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Regretfully unnoticed, in the final printing process a layout error has occurred on
the original page v, due to which the authors’ names of chapters 15-19 are not
correctly aligned with their chapter titles. Please use this corrected page instead.
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PREFACE TO THE FOURTH EDITION

The first, single-volume edition of this Work was published in 1965 and the second in 1970;
continued demand prompted a third edition in two volumes which appeared in 1983. The
first two editions were edited by myself alone, but in preparing the third, which was much
longer and more complex, I had the crucial help of Peter Haasen as co-editor. The third
edition came out in 1983, and sold steadily, so that the publishers were motivated to propose
the preparation of yet another version of the Work; we began the joint planning for this in
early 1992. We agreed on the changes and additions we wished to make: the responsibility
for commissioning chapters was divided equally between us, but the many policy decisions,
made during a series of face-to-face discussions, were very much a joint enterprise. Peter
Haasen was able to commission all the chapters which he had agreed to handle, and this task
(which involved detailed discussions with a number of authors) was completed in early 1993.
Thereupon, in May 1993, my friend of many years was suddenly taken ill; the illness
worsened rapidly, and in October of the same year he died, at the early age of 66. When he
was already suffering the ravages of his fatal illness, he yet found the resolve and energy to
revise his own chapter and to send it to me for comments, and to modify it further in the
light of those comments. He was also able to examine, edit and approve the revised chapter
on dislocations, which came in early. These were the very last professional tasks he
performed. Peter Haasen was in every sense co-editor of this new edition, even though fate
decreed that I had to complete the editing and approval of most of the chapters. I am proud
to share the title-page with such an eminent physicist.

The first edition had 22 chapters and the second, 23. There were 31 chaptess in the third
edition and the present edition has 32. The first two editions were single volumes, the third
had to be divided into two volumes, and now the further expansion of the text has made it
necessary to go to three volumes. This fourth edition is nearly three times the size of the first
edition thirty years ago; this is due not only to the addition of new topics, but also to the fact
that the treatmer:t of existing topics has become much more substantial than it was in 1965.
There are those who express the conviction that physical metallurgy has passed its apogee
and is in steady decline; the experience of editing this edition, and the problems I have
encountered in holding enthusiastic authors back from even more lengthy treatments (to
avoid exceeding the agreed page limits by a wholly unacceptable margin), have shown me

vii



viii Preface to the fourth edition

how mistaken this pessimistic assessment is! Physical metallurgy, the parent discipline of
materials science, has maintained its central status undiminished.

The first three editions each opened with a historical overview. We decided to omit this
in the fourth edition, for two main reasons: the original author had died and it would have
fallen to others to revise his work, never an entirely satisfactory proceeding; it had also
become plain (especially from the reaction of the translators of the earlier editions into
Russian) that the overview was not well balanced between different parts of the world. I am
engaged in writing a history of materials science, as a separate venture, and this will
incorporate proper attention to the history of physical metallurgy as a principal constituent.
— It also proved necessary to leave out the chapter on superconducting alloys: the ceramic
superconductor revolution has virtually removed this whole field from the purview of
physical metallurgy. — Three entirely new topics are treated in this edition: one is oxidation,
hot (dry) corrosion and protection of metallic materials, another is the dislocation theory of
the mechanical behavior of intermetallic compounds. The third new topic is a leap into very
unfamiliar territory: it is entitled “A Metallurgist’s Guide to Polymers”. Many metallurgists
— including Alan Windle, the author of this chapter — have converted in the course of their
careers to the study of the more physical aspects of polymers (regarded by many materials
scientists as the “materials of the future”), and have had to come to terms with novel
concepts (such as “semicrystallinity”’) which they had not encountered in metals: Windle’s
chapter is devoted to analysing in some depth the conceptual differences between metallurgy
and polymer science, for instance, the quite different principles which govern alloy formation
in the two classes of materials. I believe that this is the first treatment of this kind.

Six of the existing chapters (now numbered 1, 4, 21, 22, 27, 30) have been entrusted to
new authors, while another five chapters have been revised by the previous authors with the
collaboration of additional authors (8, 13, 16, 17, 19). Chapter 19, originally entitled “Alloys
rapidly quenched from the melt” has been broadened and retitled “Metastable states of
alloys”. A treatment of quasicrystals has been introduced in the form of an appendix to
chapter 4, which is devoted to the solid-state chemistry of intermetallic compounds; this
seemed appropriate since quasicrystallinity is generally found in such compounds. — Only
three chapters still have the same authors they had in the first edition, written some 32 years
ago.

27 of the 29 new versions of existing chapters have been substantially revised, and many
have been entirely recast. Two chapters (11 and 25) have been reprinted as they were in the
third edition, except for corrected cross-references to other chapters, but revision has been
incorporated in the form of an Addendum to each of these chapters; this procedure was
necessary on grounds of timing.

This edition has been writien by a total of 44 authors, working in nine countries. It is a
truly international effort.

I have prepared the subject index and am thus responsible for any inadequacies that may
be found in it. I have also inserted some cross-references between chapters (internal cross-
references within chapters are the responsibility of the various authors), but the function of
such cross-references is better achieved by liberal use of the subject index.

As always, the editors have been well served by the exceedingly competent staff of
North-Holland Physics Publishing (which is now an imprint of Elsevier Science B.V. in
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Amsterdam; at the time of the first two editions, North-Holland was still an independent
company). My particular thanks go to Nanning van der Hoop and Michiel Bom on the
administrative side, to Ruud de Boer who is responsible for production and to Chris Ryan
and Maurine Alma who are charged with marketing. Mr. de Boer’s care and devotion in
getting the proofs just right have been extremely impressive. My special thanks also go to
Professor Colin Humphreys, head of the department of materials science and metallurgy in
Cambridge University, whose warm welcome and support for me in my retirement made the
creation of this edition feasible. Finally, my thanks go to all the authors, who put up with
good grace with the numerous forceful, sometimes impatient, messages which I was obliged
to send in order to “get the show on the road”, and produced such outstanding chapters under
pressure of time.

I am grateful to Dr. W.J. Boettinger, one of the authors, and his colleague Dr. James A.
Warren, for kindly providing the computer-generated dendrite microstructure that features on
the dust-cover.

The third edition was dedicated to the memory of Robert Franklin Mehl, the author of the
historical chapter and a famed innovator in the early days of physical metallurgy in America.
I would like to dedicate this fourth edition to the memory of two people: my late father-in-
law, Daniel Hanson (1892-1953), professor of metallurgy at Birmingham University for
many years, who did more than any other academic in Britain to foster the development and
teaching of modern physical metallurgy; and the physical metallurgist and scientific publisher
— and effective founder of Pergamon Press — Paul Rosbaud (1896-1963), who was
retained by the then proprietor of the North-Holland Publishing Company as an adviser and
in 1960, in the presence of the proprietor, eloquently urged upon me the need for a new,
advanced, multiauthor text on physical metallurgy.

November 1995 Robert W. CAHN
Cambridge






PREFACE TO THE THIRD EDITION

The first edition of this book was published in 1965 and the second in 1970. The book
continued to sell well during the 1970s and, once it was out of print, pressure developed for
a new edition to be prepared. The subject had grown greatly during the 1970s and R. W.C,
hesitated to undertake the task alone. He is immensely grateful to P.H. for converting into
a pleasure what would otherwise have been an intolerable burden!

The second edition contained twenty-two chapters. In the present edition, eight of these
twenty-two have been thoroughly revised by the same authors as before, while the others
have been entrusted to new contributors, some being divided into pairs of chapters. In
addition, seven chapters have been commissioned on new themes. The difficult decision was
taken to leave out the chapter on superpure metals and to replace it by one focused on solute
segregation to interfaces and surfaces — a topic which has made major strides during the
past decade and which is of great practical significance. A name index has also been added.

Research in physical metallurgy has become worldwide and this is reflected in the fact
that the contributors to this edition live in no fewer than seven countries. We are proud to
have been able to edit a truly international text, both of us having worked in several countries
ourselves. We would like here to express our thanks to all our contributors for their hard and
effective work, their promptness and their angelic patience with editorial pressures!

The length of the book has inevitably increased, by 50% over the second edition, which
was itself 20% longer than the first edition. Even to contain the increase within these
numbers has entailed draconian limitations and difficult choices; these were unavoidable if
the book was not to be priced out of its market. Everything possible has been done by the
editors and the publisher to keep the price to a minimum (to enable readers to take the advice
of G.CHR. LICHTENBERG [1775]: “He who has two pairs of trousers should pawn one and
buy this book™.).

Two kinds of chapters have been allowed priority in allocating space: those covering very
active fields and those concerned with the most basic topics such as phase transformations,
including solidification (a central theme of physical metallurgy), defects and diffusion. Also,
this time we have devoted more space to experimental methods and their underlying
principles, microscopy in particular. Since there is a plethora of texts available on the
standard aspects of X-ray diffraction, the chapter on X-ray and neutron scattering has been

xi



xii Preface 1o the third edition

designed to emphasize less familiar aspects. Because of space limitations, we regretfully
decided that we could not include a chapter on corrosion.

This revised and enlarged edition can properly be regarded as to all intents and purposes
a pew book.

Sometimes it was difficult to draw a sharp dividing line between physical metallurgy and
process metallurgy, but we have done our best to observe the distinction and to restrict the
book to its intended theme. Again, reference is inevitably made occasionally to nonmetallics,
especially when they serve as model materials for metallic systems.

As before, the book is designed primarily for graduate students beginning research or
undertaking advanced courses, and as a basis for more experienced research workers who
require an overview of fields comparatively new to them, or with which they wish to renew
contact after a gap of some years.

We should like to thank Ir. J. Soutberg and Drs. A.P. de Ruiter of the North-Holland
Publishing Company for their major editorial and administrative contributions to the
production of this edition, and in particular we acknowledge the good-humoured resolve of
Drs. W.H. Wimmers, former managing director of the Company, to bring this third edition
to fruition. We are grateful to Dr. Bormann for preparing the subject index. We thank the
hundreds of research workers who kindly gave permission for reproduction of their published
illustrations: all are acknowledged in the figure captions.

Of the anthors who contributed to the first edition, one is no longer alive: Robert Franklin
Mehl, who wrote the introductory historical chapter. What he wrote has been left untouched
in the present edition, but one of us has written a short supplement to bring the treatment up
to date, and has updated the bibliography. Robert Mehl was one of the founders of the
modern science of physical metallurgy, both through his direct scientific contributions and
through his leadership and encouragement of many eminent metallurgists who at one time
worked with him. We dedicate this third edition to his memory.

April 1983 Robert W. CAHN, Paris
Peter HaAseN, Gottingen



PREFACE TO THE FIRST AND SECOND EDITIONS

This book sets forth in detail the present state of physical metallurgy, which is the root
from which the modern saience of materials has principally sprung. That science has
burgeoned to such a degree that no one author can do justice to it at an advanced level;
accordingly, a number of well-known specialists have consented to write on the various
principal branches, and the editor has been responsible for preserving a basic unity among
the expert contributions. This book is the first general text, as distinct from research
symposium, which has been conceived in this manner. While principally directed at senior
undergraduates at universities and colleges of technology, the book is therefore also
appropriate for postgraduates and particularly as a base for experienced research workers
entering fields of physical metallurgy new to them.

Certain topics have been left to one side or treated at modest length, so as to limit the
size of the book, but special stress has been placed on others which have rarely been
accorded much space. For instance, a good deal of space is devoted to the history of physical
metallurgy, and to point defects, structure and mechanical properties of solid solutions,
theory of phase transformations, recrystallization, superpure metals, ferromagnetic properties,
and mechanical properties of two-phase alloys. These are all active fields of research.
Experimental techniques, in particular diffraction methods, have been omitted for lack of
space; these have been ably surveyed in a number of recent texts. An exception has however
been made in favour of metallographic techniques since, electron microscopy apart, recent
innovations have not been sufficiently treated in texts.

Each chapter is provided with a select list of books and reviews which will enable readers
to delve further into a particular subject. Internal cross-references and the general index will
help to tie the various contributions together.

I should like here to acknowledge the sustained helpfulness and courtesy of the
publisher’s staff, and in particular of Mr. A. T. G. van der Leij, and also the help provided by

Professor P. Haasen and Dr. T. B. Massalski in harmonising several contributions.

Brighton, June 1965 (and again 1970) R.W. CauN
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1. Introduction

In the very beginning of materials “science”, when men began to produce artificial
materials, it was the time of trial and error, of pure empiricism. Today, we are a little
closer to the realization of the old dream of designing any material with given properties
owing to our improved understanding of the relationships between chemical composition,
crystal structure and material properties. Though only a very few commercially and
technologically important materials consist of metallic elements in their pure form (Si,
Ge, Cu, Au, Ag, Pd, etc.), their crystal structures are of more than academic interest.
Thus, to give an example, the crystal structure of a pure metal remains unchanged in the
case of a solid solution, when one or several other components are added to tune the
properties of a material. This technique has been used since time immemorial by alloying
gold with copper or silver, for instance, to make jewelry or coins more resistant to wear.
Especially the close packed structures and their derivatives, which are typical for pure
metals, are also characteristic for numerous materials consisting of multi-component solid
solutions or intermetallic alloys. Another reason for the study of “simple” element
structures is that they are extremely helpful for the development and improvement of
methods to understand why a given phase is adopting a particular crystal structure under
certain conditions (temperature, pressure, etc.). The aim is, of course, to learn to predict
the crystal structure of any given chemical compound under any ambient conditions and
to model its possible phase transformations.

It is remarkable that even pure elements can have rather complicated crystal structures
resulting from complex electronic interactions. Most elements are polymorphous, i.e.,
they occur in up to ten different crystal structures as a function of ambient conditions
(temperature, pressure). The understanding of the phase transformations in these homo-
atomic cases is also very helpful for understanding the more complicated phase trans-
formations of complex intermetallic phases. Indeed, it is possible today to predict
correctly most of the element structures and phase transformations by one-electron theory
(SKRIVER [1985]).

2. Factors governing a crystal structure

Crystalline order, i.e., the three-dimensional (or in the case of quasicrystals or
incommensurate phases, higher-dimensional) translationally periodic repetition of a
particular atomic configuration, is the outstanding characteristic of condensed matter in
thermodynamic equilibrium. Which crystal structure for a given chemical composition
corresponds to the lowest Gibbs free energy, G=H—TS, depends on chemical bonding,
electronic band structure and geometrical factors. Since it is not possible to solve the
Schrodinger equation for a crystal and thus deduce the correct crystal structure, many
approximations have been developed. Indeed, today there exist quite successful attempts
to predict simpler crystal structures using one-electron approximations: the many-electron
problem is reduced to a one-electron problem by the assumption that the electrons,
surrounded by a mutual exclusion zone, are moving independently of each other in the
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average field of all the others (local density functional theory).

Beside this rather complicated and lengthy approach to understand and predict crystal
structures, there exist a number of rules based on two factors: the chemical bond factor,
which also takes into account the directionality of chemical bonds, and the geometrical
factor, which considers optimum space filling, symmetry and connectivity. Especially in
the case of the typical metallic elements, these structural principles work very well for
predicting structures. (For electron theory of structural stability, see ch. 2, § 6.1).

2.1. Chemical bond factor

The concept of chemical bonding was originally developed to understand the
formation of molecules. In a crystal, a collective interaction of all atoms always exists
which may approximately be considered as the sum of nearest-neighbor interactions. A
further simplification comes in by the fact that only the electrons of the outer shells
contribute to the chemical bonding. Traditionally, several limiting types of the chemical
bond are defined: strong ionic (heteropolar), covalent (homopolar), metallic bonds, and
weak van der Waals and hydrogen bonds. The strong bonds have in common that the
outer atomic orbitals contribute to new collective electron states in the crystal, the
electron bands. They differ mainly in the degree of localization of the valence electrons:
when these are transferred from one atom to another atom, Coulomb attraction between
the cation and the anion results and the bond is called ionic; when they remain localized
between two atoms the so-called exchange interaction results from overlapping orbitals
and covalent bonds are formed; when the valence electrons are delocalized over the
whole crystal metallic bonding is obtained. Thus, contrary to the other bond types which
also occur within molecules, the metallic bond can only exist in large arrays of atoms.
Since the interaction of electron orbitals depends on their separation and mutual
orientation, the bond type may change during phase transformations. Sometimes, a slight
change in temperature can be sufficient, as in the transition from metallic white tin to
non-metallic grey tin below 291K (“tin pest”); sometimes very high pressures are necessary,
as for the transformation from molecular hydrogen to metallic hydrogen, for instance.

The type of bonding occurring in crystals of the metallic elements ranges from pure
metallic in the alkali metals to increasingly covalent for zinc or cadmium, for instance.
The structural implications of these two bond types, which are just two contrary limiting
manifestations of electronic interactions with a continuously changing degree of electron
localization, will be characterized in the following in greater detail.

2.1.1. The covalent bond

The covalent bond may be described in terms of the more qualitative VB (valence
bond) theory by overlapping atomic orbitals occupied by unpaired valence electrons
(fig. 1). Its strength depends on the degree of overlapping and is given by the exchange
integral. In terms of the more quantitative LCAO-MO (linear combination of atomic
orbitals — molecular orbitals) theory, molecular orbitals are constructed by linear
combination of atomic orbitals (fig. 2). The resulting bonding, non-bonding and anti-

References: p. 45.
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dp

Fig. 1. Schematic structure of the atomic s-, p- and d-orbitals (from VAINSHTEIN et al, [1982]).

bonding molecular orbitals, filled up with valence electrons according to the Pauli
exclusion principle, are localized between the bonding atoms with well defined geometry.
Generally, covalent bonds can be characterized as strong, directional bonds. Increasing
the number of atoms contributing to the bonds increases the number of molecular orbitals
and their energy differences become smaller and smaller. Finally, the discrete energy
levels of the molecular orbitals condense to quasicontinuous bands separated by energy
gaps. Since in a covalent bond each atom reaches its particular stable noble gas con-
figuration (filled shell) the energy bands are either completely filled or empty. Owing to
the localization of the electrons, it needs much energy to lift them from the last filled
valence band into the empty conduction band. The classic example of a crystal built from
only covalently bonded atoms is diamond: all carbon atoms are bonded via tetrahedrally
directed sp* hybrid orbitals (fig. 3). Thus the crystal structure of diamond results as a
framework of tetrahedrally coordinated carbon atoms (fig. 4).

2.1.2. The metallic bond

The metallic bond can be described in a similar way as the covalent bond. The main
difference between these two bond types is that the ionization energy for electrons
occupying the outer orbitals of the metallic elements is much smaller. In typical metals,
like the alkali metals, these outer orbitals are spherical s-orbitals allowing overlapping
with up to 12 further s-orbitals of the surrounding atoms. Thus, the well-defined electron
localization in bonds connecting pairs of atoms with each other loses its meaning.
Quantum-mechanical calculations show that in large agglomerations of metal atoms the
delocalized bonding electrons occupy lower energy levels than in the free atoms; this
would not be true for isolated “metal molecules”. The metallic bond in typical metals is
non-directional, favoring structures corresponding to closest packings of spheres. With
increasing localization of valence electrons, covalent interactions cause deviations from
spherically symmetric bonding, leading to more complicated structures.
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Fig. 2. (a) Bonding and (b) anti-bonding molecular orbitals of the H, molecule. (c) Schematic drawing of the
building of the most important molecular orbitals from atomic orbitals and (d), (¢} examples of molecular
orbitals (bonding: ¢, 7r and anti-bonding o, 7"} (from VAINSHTEIN et al. [1982]).

2.2. Geometrical factors

A crystal structure type is fully defined by its general chemical composition, its space
group symmetry, the equipoint (Wyckoff) positions occupied by the atoms and the
coordinates of the atoms in the unit cell (fig. 5). The metrics, i.e., the dimension of the
unit cell (Jattice parameters), in general differ for all chemical compounds or phases
occurring in one particular crystal structure type. Also, for general Wyckoff positions, the
numerical values of the coordinates may vary in a range not destroying the characteris-

References: p. 45.
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Fig. 3. Hybridization of (a) one s- and three p-orbitals to (b) sp*>-hybrid orbitals (c) which are directed along
tetrahedron axes (from VAINSHTEIN ef al. [1982]).

tics, i.e., coordination polyhedra and their linkings, of this crystal structure. With these
data given it is easy to derive both the information about the global arrangement of
structural units as well as the local environment of each atom (fig. 6). Besides this purely
geometrical description of a structure, it is necessary to understand the characteristics of
a crystal structure by identifying crystal-chemically meaningful structural units
(coordination polyhedra) and their connecting principles (bonding).

For band-structure calculations, for instance, knowledge of the full crystal structure

Fig. 4. The structure of diamond cF8-C, space group Fd3m, No. 227, 8a: 0 0 0, % Y% ¥%. All carbon atoms are
tetrahedrally coordinated, they occupy the positions of a face-centered cubic lattice and one half of the centers
of the eighth cubes.
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is essential; for tensorial physical properties, however, the point symmetry group to
which the space group belongs is the determining factor. Crystal-chemical properties are
less sensitive to slight atomic shifts which may break the symmetry but do not change
local environments of atoms. Thus the study of atomic coordinations may yield valuable
tools in the analysis, description and comparison of crystal structures.

2.2.1. Coordination

A general technique to derive useful coordination polyhedra was suggested by
BRUNNER and SCHWARZENBACH [1971]: all interatomic distances around a particular
atom are calculated up to a certain limit, and all atoms within a distance defined by the
first maximum gap in a histogram of distances belong to the coordination polyhedron
(fig. 6). If there is no clear maximum gap observable, a second criterion may be the
maximum-convex-volume rule: all coordinating atoms lying at the intersections of at
least three faces should form a convex polyhedron (DaAMS et al. [1992]).

2.2.2. Space filling

Owing to the isotropic properties of the metallic bond the structure of typical metallic
elements can often be described in terms of dense sphere packings. A sphere packing is
an infinite set of non-interpenetrating spheres with the property that any pair of spheres
is connected by a chain of spheres with mutual contact. A sphere packing is called
homogenous if all spheres are symmetrically equivalent, otherwise it is called
heterogenous (KOCH and FISCHER [1992]). In the last named case, the spheres of the
different non-symmetrically equivalent subsets may have different radii and occupy the
positions of different crystallographic orbits. The number of types of heterogenous sphere
packings is infinite whereas it is finite for homogenous sphere packing types. There are,
for instance, 199 different cubic and 394 different possible tetragonal homogenous sphere
packings. The densities, i.e., the fractions of volumes occupied by the spheres, are with
q=0.7405 highest for the well-known hexagonal closest packing (hcp) and cubic closest
packing (ccp) (figs. 7 and 8, respectively). In both cases the coordination numbers (CN)
are twelve and the distances to the nearest neighbors the same. The number & of contacts
per sphere amounts to 3 <k<12. Table 1 gives some examples for sphere packings with
the highest and lowest densities and contact numbers, and table 2 space filling values for
a number of structure types. Very low packing densities, such as that for the cF8-C type,
for instance, indicate that a hard sphere packing is no longer an adequate description of
such a structure.

The crystal structures of the metallic elements adopt dense sphere packings as long
as purely geometrical packing principles are dominant. Covalent bonding contributions
and electronic effects give rise to more complicated structures.

2.2.3. Layer stackings, polytypism

Many crystal structures can be considered to consist of successive stackings of atomic
layers. The above mentioned hexagonal closest packing (hep) refers to a stacking of
dense packed lzyers with periodic sequence ..AB.., the cubic closest packing (ccp) to a
sequence ..ABC.. (figs. 7 and 8). The atomic layers are denoted by A, B or C depending

References: p. 45.
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Fd3m O; m3m Cubic

No. 227 F 4|/d 3 2/”! Patterson symmetry Fm3m

ORIGIN CHOICE 1

Origin at 43m, at -4 ,-t,-} from centre (3m)

Asymmetric unit 0<xSY; 0<y<t: -1<z<t; ySmin(d-x.x); -y<z<y
Vertices 0,00 400 4.0 b44 - b}

Symmetry operations

Fig. 5. Information given in the International Tables for Crystallography (HABN [1992]) on the example of the
space group Fd3m of the diamond structure. Left side, top line: space group symbol in short Hermann—
Mauguin and Schoenflies notation, point group (crystal class), crystal system. Second line: consecutive space
group number, full space group symbol, Patterson symmetry, short space group symbol. Upper drawing: frame-
work of symmetry clements in a unique part of onc unit cell. Lower drawings: point complexes generated by
the action of symmetry operations. Below: choice of origin, definition of the asymmetric unit. Right side: the
Wyckoff letters a, b, ¢ ... i denote the equipoint positions with multiplicities 8, 8, 16 ... 192. The positions of
the carbon atoms in the diamond structure are given in Wyckoff position 8a.
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No. 227 Fd3m
Generators selected (1); 1(1,0,0); 1(0,1,0); £(0,0,1); 1(0,4,4); 2(3,0,1); (2 ) ) (13); (25
Positions
Multipticity, Coordinates Reflection conditions
Wyckoff letter,
Site symmetry 000+ @ih+  GLOH+ G100+ h,k,0 permutable
General;
192 i 1 (1) x,y,z (2) £,7+4,z+14 (3) g+1,y+4,2 @) x+1.5,5+1 hkl . h+k=2n and
(5) z,x,y (6) z+4,%,5+4 (N £,8+1,y+4 (8) Z+i,x+4,3 h+l,k+1=2n
(9) y,z,x (10) g+i,z2+4,% (1) y+4,2,8+4 (12) §,7+4,x+4 Okl : k+1=4n and
(13) y=i,x+1,2+1 (14) §+1,2+3,2+% (15) y+1,8+3,z2+% (16) §+1,x+1,z2+% k,=2n
(17) x+1,z+1,5+1 (18) T+1,z+1,y+} (19) T+1,2+4, 5+ (20) x+%,2+1,y+1 hhl: h+l=2n
(21) z+1,y+1,8+1 (22) z+1,§+1,x+1 (23) Z+1,y+3.x+} (24) 2+4,5+4,5+1 hOO: h=4n
(25) £+4,9+4,2+% (26) x+i,y+1,2+1 (27) x+1,9+1,z+% (28) X+1,y+i.2+1
(29) z+4,2+4,9+4 (30) z+1,x+4,y+1 (31) z+3.x+1,9+1 (32) z+1,8+1,y+i
(33) g4, 7+H, 241 (34) y+1,z+1,x+1 (35) y+i,z+i,x+1 (36) y+i,z+1,i+1
(37) §~i.8,z+4  (38) y,x.z (39) §.x+4,2+4  (40) y+i,8+1,2
(41) 2=-4,7,y+4 (42) x+4,2+4,9  (43) x,2,y (44) £,2+1,9+4
45) 7+4,5.x+1  (46) Z,y+i,5+L (47 z+i,7+4,8 (48) z,y.x
Special: as above, plus
9% h ..2 t.y.9+%  Lgrhg+d by+by+l i,§,y+: no extra conditions
F+ihy FHiLg+d y+i, i.y+§ y+i..y
y.ytht g+ {+§,y+ Foy+ii
1.y+hy  Lyt+iy+i §+3,9+%  Ly+iy
y.b.9+F  y+iby+t gHLEFHD gdy+i
Frigd  yriyrei grlgted yrhgid
9% g ..m Xx.x,z £,8+4,2+% T+, x+4,7 x+§,K,7+14 no extra conditions
,X,X Z+4,2,5+14 ZE+Ex+4 I+, x+4,%
X.2,x f+i,z+ 4,8 x+4,2,5+4 £E+,x+4
xfi x+4,2+43  E+1,8+3.2+F x+if+dztd E+dx+dz+d
x+1,z+% .f+i £+, z+d,x+d g+ 7+ R+ x+LI+1x+d
zHix+i 41 i E+iax+l Z+dax+iaxtt F+b g+ g+l
48 [ 2.mm x,0,0 4.4 0,x,0 1,84 0,0,x IRN hkl; h=2n+1
fx+i,1 Lg+bt x+hit g+t Lbg+l bix+d or h+k+l=4n
32 e .3m X,X,X . 2+1,x+14 no extra conditions
f+h,x+4,% x+1,8,8+4
x+ix+i,E+1 £+, 244,844
x+h, 8+ x+1 T+ x+ix+d
16 d .3m t.i,i Lid4 it L hkl : h=2n+1
_ or ik, =4n+2
16 ¢ .3m b L LE o b or hk,I=4n
8 b 43m hid H,i} hkl : h=2n+1
8 a A3m 000 iid or hvkrl=
Symmetry of special projections
Along [001] pdmm Along [111] p6mm Along [110] ¢2mm
a'=}a-b) b'=Ha+h) a'=}(Qa-b-c) b =i(-a+2b-c) a'=i(-a+b) b'=c

Origin at 0,0,z

Origin at x,x,x

Origin at x,x.t

References: p. 45.
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Table 1
Examples of homogeneous sphere packings with distance d between neighboring spheres, highest and lowest
contact numbers, k, and fractional packing densities, g.

k Space Group Parameters Distance d Density ¢
‘Wyckoff position

12 P6ymme cla=3y6 = 1633 a 0.7405
% 431

12 Fmim 1/2a 0.7405
42 000

1 C2/m x=1(/2 -1) b 0.7187

4 x0z 2=3y2 -4ba=}3
cla =36 +1/3 = 0986
cos f=4V/6 - 4V3

10 I4/mmm cda=1/6=08165 ¢ 0.6981
22 000

3 14,32 y=5/3-2 eV6-2y2 % 0.0555
2h fyiy

on their relative position against each other. The packing fractions as well as the
coordination numbers (CN = 12) are equal in both cases. The first shell atomic environ-
ment corresponds to a cuboctahedron for ccp and to a disheptahedron for hcp. The
distribution of atomic distances becomes different not until the third and higher
coordination shells (fig. 9).

These two types of layer stackings are not the only possible ones, there exist
infinitely many with exactly the same coordination numbers and packing fractions. They
are called polytypes. Examples for such layer structures occurring for metallic elements
are cobalt (.ABABABABCBCBCBC..), with one ccp sequence ABC statistically
occurring among about ten hcp sequences, ordered hP4-La (..ACAB..) or hR3-Sm
(.ABABCBCAC.)) (fig. 10).

2.24. Polymorphism

Most of the elements adopt several different (allotropic) crystal structures at different
pressures, temperatures or external fields. The transitions from one modification to the
other are called polymorphous transformations or phase transitions.

A phase transition is connected with a change in structural parameters and/or in the
ordering of electron spins. There are two basically different types of phase transitions:
first-order transitions which are correlated with a jumpwise change in the first-order
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Pearson symbo! Structure lype Space group Space group number

cF8 c Falm 227
a - .2567 nm
origin choice 1
Number Atem  Muilipiicity x 1 z  Occupancy
Wyckoff fetler
1 Cc 8 a a 0 a 1

Reference
T. Hom et al. JOURNAL Of APPLIED CRYSTALLOGRAPHY 1975
B8 p4s7

Cell content
{0.0.0)+ 10.172,1/2)+ {1/2,0,%/2) v (1/2,1/20)+

Number Alom Coordinates.
x ¥ z

1 c 0 L] 0
174 2] 14

1. €C o 0 L] L]

Oistance  Number  Aom x y z
Ri ) 1 c RS 1/4 e
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Fig. 6. Information given in the Atlas of Crystal Structure Types for Intermetallic Phases (DAAMS et al. [1991]) on
the example of the diamond structure type. Beside numerical information and an atomic distances histogram, drawings
of the crystal structure and characteristic coordination polyhedra in different projections are also shown.

derivatives of the Gibbs free energy G=H-TS (i.e., volume, entropy, ...), and second-
order transitions which show a jump in the second derivatives of the Gibbs free energy
(with respect to heat capacity, compressibility, etc.). In both types of phase transitions the
crystal structure changes discontinuously at the transition point: in a first-order transition,
in general no symmetry relationship exists between the two modifications; in a second-
order transition, a group/subgroup relationship can always be found for the symmetry
groups of the two polymorphous crystals structures.

With regard to structural changes resulting from a phase transformation of any order
it is useful to distinguish between several different types: reconstructive phase transitions with
essential changes in coordination numbers, atomic positions («-Fe and vy-Fe, for instance,
with coordination numbers CN=8 and CN =12, respectively, fig. 11) and sometimes also
in chemical bondirég (grey «-Sn and white B-Sn, for instance, with minimum distances
changing from d%>" =1.54 A to d? 3" =3,02 A). These transformations are always of first
order. Displacive phase transitions with small atomic shifts not changing the first coordination
shells may change the lattice by small atomic displacements (martensitic diffusionless
lattice rearrangement). Order/disorder transitions are related to the long-range ordered or
disordered arrangement of structure elements (copper—gold system, for instance).

References: p. 45.
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Fig. 7. Characteristics of the hexagonal closest-sphere packing. (a) The coordination polyhedron (disheptahedron) in
perspective view and projected to show the packing principle, (b) the crystal structure and (c) one unit cell with atoms
marked according to their belonging to layer A or B, are depicted (from BORCHARDT-OTT [1993]).

Table 2
Fractional packing densities g of elemental structures (PEARSON [1972]).
Element Structure Space filling Element Structure Space filling
Type, cla value ¢ Type, cla value g

Cu cF4 0.740 Po cP1 0.523
Mg hP2, 1.63 0.740 Bi hR2, 2.60 0.446
Zn hP2, 1.86 0.650 Sb hR2, 2.62 0.410
Pa tI2 0.696 As hR2, 2.80 0.385
In tI2 0.686 Ga oC8 0.391
w cl2 0.680 Te hP3 0.364
Hg hR1 0.609 C (diamond) cF8 0.340
Sn 4 0.535 P (black) oC8 0.285
a-U oC4 0.534

3. Crystal structure of metallic elements

In the following, the crystal structures of all metallic and semi-metallic elements
(table 3) will be discussed. If it is not indicated specifically, the crystal structure data
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b)

Fig. 8. Characteristics of the cubic closest-sphere packing. (a) The coordination polyhedron (cuboctahedron) in
perspective view and projected to show the packing principle, (b) the crystal structure and (c) one unit cell with
atoms marked according to their belonging to layer A, B or C, are depicted (from BORCHARDT-OTT [1993]).

have been taken from VILLARS and CALVERT [1991], YOUNG [1991] or MASSALSKI
[1990]. In the (not so rare) cases of contradictory data, the most recent and reliable (?)
ones have been used or the Pearson symbol has been replaced by a question mark.
Particularly the structural information given for the high-pressure phases, which in most
cases are derived from very small data sets, may be revised in future once better
diffraction data become available.

3.1. Nomenclature

For the short-hand characterization of crystal structures, the Pearson notation in
combination with the prototype formula defining the structure type is used throughout the
paper. In accordance with the IUPAC recommendations (LEIGH [1990]) the old Strukrur-
bericht designation (A3 for hP2-Mg, for instance) should not be used any longer. A
comparison of the Pearson notation, prototype formula, space group and Strukturbericht
designation for a large number of crystal structure types is given in MASSALSKI {1990},

The Pearson symbol consists of two letters and a number. The first (lower case letter)
denotes the crystal family, the second (upper case) letter the Bravais lattice type (table 4). The
symbol is completed by the number of atoms in the unit cell. The symbol cF4, for instance,
classifies a structure type to be cubic (c), all-face centered (F), with 4 atoms per unit cell. In

References: p. 45.
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Table 3
Periodic table of the elements. In accordance with the recommendations of the IUPAC 1988, the columns are
numbered consecutively from | to 18. The elements whose structures are discussed in this chapter are shadowed.

1 2 3 4 5 6 7 8 9 10|11 |12 13|14)15]16]) 17| 18

1 2

H He
af 5| 6| 7819/ 10
Ll o

anthanide

etals

+Actinide

etals

the case of rhombohedral structures, like the hR3—Sm type, the number of atoms in the unit cell
in the rhombohedral setting (a=b=c, @ = =y#90°) is given. The number of atoms in the corre-
sponding hexagonal setting (a=b #c, a =8 =90° y=120°) would be three times as much.

Table 4

Meaning of the letters included in the Pearson Symbol.
Crystal family Bravais lattice type
a triclinic (anorthic) P primitive
m monoclinic 1 body centered
[ orthorhombic F all-face centered
t tetragonal C side- or base-face centered
h hexagonal, trigonal (rhombohedral) R rhombohedral
c cubic
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Fig. 9. Histograms of distances and coordination polyhedra of (a) hexagonal and (b) cubic closest packing
(from DAAMS et al. [1991]).

3.2. Group 1 and 2, alkali and alkaline earth metals

The alkali and alkaline earth metals (table 5) belong to the typical metals. The outer
electrons occupy the ns-orbitals, ionization removes the electrons of a whole shell, thus
drastically reducing the atomic radius (Li: atomic radius 1.56 A, ionic radius 0.60 A, for
instance). The absence of directional bonds forces close atomic (sphere) packings; the
alkali metals conform most closely to the free electron gas model of metals. Under
ambient conditions the alkali metals all crystallize in the simple body-centered cubic
(bce) structure cI2-W (fig. 12). The bece structure is assumed to be more stable at higher
temperature than the ccp or hcp one owing to its higher vibrational entropy. At lower
temperature or higher pressure, the bce structure is transformed martensitically to the
closest-packed lattice types, hR3~-Sm or cF4-Cu, respectively. Contrary to earlier studies,
the hexagonal closest-packed phases are not of the hP2-Mg but of the hR3-Sm type (fig.
10) with stacking sequence ...ABABCBCAC.. (YOUNG [1991]).

The extremely strong dependence of the atomic volume on pressure, which increases
with increasing atomic number due to the shielding of the outer electrons by the

References: p. 45.
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(b)

©

Fig. 10. Schematical representation of the stacking sequences of the closest-packed structures (a) hP2-Mg, (b)
cF4—Cu, (¢) hP4-La and (d) hR3-Sm.
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Table 5

17

Structure information for the elements of group 1, alkali metals, and of group 2, alkaline earth metals. In the
first line of each box the chemical symbol, atomic number Z, and the atomic volume V, under ambient
conditions is listed. In the second line the electronic ground state configuration is given. For each phase there
is tabulated: limiting temperature T{K] and pressure P{GPa], Pearson symbol PS, prototype structure PT, and,

if applicable, the lattice parameter ratio c/a.

TIK] P(GPa] PS PT cla T(K} P[GPa) PS PT cla
Li 3 V,=2160A3 Be 4 V,=8114°
1s%2s! 1522522
a <70 hR3  Sm a hP2 Mg  1.568
B cl2 \' B >1543 cl2 \'
y >6.9 cF4  Cu y >283 hP8? 0.789
Na 11 V,=39.504° Mg 12 V,=2324A°
15225%p53s! 1522s2p53s?
13 <40 hR3  Sm @ hP2 Mg 1.624
B c2 W 8 >50 2 W
K 19 V,=75334° Ca 20 V,=43.62A°
15%2s2p%3s%p%ds! 152257p%3s%p04s?
@ cl2 \' «@ cF4 Cu
B >12 cF4 Cu B >728 or >19.5 cl2 \'
k% >32 cPl  a-Po
Rb 37 V,=9259A° Sr 38 V,=5635A%
152252p53s2p®d %457 p85s! 152252p53s%p®d 0457852
@ cd2 W @ cF4  Cu
B >7.0 cF4  Cu B >504 hP2 Mg 1636
y > 14 y >896 or >3.5 cl2 W
8 >17 [ >26
& >20 ti4 & >35
Cs 55 V,=117.79A% Ba 56 V,=6336A%
152252p535%p°d %4s7p®d IOSszp66s1 15228%p53s%p°d'%4sp®d 1055%p%6s>
o cl2 W o 2 W
B >2.37 cF4  Cu 8 >5.33 P2 Mg 1581
B >4.22 cF4  Cu y >75
y >4.27 (4 5 >12.6
8 > 10
g >72 cF4?
Fr 87 Ra 88 v, =68.22A%

lsbszpﬁSszp6dl°4szp6d'°f '45s2p6d'°6s2p6781

al

o

cl2

1522s2p63S2P6d10452p6dlDf14552p6dl 0682p6752

W

increasing number of inner electron shells, is shown by the example of Cs (fig. 13). With
increasing pressure, the valence electrons change from s to d character, giving rise to a
large number of pressure-induced phase transitions at ambient temperature (YOUNG [1991]):

72 GPa

2.37 GPa 4.22 GPa

aCs & BCs

4.27 GPa
o B'-Cs

10 GPa
& yCs &

8-Cs

(=14

e-Cs

References: p. 45.
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Fig. 11. Relationship between body-centered cubic (bcc) a-Fe, cI2-W type, space group Im3m, No. 229, la:
0 0 0, and face-centered cubic (fcc) y-Fe, cF4—Cu type, space group Fm3m, No. 225, 4a: 0 0 0. The face-
centered tetragonal unit cell drawn into an array of four bee unit cells transforms by shrinking its faces to fec.

The alkaline earth metals behave quite similarly to the alkali metals. They crystallize
under ambient conditions in one of the two closest-packed structures (ccp or hep) or in
the body-centered cubic (bcc) structure type and also show several allotropic forms (fig.
14). The large deviation c/a=1.56 from the ideal value of 1.633 for beryllium indicates
covalent bonding contributions.

For alkali and alkaline earth metals, the pressure-induced phase transitions from
cI2-W to cF4-Cu occur with increasing atomic number at decreasing pressures.

3.3. Groups 3 to 10, transition metals

The elements of groups 3 to 10 are typical metals which have in common that their
d-orbitals are partially occupied. These orbitals are only slightly screened by the outer
s-electrons, leading to significantly different chemical properties of the transition
elements going from left to right in the periodic system. The atomic volumes decrease
rapidly with increasing number of electrons in bonding d-orbitals, because of cohesion,
and increase as the anti-bonding d-orbitals become filled (fig. 15). The anomalous
behavior of the 3d-transition metals, Mn, Fe and Co, may be explained by the existence
of non-bonding d-electrons (PEARSON [1972]).

Scandium, yttrium, lanthanum and actinium (table 6) are expected to behave quite

Fig. 12. Unit cell of the body-centered cubic structure type cI2-W, space group Im3m, No. 229, 1a: 0 0 0.
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Fig. 13. The variation of the atomic vojume of cesium with pressure (after DONOHUE [1974]).

similarly. Indeed they show similar phase sequences: the high-pressure phases of light
elements occur as the ambient-pressure phases of the heavy homologues. The hP4 phase
of lanthanum, with the sequence .. ACAB.., is one of the simpler closest-packed polytypic
structures common for the lanthanides (fig. 16 and fig. 10). Another typical polytype for
lanthanides is the hR3 phase of yttrium with stacking sequence .. ABABCBCAC.. (fig. 17
and fig. 10).

Titanium, zirconium and hafnium (table 6) crystallize in a slightly compressed hcp
structure type and transform to bce at higher temperatures. At higher pressures the w-Ti
phase is obtained (fig. 18). The packing density of the hP3-Ti structure with ~0.57 is
slightly larger than that of the simple cubic a-Po structure (~0.52) but substantially lower
than for bee (~0.68) or ccp and hep (~0.74) type structures. Calculations have shown that
the w-Ti phase is stable owing to covalent bonding contributions from s—d electron
transfer. At even higher pressures, zirconium and hafnium transform to the cI2-W type,
while titanium remains in the hp3-Ti phase up to at least 87 GPa. By theoretical
considerations it is also expected that titanium performs this transformation at sufficiently
high pressures (AHUJA et al. [1993]). A general theoretical phase diagram for Ti, Zr and
Hf is shown in fig. 19.

Vanadium, niobium, tantalum, molybdenum and tungsten have only simple bcc

References: p. 45.
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(b)

Fig. 14. Illustration of the bce-to-hep phase transition of Ba. (a) bee unit cell with (110) plane marked. (b)
Projection of the bec structure upon the (110) plane. Atomic displacements necessary for the transformation are
indicated by arrows.

structures (table 7). Up to pressures of 170 to 364 GPa no further allotropes could be
found, in agreement with theoretical calculations. Chromium shows two antiferro-
magnetic phase transitions, which modify the structure only very slightly (YOUNG
[1991]).

The high-temperature phases of manganese (table 8), y-Mn, cF4—Cu type, and 6-Mn,
cl2-W type, are typical metal structures, whereas «-Mn and 8-Mn form very compli-
cated structures, possibly caused by their antiferromagnetism. Thus, the a-Mn structure
can be described as a 3x3x 3 superstructure of bec unit cells, with 20 atoms slightly
shifted and 4 atoms added resulting in 58 atoms over all (fig. 20). The structure of 8-Mn
(fig. 21) is also governed by the valence electron concentration (*“electron compound” or
Hume-Rothery-type phase). The variation of the atomic volume of manganese with
temperature is illustrated in fig. 22. For technetium, rhenium, ruthenium and osmium,
only simple hcp structures are known.

The technically most important element and the main constituent of the Earth’s core,
iron (table 8) shows five allotropic forms (fig. 23): ferromagnetic bce a-Fe transforms to
paramagnetic isostructural 8-Fe with a Curie temperature of 1043 K; at 1185K fcc y-Fe
forms while at 1667 K a bcc phase, now called -Fe, appears again. For the variation of
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Fig. 15. Atomic volumes of the transition metals, A means cF4-Cu type, v hP2-Mg, © cI2-W, O other types
(after PEARSON [1972]).

the atomic volume with temperature see fig. 24. High-pressure nonmagnetic &-Fe,
existing above 13 GPa, has a slightly compressed hcp structure.

Cobalt (table 9) is dimorphous, hcp at ambient conditions and ccp at higher tempera-
tures. By annealing it in a special way, stacking disorder can be generated: the hcp
sequence ..ABAB.. is statistically disturbed by a ccp sequence ..ABCABC.. like
.ABABABABCBCBCBC.. with a frequency of about one ..ABC.. among ten ..AB...
Rhodium, iridium, nickel, palladium and platinum all crystallize in simple cubic closest-
packed structures.

3.4. Groups 11 and 12, copper and zinc group metals

The “mint metals”, copper, silver and gold (table 10) are typical metals with ccp
structure type (fig. 25). Their single ns electron is less shielded by the filled d-orbitals
than the ns electron of the alkali metals by the filled noble gas shell. The d-electrons also
contribute to the metallic bond. These factors are responsible for the more noble

References: p. 43.
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Fig. 16. One unit cell of the hP4-La structure type, space group P6,/mme, No. 194, 2a: 0 0 0, 2c: '3 % Vi,

character of these metals than of the alkali metals and that these elements sometimes are
grouped to the transition elements.

For zinc, cadmium and mercury (table 10) covalent bonding contributions (filled d-
band) lead to deviations from hexagonal closest packing (hcp), with its ideal axial ratio
cla=1.633, to values of 1.856 (Zn) and 1.886 (Cd), respectively. The bonds in the hcp
layers are shorter and stronger, consequently, than between the layers. With increasing
pressure, ¢/a approximates the ideal value 1.633: for Cd ¢/a=1.68 was observed at 30
GPa (DoNOHUE [1974]), and for Hg, ¢/a=1.76 at 46.8 GPa (SCHULTE and HOLZAPFEL
[1993]).

The rhombohedral structure of a-Hg may be derived from a ccp structure by
compression along the threefold axis (fig. 26). In contrast to zinc and cadmium, the ratio
c/a=1.457 for a hypothetical distorted hcp structure is smaller than the ideal value. There
also exist several high-pressure allotropes (fig. 27).

3.5. Groups 13 to 16, metallic and semi-metallic elements

Only aluminum, thallium and lead crystallize in the closest-packed structures
characteristic for typical metals (table 11). The s—d transfer effects, important for alkali-
and alkaline-earth metals, do not appear for the heavier group 13 elements owing to their
filled d-bands. Orthorhombic gallium forms a 6* network of distorted hexagons parallel
to (100) at heights x=0 and 1/2 (fig. 28). The bonds between the layers are considerably
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Fig. 17. One unit cell of the hR3-Sm structure type, space group R3m, No. 166, 3a: 0 0 0, 6¢: 0 0 0.22.

References: p. 45.
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L
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Fig. 18. The hP3-Ti structure type, space group P6/mmm, No. 191, 1a: 0 00, 2d: 4 % Y.

weaker than within. At higher pressure gallium transforms to a bce phase, cI12-Ga, and
additionally increasing the temperature leads to the tetragonal indium structure type tI2-In (fig.
29). In an alternative description based on a face-centered tetragonal unit cell with a’= \/E a, the
resemblance to a slightly distorted cubic close-packed structure with ¢/a=1.08 becomes clear.

mechanically

mechanically
unstable at stable at
bcc T=0 T=0

hcp 0 bcc

-P

Fig. 19. Schematic calculated phase diagram for Ti, Zr and Hf (from AHUJA er al. [1993)).
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Table 6
Structure information for the efements of groups 3 and 4. In the first line of each box the chemical symbol,
atomic number Z, and the atomic volume V_ under ambient conditions is listed. In the second line the
electronic ground state configuration is given. For each phase there is tabulated: limiting temperature T[K] and
pressure P[GPa), Pearson symbol PS, prototype structure PT, and, if applicable, the lattice parameter ratio c/a.

T{K] P[GPa] PS PT cla TIK]  P[GPa] PS PT cla
Sc¢ 21 V,=2497A3 Ti 22 V,=1765A°
1s22s%p%3s2ptd 4s? 1522s%p5352ptd?4s?
« hP2 Mg 1592 |a hP2 Mg  1.587
B > 1610 c2 W B > 1155 cl2 W
¥ >19 1P4? ® >2 hP3  w-Ti
Y 39 V,=3301A° Zr 40 V,=2328A3
15%252p®3s?p®d " 4s2pSd' 562 l52’252p6352p6d“’4szp‘5d2552
a hP2 Mg 1571 |a hP2 Mg 1.593
B >1751 cl2 W B > 1136 2 W
y > 10 hR3  Sm ® >2 hP3  w-Ti
8 >26 hP4? o’ >30 c2 W
& >39 c¢F4  Cu
La 57 V,=37174° Hf 72 V,=22314°
15%252p%3s7p®d %4s%p®d 05s%p%d 65° 15%25°p®3s2p®d!0ds2pSd 0145570265
a hP4 «a-la 2x1.613| a hP2 Mg 1581
B >583 0or >2.3 cF4  Cu B >2016 2 W
y > 1138 cl2 W ® >38 hP3  @-Ti
8 >7.0 hP6 w’ >71 c2 W
Ac 89 V,=3745A%a1293K Ku 104
.. 3s2p0d1%4s2p0d 014 552p0d 0652p5d 72 ...35%p5d!04s2p8d!0fM552p6d 10F1652p6d27s?
a cF4  Cu

Silicon and germanium (table 11) under ambient conditions crystallize in the diamond
structure, owing to strong covalent bonding. At higher pressures they transform to the
metallic white-tin (tI4-Sn) structure. This structure type consists of a body-centered
tetragonal lattice which can be regarded as being intermediate between the diamond
structure of semiconducting «-Sn and ccp lead (fig. 30). For an ideal ratio of ¢/a=0.528
one atom is sixfold coordinated. The high-pressure phase hP1-Biln has a quasi-eightfold
coordination, the ideal ratio for CN =8 would be c/a=1. At higher pressures, closest-
packed structures with twelvefold coordinations are obtained. Thus with increasing
pressure silicon runs through phases with coordination numbers 4, 6, 8 and 12.

The effective radius of tin in 8-Sn and of lead in a-Pb is large compared with that
of other typical metals with large atomic number due to uncomplete ionization of the
single ns electron. This means that in @-Sn, for instance, the electron configuration is
...5s'5p>, allowing sp’—hybridization and covalent tetrahedrally coordinated bonding,
whereas in 8-Sn with ...5s25p* only two p-orbitals are available for covalent and one
further p-orbital for metallic bonding.

The structure of arsenic, antimony and bismuth (isotypic under ambient conditions)

References: p. 45.
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Table 7
Structure information for the elements of groups 5 and 6. In the first line of each box the chemical symbol,
atomic number Z, and the atomic volume V_ under ambient conditions is listed. In the second line the
electronic ground state configuration is given. For each phase there is tabulated: limiting temperature T[K} and
pressure P[GPa}, Pearson symbol PS, prototype structure PT, and, if applicable, the lattice parameter ratio c/a.

T[K] P[GPa] PS PI cla TIK} P{GPa) PS PT cla
v 23 V,=13824% Cr 24 V,=1200A%
1s%2s%p®3s?p°d4s? 15225%p%3s%p®d’4s!

cl2 W cl2 W
Nb 41 V,=17.98A° Mo 42 V, =1558A°
15225%p53s2p°d'0%4s?p®d?ss! 15%2s%p53s%p°d%4s2p®d>5s!

a2 W a2 W
Ta 73 V,=18024° W 74 V, =15854°
15%252p8352p’d'%4s2pd 0f14552pSd’6s2 15%2s%p%3s%p%d *4s?pd 1 0f14552pSd 62

2 W 2 W

(table 12) consists of puckered layers of covalently bonded atoms stacked along the
hexagonal axis (fig. 31). The structure can be regarded as a distorted primitive cubic
structure (a-Po) in which the atomic distance d, in the layer equals that between the
layers d,. The metallic character of these elements increases for d,/d, approximating to
1 (table 13).

The helical structures of isotypic a-Se and «-Te may also be derived from the

Table 8
Structure information for the elements of groups 7 and 8. In the first line of each box the chemical symbol,
atomic number Z, and the atomic volume V, under ambient conditions is listed. In the second line the
electronic ground state configuration is given. For each phase there is tabulated: limiting temperature T[K] and
pressure P[GPa}, Pearson symbol PS, prototype structure PT, and, if applicable, the lattice parameter ratio c/a.

T{K] P[GPa] PS PT cla T[K] P[GPa] PS PT cla
Mn 25 V,=1221A% Fe 26 V,=11.784A3
15%25%p%3s2pSd’ds? 15%252p53s?p°d®ds?
a cI58 a-Mn o 2 W
g >1000 cP20 B-Mn vy >1185 cF4 Cu
vy  >1373 cF4 Cu 5 > 1667 2 W
8 > 1411 2 W & >13 hP2 Mg 1.603
Te 43 V,=14.26A% Ru 44 V,=1357A°
15%2sp®352p®d'04s?p°d®ss' 15%252p53s2p°d'%4s2pSd’Ss!
hP2 Mg 1.604 hP2 Mg 1.582
Re 75 V,=1471A3 Os 76 V,=13.99A3
157252p8352p0d!%4s2psd 01 55%p5d>6s2 152252p53s%p°d 04s2p°d 10714 552p%d%6 s>
hP2 Mg 1.615 hP2 Mg 1.580
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(a)

(b)

Fig. 20. One unit cell of cI58-Mn, space group 143m, No. 217, with four different types of Mn atoms in 2a:
000, 8 0.316 0.316 0.316, 24g: 0.356 0.356 0.034, 24g: 0.089 0.089 0.282, shown (a) in perspective view
and (b) in projection. Two types of Mn atoms are coordinated by CN 16 Friauf polyhedra, one by a CN 14
Frank-Kasper polyhedron and one by an icosahedron.

primitive cubic a-Po structure (fig. 32). The infinite helices run along the trigonal axes,
and have three atoms per turn. The interhelix bonding distance d, plays a comparable

References: p. 45.
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Fig. 21. One unit cell of cP20-Mn, space group P4,32, No 213, with two types of Mn atoms: 8c: 0.063 0.063
0.063, 12d: 0.125 0.202 0.452, shown (a) in perspective view and (b) in projection. The atoms in 8c are
coordinated by 12 atoms in a distorted icosahedron, the Mn atoms in 12d by 14 atoms in a distorted Frank-
Kasper CN 14 type polyhedron.

role for the metallic character of these elements as does the interlayer distance in the
case of the group 15 elements. Wih increasing pressure, the transition to the metallic
B-Te phase takes place.

3.6. Lanthanides and actinides

Lanthanides and actinides (table 14) are characterized by the fact that their valence
electrons occupying the f-orbitals are shielded by filled outer s- and p-orbitals. The
chemical properties of the lanthanides are rather uniform since the 4f-orbitals are largely
screened by the 5s- and 5Sp-electrons. The chemical behavior of the actinides, however,
is somelike in between that of the 3d transition metals and the lanthanides since the 5f-
orbitals are screened to a much smaller amount by the 6s- and 6p-electrons. With the
exception of Sm and Eu, all lanthanides under ambient conditions show either a simple
hep structure with the standard stacking sequence ..AB.. or a twofold superstructure with
a stacking sequence . ACAB... Samarium has, with .. ABABCBCAC.,, an even more
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Fig. 22. The variation of the atomic volume of manganese with temperature (from DoNoHUE [1974]).
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Table 9
Structure information for the elements of groups 9 and 10. In the first line of each box the chemical symbol,
atomic number Z, and the atomic volume V, under ambient conditions is listed. In the second line the
electronic ground state configuration is given. For each phase there is tabulated: limiting temperature T[K] and
pressure P[GPa], Pearson symbol PS, prototype structure PT, and, if applicable, the lattice parameter ratio c/a.

29

T[K] P[GPa] PS PT cla T[K] P[GPa] PS PT cla
Co 27 V,=11.08A° Ni 28 Vy = 1094 A
152252p%3s°p®d 4s? 1522s%p®3s7p°d%4s?
e hP2 Mg 1.623 cF4 Cu
o >695 cF4  Cu
Rh 45 V,=1375A° Pd 46 V,=1472A
1s%2s7p®3s7p%d'%4s"pd*ss! 1522s%p®3s%p%d'%4spod'®
cF4 Cu cF4 Cu
Ir 77 V,=14154A° Pt 78 V,=1510A°
1s7’2s2p6332p"d'°4szp6d‘°f”5s2p6d76s2 ls7’232p6352p6d‘°4s’p6d‘°f'45s2p6d96s‘
cF4 Cu cF4 Cu

References: p. 45.
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Fig. 23. Phase diagram of iron (from VAINSHTEIN ez al. [1982]).

Table 10

Structure information for the elements of groups 11 and 12. In the first line of each box the chemical symbol,
atomic number Z, and the atomic volume V, under ambient conditions is listed. In the second line the
electronic ground state configuration is given. For each phase there is tabulated: limiting temperature T[K] and
pressure P[GPal], Pearson symbol PS, prototype structure PT, and, if applicable, the lattice parameter ratio c/a.

TIK] PiGPa] PS PT

cla

TIK] P{GPa] PS PT cla

Cu 29 V,=11814A2
15%2s7p®352p°d 045’
cF4  Cu

Ag 47 V,=1705A3
ls7’2s2p6352p6d’°4szp6d'°551
cF4 Cu
Au 79 V,=16.96A°
l52252p6352p6d10452p6d10f14552p6d106sl
cF4 Cu

Zn 30 V,=1520A°
1522$2p6352P6d 10452

P2 Mg  1.856
Cd 48 V,=21.60A%
15%25%p®35%p%d " %452p%d!055?

P2 Mg 1.886

Hg 80 V,=23.13A%at80K
1522521363 S2136(111)4521_,,6 410¢14 552p6d1°652

a <2343 hR1 a-Hg

B >3.7 tI2 «-Pa

¥ >12 oP4

5 >37 hP2 Mg 176
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Fig. 24. The variation of atomic volume of iron with temperature (from DONOHUE [1974]).

complicated stacking order with 4.5—fold superperiod. For all lanthanides the ratio ¢/a is
near the ideal value of nx 1.633. It is interesting that with increasing pressure and
decreasing atomic number the sequence of closest-packed phases hP2-Mg (..AB..) =
hR3-Sm (.ABABCBCAC..) = hP4-La (.ACAB..) = cF4-Cu (..ABC..) = hP6-Pr
appears (cf. figs. 10, 17 and 33).

Cerium undergoes a transformation from the vy to the a-phase at pressures >0.7 GPa:

Fig. 25. The structure of cF4—Cu, space group Fm3m, No. 225, 42 0 0 0.

References: p. 45.
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Fig. 26. The structure of hR1-Hg, space group R3m, No. 166, 3a 0 0 0.

the ccp structure is preserved but the lattice constant decreases drastically from 5.14 to
4.84 A owing to a transition of one 4f-electron to the 5d-level (fig. 34). This isostructural
transition is terminated in a critical point near 550 K and 1.75 GPa (YOUNG [1991])).
Further compression gives the transformation at 5.1 GPa to the a’-phase, and finally at
12.2 GPa to the g-phase. Europium shows a completely different behavior, as do the
other lanthanides, owing to the stability of its half filled 4f-orbitals. Thus, it has more
similarities to the alkaline earth metals; its phase diagram is comparable to that of barium

)

600
500
400
300
200
100

temperature (

0 10 20 30 10 o0
pressure ( GPa )

Fig. 27. Schematical phase diagram of mercury (from SCHULTE and HoLzAPFEL [1993]).
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Table 11
Structure information for the elements of groups 13 and 14. In the first line of each box the chemical symbol,
atomic number Z, and the atomic volume V, under ambient conditions is listed. In the second line the
electronic ground state configuration is given. For cach phase there is tabulated: limiting temperature T{K] and
pressure P[GPa], Pearson symbol PS, prototype structure PT, and, if applicable, the lattice parameter ratio c/a.

TIK] P{GPa] PS PT cla TIK] P[GPa] PS PT ¢/
Al 13 V,=15604A3 Si 14 v,=2002A°
152257435 2p! 15%2s%p%3s%p?
cF4 Cu a cF8 Cd
B >12 4  B-Sn 0552
y >13.2 hP1  Biln 0.92
) >36 0?
& >43 hP2 Mg 1.699
14 >78 cF4  Cu
Ga 31 V,=19.58A3 Ge 32 V,=2263A°
15%252p%3 szpsd 104¢2p! 1 522szp63s2p6d1°4szp2
«a oC8 «a-Ga o cF8  C
B <330 >12 cll12 B >11 tl4 B-Sn 0.551
y  >330 >30 tI2  In 1.588 |~y >75 hP1  Biln 0.92
b > 106 hP4
In 49 V,=2616A3% Sn 50 V,=34.16A%at 285K
152252p6332p6d 104625d1055%p! 1 sblszpsfi s?pd 104szp6d 105522
tI2 In 1.521 |« <291 cF8 C
B >291 4 B-Sn 0546
y >9.2 2 Pa 091
8 >40 c2 W
TE 81 V,=2859A% Pb 82 Vv, =30.324°
15225%p53s2pd %45 2p°d 014552p8 1 06is2p ! 15225%p53s%pd %45 2p5d 045525 065 2p?
« hP2 Mg 1598 |« cF4 Cu
B >503 cl2 W B >13.7 hP2 Mg 1.650
1% >3.7 cF4 Cu 1% >109 cl2 w

rather than to the other lanthanides. A similar behavior is observed for ytterbium which
is divalent owing to the stability of the completely filled 4f-orbitals; its phase diagram
resembles that of strontium.

The c-lattice parameter of gadolinium exhibits an anomalous expansion when cooled
below 298 K (fig. 35) due to a change in the magnetic properties of the metal. Several
other lanthanides show a similar behavior.

According to their electronic properties, the actinides (table 14) can be divided into
two subgroups: the elements from thorium to plutonium have itinerant 3f-electrons
contributing to the metallic bond, whereas the elements from americium onwards have
more localized 5f-electrons. This situation leads to superconductivity for thorium,
protactinium and uranium, for instance, and to magnetic ordering for curium, berkelium
and californiura (DABOS-SEIGNON et al. [1993]). The contribution of S5f-electrons to

References: p. 45.
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(c)

C

Fig. 28. The structure of oC8-Ga, Cmca, No. 64, 8 0 0.155 0.081, (a) in a perspective view and projected
upon (b) (010) and (c) (100), showing the distorted hexagonal layers.

bonding leads to low symmetry, small atomic volumes and high density in the case of
the light actinides while the heavier actinides crystallize at ambient conditions in the hcp
structure type. The position of plutonium at the border of itinerant and localized 5f-states
causes its unusually complex phase diagram, with structures typical for both cases. Thus,
monoclinic a-Pu can be considered as a distorted hcp-structure with about 20% higher
packing density than cF4-Pu owing to covalent bonding contributions from 5f-electrons
(fig. 36) (EK et al. [1993]). This ratio is quite similar to the above-mentioned one of
a—Ce and y-Ce, which are both ccp. The phase diagram of americium is very similar to
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Fig. 29. The structure of t12-In, space group 14/mmm, No. 139, 2a 0 0 0.

(a) (b)

Fig. 30. Relationships between the structures of the two tin allotropes: (a) grey a-Sn, cF8~C type, space group
Fd3m, No. 227, 8a: 0 0 0, % Y ¥, and (b) white 8-Sn, tI4-B-Sn type, space group I4,/amd, No. 141, da:
00 0. Note the large difference in the minimum distances: d%>" =154 A and d®"=3.02 A.

those of lanthanum, proseodymium and neodymium. Owing to the localization of 5f-
electrons it is the first lanthanide-like actinide element.

Both lanthanides and actinides crystallize in a great variety of polymorphic modifica-
tions (fig. 37).

References: p. 45.
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Table 12
Structure information for the more metallic elements of groups 15, pnictides, and of group 16, chalcogenides.
In the first line of each box the chemical symbol, atomic number Z, and the atomic volume V_ under ambient
conditions is listed. In the second line the electronic ground state configuration is given. For each phase there
is tabulated: limiting temperature T[K] and pressure P[GPa], Pearson symbol PS, prototype structure PT, and,

if applicable, the lattice parameter ratio c/a.

Ch. 1, §3

T[K] P[GPa] PS PT cla T[K] P[GPa] PS PT cla
As 33 V,=21524° Se 34 V,=2727A°
15%25%p63s%p°d%4s2p? 15%25%p53s%p%d1045%p*
a hR2  a-As 2805 |« hP3  a-Se 1135
B >25.0 ¢Pl  a-Po B >14 mP3
v >28 tP4
B >41 hR2
Sb 51 V,=30.21A° Te 52 V,=3398A°
1 82232p6382p6 d l0452p6d 10g szp3 1 82252p6352p6d 10452p6d 105 szp"
a hR2 a-As 2617 ja hP3  a-Se 1.330
B >8 mP4  B-Sb 8 >40 mP4  B-Te
b% >28 c2 W b% >6.6 oP4
8 >10.6 hR1  B-Po
£ >27 2 W
Bi 83 V,=3539A°% Po 84 V,=3814A3at311K
1 52252p6352p6d10 4s2p8d 10f14552p5410657p> 152252p63 sszd 104szp6d10f14552p6 d ‘°6szp"
a hR2 a-As 2609 |« cPl  a-Po
B >2.6 mC4  B-Bi B >327 bRl  B-Po
¥ >3.0 mP4  B-Sb
8 >43
& >9.0 c2 W
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Fig. 31. The structure of hR2-As, space group R3m, No. 166, 6¢ 0 0 0.277.

Table 13

Intralayer (d,) and interlayer (d,) distances in a-As-type layer structures, y-Se-type helix structures and

primitive cubic a-Po (PEARSON[1972]).

Element Distance d, Distance d, d,/d,
a-As 251A 315A 1.25
a-Sb 2874 3.37A 1.17
a-Bi 3.10A 3474 112
v-Se 2.32A 346A 1.49
v-Te 2.86A 346 A 1.31
a-Po 3374 3.37A 1.00

References: p. 45.



38 W Stewrer Ch. 1, §3

Fig. 32. (a) The structure of hP3-Se, space group P3,21, No. 152, 3a 0.237 0 %4, and (b) its projection upon
(001) compared with (c) one unit cell of cP1-Po, space group Pm3m, No. 221, 1a 0 0 0, and (d) its projection
along [111]. The hexagonal outline of the projected cubic unit cell is drawn in.
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Table 14

Structure informaticn for the lanthanides and actinides. In the first line of each box the chemical symbol,
atomic number Z, and the atomic volume V, under ambient conditions is listed. In the second line the
electronic ground state configuration is given. For each phase there is tabulated: limiting temperature T[K] and
pressure P{GPa], Pearson symbol PS, prototype structure PT, and, if applicable, the lattice parameter ratio c/a.

TIK]  P[GPa] PS PT cla TIK]  P[GPa) PS PT cla
Ce 58 V,=34724° Th 90 V,=3287A%
15%25%p83s°p®d %4s2p5d ! 0f255%pS6s? ...352p%d'04s2p5d 0111552p5d 10657 p°d?7s>
a <96 cF4 Cu a cF4 Cu
B hP4 a-La 2x1.611 |8 >1633 cl2 w
y  >326 cF4 Cu
8§ >999 cl2 w
o’ >5.1 oC4 a-U?
e >12.2 ti2 In
Pr 59 V,=3508A° Pa 91 V,=2521A3
152252p5352p8d ' %4s2pd 055 2pS6s? ... 35251045 2pSd10p19552p810f2652p8 41752
3 hP4 «a-La 2x1.611 |« tI2 a-Pa 0.825
B >1068 a2 W B >1443 2w
Y >3.8 cF4 Cu
5 >62 hp6  Pr  3x1.622
& >20 oC4 a-U
Nd 60 V,=3417A° U 92 V,=275A°
1322s2p6352p(’d'°4s2p6d'°f4552p66s2 ...3s2p6d‘°4szp6d'°f 14552p6d'°f %6s%p®d'7s?
a hP4 a-La 2x1.612 | «a oC4 a-U
B >1136 a2 W B >941 P30 B-U
v >5.8 cF4 Cu vy >1049 a2 W
8 >18 hp6  Pr 3x1.611
& >38 mC4 ?
Pm 61 V,=3360A% Np 93 V,=1921A°
15%252p®3s2p®d ' %4s2pSd ! 15557 pS6s? ..357p%d"0452pd 01 552 pSd O3 67 p® 752
o hP4 a-La 2x1.60 |« oP8  «a-Np
B >1163 cl2 w B >553 tP4 B-Np 0.694
L% >10 cF4 Cu vy >849 cl2 w
5 >18 hp6 Pr
& >40 ?

Continued on next page

References: p. 45.
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Table 14—Continued

T[K]  P[GPa]

PS

PT

cla

T[K]  P[GPa] PS PT cla

Sm 62 V,=33.17A°
15%2s%p53s2p°d 04s2p5d 01855 2p56s>

DU B R W R

> 1007

>1195
>4.5
>14
>19
>33

Eu 63 V,=48.10A°
15%25%p53s%p®d 04s2p5d 017 552p56s2

o

B
4

>12.5
>18

Gd 64 V,=33.04A°
15%252p53s%p°d 04s2p5d %7 552p55d' 652

a

B
Y
3
&
4

> 1508
>2.0
>5
>25
>36

Tb 65 V,=3204A°
ls7’).s2p63s2p6dm4s2p6dmf9 552p66s2

o

N R TR

<220

> 1562
>3.0
>6.0
>29
>32

hR3
hP2
cl2
hP4
cF4
hp6
mC4

cl2

hP2
?

hP2
cl2

hR3
hP4
cF4
hp6

oC4
hP2
cl2

hR3
hP4
cF4
hp6

-Sm 4.5%1.605
Mg 1.596
w

a-La 2x1.611
Cu

Pr 3x1.611
?

w

Mg 1553
Mg 1591
w

a-Sm 4.5x1.61
a-La 2x1.624
Cu

Pr

a’-Dy

Mg 1580
w

a-Sm 4.5%1.60
a-La

Cu

Pr 3x1.616

Pu 94 V,=19.88A°
..38%p%d'04%p8d 0 ¥ 552p0d OS5 7p 5757

@ mP16 «-Pu

B >388 mC34 S-Pu

y >488 oF8  y-Pu

8 >583 cF4 Cu

8 >725 2 In 1.342
e >756 cl2 w

I4 >40.0 hP8 1.657/2

Am 95 V,=2927A%
..38%p%d"045%p8d 10 455284 10f 765 2p 5757

o hP4 «a-La 2x1.621
B >10420r>5 cF4  Cu

y >1350 cl2 w

é >12.5 mP4  5-Am

& >15 oC4 a-U

Cm % V,=2998A%
...3szp6d‘°4szp6dmf”Sszp6d‘°f76s2p6d‘752

a hP4  a-La 2x1.621
B >1550 or >23 cF4  Cu
¥ >43 oC4 a-U

Bk 97 V,=2796A%
...3Szp6dl0452p6dmeSSszdmf86S2p6d17S2

o hP4 a-La 2x1.620
B >12500r>8 cF4  Cu
Y >25 oC4 a-U

Continued on next page



Ch. 1, §3 Crystal structure of the metallic elements 41

Table 14—Continued

TIK]  PI[GPa] PS PT cla TIK]  P[GPa] PS PT cla

Dy 66 V,=3157A° Cf 98 Vv,=2741A°

15225%p%3s%p®d 4s%ped 010557 pS6s? ..352p8d"0452p5d10114552p58 051065 2p5 752

o’ <86 oC4 o'-Dy @ hP4 a-La 2x1.625

@ P2 Mg 1573 (B8 >80 >17 cF4  Cu

B >1654 a2 W v >30 aP4  y-Cf

¥ >5.0 hR3  @-Sm 4.5x1.606 & >41 oC4 a-U

) >9.0 hP4  a-La

£ >38 cF4  Cu

Ho 67 V,=3112A° Es 99

152252p6382p6d10482p6d 10f11582p6652 ...382p6d10452p6d]0f14552p6d10f11652p6782

@ W2 Mg L1570 e hP4  a-La

B >1660 2 W B 7 cF4 Cu

y >7.0 hR3  a-Sm 4.5x1.63

[ >13 hP4 a-La

Er 68 V,=30.654° Fm 100

1822$2p6352p6d 1048296d10f12582p6682 ...3s7pﬁd'°4s2p6d‘°f”552p6d1°f126s7pﬁ7sz

@ hP2 Mg 1.569

B >7.0 hR3  a-Sm

¥ >13 hP4 a-La

Tm 69 V,=30.10A° Md 101

152282p6352p6d10482psdlof13552p66sz ...3szpﬁd1°4szp6d'°f"'552p6d'°f”6szp67s2

p hP2 Mg 1570

g >1800 a2 W

Y >9 hR3  «a-Sm

B >13 hP4 a-La 4.5x1.57

Yb 70 V,=41.24A% Ne 102

182282p6382p6d10482p6d10f14582p6682 ...3Szp6dl0482p6dlof“582p6dl0f146szp6782

a <270or >34 hP2 Mg 1.646

B cF4 Cu

vy >1047or>3.5 cl2 w

Lu 71 V,=2052A3% Lr 103

152252p6352p6d1°4s2p6d‘°f”552p6d'6s2 ...3s2p6d'°4szpéd1°f”5 s2p6d1°f’46szp6d‘7sz
hP2 Mg 1.583

8 >18 hR3  a-Sm 4.5x1.52

Y >35 hP4  «a-La

References: p. 45.
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Fig. 33. The structure of hP6-Pr, space group P3,21, No. 152, 6¢ 0.28 0.28 0.772.

Ch. 1, §3
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Fig. 34. Pressure dependence of the atomic volume of cerium (from DONOHUE [1974]).
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Fig. 35. Variation of the lattice parameters of gadolinium with temperature. There are no structural changes in
this temperature range (from DONOHUE [1974]).

References: p. 45.
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Fig. 36. The variation of the atomic volume of the various allotropes of plutonium with temperature (from
DONOHUE [1974]).
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Fig. 37. Combined binary alloy phase diagrams for the light actinides (from YOunG [1991]).
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1. Introduction

The bulk properties of a metal depend directly on the bonding between the constituent
atoms at the microscopic level. Thus, in order to provide a fundamental description of
metals and alloys, it is necessary to understand the behaviour of the valence electrons
which bind the atoms together. The theory which describes the electrons in metals is
couched, however, in a conceptual framework that is very different from our everyday
experience, since the microscopic world of electrons is governed by guantum mechanics
rather than the more familiar classical mechanics of Newton. Rather than solving
Newton’s laws of motion the solid state theorist solves the Schrédinger equation,

(_ E%Vz N v(r)) w(r) = Eur), M

where V2 = 0%0x* + 90¥9y* + 0707%, m is the electronic mass and % is the ubiquitous
Planck constant (divided by 27). —(hA%¥2m) V* represents the kinetic energy and v(r) the
potential felt by the electron which has total energy E. (r) is the wave function of the
electron where |i¥(r)|* is the probability density of finding the electron at some point r
= (x, y, 2). The power of the Schrodinger equation is illustrated by solving eq. (1) for the
case of a single hydrogenic atom. It is found that solutions exist only if the wave
function ¢ is characterized by three distinct quantum numbers », [ and m whose signifi-
cance has been discussed at the beginning of the preceding chapter. A fourth quantum
number, m,, representing the spin of the electron results from a relativistic extension of
the Schrédinger equation. Thus, the existence of different orbital shells and hence the
chemistrv of the Periodic Table follows naturally from quantum mechanics through the
Schrodinger equation.

WIGNER and SEITZ [1933] were the first to apply the Schrédinger equation to the
problem of bonding in metals. In their classic paper they studied the formation of the
bond in monovalent sodium and obtained the cohesive energy, equilibrium lattice
constant, and bulk modulus to within 10% of the experimental values. However, it took
nearly another fifty years before the same accuracy was achieved for the polyvalent
metals. Whereas WIGNER and SEITZ [1933] could assume that the single valence electron
on a sodium atom feels only the potential due to the ion core, in a polyvalent metal a
given electron will also feel the strong coulomb repulsion from other valence electrons
in its vicinity. Thus the problem becomes much more complex. Firstly, the potential v(r)
must be computed self-consistently in that v(r) now depends on the coulomb field of
valence electrons whose wave functions and hence average charge distributions them-
selves depend on u(r) through eq. (1). Secondly, it is necessary in order to obtain
bonding to go beyond the average self-consistent field of the Hartree approximation and
to include the correlations between the electrons. Pauli’s exclusion principle keeps
parallel spin electrons apart, thereby lessening their mutual coulomb repulsion and
lowering the energy by an amount called the exchange energy. These statistical correla-
tions are described by the Hartree-Fock approximation. In addition, dynamical correla-
tions also exist between the anti-parallel spin electrons, which lower the energy of the
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system by an amount called the correlation energy.

A major breakthrough in solid-state physics occurred with the realization that these
very complicated exchange and correlation effects could be accurately modeled by adding
a simple local exchange correlation potential v, (r) to the usual Hartree coulomb potential
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Fig. 1. The equilibrium Wigner—Seitz radii, cohesive energies, and bulk moduli of the 3d and 4d transition
series. Experimental values are indicated by crosses and the computed LDF values by the connected points.

(From MORUZZI et al. [1978].)
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in eq. (1). The resulting so-called local density functional (LDF) equations (HOHENBERG
and KoHN [1964] and KoHN and SHAM [1965]) have been shown to yield a surprisingly
good description of the energetics of atoms, molecules, and solids (GUNNARSSON and
LUNDQUIST [1976], HarRrIS and JONES [1978], MORUZZI et al. [1978], JONES and
GUNNARSSON [1989] and FINNIs [19921). The success of the LDF scheme is illustrated
in fig. 1 by the results of MORUZZI et al. [1978] for the cohesive properties of the
elemental metals across the 3d and 4d transition series. We see that for the nonmagnetic
4d series the equilibrium Wigner—Seitz radius (or lattice constant), cohesive energy and
bulk modulus are given to better than 10%. The large deviations in lattice constant and
bulk modulus observed amongst the 3d series is due to the presence of magnetism and
is removed by generalizing the LDF theory to include spin polarization (JANAK and
WILLIAMS [1976]). It must be stressed that there are no arbitrary parameters in the
theory, the only input being the nuclear charge and crystal structure.

