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In  the ten years since this book was tirst published there have been man): 
new developments in the rnetallureical field. Rapidly solidified metals and 
glasses have come of age; new AI-Li alloys are now used in modem 
aircraft; microalloyed (structural) and high purity (pipeline) steels have 
become more sophisticated: radically new oxide-dispersed steels have ap- 
peared; a number of new memory metals have been developed: the list 
could go on. In  spite of this. the undertyins principles governing ail of these 
developments have obviously not changed over the years. This is really the 
strength of the present text book. From the beginning we aimed to spell out 
these principles in a nice. readable way, and one in  which undergraduates 
could appreciate and he capahle of developing for themselves. The present 
text is thus deliberately little changed from the original. We have, however. 
hopefully .corrected any errors. expanded the lists o f  further reading, and 
perhaps. most importantly. included a complete set of solutions to exercises. 
We hope that the revised edition continues to be enjoyed and appreciated 
in the many Schools o f  Metallur~y, Materials Science and Engineering 
Materials we know to  he using our text throughout the world. 

In completing this rcvlsed edition we are grateful to the many people. 
students and professors ;dike, who have written to us over the last decade. 
Part~cular thanks are due to Dr Wen-Bin Li (Un~versity of Lulei) for using 
a fine tooth-comb in bringing out both obvious and less obvious errors in  
the original text. There remain, (inevitably). a few 'points of contention' 
concerning our 'de~cri~tion of certain phenomena. as raised by some of our 
correspondents, but there is nothing unhealthy about that. We should finail! 
like to thank Dr John Ion (University of Lappeenranta, Finland) for his help 
i n  compiling the Solutions to Exercises chapter. 

David Porter and Kenneth Easterling 
September 1 W l  



Preface to the first edition 

This book is written as an undergraduate course in phase transformations 
for final year students specializing in metallurgy, materials science or 
engineering materials. It should also be useful for research students in- 
terested in revising their knowledge of the subject. The book is based on 
lectures originally given by the authors at the University of Lulel for 
engineerins students specializing in engineering materials. Surprisingly we 
found no modern treatments of this important subject in a form suitable for 
a course book, the most recent probably being P.G. Shewmon's Tram- 
formations in Metals (McGraw-Hilt, 1969). There have, however, been some 
notable developments in the subject over the last decade, particularly in 
studies of interfaces between phases and interface migration, as well as the 
kinetics of precipitate growth and the stability of precipitates. There have 
also been a number of important new practical developments based on 
phase transformations, including the introduction of TRIP steels (trans- 
formation induced by plastic deformation). directionally aligned eutectic 
composites. and sophisticated new structural steeIs with superior weldability 
and forming properties. to mention just a few. In addition. continuous 
casting and high speed, high energy fusion welding have emerged strongly in 
recent years as irnportan t production applications of solidification. It was the 
objective of this course to present a treatment of phase transformations in 
which these and other new developments could be explained in terms of the 
basic principles of thermodynamics and atomic mechanisms. 

The book is effectively in two parts. Chapters 1-3 contain the background 
material necessary for understanding phase transformations: thermo- 
dynamics, kinetic-., diffusion theory and the structure and properties of 
interfaces. Chapters 4-6 deal with specific transformations: solidification, 
diffusional transformations in solids and diffusionless transformations. At 
the end of the chapters on solidification, diffusion-controlled transforma- 
tions and martensite, we give a few selected case studies of engineering 
alloys to illustrate sorne.of the principles discussed earlier. In this way, we 
hope that the text wil1:provide 9 usefu~ Link between theory and the practical 
reality. It should be stated that we found it necessary to give this course in 
conjunction with a number of practical laboratory exercises and worked 
examples. Scts of problems are aIso included at the end of each chapter of 
the book. 

In developing this course and wriring the text we have had continuous 

~ r i f u u e  ro rhe firsr edirion 
... 

X l l l  

1 
support and encouragement of our colleagues and students in the Depari- 
ment of Engineerins Materials. Particular thanks are due LO Agneta Engfors 

I for her patience and skill in typing the manuscript as well as assisring with 
I the editing 

David Porter and Kenneth Easterling 
* Frhruury 1980 



Thermodynamics and Phase Diagrams 

- 
I This chapter deals with some of the basic thermodynamic concepts that are 
t required for a more fundamental appreciation of phase diagrams and phase 

transformations. It is assumed that the student is already acquainted with 
elementary thermodynamics and only a summary of the most important 
results as regards phase transformations will be given here. Fuller treatment 
can be found in the books listed in the bibliography at the end of this chapter. 

The main use of thermodynamics in physical metallurgy is to allow the 
prediction of whether an alloy is in equilibrium. In considering phase trans- 
formations we are always concerned with changes towards equiiibrium. and 
thermodynamics is therefore a very powerful tool. It should be noted. how- 
ever. that the rate at which equilibrium is reached cannot be determined by 
thermodynamics alone, as will become apparent in later chapters. 

1.1 Equilibrium 

I t  is useful to begin this chapter on thermodynamics by defining a few of the 
terms that will be frequently used. In the study of phase transformations we 
will be dealing with the changes that can occur within a given system, e.g. an 
alloy that can exlst as a mixture of one or more phases. A phase can be 
defined as a portion of the system whose properties and composition are 

. homogeneous and which is physically distinct from other parts of the system. 
The components of a given system are the different elements or chemical 
compounds which make up the system, and the composition of a phase or the 
system can be described by giving the relative amounts of each component. 

The study of phase transformations, as the name suggests, is concerned 
with how one or  more phases in an alloy (the system) change into a new phase 
or mixture of phases. The reason why a transformation occurs at all 1s because 
the initial state of the alloy is unstable relative to the final state. But how is 
phase stability measured? The answer to this question is provided by thermo- 
dynamics. For transformations that occur at constant temperature and pres- 
sure the relative stability of a system is determined by its GIbbs free energy 
( G ) .  

The Gibbs free energy of a system is defined by the equation 

I w h e k  H is the enthslpy, T the absolute temperature, and S the entropy of the 
i system. Enthalpy is a measure of the heat content of the system and is given 
i 
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where E is the internal energy of the system. P the pressure, and V the 
volume. The internal energy arises from the total kinetic and potential ener- 
gies of the atoms within the system. Kinetic energy can arise from atomic 
vibration in solids or liquids and from translational and rotational energies for 
the atoms and molecules within a liquid or ga$ whereas potential energy 
arises from the interactions, or bands. between the atoms within the system. 
If a transformation or reaction occurs the heat that is absorbed or  evolved will 
depend on the change in the internaI energy of the system. However it wiil 
also depend on changes in the volume of the system and the term P V  takes 
this into account, so that at consmntpressure the heat absorbed or evolved is 
given by the change in H .  When dealing with condensed phases (solids and 
liquids) the P V  term is usually very small in comparison t o  E ,  that is H = E. 
This approximation wiIl be made frequently in the treatments given in this 
book. The other function rhat appears in the expression for G is entropy (S) 
which is a measure of the randomness of the system. 

A system is said to  be in equilibrium when it is in the most stable state. i.e. 
shows no  desire to change ad infinifurn. An important consequence of the 
laws of classical thermodynamics is that at constant temperature and pressure 
a closed system (i.e. one of fixed mass and composition) will be in stable 
equilibrium if it has the lowest possible value of the Gibbs free energy, or in 
mathematical terms 

It can be seen from the definition of G, Equation 1.1, that the state with the 
highest stability will be that with the best compromise between low enthalpy 
and high entropy. Thus at tow temperatures solid phases are most stable since 
they have the strongest atomic binding and therefore the lowest internal 
energy (enthalpy). At high temperatures however the - TS term dominates 
and phases with more freedom of atom movement, liquids and gases, become 
most stable. If pressure changes are considered it can be seen. from 
Equation 1.2 that phases with smaII volumes are fz---ured by high pressures. 

The definition of equilibrium given by Equation 1.3 can be illustrated 
graphically as follows. If it were possible to evaluate the free energy of a given 
system for all conceivable configurations the stable equilibrium configuration 
would be found to have the lowest free energy. This is illustrated in Fig. 1.1 
where it is imagined that the various atomic configurations can be represented 
by points along the abscissa. Configuration A wouId be the stable equilibrium 
state. At this point small changes in the arrangement of atoms to a first 
approximation produce no change in G, I-e. Equation 1.3 applies. However 
there will always be other configurations, e.g. B, which lie at a tocal minimum 
in free energy and therefore also satisfy Equation 1.3,  but which do not have 
the lowest possible value of G. Such configurations are called metastable 

G~bbs free 
energy 

Arrcngement of atoms 

Fig 1.1 .4 schematic r nr~atic-rn of  Glbt-rc free ene;g with thc arrangement of ;itom5 

Contigurat~on .A '  hiis the lotvest tree energ! and i s  thtrufcrrc the ananptmenr  when 
rhe $>stern 1s at stable equilibrium Confipurat~cln 'B' 1s a metastable rqu i l~br~urn .  

uqiiilihriutn states to distlnpujsh them from rhr siuhlc rquilihriiirn state. The 
intermediate states for which dC; - 0 are iinsruhle and are only ever realized 
rnoment-nrily in pracrice. If .  as the result uf thermal fluctuarions, the atoms 
become arranged in an lnterrnediate state they will rapidly rearrange into one 
of the free energy minima. [f by a change of temperature or pressurt. for 
example. a system is moved from a stable to a rnerastablr srarc' i t  will. g i w n  
time. transform to tho  new $table equilibrium state. 

Graphite and diamond at ruurn iempersturr  and pressure are examples u f  
stable and metastable equilibrium states. Given time. therefore. all diamond 
under these conditions will transform to graphite. 

Any transformation that results in a decrease in Gibhs tree energy is 
possible. Therefore a necessary criterion for any phase transformation is 

where C;, and G 2  are the free energies of the initla1 and final states respec- 
tlvely. The transformation need not go directly to the stable equllibriurn state 
but can pass through a whole series of intermediate metastable states. 

The answer to the quest~on "How fast does phase transformation occur?" 

is not provided by classical thermodynamics. Sometimes metastable states can 
be very short-l~ved: at o t h q  times they can exist almost indefin~tely as in the 
case of diamond at roam tirnperature and pressure. The reason for these 

. + *  

\ differences i s  the presence of the free e n e r g  hump between the metastable . 
and stable states in Fig. 1.1. The study of transformation rates in physical 

1 chemistry belongs to the realm of kinetics. In general. higher humps or energy 
barriers lead to siower transformation rates. Kinetics obviously plays a central 

I 
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role in the study of phase transformations and many examples of kinetic 
processes will be found throughout this book. 

The different thermodynamic functions that have been mentioned in this 
section can be divided into two types called intensive and extensive prop- 
erties. The intensive properties are those which are independent of the size of 
the system such as T and P, whereas the extensive properties are directly I 

I proportional to the quantity of material in the system. e.g. P, E ,  H, S and G. 
The' usual way of measuring the size of the system is by the number of moles i 

t of material it contains. The extensive properties are then molar quantities, 
, 

i.e. expressed in units per mole. The number of moles of a given component 
in the system is given by the mass of the component in grams divided by its - 

(0) 
atomic or molecular weight. 

The number of atoms or molecules within 1 mol of materiaj is given by 
Avogadro's number ( N , )  and is 6.023 X loz3. 

1.2 Single Component Systems 

Sirtgle compvnenl systems 

Let us begin by dealing with the phase changes that can be induced in a single 
component by changes in temperature at afxed pressure, say 1 atm. A single 
component system could be one containing a pure element or one type of 
molecule that does not dissociate over the range of temperature of interest. In 

d i K )  

order to predict the phases that are stable or mixtures that are in equilibrium 
at different temperatures it is necessary to be able to calculate the variation of 
G with T .  

usually'done by defining H = 0 for a pure element in its most stable state at 
298 K (25 "C). The v9iation of N with T can then be calculated by integrating I 

1.2.1 Gibbs Free Energy as a Function of Temperature 

The specific heat of most substances is easily measured and readily available. 
In general it varies with temperature as shown in Fig. 1.2a. Tfie specific heat 
is the quantity of heat (in joules) required to raise the t e ryxa tu re  of the Entropy 

substance by one degree Ketvin. At constant pressure this is denoted by C, s 
and is given by 

1 
cp = (g) P (1.5) 1 0 T ( K )  

Therefore the variation of H with T can be obtained from a knowledge of the Ic)  0 .  
~ i ~ ,  1.2 (a) Variation of C, with temperature, C,, tends to a h i t  of -3R- tb) variation of C, with T. In considering phase transformations or chemical 
Vanation of enthatpy (H) with abolute temperature for a pure metal. (c) Variation 

reactions it is only changes in thermodynamic functions that are of interest. 
Consequently H can be measured relative t o  any reference level which is 

of entropy ( S )  with absolute temperature. 
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Equation 1 .5 ,  i.e. 

The variation is shown schematically in Fig. I .2b. The slope of the H-T 
curve is Cp. 
'The vanation of entropy with temperature can also be denved from the 

specific heat C,. From classical thermodynamics 

Taking entropy at zero degrees Kelvin as zero, Equation 1.7 can be inte- 
grated to give 

as shown in Fig. 1 . 2 ~ .  
Finally the variation of G wirh temperature shown in Fig. 1.3 is obtained 

by combining Fig. 1.2b and c using Equation 1.1. When temperature and 
pressure vary the change in Gibhs free energy can be obtained from the 
following result of classica1 thermodynamics: for a system of fixed mass 
and composition 

dG = -SdT + VdP (1.9) 
At constant pressure dP = 0 and 

This means that G decreases with increasing T at a rate given by -3. The 
relative positions of the free energy curves of solid and liquid phases art 
illustrated in Fig. 1.4. At all te..yeratures the liquid has a higher enthalpy 
(internal energy) than the solid. Therefore at low temperatures G~ > G ~ .  
However, the liquid phase has a higher entropy than the solid phase and the 
Gibbs free energy of the liquid therefore decreases more rapidly with increas- 
ing temperature than that of the solid. For temperatures up to  Tm the solid 
phase has the lowest free energy and is therefore the stable equilibrium 
phase, whereas above T,  the liquid phase is the equilibrium state of the 
system. At T,  both phases have the same value of G and both solid and liquid 
can exist in equilibrium. T. is therefore the equilibrium melting temprahlre 
at the pressure concerned. 

If a pure component is heated from absolute zero the heat supplied will 
raise the enthalpy at a rate determined by C, (solid) along the line ab in 
Fig. 1.4. Meanwhile the free energy will decrease along ae. At T, the heat 

F I ~ .  1.3 Var i a t~un  uf Gibhs free energ!- wlth temperature 

supplied to the system will not raise its Temperature but will be used in 
supplying the latent heat of melting ( L )  that is required to convert solid into 
liquid (bc i n  Fig. 1.4). Note that at Tm the specific heat appears to be i n h n ~ t e  
since the addition of heat does not appear as an increase in temperature. 
When all solid has transformed into liquid the enthalpy of the system will 
follow the line cd while the Gibbs free energy decreases along ef. At srill 
higher temperatures than shown in Fig. 1.4 the free energy of the gar vhase 
(at atmospheric pressure) becomes lower than that of the liquid and the liquid 
transforms to a gas. If the solid phase can exist in different crystal structures 
(allotropes or polyrnorphs) free energy curves can be constructed for each of 

I these phases and the temperature at which they intersect will give the equilib- 
: rium temperature for the polymorphic transformation. For example at atmos- 
1 pheric pressure iron can exist as either bcc ferrite below 910 "C or fcc 
! austenite above 910 "C, and at 910 "C both phases can exist in equilibrium. 

i 
! 1.2.2 Pressure Eflecrs 

! The equilibrium temperatures dircusse~i so far only apply at a specific pres- 
: sure (1  a tm,  say). At o~her  pre3sures the equilibrium temperatures will differ. 
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solid 
s t a b l r s t o b l e  

I 
Fig. 1.4 Variarion of enthalpy ( H )  and free energy (G) with temperature for the 
solid and iiquid phases of a pure metal. L i s  the latent heat of melting, Tm the 
equilibrium melting temperature. 

For example Fig. 1.5 shows the etfect of pressure on the equilibrium tempera- 
tures for pure iron. Increasing pressure has the effect of depressing the u/y 
equilibrium temperature and raising the equilibrium melting temperature. At 
very hgh prearures hcp E-Fe becomes stable. The reason for these changes 
derives from Equation 1.9. At constant temperature the free energy of a 
phase increases with pressure such that 

(1.13) 

If the two phases in equilibrium have different molar volumes their 
respective free energies will not increase by the same amount at a given 
temperature and equilibrium will, therefore, be disturbed by changes in 

L 
Y Y - iron 

Pressure, kbar 
Fig. 1.5 Effect of pressure on the equilibrium phase diagram for pure iron 

pressure. The only way to maintain equilibrium at different pressures is bv 
tary ins the temperature. 

I f  the two phases in equilibrium are u and P. application of Equation 1.9 to 

1 mol of both gives 

dc"  = V",P - SUdT (1.12) 
dG" V z d P  - SPdT 

If a and p are in equilibrium G" = GB therefore dU" = dGp and 

, , .  

This equation gives the change in temperature d T  required to maintain 
e~uilibrium betseea a and 0 if pressure is increased by d P .  The equation can 
bd s;..jplified as follows. From ~ ~ u a t i o n  1.1 

G" = HU - TS" 
GP = ~ f i  - TS@ 

Therefore, putting dG = Gp - Ga etc. gives 

= AH - TAS 

.. But since at equilibrium G~ = Ga, \G = 0. and 

AH - TAS = 0 

Consequently Equathn 1.13 becomes 
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which is known as the Clausius-Clapeyron equation. Since close-packed 
y-Fe has a smaller molar volume than a-Fe. AV = V i  - V,", < 0 whereas 
AH = H' - H" > 0 (for the same reason that a liquid has a higher enthalpy 
than a solid). so that (dP!dTI is negative, i.e. an increase in pressure lowers 
the equilibrium transition temperature. On the other hand the 6;L equilib- 
rium temperature is raised with increasing pressure due to the larger molar 
volume of the liquid phase. It can be seen that the ef€ect of increasing 
pressure is to increase the area of the phase diagram over which the phase 
with the smallest molar volume is stable (y-Fe in Fig. 1.5). I t  should also be 
noted that E-Fe has the highest density of the rhree allotropes. consistent 
with the slopes of the phase boundaries in the Fe phase diagram. 

1.2.3 The Driving Forcrjor Solidification 

In dealing with phase transfurmations we are often concerned with the 
difference in free energy between two phases at temperatures away from the 
equilibrium temperature. For example. if a liquid rne~al is undercooled by 1 T  
below Tm before it solidifies, solidification will be accompanied by a decrease 
in frer energy AG (I mol-') as shown in Fig. 1.h. This free energy decrease 
provides the driving force for solidilcatiun. The miignitude of this change can 
be obtained as follows. 

The frer energies of rhe liquid and solid at a lrmperaturr T a r e  given by 

c ; ~ =  ffL - TS' 

Therefore at a temperature T 

whers 

L ~ t  the equilibrium melting temperature T ,  the free energies of solid and 
liquid are equal. i .e .  AG = U. Consequently 

and therefore at T ,  

This is known as the entropy of fusion. I t  is observed experimentally that 
the entropy of fusion is a constant =R(S.3 1 mol-' K-' )  for mart metals 
(Richard's rule). This is not unremonable as metals with high bond strengths 
can be expected to have high values for both L and T,,. 

For small undercoolings ( A T )  the difference in the specific heats of the 
liquid and solid (Cb - CP) can be isnored. AH and 15 are therefore approx- 
~rnatel!, independent of temperature. Combining Equations I .  15 and 1.16 
thus gives 

i.e. for small AT 

This i s  a very useful result which will frequently recur In subsequent chapters. 

1 1.3 Binarv Solutions 

I 
' In single component systems all phases have the same composition, and 

A G  ' equilibrium simply involves pressure and temperature as variables. In alloys. 
however. composition is also variable and tu understand phase changes in ' alloys requ~res an appreciation of how the Gibbs free energy of a given phase 

: depends on compositiun as well as temperature and pressure Since the phase 
I 
I G 

. transformafions described in this book mainly occur at a fixed pressure of 
. 

I 1 arm most attention will be given to changes in composition and tempera- 

I ture. In order to introduce some of the basic concepts of the therrnodyndmics 

C r - 4  6 i of allays a simple physical model for binary solid solutions will be described. 

I 
i 
i 

L 1 I 

T Tm Te m ~ e m t  ure j 1.3.1 The Gibhs Free Energy of Binary Solutions 
I 

Fig. 1 6 Difference in free cnsrgr between liquid and ihr point, The Gibbs free energy of a binary solufion of A and B atoms be 

The curvature of the  ad dl- lines has heen lgnorcd calculated from the free energies of  pure A and pure B In the following 
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It is assumed that A and B have the same crystal structures in their pure states 
and can be mixed in any proportions to make a solid soIution with the same 
crystal structure. Imagine that 1 mol of homogeneous solid solution is made 
by mixing together XA rnol of A and X ,  mot of B.  Since there is a total of 
I mol of sohtion 

and X, and XB are the molefrnctiom of A and 3 respectively in the alloy. In 1 I order to calculate the free energy of the alloy. the mixing can be made in two 1 
steps (see Fig. 1.7). These are: 1 

f 

1.  bring together XA rnol of pure A and X, mol of purt! 3 ;  i 2. allow the A and B atoms to mix together to make a homogeneous solid ; 
solution. i 

After step 1 the free energy of the system i s  given by 

where C, and GB are the molar free energes of pure A and pure B at the 
temperature and pressure of the above experiment. GI can be most conve- , 
niently represented on a molar free energy diagram (Fig. 1.8) in which molar 1 
free energy is plotted as a function of Xg or XA, For all alloy compositions GI I 
lies on the straight line between GA and GB. L 

The free energy of the system will not remain constant during the mixing of 
the A and I3 atoms and after step 2 the free energy of the solid solution G ,  can 

Before mix ing After mixing 
? 
i 
i 
1 

M I X  
w 

X4 molA XBmol B 1 mol salid 
solution . EE. XA GA EE. XB GB .. - - .+ I 

Total free energy= Toto 1 free energy = I 
GI = X A G A + X ~ G *  G2 Gr + AGmlx 

Fig. 1.7 Free energy of mixing. I 

Free energy 
per  mole 
before 
mixing 

G 4 
A 

1 J 

0 x,  - 1 
A 0 

Var~a t lun  of G I  (the free cnrrgy hefore mixing) wirh alloy composit~on 1.y.4 

hr. expresqcd as 

G: = GI - ( 1.20) 

uhere LG.,,, i s  the change In Ghbs frte energy caused hy the m~xine. 

and 

C;: = H I  - TS1 

putting 

and 

IS",,, = S: - s, 

AH,,, is the heat absorbed or evolved during step 2. i . c  it is the heat of 
5oiution, and ignoring v ~ l u m e  changes during the process, it represents 
only the difference in internal energy ( E )  before and after mixing. AS,,, is the 

. 

difference in cntgopj: fietween the mixed and unmixed states: 

1.3.2 Ideal Soiurions 

The simplest type of miring to treat first is when AH,,, = 0. in which case the 
resultant solution is said tn be ideal and the free energy change on mixing is 
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only due to the change in entropy: 

In statistical thermodynamics, entropy is quantitatively related to random- 
ness by the Boltzmann equation. i.e. 

S =  k L n o  (1 23)  
where k is Boltzmann's constant and w is a measure of randomness. There are 
two contributions to the entropy of a solid solution-a thermal contribution 
S, ,  and a configurational contribution S,,,,, . 
In the case of thermal entropy, w is the number of ways in which the 

thermal energy of the solid can be divided among the atoms. that is, the total 
number of ways in which vibrations can be set up in the solid. In solutions. 
additional randomness exists due to the different ways in which the atoms can 
be arranged. This gives extra entropy ScOnfi, for which w is the number of 
distinguishable ways of arranging the atoms in the solution. 

If there is no  volume change or heat change during mixing then the  only 
contribution to AS,,, is the change in configurational entropy. Before mixing, 
the A and B atoms are held separately in the system and there is only one 
distinguishable way in which the atoms can be arranged. Consequently 
S, = kln 1 = 0 and therefore AS,,, = 5:. 

Assuming that A and B mix to form a substitutional solid solution and that 
all configurations of A and 3 atoms are equally probable, the number of 
distinguishable ways of arranging the atoms on the atom sites is 

where N, is the number of A atoms and .YB the number of B atoms. 
Since we are dealing with 1 mu1 of solution, i.e, rV, atoms (Avogadro's 

number). 

and 

AV, = XBN,  
By substituting into Equations 1.23 and 1.24, using Stirling's approxima- 

tion (In N! - N ln - N) and the relationship N,k = R (the universal gas 
constant) gives 

AS,,, = -R(XA In X, + X, ln XB) (1.25) 
Note that. since XA and X, are less than unity, AS,,, is positive. 1.e. there is 
an increase in entropy on mixing, as expected. The free energy of mixing, 
AC,,,, is obtained from Equation 1.22 as 

. AG,,, = RT(X,  In XA + XB In XB) (1.26) 
Figure 1.9 shows AG,,, as a function of composition and temperature. 

The actual free energy of the solution G will also depend on G ,  and G,. 
From Equations 1.19. 1.20 and 1.26 

i A 
6 

Fig. 1.9 Free energy of mixing for an ideal solution. 

This is shown schematically in Fig. 1.10. Note that. as the temperature 
increases. GA and GA decrease and the free energy curves assume a greater 
curvature. The decrease in G,,, and GB is due to the thermal entropy of both 
components and is given by Equation 1.10. 

It should be noted that all of the free energy-composition diagrams in this 
book are essentially schematic; if properly plotted the free energy curves 
must end asymptot~cally at the verticai axes of the pure components. 
i.e. tanyentlal to the vertical axes of the diagrams. This can be shnwn by 
differentiating Equation 1.26 or 1.27. 

Mola r  
free energy 

I 
0 

,' 4 3 
"+ - ! , / fC(~~-5q ,k> '  - ! %  I 

Fig. 1.10 The molar free energy (free energy per mole of solution) for an  deal solid 
d t i t i o n  4 ct,mhination of Fig<. I H :ltld 1.9. 



l h  Thermoiiyrlamics and phuse diagrams 

1.3.3 Chemical Potential 

In alloys it is of interest to know how the free e n q y  of a given phase will 
change when atoms are added or removed. If a small quantity of A, dn, mol, 
is added to a large amount of a phase at constant temperature and pressure, 
the size of the system wiIl increase by dn, and therefore the rota1 free energy 
of the system will also increase by a small amount dG'. If dnA is small enough 
dG' will be proportional to the amount of A added. Thus we can write 

dC' = pAdnA (T, P, n~ constant) (1.28) 

The proportionality constant p, is called the partial molar free energy of A or 
alternatively the chemical potential of A in the phase. FA depends on the 
composition of the phase, and therefore dn, must be so small that the 
composition is not significantly altered. If Equation 1.28 is rewritten it can be 
seen that a definition of the chemical pot'ential of A is 

The symbol G' has been used for the Gibbs free energy to emphasize the fact 
that it refers to the whole system. The usual symbol G will be used to denote 
the molar free energy and is therefore independent of the size of the system. 

Equations similar to 1.28 and 1.29 can be written for the other components 
in the solution. For a binary soIution at constant temperature and pressure 
the separate contributions can be summed: 

This equation can be extended by adding further terms for solutions contain- 
ing more than two components. If T and P changes are also allowed 
Equation 1.9 must be added giving the general equation 

If 1 mol of the original phase contained X, mol A and XB mol B, the size of 
the system can be increased without altering its composition if A and B are 
added in the correct proportions, i.e. such that dn,: dnB = X, : X, . For 
example if the phase contains twice as many A as B atoms 
(X, = 2 / 3 ,  X, = 1/31 the composition can be maintained constant by 
adding two A atoms for every one B atom (dn,: dnB = 2). In this way the 
size of the system can be increased by 1 mol without. changing p., and pg. TO 
do this XA mo1 A and Xg m01 B must be added and the free energy of the 
system will increase by the molar free energy G. Therefore from 
Equation 1.30 

When G is known as a function of X, and X,, as in Fig. 1.10 for example, 
p, and FB can be obtained by extrapolating the tangent to the G curve to the  

Fig 1 . 1 1  The relationship between the trcc energy curve tor a rolutton and the 
chemical potent~als of the components. 

sides of the molar free energ!. d~ngram as shown in Fig. 1.1 1. This can be 
- 

obtained from Equations 1 .?ii and 1 3 1 .  remembering that X,4 + XB = I .  i.c. 
dxA = -dXB. and this i s  left as an erercist for ihe reader. I t  i, clear from 
Fig. 1 . 1  l that pA and pR vary systemnticillly with ihr cumposition of the 
phase. 

Comparison of Equation, 1.17 and 1.31 gi\?er I.L, and p~ for an ideal 
solution as' 

k, = G ,  + R T i n  X,* 

FB = G B  - R T l n  XB 

xhich is a much simpler wa! of presrnring Equation 1.17. These relationships 
are  shown in Fig. 1.11. Thr. distances ac and bd are simply -RT In .Y, and 
-RT In X , .  

I 1 

A XB - 6 

FIF. 1.17 The relationship beween the free energy curve and chzmlcal potentlais for 
an ideal solution. 
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1.3.4 Regular Solutions 

Returning to the model of a solid soiution, so far it has been assumed that 
AH,,, = 0; however, this type of behaviour is exceptional in practice and 
usually mixing is endorhermic (heat absorbed) or exothermic (heat evolved). 
The simple model used for an ideal solution can, however, be extended to 
include the AH,,, term b,- using the so-called quasi-chemical approach. 

In the quasi-chemical model it is assumed that the heat of mixing, AHmi,, is 
only due to the bond energies between adjacent atoms. For this assumption to  
be valid it is necessary that the volumes of pure A and 3 are equal and do not 
change during mixing so that the interatomic distances and bond energies are 
independent of composition. 

The structure of a binary solid solution is shown schematically in Fig. 1.13. 
Three tvpes of interatomic bonds are present: 

1. A-A bonds each with an energy E,, . 
2. B-B bonds each with, an energy E B B ,  

3 .  A-B bonds each with an energy E,, . 
By considering zero energy to be the state where the atoms are separated to 
infinity E A , ~ .  E B B  and EAR are negative quantities. and become increasingly 
more negative as the bonds become stronger. The internal energy of the 
solution E will depend on the number of bonds of-each type PA, ,  P,, and 
P,4B such that 

Before mixing pure A and B contain only A-A and B-B bonds respec- 
tively and by considering the relationships between PA, .  P,, and P A ,  in the 
solution i t  can be shown1 that the change in internal energy on mixing is given 

Binarv solutions 

that is. E is the difference between the A-B bond energy and the average of 
the A-A and B-B bond energies. 

If E = 0.  AHmix = 0 and the solution is ideal. as considered in 
Section 1.3.2. In this case the atoms are completely randomly arranged and 
the entropy of mixing is given by Equation 1.25. In such a solution it can also 
be shown1 that 

i PAB = Na:XAXB bonds mol-' (1.35) 
I 
i where N, 1s Avogadro's aumber, and i IS the number of bonds per atom. 
i If E < 0 the atoms in the solution will prefer to be surrounded by atoms of 
: the opposite type and this will increase P A D .  whereas, if E > 0. P,4B will tend 
' to be less than in a random solution. However, provided E is not too different 

from zero, Equation 1.35 is still a good approximation in which case 

AH,,, = ItX,XB (1.36) 

1 where 

fl = ;Y,zE 

1 Reai solutions that closely obe! Equation 1.35 are known as regular soh-  
, rions. The variation of AH,,, with composition is parabolic and is shown in 
i Fig, 1.14 for R > 0.  Pjote that the fangents at XA = 0 and 1 are related to 0 

as shown. 

AHmix 
per mol 

I Fig, 1-14 The of AH,, ,  with composition for a regular solution. 
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The free energy change on mixing a regular solution is given by 
Equations 1.21, 1.25 and 1.36 as 

fis'ir shown in Fig. 1.15 for different values of !d and temperature. For 
exothermic solutions AHmi, < 0 and mixing results in a free energy decrease 
at all temperatures (Fig. 1.15a and b). When AH,,, > 0, however, the situa- 
tion is more complicated. At high temperatures TAS,* i s  greater than AHH,, 
for all compositions and the free energy curve has a positive curvature at 
all points (Fig. 1.15~). At low temperatures, on the other hand, TAS,, is 
smaller and hGmi, develops a negative curvature in the middle (Fig. 1.15d). 

Differentiating Equation 1.25 shows that, as XA or XB -+ 0, the - TAS,, 
curve becomes vertical whereas the slope of the AH,,, curve tends to a finite 

AGmix 
I I I 

A 8 A B 
(a) R<O,highT (b) n-= 0, Iow T 

A w B  A B 

(c) n>o, high T (d), n > o IOW T 
Fig. 1.15 The effect of AH,,,,, and T on hGmi,. 
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value 12 (Fig. 1.14). This means that, except at absolute zero, AG,, always 
decreases o n  addition of a small amount of solute. 

The actual free energy of the al:oy depends on the values chosen for C, 
and GB and is given bv Equations 1.19, 1.20 and 1.38 as 

G = XAGA 7 XBGB + W4XB + R T ( X ,  In XA + XB In XB) (1.39) 

This ir shown in Fig. 1.16 along with the chemical potentials of A and B in the 
sotution. Using the relationship XAXB = X x  + X a A  and comparing 
Equarions 1.31 and 1.39 shows that for a regular solution 

qA = GA 4 fl(1 - xAI2 + RT ln X, 

and 

p, = GB A fl(1 - x~)' + RT In XB 

Expression 1.32 for the chemical potential of an ideal alloy was simple and it  
is convenient to retain a similar expression for any solutioi~. This can be done 
by defining the a c t i v i ~  of a component. a .  such that the distances ac and bd in 
Fig. 1.16 are -RT In a, and -RT In a ~ .  In this case 

pA = GA + RT ln a , ~  

and 

Fig. 1.16 The relationship between molar free energy and activity 
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h general a, and a, will be different from X, and XB anct the relationstup 
between them will vary with the composition of the solution. For a regular 
solution, comparison of Equations 1.40 and 1.11 gives I 
and 

Assuming pure A and pure B have the same crystal structure, the rela- 
tionship between a and X for any solution can be represented graphically 
as illustrated in Fig. 1.17. Line 1 represents an ideal soIution for which 
a, = X, and a~ = XB. If AHmix < 0 the activity of the components in 
solution will be less in an ideal solution (line 2) and vice versa when AH,,, 
> 0 (line 3). 

I  he ratio (aA/XA) is usually referred to as y,, the activity cdefficient of A, i 
that is I 

For a dilute solution of B in A, Equation 1.32 can be simplified by letting : XB -+ 0 in which case 

UB 
Y B = =  constant (Henry's law) . i 

XB (1.44) I 

and 
QA 

1 (Raoult's law) (1.45) 
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Equation 1.44 is known as Henry's law and 1.45 as Raoult's law; they apply to 
solutions when sufficiently dilute. 

Since activity is simply related to chemical potential via Equation 1.41 the 
activity of a component is just another means of describing the state of the 
component in a solution. NO extra information is supplied and its use is simply 
a matter of convenience as it often leads to simpler mathematics. 

Activity and chemical potential are simply a measure of the tendency of an 
atom to leave a solutiirn. If the activity or chemical potential is low the atoms 
are reluctant to leave the solution which means, for example, that the vapour 
pressure of the component in equilibrium with rhe soiution will be relatively 
low. It will also be apparent later that the activity or chemical potential of a 
component is important when several condensed phases are in equilibrium. 

1.3.6 Real Solutions 

While the previous model provides a useful description of the effects of 
configurational entropy and interatomic bonding on the free energy of binary 
solutions its practical use is rather limited. For many systems the  model is an 
oversimplification of reality and does not predict the correct dependence of 
AG,,, on composirton and temperature. 

As already indicated, in alloys where the enthalpy of mixing is not zero 
(E and fl # 0) the assumption that a randurrl arrangement of atoms is the 
equilibrium. or most stable arrangement is not true. and the calculated value 
for AG,,, will not give the minimum free energy. The actual arrangement of 
atoms will be a compromise that gives the lowest internal energy consistent 
with sufficient entropy. or randomness, to achieve the minimum free energy. 
In systems with E < 0 the internal energy of the system is reduced by increas- 
ing the number of A-B bonds, i.e. by ordering the atoms as shown in 
Fig. 1.18a. If E > 0 the internal energy can be reduced by increasing the 
number of A-A and B-B bonds, i.e. by the clustering of the atoms into 
A-rich and B-rich groups, Fig. 1.18b. However, the degree of ordering or 

(a)  (b) (c> 
Fig. 1.18 Schematic representation of ,  soiid solutions: (a) ordered substitutional, 
(b} clustering, (c) random interstitial. 
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clustering will decrease as temperature increases due to the increasing impor- 
tance of entropy. 

In systems where there is a size difference between the atoms the quasi- 
chemical model will underestimate the change in internal energy on mixing 
since no account is taken of the elastic strain fields which introduce a strain 
energy term into AH,,,,,. When rhe size difference is large this effect can 
dominate over the chemical term. 

When the size difference between the atoms is very large then inrersn'riai 
solid solutions are energetically most favourable, F~E.  1 .18~.  New mathemati- 
cal models are needed to describe these solutions. 

In sysrems where there is strong chemical bonding between the atoms there 
is a tendency for the formation of intermetallic phases. These are distinct 
from solutions based on the pure components since they have a different 
crystal structure and may also be highly ordered. Intermediate phases and 
ordered phases are discussed further in the next twn sections. 

_ - 2 -- 
. . . - 

- -  - 
, - ,,-L, - . . 

1.3.7 Ordered Phases - 
If the atoms in a substitutional solid solution are completely randomly 

. arranged each atom position is equivalent and the probability that any given 
site in the lattice will contain an A atom will he equal to the fraction of A 
atoms in the solution X, , similarly XB for the B atoms. In such solutions PAR, 
the number of A-B bonds, is given by Equation 1.35. If R < O and the 
number of A-B bonds is greater than this, the solution is said to contain 
shorr-range order (SRO). The degree of ordering can be quantified bv de- 
fining a SRO parameter s such that 

where P,,(max) and P,,(random) refer to the maximum number of bonds 
possible and the number of bonds for a random solution, respectively. 
Figure 1.19 illustrates the difference between random and short-range 
ordered solutions. 

In solutions with compositions that are close to a simple ratio of A : B atoms 
another Type of order can be found as shown schematically in Fig. 1 .l8a. This 
is known as long-range order. Now the atom sites are no longer equivalent 
but cm be labelled as A-sites and B-sites. !Such a solution can be considered 
to be a different (ordered) phase separate from the random or nearly random 
solution. 

Consider Cu-Au alloys as a specific example. Cu and Au are both fcc and 
totally miscible. At high temperatures Cu or Au atoms can occupy any site 
and the lattice can be considered as fcc with a 'random' atom at each lattice 
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(a l (b) 
Fie, 1.19 (a) Random A-B solution with a total of 100 atoms and X A  = = 1 1  5. 

I 
p - 1 )  S = U. (b) Same allo!. with short-range order PAfi  = 1;:. 
p ,~,,,,,, - 100. S = (132 - 10(3)/(100 - 100) - 0.37. 

! 

1 
point as shown in Fig. 1.20a. At low temperatures, however. solutions with 
Xc-, = XAu = 0.j .  i.e. a 50/50 Cui Au mixture, form an ordered structure in 
which the Cu and Au atoms are arranged in alternate layers. Fig. 1 .?Ob. Each 

t atom position is no lonser equivalent and the lattice is described as i1 CuAu 

: siiperlatrice. i n  alloys with the composition Cu3Au another superlattice is 
found. Fig. 1.20~. 

The entropy of mixing of structures with long-range order is extremely 
' small and with increasing temperature the degree of nrder decreases until 
i above some critical temperature there is no Inng-range order at all. This 

i temperature is a maximum when the composition is the ideal required for the 
: superlattice. However. long-range order can still be obtained when the com- 

position deviates from the ideal if sume of the atom sites are left vacant or if  
some atoms sit on wrong sites. I n  such cases i t  can be easier to disrupt the 

- order with increasing temperature and thc critical temperature is lower. see 
Fis. 1.21.  

a 
The most common ordered lattices in other systems are summarized in 

i Fig. 1.72 along with their Structurbericilr notation and examples of alloys in 

i which they are found. Finally, note that the critical temperature for loss of 

1 l o ~ n g e  order i n c i e a m i n c r e a r i n p  0. or I H , , ,  . a i s ! e m s  
x u d z d  phase is stable un to the meliing point. i -- - 

~ C U  OAU OCU orAu 
Fig. l .M Ordered subs~itutional \tructurcs In the Cu-Au rystcm: ( a )  high-tempera- 
rure disordered structure. (b l  UuAu superlatt~ce. ( c )  CulAu cuperlattice. 
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0 0.1 0.2 0.3 0.4 0.5 0-6 07 0-8 09 1.0 
cu x~ u hu 

Fig. 1.21 Part of the Cu-Au phase dlagram showing the rePons where the CU,AM 
and Cu Au superlattices are stable. 

Fig. 1 .  The tiye common ordered lattices, examples of which are: (a) L2,,:CuZn, 
FrCo. NiA1. FeAI. AgMg. (b) LI1:Cu3Au. Au3Cu. Ni,Mn. Ni3Fe, Ni,Al. Pt,Fe; 
(c) Ll,,:CuXu. Copt. FePt: (d) DO3: Fe3AI. Fe3Si. Fe3Be, Cu3AI; ( e )  DOlg:Mg3Cd, 
Cd,Mg. TiAl. S1;Sn (After R. E.  Smallman. Modern Ph,vsicul ,Weraiiurg4', 3rd 
cdiriotr. B u t t r r ~ ~ ~ ~ r f h s .  London. 1970.) 

1.3.8 Intermediate Phases 

Often the configuration of atoms that has the minimum-free energy after 
. . m ~ w o t  have the same ~ t a l  structure as either of the pure cornPo-- 

-In such cases the new structure is known as an intermediate phase. 

w a r e  often based on an 
minimum Gibbs free energy. For compositi 
the free energy is higher giving a characteristic 'U' shape to the G curve. as in 
Fig. 1 23. The range of compositions over which the free energq- curve has a 
meaningful existence depends on the structure of the phase and the type of 
inrzratomic bonding-metallic. covalent or ionic. When small composition 
deviatiqns cause a rapid rise in G the pha>e,js.re[erred - ,, to as an rnterrnetallic 
compound and is usually ~ojchiome~ric;i.e. $;'a formula A,,B,, where m 
and n are inregers, Fig. 1.23a. In other structures fluctuations in composition 
can be tolerated by some atoms occupying 'wrong' positions or  b!- atom sites 
being left vacant, and in these cases the curvature nf the G curve is much less. 
Fig. 1.2%. 

Some . _-_ intermediate &s,e~ can u n d e r ~ o _ q y Q e ~ ~ ~ s _ o ~ ~ t ~ ~ n ~ f ~ r m _ " t ~ o ~ s - ~ i n  
which a _ n _ a l m ~ ~ a $ ~ m  arrangemen! of the atoms-js stable at hi~h-te_mpera- 
tures and . an - - o r d e r e ~ s t . r ~ t u r e ~ s ~ b ! e J e _ ! ~ y _ s ~ ~ , c r ~ ~ ~ ~ l ~ e ~ m p e _ r ~ u ~ ~ . ~ S ~ c h  - - - . 

a transformation occurs in the p ph5se in the Cu-Zn system for example (see 
Section 5.10). 

The structure of intermediate phascs is determined b!! three main factors: 
relative atomic size. valencv and electronegativity. When the component 
atoms differ in size by a factor of about 1.1-1 .h i t  is possible for the atoms to 
fill space most efficiently if the atoms order themselves into one of the 
so-called Laves phases based on MgCu,. klgZn, and Mghi:. Fig 1.24. 
Another example where atomid size determines the structure is  in  the  forma- 
tion of t'he inrersritial compounds MX. M2X, MXI and M,X whr r r  M can be 
Zr. Ti. V .  Cr. etc. and .Y can be H. B. C and N. In this case the 51 atoms form 
a cubic or hexagonal close-packed arransemenr and the .Y atoms are small 
enough to fit into the interstices between them. 

, -, ; .  :I- 
A , A !B - 0 

(0) 
Ideal (b)  corn position 

Fig 1.23 Free energy curves for inrermed~ate phase\. (a) for an interrnetalllc com- 
pound w~th a very narrow stability range. (b) for an intermediate phase wlth a wide 
stab~lity range. 
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F i g  1 The structure of XlgCu. [ A  Laves phase). (From J.H. Wernick. chapter 5 
i n  Pll~ricfll ~Met(zlllirgy. 2nd edn. .  R .W.  Cahn  (Ed.) North Holland. 1974.) 

The relative ~ a l e n c y  of the atoms becomes important in ti.; so-called 
electron phases. e.g. cr and P brasses. The free energy of these phases depends 
o n  the number of valency electrons per unit cell, and this varies with cornposi- 
tion due t o  the valency difference. 

The electrtlnegativity of an atom is a measure of how strongly it attracts 
electrons and in systems where the two components have very different 
electronegrttivities ionic bonds can be formed producing normal valency 
compounds. e.g .  hIg2+ and sn4- are ionically bonded in Mg2Sn.* 

1.4 Equilibrium in Heterogeneous Systems 

It is usually the case that A and B do not have the same crystal structure in 
rheir pure states at a given temperature. In such cases two free energy curves 
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must be drawn. one for each structure. The stable forms of pure A and B at a 
civen temperature (and pressure) can be denoted as a and P respectivelv. For 
;he sake of illustratiun let a be fcc and p bcc. The molar free energies of fcc ,4 
and bcc B are  shown in Fis. 1.25a as points a and b.  The first step in drawing 
the free energy curve of the fcc cw phase is. therefore. to convert the stable bcc 
arrangement of B atoms into an unstabie fcc arrangement. This requires an 
increase in free energy. bc. The free energy curve for the a phase can now be 
constructed as before by mixing fcc A and fcc B as shown in the figure. 
-1G,,, for cr of composition X is given by the distance de as usual. 

A similar procedure produces the molar free energy curve for the P phase. 
Fis. 1.25b. The distance af is now the diiierence in free energy between bcc A 
and fcc A. 

It i s  clear from Fig. 1.15b that A-rich alloys will have the lowest free energy 
as a homogeneous a phase and B-rich alloys as P phase. For alioys with 

(b) A XB B 
Fig. 1.25 (a) The molar free energy curve for the rr phase. (b)  Molar free eilergy 
curves for rr and p phases. 
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compositions near the  cross-over in the G curves the situation i s  not so 
straightforward. In this case it can be shown that the total free energy can be 
minimized by the  atoms separating into two phases. 

It is first necessary to  consider a general property of molar free eners]; 
diagrams when phase mixtures are present. Suppose an alloy consists of two 
phases ~r and P each of which has a molar free energy given by C;" and G ~ .  
Fis. 1-26. If the overall composition of the phase mixture is -Y: the lever rule 
pives the relative number of moles of (Y and p that must bc present. and the 
rnolar free energy of the phase mixture G is given by the point on the straight 
line between a and 0 as shown in the  figure. This result can be proven most 
readily using the geometry of Fig. 1.26. The lzngths ad and cf respectively 
represent the molar free energies of the ol and 0 phases present in the alloy. 
Point g i s  obtained by the intersection of be and dc so that bcg and acd. as well 
as deg and dfc. form similar triangles. Therefore bg/ad - bciac and 
ge!cf = ab/ac. According to the lever rule 1 rnol of alloy will contain bc/ac 
mol of a and ab/ac mol of p. It follows that bg and ge represent the scparate 
contributions from the ci and /.3 phases to the total free energ!; of I rnol of 
alloy. Therefore the  length 'be' represents thc molar free energy of the phase 
mixture. 

Consider nou- alloy XU in Fig. 1.273. I f  the atoms are arransed 3s a 
homogrnrous phasr. the free energy will be lowes~ as a .  i.e. GE per mole. 
However. from the above ir is clear that the system can lower its free energy if 
the atoms separate. i n t c ~  nimo phases with compositions cr, and P,  for example. 
The free enere! of thc h!stc.m &-ill then be reduced to G i .  Furrher reductions 
in free enere)- can be achicvcd i f  the X ~ i n d  B aturns interchange between the 
a and B phases u ~ t i l  the compositions a ,  and p, are reached. Fig. 1 .,7 ' b . The 
free energy of  the lystrrn I ; ,  is now a minimum and there is no desire for 
further change. Consequently the system is in equilibrium and a ,  and PC are 
the equilibrium composirions of the a and P phases. 

This result is quite general and applies to any alloy with an overall composi- 
tion between a, and p,: only the relative amounts of the two phases change, 

Molar .. ,, 
energy 

j as given by the lever rule. When the alloy composition lies outside this range, 
however, the m~nirnurn free energy lies on the  G" or  GQurves and the 
equilibrium state of the alloy is a homogeneous single phase. 

From Fig. 1.27 it can be seen that equilibnurn between two phases requires 
that the tangents ro each G curve at the equilibrium compos~tions lie on a 
common line. In other words each component must have the same chemical 
potentiai in the two phases. i. e. for heterogeneous equilibrium: 

The condition for equilibrium in a heterogeneous system containing 

Fig. 1.27 (a)  Alloy XO has a free energy G ,  as a mixture of a, + P I ,  (b) At 
equilibrium, alloy XO has a minimum free energy G, when it is a mixture of a, - P,. 
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two phases can also be expressed using the activity concept defined for 
homogeneous systems in Fig. 1.16. In heterogeneous systems containing 
more than one phase the pure components can, at least theoretically, exist 
in different crystal structures. The most stabIe state. with the lowest free 
energy, is usually defined as the state in which the pure component has unit 
activity. In the present example this would correspond to defining the 
activity of A in pure a - A as unity, i.e. when X, = 1. a: = 1. Similarly 
when XR =' 1. ak = 1. This definition of activity is shown grilphically in 
Fig: 1.28a; Fig. 1.2Xb and c show how the activities of B and A vary with 
the composition of the u and p phases. Between A and a,, and ~3, and 3,  
where single phases are stable. the activities (or chemical potentials) vary 
and for simplicity ideal solutions have been assumed in which case there is a 
straight line relationship between a and X. Between tr, and j3, the phase 
compositions in equilibrium d o  not change and the activities are equal and 
given by points q and r. In other words, when two phases exist in equilib- 
rium, the activities of the components in the sysrern must be equal in the 
two phases, i.e. 

P u k = a l ,  a g = a ~  (1.47) 

0 xg- 1 
Fig. 1.28 The variation of a,  and a ,  with composition for a binary system containing 
mo ideal solutions, a and P. 

1.5 Binary Phase Diagrams 

In the previous section it has been shown how the equilibrium state of an alloy 
can be obtained from the free energy curves at a given temperature. The next 
step is to see how equilibrium is affected by temperahre.  

1. j.1 A Simple Phllse Diugram 

The simplest case to start with is when A and B are completely miscible in 
both the solid and liquid states and both are ideal solutions. The free energy 
of pure A and pure B will varv with temperature as shown schematically in 
Fig. 1.4. The equilibrium melting temperatures of the pure components occur 
when G' = cL, i.e. at T,,,(A) and T,(B). The free energy of both phases 
decreases as temperature increases. These variations are important for A-B 
alloys also since they determine the relative positions of C: , G,: . G% and Gk 
on the molar free energy diagrams of the alloy at different temperatures. 
Fig. 1.29. 

At a high temperature T, > T,(A) > T,(B) the liquid will be the stable 
phase for pure A and pure B. and for the simple rase we are considering the 
liauid also has a lower free energy than the  solid at all the intermediate 
cdrnpositlons as shown in F I ~ .  1.293. 

Decreasing the temperature will have two effects: firstly Gk and G,L will 
increase more rapidly than G? and G;. secondly the curvature of the G 
curves will be reduced due to the smaller contribution of - TLS,,, to the free 
energy. 

At T,(A). Fig. 1.29b. G: = ~ k ,  and this corresponds to point a on the 
A-8  phase diagram, Fig. 1.19f. At a lower temperature T2 the free energy 
curves cross. Fig. 1.19c, and the common tangent construction indicates 
that alloys between A and b are solid at equilibrium, between c and 0 they 
are liquid. and between b and c equilibrium consists of a two-phase mixture 
(S + L) w ~ t h  compositions b and c. These points are plotted on the equilib- 
rium phase diagram at T 2 .  

Between T2 and T,(B) G~ conttnues to rise faster t h - n  G'SO that points b 
and c in Fig. 1.2% will both move to the right tracing out the solidus and 
liquidus lines in the phase diagram. Eventually at T,,,(B) b and c will meet at a 
single point. d in Fig. 1.29f. Below T,(B) the free energy of the solid phase is 
everywhere below that of the liquid and all alloys are stable as a single phase 
solid. 

. . .. 
1.5.2 Systems with a Miscibiliry Gap 

Figure 1.30 shows the free energy curves for a system in which the liquid 
phase is approximately ideal, but for the solid phase AHmi, > 0, i:e. the A 
and B atoms 'dislike' each other. Therefore at low temperatures (T3 )  the free 
energy curve for the solid assumes a negative curvature in the middle. 
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A *B - i ( c )  {d 1 
' 

Fig. ! .> I )  The derivat~on of d  phi^ ci~agram where AH:,,, '-. AH!,,, = 0. Free 
cnerg? 1 cornpusition curves tor ( a ]  T ! .  rb) T ? .  ~ n d  ( c )  T; .  

i Fig. 1 . X c .  and the solid solution is most stable as a mixture of two phases u' I and a" with compositions e and f .  At higher temperatures, when - TS,,, 
i becomes larger, e and f approach each other and eventually disappear as 

shown in the phase diagram, Fib. i.30d. The u' + a" region is known as a 
miscibility gap. 

The effect of a positive AH,,, in the solid is already apparent at higher 
temperatures where it gives rise to a minimum melting point mixture. The 
reason why all alloys should melt at temperatures below the melting points of 
both components can be qualitatively understo~d since the atoms in the alloy 

. 'repel' each -other making the disruption of the-. solid* into a liquid phase 
possible at lower ternperatnres than in either p u r d ~  or pure B. 

1 1.5.3 Ordered Alloys 

I The opposite type of effect arises when AH,,, i U. In these systems melting 
will be more difficult in the alloys and a maximum melting point mixture may 
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(b 1 
V 

Fig. 1.31 (a) Phase diagram when B H ; ~ ,  < 0; (b) as (a) but even more negative 
AH:,,. (After R.A. Swalin, Thermodynamics of Solids, John Wiley, New York, 
lw2). 

appear. This type of alloy also has a tendency to order at low temperatures as 
shown in Fig. 1.31a. If the attraction between unlike atoms is very strong the 
ordered phase may extend as far as the liquid. Fig. 1.31b. 

1.5.4 SimpIe Eurectic Systems 

If AH:,, is much larger than zero the miscibility gap in Fig. 1.3M can extend 
into the liquid phase. In this case a simple eutectic phase diagram resulrs as 
shown in Fig. 1.32. A similar phase diagram can result when A and B have 
different crystal structures as illustrated in Fig. 1.33 

1.5.5 Phase Diagrams Containing Intermediate Phases 

When stable intermediate phases can form, extra free energy curves appear in 
the phase diagram. An example is shown in Fig. 1.34, which also illustrates 
how a pritectic transformation is related to the free energy curves. 

An interesting result of the common tangent construction is that the stable 
composition range of the phase in the phase diagram need not include the 
composition with the minimum free energy, but is determined by the relative 
free energies of adjacent phases, Fig. 1.35. This can explain why the composi- 
tion of the equilibrium phase appears to deviate from that which would be 
predicted from the crystal structure. For example the 0 phase in the CU-A1 
system is usually denoted as.CuAl, although the composition Xc, = 1/3, 

= 2/3 is pot ekered by the 6 field on the phase diagram. . . 
1.5.6 The Gibbs Phase Rule I 
The condition for equilibrium in a binary system containing two p h w s  is 
given by Equation 1.46 or 1.47. A more general requirement for systems 
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Fig., 1.35 Free energy diagram to iilustrate that the range of curnpos~rions over which 
a phase is stable depends on the free energies of the other phases in equilibrium. 

containing severa1 components and phases is that the chemical potential of 
each corn2onent must be identical in every phase, i.e. 

The proof of this relationship is left as an exercise for the reader (see 
Exercise 1.10). A consequence of this general condition is the Gibbs phase 
rule. This stateb that if a system containing C components and P phases is in 
equilibrium the number of degrees of freedom F is given by 

A degree of freedom is an intensive variable such as T, P. XA,  XB . . . that 
can be varied independently while still maintaining equilibrium. Jf pressure is 
maintained constant one degree of freedom is lost and the phase rule becomes 

P - t F =  C +  1 (1 S O )  

E SO that C = 2 therefore At present we are considering binary alloy, 

This means that a binary system containing one phase has two degrees of 
freedom, i.e. T and XB can be varied independently. In a two-phase region of 
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phase diagram P = 2 and therefore F = 1 which means that if the tempera- 
ture ir chosen indcpsndenriy the compositiuns of the phases are fixed. When 
[hrer phases are in equiiibrium. suih as at a eutectic or perirectic tempera- 
ture. there are no degrees of freedom and the compositions of the phases and 
[he temperature ot  he system are all fixed. 

1 .'. 7 The Efftct of Temperature on Solid SolubiIiry 

The equations fur free energy and chemical potential can be used to derive 
the effect of temperature on the limits of solid solubility in a rerminal soiid 
solution. Consider for simplicity the phase diagram shown in Fig. 1.36a where 
0 is soluble in A. but A is virtually insoluble in B. The corresponding free 
energy curves for temperature T, are shown schematically in Fig. 1.36b. Since 
.A is almost insoluble in B the Ge curve rises rapidly as shown. Therefore the 
maximum concentralion uf B soluble in A (X',) is given by the  condition 

For a regrdur solid solurion Equation 1.40 gives 

k; = C;; Sl( 1 - x ~ ) '  4 . RT , In XB - 

But from Fig. I.36b. GO, - = A & .  the difference in  free energy between 
purr B in the stable p-form and the unstable a-form. Therefore for X, = XL 

if the solubility is ION, ,Y;; 1 and this gives I 

Putting 

where A i s  a constant equal to exp ( l S s / R )  and 

AH, is the difference in enthalpy between the p-form of B and the a-form in 
mol-'. !2 is the change in energy when 1 mol of B with the a-structure 

dissolves in A to make a dilute solution. Therefore Q is just the enthalpy 
change. or heat absorbed, when 1 moi of B with the @-structure dissolves in A 
to make a dilute solution. 
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Fig. 1.36 Solubility of B in A .  

l S H  IS the difference in entropy between P-3 and a-B and is approximately 
lrldependent of temperature. Therefore the solubility of B in rw increases 

with temperature at a rate determined by Q. It is interesting to 
note that. except at absolute zero. X', can never be equal to zero. that is, no 
two components are ever - completely insoluble in each other. 

-, - . / -  - 
.<'- - , 

.- 
- ,  - . - ,  --, . - / '  

1 .j 8 Equilibrium Vacancy ~oncenrrat ion 

SO tar it has been assumed that in a metai lattice every atom site is occupied. 
However. let us now consider the possibility that some sites remain without 
atoms. that is. there are vacancies in the lattice. The removal of atoms from 
their sites not only increases the internal energy of the metal, due to the 
broken bonds around the vacancy, but also increases the randomness or 
configurational entropy of the system. The free energy of the alloy will 
depend on the concentration of vacancies and the equilibrium concentration 
X: will be that which gives the minimum free energy. 

If. for simplicity. we consider vacancies in a pure metal the problem of 
calculating Xt is almost identical to the calculation of AG,,, for h and B 
atoms when AH,,, is positive. Because the equilibrium concentration of 
vacancies is small the problem is simplified because vacancy-vacancy interac- 
tions can be ignored and the increase irr enthalpy of the solid (AH) is directly 
proportional to the number of vacancies added. i.e. 

where Xv is the mole fraction of vacancies and AH, is the increase in enthalpy 
per mole of vacancies added. (Each vacancy causes an increase of SH,/iV, 
where ,V, is Avogadro's number.) 

There are two conrsibutions LO the entropy change I S  on adding vacancies. 
There is a small change in the thermal entropy of AS, per mole of vacancies 
added due ro changes in the vibrational frequencies of the atoms around a 
vacancy. The largest contribution. however. is due to the increase in con- 
figurational entrnp); given by Equation 1.25. The total entropy change is thus 

AS = XvAS, - R(X, In X ,  + (1 - X, )  In ( 1  - X,,)) 

The molar free energy of the crvstal containing X, mol of vacancies is 
therefore 'given by 

TGS is shown schematically in Fig. 1.37. Given time the number of vacancies 
will adjust so as to reduce G to a minimum. The equiiibrium concentration of 
vacancies i s  therefore given by the condition 
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Fig. I .37 Equilibrium vacancy concentration. 

Differentiating Equation 1.55 and making the approximation X, G 1 gives 

AH,. - TAS, + RTln XC, = 0 

Therefore the expression for X: is 

AS, - AH, X: = exp - - exp - 
R RT 

or, putting AG, = AH, - TAS, gives 

- AGv Xv = exp - 
RT 

The first term on the right-hand side of Equation 1.56 is a constant -3,  
independent of T ,  whereas the second term increases rapidly with increasing 
T.  In practice AHv is of the order of 1 eV per atom and Xv reaches a value of 
about 10-4-10-3 at the melting point of the solid. 

. , . . 
f -6. The IrrRuence of Interfaces in Equilibrium 

The free energy curves that have been drawn so far have been based on 
the molar free enerpes of infinitely large amounts of material of a perfect 
single crystal. Surfaces, grain boundaries and interphase interfaces have been 
ignored. In real situations these and other crystal defects such as dislocations 
do exist and raise the free energies of the phases. Therefore the minimum free 
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of an alioy. i . e  the equilibrium state. i s  not reached until virtuaily 
,!I interfaces and dislocations have been annealed out. In practice such a 

is unattainable within reasonable periods of time. 
Interphilst interfaces can become extremely important in the early stages of 

phase transformatiuns when one phase. P. say. can be present as very fine 
in the other phase. a.  as shown in Fig, i.3Xa If the u phase is acted 

on h!. a pressure of I atm the P phaar is subjected to an extra pressure AP due 
to the curvature of the trip interface. just as a soap bubble exerts an extra 
pressure -\P on its contents. If  y is the a / p  interfacial energy and the particles 
are spherical with a radius r. AP is given approximately by 

Atmospheric 
pressure 

# Fig. 1.38 The effect of interfacial energy on the rulubility of small particles. 
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By definition. the Gibbs free energy contains a 'PV' term and an increase c 
pressure P therefore causes an increase in free energy G. From Equation 1.1 
at constant temperature 

AG = AP . V 

Therefore the P curve on the molar free energy-composition diagram i~ 
Fig. I.38b will be raised by an amount 

where V ,  is the molar volume of the p phase. This free energy increase due tl 
interfacial energy is known as a capillarity effect or the Gibbs-Thorns01 
effect. 

The concept of a pressure difference is very useful for spherical liquic 
particles, but it is less convenient in solids. This is because. as will b 
discussed in Chapter 3, fineIy dispersed solid phases are often non-spherical 
For illustration, therefore. consider an alternative derivation of Equa 
tion 1.58 which can be more easily modified to deal with non-spherical cases3 

Consider a system containing two P particles one with a spherical interfact 
of radius r and the other with a planar interface (r = =) embedded in an c 
matrix as shown in Fig. 7.39. If the molar free energy difference between tht 
two particles is AG,. the transfer of a small quantity (dn mol) of ~3 from thc 
large to the small particle will increase the free energy of the system by a smal 
amount idG) given by 

If the surface area of the large particle remains unchanged the increase in fret 
energy will be due to the increase in the interfacial area of the spherica 

Fig. 1.39 Transfer of dn mol of P from large to a small particle. 

The influence of interfaces on ~quilibrium 

article (d.4). Therefore assuming y is constant 

:quating these two expressions gives 

;ince n = 4nr3/3v, and A = 4a4 it can easily be shown that 

rom which Equation 1.58 can be obtained. 
An important practical consequence of the Gibbs-Thomson effect is that 

he solubility of P in cu. is sensitive to the size.of the (3 particles. From the 
:ummon tangent construction in Fig. 1.38b it can be seen that the concentra- 
:ion of solute B in a in equhbrium with across a curved interface (X,) is 
;rester than X, , the equilibrium concentration for a pianar interface. Assum- 
ng for simplicity that the 01 phase is a regular solution and that the P phase is 
dmost pure £3, i.e. Xk - 1, Equation 1.52 gives 

Similarly X, can be obtained by using (AGB - 2yVm/r) in place of AGB 

Therefore 

2~ vrn X, = X, exp - 
R Tr 

and for small values of the exponent 

Taking the following typical values: y = 200 rnJ m-', V ,  = lo-' m'. 
R 7 88.1 Jmol-' K-', T =  500K gives, 

xr 1 
. . 

- = I + -  x, r(nm) 

e.g. for r = 10 nm X, /X ,  - 1.1. It can be seen therefore that quite iarge 
solubility differences can arise for particles in the range r = 1-100 nm. 
However. for particles visible in the light microscope ( r  > 1 ~ r n )  capillarity 
effects are very small. 
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1.7 Ternary Equilibrium I 
Since most commercial alloys are based on at least three componerts, an 
understanding of ternary phase diagrams is of great practical importance. The 
ideas that have been developed for binary systems can be extended to systems 
with three or more C O ~ ~ O ~ ~ I I ~ S ' .  

The composition of a ternary alloy can be indicated on an equilateral 
triangle (the Gibbs triangle) whose corners represent 100% A, B or C as 
shown in Fig. 1.40. The triangle is usually divided by equidistant lines parallel 
to the sides marking 10% intervals in atomic or weight per cent. Ali points on 
lines parallel to BC contain the same percentage of A, the lines parallel to AC 
represent constant B concentration, and lines parallel to AB constant C 
concentrations. Alloys on PQ for example contain 60% A, on RS 30% B, 
and TG' 10% C. Clearly the total percentage must sum to 100%, or expressed 
as mole fractions 

The Gibbs free energy of any phase can now be represented by a vertical 
distance from the point in the Gibbs triangle. If this i s  done for all possible 
cornposirions the points trace out the free energy  surface^ for all the possible 
phases. as shown in Fig. 1.41a. The chemical potentials of A. B and C in any 
phase are then given by the p i n t s  where the rangenrial plane to the free 
energy surfaces intersects the A, B and C axes. Figure 1.41a is drawn for a 

Fig. 1.40 The Gibbs triande. 

jysrem in which the three binary systems AB, BC and CA arc simple eutec- 
tic-. Free energy surfaces exist for three solid phases a. and y and the liquid 

L. At this temoerature the liquid phase is most stable for ail alloy 
cum pas it ion^. At lower temperatures the cL surface moves upwards and 
oentually intersects the Ga surface as shown in Fig. 1.31b. Alloys with 
cornpositions in the vicinity of the intersection of the two curves consist of 

- L at equilibrium. In order for the chemical potentials to be equal in both 

Fig. 1.41 {a) Free energies of a liquid and thri-e w l i d  phase5 of a ternary system. 
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Fig. 1.41 {Conr.)  (b) A tangential plane construction to the free energy surfaces 
derines equ~librium between s and I In the ternary system. (c) Isothermal section 
through a :srnar)r phase diagram obtained in this way with a two-phase region (L+S) 
ana x.anous tie-lines. The amounts of I and s ar polnt x are derermlned by the lever 
rule. (After P. Haasen. Phystcal Mrrallurgy , Cambridge University Press. Cambridge, 
19-8.) , 

phases the compositions of the two phases in equilibrium must be given by 
points connected by a cornmorl tangentinI plane. for example s and I in 
Fig. 1.4lb These points can be marked on an isothermal secrion of the 
equ11ibriui-n phase diagram as shown in Fig, 1.41~.  The lines joining the 
ccmpositions in equilibrium are known as lie-lines. Bv rolling the tangential 

generated. such as pr and qt .  and the region covered by these tie-lines pqtr is 
i plane over the two free energy surfaces a whole series of tie-lines will be , 

3 
I a two-phase region on the phase diagram. An alloy with composition A- in j 

Fig. i . 4 1 ~  therefore minimize its free energy by separating into solid a 
with composition s and liquid with composition I .  The relative amounts of u 
and L are simply given by the lever rule. Alloys with compositions within Apq 
\--!iI be a homogeneous a phase at this temperature. whereas alloys within 
BCrt will be liquid. 

On further cooling the free energy surface for the liquid will rise through 
the orher free energy surfaces producing the sequence of isothermal sections 
shown in Fig. 1.42. In Fig. 1.42f. for example. the liquid is stable near the 
cenrre of the diagram whereas at the corners the a, P and y solid are 
stable. In between are several two-phase regions containing bundles oL tie- 
lines. In addition there are threerphase regions known as tie-triangles. The 
L - cu + p triangle for example arises because the common tangential plane 
simultaneously touches the G". cP and GL surfaces. Therefore any alloy with 
a composition within the L + a + p triangle at  this temperature will be in 
equilibrium as a three-phase mixture with compositions given by the corners 

C c 
(5 T = E  ( h )  E > T  

Fig. 1.4'3 Isothermal sections through Fie 1 . U  (After A. Prince, ~ i l o y  Phase 
Eqrulihria. Elsevier. Amsterdam. 1966.) 

~ . l f  the triangle. If the temperature is lowered srill further the L region shrinks 
to a point at which four phases are in equilibrium L + u + P + 7 .  This is 
known as the ternary eutectic point and the temperature at which i t  occurs is 
the ternary eutectic temperature, Fig. 1.42g. Below this- temperature the 

1 liquid is no longer stable and.qn isothermal section contairls three two-phase 
regions and one three-phase tiq triangle o + P + 7 as shown in Fig. 1.42h. If 
isothermal sections are constructed for all temperatures they can be combined 
into a three-dimensional ternary phase diagram as shown in Fig. 1.44. 

In order to foilow the course of solidification of a ternary alloy, assuming 
equilibrium is maintained at all temperatures, it is useful to plot the Iiquidus 
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Fig. 1.43 A projection of the Iiquidus surfaces d Fig. 1.44 onto the Gibbs triangle. 

surface contours as shown in Fig. 1.43. During equilibrium freezing of alloy X 
the liquid composition moves approximately along the line Xe (drawn 
through A and X) as primary a phase is solidified; then along the eurectic 
valey eE as both cr and $3 solidify simultaneously. Finally at E. the ternary 
eutectic point, the liquid transforms simultaneously into a + P + y. This 
sequence of events is also illustrated in the perspective drawing in Fig. 1.44. 

The phases that form during solidification can also be represented on a 
vertical section through the ternary phase diagram. Figure 1.45 shows such a 
section taken through X parallel to AB in Fig. 1.44. It can be seen that on 
cooling from the liquid phase the alloy first passes into the L + rw region. then 
into L + a - p, and finally all liquid disappears and the ol + p + y region i s  
entered. in agreement with the above. 
An important limitation of vertical sections is that in general the section 

will not coincide with the tie-tines in the two-phase regons and so the diagram 
only shows the phases that exist in equilibrium at different temperatures and 
nor their compositions. Therefore they can not be used like binary phase 
diagrams, despite the superficial resemblance. 

1.8 Additional Thermodynamic Relationships for Binary Solutions 1 
1 
I 

It is often of interest to be able to calculate the change in chemical potential 
(dk) that results from a change in alloy composition (dX). Considering 
Fig. 1.46 and comparing triangles it can be seen that i 

1 

and that the slope of the free energy-composition curve is given by I 

Fig. 1 . 4  The equilibrium solification of alloy X. (After A. Prince. AlIo! Phase 
Equilibria. Elsevier. Amsterdam. 1966.) 

