) at 3 nm [840]. Interestingly, observations of Cavity nucleation not only

suggest continual cavitation but also no incubation time [841] and that strain rather

than time is more closely associated with nucleation [20]. Figure 107 illustrates the

effect of stress states on nucleation. torsion, for comparable equivalent uniaxial

stresses in Nimonic 80, leads to fewer nucleated cavities and greater ductility than

torsion. Finally, another nucleation site that may be important as damage progresses

in a material is the stress concentration that arise around existing cavities. The initial

(elastic) stress concentration at the cavity ‘‘tip’’ is a factor of three larger than the

applied stress and, even after relaxation by diffusion, the stress may still be elevated

[842] leading to increased local nucleation rates.

10.3 GROWTH

10.3.1 Grain Boundary Diffusion-Controlled Growth

The cavity growth process at grain boundaries at elevated temperature has long been

suggested to involve vacancy diffusion. Diffusion occurs by cavity surface migration

and subsequent transport along the grain boundary, with either diffusive mechanism

having been suggested to be controlling depending on the specific conditions. This

contrasts creep void growth at lower temperatures where cavity growth is accepted to

occur by (e.g., dislocation glide-controlled) plasticity. A carefully analyzed case for

this is described in Ref. [839].

Hull and Rimmer [843] were one of the first to propose a mechanism by

which diffusion leads to cavity growth of an isolated cavity in a material under

an applied external stress, s. A stress concentration is established just ahead of

the cavity. This leads to an initial ‘‘negative’’ stress gradient. However a ‘‘positive’’

stress gradient is suggested to be established due to relaxation by plasticity

[30]. This implicit assumption in diffusion-controlled growth models appears to

have been largely ignored in later discussions by other investigators, with rare

exception (e.g. [30]. The equations that Hull and Rimmer and, later, others

[799,814,844] subsequently derive for diffusion-controlled cavity growth are similar.

Basically,

Jgb ¼ � Dgb

�kT
rf ð133Þ
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where Jgb is the flux, � the atomic volume, f¼�sloc� and sloc is the local normal

stress on the grain boundary. Also,

rf 
 �

ls
s� 2gm

a

� �
ð134Þ

where ‘‘a’’ is the cavity radius, s the remote or applied normal stress to the grain

boundary, and ls is the cavity separation. Below a certain stress ½s0 ¼ ð2gm=aÞ� the
cavity will sinter. Equations (133) and (134) give a rate of growth,

da

dt
ffi Dgbd s� ð2gm=aÞ


 �
�

2kT lsa
ð135Þ

where d is the grain-boundary width. Figure 108 is a schematic that illustrates the

basic concept of this approach.

By integrating between the critical radius (below which sintering occurs) and

a¼ ls/2,

tr ffi kT l3s
4Dgbd s� ð2gm=aÞ


 �
�

ð136Þ

Figure 108. Cavity growth from diffusion across the cavity surface and through the grain boundaries due

to a stress gradient.

226 Fundamentals of Creep in Metals and Alloys



This is the first relationship between stress and rupture time for (unconstrained)

diffusive cavity growth. Raj and Ashby [814,845], Speight and Beere [844], Riedel

[799], and Weertman [846] later suggested improved relationships between the cavity

growth rate and stress of a similar form to that of Hull and Rimmer [equation (135)].

The subsequent improvements included modifications to the diffusion lengths (the

entire grain boundary is a vacancy source), stress redistribution (the integration of

the stress over the entire boundary should equal the applied stress), cavity geometry

(cavities are not perfectly spherical) and the ‘‘jacking’’ effect (atoms deposited on the

boundary causes displacement of the grains). Riedel, in view of these limitations,

suggested that the equation for unconstrained cavity growth of widely spaced voids

is, approximately,

da

dt
¼ �dDgb s� s00

0

� �
1:22 kT lnðls=4:24aÞa2 ð137Þ

where s 00
0 is the sintering stress. Again, integrating to determine the time for

rupture shows that tr / 1=s. Despite these improvements, the basic description

long suggested by Hull and Rimmer is largely representative of unconstrained

cavity growth. An important point here is a predicted stress dependence of one

and an activation energy of grain boundary diffusion for equations (135)–(137) for

(unconstrained) cavity growth.

The predictions and stress dependence of these equations have been frequently

tested [45,829,847–858]. Raj [856] examined Cu bicrystals and found the rupture

time inversely proportional to stress, consistent with the diffusion-controlled cavity

growth equations just presented. The fracture time for polycrystals increases orders

of magnitude over bicrystals. Svensson and Dunlop [850] found that in a-brass,
cavities grow linearly with stress. The fracture time appeared, however, consistent

with Monkman–Grant and continuous nucleation was observed. Hanna and

Greenwood [851] found that density change measurements in prestrained (i.e.,

prior Cavity nucleation) and with hydrogen bubbles were consistent with the stress

dependency of the earlier equations. Continuous nucleation was not assumed. Cho

et al. [852] and Needham and Gladman [857,858] measured the rupture times and/or

cavity growth rate and found consistency with a stress to the first power dependency

if continuous nucleation was assumed. Miller and Langdon [849] analyzed the

density measurements on creep-deformed Cu based on the work of others and found

that the cavity volume was proportional to s2 (for fixed T, t, and e). If continuous
nucleation occurs with strain, which is reasonable, and the variation of the

nucleation rate is ‘‘properly’’ stress dependent (unverified), then consistency between

the density trends and unconstrained cavity growth described by equations (135) and

(137) can be realized.
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Creep cavity growth experiments have also been performed on specimens with

pre-existing cavities by Nix and coworkers [45,829,847,848]. Cavities, here, were

created using water vapor bubbles formed from reacting dissolved hydrogen and

oxygen. Cavities were uniformly ‘‘dispersed’’ (unconstrained growth). Curiously,

the growth rate, da/dt, was found to be proportional to s3. This result appeared

inconsistent with the theoretical predictions of diffusion-controlled cavity growth.

The disparity is still not understood. Interestingly, when a dispersion of MgO

particles was added to the Ag matrix, which decreased the Ag creep-rate, the growth

rate of cavities was unaffected. This supports the suggestion that the controlling

factor for cavity growth is diffusion rather than plasticity or GBS. Similar findings

were reported by others [859]. Nix [791] appeared to rationalize the three-power

observation by suggesting that only selected cavities participate in the fracture

process. [As will be discussed later, it does not appear clear whether cavity growth in

the Nix et al. experiments were generally unconstrained. That is, whether only

diffusive flow of vacancies controls the cavity growth rate.]