This success of the LDF theory in describing the bonding between atoms allows the
interpretation of the results within a band framework, since the motion of a given
electron is governed by the one-electron Schrodinger equation (1). As is well-known, the
energy levels, E, of the free atom broaden out into bands of states as the atoms are
brought together to form the solid. In this chapter the nature of these energy bands in
simple metals, transition metals and binary alloys is discussed, thereby unraveling the
microscopic origin of the attractive and repulsive forces in the metallic bond. In § 2.1 we
begin with a detailed description of the constituent atoms, since we will see that many
bulk properties are related to the relative position of the atomic energy levels and to the
size of the ionic cores. In § 2.2 the diatomic molecule is used to illustrate bond formation
and in § 2.3 the general principle of band formation in solids is outlined. The nature of
simple- and transition-metal bands is then discussed in §§ 3 and 4 respectively, the
former being treated within the nearly-free-electron approximation, the latter within the
tight-binding approximation. In § 5 the knowledge of the energy band behaviour is used
to provide a microscopic picture of metallic bonding which is responsible for the
cohesive properties of the elemental metals displayed in fig. 1. In § 6 structural stability
is discussed both in the elemental metals and in binary intermetallic phases. In § 7 the
ideas on metallic bonding are extended to a discussion of the heats of formation, AH, of
binary alloys. Finally in § 8 the band theory of magnetism is presented which accounts
for the antiferromagnetism of Cr and Mn and the ferromagnetism of Fe, Co, and Ni
amongst the 3d transition metals.

2. Band formation

2.1. The constituent atoms

The hundred basic building blocks of nature, which are enshrined in the Periodic
Table, lead to matter having a wide range and variety of physical properties. This
diversity reflects the essential uniqueness of each element in the Periodic Table. For
example, even though copper, silver and gold lie in the same noble-metal group, nobody
except possibly a theoretician would be prepared to regard them as identical. In this
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subsection the differences between the elements are quantified by discussing the
behaviour of the atomic energy levels and the radii throughout the Periodic Table.

The structure of the Periodic Table results from the filling-up of different orbital
shells with electrons, as outlined in the previous chapter. The chemical behaviour of a
given atom is governed by both the number and the angular-momentum character of the
electrons in the outer partially filled shells. (We shall refer to these electrons as valence
in contrast to the filled shells of core electrons.) The angular-momentum character is
determined by the orbital quantum number 1, since the magnitude of the total orbital
angular momentum L is given by quantum theory as:

L=hI(1+1), @)

where [ = 0, 1, 2,... A free-atom electron can, therefore, take only discrete values of
angular momentum (i.e. O, hﬁ s h\/g ,-..) unlike a classical particle which would have
a continuous spectrum. However, as in the classical case, the angular momentum is
conserved because the electron is moving in the central spherically symmetric potential
of the free atom. Electrons with / = 0, 1, 2 and 3 orbital quantum numbers are referred
to as s, p, d and f electrons, respectively (after the old terminology of sharp, principal,
diffuse and fine spectroscopic lines).

Angular momentum is a vector. Therefore, in addition to the magnitude L of the
orbital angular momentum L, the electronic state is also characterized by the components
of the angular momentum. Within quantum theory the component in a given direction
(say along the z-axis, specified experimentally by the direction of a very weak applied
magnetic field) is quantized and given by

L, = mh, 3)

where the magnetic quantum number, m, takes the (2/+1) values 0, + 1,..., + ({-1), £ L
Because the energy of the electron can not depend on the direction of the angular
momentum in a spherically symmetric potential, these (2/+ 1) states have the same
energy and are said to be degenerate. Allowing for the additional spin quantum number,
m’, which can take two values (corresponding to an up, T, or down, {, spin electron),
each I-state wil: be 2(2/+ 1)-fold dégenerate. Thus an s-shell can hold 2 electrons, a
p-shell 6 electrons, a d-shell 10 electrons and an f-shell 14 electrons as discussed in ch.
2,§1.

The state of angular momentum of the electron determines the angular dependence of
the wave function y and hence the angular dependence of the probability-density ||
The s-state has zero orbital angular momentum corresponding to a spherically symmetric
probability density which is illustrated schematically in fig. 2a. The p-state, correspon-
ding to /=1, m=0, has an angular variation given by cos 8, where is the polar angle.
Because the Cartesian coordinates (x, y, z) can be related to the spherical polar
coordinates (r, @, ¢), and in particular z=r cos 8, it is customary to refer to the /=1,
m=0 state as the p, orbital. Its probability-cloud is illustrated by the left-hand diagram
in fig. 2b. We see that it has lobes pointing out along the z-axis, in which direction there
is a maximum probability of finding the electron (cos?d =1 for 6 =0, 7). On the other

References: p. 129.
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hand, there is zero probability of finding the electron in the x—y plane (cos?8 =0 for
6 =ar/2). Since we often deal with atoms in a cubic environment in which all three
Cartesian axes are equivalent (e.g., fcc or bee crystals), we form the p, and p, orbitals by
taking linear combinations of the two remaining states corresponding to m=+ 1. They are
illustrated in fig. 2b. The probability clouds of the five d orbitals corresponding to /=2
are shown in fig. 2c. We might expect from fig. 2 that the nature of the bonding between
atoms will be very dependent on the angular momentum character of the atomic valence
electrons. This will be discussed in § 2.2.

Historically it was the discrete lines of the atomic spectra and their ordering
according to Balmer’s formula that led Bohr to postulate his famous model of the
hydrogen atom from which he deduced that the energy levels were given by

E, = —(me'/ 2w’ e}n’) / n?, @)
z
S y a
X
t=0
m=0
p z z z b
y y 7Y
x x x
pZ px py
=1
d
=2

Fig. 2. The probability clouds corresponding to s, p and d orbitals are shown in (a), (b) and (c), respectively.



Ch. 2,82 Electron theory of meals 53

where e is the magnitude of the electronic charge, &, is the permittivity of free space, and
n is a positive integer. The corresponding radii of the so-called stationary orbits were
given by

a, = (471'30712 / me2)n2. (5)

Substituting into egs. (4) and (5) the SI values m=9.1096 x 107 kg, e=1.6022 x 107"
C, dme,c*=10", ¢=2.9979 x 10° m/s and % =1.0546 x 10 Js, we have:

E, =21799x10"/n* J (6)
and
a,= n® au. @)

The ground state of the hydrogen atom, which corresponds to n=1, has an energy,
therefore, of 2.18 x 107® J and an orbital Bohr radius of 0.529 x 10™° m or 0.529 A.
Because of the small magnitude of the energy in SI units, it is customary for solid-state
physicists to work in atomic units, where the unit of energy is the Rydberg (Ry) and the
unit of length is the atomic unit (au). The former is the ground-state energy of the
hydrogen atom, the latter is the first Bohr radius. Thus, in atomic units we have

E ,=-n"Ry ®)
and
a,=n"au. ©

It follows from 2gs. (4), (5), (8) and (9) that #%/2m=1 in atomic units. Another frequent-
ly used unit is the electron-Volt, where 1 Ry=13.6 eV. In this chapter electronic energy
levels, E, will be given in either eV or Ry, whereas rotal energies will be given in either
eV /atom or Ry/atom. Conversion to other units may be achieved by using 1
mRy/atom =0.314 kcal/mole = 1.32 kJ/mole. Length scales will be given either in au or
in A, where 1 au=0.529 A.

Solution of the Schrodinger equation (1) for the hydrogen atom leads directly to
Bohr’s expression (4) for the energy levels, E,, where n is identified as the principal
quantum number. For the particular case of the hydrogen atom where the potential v(r)
varies inversely with distance r from the nucleus, the energy levels do not depend on the
angular-momentum quantum numbers / and m. Figure 3 shows the energy levels of
atomic hydrogen given by eq. (8), where use has been made of the quantum-theory resuit
that for a given n the orbital quantum number I must be such that 0 </ < (n — 1). The
total degeneracy of each orbital including spin, namely 2(2/+ 1), is given at the bottom
of the figure and accounts for the structure of the Periodic Table, discussed in the
previous chapter. In practice, the energy-level diagram of elements other than hydrogen
is different from fig. 3, because the presence of more than one electron outside the
nucleus leads to the potential v(r) no longer showing a simple inverse distance behaviour,
so that states w'th the same principal quantum number r but different orbital quantum

References: p. 129.
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Fig. 3. The energy levels of atomic hydrogen.

Ch. 2, §2

numbers / have their degeneracy lifted. This is illustrated in fig. 4, where it is clear, for
example, that the 2s level of the second-row elements B to Ne lies well below that of the
corresponding 2p level. These atomic energy levels were taken from the tables compiled
by HERMAN and SKILLMAN [1963] who solved the Schrodinger equation (1) self-
consistently for all the elements in the Periodic Table.

Figure 4 illustrates several important features to which we will be returning through-

out this chapter. Firstly, the valence energy levels vary linearly across a given period. As

ATOMIC ENERGY LEVEL (eV)
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Fig. 4. The valence s and p energy levels (after HERMAN AND SKILLMAN [1963]).
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the nuclear charge Ze increases, the electrons are bound more tightly to the nucleus.
However, rather than varying as Z%, which would be the result for the energy levels of
a hydrogenic ion of charge Ze, the presence of the other valence electrons induces the
linear behaviour observed. Secondly, the valence s and p energy levels become less
strongly bound as one moves down a given group, which is to be expected from the
hydrogenic energy levels displayed in fig. 3. But there is an exception to this rule: the 4s
level has come down and crosses below the 3s level to the left of group VB. This is a
direct consequence of the presence of the occupied 3d shell (cf. table 2, ch. 2) whose
electrons do not completely screen the core from the valence 4s electrons, which
therefore feel a more attractive potential than their 3s counterparts in the preceding row.
We will see in § 6.2 that this reversal in the expected ordering of the valence s energy
levels is reflected in the structural properties of binary AB compounds containing group
HIB elements. Thirdly, it is clear from fig. 4 that the energy difference E, — E, decreases
as one goes from the rare gases to the alkali metals, from right to left across a given
period. This will strongly influence the nature of the energy bands and the bonding in the
bulk, since if the energy difference is small, s and p electrons will hybridize to form
common sp bands.

Figure 5 shows the valence s and d energy levels across the 3d and 4d transition
metal series, after HERMAN and SKILLMAN [1963]. The energy levels correspond to the
atomic configuration d"'s, where M is the total number of valence electrons, because this
is the configuration closest to that of the bulk metal. Again there are several important
features. Firstly, we see that the energy variation is linear across the transition metal
series as the d shell is progressively filled with electrons. However, once the noble metal
group IB is reached the d shell contains its full complement of ten electrons, so that any
further increase in atomic number Z adds the additional valence electrons to the
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Fig. 5. The valence s and d energy levels across the 3d and 4d transition series (after HERMAN AND SKILLMAN
[1963D).
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sp outer shell and pulls the d energy rapidly down as is evidenced by the change of slope
in fig. 5. Secondly, whereas the valence s energy level becomes slightly less strongly
bound as one moves down a given group, the valence 4d energy level becomes more
strongly bound than the valence 3d away from the beginning of the transition-metal
series. This behaviour appears to be related to the mutual coulomb repulsion between the
negatively charged valence electrons. The 3d orbitals are much more compact than the
4d orbitals, so that the putting of electrons into the 3d shell leads to a more rapid
increase in repulsive energy than in the 4d shell. The Sd and 6s energy levels have not
been plotted in fig. 5 because relativistic effects, which are not included in the
Schrodinger equation (1), become important for heavy atoms in the Periodic Table.
Relativistic corrections are discussed in ch. 2 of HERMAN and SKILLMAN [1963]. Thirdly,
since E, — E, is about 3 eV in copper but 6 €V in silver, it is not surprising that the
noble metals display different physical characteristics.

A concept that is often used in physical metallurgy to discuss and order properties is
that of atomic size. The microscopic description of the atom, which is provided by
quantum mechanics, should be able to give some measure of this quantity. We have seen
that quantum mechanics replaces the stationary Bohr orbits of radius a, by orbitals which
are not located with a fixed radius but are smeared out in probability-clouds described by
|¢|%. The angular dependence of these probability-clouds has been displayed in fig. 2.
We now discuss their radial dependence.

The solution of the Schrédinger equation for a central spherically symmetric potential
can be written in separable form, namely:

W () = R, (1)L (6, &), (10)

where r, 8 and ¢ are spherical polar coordinates. As expected, the angular distribution
depends only on the angular-momentum quantum numbers / and m, the functions
Y,"(0 ¢ ) being the so-called spherical harmonics (see, e.g., SCHIFF [1968]). Y, is a
constant and Y,° is proportional to cos # as we have already mentioned. The radial
function R,(r) depends on the principal and orbital quantum numbess, » and / respective-
ly, and therefore changes with energy level E,. For the hydrogen atom the first few
radial functions are (in atomic units)

R (r)=2¢7, (11)
1 -

Rgs(r)=ﬁ(1—-%r)e ", (12)
1,

Ry(’F*ﬁ“‘v 2. (13)

A conceptually useful quantity is the probability of finding the electron at some distance
r from the nucleus (in any direction), which is determined by the radial probability
density, P, (r)=r?R} (r.

Figure 6 shows the radial function R, and the probability density, P,, as a function
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of r for the 1s, 2s and 2p states of hydrogen. We see that there is maximum probability
of locating the electron at the first Bohr radius «, for the 1s state and at the second Bohr
radius a, for the 2p state. The average or expectation value of the radial distance r is
given by:

r=n2f14 401 —l(l+1)/n2)], (14)

so that ;= 1.5a,, F,;=1.5a, and 7y, =1.25a,. Therefore, the 2s orbital is more extended
than the corresponding 2p orbital, as is evident from fig. 6. This is due to the fact that
all solutions of the Schrodinger equation must be orthogonal to one another, i.e., if i,
and 4,,,,- are any two solutions and ¢* is the complex conjugate of ¢, then

m

[ Wt dr = 0. (15)

If the states have different angular-momentum character then the angular integration over
the spherical harmonics [cf. (eq. 10)] guarantees orthogonality. But if the states have the
same angular-momentum character then the orthogonality constraint implies that:

Bohr radius a,
ay a; a;

02} 02
Rzp —’7"—_“ T 1 Pzp
of- - 0

P
1025

5 10

Fig. 6. The radial function R,; (dashed lines) and the probability density, P, (solid lines) as a function of r for
the 1s, 2s and 2p states of hydrogen.
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J, Ru) Ry (r)r? dr=0. (16)
For the orbitals drawn in fig. 6, therefore, we must have
J. Ru(r) Ry (r)r dr =0, )

which can be verified by substituting egs. (11) and (12) into this equation. This is the
origin of the node at r=2 au in R,(r), where the radial function changes sign. The 3s
radial function must be orthogonal to the 2s and, therefore, has two nodes, the 4s has
three nodes, etc. Just as the energetically lowest I s state has no nodes, so the 2p, 3d and
4f states are nodeless since they correspond to the states of lowest energy for a given /
(see fig. 3).

The position of the outer node of the valence electron’s radial function may be used
as a measure of an /-dependent core size, since we have seen that the node arises from
the constraint that the valence state be orthogonal to the more tightly bound core states.
This relationship between node and core size has been demonstrated quantitatively for the
case of the sp core of the 4d transition metals (PETTIFOR [1977] and § 4.3) and has been
discussed for other elements by BLOCH and SCHATTEMAN [1981]. A not unrelated
measure of size has been adopted by ZUNGER [1980] who defined /-dependent radii R,
by the condition (cf. ST. JOBN and BLOCH [1974]) that

vi"(R)=0, (18)

where v/ rr(r) is some effective angular-momentum dependent atomic potential (which is
given by a first-principles screened pseudopotential, cf. §3.3). Figure 7 shows the
resultant values of -R,” and ~R , ! for the sp bonded elements. We see a linear variation
across a given period and a close similarity with the valence energy level behaviour
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Fig. 7. The negative of the inverse s and p pseudopotential radii (after ZUNGER [1980]).
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illustrated in fig. 4. As expected, the s and p radii contract across a period as the nuclear
charge Ze increases, and they expand down a column as additional full orbital shells are
pulled into the core region. Figure 7 clearly demonstrates that the sizes of the second-row
elements B, C, N and O are a lot smaller than those of the other elements in their
respective groups, a fact which manifests itself in their different alloying behaviour (cf.
fig. 38, below).

2.2. Bond formation

In this subsection we consider what happens to the atomic energy levels and wave
functions as two atoms A and B are brought together from infinity to form the AB
diatomic molecule.

Suppose the A and B valence electrons are characterized by the free atomic energy
levels E, and E; and wave functions ¢, and i, respectively. Let us assume, following
the experience of theoretical quantum chemists, that the molecular wave function 5 can
be written as a linear combination of the atomic orbitals,

Uhp = Ca¥ + cpiy, (19)

where ¢, and ¢y are constant coefficients. Then it follows from the Schrodinger eq. (1)
that

(H - EXcyf + caipy) =0 (20)

where H is the Hamiltonian operator for the AB dimer, namely A=- V2 + V,, where we
have used the fact that #2/2m=1 in atomic units. Multiplying by ¢, (or ;) and inte-
grating over all space we find the well-known secular equation (taking * =y as ¢ is

real)

H,.-E H,,-ES.lc

[ AA AB AB:”: A:l -0 @1
Hy, - ESyy, Hpyy—-E |

where the Hamiltonian and overlap matrix elements are given by
H, = [y, Ay, dr (22)

and

S, = [ty dr. (23)

The Hamiltonian matrix elements can be simplified by assuming that the molecular
potential V,, is given by the sum of the free atom potentials V, and V},. The diagonal
elements H,, and Hyy then take the free atom values E, and Ej respectively, provided
the energy shift due to the neighbouring potential fields can be neglected. The
off-diagonal element H,, can be writien

Hy = [ 4,V dr + ES (24)

References: p. 129.
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where E =L(E,+Eg), V=4(V,+Vy), and §=S5,5. Substituting in equation (21) we obtain
the secular equation

[_J[AE— (E-E) h-(E- F)S}[CA] o 25)

h-(E-E)S +AE-(E-E)

where AE=(E; — E,) is the atomic energy level mismatch and h=I(//A—I7(//Bdr is the
hopping or bond integral between atoms A and B. For s orbitals h is negative since the
average potential V is attractive.

Equation (25) may be solved for the eigenvalues and eigenvectors. To first order in
the overlap integral S

Ei = E-hst(1+8)h 26)
and
Uin = Catha + C;‘/’B 27
where
%
ot = —j—[l +(3-5)/(1 +52)%] (28)
Y
it = 1712-[1¢(5+s)/(1+52)’5] 29

with 8 =AE/2|h|. Therefore, as shown in Fig. 8 s valent diatomic molecules are
characterized by bonding and anti-bonding states which are separated in energy by the
amount w,, such that

Wy = 4k + (AE). (30)

The formation of the bond is accompanied by a redistribution of the electronic
charge. It follows from equation (27) that the electronic density which corresponds to
occupying the bonding state with two valence electrons of opposite spin, namely
pap=2(,g)? may be written in the form

Pas(r) = (1 + ai)pA(r) + (1 - ai)pB(r) + @, Piopa () €2y
where

Paw(r) = [t ()] (31a)
and

Prona(r) = 24,(r) S[PA + pg(r ] (32)

a; and o, are determined by the normalised energy level mismatch & through
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o =8/(1+8)" (33)
and
a, =1/(1+8)" (34)

For the case of homonuclear diatomic molecules 8 =0, so that the change in the
electronic charge distribution on forming the molecule is given solely by the bond charge
contribution py,,; in equation (31). This is illustrated in fig. 9 for the case of the
hydrogen molecule where we see that, as expected, the electronic charge has moved from
the outer regions of the molecule into the bond region between the atoms. We should
note from equations (32) and (23) that the total charge associated with p,,, over all
space is identically zero. Equation (32) shows explicitly that the formation of the bond
is a quantum interference effect, the charge piling up in the bond region because of the
interference contribution i, 5. In practice, in order to satisfy the virial theorem, the
formation of the bond is accompanied by some modification of the free-atom orbitals
4 5 which has been discussed by RUEDENBERG [1962] and SLATER [1963]. This leads
to the energy levels E, 3 not being directly identifiable as the free-atom energy levels, a
point which will be discussed further in § 5.2 on transition-metal bonding.

For the case of a heteronuclear diatomic molecule 8 #0, so that the electronic charge
distribution in equation (31) contains the ionic contributions «; p, and —; py in addition to
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¥ap
Ea — 2

A
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Fig. 8. The bonding (lower lines) and antibonding (upper lines) states for (a) the homonuclear and (b) the
heteronuclear diatomic molecule.
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the covalent bond charge contribution & p,.¢ @; and a, are said to measure the degree
of ionicity and covalency of the bond (see, for example, COULSON et al. [1962], PHILIPS
[1970] and HARRISON [1980]). Note that a’+a’=1.

The term covalency will be used in this chapter to describe the bonding which arises
from the quantum mixing of valence states on neighbouring sites into the final state wave
function. It is not necessarily associated with pairs of electrons of opposite spin, as the
lone electron in the hydrogen molecular ion H, , for example, shows all the character-
istics of the covalent homonuclear bond discussed above.

A diatomic molecule has cylindrical symmetry about the internuclear axis, so that
angular momentum is conserved in this direction. Quantum-mechanically this implies that
the state of the molecule is characterized by the quantum number m, where m# gives the
component of the angular momentum along the molecular axis. However, unlike the free
atom where the (21+ 1) different m values are degenerate, the degeneracy is lifted in the
molecule. By analogy with the s, p, d, ... states of a free atom representing the orbital
quantum numbers 1=0, 1, 2, ..., it is customary to refer to o, 1, 8, ... states of a
molecule as those corresponding to m=0, £1, 2, ... respectively.

Figure 10 illustrates the different characteristics of the o, 7 and é bonds. We have
seen from our previous discussion on the homonuclear molecule that a given atomic
energy level will split into bonding and antibonding states separated by 2|h|, where h
is the matrix element that couples states ¥, and s, together through the atomic potential
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Fig. 9. The electron density of the homonuclear molecule (upper panel) can be regarded as the sum of the non-
interacting free-atom electron densities (lower panel) and the quantum-mechanically induced bond density
(middle panel). The dashed curve represents the first-order result, eq. (32), for the bond density.
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Fig. 10. The formation of o, 7 and 5 bonds from s, p and d orbitals, see text.

v. If ¢, are spherically symmetric s orbitals, then a sso- bond is formed as shown
schematically in fig. 10a. If i, ; are p orbitals whose probability clouds are drawn in fig.
2, then the threefold degenerate free atom level (excluding spin degeneracy) splits into
the singly degenerate ppo molecular state (m=0) and the doubly degenerate ppw
molecular state (m=x1) shown in fig. 10b. If i, 5 are d orbitals, whose probability
clouds are sketched in fig. 2, then the fivefold degenerate free atom level splits into the
singly degenerate ddo molecular state (m =0) and the two doubly degenerate molecular
states dd7r (m=zx1) and ddé (m=12) as shown in fig. 10c. For the case of a hetero-
nuclear molecule such as NbC where the carbon p orbitals overlap the niobium d orbitals, a
pd bond will be formed from the pdo and pdar states illustrated in fig. 10d. It is clear from
fig. 10 that the o bond is relatively strong since the angular lobes point along the molecular
axis and can give rise fo a large overlap in the bonding region. On the other hand, the
ppm and ddé bonds will be relatively much weaker since their angular lobes extend in
the plane perpendicular to the molecular axis. The importance of o, 7 and 8 bonding in
determining the behaviour of the bulk band structure will be demonstrated in § 4.1.

The term covalency will be used in this chapter to describe the bonding which arises
from the quantum mixing of valence states on neighbouring sites into the final-state wave
function. It is not necessarily associated with pairs of electrons of opposite spin, as the
lone electron in the hydrogen molecular ion H{, for example, shows all the character-
istics of the covalent homonuclear bond discussed above.

2.3. Band formation

Figure 11 illustrates how the free-atom energy levels E and E, broaden into bands as the
atoms are brought together from infinity to form the bulk. Just as the single atomic
energy level splits into two energy levels on bringing two atoms together (cf. fig. 8a), so
the single level on a free atom splits into N levels on bringing N atoms together, thereby
conserving the total number of electronic states. These levels lie between the bottom of
the band, whick represents the most bonding state, and the top of the band, which
represents the most antibonding state. Since N = 10? for 1 cm® of bulk material, these N
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Ep

ENERGY

33

VOLUME
Fig. 11. Energy band formation.
levels form a quasi-continuous band of states and it is customary to work with the

density of states, n(E), where dN=n(E) dE gives the number of states in the energy range
from E to E+dE. The conservation of states requires that:

2 s
J:nu(E)dE =< 6 fora=1p, 35)
10 d

where n,(E) is the density of states per atom associated with a given atomic s, p or d
level.

In metals at their equilibrium volume, the bands corresponding to different valence
energy levels overlap and mix as shown on the left-hand side of fig. 11. The mixing or
hybridization in simple metals is such as to produce nearly-free-electron-like behaviour
of the energy bands and density of states, which is discussed in the following section. On
the other hand, the density of states in transition metals is dominated by a well defined
d band, which is accurately described within the tight-binding approximation by a linear
combination of atomic d orbitals and is discussed in § 4.

3. Simple-metal bands

3.1. The free-electron approximation

It had been realized before the advent of quantum mechanics that some metallic
properties such as electrical or thermal conductivity could be well understood by
regarding the valence electrons as a non-interacting gas of particles which were free to
travel throughout the metal without being affected by the parent ions. However, it
remained for quantum mechanics to remove a striking failure of the classical model,
namely its inability to explain the linear temperature dependence of the electronic heat
capacity, since according to classical statistical mechanics a free particle has a constant
heat capacity of 3, where k; is the Bolizmann constant.

The Schrodinger equation for a free-electron gas may be written in atomic units as



Ch. 2, §3 Electron theory of metals 65

2 2 2
- (‘9_ + 5‘9;2 + %2-) Wr) = Eulr) (36)

If the electrons are contained within a box of side L then a normalized solution of eq.
(36) is the plane wave:

l//k(r) = L—3/2 eik-r, (37)
which can be seen by writing ker as k,x+k,y+kz and substituting eq. (37) into eq. (36).

This solution corresponds to an electron with kinetic energy E given by:
12 .12 412 _ 2
E=k +k, +k; =k". (38)

Since the kinetic energy equals p?/2m where p is the electronic momentum, it follows
from eq. (38) that

p =2mE = 2mk* = W*k?, (39)
using #%/2m=1. Thus, we have recovered the de Broglie relation
p=hk=h/\ (40)
because k=27/A where A is the wavelength of the plane wave.
The wavelergth, A, of the plane wave is constrained by boundary conditions at the
surface of the box. For the case of the Bohr orbits in the hydrogen atom, de Broglie had
argued that A must be such that integer multiples of the wavelength fit around the

circumference of the orbit. Similarly, imposing periodic boundary conditions on the box,
which in one dimension corresponds to joining both ends in a closed ring, we have that

nA, = ny)\y =n,A, =L, 41

where n,, n,, n, are integers. Therefore,
27
k= —f(nx,ny,nz) (42)

so that the allowed values of the wave vector k are discrete and fall on a fine mesh as
illustrated in fig. 12.

By Pauli’s exclusion principle each state corresponding to a given k can contain fwo electrons
of opposite spin. Therefore, at absolute zero all the states & will be occupied within a sphere of
radius kg, the so-called Fermi sphere, because these correspond to the states of lowest energy (cf.
fig. 13a). The Fermi wave vector k; may be related to the total number of valence electrons, N, by

$mkl2v/(2w)’ = N, (43)

where V=17, since it follows from eq. (42) that unit volume of k-space contains V/ (21r)*
states capable of holding two electrons each. Thus,

ke = (3mN/V)" (44)

References: p. 129.
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fFfe._rml_SPh.ere_ %

Fig. 12. The fine mesh of allowed k values. At absolute zero only the states k within the Fermi sphere are occupied.

and the corresponding Fermi energy, E;. is given by
2/3
E. = (3m°N/V) . 45)

The electron concentration, N/V, for sodium, magnesium and aluminium at their equilibrium
atomic volumes is such that the Fermi energy Ei equals 3.2, 7.1 and 11.6 eV respectively.

The free-electron density of states n(E) may be obtained from eq. (43) by writing it
in the form

N(E) = (V/3m*)E™", (46)

where N(E) is the total number of states of both spins available with energies less than
E. Differentiating eq. (46) with respect to the energy gives the density of states:

n(E) = (v/2m* ) E", 47

which is illustrated in fig. 13b. We can now see why the experimental electronic heat
capacity did not obey the classical result of 3k,. By Pauli’s exclusion principle the
electrons can be excited only into the unoccupied states above the Fermi energy E.

a t nlE) b

0 kg k EF E

Fig. 13. The free-electron energy dispersion E(k) (a) and density of states n(E) (b).
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Therefore, only those electrons within about ;T of Ep. will have enough thermal energy
to be excited across Eg. Since kT = 0.03 eV at room temperature, these electrons will
comprise a very small fraction, f = kz7/E;, of the total number of electrons N. The
classical heat capacity is accordingly reduced by this factor £, as is observed experimen-
tally. Using the correct Fermi-Dirac statistics to describe the occupation of the electron
states, we find (see, e.g., KITTEL [1971]):

2
T
C, = —Z—kB(kBT/EF) (48)
in agreement with the previous qualitative argument.

3.2, Nearly-free-electron approximation

The electrons in a real metal are affected by the crystalline lattice, since the potential
which they feel is not uniform but varies periodically as

v(r + R) = v(r) (49

where R is any lattice vector. (For simplicity we will be considering only those crystal
structures, such as fcc or bec, in which there is only one atom per primitive lattice site,
in contrast to hcp or the diamond structure, for example, which have a basis of nvo
atoms, cf. KiTTEL [1971].) Consider first an infinite one-dimensional periodic lattice of
atoms with repeat distance a such that

v(x + na) = v(x). (50

Because all the atoms are equivalent, the probability of locating the electron about a site
must be the same for all sites, so that:

|¢(x + na)l2 = |¢(x)|2. (&1}
For n=1 this implies that
Y(x + a) = e“y(x), (52)

where k is a number (in units of 1/a) which specifies the phase factor ¢** linking the
wave functions on neighbouring sites. Repeating eq. (52) n times gives:

Y (x + na) = e™ P, (x), (53)

which is the usual statement of Bloch's theorem in one dimension. Thus the translational
symmetry of the lattice leads to the eigenfunctions being characterized by the Bloch
vector, k. However, k is only defined modulo (27r/a), since k+m(27/a) results in the
same phase factor in eq. (53) as k alone. It is, therefore, customary to label the wave
function , by restricting k to lie within the first Brillouin zone, defined by

~m/a <k < +m/a. (54)

References: p. 129.
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We note that in one dimension na is a direct lattice vector, whereas m(2w/a) is a
reciprocal lattice vector. Their product is an integer multiple of 27r.

Extending these ideas to three dimensions, Bloch’s theorem, eq. (53) may be written
as:

g (r+ R) =e*"y, (r), (55)

where R is any direct lattice vector which may be expressed in terms of the fundamental
translation vectors a,, @,, a as:

R=na, +n,a, +na,, (56)
where n,, n,, n, are integers. The corresponding reciprocal lattice vectors are defined by:
G =mpb, +mb, + msb,, (67

where m,, m,, m; are integers and the fundamental basis vectors are:*
b = (2frr/fr)a2 X a,

= (27r/7-)a3 xXar (58)

bZ
b, = (2m/7)a, x a,

with 7= |a,e(a, X a,)| being the volume of the primitive unit cell defined by a,, a, and
a,. It is apparent from their definition (58) that

a, b, = 218, (59)

where 6,=1 for i=j but zero otherwise.

The phase factor in eq. (55) only defines the Bloch vector within a reciprocal lattice
vector G since it follows from egs. (56)—(59) that GeR is an integer multiple of 2. Just
as in the one-dimensional case, it is customary to label the wave function i, by restrict-
ing k to lie within the first Brillouin zone which is the closed volume about the origin in
reciprocal space formed by bisecting near-neighbour reciprocal lattice vectors. For
example, consider the simple cubic lattice with basis vectors a,, a,, a, along the Cartesian
axes x, y, z respectively. Because a,=a,=a,=a it follows from eq. (58) that the
reciprocal space basis vectors b,, b,, b, also lie along x, y and z respectively, but with
magnitude (27/ a). Thus, the reciprocal lattice is also simple cubic and it is shown in fig.
14 in the x—y plane. It is clear that the bisectors of the first nearest-neighbour (100)
reciprocal lattice vectors form a closed volume about the origin which is not cut by the
second or any further nearest-neighbour bisectors. Hence, the Brillouin zone is a cube of
volume (2w/a)’. From eq. (42) it contains as many allowed k points as there are
primitive unit cells in the crystal. Figure 15 illustrates the corresponding Brillouin zones
for the body-centred cubic and face-centred cubic lattices (see, e.g., KITTEL [1971)).

The solutions E; of the Schrédinger equation for & lying within the Brillouin zone

* Note the additional factor of 27r compared to the definition of reciprocal lattice vectors in the appendix of ch. 11.
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Fig. 14. The first four zones of the simple cubic lattice corresponding to k, = 0. The dotted circle represents the
cross-section of a spherical Fermi surface.

determine the band structure. Figure 16 shows the band structure of aluminium in the
[100) and |111) directions, after MORUZZI et al. [1978]. It is very similar to the free-
electron band structure

E, =(k+G)’ (60)

which results from folding the free-electron eigenvalues shown in fig. 13a into the first
Brillouin zone. This “folding-in” is illustrated in fig. 14 for the case of the simple cubic
lattice. For this two-dimensional cross-section we see that the four contributions to the
second zone 2 may be translated through (100) reciprocal lattice vectors into the four

z

fcc bcc
Fig. 15. The fcc and bee Brillouin zones. I' labels the centre of the zone. The intersections of the |100) and

{111) directions with the Brillouin-zone boundary are labelled X and L in the fcc case and H and P in the bee
case.
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zones 2, which together completely fill the reduced Brillouin zone in the x—y plane.
Similarly, the third and fourth zones shown in fig. 14 may each be translated through
reciprocal lattice vectors to fill the first Brillouin zone. For the fec lattice the two lowest
eigenvalues given by eq. (60) in the |100) direction are:

EP =k, E®=(k+g), 61)

where k=(k,, 0, 0) and g=(Q27/ a)(2, 0, 0). These two eigenvalues are degenerate at the
zone boundary X, where k=(27/a)(1, 0, 0) because from eq. (61) they both take the
value 47%/a*. For aluminium a=7.60 au and 47%/4*=9.3 eV, so that the two free-
electron eigenvalues given by eq. (61) reflect the broad behaviour of the band structure
shown along I'X in fig. 16.

However, in order to recover the energy gap at the zone boundary X, it is necessary to
lift the free-electron degeneracy by perturbing the free-electron gas with the periodic potential
of the crystalline lattice. Within the nearly-free-electron (NFE) approximation this is
achieved by writing the wave function ¢, as a linear combination of the plane-wave
eigenfunctions corresponding to the two free-electron eigenvalues given by eq. (61); that is:

v =ty + e, (62)
where from eq. (37):
O = v exp(ik o r), (63)

O = v expli(k + g) e r] (64)

Substituting eq. (62) into the Schrodinger equation (1), pre-multiplying by P ory
and integrating over the volume of the crystal, V, yields the NFE secular equation:

k* - E v(200) ¢
2 =0. (65)
v(200) (k + g) -E)c,
v(200) is the (27/a)(2, 0, 0) Fourier component of the crystalline potential, where

l iger
u(g) = Jolr) e 7dr. (66)

The energy, E in eq. (65) is measured with respect to the average potential v(000).
Non-trivial solutions exist if the secular determinant vanishes, i.e. if

k* — E v(200)

=0. 67
v(200) (k+g)° - E ©7

This quadratic equation has solutions

E =3[k +(k+g) ]} {[(k vgy -k + [2v(200)]2}m. (68)
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Fig. 16. The band structure of fcc aluminium (after MORUZZI ef al. [1978]).

Therefore, at the zone boundary X where k*=(k +g)?, the eigenvalues are given by
E, = 4m*/a® £ v(200) (69)
and the eigenfunctions are given from egs. (62) and (65) by:

cos (2mx/a)

sin (2mx/a) (10)

(llx = (2/V)l/2 X{
Thus the presence of the periodic potential has opened up a gap in the free electron band
structure with energy separation

EX, = 2}v(200)| a1
Because the energy gap at X in aluminium is about 1 eV (cf. fig. 16), the magnitude of
the Fourier component of the potential within this simple NFE treatment is only 0.5 eV.
This is small compared to the free-electron Fermi energy of more than 10 eV in
aluminium and, therefore, the band structure E, and the density of states n(E) are nearly-
free-electron-like to a very good approximation.

The NFE behaviour has been observed experimentally in studies of the Fermi surface,
the surface of constant energy Ep in k-space, which separates filled states from empty
states at 7=0. For a free-electron gas the Fermi surface is spherical as illustrated in fig.
12, However, in simple metals we have seen that the free-electron band structure is
perturbed by the periodic lattice potential, and energy gaps open up across zone bound-
aries. As illustrated in fig. 14 for the simple cubic lattice, a spherical free-electron Fermi
surface (whose cross-section is represented by the circle of solid dots) will be folded into
the first Brillouin zone by the relevant reciprocal lattice vectors. The states in the second
zone 2, for example, are folded back into 2’ in the reduced zone, thereby giving rise to
the shaded occupied regions of k-space and the corresponding Fermi surface indicated in
the lower panel of fig. 14. Similarly, the occupied states in the third and fourth zones are
folded back into the reduced Brillouin zone as shown. Therefore, even though the
crystalline potential may be very weak, it is sufficient to destroy the spherical free-
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Fig. 17. The free-electron Fermi surface of aluminium (after HARRISON [1959]).

electron Fermi surface and to create a new Fermi surface topology, as is illustrated in fig.
14 by the appearance of the electron pockets in the third and fourth zones. A very simple
procedure for constructing the Fermi surfaces of free-electron-like materials has been
suggested by HARRISON [1959, 1960] and fig. 17 shows the resulting Fermi surface of
fcc aluminium. A much more detailed treatment of Fermi surfaces may be found in
HARRISON [1966], HEINE and WEAIRE [1970] and KiTTEL [1971], where the interested
reader is also referred for a discussion of transport properties and concepts such as holes
and effective mass.

3.3. Volume dependence

Although the energy bands of simple metals appear to be describable by the NFE
approximation as discussed in the previous subsection, there is a major difficulty. If the
(200) Fourier component of the aluminium lattice potential is estimated from first
principles using eq. (66), then

(200) = -5 eV. (72)

But the magnitude of this is ten times larger than the value we obtained by fitting to the
first-principles band structure of MORUZzI et al. [1978], namely |v(200)| =0.5 eV.
Moreover, by looking at the symmetry of the eigenfunctions at X, we see from fig. 16
that the bottom of the band gap corresponds to X, or p-like symmetry whereas the top
of the band gap corresponds to X, or s-like symmetry (see, e.g., TINKHAM [1964]). It
follows from fig. 2 and eq. (70) that the NFE states at the bottom and top of the band
gap correspond to sin (27rx/a) and cos (27x/ a), respectively. Therefore, in the state with
lower energy the electron is never located in the planes containing the ion cores, which
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correspond to x = na/2 for the fcc lattice, since sin (27rx/ a) vanishes. Instead, the electron
has maximum probability of being located midway between these atomic planes. This
implies that the relevant Fourier component of the atomic potential is repulsive, thereby
driving the electrons away from the ion cores, i.e.

v™(200) = +0.5 eV. (73)

The origin of the discrepancy between eqs. (72) and (73) is easily found once it is
remembered that the NFE bands in aluminium are formed from the valence 3s and 3p
electrons. These states must be orthogonal to the s and p core functions as outlined in
§2.1 and they, therefore, contain nodes in the core region as illustrated for the case of
the 2s wavefunction in fig. 6. In order to reproduce these very-short-wavelength
oscillations, plane waves of very high momentum must be included in the plane-wave
expansion of ¢,, so that a linear combination of only the two lowest energy plane waves
in eq. (62) is an extremely bad approximation. In 1940, HERRING circumvented this
problem by starting at the outset with a basis of plane waves that had already been
orthogonalized to the core states, the so-called orthogonalized plane-wave (OPW) basis.
The OPW method led to a secular determinant for the eigenvalues that was identical to
the NFE determinant, except that in addition to the Fourier component of the crystal
potential ¥(G) there is also a repulsive contribution coming from the core-orthogonality
constraint. This “ended to cancel the attractive coulomb potential term in the core region,
thereby resulting in much weaker net Fourier components and hence nearly-free-electron-
like behaviour of the band structure E, for the simple metals.

This led to the concept of the pseudopotential in which the true potential v(r) in the
Schrodinger equation (1) is replaced by a much weaker potential v, (r) which is chosen
to preserve the original eigenvalues E, so that

(V2 +v,), = B, (74)

(see, e.g., HARRISON [1966] and HEINE and WEAIRE [1970]). The pseudo-eigenfunctions,
¢, however, differ from the true eigenfunctions ¢, because in general they do not contain
the nodes in the core region as these have been pseudized-away by the inclusion of the
repulsive core component in v, A plane-wave expansion of ¢, therefore, leads to rapidly
convergent eigenvalues E, in eq. (74). Thus, the NFE approximation wil! provide a good
description of the band structure of simple metals provided the Fourier components of the
pseudopotential rather than the true potential are taken in the NFE secular equation (67).

Pseudopotentials are not unique, and certain criteria have been given for their choice
(see, e.g., BACHELET et al. [1982] and VANDERBILT [1990]). However, in this chapter we
shall describe only the Ashcroft empty-core pseudopotential because of its simplicity. In
1966, ASHCROFT assumed that the cancellation between the repulsive core-orthogonality
contribution and the attractive coulomb contribution is exact within some ion core radius
R., so that:

ion 0 f r< Rc 75
v (=102, 5 & {73)
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Fig. 18. The Ashcroft empty-core pseudopotential.

where the ionic potential falls off coulombically outside the core (cf. ¢*=2 in atomic
units). The Ashcroft empty-core pseudopotential is shown in fig. 18. The resulting ionic
lattice has Fourier components given by eq. (66), namely:
u;fs“ (q) = - (SwZ/qu) cos gR_, (76)
where () is the volume per atom. In the absence of the core R,=0 and the Fourier
components are negative as expected. However, in the presence of the core the Fourier
components oscillate in sign and may, therefore, take positive values. For the case of
aluminium the Ashcroft empty-core radius is about 1.2 au (cf. table 16-1 of HARRISON
[1980]) and v;;" (200) will, therefore, be positive. The corresponding Fourier components
v,s(q) are obtained from eq. (76) by allowing the free-electron gas to screen the bare
ionic lattice. The resulting Fourier components of the aluminium potential are illustrated
in fig. 19 for the more sophisticated HEINE and ABARENKOV [1964] pseudopotential. We
see that the values of vps(lll) and ups(200) are in good agreement with the values, 0.17
and 0.53 eV respectively, which are obtained from fitting the first-principles band structure
within the NFE approximation (cf. fig. 16, eq. (71) and p. 52 of MORUZZI e al. [1978)).
Figure 20 shows the densities of states, n(E) of the sp-bonded simple metals, which
have been computed from first principles by MORUZZI et al. [1978]. We see that Na, Mg

vigp [ ,.'/\

Ry}

Fig. 19. The HEINE AND ABARENKOV [1964] aluminium pseudopotential v,(g). The two points give the values
of v, (111) and v,,(200) deduced from fig. 16 using eq. (71).
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Fig. 20. The density of states, n(E), of sp-bonded metals (after MorRUZZI et al. [1978)).

and Al across a period and Al, Ga and In down a group are good NFE metals, because
their densities of states are only very small perturbations of the free-electron density of
states shown in fig. 13b. However, we see that Li and Be display very strong deviations
from free electron behaviour. This is a direct consequence of these elements having no
p core electrons, so that there is no repulsive core-orthogonality component to cancel the
attractive coulomb potential which the valence 2p electrons feel. This leads to sizeable
Fourier components of the potential and hence very large band gaps. For example, in fcc
Be, Egkp =5.6 eV compared to the gap of only 0.34 eV in Al, where L is the point
(2 /a)(1,4,5) in fig. 15. In fact, the band gaps in different directions at the Brillouin zone
boundary (cf. fig. 16) are nearly large enough for a gap to open up in the Be density of
states, thereby leading to semiconducting behaviour. We note that the effective potential
which the valence electrons feel in Li or Be depends on whether they have s- or p-type
character, because there are ls core states but no p core states. Such an l-dependent
potential is said to be non-local (cf. HARRISON [1966] and HEINE and WEAIRE [1970]),
whereas the Ashcroft empty-core pseudopotential of fig. 18 is local.

The heavier alkalis K and Rb and alkaline earths Ca and Sr have their occupied
energy levels affected by the presence of the respective 3d or 4d band which lies just
above the Fermi energy (cf. the relative positions of the s and d free-atom energy levels
in fig. 5). This leads to a more than free-electron admixture of /=2 component into the
occupied energy states, which requires the use of non-local pseudopotential theory for
accurate agreement with experimental properties (see e.g., TAYLOR and MACDONALD
[1980] and MoRrIARTY [1982]). It is clear from fig. 20 that Sr is not a simple NFE metal
since the perturbation is very strong and the hybridized bottom of the d band has moved
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below the Fermi energy. Just as in Be, a gap has nearly opened up at Ep, and theoretical-
ly it requires only 0.3 Gpa of pressure to turn Sr into a semiconductor, which is in
reasonable agreement with high-pressure resistivity data (JAN and SKRIVER [1981]). The
group-1IB elements Zn and Cd, on the other hand, have their valence states strongly
distorted by the presence of the filled d band. In fig. 5 we see that the 5s—4d energy
separation in Cd is larger than the 4s 3d separation in Zn, which results in the Cd 4d
band lying about 1 eV below the bottom of the valence 5sp band (p. 152 of MORUZZ1
et al. [1978)). Figure 20, therefore, demonstrates that not all simple metals display good
NFE behaviour and particular care needs to be taken with Li, Be and the group-II
elements on either side of the transition metal series.

The presence of the ion core in simple metals determines the volume dependence of
the energy bands. Wigner and Seitz had calculated the behaviour of the bottom of the
NFE band in sodium in their classic paper of 1933. They argued that since the bottom of
the band corresponded to the most bonding state, it satisfied the bonding boundary
condition implicit in eq. (27), namely that the gradient of the wave function vanishes
across the boundary of the Wigner—Seitz cell. This cell is formed in real space about a
given atom by bisecting the near-neighbour position vectors in the same way that the
Brillouin zone is formed in reciprocal space. The Wigner-Seitz cell of the bee lattice is
the fcc Brillouin zone and vice versa (cf. KiTTEL [1971]). Since there are 12 nearest
neighbours in the fec lattice and 14 first and second nearest neighbours in the bec lattice,
it is a very good approximation to replace the Wigner-Seitz cell by a Wigner-Seitz
sphere of the same volume (cf. fig. 15). Imposing the bonding boundary condition across
the Wigner Seitz sphere of radius S, where

0 =4x8, an
the energy of the bottom of the band I'; is fixed by
[dRS(r’ E)/dr]r=S.E=F1 = 0’ (78)

where R (r; E) is the /=0 solution of the radial Schrodinger equation within the Wigner—
Seitz sphere. The bonding boundary condition is determined by the /=0 radial function
because the bottom of the NFE band at I'; is a pure s state (cf. fig. 16).

Figure 21 shows the resulting behaviour of the bottom of the band I';, in sodium as
a function of S after WIGNER and SeITz [1933]. We see that as the free atoms are
brought together from infinity, the bonding state becomes more and more bonding until
about 3 au when I, turns upwards and rapidly loses its binding energy. This behaviour
is well described at metallic densities by the Frohlich—~Bardeen expression,

™ = —(32/5) [1 - (RC/S)Z] (79)

since the single valence electron of sodium is assumed to feel only the potential of the
ion at the Wigner—Seitz sphere centre so that over the boundary

v(S) = -22/8, (80)
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Fig. 21. The total energy, U, as a function of Wigner—Seitz radius, S, for sodium (after WIGNER and SEITZ
[1933]). The bottom of the conduction band, I';, is given by the lower curve, to which is added the average
kinetic energy per electron (the shaded region).

where Z=1 for the monovalent alkali metals (see, e.g., § 3.2 of CALLAWAY [1964]). R,
may be identified as the radius of an Ashcroft empty-core pseudopotential, because the
potential energy of one electron distributed uniformly throughout the Wigner—Seitz
sphere with an Ashcroft ionic potential at its centre is given by eq. (79). It follows from
eq. (79) that the maximum binding energy of this state T',, occurs for

S, =~3R.. 81

Since for sodium R, = 1.7 au (ASHCROFT and LANGRETH [1967] and HARRISON [1980)),
eq. (81) predicts that I'}, has a minimum at about 2.9 au. This is in good agreement with
the curve in fig. 21, which was obtained by solving the radial Schrodinger equation
subject to the boundary condition eq. (78).

WIGNER and SEITZ [1933] assumed that the valence electrons of sodium have free-
electron-like kinetic energy and density of states, which from fig. 20 is clearly a good
approximation. It follows from eqs. (45) and (77) that the Fermi energy E; may be
written as:

E, = T" +(9m/4)” /5. (82)

In § 5 we follow up our understanding of the behaviour of the energy bands by discuss-
ing the fotal energy of simple metals and the different factors influencing bulk properties
such as equilibrium atomic volume and bulk modulus.

4. Transition-metal bands

4.1. Tight-binding approximation

Transition metals are characterized by a partially filled d band, which is well
described within the tight-binding (TB) approximation by a linear combination of atomic
d orbitals. We shall illustrate the TB method (see, e.g., CALLAWAY [1964], PETTIFOR
[1992] and SuttoN [1993]) by considering first the simpler case of a lattice of atoms
with overlapping s-state atomic wave functions i, and corresponding free atomic energy
levels E,. Generalizing eq. (19) for the diatomic molecule to a periodic lattice of N
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atoms, we can write the crystal wave function ¢, as a linear combination of the atomic
orbitals:

g (r) = Ny Ry (r - R), (83)
R

where the phase factor automatically guarantees that ,(r) satisfies Bloch’s theorem, eq.
(55). Assuming that the crystal potential is the sum of the atomic potentials v(r — R) and
following the method and approximations outlined through egs. (19)—(30), the eigenvalue
E, may be written as:

E, = E,+ Y, [y (r)o(r)y,(r - R) dr, (84)
R=0
where the non-orthogonality and three-centre contributions have been neglected because
they do not contribute to first order. Since the atomic s orbitals are spherically symme-
tric, the sso hopping matrix elements in eq. (84) do not depend on the direction of R but
only on the magnitude R (see fig. 10), so that

E =E, + Y e“"ssop. (85)
Rz0
The TB band structure E, for a simple cubic lattice with s orbitals may now be
quickly found. Assuming that the hopping matrix elements couple only to the six first
nearest-neighbour atoms with position vectors R equal to (za, 0, 0) (0, £ a, 0) and (0, O,
+a) eq. (85) gives

E, =E + ZSsol(cos k.a + cos k,a + cos kza), (86)

where k = (k,, k, k) Thus the eigenvalues vary sinusoidally across the Brillouin zone. The
bottom, E~ and top, E* of the s band correspond to the Bloch states at the centre of the
Brillouin zone (0, 0, 0) and at the zone boundary (7/a)(1, 1, 1) respectively. It follows
from eq. (86) that

E* = E, + Gsso| 87

because sso, is negative as can be deduced from fig. 10 and eq. (84). Comparing E~ with
eq. (26) and fig. 8a for the diatomic molecule, we see that the most bonding state in the
simple cubic lattice corresponds to maximum bonding with all six nearest neighbours
simultaneously, which from fig. 10 is only possible for the spherically symmetric s
orbital case.

The structure of the TB p band may be obtained by writing ¢, as a linear combination
of the three p Bloch sums corresponding to the atomic p,, p;, and p, orbitals, where x, y
and z may be chosen along the crystal axes for a cubic lattice. That is,

Yr) =Ny ¢, Y e“y,(r-R), (88)

a=x,y.z R

which leads to the 3 X 3 TB secular determinant for the p band, namely
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(E, - E)8u + T| = 0, (89)
where
T, = Ze”""j Yo (r)v(r)g,.(r — R)dr. (90)
R20

It is clear from fig. 10 that the hopping matrix elements in eq. (90) do depend on the
direction of R because the p,, p,, and p, orbitals are angular dependent. SLATER and
KOSTER [1954] showed that they can be written directly in terms of the two fundamental
hopping integrals ppo, and ppm, and the direction cosines (I, m, n) of R.

For a simple cubic lattice with only first-nearest-neighbour hopping the matrix
elements T,,. may be evaluated to give

T, = 2ppo, cosk.a+ 2pp7rl(cos k,a + cos kza), On

with T, and T, obtained from T, by cyclic permutation. The off-diagonal matrix
elements vanish for the simple cubic lattice. Therefore, at the centre of the Brillouin
zone, T', the eigenvalues are friply degenerate (if spin is neglected) and given from egs.
(89) and (91) by

EPY = E, +2ppo, + 4ppm,. (92)

This degeneracy is partially lifted along the |100) symmetry direction, because from eq.
(91) the band structure consists of the singly degenerate level

E{" = E, + 4ppm, + 2ppo, cosk,a (93)
and the doubly degenerate level
E = E, +2(ppo, + ppm,) + 2ppm, cos k,a, (94)

where the former results from the p, orbitals and the latter from the p, and p, orbitals.
The degeneracy is totally lifted along a general k direction as from eqs. (89) and (91)
there will be three distinct non-degenerate energy levels.

Finally, the structure of the TB d band may be obtained by writing ¢, as a linear
combination of the five d Bloch sums corresponding to the five atomic orbitals illustrated
in fig. 2. This results in a 5 x 5 TB secular determinant from which the d band structure
may be computed (SLATER and KOSTER [1954]). Starting from first-principles band
theory, ANDERSEN [1973] has shown that within the atomic sphere approximation (ASA)
canonical d bands may be derived which depend neither on the lattice constant nor on
the particular transition metal, but only on the crystal structure. This approximation leads
to hopping integrals of the form

ddo, =-5
ddm, = 4 [x 2 W(S/R), (95)
dds, =-1

References: p. 129,



80 D. G. Petiifor Ch.2, §4

where W is the width of the d band, which is obtained by imposing the bonding and
antibonding boundary conditions over the Wigner-Seitz sphere of radius S. It follows
from eq. (95) that the hopping integrals scale uniformly with the band width W and do
not depend on the lattice constant as it is the ratio S/R that enters. They fall off quickly
with distance as the inverse fifth power.

Figure 22 shows the resulting d band structure for the fcc and bee lattices along the
|111) and |100) directions in the Brillouin zone (ANDERSEN {1973]). We see that at the
centre of the Brillouin zone, I', there are two energy levels, one of which is triply
degenerate, the other doubly degenerate. The former comprises the xy, yz and xz, T,
orbitals which from fig. 2 are equivalent to one another in a cubic environment. The
latter comprises the x* — y%, 3% — FE, orbitals which by pointing along the cubic axes
are not equivalent to the T, orbitals. The degeneracy is partially lifted along the |111)
and |100) symmetry directions as indicated in fig. 22, because eigenfunctions which are
equivalent at k=0 may become non-equivalent for k # 0 due to the translational phase
factor exp (ikeR) (see fig. 8.8 of TINKHAM [1964]).

The band structure of NiO (MATTHEISS [1972]) is shown in fig. 23 because it illustrates
s, p and d band behaviour. The three bands arise from the oxygen 2s, 2p and the nickel 3d
valence levels, respectively, the ordering being determined by the relative positions of their
atomic energy levels in figs. 4 and 5. The Brillouin zone is face-centred cubic since the NaCl
crystal structure of NiO consists of two interpenetrating fcc lattices, one containing the
sodium atoms, the other the chlorine atoms. In the |100) direction along I'X the s and p band
structure is not too dissimilar from that given for the simple cubic lattice by egs. (86), (93)
and (94). The d band structure along I'X in NiO is also similar to that of the fcc canonical d
band in fig. 22, except that one level, which joins the upper state at I" to the bortom of the
canonical d band at X, has been pushed up and runs across the fop of the d band in NiO. This
is the result of mixing or hybridization between the s, p and d blocks in the TB secular
determinant (SLATER and KOSTER [1954]), whose strength is determined for example by the
non-vanishing pdo and pd# hopping matrix elements shown in fig. 10. This mixing can
only occur between Bloch states with the same symmetry (TINKHAM [1964]). At the zone
boundary X there is only one d band state which has the same symmetry X, as the s
band state. (There are no d band states with the same symmetry as the p band states at
X.) The influence of the hybridization on the band structure is enhanced by orthogonality
constraints which can add a further repulsive contribution to the d states because they
must be orthogonal to the valence s and p levels lying beneath them in energy.

fcc bee
2)

\__ (2)

{2} 12)
(2) T

]

L r X P r H

ENERGY

ENERGY

Fig. 22. The fcc and bee d band structure (after ANDERSEN [1973)).
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Fig. 23. The band structure of NiO (after MATTHEISs [1972]).

The bands in fig. 23 illustrate an apparent failure of one-electron theory. NiO is an
insulator. However, adding the ten nickel and six oxygen valence electrons to the bands
shown results in the d band containing only eight of its possible ten electrons [cf. eq.
(35)]. Thus, the band structure presented in fig. 23 predicts that NiO is a metal. The
origin of this dramatic failure of band theory was investigated by MoTT [1949], who
considered what happens to a lattice of hydrogen atoms as the lattice constant is
decreased from some very large value. Initially each atom has a single 1s valence
electron associated with it as in the free atom state. The system will, therefore, be
insulating, because in order for an electron to hop through the lattice it requires an
energy given by the difference between the ionization potential of 13.6 eV (correspon-
ding to the atomic 1s level) and the electron affinity of 0.75 eV. This energy difference
of about 13 eV is a measure of the coulomb repulsion U between two 1s antiparallel spin
electrons sitting on the same atomic site. However, as the lattice constant decreases the
atomic 1s level broadens into a band of states of width W so that the insulating gap will
decrease like U — W. Therefore, for some sufficiently small lattice spacing W will be
large enough for the system to become metallic and the hydrogen lattice undergoes a
Mott metal-insulator transition.

The very different conducting behaviour of the 3d valence electrons in metallic nickel
and insulating nickel oxide can now be qualitatively understood. The width of the d band
in NiO is about 2 eV (MATTHEISS [1972]), whereas in pure Ni it is about 5 eV
(MORUZZI et al. [1978]) since the Ni-Ni internuclear separation is smaller than in the
oxide. Because the value of the screened intra-atemic coulomb integral U in 3d transition
metals is about 4 eV, U/ W is greater than unity for NiO but less than unity for Ni. Thus,
we expect the former to be insulating and the latter metallic as observed experimentally.

The breakdown of conventional band theory at large lattice spacings can best be
illustrated by considering the hydrogen molecule (cf. fig. 8a). In the ground state the two
valence electrons 1 and 2 occupy the same bonding molecular orbital ¢, with opposite
spin, so that the total molecular wave function may be written within the one electron
approximation as

References: p. 129.



82 D. G. Pettifor Ch. 2, §4

‘/’(1’2) = Yup (1) Yan (2) 96)

Substituting from eq. (27), multiplying through and neglecting the normalization factor
[2(1 + S)]"! we have

W(1,2) = (¥, (D5 (2) + P (Dia (2) + ¥ (D (2) + Y (D (2))- ©7)

The first two contributions correspond to the two possible neutral atom states with a
single electron associated with each atom, whereas the latter correspond to the two ionic
states A'B™ and A*B” respectively. Since the hydrogen molecule dissociates into two
neutral atoms, we see that (1, 2) gives the wrong behaviour at large separations (see,
e.g., SLATER [1963]).

In practice, the Mott transition to the insulating phase is accompanied by the
appearance of local magnetic moments (BRANDOW [1977]) so that the band model must
be generalized to allow for antiferromagnetic solutions of the Schrédinger equation
(SLATER [1951a]; cf. § 8). Within local spin density functional (LSDF) theory (cf. § 1)
this leads to a good curve of total energy versus internuclear separation for the hydrogen
molecule because the theory now goes over to the neutral free-atom limit (GUNNARSSON
and LUNDQUIST [1976]). However, although the antiferromagnetic state leads to a band
gap opening up at the Fermi level in NiO (SLATER [1951a]), a proper understanding of
CoO and the temperature-dependent properties of these insulators can only be obtained
by using a more sophisticated non-local treatment of exchange and correlation
(BRANDOW [1977], JONES and GUNNARSSON [1989]). Fortunately, the bulk properties of
simple and transition metals considered in this chapter can be well understood within the
local approximation, even though non-locality can play a role in the finer details of the
band structure (see, e.g., Ni; COOKE et al. [1980]).

4.2. Hybrid NFE-TB bands

Transition metals are characterized by a fairly tightly-bound d band that overlaps and
hybridizes with a broader nearly-free-electron sp band as illustrated in fig. 24. This
difference in behaviour between the valence sp and d electrons arises from the d shell
lying inside the outer valence s shell, thereby leading to small overlap between the d
orbitals in the bulk. For example, from eq. (14) the average radia! distance of the
hydrogenic 3d and 4s wave functions are in the ratio 0.44 :1. Thus, we expect the band
structure of transition metals to be represented accurately by a hybrid NFE-TB secular
equation of the form (HODGES et al. [1966] and MUELLER [1967}):

C-El H
H' D—FEI

=0 9%

where C and D are sp-NFE and d-TB matrices respectively [cf. eqs. (67) and (89)]. H is
the hybridization matrix which couples and mixes together the sp and d Bloch states with
the same symmetry, and / is the unit matrix.

A secular equation of this H-NFE-TB form may be derived (HEINE [1967], HUBBARD
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Fig. 24. A schematic representation of transition metal sp (dashed curve) and d (solid curve) densities of states
when sp—d hybridization is neglected.

[1967] and JACoOBs [1968]) by an exact transformation (PETTIFOR [1972a]) of the first-
principle band structure equations of KORRINGA [1946], KOHN and ROSTOKER [1954]
(KKR). They have solved the Schrddinger equation (1) by regarding the lattice as a
periodic array cf scattering sites which individually scatter the electrons with a change
in phase 7,. Transition-metal sp valence electrons are found to be scattered very little by
the lattice so that they exhibit NFE behaviour with 7, and %, close to zero. Transition-
metal d electrons, on the other hand, are strongly scattered, the /=2 phase shift showing
resonant behaviour given by

tann,(E) = $T/(E, - E), (99)

where E; and I' determine the position and width of the resonance. This allows the KKR
equations to be transformed directly into the H-NFE-TB form, in which the two centre
TB hopping integrals and hybridization matrix elements are determined explicitly by the
two resonant parameters F, and I". The non-orthogonality contributions to the secular
equation (MUELLER [1967]) are obtained by linearizing the implicit energy-dependent
matrices C, D and H in a Taylor expansion about E,.

The nonmagnpetic band structure of fcc and bec iron is shown in fig. 25, being
computed from the H-NFE-TB secular equation with resonant parameters E,=0.540 Ry
and I' =0.088 Ry (PETTIFOR [1970a]). The NFE pseudopotential matrix elements were
chosen by fitting the first-principle values of WooD [1962] at the pure p states N,.
v(;,0=0.040 Ry), L,” (v,,;=0.039 Ry) and X, (v,,,=0.034 Ry). Comparing the band
structure of iron in the {100) and |111) directions with the canonical d bands in fig. 22,
we see there is only the one d level with symmetry A, and A, respectively which
hybridizes with the lowest NFE band, the remaining four d levels being unperturbed.
Because of the canonical nature of the pure TB d bands (ANDERSEN [1973]), the band
structure of all fec and bee transition metals will be very similar to that shown in fig. 25
for iron.

The transition-metal density of states, n(E), is not uniform throughout the band as
shown schematically in fig. 24 but displays considerable structure that is characteristic of
the given crystal lattice. This is seen in fig. 26 for the bce, fcc and hep densities of
states, which were calculated by the H-NFE-TB secular equation neglecting non-
orthogonality contributions with £;=0.5 Ry and I"' =0.06 Ry (PETTIFOR [1970b]). These
early histogram densities of states are displayed rather than more accurate recent
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Fig. 25. The H-NFE-TB band structure of fcc and bee iron in the nonmagnetic state. The solid circles represent
the first-principle energy levels of Woob [1962]. (From PETTIFOR [1970a].)

calculations (see, e.g., RATH and CALLAWAY [1973], JEPSEN et al. [1975], MORUZZI et
al. [1978], PAXTON et al. [1990]) because they allow a direct comparison between the
bee, fee and hep densities of states for the same model element. This will be important
when discussing the relative stability of the three different crystal structures in § 6.1 and
the stability of the ferromagnetic state in the «, y and & phases of iron in § 8.

The structure in the calculated densities of states in fig. 26 is reflected in the
behaviour of the experimental electronic heat constant, y, across the nonmagnetic 4d and
5d transition metal series. It follows from egs. (45), (47) and (48) that the electronic heat
capacity may be written as

C = 9T, (100)
where

y =t mkin(E;). (101)
Therefore, ignoring any renormalization effects such as electron—phonon mass enhance-
ment, the linear dependence of the heat capacity gives a direct experimental measure of

the density of states at the Fermi level. Figure 27 shows that the H-NFE-TB densities
of states in fig. 26 reflect the experimental variation in y across the series.

4.3. Volume dependence

Figure 28 illustrates the volume dependence of the energy bands of the 4d transition
metals Y, Tc and Ag, which were calculated by PETTIFOR [1977] within the atomic—
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Fig. 26. The density of states for the three structures (a) bece, (b) fce, and (c) hep for a model transition metal.
The dotted curves represent the integrated density of states. (From PETTIFOR [1970b].)

sphere approxiriation of ANDERSEN [1973, 1975]. Similar bands have been obtained by
GELATT et al. [1977] for the 3d metals Ti and Cu with the renormalized-atom approxima-
tion of WATSON et al. [1970]. We see from fig. 28 that the bottom of the NFE sp band
I',, which was evaluated within LDF theory, is well fitted by the Frohlich-Bardeen
expression (79). The values of R, obtained are found to scale within 1% with the position
of the outer node of the Ss free-atom radial wave function. This demonstrates quantitat-
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Fig. 27. A comparison of the theoretical and experimental 4d and 5d heat capacities. The theoretical values
were obtained directly from eq. (101) and fig. 26, neglecting any changes in the density of states due to band
width changes or mass renormalization.

ively that it is the core-orthogonality constraint which is responsible for the rapid turn up
in the energy of I'; and that the outer node of the valence s electron is a good measure
of the s core size. The free-atom d level broadens into a band of states of width W as the
atoms come together from infinity to form the bulk (see figs. 24 and 28). HEINE [1967]
has shown that the Wigner—Seitz boundary conditions imply that W should vary approxi-
mately as S~, where S is the Wigner—Seitz radius. Assuming a power-law dependence
of W on S, we can write

W = Wy(S,/5)", (102)

where W, and S, are the values of the d-band width and Wigner—Seitz radius respectively
at the equilibrium lattice spacing of the transition metal. Table 1 gives the values of S,
W, and n for the 4d transition metals (PETTIFOR [1977]). Because of the more extended
nature of the d wave functions at the beginning of the transition metal series, n takes a
value closer to four than to five which we will see in § 5.2 is reflected in their bulk
properties. Values of the band width W for the 3d, 4d and 5d series may be obtained
from the table in ANDERSEN and JEPSEN [1977] and are given explicitly in table 204 of
HARRISON [1980]. The 3d and 5d band widths are approximately 30% smaller and 20%
larger respectively than the corresponding 4d widths.

The centre of gravity of the TB-d band, E,, in fig. 28 rises exponentially (PETTIFOR
[1977]) as the volume decreases because the potential within the Wigner-Seitz sphere
renormalizes due to the increase in the electronic charge density (GELATT et al. [1977]).
This renormalization in position of the free atomic d level plays an important role in
transition-metal energetics and will be discussed further in § 5.2.

The different volume dependences of the NFE-sp and TB-d bands displayed in fig.
28 will lead to changes in the relative occupancy of the two bands with volume. This is
illustrated in fig. 4 of PETTIFOR {1977] where Y and Zr show a rapid increase in d-band
occupancy under compression as the d band widens and the bottom of the sp band moves
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Table 1
Equilibrium values of Wigner-Seitz radius S, and d band parameters W, n and n/S; for 4d series (from
PETTIFOR [1977]).

Quantity Element

Y Zr Nb Mo Tc Ru Rh Pd Ag
S, (an) 3.76 3.35 3.07 293 2.84 2.79 2.81 2.87 3.02
W, V) 6.3 78 9.3 9.5 9.1 85 7.6 6.0 3.9
n 3.9 4.0 4.1 43 4.5 4.6 48 5.1 5.6
n/Sq 1.03 1.19 1.33 1.47 1.58 1.65 1.71 1.77 1.84

up (cf. fig. 28a). Eventually I'; moves up through the Fermi level E, at which point all
the NFE-sp states have been emptied into the TB-d states and N,=N. On the other hand,
the transition metals with more-than-half-filled d bands display a marked degree of
constancy in N, for volumes about their equilibrium values, because the sp core effects
are largely counter-balanced by the rapid rise in E, due to the increasing coulomb
repulsion between the d electrons (cf. fig. 28¢c). However, under very high pressures the
bottom of the sp band does eventually move up through the Fermi level, and transition
metals with ten valence electrons (Ni, Pd and Pt) may become semiconducting
(McMAHAN and ALBERS [1982]). We will return to this dependency of the d-band
occupancy on volume and core size when discussing crystal structure stability in § 6.

5. Bulk properties

5.1. Simple metals
Within the free-electron approximation the total energy per electron may be written
(see, e.g., HEINE and WEAIRE [1970}) as:

U, =221/r} -0916/r, — (0115 - 0.0313In7,), (103)
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Fig. 28. The energy bands as a function of Wigner—Seitz radius S for (a) Y, (b) Tc, and (c) Ag. The observed
equilibrium Wigner—Seitz radii are marked eq. The dotted curve gives the Frohlich-Bardeen fit (eq. 79) to the
bottom of the conduction band T',. E,, E, and E, mark the centre of gravity, and top and bottom of the d band,
respectively. (After PETTIFOR [1977].)
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where r, is the radius of the sphere which contains one electron so that
r=2""¢ (104)

for a metal with valence Z and Wigner-Seitz radius S. The first term in eq. (103) is the
average kinetic energy of a free electron gas, namely 2 Ey, where Ej is given by eq. (45).
The second term is the exchange energy which is attractive, because parallel-spin
electrons are kept apart by Pauli’s exclusion principle, thereby leading to weaker mutual
coulomb repulsion. The third term is the correlation energy which gives the additional
lowering in energy due to the dynamical correlations between the electrons. It follows
from eq. (103) that the free electron gas is in equilibrium for r,=4.2 au with a binding
energy per electron of 0.16 Ry or 2.2 eV.

If the electron gas is perturbed to first order by the presence of the ionic lattice
(HEINE and WEAIRE [1970], GIRIFALCO [1976] and HARRISON [1980]), then the total
binding energy per atom may be written as:

U=2(U, +U,,), (105)
where
3Z RN 12z
U =-2)1-] 2] [+2=2, 106
won S [ ( S) } S ( )

The first and second terms in eq. (106) give the electron—ion [cf. eq. (79)] and the
electron—electron potential energies, respectively. The potential energy has been evaluated
within the WIGNER-SEITZ [1933] approximation of neglecting the coulomb interaction
between different Wigner—Seitz cells as they are electrically neutral. Within the free-
electron approximation the ion cores had been smeared out into a uniform positive
background so that there was zero net potential energy and U,,, vanished.

The equilibrium Wigner-Seitz radius, §,, which is found from eq. (105) by requiring
that U is stationary, depends explicitly on the core radius R_ through the equation

2
(gc_ ) _ ., 0102 000355, 0491 o

+ - »
So 22/3 Z Zl/3S0

where the first four terms are coulomb, exchange, correlation and kinetic contributions

respectively. GIRIFALCO [1976] has taken the experimental values of the Wigner—Seitz

radius S, to determine an effective Ashcroft empty-core radius R, from eq. (107). The

resultant values are given in table 2 where, as expected, the core size increases as one

goes down a given group in the Periodic Table. It is clear from table 2 that only sodium

has an equilibrium value of r, that is close to the free-electron-gas value of 4.2 au.
The bulk modulus (or inverse compressibility), which is defined by

B = v(d’U/av?), (108)
may be written from egs. (105) and (107) in the form
B/B,, = 0200 + 0.815R?/r, (109)
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Table 2
Equilibrium bulk properties of the simple and noble metals,
Metal Quantity
z Uy/Z S r? R, B/B,, B/B,,
(eV/electron) (au) (au) (au) (eq. 109) (expt.)

Li 1 1.7 3.27 327 1.32 0.63 0.50
Na 1 1.1 3.99 3.99 1.75 0.83 0.80
K 1 0.9 4.86 4.86 222 1.03 1.10
Rb 1 0.9 5.31 5.31 2.47 1.14 1.55
Cs 1 0.8 5.70 5.70 276 1.29 1.43
Be 2 1.7 2.36 1.87 0.76 0.45 0.27
Mg 2 0.8 3.35 2.66 1.31 0.73 0.54
Ca 2 0.9 4.12 327 1.73 0.95 0.66
Sr 2 0.9 4.49 3.57 1.93 1.05 0.78
Ba 2 0.9 4.67 3.71 2.03 1.11 0.84
Zn 2 0.7 291 2.31 1.07 0.60 045
Cd 2 0.6 3.26 2.59 1.27 0.71 0.63
Hg 2 0.3 3.35 2.66 1.31 0.73 0.59
Al 3 1.1 2.99 2.07 1.11 0.69 0.32
Ga 3 0.9 3.16 2.19 1.20 0.74 0.33
In 3 0.9 3.48 2.41 1.37 0.83 0.39
Tl 3 0.6 3.58 2.49 1.43 0.87 0.39
Cu 1 3.5 2.67 2.67 0.91 045 2.16
Ag 1 3.0 3.02 3.02 1.37 0.71 2.94
Au 1 3.8 3.01 3.01 1.35 0.69 4.96

* From GIRIFALCO [1976].

at equilibrium, where the correlation contribution has been neglected since it contributes less
than a few percent. B, is the bulk modulus of the non-interacting free electron gas, namely

B, = 0.586/r’. (110)

It follows from eq. (109) and table 2 that the presence of the ion core is crucial for
obtaining realistic values of the bulk modulus of simple metals, as was first demonstrated
by ASHCROFT and LANGRETH [1967]. However, the simple first-order expression eq.
(109) is leading to large errors for the polyvalent metals with valence greater than two
because the second-order contribution is not negligible and must be included (ASHCROFT
and LANGRETH [1967]). Table 2 also demonstrates that the noble metals are not
describable by the NFE approximation, the theoretical bulk moduli being a factor of five
too small. We will return to this point in §5.2.

The cohesive energy of the simple metals is observed in table 2 to be about 1 eV per
valence electron. For example, Na, Mg and Al have cohesive energies of 1.1, 0.8 and 1.1
eV per electron respectively. These are an order of magnitude smaller than the corre-
sponding binding energies given by eq. (105), the experimental values being 6.3, 12.1,
and 18.8 eV per electron respectively. Although NFE perturbation theory can yield good
estimates of bulk properties such as the equilibrium atomic volume, structural stability
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and heat of formation, it can not provide reliable cohesive energies which require an
accurate comparison with the free atom whose wave functions are not describable by
weakly perturbed plane waves. 1t is necessary, therefore, to perform similar calculations
in both the free atom and the bulk as, for example, WIGNER and SEITZ [1933] and
MoRuzzi et al. [1978] have done in their evaluation of the cohesive energies in figs. 21
and 1 respectively. We should point out, however, that eqs. (103)-(106) do yield a bulk
binding energy for sodium that is very similar to Wigner and Seitz’s [cf. eq. (82)],
because the additional exchange, correlation and self-energy terms in eqs. (105) and
(106) give a net contribution of less than 0.01 eV per sodium atom. CHELIKOWSKY
[1981] has linked the cohesive energy of simple metals to a kinetic-energy change which
accompanies the transformation of the exponentially damped free-atom wave function to
plane-wave bulk states. As expected from table 2 and fig. 20, it is necessary to include
an additional non-local bulk bonding contribution in order to obtain the stronger cohesion
of Li and Be and the weaker cohesion of Zn, Cd and Hg. The anomalously large
cohesion of the noble metals Cu, Ag and Au will be discussed in the next subsection.

5.2. Transition metals

The theoretical points in fig. 1 were computed (MORUZZI et al. [1978]) by solving
the Schrodinger equation (1) with the potential v(r) given by

v(r) = vy (r) + vy (r), (111)

where vy is the usual Hartree potential and vy is the exchange-correlation potential
evaluated within the local density functional (LDF) approximation of HOHENBERG and
KoHN [1964] and KoHN and SHAM [1965], namely

d
ve(r) = = (poxc o)) (112)
o
eyc(p) is the exchange and correlation energy per electron of a homogeneous electron gas
of density p. It follows from eqs. (103) and (112) that the exchange contribution to the
potential may be written as:

vy (r) = 3 &x(r), (113)

where

ey (r) = —1477[p(r)]". (114)

Thus the exchange potential varies as the third power of the local density, due to the
exclusion of parallel spin electrons from the immediate neighbourhood (SLATER [1951b]).

The total energy can not be written simply as the sum over the occupied one-electron
energies E; of the Schrodinger equation, because the eigenvalue E; of the ith electron
contains the potential energy of interaction with the jth electron and vice versa. Thus, E;
+ E; double-counts the coulomb interaction energy between electrons i/ and j. The total
LDF energy is, therefore, given by
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U=z‘_‘.Ei"%Hle(:z_p—$,lr—,)drd"'—jP(r)[vxc‘sxc]d"’ (115)

where the second and third contributions correct for the “double-counting” of the
coulomb and exchange-correlation energies respectively. The potential energy has been
written down in eq. (115) within the Wigner—Seitz sphere approximation, the coulomb
interaction between neighbouring Wigner—Seitz cells, or Madelung contribution, being
neglected. (Note that ¢*=2 in atomic units, which accounts for the factor of two in the
integrand of the coulomb integral.)

The presence of the double-counting contribution in eq. (115) does not allow for a
direct interpretation of the fotal energy in terms of the one-electron eigenvalues E; whose
behaviour we have studied in the previous sections. For example, as can be seen from
fig. 28b the one-electron sum alone would lead to no binding in Tc because the d-
electron eigenvalues at the equilibrium atomic volume are everywhere higher than the
free-atom d level. The inclusion of the double-counting term is crucial for bonding since
it counters to a large extent the shift in the centre of gravity of the d bands E, due to the
renormalization of the potential under volume change. In copper, for example, GELATT
et al. [1977] found that the band-shift energy of 78.6 eV/atom, which accompanies the
formation of the bulk metal, is almost totally cancelled by a change in the double-
counting term of 77.7 eV/atom. The remaining net repulsive contribution of about 1 eV/atom
is typical for the 3d and 4d transition metal series (see fig. 4 of GELATT et al. [1977]).

The problems associated with double-counting can be avoided, however, by working
not with the total energy, U, but with the first-order change in energy, 8U, on change in
the Wigner—Seitz sphere volume, 8€), for the bulk metal (PETTIFOR [1976]) or change in
the internuclear separation, dR, for the diatomic molecule (PETTIFOR [1978a]). By starting
either from the virial theorem in the form derived by LIBERMAN [1971] or from the total-
energy expression (115) following NIEMINEN and HODGES [1976], PETTIFOR [1976,
1978a] showed that the first-order change in fotal energy, 8U, may be written, neglecting
the Madelung contribution, as:

8U =Y 8E,, (116)

where 8E, is the first-order change in the eigenvalue which accompanies the first-order
volume or distance change while the potential is kept unrenormalized. The general
applicability of this first-order result has been proved by ANDERSEN [1980] for force
problems involving arbitrary atomic displacements and by NORrskov [1982] for embedding
problems involving a change in the local atomic environment (cf. § 7). SKRIVER [1982],
McMAHAN and MORIARTY [1983] and PAXTON and PETTIFOR [1992] have demonstrated the
applicability of eq. (116) to the evaluation of structural energy differences (cf. § 6).