. . 

Fig. 1.45 A vertical section between po~nts 1 . 2  and X in Fig 1.44. (Aler  A. Prince. 
Allog Phase Equilibria. Elsevier. Amsterdam, 1966.) 
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Fig. 1 .J6 ~ v a l u & n  of the change in chemical potential due to a change in composi- 
tion. (After ~ / k i l l e r t ,  in Lecrures on !he Theory qf Phase Tronsformarions. H.I .  
Aaronson (Ed.),BThe American Society for Metals and The Metallurgical Society of 
AIME. New York. 1969.) 

Substituting this expression lnto Equation 1.63 and multiplying throughout 
by XAXB leads to the following equalities: I 
which are the required equations relating dp,. dp,  and dXB. The first 
equality in this equation is known as the Gibbs-Duhem relationship for 
a b i n q  solution. Eiote that the B subscript has been dropped from d2G/M12 
as d2G:dx; = d2G/dXi. For a regular solution differentiation of 
Equation 1.39 gives 

d2G RT 
-=-- 
dx: X,X, c1.56) 

For an ideal solution Q = 0 and . 1 

Equation I .65 can be written in a slightly flifferent form by making use of 
agtivity coefficients. Combining Equations 1.41 and'1.43 gives 

pg = GB+ RTlny,XB 

Therefore 

r\ similar relationship can be derived for dbA/dXB. Equation 1.65 therefore 
becomes 

Comparing Equations 1.65 and 1.70 gives 

1.9 The Kinetics of Phase Transformations 

The thermodynamic functions that have been described in thls chapter apply 
to systems that are in stable or metastable equilibrium. Thermodynamics can 
therefore be used to calculate the driving force for a transformation. 
Equation 1.4.  but it cannor say how fast  a transformaiion will proceed. The 
study of how fast processes occur belones to the science of kinetics. 

Let us redraw Fig. I .  I for the free energy of a single atom as it takes part in 
a phase transformation from an initially metastable state into a irate of lower 
free energy. Fig. 1.37. If GI  and G2 are the free energies of the initial and 

injtiol ~c t i va ted  ~ i n a l  
state stote state 

Fig. 1.17 Transformations from initla1 to final state through an activated state of 
higher free energy. 



final states. the driving force for the transformation will be hG = G, - G I ,  
However, before the free energy of the atom can decrease from G, to G2 the 
atom must pass through a so-called transition or activated state with a free 
energy AGa above GI. The energies s h o ~ n  in Fig. 1.47 are average energies 
associated with large numbers of atoms. As a result of the random thermal 
motion of the atoms the energy of any particular atom will vary with time and 
occasionally it may be sumcient for the at0r.i to reach the activated state. This 
process is known as thermal activation. 

According to kinetic theory. the probability of an atom reaching the acti- 
vated state is given by exp (-AGa/kT) where k is Boltzmann's constant 
( R l N , )  and AGa is known as the activation free energy barrier. The rate at 
which a transformation occurs will depend on the frequency with which atoms 
reach the activated state. Therefore we can write 

hG" 
rate a erp (-=) 

Putting AGa = AHa - TAP and changing from atomic to molar quantities 
enables this equation to be written as 

rare cxp (-g) 
This equation was first derived empirically from the observed temperature 
dependence of the rate of chemical reactions and is known as the Arrheniw 
rate equation. It is also found to apply to a wide range of processes and 
transformations in metals and alloys, the simplest of these is the process of 
diffusion which is discussed in Chapter 2. 
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Exercises 

1.1 The specific heat of solid copper ahove 300 K 15 given by 

C,, = 22.64 + 6.78 x lo - '  T J mol- '  Ii-' 

By how much does the entropy of copper increase on heating from 300 
to 1358 K? 

1.2 With the aid of Equation 1.11 and Fig. 1.5. draw schematic free energy- 
pressure curves for pure Fe at 1600. 800. 500 and 300 "C. 

1.3 Estimrtte the change in the equilibrium melting point of copper cau5l.d 

by a chmge oof pressure of 10 kbar. The molar volume nf cupper I S  

8.0 x 1 0 - ~  m' for the liquid. and 7.6 x 10-" fur the solid phase. The 
latent heat of fusion of copper is 13.05 kJ mol' ' . The melting point i s  , 

1085 "C. 
> .  1.4 For a single component system. ahy do the allotropes stable at high 
.' . 

temperatures have higher enthalpies than allotropes stable at low 
temperatures, e-g.  H(y-Fe) > Hlu-Fe)? 

1.5 Determine, by drawing. the number of distinguishable ways of arrang- 
ing two black balls and two white balls in a square array. Check your 
answer with Equation 1.24. 



1.6 By using Equations 1.30 and 1.21. show that the chemical potentials Folid particle of Cu can grow if  the particle diameter is t i )  2 &m- 
of A and B can be obtained by extrapolating the tangent ro the  G-X ( , i )  2 nm (20 A)? (CU: T,  = 1085 "C = 1358 K.  Atomic weight 63.5. 
curve to X ,  = 0 and XB = 0. ~ ~ ~ ~ i t r  #Jm kg m-'. Solid/liquid interfacial energy Y = 0.144 J m-'. 

1.7 Derive Equation 1.40 from 1.31 and 1.39. Latent heat of melting L = 13 300 J mol-'.) 
1.8 15 g 3f gold and 25 g of silver are mixed to  form a single-phase ideal 1.15 Suppose 5 ternary alloy containing 40 atomic 5% AA. 20 atomic BB, 40 

solid solution. atomic 5 C solidifies through a ternary eutectic reacr i~n  10 a mixture of 
(a) How many moles of solution are [here? a. p and with the foliowing compo~it iol i~:  80 atomic 9 A.  5 
( b )  What are the mole fractions of gold and silver? atomic F; B. 1 j atomic $; C: 70 atomic 5. 0. 10 atomic 5 A.  3) 
(c) What is the molar entropy of mixing? aromic Cc. C :  and 20 atomic ?k B. 10 atomic % A ,  70 atomic 9 c. 
(d) What is the turd entropy of mixing? What will be the mole fractions of a. P and y in the microstructure'? 
(e) What is the molar free energy change at 500 "C? 1. l h  show that a general ,expression for the chemical potenrial of a COmPn- 

( f )  What are the chemical potentials of Au and Ag a t  500 "C taking nent in solution is given by 
the Cree energies of pure Au and Ag as zero:' 

{g) By how much will the free energy of the solution change at 500 O C  if = c;: + sh(T0 - TT) - R T l n  yJ.4 + ( P  - Pu)~', 

one Au atom i s  added? Express your answer in eV/atom. where G': is the free energy of pure A at temperature To and pressure 
1.9 In the Fe-C system Fe3C is onll; a metastable phase, whilst graphite is p,. .'j', is the  entropy of A .  R is the gas cmstant .  Y A  the activity 

the most stable carbon-rich phase. By drawing schematic free energy- , coefficient for A. ,Y, the mole fraction in solution. V ,  is the molar 
composition diagrams show how the Fe-graphite phase diagram com- 
pares to the Fe-Fe3C phase diagram from 0 to  2 wt% Fe. Check your 

volume is assumed to be constant. Under what conditions 15 the 
above equation valid? 

answer with the published phase diagram i n  the Metals Handbook for 
example. 

1.10 Consider a multicomponent system A ,  B, C . . . containing several 
phases a. 0. y . . . at equilibrium. If a small quantity of A (dn,rnol) is 
taken from the a phase and added to the P phase at constant T and P 
what are the changes in the free energies of t h e  or and 0 phases, dGa 
and   GO? Since the overall mass and composition of the system is un- 
changed by the above process the total free energy change 
dG = dG" + dGP = 0. Show. therefore. that F", =%. Repeating for 
other pairs of phases and other components gives the general equilib- ; rium conditions, Equaticn 1.48. : 

I 
1.1 I For aluminium AH, = 0.8 eV atom-' and AS,/R = 2. Calculate the 

equilibrium vacancy concentration at 660 "C (T,) and 25 "G. 
1.12 The solid solubility of silicon in aluminium is 1.25 atomic % at 550 "C 

and 0.46 atomic % at 450 "C. -What solubility would you expect at 
2UO 'C? Cilcck your answer by reference to the published phase d i b  ' 
gram. 

1.13 The metals h and B farm an ideal liquid solution but are almost 

immiscible in the solid state. The e n t r q v  of fusion of both A and is 
8.4 J mol-'K-' and the melting temperatures are. 1500 and 13W K 
r e s ~ z c t i v e l ~ .  Assuming that the specific heats of the solid and liquid are 
idqtical calculate the e h t e c t i ~ c o m ~ o ~ t i o n  and tempeiature in the A-B 
phase diagram. 

1.13 Write down an equation that shows by how much the molar free energy 
of solid Cu is increased when it is present as a small sphere of radius r in 
liquid Cu. By how much must liquid Cu be cooled below Tm before a 



Diffusion 

The previous chapter was rnainl~ concerntd with stable or equitibriurn 
arrahgements of atoms in an alloy. The study of phase transformations 
concerns those mechanisms by which a system attempts to reach this state and 
how long it takes. One of the most fundamental processes that controls the 
rate at which many transformations occur is the diffusion of atoms. 

The reason why diffusion occurs is always so as to produce a decrease in 
Gibbs free energy. As a simple illustration of this consider Fig. 2.1. Two 
blocks of the same A-B solid solution. but with different cumpositions, are 
welded togther  and held at a temperarure high enough for long-kn2e 
diffusion to occur. I f  the molar free e n e r g  diagram of the alloy is as shown in 
Fig. 2 .  l b .  the molar free ener?)' of each part of the alloy wil l  be given by G,  
and G1.  and i?liliuf/~  he total free enersv of the welded block will be C;?. 
However. if diffusion occurs as indicated in Fig. 2.la so as to eliminate the 
concentration differences, the free energy will decrease towards C,. the Cree 
snergy of a homogeneous alloy. Thus. in this case. a decrease in free energy is 
produced by A and B atoms diffusing away from the regions of high concen- 
tration to that of low concentration. i.c. dowtr the concentration gradients. 
However. this need not always be the case as was indicated in Section 1.4. In 
alloy s!.srems thar contain a m~scibilit!: gap the free energy curves can have a 
negative curvature at low temperatures. If the free energy curve and cumposi- 
Iron for the A-B alloy shown in Fig. 2. I a  were 3s drawn in Fig. 2. l d  the A 
and B arorns would diffuse rolr-urtis the regirrns uf high concenrratlon. i.e. icp 

. the conctntraticn gradients. as shown in Fig. 2 . 1 ~ .  However. this is still the 
most natural process as it  reduces the free energy from Gt towards G, again. 

As can be seen in Fig. Z.le and f the A and B atoms are diffusing from 
regions w'nere the chemical potential is high to regions where it is low, i.e. 
down the chemical potential gradient in both cases. In practice the first case 
mentioned above is far more common than the second case, and it is usually 
assumed that diffusion occurs down concentration gradients. However, it can 
be seen that this is only true under special circumstances and for this reason it 
is strictly speaking better to express the driving force for diffusion in terms of 
a chemical potential gradient. Diffusion ceases when the chemical potentials 
of all atoms are everywhere the same and the $ystem is in equilibrium. 
However. since case 1 above is mainly encountered% practice and because 
concentration differences are much easier to measure than chemical potential 
differences, it is nevertheless rnore convenient to relate diffusion to concen- 
tration gradients. The remainder of this chapter will thus be mainly concerned 
with this approach to diffusion. 

B-ric h A-r ich 

Fig :.I Frse encrg! and chem~cal potentla1 changes du~111g J~tfusion (a) and (b)  
'dotrn-hill' dlflusiun. (c )  and (J) up-hlH' d~ftu~ion (el =. w)\ therefore A atoln? 

moxe from ( 2 )  tu (1). pk > Fi therefore B t o m s  molt.  from (1 ) to ( 2 ) .  ( f  1 p i  > crk 
therefore A atoms move from ( 1 )  to ( 2 ) .  pg pk zhereture B dtorns move from ( 2 )  
10 ( I ) .  

1 2.1 Atomic Mechanisms of Diffusion 

There are two common mechanisms by which atoms can diffuse through a 
solid apd the operative mechanism depends on the type of site occupied in the. ' 
lattice. Substirutional atoms usually diffuse by a vacancy mechanism whereas 
the smaller interstilia1 atoms migrate by forcing their way between the larger 

' 

atoms. i .e, inrerstitially. 
Normally a substitutional atom i f i  a crystal oscillates about a given site and 

1s surrounded by neighbouring atoms on similar sites. The mean vibrational 
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energy possessed by each atom is given by 3 kT,  and therefore increases in 
proportion to the absolutz temperature. Since the mean frequency nf vibration 
is approximately constant the vibrational energy is increased by increas- 
ing the amplitude of the oscil1a;ions. Normally the movement of a substitu- 
tional atom is Iimited by its neighbours and the atom cannot move to another 
site. However, if an adjacent site is vacant it can happen that a particularly 
violent oscilIation results in the zram jumping over on to the vacancy. This is 
illustrated in Fig. 2.2. Note that in order for the jump to occur the shaded 
atoms in Fig. 2.2b must move apart to create enough space for the migrating 
atom to pass between. Therefore the probability that any atom will be able to 
jump into a vacant site depends on the probability that it can aquire sufficient 
vibrational energy. The rate at which any given atom is able to migrate 
throush the sotid will clearly be determined by the frequency with which it 
encounters a vacancy and this in turn depends on the concentration of 
vacancies in the solid. It will be shown that both the probability of jumping 
and the concentration of vacancies are extremely sensitive to temperature. 

- ,  
--ig. 1.2 Lfovement of an atom into an adjacent vacancy in an fcc lattice. (a) .4 
::use-packed plane. ( b )  A unit cell showing the four a r m s  (shaded) which must move 
~efore the jump can occur. (After P.G. Shewmon. Ditfmion in Solids. McGraw-Hill, 
Yew York. 1963.) 

When a solute atom is appreciably smaller in diameter than the sol- 
tent. it occupies one of the inte~~utial:  sites between the solvent atoms. 
i n  fcc materials the interstitial sites are midway along the cube edges 
ar .  equivalently, in the middle of the unit cell, Fig. 2.3a. These are known as 
cctahedral sites since the six atoms around the site form an octahedron. In the 
See lattice the interstitial atoms atso often occupy the octahedral sites which 
are now located at edge-centring or face-centring. positions as shown in 
Fig. 2.3b. - 

Usually the concentraGon of interstitial atoms is so'low that only a small 
rraction of the available sites is occupied. This means that each interstitial 
ktom is always surrounded by vacant sites and can jump to another position as 
&en as its thermal energy permits it to 0%-ercomr the strain energy barrier to 
migration, Fig. 2.4. 

- 
(a 1 . ( b )  ::. - : ., - 

Fig, 2.3 ( a )  Octahedral infcrslices (0) in an fcc ciyiinl. i b j  Octahedral interstices in a 
bcc crvstal. (After P. Haasen. Physrcol Meroilurgy. Cambrtdge University Press. 
Cambridge. 1978.) 

w 
Fig. 2.4  A {lW} plane in an fcc lattice showing the path of an interstitial atom 
diffusing by the interstltlal mechanism. 

2.2 Interstitial IXEusion 

2.2.1 interstitial Diffusion as a Random Jump Process 

Let us consider first a simple model of a dilute interstitial solid solution where 
the parent atoms are arranged on a simple cubic lattice and the solute 
3 atoms fit perfectly into the interstices without causing any distortion of the 
parent lattice. We assume that the solution is so dilute that every interstitial 
atom is surrounded by six vacant interstilia\ sites. If the concentration of B 
varies in one dimension ( x )  through the solution (see Fig. 2.5) the B atoms 
can dihse  throughout the material until their concentration is the same 
everywhere. The problem to be considered then, concerns how this diffusion 
is related to the random jump characteristics of the interstitial atoms. 
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0 atoms of 
parent lattice 

( b j l  w 
Fig. 2.5 Interstitial diffusion by random jumps in a concentration gradient. 

To answer this question consider the exchange of atoms between two 
adjacent atomic planes such as (1) and (2) in Fig. 2.5a. Assume that on 
average an interstitial atom jumps rB times per second (r = Greek capital 
gamma) and that each jump is in a random direction, i-e, there is an equal 
probability of the atom jumping to every one of the six adiacent sites. If   lane 
, . . 1 - -  (1) contains n, B-atoms per mz rhe number of atoms that will jump from plane 
(1) to (2) in 1 s (J) will be given by: 

1 1. = ;rBn, atoms m-2 s- '  
(2.1) 

During the same time the number of atoms that jump from plane (2) to (1).  

I assuming T R  is independent of concentration, is given by: 

I Since P I ,  > n: there will be a ner flux of atoms from left to right given by: 

\+here n,  and n2 are related to the concentration of B in the lattice. If the 
separation of planes (1) and (2) is a the concentration of B at the position of 
plane (1) Cs(l) = n,/cr atoms m-3 .  Likewise CB(2) = nl /a .  Therefore 
( n ,  - n2)  = cr(CB(l) - CR(2)} and from Fig. 2.5b it can be seen that 
CB(l)  - C8(2) = -rr(dCs/dx). Substituting these equations into Equation 
2 . 2  pi\.es: , 

The partial derivative fiCB;ax has been used to indicate that the concentration 
gradient can change with time. Thus in the presence of a concentration 
gradient the random jumping of individual atoms produces a net flow of atoms 
down the concentration gradient. 

Substituting 

yields: 

This equation is identical to that proposed by Fick in 1855 and is usually 
known as Fick'sfirs~ law of d~ffusion. D B  is known a? f4e intrinsic dgfusiviry 
or the diffusion coeficient of B, and has units [m' s-'1. The units for J are 
]quantity m-' s-'1 and for actax [quantity rn"']. where the unit of quantity 
can be in terms of atoms, moles. kg, etc. as long it is the same for J and C. 

When the jumping of B atoms is truly random with a frequency independ- 
ent of concentration. DB is given by Equation 2.3  and is also a constant 
independent of concentration. Although this equation for DB was derived for 
~nterstitial diffusion in a simple cubic lattice it i s  equally applicable to any 
randomly diffusing atom in any cubrc lattice provided the correct substilution 
for the jump distance a is made. In non-cubic lattices the probability of jumps 
in different crystallogfaphic directions a not equal and D varies with direc- 
tion. Atoms in hexagonal lattices. for example. diffuse at different rates 
parallel and perpendicular to the basal plane. 



The condition that the atomic jumps occur completely randomly and inde- 
pendently of concentration is usuaily not fulfilled in real alloys. Nevertheless 
it is found from experiment that Fick's first law is still applicable, though only 
if the diffusion coefficient D is made to vary with composition. For example 
the diffusion coe~cient  for carbon in fcc-Fe at 1OOO "C is 2.5 x lo-" m2 S- '  

at 0.15 wt% C, but it rises to 7.7 x loL1 '  rn2 s-'  in solutions containing 
1.4  wt% C. The reason for the increase of Dz with concentration is that the C 
atoms strain the Fe lattice thereby making diffusion easier as the amount of 
strain increases. 

As an example of the use of Equation 2.3 the following data can be used to 
estimate the jump frequency of a carbon atom in y-Fe at 1OOO "C. The lattice 
parameter of y-Fe is -0.37 nm thus the jump distance 
a = 0.37/,2 = 0.26 nrn (2.6 A). Assuming D = 2.5 X lo-" rn2 s-',  leads 
to the result that r = 2 x 10' jumps s-'. If the vibration frequency of the 
carbon atoms is -1013. then only about one attempt in lo4 results in a jump 
from one site to another. 

It is also interesting to consider the diffusion process from the point of view 
of a single diffusing atom. If the direction of each new jump is independent of 
the direction of the previous jump the process is known as a random walk. 
For a random walk in three dimensions it can be shown1 that after n steps of 
length a the 'average' atom will be displaced by a net distance uin  from its 
original position. (This is more precisely the root mean square displacement 
after n steps.) Therefore after a time t the average atom will have advanced a 
radiai distance r from rhe origin, where 

Substituting Equation 2.3 for r gives 

It will be seen that the distance d(Dt) is a very imponant quantity in diffusion 
problems. 

For the example of carbon diffusing in r-Fe above. in 1 s each carbon atom 
will move a total distance of -0.5 m but wilI only reach a net displacement of 
- 10 prn. It is obvious that very few of the atom jumps provide a useful 
contribution to the total diffusion distance. 

2.2.2 Efect of Temperature- Thermal A crivation 

, . 
Let- us now take a closer look at the actual jump process=for an interstitial 
atom as in Fig. 2.6a. Due to the thermal energy of the solid all the atoms will 
be vibrating about their rest positions and occasionally a particularly violent 
oscillatior~ of an interstitial atom, or some chance coincidence of the move- 
ments of the matrix and interstitia1 atoms, will result in a jump. Since the 
difision coefficient is closely related to the frequency of such jumps, T, it is of 

X--, 

Fig. 2.6 interstitial atom. (a) in equilibrium position, (b) at the position of maximum 
lat t~ce distortion. ( c )  Variation of the free energy of the lattice as a function of the 
position of interailial. ( M c r  P.G. Shewmon. in Phssicol Merollurgy. 2nd edn.. R.W. 

' 

Cahn (Ed.). North-Holland. Amsterdam. 1974.) 

interest to know the factors controlling r and the effect of raising the 
temperature of the system. 

The rest positions of the interstitial atoms are positions of minimum poten- 
tial energy. In order to move an interstitial atom lo an adjacent interstice the 
atoms of the parent lattice must be forced apart into higher energy posirions 
as shown in Fig. 2.6b. The work that must be done to accomplish this process 
causes an increase in the free energy of the system by AG, {m refers to 
migration) as shown in Fig. 2 . 6 ~ .  A G,  i s  known as the activoriun energy for the 
migration of the intenritial atom. I n  any system in thermal equilibrium the 
atoms are constantly colliding with one another and changing their vibrational 
energy. On average, the fraction of atoms with an energy of hG or more than 
the mean energy is given by exp (-hG/RT). Thus if the interstitial atom in 
Fig. 2.6a i s  vibrating with a mean frequency u in the x direction it makes v 
atrempts per second to jump into the next site and the fraction of these 
attempts that are successful is given by exp ( -AG, /RT) .  Now the atom is 
randomly vibrating in three-dimensional space, and if i t  is surrounded by z 
sites to which it can jump the jump frequency is given by 

- AG, rg = m exp - 
RT 

SC, can be considered to be the sum of a large activation enthalpy AH, and 
a small activation entropy term - TAS, . 

Combining this expression with Equation 2.3 gives the diffusion coefficient 
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This can be simplified to an Arrhenius-type equation, that is I 
- OID LIB = DBO exp - 
RT 

where 

1 AS, 
DBO = -a2zu exp - 

6 R 

and 

QID = Mm 

The terms that are virrually independent of temperature have been grouped 
into a singIe material constant Do. Therefore D or I? increases exponentially 
with temperature at a rate determined by the activation-enthaIpy QID (ID 
refers to Interstitial Diffusion). Equation 2.9 is found to agree with ex- 
perimental measurements of diffusion coefficients in substitutional as well as 
interstitial diffusion. In the case of interstitial diffusion it has been shown that 
the activation enthalpy Q is only dependent on the activation energy barrier 
to the movement of interstitial atoms from one site to another. 

Some experimental data for the diffusi~n of various interstitials in bcc-Fe 
are given in Table 2.1. Note that the activation enthalpy for interstitid 
diffusion increases as the size of the interstitial atom increases. (The atomic 
diameters decrease in the order C, N, H.) This is to be expected since smaller 
atoms cause less distortion of the lattice during migration. 

A convenient graphical representation of I) as a function of temperature 
can be obtained writing Equation 2.9 in the form 

Thus if  log D is plotted against ( 1 / T )  a straight line is obv'ned with a slope 
equal to -(Q/2.3 R) and an intercept on the log D axis at log Do, see 
Fig. 2.7. 

Tabte 2.1 Experimental Diffusion Data Tor Interstitials in Ferritic (bcc) Iron 

Solute ~ , / r n r n ~  s-' Q/W mol-' Ref. 

C 2.0 84. f 2 
N 0.3 76.1 3 
H 0.1 13.4 4 

Fin. 2.7 The slope uf Ing D v .  11 T gives the activation energy for diffusion Q. 

2.2.3 Steady-State Dcfusion 

The simplest type of diffusion to deal with is when a steady state exists, that is 
when the concentration at every point does not change with time. For exam- 
ple consider a thin-walled pressure vessel containing hydrogen. The concen- 
tration of hydrogen at the inner surface of the vessel will be maintained at a 
Ievel CH depending on the pressure in the vessel. while the concentration at 
the outer surface is reduced to zero by the escape of hydrosen to the 
surroundings. A steady state will eventually be reached when the concentra- 
tion everywhere reaches a constant value. Provided DH is independent of 
concentration there will be a single concentration gradient in the wall given by 

where I is the wall thickness. On this basic the flux through the wall is given by 

2.2.4 Nonsteady -State Difusion 

In most practical situations steady-state conditions are not established, i .e.  , 

concentration varies with both distance and time, and Fick's first law can .". - 
no longer be used. For simplicity let us consider the situation shown in :- 
Fig. 2.8a where a concentration profile ex~sts along one dimension (x) only. 
The flux at any point along the x-axis will depend on the local value of D, and 
dCB/dx as shown in Fig. 2.8b. In order to calculate how the concentration of 
8 at any point varies with time consider a narrow slice of material with an 
area A and a thickness 6x as shown in Fig. 2 . 8 ~ .  



k 1 area A 
Fig. 2.8 The derivation of Fick's second law. 

. . The  number of interstitial B atoms that ditruse into the slice across plane 
(1) in a small time interval St will be J,AGt. The cumber of'atoms that leave 
the thin slice during this time, however, is only J,ASt. Since Jz I,< I , ,  the 
concentration of B within the slice will have increased by 

But since Sx is small, 

and in the limit as 6c+ 0 these equations give 

Substituting Fick's first law gives 
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is referred to as Fick's second law.  If variations of D,  with concentra- 
tion can be ignored this equation can be simplified to 

These equations relate the rate of change of composition with time to the 
concentration profile CB(x)- Equation 2.18 has a simple graphical interpreta- 
tion as a2CB/dx' is the curvature of the CB versus x curve. If the concentration 
profile appears as shown in Fig. 2.9a it has a positive curvature everywhere 
and the concentration at all points on such a curve will increase with time 
(dCB/dr positive). When the curvature is negative as in Fig. 2.9b C, de- 
creases with time (dC,/ ar  negative). 

Fig. 2.9 (a) s2c;lix' > 0 all concentrations lncrease with tlme. (b) it'c:dx2 < O all 
conctntrations decrease w t h  time. 

2.2.5 Sulutions to the Diffusion Equation 

Two solutions will be considered which are of practical importance. One 
concerns the situation which is encountered in homogenization heat lreat- 
ments. and the other is encountered, for example, in the carburization of 
steel. 

Homogenization 
I t  is often of interest to be abie to calculate the time taken for an in- 
homogeneous alloy to reach complete homogeneity, as for example in the 
elimination of segregation in castings. 

The simplest composition variation that can be solved mathematically is if 
CB varies sinusoidally with distance in one dimension as shown in Fig. 2.10. 
In this case B atoms diffuse down the concentration gradients, and regions - ; 
with negative curvature, such as between x = 0 and x = I ,  decrease in con- 
centration, while regions between x = I and 21 increase in concentration. The 
curvature is zero at x = 0, I, 21, so the concentrations at these points remain 
unchanged with time. Consequentty the concentration profile after a certain 
time reduces to that indicated by the dashed line in Fig. 2.10. 



X 
Fig. 2.10 The effect of difision on a sinusoidal variation of composition. 

. At time t = 0 the concentration profile is given by 

where C is the mean composition, and p, is the amplitude of the initia 
concentration profile. Assuming O, is independent of concentration th~ 
solution of Equation 2.18 that satisfies this initial condition is 

4 

where T is a constant called the relaxarion time and is given by: 

I2 
T = -  

a2G\ (2.21: - 
Thus the amplitude of the concentration profile after atime r (p) is given by ( 
at x = 1/2, i.e. 

In other words. the amplitude of the concentration profile decreases ex. 
ponentially with rime and after a sufficiently long time approaches zero so thai 
C = C everywhere. The rate at which this occurs is determined by the 
relaxation time T. After a time r = T, p = po/r ,  that is, the amplitude has 
decreased to 1/2.72 of its value at t = 0. The solute distribution at this stage 
would therefore appear as shown by the dashed line in Fig. 2.10. After a time 
t = 2r the amplitude is reduced by a total of l/e2, i.e, by about one order of 
magnitude. From Equation 2.21 it can be seen that the rate of homogenha- 
tion increases rapidly as the wavelength of the fluctuatiuns~decreases. 

The initial concentration profile will not usually be sinusoidal, but in 
general any concentration profile can be considered as the sum of an infinite 

of sine waves of v a ~ i n g  wavelength and amplitude. and each wave 
Jc,=a)s at a rate determined by its own 7 .  Thus the short wavelength terms die 
atb'uv v t r s  rapidly and the homogenization will ultimately be determined by ; 
ic,r the longest wavelength component. 

carbrtrizurion of Sreel - 
The aim of carburization is to increase the carbon concentration in the surface 
l a ~ r r s  of a steel product in order to achieve a harder wear-resistant surface. 
This is usually done by holding the steel in a gas mixture containing CH4 
andlor CO at a temperature where it is austenitic. By controlling the relative 
proportions of the two sases the concentration of carbon at the surface of the 
steel in equilibrium with the gas mixture can be maintained at a suitable 
constant value. At the same time carbon continually diffuses from the surface 
into the steel. 

The concentration profiles that are obtained after different times are shown 
in Fig. 2.11. An analytical expression tor these profiles can be obtained by 
soli~ir~g Fick's second lav using the boundary conditions: CB ( a t  x = 0) = C, 
and Ctl ( x )  = C,,. the  origlnal carbon concentration of the steel. The speci- 
men is corisideted to be infinitely long. In reality the diffusion coefficient of 
carbon in austenite increases with increasing concentration. but an approxi- 
mate solution can be obtained by taking an average value and this gives the 
simple solution 

Where ' r r f '  stands tor error function which is an indefinite integral defined by 
the equation 

erf (1) = T ' exp (-yi)dY 
,'T 0 

Fig. 2.1 1 Concentration profiles at success~ve times (I, > t, > tl) for diffusion into a 
sernl-infinite bar when the surface concentratiun C, is maintained constant. 
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The function is shown graphically in Fig. 2.12a. More accurate vatues can b ', 

obtained from books of standard mathematical functions. Note that since e d  
(0.5) - 0.5 the depth at which the carbon concentration is midway between 
C, and C(, is given by (x /2 , (D t j )  0.5, that is 1 
Thus the thickness of the carburized layer is -, (Di). Note also that the depth 
of any isocancentration line is directly proportional to ,(DO. i.e. to obtain a 
twofold increase in penetration requires a fourfold increase i n  time. 

For the case of carbon diffusion in austenite at 1000 "C, D = 
4 x lo-" m2 s - ' .  which means that a carburized layer 0.2 mm thick 
requires a time of (0.2 x 10-~)'/4x 1 0 t l ?  1.e. 1OOO s (I7 min). 

There are other situations in which the solution to the diffusion equation is 
very sirniIar to Equation 2.23. For example during decarburization of steel 
the surface concentration is reduced to a very low value and carbon diffuses 

Fig. 2.12 (a) Schematic diagram illustrating the main features of the error hnction. 
- ( b j  Concefitration profiles at successive times ( r ,  > I ,  > 0) when rwo semi-infinite 
bars of different composition are annealed after welding. I 

of the specimen. The carbon profile is then given by 

Another situation arises if two semi-infinite specimens of different composi- 
tions C1 and C: are joined together and annealed. The profiles in this case are 
shown in Fig. 2.12b and the relevant solution is 

2.3 Substitutional Diffusion 

Diffusion in dilute interstitial allovs was relatively simple because the diffusing 
atoms are always surrounded by 'vacant' sites to which they can jump 
whenever they have enough energy to overcome the energy barrier for 
migration. In substitutiunal diffusion. however. an atom can only jump if 
there happens to be a vacant site at one of the adjacent lattice positions as 
shown in Fis. : . 2 .  The s~mplest case of substitutional diffusion is the self- 
diffusion of atoms i n  a pure metal. This  is amenable to a simple atomic model 
similar to the case of interstitial diffusion and will be treated first. Substitu- 
tional diffusion in binary alloys is more complex and will be dealt with 
separately. 

2.3. I Self-Diffusion 

The rate of self-diffusion can be measured experimentally by introducing a 
few radioactive A atoms (As) into pure A and measuring the rate at which 
penelration occurs at various temperatures. Since A* and A atoms are 
chemically identical their jump frequencies are also almost identical. Thus  the 
diffusion coefficient can be related to the jump frequency by Equation 2.3,  
that is 

where is the jump frequency of both the A* and A atoms. Strictly 
speaking, Equation 2.3 was derived on the assumption that each atomic jump 
is unrelated to the previous jump. This is a good assumption for interstitial 
diffusion, but it is less,valid for substitutional diffusion. The differehce' is ffiat + 

once an atom has jumped into a vacancy the next jump i s  not equally 
probable in all directions, but is most likely to occur back into the same 
vacancy. Such jumps do not contribute to the diffusive flux and therefore 
Equation 2.27 should be replaced by Di = f DA = f . a2r/6 where f (known 
as a correlation factor) is less than unity. However, the effect is small and f is 



close to unity. (See P.G. Shewmon Diffusion in Solids McGraw-Hill, 
York, 1963, p. 100.) 

Consider the atomic jump shown in Fig. 2.2. An 
can make a jump provided it has enough thermal energy to 
activation energy barrier to migration, AG,. Therefore the 
any attempt at jumpins will be successful is given 
the case of interstitial migration. However, most 
will not be vacant and rhe jump will not be possible. 
adjacent site is vacant is given by zX, where .z 
neighbours and X, is the probability that any one site is vacant. which IS just 
the mole fraction of vacancies in the metal. Combining all these probabilitiq 
gives the probabilitv of a successful jump as ZX, exp (-iG,/ RT).  Since the 
atoms are vibrating with a temperature-independent frequency u the number 
of successful jumps any given atom wil1 make in 1 s is given by 

- lGm r = uz X, exp - 
RT 

But. if the vacancies are in thermodynamic equilibrium. X, = X: as given 
bv Equation 1.57. i .e .  

- AGv 
X: = exp - 

RT 

Combining these last three equations gives 

1 ,  -(AG, + AG,) DA = -cwczu exp 
6 RT 

Substituting AG = f H - TAS gives 

1 AS, -+ AS, 
D, = -a2m exp AH", + AH" 

6 R -( RT 

For most metals u is -10". In fcc metals z = 12 and u = a/,'2 the jump 
distance. This equation can be written more concisely as 

-950 D, = Do exp - 
RT 

1 As,,, + AS, 
Do = - o12zu exp 

6 R 

and 

QSD = Mirn f AHv (2.34) 
Equation 2.32 i s  the same as was obtained for interstitial difhsion except that 
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[he energy for self-diffusion has an exrra term ( A H , ) .  This is 
hdL*juse self-diffusion requires the presence of vacancies whose concentration 
depends cn AH,.  

Some of the experimental data on substitutional self-diffusion are summa- 
n,ed in Table 2.2. I t  can be seen that for a given crystal structure and bond 
type Q,iRIr, is roughly constant: that is. the activation enrhalphy for self- 
jiffusion, Q. is toughly proportional to the equilibrium melting temperature. 
7,. Also. within each class. the diffusivity at the melting temperature. 
D(T,). and D,, are approximately constants. For example. for most close- 

metals (fcc and hcp) Q / R T ,  - 18 and D(T,,,) 1 pmi2 s- '  
(11)-'' rn2 S- '1 .  The Q / R T ,  and D(T,,,) data are also piotted in Fig. 2.13 
along with data for other materials for comparison. An immediate conse- 
quence of these correlations is that the diffusion coefficients of all materials 
xith a _eiven crystal structure and bond type wil l  be approximately the same 
at the same fraction of their melting temperature. i.e. D( TIT,) = constant. 
1 T,!T,, i s  known as the homologous temperature.) 

The above ct>rrelations have been evaluated for atmospheric pressure. 
There are, however. limited experimenral data that suggest the same correta- 
tions hold independently of pressure. provided of course the effect of pressure 
o n  T ,  is taken into account. Since volume usually increases on melting. 
raising the pressure increases T,,, and thereby lowers the diffusivity at a given 
temperature. 

That a rough correlation exists between Q and 1, is not surprising: increas- 
ing the interatomic bond strength makes the process of melting more difficult: 
that is. Tm is raised. It also makes diffusion more difficult by increasing AH,  
and AH,. 

Consider the effect of temperature on self-diffusion in Cu as an example. 
At 8(K) "C (1073 K) the data in Table 2.2 give Dc, = 5 x lo-' rnm' S-I. The 
jump distance a in Cu is 0.75 nm and Equation 2.3 therefore gives 
r~ - ,  = 5 x 10' jumps s - ' .  After an hour at this temperature. <(DO - 4 pm. 
Extrapolating the data to 20 "C. however, gives Dc, - mm' s- I ,  1.e. 

- 10L"' jumps s - I .  Alternatively, each atom would make one jump every 
10i2 years! 

Experimentally the usual method for determining the self-diffusion coef- 
ficient is to deposit a known quantity ( M )  of a radioactive isotope A* onto 
!he ends of two bars of A which arc then joined as shown in Fig. 2.14a. After 
annealing for a known time at a fixed temperature. A* will have diffused into 
h and the concentration profile can be determined by machining away thin 
layers of the bar and measuring the radioactivity as a function of position, 
Since A and A*  are chemically identical the diffusion of A* into A will occur 
according to Equation 2.18. The solution of this equation for the present 
boundary conditions is 
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Table 2.2 Experimental Data for Substitutional SeU-Dimion in fire 
at Atmospheric M u r e  

Data selected mainly from A.M. Brown and M.F. Ashby, 'Correlations fc 
Diffusion Constants', Acta Metallurgica , 28: 1085 (1980). 

Tm Class . Metal - Do Q - Q D( Tm) 
K mm2 s - '  kJ mol-' RT, prn2 s-I 

bcc E-PU 914 0.3 65.7 8.7 53 
(rare earths) 6-Ce 1071 1.2 90.0 10.1 49 

y L a  1193 1.3 102.6 10.4 42 
y-Yb 1796 1.2 121.0 8.1 3600 

bcc Rb 312 23 39.4 15.2 
(alkali K 337 31 40.8 14.6' 15 
metals) Na 371 24.2 43.8 14.2 I6 

Li 454 23 55.3 14.7 9.9 

~ C C  p-n  577 40 94.6 19.7 
(transition Eu 1095 100 143.5 15.8 
metals) Er 1795 45 1 302.4 20.3 

a-Fe* 181 1 200 239.7 15.9 
8-Fe* 1811 190 238.5 15.8 
f3-Ti 1933 109 251.2 15.6 
P-Zr 2125 L34 273.5 15.5 
Cr 2130 20 308.6 17.4 
V 2163 28.8 309.2 17.2 
Nb 2741 1240 439.6 19.3 
Mo 2890 180 460.6 19.2 
Ta 3269 124 413.3 15.2 
W 3683 4280 641.0 20.9 

hcp* 

fcc 

Table 2.2 (con;.) 

Do T m  Q Q - Metal - 
D(Trn) 

Class K mm2 s - '  kJ mol-' RT, pm2 s-' 

tet*  P-Sn 505 11 c 770 107.1 25.5 0.0064 
1 c 1070 105.0 25.0 0.015 

diamond Ge 1211 140 324.5 32.3 4.4 x lo-' 
cubic Si 1683 0.9 x lo6 496.0 35.5 3.6 x lo-' 

" Data selected from N.L. Peterson, Solid State Physics, Vol. 22, D. Turnbull 
and H. Ehrenreich (Eds.), Academic Press, New York, 1968. 
T ,  for y-Fe is the temperature at which y-Fe would melt if 8-Fe did not 
intervene. 

M has units [quantity rn-'1 and C [quantity m-'1. Figure 2.14b shows the 
form of this equation fitted to experimental points for selfdiffusion in gold. 

2.3.2 Vacancy Dif~ ion  

The jumping of atoms into vacant sites can equally well be considered as the 
jumping of vacancies onto atom sites. If exass vacancies arc introduced into 
the lattice they will dieuse at a rate which depends on the jump frequency. 
However, a vacancy is always surrounded by sites to which it can jump and it 
is thus analogous to an interstitial ato~n (see Section 2.2.2). Therefore a 
vacancy can be considered to have its awn difisiun cccficient g v e n  by 

By analogy with Equation 2.8 

1 urn -AH,  
DV = - a2m exp - exp - 

6 R RT 

In this case A& and AS, apply to the migration of a vacancy, and are 
therefore the same as for the migration of a substitutional atom. Comparing 
Equations 2.37 and 2.31 it can be seen that 
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Gold crystal 

r Thin layer of Au* 1 

Gold crystal v i 

l U l  
Distance, x .  mm 

Fig. 2.14 Illustration of the principle of tracer diffusion and of the planar source 
method for determining the self-diffusion coefficient of gold. (a )  Initial diffusion 
couple with planar source of radioactive gold Au'. (b) Distribution of Au* after 
diffusion for 100 h at 920 "C. (After A.G. Guy. Introduction to Materials Science, 
McGraw-Hill. New York. 1971.) 

This shows in fact that D, is many orders of magnitude greater than D ,  the 
diffusivity of substitutional atoms. 

2.3.3 Diffusion in 3 ubsriturional Alloys 

During self-diffusion a11 atoms are chemically identical. Thus the probability 
of finding a vacancy adjacent to any atom and the probability that the atom 
will make a jump into the vacancy is equal for all atoms. This leads to a simple 
relationship between jump frequency and diffusion coefficient. In binary 
substitutional alloys, however, the situation is more complex. In general, the 
rate at which solvent (A) and solute (B) atoms can move into a vacant site is 
not equal and each atomic species must be given its own intrinsic diffusion 
coeficient D, or D,. 

The fact that the A and B atoms occupy the same sites has important 
consequences on the form that Fick's first and second laws assume for substi- 
tutional alloys. It will be seen later that when the A and B atoms jump at 
different rates the presence of concentration gradients induces a movement of 
the lattice through which the A and B atoms are diffusing. 
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D~ and De are defined such that Fick-s first law applies to diffusion relnove 
fo the lattice, that is 

where J A  and JB are the fluxes of A and B atoms across a given lattice plune. 
This point did not need emphasizing in the case of interstitial diffusion 
because the lattice planes of the parent atoms were unaffected by the diffu- 
sion process. It will be seen. however. that the situation is different in the case 
of substitutional diffusion. 

In order to derive Fick's second law let us consider the interdiffusion of A 
and B atoms in a diffusion couple that is made by welding together blocks of 
pure A and B as s h o r n  in Fig. 2.15a. if the couple is annealed at a high 
enough temperature, a concentration profile will develop as shown. 

If we make the simplifying assumption that the total number of atoms per 
unit volume is a constant, Co. independent of composition. then 

and 

Hence at a given position the concentration gradients driving the diffusion of 
X and B atoms are equal but opposite. and the fluxes of A and I3 relative to 
the lartice can be written as 

These Ruxes are shown schematically in Fig. 2 15 for the case DA > DB , i.e. 
IJAI > ! J s l .  

When atoms migrate by the vacancy process (he jumping of an amm into a 
vacant site can equally weH be regarded as the jumping of the vacancy onto 
the atom, as illustrated' in Fig. 2.16. In other words, if there is a net Rux of 
atoms in one direction there is an equal flux of vacancies in the opposite 
direction. Thus in Fig. 2.15a there is a flux of vacancies -JA due to the 
migration of a A atoms plus a flux of vacancies - I s  due to the dihsion of B 
atoms. As J ,  > J B  there will be a net flux of vacancies 

Jv = -1, - JB (2.44) 
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Fig. 2.15 Interdiffusion and vacancy flow. (a) Composition profile after interdifi- 
sinn of A and B. tb) The corresponding fluxes of atoms and vacancies as a function of 
position x .  (c) The rate at which the vacancy concentration would increase or decrease 
if vacancies were not created or destroyed h!: dislocation climb. 

Atoms 
.c-- 

Vacancies 
Flp 2 lo  The jumplng ot dtorn5 In kine dirrction can bc conbldcred :15 the lump~ng  c r f  
~ a ~ a n c ~ e h  in  the other d ~ r e c t ~ u n  

This is indicated in vector notation in Fig. 2. I5a. In terms of D,., and D B .  
therefore 

This leads to a variation in 1, across the diffusion couple as illustrated in 
Fig. 2.15b. 

in order to maintain the vacancy concentration everywhere near equilib- 
rium vacancies must be created on the B-rich side and destroyed on the 
A-nch side. The rate at which vacancies are created or destroyed at any 
point is given by ac,,(at = -aJ,/a.x (Equation 2.16) and this varies across 
the diffusion couple as shown in Fig. 2.15~. 

It is the net flux of vacancies across the middle of the diffusion couple that 
Slves rise to movement of the lattice. Jogged edge dislocations can provide a 
convenient source or sink for vacancies as shown in Fig. 2.17. Vacancies can 
be absorbed by the extra half-plane of the edge dislocation shrink~ng while 
growth of the plane can occur by the emission of vacancies. If this or a similar 
mechanism operates on each side of the diffusion couple then the required 
flux of vacancies can be generated as illustrated in Fig. 2.18. This means that 
extra atomic planes will be introduced on the B-rich side while whole planes 
of atoms will be 'eaten' away on the A-rich side. Consequently the lattice 
planes in the middle of the couple will be shifted to the left. 

The velocity at which any given lattice plane moves, v. can be related to the 
fiux of vacancies crossing it. If the plane has an area A ,  during a small time 
interval St. the plane will sweep out a volume of Av + Gt containing 
i l l '  . 8t . CtI atoms. This number of atoms is removed by the total number of 
vacancies crossing the plane in the same time interval. i .e.  -',A - at, giving 



- 7 . . 
Fig. 2.17 (a) before. (b) after: a vacancy is absorbed at a jog on an edge dislocation 
(positive climb). (b) before, (a) after: a vacancy i s  created by negative climb of an 
edge dislocation. (c) Penpective drawing of a jogged edge dislocation. - VQCU nc tes 
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Fig. 1.18 A flux of vacancies causes the atomic planes to move through the 
specimen. I 
Thus the velocity of the lattice planes will vary across the couple in the same 
way as J ,  , see Fig. 2.15b. Substituting Equation 2.45 gives 

where the mole fraction of A, X, = C,/C, 
In practice, of course, infernal movements of lattice planes are usually not 

directly of interest. More practical questions concern how long homogeniza- 
tion of an alloy takes, or how rapidly the composition will change at a fixed 

position relative to the ends of a specimen. To answer these questions we can 
derive Fick's second law for substitutional alloys. 

Consider a thin slice of material Fx thick at afixed distance x from one end 
,jrhe couple which is outside the diffusion zone as shown in Fig. 2.19. If the 
lorill flux of A atoms entering this slice across plane 1 is J i  and the total flux 
leaving is 1; + (13J'_z/3x)6x the same arguments as were used to derive 
Equation 2.16 can be used to show that 

The total flux of A atoms across a stationary plane with respect to the 
specimen is the sum of two contributions: ( i )  a diffusive flux 
JA = -Dm% dCA/dx due to diffusion relative to the lattice. and (i i)  a flux 
1, . C,4 due to the velocity of the lattice in which diffusion is occurring. 
Therefore: 

By combining this equatlon with Equation 2.47 we obtain the equivalent of 
Fick's first law -for the flux relative to the specimen ends: 

where X, = C,/Co and X, = C,/C',, are the mole fractions of A and 3 
respectively. This can be simplified by defining an interdiffusion coe#uienr D 
as 

D = X,D, + X*D, (2.51) 

so that Fick's first law becomes 

Fig. 2.19 Derivation of Fick's second law for interdiffusion. (See text for details.) 
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i.e. 

J A  = -JX, 
Sub~titution of Equation 1.52 into Equation 2.48 gives 

6cA a - ac, 
I=,(.,) 

This equation is Fick's second law for diffusion in subsritutionai alloys. The 
only difference between this equation and Equation 2.18 (for interstitial 
diffusion) is that the znrerdij@sion coefficient D for substitutional alloys 
depends on D,  and D, whereas in interstitial diffusion DB alone is needed.' 
Equations 2.47 and 2.5 1 were first derived by   ark en^ and are usually known 
as Darken's equations. 

By solving Equation 2.53 with appropriate boundary conditions it is pos- 
sible to obtain CA(x, t) and CB(x, t), i . e  the concentration of A and B at any 
position ( x )  after any given annealing time (I). The solutions that were given 
in Section 2.2.5 will. be applicable to substitutional alloys provided the range 
of comporitions is small enough that any effect of composition on d can be 
ignored. For example, if D is known the characteristic relaxation time for an 
homogenization anneal would be given by Equation 2.21 using D in place of 
DB. i.e. 

l2 ;= -  
rr2B (2.54) 

If the initial composition differences are so great that changes in D become 
important then mare complex solutions to Equation 2.53 must be used. These 
will not be dealt with here. however, as they only add mathematical complex- 
ities without increasing our understanding of the basic principles6. 

Experimentally it is possible to measure d by determining the variation of 
X, or Xg after annealing a diffusion couple for a given time such as that 
shown in Fig. 2.15a. In cases where d can be assumed constant a comparison 
of Equation 2.26 and the measured concentration profile would give b. 
When d is not constant there are graphical solutions to Fiek'r second law that 

: enable d to be determined at any composition. In order to determine D, and 
DB separately it is also necessary to measure the velocity of the lattice at a 
given point in the couple. This can be achieved in practice by inserting 
insoluble wires at the interface before welding the two blocks together. These 
wires remair. in effect 'fixed' to the lattice planes and their displacement after 
a given annealing time can be used to calculate v. When v and d are known. 
Equarions 2.47 and 2.51 can be used to calculate D, and Dg for the composi- 
tion at the markers. 

The displacement of inert wires during diffusion was first observed by 

smigelskas and Kirkendall in 1947' and i s  usually known as the Kirkendall 
ilfY~i. In this experiment a block of a-brass (Cu-3(hrtD/u Zn) war wound 
,iil) moiybdenurn wire and encapsuled in a block of pwe Cu. as shown in 
f ig .  2.20. After annealing at a high cernperature ir was found that the 
separation of the marken (r) had decreased. This is because U r n  > Dcu 
md the zinc arorns diffuse out of the central blwk ~ S W T  than they arc 
rupIaccd by c o ~ p ~ r  atoms di ih i r in i in  the opposite direcriun. Similar effects 
haye since been demonstrated in many other alloy systems. In general it is 
found that in any g ivm couple. atoms with the lower melting point possess a 
h ~ ~ h e r  D. The exact value of D. however. varies with the composition of the 
& v .  Thus in Cu-Ni alloys Dcu. Dy, and D are all cnmpusilion dependent. 
increasing as XcYu increases. Fig. 2.71 

Molybdenu rn wires 
/ 

Fig. 2.20 An cxprr~mental arran_ecmenr tu show the Kirkcodall effccr, 
I 

In Fig. 2.17 it was assumed that the extra half planes of atoms t h a ~  grew or 
shrank due to the addition or loss of atoms. were parallel to the original weld 
interface so that there were no constraints on the resuitant local expansion or 

1 contraction of the lattice. In practse. however, tnese planes can be oriented 

: I 
~n manv directions and the lattice will also try to expand or contract parallel to 

I the weid interface. Such volume changes are restricted by the surrounding 
material with the result that two-dimensional compressi\:e stresses develop in i regons where v a c a k e r  are crer,r:d. while tensile rtrrrser arise in regions 
where vacancies are destroyed. These stress fields can even induce plastic 

I deformation resuiting in microstructures characreristic of hot deformation. 
Vacancies are not necessarily all annihilated at dislocations. but can also 

be absorbed by internal boundaries and free surfaces. However. those not 
absorbed at disi~cations mainly agglomerate to form holes o r  voids in the 
lattice. Void nucleation is difficult because it requires the creation of a new 
surface and it is generally believed that voids are heterogeneously nucleated 
a t  impurity particles. The tensile stresses that arise in conjunction with 
vacancv destruction can also play a role in the nucleation of voids. When 
voids are formed the equations derived abob-e cannot be used without 
modification. I in concentrated alloys the experimenrally determined values of b. D, and 

I D, are also found to show the same form of temperature dependence as all 
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Atomic fraction nickel 
Fig. 2.2: The relationship between the various diffusion coefficients in the Cu-Ni 
system zt 1000 "C (After A.G. Guy, Introduction ro Materials Science, McGraw-Hill, 
New Ycrk. 1971.) 
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-Q 
D = Dc exp - 

RT 

- Q A  
D, = D,o exp - 

RT 

However the factors that determine Do and Q in these cases are uncertain and 
there is no simple atomistic model for concentrated solutions. 

The variation of D with composition can be estimated in cases where it has 
not been measured, by utilizing two experimental observations': 

1. For a given c ~ s t a l  structure, D at the meiting point is roughly constant. 
Therefore if adding B to A decreases the melting point. D will increase. 
at a given temperature, and vice versa. 

2. For a given solvent and temperarure. both interstitial and substitutional 
diffusion are more rapid in a bcc lattice than a ciose-packed lattice. For 
exampie. for the diffusson of carbon in Fe at 910 "C. DF/Dz - IOO. At 
850 "C the self-diffusion coefficients for Fe are such that 
D$,,'DZ, - 1 0 .  The reason for this difference lies in the fact that the 
bcc structure is more open and the diffusion processes require less lattice 
distortion. 

2.3.4 Dcflwion in Diiuce Substirurional AI1o.v~ 

Another special situation arises with diffusion in dilute alloys. When XB - 0 
and XA - 1, Equation 2.51 becomes 

D = DB (2.58) 

This is reasonable since it means that the rate of homogenization in dilute 
alloys is controlled by how fast the solute (B) atoms can diffuse. Indeed the 
only way homogenization can be achieved is by the migration of the B atoms 
into the solute-depleted regions. DB for a dilute solution of B in A is called 
the impurity diffusion coefficient. Such data is more readily available than 
interdiffusion data in concentrated alloys. One way in which impurity dif- 
fusion coefficients can be measured is by using radioactive tracers. 

It is often found that DB in a dilute solution of B in A i s  greater than DA. 
The reason for this is that the solute atoms can attract vacancies so that there 
is more than a random probability of finding a vacancy next to a solute atom 
with the result that they can diffuse faster than the solvent. An attraction 
between a solute atom and a vacancy can arise if the solute atom is larger than 
the solvent atoms or if it has higher valency. If the binding energy is very large 
the vacancy will be unable to'escape' from the solute atom. In this case the 
solute-vacancy pair can diEuse through the lattice together. 



2.4 Atomic Mobility 

Fick's first law is based on the assumption that diffusion eventuaIly stops, that 
is equilibrium is reached. when the concentration is the same everywhere. 
Strictly speaking this situation is never true in practice because real materials 
always contain lattice defects such as grain boundaries, phase boundaries and 
didocations. Some a t o m  can lower their free energies if they migrate to such 
defects and qt 'equilibrium' their concentrations wiIl be higher in the vicinity of 
the defect than in the matrix. Diffusion in the vicinity of these defects is 
therefore affected by both the concentration gradient and the gradient of the 
interaction energy. Fick's law alone is insufficient to describe how the concen- 
tration will vary with distance and time. 

As an example consider the case of a solute atom that is too big or too small 
in comparison to the space available in the solvent lattice. The potential 
energy of the atom will then be relatively high due to the strain in the 
surrounding matrix. However, this strain energy can be reduced if the atom is 
located in a position where it better matches the space available, e.g. near 
dislocations and in boundaries, where the matrix is already distorted. 

Segregation of atoms to grain boundaries, interfaces and dislocations is of 
great technological importance. For example the diffusion of carbon or ni- 
trogen to dislocations in mild steel is responsible for strain ageing and blue 
brittleness. The segregation of impurities such as Sb. Sn, P and As to grain 
boundaries in low-alloy steels produces temper embrittlement. Segregation to 
grain boundaries affects the mobility of the boundary and has pronounced 
effects on recrystallizatior~. texture and grain growth. Similarly the rate at 
which phase transformations occur is sensitive to segregation at dislocations 
and interfaces. 

The problem of atom migration- can be solved by considering the thermo- 
dynamic condition for equilibrium; namely that the chemical potential of an 
atom must be the same everywhere. Diffusion continues in fact until this 
condition is satisfied. Therefore it seems reasonable to suppose that in general 
the flux of atoms at any point in the lattice is proportional to the chemical 
potential gradient. Fick's first law is merely a special case of this mare general 
approach. 

An alternative way to describe a flux of atoms is to consider a net drift 
velocity ( v )  superimposed on the random jumping motion of each difising 
atom. The drift velocity is simply related to the diffusive flux via the equation 

Since atoms always migrate so as to remove differences in chemical potential 
it is reasonable to suppose that the drift velocity is proportional to the local 
chemica1 potential gradient. i.e. 

$here AMa i s  a constant of proportionaiity known as the atomic mobility. Since 
pB has units of energy the derivative of pp with respect to disrance (avR/irr) 
is the chemical .force' causing the atom to migrate. 

Combining Equations 1.59 and 2.60 gives 

fnrujtively it seems that the mobility of an atom and its diffusion coefficient 
must be clusely reiated. The relationship can be obtained by relating dp!a.r to 
aCi$x for a srress-free solid sulution. Using Equation 1.70 and CH = Xoj'l im 
Equation 2.61 becomes 

Comparison with Fick's tirsr law gives the rrqu~rrd relationship: 

Similarly 

For ideal or dilute solutions (XB -+ 0)yB is a constant and the term in brackets 
is unity, i.e. 

DB = .MBRT (2.66) 

For non-ideal concentrated scllutlons the terms in brackets, the so-called 
thermodynamic factor, must be included. As shown by Equation 1.71 this 
factor is the same for both A and B and is  simply related to the curvature of 
the molar free energy -composition curve. 

When diffusion occurs in the presence of a strain energy gradient. for 
example, the expression for the chemical potential can be modified to include 
the effect of an elastic strain energy term E which depends on the position jx) 
relative to a'dislocatlon, sav . 

I pa  = Ge t 'RT ln . Y B ~ B  + E (2.67) 

1 Following the above procedure, this gives 



It can thus be seen that in addition to the effect of the concentration gradient 
the diffusive flux is also affected by the gradient of strain energy, d E / d x .  

Other examples of atoms diffusing towards regions of high concentration 
can be found when diffusion occurs in  the presence of an electric field or a 
temperature gradient. These are known as electromigration and thermo- 
migration respectivelyg. Cases encountered in phase transformations can be 
found where atoms migrate across phase boundaries. or. as mentioned in the 
introduction: when the free energy curve has a negative curvature. The latter 
is known as spinodal decomposition. 

2.5 Tracer Diffusion in Binary AHoys 

The use of radioactive tracers were described in connection with self-diffusion 
in pure metals. It is. however, possible to use radioactive tracers to determine 
the intrinsic diffusion coefficients of the components in an alloy. The method 
is similar to that shown in Fig 2.14 except that a small quantity of a suitable 
radioactive tracer, e.g. 0". is allowed to diffuse into a homogeneous bar of 
A/B solution. The value obtained for D from Equation 2.35 is the tracer 
diffusion coefficient Dg . 

Such experiments have been carried out on a whole series of gold-nickel 
alloys at 900 'c"'. At this temperature gold and nickel are completely soluble 
in each other. Fig. 2.22a. The results are shown in Fig. 2 . 2 2 ~ .  Since radioac- 
tive isotopes are chemically identical it might appear at 6rst sight that the 
tracer diffusivities (D,, and DL,) should be identical to the intrinsic diffusivi- 
ties (D,, and D,,) determined by marker movement in a diffusion couple. 
This would be convenient as the intrinsic diffusivities are of more practical 
value whereas it is much easier to determine tracer diffusities. However, it 
can be demonstrated that this is not the case. DA, $ves the rate at which Au" 
(or Au) atoms diffuse in a chemically homogerleous alloy. whereas D,, gives 
the diffusion rate of Au when a concentration gradlent is present. 

The Au-Ni phase diagram contains a miscibility gap at low temperatures 
implying that AHmi, > 0 (the gold and nickel atoms 'dislike' each other). 
Therefore, whereas the jumps made by Au atoms in a chemically 
homogeneous alloy wiil be equally probable in all directions, in a concentra- 
tion gradient they will be biased away from the Ni-rich regions. The rate of 
homogenization will therefore be slower in the second case, i.e. D,, < Di, 
and DNi < D:,. On the other hand since the chemical potential gradient is 
the driving force for dibsion in both types of experiment it is reasonable to 
suppose that the atomic mobilities are not affected by the concentration 
gradient. If t6is is true the intrinsic chemical diffusivities and tracer diffusiv- 
ities can be related as follows. 

In the tracer diffusion experiment the tracer essentially forms a dilute 
solution in the alloy. Therefore from Equation 2.66 

Dg = MgRT = 12IBRT (2.69) 
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Fig. 2.22 Interdiffusion in Au-Ni alloys at 900 "C (a) hu+i phase diagram, (b) the 
thermodynamic factor, F ,  at 900 'C, {c) experimentally mwsured tracer diffusivitics 
at 900 "C, (d) erperimentally mkasured interdiffusion coefficients compared wstfi 
\slues calculated from (b) and (c). (From J .E.  Reynolds. B.L. Averbach and Morr~s 
Cohen. Acta Meta/lurgica, 5 (1957) 29.) 
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The second equality has been obtained by assuming Mi in the tracer experi- 
rnent equals MB in the chemical diffusion case. Substitution into 
Equations 2.64 and 2.51 therefore leads to the following relationships 

DA = FD; 
D, = FD; (2.70) 

and D = F{XBDi + ,XADI;) 
where F is the thermodynamic factor, i.e. 

The last equality folIows from Equation 1.71. 
In the case of the Au-Ni system, diffusion couple experiments have also 

been carried out so that data are available for the interdiffusion coefficient 
6, the full line i n  Fig. 2.22d. In addition ihere is also enough thermo- 
dynamic data on this system for the thermodynamic factor F to be evaluated, 
Fig. 2.22b. It is therefore possible to check the assumption leading to the 
second equality in Equation 2.69 by combining the data in Fig. 2.2% and c 
using Equation 2.71. This produces the  solid line in Fig. 2.22d. The agree  
ment is within experimental error. 

Before leaving Fig. 2.22 it is interesting to note how the diffusion coef- 
ficients are strongly ~ornposition dependent. There is a difference of about 
three orders of magnitude across the composition range. This can be ex- 
plained by the lower liquidus temperature of the Au-rich compositjons. Also 
in agreement with the rules of thumb given eariier. Au. with the lower melting 
temperature. difFuses faster than Ni at all compositions. 

2.6 Diffusion in Ternary Alloys 

The addition of a third di&sing species to a solid solution produces rnathema- 
tical complexities which will not be considered here. Instead let us consider an 
illustrative example of some of the addition.' ~ffects that can arise. Fe-Si-C 
alloys are particularly instructive for two reasons. Fintly silicon raises the 
chemical potential (or activity) of carbon in ralurion, i.e. carboa vill not only 
diffuse from regions of high carbon concentration but also from regions rich in 
silicon. Secondly the mobilities of carbon and silicon are widely different. 
Carbon, being an interstitial solute. is able to diffuse far more rapidly than the 
substitutionally dissolved silicon. 

<,.. 

Consider two pieces of steel, one coitaintng 3.8% silicon and 
0.48% carbon and the other 0.44% carbon but no silicon. If the two pieces 
are welded together and austenitized at 1050 "C, the carbon concentration 
profile shown in Fig. 2.23b is produced. The initial concentrations of silicon 
and carbon in the couple are shown in Fig. 2.23a and the resuItant chemical 
potentials of carbon by the dotted line in Fig. 2 .23~ .  Therefore carbon atoms 

time t 
L - - - - -  

. . 

Fig 2-23 (a) Carbon and silicon distribution in iron at t = 0. (b)  Carbon distribut~an 
after high-temperature anneal. ( c )  Chemical potential uf carbon V .  disrance. 

on the silicon-rich side ~ 1 1 1  jump over to the silicon-free side until the - 
difference in concentration at the interlace a sufficient to equalize the acuvity. 
ur  chemical potential, of carbon on both s~des. The carbon atoms at the 
interface are iherkfore ihiocd ~qudibrlum and the interfacial compositions 
remain constant as long as the silicon atoms da not migrate. Within each half 
uf the couple the silicon concentration is initially uniform and the carbon 
atoms diffuse down the concentration gradients as shown in Fig. 2.23b. The 
resultant chemical potential varies smoothly across the whole specimen 
Fig. 2 .23~ .  If the total length of the diffus~on couple is sufficiently small the 

'carbon concentiatlun in each block a111 errntualiy equal the interfacial corn- 
positions and 1hd chemical potential of carbon will be the same everywhere. 
The alloy is now in a state of partial equilibrium. It is only partial because the 
~hemical potential of the silicon e not unliorm. Given sufficient time the 
silicon atoms will also diffuse over significant distances and the carbon atoms 
w~ll continually redistribu~e themselves to maintain a constant chemical 
potential. In the Anal equilibrium state the concentrvtionr of carbon and 
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Fe Si - 
Fig. 2.24 Schematic diagram showing the change in composition of two points (A 
and B) on opposite sides of the diffusion couple in Fig. 2.23. C i s  the final equilibrium 
composition of the whole bar. (After L.S. Darken, Tranr. AIME, 180 (1949) 430. 
American Society for Merals and the Metallurgical Society of AIME. 1949.) 

silicon are uniform everywhere. The change in composition of two points on 
opposite sides of the weld will be as illustrated on  the ternary diagram of 
Fig. 2.24. I 

The redistribution of carbon in the Fe-Si-C system is particularly interest- 
ing since the mobilities of carbon and silicon are so different. Similar, though 
less striking effects can arise in ternary systems where all three components 
diffuse substitutianally if their diffusivities (or mobilities) are unequal. 

2.7 High-Difisirity Paths I 
In Section 2.4 the diffusion of atoms towards or away from dislocations, 
interfaces, grain boundaries and free surfaces was considered. In this section 
diffusion along these defects will be discussed. All of these defects are 
associated with a more open structure and ir  has been shown experimentally 
that the jump frequency for atoms migrating along these defects is higher than 
that for diffusion in the lattice. It will become apparent that under certain 
circumstances diffusion along these defects can be the dominant diffusion 
path. 

2.7.1 Diffusion along Grain Boundaries and Free Surfaces I 
It is found experimentally that diffusion along grain boundaries and free 
surfaces can be described by I 
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where Db and D, are the grain boundaq and surface diffusivities and Dm and 
DSII are the frequency factors. Qh and Q, are the experimenrally determined 
valcrs of the activation energies for diffusion. In general. at any temperature 
the magnitudes of Db and D, relative to the diffusivity through defect-free 
lattice Dl are such that 

D, > Db > Dl 
(2.75) 

This mainly reflects the relative ease with which atoms can migrate along free 
surfaces, interior boundaries and through the lattice. Surface diffusion can 
play an imponant role in manv melailurgical phenomena, bur in an average 
metallic specimen the total grain boundary area is much greater than the 
surface area so that grain boundary diffusion is usua l l~  most important. 

The effect of grain boundarl; diffusion can be illustrared by considering a 
diffusion couple made by welding together two rnetais, A and B. as shown in 
Fig. 2.25. A atoms diffusing along the boundary will be able to penetrate 
much deeper than atoms which only diffuse through the lattice. In addition. as 
the concentration of solute builds up in the boundaries atoms will also diffuse 

Metal A Metal 8 

Weld interface 
Fig. 2.25 The effect of grain boundary diffusion combined with volume diffusion. 
(After R.E  . Reed-Hill, Physical Mrraiiurgy Prirrciples, 2nd edn . , Van Nostrand, Yew 
York, 1973 ) 
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from the boundary into the lattice. The process can be compared to the 
conduction of heat through a plastic in which a continuous network of 
aluminium sheets is embedded. The temperature at any point in such a 
specimen would be analogous to the concentration of solute in the diffusion 
couple. Points in the lattice close to grain hundaries can receive solute via 
the high conductivity path much more rapidly than if the boundaries were 
absent. Rapid diffusion along the grain boundaries increases the mean con- 
centration in a slice such as dx in Fig. 2.25 and thereby produces an increase 
in the apparent diffusivity in the material as a whole. Consider now under 
what conditions grain boundary diffusion is important. 

For simplicity let us take a case of steady-state diffusion through a sheet of 
material in which the grain boundaries are perpendicular to the sheet as 
shown in Fig. 2.26. Assuming that the concentration gradients in the lattice 
and along the boundary are identical. the fluxes of solute through the lattice 
J ,  and along the boundary Jb will be given by 

However the contribution of grain boundary diffusion to the total flux 
through the sheet will depend on the relative cross-sectional areas through 
which the solute is conducted. 

if the grain boundary has an effective thickness S and the grain size is d the 
total flux will be given by 

- 

x' 
Fig. 2.26 Combined lattice and boundary f.luxes during steady-state diffusion 
through a thin slab of material. 
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Thus the apparent diffusion coefficient in this case, 

It can be seen that the relative importance of lattice and grain boundary 
diffusion depends on the ratio DbG/D,d. When D,S * D,d diffusion through 
the iattice can be ignored in comparison to grain boundaq diffusion. Thus 

boundary diffusion makes a significant contribution to the total flux 
when 

04 > Did (2.80) 

The effective width of a g a i n  boundary is -0.5 nm. Grain sizes on the other 
hand can vary from - 1 to 1000 Frn and the effectiveness of the grain bounda- 
ries will vary accordingly. The relative magnitudes of DbS and D,d are most 
sensitive to temperature. This is illustrated in Fig. 2.27 which shows the effect 
of temperature on both D, and Dh.  hote that although Db > Dl at all 
temperatures the difference increases as temperature decreases. This is be. 
cause the activation energy for diffusion along grain boundaries (ab} is lower 
than that for lattice diffusion ( Q , ) .  For ?xample, in fcc metals it is generally 
found that Q, - 0.5 Q1. This means that when the grain boundary diffusivity 
is scaled by the factor 8 ld  (Equation 2.781 the grain boundary contribution to 
the total, or apparent. diffusion coefficient is negligible in comparison to the 
lattice diffusivity at high temperatures. hut dominates a t  low temperatures. In 

1 - decreasing temperature - 
D 

Fig. 2.27 Diffusion in a polvcrystalline metal 
I 



eeneral it is found that grain boundary diffusion becomes important below 
u 

about 0.75-0.8 T m .  where T,  is the equilibrium melting temperature in 
degrees Kelvin. 

The rate at which atoms diffuse along different boundaries is not the same, 
but depends on the atomic structure of the individual boundary. This in turn 
depends on the orientation of the adjoining crystals and the plane of the 
boundary. Also the diffusion coefficient can vary with direction within a given 
boundary plane. The reasons for these differences will become apparent in 
Chapter 3. 