10.3.2 Surface Diffusion-Controlled Growth

Chuang and Rice [860] and later Needleman and Rice [792] suggested that surface

rather than grain-boundary diffusion may actually control cavity growth (which is

not necessarily reasonable) and that these assumptions can give rise to a three-power

stress relationship for cavity growth at low stresses [791,861].

da

dt
ffi �dDs

2kTg2m
s3 ð138Þ

At higher stresses, the growth rate varies as s3/2. The problem with this approach is

that it is not clear in the experiments, for which three-power stress-dependent cavity

growth is observed, that Ds<Dgb. Activation energy measurements by Nieh and

Nix [847,848] for (assumed unconstrained) growth of cavities in Cu are inconclusive

as to whether it better matches Dgb versus Ds. Also, the complication with all these

growth relationships [equations (135)–(138)] is that they are inconsistent with the

Monkman–Grant phenomenology. That is, for common Five-Power-Law Creep, the

Monkman–Grant relationship suggests that the cavity growth rate (1/tf) should be

proportional to the stress to the fifth power rather than 1–3 power. This, of course,

may emphasize the importance of nucleation in the rate-controlling process for creep

cavitation failure, since cavity-nucleation may be controlled by the plastic strain

(steady-state creep-rate). Of course, small nanometer-sized cavities (nuclei), by

themselves, do not appear sufficient to cause cavitation failure. Dyson [798]
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suggested that the Monkman–Grant relationship may reflect the importance of both

(continuous) nucleation and growth events.

10.3.3 Grain-Boundary Sliding

Another mechanism that has been considered important for growth is grain-

boundary sliding (GBS) [862]. This is illustrated in Figure 109. Here cavities are

expected to grow predominantly in the plane of the boundary. This appears to have

been observed in some temperature–stress regimes. Chen appears to have invoked

GBS as part of the cavity growth process [793], also suggesting that transverse

boundaries may slide due to compatibility requirements. A suggested consequence of

this ‘‘crack sharpening’’ is that the tip velocity during growth becomes limited by

surface diffusion. A stress to the third power, as in equation (138), is thereby

rationalized. Chen suggests that this phenomenon may be more applicable to higher

strain-rates and closely spaced cavities (later stages of creep) [822]. The observations

that cavities are often more spherical rather than plate-like or lenticular, and that, of

course, transverse boundaries may not slide, also suggest that cavity growth does not

substantially involve sliding. Riedel [799] predicted that (constrained) diffusive cavity

growth rates are expected to be a factor of (ls/2a)
2 larger than growth rates by

(albeit, constrained) sliding. It has been suggested that sliding may affect growth in

some recent work on creep cavitation of dual phase intermetallics [863].

10.3.4 Constrained Diffusional Cavity Growth

Cavity nucleation may be heterogeneous, inasmuch as regions of a material may be

more cavitated than others. Adams [864] and Watanabe et al. [865] both suggested

that different geometry (e.g., as determined by the variables necessary to characterize

Figure 109. Cavity growth from a sliding boundary. From Ref. [606].
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a planar boundary) high-angle grain boundaries have different tendencies to cavitate,

although there was no agreement as to the nature of this tendency in terms of the

structural factors. Also, of course, a given geometry boundary may have varying

orientations to the applied stresses. Another important consideration is that the zone

ahead of the cavity experiences local elongating with diffusional growth, and this

may cause constraint in this region by those portions of the material that are

unaffected by the diffusion (outside the cavity diffusion ‘‘zone’’). This may cause a

‘‘shedding’’ of the load from the diffusion zone ahead of the cavity. Thus, cavitation

is not expected to be homogeneous and uncavitated areas may constrain those areas

that are elongating under the additional influence of cavitation. This is illustrated in

Figure 110. Fracture could then be controlled by the plastic creep-rate in uncavitated

regions that can also lead to Cavity nucleation. This leads to consistency with the

Monkman–Grant relationship [866,867].

Constrained diffusional growth was originally suggested by Dyson and further

developed by others [790,807,822,860,867]. This constrained cavity growth rate has

been described by the relationship [799]

da

dt
ffi s� ð1� oÞs00

0

a2kT=�dDgb


 �þ sssp2ð1þ 3=nÞ1=2=_eessl2sg

 �

a2
ð139Þ

where o is the fraction of the grain boundary cavitated.

This is the growth rate for cavities expanding by diffusion. One notes that for

higher strain-rates, where the increase in volume can be easily accommodated, the

growth rate is primarily a function of the grain-boundary diffusion coefficient.

Figure 110. Uniform (a) and heterogeneous (b) cavitation at (especially transverse) boundaries. The

latter condition can particularly lead to constrained cavity growth [606].
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If only certain grain-boundary facets cavitate, then the time for coalescence, tc, on

these facets can be calculated,

tc ffi 0:004 kT l3

�dDgbsss
þ 0:24ð1þ 3=nÞ1=2l

_eessg
ð140Þ

where, again, n is the steady-state stress exponent, g is the grain size, and sss and _eess
are the steady-state stress and strain-rate, respectively, related by,

_eess ¼ A0 exp½�Qc=kT �ðsss=E Þn ð141Þ

where n¼ 5 for classic Five-Power-Law Creep. However, it must be emphasized that

failure is not expected by mere coalescence of cavities on isolated facets. Additional

time may be required to join facet-size microcracks. The mechanism of joining facets

may be rate-controlling. The advance of facets by local nucleation ahead of the

‘‘crack’’ may be important (creep-crack growth on a small scale). Interaction

between facets and the nucleation rate of cavities away from the facet may also be

important. It appears likely, however, that this model can explain the larger times for

rupture (than expected based on unconstrained diffusive cavity growth). This likely

also is the basis for the Monkman–Grant relationship if one assumes that the time

for cavity coalescence, tc, is most of the specimen lifetime, tf, so that tc is not

appreciably less than tf. Figure 111, adapted from Riedel, shows the cavity growth

rate versus stress for constrained cavity growth as solid lines. Also plotted in this

figure (as the dashed lines) is the equation for unconstrained cavity growth [equation

(137)]. It is observed that the equation for unconstrained growth predicts much

higher growth rates (lower tf) than constrained growth rates. Also, the stress

dependency of the growth rate for constrained growth leads to a time to fracture

relationship that more closely matches that expected for steady-state creep as

predicted by the Monkman–Grant relationship.