The first-order expression (116) is important because it allows a direct identification
of the different roles played by the valence sp and d electrons in bulk transition metal
energetics. The eigenstates can be decomposed within the Wigner—Seitz sphere into their
different angular momentum components, /, so that eq. (116) may be written as:

References: p. 129,
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8U = -P8Q = -y P&Q, (117)
i

where P is the pressure, given by P = — dU/d(). By working within the atomic-sphere
approximation of ANDERSEN [1973] the partial pressures P, may be expressed (PETTIFOR
{1976]) directly in terms of parameters describing the energy bands, namely:

3P0 =3N, (I, - &,) +2U., (118)

3PQ = 2N,(E, - &,.)/my + SU;™, (119)
where

UL = jEF(E —T))n, (E)E, (120)

U™ = JEF (E - Ey)n(E)dE, (121)

with eyc=€xc(S). m, is the d-band effective mass which is related to the width W
through W=25/(m,S%. Additional small contributions to eqs. (118) and (119) have been
neglected for simplicity in the present discussion (cf. egs. (13) and (14) of PETTIFOR
[1978b)).

The sp partial pressure consists of two terms which give the first-order changes in the
bottom of the sp band, I';, and in the kinetic energy, respectively. In the absence of
hybridization with the d band, ny(E) is free-electron-like and eq. (118) is consistent with
the pressure which would be obtained from the simple-metal expression (105) if
correlation is neglected. This follows from eqgs. (111), (113) and (79) because within
LDF theory the bottom of the band is given by

[ =T"+24Z/S+4¢, (122)

since the electron sees the average Hartree field of the valence electrons and the
exchange potential vy, in addition to the ion core pseudopotential.

The d partial pressure also consists of two terms which give the first-order changes
in the centre of gravity of the d band, E,, and the d bond energy, respectively. In the
absence of hybridization we may assume that n,(E) is rectangular as illustrated in fig. 24,
so that from eq. (121) the d bond energy may be written

U™ = — 4 WN,(10 - N,). (123)

atom

Assuming that E,-E; and W vary inversely as the fifth power of S, P, may be
integrated with respect to volume to give the d contribution to the cohesive energy,
namely:

Uy = Ny(E, = E;™)/am, + Ny($ B3 — £,.)/2m, + U™, (124)

It follows from fig. 28a that for Tc at its equilibrium volume E,-E;'°" =6 eV, $E;“"
— &xc=1¢eV and my=5. Therefore, taking, from table 2, W=10 eV and N,=6, we have
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U, =18+0.6-12 = -10eV/atom, (125)

which is in reasonable agreement with the LDF value of —8 eV/atom for the Tc
cohesive energy in fig. 1.

The dominant contribution to the cohesive energy of transition metals is, therefore, the
d bond term in eq. (125) as emphasized by FRIEDEL [1964, 1969] and illustrated by
GELATT et al. [1977] in their fig. 4. From eq. (123) it varies parabolically with band
filling and accounts for the observed variation of the cohesive energy across the
nonmagnetic 4¢ and Sd series shown in fig. 1. It attains a maximum value of —5 W/4
for Ny=5 when all the bonding and none of the antibonding states are occupied. Equation
(124) shows that the shift in centre of gravity of the d band contributionN, (E,~ES"™)
is reduced by at least an order of magnitude through the factor (4m,)™, thereby account-
ing analytically for the cancellation arising from the double-counting term in eq. (115).

Figure 29 shows the sp and d partial pressures for Tc. As expected from eq. (123)
there is a large attractive d bond contribution which is pulling the atoms together in
order to maximize the strength of the bond. This is opposed for § < 4.0 au by a rapidly
increasing repulsive d centre-of-gravity contribution which reflects the renormalization
in E, The resulting total d partial pressure is attractive at the observed equilibrium
volume of Tc (see fig. 29b). As expected from the behaviour of I'; in fig. 28b the bottom
of the sp band contribution is attractive for large values of S but becomes repulsive in
the vicinity of the equilibrium volume as I', moves up in energy. Thus, whereas in
simple metals this contribution is attractive because the ion cores occupy only about 10%
of the atomic volume (see fig. 21 and table 3), in transition metals it is repulsive because
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Fig. 29. (a) The individual and (b) the rotal sp and d partial pressures as a function of the Wigner-Seitz radius
S for T.. “eq” marks the observed equilibrium Wigner—Seitz radius. (From PETTIFOR [1978b]).
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Table 3
The values of A for the 3d, 4d, and 5d transition metal series.

Period Element and value of A (in au™)

Sc Ti \" Cr Mn Fe Co Ni
3 1.08 1.23 1.37 149 1.61 1.74 1.88 2.07

Y Zr Nb Mo Te Ru Rh Pd
4 1.08 1.23 1.37 1.49 1.60 1.72 1.85 2.02

Lu Hf Ta w Re Os I Pt
5 1.1l 1.25 1.38 1.49 1.60 1.72 1.84 2.01

the ion cores occupy a much larger percentage due to their smaller equilibrium atomic
volumes (cf. fig. 1). Together with the sp kinetic energy contribution, the bottom of the
sp band contribution provides the necessary repulsion to counter the attractive d partial
pressure at equilibrium.

The size of a transition-metal atom, which is defined by the equilibrium atomic
volume of the pure metal, is not necessarily a helpful quantity for discussing alloy
energetics. We have seen that it will be very sensitive to the nature of the local atomic
environment, since it is the d bond contribution which is responsible in fig. 1 for the
skewed parabolic behaviour of the equilibrium Wigner—Seitz radius across the nonmag-
netic 4d series. This may be demonstrated by modifying the simple model of
DucaSTELLE [1970] and approximating the total energy of a transition metal by

U=U™+U™, (126)
where the Born—-Mayer contribution, U™, is:
U™ = aN%e™¥ (127)

with @ being constant across a given series. This form is suggested by the nature of the
repulsive d centre-of-gravity contribution in eq. (124) and fig. 29, although we have
assumed that U™ is proportional to N? rather than Nd2 as a reminder that the sp electrons
also contribute to the repulsion, The d bond contribution, eq. (123), is proportional to the
band width W which is assumed to vary exponentially as

W = bAe™ (128)

with b being constant across a given series.
The cohesive energy, equilibrium Wigner—Seitz radius and bulk modulus are given
from egs. (126)—(128) by:

Uep =30, (129)
So|In(-2aN? /U] /24, (130)

B = —(X/ 1278, ) U;™. (131)
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a and b for a given period are obtained from the known bulk modulus and band width
of 3d Cr, 4d Mo and 5d W, the values of (a, b) being given in atomic units by (24.3,
11.6), (77.2, 25.8) and (98.9, 31.9) respectively. A is found by fitting to the nonmagnetic
Wigner-Seitz radius, assuming that the transition metals have only one sp valence
electron. We see from fig. 30 and table 3 that although the equilibrium atomic volume
has a minimum in the vicinity of N=8, A varies nearly linearly across the series as
expected for a parameter characterizing the free atom (cf. figs. 4, 5 and 7). Thus,
although Mo and Ag have almost the same size factors with their equilibrium Wigner—
Seitz radii of 2.93 and 3.02 au, respectively, they are immiscible because Mo will lose
a large part of its attractive d bond contribution in a Ag environment. The logarithmic
derivative of the band width, —A, predicted by this model is in good agreement at the
equilibrium atomic volume with the first-principles value, —n/S,, as can be seen by
comparing tables 1 and 3 for the 4d series.

The simple model breaks down at the noble-metal end of the series because the
Born-Mayer repulsive term in eq. (126) does not describe correctly the d electron
behaviour. This can be seen in fig. 31 where the d partial pressure in Cu is attractive at
the equilibrium atomic volume, the d electrons contributing about 25% to the cohesive
energy (WILLIAMS et gl. [1980a]). Thus, as first pointed out by KOLLAR and SOLT
[1974], the filled d shells in copper interact attractively rather than repulsively as
assumed by the Bomn-Mayer contribution (127). This is due to the second term in eq.
(124) which dominates at larger atomic volumes. The sp partial pressure of Cu at its
minimum is also more attractive than that of K due to the incomplete screening of the
Cu ion core by the 3d valence electrons. The net result is that whereas the simple metal
K has a cohesive energy of 0.9 eV/atom and a bulk modulus of 0.3 x 10" N/m? the
noble metal Cu has a cohesive energy of 3.5 eV/atom and a bulk modulus of 13.7 x 10'°
N/m?, which is reflected by the behaviour of the curves in fig. 31.

6. Structural stability

6.1. Elemental metals

The crystal structure of the simple metals can be studied (see, e.g., HARRISON [1966],
HeINE and WEAIRE [1970], HAFNER [1974,1989] and MORIARTY [1982,1983 and 1988])
by perturbing the free electron gas to second order in the pseudopotential, thereby
extending the first-order expression (105) considered in § 5.1. The resulting binding
energy per atom is given in the real-space representation (FINNIS [1974]) by

U=ZU, -4Vie, ++¢(R=0;r)+4 Y ¢(R:1;), (132)
Rz0
where x,, is the compressibility of the free electron gas. ¢(R=0; r,) represents the
electrostatic interaction between an ion and its own screening cloud of electrons, whereas
d(R #0; r) is 2 central interatomic pair potential which for a local pseudopotential may
be written as:
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cohesive energy, and bulk modulus of the 3d, 4d, and 5d transition metals.
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27° ° - in gR
B(R % 0:;) = 7[1 -2 Mo n) o] = dq]. (133)

ﬁ;‘:’ (g) is proportional to the Fourier component of the ionic pseudopotential, taking the
value cos gR. for the Ashcroft potential [cf. eq. (76)]. x(q, r,) is the free-electron-gas
response function which screens the ion cores (see, e.g., Jacucct and TAYLOR [1981})).
The first term in eq. (133) gives the direct ion-ion coulomb repulsion, the second the
attractive ion—electron contribution.

The interatomic potential (133) may be expressed analytically (PETTIFOR [1982]) at
metallic densities as the sum of damped oscillatory terms, namely

¢(R = 0;1.) = (22°/R)Y. A, cos(2k,R + o, ) ™", (134)
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nearest neighbours in the close-packed fcc and hep lattices. The values of R_ and r, are written (R,, ) for each
element. (After PETTIFOR and WARD [1984].)
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where k, and «, depend only on the density of the free electron gas through r,, whereas
the amplitude A, and the phase «, depend also on the ionic pseudopotential (through R,).
The interatomic potentials for Na, Mg and Al are illustrated in fig. 32, where the first
three terms in eq. (134) have been retained and an Ashcroft empty-core pseudopotential
used (PETTIFOR and WARD [1984]). We see that all three metals are characterized by a
repulsive hard-core contribution (dotted—dashed curve), an attractive nearest-neighbour
contribution (dashed curve), and an oscillatory long-range contribution (dotted curve).
For very large interatomic separations the pair potential behaves asymptotically (FRIEDEL
[1952]) as

O(R # 0;1,) ~ Alv,,(2Kc)] cos(2k:R)/R, (135)

where from eqs. (44) and (104) k.= (97/4)*/r,.

A cautionary note must be sounded concerning the use of interatomic pair potentials
for describing the energetics of simple metals. It is clear from fig. 32 that the pair-
potential contribution to the binding energy of sodium and magnesium is only about 0.25
eV/atom, which is small compared to their cohesive energies of 1.1 and 1.6 eV/atom,
respectively. Moreover, in aluminium the pair contribution acts against cohesion. Thus,
there is no microscopic justification for describing the bonding in simple metals by pair
potentials alone. Their cohesion is determined primarily by the volume-dependent terms
in eq. (132). However, the pair potential description is valid for tackling problems
concerned with structural rearrangement in which the volume remains fixed, for example
in lattice dynamics or in determining the relative stability of the close- or nearly close-
packed fcc, hep and bec lattices.

Figure 33 compares the stability of the fcc, hep and bec lattices of Na, Mg and Al as
their volume is reduced from the equilibrium value by nearly an order of magnitude,
which was computed by MORIARTY and MCMaHAN [1982] using a generalized non-local
pseudopotential to second order. We see that under pressure Na, Mg and Al are predicted
to transform from hep — bee — hep, hep — bee — fec and fee — hep — bee, respec-
tively. The first of these structural transitions occurs at about 1, 57 and 130 GPA for Na,
Mg and Al respectively and should, therefore, be verifiable by modern high-pressure
technology. The trends displayed in fig. 33 may be understood from the behaviour of the
first three contributions to the pair potential in fig. 32 (PETTIFOR and WARD [1984]; see
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Fig 33. The energy of the bee and hep lattices with respect to the fec lattice for Na, Mg, and Al as a function
of their atomic volume relative to the observed equilibrium volumes (after MORIARTY and MCMAHAN [1982]).
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also MCMAHAN and MORIARTY [1983]). Because the close-packed structures fcc and hep
have identical first and second nearest-neighbour distances their relative stability is
determined by the position of their next few neighbours with respect to the long-range
oscillatory tail which is drawn dotted in fig. 32. Since the phase a; of this contribution
depends on r,, under pressure the minima shift with respect to the neighbour positions
and the close-packed phases can reverse their relative stability. On the other hand, the
competition between the close-packed phases and bcc is determined primarily by the
contribution from the twelve first nearest neighbours and fourteen first and second
nearest neighbours respectively. Although at their equilibrium volume the first twelve
close-packed neighbours fall at the minimum of the pair potential, thereby favouring the
close-packed structures (cf. fig. 32), under pressure this minimum moves and the bcc
phase may be stabilized (cf. fig. 33).

The close-packed metallic behaviour of Na, Mg and Al gives way to the open
diamond structure of the semiconductor Si as one proceeds across the third row of the
Periodic Table. This transition from close-packed to open structure is accompanied by a
30% volume expansion so that the volume-dependent term in the binding energy cannot
be neglected when determining structural stability. YIN and CoHEN [1980] have solved
the Schrodinger equation self-consistently for Si using an ionic pseudopotential, and have
evaluated the LDF binding energy [cf. eq. (115)] as a function of volume for seven
different crystal structures as illustrated in fig. 34a. They find that the diamond structure
has the lowest energy with a predicted equilibrium atomic volume, cohesive energy and
bulk modulus within 5% of the experimental values. Moreover, the relative ordering of
the metallic bee and hep phases and their equilibrium energy of about 0.5 eV/atom with
respect to the diamond structure is in good agreement with that deduced from experiment
(KaurMaN and NESOR [1973]). The transition to the open semiconducting phase,
therefore, contributes about 10% to the total cohesive energy of 4.6 eV/atom.

In moving down group IV we see from figs. 4 and 7 that Ge is very similar to Si
with about a 10% larger core, whereas Sn and Pb have approximately 30% and 45%
larger cores respectively. Thus the binding—energy—volume curves of Ge are found to be
almost identical to those of Si except that the close-packed structures move down relative
to the diamond structure by about 20% (compare figs. 34a and b; YN and COHEN [1980,
1981]). The further increase in core size in going from Ge to Sn is probably responsible
for the B-Sn structure being stabilized under only 2 GPA of pressure and the still much
larger core of Pb at the bottom of group IV leads to the close-packed fcc structure being
most stable. The structural trends across the sp-valent elements within the periodic table
has recently been discussed by CRESSONI and PETTIFOR [1991] using the Tight Binding
approximation.

The crystal structure of the transition metals can be understood by comparing the d
bond contribution eq. (121) to the total energy, because we saw in § 5.2 that it dominates
the cohesive energy. Figure 35 shows that as the unhybridized tight-binding d band is
filled with electrons the structure-trend predicted is hep — bec — hep — fec — bee
(PETTIFOR [1972b]). Apart from the incorrect stability of the bce phase at the noble-metal
end of the series. this trend agrees with experiment for the nonmagnetic 4d and 5d series.
The stability of the bce phase in V and Cr, Nb and Mo, Ta and W, when the d band is
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Fig. 34. The binding energy as a function of volume of (a) Si and (b) Ge for seven different crystal structures.
The dashed line is the common tangent of the energy curves for the semiconducting diamond phase and the
metallic B-tin phase, the system moving from 1| — 2 — 3 — 4 under pressure. (from YN and CoHeN [1980,
19817 and YiN [1982]).

nearly half-full, is due to the strong bonding-antibonding separation which is manifest in
the bee density of states compared to the close-packed (cf. fig. 26). The appearance of
the bce phase in iron is due to the presence of ferromagnetism (see § 8). The stability of
different stacking-fault structures shows the same oscillatory behaviour as displayed by
the fcc hep curve in fig. 35 (PAPON et al. [1979]).

The number of d electrons, N,, also influences the structure of the heavier alkalis and
alkaline earths (TAKEMURA et al. [1982] and Skriver [1982]) and the rare earths
(DUTHIE and PETTIFOR [1977]). N, increases on moving down the alkaline earth group
as the d band starts to fill (cf. fig. 20) so that Ca, Sr and Ba have 0.51, 0.59 and 0.87
/=2 electrons within the Wigner—Seitz sphere, respectively (SKRIVER [1982]). Similarly,
under pressure N, increases as the NFE-sp band moves up with respect to the TB-d band
(cf. §4.3). SKrIVER [1982] has computed the structural energy differences, using eq.
(116), and has found that the trend hcp — fcc — beec — hep correlates with increasing
Nd in agreement with the observed behaviour down group IIA (Be,Mg: hep; Ca,Sr: fcc;
Ba,Ra: bee) and under pressure. The trivalent rare-earth crystal structure sequence hcp
— Sm-type — double hcp — fcc, which is observed for decreasing atomic number and
increasing pressure, can similarly be explained in terms of the change in number of d
electrons accompanying valence s to d transfer (DUTHIE and PETTIFOR [1977]). Due to
the lanthanide contraction of the ion core La has a 20% larger core radius than Lu, which
results in La having 0.6 d electrons more than Lu and taking the double-hcp rather than
the hcp crystal structure even though they are both trivalent.
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lattice as a function of band filling N, (from PETTIFOR [1972b]).

Recently ab initio Local Density Functional (LDF) calculations have been used to study
the transformation path from bcc to hep in barium under pressure at the absolute zero of
temperature (CHEN et al. {1988]; HO and HARMAN [1990]). As illustrated in fig. 36, the bcc
to hep transformation involves atomic displacements corresponding to the zone boundary
[110] T, phonon mode and an additional lattice shear (BURGERS [1934]). The dashed lines in
fig. 36b show that a displacement § = \/5 a/12 in this bec phonon mode creates a nearly
hexagonal geometry, the perfect geometry being achieved in fig. 36¢ through a subsequent
shear which changes the angle 8 from 109.47° to 120°. Figure 37 displays the calculated total
energy contours as a function of both co-ordinates § and @ for barium at its equilibrium
atomic volume ), 0.793(}, and 0.705(),, respectively. The latter volume corresponds to a
pressure of 38.4 kbar. We see that at {) = (), the upper contour plot shows that bce barium is
more stable than hcp, in agreement with experiment. However, as pressure is applied, the hcp
phase has its energy lowered with respect to bee. The middle contour plot shows that at
) =0.793(), their energies are approximately equal, with an energy barrier between them of
about 4meV/ atom, The lower contour plot shows that at {} =0.705(}, the energy barrier has
gone and the bee phase is no longer metastable. The predicted T =0 transformation pressure
is 11 kbar, corresponding to the bce and hep lattices having equal enthalpies. However, at low
temperatures the system would not be able to overcome the energy barrier so that the bec
phase would probably remain metastable until the T, N-point phonon mode became soft at 31
kbar. Experimentally the phase transformation occurs at a pressure of 55 kbar at room
temperature so that the LDF predicted pressure appears too low, reflecting the intrinsic errors
in the local approximation to density functional theory (see, for example, fig. 1).
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Fig. 36. Illustration of the bcc to hep phase transformation. The arrows in (a) and (b) indicate the atomic
displacements in the bec lattice corresponding to the polarisation vector of the T, N-point phonon mode. A final
long-wavelength shear changes the angle from 109.47° to 120° to obtain the hep lattice in (c) (from Ho and
HARMON [1990]; reproduced with permission).

6.2. Binary intermetallic phases

The structural trends within binary intermetallic phases A, B, may be displayed by
ordering the structural data base within a single three-dimensional structure map (f1,,
My, x) where Ml is a phenomenological co-ordinate which characterises each element in
the periodic table (PETTIFOR [1988a]). The relative ordering number il is obtained by
running a one-dimensional string through the two-dimensional periodic table as shown in
fig. 38; pulling the ends of the string apart places all the elements in sequential order,
labelled by .

The resultant two-dimensional isostoichiometric ground-state structure map (A, A1)
for the 50:50 AB binary compounds is shown in fig. 39 using the experimental database
of VILLARS and CALVERT [1985]. Similar maps for other stoichiometries may be found
elsewhere (PETTIFOR [1988a], [1988b] and [1992])). The bare patches correspond to
regions where compounds do not form due to either positive heats of formation or the
competing stability of neighbouring phases with different stoichiometry. The boundaries
do not have any significance other than they were drawn to separate compounds of
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Fig. 38. The string running through this modified periodic table puts all the elements in sequential order according
1o the relative ordering number. (PETTIFOR [1988a]). Note that group I1 A elements Be and Mg have been grouped
with II B, divalent rare earths have been separated from trivalent, and Y has been slotted between Tb and Dy.

different structure type. In regions where there is a paucity of data the boundary is
usually chosen as the line separating adjoining groups in the periodic table. We see that
excellent structural separation has been achieved between the 52 different AB structure
types that have more than one representative compound each. The two most common
structure types, namely B1 (NaCl) and B2 (CsCl), are well separated, the NaCl lattice
being found only outside the region defined by #,, M, < 81, which encloses the main
CsCl domain. There is only one exception, namely the very small region of Cs-contain-
ing salts. The AB structure map successfully demarcates even closely related structure
types such as B27 (FeB) and B33 (CrB); B8, (NiAs) and B31 (MnP); or B3 (cubic ZnS,
zincblende) and B4 (hexagonal ZnS, wurtzite). Moreover, coherent phases with respect
to the bec lattice, namely B2 (CsCl), B11 (CuTi), and B32 (NaTl) are also well separated, as
too are the close-packed polytypes cubic I.1, (CuAu) and hexagonal B19 (AuCd).

The structural trends within the pd-bonded AB compounds in fig. 39 have been
successfully explained by PETTIFOR and PopLoUCKY [1984, 1986] within a simple two-
centre, orthogonal Tight Binding (TB) model. The upper panel of fig. 40 shows the
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Fig. 39. The AB structure map (PETTIFOR [1988a]).
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experimental structural domains for the seven most frequently occurring structure types,
namely NaCl, CsCl, NiAs, MnP, FeB, CrB and FeSi respectively (using the socalled
chemical scale y which orders the elements in a similar way to the relative ordering
number M in fig. 38, PETTIFOR [1984]). The lower panel shows the predicted AB
structure map (N, Ny) where N, and N, are the number of p and d valence electrons
associated with atoms A and B respectively. We see that the TB model predicts the
broad topological features of the experimental map. In particular, NaCl in the top left-hand
corner adjoins NiAs running across to the right and boride stability running down to the
bottom. MnP stability is found in the middle of the NiAs domain and towards the bottom
right-hand corner, where it adjoins CsCl towards the bottom. The main failure of this
simple pd TB model is its inability to predict the narrow-tongue of FeSi stability of the
transition metal silicides, which is probably due to the total neglect of the valence s
electrons within the model.

The theoretical TB calculations allowed the different roles played by relative atomic
size, electronegativity difference, and electron per atom ratio in stabilizing a given
structure type to be investigated directly (PETTIFOR and PoDLOUCKY [1984, 1986)). Fig.
41 shows the fractional change in volume (AV)/V between a given structure type and
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Fig. 40. The upper panel shows the structure map (x,, x,) for 169 pd bonded AB compounds, where y,, and x,
are values for the A and B constituents of a certain chemical scale, y, which orders the elements in a similar
way to the relative ordering number . The /lower panel shows the theoretical structure map (N,, N,) where
N, and N, are the number of p and d valence clcctrons respectively on the CsCl lattice. (From PETTIFOR and
PobLoucky [1984].)
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Fig. 41. The fractional change in volume (AV)/V with respect to the CsCl lattice versus the relative size factor
R (see text). The upper and lower NiAs curves correspond to ¢/a = 1.39 and (8/3)"? respectively (PETTIFOR
and PODLOUCKY [1984]).

the CsCl lattice as a function of the relative size factor B of the constituent atoms.
Within the TB model, B had been defined through the relative strength of the pp
repulsive pair potential compared to the dd repulsive pair potential. As expected, the
Na(l lattice has the smallest volume at either end of the R scale, because as the size of
either the p-valent atom or the d-valent atom shrinks to zero the repulsion will be
dominated by one or other of the close-packed fcc sublattices. On the other hand, in the
middle of the scale, where the nearest-neighbour pd repulsion dominates, the volume of
the NaCl lattice with six nearest neighbours is about 13% larger than the CsC! with eight
nearest neighbours. The packing of hard spheres rather than the softer atoms would have
led to the much larger volume difference of 30%.

The structural stability of the pd-bonded AB compounds may then be predicted by
comparing the TB band energy of the different structure types at the volumes determined
by the relative size factor R. Fig. 42 shows the resultant structural energies as a function
of the electron per atom ratio or band filling N for the case where the atomic p level on
the A site and the atomic d level on the B site are equal i.e. Ey=E,—E,=0. As the
electron per atom ratio increases we find the structural sequence CsCl — FeSi —» CrB

References: p. 129.
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Fig. 42. The structural energy as a function of band filling N for the seven different crystal lattices with E 4 =
0 (PeETTIFOR and PoDLOUCKY [1984]).

— NaCl = NiAs = (MnP) — NiAs — NaCl, where MnP, a distorted NiAs structure, has
been put in parentheses because it does not quite have the lowest energy for N = 9. The
structural energy depends not only on the electron per atom ratio but also on E;=E -E,
which is a measure of a Mulliken-type electronegativity difference. Curves similar to fig.
42 have, therefore, been calculated for values of the atomic energy level difference in the
range from —10 to +5 eV (in steps of 2.5 eV). Rather than plotting the most stable
predicted structure on a structure map of E,; versus N, the lower panel in fig. 40 uses the
rotated frame of N, versus N, in order to make direct comparison with the experimental
results in the upper panel.

The TB model has successfully accounted for the structural trends not only within the
pd bonded AB compounds above but also within other families of AB, and AB,
intermetallic phases (see, for example, JOHANNES et al. [1976], DUCASTELLE [1991],
BIERER and GAUTIER [1981], LEE [1991a and b], and OHTA and PETTIFOR [1989]). As
expected, the structural stability of the binary phases is found to be controlled by four
factors, namely the average number of valence electrons per atom (or band filling), a
Multiken-type electronegativity difference (or atomic energy level mismatch), the atomic
size mismatch, and the angular character of the valence orbitals (or whether the bonding
is pd, dd etc.). Classic ionic Madelung terms appear to play little role in determining the
structures of intermetallic phases since the screening in a metal is perfect.

The most famous example of the crystal structure correlating with the average
number of valence electrons per atom or band filling N is the Hume-Rothery alloy
system of noble metals with the sp bonded elements such as Zn, Al, Si, Ge and Sn (see
ch. 4). Assuming that Cu and Ag have a valency of 1, then the fcc a-phase is found to
extend to a N of about 1.38, the bcc B-phase to be stabilized around 1.48, the y-phase
around 1.62 and the hcp £-phase around 1.75. MOTT and JONES [1936] pointed out that
the fcc and bece electron-per-atom ratios correlate with the number of electrons required
for a free-electron Fermi sphere to first make contact with the fcc and bee Brillouin-zone
faces, N=1.36 and 1.48, respectively. This condition corresponds to 2k.= |G| and
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implies that the long-range Friedel oscillations (135) are in phase with the lattice, thereby
giving an additional stabilizing energy. However, as found by STROUD and ASHCROFT
[1971] this only leads to the fcc lattice being stabilized in the immediate vicinity of
N =1.36, the hcp lattice being the most stable for N < 1.3. The fcc noble metals with
Z=1 can, therefore, not be described by the NFE approximation.

JONES [1937], on the other hand, started with a realisitic value for the Cu energy gap
at L, namely 4 eV, which is an order of magnitude larger than that expected for simple
NEFE metals (cf. fig. 16). This large gap, which arises from hybridization and ortho-
gonality constraints with the underlying d band (MUELLER [1967]), leads to a very non-
spherical Fermi surface which already for Cu with N=1 just makes contact with the fcc
Brillouin-zone face in the <111> direction. Contact is made with the bcc zone for
N=1.23. The resulting fcc and bcc densities of states look very similar to those for Be
(fcc) and Li (bee) in fig. 20, because JONES [1937] neglected the presence of the copper
d band (cf. fig. 26). Comparing the fcc and bec band energies JONES [1937] found that
the fcc lattice was indeed the more stable for 1 £ N < 1.43. However, no comparison
with the hep lattice was made.

Recently, PAXTON et al. [1992] extended Jones’ calculations to include not only the
hep lattice but also a proper treatment of the valence d electrons within the Rigid Band
Approximation (RBA). Fig. 43 shows the structural predictions where the expected trend
from fcc (o phase) to bee (B phase) to hep (¢ phase) is found as a function of the
electron per atom ratio or band filling N. This trend is a direct consequence of rigidly
occupying the copper densities of states n(E) in the middle panel and comparing the
resultant band energies, i.e.,

Ep
AU = Ali [En(E)dE} (136)
where
Ep
: 137
N = | n(E)dE. (137)
It follows from equation (136) that
d dE
o AU) = A[ N EFH(EF)J = AE; (138)
since on differentiating equation (137) with respect to N we have immediately
dE;
—=n(Eg) =L 139
o "(Ee) (139)
Further, it follows from equations (138) and (139) that
iZ—(AU) A (140)
dN? n(E;) [
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Fig. 43. Analysis of fcc, bee and hep relative structural stability within the rigid band approximation for Cu-Zn
alloys. (a) The difference in band energy as a function of band filling N with respect to elemental rigid copper
bands. (b) The density of states at the Fcrmi level E;. for fcc, bee and hep fattices as a function of band filling
N. (c) The difference in the Fermi energics AE; as a function of band filling N (from PaxTon, A.T., M.
METHFESSEL and D. G. PETTIFOR [1992] unpublished).

Thus, as first pointed out by JONEs [1962], the shape of the band energy difference
curves in fig. 43a can be understood in terms of the relative behaviour of the densities
of states in the middle panel. In particular, from equation (138) the stationary points in
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the upper curve correspond to band occupancies for which AE; vanishes in panel (c).
Moreover, whether the stationary point is a maximum or a minimum depends on the
relative values of the density of states at the Fermi level through equation (140). In
particular, the bee—fce energy difference curve has a minimum around N = 1.6, where the
bee density of states is lowest, whereas the hcp-fcc curve has a minimum around
N = 1.9, where the hcp density of states is lowest. The fcc structure is most stable around
N=1, where AE; = 0 and the fcc density of states is lowest.

The structural trends in these Hume—Rothery electron phases are thus driven by the
van Hove singularities in the densities of states which arise from band gaps at specific
Brillouin or Jones zone boundaries as surmised earlier by MoTT and JONES [1936] and
JoNES [1937]. It is therefore not totally surprising that the NFE second-order perturbation
theory results of STROUD and ASHCROFT [1971] and EVANS et al. [1979] found energy
difference curves that are very similar to those in the top panel of fig. 43 away from the
copper-rich end. The strong curvature of the bce—fce and hep~-fee curves as a function of
band filling can be reproduced only by including explicitly the weak logarithmic
singularity in the slope of the Lindhard response function at q=2k. It is for this reason
that these Hume—Rothery alloys are correctly termed electron phases since this singular-
ity is driven solely by the electron-per-atom ratio (through 2kg) and does not depend on
the particular chemical constituents (through the pseudopotential). The nesting of the
Fermi surfaces of noble metal alloys and the implication for long-period superlattices
(SaTo and ToTH [1961]) have been examined quantitatively by first-principles KRR band
calculations (GYORFFY and STOCKS [1983]) assuming total disorder within the coherent-
potential approximation (CPA; see, e.g., FAULKNER [1982]).

7. Heat of formation

A simple and successful semi-empirical scheme for calculating the heats of formation
of binary alloys has been developed by MIEDEMA ef al. {1980], who characterized each
element in the Periodic Table by two co-ordinates ¢* and p'”. The heat of formation of
a binary AB alloy is then written (in the simplest case) as:

AH = -P(A %) + 0(8p"Y, (141)

where P and Q are positive constants. The attractive term depends on the difference in
the elemental work functions, A¢, (later modified to A¢p*) and is similar in spirit to
PAULING’S [1960] electronegativity contribution. The repulsive term depends on the
difference in the cube root of the electron densities at the elemental Wigner—Seitz sphere
boundaries, Ap'®, and was argued to arise from the distortion of the charge density
across the AB interface. Equation (141) has been useful in providing quantitative values
for the heats of formation. In this section the microscopic origin of the attractive and
repulsive contributions to AH will be examined in the light of our understanding of the
cohesion of the elemental metals (cf. §§ 5 and 6).

Miedema’s expression (141) has been most successful in the treatment of binary

References: p. 129.
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transition-metal alloys, which are well-described by the tight-binding approximation. By
analogy with FRIEDEL’s {1964] treatment of pure transition metal cohesion, the AB alloy
band may be approximated (PETTIFOR [1979, 1987]) by a rectangular density of states of
width W, as shown in fig. 44. It follows from tight-binding theory (CYROT and CYROT-
LACKMAN [1976)) that:

W2 = W? + 3(AE,)’, (142)

which generalizes the dimer result, eq. (30), to the bulk metal. The first term is the

contribution to the square of the alloy band width that arises from nearest-neighbour

bonding, whereas the second term reflects the increase in alloy bonding due to the

ionicity which is measured by AE, = E;-E;. Thus, the alloy bandwith is given by
/2

W, = [1 +3(AEd/W)2] W. (143)

The heat of formation may now be evaluated explicitly. Filling up the alloy band with
the average number of d electrons per atom, N, and comparing the resulting band
energy with that obtained from pure metal bands of width W (as illustrated in fig. 44),
one finds the contribution to the heat of formation AH,, given by:

AHo/W = _FIG(ANd)z - 'A—ANd(AEd/W) — Nd(lo - Nd)(AE"/W)Z’ (144)

where eq. (143) has been expanded to second order, and AN, = NdB—NdA. In addition,
there is a further contribution AH,, due to the fact that the elemental equilibrium atomic
volumes V, and Vj are in general different, so that the d bond energy of pure A and B
is determined by W, and Wy, respectively, and not by W as drawn in fig. 44. Assuming
that the band width varies inversely with the volume to the five-thirds power (c.f. eq.
(102); HEINE [1967]) and that the alloy volume is V,;= V=1/2V, + Vy) by Vegard’s
law, then

AW = W, - W, = -3 W(AV/V). (145)

1
\
EB L EB \ '

3 I E:\
A \\1 AV/ 1

Fig. 44. The rectangular d band model representing AB alloy formation. The dashed line separates the partial
density of states associated with atom A from that associated with atom B.
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The resulting change in the bond energy due to the change in the band widths of the
elemertal metals from W to W,, Wy, respectively is given by

AH,/W = -2 (5 - N,)AN,(AV/V). (146)

Expressions (144) and (146) may be simplified still further for binary alloys from the
same transition-metal series. Choosing the 4d series because the 3d row is complicated
by the presence of magnetism (cf. § 8), we can write AE;=—AN, eV from fig. 5 and
V=V(¥,) from fig. 30. Substituting into egs. (144) and (146) and taking W =10 eV from
table 1, the heat of formation (in eV/atom) is given to second order by

AH = [£,(F,) + £(N,)] (AN, ) (147)
where
F(N)=4[1-%N,(10-§,)] (148)
and
_ _(d1
filNy) =-%(5- Nd)[ dlr\ldeJNd' (149)

Equation (147) represents the second-order term in a Taylor expansion of A H(N}, N})
in powers of AN, as WILLIAMS ef al. [1980b] have emphasized.

Figure 45 corpares the results of the tight-binding theory with the MIEDEMA et al.
[1980] semi-empirical values for ANy < 4, where we see that reasonable agreement is
obtained. The more attractive values of AH found by MIEDEMA e al. [1980] near N, =5
reflect structural bonding effects which are not included in the present model with its
uniform alloy density of states (cf. fig. 44). The dependence of the heat of formation on
crystal structure has been demonstrated by the first-principles LDF calculations of
WILLIAMS ef al. [1980b] who compared AH for the CuAu (fcc) and CsCl (bee) lattices.
It is clear from fig. 45 that the most stable AB alloys will be those for which the average
d-band filling is close to 5.5 and AN, is large, for example YPd. On the other hand, for
average d-band fillings less than about 4 or greater than 7 the heat of formation will be
positive.

The attractive contribution in Miedema’s expression (141) may be identified with AH,
provided that ¢* is interpreted as the electronegativity X rather than the work function ¢.
Within the TB model the charge transfer Q is obtained by assuming partial densities of
states n,(E) and ng(E) on the A and B sites in the alloy as illustrated in fig. 44. n, and
ny have been skewed so that their centres of gravity correspond to E,* and E}, respec-
tively (PETTIFOR [1980]). The resulting d charge transfer is given by

0F = AN, + 3 N,(10 - N, )(AE,/W,p). (150)

The first term reflects the flow of electrons from right to left across the series due to
increasing electron density and the second term reflects the flow from left to right due

References: p. 129.
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0.2

-0.2

Fig. 45. AH/(AN,)? as a function of the average band filling N, for the 4d series. The dashed curve is the AH,
contribution, eq. (148). The squares represent the Miedema values for the 4d alloys with AN, < 4, the points
with common N, being connected by straight lines. (From PETTIFOR [1979].)

to the increasingly attractive d level as one proceeds across the series (cf. fig. 5). The
flow of electrons is, therefore, not driven by the difference in the work functions A¢
alone, because all the electrons throughout the band respond on alloying and not just
those in the vicinity of the Fermi level. This can be seen by comparing, in fig. 44, the
skewed partial density of states n,(E) in the AB alloy with the rectangular density of
states in the pure metal A.

By implication, the charge transfer is proportional to the difference in the electro-
negativities, so that we may define a d-electronegativity X, by
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AX, = 0, (151)

Substituting into eq. (150) and integrating for the 4d series with AE,/W = AN, /10, the
electronegativity is found to be

Xd=—%Nd[1——510—Nd(15—Nd)]+1.8, (152)

where the constant of integration has been chosen so that Mo with N;=5 takes the
PAULING [1960] value of 1.8. Equation (152) is plotted in fig. 46 and compares surpris-
ingly well with the Pauling electronegativities across the 4d series. It follows from eq.
(144) and eqgs. (150)-(152) that AH, can be expressed approximately as:

AH, = - 5 W(AX,)" (153)

for |[N,— 5| <5/\/3 . Equation (153) gives the correct value of the dashed curve in fig.
45 at the centre of the band and it vanishes at the correct cross-over points N,=5 +
5/\/§ . Since Miedema’s final choice of ordinate ¢* is very similar to Pauling’s
electronegativity X (MIEDEMA ef al. [1980]), the attractive contribution in eq. (141) may
be associated with AH, through eq. (153). The repulsive contribution in the semi-
empirical scheme follows AH|, very closely numerically, but conceptually the latter
reflects a mismatch in the d band width rather than the electron density (see also
WILLIAMS et al. [1982]). The heats of formation of 3d, 4d and 5d transition metal AB
alloys have been tabulated by WATSON and BENNETT [1981] who used an optimized
version of the d band model.

The heats of formation of simple-metal binary alloys may be calculated within
second-order perturbation theory provided the valence difference AZ=Z, ~ Z, is not too
large (HAFNER [1976] and LEUNG et al. [1976]). Neglecting the structurally dependent
pair-potential contribution and ignoring the density dependence of ¢(R=0; r) in eq.
(132), the heat of formation AH will be determined by the volume-dependent free
electron gas terms alone. Assuming Vegard’s Law with V= T/z% (V, + Vp), these give
(PETTIFOR and GELATT [1983]) the contribution (in eV/atom):

22r
2.0
X4 1Ag
18
Nb
16} |
7
Zr )
14}
Y/,
] S—
0 5 Ng 10

Fig. 46. The d-band electronegativity. X, compared to PAULING’s [1960] values (squares) for the 4d series.
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AH,, = Zf, (") 26")', (154)

where

Fu(p'?) = 4339+ 7.81/p" +0.17/(p'"")

The three terms in eq. (155) are the kinetic, exchange and correlation contributions
respectively, the flow of charge from the more dense to the less dense atom lowering the
kinetic energy but raising the exchange and correlation energies. Equation (154) is
reminiscent of the MIEDEMA et al. [1980] repulsive contribution in eq. (141). However,
as is clear from fig. 47 the prefactor f,, is not a positive constant Q but is dependent on
the average cube root of the density p'®. It changes sign from positive at low densities
(where the exchange and correlation dominate) to negative at high densities (where the
kinetic energy dominates). The first-principle LDF calculations of AH for the Na, Mg,
Al, Si, P series with respect to the CsCl (bcc) lattice show the same trend in fig. 47 as
eq. (155) although displaced somewhat from the free-electron-gas result because the
explicit influence of the core through the last two terms in eq. (132) has been neglected.
Figure 6.10 b of HAFNER [1987] shows that equation (154) represents the experimental
heat of formation of liquid simple metal alloys extremely well.

2

(155)

AH/ [ Z (At v u.u.z/electrun)

=20 .
f?awﬁ

-25k_ 01 02 03 0b

Fig. 47. AH/[Z(Ap'™))* as a function of the average cube root of the electron density p' for the 3s and 3p
series. The solid curve is the electron-gas contribution, eq. (155). The open circles are the LDF results for the
CsCl lattice. (From PETTIFOR and GELATT [1983]).
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Fig. 48. The calculated heats of formation (HAFNER [1977]) of A,B alkali-metal alloys for (a) the disordered
bee phase and (b) the ordered MgZn, Laves phase as a function of RE/R2 from table 2. The crosses give the

electron gas contribution eq. (154) using the experimental densities of the elemental metals.

Structural effects can be important in determining the sign of AH of simple-metal

alloys (cf. §2.3.2Z of MIEDEMA et al. [1980]). This has been demonstrated by the second-
order pseudopotential calculations of HAFNER [1977] on binary alkali metal alloys, which
are illustrated in fig. 48 for the A,B stoichiometry. (His values of AH for the bee alloys
are approximately four times larger than the experimental, LDF or free-electron gas
values, because his calculated density differences are larger than experiment.) Whereas
the disordered bce alloys have positive heats of formation, the ordered Laves phases
Rb,Cs, K,Cs and Na,K have negative heats of formation due to the arrangement of the
nearest-neighbour atoms with respect to the minimum in the pair potential. Therefore,
provided the volume-dependent contribution to AH is not too large and positive, the
structural contribution due to the pair potential can stabilize the phase. If a semi-
conducting gap opens up in the alloy density of states, then this will provide additional
stability (MIEDEMA et al. [1980]), which requires the theory to be extended beyond
second order.

The heats of formation of sp elements with transition metals is illustrated by fig. 49
for the Li-row elements with the 4d transition metals. They were calculated by GELATT
et al. [1983] using LDF theory for the AB stoichiometry with respect to the NaCl lattice.
Their theoretical values agree broadly with the semi-empirical values of MIEDEMA et al.
[1980] who found it necessary to include for sp-d alloys an additional attractive contribu-
tion, —R, in their expression (141). R is written as the product of two numbers which are
determined by the groups in the Periodic Table from which the sp and d constituents are
drawn. GELATT et al. [1983] have interpreted their results in terms of an attractive sp-d
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bonding contribution, which becomes increasingly ionic on proceeding across the sp
series from Li to F, and a repulsive d-bond contribution. The latter reflects the loss of d-
bond energy due to the narrower alloy d band width, which arises from the larger
transition-metal-transition-metal nearest neighbour distance in the alloy as compared to
the elemental metal. Curves similar to fig. 49 have been obtained by GELATT et al.
[1978] for the 3d and 4d transition-metal hydrides.

Figure 50 illustrates the reliability of LDF theory for predicting the heats of formation
and structural stability of intermetallic phases. Figure 50a gives the LDF heats of
formation of different ordered structures with respect to either the fcc or bee lattices for
the aluminium-lithium system (SLUITER et al. [1990]). We see that the B32 LiAl
structure type is predicted to be much more stable than either the B2 or L1, equiatomic
phases. Moreover, it is this strong stability of the B32 phase that is responsible for the
known metastability of the neighbouring L1, LiAl; and DO, Li,Al phases. Figure 50b
gives the LDF heats of formation of different ordered structures with respect to either the
fce or hep lattices for the aluminium-titanium system (VAN SCHILFGAARDE ef al. [1990]).
We see that the theory predicts the correct most stable ground state structure for Ti;Al
and TiAl,, namely hexagonal DO, and tetragonal DO,, respectively. Furthermore,
whereas the metastable cubic L1, phase is very close to the ground state energy for
TiAl,, it is much further removed for Ti;Al This accounts for the fact that whereas Ti;Al
has been stabilized as a cubic pseudobinary by suitable alloying additions, it has not been
possible to stabilize the cubic phase of Ti;Al (L1U ef al. [1989]). This demonstrates the
importance of the first principles LDF calculations; they provide information not only
about the ground state (which is usually already known experimentally) but also about
the metastable phases (which have often not been directly accessed by experiment).

The heat of solution of hydrogen and helium in metals may be calculated within the
effective-medium approximation of STOTT and ZAREMBA [1980], N¢rSKOV and LANG
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Fig. 49. The heats of formation of 4d transition metals with Li row elements in the NaCl structure (GELATT et
al. [1983]).
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[19801, and JACCBSEN et al. [1987]. They assumed that the energy required to embed an
atom at some given position R in a host metal which is characterized by an
inhomogeneous density p(r), is the same as that required to embed the atom in a
homogeneous electron gas of density p =p(R), where p(R) is the average host electron
density seen by the impurity atom at R. Then the energy of the impurity atom at position
R in the host lattice is given to lowest order by

AU(R) = [AU,,n ()] (156)

p=p(R).
The homogeneous embedding energy AU, .(p) can be evaluated within LDF theory and
the results for H and the rare-gas atoms He and Ne are shown in fig. 51a (PUSKA et al.
[1981]). We see that the rare-gas atoms display a positive embedding energy at all
densities because their full electronic shells repel the free electron gas through ortho-
gonality constraints. On the other hand, the open-shell hydrogen atom shows a minimum
at p =0.0026 au™ (i.e., p'*=0.138 au™) corresponding to an attractive embedding energy
of —1.8 eV, although it is repulsive for typical transition-metal densities of 0.02-0.03 au™.

The heats of solution of H and He across the 3d series are shown in fig. 51b after
Ngrskov [1982] and MANNINEN et al. [1982], respectively. The results include an
important first-order electrostatic correction term to eq. (156), which reduces the slope
of the He curve in fig. 51a by half and lowers the H curve by —120p eV au’ so that the
H embedding energy is attractive throughout the entire range of metallic densities (cf. the
solid circles in fig. 51b). The behaviour of the helium heat of solution across the 3d
series mirrors that of the host metallic density which varies like the bulk modulus shown
in fig. 1. The hydrogen heat of solution is measured with respect to the binding energy
of the H, molecule, namely —2.4 eV/atom. We see in fig. 51b that agreement with
experiments is obtained only if a first-order hybridization correction is included from eq.
(116) which reflects the bonding between the hydrogen impurity and the host nearest
neighbour atoms (N@Rskov [1982]). The effective-medium approximation with first-order
electrostatic and hybridization corrections included has been applied successfully to
defect problems such as the trapping energies of H and He by interstitials, vacancies and
voids (N$RSKOV et al. [1982] and MANNINEN et al. {1982]). The electron theory of point
defects has been reviewed by JENA [1981].

The ordering energy of a binary A, B,_, alloy is defined by

A(‘]ord = Urml - Udis’ (157)

where U, and Uy, are the energies in the completely ordered and disordered states
respectively. By using second-order perturbation theory for the NFE simple metals
(HAYES et al, [1568] and INGLESiELD [1969]) or a generalized perturbation theory for the
TB transition metals (DUCASTELLE and GAUTIER [1976]) the ordering energy eq. (157)
can be expressed directly in terms of effective pair interactions ¢, ¢,, ¢5,... between the
first, second, third,... nearest neighbour atoms. (¢, depends explicitly on |Avps(q)|2 for
the simple metals and on |AE,|? for the transition metals). The ordering energy for ¢ <
0.5 may be written (see, e.g., DE FONTAINE [1979] and DUCASTELLE [1991]) as:

References: p. 129.
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Fig. 50 (a). The predicted heat of formation of fcc- and bee-based lithium-aluminium ordered compounds (after

SLUITER et al. [1990]).
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Fig. 50 (b). The predicted heat of formation of fcc- and hep-based titanium-aluminium ordered compounds
(after VAN SCHILFGAARDE e! al. {1990]).

AUpy = ¥ [P~ (1= )2, |0 (158)

where z, and p, are the number of nth nearest neighbour atoms and B-B atom pairs

respectively.
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Fig. 51 (a) The homogeneous embedding energy for H and the rare gas atoms He and Ne in a free electron gas
of density p (after PUsKA et al. [1981]). (b) The H and He heats of solution across the 3d series (after NpRSKOV
[1982] and MANNINEN ef al. [1982] respectively). The solid circles include a first-order electrostatic con-
tribution. The open circles include, in addition, a first-order hybridization correction.

The effective pair interaction in transition metals with respect to an fcc lattice is
illustrated by fig. 52a where ¢, and ¢, are plotted as a function of average band filling
N, for the TB d band alloy with ¢=0.25 and AE,/W = 0.45 (BIEBER et al. [1983]). As
expected from the behaviour of the simple-metal pair potentials in § 6.1, the transition-
metal pair interactions display oscillations as a function of band filling, N,, and nearest
neighbour position, n. Figure 52b compares the ordering energy evaluated by the pair
interaction of DUCASTELLE and GAUTIER [1976] with the exact TB energy difference
from eq. (157). We see that for this particular alloy it is a good approximation in the
band-filling region where ordering occurs. Moreover, because the second and further
nearest neighbour interactions are at least an order of magnitude smaller than the first nearest
neighbour interactions, the ordering energy is dominated by ¢, through eq. (158).

The pair interactions also determine the most stable ordered structure with respect to
a given lattice (BIEBER and GAUTIER [1981]). For example, in fig. 53 the Cu;Au and
ALTi structures are shown, which are built on the fcc lattice. They have the same type
of first nearest neighbour atoms, so that their relative stability is determined by ¢, and
further nearest neighbour interactions. Since ¢, in fig. 52a is negative for 4.4 < N,<73
when AE; /W =0.45, the ordered structure with /ike second nearest neighbours will be the
more stable, i.e., Cu;Au. The stability reverses outside this band-filling region, thereby
accounting for the nature of the structure map in fig. 53. This displays only a narrow
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Fig. 52. (a) The first and second nearest neighbour effective pair interactions, ¢, and ¢,, as a function of the
average band filling, N, for an AB, transition-metal alloy with a AE;/W = 0.45 on an fcc lattice. (b) A
comparison with the exact result of the ordering energy evaluated using the effective pair interactions. (After
BIEBER ef al. [1983].)

stability range for the AL;Ti phase, which is in agreement with empirical structure maps
(BIEBER and GAUTIER [1981]).

This chapter on Electron Theory has been concerned primarily with the cohesive and
structural properties of metals and alloys at the absolute zero of temperature. However,
the derivation of effective pair interactions ¢, within electron theory allows the first-
principles prediction of phase diagram behaviour by using these in an Ising Hamiltonian
and performing Monte Carlo or Cluster Variation Method simulations (see, for example,
DUCASTELLE [1991] and references therein, and ZUNGER [1994]). Chapter 6 deals
explicitly with Phase Diagrams.

8.  Band theory of magnetism

The magnetic 3d elements have anomalously large equilibrium atomic volumes and
small bulk moduli as evidenced by the deviations in fig. 1 between experiment and the
non-magnetic LDF theory. In this section we will see that the STONER [1939] theory of
band magnetism can explain this anomalous behaviour.

A nonmagnetic system will become magnetic if the lowering in exchange energy due
to the alignment of the electron spins more than compensates the corresponding increase
in kinetic energy. This may be demonstrated by the rectangular d-band model of fig. 54.
In the nonmagnetic state, the up and down spin electrons are equivalent and, therefore,
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Fig. 53. The relative stability of the Cu;Au and AL T structures as a function of the average band filling N,
and the renormalized difference in the atomic d levels, AE,/W (after BisBerR and GAUTIER [1981]).

they have identical density of states n; and n; as shown in fig. 54a. In the magnetic state,
the presence of a local magnetic moment, m, produces an exchange field A on the atom,
of strength

A = Im, (159)

where [ is the Stoner exchange parameter and m=Ng—Ndi in Bohr magnetons (i5). In the
Sferromagnetic state, all the atomic moments are aligned in the same direction, so that an
up-spin electron sees the atomic level E, shifted by —4A a on every site, the down-spin
electron by +A. Therefore, the densities of states ny and n; are shifted rigidly apart by
A as shown in fig. 54b. On the other hand, in the antiferromagnetic state, half the atoms
have their moments aligned up, the other half have their moment aligned down, so that
an electron sees two types of sites, with energies E; #1A. The problem is, therefore,
analogous to that of the AB alloy discussed in the previous section (cf. fig. 44) and the
densities of states ny and n (corresponding to an atom with net moment up) are obtained
by skewing the rectangular nonmagnetic densities of states as shown in fig. 54c.

The magnetic energy which accompanies the formation of a local moment m at each
site, may be written as:

Upgg = 8T — % Im?, (160)

where the first term is the change in the kinetic energy and the second is the lowering in
energy due to exchange. The ferromagnetic (fm) state is created by flipping ym down-
spin electrons from just below the nonmagnetic Fermi level into the unoccupied up-spin
states just above the nonmagnetic Fermi level. This is accompanied by an increase in
kinetic energy of (Am)/n(Eg) per electron, so that, to second order,

Up, = 4’ /n(Eg) - + Im? (161)

where in this section n(Eg) refers to the nonmagnetic density of states per spin. There-
fore, the nonmagnetic state will be unstable to ferromagnetism if U, < 0, i.e. if:
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Fig. 54. The rectangular d band model of the (a) nonmagnetic, (b) ferromagnetic, and (c) antiferromagnetic
states (after PETTIFOR [1980]).

In(E;)>1 (162)

which is the famous Stoner criterion. The equilibrium value of m in the ferromagnetic
state is determined by the condition

In(Ny,m)=1, (163)

where n (N, m) is the average of the nonmagnetic density of states per spin between the
two energies corresponding to a band-filling of Ni and NdT respectively (see, e.g.,
GUNNARSSON [1976]).

The magnetic energy of the antiferromagnetic (afm) state can be obtained (PETTIFOR

[1980]) by adding up the band energies in fig. 54c and subtracting off the exchange
energy which has been double-counted, i.e.:

U = =95 (Wm — W)N,(10 - N,) + + Im?, (164)

where from eq. (142)
W, = {1 + 3(A/W)2}”2 Ww. (165)

Expanding eq. (165) to second order and using eq. (159), the nonmagnetic state is found
to be unstable to antiferromagnetism if

/W >[5 N, (10~ N[ (166)

This is the rectangular d-band model criterion equivalent to the exact second-order result,
namely

Ix (E:)> 1 (167)

where x (E) is the response function corresponding to the afm ordering wave vector g
(see, e.g., FEDDERS and MARTIN [1966]). The usefulness of the present model is that egs.
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(164) and (165) include terms beyond second order so that the equilibrium value of the
magnetic moment and energy may be obtained explicitly. Equation (164) is stationary for

172
m = (i3 )[3 N0 - M) - (w/r)'} (168)
when
Ugn = |2 WN,(10 = N,) - s W*/1] - 4 . (169)

The first term in eq. (169) represents the change in kinetic energy, 67. The value of the
moment given by eq. (168) is identical to that obtained by filling the up and down spin
bands in fig. 54c and solving eq. (159) self-consistently.

Figure 55 shows the regions of stability of the ferromagnetic and antiferromagnetic
phases as a function of the renormalized exchange integral, I/ W, and band filling, N,, for
the rectangular d-band model (see also PENN [1966]). The fm and afm phases are stable
for values of I/ W above the critical curves ABC (fm) and DBE (afm), which are defined
by eq. (162) with n(Ep)= 5/W and eq. (166), respectively. In the region where both
phases are stable, the fm and afm state have the lower energy in region FBE and ABF
respectively.

The magnetic behaviour across the 3d series can be accounted for qualitatively (see
also MoRivYa [1965]) by assigning the 3d transition-metals values of N in fig. 55 which
fix Ni with 0.6 holes. Values of I/ W are chosen as marked by the crosses in fig. 55, the
numbers lying in the range expected from first-principles LSDF calculations where I =

1 eV and W= 35 eV for the 3d series (see, e.g., KUBLER [1981]). [ is approximately
constant across the series but W increases from Ni to Cr just as observed in table 1 for
the corresponding 4d series from Pd to Mo. Therefore, we expect I/ W to decrease in
moving from Ni to Cr, as shown in fig. 55. The positions of the crosses in fig. 55 imply
that Ni and Co are strong ferromagnets with moments of 0.6 and 1.6 u, respectively,
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Fig. 55. The regions of stability of the ferromagnetic and antiferromagnetic states as a function of the
renormalized exchange integral, I/ W, and d band filling, ¥,. The crosses mark plausible values of I/ W across
the 3d series. (After PETTIFOR [1980].)
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whereas Fe (I/ W=0.180), Mn(I/ W=0.158), and Cr (I/ W= 0.136) are anti-ferromagnets
with local moments from eq. (168) of 0.9, 1.6 and 0.7 uy, respectively.

In practice, the rectangular d band model is not too bad a description of the close-
packed fcc and hep metals whose densities of states are fairly constant away from the top
of the d band (c.f. fig. 26). This is demonstrated in fig. 56 by the band structure calcula-
tions of ASANO and YAMASHITA [1973] who evaluated the fm and afm local moments
across the 3d series. Their fcc results are similar to those obtained from fig. 55. In
particular, fcc iron is unable to maintain a fm moment, being instead a weak antiferro-
magnet. However, if I/ W were to increase (by volume expansion), then fig. 55 implies
that fcc iron eventually stabilizes in the fm state as has been observed experimentally by
GRADMANN and ISBERT [1980] and theoretically by the LSDF calculations of KUBLER
[1981].

On the other hand, bce transition metals have a very non-uniform density of states
and are characterized by a very marked antibonding peak for N = 8 electrons (cf. fig.
26a). n(Ep) is sufficient for the 3d transition metal iron to satisfy the Stoner criterion
(162) and the resulting magnetic energy of — 0.3 eV/atom (JANAK and WILLIAMS [1976])
stabilizes the bec lattice with respect to the nonmagnetic or weakly afm close-packed
lattices. Under pressure, however, the d band broadens and the density of states
decreases, thereby leading to an increased kinetic-energy contribution in eq. (161). At
just over 10 GPA the nonmagnetic structural energy contribution in fig. 35 wins out and
ferromagnetic bcc a-iron transforms to the nonmagnetic hep e-phase (MADSEN et al.
[1976]). This is the most stable structure of the isovalent 4d and 5d elements Ru and Os
at their equilibrium volume because their wider d bands prevent them from satisfying the
Stoner criterion. At atmospheric pressure bcc «-iron transforms to the fcc y-phase at
1184 K and changes back to the bcc 8-phase at 1665 K just before melting at 1809 K.
The occurrence of the a, v, § and £-phases in the temperature—pressure phase diagram
of iron can be understood qualitatively (HASEGAWA and PETTIFOR [1983]) within a band
theory of magnetism which extends Stoner theory to finite temperatures (CYROT [1970],
HaseGawa [1980] and HUBBARD [1981])).

The simple rectangular d band model of antiferromagnetism presented in fig. 54c
does not include any Fermi-surface nesting effects which LOMER [1962] argued were

Antiferro Earro
20k \ _ 2.0l Fe band i
- m
221
a Mn-ban: Co{’% -.E:_\ Cr band
E 10 re bund |bund 10
Antiferra
Mn Co Ni Cr Mn Fe Co
fcc bcc

Fig. 56. The magnetic moments of the 3d metals in the ferromagnetic and antiferromagnetic states calculated
as a function of band filling by ASANO and YAMASHITA [1973] for the fcc and bee lattices, The crosses mark
the experimental values.
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responsible for the observed periodicity of the bce Cr spin density wave. In practice,
even though nesting provides only a small contribution to x,(Eg) in eq. (167), it is
sufficient to take bcc Cr across the afm stability curve DBE in fig. 55 (WINDSOR [1972]
and SKRIVER [1981a)).

The anomalous behaviour of the equilibrium atomic volumes and bulk moduli of the
3d series observed in fig. | is due to the magnetic pressure, P,,,=— dU,,,/dV, which
accompanies moment formation (SHIGA and NAKAMURA [1969] and JANAK and
WILLIAMS [1976]). Assuming that I is volume-independent (MADSEN et al. [1976]) and
W varies inversely with volume to the five-thirds power (HEINE [1967]), it follows from
eqs. (161), (164) and (169) that

3P,V = 56T, (170)

because U,,,,/6m=0 at equilibrium.
In particular, for the ferromagnetic state the kinetic-energy change, 87, may be
approximated by the first term in eq. (161), so that

3P,V = $m’ /n(E,). (171)

JANAK and WILLIAMS [1976] have shown that this simple expression accounts for the
increase in equilibrium volume on going to the ferromagnetic state which the LSDF
results display in fig. 57. For example, iron and nickel have moments of 2.2 and 0.6 u,
respectively, and LDF nonmagnetic density of states per spin of 1.5 and 2.2 states per eV
atom respectively. Substituting into eq. (171) gives a magnetic pressure for iron and
nickel of 21.2 and I GPA, respectively, which leads to an increase in the equilibrium
volume of 7% and }%, respectively. The increase in atomic volume reduces the bulk
modulus because the valence s electrons are now no longer compressed to the same
extent into the core region where they are repelled by orthogonality effects (cf. § 5.2).

Figure 57 shows that the experimental frend in the equilibrium atomic volume and
bulk modulus zcross the ferromagnetic metals Fe, Co and Ni is well accounted for by the
LSDF results (JANAK and WILLIAMS [1976]). Similarly, SKRIVER ef al. [1978] have
obtained good agreement with experiment across the 5f actinide series, where the LSDF
calculations reproduce the sudden 30% volume expansion that is observed in going from
Pu to Am, due to the formation of a 5f moment. The 4f rare earths Ce and Pr have also
been studied within LSDF theory, by GLOTZEL [1978] and SKRIVER [1981b] respectively,
as too has the permanent magnet Nd,Fe,,B (COEHOORN [1992]) and various magnetic
mutilayers (EDWARDS [1992]). However, errors remain in figs. 1 and 50 (for the 3d
metals in particular) which must be attributed to the local approximation to the exchange
and correlation energy functional. For example, LDF theory does not position the valence
s and d bands in exactly the correct relative position (HARRIS and JONES [1978]) or
provide the correct exchange splitting in nickel (WOHLFARTH [1980] and COOKE et al.
[1981]). Although the correlations can be treated perturbatively within a TB framework
(FrRIEDEL and SAYERS [1977]), a simple non-local extension of the LDF approximation
will be required for the next generation of higher-accuracy first-principles calculations
(see, e.g., JoniEs and GUNNARSSON [1989]).

References: p. 129.
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Fig. 57. The equilibrium Wigner-Seitz radius, S, and bulk modulus, B, across the magnetic 3d transition metals.

The crosses, circles. and squares are the experimental, spin-polarized LSDF and nonmagnetic LDF results,
respectively. (After JANAK and WILLIaMS [1976].)
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Further reading

References marked with an asterisk in the list above can also be used for general reading.
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1. Solid solubility

A solid solution is obtained when atoms of different elements are able to share
together, and with changing proportions, various sites of a common crystalline lattice. It
is now generally recognized that all metals and compounds show some solubility in the
solid state; a question of great interest is, however, the extent of solid solubility in a
given case. For example, only 0.2 wt% of phosphorus can be dissolved in y-iron, but
nearly 39 wt% of zinc can be dissolved in copper without changing its structure. On
alloying copper with nickel, on the other hand, the same fcc structure is maintained
throughout the entire alloy system (fig. 1a), providing an example of complete solid
solubility. The Au~Cu alloys have complete solid solubility at high temperatures, but
show different behavior at low temperatures (see fig. 1b and § 11). In the great multitude
of phase diagrams now known, the above cases, and even the case of only a partial but
extensive solid solubility (of several atomic percent), are relatively rare. Complete solid
solubility can occur only if the structures of the elements involved are basically the same,
but it need not always occur when this condition is fulfilled (i.e., the system Cu-Ag
which is a simple eutectic). In the case of close-packed hexagonal solid solutions
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Fig. l1a. Complete solid solubility in the system Cu-Ni which maintains fec structure throughout the whole
composition range (from MassavLsk1 [1990).)
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!\? Au-Cu Phase Diagram
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Fig. 1b. The Au—Cu system has complete solid solubility and fcc structure at high temperatures. At low
temperatures superlattices form (see § 11). (From MassaLsk1 [1990].)

considerable difference between the values of the axial ratio can usually be accommo-
dated on changing from one element to another; for example, the axial ratio, ¢/a,
changes from 1.5873 for Ti to 1.5931 for Zr in the Ti—~Zr system, and from 1.6235 for
Mg to 1.8856 for Cd in the Mg-Cd system. The phase diagrams of these systems are
shown in figs. 1c and 1d. In the case of Ti—Zr the pure elements exist in two allotropic
forms (cubic at high temperatures and hexagonal at low temperatures), and complete
solid solubility occurs between both modifications on alloying. In the Mg—Cd system, on
the other hand, complete solubility occurs only at high temperatures and is interrupted at
lower temperatures by the formation of superlattices (see § 11).

From the point of view of solid solubility, chemical compounds can be compared
with pure metais and may be said to show alloying behavior if they exhibit wide solid
solubility in a phase diagram. Since compounds are usually formed at fixed ratios of the
numbers of atoms, the occurrence of solid solubility represents a departure from
stoichiometry. If a compound is truly ionic in nature, the extent of such departure may
be extremely small, amounting perhaps to a fraction of an at%; and for all practical
purposes this is usually ignored and the compound is then drawn as a vertical line in the
phase diagram. However, in typical metallic systems a large number of phases have been

References: p. 199.
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Fig. lc. The Ti-Zr system has complete solid solubility, with cubic structure at high temperatures and
hexagonal structure at low temperatures (from MassaLsk1 {1990].)

observed at atomic compositions which bear no apparent relation to the rules of
stoichiometry. Such phases frequently possess wide ranges of solid solubility and
resemble the solid solutions obtained on initial alloying of pure metals. To an engineer
concerned with materials the occurrence of wide solid solubility, both between pure
metals and in compounds, is of great practical interest because it is often associated with
relatively simple metallic structures which possess desirable mechanical and physical
properties.

In this chapter we shall examine some of the factors which determine the limits of
solid solubility in metallic systems and then consider some properties of the structure of
extended solid solutions, such as lattice spacings, defects, departure from randomness,
size effects, etc.

2. Terminology (types of solid solutions)

Solid solutions are phases of variable composition, and in principle any number of
components can be alloyed together to form a series of solid solutions. However, for
simplicity we shall consider mainly the binary alloys. The replacement of copper atoms
by nickel on the lattice of pure copper is an example of a substitutional solid solution.
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Fig. 1d. In the Mg-Cd system complete solid solubility occurs at high temperatures. Superlattices form at low
temperatures (see § 11). (From MassaLsk1 [1990].)

Since the two elements can be substituted at all proportions throughout the whole system,
they form a continuous series of solid solutions. If the solid solubility is limited to only
those portions of the phase diagram which are linked to pure elements, the resulting
phases are known as primary (or terminal) solid solutions. Such solutions have, of course,
the same structure as the elements on which they are based. All other phases are usually
known as intermediate phases; they may be called intermetallic compounds or valence
compounds if their solid solubility is unusually restricted around a stoichiometric
composition, Intermediate phases typically possess structures which are different from the
structure of either of the component elements.

If the size-difference between the component atoms which participate in forming a
solid solution is sufficiently large, it may become possible on alloying for the one kind
of atoms to be merely deposited in the holes (or interstices) between the other atoms on
their space lattice. An interstitial solid solution is then formed. Such solutions can occur
for example when nonmetallic elements such as boron, oxygen, nitrogen or carbon are
dissolved in a metal lattice.

Both interstitial and substitutional solid solutions can be random, with statistical
distribution of atoms, or they may be partially or completely ordered, in which case the
unlike atoms show preference for one another. A fully ordered solid solution is some-

References: p. 199.
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Fig. 2. Schematic models of solid solutions: (a) substitutional random; (b) substitutional ordered; (c) interstitial
random; (d) solute clusters in solid solution.

times known as a superlattice. Alternatively, the like-atoms may tend to associate
together to form clusters within the solid solution. Again, the clusters may be dispersed
randomly or they may be ordered or oriented in various ways, producing a variety of
complex substructures within the solid solution. A diagrammatical illustration of the
various types of solid solution is given in fig. 2.

While it is possible to consider the case of a random solid solution as an idealized
example, the mounting experimental evidence, based mainly on diffuse X-ray scattering,
suggests that complete randomness (like perfect crystallinity) is probably never found in
nature. Hence, solid solutions which are in a thermodynamical equilibrium (ch. 5) may
be considered to be truly homogeneous on a macroscopic scale, but they need not be
homogeneous down to the scale where atoms are considered individually.

3. Energy of solid solutions and phase stability considerations

The extent of solid solubility of phases, the stability of phases, the temperature
dependence of stability, and the choice of structures that are actually observed in phase
diagrams are the result of competition among numerous possible structures that could be
stable in a given system. This competition is based on the respective values of the Gibbs
Free Energy of each competing phase and the variation of this energy with temperature,
pressure, composition and possibly other extensive parameters. The details are presented
in chapter 5. Here, we shall merely state that the most general form of the Gibbs energy
(G) can be expressed as a function of the intensive parameters, enthalpy (H) and entropy
(S), and the absolute temperature (T):

G=H-TS. ¢))]
As is well known, numerous factors contribute to the H and S parameters. The major
contribution to the entropy is from statistical mixing of atoms (AS_;,), but there can be
additional contributions from vibrational effects (AS,;), distribution of magnetic
moments, clustering of atoms and various long range configurational effects. The main
interest in this chapter is in the contributions to the enthalpy resulting from atomic
mixing (AH,,,), which are in turn related to the interaction energies between neighbour-
ing and further distant atoms in a given structure based upon electronic, elastic, magnetic
and vibrational effects. Much progress has been made in measuring, calculating and
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predicting many such effects, and hence progress continues to be made in the evalnation
of the related thermodynamic quantities and ultimately the phase diagrams.

Some recent reviews of these topics are listed in the bibliography for further reading (and
in chapter 6).

Typical values of the enthalpy of formation (AH) and its relation to the type of
bonding are given as an illustration in table 1. As discussed in chapter 6, a change by
10-20 kJ/mole in the interaction parameter that determines the enthalpy of formation can
profoundly affect the form of the resulting phase diagram. The estimation of the AH
values, particularly for systems where the experimental data are meager or lacking, has
been therefore of great practical interest to the workers in the area of phase stability.
Semi-empirical values of the heats of formation have been predicted for many systems
by Miedema and co-workers (MIEDEMA and NIESSEN [1988]) and have found many uses.

Along with the progress achieved in the measurements that established the details of
phase diagrams and the associated phases, it is natural that the observed phase stabilities
should be tested against basic theory. In this connection, two aspects stand out sharply
([MassaLsk1 1989]):

(1) The need to calculate phase stability from “first principles” in order to understand
the basic parameters that control the energy of a phase.

Table 1
Heats of formation at 298K of some typical intermediate phases and compounds.*

Compound or phase Structure** Predominant bonding Heat of formation
—AH (kJ/g atom)
MgSe NaCl (B2) Ionic 1359+ 83
MgTe ZnS (B4) Tonic 104.3 £ 104
ZnTe ZnS (B3) Ionic 60.0 £ 2.1
Mg,Ge CaF, (C1) Partially ionic 384 £0.08
Mg;Bi, Ca,0; (D5c) Partially ionic 309038
Mg,Si CaF, (C1) Partially ionic 263+13
InAs ZnS (B3) Covalent 30925
GaSb ZnS (B3) Covalent 209+0.8
InSb ZnS (B3) Covalent 146 £ 04
NiTe NiAs (B8) Partially metallic 18.8 +6.3
CoSn NiAs (B8) Partially metallic 150+ 13
Co,Sn, NiAs (B8) Partially metallic 113+ 08
CaMg, MgZn, (C14) Metallic 133+0.4
AgZng (0.61 Zn) y-brass (D8c) Metallic 4.6 £0.21
AgZn (0.50 Zn) B-brass (B2) Metallic 3.1+0.21

*Data taken from ROBINSON and BEVER [1967].
**For meaning of the symbols, see ch. 4.

References: p. 199.
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(2) The need to utilize the successful theories of phase stability for predicting phase
diagrams in systems where measurements have not yet been done, or are particu-
larly difficult. Here, progress will ultimately permit technologically relevant
complex or multicomponent phase diagrams to be predicted.

It was Hume-Rothery and his associates who more than a half century ago laid the
foundations for a systematic study of phase diagrams and their interpretation. A suitable
testing ground at that time was the stability of alloy phases based on the so-called noble
metals, Cu, Ag, and Au (HUME-ROTHERY [1955]; HUME-ROTHERY et al. [1969]). From
this work has emerged the emphasis on three general metallurgical parameters. Stated
very broadly they are:

(1) the difference in atomic sizes of the components,
(2) the electrochemical differences among the components, and
(3) the “electron concentration” change on alloying.

Their importance is often expressed in terms of the so called “Hume—Rothery Rules” (see
section 4).

Regarding the basic theory, the understanding and prediction of phase stability of
alloys and compounds in terms of the electronic structure calculations is a subject of
paramount importance in materials science. There has been much progress in the “first
principles” (or the so called “ab initio” approach to the band theory of both ordered
compounds and, more recently, also of random metallic alloys (STOCKS and WINTER
[1984]). At the same time, because of the pressing need of technology, many semi-
empirical or partially qualitative schemes of phase stability have been pursued, often very
successfully. The results of such attempts are usually the estimated heats of formation
(AH) (see also ch. 2, §6.2.).

Basic theoretical guidelines are needed to classify phase diagrams, in order to be able
to extrapolate from known binaries to higher order systems. A theoretical derivation of
energies of specific structures and phase equilibria between them, eventually will yield
reasonably accurate free energy and entropy changes, and a description of states of
partial order, relative stability of metastable phases, etc. Clearly, the first step towards
true theoretical determination of phase diagrams is to calculate the energies of phases
involved in simple binaries and compare them with experimentally determined values,
where possible. A number of theoreticians in excellent reviews (LOMER [1967],
FAULKNER [1982]; HAFNER [1983]) have outlined the different operations that must be
performed to calculate a composition-temperature phase diagram of a binary alloy,
starting first with the stability of individual phases. Essentially, these steps are as those
enumerated in table 2.

From the point of view of phase stability, the result of such a detailed calculation
would be a sufficiently precise set of values of the enthalpies of the various competing
alloy phases and their variations with composition. The calculation of the phase
diagrams, including temperature and entropy, would be the next step. Clearly, from the
point of view of phase stability, even these initial calculations represent a monumental
task. Yet, a glance at table 3 quickly shows that theoretical assessments are our only
reasonable hope of dealing with higher-order systems in the near future. In table 4, a brief
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Table 2
Phase stability calculations.*

(First principles)
General procedure

1) Calculate self-consistent atomic potentials of components.

) Fix alloy composition.

[€)] Assume a possible crystal structure.

[C)) Choose lattice parameters.

©) Introduce the atomic potentials on the lattice, calculate self-consistent band structure and ground
state energy, and add interionic energy.

Result: total energy

(6) Repeat (4) and (5) for different values of lattice constants.
()] Repeat (3) through (6) for other possible crystal structures.
®) Repeat (2) through (7) for other compositions.

Result: enthalpy of the possible alloy phases as a function of composition.

*LOMER [1967], FAULKNER [1982], HAFNER [1983]

summary is given of some of the more recent theoretical calculations that have been
developed. This summary is not intended to be comprehensive or complete. (See also ch.

5, §6.).

Table 3
Possible number of systems.

n!
(m!(n—m)!
90!
bi 0 _ 4005
wnary 2188!
90!
1 29 117480
emary 31871
uaternal —9—(—),— = 2,555,190
q i 41861

n = number of elements (say 90)
m = number of elements in a system

As emphasized by many authors (MASSALSKI {1989]), the majority of existing models,
from the semi-empirical to those providing detailed density maps and electronic
parameters of alloys, have the same major drawback as far as phase diagrams are
concerned: it is difficult to treat theoretically the temperature dependence of the energy.
For example, the calculations that predict enthalpies at 0 K (for first principles calcula-
tions), or at sorne undefined temperature (for the semiempirical models), rarely provide
sufficient information about the thermal behavior of such enthalpies or the thermal

References: p. 199.
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entropy contributions. Yet, for the purpose of phase diagrams determination the Gibbs
free energies must be calculated by adding to each enthalpy derived from the static
models the vibrational energy and the thermal entropy contributions. The latter in turn consist
of vibrational and configurational parts. It is clear that the prediction of entropies, particularly
for possible metastable phases in phase diagrams, will become the necessary step before the
full potential of the theoretically calculated stabilities can be utilized. Only a few interesting
examples of phase stability, compound stability and alloying effects are reviewed below.

4. Factors governing solid solubility (Hume—Rothery rules for primary
solid solutions)

Since all interactions between atoms are a function of electronic forces, they should
ultimately be subject to the laws of quantum mechanics. At the present time, however,
the available theories of the solid state of the type summarized in table 4 are unable to
incorporate or to account for the many factors which have been known to materials
scientists as important in determining the structure and various properties of solid
solutions. Such factors, for example, as chemical affinity or the size-difference between
atoms can be considered only semi-empirically, and even the electronic structure, for
which more elaborate theories exist, has been discussed satisfactorily only in a few rather
simple cases. Nevertheless, mainly as a result of studies by Hume-Rothery and his
associates (HUME-ROTHERY [1961a] and HUME-ROTHERY et al. [1969]), extending over
more than thirty years, certain general rules have been formulated concerning the limits
of primary solid solubility and, to some measure, also the width and stability of certain
intermediate phases. As already mentioned above, these rules refer to the difference
between the relative atomic radii of the participating elements, their electrochemical
differences and their relative valencies. Hume—Rothery rules may be summarized as follows:

(i) If the difference between the atomic sizes of the component elements forming an
alloy exceeds about 14-15%, solid solubility should become restricted. This is known as
the 15% rule. The general concept may be illustrated by reference to fig. 3 (Hume—
ROTHERY [1961a]) in which the ranges of favorable atomic sizes with respect to copper,
silver and y-iron are shown diagrammatically. If the atomic diameter of a particular
solute element lies outside the favorable size zone for the solvent, the size factor is said
to be unfavourable and the primary solid solubility will be restricted usually in some
proportion to the increasing difference between the two atomic diameters. Within the
favorable zone the size factor is only of secondary importance and other factors will
determine the total extent of solid solubility. In a sense, therefore, the 15% rule is a
negative rule stressing the role of size differences only when they restrict alloy forma-
tion. In this connection, WABER et al. [1963] have shown that when the size rule alone
was applied to 1423 terminal solid solutions, in 90.3% of the systems where little solid
solubility was predicted, little solid solubility was in fact observed, but the prediction of
extensive solid solubility on the basis of small size difference was only 50% successful.
Theoretical justification for the 15% rule has been obtained from considerations of elastic
strain energy in a solid solution (see below).
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Table 4
Recent theoretical calculations of phase stability or phase diagrams.