2.7.2 Diffusion dong Dislocations 

If grain boundary diffusion is compared to the conduction of heat through a ' 
material made of sheets of aluminium in a plastic matrix, the analogy for 
diffusion along dislocations would be aluminium wires in a plastic matrix. The 
dislocations effectively act as pipes alonz which atoms can diffuse with a 
diffusion coefficient D,. The contribution of dislocations to the total diffusive 
Aux through a metal will of course depend on the  relative cross-sectional areas 
of pipe and matrix. Using the simple model illustrated in Fig. 2.28 it can 
easily be shown that the apparent diffusivitg through a single crystal contain- 
ing dislocations. D.,,. is related to xhe lattice diBurion coefficient by 

where g is the cross-sectional are:, of .pipeq per unit area of matrix. In a 
well-annealed material there are roughly 10' dislocations mm-?. Assuming 
that the cross-section of a single pipe accornmudates about 10 atoms while the 
matrix contains about 1 0 ' ~  atoms mm-'. makes g = lo-'. 

A t  high temperatures diffusion through the lattice is rapid and gD,/D, is 
tery small so [hat the dislocation contribution to the total flux of atoms is 
negligible. However. since the activation energy for pipe diffusion is less than 

pipe =g per 
of lattice 

dislocation 

Fig. 7.28 Dislocations act as a high conductivity path through the lattice. 

r,, lattice d i h s i o n ,  Dl decreases much more rapidly than Dp with decreasing 
:,mperature. and at low temperatures gD,iD, can hecome so large that  the 
,pparent diffusirity is entirely due io diffusion alung disiocatiuns. 

1.8 Diffusion in Multiphase Binary Systems 

so far only diffusion in single-phase systems has been considered. In most 
pruct~cal cases, however. diffusion occurs in the presence of more than one 
phase. For example diffusion is involved in solidification transformations and 
diffusional transformations in solids (Chapters 4 and 5). Another example of 
multiphase diffusion arises when diffusion couples are made by welding 
together two metals ihat are not completely miscibie in each other. This 
situation arises in practice with galvanized iron and hot-dipped tin plate for 
example. In order to understand what happens in these cases consider the 
hypothetical phase diagram in Fig. 2.29a. A diffusion couple made by weldins 
rogether pure A and pure B will result in a layered structure containing a ,  P 
and y. Annealing at temperature T,  will produce a phase distribution and 
composition profile as shown in Fiy. 3.1'3b. Usually X g  varies as shown from {I 
to a in the a phase. f rom b to c in the 0 phase. and from d to 1 in t h e y  phase. 
where a. b. c and d are the jolubrlity limits of the phases a t  TI. The composi- 
tions a and b are seen to be the equilibrium compositions of the a and P 
phases in the cy - P held of the phahe diagram. The u and P phases are 
therefore in IocuI equiiibrtlim across the sip interface. Similarly P and y are 
in local equilibrium across the @/y interface. A sketch of the free energy- 
zomposition diagram for this system at Ti will show that the chemical poten- 
tlais (or activities) of A and B will vary continuously across the diffusion 
couple. Figure 2 . 2 9 ~  shows how the activity of B varies across the couple (see 
problem 2.8). Clearly the equilibrium condition a 2  & is satisfied at the 
a / p  interface (point p in Fig. 2.2%). Similar considerations apply for A and 
for the p/y interface. 

The alp and Pjy interfaces u[c not stationary but move as diffusion 
progresses. For example if the overall composition of the diffusion couple 
lies between b and c the final equilibrium state will be a single block o f  P. 

A complete solution of the diffusion equations for this type of diffusion 
iouple is complex. However an expression for the rate at which the bounda- 
ries move can be obtained a\  follows. Consider the planar a / p  interface as 
shown in Fig. 2.30. If unit area of the interface moves a distance dx a volume 
(dx . 1) will be converted f rom a containing C i  3-atoms m-3 to p containing 
Cz B-atoms m-'. This means that a total of 

B atclms must accumulate at the a/P interface (the shaded area in Fig. 2.30). 
There is a flux uf B towards the interface from the P phase equal to 



0 a0 - 1 
Fig. 2.29 (a) A hypthetical phase diagram. (b) A possible difFusion layer structure 
for pure A and B welded together and annealed at T,. (c) A possible variation of the 
activity of B (aB) across the difision couple. 

Fig. 1.71) Concrntriition protilt. ;!cross the tr . 'P  ~ntrrfricc. ; ~ n d  11s assocla~ed morcmunt 
assuming Jiffuswn control. 

- f i ~  p);ic'h,:'as and a similar f us Away from rhc 1ntcrf;icr into the o. phase 
equal to -d(a)ri~i!!i ' i / .t-.  In a time dr. thtr t . t r , r t . .  thrrr  will he an accumular~on 
of B atoms given by 

I 

Lqii.tt~ng thc ~ b o \ e  expre3siuns gtles the inst,inraneou> velocit!. of the u p 
~ntz r tdce  v as 

In the  above treatment i t  has been assumed that the cr/P interface moves as 
fast as allowed by the diffusive fluxes in rhe two adjacent phases. This is quite 
correct when thc two phases are in local equilihrium, and is usually true in 
diffusion-couple experiments. However, it is not true for all moving inter- 
phase interfaces. By assuming local equilibrium at the interface it has also 
been assumed ihat atoms can be transferred across the interface as easily as 
they can diffuse through the matrix. Under  these circumstances pH and u ,  are 
continuous across the interface. However. in  general this need not br: truc. If. 
for some reason. the interface has a [ow mobility the concentration difference 
across the boundary (C$ - Cb) will increase. thereby creating a discontinuity 
of chemical potential across the boundary. The problem of evaluating the 
boundary velocity in this case is  more complex. Not only must the flux of 
atoms to  the interface balance the rate or* accumulation due to the boundary 
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migration and the rate of diffusion away into the other phase, but it must also 
balance with the rate of transfer across the interface. In extreme cases the 
interface reaction, as it is sometimes called, can be so slow that there are 
virtually no concentration gradients in the two phases. Under these circum- 
stances the interface migration is said to be inte$uce controlled. The subject 
of interface miiration is treated further in Section 3.5. 
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Exercises 

2.1 A thin sheet of iron is in contact with a carburizing gas on one side and a 
decarburizing gas on the other at temperature of 1000 "C. 
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(a) Sketch the resultant carbon concentration profile when a steady 
state has been reached assuming the surface concentrat~ons are 
maintained at 0.15 and 1.4 wt% C. 

(b) If D, increases from 2.5 x 10-" m2 s-' at 0.15% C to 
7 .7  x lo-" m' s-' at 1 .4% C what will be the quantitative rela- 
tionship between the concentration gradients at the surfaces? 

y 

(c) Estimate an approximate value for the flux of carbon through the 
sheet if the thickness is 2 rnm (0.8 wt76 C = 60 kg rnP3 at 1000 OC). 

2.2 It was stated in Section 2.2.1 that D = Tcr2/6 applies to any diffusing 
species in any cubic lattice. Show that this is true for vacancy diffusion in 
a pure fcc metal. (Hint: consider two adjacent { I l l )  planes and deter- 
mine what fraction of all possible jumps result in the transfer of a 
vacancy between the two planes. Is the same result obtained by con- 
sidering adjacent (100) planes?) 

2 .3  A small quantity of radioactive gold was deposited on the end of a gold 
cylinder. After holding for 24 h at a high temperature the specimen was 
sectioned and the radioactivity of each slice was as follows: 

Distance from end of bar 
to centre of slice/pm: 10 20 30 40 50 
Activity: 83.8 66.1 42.0 23.6 8.74 

Use the data to determine D. 
2.4 Prove by differentiation that Equation 2.20 is a solution of Fick's second 

law. 
2.5 Fourier analysis IS a powerful tool for the solut~on of d~ffusion problems 

when the initial concentration profile is not sinusoidal. Consider for 
example the diffusion of hydrogen from an initialiv uniform sheet of 
iron. If the concentration outside the sheet is maintained at zero the 

t resultant concentration profile is initially a top-hat function. Fourier 
analysis of this function shows that it can be considered as an infinite 
series of sine terms: 

" 1 4Co (2 i  + 1)nx 
C(X) = - X sin 

a 1-0 2i + 1 I 

where I is the thickness of the sheet and Co is the initial concentration. 
(a) Plot the first two terms of this series. If during diffusion the surface 

concentration i e t a i n e d  close to zero each Fourier component 
can be considered to decrease exponentially with time with a time 
constant T~ = I2/(2i + 1 ) ' r 2 ~ .  The soIution to the diffusion equa- 
tion therefore becomes 



5 
(b j  Derive an equation for thc timl: at which the amplitude ot the $ 

second term I S  less than 51/, of the first term. g 
(L) Approximately how long will it take to remove 95% of all the 3 

hydrogen from an initially uniform plate of a-iron at 20 "C if [ 
(i) the plate is 10 rnm thick and if (ii) it is 100 mm thick, assuming ' 
the surface concentration is maintained constant at zero? % 

: 
(Use data in Table 2.1.) 

2.6 Figure 2.31 shows the molar free energy-composition diagram for the i 
A-B system at temperature T I .  Imagine that a block of a with composi- 
tion (1) is welded to a block of P phase with composition (2). By : 
considering the chemical potentials of the A and B atoms in both the a 
and p phases predict which way the atoms will move during a dihsion ' 

anneal at T,  . Show that this leads to a reduction of the moIar free energy 
of the couple. Indicate the compositions of the two phases when equilib- 
rium is reached. 

Molar 
free 
energy 

Fig. 2.31 

2.7 A dihsion couple including inert wires was made by plating pure 
copper on to a block of a-brass with a composition Cu-30 wt% Zn, 
Fig. 2.20. After 56 days at 785°C the marker velocity was determined as 
2.6 x lo-' mrn s - ' .  Microanalysis showed that the composition at the mar- 
kers was XZ, = 0.22, Xc, = 0.78, and that aX,,/ax was 0.089 mm-'. 

From an analysis of the complete penetration curve D" at the markers 
was calculated as 4.5 x 1 0 - ' m m '  s C 1 .  Use this data to calculate D L  and 
DF-, in brass at 22 atomic 5% Zn. How would you expect D%n. D& and 
D" to vary as a function nf composition? 

' .. . 8 Draw possible free energy-composition curves for the system in 
Fig. 2.29 at T , .  Derive from this a b 2 - X ,  and an a,-X, diagram 
(similar to Fig. 1.28). Mark the points corresponding to p and q in 
Fig- 2 . 2 9 ~ .  Sketch diagrams similar to Fig. 2 . 2 9 ~  to show a*. pA and pg 
across the diffusion couple. What will be the final composition profile 
when the couple reaches equilibrium if the overall composition lies 
( i )  between a and b. (ii) below a? 

7.9 Figure 2.32 is a hypothetical phase diagram for the A-B system. At a 
temperature T ,  B is practically insoluble in A .  whereas B can dissolve 10 
atomic 5 A.  A diffusion c~juple made by welding together pure A and 
pure B is annealed at T, . Show b!' a series of sketches how the toncen- 
[ration profiles and u!P interface position will vary with tlme. If the 
overall composition of the couple is 50 atomic rr I3 what will be the 
maximum displacement of the w'P interface? {Assume cu and P have 
equal  molar ~ o l u ~ n e s . )  

Fig. 2.32 
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y per unit area is given by 

Crystal Interfaces and Microstructur-, 

Basically three different types of interface are important in metallic systems: 

1. The free surfaces of a crystal (solid/vapour interface) 
2. Grain boundaries (&/a interfaces) 
3. Interphase interfaces (a/P interfaces). 

All crystals possess the first type of interface. The second type separates 
crystals with essentially the same composition and crystal structure, but a 
different orientation in space. The third interface separates two different 
phases that can have different crystal structures and/or compositions and 
therefore also includes solid/liquid interfaces. 

The great majority of phase transformations in metals occur by the growth 
of a new phase (P) from a few nucleation sites within the parent phase (a)-a 
nucleation and growth process. The a / P  interface therefore plays an impor- 
tant role in determining the kinetics of phase transformations and is the most 
important class of interface listed. It is. however, also the most complex and 
least understood. and this chapter thus begins by first considering the simpler 
interfaces, (1) and (2). 

The solid/vapour interface is of course itself important in vaporization and 
condensation transformations, while grain boundaries are important in re- 
crystallization, i.e. the transformation of a highly deformed grain structure 
into new undeformed grains. Although no new phase is involved in recrystal- 
lization it does have many features in common with phase transformations. 

The importance of interfaces is not restricted to what can be called the 
primary transformation. Since interfaces are an almost essential feature of the 
transformed microstructure, a second (slower) stage of most transformations 
is the microstructural coarsening that occurs with time1. This is precisely 
analogous to the grain coarsening or grain growth that follows a recrystalliza- 
tion transformation. 

3.1 Interfacial Free Energy 

It is common practice to talk of interfacial energy. In reality, however, what is 
usually meant and measured by experiment is the interfacial free energy, y. 
The free energy of a system containing an interface of area A and free energy 

where Go is the free energy of the system assuming that all material in the 
svstem has the properties of the bulk-y is therefore the excess free energy 

fromfhe fact that some material lies in or close to the interface. It IS 

also the work that must be done at constant T and P to create unit area of 
interface. 

Consider for simplicity a wire frame suspending a liquid film, Fig. 3.1. If 
one bar of the frame is movable it is found that a force F per unit length must 
be applied to maintain the bar in position. If this force moves a small distance 
so that the total area of the film is increased by dA the work done by the force 
is Fd4. This work is used to increase the free energy of the system by dG, 
From Equation 3.1 

dG = ydA + Ady 

Equating this with FdA gives 

In the case of a liquid film the surface energy is independent of the area of the 
interface and dy/dA = 0. This leads to the well-known result 

F =  y (3.3) 

i.e. a surface with a free energy y J m-' exerts a surface tension of y N m-I. 
In the case of interfaces involving solids, however, it is not immediate]! 

obvious that y is independent of area. Since a liquid is unable to support shear 
stresses. the atoms within the liquid can rearrange during the stretching 
process and thereby maintain a constant surface structure. Solids. however, 
are much more viscous and the transfer of atoms from the bulk to the surface, 
which is necessary to mai'ntain an unchanged surface structure and energy. 
will take much longer. If this time is long in comparison to the time of the 
experiment then dy/dA # 0 and surface free energy and surface tension will 
not be identical. Nevertheless, at temperatures near the melting point the 
atomic mobility is usually high enough for Equation 3.3 to be applicable. 

film 

Fig. 3.1 A liquid film on a wire frame. 
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3.2 Solid/Vapour Interfaces 

To a first approximation the structure of solid surfaces can be discussed in 
terms of a hard sphere model. If the surface is parallel to a low-index crystal $ 
plane the atomic arrangement will be the same as in the bulk, apart from 
perhaps a small change in lattice parameter. (This assumes that the surface is i 
uncontaminated: in real systems surfaces will reduce their free energies by the 
adsorption of impurities.) Figure 3.2 for example shows the (111) (200) (220) i 
atom planes in the fcc metals. Note how the density of atoms in these planes 
decreases as (h2 + kZ + 12) increases. (The notation (200) and (220) has been 
used instead of (100) and (110) because the spacing of equivalent atom planes 
is then given by a//(h2 + L? + 1') where a is the lattice parameter.) 

Fig. 3.2 Atomic configurations on the three closest-packed planes in fcc crystals: 
( I l l ) ,  (200) and (220). I 

The origin bf the surface free energy is that atoms in the layers nearest the 
surface are without some of their neighbours. Considering only nearest neigh- 
bours it can be seen that the atoms on a { I l l )  surface, for example, are 
deprived of three of their twelve neighbours. If the bond strength of the metal 
is E each bond can be considered as lowering the internal energy of each atom 
by ~ / 2 .  Therefore every surface atom with three 'broken bonds' has an excess 
internal energy of 3e/2 over that of the atoms in the bulk. For a pure metal E 

can be estimated from the heat of sublimation L,. (The latent heat of 
sublimation is equal to the sum of the latent heat of melting (or fusion) and 
the latent heat of vaporization.) If 1 mol of solid is vaporized 12 N, broken 
bonds are formed. Therefore L, = 12 Na r/2. Consequently the energy of a 
(111) surface should be given by 

E s v  = 0.25 L,/Na J/surface atom (3.4) 
This result will only be approximate since second nearest neighbours have 
been ignored and it has also been assumed that the strengths of the remaining 
bonds in the surface are unchanged from the bulk values. 

From the definition.of Gibbs free energy the surface free energy will be 
given by 

Thus even if the 'PV' term is ignored surface entropy effects must be taken 
into account. It might be expected that the surface atoms will have more 
freedom of movement and therefore a higher thermal entropy compared to : 
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atoms in the bulk. Extra configurational entropy can also be introduced into 
the surface by the formation of surface vacancies for example. The surface of 
a crystal should therefore be associated with a positive excess entropy which 
will partly compensate for the high internal energy of Equation 3.4. 

Experimental determination of y,, is difficult2 but the measured values for 
pure metals indicate that near the melting temperature the surface free 
energy averaged over many surface planes is given by 

y,, = 0.15 L J N ,  J/surface atom (3.61 

As a result of entropy effects y,, is slightly dependent on temperature. 
From Equation 1.10 

Measured values of S are positive and vary between 0 and 3 rnJ rn-' K- ' .  
Some selected values of y,, at the melting point are listed in Table 3.1. Note 
that metals with high melting temperatures have high values for L,  and high 
surface energies. 

Table 3.1 Average Surface Free Energies of Selected Metals 

Values selected from H. Jones 'The surface energy of solid metals', Metal 
Science Journal, 5 : 15 (1971). Experimental errors are generally about 10%. 
The values have been extrapolated to the melting temperature, T,. 

Crystal TJ°C ySv/mJ m-2 

It can be seen from the above simple model that different crystal surfaces 
should have different values for E,, depending on the number of broken 
bonds (see exercise 3.1). A litt1k.consideration will show that for the surfaces 
shown in Fig. 3.2 the number df broken bonds at the surface will increase 
through the series (1 11) {200) (220). .Therefore ignoring possible differences 
in the entropy terms y,, should also increase along the same series. 

When the macroscopic surface plane has a high or irrational {hkl )  index the 
surface will appear as a stepped layer structure where each layer is a close- 
packed plane. This is illustrated for a simple cubic crystal in Fig. 3.3. 
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J 
V 

cos 8/a broken bonds 

Fig. 3.3 The 'broken-bond' model for surface energy. ;t 
A crystal plane at an angle 0 to the close-packed plane will contain broken 

bonds in excess of the close-packed plane due to the atoms at the steps. For : 
unit length of interface in the plane of the diagram and unit length out of the , 
paper (parallel to the steps) there will be (cos 0/a)(l/a) broken bonds out of f 
the close-packed plane and (sin 18(/a)(l/a) additional broken bonds from the f 

atoms on the steps. Again attributing ~ / 2  energy to each broken bond, then 
8 

E,, = (cos 0 + sin J B I ) E / ~ ~ ~  (3.8) 41 
This is plotted as a function of 0 in Fig. 3.4. Note that the close-packed 2 
orientation (8 = 0) lies at a cusped minimum in the energy plot. Similar 
arguments can be applied to any crystal structure for rotations about any axis 
from any reasonably close-packed plane. All low-index planes should there- 
fore be located at low-energy cusps. 

If y is plotted v. 0 similar cusps are found, but as a result of entropy effects 

- 0 + 8 
Fig. 3.4 Variation of surface energy as a function of 0 in Fig. 3.3. 
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[hey are less prominent than in the E-0 plot, and for the higher index planes 
they can even disappear. 

A convenient method for plotting the variation of y with surface orienta- 
tion in three dimensions is to construct a surface about an origin such that the 
free energy of any plane is equal to the distance between the surface and the 
r i g i n  when measured along the normal to the plane in question. A section 
through such a surface is shown in Fig. 3.5a. This type of polar representation 
of y is known as a y-plot and has the useful property of being able to predict 
the equilibrium shape of an isolated single crystal. 

For an isolated crystal bounded by several planes A l ,  A2,  etc. with ener- 
gies y,, YZ, etc. the total surface energy will be given by the sum 
Alyl + Azy2 + . The equilibrium shape has the property that CAiyi is a 
minimum and the shape that satisfies this condition is given by the following, 
so-called Wulff construction3. For every point on the y surface, such as A in 
Fig. 3.5a, a plane is drawn through the point and normal to the radius vector 

Equilibrium 
shape 

(a  1 . . 
. ..*'. ' ' 

Fig. 3.5 (a) A possible (110) section through the y-plot of an fcc crystal. w n g t h  
OA represents the free energy of a surface plane whose normal lies in thedir&tion 
OA. Thus OB = y(ool,, OC = Y(~~~). etc. Wulff planes are those such as that which 
lies normal to the vector OA. In this case the Wulff planes at the cusps (B, C, etc.) give 
Ihe ,inner envelope of all Wulff planes and thus the equilibrium shape. (b) The 
equilibrium shape in three dimensions showing (100) (square faces) and {111) (hex- 
"Onal faces). 
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OA. The equilibrium shape is then simply the inner envelope of all such 
planes. Therefore when the y-plot contains sharp cusps the equilibrium shape 
is a polyhedron with the largest facets having the low3st interfacial free I 
energy. 

Equilibrium shapes can be determined experimentally by annealing smaU 
single crystals at high temperatures in an inert atmosphere, or by annealing 
small voids inside a crystal4. FCC crystals for example usually assume a fonn 
shov:;c, (13G) acd { I l l )  facets as shown in Fig. 3.5b. Of course when y is 
isotropic, as for liquid droplets, both the y-plot and equilibrium shapes are 
spheres. v 

When the equilibrium shape is known it is possible to use the Wulff 
theorem in reverse to give the relative interfacial free energies of the 7 
observed facet planes. In Fig. 3.5 for example the widths of the crystal in the ; 
(111) and (100) directions will be in the ratio of y( l l1)  : y(100). {110} facets are 
usually missing from the equilibrium shape of fcc metals, but do however g 
appear for bcc metals5. 

The aim of this section has been to show, using the simplest type of 
interface, the origin of interfacial free energy, and to show some of the 
methods available for estimating this energy. Let us now consider the second 
type of interface, grain boundaries. 

3.3 Boundaries in Single-Phase Solids I 
The grains in a single-phase polycrystalline specimen are generally in many 
different orientations and many different types of grain boundary are there- 
fore possible. The nature of any given boundary depends on the misorienta- 
tion of the two adjoining grains and the orientation of the boundary plane 
relative to them. The lattices of any two grains can be made to coincide by 
rotating one of them through a suitable angle about a single axis. In general 
the axis of rotation will not be simply oriented with respect to either grain or 
the grain-boundary plane, but there are two special types of boundary that 
are relatively simple. These are pure tilt boundaries and pure twist bound- 
aries, as illustrated in Fig. 3.6. A tilt boundary occurs when the axis of 
rotation is parallel to the plane of the boundary, Fig. 3.6a, whereas a twist 
boundary is formed when the rotation axis is perpendicular to the boundary, 
Fig. 3.6b. 

t 
I 

3.3.1 Low-Angle and ~ i ~ h - ~ i z ~ l e  Boundaries 

It is simplest to first consider what happens when the misorientation between -, 

two grains is small. This type of boundary can be simply considered as an 
array of dislocations. Two idealized boundaries are illustrated in Fig. 3.7. - 
These are symmetrical low-angle tilt and low-angle wist boundaries. The 

Rotat ion axis 
e , I  

B6undary 
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Fig. 3.6 The relative orientations of the crystals and the boundary forming ( a )  a tilt 
boundary (b) a twist boundary. 

low-angle tilt boundary is an array of parallel edge dislocations, whereas the 
twist boundary is a cross-grid of two sets of screw dislocations. In each case 
the atoms in the regions between the dislocations fit almost perfectly into both 
adjoining crystals whereas the dislocation cores are regions of poor fit in 
which the crystal structure is highly distorted. 

The tilt boundary need not be symmetrical with respect to the two adjoin- 
ing crystals. However, if the boundary is unsymmetrical dislocations with 
different Burgers vectors are required to accommodate the misfit, as illus- 
trate< ,,I Fig. 3.8. In general boundaries can be a mixture of the tilt and twist 
type in which case they must contain several sets of different edge and screw 
dislocations. 

The energy of a low-angle grain boundary is simply the total energy of the 
dislocations within unit area of boundary. (For brevity the distinction be- 
tween internal energy and free energy will usually not be made from now on 
except where essential to understanding.) This depends on the spacing of the 
dislocations which. for the simple arrays in Fig. 3.7, is given by 

b b  D = - = -  (3.9) 
sin 0 8 

where b is the Burgers vector of the dislocations and 0 is the angular mis- 
orientation across the boundary. At very small values of 0 the dislocation 
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spacing is very large and the grain boundary energy y is approximately 
proportional to the density of dislocations in the boundary ( l /D),  i.e. 

However as 8 increases the strain fields of the dislocations progressively 
cancel out so that y increases at a decreasing rate as shown in Fig. 3.9. In 
general when 0 exceeds 10-15" the dislocation spacing is so small that the 
dislocation cores overlap and it is then impossible to physically identify the 
individual dislocations (see Fig. 3.10). At this stage the grain-boundary en- 
ergy is almost independent of misorientation, Fig. 3.9. 

When 0 > 10-15" the boundary is known as a random high-angle grain 
boundary. The difference in structure between low-angle and high-angle grain 
boundaries is lucidly illustrated by the bubble-raft model in Fig. 3.11. High- 
angle boundaries contain large areas of poor fit and have a relatively open 
structure. The bonds betvieen the atoms are broken or highly distorted and 
consequently the boundary is associated with a relatively high energy. In 

Fig. 3.7 (a) Low-angle tilt boundary, (b) low-angle twist boundary: 0 atoms in crys- 
tal below boundary, atoms in crystal above boundary. (After W.T. Read Jr., 
Dislocations in Crystals, McGraw-Hill, New York, 1953.) 
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low-angle boundaries, however, most of the atoms fit very well into both 
lattices so that there is very little free volume and the interatomic bonds are 
only slightly distorted. The regions of poor fit are restricted to the dislocation 
cores which are associated with a higher energy similar to that of the random 
high-angle boundary. 

Fig. 3.7 (b) 
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Measured high-angle grain boundary energies yb are often found to be 
a 

roughly given by I 
Some selicted values for yb and yb/ys, are listed in Table 3.2. As for 

surface energies yb is temperature dependent 'decreasing somewhat with 
increasing temperature. I 
Table 3.2 Measured Grain Boundary Free Energies 

Values selected from compilation given in Interfacial Phenomena in Metals 
and Alloys, by L.E. Murr, Addison-Wesley, London, 1975. 

Crystal y b / r n ~  T/OC Y ~ / Y S V  

3.3.2 Special High-Angle Grain Boundaries 

Not all high-angle boundaries have an open disordered structure. There are 
some special high-angle boundaries which have significantly lower energies 
than the randor  boundaries. These boundaries only occur at particular 
misorientations and boundary planes which allow the two adjoining lattices to 
fit together with relatively little distortion of the interatomic bonds. 

The simplest special high-angle grain boundary is the boundary between 
two twins. If the twin boundary is parallel to the twinning plane the atoms in 
the boundary fit perfectly into both grains. The result is a coherent twin 
boundary as illustrated in Fig. 3.12a. In fcc metals this is a (111) close-packed 
plane. Because the atoms in the boundary are essentially in undistorted 
positions the energy of a coherent twin boundary is extremely low in compari- 
son to the energy of a random high-angle boundary. 

If the twin boundary does not lie exactly parallel to the twinning plane, 
Fig. 3.12b, the atoms do not fit perfectly into each grain and the boundary 
energy is much higher. This is known as an incoherent twin boundary. The 
energy of a twin boundary is therefore very sensitive to the orientation of the 

L 
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Fig. 3.12 (a) A coherent twin boundary. (b) An incoherent twin boundary. 
(c) Twin-boundary energy as a function of the grain boundary orientation. 

boundary plane. If y is plotted as a function of the boundary orientation a 
sharp cusped minimum is obtained at the coherent boundary position as 
shown in Fig. 3 .12~.  Table 3.3 lists some experimentally measured values of 
coherent and incoherent twins along with high-angle grain boundary energies 
for compariscn. 

Table 3.3 Measured Boundary Free Energies for crystals in Twin Rela- 
tionships (Units mJ m-2) 

Values selected from compilation given in Interfacial Phenomena in Metals 
and Alloys, by L.E. Murr, Addison-Wesley, London, 1975. 

Coherent twin Incoherent twin Grain 
'a Crystal boundary energy boundary energy boundary energy 

Cu 21 498 ..* * : 623 . - 
A!3 8 126 377 
Fe-Cr-Ni 19 209 835 

I 

(stainless 
steel type 304) 
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Twin orientations in fcc metals correspond to a misorientation of 70.5" 
about a (110) axis. Therefore a twin boundary is a special high-angle grain 
boundary, and a coherent twin boundary is a symmetrical tilt boundary 
between the two twin-related crystals. Figure 3.13 shows measured grain- 
boundary energies for various symmetric tilt boundaries in aluminium. When I 
the two grains are related by a rotation about a (100) axis, Fig. 3.13a, it can be 1 
seen that Gost high-angle boundaries have about the same energy and should S 
therefore have a relatively disordered structure characteristic of random 
boundaries. However. when the two grains are related by a rotation about a A 

(110) axis there are several large-angle orientations which have significantly ' 
lower energies than the random boundaries (Fig. 3.13b). 0 = 70.5" corres- 
ponds to the coherent twin boundary discussed above, but low-energy bound- 
aries are also found for several other values of 0. The reasons for these other 
special grain boundaries are not well understood. However, it seems reason- 
able to suppose that the atomic structure of these boundaries is such that they 
contain extensive areas of good fit. A two-dimensional example is shown in 
Fig. 3.14. This is a symmetrical tilt boundary between grains with a miso- 
rientation of 38.2". The boundary atoms fit rather well into both grains 
leaving relatively little free volume. Moreover, a small group of atoms 
(shaded) are repeated at regular intervals along the bounddry. 

3.3.3 Equilibrium in Polycrystalline Materials 

Let us now examine how the possibility of different grain-boundary energies 
affects the microstructure of a polycrystalline material. Figure 3.15 shows the 
microstructure of an annealed austenitic stainless steel (fcc). The material 
contains high- and low-angle grain boundaries as well as coherent and 
incoherent twin boundaries. This microstructure is determined by how the 
different grain boundaries join together in space. When looking at two- 

f I I I I I r I I \  I I I I I I I I , )  
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Fig. 3.13 Measured grain boundary energies for symmetric tilt boundaries in A1 
(a) when the rotation axis is parallel to (loo), (b) when the rotation axis is parallel to 
(110). (After G.  Hasson and C .  Goux, Scripta Metallurgica, 5 (1971) 889.) 
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Fig. 3 14 Specla1 gram boundary (After H. Gle~ter. Phvsica Srarlts Solldl ( b )  45 
(1971) 9.) 

dimensional microstructures like this it is important to remember that in 
reality the grains fill three dimensions, and only one section of the three- 
dimensional network of internal boundaries is apparent. Note that two grains 
meet in a plane (a grain boundary) three grains meet in a line (a grain edge) 
and four grains meet at a point (a grain corner). Let US now consider the 
factors that control the gram shapes in a recrystallized polycrystal. 

The first problem to be solved is why grain boundaries exist at all in 
annealed materials. The boundaries are all high-energy regions that increase 
the free energy of a polycrystal relative to a single crystal. Therefore a 
p~lycrystalline material is never a true equilibrium structure. However the 
grain boundaries in a polycrystal can adjust themselves during annealing to 
produce a metastable equilibrium at the grain boundary iktersections. 

The conditions for equilibrium at a grain-boundary Gnction can be 
obtained either by considering the total grain boundary energy associated 
with a particular configuration or, more simply, by considering the forces that 
each boundary exerts on the junction. Let us first consider a grain-boundary 
segment of unit width and length OP as shown in Fig. 3.16. If the boundary is 
mobile then forces F, and F, must act at 0 and P to maintain the boundary in 
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Fig. 3.15 Microstructure of an annealed crystal of austenitic stainless steel. (After 
P.G. Shewmon. Transformations in Metals, McGraw-Hill, New York, 1969.) 

equilibrium. From Equation 3.3, F, = y. Fy can be calculated as follows: if P 
is moved a small distance 6y while 0 remains stationary, the work done will be 
Fy6y. This must balance the increase in boundary energy caused by the 
change in orientation 60, i.e. 

Since 6y = 160 

. This means that if the grain-boiindary energy is dependent on the orientation 
' of the boundary (Fig. 3.16b) a force dy/d0 must be applied to the ends of the 

boundary to prevent it rotating into a lower energy orientation. dyld0 is 
therefore known as a torque term. Since the segment OP must be supported 
by forces F, and Fy the boundary exerts equal but opposite forces - F, and 
-Fy on the ends of the segment which can be junctions with other grain 
boundaries. 
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(b) 
w 

Fig. 3.16 (a) Equilibrium forces Fx and Fy supporting a length 1 of boundary OP. 
(b) The origin of Fy . 

If the boundary happens to be at the orientation of a cusp in the free 
energy, e.g. as shown in Fig. 3 . 1 2 ~  there will be no torque acting on the 
boundary since the energy is a minimum in that orientation. However, the 
boundary will be able to resist a pulling force Fy of up to (dy/d0),,,, without 
rotating. 

If the boundary energy is independent of orientation the torque term is 
zero and the grain boundary behaves like a soap film. Under these conditions 
the requirement for metastable equilibrium at a junction between three 
grains, Fig. 3.17, is that the.boundary tensions y, , y2 and y3 must balance. In 

groin 2 
Y12 

Fig. 3.17 The balance of grain boundary tensions for a grain boundary intersection 
in metastable equilibrium. 
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The above can be obtained in another way from energy considerations. If 
(metastable) equilibrium exists at P in Fig. 3.19c, then a small displacement 
such as that shown should either produce no change, or an increase in the 
total free energy of the system, i.e. 

Considering unit depth a small displacement 6y at P will increase the total free 
energy by an amount 

Since 160 = 6y  this leads to the same result as given by Equation 3.15 

3.3.4 Thermally Activated Migration of Grain Boundaries 

In the previous section it was shown that metastable equilibrium at the grain 
boundary junctions requires certain conditions to be satisfied for the angles at 
which three boundaries intersect. For simplicity, if all grain boundaries in a 
polycrystal are assumed to have the same grain-boundary energy independent ' 

of boundary orientation, Equation 3.13 predicts that 0 ,  = O2 = O3 = 120". It 
can be similarly shown that the grain-boundary edges meeting at a corner 
formed by four grains will make an angle of 109" 28'. If these, or similar, 
angular conditions are satisfied then metastable equilibrium can be estab- 
lished at all grain boundary junctions. However, for a grain structure to be in 
complete metastable equilibrium the surface tensions must also balance over 
all the boundary faces between the junctions. If a boundary is curved in the 
shape of a cylinder, Fig. 3.20a, it is acted on by a force of magnitude y l r  
towards its centre of curvature. Therefore the only way the boundary tension 
forces can balance im three dimensions is if the boundary is planar ( r  = m) or 
if it is curved with equal radii in opposite directions, F;z. 3.20b and c. It is 

(a ( b) (C 
Fig. 3.20 (a) A cylindrical boundary with a radius of curvature r is acted on by a 
force ylr. (b) A planar boundary with no net force. (c) A doubly curved boundary 
with no net force. 
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theoretically possible to construct a three-dimensional polycrystal in which 
the boundary tension forces balance at all faces and jcnctions, but in a 
random polycrystalline aggregate, typical of real metallurgical specimens, 
there are always boundaries with a net curvature in one direction. Conse- 
quently a random grain structure is inherently unstable and, on annealing at 
high temperatures, the unbalanced forces will cause the boundaries to mi- 
grate towards their centres of curvature. 

The effect of different boundary curvatures in two dimensions is shown in 
Fig. 3.21. Again for simplicity it has been assumed that equilibrium at each 
boundary junction results in angles of 120". Therefore if a grain has six 
boundaries they will be planar and the structure metastable. However, if the 
total number of boundaries around a grain is less than six each boundary must 
be concave inwards, Fig. 3.21. These grains will therefore shrink and even- 
tually disappear during annealing. Larger grains,'on the other hand, will have 

Fig. 3.21 Two-dimensional grain boundary configurations. The arrows indicate the 
directions boundaries will migrate during grain growth. 

more than six boundaries and will grow. The overall result of such boundary 
migration is to reduce the number of grains, thereby increasing the mean 
grain size and reducing the total grain boundary energy. This phenomenon is 
known as grain growth or grain coarsening. It occurs in metals at tempera- 
tures above about 0.5 T,,, where the boundaries have significant mobility. A 
soap froth serves as a convenient analogue to demonstrate grain growth as . . : 

i shown in Fig. 3.22. -0 

In the case of the cells& a soap froth the higher pressure on the concave ' side of the films inducis the air molecules in the smaller cells to diffuse 
through the film into the larger cells, so that the small cells eventually 
disappear. A similar effect occurs in metal grains. In this case the atoms in the 
shrinking grain detach themselves from the lattice on the high pressure side of 
the boundary and relocate themselves on a lattice site of the growing grain. 



132 Crystal interfaces and microstructure 

Fig. 3.22 Two-dimensional cells of a soap solution illustrating the process of grain 
growth. Numbers are time in minutes. (After C.S. Smith, Metal Interfaces. American 
Society for Metals, 1952, p. 81.) 

For example in Fig. 3.23a if atom C jumps from grain 1 to grain 2 the 
boundary locally advances a small distance. 

The effect of the pressure difference caused by a curved boundary is to 
create a difference in free energy (AG) or chemical potential (Ak) that drives 
the atoms across the boundary. see Fig. 3.24. In a pure metal I G  and Ak are 
identical and are given by Equation 1.58 as 

This free energy difference can be thought of as a force pulling the grain 
boundary towards the grain with the higher free energy. As shown in 
Fig. 3.25, if unit area of grain boundary advances a distance 6x the number of 
moles of material that enter grain E :, 6x 1/ V,,, and the free energy released 
is given by 

This can be equated to the work done by the pulling force F6x.  Thus the 
pulling force per unit area of 6oundary is given by 

In other words the force on the boundary is simply the free energy difference 
per unit volume of material. 

In the case of grain growth AG arises from the boundary curvature, but 
Equation 3.18 applies equally to any boundary whose migration causes a 
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Boundary 
motion 

Grain 2 

Fig. 3.23 (a) The atomic mechanism of boundary migration. The boundary migrates 
to the left if the jump rate from grain 1 -, 2 is greater than 2 -, 1. Note that the free 
volume within the boundary has been exaggerated for clarity. (b) Step-like structure 
where close-packed planes protrude into the boundary. 

decrease in free energy. During recrystallization. for example, the boundaries 
between the new strain-free grains and the original deformed grains are acted 
on by a force AG/V,,, where, in this case, AG is due to the difference in 
dislocation strain energy between the two grains. Figure 3.26 shows a disloca- 
tion-free recrystallized grain expanding into the heavily deformed surround- 
ings. In this case the total grain-boundary area is increasing, therefore the 

13istance 
Fig. 3.24 The free energy of an atom during the process of jumping from one grain 
to the other. 



Crystal interfaces and microstructure 
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dx  rain boundary 
Fig. 3.25 A boundary separating grains with different free energies is subjected to a 2 
pulling force F. % I I 

Fig. 3.26 Grain boundary migration in nickel pulled 10% and annealed 10 min at 
425 "C. The region behind the advancing boundary is dislocation-free. (After 
J. Bade? and P. Hirsch, Proceedings of the Royal Society. London, A267 (1962) 11.) I 
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driving force for recrystallization must be greater than the opposing boundary 
tension forces. Such forces are greatest when the new grain is smallest, and 
the effect iJ therefore important in the ehrly stages of recrystallization. 

Let us now consider the effect of the driving force on the kinetics of 
boundary migration. In order for an atom to be able to break away from grain 
1 it must acquire, by thermal activation, an activation energy AGa, Fig 3.24. If 
the atoms vibrate with a frequency u,  the number of times per second that an 
atom has this energy is u, exp (-AGa/RT). If there are on average n ,  atoms 
per unit area in a favourable position to make a jump there will be 
nlu, exp (-AGa/RT) jumps m-2 s-' away from grain 1. It is possible that 
not all these atoms will find a suitable site and 'stick' to grain 2. If the 
probability of being accommodated in grain 2 is A2 the effective flux of atoms 
from grain 1 to 2 will be 

. A2n,u, exp (-AGa/RT) mP2 s -' 
There will also be a similar flux in the reverse direction, but if the atoms in 
grain 2 have a lower free energy than the atoms in grain 1 by bG (mol-') the 
flux from 2 to 1 will be 

A,n2u, exp - (AG" + AG)/RT m-'s-' 

When AG = 0 the two grains are in equilibrium and there should.therefore 
be no net boundary movement, i.e. the rates at which atoms cross the 
boundary in opposite directions must be equal. Equating the above expres- 
sions then gives 

For a high-angle grain boundary it seems reasonable to expect that there will 
not be great problems with accommodation so th2.t A ,  = k 2  = 1. Assuming 
the above equality also holds for small non-zero driving forces, with AG > 0 
there will be a net flux from grain 1 to 2 given by 

j.., = A2n,u1 exp (-g) { I -  exP ( is)} 
If the boundary is moving with a velocity v the above flux must also be equal 
to v/(Vm/Na), where (Vm/Na) is the atomic volume. Therefore expanding 
exp ( -AGIRT)  for the usual case of AG G RT gives 

In other words v should be proportional to  the driving force 
AG/Vm (N m-2). Equation 3.20 can be written more simply as 

where M is the mobility of the boundary, i.e. the velocity under unit driving 
force. Substituting for AGa gives 
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A n v v 2  ASa -AHa 
.I = { N,RT exp (F)}  exp 

Note how this simple model predicts an exponential increase in mobility with 
temperature. This result should of course be intuitively obvious since the 
boundary migration is a thermally activated process like diffusion. Indeed 
boundary migration and boundary diffusion are closely related processes. 
The only difference is that diffusion involves transport along the boundary 
whereas migration requires atomic movement across the boundary. 

The model used to derive Equations 3.20 and 3.22 is particularly simple 
and gross assumptions are involved. In real grain boundaries it is likely that 
not all atoms in the boundary are equivalentand some will jump more kasily f 

than others. For example atoms may jump preferably to and from atomic 
steps or  ledges, like atoms A, B and C in Fig. 3.23a. In fcc metals such ledges 
should exist where the close-packed (111) planes protrude into the boundary. 
Boundary migration could then be effected by the growth of the ledges in one 
grain combined with the shrinking of corresponding ledges in the other grain 
as shown in Fig. 3.23b. 

From our discussion of grain-boundary structure it might be argued that the 
relati~ely open structure of a random high-angle boundary should lead to a 
high mobility whereas the denser packing of the special boundaries should be 
assoqiated with a low mobility. Indeed, the coherent twin boundary, in which 
the atoms fit perfectly into both grains, has been found to be almost entirely 
immobile6. However, experiments have shown that the other special bound- 
aries are usually more mobile than random high-angle boundaries. The 
reason for this is associated with the presence of impurity or alloying elements 
in the metal. Figure 3.27 shows data for the migration of various boundaries 
in zone-refined lead alloyed with different concentrations of tin. For a given 
driving force the velocity of the random boundaries decreases rapidly with 
increasing alloy content. Note that only very low concentrations of impurity 
are required to change the boundary mobility by orders of magnitude. The 
special grain boundaries on the other hand are less sensitive to impurities. It is 
possible that if the metal were 'perfectly' pure the random boundaries would 
have the higher mobility. The reason for this type of behaviour arises from 
differences in the interactions of alloy elements or impurities with different 
boundaries. 

Gefierally the grain boundary energy of a pure metal changes on alloying. 
Often (though not always) it is reduced. Under these circumstances the 
concentration of alloying element in the boundary is higher than that in the 
matrix. In graiu boundary segregation theory, grain boundary solute con- 
centrarions (Xb) are expressed as fractions of a monolayer. One monolayer 
(Xb = 1) means that the solute atoms in the boundary could be arranged to 
form 3 single close-packed layer of atoms. Approximately, for low mole 
fractions of solute in the matrix (Xo), the boundary solute concentration Xb 
is given by 
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Fig. 3.27 Migration rates of special and random boundaries at 300 "C in zone-refined 
lead alloyed with tin under equal driving forces. (After K. Aust and J.W. Rutter. 
Transactions of the .\.irrallurgical Sociery of A I M E .  215 ( 1959) 119. ) 

AGb is the free energy released per mole when a solute atom is moved 
from the matrix to the boundary. AGb is usually positive and roughly 
Increases as the size misfit between the solute and matrix increases and as 
the solute-solute bond strength decreases. 

Equation 3.23 shows how grain boundary segregation decreases as tem- 
perature increases, i.e. the solute 'evaporates' into the matrix. For suf- 
ficiently low temperatures or high values of AGh, Xb increases towards unity 
and Equation 3.23 breaks down as Xh approaches a maximum saturation 
value. 

The variation of boundary mobility with alloy concentration varies 
markedly from one element to another. It is a general rule that AGb, which 
measures the tendency for segregation, increases as the matrix solubility 
decreases. This is illustrated by the experimental data in Fig. 3.28. 
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Fig. 3.3 Increasing grain boundary enrichment with decreasing solid solubility in a 
range of systems. (After E.D. Hondras and M.P. Seah, International Metallurgical 
Reviews, December 1977, Review 222.) 

When the boundary moves the solute atoms migrate along with the 
boundary and exert a drag that reduces the boundary velocity. The mag- 
nitude of the drag will depend on the binding energy and the concentration 
in the boundary. The higher mobility of special boundaries can, therefore, 
possibly be attributed to a low solute drag on account of the relatively more 
close-packed structure of the special boundaries. 

The variation of boundary mobility with alloy concentration varies mark- 
edly from one element to another. It is a general rule that Q,, which 
measures the tendency for segregation, increases'as the matrix solubility 
decreases. This is illustrated by the experim$ntal data in Fig. 3.28. 

It is possible that the higher mobility of special grain boundaries plays a 
role in the development of recrystallization textures. If a polycrystalline metal 
is heavily deformed, by say rolling to a 90% reduction, a deformation texture 
develops such that the rolled material resembles a deformed single crystal. 
On heating to a sufficiently high temperature new grains nucleate and begin to 
grow. However, not all grains will grow at the same rate: those grains which 
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are specially oriented with respect to the matrix should have higher mobility 
boundaries and should overgrow the boundaries of the randomly oriented 
grains. Consequently the recrystallized structure should have a special 
orientation with respect to the original 'single crystal'. Thus a new texture 
results which is called the recrystallization texture. Recrystallization is, 
however, incompletely understood and the above explanation of recrystalliza- 
tion texture may be an oversimplification. It is possible for example that the 
nuclei for recrystallization are themselves specially oriented with respect to 
the deformed matrix. 

A recrystallization texture is sometimes an advantage. For example the 
proper texture in Fe-3wt% Si alloys makes them much better soft magnets 
for use in transformers. Another application is in the production of textured 
sheet for the deep drawing of such materials as low-carbon steel. The only 
way to avoid a recrystallization texture is to give an intermediate anneal 
before a deformation texture has been produced. 

3.3.5 The Kinetics of Gruin Growth 

It was shown in the  previous section that at sufficiently high temperatures the 
grain boundaries in a recrystallized specimen will migrate so as to reduce the 
total number of grains and thereby increase the mean grain diameter. In a 
single-phase metal the rate at which the mean grain diameter I )  increases with 
time will depend on the grain boundary mobility and the driving force for 
boundary migration. 

If we assume that the mean radius of curvature of all the grain boundaries is 
proportional to the mean grain diameter b the mean driving force for grain 
growth will be proportional to 2y/D (Equation 3.17). Therefore 

where a is a proportionality constant of the order of unity. 
Note that this equation implies that the rate of grain growth is inversely 

proportional to and increases rapidly with increasing temperature due to 
increased boundary mobility, M. Integration of Equation 3.24 taking D = Do 
when t = 0 gives 

o2 = + Kt (3.25) 

/ where K = 4aMy. 

Experimentally it is found that grain growth in single-phase metals follows a 
relationship of the form 
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Fig. 3.29 Optlcal micrograph ( x  130) showing abnormal gain growth in a fine-grained 
steel contalnlng 0.4 wt% carbon. The matnx grains are prevented from growing by a fine 
dispersion of unresolved carbide particles. (After D.T. Gawne and G.T. Higgins, Journal 
o f  the Iron and Steel Inmrute, 209 (1971), 562.) 

where K' is a proportionality constant which increases with temperature. This 
IS equivalent to Equation 3.25 with n = 0.5 if D 2 D,,. However. the ex- 
perimentally determined values of n are usually much less than 0.5 and only 
approach 0.5 in very pure metals or at very high temperatures. The reasons 
for this are not fully understood, but the most likely explanation is that the 
velocity of grain boundary migration, v ,  is not a linear function of the driving 
force, AG, i.e the mobility in Equation 3.21 is not a constant but varies with 
LG and therefore also with D. It has been suggested that such a variation of 
.\I could arise from solute drag effects7. 

The above type of grain growth is referred to as normal. Occas~onally 
so-called abnormal grain growth can occur. This situation is characterized by 
the growth of just a few grains to very large diameters. These grains then 
expand consuming the surrounding grains, until the fine grains are entirely 
replaced by a coarse-grained array. This effect is illustrated in Fig. 3.29 and is 
also known as discontinuous grain growth. coarsening. or secondary recrystal- 
lization. It can occur when normal grain growth ceases due to the presence of 
.a fine precipitate array. 

The nature of normal grain growth in the presence of a second phase 
deserves special consideration. The moving boundaries will be attached to 

(b) 
Fig. 3.30 The effect of spherical particles on grain boundary migration. 

the particles as shown in Fig. 3.30a, so that the particles exert a pulling force 
on the boundary restricting its motion. The boundary shown in Fig. 3.30b 
will be attached to the particle along a length 2nr cos 8. Therefore if the 
boundary intersects the particle surface at 90" the particle will feel a pull of 
( 2 ~ r  - cos 8 y) sin 8. This will be counterbalanced by an  equal and opposite 

I 

I 
force acting on.the boundary. As the boundary moves over the particle 
surface 8 changes and the drag reaches a maximum value when sin 8 - cos $is 
a maximum, i.e. at 8 = 45". The maximum force exerted by a single particle is 
therefore given by Try .  

If there is a volume fraction f of particles all with a radius r the mean 
number of particles intersecting unit area of a random plane is 3f /27rr2 SO that 
the restraining force per unit area of boundary is approximately 
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Fig. 3.31 Effect of second-phase particles on grain growth. 

This force will oppose the driving force for grain growth. namely -2y/D as 
shown in Fig. 3.30a. When d is small P will be relatively insignificant, but as 
D increases the driving force 2 y / ~  decreases and when 

2 Y  3fY - - --  
D 2r 

the driving force will be insufficient to overcome the drag of the particles and 
grain growth stagnates. A maximum grain size will be given by 

The effect of a particle dispersion on grain growth 1s illustrated in Fig. 3.31. It 
can be seen that the stabilization of a fine grain size during heating at high 
temperatures requlres a large volume fraction of very small particles. Unfor- 
tunately, if the temperature is too high, the particles tend to coarsen or 
dissolve. When this occurs some boundaries can break away before the others 
and abnormal grain growth occurs, transforming the fine-grain array into a 
very coarse-grain structure. For example aluminium-killed steels contain 
aluminium nitride precipitates which stabilize the austenite grain size during 
heating.'However, their effectiveness disappears above about 1000 "C when . 
thg alumiQjum nitride precip$ates start to dissolve. . - .- 

3.4 Interphase Interfaces in Solids 

The previous section dealt in some detail with the structure and properties of 
boundaries between crystals of the same solid phase. In this section we will be 

4 a p k -  

(a 1. (b) 
Fig. 3.32 Strain-free coherent interfaces. (a) Each crystal has a different chemical 
composition but the same crystal structure. (b) The two phases have different lattices. 

dealing with boundaries between different solid phases, i.e. where the two 
adjoining crystals can have different crystal structures and/or compositions. 
Interphase boundaries in solids can be divided on the basis of their atomic 
structure into three classes: coherent, semicoherent and incohergnt. 

3.4.1 Interfilce Coherence 

Fully Coherent Interfaces 
A coherent interface arises when the two crystals match perfectly at the 
interface plane so that the two lattices are continuous across the interface. 

/ \ 
(1 10) f.ct. Directions - 

<1120> hcp. 
Fig. 3.33 The close-packed plane and directions in fcc and hcp structures. 
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Fig. 3.32. This can only be achieved if, disregarding chemical species, the 
interfacial plane has the same atomic configuration in both phases, and this 
requires the two crystals to be oriented relative to each other in a special way. 
For example such an interface is formed between thc hcp silicon-rich K phase 
and the fcc copper-rich a-matrix in Cu-Si alloys. The lattice parameters of 
these two phases are such that the (ill),, plane is identical to the (OOOl),,, 
plane. Both planes are hexagonally close-packed (Fig. 3.33) and in this par- *, 
ticular case the interatomic distances are also identical. Therefore when the 2 two crystals are joined along their close-packed planes with the close-packed 
directions parallel the resultant interface is completely coherent. The require- . 
ment that the close-packed planes and directions are parallel produces an a 

orientation relationship between the two phases such that 

~ ~ ~ ~ ~ a / / ~ ~ ~ o ~ ~ K  
[ilOl,//[ll~0lK 

Note that the relative orientation of two crystals can always be specified by . 
giving two parallel planes (hkl) and two parallel directions [uvw] that lie in 
those planes. 

Within the bulk of each phase every atom has an optimum arrangement of 
nearest neighbours that produces a low energy. At the interface, however, 
there is usually a change in composition so that each atom is partly bonded to 
wrong neighbours across the interface. This increases the energy of the 
interfacial atoms and leads to a chemical contribution to the interfacial energy 
(y,,). For a coherent interface this is the only contribution, i.e. 

In the case of the a-K interface in Cu-Si alioys the interfacial energy has been 
estimated to be as low as 1 mJ m-2. In general coherent interfacial energies 
range up to about 200 mJ mA2. I 

- - 
Fig. 3.34 A coherent interface with slight mismatch leads to coherency strains in the 
adjoining lattices. I 

In the case of a hcp/fcc interface there is only one plane that can form a 
coherent interface: no other plane is identical in both crystal lattices. If, 
however, the two adjoining phases have the same crystal structure and lattice 
parameter then, apart from differences in composition, all lattice planes are 
identical. 

When the distance between the atoms in the interface is not identical it is 
still possible to maintain coherency by straining one or both of the two lattices 
as illustrated in Fig. 3.34. The resultant lattice distortions are known as 

strains. 

Semicoherent Interfaces 
The strains associated with a coherent interface raise the total energy of the 
system, and for sufficiently large atomic misfit, or interfacial area, it becomes 
energetically more favourable to replace the coherent interface with a semi- 
coherent interface in which the disregistry is pe~iodically taken up by misfit 
dislocations. Fig. 3.35. 

If d, and dB are the unstressed interplanar spacings of matching planes in 
the a and a phases respectively, the disregistry. or misfit between the two 
lattices (6) is defined by 

It can be shown that in one dimension the lattice misfit can be completely 
accommodated without any long-range strain fields by a set of edge disloca- 
tions with a spacing D given by 

Fig. 3.35 A semicoherent interface. The misfit parallel to the interface is accommo- 
dated by a series of edge dislocations. 
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* 
where b = (d, + dp)/2 is the Burgers vector of the dislocations. The match- 
ing in the interface is now almost perfect except around the dislocation 
cores where the structure is highly distorted and the lattice planes are 
discontinuous. 

In  practice misfit usually exists in two dimensions and in this case the 
coherency strain fields can be completely relieved if the interface contains two 
non-parallel sets of dislocations with spacings Dl = bl/al and D, = b2/6*,  as 
shown in Fig. 3.36. If, for some reason, the dislocation spacing is greater than 
given by Equation 3.32, the coherency strains will have been only partially 
relieved by the misfit dislocations and residual long-range strain fields will still 
be present. 

The interfacial energy of a semicoherent interface can be approximately 
considered as the sum of two parts: (a) a chemical contribution, yCh, as for a 
fully coherent interface, and (b) 'a structural term y,, , which is the extra 
energy due to  the structural distortions caused by the misfit dislocations, i.e. 

y (semicoherent) = yCh + y,, (3.33) 1 
Equation 3.32 shows that as the misfit 6 increases the dislocation spacing 

diminishes. For small values of 6 the structural contribution to the interfacial 
energy is approximately proportional to the density of dislocations in the 
interface, i.e. 

y,, a 6 (for small 6 )  (3.34) 1 
However y,, increases less rapidly as 6 becomes larger and it levels out when 
6 = 0.25 in a similar way to the variation of grain-boundary energy with 0 

Fig. 3.36 Misfit in two directions (6i and 62) can be accommodated by a cross-grid of 
edge dislocations with spacings D l  = b,/& and D2 = b2/62. 

shown in Fig. 3.9. The reason for such behaviour is that 3 s  the misfit disloca- 
tion spacing decreases the associated strain fields increasingly overlap and 
annul each other. The energies of semicoherent interfaces ar: generally in the 
range 200-500 mJ m-'. 

When 6 > 0.25, i.e. one dislocation every four interplanar spacings. the 
regions of poor fit around the dislocation cores overlap arrl the interface 
cannot be considered as coherent. i.e. it is incoherent. 

Incoherent Interfaces 
When the interfacial plane has a very different atomic configuration in the two 
adjoining phases there is no possibility of good matching across the interface. 
The pattern of atoms may either be very different in the two phases or, if it is 
similar, the interatomic distances may differ by more than 25%. In both cases 
the interface is said to be incoherent. In general, incoherent interfaces result 
when two randomly-oriented crystals are joined across any interfacial plane as 
shown in Fig. 3.37. They may, however, also exist between crystals with an 
orientation relationship if the interface has a different structure in the two 
crystals. 

Very little is known about the detailed atomic structure of incoherent 
interfaces, but they have many features in common with high-angle grain 
boundaries. For example they are characterized by a high energy (-500- 
1000 mJ m-2) which is relatively insensitive to the orientation of the interfa- 

I Fig. 3.37 An ~ncoherent interface 
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cia1 plane. They probably have a disordered atomic structure in that the 
interface lacks the long-range periodicity of coherent and semicoherent inter- 
faces; although, like high-angle grain boundaries, they may 5ave a step-like 
structure caused by low-index planes protruding into the interface, as in 
Fig. 3.23b. 

Complex Semicoherent Interfaces d 
The semicoherent interfaces considered above have been observed at $ 
boundaries formed by low-index planes whose atom patterns and spacings are 
clearly almost the same. However, semicoherent interfaces, i.e. interfaces 
containing misfit dislocations, can also form between phases when good " 

lattice matching is not initially obvious. For example, fcc and bcc crystals 
often appear with the closest-packed planes in each phase, ( l l l ) fcc  and 
(llO)bcc, almost parallel to each other. Two variants of this relationship are 
found: the so-called Nishiyama-Wasserman (N-W) relationship: 

( ~ ~ o ) b c c / / ( ~ ~ ~ ) f c c  7 [ool]b~~//[ iol l f~~ 

and the so-called Kurdjumov-Sachs (K-S) relationship: 

Fig. 3.38 Atomic matching across a (lll)fcc/(llO)bcc interface bearing the NW 
orientation relationship for lattice parameters closely corresponding to the case of fcc 
and bcc iron (M.G. Hall et al., Surface Science. 31 (1972) 257). 
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(The only difference between these two is a rotation in the closest-packed 
planes of 5.26".) Figure 3.38 shows that the matching between a and 
{ l l O ) b c c  plane bearing the N-W relationship is very poor. Good fit is 

to small diamond-shaped areas that only contain -8% of the 
interfacial atoms. A similar situation can be shown to exist for the K-S 
orienktion relationship. Thus it can be seen that a coherent or semicoherent 
interface between the two phases is impossible for large interfaces parallel 
to { l l l ) fcc  and {llO)bcc. Such interfaces would be incoherent. 

The degree of coherency can, however, be greatly increased if a macro- 
scopically irrational interface is formed, (i.e. the indices of the interfacial 
plane in either crystal structure are not small integers). The detailed struc- 
ture of such interfaces is, however, uncertain due to their complex naturex.'. 

3.4.2 Second-Phase Shape: Interfacial Energy Effects 

In a two-phase microstructure one of the phases is often dispersed within the 
other, for example P-precipitates in an a-matrix. Consider for simplicity a 
system containing one p-precipitate embedded in a single a crystal. and 
assume for the moment that both the precipitate and matrix are strain free. 
Such a system .will have a minimum free energy when the shape of the 
precipitate and its orientation rklationship to the matrix are optimized to give 
the lowest total interfacial free energy (ZAiyi). Let us see how this can be 
achieved for different types of precipitate. 

Fully Coherent Precipitates 
If the precipitate (P) has the same crystal structure and a similar lattice 
parameter to the parent a phase the two phases can form low-energy coherent 
interfaces on all sides-provided the two lattices are in a parallel orientation 
relationship-as shown in Fig. 3.39a. This situation arises during the early 
stages of many precipitation hardening heat treatments, and the p phase is 
then termed a fully coherent precipitate or a GP zone. (GP for Guinier and 
Prestol, ~ h o  first discovered their existence. This discovery was made inde- 
pendently by Preston in the USA and Guinier in France, both employing 
X-ray diffraction techniques. Their work was later confirmed by transmission 
electron microscopy.) Since the two crystal structures match more or less 
perfectly across all interfacial planes the zone can be any shape and remain 
fully coherent. Thus a y-plot of the a / p  interfacial energy would be largely 
spherical and, ignoring coherency strains, the equilibrium shape of a zone 
should be a sphere. Figure 3.39b shows an example of GP zones, -10 nm in 
diameter, in an Al-4 atomic % Ag alloy. The zones are a silver-rich fcc 
region within the aluminium-rich fcc matrix. Since the atomic diameters of 
aluminium and silver differ by only 0.7% the coherency strains make a 
negligible contribution to the total free energy of the alloy. In other systems 
such as AI-Cu where the atomic size difference is much larger strain energy is 
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Fig. 3.39 (a) A zone with no misfit (0 Al, Ag, for example). (b) Electron micro- 
graph of Ag-rich zones in an A1-4 atomic % Ag alloy ( X  300 000). (After R.B. 
Nicholson, G .  Thomas and J. Nutting, Journal of the Institute of Metals, 87 (1958- 
1959) 431.) 
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found to be more important than interfacial energy in determining the 
equilibrium shape of the zone. This point will be discussed further in 
Section 3.4.3. 

~artially Coherent Precipitates 
From an interfacial energy standpoint it is favourable for a precipitate to be 
surrrounded by low-energy coherent interfaces. However, when the precipi- 
tate and matrix have different crystal structures it is usually difficult to find a 
lattice plane that is common to both phases. Nevertheless, for certain phase 
combinations there may be one plane that is more or less identical in each 
crystal, and by choosing the correct orientation relationship it is then possible 
for a low-energy coherent or semicoherent interface to be formed. There 
are, however, usually no other planes of good matching and the precipitate 
must consequently also be bounded by high-energy incoherent interfaces. 

A y-plot of the interfacial energy in this case could look like that in 
Fig. 3.40, i.e. roughly a sphere with two deep cusps normal to the coherent 
interface. The Wulff theorem would then predict the equilibrium shape to be 
a disc with a thickness/diameter ratio of y,/y,, where y, and y, are the 
energies of the (semi-) coherent and incoherent interfaces. Triangular, 
square, or hexagonal plate shapes would be predicted if the y plot also 
contained smaller cusps at symmetrically disposed positions in the plane of 
the plate. 

The precipitate shapes observed in practice may deviate from this shape for 
two main reasons. Firstly the above construction only predicts the equilibrium 
shape if misfit strain energy effects can be ignored. Secondly the precipitate 
may not be able to achieve an equilibrium shape due to constraints on how it 
can grow. For example disc-shaped precipitates may be much wider than the 
equilibrium shape if the incoherent edges grow faster than the broad faces. 

Plate-like precipitates occur in many systems. For example the hcp y'- 
phase in aged A1-4 atomic % Ag alloys forms as plates with semicoherent 

Equilibr 
shape 

Fig. 3.40 -4 section through a y-plot for a precipitate showing one coherent or 
semicoherent interface, together with the equilibrium shape (a disc). 
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S 
broad faces parallel to the { l l l ) ,  matrix planes and with the usual hcp/fcc ,% 

orienta,ion relationship. The tetragoncl 0' phase in aged Al-4 wt% Cu alloys $ 
are also plate-shaped, but in this case the broad faces of the plate (known as " 
the hablt plane) are parallel to {100), matrix planes. Figure 3.41 shows that $ 
the {100), planes are almost identical t c  the (OOl),, plane so that the orienta- -: 
tion relationship between the 0' and the aluminium-rich matrix (a) is 

Examples of the precipitate shapes that are formed in these two systems are 
shown in Figs. 3.42 and 3.43. Note that as a result of the cubic symmetry of 
the aluminium-rich matrix there are many possible orientations for the pre- 
cipitate plates within any given grain. This leads to a very characteristic 
crystallographic microstructure known after its discoverer as a Widmanstatten 
morphology. 

Besides plate-like habits precipitates have also been observed to be lath- 
shaped (a plate elongated in one direction) and needle-like. For example the 
S phase in Al-Cu-Mg alloys forms as laths and the P' phase in Al-Mg-Si 
alloys as needles1'. In both cases the precipitates are also crystallographically 
related to the matrix and produce a widmanstatten structure. 

Incoherent Precipitates 
When the two phases have completely different crystal structures, or when 
the two lattices are in a random orientation, it is unlikely that any coherent or 
semicoherent interfaces form and the precipitate is said to  be incoherent. 
Since the interfacial energy should be high for all interfacial planes, the y-plot 
and the equilibrium inclusion shape will be roughly spherical. It is possible 

(a 1 ( b) 
Fig. 3.41 (a) The unit cell of the 0' precipitate in A1-Cu alloys. (b) The unit cell of 
the matrix. (After J.M. Silcock. T.J. Heal and H.K. Hardy, Journal  o f  the Institute o f  
Metals. 82 (1953-1954) 239.) 

Fig. 3.42 Electron micrograph showing the Widmanstatten morphology of y '  pre- 
cipitates in an A1-3 atomic % Ag alloy. GP zones can be seen between the y'. e.g. at H 
( X  7000). (R.B. Nicholson and J .  Nutting. Acra Metallurgica. 9 (1961) 332.) 

that certain crystallographic planes of the inclusion lie at cusps in the y-plot so 
that polyhedral shapes are also possible. Such faceting, however, need not 
imply the existence of coherent or semicoherent interfaces. 

The 0(CuAI2) precipitate in AI-Cu alloys is an example of an incoherent 
precipitate, Fig. 3.44. It is found that there is an orientation relationship 
between the 0 and aluminium matrix but this is probably because 0 formq 
from the 0' phase and does not imply that 0 is semicoherent with the matrix. 

Precipitates on Grain Boundaries 
Rather special situations arise when a second-phase particle is located on a 
gram boundary as it is necessary to consider the formation of interfaces with 
two differently oriented grains.-Three possibilities now arise (Fig. 3.45): the 
precipitate can have (i) incoherent interfaces with both grains, (ii) a coherent 
or semicoherent interface with one grain and an incoherent interface with the 
other, or (iii) it can have a coherent or semicoherent interface with both 
grains. The first two cases are commonly encountered but the third possibility 
is unlikely since the very restrictive crystallographic conditions imposed by 
coherency with one grain are unlikely to yield a favourable orientation 
relationship towards the other grain. 
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Fig. 3.43 Electron microeraoh of a sinole rnherent nr nIote in A I - . ~  o I.. +a r.. I 

The minimization of interfacial energy in these cases also leads to planar 
semicoherent (or coherent) interfaces and smoothly curved incoherent inter- 
faces as before, but now the interfacial tensions and torques must also balance 
at the intersection between the precipitate and the boundary. (The shape that 
produces the minimum free energy can in fact be obtained by superimposing 
the y plots for both grains in a certain way1'.) An example of a grain- 
boundary preci;:tate is shown in Fig. 3.46. 

3.4.3 Second-Phase Shape: Misfit Strain Effects I 
Fully Coherent Precipitates 
It was pointed out in the previous section that the equilibrium shape of a 
coherent precipitate or zone can only be predicted from the y-plot when the 
misfit between the precipitate and matrix is small. When misfit is present the 
formation of coherent interfaces raises the free energy of the system on 
account of the elastic strain. fields that arise. If this elastic strain energy is 
denoted by AG, the condition for equilibrium becomes 

ZAiyi + AG, = minimum (3.35) 
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Fig. 3.44 Electron micrograph showlng incoherent particles of 0 in an AI-Cu alloy. 
(After G.A. Chadwick, Metallography of Phase Transformations, Butterworths, Lon- 
don, 1972, from C. Laird.) 

The origin of the coherency strains for a misfitting precipitate is demon- 
strated in Fig. 3.47. If the volume of matrix encircled in Fig. 3.47a is cut out 
and the atoms are replaced by smaller atoms the cut-out volume will undergo 
a uniform negative dilatational strain to an inclusion with a smaller lattice 
parameter, Fig. 3.47b. In order to produce a fully coherent precipitate the 
matrix and inclusion must be strained by equal and opposite forces as shown 
in Fig. 3.47~". 

If the lattice parameters of the unstrained precipitate and matrix are ap and 
a, respectively the unconstrained misfit B is defined by 

Semicoheren t 
\ 

~ncoherent 

(0 (b) (c 
Fig. 3.45 Possible morphologies for grain boundary precipitates. Incoherent inter- 
faces smoothly curved. Coherent or semicoherent interfaces planar. 
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Fig. 3.36 An a precipitate at a grain boundary triple point in an a - P Cu-In alloy. 
Interfaces A and B are incoherent while C is semicoherent ( x  310). (After G.A. 
Chadwick, Metallography of Phase Transformations. Butterworths, London. 1972.) 

However. the stresses maintaining coherency at the interfaces distort the 
precipitate lattice, and in the case of a spherical inclusion the distortion is 
purely hydrostatic, i.e. it is uniform in all directions. giving a new lattice 
parameter a b .  The in siru or constrained misfit E is defined by 

(a> (b )  ( c )  
Fig. 3.47 The  origin of coherency strains. The number of lattice points in the hole is 
conserved. 
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If the elastic moduli of the matrix and inclusion are equal and Poisson's 
is 113, E and 6 are simply related by 

In practice the inclusion has different elastic constants to the matrix. neverthe- 
less E still usually lies in the range 0.5 6 < E < 6. 

When the precipitate is a thin disc the in situ misfit is no longer equal in all 
directions, but instead it is large perpendicular to the disc and almost zero in 
the plane of the broad faces, as shown in Fig. 3.48. 

In general the total elastic energy depends on the shape and elastic prop- 
erties of both matrix and inclusion. However, if the matrix is elastically 
isotropic and both precipitate and matrix have equal elastic moduli, the total 
elastic strain energy AG, is independent of the shape of the precipitate, and 
assuming Poissons ratio (v) = 113 it is given by 

AG, = 4p.6* . V (3.39) 

where p is the shear modulus of the matrix and V is the volume of the 
unconstrained hole in the matrix. Therefore coherency strains produce an 
elastic strain energy which is proportional to the volume of the precipitate and 
increases as the square of the lattice misfit ( s2 ) .  If the precipitate and inclu- 
sion have different elastic moduli the elastic strain energy is no longer shape- 
independent but is a minimum for a sphere if the inclusion is hard and a disc if 
the inclusion is soft. 

The abwe comments applied :o isotropic matrices. In general. however. 
most metals are elastically anisotropic. For example, most cubic metals 

t 
E Large 

- € = O  - 
Fig. 3.48 For a coherent thin disc there is little misfit parallel to the plane of the disc. 
Maximum misfit is perpendicular to the disc. 
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(except molybdenum) are soft in (100) directions and hard in (111). 
The shape with a minimum strain energy under these conditions is a disc 
parallel to (100) since most of the misfit is then accommodated in the soft 
directions perpendicular to the disc. 