One must, in addition to considering constrained cases, also consider that cavities

are continuously nucleated. For continuous nucleation and unconstrained diffusive

cavity growth, Riedel suggests:

tf ¼ kT

5�dDgbs

� 
2=5 of

_NN

� �3=5

ð142Þ

where of is the critical cavitated area fraction and, consistent with Figure 90 from

Dyson [798]

_NN ¼ a0 _ee ¼ a0bsn ð143Þ

with _ee according to equation (141).
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Equation (142) can be approximated by

tf / 1

sð3nþ2Þ=5

For continuous nucleation with the constrained case, the development of reliable

equations is more difficult as discussed earlier and Riedel suggests that the time for

coalescence on isolated facets is,

tc ¼ 0:38
pð1þ ð3=nÞÞ

_NN

� 
1=3 of

_eeg½ �2=3 ð144Þ

which is similar to the version by Cho et al. [828]. Figure 112, also from Riedel,

illustrates the realistic additional effects of continuous nucleation, which appear

to match the observed rupture times in steel. The theoretical curves in Figure 95

Figure 111. The cavity growth rate versus stress in steel. The dashed lines refer to unconstrained growth

and solid lines to constrained growth. Based on Riedel [612].
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correspond to equations (136), (140), (142), and (144). One interesting aspect of this

figure is that there is a very good agreement between tc and tf for constrained cavity

growth. This data was based on the data of Cane [831] and Riedel [868], who

determined the nucleation rate by apparently using an empirical value of a0. No

adjustable parameters were used. Cho et al. [869] later, for NiCr steel, at 823K,

were able to reasonably predict rupture times assuming continuous nucleation and

constrained cavity growth.

It should be mentioned that accommodated GBS can eliminate the constraint

illustrated in Figure 93 (two-dimensional); however, in the three-dimensional case,

sliding does not preclude constrained cavity growth, as shown by Anderson and Rice

[870]. Nix et al. [871] and Yousefiani et al. [872] have used a calculation of the

principal facet stress to predict the multiaxial creep rupture time from uniaxial stress

data. Here, it is suggested that GBS is accommodated and the normal stresses on

(transverse) boundaries are increased. Van der Giessen and Tvergaard [873] appear

to analytically (3D) show that increased cavitation on inclined sliding boundaries

Figure 112. The time to rupture versus applied stress for (a) unconstrained (dashed lines) cavity growth

with instantaneous or continuous nucleation. (b) Constrained cavity growth (tc) with instantaneous and

continuous nucleation. Dots refer to experimental tf. Based on Riedel [612].
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may increase the normal stresses on transverse boundaries for constrained cavity

growth. Thus, the Riedel solution may be non-conservative, in the sense that it

overpredicts tf. Dyson [874] suggested that within certain temperature and strain-

rate regimes, there may be a transition from constrained to unconstrained cavity

growth. For an aluminum alloy, it was suggested that decreased temperature and

increased stress could lead to unconstrained growth. Interestingly, Dyson also

pointed out that for constrained cavity growth, uncavitated regions would

experience accelerated creep beyond that predicted by the decrease in load-carrying

area resulting from cavitation.

10.3.5 Plasticity

Cavities can grow, of course, exclusively by plasticity. Hancock [875] initially

proposed the creep-controlled cavity growth model based on the idea that cavity

growth during creep should be analogous to McClintock’s [832] model for a cavity

growing in a plastic field. cavity growth according to this model occurs as a result of

creep deformation of the material surrounding the grain boundary cavities in the

absence of a vacancy flux. This mechanism becomes important under high strain-rate

conditions, where significant strain is realized. The cavity growth rate according to

this model is given as

da

dt
¼ a_ee� g

2G
ð145Þ

This is fairly similar to the relationship by Riedel [799] discussed earlier. It has

been suggested, on occasion, that the observed creep cavity growth rates are

consistent with plasticity growth (e.g., [849]) but it is not always obvious that

constrained diffusional cavity growth is not occurring, which is also controlled by

plastic deformation.

10.3.6 Coupled Diffusion and Plastic Growth

Cocks and Ashby [790], Beere and Speight [876], Needleman and Rice [792] and

others [791,877–882] suggested that there may actually be a coupling of diffusive

cavity growth of cavities with creep plasticity of the surrounding material from

the far-field stress. It is suggested that as material from the cavity is deposited

on the grain boundary via surface and grain-boundary diffusion, the length of

the specimen increases due to the deposition of atoms over the diffusion length.

This deposition distance is effectively increased (shortening the effective

required diffusion-length) if there is creep plasticity in the region ahead of

the diffusion zone. This was treated numerically by Needleman and Rice and

234 Fundamentals of Creep in Metals and Alloys



later by van der Giessen et al. [883]. Analytic descriptions were performed by

Chen and Argon [878]. A schematic of this coupling is illustrated in Figure 113.

The diffusion length is usually described as [792],

� ¼ Dgb�ds
kT _ee

� �1=3

ð146Þ

Chen and Argon [837] describe coupling by

dV

dt
¼ _ee2p�3

‘nððaþ�Þ=aÞ þ ða=ðaþ�ÞÞ2 � 1� ð1=4Þða=ðaþ�ÞÞ2
 �� ð3=4Þ� � ð147Þ

as illustrated in Figure 114.

Similar analyses were performed by others with similar results [60,792,878,879].

It has been shown that when �� a and l [878,884], diffusion-controlled growth

no longer applies. In the extreme, this occurs at low temperatures. Creep flow

becomes important as a/� increases.

At small creep rates, but higher temperatures, � approaches ls/2, a/� is relatively

small, and the growth rate can be controlled by diffusion-controlled cavity growth

(DCCG). Coupling, leading to ‘‘enhanced’’ growth rates over the individual

mechanisms, occurs at ‘‘intermediate’’ values of a/� as indicated in Figure 114.

Of course, the important question is whether, under ‘‘typical creep’’ conditions, the

addition of plasticity effects (or the coupling) is important. Needleman and Rice

suggest that for T>0.5Tm, the plasticity effects are important only for s/G>10�3

Figure 113. The model for coupled diffusive cavity growth with creep plasticity. The diffusion length

is suggested to be reduced by plasticity ahead of the cavity. Based on Nix [604].
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for pure metals (relatively high stress). Riedel suggests that, for pure metals, as well

as creep-resistant materials, diffusive growth predominates over the whole range of

creep testing. Figure 113 illustrates this coupling [791].

Even under the most relevant conditions, the cavity growth rate due to coupling is,

at most, a factor of two different than the growth rate calculated by simply adding

the growth rates due to creep and diffusion separately [885]. It has been suggested

that favorable agreement between Chen and Argon’s analytical treatments is

fortuitous because of limitations to the analysis [880,881,884]. Of course, at lower

temperatures, cavity growth occurs exclusively by plasticity [875]. It must be

recognized that cavity growth by simply plasticity is not as well understood as widely

perceived. In single-phase metals, for example, under uniaxial tension, a 50%

increase in cavity size requires large strains, such as 50% [886]. Thus, a thousand-

fold increase in size from the nucleated nanometer-sized cavities would not appear to

be easily explained. Figure 103(b), interestingly, illustrates a case where plastic growth

of cavities appears to be occurring. The cavities nucleate within grains at large

particles in the dispersion-strengthened aluminum of this figure. Dunand et al. [887]

suggest that this transgranular growth occurs by plasticity, as suggested by others

Figure 114. Prediction of growth rate for different ratios of cavity spacing l and diffusion zone sizes �.