Type of calculation Quantities calculated Typica.l references
semi-empirical (charge density, enthalpy of mixing, AH, MIEDEMA et al. [1980]

size and electronegativity MIEDEMA and NIESSEN [1988]

effects)
Pair potentials alloy stabilities MACHLIN [1981]

AHmns{ (a[ 0 K)
Mainly d-band effects maps of related structures PETTIFOR [1986, 1979]
and their stability, AH; WAaTsoN and BENNETT [1979, 1983]

Yukawa et al. [1985]

Mainly valence band effects relative alloy stabilities Morr and JONES [1936]
density of states BREWER [1968]
MassaLsKI and MIzUTANI [1978]

Cluster variation madels ordering energies, order—disorder DE FONTAINE [1983]
R. KixucHi {1981}

AH, (at 0 K) of simple WILLIAMS ef al. [1982])
systems
First principles calculation AH,,.¢ (at 0 K) lattice Y and CoHEN [1982]
using various atomic po- dynamics, ordered com-
tentials: DFT, LSDA, pound stabilities Xu et al. [1987)]
KKR-CPA, LMTO PE! et al. [1989]
simple phase diagrams STOCKES and WINTER [1984]
HarrFNER [1983]

TERAKURA et al. [1987, 1988]

(i1) Formation of stable intermediate compounds will restrict primary solid solubility.
The likelihood of the formation of such compounds in an alloy system is related to the
chemical affinity of the participating elements and will be increased the more
electronegative one of the elements and the more electropositive the other. The general
principle leading to the restriction of solid solubility is illustrated in fig. 4 using
hypothetical free-energy curves for a primary solid solution and for an intermediate
phase. The width of the shaded area represents the extent of primary solid solubility; it
becomes more restricted the greater the stability of the intermediate phase. The above

References: p. 199.
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Fig. 4. Restriction of primary solid solubility due to stability of an intermediate phase.

principle has become known as the electrochemical effect, which is related to the
difference in the electronegativities of the two components.

(iii) Empirical studies have shown that in many alloy systems one of the most
important factors determining the extent of solid solubility and the stability of certain
intermediate phases is the electron concentration. This parameter is usually taken to
denote the number of all valence electrons per unit cell provided that all atomic sites
within the structure are occupied. Alternatively, electron concentration may be taken as
the ratio of all valence electrons to the number of atoms. It is then denoted as ¢/a.

Following the early investigations by Hume-Rothery and his associates it was also
suggested that the mutual solid solubility of two given elements was related to their
respective valencies, namely, that the amount of the solid solution in the element of
lower valency was always greater than vice versa. This general principle is sometimes
known as the relative valency effect. It appears to be valid when copper, silver or gold,
which are monovalent, are alloyed with the B-subgroup elements of the Periodic Table
which possess valencies greater than one. It may be associated in part with the fact that
the Brillouin zones of the noble metals are only partially filled with electrons; and,
although they are touched by the Fermi surface, they are not overlapped as are the
Brillouin zones of the B-subgroup elements. A more likely cause, however, has its origin
in the long-range charge oscillations around the impurity atoms as discussed by FRIEDEL
[1964] and BLANDIN [1965].

Subsequent appraisals by HUME-ROTHERY [1961a] and GSCHNEIDNER [1980] suggest
that the relative valency effect is not really a general principle, and that when two
elements which are both of high valency are alloyed together it is often not possible to
predict which of the two will form the more extensive solid solution with respect to the other.

5. The meaning of “electron concentration”

In the study of alloys it is often convenient to use the electron concentration, rather
than atomic or weight composition, as a parameter against which various properties can
be plotted. In the case of the alloys of the noble metals, the use of electron concentration
has been particularly successful since it almost never fails to bring about interesting

References: p. 199.
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correlations when applied to experimental data. Nevertheless, the physical meaning of
electron concentration is by no means as simple as that of chemical composition, and as
time progresses it has become increasingly more difficult to “visualize” the process by
means of which valence electrons which belong to the solvent and the solute atoms
become a common property of the conduction band of an alloy. Usually only the s and
p electrons are considered as taking part in such a process, but occasionally the total
number of electrons outside the inert-gas core (i.e., s+p+d electrons) has been used to
denote the electron concentration (see below). In the B-subgroup elements which follow
the noble metals in the respective horizontal rows of the Periodic Table the d bands in
the free atoms are fully occupied by electrons. It has been considered for a long time,
therefore, that on alloying only the s and p electrons are involved, but the possibility of
transfer of electrons from the d band to the conduction band, and the s—d hybridization,
makes the situation more complex. There is no doubt that the presence of d-band
electrons sufficiently near the Fermi level in alloys of the noble metals and the changes
in the energy of the d-band electrons on alloying constitute an important contribution to
the electronic structure. This contribution is at present not fully understood but progress
continues to clarify the picture. Calculations of the cohesive energy of the noble metals,
using the assumption that only the s electrons are important, yield values which are far
too low when compared with experimental data. In fact, as pointed recently by COTTRELL
[1988], the cohesion of a metal like copper is mainly the result of attraction brought
about by the sd hybridized electrons and the positive ions, while that part of the
electronic system which corresponds to the classical free-electron gas is actually pushing
the atoms apart (see below).

On the other hand, on alloying, even if it is assumed that the d band may be ignored
and that certain elements possess a well-defined valence (for example, copper=1, zinc=
2, gallium =3, etc.), it is not certain whether all of the (s + p) electrons of a solute
element go into the conduction band of the alloy. FRIEDEL [1954a] has suggested that in
an alloy some of the s+ p electrons may lie in bound states near the solute nuclei.
According to MOTT [1952] such elements as zinc, gallium, germanium, etc., when
dissolved in copper certainly contribute at least one electron to the conduction band. The
next electron may or may not be in a bound state, while the additional electrons in
gallium and germanium almost certainly are in bound states. Nevertheless, it has been
suggested by FRIEDEL [1954a] and others that the valence-electron concentration rules
may remain valid if one assumes that the potential acting on conduction electrons in an
alloy “subtracts” from the bottom of the conduction band as many bound states as there
are electrons in the bound atomic orbitals. Hence, the relationship between the effective
conduction electrons and the band structure may be such that the Brillouin-zone effects,
associated with the stability of phases and certain other alloy properties, may remain
relatively unaltered. For further discussion of this and related subjects see FRIEDEL
[1954a], HUME-ROTHERY and COLES [1954], COTTRELL [1988], and the proceedings of
recent symposia (RUDMAN et al. [1967], BENNETT [1980], Gonis and STOCKS [1989]).

In alloy systems which involve transition elements, rare earths, actinides, lanthanides
and fransuranic elements, the assessment of valence and the corresponding changes in
electron concentration are open to quite wide speculation. Often they depend on the
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nature of the particular problem to be considered. Thus, many striking regularities are
frequently revealed in a group of related elements, or alloy systems, provided that some
valence scheme is adopted against which various properties within the group can be
compared. For example, a rather abrupt change occurs in the electronic specific heat,
magnetic susceptibility, Hall coefficient, hydrogen absorption, etc., in the transition
metals and alloys of the first long period at an electron concentration of about 5.7 (MOTT
[1962]) provided that the numbers of electrons outside the inert-gas core are considered
to represent their valence, ie., 4, 5, 6, 7, 8 and 9 for Ti, V, Cr, Mn, Fe and Co respec-
tively. At the same time the valencies of these same elements when in dilute solution in
the noble metals or aluminium are usually assessed according to a diffferent scheme in
which only the predominantly s electrons are included. Considerations of phase stability
(HuME-ROTHERY [1966] and RAYNOR [1956]) and changes of axial ratio (MASSALSKI
[1958], MassAL3K! and KING [1960}, COCKAYNE and RAYNOR [1961] and HENDERSON
and RAYNOR [1962]) suggest that the above transition elements possess much lower, and
possibly variable, valencies in the range between 0 and 2.

In a similar way, valence schemes have been suggested for other alloy groups, but
will not be discussed here.

5.1. Progress in the electronic theories of metals and alloys

The distinction between metals, semi-metals and insulators, in terms of Brillouin
zones, energy bands and the related overlapping or separation of bands, which has been
for many years the basis in physics for defining what is a metal, has become somewhat
blurred in recent years. COTTRELL [1988] points out that there are many substances that
show metallic conductivity (or even superconductivity) even though clearly they are not
metals in other zspects. (For example TCNQ, or certain ceramic oxides). When sufficient
pressure is applied, electronic clouds of individual atoms are forced to overlap more and
more, with the result that additional outer electrons in atoms will cease to belong to any
particular atomic orbital and will behave as nearly free, contributing to metallic conduc-
tivity and bonding. Thus, the traditional view that the outer electrons (i.e., the valence
electrons) become the “bonding glue” when atoms are assembled into crystals has
become quite blurred.

In the earlier theories of Brillouin zones and Fermi surfaces the Bloch wavefunctions
were used as a basis for calculation. Metals and solid solutions were considered as
regular arrays of ions immersed in a “sea” of conduction electrons. The potential in a
crystal was considered to be a periodically varying quantity corresponding to the
periodicity of the ionic lattice and being more or less atomic (i.e. rapidly falling) in
character near each ion. Bloch was able to show that wave functions of the conduction
electrons for which the potential energy was modulated by the periodicity of the lattice
were valid solutions of the Schrédinger equation. The resulting Bloch model has served
as a very successful basis for discussion of the motion of electrons in metals and alloys.
Only the conduction electrons, moving without electrostatic interactions with one another,
were considered, and their motion was described by one-particle functions. Hence only
the kinetic energy of the electrons was involved.

References: p. 199.
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Subsequent developments in the electron theory have introduced a number of
important modifications to the above model. It was found that the description of
electronic properties was more consistent with experimental data if only weak electron-
ion interactions were assumed, i.e., if the periodical potential was not considered to be
atomic in character near each ion but only weakly changing from ion to ion. At the same
time the additional problem of having to allow for possible strong electron-electron
interactions was removed by considering that the Bloch model describes the motion, not
of one-electron particles but of more complex entities, called quasi particles, introduced
by Landau. Quasi particles have an electron at the center, surrounded by a region of
electron deficiency (correlation hole) and a further region containing electrons that have
been pushed out by the Coulombic repulsion away from the central electron and “flow
around it much as water flows around a moving particle” (COHEN [1965]).

The problem of looking realistically at electron-atom interactions in order to reconcile
the difference between the atomic and the effective potential in a metallic lattice has
been tackled by introducing the notion of a pseudopotential. In this treatment the electron
wave functions near the ions are ignored to some extent and substituted by pseudo wave
functions which have the effect of statistically excluding the valence electrons from
regions of space occupied by core electrons. (See ch. 2, § 3.3.) The application of the
theory of pseudo-potentials has been very useful to the understanding of some problems
in the theory of alloys (HEINE [1967] and STROUD [1980]). Other developments, as
already mentioned in section 3, involve calculations of electronic energies “ab initio”,
and various elaborate treatments of the atomic potentials in solid solutions (see for
example, FAULKNER [1982] and COTTRELL [1988]).

6. Termination of primary solid solubility

6.1. Electronic theories of primary solid solutions based on noble metals

A survey of binary systems of copper, silver and gold with a large number of
elements, and in particular with the B-subgroup elements, has shown that the observed
ranges of primary solid solubility may be correlated with electron concentration
(HUME-ROTHERY and RAYNOR [1940]). In fig. 5 the maximum ranges* of primary solid
solutions based on the three noble metals are indicated as linear plots in terms of e/ a for
the cases where these solutions are followed by an intermediate phase with a close-
packed hexagonal structure (fig. 5a) and, separately, when they are followed by an
intermediate phase with the body-centred cubic structure (fig. Sb). Apart from the
systems Cu-In and Cu-Sn, the primary solutions followed by the cubic phase reach
somewhat higher values of e/a than when followed by the close-packed hexagonal phase.

* It must be remembered that these maximum ranges occur at different temperatures in each system. Strictly
speaking the correlation with e/a should apply only at the absolute zero of temperature. The fact that a significant
correlation is observed at relatively high temperatures suggests that the electronic factors play a predominant role even
at those high temperatures, although entropy considerations undoubtedly also play a role.
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Fig. 5. Extent of the maximum primary solid solubility and of the following intermediate phase in alloys based
on the noble metals (see text).

Examinatior. of fig. 5 reveals that in silver-based alloys the primary solid solutions
terminate within a fairly close range of values near e/a=1.4, whereas in copper-based
alloys the e/a values show a wider scatter, but the range of maximum values is again
only a little less than 1.4. In the case of gold-based alloys the primary solid solubility is
further restricted ranging between 1.2 and 1.3.

The above correlation between the primary solubility and e/a does not lead to any
unique value, but it is quite striking when compared with similar plots drawn as a
function of composition. Hence, it has been suspected for a long time that there must be
an important link between the primary solid solubility and the electronic structure.
During the 1930s an attempt was made by JONES [1937] to calculate the primary solid
solubility of alloys based on copper using the theory of Brillouin zones and Bloch
functions. This approach, and subsequent developments, are extensively quoted in
metallurgical literature and will be discussed briefly below.

The main assumptions of the Jones model were: (i) that the nearly-free-electron
approximation could be extended from pure metals to random solid solutions, and (ii)
that the rigid-band condition was applicable on alloying (i.e., that the shape of the density
of states curve V(E) for a pure solvent remains unchanged on alloying and that the band
gaps in the Brillouin zone do not change in magnitude, the only change being in the
number of loosely-bound electrons). The general idea regarding stability of alloy phases
was that at certain values of the electron concentration the Brillouin zone of one structure
may be associa‘ed with a high density of quantum states, N(E), at relatively low values
of energy and thus “accommodate” the available electrons within lower total energy than
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would be possible in the zone of some other structure. This condition is particularly
likely to occur in the range of energies associated with contact between the Fermi surface
and Brillouin-zone faces since it results in a peak in the density of states. The connection
between phase stability and a peak in the density-of-states curve had been established
earlier (JONES [1934a]) for the case of the y-brass structure.

In 1937 JONES considered in detail the theory of the -8 phase boundary in the Cu-Zn
system where the face-centred cubic primary solid solution («) is succeeded by the body-
centred cubic intermediate phase (8). Using the same values of the atomic volume for both
« and B phases and making them equal to that of copper, and using the same values of
energy gaps as those obtained for copper from optical properties (AE=4.1 eV), Jones
calculated the density-of-states curves for both phases in terms of energy expressed in
electron volts. The result of the calculation is shown schematically* in fig. 6a. The first peak
in the density-of-states curve for the a-phase occurs at about 6.6 eV. When compared
with the free electron energy at the center of the {111} faces in the Brillouin zone, 6.5
eV, this suggested that the contact between the Fermi surface and these faces should
occur in the a-phase already at an early stage of alloying. Many years later PIPPARD
[1958] showed that this contact in fact already exists in pure copper. Interpreted in terms
of e/a, the two peaks shown in fig. 6a correspond to e/a = 1.0 for the @ phase and e/a
= 1.23 for the B phase, respectively, and are therefore unlikely to be associated in a
simple way with the termination of the primary solid solubility (e/a = 1.4), or the
optimum range of stability for the 8 phase (e/a = 1.5). The diagram in fig. 6a is,
nevertheless, of interest because of its general emphasis on the relationship between
phase stability and the density of states. Actual electronic energy relationships are more
likely to be like those shown in fig. 6b, according to which the largest differences
between the Fermi energy of free-electron gas and the Fermi energies of electrons in the
Brillouin zone of the o and 8 phases occur at some points to the right of the peaks
{111} and {110}8 in the density of states (JONES [1962]). The actual «—8 phase
boundary will then be determined by the common tangent principle (BLANDIN [1965]).
Thus, it appears that while the e/a parameter is indeed important in the « phases, as was
thought by Hume—-Rothery, their stability ranges also are very strongly influenced by
additional factors. For example, each particular range strongly depends on the type of
crystal structure that follows a given « phase in a given phase diagram (this is illustrated
in fig. 5), as would be expected from phase competition. In addition, it has also been
shown by AHLERS [1981] that the part of the configurational cohesive energy in the «
phases, which is related to the third nearest neighbor interactions constitutes a large
additional part of their total energy. Configurational energy is the difference between the
ground state energy (at 0 K) and the heat of formation. While this complicates the simple
original picture of a-phase stability in terms of e/a (and the related notions connected
with the density of states [N(E)] and Fermi surfaces), there is outstanding agreement
between the experimentally determined behavior of the electronic specific heats (from

* For actual curves, reference should be made to the original paper (JONEs [19371]). Additional discussion may
be found in a later review article (MASSALSKI and MizuTani [1978]).
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Fig. 6. Schematic models proposed to account for the primary solid solubility of alloys based on copper: (a)
Jones model: band gap across the {111} faces of the zone for the fcc structure = gap across the {110} faces
of the zone for the bce structure = 4.1 eV; (b) total electronic energy E =f:’ N(E)AE, corresponding to the
density of states as modified by the interactions with the respective Brillouin zones; (c) density of states for
free electrons.

which the density of states at the Fermi level can be derived) and the predicted density
of states obtained from a parameter-free calculation based on the KKR-CPA approxima-
tion (FAULKNER and STocks [1981]). This means that the electronic structure of the «
phases is now well understood and the path is clear for a detailed stability calculation of
these phases in the near future.

Incorporation of the original Jones model into metallurgical literature has led to a
good deal of confusion about the relationship between phase stability and the contact
between the Fermi surface and the Brillouin-zone faces. One must appreciate the
difference between the attempt by Jones to calculate the relative stability of two
adjoining phases in terms of the contact between Fermi surfaces and certain Brillouin-
zone faces with assumed large energy gaps and in terms of additional thermodynamic
quantities, and similar attempts in terms of spherical Fermi surfaces. The use of spherical
surfaces amounts to merely calculating the electron concentration at which an inscribed
Fermi sphere would contact the zone faces. In the latter case, the zone faces by implica-
tion should possess zero energy gaps. As pointed out by HUME-ROTHERY [1964], this
important conclusion has been often overlooked in metallurgical literature. Free-electron
calculation shows that contact of a Fermi sphere with the Brillouin zone would be
obtained in the & phase at 1.36 electrons per atom and in the 3 phase at 1.48 electrons
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per atom (see fig. 6¢), and these values are strikingly close to the experimental observa-
tion. This, however, must now be regarded as rather fortuitous, at least for the & phases,
because it has been proved beyond dispute that the Fermi surface is considerably
distorted from a sphere in the [111] direction and touches the set of {111} Brillouin-zone
faces in all three noble metals, Cu, Ag and Au (HARRISON and WEBB [1960]). Further
comments of developments in this field may be found in a review article by MASSALSKI
and MizUTANI [1978].

6.2. Primary solid solubility in transition metal alloys

Hume-Rothery’s further work has shown that electron-concentration principles similar
to those established for the noble metals and their alloys apply also to the solid solutions
of a number of transition metals, particularly those with the fcc structure (HUuME-
ROTHERY [1966]). Figure 7 shows the limits of solid solutions in Rh, Pd, Ir and Pt in
terms of the average group number (AGN) which denotes all electrons outside the rare-
gas shell. The general tendency appears to be for the fcc solid solutions to extend back
to an AGN value of about 8.4. A similar effect is found for solid solutions of V and Cr
in fcc y-Fe, and in Ni. The behavior in bcc metals has not been generally examined.
However, similar correlations may exist. For example, the solid solubilities of Rh and Ru
in bcc Mo terminate at a similar value of AGN of about 6.6 (HUME-ROTHERY [1967}).

7. The atomic size in solid solutions

On forming a solid solution of element A with element B, two different kinds of
atoms come in contact on a common lattice. This inclusion of new centers of disturbance
will affect the existing electronic force fields between atoms, both short range and long
range; the resulting effects will be of several kinds. On the atomic scale some atoms of
the solvent and the solute will be shifted from the mean atomic positions on the lattice
and thus suffer a permanent static displacement. The resulting average distance between
any two neighboring atoms in a solid solution will depend on whether they are of the
like kind, either both solvent or both solute, or of the opposite kind. We may thus talk
of the average AA, BB or AB bond distances which may, even for an identical pair of
atoms, depend also on the direction in the lattice.

In addition to local displacements, the average distances between lattice planes may
also change and we may talk of the change in the lattice spacings and, related to them,
the volume of the unit cell. Both the lattice spacings and the volume of the unit cell are
not related to the actual size of any particular atom.

The relationship between lattice spacings, space lattice and the individual position of
atoms may be summarized as follows: the space lattice represents a repetition in space
of an elementary unit known as the unit cell (fig. 8). The lattice spacings describe the
linear dimensions of the unit cell. To a certain extent a unit cell may be chosen quite
arbitrarily so that, for example, in the face-centred cubic structure shown in fig. 8b three
different unit cells are possible — rhombohedral, face-centred cubic and body-centred
tetragonal. The cell which reveals the essential symmetry is cubic; if the X-ray reflections
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Mo-Pd, Mo-Pt, W-Rh and W-Ir (from HUME-ROTHERY [1966].)

are indexed according to this cell, then the lattice spacing a is associated with the
average spacing of atoms located at the corners of the cube and is larger than the
spacings between the neighboring atoms within the cube or in other possible unit cells.
The a spacing therefore exceeds the closest distance of approach of atoms. For example,
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Fig. 8. (a) The close-packed hexagonal structure, showing the tetragonal and orthorhombic unit cells, and (b) the face-
centred cubic structure, showing the rthombohedral, the face-centred cubic and the body-centred cubic unit cells.

the closest distance of approach of atoms in fig. 8b is a/ ﬁ . In a simple structure, one can
easily calculate this distance from the known dimensions of the unit cell; but this may be
very difficult if the structure is complex as, for example, that of -y brass (fig. 16, below).

In some structures there are considerable variations in the distance between pairs of
atoms at their closest distance of approach, according to position and direction in the
lattice; and in order to study these a more complex analysis, involving all average
interatomic spacings, may become necessary. The cementite structure (fig. 9) provides a
good example. In this structure the iron-carbon distances vary in the unit cell and the
determination of spacings between specified pairs of atoms of iron and carbon requires
the knowledge of X-ray line intensities in addition to the Debye-Scherrer analysis. (The
nature of the bonding in cementile has recently been reexamined by COTTRELL [1993]).

Throughout a range of solid solutions the average “sizes” of individual atoms may be
expected to change depending on the degree and nature of local displacements. A change
in the average lattice spacings may mean a contraction of solute atoms and expansion of
solvent atoms or vice versa, and such local changes may bear little relation to the total
macroscopic distortion of the unit cell. Therefore it is very desirable to be able to assess
the changes in individual atomic sizes in a solid solution, whenever possible. For this
purpose methods involving measurement of diffuse X-ray scattering or changes in the
intensity of principal (Bragg) reflections have been developed.

From a materials science point of view, the important questions regarding the atomic
size are as follows:
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Fig. 9. The variable iron-carbon distances in the structure of cementite, Fe,C (from GOLDSCHMIDT [1948].)

1) What is he actuval size of an atom in a pure element and what are the best ways
of estimating and defining that size?

2) Having decided upon atomic sizes of pure elements, which is the best method of
estimating the influence of atomic sizes in a solid solution?

3) Can one assess this influence of the disparity between initial atomic sizes without
additional measurements in a solid solution?

One would like to know, for example, how successful can be the prediction of the
influence of the size difference merely from the knowledge of the atomic sizes of the
pure elements and perhaps one other physical property, or whether it is always necessary
to perform some kind of a measurement in a solid solution before the importance of the
atomic size can be assessed more accurately. Yet another question concerns the relation-
ship between the strain in the crystal lattice and the atomic size. The contribution of the
strain energy to the total free energy affects the thermodynamical properties, and recently
several attempts have been made to estimate the strain energy using methods of
continuum elasticity.

The empirical success of the 15% rule (§4) already suggests that initial sizes of
atoms can, in some cases, give a guide to the extent of solid solubility on alloying.
However, when formulated in this way the atomic-size difference merely provides a
guide to the hindrance which it may cause to the formation of extensive primary solid
solubility. In some systems, for example in systems Ag-Sn or Ag-Sb, the limits of
primary solid solubility are less than average (for silver-based alloys), yet the widths of
the close-packed hexagonal intermediate phases are surprisingly large. In both systems
the disparity beween atom radii is within the 0~15% range (i.e., the 15% rule is satisfied),
and is appears that the actual value of the size difference may be of importance.

7.1. The size factor

The original formulation of the size-factor concept for binary alloy systems involved
the assumption that the atomic diameter of an element may be given by the closest
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distance of approach of atoms in its structure * (see ch. 1). This approach to estimating
atomic size often meets with difficulties when the structures are anisotropic, or complex,
or when the coordination numbers are Jow. For example, when there are several close
distances of approach in the structure (as in gallium with d, =2.437, d,=2.706, d,=2.736
and d,=2.795 A), the closest distance of approach, d,, does not adequately express the
size of the gallium atom when in a solid solution. A similar consideration may apply
even in the case of an element which crystallizes in a typically metallic structure. For
example, in zinc, with the close-packed hexagonal structure but a high value of the axial
ratio, four possible values can be considered to represent the size of a zinc atom:
spacings between atoms in the basal planes which also correspond to closest packing
(d,=2.6649 A); spacings between the nearest neighbors of the adjoining basal planes
which strongly depend on the axial ratio (d,=2.9129 A); an atomic diameter derived
from the average volume per atom of the unit cell of zinc (d;=3.0762 A); and finally an
atomic diameter calculated for a hypothetical structure with coordination number 12
(d,=2.7535 A). For the purpose of the 15% rule, d,, has been chosen to represent the
size of the zinc atom. However, when the behavior of lattice spacings of solid solutions
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Fig. 10. Trends in lattice spacings and volume per atom in the Cu—Zn system; circles indicate closest distance
of approach, d, squares indicate volume per atom. (From Massarskr and King [1961].)

* The size factor is given by [(dy — d,)/d,] X 100 where d, and dy are values of the closest distance of
approach of atoms in the solvent and solute respectively. For a detailed account of the possible role of the size
factor as defined above reference may be made to a review article by RAYNOR [1956].
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containing zinc is studied in detail, it appears that frequently the lattice spacings expand,
or contract, when an opposite behavior might be expected from the value of the closest
distance of approach. In fig. 10 the changes with composition in the closest distance of
approach, d, and volume per atom in Cu—Zn alloys are shown. Within the primary solid
solution based on copper the lattice spacings follow a curve which indicates that zinc
behaves as if it possessed a larger size than that derived from its a spacing, since the
lattice spacings of the alloys show a positive deviation from a line joining the closest
distances of approach of copper and zinc. On the other hand, within the primary solid
solution of copper in zinc, addition of copper to zinc again expands the a spacing of the
latter despite the fact that the value of d for copper is indicated to be smaller than that
for zinc. Thus, on a finer scale there are often discrepancies between the behavior of
lattice spacings in the alloys and the estimated atomic sizes. For such reasons other
attempts have been made to derive the average atomic size. For example, in fig. 10 the
trend in the « lattice spacing within the o phase may be extrapolated towards pure zinc
to give a hypothetical size of a zinc atom for the case where the face-centred cubic
structure is maintained throughout the Cu—Zn system and on the assumption that the
behavior of lattice spacings is linear. The obtained value is marked AAD in the figure,
and it is close to the d, value mentioned above. This method of estimating apparent
atomic diameters (AAD), is due to AXON and HUME-ROTHERY [1948]. Another approach
makes use of the trend in the volume per atom (MASSALSKI and KING [1961]). Compari-
son between the atomic sizes estimated from the volume per atom in the pure elements
and the behavior of the volume per atom trends in the Cu-Zn system is shown in the
upper portion cf fig. 10.

7.2. The measurement of atomic size in terms of volume

By analogy to the use of the apparent atomic diameter, a measure of the size of a
solute atom in any particular primary solid solution or an intermediate phase may be
obtained by extrapolating to the solute axis the plot of the mean volume per atom within
that phase. In fg. 10 such a procedure is illustrated for the ¢, y and & phases of the
Cu—Zn system, providing values of the effective atomic volumes (MASSALSKI and KING
[1961]) or partial molar atomic volumes. The different effective atomic volumes
estimated in this way for the solute in each phase are independent of the coordination
number or the structural anisotropy effects mentioned above. Thus, when the
coordination number changes, the atomic volume rather than the interatomic distance
tends to remain constant (MOTT {1962]). An extensive study of solid solutions of various
B-sub-group metals (Zn, Cd, In, Tl etc.) in late transition elements such as Ni, Pd or Pt
has shown that often the initial effective atomic volume of a solute, extrapolated to the
pure-solute side, is practically the same in a number of different solvents (ELLNER
[1978,1980]). A good example is provided by the behavior of Ga, fig. 11. At the same
time, it may be seen from fig. 10 that the effective atomic volumes of zinc in the
different phases are smaller than the atomic volume of pure zinc. Since these effective
volumes are different in each phase, it appears that the contribution of the atomic size is
variable according to composition and hence it may be desirable to designate several size
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Fig. 11. Changes of atomic volume with composition in the binary Pt-Ga, Pd-Ga and Ni—Ga (from ELLNER
[19781.)

Table 5
Effective atomic volume of solutes in electron phases of the noble metals
(from MAssaLsKI and KING [1961].)

Sub- Solute Q, Effective atomic volume of solute (A%
group 9]
Cu Ag Au
(Q,=11.8) (Qy=17.05) (©,=16.95)
Qopy Qoo Lo Qo Qop.n O¢.s)
I B Zn 15.2 14.15 14.7 14,7 14.8 14.5 14.8
cd 21.6 18.8 - 19.95 20.7 19.25 n.m.
Hg 23.7 n.m. - 20.75 224 20.2 n.m.
I B (Al 16.6 14.2 -~ 155 16.1 15.2 -
Ga 19.6 14.7 n.m. 16.2 16.7 16.2 -
20.8* 214°
In 26.15 213 - 214 229 20.5 n.m.
Ti 28.6 n.m. - 23.85 - n.m. -
IV B (Si) 20.0 12.5 n.m, n.m, - n.m. -
Ge 22,6 15.1 15.8 17.5 - 17.4 -
Sn 27.05 219 - 227 233 222 225
Pb 30.3 n.m. - 26.7 - n.m. -
V B As 215 16.5 n.m. 18.85 n.m. n.m, -
Sb 30.2 223 n.m. 24.8 25.5 235 -
Bi 354 n.m, - 293 - n.m. -

* Alternative data
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factors in each binary system. The values of the effective atomic volumes, €}, €, ),
for solutes in several noble metal electron phases are listed in table 5 together with the
atomic volumes of pure solvents, €}, and of pure solutes, ). An examination of the
table shows that without exception all solutes show a decrease of the volume per atom
on ailoying and that this decrease appears to be greatest with solutes of highest valency.
Hence, the atoraic sizes of such elements as aluminium, indium, thallium or lead, which
are considered to be an exception when measured in terms of the closest distance of
approach, are found to be typical of a general trend for the B-subgroup elements with the
noble metals when considered in terms of atomic volume (MassaLSKI and KING [19611).
This generalization does not apply to transition elements and other solvents. MOTT
[1962] has pointed out that if the volume of a solute atom in the solid solution is nearly
the same as in its own pure metal one can expect the heat of solution to be small. Why
a solute atom when placed in a hole similar to its own volume in the solvent tends to
retain its original energy, even when the valencies of solvent and solute are different, is
not altogether clear.

7.3. Combined effects of size and electronegativity

In the early 1950s, DARKEN and GURRY [1953] suggested that the extent of solid
solubility in a given solvent metal may be assessed by testing simultaneously both the
size and electronegativity differences between solvent and solute elements. They showed
that in a combined plot of electronegativity (ordinate) and size (abscissa), which they
called a map (see fig. 12) each element can be represented by a point (see also ch. 5,
§ 1.5). The closer any two points are on the map, the more likely is a high mutual solid
solubility between the elements involved. In a typical Darken-Gurry (D-G) plot, as in
fig. 12, substantial solubility is usually indicated by an ellipse drawn around a given
solvent point. WABER et al. [1963] have shown subsequently, following a statistical
survey of 1455 systems for which experimental data exists, that over 75% of the systems
obeyed the prediction of solid solubility assessed on the basis of a D-G plot. The
usefulness of the D-G method is particularly well demonstrated for the actinide metals
and rare-earths (GSCHNEIDNER [1980]).

7.4. Strain in solid solutions

A simple model which takes into account the difference between atomic sizes, and
which can yield estimates of lattice strain, may be constructed using basic ideas of
continuum elasticity. Several such models have been considered (DARKEN and GURRY
[1953], EsHELBY [1956} and FRIEDEL [1955]). The general approach is illustrated
schematically in fig. 13.

Consider a rubberlike elastic matrix of a large volume V, in which a very small
cavity has been drilled away of volume V,. Then, through an infinitesimally small
opening (shown as a capillary opening in the figure) an amount of incompressible fluid
of volume (V,+AV)) is introduced which, therefore, expands the cavity by the amount
AV,. Both the fluid and the matrix are now under stress and the matrix suffers an
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Fig. 12. The Darken—-Gurry map with an ellipse drawn about the solvent tantalum. The two vertical lines are
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[19801.)

expansion AV,, shown in the figure by the shaded portion, which is related to the
increase in the volume of the cavity by the relationship

AV, /AV, =3(1-v) /(1 +v), @)

where v is Poisson’s ratio. As pointed out by DARKEN and GURRY [1953], for most
metals Poisson’s ratio is about 0.3 and hence AV,/AV,, equals about 1.6, i.e., the
volume-increase of a metal bulk will be larger than the increase in the volume of the
cavity. The above model can be related to a solid solution in which the expanded cavity
is replaced by several solute atoms and the bulk by a metal solvent matrix. In analogy to
the expanded volume of the elastic matrix we may expect that in a substitutional solid
solution on replacing an atom of the solvent (a cavity) by a somewhat larger-sized atom
of the solute (the incompressible fluid) we should obtain a net expansion of the entire
unit cell. The estimates of the strain energy associated with such an expansion have
enabled a number of authors (DARKEN and GURRY [1953], ESHELBY [1956]) to show a
direct link between the limitation of primary solid solubility and Hume-Rothery’s 15%
rule. Lattice spacing measurements in solid solutions are also in qualitative agreement
with the above model, but sometimes a lattice expansion is observed even if the solute
atoms are considered to be smaller than those of the solvent, This discrepancy is usually
due to the difficulty of being able to assess correctly the sizes of atoms and to the fact
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Fig. 13. Model of an incompressible particle in an elastic matrix.

that, on alloying, other factors not included in a crude assessment of size come into play,
to mention only that the size of the solute atom in the pure element may differ consider-
ably from its size in solid solution because of such factors as electron concentration,
electrochemical effects and static displacements, etc.

Calculations based on simple elastic models permit one to relate the strain energy to
composition and atomic volume. A general equation expressing strain energy in a solid
solution may be written as (MASSALSKI and KING {1961]):

100)
£ = ant{ a2 100 ®

where A is a numerical constant, u is the shear modulus, {) is the mean atomic volume
and ¢ the composition. In many alloy phases the variation of atomic volume with
composition is nearly linear and hence for dilute solutions (for which )4 = () one may
write:

1902
[m) = (Qa - QO)/QO’ (4)

where (), is the atomic volume of the pure solvent and (), the effective atomic volume
of the solute in the « phase. The relationship (€2, — Q,)/ €}, represents a measure of a
volume-size-factor (MaAssaLskI and KING [1961]) within a given alloy phase and a
comparison of eqs. (3) and (4) shows that the strain energy for dilute alloys is related to
the square of the volume-size-factor. Volume-size-factors have been calculated for
numerous solid solutions and are available in tabulated form (KING [1966]). It should be
pointed out that the use of a volume-size-factor rather than one based on the closest
distance of approach necessitates the knowledge of the extrapolated effective atomic
volumes of the solute within different phases and hence necessitates additional measure-
ments within solid solutions.

Ellner’s studies, for example the plot shown in fig. 11, confirm that in many solid
solutions the initial behavior of the atomic volume with composition is practically linear
(usually in the composition range up to about 3040 at% of solute). The corresponding

References: p. 199.
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effective atomic volume obtained from extrapolation to the pure solute side provides
a measure of the departure of the atomic volume trend from a possible linear behavior
between the atomic volumes of the pure components. If the difference (€ en ~ 2 copure)
is plotted against the difference between the partial molar heats of mixing
(AH, yen ~AHeoine) obtained from measurements (or calculations), a nearly linear
relationship is obtained (ELLNER [1978, 1980]). Thus, size effects find their expression
in the corresponding chemical manifestations.

7.5. Deviation from Vegard’s law

A study of available systems based on copper, silver and gold with the B-subgroup
elements indicates that, when volume-per-atom trends are considered, alloying between
any two elements causes a decrease in the volume per atom from a straight line joining
the two values for the pure elements. A similar behavior is observed also when various
interatomic spacings are measured and plotted within a solid solution, although in such
cases the deviation can have positive or negative sign. The trends usually observed are
illustrated in fig. 14.

The expected linear dependence on composition of laitice spacing trends, to follow
a line joining the values for the pure elements, has come to be known as Vegard’s Law,
although this law has only been found valid for a number of ionic salts (VEGARD [1921,
1928]) and is never quite true in metallic systems. Nevertheless, it is tempting to be able
to calculate deviations from assumed linear behavior, without actually performing any
measurement in a solid solution, and using solely the knowledge of various parameters
in the pure components. Such an attempt has been made by FRIEDEL [1955] for the cases
of dilute and concentrated primary solid solutions. Friedel used the atomic volumes,
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Fig. 14. The commonly observed trends in lattice-spacing-composition curves in three typical binary alloy
systems: (a) complete solid solubility; (b) partial solid solubility, A has higher valency than B; (c) presence of
an intermediate phase, large electrochemical interaction between A and B. (After MasSALSKI [1958).)
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Poisson’s ratio, bulk moduli, and compressibilities. The elastic model illustrated in fig.
13 is extended to the case in which both the matrix and the introduced fluid are

compressible with compressibility coefficients y, and y,. The atoms of solvent and solute
are represented by radii r,, and r, which are derived from the atomic volumes of the
elements using the relationship Q =%, The holes in the matrix are represented by the
atoms of the solvent with radius r, and the introduced distortions by atoms of the solute
with radius r,. On replacing an atom of the solvent by an atom of solute both suffer an
elastic adjustment which may be represented by an average radius a common to both,
Freidel has shown that at infinite dilution

(@=n)/(n-a)=a=1+v)x, /20-2)x, )

where v is again Poisson’s ratio and y,, and y, are the compressibilities of the solvent
and solute respectively. At a finite concentration ¢ the total volume of the solvent will
suffer an increase and the average radius of an atom in the solid solution may now be
represented by r (derived from average atomic volume) which will be different from the
initial radii r, and r, of both the solvent and solute. Following Friedel, the initial
deviation of the average atomic radius r in a solid solution from a line joining the atomic
radii of the solvent and solute, may be expressed-as follows:

r-—n _n-n a+(X1/X2)
o n a+l

®

Comparison between calculated deviations using the above elastic model and the
observed deviations (FRIEDEL [1955]) from the assumed Vegard’s Law shows a good
general agreement for the cases where the solute atoms are considered to be bigger than
the solvent atoras, but usually not vice versa.

7.6. Measurement of actual atomic sizes in solid solutions

The static distortions in a solid solution which can be related to the individual atomic
sizes may be estimated from a modulation in diffuse X-ray scattering (WARREN et al.
[1951], ROBERTS [1954] and AVERBACH [1956]) and from a quasi-temperature reduction
in the Bragg reflections (HUANG [1947], HERBSTEIN et al. [1956] and BORIE [1957,
1959]). In the former case the modulations of the diffuse X-ray intensity diffracted by a
solid solution are described by coefficients, «;, related to the nature of local atomic order
of atoms, and by size effect coefficients, 3;, related to the differences in the sizes of the
component atoms. According to theory,

o =1-P /X, M

l X i X i
B = (HJ[_(X—: + ]SAA + [}i‘ +a; }'7833 :l’ (8)

References: p. 199.

and

where
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=ty / far Ea = (rfiA - ri)ri’ Epp = (rB‘B - ri)ri’

and PAi =probability of finding an A atom in the /" shell about a B atom; X, =mol
fraction of A atoms; f,, f =scattering factors of A and B atoms; r;=average interatomic
distance to the i** neighbor, calculated from lattice spacings; r,, = distance between two
A atoms in the i shell; ry, =distance between two B atoms in the i shell.

8. Intermediate phases with wide solid solubility

8.1. The electron phases

Of all intermediate phases which possess wide solid solubility the most typically
metallic are the electron phases. Their discovery and studies have a historical aspect, and
it is of interest to outline this briefly.

In the first quarter of this century, even before X-ray analysis had been applied to the
study of such phases as the Cu—Al and Cu~Sn S-brasses, HUME-ROTHERY indicated the
possibility that they possessed the same crystallographic structure as that of Cu—Zn -
brass. Systematic and detailed work of Westgren and his collaborators (WESTGREN and
PHRAGMEN [1926], WESTGREN [1930]), has subsequently established the validity of this
and similar suppositions. The circumstance that the formulas CuZn, Cu,Al and CusSn
could be ascribed to the three phases with identical B-brass structure caused Hume-
Rothery to postulate the principle that the stability of these phases was in some way
related to the ratio 3/2 between the number of valence electrons and the number of
atoms. Following this empirical formulation many similarities between crystal structures
of other intermediate phases have been noted and studied systematically particularly in
systems based on copper, silver and gold; and they led to the recognition of the now
well-established term electron compound. At present it is known that such phases are not
compounds in the chemical sense and that they may exist over wide ranges of composi-
tion. For this reason they should perhaps be called electron phases.

In the Cu—Zn system, which is somewhat typical of systems based on the noble
metals, there are three characteristic electron phases commonly known as 8-brass, y-
brass and g-brass. Although these phases possess quite wide ranges of homogeneity, it
had been thought originally that their ranges of stability were in each case based upon a
characteristic stoichiometric ratio of atoms, and the formulae suggested for the 8-, y- and
g-brasses were CuZn, CusZng and CuZn, respectively. From these formulae one obtains
the electron/atom values of 3/2, 21/13 and 7/4 (1.50, 1.62 and 1.75) which have become
widely accepted as characteristic of greatest stability of electron phases despite the fact
that in some cases these values fall outside the range of stability of known electron phases.

Following mainly the work of JONES [1934a,b, 1937, 1952], the stability of electron
phases has been linked via a simple electronic theory of metals with possible interactions
between the Fermi surface and the Brillouin zones, with the emphasis on the influence
of such interactions on the density of states N(E) at the Fermi surface. The 8-, y- and &-
brasses possess the body-centred cubic, complex cubic and hexagonal close-packed
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structures respectively; and it can be shown that at the onset of contact between the
Fermi surface of free electrons and the principal faces of the respective Brillouin zones
the zones are relatively full. The values of ¢/ a associated with the free-electron concept
of the Fermi surface are: e/a=1.48 for contact between the Fermi surface and the zone
for B-brass, e/a=1.54 for contact between the Fermi surface and the {300} and {411}
faces of the large zone for y-brass, and e/a=1.75 associated with the filling of the inner
zone of g-brass. These electron/atom values based on the Brillouin zone models bear
similarity to the original e/ a ratios based on chemical formulae (compare 1.5, 1.62 and
1.75 with 1.48, 1.54 and 1.75), but it must be remembered that in both cases the actual
values are derived from particular models put forward to interpret the stability of electron
phases. The chemical formulae are now known not to be applicable, and the simple
Brillocuin-zone models suffer from the limitation already mentioned before that for the
e/ a values quoted above the band gaps across the Brillouin zone must be assumed to be
zero or near zerd. Thus, as in the case of the theory of primary solid solutions, we are
left with two possibilities: (i) The band gaps in the Brillouin zones are relatively large,
and the Fermi surfaces are not spherical, but the stability may be described qualitatively by

Table 6
Typical electron phases based on noble metals, zinc and cadmium, and some transition elements.

Phases with cubic symmetry Phases with hexagonal symmetry (hcp)
disordered bee struciure y-brass structure B-Mn ¢/a=1633 c/a=157
e/a range 1.36-1.59 e/a range structure e/ a range e/a range

1.54-1.70 e/a range 1.22-1.83 1.65-1.89

1.40-1.54
B b4 M 4 &

Cu-Be  Ag—Zn Au-Al Cu-Zn Mn-Zn Cu-Si Cu-Ga Cu~Zn
Cu-Zn Ag-Cd Cu—Cd Mn-In Ag-Al Cu-Si Ag-Zn
Cu-Al  Ag-Al Cu-Hg  Fe-Zn Au-Al Cu-Ge Ag-Cd
Cu-Ga Ag-In Cu-Al Co—Zn Co-Zn Cu-As Au-Zn
Cu~In Cu-Ga  Ni-Zn Cu-Sb Au-Cd
Cu-Si Ci-In Ni—-Cd Ag—Cd Li~Zn
Cu-Sn Cu-Si Ni-Ga Ag-Hg Li-Cd
Mn-Zn Cu-Sn Ni-In Ag-Al

Ag-Li Pd-Zn Ag-Ga

Ag—Zn Pt-Zn Ag-In

Ag-Cd P—Cd Ag-Sn

Ag-Hg Ag-As

Ag-In Ag-Sb

Au-Zn Au-Cd

Zu-Cd Au-Hg

Au-Ga Au-In

Au-In Au-Sn

Mn—Zn

References: p. 199.
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a model as that shown in fig. 6b which points to the existence of a relationship between
the density of states and phase stability. (ii) The band gaps in the Brillouin zone are
variable with composition and are small in the range of electron phases so that the nearly
spherical model of the Fermi surface describes the situation adequately. Experimental
estimates of the Fermi surfaces in alloys are still limited, but some measurements have
been made in both dilute and concentrated solid solutions, and they indicate that the
Fermi surface is distorted from the spherical shape, but not substantially (see for example
PEARSON [1967], Massalski and Mi1zuTanNI [1978] and KOLKE et al. [1982]). Although
the details are still not clear, one is left with indisputable experimental correlations that
show e/a to be an important factor in the stability of electron phases. Modelling of such
stability in terms of electronic energy alone suggests that very small differences of the
order of a few hundred cal/mole are involved between respective competing electron
phases (MasSALSKI and MizuTanI [1978]).

A list of typical electron phases is shown in table 6 in which are also shown the
experimentally established ranges of stability of these phases.

8.2. Electron phases with cubic symmetry

The range of stability of the B-phases is shown in fig. 5b, above. The disordered
B-phases are stable only at high temperatures and upon cooling or quenching they usually
decompose, unless they become ordered as in the Cu-Zn system. In all cases the range
of homogeneity of the disordered [B-phases decreases with the fall of temperature,
causing the phase fields to have the characteristic V-shape as illustrated in fig. 15. The
electronic structure of the B-phases appearsto be closely linked with the Brillouin zone
for the bee structure formed by 12 {110} faces, which constitute a rhombic dodeca-
hedron. As mentioned in the preceding section, in the free electron approximation a
spherical Fermi surface would just touch these faces at e/a=1.48 (see fig.6¢c). If the
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Fig. 15. The typical V-shaped phase fields of the disordered B-phases (from MassALsKI and KING [1961].)
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Brillouin-zone faces have a finite discontinuity, the density-of-states curve should show
a peak near the value of e/a associated with the contact between the Fermi surface and
the Brillouin zone. This possibility has been made the basis of a theory of the occurrence
and stability of the 8-phases (JONES [1937, 1952]). However, as pointed out above, if the
gap across the faces of the Brillouin zone is assumed to be about 4.2 eV, the position in
terms of e/ a of the calculated peak in the density-of-states curve appears to occur at
relatively low values of e/a and bears no relation to the actual ranges of stability.
Nevertheless, it is remarkable that the most stable compositions of the B-phases,
represented by eutectoid points at the tips of the V-shaped portions of the phase fields
(see fig. 15), very nearly correspond to electron-concentration values associated with the
free-electron model. More recent developments have centered on the measurement of
properties, such as electronic specific heats, or the de Haas van Alphen effect (dHvA),
that can be more directly related to the electronic structure. They show that the band
gaps in the Brillouin zone are relatively small (~ 3.5 eV), and that the Fermi surface
contours approximate a free-electron sphere. However, the stability of the 8-phases is
undoubtedly related to the total electronic energy integrated from the density-of-states
trends from the bottom of the energy band to the Fermi level, and not just to some
specific condition such as an initial contact between the Fermi surface and the Brillouin
zone (MASSALSKI and M1zuTANI [1978)).
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The range of stability of the y-phases appears to be associated with no particular
single value of electron concentration (see table 6) although there does seem to be a
strong connection between the stability of vy-phases and the large (Brillouin) zone (see
JonEs [1934a,b, 1960]). The y-phases have a complex bce structure with approximately
52 atoms per cell (see fig. 16). They are usually ordered, certain related atomic sites
being occupied by solute atoms and others by solvent atoms. The electronic structure of
the -y-phases and certain of their physical properties have been reviewed by MASSALSKI
and KING [1961] and MASSALSKI and M1zUTANI [1978]. On the whole, the y-phases are
brittle and they are therefore of no primary metallurgical interest. However, from the
point of view of electronic theories the y-phases are of historical interest because they
were the first to be identified with a possible peak in the density-of-states curve
associated with the contact of the Fermi surface with the Brillouin zone. Detailed
calculations show that actually two closely positioned peaks are involved, corresponding
to small band gaps, of the order of 1-2 eV. It is not surprising, therefore, that the Fermi
surface associated with the y-phases appears to be nearly spherical. The interaction of
such a spherical Fermi surface with a Brillouin zone which itself resembles a sphere (the
zone is bounded by 48 faces), should produce a rapid decrease in the density of states
once contact has occurred between the Fermi surface and the zone. This is indeed
confirmed by experimental measurements of electronic specific heats which show a rapid
decrease of the electronic specific heat coefficient y with composition. A similar effect
is also observed in the cubic w-phases which possess the 8-Mn structure (MASSALSKI and
MizUTANI [1978]).

8.3. Electron phases with hexagonal symmetry

Apart from the more complex o-, u- and certain other phases which possess cubic
symmetry (see, €.g., MASSALSKI and KING [1961]), the remaining group of electron
phases possess the close-packed hexagonal structure. These phases are most numerous of
all intermediate phases based on the noble metals, and they may occur anywhere within
the electron-concentration range between 1.32 and 2.00 except for the narrow region
1.89-1.93. Together with the close-packed hexagonal primary solid solutions of zinc and
cadmium with the noble metals (the n-phases) the close-packed hexagonal phases fall
into three natural groups and are usually denoted by the Greek symbols £, £ and % on the
basis of electron concentration, axial ratio and solute content. The known eg-phases
always contain zinc or cadmium as their principal constituents (MASSALSKI and KING
[1961]) and their range of stability varies between e/a=1.65 and e/ a=1.89 (see table 6).
The stability of close-packed hexagonal electron phases again appears to be intimately
linked with both contact and overlap of electrons across the Brillouin zone.

The Brillouin zone for the close-packed hexagonal structure is shown in fig. 17 for
an ideally close-packed structure. This zone is bounded by twenty faces, six of the
{10.0} type, two of the {00.2} type, and twelve of the {10.1} type. The energy discon-
tinuity vanishes across certain lines in the {00.1} faces (JoNEs [1960]) unless the
structure is ordered, and hence these planes do not form a part of the energy zone.
However, the {00.1} faces together with the {10.1} faces may be used to obtain a
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slightly smaller zone for the structure as described by JONES [1960]. Many of the
measured electronic properties in hcp structures may be related to the Brillouin zone. The
dHvA (de Haas van Alphen) data for pure hcp metals, for instance, are often interpreted
in terms of the reduced zone scheme, while the low-temperature specific heat data can
be more conveniently discussed in ferms of the extended zone. If the extended “roofs”
formed beyond the {10.0} planes by the intersection of the {10.1} planes are removed,
the resulting zone is still surrounded by energy discontinuities in all directions except
along the lines of intersection between the {10.1} and {10.0} zone planes (line HL in
fig. 17a). This smaller zone is sometimes known as the Jones zone and its electron
content per atom is:

LR
" 4\e a\c) | ®
where ¢/a is the axial ratio.

The importar:ce of the electron concentration, ¢/ a, as the major parameter controlling
the properties and behavior of the hcp phases became clearly evident only after the
relationship between ¢/a and e/a was established in detail. When e/a is constant, for
example in a ternary system, ¢/a also remains constant. However, when e/a is allowed

to change ¢/a changes accordingly. In binary systems, the axial-ratio trends of all known
¢ and ¢ phases conform to a general pattern as shown in fig. 18. Consideration of this
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behavior suggests a direct dependence of the structural parameters a and ¢ on the
interaction between Fermi surface and Brillouin zone (FsBz interaction): as the electron
concentration increases, the resulting contacts and overlaps of the Fermi surface with
respect to different sets of zone planes cause a distortion of the Brillouin zone. This in
turn affects the lattice parameters in real space. The earlier models of the electronic
structure of the hcp phases have been derived mainly from the interpretation of the trends
in lattice parameters, but more recently the electronic structure has also been explored by
additional techniques using, e.g., electronic specific heat, superconductivity, magnetic
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Fig. 18, The trend of the axial ratio as a function of the electron concentration in various hep alloy systems
(from MassaLsk1 and Mizutant {1978].)
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susceptibility, thermodynamic activity and positron annihilation.
The distance from the origin to the respective zone plane in k-space is given by:

12
2 2 2 3(a)’)
ko = Ba’ ko2 = e and kg, = E(l + Z(;) ] ’ (10)

and hence depends on the axial ratio. In the range of ¢/a higher than /3, the {00.2}
zone planes are closest to the origin, leading to the sequence kg, < k5 < kyo; Which
holds in the n-phases, where ¢/a exceeds 1.75. The sequence kg, < kg, < kg, holds for
all £- and e-phase structures. The corresponding Jones zone holds, at most, only 1.75
electrons per atom. Therefore, overlaps of electrons from the Jones zone into higher
zones are expected at relatively low values of e/a. The interpretation of the lattice-
spacing trends in the {-phase Ag-based alloys, whose axial ratios vary between 1.63 and
1.58, strongly suggests that overlaps of electrons across the {10.0} zone planes already
occur at about 1.4 electrons per atom. The occurrence of possible overlaps across the
{00.2} zone plarie within the range of the £-phases has been inferred from measurements
of the lattice spacings, electronic specific heat coefficient, the Debye temperature, the
superconductivity transition temperature, the magnetic susceptibility and the thermo-
dynamic activity (MASSALSKI and Mizurant [1978]). This is shown in fig. 19. In each
case the onset of electron overlaps across the {00.2} zone planes has been proposed for
the range of e/a exceeding approximately 1.85 electrons per atom. All such measure-
ments imply the occurrence of FsBz interactions that should be reflected also in the
corresponding density-of-states changes on alloying.

The available calculated density-of-states curves for the hcp structure are at the
moment limited to several pure metals, such as Mg, Zn or Be. All these metals have two
valence elecirons per atom and may be represented by relatively similar features in the
corresponding density-of-state curves. The positions of peaks and subsequent declining
slopes occur more or less at the same electron concentration for all three cases, in spite
of a large difference in the axial ratios, atomic volumes and electronic interactions. This
strongly indicates that the main features of the respective density-of-states curves
originate from the FsBz interactions in which e/ a plays an essential role. From this, one
can conclude that a density-of-states curve for a disordered hcp alloy may also have
essentially the same characteristic features. This is confirmed by experiments involving
the measurement of electronic specific heats, which are directly proportional to the
density of states at the Fermi level (fig. 20).

The experimental coefficients y plotted in fig. 20 as a function of e/a show that,
irrespective of the solute or solvent species, all available v,,, values follow a very similar
general trend over a wide range of electron concentrations. An increasing trend is evident in
the lower e/ a range, culminating in a broad maximum at about 1.5 electrons per atom, and
followed by a decreasing trend at higher e/a values. The theoretical density-of-states curve
for the hcp Zn, shown in units of mJ/mole K? in the same figure allows a direct comparison
between a relevant calculation and the experimental data. This shows that the large peak in
the theoretical curves more or less coincides with the experimental peak on the abscissa.

References: p. 199.
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The combination of contacts and overlaps with respect to a large number of zone
planes is clearly responsible for the large peak in the N(E) curve in hcp metals. The
distance of the {10.1} planes from the origin of the zone is relatively insensitive to the
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Fig. 20. Trends of electronic specific heat coefficients as a function of electron concentration for hcp Hume~Rothery
alloys, shown against the band calculation for pure Zn (from MassALsKi and MIZuTANI [1978].)

axial ratio (eq. 9). Hence, the large peak may be expected to occur at similar e/ a values
in most hcp structures. Once contact with the {10.1} planes occurs, additional electrons
will be allocated in the remaining hole regions of the Brillouin zone until overlaps across
the {10.1} or {00.2} zone planes become possible. Thus, until a sufficiently high e/a is
reached, a progressive decrease in the N(E) curve is expected as is actually seen in fig.
20. Based on the above interpretation the likely Fermi surface topography for a typical
hcp Hume—Rothery phase may be expected to be like that shown in fig. 21. The recent
positron-annihilation studies of the Fermi surface in the {-phase Cu-Ge alloys, by
SuzuKl et al. [1976] and KOIKE et al. [1982] are entirely consistent with the conclusions
drawn from the electronic specific heat data and earlier work on laitice spacings and
axial ratios. Indeed, because of zone contacts and overlaps that are likely to occur in all
hep alloy phases, this particular group of alloys offers a most challenging research area
for the positron-annihilation method. For the first time it has become possible to provide

References: p. 199.
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Fig. 21. A very likely Fermi surface topography in an hcp Hume—Rothery electron phase alloy. The 101 contact
and 100 overlap are assumed to be present. (From MASSALSKI and MizUTANI [1978].)

a direct evidence for the existence of the Fermi-surface concept in disordered electron
phases, precisely along the lines predicted by numerous earlier interpretations based on
indirect data.

8.4. Laves phases

An important group of related intermediate phases is obtained by alloying of elements
whose atomic diameters, d,, and dyg, are approximately in the ratio 1.2 to 1. The exact
lattice geometry requires that d,,/dys should be 1.225, but in known examples of this
type of intermediate phases the ratio varies from about 1.1 to about 1.6, Much of the
original work concerning the above phases is due to Laves and his co-workers. For this
reason they are often called Laves phases (see ch. 4).

Laves phases are close packed, of approximate formula AB,, crystallizing in one of
the three structural types:

1) C,, structure, typified by the phase MgZn,, hexagonal, with packing of planes of
atoms represented by the general sequence ABABAB etc;

2) the C,; structure, typified by the phase MgCu,, cubic, with packing ABCABCABC;

3) the C,; structure, typified by the phase MgNi,, hexagonal, with packing ABACABAC.

The main reason for the existence of Laves phases appears to be one of geometrical origin
— that of filling space in a convenient way. However, within the given range of atomic
diameters which satisfy the space-filling condition, it appears that often the choice as to which
particular modification will be stable is determined by electronic considerations. The evidence
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for this is particularly striking in the magnesium alloys studied by LAVES and WrrTE [1935,
1936]. The experimental results concerning the three modifications occurring in several
ternary systems based on magnesium are shown in fig. 22 and are plotted in terms of electron
conceatration. Witte and his co-workers have carried out experiments suggesting that the
phase boundaries on the electron-rich side of typical Laves structures occur at very nearly the
same ¢/ a, suggesting that the homogeneity of a particular structure may be restricted by an
appropriate Brillouin zone. Measurements of the changes in magnetic susceptibility and
hydrogen solubility of several alloys within the pseudobinary sections MgCu,~-MgZn,,
MgNi,~MgZn,, MgCu,~MgAl, and MgZn,~-MgAl,, appear to support this hypothesis. The
changes of the magnetic susceptibility in the pseudo-binary MgCu,~MgZn, system are shown
in fig. 23. KLEE and WITTE [I954] proposed that they may be interpreted in terms of
interactions between the Fermi surface and the Brillouin zone, the dip in the susceptibility
prior to the termination of solid solubility indicating a dip in the density of states.

Measurements of the electronic specific heats, that can be related to the density of
states at the Fermi surface, have provided a further evidence of the importance of
electronic factors in Laves phases. Examination of the trends of the electronic specific
heat coefficient v, as it varies in pseudobinary systems of MgCu, with polyvalent metals
such as Zn, Al and Si, has shown that a sharp decrease of the density of states occurs
near the phase boundary before the MgCu, structure is replaced by a two-phase field. A
possible interpretation of this is that an appropriate Brillouin zone becomes filled with
electrons. In this respect the electronic specific heat data and the magnetic susceptibility
data shown in fig. 23 are very similar (SLICK et al. [1965]).

Mg-Cu-Zn IIIIIIIIIIIIIllllllllllIIIIIlIIIIIIIIIIIIlIIIIIlIll|IIIII||IIIIIIIIIIIIIIIIIIIIIIIIIIII +++++ _I

|
Mg-Ag-Zn T |++++++ HW

|
Mg-Cu-Si ‘ﬁ
Mg-Co-Zn MIl]HﬂHMMMB —
Mg-Zn-A' [
Mgq-Cu-Ag [
Mg-Ag-Al m
1.33 1.4 1.6 1.8 2.0 2.2

/UM MgCup-Type + ++++ MgNip-Type I MgZn,-Type

Fig. 22. The ranges of homogeneity in terms of electron concentration of several ternary magnesium alloys
which possess the three typical Laves structures (from MassaLsk1 [1956} after Laves and WITTE [1936].)
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Fig. 23. Variation of hydrogen solubility and magnetic susceptibility with electron concentration in quasi-binary
systems MgCu,~-MgZn, (from MASSALSKI [1956] after KLEE and WITTE [1954).)

8.5. Phases with wide solubility formed by the transition elements

A number of intermediate phases formed by the transition elements possess wide
ranges of solid solubility. They are often designated by various Greek or Latin symbols
such as o, u, 8, ¥, P or R. For details reference may be made to TAYLOR [1961], NEVITT
[1963] and ch. 5 which deals specifically with alloy compounds.

The o-phase, the unit cell of which is tetragonal with ¢/a = 0.52 and 30 atoms per
cell, has received much detailed attention, chiefly because of the detrimental effect which
the formation of this phase has on mechanical properties of certain steels. In the system
Fe-Cr, for example, the o-phase separates out of the ferritic matrix and causes
brittleness, but in more complex steels such as Fe—Cr-Mn o-phases can also precipitate
from the austenite phase.

X-ray and neutron diffraction studies have shown that many of the phases listed
above are structurally related to one another because they can be built up from layers
that show close similarities. Thus, undoubtedly, atomic packing plays an important role
in determining their stability. At the same time studies of stability ranges, particularly in
ternary systems, have shown that the contours of the phase fields of the above phases
often bear relation to the value of the average group number (AGN). Hence, much
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speculation has been advanced about the electronic nature of their stability that might be
similar to the electron phases of the noble metals. In fig. 24 the ternary phase relation-
ships of some 19 ternary systems are shown at various temperatures as collected by
NIEMIEC [1967]. The relationship between AGN and the contours of the o-phase fields
is particularly noticeable. It must be kept in mind however, that since the d-electrons

Cr Fe Mo Ni Mo Ni
Fig. 24. Isothermal sections through a number of ternary phase diagrams between transition elements showing

phase fields of phases with wide solid solubility. Values of average group number are indicated by dashed
lines. (From NIEMIEC [1966].)

References: p. 199.
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unquestionably coniribute to e/a in these phases, and since the d-bands are incompletely
filled, the details of possible electronic interactions are bound to be complex and not
necessarily related solely to some simple Brillouin-zone-Fermi-surface effects. For
example, some of the bonding forces may be highly directional, or the number of
“d-band vacancies” rather than electrons, may play a role.

9. Lattice spacings in solid solutions

The measurement of precise values of lattice spacings in solid solutions has contrib-
uted to the understanding of a number of factors which influence their stability and
properties. Since the introduction of the Debye—Scherrer powder method some sixty years
ago, the interest in the knowledge of lattice spacings in alloys has developed in three
distinct directions:

1) in connection with precision measurements of lattice parameters for studies of
systematic structural similarities between related alloy phases;

2) in connection with studies of relationships between lattice spacings, composition,
electronic structure, size effects, local order, magnetic effects and numerous other
properties of solid solutions;

3) in connection with the use of the lattice-spacing method as a tool for determining
phase boundaries in alloy systems.

Detailed measurements of lattice spacing trends within individual alloy phases date
back to the early 1930s. They were done mostly in terminal solid solutions of the noble
metals and a few intermediate phases *. Today the available data fill large volumes
(PEARSON [1958, 1967]), and further additions are rapidly growing. The importance of
the behavior of lattice spacings in hcp electron phases, in connection with their electronic
structure, has already been discussed in § 8.3. Some additional aspects are discussed below.

9.1. Lattice spacings in primary solid solutions

The problem of lattice distortion in primary solid solutions of the monoralent noble
metals has been considered by Hume-Rothery and by Owen and their associates
(HUME-ROTHERY [1964] and OWEN [1947]). The relationships obtained by OWEN [1947]
between the percentage lattice distortion and the solute valency in binary systems based
on a common solvent are shown in figs. 25 and 26. The importance of valence difference
is clearly demonstrated in the figures, but there appear to be departures from the general
trends which have not been explained. In order to gain further insight into the particular
role of the difference beween valencies of the component elements, RAYNOR [1949a]
attempted to eliminate size contributions by assuming that the electronic and size effects
in certain solid solutions are additive and can be analyzed separately. Raynor’s analysis
was based on the assumption that a linear Vegard’s Law may be applied to the sizes of

* For a review of some of these measurements see MASSALSKI [1958].



Ch. 3, §9 Structure of solid solutions 181

w
5 Cu- AsJ)
- )
[o]
wv
S %
.

: . z 0-05
E 010 Cu-Ge & ,/
w ’
v ’
5 Cu-Ga /)
o
v lAu-Ge
§ @ Cu-Zn l ®
X =2 00 I 0 a
- & Au-Ga Ag=As le}
< = f =
2 5 %
g o 2
oo Au-Zn /ﬂ Ag-Ge o
g 0-00 005
‘i o
a 8 Ag- Ga
6
" é /
g Au-C j Ag-Zn
< -0-
£ 0-05 > 010
v //
w
bt 4
g £

’
V)

4 -
& 0-10 §Ag-Cu
& 28 29 30 3 32 33
= ! 2 3 4 s
wl
: VALENCY & ATOMIC NUMBER OF SOLUTE ATOM

Fig. 25. Percentage lattice distortion as a function of solute valency in solid solutions. Cu, Ag and Au with Zn,
Ga, Ge and As. (From PEARSON [1958] after OWEN [1947].)

atoms as given by the closest distance of approach and is therefore open to some doubt
(MassaLskI and KING [1961]).

Nevertheless, a detailed analysis of numerous solid solutions has shown that, after the
assumed size contribution has been subtracted, the remaining lattice-spacing variation
appears to be proportional to (V,, — V;,)? for solutes (so) and solvents (sv) of the same
period, and to (V,, — V,,)*+(V,, — V,,) for solutes and solvents from different periods.
Subsequently, PEARSON [1982] has shown that a more general correlation is obtained,
valid for a larger number of systems, if a size-effect correction, D, is calculated from a
relationship of the form a=fD +k, where a is the lattice parameter, D is the average
atomic diameter calculated from a linear relationship involving initial atomic diameters
based on coordination 12, and f and k are constants. If an additional assumption is made
that Ga, Ge, Sn, As, Sb and Bi contribute only two electrons to the conduction-electron
concentration when alloyed with the noble metals, fifteen more systems appear to obey
a uniform correlation.

Studies of binary systems have been extended to ternary systems where it is found
that lattice spacings of ternary alloys may often be calculated from binary data using
empirical additive relationships. An example of a linear relationship between lattice

References: p. 199.
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spacings and composition in the system Cu-Al-In (STIRLING and RAYNOR [1956]) is
shown in fig. 27. ARGENT and WAKEMAN [1957] have shown that the expansion of the
copper lattice by additions of zinc and gallium or zinc and germanium is additive in the
respective ternary systems. Similar results hold also for additions of gallium and
germanium to copper. Additive linear behavior suggests that in simple ternary solid solutions
there is no appreciable solute—solute interaction, at least in dilute solutions where atoms of
copper can effectively prevent contact beween solutes. Even in the system Ag-Mg—Sb (HiLL
and Axon [1956-7]) the strictly additive behavior of lattice spacings is still observed despite
the fact that strong electrochemical differences between magnesium and antimony, and the
tendency towards compound formation (Mg,Sb,), might be expected to favor clustering of
magnesium and antimony atoms which should lead to the contraction of the lattice. However,
when magnesium and silicon are dissolved in an aluminium lattice, contractions are observed
which point to electrochemical interactions (HILL and AXoN [1954-5]).

The lattice spacings of solid solutions of lithium, magnesium, silicon, copper, zinc,
germanium and silver in aluminium have been studied and discussed by AxON and
HUME-ROTHERY [1948] whose data are plotted in fig. 28. It may be seen from the figure
that apart from silver, which produces virtually no change of lattice spacings, the
aluminium lattice is expanded by magnesium and germanium and contracted by lithium,
silicon, copper and zinc. Aluminium is an example of a trivalent solvent with a face-
centered cubic structure. The first Brillouin zone can hold only two electrons per atom and
must therefore be overlapped; but it has been shown (HARRISON [1959] and HARRISON
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LATTICE SPACING, kX

ALUMINIUM, ATOMIC PER CENT,

Fig. 27. Lattice spacings of & solid-solution alloys in the Cu-Al-In system along lines of constant copper
content (from MAsSALSKI [1958] after STIRLING and RAYNOR [1956]).

and WEBB [1960]) that the various portions of the overlapped and unoverlapped Fermi
surface, when assembled together, resemble a free electron sphere. Hence, although
overlaps exist in the aluminium structure and its alloys, their influence upon lattice
spacings may be small.

AxoON and HUME-ROTHERY [1948] have shown that the extrapolated AAD (§6.1)
values for various elements dissolved in aluminium are influenced by the interplay of a
number of factors such as relative volume per valence electron in the crystals of the
solvent and the solute, the relative radii of the ions, and the relative difference in the
electrochemical affinities.

The changes in the lattice spacings in the system magnesium—cadmium at tempera-
tures at which complete solid solubility occurs in this system (see fig. 1) have been
studied by HUME-ROTHERY and RAYNOR [1940]. When magnesium is alloyed with
cadmium, no change occurs in the nominal electron concentration, both elements being
two-valent. The initial additions of cadmium to magnesium cause a contraction of the a
lattice spacing but only a very slight increase in the axial ratio because the ¢ lattice
spacing decreases at about the same rate as does the a lattice spacing. When magnesium
is added to cadmium at the opposite end of the phase diagram, both a and ¢ also
decrease, but ¢ more rapidly, causing a rapid decrease of c/a. The presence of at least
two electrons per atom in this system means that there must exist overlaps from the first
Brillouin zone (see fig. 17) since the alloys are conductors of electricity. It is now known
from direct measurements of the Fermi surface that in both pure cadmium and pure
magnesium overlaps exist across the horizontal and vertical sets of planes in the Brillouin
zone, and although the amounts of these overlaps are different in both cases the nature
of the overlaps is similar. Hence the relationship between overlaps and trends in the
lattice spacings and the axial ratio in the Mg—Cd system is open to speculation.

In a similar way, because of the complexity of factors involved, the interpretation of

References: p. 199.
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the lattice spacings of alloys of transition elements may be expected to meet formidable
difficulties. The inner-core d-band shells are incomplete, and it is known that electrons
from these shells can contribute both to bonding and to conductivity.

The trends in the lattice spacings of the transition elements of the Second Long
Period (zirconium, niobium, molybdenum, rhodium and palladium), when dissolved in
the hexagonal close-packed ruthenium, have been studied by HELLAWELL and HUME-
ROTHERY [1954]. In all cases the parameters ¢ and ¢/a are increased by the formation
of a solid solution and, at equal percentages of each solute, the increases are in the order
zirconium — niobium — molybdenum — palladium — rhodium. The @ parameters are
diminished by zirconjium and rhodium and increased by palladium, niobium and
molybdenum. The axial ratio of ruthenium (1.5824) is considerably less than the ideal
value (1.633), and the interatomic distance in the basal plane is greater than the distance
between an atom and its nearest neighbor in the plane above or below. Hellawell and
Hume-Rothery interprete the observed lattice spacings on the basis of “size differences”
between component atoms as expressed by the minimum distance of approach between
atoms in the pure elements and by a possible directional sharing of the electron cloud of
zirconium which may take place on alloying.

9.2. The relationship between lattice spacings and magnetic properties
A survey of the lattice spacings of transition metal alloys as a function of composi-

tion shows (PEARSON [1958]) that there are many inflections in the lattice spacing curves
reflecting changes in the magnetic properties. The magnetic properties of metals and
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alloys depend cn the arrangement and separation of atoms in a structure, and therefore
such changes as the ferromagnetic-paramagnetic transition might be expected to be
related to some changes in the lattice spacings and the volume of the unit cell.

The ferromagnetic—paramagnetic changes (F-P) and the antiferromagnetic—
paramagnetic changes (A-P) are second-order transitions in which the ordering of the
spin orientation develops gradually on cooling below the transition temperatore, T,. Such
changes are usually accompanied by a sharp change in the slope of the lattice-spacing
curve as a function of temperature, such that the derivative da/dT is discontinuous at 7,
(WiLLIS and ROOKSBY [1954]). Ferromagnetic-antiferromagnetic changes (F-A), on the other
hand, are a first-order transition involving a discontinuous change of electron spin orientation
and are accompanied by a discontinuous change in lattice spacing (WILLIS and ROOKSBY
[1954]). The second order F~P and A-P changes are truly reversible while the first order
changes are accompanied by the usual thermal hysteresis in the transition region.

An example of the lattice-spacing changes accompanying an F-P transition is shown
in fig. 29a for the system Mn-Sb (WiLLIS and ROOKSBY [1954]). In cases of a first-order
transition at the Curie point, the discontinuous change in the lattice spacings may also be
associated with some displacements of the different types of atoms in a structure, so that
in such a case the change in the lattice spacing represents two processes occurring at the
same time. According to ROBERTS [1956], the first-order transition at the Curie point is
assaciated with a movement of about 10% of the manganese atoms into interstitial
positions. The actual trend in the lattice spacings with temperature in the Mn-Bi system
as determined by WILLIS and RooksBY [1954] is shown in fig. 29b.

A definite anomaly is found in the temperature variation of the lattice spacings
accompanying the F-P transition of pure nickel, but no pronounced anomalies are
observed in the slope of the lattice spacings as a function of composition in nickel alloys
at compositions at which the F-P change should occur (PEARSON [1958]). COLES [1956]
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Fig. 29. (a) Lattice spacing of MnSb, which has a B8, type of structure as a function of temperalure. (b) Lattice
spacing of MnBi, which has a B8, type of structure as a function of temperature. (From PEARSON [1958] after
WIiLLIs and ROOKSBY [1954].)
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has reported a slight change of slope accompanying the F~P change in an alloy of
nickel-35at. copper. This composition corresponds to alloys in which the Curie point
occurs at room temperature.

10. Defect structures

In addition to the occurrence of clustering or ordering of atoms, which constitutes a
departure from randomness, solid solutions can contain various imperfections which can
be of three general types: point-, line- and surface imperfections, according to whether
they are vacant sites or interstitial atoms, various types of dislocations, stacking faults,
or small-angle boundaries. The nature of dislocations, their interactions and their
properties are discussed in ch. 20. Below we shall briefly consider some aspects of
vacancies in solid solutions and the presence of various stacking disorders.

From the point of view of energy relationships, the presence of vacant sites in solid
solutions may enhance stability, owing to their association with the entropy, the strain
energy, or the electronic energy. Vacancies may be introduced by quenching from higher
temperatures where their equilibrium number, due to entropy considerations, is higher
than at lower temperatures, or they may be introduced by various irradiation processes,
plastic deformation or, finally, by alloying. The calculation of the energy associated with
the formation of vacancies or interstitials in a solid solution at finite concentrations
presents several difficulties (see, for example, Fumi [1955], FRIEDEL [1954b], BROOKS
[1955] and MANN and SEEGER [1960]). The subject is presented in great detail in ch. 18.

10.1. Vacancies and vacant sites in structures of alloys

From the point of view of the theory of alloys, vacancies are believed to be produced
on alloying under certain conditions when the number of electrons per atom is kept
constant or reduced. Evidence of this is provided by terminal solutions or electron phases
with lattice defects. With the increase or decrease in the number of solute atoms a
change can occur in the number of atoms per unit cell in a way which produces vacant
lattice sites. It is believed that this takes place in order to maintain optimum electronic
energy. Such vacancy populations, determined by composition and not by temperature,
are distinguished as constitutional vacancies. (CAHN [1979], AMELINCKX [1988]).