The influence of strain energy on the equilibrium shape of coherent precipi- 
tates can be illustrated by reference to zones in various aluminium-rich 
precipitation hardening alloys: A1-Ag, Al-Zn and A1-Cu. In each case zones 
containing 50-100% solute can be produced. 'Assuming the zone is pure 
solute the misfit can be calculated directly from the atomic radii as shown .. 
below. 

r 

Atom radius (A) A1: 1.43 Ag : 1.44 Zn:  1.38 Cu:  1.28 
Zone misfit (6) - +0.7% -3.5% - 10.5% 
Zone shape - sphere sphere disc 

When 6 < 5 %  strain energy effects are less important than interfacial energy 
effects and spherical zones minimize the total free energy. For 6 2 5%,  as in 
the case of zones in Al-Cu, the small increase in interfacial energy caused by 
choosing a disc shape is more than compensated by the reduction in coheren- 
cy strain energy. 

Incoherent Inclusions 
When the inclusion is incoherent with the matrix, there is no attempt at 
matching the two lattices and lattice sites are not conserved across the 
interface. Under these circumstances there are no coherency strains. Misfit 
strains can, however, still arise if the inclusion is the wrong size for the hole it 
is located in, Fig. 3.49. In this case the lattice misfit 6 has no significance and 
it is better to consider the volume misfit A as defined by 

where V is the volume of the unconstrained hole in the matrix and (V - AV) 
the volume of the unconstrained inclusion. (For a coherent spherical inclusion 

(a) (b) 
Fig. 3.49 The origin of misfit strain for an incoherent inclusion (no lattice matching). 
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the volume misfit and the linear lattice misfit are related by A = 36. But for a 
non-coherent sphere the number of lattice sites within the hole is not pre- 
served (see Fig. 3.49) and in this case A # 36.) When the matrix hole and 
inclusion are constrained to occupy the same volume the elastic strain fields 
again result as shown in Fig. 3.49b. The elasticity problem in this case has 
been solved for spheroidal inclusions which are described by the equation 

~ a b a r r o ' ~  gives the elastic strain energy for a homogeneous incompressible 
inclusion in an isotropic matrix as 

2 
AG, = -ph2 .  V .  f(c/a) 

3 

where p is the shear modulus of the matrix. Thus the elastic strain energy is 
proportional to the square of the volume misfit A'. The function f(c1a) is a 
factor that takes into account the shape effects and is shown in Fig. 3.50. 
Notice that, for a given volume, a sphere (cia = 1) has the highest strain 
energy while a thin, oblate spheroid (cia -+ 0) has a very low strain energy, 
and a.needle shape (cla = ca) lies between the two. If elastic anisotropy is 
included" it is fourid that the same general form for f(cia) is preserved 
and only small changes in the exact values are required. Therefore the 
equilibrium shape of an incoherent inclusion will be an oblate spheroid with 
cia value that balances the opposing effects of interfacial energy and strain 

Fig. 3.50 The variation of misfit strain energy with ellipsoid shape, f ( c l a ) .  (After 
F.R.N. Nabarro, Proceedings of the Royal Society A ,  175 (1940) 519.) 
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energy. When A is small interfacial energy effects should dominate and the 
inclusion should be roughly sphercial. 

Plate- Like Precip~tates 
Consider a plate-like precipitate with coherent broad faces and incoherent or 
semicoherent edges. Fig. 3.51. (The criterion for whether these interfaces are 
coherent or semicoherent is discussed in the following seciion.) Misfit across 
the b r ~ a d  faces then results in large coherency strains parallel to the plate, but 5 
no coherency strains will exist across the edges. The in situ misfit across the 2 
broad faces increases with increasing plate thickness which leads to greater 
strains in the matrix and higher shear stresses at the corners of the plates15. 

: 
Eventually it becomes energetically favourable for the broad faces to become 
semicoherent. Thereafter the precipitate behaves as an incoherent inclusion 

-. 

with comparatively little misfit strain energy. An example of a precipitate that 
can be either coherent or semicoherent in this way is 0' in AI-Cu alloys (see 
Section 5.5.1). . I 
3.4.4 Coherency Loss 

Precipitates with coherent interfaces have a low interfacial energy, but in the 
presence of misfit, they are associated with a coherency strain energy, O n  the 
other hand, if the same precipitate has non-coherent interfaces it will have a 
higher interfacial energy but the coherency strain energy will be absent. Let 
us now consider which state produces the lowest total energy for a spherical 
precipitate with a misfit 6 and a radius r. 

The free energy of a crystal containing a fully coherent spherical precipi- 
tate has contributions from (i) the coherency strain energy given by 
Equation 3.39, and (ii) the chemical interfacial energy yc, . The sum of these 
two terms is given by 

If the same precipitate has incoherent or semicoherent interf-ces that com- 
pletely relieve the unconstrained misfit there will be no misfit energy, but 
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there will be an extra structural contribution to the interfacial energy y,, . The 
total energy in this case is given by 

AG(non-coherent) = 0 + 4.rrr2(yCh + y,,) (3.44) 

For a given 6, AG (coherent) and AG (non-coherent) vary with r as shown 
in Fig. 3.52. When small, therefore, the coherent state gives the lowest total 
energy. while it is more favourable for large precipitates to be semicoherent 
or incoherent (depending on the magnitude of 6). At the critical radius (refit) 
SG(coherent) = AG(non-coherent) giving 

If we assume that 6 is small. a semicoherent interface will be formed with a 
structural energy y,, x 6. In which case 

If a coherent precipitate grows, during ageing for example, it should lose 
coherency when it exceeds rcn,. However, as shown in Fig. 3.53 loss of 
coherency requires the introduction of dislocation loops around the precipi- 
tate and in practice this can be rather difficult to achieve. Consequently 

. coherent precipitates are often found with sizes much larger than r,,,. 
There are several ways in which coherency may be lost and some of them 

are illustrated in Fig. 3.54. The most straightforward way is for a dislocation 
loop to be punched out at the interface as shown in Fig. 3.54a. This requires 
the stresses at the interface to exceed the theoretical strength of the matrix. 
However, it can be shown that the punching stress p, is independent of the 
precipitate size and depends only on the constrained misfit E. If the shear 
modulus of the matrix is p 

'cri t 
I Fig. 3.52 The total energy of matrix + precipitate v .  precipitate radius for spherical 

1 
I 
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(a) (b) (c) 
Fig. 3.53 Coherency loss for a spherical precipitate. (a) Coherent. (b) Coherency 
strains replaced by dislocation loop. (c) In perspective. 

Dis[ocation Matrix 

Precipitate 

dislocation wraps 
around 

dislocation 

New dislocation Misfit 
as plate dislocation 

, . lengthens 

( c )  (d 1 
Fig. 3.54 Mechanisms for coherency loss. (a) Dislocation punching from interface. 
(b) Capture of matrix dislocation. (c) Nucleation at edge of plate repeated as plate 
lengthens. (d) Loop expansion by vacancy condensation in the precipitate. 

~t has been estimated that the critical value of E that can cause the theoretical 
of the matrix to be exceeded is approximately given by 

~ , f i ~  = 0.05 (3.48) 

consequently precipitates with a smaller value of E cannot lose coherency by 
this mechanism, no matter how large. 

There are several alternative mechanisms but all require the precipitate to 
reach a larger size than r,,l6. For example, the precipitate can attract a matrix 
dislocation with a suitable Burgers vector, and cause it to wrap itself around 
the precipitate, Fig. 3.54b. This mechanism is difficult in annealed specimens 
but is assisted by mechanical deformation. 

In the case of plate-like precipitates the situation is different and it is now 
possible for the high stresses at the edges of the plates to  nucleate dislocations 
by exceeding the theoretical strength of the matrix. The process can be 
repeated as the plate lengthens So as to maintain a roughly constant interdis- 
location spacing, Fig. 3 .54~.  Another mechanism that has been observed for 
plate-like precipitates is the nucleation of dislocation loops within the 
precipitate17. Vacancies can be attracted to  coherent interfaces1' and 'con- 
dense' to form a prismatic dislocation loop which can expand across the 
precipitate, as shown in Fig. 3.54d. 

3.4.5 Glissile Interfaces 
. . 

In the treatment of semicoherent interfaces that has been presented in the 
previous sections it has been assumed that the misfit dislocations have Bur- 
gers vectors parallel to the interfacial plane. This type of interface is referred 
to as epitaxial. Glide of the Interfacial dislocations cannot cause the interface 
to advance and the interface is therefore non-glissile. It is however possible, 
under certain circumstances, to have glissile semicoherent interfaces which 
can advance by the coordinated glide of the interfacial dislocations. This is 
possible if the dislocations have a Burgers vector that can glide on matching 
planes in the adjacent lattlces as illustrated in Fig. 3.55. The slip planes must 
be continuous across the ~nterface, but not necessarily parallel. Any gliding 
dislocation shears the lattice above the slip plane relative to that below by the 
Burgers vector of the dislocation. In the same way the gliding of the disloca- 

, tions in a glissile interface causes the receding lattice, a say, to be sheared into 
the P-structure. . . . ' 

As an aid to understanding the nature of glissile bound&jes consider two 
simple cases. The first is the low-angle symmetric tilt bod&ry, shown in 
Figs. 3.7a and 3.11. In this case the Burgers vectors are all pure edge in 
nature and as they glide one grain is rotated into the other grain. Strictly 
Speaking this is not an interphase interface as there is no change in crystal 
structure, just a rotation of the lattice. A slightly more complex example of a 
glissile interface between two different lattices is that which can arise between 
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Interfacial d islocations 

Fig. 3.55 The nature of a glissile interface. 

the cubic and hexagonal close-packed lattices. To understand the structure of 
this interface req;res a slight digression to consider the nature of Shockley 
partial dislocations. 

Both fcc and hcp lattices can be formed by stacking close-packed layers of 
atoms one above the other. If the centres of the atoms in the first layer are 
denoted as A-positions, the second layer of atoms can be formed either by 
filling the B-positions, or C-positions as shown in Fig. 3.56. Either position 
produces the same atomic configuration at this stage. Let us assume therefore 
that the atoms in the second layer occupy B-sites. There are now two non- 
equivalent ways of stacking the third layer. If the third layer is placed directly 
above the first layer the resulting stacking sequence is ABA and the additiotl 
of further layers in the same sequence ABABABABAB . . . has hexagonal 
symmetry and is known as a hexagonal close-packed arrangement. The unit 
cell and stacking sequence of this structure are shown in Fig. 3.57. The 
close-packed plane can therefore be indexed as (0001) and the close-packed 
directions are of the type (1120). 

If the atoms in the third layer are placed on the C-sites to form ABC and 
the same sequence is then repeated, the stacking sequence becomes 
ABCABCAB . . . which produces a cubic close-packed arrayement  with a 
face-centred cubic unit cell as shown in Fig. 3.58. The close-packed atomic 
planes in this case become the (111) type and the close-packed directions the 
(110) type. 

In terms of the fcc unit cell the distance between the B- and C-sttes 
measured parallel to the close-packed planes corresponds to vectors of the 
type 2 (112). Therefore if a dislocation with a Burgers vector 8 [ l l i ]  glides 
between two (111) layers of an fcc lattice, say layers 4 and 5 in Fig. 3.59, all 
!ayers above the glide plane ( 5 ,  6, 7 . . . )  will be shifted relative to those 
below the glide plane by a vector ; [112]. Therefore all atoms above the glide 
plane in B-sites are moved to C-sites, atoms in C-sites move to A-sites, and . 
atoms in A-sites move to B-sites, as shown in Fig. 3.59. This type of disloca- 
tion with b = 8(112) is known as Shockley partial dislocation. They are called 
partial dislocations because vectors of the type ~(112) do not connect lattice 
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Fig. 3.56 The location of A. B and C sites in a close-packed layer of atoms. See also 
Figs. 3.57 and 3.58. (After J.W. Martin and R.D. Doherty, Stability of Microstructure 
in Metallic Systems, Cambridge University Press, Cambridge, 1976.) 

z 

X 

Fig. 3.57 A hexagonal close-packed unit cell and stacking sequence. 
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6 r 

D C 
Fig. 3.58 A cubic close-packed structure showing fcc unit cell and stacking sequence. 

(a) (b)  
Fig. 3.59 (a) An edge dislocation with a Burgers vector b = f[ l l i]  on (111). (Shock- 
ley partial dislocation.) (b) The same dislocation locally changes the stacking sequence 
from fcc to hcp. 

points in the fcc structure. The gliding of Shockley partial dislocations there- 
fore disrupts the crystal lattice and causes a stacking fault over the area of 
glide plane swept by the dislocation. Figure 3.59 shows that the nature of this 
fault is such that four layers of material are converted into a hexagonal 
close-packed sequence CACA, Therefore in thermodynamically stable fcc 
lattices the stacking fault is a region of high free energy. On  the other hand if 
the fcc lattice is only metastable with respect to the hcp structure the stacking 
fault energy will be effectively negative and the gliding of Shockley partial 
dislocations will decrease the free energy of the system. 

Consider now the effect of passing another 31121 dislocation between 
layers 6 and 7 as shown in Fig. 3.60. It can be seen that the region of hcp 
stacking is now extended by a further two layers. Therefore a sequence of 
Shockley partial dislocations between every other (111) plane will create a 
glissile interface separating fcc and hcp crystals, Fig. 3.61. 

The glide planes of the interfacial dislocations are continuous from the fcc - to the hcp lattice and the Burgers vectors of the dislocations, which neces- 
sarily lie in the glide plane, are at an angle to the macroscopic interfacial 
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Fig. 3.60 Two Shockley partial dislocations on alternate (ill) planes create six 
layers of hcp stacking. 

Macroscopic 
interface plan- 

, 

Fig 3.61 An arra) of Shocklcy partial dislocations forming a glissile interface be- 
tween fcc and hcp crystals. 

plane. If the dislocation network glides into the fcc crystal it results in a 
transformation of fcc + hcp. whereas a hcp - fcc transformation can be 
brought about by the reverse motion. Macroscopically the interfacial plane 
l~es  at an angle to the (111) or (0001) planes and need not be parallel to any 
low-index plane, i . e  it can be irrational. Microscopically, however, the inter- 
face is stepped into planar coherent fdcets parallel to ( l l l ) fcc and (OOO1)h,, 
with a step height the thickness of two closed-packed layers. 

An important characteristic of glissile dislocation interfaces is that they can 
produce a macroscopic shape change in the crystal. This is illustrated for the,  
fcc - hcp transformation in Fig. 3.62a. If a single fcc crystal is transformed 
into an hcp crystal by the passage of the same Shockley partial over every 
(ill) plane then there is a macroscopic shape change, in this case a simple 
shear. as shown, There are, however, two other Shockley partials whlch can 
also be used to transform fcc -+ hcp stacking, and if the transformation is 
achieved using all three partials in equal numbers there will be no overall 

I 

I shape change, Fig. 3.62b. 
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-- 1 - 
(a> ." fcc hcp 

Fig. 3.62 Schematic representation of the different ways of shearing cubic close- 
packed planes into hexagonal close-packed (a) using only one Shockley partial, 
(b) using equal numbers of all three Shockley partials. 

The formation of martensite in steel and other alloy systems occurs by the 
motion of glissile-dislocation interfaces. These transformations are character- 
ized by a macroscopic shape change and no change in composition. Usually, 
however, the interface must be more complex than the fcc/hcp case discussed 
above, although the same principles will still apply. Martensitic transfoma- 
tions are dealt with further in Chapter 6. 

Many of the ideas that were discussed with regard to solid/vapour interfaces 
can be carried over to  solid/liquid interfaces, only now the low density vapour 
phase is replaced by a high density liquid, and this has important conse- 
quences for the structure and energy of the interface. 

There are basically two types of atomic structure for solid/liquid interfaces. 
One is essentially the same as the solid/vapour interfaces described in 
Section 3.1, i.e. an atomically flat close-packed interface, Fig. 3.63a. In this 
case the transition from liquid to solid occurs over a rather narrow transition 
zone approximately one atom layer thick. Such interfaces can also be de- 
scribed as smooth, faceted, or sharp. The other type is an atomically diffzae 
interface, Fig. 3.63b, in which the transition from liquid to solid occurs over 
several atom layers. Thus there is a gradual weakening of the interatomic 
bonds and an increasing disorder across the interface into the bulk liquid 

Liquid 

Liquid 
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Liquid 

(b) Sol id 
I Fig. 3.63 Solid/liquid interfaces: (a) atomically smooth. (b) and (c) atomically 

rough. or diffuse interfaces. (After M.C. Flemings. Solidr/ication Procerrmg, 
McGraw-Hill, New York. 1974.) 

phase; or in thermodynamic terms, enthalpy and entropy gradually change 
from bulk solid to bulk liquid values across the interface as shown in 
Fig. 3.64. When the solid and liquid are in equilibrium (at T,,,) the high 
enthalpy of the liquid is balanced by a high entropy so that both phases have 
the same free energy. In the interface. however, the balance is disturbed 
thereby giving rise to an excess free energy. y,,. 

Diffuse interfaces are also known as rough or non-faceted. The dotted line 

Distance across inter face 
Fig 3.64 The variation of H. -TmS and G across the solid/liquid interface at the 
equilibrium melting temperature T, ,  showing the origin of the solid/liquid interfacial 
energy y.  
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$4 in Fig. 3.63b is an attempt to show the rough nature of the interface b~: 
dividing the atoms into the 'solid' and 'liquid'. If this is done the schemati;$ 
representation of Fig. 3 . 6 3 ~  can be used. % 

The type of structure chosen by a particular system will be that which 
minimizes the interfacial free energy. According to a simple theory developed 
by ~ a c k s o n ~ '  the optimum atomic arrangement depends mainly on the latent 

r heat of fusion (Lf) relative to the melting temperature (T,). This theory , 

predicts that there is a critical value of Lf/Tm = 4 R above which the inter- 
face should be flat and below which it should be diffuse. Most metals have 
Lf/T, = R and are therefore predicted to have rough interfaces. On the 
other hand some intermetallic compounds and elements such as Si. Ge,  Sb as 
well as most non-metals have high values of L,/T, and generally have flat 
close-packed interfaces. If the model is applied to solid/vapour interfaces L, 
(the heat of sublimation) should be used instead of Lf and then flat surfaces 
are predicted even for metals, in agreement with observations. 

If the bioken-bond model is applied to the calculation of the energy of a 
solid/liquid interface it can be argued that the atoms in the interface are 
roughly half bonded to the solid and half to the liquid so that the interfacial 
enthalpy should be -0.5 Lf/Na per atom. This appears to compare rather 
favourably with experimentally measured values of ysL which are -0.45 
Lf/N, per atom for most metals. However the agreement is probably+ 
only fortuitous since entropy effects should also be taken into account, 
Fig. 3.64. 

Some experimentally determined values of y,, are listed in Table 3.4. 

Table 3.4 Experimentally Determined Solid/Liquid Interfacial Free 
Energies 

Values selected from D. Turnbull. Journal of Applied P.$gsio. Vol. 21: 
1022(1950). 

Material Tm/K Y S L / ~ J  m-2 

Sn 505.7 54.5 
Pb 600.7 33.3 
A1 931.7 93 
A 8 1233.7 126 
Au 1336 132 
Cu 1356 177 
Mn 1493 206 
Ni 1325 255 
Co 1763 234 
Fe 1803 204 
Pd ,1828 209 
Pt 2043 240 

Interface migration 17 1 

These values were determined by indirect means from homogeneous nuclea- 
tion experiments (see Chapter 4) and may contain systematic errors. Com- 
parison of Tables 3.2 and 3.3 indicates ysL = 0 . 3 0 ~ ~  (for a grain boundary). 
More direct experiments" imply that ysL = 0.45 y, (= 0.15 ysv). Another 
useful empirical relationship is that 

Ysv ' YSL + YLV 

which means that for a solid metal close to Tm it is energetically favourable for 
the surface to melt and replace the solid/vapour interface with solid/liquid 
and liquidJvapour interfaces. 

It is found experimentally that the free energies of diffuse interfaces do not 
vary with crystallographic orientation, i.e. y-plots are spherical2'. Materials 
with atomically flat interfaces, however, show strong crystallographic effects 
and solidify with low-index close-packed facets. Fig. 3.65. 

3.5 Interface Migration 

The great majority of phase transformations in metals and alloys occur by a 
process known as nucleation and growth, i.e. the new phase (P) first appears 

Fig. 3.65 Examples of soli&liquid interface structure in metallic systems. (a) Non- 
faceted dendrites of silver in a copper-silver eutectic matrix (X  330); (b) faceted 
cuboids of P'-SnSb compound in a matrix of Sn-rich material ( X  110). (After G.A. 
Chadwick, Metallography of Phase Transformations, Butterworths, London, 1972.) 



Crystal interfaces and microstructure 

at certain sites within the metastable parent (cr) phase (nucleation) and this is 
subsequently followed by the growth of these nuclei into the surrounding 
matrix. In other words, an interface is created during the nucleation stage 
and then migrates into the surrounding parent phase during the growth stage. 
This type of transformation is therefore essentially heterogeneous, i.e. at any 
time during the transfofmation the system can be divided into parent and 
product ~ h * s e s .  The nucleation stage is very important and determines many 
features of the transformation. However, most of the transformation product 
is formed during the growth stage by the transfer of atoms across the moving 
parent/product interface. 

There are basically two different types of interface: glissile and non-glissile. 
Glissile interfaces migrate by dislocation glide that results in the shearing of 
the parent lattice into the product. The motion of glissile interfaces is rela- 
tively insensitive to temperature and is therefore known as athermal migra- 
tion. Most interfaces are non-glissile and migrate by the more or less random 
jumps of individual atoms across the interface in a similar way to the migra- 
tion of a random high-angle grain boundary. The extra energy that the atom 
needs to break free of one phase and attach itself to the other is supplied by 
thermal activation. The migration of non-glissile interfaces is therefore ex- 
tremely sensitive to temperature.. 

A convenient way of classifying nucleation and growth transformations is to 
divide them according to the way in which the product grows. Therefore two 
major groupings can be made by dividing the transformations according the 
whether growth involves glissile or non-glissile interfaces. Transformations 
produced by the migration of a glissile interface are referred to as military_ 
transformations. This emphasizes the analogy between the coordinated mo- 
tion of atoms crossing the interface and that of soldiers moving in ranks on the 
parade ground. In contrast the uncoordinated transfer of atoms across a 
non-glissile interface results in what is known as a civilian transformation. 

During a military transformation the nearest neighbours of any atom are 
essentially unchanged. Therefore the parent and product phases must have 
the same composition and no diffusion is involved in the transformation. 
Martensitic transformations belong to this group. Glissile interfaces are also 
involved in the formation of mechanical twins and twinning therefore has 
much in common with martensitic transformations. 

During civilian transformations the parent and product may or may not 
have the same composition. If there is no change in composition, e.g. the 
a -, y transformation in pure iron, the new phase will be able to grow as fast 
as the atoms can cross the interface. Such transformations are said to be 
interface controlled. When the parent and product phases have different 
compositions, growth of the new phase will require long-range diffusion. For 
example, the growth of the B-rich P phase into the A-rich a phase shown in 
Fig. 3.66 can only occur if diffusion is able to transport A away from, and B 
towards the advancing interface. If the interfacial reaction is fast, i.e. the 
transfer of atoms across the interface is an easy process, the rate at which the 
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Fig. 3.66 Composition changes in a substitutional ;rlloy caused by interface migra- 
tion when the two adjoining phases have different compositions. 

/3 phase can grow will be governed by the rate at which lattice diffusion can 
remove the excess atoms from ahead of the interface. This is therefore 
known as diffusion-controlled growth. However, if for some reason the 
~nterfacial reaction is slow, the growth rate will be governed by the interface 
kinetics. Under these circumstances growth is said to be intc,joce controlled 
and a very small concentration gradient in the matrix is sufficient to provide 
the necessary flux of atoms to and from the interface. It is also possible that 
the interface reaction and diffusion process occur at similar rates in which 
case the interface is said to migrate under mixed control. 

The above discussion of interface migration and classification of nucleation 
and growth transformations (also known as heterogeneous transformations) 
is summarized in Table 3.5, together with some examples of each class. This 
classification is adapted from that first proposed by Non-glissile 
interfaces can be considered to include solid/liquid and solid/vapour inter- 
faces as well as solid/solid (coherent, semicoherent and incoherent) inter- 
faces. Therefore solidification and melting can be included in the classification 
of civilian transformations under diffusion control (although the concept of 
' i i f l l ~ i m 7  mqlr qnlnetirne5 need to be extended to include the diffusion of 
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/ heat). Condensation and evaporation at a free solid surface are also included 
1 they will not be treated in any depth25. 
I While many transformations can be easily classified into the above system. 

[here are other transformations where difficulties arise. For example, the 

i balnite transformation takes place by thermally activated growth. but it also 
produces a shape change simjlar to that produced by the motion of a glissile 
lnterface. At  present the exact nature of such transformations is unresolved. 

There is a small class of transformations, known as homogeneous trans- 
formations that are not covered by Table 3.5. This is because they do not 
occur by the creation and migration of an interface, i.e. no nucleation stage is 
involved. Instead the transformation occurs homogeneously throughout the 
parent phase. Spinodal decomposition and certain ordering transformations 
are examples of this category and they will be discussed in Chapter 5. 

3.5.1 Diffusion-Controlled and Interface-Controlled 

Let us now look more closely at the migration of an interface separating two 
phases of different composition. Consider for simplicity a 0 precipitate of 
almost pure B growing behind a planar interface into A-rich a with an initial 
composition X,, as illustrated in Fig. 3.67. As the precipitate grows, the a 
adjacent to the interface becomes depleted of B so that the concentration of 
B in the a phase adjacent to the interface X ,  decreases below the bulk 
concentration, Fig. 3.67a. Since growth of the precipitate requires a net flux 
of B atoms from the a to the p phase there must be a positive driving force 
across the interface A& as shown in Fig. 3.67b. The origin of this chemical 
potential difference can be seen in Fig. 3 .67~ .  Clearly for growth to occur 
the interface composition must be greater than the equilibrium concen- 
tration ,Y,. By analogy with the migration of a high-angle grain boundary 
(Section 3.3.4) the net flux of B across the interface will produce an inter- 
face velocity v given by 

where M is the interface moi;;lcy and V ,  is the molar volume of the p phase. 
The corresponding flux across the interface will be given by 

J ;  = - M A ~ ~ I V ~  moles of B m-' s-' (3.50) 

(The negative sign indicates that the flux is in the negative direction along 
the x-axis.) As a result of the concentration gradient in the a phase there 
will also be a flux of B atoms towards the interface J g  given by 

J g  = -.is) 
ax interface 

If a steady state exists at the interface these two fluxes must balance, i.e. 
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Fig. 3.67 Interface migration with long-range diffusion. (a) Composition profiles 
across the interface. (b) The origin of the driving force for boundary migration into 
the a phase, (c) A schematic molar free energy diagram showing the relationship 
between Ap',, Xi and X,. (Note that the solubility of A in the P phase is so low that 
the true shape of the free energy curve cannot be drawn on this scale.) 
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1f the interface mobility is very high, e.g. an incoherent interface, A& can 
be very small and Xi = X,. Under these circumstances there is effectively 
local equilibrium at the interface. The interface will then move as fast as 
diffusion allows, and growth takes place under diffusion control. The growth 
rate can then be evaluated as a function of time, say, by solving the diffusion 
equation with the boundary conditions Xi  = X e  and X B ( x )  = XO. Simple 
examples a f  this problem will be given in subsequent chapters in connection 
with solidification and diffusive transformations in solids. 

When the interface has a lower mobility a greater chemical potential 
difference (A&,) is required to drive the interface reaction and there will be a 
departure from local equilibrium at the interface. The value of Xi that is 
chosen will be that which enables Equation 3.52 to be satisfied and the 
interface will then be migrating under mixed control. In the limit of a very low 
mobility it is possible that X,  = Xo and ( a C / a ~ ) , , , , ~ ~ ~ ~  is almost zero. Under 
these conditions growth is said to be interface controlled and there is a 
maximum possible driving force A& across the interface. 

It can easily be shown that for a dilute or ideal solution, the driving force 
A& is given by 

provided ( X ,  - X,) << Xe (see exercise 3.20). Thus the rate at which the 
interface moves under interface control should be proportional to the deviat~on 
of the interface concentration from equilibrium ( X I  - X,). 

Let us now consider the question of why interface control should occur at 
all when the two phases have a different composition. At first sight it may 
appear that interface control should be very unlikely in practice. After all, the 
necessary long-range diffusion involves a great many atom jumps while the 
interface reaction essentia!ly involves only one jump. Furthermore the activa- 
tion energy for diffusion across the interface is not likely to be greater than for 
diffusion through the lattice-quite the contrary. On this basis, therefore, all 
interface reactions should be very rapid in comparison to lattice diffusion, i.e. 
all growth should be diffusion controlled. In many cases the above arguments 
are quite valid, but under certain conditions they are insufficient and may 
even be misleading. 

Consider again the expression that was derived for the mobility of a 
high-angle grain boundary, Equation 3.22. A similar expression can be de- 
rived for the case of an interphase interface with A& replacing AG, (see 
exercise 3.19). It can be seen, therefore, that the above arguments neglect the 
effect of the accommodation factor ( A ) ,  i.e. the probability that an atom 
crossing the boundary will be accommodated on arrival at the new phase. It is 
likely that incoherent interfaces and diffuse solid/liquid interfaces, as high- 
angle grain boundaries, will have values of A close to unity. These interfaces 
should therefore migrate under diffusion control. However, as will be demon- 
strated later, it is possible for certain types of coherent or semicoherent 
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interfaces, as well as smooth solid/liquid interfaces to have such low values 
A that some degree of interface control is easily possible. f 

w 
If two phases with different compositions, but the same crystal structure arer$ 

-$ separated by a coherent interface as shown in Fig. 3.32a, the icterface can, 
advance by the replacement of the a atoms in plane AA' with f3 atoms by 
normal lattice diffusion involving vacancies. There is no need for a separate ': 
interface reaction and the migration of this type of interface is-therefore 
diffusion controlled. This situation arises during the growth of GP zones for ' 
e x a m p l e v h e  same arguments will apply if the interface is semicoherent 
provided the misfit dislocations can climb by vacancy creation or annihilation. 

Quite a different situation arises when the two phases forming a coherent or 
semicoherent interface have different crystal structures. Consider for example 
the coherent close-packed interface between fcc and hcp crystals, Fig. 3.68a. 
If growth of the hcp phase is to occur by individual atomic jumps (i.e. 
so-called continuous growth) then an atom on a C site in the fcc phase must 
change into a B position as shown in Fig. 3.68b. It can be seen, however, that 
this results in a very high energy, unstable configuration with two atoms 
directly above each other on B sites. In addition a loop of Shockley partial 
dislocation is effectively created around the atom. An atom attempting such a 
jump will, therefore, be unstable and be forced back to its original positicm. 
The same situation will be encountered over the coherent regions of semi-. 
coherent interfaces separating phases with different crystal structures. 
Solid/vapour as well as smooth solid/liquid interfaces should behave in a 
similar manner, though perhaps to a lesser extent. If a single atom attaches 
itself to a flat close-packed interface it will raise the interfacial free energy and 
will therefore tend to detach itself again. It can thus be seen that continuous 
growth at the above type of interfaces will be very difficult, i.e. very low 
accommodation factors and low mobility are expected. 

A A A  A A A  

f.c.c. 8 B 8 B B B  
c c c  
A A A  A A A  

h.c .~ .  I3 B B B B B  
A A A  A A A  

(a > ( b )  
Fig. 3.68 Problems associated with the continuous growth of coherent interfaces 
between phases with different crystal structures. (After J.W. Martin and R.D. Doher- 
ty, Stabiliry of Microstructure in Metallic Systems, Cambridge University Press, Cam- 
bridge, 1976.) 

Interface migration 

A  B 

C D - 
E F 

Fig. 3.69 The ledge mechanism. 

A way of avoiding the difficulties of continuous growth encountered in the 
above cases is provided by the 'ledge' mechanism shown in Fig. 3.69. If the 
interface csctains a series of ledges BC, DE normal to the facets AB, CD, 
EF, atoms will be able to transfer more easily across the ledges than the 
immobile facets and interface migration is therefore effected by the transverse 
migration of the ledges as shown. 

Growth ledges have in fact been seen with the aid of the electron micro- 
scope on the surfaces of growing precipitates. For example Fig. 3.70 shows 
an electron micrograph and a schematic drawing of the growth ledges on an 
Mg2Si plate in an Al-Mg-Si alloyz7. Note that growth ledges are usually 
hundreds of atom layers high. 

When existing ledges have grown across the interface there is a problem of 
generating new ones. In Fig. 3.70 the source of new ledges is thought to be 
heterogeneous nucleation at the point of contact with another precipitate. 
The same problem will not be encountered if the precipitate is dissolving, 
however, since the edges of the plate will provide a continual source of 
ledges2'. It is thought that once nucleated, the rate at which ledges migrate 
across the planar facets should be diffusion controlled, i.e. controlled by how 
fast diffusion can occur to and from the ledges. However, the problem of 
nucleating new ledges may often lead to a degree of interface control on the 
overall rate at which the coherent or semicoherent interface can advance 
perpendicular to itself. 

Growth ledges are by no means restricted to solid/solid systems. The first 
evidence for the existence of growth ledges came from studies of solid/vapour 
interfaces. They are also found on faceted solid/liquid interfaces. 

The mechanism of interface migration can have important effects on the 
shape of second-phase inclusions. It was shown in Section 3.4.2 that in the 
absence of strain energy effects the equilibrium shape of a precipitate should 
be determined by the relative energies of the bounding interfaces. For exam- 
ple, a partially coherent precipitate should be disc or plate shaped with an 
aspect ratio of y,/y, where y, is the energy of the incoherent edges and y, is 
the energy of the coherent or semicoherent broad faces. However, the pre- 
cipitate shape observed in practice may be prevented from achieving this 
equilibrium shape by the relative rates at which the coherent and incoherent 
interfaces can migrate. For example if there are problems of ledge nucleation 
the easier growth of the incoherent plate edges may lead to a larger aspect 
ratio than the equilibrium. 
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Fig. 3.70 (a) Growth ledges at an MgzSi plate in Al-1.5 wt% Mg2Si, solution treated 
and aged 2 h at 350 "C. Dark field micrograph. (b) Schematic diagram of (a) showing 
ledges on Mg2Si plate. (After G.C. Weatherly, Acta Metallurgica, 19 (1971) 181.) 
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Exercises 

3.1 Use the method of Section 3.1 to estimate the surface energy of {Ill}, 
;200) and (220) surface planes in an fcc crystal. Express your answer in 
J/surface atom and in ~ / m l .  

3.2 Differentiate Equation 3.8 to obtain the slope of the Esv - 0 curve at . 
t) = 0. 

3 .  If a two-dimensional rectangular crystal is bocnded by sides of lengths 11 
and I ,  show by differentiat~on that the equilibrium shape is given by 

11 - Y2 - - -  
1'- Y1 

t 

where y, and y, are the energies of the sides 1, and I ,  respectively. (The 
" 

area of the crystal 1,12 is constant.) 
3.; (a) Measure 0 for the low-angle tilt boundary in Fig. 3.11. 1 

(b) Determine the Burgers vector of the interface dislocations by $ 
making a Burgers circuit around one of the dislocations. Does the -2 
mean spacing of the dislocations agree with that predicted by 
Equation 3.9? 

3 5 Explain why grain boundaries move towards their centre of curvature 
during grain growth but away from their centre of curvature during 
recrystallization. 

3.6 (a) Suppose a recrystallized, dislocation-free grain is growing into-; 
deformed matrix containing a dislocation density of 1016 m 
(i.e. loL6 m/m3). If the dislocations have an energy of pb2/4 J 

calculate the pulling force acting on the recrystallized grain bound- 
ary. (Assume a shear modulus p = 10'' N m-2 and a Burgers vec- 
tor b = 0.28 nm.) 

(b) If the recrystallized grains grow from spherically shaped nuclei, 
what is the diameter of the smallest nucleus that can expand into 
the surrounding matrix? (Assume a grain boundazy energy of 
0.5 J m-2.) 

-3.7 Look up the equilibrium phase diagrams for the Al-Fe and A1-Mg 
systems. On the basis of these diagrams would you expect the grain 
boundary enrichment of Fe in dilute A1-Fe alloys to be greater or less 
than for Mg in dilute Al-Mg alloys at the same temperatures? 

3.8 Derive Equation 3.31. 
3.9 When a precipitate is surrounded by a spherical interface of radius r it is 

subjected to a pressure above that of the matrix by 2ylr. Consider a 
faceted precipitate with an equilibrium shape that of a square plate with 
a thickness of 2x, and width 2x2. If the free energies of the broad faces 
and edges are respectively y, and y2,  show that the broad faces exert a 
pressure on the precipitate ( A P )  given by 

(Hint: consider the total force acting on the periphery of the broad 
faces.) Show that the same result can be obtained by considering the 
pressure exerted by one of the edge faces of the plate. 

3.10 Explain the structure and energies of coherent, semicoherent and in- 
coherent interfaces, with particular referenct to the role of orientation 
relationships and misfit. 

3.1 1 Fe-rich GP zones can form in dilute AI-Fe alloys. Given that the atomic 
radii are 1.43 A for Al and 1.26 A Fe, would you expect the zones to be 
spherical or disc shaped? 

3 13 Mg can dissolve in Al to form a substitutional solid solution. Mg atoms 
are, however, bigger than Al atoms and each Mg atom therefore 
distorts the surrounding Al lattice, i.e. a coherency strc:., field effec- 
tively exists around each Mg atom. Using Equation 3.39 estimate the 
rnlsfit strain energy. Express the answer in kJ mol-' and eV atom-'. 
(The shear modulus of Al = 25 GPa, the radius of an Al atom = 1.43 

' 

A. the radius of a Mg atom = 1.60 A.) What assumptions are implicit 
In this calculation? 

13 Explain why fully coherent precipitates tend to lose coheiency as they 
I grow. 

' 5  Show that the passage of a Shockley partial dislocation over every one of 
a given set of close-packed planes in fcc crystals produces a twin of the 
original crystal. ' 15 If the ledges on the planar semicoherent interface in Fig. 3.69 move with 
a transverse velocity u what will be the overall velocity of the interface 
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perpendicular to CD. Assume an infinite array of identical ledges of 
height (BC) = h and spacing (CD) = 1. 

3.16 Using arguments similar to those used in connection with Fig. 3.68 show 
that a coherent twin boundqry in an fcc metal will not migrate by the 
random jumping of atoms across the interface. Suggest an interfacial 

- structure that would result in a highly mobile interface (see 
s exercise 3.15). 4- 

3 17  ha; are the most likely atomic processes invol~ed in the migration of 
(i) solid/vapour interfaces, (ii) solid/liquid interfaces in nonmetals, 
(iii) solid/liquid interfaces in metals. 

3 18 By using a similar approach to the derivation of Equation 3.20 for a ' 

high-angle grain boundary, show that the net flus of B atoms across the 
a / p  interface in Fig. 3.67 is given by 

3. :9 Derive Equation 3.53 for an ideal or dilute solution. 
3 . 3 )  If an alloy containing P precipitates in an a matrix is given a solution 

treatment by heating to a temperature above the equilibrium P solvus 
the precipitates will dissolve. (See for example the phase diagram in 
Fig. 1.36.) Show with diagrams how the composition will change in the 
vicinity of an a / p  interface during dissolution if the dissolution is 
(i) diffusion controlled, (ii) interface controlled. (iii).under mixed con- 
trol. Indicate compositions by reference to a phase diagram where 
appropriate. 

4 
Solidification 

Solidification and melting are transformations between crystallographic and 
non-crystallographic states of a metal or alloy. These transformations are of 
course basic to such technological applications as ingot casting, foundry 
casting, continuous casting, single-crystal growth for semiconductors, 
directionally solidified composite alloys, and more recently rapidly solidified 
alloys and glasses. Another important and complex solidification and 
melting process, often neglected in textbooks on solidification. concerns 
the process of fusion welding. An understanding of the mechanism of 
solidification and how it is affected by such parameters as temperature 
distribution, cooling rate and alloying. is important in the control of mech- 
anical properties of cast metals and fusion welds. It is the objective of this 
chapter to develop some of the basic concepts of solidification. and apply 
these to some of the more important practical processes such as ingot 
casting, continuous casting and fusion welding. We then consider a few 
practical examples illustrating the casting or welding of engineering alloys in 
the light of the theoretical introduction. 

4.1 Nucleation in Pure Metals 

If a liquid is cooled below its equllibrlum melting temperature (T,) there is a 
driving force for solidification (GL - G S )  and it might be expected that the 
liquid phase would spontaneously solidify. However, this is not always the 
case. For example under suitable conditions liquid nickel can be undercooled 
(or supercooled) to 250 K below T,,, (1453 "C) and held there indefinitely 
without any transformation occurring. The reason for this behaviour is that 
the transformation begins by the formation of very small solid particles or 
nuclei. Normally undercoolings as large as 250 K are not observed, since in 
practice the walls of the liquid container and solid impurity particles in the 
liquid catalyse the nucleation of solid at undercoolings of only -1 K. This is'. . 
known as heterogeneous nucleation. The large undercoolings mentioned 
above are only obtained when no heterogeneous nucleation sites are avail- 
able, i.e. when solid nuclei must form homogeneously from the liquid. EX- 
perimentally this can be achieved by dividing the liquid into tiny droplets, 
many of which remain impurity-free and do not solidify until very large 
undercoolings are reached1. 
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_b 

GI G,= GI+ AG 
Fig. 1.1 Homogeneous nucleation. 

4.1.1 Homogeneous Nucleation I 
Consider a given volume of liquid at a temperature AT below Tm with a free 
energy G I .  Fig. 4 . la .  If some of the atoms of the liquid cluster together to 
form a small sphere of solid, Fig. 4.1b, the free energy of the system will 
change to G-, given by: 

G2 = vSG: + VLG; + ASLySL 

where Vs is the volume of the solid sphere, VL the volume of liquid, As, is the 
solid/liquid interfacial area, G: and G,f-are the free energies per unit volume 
of solid and liquid respectively. and ysL the solid/liquid interfacial free 
energy. The free energy of the system without any solid present is given by 

G I  = (V, + V,)G; 

The formation of sol~d therefore results in a free energy change 
AG = G2 - G1 where: 

AG = -VsAG, + ASLySL (4.1) 
and 

AG, = G k -  G: (4.2) 

For an undercooling AT,  AG, is given by Equation 1.17 as I 
where L, is the latent heat of fusion per unit volume. Below T,, AG, is 
positive so that the free energy change associated with the formation of a 

-small volume of solid has a negative contribution due to the lower free energy 
of a bulk solid, but there is also a positive contribution due to the creation of a 
solid/liquid interface. The excess free energy associated with the solid 
particle can be minimized by the correct choice of particle shape. If ys, is 

isotropic this is a sphere of radius r. Equation 4.1 then becomes 

This is illustrated in Fig. 4.2. Since the interfacial term increases as r' 
whereas h e  volume free energy released only increases as 2, the creation of 
small particles of solid always leads to a free energy increase. It is this increase 
that is able to maintain the liquid phase in a metastable state almost 
indefinitely at temperatures below Tm. It can be seen from Fig. 4.2 that for a 
given undercooling there is a certain radius, r*, which is associated with a 
maximum excess free energy. If r < r* the system can lower its free energy by 
dissolution of the solid, whereas when r > r* the free energy of the system 
decreases if the solid grows. Unstable solid particles with r < r* are known as 
clusters or embryos while stable particles with r > r* are referred to as 
nuclei-r* is known as the critical nucleus size. Since d C  = 0 when r = r* the 
critical nucleus is effectively in (unstable) equilibrium with the surrounding 
liquid. 

interfacial 
energy ccr 

Fig. 4.2 The free energy change associated with homogeneous nucleation of a sphere 
of radius r. 
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It can easily be shown by differentiation of Equation 4.4 that 

and 

Substituting Equation 4.3 for AG, gives 

and 

Note how r" and AG' decrease with increasing undercooling (AT). 
Equation 4.5 could also have been obtained from the Gibbs-Thomson 

equation. Since r' is the radius of the solid sphere that is in (unstable.) 
equilibrium with the surrounding liquid. the solidified sphere and liquid must 
then have the same free energy. From Equation 1.58 a solid sphere of radius r 
will habe 3 free energ  greater than that of bulk solid by 3yV,/r per mole or 
2y/r per unlt volume. Therefore i t  can be seen from Fig. 4.3 that equality of 

free energy implies 

AC, = 2ys,/r* 
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which is identical to Equation 4.5. 
To understand how it is possible for a stable solid nucleus to form 

homogeneously from the liquid it is first necessary to examine the atomic 
structure of the liquid phase. From dilatometric measurements it is known 
that at the melting point the liquid phase has a volume '-4% greater than the 
solid. Therefore there is a great deal more freedom of movement of atoms in 
the liquid and when averaged over a period of time the atom positions appear 
completely random. However, an instantaneous picture of the liquid would 
reveal the presence of many small close-packed clusters of atoms which are 
temporarily in the same crystalline array as in the solid, Fig. 4.4. On average 
the number of spherical clusters of radius r is given by 

where no is the total number of atoms in the system, AG, is the excess free 
energy associated with the cluster, Equation 4.4, and k is Boltzmann's con- 
stant. For a liquid above T,  this relationship applies for all values of r. Below 
T i  it only applies for r 5 r* because clusters greater than the critical size are 
stable nuclei of solid and no longer part of the liquid. Since n, decreases 
exponentially with AG, (which itself increases rapidly with r) the probability 
of finding a given cluster decreases very rapidly as the cluster size increases. 
For example by combining Equations 4.4 and 4.10 it can be shown 
(exercise 4.2) that 1 mm3 of copper at its melting point (-ldo atoms) should 
on a\erage contain -lo1'' clusters of 0.3 nm radius (i.e. -10 atoms) but only 
-10 clusters with a radius of 0.6 nm (i.e. -60 atoms). These numbers are of 
course only approximate. Such small clusters of atoms cannot be considered 
to be spherical, and even more important the effective value of y used in 
calculating AC, (equation 4.4) is very probably a function of the cluster size. 
However the above calculations do illustrate how sensitively cluster density 
depends on their size. Also, it can be seen that there is effectively a maximum 

Fig. 4.3 Volume free enersy as a function of temperature for solid and liquid phases, I Fig. 4.4 A two-dimensional representation of an instantaneous picture of the liquid 
showing the origin of I G ,  and r*. structure. Many close-packed crystal-like clusters (shaded) are present. 



190 Solidification f 
cluster size, -100 atoms, which has a reasonable probability of occurring in the 3- 
liquid. The same sort of calculations can be made at temperatures other than 
T, .  Below T ,  there is an increasing contribution from AG, in Equation 4.4 
as the solid becomes progressively more stable and this has the effect of 
increasing the 'maximum' cluster size somewhat. Figure 4.5 shows schemati- 
cally how r,,, varies with AT. Of course larger clusters than r,,, are possible .g 

8 in large endugh systems or given sufficient time, but the probability of finding Q 
-*q clusters only slightly larger than r,, is extremely small. q 

The critical nucleus size r* is also shown in Fig. 4.5. It can be seen that at i 
small undercoolings, r* is so large that there will be virtually no chance of 
forming a stable nucleus. But as AT increases r* and LC* decrease, and for 
supercoolings of ATN or greater there is a very good chance of some clusters 
reaching r* and growing into stable solid particles. In the small droplet 
experipent, therefore, homogeneous nucleation should occur when the liquid 
is undercooled by - A T N .  

The same conclusion can also be reached by an energy approach. The 
creation of a critical nucleus can be considered to be a thermally activated 
process. i.e. a solid-like cluster must be able to cross the nucleation barrier 
AG* before it becomes a stable nucleus. Since the probability of achieving 
this energy is proportional to exp ( - A G * I k T )  nucleation will only become 
possible when AG" is reduced below some critical value which can be 
shown to be -78 k T  (see below). 

4.1.2 The Homogeneous Nucleation Rate 

Let us consider how fast solid nuclei will appear in the liquid at a given 
undercooling. If the liquid contains C,, atoms per unit volume. the number of 

r 

- 0 * TN + A T  
Fig. 4.5 The variation of r' and r,,, with undercooling AT. 
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,lusters that have reached the critical size ( C * )  can be obtained from 
Equation 4.10 as 

AGh*om 
C* = C,  exp (-T) clusters m-' 

The addition of one more atom to each of these clusters will convert them into - 

stable nuclei and, if this happens with a frequency fo,  the homogeneous nuclea- 
tion rate will be given by 

Ach*om 
N , , ~ ,  = foCO exp (-F) nuclei mP3 s-' 

where fi, is a complex function that depends on the vibration frequency of 
the atoms. the activation energy for diffusion in the liquid, and the surface 
area of the critical nuclei. Its exact nature is not important here and it is 
sufficient to consider it a constant equal to - lO1 ' .*  Since Co is typically 
-10" atoms rnp3 a reasonable nucleation rate (1 cm-' s-') is obtained 
when AG" - 78 kT. 

Nhom. = fOG exp -- i (&3 
where A is relatively insensitive to temperature and is given by 

N,,, 1s plotted as a function of AT in Fig, 4.6. As a result of the (AT)* term, 
inside the exponential Nhom changes by orders of magnitude from essentially 
zero to very high values over a very narrow temperature range, i.e. there is 
effectively a critical undercooling for nucleation A T N .  This is the same as ATN 
in Fig. 4.5, but Fig. 4.6 demonstrates more vividly how virtually no nuclei are 

I formed until ATN is reached after which there is an 'explosion' of nuclei. 
The small droplet experiments of Turnbull et al.' have shown that ATN is I 

-0.2 T ,  for most metals (i.e. -200 K). The measured values of ATN have in 
fact been used along with Equation 4.13 to derive the values of interfacial 

1 free energy given in Table 3.4. 
In practice homogeneous nucleation is rarely encountered in solidification. 

*Since atomic jumps from the liquid on to the cluster are thermally activated, fo will 
in fact diminish with decreasing temperature. In some metallic systems the-liquid can 
be rapidly cooled to temperatures below the so-called glass transition temperature 
without the formation of crystalline solid. fo is very small at these temperatures and 
the supercooled liquid is a relatively stable metallic glass or amorphous metal. The 
variation of fo with temperature is very important with solid-state transformations, 
and it is covered in Chapter 5. For further details on alloys rapidly quenched from 
the melt see R.W. Cahn and P. Haasen (Eds), Physical Metallurgy, North-Holland, 
1983, Chapter 28. 
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Fig. 4.6 The homogeneous nucleation rate as a function of undercooling AT. ATN is 
the critical undercooling for homogeneous nucleation. 

Instead heterogeneous nucleation occurs at crevices in mould walls, o r  at 
inpurity particles suspended in the liquid. 

4.1.3 Heterogeneous Nucleation 

From the expression for SG* (Equation 4.8) it can be seen that if nucleation 
is to be made easier at small undercoolings the interfacial energy term must 
be reduced. A simple way of effectively achieving this is if the nucleus forms 
in contact with the mould wall. Consider a solid embryo forming in contact 
with a perfectly flat mould wall as depicted in Fig. 4.7. Assuming ys, is 
isotropic it can be shown that for a given volume of solid the total interfacial 
energy of the system is minimized if the embryo has the shape of a spherical 

Mould 

Fig. 4 . 7  Heterogeneous nucleation of spherical cap on a flat mould wall. 1 
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cap with a 'wetting' angle 0 given by the condition that the interfacial tensions 
yM,,  y s ~  and ysL balance in the plane of the mould wall. 

Note that the vertical component of ysL remains unbalanced. Given time 
this force would pull the mould surface upwards until the surface tension 
forces balance in all directions. Therefore Equation 4.14 only gives the 
optimum embryo shape on the condition that the mould walls remain planar. 

The formation of such an embryo will be associated with an excess free 
energy given by 

where Vs is the volume of the spherical cap, As, and As, are the areas of the 
solid/liquid and solid/mould interfaces, and ysL, YSM and ~ M L  are the free 
energies of the solid/liquid, solid/mould and mould/liquid interfaces. Note 
that there are now three interfacial energy contributions. The first two are 
positive as they arise from interfaces created during the nucleation process. 
The third, however, is due to the destruction of the mould/liquid interface ' 

under the spherical cap and results in a negative energy contribution. 
It can be easily shown (see exercise 4.6) that the above equation can be 

written in terms of the wetting angle (8) and the cap radius (r) as 

where 

S(0) = (2 + cos 0)(1 - cos 0)*/4 (4.17) 

Note that except for factor S(0) this expression is the same as that obtained 
for homogeneous nucleation, Equation 4.4. S(0) has a numerical value 5 1  
dependent only on 0, i.e. the shape of the nucleus. It is therefore referred to 
as a shape factor. LChet is shown in Fig. 4.8 along with AGhom for compari- 
son. By differentiation of Equation 4.16 it can be shown that 

I and 

Therefore the activation energy barrier against heterogeneous nucleation 
(ACge:,,) is smaller than AG&,:,, by the shape factor S ( 0 ) .  In addition the critical 
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Fig. 4.8 The excess fret energy of solid clusters for homogeneous and heterogeneous 
nucleation. Note r* is lndependent of the nucleation site. 

nucleus radius (r*) is unaffected by the mould wall and only depends on the 
undercooling. This result was to be expected since equilibrium acrcss the 
curved interface is unaffected by the presence of the mould wall. 

Combining Equations 4.6 and 4.19 gives 

If for example 8 = 10". S(0) - lo-', i.e. the energy barrier for hetero- 
geneous nucleation can be very much smaller than for homogeneous nu- 
cleation. Significant reductions are also obtained for higher values of 8, e.g. 
when 8 = 30°, S = 0.02; even when 0  = 90°, S = 0.5. It should be noted 
that the above model breaks down for 0  = 0. In this case the nucleus must 
be modelled in some other way, e.g. as shown in Fig. 4.12. 

The effect of undercooling on AGict and AGiom is shown schematically 
in Fig. 4.9. If there are n,  atoms in contact with the mould wall the number 
of nuclei should be given by 
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Critical va lue 
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Fig. 4.9 (a) Variation of AG* with undercooling (AT) for homogeneous and heter- 
ogeneous nucleation. (b) The corresponding nucleation rates assuming the same 
critical value of hG * . 

Therefore heterogeneous nucleation should become feasible when ilGget 
becomes sufficiently small. The critical value for AGget should not be very 
different from the critical value for homogeneous nucleation. It will mainly 
depend on the magnitude of n, in the above equation. Assuming for the sake 
of simplicity that the critical value is again -78 kT it can be seen from 
Fig. 4.9 that heterogeneous nucleation will be possible at much lower under- 
coolings than are necessary for homogeneous nucleation. 

To be more precise, the volume rate of heterogeneous nucleation ought to 

; be given by an equation of the form . . 

where f, is a frequency factor similar to fo in Equation 4.12, C1 is the number 
of atoms in contact with heterogeneous nucleation sites per unit volume of 
liquid. 
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(a (b) 
Fig. 4.10 Heterogeneous nucleation In mould-wall cracks. (a) The critical nuclei. 
(b) The upper nucleus cannot grow out of the crack while the Iower one can. (After 
P.G. Shewrnon, Transformations in Metals, 1969 McGraw-Hill. Used with the 
permission of McGraw-Hill Book Company.) 

So far it has been assumed that the mould wall is microscopically flat. In 
practice however it is likely to contain many microscopic cracks or crevices. It 
is possible to write down equations for the formation of a nucleus on such a 
surface but the result can be obtained more easily as follows. In both of the 
nucleation types considered so far it can be shown that 

1 
AG* = -V*AG, 

2 

where V*  is the volume of the critical nucleus (sphere or cap). This equation, 
as well as Equation 4.7, are in fact quite generally true for any nucleation 
geometry. Thus, if a nucleus forms at the root of a crack the critical volume 
can be very small even if the wetting angle 0 is quite large. Figure 4.10 shows 
an example where 0 = 90". Therefore nucleation from cracks or crevices 
should be able to occur at very small undercoolings even when the wetting 
angle 0 is relatively large. Note however that for the crack to be effective the 
crack opening must be large enough to aIlcw the solid to grow out without the 
radius of the solid/liquid interface decreasing below r*. 

In commercial practice heterogeneous nucleation is often enhanced by the 
addition of inoculants to the melt in order to refine the final grain size. The 

: inoculating agent forms a solid compound with one of the components of the 
' melt which then acts as a site for nucleation. According to the theory of 

heterogeneous nucleation outlined 'aboye the effectiveness of an inoculant 
should depend on the wetting angle and the surface roughness. Low values 
of 0 are favoured by a low-energy interface between the inoculant and solid 
nucleus, YSM, which should in turn be favoured by good lattice matching 
between the particle and solid. However lattice matching alone is unable to 
account for the effectiveness of nucleants. Other contributing factors include 
chemical effects, as well as surface segregation and roughness. It is thus 
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difficult at present to predict the effectiveness of a given nucleant. In practice 
the aim of inoculant additions is of course not to reduce undercooling but to 

a fine grain size, and then other variables such as the concentration of 
nucleating particles also becomes important. 

4.1.4 Nucleation of Melting 

Although nucleation during solidification usually requires some undercool- 
ing, melting invariably occurs at the equilibrium melting temperature even 
at relatively high rates of heating. This is due to the relative free energies of 
the solid/vapour, solid/liquid and liquid/vapour interfaces. It is always found 
that 

YSL + YLV < Ysv (4.24) 

Therefore the wetting angle 0 = 0 and no superheating is required for nuclea- 
tion of the liquid. In fact this interfacialenergy relationship implies that a thin 
liquid layer should even be able to form below T, (see exercise 4.10). This 
phenomenon has not, however. been verified for metals as yet. 

It is interesting to note that although T,,, is a well-defined parameter in 
metallurgy, the actual atomic mechanism of melting is still not properly 
understood (for a good discussion of this phenomenon see, e.g. Cahn, 1978'). 
The solid + melt transformation in metals corresponds to an equivalent 
increase in vacancy concentration of as much as lo%, which is difficult to 
explain in the usual terms of defect structures. The melt, on this basis, might 
simply be considered to consist of an array of voids (condensed vacancies) 
surrounded by loose regions of disordered crystal (Frenkel's theor?). The 
sudden change from long-range crystallographic order to this loose, dis- 
ordered structure may be associated with the creation of avalanches of dis- 
locations which effectively break up the close-packed structure as melting 
occurs, as proposed by Cotterill et al. (1975)~ on the basis of computer 
simulation experiments. There are, however, problems of quantifying this 
dislocation mechanism with dilatometric observations, and a more refined 
theory of melting is awaited. 

4.2 Growth of a Pure Solid 

It was shown in Section 3.4.6 that there are basically two different types of 
solid/liquid interface: an atomically rough or diffuse interface associated with 
metallic systems, and an atomically flat o r  sharply defined interface often 
associated with non-metals. Because of the differences in atomic structure 
these two types of interface migrate in quite different ways. Rough interfaces 
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migrate by a continuous growth process while flat interfaces migrate by 
'A lateral growth process involving ledges. 0 
J C 

4.2.1 Continuous Growth 8 
as 

.- 
The migralion of a diffuse solid/liquid interface can be treated in a similar ^ 

way to the migration of a random high-angle grain boundary. The free energy 
of an atom crossing the S/L interface will vary as shown in Fig. 3.24 except 
one solid grain is replaced by the liquid phase. The activation energy barrier 
AGa should be approximately the same as that for diffusion in the liquid 
phase, and the driving force for solidification (AG) will then be given by 

where L is the latent heat of melting and AT, is the undercooling of the 
interface below the equilibrium melting temperature T,,, . By analogy with 
Equation 3.21 therefore. the net rate of solidification should be given by an 
equation of the form 

where kl has the properties of boundary mobility. A full theoretical treatment 
indicates that k ,  has such a high value that normal rates of solidification can 
be achieved with interfaaal undercoolings (AT,) of only a fraction of a degree 
Kelvin. For most purposes therefore AT, can be ignored and the solid/liquid 
interface is assumed to be at the equilibrium melting temperature. In other 
words the solidification of metals is usually a diffusion controlled process. For 
pure metals growth occurs at a rate controlled by heat conduction (diffusion) 
whereas alloy solidificat~on is controlled by solute diffusion. 

The above treatment 1s applicable to diffuse interfaces where it can be 
assumed that atoms can be received at any site on the solid surface, i.e. the 
accommodation factor A in Equation 3.22 is approximately unity. For this 
reason it is known as continuous growth. Such a mode of growth is reasonable 
because the interface is disordered and atoms arriving at random positions 
on the solid will not significantly disrupt the equilibrium configuration of the 
interface. The situation is, however, more complex when the equilibrium 
interface structure is atomically smooth as in the case of many non-metals. 

4.2.2 Lateral Growth 

It  will be recalled that materials w i ~ h  high entropy of melting prefer to form 
atomically smooth, close-packed interfaces. For this type of interface the 
minimum free energy also corresponds to the minimum internal energy, i.e. a 
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(b) 
Fig. 4.11 Atomically smooth solid/liquid iriterfaces with atoms represented by 
cubes. (a) Addition of a single atom onto a flat interface increases the number of 
'broken bonds' by four. (b) Addition to a ledge (L) only increases the number of 
broken bonds by two, whereas at a jog in a ledge (J) there is no increase.. 

minimum number of broken 'solid' bonds. If a single ab .1  leaves the liquid 
and attaches itself to the flat solid surface, Fig. 4.11a, it can be seen that the 
number of broken bonds associated with the interface, i.e. the interfacial 
energy, will be increased. There is therefore little probability of the atom 
remaining attached to the solid and it is likely to jump back into the liquid. In 
other words, atomically smooth interfaces have inherently low accommoda- 
tion factors. However, if the interface contains ledges, Fig. 4.llb, 'liquid' 
atoms will be able to join the ledges with a much lower resulting increase in 
interfacial energy. If the ledge contains a jog, J, atoms from the liquid can 
join the solid without any increase in the number of broken bonds and the 
interfacial energy remains unchanged. Consequently the probability of an 
atom remaining attached to the solid at these positions is much greater than 
for an atom joining a facet. Smooth solid/liquid interfaces can therefore be 
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Fig. 4.12 Ledge creation by surface nucleation. 

expected to advance by the lateral growth of ledges similar to that described 
for coherent solid/solid interfaces in Section 3.5.1. Since the ledges and jogs 
are a non-equilibrium feature of the interface, growth will be very dependent 
on how the ledges and jogs can be supplied. It is thought that there are 
basically three different ways in which this can be achieved. These are (i) by 
repeated surface nucleation, (ii) by spiral growth, and (iii) from twin 
boundaries. 

Sugace Nucleation 
It was pointed out above that a single atom 'solidifying' on to a flat solid 
surface will be unstable and tend to rejoin the melt. However, if a sufficently 
laige number of atoms can come together to form a disc-shaped layer as 
shown in Fig. 4.12 it is possible for the arrangement to become self-stabilized 
and continue to grow. The problem of disc creation is the two-dimensional 
analogue of cluster formation during homogeneous nucleation. In this case 
the edges of the disc contribute a positive energy which must be counterbal- 
anced by the volume free energy released in the process. There will therefore 
be a critical radius (r.*) associated with the two-dimensional nucleus which 
will decrease with increasing interface undercooling. Once nucleated the disc 
will spread rapidly over the surface and the rate of growth normal to the 
interface will be governed by the surface nucleation rate. A full theoretizal 
treatment shows that 

' .  v a exp (-k2/ATi) (4.27) 

where k2 is roughly constant. This is shown schematically in Fig. 4.14. Note 
that this mechanism is very ineffective at small undercoolings where r* is very 
large. 
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Fig. 4.13 Spiral growth. (a) A screw dislocation terminating in the solid/liquid 
interface showing the associated ledge. (After W.T. Read Jr. ,  Dislocations in Crystals. 
0 1953 McGraw-Hill. Used with the permission of McGraw-Hill Book Company.) 
Addition of atoms at the ledge causes it to rotate with an angular velocity decreasing 
away from the dislocation core so that a growth spiral develops as shown in (b). (After 
J.W. Christian, The Theory of Phase Transformations in Metals and Alloys, Pergamon 
Press. Oxford, 1965. ) 

Spiral Growth 
If the solid contains dislocations that intersect the S/L interface the problem 
of creating new interfacial steps can be circumvented. 

Consider for simplicity the introduction of a screw dislocation into a block 
1 of perfect crystal. The effect will be to create a step or ledge in the surface of 
I the crystal as shown in Fig. 4.13a. The addition of atoms to the ledge will 

1 cause it to rotate about the point where the dislocation emerges, i.e. the ledge 
I will never run out of the interface. If, on average, atoms add at an equal rate 

to all points along the step the angular velocity of the step will be initially ' greatest nearest to the dislocation core. Consequently as growth proceeds the 
ledge will develop into a growth spiral as shown in Fig. 4.13b. The spiral 
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Inter face undercooling A Ti  
Fig. 4.14 The influence of interface undercooling (AT,) on growth rate for atomically 
rough and smooth interfaces. 

tightens until it reaches a minimum radius of curvature r* at which it is in 
equilibrium with the surrounding liquid and can decrease no more. Further 
out the radius of curvature is less and the spiral can advance at a greater rate. 
Eventually a steady state is reached when the spiral appears to be rotating 
with a constant angular velocity. A complete theoretical treatment of this 
situation shows that for spiral growth the normal growth rate v and the 
undercooling of the interface AT, are related by an expression of the type 

where kg is a materials constant. This variation is shown in Fig. 4.14 along 
with the variations for continuous growth and two-dimensional nucleation. 
Note that for a given solid growth rate the necessary undercooling at the 
interface is least for the continuous growth of rough interfaces. For a given 
undercooling, faceted interfaces are much less mobile and it is to be expected 
that the spiral growth mechanism will normally be more important than 
repeated nucleation. - 
Growth from Twin Intersections 
Another permanent source of steps can arise where two crystals in different 
orientations are in contact. In solidification it is quite common for materials 
showing faceting to solidify as two crystals in twin orientations. Interfacial 
facets will therefore intersect at the twin boundary which can act as a perma- 
nent source of new steps thereby providing an easy growth mechanism similar 
to the growth spiral mechanism. 
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(c) 
Fig. 4.15 (a) Temperature distribution for solidification when heat is extracted 
through the solid. Isotherms (b) for a planar S/L interface, and (c) for a protrusion. 

4.2.3 Heat Flow and Interface Stability 

In pure metals solidification is controlled by the rate at which the latent heat 
of solidification can be conducted away from the solid/liquid interface. Con- 
duction can take place either through the solid or the liquid depending on the 
temperature gradients at the interface. Consider for example solid growing at 
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Fig. 4.16 As Fig. 1.15, but for heat conduction in:- :he liquid. I 
a velocity v with a planar interface into a superheated lic-.d. Fig. 3.15a. The 
heat flow away from the interface through the solid mui- 2alance that from 
the liquid plus the latent heat generated at the interface 2 .  

KsTi = KLT', + vL, (4.29) 

where K is the thermal conductivity, T' is the temperatcrt gradient ( d T / d r ) ,  
' 

the subscripts S and L stand for solid and liquid. v is the --:= of growth of the 
h . 
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and L, is the latent heat of fusion per unit volume. This equation is 
quite general for a planar interface and even holds when heat is conducted 
into the liquid ( T i  < 0), Fig. 4.16a. 

When a solid grows into a superheated liquid, a planar solid/liquid inter- 
face is stable. This can be shown as follows. Suppose that as a result of a local 
increase in v a small protrusion forms at the interface, Fig. 4.15;. If the radius 
.f curvature of the protrusion is so large that the Gibbs-Thomson effect can 
be ignored the solidlliquid interface remains isothermal at essentially T,,, . 
Therefore the temperature gradient in the liquid ahead of the nodule will 

( d l  u 
Fig. J ;i The development of thermal dendrites: (a) a spherical nucleus; (b) the 
interfECe becomes unstable; (c) primary arms develop in crystallographic directions . 
((100. In Crystals); (d) secondary and tertiary arms develop (after R.E. 
Reed-~i l l .  Physical .Matollurgy Principles, 2nd. edn., Van Nostrand, New York. 



increase while that in the solid decreases. Consequently more heat will 
conducted into the protruding solid and less away so that the growth rate 
decrease below that of the planar regions and the protrusion will disapp 

The situation is, however, different for a solid growing into superco 
liquid, Fig. 4.16. If a protrusion forms on the solid in this case the negativ 
temperature gradient in the liquid becomes even more negative. Therefor 
heat is iemoved more effectively from the tip of the protrusion than from th 
surrounding regions allowing it to grow preferentiaIly. A solid/liquid inter. 
face advancing into supercooled liquid is thus inherently unstable. 

Heat conduction through the solid as depicted in Fig. 4.15, arises when 
solidification takes place from mould walls which are cooler than the melt. 
Heat flow into the liquid. however, can only arise if the liquid is supercooled 

$ below Tm.  Such a situation can arise at the beginning of solidification if 
nucleation occurs at impurity particles in the bulk of the liquid. Since a certain 
supercooling is required before nucleation can occur. the first solid particles 
will grow into supercooled liquid and the latent heat of solidification will be 
conducted away into the liquid. An originally spherical solid particle will 
therefore develop arms in many directions as shown in Fig. 4.17. As the 
primary arms elongate their surfaces will also become unstable and break up 
into secondary and even tertiary arms. This shape of solid is knowns as a 
dendrite. Dendrite comes from the Greek for tree. Dendrites in pure metals 
are usually called thermal dendrztes to distinguish them from dendrites in 

, Liquid 
r - I /  k f  
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Fig. 4.18 Temperature distribution at the tip of a growing thermal dendrite. 
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alloys (see below). It is found experimentally that the dendrite arms are 
always in certain crystallographic directions: e.g. (100) in cubic metals, and 
li00) in hcp metals'. 

Let us now take a closer look at the tip of a growing dendrite. The situation 
is different from that of a planar interface because heat can be conducted 
awav from the tip in three dimensions. If wesssume the solid is isothermal 
(7; = 0) the growth rate of the tip v will be given by a similar equation to 
Equation 4.29 provided T i  is measured in the direction of v. A so!ution to the 
heat-flow equations for a hemispherical tip shows that the (negative) tempera- 
ture gradient T ;  is approximately given by AT,.r where AT, is the difference 
between the interface temperature (T , )  and the temperature of the super- 
cooled liquid far from the dendrite (T,) as shown in Fig. 4.18. Equation 4.29 
therefore gives 

Thus for a given AT, rapid growth will be favoured by small values of r due to 
the increasing effectiveness of heat conduction as r diminishes. However AT is 
not independent of r .  As a result of the Gibbs-Thomson effect equilibrium 
across a curved interface occurs at an undercooling AT, below T,,, givcn by 

:Y Tm 
AT, = - 

L,r 

The minimum possible radius of curvature of the tip is when AT, equals the 
total undercooling ATo = Tm - T,. This is just the critical nucleus radius r* 
given by (2vT,/L,ATo).  Therefore in general AT, is given by ATor*/r.  
Finally since ATo = AT, + AT, Equation 4.30 becomes 

== 5 .  - T;) (4.31) 
L, r 

It can thus be seen that the tip velocity tends to zero as r + r* due to the 
Gibbs-Thornson effect and as r -. x due to slower heat conduction. The 
maximum telocity is obtained when r = 2r*.  