From Ref. [606].
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[790] for growth inside grains. Perhaps the interaction between cavities explains

modest ductility. One case where plasticity in a pure metal is controlling is

constrained thin silver films under axisymmetric loading where s1/s2(¼s3)ffi 0.82

[2,839]. Here unstable cavity growth [888] occurs via steady-state deformation of

silver. The activation energy and stress-sensitivity appear to match that of steady-

state creep of silver at ambient temperature. Cavities nucleate at high-angle

boundaries where obstacles are observed (high twin-density metal) by slip-plasticity.

An SEM micrograph of these cavities is illustrated in Figure 115. The cavities in

Figure 98 continuously nucleate and also appear to undergo plastic cavity growth.

Interestingly, if a plastically deforming base metal is utilized (creep deformation of

the constraining base metal of a few percent), the additional concomitant plastic

strain (over that resulting from a perfectly elastic base metal) increases the nucleation

rate and decreases the fracture time by several orders of magnitude, consistent with

Figure 95. cavity growth can also be affected by segregation of impurities, as these

may affect surface and grain-boundary diffusivity. Finally, Creep Fracture

predictions must consider the scatter present in the data. This important,

probabilistic, aspect recently has been carefully analyzed [889].

10.3.7 Creep Crack Growth

Cracks can occur in creeping metals from pre-existing flaws, fatigue, corrosion-related

processes, and porosity [890,891]. In these cases, the cracks are imagined to develop

relatively early in the lifetime of the metal. This contrasts the case where cracks can

form in a uniformly strained (i.e., unconstrained) cavity growth and uniform Cavity

nucleation metal where interlinkage of cavities leading to crack formation is the final

stage of the rupture life. Crack formation by cavity interlinkage in constrained cavity

growth cases may be the rate-controlling step(s) for failure. Hence, the subject of

Creep crack growth is quite relevant in the context of cavity formation. Figure 116

(from Ref. [892]) illustrates a Mode I crack. The stress/strain ahead of the crack leads

to Cavity nucleation and growth. The growth can be considered to be a result of

plasticity-induced expansion or diffusion-controlled cavity growth. Crack growth

occurs by the coalescence of cavities with each other and the crack.

Nix et al. [892] showed that plastic growth of cavities ahead of the crack tip

can lead to a ‘‘steady-state’’ crack growth rate. Nucleation was not included in the

analysis. Nix et al. considered the load parameter to be the stress intensity factor for

(elastic) metals with Mode I cracks, KI.

vc ¼ kgls
2ðn� 2Þ In ðls=2aÞ

KI

n
ffiffiffi
l

p
s

� �n

ð148Þ

where kg is a constant.
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Figure 115. Creep cavitation in silver at ambient temperature. Cavities grow by unstable cavity growth,

with the rate determined by steady-state creep of silver [2].
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However, for cases of plasticity, and in the present case with time-dependent

plasticity, the load parameters have been changed to J and C* [894], respectively.

Much of the creep cavitation work since 1990 appears to have focused on creep cracks

and analysis of the propagation in terms of C*. TheC* term appears to be a reasonable

loading parameter that correlates crack growth rates, although factors such as plane-

stress/plane-strain (i.e., stress-state), crack branching, and extent of the damage zone

from the crack tip may all be additionally important in predicting the growth rate

[895–899].

Of course, another way that cracks can expand is by linking up with diffusionally

growing cavities. This apppears to be the mechanism favored by Cadek [20] and

Wilkinson and Vitek [900,901] and others [898]. Later, Miller and Pilkington [902]

and Riedel [800] suggest that strain (plasticity) controlled growth models (with a

critical strain criterion or with strain controlled nucleation) better correlate with

existing crack growth data than diffusional growth models. However, Riedel

indicates that the uncertainty associated with strain-controlled nucleation compli-

cates the unambiguous selection of the rate-controlling growth process for cavities

ahead of a crack. Figure 117 illustrates a correlation between the crack growth rate,

_cc and the loading parameter C*. Riedel argued that the crack growth rate is best

described by the plastic cavity growth relationship, based on a local critical strain

criterion,

_cc ¼ k9 l
1=nþ1ðC�Þ1=nþ1 c� c0

ls

� �1=nþ1

�k10

" #
ð149Þ

Figure 116. Grain boundary crack propagation controlled by the creep growth of cavities near a crack

tip. From Ref. [705].
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Riedel similarly argued that if Cavity nucleation occurs instantaneously,

diffusional growth predicts,

_cc ¼ k11Dbð�dÞ
2 kT l3s

C�1=ðnþ1Þðc� c0Þn=ðnþ1Þ ð150Þ

where c0 is the initial crack length and c is the current crack length. These constants

are combined (some material) constants from Riedel’s original equation and the line

in Figure 117 is based on equation (149) using some of these constants as adjustable

parameters.

Note that equation (150) gives a strong temperature dependence (the ‘‘constants’’

of the equation are not strongly temperature dependent). Riedel also develops a

relationship of strain-controlled cavity growth with strain-controlled nucleation,

which also reasonably describes the data of Figure 117.

10.4 OTHER CONSIDERATIONS

As discussed earlier, Nix and coworkers [825,829,847,848] produced cavities by

reacting with oxygen and hydrogen to produce water-vapor bubbles (cavities). Other

(unintended) gas reactions can occur. These gases can include methane, hydrogen,

Figure 117. The crack growth rate versus loading parameter C* for a steel. The line is represented by

equation (144). From Ref. [612].
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carbon dioxide. A brief review of environmental effects was discussed recently by

Delph [884].

The randomness (or lack or periodicity) of the metal microstructure leads to

randomness in cavitation and (e.g.) failure time. Figure 118 illustrates the cavity

density versus major radius a1 and aspect ratio al/a2. This was based on

metallography of creep-deformed AIS1304 stainless steel. A clear distribution in

sizes is evident. Creep failure times may be strongly influenced by the random nature

of grain-boundary cavitation.

Figure 118. The cavity density versus size and aspect ratio of creep-deformed 304 stainless steel [694].
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738. Carreño, F., Jiménez, J.A. and Ruano, O.A. (2000) Mater. Sci. Eng. A, 278, 272.

739. Klotz, U.E., Mason, R.P., Gohring, E. and Artz, E. (1997)Mater. Sci. Eng. A, 231, 198.

740. Mason, R.P. and Grant, N.J. (1995) Mater. Sci. Eng. A, 192/193, 741.

741. Mason, R.P. and Grant, N.J. (1995) High-Temperature Ordered Intermetallic Alloys VI,

MRS 364, p. 861.