The work of BRADLEY and TAYLOR [1937] and TAYLOR and DoOYLE [1972] on Ni-Al,
and of LiPSON and TAYLOR [1939] on some ternary alloys based on this phase, are first-
known examples of this phenomenon. The Ni-Al alloy may be regarded as an electron
phase analogous to B-brass if nickel, a transition element, is assumed to have zero to
near zero valency. At 50 at% this phase possesses a Cs—Cl ordered structure in which
one kind of atoms, say nickel, occupy cube centers and the other kind of atoms, cube
corners. The diameter of a nickel atom is smaller than that of an aluminium atom and
hence, if nickel content is increased above 50 at%, the lattice parameter of the structure
decreases in the expected manner while the density is increased. However, when the
aluminium content is increased above 50 at%, an anomalous behavior is observed since
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the lattice spacing of the Ni—Al phase does not increase but actually decreases, and the
fall in the density is much more rapid than would be expected from the replacement of
nickel atoms by aluminium. This behavior is shown in fig. 30 in which the lattice
spacing data for Co-Al (BRADLEY and SEAGER as quoted by PEARSON [1958]) are also
included. BRADLEY and TAYLOR [1937] concluded that the observed anomalies could be
explained if one supposed that in the aluminium-rich alloys there are less than two atoms
per unit cell and that omission of atoms occurs from some lattice points with the creation
of vacancies. On the nickel-rich side, the extra nickel atoms substitute in the usual way
for aluminium atoms on the aluminium sublattice. The aluminium-rich side, however, is
quite different: hardly any aluminium substitutes on the nickel sublattice; instead nickel
atoms disappear from the nickel sublattice, leaving nickel vacancies. For instance,
according to the most recent measurements (KOGACHI ef al. [1992, 1995]) at 46 at% Ni,
10% of the nickel sites are vacant, most of the aluminium sites are filled. In this way the
number of electrons per unit cell is kept constant and equal to approximately 3,
corresponding to an e/ a ratio of 3/2 characteristic of the B-brass structures. Several other
studies showed that a stoichiometric S-NiAl quenched from a high temperature (as
opposed to that slowly cooled) contained a high concentration of thermal vacancies; the
most recently cited figure is 1.08% of vacancies at 1600°C. This is a very much larger
thermal vacancy concentration than is found in other metals or alloys, even just below
the melting temperature; so large that on cooling the vacancies will separate out into a
population of voids visible in the electron microscope (EPPERSON et al. [1978]). 50/50
NiAl containing such vacancies, all on the nickel sublattice, must also contain
substitutional defects — that is some nickel atoms in the aluminium sublattice, also called

References: p. 199.
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nickel antistructure atoms — to preserve the overall chemical composition: specifically,
two vacancies must be accompanied by one substitutional defect. Such a trio of linked
defects is now termed a triple defect. Parallels for the behavior of the NiAl alloys at high
temperatures are found in other systems isomorphous with NiAl (see CAHN [1979]).
The conclusion related to the dependence of constitutional vacancies on electron
concentration has been criticized on the basis that the omission of atoms could also be
interpreted in terms of size-effects. Since there is only one atom of aluminium in the unit
cell of the Ni-Al alloy, it appears possible that the omission of atoms with addition of
aluminium in excess of 50% occurs as a result of an inability to squeeze an additional
large aluminium atom in the place of a small nickel atom. A possible differentiation
between an interpretation in terms of electronic considerations and one in terms of size
considerations could be made by introduction of a further element into the Ni-Al alloy.
The size-effect spatial theory requires that the loss of atoms should take place when the
concentration of aluminium exceeds more than one per unit cell whereas the electronic
theory requires that it should occur when a definite electron concentration, approximately 1.5,
is exceeded. LipsON and TAYLOR [1939] have shown that in two ternary systems, Fe-Ni-Al
and Cu—Ni-Al, the general shape of the phase field of the ternary alloys based on Ni-Al falls
into the composition regions which indicate that electron concentration, rather than size,
is the main factor determining the phase stability. A detailed analysis of constitutional
vacancies in Ni-Al based on band energies has just been published by COTTRELL [1995].
The interpretation of the lattice spacings and density behavior in alloys based on
Ni-Al is limited by the fact that nickel, a transition element, must be assumed to possess
zero valency in order to make it possible to assume that the above phase is an electron
phase of the 3/2 type. However, further evidence of omission of atoms from sites in a
unit cell has also been obtained in the study of some y-brasses (HUME-ROTHERY et al.
[1952]) and Al—Zn primary solid solutions (ELLWOOD [1948, 1951-2]), in which no
transition elements are involved so that the valence of the participating atoms is more
definite. In the case of y-brass two particular binary systems were studied, Cu—Al and
Cu-Ga (HUME-ROTHERY et al. [1952]). In the former system, lattice spacing work and
density data show that the number of atoms in the unit cell of the y-phase remains
constant at about 52 as aluminium is increased to approximately 35.3 at%, after which
the number steadily decreases. A similar effect has been observed in the Cu—Ga +y-brass
to occur at about 34.5 at% gallium. The data for Cu—Al and Cu—Ga alloys are shown in
fig. 31. HUME-ROTHERY ef al. [1952] have interpreted the creation of vacant sites in
7-brass structures in terms of the Brillouin zone of the y-brasses, suggesting that both the
normal and the defect y-structures can hold no more than about 87-88 electrons per cell
in order not to exceed an electron concentration of about 1.68—1.70. It appears that the
high-temperature 5-phase in the Cu—Zn system resembles a defect y-brass structure in
that it possesses numerous lattice defects and vacant atomic sites. Other constitutional
vacancies in brass-type alloys have been discussed by NOVER and ScHUBERT [1980].
Creation of lattice defects in which vacancies or excess atoms are involved occurs in
intermediate phases probably more frequently than it was thought likely in the past. For
example, in intermediate phases which crystallize in structures closely related to the
NiAs structure, the basic structure, corresponding to the formula AB, can gradually
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Fig. 31. The number of atoms per unit cell in the y-phases of the system Cu~Ga and Cu-Al as a function of
electron concentration (after HUME-ROTHERY et al. {1952].)

change in the direction of compositions A,B by a gradual filling of certain vacant
spaces* in the structure by the excess atoms of one of the components. In the series of
phases such as NiS — NiSe — NiAs — Ni;Sb, — Ni,;Sn, —» Ni,Ge — Ni,In. The
number of nickel atoms becomes greater than 50 at% and X-ray work has shown that
this is accomplished by nickel atoms gradually filling certain interstitial positions in the
ideal NiAs structure. The typical NiAs structure may be regarded as based on a close-
packed hexagonal lattice of metalloid atoms in which the metal atoms occupy the
octahedral spaces between the close-packed hexagonal layers (see ch. 5). As the structure
becomes filled with the excess of the more metallic atoms, it gradually acquires a
pseudo-cubic symmetry and the metallic character increases considerably so that, for
example, in the series quoted above the Ni,In phase is almost indistinguishable from the
Cu-Al or Cu—Ca y-brasses.

Constitutional vacancies in large concentrations have also been found in a number of
oxides, especially those of the transition metals, and in some hydrides (e.g., TiH,) and
carbides. In some instances there is also evidence of vacancy ordering.

10.2. Stacking faults

The possibility of the formation of stacking faults in typically metallic solid solutions
has recently come to play an ever-increasing role in the understanding of many properties
of solid solutions, particularly those with the face-centred cubic and the close-packed
hexagonal structures. Such phenomena, for example, as the changes in electrical resistivity,
work-hardening, recrystallization, creep, deformation texture, crystallography of phase
transformations, corrosion, phase morphology and a number of others have been shown
to be related to the presence of stacking faults and therefore to the stacking-fault energy.

The face-centred cubic and close-packed hexagonal structures are closely related and,
being both close packed, differ essentially only in the way in which the closest-packed
planes are stacked together. It has been shown originally by BARRETT [1950] that
stacking disorders exist in a cold-worked metal. Subsequently, several authors (PATERSON

* These are analogous to the octahedral, tetrahedral and other vacant spaces which exist in the simple metallic
structures as discussed in ch. 2.
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[1952], WARREN and WAREKOIS [1955], WAGNER [1957], WILKENS [1957] and JOHNSON
[1963]) developed theories which relate the effect of the presence of various types of
stacking faults to the changes in the X-ray diffraction pattern of the face-centred cubic
structure. The normal sequence of {111} planes in a face-centred cubic structure can be
described as ABCABCABC using the usual A, B, C notation. The three typical stacking
errors are illustrated by the characteristic stacking patterns shown in fig. 32. They are:
(1) the intrinsic fault, corresponding to the removal of a close-packed layer of atoms, (2)
the extrinsic fault, corresponding to the insertion of an extra close-packed layer of atoms,
and (3) the twin (growth) fault, produced at the interface between two perfect crystallites
which are in twin relation (see READ [1953]). The intrinsic faults have received the most
attention, and calculations based upon idealized models suggest that such faults should
produce broadening and shifts in X-ray peak positions. This prediction has been verified
experimentally in a number of pure metals (Cu, Au, Ag, Pb, Nij, etc.) and alloy systems
(mostly based on the noble metals Cu, Ag and Au). Theoretical considerations of the
influence of twin faults and extrinsic faults indicate that the corresponding X-ray line-
broadening should be asymmetric in both cases and that the peak shifts resulting from
the presence of extrinsic faults should occur in a direction opposite to the shift produced
by intrinsic faulting (JOHNSON [1963]). Published work to date indicates that in metals
intrinsic faults predominate. However in other materials, for example in silicon (AERTS
et al. [1962a, b)), the stacking-fault energy of intrinsic and extrinsic faults may be of
about equal magnitude. If, in addition, one considers the less idealized cases in which the
distribution of stacking-fault density is variable in a specimen, the prediction of the over-
all X-ray pattern becomes very complex (see for example, BARRETT and MASSALSKI
[1966] p. 464). Nevertheless, the X-ray work has served as a useful means for compari-
son between various metals and alloys and for the studies of trends in faulting probability
with composition and temperature,

In addition to the above mentioned X-ray analysis a direct estimate of stacking-fault
energy ¥ can also be made by studies of certain annealing or deformation features in
metals and alloys and their changes with temperature, by studies of twinning frequency
in metallographic samples (FULLMAN [1951] and BOLLING and WINEGARD [1958a, b)),
by interpretation of dissociated dislocations (nodes) in transmission electron
photomicrographs (HOWIE and SWANN [1961] and CHRISTIAN and SWANN [1965]) and
other features such as cross-slip, creep, texture etc. [GALLAGHER [1970]).

The possibility of the existence of stacking faults in hcp and bec structures has been

C A B B B
B C A C C
A B B A A
c C B
B B B B c
C A A A A

(a) (b) {c) (d) (e)

Fig. 32. Planar view of atomic positions and stacking sequences for: (a) perfect fcc crystal; (b) intrinsic fault;
(c) extrinsic fault; (d) twin fault; (e) twin crystal. (After JOHNSON [1963].)
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considered in a number of publications both from the experimental and the theoretical
point of view. In bec and hep metals stacking faults do not produce line shifts (see
WARREN [1959a]). In hexagonal metals they produce broadening of certain reflections,
which has been observed experimentally, particularly in the case of cobalt (EDWARDS
and LipsoN [1942]).

A number of attempts have been made to elucidate the factors which influence the
changes of stacking-fault energy upon alloying. Although all such factors must be
electronic in nature, it appears at the moment that a detailed interpretation is not possible.
In a number of publications the changes of stacking-fault energy have been related to the
electron concentration, certain size effects, the changes in the density of stat.es, and the
changes in the topology of the Fermi surface (See GALLAGHER [1970].)

In the case of fcc metals, recent measurements of the rate of loop annealing, the
stability of tetrahedra introduced by deformation, of faulted dipoles, and of texture
developed by rolling have led to the availability of quite precise information on the
magnitude of vy for materials in which extended nodes or extrinsic-intrinsic fault pairs
cannot be observed. Thus, it is no longer essential to estimate the fault energy of such
metals as Cu, Au, Al, and Ni by extrapolating node data or normalized X-ray faulting
probability results, although the extrapolation procedures, too, have been improved and
now lead to more reliable results. Reasonable estimates of y, probably accurate to £20%,
are: ya,=21.6 ml/m? yg, =30 m/m? y,,=50 ml/m’ yc,=55 mJ/m?, y,=200 mJ/m
and yy; =250 mJ/m?. Estimates of y in other elements from scaled rolling-texture data are
subject to rather larger errors, but are the best values available at the present time: y¢, <
5 m)/m?, yy, <10 mJ/m?, v, =70 mI/m?, yp, =75 mJ/m?, Yp,=130 mJ/m? and yg, =330
mJ/m? (GALLAGHER [1970}). Advances have been made in theoretical estimates of y for
pure materials (BLANDIN et al. [1966]), but difficulties are still experienced in applying
the treatments to noble metals on account of their complex electronic structure.

In fcc solid solutions, a satisfactory amount of numerically accurate information is
now available for the variation of y (effective) with alloying, particularly in systems with
copper, silver, and nickel as solvents. The form of the variation with B-group solutes in
all cases follows the pattern established in the earliest studies in that y decreases with
increasing solute concentration, and a considerable normalization of the data is achieved
in plots with the electron/atom ratio as abscissa.

Several authors have noted that straight-line relationships for the change of y with
alloying can be obtained if vy is plotted on a log scale and the abscissa is expressed in
terms of a composition-dependent function [c/(1 +¢)]?, where ¢=(alloying concentra-
tion)/(solubility limit) at high temperatures. Expressing the abscissa in this form appears
to provide a normalizing effect similar to that which arises by using the e/a ratio, but
with the advantage that the solubility limit is in some systems more accurately known
than is the effective valence of the solute. The relationship obtained for the fcc Cu-Si
alloys is shown in fig. 33. Recent studies also suggest that in alloys of two fcc elements
having complete mutual solubility, all compositions have vy intermediate in value between
the fault energies of the component metals. Such noble-metal-transition-metal alloys as
have been studied have 7y of the same order as in the pure noble metal. Contrary to early
studies, considerable extrinsic~intrinsic faulting has recently been observed in copper-,

References: p. 199.
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Fig. 33. Semi-log plot of y versus [c/(1 +c)J in the Cu~Si series (from GALLAGHER [1970]).

silver-, and gold-base alloys, and measurements on fault pairs have revealed that the
extrinsic and intrinsic fault energies are approximately equal (GALLAGHER [1970]).

10.3. Metastable structures*

Many solid solutions whose properties have been outlined in the preceding sections
can exist in a metastable condition at temperatures which fall outside the equilibrium
range of stability but at which the rate of approach to equilibrium is so slow as to be
negligible. One of the most frequently used methods for producing metastability is rapid
quenching from a high temperature. During quenching a single-phase solid solution may
be retained untransformed, or it may transform by changing its crystal structure, either
by a martensitic or a “massive” process (see BARRETT and MAsSALSKI [1966]).
Metastable solid solutions have also been obtained by a rapid cooling from the liquid
state, using the “splat” or “crusher” cooling techniques (DUWEZ {1965, 1967]), by a rapid
cooling from the vapor state, using vacuum deposition techniques (MADER et al. [1963])
or sputtering (MASSALSKI and R1zzo {1988]), by various methods involving the quench-
ing of liquid metals on a rapidly revolving copper wheel, and by surface melting methods

* See also chapter 19.
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using laser beams, electron beams, etc. (See DUWEZ [1978] and also ch. 7, §9.1.).
Following these procedures, enhanced solubilities, non-equilibrium phases and
unusual crystalline and amorphous structures have been obtained. For example, a
continuous series of metastable solid solutions can be obtained in the Cu-Ag system in
place of the weli-known eutectic phase diagram corresponding to equilibrium conditions.
In other instances solid solutions have been obtained that are amorphous, resembling a
frozen liquid. A large number of metastable phases obtained by the various rapid-cooling
techniques have most unusual crystalline (or non-crystalline) electrical, semiconducting,
superconducting, magnetic and thermal properties. The research area of metallic glasses,
in particular, has seen very rapid growth during the past two decades and numerous
symposia and reviews on this subject have been published (see, e.g., MasumoTo and
Suzuki [1982], PEREPEZKO and BOETTINGER [1983]; TURNBULL [1981]; JOHNSON
[1986]). In order to produce a metallic glass, crystallization has to be prevented during rapid
cooling of the liquid. Cooling rates exceeding 10° K/s are usually needed to achieve this, and
the most likely regions in phase diagrams where metallic glasses can be produced are the
deep eutectic regions. The reason for this has been discussed in numerous publications.
One of the possibilities is that, in deep eutectics, the crystallization competing with
metallic-glass formation must be of a multi-phase form, which is kinetically difficult.
Here, the T, concept provides a very useful guide to the search for glass formation
regions in metallic systems (MASSALSKI [1982]). Hence, the chilled liquid becomes more
and more viscous without crystallization until a glass transition temperature is reached
when the liquid becomes a solid. The subject is discussed more fully in ch. 7, §9.1.

11. Order in solid solutions

The phenomena related to order—disorder (O-D) changes in solid solutions comprise
a very extensive literature and a detailed review of these is beyond the scope of this
chapter. Nevertheless, the tendency for unlike atoms to occupy adjoining sites of a
crystalline lattice, leading towards formation of superlattices, is a very prominent feature
of many solid solutions; and we shall briefly consider this subject from the structural
point of view.

On the basis of thermodynamics (see ch. 5) it can be shown that an ordered arrange-
ment of atoms in an alloy may produce a lower internal energy compared to a disordered
arrangement, particularly if the segregation of atoms to designated atomic sites occurs at
relatively low temperatures where entropy, associated with randomness, plays a lesser
role. The condition of perfect order, such that the like atoms are never nearest neighbors,
could be achieved only in a perfect single crystal with a simple metallic lattice and at
compositions corresponding to stoichiometric ratios of atoms like AB, AB,, AB,, etc.
Actually, the presence of various imperfections and grain boundaries precludes this
possibility in most cases. In addition, it is known that an ordered solid solution consists
of ordered domains which may be perfectly ordered within themselves but which are out
of step with one another. This results in more contact between like atoms at the bound-
aries of adjacent domains. Ordered domains are sometimes called antiphase domains and
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usually their number is quite large within each grain of the material. With the develop-
ment of electron microscopy techniques, the presence of antiphase domains has been
confirmed by direct observation in thin films (GLOSSOP and PASHLEY [1959]), SATO and
TorH [1961]).

A further departure from maximum order occurs in solid solutions whose composi-
tions deviate from the optimum stoichiometric ratios of atoms. This is often associated
with the fall of the ordering temperature on both sides of the ideal composition and by
the change of other properties such as hardness, electrical resistivity, etc.

When the interaction between unlike atoms is very strong, the critical temperature
T, at which disordering occurs, may lie above the melting point of the material. Alloys
with this characteristic closely resemble chemical compounds. When the interaction
forces are less intense, an ordered solid solution may become disordered at a critical
temperature even though the composition corresponds to a stoichiometric compound-like
formula. Many typical alloy phases show this behavior with temperature. Finally, if the
ordering forces are weak, as for example at low atomic concentrations in terminal solid
solutions, the critical temperature may lie below the temperature at which attainment of
equilibrium is possible within a reasonable time. One may then speak of the disordered
state being frozen in. It has been found that the activation energy necessary to switch
atoms into disordered positions in a fully ordered alloy is of the same order of magnitude
as the heat of activation for diffusion or for recovery from cold work, usually about 1.5-2
eV. References to recent work on long range order in alloys are given by LAUGHLIN [1988].

11.1, Types of superlattices

Simple superlattices in binary alloys with cubic structure occur near compositions
corresponding to formulas A;B, AB and AB,. The Cu-Au system (see fig. 1b, above)
provides a well-known prototype of ordered solid solutions based on the fcc structure.
The superlattices Cu;Au, CuAu and CuAu, have been investigated in great detail. In the
case of Cu,Au the low-temperature structure, (fig. 34a) is cubic, but in the case of CuAu
(fig. 34c) alternate (002) planes contain either all copper or all gold atoms and a
contraction occurs in the ¢ direction, presumably as a result of attraction between atoms
in these planes. This results in a tetragonal fcc structure with ¢/a ratio of 0.92.

Order in bec alloys again depends on composition. At 50 at% of solute the AB type
of order results in the well-known CsCl structure (fig. 34b) which occurs, for example,
in ordered B-brass. When the composition is between approximately 25 and 50 at% of
solute, a sequence of ordered structures based on the simple body-centred cube some-
times becomes possible and such structures have been studied in detail (e.g., RAPACIOLI
and AHLERS [1977], for 8-Cu, Zn, Al). The superlattices that occur in the Fe—Al system
(fig. 34d) and the Heusler alloys (Cu,MnAl), which are ordered when in the
ferromagnetic condition, have received particular attention (see, for example, TAYLOR
[1961]). With solute contents exceeding 50 at% the y-brass type of order and other more
complex superlattices are possible.

By analogy with the cubic structures, ordered superlattices occur frequently in close-
packed hexagonal solid solutions. For example, in the Mg—Cd system the continuous



Ch. 3, § 11 Structure of solid solutions 195

QO Au Aloms ® CuAtoms o 50% Cu
@ Cu Atoms O ZnAtoms

50% Zn

—— 00—«

QO Al Ators X Sites @ Y Sites

QO Au Atoms
® Cu Atoms 1%

=
27 AL o’
t
)

—1®

&)

(d)

Fig. 34. Various types of ordered superlattices: (a) ordered cubic superlattice Cu;Au; (b) disordered and ordered
structures of B-brass; (c) the tetragonal superlattice of AuCu; (d) the structure of Fe Al and FeAl: Al atoms fill
the X sites in Fe;Al and the X and Y sites in FeAl.

series of solid solution at high temperatures is broken at lower temperatures by the
formation of ordered superlattices at compositions MgCd,, MgCd and Mg,Cd (see fig.
1d, above). MgCd, orders to form the DO,, type of structure which is distorted from
close-packed hexagonal, while the Mg,Cd is closepacked hexagonal but with the a axis
doubled and the basal layers so arranged that each cadmium atom is in contact with three
magnesium atoms in the adjacent layers. Cooling of alloys in the MgCd composition
region produces an ordered orthorhombic structure,

11.2. Long-period superlattices

As mentioned in the previous section, the low-temperature annealing of CuAu alloys
(below 380°C) produces a face-centred tetragonal structure whose unit cell is shown in
fig. 34b. This structure is usually referred to as CuAu I. In the temperature interval
between 380-410°C another ordered structure has been detected (by JOHANSSON and
LmnDE [1936]) which is often described as CuAu II. The superlattice CuAu II is a
modification of CuAu I and the unit cell of this structure is orthorhombic as shown in
fig. 35a. The long cell is obtained by stacking five CuAu I unit cells in a row in the
direction of one of the long-cell edges (b) and then repeating this unit at five cell
intervals with a simultaneous out-of-step shift at the boundary through a distance equal
to the vectorial distance 2(a +c¢). The distance between each antiphase boundary may thus
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Fig. 35. Long-period superlattices: (a) the structure of CuAu II; (b) the structure of Au-Zn. (After SCHUBERT
et al. [1955].)

be specified by Mx b where M denotes the domain size or the period. For CuAu I,
M=5. This superlattice is therefore called a one-dimensional long-period superlattice
with a period equal to five. OGAwA and WATANABE [1954] have shown that a repulsive
force arises at the junction of the long antiphase domains, which leads to a small local
lattice-parameter increase in the direction of the long axis. This has the effect of a small
periodic error in the diffracting lattice in this direction, and in electron-diffraction
patterns it produces “satellite” reflections around the normal reflections.

Many other long-period superlattices have been discovered in cubic alloys, particulary
at the A3B compositions. Long-period superlattices have also been reported in hexagonal
alloys (SCHUBERT et al. [1955]). The structure shown in fig. 35b corresponds to the
orthorhombic structure Au,Zn. This long-period superlattice is based on Cu,Au and
consists of four face-centred cells stacked together with a half-diagonal shift as shown in
the figure. Most of the long-period superlattices at compositions A,B retain the cubic
symmetry of atomic distribution and they can be either one-dimensional long-period
superlattices or two-dimensional superlattices. Much of the recent work in this field is
due to SCHUBERT et al. [1955] and to SATO and TOTH [1961, 1962, 1965].

The discovery of the long-period superlattices has presented a challenge to the theory
of alloys because the usual atom-pair interaction models adopted for explanation of the
order-disorder phenomena cannot be used unless one assumes extremely long-distance
interactions. The most successful interpretation at the moment appears to be that such
superlattices are a result of a complex interaction between the Fermi surface and the
Brillouin zone (SATO and TOTH [1961, 1962, 1965]) and is therefore connected with the
collective behavior of the free electrons. The Brillouin zone for the CuAu alloys is
shown in fig. 36. The thin lines represent the zone for the disordered fcc structure. This
zone is bounded by the octahedral {111} and cubic {200} faces and can hold two
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Fig. 36. The Brillouin zone of the disordered (thin lines) and ordered (thick lines) fcc structures (from SATO
and ToTH [1962].)

electrons per atom. The thick lines represent the zone for the ordered CuAu I super-
lattice. This zone, as a result of order in the lattice, is now bounded by the {001} and
{110} faces and is therefore no longer symmetrical, the {100} faces being much closer
to the origin than the {110} faces. The free-electron energies at the centers of the {100}
and {110} faces are 2.4 eV and 4.8 eV respectively, while the energy at the Fermi
surface corresponding to one electron per atom (Cu-Au system) is 6.5 eV. Therefore
electrons should overlap into the larger zone. The existence of “satellite” reflections
around the normal reflections in the b direction, corresponding to the long-range
periodicity in the CuAu II superlattice, suggests that the Brillouin zone would show a
slight splitting of certain faces. This is illustrated in fig. 37b and ¢ which represents a
horizontal section in the reciprocal lattice throught the zone shown in fig. 36. SATO and

Fig. 37. Horizontal section in reciprocal space through the Brillouin zone of fig. 36, showing possible Fermi surface
contours for the Cu—Au superlattice: (a) CuAu I; (b,c) CuAu II. (From BARRETT and MASSALSKI [1966].)
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ToTH [1962] have proposed that at one electron per atom, the Fermi surface comes
rather close to the {110} faces and, when the CuAu II superlattice is formed, the
interaction between the Fermi surface and these split faces produces extra stabilization
of the long-period structure. Since the period M governs the extent to which the satellite
spots are separated in the reciprocal lattice, there should be a relationship between M and
the electron concentration which govemns the volume of the Fermi *“sphere”. It can be
shown that as e/a increases, the Fermi “sphere” would fit better with respect to the
{110} faces if their splitting were increased. This requires that the period M should
decrease. SATO and TOTH [1961] have shown that additions of alloying elements to the
CuAu II superlattice, resulting in changes of e/, also poduce changes of the long-range
period in the direction suggested by the above model. Furthermore, the model makes also
possible the explanation of other characteristics of the long-period superlattices such as
the nature of the distortion of the lattice, the concentration and temperature dependence
of the distortion and of the periods, and the question whether or not the superlattice will
be one-dimensional or two-dimensional. (Ordering in CuAu is treated by RAPSON
[1995].)

11.3. Long-range order and short-range order

Attempts to formulate a theory of ordering date back to the 1930s and are associated
with the names of Borelius, Johansson and Linde, Dehlinger, Bragg and Williams, Bethe,
Peierls, Takagi and others. Several comprehensive reviews exist on both the mechanisms
of ordering and on various treatments of the subject, and they may be consulted for details;
for example, those of Nix and SHOCKLEY [1938], LipsoN [1950] and GuTTMAN [1956].

The essential condition for a solid solution of suitable composition to become ordered
is that dissimilar atoms must attract each other more than similar atoms in order to lower
the free energy upon ordering. In terms of interaction energies between pairs of atoms of
two atomic species A and B this condition is usually expressed as follows:

Ep < —%(EAA + EBB)’ (1D

where E,, and Ey represent energies of like pairs of atoms and E,; represents the
energy of the unlike pair. If this condition is satisfied for a given alloy of a
stoichiometric composition, then at some suitably low temperature the structure will
become perfectly ordered, the A and B atoms occupying designated sites in the lattice,
which may be called the & and 8 sites. On warming up the energy will be supplied in
the form of heat and will cause some A atoms to migrate into “wrong” 8 sites and vice
versa, causing the atomic distribution to become more random. With perfect order at a
low temperature the mathematical probability of finding an A atom on an a site and a B
atom on a 3 site is unity. At higher temperatures, however, the probability that an a site
is occupied by an A atom will be reduced to a fraction of unity, say p. BRAGG and
WiLLIAMS [1934] have used this description to define the long-range order parameter, S,

S=(p-r)/(1-n) (12)
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where r is the fraction of A atoms in the alloy. According to eq. (11), S varies from one
to zero as order decreases.

The order-disorder change, like the magnetic change, is a cooperative phenomenon.
As more atoms find themselves in “wrong” atomic sites due to thermal agitation the
energy difference indicated by eq. (10) decreases and it becomes easier to produce
further disorder. Eventually a critical temperature is reached, Tc, at which all distinction
between different sites is lost.

The simple approach as outlined above does not allow for the possibility of the
existence of magnetic domains and other types of interruptions in the ordered array of
atoms that may cause a departure from perfect order (as mentioned in a previous section)
which makes it possible for a high degree of local order to exist even though its
perfection is not absolute on a large volume scale. In order to describe such situations an
alternative method of defining the state of order is possible which, instead of considering
the probability of finding A or B atoms on designated a or 8 lattice sites, takes into
acount the number of unlike nearest neighbors around a given atom. For example, the
BETHE [1935] short-range order parameter, o, is defined by:

o=(4-4)/(m — ) (13)

where ¢ denotes the fraction of unlike nearest neighbors at a given temperature and ¢,
and g, correspond to the fractions of unlike nearest neighbors at conditions of maximum
randomness and maximum order. As may be seen, ¢ is defined in such a way that it
would become unity for perfect order and zero for randomness.

Actually, instead of reaching zero on disordering, o~ usually remains a definite value
above T,. In terms of the relationship between atoms, o- measures the state of order in the
immediate vicinity of a given atom unlike the long-range order parameter, S, of Bragg
and Williams which deals with the whole lattice. The description of the immediate
surroundings of a given atom can be extended further to include several successive
concentric shells corresponding to the first, second, third, etc., nearest neighbors
(CowLEy [1950]).
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1. Introduction

1.1. Preliminary remarks and definition of an intermetallic phase

In the field of solid state chemistry an important group of substances is represented
by the intermetallic compounds and phases. A few general and introductory remarks
about these substances may be presented by means of figs. 1 and 2. In binary and multi-
component metal systems, in fact, several crystalline phases (terminal and intermediate,
stable and metastable) may occur.

Simple schematic phase diagrams of binary alloy systems are shown in fig. 1. In all
of them the formation of solid phases may be noticed. In fig. 1a we observe the
formation of the AB, phase (which generally crystallizes with a structure other than those
of the constituent elements) and which has a negligible homogeneity range. Thermody-
namically, the composition of any such phase is variable. In a number of cases, however, the
possible variation in composition is very small (invariant composition phases or stoichiometric
phases, or “compounds” proper, also called “point compounds” in binary alloys).

In fig. 1b and Ic, on the contrary, we observe that solid phases with a variable
composition are formed (non-stoichiometric phases). In the reported diagrams we see
examples both of terminal (1b, 1c) and intermediate phases (lc). These phases are
characterized by homogeneity ranges (solid solubility ranges) which, in the case of the
terminal phases, include the pure components and which, generally, have a variable
temperature-dependent extension. (In the older literature, stoichiometric and non-
stoichiometric phases were often called “daltonides” and “berthollides”, respectively.
These names, however, are no longer recommended by the Commission on the Nomen-
clature of Inorganic Chemistry (IUPAC), LEIGH [1990].

More complex situations are shown in fig. 2, where some typical examples of
isobarothermal sections of ternary alloy phase diagrams are presented. In the case of a
ternary system, such as that reported in fig. 2a, we notice the formation of several, binary
and ternary, stoichiometric phases. In the case shown in fig. 2b, different types of
variable composition phases can be observed. We may differentiate between these phases
by using terms such as: “point compounds” (or point phases), that is, phases represented
in the composition triangle, or, more generally, in the composition simplex by points,
“line phases”, “field phases”, etc.

As a summary of the aforementioned considerations, we may notice that several types
of substances may be included in a preliminary broad definition of an intermetallic phase.
Both stoichiometric (compounds) phases and variable-composition (solid solutions) phases
may be considered and, as for their structures, both fully ordered or (more or less
completely) disordered phases.

For all the intermetallic phases the identification (and classification) requires
information about their chemical composition and structure. To be consistent with the
other field of descriptive chemistry, this information should be included in specific
chemical (and structural) formulae built up according to well-defined rules. This task,
however, in the specific area of the intermetallic phases (or more generally in the area
of solid state chemistry) is much more complicated than for other chemical compounds.
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Fig. 1. Examples of simple binary diagrams.

a) A stoichiometric, congruently melting, compound is formed at the composition corresponding to the AB,
formula.

b) No intermediate phase is formed. The components show a certain limited mutual solid solubility.

c) The two components show limited mutual solid solubility (formation of the a- and 8-phases). Moreover,
an intermediate phase (y) is formed: it is homogeneous in a certain composition range.

This complexity is related both to the chemical characteristics (formation of variable
composition phases) and to the structural properties (the intermetallic compounds are
generally non-molecular in nature, while the conventional chemical symbolism has been
mainly developed for the representation of molecular units). As a consequence there is
not a complete, or generally accepted, method of representing the formulae of
intermetallic compounds.

References: p. 363.
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Ba Ba,Alg Ba,Alp BaAl, Al

al

Ti TisAu TiAu  TiAup TiAy, Au

Fig. 2. Isobarothermal sections of actual ternary systems (from “Ternary Alloys”, PETZow and EFFENBERG,

[1988 et seg.]).

a) Ba-Al-Ge system. A number of binary compounds are formed in the side binary systems. Moreover, a few
ternary phases have been observed.
7y =Ba(AlLGe,_,),, line phase, stable for 0.41 <x<0.77;
7,: Ba,AlL,Ge,, 751 Ba,(Al,Ge,, 7,: BaAl,Ge,, point phases.

b) Ti-Au-Al system. The binary systems show the formation of several intermediate phases, generally
characterized by certain composition ranges (ideal simple formulae are here reported). Two ternary field
phases are also formed. Their homogeneity ranges are close to TiAu,Al (8,) and TiAuAl (8,), respectively.
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Some details on these points will be given in the next sections. These will then be
used for a description of selected common phases and a presentation of a few character-
istic general features of intermetallic crystallochemistry. For an exhaustive description of
all the intermetallic phases and a comprehensive presentation and discussion of their
crystallochemis:ry, general reference books and catalogues, such as those reported in the
list of references, should be consulted. More references to specific topics will be reported
in the following sections.

Those who are interested in the historical development of the intermetallic compound
concept and science may refer to the review written by WESTBROOK [1977] on the past
and future potential of intermetallic compounds. In this review Westbrook selected the
following topics for the examination of their historic roots:

a) the development of the modern concept of the intermetallic compound;

b) the development of the phase diagram;

¢) the role of electron concentration in determining intermetallic phase stability;

d) the role of geometrical factors in determining intermetallic phase stability;

e) the point defect concept and its relation to non-stoichiometric compounds;

) the unusual role of grain boundaries in intermetallic compounds.

He reported information on the chronological growth in the number of binary metallic
phase diagrams studied (starting from the year about 1830 with the systems Pb-Sn,
Sn-Bi, etc.,) and of the intermetallic compounds.

The first problems encountered while studying these substances are pointed out:
typically that simple valence concepts were not applicable for rationalizing compound
formulation and that several compounds seemed to exist over a range of composition and
not at some specific ratio as with ordinary salts. The development of the systematics of
the intermetallic phases and of their applications is then discussed and compared with the
history of the rise of thermodynamics and crystallochemistry.

The complexity and variability of solid state phenomena add to more practical
reasons of interest in defining the peculiar approach to a systematic investigation of solid
intermetallic phases.*

1.2. Identification of the intermetallic phases

The identification and crystallochemical characterization of an intermetallic solid
phase requires the definition and analysis of the following points:

a) Chemical composition (and the homogeneity composition range and its temperature
and pressure dependence).

* This chapter, as previously stated, will highlight the particular subject of the intermetallic solids. It may be
worth reminding, however, that intermetallic substances can be found also in different aggregation states. (For
the liquid state see, for instance, fig. 1), Important contributions to understanding systems in the liquid state
(experimental measnrements, thermodynamic properties forecasting, liquid state structure, theories and models)
were brought about, for instance, by HoCH, ARPSHOFEN and PREDEL [1984}, SoMMER [1982] and SINGH and
SOMMER [1992]). A systematic description of the structure of amorphous and molten alloys (basic equation for
the description of the structure of non-crystalline systems, experimental techniques and elements of systematics)
has been presented by LAMPARTER and STEEB [1993].

References: p. 363.
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b) Structure type (or crystal system, space group, number of atoms per unit cell and
list of occupied atomic positions).

¢) Values of a number of parameters characteristic of the specific phase within the
group of isostructural phases (unit cell edges, occupation characteristics and, if not fixed,
coordinate triplets of every occupied point set).

d) Volumetric characteristics (molar volume of the phase, formation volume
contraction, or expansion, space filling characteristics, etc.).

e) Interatomic connection characteristics (local atomic coordination, long distance
order, interatomic distances, their ratios to atomic diameters, etc.).

Clearly, not all the data relevant to the aforementioned points are independent of each
other. The strictly interrelated characteristics listed under d) and e), for instance, may be
calculated from the data indicated in b) and c), from which the actual chemical composi-
tion of the phase may also be obtained.

For each of the aforementioned points (and for their symbolic representation) a few
remarks may be noteworthy: these will be presented in the following. Crystallographic
conventions, nomenclature and symbols will be used. For a summary of these and of the
corresponding definitions the most important reference book is “International Tables for
Crystallography”, HAHN [1989]. Several books, mentioned here in the reference list,
contain, more or less detailed, introductions to the crystallographic notations. A few
remarks on these points will be presented in this chapter (see especially table 3 and Sec.
3.1 and 3.5.5); some examples moreover have been given in chapter 1.

2. Chemical composition of the intermetallic phase and its
compositional formula

Simple compositional formulae are often used for intermetallic phases; these (for
instance, Mg,Ge, ThCr,Si,,...) are useful as quick references, especially for simple,
stoichiometric, compounds: The following remarks may be noteworthy:

Order of citation of element symbols in the formula

The symbol sequence in a formula (LaPb, or Pb;La) is, of course, arbitrary and, in some
particular cases, may be a matter of convenience. Alphabetical order has often been
suggested (for example by Iurac, LEIGH [1990]). A symbol sequence based on some
chemical properties, however, may be more useful when, for instance, compounds with
analogous structures have to be compared (Mg,Ge and Mg,Pb). Recently, in 1990, an
international group of materials scientists coordinated by the Max Planck Institute for
Metals Research of Stuttgart (Germany) (the so-called MSIT: Materials Science
International Team) performing the critical assessment of a new series on ternary alloys
edited by PETZow and EFFENBERG [1988 et seq.] decided to adopt a symbol quotation
order based on a parameter introduced by PETTIFOR [1984, 1986a] In fact, in order to
stress the chemical character of the elements and to simplify their description, PETTIFOR
[1984, 1985, 1986a, 1986b] (see also chapter 2) created a new chemical scale (x) which
orders the elements along a simple axis. The progressive order number of the elements
in this scale (the so-called Mendeleev number) may also be considered. The Mendeleev
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numbers M (which, of course, are different from the atomic numbers) start, according to
Pettifor, with the least electronegative elements He 1, Ne 2,... and end with the most
electronegative ones ...N 100, O 101, F 102 up to H 103. The Mendeleev Number (M)
and the correlated “chemical scale x” are shown in table 1. The chemical meaning of
these parameters may be deduced not only by their relation to the Periodic Table. By
using them, in fact, excellent separation of similar structures is achieved for numerous
A_B, phases with a given stoichiometry within single two-dimensional M,/Mjy maps,
(see Sec. 8.7.). Notice, however, that in subsequent papers, on the basis of a progressive
improvement of the structure maps, slightly different versions of the chemical scale had
been reported.

On the basis of the Pettifor’s scale, the suggestion has been made that the element E
with a lower value Mg (or yg) is quoted first in the formulae of its compounds. This will
be generally adopted here.

Indication of constituent proportions

No special comments are needed for stoichiometric compounds (LaPb;, ThCr,Si,,...).
More complex notation is needed for non-stoichiometric phases. Selected simple

examples will be given below and more detailed information will subsequently be

reported, when discussing crystal coordination formulae.

a) Ideal formulae

While considering a variable composition phase, it is often possible to define an “ideal

composition” (and formula) relative to which the composition variations occur (or are

considered to occur). This composition may be that for which the ratio of the numbers

of different atoimns corresponds to the ratio of the numbers of the different crystal sites in

the ideal (ordered) crystal structure (as suggested by IUPAC, LEIGH [1990]). These

formulae may be used even when the “ideal composition” is not included in the

homogeneity range of the phase (Nb,Al for instance, shows a homogeneity range from

18.6 at% Al wkich hardly reaches 25 at% Al. At the formation peritectic temperature of

2060°C the composition of the phase is about 22.5 at% Al).

b) Approximate formulae

A general notation which has been suggested by IuraC when only little information has

Table 1
Chemical order of the elements, according to PETTIFOR [1986a}

la. For the elements, arranged here in alphabetical order, the values of the so-called Mendeleev number are reported.

Ac 48 Be 77 Cm 4l Fe 61 Ho 23 Md 36 No 35 Pr 31 Sb 8 Te 92 Ybl7
Ag 71 Bi 87 Co 64 Fm 37 I 97 Mg 73 Np 4 Pt 68 Sc 19 Th 47 Zn76
Al 80 Bk 4 Cr 57 Fr 7 In 79 Mn 60 O 101 Pu 43 Se 93 Ti 51 Zr 49
Am42 Br 98 Cs 8 Ga 8l It 66 Mo 56 Os 63 Ra 13 Si 8 TI 78
Ar 3 C 9 Cu 72 Gd 27 K 10 N 100 P 9 Rb 9 Sm 28 Tm 2!
As 89 Ca 16 Dy 24 Ge 84 Kr 4 Na Il Pa 46 Re 58 Sn 83 U 45
At 96 Cd 75 Er 22 H 103 La 33 Nb 53 Pb 8 Rh 65 Sr 15 V 54
w
Xe

Au 70 Ce 32 Es 38 He 1 Li 12 Nd 30 Pd 69 Rn 6 Ta 52 55
B 8 Cf 3 Eu 18 Hf 50 Lr 34 Ne 2 Pm 29 Ru 62 Tb 26 5
Ba 14 Cl 99 F 102 Hg 74 Lu 20 Ni 67 Po 91 S 94 Tc 59 Y 25

References: p. 363.
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Table 1—Continued

1b. The elements are arranged in the order of the Mendeleev Number M (and of the related chemical scale x).

M  Element X M  Element X M  Element X
1 He 0.00 36 Md 0.7125 70 Au 1.16
2 Ne 0.04 37 Fm 0.715 71 Ag 1.18
3 Ar 0.08 38 Es 0.7175 72 Cu 1.20
4 Kr 0.12 39 Cf 0.72 73 Mg 1.28
5 Xe 0.16 40 Bk 0.7225 74 Hg 1.32
6 Ra 0.20 41 Cm 0.725 75 Cd 1.36
7 Fr 023 42 Am 0.7275 76 Zn 1.44
8 Cs 025 43 Pu 0.73 77 Be 1.50
9 Rb 0.30 44, Np 0.7325 78 Tl 1.56
10 K 0.35 45 U 0.735 79 In 1.60
H Na 0.40 46 Pa 0.7375 80 Al 1.66
12 Li 045 47 Th 0.74 81 Ga 1.68
13 Ra 0.48 48 Ac 0.7425 82 Pb 1.80
14 Ba 0.50 49 Zr 0.76 83 Sn 1.84
15 St 0.55 50 Hf 0.775 84 Ge 1.90
16 Ca 0.60 51 Ti 0.79 85 Si 1.94
17 Yb 0.645 52 Ta 0.82 86 B 2.00
18 Eu 0.655 53 Nb 0.83 87 Bi 2.04
19 Sc 0.66 54 v 0.84 88 Sb 2.08
20 Lu 0.67 55 w 0.88 89 As 2.16
21 Tm 0.675 56 Mo 0.885 90 P 2,18
22 Er 0.6775 57 Cr 0.89 91 Po 228
23 Ho 0.68 58 Re 0.935 92 Te 232
24 Dy 0.6825 59 Te 0.94 93 Se 240
25 Y 0.685 60 Mn 0.945 94 S 244
26 Tb 0.6875 61 Fe 0.99 95 C 2.50
27 Gd 0.69 62 Ru 0.995 96 At 2.52
28 Sm 0.6925 63 Os 1.00 97 I 2.56
29 Pm 0.695 64 Co 1.04 98 Br 2.64
30 Nd 0.6975 65 Rh 1.05 99 Cl 2.70
31 Pr 0.70 66 Ir 1.06 100 N 3.00
32 Ce 0.7025 67 Ni 1.09 101 (0] 3.50
33 La 0.705 68 Pt 1.105 102 F 4.00
34 Lr 0.7075 69 Pd 1.12 103 H 5.00
35 No 0.71

to be conveyed and which can be used even when the mechanism of the variation in
composition is unknown, is to put the sign =~ (read as circa or approximately) before the
formula; for instance = CuZn.
¢) Variable composition formulae
(Ni,Cu) or Ni,Cu,_, (0< x< 1) are the equivalent representations of the continuous solid
solution between Ni and Cu, homogeneous in the complete range of compositions; other
examples are: Ce,_ LaNis (0<x<1); (Ti,_Cr)sSi; (0 x<0.69); etc....

Similar formulae may also be used in more complicated cases to convey more information:
AL.B.C, (..<x<..) (phase involving substitution of atoms A for B).
A,_B may indicate that there are A-type vacant sites in the structure.
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LaNi;H, (0< x<6.7) indicates the solid solution of H in LaNis.

d) Site occupation formulae

According to the Recommendations by the Commission on the Nomenclature of
Inorganic Chemistry, (LEIGH [1990]), additional information may be conveyed by using
a more complicated symbolism; suggestions have also been made about the indication of
site occupation and of their characterization. These points will be discussed in more
detail in the following sections; in the meantime we may mention that, for the indication
of site occupation, the following criteria have been suggested by the Commission:

The site anc. its occupancy is represented by two right lower indexes separated by a
comma. The first index indicates the type of site, the second one indicates the number of
atoms in this sitz. (A,, for instance, means an atom A on a site occupied by A in the ideal
structure, whereas Ay represents an atom A in a site normally (ideally) occupied by B).

A formula such as:

My 1 NvMnx Ny or (M N (M,N,_), represents a disordered alloy (whereas the
ideal composition is MN with an ideal MyN}, structure). In this notation vacant sites may
be represented by O or by v_.

The following examples of alloy formulae have been reported:

Mgy 2-x SN x M0 xS, 1 shows a partially disordered alloy with some of the Mg atoms
on Sn sites, and vice versa;

(Bi, Te,)s(Bi Te,_)r. shows the composition changes from the ideal Bi,Te, formula;
Aly \Pd,, Pdps ., Opgoe which shows that in the phase (corresponding to the ideal
composition PdAl), every Al is on an Al site, but x Pd atoms are on Al sites (1-x Pd
atoms in Pd sites) and 2x Pd sites are vacant.

This type of formula may be especially useful when discussing thermodynamic
properties of the phase and dealing with solid solution models and quasi-chemical
equilibria between point defects.

e) Polymorphism descriptors

Several substances may change their crystal structure because of external conditions such
as temperature and pressure. These different structures (polymorphic forms) may be
distinguished by using special designators of the stability conditions. (If the various
crystal structures are known, explicit structural descriptors may obviously be added). A
very simple, but systematic notation has been introduced by the MSIT (see before) which
in the meanwhile has been adopted worldwide (see Introduction of all volumes on
“Ternary Alloys” edited by PETZOow and EFFENBERG, [1988 et seq.]). The different
temperature modifications are indicated by lower case letters in parenthesis behind the
phase designation, with (h)=high temperature modification, (r)=room temperature
modification and (1) = low temperature modification; (h,, h,, etc. represent different high
temperature modifications). In the description of a number of modifications which are
stable at different temperatures, the letters are used in the sequence h,, h,, 1, 1, L,..., in
correspondence to the decreasing stability temperature.

Table 2, taken from Volume 3 of the series edited by PETZow and EFFENBERG
[1988], shows a few examples of this notation. (In this case, of course, the temperature
and composition ranges of stability explicitly indicated for all the phases give additional,
more detailed information).

References: p. 363.
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Table 2
An example of crystallochemical description of alloy system.
Binary solid phases in the Ag—Al system
(from PETZOW and EFFENBERG [1988 ef seg.] and MassaLsky [1990]).

Phase Pearson Lattice Maximum Composition
Trivial Name, Ideal Formula, Symbol/ Parameters Range (at% Al)
Temperature Range (°C) Prototype (pm)
(Ag) cF4 a=408.53 (23°C) 010204
<961.93 Cu (at =450°C)
B-Ag;Al (h) cl2 a=330.2 (700°C) 20.5 to 29.8
778-605 W (at 726°C)
p-AgsAl (1) cP20 a=693 =211t0 24
< 448 B-Mn
5-Ag,Al hP2 a=287.1 (27at%Al) 22910 41.9
<726 Mg €=466.2

2~ 288.5 (Al-rich
c~4582 limit)

(A cF4 a=404.88 (24°C) 76.5 to 100
< 660.45 Cu (at 567°C, Al-rich
eutectic temperature)

In connection with this group of descriptors we may perhaps remember indicators such
as (am), (vt), etc. for amorphous, vitreous substances. For instance:
SiO,(am) amorphous silica; Si(am)H, amorphous silicon doped with hydrogen.

3. Crystal structure of the intermetallic phase and its representation

3.1. Unit cell description (general remarks, lattice complexes)

The characterization of a phase requires a complete and detailed description of its
structure. As examples of such a description, we may consider the data (as obtained, for
instance, from X-ray diffraction experiments) reported in table 3 for stoichiometric and
variable composition phases. (For an explanation of the various symbols used in the table
see the International Tables of Crystallography (HaHN [1989]. See also the examples
reported in chapter 1).

Following information is included in the table:

— Crystallographic system, that is the coordinate system (and metrical relationships
between the lattice parameters of the adopted unit cell: for instance, cubic: a=b=c, ¢ =f
=vy=90° tetragonal: a=b#c¢, @ =8 =y =90° etc.); and the specific values (in pico-
meters) of the unit cell dimensions.
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Table 3
Examples of crystallographic description of phase structures
(from VILLARS and CALVERT [1991]).

CsCl (stoichiometric compound);

Primitive cubic; a=:411.3 pm; space group Pm3m, No. 221,

1 Cs in a): 0,0,0;

1 Clin b): ,34;

(The two special a) and b) Wyckoff positions have no free coordinate parameter.) The two occupancy
parameters are 100%.

Mg,Ge (stoichiometric compound):

Face-centered cubic; a=638.7 pm; space group Fm3m, N. 225,

Equivalent positions (0,0,0; 0,3,4; $,0.5:4,4,0) +

4 Ge in a): 0,0,0

8 Mg in c): é’v%v%; 2],'7%'%

(No free parameters in the atomic positions of Mg and Ge. In this case the two occupancy parameters have
been found to be 130%.)

MoSi, (nearly stoichiometric compound):

body-centered tetragonal; a=319.6 to 320.8 pm and ¢ =787.1 to 790.0 pm, according to the composition; space
group [4/mmm, No. 139,

Equivalent positions (0,0,0; 33,0 +

2 Mo in a): 0,0,0

4 Siine): 0,0,2z; 0,0~z ;2z=0333

(The Si position has the free parameter z, for which, in this particular case, the value 0.333 has been
determined; the two occupancy parameters are 100%.)

= Ce¢,NiSi, (disordered structure):

hexagonal; a=406.1 to 407.1 pm; c=414.9 to 420.2 pm; space group P6/mmm, N. 191

1 Ce in a): 0,0,0,

2 (Ni+Si) (inaratio 1:33)ind): 4, 4 5 L 5 %

(In this case the atomic sites corresponding to the d) Wyckoff position are randomly occupied by Ni and Si
atoms in the given ratio and the overall composition correspond to 1Ce +2 x (0.25 Ni+0.75S1)).

Cr,P, (simple structure showing partially occupied sites):

hexagonal; a=898.1 pm; ¢=331.3 pm; space group P6,/m, No. 176.

2Pina): 004; 003 (occupancy 50%)

6 P in h): x,y.%; —y.x—y4; —x+y,—x3; —x,~v.3 v—x+y.3; x-y.x.3 (x= 0.2851, y =0.4462); (occupancy 100%)
6 Cr in h): x,y,4; —v.X—¥k; —x+y,—X,% =x,=v.3; y—x+¥,3; x=y.x.} (x= 0.5109, y =0.3740); (occupancy 100%)
6 Crin h): x,y.%; —v.x—yd; —x+y,—x.4; —X,-y.3; v,—x+y.3 x—y,x,3 (x= 0.2108, y=0.0144); (occupancy 50%)
6 Cr in h): x,y,4; —v,x—y.} —x+y,—x.% —x,-v.3; y,—x+y.3; x-y.x.} (x= 0.2638, y =0.0137); (occupancy 50%)

In this case several groups of atoms have the same type of Wyckoff positions: the h) position which has free
parameters. These, of course, have different values for the different groups of atoms. The parameter values
experimentally determined in this case for each atom group are reported.

The partial occupancies found for the different positions are also reported. In this case in the a) Wyckoff
position, for instance, only half of the sites are randomly occupied by P atoms; the others are vacant. The total
number of atoms iri the unit cell is: P: 0.5%x2+6=7; Cr: 6+0.5x6+0.5x6=12.

— Bravais point lattice and space group (this describes the spatial symmetry of the
structure on a raicroscopic (atomic) level, and is represented by means of the Hermann
—Mauguin symbol, composed by a letter representing the lattice type (P=primitive,
I=body centered, etc., see table 4) followed by the symbols of the symmetry elements

References: p. 363.
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Table 4
Pearson Symbols
System symbol Lattice symbol
a triclinic (anorthic) P primitive
m monoclinic I body centred
o orthorhombic F all-face centred
t tetragonal C side face centred *
h hexagonal (and trigonal R rhombohedral
and rhombohedral)
¢ cubic

* Instead of C, in the future, the symbol S will probably be adopted according to the recommendation of the
International Union of Crystallography.

ordered according to their positions relative to the axes (for instance Pm3m is the symbol
of the space group of the CsCl structure).

As usual, the space group is also identified by the serial number (221 for Pm3m)
reported in several compilations such as the “International Tables” which is the funda-
mental reference book for crystallography (HAHN [1989]).

A list of the atoms contained in the unit cell and their coordinates (fractional
coordinates related to the adopted system and unit cell edges) are then reported. These
are usually presented in a format as M El in n: x,y,z. In the MoSi, structure, also reported
in table 3, we have, for instance, four silicon atoms (that is: M El=4 Si) in the position
set coded as e and corresponding to the 4 coordinate triplets 0,0,0; 0,0,z; 11+ z;
11+ —z. Such entries correspond to the so-called Wyckoff positions characterized by a
well-defined site symmetry and by a multiplicity M. For each Wyckoff position M, is the
number of equivalent points (positions) in the unit cell with the same site symmetry. The
highest multiplicity M_,, of the given space group corresponds to the lowest site
symmetry (each point is mapped onto itself only by the “identity operation”). This is the
“general position”: the coordinate triplets of the M, sites include the reference triplet
indicated as x,y,z (having three variable parameters). In a given space group, moreover,
it is possible to have several special positions. In this case points are considered which
are located on symmetry elements (without translations) or at the intersection of several
such symmetry elements. Each point will be mapped onto itself by at least one of these
symmetry operations: we will have as a consequence a reduction in the number of
different equivalent points in the unit cell generated by all the characteristic symmetry
operations. The multiplicity of these positions will be lower than M_,, (M in a special
position is a divisor of that of the general position). We may also say that specific
costraints are imposed on the coordinates of each point of a special position leading to
triplets such as x,y,0 (that is z=0) or x,x,z (that is x =y), with two variable parameters,
or x,55 or x,x,0 (with one variable parameter) or 0,0,0 or 11,0 (with no variable
parameter). In the International Tables of Crystallography, for each of the 230 space groups,
the list of all the positions is reported. For each of the positions (the general and the special
ones) the coordinate triplets of the equivalent points are also given. The different positions are
coded by means of the Wyckoff letter, a, b, ¢, etc., starting with a for the position with the
lowest multiplicity and continuing in alphabetical order up to the general position.
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In the examples reported in table 3 it is also shown that for the positions with free
parameters the specific values of the parameters themselves have to be experimentally
determined in order to present a complete description of the structure.

Notice that, for instance, in the case of the MoSi, structure the different atomic
positions in the unit cell are the following: 2 Mo in 0,0,0, and in 4,3, and 4 Si in 0,0,z;
in 0,0,—z; in 4,3, $+z and in 1,1} —z (corresponding, on the basis of the experimental
value z=0.333, to 0,0,0.333; 0,0,0.667; 4,,0.833; 1,1,0.167). These positions have been
described, according to the International Tables of Crystallography conventions, explicitly
indicating the centring translations (0,0,0; 11.1) + before the coordinate triplets. The
symbol + means that, in order to obtain the complete Wyckoff position the components
of these centring translations have to be added to each of the listed triplets.

A similar presentation has been used for the Mg,Ge structure description. Notice that
the coordinates are formulated modulo 1: thus, for instance, —x,—y,—z is written rather
than 1-x,1-y,1-z.

Finally, in the table, some more examples are reported as an introduction to more
complex, partially disordered structures (random distribution of different atom types in
the same positions, partially occupancy of certain positions).

Considering now the simple structure of CsCl as an example we see that the
“crystallographic description” reported in table 3 corresponds to the atom arrangement
presented (with alternative representations) in fig. 3 and, in more details, in sec. 6.1.2).

More generally, we may say that, from descriptions, such as those reported in table 3, the
interatomic distances may be computed and, consequently, the coordinations and grouping of
the various atoms may be derived: an example of this computation will be presented in sec.
3.5.5. (A systematic listing of the crystal data relevant to all the known phases has been
reported in a number of fundamental reference books such as (PEARSON [1967], LANDOLT—
BORNSTEIN [1971], VILLARS—CALVERT [1985], VILLARS—CALVERT [1991], etc).

For the criteria to be followed, especially when complex structures are involved, in
the preparation and presentation of coordinate lists see PARTHE and GELATO [1984].
Their paper describes a proposal for a standardized presentation of inorganic crystal
structure data with the aim of recognizing identical (or nearly identical) structures from
the similarity of the numerical values of the atom coordinates. Different, equivalent (but
not easily recognizable) descriptions could, in fact, be obtained by shift of origin of the
coordinate system, rotation of the coordinate system, inversion of the basis vector triplet.
(See also PARTHE et al. [1993]).

A description which in some simple cases could in a way be considered alternative
to those exemplified in table 3 is based on the lartice complex concept. (Listing the
symbols of the lattice complexes occupied by the different atoms in a structure, for
instance, symbol P for the point 0,0,0, and its equivalent points, provides in fact a means
of describing and classifying structures. This may be especially convenient for relatively
simple structures particularly in the cubic system).

A lattice complex may be defined as an arrangement of equivalent points that are
related by space group symmetry operations including lattice translations (PEARSON
[1972]). The same lattice complex may occur in different space group types and may
have more than one location in regard to a chosen origin for the unit cell. The number
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a) b)

C)

Fig. 3. Alternative representations of the unit cell of the CsCl compound. The two types of atoms are

represented by means of the differently coloured spheres.

a) the positions of the centers of the atoms in the unit cell are indicated.

b) projection of the unit cell on the base plane. The values of the 3" (vertical) coordinate are given.

c) the shortest interatomic distances are presented.

d) packed spheres model.

e) a group of 8 cells is represented in order to show that the actual structure of CsCl corresponds to a three-
dimensional infinite repetition of unit cells. Notice the coordination around the white atom; it is similar to
that around the black atom shown in c).
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of degrees of freedom of a lattice complex, normally, is the same as that of any of its
Wyckoff positions and is the number of coordinate (free) parameters x,y,z, that can vary
independently. According to its number of degrees of freedom a lattice complex is called
invariant, uni-, bi-, or trivariant.

The invariant lattice complexes in their characteristic Wyckoff positions are repre-
sented mainly by capital letters. Those with equipoints at the nodes of the Bravais lattice
are designated by their appropriate lattice symbols. (Lattice complexes, from different
crystal families that have the same coordinate description for their characteristic Wyckoff
positions, receive the same symbol: for instance, lattice complex P corresponding to
coordinate 0,0,0. In such a case, unless it is obvious from the context which lattice is
meant, the crystal family may be stated by a small letter, preceding the lattice-complex
symbol as follows: ¢ =cubic, t=tetragonal, h=hexagonal, o =orthorhombic, m=mono-
clinic, a=anorthic =triclinic). Other invariant complexes are designated by letters that
recall some structural features of a given complex, for instance D from the diamond
structure, E from the hexagonal close-packing. Examples of two-dimensional invariant
complexes are G (from graphite layer) and N (from kagomé net). (See table 4 and sec.
3.5.2)

A short list of invariant lattice complex symbols is reported in the following. (For a
complete list, for a more systematic description and formal definition, see chapter 14,
Vol. A, of the International Tables of Crystallography, HAHN [1989]).

— Lattice complex P: (multiplicity, that is the number of equivalent points in the unit
cell, 1);
coordinates 0,0,0;

(crystal families: c, t, h, o, m, a).

— Lattice complex I (multiplicity 2);
coordinates 0,0,0; 3,1.1;

(crystal families: c, t, 0).

— Lattice complex J: (multiplicity 3);
coordinates 0.4.%; 1,04 1.0
(crystal families: c).

— Lattice complex F: (multiplicity 4);
coordinates 0,0,0; 0,3,%; 1,0.; 110,
(crystal families: c, o).

— Lattice complex D: (multiplicity 8);
(D from ‘“Diamond”, see sec. 6.3.1)
coordinates 0,0,0; 13,0; 1,04; 014 L1l 331,
398> a3
(crystal families: c, o).

— Lattice complex E: (multiplicity 2);
coordinates 1,2}, 2.1 3
(crystal families: h).
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— Lattice complex G: (multiplicity 2);
(G fom “Graphite” layer, see sec. 6.3.4).
coordinates 1.3,0; .4,0;
(crystal families: h).

— Lattice complex R: (multiplicity 3);
coordinates 0,0,0; $,3.%; 3433
(crystal families: h).

The coordinates indicated in the reported (partial) list of invariant lattice complexes
correspond to the so called “standard setting”. Some of the non-standard settings of an
invariant lattice complex may be described by a shifting vector (defined in terms of
fractional coordinates) in front of the symbol. The most common shifting vectors have
also abbreviated symbols: P’ represents 1 1 1 P (coordmates 11D, Y represents L 4 17T
(coordinates %,0,0,; 0,4,0; 0,0,3); F” represents 4+ 1 L F (coordinates 1 4 4; 433,313,331
and F” represents 3 3 3 F. (The following notation is also used J* =J+J" (complex of
multiplicity 6). It can be seen, moreover, that the complex D corresponds to the
coordinates F+F”,

Simple examples of structure descriptions in terms of combination of invariant lattice
complexes, may be: CsCl type P+P’ (Cs in 0,0,0; Cl in 1,1,1), see table 3 and sec. 6.1.2.;
NaCl type structure: F+F, see sec. 6.4.1; ZnS type structure: F+F”, see sec. 6.3.2,;
NaTl type structure: D+D’, see sec. 6.1.4.

Such combination of, original or transformed, invariant lattice complexes, are also
indicated as connection patterns or construction patterns or frameworks (or Bauverbinde
in the German literature, according to LAVES [1930]). These patterns are homogeneous
if they may be described by the parameters of one point position, heterogeneous if, for
their description, the parameters of two or more independent point positions are
necessary. This terminology may give a short informative description of the crystal
structure and is specially useful for cubic substances. (For its use in a systematic
description and classification of cubic structures see HELLNER [1979}). For non-invariant
complexes and/or in crystal systems with symmetry lower than cubic, the geometrical
configuration of the complex (and the coordination) may change significantly with free
parameter value and with axial ratios and angles between the crystal axes.

3.2. Structural types

Several intermetallic phases are known which have the same (or a similar)
stoichiometry and crystallize in the same crystal system and space group with the same
occupied point positions.

Such compounds are considered as belonging to the same structure type. The
reference to the structure type may be a simpler and more convenient way of describing
the structure of the specific phase. The structure type is generally named after the formula
of the first representative identified: the “prororype”. Trivial names and symbols are also
used in some cases (see sec. 3.4.).

The various representatives of a specific structure type generally have different unit
cell edges, different values of the occupancy parameters and of the free coordinates of
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the atomic positions and, in the same atomic positions, different atoms (see, for instance,
sec. 3.5.5.).

If these differences are small, we may consider the general pattern of the structure
unaltered.

On the other hand, of course, if these differences become larger, it might be more
convenient to describe the situation in terms of a “family”, instead of a single structural
type, of different (more or less strictly interrelated) structural (sub) types. According to
PARTHE and GELATO [1984], some structures may not really be isofypic but only
isopointal, which means that they have the same space group and the same occupation
of Wyckoff positions with the same adjustable parameters but different unit-cell ratios
and different atom coordinations (and/or different values of Wyckoff free parameters).

An interesting example may be given by the structures of MoSi,, reported in table 3,
and CaC,. In this compound, Ca and C are respectively in the same positions as Mo and
Si in the same space group [4/mmm:

2 Cain a): 0,0,0; 3.1.%;

4 Cin e): 0,0,z; 0,0,—z; L ii+2 11t -2

The unit cell dimensions, however, correspond to a=388 pm, c=638 pm (c/a=1.644
instead of 2.463 as in MoSi,) and the free parameter z has the value 0.4068 (instead of
0.333). These differences result in two different space arrangements (see fig. 4).
Diatomic groups, such as C,, clearly evident in CaC, (and in a number of isostructural
dicarbides and peroxides) are not formed in MoSi,.

Very interesting general comments and definitions on this question have been
proposed, for instance, by PEARSON [1972], and more recently by LiMA DE FARIA et al.
[1990] According to these authors, two structures are isoconfigurational
(configurationally isotypic) if they are isopointal and are similar with respect to the
corresponding Wyckoff positions and their geometrical interrelationships (same or similar
positional coordinates, same or similar values of the unit cell axial ratios, ¢c/a, a/b, b/c
and cell angles «, 3, ).

Isotypism is found particularly with inorganic compounds. This behaviour has been
discussed by PARTHE et al. [1993]. It has been underlined that to explain why two
compounds adopt the same atom arrangement is not always simple. Following examples
have been presented:

— The isotypism of Gd,NicAl,, and Y ,NigAl,, may be easily explained because Gd and
Y (elements of the same group of the Periodic Table) have comparable electron
configuration and nearly the same atomic dimensions.

— Li,Si0, and LiSi,N, are isotypic (even if not in a rigorous sense owing to slightly
different distorsions of the coordination polyhedra). They adopt an adamantine structure
type (see sec. 6.3. and 7.2.1.) for which particular values of the electron concentration
may be relevant even if obtained with elements from different parts of the Periodic
Table.

— GdNi and NiB represent another couple of isotypic compounds. The role (the position
in the crystal siructure), however, of the same atom, Ni, in the two compounds is
exchanged. In NiB, the Ni atoms are those centring the trigonal prism (formed by Gd
atoms). A reascn for the existence of this structure type could possibly be related to the
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a) b)

@ Mo orCa

(O Ssi orcC

Fig. 4. MoSi, (a) and CaC, (b) type structures: an example of isopointal structures. Notice that, due to the
different values of the c/a ratios and of the z parameters, there are different coordinations and atomic groupings
(formation in CaC, of C-C, dumb-bell, discrete groups).

atomic size difference of the elements involved (or, perhaps, to their relative position in
Pettifor’s chemical scale).

— The last (and most intriguing) example reported by PARTHE et al. [1993] is the couple
of compounds Pu;,Rh,, and Ca,,Sn,,. For the present, the isotypism of these compounds
of unusual stoichiometry cannot be expected and explained.

As a conclusion to these comments, we may mention that two structures are defined
crystal-chemically isotypic if they are isoconfigurational and the corresponding atoms
(and bonds) have similar chemical/physical characteristics.

Those interested in these concepts and in their historical development may refer also
to a contribution by LAVES [1944], translated and reported by HELLNER [1979]. Condi-
tions to be defined for calling crystal structures “equal” (isotypism), “similar” (homeo-
typism) or “different” (heterotypism) were suggested, discussed and exemplified.

We have finally to observe that, when considering phases having certain polar
characteristics (salt-like “bonding”), the concept type and antitype may be useful.
Antitypic phases have the same site occupations as the typic ones, but with the cation-
anion positions exchanged (or more generally some important physical/chemical
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characteristics of the corresponding atoms interchanged). As examples the structure types
CaF, and Cdl, and their antitypes reported in sec. 6.4.2. and 6.5.2. may be considered.
Notice, however, that for a structure such as the CsCl type, it does not matter whether
we describe it as 1 Cs in 0,0,0 and 1 Clin 13,3, or as 1 Cs in 43,4, and 1 Cl in 0,0,0. In
this case the two descriptions are undistinguishable (see fig. 3): they correspond to a
mere shift of the origin of the reference axes. The CsCl type is its own antitype. Similar
considerations are valid also for other structures such as the NaCl, ZnS types, etc.

3.3. Unit cell Pearson symbol

The use of the so-called Pearson notation (PEARSON, [1972]) is highly recommended
(Iupac, LEIGH [1990], “Ternary Alloys”, PETZOW and EFFENBERG [1988 et seg.]) for the
construction of a compact symbolic representation of the structure of the phase. As far
as possible, it should be completed by a more detailed structural description by using the
prototype formula which defines (as previously mentioned) a certain structure type.

The Pearson symbol is composed of a sequence of two letters and a number. The first
(small) letter corresponds to the crystal system of the structure type involved; the second
(capital) letter represents the lattice type (see table 4). The symbol is completed by the
number of the atoms in the unit cell. A symbol as tP10, for example, represents a
structure type (or a group of structure types) corresponding to 10 atoms in a primitive
tetragonal cell.

In this chapter, the Pearson symbol will be used throughout; the convention has been
adopted indicating in every case the number of atoms contained in the chosen unit cell.
In the case, therefore, of rhombohedral substances for which the data of the (triple
primitive) hexagonal cell are generally reported, the number of atoms is given which is
in the hexagonal cell and not the number of atoms in the equivalent thombohedral cell
(FerrO and GIRGIS [1990]). So, for instance, at variance with VILLARS and CALVERT
[1985, 1991], hR9 (and not rP3 or hR3) for the Sm-type structure.

If the structure is not known exactly, the prototype indication cannot be added to the
Pearson symbol. In some cases, moreover, only incomplete Pearson symbols (such as
0?60, cF?, etc.) can be used.

A criterion similar to Pearson’s for the unit cell designation was used by SCHUBERT
{1964] in his detailed and systematic description of the structural types of the
intermetallic phases and of their classification.

A slightly more detailed notation, moreover, for the unit cell of a given structure has been
suggested by FREVEL [1985]. Four items of information are coded in Frevel’s notation:

— tke number of different elements contained in the compound,

— the total nuraber of atoms given by the chemical formula,

— the appropriate space group expressed in the HERMANN-MAUGUIN notation and
— the number of formulae for unit cell.

The notation for the CaF, structure, for instance, is:

2,3 Fm3m (4).

Possible augmentation of the notation has been discussed by Frevel and its use for
classification and cataloguing the different crystal structures suggested.
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According to PARTHE ef al. [1993], a standardization procedure is at first necessary
in the presentation of the relevant data characteristic of a crystal structure (see also
PARTHE and GELATO [1984]). A convenient description of the structure types is then
possible using the “Wyckoff sequence” (the letters of the occupied Wyckoff sites). This
allows a finer classification of structure types and offers suggestions not only for
recognizing isotypic structures but also possible structural relationships (substitution,
formation of vacancy or filled-in structure variants).

3.4. Structure trivial names and symbols

A number of trivial names and symbols have been used (and are still in use) both as
indicators, of a single phase in specific systems or as descriptors of certain structural
types (or of families of different interrelated structural types).

Among the trivial symbols, we may mention the use of Greek (and Roman) letters to
denote phases. These have often been used to indicate actual phases in specific systems,
for instance in a given binary system, phase «, 3, v, etc., in alphabetical order according
to the increasing composition from one component to the other, while in a unary system
the «, B, etc., symbols have often been used to denote different allotropic forms.

Obviously this notation (or other similar ones such as 7, 7,, 75, denoting “1°”, “2"%,
etc., phase) may be useful as a quick reference code while discussing and comparing
phase properties of alloys in a single specific system, but in general cannot be used as
a rational criterion for denoting structural types. In a few cases, however, certain Greek
(and Roman) letters have assumed a more general meaning (as symbols of groups of
similar phases): for instance, the name “y-phases” which is an abbreviation of a sentence
such as phases having the y-brass (the y-Cu~Zn) type structure. A short list, taken from
LANDOLT-BORNSTEIN [1971], of (Greek and Roman) letters which have also been used
as descriptors of structural types, may be the following:

v : y-brass type or similar structures

& : Mg type

{ : Mg type

7 : W,Fe,C or Ti,Ni type

n : W.Fe, type

o : o phase or o-CrFe type

X : a-Mn or TiRe,, type

o : w, -(Cr,Ti) type (similar to the AIB, type)

E : PbCl, or Co,Si type

G : G phase, ThyMn,; or Cu,MggSi,

P : P phase or P-(Cr, Mo, Ni)

R : R phase or R-(Co, Cr, Mo)

T, : W,Si, type

T, : CrsB; type

In a number of cases, names of scientists are used as descriptors. We may mention the
following groups of structures (some of which will be described in more detail later).

Chevrel phases. A group of compounds having a general formula such as M,Mo,S,
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M= Ag, As, Ca, Cd, Zn, Cu, Mn, Cr, etc.). Many representatives of these structure types
are superconducting with critical T, as high as 10-15 K.

Frank-Kasper phases. (For all of which the structure can be described as composed of
a collection of distorted tetrahedra which fill the space: see sec. 6.6). This family of
phases includes those of the structural types: Laves phases (a family of polytypic
structures including the hP12-MgZn,, cF24-Cu,Mg and hP24-Ni,Mg types), #P30
o-phases, oP56—P phases and hR39-WFe, type phases.

Hagg phases. According to HAGG [1931], a number of compounds of the transition
metals with small non-metal atoms (H, B, C, N) have structures which can be described
as “interstitial”. These correspond, generally, to a simple structures in which the small
non metal atoms occupy interstices in a face centered cubic or body centered cubic
framework of metal atoms or, the interstices in other close packed structures. In the Higg
interstitial phases the relative atomic size of the two elements is of particular importance
to the stability of the structure.

See sec. 6.2.2. for a classification of the interstices (“holes”) in close packed structures,
sec. 6.4.1. for NaCl-type related phases and sec. 6.5.5. for WC-type phases.

Heusler phases. Magnetic compounds of the cF16-MnCu,Al-type. (See sec. 6.1.3. on
this structure which can be considered “derivative” of the CsCl type).

Hume-Rothery phases. These designations can be connected to the research carried out
as far back as 1926 by HUME-ROTHERY, WESTGREN and PHRAGMEN, etc. They observed
that several coripounds (electron compounds) crystallize in the same structural type if
they have the average number of valence electrons per atom (the so-called VEC: valence
electron concen‘ration) included within certain well-defined ranges. Some groups of these
phases (brasses, etc.) will be presented in sec. 6.1.5. and 7.2.2. (See also ch. 3, §8.1.)

Nowotny phases. Chimney-ladder phases (see sec. 4.4.).

Samson phases. Complex intermetallic structures with giant unit cells, based on
framework of fused truncated tetrahedra (see sec. 6.6.5.)

Zint] phases. This term was first applied to the binary compounds formed between the
alkali or alkaline-earth elements and the main group elements from group 14 on, that is
to the right of the “Zintl boundary” of the Periodic Table. These combinations not only
yield some Zintl anions (homopolyatomic anions) in solution but also produce many
rather polar or salt-like phases. A simple example may be a classical valence compound
in which the more “noble” member achieves a filled “octet” and an 8-N oxidation state
in salt-like structure (for example Na,As, Mg,Sn) (CORBETT [1985]). An important
intermetallic structure discovered by Zintl (ZINTL and WOLTERSDORF [1935]) was that of
the cF16-NaTl-type (superstructure of the bcc lattice, see sec. 6.1.4.). The Na and Tl
atoms are arranged according to two (interpenetrating) diamond type sublattices; each
atom is tetrahedrally coordinated by four like neighbours on the same sublattice and has
four unlike neighbours on the other sublattice. This could be interpreted as a T1" array,
isoelectronic with carbon in the limit of complete charge transfer. For a critical dis-
cussion on the NaTl-type structure, its stability, the role of the size factor, the compara-
tive trend of the stabilities of CsCl and NaT] type structures, the application of modern
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band-structure techniques, see HAFNER [1989]. Subsequent applications of the term “Zintl
Phases” have been based on the structural characteristic of such polar phases. A review
on this subject has been published by CORBETT [1985]. In this paper several phases are
mentioned: starting from compounds such as hR18-CaSi, (containing rumple double
layers of Si atoms resembling those of the As structure), mP32-NaGe and mC32-NaSi
(respectively containing Ge, or Si atom, tetrahedra with the Na atoms arranged in the
intervening spaces), up to complex alkali metal-gallium compounds exhibiting complex
structures containing large interconnected usually empty gallium polyhedra, reminiscent
of boron chemistry. It may be added that the concept of Zintl ions has been used also in
the description of selected liquid alloys. It was proposed (VAN DER LUGT and GEERTSMA
[1984], REUERS et al. [1990]) that in the equiatomic liquid alkali alloys with Sn and Pb
the liquid consists of poly-anion clusters, such as Pb:' tetrahedra, formed by covalent
bonding which are separated by alkali ions.

Within the group of trivial names we may also include a few “personal” names such as
austenite (solid solution of C in vy-Fe), ferrite (solid solution of C in «-Fe), martensite
(see sec. 6.1.5.), etc., and a few mineralogical names such as pyrite, blende, cinnabar,
etc. According to the Iupac recommendations (LEIGH [1990]), mineralogical names
should be used to designate actual minerals and not to define chemical composition.
They may, however, be used to indicate a structure type. They should be accompanied
by a representative chemical formula:

cF8-ZnS sphalerite, hP4-ZnS wurtzite, cF8—NaCl rock salt, cP12-FeS, pyrite, etc.

In closing this section we have to mention the Strukturbericht designation adopted
from pre-war time by the editors of the Strukturbericht publications (and later Structure
Reports) in abstracting crystal-structure determination. This designation is no longer
recommended by the International Union of Pure and Applied Chemistry, but it is still
used.

According to this designation, each structure type is represented by a symbol
generally composed of a letter (A, B, C,etc.) and a number (possibly in some cases
followed by a third character). The letter was related to the stoichiometry according to
the following form: A: unary phases (or believed to be unary), B: binary compounds
baving 1:1 stoichiometry, C: binary 1:2 compounds, D: binary m:n compounds, E.. K
types: more complex compounds; L: alloys, O: organic compounds and S: silicates.

In every class of stoichiometries, the different types of structures were distinguished
by a number and/or a letter. (For instance, in the element class the frequently encoun-
tered fcc structure, cF4-Cu-type, was called Al, in the 1:1 group the common cF§-NaCl
type was represented by Bl, etc.). Equivalence tables between the Strukturbericht
designation and the Pearson symbol-prototype may be found in PEARSON [1972],
MaAssaLsKI [1990].

The following is a partial list of these old Strukturbericht symbols for some types
frequently occurring in metallic systems:

Al: cF4-Cu; A2: cI2-W; A3: hP2-Mg; A3 hP4—ala; A4: cF8—C (diamond); AS:
tI4—8Sn; A6: tI2-In; A7: hR6—As;...; A9: hP4-C (graphite);...; A12: cI58—aMn; ...
; Al5: cP8-Cr;Si; ....The A1S5 structure was previously considered to be that of a W
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modification (and therefore a unary structure): later on the substance concerned was
recognized to be a W oxide: W,0 (isostructural with Cr,Si); ...; Ay: tP30-8Us...; Ay
cPl-aPo;...; A;: hR3-8Po; ...

B1: cF8-NaCl; B2: cP2-CsCl; B3: cF8-ZnS (sphalerite or zinc blende); B4: hP4-ZnS
(wurtzite);..., B8;: hP4-NiAs; BS8,: hP6-NiJln; ... ; Bll: tP4—yCuTi;...; B19:
oP4-AuCd; B20: cP8-FeSi; ... ; B27: oP8-FeB;...; B31: oP8-MnP; B32: cF16-NaTl;
...; B35: hP6—CoSn;...; B, cI16-UCo;...; Bg oC8-CrB;...; B,: hP2-WC....; B;:
hP8-TiAs;...

C1: cF12-CaF,; Cl1;: cF12-AgMgAs; C2: cP12-FeS, (pyrite); ... ; Cl11,: tI6-CaC,;
C11,: ti6-MoSi,, (the two C11, and C11, structures are closely interrelated, see fig.
4); ...; C14: hP12-MgZn,; C15: cF24-Cu,Mg; C15,: cF24-AuBe, (this structure is
a derivative structure of the cF24-Cu,Mg, C15 type, see figs. 42 and 44); C16:
tI12-CuAl,; ...; C22: hP9-Fe,P;...; C32: hP3-AlB,; ...; C36: hP24-Ni,Mg; ...; C38:
tP6-Cu,Sb;...; C,: hP18-NiMg,; C,: oF48-CuMg,; C_: tI12-ThSi,;...

DO, cI32-CoAs;; ... ; DO hP8—Na,As; ... ; D1, tI10-MoNi,; D1,: 0I20-UAl,;...; D1,
tI110-BaAl,;...; D2, tI26-ThMn,,;...; D8;: cI52-Fe;Zn,,; D8,: cI52-Cu,Zn;; D8
cP52-CuyAl,; D8,: cF116-Cr,;C; ...

El,: oC16-MgCuAl,;...;E9,: tP40-FeCu,Al,;..

H2,: cP8—Cu,V5,;..

L1, tP2-AuCu (I); L1,: cP4-AuCu,; L2;: cF16-MnCu,Al; L1,: ¢cF32—-CuPt;;...;

L2,: tP2-8CuTi;...; L6y tP4-CuTi,.