4.3 Alloy Solidification 

The solidiqation of pure metals is rarely encountered in practice. Even - *  - 
commercially pure metals contain sufficient impuiities to change the charac- 
teristics of solidification from pure-metal to alloy behaviour. We now develop 
the theory a step further and examine the solidification of single-phase binary 
alloys. Following this we then consider the solidification of eutectic and 
Peritectic alloys. 
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4.3.1 Solidification of Single- Phase Alloys 

The alloys of interest in this section are those such as Xo in Fig. 4 .  
phase diagram has been idealized by assuming that the solidus and 
are straight lines. It is useful to define a partition coefficient k as 

wheri XS and X,  are the mole fractions of solute in the solid and liquid $ 
equilibrium at a given temperature. For the simple case shown in Fig. 4.19, k g  
is independent of temperature. $ 

The way in which such alloys solidify in practice depends in rather a 
complex way on temperature gradients, cooling rates and growth rates. 
Therefore let us simplify matters by considering the movement of a planar 
solid/liquid interface along a bar of alloy as shown in Fig. 4.20a. Such 
unidirectional solidification can be achieved in practice by passing the'alloy in 
a crucible through a steep temperature gradient in a specially constructed 
furnace in which heat is confined to flow along the axis of the bar. 

Let us examine three limiting cases: 

1. Infinitely slow (equilibrium) solidification 
2. Solidification with no diffusion in the solid but perfect mixing in the 

liquid . 
3. Solidification with no diffusion in the solid and only diffusional mixing in 

the liquid 

Equilibrium Solidification 
Alloy Xo in Fig. 4.19 begins to solidify at T,  with the formation of a small 
amount of solid with composition kXo. As the temperature is lowered more 
solid forms and, provided cooling is slow enough to allow extensive solid- 
state diffusion, the solid and liquid will always be homogeneous with com- 
positions following the solidus and liquidus lines, Fig. 4.20b. The relative 
amounts of solid and liquid at any temperature are simply given by the lever 
rule. Note that, since solidification is one-dimensional, conservation of 
solute requires the two shaded areas in Fig. 4.20b to be equal (ignoring the 
differences in molar volume between the two phases). At T3 the last drop of 
liquid will have a composition Xolk and the bar of solid will have a com- 
position Xo along its entire length. 

No Diffusion in Solid, Perfect Mixing in Liquid 
Very often the rate of cooling wiH be too rapid to allow substantial diffusion i i  
the solid phase. Therefore let us assume no diffusion takes place in the solid 
but that the liquid composition is kept homogeneous during solidification by 
efficient stirring. Again, assuming unidirectional solidification, the first solid 
will appear when the cooled end of the bar reaches TI  in Fig. 4.21a, at which 
stage solid containing kXo mol of solute forms. Since kXo < X o ,  this first 

Alloy solidification 

k 
Fig. 4.19 A hypothetical phase diagram. k = Xs/XL is constant. 

So l id Liquid H e a ~ ~ l  a 

(a) X -  

Fig. 4.20 Unidirectional solidification of alloy Xo in Fig. 4.19. (a) A planar S/L 
interface and axial heat flow. (b) Corresponding composition profile at T2 assuming 
complete equilibrium. Conservation of solute requires the two shaded areas to be 
equal. 
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solid will be purer than the liquid from which it forms so that solute is reject 
into the liquid and raises its concentration above X O ,  Fig. 4.21b. The tem 
perature of the interface must therefore decrease below TI before furth 
solidification can occur, and the next layer of solid will be slightly richer 
solute than the first. As this sequence of events continues the liquid becoma 
progressively richer in solute and solidification takes place at progressively 
lower temperatures, Fig. 4 . 2 1 ~ .  At any stage during solidification local 
equilibrium can be assumed to exist at the solid/liquid interface, i.e. for a 
given interface temperature the compositions of the solid and liquid in contact 
with one another will be given by the equilibrium phase diagram. However, & 

Xsolut e __C 

Fig. 4.21 Planar front solidification of alloy X,, in Fig. 4.19 assuming no diffusion in 
the solid, but complete mixing in the liquid. (a) As Fig. 4.19, but including the mean 
composition of the solid. (b) Composition profile just under T, .  (c) Composition 
profile a t  T2 (compare with the  profile and fraction solidified in Fig. 4.20b. 
(d) Composition profile at the sutectic temperature and below. 
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Fig. 4.21 (continued) 

since there is no diffusion in the solid, the separate layers of solid retain their 
original compositions. Thus the mean composition of the solid ( X s )  is always 
lower than the composition at the solid/liquid interface, as shown by the 
dashed line in Fig. 4.21a. The relative amounts of solid and liquid for a given 
interface temperature are thus given by the lever rule using Xs and XI.,. It 
follows that the liquid can become much richer in solute than Xo/k and it may 
even reach a eutectic composition, XE , for example. Solidification will thus 
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tend to terminate close to  TE with the formation of a eutectic structure 
a + @. The completely solidified bar will then have a solute distribution 
shown in Fig. 4.21d with xs = X,, . 

The variation of Xs along the solidified bar can be obtained by equating th 
solute rejected into the liquid when a small amount of solid forms.with th 
resulting solute increase in the liquid. Ignoring the differene in molar velum 
between the solid and liquid this gives 

1- 

where fs is the volume fraction solidified. Integrating this equation using the $ 
$ boundary condition Xs = kXo when fs = 0 gives 

and 

These equations are known .as the non-equilibrium lever rule or  the Scheil 
equations. 

Note that for k < 1 these equations predict that when there is no diffusion 
in the solid there will always be some eutectic in the last drop of liquid to 
solidify, no matter how little solute is present. Also the equation is quite 
generally applicable even for non-planar solid/liquid interfaces provided 
the liquid composition is uniform and that the Gibbs-Thomson effect is 
negligible. 

No Diflusion in Solid, Diflusional Mixing in Liquid 
If there is no stirring or convection in the liquid phase the solute rejected from 
the solid will only be transported away by diffusion. Hence there will be a 
rapid build up of solute ahead of the solid and a correspondingly rapid 
increase in the composition of the solid formed, Fig. 4.22a. This is known as 
the initial transient. If solidification is made to occur at a constant rate, v ,  it 
can be shown that a steady state is finally obtained when the interface 
temperature reaches T3 in Fig. 4. 1g6. The liquid adjacent to the solid then has 
a composition X,/k and the solid forms with the Bulk composition Xo.  

During steady-state growth the concentration profile in the liquid must be 
such that the rate at which solute diffuses down the concentration gradient 
away from the interface is balanced by the rate at which solute is rejected 
from the solidifying liquid, i.e. 

- 0 C i  = v(CL - Cs) (4.34) 

where D is diffusivity in the liquid, C[ stands for dCL/dx at the interface, CL 
and Cs are the solute concentrations of the liquid and solid in equilibrium a! 
the interface (units: mU3). Kote the similarity of this equation to that de- 
scribing the rate at which solidification occurs in pure metals, Equation 4.29. 
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(C ) D i s tance  
Fig. 4.22 Planar front solidification of alloy Xo in Fig. 4.19 assuming no diffusion in 
the solid and n o  stirring in the liquid. (a) Composition profile when S/L interface 
temperature is between T2 and Tj in Fig. 4.19. (b) Steady-state solidification at T 3 .  
The composition solidifying equals the composition of the liquid far ahead of the solid . . 
(Xo).  (c) Composition profile at TE and below, showing the final transient. . . . . 
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If the diffusion equation is solved for steady-state solidification it 
shown that the concentration profile in the liquid is given by 

xL=xo { I + -  I i k exp [-i] } 
(Dlv) 

- 

i.e. XL decreases exponentially from Xo/k at x = 0, the interface, to X, at 
large distances from the interface. The concentration profile has a chara 
ticcwidth of D/v.  

When the solid/liquid interface is within -D /v  of the end of the bar the 
bo\v-WaVe of solute is compressed into a very small volume and the interface 
composition rises rapidly leading to a final transient and eutectic formation, 
Fig. 4 . 2 2 ~ .  

In practice alloy solidification will usually possess features from all three of 
the a x e s  discussed above. There will usually be some stirring either due to 
liquid turbulence caused by pouring, or  because of convection currents, or 

effects. However, stirring will not usually be sufficiently effective to 
breyent the formation of a boundary layer and some liquid diffusion will 
[hertiore be involved. Partial stirring does, however, have the effect of 
reducing the boundary layer thickness. The concentration profiles found in 
~~ac . r ice  may thus exhibit features between those shown in Fig.. 4.21d and 
4.1:~. In many cases diffusion in the solid must also be taken into account, 
e .g.  \\.hen interstitial atoms or bcc metals are involved. In this case solute can 
diffu?;~ away from the solidifying interface back into the solid as well as into 
the !iquid, with the result that after solidification the alloy is more 
horn~~yeneous. 

EL zn when solidification is not unidirectional the.above ideas can still often 
 plied at a microscopic level as will be discussed below. Unidirectional 

sc.iidirication has commercial importance in. for example, the production of 
crez? resistant aligned microstructures for gas turbine blades. It is also used in 
the lroduction of extremely pure metals (zone refining)'. 

C<:.':il'zr and Dendriric Solidification 
So i.lr we have considered solidification in which the growth front is planar. 
Houtver, the diffusion of solute into the liquid during solidification of an 
ai1c.v is analogous to the conduction of latent heat into the liquid during the 
soii2lrication of a pure metal. .At first sight therefore it would seem that the 
~i3n.a front should break up into dendrites. The problem is complicated, 
ho\\-tver, by the possibility of temperature gradients in the liquid. 

CL3nsider steady-state solidification at a planar interface as shown in 
F;.. 2 .23 .  As a result of the varying solute concentration ahead of the solidi- 
fi;;::~>n front there is a corresponding variation of the equilibrium solidifica- 
tic? ::mperature, i.e. the liquidus temperature. as given.by the line T, in 
F ~ S  :.23b. However. apart from the temperature of the interface, which is 
f ~ :  ?y local equilibrium requirements, the actual temperature of the liquid 
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h g .  1.23 The origin of constitutional supercooling ahead of a planar solidification 
front. (a) Composition profile across the solid/liquid interface during steady-state 
solidification. The dashed line shows dXL/dx at the S/L interface. (b) The tempera- 
ture of the liquid ahead of the solidification front fuilows line TL. The equilibrium 
liquldus temperature for the liquid adjacent to the interface varies as T,. Constitu- 
tional supercooling arises when TL lies under the critical gradient. 

can follow any line such as T L .  At the interface T, = T, = T3 (defined in 
Fig. 4.19). If the temperature gradient is less than the critical value shown in 
Fig. 4.23b the liquid in front of the solidification front exists below its equilib- 
rium freezing temperature, i.e. it is supercooled. Since the supercooling arises 
from compositional, or constitutional effects it is known as constitutional 
supercooling. 
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A necessary condition for the formation of stable protrusions on a pla 
interface is that there must exist a region of constitutional supercooling in 
liquid. Assuming the TL variation in Fig. 4.23b the temperature at the tip 0 

any protrusion that forms will be higher than that of the surrounding inter 
face. (In contrast to pure metals the interface in alloys need not be isother. 
mal.) However, provided the tip remains below the local liquidus tempera- 
ture (?.> solidification is still possible and the protrusion can develop. On the- a other hand if the temperature gradient ahead of the interface is steeper than $ 
the critical gradient in Fig. 4.23b the tip will be raised above the liquidus :; 
temperature and the protrusion will melt back. ..- 

Under steady-state growth the cnrical gradient can be seen from Fig. 4.23 6 

to  be given by (T, - T , ) / ( D / v )  where T, and T3 are the liquidus and solidus 4' 
temperatures for the bulk composltlon X,, Fig. 1.19. The condition for a 
stable planar interface is therefore 

where T i  stands for (dTL/&) at the interface. Or ,  regrouping the ex- 
perimentally adjustable parameters T', and v. the condition for no constitu- 
tional supercooling is I 
( T ,  - T3) is known as the equilibrrlcm freezing range of the alloy. Clearly 
planar front solidification is most difficult for alloys with a large soldification 
range and high rates of solidification. Except under well-controlled ex- 
perimental conditions alloys rarely solidify with planar solid/liquid interfaces. 
Normally the temperature gradients and growth rates are not individually 
controllable but are determined by the rate at which heat is conducted away 
from the solidifying alloy. 

f-------- 

Heat flow 
Fig. 4.24 The breakdown of an initially planar solidification front into cells. 
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' Heat flow I 
B~ - 'I I 

Distance along A A  
Fig. 4.25 Temperature.and solute distributions associated with cellular solidification. 
Note that solute enrichment in the liquid between the cells. and coring in the cells with . 

eutectic in the cell walls; 

If the temperature gradient ahead of an initially planar interface is gradu- 
ally reduced below the critical value the first stage in the breakdown of the 
interface is the formation of a cellular structure. Fig. 4.24. The formation of 
the first protrusion causes solute to be rejected laterally and pile up at the root 
of the protrusion (b). This lowers the equilibrium soldification temperature 
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Fie. 4.27 Cellular dendrites in carbon tetrabromide. (After L.R. Morris and W.C. 
Winegard, Journal of Crystal Growth 6 (1969) 61.) 

Fig. 4.26 Cellular microstructures. (a) A decanted interface of a cellularly solidified 
Pb-Sn alloy ( x  120) (after J.W. Rutter in Liquid Merals and Solidification, American 
Society for Metals, 1958. p. 243). (b) Longitudinal view of cells in carbon tetrabro- 
mide ( x  100) (after K.A. Jackson and J.D. Hunt. Acrn .kfetallurgica 13 (1965) 1212). I 

causing recesses to form (c), which in turn trigger the formation of other 
protrusions (d). Eventually the protrusions develop into long arms or cells 
growing parallel to the directin. of heat flow (e). The solute rejected from the 
solidifying liquid concentrates into the cell walls which solidify at the lowest 
temperatures. The tips of the cells, however, grow into the hottest liquid and 
therefore contain the least solute. Even if Xo 4 X,,, (Fig. 4.19) the liquid 
between the cells may reach the eutectic composition in which case the cell 
walls will contain a second phase. The interaction between temperature 
gradient, cell shape and solute segregation is shown in Fig. 4.25. Figure 4.36 . . 

shows the appearance of the cellular structure. Note that each cell has 
virtually the same orientation as its neighbours and together they form a 
single grain. 

Cellular microstructures are only stable f0r.a certain range of temperature 
gradients. At sufficiently low temperature gradients the cells, or primary arms 
of solid. are observed to develop secondary arms, and at still lower tempera- 
ture gradients tertiary arms develop. i . e  dendrites form. Concomitant with 



Solidification 

Fig. 4.28 Columnar dendrites in a transparent organic alloy. (After K.A. Jackson 
iri Solidification, American Society for Metals, 1971, p. 121.) 

this change in morpholog! there is a change in the direction of the primary 
arms away from the direction of heat flow into the crystallographically pre- 
ferred directions such as (100) for cubic metals. The change in morphology 
from cells to dendrites can be seen in Figs. 4.26b, 4.27 and 4.28. These 
pictures have been taken during in situ solidification of special transparent 
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i 
: organic compounds using a transmission light microscope*. The compounds 

used have low entropies of melting and solidify in the same way as metals. 
~ l l o y s  have been simulated by suitable combinations of such compounds. 

In general the tendency to form dendrites increases as the solidification 
, range increases. Therefore the effectiveness of different solutes can vary 

wlde~y. For solutes with a very small partition coefficient (k) cellular or 
dendritic growth can be caused by the addition of a very small fraction of a 
per cent solute. 

The reason for the change from cells to dendrites is not fully understood. 
However it is probably associated with the creation of constitutional super- 
cooling in the liquid between the cells causing interface instabilities in the 
transverse direction. Note that for unidirectional solidification there is 
approximately no temperature gradient perpendicular to the growth direc- 
tion. The cell or dendrite arm spacing developing is probably that which 
reduces the constitutional supercooling in the intervening liquid to a very low 
level. This would be consistent with the observation that cell and dendrite 
arm spacings both decrease with increasing cooling rate: higher cooling rates 
allow less time for lateral diffusion of the rejected solute and therefore 
require smaller cell or dendrite arm spacings to avoid constitutional spper- 
cooling. 

Fig. 4.29 Al-Cu A12 lamellar eutectic normal to the growth direction ( x  680). 
(Courtesy of J.  Strid, University of Lulea. Sweden.) 



Fig. 4.30 Rod-like eutectic. A16Fe rods in A1 matrix. Transverse section. Trans- 
mission electron micrograph ( X  70000). (Courtesy of J. Strid, University of Lulei, * I 
Sweden.) 

Finally it should be noted that although the discussion of alloy solidification 
has been limited to the case k < 1, similar arguments can be advanced for the . 

case of k > 1. (See exercise 4.13.) 

4.3.2 Eutectic ~olidification~ '1 
In the solidification of a binary eutectic composition two solid phases form 
cooperatively from the liquid, i.e. L -, a + P.  Various different types of 
eutectic solidification are possible and these are usually classified as normal 
and anomalous. In normal structures the two phases appear either as alter- 
nate lamellae, Fig. 4.29, or as rods of the minor phase embedded in the other 
phase, Fig. 4.30. During solidification both phases grow simultaneously be- 
hind an essentially planar solid/liquid interface. Normal structures occur 
when both phases have low entropies of fusion. Anomalous structures, on the 
other hand, occur in systems when one of the solid phases is capable of 
faceting, i.e. has a high entropy of melting. There are many variants of these 
structures the most important commercially being the flake structure of 
Al-Si alloys. This section will only be concerned with normal structures, and 
deal mainly with lamellar morphologies. 
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Fig. 4.31 Interdiffusion in the liquid ahead of a eutectic front 

Fig. 4.32 Molar free energy diagram at a temperature ATo below the eutectic 
temperature, for the case A = A * .  

Growth of Lamellar Eutectics 
Figure 4.31 shows how two phases can grow cooperatively behind an essen- 
tially planar solidification front. AS the A-rich a phase solidifies excess B 
diffuses a short distance laterally where it is incorporated in the B-rich P 
phase. Similarly the A atoms rejected ahead of the P diffuse to the tips of the 
adjacent a lamellae. The rate at which the eutectic grows will depend on how 
fast this diffusion can occur and this in turn will depend on the interlamellar 
spacing A. Thus small interlamellar spacings should lead to rapid growth. 
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However there is a lower limit to A determined by the need to supply the a / ~  f ( 
interfacial energy, yap. 

For an interlamellar spacing, A, there is a total of (2/A) m2 of a / p  interface -$ 
per m3 of eutectic. Thus the free energy change associated with the solidifica- $ 
tion of 1 mol of liquid is given by - 

where V, is the molar volume of the eutectic and AG(a) is the free energy 
decrease for very large values of A. Since solidification will not take place if 
AG(A) is positive, AG(m) must be large enough to compensate for the interfa- 
cial energy term, i.e. the eutecticlliquid interface must be undercooled below 
the equilibrium eutectic temperature T E ,  Fig. 4.32. If the total undercooling 
is.ATo it can be shown that AG(m) is then given approximately by 

AH. ATo 
AG(a) = 

TE 
where AH is an enthalpy term. The minimum possible spacing (A*) is 
obtained by using the relation AG(A*) = 0, whence I 
When the eutectic has this spacing the free energy of the liquid and eutectic is 
the same, i.e. all three phases are in equilibrium. This is because the a/p 
interface raises the free energies of the a and p from GU(x) and ~ ~ ( m )  to 
Ga(A*) and GP(A*) as shown in Fig. 4.32. The cause of the increase is the 
curvature of the a /L  and p/L interfaces arising from the need to balance the 
interfacial tensions at the a/P/L triple point, Fig. 4.31. In general, therefore, 
the increase will be different for the two phases, but for simple cases it can be 
shown to be 2yUpV,/A for both, Fig. 4.32. 

Let us now turn to the mechanism of growth. If solidification is to occur at a 
finite rate there must be a flux of atoms between the tips of the a and p 
lamellae and this requires a finite composition difference. For example the 
concentration of B must be higher ahead of the a phase than ahead of the P 
phase so that B rejected from the a can diffuse to the tips of the growing P. If 
X = A* growth will be infinitely slow because the liquid in contact with both 
phases has the same composition, XE in Fig. 4.32. However if the chosen 
spacing is greater than A* less free energy is locked in the interfaces and Ga 
and GP are correspondingly reduced, Fig. 4.33a. Under these circumstances 
the liquid in local equilibrium with the a has a composition x ~ I "  which is 
richer in B than the composition in equilibrium with the P phase xk IP .  

If the a / L  and P/L interfaces are highly mobile it is reasonable to  assume 
that growth is diffusion controlled in which case the eutectic growth rate (v) 
should be proportional to the flux of solute through the liquid. This in turn 
will vary as D dC/dl where D is the liquid diffusivity and dC/dl is the 
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\"I 
Fig. 4.33 (a) Molar free energy diagram at  (TE - ATo) for the case A* < A < x ,  

showing the composition difference available to  drive diffusion through the liquid 
(AX). (b) Model used to calculate the growth rate. 

concentration gradient driving the diffusion. (1 is measured along the direc- 
tion of diffusion as shown in Fig. 4.33b. In practice dC/dl will not have a 
single value but will vary from place to place within the diffusion zone.) dC/dl 
should be roughly proportional to the maximum composition difference 
(xBL/* - x ~ / P )  and inversely proportional to the effective diffusion distance, 
which, in turn, will be linearly related to the interlamellar spacing (A). Thus 
we can write 
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Fig. 4.34 Eutectic phase diagram showing the relationship between AX and AXo 
(exaggerated for clarity). 

where k ,  is a proportionality constant and U = x;'. - x;'@ as given in 
Fig. 4.33. " I 

AX will itself depend on A for when A = A*, 1X = 0, and as A increases AX 
will tend to a marlmum value, 4, say. Therefore it is reasonable to write 'e 

AX = A&(l - y) (4.41) 4 3 

The magnitude of AXo can be obtained by extrapolating the equilibrium - 
liquidus lines of the phase diagram (A = m) as shown in Fig. 4.34. For small 
undercoolings 

A X 0  x ATo 

The dashed lines in Fig. 4.34 are the liquidus lines for A* < A < m. U F  
simply given by the extrapolation of these lines as shown. Combining th 
above equations gives 

= ~ * D I T , ,  !. (1 - y) 
A 

- Id1 Cellular -utectic solidification front in a transparent organic dloy. 
J.D. Hunt a n c  <.-A. Jackson, Transactions of the Merollurgical Socieq of 
236 361966) 84. 7)  Transverse section through the cellular structure of an 

hFe rod eutectic 3500). (Courtesy of I. Strid. University of Lulei, Sweden.) 
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where k2 is another proportionality constant. This equation shows that b AT, is the undercooling required to overcome the interfacial curvature effects 
varying the interface undercooling (ATo) it is possible to  vary the g and ATD is the undercooling required to give a sufficient composition differ- 
(v) and spacing (A) independently. It is therefore impossible to predict the ence to drive the diffusion. (Strictly speaking a AT, term should also be added 
spacing that will be observed for a given growth rate. However, cOntroUed since a driving force is required to move the atoms across the interfaces, but 
growth experiments show that a specific value of A is always associated with a this is negligible for high mobility interfaces.) A better theoretical treatment 
given growth rate. Examination of Equation 4.43 shows that when A = 2 ~ * ,  of eutectic solidification should take into account the fact that the composi- 
the growth rate is a n'kximum for a given undercooling, or, alternatively, the tion of the liquid in contact with the interface and therefore STD vary 
required undercooling is a minimum for a given growth rate. If it is assumed from the middle of the a to the middle of the P lamellae. Since 
that growth occurs under these optimum conditions the observed spacing the interface is essentially isothermal (ATo constant) the variation of STD 
ho = 2h* and the observed growth rate is given by must be compensated by a variation in AT,, i.e. the interface curvature will 

v, = k2DATo/2A 6Bs3 change across the interface". 
A planar eutectic front is not always stable. If for example the binary 

However, from Equation 4.39, it is seen that ATo 3c 1 / A *  so that the following eutectic alloy contains impurities, or if other alloying elements are present. 
relationships are predicted: the interface tends to break up to form a cellular morphology. The solidifica- 

voh; = k3 (constant) tion direction thus changes as the cell walls are approached and the lamellar 
or rod structure fans out and may even change to an irregular structure, 

and Fig. 4.35. The impurity elements diffuse laterally and concentrate at the cell 

vo walls. In the case of the A1,Fe-A1 rod-like eutectic shown in Fig. 4.35 the 
-- 
(ATOl2 

- k4 (constant) impurity causing the cellular structure is mainly copper. Figure 4.36 shows 
how the concentration of copper and iron in the aluminium matrix increases 

There is in fact no physical basis for choosing A = 2A* and similar expressions in ihe ccll walls and boundary nodes. 
can also be obtained using other assumptions concerning the spacing. Cell formation in eutectic structures is analogous to that in single-phase 
Equations 4.44 and 4.45 are often found to be obeyed experimentally. For solidification. and under controlled conditions it is possible to stabilize a 
example measurements on the lamellar euiectic in the Pb-Sn systemlo show planar interface by solidifying in a sufficiently high temperature gradient. 
that k3 - 33 irq3 s-' and k4 - 1 irm S-' K - ~ .  Therrfore for a solidification 
rate of 1 irm s- , A, - 5 Fm and ATo - 1 K. 

The total undercooling at the eutectic front (ATo) has two contributions, . 
i.e. I 4.3.3 Off-Eutectic Alloys 

ATo = AT, + ATD 

Atomic. 
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D~stance 
Fig. 4.36 Cornpos~tion profiles across the cells in Fig. 4.35b. 

When the bulk alloy composition (Xo) deviates from the equilibrium eutectic 
composition (XE) as shown in Fig. 4.37 solidification usually begins close to 
TI with the formation of primary (a) dendrites. As the dendrites thicken 
solute is rejected ifito the remaining liquid until its composition reaches XE and 
the eutectic solidifies. Under steady-state unidirectional solidification condi- 
tions in the presence of a shallow temperature gradient the solidification front 
could appear as in Fig. 4.37b. The tips of the dendrites are close to TI and the 
eutectic front, most probably cellular, close to TE. Similar behaviour is found 
during the solidification ~f castings and ingots. In the absence of solid-state . 
diffusion the centres of thcdendrites, which solidified close to TI, will contain 
less solute than the outer layers that solidify at progressively lower tempera- - . ' 
tures. This leads to what %is known as coring in the final microstructure, 
Fig. 4.38. The eutectic does not always solidify as a two-phase mixture. When 
the volume fraction of one of the phases in the microstructure is very small it 
can form a so-called divorced eutectic. The minor phase then often appears as 
isolated islands and the other phase forms by the thickening of the dendrites. 
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Cored a 

eutectic 
Fig. 4.38 Transverse section through a dendrite in Fig. 4.37 

Under controlled solidification conditions, e.g. in unidirectional solidifica- 
tion experiments. it is possible to solidify an off-eutectic alloy without permit- 
ting the formation of the primary dendritic phase. If the temperature gradient 
in the liquid is raised above a critical level the dendrite tips are overgrown by 
the eutectic and the alloy solidifies as 10Q% 'eutectic' with an overall composi- 
tion Xo instead of XE. A similar change can be brought about if the growth 
rate is raised above a critical level. In both cases the reason for the disappear- 
ance of the primary dendrites is that for a given growth velocity the eutectic is 
able to grow at a higher temperature than the dendrite tips12. This phe- 
nomenon is of special interest in the production of in situ composite materials 
because the volume fraction of the two phases in the composite can be 
controlled by the choice of x013. 

4.3.4 Peritecric ~olidif ication'~ 

A typical phase diagram containing a peritectic reaction, i.e. L + cr + P, is 
shown in Fig. J.39a. During equilibrium solidification solid ci with composi- 
tion 'a' and liquid with composition 'c' react at the peritectic temperature T, 
to give solid P of composition 'b'. However, the transformation rarely goes to 
completion in practice. 

Consider for example the solidification of an alloy Xo at a finite velocity in a 
shallow temperature gradient, Fig. 4.39b and c. As the temperature de- 
creases the first phase to appear is a with the composition -kXo at a tempera- 
ture close to TI. a grows dendritically with successive layers solidifying at 
compositions determined by the local temperature and the a solidus. If 
diffusion in the dendrites is slow the liquid will eventually reach point c in 
Fig. 4.39a and on further cooling it reacts with the a to produce a layer of P. 
However, the cr, dendrites are then often effectively isolated from further 
reaction and are retained to lower temperatures. Meanwhile the'-P phase 
continues to precipitate from the liquid at compositions which follow the line 
bd. Again if there is no diffusion in the solid the liquid will finally reach point 
e and solidify as a P + y eutectic. The final solidified microstructure will then 
consist of cored a dendrites surrounded by a layer of P and islands of P + y 
eutectic, or divorced eutectic. 
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If alloy Xo were directionally solidified at increasing values of (TIL/v) the 
temperature of the dendrite tips would progressively fall from T ,  towards 
T2 (Fig. 4.39a) while the temperature at which the last liquid solidifies would 
increase towards T 2 .  Finally, solidification would take place behind a planar 
front at a temperature T 2 ,  as discussed earlier in Section 4.3.1. 

Planar-front solidification can also be obtained for alloys beyond 'a' in 
Fig. 4.39, provided a sufficiently high temperature-gradient/velocity ratio is 
used. Alloys between a and b then solidify with a 'eutectic-like' a + P 
structure. (The structure is better described as composite to avoid confusion 
concerning the term eutectic). Between b and d single-phase P forms, and 
beyond d P + y eutectic-like structures can be formed. 

The Fe-C phase diagram also contains a peritectic, Fig. 4.53a. However 
due to the high diffusivity of carbon at these high temperatures the peritectic 
reaction is very rapid and is able to convert all of the primary (6) dendrites 
into the more stable austenite. 

4.4 Solidification of Ingots and Castings 

This section is concerned with technological applications of the theory of 
solidification, as developed earlier. Two of the most important applications 
are casting and weld solidification and we shall first consider these. In modern 
constructions there is a tendency towards the use of stronger, heavier sections 
welded with higher energy techniques and faster speeds. It is thus important 
for the physical metallurgist to consider the effect of the various solidification 
parameters on the microstructure and properties of fusion welds. This will 
then be followed by some selected case studies of as-solidified or as-welded 
engineering alloys and weld metals. 

Most engineering alloys begin by being poured or cast into a fireproof 
container or mould. If the as-cast pieces are permitted to retain their shape 
afterwards, or are reshaped by machining, they are called castings. If they are 
later to be worked, e.g. by rolling, extrusion or forging, the pieces are called 
ingots, or blanks if they are relatively small. In either case the principles of 
solidification, and the requirements for high density and strength are the 
same. The moulds used in casting are often made of a material that can be 
remoulded or discarded after a casting series, such as sand. In the case of long 
casting series or ingot casting, however, the mould is of a more permanent 
material such as cast iron. The technological aspects of pouring and casting 
will not be dealt with here, but we shall confine our discussion simply to the 
mechanics of solidification of metals in a mould. 

4.4.1 Ingot Structure 

Generally speaking three different zones can be distinguished in solidified 
alloy ingots, Fig. 4.40. These are (i) an outer chill zone of equiaxed crystals, 
(ii) a columnar zone of elongated or column-like grains, and (iii) a central 
eaztiaxed zone. 
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Fig. 1.10 Schematic cast grain btructure. (After M.C. Flemings. Solidification Pro- . 
cessing. McGraw-Hill. New York. 1974.) 

Chill Zone 
uuring pouring the liquid in contact with the cold mould wall is rapidly cooled 
below the liquidus temperature. Many solid nuclei then form on the mould 
wall and begin to grow into the liquid, Fig. 4.41. As the mould wall warms up 
it is possible for many of these solidified crystals t o  break away from the wall 
under the influence of the turbulent melt. If the pouring temperature is low 
the whole of the liquid will be rapidly cooled below the liquidus temperature 
and the crystals swept into the melt may be able to continue to grow. This is 
known as 'big-bang' nucleation since the liquid is immediately filled with a 
myriad of crystals. This produces an entirely equiaxed ingot structure, i.e. no 
columnar zone forms. If the pouring temperature is high, on the other hand, 
the liquid in the centre of the ingot will remain above the liquidus tempera- 
ture for a long time and consequently the majority of crystals soon remelt 
after breaking away from the mould wall. Only those crystals remaining close 
to the wall will be able to grow to form the chill zone. 
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Fig. 4.41 Competitive growth soon after pouring. Dendrites with primary arms 
normal to the mould wail. i.e. parallel to the maximum temperature gradient, outgrow 
less favourably oriented neighbours. 

Columnar Zone 
Very soon after pouring the temperature gradient at the mould walls de- 
creases and the crystals in the chill zone grow dendritically in certain crystal- 
lographic directions, e.g. (100) in the case of cubic metals. Those crystals with 
a (100) direction close to the direction of heat flow, i.e. perpendicular to the 
mould walls, grow fastest and are able to outgrow less favourably oriented 
neighbours, Fig. 4.42. This leads t o  the formation of the columnar grains all 

New p r i ~ o r y  a r m  
arows from he re  

One 
columnar 
g r a i n  

Fig. 4.42 Favourably oriented dendrites develop into columnar grains. Each colum- 
nar grain originates from the same heterogeneous nucleation site, but can contain many 
~rimarv dendrite arms. 
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with (100) almost parallel to the column axis. Note that each columnar crystal 
contains many primary dendrite arms. As the diameter of these grains in- 
creases additional primary dendrite arms appear by a mechanism in which 
some tertiary arms grow ahead of their neighbours as shown in the figure. 

The volume fraction of the melt solidified increases with increasing distance 
behind the t~ps  of the dendrites and, when the structure is mainly single-phase, 
the secondary and tertiary arms of adjacent dendrites can link up to form 
walls-6f solid containing many pr~mary dendrite arms. The region between , 
the tips of the dendrites and the point where the last drop of liquid is -*. . solidifying is known as the mushy or pmry zone. The length of this zone "' 9 depends on the temperature gradient and the non-equilibrium freezing range 
of the alloy. In general it is found that the secondary arms become coarser "= 

with distance behind the primary dendrite tips.   his effect can be seen in 
Fig. 4.28. The primary and secondary dendrite arm spacing is also often 
found to jncrease with increasing distance from the mould wall. This is simply 
due to a corresponding decrease in the cooling rate with time after pouring. 

Equiaxed Zone 
The equiaxed zone consists of equiaxed grains randomly oriented in the 
centre of the ingot. An important origin of these grains is thought to be 
melted-off dendrite side-arms. It can be seen from Fig. 4.28 that the s ide 
arms are narrowest at their roots. Therefore. if the temperature around the 
dendrite increases after it has formed, it will begin to melt and may become 
detached from the main stem. Provided the temperature falls again before the 
arm completely disappears it can then act as a 'seed' for a new dendrite. An 
effective source of suitable temperature pulses is provided by the turbulent 
convection currents in the liquid brought about by the temperature differ- 
ences across the remaining melt. Convection currents also provide a means of 
carrying the melted-off arms away to where they can develop uninhibited into 
equiaxed dendrites. If convection is reduced fewer seed crystals are created 
causing a larger final grain size and a greater preponderance of columnar 
grains. Convection also plays a dominant role in the formation of the outer 
chill zone. The mechanism whereby crystals are m e l ~ ~ u  away from the mould 
walls is thought to be similar to  the detachment of side-arms1' and when 
convection is absent no chill zone is observed. 

Shrinkage Effects 
Most metals shrink on solidification and this has important consequences for ., ' 

the final ingot structure. In alloys with a narrow freezing range the mushy 
zone is also narrow and as the outer shell of solid thickens the level of the 
remaining liquid continually decreases until finally when solidification is com- 
plete the ingot contains a deep central cavity or pipe. 

In alloys with a wide freezing range the mushy zone can occupy the whole 
of the ingot. In this case no central pipe is formed. Instead the liquid level 
gradually falls across the width of the ingot as liquid flows down to compen- 
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sate for the shrinkage of the dendrites. However, as the interdendritic chan- 
n e l ~  close up this liquid flow is inhibited so that the last pools of liquid to 
solidify leave small voids or pores. 

1.4.2 Segregation in Ingots and Castings 

TWO types of segregation can be distinguished in solidified structures. There is 
macrosegregation, i.e. composition changes over distances comparable to the 
size of the specimen, and there is microsegregation that occurs on the scale of 
the secondary dendrite arm spacing. 

It has already been shown that large differences in composition can arise 
across the dendrites due to coring and the formation of non-equilibrium 
phases in the last solidifying drops of liquid. .Experimentally it is found that 
while cooling rate affects the spacing of the dendrites it does not substantially 
alter the amplitude of the solute concentration profiles provided the dendrite 
morphology does not change and that diffusion in the solid is negligible. This 
result often applies to quite a wide range of practical cooling rates. 

There are four important factors that can lead to macrosegregation in 
ingots. These are: (i) shrinkage due to solidification and thermal contraction; 
(ii) density differences in the interdendritic liquid: (iii) density differences 
between the solid and liquid; and (iv) convection currents driven by tempera- 
ture-induced density differences in the liquid. All of these factors can induce 
macrosegregation by causing mass flow over large distances during solidifica- 
tion. 

Shrinkage effects can give rise to what is known as inverse segregation. As 
the columnar dendrites thicken solute-rich liquid (assuming k < 1) must flow 
back between the dendrites to compensate for shrinkage and this raises the 
solute content of the outer parts of the ingot relative to the centre. The effect 
is particularly marked in alloys with a wide freezing range, e.g. AI-Cu and 
Cu-Sn alloys. 

Interdendritic liquid flow can also be induced by gravity effects. For exam- 
ple during the solidification of AI-Cu alloys the copper rejected into the 
liquid raises its density and causes it to sink. The effect can be reinforced by 
convection currents driven by temperature differences in the ingot. 

Gravity effects can also be observed when equiaxed crystals are forming. 
The solid is usually denser than the liquid and sinks carrying with it less solute 
than the bulk composition (assuming k < 1). This can. therefore, lead to a 
region of negative segregation near the bottom of the ingot. 

The combination of all the above effects can lead to  complex patterns of 
macrosegregation. Fig. 4.43 for example illustrates the segregation patterns 
found in large steel ingots16. 

In general segregation is undesirable as it has marked deleterious effects on 
mechanical properties. The effects of microsegregation can be mitigated by 
subsequent homogenization heat treatment, but diffusion in the solid is far too 
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Fig. 4.43 Segregation pattern in a large killed steel ingot. + positive. - negative 
segregation. (After M.C. Flemings. Scandinavian Journal of Metall~trgy 5 (1976) 1.) 

slow to be able to remove macrosegregation which can only be combated by good 
control of the solidification -: xess. 

4.4.3 Continuous Casting 

A number of industrial processes are nowadays employed in which casting is 
essentially a dynamic rather than a static process. In these cases, the molten 
metal is poured continuously into a water-cooled mould (e.g. copper) from 
which the solidified metal is continuously withdrawn in plate or rod form. 
This process is illustrated schematically in Fig. 4.44. 

It is seen that the speed of withdrawal is such that the solid-liquid interface 
is maintained in the shape and position illustrated. Ideally, the flow behaviour 
of the liquid should be vertically downwards, and if flow is maintained in this 
way the final composition across the ingot will be kept uniform. In practice, 

From ladle 

- 

cooled 
mould 

Fig. 4.44 Schematic illustration of a continuous casting process. 

hydrodynamic effects do not allow this simple type of flow and there is a 
tendency for the flow lines to fan outwards (as shown by the arrows) produc- 
ing negative segregation near the centre. Solidification follows the maximum 
temperature gradient in the melt as given by the normals to the isotherms. In 
certain respects weld solidification has much in common with continuous 
casting in that it is also a dynamic process. As illustrated in Fig. 4 45 tbs main 
difference is of course that in continuous casting the heat source (as defined 
by the mould) does not move, whereas in welding the heat source (the 
electrode) is moving. We shall now consider the latter case in more detail, but 
it will be found that certain conclusions concerning weld solidification be- 
haviour can well be applied to both processes. 

Heat Flow in Welding and Continuous Casting 
As discussed earlier, there are many factors concerning heat distribution at 
the melt zone and the dynamics of the process, which are essentially fairly 
similar in both continuous casting and welding. As an example we shall first 
consider the welding process and then discuss how the results may be applied 
to continuous casting. In contrast to continuous casting, weld solidification 
lnvolves a 'mould' that has approximately the same composition as the melt. 
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Fusion weld Continuous 

x cast ing 

Isot her 

Fig. 4.45 Illustrating the essential equivalence of isotherms about the heat sources in 
fusion welding and continuous casting. 

The most important variables in weld solidification or continuous casting are 
thus: 

1. The rate of heat input, q (determined by type of weld process, weld size, 
etc.); in terms of continuous casting q is represented effectively by the 
volume and temperature of the melt. 

2. Speed of arc movement along join, v: in continuous casting, v is the 
velocity of plate withdrawal. 

3. Thermal conductivity of the metal being welded or cast, K,. 
4. Thickness of plate being welded or  cast, t. 

In the case of welding, assuming that the arc moves along the x coordinate, 
the resulting heat distribution in a three-dimensional solid plate is given by 
the solution to the heat flow equation19: 

where x. y. z are defined in Fig. 4.45 and t is time. 
Solving this equation gives the temperature distribution about the moving 

heat source in the form of isotherms in the solid metal, in which the distance 
between the isotherms in a given direction ( x ,  y ,  z )  is approximately given by: 

Gray et al. (1975) have solved Equation 4.47 and plotted isotherms for a 
number of different materials and welding speeds and some of their results 
are summarized in Fig. 4.46. 

Assuming a similar isotherm distribution in the melt. it is likelv that the 
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parameters K,, v, r and q will largely determine solidification morphology, in 
that dendrites always try to grow in directions as near normal to isotherms as 
their crystallography allows. It is seen in the above figilre, for example, that 
holding q, v and t constant (Fig. 4.46a), the distance between isotherms, A ,  
increases substantially as a function of the change of heat conductivity, K,, of 
the different materials: aluminium, carbon (ferritic) steel, and austenitic 
steel. If the plate thickness is increased (Fig. 4.46b), or the weld speed is 
higher (Fig. 4 .46~) ,  A also decreases proportionally. 

These results can also be applied to continuous casting, in that the isotherm 
distributions shown in Fig. 4.46 are affected in a similar way by the conductiv- 
ity of the solidifying metal and its speed of withdrawal from the mould. This 
means, for example, that the depth of the liquid pool in continuous casting is 
much greater for steel than for aluminium alloys under comparable condi- 

- I 
300.C 

CARBON STEEL - - - - - -  -- I 
P 
'z 

---- > - - V) 

i 3 
LL 
k 
a 

q ~ 3 . 1  k~/;;  v = 8  mm/s; 

t = 6 . 0  mm 
Fig. 4.46 Effect of various parameters in Equation 5.36 on the isotherm distribution 
at a point heat source. (a) Effect of changes in thermal conductivity, Ks. (b) Effect 
of changes in plate thickness, t. (c) Effect of changes in movement of heat source. u. 
(After T.G. Gray, J. Spence and T.H. North, Rational Welding Design, Newnes- 
Butterworth. London, 1975 ) 
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carbon s tee l  

Fig. 4.46 (continued) 

tions. This implies that in practice the maximum casting speed and billet 
cross-section are less for steel than for aluminium or copper. Another practi- 
cal difficulty resulting from, a large depth of liquid is that the billet can not be 
cut until it reaches a point well beyond the solidus line (see Fig. 4.44). which 
requires in fact a very tall installation for high speed casting. 

4.5 Solidification of Fusion Welds 

Contact between the weld melt and the base metal will initially cause melting 
back of the base material and dilution of the filler metal as illustrated in 
Fig. 4.47. The amount of dilution involved is not insignificant. Jesseman 
(1975)" reports for example that in microalloyed steel welds, the weld metal 
may contain 50-70% of the amount of Nb, Ti or V as analysed in the base 
material. The effect of dilution is in fact threefold, and affects the weld metal 

. . 
\\- - 1  

- 

meta I 
I 

Fig. 4.47 Illustrating the effect of dilution. In high-energy welds, the weld metal 
t ~ ~ i c a l l y  exhibits 50-70% of the analysis of microalloying elements of the base metal 
through dilution. 
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as follows: 

1. The composition of the melt is changed. 
2. The surface oxide layer of the base metal is removed (also into t 

melt). 
3. It cools down the melt. 

Depending upon the type of m a t e d  being welded as well as plate thickne 
the base metal behaves as a very efficient heat sink, and already at T I  
solidification nuclei form at the oxide-free surface of the melted-back b 
material. Since the melt has approximately the same composition as the b 
metal. 'wetting' of the base metal is very efficient and 0 = 0 (see Fig. 4. 
This implies in turn that there is almost no nucleation barrier to  solidificatio 
and hence very little undercooling occurs. Solidification is thus predicted t 
occur epitaxially, i.e. nuclei will have the same lattice structure and orienta 
tion as the grains at the solid-liquid surface of the base metal, and this is wha 

. is observed in practice. 
Since the temperature of the melt beneath the arc is so high and the base 

material is such an efficient heat sink there is initially a steep temperature 
gradient in the liquid and consequently the degree of constitutional super- 
cooling is low. The actual thermal gradient is of course dependent upon the 
welding process and the plate thickness (Equation 4.48). For example TIG 
welding of thin plates will give steeper thermal gradients than submerged arc 

7 - /-- - -6 - -Weld cent  re l ~ n e  

-:Transition -UL* line 

(a Base metal  

*-\ 

Isotherms 

Fig. 4.48 Illustrating the growth of columnar crystals in the weld, and how growth 
continues to occur approximately nomal to the isotherms. 
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,ve]ding of thick plates, the latter process having the higher heat input. Since 
,,,rain grains at the base metal are better oriented than others for (100) 
ero,~th with respect to the isotherms of the melt, these quickly predominate 
;nd widen at the expense of the others. However, the general coarseness of 
the microstructure is largely determined at this stage by the grain size of the 
bass metal. Unfortunately, the base metal at the transition zone receives 
[he most severe thermal cycle and after high-energy welding in particulaf the 
trains in this zone tend to grow and become relatively coarse. The weld 
microstructure is thus inherently coarse grained. 

Welding is essentially a dynamic process in which the heat source is con- 
tinuously moving. This means that the maximum temperature gradients are 
constantly changing direction as the heat source moves away. The growing 
columnar crystals are thus faced with the necessity of trying to follow the 
maximum temperature gradients while still maintaining their preferred (100) 
growth direction. This often results in sudden changes in growth direction, as 
illustrated in Fig. 4.38a and b. 

Few of the grains originating at the base metal survive to reach the weld 
centre line. The mechanism by which sudden changes in (100) growth direc- 
tion are brought about is not fully understood. One suggestion is that renu- 
cleation occurs by the help of dendritic fragments which have broken away 
from the growing interface due to turbulence in the weld pool, or simply from 

. 

melted-off dendrite arms. 

Influence of Welding Speed 
An important effect of increasing the welding speed is that the shape of the 

* 

weld pool changes from an elliptical shape to a narrower, pear shape (see. 

(a 1 Low v --+ A 

(b) High v + 
A 

Fig. 4.49 Illustrating the effect of increasing welding speed on the shape of the melt 
Pool and crystal growth in fusion welds. 
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Fig 4 50 (a) TIG weld of n~ckel, ~llustrat~ng low c ~ s t a l  growth speed x 25 (bv Gudrun ' 

Keikkala. Unrverslty of LuleS, Sweden). (b) Submerged arc weld of steel. ~llustrat~ng high : 
g r o ~ t h  speed x 24 (by H Astrom. Unlverslty ot Lulei. Sweden) 

Fig. 4.51 
speed in .-....< ,,. ....- .uu.,,..,. Illustrating the relationship between crystal growth speed and w e l d i ~ d  

tprmr nf r a t -  I r r t n r c  A! 
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e.g. Fig. 4.49). Since growing crystals try to follow the steepest temperature 
the effect of changing the welding speed is to alter the solidification 

behaviour as illustrated in Fig. 4.49. As  shown in 4.49b. the pear-shaped weld 
pool maintains fairly constant thermal gradients up to the weld centre-line. 
corresponding to the more angular geometry of the melt in this case. On this 
basis growing crystals are not required to change growth direction as at  slower 
speeds (Fig. 4.4%). Instead. appropriately oriented crystals stabilize and 
widen outgrowing crystals of less favourable orientation. The crystal mor- 

; ~hology shown in Fig. 4.49b is in fact fairly typical of the high production rate 
~ e l d s  based on modern submerged arc welding. An example of a submerged 

; arc weld is shown in Fig. 4.50b. and of a TIG weld of nickel in 4.50a. 

16 
15 AlSI 304 S t a ~ n l e s s  Stee l  lmrn t  I 

0 ----- v=10 crn lm~n :q A - --- - 16 B e a d  Width = 4 to 5mrn 
A---- - 32 

12 
*----- 64 

EQUIAXED ZONE I 
5 3  

Y (%) 
Fig, 4.52 Measurements of crystal growth rate in stainless steel as a function of per 
cent of weld solidified. (After T. Senda et al., Technical Report, Osaka Universir?, 20 
1 l970) 932.) 



While fairly linear dendritic growth IS seen to p r e d o m ~ n ~ ~ t e  In this figure, it 5 
is also observed that dendrites suddenly change direction at the centre of th 
weld by as much as 6OO. This feature of high-speed welding will now b 
clarified. 

Geometry of Crystal Growth 
Consider a welding process in which the arc is moving at a speed v. Crystal 
growth must occur such that it is able to keep pace with the welding speed, 
and this is illustrated in Fig. 4.51. It is seen that for crystal growth rate, R, to 
keep pace with the welding speed. v ,  the condition must be met that: 

R = v cos 0 (4.49) 

In the figure, the arrows represent vectors of speed. The vector representing 
the welding speed. or the speed of movement of the isotherms. is constant. 
On the other hand. the vector representing crystal growth rate must con- 
tinuously adjust itself as growth proceeds towards the weld centre-line. It thus 
follows from Equation 4.49 that the solidification rate is greatest when 0 = 0, 
i.e. at the weld centre-line, and lowest at the weld edge where 0 is a 
maximum. On  this basis the sudden change in crystal growth direction at the 
weld centre Iine illustrated ip Fig. 4.50 is associated with high growth rates as 
solidification attempts to keep pace with the nioving arc. In addition. the 
initial low rates of crystal growth are associated with a relatively planar 
solidification front. and as the growth rate increases. the morphology of the 
front changes to cellular and then cellular dendritic. 

An example of weld solidification rates as measured on stainless steel as a 
function of different welding speeds is shown in Fig. 4.52. In confirmation of 
Equation 4.49, it was found that completion of weld solidification 
( y  = 100%) corresponds to the highest growth rates. However, the higher 
welding speeds were associated with a transition from predominantly colum- 
nar crystal growth to equiaxed grdwth at the final stage of solidification. This 
transition is thought to be due to the high amounts of segregation associated 
witt Lie final stages of weld solidification. This, coupled with the shallow 
thermal gradient at this stage leads to high degrees of constitutional super- 
cooling and therefore the driving force for random dendritic growth to occur 
is large. However, it should be noted that in general dendritic and cellular 
substructures in welds tend to be on a finer scale than in casting, and this is 
mainly due to the comparatively high solidification rates of weld metal. Since 
higher welding speeds or thicker base metal give larger rates of solidification, 
it follows that the finest substructures are associated with these welds (see 
Equation 4.48). 

When the arc is switched off at the completion of a weld run, an elliptical 
molten pool is left-to-solidify with a comparatively shallow thermal gradient. 
This leads to large constitutional supercooling and marked segregation. The 
final substructure of these weld 'craters' is thus usually equiaxed-dendritic. 

Summarizing, weld solidification has the followine features. 
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I 1. Solidification initially occurs epitaxially at the melted-back grains of the 
! 
I base metal. 

1. 1 o begin with crystal growth is relatively slow, forming first a planar and 
I then a fine cellular substructure. 
I 3. The intermediate stage of crystal growth is cellular-dendritic leading to 

! coarse columnar crystal growth in'the (100) direction in the case of cubic 
crystals. 

I 4. Final solidification at the centre-line is associated with rapid crystal 

1 growth and marked segregation. Depending on welding conditions. final 
dendritic structure can be equiaxed. I 

I In many ways, therefore. weld solidification and even continuous casting 
exhibit essentially different features to those of ingot casting (problem 4.22). 

1 ' 1.6 Solidification during Quenching from the Melt 

The treatment of solidification presented in this chapter has been applicable 
for cooling rates of less than about 10' K/s. However. solidifcation can also 
occur at much hipher rates of 10'' - 10' K.;s in such processes as liquid metal 
atomization. melt spinning. roller-quenching or plasma spraying. as well as 
laser or electron beam surface treatment. By quenching melts it is possible to 
achieve various metastable solid states not predicted by equilibrium phase 
diagrams: solid phases with extended soiute solubility. new metastable 
crystalline phases or. i f  the cooling rate is fast enough. amorphous metallic 
glasses. Crystalline solidification can occur without rnicrosepregation or with 
cells or secondary dendrites spaced much more finely than in conventional 
solidification processes. Whether the solid is crystalline or amorphous. 
rapid solidification processing offers a way of producing new materials with 
improved magnetic or mechanical properties. 

One consequence of rapid cooling can be that. local equilibrium at  the 
solidlliquid interface breaks down. Melts can solidify with no change in 
composition. i.e. partitionless solidification or solute trapping can occur. 
The thermodynamic principles involvf-,: in partitionless solidification are 
similar to those for the massive transformation in solids to be treated in 
Section 5.9. 

4.7 Case Studies of some Practical Castings and Welds 

I 4.7.1 Casring of Carbur, and Low-Alloy Ster1.s 

I Typical composition ranges: .b 

C: 0.1-1.0 wt% 
Si: 0.1-0.4 wt% I carbon steels 

Mn: 0.3-1.5 wt%] 
Cr: 1.0-1.6 wt% I low-alloy steels 

I Ni: 1.0-3.5 wt% 
\ 4 n .  0 1-17 1 .,.t'-' 

! 
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Casting processes: Castings, ingots, continuous casting. 
Relevant phase diagrams: See Fig. 4.53. 
Solidification transformations: 

L - S + L  
6 + L -z 6 + y + L (peritectic: 6 + L -. y) 

6 + y + L - y  ^ 

Atom~c percentage carbon 1 

(Y-Fe) 
Austeni te  

We~ght percentage carbon I 

Alloy r 

\ 
. . 

(b) Weight percentage nickel (c) Weight percentage nickel 

Fig. 4.53 (a) Part of the iron-carbon phase diagram. (b) Liquidus projection for the 
Fe-Cr-Ni system. (c) isothermal section (650 "C) for the Fe-Cr-Ni system. (From Metals 
Handbook, 8th edn., Vol. 8; American Society for Metals, 1973, pp. 276 and 425.) 
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Subsequent transformations: 

y --+ a + Fe3C (equilibrium structure at ambient t~rnperature) 

Microstructures: See Fig. 4.54. 

Comments: Figure 4.53 shows that alloying with the- relatively small 
amounts of Ni and Cr used in low-alloy steels has little effect on solidification 
temperature and that the equilibrium structure of the alloy is cr(+Fe,C). 
Figure 4.54a shows that quenching from the (y, 6 + L) field leaves a structure 
with considerable residual melt between solidified dendrites. As discussed 
earlier, in practical alloys. the presence of residual melt between dendrite 
arms is largely due to impurity segregation. The completely solidified struc- 
ture shown in Fig. 4.54b exhibits a residual eutectic between a-Fe dendrites 
of y/Fe3P/Fe3C, suggesting that the last liquid to solidify was rich in P and C. 
The retention of some y-Fe in the eutectic is possibly due to the high carbon 
content of the residual iron (the solubility of P in y-Fe is very low), which, 
together with the stabilizing effect of Ni, may help to retard the y i. a 
transformation. Slower rates of cooling would probably reduce the amount of 
retained austenite still further. The presence of Mn induces the reaction: 
Mn + S -+ MnS (see Fig. 4.54b). However, this is certainly preferred,to FeS, 
which tends to wet dendrite boundaries more extensively than MnS and is a 
prime cause of hot cracking. 

1.7.2 Casting of High-Speed Steels 

Typical composition ranges: 

C: 0.5-1.0 wt% 
Cr: 0.5-4.0 wt% 

Mo: 0.5-9.5 wt% 
W: 1.5-6.0 wt% 
V: 0.5-2.0 wt% 

Casting processes: Ingot 
Special properties: Hard, tough, wear-resistent at elevated temperatures. 
Relevant phase diagrams: See Fig. 4.55. 
Solidification transformations: 

L + L + a  
L + a 4 L + a + y (peritectic L + 6 -+ y) 

L + a + y - + L + a + y + M , C  
L + a + y + M,C + y + M,C (eventually: - a + M,C) 

Microstructures: See Fig. 4.56. 



rig. 4.34 (a) Alloy quenched from (6. y + L) field ( x  25). (b) Cooled to 20 OC. 
E refen to y/Fe,P/Fe,C eutectic ( x  100). (From Guide to the Solidification of Steels, 
Jemkontoret, Stockholm. 1977.) 
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I I Weight percentage carbon. 

Effect of tungsten 

+ I 
on the gamma field 

a+ Fe3C 
I 

400 . 
I 1 I I I I I 1 

(b)  0 0.5. 1.0 1- 5 24 2.5 
Weight percentage carbon 

Fig. 4.55 (a) Phase diagram for steel wlth approx 4wt% Cr, 5wt% Mo. 6wt% W 
and 2wt% V (after E. Horn and H. Brandis. DEW-Techn. Ber. 11 (1971) 117). (b) 
Effect of W on y field of steel (from ~Metais Handbook, 8th edn., Vol. 8. American 
Society for Metals, 1973. p. 416). 
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g Comments: Reference to the phase diagrams (Fig. 4.55) shows that the 
presence of W, V and the other main alloying elements produces a cascade of f 
polyphase fields during cooling of these castin;s. Solidification occurs initially 1. 

$ with the formation of a dendrites, but the y fields are so extensive that rapid +,. 
quenching from the a + L field can not suppress the nucleation and growth of 77 
austenite (Fig. 4.56a). As expected, the C segregates strongly when u forms, - 
but W, Cr and V are not expected to segregate so markedly in a-Fe. It seems 
likely that the early formation of y through the reaction: u + L - y + L in - 
these castings is the main cause of the extensive segregation of W, Cr and V as 
observed in Fig. 4.56b and c. As seen in Fig. 4.56b, it is possible that the 
u + y reaction occurs through the rejection of dissolved M back to the melt. ' 

Reference to the Fe-Cr, Fe-V, and Fe-W binary phase diagrams shows in all 
cases very low high-temperature solubility of these elements in y-Fe. The 
resulting as-solidified structure (Fig. 4 . 5 6 ~ )  thus consists of a dendrites (fol- 
lowing the y + u solid-state transformation during cooling) with marked 

Fig. 4.56 (a) Quenched from the (L + o (or 8) + y) field at 1335 O C  ( x  150). 
(b) Quenched from 12.15 "C ( X  150). (c) Same alloy after mechanical and thermal 
heat treatments ( x  7501. (a-c from A Guide to the Solid$cation of Steel, Jernkon- 
toret, Stockholm, 1977. and d from Metals Handbook. 8th edn., Vol. 7, American 
Society for Metals. 1972. p. 121.) 

Fig. 4.56b & c (continued) 

interdendritic segregation. The latter appears in the form of a Y/M,C eutec- 
tic, where MxC refers to mixed carbides of WC, Cr,C, VC, etc. The final 
structure of this type of tool steel (Fig. 4.56d) is only reached after further 
extensive plastic working to break up the eutectic, followed by austenitizing 
and double-tempering treatments. 
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4.7.3 Stainless Steel Weld Metal 

Electrode composition range: 

Cr: 17-19 wt% 
Ni: 8 -10 wt% 
C: 0.05-0.1 wt% 
Si: 0.5-1.0 WL% 

Mn: 0.5-1.5 wt% 

traces 
S: 

-* 
Welding process: Manual metal arc, gas metal arc 
Relevant phase diagrams: See Fig. 4.57. 
Phase transformations: 

L - . 6 + L  
6 + L -. 6 + y (approx. peritectic). 

Microstructures: See Fig. 4.58. 

Comments: 
(a )  Phase equilibria. Figure 4.57a is the 18% Cr vertical section of the 

Fe-Cr-Ni ternary diagram. The effect of these and other alloying elements 
on the final microstructure, assuming fairly high quench rates typical of 
welding, can be predicted with the help of the Shaeffler diagram 4.57b. From 
this diagram it can be seen that if the Ni or Cr contents are reduced much 
below the nominal analyses given, there is a risk that martensite forms. The 
most important feature of these alloys with respect to welding, is that some 
6-Fe is retained even at ambient temperatures (see 4.57b). 

There has been much discussion in the literature as to which phase solidifies 
first after welding. According to Fig. 4.57a it appears that solidification 
should initiate with the nucleation of 6-Fe. However, if the base metal is fully 
austenitic at the transition zone, this phase should nucleate first because of 
the requirement of epitaxial growth (see previous discussion). Unfortunately 
the situation is complicated in practice by the presence of carbon and nit- 
rogen, both of which ten.' to move the peritectic composition towards higher 
Ni content. An example of the effect of N being admitted to the weld pool is 
shown in Fig. 4.58a illustrating a single run weld which has remained fully 
austenitic. The result of this is fairly catastrophic, causing hot cracking at the 
austenite grain boundaries due to increased sulphur and phosphorus segrega- 
tion in the austenite during solidification. 

(6 )  Microstructure. It is thought that the first phase to solidify in this alloy is 
6-Fe, enriched in Cr and impoverished in Ni, the tendency in either case being 
to stabilize the ferrite. Further cooling causes y-Fe to nucleate in the Ni-rich 
liquid between the 6-Fe dendrites. With the development of this duplex y + 6 
structure the peritectic reaction: L -, y + 6 continues to completion. Cool- 
ing of the weld metal to ambient temperature causes the y-Fe phase to grow 

18001 Liquid 

Aus teni te Y 

% Nickel 

200, 

Chromium equivalent ( C ~ ) e q  

\ 
Ferrite 6 or 6 +a 

I I I I I 1 I I 1 

, Fig. 4.57 (a) 18% Cr  section of the Fe-Cr-Ni system. (b) Schaeffler diagram 
i indicating the alloy concerned. (NI),, = %Ni + 30 x % C  + 0.5 x %Mn. 
I (Cr),, = %Cr + %Mo + 1.5 x %Si + 0.5 x %Nb. A, austenite; F, ferrite;. M. 

martensite. (After R.J. Castro and J.J. de Cadenet, Welding Metallurgy of Stainless 
and Heat Resistant Steels, Cambridge University Press, Cambridge. 1974.) 
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(b) 
Fig. 4.58 (a) Illustrating hot cracking in the austenite region of a duplex stainless 
steel weld deposit. (b) STEM-EDX microanalysis of y and 6-Fe and an inclusion. 
(After H. Astrom et al . .  Metal Science Journal, July 1976, p. 225.)  

at the expense of 6-Fe until only a fine network of 6-Fe remains. The 
STEM-based X-ray spectrometer microanalysis of the y, 6 and inclusion 
phases (Fig. 4.58b) indicates that the Cr-rich ferrite has dissolved the phos- 
phorus (one of the danger elements in hot cracking), while the sulphur is 
bound up in the inclusion. In this respect Mn has a double role: both as a 

&oxidizer and to absorb S through forming MnS. If the weld solidifies 
directly to y-Fe, all the Mn remains in solution and thus cannot prevent FeS 
forming at cell boundaries. The fine duplex y +- 6 structure of stainless steel 
welds thus refines and strengthens the microstructure, and effectively renders 
S and P harmless. It should be pointed out. however, that the 6-8 vol% 
retamed 6-Fe at ambient temperature should not be exceeded. since higher 
volume fractions reduce the ductility and toughness of this alloy. In this 
respect. the Shaeffler diagram (Fig. 4.57b) is a useful guide for estimating 
6-Fe as a function of equivalent Cr and Ni content. The amount of 6-Fe can 
also be measured magnetically or metallographically. If the presence of 
nitrogen is to be accounted for, a modified form of Shaeffler diagram (the 
DeLong diagram) can be employed (see, e.g. Castro and Cadenet. 1974)". 
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Exercises I 
4.1 Show that differentiation of Equation 4.4 leads to Equations 4.5 and 

4.6. I 
4.2 Use Equations 4.4 and 4.10 to estimate the number of crystal-like 

clusters in 1 mm3 of copper at its melting point for spherical clusters 
containing (a) 10 atoms. (b) 60 atoms. What volume of liquid copper is 
likely to contain one cluster of 100 atoms? The atomic volume of liquid 
copper is 1.6 x m3, y,, is 0.177 J m-2, k = 1.38 x K-', 
T, = ,1356 K. ... 

4.3 Why does r,,, in Fig. 4.5 vary with AT? 
4.4 Calculate the homogeneous nucleation rate in liquid copper at under- 

coolings of 180. 200 and 220 K, using the following data: 

Exercises 

L = 1.88 X 1OYJ mP3, Tm = 1356 K. ys, = 0.177 J m-', 
f, = 10" s-'. C,, = 6 x 10'%toms m-'. k = 1.38 x SO-" J K-'. 

4, j Show that Equation 4.23 applies to homogeneous nucleation and heter- 
ogeneous nucleation on a flat mould wall. 

4.6 Show that Equation 4.16 follows from 4.15 using the following rela- 
tionships for a spherical cap: 

AsL = 2nr2 (1 - cos 0) 

ASM = q r 2  sinZ 0 

Vs = 7rr3 (2 + cos 0)(l  - cos 0 ) ~ / 3  

4.7 Of what importance is the angle of a mould-wall crack in hetero- 
geneous nucleation? Of what importance is the width of the crack at 
its mouth? 

4.8 Under what conditions can solid metal be retained in a mould-wall 
crevice above T,? 

4.9 If a single crystal is melted by heating to slightly above its melting point 
and then cooled it subsequently solidifies with the previous orientation. 
Likewise a polycrystalline specimen reverts to its original grain slze. Can 
you suggest an explanation for this effect? (See B. Chalmers, Principles 
of Solidification, Wiley, 1964, p. 85). 

4.10 (a) Show that surface melting is to be expected below Tm in gold 
(1336 K) given ysL = 0.132, yLv = 1.128. ysv = 1.400 J m-2. 

(b) Given that the latent heat of fusion of gold is 1.2 x 10" mm-' 
estimate whether sensible liquid layer thicknesses are feasible at 
measurably lower temperatures than T ,  . 

4.11 Use nucleation theory to derive quantitative expressions for the velocity 
of an atomically smooth interface as a function of undercooling (a) for 
repeated surface nucleation, (b) for spiral growth. (See Burton et al., 
Philosophical Transactions, A243:299 (1950)). 

4.12 Draw diagrams to show how the soiid/liquid interface temperature 
varies as a function of position along the bar for Figs. 4.20, 4.21 and 
4.22. 

1.13 Draw figures corresponding to Figs. 4.21 and 4.22 for a dilute binary 
alloy with k > 1. 

4.14 Show that Equation 4.35 satisfies 4.34. 
4.15 The Al-Cu phase diagram is similar to that shown in Fig. 4.19 with 

T,  (Al) = 660 "C, TE = 548 "C. X,,, = 5.65 wt%, and 
XE = 33 wt% Cu. The diffusion coefficient for the liquid 
DL = 3 x lo-' m2 s- '. If an A1-0.5 wt% Cu alloy is solidified with no . 
convection and a planar solid/liquid interface at 5 pm s-': 

. . 

(a) What is the interface temperature in the steady state? 
(b) What is the thickness of the diffusion layer? 
(c) What temperature gradient will be required to maintain a planar 

interface? 
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4 (d) Answer (a). (b) and (c) for an Al-2 wt% Cu alloy solidified under ,& 
the same conditions. 3 

4.16 (a) Using Equation 4.33 and the data in problem 4.15 plot the variation 
of copper concentration along a unidirectionally solidified.bar of an 3 
A1-2 wt% Cu alloy assuming no diffusion in the solid and perfect @' 
mixing in the liquid. 3 

.F$ 
(b) What fraction of the bar will solidify to a eutectic structure? t 

(c) How much eutectic would form in an A1-0.5 wt% Cu alloy soli- . 
dified under the same conditions'? 

4.17 Explain the experimental observation that in the presence of a convec- 
tion current cells grow upstream. 

4.18 Sketch a possible solidification-front structure for the solidification of an 
Fe-0.25 wt% C alloy in a shallow temperature gradient. Consider the 
temperature range 1440-1540 "C. Assume very rapid diffusion of car- 
bon in 6-Fe. 

4.19 Show that the condition A = 2A' glves (i) the maximum eutectic growth 
rate for a given undercooling, and (ii) a minimum undercooling for a 
given growth rate (Equation 4.43). 

1.20 Calculate the depression of the eutectic temperature for a lamellar 
eutectic with h = 0.2 pm and h = 1.0 pm, if yap = 400 mJ m-*, 
AHIV,,, = 800 x lo6 J m-3, TE = 1000 K. 

4.21 If it is assumed that the choice of a rod or lamellar eutectic is governed 
by the minimization of the total alp interfacial energy it can be shown 
that for a given X there is a critical volume fraction of the p phase (f,) 
below which P should be rod like, and above which it should be lamel- 
lar. Assuming the rods are hexagonally arranged and that y , ~  is isotro- 
pic, calculate the value of f,. 

4.22 Compare the processes of ingot casting and weld solidification, and 
show they are in many ways qulte different solidification processes. How 
would you compare continuous casting in this respect? 

4.23 What is the influence of welding speed on the solidification structure of 
welds? How is welding speed likely to affect segregation problems? 

5 
Diffusional Transformations in Solids 

The majority of phase transformations that occur in the solid state take place 
by thermally activated atomic movements. The transformations that will be 
dealt with in this chapter are those that are induced by a change of tempera- 
ture of an alloy that has a fixed bulk composition. Usually we will be 
concerned with the transformations caused by a temperature change from a 
single-phase region of a (binary) phase diagram to a region where one or 
more other phases are stable. The different types of phase transformations. 
that are possible can be roughly divided into the following groups: (a) pre- 
cipitation reactions, (b) eutectoid transformations, (c) ordering reactions, 
(d) massive transformations, and (e) polymorphic changes. Figure 5.1 shows 
several different types of binary phase diagrams that are representative of 
these transformations. 

Pre~i~nitation transformations can be expressed in reaction terms a s  follows 

a l - + a + p  ' (5.1) 

where a' is a metastable supersaturated solid solution. /3 is a stable or meta- 
stable precipitate, and a is a more stable solid solution with the same crystal 
structure as a ' ,  but with a composition closer to equilibrium, see Fig. 5.la.  

Eutectoid transformations involve the replacement of a metastable phase 
(y j  by a more stable mixture of two other phases (a + P) and can be 
expressed as 

y - + a + P  (5.2) 
This reaction is characteristic of phase diagrams such as that shown in 
Fig. 5 . lb .  

Both precipitation and eutectoid transformations involve the formation of 
phases with a different composition to the matrix and therefore long-range 
diffusion is required. The remaining reaction types can, however, proceed 
without any composition change or long-range diffusion. Figure 5 . 1 ~  shows 
phase diagrams where ordering reactions can occur. In this case the reaction 
can be simply written 

a(disordered) -+ al(ordered) 
;. ' 

(5.3) 

In a , h ~ s s i v e  transformation the original phase decomposes into one or 
more new phases which have the same composition as the parent phase, but 
different crystal structures. Figure 5. l d  illustrates two simple examples of the 
type 

P e a  (5.4) 



Dijfusiotzu~ tratzsformations in solids i Hornogeneo~~s nl~cleariotz in solids 265 

mi  pi 
(c) A ( I  1 B A ( i i )  B 

Fig. 5.1 Examples of different categories of diffusional phase transformations: 
(a) precipitation; (b) ewenoid; (c) ordering; (d) massive; (e) polymorphic (single 
component). 