742. Veyssiere, P., Guan, D.L. and Rabier, J. (1984) Phil. Mag. A, 49, 45.

743. Stoloff, N.S. (1989) Int. Mater. Rev., 34, 153.

744. Raj, S.V., Mater. Sci. Eng. A. (2003) in press.

745. Knobloch, C., Toloraia, V.N. and Glatzel, U. (1997) Scripta Mater., 37, 1491.

746. Link, T., Knobloch, C. and Glatzel, U. (1999) Scripta Mater., 40, 85.

747. Peng, Z.L., Miura, S. and Mishima, Y. (1997) Mater. Trans. JIM, 38, 653.

748. Caron, P., Khan, T. and Veyssiere, P. (1989) Phil. Mag. A, 60, 267.

749. Brehm, H. and Glatzel, U. (1998) Int. J. Plasticity, 15, 285.

750. Hsu, S.E., Hsu, N.N., Tong, C.H., Ma, C.Y. and Lee, S.Y. (1989) High Temperature

Ordered Intermetallic Alloys II, MRS 81, p. 507.

751. Fujita, A., Matsmoto, T., Nakamura, M. and Takeda, Y. High-Temperature Ordered

Intermetallic Alloys III, 1989, MRS 133, p. 573.

752. Shah, D.M. and Duhl, D.N. (1987) High Temperature Ordered Intermetallic Alloys II,

MRS 81, p. 411.

753. Nazmy, M. and Staubli, M. (1991) Scripta Metall. Mater., 25, 1305.

754. Khan, T., Caron, P. and Naka, S., High Temperature Aluminides and Intermetallics,

Whang, S.H., Liu, C.T., Pope, D.P. and Stiegler, J.O., Eds., 1990, TMS, Warrendale

PA, p. 219.

755. Pope, D.P. and Ezz, S.S. (1984) Int. Metals Rev., 29, 136.

756. Whittenberger, J.D., Nathal, M.V. and Book, P.O. (1993) Scripta Metall., 28, 53.

757. Timmins, R. and Artz, E. (1988) Scripta Metall., 22, 1353.

758. Miracle, D.B. (1993) Acta Metall. Mater., 41, 649.

759. Noebe, R.D., Bowman, R.R. and Nathal, M.V. (1993) Int. Mater. Reviews, 38, 193.

760. Whittenberger, J.D., Mannan, S.K. and Kumar, K.S. (1989) Scripta Metall., 23, 2055.

761. Whittenberger, J.D., Westfall, L.J. and Nathal, M.V. (1989) Scripta Metall., 23, 2127.

762. Whittenberger, J.D., Reviere, R., Noebe, R.D. and Oliver, B.F. (1992) Scripta Metall.

Mater., 26, 987.

763. Whittenberger, J.D., Ray, R., Jha, S.C. and Draper, S. (1991) Mater. Sci. Eng. A,

138, 83.

References 263



764. Arzt, E. and Grahle, P. (1998) Acta Mater., 46, 2717.

765. Xu, K. and Arsenault, R.J. (1999) Acta Mater., 47, 3023.

766. Whittenberger, J.D., Ray, R. and Jha, S.C. (1992) Mater. Sci. Eng. A, 151, 137.

767. Whittenberger, J.D., Artz, E. and Luton, M.J. (1992) Scripta Metall. Mater., 26,

1925.

768. Whittenberger, J.D., Noebe, R.D., Johnson, D.R. and Oliver, B.F. (1997)

Intermetallics, 5, 173.

769. Yang, W., Dodd, R.A. and Strutt, P.R. (1972) Metall. Trans., 3, 2049.

770. Yang, W.J. and Dodd, R.A. (1973) Met. Sci. J., 7, 41.

771. Strutt, P.R., Polvani, R.S. and Kear, B.H. (1973) Scripta Metall., 7, 949.

772. Prakash, A. and Dodd, R.A. (1981) J. Mater. Sci., 16, 2495.

773. Rudy, M. and Sauthoff, G. (1986) Mater. Sci. Eng. A, 81, 525.

774. Whittenberger, J.D. (1988) J. Mater. Sci., 23, 235.

775. Whittenberger, J.D. (1987) J. Mater. Sci., 22, 394.

776. Whittenberger, J.D., Viswanadham, R.K., Mannan, S.K. and Sprissler, B. (1990)

J. Mater. Sci., 25, 35.

777. Rudy, M. and Sauthoff, G. (1985) High Temperature Ordered Intermetallic Alloys,

MRS 39, p. 327.

778. Vandervoort, R.R., Mukherjee, A.K. and Dorn, J.E. (1966) Trans. ASM, 59, 930.

779. Hocking, L.A., Strutt, P.R. and Dodd, R.A. (1971) J. Inst. Met., 99, 98.

780. Bevk, J., Dodd, R.A. and Strutt, P.R. (1973) Metall. Trans., 4, 159.

781. Forbes, K.R., Glatzel, U., Darolia, R. and Nix, W.D. (1993)High Temperature Ordered

Intermetallic Alloys V, MRS 288, 45.

782. Raj, S.V. and Farmer, S.C. (1993) High Temperature Ordered Intermetallic Alloys V,

MRS 288, 647.

783. Rudy, M. and Sauthoff, G. (1985) High Temperature Ordered Intermetallic Alloys,

MRS 39, p. 327.

784. Jung, I., Rudy, M. and Sauthoff, G. (1987) High Temperature Ordered Intermetallic

Alloys, MRS 81, 263.

785. Whittenberger, J.D., Noebe, R.D., Cullers, C.L., Kumar, K.S. and Mannan, S.K.

(1991) Metall. Trans. A, 22, 1595.

786. Marquis, E.A. & Dunand, D.C. (2002) Scripta Mater., 47, 503.

787. Waddington, J.S. & Lofthouse, K.J. (1967) J. Nuc. Mater., 22, 205.

788. Stiegler, J.O., Farrell, K., Loh, B.T.M. & McCoy, H.E. (1967) Trans. ASM Quart.,

60, 494.