3.5. Rational crystal structure formulae

We know that all of the requisite structural information for a solid phase is contained
(either explicitly or implicitly) in its unit cell and this can be obtained from the Pearson
symbol-prototype notation (complemented, if necessary, by data on the values of lattice
parameters, atomic positions, etc.). A number of features, however, which are especially
relevant for chemical-physical considerations, such as local coordination geometries, the
existence of clusters, chains or layers, etc., are not self-evident in the aforementioned
structural descriptions and can be deduced only by means of a more or less complicated
series of calculations. It should, moreover, be pointed out that the same structure can be
differently viewsd and described (FRANZEN [1986], PARTHE and GELATO [1984]). The
simple rock-salt structure, for instance, (see sec. 6.4.1.) can be viewed as cubic close
packed anions with cations in octahedral holes, as XY, octahedra sharing edges, as a
stacking sequence of superimposed alternate triangular nets respectively of X and Y
atoms or as a cubic-close packed structure of a metal with non-metals in octahedral
interstices. As a further example we may consider the Cu structure which, for instance,
could be conveniently compared with those of Mg, La and Sm, or from another point of
view, with the AuCu and AuCu, structures. In the two cases, as we will see in sec. 6.2,
one would choose a different description and representation of the aforementioned Cu
structure.

In the different cases, some criteria may therefore be useful in order to give (in a
systematic and simple way) explicit information on the characteristic structural features.
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In the following sections some details will be given on a few complementary,
alternative notations.

3.5.1. Coordination and dimensionality symbols in the crystal coordination

formula

Several attempts have been carried out in order to design special formulae (crystal
coordination formulae) which (in a convenient linear format) may convey explicit
information on the local coordination geometry. A detailed discussion of these attempts
and of their development (through the work, inter alios, of NIGGLI [1945, 1948],
MACHATSCHKI [1938, 1953], LiMA DE FAriA and FIGUEIREDO [1976, 1978], PARTHE
[1980a] and JENSEN [1984]) may be found in a review by JENSEN [1989], who presented
and systematically discussed a flexible notation for the interpretation of solid-state
structures. A short description of Jensen’s notation will be given below. The different
symbols used will be briefly presented. For the notation concerning the common
coordination geometries a summary is reported in table 5. A report by the International
Union of Crystallography Commission on Crystallographic Nomenclature (LmaA Dg
FARIA et al. [1990]) presents a concise description of similar alternative notations, a
summary of which is also presented in table 5.

The symbols suggested by Jensen, based on Niggli’s proposals, indicate the local
coordination environments by means of coordination number ratios. For instance, a
Jormula AE, ,, will indicate a binary compound where m is the coordination number (the
nearest neighbour number) of atoms E around A and r will be considered the coordi-
nation number of E by A. The ratio m/n will be equal to the stoichiometric com-
positional ratio. For instance, we will write NaCl,,, to represent the hexa-coordination

Table 5
Suggested notations for common coordination geometries.

a) from JENSEN [1989]

1 Terminal 7”  Monocapped trigonal prism
Bent CN 2 8  Cube
2" Linear CN 2 8  Square antiprism
3 Pyramidal or in general non-planar CN 3 8” Dodecahedron
3’  Trigonal planar 8” Bicapped trigonal prism
3”  T-planar 8  Hexagonal bipyramid
4 Tetrahedral 9  Tricapped trigonal prism
4" Square planar 10 Bicapped square antiprism
4”  Base of a square pyramid with the 11  Monocapped pentagonal antiprism
central atom as the apex 12 Cubic closest-packed or cuboctahedron
5  Trigonal bipyramid 12" Hexagonal close-packed or twinned
5" Square based pyramid with the cuboctahedron
central atom inside 12" Isocosahedron
6  Octahedron or trigonal antiprism 2 Hexagonal prism

=1

6’  Trigonal prism Complex, distorted n-hedron

6” Hexagonal planar Disordered structure in which it is
7 Pentagonal bipyramid possible to define only an average
7°  Monocapped octahedron coordination number n

=11
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Table 5—Continued

b) from LiMA DEFARIA er al.[1990]

Coordination polyhedron around atom A

Single neighbour

Two atoms collinear with atom A
Two atoms non-collinear with atom A
Triangle coplanar with atom A
Triangle non-coplanar with atom A
Triangular pyramid with atom A in the centre of the base
Tetrahedron

Square coplanar with atom A

Square non-coplanar with atom A
Pentagon coplanar with atom A
Tetragonal pyramid with atom A in the centre of the base
Trigonal bipyramid

Octahedron

Trigonal prism

Trigonal antiprism

Pentagonal bipyramid

Monocapped trigonal prism

Bicapped trigonal prism

Tetragonal prism

Tetragonal antiprism

Cube

Anticube

Dodecahedron with triangular faces
Hexagonal bipyramid

Tricapped trigonal prism
Cuboctahedron

Anticuboctahedron (twinned cubooctahedron)
Icosahedron

Truncated tetrahedron

Hexagonal prism

Frank-Kasper polyhedra with

14 vertices

15 vertices

16 vertices

Complete Symbol

(1]
[21]
[2n]
[31]
[3n]
[4y]
(4]
[41] or [4s]
[4n]
[51]
[5y]
[5by]
[60]
[6p]
[6ap]
[7by]
[6plc]
[6p2c]
[8p]
[8ap]
[8cb]
[8acb]
[8do]
[8by]
[6p3c]
[12co]
[12aco]
[12i]
[12tt]
[12p]

[14FK]
[15FK]
[16FK]

]
[5]

[o]
[pl
[ap]

[cb]
[acb]
[do]

[co]
[aco]

[i]

Alternative

simplified symbols
(1]
2]
[2]
31
(3]
(4]
41
[4] s
4]
[5]
[5]
[5]
6] o
(61 p
(6] ap
[7]
(71
[8]
[8]
[8]
[8] ¢b
[8] acb
[8] do
[8]
9]
[12] co
[12] aco
[12] i
[12]
[12]

[14]
[15]
[16]

(in this case octahedral coordination) of Cl around Na (and vice versa) in sodium
chloride. Similarly we will have: ZnS,,,; PH;,,; CsClg,4; CaFg,,; UCl,,5; etc. According
to one of Jensen’s suggestions it is possible to add modifiers to the coordination numbers
in order to specify not only topological but also geometrical characteristics of the
primary coordiration sphere. (For examples, 6: octahedral; 6”: trigonal prismatic; 6”:

hexagonal planar; efc., see table Sa.

Similar symbols were proposed by DONNAY et al. [1964] who suggested adding to the
coordination number, one or two letters to indicate the geometry: y, pyramidal; 1, planar;
¢, cubic; etc. Detailed descriptions of the coordination polyhedra are obtained by means
of the LIMA DE FARIA et al. [1990] symbols presented in table 5b. An advantage of the
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Lima de Faria symbolism may be the existence of two alternative sets of symbols:
complete and simplified. The simplified symbols give only a numerical indication,
without any distinction between different geometries; the complete symbols (clearly
distinguishible from the previous ones) contain beside the numeric indication a descrip-
tion of the coordination polyhedron. A selection of the Lima de Faria symbols, together
with the Jensen’s suggestions, will be used here.

According to Jensen, the dimensionality of a structure (or of a substructure of the same)
is indicated by enclosing its compositional formula in square brackets and prefixing an
appropriate symbol ¢. The dimensionality index, d, may be d =0 for a discrete molecular
(cluster, ring) structure, d=1 for a one-dimensional, infinite chain structure, d=2 for a
two-dimensional, infinite layer structure and d=3 for an infinite three dimensional,
framework structure. These are the Machatschki symbols (MACHATSCHKI [1947]).

More complex symbols such as d-d or d’¢”d will represent intermediate dimension-
ality (between d and d’) or, second, the dimensionality indexes of different substructures
(d’ and d”) followed by that of the overall structure (d). A few examples:

Molecular structures O[HI], 0[CO,],

Linear structures 1[BeCl,]

Layer structures 2[C] graphite, 2[As]
Framework structures 3[C] diamond,
Substructures 0Ca[CQ,] (finite ions);

1K[PO;] (infinite anionic PO; chain)

If, in a A-B structure, one wishes to show not only the A/B coordination but also the
B/B, or A/ A, self-coordinations this is done, according to the suggestion by Jensen via
the use of a composite dimensionality index and the relative positions of the various
ratios and brackets in the formula, with the last unbracketed ratio always referring to the
B/A coordination. So, for instance, 03[(H,0),,] is a compact form for
03 [(H,0)(H,0),,,] to indicate the molecular packing in the ice structure. The formula
23 Al[Bs3]12/6 O 323 [Algy, /s1,][B3/31l 1206, COITESpPONA t0 @ more or less detailed descrip-
tion of the AIB, type structure where the coordination of B around Al is 12 (12p:
hexagonal prismatic) and that of Al around B is 6 (6p: trigonal prismatic). The self-
coordinations are bipyramidal for Al/ Al (8by: hexagonal bipyramidal) and trigonal-planar
(3]) for B/B (the B atoms form a two-dimensional net).

Considering as a further example the compounds AB having the CsCl type structure,
we may mention that according to Jensen, the two descriptions 333[A,/(J{Bs,cls/s and
3[ABy,;] (with and without the indication of the self-coordination) may also be used to
suggest the bonding type (metallic if the A-A and B-B interactions contribute to the
overall bonding, ionic, or covalent, if only A-B interactions have to be considered).

More complex examples of the use of this notation may be given by the structures of
typical fluorides for which ionic type, coordination formulae are here reported:
oP16 YF, : 3[YF;, F,;];
hP8 LaF, : 3[LaF;,F;,,.];
cF16 BiF,: 3[BiF, F,l.
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In all these cases the sum of the numerators of the coordination ratios gives the total
coordination (of two groups of F atoms) around the metal atom. (The sums of the ratios
give, of course, the stoichiometric coefficients).

Another example may be represented by the hP6~Ni,In structure (3[InNig, ¢Nis,s])
described in sec. 6.5.3.

A detailed example (AuCus) of the application of the aforementioned notation to the
description of a simple intermetallic structure will be presented in sec. 3.5.5. (with the
pertinent figs. 12 to 15).

A few more examples will be reported in the following descriptions of a number of
typical structures.

In conclusion to this description of “crystal coordination formulae” we have,
however, to notice that the term “coordination number” (CN) may be used in two ways
in crystallography (FRANK and KASPER [1958]). According to the first the coordination
number, as previously mentioned, is the number of nearest neighbours to an atom.
According to the other way, the definition of the coordination should be based on an
“interpretation” of the structure which depends not only on an evaluation of the inter-
atomic distances to assign bonding versus non-bonding contacts but on considerations on
the bonding mechanism (JENSEN [1989]). These considerations are particularly important
when thinking of metallic phases where it may be difficult to make distinctions between
X-X, X-Y or Y-Y contacts. So, for instance, when considering the bc cubic structure of
the W type, some authors define the coordination number as 8 (in agreement with the
nearest-neighbours definition) but others prefer to regard it as 14 (including a group of
6 atoms at a slightly higher distance). Further considerations on this subject is delayed
to a discussion, in sec. 7.2.6., on alternative definitions of coordination numbers
(weighted coordination number, effective coordination number). In sec. 7.2.7., on the
other hand, the atomic-environment types will be introduced, their codes presented and
the results of taeir use in the classification of the selected groups of intermetallic
structure types summarized.

3.5.2. Layer stacking sequence representation

A large group of structures of intermetallic phases can be considered to be formed by
the successive stacking of certain polygonal nets of atoms (or, in more complex cases,
by the successive stacking of characteristic “slabs”). These structural characteristics can
easily be described by using specific codes and symbols, which can be very useful for
a compact presentation and comparison of the structural features of several structures.
Many different notations have been devised to describe the stacking pattern (for a
summary see PARTHE [1964], PEARSON [1972]). A few of them will be presented here.
As an introduction to this point we may consider figs. 5~7 where typical simple close-
packed structures are shown and presented as built from the superimposition of close-
packed atomic layers. If spheres of equal sizes are packed together as closely as possible
on a plane surface they arrange themselves as shown in fig. 5. (Their centres are in the
points of a triangular net.) Each sphere is in contact with six others. Such layers may be
stacked to give three-dimensional close packed arrays. If we label the positions of the
(centres of the) spheres in one layer as A, then an identical layer may be superimposed
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Fig. 5. Close-packed bidimensional arrangement of equal spheres. The A, B, C coding used to indicate different
relative positions is shown. (See also fig. 8.)

on the first so that the centres of the spheres of the second layer are vertically above the
positions B (for two layers, it is insignificant whether we choose the positions B or the
equivalent position C). When we superimpose a third layer above the second (B) we
have two alternatives: the centres of the spheres may be above either the A or the C
positions. The two simplest sequences of layers correspond to the superimpositions
ABABAB... and ABCABCABC... (more complex sequences may of course be con-
sidered). The sequence ABAB..., corresponding to the so-called hexagonal close-packed
structure (Mg-type structure) is shown in fig. 6. The sequence ABCABC... having a
cubic symmetry, is shown in fig. 7. It is the cubic (face-centered cubic) close-packed
structure (also described as cF4—Cu type structure).

A more complete representation of different layer sequences (which can be used not
only for the description of close packed structures) may be obtained by using stacking
symbols such as those shown in fig. 8, together with layer stacking indications. Fig. 8a

B8
Cc
8
1 Cc
3/4L— 8
/74 —— c
0 —
8

a b
) I II III )

Fig. 6. Hexagonal close-packing.

a) A few spheres of three superimposed layers are shown. In this structure, the spheres of the layer I are just
above those of the first one.

b) Lateral view of the same arrangement. The stacking symbols corresponding to the Mg unit cell description
reported in sec. 6.2.6. (Mg in 1.} and %33) are shown. (The ..BCBCBC... sequence description is
identical to a ...ABABAB... or ...CACACA... symbol). The heights of the layers are reported as fractions
of the repeat unit along the z axis of the hexagonal cell (that is of the distance between levels 0 and 1).
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A

C

B

1 — A

2/3— C
/73— B
0 — A

cl ¢

Fig. 7. Face-centered cubic close-packed structure of equal spheres.

a) Sphere-packing: a group of eight cubic unit cells is shown. (One of the unit cell is indicated by the black
atoms).

b) A section of the same structure shown in a) is presented; it corresponds to a plane perpendicular to the
cube diagonal. The typical arrangement of layers similar to that shown in fig. 5 is evidenced.

c) A lateral view cf the stacking of the layers in the fcc structure is presented. The layer positions along the
superimposition direction (which corresponds to the cubic cell diagonal) are shown as fractions of the
repeat unit (cell diagonal)).

shows a network of atoms which can be considered as a triangular net, T net, that is the
3% net. We may incidentally notice that this notation, the Schlifli notation P, describes
the characteristics of each node in the network, that is the number N of P-gon polygons
surrounding the node. In the reported 3° net all the nodes are equivalent: their polygonal
surrounding corresponds to 6 triangles. (More complex symbols are used for nets
containing non equivalent nodes: for instance, the symbol 32434 +3%4% (2:1) means that,
in the given net, two type of nodes, 3434 and 34, occur with a relative 2:1 frequency.
A symbol such as 324> means that the given node is surrounded, in this order, by 2
triangles and 2 squares).

In the case of the simple, 35 triangular net the aforementioned sracking symbols A, B,
C, as can be seen in fig. 8c relate the positions of the nodes to the origin of the cell
(which is defined as in fig. 8b). In the layer stacking sequence full symbol, the component
atoms occupying the layers are written on the base line, with the stacking symbols as
exponents and the layer spacings in the form of suffixes, denoting the fractional height
of the repetition constant along the direction perpendicular to the layers. In the case of
Mg, for instance, with reference to the standard choice of the unit cell origin (two
equivalent atomic positions for the two Mg atoms in §,3.} and 2.1.1), the symbol will be
Mg? Mg, (which, with a zero point shift, is equivalent to MgiMg?,). The symbol
CulCu?,CuS,,, on the other hand, represents the cubic Cu structure as a stacking
sequence of triangular layers viewed along the direction of the unit cell diagonal (which
is perpendicular to the layers themselves).

A few other nets, based on the hexagonal cell, are of frequent structural occurrence.
Following Pearson’s suggestions, the corresponding sequences of stacking symbols which
have a wide application are here presented. Fig. 9 shows the hexagonal (honeycomb) ner
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Fig. 8. Triangular net of points.
a) and b) The 3° net and the corresponding (bidimensional) cell are shown. Notice that, in this case, the
selected coordinate system corresponds to an interaxial angle of 120°.
c) Different point positions (relative to the cell origin) and corresponding coding:
A) the representative point, in the X,y plane (a, b plane with a=b), has the coordinate 0,0;
B) with reference to the a, b constants the coordinate “doublet” of the representative point is 3, %;
C) the representative point is in }, §.

(H net) and the stacking symbols (a, b, c) used for relating the different positions of the
nodes to the cell origin. (Notice that two nodes are contained in the unit cell.)

A simple structure which can be described in terms of superposition of (even if far
away, not close-packed) hexagonal layers is that of graphite: C},,C5,4. The hexagonal net
is also called “graphitic” net. (see sec. 6.3.4. and fig. 33).

Fig. 10 shows the three-ways bamboo weave net, known as kagomé, a net of triangles
and hexagons (K net, the 3636 net of points). The different positions of the nodes (three
nodes in the unit cell) are represented by the symbols («, 8, y) shown in fig. 10b.

Several (especially hexagonal, rhombohedral and cubic) structures may be convenient-
ly described in terms of stacking triangular, hexagonal and/or kagomé layers of atoms.
Examples will be given in the following sections. The specification of the spacing
between the layers is useful in order to compare different structures, to recognize the
close-packed ones (A, B, C symbols with appropriate layer distances) and to deduce
atomic coordinations.

We have to notice, however, that the A, B, C notation previously described is not the
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Fig. 9. Hexagonal (6*) net of points.

The net is shown in a). In b) the different positions of the points in the unit cell are indicated with the stacking
symbols a, b, c. Notice that the unit cell contains two points. (Every point in the corner is in common with
(belongs to) four adjacent hexagonal cells).

only one devised. Several different symbols have been suggested to describe stacking
patterns. (For a description of the more frequently used notations see PARTHE [1964],
PEARSON [1972]).

A very common notation is that by JAGODZINSKI [1954]. This notation involving 2
and ¢ symbols is applicable only to those structure type groups which allow not more
than three possible positions of the unit layer (or more generally of the “unit slabs”. See
sec. 4.3. on polytypic structures). The h, ¢ notation cannot therefore be applied, for
instance, to disilicide types. The letters h and ¢ have the following meaning:
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Fig. 10. The 3636 (kagomé) net of points.

The net is shown in a). In b) the different positions (relative to the hexagonal cell origin) are indicated by the
symbols a, B, y. Three points of the net are contained in the unit cell: notice that every point in an edge
belongs to two adjacent cells.

— the letter h is assigned to a unit slab, whose neighbouring (above and below) unit
slabs are displaced sideways, in the same direction for the same amount:
for instance ABABA or CBCBCB

hhh hhhh
(h comes from hexagonal: this is the stacking sequence of simple hexagonal structures
such as hP2-Mg, hP4-ZnS wurtzite and hP12-MgZn, types).
— the letter c, on the other hand, is assigned to unit slabs whose neighbouring slabs
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have different sideways displacements:
for instance ABCABC or CABCAB
ceee ceee

(c comes from cubic: this is the stacking sequence found in cubic structures such as
cF4-Cu, cF8-ZnS sphalerite and cF24-Cu,Mg types).

To denote the stacking sequence of the different structures it is sufficient to give only
one identity period of the A, ¢ symbol series. For instance:
cF4-Cu, c (instead of ABC); cF8-ZnS sphalerite, ¢; hP4-ZnS wurtzite, h; hP4-La, hc;
hRS-Sm, hhc.

As can be seen from the previously reported examples, the identity period of the h,
¢ symbols is generally shorter than the A, B, C... letter sequence. The h, c...symbols may
be condensed, e.g., hechechcehe to (hee),(he),. (If the number of c letters in a Jagodzinski
symbol is divided by the total number of letters one obtains the percentage of “cubic
stacking” in the total structure).

Another, common, notation for describing stacking of close-packed 3° nets (T nets)
is that devised by ZHDANOV [1945] (a number notation equivalent to Jagodzinski’s
notation). A short description of the Zhdanov symbol is the following: a “+” is assigned
if the order between a layer and its previous partner follows the sequence corresponding
to any two subsequent layers in the face-centered cubic type structure, that is

A — B,B -» C, C —» A. Otherwise a “-” is assigned. For instance, the sequence
“4++ — — =" (shortened 33) corresponds to ABCACB.

Finally, as another simple example of description (and symbolic representation) of
structures in terms of layer stacking sequence we may now examine structures which can
be considered as generated by layer networks containing squares. A typical case will be
that of structures containing 4* nets of atoms (Square net: S net). The description of the
structures will be made in term of the separation of the different nets (along the direction
perpendicular to their plane) and of the origin and orientation of the unit cell).

Fig. 11 shows the different symbols (in this case numbers) suggested by PEARSON
[1972] which will be used to indicate origin and orientation of the nets. These numbers
will be reported as exponents of the symbols of the atoms forming the different nets. In
this case too the relative height of the layers will be indicated by a fractional index. A
few symbols of square net stacking sequences are the following:

Po,: the simple cubic cell of Po (containing 1 atom in the origin) corresponds to a
stacking sequence of type 1 square nets.

W;W; ,: the body-centered cubic structure of W (1 atom in 0,0,0 and 1 atom in 3.3.3)
corresponds to a sequence of type 1 and type 4 square nets at the heights 0 and 1,
respectively.

For more complex polygonal nets, their symbolic representation and use in the
description, for instance, of the Frank-Kasper phases, see FRANK and KASPER [1958] and

PEARSON [1972]. (Brief comments on this point will be reported in sec. 6.6.)

3.5.3. Assembly of polyhedra
A complemertary approach to the presentation and analysis of the intermetallic phase
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Fig. 11. A bidimensional square (4*) net is shown in a).

b) Different positions of the representative point in the unit square are presented and coded (net of points
aligned parallel to the cell edge).

¢) Codes used for different positions of a square net of points referred to a larger square cell with axes at 45°
to the net alignment (and edges equal to V2 times the repeat unit of the net).
In b) one point of the net is contained in the unit square, in c) there are two.

structures consists of their description with coordination polyhedra as building blocks.

A classification of types of intermetallic structures based on the coordination number,
configurations of coordination polyhedra and their method of combination has been
presented by KRIPYAKEVICH [1963].

According to Kripyakevich, a coordination polyhedron of an atom is the polyhedron,
the vertices of which are defined by the atoms surrounding this atom: a coordination
polyhedron should have a form as close as possible to a sphere, that is, it should be
convex everywhere and have the maximum number of triangular faces. At the vertices
of a coordination polyhedron of a given atom (in addition to atoms of different elements)
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there can also be atoms of the same kind. A considerable variety of coordination
polyhedra exists. In some cases, plane coordination polygons have to be considered. The
number of vertices may vary from, say, 3 to 24. Generally, the structure consists of
atoms with different coordination numbers; according to Kripyakevich, structures are
most conveniently classified considering the type of coordination polyhedron of the
atoms with the lowest coordination number. (For a general approach to the classification
of atomic environment types and their description and coding in terms of coordination
polyhedra see also sec. 7.2.7.).

An important contribution to the structure analysis of intermetallic phases in terms of
the coordination polyhedra has been carried out by FRANK and Kasper [1958]. They
described several structure types as the result of the interpenetration of a group of
polyhedra, which give rise to a distorted tetrahedral close-packing of the atoms. (The
Frank—Kasper structures will be presented in sec. 6.6).

In particular, SAMSON [1967, 1969] developed the analysis of the structural principles
of intermetallic phases having giant unit cells. These structures have been described as
arrangements of fused polyhedra rather than the full interpenetrating polyhedra (see a
short description in sec. 6.6.5.).

The principles of describing structures in terms of polyhedron-packing has been
considered by GIRGIS and VILLARS [1985]. To this end they consider, in a given
structure, the coordination polyhedra of all the atomic positions; structures are then
described by packing the least number of polyhedra types. All the atoms in the unit cell
are included in the structure-building polyhedra. The polyhedra considered should not
penetrate each other.

According to GIRGIS and VILLARS [1985] structures are then classified mainly on the
basis of the following criteria:

— Number of polyhedra types employed in the description of the structure,

— Characteristics of the polyhedra (number of vertices, symmetry),

— Types of polyhedra packing (either three-dimensional distribution of discrete polyhedra
sharing corners, edges or faces, or layer-like distribution of polyhedra).

As examples of structures described by packing of one polyhedron type we may mention:

cP4—AuCu, type, three-dimensional arrangement of cubooctahedra (coordination number,
CN, 12);

tP30-o(Cr,Fe) type, layer-like arrangement of icosahedra (CN 12).

For a general approach to the problem of stricture descriptions in term of polyhedron
packing a paper by HAWTHORNE [1983] should also be consulted. The following
hypothesis is proposed: crystal structures may be ordered or classified according to the
polymerization of those coordination polyhedra (not necessarily of the same type) with
the higher bond valences. The linkage of polyhedra to form “clusters” is then considered
from a graph-thzoretic point of view. Different kinds of isomers are described and their
enumeration considered. According to Hawthorne, moreover, it has to be pointed out that
many classificarions of complex structures recognize families of structures based on
different arrangements of a fundamental building block or module (see the sec. 3.5.4. and
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4.5. on recombination structures). Ifthis building module is a tightly bound unit within the
structure it could be considered, for instance, as the analogue of a molecule in an organic
structure. Such modules can be considered the basis of structural hierarchies that include,
for instance, simple and complex oxides and complex alloy structures. These modules
may be considered as formed by polymerization of those coordination polyhedra that are
most strongly bonded and may be useful for a classification and systematic description
of crystal structures.

As a conclusion to this section we may mention also the “environment polyhedra”,
defined and coded by DAAMS et al. [1992]. A short decsription of this topic will be
presented in sec. 7.2.7.

3.5.4. Modular aspect of crystal structure

A very general, mainly geometric, approach to the description and classification of
the different inorganic structures may be based on a systematic “construction of complex
structural types” by means of a few operations applied to some building units. As has been
suggested by ANDERSSON and HYDE [1982, 1989] a formal description and classification
of the various crystal structures could be obtained in terms of a classification of the
building units and of the construction mechanism. Building units may correspond to
packets of points (atoms) (blocks, clusters, bounded in three dimensions) or to groups of
lines (rods, columns bounded in two dimensions, infinite in the third) or to groups of
planes (slabs, sheets, layers, lamellae bounded in only one dimension, infinite in the
other two). Structures may then be constructed from such portions by (discontinuous)
symmetry operations (translation, reflection, or their combinations) repeated in a parallel
way or by similar symmetry operations repeated in a cyclic way (involving rotation) (see,
for instance, fig. 36).

Emphasis to similar approach has been given by ZvyaGIN [1993]. He pointed out that
many crystal structures can be represented as a composite of certain standard “construc-
tion modules” and various combinations, distributions and arrangements of them. The
simplest example of a modular structures is the densest packing of identical atoms (the
atomic planes represent the construction modules forming various structures owing to a
variation of the two possible placements of the successive plane relative to the preceding
one).

A classification of the different structures may be based on:

— module types (sheets, rods, blocks),

— dimension of the modules,

— variety of module type (single or mixed-module structures),

— relative number of module types,

— arrangement of adjacent modules (variations in these arrangements, periodicity/
aperiodicity of successive variations, etc.).

Strictly related to this kind of description may be the concepts of “Recombination
Structures” and of “Intergrowth Structure Series” which will be presented in sec. 4.5.
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3.5.5. An exercise on the use of alternative structural notations (AuCu, type as an

example)

In the following, data concerning a few selected structures, will be presented. In this
section, by using a simple structural type (cP4—~AuCu,, 333 [Aug,¢][Cuggl;,,4, OF, in more
detail, 333[Aug,60[Cugy/spli2caa) @ Presentation will be given on the different ways of
describing the structure.

AuCu, is primitive, cubic. The space group is Pm3m (N. 221 in the International
Tables for Crystallography, HAHN [1989]). In the unit cell there are 4 atoms in the
following positions:

1 Au in a) 0,0,0;

3Cuinc)011; 1,05 110,

Several phases are known which have this structure; in the VILLARS and CALVERT
compilation [1991] there are around 450 listed: 1.7 % of all the reported phases. This
structural type is the 8™ in the frequency rank order (see sec. 7.1.). A short selection is
presented in the following list:

~HfPt, a=398.1 pm Pt,Al a=387.6 pm.
Laln, a=473.21 pm Ti,Hg a=416.54 pm
La;In a=509.0 pm TiZn, a=393.22 pm
Mn,Pt a=383.3 pm UPb, a=479.3 pm
MnZn, a=386 pm YAL a=432.3 pm
Ni;Al a=357.0 pm Y;Al a=481.8 pm

(Note that, in this structure type, in some cases, according to the phase stoichiometry, the
same element may occupy either the a) or the ¢c) Wyckoff position).

In the reported list the unit cell edges have been given. In the following, while
discussing the characteristics of this structural type, we will consider the data referring
to the prototype itself (a=374.84 pm).

The structure is shown in fig. 12, where the tridimensional sequence of the atoms is
suggested by presenting a small group (eight) of contiguous cells. The unit cell itself is
shown in figs. 13a and 13b, by using two different drawing styles.

The subsequent figures 14a, 14b, 14c, 14d correspond to an analysis of the structure
carried out in order to show the different local atomic arrangements (coordinations
around the atoms in the two crystal sites).

In the analysis of a structure, however, it is also necessary to take into consideration
the values of the interatomic distances. It may be useful to consider both absolute and so
called “reduced” values of the interatomic distances. In the case of the AuCu, phase, the
minimum interatomic distance corresponds to the Au-Cu distance (Au in 0, 0, 0 and Cu
in 0,1, 1) which is the same as the Cu~Cu distance between Cu in 0, §, T and Cu in 3, 0,
L. This distance is given by ay2/2.

For the AuCu, phase a=374.8 pm and, therefore, d,;,=265.0 pm. This value could
be compared, for instance, to the value 272 pm, sum of the radii of Cu and Au (as
defined for a cocrdination number of 12) or to the value 256 pm of the Cu—Cu distance
in the metal (Cu atom “diameter”). Reduced interatomic distances (d,=d/d,;,) may be
defined as the ratios of the actual distance values to the minimum value.
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Fig. 12. cP4-AuCu; type structure. A group of eight cells is shown. The light spheres represent Au atoms. In
order to get a better view of the structure inside, the atomic diameters are not to scale.

A first set of interatomic distances (and coordination) which can be considered in the AuCu,
phase is that corresponding to the Au coordination around Au atoms (see fig. 14a):

Considering as the reference atom, the atom Au in 0,0,0, the next neighbours Au
atoms are the six Au shown in fig. 14a, corresponding to the same Wyckoff position and
having, in comparison with the reference atom, the coordinates 0,0,1; 0,0,1; 0,1,0; 0,1,0;
1,0,0; 1,0,0; all at a distance d=a= 374.8 pm, corresponding to a reduced distance
d=d/d ;= 1.414.

In the same group of Au—Au interatomic distances a subsequent set is represented by
distances such as those between Auyoy and Auyj, (or Auyig, Ay, 5, Auyy, , etc.). This
set corresponds to a group of 12 atoms (all at an absolute distance of aﬂ“‘ =530.1 pm,
that is, at a reduced distance d, =d/d_;, =2.000).

A compact representation of these data is given by means of the bar-graph in fig. 15a).

A second set of interatomic distances (and coordination) corresponds to the Cu
coordination around Au atoms:

Considering as the reference atom, the atom Au in 0,0,0, the next neighbours Cu
atoms are the 12 Cu reported in fig. 4-14b, in the coordinates: 0,3.}; 0,4.%; 0.1%; 04.%;
104405104, 10 110,170,210, 110; all at a distance d=ay2/2= 265.1 pm,
corresponding to a reduced distance d/d_;, = 1.000.

Considering also the subsequent sets of Au—Cu distances, 24 atoms at d=459.1 pm
d,=d/d, = /g?a— =1.732), 24 Cu at d=592.7 pm (d,=2.236), etc. we obtain the histo-
gram reported in fig. 15b.

A third group of interatomic distances (and coordination) which has to be considered is
that corresponding to the Cu coordination around Cu atoms (see fig. 14c):
Considering as the reference atom, the atom Cu in 11,0, the next neighbours Cu
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Fig. 13. The cP4-AuCu, unit cell is presented in different drawing styles. In a) an (approximate) indication of
the packing and space filling is given. In b) the positions of the different atoms are reported in a perspective
view of the unit cell and in c), in some typical sections of the same at different heights: notice the square net
arrangement. The frst (and the third) section corresponds to the height 0 or 1 * ¢. The second to the height
3 * c. For the first section the position codes of the two atoms, in the square net, are 1 and 4; for the second the
code is 5. (Compare with fig. 11.)

atoms are the 8 Cu atoms in 1,0,5; 0L 1t L1 1ol oL 111 111 all at a
distance d= ay2/2= 265.1 pm, corresponding to a reduced distance d/d,;,= 1.000.

The subsequent sets of Cu~Cu distances correspond to 6 Cu atoms (in coordinates
such as 3,5,1; 1.5,1; 3,1,0; etc.) at a distance d=374.8 pm (d,=1.414), 16 Cu atoms at
d=459.1 pm (d,=1.732), 12 Cu atoms at d=530.1 pm (d,=2.000), 16 Cu atoms at 592.7
pm (d,=2.236), etc. The corresponding histogram is presented in fig. 15¢).

References: p. 363.
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c) d)

Fig. 14. cP4-AuCuy, type structure. Different fragments of the structure (of a few unit cells) are presented in
order to show the various typical coordinations. (Cu atoms are represented by small dotted spheres)
a) Au - 6 Au (octahedral); b) Au — 12 Cu (cuboctahedral);
¢) Cu - 8 Cu (tetragonal prismatic); d) Cu ~ 4 Au (square).

The 8 Cu+4 Au at the same distance from Cu form a heterogeneous cuboctahedron. (Compare also with
fig. 25.)

The fourth (and last) type of interatomic distances (and coordination) characteristic of the
AuCu, structure is given by Au coordination around Cu atoms (see fig. 14d).

Considering as the reference atom one of the three equivalent atoms Cu in c), for
instance, the atom in 0,},, the next neighbours Au atoms are 4 Au in 0,0,0; 0,0,1; 0,1,0;
0,1,1, respectively; all at a distance d=af2_/ 2=265.1 pm, corresponding to a reduced
distance d/d,;, = 1.000.

Subsequent sets of Cu-Au distances correspond to a group of 8 Au atoms (in
coordinates such as 1,0,0; 1,0,1; 1,1,0; etc.) at a distance d=459.1 pm (reduced distance
d/d,;,=1.732), to a group of 8 Au (in coordinates such as 0,0,1; 0,1,1; 0,0,2; etc.), at a
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Fig. 15. cP4-AuCu, type structure. Coordinations and distances. For each type of coordination the numbers (N)
of near-neighbours atoms are plotted as a function of their distances from the central atom. (Relative values of
the distances, d/d_;,, have been used. In these histograms and in the subsequent ones d,,, is the shortest
interatomic distance: observed in the structure. For details see the comments reported in sec. 3.5.5.)

distance d=1592.7 pm, d/d_;, =2.236, etc. The corresponding coordination histogram is
presented in fig. 15d.

References: p. 363.
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Lists of coordinating atoms (with distances from the references atom), coordination
polyhedra, and next-neighbor histograms are presented systematically by DAAMS et al.
[1991]. They, however, use a more compact representation giving for each atom in a
given site the histogram corresponding to the total coordination. In our case, for Au the
sum of the two histograms reported in figs. 15a and b and for Cu the sum of the
histograms of figs. 15¢ and d. (Compare with fig. 25). For the different structures,
moreover, the distances are related by Daams et al. to the d,, observed in each
coordination group instead of to the d, of the overall structure as adopted here.

As a conclusion to the description of the different coordinations we may observe that
those corresponding to the first distance sets are summarized in the symbol
333[A¢/6l[Bg/sline- (333[Aug,6l[Cug5li,,, for the prototype). In terms of polyhedra
packing, therefore, this structure may be described as a tridimensional arrangement of
cubooctahedra (see sec. 3.5.3.).

Fig. 16, on the other hand, shows how for the same structure, alternative descriptions
(layer stacking sequence descriptions) may be obtained and, according to Pearson,
symbolized. In this figure the structure (viewed along the cube diagonal) is presented as
a stacking sequence of triangular and kagomé nets. It corresponds to the symbol
Auj Cul Auj, Cul, Auy, Cub, (In the symbol we have the same number of triangular
(A,B,C) Au atom nets and of kagomé («,8,y ) Cu atom nets. These two net types are
characterized by the presence of 1 and 3 points in the unit cell (see figs. 8 and 10). This,
of course, corresponds to the total 1:3 stoichiometric ratio). The same structure, viewed
along the unit cell edge direction, corresponds to a square net stacking sequence (see fig.
13). The stacking symbol is Aué Cu; Cufj2 (These different symbols may be useful when
comparing this structure with other structural types: for instance, the cF4—Cu type,
sec. 6.2.1., tP2-AuCu(l) type, sec. 6.2.4., etc.).

With reference to a description in terms of lattice complex combination, we may

Fig. 16. cP4-AuCu, type structure. The unit cell is viewed along its diagonal. (Au atoms white, Cu black). The
triangular arrangements of the atoms around the cube diagonal are evident.
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finally note that the AuCu, type structure corresponds to a combination of P and J
complexes (AuCu,: P+17; see sec. 3.1.). According to HELLNER [1979] this structure may
be considered as pertaining to a F-family as a consequence of a particular splitting of the
points of the F complex.

A few other comments on the AuCu, type structure and some remarks on the rela-
tionship with other structural types will be reported in the following sec. 6.2.3.).

4. Relationships between structures and structure “families”

As clearly pointed out, for instance, by BARNIGHAUSEN [1980] (see sec. 4.6.), one of
the main objectives of crystal chemistry is to order the profusion of structure types and
to show the general principles involved. To this end relations between cognate structures
evidently play an important role.

The structures corresponding to different types may often be interrelated on the basis
of some transformation schemes. These schemes can be used as criteria for classifying
structure types and showing structural relationships.

A few selected groups of interrelated structural types will be presented in the
following sections.

4.1. Degenerate and derivative structures, superstructures (defect, filled-up,
derivative structures)

An importarnt and general scheme of structure transformation and interrelation is that
described, for instance, by PEARSON [1972], by means of the concept of derivative
structures and degenerate structures.

A derivative structure can be considered being obtained from a reference structure by
ordered atomic substitution, subtraction or addition processes or by unit cell distortions
(or both). The opposite kinds of transformation correspond to the so-called degeneration
processes. A derivative structure has fewer symmetry operations than the reference
structure (a degenerate one has more). A derivative structure has either a larger cell or
a lower symmetry (or both) than the reference structure.

It is possible, for instance, that a set of equipoints of a certain structure (considered
as the reference structure) has to be subdivided into two (or more) subgroups in order to
obtain the description of another (“derivative™) structure. The structure of the Cu type
(cF4-type), for instance, corresponds to 4 Cu atoms in the unit cell, placed in 0,0,0; 1.}3,0;
101 011, whereas in the cP4-AuCu, type structure the same atomic sites are subdi-
vided into two groups with an ordered distribution of the two atomic species (1 Au atom
in 0,0,0, and 3 Cu atoms in 1,1,0; 1,0,5; 03,1 ). The AuCu, type structure can, therefore,
be considered as a derivative structure of the Cu type. On the other hand, if we consider
the AuCu, type as the reference structure, we may describe the Cu type as a degenerate
structure.

The aforementioned subdivision of a set of equipoints in more groups can be
described in this case in terms of similar cubic cells (both of the original and of the
derivative structures). Notice, however, that in the case of Cu the conventional cubic cell

References: p. 363.
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is face-centered. It is not primitive: it corresponds to 4 (thombohedral) primitive cells,
whereas, in the case of AuCu, the primitive unit cell is larger and it is identical to the
cube. Because of the observation that these ordering processes may lead to a cell multiple
of the original one, they are also referred to as forming superstructures (also called
superlattices) (BARRETT and MASSALSKI [1966]) of the original structure. An example
where, due to ordering, we observe, perhaps in a more evident immediate way, the
increase of the unit cell size (formation of a multiple cell) may be the structure of
MnCu,Al type (see fig. 24 and sec. 6.1.3) which can be considered a derivative structure
(superstructure) of the cP2—CsCl type structure (which in turn is a superstructure of the
W-type structure, corresponding to a, non-primitive cubic, cI2 cell).

Notice that the ordering may not lead to a multiple cell, if the symmetry of the
ordered structure is reduced, relative to the original one. Nevertheless the name super-
structure is generally used especially when we have the formation of a disordered solid
solution regardless of whether there is multiplication of the edges of the cell.

A contribution to the study of order-disorder interrelations between structures and to
their classification into two groups on the basis of the presence/absence of a difference in
the translational symmetry (unit cell edge variations) has been given by WONDRATSCHEK
and JEITSCHKO [1976] and by ALBERING et al. [1994]. (The detectability of the two types
of ordering by means of X-ray diffraction studies has been also discussed).

ALBERING et al. [1994] especially studied the hP3-AIB, type structure and its
derivatives. A few of these are presented in fig. 17. A detailed description is given in
sec. 6.5.6. Main features of several deformation and substitution derivatives of the AlB,-
type were discussed by GLADYSHEVSKII ef al. [1992].

A more complex case of structure interrelation which can be presented in terms of
(even if “formal”) substitution is that which can be exemplified by considering structures
such as those of NaCl (see fig. 18 and a detailed description in sec. 6.4.1.) and FeS, or
CaC,. These structures may be compared: the cP12-FeS, type may be described as
having Fe atoms in the sodium ion positions and the centers of the discrete S, dumb-bell
groups at the chlorine ion positions. The passage from a structure containing spherical
atoms to another one in which atomic groups substituted single atoms will generally
result in a symmetry reduction. A clear example may be given by the tI6~CaC, type
which can also be compared with the NaCl type: Ca is in the sodium positions and the
C, group in the chlorine positions. In this case, however, the long axes of the C-C
groups are all aligned in one direction so that the unit cell is tetragonal instead of cubic.
(See fig. 4 and a description of this structure and a comparison with the MoSi,-type in
sec. 3.2.). In a similar way, we may, for instance, consider the K,PtCl, structure
essentially the same as the CaF,—antitype: the K ions are in the F ion positions and the
centers of the PtCl, octahedral groups in the Ca ion positions.

Derived structures may also be formed with the ordered introduction of vacant sites.
As an example we may consider the hP3~Cd]I, type structure (see sec. 6.5.2) which can
be related to the hP4—NiAs type structure in which the set of equivalent points 0,0,0 and
0,0, is considered as being subdivided into two groups (each of 1 site) 0,0,0, (occupied
by 1 atomic species) and 0,0,} (vacant). We can, therefore, regard the hP3~Cdl, type
structure as a defect derivative form of the hP4-NiAs type.
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a) ® Al
oB

b) |

LA
I NP

Fig. 17a,b. AIB,—type and derivative structures.

a) Two sections of the hP3—AIB, unit cell are presented at the height z=0 (Al atoms) and z=} (B atoms),
respectively.

b) The corresponding hexagonal net of B atoms in AIB, is shown (a projection of the unit cell is super-
imposed. (Compare with fig. 9). The Al atoms (at the cell origin) are surrounded by 12 B, arranged in a
hexagonal prism, and the B atoms are in sixfold coordination with Al, in the center of an Al trigonal
prisnt.

Similar considerations may be extended to include (besides substitution and subtrac-
tion) ordered addition of atoms. In this case stuffed or filled-up derivative structures are
considered in which extra atoms have been added in an ordered way, on sites unoccupied
in the reference structure. An example is the hP6-Ni,In structure, which is a stuffed
derivative structure of the previously mentioned NiAs structure.

Another interesting example may be the fcc-derivative interstitial cP5 Fe,N phase. Tt
may be described as corresponding to the following atomic positions in the Pm3m (or
P43m) space group:

1 Fein a): 0,0,3; 1 N in b): 1,1,} and 3 Fe in ¢): 01}; 1,05, 1.10.

References: p. 363.
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Fig. 17¢, d. AlB,~type and derivative structures.

c¢) and d) Hexagonal nets observed in AlB, derivative structures. In ¢) the AuSi net of the ThAuSi type
structure and in d) the RhSi; net of the Er,RhSi, structure are shown. In c) and d) the Th and Er positions,
corresponding to those of Al in AlB,, are not shown. The projections of the unit cells are presented: notice
the larger cell of the Er,RhSi, structure.

This filled-up superstructure may therefore be described in terms of the occupation
by N of an interstice (centered in 3.3,3) of a Cu-type (or AuCu,-type) structure. The N
atom results octahedrally surrounded by 6 Fe atoms. This structure could also be
described as a deficient NaCl-type derivative structure (see sec. 6.4.1.): the Fe atoms are
in the same positions as the Na atoms in NaCl and one out of the four Cl positions is
occupied by the N atoms.

(For a description and a classification of the “holes”, octahedral and tetrahedral, in
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Fig. 18. NaCl-type structure (see sec. 6.4.1.). The positions in the unit cell of the two types of atoms are
indicated.

closed packed structures see sec. 6.2.2, see also Higg phases in sec. 3.4.).

As a footnote to these observations, we have also to mention that frequently structural
distortions (axial ratio and/or interaxial angle variations) accompany the formation of
derivative struc:ures (especially because of the ordered distribution of atoms of different
sizes or of vacant sites).

4.1.1. Ordering-disordering transformation

In a number of metal systems for a given range of compositions depending, for
instance, on the temperature, it is possible to observe alloys having both a certain
degenerate structure and a corresponding (more or less) ordered derivative structure. The
transformation from one structure to the other corresponds to a real process (ordering—
disordering transformation). A large number of solid solutions become ordered at low
temperature.

In the specific case, for instance, of the Au-Cu system an alloy with the AuCu,
composition at high temperature, has the (disordered) cF4—Cu type structure. The two
atomic species are equally distributed in the four atomic sites (which are therefore
equivalent: each one is occupied by Au with a 25% probability and by Cu with a 75%
probability). This random distribution may be also related to the possibility of gradually
changing the overall composition of the alloy maintaining the same structure and giving
the formation of solid solutions. For the Cu—Au alloys we have, at high temperature, a
continuous solid solution ranging from Cu to Au (both having the same cF4-Cu type
structure): in all the intermediate alloys we have the equivalence of all the atomic sites
whose occupation gradually changes from pure Cu to pure Au. By lowering the
temperature we have ordering processes corresponding to a change from a nearly random
distribution of atoms among the structure sites into more ordered arrangements where
certain sites are predominantly occupied by one kind of atom. In the specific case of the

References: p. 363.
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AuCu, composition we have the transformation from the cF4-Cu type into the described,
derivative type (cP4-AuCu; type) structure.

Typical examples of ordering processes are also the transformation from the 8 to 8’
phases in the Cu-Zn system (from cI2-W type to cP2—CsCl type) and the ordering of the
FeAl phase in the CsCl type structure (see sec. 6.1.2.). Notice that, ordering in these
metallic phases, may be an extremely complex sluggish process requiring slow cooling
and/or long annealing of the alloys. Alloy samples with different degrees of ordering can
be obtained by quenching at various cooling times. As a consequence the effects of
ordering on a number of properties have been studied. Alloys such as Cu,Au and Fe,Al
have been the subject of many of these studies.

The Au—Cu system, in particular, is one of the earliest systems for which order-
disorder type transformations were established. As a result, a very large volume of work
has been carried out on the ordered AuCu and AuCu, phases. The description of the
gold—copper system, reported by OKAMOTO and MASSALSKI [1987], may be considered
as a reference to the review and to the assessment, not only for the specific system, but
also for the investigation methods and discussion criteria of general interest. The
following topics have been considered:

Au—Cu phase diagram, Au,Cu, AuCu, AuCu, ordered phases (phase boundaries

determination by X-ray studies, electrical resistometry, electron microscopy), crystal

structure determination (by X-ray and electron diffraction methods), nature of
ordering transformation in AuCu, short range order, anomalous behaviour in AuCu,
at high temperatures (specific heat, thermal expansion measurements, etc.). Kinetic
studies carried out by measuring gradual shift and intensity variation of the X-ray
lines from a disordered to an ordered (superlattice) structure on samples after
different quenching and annealing are reported.
For a review on site preference of substitutional additions to CsCl type intermetallic
compounds see KAO et al.[1994]. In this work dilute additions to NiAl, FeAl and CeAl
are especially discussed. As another example we may mention that the addition of a third
element to ordered Ni;Al (cP4-AuCu, type) occurs in different ways (OCHIAI et al.
[1984]). For instance Sb, Si, Ge and Ga atoms replace preferably Al, while Cu and Co
replace Ni.

As a conclusion to this section, we may mention that a systematic description of
ordering processes in alloys and of the superstructures which can be generated has been
presented, for instance, by KHACHATURYAN [1983] in the framework of a theoretical
treatment of structural transformation in solids. Two groups of superstructures have been
specially considered: substitutional and interstitial.

a) Examples of substitutional superstructures.
t110-MoNi,;: a=572.0, c=356.4 pm. Space group I4/m, N.87.
2 Mo in a): 0,0,0; 3.3.3.
8 Ni in h): x,,0; —x,—v,0; —v,x,0; y,— x,0; J +x.2 +y,};
1 X5—ya d-yd+ x5 F+yd— x4, with x=0.2, y=04.
This superstructure is based on a fc cubic pseudocell. The atoms form close packed
layers stacked in a 15 layer close packed repeat sequence.
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ol6-MoPt,: a=276.5, b=829.6, c=393.8 pm. Space group Immm, N.71.

2 Mo in a): 0,0,0; 1,3,

4 Pt in g): 0,5,0; 0,~,0; 1,5 +y.%; 1.4 -y}, with y=0.353.

It is a close packed superstructure based on a fc cubic pseudocell. Distorted close packed
triangular layers are stacked in close packed ABC sequence.

t8-TiAl;: a=383.6, c=857.9 pm, c/a=2.236. Space group 14/mmm, N.139.

2 Ti in a): 0,0,0; 1 1.5

2 Alin b) 0,0,5: 1,1,0.

4 Alin d): 0.} 1,04 1,02, 012,

The superstructure may be described in terms of two, distorted, AuCu, type subcells
stacked one above the other.

t#16-ZrAl;: a=400.5, c=1728.5 pm, c/a=4.316. Space group 14/mmm, N.139.

4 Alin ¢): 0,5,0; 1,0,0; 1,0,3; 02 1.

4 Alin d): 0,1,%; 3,0.5; 2,0,2, 0,2,4

4 Al in e): 0,0,z; 0,0,—2z; 2,2,2+z, 2,2,2 —z; with z=0.361.

4 Zr in e): 0,0,2; 0,0,—2; ;.55 +2; 1 41—z, with z=0.122.

This structure may be considered another, more complex, superstructure based on close
packing. The height of the superstructure cell in the ¢ direction corresponds to four cubic
pseudocells. Fig. 19 gives a comprehensive presentation of some structural features of the
MoNi,, MoPt,, TiAl, and ZrAl, structural types.

Fe Al cF16-Li;Bi type structure: This structure may conveniently be described as derived
from bece solid solution (see in sec. 6.1. the interrelated types cI2-W, the previously
mentioned types cP2—-CsCl, cF16-MnCu,Al and cF16-Li;Bi; see also fig. 24). The Li,;Bi-
type structure, L.owever, may be also considered as composed of four interpenetrating fc
cubic arrays of atoms with Bi (or Al) at the cell corners and face centers and Li (or Fe)
in the centers of the interstices.

tP2-AuCu(l), cP4-AuCu, and tP4-Ti,Cu: These structures described in the following
sections, 6.2. and in fig. 20, can be considered fcc based substitutional ordered super-
structures.

hR96—CuPy(I): The equilibrium phase diagram of the Cu-Pt system shows the fcc
continuous solid solution stable at high temperature and a number of ordered super-
structure phases (with composition ranges) stable at lower temperatures. CuPt(I) is a
complex, slightly distorted superstructure built up by 8 face centered cubic pseudocells.
In the same Cu-Pt system other superstructures have been described for compositions
around Cu,Pt; (thombohedral CuPt(II) type), CuPt; and CuPt,.

AP8-Ni,Sn: This structure may be considered an example of a superstructure based on
the hexagonal close packed structure. In the same way as by ordering the Cu-type
structure the AuCu, type may be obtained, the Ni;Sn-type may be derived from the Mg
type. Details of the structure are given in sec. 6.2.7.

b) Examples of interstitial superstructures
tP3-FeNiN: a=283.0, c=371.3 pm, c/a=1.312. Space group P4/mmm, N.123.
1 Fe in a): 0,0,0; 1 N in ¢): $,5,0 and 1 Ni in d): },3.3.

References: p. 363.
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Fig. 19. Examples of face centered based, substitutional superstructures. The unit cells of a few selected
superstructures are shown by means of their projection on a convenient plane and compared with a similar
projection of the cP4-AuCu; type cell (on the face a,a): t110-MoNi, (on the face a,a), ol16-MoPt, (a,b),
tI8-TiAl, (a,c) tI16-ZrAl; (a,c). (The values of the coordinate along the third axis are indicated).

This structure can be considered a superstructure of the AuCu(l) type, with 1 N atom
inserted in an octahedral interstitice. This structure, as the previously described cP5—Fe,N
type, can be considered an interstitial ordered phase. The oP5-Ta,0 phase and the
tI8-Fe N phase are examples of bee-based interstitial ordered phases.

oP5-Ta,0: a=719.4, b=326.6, c=320.4 pm. Space group Pmmm, N.47.

1 Ta in a): 0,0,0; 1 Ta in b): 4,0,0; 1 O in h): 4,43; 2 Ta in 1) x4% — x50 (with

x=0.225).
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Fig. 20. AuCu type structures. The two types of atoms are shown.
a) AuCu(l) type structure. Both the tP2 cell (a and c edges) and a tP4 pseudocell (a” and ¢ edges) are shown.
(The tetragonal pseudocell is shown in order also to make easier the comparison with the cubic, Cu-type,

structure).
b) Sections of the large tP4—pseudo-cell. (Compare with fig. 13.)

¢) ol40-AuCu(ll) type structure.

The cell can be described as formed by two superimposed slightly distorted bee subcells
of the metal atoms. The O atom is surrounded by a (slightly compressed) Ta atom

octahedron.

References: p. 363.
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4,2. Antiphase domain structures

A special case of superstructures may now be considered. A typical example can be
observed in the ol40-AuCu(Il) type structure (fig. 20 and sec. 6.2.4.). We first have to
mention that ordering of the Au—Cu face-centered cubic (cF4—Cu type) solid solution,
having a 50-50 atomic composition, distributes Cu and Au atoms alternatively on two
layers, resulting in a tetragonal structure, tP2—-AuCu(I)) with the c axis perpendicular to
the layers (see fig. 20a). The more complex structure, oP40-AuCu(ll) type, is obtained
by a long-period ordering which results in an orthorhombic cell containing 10 (slightly
distorted) AuCu(I) pseudocells (fig. 20b). This ordering corresponds to a periodic shift
(every 5 cells along the orthorhombic & axis) of the structure by 4 (a’+c) in the a’,c
plane. This out-of step shift corresponds to a “so-called” antiphase boundary. An
antiphase domain may correspondingly be defined; in this case it contains 5 AuCu(l)
type pseudocells. Several examples of one-dimensional long period structures found in
1:1 and 1:3 alloys and of two-dimensional long period structures (characterized by two
different domain periods and two steps-shifts) found in 1:3 alloys have been presented
by PEARSON [1972]; the role of the valence-electron concentration in defining the
superstructure period has also been discussed. A general presentation of several antiphase
boundaries (not only planar, but also cylindrical) and related structure groups may be
found in the book of HYDE and ANDERSSON [1989].

It may be useful to mention here that antiphase domain boundaries play an important
role in phase changes and microstructural stability of ordered alloys and intermetallics as
well as affecting mechanical behaviour. The origin of antiphase domain boundaries has
been examined and discussed by MORRIS [1992], emphasis has been given to the
differences between a sharp boundary, as produced by crystal shear, and a relaxed fault
structure. The kinetics of relaxation of shear produced fault have examined and it was
shown by MoRRIS [1992] that fast relaxation may affect the movement of dislocation by
creating locking stresses as well as affecting cross slip behaviour significantly affecting
mechanical properties. An important point in this study, as far as the origin of the
antiphase domain boundaries are concemed, is the principle that a disordered crystal
exists initially which subsequently becomes ordered. According to CAHN [1987], the
observation of grown-in domain network is proof that the material existed, even if
momentarily, in a disordered crystalline state before becoming ordered. In agreement
with this, domain networks are commonly observed in weakly ordered alloys, for
example AuCu,, FeNi, and sometimes FeAl, but not in strongly ordered intermetallics
such as Ni,Al and TiAl. A review on the interactions of ordering and recrystallization
has been published by CAHN [1990]. Aspects of recovery and recrystallization in the L1,
(Coy15V2);V ordered alloy have been reported by GIALANELLA and CAHN [1993].

4.3. Homeotect structure types (polytypic structures)

According to PARTHE [1964], two different structure types of the same formula XY,
are called homeotect structure types, if every X atom has the same number of nearest X
neighbours and the same number of nearest Y neighbours, and, conversely, if every Y
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atom has the same number of nearest X and Y neighbour atoms. It is possible for several
structure types to show this feature.

All the different structure types of equal composition, which have (for corresponding
atoms) the same kind of surroundings, form a set of homeotect structure types (the term
polytypic structures is also used to denote the relationships observed with homeotect
structures).

According to PARTHE [1964] all structure types which belong to a homeotect set can
be described as different stacking variants of identical structural unit slabs (“minimal
sandwiches™). All structure types of a set are constructed by stacking identical unit slabs
one on top of another. The various types differ only in the relative horizontal displace-
ment of these units. (The vertical unit cell edges of the different types are integer
multiples of a common unit which is the height of the unit slab characteristic for the
homeotect structure type set). All structure types which belong to a homeotect set have
the same space-filling curve. (See sec. 7.2.4.)

A few important examples of groups of homeotect structure types will be described
in the following sections. A short index of the same is the following list (in which the
Jagodzinski-Wyckoff notation of the stacking pattern has been inserted, according to the
indications given in sec. 3.5.2.).

— Close-packed element structure types (see sec. 6.2.): Mg-type (h), Cu-type (c), La-type
(hc), Sm-type (hhc).

— Equiatomic retrahedral structure types (Carborundum Structure types) (see sec. 6.3.):
Waurtzite-type (h), Sphalerite-type (c), SiC polytypes (hc, hce, hcee, heche,
..(hee)s(heec)(hee)she ... (hehee);(hee),, .. (hee),she... ).

— Laves phases (see sec. 6.6.4.): hP12 MgZn,-type (h), cF24 Cu,Mg-type (c), hP24
Ni,Mg-type (hc), Laves polytypes (hhc, hhcce, etc.).

Other important sets of homeotect structure types are those related to disilicide structure
types (MoSi,, CrSi,, etc.), cadmium halide structure types, etc. (See PARTHE [1964],
HYDE and ANCERSSON [1989]), or presented by certain groups of compounds such as
rare earth trialuminides (vAN VUCHT and BuscHOw [1965]).

From a gereral point of view, polytypism may be considered a special case of
polymorphism: the two-dimensional translations within the layers are (essentially)
preserved whereas the lattice spacings normal to the layers vary between polytypes and
are indicative of the stacking period (GUINIER ef al. [1984]). As evidenced by ZVYAGIN
[1987], we may distinguish various forms of polytypic structures, including (besides
close-packing of like and unlike atoms) polytypes of tetrahedral, octahedral and prismatic
layers packed according to the laws of closest packings. Complex silicate structures, for
instance, may bz considered which are characterized by much variety in the orientations
and displacements of the layers and also structures in which two-dimensional layers are
conjoined with one-dimensional band and island groups.

The aforementioned papers (GUINIER et al. [1984], ZvYAGIN [1987]) contain also
suggestions and. recommendations on the nomenclature and symbolism for use in the
general case of either simple or complex polytypic structures.

Another method for discussing polytypic structures has been suggested by Bok1l and

References: p. 363.
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LAPTEV {1994]. The polytypic structures, described by means of special unit cell
diagrams and crystal-chemical formulae, are distinguished by the number and type of
Wyckoff positions.

4.4. Chimney-ladder structures (structure commensurability, structure
modulation)

In the cases of ordered alloys, described in the foregoing sections, long period
structures were considered in which the near-neighbour coordination of the atoms
remains essentially unchanged between one structural modification and another.

More complex cases can, however, be considered. As an introduction to this point,
we may remember that it is often convenient to describe structures as consisting, for
instance, of two interpenetrating substructures (two different atom sets).

As an example, an interesting group of phases T, X, may be considered which are
tetragonal and are formed between transition metals T and p-block elements X (of the Ga
and Si groups). In these phases, along the ¢ axis, the unit cell (superstructure cell,
supercell) contains n pseudocells of T atoms and m interpenetrating pseudocells of X
atoms. These phases (Nowotny phases or “chimney-ladder” structures) contain rows of
atoms X (the “ladder”), with variable interatomic spacing from one compound to another,
which are inserted into channels (“chimneys”) in the T array. The T metals in all of the
superstructures form a 8Sn-like array with the number of T metal atoms in the formula
of the compound corresponding to the number of BSn-like pseudocells stacked in the ¢
direction of the supercell (see sec. 6.3.1.). The arrangement of the atoms in these phases
can be compared to that found in the structure of TiSi,.

The following is a list of some chimney-ladder phases (phases containing as many as
600 atoms in the unit cell have been described):

tP20 Ru,Sn; (a=617.2 pm, c=991.5 pm, ¢/ (2ay2 )=0.568)

The Ru atoms form a BSn-like array with two pseudocells along the ¢ direction of the
supercell).

tP32 Ir,Ga, (a=582.3 pm, c=1420 pm, ¢/(3ay/2 )=0.575)

tP36 Ir,Ge, (a=561.5 pm, c=1831 pm, c¢/(4ay/2 )=0.576)

tP192-V ,Ge,, (a=591 pm, c=8365 pm, c¢/(17ay/2 )=0.589)
(In V,,Ge,,, for instance, there are 17 8Sn like pseudocells of V atoms and 31 Ge
pseudocells stacked along the ¢ axis).

The atomic arrangements in a few chimney-ladder phases are shown in fig. 21 and compared
with that found in TiSi,. (This structure corresponds to the orthorhombic cell 0F24-TiSi,-
type with ay=2826.7 pm, b,=480.0 pm, c,=855.1 pm. It can be approximately described
in terms of a smaller body-centered tetragonal pseudocell, shown in fig. 21a, having a’=
ay/ V2 =cy/ 2 ; ¢’ =b, and ¢’/a,~0.58 (close to the “ideal” value 1//3 =0.577...).

The electron concentration appears to play some role in control of this family of
structures as noted by Nowotny (SCHWOMMA et al. [1964a, 1964b], FLIEHER et al. [1968a,
1968b]), JEITSCHKO and PARTHE [1967] and PARTHE [1969] and reported by PEARSON
[1972].
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a)

Fig. 21. Nowotny phases, chimney-ladder structures (JEITSCHKO and PARTHE [1967]).
a) The reference 0F24-TiSi, type structure presented in terms of a tetragonal pseudo-cell (12 atoms in the

pseudo-cell).
b) tP120-Mn,,Si,y; ¢) tP20~Ru,Sn, and d) d156-Rh,,Ge,, phases.
(Notice that the metal atoms, black circles, form sequences of 8-Sn like cells; compare with fig. 32 below).

References: p. 363.
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In the book of HYDE and ANDERSSON [1989], the Nowotny phases are presented as
a special case of a group of “one-dimensional, columnar misfit structures” which also
include compounds such as Ba (Fe,S,), and other complex sulphides. Layer misfit
structures, such as those of some oxide-fluorides, arseno-sulphides, etc., are also
presented and classified with reference to a concept of structure commensurability based
on the recognition that (along one or more axes) the ratios between the different repeat
units of various interpenetrating substructures can (or cannot) be represented as ratios
between integer numbers.

The coexistence of different kinds of periodicity has also to be considered in the
description of a quite different type of structure which is becoming increasingly common.
In this, some atomic parameters (and/or the partial occupancy of some sites) vary in a
periodic way through the structure. The periodicity may or may not be commensurate
with the unit cell of the basic structure. (The ratio between the repetition length of this
parameter and the lattice constant may or may not correspond to the ratio between two
integer numbers). Structures having these characteristics are often termed modulated
structures (HYDE and ANDERSSON [1989]). Several non-stoichiometric compounds present
such modulations (FeS,, Yb,S,, etc.). Various modulated structures have also been
considered, for instance, for the NiAs-type structure (see sec. 6.5.1.).

An interesting case of magnetic modulated structure is that reported for EuCo,P,
(REEHUIS et al. [1992]). The positional structure of the atoms (of the atomic nuclei,
nuclear structure) corresponds to the tI10-ThCr,Si, type (see sec. 6.5.9). A magnetic
structure has been also determined, which is related to the ordering of the magnetic
moments of the Eu atoms. These moments are oriented perpendicular to the ¢ axis and
form an incommensurate spiral with the turning axis parallel to the ¢ axis. The magnetic
moments lie in the basal planes and they order parallel within these planes. Along the
¢ axis, from one basal plane to the next one, there is a periodic rotation of the moments,
The ratio, along the ¢ axis, of the characteristic lengths of the magnetic and nuclear
structures, is slightly dependent on temperature. At 64 K it is close to 5/6 (that is: there
are 5 translation lenghts of the magnetic cell for 6 translation lengths of the nuclear
structures). At 15 K the ratio was found to be close 6/7. If this magnetic structure is
maintained at still lower temperatures, it may correspond to the exact 6/7 value. The
ground state may then be called a commensurate structure with this ratio.

4.5. Recombination structures, intergrowth structure series

Some of the previously reported relationships between structures may be included in
the general term “recombination” structures. Such structures (see LiMA DE FARIA et al.
[1990]) are formed when topologically simple parent structures are periodically divided
into blocks, rods or slabs (that is structure portions which are finite or infinite in one or
two dimensions, respectively) which are recombined into derivative structures by means
of one or more structure building operations. The most important operations are: unit cell
twinning, crystallographic shear planes, intergrowth of blocks, rods or slabs of different
structural types (for instance, intergrowth of cF24-MgCu, type and hP6-CaCu, type slabs
to obtain the hP36-Ce,Ni, type structure), periodic out-of-plane, antiphase boundaries
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(AuCu(ll), as an example), rotation of rods or blocks. The frequency of structure
building operators (and, therefore, the size of undisturbed structure portions) can vary by
well defined increments, so that many phases may occur as members of homologous
series.

A few considerations about possible schemes of relationships between inorganic
crystal structures based on a systematic “construction” of complex structural types by
means of a few operations (symmetry operations, topological transformations) applied to
some building units (point systems, clusters, rods, sheets), have been previously reported
in sec. 3.5.4, following criteria suggested, for instance, by HYDE and ANDERSSON [1989]
and by ZvyaGIn [1993].

We may add here that, within the “recombination” scheme, a very interesting method
of describing, interpreting and interrelating complex structures is that based on the
aforementioned “intergrowth” concept (KRIPYAKEVICH et al. {1972, 1976, 1979], GRIN’
et al. [1982, 1990], PARTHE et al. [1985], LiMA DE FARIA [1990], PANI and FORNASINI
[1990]). According to this concept, selected structure types may be considered as
belonging to certain intergrowth structure series. The different structure types of an
intergrowth series are described as being constructed from structure segments of more
simple structures (the so-called “parent structures”).

In an other way, we may say that, according to this approach, the construction
modules instead of being defined on a mere geometrical basis, are selected with reference
to specific crystallochemical criteria. To this end, groups (series) of similar complex
structures are analysed in order to recognize “fragments” which could be identified as
structure segments of more simple structural types.

The structure series are then classified according to the kind of fragments and the
method of construction. On the basis of the kind of fragments the structure series is
described as homogeneous or inhomogeneous: the homogeneous intergrowth structures
consist of identical fragments, the inhomogeneous intergrowth structures consist of
segments (differing in composition and/or coordination) belonging to different parent
structures. According to the method of construction, the intergrowth structure series can
be classified into one-dimensional (linear), two- or three-dimensional series. In a linear
series we have the one-dimensional stacking (along one direction) of two-dimensional,
infinite segments (slabs) of the parent structures. The different structures of a two-
dimensional intergrowth series, on the other hand, are built up by aggregations of several
one-dimensional fragments (infinite rods, columns). Finally, the structures of a three-
dimensional intergrowth series are constructed from (zero-dimensional, finite) parent
structure blocks stacked in three dimensions.

It has been pointed out (GRIN™ [1992]) that slicing the parent structure into segments
can be done in different ways. For a segment to be used in a particular structure series,
for the members of which we are interested in predicting composition and symmetry, a
number of requirements should be fulfilled. The segments should contain certain
symmetry elements (in a linear series, for instance, all the segments used for the
description usually contain some symmetry elements, mostly parallel to the stacking
direction, which are retained in any stacking sequence, and represent the *“minimal
symmetry” of the series). The segments interfaces necessarily pass through atom centers.
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(The composition of the segment is proportional to the stoichiometry of the parent
structure: by addition it is possible to obtain the compositions of all possible structures
of the series). The segments, moreover, selected from different parent structures, must
have, at least, one topologically equal interface in order to make the intergrowth possible.
Additional requirements are necessary when the atomic arrangement on the interface
permits more than one possibility of intergrowing and when more complex (two-, three-
dimensional) series are studied.

Considering, for instance, the particular case of the “linear intergrowth structure
series”, we may mention that many, binary and ternary, intermetallic phases can be
considered members of those series (both homogeneous and inhomogeneous).

A representative of a structure belonging to a linear inhomogeneous series is
presented in fig. 22. In this case, the parent structures are the oC8-CrB and oC12-UPt,
types. The intergrowth structure presented is the 0C28-W,CoB, (or Y,Co,Ga) type. Its
unit cell contains a segment arrangement corresponding to two repetition of a sequence
containing a UPt, fragment followed by two CrB-type fragments. A simple code of this
structure may be (2¢plypp),. Other members of the series have been described, for
instance:

1 lype (corresponding to the oI10-W,CoB, type);
3¢ lype (corresponding to the mC18-Y,Co,Ga type);
(4cislupn), (corresponding to the 0C44-YCosGa type).

It is interesting to observe that many real representatives of this series may be found in
the Y-Co-Ga system. This may be considered an example of the fact that, often, several
members of a certain intergrowth series have representatives in the same (binary and
ternary) alloy system. In the same system (or in chemically analogous systems) represen-
tatives of the parent structures may also be found (in the example reported, for instance,
YCo has the CrB type structure). The interest of a crystallochemical description based on
the intergrowth concept is thus evident.

As a further simple example, we may mention the structure of the oC16~-NdNiGa,
type belonging to the series BaAl,~AlB,. Its unit cell contains indeed two BaAl,-type
segments and two AlB,-type segments. The simple code, previously considered, will be
(13,441 4182),- (Notice, however, that in a more complex and detailed notation, super-
scripted indexes may be added to the formulae of the segments in order to specify, for
instance, their symmetry (GRIN et al. [1982], PARTHE et al. [1985]).

General compositional formulae are often used for representing a series (GRIN’
[1992]). Me,, , oXsm1a Y 20» fOT instance, may be the overall formula of a series consisting
of intergrown CaCus-type and CeCo,B,-type slabs. (For the hP6~CaCus type and its
ordered variant hP6--CeCo,B, type structures, see sec. 6.2.8.). Members of this series are
the following structure types: hP12-CeCo,B (corresponding, in the aforementioned
formula, to m=1, n=1), hP18-Ce,Co,;B, (m=1, n=2), hP24-Ce,Co,B; (m=1, n=3),
hP18-Nd,Ni,;B, (m=2, n=1) and hP30-Lu,Ni,;B, (m =2, n=3). We may notice in this
case too, the close chemical analogy among the alloy systems (rare earth, nickel or
cobalt, borides) forming structures corresponding to the different members of a given
series.
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4.6. Group-subgroup relations for the representation of crystal-chemical
relationships

According to the presentation given by BARNIGHAUSEN [1980], if two structures are
topologically equivalent their interrelation may be conveniently expressed by group—
subgroup relations between their space groups. Graphic representation of these relations
leads to hierarchic ordering resembling a “family tree”. At the top of the tree there is the
so-called “aristotype” (a highly symmetrical structure). From the aristotype the other
structures of the tree may be derived along specific routes of symmetry reduction. In
order to obtain a well-defined description, the symmetry reduction is presented in terms
of minimal steps (that is a given structure is followed by another whose space group is
a so-called maximal subgroup (M) (see HAHN [1989]) of the space group (G) of the
former structure). The minimal steps of symmetry reduction are characterized by the
terms lattice-equivalent (M contains all the translations of G, the crystal class of M is of
lower symmetry than that of G), or class-equivalent (M and G have the same crystal
class but belong to different space-group types: M has lost translational symmetry, that
is the primitive cell corresponding to M is larger than that of G) or crystallographically-
equivalent (G and M belong to the same space group type, that is, as in the previous
case, M has lost translational symmetry).
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Fig. 22. An example of the application of the intergrowth concept. In a) and in b) two *“parent” structures (CrB
and UPt,) are presented. The projections of a few unit cells (defined by the continuous lines) on the b,c and a,b
planes respectively are shown. The structure segments which have been correspondingly identified are shown
by dotted lines. In ¢) a member (W;CoB; type structure) of the linear inhomogeneous series CrB-UPt, is
presented (the sequence of parallel building segments is indicated). The segments characteristic of the CrB and
UPt, structures have been indicated by I and 1L In order to make easier the comparison, a few atoms with
similar environments have been marked by the same numbers (or letters) in the parent and in the derived
structures.

5. Elements of systematic description of structure types.
General remarks and references

By means of the considerations previously presented some typical structures will be
described in the following sections. On the basis of somewhat arbitrary criteria (such as
high frequency of the structural type, existence of phases of considerable practical
importance, possibility of presenting some features of general interest, etc.) the types to
be described have been selected and presented in a few sections. This description,
therefore, should be considered as only an initial introduction to a vast subject. As
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already mentioned, complete and updated descriptions may be found in some reference
books such as: LANDOLT-BORNSTEIN (HELLWEGE [1971], PREDEL [1991]), VILLARS and
CALVERT [1985, 1991], MasSSALSKI [1990] and DAAMS et al. [1991] that report (in
alphabetical order) all the known binary systems. They can be considered complete
riformulation of “classic” books such as: HANSEN [1936], HANSEN and ANDERKO [1958],
ELLIOTT [1965], SHUNK [1969], MOFFATT [1986]. Phase diagrams are presented and
discussed; crystai structure data of the intermediate phases, moreover, are systematically
given. A similar lay-out has been adopted in the Monograph Series on Alloy Phase
Diagrams published by ASM International. The book of VILLARS and CALVERT [1991]
consists of an “Handbook of Crystallographic Data” (in 4 volumes); DAAMS et al. [1991]
published an “Atfas of Crystal Structure Types” (in 4 volumes). The “Handbook” reports
all the data available for binary (and complex) intermetallic phases. The ‘“Atlas”
describes the different structural types presenting (both by using tables and drawings)
atomic coordinates, interatomic distances and coordination polyhedra.

For a general presentation of the Inorganic Crystallochemistry, see, for instance,
WELLS [1970].

For a systematic classification of the intermetallic structure types, the following
monographs may be consulted.

SCHUBERT [:964] in his book “Kristalistrukturen Zweikomponentiger Phasen”
(Crystal Structures of Binary Phases) described a few hundred structural types. In this
book, Schubert paid great attention to chemical criteria for the description, classification
and discussion o the properties of the different phases. The position of the elements
involved in the Periodic Table was considered particularly relevant. For this purpose, the
elements were considered by Schubert to be subdivided into the following families:
A-metals (elements of the s-block of the periodic table), T-metals (transition metals),
B-elements (elements of the p-block of the Periodic Table). The different structural types
were then described according to the following chapter subdivision:

Brass-type alloys and close-packed sphere stacking and superstructure variants: AuCu,,
AuCu, SrPb, ZrAl,, ZrGa, NbsGa;, etc.; Mg-type structure and superstructures
Ni;Sn, etc.; body-centered sphere packing W structure and derivatives Fe;Si, CsCl,
NaTl, CusZng, Ni,In, ete.

T-T phases (among which the T element structures of the so-called Cr;Si family such as
the BU, cI58—«Mn, hR39-W Fe,, Th;Mn,,, etc., and then the Laves phase structures).

B-B phases (structures considered as deformation variants of close-packed structures,
such as Zn, In, etc., structures of B, graphite, structures of the diamond-family, of the
P and As families, etc.).

A-B phases (several types partly classified according to the stoichiometry: Li;Bi, Mg,Sn,
Mg,Sb,, NaCl, etc.).

T-B phases (T-rica borides, carbides, nitrides, oxides and hydrides, CuAl,, MoSi,, NiAs,
FeS, structures and their variants).

PEARSON [1972], in his book “The Crystal Chemistry and Physics of Metals and Alloys”,
discussed the characteristics and specific features (coordination, stability, relationships

References: p. 363.



266 Riccardo Ferro and Adriana Saccone Ch. 4, §5

with other structures, etc.) of about a thousand structure types. He was able to classify
all these structures in 12 different families. The most important 10 are summarized here
below.

1) Valence compounds of non-metals (semiconducting compounds with anions forming
close packed arrays, polyanionic compounds, polycationic compounds, group IV, V
and VI elements and IV-VI and V-VI compounds, etc.).

2) Metastable phases, interstitial phases, martensite (in this group of phases the Higg
interstitial phases formed by transition metal and small non-metal atoms such as H,
B, C, N have been especially considered: in these phases the non-metals occupy the
interstices, generally the octahedral ones of the close-packed structures of the
transition metals).

3) Structures based on the close packing of the 3° close-packed nets (Cu and Mg structures
and their derivative structures AuCu,, AuCu, Ti,Cu, TiAl,;, ZrGa,, MoNi,, etc.).

4) Structures derived by filling tetrahedral, octahedral (and other) holes in close-packed
arrays of atoms (sphalerite structure and derivative structures oP12—-CuAsS,
tI16-FeCuS,, tI16—Cu;AsS,, etc., wurtzite structure and derivative structures,
oP16-CuSbS,, oP16-Cu,AsS,, hP30-In,Se,, etc.; CaF, structure and distorted,
defective, superstructures of CaF,; NaCl structure and derivative structures of the
NaCl type; NiAs structure, etc.).

5) Structure types dominated by triangular prismatic arrangements (hP2~WC, hR9-MoS,,
tI8-NbAs, tP6—Cu,Sb, oP36-Ta,P, hP3-AlB,, hP6-Caln,, hP6-Ni,In and their
variants, are examples of structure types included in this group).

6) Structures based on simple cubic and body centered cubic packing (in this group the
structure types cI2-W, tI2-Pa, martensite, cP6—-Cu,0, cP2-CsCl, tP4-TiCu,
cF16-Li,Bi, cF16-NaTl, cF16-MnCu,Al, tP3-FeSi,, cI52-CusZn, and several variants
are considered, In this structure family the Nowotny chimney-ladder phases are also
included).

7) Structures generated by square-triangle nets of atoms: cubes and cubic antiprisms (for
instance  tI12-CuAl,, oP24-AuSn,, mC12-PdP,, o0C20-PtSn,, tP10-U,Si,,
tP40-FeCu,Al,, oP16-ThNi, 0oI20-UAl,, etc.)