: 
*here only one new phase results. Note that the new /3 phase can either be 
stable (Fig. 5.ld(i) ) or metastable (Fig. 5.ld(ii) ). 

polvmorphic transformations occur in single component systems when 
different crystal structures are stable over different temperature ranges, 
Fig. 5.le.  The most well-known of these in metallurgy are the transforma- 
tlons between fcc- and bcc-Fe. In practice. however, such transformations are 
of llttle practical interest and have not been extensively studied. 

Apart from a few exceptions the above transformations all take place by 
diffusional nucleation and growth. As with solidification, nucleation is usually 
heterogeneous, but for the sake of simplicity let us begin by considering 
homogeneous nucleation. 

5.1 Homogeneous Nucleation in Solids 

I To take a specific example consider the precipitation of B-rich P  from a 
supersaturated A-rich cw solid solution as shown in Fig. 5.la(i). For the 1 nucleation of 8 .  B-atoms within the a matrix must first diffuse together to form 
a small volume with the /3 composition, and then. i f  necessary, the atoms must 
rearrange into. the p  crystal structure. As with the liquid + solid transforma- 

' tion an a l p  interface must be created during the process and this leads to an 
activation energy barrier. 

The free energy change associated with the nucleation process will have the 
following three contributions. 

1 .  At temperatures where the p phase IS stable. the creation of a volume V 
of /3 will cause a volume free energy reduction of VAG,. 

2. Assuming for the moment that the a / p  interfacial energy is isotropic the 
creation of an area A of interface will give a free energy increase of Ay. 

3.  In general the transformed volume will not fit perfectly into the space 
originally occupied by the matrix and this gives rise to a misfit strain 
energy AG, per unit volume of p. (It was shown in Chapter 3 that, for 
00th coherent and incoherent inclusions, LC, is proportional to the 
volume of the inclusion.) Summing all of these gives the total free 
energy change as 

( 5 . 5 )  ' - , AG = - VAG, + A-y + VAG, 

Apart from the misfit strain energy term. ~ ~ u a t b n 3 . 5  is very similar to that 
derived for the formation of a solid nucleus in &&id. With solid/liquid 
interfaces y can be treated as roughly the same fot 'all interfaces, but for 
nucleation in solids y can vary widely from very low values for coherent 
interfaces to high values for incoherent interfaces. Therefore the Ay term in 
Equation 5.5 should really be replaced by a summation over all surfaces 
of the nucleus Zy,A,. 
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:Q.= 
If we ignore the variation of y with interface orientation and assume the $ 

$,+# nucleus is spherical with a radius of curvature r Equation 5.5 becomes X, 
d. 
4- 

4 
AG = --.rrr3(lG, - AG,) + 4nrzy 

3 

This is shown as a function of r in Fig. 5.2. Note that the effect of  he misfit 
strain energy is to reduce the effective driving force for the transformation to 
( lG,  - AG,). Similar curves would in fact be obtained for any nucleus shape 
as a function of its size. Differentiation of Equation 5.6 yields 

16ny3 
AG* = 

3(AG, - AG,)* 

which is very similar to the expressions for solidification, except now the 
chemical driving force AG, is reduced by a positive strain energy term. 
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As discussed in Chapter 4 the concentration of critical-sized nuclei C* will 
be given by 

C* = Co exp (-AG*/kT) (5.9) 
j 

where Co is the number of atoms per unit volume in the phase. If each nucleus 
can be made supercritical at a rate off per second the homogeneous nuclea- 
tion rate will be  give^ by 

f depends on how frequently a critical nucleus can receive an atom from the a 
matrix. This will depend on the surface area of the nucleus and the rate at 
which diffusion can occur. If the activation energy for atomic migration is 
LC, per atom, f can be written as w exp (-AG,/kT) where w is a factor that 
includes the vibration frequency of the atoms and the area-of the critical 
nucleus. The nucleation rate will therefore be of the form 

AG* 
Nhom = wCO exp 

This is essentially identical to Equation -1.12 except that the temperature 
dependence of f has been taken into account. In order to evaluate this 
equation as a function of temperature w and l G ,  can be assumed to be 
constant. but l G *  will be strongly temperature dependent. The main factor 
controlling AG* is the driving force for precipitation LC,, Equation 5.8. 
Since composition is variable the magnitude of l G ,  must be obtained from 
the free energy-composition diagram. 

If the alloy X,, in Fig. 5.3. is solution treated at T ,  and then cooled rapidly 
to T, it will become supersaturated with B and will try to precipitate P .  When 
the transformation to a + p is complete the free energy of the alloy will have 
decreased by an amount AGO per mole as shown in Fig. 5.3b. AGO is therefore 
the total driving force for the transformation. However, it is not the driving 
force for nucleation. This is because the first nuclei to appear do not signifi- 
cantly change the a composition from Xu. The free energy released per mole 
of nuclei formed can be obtained as follows. 

If a small amount of material with the nucleus composition (XI) is removed 
from the a phase, the total free energy of the system will decrease by AGl 
where 

AG, = F",XP, + & X i  (per mol p removed) 

This follows simply from the definition of chemical potential given by 
Equation 1.29. AG, is a quantity represented by point P in Fig. 5.3b. If these 
atoms are now rearranged into the P crystal structure and replaced, the total 
free energy of the system will increase by an amount 

AG, = C L X P , ~ %  + p,i~t (per mol P formed) (5.13) 



Fig. 5.3 Free energy changes during precipitation. The driving force for the first 
precipitates to nucleare is AG, = AG,V,,, . AGO is the total decrease in free energy 
when precipitation is complete and equilibrium has been reached. 

which is given by point Q. Therefore the  driving force for nucleation 

AGn = AG2 - AG, per mol of p (5.14) 

which is just the length PQ in Fig. 5.3b. The volume free energy decrease 
associated with the nucleation event is therefore simply given by 

AGn AG, = - per unit volume of p 
v m  

where V,,, is the molar volume of p. For dilute solutions it can be shown that 
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u here 

ax = x, - x, (5.17) 

From Fig. 5.3a therefore it can be seen that the driving force for precipitation 
increases with increasing undercooling (AT) below the equilibrium solvus 
temperature T, . 

It is now possible to  evaluate Equation 5.11 for alloy Xo as a function of 
temperature. The  variation of AG, with temperature is shown schematlcally 
in Fig. 5.3b. After taking into account the misfit strain energy term AG, the 

(c > (dl  
Fig. 5.4 How the rate of homogeneous nucleation varies with undercooling for alloy 
X,,. (a) The phase diagram. (b) The effective driving force (AG, - AG,) and the 
resultant energy barrier AG*. (c) The two exponential terms that determine N as 
shown in ,dl.  
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effective driving force becomes (AG, - AG,) and the effective equilibriu 
temperature is reduced to T',. Knowing (AG, - AG,) the activation ene 
AG* can be calculated from Equation 5.8 as shown. Figure 5 . 4 ~  shows 
two exponential terms in Equation 5.11; exp (-AG*/kT), is essentially 
potential concentration of nuclei and, as with nucleation in liquids, this 
essentially zero until a critical undercooling AT, is reached, after which 
rises very rapidly. The other term, exp (-AG,/kT), is essentially the atom1 
mobility. Since AG, is constant this decreases rapidly with decreasing 
temperature. The combination of these terms, i.e. the homogeneous nuclea. 
tion rate is shown in Fig. 5.4d. Note that at undercoolings smaller than AT,, 
N is negligible because the driving force AG, is too small, whereas at very 
high undercoolings N is negligible because diffusion is too slow. A maximum 
nucleation rate is obtained at intermediate undercoolings. For alloys contain- 
ing less solute the critical supercooling will not be reached until lower abso- 
lute temperatures where diffusion is slower. The resultant variation of N with 
T in these alloys will therefore appear as shown in Fig. 5.5. 

In the above treatment of nucleation it has been assumed that the nuclea- 
tion rate is constant. In practice however the nucleation rate will initially be 
low, then gradually rise, and finally decrease again as the first nuclei to form 
start growing and thereby reduce the supersaturation of the remaining a. 

It has also been assumed that the nuclei are spherical with the equilibrium 
composition and structure of the 8 phase. However, in practice nucleation 
will be dominated by whatever nucleus has the minimum activation energy 
barrier hG*.  Equation 5.8 shows that by far the most effective way of mini- 
mizing AG* is by the formation of nuclei with the smallest total interfacial 
energy. In fact this criterion is dominating in nucleation processes. Incoherent 
nuclei have such a high value of y that incoherent homogeneous nucleation is 
virtually impossible. If, however, the nucleus has an orientation relationship 
with the matrix, and coherent interfaces are formed, AG* is greatly reduced 

Fig. 5.5 The effect of alloy composition on the nucleation rate. The nucleation rate 
in alloy 2 is always less than in alloy 1. 

homogeneous nucleation becomes feasible. The formation of a coherent 
nucleus will of course increase AG, which decreases TL. But below T', the 
decrease in y resulting from coherency can more than compensate for the in- 
crease in AG,. Also, by choosing a suitable shape it is often possible to 

AG, as discussed in Section 3.4.3. 
In most systems the a and phases have such different crystal structures 

that it is impossible to form coherent low-energy interfaces and homogeneous 
nucleation of the equilibrium phase is then impossible. However, it is often 
possible to form a coherent nucleus of some other, metastable phase (8') 
which is not present in the equilibrium phase diagram. The most common 
example of this is the formation of GP zones which will be discussed in 
more detail later. 

There are a few systems in which the equilibrium phase may nucleate 
homogeneously. For example in the Cu-Co system Cu alloys containing 
1-34 Co can be solution treated and quenched to a temperature where Co 
precipitates. Both Cu and Co are fcc with only a 2% difference in lattice 
parameter. Therefore very little coherency strain is associated with the forma- 
tion of coherent Co particles. The interfacial energy is about 200 mJ m-' and 
the critical undercooling for measurable homogeneous nucleation is about 
40 "C. This system has been used to experimentally test the theories of 
homogeneous nucleation and reasonably close agreement was found1. 

Another system in which the equilibrium phase is probably formed 
homogeneously at a few tens of degrees undercooling is the precipitation of 
Ni3A1 in many Ni-rich alloys. Depending on the system the misfit varies up to 
a maximum of 2%, and y is probably less t h ~ n  30 mJ m-'. Most other 
examples of homogeneous nucleation, howev~r ,  are limited to metastable 
phases. usually GP zones. (See Section 5.5.1.) 

5.2 Heterogeneous Nucleation 

Nucleation in solids, as in liquids, is almost always heteroger.,~us. Suitable 
nucleation sites are non-equilibrium defects such as excess vacancies, disloca- 
tions, grain boundaries, stacking faults, inclusions, and free surfaces. all of 
which increase the free energy of the material. If the creation of a nucleus 
results in the destruction of a defect, some free energy (hGd) will be released 
thereby reducing (or even removing) the activation energy barrier. The ' 

equivalent to Equation 5.5 for heterogeneous nucleation is 

A c h e ,  = -V(AG, - AG,) + Ay - AGd 

Nucleation on Grain Boundaries 
Ignoring any misfit strain energy, the optimum embryo shape should be that 
which minimizes the total interfacial free energy. The optimum shape for an 
incoherent grain-boundary nucleus will consequently be two abutted spherical 
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caps as shown in Fig. 5.6, with 6 given by 

(assuming yap is isotropic and equal for both grains). The excess free energy 
associated with the embryo will be given by 

where V is the volume of the embryo, AaP is the area of a/@ interface of 
energy yap created, and A,, the area of a/a grain boundary of energy y,, 
destroyed during the process. The last term of the above equation is simply 
AGd in Equation 5.18. 

Fig. 5.6 The critlcal nucleus slze (V*)  for grain boundary nucleatron. 

It can be seen that grain boundary nucleation is analogous to solidification 
on a substrate (Section 4.1.3) and the same results will apply. Again the: 
critical radius of the spherical caps will be independent of the grain boundary 
and given by 

and the activation energy barrier for heterogeneous nucleation will be given 
by 

where S ( 0 )  is a sh+e factor given by 'y 
1 

s(0) = -(2 + cos @)(I - cos 0)2 
2 

The ability of a grain boundary to reduce AGCt, i.e. its potency a 
nucleation site, depends on cos 8, i.e. on the ratio y,,I2yap. 

V* and AG* can be reduced even further by nucleation on a grain edge 
grain corner, Figs. 5.7 and 5.8. Figure 5.9 shows how AG~,, /AG~om deFen 
on cos 0 for the various grain boundary nucleation sites. 

High-angle grain boundaries are.particula~-ly effective nucleation sites 
incoherent precipitates with high yap. If the matrix and precipitate are 
ficiently compatible to allow the formation of lower energy facets then V' 

Heterogeneous nucleation 

Fig. 5.7 Critical nucleus shape for nucleation on a grain edge. 

Fig. 5.8 Critical nucleus shape for nucleation o n  a grain corner. 

\,cuain edges 1 ':\ 
0.2 Grain \'\. 

I corners '&\ 

F ~ s .  5.9 The effect of 8 on the acti\,ation energy for grain boundary nucleation 
relative to homogeneous nucleation. (After J.W. Cahn. Acra Metullurgia 4 (1956) 
U9.)  

AGk, can be further reduced as shown in Fig. 5.10. The nucleus will then 
have an orientation relationship with one of the grains. Such nuclei are to be 
exPecred whenever possible, since the most successful nuclei, i.e. those which 
form most rapidly, will have the smallest nucleation barrier. 

Other planar defects such as inclusion/matrix interfaces, stacking faults 
free surfaces can behave in a similar way to grain boundaries in reducing 

AC', Note. however. that stacking faults are much less potent sites due to 
Iheir  lower energy in conlparison to high-angle boundaries. 
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PI 
Coherent 
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Fig. 5.10 The critical nucleus size can be reduced even further by forming a 
low-energy coherent interface with one grain. 

Dislocations 
The lattice distortion in the vicinity of a dislocation can assist nucleation in 
several ways. The main effect of dislocations is to reduce the AG,-contribution 
to AG* by reducing the total strain energy of the embryo. A coherent nucleus 
with a negative misfit, i.e. a smaller volume than the matrix, can reduce its 
AG* by forming in the region of compressive strain above an edge disloca- 
tion. whereas if the misfit is positive it is energetically favourable for it to form 
below the dislocation. 

Nucleation on dislocations may also be assisted by solute segregation which 
can raise the composition of the matrix to nearer that of the precipitate. The 
dislocation can also assist in growth of an embryo beyond the critical size by 
providing a diffusion pipe with a lower AG,. 

Dislocations are not very effective for reducing the interfacial energy con- 
tribution to AG*. This means that nucleation on dislocations usually requires 
rather good matching between precipitate and matrix on at least one plane, 
so that low-energy coherent or semicoherent interfaces can form. Ignoring 
strain energy effects, the minimum AG* is then achieved when the nucleus 
shape is the equilibrium shape given by the Wulff construction. When the 
precipitate and matrix have different crystal structures the critical nucleus 
should therefore be disc-like or needle-like as discussed in Section 3.4.2. 

In fcc crystals the f(110) unit dislocations can dissociate to produce a ribbon 
of stacking fault, e.8. 

giving a stacking fault on ( l i l )  separated by two Shockley partials. Since the 
stacking fault is in effect four close-packed layers of hcp crystal (Fig 3.59b) it 
can act as a very potent nucleation site for an hcp precipitate. This type of 
nucleation has been observed for the precipitation of the hexagonal transition 
phase y'  in AI-Ag alloys. Nucleation is achieved simply by the diffusion of 
silver atoms to the fault. Thus there will automatically be an orientation 
relationship between the y '  precipitate (fault) and the matrix of the type 

(O@Ol)-, / / ( l i1 la  

[112Ol,,//[ll0la 

which ensures good matching and low energy interfaces. 
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I t  should be noted that even in annealed specimens dislocation densities are 
otten sufficiently high to account for any precipitate dispersion that is resolv- 
able in the light microscope. i.e. -1 p.m-'. Figure 5.11 shows an example of 

carbonitride precipitates on dislocations in a ferritic iron matrix. This 
is a. so-called dark-field electron microscope micrograph in which the precipi- 
tates are imaged bright anti the matrix dark. The precipitates lie in rows along 
dislocations. 

E,ycess Vucancies 
lVhen an age-hardening alloy is quenched from a high temperature. excess 
vacancies are retained during the quench. These vacancies can assist nuclea- 
tion by increasing diffusion rates. or by relieving misfit strain energies. They 
may influence nucleation either individually or collectivelv by grouping into 
small clusters. 

Since AGc, is relatively small for vacancies. nucleation will only take place 
when a reasonable combination of the following conditions is met: low 
interfacial energy (i.e. fully coherent nucleij. small volume strain energy. and 

Fig. 5.11 Rows of niobium carbonitride precipitates on dislocations in ferrite 
I " 108 000). (Dark-field electron micrograph in which the precipitates show up 
bright.) 
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high driving force. These are essentially the same conditions that must be 
fulfilled for homogeneous nucleation. Since individual vacancies or small 
clusters cannot be resolved with conventional t-ansmission electron micros. - 

copy, evidence for the role of vacancies as hetergenous nucleation sites is 
indirect (discussed later). 

5; i . l  Rate of Heterogerieous Nucleation 

If the various nucleation sites are arranged in order of increasing AG,, i.e. 
decreasing AG*, the sequence would be roughly I 

1. homogeneous sites 
2. vacancies 
3. dislocations 
4. stacking faults 
5. grain boundaries and interphase boundaries 
6. free surfaces. 

Nucleation should always occur most rapidly on sites near the bottom of the 
list. However the relative importance of these sites in determining the overall 
rate at which the alloy will transform also depends on the relative concentra- 
tions of the sites. For homogeneous nucleation every atom is a potential 
nucleation site, whereas only those atoms on grain boundaries, for example, 
can take part in boundary-assisted nucleation. 

If the concentration of heterogeneous nucleation sites is C, per  unit volume, 
the heterogeneous nucleation rate will be given by an equation of the form 

AGrn AG* ( kT e x  - nuclei mW3ss1 Nhet = wCl exp -- (5.24) I 
This is plotted as a function of temperature in Fig. 5.12. Note that, as with 
heterogeneous nucleation in liquids, measurably high nucleation rates can be I 

Fig. 5.12 The rate of heterogeneous nucleation during precipitation of P in alloy Xo 
as a function of undercooling. 

obtained at very small driving forces. The relative magnitudes of the hete:o- 
geneous and homogeneous volume nucleation rates can be obtained by divid- 
ing Equation 5.11 by 5.14 giving 

(Differences in w and AGm are not so important and have been ignored.) 
Since SG* is always smallest for heterogeneous nucleation the exponential 
tactor in the above equation is always a large quantity which favours a high 
heterogeneous nucleation rate. However, the factor (Cl/Co) must also be 
taken into account, i.e. the number of atoms on heterogeneous sites relative 
to the number within the matrix. For grain boundary nucleation 

\\..here 6 is the boundary thicknzss and D is the grain size. For nucleation on 
grain edges and corners (C,/C,,) becomes reduced even further to (61~)' and 
(6 /D) ' .  Therefore for a 50 Fm grain size taking 6 as 0 .5  nm gives 
6 i ' ~ ' =  lo-'. Consequently grain boundary nucleation will dominate over 
homogeneous nucleation if the boundary is sufficiently potent to make the 
exponential term in Equation 5.23 greater than 10'. Values for C,/'C;, for 
other sites are listed in Table 5.1. 

In general the type of site which gives the highest volume nucleation rate 
will depend on the driving force (AG,.). At very small driving forces. when 
activation energy barriers for nucleation are ~ ~ i g h ,  the highest nucleation rates - 

\\ill be produced by grain-corner nucleation. As the driving force increases. 
however, grain edges and then boundaries will dominate the transformation. 
At very high driving forces it may be possible for the (Cl/Co) term to 
dominate and then homogeneous nucleation provides the highest nucleation 
rates. Similar considerations will apply to the relative importance of other 
heterogeneous nucleation sites. 

The above comments concerned nucleation during isothermal transforma- 
tions when the specimen is held at a constant temperature. If nucleation 
occurs during continuous cooling the driving force for nucleation will increase 
with time. Under these conditions the initial stages of the transformation will 
be dominated by those nucleation sites which can first produce a measurable 
volume nucleation rate. Considering only grain boundaries again, if Y,,/ yap 
is high, noticeable transformation $\..ill begin first at the grain corners. whereas . . 

if the grain boundary is less potent (y,,/yaP smaller) nucleation may not be 
possible unti! such high driving forces are reached that less favourable hetero- 
geneous or even homogeneous nucleation sites dominate. This will not of 
course exclude precipitation on potent heterogeneous sites, but they will 
make only a very small contribution to the total nucleation rate. 
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j .3 Precipitate Growth 

.AS explained above, the successful critical nuclei are those with the smallest 
nucleation barrier. i.e. the smallest critical volume. In the absence of strain- 
energy effects the precipitate shape satisfying this criterion is that which 
minimizes the total interfacial free energy. Thus nuclei will usually be 
bounded by a combination of coherent or semicoherent facets and smoothly 
curved incoherent interfaces. For the precipitate to grow these interfaces 
must migrate and the shape that develops during growth will be determined 
by the relative migration rates. As  explained in Section 3.5.1. when the two 
phases have different crystal structures semicoherent interfaces have very low 
mobility and are forced to migrate by a ledge mechanism. Incoherent inter- 
faces on the other hand are highly mobile. If there are problems in maintain- 
ing a constant supply of ledges the incoherqnt interfaces will be able to  

1 advance faster than the semicoherent interface and a nucleus with one  plane 
I of good matching should grow into a thin disc or  plate as shown in Fig. 5.13. 
1 This is the origin of the so-called Widmanstatten morpholog!.". 
1 

.The next few sections will be concerned with developing an approximate 
quantitative treatment for the ledge mechanism and for the rate of migration 
of curved incoherent interfaces. but before treating these two cases it is useful 
to begin with the simpler case of a planar incoherent interface. 

Slow 

Fig. 5.13 The effect of interface type on the morphology of a growing precipitate. 
( A )  LOW-mobility semicoherent interfaces. (B) High-mobility incoherent interfaces. 

5.3.1 Growth behind Planar Incoherent Interfaces 

I t  wlll be apparent from the above discussion that planar interfaces in crystal- 
line solids will usually not be incoherent. However, one situation where 
approximately planar incoherent interfaces may be found is after grain- 
boundary nucleation. If many incoherent nuclei form o n  a grain boundary 
they might subsequently grow together to form a slab of P precipitate as . 
shown in Fig. 5.14. 

Imagine that such a slab of solute-rich precipitate has grown from zero 
thickness and that the instantaneous growth rate is v .  Since the concentration i 
of solute in the precipitate (Cp) is higher than in the bulk (Co) the matrix 
adjacent to  the  precipitate will be depleted of solute as shown. Also since the 

I Interface is incoherent diffusion-controlled growth and local equilibrium at 
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( b) X- 

Fig. 5.14 D~ffuslon-controlled thickemng ot' a precipitate plate. 

the interface can be assumed, i.e. the solute concentration in the matrix 
adjacent to the p will be the equilibrium value C,. The growth rate (v) will 
depend on tile concentration gradient at the interface dCjdx. 

For unit area of interface to advance a distance dr a volume of material 
1 . dx must be converted from a containing C, to p containing Cp moles of B 
per unit volume. i.e. (Cp - C,)dr moles of B must be supplied by diffusion 
through the a. The flux of B through unit area in time dt is given by 
D(dC/dx)dt. where D is the interdifusion coefficient (or interstitial diffusion 
coefficient). Equatinz these two quantities gives 

As the precipitate grows solute must be depleted from an ever-increasing 
volume of matrix so that dC/dx in the above equation decreases with time. 
To  make this quantitative, consider a simplified approach originally due to 
zener2. If the concentration profile is simplified to that shown in Fig. 5.15 
dC/dx is given by hCn/L where ACo = Co - C, . The width of the diffusion 
zone L can be obtained by noting that the conservation of solute requires the 
two shaded areas in Fig. 5.15 to be equal, i.e. 

Precipitate gro wth 

+ X i ,  
Fig. 5.15 A simplification of the concentration profile 

where x is the thickness of the slab. The growth rate therefore becomes 

If i t  is assumed that the molar volume (V,) is a constant. the concentrations in 
the above equation can be replaced by mole fractions (X  = CV,,,). Furrher- 
more. for the sake of simplicity it can often be assumed that 
Cp - Co = Cg - Ce. Integration of Equation 5.28 then gives 

and 

where flo = X,, - Xe (Fig. 5.16) is the supersaturation prior to precipita- 
tion. 

0 0 
Fig. 5.16 The effect of temperature and position on growth rate. L. 



: The following polnts are important to nolc' legardlng these equations. r ,- 
I .  x I , (Dt) .  i.e. precipitate thickening o l l c ~ r  a parabolic growth law. 4 
2. v AX(,. 1.e. for a given time the gro\\th rate 1s proportional to the :+ 

supersaturatlon. 
3.  v .: , ( D l t ) .  

The effect of alloy composition and temll~.~.ature on  growth rate is illus- 
trated in Fig. 5.16. Growth rates are low at \111;111 undercoolings d u e  to small 
supersaturation U, but are also low at I ; I I ~ C  undercoolings d u e  to slow 
diffusion. A maximum growth rate will OCCII I  at some intermediate under- 
cooling. 

When the diffusion fields of separate I)recipitates begin to  overlap 
Equation 5.30 will no longer apply. but gro\vth will decelerate more  rapidly 
and finally cease when the matrix. concentratro11 is X ,  everywhere. Fig. 5.17. 

Although these equations are only appro;~rnate and were derived for a 
planar interface. the conclusions are not sicrt~rticantly altered by more  thor- 
ough treatments or  by allowing curved interI:tc'cs. Thus it can be shown that 

I I 

(b) Distance 
Fig. 5.17 (a) Interference of growing precipitates clue to overlapping diffusion fields 
at later stage of growth. (b) Precipitate has stoppl:rl growing. 
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snv linear dimension of a spheroidal precipitate increases as , (D t )  provided 
a l l - in t e r fa~e~  migrate under volume diffusion control. 

Usually grain boundary precipitates d o  not form a continuous layer along 
the boundary but remain as isolated particles. The growth of such precipitates 
can occur at rates far greater than allowed by volume diffusion. The reason 

;or this is that the grain boundary can act as a collector plate for solute as 
shown in Fig. 5.18.'' Growth o f  such a so-called grain-boundary allotrio- 
morph involves three steps: (1) volume diffusion of solute to the grain 
boundary: (2)  diffusion of  solute along the grain boundary with some at- 
tachment at the precipitate rim; and (3) diffusion along the u:j3 interfaces 
allowing accelerated thickening. This mechanism is of greatest significance 
when substitutional diffusion is involved. In the case of interstitial solutions 
diffusion short circuits are comparatively unimportant due to the high volume 
diffusion rates. 

Solute 

Fig. 5.18 Grain-boundary diffusion can lead to rap~d lengthenins and th~ckenlng or 
grain boundary precipitates. 

5.3.1 Difusion-Controlled Lengthetzing of Plates or Needles 

Imagine now that the P precipitate is a plate of constant thickness having a 
cylindrically curved i~coherent edge of radius r as shown in Fig. 5.19a. Again 
ti,, concentration profile across the curved interface will appear as shown in 
Fig. 5.19b, but now. due to the Gibbs-Thomson effect. the equilibrium con- 
centration in the matrix adjacent to the edge will be increased to C,. The 
concentration gradient available to drive diffusion to the advancing edge is 
therefore reduced to  ACIL where AC = C,, - C, and L is a characteristic 
diffusion distance. The  diffusion problem in this case is more complex as 
diffusion occurs radially. However, solutiqn. of the relevant equations shows 
that L is given by kr where k is a numericaf'constant (-1). By analogy with 
Equation 5.27, therefore. the lengthening rate will be given by 

D - A C  v = . -  (5.31) 
C, - C, kr 

I The composition difference available to  drive diffusion will depend on the 
tip radius as shown in Fig. 5.20. With certain simplifying assumptions it can 
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(b) I I I 
Distance along A A' 

Fig. 5.19 (a) The edge of a plate-like precipitate. (b) A concentration profile along 
AA' in (a).  

be shown that 

where AX = X, - X r ,  AX,, = Xo - X, and r* is the critical nucleus radius, 
i.e. the value of r required to reduce AX to zero. Again, assuming constant 
molar volume, the above equations can be combined to give 

This equation will apply as long as there is no decrease in supersaturation far 
from the interface due to other precipitates. The difference between this 
equation and Equation 5.30 is that for a given plate thickness the lengthening 
rate should be constant, i.e. x t (linear growth). 

Although the above equations were developed for the lengthening of a 
plate, the same equations can be derived for the lengthening of a needle under 
diffusion-controlled growth. The only difference is that the edge of a needle 
has a spherical tip so that the Gibbs-Thomson increase in free energy i s  
2yVm/r  instead of yV,/r. The value of r* in Equation 5.33 will, therefore, 
be different for a plate and a needle. 

Precipitate growth 

XB - 
Fig. 5.20 The Gibbs-Thumson effect. ( a )  FI-ee e n e r g  cur\t.s at T , .  ( b )  
ponding phase diagram. 

The above treatment only applies to plates or needles that lengthen by a 
volume diffusion-controlled continuous grow-h process. This is a reasonable 
assumption for the curved ends of needles. but in the case of plate-like 
precipitates the edges are often faceted and are observed to migrate by a 
ledge mechanism. Atoms can then only attach at the ledges and new 
eqgations must be derived as discussed below. 

Another source of deviation between theory and practice is if solute can be 
transported to the advancing precipitate edges by short-circuit diffusion in the 
broad faces of the precipitate plate. 

I 53.3 Thickening of Plate-like Precipitatex i 
The treatment given in Section 5.3.1 for a planar incohereit interface is only 

I valid for interfaces with high accommodation factors. In general this will not 
be the case for the broad faces of plate-like precipitates which are semicoher- 
ent and are restricted to migrate by the lateral movement of ledges. 

For simplicity, imagine a plate-like precipitate that is thickening by the 
lateral movement of linear ledges of constant spacing A and height h ,  
Fig. 5.21. It can readily be seen that the half-thickness of the plate should 



286 Diffusiotzal trarzsformations ztz solids 

Fig. 5.71 Thickening of plate-like precip~tates by ledge mechanism. 

increase at a rate L, given by 

where u is the rate of lateral migration. 
The problem of ledge migration is very similar to that of plate lengthening. 

The necessary composition changes required for precipitate growth must be 
achieved by long-range diffusion to and from the ledges as shown in Fig. 5.21. 
If the edges of the ledges are incoherent the ma~rix composition in contact 
with the ledges will be X ,  and growth will be diffusion controlled. A similar 
treatment to that given in Section 5.3.2 then gives the rate of lateral migration 
as3 

This is essentially the same as Equation 5.33 for the lengthening of a plate 
with h = r and X, = X,. i.e. no Gibbs-Thomson effect. Combining the 
above equations shows that the thickening rate is independent of h and given 
by 

Thus, provided the diffusion fields of different precipitates do not overlap. the 
rate at which plates thicken will be inversely proportional to the interledge 
spacing A. The validity of Equation 5.36 is dependent on there being a 
constan: supply of ledges. As with faceted solid/liquid interfaces, new ledges 
can be generated by various mechanisms such as repeated surface nucleation, 
spiral growth, nucleation at the precipitate edges, or from intersections 6ith 
other precipitates. With the exception of spiral growth, however, none,$f 
these mechanisms can maintain a supply of ledges with constant A .  

By using hot-stage transmission electron microscopy it is possible to mea- 
sure the thickeding rates of individual precipitate plates. Figure 5.22 shows 
results obtained from a y plate in the Al-Ag system" It can be seen that there 
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Limits of diffusion 

200C \1ni t ia l  thickness 1 

Reaction time - Seconds 
Fig. 5 . 2  The thickening of a y plate in a n  Al-I5 \vt? Ag alloy at 400 'C. (From 
C. Laird and H.I. Xaronson. Acric ,\lrmllctrgicu 17 (1969) 505.) 

are appreciable intervals of time when there is no perceptible increase in plate 
thickness followed by periods when the thickness increases rapidly as an 
interfacial ledge passes. The two smooth lines in the figure are upper and 
lower limits for the rate of thickening for a planar incoherent interface in the 
same system. assuming diffusion control. The ledge mechanism is clearly a 
very different process. The fact that there is no perceptible increase in 
thickness except when ledges pass is strong evidence in favour of the immobil- 
ity of semicoherent interfaces. It can also be seen that the thickening rate is 
not constant implying that ledge nucleation is -ate controlling. 

lcleasurements on precipitates in other systems indicate that even within 
the same system the thicknessltime relationship can vary greatly from plate to 
plate, presumably depending on differences in the ease of nucleation of new 
ledges. 

5.4 Overall Transformation Kinetics-TTT Diagrams 

The progress of an isothermal phase transformation can be conveniently 
represented by plotting the fraction transformation (f) as a function of time 
and temperature, i.e. a TTT diagram as shown in Fig. 5.23a for example. For 
transformations of the type a -. P. f is just the volume fraction of P at any 
time. For precipitation reactions a' 4 a + P, f can be defined as the volume 
of p at time t  divided by the final volume of P. In both cases f varies from 0 to 
1 from the beginning to the end of the transformation, Fig. 5.23b. 

Among the factors that determine f ( t ,  T) are the nucleation rate. the 
growth rate, the density and distribution of nucleation sites, the overlap of 
diffusion fields from adjacent transformed volumes. and the impingement of 



Fig. 5.23 The percentage transformation versus time for different transformation 
temperatures. 

1 

f 

adjacent transformed volumes. Some of the problems involved are illustrated 
in Fig. 5.24. After quenching to the transformation temperature the meta- 
stable a phase will contain many nucleation sites (usually heterogeneous). 
One possible sequences of events, Fig. 5.24a, is that nuclei form throughout 
the t ransform~~i-n so that a wide range of particle sizes exists at any time. . 
Another possibiiity is that all nuclei form right at the beginning of transforma- 
tion, Fig. 5.24b. If all potential nucleation sites are consumed in the process 
this is known as site saturation. In Fig. 5.24a, f will depend on the nucleation 
rate and the growth rate. In Fig. 5.24b. f will only depend on the number of 
nucleation sites and the growth rate. For transformations of the type a + P 
or  a + I3 + r (known collectively as cellular transformations) all of the 
parent phase is consumed by the transformation product, Fig. 5 . 2 4 ~ .  In these 
cases the transformation does not terminate by the gradual reduction in the 
growth rate, but by the impingement of adjacent cells growing with a constant 
velocity. Pearlite, cellular precipitation, massive transformations and recrys- 
tallization belong to this category. 
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Fig. 5.24 ( a )  Nucleation at a constant rate during the whole trensformation. 
(b )  Site muration-all nuclrat~on occurs at the beginning of transformation. (c )  A 
ce!lular transformation. 

'4s a simple example of the derivation off  ( t .  T) cons~der a cellular trans- 
formation (a -, p) in which @ cells are continuously nucleated throughout the 
transformation at a constant rate N'. If the cells grow as spheres at a constant 
rate v .  the volume of a cell nucleated at time zero will be given by 

A cell which does not nucleate until time T will have a volume 

The number of nuclei that formed in a time increment of d i  will be Ndr per 
unit volume of untransformed a. Thus if the particles do not impinge on one *- 

another, for a unit total volume 
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This equation will only be valid for f @ 1. As time passes the P cells will 
eventually impinge on one another and the rate of transformation will de- 
crease again. The equation valid for randomly distributed nuclei for both long 
and short times is6 

f = 1 - exp (-: .\.v3r4) 

Note that this is the same as Equation 5.37 for short times, since 
1 - exp ( - 2 )  = z when z 4 1. It is also reasonable for long times since as 
t - + x , f - +  1. 

Equation 5.38 is known as a Johnson-iMehl-Avrami equation. In general, 
depending on the assumptions made regarding the nucleation and growth 
processes. a variety of similar equations can be obtained with the form 

f = 1 - exp ( - k t R )  (5.39) 

where n is a numerical exponent whose value can vary from - 1 to 4. Provided 
there is no change in the nucleation mechanism. t~ is independent of tempera- 
ture. k ,  on the other hand. depends on the nucleation and growth rates and 
is therefore very sensitive to temperature. For example. in the case above, 
k = s r ~ v ~ / 3  and both .V and v are very temperature sensitive. 

Since exp (-0.7) = 0.5 the time for 50% transformat~on (to >) is given by 

For the case discussed above 

Consequently it can be seen that rapid transformations are associated with 
large values of k ,  i.e. rapid nucleation and growth rates, as expected. 

Civilian transformations that occur on cooling are typified by C-shaped 
curves as shown in Fig. 5.23a. This can be explained on the basis of the 

variation of nucleation and growth rates with increasing undercooling. At 
temperatures close to T, the driving force for transformation is very small so 
that both nucleation and subsequent growth rates are slow and a long time is 
required for transformation. When AT is very large, on the other hand, slow 
diffusion rates limit the rate of transformation. A maximum rate is, therefore, 
obtained at intermediate temperatures. 
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j. j Precipitation in Age-Hardening Alloys 

The theory of nucleation and growth that has been described above is able to 
provide general guidelines for understanding civilian transformations. Let us 
now turn to a consideration of some examples of the great variety of civilian 
transformations that can &cur in solids. and begin with alloys that can be 
age-hardened. These alloys are characterized by phase diagrams such as that 
shown in Fig. 5.la(i) .  Two extensively researched and illustrative examples 
are aluminium-copper and aluminium-silver alloys. 

G P  Zones  
Figure 5.35 shows the Al-rich end of the Al-Cu phase diagram. If an alloy 
with the composition Al-4 wt% CU (1.7 atomic %) is heated to a tempera- 
ture of about 540 "C all copper will be in solid solution as a stable fcc a phase. 
and by quenching the specimen rapidly into water there is no time for any 
transformation to occur so that the solid solution is retained largely un- 
changed to room temperature. However, the solid solution is now supersatu- 
rated with Cu and there is a driving force for precipitation of the equilibrium H 
phase. CuA1,. 

Weight percent Cu 

Fig. 5.25 AI-Cu phase diagram showing the metastable GP zone, 0" and 0'  solvuses. 
(Reproduced from G.  Lorimer. Precipitnrion Processes in Solids. K.C.  Russell and 
H.1. Xaronson (Eds.) .  The >fetallurgical Soclety of AMIE.  1978. p. 87 . )  
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If the alloy is now aged by holding for a period of time at room temperature 
or  some other temperature below about 130 "C it is found that the first 
precipitate to nucleate is not 0 but coherent Cu-rich GP zones. (Copper-rich 
zones in AI-Cu alloys were detected independently in 1938 by Guinier and 
Preston from streaks in X-ray diffraction patterns.) The reason for this can bc- 
understood on the basis of the relative activation energy barriers for nuclea- 
tion as discussed earlier. GP  zones are fully coherent with the matrix and 
therefore have a very low interfacial energy, whereas the 0 phase has a 
complex tetragonal crystal structure which can only form with high-energy 
incoherent interfaces. In addition, the zones minimize their strain energy by 
choosing a disc-shape perpendicular to the elastically soft (100) directions in 
the fcc matrix, Fig. 5.26. Therefore, despite the fact that the driving force for 
precipitation of GP  zones (AG, - AG,) is less than for the equilibrium phase, 
the barrier to nucleation (AG*) i's still less, and the zones nucleate most 
rapidly. The microstructure of an AI-Cu alloy aged to produce GP  zones is 
shown in Fig. 5.30a. These zones are about 2 atomic layers thick and 10 nm in 
diameter with a spacing of -10 nm. The zones themselves are not resolved. 
The contrast in the image is due to the coherency misfit strain perpendicular 
to  the zones. This distorts the lattice causing local variations in the intensity of 
electron diffraction, which in turn shows up as variations in the image intensity. 
hlicrostructurally. the zones appear to be homcgeneously nucleated, 
however excess vacancies are thought to play an important role in their 
formation. This point will be returned to later. 

GP zones are formed as the first precipitate during low-temperature ageing 
of many technologicaliy important alloys, notably those based on aluminium 
(see Tables 5.2 and 5.3). In dilute Al-Zn and Al-Ag alloys Zn-rich and 
Xg-rich GP zones are found. In these cases there is very little misfit strain and 
AG* is minimized b! the formation of spherical zones with a minimum 
interfacial energy. Fig. 3.39. 

Transition Phases 
The formation of GP zones is usually followed by the precipitation of so- 
called transition phases. In the case of A1-Cu alloys the equilibrium 0 phase is 

OAl @ C U  
Fig. 5.26 Section through a GP zone parallel to the (200) plane. (Based on the work 
of V. Gerold: Zertschrr~r fur  ikferullkunde 45 (1954) 599.) 

Table 5.2 Some Precipitation-Hardening Sequences 

(Mainly from J . W. Martin. Precipitation Hardening. Pergamon Press. 
Oxford. 1968.) 

Base metal Alloy Precipitation sequence 

~ l u m ~ n ~ u m  AI-Ag GPZ (spheres) -9 y '  (plates) -. y (4g:AI) 
AI-Cu GPZ (discs) -+ 8" (dlscs) - 0' (plates) 

-. 0 (CuA1,) 
AI-Cu-Mg GPZ (rods) -+ S'  (laths) -+ S (C~blg~Al,) 

(Idths) 
.A]-Zn-Mg GPZ (spheres) -+ q' (plates) -. TI (MgZn,) 

(plates or rods) 
AI-Mg-SI GPZ (rods) -+ P '  (rods) -+ P(Mg2S~) (plates) 

Copper Cu-Be GPZ (dlscj) -+ y' -+ y (CuBe) 
Cu-Co GPZ (spheres) --, P (Co) (plates) 

Iron Fe-C t -c~rb ide  (discs) - Fe3C (plates) 
Fe-N cw' (discs) - Fe,N 

Nlckel I -Cr-T~- i l l  y (cubes or spheres) 

preceded by 0" and 0 ' .  The total precipitation process can be written 

-+ a ,  GP zones - a, - 8" -+ a3 0' -+ a, 8 

where a,, is the original supersaturated solid solution, a ,  is the composition of 
the matrix in equilibrium with GP zones. a, the composition in equilibrium 
with 0" etc. 

Figure 5.27 shows a schematic free energy diagram for the above phases. 
Since GP zones and the matrix have the same crystal structure they lie on the 
same free energy curve (ignoring strain energy effects-see Section 5.5.5). 
The transition phases 0" and 9' are less stable than the equilibrium 0 phase 
and consequently have higher free energies as shown. The compositions 
of the matri-x in equilibrium with each phase-a,. a?. a,. a,--are given 
by the common tangent construction. These compositions correspond to 
points on the solvus lines for GP zones, 0", 0' and 0 shown in Fig. 5.25. The 
free energy of the alloy undergoing the above precipitation sequence de- 
creases as 

as shown in Fig. 5.27. ?ransformatior1 stops when the minimum free energy 
equilibrium state G, is reached, i.e. a, + 0 .  

Transition phases form because, like GP  zones, they have a lower activa- 
tion energy barrier for nucleation than the equilibrium phase, Fig. 5.28a. The 
free energy of the alloy therefore decreases more rapidly via the transition 
phases than hv direct trnn~forrnntinn to the cc~uilihrium ~ h a s e .  Fie. 5.1-8h 
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I x c u  - 
Fig. 5.27 .4 schrmatlc molar free enersy d i q r a m  for the Al-Cu system. 

The lower activation energy barriers are achieved because the crystal struc- 
tures of the transition phases are intermediate between those of the matrix 
and the equilibrium phase. In this way the transition phases can achieve a 
high degree of coherence and thus a low interfacial energy contribution to 
l G * .  The  equilibrium phase on the other hand usually has a complex crystal 
structure that is incompatible with the matrix and results in high-energy 
interfaces and high LG*. 

The crystal structures of 0". 0'  and 0 are shown in Fig. 5.29 along with that 
of the fcc matrix for comparison. 0" has a tetragonal unit cell which is 
essentially a distorted fcc structure in which the copper and aluminium atoms 
are ordered on (001) planes as shown. Note that the atomic structure of the 
(001) planes is identical to that in the matrix. and the (010). and (100) planes 
are very similar, apart from a small distortion in the [001] direction. 8" forms 
as fully coherent plate-like precipitates with a {001}, habit plane and the 
following orientation relationship to the matrix: 

(1 high magnification transmission electron micrograph of an alloy aged to 
produce 8" precipitates is shown in Fig. 5.30b. Like the GP zones in 
Fig. 5.30a. the 0'' precipitates are visible by virtue of the coherency-strain 
fields caused by the misfit perpendicular to the plates. 0" precipitates are 
larger than GP zones being up to -10 nm thick and 100 nm in diameter. 

0' is also tetragonal with an approximate composition CuAI2 and again has 
(001) planes that are identical with {OO1}a. The (LOO) and (010) planes, 
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Total 
Free energy 

I C 

Time 

(b) 
Fig. 5.28 (a) The activation energy barrier to the formation of each transition phase 
is very small in comparison to the barrier against the direct precipitation of the 
equilibrium phase. (b) Schematic diagram showing the total free energy of the alloy 
v. time. 

however, have a different crystal structure t o  the matrix and a large misfit in 
the [OOl] direction. 0' therefore forms as plates on {OOl}, with the same 
orientation relationship as 0". The broad faces of the plates are initially fully 
coherent but lose coherency as the plates grow, while the edges of the plates 
a re  either incoherent or have a complex semicoherent structure. A transmis- 
sion electron micrograph of 0' plates -1 pm diameter is shown in Fig. 5.30~. 
Note the presence of misfit dislocations in the broad faces of the precipitates. 
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(1 00, 
ALL sides coherent 

a-matrix 
\ 

(001) Coherent or 
semicoheren t 

0°) } not coherent 
(01 0) 

Incoherent 
k 6 . 0 7 k  --*" 

F I ~  5.29 Structure dnd rnorpholog!. of 8". H '  and H In Al-Cu ( 2  Al. Cu). 

Note also that since the edges of the plates are not coherent there are no 
long-range coherency-strain fields. 

., and a The equilibrium 8 phase has the approximate compositioq CuAl- 
complex body-centred tetragonal structure as shown in Fig. 5.29. There are 
no planes of good matching with the matrix and only incoherent, or at best 
complex semicoherent interfaces are possible. The microstructure at this final 
stage of ageing is shown in Fig. 5.30d. Note the large size and coarse distribu- 
tion of the precipitates. 

The transformation from GP zones to 8!i0~ccurs by the in situ transforma- 
tion of the zones, which can be considered.:~a$.very potent nucleation iites 

* 'Y 
for 0". After longer ageing times the 8' phase nucleates on matrix disloca- 
tions with two orientations of 8' plates on any one f(110) dislocation. This is 
because the strain field of such a dislocation is able to reduce the misfit in two- 
(100) matrix directions. Figure 5.31a shows 0' plates that have nucleated on 
dislocations. Note that as the 0' grows the surrounding, less-stable 0" can be 
5een to dissolve. After still longer ageing times the equilibrium 0 phase 
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Fig. 5.31 Electron micrographs showing nucleation sites in AI-Cu alloys. 
(a)  0" -+ 0'. 8' nucleates at dislocation ( X  70 000). (b) 0 nucleation 6n grain bound- 
ary (GB) ( x  56 000). : c)  0' --+ @. @ nucleates at @'/ matrix interface ( x 70 000). 
(After P. Haasen, Ph\sical Metnllurgy. Cambridge University Press, Cambridge, 
1978.) 

Precipitation in age-hardening alloys 

nucleates either on grain boundaries. Fig. 5.31b, or at O1/matrix interfaces, 
Fig. 5 .31~ .  The choice of these nucleation sites is governed by the need to 
reduce the large interfacial energy contribution to AG* for this phase. 

The full sequence of GP zones and transition precipitates is only possible 
when the alloy is aged at a temperature below the GP zones solvus. For 
~xample. if ageing is carried out at a temperature above the 0" solvus but 
below the 0' solvus, Fig. 5 .25 .  the first precipitate will be 0'. heterogeneously 
nucleated on dislocations. If ageing is carried out above the 0' solvus. the only 
precipitate that is possible is 0 which nucleates and grows at grain boundaries. 
Also. i f  an alloy containing GP zones is heated to above the GP zone solvus 
the zones will dissolve. This is known as reversion. 

The effect of ageing temperature on the sequence of precipitates is illus- 
trated by a schematic TIT diagram in Fig. 5.32. The fastest transformation 
rates are associated with the highest nucleation rates and therefore the finest . 
precipitate distributions. There is consequently an increasing coarseness of 
microstructure through the sequence of precipitates as can be seen in 
Fig. 5.30. 

The mechanism whereby a more stable precipitate grows at the expense of 
a less stable precipitate is illustrated in Fig. 5.33 for the case 0":'O'. 
Figure 5.27 shows that the Cu concentration in the matrix close to the 0" 
precipitates (a,) will be higher than that close to ~ ' ( c x , ) .  Therefore Cu will 
tend to diffuse through the matrix away from 0". which thereby dissolves. and 
towards 0' .  which grows. 

(a) %Cu X (b) Log (t~rne) 

Fig. 5.32 (a) Metastable solvus lines in AI-Cu (schematic). (b) Time for start of 
Precipitation at different temperatures for alloy X in (a).  
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F;g. 5.33 Matrlx In equll~brlum with 0" ( a 2 )  contalns more Cu than matrlx In 

equll~br~um w ~ t h  8' (a,). Cu d~ffuses as shown causlng 0" to shrlnk and 0' to grow. 

5.5.2 Precipiratiotz in Aluminium-Silver Alloys 

Figure 5.34 shows the AI-Ag phase diagram. If alloys containing up to about 
23 atomic % Ag are solution treated, quenched and given a low-temperature 
ageing treatment the precipitation sequence. is 

cx0 -$ a, + GP zones + a2 + y' + a3 + y 

Weiaht ~e rcen t  aluminium 

1001 I I I I 1 I 1 1 
0 10 20 30 40 ' 50 60 70 80 90 100 
Ag Atomic percent durn inium Al 

Fig. 5.34 AI-Ag phase diagram showing metastable two-phase field corresponding 
to GP zones. (After R.  Baur and V. Gerold, Zeirschrift fur Metallkunde 52 (1961) 
671.) 

AS discussed earlier, the GP zones in this system are spherical. y '  is a 
close-packed hexagonal transition phase with an orientation relationship to 
the matrix of 

(OOO1)y~//(lll)a 

Ill~OI, //[lioIu 
-. 
y' is heterogeneously nucleated on helical dislocations by the enrichment of 
stacking faults with silver as discussed in Section 5.2. The equilibrium y phase 
has the composition Ag2AI. is hexagonal and has the same orientation 
relationship with the matrix as y ' .  It forms as plate-like precipitates with (111) 
habit planes. y can be formed from y'  by the latter acquiring misfit 
dislocations. It can also be separately nucleated at grain boundaries and grow 
by a cellular mechanism (see Section 5.7). 

5.5.3 Quenched-in Vacancies 

It was shown in Chapter 1 that the equilibrium concentration of vacancies 
increases exponentially with temperature. Thus the equilibrium vacancy con- 
centration will be relatively high at the solution treatment temperature and 
much lower at the ageing temperature. However. when the alloy is rapidly 
quenched'from the high temperature there will be no time for the new 
equilibrium concentration to be established and the high vacancy concentra- 
tion becomes quenched-in. Given time. those vacancies in excess of the 
equilibrium concentration will anneal out. There will be a tendency for 
vacancies to be attracted together into Lrucuncy clusters. and some clusters 
collapse into dislocation loops which can grow by absorbing more vacancies. 
The dislocations that are already present can also absorb vacancies by climb- 
ing. In this way straight screw dislocations can become converted into longer 
helical edge dislocations. There are many ways, therefore, in which excess 
vacancies are able to provide heterogeneous nucleation sites. 

Another effect of quenched-in vacancies is to greatly increase the rate at 
which atoms can diffuse at the ageing temperatures. This in turn speeds up the 
plocess of nucleation and growth. Indeed the only way of explaining the rapid - 
formation of GP zones at the relatively low ageing temperatures used is by the 
Presence of excess vacancies. 

If GP zones are separated by a mean spacing A, the mean diffusion distance 
for the solute atoms is h / 2 .  Therefore, if the zones are observed to form in a 
time t ,  the effective diffusion coefficient is roughly given by x ' l t .  i.e. 

If high-temperature diffusion data are extrapolated down to the ageing 
temperature, the values obtained are orders of magnitude smaller than the 
above value. The difference can, however, be explained by a quenched-in 
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vacancy concentration that is orders of magnitude greater than the equilib- 
rium value. In AI-Cu alloys, for example, G P  zones can form by ageing at 
room temperature. which would not be feasible without assistance from 
excess vacancies. 

There is other evidence for the role of quenched-in vacancies in enhancing 
diffusion rates. If the alloy is quenched from different solution treatment 
temperatures and aged at the same temperature. the initial rate of zone 
formition is highest in the specimens quenched from the highest tempera- 
tures. Also, if the quench IS Interrupted at an intermediate temperature, so 
that a new equilibrium concentration can be established. the rate of trans- 
formation is reduced. Reducing the rate of cooling from the solution treat- 
ment temperature produces a similar effect by allowing more time for va- 
cancles to  be lost during the quench. This is important when large parts are 
to be heat treated as the cooling rate varies greatly from the surface to the 
centre when the specimen is water-quenched for example. 

Apart from dislocations. the main sinks for excess vacancies are the grain 
boundaries and other interfaces wlth~n the specimen. Since vacancies have 
such a high diffusivity it IS difficult to avoid losing vacancies in the vicinity of 
grain boundaries and interfaces. This has important effects on the distribution 
of precipitates that form in the vicinity of grain boundaries on subsequent 
ageing. Figure 5.35a shows the vacancy concentration profiles that should be 
produced by vacancy diffusion to grain boundaries during quenching. Close to 
the boundary the vacancy concentration will be the equilibrium value for the 
ageing temperature. while away from the boundary it will be that for the 
solution treatment temperature. On ageing these alloys it is found that a 
precipitate-free zone (PFZ) is formed as shown in Fig. 5.35b. The solute 
concentration within the zone IS largely unchanged. but no nucleation has 
occurred. The reason for this is that a c r ~ t ~ c a l  vacatzcj s~ipersaturatiorz must be 
exceeded for nucieation to occur. The width of the PFZ is determined by the 
vacancy concentration as shown in Fig. 5 . 3 5 ~ .  At low temperatures, where 
the driving force for precipitatlon is hlgh, the crit~cal vacancy supersaturation 
is lower and narrower PFZs are formed. High quench rates wlll also produce 
narrow PFZs by reducing the width of the vacancy concentration profile. 
Similar PFZs can also form at inclusions and dislocations. 

Finally, it should be mentioned that another cause of PFZs can be the nu- 
cleation and growth of grain boundary precipitates during cooling from the 
solution treatment temperature. This causes solute to be drained from the 
surrounding matrix and a PFZ results. An example of this type of PFZ is 
shown in Fig. 5.36. 

5.5.4 Age Hardening 

The reasori- for the interest in alloy systems that show transition phase pre- 
cipitation is that great improvements in the mechanical properties of these 
alloys can be achieved by suitable solution treatment and ageing operations. 

Precipitation it1 age-harciening  alloy^ 
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Fig. 5.36 PFZs around grain boundaries in a high-strength commercial Al-Zn-Mg- 
Cu alloy. Precipitates on grain boundaries have extracted solute from surrounding 
matrix. ( x  59 200) 

This is illustrated for various A1-Cu alloys in Fig. 5.37. The alloys were 
solution treated in the single-phase a region of the phase diagram. quenched 
to room temperature and aged at either 130 "C (Fig. 5.37a) or 190 "C 
(Fig. 5.37b). The curves show how the hardness of the specimens varies as a 
function of time and the range of time over whlch GP zones, 0" and 8' appear 
in the microstructure. Immediately after quenching the main resistance to 
dislocation movement is solid solution hardening. The specimen is relatively 
easily deformed at this stage and the hardness is low. As GP zones form the 
L~lrdness increases due to the extra stress required to force dislocations 
through the coherent zones. 

The hardness continues to increase with the formation of the coherent 0" 
precipitates because now the dislocations must also be forced through the 
highly strained matrlx that results from the misfit perpendicular to the 8" 
plates (see Fig. 5.30b). Eventually, with the formation of 0' the spacing 
between the precipitates becomes so large that the dislocations are able to 
bow between the precipitates and the hardness begins to decrease. Maximum 
hardness is associated with a combination of 0" and 0'. Further ageing 
increases the distance between the precipitates making dislocation bowing 
easier and the hardness decreases. Specimens aged beyond peak hardness are 
referred to as uveraged. 
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' t Ageing t ;me, days 
. 120 G P  
h 

Aged 190 O C  

( b )  Ageing time,days 
Fig. 5.37 Hardness v. time for various AI-Cu alloys at (a) 130 "C (b) 190 "C. (After 
J . M .  Silcock. T.J. Heal and H.K. Hardy. Jorcrnlil of the lrlstitute of Mctrrls 82 
1953-1954) 239. 

I f  A1-4.5 wt% Cu is aged at 190 "C,GP zones are unstable and the first 
precipitate to form is 8". The volume fraction of 0" increases with time 
causing the hardness to increase as shown in Fig. 5.37b. However. at 190 "C 
the 0" nucleates under the influence of a smaller driving force than at 130 "C 
and the resultant precipitate dispersion is therefore coarser. Also the max- 
imum volume fraction of 8" is reduced. Both of these factors contribute to a 
lower peak hardness on ageing at the higher temperature (compare Fig. 5.37a 
and b). However, diffusion rates are faster at higher temperatures and peak 
hardness is therefore achieved after shorter ageing times. 

It can be seen that at 130 "C peak hardness in the A1-4.5 wt% CU alloy is 
not reached for several tens of days. The temperatures that can be used in the 
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Increasing M 

Distance 
Fig. 5.39 Schematic composition profiles at increasing times in.an alloy quenched 
into the spinodal region ( X o  in  Fig. 5.38). 

characteristic time constant 7 = -h2/4.rr2~,  where A is the wavelength of the 
composition modulations (assumed one-dimensional). The rate of trans- 
formation can therefore become very high by making A as small as possible. 
However, as will be shown below, there is a minimum value of A below which 
spinodal decomposition cannot occur. 

In order to be able to calculate the wavelength of the composition fluctua- 
tions that develop in practice it is necessary to consider two important factors 
that have been omitted from the above discussion: (1) interfacial energy 
effects, and (2) coherency strain energy effects. 

If a homogeneous alloy of composition Xo decomposes into two parts one 
with composition X, + AX and the other with composition Xo - &X, it can 
be shown that7 the total chemical free energy will change by an amount AG, 
given by 

d 
If, however, the two regions are finely dispersed and coherent with each 

I 
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Distance 
Fis. 5.40 Schematic composition protiles at  increasing times in an alloy outside the 
spinodal points (X i ,  in Fig. 5.38).  

other there will be an additional energy change due to interfacial energy 
effects. Although. during the early stages of spinodal decompositlon. the 
interface between A-rich and B-rich regions is not sharp but very diffuse, 
there is still an effective interfacial energy contribution. The magnitude of this 
energy depends on the composition gradient across the interface, and for this 
reason it is known as a 'gradient energy'. In solid solutions which tend to I 

cluster the energy of like atom-pairs is less than that of unlike pairs. Thus the 
origin of the gradient energy is the increased number of unlike nearest I 

neighbours in a solution containing composition gradients compared to .a 
homogeneous solution. For a sinusoidal composition modulation' of 
havelength A and amplitude .AX the maximum composition gradient is pro-, I 

portional to (AX/A) and the g;adient energy term AG, is given by 3- i 
i 

where K is a proportionality constant dependent on the difterence in the bond 
energies of like and unlike atom pairs. 
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If the sizes of the atoms making up the solid solution are different, the 
generation of composition differences will introduce a coherency strain en- 
ergy term. AG,. If the misfit between the A-rich and %-rich regions is 6 ,  
AG, = Ea2 where E is Young's modulus. For a total composition difference 
AX, 6 will be given by (da/dX)AXla, where a is the lattice parameter. An 
exact treatment of the elastic strain energy shows that 

AG, = r 1 2 ( A X ) Z ~ ' ~ ,  (5.45) 

where 

i.e. q is the fractional change in lattice parameter per unit composition 
change. E' = E/(1 - v), where u is Poisson's ratio, and V, is the molar 
volume. Note that AG, is independent of A. 

If all of the above contributions to the total free energy change accompany- 
ing the formation of a composition fluctuation are summed we have 

It can be seen :herefore that the condition for a homogeneous solid solution 
to  be unstable and decompose spinodally is that 

Thus the limits of temperature and composition within which spinodal decom- 
position is possible are given by the conditions A = and 

The line in the phase diagram defin,, by this condition is known as the 
coherent spinodal and it lies entirely within the chemical spinodal 
( d 2 C / ~ '  = 0) as shown in Fig. 5.41. It can be seen from Equation 5.48 that 
the wavelength of the composition modulations that can develop inside the 
coherent spinodal must satisfy the condition 

Thus the minimum possible wavelength decreases with increasing undercool- 
ing below the coherent spinodal. 

Figure 5.41 also shows the coherent miscibility gap. This is the line defining 
the equilibrium compositionfW&,@e coherent phases that result from spinodal 
decomposition (XI and X2 in Fig. 5.39). The miscibility gap that normally 

Incoherent 0 a 

misci b~ I I ~  y Chemical 
sp inodal 

I Coherent T a p  \ 
misc ib~ l i t  y \ 

Coherent 
I spi nodal 

Cornposi t ion 

Fig. 5.41 Schematic phase diagram for a clustering system. Region 1: homogeneous 
a stable. Region 2: homogeneous a metastable, only incoherent phases can nucleate. 
Region 3: homogeneous a metastable. coherent phases can nucleate. Region 4: 
homogeneous a unstable , no nucleation barrier, spinodal decomposition occurs. 

appears on an equilibrium phase diagram is the incoherent (or equilibrium) 
miscibility gap. This corresponds to the equilibrium compositions of incoher- 
ent phases, i.e. in the absence of strain fields. The chemical spinodal is also 
shown in Fig. 5.41 for comparison, but it is of no practical importance. 

Spinodal decomposition is not only limited to systems containing a stable 
miscibility gap. All systems in which GP zones form, for example, contain a 
metastable coherent miscibility gap, i.e. the GP  zone solvus (see the Ai-i+g 
system in Fig. 5.34 for example). Thus it is possible that at high supersatura- 
tlons GP zones are able to form by the spinodal mechanism. If  ageing is 
carried out below the coherent solvus but outside the spinodal, GP zones can 
only form by a process of nucleation and growth, Fig. 5.40. Between the 
incoherent and coherent miscibility gap, Fig. 5.41, AG, - AG, < 0 and only 
incoherent strain-free nuclei can form. 

The difference in tempstature between the coherent and incoherent mis- . 

cibility gaps, or the chemical and coherent spinodals in Fig. 5.41, is depend- 
ent on the magnitude of (?\. When there is a large atomic size difference )q/ is 
large and a large undercooling is required to overcome the strain energy 
effects. As discussed earlier large values of I q I  in cubic metals can be mitigated 
if the misfit strains are accommodated in the elastically soft (100) directions. 
This is achieved by the composition modulations building up parallel to {1001. 
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Figure 5.32 sho\vs a spinodal structure in a specimen of Al-22.5 Zn- 
0.1 Mg (atomic %) solution treated at 400 "C and aged 20 h at 100 "C. The 
wavelensth in the structure is 25 nm. but this is greater than the initial 
microstructure due to coarsening which occurs on holding long times at high 
temperatures. 

- 

5.5.6. Particle coarsening8 

The microstructure of a two-phase alloy is always unstable if the total interfa- 
cial free energy is not a minimum. Therefore a high density of small precipi- 
tates will tend to coarsen into a lower density of larger particles with a smaller 
total interfacial area. However, such coarsening often produces an undesir- 
able degradation of properties such as a loss of strength or  the disappearance 
of grain-boundary pinning effects (see Section 3.3.5). As with grain growth, 
the rate of coarsening increases with temperature and is of particular concern 
in the design of materials for high temperature applications. 

Fig. 5.42 A coarsened.-spinodal microstructure in A1-22.5 a t %  Zn-0.1 a t %  Mg 
solution treated -2 h at 4 0  -aged 70 h at 100 "C. Thin foil electron micrograph 
( X  314 000). (After K.B. Rundman. ~Merals Handbook. 8th edn..  Vol. 8, American 
Society for Metals. 19-3. p.  184.) 

L -  -~ 
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In any precipitation-hardened specimen there will be a range of particle 
sizes due to differences in the time of nucleation and rate of growth. Consider 
t\vo adjacent spherical precipitates9 \with different diameters as shown in 
Fig. 5.33. Due to the Gibbs-Thomson effect. the solute concentration in the 
matrix adjacent to a particle will increase as the radius of curvature decreases. 
Fig. 5.33b. Therefore there will be concentration gradients in the matrix 
a-hich will cause solute to diffuse in the direction of the largest particles ama!. 
from the smallest. so that the small particles shrink and disappear whiie large 
 articles grow. The overall result is that the total number of particles de- 
creases and the mean radius (I') increases with time. By assuming volume 
diffusion is the rate controlling factor it has been shown" that the following 
relationship should be obeyed: 

(1'13 - r i  = kr 

where 

k x D y X ,  

r,, is the mean radius at time r = 0. D is the diffusion coefficient. y is the 
interfacial energy and X ,  is the equilibrium solubility of very large particles. 
Since D and ,YC increase exponentiall! with temperLiture. the rate qf coarsen- 
ing will increase rapidly with increasing temperature. Fig. 5.13. Note that the 
rate of coarsening 

Fig. 5.43 The origin of particle coarsening. P with a small radius of curvature (r.) has 
"higher molar free energy than P with a large radius of curvature ( r l ) .  The 
Concentration of solute is therefore highest outside the smallest particles. 
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Fig. 5.14 Schematic diagram illustrating how the mean particle radius i increases 
with time at different temperatures. 

so that distributions of small precipitates coarsen most rapidly. 
In practice the rate at which particles coarsen may not follow a linear r3-t 

relationship. Deviations from this relationship can be caused by diffusion 
short-circuits such as dislocations, or grain boundaries. Also the coarsening 
rate may be interface controlled. Nevertheless, apart from the case of inter- 
face control, the rate of coarsening should depend on the product D y X ,  , (k in 
Equation 5.51). Therefore high temperature alloys whose strength depends 
on a fine precipitate dispersion must have a low value for at least one of y, X ,  
or D. Let us consider examples of each of these. 

Low y 
The heat-resistant Nimonic alloys based on Ni-Cr with additions of A1 and Ti 
obtain their high strength from a fine dispersion of the ordered fcc phase Ni3 
(TiAl) (Y') which precipitates in the fcc Ni-rich matrix. The Nily' interfaces 
are fully coherent and the interfacial energy is exceptionally low (-10- 
30 mJ m - 3  which enables the alloys to maintain a fine structure at high 
temperature. The misfit between the precipitates and matrix varies between 
zero and about 0.2% depending on composition. It is interesting that the total 
creep-rupture life of these alloys can be increased by a factor of 50x by 
careful control of composition to give zero misfit as compared to 0.2% misfit. 
The reason for this may be that during creep deformation the patticles with 
the slightly higher misfits lose.coherency with the result that y is increased 
thereby increasing the rate of coarsening. 

Low x, 
High strength at high temperatures can a l s o H o b t a i n e d  with fine oxide 
dispersions in a metal matrix. For example W and Ni can be strengthened for 
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high temperature use by fine dispersions of thoria T h o l .  In general. oxides 
are very insoluble in metals and the stability of these microstructures at high 
temperatures can be attributed to a low value of X, in the product DyX, .  

Low D 
Cementite dispersions in tempered steels coarsen very quickly due to the high 
diffusivity of interstitial carbon. However, if the steel contains a substitutional 
alloying element that segregates to the carbide. the rate of coarsening becomes 
limited by the much slower rate at which substitutional diffusion can occur. If 
the carbide-forming element is present in high concentrations more stable 
carbides are formed which have the additional advantage of a lower solubility 
(X,). Therefore low-alloy steels used for medium temperature creep resist- 
ance often have additions of strong carbide-forming elements. 

5.6 The Precipitation of Ferrite from Austenite 

In this section we will be concerned with phase transformations in which 
the first phase to appear is that given by the equilibrium phase diagram. The 
discussion will be illustrated by referehce to the diffusional transformation of . 'I 

Fe-C-austenite into ferrite. However, many of the principles are quite // general and have analogues in other systems where the equilibrium phases are ! . /I 

not preceded by the precipitation of transition phases. Under these conditions i~ 
the most important nucleation sites are grain boundaries and the surfaces of / j inclusions. 

Consider an Fe-0.15 wt% C alloy which. after austenitizing, is allowed to 
partially transform to ferrite at various temperatures below A3 (Fig. 5.45) and 
then quenched into water. The resultant microstructures are shown in 
Fig. 5.46. The white areas are ferrite (a ) .  The grey areas are martensite that 
formed from the untransformed austenite (Y) during quenching. At small 
undercooling below A 3 .  Fig. 5.46a. the ferrite nucleates on austenite grain 
boundaries and grows in a 'blockey' manner to form what are known as 
grain-boundary allotriornorphs. Note that both smoothly curved. presumably 
incoherent. a / y  interfaces as well as faceted, semicoherent interfaces are 
present. At larger undercoolings there is an increasing tendency for the ferrite 
to grow from the grain boundaries as plates, so-called Widmanstatten side-. 
plates, which become finer with increasing undercooling. Fig. 5.46b,.c and d. 

Experimental measurements on Widmanstatten ferrite in other ferrous 
alloys show that the habit planes are irrational. scattered 4 to 20" from {ill}, . 
and that orientation relationships close to the Nishiyama-Wasserman or 
Kurdjumov-~achs type are usually found. High resolution transmission 
electron microscopy has also shown that the habit planes have a complex 
semicoherent structure. containing structural ledges and misfit dislocations. 
similar to that described in Section 3.4.1 " .  
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Fig. 5.45 Holding temperatures for steel in Fig. 5.36. I 

As explained previously. the need to minimize AG" leads to the creation of 
semicoherent interfaces and orientation relationships, even in the case of :. 
grain-boundary nucleation. A critical nucleus could therefore appear as ' 

shown in Fig. 3.45b with faceted (planar) coherent (or semicoherent) inter- 
faces and smoothly curved incoherent interfaces. For certain misorientations 
across the grain boundary it may even be possible for low-energy facets to ~ 

form with both grains. Due to their low mobility faceted interfaces will tend 
to persist during growth while incoherent interfaces will be able to grot* 
continuously and thereby retain a smooth curvature. Thus it is possible to 
explain the presence of smoothly curved and faceted interfaces in Fig. 5.46a. 