789. Courtney, T.H. (1990) Mechanical Behavior of Materials, McGraw-Hill, New York.

790. Chen, I.W. & Argon, A.S. (1981) Acta Metall., 29, 1321.

791. Cocks, A.C.F. & Ashby, M.F. (1982) Prog. Mater. Sci., 27, 189.

792. Nix, W.D. (1988) Mater. Sci. and Eng., A103, 103.

793. Needleman, A. & Rice, J.R. (1980) Acta Metall., 28, 1315.

794. Beere, W. (1983) Scripta Metall., 17, 13.

795. Chen, I.-W. (1983) Scripta Metall., 17, 17.

796. Argon, A.S. (1983) Scripta Metall., 17, 5.

797. Nix, W.D. (1983) Scripta Metall., 17, 1.

798. Goods, S.H. & Nieh, T.G. (1983) Scripta Metall., 17, 23.

799. Dyson, B.F. (1983) Scripta Metall., 17, 31.

800. Riedel, H. (1987) Fracture at High Temperatures, Springer-Verlag, Berlin.

264 Fundamentals of Creep in Metals and Alloys



801. Mackerle, J. (2000) Int. J. of Pressure Vessels and Piping, 77, 53.

802. Feltham, P. & Meakin, J.D. (1959) Acta Metall., 7, 614.

803. Dunand, D.C., Han, B.Q. & Jansen, A.M. (1999) Metall. Trans., 30A, 829.

804. Dobes, F. & Miliska, K. (1976) Met. Sci., 10, 382.

805. Molinie, E., Piques, R. & Pineau, A. (1991) Fat. Fract. Eng. Mater. Struct., 14, 531.

806. Larson, F.R. & Miller, J. (1952) Trans. ASME, 74, 765.

807. Murty, K.L., Zhou, Y. & Davarajan, B. (2002) Creep Deformation: Fundamentals

and Applications, Mishra, R.S., Earthman, J.C. & Raj, S.V. Eds., TMS, Warrendale,

PA. p. 3.

808. Ayensu, A. & Langdon, T.G. (1996) Metall. Trans., 27A, 901.

809. Chen, R.T. & Weertman, J.R. (1984) Mater. Sci. and Eng., 64, 15.

810. Arai, M., Ogata, T. & Nitta, A. (1996) JSME Intl. J., 39, 382.

811. Hosokawa, H., Iwasaki, H., Mori, T., Mabuchi, M., Tagata, T. & Higashi, K. (1999)

Acta Mater., 47, 1859.

812. Lim, L.C. & Lu, H.H. (1994) Scripta Metall. Mater., 31, 723.

813. Yavari, P. & Langdon, T.G. (1983) J. Mater. Sci. Lett., 2, 522.

814. Weertman, J. (1986) J. Appl. Phys., 60, 1877.

815. Raj, R. & Ashby, M.F. (1975) Acta Metall., 23, 699.

816. Davanas, K. & Solomon, A.A. (1990) Acta Metall. Mater., 38, 1905.

817. Argon, A.S., Chen, I.-W. & Lau, C.W. (1980) Proc. Symp. Creep Fatigue-Environment

Interactions, Pelloux, R.M. & Stoloff, N.S. Eds., TMS, Warrendale. p. 46.

818. Riedel, H. (1984) Acta Metall., 32, 313.

819. Chen, C.W. & Machlin, E.S. (1956) Acta Metall., 4, 655.

820. Fleck, R.G., Taplin, D.M.R. & Beevers, C.J. (1975) Acta Metall., 23, 415.

821. Gandhi, C. & Raj, R. (1982) Acta Metall., 30, 505.

822. Dewald, D.K., Lee, T.C., Robertson, I.M. & Birnbaum, H.K. (1990) Metall. Trans.,

21A, 2411.

823. Chen, I.-W. (1983) Metall. Trans., 14A, 2289.

824. Yoo, M.H. & Trinkaus, H. (1986) Acta Metall., 34, 2381.

825. Trinkaus, H. & Yoo, M.H. (1987) Philos. Mag., 55, 269.

826. Nieh, T.G. & Nix, W.D. (1980) Scripta Metall., 14, 365.

827. Dyson, B.F., Loveday, M.S. & Rodgers, M.J. (1976) Proc. Royal Soc. London,

A349, 245.

828. Watanabe, T. & Davies, P.W. (1978) Phil. Mag., 37, 649.

829. Greenwood, J.N., Miller, D.R. & Suiter, J.W. (1954) Acta Metall., 2, 250.

830. Goods, S.H. & Nix, W.D. (1978) Acta Metall., 26, 739.

831. Lombard, R. & Vehoff, H. (1990) Scripta Metall. Mater., 24, 581.

832. Cane, B.J. (1979) Metal. Sci., 13, 287.

833. McClintock, F.A. (1968) J. App. Mech., 35, 363.

834. Lee, Y.S. & Yu, J. (1999) Metall. Trans. A, 30A, 2331.

835. Oh, Y.K., Kim, G.S. & Indacochea, J.E. (1999) Scripta Mater., 41, 7.

836. George, E.P., Kennedy, R.L. & Pope, D.P. (1998) Phys. Stat. Sol. A, 167, 313.

837. Yousefani, A., Mohamed, F.A. & Earthman, J.C. (2000) Metall. Trans., 31A, 2807.

838. Wei, R.P., Liu, H. & Gao, M. (1997) Acta Mater., 46, 313.

839. Svoboda, J. & Sklenicka, V. (1990) Acta Metall. Mater., 38, 1141.

840. Kassner, M.E., Kennedy, T.C. & Schrems, K.K. (1998) Acta Mater., 46, 6445.

841. Randle, V. (1993) Mater. Sci. Forum, 113–115, 189.

References 265



842. Yang, M.S., Weertman, J.R. & Roth, M. (1984) Proc. Sec. Int. Conf. Creep and

Fracture of Eng. Mater. and Structures, Wilshire, B. & Owen, D.R.J. Eds., Pineridge,

Swansea. p. 149.

843. Andersen, P.M. & Shewmen, R.G. (2000) Mech. Mater., 32, 175.

844. Hull, D. & Rimmer, D.E. (1959) Phil. Mag., 4, 673.

845. Speight, M.V. & Beere, W. (1975) Met. Sci., 9, 190.

846. Raj, R., Shih, H.M. & Johnson, H.H. (1977) Scripta Met., 11, 839.

847. Weertman, J. (1973) Scripta Metall., 7, 1129.

848. Nieh, T.G. & Nix, W.D. (1979) Acta Metall., 27, 1097.

849. Nieh, T.G. & Nix, W.D. (1980) Acta Metall., 28, 557.

850. Miller, D.A. & Langdon, T.G. (1980) Metall. Trans., 11A, 955.

851. Svensson, L.-E. & Dunlop, G.L. (1982) Met. Sci., 16, 57.

852. Hanna, M.D. & Greenwood, G.W. (1982) Acta Metall., 30, 719.

853. Cho, H.C., Yu, J. & Park, I.S. (1992) Metall. Trans., 23A, 201.

854. Broyles, S.E., Anderson, K.R., Groza, J. & Gibeling, J.C. (1996) Metall. Trans.,

27, 1217.