8) Structures generated by alternate stacking of triangular and kagomé nets. (The struc-
tures of hP6-CaCus, tI26-ThMn,,, hP38-Th,Ni,; and their variants are included in
this family. The Laves phases ¢cF24-Cu,Mg, hP12-MgZn, and hP24-Ni,Mg types and
several variants are considered in this family. However, they are also described, as
Frank—Kasper structures, in the subsequent group).

9) Structures in which icosahedra and CN 14, 15 and 16 polyhedra play a dominant role.
(Laves phases, u phases: hR39-W,Fe,; P phases: oP56-Mo-Cr-Ni phase, (which, at
a composition corresponding to 42 at% Mo and 18 at% Cr, has a unit cell containing
56 atoms in partial substitutional disorder); R phases: hR159-Mo-Co-Cr, etc. are
included in this family, as well as a number of intermetallic phases with giant cells
such as the cF1124-Cu,Cd,, cF1192-NaCd,, cF1832-Mg,Al, types studied by
SAMSON [1969].
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10) Structures with large coordination polyhedra. (Structures are presented in which large
coordination. polyhedra are contained: for instance cP36-BaHg;, in which Ba is
surrounded by 20 Hg, tI92-CeMg,,, tI48-BaCd,;, cF112-NaZn;; in which
coordination polyhedra corresponding to coordination numbers (CN) 20, 22 and 24
are present respectively).

As a comment to the Pearson’s classification and description of structure types we may
mention a paper by PEARSON [1985b] himself on the classification of the crystal
structures of intermetallic phases according to building principles and properties. Five
groups of phases have been evidenced:

1) Phases based on geometrical packings;

2) Phases in which the band-structure energy is an unusually large fraction of the total
energy;

3) Valency compounds;

4) Framework structures;

5) Hybrid framework structures with geometrical packings.

A substantially geometrical approach has been adopted in their book “Inorganic Crystal
structures”, by HYDE and ANDERSSON [1989] who presented and discussed the structure
of more than a “housand inorganic compounds, explicitly ignoring “the artificial barrier
between inorganic and mineral structures on the one hand and metallurgical structures
(intermetallic compounds, borides, carbides, etc.) on the other.” In their treatment and
classification of the structural types, they generate complex structures starting with
relatively few basic structures and applying to segments of such structures, one or more
of a few geometrical operations that are essentially symmetry operators. The “segments”
or building units considered may be blocks (or clusters, bounded in 3 dimensions), rods,
(or columns, bounded in 2 dimensions, infinite in the third), slabs (or lamellae, sheets,
layers, the latter bounded in 1 dimension and infinite in the other two).

6. Description of a few selected structural types

The selected structural types which will be presented in the following sections
arranged in a few groups according to their crystallochemical interrelations are also
alphabetically summarized, for reader convenience, in Appendix 1: “Gazetteer of
Intermetallic Phases”.

For the different phases described, the values of the lattice parameters have been
generally reported: this may indeed be useful in comparing different structures and in
order to get a better idea of the real atomic packing. Notice, however, that, generally, for
the various phases, several slightly different values have been reported in the literature
(owing to different preparation and measurement techniques and/or to the existence of
certain, often not well-defined, homogeneity ranges). The reader interested in accurate
values of the lattice parameters should therefore consult the original literature.

References: p. 363.
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6.1. bcc W-type structure and derivative structures

In this section a few structural types are presented which can be described as related
to the simple body-centered cubic structure, cI2-W type. For some of them, fig. 23
shows the normalized interatomic distances and the corresponding numbers of equidistant
atoms.

6.1.1. Structural type: cI2-W

Body-centered cubic, space group Im3m, No. 229.

Atomic positions:

2 W in a) 0,0,0; 14}

Coordination symbol: 3[Wg]

Layer stacking symbols:

Triangular (T) nets: WoW W oW 5 W W

Square (S) nets: WéWf,z

For the prototype itself, W, a =316.5 pm.

This structure can be compared with the CsCl type structure (which can be obtained from
the W type by an ordered substitution of the atoms) and the MnCu,Al type structure
(“ordered” superstructure of the CsCl type): see fig. 24a and 24b and notice the typical
8 (cubic) coordination.

The W-type structure is shown by a number of unary systems: Li, Na, K, Rb, Ba, Cr,
Eu, Cr, Mo, V, Ta, W, etc., (as the only form or the room temperature stable form), Be,
Ca, Sr, several rare earth elements, Th, etc., (as a high temperature form) and @ and 8
Fe forms.

The same structure is formed in a number of binary (or ternary) phases, for which a
random distribution of the two (or three) atomic species in the two equivalent sites is
possible. Typical examples are the B-Cu—Zn phase (in which the equivalent 0,0,0; 3,3.%
positions are occupied by Cu and Zn with a 50% probability) and the 8-Cu—Al phase
having a composition around Cu;Al (in which the two crystal sites are similarly
occupied, on average by Cu, with a 75% occupation probability, and by Al, with a 25%
occupation probability). A number of these phases can be included within the group of
the “Hume-Rothery” phases (see sec. 3.4.). In the Villars—~Calvert compilation 380
phases (about 1.5% of the total number of phases considered) are listed under this
structural type (which is the 11" in the frequency order).

6.1.2. Structural type: cP2-CsCl
Cubic, space group Pm3m, No.221.
Atomic positions:
1 Cs in a) 0,0,0
1Clinb) t 1}
Coordination formulae:
3[CsCllg,g or 3[CsCllgy, s (i0nic description)
333 [Xe/6l[Yeselsrs OF 333 [Xeo/601[Y oss0lsctsser (metallic description)
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241
N a) W-type
16.
8
Jl L
1 2 d/d,,
241 b) CsCl-type .
N :
16
E
8] *t . * *
JL
1 2 d/dg,

Fig. 23a,b. Trends of interatomic distances and coordinations in a group of closely interrelated structures.
a) cl2-W type structure: coordination around W.
b) XY compounds of cP2~CsCl type structure:

{(+) X-Y (or Y-X) coordination.

{*) X-X (or Y-Y) coordination.

Layer stacking symbols:

Triangular (T) nets: Csj Cl5Cs,;Cl% Cs,; CLS,

Square (S) nets: Cs,Cl)},

For the prototype itself, CsCl, a=411.3 pm.

See also fig. 3. The 8 coordination (cubic) of the two atomic species is apparent.

The normalized interatomic distances and numbers of equidistant neighbours are
shown in fig. 22. In the same figure data are also reported for the W type structure,
which can be considered a degenerate structure of the CsCl type structure (in the W type
structure the two atomic sites are equivalent) and of the derivative (superstructure)
MnCu,Al type.

The CsCl type structure is adopted by many of the 1:1 intermetallics and by a few
halide and chalcogenide 1:1 (ionic) compounds (for which, however, it is in competition
with the NaCl type structure (see sec. 6.4.1)). Of the monohalides only CsCl, CsBr, Csl,
TICY, TIBr and TII (and of the monochalcogenides only, ThTe) have the CsCl type
structure, while the rest with a lower atomic (ionic) ratio have the NaCl type structure
(corresponding to a lower coordination, 6 instead of 8).

References: p. 363.
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24
N c) MnCu,Al-type +
16
o
8] T . * °
01 . . .
1 2 d/d,,
24, 5
d) MnCu,AI-type
16 | :
o
8| ' (o]
# o + ‘ °
o) 2l l

1 12 14 16 18 2 d/dy,

Fig. 23c,d. Trends of interatomic distances and coordinations in a group of closely interrelated structures.
¢) cF16-MnCu,Al type structure: coordination around Al (or Mn)

(+) Al-Cu (or Mn~Cu); (*) Al-Mn (or Mn-Al);

(o) Al-Al (or Mn—Mn).
d) cF16-MnCu,Al type structure: coordination around Cu

(+) Cu-Mn; (*) Cu-~Al; (o) Cu~Cu.

As for the intermetallics, in the Villars-Calvert compilation, about 460 compounds
(= 1.8% of the total number of phases considered) are listed under this structural type (7®
in the frequency rank order); about 300 phases are binary, the others are (more or less
disordered) ternary phases. Among the binary phases we may mention 1:1 compounds
such as those of alkaline earth and rare earth elements with Mg, Zn, Cd, Hg (and often
with In, Tl, Ag, Au), those of Al and Ga with Fe and Pt group metals. The 8’ Cu—Zn
phase (stable at room temperature) belongs to this structural type; at higher temperature
it undergoes the order—disorder transformation into the disordered cI2—W-type, B phase.
FeAl also is an example of a phase having this (more or less) ordered structure. It
corresponds to a solid solution range from = 23 to = 55 at% Al. It forms through ordering
of the a Fe, cI2-W type, phase which has a solubility range from 0 to =45 at% Al
Other interesting phases belonging to this structural type are:
Ni Al,_, (homogeneous between 42 and 69 at% Ni) with good mechanical and oxidation
resistance properties. (By quenching from high temperatures the formation of an
ordered martensite is obtained which can be considered for shape memory behaviour).
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b)
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Fig. 24. cF16-MnCu,Al type structure. The unit cell is shown in a). This structure degenerates in the Li;Bi type
if the Cu and Mn positions become equivalent. The small cube presented in b) corresponds to § of the
MnCu,Al unit cell and degenerates into a CsCl type cell if the atoms at the vertices (Mn+ Al positions) are
equal. Moreover a further degeneration in the W type will be obtained if all the atoms are equal.

Co,Al,_, (=48 to 79 at% Co), Co,Be,_, (26 to 53 at% Co), Ni,Be,_, (= 25 to 52 at% Ni),

PdBe (= 50 at% Pd), CuBe,, (= 5! to 53 at% Cu), etc.

For a discussion on substitutional additions to CsCl type alloys (site preference for dilute

additions to NiAl, FeAl, CoAl, etc.) see KaO et al. [1994].

Finally, we raay mention Ti Pd,_, (47 to 53 at%Pd) and Ti Pt, , (46 to 54 at% Pt)
which have the CsCl type structure at high temperature and the oP4-AuCd structure at

low temperature.

6.1.3. Structural type: cF16-MnCu,Al
Face-centered cubic, space group Fm3m, No. 225.
Atomic positions:

4 Al in a) 0,0,0; 1,1,0; 3,0, 05,3
4 Mn in b) ,3.3; 0,03;
8 Cu in ©) 3k s Toass

References: p. 363.
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Coordination formula:
3 [AlCug,,Mng,]

For the layer stacking symbols, the data are reported in the next section in compari-
son with the Li;Bi and NaTl type structures.

For the prototype itself, MnCu,Al, a=596.8 pm.

The structure is shown in fig. 24. In this figure a comparison is also made with the CsCl
type structure. It is apparent that if the two a) and b) sites are occupied by the same
atomic species, the cell degenerates into a block of 8 equal cells (of the CsCl-type). We
may also observe that, on the contrary, if a single atomic species were assigned to the b)
and c) sites, another ordered structure would be obtained, corresponding to the 1:3
stoichiometric ratio (Li;Bi-type or BiF;-type).

In the Villars—Calvert compilation the phases belonging to the MnCu,Al and Li,Bi
types are listed together. (See also sec. 6.1.3. and 6.1.4.). They are about 380 (= 1.5% of
the total number of phases considered and 12™ in the frequency rank order).

Among the ternary alloys, we may mention several Me’Me”Me”, phases (with
Me’ = Al, Ga, Ge, Sn; Me” =Ti, Zr, Hf, V, Nb, Mn, etc. and Me” =Co, Ni, Cu, Au, etc.).
The compounds which crystallize with the MnCu,Al type structure (and particularly the
magnetic compounds having this structure) are called Heusler Phases. In the specific case
of the Al-Cu~Mn system this phase is ferromagnetic and stable above 400°C, but it can
be frozen by quenching to room temperature. It is assumed that its whole moment is due
to the spin moment of Mn which has an unfilled d shell (5 electrons). Magnetic
properties of Heusler phases are strongly dependent on the ordering of the atoms.

6.1.4. Structural types: cF16-Li,Bi and ¢cF16-NaTl
cF16-Li;Bi type is face-centered cubic, space group Fm3m, No. 225.
Atomic positions:

Bl
B

=]
&
o
=
()
N’
b
-
B
1=
NI
Bjw
-
- -
NN
-
Ejme
$|u
-
B
Blw
leu
.uxu
Mu
:-|u
B
le—
Bjw
Bl
Bl
Bf—
FN)

Coordination formula:

3[BiLig,,Lis/) (ionic description)

For the layer stacking symbols, see under the following description of the NaTl type.
For the prototype itself, Li;Bi, a=672.2 pm.

This structure (or BiF; structure) could also be described as derived from a cubic close-

packed array of atoms (Bi atoms) by filling all the tetrahedral and octahedral holes with
Li (or F) atoms.

The cF16-NaT!l type structure is face-centered, cubic, space group Fd3m, No. 227.
Atomic positions:

8 Tl n a) 0 0 0 0’2 )2’ i’O’f’ 7)5’0’ %n‘;"%; %’%’Zlf; %)%)%’ Zlfs%)%-

8 Na ln b) 2,;);) ;)O O 0’2)01 2)2)0) Z’Z)_A lﬁ‘f’%; %’%’%; %’%—’%'

For the prototype, NaTl, a=747.3 pm.
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LiZn, LiCd, LiAl, Naln have this structure.

This structure may be regarded as a completely filled-up fcc arrangement in which
each component occupies a diamond like array of sites (see sec. 6.3.1. and, in sec. 3.4.,
“Zintl Phases”.)

The structure may thus be presented as NaTl: D+D’ (see the descriptions in terms of
combination of invariant lattice complexes reported in sec. 3.1.).

The coordination formula is 33 Na[Tl,, ],

All the three cF16-NaTl, Li;Bi and MnCu,Al types, which may also be considered
as composed of four interpenetrating face centered cubic arrays (F+F +F”+F"),
correspond to the same space filling as in 8 b.c. cubic (or in 8 CsCl type) cells (see fig.
24).

The layer stacking symbols of the NaTl structure are here reported in comparison
with those of the cF16-Li;Bi and cF16-MnCu,Al types.

Triangular (T) nets:

NaTl type:

A c A C A
Na, Tl 312 Tlys Nal‘?4 Na33 Tlsc/lz Tl Naxu Na,; Tly, Tls?a Nalcmz
Li,Bi type

Big Liy; Liyes Li s Biys Lig, Liy, Lisng Bigs Liz Lige Liji,
MnCu,Al type
A B C A B C B C A
Aly Cujy, Mny Cuyy Al Cugyyy Mn;?z Cuyyy, Aly; Cuy Mn;ﬁ Cu 1C1/12
Square (S) nets:
NaTl type:
1 4 5 G 7 1 4 5 6 7
Na, Na, Tlg Na,j, Tly, T1,;, T1, Naj, Ty, Nag,
Li;Bi type
Big Big Lig Li, Li,, Liy, Li, Biy, Lig, Liy,
MnCu,Al type:
Aly Al Mn; Cu;}, Cu/, Mn,, Mn}, Al}, Cuy, Cuy,

6.1.5. Comments on the bee derivative structures

In the family of bce derivative structures we may include several other structural
types.

As an important defect superstructure based on the bce structure we may mention the
cP52-Cu,yAl, type structure (Agyln,, Auyln,, Pd,Cd,;, CosZn,,, Cu,Ga,, Li,;,Pb, can be
considered reference formulae of selected solid solution phases having this structure).
The large cell (a=870.4 pm in the case of Cu,Al,) can be considered to be obtained by
assembling 27 CsCl type pseudocells with two vacant sites. One vacant site occurs on
each sublattice Al,;Cu,,0 and Cu,/d.

The y-brass, cI52-Cu;Zng-type structure can be similarly described as a distorted defect
superstructure of the W type structure, in which 27 pseudocells are assembled together
with two vacant sites (corner and body center of the supercell). In this case, however, the
atoms, are considerably displaced from their ideal sites. The structure could also be
described as built up of interpenetrating, distorted, icosahedra (each atom being sur-

References: p. 363.
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rounded by 12 neighbours). This description applies also to the cP52—Cu,Al, type
structure. (AgCdg, Li;Ag;. AgsZng, VsAlg, AusCdg, AusHg,, Fe,Zn;, NiGa,, V.Ga,,
Ni,Zn,,, etc. crystallize in the cI52—-CusZn, structural type).

Martensite. The iron-carbon martensite structure can be considered a tetragonal
distortion of the body-centered cubic cell of Fe (a=285 pm, ¢=298 pm at=1 mass% C
(=4.5 at%), in comparison to a=286.65 pm for a-Fe, cI2-W type). Carbon is randomly
distributed in the octahedral holes having coordinates 0,0,% and 1.1.0. Typically an
occupancy of these sites of only a few % has to be considered. For a 100% occupancy
the structure of the tI4—CoO type (low-temperature form) is obtained with 2 Co in a)
0,0,0; 1,4,4; and 2 O in b) 0,03; 34,0 in the space group I4/mmm, No. 139. In the
martensitic cell the position parameters of the Fe atoms have a range along the fourfold
axis, so there is a displacement from the cell comers and body center and an enlargement
of the octahedral holes containing carbon. (Notice, however, that “martensite” is also a
general name used by metallurgists to denote all phases formed by diffusionless shear).

Al-Cu-Ni continuous sequence of ordered structures. An interesting series of
superstructures have been described by LU and CHANG [1957a, 1957b]. For an assessed
description of the system and of the intermediate phases see PRINCE [1991]. They all
have hexagonal unit cells (some corresponding to rhombohedral structures) based on
ordered sequences of pseudo cubic subcells slightly distorted in rhombohedra having the
constant a,,,, included between 289 and 291 pm and the interaxial angle «,,,, included
between 90.34 and 90.10°. (These data may be compared with the values a==288 pm
and, of course, @ =90°, for the cubic CsCI type unit cell of NiAl at the 50 at% Al
composition). The hexagonal cells of the superstructures have a certain number of
subcells stacked along c. Al atoms occupy the comers of the subcells and Ni,Cu (Me)
atoms or vacancies (Vac) occupy the centers in ordered array, vacancies occurring along
the three triad axes (0,0,0; 1.2,z; 2,1,2). All together these phases corresponds to the
7-region lying in the ternary system in a domain included between =7 and 12 at% Ni
and between =27 and 38 at% Cu. The different 7; ordered structures correspond to the
stacking of i subcells centred according to a definite sequence of Vac or Me atoms.
Following stacking variants have been described:

75 = (Ni,Cu);Al;, hR24, a=411.9 pm, c=2512.5 pm (=5%502.5)
stacking sequence VacMeMeMeVac = VacMe;Vac

7s = (Ni,Cu),Alg, hP30, a=411.3 pm, ¢=3013.5 pm (=6%502.3)
stacking sequence VacMe,Vac

7, = (Ni,Cu);Al,, hP3%, a=410.6 pm, c=3493.8 pm (=7+499.1)
stacking sequence VacMe;Vac

7y = (Ni,Cu)sAlg, hR42, a=410.5 pm, c=3990 pm (=8+498.8)
stacking sequence VacMegVac

7 = (Ni,Cu)sAl,;, hP51, a=411.5 pm, ¢=5528.9 pm (=11%502.6)
stacking sequence VacMe,Vac;Me,Vac

713 = (Ni,Cu)gAl;;, hR63, a=411.3 pm, c=6517.3 pm (=13%501.3)
stacking sequence VacMe,Vac;Me,Vac
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715 = (Ni,Cu),;Al 5, hP75, a=409.6 pm, c=7464.5 pm (=15%497.6)
stacking sequence VacMe,Vac;Me,Vac

717 = (Ni,Cu),Al,;, hP87, a=410.1 pm, ¢ =8449.9 pm (=17%497.1)
stacking sequence VacMe,Vac,Me,Vac

These structures appeared to be determined by the free electron concentration. They
represent a so-called “continizous sequence of ordered structures” or, infinitely adaptive
structures (HYDE and ANDERSSON [1989]). These structures occupy a single-phase field
in the system: it has been observed that, in such cases, may be ambiguous to define a
phase in terms of a unit cell of structure.

6.2. Close-packed structures and derivative structures

In this section, a few important elemental structures are described. Particularly the
cubic (cF4-Cu type) and hexagonal close-packed (hP2-Mg) structures are presented. A
few other stacking variants of identical monoatomic triangular nets are also reported. A
group of structures which can be considered as derivative structures of Cu are also
described.

Normalized iateratomic distances and numbers of equidistant neighbours are shown
in figs. 25 and 26.

6.2.1. Structural type: cF4-Cu
Face-centered cubic, space group Fm3m, No. 225.

Atomic positions:

4 Cu in a) 0,0,0; 0,1,3; 1,0.%; 1.1,0;
Coordination formula: 3[Cuy,,,]

Layer stacking svmbols:

Triangular (T) nets: Cu; Cu,), Cu§3
Square (S) nets: Cug Cug Cus,

For the prototype itself, Cu, a=361.46 pm.

The atoms are arranged in close packed layers stacked in the ABC sequence (see
sec. 3.5.2.).

Several metals, such as Al, Ag, Au, @ Ca, a Ce, y Ce, & Co, Cu, vy Fe, I, 8 La, Pb,
Pd, Pt, Rh, & Sr, @ Th and the noble gases Ne, Ar, Kr, Xe crystallize in this structural
type. Several binary (and complex) phases having this structure have also been reported
(solid solutions with random distribution of several atomic species in the four equivalent
positions).

6.2.2. Cu-derivative, substitutional and interstitial superstructures (tetrahedral

and octahedral holes)

Derivative structures may be obtained from the Cu type structure by ordered
substitution or by ordered addition of atoms. As examples of derivative structures
obtained by ordered substitution (and/or distortion) in the Cu type we may mention the
AuCu;, AuCu, Ti,Cu types, which are described here below. (In the specific case of the
AuCu; type structure and the Cu—AuCu, types interrelation, see also sec. 3.5.5.). For a
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Fig. 25. Distances and coordinations in the cF4~Cu and cP4—-AuCu, types structures. (Compare also with figs.

14 and 15.)
a) cF4-Cu type structure

b) cP4-AuCu, type structure: coordination around Au

(+) Au-Cu; (*) Au-Au.

c) AuCu, type structure: coordination around Cu

(+) Cu-Cu; (*) Cu-Au.
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24,
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1 12 14 16 18 2 d/d,..

Fig. 26. Distances and coordinations in the hexagonal close-packed (Mg-type) structure.
a) Ideal structure, c/fa=1.633 (first coordination shell corresponding to 12 atoms at the same distance).
b) Mg-type structures with c/a=1.579.

The group of the first 12 neighbours is subdivided into 6 +6 atoms at slightly different distances.

systematic description of the derivative structures which may be obtained from the Cu
type by ordered filling-up it may be useful to consider that in a closest packing of equal
spheres there are, among the spheres themselves, essentially two kinds of interstices
(holes). These are shown in fig. 27. The smallest holes surrounded by a polyhedral group
of spheres are those marked by T. An atom inserted in this hole will have four neigh-
bours whose centres lie at the vertices of a regular tetrahedron (tetrahedral holes). The
larger holes (octahedral holes) are surrounded by octahedral groups of six spheres. In an
infinite assembly of close-packed spheres the ratios of the numbers of the tetrahedral and
octahedral holes to the number of spheres are, respectively, 2 and 1.

Considering the Cu type structure (in which the 4 close-packed spheres are in 0,0,0;
0.3; 1,0,4; 1.2,0) the centers of the tetrahedral and octahedral holes have the coordinates:

4 octahedral holes in:
a4 1.0,0; 05,0, 0,045
2 sets of 4 tetrahedral holes in:

111.,133.313,331.
45424 444> 42434 4544

and in:
333.311.131.113

References: p. 363.
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T 0)

Fig. 27. Voids in the closest packing of equal spheres; tetrahedral (T) and octahedral holes (O) are evidenced
within two superimposed triangular nets.

Several cubic structures, therefore, in which (besides 0,0,0; 0,4,}; £,0,3; £.4,0) one (or
more) of the reported coordinate groups are occupied could be considered as filled-up
derivatives of the cubic close-packed structures. The NaCl, CaF,, ZnS (sphalerite),
AgMgAs and Li,Bi type structures could, therefore, be included in this family of
derivative structures. For this purpose, however, it may be useful to note that the radii of
small spheres which fit exactly into tetrahedral and octahedral holes are 0.225... and
0.414..., respectively, if the radius of the close-packed spheres is 1.0. For a given phase
pertaining to one of the aforementioned types (NaCl, ZnS, etc.) if the stated dimensional
conditions are not fulfilled, alternative descriptions of the structure may be more
convenient than the reported derivation schemes.

Notice, moreover, that a fc cubic cell of atoms X in which all the interstices are
occupied (the octahedral by X and the tetranedral by Z atoms) is equivalent to a block
of 8 XZ, CsCl type, cells (see figs. 3 and 24). This relationships (and other ones with
other structures such Li;Bi and MnCu,Al) should be kept in mind when considering, for
instance, phase transformations occurring in ordering processes.

Similar considerations may be made with reference to the other simple close-packed
structure, that is to the hexagonal Mg type structure. In this case two basic derived
structures can be considered: the NiAs type with occupied octahedral holes and the
wurtzite (ZnS) type with one set of occupied tetrahedral holes.
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6.2.3. Structural type: cP4-AuCu,
Cubic, space group Pm3m, No. 221;
Atomic positions:
1 Au in a) 0,0,0
3 Cuinc) 0.3.3: 7,04 32,0
Coordination formula: 333[Aug,s}[Cug5l,0/4
Layer stacking symbols:
Triangular, kagomé (T,K) nets:
Auh C3 Auf, Cuj, Aug, Cub,
Square (S) nets: Aug Cug Cu;,
For the prototype itself, AuCu,, a=374.8 pm.
(See also sec. 3.5.5. for a detailed description of this structure.)

This structure can be considered a derivative structure (ordered substitution) of the
cF4—Cu type.

A discussion of the characteristics of a number of ordered layer (super)structures
involving a XY, stoichiometry has been reported by MASSALSKI [1989]. Sequences of
layer structures (among which those corresponding to the c¢P4—AuCu,, hP16-TiNi,,
hP24-VCo;, hR36-BaPb, types) as observed in V (or Ti) alloys with Fe, Co, Ni, Cu are
described. The relative stabilities of the different stacking sequences have been analyzed
in terms of a few parameters which characterize the interactions between various layers.

6.2.4. Structural types: tP2-AuCu (I) and 0140-AuCu(II)
tP2—-AuCu(I) is “etragonal, space group P4/mmm, No. 123;
Atomic positions:
1 Au in a) 0,0,0;
1 Cuin d) 1,13
For the prototype itself, AuCu(I), a=280.4 pm, ¢=367.3 pm, ¢/a=1.310.
The unit cell could be considered either as a distorted CsCl type cell greatly elongated
in the ¢ direction or, better, as a deformed (and orderly substituted) Cu type cell. This is
apparent from fig. 20 where the tP2 unit cell and two tP4 supercells having
a’ =ay/2 =396.6 pm, ¢’ =c=367.3 pm are also shown. The larger cell is similar to a Cu
type cell, slightly compressed (c’/a’ =0.926) and in which the atoms placed in the center
of the sidefaczss have been orderly substituted. The coordinates in the tP4
super(pseudo)ce:l are:
Au in 0,0,0, and 11,0;
Cu in 1,0,4 and 0.}.,3;
and the correspcnding square nets stacking sequence is Aug Auj Cu f,z.
The long period superstructure of AuCu(l), discussed in sec. 4.2., resulting in the
antiphase-domain structure of AuCu(Il) is shown in fig. 20c.

6.2.5. Structural type: tP4-Ti,Cu
Tetragonal, space group P4/mmm, No. 123;

References: p. 363.
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Atomic positions:

1 Cu in a) 0,0,0

1Tiinc) L1,0;

2 Tiin e) 0,5.3; 3,05

Coordination formula: 333 [Cug,6][Tig/gli2/4

Layer stacking symbols:

Square (S) nets: Cuf) TigTi ,5,2.

For the prototype itself, Ti,Cu, a=415.8 pm, c=359.4 pm, c/a=0.864. This structure
can be described as a tetragonal distortion of the AuCu, type structure. It may also be
considered a variant of the previously described AuCu(l) type (compare with its tP4
pseudocell).

6.2.6. Structural types: hP2-Mg, hP4-La and hR9-Sm
hP2-Mg type. Hexagonal, Space group P6,/mmc, No. 194,
Atomic positions:
2 Mg in ©) .34 $3:3
Coordination formula: 3 [Mge,s) 6] and ideally: 3[Mg,,, 5]
For the prototype itself, Mg, a=320.89 pm, ¢=521.01 pm, c/a=1.624.
Normalized interatomic distances and numbers of equidistant neighbours are presented
in fig. 26a for an “ideal” hexagonal close-packed structure (c/a= ﬁ% == 1.633), which
corresponds to 12 nearest neighbours at the same distance, and, in fig. 26b, for a slightly
distorted cells.

The atoms are arranged in close-packed layers stacked in the sequence ABAB... (or BCBC...
see sec. 3.5.2.). The corresponding layer symbol (triangular nets) is Mg‘f25 Mg§75.

Several metals have been reported with this type of structure, such as: aBe, Cd, £Co,
aDy, Er, Ho, Lu, Mg, Os, Re, Ru, Tc, Y, Zn, etc. Several binary (and complex) phases
have also been described with this type of structure. These are generally solid solution
phases with a random distribution of the different atomic species in the two equivalent
positions.

Other stacking variants of close-packed structures are the La type and Sm type
structures. Characteristic features of these types are presented here below.

hP4—La type. Hexagonal, Space group P6,/mmc, No. 194,

Atomic positions:

2 La in a) 0,0,0; 0,0,};

2 Lain¢) $3.5 353

For the prototype itself, aLa, a=377.0 pm, c=1215.9 pm, c/a=3.225.
Layer stacking symbols:

Triangular (T) nets: Laj Lagys Lagy Lagys.

hR9-Sm type. Rhombohedral, space group R3m, No. 166.
Atomic positions:
3 Smina) 0,0,0; 334 433
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6 Sminc) 0,0,z; 0,0,~z; 2t 4z, 23 -2 122+ 2, 1222

For the prototyge itself, «Sm, a=362.90 pm, ¢ =2620.7 pm, c¢/a=7.222 and z=0.222.
Layer stacking symbols:

Triangular (T) nets:

SmoA Smgn Smg, Sm(fss Smg.u Sm(fss Sm:67 Sm(:}s Sm:@.

The La and Sm type structures belong to the same homeotect type set as Mg and Cu (see
sec. 4.3.). All these close-packed element structures are stacking variants of identical slab
types (monoatomic triangular nets).

6.2.7. Structural type: hP8-Ni,Sn

Hexagonal, Space group P6,/mmc, No. 194,

Atomic positions:

2 Snin ¢): 354 343

6 Ni in h): x,2x,5; —2x,~x}; x,— x5 —x,-2x.2; 2x,x3; -x.x,.3.

For the prototype itself a=527.5 pm, c=423.4 pm, c/a=0.802 and x=0.833.

(A projection of the cell is shown in fig. 28 and compared with that of the hP2-Mg type).
The layer stacking symbol (triangular and kagomé nets) is:

Sng.zs Nigzs Sno(,"7s Nigys.

(which may be compared with the symbol Mggns Mgg 45 of the Mg type).

This type is a superstructure of the closed packed (hP2-Mg) hexagonal structure in
the same way as the AuCu, type is of the close-packed cubic (cF4—Cu) structure. It can,
therefore, be considered a stacked polytype of the AuCu, type.

Several phases belong to this type, for instance, Ti;Al, Fe,Ga, Fe,Ge, Fe,Sn, ZrNi,,
ThAl;, YAL, etc.

In the specific case of the rare earth trialuminides REAL;, the Ni,Sn type structure has
been observed for LaAl, to GdAl,; (and YAL). For ErAl; to YbAI, and ScAl; the AuCu,
type structure is formed. For the intermediate REAl, intermediate stacking variants of
similar layers have been described and their relative stabilities discussed (vAN VUCHT
and BuscHOW 71965]). In fig. 28b, the oP8—8 TiCu, type structure is also shown. The
close relationship between the two structures may be noticed.

6.2.8. Structural type: hP6-CaCu;

As another example of structures in which more complex stacking sequences can be
observed we may mention here the hP6—CaCu, type structure, which is the reference type
for a family of structures in which 3°® nets (and 6°) are alternatively stacked with 3636
(kagomé) nets of atoms.

The hP6—CaCu; structure is hexagonal, space group P6/mmm, No. 191, with:

1 Cain a) 0,0,C,

2 Cuin ¢) 12,0; 2,1,0;

3 Cu in g) 3,03 0.2,3; 73,2

For the prototype, a=509.2 pm, c=408.6 pm, ¢/a=0.802.

The layer stacking symbol, triangular (T: A,B,C), hexagonal (H: a,b,c) and kagomé (K:
a,B,y) nets is: Caj Cuj Cugs (see fig. 29).

References: p. 363.
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a)

2 0
b) ® O

@i 0:Z=0
O Cu 2:2=1/2

Fig. 28. hP8-Ni,Sn type unit cell.

a) Projection of the hP8-Ni;Sn type unit cell on the x,y plane (the values of the coordinate z are indicated).
A Mg-type subcell is represented by the dotted lines.

b) Projection of the oP8—8-TiCu, type cell. Compare the similar arrangements of the atoms in the two
structures.

A large coordination is obtained in this structure: Ca is surrounded by 6 Cu+12 Cu+2
Ca at progressively higher distances and the Cu atoms have 12 neighbours (in a non-
icosahedral coordination).

Several phases belonging to this structure are known (alkali metal compounds such
as KAus, RbAu;, alkaline earth compounds such as BaAu,, BaPd;, BaPt;, CaPt;, CaZn,,
etc., rare earth alloys such as LaCos, LaCus, LaPds, LaPt,, LaZn;, etc., The compounds
as ThFe,, ThCo,, ThNis, etc.). Ternary phases have been also described, both correspon-
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\

@

) o

@
O Cu at z=1/2
% Cu at z=0 \
@ Ca at z=0 @

Fig. 29. Projection of the hP6-CaCu, type unit cell on the x,y plane.

ding to the ordered derivative hP6-CeCo;B, type (1 Ce in a), 2 B in ¢) and 3 Co in g))
and to disordered solid solutions of a third component in a binary CaCus type phase.

According to PEARSON [1972] several structures may be described as derived from the
CaCug type (for instance, the tI26-ThMn,, type; hR57-Th,Zn,, type; hP38-Th,Ni,, type; etc.).

As for the building principles of the CaCu, type some analogies with the Laves
phases (see sec. 6.6.4) may be noticed.

Cobalt-based rare earth alloys such as SmCos (hP6—CaCuy type) are important
materials for permanent magnets. A short review on the properties of alloys for perma-
nent magnetic materials has been reported by RAGHAVAN and ANTIA [1994]. Complex
(especially iron) alloys have been mentioned starting from the Alnico (Fe—Al-Ni—Co)
alloys introduced in the thirties followed by ferrites and Co-based rare earth alloys (such
as SmCos) and then by Smy(Co,Fe,Cu);; and Nd,Fe,B (tP68) with a progressive
decreasing of volume and weight of magnets per unit energy product.

6.3. Tetrahkedral structures

This section is mainly dedicated to the presentation of a few typical so-called tetrahedral
structures. For the simplest ones, normalized interatomic distances and numbers of equidistant
neighbours are shown in fig. 30. The graphite structure will also be described.

6.3.1. cF8-C (diamond) and tI4-8Sn structural types
cF8-C (diamond) type.
Face-centered cubic, space group Fd3m, No. 227.
Atomic positions:

References: p. 363.
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261 a) C (diamend)-type
N
16
8]
ol L1 11
1 2 d /dpmin
24 .
N | b ZnS(sphalerite)-type
164
* + +
8|
+ &
ol 1

1 12 14 16 18 2 22 d/dy,

Fig. 30. Distances and coordinations in the cF8—C diamond and ¢F8—ZnS sphalerite type structures.
a) cF8—C (diamond) type structure.
b) XY compounds of cF8-ZnS type structure:

(+) X-Y (or Y-X) coordination.

(*) X=X (or Y-Y) coordination.

8 C in a) 0,0.0; 03,35 2.0:3: 32,05 011 o3 $ads 1
(This group of atomic positions corresponds to the so-called invariant lattice complex D;
see sec. 3.1.).
The coordination formula is 3[C,,,]
The layer stacking symbols are:
Triangular (T) nets: Cj C4;, Ch, C2,Csy CS1
Square (S) nets: CgCy C Sy Crn Cry
For the prototype itself, C diamond, a=356.69 pm.
The diamond structure is a 3—dimensional adamantine network in which every atom is
surrounded tetrahedrally by four neighbours. The 8 atoms in the unit cell may be
considered as forming two interpenetrating face centered cubic networks. If the two
networks are occupied by different atoms we obtain the derivative cF8-ZnS (sphalerite)
type structure. As a further derivative structure, we may mention the tI16-FeCuS, type
structure (See fig. 31). These are all examples of a family of “tetrahedral” structures
which have been described by Parthé and will be briefly presented in sec. 7.2.1.

Si, Ge and aSn have the diamond-type structure. The t/4—BSn structure (a=583.2
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pm, c=318.2 pra) (4 Sn in a) 0,0,0; 0.3,4,; 1.1.%; 1,0.2; space group I4,/amd, No. 141) can
be considered a very much distorted diamond type structure. Each Sn has 4 close
neighbours, 2 more at a slightly larger (and 4 other at a considerably larger) distance.
The BSn unit cell is reported in fig. 32.

6.3.2. Structural types: cF8-ZnS sphalerite and hP4-ZnO (ZnS wurtzite)
cF8-ZnS sphalerite
Face-centered cubic, space group F43m, No. 216.
Atomic positions:

a) /?

@S |

O In

b)

@ Cu

® Fe

OS

Fig. 31. a) cF8-Zn3 sphalerite and b) t116-FeCuS, (chalcopyrite) type structures.

References: p. 363.
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Fig. 32. tI4-8Sn type structure.

4 Zn in a) 0,0,0; 0,1,%; 1,045 $.4,0

4 8 in ©) 1ips §35 b P

In terms of a combination of invariant lattice complexes (see sec. 3.1) we may therefore
describe the sphalerite structure as ZnS: F+F”,

Coordination formulae:

3[ZnS,,,] (ionic or covalent description)

333[Zny,,15](S12/12]4/4 (metallic description)

For the prototype itself, ZnS sphalerite, a=541.1 pm.

Structural type hP4-ZnO or ZnS wurtzite

hexagonal, P6;mc, No. 186.

Atomic positions

2Zninb (1) i3}z 3,3,;+z (z z})

200r2Sinb (2 12z 3L +2 (z=2)

Coordination formula: 3[ZnO,,]

For the prototypes themselves, ZnO: a=325.0 pm, ¢=520.7 pm, ¢/a =1.602; ZnS
(wurtzite): a=382.3 pm, ¢=626.1 pm, ¢/a=1.638. The atomic positions correspond, for
both types of atoms, to similar coordinate groups (to the same Wyckoff positions) with
different values of the z parameter. For ZnO z,,=0, z,=0.382; and for ZnS z, =0,
zg=0.371.

6.3.3. General remarks on “tetrahedral structures” and polytypes.

tI16-FeCuS2, hP4-C lonsdaleite, 0P16-BeSiN2 types and polytypes

Compounds, isostructural with the cubic cF8—ZnS sphalerite include AgSe, AIP,
AlAs, AISb, AsB, AsGa, Asln, BeS, BeSe, BeTe, BePo, CdSe, CdTe, CdPo, HgS, HgSe,
HgTe, etc. (possibly in one of their modifications).

The sphalerite structure can be described as a derivative structure of the diamond type
structure. Alternatively we may describe the same structure as a derivative of the cubic
close-packed structure (cF4-Cu type) in which a set of tetrahedral holes has been filled-
in. (This alternative description would be especially convenient, when the atomic
diameter ratio of the two species is close to 0.225: see the comments reported in
sec. 6.2.2.).
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In a similar way the closely related hP4-ZnO structure can be considered as a
derivative of the hexagonal close-packed structure (hP2-Mg type) in which, too, a set of
tetrahedral holes has been filled-in.

Compounds, isostructural with ZnO include some forms of Agl, BeO, CdS, CdSe,
CuX (X=H, C], Br, I), MnX (X =S, Se, Te), MeN (Me=Al, Ga, In, Nb), ZnX (X=0,
S, Se, Te).

In order to have around each atom in this hexagonal structure, four exactly equidis-
tant neighbourir.g atoms, the axial ratio should have the ideal value \/% , that is = 1.633.
The experimental values range from 1.59 to 1.66. The ideal value of one of the parame-
ters (being fixed at zero the other one by conventionally shifting the origin of the cell)
is z=3/8=0.3750.

The C diamond, sphalerite and wurtzite type structures are well-known examples of
the “normal tetrahedral structures” (see sec. 7.2.1.).

Several superstructures and defect superstructures based on sphalerite and on wurtzite
have been described. The t/16-FeCusS, (chalcopyrite) type structure (tetragonal, a =525
pm, ¢ = 1032 pm, c/a=1.966) (see fig. 31b), for instance, is a superstructure of sphalerite
in which the two metals adopt ordered positions. The superstructure cell corresponds to
two sphalerite cells stacked in the c-direction. The ¢/2a ratio is nearly 1. As another
example we may mention the oP16-BeSiN, type structure which similarly corresponds to
the wurtzite type structure.

The degenerate structures of sphalerite and wurtzite (when, for instance, both Zn and
S are replaced by C) corresponds to the previously described cF8—diamond type structure
and, respectively, to the hP4—hexagonal diamond or lonsdaleite which is very rare
compared with the cubic, more common, gem diamond. The unit cell dimensions of
lonsdaleite (prepared at 13 GPa and 1000°C) are a=252 pm, ¢=412 pm, ¢/a=1.635.
(Compare with ZnS wurtzite).

While discussing the sphalerite and wurtzite type structures we have also to remem-
ber that they belong to a homeotect structure type set. (See sec. 4.3.)

The layer stacking sequence sgmbols (triangular nets) of the two structures are:
Sphalerite: Znj S Zn}; S5, Zng, Si,

Wurtzite: Zng Sos; Z0 15 Segr -

In the first case we have (along the direction of the diagonal of the cubic cell) a
sequence ABC of identical “unit slabs” (“minimal sandwiches”) each composed of two
superimposed triangular nets of Zn and S atoms. The “thickness” of the slabs, between
the Zn and S atom nets is 0.25 of the lattice period along the superimposition direction
(cubic cell diagcnal: a\/3— ). Itis (0.25 \/3— *541) pm =234 pm. In the wurtzite structure we
have a sequence BC of slabs formed by sandwiches of the same triangular nets of Zn
and S atoms (their thickness is = 0.37 x¢=(0.37 * 626.1) pm=232 pm).

With reference to the aforementioned structural unit slab the Jagodzinski-Wyckofi
symbol of the two structures will be:

ZnS sphalerite: ¢; ZnS wurizite: h.

In the same (equiatomic tetrahedral structure type) homeotect set many more structures
occur often with very long stacking periods. Several other polytypes of ZnS itself have

References: p. 363.
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been identified and characterized. The largest number of polytypic forms and the largest
number of layers in regular sequence have, however, been found for silicon monocarbide.
A cubic form of SiC is known and many tenths of rhombohedral and hexagonal
polytypes. (In commercial SiC a six-layer structure, hcc, is the most abundant). All have
the same a,,,, =~ 308 pm, the ¢, of their hexagonal (or equivalent hexagonal) cells are all
multiples of = 252 pm and range from 505 pm to more than 150000 pm (up to more than
600 Si-C slabs in a regular sequence).

6.3.4. An important non-tetrahedral C structure. The hP4-C graphite

In comparison with the previously described tetrahedral structures of C we may
mention here the very different structure that carbon adopts in graphite (see fig. 33).
hP4-C graphite. Hexagonal, space group P6,/mmc, No. 194.
Atomic positions:
2 Cinb) 0,0, 0,03;
2 Cin o) 344 55
Coordination formula: 2[C, ]
The lattice parameters are a=246.4 pm and c=671.1 pm; c/a=2.724.
Different varieties, however, of graphite may be considered: the actual structure, in fact,
and unit cell dimensions and layer stacking can vary depending on the preparation
conditions, degree of crystallinity, disorientation of layers, etc.

In crystalline hP4—graphite, sheets of six-membered rings are situated so that the atoms
in alternate layers lie over one other, and the second layer is displaced according to the
stacking symbol C&, C,, (compare with fig. 9). Whereas in diamond the bond length is
154 pm, in graphite the C~C minimum bond lenght is 142 pm in the sheets and 335 pm
between sheets. This may be related to the highly anisotropic properties of this substance.
(It may be said, for instance, that properties of graphite in the sheets are similar to those
of a metal while perpendicularly are more like those of a semiconductor).

In conclusion, notice also that in terms of combinations of invariant lattice complexes
the positions of the atoms in the level 1 may be represented by 21,5 G and those in the
level 3 by 4,33 G (where G is the symbol of the “graphitic” net complex, here presented
in non-standard settings by means of shifting vectors; see sections 3.1. and 3.5.2.).

6.4. cF8-NaCl, cF12-CaF,, and cF12-AgMgAs types

In this section the NaCl type, CaF, type (and the related AgMgAs type) structures are
described.

In fig. 34 the normalized interatomic distances and the equidistant neighbours are
shown for the NaCl and CaF, structures.

6.4.1. cF8-NaCl type structure and compounds
Face-centered cubic, space group Fm3m, No. 225.
Atomic positions:

4 Na in a) 0,0,0; 01 %; 1,04 110,
4 Cl in b) 1,43 4,0,0; 0,4,0; 0,0.5;
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Fig. 33. Graphite structure.

a) unit cell with the indication of the atoms at the levels z=1 and 2 (part of a second, superimposed cell is
also shown).

b) the hexagonal ret formed at level z=1 is shown (four adjacent cells are indicated).

Coordination formula: 333[Na,,,,]1[Clyy, 2166
Layer stacking symbols:

Triangular (T) nets: Naj Cllc,6 Naﬁ3 Cly, Na§3 Cls‘z6
Square (S) nets: Naj Naj Cl; Cl,,, Cl}, Na;,

For the prototype itself, NaCl, a=564.0 pm.

(A sketch of the NaCl unit cell is shown in fig. 18.)

A large number of compounds belong to this structure type, besides several alkali
metal halides, for instance, nearly all the (partially ionic covalent) 1:1 compounds formed
by the rare earths and the actinides with N, P, As, Sb, Bi, S, Se, Te, Po, by the alkaline
earths with O, S, Se, Te, Po, etc.

Notice that we may also describe this structure as a derivative of the cubic close-
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24,
N | a NaCl-type + *
16}
*
8t + H *
1 2 d/d,
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N { b) CaF,-type + +
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»*
8t 7 | N
0 . . TI . . . -
1 2 d/d,
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* + 4
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Fig. 34. Distances and coordinations in the cF8-NaCl and cF12-CaF, types structures.
a) XY compounds of cF8—NaCl type structure:
(*) X=X (or Y-Y) coordination.
(+) X-Y (or Y-X) coordination.
b) ¢F12-CaF, type structure. Coordination around Ca:
(*) Ca—Ca; (+) Ca-F,
¢) CaF, type structure. Coordination around F
(*) F-F; (+): F=Ca.

packed structure (cF4—Cu type), in which the octahedral holes have been filled in. This
description, however, may be specially convenient when the atomic diameter ratio
between the two elements is close to the theoretical value 0.414. In this case the small
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spheres will fit exactly into the octahedral holes of the close-packed arrangement of the
metal atoms. (See sec. 6.2.2.). This could be the case of a number of “interstitial
compounds”. Compounds of the ftransition metals having relatively large atomic radii
with non metals having small radii (H, B, C, N, possibly O) may be simple examples of
this type. (General properties of these compounds were discussed by HAGG [1931]).

Examples of typical phases belonging to this group may be a number of “mono”
carbides, nitrides, etc.

The NaCl type structure is shown by several monocarbides MeC (or more generally
MeC,_)) such as TiC,_, (homogeneous in the composition range = 32-49 at% C), ZrC,_,
(= 33-50 at% C), HfC,_, (=33-50 at% C) and ThC, (with a very large homogeneity
range at high temperature). All the aforementioned monocarbides are stable from room
temperature up fo the melting points (which are among the highest known: = 3500°C for
ZrC and = 4000°C for HfC). The carbides VC,_, (37-48 at% C), NbC,_, (40-50 at% C)
are stable only at high temperature: at lower temperature, transformations associated with
C-atom ordering have been reported, resulting in the formation of V,C,, V,C;, Nb,C;
structures. WC, , is a NaCl type high temperature phase homogeneous between 37-39
at% C. At 50 at% C another structure is formed: the hP2-WC type.

Among the NaCl type mononitrides we may mention VN,_,. At high temperature (up
to the melting point = 2340°C) we have a large homogeneity field (= 33-50 at% N). The
composition chznges result from variation in the number of vacancies on sites in the N
sublattice, with x being the fraction of sites randomly vacant. At lower temperature, in
the composition range 43—46 at% N, an ordering of the N atoms has been observed,
resulting in a tetragonal superstructure containing 32 V atoms and 26 N atoms in the unit
cell. In the W-N system, a WN,_,, NaCl type phase, has been observed in the composi-
tion range = 33-50(?) at% N; hP2-WC type structure, however, has been described at 50
at% N.

As a final example, we may mention the NaCl type phases formed in the V-O and
Ti—O systems. The (VO,,,) phase is homogeneous in the composition range 42 to 57 at%
O. Lattice parameter determination in combination with density measurements evidenced
that, in the structure, vacancies occur in both V and O sub-lattices through the entire
range of composition. At the stoichiometric composition VO there are = 15% of sites
vacant in each sublattice.

In the Ti-O system, yTiO (high temperature form, homogeneous in the composition
range 35 to 55 at% O) has the NaCl type structure. (Other forms of the monooxide
BTiO, «TiO, B8Ti,_0, aTi, O have ordered structures based on yTiO.) In the structure
there are atoms missing from some of the sites. According to what is summarized by
HyYDE and ANDERSSON [1989], in TiOyg, = 36% of the oxigens are missing, in TiO,
(which, of course, can be represented also with the stoichiometry Ti,;,0) = 20% of the
Ti atoms are missing and in = TiO both kinds of atoms are missing (= 15% of each): see
fig. 35.

6.4.2. cF12-CaF, type and antitype structures and compounds
Face-centered cubic, space group Fm3m, No. 225.

Atomic positions:

References: p. 363.
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Fig. 35. Experimental densities of titanium oxides (continuous lines). The upper dotted line gives the values

computed for a 100% occupancy of the cation sites in the NaCl structure type (from HYDE and ANDERSSON
{1989)).

O]

4 Cain a) 0,0,0; 0,3.,3; £,0.%; +.1.0;
8 Fin ©) 3.4 b 3 144 1y s 100
Coordination formula: 333[Ca,,/1,][Fe/cls/4
Layer stacking symbols:
Triangular (T) nets:
Cay Fyyy, Fyjy Cayy By By Cag B Fippyy
Square (S) nets: Ca, Caj Ef, F,), Ca, Fy, Fy),
For the prototype itself, CaF,, a=546.3 pm.
As pointed out in the description of the cubic close-packed structure (cF4—Cu type) this
structure may be described (especially for certain values of the atomic diameter ratio) as a
derivative of the Cu type structure in which two sets of tetrahedral holes have been filled in.
A ternary ordered derivative variant of this structure is the cF12-AgMgAs type.
Several (more or less ionic) compounds such as CeO,, UO,, ThO,, etc. belong to this
structural type.
Several Me,X compounds, with Me=Li, Na, K, X=0, S, Se, Te), also belong to this
type. In this case, however, the cation and anion positions are exchanged, Me in ¢) and
X in a) and these compounds are sometimes referred to a CaF,-antitype. Typical (more

333.
49444
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metallic) phases having this structure are also, for instance, AuAl,, PtAl,, Mg,Pb, Mg,Sn,
Mg,Ge, Mg,Si.

6.4.3. Structural type: cF12-AgMgAs
Face-centered cubic, space group F43m, No. 216.
Atomic positions:

4 As in a) 000 0,3.3; .0.35 33,05
4 Aginc) 4,4,4, 1 Do

4 Mg in d) 33,3 35485 $a4> 100
Layer stacking symbols;
Trlangular (T nets
Asg Mgy, Ag. Asm Mgsnz Agmz A52/3 Mgsm Agu/lz
Square (S) nets: Asg Asy Agy Mgy, As,), Mgy, Agy,
For the prototype itself, AgMgAs, a=624 pm.

In systematic investigations of MeTX ternary alloys (Me = Th, U, rare earth metals, etc.,
T =transition metal, X element from the V, IV main groups) several tens of phases
pertaining to this structure type have been identified. For the same group of alloys,
however, other structural types are also frequently found. The hP6—Caln, type and its
derivative types often represent a stable alternative. The relative stabilities of the two
structures (especially as a function of the atomic dimensions of the metals involved) have
been discussed, for instance, by DWIGHT [1974], MARAZZA et al. [1980, 1988], WENSKI
and Mewis [19€6].

6.5. hP4-NiAs, cP3-CdI,, hP6-Ni,In, 0P12-Co,Si, 0P12-TiNiSi types; hP2-WC,
hP3-AlB,, hP6-Caln,, hP9-Fe,P types, tI8-NbAs, tI8-AgTITe, and
t110-BaAl, (ThCr,Si,) types, t112-ThSi, and tI12-LaPitSi types

In this section a number of important interrelated structures are presented. A first
group is represented by the cP3-Cdl,, hP4-NiAs and hP6-Ni,In types. Some comments
on the interrelations between these structures have been reported in sec. 4.1. A further
comparison may also be made by considering their characteristic triangular net stacking
sequences:
hP3-Cdl, Cdj1, 1,
hP4-NiAs  Nij As}, Ni/y Asy,
hP6-Ni,Jn  Nij Nij, In}, Nijp, Niy, Iy,

We see, on passing from Cdl, to the NiAs type the insertion of a new layer at level
1 and, from NiAs to Niln,, the ordered addition of atoms at levels } and 3.

In this section, moreover, the typical non-metal atom frameworks characteristic of the
AlB,, and derivative structures (“graphitic” layers) and of «aThSi,, and derivative
structures (“hinged”, tridimensional framework) will also be presented, compared and
discussed.

The groups cf more or less strictly interrelated structures which will be considered in
this section are those corresponding to the hP2-WC, hP3-AlB,, hP6-Caln, and hP9-Fe,P

References: p. 363.
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types, and, respectively, to the tI8-NbAs, tI8-AgTITe,, tI10-BaAl, (and tI10-ThCr,Si,)
types and to the tI12-«-ThSi, and tI12-LaPtSi types.

6.5.1. Structural type: hP4-NiAs
Hexagonal, space group P6;,/mmc, N.194,
Atomic positions:
2 Ni in a) 0,0,0; 0,0.};
2 Asinc) }i1 353
Coordination formula: 13[Ni,,,]As/
For the prototype itself, a=361.9 pm, ¢ =504 pm, c/a=1.393.

According to HYDE and ANDERSSON [1989], the data reported have to be considered as
corresponding to an average slightly idealized structure, corresponding for several
compounds to the form which is stable at high temperature. At room temperature, in the
real structure, there are very small displacements of both Ni and As from their ideal
average positions. The structure should, therefore, be better described by:

2 Ni in a) 0,0,z; 00,2 +z; (z=0)
2 Asinb) 13z 355 +2 (z=D)
in the space group P6;mc, No. 186.

The small (probably correlated) displacements of the atoms produce several sorts of
modulated structures (see sec. 4.4.).

6.5.2. Structural type: hP3-Cdl,
Hexagonal, space group P3m1, No. 164.
Atomic positions:
1 Cd in a) 0,0, 0
21lind) 332 35.-2;
Coordination formula: 2{Cdl,,,]
For the prototype itself, Cdl,, a=424.4 pm, c=685.9 pm, c/a=1.616 and z=0.249.

Typical phases pertaining to this structural type are CoTe,, HfS,, PtS,, etc. and also Ti,O
(which, owing to the exchange in the unit cell of the metal/non-metal positions may be
considered to be a representative of the Cdl,-antitype).

6.5.3. Structural type: hP6-Ni,In
Hexagonal, space group P6,/mmc, No. 194.
Atomic positions:
2 Ni in a) 0,0,0; 0,0.};
2 In in C) 3!?!%’ %’%'3’
2 Niind) 333 H4as
Coordination formula: 3{InNig ¢Nis,s]
For the prototype itself, a=419 pm, ¢c=512 pm, ¢/a=1.222.

Typical phases assigned to this structural type are, for instance: Zr,Al, Co,Ge, La,In,
Mn,Sn, Ti,Sn and several ternary phases such as: BaAgAs, CaCuAs, CoFeSn, LaCuSi,
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VFeSb, KZnSb, etc.

A distorted variant of the InNi, type structure is the oP12-orthorhombic structure of
the Co,Si, (or PbCl,) type: 3[SiCo,,sCo,,s], that is total coordination 10 of Co around Si
with ¢ +# =2 =2 Co atoms for each Si atom). A ternary derivative of this type is the
oP12-TiNiSi type (prototype of the so-called E phases).

6.5.4. Structural types: oP12-Co,Si (PbClL,) and oP12-TiNiSi
Orthorhombic, space group Pnma, N.62.
In these structural types the atoms are distributed in three groups of positions correspon-
ding (obviously with different values of the x and z free parameters) to the same type of
Wyckoff positions (Wyckoff position c).

Atomic positions: in Co,Si in TiNiSi
¢ (1)) x,5,2; 7-%.37%Z; 4 Co 4 Ti
—X,3.-Z; X2

¢ (2)) XippZ; 7-Xogupt+2Z; 4 Co 4 Ni
—X.3,—2Z; 1+x;44-z;

¢ 3) X4, 33,3542 4 Si 4 Si

~X,3,Z; $+Xgi-2;
For the prototypes:
Co,Si: a=491.8 pm, b=373.8 pm, c=710.9 pm, a/¢=0.692; x,,=0.038, z.,,=0.782;
Xey=0.174, 2,5, =0.438; X.3,=0.702, z,4,=0.389.
TiNiSi: a=614.84 pm, b=366.98 pm, c=701.73 pm, a/c=0.876; x,,,=0.0212,
2,y =0.8197; x,,,=0.1420, z,,,=0.4391; x,;,=0.7651, z.;=0.3771.
Co,Si is the prototype of a group of phases (also called PbCl, type) which can be
subdivided into two sets according to the value of the axial ratio a/c which is in the
range from 0.67 to 0.73 for one set (for instance, Co,Si, Pd,Al, Rh,Ge, Pd,Sn, Rh,Sn,
etc.) and in the range from 0.83 to 0.88 for the other set (for instance PbCl,, BaH,(h),
Ca,Si, Ca,Pb, (GdSe,, ThS,, TiNiSi, etc.) (PEARSON [1972]).
The ternary variant TiNiSi type is also called E-phase structure. Many ternary com-
pounds belonging to a MeTX formula (Me =rare earth metal, Ti, Hf, V, etc., T = transit-
ion metal of the Mn, Fe, Pt groups, X =Si, Ge, Sn, P, etc.) have this structure.

6.5.5. Structural type: hP2-WC
Hexagonal, space group P6m2, No. 187.
Atomic positions:
1 W in a) 0,0,0,;
1Cind) h24;
For the prototype itself, a=290.6 pm, ¢=283.7 pm, ¢/a=0.976.
This structure type with the axial ratio ¢/a close to 1 is an example of the Higg
interstitial phases formed when the ratio between non-metal and metal radii is less than about
0.59. The structure can be described as a tridimensional array of trigonal prism of W-
atoms (contigunus on all the faces). Alternate trigonal prisms are centered by C-atoms.

References: p. 363.
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Compounds belonging to this structure type, for instance, are: IrB, OsB, RuB, MoC,
WC (compare, however, with the NaCl type phase), NbN, WN, MoP, etc.

6.5.6. Structural types: hP3-AlB, and hP3-BaPtSb; hP3-w, Cr-Ti phase

Structural type: hP3-AlB,

Hexagonal, space group P6/mmm, No. 191.

Atomic positions:

1 Al in a) 0,0,0;

2 B in d) 345 fa7;

Coordination formula: 323[Alg,51[Bs,/3112/6

For the prototype itself, a =300.5 pm, c=325.7 pm, ¢/a=1.084.

The structure can be considered a filled-up WC structure type. The B-atoms form a
hexagonal net and center all the Al trigonal prisms. The arrangement of the boron atoms
in their layers is the same as that in graphite (see fig. 9 and sec. 6.3.4). (See sec. 6.5.10.
for a comparison between the planar graphitic net and similar threedimensional networks).
Several B, Si, Ge, Ga, etc., binary and ternary compounds have been described as
pertaining to this structure or, possibly, to its variants (many of them deficient in the
second component and corresponding to different stoichiometries in the 1:2 to 1:1.5
range). The axial ratio of phases with this structure varies between very wide limits. The
relationships between axial ratio, atomic radii ratio of the elements involved and the role
of the different bonds have been discussed by PEARSON [1972]. In the specific case of
AlB, (c/a= 1.08) the important role of the graphite-like net of B-atoms in determining
the phase stability has been evidenced.
A disordered, AlB, type, ternary phase (= Ce,NiSi;) has been presented in table 3.
A variant (ordered derivative structure) of the hP3—-AIB, type, previously discussed
in sec. 4.1 and presented in fig. 17, is the hP3-BaPtSb type, hexagonal, space group
P6m2, No. 187. Another compound with this structure is, for instance, ThAuSi. The
atomic positions are the following:
1 Ba (or Th) in a): 0,0,0;
1 Pt (or Au)in d) 12}
1 Sb (or Si) in £): 2,15,
The layer-stacking sequence symbols of the three previously mentioned structures are:
WC type, triangular (T) nets;
W5 Cos;
AlB, type, triangular, hexagonal (T, H) nets:
AloA B(;‘,s;
ThAuSi type, triangular, hexagonal (T,H) nets:
Th) Augs Sigs.
Another ordered derivative structure of the AlB, type is the Er,RhSi; type, hexagonal,
space group P62c, No. 190 with the following atomic positions:
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2 Er in b): 0,0,; 0,0.3;
4 Rb in f): 1,3,2; 3342 352 24 44z
6 Er in h): X,y4; =y.X—y.35 y=X,—X45 ¥X.35 XYy —Xy—X3
12 Si in i) X,y,25 —Y,X=Y,25 Y=X,~X,25 X,Yb~Z; —Y,X—Yd~2Z; Y—X,~X;3—Z;
V.X,<Z5 X—Y,—Y,~2; —X,Y—X,—Z; V,X4+2Z; X—Y,~Yi+Z; —X,y—X 3+2.
(with zp, =0; x5, =0.481; y;.=0.019; x5,=0.167; y5;=0.333; 2z, =0).
The different ordering relationships between these structures have been discussed in
sec. 4.1. (see also fig. 17).

Finally, while considering the structural characteristics of the AIB, type phases, we
may mention that boron-centered triangular metal prisms are the dominating structural
building elements in the crystal structures of simple and complex metal borides. Building
blocks of centered triangular prisms as base units for classification of these substances
have been considered by RoGL {1985, 1991] in a systematic presentation of the crystal
chemistry of borides.

We may mention here, also as an example of “modular” description, that several
structures may be described in terms of cyclic translations about a 6, axis of blocks of
AlB, type columns: see fig. 36.

Structural type: hP3-w,Cr-Ti

The w-phase, a abiquitous metastable phase in Ti (or Zr or Hf)-transition metal systems,
is approximately isotypic with AlB,. (The axial ratio of the unit cell, however, instead of
being close to unity, is very much smaller and has a value of about 0.62.) The compo-
nents are randomly arranged. One third of the atoms are distributed in a triangular net at
2 =0 forming trigonal prisms. Two thirds of the atoms are placed near the centers of the
prisms (slightly displaced alternately up and down) forming a rumpled 6 net at z=1.
(The space group is P3ml.)

6.5.7. Structural type: hP6-Caln,
Hexagonal, space group P6,/mmc, No. 194.
Atomic positions:
2 Ca in b) 0,0%; 0,0.3;
4Tnin 0322 144 21— 2 B34z
Layer stacking symbol:
Triangular (T) rets:
In,j,, Cajy, Ings, In, {6 Cagyy In g
For the prototype itself, a=489.5 pm, ¢=775.0 pm, ¢/a=1.583 and z=0.455.
This structure can be described as a distortion (a derivative form) of the AlB, type
structure. Ca-atoms form trigonal prisms alternatively slightly off-centered up and down
by In-atoms.

In fig. 37 the normalized interatomic distances and the equidistant neighbours are shown
for the NiAs and Caln, structures.

References: p. 363.
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Fig. 36a,b,c. AIB,~type derivative structures generated by cyclic translation of blocks of AlB,~type columns.
The projections of the unit cells (all having the same ¢ value) on the x,y plane are shown.

a) hP22-Ce,Ni,Si, structure (a=1211.2 pm, ¢=432.3 pm).

b) hP40—=Ce,Ni,Si, structure (a=1612.0 pm, c=430.9 pm).

¢) hP64—=Pr (Ni,Si,, structure (a=1988.1 pm, ¢=425.5 pm)
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Fig. 36d. AlB,—type derivative structures generated by cyclic translation of blocks of AlB,~type columns. The

projections of the unit cells (all having the same ¢ value) on the x,y plane are shown.

d) hP22-Ce,Ni,Si, structure (compare with a)): the arrangement of the building blocks around the z-axis (6,
symmetry axis) is shown.
Black circles represent the rare earth atoms (Ce or Pr), open circles Si (and Si+ Ni); small circles are atoms at
level 4, large circles at level 3. Double circles (at cell origin) represent Ni atoms at level 0 and at level &.

6.5.8. Structural type: hP9-Fe,P

Hexagonal, space group P62m, No. 189.

Atomic positions:

1Pinb) 0,05

2Pinc) 140; $3.0;

3 Fe in f) x,0,0; 0,x,0; —x,-x,0;

3 Fe in g) x,0.3; 0,x.3; — X,— X33

For the prototype itself, a=586.5 pm, c=345.6 pm, ¢/a=0.589 and x (f)=0.256 and
x (g)=0.594.

In the Fe,P type structure there are 4 different groups of equipoints. The distribution of
P and Fe atoms in different groups of positions is reported. A number of isostructural binary
compounds are xnown. To the same structure, however, ternary (or even more complex)
phases may be related if different atomic species are distributed in the different sites.
This structure can be considered as an example of more complex structures built up
by linked triangular prisms of Fe-atoms.
Several ordered ternary phases have structures related to the Fe,P type.

6.5.9. Structural types: tI8-NbAs, tI8-AgTITe, and t110-BaAl, (ThCr,Si,)

The three structural types tI8-NbAs, tI8—-AgTITe, and tI10-BaAl, (with its ordered
ternary variants such as the t[10-ThCr,Si,) belong to a group of interrelated structures.

References: p. 363.
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Fig. 37a,b. Distances and coordinations in the hP4-NiAs and hP6—Caln, types structures.
a) hP4-NiAs type structure. Coordination around Ni:

(+) Ni-As; (*) Ni-Ni.
b) hP4-NiAs type structure. Coordination around As:

(+) As-Ni; (*) As—As.

All these structures contain among their building parts layers of (metal atoms) triangular
prisms with specific distributions of the (non-metal) atoms centering the prisms
(PEARSON [1972]). The prisms are parallel to the basal planes of the tetragonal unit cells.

Features of the hP2-WC type structure (characterized by an array of trigonal prisms
alternatively centered by C-atoms) are, therefore, present in the aforementioned struc-
tures. (In the hP2-WC structure, of course, the prism axes are lying in the ¢-direction of
the hexagonal cell.)

Another convenient description of these group of structures may be in term of 4* net
layer stacking. The corresponding square net symbols for the 8-layers stacks are the
following ones:
tI8—NbAs:
th; Asoz.w Nb03.25 A501.42 Nb(‘;.s As03.67 Nb02.75 A503.92
tI8-AgTITe,:

Tltl) Tegss Ago?zs Teo Tlys Te 0 Aors Teos
tI10-ThCr,Si,:
Th(l) Si(:n Cros,zs Siol.ss Thofs Siolm Cr05.75 Si(fss
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Fig. 37c,d. Distances and coordinations in the hP4-NiAs and hP6—Caln, types structures.
¢) hP6-Caln, type structure. Coordination around Ca:

(+) Ca-In; (*) Ca—Ca;
d) hP6-Caln, type structure. Coordination around In:

(+) In—Ca; (*): In-In.

Structure type: t1IB-NbAs

Body-centered tetragonal, space group I14,md, No. 109.

4 Nb in a(1): 0,0,z; 0.3,% +2z; 111 +2, 1,03 +z;

4 As in a(2): 0,0,z; 03} +z; LY +2; 5,02 +z;

For the prototype: itself a=345.2 pm, c=1168 pm, c/a=3.384, z(Nb) =0, z(As)=0.416.

Structural type: t18-AgTlTe,
Body-centered tetragonal, space group I4m2, No. 119.
2 Tl in a): 0,0,0,; 3.4.3;
2 Agin c): 04, 3.0.3;
4 Te in e): 0,0,z; 0,0,—z; 1,34 +7; 3,352
For the prototype itself, a=392 pm, ¢=1522 pm, ¢/a=3.883 and z(Te) =0.369.
Structural type: t110-BaAl, and t110-ThCr,Si,
The ThCr,Si, is one of the ordered ternary variant of the BaAl, type, frequently found in
several ternary compounds.
The two structures may be described by the following occupation of the same atomic
positions in the space group I4/mmm (No. 139).
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in BaAl, in ThCr,Si,
a) 0,0,0; 3.3,; 2 Ba 2 Th
d) 045 404% 4 Al 4 Cr
503 0.3
e) 0,0,z; 0,0,— z; 4 Al 4 Si

227 42100 — %
For the prototypes themselves:
BaAl,, a =453.9 pm, c=1116 pm, c/a=2.459, z=0.38
ThCr,Si,: a=404.3 pm, ¢=1057.7 pm, ¢/a=2.616, z=0.37
The unit cell is presented in fig. 38.
Normalized interatomic distances and numbers of equidistant neighbours are reported

in fig. 39 for the ternary ThCr,Si, type.

Many ternary alloys MeT,X, (Me =Th, U, alkaline-earth, rare earth metal, etc., T=Mn,
Cr, Pt family metal, X =element of the fifth, fourth and occasionally third main group)
have been systematically prepared and investigated (PARTHE and CHABOT [1984], Ross!
etal. [1979]). A few hundreds of them resulted in the ThCr,Si, (or other Al,Ba deriva-
tives) structure. The peculiar superconductivity and magnetic properties of these materials
have been reported. The ThCr,Si, type structure, can be described as formed by T,X,
layers interspersed with Me layers. The bonding between Me and T,X, layers has been
considered as largely ionic. In the T,X, layers T-X (covalent) and some T-T bonding
have to be considered. A detailed discussion of this structure and of the bonding involved
has been reported by HOFFMANN [1987].

In the specific case of the RET,X, phases (RE =rare earth metal) the data concerning

Fig. 38. Unit cell of the tI10-ThCr,Si, type structure (a derivative structure of the t110-BaAl, type).
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Fig. 39. Distances and coordinations in the tI10-ThCr,Si, type structure.
a) Coordination arcund Th:
(+) Th-Si; (*) Th-Th; (o) Th-Cr;
b) Coordination around Cr:
(+) Cr=Si; (*) Cr—Cr; (0) Cr-Th.
¢) Coordination arcund Si:
(+) Si—Cr; (*) Si-Si; (o) Si-Th.

ten series (T'=Mn, Fe, Co, Ni, Cu; X =Si, Ge) have been analysed by PEARSON [1985a].
It has been observed that the cell dimensions are generally controlled by RE-X contacts.
In the case of Mn, however, the RE-Mn contact has to be assumed to control the cell
dimensions (see sec. 7.2.5.).

Magnetic phase transition in RET,X, phases have been described by SzyTUuLA [1992].
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Structural distortions in some groups of RET,X, phases (REPt,Sn,), leading to less
symmetric cells, have been reported by LATROCHE et al. [1992].

An interesting compound belonging to the RET,X, family is EuCo,P,. In a neutron
diffraction investigation of this phase carried out by REEHUIS et al. [1992] the positional
(nuclear) and the magnetic structures were determined. The ordering of the magnetic
moments of the En-atoms and the relation (commensurability) between this ordering and
that of the atomic positions were studied (see sec. 4.4.).

6.5.10. Structural types: tI12-«'ThSi, and tI12-LaPtSi

The oThSi, type structure, and its lattice-equivalent ternary LaPtSi type derivative
can be considered, filled up tI8-NbAs type derivative. These structures can be described
in terms of layers of (metal atoms) triangular prisms parallel to the basal planes of the
tetragonal cells, the prism axes in one layer being rotated 90° relative to those of the
layers above and below.

In the NbAs type structure the As atoms only center alternate Nb prisms. In the
a'ThSi, type structure all the Th-prisms are centered by Si instead of only half of them
(PEARSON [1972]).

We may also compare the three structures in terms of 4* net layer stacking (along the
c-direction of the tetragonal cells): See also fig. 40.

tI8-NbAs:

Nby Asgy; Nbgas Asyg, Nbgs Asos,m Nbg;s Asgy,

tI12-aThSi,:

Tho Sigs Sig17 Thozs Sioss Sigz Tho's Sgss Sigsr Thozs Sigss Sios

tI12-LaPtSi:

Lag Ptyos Sigrr Lagas Ploss Si, Lags Poss Sinss Lagss Plog, Sige,

Structural type: t112~aThSi,

body-centered, tetragonal, space group I4,/amd, No. 141.

4 Th in a): 0,0,0; 0,3,4; $.4.4: 1,03,

8 Siin e): 0,0,z; 044 +2; 3,03-2; 1,54z LAt +2; 5,03 +2, 04,4-2; 0,0,—z.

For the prototype itself a=412.6 pm, c=1434.6 pm, ¢/a=3.477 and z(Si)=0.416,.
Structural type: tI12-LaPtSi

body-centered, tetragonal, space group I4,md, N.109.

4 Lain a(1): 0,0,z; 0,44 +z; 14t +2; 1,02 +z;

4 Ptin a(2): 0,0,z; 0.3, +2; 344 +2; 1,02 +z;

4 Siin a(3): 0,0,z; 03,5 +2; .55 +2; 5,03 +z.

For the prototype itself a=424.90 pm, ¢=1453.9 pm, ¢/a=3.422 and z(La)=0 (fixed
conventionally), z(Pt)=0.585 and z(Si)=0.419.

The unit cells of the two structures are presented in fig. 40.

The ThSi, type structure according to PEARSON [1972] is primarily controlled by the Th-
Si contacts, with the Si-Si contacts exerting a certain influence. Each Si atom has three
close Si neighbours resulting in the three dimensionally connected framework schemati-
cally shown in fig. 40d. This framework (and the Si-Si coordination) can be compared
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a) b)

Th Si, LaPtSi NbAs

® La Nb
Si Pt vac
O s Si As

Fig. 40a,b. Crystal structures of ThSi, and LaPtSi (a) and NbAs (b) with the indication of the atoms which, in
the three structures, occupy the different sites. (Notice the defective character of the NbAs type structure in
comparison with the ThSi, type.) In c) different sections of the LaPtSi structure unit cell are presented with the
indication of the heights along the z-direction and of the codes used for the different atomic position in a
square net (compare with fig. 11). In the NbAs structure, the sections at z=0.08, 0.33, 0.58 and 0.83 are not
occupied by any atoms. The dotted lines in a) show a part of the three-connected framework of Si (or Pt,Si)
atoms. A larger portion of the framework is presented in d).

with the planar graphite hexagonal nets and therefore with, for instance, the hP3-AlB,
type structure (and its ordered variants). In the case of ThSi,, however, one vertex of
each hexagon is always missing and we have parallel sets of planar chains interconnected
to similar perpendicular sets.

It may be interesting to mention that the characteristic structure of this network
described as “hinged” network should have the peculiar feature that the entire framework
could undergo reorganisation by a nearly barrierless twisting type motion. According to

References: p. 363.
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Fig. 40c,d.

BAUGHMAN and GALvVAO [1993] and MOORE [1993], unusual mechanical and thermal
properties may be predicted for substances having all their atoms arranged in such a
framework. These special properties, therefore, may be envisaged for- hypothetical
compounds such as polyacetylene, polydiacetylene, polyphenylene, (BN), phases, etc. and
perhaps for substances containing the hinged network as a part of their structure
(“crowded” hinged network crystals) such as ThSi, compounds.

Finally considering the AIB, and the aThS, type structures we may notice that the similarity
of their bonding arrangements may be further confirmed by the existence of the AlB, structure
also for a different form of ThSi, (8 form, high temperature form) and (as a defective
structure) for = Th,Si;. Following the description presented by BAUGHMAN and GALVAO
[1993]) the AlB, type structure could be called a “crowded” graphitic network structure.
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6.6. Tetrahedrally close-packed, Frank-Kasper structures, Laves phases,
Samson phases

6.6.1. General remarks

A number of structures of several important intermetallic phases can be classified as
tetrahedrally close-packed structures. As an introduction to this subject we may remember,
according to SHOEMAKER and SHOEMAKER [1969] that in packing spheres of equal sizes the
best space filling is obtained in the cubic or hexagonal close-packed structures (or in their
variants). In those arrangements there are tetrahedral and octahedral holes (see the comments
on this point repo-ted in the description of the cF4—Cu type structure in sec. 6.2.2). The local
mean atomic density (the average space filling) is somewhat higher at the tetrahedral holes
than in the larger nctahedral ones. A more compact arrangement might, therefore, be obtained
if it were be possible to have only tetrahedral interstices. It is, however, impossible to fill
space with regular tetrahedra throughout. By introducing some variability in the sphere
dimensions it is possible to obtain packing containing only tetrahedral holes. The tetrahedra
are now no longer regular: the ratio of the longest tetrahedron edge to the shortest, however,
needs not exceed about % in a given structure. The corresponding crystal structure can be
considered to be obtained from the space filling of these tetrahedra (which share faces, edges
and vertices). In structures containing atoms of approximately the same size and within the
aforementioned limits of edge-length ratio, the sharing of a given tetrahedron edge (i.e. an
interatomic link ligand) either among 5 or 6 tetrahedra has to be considered the most favored
situation (according to the systematic analysis of these structures carried out by FRANK and
KASPER [1958, 1959]). On the assumption that only 5 or 6 tetrahedra may share a given edge
the number of tetrahedra that share a given vertex is limited to the values 12, 14, 15 and 16.
The 12 (or 14, 15, 16) tetrahedra sharing a given vertex form, around this point, a
coordination polyhedron with triangular faces. The radii of this polyhedron are the edges
shared among 5 or 6 component tetrahedra and connect the central atom with the polyhedron
vertices, five-fold or six-fold vertices, that is vertices in which 5 or 6 faces meet.

The four possible coordination polyhedra are shown in fig. 41 and correspond to the
following properties:

coordination 12 (regular, or approximately regular, icosahedron): 12 vertices (12 five-fold
vertices) and 20 faces.

coordination 14: 14 vertices (12 five-fold and 2 six-fold ) and 24 faces.

coordination 15: 15 vertices (12 five-fold and 3 six-fold) and 26 faces.

coordination 16: 16 vertices (12 five-fold and 4 six-fold) and 28 faces.

(For symbols used in the coding of the vertex-characteristics see sec. 7.2.7).

Several structures (Frank—Kasper structures) can be considered in which all atoms have
either 12 (icosahedral), 14, 15 or 16 coordinations. These can be described as resulting
from the polyhedra presented in fig. 41. These polyhedra interpenetrate each other so that
every vertex atom is again the center of another polyhedron. All structures in this family
contain icosahedra and at least one other coordination type.