The reason for the transition from grain boundary allotriomorphs to Wid 
manstatten side-plates with increasing undercooling is not fully understood. 
has been suggested by Aaronson and co-workersI2 that the relative rates 
which semicoherent and incoherent interfaces can migrate vary-with und 
cooling as shown in Fig. 5.47. At small undercoolings it is proposed that bo 
semicoherent and incoherent interfaces can migrate at similar rates, while 
large undercoolings only incoherent interfaces can make full use of th 
increased driving force. Consideration of Fig. 5.13 thus shows that appro 
mately equiaxed morphologies should develop at low undercoolings wh 
plate-like morphologies. with ever-increasing aspect ratios, should develop 
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5.36 Microstructures of an Fe-0.15% C alloy. The specimens were austenitized. 
held at an intermediate temperature to give some ferrite. and then quenched to room 
'em~rrature. The ferrite is white. The grey. fine constituent is a mixture of ferrite and 

formed on quenching. All photographs are x 100 except (dl.  ( a )  800 'C for . 
i ~ )  5- primarily ferrite allotriomorphs with a few plates. (b )  750 "C for 40 s -  

more plates. mostly growing from grain boundaries. (c) 650 O C  for 9 s- 
"lxwe1~ fine. Note common direction of  plates along each boundary. (d )  550 O C  
!or : 5 ( X  300) (After P.G. Shewmon. Trrznsfornlntions in Mtvnls. McGraw-Hill. New 

':!'rU. 1'469. after H.I. Aaronson.) 
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Undercooling AT 
Fig. 5.47 A possible variation of the relative velocity of incoherent and semicoherent 
interfaces at different undercoolings. Above a certain ratio Widmanstatten morpholo- 
gies should develop. as shown in Fig. 5.13. (After H.I. Aaronson, in Decomposition of 
Allstenire by Diffusional Processes. V.F. Zackay and H.I. Aaronson (Eds.). 1962, by 
permission of The Lletallurgical Society of AIME.) 

high undercoolings. Another factor which may contribute to the increased 
fineness of the Widmanstatten morphologies with decreasing temperature is 
that the minimum plate-tip radius r* is inversely proportional to the under- 
cooling. 

It can be seen in Fig. 5.46 that ferrite can also precipitate within the 
austenite grains (intragranular ferrite). Suitable heterogeneous nucleation 
sites are thought to be inclusions and dislocations. These precipitates are 
senerally equiaxed at low undercoolings and more plate-like at higher 
undercoolings. 

In general the nucleation rate within grains will be less than on grain 
boundaries. Therefore. whether or not intragranular precipitates are ob- 
served depends on the grain size of the specimen. !n fine-grained austenite. 
tor example, the ferrite that forms on grain boundaries will rapidly raise the 
carbon concentration within the middle of the grains. thereby reducing the 
undercooling and making nucleation even more difficult. In a large-grained 
specimen. however. it takes a longer time for the carbon rejected from the 
ferrite to reach the centres of the grains and meanwhile there will be time 
for nucleation to occur on the less favourable intragranular sites. 

A TIT diagram for the precipitation of ferrite in a hypoeutectoid steel will 
have a typical C shape as shown in Fig. 5.48. The y -+ a transformation 
should be approximately described by Equation 5.39 and the time for a given 
percentage transformation will decrease as the constant k increases, e.g. 
Equation 5.40. As usual, k increases with. small increases in T due to 
increased nucleation and growth rates-k is also raised by an increase in the 
total number of nucleation sites. Thus decreasing the austenite grain size has 
the effect of shifting the C curve to shorter transformation times. 

It is possible to mark a temperature T, below which the ferrite forms as 
predominantly Widmanstatten plates and above which it is mainly in the form 

TMk u n d v  Q 
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(b) Weight percent carbon 
Fig. 5.48 ( a )  Typical TTT curve for y -+ a transformation. (b) Temperature- 

composition regions in which the various morphologies are dominant at late reaction 
times in specimens with ASTM grain size Nos. 0-1. GBA = grain boundary allot- 
riomorphs, W = Widmansttitten sideplates and/or intragranular plates, M = massive . , 
ferrite. see Section 5.9. (After H.I. Aaronson, in Decornposirion of Ausrenite by 
Di.fusional Procrsses, V.F. Zackay and H.I. Aaronson (Eds.), 1962. by permission of 
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The Metallurgical Society of AIME.) 1 
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of grain boundarv allotriomorphs. For alloys of different carbon content A3 
and T ,  vary as shown on the phase diagram in Fig. 5.48b. 

During practical heat treatments. such as normalizing or annealing, trans- 
formation occurs continuously during cooling. Under these circumstances the 
final microstructure will depend on the cooling rate. If the specimen is cooled 1 i 



very slowly there will be time for nucleation to occur at small undercoolings 
on grain corners, edges and boundaries. As these nuclei grow the carbon 
rejected into the austenite will have time to diffuse over large distances and 
the austenite grain should maintain a uniform composition given by the 
equilibrium phase diagram. Finally the austenite reaches the eutectoid 
composition and transforms to pearlite. Furnace cooling corresponds fairly 
closely to these conditions and an example is shown in Fig. 5 . 4 9 ~ .  The final 
proport;lons of ferrite and pearlite should be as determined by the equilibrium 
phase tiiagram. 

The microstructure that results from more rapid cooling will depend on the 
grain size and the cooling rate. If the rate of cooling is moderately high the 
specimen will not remain long enough at high temperatures for nucleation to 
occur. Thus nuclei \rill not be formed until higher supersaturations are 
reached. The nucleation rate will then be rapid and large areas of grain 
boundary will become covered with nuclei. If the temperature is below Tw the 
ferrite will grow into the austenite as Widmanstatten side-plates with a 
spacing that becomes finer with decreasing temperature. 

The nuclei that form at the highest temperatures will be on grain corners 
which will be followed by edges at lower temperatures and finally grain 
boundaries at still lower temperatures. In a small-grained specimen where 
there are a large number of grain corner and edge sites a large number of 
nuclei can be formed above the Tw temperature and grow as grain-boundary 
allotriomorphs. In a !arged-grained specimen. on the other hand. relatively 
few nuclei will form at high temperatures and the austenite far from these 
particles will remain supersaturated until lower temperatures, below T,, 
when ferrite will be able to nucleate on grain boundary sites and grow as 
Widmanstatten side-plates. The eeect of cooling rate and grain size is illus- 
trated in Fig. 5.49. hote also that the total volume fraction of ferrite de- 
creases as the transformation temperature decreases. This point will be 
returned to later. 

If the austenite con~ains more than about 0.8wt% C. the first phase to 
form will be cementite. This also nucleates and grows with an orientation 
relationship to the austenite. producing similar morphologies to ferrite- 
grain boundary ,:;airiomorphs at high temperatures and Widmanstatten 
side-plates at lower temperatures as shown in Fig. 5.48b. 

5.7 Cellular Precipitation 

Grain-boundary precip~tat~on does not alwajs result in grain-boundary allot- 
riomorphs or  Widmanstatten side-plates or'needles. In some cases it can 
result in a different mode of transformation, known as cellular precipitation. 
The essential feature of this type of transformation is that the boundary 
moves with the growing tips of the precipitates as shown in Fig. 5.50. Mor- 
phologically the transformation is very similar to the eutectoid reaction. 

Cellular precipitation 

Fig. 5.49 ~ic'rostructures obtained from different heat .treatments in plain carbon 
steels ( X  60). 0.23wt% C 1.2% Mn air-cooled, showing influence of prior austenite 
grain size: (a) austenitized at 900 O C  (b) austenitized at 1150 "C. 0.4% C st.owing 
effect of cooling rate for same grain size: (c) furnace cooled (annealed], (d) air 
cooled (normalized). (After P.G. Shewmon. Transf~rmations in Metals, McGraw- 
Hill, New York. 1969: (a) and (b) after R. Yoe. (c) and (d) after K. Zurlippe.) 
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Fig. 5.50 A schematic diagram showing a poss~ble sequence of steps dunng the 
development of cellular precipitation. 

However, in this case the reaction can be written 

where a' is the supersaturated matrix. a is the same phase but with a lower 
thermodynamic excess of solute, and p is the equilibrium precipitate. The 
mechanism whereby grain-boundary nucleation develops into cellular pre- 
cipitation differs from one alloy to another and is not always fully understood. 
The reason why cells develop in some alloys and not in others is also unclear. 

Figure 5.51 shows an example of cellular precipitation in a Mg- 
9 atomic % A1 alloy. The P phase in this case is the equilibrium precipitate 
Mg17Al12 indicated in the phase diagram, Fig. 5.52. It can be seen in Fig. 5.51 
that the Mg17Al12 forms as lamellae embedded in a Mg-rich matrix. The grain 
bollndary between grains I and I1 was originally straight along AA but has 
been displaced, and the cell matrix and grain I are the same grain. 

Figure 5.53 shows another specimen which has been given a two-stage heat 
treatment. After solution treating at 410 "C the specimen was quenched to a 
temperature of 220 "C for 20 min followed by 90 s at 277 "C and finally water 
quenched. It is apparent that the mean interlamellar spacing is higher at 
higher ageing temperatures. As with eutectic solidification this is because 
less free energy is available for the formation of c*/P interfaces when the total 
driving force for transformation is reduced. 
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i il 
Fig. 5.51 Cellular precipitation of MgI-AI,? in an 'Me-9 atc; A1 allo!. jolution 
tre:lted and aged 1 h at 230 "C followed by 2 min at 310 "C. Some general Xlgl;hl,2 
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precipitation has also occurred un dislocations withln the grain\. 1 
1 

The growth of cellular precipitates requires the partitioning of solute to the 
tips of the prxipitates in contact with the advancing grain boundary. This can 
occur in one of two ways: either by diffusion through the lattice ahead of the 
advancing cell front. or by diffusion in the moving boundary. Partitioning by 
lattice diffusion would require solute concentration gradients ahead of the cell 
front while. if the grain boundary is the most effective diffusion route, the 
matrix composition should remain unchanged right up to the cell front. In 
the case of the Mg-AI alloy it has been possible to do microanalysis with 
sufficiently high spatial re>"iution to resolve these pcssibilities directly. (The 
technique used was electron energy loss spectroscopy using plasmon losses".) 
The results of such measurements, Fig. 5.54a. clearly indicate that the matrix 
composition remains unchanged to within 10 nm of the advancing cell front so 
that partitioning must be taking place within the boundary itself. This is to be 
expected since precipitation is occurring at relatively low temperatures where 
solute transport tends to become more effective via grain boundaries than 
through the lattice. 

Figure 5.54b shows the aluminium concentration in the a matrix along a 
1 line between the p (Mg,,AI,,) lamellae. This is essentially a replica of a 
1 similar concentration profile that must exist withirr the advancing grain 
I 
I boundary. Therefore apart from the matrix in contact with the P precipitate. 
I the cell matrix is still supersaturated with respect to equilibrium. i 
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Fig. 5.52 The re ie~ant  part of the Mg-A1 phase d~agram.  

Cellular precipitation is also known as discontinuous preczpitaticn because 
the composition of the matrix changes discontinuously as the cell front passes. 
Precipitation that is not cellular is referred to as general or  continuous 
because it occurs generally throughout the matrix on dislocations or grain 
boundaries, etc. and the matrix composition at a given point decreases 
continuously with time. Often general precipitation leads to a finely distri- 
buted intermediate precipitate that is associated with good mechanical 
properties. The cellular reaction is then unwanted because the intermediate 
precipitates will dissolve as they are overgrown and replaced by the coarse 
equilibrium precipitates within the cells. 

5.8 Eutectoid Transformations I 
5.8.1 The Pearlite Reaction in Fe-C Alloys I 
When austenite containing about 0.8wt% C is cooled below the A l  tem- 
perature it becomes simultaneously supersaturated with respect to ferrite 
and cementite and a eutectoid transformation results, i.e. 
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~ i g .  5.53 A cell formed during ageing at two temperatures: 30 rnin at 220 OC 
followed by 30 min at 277 "C and water quenched. Note the change in interlamellar 
spacing caused by the change in undercooling. 

The manner in which this reaction occurs is very similar to a eutectic trans- 
formation where the original phase is a liquid instead of a solid. In the case of 
Fe-C alloys the resultant microstructure comprises lamellae, or sheets. of 
cementite embedded in ferrite as shown in Fig. 5.55. This is known as 
pearlite. Both cementite and ferrite form directly in contact with the austenite 
as shown. 

Pearlite nodules nucleate on grain boundaries and grow with a roughly 
constant radial velocity into the surrounding austenite grains. At small under- 
coolings below A ,  the number of pearlite nodules that nucleate is relatively 
small, and the nodules can grow as hemispheres or spheres without interfer- 
ing with each other. At larger undercoolings the nucleation rate is much 
higher and site saturation occurs, that is all boundaries become quickly cov- 
ered with nodules which grow together forming layers of pearlite outlining the 
prior austenite grain boundaries, Fig. '9-56. .. 

.'* . 
. # 

'vucleation of Pearlite 
The first stage in the formation of pearlite is the nucleation of either cement- 
ite or ferrite on an austenite grain boundary. Which phase nucleates first will 
depend on the grain-boundary structure and composition. Suppose that it is 
cementite. The cementite will try to minimize the activation energy barrier to 



(b )  Distance 
Fig. 5.54 (a) The variation of aluminium concentration across an advancing grain 
boundary midway between two precipitate lamellae. (b) A similar profile along a line 
such as S in Fig. 5.53. 

nucleation by forming with an orientation relationship to  one of the austenite 
grains, y, in Fig. 5.57a. (The crystal structure of cementite is:orthorhombic 
and the orientation relationship is close to  (100),//(1il),, (010),//(110),, 
(001),//(i12),.) Therefore the nucleus will have a semicoherent, low- 
mobility interface with y, and an incoherent mobile interface with y2. The 
austenite surrounding this nucleus will become depleted of carbon which will - 
increase the driving force for the precipitation of ferrite, and a ferrite nucleus 
forms adjacent to the cementite nucleus also with an orientation relationship 
to y, (the Kurdjumov-Sachs relationship). This process can be repeated 
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Fig: 5.55 A pearlite colony advancing into a n  austenite Sruln. (.After L.S. Darken 
and R.M.  Fisher in L)t~cor?~po.siriou ot .~4~i,sr~~trlrr h\. l)rffir.srotrtrl Proc.rssrc. \ ' .F .  Zackay 
and H.I. Aaronson (Eds . ) .  b!: permission of The .Lletallurgical Society of XI\IE. 

cleation of both phases the colonv can grow edgewise by the movement of the 
incohererzr interfaces. that is pearlite grows into the austenite grain with which 
it does not have an orientation relationship. The carbon rejected from the 
growing ferrite diffuses through the austenite to in front of the cementite. as 
with eutectic solidification. 

If the alloy composition does not perfectly correspond to the eutectoid 
composition the grain boundaries may already be covered with a proeutectoid 
ferrite or cementite phase. If, for example. the grain boundary already 
contains a laver of cementite. the first ferrite nucleus will form with an 
orientation reiationship to this cementite on the mobile incoherent side of the 
allotriomorphs as shown in Fig. 5.57b. Again due to the higher mobility of 
the incoherent interfaces the pearlite will grow into the austenite with which 
there is no orientation relationship. 

Whatever the pearlite nucleation mechanism. new cementite lamellae are 
able to form by the branching of a single lamella into two new lamellae as 
shown in Fig. 5.57a(iv) or c. The resultant pearlite colony is effectively two . . 
Interpenetrating single crystals. 

I t  can be seen that the nucleation of pearlite requires the establishment of 
cooperative growth of the two phases. I t  takes time for this cooperation to be 
c.;tal,lished and the r:lte of colony 11~1cleation therefore increaxrs with time. In 



Fig. 5.56 A partially transformed eutectoid steel. Pearlite has nucleated on grain 
boundaries and inclusions ( X  100). (After J.W. Cahn and W.C. Hagel in Decomnposi- 
tion of Amfenire by D!f~isional Processes. V.F. Zackay and H.I. Aaronson (Eds.), 
1962. by permission of The Metallurgical Societ!- of ACME.) 

some cases cooperation is not established and the ferrite and cementite grow 
in a non-lamellar manner producing so-called degenerate pearliteiJ. 

Pearlite Growth 
The growth of pearlite in binary Fe-C alloys is analogous to the growth of a 
lamellar eutectic with austenite replacing the liquid. Carbon can diffuse 
interstitially through the austenite to the tips of the advancing cementite 
lamellae so that the equations ueveloped in Section 4.3.2 should apply 
equally well to pearlite. Consequently the minimum possible interlamellar 
spacing ( S * )  should vary inversely with undercooling below the eutectoid 
temperature ( A , ) .  and assuming the observed spacing (So) is proportional to 
S* gives 

SimilarIy the growth rate of pearlite colonies should be constant and given by 
a relationship of the type 

where k is a thermodynamic term which is roughly constant. 

(ii) (iii) (iv) 

coherent 

( i i )  (i i i) 

Fig. 5.57 Nucleation and growth of pearlite. ( a )  On a .clean' grain boundar!.. 
( 1 1  Cementite nucleates on grain boundary with coherent interface and orientatron 
relationship with y, and incoherent interface with 7,. ( i i )  a nucleates adjacent to 
cementite also with a coherent interface and orientation relationship with y,. (This 
also produces an orientation relationship between the cementite and ferrite.) 
( 1 1 1 )  The nucleation process repeats sideways. while itzcohere,~r interfaces grow into 7: .  
(iv) New plates can also form by a branching mechanism. ( b )  When a proeutectoid 
phase (cementite or ferrite) already exists on that boundary. pearlite will nucleate and 
?ro\v on the incoherent side. A different orientation relationship between the 
cementite and ferrite results in this case. ( c )  A pearlite colony at a later stage of 
gro\vth. 



Observed spacings are found to obey Equation 5.53. varying from -1 km at 
high temperatures to -0.1 km at the lowest temperatures of growth15. 
However, it is found that So is usually greater than 2S*,  i.e. the observed 
spacing is not determined by the maximum growth rate criterion. Instead it 
may be determined by the need to create new cementite lamellae as the 
perimLeter of the pearlite nodules increases. This can occur either by the 
nucleation of new cementite lamellae, or by the branching of existing lamel- 
lae, Fig. 5 . 5 7 ~ .  

In the case of binary Fe-C alloys. observed growth rates are found to agree 
rather well with the assumption that the growth velocity is controlled by the 
diffusion of carbon in the austenite. Figure 5.58 shows measured and calcu- 
lated growth rates as a function of temperature. The calculated line is based 
on an equation similar to Equation 5.54 and shows that the measured growth 
rates are reasonably consistent with volume-diffusion control. However, it is 
also possible that some carbon diffusion takes place through the y / a  and 
ylcementite interfaces. which could account for the fact that the predicted 
growth rates shown in Fig. 5.58 are consistently too low. 

A schematic TTT diagram for the pearlite reaction in eutectoid Fe-C alloys 
is shown in Fig. 5.59. Note the 'C' shape typical of diffusional transformations 
that occur on cooling. The maximum rate of transformation occurs at about 
550°C. At  lower temperatures another type of transformation product, 
namely Bainite, can grow faster than pearlite. This transformation is dealt 
with in the next section. 

Eutectoid transformations are found in many alloys besides Fe-C. In alloys 
where all elements sre in substitutional solid solution, lattice diffusion is found 
to be too slow to account for observed growth rates. In these cases diffusion 

Velocity (cmls) 
Fig. 5.58 Pearlite gronth rate v. temperature for plain carbon steels. (After M.P. 
Puls and J.S. Kirkaid!. .ilernll[crgical Transactior~s 3 (1972) 2777. 0 American Society 
for Metals and the Jfetallurgical Society of AIME, 1973.) 
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Fig. 5.59 Schematic diagram showing relative positions of the transformatidn curves 
for pearlite and bainite in plain carbon eutectoid steels. 

occurs instead through the colony/matrix interface. Consideration of the 
diffusion problem in this case leads to a relationship of the type 

where k is a thermodynamic constant and DB is the boundary diffusion 
coefficient. 

Pearlite in Off-Eutectoid Fe-C Alloys 
When austenite containing more or less cart---: than the eutectoid composi- 
tlon is isothermally transformed below the A,  temperature the formation of 
peariite is usually preceded by the precipitation of proeutectoid ferrite or 
cementite. However, if the undercooling is large enough and the departure 
from the eutectoid composition is not too great it is possible for austenite of 
non-eutectoid composition to transform directly to pearlite. The region in 
which this is possible corresponds approximately to the condition that the 
austenite is simultaneously saturated with respect to both cementite and 
ferrite, i.e. the hatched region in Fig. 5.60. (See also Fig. 5.48). Thus a 
0.6% C alloy, for example can be transformed to -100% pearlite provided 
the temperature is low enough to bring the austenite into the hatched region 
of Fig. 5.60 (but not so low that bainite forms). At intermediate undercool- 
ings some proeutectoid ferrite will form but less than predicted by the equilib- 
"um phase diagram. 
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Fig. 5.60 Effect of transformation temperature on the volume fraction of proeutec- 
toid ferrite. 

Similar considerations apply to transformations during continuous cool- 
ing-larger grain sizes and faster cooling rates favour low volume fractions of 
ferrite. Compare Fig. 5 . 4 9 ~  and d.  

5.8.2 The Bainite Transformation 

When austenite is cooled to large supersaturations below the nose of the 
pearlite transformation curve a new eutectoid product called bainite is pro- 
duced. Like pearlite. bainite is a mixture of ferrite and carbide. but it is 
microstructurally quite distinct from pearlite and can be characterized by its 
own C curve on a ?TT diagram. In plain carbon steels this curve overlaps with 
the pearlite curve (Fig. 5.59) so that at temperatures around 500 "C both 
pearlite and bainite form competitively. In some alloy steels, however, the 
two curves are separated as shown in Fig. 5.65. 

The microstructure of bainite d e ~ e n d s  mainly on the temperature at which 

Upper Bainite 
At high temperatures (350 "C-550 "C) bainite consists of needles or laths of 
ferrite with cementite precipitates between the laths as shown in Fig. 5.61. 
This is known as upper bainite. Figure 5.61a shows the ferrite laths growing 
into partially transformed austenite. The light contrast is due to the cemen- 
tite. Figure 5.61b illustrates schematically how this microstructure is thought 
t o  develop. The ferrite laths grow into the austenite in a similar way to 
Widmanstatten side-plates. The ferrite nucleates on a grain boundary with a 
Kurdjumov-Sachs orientation relationship with one of the austenite grains, . 
-J., say. Since the undercooling is very large the nucleus grows most rapidly . 
into the y, grain forming ferrite laths with low energy semicoherent inter- 

Fig. 5.61 (a) Upper bainite in medium-carbon steel (replica x 13 000) (by permis- 
"On of the Metals Society). (b) Schematic af growth mechanism. Widmanstatten 
Rrrite laths growth into y2. (a and y, have Kurdjumov-Sachs orientation rela- 
tlonship.) Cementite plates nucleate in carbon-enriched austenite. (c) Illustrating 
'he shape of a -lath7. 



faces. This takes place at several sites along the boundary so that a group of 
finely spaced laths develops. As the laths thicken the carbon content of the 
austenite increases and finally reaches such a level that cementite nucleates 
and grows. 

At  the higher temperatures of formation upper bainite closely resembles 
finely spaced Widmanstatten side-plates, Fig. 5.16d. As the temperature 
dec~eases the bainitic laths become narrower so that individual laths may only 
be "resolved by electron microscopy. 

At the highest temperatures where pearlite and bainite grow competitively 
in the same specimen it can be difficult to distinguish the pearlite colonies 
from the upper bainite. Both appear as alternate layers of cementite in 
ferrite. The discontinuous nature of the bainitic carbides does not reveal the 
difference since pearlitic cementite can also appear as broken lamellae. 
However, the two microstructures have formed in quite different ways. The 
greatest difference between the two constituents lies in their crystallography. 
In the case of pearlite the cementite and ferrite have no specific orientation 
relationship to the austenite grain in which they are growing, whereas the 
cementite and ferrite in bainite do have an orientation relationship with the 
grain in which they are growing. This point is illustrated in Fig. 5.62. The 
micrograph is from a hypoeutectoid steel (0.6% C) which has been partially 
transformed at 710 "C arid then quenched to room temperature. whereupon 
the untransformed austenite was converted into martensite. The quench, 
however,.was not fast enough to prevent further transformation at the y / a  
interface. The dark constituent is very fine pearlite which was nucleated on 
the incoherent a / y  interface, across which there is no orientation relationship. 
Th: ferrite and lower austenite grain. however, have an orientation rela- 
tionship which has led to. bainite formation. 

Fig. 5.62 Hypoeutectoid steel (0.696 C) partially transformed for 30 min at  710 "C, 
inefficiently quenched. Bainitic growth into lower grain of austenite and pearlitic 
growth into upper grain during quench ( x  1800). (After M. Hillert in Decomposition 
of Axstenire b y  Difusional Processes. V . F .  Zackay and H.I. Aaronson (Eds.), 1962, 
bv permission of the Metallur_gical Societ!. of AIME.1 

Lower Bainire 
;\t sufficiently low temperatures the microstructure of bainite chanzes from 
laths into plates and the carbide dispersion becomes much finer. rather like 
in tempered martensite. The temperature at which the transition to lower 
bainite occurs depends on the carbon content in a complex manner. For 
carbon levels below about 0.5wr'?0 the transition temperature increases with 
increasing carbon, from 0.5-0.7wt% C it decreases and above approxi- 
mately 0.7wt% C it is constant at about 350 "C. At the temperatures where 
lower bainite forms the diffusion of carbon is slow. especiallv in the aus- 
tenite and carbides precipitate in the ferrite with an orientation relationship. 
The carbides are either cementite or metastable transition carbides such as 
E-carbide and they are an aligned at approximately the same angle to the 
plane of the ferrite plate (Fig. 5.63). The habit plane of the ferrite plates in 
lower bainite is the same as that of the martensite that forms at lower 
ternperatu;es in the same alloy. As with upper bainite, some carbides can 
also be found between the ferrite plates. 

The different modes of formation of upper and lower bainite result in 
different transformation kinetics and separate C curves on the TTT diagram. 
An example. the case of a low-alloy steel. is shown in Fig. 5.68. 

Transformation Shears 
If a polished specimen of austenite is transformed to bainite (upper or lower) 
it is found that the growth of bainite laths or plates produces a surface relief 
effect like that of martensite plates. For example Fig. 5.64 shows the surface 
tilts that result from the growth of lower bainite plates. This has been 
interpreted as suggesting that the bainite plates form by a shear mechanism in 
the same way as the growth of martensite plates (see Chapter 6). In other 
words it is supposed that the iron atoms are transferred across the ' 

ferrite/austenite interface in an ordered military manner. However. the 
~rowth rate of the bainite plates is controlled by the rate at which carbon can 
diffuse away from the interface, or by the rate at which carbides can 
precipitate behind the interface. whereas martensit. plates are able to 
[rdvance without any carbon diffusion, and the plates can grow as fast as the 
glissile interfaces can advance. 

There is, however, much uncertainty regarding the mechanism by which 
bainitic ferrite grows, and the nature of the austenite-ferrite interface in 
martensite and bainite. In fact the formation of Widmanstatten side-plates 
also leads to surface tilts of the type produced by a shear transformation. Also 
(he phenomenological theory of martensite is able to account for the observed 
Orientation relationships and habit planes found in Widmanstatten plates as 
well as bainite and martensite. It can be seen. therefore. that some phase 
transformations are not exclusively military or civilian. but show characteris- 
tlcs common to both types of transformation. For a detailed review of the 
b, dlnlte ' . transformation the reader should consult the article by Bhadeshia 
;'nd Christian. given in the Further Reading section at the end of this 
;h;lnter 
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When X is a ferrite stabilizer there are thermodynamic considerations that 
suggest that X will partition even at large undercoolings close to the nose of 
the C curve. Thus Si, for example, will increase the hardenability by diffusing 
along the austenitelpearlite interface into the ferrite. The partitioning of 
alloying elements in an Fe-0.6 wt% C-0.85% Cr-0.66% Mn-0.26% Si steel 
transformed at 597 "C for 2 min is shown in Fig. 5.66. 

When X is an austenite stabilizer such as Ni, it is at sufficiently 
high undercoolings. for pearlite to grow without partitioning. The ferrite and 
cementite simply inherit the Ni content of the austenite and there is no need 
for substitutional diffusion. Pearlite can then grow as fast as diffusion of 
carbon allows. However, the growth rate will still be lower than in binary 
Fe-C alloys since the non-equilibrium concentration of X in the ferrite and 
cementite will raise their free energies. thereby lowering the eutectoid 
temperature. Fig. 5.67. and reducing the total driving force. For the same 
reasons zero-partitioning is only possible at temperatures below the meta- 
stable eutectoid as shown in Fig. 5.67. 

When X i s  a strong carbide-forming element such as Mo or Cr it has been 
suggested" that it can reduce the rate of growth of pearlite, as well as 
proeutectoid ferrite, by a solute-drag effect on the moving y l a  interface. 
These elements also partition to cementite as shown in Fig. 5.66. 

Hardenability is not solely due to growth-rate effects. It is also possible that 
the alloying elements affect the rate of nucleation of cementite or ferrite. For 

Ferrite 

5i 
Cemen- Ferrite 

2- 
% Manganese 

1- - - - - - - - - 
0 

Fig. 5.66 Schematic diagram showing the measured variations of alloying elements 
In pearlite. These measurements were made using a time-of-flight atom probe. (P.R. 
Williams, M.K. Miller, P.A. Beavan and G.D. W. Smith. Phase Transformations. Vol. '. Institute of Metallurgists. 1979. p. 98.) 
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I / 

I I A, (no partitioning) 

Fig. 5.67 Schematic phase diagram for Fe-C-X alloy where X is a substitutional 
element. Between the solid and dashed lines. precipitation can occur in the austenite 
only if X is partitioned between the phases. 

example, it has been suggested18 that the 'bay' at -500 "C in the TIT 
diagrams of steels containing Cr, Mo and B (see Fig. 5.65) may be due to the 
poisoning of ferrite nucleation sites by the precipitation of X-carbide clusters 
in grain boundaries. 

The diagrams shown in Fig. 5.65 are not entirely acccrate especially with 
regard to the bainite transformation at temperatures in the vicinity of the Ms 
temperatures. It has been found that below the M, temperature the bainite 
transformation rate is greatly increased by the martensite-transformation 
strains. The ??T diagram for the bainite transformation in Fig. 5.65d has 
recently been redetermined using a new experimental technique based on 
magnetic permeability  measurement^'^ and the results are shown in Fig. 5.68. 
The acceleration of the transformation close to M ,  and the existence of 
separate C curves for upper and lower bainite are apparent. 

5.8.4 Continuous Cooling Diagrams i l 
Isothermal transformation (TIT) diagrams are obtained by rapidly quenching g 
tn a oiver, temnerature and then measuring the volume fraction of the various 1 
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constituents that form as a function of time at that temperature. Practical hea 
treatments, however, are usually concerned with transformations that 
during continuous cooling, and under these conditions TIT diagrams c 
be used to give the times and temperatures of the various transformations. A 
continuous cooling transformation (CCT) diagram must be used instead. 

To  a first approximation the CCT diagram is the TIT diagram shifted t 
lower temperatures and longer times. This can be understood as follows. In a 
specimen held at a constant temperature the transformation starts when the 
product (Nt) reaches a certain value, a, say. In a continuously cooled sample, 
time near the start of cooling is not very effective since N is low at low 
supercoolings. Therefore when the cooling curve reaches the TTT start curve 
the total value of Nt will be less than a and further time (and therefore 
cooling) will be required before the start of the CCT diagram is reached. 
Similarly the end of the reaction will be displaced to lower temperatures and 
longer times. The relationship between a CCT and an TTT diagram for a 
eutectoid steel is shown in Fig. 5.69. Note that whereas the TTT diagram is 
interpreted by reading from left to right at a constant temperature the CCT 
diagram is read along the cooling curves from the top left to bottom right. The 
cooling curves in Fig. 5.69 refer to various distances from the quenched end 
of a Jominy end-quench specimen. Transformation occurs along the hatched 
parts of the lines. Figure 5.69 is in fact simplified and cooling along B would 
lead to the production of some bainite. But otherwise it can be seen that point 
B will transform partly to fine pearlite at high temperatures around 500- 
450 "C. Between 450 and 200 "C the remaining austenite will be unable to 
transform and below 200 "C transformation to martensite occurs. 

The above relationship between TIT and CCT diagrams is only approxi- 
mate. There are several features of CCT diagrams that have no counterpart in 
TIT diagrams especially in alloy steels. These include the following: (i) a 
depression of the M ,  temperature at slow cooling rates, (ii) the tempering of 
martensite that takes place on cooling from M ,  to about 200 "C, (iii) a greater 
variety of microstructures. 

Figure 5.70 shows more complete CCT diagrams for a medium-carbon steel 
with different Mn contents. These diagrams were obtained with a high-speed 
dilatometer using programmed linear cooling rates for all except the highest 
quench rates. For each cooling curve the cooling rate and volume fractions of - 
ferrite and pearlite are indicated. Note how the volume fraction of pearlite * 

increases as the cooling rate is increased from 2.5 to 2300 "F/min in the 
low-Mn steel. In practical heat treatments the cooling curves will not be line?., 
but will depend on the transfer of heat from the specimen to the quenching 
medium and the rate of release of latent heat during transformation. In$ 
general. the evolution of latent heat reduces the rate of cooling during the 4 
transformation range and can even lead to a rise in temperature, i.e. recales- " -E cence. Recalescence is often associated w ~ t h  the pearlite transformation when 
the growth rate is very high, e.g. in unalloyed steels, but the effect can also be T 
seen quite clearlv for a cooling rate of 4100 "Flmin in Fie. 5.70a. 
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I END - QUENCH HARDENABILITY 

, , lLOOL ,i ; OISTANCE\lFRDM QUENCHED END-INCHES 
\ 

MARTENSITE MARTENSITE AND F I N E  PEARLITE 
NODULAR PEARLITE PEARLITE 

TIME - SECONDS 
LEGEND 
, , , Cooling transformation diagram 

I 
. . 

Isothermal transformation dlagram ; . I 
Cool~ng curves 

1 -,-- Transformation durlng cooling 1 -. 
h g .  5.69 Correlation cf  continuous cooling snd isothermal transformations with 
Cnd-quench hardenability test data for eutectoid carbon steel. (Atlas of Isothermal 

and Cooling Transformarion Diagrams. American Society for Metals. 
'"7. p. 376.) 
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10 lo2 10 10' 
Cooling time seconds I 

Cooling time seconds 

Fig. 5.70 CCT diagrams showing the influence of Mn on a 0.4 wt% C steel. 
(a) 0.39 C, 0.72 Mn, 0.23 Si, 0.018 S, 0.010 P. Ac, = 728 "C, Ac3 = 786 "C. Grain . 
size, ASTM No. 7-8. (b) 1.6 Mn: 0.39 C, 1.56 Mn, 0.21 Si, 0.024 S, 0.010 
Ac, = 716 "C. Ac3 = 788 OC. Grain size, ASTM No. 8. F, ferrite; P, pearlite; 
bainite; M. maitensite, (Atlas of Isothermal Transformation and Cooling Transforma' 
tion Diagrams. American Soc~ety of Metals, 1977. p. 414.) 
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5.8.5 Fibrous and Interphase Precipitation in Alloy Steels 

When a few per cent of a stro~lg carbide-forming element (e.g. Mo, W, Cr, 
Ti, V) is alloyed with steel, cementite is entirely replaced by a more stable 
carbide. When such steels are isothermally transformed at temperatures 
where the substitutional alloying element has appreciable mc5ility (-600- 
750 "C) two new alloy-carbide morphologies can form. 

Sometimes a fibrous morphology can be formed as illustrated in Fig. 5.71. 
This is a mixture of M0,C fibres in ferrite. The interfibre spacings are about 
an order of magnitude less than found in pearlite with fibre diameters 
-10-50 nm. 

In other cases planar arrays of alloy carbides in ferrite are produced, 
Fig. 5.72. The spacing of the sheets of precipitates decreases with decreasing 
temperature of transformation, being of the order of 10-50 nm. The sheets of 
precipitate are parallel to successive positions of the y l a  interface, hence this 
type of precipitation is known as interphase precipitation. The mechanism by 
which the microstructure develops is shown in the thin-foil electron micro- 
graphs in Fig. 5.73a and b and schematically in Fig. 5 .73~ .  The a / y  interface 
can be seen to advance by the ledge mechanism, whereby mobile incoherent 
ledges migrate across immobile semicoherent facets. Note that these growth 
ledges are - 100 atom layers high in contrast to the structural ledges discussed 
in Section 3.4.1 which are only a few atom layers high at most. Normally the 
incoherent risers would be energetically favourable sites for precipitation, but 
in this case the alloy carbides nucleate on the low-energy facets. This is 
because the ledges are moving too fast for nucleation to occur. As can be seen 
in Fig. 5.73a and as shown schematically in Fig. 5.73c, the precipitate size 
increases with distance behind the step, indicating that nucleation occurs on 
the semicoherent facets just ahead of the steps. 

- I 

5.9 Massive Transformations ,. 3 "- - :Q<:  I * . -  

Consider the Cu-Zn alloys in Fig. 5.74 containing approximately 38 atomic 
% Zn. The most stable state for such alloys is P above -800 "C, a below 
-500 "C and a mixture of a + p with compositions given by the equilibrium 
phase diagram in between. The type of transformation that occurs on cooling 
the p phase depends on the cooling rate. At slow to moderate cooling rates a 
Precipitates in a similar way to the precipitation of ferrite from austenite in 
Fe-C alloys: slow cooling favours transformation at small undercooling and . - 
the formation of equiaxed a; higher cooling rates result in transformation at 
lower temperatures and Widmanstatten a needles precipitate. According to 
the phase diagram, the a that precipitates will be richer in Cu than the parent 
fi phase, and therefore the growth of the a phase requires the long-range 

/ diffusion of Zn away from the advancing a / p  interfaces. This process is 
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Fig 5.72 Fe-0.75% V-(1.15% C after 5 min at 725 'C. Thin foil electron micrograph 
showing sheets of vanadium carbide precipitates (interphase precipitation). (After 
R.W.K. Honeycombe. 'Transformation from Austenite in Alloy Steels'. Metal l~~rgical 
Tmt~maionr. 7A (1976) 91. 0 American Society for Metals and The Metallurgical 
Society of AIME. 1976. after A.D. Batte.) 

relatively slow, especially since the ?u and Zn  form' substitutional solid 
solutions, and consequently the C curve for the a precipitation on a TTT o r  
CCT diagram will be located at relatively long times. A possible CCT diagram 
is shown schematically in Fig. 5.75. 

If the alloy is cooled fast enough, by quenching in brine for  example, there 
1s no time for the precipitation of a. and the f3 phase can be retained to 
temperatures below 500 "C where it is possible for f3 to transform into a with 
the same composition. The result of such a transformation is a new massive 
transformation product, Fig. 5.76. 

Massive a grains nucleate at grain boundaries and grow rapidly into the 
Surrounding f3. Note also that because of the rapid growth the a/f3 boundaries 
have a characteristic irregular appearance. Since both the a and P phases 
have the same composition, massive @(a,) can grow as fast as the Cu and Zn  
"oms can cross the a/p  interface, without the need for long-range diffusion. 
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(c) 
Fig. 5.73 Fe-12% Cr%-0.2% C transformed 30 min at 650°C. Interphase precipitif- 
tion of CrZ3Cb at a/y ~nterface. (a) Dark-field micrograph showing bright precipl- 
tates. (b) Bright-field micrograph of same area showing ledges in the a/y interface. 
Precipitates appear dark. (c) Schematic of nucleation and.growth mechanism for 
interphase precipitation. (After R.W.K. Honeycornbe. 'Transformation from Auste- 
nite in Alloy Steels', Metallurg~cal Transactions 7A (1976) 91, @American Society for 
Metals and The 34etallurgical Society of AIME. 1976. after K. Campbell.) 

0 10 20 30 40 50 
Cu Atomic per cent zinc 

Fig. 5.74 A part of the Cu-Zn phase diagram showing the a / p  equilibrium. The 
temperature at which Ga = CP is marked as T,,. M, marks the beginning of the 
martensite transformation in rapidly quenched specimens. (After T.B. Massalski in 
Phase Transformations. American Society for Metals. 1970.) 

Since growth only involves thermally activated jumping across the alp 
Interface, the massive transformation can be defined as a diffusionless 
civilian transformation and it is characterized by its own C curve on TTT 
or CCT diagrams as shown in Fig. 5.75. The migration of the alp interfaces 
IS very similar t o  the migration of grain boundaries during recrystallization 
of single-phase material. However, iq the case of the massive transformation 
the driving force is orders of magnitude greater than for recrystallization. 
which explains why the transformation is so rapid. 

Massive transformations should not be confused with martensite. Although ' - :+j -? 
the martensitic transformation also produces a change of crystal structure 4 

without a change in composition, the transformation mechanism is quite 
different. Martensite growth is a diffusionless military transformation, i.e. 
a is sheared into a by the cooperative movement of atoms across a glissile 
Interface, whereas the growth of massive a involves thermally activated 
Interface migration. Systems showing massive transformations will generally 
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Log t i m e  - 
Fig. 5.75 A possible CCT diagram for systems showing a massive transformation. 
Slow cooling (1) produces equiaxed a. Widmanstiitten morphologies result from 
faster cooling (2 ) .  Moderately rapid quenching (3) produces the massive trans- 
formation. while the highest quench rate (4) leads to a martensitic transformation. 
Compare with Fig. 5.79. 

also transform martensitlcally ~f sufficiently high quench rates are used to 
suppress the nucleation of the massive product, Fig. 5.75. However Fig. 5.74 
shows that for the Cu-Zn alloys the M ,  temperature is below 0 "C and some 

phase is therefore retained after quenching to room temperature, as can 
be seen in Fig. 5 76. 

It was stated above that f3 can transform massively into a provided the P 
phase could be cooled into the stable a phase field without precipitation at a 
higher temperature. Thermodynamically. however. it is possible for the trans- 
formation to occur at higher temperatures. The condition that must be 
satisfied for a massive transformation is that the free energy of the new phas 
must be lower than the parent phase, both phases having the same composi- 
tion. In the case of Cu-38 atomic % Zn therefore. it can be seen from 
Fig. 5.77 that there is a temperature -700 "C below which G" becomes less 
than GP. This temperature is marked as To in Fig. 5.74 and the locus of 
also shown for other alloy compositions. Therefore it may be possible 
massive transformation to occur within the two-phase region of the p 
diagram anywhere below the To temperature. In practice, however, ther 

2 .  - 

Massive transformations 

Fig. 5.76 Massive a formed at the grain boundaries of P in 'Cu-38.7 wt% Zn 
quenched from 850 "C in brine at 0 "C. Some high temperature precipitation has alsb 
occurred on the boundaries. (From D. Hull and K.  Garwood, The Mechanism of 
Phase Transformarions in ~Merals. Institute of Metals. London. 1956.) 

xzn =O-38 
/ I 

Xz,=0.38 

Fig. 5.77 A schematic representation of the free energy-composition curves for a 
2nd p in the Cu-Zn system at various temperatures. 
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evidence that massive transformations usually occur only within the single- 
phase region of the phase diagram. ? 

Massive transformations are found in many alloy systems. Usually the 
interfaces are incoherent and migrate by continuous growth in a similar 
manner to a high-angle grain boundary, but in some cases growth can take 
place by the lateral movement of ledges across faceted interfaces. The Cu-AI 
phase 4agram is similar to that shown in Fig. 5.74. Figure 5.78 shows a 
specim& of Cu-20 atomic % A1 that has been quenched from the P field to 
produce almost 100% massive a. Again, characteristically irregular phase 
boundaries are apparent. In both Figs. 5.76 and 5.78 the cooling rate has 
been insufficient to prevent some precipitation on grain boundaries at higher 
temperatures before the start of the massive transformation. 

The y + a transformation in iron and its alloys can also occur massively 
provided the y is quenched sufficiently rapidly to avoid transformation near 
equilibrium, but slow enough to avoid the formation of martensite. The  effect 
of cooling rate on the temperature at which transformation starts in pure iron 
is shown in Fig. 5.79. The microstructure of massive ferrite is shown in 
Fig. 5.80. Note the characteristically irregular grain boundaries. 

Massive transformations are not restricted to systems with phase diagrams 

Fig. 5.78 Mass~ve a In Cu-20 atomlc % A1 after quench~ng from the P field at 
1027 "C Into Iced bnne. Note the Irregular a/a boundaries. Some other transforma- 
tion (possibly baln~tlc) has occurred on the gram boundaries. (After G A.  hadw wick, 
.Metallography of Phase Transforrnatlons. Butterworths. London. 1972.) 

i 
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Cooling rate, 1 0 ~ ~ 1 s  
Fig. 5.79 The effect of cooling rate on the transformation temperature of pure iron. 
(After M.J. Bibby and J.G. Parr, Journal of the Iron and Steel Institute 202 (1964) 
loo.) 

Fig. 5.80 Massive a in an Fe-0.002 wt% C quenched into iced brine from 1000 "C. 
Note the irregular a/a boundaries. (After T.B. Massalski in Metals Handbook, 8th 
edn., Vol. 8, American Society for Metals, 1973, p. 186.) 

like that shown in Fig. 5.74. Metastable phases can also form massively as 
shown in Fig. S.ld(ii) for example. It is not even necessary for the trans- 
formation product to be a single phase: two phases, at least one of which must 
be metastable, can form simultaneously provided they have the same com- 
Position as the parent phase. 
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5.10 Ordering Transformations 

* 
The structure of ordered phases has already been briefly discussed in <$$ 
Section 1.3.7. To recap: solid solutions which have a negative enthalpy of & 
mixing (0 < 0) prefer unlike nearest neighbours and therefore show a 
tendency to form ordered phases at low temperatures. The five main types of 6 
ordered solutions are shown in Fig. 1.22. An example of a phase diagram @ 
containing low-temperature ordering reactions is the Au-Cu diagram in 3 
Fig. 1.21. Another example is the ordering of bcc p-brass below -460 "C to 6 
the so-called L20 (or B2) superlattice, Fig. 5.74. The bcc (or so-called A2) '* 
lattice can be considered as two interpenetrating simple cubic lattices: one 
containing the corners of the bcc unit cell and the other containing the 
body-centring sites. If these two sublattices are denoted as A and B the . 
formation of a perfectly ordered P' superlattice involves segregation of all Cu 
atoms to the A sublattice, say, and Zn to the B sublattice. This is not feasible 
in practice, howe~er,  as the p' does not have the ideal CuZn composition. 
There are two ways of forming ordered structures in non-stoichiometric 
phases: either some atom sites can be left vacant or some atoms can be 
located on wrong sites. In the case of p(CuZn) the excess Cu atoms are 
located on some of the Zn sites. 

Let us begin the discussion of ordering transformations by considering what 
happens when a completely ordered single crystal such as CuZn or Cu3Au is 
heated from low temperatures to above the disordering temperature. To do 
this it is useful to quantify the degree of order in the crystal by defining a 
long-range order parameter L such that L = 1 for a fully ordered alloy where 
all atoms occupy their 'correct' sites and L = 0 for a completely random 
distribution. A suitable definition of L is glven by 

where X, is the mole fraction of A in the alloy and r ,  is the probability that 
an A sublattice site is occupied by the 'right' kind of atom. 

At absolute zero the crystal will minimize its free energy by choosing t 
most highly ordered arrangement (L = 1) which corresponds to the 1 
internal energy. The configurational entropy of such an arrangement, 
ever, is zero and at higher temperatures the minimum free energy state 
contain some disorder, i.e. some atoms will interchange positions by diffusio 
so that they are located on 'wrong' sites. Entropy effects become increasing] 
more important with rising temperature so that L continuously decrease 
until above some critical temperature (T,) L = 0. By cnoosing a suitab 
model, such as the quasi-chemical model discussed in Section 1.3.4, it 
possible to calculate how L varies with temperature for  different superlat- 
tices. The results of such a calculation for the CuZn and Cu3Au superlattices 
are shown in Fig. 5.81. It can be seen that the way in which L decreases to 

Ordering tran.sformutions 

(b) 
Fig. j . 81  The variation of long-range order ( L )  and short-range order (s) for 
(a) CuZn-type and (b) Cu3Au-type transformations (schematic). 

zero is different for the different superlattices. In the equiatomic CuZn case L 
decreases continuously with temperature up to T,, whereas in Cu3Au L 
decreases only slightly up to Tc and then abruptly drops to zero above T,. 
This difference in behaviour is a consequence of the different atomic 
configurations in the two superlattices. 

Above T, it is impossible to distinguish separate sublattices extending over 
long distances and L = 0. However, since < 0 there is still a tendency for 
atoms to attract unlike atoms as nearest neighbours, i.e. there is a tendency 
for atoms to order over short distances. The degree of short-range order (s)  is 
defined in Section 1.3.7. The variation of s with temperature is shown as the 
dashed lines in Fig. 5.81. 

The majority of phase transformations that have been discussed in this 
book have been so-called first-order transformations. This means that at the 
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@ 
equilibrium transformation temperature the first derivatives of the Gibbs free 3- 
energy aG/dT and dG/BP are drscontinuous. The melting of a solid is such a $! 

a transformation. Fig. 5.S2a. Since dG/dT = - S and ;IG/a P = V ,  first order 3 
transformations are characterized by discontinuous changes in S and V. There kS 

3 is also a discontinuous change in enthalpy H corresponding to the evolution of $ 
a latent heat of transformation. The specific heat of thf system is effectively $? 
inf i~i te  at the transformation temperature because the addition of a small : 

r 

Fig. 5.82 The thermodynarn~c charactenst~cs of (a) first-order and (b) second- 'i 
order phase transformat~ons. 
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quantity of heat converts more solid into liquid without raising the tempera- 
ture. 

Figure 5.82b illustrates the characteristics of a second-order transforma- 
tion. For such a transformation the second derivatives of Gibbs free energy 
a 2 ~ / d ~ 2  and a2G/ap2 are discontinuous. The first derivatives, however, are 
continuous which means that H is also continuous. Consequently since 

there is no latent heat, only a high specific heat, associated with the trans- 
formation. 

Returning to a consideration of order-disorder transformations it can be 
seen from Fig. 5.81 that the loss of long-range order in the P' + P (CuZn) 
transformation corresponds to a gradual disordering of the structure over a 
range of temperatures. There is no sudden change in order at Tc and conse- 
quently the internal energy and enthalpy (H) will be continuous across Tc .  
The P'  -t P transformation is therefore a second-order transformation. In the 
case of Cu3Au, on the other hand. a substantial change in order takes place 
discontinuously at Tc.  Since the disordered state will have a higher internal 
energy (and enthalpy) than the ordered state, on account of the greater 
number of high-energy like-like atom bonds, there will be a discontinuous 
change in H at T,, i.e. the transformation is first order. 

So far we have been concerned with the disordering transformation that 
takes place on heating a fully ordered single crystal. The mechanism by which 
order is lost is most likely the interchange of atoms by diffusional processes 
occurring homogeneously throughout the crystal. The same changes will of 
course take place in every grain of a polycrystal. Let us now turn to the 
reverse transformation that occurs on cooling a single crystal, i.e. 
disorder += order. 

There are two possible mechanisms for creating an ordered superlattice 
from a disordered solution. (1) There can be a continuous increase in short- 
range order by local rearrangements occurring homogeneously throughout 
the crystal which finally leads to long-range order. (2) There may be an 
energy barrier to the formation of ordered domains, in which case the trans- 
formation must take place by a process of nucleation and growth. These two 
alternative mechanisms are equivalent to spinodal decomposition and pre- 

- cipitation as mechanisms for the formation of coherent zones in alloys with 
positive heats of mixing (a > 0). The first mechanism may only be able to 
operate in second-order transformations or at very high supercoolings below 
T,. The second mechanism is generally believed to be more common. 

The nucleation and growth process is illustrated in Fig. 5.83. The dis- 
ordered lattice is represented by the cross-grid of lines. Within this lattice two 
sublattices are marked by heavy and faint lines. Atoms are located at each 
Intersection but only atoms within the ordered regions, or domains, are 
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marked; the unmarked sites are disordered. The diagram is only schematic, 
but could represent a {loo] plane of the Cu3Au superlattice. Since the two 
types of atoms can order on either the A or B sublattice, the independently 
nucleated domains will often be ' o ~ t  of phase' as shown. When these domains 
subsequently grow together a boundary will form (known as an antiphase 
domain boundary or APB) across which the atoms will have the wrong kind 
of neighbours. APBs are therefore high-energy regions of the lattice and are 
associated with an APB energy. 

Even at rather low undercoolings below T, the activation energy barrier to 
the nucleation of ordered domains AG* should be rather small because both 
nucleus and matrix have essentially the same crystal structure and are there- 
fore coherent with a low interfacial energy. Also, provided the alloy has a 
stoichiometric composition, both nucleus and matrix have the same com- 
position so that there should not be large strain energies to be overcome. 
Consequently, it is to be expected that nucleation will be homogeneous, 
independent of lattice defects such as dislocations and grain boundaries. 
Figure 5.84 shows evidence for the existence of a nucleation and growth 
mechanism during ordering in Copt. This is a field ion micrograph showing 
that the two types of atoms are ordered in a regular manner in the upper part 
but disordered in the lower part of the micrograph. 

At low AT the nucleation rate will be low and a large mean domain size 
results, whereas higher values of AT should increase the nucleation rate and 
diminish the initial domain size. The degree of long-range order in a given 
domain will vary with temperature according to Fig. 5.81 and with decreasing 
temperature the degree of order is increased by homogeneous diffusive rear- 
rangements among the atoms within the domain. Within the crystal as a 
whole, the degree of long-range order will initially be very small because 
there are likely to be equal numbers of domains ordered on both A and B 
lattices. The only way for long-range order to be established throughout the 
entire crystal is by the coarsening of the APB structure. The rate at which this 
occurs depends on the type of superlattice. 

In the CuZn-type superlattice (L2,) there are only two sublattices on which 
the Cu atoms, say, can order and therefore only two distinct types of ordered 
domain are possible. A consequence of this is that it is impossible for a 
metastable APB structure to form. It is therefore relatively easy for the APB 
structure to coarsen in this type of ordered alloy. Figure 5.85 shows an 
electron micrograph of APBs in AlFe (L2, superlattice) along with a schema- 
tlc diagram to illustrate the two different types of domain. The Cu3Au (Ll,) 
superlattice is different to the above in that there are four different ways in 
which ordered domains can be formedfrom the disordered fcc lattice: the Au 
atoms can be located either at the corners of the unit cell, Fig. 1.20c, or at the 
One of the three distinct face-centred sites.. The Cu3Au APBs are therefore 
more complex than the CuZn type, and a consequence of this is that it is 
Possible for the APBs to develop a metastable, so-called foam structure, 
Fig. 5.86. Another interesting feature of this microstructure is that the APBs 
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Flg. 5.84 A field ion m~crograph of the boundary between an ordered dom 
(above) and disordered matr~x (below) In Copt. (After E.W. Muller and Tien 
Tsong . Field Ion M~croscopy. Principles otrd Applicnrlons. Ekev~er. 1969. ) 

tend to align parallel to (100) planes in order to minimim the number 
high-energy Au-Au bonds. 

The rate at which ordering occurs varies greatly from one alloy to  an 
For example the ordering of P(CuZn) is so rapid that it is almost imposu 
quench-in the disordered bcc structure. This is because the transformati0 
second order and can occur by a rapid continuous ordering process. 

Ordering of Cu3Au on the other hand is relatively slow requiring sev 
hours for completion, despite the fact that the atomic mobilities ought t 
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similar to those in the CuZn transformation. This transformation, however, is 
second order and proceeds by nucleation and growth. Also the development 
of long-range order is impeded by the formation of metastable ~ p g  net- 
works. 

  he above comments have been concerned primarily with allovs of 
stoichiometric composition. Howevcr, it has already been pointed out that 
ordering is often associated with non-stoichiometric alloys. 

In the case of first-order transformations there is always a two-phase region 
at non-~toichiometri~ compositions, Fig. 1.21, so that the transformation can 
be expressed as: disordered phase + ordered precipitates + disordered ma- 
trix. There is then a change in composition on ordering and long-range 
diffusion must be involved. Second-order transformations on the other hand 
do not involve a two-phase region even at non-stoichiometric compositionr, 
Fig. 5.74. 

(a) A thin-foil electron micrograph showing APBs in an ordered AlFe 
'! ( 17 000). (b )  A schematic representation of the atomic configurations 
"~"ng the APB structure in (a). (After M.J. Marcinkowski in Mera[~ Handbook. 
c d n  Val. 8. American Society for Metals. 1973. p. 205.) 
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5.11 Case Studies 

5.11. I Titanium Forging Alloys 

Composition: Ti-6 wt% A1-4 wt% V. 
Phase diagrams: Binary Ti-A1 and Ti-V diagrams in Fig. 5.87. 
Important phases: a-hcp, p-bcc. 
Microstructures: See Figs. 5.88-5.91. 

Applicarions: As a result of the high cost of titanium, uses are restricted to 
applications where high performance is required and high strength to weight 
ratio is important, e.g. gas turbine aero engines and airframe structures. 

Comments: At low temperatures pure titanium exists as the hcp a phase, 
but above 883 "C up to the melting point (-1672 "C) the bcc p phase is stable. 
Figure 5.87 shows that A1 is an a stabilizer, i.e. it raises the a/p  transition 
temperature. whereas V is a p stabilizer which lowers the transition tempera- 
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Fig. 5.86 APBs in ordered Cu3Au. Thin-foil electron micrograph X 53 000. Note 
that due to the method of imaging about one third of the APBs are invisible. (After 
M.J. Marcinkowski in Metals Handbook. 8th edn.. Vol. 8. American Society for 
Metals. 1973. p. 205.) 

ture. A vr;/.'o range of titanium alloys are available. These can be classified as 
either a, a + p, or p alloys. The Ti-6A1-4V alloy to be discussed here 
belongs to the a + P group of alloys. For simplicity. the phase diagram 
relevant to these alloys can be envisaged as that shown in Fig. 5 .87~ .  Two 
principal types of transformation are of interest. The first of these is the 
precipitation of a from p on cooling from above the P transus into the a + P 
field. This is in principle the same as the formation of ferrite during the . 
cooling of austenite in Fe-C alloys. However, in this case the Widmanstiitten . 
morphology predominates at all practical cooling rates, Fig. 5.88a. 
Figure 5.88b is a thin-foil electron micrograph of a similar structure and 
shows more clearly the two phases present after air cooling. The P phase 
remains as a thin layer between the Widmanstatten a plates. Furnace cooling 
Produces similar though coarser microstructures. The a plates and the 0 
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are oriented such that 

(0001),//(1~0)p 
[ ~ i ~ o ] , l / [ ~ i i ] ,  

The second important transformation is the formation of martensite that 
takes place when P is rapidly cooled by water quenching. The transformation 
can be written p -. a' where a' is a supersaturated hcp a phase. Mf for P 
containing 6 wt% A1-4 wt% V is above room temperature so that quenching 
from above the p transus produces a fully martensitic structure. Fig. 5.89a. 
The martensite can be aged by heating to temperatures where appreciable 
diffusion can occur, in which case the supersaturated a' can decompose by the 
precipitation of P on the martensite plate boundaries and dislocations. 
Fig. 5.89b. 

Alloys for engineering applications are not usually used. in the above 
conditions but are hot worked in the a + P region of the phase diagram in 

Fig. 5.88 (a) Widmanstatten a (light) and fl (dark) in a Ti-6 AI-3 V alloy air cooled : 
from 1037 "C. (S.M. Copley and J.C. Williams. in Alloy and Microsrructural Design 
J . K .  Tien and G.S. Ansell (Eds.). Academic Press. 1976.) (b) Alternate layers of a 
(light) and fl (dark) in a Widmanstitten microstructure. Ti-6 Al-4 V forged at 
1038 'C above the p transus, air-cooled. annealed 2 h at 704 'C. air cooled. Thin-foil 
electron micrograph ( x  15 000). (From Mernls Handbook. 8th edn.. Vol. 7. American 
Society for Metals. 1972. p. 00.) 
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Fig. 5.58 (b) 

order to  break up the structure and distribute the a phase in a finely divided 
form. This is usually followed by annealing at 700 "C which produces a 
structure of mainly a with finely distributed retained P. Fig. 5.90. The advan- 
tage of this structure is that it is more ductile than when the a is present in a 
Widmanstatten form. When additional strength is required the alloys are 
hardened by heating to high temperatures in the a + P range (-940 "C) so 
that a large volume fraction of P is produced, followed by a water quench to 
convert the P into a' martensite, and then heating to obtain precipitation 
hardening of the martensite (Fig. 5.91). Mechanical properties that can be 
obtained after these treatments are given in Table 5.4. If the alloy is held 

Table 5.4 Room Temperature Mechanical Properties of Ti-6 wt.% Ale 
4 wt% V Alloys 

/ 

Condition YSiMPa UTSiMPa Elongation - 
annealed 930 990 15% 
hardened 950 1030 14% 

-C 
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Fig. 5.89 (a )  a' Martensite in Ti-6 A1-4 V held above the P transus at 1066 "C and 
U t e r  quenched. Prior P grain boundaries are visible ( x  370). (From iMerals Hand- 
' 'OOk. icth edn.. Vol. 7. American Societ?~ for Metals. 1972. p. 378) ( b )  @ precipitates 
[hat have formed during the tempering of a' martensite in Ti-6 AI-4 V. Specimen 
quenched from 1100 "C and aged 24 h at 600 "C. Thin-foiled electron micrograph. 
' ,After S.M. Copley and J.C. Williams in Allo? ntltl .Microsrr~tcrural Design. J . K .  Tien 
J" G.S.  Ansell (Eds.). Academic Press. New York. 1976.) 
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Fig. 5.90 Microstructure of hot-worked and annealed Ti-6 A1-4 V ( x  540). (P.H. 
Morton in Rosenhain Centenary Conference. The  Royal Society. London. 1976.) 

lower in the a + p field before quenching the P phase that forms can be so 
rich in vanadium that the M ,  temperature is depressed to below room tem- 
perature and quenching results in retained p. see Fig. 5 .87~ .  

5.11.2 The IVeldability of Low-Carbon and ?/iicroaltoyed Rolled Steels 

Composition: C r: 0.22 wt%, Si = 0.3%, Mn = 1.0-1.5%, P 5 0.04%, 
S 10.04%. C,, (see text) 5 0.4%. 
Possible microalloying elements: Al. Nb. Ti. V. with possible additions of Zr 
and/or N. The total amount of microalloying elements does not usually 
exceed 0.15%. 
Phase diagrams: Fe-C binary. 
Modified CCT diagrams (see below). 
Welding nomographs (see text). 
Microstructure: Depends on type of steel, e.g. whether quench and tem- 
pered, microalloyed-fine grained. plain rolled C-Mn, etc. See, e.g. 
Fig. 5.49a. 
Applications: Constructional steels for building frames, bridges, pressure 
vessels. ships. oil platforms, etc. 
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Fig. 5.91 Microstructure of hardened Ti-6 Al-4 V. Solution treated at 954 "C (high . . . 
in the u - p range). water quenched. aged 4 h at 538 "C. Equiaxed .primary' a grains 
(light) in an aged martensitic matrix. (From lZlcrrc1.x Handbook. 8th edn..  Vol. 7.  
American Society for Metals. 1971. p. 329.) 

Commer~ts: Steels used for heavy, high-strength constructions are nowa- 
days rather sophisticated. relying for their high strength and toughness on 
having a fine and uniform grain size. When fusion welding plates together. the 
steel is subjected to an extremely severe thermal cycle. and at the fusion line 
the temperature attains the melting point of the rllloy. Because the steel plate 
provides an effective thermal sink (see Section 4.5) the cooling rate is very 
high for most types of welding process as illustrated in Fig. 5.92. This thermal 
cycle causes changes in properties of the base material in the heat-affected 
zone due to the combination of phase changes and thermalimechanical 
stresses. Typical microstructural changes experienced by a C-Mn steel are 
~Ilustrated in Fig. 5.93, showing that recrystallization, grain growth and even 
ageing are occurring in the heat-affected zone. Of these changes. grain growth 
1s potentially the most troublesome in decreasing the strength and toughness 
of these steels particularly since in most cases high-energy submerged arc 
welding is used with its associated relatively long dwell-time at peak tempera- 
tures. In order to avert the problem of grain growth at high temperatures, 
new steels have recently been introduced containing a fine dispersion of TiN 
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precipitates. These precipitates remain fairly stable at temperatures as high as 
1500 "C and. at their optimum size of about 10 nm, act as a barrier to grain 
growth during welding. 

Another important problem in welding high-strength steels concerns the 
formation of martensite. The reason for this is that it is very difficult in 
welding to avoid the presence of hydrogen. This is because hydrogen- 
containing compounds are invariably present in fluxes, the electrode material 
or even in the environment if welding is done outside. In this way atomic 
hydrogen is absorbed into the molten metal of the fusion weld where it then 
diffuses rapidly Into the heat-affected base metal. If during subsequent cooling, 
martensite forms, hydrogen (whose solubility in martensite is lower than in 
ferrite) is forced out of the martensite where it concentrates at the marten- 
site-ferrite phase boundary, or at inclusion boundaries. Thus in combination 
with weld resldual stresses the hydrogen weakens the iron lattice and may 
initiate cracks. This phenomevon is known as cold cracking. It is found vital 
in welding to exert a close control over the amount of residual hydrogen in 
welds and to avoid martensite, particularly in cases where residual stresses 
may be high. Since it is usually difficult to totally avoid the presence of 
hydrogen, special CCT diagrams are employed in conjunction with estimated 
cooling rates In the heat affected material as shown in Fig. 5.94. The essential 
feature of this type of CCT diagram is that the phase boundaries need to be 
plotted under conditions of actual welding. or weld simulation. in which both 
thermal and residual stresses are present2'. In the case of weld simulation, a 
special equipment is employed in which it is possible to programme in the 
appropriate thermal and stress cycles. As illustrated in Fig. 5.94, the various 
cooling curves 1-8 represent different heat inputs corresponding to different 
welding processes or parameters. The parameter r, in the table refers to the 
time in seconds for cooling through the temperature range: 800-500 "C, this 
being almost a constant within the heat-affected zone. and is thus considered a 
useful parameter in welding in helping to predict microstructure as a function 
of welding input energy. The working temperature in the table refers to 
whether or  not pre-heating was employed. Thus in Fig. 5.94, martensite is 
predicted to occur for all welding energies below about 37 500 J/cm (cl.r7e 
5), this corresponding in practice to a weld deposit on a 20 mm thick plate of 
the composition given. In practice of course it is more useful if microstruc- 
tural or  cold cracking predictions could be made as a function of differing 
chemical composition. plate thickness, peak temperature, pre-heating and 
welding variables. This obviously requires much more complex diagrams than 
that of Fig. S 94, and will therefore be correspondingly less accurate, 
although such diagrams, or welding nornographs as they are called, have been 
developed for certain applications. The composition variations are estimated 
using a so-called carbon equivalent2', in which the effect of the various 
elements present is empirically expressed as a composition corresponding to a 
certain carbon content. This is then used to estimate possible martensite 
formation for ;he welding conditions given. 
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Temperature 
O r  

Coolinq time - 
Fig. 5.94 CCT diagrams for a 0.19% C-1.52 Mn-0.55 Si steel. with superimpused 
cooling rates corresponding to the weld heat inputs given in the table. (From IIW's 
Doc. 115/11W-382-71. 1971.) 
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Exercises 

5.1 An approximate expression for the total driving force for precipitation 
in a' regular solution (AGO in Fig. 5.3) is 

where X, and Xe are the mole fractions of solute defined in Fig. 5.3. 
(a) Use this equation to estimate the total free energy released when 
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a' -, a + p at 600 K if Xo = 0.1, X, = 0.02 and R = 0 (ideal 
solution) (R = 8.31 J mol-' K-'). 

(b) Estimate the volume fraction of precipitate at equilibrium if P is 
pure solute (x$ = 1). (Assume the molar volume is constant.) 

(c) If the alloy is heat treated to produce a precipitate dispersion with a 
spacing of 50 nm estimate the total I X / ~  interfacial area m-3 of 
alloy. (Assume a simple cubic array.) 

(d) If y,, = 200 mJ mP2 what is the total interfacial energy m-3 of 
a l l o y h o l - '  of alloy? (V, = lop5 m3). 

(e) What fraction of the total driving force would remain as interfacial 
energy in the above case? 

(f) Repeat c-e for a dispersion of 1 pm spacing. 
5.2 Use the methods of Chapter 1 to derive the expression for AGO in 

problem 5.1. 
5.3 In dilute or ideal solutions the driving force for precipitate nucleation 

(assuming XE = 1) is given approximately by 

xo AG,, = RT In - per mole of precipitate 
x e  

where Xc, and X ,  are the mole fractions of solute defined in Fig. 5.3. 
(a) Evaluate AG, for the precipitate in problem 5.1. 
(b) Assuming homogeneous nucleation, what will be the critical nucleus 

radius? 
(c) HOW does the mean precipitate size in problem 5 . 1 ~  compare with 

the sue of the cr~tical nucleus? 
5.4 Derive the expression for AG, in problem 5.3. (Use equation 1.68.) 
5.5 (a) Calculate 0 in Fig. 5.6 if yap = 500 and y,, = 600 mJ m-2. 

(b) Evaluate the magnitude of the shape factor S(0) for this nucleus. 
5.6 Imagine the Fe-0.15 wt% C alloy in Fig. 5.45 is austenitized above A3,  

and then quenched to 800 "C where ferrite nucleates and covers the 
austenite grain boundaries. 
(a) Dran a composition profile normal to the a/y interface after partial 

tr;i,l,iormation assuming diffusion-controlled growth. 
(b) Derive an approximate expression for the thickness of the femte 

slabs as a function of time. 
(c) Given that Dz (800 "C) = 3 x 10-l2 m2 s-' plot the thickness as a 

funcr~on of time. 
(d) If the austenite grain size is 300 pm extend the above curve to long 

times. (State any simplifying assumptions you make.) 
5.7 Derive Equation 5.34. 
5.8 (a) By considering short transformation times derive expressions for k 

and n in Equation 5.39 for the pearlite transformation when nuclea- 
tion is restricted to grain corners and all nuclei form at time zero 
(site saturation). Assume spherical pearlite nodules and a cubic 
grain structure with a cube side d. 

(b) Repeat the above for grain-boundary nucleation again assuming site 
saturation. In this case pearlite grows as grain-boundary slabs. 

5.9 Draw schematic diagrams to show how zrowth rate and nucleation rate 
should vary with temperature for civilian transformations that are in- 
duced by an increase in temperature. 

5.10 A and B form a regular solution with a nositive heat of mixing so that 
the A-B phase diagram contains a miscibility gap. 
(a) Starting from Equation 1.39 derive an equation for d2G/dx;,  

assuming GA = GB = 0. 
(b) Use the above equation to calculate the temperature at the top of 

the miscibility gap T, in terms of R. 
(c) Plot the miscibility gap for this system. Hint: the limits of solubility 

for this simple case are given by dG/dXB = 0. 
(d) On the same diagram plot the locus of d2~, ' c ix i  = 0, i.e. the 

chemical spinodal. 
5.11 By expressing G as a Taylor series, i.e. 

show that Equation 5.43 is valid for small values of AX. 
5.12 How should alloy composition affect the initial wavelength of a spino- 

dally decomposed microstructure at a given temperature? 
5.13 (a) Account for the location of massive transformations in Table 3.5. 

(b) Why do massive transformations generally occur at lower tempera- 
tures but higher rates than precipitation transformations? 



6 
Diffusionless Transformations 

One of the most important technological processes is the hardening of steel by 
quenching. If the steel is quenched rapidly enough from the austenitic field, 
there is insufficient time for eutectoidal diffusion-controlled decomposition 
processes to occur, and the steel transforms to martensite-or in some cases 
martensite with a few per cent of retained austenite. This transformation is 
important and best known in connection with certain types of stainless steels, 
quenched and tempered steels and ball bearing steels. Important recent 
developments involving the martensitic transformation in steels include 
maraging steels (precipitation-hardened martensite). TRIP steels (trans- 
formation induced by plastic deformation). ausforming steels (plastically 
deformed austenite prior to quenching) and dual phase steels (a mixture of 
ferrite + martensite obtained by quenching from the y + a field). 