855. Cane, B.J. (1981) Met. Sci., 15, 302.

856. Mintz, J.M. & Mukherjee, A.K. (1988) Metall. Trans., 19A, 821.

857. Raj, R. (1978) Acta Metall., 26, 341.

858. Needham, N.G. & Gladman, T. (1980) Met. Sci., 14, 64.

859. Needham, N.G. & Gladman, T. (1986) Met. Sci. and Tech., 2, 368.

860. Stanzl, S.E., Argon, A.S. & Tschegg, E.K. (1986) Acta Metall., 34, 2381.

861. Chuang, T.-J. & Rice, J.R. (1973) Acta Metall., 21, 1625.

862. Nix, W.D., Yu, K.S. & Wang, J.S. (1983) Metall. Trans., 14A, 563.

863. Evans, H.E. (1969) Metal Sci. J., 3, 33.

864. Chakraborty, A. & Earthman, J.C. (1997) Acta Mater., 45, 4615.

865. Adams, B.L. (1993) Mater Sci. and Eng., A166, 59.

866. Watanabe, T. (1993) Mater Sci. and Eng., A166, 11.

867. Dyson, B.F. (1976) Met. Sci., 10, 349.

868. Rice, J.R. (1981) Acta Metall., 29, 675.

869. Riedel, H. (1985) Z. Metall., 76, 669.

870. Cho, H.C., Jin Yu and Park, I.S. (1992) Metall. Trans., 23A, 201.

871. Anderson, P.M. & Rice, J.R. (1985) Acta Metall., 33, 409.

872. Nix, W.D., Earthman, J.C., Eggeler, G. & Ilschner, B. (1989) Acta Metall., 37, 1067.

873. Yousefiani, A., El-Nasr, A.A., Mohamed, F.A. & Earthman, J.C. (1997) Creep and

Fracture of Engineering Materials and Structures, Earthman, J.C. & Mohamed, F.A.

Eds., TMS, Warrendale, p. 439.

874. van der Giessen, E. and Tvergaard, V. (1991) Int. Jour. Fract., 48, 153.

875. Dyson, B.F. (2002) Creep Deformation: Fundamentals and Applications, Mishra, R.,

Earthman, J.C. & Raj, S.V. Eds., TMS, Warrendale, PA. p. 309.

876. Hancock, J.W. (1976) Met. Sci., 10, 319.

877. Beere, W. & Speight, M.V. (1978) Metal Sci., 12, 172.

878. Wang, J.S., Martinez, L. & Nix, W.D. (1983) Acta Metall., 31, 873.

879. Chen, I.-W. & Argon, A.S. (1981) Acta Metall., 29, 1759.

880. Lee, Y.S., Kozlosky, T.A. & Batt, T.J. (1993) Acta Metall. Mater., 41, 1841.

881. Schneibel, J.M. & Martinez, L. (1987) Scripta Metall., 21, 495.

882. Lu, M. & Delph, T.J. (1993) Scripta Metall., 29, 281.

266 Fundamentals of Creep in Metals and Alloys



883. Cadek, J. (1989) Mater. Sci. and Eng., A117, L5.

884. van der Giessen, E. van der Burg, M.W.D. Needleman, A.I. & Tvergaard, V. (1995)

J. Mech. Phys. Solids, 43, 123.

885. Delph, T.J. (2002) Metall. Mater. Trans., 33A, 383.

886. Cocks, A.C.F. & Ashby, M.F. (1982) Met. Sci., 16, 465.

887. Forero, L.E. & Koss, D.A. (1994) Scripta Met. et Mater., 31, 419.

888. Han, B.Q. & Dunand, D.C. (2002) Creep Deformation: Fundamentals and Applications,

Mishra, R.S., Earthman, J.C. & Raj, S.V. Eds., TMS, Warrendale, PA. p. 377.

889. Huang, Y., Hutchinson, J.W. & Tvergaard, V. (1991) J. Mech. and Phys. Sol., 39, 223.

890. Harlow, D.G. & Delph, T.G. (2000) J. Eng. Mater. and Tech., Trans. ASME, 122, 342.

891. Sherry, A.H. & Pilkington, R. (1993) Mater. Sci. and Eng., A172, 51.

892. Ai, S.H., Lupinc, V. & Maldini, M. (1992) Scripta Metall. Mater., 26, 579.

893. Nix, W.D., Matlock, D.K. & Dimelfi, R.J. (1977) Acta Metall., 25, 495.

894. Landes, J.D. & Begley, J.A. (1976) Mechanics of Crack Growth, ASTM STP 590,

ASTM, 128.

895. Wiesner, C., Earthman, J.C., Eggeler, G. & Ilschner, B. (1989) Acta Metall., 37, 2733.

896. Staley, J.T. & Saxena, A. (1990) Acta Metall. et Mater., 38, 897.

897. Tabuchi, M., Kubo, K. & Yogi, K. (1993) Creep and Fracture of Engineering Materials

and Structures, Wilshire, B. & Evans, R.W. Eds., Inst. Metals, London, p. 449.