Frank and Kasper demonstrated that structures formed by the interpenetration of the
four polyhedra contain planar or approximately planar layers of atoms. (Primary layers
made up by tessellation of triangles with hexagons and/or pentagons were considered,

References: p. 363.



Ch. 4, §6

308 Riccardo Ferro and Adriana Saccone

CN12

CN 14

CN15

CN 16

Fig. 41. The coordination polyhedra of the Frank—Kasper structures, are shown in two different styles.

a) the relative positions of the coordinating atoms are shown (the central atoms are not reported). (For the
coordination numbers (CN) 12 and 14, one atom of the coordination shell is not visible).

b) the corresponding triangulated polyhedra are shown. Vertices in which 5 or 6 triangles meet are easily

recognizable.
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and intervening secondary layers of triangles and/or squares). For a classification and
coding of the nets and of their stacking see PEARSON [1972] and also SHOEMAKER and
SHOEMAKER [1969] or FRANK and KASPER [1958, 1959].

A short summary of structural types pertaining to this family is reported in table 6;
for a few of them, some details or comments are reported in the following.

6.6.2. cP8-Cr,Si type structure

This structure is also called W0 or B-W type (it was previously believed to be a W
modification instead of an oxide) or A15 type (see section 3.4).
Cubic, space group Pm3n, No. 223.
Atomic positions:
2 Siin a) 0,0,0; 1.3.%;
6 Crin ¢) 4,0.}; 3,04 1.4,0; 2,0, 015 0,13
This structure type is observed for many phases formed in the composition ratio 3:1 by
several transition metals with elements from the III, IV, V main groups (or with Pt
metals or Au). Phases having this structural type are, for instance, Mo,Al, Nb,Al, V,Al,
Ta;Au, Ti;Au, Cr;Pt, Cr;0s, CryAlSi, V,AlSn, NbsGaGe, etc. A number of compounds
with this structure have been found to have significantly high superconducting transition
temperature, T, (among the highest known, before the discovery of the families of super-
conducting complex oxides, such as Ba,YCu;O,, or = Biy(Ca,Sr);Cu,0,,, etc.).
Examples of superconducting, Cr,Si type, phases are:
Nb,Ge (T,=23.2 K, sputtered films), Nb;Ga (T,=20.7 K, bulk), Nb,Sn (T,=18.1 K),
V,Si (T,=16.8 K), V,Ga (T,=14.1 K), Nb;Au (T,=11.5 K), Nb;Pt (T,=9.2 K), Mo,Ir
(T.=8.8 K), etc.
The Cr;,Si type structure does not always remain stable in these materials down to 0 K,
yet the change in crystal structure, when it occurs (for instance, with a tetragonal
structure formed at low temperature as a result of a martensitic transformation) seems not
correlated with T,. Solid solutions in general have lower T, values than the stoichiometric
compounds. (Other superconducting intermetallic phases belonging to different structural
types are, for instance, LuRh,B, (T,=11.7 K, YPd,B;C, (T.,=23 K), quatemary
lanthanum nickel boro-nitrides, etc. See CAVA et al. [1994a, 1994b)).

6.6.3. o phase type structure, (tP30-0Cr-Fe type)

In the space group P4,/mnm, No. 136, the two atomic species, Cr and Fe, are
distributed in several sites with a nearly random occupation. Different atom distributions
have been proposed in the literature (also owing to different preparation methods and
heat treatments). The following distribution is one of those reported in DAAMS et al.
[1991]: two atoms in sites a) (with a 12% probability for Cr and 88% for Fe), 4 atoms
(75% Cr, 25% Fe) in sites f), 8 atoms (62% Cr, 38% Fe) in a set i) of sites, 8 atoms
(16% Cr, 84% Fe) in another set i) and 8 atoms (66% Cr, 34% Fe) in j). The structure
can be considered as made up of primary hexagon-triangle layers containing 3636 + 3%6°
and 6° nodes (in a 3:2:1 ratio) at height ~ 0 and | separated (at height ~1 and 2) by
secondary 3%434 layers (that is layers, in which every node is surrounded, in order, by 2

References: p. 363.
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Table 6
Examples of tetrahedral close-packed structures.
Structural Unit cell dimensions (rounded % of atoms in the center
types values) for the reported of a polyhedron with CN
prototype [pm] 12 14 15 16
cP8-Cr,Si a= 456 25 75
(also called W,0
or B-W type or
AlS type phase).
tP30-oCr,sFe,* a= 880 33 53 13
o phases c= 456
hR39- WFe, a= 476 55 15 15 15
J. phases c=2562
hP7-Zx,Al; a= 543 43 28 28
c= 539
0oP52 = Nb,gNiyAl,* a= 930 55 15 15 15
M phases b= 493
c=1627
oP56=Mo,,CrgNiy* a=1698 43 36 14 7
P phases b= 475
c= 907
hR159 = Mo,,Cr,5Cog,* a=1090 51 23 11 15
R phases c=1934
cl162-Mgl1Zn,,Al* a=1416 61 7 7 25
Laves Phases:
cF24-Cu,Mg a= 704 67 33
hP12-MgZn, a= 522 67 33
c= 856
hP24-Ni,Mg a= 482 67 33
c=1583

* For these phases the reported formulae generally correspond to an average composition within a solid solution
field. This also in relation with a (partially) disordered occupation of the different sites.

triangles, 1 square, 1 triangle and 1 square).

As pointed out by Pearson (by studying the near-neighbours diagram: see sec. 7.2.5.a)
the o-phase structure is a good example of a structure which is controlled by the
coordination factor: all the known phases are closely grouped around the intersection of
lines corresponding to high coordination numbers. (The most favorable radius ratio for
the component atoms is included between 1.0 and 1.1.) It is also possible that the
electron concentration plays some role in controlling the phase stability. The different
phases are grouped in the range 6.2 to 7.5 electrons (s, p and d) per atoms.
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6.6.4. Laves phases: cF24-Cu,Mg (and cF24-Cu,MgSn and cF24-AuBe;),

hP12-MgZn, (and hP12-U,0sAlL ) and hP24-Ni,Mg types

General remarks

The Laves phases form a homeotect structure type set (a family of polytypic struc-
tures). In all of them (described in terms of a hexagonal cell) three closely spaced 3° nets
of atoms are followed (in the z direction of the same cell) by a 3636 net (see figs. 8 and
10). The 3° nets are stacked on the same site as the kagomé 3636 nets which they
surround (for instance: 8-BAC—y-CAB in the “two slabs” MgZn, type (h) structure,
B-BAC-y-CBA-a-ACB in the “three slabs” MgCu, type (c) structure, o-ABC—y-
CBA-a-ACB-B-BCA in the “four slabs (hc)” Ni,Mg type structure, etc.: see sec. 4.3. on
homeotect structure type). The Laves phases, as Frank—Kasper structures, (see table 6),
can also be described by alternative stacking of pentagon-triangle main layers of atoms
and secondary triangular layers (parallel to (110) planes of the hexagonal cell). The
importance of the geometrical factor in determining the stability of these phases has been
pointed out (PEARSON [1972]). The role of the electron concentration in controlling the
differential stability of the different Laves phase types has been also observed. By
studying, for instance, solid solutions of Cu,Mg and MgZn, with Ag, Al, Si (LAVES and
WITTE [1936], KLEE and WITTE [1954]) it was observed that for an average VEC
(valence electron concentration) between 1.3 and 1.8 e/a (electrons per atom) the Cu,Mg
structure is generally formed, for VEC values in the range from =1.8 to 2.2 e/a
generally the MgZn, type structure is obtained. The Ni,Mg type can be observed for
intermediate values of VEC between 1.8 and 2.0.

It may be useful, however, to mention that depending, for instance, on the tempera-
ture different Laves type structures may be observed in the same chemical system. An
example may be the Ti-Cr system for which 3 different structures have been described:
o-TiCr, (MgCu, type, homogeneous in the composition range = 63-65 at% Cr), stable
from room temperature up to = 1220°C; B-TiCr, (MgZn, type, homogeneous from 64 to
66 at% Cr), high temperature phase stable from 800°C up to = 1270°C; and ¥-TiCr,
(Ni,Mg type, = 65-66 at% Cr), high temperature phase stable from 1270°C up to the
melting point (1370°C). Notire that the @ and B8 forms, which can coexist in the
temperature range from 800°C up to 1220°C have slightly different compositions.

Many (binary and complex solid solutions) Laves phases are known. Typically Laves
compounds XM, are formed in several systems of X metals such as alkaline-earths, rare
earths, actinides, Ti, Zr, Hf, etc, with M= Al, Mg, VIII group metals, etc.

Before passing to a detailed description of the principal Laves types, a few more remarks
can be made corcerning the Laves polytypes. An interesting example may be given by the
Li-Mg-Zn alloys (MELNIK [1974], MALLIK [1987]). This system is one of the richest in the
Laves phases among the known ternary systems. It contains, besides MgZn,, eight ternary
compounds L, (the index n denotes the number of slabs) in the following sequence:

L,: MgZn, (hP), a=521.4 pm; c=856.3 pm (=2%428.1)

Lg:  Mg(Lijg2n, 45) (hP), a=521.3 pm; c=3422 pm (=8+427.8)
L, Mg(Liy,,Zn, g) (hP), a=521.5 pm; ¢ =5989 pm (= 14%427.8)
Ly:  Mg(Liy 070, 50) (hR), a=522 pm; ¢ =3841 pm (=9+%426.8)

References: p. 363.
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L,y Mg(Li,,3Zn, ;;) (hP), a=522.3 pm; ¢ =4278 pm (= 10%427.8)

L;: Mg(Liy,sZn, ;5) (hP), a=522.7 pm; c=1709 pm (=4+427.3)

L’y Mg(LiysZn, 5p) (hP), a=1046 pm; c=1705 pm (=4+%426.3)

L’;: Mg(LigseZn, 4,) (hR), a=1051 pm; c=1285 pm (=3*428.3)

L;:  Mg(Liy4,Zn, 43) (cF), a=522.6 pm; ¢=1290 pm (=3+*430)

Notice that the structures with n=3 and 4 exist not only in an ordinary form L,, Ni,Mg,
and L,, MgCu, type cubic, (a=744.8 pm, here described in terms of an equivalent set of
hexagonal axes) but also with doubled unit cell edge a (Ni,Mg type and MgCu, type
superstructures L', and L";).

Structural type: cF24-Cu,Mg and derivative structures

Face-centered cubic cF24-Cu,Mg, space group Fd3m, No. 227.

Atomic positions:

8 Mg in a) 000 0,45 % a5 105 %,%,%"

16 Cuind) $3.3; §.4.45 5, I
'8—’%’%; %’%’%;

Coordination formula: 333 [Mg,,,1[Cug/¢li2/6

For the prototype itself, Cu,Mg, a=704 pm.

Fig. 42 shows the MgCu, packing spheres structure.

Normalized interatomic distances and numbers of equidistant neighbours are shown in

fig. 43.

Ordered variants of this type of structure are the Cu,MgSn type structure and the AuBe;
type structure. The packing spheres structure of AuBe; is shown in fig. 44. The atomic
positions of the two structures correspond to the following occupation of the same
equipoints in the space group F43m (No. 216).

3l.
454>
5.1
s8> B

oo]--
aap.n
m]-—-
.o
0| ¥
-
o]~ Y
o

-

in Cu,MgSn in AuBe;

a) 000 0%% %0’%; %’%’0 4 Sn 4 Au
c) 4’4’4’ %’3’3’ 4 Mg 4 Be
313.331,
434345 4%454>
&) X,X,X; —X,—X,X; —=X,X,~X; X,~X,—X 16 Cu 16 Be

XA K X3 XA HK =X AKX X i-X4X;

KX AHK, 3K, X AHK; 3K, XA3X; 14X,~X,3—X;

IHXAHR XS X AKX} 3K 3HX,—X; HK3—X,~X.

(x=0.625=
We can see that the 8-atom equipoint of the Cu,Mg type structure has been subdivided
into two different, ordered, 4-point subsets in the two derivative structures.

Layers stacking symbols, triangular, kagomé (T,K) nets:

Cu,Mg:

A A c B B B A c c B
Mgg Cug'i3 Mggs Cugie Mg 33 Cugies Mo sy Cggs Mo Cugg Mgy, Cuggs
CuMgSn:

A o A C B B B A C C B
Mgg Cugs Sngzs Cuge Mggs; Cgys Sng sy Cuggs Mo ss Cugg Sngy, Cuggg
AuBe,:

An.a A c B .8 B A c c B
Aug Begy; Begys Begyy Augs; Begys Begss Beggs Augg; Begzg Begg, Beggg
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Mg ()

Fig. 42. cF24-MgChu, type structure (1 unit cell is shown).

Structural type: hP12-MgZn,

Hexagonal, space group P6,/mmc, N. 194,

Atomic positions:

2 Zn in a) 0,0,0; 0,0,3;

4Mgin ) 33,2 353 +2 35 - 2 334 - %

6 Zn in h) x,2x,3; -2x,— X5 X, — X5 —x,-2x3; 2x.x.3; —x,x3;

For the prototype itself, MgZn,, a=522 pm, ¢=856 pm, ¢/a=1.640, z,,=0.062 and
Xz, =0.830.

Coordination formula: 333 [Mg,,  J[Zng,cl;»

Layer stacking symbols, triangular, kagomé (T,K) nets:

Zng Mgol.aoe Zn(fzs Mgolju Zngs, Mgo.css Zngss Mgo?oa

Fig. 45 shows the packing spheres structure for the MgZn, compound.

A ternary ordered variant of this structure corresponds to three different atomic species
in the three equipoint set. An example may be U,0OsAl; (2 Os in a), 4 U in f) and 6 Al
in h)).

Structural type: hP24-Ni,Mg

Hexagonal, space group P6,/mmc, No. 194.

Atomic positions:

4 Mg in e) 0,0,z; 0,0,5 +z; 0,0,—z; 0,0} - z;

4 Mg in 0 33,2 5,55 +2, 35— 2 15 — %

4Niin i3z 35+ 8- 15 -2

6 Ni in g) 3,0,0; 03.0; .1,0; 1,035 053 155

6 Ni in h) x,2x,}; —2x,— x5 x,— x5 —x,-2x,3; 2x,x.2; —x,x3;

For the prototype itself, Ni;Mg, a=482 pm, ¢ = 1583 pm, ¢/a=3.284 and z (e\,) =0.094,
z (fyy,) =0.8442, z (f,)=0.1251, and x (hy)=0.1643.

References: p. 363.
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16{ a) CU2w—type

N ' T * +]|%
81t
. ¥*

N R N

1 2 d/dy,

[ b) Cuy;Mg-type

16r

N * * *

+

8P * + +
oL

1 12 14 16 18 2 d/dg,
Fig. 43. Distances and coordinations in the cF24-MgCu, type structure.
a) Coordination around Mg:
(+) Mg—Cu; () Mg-Mg.
b) Coordination around Cu:
(*) Cu~Cu; (+) Cu-Mg.

The structure can be described by the following layer stacking sequence triangular,
kagomé (T,K) nets:

Nig Mgogs Nigy; Mgg Nigas Mgqs N ig37 Mg Nigso

Mgg'ss Nigg; Mgges Nigrs Mo, Nigs, Mgos,

Coordination formula:

333 [Mg,,,][Nig/¢l12/6

6.6.5. Structures based on frameworks of fused polyhedra, Samson phases

In addition to the Frank—Kasper phases, other structures may be considered in which
the same four coordination polyhedra prevail although some regularity is lost. Many of
these structures and, in particular the giant cell structures studied by SAMSON [1969] can
be described as based on frameworks of fused polyhedra rather than the full interpen-
etrating polyhedra. Among the most important polyhedra we may mention the truncated
tetrahedron: it is shown in fig. 46. It can be related to the CN 16 polyhedron (Friauf
polyhedron) of fig. 41. The two polyhedra can be transformed into each other by
removing (adding) the 4 six-fold vertices of the CN 16 polyhedron (corresponding to
positions out from the center of each of the 4 hexagons of the truncated tetrahedron).
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Fig. 44. Unit cell of the cF24-AuBe, type structure. (Compare with the cF24-MgCu, type structure, fig. 42.)

Several other coordination polyhedra occur in giant cell structures in addition to the
Frank—Kasper polyhedra and to the truncated tetrahedron. (The most important are
polyhedra corresponding to CN between 11 and 16).

The following phases represent a few examples of structures to which the
aforementioned considerations specially apply:

cI58—a-Mn (a=891.4 pm) type structure (and its binary variants, cI58-Ti;Re,, or y-phase
and cI58-y-Mg,Al,,), cF1124-Cu,Cd, type (a=2587.1 pm); cF1192-NaCd, type
(a=3056 pm); cF1832-Mg,Al; (a=2823.9 pm), etc. (In the giant cell structures partial
disorder and/or partial occupancy in some atomic positions have been generally reported,
for cF1124—Cu,Cd;, for instance, the structure was described as corresponding to the
occupation, in several Wyckoff positions, of 388 atomic sites by Cd-atoms, 528 by
Cu-atoms and of 208 by Cu- and Cd-atoms in substitutional disorder.)

7. On some regularities in the intermetallic compound formation and
structures

7.1. Preliminary remarks

As already mentioned in the previous sections, several thousands of binary, ternary
and quaternary intermetallic phases have been identified and their structures determined.
In a comprehensive compilation such as that by VILLARS and CALVERT about 2200 (in
the first edition, [1985]) or about 2700 (second edition, [1991]) different structural types
have been described. The specific data concerning about 17500 different intermetallic
phases (pertaining to the aforementioned structural types) have been reported in the 1¥
edition and 26000 in the 2" one.

As an introductory remark, a little statistical information about the phase and
structure type distributions may be interesting.

References: p. 363.
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Fig. 45. Unit cell of the hP12-MgZn, type structure.

For this purpose, we may consider the group of phases described in the compilation by
VILLARS and CALVERT [1991]. This, in fact may be considered a fairly representative sample
even if the number of new intermetallic phases (and structural types) is constantly increasing.

As a first observation we may notice that the number of phases pertaining to each
structural type is not at all constant. Table 7 shows that a very high number of phases
crystallize in a few more common structure types. About 25% of the known intermetallic
phases belong to the first 12 more common structure types and about 50% of the phases
belong to 44 types (that is less than 2% of the known structural types).

This kind of distribution seems to be significant even if table 7 contains only an
approximate list. (Some changes may actually be obtained by a more accurate attribution
of different phases to a certain structural type or to its degenerate or derivative variants).

The distribution of the phases among the different types is summarized in fig. 47,
where (in a double logaritmic scale) the number of phases belonging to each structural
type is plotted against the rank order of the type itself. According to a suggestion of the
authors of this chapter, in the same figure a curve is presented which has been computed
by fitting the reported data by means of eq. (1):

N, = A(r+ro)_B 1)

where N, is the number of phases corresponding to the structure type having rank r (A,
B and 1, are empirical constants whose values have been determined by the fitting (see
also FERRO et al. [1995]).

It may be interesting to point out that the aforementioned equation is that suggested by
MANDELBROT [1951] as a generalization of ZIPF’s law [1949] (which corresponds to the
special case of ry= 0 and B = 1). This law, in linguistics, relates for a given text the recurrence
frequency (Np of a word to its rank (recurrence order). The formula had been deduced to
define a cost function for the transmission of linguistic information and minimizing the
average cost. (The word “cost” was considered to be related to the complexity of the word
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B
N\

Fig. 46. Truncated polyhedron (12 vertices) related, by the addition of 4 more coordinate atoms out from the
centers of the hexagonal faces to the Friauf polyhedron (CN 16), reported in fig. 41.

itself). (Eq. (1) may be considered a special case of a general “Rank Size Rule”.)

We note, moreover, the larger numbers of phases having highly symmetric structures
(cubic, hexagonal or tetragonal structures). The most frequent orthorhombic and
monoclinic structures are the 6th and the 58th respectively in a general list such as
reported in table 7. This may be partially related to a certain greater ease in solving
highly symmetric structures but probably also contains an indication of a stability
criterion. The Laves’ stability principles (presented in sec. 7.2.3.) and, specially, the
“symmetry principle” may be mentioned.

Considering then the phase composition as a significant parameter, we obtain the
histogram shown in fig. 48 for the distribution of the structural types and of the intermetallic
phases (as obtained from the 2nd edition of Villars—Calvert) according to the stoichiometry
of binary prototypes (that is, for instance, the binary and ternary Laves phases, the AlB,,
Caln,, etc., type phases are all included in the number reported for the 66 to 67.99
stoichiometry range, even if the real stoichiometry of the specific phase is different). We may
note the overall prevalence of phases and (to a certain extent) of structural types, which, at
least ideally, may be related to simple (1:2, 1:1, 1:3, 2:3, etc.) stoichiometric ratios.

The restriction of the phases concentration to a limited number of stoichiometric ratios is
also valid (and, perhaps, more evident) for the ternary phases. We may notice in fig. 49
(adapted from a paper by RODGERS and VILLARS [1993]) that seven stoichiometric ratios
(1:1:1, 2:1:1, 3:1:1, 4:1:1, 2:2:1, 3:2:1, 4:2:1) are the most prevalent. According to
Rodgers and Villars they represent over 80% of all ternary known compounds.

We have, however, to remark that, considering only selected groups of (binary or
ternary) alloys, quite different stoichiometric ratios may be predominant. As an example
we may mention the binary alloys formed by an element such as Ca, Sr, Ba, rare earth
metals, actinides, etc., with Be, Zn, Cd, Hg and, to a certain extent, Mg. Many com-
pounds are generally formed in these alloys. Among them, phases having very high
stoichiometric ratios are frequently observed, such as, for instance: CaBe,;, LaBe,,,
BaZn;, BaCd,;, BaHg,, BaHg,,, BaHg,,, La,Zn,,, LaZn,;, La,Cd,;,, LaCd,,, Th,Zn,,,
Pu,Zn,,, Ce;Mg,,, La,Mg,,, LaMg,,, etc.

7.2. On some factors which control the structure of intermetallic phases

A systematic: description of bond characterization from thermodynamic properties in
intermetallic compounds (and considerations concerning the stability of intermetallic

References: p. 363.
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Fig. 47c. Distributicn of the intermetallic phases among the structural types. In a double logarithmic diagram
the phase numbers (expressed as ratios to the total number) are plotted versus the rank order of the structural
type. The continuous line corresponds to the Mandelbrot’s equation.

a) Number of phases belonging to the overall different structural types. (Compare with Table 6).

b) Number of phases belonging to the cubic structural types.

c) Number of phases belonging to the hexagonal structural types.

phases) has been reported by ELLNER and PREDEL [1994]. Some information about the
computation of the enthalpy of formation of alloys according Miedema’s model will be given
in sec. 8.5. On this subject we may mention the peculiar properties of alloys of extraordinary
stability formed by elements such as Al, Ti, Zr, Hf with the transition metals Re, Ru, Os,
Rh, Ir, Pd, Pt, characterized by very high formation heats and discussed by BREWER
[1973, 1990] as example of generalized Lewis acid—base interactions in metallic systems.

A general presentation and discussion of the origin of structure of crystalline solids
and the structural stability of compounds and solid solutions have been given by Pettifor
(see chapter 2 of this book).

In this section and in the following one a brief sampling of some semiempirical useful
correlations and, respecively, of methods of predicting phase (and structure) formation will
be summarized. The search for regularities and criteria for the synthesis of new represen-
tatives of particular structure types has been carried out by many authors. Several factors
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Fig. 48. Distribution of binary intermetallic phases and structural types, according to the stoichiometry.

a) Distribution of the structural types.

b) Distribution of the intermetallic phases.
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Fig. 49. Distribution of the known ternary intermetallic phases according to their stoichiometry.
a) Ir a representative portion of a general composition triangle, the more common stoichiometries are shown.

were recognized to be important in controlling the structural stability and some of them
were used as coordinates for the preparation of “classification and prediction maps”, in
which various compounds can be plotted and separated into different structure domains.
Intermetallic phases, therefore, could be classified following the most important factor
which controls their crystal structure (PEARSON [1972], WESTBROOK [1977], GIRGIS
[1983], HAFNER [1989]).
According to PEARSON [1972], following factors may be evidenced:

— Chemical bond factor,

— Electrochemical factor, (electronegativity difference)
— Energy band factor, electron concentration

— Geometrical factor

— Size factor

References: p. 363.
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Fig. 49. Distribution of the known ternary intermetallic phases according to their stoichiometry.
b) For the same compositions shown in a), an indication is given of the number of phases.

In the following paragraphs a few comments will be reported on this matter. Emphasis,
however, will be given only to those aspects which are more directly related to a
description of the “geometrical” characteristics of the phases. For the other questions
reference should be made to other parts of this volume.

For an introduction to the electronic structure of extended systems, see HOFFMANN
[1987, 1988].

7.2.1. Chemical bond factor and electrochemical factor

A chemical bond factor can be said to control the structure when interatomic distances
(and as a consequence unit cell dimensions) can be said to be determined by a particular
set of chemical bonds. Two different situations can be considered: bonds having high
ionic characteristics (largely non-directional, the larger anions tend to form symmetrical
coordination polyhedra subjected to the limitation related to the anion/cation atomic size
ratio) or bonds having covalent character (the directional characteristic of which tend to
determine the structural arrangement in the phase).

To an increasing weight of the chemical bond factor (ionic and/or covalent bonding)
will, of course, correspond, in the limit, the formation of valence compounds. According
to PARTHE [1980b] a compound C_A, can be called a normal valence compound if the
number of valence electrons of cations (e.) and anions (e,) correspond to the relation
(normal valence compound rule):

mec =n(8-e,) )
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Table 7
Intermetallic phases: The most common structural types
(from the data reported in VILLARS and CALVERT [1991]).
Number of phases Relative Frequency
Structural belonging to each type
type Total Binary  Ternary Specific Cumulative Rank order
cF8-NaCl 863 318 545 0.0332 0.0332 1
cF24-Cu,Mg 806 243 563 0.0310 0.0642 2
tI10-BaAl, 723 19 704 0.0278 0.0921 3
cF4-Cu 605 520 85 0.0233 0.1154 4
hP12-MgZn, 580 148 432 0.0223 0.1377 5
oP12-Co,Si 495 95 400 0.0191 0.1567 6
cP2-CsCl 461 307 154 0.0177 0.1745 7
cP4-AuCu, 454 266 188 0.0175 0.1920 8
hP6—CaCuy 405 106 299 0.0156 0.2076 9
hP2-Mg 393 362 31 0.0151 0.2227 10
cl2-W 382 309 73 0.0147 0.2374 11
cF16-BiF,; 379 39 340 0.0146 0.2520 12
hP9-Fe,P 375 11 364 0.0144 0.2664 13
cI28-Th,P, 358 117 241 0.0138 0.2802 14
hP3-AlB, 327 122 205 0.0126 0.2928 15
cF8-ZnS 302 40 262 0.0116 0.3044 16
cF56-MgALO, 301 11 290 0.0116 0.3160 17
t126-ThMn,, 296 38 258 0.0114 0.3274 18
hP16-Mn,Si, 290 177 113 0.0112 0.3385 19
hP24-CecALS,, 288 0 288 0.0111 0.3496 20
cP8-Cr,Si 260 82 178 0.0100 0.3596 21
hP4-NiAs 241 101 140 0.0093 0.3689 22
tP6—Cu,Sb 227 74 153 0.0087 0.3777 23
cP5-CaTiO, 225 3 222 0.0087 0.3863 24
cF116-ThgMn,, 202 49 153 0.0078 0.3941 25
oC8-CrB 193 120 73 0.0074 0.4015 26
tP68-BFe ,Nd, 185 0 185 0.0071 0.4086 27
hR57-Th,Zn,, 160 36 124 0.0062 0.4148 28
oP8-MnP 156 33 123 0.0060 0.4208 29
oP16-Fe,C 155 101 54 0.0060 0.4268 30
hP6-Ni,In 154 54 100 0.0059 0.4327 31
cP12-FeS, 152 50 102 0.0059 0.4385 32
hP6-Caln, 149 11 138 0.0057 0.4443 33
hP38-Ni,,Th, 145 62 83 0.0056 0.4499 34
ol12-CeCu, 145 61 84 0.0056 0.4554 35
hR12-NaCrS, 144 9 135 0.0055 0.4610 36
t116-FeCu$, 139 0 139 0.0053 04663 37
cF12-AlLiSi 135 1 134 0.0052 04715 38
cF12-CaF, 133 87 46 0.0051 0.4767 39
cP40-Pr;Rh,Sn,, 126 0 126 0.0048 0.4815 40
hR36-Be;Nb 122 49 73 0.0047 0.4862 41
oP8-FeB 121 73 48 0.0047 0.4909 42
hR45-MoPbS; 115 0 115 0.0044 0.4953 43
hP5-La,0, 115 22 93 0.0044 0.4997 44
tP2-AuCu 112 82 30 0.0043 0.5040 45

References: p. 363.
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If we consider only the s and p block elements, the number of valence electrons of the
elements correspond to their traditional group number) In this case (considering that no
anions are formed from the elements of groups I, II and IIT) following formulae can be
deduced for the normal valence compounds (formed in binary systems with large
electronegativity difference between elements):
-14-24-34,-1,5-2,5,-35-4,5,
— 1,6 —26 — 3,6, — 46, — 5,6, - 17 - 27,
-37,~47,- 575 - 67
(in these formulae each element is indicated by a number corresponding to its number of
valence electrons; for instance:
17 represent NaCl, KCl, etc, 3,6, Al,O,, etc.)

In the more general case where some electrons are also considered to be used for
bonds between cations and anions we have (general valence compound rule):

m(ec - ecc) = n(8 —e, — eM) 3)

In this formula, which can only be applied if all bonds are two-electron bonds and
additional electrons remain inactive in non-bonding orbitals (or, in other words, if the
compound is semiconductor and has not metallic properties) e is the average number
of valence electrons per cation which remain with the cation either in non-bonding
orbitals or (in polycationic valence compounds) in cation—cation bonds; similarly e,, can
be assumed to be the average number of anion-anion electron pair bonds per anion (in
polyanionic valence compounds).

In a more limited field than that of the previously considered general octet rule, it
may be useful to mention the “tetrahedral structures” which form a subset of the general
valence compounds. According to PARTHE [1963, 1964, 1991], if each atom in a
structure is surrounded by 4 nearest neighbours at the corner of a tetrahedron, the
structure is called “normal tetrahedral structure”. The general formula of this structure,
for the compound C_A,, is (normal tetrahedral structure).

(mec +ne,)=4(m+n) C))

(This may be considered a formulation of the so-called GRIMM—SOMMERFELD [1926] Rule).
For the same elements previously mentioned the possible combinations are:

4,4, (all compositions, for instance, C, Ge, SiC)

35 (BP, AISb, etc.), 26 (BeO, MgTe, ZnS), 17 (CuBr, Agl),

3,6, 3,7, 25, (ZnP,, ZnAs,), 2,7,, 15; and 1,6,.

(ternary or more complex combinations may be obtained by a convenient addition of
different binary formulae; for instance:

14,5, = (15, +44): for instance CuGe,P,

136,=(1,65+3,6)/2: CuAlS,, CulnTe,, etc.

1,246, =(1,6,+26+4): for instance Cu,FeSnS, (Fe"), etc.)

The aforementioned rule may be extended to include the “defect tetrahedral structures”
where some atoms have less than four neighbours (general tetrahedral structure):
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(m e+ neA) = 4(m + n) + Nygo(m + n) 5)

In this formula Ny, is the average number of non-bonding orbitals per atom.
By adding the symbol 0 (zero) to the described notation, vacant tetrahedral sites can
be represented. Examples of formulae of defect tetrahedral structures are:

40,7, (Sil,, Snl,); 406, (GeS,); 3,05,6, (Ga,As,Se,), 1,5,06, (CuSbS,); etc.

Notice that the aforementioned compositional scheme is a necessary condition for
building the tetrahedral structures, but not every compound that fulfills this condition is
a tetrahedral compound. The influence of other parameters, such as the electronegativity
difference, has been pointed out. By means of a diagram as shown in fig. 50, the
separation of tetrahedral structures from other structures may be evidenced (MOOSER and
PEARSON [1959]).

As a final comment to this point, we may mention that when one component in a
binary alloy is very electropositive relative to the other, there is a strong tendency to
form compounds of high stability in which valence rules are satisfied (PEARSON [1972]).
Such alloys are considered to show a strong electrochemical factor.

7.2.2. Energy band factor, electron concentration

The properties of a solid on principle could be calculated on the basis of the states of
the electrons in the crystal. The status of the understanding of the structures of the solids
and indications on the technical and computational problems have been presented in other
chapters.

We may mention here that if the stable crystal structure may be described as
controlled by the number of electrons per atoms, the phase is called an “electron
compound”’. An important class of electron compounds (generally showing rather wide
homogeneity ranges) are the Hume—Rothery phases.

These include several groups of isostructural phases, each group corresponding to a
given value of the so-called valence electron concentration (VEC). Three categories of
Hume—-Rothery phases are generally considered: those corresponding to VEC values of
3/2 (that is three valence electrons every two atoms), 21/13 and 7/4, respectively.

Representatives of the Hume—Rothery phases are the following:

VEC= 3/2, body centered cubic, (cI2-W type): CuZn, = Cu,Al, = Cu,Sn, etc.
VEC = 3/2, complex cubic, (cP20-8 Mn type): Cu,Si, Ag,Al, Au,Si, etc.
VEC=21/13, complex cubic, 52 atoms in the unit cell (or superstructures)
(cP52: = CuyAl,, = Cu,Ga,, Aggn,,~ CosZn,,, etc.; cIS2: = CuZn,, y-brass, = Ag,Cd,,
AgZng, Ru;Be,,, etc.; cF408: Fe, Zn,,, etc.)
VEC=7/4, hexagonal close-packed, (hP2-Mg type or superstructures): = AgZn,,
= Au,Ge, = Ag,Al,, etc.
The VEC in all the aforementioned cases, for which approximate “ideal” formulae have been
indicated, were calculated assuming the following “valence™: transition elements with non-
filled d-shells: 0; Cu,Ag,Au: 1; Mg and Zn,Cd,Hg: 2; Al,Ga,In: 3; Si,Ge,Sn: 4; Sb: 5.
The given ratios indicate ranges (which can even overlap). It has to be noted,
moreover, that the number of electrons to be considered may be uncertain. The VEC
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Fig. 50. Mooser-Pearson diagram separating AB compounds into covalent (0) and ionic (#) types after
HuME-ROTHERY [1967]. The representative points of the different components are plotted in the map i, average
quantum number, versus the electronegativity difference multiplied by the radius ratio. (R, and Ry radii of the
anion and cation elements).

values, therefore, indicate only a composition range where one of the aforementioned
structure types may occur.

According to GIRGIS [1983] the existence field of the electron phases may be
especially related to the combinations of d elements with the elements of the Periodic
Table columns from 11 to 14 (from Cu to Si groups).

7.2.3. Geometrical principles and factors, Laves’ stability principles

LAVEs [1956], when considering the factors which control the structures of the metallic
elements, presented three principles that are interrelated and mainly geometric in character.
a) The principle of efficient (economical) use of space (space-filling principle).
b) The principle of highest symmetry.
c) The principle of the greatest number of connections (connection principle).
These principles may be considered to be valid to a certain extent for the intermetallic
phase structures and not only for the metallic elements.

(See also some comments on this point as a result of the atomic-environment analysis
of the structure types summarized in sec. 7.2.7.)

a) Space-filling principle
The tendency to use the space economically (to form structures with the best space-filling)
which is especially exemplified by the closest-packing of spheres is considered to be the
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result of a specific principle which operates in the metal structures {(and also in ionic and,
to a lesser degree, in van der Waals structures). This principle is less applicable to
covalent crystals because the characteristic interbond angles are not necessarily compat-
ible with an efficient use of the space. Among the metallic elements, 58 metals possess
a close-packed arrangement (either cubic or hexagonal) which, in the assumption that the
metal atoms are indeformable spheres having fixed diameters, corresponds to the best
space-filling; 23 of the remaining metals crystallize in another highly symmetric structure,
the body-centered cubic, which corresponds to a slightly less efficient space-filling.

(The space-filling concept has been analysed and discussed by several authors: we
may mention LAVES [1956], PARTHE [1961], PEARSON [1972]. A short summary of this
discussion will be reported in the following, together with some considerations on the
atomic dimension concept itself).

b) The principle of highest symmetry (symmetry principle)

According to Laves a tendency to build configurations with high symmetry is evident and
is called the symmetry principle. This tendency is particularly clear in metallic structures,
especially in the simple ones.

However, according to HYDE and ANDERSSON [1989], for instance, the validity
extension of this principle is difficult to evaluate. As time passes, crystallographers are
able to solve more and more complex crystal structures and these tend to have low
symmetry. The symmetry principle could perhaps be restated by observing that a crystal
structure has the highest symmetry compatible with efficient use of space and the
specific requirements of chemical bonding between nearest neighbours.

For a discussion on the “symmetry principles”, its alternative formulations and the
history of its development, papers by BRUNNER [1977] and by BARNIGHAUSEN [1980]
may be consulted. In these papers a number of statements have been reported which
perhaps may be considered equivalent. When considering close sphere packings, the
following statements are especially worthy of mention.

a) A tendency to form arrangements of high symmetry is observable.
b) Points are disposed around each point in the same way as around every other.
¢) Atoms of the same type tend to be in equivalent positions.

¢) The principle of the greatest number of connections (connection principle)

To understand the meaning of this principle it may be at first necessary to define the
concept of connection. To this end we may consider a certain crystal structure and
imagine connecting each atom with the other atoms present in the structure by straight
lines. There will be a shortest segment between any two atoms. We will then delete all
links except the shortest ones. After this procedure, the atoms that are still connected
constitute a “connection”. The connection is homogeneous if it consists of structurally
equivalent atoms, otherwise it is a heterogeneous connection.

Such connections may be finite or 1, 2, 3 dimensionally infinite and are respectively
called islands, chains, nets or lattices. Symbols corresponding to the letters I, C, N, L
(homogeneous connections) or i, ¢, n, 1 (heterogeneous connections) have been proposed.
(see also the dimensionality indexes reported in sec. 3.5.1.).

As pointed out by Laves (for instance, LAVES [1967]) metallic elements and
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intermetallic phases show a tendency to form multidimensional (possibly homogeneous)
connections (connection principle).

7.2.4. Atomic dimensions and structural characteristics of the phases
a) Atomic radii and volumes
A few comments about the atomic dimension concept may be useful also in order to
present a few characteristic parameters and diagrams (such as space-filling parameters,
reduced strain parameters, near-neighbours diagrams, etc.).

Quoting from a comprehensive review on this subject (SiMON [1983]) we may
remember that ever since it has been possible to determine atomic distances in molecules
and crystals experimentally, efforts have been made to draw conclusions from such
distances about the nature of the chemical bonding and to compare interatomic distances
(dimensions) in the compounds with those in the chemical elements. Distances between
atoms in an element can be measured with high precision. As such, however, they cannot
be simply used in predicting interatomic distances in the compounds. In rational
procedure, reference values (atomic radii) have to be “extracted” from the individual
(interatomic distances) measured values. Various functions have been suggested for this
purpose. In the specific case of the metals it has been pointed out that interatomic
distances depend primarily on the number of ligands and on the number of valence
electrons of the atoms (PEARSON [1972]).

Pauling’s rule (PAULING [1947]):
R, = R -30log n (pm) (6)

relating radii for bond order (bond strength) » (number of valence electron per ligand) to
that of strength 1, gives a means of correcting radii for coordination and/or for effective
valencies. It has been shown (PEARSON [1972], SiMON [1983]) that, no matter what the
limitations may be of any particular set of metallic radii (or valencies) that is adopted,
the Pauling’s relation appears to be reliable, giving a basis for comparing interatomic
distances in metals. According to SIMON [1983] slightly better results could be obtained
changing the Pauling’s formula to:

R, = R(1- A log n) )

where A is not constant but can be represented as a function of the element valency.

The subsequent point is to select some system of (a set of) atomic radii which can be
used when discussing interatomic distances.

The radii given by TEATUM et al. [1968] (and reported in table 8, together with the
assumed “valencies™) are probably the most useful for discussing metallic alloys. These
radii have been reported for a coordination number of 12; they were taken from the
observed interatomic distances in the fc cubic (cF4-Cu type) structure and in the
hexagonal close-packed hP2-Mg type structure (averaging the distances of the first two
groups of 6 neighbours, if the axial ratio has not the ideal 1.633.. value) or from the bc
cI2-W type. Since the coordination is 8 in the cI2-W type structure, for the elements
having this structure the observed radii were converted to coordination 12 by using a
correction given by the formula:
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Table 8
Radii (CN 12) of the Elements (from TEATUM et al. [1968])°

Element “Valence™ Radius Element “Valence” Radius

(pm) (pm)
H -1 77.9 Sb 5 157.1
Li 1 156.2 Te 6 164.2
Be 2 112.8 Cs 1 273.1
B 3 92.0 Ba 2 223.6
C 4 87.6 La 3 187.7
N -3 82.5 Ce 3 184.6
(0] -2 89.7 Ce 4 167.2
Na 1 191.1 Pr 3 182.8
Mg 2 160.2 Nd 3 182.2
Al 3 143.2 Pm 3 180.9
Si 4 132.2 Sm 3 180.2
P -3 124.1 Eu 2 204.1
S -2 125.0 Eu 3 179.8
K 1 237.6 Gd 3 180.1
Ca 2 197.4 Tb 3 178.3
Sc 3 164.1 Dy 3 177.5
Ti 4 146.2 Ho 3 176.7
v 5 134.6 Er 3 175.8
Cr 6 128.2 Tm 3 174.7
Mn 5 130.7 Yb 2 193.9
Mn 7 125.4 Yb 3 174.1
Fe 8 1274 Lu 3 173.5
Co 9 125.2 Hf 4 158.0
Ni 10 124.6 Ta 5 146.7
Cu 1 127.8 w 6 140.8
Zn 2 139.4 Re 7 1375
Ga 3 1353 Os 8 135.3
Ge 4 137.8 Ir 9 135.7
As 5 136.6 Pt 10 138.7
Se 6 141.2 Au 1 144.2
Rb 1 254.6 Hg 2 159.4
Sr 2 215.1 Tl 3 171.6
Y 3 1773 Pb 4 175.0
Zr 4 160.2 Bi 5 168.9
Nb 5 146.8 Po 6 177.4
Mo 6 140.0 Fr 1 280
Tc 7 136.5 Ra 2 2294
Ru 8 1339 Ac 3 187.8
Rh 9 134.5 Th 4 179.8
Pd 10 137.6 Pa 5 162.6
Ag 1 144.5 U 6 1543
Cd 2 156.8 Np 6 1528
In 3 166.6 Pu ~4.8 164
Sn 2 163.1 Pu 5 159.2
Sn 4 158.0 Am 4 173.0

a) The elements are arranged according to their atomic number.
Noble gases and halogens are not included.
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Reyy = 10316 Ry — 0532 (pm) ®)

which was empirically obtained from the properties of elements having at least two
allotropic modifications, cI2-W type and either cF4-Cu type or hP2-Mg type. The radii
in the two structures (calculated at the same temperature by means of the known
expansion coefficients) were compared and used to construct the reported equation. For
the other metals (that is for the more general problem of the radius conversion from any
coordination to coordination number 12) a percentage correction was applied (by using
a curve which ranges from about +3% for the conversion from CN 8 to CN 12 to about
+20% for the conversion from CN 3 to CN 12) as suggested by LAVES [1956] in a
detailed paper dealing with several aspects of crystal structure and atomic sizes.

While dealing with atomic dimension concepts, atomic volumes may also be considered.
A value of the volume per atom, V,, in a structure may be obtained from the room
temperature lattice parameter data by calculating the volume of the unit cell and dividing
by the number of atoms within the unit cell. See also the table reported by KING [1983].

An equivalent atomic radius could be obtained by computing, on the basis of the
space-filling factor of the structure involved, the corresponding volume of a “spherical
atom” using the relationship V ;=4 7 R%/3).

In the cP2-W type (CN 8) structure we have V,~0.68 V,, (only a portion of the
available space is occupied by the atomic “sphere”, see the following paragraph b). In
the cF4-Cu type, and in the “ideal” hP2-Mg type (CN 12) structures we have Vg, = 0.74
V. Considering now the previously reported relationship between Ry ) and Ry g we
may compute for a given element, very little volume (V,) changes in the allotropic
transformation from a form with CN 12 to the form with CN 8. (The radius variation is
nearly counterbalanced by the change in the space filling).

This generally is in agreement with the experimental observations (PEARSON [1972]).

We will see that on the basis of the atomic dimensions of the metals involved
(expressed, for instance, as Ry—Ry or Ry/Ry) many characteristic structural properties of
an X,Y,, phase may be conveniently discussed and/or predicted (size factor effect). As a
further comment to this point we may mention here two “rules”, the Vegard'’s and the
Biltz—Zen’s rules, which have been formulated for solid solutions and to a certain extent
for ordered compounds. These rules, mutually incompatible, are very seldom obeyed;
they may, however, be useful either as approximations or for defining reference behaviours.
The first one, VEGARD’s rule [1921], corresponds to an additivity rule for interatomic
distances (or lattice parameters or “average” atomic diameters). For a solid solution A B, _,
(x =atomic fraction) between two components of similar structure it takes the form:

dy =xd, +(1-x)d, )
The BiLTz [1934], (or ZEN [1956]) rule has been formulated as a volume additivity rule:
Vg =xV, +(1-x)V, (10)

These rules are only roughly verified in the general case (for the evaluation of interatomic
distances weighted according to the composition and for a discussion on the calculation and
prediction of the deviations from Vegard’s rule see PEARSON [1972] and SiMON [1983]).
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As contributions to the general question of an accurate prediction of the variation of
the average atomic volume in alloying we may mention a few different approaches.
MIEDEMA and NIESSEN [1982] calculated atomic volumes and volume contractions on the
basis of the same model and parameters used for the evaluation of the formation enthalpy
of the alloy (see sec. 8.5). In a simple model proposed by HAFNER [1985] no difference
of electronegativity and no charge transfer were considered. Volume (and energy)
changes in the alloy formation were essentially related to elastic effects. Good results
have been obtained for alloys formed between s and p block-elements. An empirical approach
has been suggested by MERLO [1988]. Deviations from Biltz—Zen trend have been discussed
and represented as a function of a “charge transfer atomic parameter” which correlates with
Pauling’s electronegativity. This approach has been successfully employed for groups of
binary alloys formed by the alkaline earths and the bivalent rare earth elements.

Negative experimental deviations from Vegard’s rule (and values of the volume
contractions) have been sometimes considered as an approximate indication of the
formation of strong bonds and related to more or less negative enthalpies of formation
(KurascHEWSKII [1967]). This indication is only very poor in the general case. For
selected groups of alloys, however, the existence of a correlation between the formation
volume and enthalpy (A, V and AgH) has been pointed out (even if only as an
evaluation of relative trends). This is the case of the rare earth (RE) alloys. As noticed
by GSCHNEIDNER [1969] considering the trivalent members of the lanthanide series, we
may compare the atomic volume decreasing observed in the metals (RE) (lanthanide
contraction) with the decreasing of the average atomic volume measured in a series of
REMey compounds. If this diminution is more (less) severe in the compounds than in the
RE metal series, this is considered an indication that the bonding strength in the REMey
compounds increases (decreases) as we proceed along the series from La to Lu; the heats
of formation are expected to increase (decrease) in the same order. To make this
comparison the unit cell volumes of the compounds are divided by the atomic volumes
of the pure metals. The volume ratio for the series of compounds are then divided for
that corresponding to a selected rare earth, this giving a relative scale. If the resultant
values increase, with the atomic number of the rare earth, then the lanthanide contraction
is less severe in the compounds (in comparison to the rare earth element) and a decrease
of the heat of formation is expected (conversely if the relative volume ratio decreases, an
increase of the heat of formation (more negative enthalpy of formation) is expected).

(Examples of this correspondence will be examined in sec. 8.6., see also fig. 59.)

b} Space-filling parameter (and curves)

The space-filling parameter introduced by LAVES [1956] and by PARTHE [1961] gives a
means of studying the relationships between atomic dimensions and structure. For a com-
pound, it is defined by the ratio between the volume of atoms in a unit cell and the
volume of unit cell.

_(4m/ 3)(ZmR?)
e T

cell

(1D

(n;, R, number and radius of type i atoms).
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To calculate the space filling value for a specific compound, one has to know the radii
of the atoms and the lattice constant. Neither of these is needed for the construction of
a space filling curve of a crystal structure type: it is sufficient to know the point positions
of the atoms and the axial ratios. The curve is based on a hard sphere model of the
atoms: the cell edges are expressed as functions of the atomic radii (Ry and Ry for a
binary system) for the special cases of X-X, X-Y and Y-Y contacts. The parameter can
then be given (and plotted) as a function of the Ry/Ry ratio.

Considering, for instance, the cF8—ZnS-sphalerite type structure (PARTHE [1964]) the
space filling can be given by:

b= [417/3 (4R, +4R))] /@’ (12)

where a is the cubic cell edge and Ry and Ry are the radii of the atoms in the a) and c)
positions (4 Zn and 4 S, respectively) in the unit cell. (See the description of the
structure in sec. 6.3.2.).

In the case that the two atoms (or, more accurately, the hard spheres) occupying the
Zn and S sites are touching each other, then the sum of the two radii must be equal to
one-quarter of the cubic cell diagonal.

R, + R, = a\3/4 (13)
By expressing the unit cell volume as a function of the sum of the radii we obtain:

B (4ar13)(4R; + 4R;)
CT(#13B)R, + R,) o

Introducing the radius ratio £ =R,/R, one obtains:

3
1
o =(V3m/4) (Z ++1)3 (15)

This equation describes the middle section (0.225 <& <4.44) of the space-filling curve for
the sphalerite type structure plotted (with log scales) in fig. 51.

(The other sections, 0 <& <0.225 and 4.44 <& <o correspond to the cases in which
Y-Y atoms or X-X atoms are touching.)

In the ¢ versus ¢ diagram every structure type is generally characterized by its own
individually shaped space-filling curve. The space-filling curves, however, of all binary
structures belonging to one homeotect structure set coincide with one curve (see sec. 4.3).

By assuming appropriate values for the radii Ry and Ry it is possible to compare,
with the specific curve of a given structure, the points representing actual compounds.
Generally a good agreement is found for ionic structures (and/or compounds) while it is
often observed that the ¢ versus & points for particular metallic phases lie above the
space-filling curves, indicating a denser packing and emphasizing the lack of unique radii
associated with X-X, X-Y, etc. contacts (compressible atom model) (PEARSON [1972]).

In the specific case of unary structures (clement structures), providing that there are no
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Fig. 51. Space filling diagram for the CsCl, NaCl and Zn$ structures (from PARTHE [1961]).

variable atomic positional parameters or axial ratios, there is a unique space-filling parameter
(independent of atomic size for every structure type). For the cF4-Cu type structure, for instance,

¢ = (4m/3)(4R° | &) (16)

Assuming the atoms to be hard spheres a=2\/5 R, then ¢ =0.740 (which is the highest
value for an infinite collection of close-packed hard spheres of the same radius). Typical
space-filling parameters of elemental structures are the following:

cF4-Cu type 0.740

hP2-Mg type  0.740  (for the “ideal” value, c/a=1.633.., of the axial ratio. It is
¢ =0.65 in the case, for instance, of Zn, for which c/a=1.86).

cI2-W type 0.680

tl4-B-Sn type  0.535

cP1-Po type 0.524

cF8-Diamond  0.340

Several other considerations and applications of the space filling concept may be found
in PARTHE [1961], for instance: space-filling diagrams of ternary structures, applications
of space-filling concept for discussing and predicting possible pressure structures, etc.

A similar treatment has been made by LIU and BASSETT [1986] defining a special
“volumetric index” o, considering that the molar volume V of a crystal must be a linear
function of the cube of the nearest neighbor interatomic distance d,;,

References: p. 363.
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V=ad, 17

where a is a function of the axial ratio, axial angle(s) and positional parameters of a
crystal structure.

Within a group of isostructural substances small variations are therefore generally
observed in the a-value. If d_, is given in nm and V in cm*/mol (moles of atoms or
moles of formulae) the following «-values may be mentioned:

425.9 (cF4-Cu); 425.9 to 485.0 (hP2-Mg for 1.633<c/a< 1.86; 463.6 (c2-W);
589.7 (tI4-BSn, c/a=0.5456); 602.2 (cP1-Po); 927.2 (cF8-diamond); 927.1 (cP2-CsCl);
1204.4 (cF8-NaCl); = 1843 (hP4-C graphite); etc.

The a-values are the slopes in the plots of the molar volume versus the cube of the
interatomic distances for given types of structures such as those illustrated in fig. 52a.
These indexes (as the space-filling parameters) may be useful, for instance, in a
systematic description of the effect of pressure on the phase transformations which may
be observed for a given compound. In a discussion of high-pressure phases (of elements,
oxides and silicates) with implications for the Earth’s interior, L1U and BASSETT [1986]
presented data relevant to several families of compounds in a number of graphs such as
those of fig. 52b. The transformations at increasing pressure from C graphite to diamond,
from Si and Ge diamond type to 8Sn type, the modifications of a number of 1:1
compounds from NaCl to CsCl type structure and also for elements, such as Cd and Zn,
the preservation of the same structure but with c/a approaching the “ideal” 1.633 value
can all be effectively summarized in these type of graphs.

7.2.5. Reduced dimensional parameters
a) Reduced strain parameter and near-neighbours diagrams
By means of the comparison between the space-filling theoretical curves and the actual
values of intermetallic phases it has been observed that an incompressible sphere model
of the atom is unsuitable when discussing metallic structures.

PEARSON [1972] suggested the use of a model which allows the atoms of a binary
X-Y alloy to be compressed until subsequently (and according to the structure geometry)
X—-X, X~Y, Y-Y contacts are established. The contacts are considered to occur when the
X-X, X-Y and Y-Y interatomic distances in the compound structure, dy, dy, and d, are
equal to 2 Ry (=Dy), Ry+Ry and 2 Ry(=Dy) (Ry, Ry, Dy, Dy atomic radii and
diameters, respectively). According to Pearson, the metallic radii choosen are those
appropriate for the coordination of the atoms (compare with sec. 7.2.4.). The distances
between all the close atoms in the structure may be expressed in terms of the cell (and
atomic site) parameters. (As an example see, for instance, the phases XY,, AuCu, type,
described in sec. 3.5.5. and in figs. 12, 13, 14. In these phases around each X atom there
are 6 X atoms at a distance equal to the unit cell edge dy =a. Around the X atoms there
are 12 Y atoms at a distance dXY=a\/f /2), and around the Y atoms at the same distance
dy=a \/f /2). All these distances may thence be expressed as a function of one of them,
selected as a reference. (In the case of the AuCu, type phase, for instance:
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Fig. 52. Trends of the molar volumes of selected groups of phases as a function of the nearest neighbours

interatomic distances.

a) Schematic trends for X, Y, Z, etc,, structural types. (Y may represent a structure type for which, for
instance, owing to different c/a ratios, several volume values may correspond to the same d ). The
hyphens 1 = 2,2 — 3 (or 2 - 3", etc. from 1 to 2 etc., represent different behaviours (and transform-
ations) that may be observed by increasing pressure.

b) Actual trends for a group of common crystal structure types.

dy = d2/2, dy = dy 2 /2 (18)

A reduced strain parameter is then defined with reference to a arbitrarily selected set of
contacts. With reference to the dy distances the strain parameter may be defined as
S =(Dy—dy)/Dy. This parameter gives an indication of the atomic dimension compres-
sion. It is computed, as a function of the ratio ¢ =D,/Dy =R,/R, for the different kinds
of interatomic contacts.

In the aforementioned AuCu, type phases, we have 3 cases corresponding to X-X,
X-Y and Y-Y contacts.

If X-X atoms are touching dy,=D,, then the strain parameter S, , will be
Dy —Dy)/Dy =0 for all the g-values,

If X-Y atoms are considered to be in contact dyy=dy \/2— /2 will be equal to
1Dy +Dy) so we will have:

Dy _dy _Bx__dxyﬁ=&_l/§\/2*Dx+yz\/2*Dy

S, , =—X_=X_—
¥ " p, D, D, D, D, D,

(19)

If, on the other hand, the Y-Y atoms are those which are considered to be in contact we
will have:

References: p. 363.
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d, = dyN2/2 = D,;dy = Dyv2 and (20a)

Dy _\2D, Dy _ 5

S, = 2 (20b)
™ Db, D, D

The values of the strain parameters are then plotted, according to PEARSON [1972], as
a function of £ =Ry/Ry. Several straight lines are obtained (see figs. 53, 54, 55) the lines
corresponding to the reference contacts are horizontal and set at zero. What matters is
only the relative position of the different straight lines (which does not change by taking
another contact as the reference one: a rotation will only be obtained of the whole
diagram). The diagram is called Near-Neighbour Diagram. In the diagram, points may
also be plotted which represent actual phases. (To this end the experimental dy, dyy, etc.,
values will be used).

According to PEARSON [1972], when a point representing a specific phase has a larger
value of the strain parameter than that of a particular contact line, then the contacts
corresponding to that line are to be considered (on the basis of the D, and Dy assumed
for the components) compressed. If, on the other hand, the experimental points lie below
a line then those contacts have not been established.

Figs. 53 to 55 represent the data and the trend for a few structure types. For
compounds having the cF8-ZnS$ sphalerite structure (see sec. 6.3.2.) it can be seen that
the X-Y (Zn-S) bonds (corresponding to a tetrahedral coordination) are the most
important in controlling the structural characteristics. The different points, representing
actual compounds, are very close indeed, for a wide range of diameter ratio and of
electronegativity differences to the line corresponding to the X-Y contacts. (The X-X
and Y-Y contacts are not formed). The structure can, therefore, be considered as formed
by a skeleton of presumably covalent (and directional in character) X—Y bonds. An X-Y
chemical bond can similarly be recognized as important in several compounds having
cF12-CaF, type (or antitype), cF16-Li;Bi, hP3-Cdl,, hP8-Na,As, etc., type structures.
The different behaviours of more “metallic” phases can be seen in fig. 53 and fig. 55.

The AuCu, type near-neighbour diagram (fig. 53) shows the importance of contacts
corresponding to high coordinations. A similar trend can be observed for the XY, Laves
phases (see fig. 55 for the MgCu, type) for which, moreover, a certain compression of the
X-X contacts generally results. (The X-X curve is, for £>1.25, far below the data points).

Many near-neighbour diagrams have been presented by PEarsoN (1972) and
systematically discussed for several structure types in order to show the importance of
factors such as geometrical or chemical bond factors in controlling occurrence and
structural characteristics of different phases.

For an analysis of the meaning and the applications of these diagrams see also SIMON
[1983]. A representation, in generalized near neighbour diagrams, of structure families
for alloy phases with given XY, compositions has been presented and discussed.

b) Unit-cell dimension analysis
While discussing the interest in an analysis of the dimensional characteristics of phases
with given structures and reconsidering advantages and limitations of the near-neighbour
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Fig. 53. Near neighbour diagram for binary phases with XY, formula belonging to the cP4-AuCu, structural
type (according to PEARSON [1972]). The lines corresponding to the different contacts are shown.

diagrams, Pearson himself has proposed [1985a] a new analytical method based on plots
as functions of the CN 12 atomic diameters determined from elemental structures and in
which attention is paid to the group and period of the component elements in the
selection of subsets of the data of phases to be considered together.

As an example of such an analysis we may consider the data reported in fig. 56.
Phases are considered which pertain to the tI10-ThCr,Si, type; the structure contains
three different position sets, as described in sec. 6.5.9. It is one of the most populous of
the different structure types. In particular, there are ten almost complete groups of data
for RET,X, phases given by rare earth metals (RE) with T=Mn, Fe, Co, Ni, Cu and
X =Si or Ge. The data reported in fig. 56 are those concerning the RENi,Ge, compounds.
According to PEARSON [1985a] and PEARSON and VILLARS [1984] the contacts of interest
between pairs (i,j) of the three components (RE, T, X) are defined by the relation:

A, =4(D+D)-4, @1)

v

where D,, D; are the atomic diameters and dij is the interatomic distance between i and
j atoms (obtained from the experimental structure data). Generally it has been observed
(see fig. 56) that A; varies linearly with Dy (for series with different RE but the same
T and X components).

A parameter f; may thus be defined by:

AU = f;Dpe + k; (22)

If a specific f; is of the order of zero (see, for instance, Agp g, in fig. 56) this can be

References: p. 363.
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Fig. 54. Near neighbour diagram for binary phases with XY formula belonging to the cF8-ZnS structural type
(according to PEaRrSON [1972]).

considered an indication that the particular ij contact is independent of change in Dy; and
therefore it can be assumed to control the cell dimensions (as the size of RE changes in
the series of phases having the same T and X components). For the different RET,X,
phases it was observed that fys =0 for T=Fe, Co, Ni, Cu and X=Si, Ge, whereas
frer=0 for T=Mn.

Structural aspects of chemical bonding in another family of phases formed by similar
groups, RE-T--X, of elements (1:1:1, RETX compounds) have been analysed by BAZELA
[1987] using the same technique.

For a general discussion on the dimensional analysis of the structures of the metallic
phases with special reference to the hR57-Th,Zn,,, tI126-ThMn,, and hP6—CaCu, type
structures see also PEARSON [1980].

7.2.6. Alternative definitions of coordination numbers
We have seen in the previous sections that the determination of the coordination
number of an atom in a structure is clearly recognized as an important point in the
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Fig. 55. Near neighbour diagram for binary phases with XY, formula belonging to the ¢cF24-MgCu, structural
type (according to PEARSON [1972]).

definition of that atom’s contribution to the bulk material properties and in the character-
ization of the structure itself. Several properties (for instance, atomic size, atomic valence
and magnetic properties and species stability and reactivity) are know to be coordination
number dependent.

In many cases the coordination number (or ligancy) of a central atom is readily
obtained by enumerating the number of neighbours; we have seen, however, that there
are numerous cases where the criteria for the enumeration procedure may be ambiguous.
As an introductory summary of this point see, for instance, CARTER [1978], O KEEFFE
[1979D).

As already pointed out by FRANK and KASPER [1958] the term “coordination number”
has been used in two ways in crystallography. According to the first (more precisely
defined, in principle) the coordination number, (CN), is the number of the nearest
neighbours to an atom. According to this definition in the hexagonal close-packed
hP2-Mg type structure CN is 6 unless the axial ratio ¢/a has exactly the “ideal” value
\/g— (=1.63299..), in which case it is 12. (see fig. 26). In this structure the mentioned
definition is seldom applied with rigour, that is, the CN in the hP2-Mg type structure is
generally regarded as 12, even with c/a slightly different from the “ideal” value; that is
not only the first group but also the very close second group of distances are considered
together. More difficulties arise in less symmetrical structures and when there is a high
coordination number. Near neighbours with slightly different interatomic distances are
often found and it may be difficult to determine (and to state in an unambiguous way)
how many should be considered as coordinating the central atom. Several schemes for
the calculation of an “effective” coordination have been proposed.

According to FRANK and KASPER [1958] the computation of the coordination number
may be based on the definition of the “domain” of an atom in a structure. This is the
space in which all points are nearer to the centre of that atom than to any other. It is a
polyhedron, (Voronoi polyhedron, Voronoi cell, Wigner—Seitz cell), each face of which
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Fig. 56. RENi,Ge, phases (RE=rare earth) with the tI10-ThCr,Si, structure (from PEARsON [1985a]).
a) plot of A; (= (D;+D;)—dy) versus Dgg,
b) plot of the c/a axial ratio of the cell versus Dy

is the plane equidistant between that atom and a neighbour. (Every atom whose domain
has a face in common with the domain of the central atom is, by the Frank—Kasper
definition, one of its neighbours). The counting of the faces of the domain polyhedron
gives the number of neighbours: the set of neighbours is the “coordination shell”. (The
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coordination polyhedron, of course, is the polyhedron whose edges are the lines joining
all the atoms in the coordination shell. The domain (Voronoi) polyhedron and the
coordination polyhedron, therefore, stand in dual relationship, each having a vertex
corresponding to each face of the other).

According to the Frank—Kasper definition the coordination number is unambiguously
12 in the hexagonal close-packed metals and assumes the value 14 in a body-centered
cubic metal. Generally in several complex metallic structures this definition yields
reasonable values such as 14, even when the nearest neighbour definition would give 1
or 2.

According, for instance, to O’Keeffe, however, this definition may lead to some
difficulties (the value 14 for the bee structure, higher than that of closest packing does
not seem entirely reasonable, the difficulty becomes more acute in a structure as that of
diamond for which a very high value, 16, is computed according to the mentioned
definition).

For a better quantification of the coordination number, several alternative schemes
have been proposed. For example, a simple procedure is based on the identification of a
gap in the list of interatomic distances (and to add atoms up to this gap). A similar
procedure (O'KEEFFE [1979]) may be to add atoms to the coordination polyhedron in
order of increasing interatomic distances and to stop when the next addition would result
in a non-convex polyhedron. BRUNNER and SCHWARZENBACH [1971] suggested cutting
off the coordinating atoms at the largest gap in the list of the interatomic distances (see
also sec. 7.2.7). According to BRUNNER [1977] the largest gap in the list of reciprocal
interatomic distances is used to limit the coordination polyhedra. It has also been
suggested to weight the contribution of the atoms according a weight that decreases with
interatomic distances (BHANDARY and GIRGIS [1977]) or according to a bond strenghts
of the Pauling type (BROWN and SHANNON [1973]). Non integral coordination numbers
may of course be obtained.

In relation with the Frank—Kasper proposal, previously reported, O KEgEFFE [1979]
suggested that coordinating atoms contribute faces to the Voronoi polyhedron around the
central aton. and their contributions are weighted in proportion to the solid angle
subtended by that face at the center.

By using this definition increasing values of the (weighted) CN coordination number
are obtained for the structures: diamond (4.54), simple cubic (6), body-centered cubic
(10.16), face-centered cubic (12) (in agreement with the increasing packing density).

A more complex weighting scheme has been suggested by CARTER [1978] on the
basis of the following assumptions:

The interactions of a central atom with its i neighbour is considered as being measured

by a certain parameter A, (2A;=A,,, finite).

The CN as a function of all the A, should satisfy the following conditions:

— CN(A)) is dimensionless and 21 if any neighbours with non-zero A, exists;

— CN(A)) is a continuous function of the A, (its slope may not be);

— if N interactions exist such that A, =A,=...= A, for all neighbours with non-zero A,
then CN(A)=N;
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— if some of the A; are unequal, then CN(A) <N;
— if m of the A, are equal and large and N-m equal are small, then
m<CN(A) <N.

The formula proposed by Carter for the quantification is:
2
1/CN =3 (w4, / Sw,A)) (23)

(where w; are finite weighting factors). Definitions and measures of A, might include
bond strenghts, bond energies, bond orders, etc.).

As an example, the structure of the CsCl type has been discussed by Carter using
several criteria of evaluation of A,. In a geometrical approach a weighted coordination
number (varying from 8 to 14 to 6) as a function of atomic radii difference was described.

We may finally mention the so-called “effective coordination number” ECoN,
proposed by Hoppe [1979] and Hoprpt and MEevER {1980] coinputed by means of a
rapidly converging function of the distances. According to Hoppe’s scheme (which may
be related to Brunner’s suggestions previously mentioned), individual contributions
ECoN,, of all neighbours to the coordination number are summed together. Each
contribution ECoN; quickly becomes vanishingly small with increasing atomic distances
d; according to an expression such as ECoN;=exp (1-(d/ d,.)®), where d_ is a reference
distance (the “mean fictive” atomic size) which has to be determined beforehand from
the structure. The trend of the ECoN has, for instance, been discussed as a function of
the axial ratio c/a Tor the hexagonal closest packing of spheres (hP2-Mg structure).
Values of ECoN ranging from say 11.94 (for c/a=1.57 as Ho or Er) to 12.02 (for the
“ideal” ¢/a value, 1.633..,) and to 11.02 (c/a=1.856, as for Zn) or to 10.74 (c/a=1.886,
as for Cd) have been computed. ECoN for different Laves phases have been presented.
For a number of NaCl and CsCl type compounds, moreover, values have been given to
show the dependence of ECoN as a function of varying ionic radii.

(For a discussion on the “effective coordination number” its relation with atomic size,
bond-strength, Madelung constant, etc., see also SIMON [1983]. For a computation of the
heats of formation based on the so-called effective coordination see a suggestion by
KuBascHEwSK! [1958], and for a discussion on the application and limits of this
suggestion see BORZONE et al, [1993].).

7.2.7. Atomic-environment classification of the structure types

DaaMSset al.[1992] and DAAMS and VILLARS [1993, 1994] in a series of reviews have
given an important contribution to the problem of the classification of intermetallic
structural types, reporting a complete description of the geometrical atomic environments
found in the structural types of cubic, rhombohedral and hexagonal intermetallic
compounds, respectively. To define an atomic environment they used the maximum gap
rule (see sec. 7.2.6.). The Brunner-Schwarzenbach method was considered, in which all
interatomic distances between an atom and its neighbours are plotted in a histogram such
as those shown in figs. 15, 23, 25, etc.. (The height of the bars is proportional to the
number of neighbours, and all distances are expressed as reduced values relative to the
shortest distance). In most cases a clear maximum gap is revealed (see, for instance, in
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fig. 23 the gap between the second and the third bar). The atomic environment is then
constructed with the atoms to the left of this gap (8 +6 in the example of fig. 23). To
avoid, in some particular cases, bad or ambiguous descriptions, however, a few additional
rules have been considered. In those cases, for instances, where two (or more) nearly
equal maximum gaps were observed, a selection was made in order to keep, in a given
structure type, the number of different atomic environment types as small as possible. A
convexity criterion for the environment polyhedron was also considered (the coordination
polyhedron has to be defined as the maximum convex volume around only one central
atom enclosed by convex faces with all coordinating atoms lying at the intersections of at
least three faces). This rule was specially used where no clear maximum gap was detectable.
The different atomic environment types were characterized by a polyhedron code
based on the number of triangles, squares, pentagons, hexagons, etc. that join each other
in the different vertices (coordinating atoms). The polyhedron code gives the number of
equivalent vertices with the number of faces in the above-mentioned sequence as an exponent.
For example, a quadratic pyramid has four corners adjoining two triangles and one square (no
pentagons or hexagons) and one corner adjoining four triangles: its code, therefore, is
4210014000 (or briefly 4>'1*° with coordination number 5). The cube, 8 equivalent
vertices, adjoining 3 squares, has the code 8, the octahedron 6*° and the Frank-Kasper
polyhedra have the codes 12%% 1279259, 1239360 and 123%4%° (see sec. 6.6. and fig. 41).
DaaMS et al. [1992] have analysed all the cubic structure types reported in VILLARS
and CALVERT [1985], after excluding all oxides and a few types with improbable
interatomic distances, thus leaving 128 structure types representing 5521 compounds.
Their analysis showed that these cubic structure types have 13917 atomic-environments
(point sets). Of those environments 92% belong to one of the 21 most frequently
occurring atomic-environment types, which are those reported in the following list:

43‘0 (tetrahedron) _ 42.114.0 _ 64.0 (octahedron) _ 35.034.013.0 _ 80.3 _ 65.034.0 _ 85.024.0 _ 66.043.0
— %203 _ 830240160 _ 1250 (icosahedron) — 12%2 (cp. cubic) and 12%2 (cp. hexagonal)
(the same code describes the cubic as well as the hexagonal atomic environment of the
ideal close-packing) — 10722%° — 1039260140 _ 1122941 _ 1230060 _ 803604 _ 1250360 _
125.046.0 _ 126'064'0.

Of the 5521 compounds crystallizing in the mentioned 128 structure types, 46% belong
to a single-environment group (structures in which all atoms have the same type of
environment), 37% have two environment types, 9% three and the rest four or more
environments. (= 98% of the cubic compounds crystallize in structure types with 1, 2, 3
or 4 atomic environment types).

In a subsequent paper (DaaMs and VILLARS [1993]) the results of a similar classifica-
tion of the rhombohedral intermetallic structure types were reported. The 195
rhombohedral structure types reported in VILLARS and CALVERT [1991] were analysed.
51 types have improbable interatomic distances or correspond to oxides with no
intermetallic representatives and were excluded. The remaining 144 types (corresponding
to 1324 compounds) were considered. It was observed that 14 atomic environment types
are greatly preferred. Out of 6356 investigated point sets 71% belong to one of these 14
frequent atomic environment types which are those reported in the following list:
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3 (loose triangle); 4°%; 6*° 6'2 (trigonal prism) 8%%; 6°03%%; 6*0430; 922203, 1230, 1222
(cubic type); 1079260140, 1250260, 803604, 1230460 (Compare this list with the previous
one of the cubic compounds: notice that several atomic environment types are reported
in both lists.)

Of the 1324 rhombohedral compounds crystallizing in one of the 144 types, 19% belong
to a single-environment group, 15% combine two environment types, 25% three
environments; 34% four and the rest , 7%, five or more environments (= 94% of the
rhombohedral compounds crystallize in structure types with 1, 2, 3 or 4 environment
types).

The results of a similar analysis of the intermetallic hexagonal structure types have
been reported by DaAMS and VILLARS [1994]. Of 442 structure types 315 (clearly
intermetallic and correctly refined) were considered. In this case too it was observed that
a small group of atomic environments is greatly preferred. The 23 atomic environment
types most frequently occurring in the 315 hexagonal structure types are reported in the
following list (to be compared with those previously reported for cubic and rhombohedral
structure types):

3: 43.0, 4: 64.0. 61.2. 35.034‘013.0. 80.3. 65.034.0. 64.043.0. 65.034.016.0, 92.220.3, 85.024015.0. 125.0, 122.2
(cubic); 122.2 (hexagonal); 105.026.014.0; 64.13'3.032.219.0; 125.026.0; 122.226.0; 65.063.029.0; 125.036.0;
1239489, 1259859 (The 3 and 4 codes correspond to “irregular” atomic environment types.
The reference atom is not included in the plane (volume) of the polygon (polyhedron)
formed by the 3 (4) coordinating atoms.)

Out of 20131 poit sets investigated (belonging to 5646 compounds crystallizing in one
of the aforementioned 315 hexagonal structure types), 81% (16392) belong to one of
these 23 atomic environment types. Of the 5646 compounds, 14% belong to a single
environment group; 35% combine two environment types; 32% three; 11% four and the
rest (7%) five or more (93% of the hexagonal compounds crystallize in structure types
with 1, 2, 3 or 4 atomic environment types).

As a result of these analysis several relations between structure types have been
shown and discussed. Emphasis has been given to the fact that, in all the structure types
considered (cubic, rhombohedral, hexagonal) it may be observed that: “Nature prefers
one of the most symmetrical atomic environment types. Remarkably these atomic
environment types (21 in the cubic structures, 14 in the rhombohedral and 23 in the
hexagonal ones) are equally often found in single-environment up to poly-environment
groups meaning that even in complex structures, symmetrical arrangements are pre-
ferred”. The formation of the geometrically most simplest structure types containing a
small number of different atomic environment types was also noticed.

As a comment, we may observe that the results of these analyses can be compared
with the “Stability Principles” stated by Laves (see sec. 7.2.3.).

In conclusion to this section we may mention a paper by VILLARS and Daams [1993]
concerning an atomic environment classification of the chemical elements. Critically
evaluated crystallographic data for all element modifications (and recommended atomic
volumes) have been reported. Special structural stability diagrams were used to separate
atomic environment type stability domains and to predict the structure (in terms of
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environment types) of hitherto unknown high pressure and high temperature modifica-
tions (see sec. 8.4.).

8. Semi-empirical approaches to the prediction of (intermetallic)
compound formation

8.1. General remarks on procedures of prediction of compound and structure
formation in alloy systems

In the previous sections a brief sampling of some correlations has been given which
relate crystallochemical characteristics of the phase to the properties of the component
elements. This group of correlations may be considered as a first reference point for a
number of methods of predicting the formation, in a given system, of a compound and/or
of a certain structure. It is well known that, in scientific literature, more and more space
is dedicated to the question of the forecast of chemical equilibria in simple and complex
systems. A clear indication of this interest, both from a general and a technological point
of view, may be seen in the development and success of a number of monographs and
periodic publications and proceedings on this subject. Several approaches to this problem
have been considered: we may mention, with special attention to metal systems, the
explicit over-all summary already presented by KAUFMAN et al. (see KAUFMAN and
BERNSTEIN {1970]) and the more recent discussion by MASSALSKI [1989].

The role of a thermodynamic approach is well known: a thermodynamic control,
optimization and prediction of the phase diagram may be carried out by using methods
such as those envisaged by KUBASCHEWSKI and Evans [1958], described by KAUFMAN
and NESOR [1973], ANSARA et al. [1978], HILLERT [1981] and very successfully
implemented by LUKAS ef al. [1977, 1982], SUNDMAN e al. [1985]. The integration of
phase diagram calculations into the design of multicomponent alloys, and performance
prediction, has been discussed by Miopownik [1993]. The knowledge (or the prediction)
of the intermediate phases which are formed in a certain alloy system may be considered
as a preliminary step in the more general, and complex, problem of assessment and
prediction of all the features of phase equilibria and phase diagrams. (See also ALDINGER
and SEIFERT [1993]).

Evidence has to be given to the phase stability problem (MAasSALSK1 [1989]). The
significant progress and the limits, of the first principles calculations may be mentioned
(HAFNER [1989], PETTIFOR, chapter 2), the usefulness, however, of a number of
semiempirical approaches has to be pointed out. Several schemes and criteria have been
suggested to forecast and/or optimize the data concerning certain properties. In the
following a short outline will be reported on some prediction methods based on selected
correlations between elemental properties and structure formation.

8.2. Stability diagrams, structure maps

Several authors have tried to classify and order the numerous data concerning the
different intermetallic substances by using two (or three) dimensional structure maps
{stability, existence diagrams).

References: p. 363.
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These maps were prepared by selecting coordinates based on those parameters
(generally properties of the component elements) which were considered to be determi-
nant factors of the structural stability and phase formation control.

As an introductory example to this subject we may remember the well known
diagrams developed by DARKEN and GURRY [1953] for solid solution prediction. In such
diagrams (as shown in fig. 57) all elements may be included. The two coordinates
represent the atomic size (generally the radius corresponding to CN 12) and the
electronegativity of the elements. It is well known that the first table of electronegativity
values was introduced by PAULING [1932]. Several alternative definitions have since
been proposed. A reliable compilation extensively used in discussing the metallurgical
behaviour is that by TEATUM et al. [1968]. References to other scales will be reported later.

To determine the solid solubility of the different elements in a given metal, in the
Darken and Gurry map, the region with the selected metal (Mg, for instance, in fig. 57)
in the center can be considered. Generally we observe that elements which have high
solubility lie inside a small region around the selected metal. As a rule of thumb an
ellipse may be drawn in the diagram (with the selected metal in the center), for instance,
with + 0.3 electronegativity unity difference in one axis and * 15% atomic radius
difference on the other axis. For those elements for which there is a low (or a negligible)
solubility a larger region has to be considered.

For a review of the application of the Darken and Gurry method to predict solid
solubilities see GSCHNEIDNER [1980]. An improvement of the method by means of
simultaneous use of rules based on the electronic and crystal structures of the metals
involved, is also presented.

The diagrams reported in figs. 50 and 58 are examples of other structure stability
maps which have been suggested and successfully used in order to obtain a good
separation (classification) of typical alloying behaviours (compound formation, crystalli-
zation in a certain structure type, etc.).

As an outline of more general approaches along these lines we may mention a
selection of a few methods proposed by several researchers.

8.3. Savitskii-Gribulya-Kiselyova method (cybernetic computer-learning
prediction system)

Cyberetic computer-learning methods have been proposed by SAVITSKII et al. [1980]
for predicting the existence of intermetallic phases w