Because of the technological importance of hardened steel we shall mainly 
be concerned jiith this transformation. although rnartensite is a term used in 
physical metallurgy to describe any diffusionless transformation product, i.e. 
any transformation in which from start to completion of the transformation 
individual atomic movements are less than one interatomic spacing. The 
regimented manner in which atoms change position in this transformation has 
led to it being termed military. in contrast to diffusion-controlled transforma- 
tions which are termed civiliun. In principle, all metals and alloys can be made 
to undergo diffusionless transformations provided the cooling rate o r  heating 
rate is rapid enough to prevent transformation by an alternative mechanism 
involving the diifusional movement of atoms. Martensitic transformations can 
thus occur in many types of metallic and non-metallic crystals, minerals and 
compounds. In :he case of martensite in steel, the cooling rate is such that the 
majority of carbon atoms in solution in the fcc y-Fe remain in solution in the 
a-Fe phase. Steel martensite is thus simply a supersaturated solid solution of 
carbon in a-Fe. The way in which this transformation occurs, however, is a 
complex Process and even today the transformation mechanism, at least in 
steels. is not properly understood. The main purpose of this chapter is to 
consider some of the characteristics of martensitic transformations including a 
brief study of their crystallography, and to examine possible theories of how 
the phase nucleates and grows. We shall then consider the process of temper- 
1% steel martensites and f i n a l l ~ , ~ i v e  some examples of engineering materials 
based on martensitic transformations. 
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6.1 Characteristics of Diffusionless Transformations 

There have been a number of excellent reviews of martensitic transforma- 
tions, and the most complete treatments to date have been given by Christian 
(1965)' and Nishiyama (1978)~. The formation of martensite appears from 

to bs a random process and the way it is observed to develop is 
illustrated schematically in Fig. 6.la and b. As seen from Fig. 6 . la ,  the 
martensitic phase (designated a') is often in the shape of a lens and spans 
initially an entire grain diameter. The density of plates does not appear to be 
a function of the grain size of the austenite. For example it is observed to form 
randomly throughout a sample with a plate density which appears to be 
independent of grain size. Where the plates intersect the surface of a polished 
specimen they bring about an elastic deformation, or tilting of the surface as 
shown in Fig. 6.2. Observations have shown that, at least macroscopically, 
the transformed regions appear coherent with the surrounding austenite. This 
means that intersection of the lenses with the surface of the specimen does not 
result in any discontinuity. Thus. lines on a polished surface are displaced, as 
iilustrated in Fig. 6 . 3 .  but remain continuou.~ after the transformation. It has 
been shown that a fully grown plate spanning a whole grain may form within 
-IO-'s which means that, the cr'jy interface reaches almost the speed of 
sound in 'the solid. Martensite is thus ableto prow independently of thermal 
activation. although some Fe-Ni alloys do exhibit isothermal growth charac- 
teristics. This great speed of formation makes martensite nucleation and 
growth a difficult process to study experimentally. 

It is seen in Fig. 6.la and b that the volume fraction of martensite increases 
by the systematic transformation of the austenite remaining between the 
plates that have already formed. The tirst plates form at the ;M, (rnartensite 
start) temperature. This temperature is associated with a certain driving force 
for the diffusionless transformation of y into a' as shown in Fig. 6.3a and b. 
In low-carbon steels, 144, - 500 "C (Fig. 6.3c), but increasing C contents 
progressively decrease the M ,  temperature as shown. The Mf tempera- 
ture (martensite finish) corresponds to that temperature below which 
further cooling does not increase the amount of martensite. In practice the 
M, may not correspond to 100% martensite, and some retained austenite 
can be left even below Mf. The'retention of austenite in such cases may be 
due to the high elastic stresses between the last martensite plates to form, 
which tend to suppress further growth or thickening of existing plates. As 
much as 10-15% retained austenite is a common feature of especially the 
higher C content alloys such as those used for ball bearing steels. Figure. 
6.3d is a TTT diagram used for estimating the speed of quench necessary to 
obtain a given microstructure. These diagrams are plotted and used in 
technological applications for any cne particular alloy, and that illustrated 
for example applies to only one carbon content, as shown. 



Fig. 6.1 (a). (bi Growth of martensite with lncreaslnp cooling below Ms. (c)-  
e)  Different manensite morphologies in Iron alloys: ( c )  low C (lath). (d)  medium C 
plate). ( e )  Fe-Ki (plate). 
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Fig. 6.2 Illustrating how a martensite plate remains m macroscopic all^ coherent with 
the surrounding austenite and even the surface it  intersects. 

By ana log  with Equation 1.17. the driving force for the nucleation of 
martensite at the M, temperature should be given by: 

where To and M ,  are defined in Fig. 6 3a. Some calorimetric measurements 
of AH are given in Table 6.1 for a number of alloys exhibiting martensitic 
transformations, together with the corresponding amounts of undercooling 
and free energy changes. Note especially in this table the large differences in 
ACT-' between ordered and disordered alloys. the ordered alloys exhibiting 
a relatively small undercooling. We shall now examine the atomic structures 
of steel austenite and martensite in more detail. 

6.1.1 The Solid Solution of Carbon in iron 

In an fcc (or hcp) lattice structure, there are two possible positions for . 
accommodating interstitial atoms as shown in Fig. 6.4. These are: the tet- 
rahedral site which is surrounded by four atoms and the octahedral site which 
has six nearest neighbours. The sizes of the largest atoms that can be 
accommodated in these holes w~thout distorting the surrounding matrix 
atoms can be calculated if it is assumed that the atoms are close-packed hard 
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n 

(a) tet rahedrai 

Fig. 6.1 Illustrating possible : 

spheres. Such a calculation gives: 

(b) octahedral 
;ites for interstitial atoms in the fcc or hcp lattices. 

.tetrahedral interstice d, = 0.225 D 

octahedral interstice d, = 0.414 D 

where D is the diameter of the parent atoms and d, and d, are the maximum 
interstitial diameters in the two types of site. In the case of y-iron. at  ambient 
temperature D = 2.52 A. so that interstitial atoms of diameter 0.568 A or  
1.044 A can be contained in tetrahedral and octahedral interstices without 
distorting the lattice. However. the diameter of a carbon atom is 1.54 A. This 
means that considerable distortion of the austenite lattice must occur to 
contain carbon atoms in solution and that the octahedral interstices should be 
the most favourable. 

The possible positions of ~nterstitials in the bcc lattice are shown in 
Fig. 6.58. It is seen that there are three possible octahedral positions (f[lOO]. 

Table 6.1 Comparisons of Calorimetric Measurements of Enthalpy and 
Undercooling in some martensitic alloys 

G Guenin. Ph.D. thesis. Polytechnical Inst. of in on; 1979 

J H Y ' ~ '  q, - M s  -JGY'a .'.lloy 
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ic Fe Welght per cent  carbon 

Fig. 6.5 Illustrating (a )  possible sites for interstitial atoms in bcc lattice, and (b) the 
large distortion necessary to accommodate a carbon atom (1.54 A diameter) corn- 
pared with the space available (0.346 &). (c) Variation ~f a and c as a function of 
carbon content. (After C.S. Roberts.. Tratzsactions A I M E  191 (1953) 203.) 

+[010], f[001]). and six possible tetrahedral spaces for each unit cell. In this 
case, the maximum sizes of interstitials that can be accommodated without 
distorting the lattice are as follows: 
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The interesting feature of the bcc lattice is that although there is more 'free' 
space than the close-packed lattices, the larger number of possible interstitial 
positions mean? that the space available per in?erstitial is less than for the fcc 
structure (compare Equations 6.2a and 6.2b). In spite of the fact that d, < d,. 
measurements of carbon and nitrogen in solution in iron show that these 
interstitials in fact prefer to occupy the octahedr.al positions in the bcc lattice. 
This causes considerable distortion to the bcc lattice as illustrated in 
Fig. 6.5b. It is conjectured that the bcc lattice is weaker in the (100) directions 
due to the lower number o i  near and next nearest neighbours compared to the 
tetrahedral interstitial position (see, e.g. Cottrell, 1963)~. The estimated 
atomic diameters of pure carbon and nitrogen are 1.54 and 1.44 A respec- 
tively, although these values are very approximate. It should also be remem- 
bered that in a given steel relatively few ($0) sites are occupied. Neverthe- 
less, the martensitic Fe-C lattice is distorted to a bct structure as shown in 
Fig. 6:5c. These measurements, made by X-ray diffraction at -100 "C to 
avoid carbon diffusion. show that the c/a ratio of the bct lattice is given by: 

As seen by these results, the distortion of the lattice in one direction ( z )  
causes a contraction in the two directions normal to =(I, y). In fact. these 
measurements suggest a certain long-range order in the'distribution of the 
carbon interstitials. 

6.2 Martensite CrystallographyJ 

X feature of the microstructures shown in Fig. 6.1 is the obvious crystallo- 
graphic dependence of martensite plate formation. Within a given grain, all the 
plates grow in a limited number of orientations. In the case of iron alloys. for 
example, the orientation variants and even plate morphology chosen turn out 
to be dependent upon alloy content, particularly carbon or  nickel, as illus- 
trated in Table 6.2. 

The irrational nature of the growth planes of high carbon or high nickel 
martensites has been the subject of much d i s c ~ s - : ~ n  in the literature for the 
following reason: if martensite is able to grow at speeds approaching the 
speed of sound, then some sort of highly mobile dislocation interface is re- 
quired. The problem is then to explain the high mobility of an interface 
moving on austenite planes not always associated with dislocation glide. Yet 
another is that the growth or habit plane of martensite is observed to be 
macroscopically undistorted, i.e. the habit plane is a plane which is common 
to both the austenite and martensite in which all directions and angular '. . 
separations in the plane are unchanged during the transformation. That this is 
so can be reasoned in conjunction with Fig. 6.2. The absence of plastic 
deformation in the form of a discontinuity at the surface shows that the shape 
Strain does not cause any significant rotation of the habit plane. If the habit 
plane had been rotated. plastic deformation would be necessary to maintain 
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coherence between the martensite and parent austenite and this would have 
resulted in additional displacements of the surface, or of the lines traversing 
the plate. In order that the habit plane is left undistorted, the martensitic 
transformation appears to occur by a homogeneous shear parallel to the habit 
plane (see Fig. 6.2). Since the y -, a' transformation is also associated with 
-4% expansion, this ili~plies in turn that the dilatation in question must take 
place normal to the habit plane, i.e. normal to the lens. However, some 
homogeneous dilatation of the habit plane may be necessary. 

The question now arises: can the bct martensite lattice structure be gener- 
ated by simple shear parallel to the habit plane, together with a small 
dilatation normal to  the plane? In order to answer this question adequately 
we must consider the crystallography of the y -, a' transformation in more 
detail. 

It has been stated that the habit plane of a martensite plate remains 
undistorted following the transformation. An analogous situation is found In 
twinning as illustrated in Fig. 6.6a and b. It is convenient to consider the 
(I l l ) ,  (112), twinning reaction illustrated in Fig. 6.6a in terms of the 
homogeneous shear of a sphere. Fig. 6.6b. In the shearing plane K. the lattice 
is undistorted. i.e. it is invariant. Let us assume first that the equivalent 
macroscopic shape change in the formation of a martensite plate is a twinning 
shear occurring parallel to the habit (or twirining) plane. plus a simple 
uniaxial tensile dilatation perpendicular to the habit plane. A strain of this 
type is termed: an invariantplane strain, because a shear parallel to the habit 
plane, or an extension or contraction ~erpendicular to it, cannot change the 
positions or magnitude of vectors lying in the plane. We shall now try to 
answer the question of whether the fcc lattice can be homogeneously de- 
formed to generate the bct structure. 

6.2.1 The Bain Model of the fcc -, bct Trartsformatiorz 

In 1924, ~ a i n '  demonstrated how the bct lattice could be obtained from the 
fcc structure wlth the minlmum of atomic movement, and the minimum of 
>tram In the parent lattice. To illustrate this we shall use the convention that 
\. v .  z and x ' ,  y ' .  z' represent the original and final axes of the fcc and bcc unit 
"lis as illustrated in Fig. 6.7. As shown by this Sgure, an elongated unit cell 

the bcc structure can be drawn wlthin two fcc cells. Transformation to a bcc 
Unit cell IS achieved by: ( a )  contracting the cell 20% in the z direction and 
:\Panding the cell by 12% along the r and y axes. In the case of steels. the 
:arbon atoms fit into if axes of the bcc cell at $(loo) positions causing the '*.'* 

lattice to elongate in t h~s  direction. In 1 atomic % C steel. for example. 

! cabon occupies one positlon along the r '  axls for every 50 iron unit cells. The 

1 P"\ltlons occupied by the carbon atoms in the bct structure do not exactly 
to the equivalent octahedral positions ~n the parent fcc structure. 

"nd I t  is assumed that small shuffles of the C atoms must take place during the 
:rclnyt~rmation. 
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Fig. 6.6 (a)  Sho\r.ing the twinning of an fcc structure. Black and white circles 
represent atoms on different levels. (R.E.  Reed-; , 1 1 1 .  PIz~.~ical :Metallurgy Principles, 
2nd edn.. Van Nostrand. 1973.) (b) Graphical representation of a twinning shear 
accurring on a plane K ,  in a direction d (from C.M. Wayman. Itztroducrion to the 
Crvsrallography o f  .Martensite Transformatiotzs. MacMillan, New York, 1964). 

It is an interesting fact that the Bain deformation involves the absolute 
minimum of atomic movements in generating the bcc from the fcc lattice. 
Examina~ ion  of  Fig. 6.7 shows that the Bain deformation r e s q t s  in the. 
following correspondence of crystal planes and directions: 

Martensite crystullogruphy 
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Experimental observations of orientation relationships between austenite and 
martensite show that 111 11, planes are approximately parallel to /0llj,, planes, 
and that the relative directions can vary between (i01),11(1i1), (the Kurd. 
jumov - S ~ c h s  relation) and (li0),)1(101), (the Nishiyama-Wasserman rela. 
tion). These t~vo  orientations differ by -5" about [ I  1 I], . 

By using the sphere + ellipsoid transformation applied earlier to demons. 
trate the twinning shear (Fig. 6.6) we can ncw test whether the Bain deforma- 
tion glso represents a pure deformation in which there is an undeformed 
(invariant) plane. If a sphere of unit radius represents the fcc structure then 
after the Bain distortion it will be an ellipsoid of revolution with two axes (x' 
and y ' )  expanded by 12% and the third axis ( z ' )  contracted by 20%. The x' z r  
section through the sphere before and after distortion is shown in Fig. 6.8. In 
this plane the only vectors that are not shortened or  elongated by the Bain 
distortion are OA or O'A' .  However in order to find a plane in the fcc 
structure that is not distorted by the transformation requires that the vector 
OY' (perpendicular to  the diagram) must also be undistorted. This is clearly 
not true and therefore the Bain transformation does not fulfil the require- 
ments of bringing about a transformation with an undistorted plane. 

Hence the key to the crystallographic theory of martensitic transformations 
is to postulate an additional distortion which. in terms of Fig. 6.8. reduces the 
extension of y '  to zero (in fact a slight rotation. 0.  of the A 0  plane should also 
be made as shown in the figure). This second deformation can be in the form 
of dislocation slip or twinning as illustrated in Fig. 6.9. Applying the twinning 
analogy to the Bain model. we can see that an internally twinned martensite 
plate can form by having alternate regions in the austenite undergo the Bain 
strain along different contraction axes such that the net distortions are com- 
pensated. By also adjusting the width of the individual twins. the habit plane 
of the plate can even be made to adopt any desired orientation. These 
features of twinned martensite plates are illustrated in Fig. 6.10. In this figure 
cb defines the angle between some reference plane in the austenite and the 
martensite habit plane. It is seen that 6 is a function of twin widths 1, I1 (see, 

s > 
ax is)  

Fig. 6.8 The Bain deformation is here simulated by the pure deformation in 
compressing a sphere elastically to the shape of an oblate ellipsoid, As in the Bain 
deformation. this 'transformation' involves two expansion axes and one contraction 
axis. 
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Austenite Martensite 
Fig. 6.9 This figure illustrates schematically how dislocation glide or twinning of the 
martensite can compensate for a pure lattice deformation such as a Bain deformation 
and thereby reduce the strain of the surrounding austenite. The transformation shear 
( s )  is defined. Note how s can be reduced by slip or twinning. 

e.g. Fig. 6 . 9 ~ ) .  On this basis. the habit plane of the martensite plate can be 
defined as a plane in the austenite which undergoes no tlet Imc~croscopic) 
distortion. By 'net distortion'. i t  is meant that the distortion when averaged 
over many twins is zero. There a.ill of course be local regions of strain energy 
associated with the a ' / y  interface of the twins at the edge of the plate. 
Ho\ve\.er. if  the plate is ver!- thin ( a  feu atomic spacings) this strain can be 
relatively small. 

Martensite habit plane , 

F19. 6.10 Twins in martensite may be self-accommodating and reduce energy bv 
having alternate regions of the austenite undergo the Bain strain along different axes. 



In the crystallographic theory. it is assumed that slip or twinning occurs on 
suitable (1 11){112}, systems. corresponding to equivalent (1i0){1 lo), planes 
in the austenite. Since the {112),(11 I), system is that commonly adopted for 
bcc slip or twinning, the physical requirements of the theory are satisfied. 

6.2.2 Comparison of Crystallographic Theor! with Experimental Results 

Some plots of-experimental measurements typical of habit planes in steel 
martsnsites are shown in Fig. 6.11. These results indicate that there is a fairly 
wide scatter in experimental measurements for a given type of steel. and that 
alloyin_g additions can have a marked effect on the habit plane. It appears that 
on reaching a critical carbon content. martensite in steel changes its habit 
plane. these transitions being approximately (111) -+ (225) -+ {259), with 
increasing C content (there is overlap of these transitions in practice). As a 
general rule. the { I l l }  martensites are associated with a high dislocation 
density lath morphology. or consist of bundles of needles lying on {Ill), 
planes. while the {225), and (3591, martensites have a mainly twinned plate or 
lens morpholop);: However. any exact morphological description of marten- 
site is not possible since. after thickening and growth. the shapes of the 
martensites are often quite irregular. Twinning is more predominant at high 
carbon or  nickel contents and is virtually complete for {259), martensites. In 
stainless steel. the habit plane is thought to be nearer !!12}. which has been 
explained in terms of a laitice invariant shear on {101}(1Oi),. corresponding to 
{111}(121),. Transmission electron micrographs of lath and twinned steel 
martensites are shown in Fig. 6.13. which also illustrates the 'classical' 
definition of lath and plate morphologies. 

The notable success of the crystallographic theory is that i t  was able to 
predict the fine iubstructure (twinning or slip) of martensite before it was 
actually observed in the electron microscope. For a typical (high-carbon) steel 

Fe-8% Cr-low-C low-C steel 
\ ~ 0 . 4  wt '10 C ) 

Stainless steel 

Fe-0.45 wt0l0 C 
to 1 4 wtO/o C 

Fe-1-8% C st eel 

001 / 1011 

Fig. 6.11 Martensite habit planes in various types of steel 
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midrib 
(b) i 

, 1 I-lm 1 L 1 lim I 

Fig. 6.12 Transmission electron micrographs of (a) lath martensite and (b) 
twinned martensite. Note the midrib in the tivlnnrd martensite. xhich is thought to be 
the first part of the plate to grow. 

for example. to achieve a ;2591, habit plane. twins having a spacing of only 
8-10 atomic planes. or -3 nm, are predicted. Twin thicknesses of this 
order of magnitude are observed in electron micrographs of high carbon 
martensites. On the other hand, it is usually difficult to predict exactly the 
habit plane of a given alloy on the basis of known lattice parameters, dilata- 
tions. etc.. and apart from a few cases. the theory IS mainly of qualitative 
interest. The theory is essentially phenomenological. and should not be used 
to interpret the kinetics of the transformation. Attempts at combining the 
crystallographical aspects of the transformation with the kinetics have, 
however. recently been made and will be discussed later. 

6.3 Theories of Martensite Nucleation 

4 single plate of martensite in steel grows in 10-"0 lo-' s to its full size, at 
velocities approaching the speed of sound. Using resistivity changes to 
monitor the growth of individual plates of martensite in. e.g. Fe-Ni alloys, 
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In this expression. the negative term AG, is the free energy difference at the 
M, temperature between the austenite and martensite phases and is defined in 
Fig. 6 . h .  The middle term referring to the strain energy, is due to the shear 
component of strain only and neglects the small additional strain due to the 
dilatation wh~ch is assumed to occur normal to the disc. As pointed out by 
Christian (1965)', the most favourable nucleation path is given by tFp 
condition that the habit plane is exactly an ~nvariant plane of the shape 
trarkformation (to reduce coherency energy) although this is not necessarily 
realized in practice. The minimum free energy barrier to nucleation is now 
found by differentiating Equation 6.7 with respect to a and c ,  and by 
subsequent substitution we obtain: 

This expression is thus the nucleation barrier to be overcome by thermal 
fluctuations of atoms if classical, homogeneous nucleation is assumed. It is 
seen that the energy barrier is extremely sensitive to the values chosen for y,  
AG, and s. The critical nucleus size (c* and a*) is also highly dependent upon 
these parameters. It can be shown that: 

and 

Typically AG, = 174 MJ m- i  for steel. s varies according to whether the net 
shear of a whole plate (e.g. as measured from surface markings) o r  the shear 
of a fully coherent plate (as meawred from lattice fringe micrographs) is 
considered. For the present we shall assume a value of 0.2 which is the 
'macroscopic' shear strain in steel. We can only guess at the surface energy of 
a fully coherent nucleus. but a value of -20 mJ m-' seems reasonable. Using 
these values glves cX/a*  = 1 40, and LG" = 30 eV. which in fact is too high 
for thermal fluctuations alone to overcome (at 700 K. kT = 0.06 eV). 
Indeed. there IS plenty of experimental evidence to show that martensite 
nucleation is In fact a heterogeneous process. Perhaps the most convincing 
evidence of heterogeneous nucleation IS given by small particle 
experiments8 lo.  

In these experiments small single-crystal spheres of Fe-Ni of a size range 
from submicron to a fraction of a millimetre were cooled to  various tempera- 
tures below the M,, and then studied metallographically. These experiments 
showed that: 

1. Not all particles transformed even if cooled down to + 4 K, i.e. -300 "C 
below the M ,  of the bulk material; this appears t o  completely rule out 
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homogeneous nucleation, since this should always occur at a certain 
undercooling. Indeed, the maximum undercooling for certain alloys 
reached as much as 600-700 "C 

2. The average number of nuclei (based on plate counts) was of the order 
of 10' per mm3; this is less than to be expected for purely homogeneous 
nucleation. 

3. The number of nuclei increases substantially with increasing supercool- 
ing prior to transformation; on the other hand, the average number of 
nuclei is largely independent of grain size, or even whether the particles 
(of a given size) are single crystals or  polycrystalline. 

4. The surface does not appear to be a preferred site for nucleation. 

On the basis of (3) and (4) it is thought that since surfaces and grain 
boundaries are not significantly contributing to nucleation, then the trans- 
formation is being initiated at other defects within the crystal. The mosr likely 
types of defect which could produce the observed density of nuclei are 
individual dislocations, since an annealed crystal typically contains -10' or 
more dislocations per mm'. 

6.3.2 Role of Dislocations in Martensite Nucleation 

A number of researchers have considered possible ways in which dislocations 
may contribute to martensite nucleation. It is instructive to consider some of 
these ideas and see how they can fit in with the various features of martensitic 
transformations already discussed. 

Zener (1948)'' demonstrated how the movement of (112), partial disloca- 
tions during twinning could generate a thin bcc region of lattice from an fcc 
one. and this is illustrated in Fig. 6.15. In this figure the different layers of the 
close-packed planes of the fcc structure are denoted by different symbols and 
numbered 1. 2. 3, from bottom to top layer. As indicated. in the fcc lattice 
the normal twinning vector is b l ,  which can be formed by the dissociation of 
an 5(110) dislocation into two partials: 

a .  [n order to generate the bcc structure it requires that all the 'triangular' 
(Level 3) atoms jurnps forward by 46, = 5[211]. In fact, the lattice produced 
1s not quite the bee one after this shear, but requires an additional dilatation 
'0 bring about the correct lattice spacings. As pointed out by Christian (1965)', 
however, this reaction produces a bcc lattice only two atom layers thick. 
Recent electron microscopy work by Brooks et al. (1979)'' indicated that 
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v b,=twinn~ng 
"u- shear 

Fig. 6.15 Zrner'c model of the generation of two-atom-thick martensite by a 
half-twinning shear (some additional minor adjustments are also needed). 

thicker nuclei couid form by this mechanism at dislocation pile-aps, where the 
partial dislocations are forced closer together thereby reducing the slip vec- 
tors such that the core structures correspond to a bcc stacking. Pile-ups on 
nearby planes can hence interact such as to thicke- .he pseudo-bcc region. 

An alternative suggestion was earlier made by Venables ''t (1962) also in 
connection with the formation of martensite in stainless steels, i.e. in the case 
of alloys of low stacking fault energy. Venables proposed that a' forms via an 
intermediate (hcp) phase which he termed epsilon martetuire, thus: 

Lsing the same atomic symbols as befoie, Venables' transformation mecha- 
nism is shown in Fig. 6.16. The €'-martensite structure thus thickens by 
inhomogeneous half-twinning shears on every other {ill), plane. Such 
faulted regions have been observed to form in conjunction with martensite 
and an example is given in Fig. 6.17. On the other hand. there has been no 
direct evidence of the F -+ a transition. and recent electron microscopy work 
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Fig. 6.16 Venables' model for the y -, E'  -, a' transformation in stainless steel. 

indicates that the E '  and a' phases in martensitic stainless steels form 
independently of each other by different mechanisms, i.e. the transformation 
reactions in stainless steel are of the type y -, E or y -+ a"2.14. Other 
detailed models of how dislocations may bring about the martensitic trans- 
formation in iron alloys have been given. e.g. by Bogers and Burgers (1964)~' 
and more recently by Olson and Cohen (1976)16. 11 

ij 
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Fig. 6.17 Dislocation-assisted martensite transformation in a plastically deformed 
1-5 Cr-Xq Ni Stainless steel. iSv courtesv of B. Lehtinen. Institute for Metals 
Research. Stockholm. Sweden.) 

Another exampic of the fact that the half-twinning shear in fcc material can 
induce a nartensitic transformation is in cobolt" In this case there is an 
f2c - cph transformation at around 390 "C. The generation of large numben 
or 8 1  I:), partial dislocations on {I I I}, planes has been observed directly in 
the transmission electron microscope using a hot stage. as shown in Fig. 6.18. 
The stacking faults in this case appeared to initiate at grain boundaries. The 
h ~ b i t  plan is (111). and the orientation relationship is (111),//(0001), . The 
trmsformation is reversible (at -430 'C) 2nd the cph - fcc reaction occurs 
b! the following dissoc.,~ion on the hcp basal plane: 

1 L -  1 
-[12101- -[ulio] + l [ i lool  
3 3 3 (6.13) 

I before. the reaction has to occur on every other hcp plane in order to 
gtnerate the fcc structure. 

It is thus Seen that some types of martensite can form directly by the 
j~sremaric generationand movement of extended dislocations. It is as if the 
.il, temperature of these alloys marks a transition from positive to negative 
it-cking fault energy. It appears. however. that this type of transformation 

Theories of marterzsite nucleation 
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can not occur in high stacking fault energy nor in thermoelastic martensites, 
and it is thus necessary to  consider alternative ways in which dislocations can 
nucleate martensite other than by changes at their cores. It is also difficult to 
understand twinned martensite. merely on the basis of dislocation core 
changes. 

6.3:j Dislocation Strain Energy Assisted Transformation 

We now consider the possibility that the nucleation barrier to  form coherent 
nuclei can be reduced by the help of the elastic strain field of a dislocation. 
This theoryZ0 thus differs fundamentally from the other dislocation-assisted 
transformation theories discussed, all of which were based on atomic shuffles 
within the dislocation core. We also note that in this case it is unnecessary that 
:he habit plane of the martensite corresponds to the glide planes of austenite. 
Furthermore. it is assumed that coherent nuclei are generated by a pure Bain 
strain. as in the classical theories of nucleation. 

It can be shown that the strain field associated with a dislocation can in 
certain cases provide a favourable interaction with the strain field of the 
martensite nucleus, such that one of the components of the Bain strain is 
neutralized thereby reducing the total energy of nucleation. This interaction + 

is illustrated schematically in Fig. 6.19, in which it is seen that the dilatation 
associated with the extra half plane of the dislocation contributes to the Bain 
strain. Alternatively the shear component of the dislocation could be utilized. 

Such an interaction thus modifies the total energy of Equation 6.5 to: 

JG = A?! + VAG, - VAC,  - AGd (6.14) 

&here AGd represents the dislocation interaction energy which reduces the 
nucleation energy barrier. It can be shown that this interaction energy is given 
by the expression: 

L C d  = 2 p n  . ac - b (6.15) 

Fig. 6.19 Illustrating how one of the strain components of the Bain deformati.on may 
be compensated for by the strain field of a dislocation which in this case is tending: to 
push atom planes together. 
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where 6 refers to the Burgers vector of the dislocation. and s refers to the 
shear strain of the nucleus. 

The interaction energy used in Equation 6.15 assumes thdt a complete loop 
is interacting with the nucleus. In practice it is likely that only a part of a 
dislocation will be able to 'react' with the nucleus in this way. 

Equation 6.14 may now be written in full (see Equation 6.7) as: 

By summing the various components of this expression it is possible to 
compute the total energy of a martensite nucleus as a function of its diameter 

9 

and thickness (a ,  c ) ,  whether it is twinned or not (this affects s, see. e.g. 
Fig. 6.9) and the degree of assistance from the strain field of a dislocation (or 
group of dislocations). This result is shown schematically in Fig. 6.20a. It has 
been calculated that a fully coherent nucleus can reach a size of about 20 nm 
diameter and two to three atoms in thickness by this partial interaction with 
the strain field of a dislocation. However, it will not be able to thicken or even 
grow larger unless twins form or slip occurs to further reduce strain energy. 
The attractive feature of this theory is that it essentially combines the crystal- 
lographic characteristics of the inhomogeneous shear and the Bain strain in 
terms of total strain energy at nucleation. It is thus in line with the majority of 
the known characteristics of martensite. including the initial straining of the 
lattice due to the coherent nucleus (see Fig. 6.13) and the fact that an 
inhomogeneous shear is necessary for growth. It even shows that in principle 
nucleation can occur in the vicinity of any dislocation, thus underlining the 

A G t ~ +  I + v e  ,Fully coherent 

\ 

I \  \ 
Critical size \ 

for coherency loss\ 
-ve * tw~nned nucleus 

Fig. 6.20 (a) Schematic diagram based on Equation 6.16, illustrating the need for 
the nucleus to twin if it is to grow beyond a certain critical size. (b) Lattice image of 
the tip of a martensite plate in a Ti-Ni alloy. The first interfacial dislocation behind the 
growing front is indicated. (After R.  Sinclair and H.A. Moharned, Acra Metallurgica 
26 (1978) 623. 
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statistical correlation between dislocation density in well-annealed austenite 
and martensite formation indicated by the small particle experiments. 

The M, temperature is thus associated with the most potent nuclei, perhaps 
depending on the orientation or configuration of the dislocation, or groups of 
dislocations with respect to the potential martensite nucleus. The large under- 
coolings below bulk M ,  as obser'ved from the small particle experiments thus 

the statistical probability that ideally oriented dislocations are rela- 
tively few and far between, so that high chemical driving forces are needed in 
most cases. The burst phenomenon, in which an autocatalytic process of 
rapid, successive plate formation occurs over a small temperature range in, 
e.g. Fe-Ni alloys, is explicable on this basis by the large elastic stresses set up 
ahead of a growing plate. In this case, the elastic strain field of the plate acts 
as the necessary interaction term in Equation 6.10. The question of whether 
slip or twinning occurs at the critical nucleus size in order to assist growth of 
the nucleus appears to be a function of the alloy content and M, temperature. 
and this factor will be taken up in more detail in the next section on marten- 
site growth. 

In summary, we have not dealt with all the theories of rnartensite nuclea- 
tion in this section as recorded in the literature, or even with all alloys 
exhibiting martensitic transformations. Instead we have attempted to illus- 
trate some of the difficulties associated with explaining a complex event which 
occurs at such great speeds as to exclude experimental observation. A gen- 
eral. all-embracing theory of martensite nucleation has still evaded us, and 
may not even be feasible. 

6.4 Martensite Growth 

Once the nucleation barrier has been overcome, the chemical volume free 
energy term in Equation 6.10 becomes so large that the martensite plate 
grows rapidly until it hits a barrier such as another plate, or a high angle grain 
boundary. It appears from observations, that very thin plates first form with a 
very large a/c  ratio (see Fig. 6.14) and then thicken afterwards. In high 
carbon martensites this often leaves a so-called "midrib" of fine twins, and an 
outer less well defined region consisting of fairly regular arrangements of 
dislocations. In low carbon lath martensite, transmission microscopy reveals a 
high dislocation density, sometimes arranged in cellular networks in the case 
of very low C content, but no twins (see Fig. 6.12). In very high carbon 
manensite (259 type). only twins are observed. 

In view of the very high speeds of growth, it has been conjectured that the 
Interface between austenite and rnartensite must be a glissile semicoherent 
boundary consisting of a set of parallel dislocations or twins with Burgers 
vector common to both phases, i.e. transformation dislocations. The motion 
Of the dislocations brings about the required lattice invariant shear trans- 
formation. As noted in Section 3.4.5, the motion of this interface may or may 
not generate an irrational habit plane. 
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The habit plane transition in steels and Fe-Ni alloys as a function of 
alloying content of: {lll}, lath -, (2251, mixed lathltwins + (2591, twinned 
martensite, is not properly understood. An important factor is thought to be 
that increased alloying lowers the M ,  temperature and that it is the tempera- 
ture of transformation that dictates the mode of lattice invariant shear. 
Qualitatively, the slip-twinning transition in a crystal at low temperatures is 
associated with the increased difficulty of nucleating whole dislocations 
needed for slip. It is thought that the critical stress needed for the nucleation 
of a partial twinning dislocation is not so temperature dependent as the 
Peierls stress for a perfect dis lo~at ion '~.  On the other hand, the chemical 
energy available for the transformation is largely independent of M ,  tempera- 
ture. This implies that as the M ,  temperature is lowered the mechanism of 
transformation chosen is governed by the growth process having least energy. 
The other factor affecting mode of growth, as discussed in the previous 
section. is how the nucleus forms. If the nucleus forms by the generation of a 
homogeneous Bain deformation, the orientation of the nucleus in the auste- 
nite is again dependent upon it finding the lowest energy. This may not 
coincide with a normal glide plane in the austenite-and in highly alloyed 
systems it evidently does not. O n  the other hand, the inhomogeneous shear 
during growth has to be dictated by the normal modeq of slip or twinning 
available. This suggests that if the habit plane of the martensite is irrational, it 
may have to grow in discrete steps which are themselves developed by 
conventional modes of deformation. The resulting plate would then be, for 
example. likened to a sheared-over pack of cards (see, e.g. Fig. 6.9b). We 
now consider the two main cases of rational (lath) and irrational (plate) 
martensite growth in steel in more detail. 

6.4.1 Growth o f  Lath Martensite 

The morphology of a lath with dimensions a > b 9 c growing on a 
{lll) ,  plane (see Fig. 6.20b) suggests a thickening mechanism involving the 
nucleation ,,,d glide of transformation dislocations moving on discrete ledges 
behind the growing front. This picture of growth is suggested, e.g. in the work 
of Sinclair and Mohammad (1978)~' studying SiTi martensite and Thomas 
and Rao (1978)" in the case of steel martensite. 

It seems posslble that due to the large misfit between the bct and fcc lattices 
dislocations could be self-nucleated at the lath interface. The criterion to be 
satisfied for dislocation nucleation in this case is that the stress at the interface 
exceeds the theoretical strength of the material. 

It can be shown using Eshelby's approach22 that for a thin ellipsoidal plate 
in which a .> c the maximum shear stress at the interface between the 
martensite and austenite due to a shear transformation is given by the 
exprttssion: 

u = 2psc;a (6.17) 
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Fig. 6.21 Equation 6.17 plotted for two values of shear corresponding to a pure B a ~ n  
deformation (0.32) and a twinned plate (0.2). 

where p is the shear modu!us of the austenite. It is seen in this simple model 
that the shear stresses are sensitive to particle shape as well as angle of shear. 
Of course in practice it is very difficult to define the morphology of martensite 
in such simple cla  terms. but this gives us at least a qualitative idea of what 
may be involved in the growth kinetics of martensite. 

Kelly (1966)'"as calculated a theoretical shear strength for fcc materials of. 
0.025 p at ambient temperature, and this can be used as a minimum, or 
threshold stress for nucleating dislocations. Equation 6.17 is plotted in 
Fig. 6.21 in terms of different a : c ratios. assuming s = 0.2 which is typical of 
bulk lath and plate martensite. An approximate range of morphologies 
representative of lath or plate martensite is given in the figure. It is seen that 
Kelly's threshold stress for dislocation nucleation may be exceeded in the case 
of lath martensite, but seems unlikely in the case of the thinner plate 
martensite. It is interesting to note from Fig. 6.21, however, that shear loop 
nucleation in plate martensite is feasible if s 2 0.32, which is the shear 
associated with a pure Bain strain (Fig. 6.9a). In other words, coherency loss 
of the initial coherent nucleus is energetically possible. 

The assumption of shear loop nucleation in fact seems reasonable and 
likely in conjunction with lath growth. The same mechanism of dislocation 
generation during growth could even be applied to bainite where the mor- 
phology appears to be fairly similar to lath martensite, although in this case 
some diffusion of carbon also occurs. It is thus seen that by nucleating 
dislocations at the highly strained interface of the laths, the misfit energy can 
be reduced and the lath is able to continue to grow into the austenite. 
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Internal friction measurements have shown that in lath martensite the 
density of carbon is slightly higher at cell walls than within cells, suggesting 
that limited diffusion of carbon takes place following or during the trans- 
formation. The transformation could also produce adiabatic heating which 
may affect diffusion of carbon and dislocation recovery, at least at higher Ms 
temperatures. In this respect there appeclrs to be a certain relationship be- 
tkveen lower bainite and martensite. The higher Ms temperatures associated 
kvith lath martensite may be sufficient to allow dislocation climb and cell 
formation after the transformation, although the high growth speeds suggest 
an interface of predominantly screw dislocations. The volume of retained 
austenite between laths is relatively small in lath martensite (these small 
amounts of retained austenite are now thought to be important to the mecha- 
nical properties of low-carbon steels"), suggesting that sideways growth, and 
transformation between laths occurs without too much difficulty. 

6.1.2 Plate Martensite 

In medium and hizh carbon steels, or high nickel steels, the morphology of 
the martensite appears to change from a lath to a roughly plate-like product. 
This is associated with lower Ms temperatures and more retained austenite, as 
illustrated by Fig. 6.22. However, as mentioned earlier, there is also a transi- 
tion from plates growing on (2251, planes to (2591, planes with increasing 
alloy content. The lower carbon or nickel (2251, martensite often consists of 
plates with a central twinned 'midrib', the outer regions of the plate being free 
o i  twins. It appears that the twinned midrib forms first and the outer (disloca- 
tion) region which is less well defined than the midrib, grows afterwards. The 
high carbon or nickel (259) martensite on the other hand is completely 
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F:g. 6.22 Approximate relative percentages of lath martensite and retained austenite 
a5 function of carbon content is steels. (Data from G.R. Speich, Metallurgical Tram- 
,zi.-ions. 3 (1972) 1015.) 
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twinned and the habit plane measurements have less scatter than the mixed 
structures. 

Typical morphologies for plate martensite are usually thought to be much 
thinner than lath martensite or bainite. On the basis of Fig. 6.21 it appears 
that there is likely t o  be a problem in nucleating whole dislocations in the case 
of growing plate martensite when s = 0.2. but that partial twinning disloca- 
tions evidently are able to nucleate. Once nucleated, twinned martensite 
grows extremely rapidly. but the mechanism by which this occurs has not been 
clarified as yet. It is clear from work on low temperature deformation of fcc 
metals, that twinning can be an important deformation mechanism. However, 
the problem in martensite transformations is to explain the extremely rapid 
rates of plate growth as based on twinning mechanisms. The pole mechanism 
seems inadequate in this respect, although mechanisms based on dislocation 
reflection processes may be more realistic27. Alternatively, it may be neces- 
sary to invoke theories in which standing elastic waves may nucleate twinning 
 dislocation^^^ as an aid to very rapid plate growth. 

The transition from twinning -, dislocations in 'midrib martensite' is intri- 
guing and could be the result of a change in growth rate after the midrib forms 
(see, e.g., Shewmon, 1 9 6 9 ) ~ ~ .  In other words, martensite formed at higher 
temperatures or slower rates grows by a slip mechanism, while martensite 
formed at lower temperatures and higher growth rates grows by a twinning 
mode. Indeed, in the case of ferritic steels, the noraal mode of plastic 
deformation is very much a function of strain rate and temperature. 

An elegant model for a dislocation generated (2251, martensite has been 
postulated by Frank (1953)'~. Frank has basically considered the way to 
interface the fcc austenite lattice with that of the bcc martensite such as to 
reduce lattice misfit to a minimum. He finds that this can be achieved quite 
well with the help of a set of dislocations in the interface. In this model, the 
close-packed planes of the fcc and bcc structures are envisaged to meet 
approximately along the martensite habit plane as shown in Fig. 6.23a. Since 
the (11 1) and (101),, planes meet edge-on at the interface, the close-packed 
directions are parallel and lie in the interface plane. The reason for the 
rotation, 4, shown in Fig. 6.23a, is to equalize the atomic spacings of the 
(111) and (101),. planes at the interface. However, in spite of this, there is 
stdl a slight misfit along the [Oli],, [lli],. direction where the martensite 
lattice parameter is -2% less than that of austenite. Frank therefore i 

Proposed that complete matching can be achieved by the insertion of an array 
of screw dislocations with a spacing of six atom planes in the interface which 
has the effect of matching the two lattices and thus removing the misfit in this 
direction. This also brings about the required lattice-invariant shear on the 
(112),, plane as the interface advances. The resulting interface is illustrated in 
Fig. 6.23b. 

In ternis of the minimum shear stress criterion (Fig. 6.21) the further 
I. 
1 .  

expansion and thickening of a (2251, twinned midrib by a Frank dislocation I// 
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Fig. 6.23 Model for the {225) habit austenite-martensite interface in steel. (Based on 
data by F. C. Frank. Acta Mefallurgica 1 (1953) 15.) 

interface could occur when the midrib reaches some critical o / c  ratio'.'<; 
However, there have been no detailed models developed as to how the Frank 
interface can be generated from the nucleation event. Assuming a coherent 
nucleus with s = 0.32, it is seen from Fig. 6.21 that it is theoretically posable 
for dislocation nucleation to occur at this stage to relieve coherency. 
Qualitatively, the larger amount of chemical free energy available after the 
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critical size for growth has been exceeded, may be sufficient to homo- 

1 geneously nucleate dis~ocations'~ particularly in the presence of the large 
1 strain energy of the rapidly growing plate". 

Other factors known to affect the growth of martensite are grain size. 
external stresses and the phenomenon of stabilization. We now briefly 
consider these effects. 

I 6.4.3 Stabilization 

This is a phenomenon associated with samples cooled to some temperature 
intermediate between Ms and Mf ,  held there for a period of time and then 
cooled again. In such a case, transformation does not immediately continue, 
and the total amount of transformed martensite is less than obtained by 
continuous cooling throughout the transformation range. It has even been 
observed that existing plates do not continue to grow after stabilization, but 
new plates are nucleated instead. The degree of stabilization is a function of 
the time held at temperature. This phenomenon is not properly understood. 
although it seems conceivable that carbon has time to diffuse to the interface 
under the influence of the high stresses associated with plate growth. There 
could also be local atomic relaxation at the interface, thereby increasing the 
nucleation barrier for dislocation generation. 

1 6.4.4 Effect of Externul Stresses 
I 

i In view of the dependence of martensite growth on dislocation nucleation. it 
is expected that an externally applied stress will aid the generation of 1 dislocations and hence the growth of martensite. It is well established, for 

I example, that external stress lowers the nucleation barrier for coherency loss 

/ of second phase precipitates. External stresses can also aid martensite 
nucleation if the external elastic strain components contribute to the Bain 
strain. This will prov;.! 1 yet another interaction term in Equation 6.14. It has 
been shown in such cases that the Ms temperature can be raised3'. However, 
if plastic deformation occurs, there is an upper limiting value of Ms defined as 
the Md temperature. Conversely the Ms temperature can be suppressed to 
lower temperatures by, e.g. holding the sample being transformed under . 
hydrostatic compression. This is because increasing pressure stabilizes the 
phase with the smaller atomic volume, i.e. the close-packed austenite, 
thereby lowering the driving force AG, for the transformatign to martensik. 
On the other hand, the presence of a large magnetic field can raise the Ms 
temperature on the grounds that it favours the formation of the ferromagnetic 
phase. 

Plastic deformation of samples can aid both nucleation and growth of 
martensite, but too much plastic deformation may in some cases suppress the 
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transformation. Qualitatively it could be expected that increases in disloca- 
tion density by deformation should raise the number of potential nucleation 
sites, but that too much deformation may introduce restraints to nuclei 
growth. 

The effect of plastically deforming the austenite prior t o  transformation on 
increasing the number of nucleation sites and hence refining plate size is of 
course the basis of the ausforming process. The high strength of ausformeci 
steels isthus due to the combined effect of fine plate size, solution hardening 
(due to carbon) and dislocation hardening. 

6.4.5 Role of Grain Size 

Since martensite srowth relies on maintaining a certain coherency with the 
surrounding austenite, a high-angle grain boundary is an effective barrier to 
plate growth. Thus while grain size' does not affect the number of martensite 
nuclei in a given volume, the final martensite plate size is a function of the 
grain size. Another important feature of grain size is its effect on residual 
stress after transformation is completed. In large grain sized material the 
dilatational strain associated with the transformation causes large residual 
stresses to be built up between adjacent grains and this can even lead to 
grain-boundary rupture (quench cracking) and substantially increase the dis- 
location density in the martensite. Fine grain-sized metals tend to be more 
self-accommodating and this, together with the smaller martensite plate size, 
provides for stronger, tougher material. 

In summary, theories of martensite nucleation and growth are far from 
developed to a state where they can be used in any practical way-such as 
helping to control ?he fine structure of the finished product. It does appear 

' 

that nucleation is c!osely associated with the presence of dislocations and the 
process of ausforming (deforming the austenite prior to transformation) could 
possibly be influenced by this feature if we knew more of the mechanism of 
cucleation. Growth mechanisms. particularly by twinning, are still far from 
clarified, however. 

6.5 Pre-martensite Phenomena 

This is a subject that has provoked considerable attention in recent years from 
researchers, and is mainly concerned with ordered compounds exhibiting 
order -, order manensitic transformations. A useful summary of this phe- 
nomenon has been given recently by Wayman (1979)~'. The effect has been 
observed in the form of anomolous diffraction effects or even diffuse streaking 
as well as a resistivity anomaly. e.g. in TiNi alloys. In P-brass thin foils a 
mottled contrast has been observed giving rise to side band reflections in 
diffraction patterns. In CuAu alloys the phenomenon occurs in the form of a 
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streaming or shimmering effect in bright field images of thin foils. The latter 
observation, first noted by Hunt and Pashley in 1962~', has even been inter- 
preted as possible evidence for the appearance of fluctuating strain fields due, 
e.g. to a Bain deformation. Recent work in Wagman's laboratory suggests, 
however, that while the appearance of local reordering reactions above the 
iMs temperature are possible, there is still little direct evidence that the 
observed phenomena can be related to the initial stage of the martensitic 
transformation. Nevertheless. the effect is an intriguing one, particularly 
bearing in mind the relatively low undercoolings associated with ordered 
alloys (see, e.g.. Table 6.1). and in this respect it could be conjectured that 
some process is occurring which very effectively aids the transformation of 
these alloys. 

6.6 Tempering of Ferrous Martensites 

Although the diffusionless martensite transformation is fundamental to the 
hardening of steel. most (if not all) technolog~cal steels have to be heat 
treated after the transformation in order to improve toughness and in some 
cases even strength. Recent years have seen notable developments In these 
steels, achieving in some cases very high degrees of sophistication in the form 
of carbide dispersions and varlous types of substructure strengthening. For 
useful reviews see, e.g.. S p e ~ c h ~ ~  and ~oneycombe". 

The martensitic transformation usually results in a ferritic phase which is 
highly supersaturated with carbon and any other alloying elements that re- 
main locked into the positions they occupied in the parent austenite. On 
ageing, or tempering, therefore. there is a strong drlvrng force for precipita- 
tion. As is usual with low temperature ageing the most stable precipitate, as 
indicated by the equilibrium phase diagram, is not the first to appear. The 
aseing sequence is generally a' + a + E-carbide or a + Fe,C, depending 
upon the tempering temperature. It is not thought that &-carbide (Fe, ,C) 
decomposes directly to Fe,C, but that the transition only occurs by the 
&-carbide first dissolving. When strong carbide-forming alloying elements 
such as Ti, Nb, V, Cr, W, or Mo are present the most stable precipitate can be .. 
an alloy carbide instead of cementite. See. for example, the Fe-Mo-C phase . 
diagram in Fig. 6.24. However, these ternary additions are dissolved substitu- 
tionally in the ferrite lattice and are relatively immobile in comparison to 
interstitial carbon. The precipitation of these more stable carbides is there- 
fore preceded by the formation of &-carbide and Fe,C which can occur solely 
by the diffusion of carbon. Alloying elements are only incorporated into the > 

precipitate in proportion to their overall concentration in the ferrite. 
The various changes that can take place during the tempering of ferrous 

I 

1 

martensites are summarized in Table 6.3. In practice heat-treatment tlmes 
are limited to a few hours and the phases that appear within these time 
Periods depend on the temperature at which tempering occurs. Therefore 
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Table 6.3 gives a summary of the new phases that appear within the various 
temperature ranges, and provides details of other microstructural changes 
that take place. It should be noted, however, that the temperature ranges 
given are only approximate and that there is a great deal of overlap between 
the various ranees. " 

Table 6.4 summarizes the observed precipitation sequences in a few - 
selected steel compositions. These compositions are experimental alloys that 
have been studied to avoid the complications that arise with commercial 
alloys where many interacting alloying elements are present. The crystal 

Table 6.3 Transformations Occurring During Tempring of Ferrous 
Martensites 

Temperature/"C Transformation Remarks 

25- 100 Carbon segregation to Clustering predominant 
dislocations and in high-carbon steels 
boundaries; ure- 
precipitation'clustering 
and ordering 

100-200 Transition-carbide Carbides may be q(Fe2C) 
precipitation, diam. or &(Fe2 ,C) 
2 nm (first stage of 
tempering) 

200-350 Retained austenite Associated with tempered 
transforms to ferrite martensite embrittlement 
and cementite (second 
stage) 

250-350 Lath-like Fe3C 
preci itation (third 
stagey 

350-550 Segregation of Responsible for temper 
impurity and alloying embrittlement 
elements 
Recovery of 
dislocation 

Lath structure maintained 

substructure. Lath-like 
Fe3C agglomerates to 
form spheroidal Fe3C 

500 - 700 Formation of alloy Occurs only in steels 
carbides. (secondary containing Ti, Cr, Mo, V, . 
hardening or fourth Nb, or W; Fe3C may . . 
stage) dissolve 3 .  .it 

600- 700 
Y 

Recrystallization and Recrystallization 
grain growth; inhibited in medium- 
coarsening of carbon and high-carbon 
spheroidal Fe3C steels; equiaxed ferrite 

formed 
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Table 6.4 Carbide Precipitation Sequences 

Alloy (wt%) Precipitation sequence 
- 

Fe-C &-carbide* + Fe3C (-*graphite) 
Fe-2 V-0.2 C . Fe3C + VC or V4C3 
FG-4 Mo-0.2 C FeC + Mo2C + M6CS 
~ e - 6  w-0.2 c Fe3C + W2C -+ MZ3C6 + M6C 
Fe-12 Cr-0.2 C Fe3C + Cr7C3 -+ CrZ3C6 

* Does not form when C S 0.2%. 
+ M stands for a mixture of the substitutional alloying elements. in this case 

Fe and Mo. 

structures, shapes and orientation relationships for some of these precipitates 
are listed in Table 6.5. 

O n  the basis of the data given in Tables 6.3 to 6.5 ,  we note the following 
features: 

Carbon Segregation 
As a resultof the  large distortion.caused by the carbon atoms in the martensi- 
tic lattice there is an interaction energy between carbon and the strain fields 

Table 6.5 Data Concerning Carbides Precipitated During Tempering 
of Martensite 

Crystal Orientation Temperature of 
Carbide structure Shape relationship formation/"C 

hcp 

orthorhombic 

cubic (NaCl 
structure) 

hcp 

hcp . . 

hexagonal 

cubic 

cubic ' 

laths 

laths 

plates 

- 

needles 

spheres 

plates 

- 

Tempering of ferrous martensites 42 1 

around dislocations. In lath martensite, for example, carbon tends to diffuse 
to sites close to dislocations in order to lower its chemical potential. In plate 
martensite. however, the martensite is internally twinlled and there are 
relatively few dislocations. In this case carbon-rich cluster; or zones tend to 
form instead. In low-carbon low-alloy steels. martensite starts to form at 
relatively high temperatures and there can be sufficien; time during the 
quench for carbon to segregate or even precipitate as &-carbide or cementite. 

E - Carbide 
The reason for the 0.2% C limit (Table 6.4) is thought to be due to the fact 
that the M ,  temperatures of very low-carbon martensites are high enough to 
allow considerable carbon diffusion to lath boundaries during cooling (see, 
e.g., Fig. 6 3 ) .  There is thus no carbon left in solution to precipitate out on 
reheating. E-Carbide has a hexagonal crystal structure and precipitates in the 
form of laths wiih an orientation relationship as shown in Table 6.5, (see 
Fig. 6.25). This orientation relationship provides good matching between the 
(101),, and (lOIl), planes. 

Fig. 6.25 €-carbide (dark) precipitated from martensite in Fe-24 Ni-0.5 C after 30 
mln at 250 "C. Thin foil electron micrograph ( x  90 000). (After G.R. Speich in Metals 
Handbook, 8th edn. Vol. 8, Amencan Society for Metals, 1973, p. 202.) 
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Cementite I 
Cementite forms in most carbon steels on tempering between 250 and 700 "C. 1 
The precipitate is initially lath-like with a { O l l } , ~  habit plane. Fig. 6.26. It has 
an orthorombic crystal structure and forms with the orientation relationship 
given in Table 6.5. At  high temperatures cementite rapidly coarsens into a 
spheroidal form. as shown in Fig. 6.32. In alloy steels the cementite composi- 
tion can often be represented as (FeM)+Z where M is a carbide-forming 
alloysg element. The composition may however be metastable if sufficient 

I i 
alloying elements are present. 1 
Allo! Carbides I 
In steels containing sufficient carbide-forming elements alloy carbides are 
formed above -500 "C where substitutional diffusion becomes significant. 
These carbides replace the less stable cementite which dissolves as a fiqer 
alloy carbide dispersion forms. Some typical precipitation sequences are 
listed in Table 6.4. There are two ways in which the Fe,C -, alloy carbide 

I 

Fig. 6.36 Cement~te (dark laths) formed during tempering a 0.42 C steel 1 h at 
300 "C Thln foil electron micrograph ( x  39 000). (After G.R. S p e ~ c h  in Metals 
.'-landbook. 8th edn . Vol 8. Amencan Soc~ety for Metals. 1973. p. 202.) 

Tempering of ferrous martetzsites 

transformation can take place: 

1. By in situ transformation-the alloy carbides nucleate at several points 
at the cementite!ferrite interfaces. and grow until the cementite dis- 
appears and is replaced by a finer alloy carbide dispersion, see. e.g.. 
Fig. 6.27. 

2. By separate nucleation and growth-the alloy carbides nucleate heter- 
ogeneously within the ferrite on dislocations, lath boundaries, and prior 
austenite grain boundaries. The carbides then grow at the expense of 
cementite. 

Either or both mechanisms can operate depending on the alloy composition. 
The formation of alloy carbides is an important strengthening mechanism 

in high-speed tool steels that must operate at dull red heat without losing their 
cutting ability. The phenomenon is usually referred to as secondary harden- 
ing. Figure 6.28 shows the effect of tempering molybdenum steels for various 
times and temperatures. The hardness of plaln carbon martensites usually 
decreases with increasing temperature due to recovery and overageing 
effects. The replacement of a coarse cementite dispersion by a finer alloy 
carbide that is more resistant to coarsening. however, is able to produce an 
Increase in hardness at around 550-600 "C. 

The effectiveness of these carbides as strengtheners depends on the fineness 
of the dispersion and the volume fraction precipitated. The fineness of the 
dispersion depends on AG* for nucleation which in turn is influenced by the 

Fig. 6.27 W,C needles lying along the sites of former Fe3C precipitates in Fe-6.3 
W-0.23 C quenched and tempered 20 h at 600 "C. (After R.W.K. Honeycombe, 
Structure and Strength of Alloy Steels. Climax Molybdenum, London. after A.T. 
Davenport.) 
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1 h AT TEMPERATURE 'C 
Fig. 6.28 The effect of molybdenum on the tempering of quenched 0.1% C steels. 
(After K.J. Irvine F.B. Pickering, Journal of the Iron and Steel Institute 194 
(1960) 137.) 

free energy of formation of the carbfde, the interfacial energy and the misfit. 
A guide to the relative free energies of formation is given by Fig. 6.29 which 
shows the heats of formation (AH,) of various nitrides, carbides and borides 
relative to that of cementite which is taken as AH, = 0. The finest precipitate 
dispersions are generally obtained from VC, NbC, Tic ,  TaC and HfC. These 

Tempering of ferrous marterzsires 

Enthalpy of formation at 298.15 K AHf/KJ mol-' 

Bonder j Carbides 1 Nirrides 

I 

MoC 
WC Cr23C6 Cr3C2 Cr,C3 

W2C M02C 
Mo3c2 

NbC TaC 

AljC HfC 
NbN AIN iaN 
NbzN 

Ta2N I 
I 

1 TiN ZrN I 

I HfY I 
Fig. 6.29 Enthalpies of formation of carbides, nitrides and borider. (Data from 
H L. Schick. Thermodvnarnics of Certain Refractory Compounds. Academic Press, 
1966. J 
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are all close-packed intermetallic compounds. On the other hand the carbides 
with complex crystal structures and low heats of formation, e.g. M7C3, M6C 
and Mn3C,, generally form relatively coarse dispersions. 

The volume fraction of carbide precipitated depends on the solubility of the 
alloy carbide in the austenite prior to quenching, relative to the solubility in 
ferrite at the tempering temperature. Note that the solubility of a phase P in a 
terminal solid solution of a was considered in Chapter 1 for tklary alloys. It 
can similarly be shown that in ternary Fe-C-M alloys the concentrations of M 
and C in Fe in equilibrium with a carbide M,C, are approximately given by 
the relation38: 

where [MI and [C] are the atomic percentages or mole fractions of M and C in 
solution and K is the solubility product which can be expressed as 

-AH 
K = KO exp - 

RT 

where KO is a constant and AH is the enthalpy of formation of M,C, from M 
and C in solution. 

Figure 6.30 shows the solubility products of various carbides and nitrides in 
austenite as a function of temperature. The solubilities of these compounds in 
ferrite are very much lower and to a first approximation can be considered to 
be approximately equal. It is clear therefore that chromium, molybdenum 
and vanadium with the highest solubilities in austenite, should precipitate in 
the highest volume fractions in the ferrite. 

Erect of Retained Austenite 
In most steels, especially those containing more than 0.4% C, austenite is 
retained after quenching. On ageing in the range 200-300 "C this austenite 
decomposes to bainite. In some high-alloy steels austenite can be stabilized to 
such low temperatures that the martensite partially reverts into austenite on 
heating. Very thin regions of retained austenite may even be present between 
laths in low-carbon steel, and this is thought to improve the :,dghness of 
these steels independently of tempering treatments. 

Recovery, Recrystallization and Grain Growth 
As-quenched lath martensite contains high-angle lath boundaries, low-angle 
ceil boundaries within the laths, and dislocation tangles within the cells. 
Recovery usually occurs above 400 "C~and leads to the elimination of both the 
dislocation tangles and the cell walls. The lath-like structure, however, re- __. 
mains as shown in Fig. 6.31. The ferrite can recrystallize at high temperatures 
In low-carbon steels, (see, e.g., Fig. 6.32) but the process is inhibited in 
medium to high-carbon steels by the grain boundary pinning caused by . 
carbide precipitates. In the latter steels recovery is followed by grain growth. 

Tempering of ferrous martensites 427 

Fig. 6.30 Solubility products (in atomic per cent) of carbides and nitrides in austenite 
as a function of temperature.'(After R.W.K. Honeycombe, Structure and Strength of 
Alloy Steels, Climax Molybdenum, London, 1973.) 

Temper Embrittlement 
As pointed out in the introduction to this section the aim of tempering 
martensite is to improve ductility. However in some steels tempering in, or 
slow cooling through, the range 350-575 "C can lead to embrittlement. This 
has been attributed to the segregation of impurity atoms such as P, Sb or Sn to 
prior austenite grain boundaries. Some steels also show an embrittlement on 
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Fig. 6.31 A recovered lath martenslte showing that the lath boundaries are retained. 
Fe-0.18 C tempered 10 rnln at 600 "C (.x 2000). (After G.R. Speich in Metals 
Handbook. 8th edn.. Vol. 8, American Societv for Metals, Metals Park. Ohio. 1973, 

tempering between 230 and 370 "C. This may be caused by the formation of 
carbides with a critical plate-like shape. 

fk 6.7 Case Studies 

It is clear from the foregoing theory of martensite that much work remains to 
be done before we can fully understand this complex transformation, particu- 
!arly in steels. In spite of this, the hardening of steel by quenching to obtain 
inartensite is arguably one of the most important of all technological proces- 
ses. In this section we illustrate four examples of technolagical alloys based on 
ihe martensite transformation. These are a quenched and tempered structural 
steel. some controlled transformation steels including TRIP steels, dual- 
phase steel. and a TiNi 'memory' metal possessing a unique shape-memory 
property based on a diffusionless transformation. 

6.7.1 Carbon and Low-Alloy Quenched and Tempered Steels 

Composition range: 0.1-0.5 wt% C; (C < 0.3%: weldable without preheat) 
0.6-1.3% Mn with or  without small alloying additions, 
e.g. Si, Ti, Mo, V, Nb. Cr, Ni, W, etc. 
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Fig. 6.32 A partially recrystallized structure. Top left: recovered but not recrystal- 
lized. bottom left: a new recrystallized grain. Coarse spheroidal cementite is also 
apparent. Fe-0.18 C quenched and tempered 96 h at 600 "C ( X  2000). (After G.R. 
Speich, in Metals Handbook, 8th rdn.,  Vol. 8. American Society for .Metals, 1973, 
p. 202.) 

Special properties: High strength, weldable constructional steels. 
Relevant phase diagrams: Fe-C, in conjunction with appropriate CCT, TTT 

diagrams (see, e.g., Fig. 6.3). 
Microstructures:'See Figs. 6.1 and 6.12. 

Comments: The compositions of these steels are chosen with respect to 
(a) hardenability; (b) weldability; (c) tempering properties, e.g. resislance to 
tempering, or  increased tempering strength due to secondarv harden~ng. 
Typically, lath or mixed (lath plus twinned) structures contain high densities 
of dislocations (0.3-0.9 x 101° mmP2), equivalent to a heavily worked steel. 
There is normally very little retained austenite associated with these steels . 

see, e.g., Fig. 6.22. The lattice structure is bct, at least for carbon contents 
greater than -0,2%. Below this composition it is suspected that due to.the 
higher M ,  temperature, some carbon segregates to dislocations or lath bound- 
aries during the quench, as measured by resistivity and internal frictional 
measurements. . . 

These results indicate that only in steels containing more than 0.2% C is 
carbon retained in solution. Curiously, this effect is not reflected by hardness 
changes and therefore the main strengthening mechanism in these steels is 
thought to be the fine lath or cellular structures and not so much due to 
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carbon in solution. The yield strength can therefore be represented by a 
modified version of the Hall-Petch equation (Gladman et al.,  197.5)~': 

( J ~  = ui + ~ d - " '  + adis, (+ vppt) (6.20) 

where cri is the friction stress (due to alloying elements in solution) and d 
refers to the mean cell, or lath size. K is a constant and u,,, refers to the 
haraening contribution due to dislocations andlor twins; up,, refers to carbide 
precipat ion after tempering. Typical yield strengths of these tempered steels 
are in the range 500-700 MN m-', for a mean lath width of 2-3 km. 

6.7.2 Controlled- Tra~zsformation Steels 

Compositions ranges: 

0.05-0.3 wt% C 
0.5-2.0% Mn 
0.2-0.4% Si 

14.0-17.0% Cr 
3.0-7.0% Ni 

-2% Mo 

Other possible additions: V; Cu, Co, Al, Ti. etc. 
Special properties: Very high strength. weldable. good corrosion resistance; 

used. e.g.. as skin for high speed aircraft and missiles. 
Relevant phase diagrams: See Fig. 6.33. 
Microstructures: Fine lath martensite with possible fine network of &-ferrite. 
Comments:  Since it is required to form. or work this material at ambient 
temperatures prior to hardening and tempering, elements that stabilize the 
austenite aie used in significant amounts, e.g. Ni, Cu. etc. On the other hand, 
the M,-Mf range should not be depressed too far. and the relative effects of 
alloying elements on M ,  temperature are shown in Table 6.6. It is seen that in 
practice very strict control over composition of these steels must be made, 
balancing the amount of ferrite formers (e.g. Mn) with C content. Such 
amounts of &-ferrite are sometimes retained in order to improve weldability 

Table 6.6 Effect of Alloying Elements on M ,  in Steels 

F.B. Pickering. 'Physical metallurgy of stainless steel developments' Int. Met. 
Rev . ,  21, pp. 227-268, 1976. 

- - - - 

Element N C Ni Co Cu Mn W Si Mo Cr V *A1 

Change 
in M, "C 
per wt% -450 -450 -20 +10 -35 -30 -36 -50 -45 -20 -46 -53 
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(see Section 4.6.3). This also requires a careful balance in analyses. using, 
e.g., modified Schaeffler diagrams as a guide. Cold working is either carried 
out in the purely austenitic range (i.e. above Md) the steel then being 
quen~hed to obtain martensite. or worked below M d  in which case deforma- 
tion induces the transformation to occur without the need for refrigeration. 
The latter steels are known as 'transformation induced plasticity' (TRIP) 
steels. Since the M,-M, range is about 100-140 "C, the M ,  temperature 
should not lie too far below the working temperature, or refrigeration will 
have to be carried out at such low temperatures that it may become too 
expensive. Retained austenite is undesirable in these steels because of its 
adverse effect on strength. The fine martensitic structure, in combination with 
work hardening and tempering give these steels strengths up to 
-1500 MN m-'. In Table 6.7, typical properties of various controlled trans- 
formation steels are shown as a function of the type of heat treatment and 
transformation. 

The mechanical properties given in Table 6.7 show that samples trans- 
formed by refrigeration generally give the higher strengths. It is also seen that 
the austenitizing temperatures may change from alloy to alloy. Choice of 
austenitizing temperature is critical with regard to solution treatment. re- 
solution of carbides and M, temperature. For example, the lower the solution 
temperature, the more M,,C, will remain during austenitizing: this in turn 
reduces the Cr and C content of the austenite which ralses the iM,  tempera- 
ture. The example given of a TRIP steel in Table 6.7 shows that this material 
has exceptional high strength and toughness (50% elongation). 

6.7.3 The 'Shape-Memo.?' ,Metal: Nirinol 

Composition range: 55-55.5 wt% Ni-44.545% Ti. Possible additions: small 
amounts of Co (to vary M,). 

Phase diagram: See Fig. 6.34. 

Phase transitions: 

Ordered TiNi(1) bcc A2 structure 
1 (650-700 "C diffusion controlled 

TiNi (11): complex CsC1-type structure 
(170 "C martensitic 

TiNi (111): complex structure. 

Special properties: The TiNi (I1 % 111) transformation is reversible and 
effectively enables the alloy to be deformed by a shear . . 
transformation, i.e. without irreversible plastic defor- ' , ei 

mation occurring, by up to 16% elongation/contraction. 
Thus 'forming' operations can be made below M, which 
may be 'unformed' simply by re-heating to above the M s .  
These unique properties are used in such applications as, 
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Exercises 

6.1 Use free energy-composition diagrams to illustrate the driving force for 
the Fe-Ni martensitic transformation at T > To;  T = To; T = M s .  
Show how this chemical free energy can be estimated if the undercooling 
is known. Explain why the driving force for :he nucleation of martensite 
at the M, temperature is independent of c a r b l  concentration in Fe-C 
steels. 

6.2 What are the possible non-chemical energy terms in the rnartensitic 
transformation? Derive equations for the critical size and volumes of a 
martensite nucleus using..classical nucleation theory. What evidence is 
there that martensite nucleates heterogeneously? 

6.3 Evaluate Equations 6:8, 6..9 and 6.10 for Fe-C martensite assuming 
AG, = 174 MJ m-', y -- 20 mJ m-', s = 0.2, = 80 GN m-' 

6.4' Give an exact definition of the habit plane of martensite. Describe how 
this habit plane might be measured experimentally. Give possible 
reasons why there is so much scatter of habit plane rneasurenlents in a 
given sample. 

6.5 In the phenomenological approach to rnartensitic transformations there 



are two different but equivalent ways of producing the lattice invariant 
shear. Show exactly what is meant by this. What is the experimental 
proof of both types of shear? 

6.6 Draw a diagram to illustrate Bain's homogeneous deformation model 
for the fcc + bcc diffusionless transformation. Assuming u., = 3.56 A 
and a, = 2.86 .A. and that ciu for martensite is 1.15 calculate the 
makimum movement experienced by atoms during the transformation. 
Assume that cia = 1.1. 

6.7 What are the essential differences in martensits nucleation models based 
( a )  on changes at the core of a dislocation; (b 1 on dislocation strain field 
interaction? Discuss the advantages and disadvantages of both models in 
terms of the known characteristics of martensitic transformations. 

6.8 Give possible reasons why the habit plane of martensite changes as a 
function of a l lo~ing content in steels and F e N i  alloys. What factors 
influence the retention of austenite in these alloys? 

6.9 What is the role of austenitic grain size in martensitic transformations? 
Is austenitic grain size important to the strength of martensite? What 
other factors are important to strength and ioughness in technological 
hardened steels? 

6.10 Suggest possible alloying and heat treatment procedures needed to 
design the follo\ving steels: ( a )  a quenched and tempered steel; (b) a 
dual phase steel: ( c )  a maraging steel: id) a TRIP steel. 

6.11 How would you characterize the unique properties of alloys which can 
be utilized as 'memory metals'. How would you design a TiNi alloy for 
use as. e.g.. a self-locking rivet? Give instructions on how it is to be 
used. 

Solutions to Exercises 
Compiled by John C. Ion 

Chapter 1 

Entropy increase. AS = 

Pressure, kbar 
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