898. Raj, R. & Baik, S. (1980) Metal. Sci., 14, 385.

899. Churley, W.E. & Earthman, J.C. (1997) Metall. Trans., 28A, 763.

900. Wilkinson, D.S. & Vitek, V. (1982) Acta Metall., 30, 1723.

901. Wilkinson, D.S. (1981) Mater. Sci. Eng., 49, 31.

902. Miller, D.A. & Pilkington, R. (1980) Metall. Trans., 11A, 177.

References 267



This Page Intentionally Left Blank



Index

a, 36, 43, 49, 65, 71–74, 85, 87, 88, 92, 99,
101, 105, 184, 185, 189, 206, 233

a-Brass, 87, 88, 227
aTi3Al, 177

304 Austenitic stainless steel, 34, 45, 49

Activation energy, 180, 182, 184, 185, 194,

203, 205–208

Activation energy for creep, 13, 15, 21–23,

164, 203, 206

Activation volume, 15, 60

Ag, 23, 73, 113, 223, 228

Al, 15, 22, 23, 26–27, 36, 42, 46–47, 49–51,

53, 55–56, 58, 60, 64, 67, 69–72, 81–88,

99, 106, 111–113, 117, 119, 128–131, 136,

137, 147, 153, 155, 161, 167, 169,

176–180, 184, 185, 189–202, 207–210,

218, 223

Al-5.8at%, 46

Al3Ti, 175

Alloy additions, 183

Alloying elements, 206

Alpha, 73, 74

Aluminum, 7, 8, 14–16, 21–24, 26–27, 29,

33, 36, 42, 45, 49–51, 55, 69, 71–72,

74–76, 78–80, 82–85, 87, 99–101, 103,

113–115, 144, 216, 217, 234, 237

Anomalous yield, 191

Anomalous yield point phenomenon, 190

APB, 191, 192, 199, 203

B2, 173, 189–192, 208

Backstresses, 181

Bauschinger effect, 55–58

Boundary cohesion, 174

Brittleness, 174, 208

Carbides, 197

Cavity growth, 123, 227–237, 266

Cavity nucleation, 213, 217, 219, 221, 222,

224, 225, 227–230, 237, 240, 266

Class I (A) alloys, 113, 115, 117

Climb locking mechanism, 191

Climb-controlled creep, 183

Coarsening of g-lamellae, 182

Coble, 8, 9, 20, 82, 91–92, 95, 99, 203, 206,

211, 217

Coble creep, 203, 206, 211

Coherent particles, 149, 151, 157, 158, 163,

165, 168, 169

Constant strain-rate, 3–5, 7, 14–15, 45, 47,

49–50, 52, 53, 74–77, 208

Constant stress, 3, 5, 7, 14, 31, 47, 49, 50,

74–76, 94, 114, 200, 209, 216

Constant structure stress-sensitivity

exponent, N, 4

Constant-structure creep, 180, 197

Constitutional vacancies, 192

Constitutive equations, 185

Constrained diffusional cavity growth, 229,

230, 232, 234, 235

Continuous reactions, 81, 128, 147, 148, 150

Continuous recrystallization, 147, 148, 194

Copper, 27–28, 60, 82, 92, 95, 222

Crack formation, 188

Creep crack growth, 231, 237

Creep Curves, 199

Creep Fracture, 8, 215, 216, 223, 237

Creep life, 188

Creep mechanisms, 194

Creep transient, 40, 48, 52, 53, 51, 113, 167

Cross slip, 191

Cu, 23, 41, 55–56, 59–60, 71, 73, 82, 83, 88,

92, 119, 146, 164, 217–219, 227, 228

Cube cross-slip, 201, 202

Detachment model, 158, 207

Detachment-controlled dislocation

creep, 211

Diffusion, 208

Diffusional creep, 194

Discontinuous dynamic, 42, 145

Discontinuous dynamic recrystallization,

194

269



Dislocation climb, 173, 179–184, 192, 194,

203, 207–209, 211

Dislocation density, 26, 30–33, 35–36, 41,

44–46, 49, 51, 53, 55–56, 66, 68, 71–77,

81–83, 88, 100–104, 106, 113, 115, 119,

134, 147, 167, 182, 202

Dislocation glide, 180, 181

Dislocation hardening equation, 44, 101

Dislocation networks, 64

Dislocation pile-ups, 181

Dislocation pinning, 191

Dislocation slip, 184

Dislocation-particle interactions, 197

Disordering temperature, 191

Dispersion-strengthened, 87, 118, 151, 161,

162, 170, 201, 206, 211, 215, 217,

222–223, 237, 244

Dispersions, 197

Dissolution of a2 lamellae, 182

DO19, 173

DO22, 173

DO23, 173

DO3, 173, 189–191

Duplex, 177, 178, 186

Dynamic recrystallization, 180

ECAP, 129, 139

Elastic Modulus, 20–21, 177

Fe, 36, 39, 49, 51, 73, 85, 87, 92, 99, 101,

113, 119, 147, 155, 173, 188–197, 204,

206, 209

Fe3Al, 188

FeAl, 119, 173, 188–194, 197

Fine structure superplasticity, 123, 124, 127

Five-Power-Law Creep, 8, 9, 15, 17, 21, 24,

26, 28, 30, 58, 60–61, 63, 65, 67, 69, 74,

77–79, 81–82, 231

Frank network, 31–32, 35–36, 64, 69–71,

75, 104, 143

Fully lamellar, 176–178, 186

g-TiAl, 176–180, 184, 186

GB ledges, 218

Geometric dynamic recrystallization, 50,

80–81, 146

Geometrically necessary boundaries, 81

Glide-controlled creep, 181, 183

Grain growth, 194

Grain refinement, 194

Grain size, 8, 26, 33, 35, 45, 72, 79, 82,

83, 91, 94–96, 99–102, 119, 121, 124,

127–128, 130–134, 136, 139, 143, 146,

168, 179–181, 188, 205, 209, 211, 231

Grain-boundary, 43, 65, 91, 92–94, 99,

123, 124, 127, 129, 131–133, 135, 136,

139, 168, 215, 218, 221, 228, 231, 234,

237, 241

Grain boundary morphology, 188

Grain-boundary sliding, 94–95, 123–124,

127, 129, 131–133, 135, 139, 140, 165,

185, 194, 215, 218, 221, 229

Hall–Petch, 35, 43–45, 67, 82, 184, 206,

84, 85

Hard orientations, 184

Harper–Dorn Creep, 20, 26, 29–30, 95,

99–107, 194

Herring, 8, 20, 91–92, 95, 99–103, 207, 211

High strain, 128

High Stress-High Temperature Regime,

179

Hyperbolic sine, 13, 18, 26

Incoloy, 165–167

Instantaneous strain, 187

Interface boundary sliding, 187

Interfacial (Shockley) dislocations, 184, 187

Interfacial sliding, 184, 187

Interlocking grain boundaries, 184

Intermetallics, 173–175, 178, 189, 192,

200, 201, 203

Internal stress, 26, 41, 43, 56–59, 67–68,

70, 84, 95, 101–102, 115, 123

In situ, 47, 50, 58, 70, 131, 147, 161, 223

Inverse creep, 200

Iron aluminides, 174, 175, 188, 189, 192,

194–198

270 Index



Jog height, 182

Jogger-screw creep model, 182

Jogs, 17, 61–62, 69, 105, 182

Kear-Wilsdorf (KW) locks, 201

L012, 173
L10, 176

L12, 198

L10, 173, 175

L12, 173, 175, 199

L21, 173

Lamellar grains, 176, 177, 188

Lamellar interface spacing, 180, 181,

183–185

Lamellar interfaces, 180, 187

Lamellar orientation, 184

Larson–Miller, 218

Lattice diffusion, 180

Lattice order, 197

Ledges, 183

Ledge dislocations, 187

Ledge motion, 183

Long-range order, 173, 174

Low stress regime, 184

Mechanically alloyed, 124, 128,

134–136, 210

Metadynamic recrystallization, 144

Metal–matrix composites, 120, 123,

127–134, 136, 138

Minimum strain rate, 178, 188

Misfit dislocations, 183

Misorientation dislocations, 183

Mobile, 30, 36, 42, 49, 62–63, 74–76, 81,

104, 106, 115, 119, 128, 134, 192, 193,

202, 218

Monkman–Grant, 13, 216, 218, 223, 224,

227–231

MoSi2, 173

Nabarro–Herring creep, 9, 19, 95, 97, 100,

101, 203, 206

NaCl, 22, 23

Narrow lamellae, 181

Natural three-power-law, 29

nearly lamellar, 177, 178

Ni2AlTi, 172

Ni3Al, 119, 136, 137, 160, 171, 173, 198,

199–201, 203, 205, 208

Ni3Ga, 201

NiAl, 173, 199, 203, 208, 211

Nickel, 5, 92, 174, 175, 189, 197, 199,

207, 208

Nickel aluminides, 174, 175, 198

Nickel superalloys, 174

Nimonic, 164, 166, 167, 223, 225
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